
( 

( 

SERIES 60 (LEVEL 6) 

GCOS 6 SYSTEM 
SERVICE 

MACRO CALLS 
ADDENDUM A 

SUBJECT 

Description of and User Procedures for System Service Macro Calls, Device 
Drivers, and Data Structures 

SPECIAL INSTRUCTIONS 

Insert the attached pages into the manual according to the Collating Instruc
tions on the back of this cover. Change bars in the margins indicate new or 
changed information and asterisks denote deletions. Note that the Error Log
ging macro calls (pages 5-147 through 5-165) have been deleted from this 
manual. The Release Directory and Release File macro calls (pages 5-366 
through 5-371) have been deleted and renamed Delete Directory and Delete 
File, and reinserted in alphabetical sequence. 

Note: 
Insert this cover behind the manual cover to indicate that the manual 
has been updated with this Addendum. 

SOFTWARE SUPPORTED 

This manual supports the Series 60 (Level 6) GCOS 6 MOD 600 (Release 0110 
Executive). See the manual directory of the latest MOD 600 System Concepts 
(Order No. CB50) manual for information as to later releases supported by 
this manual. 

PREREQUISITE INFORMATION 

MOD 600 System Concepts manual and GCOS 6 Assembly Language Refer
ence manual. 

ORDER NUMBER 

CB08-02A 

24257 
3779 
Printed in U.S.A. 

July 1979 

Honeywell 



---- - - .~ .. ---.-

COLLATING INSTRUCTIONS 

To update this manual, remove old pages and insert new pages as follows: 

Remove 

Title, Preface 
iii, iv 
vii through x 
1-7 through 1-10 
1-13. through 1-18 
1-21, 1-22 
2-5 through 2-8 
2-11, 2-12 
3-17, 3-18 
4-1, 4-2 
5-11, 5-12 
5-19, 5-22 
5-33, 5-34 
5-43, 5-44 
5-55 through 5-58 
5-67 through 5-74 
5-77, 5-78 
5-83 through 5-86 
5-91, 5-92 
5-103 through 5-108 
5-109 through 5-112 
5-115 through 5-118 
5-121, 5-122 
5-127, 5-128 
5-131, 5-132 
5-143 through 5-166 

5-169, 5-170 
5-187, 5-188 
5-213, 5-214 
5-221, 5-222 
5-225, 5-226 
5-229, 5-230 
5-241, 5-242 
5-251 through 5-254 
5-257, 5-258 
5-267, 5-268 
5-275 through 5-278 
5-283 through 5-288 
5-297, 5-298 
5-307, 5-308 
5-317, 5-318 
5-327, 5-328 
5-337, 5-338 
5-347, 5-348 
5-359 through 5-372 

5-377 through 5-380 
5-393, 5-394 
5-423 through 5-430 
5-445, 5-446 
5-449, 5-450 
5-459, 5-460 

Insert 

Title, Preface 
iii, iv 
vii through x 
1-7 through 1-10 
1-13 through 1-18 
1-21, 1-22 
2-5 through 2-8 
2-11, 2-12 
3-17, 3-18 
4-1, 4-2 
5-11, 5-12 
5-19, 5-22 
5-33, 5-34 
5-43, 5-44 
5-55 through 5-58 
5-67 through 5-74 
5-77, 5-78 
5-83 through 5-86 
5-91, 5-92 
5-103 through 5-108 
5-109 through 5-112 
5-115 through 5-118 
5-121 through 5-122.6 
5-127, 5-128 
5-131, 5-132 
5-143 through 5-147, blank 
5-166, blank 
5-169, 5-170 
5-187, 5-188 
5-213, 5-214 
5-221, 5-222 
5-225, 5-226 
5-229, 5-230 
5-241, 5-242 
5-251 through 5-254 
5-257, 5-258 
5-267, 5-268 
5-275 through 5-278 
5-283 through 5-286 
5-297, 5-298 
5-307 through 5-308 
5-317, 5-318.1 
5-327, 5-328 
5-337, 5-338 
5-347, 5-348 
5-359 through 5-372 
blank, 5-372 
5-377 through 5-380 
5-393 i 5-394 
5-423 through 5-430 
5-445, 5-446 
5-449, 5-450 
5-459, 5-460 

@) Honeywell Information Systems Inc., 1979 File No.: 1S13 

7/79 
CB08-02A 

-----.---.~.-~-.--.-~-- ... --- ~-

\/ 



( " ... 

,.oj 

( 

COLLATING INSTRUCTIONS (cont) 

Remove 

5-465 through 5-468 
5-471, 5-472 
5-487 through 5'-494 
5-509 through 5-512 
5-521, 5-522 
5-525, blank 
6-1 through 6-14 
6-33 through 6-36 
6-39 through 6-42 
A-3, A-4 
A-7 through A-14 
A-17 through A-24 
B-5, B-6 
B-9 through B-14 

Insert 

5-465 through 5-468 
5-471, 5-472 
5-487 through 5-494 
5-509 through 5-512 
5-521, 5-522 
5-525, blank 
6-1 through 6-14 
6-33 through 6-36 
6-39 through 6-42 
A-3, A-4 
A-7 through A-14 
A-17 through A-24 
B-5, B-6 
B-9 through B-14 





( 

SUBJECT 

SERIES 60 (LEVEL 6) 
GCOS 6 SYSTEM SERVICE 

MACRO CALLS 

Description of and User Procedures for System Service Macro Calls, Device 
Drivers, and Data Structures 

SPECIAL INSTRUCTIONS 

This revision supersedes Revision 1 of the manual dated July 1978. Appendix B 
was deleted and succeeding appendixes renumbered. Except for revised Section 6, 
new Section 8, and revised Appendixes A and C, change bars indicate new or 
changed information, asterisks denote deletions. Major additions are macro 
calls for MOD 600 software. 

SOFTWARE SUPPORTED 

This manual supports the Series 60 (Level 6) GCOS 6 MOD 400 (Release 0120) 
and MOD 600 (Release 0100) Operating Systems. See the manual directory of 
the latest MOD 400 System Concepts (Order No. CB20) or MOD 600 System 
Concepts (Order No. CB50) manual for information as to later releases supported 
by this manual. 

PREREQUISITE INFORMATION 

MOD 400 System Concepts manual or MOD 600 System Concepts manual and 
GCOS 6 Assembly Language Reference manual. 

ORDER NUMBER 

CB08, Rev. 2 December 1978 

Honeywell 



PREFACE 

This manual is for assembly language programmers who use the 
GCOS system service macro routines and macro calls in writing 
application programs. The manual describes the macro calls for 
monitor services, for using the file system, and for generating 
data structures. 

The manual also discusses Honeywell peripheral device 
* drivers. 

Section 1 concerns macro call syntax, register conventions, 
and addressing conventions. 

Sections 2, 3, and 4 briefly summarize and list macro calls 
for monitor services, for the file system, and for defining data 
structures, respectively. 

Section 5 describes in detail the use, structure, function, 
and error return codes for each macro routine and macro call, 
some with examples. These descriptions are arranged alphabet
ically by function description name, according to the function 
description shown in column 2 of Table 1-1. 

Section 6 describes the GCOS 6 Honeywell device drivers for 
data transfer in system and applications programs with Level 6 
peripheral devices. 

Sections 7 and 8 dis'cuss trap handling for hardware and 
software traps under MOD 400 and MOD 600, respectively. 

Appendix A describes various block data structures that are 
related to certain macro routines. Appendix B summarizes 
register contents before and after execution of the system 
service macro calls. Appendix C shows the ASCII and EBCDIC 
character sets~ 

(£) ,I' Honeywell Information Systems Inc., 1979 File No.: IS23 

7/79 
CB08-02A 



( 

MANUAL DIRECTORY 

The following publications constitute the GCOS 6 manual set. 
See the "Manual Directory" of the appropriate System Concepts 
manual for the current revision number and addenda (if any) of 
the relevant operating-system-specific publications. 

Base 
Publication Manual Title 

CBOI 
CB02 
CB03 
CB04 
CBOS 
CB06 
CB07 
CB08 
CB09 
CBIO 
CBl2 
CB13 
CB14 
CBIS 
CBl6 
CB20 
CB2l 
CB22 
CB23 
CB24 
CB27 
CB28 
CB30 
CB31 
CB32 
CB33 
CB34 
CB3S 

CB36 

GCOS 6 Program Preparation 
GCOS 6 Commands 
GCOS 6 Communications Processing 
GCOS 6 Sort/Merge 
GCOS 6 Data File Organizations and Formats 
GCOS 6 System Messages 
GCOS 6 Assembly Language Reference 
GCOS 6 System Service Macro Calls 
GCOS 6 RPG Reference 
GCOS 6 Intermediate COBOL Reference 
GCOS 6 Entry-Level COBOL Reference 
GCOS 6 FORTRAN Reference 
GCOS 6 Advanced COBOL Reference 
GCOS 6 Advanced COBOL Reference Guide 
GCOS 6 I-D-S/II Reference Card 
GCOS 6 MOD 400 System Concepts 
GCOS 6 MOD 400 Program Execution and Checkout 
GCOS 6 MOD 400 Programmer's Guide 
GCOS 6 MOD 400 System Building 
GCOS 6 MOD 400 Operator's Guide 
GCOS 6 MOD 400 Programmer's Pocket Guide 
GCOS 6 MOD 400 Master Index 
Remote Batch Facility User's Guide 
Data Entry Facility User's Guide 
Data Entry Facility Operator's Quick Reference Guide 
Level 6/Level 6 File Transmission Facility User's Guide 
Level 6/Level 62 File Transmission Facility User's Guide 
Level 6/Level 64 (Native) File Transmission Facility 

User's Guide 
Level 6/Level 66 File Transmission Facility User's Guide 

Guide 

iii 
7/79 

CB08-02A 



Base 
Publication Manual Title 

CB37 

CB38 

CB39 

CB40 
CB4l 
CB42 
CB43 
CB44 
CB48 
CBSO 
CBSl 
CBS2 
CBS3 
CBS4 
CBSS 
CBS6 
CBS7 
CBS8 
CD46 
CFll 
CG6S 
CG66 
CG7l 
CG72 

Level 6/Series 200/2000 File Transmission Facility User's 
Guide 

Level 6/BSC 2780/3780 File Transmission Facility User's 
Guide 

Level 6/Level 64 (Emulator) File Transmission Facility 
User's Guide 

2780/3780 Workstation Facility User's Guide 
HASP Workstation Facility User's Guide 
Level 66 Host Resident Facility User's Guide 
Terminal Concentration Facil ity User's Guide 
Interactive Function User's Guide 
3270 Interactive Facility User's Guide 
GCOS 6 MOD 600 System Concepts 
GCOS 6 MOD 600 Program Execution and Checkout 
GCOS 6 MOD 600 Programmer's Guide 
GCOS 6 MOD 600 System Building 
GCOS 6 MOD 600 Administrator's Guide 
GCOS 6 MOD 600 Transaction Driven System 
I-D-S/II Data Base Administrator's Guide 
I-D-S/II Data Base User's Guide 
GCOS 6 MOD 600 Operator's Guide 
Display formatting and Control 
RBF/64 User's Guide 
GCOS 6 MOD 600 Operator's Pocket Guide 
GCOS 6 MOD 600 Programmer's Pocket Guide 
GCOS 6 MOD 600 System Building Memory Calculator 
GCOS 6 MOD 600 Software and Documentation Directory 

In addition, the following publications provide supplemen
tary information: 

Order 
Number 

AT97 
CC7l 
FQ4l 

Manual Title 

Level 6 Communications Handbook 
Level 6 Minicomputer Systems Handbook 
Writable Control Store User's Guide 

iv 
7/79 

CB08-02A 



(-

Sect ion 5 (cont) 

( 

CONTENTS (cont) 

Accounting Update Record, write 
($ACTW2) •••••••••••••••••••••••• 

Activate Group ($ACTVG) ••••••••••• 
Activate Task ($ACTVT) •••••••••••• 
Associate File ($ASFIL) ••••••••••• 
Bound Unit, Attach ($BUAT) •••••••• 
Bo und Un it, Detach ($B UDT) •••••••• 
Bound Unit Identification ($BUID) • 
Bo und Un it, Lo ad ( $B ULD) •••••••••• 
Cancel Cloc k Request ($CNCRQ) ••••• 
Cancel Request ($CANRQ) ••••••••••• 
Cancel Semaphore Request ($CNSRQ) • 
Change User Identification 

($CUSID) •••••••••••••••••••••••• 
Change Working Directory ($CWDIR) • 
Clean Point ($CLPNT) •••••••••••••• 
Clear External Switches ($CLRSW) •• 
Clock Request Block ($CRB) •••••••• 
Clock Request Block Offsets 

($CRBD) ••••••••••••••••••••••••• 
Close File ($CLFIL) ••••••••••••••• 
Command In ($C IN) ••••••••••••••••• 
Command Line Process ($CMDLN) ••••• 
Console Message Suppression 

($CMSUP) •••••••••••••••••••••••• 
Create Directory ($CRDIR) ••••••••• 
Create File ($CRFIL) •••••••••••••• 
Create File Key Descriptors Block -

Offsets ($CRKDB) •••••••••••••••• 
Create File Parameter Structure 

Block - Offsets ($CRPSB) •••••••• 
Create Group ($CRGRP) ••••••••••••• 
Create Maximum Segment ($CRMSG) ••• 
Create Overlay Area Table 

($CROAT) •••••••••••••••••••••••• 
Create Segment ($CRSEG) ••••••••••• 
Create System Group ($CSGRP) •••••• 
Create Task ($CRTSK) •••••••••••••• 
Define Semaphore ($DFSM) •••••••••• 
Delete Directory ($DLDIR) •••••••••• 
Delete File ($DLFIL) ••••••••••••••• 
Delete Group ($DLGRP) ••••••••••••• 
Delete Overlay Area Table 

($DLOAT) •••••••••••••••••••••••• 
Delete Record ($DLREC) •••••••••••• 
Delete Segment ($DLSEG) ••••••••••• 
Delete Semaphore ($DLSM) •••••••••• 
Delete Task ($DLTSK) •••••••••••••• 

vii 

Page 

5-26 
5-29 
5-31 
5-33 
5-36 
5-40 
5-43 
5-45 
5-49 
5-51 
5-53 

5-55 
5-57 
5-60 
5-64 
5-66 

5-69 
5-70 
5-74 
5-77 

5-80 
5-82 
5-85 

5-93 

5-94 
5-96 
5-100 

5-104 
5-107 
5-111 
5-115 
5-119 

5-122.1 
5-122.4 

5-123 

5-125 
5-126 
5-129 
5-131 
5-133 

7/79 
CB08-02A 



Section 5 (cont) 

CONTENTS (cont) 

Disable Device on Attention 
($DSDV) ••••••••••••••••••••••••• 

Disable User Trap ($DSTRP) •••••••• 
Dissociate File ($DSFIL) •••••••••• 
Enable Device ($ENDV) ••••••••••••• 
Enable User Trap ($ENTRP) ••••••••• 
Entry Point Identification 

($ENTID) •••••••••••••••••••••••• 
Error Out ($EROUT) •••••••••••••••• 
Expand Pathname ($XPATH) •••••••••• 
External Date/Time, Convert To 

($EXTDT) •••••••••••••••••••••••• 
External Time, Convert To 

($EXTIM) •••••••••••••••••••••••• 
File Information Bloc k ($FI B) ••••• 
File Information Block Offsets 

($TFIB) ••••••••••••••••••••••••• 
File Information Block Offsets 

(Data Management Access) 
($FIBDM) •••••••••••••••••••••••• 

File Information Block Offsets 
(Storage Management Access) 
($FIBSM) •••••••••••••••••••••••• 

Get Date/Time ($GDTM) ••••••••••••• 
Get File ($GTFIL) ••••••••••••••••• 
Get File Parameter Structure Block 

Offsets ($GTPSB) •••••••••••••••• 
Get File Information ($GIFIL) ••••• 
Get File Information, File 

Attribute Block Offsets 
($GIFAB) •••••••••••••••••••••••• 

Get File Information, Key Descrip
tors Block Offsets ($GIKDB) ••••• 

Get File Information, Parameter 
Structure Block Offsets 

($GIPSB) •••••••••••••••••••••• 
Get Memory/Get Available Memory 

($GMEM) ••••••••••••••••••••••••• 
Get Working Directory ($GWDIR) •••• 
Group CPU Time Remaining ($GCPUR) • 
Group CPU Total Time Used 

($GCPUT) •••••••••••••••••••••••• 
Group Identification ($GRPID) ••••• 
Group Information ($GINFO) •••••••• 

viii 

-------------------

Page 

5-135 
5-137 
5-139 
5-141 
5-143 

5-145 
5-166 
5-169 

5-172 

5-175 
5-178 

5-186 

5-189 

5-192 
5-194 
5-197 

5-216 
5-218 

5-228 

5-231 

5-232 

5-234 
5-241 
5-243 

5-245 
5-247 
5-249 

7/79 
CB08.,..02A 

f\ 
~-~/ 

tf'---, 

~j 



Section 5 (cont) 

CONTENTS (cont) 

Group Status ($GRPST) ••••••••••••• 
Home Directory ($HDIR) •••••••••••• 
Input/Output Request Block ($IORB). 
Input/Output Request Block Offsets 

($IORBD) •••••••••••••••••••••••• 
Installation Identification 

($INSID) •••••••••••••••••••••••• 
Intergroup Request Block Offsets 

($IGRBD) ••••••••••••••••• ; •••••• 
Internal Date/Time, Convert To 

($ INDTM) •••••••••••••••••••••••• 
Kill (Abort) Task ($KILLT) •••••••• 
Message Group, Accept ($MACPT) •••• 
Message Group Control Request Block 

($MGCRB) •••••••••••••••••••••••• 
Message Group Control Request Block 

Offsets ($MGCRT) •••••••••••••••• 
Message Group, Count ($MCMG) •••••• 
Message Group Initialization 

Request Block ($MGIRB) •••••••••• 
Message Group Initialization 

Request Block Offsets ($MGIRT) •• 
Message Gro up, Ini ti a te ($MINIT) •• 
Message Group, Receive ($MRECV) ••• 
Message Group Recovery Request 

Bloc k ($MGRRB) •••••••••••••••••• 
Message Group Recovery Request 

Block Offsets ($MGRRT) •••••••••• 
Message Group, Send ($MSEND) •••••• 
Message Group, Terminate ($MTMG) •• 
Mode Identification ($MODID) •••••• 
New Command In ($NCIN) ••••••••••••• 
New Process ($NPROC) •••••••••••••• 
New User Input ($NUIN) •••••••••••• 
New User Output ($NUOUT) •••••••••• 
Open File ($OPFIL) •••••••••••••••• 
Operator Information Message 

($OPMSG) •••••••••••••••••••••••• 
Operator Response Message 

($OPRSP) •••••••••••••••••••••••• 
Overlay Area, Release ($OVRLS) •••• 
Overlay Area Reserve, and Execute 

Overlay ($OVRSV) •••••••••••••••• 
Overlay, Execute ($OVEXC) ••••••••• 
Overlay, Load ($OVLD) ••••••••••••• 
Overlay Release, Wait, and Recall 

($OVRCL) •••••••••••••••••••••••• 
Overlay Status ($OVST) •••••••••••• 

ix 

Page 

5-251 
5-254 
5-256 

5-259 

5-260 

5-262 

5-263 
5-266 
5-268 

5-272 

5-277 
5-278 

5-281 

5-285 
5-286 
5-289 

5-293 

5-297 
5-298 
5-303 
5-306 

5-307.1 
5-308 
5-309 
5-311 
5-313 

5-320 

5-323 
5-326 

5-328 
5-332 
5-335 

5-339 
5-343 

7/79 
CB08-02A 



Section 5 (cont) 

CONTENTS (cont) 

Overlay, Unload ($OVUN) ••••••••••• 
Parameter Block ($PRBLK) •••••••••• 
Per son Identi f ication ($ PERID) •••• 
Read Block ($RDBLK) ••••••••••••••• 
Read External Swi tches ($RDSW) •••• 
Read Record ($RDREC) •••••••••••••• 
Release Semaphore ($RLSM) ••••••••• 
Release Term inal ($RLTML) ••••••••• 
Remove File ($RMFIL) •••••••••••••• 
Rename File/Rename Directory 

($RNFIL) •••••••••••••••••••••••• 
Report Error Condition ($RPTER) ••• 
Request Batch ($RQBAT) •••••••••••• 
Request Cloc k ($RQCL) ••••••••••••• 
Request Group ($RQGRP) •••••••••••• 
Request I/O ($RQIO) ••••••••••••••• 
Request Semaphore ($RQSM) ••••••••• 
Request Task ($RQTSK) ••••••••••••• 
Request Term inal ($RQTML) ••••••••• 
Reserve Semaphore ($RSVSM) •••••••• 
Reset Device Attention ($RDVAT) ••• 
Return ($RETRN) ••••••••••••••••••• 
Return Memory/Return Partial Block 

of Memory ($RMEM) ••••••••••••••• 
Return Request Block Address 

($ RB~DD) •••••••••••••••••••••••• 
Rewrite Record ($RWREC) ••••••••••• 
Roll Back (Recover) Files 

($ROLBK) •••••••••••••••••••••••• 
Semaphore Request Bloc k ($SRB) •••• 
Semaphore Request Block Offsets 

($SRBD) ••••••••••••••••••••••••• 
Set Dial ($SDL) ••••••••••••••••••• 
Set External Swi tches ($SETSW) •••• 
Set Terminal Characteristics 

($STTY) ••••••••••••••••••••••••• 
S ig nal Trap ($SGTRP) •••••••••••••• 
Spawn Group ($SPGRP) •••••••••••••• 
Spawn Task ($SPTSK) ••••••••••••••• 
Status Memory Pool ($STMP) •••••••• 
Suspend Group ($SUSPG) •••••••••••• 
Suspend for Interval ($SUSPN) ••••• 
Suspend Task ($SUSPT) ••••••••••••• 
Suspend Until Time ($SUSPN) ••••••• 
Swap File ($SWFIL) •••••••••••••••• 
System Attribute Information, 
Get ($SYSAT) •••••••••••••••••••••• 
System Ident i f ication ($SYSID) •••• 
Task CPU Time Remaining ($TCPUR) •• 

x 

-----~-.~-- -------_. ----- ---- ---------

Page 

5-347 
5-350 
5-352 
5-354 
5-358 
5-360 
5-372 
5-374 
5-376 

5-379 
5-382 
5-385 
5-388 
5-390 
5-394 
5-397 
5-400 
5-403 
5-406 
5-409 
5-411 

5-413 

5-416 
5-418 

5-421 
5-423 

5-425 
5-426 
5-430 

5-432 
5-435 
5-438 
5-444 
5-448 
5-450 
5-452 
5-455 
5-457 

5-459.1 

5-459.3 
5-460 
5-462 
7/79 

CB08-02A 



( 

( 

LOCATION OF MACRO ROUTINES 

The macro routines are located either on cartridge disk or 
on mass storage unit in a library named >LDD>MACRO>EXEC LIB. On 
diskette they are located in /\ ZSYS02>LDD>MACRO>EXEC LIB: 

Macro 
Call Name 

(1 ) 

$ABGRP 

$ABGRQ 

$ACTCL b 

$ACTDI b 

$ACTD2 b 

$ACTID 

$ACTOP b 

$ACTRI b 

$AC'IR 2 b 

$ACTVG 

$ACTVT b 

$ACTWI b 

b 
$AC'lW2 

$ACUPD b 

$ASFIL 

Table 1-1. System Service Macro Calls 

Function Description 
(2 ) 

Abort group 

Abort group request 

Accounting files, close 

Accounting raw record, delete 

Accounting update record, 
delete 

Account identification 

Function 
Code 

(3 ) 

ODOA 

OD07 

IEOS 

lE03 

lE13 

1402 

Accounting files, open lE04 

Accounting raw record, read IEOI 

Accounting update record, read lEll 

Activate group OD09 

Activate task OCIO 

Accounting raw record, write IE02 

Accounting update record, lE12 
write 

Accounting field, update lE06 

Associate file 1010 

1-7 

Function 
Group 

(4 ) 

Task group 
control 

Task group 
control 

Accounting 

Accounting 

Accounting 

Identifica
tion and 
information 

Accounting 

Accounting 

Accounting 

Task group 
control 

Task control 

Accounting 

Accounting 

Accounting 

File manage
ment 

7/79 
CB08-02A 

* 



-------------------~, -----._--- --------------_._--------



( 

( 

Macro 
Call Name 

(1 ) 

$CRFIL 

$CRGRP 

$CRKDB 

b 
$CRMSG 

$CROAT 

$CRPSB 

$CRSEG b 

$CRTSK 

$CSGRp b.c 

$CUSIDb,c 

$CWDIR 

$DFSM 

$DLDIR 

$DLFIL 

$DLGRP 

$DLREC 

Table 1-1 (cont). System Service Macro Calls 

Function Description 
(2 ) 

Create file 

Create group 

Create file, key 
descriptor block offsets 

Create maximum segment 

Create overlay area table 

Create file parameter 
structure block - offsets 

Create segment 

Create task 

Create system group 

'Change user identification 

Change working directory 

Def i ne semaphore 

De lete directory 

Delete fi Ie 

Delete group 

Delete record 

1-9 

Function 
Code 
(3 ) 

1030 

OD03 

OCOE 

070A 

OCOC 

Function 
Group 

(4 ) 

File manage
ment 

Task group 
control 

Data structure 
generation 

Task control 

Overlay 
handling 

Data struc
ture genera
tion 

Task cont rol 

OC02/0C03 Task control 

OD02 

ODOE 

lOBO 

0604 

10A5 

1035 

OD04 

Task group 
control 

Task group 
control 

File manage
ment 

Semaphore 
handling 

File 
management 

File 
management 

Task group 
control 

1130/1131 Data manage
ment 

7/79 
CB08-02A 

I 



* 

Table 1-1 (cont). System Service Macro Calls 

Macro 
Call Name 

(1 ) 

$DLOAT 

$DLSEGb 

$DLSM 

$DLTSK 

$DSDV 

$DSFIL 

$DSTRP 

$ENDV 

$ENTID 

$ENTRP 

$EROUT 

$EXTDT 

$EXTIM 

$FIB 

Function Description 
(2 ) 

Delete overlay area table 

Delete segment 

Delete semaphore 

Delete task 

Disable device 

Dissociate file 

Disable user trap 

Enable device 

Entry point 
identification 

Enable user trap 

Error output file - write 
to 

External date/time - convert 
to 

External time - convert 
to 

File information block -
create or change 

1-10 

--_.--- -_ ... ----- ----

Function 
Code 
(3 ) 

070D 

OCOD 

0607 

OC04 

0202 

1015 

OA02 

0204 

1407 

OAOI 

0803 

0504 

0505 

Function 
Code 
(4 ) 

Overlay 
handling 

Task control 

Semaphore 
handl ing 

Task control 

Physical I/O 

File manage
ment 

Trap handl ing 

Physical I/O 

Identification 
and info rma
tion 

Trap handl ing 

Standard 
system file 
I/O 

Date/time 

Date/time 

Da ta struc
ture genera
tion 

7/79 
CB08-02A 

t~. 
,.j 



Macro 
Call Name 

(1 ) 

$MGCRT 

$MGIRB 

$MGIRT 

$MGRRB 

$MGRRT 

$MINIT 

$MODID 

$MRECV 

$MSEND 

$M'lMG 

$NCIN 

$NPROC 

Table 1-1 (cont). System Serv ice Macro Calls 

Function Description 
(2 ) 

Messag e group control request 
block offsets 

Message group initialization 
request block 

Message group initialization 
request block offsets 

Message group recovery request 
block 

Message g ro up recovery request 
block offsets 

Message group, initiate 

Mode identification 

Message group, rece iv e 

Message group, send 

Message group, terminate 

New command- in 

New process 

1-13 

Function 
Code 
(3 ) 

-

-

-

-

-

1502 

1403 

1503 

1505 

1504 

0806 

ODOB 

Function 
Group 

(4 ) 

Data struc-
ture genera-
tion 

Data struc-
ture genera-
tion 

Data struc-
ture genera-
tion 

Data struc-
ture genera-
tion 

Data struc-
ture genera-
tion 

Intergroup 
message 
facility 

Identification 
and 
information 

Intergroup 
message 
facility 

Intergroup 
message 
facility 

Intergroup 
message 
facility 

Standard sys-
tem file I/O 

Task group 
control 

7/79 
CB08-02A 

I 

I 



I 
I 

Table 1-1 (cont). System Service Macro Calls 

Macro Function 
Call Name Function Description Code 

(1 ) (2 ) (3 ) 

$NUIN New user input file - 0804 

$NUOUT New user output file - 0805 
redefine 

$OPFIL Open file 1050/1051 

$OPMSG Operator information 0900 
message - display only 

$OPRSP Operator response 0901 
message - di splay/ respond 

$OVEXC Overlay, execute 0700 

$OVLD Overlay, load 0701 

$OVRCL Overlay release, wait, and 0707 
recall 

$OVRLS Overlay area, release 0706 

$OVRSV Overlay area reserve, and 0705 
execute overlay 

$OVST Overlay sta tus 0703 

$OVUN Overlay, unload 070C 

$PERID Person identification 1401 

$PRBLK Parameter block -

$RBADD Return request block 0107 
address 

1-14 

--------~""--------""- -------------- ----

Function 
Group 

(4 ) 

Standard sys-
tem file I/O 

Standard sys-
tern file I/O 

File manage-
ment 

Operator 
interface 

Operator 
interface 

Overlay 
handling 

Overlay 
handling 

Overlay 
handling 

Overlay 
handling 

Overlay 
handling 

Overlay 
handling 

Overlay 
handling 

Identification 
and 
information 

Data struc-
ture genera-
tion 

Request and 
return 

7/79 
CB08-02A 



Macro 
Call Name 

(1 ) 

$RDBLK 

$RDREC 

$RDSW 

$RDVAT 

$RETRN 

$RLSM 

$RL'IML 

$RMEM 

$RMFIL 

$RNFIL 

$ROLBK 

$RPTER 

$RQBAT 

$RQCL 

$RQGRP 

Table 1-1 (cont). System Service Macro Calls 

Function Description 
(2 ) 

Read block 

Read record 

Read external switches 

Reset device attention 

Return sequence - establish 

Release semaphore 

Release terminal 

Return memory; return 

Remove file 

Rename file/directory 

Roll back 

Report error condition 

Request batch execution 

Request clock 

Request group 

1-15 

Function 
Code 
(3 ) 

Function 
Group 

(4 ) 

1200-1204 Storage 
management 

1110-1116 Data manage
ment 

OBOO 

0203 

0603 

1704 

External 
switch 

Physical I/O 

Request and 
return 

Semaphore 
handling 

Terminal 
Function 

0404/0405 Memory 
allocation 

1025 

1040 

OC14 

File manage
ment 

File manage
ment 

Task control 

OFOO/OFOI Error 
handling 

OEOO 

0500 

ODOO 

Batch 

Clock 

Task group 
control 

7/79 
CB08-02A 



• 
• 

Macro 
Call Name 

(1 ) 

$RQIO 

$RQ'IML 

$RQTSK 

$RSVSM 

$RWREC 

$SDL 

$SETSW 

$SGTRpb 

$SPGRp a 

$SPTSK 

$SRB 

$SRBD 

$STTY 

$SUSPG 

Table 1-1 (cont). System Service Macro Calls 

Function Description 
(2 ) 

Request I/O transfer 

Request semaphore 

Request terminal 

Request task 

Reserve semaphore 

Rewri te record 

Set dial 

Set external switches 

Signal trap 

Spawn group 

Spawn task 

Semaphore request block 

Semaphore request block 
offsets 

Status memory pool 

Set terminal file 
characterstics 

Suspend group 

1-16 

Function 
Code 
(3 ) 

0200 

0600 

1703 

OCOO 

0602 

Function 
Group 

(4 ) 

Physical I/O 

Semaphore 
handling 

Terminal 
function 

Task control 

Semaphore 
handling 

1140/1141 Data manage
ment 

1BOO 

OB01 

OA03 

OD05 

Communica
tions 

External 
switch 

Trap handling 

Task group 
control 

OC05/0C06 Task control 

0406 

1045 

OD08 

Data struc
ture genera
tion 

Data struc
ture genera
tion 

Memory allo
cation 

Fi Ie manage
ment 

Task group 
control 

7/79 
CB08-02A 



( 

Macro 
Call Name 

(1 ) 

$SUSPN 

$SUSPTb 

$SWFIL 

$SYSAT 

$SYSID 

$TCPURb 

$TEST 

$TFIB 

$TGIN 

$TIFIL 

$TINFOb 

$TOFIL 

$TRB 

$TRBD 

Table 1-1 (cont). System Serv ice Macro Calls 

Function Description 
(2 ) 

Suspend for interval; 
suspend until time 

Suspend task 

Swap file 

System attribute information 

System identification 

Task CPU time 
remaining 

Test completion status 

Fi Ie info rma tion block -
offsets 

Task group input 

Test file for input 

Task information 

Test file for output 

Task request block 

Task request block offsets 

1-17 

Function 
Code 
(3 ) 

Function 
Group 

(4 ) 

0502/0503 Clock 

OCOF 

1054 

1411 

1404 

050B 

0102 

l40C 

1062 

1409 

1063 

Task control 

File 
management 

Identification 
and 
info rma t io n 

Identification 
and 
information 

Date/time 

Request and 
return 

Data structure 
generation 

Identification 
and 
information 

Fi Ie manage
ment 

Identification 
and 
information 

Fi Ie manag e
ment 

Data structure 
generation 

Data structure 
generation 

7/79 
CB08-02A 



Macro 
Call Name 

(1 ) 

$TRMRQ 

$TRPHD 

$TRPHDb 

$UNSBU 

$USIN 

$USMSGb 

$USOUT 

$USRID 

$USRSpb 

$WAIT 

$WAITL 

$WIFIL 

$WLIST 

$WOFIL 

$WRBLK 

$WRREC 

Table 1-1 (cont). System Services Macro Calls 

Function Description 
(2 ) 

Function 
Code 
(3 ) 

Terminate request 0103/0104 

Trap handler connect OAOO 

Trap handler, query OA04 

Unload sharable bound unit 070E 

User input file - read 0800 

User message 1700 

User output file - write 0801 

User identification 1400 

User response message 

Wait for operation 
complete 

Wait on request list 

Wait for file input 

Wait list structure 

Wait for file output 

1701 

0100 

0101 

1064 

1065 

I Function 
Group 

(4 ) 

Request and 
return 

Trap handling 

Trap handling 

Overlay hand
ling 

Standard sys
tem fi Ie I/O 

Intergroup 
task message 

Standard sys
tem fi Ie I/O 

Identification 
and 
information 

Intergroup 
task message 

Request and 
return 

Request and 
return 

File manage
ment 

Data structure 
generation 

Fi Ie manag e
ment 

Wri te block 1210/1211 Storage 
management 

Write record 

1-18 

1120/1126 Data manage
ment 

7/79 
CB08-02A 

------~--------



( .. ~ 

TCBS representing task code are assigned to execute on phys
ical priority level of the central processor. One or more TCBs 
may be assigned to use a level, and will be queued awaiting 
availability if there is a request for the task. When the TCB 
heading the level queue terminates with an empty request queue or 
is temporarily suspended by the system, the next TCB on that 
level moves to the head of the level queue. The system may sus
pend a task while processing a system service call, e.g., fetch
ing a system overlay; the task may also explicitly suspend by 
performing a wait or suspend operation. When a suspended task 
reactivates, its TCS is placed at the end of the appropriate 
1 evel que ue • 

The following sequence of events illustrates an example of 
request queue manipulation as one task (e.g., task A, identified 
as logical resource number 1 at priority level 7) requests the 
execution of another task (e.g., task S, identified as logical 
resource number 2 at priority level 10, a lower priority level) 
and later waits for completion of the requested task. 

1. Task A requests task B (specifying logical resource I 
number 2 in the request block). The task manager places 
this request block at the end of the request queue for 
Task B which executes at priority level 10. See Diagram 
1. 

I TCB 
l 
I 

ANOTHER REQUEST 
REQUEST - BLOCK 
BLOCK FROM TASK A 

~~ ...... ~~~--.... --~~ 
TASK B REQUEST QUEUE 

Diagram 1 - Request Block From Task A is Queued in 
Request Queue for Task B 

2. Task A issues a wait call, indicating that it wishes to 
be suspended until its request for Task B is completed. 
Task A is now suspended. 

3. Task B runs and terminates relative to the first request 
block in the request queue for the task. As Task B 
terminates, the first request block is removed from the 
request queue fo r the task. See Diag ram 2. The TCB fo r 
Task B on priority level 10 remains active because 
another request block (the one generated by Task A) ex
ists in its request queue. 

1-21 
7/79 
CB08-02A 



ANOTHER 
REQUEST 
BLOCK 

REQUEST 
BLOCK 
FROM TASK A 

TASK B REQUEST QUEUE 

Diagram 2 - First Request Block is Dequeued as Task B 
Terminates Relative to It 

4. Task B runs and terminates relative to the request block 
generated by Task A. Task A, which was waiting for this 
event, is now reactivated. The request block generated 
by Task A is removed from the request queue for priority 
level 10. Task A will resume execution when priority 
level 7 becomes the highest active level, and the Task A 
TCB again reaches the beginning of the level 7 TCB 
'queue. 

1-22 CB08 

-----------------



( 

Function 

Home directory pathname 
Bound unit identification 
System identification 
Task group account identification 
Task group input file name 
Task group mode identification 
Task group person identification 
Task group user identification 
Entry point identification 
Group information 
Group identification 
Group status information 
Installation identification 
Task info rmation 
System attribute information, get 

MEMORY ALLOCATION FUNCTIONS 

Macro Call 

$HDIR 
$BUID 
$SYSID 
$ACTID 
$TGIN 
$MODID 
$PERID 
$USRID 
$ENTID 
$GINFO 
$GRPID 
$GRPST 
$INSID 
$TINFO 
$SYSAT 

The macro calls for memory allocation functions allow you to 
dynamically obtain memory from the task group's memory pool, to 
return this memory when it is no longer needed, and ascertain the 
amount of memory available in a specified pool. 

The macro call that allocates a memory block has two forms: 
one form allows you to obtain a memory block of the specified 
size only; the other allows you to obtain the largest existing 
contiguous memory block if a block of the specified size cannot 
be found. The macro call that returns a memory block also has 
two forms: one form allows you to return an entire memory block; 
the other allows you to return a specified part of the block. 

The macro routines/calls are: 

Get memory; get available memory 

Return memory; return partial 
block of memory 

Status memory pool 

MESSAGE FACILITY FUNCTIONS 

$GMEM 

$RMEM 

$STMP 

The message facility allows two task groups, using assembly 
language code, to have online communication between them by 
sending a message (one or more records) through message queues 
called mailboxes. A message group is a set of records that con
stitute a message sent through a mailbox. 

2-5 
7/79 
CB08-02A. 

• 



The message facility macro calls are issued by the task 
groups to perform message group and message functions. (The 
MOD 400 System Concepts manual describes the message facility.) 

The intergroup message facility macro calls have the follow
ing functions: 

o Open the send function of the message facility (accept) 

o Ascertain number of messages in the mailbox 

o Open the receive function of the message facility 
(initiate) 

o Terminate the message group 

o Receive the data 

o Send the message data 

The message facility macro calls are: 

Message group, accept $MACPI' 
Message group, count $MCMG 
Message group, in i tiate $MINIT 
Message group, terminate $MTMG 
Message group, receive $MRECV 
Message group, send $MSEND 

INTERGROUP TASK MESSAGE FUNCTIONS (MOD 600 ONLY) 

The macro calls for intergroup task message functions permit 
communications between tasks in different task groups by: 

o Sending a message between tasks in separate task groups 

o Sending a message from a task in one group to a task in 
another, and receiving a response 

The macro calls use an intergroup request block, discussed 
in Section 4 ahd detailed in Appendix A. 

The macros are: 

User message 
User response message 

OPERATOR INTERFACE FUNCTIONS 

$USMSG 
$USRSP 

The macro calls for operator interface functions enable 
tasks to communicate with the operator terminal by: 

2-6 
7/79 
CB0802A 

• 

11"\ 
~j 



( 

c ... / 

o Displaying an information message on the operator 
terminal 

o Sending a message to the operator terminal and re
ceiving a response 

o Activating or deactivating console suppression, i.e., 
suspend or restore issuance of messages to the operator 
terminal for the issuing task group 

The macro routines/calls are: 

Console message suppression 
Operator information message 
Operator response message 

$CMSUP 
$OPMSG 
$OPRSP 

THE $OPMSG and $OPRSP macro calls require input/output re
quest blocks (IORB's), which can be generated by the $IORB macro 
call (see Sections 4 and 5 and Appendix A). 

OVERLAY HANDLING FUNCTIONS 

Overlays may be loaded at a fixed displacement from the base 
of the root-segment at link time, or if "floatable," into a block 
of memory allocated explicitly by the user or implicitly by the 
system. 

The user may create a set of overlay areas and have the sys
tem load floatable overlays into them, managing the availability 
of free areas, and locating available copies of requested 
overlays. The user may unload from memory, at one time, all 
sharable bound units with a user count of zero. 

The macro routines/calls are: 

Overlay, release, wait, and recall 
Overlay area, release 
Overlay area reserve, and execute overlay 
Create overlay table 
Delete overlay area table 
Overla y, execu te 
Overlay, load 
Overlay status 
Over lay, un load 

PHYSICAL I/O FUNCTIONS 

$OVRCL 
$OVRLS 
$OVRSV 
$CROAT 
$DLOAT 
SOVEXC 
$OVLD 
$OVST 
SOVUN 

The macro calls described in this subsection allow you to 
interact with device drivers. If direct access to devices is not 
a requirement, use the File System macro calls. 

2-7 
7/79 
CB08-02A 

* 



The physical I/O macro calls allow you to: 

o Request input and output 

o Disable a device when an attention interrupt occurs 

o Set the resource control table (RCT) of a device to the 
enable status 

o Turn off the attention status indicator in the RCT of 
the specified device 

See Section 6 for a complete description of Level 6 physical 
I/O functions, including details on device drivers and resource 
control tables. 

The macro routines/calls for physical I/O are: 

Disable device on attention 
Enable device 
Reset device attention 
Request I/O transfer 

* REQUEST AND RETURN FUNCTIONS 

$DSDV 
$ENDV 
$RDVAT 
$RQIO 

The macro calls for request and return functions enable you 
to control requests for tasks and to provide a standard return 
sequence for called subroutines. Specifically, the macro rou
tin es a re us ed to: 

o Terminate the current execution of a task 
o Wait for the completion of another task 

2-8 
7/79 
CB08-02A 



( 
4. Task B issues a $RLSM when it finishes with the re

source; the counter is incremented to 0, Task C now gets 
the resource. After the $RLSM for Task C, the value is 
1 aga in. 

Use of resources by more than one user at a time can be ar
ranged by adjusting the initial value of the semaphore, e.g., an 
initial value of 2 allows two users, a value of 4 allows four 
users, and so on, depending on the nature of the resource and its 
intended us e. 

If it is undesirable for a task to be suspended while a re
source is in use, the $RQSM macro call can be used instead of 
$RSVSM to reserve a resource. $RQSM is an asynchronous reserva
tion request ($RSVSM is a synchronous request) which causes a 
request block to be queued for the resource, so that the issuing 
task can do other processing before the needed resource is 
ava ilable. 

The macro routines/calls for semaphore handling are: 

Cancel semaphore request 
Define semaphore 
Release semaphore 
Request semaphore 
Reserve semaphore 
Delete semaphore 

STANDARD SYSTEM FILE I/O FUNCTIONS 

$CNSRQ 
$DFSM 
$RLSM 
$RQSM 
$RSVSM 
$DLSM 

The macro calls for standard system file I/O functions make 
the standard system files (command-in, user-in, user-out, and 
error-out) available to a task group. Other macro calls shown 
below allow the task to redefine the user-in and user-out files. 
Specifically, the macro routines enable you to: 

o Read the next record from the command-in file 
o Write the next record to the error-out file 
o Read the next record from the user-in file 
o Write the next record to the user-out file 
o Redefine the user-in file 
o Redefine the user-out file 

The macro routines/calls are: 

Command in (read command-in file) 
Error output file 
New command in 
New user input file 
New user output file 
User input file 
User output file 

2-11 

$CIN 
$EROUT 
$NCIN 
$NUIN 
$NUOUT 
SUS IN 
$USOUT 

7/79 
CB08-02A 

• 



• 

TASK CONTROL FUNCTIONS 

The macro calls for task control allow you to: 

o Cancel a previously issued request 

o Create, request, spawn, suspend, activate, delete, and 
abort a task 

o Attach, load, and detach a bound unit to/from a task 

o Create and delete a segment for a task's bound unit 

o Process command lines 

o Roll back (recover) updated records in all files updated 
since the last execution of clean point. 

o Define "clean" point at which updated records are valid 
and may be recovered; unlock records for all files in 
the task group 

Some macro calls involve the use of request blocks. Sec
tions 4 and 5 discuss and describe macro calls that generate re
quest blocks; Appendix A shows the format of the request blocks. 

Macro routines/calls for task control are: 

Cancel request 
Clean point 
Command line, process 
Create task 
Delete task 
Request task 
Spawn task 
Bound unit, attach 
Bound un it, load 
Bount unit, detach 
Unload sharable bound un it 
Create segment 
Create maximum segment 
Delete segment 
Suspend task 
Activa te task 
Kill task 
Roll back 

TASK GROUP CONTROL FUNCTIONS 

$CANRQ 
$CLPNT 
$CMDLN 
$CRTSK 
$DLTSK 
$RQTSK 
$SPTSK 
$BUAT 
$BULD 
$BUDT 
$UNSBU 
$CRSEG 
$CRMSG 
$DLSEG 
$SUSPT 
$ACTVT 
$KILLT 
$ROLBK 

A task group is a named set of one or more tasks, memory 
space, files, peripheral devices, and priority levels. Any num
ber of task groups may be defined. The macro calls for task 
control allow you to: 

2-12 
7/79 
CB08-02A 

- --~-. --~---~------

tf' 
I,,-~ 



(i 

o Create a file 

o Delete a file 

o Get a file (reserve a file for processing) 

o Open a file 

o Close a file 

o Remove a file from processing 

o Rename a file 

o Associate a logical file number with a pathname 

o Dissociate a logical file number from a pathname 

o Create a directory 

o Delete a directory 

o Rename a directory 

o Change the working directory 

o Get the name of the current working directory 

o Expand pathname (develop a full pathname from a 
rela ti ve pa thname) 

o Get information about a file 

o Test the status of an I/O activity (terminal) 

o Wait for the completion of an asynchronous I/O activity 
(terminal) 

o Set the file characteristics of a terminal 

Some of the macro calls use file information blocks (FIBs); 
some can use FIB offsets or parameter structure offsets. The 
macro calls available to generate FIBs and offsets are summarized 
in Section 4 and described in detail in Section 5. 

The macro routines/calls for file management are: 

Associate file 
Change working directory 
Close file 
Create directory 
Create file 

$ASFIL 
$CWDIR 
$CLFIL 
$CRDIR 
$CRFIL 

3-17 
7/79 
CB08-02A 

I 

* 

• 
* 



I 

• 

• 
• 

• 
• 

Delete file 
Delete directory 
Dissociate file 
Expand pathname 
Get file 
Get file information 
Get working directory 
Open file 
Release directory 
Release file 
Remove file 
Rename file/directory 
Set terminal file 

characteristics 
Test file for input 
Test file output 
Swap tape fi Ie 
Wait for file input 
Wait for file output 

$DLFIL 
$DLDIR 
$DSFIL 
$XPATH 
$GTFIL 
$GIFIL 
$GWDIR 
$OPFIL 
$RLDIR 
$RLFIL 
$RMFIL 
$RNFIL 
$STTY 

$TIFIL 
$TOFIL 
$SWFIL 
$WIFIL 
$WOFIL 

Section 5 describes these macros in detail. 

Many of the macro calls can be logically paired, as follows: 

o Open file - Close file 
o Create file - Delete file 
o Associate file - Dissociate file 
o Get file - Remove file 
o Create directory - Delete directory 

Although the following functions are available through macro 
calls, they are typically performed outside of program execution 
via execution control commands. 

o Associate file 
o Dissociate file 
o Get file 
o Remove file 
o Crea te file 
o De lete file 
o Rename file 
o Create directory 
o Delete directory 
o Change working directory 
o Get working directory 
o Set terminal file characteristics. 

Figure 3-1 shows the life cycle of a file. Create file 
($CRFIL) and get file ($GTFIL) are actually on the same level. 
The same is true for delete file ($DLFIL) and remove file 

If··"" 

\.../ 

($RMFIL). (Associate file and dissociate file provide a way of £~, 
supplying a pathname as input to create file and get file.) ~/ 

3-18 

~--. ---

7/79 
CB08-02A 



( .- _. 

( 

SECTION 4 

DATA STRUCTURE GENERATION 

This section summarizes the macro routines that generate 
and/or define the system data structures. There are two kinds of 
data structures, those that apply to the monitor service func
tions, and those that apply to the file system functions. 

The macro calls for data structure generation for both 
monitor services and for the file system functions, are described 
in detail in Section 5, in the alphabetic order of their function 
descriptions (see column 2 of Table 1-1). 

NOTE: Macro calls that are usable with only one operating 
system, (e.g., MOD 400 or MOD 600) are so identified 
in Table 1-1 and in Section 5. 

MONITOR SERVICES DATA STRUCTURES 

Monitor service data structures are the following: 

o Request blocks 
o Parameter block and wait list 
o Request block offsets 

The macro routines for generating the monitor services data 
structures, summarized in this subsection and described in 
Section 5, cannot be used in programs written in SAF/LAF inde
pendent code (SLIC). See the Assembly Language Reference manual I 
for detailed information about SAF/LAF independent code. 

Request Blocks 

Request blocks are data structures used by an application to 
coordinate the processing of events. The request blocks provide 
a standard system interface that specifies the conditions for 
execution to proceed. For example, one element in a request 
block can be set to indicate that a task issuing a request for 
another task has the option to wait until the second task fin
ishes processing before the issuing task continues its own 
processing ~ 

4-1 
7/79 
CB08-02A 



Request blocks provide the means of specifying the following 
options: r" 

I 

o Wait for requested task completion 
o Explicit start address of requested task 
o Termination action for requested task 
o Del~tion of request block upon termination 

The wait option allows synchronization of a requesting and a 
requested task; for example, the issuing task could name a sema
phore to be released or it could specify an address of a request 
block to be scheduled. 

The selection of an explicit start address allows a request
ing task to control the entry point of the requested task. 

Possible termination options of the requested task include 
release of a semaphore or request of another request block on 
task termination. These options allow flexible synchronization 
among tasks of an application and permit the issuing task to 
terminate before the requested task completes. For example, a 
slave task that runs asynchronously with the remainder of the ap
plication can repetitively reserve a semaphore and be activated 
only by release of that semaphore as requested at termination of 
other tasks. The option of scheduling another task request at 
task termination allows, for example, a dispatching task to be 
notified of completion of certain tasks without explicitly wait
ing for their completion. 

The request block deletion option causes the system to re
turn the request block to the appropriate pool upon task termina
tion without further application intervention. 

Often used in conjunction with the semaphore and/or schedule 
request options, this is a way for memory to be properly returned 
even though the issuing task has itself terminated. For example, 
the system uses this feature on asynchronous task requests such 
as Spawn Task, with the NWAIT argument. 

These options are controlled by the following specific bits 
in the request blocks, and apply to all types of requests (unless 
otherwise indicated). 

oW-bit, or wait 

o I-bit, or implicit start address (not optional for 
IORBs or clock request blocks (CRBs), always set) 

0 S-bi t, or semaphore 

0 R-bit, or return request 

0 D-bit, or delete 

4-2 CB08 

----------- ---------------- ----------

f" 1'·\ ' 

\JLJ 



(/ 

( ..... 

._/ 

ACCOUNTING 
(MOD 600) 

ACCOUNTING FILES, OPEN (MOD 600 ONLY) 

Macro Call Name: $ACTOP 

Function Code: IE/04 

Equivalent Command: None 

FILES, OPEN 

Open the system's accounting files, and make them available 
to this user. 

FORMAT: 

[label] $ACTOP 

ARGUMENT DESCRIPTION: 

None 

FUNCTION DESCRIPTION: 

This call opens the system accounting files to access by an 
authorized user. (This call must precede all other account
ing macro calls, except $ACUPD). 

The system automatically activates the accounting function 
and creates the accounting files when the operator startup 
EC file includes the MESSAGE OF THE DAY command. Unless 
this command is removed from the startup EC file, the 
accounting function will be in the system; accounting data 
will be accumulated and placed in the raw accounting file. 

NOTE: A user who does not utilize the accounting function, 
when it is present in the system, should, with the 
CLEAR ACCT command, or with his own program, period
ically delete the automatically generated and accumu
lated accounting records from the raw accounting 
file. 

Accounting uses these system accounting files: 

o Raw accounting file {ACCT. SA. RAW) 
o Update accounting file (ACCT.SA.UPDT) 
o Hold accounting file (ACCT. SA. HOLD) 

5-11 
7/79 
CB08-02A 



The accounting function creates, for every user who logs in, 
an accounting record for .that login period only. When that user r-"\ 
logs off, the record is written to the raw accounting file. If ,~ 
the same user again logs in, the system creates another account-
ing record. (See the accounting record, r~ad from raw accounting 
file ($ACTRl) macro call for a description of the raw accounting 
record. ) 

Accounting information in an accounting record comprises the 
following: 

1. Date and time user logs in 

2. Date and time user logs off 

3. Central processor time used (in milliseconds) 

4. Number of lines printed 

5. Number of cards read 

6. Number of cards punched 

7. Number of physical I/O order issued (inclusive of 4, 5, 
and 6) 

B. Number of times user program was rolled out 

9. Number of times overlay area table (OAT) was loaded 

10. Number of times OAT was already in memory 

11. Number of pages printed 

12. Group's base software level 

13. Name of terminal 

14. Name of last bound unit loaded 

Accounting information is numeric binary. The user is 
responsible for retrieving the data from the raw accounting file, 
for changing that data into units/dollars to be charged or 
reported, and for writing that data out to the accounting update 
file. 

A possible user accounting program sequence might be the 
following: 

1. Issue $ACTRI call to read the next record from the raw 
accounting file. ($ACTOP must bef irst call issued.) 

2. Convert data from raw accounting file, into the update 
record. 7/79 

5-12 CBOB-02A 



STORE STH $R6, $B3. -$R3 STORE 1 B¥TE, STARTING FROM RIGHT OF 

( A 3-BYTE GROUPING; BRANCH TO GET NEXT 
BDEC $R4 ,>N XTCHR UNTIL $R4 = -1 

ADV $R3,3 

BDEC $R5,>NXTWRD BRANCH TO GET NEXT WORD UNTIL $R5 = 
-1 

JMP $B5 RETURN TO CALLER 

ST BLK LDV $R6, ,~, 

B >STORE 

( 

5-19 CB08 



ACCOUNTING RAW RECORD, WRITE 

(MOD 600) 

ACCOUNTING RAW RECORD, WRITE (MOD 600 ONLY) 

Macro Call Name: $ACTWI 

Function Code: lE/02 

• Equivalent Command: Write Accounting Record (WRITE_ACCT_R) 

I 

Write a raw record to the raw accounting file. 

FORMAT: 

[label] $ACTWI [location of the record to be written out], 
(location of the record length (in bytes)] 
(location of record type number] 

ARGUMENT DESCRIPTION: 

location of record to be written out 

Any address form valid for a data register; provides 
the address of the raw record to be written to the raw 
accounting file. 

location of length of record to be written out 

Any address form valid for a data register; provides 
the address of the length of the record to be written 
out. Length is in bytes (decimal). Default value is 
zero. 

location of record type number 

Location of the record type number (2 to 65,535) of 
the record to be written, which is loaded into $R7 
prior to the macro call. If this argument is not 
specified, it is assumed to have been loaded into $R7. 

5-20 

~~~ ~~----------.-----~- ------- --

7/79 
CB08-02A 

r~. 
\, .... ,./ 

.,.,-/ 



( 

FUNCTION DESCRIPTION: 

This call should be used only when the user has implemented 
his own accounting system, e.g., to provide only selected 
accounting information such as measuring disk use. For a 
user-designed system that uses the accounting record, the 
following rules apply: 

1. The user must reserve 16 bytes for record header infor-a 
mation. User character data may not exceed 162 bytes. 

2. Record length may not exceed 178 (decimal) bytes. 

3. When record length is less than 178 bytes, the user must 
provide the length in $R6, or provide a pointer to the 
location where the length value is stored. 

This call writes a user-designed accounting record, which 
must conform to the above rules, into the raw accounting 
file. 

NOTES: 1. This call must be preceded by successful execu
tion of the $ACTOP macro call. 

2. The address of the record to be written out, 
supplied by argument 1, is placed in $B4. When 
this argument is omitted, the system assumes 
that $B4 contains this address. 

3. The length of the record to be written out, sup
plied by argument 2, is placed in $R6. When 
this argument is omitted, the system sets $R6 to 
zero (the default record length). 

4. On return, $RI contains one of: 

0000 - No error 

0824 - Request canceled; accounting files were 
not opened. 

5-21 
7/79 
CB08-02A 



ACCOUNTING UPDATE RECORD, DELETE 
(MOD 600) 

ACCOUNTING UPDATE RECORD, DELETE (MOD 600 ONLY) 

Macro Call Name: $ACTD2 

Function Code: IE/13 

Equivalent Command: None 

Delete the current update record from the accounting update 
file. 

FORMAT: 

[label] $ACTD2 

ARGUMENT DESCRIPTION: 

None 

FUNCTION DESCRIPTION: 

This call deletes the current update record (the last update 
record read) from the accounting update file, and is effec
tive only when a successful $ACTR2 macro call was the last 
operation against that file. 

The record to be deleted is the last update record read into 
the accounting update file. A deleted record can no longer 
be read by any other user, but any update record in the 
use·r's receiving area (see the $ACTR2 macro call) is not 
affected by the $ACTD2 macro call and remains available to 
the user until a subsequent record is read into the receiv
ing area. 

This macro call should be used only when an update record 
causes an error condition to be reported by the system 
administrator command UPDT ACCT, which normally deletes 
update records after it has successfully processed them. 
When the update record causes an error, the system leaves 
that record in the update file for user correction. 

5-22 CB08 

cf"\, 

'-J' 

~~ ........ 

\J 



( 

(" 

~-~~---- ------ -------- -----~~ 

ASSOCIATE FILE 

ASSOCIATE FILE 

Macro Call Name: $ASFIL 

Function Code: 10/10 

Equivalent Command: Associate Path (ASSOC) 

Associate a logical file number (LFN) with a specific path
name. This association is typically done outside of program 
execution to allow the program to be run against a pathname 
that is not known until execution time. The $GTFIL macro 
call or GET command may be more useful. 

FORMAT: 

[label] $ASFIL [argument structure address] 

ARGUMENT DESCRIPTION: 

argument structure address 

Any address form valid for an address register; pro
vides the location of the argument structure defined 
below. The argument structure must contain the fol
lowing entries in the order shown. 

logical file number 

A 2-byte logical file number (LFN) used to refer 
to the file; must be a binary number in the 
range a through 255. 

pathname pointer 

A 4-byte address, which may be any address form 
valid for an address register; points to a path
name (which must end with an ASCII space charac
ter) to be associated with the LFN. 

5-33 CB08 



* 

• 

FUNCTION DESCRIPTION: 

This macro call establishes a logical connection between an 
LFN and a pathname. It does not reserve a file or check to 
determine whether or not the pathname identifies an existing 
file or directory (i.e., the pathname entry may identify an 
incomplete pathname, such as VOL1 SUBA). Subsequent macro 
calls (e.g., change working directory) have no effect on a 
previously associated pathname because the pathname identi
fied in this macro call is fully expanded at t~e time of the 
call. It should be noted that the association established 
is specific to a task group; that is, different task groups 
can associate different pathnames to the same LFN. 

NOTES: 1. If the argument is coded, the address of the 
argument structure is loaded into $B4; if the 
argument is omitted, $B4 is assumed to contain 
the address of the argument structure. 

2. On return, $RI contains one of the following 
status codes: 

0000 - No error 

0201 - Illegal pathname 

0202- Pathname not specified 

0205 - Illegal argument 

0206 - Unknown or illegal LFN 

0210 - LFN already associated 

0222 - Pathname cannot be expanded, no working 
directory 

0226 - Not enough user memory for buffers or 
structures 

5-34 
7/79 
CB08-02A 

-----~-~- -~------~~~--~~~--- ~----~ - -~----~---



( 

BOUND UNIT, IDENTIFICATION 

BOUND UNIT IDENTIFICATION 

Macro Call Name: $BUID 

Function Code: 14/06 

Equivalent Command: (MOD 600 only) USER BUID 

Returns the symbolic entry point name of the bound unit 
being executed by the issuing task to a 12-character 
receiving field. 

FORMAT: 

[label] $BUID [location of bound unit id field address] 

ARGUMENT DESCRIPTION: 

location of bound unit id field address 

Any address form valid for an address register; pro
vides the address of a l2-character aligned, nonvary
ing receiving field into which the system will place 
the name of the current bound unit. 

FUNCTION DESCRIPTION: 

This macro call returns the symbolic entry point name of the 
currently executing bound unit to a specified field in the 
issuing task. The name returned is that specified in the 
first Linker EDEF directive whose address matches the entry I 
point of the current task; if not found, the initial start 
address of the task. 

NOTES: 1. The address of the receIvIng bound unit id field 
supplied by argument 1 is placed in $B4; if this 
argument is omitted, $B4 is assumed to contain 
the address of the receiving field. 

2. On return, $Rl contains one of the following 
status codes: 

0000 - No error 
0817 - Memory access violation 

5-43 
7/79 
CB08-02A 



I 

I 

Example: 

3. On return, $B4 contains the address of the 
receiving field. If not found, 12 blank charac
ters are placed in the receiving field. 

In this example, $B4 is loaded with the address (BUNAME) of 
a 6-word field and the $BUID macro call is issued to place 
the name of the currently executing bound unit in that 
field. 

BUNAME RESV 6,0 
LAB $B4, BUNAME 

$BUID 

5-44 

~- ~ ~~~--~--~-~ -----

7/79 
CB08-02A 



CHANGE USER, IDENTIFICATION 

CHANGE USER IDENTIFICATION (MOD 600 ONLY) 

Macro Call Name: $CUSID 

Function Code: OD/OE 

Equivalent Command: None 

Change the user identification of the issuing task group to 
the specified ide 

NOTE: This macro routine is recommended for use only by 
specialized software system designers. 

FORMAT: 

[label] $CUSID [location of the identification field] 

ARGUMENT DESCRIPTION: 

location of the identification field 

Any address form valid for a data register. Provides 
the address of the changed user-id field, which 
consists of three elements as follows: 

12-character person id 
12-character account id 
3-character mode 

Each element must contain exactly 12, 12, and 3 
characters, respectively, filled with trailing blanks 
if necessary. 

FUNCTION DESCRIPTION: 

This call changes the calling privileged task group's pre
vious user id as specified in argument 1. For the call to 
be executed, the task must be executing in a privileged 
system group (initiated by a create systems group ($CSGRP) 
macro call or CREATE DAEMON GROUP (COG) command). 

5-55 
7/79 
CBQa-02A 

* 

* 



NOTES: 1. The address of the new user id field is placed 
in $84. When the argument Ts omitted, the 
system assumes that $84 contains the new 
user id. 

2. On return, $Rl contains the following: 

0000 - No error 

0602 - Memory unavailable 

082E - Argument error; unable to pack identity 
field 

083A - Use of privileged executive function 
attempted. 

5-56 

-------_ .. --- ------------ ------ ._-

CB08 

,t('- ", 

~j 



( 

CHANGE WORKING DIRECTORY 

CHANGE WORKING DIRECTORY 

Macro Call Name: $CWDIR 

Function Code: 10/BO 

Equivalent Command: Change Working Directory (CWD) 

Change the working directory to the one specified in the 
macro call. This function is usually done outside program 
execution. 

FORMAT: 

[label] $CWDIR [argument structure address] 

ARGUMENT DESCRIPTION: 

argument structure address 

Any address form valid for an address register; pro
vides the location of the argument structure defined 
below. The argument structure must contain the fol
lowing entry. 

new working directory 

A 1- to 45-byte pathname, which includes and 
must end with an ASCII space character, identi
fying the new current working directory. At 
least one nonspace character must be specified. 

FUNCTION DESCRIPTION: 

The specified pathname, which may be absolute or relative, 
must point to an existing directory; that is, this macro 
call does not dynamically create a directory. If a return 
status code other than 0000 is returned (see Note 2, below), 
an attempt is made to reestablish the previous working 
directory; if a subsequent error results, future functions 
may return an 0222 error code. 

5-57 CBOS 



• 

The, system issues a mount request when a disk volume con
taining the new working directory is not mounted. The task 
is suspended until the volume is mounted or the operator 
cancels the mount request. 

NOTES: 1. If the argument is coded, the address of the 
argument structure is loaded into $B4; if the 
argument is omitted, $B4 is assumed to contain 
the address of the parameter structure. 

Example: 

2. On return, $Rl contains one of the following 
status codes: 

0000 - No error 

01xx - Physical I/O error 

0201 - Illegal pathname 

0202 - Pathname not specified 

0205 - Illegal argument 

0209 - Named directory not found 

020C - Volume not found 

0222 - Pathname cannot be expanded, no working 
directory 

0225 - Not enough system memory for buffers or 
structures 

0226 - Not enough user memory for buffers or 
structures 

0228 - Illegal file type (not a directory) 

This example is based on the following file system hierarchy 
(see the System Concepts manual): 

5-58 

--- ._------------- --.- -- ------_._---

7/79 
CB08-02A 

;J.-/ 



(-

If this argument is omitted, the value NWAIT is 
assumed. 

If WAIT is specified, argument 3 (termination action) 
must be omi tted. 

termination action 

One of the following values is specified to indicate 
the action to be taken when the clock request is 
sat i s if i ed • 

SM=aa -Do not suspend the issuing task; release 
(V-op) the semaphore identified by aa (two 
ASCII characters) when timeout has 
occurred. 

RB=label - Do not suspend the issu ing task; issue a 
request for the request block identified by 
label, when timeout has occurred. 

If this argument is omitted (or argument 2 is WAIT), 
the generated CRB contains no termination option. 

interval v~lue 

Unit of time after which completion of the request 
will be posted; has one of the following values: 

MS=n 
TS=m 
SC=m 
MN=m 
CT=m 

MS indicates milliseconds; TS tenths of seconds; SC 
seconds; MN minutes; and CT units of clock resolution. 

n is an integer value from 1 through 65535; m is an 
integer value from 1 through 32767. 

If this argument is omitted, the CRB is initialized 
with an interval value of zero milliseconds (MS=O). 

FUNCTION DESCRIPTION: 

The clock request block (CRB) is used as the standard means 
of synchronizing events with the passage of time. A CRB 
contains the time at which, or the interval after which, 
completion of the request is to be posted (marked as 
complete). 

There are two types of CRBs; regular and cyclic. 

5-67 CB08 



I 

When the interval specified in a cyclic CRB has been satis
f ied, it is automatically recycled to beg in a new clock 
request for the initially specified interval. This process 
continues until a cancel clock request macro call is issued 
for this CRB. 

A regular CRB is dequeued from the timer queue when the 
specified interval has been satisfied. A new request clock 
macro call must be issued to requeue the CRB. 

NOTE: This macro call cannot be used in programs written in 
SAF/LAF independent code (SLIC). See the Assembly 
LanJUage Reference manual for more information about 
SAF LAF independent code. 

Example: 

In this example, the $CRB macro call is used to generate a 
cyclic CRB with an interval of 500 milliseconds. The issu
ing task is not to be suspended. When the request has been 
satisfied, the issuing task will release semaphore XX. 

CLKAA $CRB C,NWAIT,SM=XX,MS=500 

5-68 
7/79 
CB08-02A 

I'~" 

'-", .. /, 



( 

( 

CLOCK REQUEST BLOCK OFFSETS 

CLOCK REQUEST BLOCK OFFSETS 

Macro Call Name: $CRBD 

Generated Label Prefixes: 

C RRB/C SEM 
CRB label offset 0 

C CTI 
C-CT2 
C-TM 

See Appendix A for the format of the clock request block. 

DESCRIPTION: 

See the clock request block macro call. 

NOTE: This macro call cannot be used in programs written in 
SAF/LAF independent code (SLIC). See the Assembly I 
Lan ua e Reference manual for more information about 
SAF LAF independent code. 

5-69 
7/79 
CB08-02A 



CLOSE FILE 

I 

CLOSE FILE 

Macro Call Name: $CLFIL 

Function Code: 10/55 (normal), 10/56 (leave), 10/57 (unload) 

Equivalent Command: None 

Terminates processing of the specified file. The file can
not be processed again until another open file macro call is 
issued. You identify the file to be closed by supplying its 
logical file number. 

FORMAT: 

(label] $CLFIL (fib address] fj{; ~~=~~L}U 
U,UNLOAD U 

ARGUMENT DESCRIPTION: 

fib address 

Any address form valid for an address register; pro
vides the location of the file information block 
(FIB). The FIB must contain a valid LFN. 

NORMAL 
NOR 

Normal mode for closing files; the file can be 
reopened during execution of the task group. 

If the file is tape-resident, the end-of-file (EOF) 
labels are written (if necessary) and the tape is 
rewound to its beginning-of-tape (BOT) position. 

If the file is a terminal device, the line will be 
disconnected according to the specifications made at 
system building time. 

For card punch files a file card is punched. This 
card is recognized as the end of file for read 
operations. 

5-70 
7/79 
CB08-02A 

~-~~-.--~ ~-.---.-~.--- ----.. ~---.--- .. - .. - .~-.--



( 

( 

{ LEAVE} 
LEV 

NORMAL is the default value for this macro call. 

For tape files is the same as for NORMAL mode, except 
that the tape is not rewound; i.e., remains at its 
current position. 

For terminal device files, this indicates that the 
line is not to be hung up, regardless of the specifi
cation made at system building. 

For card punch files, this indicates that a file mark I 
card is not to be punched. 

{UNLOAD} 
UNL 

For tape-resident files the action is the same as for 
NORMAL mode, except that after the rewinding, the tape 
is unloaded (i.e., cycled down). 

For terminal device files, the line is hung up 
(regardless of the specification made at system 
building time). 

FUNCTION DESCRIPTION: 

The fib address specified by the first argument of this 
macro call can refer to the same structure specified in the 
open file macro call with which this macro call is paired. 

This macro call causes all unwritten buffers to be written, 
records to be unloaded, and the logical end-of-file (EOF) 
label to be updated. However, the call does not remove the 
file (see the remove file macro call) from the task group 
(i.e., the file remains reserved for the task group and can 
be reopened). 

If the file being closed is a card punch, a file mark card 
is punched. (A card reader/punch is considered to be a card 
punch if the FIB program view word at open time had bit 2 
set to 1 (write permitted) and bit 1 set to 0 (read not 
permi tted) • 

5-71 
7/79 
CB08-02A 



I 

1-

1 

The following information applies only to magnetic tape. 
The actions performed on closing a tape file are determined 
by the way the write permit bit (bit 2) in the FIB program 
view word was set when the file was opened. Note that when 
a tape volume is opened for storage management access, and 
both volume and file names are not specified, then no 
trai~er labels nor tape marks are written; that is the 
user's responsibility. 

1. Write permission granted: 

a. If the file was opened in RENEW mode, the trailer 
label group is written, followed by an end-of-data 
(EOD) tape mark. This action is performed whether 
or not data records were actually written into the 
file. 

b. If the file was opened in PRESERVE mode the trailer 
label group and EOD tape mark will be written only 
if write operations were performed. In this case, 
data and/or files located beyond the current posi
tion of the tape are destroyed. 

If no write operations were performed, the trailer 
lable group will not be written and existing data 
and/or files located beyond the current position of 
the tape are preserved. 

c. If the LEAVE option is specified, the tape will be 
positioned at the end of the current trailer label 
group, unless the tape is being processed at the 
vol ume level. 

2. No write permission granted: 

a. If the end-of-file tape mark was detected, the 
trailer label group is processed and the action 
specified by NORMAL, LEAVE, or UNLOAD is taken. 

If the LEAVE option is specified, the tape is posi
tioned at the end of the current trailer label 
group. 

b. If the end-of-file tape mark was not detected, the 
trailer label group is not processed. When the 
LEAVE option is specified, the tape will be misposi
tioned. Opening the next file may result in an 
"invalid tape file header" condition. 

The file information block can be generated by a $FIB macro 
call. Displacement tags for the FIB can be defined by the 
$TFIB macro call. 

5-72 
7/79 
CB08-02A 



( 

( 

NOTES: 1. If the first argument is coded, the address of 
the FIB is loaded into $B4; if the argument is 
omitted, $B4 is assumed to contain the address 
of the FIB. 

Example: 

2. On return, $Rl contains one of the following 
status codes: 

0000 - No error 

Olxx Physical I/O error 

0205 - Illegal argument 

0206 - Unknown or illegal LFN 

0207 - LFN not open 

0225 - Not enough system memory for buffers or 
structures 

0226 - Not enough user memory for buffers or 
structures 

In this example, it is assumed that the file opened in the 
example for the open file macro call is to be closed. The 
macro call is coded as follows: 

MYFIB 
CLFILA 

DC 5 
$CLFIL !MYFIB 

LFN 5 

Since the second argument is not specified, the system 
assumes NORMAL mode. 

5-73 
7/79 
CB08-02A 



* 

COMMAND IN 

COMMAND IN 

Macro Call Name: $CIN 

Function Code: 08/02 

Equivalent Command: None 

Read the next record from the standard command-in file for 
the issuing task. 

FORMAT: 

[label] $CIN [location of record area address] , 
[location of record size], 
[byte offset of beginning of record area] 

ARGUMENT DESCRIPTION: 

location of record area address 

Any address form valid for an address register; pro
vides the address of a redord area in the issuing task 
into which the next record on the command-in file will 
be placed. 

location of record size 

Any address fo rm val id fo r cr da ta reg ister; pro v ides 
the size (in bytes) of the record whose address is 
given in argument 1. 

byte offset of beginning of record area 

Any address form valid for a data register; provides 
the byte offset of the beginning of the record area 
(from the address provided in argument 1). 

5-74 
7/79 
CB08-02A 

--_._----_.-. 

.~ 

\""-,,,,/ 



( 

COMMAND LINE PROCESS 

COMMAND LINE PROCESS 

Macro Call Name: $CMDLN 

Function Code: DC/D8 

Equivalent Command: None 

Process the supplied command line by spawning a task to exe
cute the command named in the first argument of the macro 
call, and wait for the task's termination. 

FORMAT: 

[label] $CMDLN [location of command line address], 
[location of command line size] 

ARGUMENT DESCRIPTION: 

location of command line address 

Any address form valid for an address register; pro
vides the address of the supplied command line. 

location of command line size 

Any address form valid for a data register; provides 
the size (in bytes) of the command line to be 
processed. 

FUNCTION DESCRIPTION: 

This macro call allows you to embed commands in your pro
gram; see the Commands manual. The same task that executes 
the particular command when given from the terminal is 
spawned to execute the command named in the macro call. 

The task spawned of behalf of the macro call is provided 
with a request block that has been constructed by the system 
to contain the edited arguments in system standard task 
request block format. The task that issues this macro call 
waits for the completion of the spawned task before 

5-77 CBD8 



I 

continuing its own processing. The spawned task passes the 
completion status ($RI) to the issuing task. 

NOTES: 1. The address of the command line, supplied by 
argument 1, is placed in $B4; if this argument 
is omitted, $B4 is assumed to contain the 
address of the command line to be processed. 

Example: 

2. The size of the command line, supplied by argu
ment 2, is placed in $R6; if this argument is 
omitted, $R6 is assumed to contain the size. 

3. On return, $RI and $B4 contain the following 
information: 

$R1 - Return status; one of the following:. 

0000 - No error 

OOOO-OOFF - Completion status returned by 
spawned task 

0601 - Insufficient memory 

0602 - Insufficient memory 

0805 - Unbalanced quotation marks, 
brackets, or parentheses 

080C - Unresolved symbolic entry 
point 

1609 - Invalid bound unit pathname 
for first argument 

160A - Insufficient memory 

FFFF - Honeywell component error pre
viously reported 

$B4 - Address of supplied command line 

In this example, the $CMDLN macro call causes a command line 
to be processed which will execute the Assembler to assemble 
the source program MYPROG, residing in the current working 
directory. The Assembler will use 5K words of memory, taken 
from the issuing task group's memory pool, for its symbol 
table. The assembly listing will be written on the device 
named LPTOl, and the object unit will be stored in the file 

5-78 
7/79 
CB08-02A 



( 

(. 

o An initial allocation of eight physical sectors (allowing 
32 entries) for diskette, eight physical sectors (allow
ing 64 entries) for cartridge disk and storage module 
(except 19-surface, 200 tracks-per-inch), or 16 physical 
sectors (allowing 128 entries) for 19-surface, 200 
tracks-per-inch storage module. 

o An increment allocation of four physical sectors (allow
ing 16 entries each) for diskette, eight physical sectors 
(allowing 64 entries) for cartridge disk and storage 
module (except 19-surface, 200 tracks-per-inch), or 16 
physical sectors (allowing 128 entries) for 19-surface, 
200 tracks-per-inch storage module). 

o A maximum allocation of 4000 physical sectors (allowing a 
maximum of 16,000 entries) for diskette, or 4000 physical 
sectors (allowing a maximum of 32,000 entries) for car
tridge disk and storage module. 

NOTES: 1. If the argument is coded, the address of the 
parameter structure is loaded into $B4; if the 
argument is omitted, $B4 is assumed to contain 
the address of the parameter structure. 

2. On return, $Rl contains one of the following 
status codes: 

0000 - Successful completion 

Olxx - Physical I/O error 

0201 - Illegal pathname 

0202 - Pathname not specified 

0205 - Illegal argument 

0209 - Named subdirectory not found 

020C - Volume not found 

0212 - Attempted creation of existing file or 
directory 

0215 - Not enough contiguous logical sectors 
available 

0222 - Pathname cannot be expanded, no working 
directory 

0224 - Directory space limit reached or not 
expandable 

5-83 
7/79 
CB08-02A 

I 



Example: 

0225 - Not enough system memory for buffers or 
structures 

0226 - Not enough user memory for buffers or 
structures 

022C - Access control list (ACL) violation 

In this example, the macro call is used to create the sub
directory, labeled SUBINDEX.A, identified in the create file 
example. This subdirectory must exist before the path iden
tified in that example (i.e., VOL03>SUBINDEX.A>FILE A) can 
be used. Prior to issuing the create directory macro call, 
the following parameter structure and pathname must exist: 

SUBDIR 

DIRPTH 

The macro call can 

DC <DIRPTH 
RESV 2-$AF 
RESV 2,0 

• 
• 

DC IAVOL 03>SUB INDEX.A 

be specified as follows: 

$CRDIR !SUBDIR 

5-84 

I 

7/79 
CB08-02A 

---------- ------

,) 

( .. ~ ," \ 

J 



( 

(, 

CREATE FILE 

(MOD 600) 

CREATE FILE (MOD 600 ONLY) 

Macro Call Name: $CRFIL 

Function Code: 10/30 

Equivalent Command: Create File (CR) 

Creates a new disk file by placing a description of the file 
in the file system hierarchy and, optionally, allocating 
space for it. The user identifies this file by either a 
logical file number (LFN) a pathname, or both. At the 
completion of create file execution, the file is reserved 
exclusively for the task group. If both an LFN and pathname 
are supplied then, in addition to creating and reserving the 
file, it is assigned to the LFN. Subsequent macro calls 
(open file, read record, etc.) can then be directed to the 
file via this LFN. $CRFIL can be used to create any of 
the disk files which are described in the Data File 
Organizations and Formats manual, including: 

0 Fixed-Rela ti ve 
0 Relative 
0 Sequential 
0 Indexed 
0 Random (calc) 

In addition $CRFIL can be used to create a temporary disk 
file which will exist only during this task group's 
execution. This function is normally done outside program 
execution. 

FORMAT: 

[label] $CRFIL [parameter structure address] 

ARGUMENT DESCRIPTION: 

parameter structure address 

Any address form valid for an address register; pro
vides the location of the parameter structure defined 
below. The parameter structure must contain the fol
lowing entries in the order shown. 

5-85 
7/79 
CB08-02A 

I 

I 

I 



I 

logical file number 

A 2-byte logical file number (LFN) used to refer 
to the file. It must be a binary number in the 
range 0 through 255, ASCII blanks (2020) which 
indicates that an LFN is not specified, or -1 
(FFFF), which indicates that the system should 
assign an LFN from the pool of available LFNs. 

pathname pointer 

A 4-byte address of the pathname, which may be 
any address form valid for an address register; 
points to a pathname (which must end with an 
ASCII space character) that, when expanded, 
identifies (1) the name of the file to be 
created, and (2) the directory in the file sys
tem hierarchy in which to add the name and 
attributes of the file. Binary zeros (null 
pointer) in this entry indicate that a path is 
not specified; if the path identified is a 
single ASCII space (20) character, the file 
being created is a temporary file. 

file organization 

A I-byte field specifying the file organization, 
as follows: 

2 - Fixed-relative without deletable 
records 

5 - Fixed-relative with de1etable records 

R - Relative 

S - Sequential 

I - Indexed 

C - Calc (random) 

A - I-O-S/I1 data base area 

reserved 

This I-byte field must contain zeros. 

5-86 
7/79 
CB08-02A 



( 

KEY 

Example: 

0202 - Pathname not specified 

0205 - Illegal argument 

0206 - Unknown or illegal LFN 

0208 - LFN or file already open 

0209 - Same named subdirectory not found 

020C - Vol ume not fo und 

0210 - LFN conflict 

0211 Unable to establish unique LFN 

0212 - Attempted creation of existing file 

0215 - Not enough contiguous logical sectors 
available 

0222 - Pathname cannot be expanded, no working 
directory 

0224 - Directory space limit reached or not 
expandable 

0225 - Not enough system memory for buffers or 
control structures 

0226 - Not enough user memory for buffers or 
control structures 

022C - Access control list violation 

In this example, the argument structure labeled FILE A, 
defined under "Assumptions for File System Examp1es"-in 
Section 3, describes the file to be created. In addition, 
the following key descriptor structure has been defined: 

DC Z'OOOOOOOO' RESERVED 
DC Z '0100 ' NO. OF COMPONENTS = 
RESV 4,0 RESERVED 
DC Z'430A' KEY COMP. DATA TYPE 

KEY LENGTH = 10 
DC 1 KEY LOC. IN RECD. = 

Also, the pathname was defined as follows: 

IDX01 DC ,AVOL03>SUBINDEX.A>FILE 

5-91 

1 

= C; 

FIRST 

At::.' 

POSITION 

7/79 
CB08-02A 

• 

• 



With the preceding definitions having been made, the fol
lowing macro call will create FILE_A: 

DOMYAA SCRFIL !FILE A 

5-92 CBOS 

\, .. / 

((, 
'-j 



(~' 

( 

('" 

* 
* 
* 

* 
* 
* 

* 
* 
* 

* 
* 
* 

CREATE A WORK SEGMENT OF UP TO 10K WORDS 

$CRMSG =B'000C110000000000' =10240 

CHECK FOR ERROR OR INSUFFICIENT MEMORY 

BNEZ NO GO 

SAVE THE SEGMENT'S ADDRESS AND SIZE 

STB $B2, SEG A -SDI SEG S 

NOW DELETE THE WORK SEGMENT 

$DLSEG 

DC 
DC 

SEG A 

<$ 
OB(31,0) 

5-103 CBoa 



I 

CREATE OVERLAY AREA TABLE 

CREATE OVERLAY AREA TABLE 

Macro Call Name: $CROAT 

Function Code: 07/0A 

Equivalent Command: None 

Create an overlay table to be used with overlay loading 
functions that require a pointer to an overlay area table 
(OAT). The overlay area described by this OAT is created in 
real memory space. (See the appropriate System Concepts 
manual for details on overlays and overlay area tables.) 

FORMAT: 

[label] $CROAT [location of OAT address], 
[location of size of overlay area entry], 
[location of number of overlay area entries] 

ARGUMENT DESCRIPTION: 

location of OAT address 

Any address form valid for an address register; pro
vides the location into which the system will place 
the address of the OAT. 

location of size of overlay area entry 

Any address form valid for a data register; provides 
the location of a value specifying the number of words 
to be contained in each entry in this overlay area. 
This value should be equal to or greater than the size 
of the overlays to be placed in the area for load ing. 

location of number of overlay area entries 

Any address form valid for a data register; provides a 
value specifying the number of entries in this overlay 
area. (The si ze of each entry is def ined by argument 
2.) The value for this argument depends on the number 
of overlays of this size used by the bound unit and 
the frequency of their release. 

5-104 

~~~------~.---. 

7/79 
CB08-02A 



(: 

FUNCTION DESCRIPTION: 

This macro call creates an overlay area table (OAT) to be 
used by subsequent loader functions that require (or imply) 
the existence of an OAT in the call. 

The real memory space for the overlay area described by this 
call is obtained from the same memory pool used by the cur
rent bound unit of the issuing task. If the current bound 
unit is not sharable, memory will be obtained from the pool 
associated with the group of the issuing task. If the cur
rent bound unit is sharable, memory will be obtained from 
the system pool. 

Once allocated, the overlay area table becomes a supporting 
resource of the current bound unit. That is, an OAT queue 
header field will be added to the definition of the bound 
unit descriptor, and as OATs are created, they will be 
placed in this queue. The OAT queue is maintained so that 
OATs are ordered by ascending area size. 

Before an OAT is allocated, any existing OATs are searched 
for an OAT with area size equal to that specified in argu
ment 2. If one is found equal, the number of areas in this 
OAT is returned to the caller (i.e., location specified in 
argument 1 or to register $R6). On return, the caller 
receives the address of the newly created OAT or an existing 
OAT. 

The overlay area reserve and execute overlay ($OVRSV) and 
overlay area, release ($OVRLS) macro calls require that 
overlay areas be present. If no OAT that controls entries 
of the specified size can be found, the system creates an 
overlay area with the number of entries specified by argu
ment 2, and then creates the controlling OAT. 

When the system returns the address of the OAT, it also 
returns the actual size of the overlay area and the actual 
number of areas allocated or already present. 

NOTES: 1. The address of the OAT is returned in $B4 and is 
stored as specified in argument 1. If argument 
1 is omitted, the address is stored only in $B4. 

2. The size of the entry supplied by argument 2 is 
placed in $R2; if this argument is omitted, $R2 
is assumed to contain the correct size. 

3. The number of entries supplied by argument 3 is 
·placed in $R6; if this argument is omitted, $R6 
is assumed to conta in the correct number. 

5-105 CB08 



I 

Example: 

4. On return, $Rl, $R2, $R6, and $B4 conta in the 
following information: 

$Rl - Return status; one of the following: 

0000 - No error 

0602 - Insufficient memory; user system 
area or segment 

082D - Group's available memory quota 
exceeded 

OE02 - No memory available for nonswap
pable task 

1602 - Invalid argument (size or number of 
overlay areas) 

l60A - Insufficient memory 

$R2 - Actual size of overlay area entry (if $Rl 
is 0000); (for MOD 600, rounded up to 
nearest 256 words) 

$R6 - Actual number of overlay areas allocated 
to this area (if $Rl is 0000) 

$B4 - Address of OAT (i f $R 1 is 0000) 

5. On a return with error, the contents of $R2, 
$R6, and $B4 are unspecified. 

In this example, an overlay area of three 5l2-word entries 
is created. (It is assumed that no existing overlay area 
table controls 5l2-word entries.) The address of the con
trolling OAT will be placed in OATAD. 

OAT AD RESV 2,0 
$CROAT =OATAD,=512,=3 

5-106 
7/79 
CB08-02A 

/ 

{~'\ ,j 



( 

( 

CREATE SEGMENT 
(MOD 600) 

CREATE SEGMENT (MOD 600 ONLY) 

Macro Call Name: $CRSEG 

Function Code: OC/DC 

Equivalent Command: None 

Create a segment in the task issuing this call; assign the 
segment to the initial bound unit. 

FORMAT: 

[label] $CRSEG [location of segment access rights], 
[location of segment size], 
[location of segmented address] 

ARGUMENT DESCRIPTION: 

location of segment access rights 

Any address form valid for a data register; provides 
the access rig hts (read, wr i te, execute) fo r th i s 
segment, as defined by the hardware segment descrip
tor. Bits 0 through 5 of the register are used to 
specify the type of access, as follows: 

Ring access 

Bits Access Type 

0-1 
2-3 
4-5 

is coded 

Bit 
Values 

00 
01 
10 
11 

Read 
Write 
Execute 

as follows: 

Ring 

3 
2 
1 
0 

5-107 CB08 



Thus, for example, to read, wri te, and execute this 
segment from ring 3, bits 0 through 5 would be 000000. 

location of segment size 

Any address form valid for a double word data regis
ter (i.e., an address, or hexadecimal string if a 
constant); provides the segment's size, in words. A 
small segment must be less than or equal to 4K words 
(K=1024); a large segment must be less than or equal 
to 64K words. The actual size of the created segment 
will be the size specified, rounded up to the next 
256-word increment. 

location of segmented address 

Any address form valid for a data register; provides 
the address of any word in the segment. When null is 
specified, the system selects a segment number, 
consistent with the size as specified and with the 
availability of segment numbers to users. 

FUNCTION DESCRIPTION: 

The call permits the requesting task to dynamically create a 
segment of the size specified, and assign the segment to the 
initial bound unit associated with that task. The user can 
create private segments at link time, or dynamically with 
this macro call. (The create maximum segment macro call 
($CRMSG) allows the task to dynamically create a segment 
having the specified size or maximum available size.) 

Argument 3 allows the user to specify the segment number or 
have the system select the first available segment number. 

Conflicts in address assignments are the user's responsi
bility. The user can overwrite invalid segment descriptors, 
but cannot destroy protected overlay-area tables or 
addresses (e.g., group system area segment, group work area 
segment, and system segments). The user with write/execute 
access rights to the segment in the user ring can destroy 
that address. . 

When the macro call is executed, $B2 contains a pointer to 
the start of the created segment. 

NOTES: 1. The MOD 600 System Concepts manual describes 
ring and segment access, segment size, and 
segment numbers, in detail. 

5-108 
7/79 
CB08-02A 

'c····", " 



( 

2. The segment's access rights value supplied by 
argument I is placed in $R2. When the argument 
is omitted, the system assumes that $R2 contains 
this val ue. 7/79 

3. The size of the segment supplied by argument 2 
is placed in $R6 and $R7. When the argument is 
omitted, the system assumes that $R6 and $R7 
contain the segm~nt size. 

4. The address of any word in the segment, supplied 
by argument 3, is placed in $B2. When the argu
ment is omitted, the system assumes that $B2 
contains the segmented address. When argument 3 
specifies zero, the system selects the segment 
number. 

5. On return, $RI, $R6, $R7, and $B2 contain the 
following. (Contents of $R6, $R7, and $B2 are 
undefined for a return with an error.) 

$Rl - Return status code; one of the following: 

0000 - No error 

0602 - Insufficient system memory 

0817 - Memory access violation; attempt to 
destroy an address (with the 
created segment) without the right 
to do so of: 

o Sharable bound unit root 
o System segment 
o Creating a nonuser segment 

0828 - No virtual address available to 
create segment 

082D - Group's available memory quota 
exceeded 

082E - Argument error: 

o Size exceeds 64K 

o Size inconsistent with the 
specified segment number 

OE02 - No memory available for nonswap
pable task 

5-109 
7/79 
CB08-02A 



Example: 

$R6, $R7 - Actual size of created segment 

$B2 - Pointer to start (offset = 0) of created 
segment 

With the macro call, the requesting task creates a 2K-word 
segment, and assigns it to the initial bound unit. Ring 3 
will have read and write access rights, but execute access 
is restricted to ring O. The segment number of the created 
segment will be 2. 

$CRSEG 

• 

$A DC 

=B'0000110000000000'; 
=2048; 
+$A 

Z'00020000' 

5-110 
7/79 
CB08-02A 

/--\ 
~-j 

f'\ 
~j 



CREATE SYSTEM 
(MOD 600) 

CREATE SYSTEM GROUP (MOD 600 ONLY) 

Macro Call Name: $CSGRP 

Function Code: 00/02 

Equivalent Command: Create Daemon Group (COG) 

GROUP 

Define a new task group with special privileges for perform
ing system functions. Allocate and initialize the data 
structures necessary to control the new task group within 
the specified memory pool. Create the lead task as 
described in the create task ($CRTSK) macro call. 

NOTE: This macro routine is recommended for use only by 
specialized software system designers. 

FORMAT: 

label $CSGRP [location of group identifier], 
[location of base level], 
[location of high logical resource number], 
[location of high logical file number], 
[location of root entry name address] 

ARGUMENT DESCRIPTION: 

location of group identifier 

Any address form valid for a data register; provides 
the group identification of the new task group. The 
group identifier must be a two-character (ASCII) name 
that may include the dollar sign ($) as its first 
character. 

5-111 
7/79 
CB08-02A 

* 

* 



* 

location of base level 

Any address form valid for a data register; provides 
the base priority level, relative to the system level, 
at which the lead task will execute. 

location of high logical resource number 

Any address form valid for a data register; provides 
the highest logical resource number (LRN) that will be 
used by any task in the task group. The LRN can be a 
value from 0 through FC (hexadecimal). If this argu
ment is omitted, or if the value specified is less 
than the highest LRN used by the system task group, 
the system task group's LRN will be used. 

location of high logical file number 

Any address form valid for a data register; provides 
the highest logic~l file number (LFN) to be used by 
any task in the task group. The LFN can be a value 
from 0 through FF (hexadecimal). If this argument is 
omitted, the value 15 is assumed. (Refer to the asso
ciate file macro call.) 

location of root entry name address 

Any address form valid for an address register; pro
vides the address of the root entry name string that 
specifies the pathname of the bound unit to be exe
cuted as the lead task. The bound unit pathname can 
have an optional suffix in the form of ?entry, where 
entry is the symbolic start address within the root 
segment. If this suffix is not given, the default 
start address (established at Assembly or Link time) 
is used. EC?ECL specifies the command processor as 
the lead task. 

5-112 

- --~--~--~--------~-~ 

7/79 
CB08-02A 



CREATE TASK 

(' (MOD 600) 

( 

CREATE TASK 

Macro Call Name: $CRTSK (MOD 600 only) 

Function Code: OC/02 (same bound unit), 
OC/03 (different bound unit) 

Equivalent Command: Create Task (CT) 

Add the supplied task definition to the set of currently 
defined tasks within the task group of the issuing task. 

FORMAT: 

[label] $CRTSK [location of logical resource number], 
[location of relative priority level], 
[location of start address], 
[location of root entry name address] 

ARGUMENT DESCRIPTION: 

location of logical resource number 

Any address form valid for a data register; provides 
the location of the logical resource number (LRN) by 
which the issuing task group can refer to the created 
task. The LRN (a value from 0 through 252) cannot 
exceed the value used as the high LRN in the create 
group macro call that created the group of which this 

• 

task is a member. If the LRN value is set to -1, the 
system selects an available LRN, starting with the I 
maximum, and returns it to the user in $R2. 

location of relative priority level 

Any address form valid for a data register; provides 
the location of the priority level, relative to the 
task group's base priority level, at which the created 
task is to execute. If this argument is omitted or is 
-1, the priority level used is that of the issuing 
task. 

5-115 
7/79 
CB08-02A 



location of start address 

Any address form valid for an address register; pro
vides the location of the task start address when the 
newly created task is to execute in the same bound 
unit as the task that issued the create task macro 
call. (Function code OC/02.) 

location of root entry name address 

Any address form valid for an address register; pro
vides the address of the pathname of the bound unit 
root segment to be loaded for execution by the newly 
created task. The bound unit pathname can have an 
optional suffix in the form of ?entry, where entry is 
the symbolic start address within the root segment. 
If this suffix is not given, the default start address 
(established at Link time) is used. (Function code 
OC/03. ) 

FUNCTION DESCRIPTION: 

This call causes the allocation and initialization of the 
data structures that define and control task execution. The 
call does not activate the task; the request task macro call 
is required for task activation. 

One or more create task macro calls can be issued to create 
one or more tasks within a task group. 

When a create task macro call is executed, the system builds 
a resource control table (RCT) and a task control block 
(TCB) for the created task. The address of the RCT is 
placed in the log ical reso urce table (LRT) in association 
with the appropriate LRN. 

Either the location of the start address or the location of 
the root entry name address, but not both, can be specified. 

If the new task is to execute the same bound unit as the 
issuing task, then the count of tasks associated with the 
unit is incremented (function code OC/02) to prevent pre
m?ture reuse of memory containing the bound unit. 

If the specified bound unit is not a sharable bound unit 
that is currently resident in memory, the root segment of 
the bound unit is loaded into memory belong ing to the task 
group. If the specified bound unit is both sharable and 
currently resident, the count of tasks associated with the 
unit is incremented. (Function code OC/03.) 

5-116 CB08 

---_ .. -_._-_ .. -

( .... '" 
'eli: 
''-.j 



(/ 

NOTES: 1. The LRN supplied by argument 1 is placed in $R2; 
if this argument is omitted, $R2 is assumed to 
contain the LRN for the created task. 

2. The relative priority level supplied by argument 
2 is placed in $R6; if this argument is omitted, 
$R6 is set to the relative priority level of the 
task issuing this create macro call. 

3. Arguments 3 and 4 are mutually exclusive. If 
both are supplied, argument 3 is used and a 
diagnostic is issued. Information derived from 
either argument is placed in $B2; if these argu
ments are omitted, $B2 is assumed to contain the 
start address to be used. 

4. On return, $Rl and $R2 contain the following 
information: 

$Rl - Return status; one of the following: 

0000 - No error 

Olxx - Media error 

0209 - Bound unit not found 

0602 - Memory unavailable 

0809 - LRN too large 

0813 - Referenced LRN already in use or 
invalid 

0827 - Bound unit file not fixed-relative 

08)0 - LRN not available 

082D - Group's available memory quota 
exceeded 

OE02 - No memory available for nonswap
pable task 

1604 - Unresolved symbolic start address 

l60A - Insufficient memory 

1611- Zero length root segment 

1613 - Invalid bound unit pathname 

1615 - Illegal bound unit file 

5-117 

I 



$R2 - LRN of created task 

Examples: 

In this example, the $CRTSK macro call makes a task known as 
logical resource number 10 (decimal) of the issuing group. 
The task will execute at priority level 2 relative to the 
group's relative base level. The task will execute the pro
cedures contained in the bound unit PROGI0, as found by 
application of search rules, entering the bound unit at 
entry point PROGI0. 

$CRTSK =10,=2,,!ROOT 

ROOT TEXT 'PRO:; 106' 

In this example, the $CRTSK macro call makes a task known as 
logical resource number 12 (decimal) of the issuing group. 
The task will execute at the same priority level as the 
issuing task. The task will execute the same bound unit as 
the issuing task and will be started at the address repre
sented by the label SSA. 

$CRTSK 

5-118 

=12",!SSA 

7 /79 
CB08-02A 



( 

( 

* 

LK is a semaphore which has an initial value of 1 and which 
controls access to the free resource list by serving as a 
lock. After a task has reserved the right to use a resource 
by performing the P-op on TH as described above, the task 
will unlink (the description of) a particular resource from 
the free-resource list. Upon entering a section where it 
examines or modifies the free-resource list, the task does a 
P-op on the semaphore LK, thus ensuring the integrity of 
this data base. After it stops using this data base, the 
task does a V-op on LK. 

When the task finishes using the resource, it will return 
the resource by doing a P-op on LK, linking (the description 
of) the resource being returned into the free-resource list, 
doing a V-op on LK, and then doing a V-op on TH. 

* DEFINE SEMAPHORES TO CONTROL RESOURCES 
* 

* 
* 
* 
* 

* 
* 
* 

* 
* 
* 

* 

ROUTINE TO GET A 

FIRST GET RIGHTS 

NOW LOCK THE FREE 

$DFSM 
$DFSM 

='TH' ,=10 
= 'LK' 

RESOURCE 

TO TAKE A RESOURCE 

$RSVSM ='TH' 

RESOURCE LIST 

$RSVSM ='LK' 

TAKE A RESOURCE FROM THE FREE RESOURCE 

* THEN UNLOCK THE FREE RESOURCE LIST 

* 
$RLSM ='LK' 

* * END OF ROUTINE TO GET A RESOURCE 

* * ROUTINE TO RETURN A RESOURCE 
* * FIRST LOCK THE FREE RESOURCE LIST 
* 

$RSVSM ='LK' 

5-121 

LIST 

CB08 



* 
* 

* 

NOW LINK THE RESOURCE BACK INTO THE FREE RESOURCE LIST 

* THEN UNLOCK THE FREE RESOURCE LIST 

* 
$RLSM ='LK' 

* * FINALLY RELEASE THE RESOURCE 
* 

$RLSM ='TH' 

* * END OF ROUTINE TO RETURN A RESOURCE 

* 

5-122 

~''\ 
, I 

'",._/ 

CBOS 



( 

DELETE DIRECTORY 

DELETE DIRECTORY 

Macro Call: $DLDIR 

Function Code: 10/A5 

Equivalent Command: Delete Directory (DD) 

Deletes a previously created directory from the system; all 
of the directory's attributes, including its name, are 
removed from the immediately superior directory that 
describes it, and all space allocated to the directory is 
released. This function is usually done outside program 
execution. 

FORMAT: 

[label] $DLDIR [argument structure address] 

ARGUMENT DESCRIPTION: 

argument structure address 

Any address form valid for an address register; pro
vides the location of the parameter structure defined 
below. The parameter structure must contain the 
follow i ng en try. 

pathname pointer 

A 4-byte address, wh ich may be any address fo rm 
valid for an address register; points to a path
name (which must end with an ASCII space char
acter) that identifies the directory to be 
released. 

5-122.1 
7/79 
CB08-02A 



FUNCTION DESCRIPTION: 
l"f~ 

This macro call, in effect, reverses the create directory ~,j 
action, provided it has no subordinate directories or files 
(i.e., if the directory to be released contains a subordi-
nate directory or file it is not released and an error code 
is returned). In addition, if it is currently the working 
directory in any task group, the directory cannot be 
released. 

NOTES: 1. If the argument is coded, the address of the 
parameter structure is loaded into $B4; if the 
argument is omitted, $B4 is assumed to contain 
the address of the parameter structure. 

2. On return, $Rl contains one of the following 
status codes: 

0000 - Successful completion 

Olxx - Physical I/O error 

0201 - Illegal pathname 

0202 - This function requires a pathname to be 
specified 

0205 - Illegal argument 

0209 - Named di rectory not fo und 

020C - Vol ume not fo und 

0213 - Cannot provide requested concurrency 

0220 - Attempted deletion of nonempty directory 

0222 - Pathname cannot be expanded, no working 
directory 

0225 - Not enough system memory for buffers or 
structures 

0226 - Not enough user memory for buffers or 
structures 

0228 - Illegal file type (not a directory) 

022C - Access control list (ACL) violation 

5-122.2 
7/79 
CB08-02A 

e(" 

~/ 



( 

Example: 

In this example, the $DLDIR macro call deletes the directory 
created in the create directory example (i.e., SUBINDEX.A). 
The system uses the first entry to identify the directory to 
be deleted. The delete directory macro call is coded as: 

SUBDIR 
DIRPTH 

DC <DIRPTH 
DC '''VOL03>SUBINDEX.A6' 
SRLDIR !SUBDIR 

5-122.3 
7/79 
CB08-02A 



DELETE FILE 

DELETE FILE 

Macro Call Name: $DLFIL 

Function Code: 10/35 

Equivalent Command: Delete File (DL); RL usable also in MOD 600 

Delete a previously created file from the system. All the 
file's attributes, including its name, are removed from the 
directory that describes it, and all space allocated to the 
file is released. You identify the file to be deleted by 
supplying either a logical file number (LFN) or a pathname. 
This function is usually done outside program execution. 

FORMAT: 

[label] $DLFIL [argument structure address] 

ARGUMENT DESCRIPTION: 

argument structure address 

Any address form valid for an address register; pro
vides the location of the argument structure defined 
below. The argument structure must contain the fol
lowing entries in the order shown. 

logical file number 

A 2-byte logical file number (LFN) used to refer 
to the file; must be a binary number in the 
range 0 through 255; 0 r blank (which indicates 
that an LFN is not specified). 

pathname pointer 

A 4-byte address, wh ich may be any address fo rm 
valid for an address register; points to a path
name (which must end with an ASCII space char
acter) that identifies the directory in the file 
hierarchy in which the file to be released is 
found (as well as the name of the file itself). 

5-122.4 

--~~--- . __ ._---.-

7/79 
CB08-02A 

1(.\ v 
j 



Zeros in this entry indicate that a pathname is 
not specified. 

FUNCTION DESCRIPTION: 

This macro call, in effect, reverses the create file action, 
provided the file is neither open in this task group, nor 
reserved by another task group. In the case of the former, 
a return status code of 0208 is loaded in $Rl; in the latter 
case, the file is deleted after the other task group is 
finished using it. 

The file to be deleted can be specified by (1) an LFN only, 
or (2) a pathname only. If only an LFN is specified, the 
file must have been created or reserved (through a create 
file or get file macro call, or equivalent command) with 
that LFN. 

For files other than disk files, the delete file function is 
equivalent to the remove file function. 

NOTES: 1. If the argument is coded, the address of the 
argument structure is loaded into $B4; if the 
argument is omitted, $B4 is assumed to contain 
the address of the parameter structure. 

2. On return, $Rl contains one of the following 
status codes: 

0000 - No error 

Olxx - Physical I/O error 

0201 - Illegal pathname 

0202 - The LFN and pathname both were not 
specified 

0205 - Illegal argument 

0206 - Unknown or illegal LFN 

0208 - LFN or file currently open in same task 
group 

0209 - Named file or directory not found 

020C - Volume not found 

0210 - LFN conflict 

5-122.5 
7/79 
CB08-02A 



Example: 

0222 - Pathname cannot be expanded, no working 
directory 

0225 - Not enough system memory for buffers or 
structures 

0226 - Not enough user memory for buffers or 
structures 

0228 - Illegal file type (a directory) 

022C - Access control list (ACL) violation 

In this example, the macro call deletes the file created in 
the create file macro call example. To do this, it refer
ences the same argument structure as the $CRFIL macro call; 
the system, in turn, uses the first two entries to identify 
the file to be deleted. The delete file macro call is 
coded as: 

$DLFIL !FILE A 

5-122.6 
7/79 
CB08-02A 



(.-. 
'. 

KEY 

Indicates that the record identified by the key value 
pointed to by the FIB is to be deleted. You must code 
the following FIB entries: 

logical file number 
input key pointer 
input key format 

FUNCTION DESCRIPTION: 

Before this macro call can be executed, the file must have 
been opened (see the open file macro call) with a program 
view word that allows access via data management (bit 0 is 
0) and allows delete operations (bit 4 is 1). The file must 
have been reserved (see get file macro call) with write 
access concurrency (type 3, 4, or 5). In addition, execu
tion of this macro call has no effect on the next read or 
write pointer (i.e., it can be issued between a read next 
record and write next record macro call without disturbing 
the sequence of the records being read or written). 

The delete record macro call does not apply to fixed
relative files with nondeletable records, tape files, and 
device files. 

The file information block can be generated by a $FIB macro 
call. Displacement tags for the FIB can be defined by the 
$FIBDM macro call. 

NOTES: 1. If the argument is coded, the address of the FIB 
is loaded into $B4; if the argument is omitted, 
$B4 is assumed to contain the address of the 
FIB. 

2. 

3. 

None of the out-values in the FIB are set by 
this macro call. 

On return, $Rl contains one of the following 
status codes: 

0000 - No error 
Olxx - Physical I/O error 
0203 - Illegal function 
0205 - Illegal argument 
0206 - Unknown or illegal LFN 
0207 - LFN not open 
020A - Address out of file 
020E - Record not found 
0217 - Access violation 
0219 - No current record pointer 
021E - Key length or location error 

5-127 CBoa 

I 



I 
Example: 

022A - Record lock area overflow 

022B - Requested record is locked or causes 
deadlock 

022F - Unknown or illegal record type 

0237 - Invalid record or control interval format 

The macro call in this example identifies the FIB that is 
described under "Assumptions for File System Examples" in 
Section 3. The $TFIB macro call reserved the FIB tags. The 
$DLREC macro call indicates that the current record is to be 
deleted; it is assumed that the file is open and that a 
$RDREC NEXT (read next record) mac ro ca 11 immed i a tel y 
precedes the $DLREC macro call. The macro call is: 

$DLREC !MYFIB ,CURRENT 

The FIB identified by the address in the first argument is 
as defined in the example for the open file macro call. In 
addition, offset tags can be used to access the LFN in later 
instructions in your program with the macro call $TFIB. 

5-128 

~~-'~------~~~~-

7/79 
CB08-02A 

I'~-\ 
I ' 

',~j 



( 

DELETE SEMAPHORE 

DELETE SEMAPHORE 

Macro Call Name: $DLSM 

Function Code: 06/07 

Equivalent Command: None 

Delete a counting semaphore that is currently defined for 
the task group issuing this c'all. 

FORMAT: 

[label] $DLSM [location of semaphore identifier] 

ARGUMENT DESCRIPTION: 

location of semaphore identifier 

Any address form valid for a data register; provides 
the semaphore identifier, as two ASCII characters, of 
the semaphore to be deleted. 

FUNCTION DESCRIPTION: 

This call deletes a counting semaphore that was previously 
defined for the issuing task group with a define semaphore 
($DFSM) macro call. 

The semaphore will be deleted only when there are no tasks 
waiting for the resource controlled by the semaphore (see 
reserve semaphore ($RSVSM) macro call). If tasks are wait
ing, a return to the issuing task results, with $RI contain
ing a 0504 status code. When there are no longer any tasks 
waiting on the semaphore, the $DLSM macro call must be 
reissued. 

When the semaphore is deleted, all system references to it 
are removed. An attempt to use it results in a return to 
the issuing task, with status code 0502 in $Rl. 

5-131 
7/79 
CB08-02A 

* 



I 

NOTES: 1. The semaphore identifier supplied by the argu
ment is placed in SR6. When the argument is 
omitted, the system assumes that SR6 contains 
the identifier to be used. 

Example: 

2. On return, registers SRI and SR6 contain the 
following: 

SRI - Return status; one of the following: 

0000 - No error 

0502 - Semaphore not defined 

0506 - Semaphore is currently active and 
cannot be deleted. 

SR6 - Semaphore identifier (as supplied) 

The issuing task group requests that semaphores TH and LK 
(as defined for the example given in the define semaphore 
(SDFSM) macro call), be deleted. 

DLSAA $DLSM 
CMR 
BE 

DLSBB $DLSM 
CMR 
BE 

5-132 

='TH' 
$ R 1 , =Z ' 05 04 ' 
TH BSY 
='LK' 
$ R 1 , =Z ' 0504 ' 
LK BSY 

7/79 
CB08-02A 

) 

/~--" 

\..j 



( 

ENABLE USER TRAP 

ENABLE USER TRAP 

Macro Call Name: $ENTRP 

Function Code: OAjOl 

Equivalent Command: None 

Enable a specified user trap for the issuing task. 

FORMAT: 

[label] $ENTRP [location of trap number] 

ARGUMENT DESCRIPTION: 

location of trap number 

Any address form valid for a data register; provides 
the trap number of the trap to be enabled. The trap 
number is a decimal value from 0 through 63, or a 
value of -1. A -1 value designates that all user 
traps are to be enabled. 

FUNCTION DESCRIPTION: 

This call causes a specific hardware trap vector whose 
number is derived from argument 1 to be enabled. All subse
quent occurrences of the specified trap cause control to be 
transferred to a previously established trap handling rou
tine for the task (see connect trap handler macro call). 

When the task group's general trap handling routine is 
entered, $R3 contains the trap number assigned to the event 
that caused the entry to the routine. $B3 contains the 
location of the trap save area. The j-mode bit in the I
register has been set off. All other registers are 
unchanged. An RTT (return from trap) instruction is exe
cuted to return from the task's trap handler. (See Section 
7 for more information about trap handling.) 

5-143 CBOS 



NOTES: 1. The trap number of the trap to be enabled, sup- ;r" 

Example: 

plied by argument 1, is placed in $R2; if this ',-/ 
argument is omitted, $R2 is assumed to contain 
the binary number of the trap to be enabled. 

2. On return, $Rl and $R2 contain the following 
information: 

$Rl - Return status; one of the following: 

0000 - No error 

0341 - Trap handler entry not connected 

0342 - Illegal trap number (requested trap 
not a user class trap). 

$R2 - Trap number supplied in macro call 

3. This macro call is required in order to enable a 
software simulated trap in a task that the user 
interrupts with the break key function, and for 
which a PI or UW break response is entered. 

I See the example given for "Trap Handler, Connect." 

5-144 
7/79 
CB08-02A 



( 

(~ 

ENTRY POINT IDENTIFICATION 

ENTRY POINT IDENTIFICATION (MOD 600 ONLY) 

Macro Call Name: $ENTID 

Function Code: 14/07 

Equivalent Command: None 

MOD 400 returns the address or value corresponding to a 
specified symbolic name which has been specified in an EDEF 
statement within the bound unit currently being executed by 
the issuing task, or within a bound unit made permanently 
resident by a CLM LDBU statement. For MOD 600, the cur
rently executing bound unit is searched followed by a search 
of all other attached bound units. 

FORMAT: 

[label] $ENTID [location of symbolic name field address], 
[location of id type] 

ARGUMENT DESCRIPTION: 

location of symbolic name field address 

Any address form valid for a data register; provides 
the address of an aligned character string that con
tains the symbolic name. The name must have been 
declared at link time in an EDEF statement. 

location of id type 

Any address form valid for a data register; provides 
the id type. 

FUNCTION DESCRIPTION: 

The call returns to the issuing task, in $B2, the entry 
point address or, in $R2, the overlay id corresponding to 
the symbolic name specified in the macro call. 

5-145 
7/79 
CB08-02A 

I 



NOTES: 1. The address of the symbo~ ic $name f~eld ~~PPI ied ,?-", 
by argument 1 is placed 1n B4. W en t 1S $ ;,,_~ 

Example: 

argument is omitted, the system assumes that B4 
contains the field's address. 

2. If "An (address) is specified in argument 2, $R6 
is loaded with O. If "V" (value) is specified i 
in argument 2, $R6 is loaded with -1. If argu-e 
ment 2 is omitted, the system assumes that $R6 c 
contains the id type. 

3. On return, $R1, $R2, and $B2 contain the 
following: 

$R1 - Return status, one of: 

0000 - No error 

080C - Symbolic name not found; unresolved 
symbolic start address 

0817 - Memory access violation 

$R2 - Value definition (if $R6=-1 on input). 

$B2 - Entry point address corresponding to the 
specified symbolic name (if $R6=0 on 
input) • 

The issuing task obtains the entry point address correspond
ing to the symbolic name ENTRY1. The address is returned to 
$B2, not stored in memory. 

$ENTID 

ENTNAM TEXT 

5-146 

!ENTNAM,=6 

, ENTRY1' 

7/79 
CB08-02A 



( 

( 

( 
Pages 147 through 165 have been deleted 

5-147 
7/79 
CB08-02A 





( ERROR OUT 

( 

ERROR OUT 

Macro Call Name: $EROUT 

Function Code: 08/03 

Equivalent Command: None 

Write the next record to the error-out file for the task 
group of the issuing task. 

FORMAT: 

[label] $EROUT [location of record area address], 
[location of record size], 
[byte offset from beginning of record area] 

ARGUMENT DESCRIPTION: 

location of record area address 

Any address form valid for an address register; pro
vides the address of a record area containing the 
record to be written to the error-out file. The first 
byte of the record must be a slew byte (print file 
form control byte; see "Printer Driver" in Section 6). 
The record text begins in the second byte. 

location of record size 

Any address form valid for a data register; provides 
the size (in bytes) of the record whose address is 
given in argument 1. The output size value must 
include the .slew byte. 

5-166 CBD8 



rf'\ 
",~ 
,.~/ 



( 

EXPAND PATHNAME 

EXPAND PATHNAME 

Macro Call Name: $XPATH 

Function Code: IO/DO 

Equivalent Command: None 

Develop a full pathname from a relative pathname. 

FORMAT: 

[label] $XPATH [argument structure address] 

ARGUMENT DESCRIPTION: 

argument structure address 

Any address form valid for an address register; pro
vides the location of the argument structure defined 
below. The argument structure must contain the fol
lowing entries in the order shown. 

input pathname pointer 

A 4-byte address, which may be any address form 
valid for an address register; points to a 
relative pathname (which must end with an ASCII 
space character) to be expanded. 

output pathname pointer 

A 4-byte address, which may be any address form 
valid for an address register; identifies a 58-
byte field into which the absolute (i.e., 
expanded) pathname is placed by the system. 

pathname base 

A 2-byte binary value that specifies the basis 
on which to expand the relative path, as 
follows: 

5-169 ca08 



I 

I 

I 

0000 - Working directory 
0001 - System library-l 
0002 - System library-2 

FUNCTION DESCRIPTION: 

This macro call will expand any relative pathname, regard
less of the format in which it is supplied, into an absolute 
pathname. It is possible that the resulting pathname will 
point to a nonexistent file. The expanded pathname cannot 
exceed 58 characters. 

NOTES: 1. If the argument is coded, the address of the 
argument structure is loaded into $B4; if the 
argument is omitted, $B4 is assumed to contain 
the address of the argument structure. 

Example: 

2. On return, $Rl contains one of the following 
status codes: 

0000 - Successful completion 

0201 - Illegal pathname 

0202 - Pathname not specified 

0205 - Illegal argument 

0222 - Pathname cannot be expanded, no working 
directory 

In this example, the pathname of the working directory is 
~VOL6>SUBl>SUB2>SUB3>SUB4, and you want to develop a fully 
expanded absolute pathname from the relative pathname«ADF. 
In the macro call, you must identify the relative pathname 
«<ADF) and the basis (working directory) on which the 
absolute pathname is to be developed, as well as an area 
into which the system can place the fully expanded absolute 
pathname. The main memory area is defined as follows: 

X NAME RESV 

The argument structure is built 

XPND 1 DC 
RESV 
DC 
RESV 
DC 

5-170 

29 

as follows: 

<RELPTH 
2-$AF,0 
<x NAME 
2-$AF,0 
0 

7/79 
CB08-02A 



( 

( 
" 

Structure for Storage Management Access: 

Word Fields 

0 Logical File Number (LFN) 

1 Program View 
i 

2 User Buffer Pointer 
3 

4 Buffer (Transfe r) Size 

5 Block Size 

6 Block Number 
7 

8 Reserved 
9 

10 
11 
12 
13 
14 
15 

NOTE: Reserved fields must be 
set to zeros to ensure 
compatibility with later 
versions of this 
structure. 

Generated Offsets Tags: 

Tag 

F LFN 
F-PROV 
F-URP 
F-IRL 
F-ORL 
F-IKP 
F IKF 
F-IKL 

Corresponding 
Offsets 

(in Words) Entry Name 

o Logical file number (LFN) 
+1 Progam view 
+2 User record pointerl 
+4 Input record lengthl 
+5 Output record lengthl 
+9 Input key pointerl 
+11 Input key format (first byte}l 
+11 Input key length (second byte}l 

1. Specific to $RDREC, $WRREC, $RWREC, and $DLREC macro calls. 

~ 2. Specific to $RDBLK, and $WRBLK macro calls. 

5-187 CB08 



I 

Tag 

FORA 
F-ORAI 
F-ORA2 
F-UBP 
F-BFSZ 
F-BKSZ 
F-BKNO 
F-BKNI 
F BKN2 

F SZ 

Corresponding 
Offsets 

(in Words) 

+12 
F ORA{+12) 
F-ORA+l(+13) 
+2 
+4 
+5 
+6 
F BNKO(+6) 
F-BKNO+l (+7) 

16 

Entry Name 

Output record address 1 
(left half of F ORA}l 
(right half of F ORA) 1 
User buffer pointer2 
Buffer size2 
Block size2 
Block number2 
(left half of F BKNO) 
(right half of F_BKNO) 

Size of structure (in words); 
not a field in the block 

In addition to the offsets tags listed above, the following 
program view (F_PROV tag, above) masks are defined: 

Tag 

MF OPS 
MF-RDA 
MF-WRA 
MF RWA 
MF-DLA 
MF PKA 
MF-RKA 
MF SKA 
MF-FRA 
MF DLV 
MF-KOD 
MF-ROD 

MF BOD 

MF BTM 

MF AlO 

Mask 

Z'8000' 
Z '4000' 
Z'2000' 
Z'lOOO' 
Z'0800' 
Z '0400 ' 
Z'0080' 
Z'0040' 
Z'0020' 
Z '0010' 
Z'0008' 
Z '0004' 

Z'0004' 

Z'0002' 

Z'OOOl' 

Meaning 

Open for storage management 
Read operations allowed 
Write operations allowed 
Rewrite operations allowed 
Delete operations allowed 
Access via primary key 
Access via relative key 
Access via simple key 
Fixed length records allowed 
Deleted records visible to program 
Key area starts an odd-byte boundary 
Record area starts at odd-byte boundary 
(data management specific) 
Buffer area starts at odd-byte boundary 
(storage management specific) 
Data transferred in binary 
transcription mode 
Next block function is asynchronous 
(storage management specific) 

1. Specific to $RDREC, $WRREC, $RWREC, and $DLREC macro calls. 

2. Specific to $RDBLK, and $WRBLK macro calls. 

5-188 CB08 

\ 

/' 



(-

( 

Example I: 

0209 - Named file or directory not found 

020C - Volume not found 

0211 Unable to establish a unique LFN 

0213 - Cannot provide requested file concurrency 

0222 - Pathname cannot be expanded, no working 
directory 

0225 - Not enough system memory for buffers or 
structures 

0226 - Not enough user memory for buffers or I 
structures 

022A - Record lock area overflow or not defined 

022C - Access control list violation 

022E - Recovery/record lock concurrency conflict 

0238 - Invalid file description 

In the following example, the get file macro call identifies 
an argument structure that contains the appropriate argu
ments to reserve the indexed file created in the example for 
the create file macro call (i.e., FILE A) with type 5 con
currency control (read/write share) and record locking. The 
arg ument structure was buil t as follows: 

WRTFIL DC Z'0005' 

DC <IDXOl 
RESV 2-$AF 
DC Z'850l' 

RESV 2,0 
DC Z '0200 ' 
RESV 4,0 

See " As s urn pt ion s for File 
System Examples" in Section 3. 
(The pathname is defined in 
the example for the create 
file macro 

READ/WRITE 
LOCKING: 
IGNORED 
BUFFERS=2 
IGNORED 

5-213 

call.) 

SHARE; RECORD 
ISSUE MOUNT REQUEST 

7/79 
CB08-02A 



It is assumed that the following macro calls were issued 
before the $GTFIL macro call was issued: 

$CRDIR 

$CRFIL 

! SUBDIR 

!FILE A 

(See create directory macro example) 

(See "Assumptions for File System 
Examples" ) 

The $GTFIL macro call altering FILE A concurrency from 
exclusive to share can be specified-as follows: 

$GTFIL !WRTFIL 

Example 2: 

In this example, the $GTFIL macro call is used to append 
characters to an incomplete pathname defined as follows: 

DIRPTH DC 'AVOL03>SUBINDEX.A~' (See create direc
tory macro example) 

This pathname has been associated with the LFN as follows: 

$ASFIL !FILE X 

where the argument structure labeled FILE X has been defined 
as follows: 

FILE X DC 
DC 
RESV 

Z'00A3' 
<DIRPTH 
2-$AF 

LFN=163 
PATHNAME ,AVOL03 SUBINDEX.A~' 

Assuming that the above definitions have been made, the 
following argument structure identifies the characters to be 
appended to the incomplete path (DIRPTH): 

WTFIL2 DC 
DC 
RESV 
DC 
RESV 
DC 
RESV 

Z'00A3' 
<IDX02 
2-$AF 
Z'030l' 
2,0 
Z'0200' 
4,0 

LFN=163 
PATHNAME POINTER 

EXCLUSIVE: ISSUE MOUNT REQUEST 
UNSPECIFIED 
BUFFERS=2 
IGNORED 

The pathname labeled IDX02 is defined as follows: 

IDX02 DC ': FILE C~' 

5-214 CBOS 

c 



( 

( 

~--~---- -~- - ~ 

Device 
Type 

Peripheral Device Code Marketin9 Identifier 

Line Printer 2000 PRU9l04/9l06 
2pOl same as above but with 

Option PRF9l02 
2002 PRU9103/9l05 
2003 same as above but with 

Option PRF9l02 

Magnetic Tape 2045 MTU9l04 (9-track NRZI, 
45-ips) 

2046 MTU9105 (9-track NRZ I, 
7S-ips) 

2045 MTU9109 (9-track, 800 
bpi, NRZI, 45-ips) 

2049 MTU9109 (9-track, 1600 
bpi PE, 45-ips) 

2046 MTU9110 (9-track, 800 
bpi NRZ I, 75-ips) 

204A MTU9110 (9-track, 1600 
bpi PE, 75-ips) 

2067 MTU9112 (7-track, 556-
bpi) 

2071 MTU9112 (7-track, 800-
bpi) 

206A MTU9113 (7-track, 556-
bpi) 

2071 MTU9113 (7-track, 800-
bpi) 

2049 MTU9114 (9-track, 1600-
bpi, 45-ips) 

204A MTU9115 (9-track, 1600-
bpi, 75-ips) 

*logical resource number 

A 2-byte entry into which the system places the 
logical resource number (LRN) that corresponds 
to the device on which the specified file is 
located. 

*file type 

A I-byte entry into which the system places a 
code identifying the file organization of the 
specified file, as follows: 

5-221 CB08 



• 

• 

-1 - IBM diskette 
o - Device file 
2 - Fixed-relative without deletable records 
5 - Fixed-relative with deletable records 
D - Directory 
R - Relative 
S - Sequential 
I - Indexed 
C - Random (calc) disk file 
T - Tape-resident file 

*data format 

A I-byte entry into which the system places a 
code identifying the format of the data, as 
follows : 

F - Fixed-length record 
D - Variable-length record (decimal count size) 
V - Variable-length records (binary count size) 
U - Undefined 

file attribute pointer 

A 4-byte address of a 32-byte field in main 
memory into which the system can place file-
attribute information, as described below; may ~ ~ 
be any address fo rm val id for an address reg i s- j 

ter or zeros, which indicate that the informa-
tion is not required. 

reserved 

A 4-byte entry, containing zeros. 

key descriptor pointer 

A 4-byte address of an 18-byte field in main 
memory into which the system can place key
descriptor information, as described below; may 
be any address form valid for an address regis
ter, or zeros, which indicate that the informa
tion is not required. 

reserved 

A 4-byte entry, containing zeros. 

The system places file attribute information in the 32-byte 
field pointed to by the file attribute entry described 
above. For disk-resident files, the structure contains the 
following: 

5-222 

~-~-~- -----------

7/79 
CB08-02A 

(f ~. 

~./ 



( 

« 

*block $1 ~e 

A 2-byte entry specifying the maximum size (in 
bytes) of a physical record (i.e., the unit of 
transfer to a device file). 

* reserved 

A 28-byte entry containing zeros. 

The following ke¥ descriptor information is placed in the 
18-byte field pointed to by the key descriptors entry 
described above. This structure applies only to indexed 
files, and contains the following: 

*reserved 

A 4-byte entry that contains zeros. 

*number of key components 

A I-byte entry that contains 1. 

*reserved 

*key 

A 9-byte entry that contains ze ros. 

component data type 

A I-byte entry that indicates the data type of 
the key component. The entry is hexadecimal 43 
(i.e., C) for character, or hexadecimal 44 
(i.e., D) for decimal. 

*key component size 

A I-byte entry that specifies the size of the 
key component in bytes; that is, it specifies 
the size of the primary key stored in each 
logical record in the indexed file. 

*key component location 

A 2-byte entry that specifies the offset (in 
bytes) from the beginning of the record to the 
beginning of the key field; the first byte in 
the logical record is position 1. 

FUNCTION DESCRIPTION: 

Before this macro call is issued, tape-resident files must 
be open (see the open file macro call) so that the system 

5-225 
7/79 
CB08-02A 



I 

I 

can retrieve the file attribute infor~ation. (File attri
bute information is stored in the tape labels.) 

If neither the pathname nor the LFN is specified, a status 
code of 0205 is returned. 

If an.LFN is specified, the file must have been previously 
reserved through that LFN via a get file or create file 
macro call (or equivalent command). 

To access specific entries in the argument structure, use 
the $GIPSB, $GIKDB, and $GIFAB macro calls. 

NOTES: 1. If the argument is coded, the address of the 
argument structure is loaded into $B4; if the 
argument is omitted, $B4 is assumed to contain 
the address of the parameter structure. 

2. On return, $RI contains one of the following 
status codes: 

0000 - No error 

Olxx - Physical I/O error 

0201 - Illegal pathname 

0202 - Pathname not specified 

0205 - Illegal argument 

0206 - Unknown or illegal LFN 

0209 - Named file or directory not found 

020C - Vol ume not fo und 

0222 - Pathname cannot be expanded, no current 
working directory 

0225 - Not enough system memory for buffers or 
structures 

0226 - Not enough user memory for buffers or 
structures 

0228 - Illegal file type 

022C - Access control list (ACL) violation 

022E - Record lock concurrency conflict 

0238 - Invalid file description 

5-226 
7/79 
CB08-02A 

( ""' , ' 
i'\ 

t'", I 

.:#'.;' 



( 

--------~- ~-.--~---~-

Structure for Disk Files: 

Word Fields 

0 Logical Record Size 

1 Control Interval Size 

2 Current Allocation Size 

3 Allocation Increment 

4 Maximum Allocation Size 

5 Free Space per Control Interval 

6 Local Overflow Increment 

7 Number of Key Descriptors 

8 Reserved 
9 

10 
11 
12 
13 
14 
15 

NOTE: Reserved fields must be set to 
zeros to ensure com pa t i b iIi t Y 
with later versions of this 
structure. 

Generated Offsets Tags: 

For tape-resident and device files: 

Correspond ing 
Offsets 

Tag (in words) 

T LRSZ 0 
T-BKSZ +1 
T-RFU +2 

T SZ 16 

Entry Name 

Logical record size 
Block size 
Reserved 

Size of structure (in words); 
not a field in the block 

5-229 CB08 



For disk-resident files: 

Tag 

K LRSZ 
K-CISZ 
K CASZ 
K-AISZ 
K MASZ 
K-FREE 
K LOV 
K-NKS 

K SZ 

Corresponding 
Offsets 

(in words) 

o 
+1 
+2 
+3 
+4 
+5 
+6 
+7 

16 

Entry Name 

Logical record size 
Control interval/physical sector size 
Current allocation size 
Allocation increment size 
Maximum allocation size 
Amount of free space per C.I. 
Local overflow allocation increment 
Number of keys 

Size of structure (in words); not a 
field in the block 

NOTE: If the tape file sequence number is 00 and 

1. The file is opened at a storage management (block) 
level and, 

2. No volume name or file name has been given in the 
pathname, 

the tape is reserved for volume (device) level access. 

. 5-230 
7/79 
CB08-02A 

--- --- _._._--

\-',--.. - ;,/ 



(' 

( 

GET WORKING DIRECTORY 

GET WORKING DIRECTORY 

Macro Call Name: $GWDIR 

Function Code: ID/CD 

Equivalent Command: List Working Directory (LWD) 

Returns the name of the current working directory. This 
function is usually done outside program execution. 

FORIVlAT: 

[label] $GWDIR [argument structure address] 

ARGUMENT DESCRIPTION: 

argument structure address 

Any address form valid for an address register; pro
vides the location of the argument structure defined 
below. The argument structure must contain the fol
lowing entry. 

working directory pathname 

A 45-byte field, in main memory, into which the 
system can place the full absolute pathname of 
the current working directory. 

FUNCTION DESCRIPTION: 

This macro call returns the full absolute pathname of your 
current working directory. Although the pathname may be 
shorter than the maximum 45 characters, the argument struc
ture must be large enough to accommodate the maximum number 
of characters. 

NOTES: 1. If the argument is coded, the address of the 
argument structure is loaded into $B4; if the 
argument is omitted, $B4 is assumed to contain 
the address of the argument structure. 

5-241 CBD8 



* 

Example: 

2. On return, $RI contains one of the following 
status codes: 

" 

0000 - No error 

0205 - Illegal argument 

0222 - Pathname cannot be expanded, no working 
directory 

This example assumes the following file system hierarchy 
(see the sostem Concepts manual) and that the working d i rec
tory is'S B.DIR.BB!'. 

VOLOI 
I 

I I 
SUB.DIR.A SUB.DIR.B 

I I " --'-----...,. 
SUB.DIR.AA FILEOI SUB.DIR.BB 

I 
FILE02 

I , 

FILE03 SUB.DIR.BBI 
I 

i I 
FILE04 SUB.DIR.BIB 

I 
FILE05 

Coding the $GWDIR macro call causes the system to place the 
full absolute pathname of the working directory, defined 
below, into the specified argument structure: 

$GWDIR ! CURDIR 

CURDIR RESV 29 

The path placed in the main memory field labeled CURDIR is: 

AVOLOl>SUB.DIR.B>SUB.DIR.BB>SUB.DIR.BBl~~~~~~ 

5-242 
7/79 
CB08-02A 



( 

(-

GROUP STATUS (MOD 600 ONLY) 

Macro Call Name: $GRPST 

Function Code: 14/0E 

Equivalent Command: None 

GROUP STATUS 
(MOD 600) 

Return the current status information about the specified I 
group to a 47-word receiving field. 

FORMAT: 

[label] $GRPST [location of group id whose status is requested], 
[location of group-status field address] 

ARGUMENT DESCRIPTION: 

location of group id 

Any address form valid for a da.ta register; provides 
the group id of the task group whose status is to be 
returned. 

location of group-status field address 

Any address form valid for a data register; provides 
the address of a 47-word nonvarying receiving field I 
where the system will place current status information 
about this task group. 

FUNCTION DESCRIPTION: 

This call returns to the issuing task, in $B4, the address 
of the 47-word receiving area that will contain the status I 
info rmat ion, in the fo llowing order, fo rmatted as fo llows : 

5-251 
7/79 
CB08-02A 



I 

Number 
of Words Contents 

3 Terminal id (in ASCII) associated with this 

6 

16 

1 

1 

3 

1 

1 

1 

2 

2 

2 

2 

6 

NOTES: 1. 

group as primary logon; blank if applicable 

User id (in ASCII) associated with this task 
group 

Group id (in ASCII) 

Reserved for system use 

Amount of CP time used 

Private memory total 

Shared memory total 

Status of pre-emption and load control 

I/O count 

Segment swap count 

Overlay miss count 

Overlay hit count 

Last bound unit loaded by create task 

Size of group status block 

The location of the group id supplied in 
argument 1 is placed in $R2. When this argument 
is omitted, the system assumes that $R2 contains 
the location of the group ide 

2. The address of the 47-word receiving field sup
plied in argument 2 is placed in $B4. When this 
argument is omitted, the system assumes that $B4 
contains the receiving field's address. 

3. On return, $Rl and $B4 contain the following: 

$RI - Return status codes, one of: 

0000 - No error 

0817 - Memory access violation 

0818 - No task group with specified group 
id 

5-252 

-----"-~"--" ~,-

7/79 
CB08-02A 

;{-'-"-, 
I ' o 



( 

( 

Example: 

$B4 - Address of the group-status receiving 
field 

This macro call obtains group status information about the 
task group whose id is JR, and places the information in the I 
47-word field labeled STATUS: 

JRSTAT $GRPST 

STATUS RESV 

= 'JR' ,! STATUS 

47,0 

5-253 
7/79 
CB08-02A 

• 



HOME DIRECTORY 

HOME DIRECTORY 

Macro Call Name: $HDIR 

Function Code: 14/0B 

Equivalent Command: Horne Directory (HOME_DIR) 

Return the pathname of the initial working directory of the 
calling task group to a 45-character receiving field. 

FORMAT: 

[label] $HDrR [location of horne directory field address] 

ARGUMENT DESCRIPTION: 

location of horne directory field address 

Any address form valid for an address register; pro
vides the address of a 45-character, aligned, non
varying field into which the system will place the 
pathname of the default working directory of the 
calling task group. 

FUNCTION DESCRIPTION: 

This call returns the pathname of the initial working 
directory to a field in the issuing task. The pathname 
returned is that specified in the -HD argument of the login 
command. If the -HD argument was not specified, the path
name returned is that set according to user registration 
arguments or system defaults. 

NOTES: 1. The address of the receiving horne directory 
field, supplied by argument 1, is placed in $B4; 
if this argument is omitted, $B4 is assumed to 
contain the correct address. 

2. On return, $Rl contains one of the following 
status codes: 

0000 - No error 
0817 - Memory access violation 

5-254 

~----~----~-- - -- - --~-~~- ~-~-

CB08 



NWAIT - Do not suspend the issuing task (set the w-bit 
to 1) 

If this argument is omitted, the value NWAIT is 
assumed. 

If WAIT is specified, argument 3 (issuing task termi
nation action) must be omi tted. 

issuing task termination action 

One of the following values is specified to indicate 
the action to be taken upon the completion of the 
request. 

SM=aa - Do not suspend the issuing task; release 
(V-op) the semaphore identified by aa (two 
ASCII characters), when requested task is 
completed. 

RB=label - Do not suspend the issuing task; issue a 
request for the request block identified by 
label, when requested task is completed. 

If this argument is omitted (or argument 2 is WAIT), 
the generated IORB contains no termination option. 

buffer address 

Address of a buffer area to be used for input/output 
transfers involving the specified device. If this 
argument is omitted, the buffer address field in the 
generated IORB is initialized to zeros. 

buffer byte alignment 

A value specifying the beginning byte of the buffer, 
as follows: 

R - Buffer begins in right byte of word address 
specified by argument 4 

L - Buffer begins in left byte of word address 
specified by argument 4 

If this argument is omitted, a value of L is assumed. 

buff er range 

A value specifying the length, in bytes, of the buf
fer. If this argument is omitted, the generated 
IORB's range value is initialized to zero. 

5-257 CB08 



extension indicator r'\ 
The following value, when specified, indicates that :,~ 
the IORB is to be extended beyond the standard IORB. 
The argument causes space for the lOR. extension to be 
generated, resulting in an extended rORB (see Appendix 
A). When the argument is omitted, the system gener-
ates a standard length IORB. 

EXT - Generate an extended IORB 

FUNCTION DESCRIPTION: 

The input/output request block (IORB) is used as the stan
dard means of requesting a physical I/O service. The IORB 
contains an LRN which identifies the I/O device being 
addressed. The IORB also identifies the location and size 
of the buffer to be used for physical I/O transfers as well 
as the specific function requested. 

NOTE: This macDO call cannot be used in programs written in 
SAF/LAF independent code (SLIC). See th~ Assembly 
Language Reference manual for more information about 
SAF/LAF independent code. 

Example~: 

In this example, the $IORB macro call generates a standard 
IORB having an LRN of 0, a WAIT status indicating that the 
requesting task will wait for I/O completion, and a label 
(DBUF) that gives the location of the 140-byte buffer area. 

CONIO $IORB 0,WAIT"DBUF,,140 

5-258 
7/79 
CB08-02A 

~~~~ --- -------



( 

( 

Example: 

0000 - No error 
0802 - Invalid LRN 

The issuing task issues a SKILLT macro call to abort another 
task (whose LRN is 34) in the same task group. 

ABT34 SKI LLT =34 

5-267 CB08 



I 

MESSAGE GROUP, ACCEPT 

MESSAGE GROUP, ACCEPT 

Macro Call Name: $MACPT 

Function Code: 15/01 

Equivalent Command: None 

Establish a message connection, through a mailbox, between 
an initiator's task group and the acceptor (calling) task 
group issuing this $MACPT macro call. 

FORMAT: 

[label] $MACPT [location of MGIRB address] 

ARGUMENT DESCRIPTION: 

location of MGIRB address 

Any address form valid for a data register; provides 
the address of the message group initialization 
request block (MGIRB), which must have been previously 
generated. 

FUNCTION DESCRIPTION: 

The acceptor task group issues this macro call in order to 
accept a connection request initiated (with a $MINIT macro 
call) by the initiator task group. The $MACPT macro call 
(1) ind i ca tes that the acceptor task g ro up wi shes to rece ive 
a message from a named mailbox (message queue), and (2) 
opens the receive function of the message facility. (See 
the appropriate System Concepts manual for a discussion 
about the message facility.) 

NOTES: 1. A mailbox must have been created before the 
mac ro ca 11 is issued. (See the c rea te ma i lbox 
(CMBX) command in the Commands manual.) Refer
ence to mailbox fields when no mailbox has· been 
created results in an error return. 

5-268 
7/79 
CB08-02A 



( 

( 

Table 5-3 (cont). Argument Values for $MGCRB Macro Call 

Argument 
Posi tion 

Any 

Any 

Any 

Keyword 

ALIGN= 

WTI= 

ENC= 

Keyword 
Value Argument Description 

Keyword with option 

R 

L 
(default 
value) 

WAIT 

DENY 
(default 
value) 

Buffer byte alignment: 

Buffer begins in right
most byte of address 
specified by BUF= 
argument. 

Buffer begins in left
most byte of address 
specified by BUF= 
argument. 

Wait test indicator (for 
$MRECV onl y) : 

Do not process request 
until data is available. 

Return error status when 
there is no data 
available. 

Enclosure level that 
delimits send or receive 
message uni t • 

EOR End-of-record. 

EOQ End-of-quarantine-unit. 
(default 
value) 

EOM End-of-message. 

aWhen WAIT is specified, argument 3 must be omitted. 

Field in 
MGCRB 

MC OPT 

MC WTI 

MC LVL 

bWhen this argument is omitted, or argument 3 is WAIT, the 
generated MGCRB contains no termination option. In that case, 
the user must issue a $WAIT, $WAITL, or $TEST macro call. 

5-275 CB08 



I 

FUNCTION DESCRIPTION: 

The message group control request block (MGCRB) is used for 
communication between task groups, and is the means for 
passing arguments among task groups in connection with the 
message group send ($MSEND) and message group receive 
($MRECV) macro calls of the message facility. This macro 
call makes it possible to modify an existing MGCRB by 
generating executable instructions that use registers SR6, 
$R7, and $B5 (as appropriate). The modifying process always 
uses $B4 to point to the MGCRB. 

NOTE: This macro call cannot be used in programs written in 
SAF/LAF independent code (SLIC). See the Assembly 
Language Reference manual for more information about 
SAF/LAF independent code. 

5-276 
7/79 
CB08-02A 

(\ 
\ I 
"L,_j 

;£---" 

\:t/ 



(-

( 

MESSAGE GROUP CONTROL 
REQUEST BLOCK OFFSETS 

MESSAGE GROUP CONTROL REQUEST BLOCK OFFSETS 

Macro Call Name: $MGCRT 

Generated Label Prefixes: 

MC OS 
MC-MAJ 
MC-OPT 
MC-BUF 
MC-BSZ 
MC-DVS/MC REC 
MC-RSR 
MC-MRU/MC WTI 
MC-EXT -
MC-FNC/MC REV 
MC-MGI -
MC-LVL 
MC-PCI 
MC-VDP 
MC-TGI 
MC-TSK 
MC-NPI 

Appendix A describes the contents of the message group con
trol request block (MGCRB). 

NOTE: This macro call cannot be used in programs written in 
SAF/LAF independent code (SLIC). See the Assembly I 
Language Reference manual for information about SAF/ 
LAF independent code. 

5-277 
7/79 
CB08-02A 



MESSAGE GROUP, COUNT 

MESSAGE GROUP, COUNT 

Macro Call Name: $MCMG 

Function Code: 15/07 

Equivalent Command: None 

Provide a count of the number of completed message groups, 
not yet "accepted" by previous $MACPT macro calls, that al"e 
available for processing by subsequent $MACPT macro calls. 

FORMAT: 

[label] $MCMG [location of MGIRB address] 

ARGUMENT DESCRIPTION: 

location of MGIRB address 

Any address form val id for a data reg ister; provides 
the address of the message group initialization 
request block (MGIRB), which must have been previously 
created. 

FUNCTION DESCRIPTION: 

The sending or receiving task group may issue this macro 
call to ascertain the number of completed groups currently 
in the mailbox not yet "accepted" by earlier $MACPT macro 
calls, and available to subsequent $MACPT macro calls. The 
mailbox is described in the MGIRB for this macro call (see 
Table 5-4 below). 

NOTES: 1. Referenced mailboxes must have been created 
before this macro call is issued. - (See the 
create mailbox (CMBX) command in the Commands 
manual.) References to mailbox fields when no 
mailbox has been created results in an error 
return. 

CB08 

- --------- -- --- -------------



(~- Table 5-5 (cont). Argument Values for $MGIRB Macro Call 

Argument Keyword Field in 
Posi tion Keyword Value Argument Description MGIRB 

Keyword only (cont) 

Any RESV None Generates the MGIRB. 

Keyword with expression 

3 Issuing task terminationb N/A 
option: 

SM= aa When requested task is 
completed, do not suspend 
issuing task; release the 
semaphore identified by 
the two ASCII characters 
aa. 

RB= label When requested task is 
completed, do not suspend 
the issuing task; issue a 
request for the request 

( 
block identified by 
label. 

Any ADR= address When existing MGIRB is to N/A 
be changed (RESV omi t-
ted) , specifies address 
of MGIRB to be changed. 

Any MBI= Initiator mailbox namel MI MBI 

From 1 to 12 ASCII characters, 
blank-filled, left justified. 
Default is 12 blanks. 

Any MBA= Acceptor mailbox name. MI .MBA 
From 1 to 12 ASCII characters, 
blank-filled, left justified. 
Default is 12 blanks. 

aWhen WAIT is specified, argument 3 must be omitted. 

bWhen this arg ument is omitted, or arg ument 2 is WAIT, the 
generated MGIRB contains no termination option. In that case, 
the user must issue a $WAIT, $WAITL or $TEST macro call. 

5-283 CBD8 



I 

FUNCTION DESCRIPTION: 

The message group initialization request block (MGIRB) is 
used for communication among task groups, and is the means 
for passing arguments a~ong task groups in connection with 
the message group accept ($MACPT), message group initiate 
($MINIT), and message group count ($MCMG) macro calls of the 
message facility. This macro call makes it possible to 
modify an existing MGIRB by generating executable instruc
tions that use registers $R6, $R7, and $B5 (as appropriate). 
The modifying process always uses $B4 to point to the MGIRB. 

NOTE: This macro call cannot be used in programs written in 
SAF/LAF independent code (SLIC). See the Assembly 
Language Reference manual for more information about 
SAF/LAF independent code. 

5-284 
7/79 
CB08-02A 

'''.c./ 

1(-\ 

'\.../ 



( 

(-

MESSAGE 
REQUEST 

GROUP 
BLOCK 

INITIALIZATION 
OFFSETS 

MESSAGE GROUP INITIALIZATION REQUEST BLOCK OFFSETS 

Macro Call Name: $MGIRT 

Generated Label Prefixes: 

MI OS 
MI MAJ 
MI-OPT 
MI-BUF 
MI-BSZ 
MI-MPD 
MI-RSR 
Ml-MDE/MI lOP 
MI-EXT 
Ml-FNC/MI REV 
MI-MGI -
MI-PCM/MI ADT 
MI-NWI -
MI-NDI 
MI-MB I 
MI-NWA 
MI-NDA 
MI-MBA 
MI QSZ 
MI-CNT 
Ml-TGI 
Ml-TSK 
MI-SIP 

Appendix A describes the contents of the message group 
initialization request block (MGIRB). 

NOTE: This macro call cannot be used in programs written in 
SAF/LAF independent code (SLIC). See the Assembly I 
Language Reference manual for information about SAF/ 
LAF independent code. 

5-285 
7/79 
CB08-02A 



I 

MESSAGE GROUP, INITIATE 

MESSAGE GROUP, INITIATE 

Macro Call Name: $MINIT 

Function Code: 15/02 

Equivalent Command: None 

Initiate a message connection, through a previously created 
mailbox, between the initiating task group (initiator) and 
the accepting task group (acceptor). 

FORMAT: 

[label] $MINIT [location of MGIRB address] 

ARGUMENT DESCRIPTION: 

location of MGIRB address 

Any address form valid for a data register; provides 
the address of the message group initialization 
request block (MGIRB), which must have been previously 
generated. 

FUNCTION DESCRIPTION: 

A task group that is to send a message (initiator task 
group) to another task group must issue the $MINIT macro 
call to open the send function of the message facility. 
(See the MOD 400 System Concepts manual for a discussion 
about the message facility.) The macro routine informs the 
system that a message connection is requested in order to 
send a messQge, and provides the name of the initiator's 
mailbox •. 

NOTES: 1. Mailboxes must have be.en created before the 
macro call is issued. (See the create mailbox 
(CMBX) command in the Commands manual.) 

2. The system places the address of the MGIRB in 
$B4. If the argument is omitted, the system 
assumes that $B4 contains a pointer to the 
MGIRB. 

5-286 
7/79 
CR08-02A 

-~ .. - -- --~----- --_._----- ~-.----~---



(--

3. Before the $MINIT macro call is executed, the 
user must generate the MGIRB (see Table A-8) 
with the argument values shown in Table 5-6. 

Table 5-6. MGIRB Argument Values for $MINIT Macro Call 

Field in 
Argument Name and Description MGIRB Arg ument Val ue 

synchronous/asynchronous 
indicator 

Indicates whether macro 
call execution is to be 
synchronous or 
asynchronous. 

message-path-description 
identifier 

Identifies one of a set of 
message path descriptions 
(MPDs) associated with the 
initiator task group. The 
MPD defines the connection 
between the mailboxes. 

initiator identification 

Describes the following 
characteristics of the 
initiator at a mailbox 
where the message group 
originates. 

address type 

Specifies that this is an 
initiator's address. 

Reserved for future use. 

Reserved for future use. 

MI MAJ 
(bIt 9) 

MI MPD 

o - Synchronous; task 
waits until all 
specified message 
group conditions are 
met before the macro 
call is executed. 

1 - Asynchronous; task 
continues with other 
processing while 
checking whether the 
message group condi
tions have been met. 

Must be 0001, indicating 
local mail facility, and 
which assumes a default 
MPD that is for one-way 
message groups. 

As shown As shown below. 
below. 

MI ADT 

(bits 
0-7) 

MI NWI 

MI NDI 

5-287 

Must be hexadecimal 01. 

Must be o. 

Must be o. 

CB08 

--_ .... _- ------



Table 5-6 (cont). MGIRB Argument Values for $MINIT Macro Call 

Field in 
Argument Name and Description MGIRB Argument Value 

initiator identification 
(con t) 

initiator 

destination 

acceptor 

mailbox name MI MBI Must be from 1 to 12 - ASCII characters, blank-
filled, I e f t- jus t i f i ed • 

identification 

mailbox name MI MBA Must be from 1 to 12 - ASCII characters, blank 
filled, left j usti f ied, 
and as specified when 
the mailbox was created. 

4. The $MINIT macro call is effective only for a 
one-way connection to another task group's mail
box. For the other task group to send messages, 
it must create its own initiator mailbox and 
issue its own $MINIT macro call. 

5. On successful macro execution, the system 
returns the message group identifier (MI MGI 
field) of the "initiated" message group.- A 
valid identifier is returned for all requests. 

6. On return, $Rl contains the following return 
status codes: 

0000 - No error 

OC23 - Invalid message-path-description 
identifier 

OC25 - Acceptor mailbox may not be accessed 
by initiator 

OC26 - Acceptor mailbox not known 

OC34 User-coded reason for abnormal message 
through - group 

OC44 

OC62 - Normal message group termination 

7. On return, register $B4 will point to the 
application's MGIRB, which is updated according 
to the specifications in the macro call. 

7/79 
5-288 CB08-02A 

:( ... ". 
_/ 



MESSAGE 
REQUEST 

GROUP 
BLOCK 

MESSAG~ GROUP RECOVERY REQUEST BLOCK OFFSETS 

Macro Call Name: $MGRRT 

Generated Label Prefixes: 

MR OS 
MR-MAJ 
MR-OPT 
MR-BUF 
MR-BSZ 
MR-ITP 
MR RES 
MR RSN 
MR-EXT 
MR:=FNC/MR REV 
MR MGI 
MR-CNC 
MR FMT 
MR-MRU 
MR-AMU 

RECOVERY 
OFFSETS 

Appendix A describes the contents of the message group 
recovery request block (MGRRB). 

NOTE: This macro call cannot be used in programs written in 
SAF/LAF independent code (SLIC). See the Assembly 
Language Reference manual for information about SAF/ 
LAFindependent code. 

5-297 
7/79 
CB08-02A 

I 



MESSAGE GROUP, SEND 

MESSAGE GROUP, SEND 

Macro Call Name: $MSEND 

Function Code: 15/05 

Equivalent Command: None 

Send a specified amount of message text from the initiator 
task group. Optionally, make this record and any previously 
sent records available to the receiver by declaring this 
message text as a quarantine unit. 

FORMAT: 

[label] $MSEND [location of MGCRB address] 

ARGUMENT DESCRIPTION: 

location of MGCRB address 

Any address form valid for a data register; provides 
the address of the message group control request block 
(MGCRB), which must have been previously generated. 

FUNCTION DESCRIPTION: 

The task group that issued a $MINIT macro call to initiate a 
message connection, issues one or more $MSEND macro calls to 
send message data via that connection. A task group sends a 
message through a named mailbox, from which the receiving 
task group obtains the message. The $MSEND macro call uses 
the same message group identifier, returned in the $MINIT 
macro call, to identify the message group. 

Text units of information sent by the sending task group 
(initiator) are in the form of records. A message is one or 

more records. Each $MSEND call sends one record, which is 
the basic unit of data exchange. Each $MSEND transmission 
points to an MGCRB that describes the buffer of message 
data. 

5-298 CB08 

-- --~~~------
-----~ -----~---



(' 

( 

Example: 

2. On return, $Rl contains one of the following 
status codes: 

0000 - No error 
0817 - Memory access violation 

3. On return, $B4 contains the address of the 
receiv ing field. 

In this example, $B4 is loaded with the address (MODFL) of a 
3-character field and the $MODID macro call is issued to 
place the mode identification of the task group in that 
field. 

MODFL RESV 
LAB 

$MODID 

5-307 

2 
$B 4 ,MODFL 

7/79 
CB08-02A 

I 



NEW COMMAND IN 

NEW COMMAND IN 

Macro Call Name: $NCIN 

Function Code: 08/06 

Equivalent Command: None 

Reset the command-in file for the issuing task to that 
specified by the supplied pathname, or to its original 
definition. 

[labe 1] $NC IN (loca t ion of pa thname address] 
[location of argument. list address] 

ARGUMENT DESCRIPTION: 

location of pathname address 

Any address form valid for a register; provides the 
address of the pathname of the new command-in file. 

location of argument list address 

Any address form valid for an address register; pro
vides the address ~f the argument list containing the 
arguments for use in command line argument 
substitution. 

FUNCTION DESCRIPTION: 

This call allows a task to reset the command-in file to that 
specified by the supplied pathname. 

NOTES: 1. The address of the pathname of the new command
in file supplied by argument 1 is placed in $B4; 
if this argument is omitted, $R2 is set to the 
value of 1 designating that the command-in file 
is to be reset to that initially defined for the 
issui ng task. 

5-307.1 

.... ~ .. -~ ... ----

7/79 
CB08-02A 



( 

2. The address of the argument list supplied by 
argument 2 is placed in $B2 and $R2 is set to 
zero; if this argument is omitted, $B7 contains 
the address of the argument list. 

3. On return, $RI, $R6, $R7, $B2, and $B4 contain 
the following information: 

$RI - Return status; contains the following: 

0000 - No error 

All file management get-file and open-file 
error codes may also be returned. 

$R6 - Record length of the redefined file. 

$R7 - File status/type of the redefined file. 

$B2 - Address of the argument list (if 
supplied). 

$B4 - Address of the pathname of the new 
command-in file (if supplied). 

5-307.2 
7/79 
CB08-02A 



NEW PROCESS 

NEW PROCESS 

Macro Call Name: $NPROC 

Function Code: OD/OB 

I Equivalent Command: New Process (NEW_PROC) 

Terminate the current task group request and restart the 
task group request with the same parameters as the original 
invocation of the task group for this request. 

FORMAT: 

[label] $NPROC 

ARGUMENT DESCRIPTION: 

There are no arguments for this macro call. 

FUNCTION DESCRIPTION: 

This call terminates the current request for the issuing 
task group, then restarts the request using the same param
eters as in the original request. 

Example: 

In this example, the $NPROC macro call is used to terminate 
and restart the task group request. 

AGAIN $NPROC 

5-308 CB08 



3. 

b. If only write permission is granted (FIB program 
view word allows write but not read) the header 
label group is processed and the file positioned 
directly after the last data record. This in 
effect, is "append" mode, a way for the user to add 
records to the end of a file without having to read 
past all the existing data'records. 

Trailer labels and an end-of-data tape mark are 
written when the file is closed. Files following 
the current file are lost. 

c. If read and write permissions are granted (FIB pro
gram view word allows both read and write) the 
header label group is processed and the file posi
tioned directly in front of the first data record. 
Any write request issued after the file is opened 
will cause all data records that were read to be 
preserved, and those records that were not read to 
be lost. This procedure can be used to preserve 
part of the file while renewing the rest. 

If no write operations are done and the file is 
closed, no trailer labels are written. Thus files 
located after the current file are preserved. 

If write operations are done, trailer labels and an 
end-of-data tape mark are written when the file is 
closed. Files that follow the current file are 
lost. 

For tapes opened in RENEW mode, the position of data 
within the file is determined as follows. 

a. Creation of the new file is initiated at the current 
tape posi tion. (If the tape is posi tioned at beg in
ning of tape (BOT), the volume header label is 
bypassed.) The header label group is written as 
specified in the preceding get file macro call. 
After these actions, the tape is positioned at the 
end of the header label group. 

b. Data and/or files following the current tape posi
tion are destroyed when the file is opened. 

As part of the initialization process, this macro call 
verifies that sufficient space is available for buffers and 
control structures. 

This macro call must be issued before any of the data man
agement or storage management macro calls can be executed. 

5-317 caos 



I 

The file information block can be generated by a $FIB macro 
call. Displacement tags for the FIB can be defined through 
the $TFIB macro call. 

NOTES: 1. If the first argument is coded, the address of 
the FIB is loaded into $B4; if the argument is 
omitted, $B4 is assumed to contain the address 
of the FIB. 

Example: 

2. On return, $Rl contains one of the following 
status codes: 

0000 - No er ror 

Olxx - Physical I/O error 

0205 - Illegal argument 

0206 - Unknown or illegal LFN 

0208 - LFN or file already open 

0209 - Named file or directory not found 

020C - Named volume not found 

0214 - Bad program view of file 

0217 - Access violation 

0225 - Not enough system memory for buffers or 
structures 

0226 - Not enough user memory for buffers or 
structures 

022C - Access control list (ACL) violation 

022E - Recovery/record lock/concurrency conflict 

0232 - Invalid tape file header or tape file 
trailer label 

0237 - Invalid record or control interval format 

0238 - Invalid file description information 

This $OPFIL example opens a new file, in which records are 
to be written via the data management macro call(s) that 
follow this macro call. 

5-318 
7/79 
CB08-02A 

(,1''-\ 

",j 



(-

(-

Following is a sample sequence of macro calls and FIB used 
to open FILE A for processing. 

5-318.1 
7/79 
CB08-02A 



r4 .... ". 
~/ 



( 
'-, 

NOTES: 1. The return point address supplied by argument 1 
is placed in $B5; if this argument is omitted, 
$B5 is assumed to contain the correct return 
point address. 

Example: 

2. No return is made to the caller; control is 
returned to the address supplied in $B5. All 
registers except $Rl are preserved as they 
existed when the function was executed. In MOD I 
600, register $Rl will contain the value 0006 
which is the subfunction code of the macro call. 

In this example, the calling overlay uses the $OVRLS macro 
call to release its overlay area and return to the caller at 
the return point named OV2 RA. The calling overlay is 
assumed to be the overlay TOVLY2) that was loaded and 
executed as shown in the example for the overlay area 
reserve and execute overlay macro call. 

XLOC 
$OVRLS 

0V2 RA 
!<0"2 RA 

5-327 
7/79 
CB08-02A 

----------- ,-'"".". 



OVERLAY AREA RESERVE, 
AND EXECUTE OVERLAY 

OVERLAY AREA RESERVE, AND EXECUTE OVERLAY 

Macro Call Name: $OVRSV 

Function Code: 07/05 

Equivalent Command: None 

I Reserve an overlay area within the specified overlay area 
table (OAT), increment the user count for that overlay area, 
load the specified floatable overlay, and transfer control 
to the overlay at the specified (or default) entry point. 
(The overlay area must have been defined through a create 
overlay area table macro call.) 

FORMAT: 

[label] $OVRSV [location of overlay id], 
[location of entry point offset], 
[location of OAT address] 

ARGUMENT DESCRIPTION: 

location of overlay id 

Any address form valid for an address register; pro
vides the overlay id of the overlay to be loaded and 
executed. (The overlay id is a binary value generated 
by the Linker.) 

location of entry point offset 

Any address form valid for an address register; pro
vides the offset (from the overlay load base) of the 
overlay entry point to which control is to be 
transferred. If this argument is omitted, control is 
transferred to the start address declared to the 
language processor or the Linker. 

5-328 CB08 

;f.~ 

,-j 

If-·" 
'l> 

----.------~--



( 

Example: 

1601 - Invalid overlay id 

160A - Insufficient memory 

1611 - Zero length overlay 

1612 - Overlay not a user segment 

1614 - Access violation: 

o Root of sharable bound unit 
o No access 

$R2 - Overlay id (on a successful return) 

$R6 - Overlay default start address offset (on a 
successful return) 

$B4 - Overlay base address (MOD 400 only) 

Overlay load address (MOD 600 only) 

In this example, the $OVLD macro call causes the overlay 
named DPOSIT (of the bound unit being executed) to be loaded 
but not executed. Upon return from the system, in MOD 400 
only, $B4 will contain the overlay base address or a null 
pointer value for floatable overlays. For nonfloatable 
overlays, $B4 is not applicable. $R6 will contain the off
set from its base address to its default start address. The 
overlay base address and the offset to the default start 
address will be saved in OVLY A and OVLY E, respectively. 
Thus, the overlay can be entered later at its default start 
address by an instruction sequence such as that shown in the 
middle of the example. When the overlay is no longer 
needed, it is unloaded by the $OVUN (overlay unload) macro 
call. 

5-337 
7/78 

CB08-02A 

• 



* 
* 
* 

* 

* 

LOAD THE DPOSIT OVERLAY 

XVAL 
$OVLD 

BNEZ 

DPOSIT 
=DPOSIT 

$RI, BAD LD CHECK FOR LOAD ERRORS 

* SAVE THE BASE ADDRESS AND ENTRY POINT OFFSET 

* 
STB $B4, OVLY A 
STR $R6, OVLY-E 

* * JUMP TO DPOSIT'S DEFAULT ENTRY POINT 
* 

* 

LDB 
LDR 
JMP 

$B4, OVLY A 
$RI, OVLY E 
$B4. $RI 

* UNLOAD THE OVERLAY 

* 
$OVUN =DPOSIT, !OVLY A 

OVLY A DC <$ 
OVLY-E DC 00 

5-338 CB08 



( 

( 

OVERLAY, UNLOAD 

Macro Call Name: $OVUN 

Function Code: 07/0C 

Equivalent Command: None 

Unload the specified overlay of the bound unit that contains 
the procedure being executed by the issuing task. 

FORMAT: 

[label] $OVUN [location of overlay id], 
[location of overlay base address] (MOD 400 only), 
[location of return point address] 

ARGUMENT DESCRIPTION: 

location of overlay id 

Any address form valid for an data register; provides 
the overlay id of the overlay to be unloaded. (The 
overlay id is a binary value generated by the Linker.) 

location of overlay base address (MOD 400 only) 

Any address form valid for an address register; pro
vides the base address of the overlay to be unloaded. 

location of return point address 

Any address form valid for an address register; pro
vides the address of the return point to which control 
will be returned after the macro call is executed. If 
this argument is omitted, the address of the first 
word following the generated monitor call sequence is 
assumed to be the return point address. 

FUNCTION DESCRIPTION: 

This call causes 
overlay must not 
the bound uni t. 
the overlay. 

the named overlay to be unloaded. The 
share a segment with any other overlay of 
You must have the proper access rights to 

7/79 
5-347 CB08-02A 



I 

NOTES: 1. The overlay id supplied by argument I is placed 
in $R2; if this argument is omitted, $R2 is 
assumed to contain the overlay ide 

2. In MOD 400, the overlay base address supplied by 
argument 2 is placed in $B4; if this argument is 
omitted, $B4 is assumed to contain the base 
address. 

3. The return point address supplied by argument 3 
is placed in $B5; if this argument is omitted, 
the return po int address is assumed to be the 
address of the first word following the 
generated monitor call sequence. 

4a. In MOD 400, the overlay being updated must be 
floatable, and the memory it occupies must have 
been obtained by a get memory call, either 
directly by the user or indirectly by either the 
overlay load or overlay execute macro call. If 
that memory was obtained directly by the user, 
then the address of the first word of the memory 
block must have been specified as the base 
address of the overlay when it was loaded. 

4b. In MOD 600, the overlay being unloaded must not 
share a segment with any other overlay of the 
bound unit. The overlay must start at location 
o of the segment and must occupy some part of 
the last 256 words of the segment. A check is 
made for flagrant misuses, however, not all pos
sible errors are detected. 

5. On return, SRI contains one of the following 
status codes: 

0000 - No error 

0602 - Insufficient system memory 

0603 - Illegal block memory address 

0616 - Overlay not in a segment (refer to 
Note 4b) 

0817 - Memory access violation 

o System segment 
o No access rights 
o Root of sharable bound unit 

5-348 
7/79 
CB08-02A 

- ----~--------------



I , 

When the $RDSW macro call is executed, $R2 contains the cur
rent value of the external switch word. Bit 11 (bit-test 
indicator) of the I-register provides an indication of the 
setting of the switches, as follows: 

o If bit 11 is 0, none of the switches read was on. 
o If bit 11 is 1, at least one of the switches read was on. 

NOTES: 1. The bits corresponding to the external switches 
in the arguments are set on in $R2; if no argu
ments are supplied, $R2 is assumed to contain 
the mask to be used. If ALL is specified for 
any argument, all bits are set on in $R2. 

Example: 

2. On return, $R2 and the I-register contain the 
following information: 

$R2 - Current value of external switch word 

I-register (Bit 11) - Inclusive OR of switches 
read: 

o - No switch read was on 
1 - At least one switch read was on 

In this example, the $RDSW macro call is used to read the 
specified switches in the external switch word of the task 
group in which the issuing task is executing. The contents 
of $R2 (the mask word) are to be 2F4A so that switches 2, 4, 
5, 6, 7, 9, C, and E will be read, inclusive ORed, and 
stored in the central processor's bit indicator. To 
illustrate: 

Word: 2 F 4 A 

Bits: 0123 4567 89AB CDEF 
0010 1111 0100 1010 

Switches: 2 4567 9 C E 

The BBT instruction is used to transfer control to the rou
tine DO IT if one or more of the switches is turned on. 

RDSW A $RDSW 
BBT 

2,4,5,6,7,9,C,E 
DO IT 

5-359 CB08 



READ RECORD 

READ RECORD 

Macro Call Name: $RDREC 

• Function Code: 11/10 (next), 11/11 (key), 11/19 (duplicate), 
11/12 (position equal), 11/13 (position greater 
than), 11/14 (pos i t ion grea ter than or equal), 
11/15 (position forward), 11/16 (position 
backward) 

I 

Equivalent Command: None 

Retrieves one logical record from a file to your record area 
or merely positions the read pointer to a desired record. 
Whether to retrieve or position is specified by the second 
(i.e., mode) argument. 

FORMAT: 

[label] $RDREC 

ARGUMENT DESCRIPTION: 

fib address 

,NEXT 
,KEY 
,DUP 
, POSEQ 

[fib address] ,POSGR 
, POSGREQ 
,POSFWD 
, POSBWD 

Any address form valid for an address register; pro
vides the location of the file information block 
(FIB) • 

5-360 
7/79 
CB08-02A 



( 

( 

( 

NEXT 
N~ 

KEY 

(For all files.) This mode argument indicates that 
the record pointed to by the read pointer is to be 
read next. The read pointer is set to the next 
logical record in the file after the read is complete. 
Only active records are read (i.e., deleted records 
are skipped unless bit 11 in the program view FIB 
entry is set to 1). This is the default for this 
macro call. You must code the following FIB entries: 

logical file number 

program view (record area alignment) 

user record pointer 

input record length 

After the record is transferred to main memory, the 
system updates the following FIB entries: 

output record length 

output record address 

(Serial sequence number if device file; BSN if 
tape file; relative key for relative files and 
simple key for other disk files). 

This mode is referred to as read next. 

(For disk files accessed by key, only.) This mode 
argument indicates that the record identified by the 
key value pointed to by the FIB is to be read. The 
read pointer is set to the next logical record in the 
file after the read is complete. Only active records 
are read unless bit 11 .in the program view FIB entry 
is set to 1. You must code the following FIB entries: 

logical file number 

program view (record and key area alignment) 

user-record pointer 

input record length 

5-361 CBDS 

I 



DUP 

POSEQ 
PEQ 

POSGR 
PGR 

input key po inter 

input key format 

input key length 

After the record is transferred to main memory, the 
system updates the following FIB entries: 

output record length 

output record address 

(Simple or relative key.) 

This mode is referred to as read with key. 

(for calc (random) files) Reads a record whose calc 
key is the same as the last record read. The calc key 
is pointed to by the FIB input key pointer field. 

(For disk files accessed by key, only.) This mode 
argument positions the read pointer to the first logi
cal record in the file whose key is equal to the one 
specified in the FIB. It is not necessary for the 
record pointed to to be active. The record can be 
read via a read next macro call (see above). You must 
code the following FIB entries: 

logical file number 
program view 
input key pointer 
input key format 
input key length 

This mode is referred to as read position equal. 

(For disk files accessed by key, only.) This mode 
argument positions the read and pointer to the first 
logical record in the file whose key is greater than 
the one specified in the FIB. It is not necessary for 
the record pointed to to be active. The record can be 
read via a read next macro call (see above). The same 
FIB entries as for POSEQ, above, must be coded. This 
mode is referred to as read position greater than. 

7/79 
5-362 CB08-02A 

/-"'" 
( . 

. ,----/ 

----------- - - ----~~- --~~-



( 
{POSGREQ} 

PGE 

(For disk files accessed by key, only.) This mode 
argument positions the read pointer to the first logi
cal record in the file whose key is greater than or 
equal to the one specified in the FIB. It is not nec
essary for the record pointed to to be active. The 
record can be read via a read next macro call (see 
above). The same FIB entries as for POSEQ, above, 
must be coded. This mode is referred to as read posi
tion greater than or equal. 

{ POSFWD} 
PFD 

(For tape-resident, disk sequential, and relative I 
files only.) This mode argument moves the read 
pointer forward the number of record positions speci
fied by the key value identified in the FIB (but not 
beyond the end-of-file). It is not necessary for the 
record pointed to to be active. The record can be 
read via a read next macro call (see above). The same 
FIB entries as for POSEQ, above, must be coded. This 
mode is referred to as read position forward. 

{ POSBWD} 
PBD 

(For tape-resident, disk sequential, and relative I 
files only). This mode argument is the same as for 
POSFWD (above) except that the pointer is moved back
wards the number of record positions specified by the 
key value in the FIB (but not before the first 
record). This mode is referred to as read position 
backward. 

FUNCTION DESCRIPTION: 

Before this macro call can be executed, the LFN must have 
been opened (see the open file macro call) with a program 
view word that allows access via data management (bit 0 is 
0) and allows read operations (bit 1 is 1). The read 
pointer is a logical pointer to the next record to be read; 
it is maintained separately from the write pointer. There 
is one read pointer per file per user. At open-file time 
the pointer is set to the first record in the file, and is 
modified by each read record operation. 

The file information block can be generated by a $FIB macro 
call. Displacement tags for the FIB can be defined by the 
$FIBDM macro call. 

5-363 CB08 

I 



I 

The following illustrate the effects of read actions accord-
ing to file organizations. I"~'\ 

File Organizations 

Sequential 

Relative 

Indexed 

Calc (random) 

Fixed Relative 

Device Files 

Tape Files 

Effects of Read Actions 

Read next causes sequential read. Read 
with key causes direct read} A simple 
key is used. 

Read next causes a sequential read. Read 
with key causes a direct read. A 
relative or simple key can be used. 

Read next causes a sequential read. The 
records returned are in ascending sequence 
according to primary key value. (This is 
not necessarily in the same time-dependent 
or physical sequence that the records were 
loaded into the file.) Read with key 
causes a direct read. A primary key or 
simple key can be used. 

Read next causes a sequential read. The 
records are returned in physical sequence. 
The file can be read directly with a calc 
key or a simple key. 

Read next causes a sequential read. Read 
with key causes a direct read. A relative 
key is used. 

Read next causes a sequential read, pro
vided the device can be read and was 
defined as a readable device. 

Read next causes a sequential read. The 
file can also be positioned n records 
forward or backward. 

NOTES: 1. If the first argument is coded, the address of 
the FIB is loaded into $B4; if the argument is 
omitted, $B4 is assumed to contain the address 
of the FIB. 

2. On return, $Rl contains one of the following 
status codes: 

I A read, with any position mode, positions the read pointer to 
the desired record, so that a subsequent READ-NEXT will retrieve 
that record. 

5-364 
7/79 
CB08-02A 



( 

Example: 

0000 - No error 
Olxx - Physical I/O error 
0203 - Illegal function 
0205 - Illegal argument 
0206 - Unknown or illegal LFN 
0207 - LFN not open 
020A - Address out of file 
020E - Reco rd not fo und 
0217 - Access violation 
0219 - No current record pointer 
021A - Record length error 
021E - Key length or location error 
021F - End of file 
022A - Record lock overflow or not defined 
022B - Requested record is locked or causes 

deadlock 
022F - Unknown or illegal record type 
0233 - Tape file sequence number error 
0236 - Tape BSN or trailer label block count 

error 
0237 - Invalid record or control interval format 

This example assumes that the address of the FIB (i.e., 
MYFIB) was loaded in $B4. In addition, the required entries 
in the FIB are those defined in "Assumptions for File System 
Examples" in Section 3. Also, it is assumed that the file 
was reserved (see "Get File"), and that the open file macro 
call was coded with the LFN and program-view entries as 
defined in the example for the open file macro call. 

The macro call is then specified as follows: 

$RDREC ,NEXT 

After the record is read, the system updates the following 
entries, which you can interrogate using the FIB offset 
tags: 

F ORL (Output record length) 
F ORA (Output record address) 

5-365 
7/79 
CB08-02A 

I 



Pages 5-366 through 5-371 have been deleted 

5-366 
7/79 
CB08-02A 

{' 

.. 4.... / 



t 
'" 

( 



RELEASE SEMAPHORE 

RELEASE SEMAPHORE 

Macro Call Name: $RLSM 

Function Code: 06/03 

Equivalent Command: None 

Release a resource controlled by the specified semaphore and 
activate the first waiting task enqueued on that semaphore 
if the value of the semaphore is negative (both actions are 
known collectively as a V-op) • 

FORMAT: 

[label] $RLSM [location of semaphore identifier] 

ARGUMENT DESCRIPTION: 

location of semaphore identifier 

Any address form valid for a data register; provides 
the two ASCII characters that identify the semaphore 
controlling the resource to be released. 

FUNCTION DESCRIPTION: 

A task issues a release semaphore macro call when it has 
finished using the resource controlled by the semaphore 
indicated in the call. The semaphore must have been pre
viously defined by a define semaphore macro call. 

When the release function is executed, the counter whose 
initial value was set in the define semaphore macro call is 
incremented. 

If tasks are waiting for the resource to become available, 
the first task queued on this semaphore is awakened. 

NOTES: 1. The semaphore identifier supplied by argument 1 
is placed in $R6; if this argument is omitted, 
$RI is assumed to contain the correct 
identifier. ,(c~ 

I;, , 
"-.j 

5-372 CB08 



( 

FUNCTION DESCRIPTION: 

This macro call removes the file reservation established for 
the specified file, provided it is not currently open {see 
"Open File"} in the task group in which you are executing. 
It does not dissociate the LFN from a pathname {see 
"Dissociate File"}. 

Also, if the file is a temporary file {see "Create File"}, 
this macro call has the same effect as the delete file 
macro call previously described. 

The file to be removed can be specified only by either an 
LFN or a pathname. When only an LFN is specified, the file 
must have been reserved previously with a get file or create 
file macro call or with an equivalent command. 

A remove file macro call does not remove a file that was 
reserved through the command GET; the command REMOVE must be 
used. 

Since the remove file macro call removes all information 
about the file from the system, subsequent get file macro 
calls may require that multiple directory levels be searched 
to again locate the file. Thus, the remove file macro call 
should be used carefully and only after all references to 
the file are complete. 

NOTES: 1. If the argument is coded, the address of the 
parameter structure is loaded into $B4; if the 
argument is omitted, $B4 is assumed to contain 
the address of the parameter structure. 

2. On return, SRl contains one of the following 
status codes: 

0000 - No error 

Olxx - Physical I/O error 

0201 - Illegal pathnarne 

0202 - Pathnarne not specified 

0205 - I lleg al argument 

0206 - Unknown or illegal LFN 

0208 - LFN or file currently open in same task 
group 

0209 - Named file or directory not found 

5-377 
7/79 
CB08-02A 

I 



Example: 

0210 - LFN conflict 

020C - Volume not found 

0222 - Pathname cannot be expanded, no working 
directory 

0225 - Not enough system memory for buffers or 
structures 

0226 - Not enough user memory for buffers or 
structures 

0229 - File not known to task group 

In the following example, the macro call specifies an argu
ment structure built by a previous get file macro call; this 
technique, as opposed to building a separate argument struc
ture, results in using fewer bytes of memory while achieving 
the cancellation. The macro call is coded as shown in two 
examples: 

Example 1: WRTFIL 

Example 2: WRTFIL 

FILE A 

DC 
DC 
$RMFIL 

DC 
DC 
RESV 
DC 
SRMFIL 

5 
2,0 
!WRTFIL 

Z '2020 ' 
<FILE A 
2-$AF-

LNF = 5 

NO LFN 
PATHNAME POINTER 

''''VOL03>SUB>FILE At::.' 
!WRTFIL 

5-37S· 
7/79 
CBOS-02A 

-_._-------- ... ----.. ~~ 

• 



RENAME FILE/RENAME DIRECTORY 

RENAME FILE/RENAME DIRECTORY 

Macro Call Name: $RNFIL 

Function Code: 10/40 

Equivalent Command: Rename (RENAME) 

Change the name of a disk file or directory to the name 
specified by the macro call. You identify the disk file or 
directory to be renamed by supplying either a logical file 
number (LFN) or a pathname. This function is usually done 
outside program execution. 

FORMAT: 

[label] $RNFIL [argument structure address] 

ARGUMENT DESCRIPTION: 

argument structure address 

Any address form valid for an address register; pro
vides the location of the argument structure defined 
below. The argument structure must contain the fol
lowing entries in the order shown. 

logical file number 

A 2-byte logical file number (LFN) used to refer 
to the file; must be a binary number in the 
range 0 through 255, or ASCII blanks (2020), 
which indicate that an LFN is not specified. 

pathname pointer 

A 4-byte address, which may be any address form 
valid for an address register; points to a path
name (which must end with an A~CII space char
acter) that identifies the file or directory 
whose name is to be changed. Binary zeros in 
this entry indicate that a pathname is not 
specified. 

5-379 CB08 



I 

new name 
/-" 

A .1- to 12-byte name, speci fyi ng the new name of '''---/' 
the file or directory; must be a simple name 
(i.e., must not contain" "," ","", etc.). 

FUNCTION DESCRIPTION: 

This call changes the name of the specified file or direc
tory. However, the volume major directory cannot be renamed 
(any attempt to do so will cause a status code of 0228 to be 
returned in $Rl). To rename the volume major directory, use 
the Create Volume command (see the Commands manual) • 

The file can be renamed by spec i fyi ng (1) an LFN only or (2) 
a pathname only. If only an LFN is specified,the file must 
have been reserved (through a create file or get file macro 
call, or equivalent command) with that LFN. 

NOTES: 1. If the argument is coded, the address of the 
parameter structure is loaded into $B4; if the 
argument is omitted, $B4 is assumed to contain 
the address of the parameter structure. 

2. On return, $Rl contains one of the following 
status codes: 

0000 - No error 

01xx - Physical I/O error 

0201 - Illegal pathname 

0202 - Pathname not specified 

0205 - Illegal argument 

0206 - Unknown or illegal LFN 

0209 - Named file or directory not found 

020C - Vol ume not fo und 

0212 - Attempted creation of existing file or 
directory 

0213 - Cannot provide requested file concurrency 

0222 - Pathname cannot be expanded, no working 
directory 

0225 - Not enough system memory for buffers or 
structures 

5-380 

-----~-~----~~~~ -~ ~. -~--

7/79 
CB08-02A 

,4''' 

~~~ 



I 
" 

Example: 

In this example, the $RQGRP macro call causes a request to 
execute the commands contained in the file 
AVI124>UDD>TEST>JONES>ASM TST to be queued against the Q2 
task group. (It is assumed that task group Q2 has already 
been created with the command processor as its lead task. 
See the create group macro call for information on creating 
task groups.) The ASM TST file will also be used as the 
user-in file. The file AVI124>UDD>TEST>JONES>L>ASM_TST.AO 
will be used as both the user-out file and the error-out 
file. The user id and the initial working directory will be 
JONES.TEST.M and AVl124>UDD>TEST>JONES, respectively. The 
arguments -XREF and -PRINT will be passed to the command 
processor (group Q2's lead task) to specialize the control 
file ASM TST (&1 and &2, in the control file, will be 
repl aced-by -XREF and -PRINT, respect i vel y). (Se e thi s sec
tion for a description of the $PRBLK macro used in this 
example. ) 

$RQGRP 

INFO $PRBLK 

ARGS $PRBLK 

='Q2',!ARGS,!INFO 

,Al124>UDD>TEST>JONES>ASM TST; 
AVl124>UDD>TEST>JONES>L>ASM TST_AO; 
AVI124>UDD>TEST>JONES 
-XREF,-PRINT 

5-393 CBD8 



REQUEST I/O 

REQUEST I/O 

Macro Call Name: $RQIO 

Function Code: 02/00 

Equivalent Command: None 

Request an I/O transfer in which the device involved in the 
transfer and the parameters defining the transfer are 
identified in the I/O request block (IORB) referred to in 
the call. 

FORMAT: 

[label] $RQIO [location of IORB address] 

ARGUMENT DESCRIPTION: 

location of IORB address 

Any address form valid for an address register; pro
vides the address of the IORB containing the device 
designation and all information about the nature of 
the I/O transfer. The IORB can be hand-coded or 
constructed through the $IORBD or $IORB macro calls. 

FUNCTION DESCRIPTION: 

This call requests an I/O transfer using a defining IORB. 

You should initially reserve the device named in the IORB. 
Device reservation can be accomplished by the get file 
($GTFIL) macro call using device-level access (i.e., the 
pathname is in the form SPD dev_name [volid]). 

The IORB requires a logical resource number (LRN) to refer 
to the device. The LRN can be obtained by issuing a get 
file information ($GIFIL) macro call. The LRN returned by 
the $GIFIL call will be the LRN assigned to the device at 
system building time. 

5-394 CBoa 

------------~- ---------- --~-------------



( 

SEMAPHORE REQUEST BLOCK 

SEMAPHORE REQUEST BLOCK 

Macro Call Name: $SRB 

Function Code: None 

Equivalent Command: None 

Generate a semaphore request block whose length is four 
words in SAF mode and five words in LAF mode. 

FORMAT: 

[label] $SRB rsemaphore identifier], 
[issuing task suspension option] , 

or 

[termination action] 

ARGUMENT DESCRIPTION: 

semaphore identifier 

A 2-character (ASCII) identifier that must have been 
defined by the task issuing the semaphore request. If 
this argument is omitted, the semaphore identifier is 
set to an initial value of zero. 

issuing task suspension option 

One of the following values is specified to indicate 
whether the requesting task is to be suspended until 
the resource associated with the semaphore becomes 
available: 

WAIT 

NWAIT 

Suspend the issuing task until the resource 
becomes available (set w-bit to 0) 

Do not suspend the issuing task (set w-bit to 1) 

5-423 CB08 



I 

If this argument is omitted, the value NWAIT is 
assumed. 

If WAIT is specified, argument 3 must be omitted. 

termination action 

One of the following values is specified to indicate 
the action to be taken when the resource becomes 
available to the issuing task: 

SM=aa 

Do not suspend the issuing task; release (V-op) 
the semaphore identified by aa (two ASCII char
acters) when requested task is completed. 

RB=label 

Do not suspend the issuing task; issue a request 
for the request block identified by label, when 
requested task is completed. 

If this argument is omitted (or argument 2 is WAIT), 
the generated SRB contains no termination option. 

FUNCTION DESCRIPTION: 

The semaphore request block (SRB) is used to request 
asynchronously the reservation of a resource controlled by 
the specified semaphore. The SRB contains a semaphore id 
which identifies the (previously defined) semaphore being 
requested. 

NOTE: This macro call cannot be used in programs written in 
SAF/LAF independent code (SLIC). See the Assembly 
Language Reference manual for more information about 
SAF/LAF independent code. 

Example: 

In this example, the $SRB macro call generates a semaphore 
request block with identifier AA. The w-bit is set to zero 
to indicate the requesting task is to be suspended until the 
resource becomes available. No suspension action is given. 

GTRAA $SRB M,WAIT 

5-424 CB08 

rC-\ 

"j 



(-

SEMAPHORE REQUEST BLOCK 
OFFSETS 

~PHORE REQUEST BLOCK OFFSETS 

Mac ro Call Name: $SRB D 

Counterpart: $SRB (see "Semaphore Request Block") 

Generated Label Prefixes: 

SRB label 
S RRB/S SEM 
offset 0 
S CTI 
S-CT2 
S-ADR 

See Appendix A for the format of the semaphore request 
block. 

NOTE: This macro call cannot be used in programs written in 
SAF/LAF independent code (SLIC). See the Assembly 
Language Reference manual for more information about 
SAF/LAF independent code. 

5-425 
7/79 
CB08-02A 

I 



SET DIAL 

SET DIAL 

Macro Call Name: $SDL 

Function Code: lB/OO 

Equivalent Command: Set Autodial Telephone Number (SDL) 

Insert the specified telephone number into the first entry 
in the Auto Call Unit telephone number list for the speci
fied line. This telephone number will be used first when 
the Auto Call Unit facility attempts to establish a connec
tion on the (switched circuit) line. 

FORMAT 1 : 

[label] $SDL [location of channel number] , 
[location of address of telephone number] , 
CHANNEL 

FORMAT 2: 

[label] $SDL [location of address of device pathname], 
[location of address of telephone number], 
[PATHNAME] 

ARGUMENT DESCRIPTION: 

location of channel number 

Any address form valid for a data register; provides 
the four hexadecimal digits that define the 10-bit 
channel number of the data line. The channel number 
must be stored left-justified with low-order zero 
filling. (Applicable to format I only.) 

5-426 CB08 

~~~~~~- ------- -------

c 



~-------------~- ----- ----- -- -----------

location of address of telephone number 

Any address form valid for an address register; pro
vides the address of the telephone number to be asso
ciated with the data line. The telephone number must 
be stored as an aligned, nonvarying, character string 
containing at least one trailing space and no embedded 
spaces. The telephone number can contain from 5 
through 16 ASCII characters chosen from the set 0, 1, 
2, 3, 4, 5,' 6, 7, 8, 9, -, * (Applicable to formats 
1 and 2.) 

{CHANNEL} 
CHAN 

Incicates that format I of the macro call is being 
used (channel number of line is provided). 

location of address of device pathname 

Any address form valid for an address register. For 
example, the device pathname could be >SPD>TTYli see 
"Get File." The pathname must be stored as an 
aligned, nonvarying, character string containing at 
least one trailing space and no embedded spaces. 
(Applicable to format 2 only.) 

{ PATHNAME} 
PATH 

Indicates that format 2 of the macro call is being 
used (pathname of line is provided). 

FUNCTION DESCRIPTION: 

During system building, you can specify that the communica
tions Auto Call Unit be applied to one or more communica
tions lines. For each line that is to employ autodialing, 
you construct a list of telephone numbers. The first entry 
in this list is left empty by the system. The other entries 
are filled in according to your specifications. 

The $SDL macro call allows you to dynamically insert a 
telephone number into the first entry in the list for a 
particular line. When the Auto Call Unit handler is 
invoked, this telephone number will be dialed first in the 
attempt to establish a connection with the terminal(s) on 
the line. If no successful connection is established, the 
next entry (telephone number) in the list is dialed, and so 
on until a successful connection is made or every number in 
the list has been dialed. (Each telephone number is dialed 
three times at 40-second intervals.) 

5-427 CB08 



NOTES: 1. For format 1, the channel number supp1i~d by 
argument 1 is placed in $R6; if this argument is 
omitted, $R6is assumed to contain the channel 
number. 

Example: 

2. The format 2, $R6 is cleared to zero and the 
address of the device pathname supplied by argu
ment1 is placed in, $B2. If argument 1 is 
omitted, $B2 is assumed to contain the address 
of the device pathname. 

3. For formats 1 and 2, the address of the tele
phone number supplied by argument 2 is placed in 
$B4; if this argument is omitted, $B4 is assumed 
to contain the address of the telephone number. 

4. For format 1, CHANNEL (or CHAN) must be coded. 

5. For format 2, all three arguments can be 
omitted. If this is done, $R6 is assumed to 
contain zeros, $B2 is assumed to contain the 
address of the device pathname, and $B4 is 
assumed to contain the address of the telephone 
number. 

6. On return, $Rl contains one of the following 
status codes: 

0000 - No error 

0201 - Illegal pathname 

0701 - Channel not configured 

0702 - Auto Call Unit control unit not config
ured on this channel 

0703 - ACU in progress 

1704 - Illegal argument length 

170F - Invalid digit in telephone number 

In this example, the terminal whose pathname is >SPD>TTYI is 
to be automatically dialed using the number 1-617-555-4444. 

5-428 CB08 

---- -~ -- --~-------- --------------- ~-------- -- -- ---

/(\ 
~j 



-------------- -- ------

DIALAA $SDL lPTNM,lNUM_12,PATH 

( 
PTNM TEXT '>SPD>TTY111' 
NUM 12 TEXT '1617555444411' 

5-429 CBca 



SET EXTERNAL SWITCHES 

SET EXTERNAL SWITCHES 

Macro Call Name: $SETSW 

Function Code: OB/Ol 

Equivalent Command: Modify External Switches (MSW) 

Set the specified external switches in the task group's 
external switch word to on; return the inclusive logical OR 
of the previous settings. 

FORMAT: 

[label] $SETSW external switch name, 
[external switch name], 

[external switch name] 

ARGUMENT DESCRIPTION: 

external switch name ••• external switch name 

A single hexadecimal digit (0 through F) specifying 
the external switch in the task group's external 
switch word. A maximum of 16 external switches (0 
through F) can be specified. If no arguments are sup
plied, $R2 is assumed to contain a mask word specify
ing the switches to be set on. If ALL is specified, 
all external switches are set on. 

FUNCTION DESCRIPTION: 

This call provides a mask by which switches can be set in 
the external switch word of the issuing task's task group. 
It also provides an indication of the previous settings of 
these switches. 

5-430 CB08 

.rf !C 



( 

( 

location of start address 

Any address form valid for an address register; pro
vides the location of the task start address to be 
used when the spawned task is to execute the same 
bound unit as the issuing task. (Function code 

.OC/06.) 

location of root entry name address 

Any address form valid for an address register; pro
vides the location of the address of the pathname of 
the bound unit root segment to be loaded for execution 
by the newly created task. The bound unit pathname 
can have an optional suffix in the form ?entry, where 
entry is the symbolic start address within the root 
segment. If no suffix is given, the default start 
add ress (establ i shed at Link time) is used. (Funct ion 
code OC/05.) 

FUNCTION DESCRIPTION: 

This call combines the functions of the create task, request 
task, and delete task macro calls in that it constructs the 
requisite structures for the execution of the task, acti
vates the task, and, when the task becomes inactive, deletes 
the task. When the spawned task is deleted, its associated 
data structures are removed and the memory they occupied is 
returned to the task group's memory pool. 

A spawned task is not assigned a logical resource number 
(LRN); therefore, the spawned task is local to the spawning 
task (i.e., is visible only to the spawning task). A 
spawned task cannot be requested or referred to by any other 
task; nor can its memory space or code be shared. However, 
a spawned task can share the memory space and code of 
another task that was assigned an LRN by a previously issued 
create task macro call. This sharing is indicated by the 
presence of argument 3. 

Either the location of the start address or the location of 
the root entry name address, but not both, can be specified. 

Multiple task requests can be made to execute concurrently 
within a given task's bound unit; this is accomplished by 
the issuing of multiple spawn task macro calls. 

NOTES: 1. The address of the request block supplied by 
argument 1 is placed in $84; if this argument is 
omitted, $B4 is assumed to contain the address 
of the request block. 

5-445 
7/79 
CB08-02A 

* 



2. The relative priority level supplied by argument 
2 is placed in $R6; if this argument is omitted, 
$R6 is set to -1 to indicate that the priority 
level of the issuing task is to be used. 

3. Arguments 3 and 4 are mutually exclusive; if 
both are supplied, argument 3 is used and a 
diagnostic is issued~ Information derived from 
either argument is placed in $B2; if these argu
ments are omitted, $B2 is assumed to contain the 
start address within the bound unit. 

4. On return, $Rl contains one of the following 
status codes: 

0000 - Task successfully spawned (if no wait 
condition was indicated in the request 
bloc k) 

OOOO-FFFF - Posted completion status of spawned 
task (if wait condition specified) 

01xx - Media error 

0209 - Bound unit not found 

0602 - Insufficient memory 

0801 - Request block in use (T-bit on) 

0817 - Memory access violation on request block 

0827 - Bound unit is not a fixed relative file 

0820 - Group available memory quota exceeded 

OE02 - No memory available for nonswappable task 

1604 - Unresolved symbolic start address 

160A - Insufficient memory 

1613 - Invalid bound unit pathname 

1614 - Access violation (root segment not user 
segment) 

1615 - Invalid bound unit file (header incorrect 
or number of overlays plus the root is 
equal to zero). 

5-446 CB08 

./ 

(f'" \,,--_/ 

-- ------ ---- --------------------------



( 

Example: 

On return, $Rl, $R2, $R6, and $R7 contain the 
following information: 

SRI - Return status; one of the following: 

0000 - No error 
0606 - Illegal or undefined memory pool id 

$R2 - If $Rl is 0000, percentage of the memory 
pool's total memory that is currently 
available. The percentage is returned as 
an integer with the fractional value 
truncated. 

$R6, $R7 - If $Rl is 0000, the number of words 
of memory currently available in the 
memory pool. 

In this example, the $STMP macro call is used to determine 
the amount of memory available in the memory pool of the 
issuing task's task group. The number of words of memory 
available in the pool is returned in $R6 and $R7. A double
word 2500 is subtracted from the double-word size, and the 
high-order word of the result is checked if the result is 
still positive. 

POOLCT $STMP 
SUB 
BCT 
ADV 

$A BGEZ 

SOMMEM $GMEM 

5-449 

$R7 = 2500 
+SA 

SR6 -1 
$R 6, SOMMEM 

=2500 

7/79 
CB08-02A 

I 



I 

I 

SUSPEND GROUP 

SUSPEND GROUP 

Macro Call Name: $SUSPG 

Function Code: OD/08 

Equivalent Command: Suspend Group (SSPG) 

Suspend the specified task group. 

FORMAT: 

[label] $SUSPG rlocation of group id] 

ARGUMENT DESCRIPTION: 

location of group id 

Any address form valid for a data register; provides 
the group id of the task group to be suspended. This 
task group must have been previously defined by a 
create group macro call. 

FUNCTION DESCRIPTION: 

In MOD 400, this call causes the system to suspend the 
specified task group. The task group is marked as suspended 
when: 

o All tasks of the group have exited from critical areas of 
the Monitor. 

o All active task control blocks have been removed from 
their level queue. 

o All external requests (system driver, clock, memory, 
semaphore) have been satisfied. 

In MOD 600, this call suspends only the group request queue; 
a request that is active is allowed to go to completion. 

A suspended task group can be activated through the $ACTVG 
macro call. 

5-450 CB08 

./ 



* 
( * GET THE CURRENT DATE/TIME VALUE. 

* 
$GDTM 

* 
* CONVERT IT TO AN EXTERNAL FORMAT DATE. 

* 
$EXTDT , ! TODAY, =10 

* 
* CONVERT IT TO AN EXTERNAL FORMAT HOUR OF DAY. 

* 
$EXTIM ,! HOUR, =2 

* 
* NOW CONVERT THE EXTERNAL FORMAT DATE/TIME 

* BACK TO THE INTERNAL FORMAT. 

* 
$INDTM ! TODA Y, ,=15 

* 
* IF ITS BEFORE 0800 HOURS THE INTERNAL FORMAT 

* DATE/TIME IS CORRECT ELSE ITS ONE DAY TOO SMALL. 

* 
LDR $Rl,HOUR 
CMR $Rl, =' 08 ' 
BL >SUSPND 
AID A DAY 
CAD =SR2 

( SUSPND $SUSPN TIME 

TODAY TEXT 'YYYY/MM/DD 0800' 
HOUR TEXT 'HH' 
A DAY DC 86400000B(31,0) 

5-459 CB08 



SWAP FILE 

SWAP FILE 

Macro Call Name: $SWFIL 

Function Code: lO/5A 

Equivalent Command: 

Causes a simulated end-of-tape signal (output mode) or end
of-volume trailer (input mode). A continuation reel is then 
selected. If it is not online, a mount request occurs. 

FORMAT: 

[label] $SWFIL [fib] 

ARGUMENT DESCRIPTION: 

fib 

Any address form valid for an address register; pro
vides the location of the 16 word file information 
block used in data and stroage management calls. 

FUNCTION DESCRIPTION: 

This call enables the user to finish a magnetic tape file as 
though an end-of-tape signal (output mode) or an end-of
volume trailer (input mode) had been encountered. If a 
continuation reel is online, it is selected; otherwise a 
mount request occurs. 

NOTES: 1. The structure used for data management calls and 
storage management calls can also be used for 
the swap-file call. 

2. This function is only meaningful for labeled 
tape files; it is ignored for other files. 

5-459.1 
7/79 
CB08-02A 



(-
3. The file must be opened for either data manage

ment or storage management. If the file is 
opened in output mode for data management, the 
following occurs: 

o End-of-volume trailer records (EOVI/EOV2) are 
written followed by two tape marks at the 
current tape position. 

If the tape files are opened in input mode for 
data management access, the following occurs: 

o The tape is rewound and unloaded and a normal 
reel swap is required. The reel with the 
next subsequent file section is expected. 

o Since there is no way of knowing that a file 
section is the last one in a set until the 
trailer records are read, it is the user's 
responsibility to identify the last file sec
tion and issue a close-file call rather than 
a swap-file call. 

o Use of the swap-file call renders the FIB 
out-record-address returned on subsequent 
read operations meaningless. This field is 
set to the current relative record number for 
tape files. 

If the tape files are opened for storage manage
ment access, the following occurs: 

o The tape is rewound and cycled down. 

o The user is responsible for writing any 
trailer records and tape marks for output 
files reserved for device (volume) level 
access. 

4. On return, $RI contains the following status 
codes: 

OIXX - Media error 

0205 - Illegal argument 

0206 - Unknown or illegal logical file number 
(LFN) 

0207 - LFN or file not open 

5-459.2 
7/79 
CB08-02A 



SYSTEM ATTRIBUTE INFORMATION, GET 

SYSTEM ATTRIBUTE INFORMATION, GET (MOD 600 ONLY) 

Macro Call Name: $SYSAT 

Function Code: 14/11 

Equivalent Command: 

Provides the user with system attribute information about 
the software/hardware execution environment. 

FORMAT: 

[label] $SYSAT [location of marketing identifier string] 

FUNCTION DESCRIPTION: 

This call provides the user with the operating system 
identity and software/hardware attribute information. 

NOTES: 1. The address of the receiving field for the 
marketing identifier supplied by argument 1 is 
placed in $B 4. $B 4 is assumed to conta in the 
address of the receiving field if argument 1 
contains: =$B4. If argument 1 is omitted, $R2 
is set to zero. If any argument is present in 
argument 1, $R2 is set to -1. 

2. On return, $Rl, $R2, $R6, and $R7 contain the 
following: 

$Rl - 0 

$R2 - Provides operating system identity as 
follows: 

o 2 for MOD 200 
o 4 for MOD 400 
o 6 for MOD 600 

7/79 
5-459.3 CB 08-02A 

,~--" 

!" .... J 

,{- '" 
i . 
'\,"; 



( $R6 - Provides hardware information as follows: 

o 3 for Model 3x 
o 4 for Model 4x and Model 5x 

$R7 - Indicates the presence/absence of either a 
SIP or CIP context. If $R7 (12, '13) 
contains: 

00 - No SIP context present; instructions 
not executable 

Xl 

IX 

If 

00 

Xl 

IX 

- SIP simulator present 

- SIP hardware present 

$R7 (13, 14) conta ins: 

- No CIP context present 

- CIP simulator present 

- CIP hardware present 

5-459.4 
7/79 
CB08-02A 



SYSTEM IDENTIFICATION 

SYSTEM IDENTIFICATION 

Macro Call Name: $SYSID 

Function Code: 14/04 

I Equivalent Command: (MOD 600 only) USER SYSID 

Returns the identification of the system under which this 
task is running to a receiving field. The format of the 
receiving field is one word containing the number of charac
ters in the system id, followed by 15 words containing the 
system id itself. 

FORMAT: 

[label] $SYSID [location of system id field address] 

ARGUMENT DESCRIPTION: 

location of system id field address 

Any address form valid for an address register; pro
vides the address of a 3D-character, aligned, varying 
receiving field into which the system will place the 
system identification •. 

FUNCTION DESCRIPTION: 

This call returns the system id to a field in the issuing 
task. The system id is in the form: 

GCOS6/MOD400-rrrr-mm/dd/hh/mm 

where rrrr is the system software release number and 
mm/dd/hh/mm are the date and time that the Monitor was 
linked. 

NOTES: 1. The address of the receiving system id field 
supplied by argument 1 is placed in $B4; if this 
argument is omitted, $B4 is assumed to contain 
the address of the field. 

5-460 CB08 

~--", 

,-,'./ 

;1'-" 
ilj 



( 
" 

$Rl - Return status; one of the following: 

0000 - No error 
0807 - No command input defined 
0817 - Memory access violation 

$B4 - Address of the receiving task group 

5-465 CBOS 



I 

TASK INFORMATION 

(MOD 600) 

TASK INFORMATION (MOD 600 ONLY) 

Macro Call Name: $TINFO 

Function Code: 14/09 

Equivalent Command: None 

Returns a specific item of control information about the 
issuing task, depending on the argument value. 

FORMAT: 

[label] $TINFO [information code] 

ARGUMENT DESCRIPTION: 

information code 

One of the following alphabetic character strings, or 
alternative numeric codes, specifying the item of 
information to be returned: 

Alphabetic Numeric 
String Code 

CIN a 

UIN 1 

DIB 2 

CLL 3 

LRN 4 

DB 5 

LOT 6 

PRV 7 

Resulting Item of Information 

Address of the task's command-in file 
control block (FCB) 

Address of the task's user-in FCB 

Address of task's command-in stream 
device interface module (DIM) inter
face block 

Maximum length of command input line 

Task's LRN 

Task's Debug indicator 

Ta sk' s lead task indicator 

Task's privileged task indicator 

5-466 

- -_._-- ~~- ---"-" ._---- --- --

CB08 

1'-''', 
\ 

\ .... ~,J 

.(-" 
'"._/ 



(--

4 , 

( 

Alphabetic Numeric 
Strin.9.- Code Resulting Item of Information 

STAD 8 Task's start address 

ISTA 9 Task's initial start address 

FUNCTION DESCRIPTION: 

The call returns the requested item of control information 
about the issuing task; one execution of the macro call 
returns one information item. The information, returned 
according to the information code specified in the argument, 
is placed in $84 or $R6. 

Information resulting from strings/codes CIN/O, UIN/l, and 
DI8/2 is placed in $84. Information from the remaining 
strings/codes is placed in $R6. For codes 5, 6, and 7 
(indicators), $R6 contains zero when these indicators are 
not set, and a nonzero value when the indicators are set. 

NOTES: 1. The string/code supplied by the argument is 
placed in $R2. When the argument is omitted, 
the system assumes that $R2 contains the 
appropriate string/code. 

2. 

Example: 

On return, $R 1, $R6, and $84 contain the 
following: 

$Rl 

$R6 

$84 

- 0000 - No error 

- Returned value for code 3 through 7 

- Returned address of the structure 
specified fo r codes a through 2. 

Returned with the start or initial start 
address for codes 8 and 9, respectively. 

The issuing task requests its LRN be returned. 

GT LRN $TINFO 

5-467 

4 

7/79 
CB08-02A 

I 

I 



I 

TASK REQUEST BLOCK 

TASK REQUEST BLOCK 

Macro Call Name: $TRB 

Function Code: None 

Equivalent Command: None 

Generate a task request block (TRB) whose length is 
variable. 

FORMAT: 

[label] $TRB [logical resource number], 

{ WAIT, } , 
NWAIT, [termination action] 

[task start address], 
[size of request block argument], 
[user argument 1], 
[user argument 2], 

[user argument n] 

ARGUMENT DESCRIPTION: 

logical resource number 

A value from 0 through 252 specifying the LRN for this 
task. If this argument is omitted, the task request 
block does not have an LRN. 

[ WAIT] , 
NWAIT 

One of the following values is specified to indicate 
whether the requesting task is to be suspended until 
the completion of the request: 

5-468 CB08 

;(- '" ,,/ 



( 

( 

FUNCTION DESCRIPTION: 

The task request block is used to communicate between tasks. 
It serves as the means by which arguments are passed between 
the requested and requesting tasks within a task group. 
When a previously created task is requested, the task 
request block contains the LRN (logical resource number) 
that identifies the requested task. When a task is spawned, 
the TRB does not require an LRN. 

The task request block may contain the start address to be 
used when the requested task is turned on to service the 
request. 

The task request block may contain a variable size portion 
that contains optional information to be passed to the 
requested task, and has a fixed size portion that contains 
standard control information. 

When a task is activated, its $B4 register points to offset 
o of the request block and its $B7 register points to a 
parameter list (if one is expected by the task). The proper 
$B7 address is established by the $TRB macro call when it 
has a parameter list pointer, or by placing that pointer at 
the $TRBD macro call's T PRM offset. 

Any task specific arguments are permitted (as if the TRB had 
been constructed by the command processor). 

NOTES: 1. This macro call cannot be used in programs 

Example: 

written in SAF/LAF independent code (SLIC). See I 
the Assembly Language Reference manual for more 
information about SAF/LAF. 

2. In MOD 600, it is the user's responsibility to 
create task request blocks in an address space 
visible to both the requesting task and the 
requested task. Task request blocks created via 
the $GETMEM macro call are visible to all tasks 
in a task group. 

In this example, the $TRB macro call is used to create a 
task request block that has a 10-word argument (in add i tion 
to space added) to accommodate the parameters passed to the 
task in control arguments when the task is requested. The 
generated request block will be 18 words long, have an LRN 
of 30, and, when its task terminates, will release semaphore 
M. 

ATRBA $TRB 30"SM=AA,,5,XR643MX77B 

5-471 
7 /79 
CB08-02A 



I 

TASK REQUEST BLOCK 

OFFSETS 

TASK REQUEST BLOCK OFFSETS 

Macro Call Name: $TRBD 

Generated Label Prefixes: 

TRB label 
T RRB/T SEM 
offset '0 
T CTI 
T-CT2 
T-ADR 
T-PRM 

See Appendix A for the format of the task request block. 

Description: 

See the task request block macro call. 

NOTE: This macro call cannot be used in programs written in 
SAF/LAF independent code (SLIC). See the Assembly 
Language Reference manual for more information about 
SAF/LAF independent code. 

5-472 
7/79 
CB08-02A 

tI"", 

~j 



( 

( 

given condition is enabled (see enable user trap ($ENTRP) 
macro call). When there is no established trap handler for 
the specified trap condition, the system returns a zero 
( null) po in t e r • 

NOTES: 1. The address fo r the trap handler fo r the 
specified trap condition is stored in the 
pointer provided by argument 1. When this argu
ment is omitted, or is =$84, the system does not 
store the pointer value; that value is available 
only in $B4. 

Example: 

2. The trap number of the designated trap condi
tion, or the value -1, designated any connected 
trap handler, derived from argument 2 (which is 
mandatory) is placed in $R2. 

3. On return, $Rl and $B4 contain the following: 

$Rl - Return status code, one of: 

0000 - No error 
0342 - Invalid trap number 

$B4 - Address of trap handler, or zero. 

The macro call returns a pointer to the trap handler, pre
viously established by the task for trap number 12. The 
pointer is returned only in $B4. 

QRYAA $TRPHD , =12 

5-4B7 CBOB 



I 

UNLOAD SHARABLE 
(MOD 600) 

BOUND 

UNLOAD SHARABLE BOUND UNIT (MOD 600 ONLY) 

Macro Call Name: $UNSBU 

Function Code: 07/0E 

UNIT 

Equivalent Command: Unload Sharable Bound Unit (UNLOAD_SH_BU) 

Unload all sharable bound units that have a user count of 
zero. 

NOTE: This macro routine is recommended for use only by 
specialized software system designers. 

FORMAT: 

[label] $UNSBU 

ARGUMENT DESCRIPTION: 

None 

FUNCTION DESCRIPTION: 

This call unloads from memory all shareable bound units that 
have a user count of O. The operating system will unload 
such bound units only if memory is needed. This call causes 
all shareable bound units, with no user, to be flushed out 
of memory. 

NOTE: On return, $RI contains one of: 

0000 - No error; normal sharable bound units unloaded 
083A - Use of privileged executive function attempted 

5-488 
7/79 
CB08-02A 



(., 

( 

,USER IDENTIFICATION 

USER IDENTIFICATION 

Macro Call Name: $USRID 

Function Code: 14/00 

Equivalent Command: (MOD 600 only) USER ID 

Returns the user identification of the calling task group to I 
a 32-character, blank filled receiving field. 

FORMAT: 

[labe I] $USRID [location of user id field address] 

ARGUMENT DESCRIPTION: 

location of user id field address 

Any address form valid for an address register; pro
vides the address of a 32-character, aligned, non
varying blank filled field, into which the system will 
place the user identification associated with the 
issuing task group. 

FUNCTION DESCRIPTION: 

I 

This call returns the task group's user id to a field in the 
issuing task. The user identification will consist of 
person.account.mode. The unused portion of the field is 
blank filled. See the Operator's Guide for further details. I 
NOTES: 1. The address of the receiving user id field, 

2. 

supplied by argument 1, is placed in $B4; if 
this argument is omitted, SB4 is assumed to con
tain the address of the receiving field for the 
user ide 

On return, $Rl contains the following status 
code: 

0000 - No error 
0817 - Memory access violation 

5-489 
4/79 
CB08-02A 



Example: 

In the following example, a l6-word field is set up in the 
issuing task and the $USRID macro call is issued to place 
the user identification of the task group in that field. 

IDOl $USRID 

USIDFL RESV 

5-490 

!USIDFL 

l6,A't::.6.' 

4/79 
CB08-02A 

--------.. --~- ~ 

I 

,,( ", 
\( .. / 



USER INPUT 

USER INPUT 

Macro Call Name: $USIN 

Function Code: 08/00 

Equivalent Command: None 

Read the next record from the current input file for the I 
issuing task. 

FORMAT: 

[ label] $USIN [location of record area address], 
[location of record size], 
[byte offset of beginning of record area] 

ARGUMENT DESCRIPTION: 

location of record area address 

Any address form valid for an address register; pro
vides the address of a record area in the issuing task 
into which the next record read from the current user
in file will be placed. 

location of record size 

Any address form valid for a data register; provides 
the size (in bytes) of the input record area whose 
address is given in argument 1. 

5-491 
7/79 
CB08-02A 



byte offset of beginning of record area 
"\ 

Any address form valid for a data register; provides ~j 
the byte offset of the beginning of the record area 
(from the address prov ided in argument 1). If argu-
ment 3 is L, the record area begins at the left byte 
of the address specified in argument 1. If argument 3 
is R, the record area begins at the right byte of this 
address. Any other value is taken to be the location 
of the byte offset of the beginning of the record area 
from the address specified in argument 1. If argument 
3 is omitted, the record area is assumed to begin at 
the left byte of the address specified in argument 1. 

FUNCTION DESCRIPTION: 

This call allows a task to read the next record from the 
current user-in file. Unless it has been changed by a new 
user-in ($NUIN) macro call, the user-in file is that file 
identified in the request group ($RQGRP) or enter batch 
request ($RQBAT) macro call. 

NOTES: 1. The address of the record area supplied by 
argument 1 is placed in $B4; if this argument is 
omitted, $B4 is assumed to contain the record 
area address. 

2. The record size supplied by argument 2 is placed,.! 
in $R6; if argument 2 is omi tted, $R6 is assumed 
to contain the record size. 

3. If argument 3 is L, $R7 is set to zero to desig
nate that the record area begins in the left 
byte of the specified address. If argument 3 is 
R, $R7 is set to one to designate that the 
record area begirrs in the right byte of the 
specified address. Any other argument 3 value 
is assumed to designate the location of the byte 
offset from the address specified by argument 1 
and is placed in $R7. If argument 3 is omitted, 
the record area is assumed to begin in the left 
byte of the specified address and $R7 is set to 
zero. 

4. On return, $Rl, $R6, $R7, and $B4 contain the 
following information: 

\ 

$Rl - Return status; one of the following: 

0000 - No error 
0817 - Memory access violation 

5-492 CBD8 

~~~ --~--~----~-~---- ---- --.--~-----



( 

Example: 

All data management read-next-record 
error codes may also be returned in $RI. 
See the System Messages manual. 

$R6 - Residual range (number of bytes not filled 
in input record area) 

$R7 - File status/type (see "Command In") 

$B4 - Address of input record area 

In this example, the issuing task is to read the next record I 
of the current user-in file into a 12S-byte record area 
whose address is in RECAD. .The record area beg ins at the 
left byte of the indicated address. 

INAA SUSIN ! RECAD, =128 

RECAD RESV 64,0 

5-493 
7/79 
CBOS-02A 



I 

USER MESSAGE 
(MOD 600) 

USER MESSAGE (MOD 600 ONLY) 

Macro Call Name: $USMSG 

Function Code: 17/00 

Equivalent Command: Send Message (SEND_MSG or SM) 

Send a message to another user task in another task group, 
which is identified by the group id specified in the issuing 
task's intergroup request block (IGRB). 

FORMAT: 

[label] $USMSG [location of intergroup request block address] 

ARGUMENT DESCRIPTION: 

location of intergroup request block (IGRB) address 

Any address form valid for a data register; provides 
the address of the output IGRB that describes: (1) 
the group id of the task to which the message is to be 
sent, and (2), the location and range of the message. 

FUNCTION DESCRIPTION: 

The call allows a task to send a message to a task in 
another task group. The message must have read access, and 
its location and size specified in the IGRB. (Appendix A 
describes the intergroup request block (IGRB).) 

The task group identified by the group id in the IGRB must 
have already been defined to the system. The IGRB must have 
write access. 

The destination task group will receive the message only 
after it has issued a user response message ($USRSP) macro 
call. 

5-494 CB08 

r-\ , ' "'-_._j 



( 

( 

WAIT LIST, GENERATE 

WAIT LIST, GENERATE 

Macro Call Name: $WLIST 

Function Code: None 

Equivalent Command: None 

Generate a wait list consisting of a count field followed by 
the specified number of request block pointers. 

FORMAT: 

[label] $WLIST [request block label 1], 
[request block label 2], 

[request block label n ] 

ARGUMENT DESCRIPTION: 

request block label I ... request block label n 

Label of the request block to be placed in the wait 

* 

list. * 

If a label having a value of 0 is specified before the 
last label is supplied, an address of 0 is generated 
for the wait list entry that corresponds to that argu
ment position. See Appendix A for the format of the 
wait list. 

FUNCTION DESCRIPTION: 

A wait list consists of a count of the number of request 
blocks to be waited on, followed by the specified number of 
request block pointers. 

When any request block referenced in the wait list provided 
in a wait on request list macro call has been posted as 
complete, the issuing task is awakened. 

5-509 CB08 



I 

A wait list can refer to any mixture of request blocks. 

If any pointer in the wait list is zero, it is ignored by 
the wait on request list macro call. 

The count field format is Olnn (where nn is the number of 
request block pointers specified in the macro call). 

NOTE: This macro call cannot be used in programs written in 
SAF/LAF independent code (SLIC). See the Assembly 
LanJUage Reference manual for more information about 
SAF LAF independent code. 

Example: 

In this example, a $WLIST macro call is used to generate a 
list of three request block addresses (following the count 
field of 0103). 

ALSTA $WLIST TSKBOl, TSKB 02, TSKB 03 

5-510 
7/79 
CB08-02A 

If ,\ 
I. 

\"j 

._---_ .. _-------------



( 

WAIT ON REQUEST LIST 

WAIT ON REQUEST LIST 

Macro Call Name: $WAITL 

Function Code: 01/01 

Equivalent Command: None 

Check the completion status of request blocks. The request 
blocks specified in the list can be a mixture of types 
(task, clock, I/O, semaphore, or overlay). 

FORMAT: 

[label] $WAITL r request block label 1], 
[request block label 2], 

[request block label n] 

ARGUMENT DESCRIPTION: 

request block label 1 ••• request block label n 

Label of the request block to be placed in the wait 
list. 

If a label having a value of 0 is specified before the 
last label is supplied, an address of 0 is generated 
for the wait list entry that corresponds to that argu
ment position. See Appendix A for the format of the 
wait list. 

FUNCTION DESCRIPTION: 

This call permits a running task to indicate that it wishes 
to wait for anyone of up to 255 request blocks (of any 
type) to be marked as terminated. 

5-511 CB08 

I 
* 

* 



I 

The task manager scans the wait list and checks the status 
of the specified request blocks. If it finds any request 
block marked as terminated, the task manager returns imme
diately to the calling task. If it finds that no request 
block in the list is marked as terminated, the task manager 
suspends the calling task until at least one of the blocks 
is marked as terminated. When the task manager is notified 
of the termination of a request block specified in the list, 
it activates the waiting task and reports the completion 
code of the terminated request. 

NOTES: 1. If arguments are specified, a wait list is 
generated. The address of the wait list sup
plied by argument 1 is placed in $82; if the 
arguments are omitted, $82 is assumed to contain 
the address of the wait list. 

2. Upon return to the issuing task, $RI, $82, and 
$84 contain the following information: 

$RI - Return status; one of the following: 

yyzz - Where yy can be 00 or 00 through EE 
for user status, or as defined for 
other yy values in the System 
Messages manual. 

OOOO-FFFF - Posted completion status of 
first completed request block 
detection. 

0802 - Invalid LRN. 

0803 - Illegal wait; (request block 
already waited on; or not pending 
for this task; or all pointers on 
this wait list were null). 

$82 - Address of wait list 

$84 - Address of request block that caused 
return (i.e., first completed request 
block found); if null, all pointers in the 
wait list were nUll. 

3. If arguments are present, this macro call cannot 
be used in programs written in SAF/LAF indepen
dent code (SLIC). See the Assembly Language 
Reference manual for more information about SAF/ 
LAF independent code. 

5~512 

--- ----------------------- ---

7/79 
CB08-02A 



( 

( 

{ POSFWD} 
PFD 

(For tape-resident, disk sequential, and relative 
files only.) This mode argument moves the write 
pointer forward the number of record positions 
specified by the key value identified in the FIB (but 
not beyond the end of file). The same FIB entries as 
for POSEQ above must be coded. This mode is referred 
to as write position forward. 

{ POSBWD} 
PBD 

I 

(For tape-resident, disk sequential, and relative I 
files only.) This mode argument is the same as for 
POSFWD above except that the pointer is moved backward 
the number of record positions specified by the key 
value in the FIB (but not before the first record). 
This mode is referred to as write position backward. 

FUNCTION DESCRIPTION: 

Before this macro call can be executed, the LFN must have 
been opened (see the open file macro call) with a program 
view word that allows access via data management (bit a is 
0) and allows write operations (bit 2 is 1). The file must 
be reserved (see the get file macro call) with write access 
concurrency control (type 3, 4, or 5). The write pointer is 
a logical pointer to where the next record is to be written; 
it is maintained separately from the read pointer. There is 
one write pointer per LFN per user. At open file time, the 
write pointer is set to the first record (if RENEW 
specified) or logical end-of-file (if PRESERVE specified). 
The write pointer is modified by each write record 
operation. 

The file information block can be generated by a $FIB macro 
call. Displacement tags for the FIB can be defined by the I 
$FIBDM macro call. 

The following illustrates the effect of write actions 
according to file organizations. 

5-521 CB08 



File Organization 

Sequent ia I 

Relative 

Indexed 

Effects of Write Action 

Write next: If the file is being created 
(i.e., opened in RENEW mode), the records 
start at the beginning of the file. If the 
file is not being created, the records are 
appended to the end of the existing file. 

The position modes POSEQ, POSGR, POSGREQ, 
POSFWD, and POSBWD may be specified to do a 
"partial file renewal" or a "file shrink." 
These modes use a simple key to address (set 
write concurrency) an active record. The 
resulting new end-of-data must lie within 
the file limits that existed before the 
write operation. 

Write-next and write-with-key produce iden
tical results when dealing with random 
files. A write-with-key verifies that the 
key length and key pointer references are in 
the proper position in the user record area. 
These checks are not done in the write-next 
operation. 

Write next, issued immediately after an 
open file, appends a record to the end of 
an existing file. In RENEW mode, this 
action can be used to create the file 
sequentially. Write next issued after a 
write next, write with key or with any 
position mode, inserts a record in the 
next available (unused or deleted) space. 
A write next searches for the next available 
spaces in which to place the record. 

Write with key uses a relative or simple 
key that must address a deleted record or 
an unused space. 

All position modes use a relative or 
simple key to address (set write currency 
to) an active record, deleted record, or 
unused space. 

Write next and write with key (using a key 
fo rmat that ind i ca tes a pr imary key) pro
duce identical results. A write with key 
operation verifies that the key lengths 
and key format information in the FIB are 
correct and that the key pointer refers to 
the proper position in the user record 
area. The write next operation does not 
perfo rm these checks. 7/79 

5-522 CB08-02A 

! 
,/ 



( 

Example: 

0223 - File space limit reached or file not 
expandable 

0224 - Directory space limit reached or not 
expandable 

0227 - Index limit exceeded while loading an 
indexed file 

022A - Record lock area overflow or not defined 

022B - Requested record is locked or causes 
deadlock 

0237 - Invalid record or control interval format I 

In this example, the FIB (i.e., MYFIB) described under 
"Assumptions for File System Examples" in Section 3 is 
identified by the first argument. Assuming that the file 
has been reserved with write-access concurrency control, and 
that it has been opened as defined in the open file example, 
the macro call is specified as follows: 

$WRREC !MYFIB,NEXT 

After the record is written in the file, the system updates 
the following entry, which you can interrogate with the FIB 
offset tag: 

F ORA (output record address) 

5-525 
7/79 ~ 

CB08-02A 

_____________ • __ •• _ •• ___ •• __ • ____________ ~. __ ' _____ r"_~ ____ ~ __ _ 



/ 



SECTION 6 

INPUT/OUTPUT DEVICE DRIVERS 

This section describes the internal system software, known 
as device drivers, and some related data structures, that pro
vide data transfer facilities for system and application programs 
with peripheral devices. Macro calls pertaining to standard 
system file input/output and to physical input/output are sum
marized in Section 2 and described in detail in Section 5. 

INPUT/OUTPUT DRIVERS 

Input/output peripheral drivers and the analogous communica
tions device drivers (called line protocol handlers) perform all 
data transfers between a peripheral device and the system or ap
plication program that uses it. Drivers are provided for all 
Honeywell-supplied peripheral devices and the teleprinter, VIP, 
and BSC2780/3780 protocols. 

The remainder of the section describes the peripheral device 
drivers. Line protocol handlers are described in the 
Communications Processing manual. 

Applications programs can request the drivers directly or I 
can use them indirectly by calling the file manager. 

You select a driver and the priority level at which it exe
cutes at system building. 

The input/output drivers are reentrant programs capable of 
supporting the concurrent operation of several devices of the 
same type. The driver runs at the priority level assigned to the 
particular device at system building. The drivers provide fully 
simultaneous operation of the central processor with multiple 
input/output operations. Device interrupts signal the termina
tion of data transfers. 

6-1 



DEVICE DRIVER DATA STRUCTURES 

Two data structures control the interactions among an appli
cation program, its device drivers, and the devices the program 
uses. The structures are the input/output request block (lORB) 
and the resource control table (RCT). 

The IORB, which is partly described in this section and more 
fully in Appendix A, is the interface between the application 
task and its device driver, and is under user control. 

The resource control table (RCT) is the interface between 
the driver and its device(s), and is not normally accessible to 
users of Honeywell-supplied drivers described in this section. 
The RCT is used by those who write their own device drivers; it 
is described in the Mod 400 and Mod 600 System Building manuals. 

DEVICE DRIVER CONVENTIONS 

The following conventions apply to all input/output device 
drivers. 

o The I/O request block (IORB) is the standard control 
structure used by a driver (see "Data Structures," later 
in this section for definition). 

o The $RQIO macro call is used to request a driver. 

o The B4-register contains the address of the IORB supplied 
by the caller; the IORB contains the LRN of the device to 
be used. 

o The I/O-specific words of the IORB (I CT2 through I_DVS) 
are not modified by the driver. 

o If a device becomes inoperable, it can be disabled with 
an operator command and another device can be 
substi tuted. 

o Drivers are reentrant and interrupt driven; one driver 
supports many devices of the same type. 

o Synchronous and asynchronous I/O are supported. 

o The hardware status is always mapped into the software 
status word in the task's IORB (I ST) before the driver 
relinquishes control. -

Driver Functions and Function Codes 

All drivers perform similar functions on behalf of the de
vices and application tasks they service. These functions are 

6-2 CB08 

.,,("\ 

\\../ 



( 

carried out by the driver's request processing and interrupt 
processing code. 

The application task can request specific functions by pro
viding a function code in the IORS it supplies when it requests 
I/O service. These specific function codes are summarized in 
Table 6-1 and discussed under the specific function heading in 
the following pages. 

The application task uses the last four bits of the IORS 
entry I CT2 to enter the function code for the functions sum
marized-in Table 6-1. 

Table 6-1. Input/Output Function Code 

Dev ice 

lORB ASR/KSR 
Function Keyboard Card Reader/ 

Code Printer Card Reader Punch Printer Disk Magnetic Tape 

0 Wait online Wait online Wait online Wait online Wait online Wait online 

1 Write NA' Write (punch) Write Write Write 

2 Read Read Read NA Read Read 

3 NA NA Write file mark NA NA Write file mark 
(punch) 

4 NA NA NA NA NA position block b 

5 NA NA NA NA Format write NA 

6 NA NA NA NA Fo rmat read Position file 0 

9 Break Notification NA NA NA Nil NA 

A Connect Connect Connect Connect Connect Connect 

B Disconnect Disconnect Disconnect Disconnect Disconnect Disconnect 

E NA NA NA NA Read disabled device Read disabled device 

aNat applicable. 

bposi tive range of one is forward space to start of next block. 
Negative range of one is backspace to beginning of previous block. -

Cpositive range of one is fo rwa rd space to next tape mar k. 
Zero range is backspace to previous tape mark. 
Negative range of FFFF is rewind to BOT. 
Negative range of FFFF is rewind to BOT and unload. 

6-3 CSOS 

I 



WAIT ONLINE FUNCTION (fc=O) 

The "wait online" function, one element of a control mecha- '''-oj 

nism used to synchronize task operation with device availability, 
allows a caller to wait until a device becomes ready for use, or 
until a specific time interval has passed. 

All noncommunications devices (except KSR-like devices) gen
erate interrupts When their availability changes. For example, 
when a printer runs out of paper, an interrupt is generated and 
the device is not ready for use; when the paper is installed and 
the device is again ready, another interrupt is generated. 

When a driver receives a service request from a task using 
the "wait online" function code in the IORB that it supplies 
(0000 in the last four bits of I CT2), and the device is not 
ready, the driver sets a timer for 5 minutes and suspends. When 
the driver is reactivated, either by a ready interrupt from the 
device or by a time-out, it deactivates the timer, checks the 
device-ready bit in the hardware status word and places a 0 or 6 
value in the return status field of the IORB depending on the 
condition of that bit. See Table 6-2 and the return status 
codes for the $RQIO (Request I/O) macro call; the rightmost hexa
decimal character is placed in the return status field. 

The wait online function should not be issued to a device 
that is currently ready for use unless you expect it to become 
not ready before it becomes ready again (e.g., the operator has 
been instructed to change a volume mounted on a disk device 
currently in use). 

WRITE FUNCTION (fc=l) 

The write function is available for all devices except the * 
card reader. This function allows the writing of data to a 
particular device. When a driver receives a write request, it 
transfers the indicated data from a user buffer to the device 
according to the specifications supplied in the task's IORB. 

READ FUNCTION (fc=2) 
I 

The read function is available for all devices except local * 
and remote printers. This function allows reading data from a 
particular device. When a driver receives a read request, it 
transfers the data from the specified device to a user buffer 
according to the specifications supplied in the requesting 
task's IORB. 

6-4 
7/79 
CB08-02A 

~--~-~--~--~~-~~~----- ._----



( 

(-

- ~- ----~------- ----

Table 6-2. Return Status Codes (last digit) 

Code Number 
(Hex adecimal) 

o 
I 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 

10 

Meaning 

No error, operation complete 
Request block already busy (T=l) 
Inval id LRN 
Illegal wait 
Invalid parameters 
Dev ice not read y 
Device time-out on other than connect 
Hardware error, check IORB status word 
Device disabled 
File mark encountered 
Controller unavailable 
Device unavailable 
Inconsistent request 
Device time-out on connect 

When these codes are found in I CTI (IORB), or in $Rl 
on a resume after wait, look at-I ST (IORB) to identify 
the specific error. The status B-is returned with every 
read or write IORB that has been aborted by a disconnect 
request with queue abort. 

This status will be returned on an I/O request after an 
interrupt. The disks and tapes are disabled until the 
system's automatic volume recognition routine calls the 
enable device function. 

This status indicates illogical peripheral driver re
quests: read or write before connect; duplicate con
nect or disconnect requests; write after disconnect. 

READ DISABLED DEVICE FUNCTION (fc=E) 

This function, available only to disk or magnetic tape de
vices, allows the driver to bypass the device-disabled test dur
ing validity checking. 

This function is used by the system's automatic volume 
recognition (AVR) module, which recognizes the volume label of 
the volume on the disabled device, then enables the device so 
that attempts to read data from it can continue. 

WRITE TAPE MARK FUNCTION (fc=3) 

The write tape mark function, which is available to magnetic 
tape devices, allows you to put a mark block on a referenced mag
netic tape. 

6-5 
7/79 
CB08-02A 

I 



POSITION BLOCK FUNCTION (fc=4) 

The position block function, which is available to magnetic 
tape devices, aI-lows you to position a referenced magnetic tape 
forward or backward one block. 

FORMAT READ (fc=5) 

The format read function, available only to disk and mag
netic tape devices, allows you to read all identifier and data 
fields on a track. The read begins at the first sector following 
the index mark and proceeds in the order in which the identifiers 
are reco rded. 

FORMAT WRITE (fc=6) 

The format write function, available only to disk device, 
allows you to format a disk device. The disk is partitioned into 
forty two equal length sectors starting at the index mark. 

POSITION TAPE MARK FUNCTION (fc=6) 

The position tape mark function, which is available to mag
netic tape devices, allows you to: 

o Position a referenced magnetic tape forward to beyond the 
next tape mark. 

o Position a referenced magnetic tape backward to ahead of 
the current tape mark. 

o Rewind to BOT. 

o Rewind to BOT and unload. 

BREAK NOTIFICATION FUNCTION (fc=9) 

This function, available for any terminal device, is a re
quest to notify the issuing task when a break occurs on a spe
cific device. When a break does occur, the driver posts the 
break notification request and declares the device to be in break 
mode for the issuing task. 

In break mode, all I/O requests issued from the "broken" 
task are rejected, i.e., posted without any data transfers being 
started. Execution of a subsequent break notification request 
will cause the driver to return to normal mode. 

Communications Function Codes 

The following function codes are for communications, and for 
interactive and noninteractive (such as card reader or printer) 
devices. 

6-6 
7/79 
CB08-02A 

-------- -------- - ----- ---- -------- ---------



( 

CONNECT FUNCTION (fc=A) 

This function provides the logical and physical connection 
between an application program and a communications device. The 
function may be used for noncommunications devices for program 
compatibility; i.e., no matter how these devices are connected to 
the computer, all interactive KSR and KSR-like devices, and 
noninteractive devices such as card re~der and printer, can be 
controlled by the same application program. 

See the Communications Processing manual for descriptions of 
the connect function, and disconnect function (described below), 
as they pertain to communications devices. 

DISCONNECT FUNCTION (fc=B) 

This function code provides the logical (normal and ab
normal) and physical disconnect between an application program 
and an interactive device. The function is processed as a no-op 
for noninteractive devices for program compatibility, i.e., a 
card reader or printer may be controlled by the same application 
program. 

The disconnect function as a logical function indicates that 
use of the indicated device is terminated. Termination may be 
either normal or an abort of all queued read or write requests 
issued only by this user program. 

INPUT/OUTPUT REQUEST BLOCK 

The input/output request block (IORB) contains all informa
tion that a task requesting an I/O service can specify to define 
the operation to be performed. In addition, it contains informa
tion returned by the driver to the requesting task concerning the 
outcome of its I/O request. 

Figure 6-1 shows the format of a nonextended IORB. Unshaded 
fields must be initialized by the task requesting the I/O opera
tion. The shaded fields are set by the driver in order to return 
information about the I/O request back to the caller, or are con
trolled by the Monitor. 

Table 6-3 defines the specific IORB entries in a nonextended 
IORB. (See the Communications Processing manual for descriptions 
of IORB extensions.) Table 6-4 defines the software status word 
(I ST) in the IORB. Device-specific IORB information is provided 
in-the separate device driver descriptions later in this section. 

NOTE: The labels (I CT2, I ADR, etc.) used in referring 
to the IORB entries are employed only for ease of 
presentation. The labels cannot be used for pro
gramming purposes. 

6-7 
7/79 
CB08-02A 



I 

0 F 
{ -$AF \ 

'-I -1 {ILRRB/LSEM REQUEST BLOCK POINTER/SEMAPHORE NAME 

b 

$AF leT! 

1 + $AF I CT2 LRN C B P M FUNCTION 

2 + $AF I ADR BUFFER ADDRESS 

2 + 2 * $AF I RNG RANGE 

3 + 2 * $AF I DVS DEVICE SPECIFIC WORD 

4 + 2 * $AF I_RSR 

5 + 2 * $AF I ST 

6+2*$AF LEXT 

Figure 6-1. Format of I/O Request Block 

Table 6-3. Contents of I/O Request Block 

Item Label Bits Contents 

-$AF I_RRB/ 

-1 I SEM -

o I LNK 

$AF I CTI 

0 through 15 
fo r SAF; 
o through 31 
for lAF 

o through 15; 
o through 31 

o through 7 

8 (T) 

Depending on the S- or R-bits of 
I CTl, this word contains a task 
request block pointer (R-bit 
on) , or a semaphore name (S-bit 
on); set by user, used by system 
at termination of request. 

Reserved for system use. 1- or 
2-word pointer to indirect re
quest block. 

Return status. 

This bit is set (on) while the 
request using this block is ex
ecuting; it is reset when the 
request terminates. System con
trols this bit; user should not 
change it. In MOD 600, can be 
tested only with $TEST macro 
call. 

6-8 
7/79 
CB08-02A 

-------- ------------------~~~~~ 

\"'.-



( Item 

$AF 
(cont) 

l+$AF 

Table 6-3 (cont). Contents of I/O Request Block 

Label Bits 

I CT 1 9 (W) 
( cont) 

A (U) 

B (S) 

C 

D (R) 

E (D) 

F 

I CT2 o through 7 

8 (IBM) 

Contents 

Wait bit - set by user if the 
requesting task is not to be 
suspended pending completion 
of the request that uses this 
IORB. If W=O, then the D, R, 
and S bits may not be set. 

User bit. User mayor may not 
use this bit; system does not 
change it. 

Release semaphore indicator. 

I 

o = No semaphore in I SEM, 1 = I 
Release, on completion, sema-
phore item named in I_SEM. 

Must be zero. 

Return IORB indicator. 0 = No 
request pointer in I RRB. 1 = 
Dispatch task request block 
named in I RRB after request 
timeout. If 1, system executes 
$RQTSK, using I RRB, when the 
task terminates:-

Delete IORB indicator, used 
us ua 11 y wi th th e B (S) an d D (R ) 
bits. 0 = No delete. 1 = De
lete and when task terminates, 
return memory to pool where IORB 
is first entry of its memory 
block. 

Implicit task start address. 
Must always be 1 for IORB. 

Logical resource number (LRN); 
identifies device to be used. 

IBM-type request. Changes in
terpretation of I DVS to task 
word, and I RSR and I ST to con
figuration words A and B 
respectively. 

6-9 
7/79 
CB08-02A 

I 



Table 6-3 (cont) • Contents of I/O Request Block ;r--", 
Item Label Bits Contents ',,-,.j 

1+$AF I CT2 9 (B) Byte index; 0 = buffer begins in 
(cont) (cont) leftmost byte of word, 1=buffer 

beg ins in rightmost byte. 

A (P) Reserved for system use. 

B (E) Extended IORB indicator. 
0 = Standard (nonextended) 
IORB. 1 = IORB extended to 
at least 6+2*$AF items. Set 
by user. (See I EXT below.) 

C through F. Function code. Driver function; 
See Table 6-1. 

2+$AF I Am 0 - through 15 Buffer address, SAF mode. 
(See note. ) 

0 through 31 Buffer address, LAF mode. 
l- or 2-word pointer. 
(See note. ) 

" 
2+2*$AF I RNG - 0 through 15 Range - number of bytes to be --...... - -F/ 

* 
transferred. 

3+2+*$AF I DVS 0 - through 15 Device-specific information. 

4+2 *$AF I RSR 0 through 15 Residual range. Ind ica tes the - number of bytes not transferred. 
Filled in by the system on com-
pletion of the order. Used by 
cartridge disk and mass storage 
unit driver as a data 0 ffset 
value on input. 

5+2*$AF I ST o through 15 Modified device status; shows - mapping of hardware status into 
software status format. See Ta-
ble 6-4. Set by user as input 
field high order bits of sector 
number mass storage unit. Set 
by system after I/O completion. 

* i 
6+2*$AF of words in I EXT 0 through 7 Left byte: Number - the IORB extension, not incl ud-

ing this I EXT word. - ("" I • 

~/ 
7/79 

6-10 CB08-02A 

--------------- -----_ ... _-- -----~-----------------------



(-

( 

Table 6-3 (cont). Contents of I/O Request Block 

Item Label Bits Contents 

6+2*$AF 
(cont) 

I EXT 8 through 15 
(cont) 

Right byte: Number of words in * 
physical I/O part of IORB exten-
s ion, no tin c 1 ud i ng th is I EXT 
word. This count must be less 
than or equal to the total 
extension length specified in 
the left byte (0-7). 

This word is present only when 
the B (E) bit in I CT2 is 1. 
(See the GCOS 6 Communications 
Processing manual for descrip
tion of IORB extensions.) 

NOTE: For break notification requests, the KSR driver 
gets the identification of the issuing task in 
this field. When break occurs, the contents of 
this field are transferred to the RCT. 

6-11 
7/79 
CB08-02A 

I 



0"1 
I 
I-' 
N 

Bit 
l':lsition 

0 

I 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

ASR/KSR 

0 

0 

OVer/underrun 

Even parity 
error 

0 

No stop bit 

Long record 

Checksum error 

cc2 termination 

CC3 termination 

0 

0 

0 

0 

0 

Fatal error 

Table 6-4. 

Card Reader 

0 

0 

OVer/underrun 

Mark sense mode 

40-column 

5l-column mode 

Elcternal clock 
track 

Read check 

ASCII code 
error 

0 

0 

0 

0 

0 

0 

Fatal error 

NOTES: 1. 

2. n 
~ 
o 
00 1 Equlvatent to a modified status word 1. 

~-4t., 

\, j 

IORB Software Status Word 1 ( I_ST) 

Cartridge M:ld-
ule Disk and 
Disk Storage 

card ReaderjPunch Printer Diskette cartridge Disk Unit Magnetic Tape 

0 0 0 0 0 0 

0 0 0 0 0 Rewinding 

Data service rate 0 OVer/underrun OVer/underrun OVer/underrun Retryable error 
error 

Invalid ASCII End of form releted field write protect write/protect write protect 
code error error error 

PUnch echo or 0 Read error Read error Read error 0 
read registration 

Light/dark check 0 Device fault Illegal seek Illegal seek 0 

Card jam 0 Missed data Missed data Missed data Bar 
synchroni za tion synchronization synchronization 

0 0 Unsuccessful Unsuccessful Unsuccessful EOT 
search search search 

0 0 TWo sided Missed clock Missed clock Long record 
pulse pulse 

0 0 0 Missed sector Successful Nonretryable 
pulse retry error 

0 0 Seek error Seek error 0 

0 0 0 0 0 Operation check 

0 0 0 0 0 High density 

0 0 0 0 0 0 

0 0 0 0 (j 0 

Fatal error Fatal error Fatal error Fatal error Fatal error Fatal error 

Nonexistent resource, bus parity, and uncorrected memory 
errors are combined into bit 15 of I ST, but each occurrence 
i? noted separately in the ReT. -

The online drivers will flag, in the ReT, corrected memory 
errors and driver or hardware corrected errors. 

(-\ 
\ // ''"' . 

) 



( 

CALLER INTERFACE WITH DEVICE DRIVER 

To request execution of an I/O operation, the _caller must 
issue a $RQIO macro call with $B4 pointing to the IORB that is 
to be serviced. If the IORB specifies synchronous I/O (W-bit 
reset), the issuing task will be suspended until the I/O opera
tion is completed. 

If IORB specifies asynchronous I/O, the instruction at the 
return point will be executed as soon as the system queues the 
IORB on the driver's level. The application may issue a $WAIT 
macro call when appropriate for the asynchronous request. 

Thus, upon return from the driver at the completion of the 
I/O operation, the caller must check the Rl register first to see 
if the request was successful. Any interface error (illegal user 
argument) will be defined here. Hardware errors are defined in 
IORB entry I~T (see Table 6-4). 

Residual range denotes how much of the requested data trans-
fer was actually performed. If I RSR equals zero all data was 
transferred (see "Device Drivers"-for details on device-specific 
basis). For an asynchronous request, register Rl should be I 
checked on return; Rl, I ST and I RSR should be checked after 
return from a $WAIT macro call. 

Those fields not shaded in Figure 6-1 must be initialized by 
the task requesting the I/O operation. The remaining fields are 
set by the driver in order to return information about the I/O 
request back to the caller or are controlled by the Monitor. 
Table 6-3 describes the purpose of each field. 

Other information needed to perform the I/O request is found 
in the IORB. The caller-supplied standard function code in I CT2 
is mapped by each driver into one or more device functions re~ 
quired to perform the actual request. 

The .LRN supplied by the caller in the IORB serves as a de
vice identifier. 

DEVICE DRIVERS 

The remainder of this section discusses the device drivers 
in the following order: 

o Card reader/Card reader-punch driver 
o Printer driver 
o Disk driver 
o ASR/KSR driver 
o Magnetic tape driver 

6-13 
7/79 
CB08-02A 



Card Reader/Card Reader-Punch Driver 

The card reader and card reader-punch devices are serviced 
by a single driver. The driver uses six function codes; i.e., 
read, ~tite, write file mark (reader/punch only), connect, dis
connect, and wait online. In addition, its IORB word I DVS can 
be coded to define the character code of the input; namely, ASCII 
or verbat~m. These values are specified in the IORB as defined 
in Table 6-6. 

The translation/mapping of theSe codes from punched card 
format, into memory on reading, is described below. 

In addition to the standard driver functionality discussed 
earlier, this driver also: 

o Detects and discards unsolicited interrupts. 

o Detects an end-of-filecondition and sets the appropriate 
return status (ASCII GS character in column 1 of any 
card=EOF) • 

o Detects "device not ready" condition and sets appropriate 
error condition. 

ASCII MODE 

In this mode, punched cards are processed as shown in Figure 
6-2. Each card column consisting of a l2-bit ASCII card code is 
converted into an 8-bit ASCII byte and stored in the main memory. 

The ASCII card code table as specified in American National 
Standard X3.26 is given in Table 6-5. Note that no multiple 
punches in rows 1 through 7 are allowed and thus the l2-bit card 
code allows a maximum of 256 unique codes to be defined. 

Translation is done by the card reader attachment which also 
provides a software-visible IORB status indicator that is set 
whenever an illegal ASCII card code is detected. This error con
dition is signaled by a 0107 in Rl register if any card column 
read had a hole pattern which was not one of the legal hole pat
terns given in Table 6-5. The illegal card code causes an ASCII
EO (alII's) code to be loaded in the main memory. 

6-14 CB08 

--~---~-- ~~~~ ---------- ---



( 

( 

Table 6-18. Cartridge Module Disk Status Code Mapping 

Hardware IORB 
Status I ST Meaning If Bit Set -

0 -
1 -
2 2 Over- /under run 
3 3 Devi cra fault 
4 4 Read error 
5 5 Illegal seek 
6 6 Missed data synchronization 
7 7 Unsuccessful search 
8 8 Missed clock pulse 
9 9 Successful recovery 

10 10 Reserved 
11 -
12 -
13 -
14 -
15 15 Fatal error 

ASR/KSR Drivers 

The keyboard/printer functions of an ASR are supported; the 
paper tape reader/punch functions are not. Thus, the K-bit 
within I_DVS word (Table 6-19) must be zero. 

To examine the first character of a message sent in single 
character mode (from a local KSR terminal) before the rest of the 
message is transmitted, proceed as follows: 

1. Issue a single character asynchronous read with no echo 
to the te rm inal • 

2. When the read is completed, examine the character; then 
if the rest of the message is wanted, write the charac
ter to the terminal (with no carriage return or line 
feed) • 

3. Issue a read for the rest of the message (with echo). 

Note that the operator terminal (keyboard/printer), when used, 
must be configured at LRN=O. For information about dialog with 
the operator's terminal, see the Operator's Guide. 

Character codes, function codes, and device control availabl 
for the keyboard/printer are described below. 

6-33 
7/79 
CB08-02A 

* 



I 

KEYBOARD INPUT 

o Keyboard input is accepted until end-of-range, or car
riage return, whichever occurs first. The carriage 
return character is not indicated as part of the input 
data. 

o Keyboard control (line feed, carriage return, etc.) is 
definable in the IORB. 

o Editing characters can control input: 

@ Deletes the previous character entered. 

CTL X Deletes all the previous characters entered on the 
same input line. 

(\) Character immediately following is treated as input. 

NOTE: Since CAN is a nonprinting character, the *DEL* 
are displayed on a separate line when CAN is 
struck. Further input may begin after completion 
of the DEL output. 

Causes character immediately following (@, CAN, CR, 
and \ ), to be treated as data input and not as 
editing characters; the back slash itself is not 
placed in memory • 

. PRINTER OUTPUT 

o Printer output is accepted until end-of-range. 

o Time-out period for keyboard/printer operation is 5 
minutes. 

ASR/KSR DEVICE-SPECIFIC IORB FIELDS 

Table 6-19 shows the values of device-specific IORB fields 
for ASR/KSR devices. 

Table 6-19. ASR/KSR IORB Fields 

Definition Keyboard/ 
IORB Item Field Printer 

I CT2 Function code l=wr i te A=Connect - 2=read B=Disconnect 
3=break 
notifi-
cation 

6-34 

/ 

Use 

Used by driver 
to complete the 
description of 
the 
I/O 

requested 
function. 

7/79 
CB08-02A 



- -------- ----- ----

( 
Table 6-19 (cont) • ASR/KSR IORB Fields 

Definition Keyboard/ 
IORB Item Field Printer 

I DVS Device- 0 1 2 3 4 5 6 7 g 9 10 11 12 13 14 15 - Specific B 0 0 S F T 0 Q D K E L C M A H 

Bit Value --
B - (When function code is 9; i . e • , break 

control request) 

0 = Request break notification. 

1 = Abort previous break notification 
requests. 

S - 0 = Function code 2 implies normal ter-
minal read. 

1 = Function code 2 implies single-
character mode read. 

F - 0 = Assumes line printer format control. 

1 = Assumes terminal format control. 

T - 0 = Use control characters in control 
functions. 

1 = Treat all characters as data; bypass 
control character checks on input. 

Q - 0 = Stop output immediately on detecting 
"attention" when the detected char-
acter has No Stop bit status (e.g., 
a "break" key) • 

1 = Post "attention" and allow completion 
of output transfer. 

D - 0 = Read attention character with input 
(if presen t) • 

1 = Discard attention character on input. 

K - 0 = Transfer to keyboard/printer. (Must 
be O. ) 

E - 0 = Do not echo keyboard input. 
(-

1 = Echo keyboard input. 

6-35 CB08 



Table 6-19 (cont). ASR/KSR IORB Fields 

IORB Item Field 

I DVS 
(cont) 

I ST 

L 

C 

M 

A 

A 

H 

Software 
status 
word 

-

-

-

-

-

-

Bit --
0 = 

1 = 

0 = 

1 = 

0 = 

1 = 

In 

Definition Keyboard/ 
Printer 

Value 

No line feed at end of 

Issue line feed after 

Issue carriage return 

Use 

transfer. 

transfer. 

after transfer. 

No carriage return after transfer. 

Transfer mode is 7-bit, with parity. 

Transfer mode is 8-bit direct trans-
cription mode. 

single-character mode: 

o = Do not abort previously buffered sing1e
character mode characters in queue. 

1 = Abort previously buffered single-mode 
characters in queue. 

On disconnect: 

0 = Abort I/O requests on disconnect. 

1 = Do no abort I/O requests on disconnect. 

0 = Disconnect with phone hang up. 

1 = Disconnect without phone hang up. 

NOTE: The MDC-connected ASR/KSR driver 
does not check this bit. 

Shown below 

6-36 

Mapped by driv
er from the 
hardware status 
in order to 
tell requesting 
task the hard
ware status of 
the I/O opera
tion. 

CB08 



( 

c 
'-

Table 6-21. Characteristics of Supported Tape Drives 

Speed Density 
(ips) (bpi) Parity Mode 

Tape Drive 
Type 45 75 1600 800 556 200 Odd Even Packed 6-Bit 

9-track X X - X - - X - - -
NRZI 

9-track X X X X - - X - - -
PE 

7-track X X - X X X X X X X 
NRZI a 

aThe application program must provide for tape positioning, 
creation and interpretation of labels, tape marks, control 
information, and data contents. 

The driver provides the following callable functions: 

o wait online 

o Write 

o Read (forward) 

o position block (forward and backward) 

o position forward or backward by tape mark, rewind to 
beginning of tape (BOT), rewind to BOT and unload. 

The driver operates in the following modes: 

o 

o 

o 

o 

o 

o 

Odd parity (9-track tape only) 

Odd parity 6-bit (7-track tape) 

Even parity 6-bit (7-track tape) 

Packed, always odd parity (7-track tape) 

Minimum data block, MOB (American National Standard 
I 

specifies 18 or more characters per block in write, 8 
or more in read) 

MOB-inhibited (If fewer than the specified number of 
characters must be read or written, this mode is 
required. ) 

6-39 CB08 



• 

If MDB mode is specified for a write and the range is less 
than 18 characters, a parameter error is reported. If MDB mode 
is spec i f ied fo r a read and the rang e is less than 12 cha racters , 
the user will receive the first portion (requested range) of the 
first valid block and an unequal length check. If a "short re
cord" is detected, a corrected media error is reported in status 
word, I ST. If a record of less than 18 characters is written or 
less than 12 characters is read, the inhibit block size check bit 
(bit 12 of the device specific word, I_DVS) must be set. 

Beginning of tape (BOT), end of tape (EaT), and end of file 
(EOF) conditions are reported for appropriate user action. If an 
error occurs in a case when the operation can be retried, the 
driver backspaces and reissues the order up to 32 times before 
reporting a hardware error. If an error occurs and no retry is 
possible, the driver rewinds and forward spaces to the problem 
block and reissues the order once before reporting a hardware 
error. The driver does not check the tape volume identifier. 

The EaT return status is not returned for read operations; 
only the EaT status word bit is set. It is assumed that appro
priate application software conventions will prevent reads that 
would force the tape off the end of the reel. 

The resident magnetic tape driver is interrupt driven and 
must execute with a resident Monitor and with the central pro
cessor in the privileged state. It can support, on an adapter, 
one data transfer simultaneously with one or more rewind/rewind
unload orders. 

MAGNETIC TAPE DEVICE-SPECIFIC IORB FIELDS 

The IORB fields defined in Table 6-22 are specific to mag
netic tape devices. All other IORB fields are defined in pre
vious subsections. 

Item 

I CT2 -

Table 6-22. Magnetic Tape IORB Fields 

Field Definition 

Function code 0 = Wait online 
1 = Write 
2 = Read 
3 = Write filemark 
4 = Position by block (see range) 
5 = Format read 
6 = Position file (see range) 

6-40 
7/79 
CB08-02A 

r( .". 

\\.j 



( 

( 

Item 

I DVS 

Table 6-22 (cont). Magnetic Tape IORB Fields 

Field Definition 

Device specific 0 12 13-15 

10 0 0 0 0 0 0 0 0 0 0 0 I I I mode I 
I: O=Normal American National 

Standard block sizes 

l=Inhibit sensing for American 
National Standard block size 

mode: 0 = 9-track tape; or 7-track 
in odd parity 6-bit mode 

1 = 7-track tape in even 
parity 6-bit mode 

2 = 7-track tape in packed 
mode 

I RNG Range Write: 1 through 7FFF 

Read: o means verify; 1 through 
7FFF16 is valid 

Position by block: Negative is back
space; 0 is illegal 

Positive is forward 
space 

Position by file: -2 = Rewind and unload 

I 

-1 = Rewind to BOT I 

I RSR Resid ual range 

o = Backspace to pre
v io us tapemark 

1 = Forward space to 
tapemark 

Nonzero when physical block exceeds 
range. 

<----~----------'------------------------ ..... -
A read with a range of zero verifies the selected sector 

with no data transfer to memory. 

6-41 
7/79 
CB08-02A 

I 



MAGNETIC TAPE'HARDWARE/SOFTWARE STATUS CODE MAPPING 

The hardware/software status code mapping for magnetic tape 
devices is shown in Table 6-23. 

Table 6-23. 

RCT IORB 
R STTS I ST - -

0 -
1 -
- 1 
2 2 
3 -
- 3-
4 -
5 -
6 6 
7 7 
8 8 
9 9 

10 10 
11 11 
12 -
- 12 

13 15 
14 15 
15 15 

Magnetic Tape HardwareiSoftware Status Code Mapping 

Device ready 
Attention 
Rewinding 

Meaning If Bit Set 

Error - Operation can be retried 
MBZ 
Write protected 
Corrected media error 
Tape mark 
BOT 
EOT 
Unequal record length 
Error - Operation cannot be retried 
MBZ 
Operation check 
Corrected memory error 
High density 
Nonexistent resource/fatal error 
Bus parity error/fatal error 
Memory error - correction impossible/fatal error 

6-42 CB08 

"
,- / 

/( -" 
\.L/ 



( Item 

-$AF 

o 

$AF 

( 

------ -----_ .. _--------

Table A-I. Contents of Clock Request Block 

Label Bit(s) Contents 

C RRB/ 0-15 
C-SEM 

Depending on the condition or the S or R 
bits of C CTl, this word contains a task 
request block pointer (R-bit on), or a 
semaphore n~me (S-bit on). 

I 

C LNK 

C CTI 

0-15 Reserved for system use. 

0-7 Return status 

8 (T) This bit is set on while the request 
using this block is executing; it is 
reset when the request terminates. The 
system controls this bit; user should 
not change it. In MOD nOO, can be tested 
only with $TEST macro call. 

9(W) Wait bit - set if the requesting task is 
not to be suspended pending the comple
tion of the request that uses this block. 

A (U) User bit. User mayor may not use this 
bit; the system does not change it. In 
MOD 600, user must not use this bit; in 
a user-built CRB, must be 0 initially. 

B(S) Release semaphore indicator. 

o = No release, 1 = Release, on timeout, 
semaphore item named in C_SEM. 

C Must be zero. 

OCR) Return clock RB indicator. 

o = NO dispatch; I = Dispatch task re- I 
quest block named in C RRB after request 
timeout. If 1, system-executes $RQTSK, 
using C_RRB when the task terminates. 

E(D) Delete clock RB indicator, used usually 
with the B(S) and OCR) bits. 

o = No delete. I = Delete and when 
task terminates, return memory to pool 
where CRB is first entry of its mem
ory block. 

A-3 
7/79 
CB08-02A 



Table A-I. (cont). Contents of Clock Request Block 

Item Label Bit(s} Contents 

$AF C CTl- F Implicit task start address. M'ust al-
(cont) ( cont) ways be 1 for CRB. 

l+$AF C CT2 0-7 Value is -1. -
a(C} When set, indicates this block is asso-

ciated with a cyclic clock function. 

9-B (M) When set, last two words contain an in-
terval in units specified by M. Each 
interval value is as follows: 001 - in 
milliseconds; 010 - in tenths of a sec-
ond; 011 - in seconds; 100 - in minutes; 
101 - in units of clock resolution. 

When reset (off) , the last three words 
contain a date/time interval. 

2+$AF C TM Contents depend on M bit of C CT2. - -

FILE INFORMATION BLOCK (FIB) FORMAT AND CONTENTS 

Figures A-3 and A-4 show the format, and Tables A-2 and A-3 
show the contents, of the file information block (FIB) for data 
management (record level) access, and for storage management 
(block level) access, respectively. 

Word Label (s) o 11 1 2 1 3 1 4 1 sl6171 a l91A I B I C I D I ElF 

0 F LFN Logical File Number (LFN) -
1 F PROV Program View -
2 F URP --- I-- User Record Area Po inter -
3 -

4 F IRL Input Record Length -
S F ORL Output Record Length -
6 F RFUI Reserved -
7 F IRT Reserved -
a FORT Reserved -

Figure A-3. Format of FIB for Data Management 

A-4 CBoa 

If --' 
"Ii. , '-.. -/ 

------------------ ----------- - --- -- ------ - ----- -~-



Table A-2 (cant). Contents of FIB for Data Management 

Word Label Bits Contents 

11 F - IKF 0-7 Input key format: 0 for none specified 
1 for primary key 
2 for simple key 

F IKL - 8-15 Input key length. 

12,13 FORA - 0-31 Output record address. 

14,15 F RFU2 0-31 Reserved for later use, must be 00000000. -

Table A-3. Contents of FIB for Storage Management 

Word Label Bits Contents 

0 F LFN 0-15 Logical file number (LFN) • -
1 F PROV 0 Access - leve 1; set on for storage management. 

1-2 Process rules: bit 1 for $RDBLK, bit 2 
for $WRBLK. 

4-12 Must be 00000000. 

13 Buffer alignment: set on when buffer begins 
on odd-byte boundary; off when even-byte 
boundary. 

14 Transcription mode: set on when data 
transferred in binary transcription mode; 
off when transfer is in ASCII mode. 

15 Synchronous/asynchronous indicator: set on 
when $RDBLK and $WRBLK calls executed asyn-
chronously; off when synchronously. 

2,3 F UBP 0-31 Start address of user buffer area. -
4 F BFSZ 0-15 Buffer transfer size. -
5 F BKSZ 0-15 Block size. -

6,7 F BKNO 0-31 Block number. -
8-15 F RFU3 All Reserved for later use; must be all zeros. -

( 
CB08 



I 

INPUT/OUTPUT REQUEST BLOCK (IORB) FORMAT 

Figure A-S shows the format of a nonextended input/output 
request block (IORB) (See the GCOS 6 Communications Processing 
manual for descriptions of IORB extensions.) Table A-4 defines 
the specific fields in a nonextended IORB. Table A-S summarizes 
the IORB fields for operator interface functions. 

{ -$AF} 
-1 II_RRB/I_SEM 

o I 1 I 2 I 31 4 J 5 1 6 J 7 1 8 J 9 JAJB I CI DIE I F 

REQUEST BLOCK POINTER/SEMAPHORE NAME 

0' I-LNK RESERVED FOR SYSTEM USE AS A POINTER 

$AF I CT1 RETURN STATUS - T W U S OlRIDJ1 

1+$AF I CT2 LRN IBM B P E FUNCTION -

2+$AF I ADR BUFFER ADDRESS -

2+2*$AF I RNG RANGE -

3+2*$AF I DVS DEVICE SPECIFIC WORD -
4+2*$AF I RSR RESIDUAL RANGE -

5+2*$AF I ST - STATUS WORD/HIGH-ORDER BITS OF WORD7 FOR STORAGE MODULE 

6+2*$AF I-EXT TOTAL EXTENSION LENGTH PIO EXTENSION LENGTH 

Figure A-S. Format of I/O Request Block 

Table A-4. Contents of I/O Request Block 

Item Label Bit(s) Contents 

-$AF I _RRB/ 0-15 Depend ing on the S or R bits of 
for SAF; I_CTl, this word contains a task 

request block pointer (R-bi t on) , 
-1 I SEM 0-31 or a semaphore name (S-bit on) • - for LAF Set by user; used by system at 

termination of request. 

0 0-15; Reserved for system use. l- or 
0-31 2-word pointer to indirect re-

quest block. 

$AF I CTI 0-7 Return status -
8 (T) This bit is set (on) while the request 

using this block is executing; it is 
reset when the request terminates. 
The system controls this bit; user 
should not change it. In MOD 600, can 
be tested only with $TEST macro call. 

7/79 
A-8 CB08-02A 

'\ 

',,-,./ 

,;(" ". 
~./ 



( 

Item 

$AF 
(cont) 

l+$AF 

TableA-4 (cont). Contents of I/O Request Block 

Label Bi t (s) Contents 

I CT 1 9 (W) Wait bit - set by user if the request
ing task is not to be suspended pend
ing completion of the request that 
uses this IORB. 

(cont) 

I CT2 

A(U) User bit. User mayor may not use 
this bit; the system does not change 
it. 

B(S) Release semaphore indicator. 

C 

o = No release, 1 = Release, on com
pletion, semaphore item named in 
I SEM. 

Must be zero. 

D(R) Return IORB indicator. 

o = No dispatch. 1 = Dispatch task 
request block named in I RRB after re
quest timeout. If 1, system executes 
$RQTSK, using I RRB, when the task 
terminates. -

E(D) Delete IORB indicator, used usually 
with the B(8) and D(R) bits. 

F 

0-7 

8 (IBM) 

9 (B) 

o = No delete. 1 = Delete and when 
task terminates, return memory to 
pool where IORB is first entry of 
its memory block. 

Implicit task start address. Must 
always be 1 for IORB. 

Log ical resource number (LRN); ident i
fies device to be used. 

IBM-type request. Changes interpre
tation of I DVS to task word, and of 
I RSR and I-ST to configuration words 
A-and B respectively. 

Byte index: O=buffer begins in left
most byte of word, l=buffer begins 
in rightmost byte. 

A-9 
7/79 
CB08-02A 

I 



Table A-4 (cont). Contents of I/O Request Block 

Item 

l+$AF 
(con t) 

Label Bi t (s) 

I CT2 A(P) 
(con t) 

Contents 

Private space; reserved for system 
use. 

B(E) Extended IORB indicator. 

2+$AF I ADR 

2+2*$AF I RNG 

3+2*$AF I DVS 

4+2*$AF I RSR 

5+2*$AF I ST 

6+2*$AF I EXT 

C-F 

0-15 
0-31 

0-15 

0-15 

0-15 

0-15 

0-7 

8-15 

o = Standard (nonextended) IORB. 
1 = IORB extended to at least 6+2*$AF 
items. Set by user. (See I_EXT 
below. ) 

Function code. Driver or LPH func
tion, see Table 6-1. 

Buffer address, SAF 
B~ffer address, LAF 1- or 2-word 
pointer. 

Range - number of bytes to be trans
ferred. Used as input field for 
cartridge disk or mass storage unit. 

Device-specific information. 

Residual range. Indicates the number 
of bytes not transferred. Filled in 
by the system on completion of the 
order. Used by the cartridge disk and 
mass storage unit drivers as a data 
offset value. 

Modified device status; shows mapping 
of hardware status into software 
status format. See Table 6-4. Set 
by user as input field high-order'bits 
of sector number of mass storage unit. 
Set by system after I/O completion. 

Left byte: Number of words, in 
binary, in the IORB extension, not in
cluding this I EXT word. 

Right byte: Number of words, in 
binary, in physical I/O part of IORB 
extension, not including this I EXT 
word. This count must be less than 
or equal to the toa1 extension length 
specified in the left byte (0-7). 

A-10 CBOS 



( 

( 

Table A-4 (cont). Contents of I/O Request Block 

Item Label Bit(s) Contents 

6+2*$AF I EXT 8-15 This word is present only when the 
(con t) (cont) (con t) B(E) bit in I CT2 is l. (See the 

GCOS 6 Communications processing 
manual for description of IORB 
extensions.) 

Table A-5. Summary of IORB Fields for Operator Interface 

Item Label 

$AF I CTI 

l+$AF I CT2 

2+$AF I ADR 

Bit(s) 

9 (W) 

0-7 

Contents 

For a $OPMSG call, the setting of the 
W-bit in the output IORB controls re
turn to the caller. For a $OPRSP 
call, the setting of the W-bit in the 
input lORB controls return to the 
caller; the setting of the W-bit in 
the output IORB has no significance. 
For either call, return to the caller 
is immediate if the significant W-bit· 
is on. If the significant W-bit is 
off, return to the caller occurs after 
the order is completed. 

LRN=O 

9(B) Must be off if the input/output buffer 
begins at the left byte of the word 
whose address is contained in word 3 
(I ADR) of this IORS. Must be on if 
the input/output buffer begins at the 
right byte. 

0-15 

0-15 

The word address of the message buffer 
(~ich contains an output message or 
is to receive an input message) • 

The buffer size in bytes. This is the 
length of an output message or the 
maximum length allowed for an input 
message. 

SEMAPHORE REQUEST BLOCK FORMAT 

Figure A-6 shows the format of the semaphore request block; 
Table A-6 shows it contents. 

A-II CB08 



o I 1 ~ 2 I 3 I 4 I 5 I 6 I 7 - I 8 I 9 I Al B ~ C I DIE I F 

C~AF}S_RRBiS_SEM REQUEST BLOCK POINTER/SEMAPHORE NAME 

o T..:...LNK RESERVED FOR SYSTEM USE 

$AF S CT1 RETURN STATUS T W U S 0 R D 

1+$AF S_CT2 -1 0 0 0 0 0 0 0 

SEMAPHORE IDENTIFIER 

Figure A-6. Format of Semaphore Request Block 

Table A-6. Contents of Semaphore Request Block 

Item Label Bit(s) 

-$AF S RRB 0-15 

I -1 S SEM 

o S LNK 0-15 

$AF S CTI 0-7 

8 (T) 

9-(W) 

A (U) 

B (S) 

Contents 

Depending on theS or R bits of S CTl, 
this word contains a task request-block 
pointer (R-bit on), or a semaphore name 
(S-bit on). Set by user; used by system 
when request terminates. 

Reserved for system use. 

Return status 

This bit is set (on) while the request 
using the block is executing; it is reset 
when the request terminates. The system 
controls this bit; user should not change 
it. In MOD 600, can be tested only with 
$TEST macro call. 

Wait bit - set if the requesting task is 
not to be suspended pending the comple
tion of the request that uses this block. 

User bit. User mayor may not use this 
bit; the system does not change it. 

Release semaphore indicator. 

1 

1 

o = No release, 1 = Release, on completion, 
semaphore i tern named in S _SEM. /( '\ 

A-12 
7/79 
CB08-02A 

I 

'---/ 



( 

( 

Table A-6 (cont). Contents of Semaphore Request Block 

Item Label Bit(s) 

$AF 
(cont) 

S CT1 
(cont) 

C 

D (R) 

Contents 

Must be zero. 

Return semaphore RB indicator. 

o = no dispatch. 1 = Dispatch task request I 
block named in S RRB after request time-

E (D) 

out. If 1" system executes $RQTSK, 
using S_RRB when the task terminates. 

Delete SRB indicator, used usually with 
the B(8) a~d D(R) bits. 

o = No delete. 1 = Delete and when task 
terminates, return memory to pool where 
SRB is first entry of its memory block. 

F Implicit task start address. Must always 
be 1 for SRB. 

l+$AF S CT2 0-7 Value is -1. 

8-14 Must be zero. 

15 Must be one. 

2+$AF S ADR 0-15 Semaphore identifier - two ASCII 
characters. 

TASK REQUEST BLOCK FORMAT 

Figure A-7 shows the format of the task request block; 
Table A-7 shows its contents. 

~ 

-$AF' 
{-1 }T_RRB/T_SEM 

o LLNK 

1+$AF T_CT2 

2+$AF T _ADR 

o I 1 I 2 I 3,415,6171819IAI BIC I 

REQUEST BLOCK POINTER/SEMAPHORE NAME 

RESERVED FOR SYSTEM USE AS A POINTER 

RETURN STATUS T W U S 0 

LRN 0 0 0 0 0 

START ADDRESS IF 1=0 

BEGINNING OF ARGUMENT LIST 

Figure A-7. Format of Task Request Block 

A-l3 

DIE I F 

R 

0 

D I 

0 0 

7/79 
CB08-02A 



Item 

-$AF 

I 
-1 

o 

SAF 

I 

Table A-7. Contents of Task Request Block 

Label 

T LNK 

T CT1 

Bit(s) 

0-15 

0-15 

0-7 

Contents 

Depending on the condition of the S or 
R bits of T CT1, this word contains a 
task request block pointer (R-bit on), 
or a semaphore name (S-bit on). Set by 
user, used by system when request 
terminates. 

Reserved for system use. 

Return status 

8 (T) This bit is set (on) while the request 
using this block is executing; it is 
reset when the request terminates. The 
system controls this bit; the user 
should not change it. In MOD 600, can 
be tested only with STEST macro call. 

9(W) Wait bit - set by user if the requesting 
task is not to be suspended pending the 
completion of the request that uses this 
block. 

A(U) User bit. User mayor may not use this 
bit; the system does not change it. 

B(S) Release semaphore indicator. 

C 

D (R) 

E (D) 

o = No release, 1 = Release, pn comple
tion, semaphore item named in T_SEM. 

Must be zero. 

Return task RB indicator. 

o = No dispath. 1 = Dispatch task re
quest block named in T RRB after request 
timeout. If 1, system-executes $RQTSK, 
using T RRB when the task terminates. 

Delete TRB indicator; used usually with 
the B(S) and D(R) bits. 

o = No delete. 1 = Delete and when task 
terminates, return memory to pool where 
TRB is first entry of its memory block. 

A-14 
7/79 
CB08-02A 

--------------

If'"' 

\l_/ 



Table A-8 (cont). 

Item Label 

$AF MC MAJ 

Message Group Control Request Block (MGCRB) 

Bit(s) 

0-7 

8 (T) 

9 (W) 

A (U) 

B (S) 

C 

D (R) 

E (D) 

F 

Contents 

Major status. 

Left byte: reserved for system 
use. 

This bit is set (on) while the re
quest using this block is execut
ing; it fs reset when the request 
terminates. The system controls 
this bit; user should not change 
it. In MOD 600, can be tested only 
with $TEST macro call. 

Wait bit - set if the requesting 
task is not to be suspended pending 
the completion of the request that 
uses this block. 

User bit. User mayor may not use 
this bit; the system does not 
change it. 

Release semaphore indicator. 
Values: O=No release, l=Release, 
on closeout, of semaphore which 
must be in MC as -1. 

Must be zero. 

Return request block indicator. 
Values: O=No dispatch, l=Dlspatch 
of request block whose address must 
be contained in MC as -$AF, after 
clo~eout of this request. System 
executes $RQTSK using the address 
of the request block contained in 
MC as -$AF upon request 
term ination. 

Delete request block. Values: 
O=No delete, l=Delete, and return 
memory to the pool where MGCRB 
is the first entry of its memory 
block. 

I/O bit. Must be set. 

A-17 
7/79 
CB08-02A 

I 



Table A-8 (cont). Message Group Control Request Block (MGCRB) 

Item Label. Bit(s) Contents 

l+$AF MC OPT General options: -
0-7 Reserved for system use. 

8 Must be O. 

9 Byte index: 0 = Buffer begins in 
leftmost byte of 
the word. 

1 = Buffer begins in 
rightmost byte. 

A Must be o. 

B Must be 1 (extended MGCRB) • 

C-F Must be O. 

2+$AF MC BIF Address Pointer -
0-15 (SAF) Buffer pointer. 

0-31 (LAF) Buffer pointer. 

2+2*$AF MC BSZ O-F Buffer range. 
-

3+2*$AF MC DVS - Record-type code. 

MC REC O-F On send, insert record-type code. 
-

On receive, return assigned 
record-type code. 

4+2*$AF MC RSR O-F Residual range. 
-

5+2*$AF MC MRU 0-7 Left byte: end message recovery - unit (MRU) • Reserved for system 
use. 

MC WTI 8-F Right byte: wait test indicator. 
-

00 = Return null value 
to application. 

01 = Wait 

A-18 CB08 



(- Table A-8 (cont). Message Group Control Request Block (MGCRB) 

Item Label Bit(s) Contents 

6+2*$AF MC EXT Extension mechanism. -
0-7 Left byte: binary value of 

13+2*$AF, i.e., number of words in 
I • 

the extension word. MGCRB followlng 

Right byte: must be hexadecimal 7. 

7+2*$AF Next seven words. Reserved for system physical I/O use. 

14+2*$AF MC FNC 0-7 Left byte: function. Reserved for - system use. 

MC REV 8-F Right byte: revision. Must be - hexadecimal 1. 

15+2*$AF MC MGI Message group i .d • -
O-F Returned in the $MINIT and $MACPT 

macro calls. 

16+2*$AF MC LVL Enclosure level. -
0-7 Left byte: enclosure level 

requested. 

8-F Right byte: enclosure level de-
tected according to following ASCII 
values: 

0 = Not end of record 
I = End of record 
2 = End of quarantine unit 
5 = End of message. 

17+2*$AF MC PCI O-F Must be o. -
18+2*$AF Me VDP Address Name-list pointer. -

0-15 (SAF) Must be o. 
0-31 (LAF) Must be O. 

18+3*$AF MC TGI O-F Reserved for system use. -

A-19 CB08 



I 

Table A-8 (cont). Message Group Control Request Block (MGCRB) 

Item Label Bit(s) Contents 

19+3*$AF MC TSK Address Pointer. -
0-15 (SAF) Reserved for system use. 
0-31 (LAF) Reserved for system use. 

19+4 *$AF MC NPI O-F Must be o. -

Table A-9. Message Group Initialization Request Block (MGIRB) 

Item Label 

o MIaS 

$AF MI MAJ 

Bit(s) 

Address 

0-15 (SAF) 
0-31 (LAF) 

0-7 

8 (T) 

9 (W) 

A (U) 

B (S) 

C 

Contents 

Pointer: reserved for system use. 

Major status. 

Left byte: reserved for system 
use. 

This bit is set (on) while the 
request using this block is ex
ecuting; it is reset when the re
quest terminates. The system 
controls this bit; user should not 
change it. In MOD 600, can be 
tested only with $TEST macro call. 

Wait bit - set if the requesting 
task is not be suspended pending 
the completion of the request 
that uses this block. 

User bit. User mayor may not use 
this bit; the system does not 
change it. 

Release semaphore indicator. 
Values: O=No release, l=Release, 
on closeout, of semaphore which 
must be in MC as -1. 

Must be zero. 

A-20 
7/79 
CB08-02A 



Item 

$AF 
(cont) 

l+$AF 

2+$AF 

2+2*$AF 

3+2*$AF 

4+2*$AF 

S+2*$AF 

6+2*$AF 

Table A-9 (cont). Message Group Initialization 
Request Block (MGIRB) 

Label Bit(s) 

MI MAJ D(R) 
( cant) 

MI OPT 

MI BUF 

MI BSZ 

MI MPD 

MI RSR 

MI MDE 
MI lOP 

MI EXT 

E (D) 

F 

0-7 
8-A 
B 
C-F 

Address 
0-15 (SAF) 
0-31 (LAF) 

O-F 

O-F 

O-F 

0-7 
8-F 

0-7 

8-F 

Contents 

Return request block indicator. 
Values: O=No dispatch, l=Dispatch 
of request block whose address must 
be contained in MC OS -$AF, after 
closeout of this request. System 
executes $RQTSK using the address 
of the request block contained in 
MC. OS -$AF upon request 
teFmination. 

Delete I/O request block. Values: 
O=No delete, l=Delete, and return 
memory to the pool where MGIRB is 
the first entry of its memory 
block. 

I/O bit. Must be set. 

General options. 

Reserved for system use. 
Must be O. 
Must be 1 (extended MGIRB). 
Must be O. 

Pointer. 
Must be O. 
Must be O. 

Buffer range. 
Must be O. 

Message path description identi
fier. Must be hexadecimal 1. 

Residual range. 
Reserved for system use. 

Left byte: 
Right byte: 

must be O. 
must be O. 

Extension mechanism. 

Left byte: binary value of 
31+2*$AF, i.e., number of words in 
MGIRB following the extension word. 

Right byte: must be hexadecimal 7. 
7/79 

A-21 CB08-02A 



Item 

7+2*$AF 

14+2*$AF 

15+2*$AF 

16+2*$AF 

18+2*$AF 

19+2*$AF 

20+2*$AF 

21+2*$AF 

Table A-9 (cont). Message Group Initialization 
Request Block (MGIRB) 

Label Bit(s) Contents 

Next seven words. Reserved for system physical I/O use. 

M! FNC Function. -
0-7 Left byte: reserved for system 

use. 

MI REV Revision. -
8-F RLght byte: must be hexadecimal I. 

MI MGI Message group i • d. -
O-F Returned in the $MINIT and $MACPT 

macro calls. 

MI PCM 
(Two O-F Must be O. 
words) O-F Must be o. 

MI ADT Address type. -
0-7 Left byte: address type 

(initiator); must be hexadecimal l. 

8-F Right byte: address type 
(acceptor); must be hexadecimal 1. 

MI NWI O-F Must be o. -
MI NDI O-F Must be O. -
MI MBI Initiator mailbox name. -
(Six O-F Must be from I to 12 ASCII 
words) characters, blank-filled, left 

O-F justified. 

O-F 

O-F 

O-F 

O-F 

A-22 CB08 

,F-" 
~-.~ 

rf -" 
\(,/ 



Item 

27+2*$AF 

2S+2*$AF 

29+2*$AF 

3S+2*$AF 

36+2*$AF 

37+2*$AF 

38+2*$AF 

3S+3*$AF 

( 

Table A-9 (cont). Message Group Initialization 
Request Block (MGIRB) 

Label Bi t (s) Contents 

MI NWA O-F Must be O. -
MI NDA O-F Must be O. -
MI MBA Acceptor mailbox name. -
(Six O-F Must be from I to 12 ASCII charac-
words) ters, blank-filled, left justified. 

O-F 

O-F 

O-F 

O-F 

O-F 

MI_QSZ O-F Initiator - maximum size of quaran-
tine unit. 

MI CNT O-F - Count of number of active messages 
in the mailbox. Returned with 
$MCMG macro call. 

MI TGI O-F Reserved for system use. -
MI TSK Address Pointer. Reserved for system use. -
MI SIP Address Reserved for system use. -

A-23 CBOS 



I 

Table A-I0 (cont). Message Group Recovery Request Block (MGRRB) 

Item Label Bit(s) 

$AF MR MAJ 

0-7 

8 (T) 

9 (W) 

A (U) 

B (S) 

C 

D (R) 

E (D) 

F 

Contents 

Major status. 

Left byte: reserved for system 
use. 

This bit is set (on) while the re
quest using this block is execut
ing; it is reset when the request 
terminates. The system controls 
this bit; user should not change 
it. In MOD 600, can be tested 
only with STEST macro call. 

Wait bit - set if the requesting 
task is not to be suspended pending 
the completion of the request that 
uses th is block. 

User bit. User mayor may not use 
this bit; the system does not 
change it. 

Release semaphore indicator. 
Values: O=No release, I=Release, 
on closeout, of semaphore which 
must be in MC as -1. 

Must be zero. 

Return request block indicator. 
Values: O=No dispatch, I=Dispatch 
of request block whose address must 
be contained in MC as -$AF, after 
closeout of this request. System 
executes $RQTSK using the address 
of the request block contained in 
MC as -$AF upon request 
termination. 

Delete I/O request block. Values: 
O=No delete, I=Delete, and return 
memory to the pool where MGRRB is 
the first entry of its memory 
block. 

I/O bit. Must be set. 

A-24 
7/79 
CB08-02A 

\ 

'-- j 



OJ 
I 

U1 

() 

OJ 
o 
(X) 

~ " .... , 

Table B-1 (cant). Macro Calls, Function Codes, and Register Contents 

Contents Before Execution Contents Returned 

Macro Call RI R2 R6 R7 B2 B4 RI R2 R6 R7 B2 B4 

Overlay Handling Functions (cont.) 

$OVST 07/03 Overlay Status Overlay Offset size Base 
id status address 

$OVRSV 07/05 Overlay Offset Overlay Status Overlay Overlay 
id area id area 

table table 
address address 

$OVRLS 07/06 $B5 = Retu n point address Code 
0006 

$OVR:L 07/07 Overlay Offset Request Status Overlay Offset Request 
id block id block 

address address 

$CROAT 07/0A Size of Number of Status Actual Actual Overlay 
overlay entries size of size of area 
area entry in overlay overlay entries table 

area area in address 
overlay 
area 

$OWl 07/OC Overlay B5 = Return point Base Status 
id address address 

$DLOAT 07/0D Overlay Status 
area 
table 
address 

$UNSBU 07/0E Status 

Standard System File I/O Functions 

$USIN 08/00 Record Offset Mdress Status Range File Mdress 
size record TyFe record 

area area 

$USOUT 08/01 Record Offset Address Status Range Address 
size record record 

area 

$eIN 08/02 Record Offset Address Status Range File Address 
size record TyFe record 

area area 

$EROUT 08/03 Record Offset Address Status Range Address 
size record record 

area 

~ 

B5 B7 



txl 
I 

0'\ 

()....,] 
txl ........ 
0....,]· 
0)\.0 
I 

o 

'" )01 

I 

fi", 
\ J 

Macro can Rl 

$NUIN 08/04 

$NUOUT 08/0S 

SteIN 08/06 

$OPMSG 09/00 

$OPRSP 09/01 

$CMSUP 09/02 

$CMSUP 09/03 

$TRPHD OA/OO 

$EN'mP OA/Ol 

$DS"mP OAl02 

$SGTRP OAl03 

$TRPHD 0A/04 

$RDSW 08/00 

$SETSW 08/01 

Contents Before Execution 

R2 R6 R7 82 84 

Standard System File I/O Functions (cont.) 

0,1, Address 
or 2 pathname 

o or 1 Address 
pathname 

o or 1 Address Address 
argllllent pathname 
list 

Operator Interface Functions 

Address 
I~ 

Address 
1008 
list 

Trap Handling Functions 

Address 
handler 

Trap 
nl.lllber 

Trap 
nl.lllber 

Task Trap 
LRN nl.lllber 

Trap 
nl.lllber 

External Switch Functions 

Mask 

Mask 

Contents Returned 

II Rl R2 R6 R7 82 B4 BS 87 

Status Record File Address 
ler¥Jth '1'fpe pathname 

Status Record File Address 
lerqth '1'fpe pathname 

Status Record File Address Address 
ler¥Jth '1'fpe argllllent 

list 
pathname ! 

Status Address 
IORB 

Status Address 
input 
1008 

0002 

0003 

Status 

Status Trap 
nl.lllber 

Status Trap 
nlllwer 

Status 

Status Address 
trap 
handler 

Value I 

switch word I o· 

I 

Value 
I switch 1IIOrd 

---_L-- ---- ---- L....-

r~ . . 
~~ 



'., 

o:J 
I 

U> 

() 
o:J 
a 
(X) 

"'" 
~ 

Table B-1 (cant). Macro Calls, Function Codes, and Register Contents 

Contents Before Execution Contents Returned 

Macro Call Rl R2 R6 R7 82 84 Rl R2 R5 R7 82 B4 

Task Group Control FLIIlctions (cont.) 

SN3GRQ 00/07 Group Abort Status Group 
id id 

$SlBffi 00/08 Group Status Group 
id id 

$I\.crv:; 00/09 Group Status Group 
id id 

$N3GRP OD/DA Group id Abort Status Group id 
code 

$NPROC DO/DB Status 

$BYE DO/DB 0 Status 

$BYE DO/DC 2 Status 

SBYE 00/00 1 Status 

$CUSID DO/DE New Status 
user-id 

Batch Functions 

$R~T DE/DO I\.ddress Status 
argLlDent 
list 

B5 = I\.ddress fixed 
parameter block 

Err"r Handlill3 Function 

$RPrER OF/DO Size Code Status Code 

R2 = Component error code 
B3 = Expansion text address 

File Management Functions 

$I\.SFIL 10/10 Mdress Status 
argLlDent 
structure 

t~~ 

B5 B7 

i 

, 
I 



Ol 
I ..... 

o 

()-..J 

~~ 
CX)I.D 
I 
o 

~ 

Macro Call R1 

$DSFIL 10/15 

$G'I'FIL 10/20 

$RMFIL 10/25 

$CRFIL 10/30 

$RLFIL 10/35 

$RNFIL 10/40 

$S'M'lC 10/45 

$OPFIL 10/50, 
10/51 

$SWFIL 10/SA 

$CLFIL 10/55, 
10/56, 
10/57 

$GIFIL 10/60 

$TIFIL 10/62 

$TOFIL 10/63 

'-- -- ---

~.~ 

",- ) 

Contents Before Execution 

R2 R6 R7 B2 

File Management FUnctions (cont.) 

--- ._-- ---

Contents Returned 

B4 R1 R2 R6 R7 B2 B4 B5 B7 

I 
Address Status 
argll1lent 
structure I 

Address Status I 
argll1le"t 
structure I 
Address Status 
argll1lent 
structure 

Address Status 
argll1lent 
structure 

Address Status 
argLlllent 
structure 

Address Status 
argll1lent 
structure 

Address Status 
argll1lent 
structure 

Address Status 
FIB 

Address Status Address 
FIB FIB I 
Address Status 
FIB 

Address Status 
argll1lent 
structure 

Address Status 
FIB 

Address Status 
FIB 

A , , 
,~_/ ,---j 



00 
I ..... ..... 

(')-....J 
00,
o-....J 
00\0 
I 

o 

~ 

~ 

Macro call 

°$aFIL 

. $WCFIL 

$CRDIR 

$OLDIR 

$OLFIL 

$CWDIR 

$QoIDIR 

$XPA'ftI 

$RmEC 

$WRREC 

$OIREe 

$R<ffiEC 

Contents Before Execution 

Rl R2 R6 R7 B2 

File Management runctions (cont) 

10/64 

10/65 

10/M 

10/80 

10/CO 

10/00 

Data Management Functions 

11/10 
through 
11/16 

11/20 
through 
ll/26 

ll/30, 
11/31 

ll/40, 
11/41 

.~ ~ 

Contents Returned 

B4 Rl R2 R6 R7 B2 B4 B5 B7 I 

Address Status 
argllllent 
structure 

Address Status 
argllllent 
structure 

Address Status 
argllllent 
structure 

Address Status 
receiving 
field I 
Address Status 
receiving 
field 

Address Status 
argllllent 
structure 

Address Status 
argllllent 
structure 

Address Status 
argllllent 
structure 

Address Status 
FIB 

Address Status 
FIB 

Address Status 
FIB 

Address Status 
FIB 

I 



OJ 
I 

I-' 
IV 

(') 
OJ 
o 
(XI 

Table B-1 (cant). Macro Calls, Function Codes, and Register Contents 

Contents Before Execution Contents Returned 

Macro Call Rl R2 R6 R7 BZ B4 R1 R2 R6 R7 B2 B4 

Storage Management Functions 

$RIEL!( 12/00 Address Status 
through FIB 
12/04 

$WRBLK 12/10, Address Status 
12/11 FIB 

$W'IBLK 12/20 Address Status 
FIB 

Identification and Information Functions 

$USRID 14/00 Address Status 
receiving , 
field 

$PERID 14/01 Address Status Address 
receiving receiving 
field field 

$ACTID 14/02 Address Status 
receiving 
field 

$MODID 14/03 Address Status 'Address 
receiving receiving 
field field 

$SYSID 14/04 Address Status 
receiving 
field 

$INSID 14/05 Address Status 
receiving 
field 

$BUID 14/06 Address Status Address 
receiving receiving 
field field 

$ENTID 14/07 Entry Address Status Address 
point entry entry 
name point point 

-~ ---- -
length came 

~ .. '~~ 
I ) 

" /' 

/ 

B5 B7 

I 

i 
I 
I 

o 
\,,--_i 



tll 
I 

I-' 
W 

(')--J 
tll, 
o--J 
co 1.0 
I 
o 
I\) 

~ 

~ 

Macro can 

$GRPID 

$TINFO 

$SYSA.T 

$GINFO 

$HDIR 

$TGIN 

$GRPST 

$MACPT 

$IIUNIT 

$MRECV 

$M'M> 

Rl 

14/08 

14/09 

14/11 

l4/OA 

l4/0B 

l4/OC 

14/0E 

15/01 

15/02 

15/03 

15/04 

AIIIiiIIiltt 

Oontents Before Execution 

R2 R6 R7 B2 B4 IIRl 

Identification and Infonnation Functions (cont) 

Address Status 
user id 

Information Status 
code 

Infor- Status 
mation 
code 

Address Status 
receivin:; 
field 

Address Status 
receivin:; 
field 

Group Address Status 
id receiving 

field 

Intergroup Message Facility FUnctions 

Request Status 
block 
address 

Request Status 
block 
address 

Request Status 
block 
address 

Request Status 
block 
request 

~ 

Oontents Returned I 

R2 R6 R7 B2 B4 IB5 B7 I 

Group 
id 

• 

Informa- Address 
tion 
value 

Operating Hardware SIP or 
system informa- CIP 
identity tion context 
(2,4 or 6) (3 or 4) informa-

tion I 
Infor- Address 
mation 
value 

Address 
receiving 
field 

Address 
receiving 
task grout: 

Address 
receiving 
field 

Request 
block 
address 

Request 
block 
address 

Request 
block 
address 

Request 
block 
address 



I 

W 
I 

I-' 
~ 

(}-..J W, 
O-..J 
ex)\o 
I 
o 
I\l 
:J:I' 

I 

Macro can Rl 

$MSEND 15/05 

$M(X; 15/07 

$USMSG 17/00 

$USRSP 17/01 

$RQ'lML 17/03 

SRL'lML 17/04 

$SDL 18/00 

$ACTRI lE/Ol 

$J\C'lW1 lE/02 

$AC'IDI lE/03 

$ACTOP lE/04 

$AC'OCL IE/OS 

$ACUPD lE/06 

n 
'" / 

Contents Before Execution 

R2 R6 R7 82 

Intergroup Message Facility FUnctions (cont) 

Intergroup and User Tenninal FUnctions 

LRN Release 
status 
code 

Communications Function 

Channel Address 
m.lllber device 
or 0 pathname 

Accounting FUnctions 

Record 
length 

Field Update 
index value 
value 

84 Rl R2 

Request Status 
block 
address 

Request Status 
block 
address 

Address Status 
IGRB 

Address Status 
IGRB 
list 

Request Status 
block 
address 

Status 

Address Status 
telephone 
n\lllber 

Address Status 
receivirq 
area 

Record Status 
Address 

Status 

Status 

Status 

Status 

--

/' 

Contents Returned 

R6 R7 82 

Record 
leB;Jth 

--

84 

Request 
block 
address 

llequest 
block 
address 

Address 
IGRB 

Request 
block 
address 

85 87 

n 
~-j 

• 

• 



1 

I 
I 
I 
I 

C 
I 
I 
w 
z 
:J 
CJ z 
o 
...J 
c( 

t
:::> 
(.) 

('~ 
. I 

I 
I 
I 
I 
I 
I 
I 
I 

HONEYWELL INFORMATION SYSTEMS 
Technical Publications Remarks Form 

SERIES 60 (LEVEL 6) 
TITLE GCOS 6 SYSTEM SERVICE MACRO CALLS 

ADDENDUM A 

ERRORS IN PUBLICATION 

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION 

ORDER NO., CBO 8-02A 

DATED I JULY 1979 

Your comments will be promptly investigated by appropriate technical personnel D 
and action will be taken as required. If you require a written reply. check here 
and furnish complete mailing address below. 

FROM:NAME-------------------------------------------
DATE ____________ __ 

TITLE ________________________________________ ___ 

COMPANY------________________________________ __ 

ADDRESS ______________________________________ ___ 



PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms 

I II II I 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 39531 WALTHAM. MA02154 

POSTAGE WILL BE PAID BY ADDRESSEE 

HONEYWELL INFORMATION SYSTEMS 
200 SMITH STREET 
WALTHAM, MA 02154 

ATTN: PUBLICATIONS, MS486 

Honeywell 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

I 
I 
I 
I 
I , 
r'~ y 
uJ 
Z 
::; 
d 
z 
o 
..J 
« 
I
:::> 
u 

I 
I 
I 
I 
I 
I ~ 
I ::; 
I <.;) 

I ~ 
-r~ 
I 0 

I 6 
I OJ.. 

I 
I 
I 
I 
I 
I 
I 
,1/ 

\I'-•. ~ 

w 
Z 
..J 

<.;} 
Z 

~g 
« 
o 
..J 
o 
OJ.. 


