
(-

SERIES 60 (LEVEL 6)

GCOS 6 MOD 400 SYSTEM CONCEPTS
ADDENDUM A

SUBJECT

Changes and Additions to the Manual

SPECIAL INSTRUCTIONS

Insert attached pages into Revision 0 of the manual dated January 1978 (see
Collating Instructions). Except for Appendix C which has been completely
revised, change bars indicate new and changed information; asterisks denote
deletions.

Note:
Insert this addendum cover behind the manual cover to indicate that
the manual is updated with Addendum A.

SOFTWARE SUPPORTED

This update supports Release 0110 of the Series 60 (Level 6) GCOS 6 MOD 400
Software System. For any later release of MOD 400 software, see the Manual
Directory of the latest System Concepts manual to ascertain whether this
manual supports that release.

ORDER NUMBER

CB20A, Rev. 0 June 1978

20997
3.5678
Printed in U.S.A. Honeywell

COLLATING INSTRUCTIONS

To update the manual, remove old pages and insert new pages as follows:

Remove

iii, blank
v, vi
vii, blank
1-1,1-2

1-3,1-4

1-5,1-6

1-7, l-S
1-9, blank
Section 2
3-5 through 3-S

3-9,3-10
3-11, blank
4-1,4-2

4-3,4-4
5-1,5-2
5-5 through 5-10

5-11,5-12
6-5,6-6

Section 7
Appendix C
D-3, D-4

© 1978, Honeywell Information Systems Inc.

Insert

iii, iv
v, vi
vii, blank
1-1, blank
1-1.1,1-2
1-3, blank
1-3.1,1-4
1-5,1-6
1-6.1, blank
1-7,1-S
1-9, blank
Section 2
3-5 through 3-S
3-S.1, blank
3-9,3-10
3-11, blank
4-1,4-2
4-2.1, blank
4-3,4-4
5-1,5-2
5-5 through 5-10
5-10.1, 5-10.2
5-11,5-12
6-5,6-6
6-6.1, 6-6.2
Section 7
Appendix C
D-3, D-4

File No.: 1S13
6/78
CB20A

..

MANUAL DIRECTORY
(~

The following publications constitute the GCOS 6 Mod 400 manual set.
They support Release 0110 of GCOS 6 Mod 400 and fully describe its major
components.

Order
No. Manual Title Revision Date

CB01 GCOS 6 Program Preparation 1 June 1978
CB02 GCOS 6 Commands 1 June 1978
CB03 GCOS 6 Communications 1 June 1978
CB04 GCOS 6 Sort/Merge 0 January 1978
CB04A Addendum A June 1978
CB05 GCOS 6 Data File Organizations and Formats 0 January 1978
CB05A Addendum A June 1978
CB06 GCOS 6 System Messages 0 January 1978
CB06A Addendum A June 1978
CB07 GCOS 6 Assembly Language Reference 1 June 1978
CB08 GCOS 6 System Service Macro Calls 1 June 1978
CB09 GCOS 6 RPG Reference 0 January 1978
CB09A Addendum A June 1978
CB10 GCOS 6 Intermediate COBOL Reference 1 June 1978
CB20 GCOS 6 Mod 400 System Concepts 0 January 1978
CB20A Addendum A June 1978
CB21 GCOS 6 Mod 400 Program Execution 0 January 1978

and Checkout
CB21A Addendum A June 1978
CB22 GCOS 6 Mod 400 Programmer's Guide 0 January 1978
CB22A Addendum A June 1978
CB23 GCOS 6 Mod 400 System Building 1 June 1978
CB24 GCOS 6 Mod 400 Operator's Guide 0 January 1978
CB24A Addendum A June 1978
CB25 GCOS 6 Mod 400 FORTRAN Reference 0 January 1978
CB26 GCOS 6 Mod 400 Entry-Level COBOL 0 January 1978

Reference
CB27 GCOS 6 Mod 400 Programmer's Pocket Guide 1 July 1978
CB28 GCOS 6 Mod 400 Master Index 0 April 1978
CB30 Remote Batch Facility User's Guide 0 January 1978
CB30A Addendum A June 1978
CB31 Data Entry Facility User's Guide 1 June 1978
CB32 Data Entry Facility Operator's Quick 0 June 1978

Reference Guide
CB33 Level 6/Level 6 File Transmission Facility 1 June 1978

User's Guide
CB34 Level 6/Level 62 File Transmission Facility 0 January 1978

User's Guide
CB34A Addendum A February 1978
CB34B AddendumB June 1978
CB35 Level 61Level 64 (Native) File Transmission 0 January 1978

Facility User's Guide
CB35A Addendum A June 1978
CB36 Level 6/Level 66 File Transmission 1 June 1978

Facility User's Guide

(-
6/78

iii CB20A

CB37 Level6/Series 200/2000 File Transmission 0 January 1978
Facility User's Guide

CB37 A Addendum A June 1978
CB38 LeveI6/BSC2780/3780 File Transmission 1 June 1978

Facility User's Guide
CB39 Level6/Level 64 (Emulator) File Trans- 0 January 1978

mission Facility User's Guide
CB39A Addendum A June 1978
CB40 IBM 2780/3780 Workstation Facility 0 June 1978

User's Guide
CB41 HASP Workstation Facility User's Guide 0 June 1978
CB42 Level 66 Host Resident Facility User's Guide 0 June 1978
CB43 Terminal Concentration Facility User's Guide 0 June 1978

In addition to the GCOS 6 Mod 400 manual set, the following pUblica
tions are available.

Order
No. Manual Title

AS22
AT04
AT97
FQ41
CC54
CC62
CB77
CC77

Honeywell Level 6 Minicomputer Handbook
Level 6 System and Peripherals Operation Manual
MLCP Programmer's Reference Manual
Writable Control Store User's.Guide
INFO 6 User's Guide
INFO 6 Quick Reference Pocket Guide
TOTAL Data Base Management System Reference Manual
Level 6 Technical Notes

iv 6/78
CB20A

,

I

CONTENTS

Page

Section 1. System Characteristics 1-1
Software Features 1-1
Operating Features 1-2
Summary of System Features 1-2
Guide to Using the Manual Set 1-3

Applications Programmer's Manual
Guide 1-3

System Programmer's Manual Guide .. 1-5
Operator's Manual Guide 1-5
Guide for Using the Manuals in a

Distributed Processing Environment .. 1-6
Software Document Set 1-6

Section 2. Software Facilities 2-1
General Features of Software 2-1
Interfaces to Operating System 2-2

Command Language 2-2
Commands for Execution Control .. 2-2
Commands for Directory and File

Control 2-2
Commands for Program

Preparation 2-3
Commands for Utility Software

Execution 2-3
Interactive Commands 2-3

Operator Commands 2-3
Operator Commands for

Execution Control 2-3
Operator Commands for Directory,

File and Device Control 2-3
Operator Commands to Monitor

the System 2-3
System Service Macro Calls 2-4

Macro Calls for Execution Control .. 2-4
Macro Calls for Directory and File

Control 2-4
Operating System Software 2-4

Monitor Software 2-4
File System Software 2-5
Physical Input/Output Software 2-5
Communications Software 2-5

Program Preparation Software 2-6
Utility Software 2-7

Sort/Merge 2-8
Run-Time Routines 2-9

Run-Time I/O, Routines 2-9
FORTRAN Run-Time Routines 2-9

Hardware Simulators 2-9

v

Page
Configuration Load Manager 2-10
BES-MOD 400 Compatibility 2-10

Section 3. File System 3-1
File and Pathname Concepts 3-1

Directories 3-1
Files 3-2
Pathnames 3-2

Naming Conventions 3-2
Pathname Construction 3-2

Absolute Pathnames 3-3
Relative Pathname and Working
Directory 3-4

Working Directory 3-4
Device Pathnames 3-4

Special Pathname Conventions 3-6
Star Convention 3-6
Equal Convention 3-7

Data File Organizations and Access 3-7
Disk File Organizations 3-7

Tape File Organization 3-8
Data File Access 3-8

Access Control Lists 3-8.1
File Concurrency 3-8.1
System File Concurrency 3-8.1

Record Locking (Shared File
Protection) 3-9

File System Buffered Operations 3-9
Unit Record and Terminal Buffered
Operations 3-9

Buffered Read Operations 3-10
Buffered Write Operations 3-10

Disk and Magnetic Tape Buffered
Operations 3-11

Deferred Printing 3-11

Section 4. System Access 4-1
System Configuration and Environment

Definition 4-1
Accessing the System 4-2

Ways to Access the System 4-2
Logging In 4-2

The Secondary User 4-2
Operator Assigned Access 4-2
User Designed Access 4-2

The Activated Lead Task 4-2.1
Command Environment 4-2.1

6/78
CB20A

I
I

I

I

I

Page
Command Level 4-3

Achieving Command Level 4-3
Functions Performed at Command

Level 4-4
Command Line Format 4-4

Arguments 4-4
Spaces in Command Lines 4-5
Parameters 4-5
Protected Strings 4-5

EC Files 4-5
Startup EC Files 4-6

Section 5. Execution Environment 5-1
Task Groups and Tasks 5-1

Application Design Benefits of Task
Group Use 5-2

Intertask Communication 5-2
Operating System Control of Task

Groups 5-3
Generating Task Groups and Tasks 5-3
Characteristics of Task Groups and

Tasks 5-3
Task Group Identification 5-4

Memory Usage 5-4
Memory Layout 5-5
Online Pools 5-5

Exclusive Online Pools 5-6
Nonexclusive Online Pools 5-7
Sharing Memory Pools 5-7

Batch Pool and Roll-out 5-8
Batch Task Group 5-9

Operating System Area 5-9
System Pool Area 5-9

System Task Group 5-9
Batch Task Group Control

Structures 5-10
File Control Structures in the

System Pool Area 5-10
Pool Attributes 5-10

Protected Memory Pools 5-10
Contained Memory Pools 5-10
Unprivileged Memory Pools 5-10
Serial-Usage Memory Pools 5-10
Multi-Pool Memory Protection 5-10
Memory Layout 5-10.1
Selecting Memory Pool Attributes

for Task Group Execution 5-10.1
Bound Units 5-iO.2

Overlays 5-10.2
NonfIoatable and Floatable

Overlays 5-10.2
Resolving References 5-11
Sample Overlay Layout 5-11

Shareable Bound Units 5-11
Loading Bound Units (Search Rules) .. 5-12

vi

Page

Section 6. Task Execution 6-1
Interrupt Priority Levels 6-1

Processing Priority Levels 6-1
Interrupt Save Area (ISA) 6-2
Control of Priority Levels 6-2

Trap Handling 6-3
Operating System Features Affecting

Task Execution , 6-3
Peripheral Device Assignments 6-3
Priority Assignments for Tasks 6-4

Assigning Priorities to System
Tasks 6-4

Assigning Priorities to Application
Tasks 6-5

Logical Resource Number (LRN) 6-5
Device LRNs 6-5
Application Task LRNs 6-5

Logical File Number (LFN) 6-6
Inter/Intra Task Group

Communication 6-6
Language Considerations 6-6
Use of Common Files 6-6
Use of the Message Facility 6-6
Mailbox Preparation 6-6
Task and Resource Coordination ... 6-6

Task Requests 6-6
Semaphores 6-6

How the Operating System Handles
Tasks 6-7

Example of Monitor Interaction with
User Tasks 6-8

Section 7. Distributed System Facilities ... 7-1
Remote Batch Facility (RBF) 7-1

RBF Configuration 7-2
Remote Batch Operations 7-2

Data Entry Facility (DEF) 7-2
Interface with Programs 7-3
DEF Operations 7-3
DEF Supervisory Functions 7-3
DEF Utilities 7-3
DEF Configuration 7-3

File Transmission between Level 6 and
Other Computers 7-3

Terminal Concentration Facility 7-5
IBM Workstation Facilities 7-5

2780/3780 Workstation Facility
Capabiiities 7-5

HASP Workstation Facility Capabilities .. 7-6
Host Resident Facility 7-6

Appendix A. BES/MOD 400
Compatibility A-I

Executing BES Executive System
Services under MOD 400 A-I

6/78
CB20A

."-. ..

I

(/

I

(

I

Page
Honeywell-Supplied Accommodation

Package A-I
Completely Emulated BES System

Services A-I
BES System Services Emulated

with Restrictions A-2
BES System Service Functions

Not Emulated. A-2
User-Coded Conversion A-2

Executing BES Programs under
MOD 400 A-3

Converting BES Programs to
MOD 400 A-3

Appendix B. Programming Conventions .. B-1
Module and File Name Conventions. . .. B-1
Calling Sequence for External

Procedures .. B-2
Register Conventions B-3
Assembly Language Program

Independence B-3
Self-Modifying Procedures B-3

Appendix C. Hardware Supported. C-l
Hardware Resources C-l
Equipment Requirements C-2

Minimum Equipment for Program
Preparation. C-2

Minimum Equipment for Online
Applications. C-2

Hardware Supported C-3

Appendix D. Glossary D-l

ILLUSTRATIONS
Figure

1-1.

1-2.

1-3.

1-4.

Page

Application Programmer's Guide
to Manuals 1-4

System Programmer's Guide to
Manuals 1-5

Operator's Guide to Manuals 1-6

Guide for Using the Manuals in a
Distributed Processing
Environment 1-6.1

vii

Figure
2-1.
3-1.
5-1.

5-2.

5-3.
6-1.

6-2.

6-3.

B-1.
C-1.

Page
GCOS Software 2-1
Sample Pathnames 3-5
Exclusive Memory Pools and

Contents 5-6
Exclusive and Nonexclusive Pool

Sets 5~8
Overlays in Memory 5-12
Format of Level Activity

Indicators 6-1
Order of Interrupt Vectors and

Format of Interrupt Save Areas
(SAF/LAF) 6-2

Example of LRN and Priority
Level Assignments to System
Tasks and Devices 6-5

Argument List B-2
Level 6 Hard ware C-l

TABLES
Table
2-1.

3-1.
5-1.

5-2.

6-1.

B-1.
B-2.

C-1.

Intermediate COBOL
Functionality Not Available in

Page

Entry-Level COBOL 2-7
Disk File Concurrency Control 3-8.1
Task Group and Task Functions

Possible from Online or Batch
Dimen~ons 5-4

Comparison of Operating System
Extensions and Shareable Bound
Units 5-12

Priority Level Assignments for
Tasks and Devices 6-4

System Module Name Prefixes B-1
System Program File Name

Suffixes B-2
Hardware Supported C-3

6/78
CB20A

(

('

SECTION 1
SYSTEM CHARACTERISTICS

GCOS 6 MOD 400 software is a disk-based operating system that supports multitasking,
real-time, or data communications applications in one or more online streams. In addition,
program development or other batch type applications can be performed concurrently in a
single batch stream.

GCOS is a multifunctional system, capable of supporting a variety of processing functions.
The user can develop and execute applications software, perform forms data entry, transmit
files to other computers, and enter jobs for execution at remote sites. Terminal concentration
services and IBM workstation facilities are also available. 1

The system can be configured to process different functional applications concurrently.
For example, a user can run his own applications, utilize other system functionality such as
the data collection capability, and communicate with a host processor, all at the same time.

SOFTWARE FEATURES

The operating system includes Monitor, File System, and data communications facilities
as well as an extensive set of program preparation components, utility routines, and debugging
aids. Additionally, the operating system supports various software packages for implementing
a distributed processing environment. Also available are software routines to accommodate
applications developed under the GCOS/BES (Basic Executive System) Operating System.
The Monitor supports the execution of user application tasks and provides a set of system
services that enables users to control execution of individual tasks and to synchronize
multiple tasks with one another and with time-related events. The Monitor controls the
loading of user programs and manages requests for available memory. It provides standard
system trap handling routines for responding to exception conditions and also allows users
to provide their own trap handling routines for user-caused trap conditions.

The File System software offers an extensive set of logical I/O access methods. It provides
device-independent access to any device for sequential files, and direct access to disk files.
In addition the File System software automatically manages the space utilization of mounted
disk volumes, thus allowing users to create, expand, and release disk files as required by
online applications needs.

The operating system offers two levels of communications interface. Remote/local
terminals may be accessed through the sequential file interface of file management, or for
more direct control of the communications environment, by using the systems physical
I/O interface. The communications facility includes line protocol handlers for teleprinter
and VIP devices, binary synchronous communications (BSC), and the polled VIP emulator
(PVE).

The software includes a powerful and comprehensive set of program preparation com
ponents, utilities and debugging aids for applications developments, all running under control
of the Monitor. Programming languages include assembly language, RPG, FORTRAN, and
Entry-Level and Intermediate COBOL. A Commercial Central Processor Model and a Scientific
Instruction Processor (SIP) or equivalent software simulators are available with the system.
The RPG and Intermediate COBOL Compilers generate code for the CIP: the FORTRAN
Compiler generates SIP code. The Assembler supports both CIP and SIP instructions.

1 A host resident facility is available on Series 60 Level 66 central systems; the host resident facility permits use of Level 66
resources to develop applications for the Level 6.

SYSTEM CHARACTERISTICS 1-1
6/78
CB20A

I

I

I

(

(-

The system supports various software packages for implementing functional links to other,
remote processors. These components interface with the communications software to enable
use of the Level 6 in a true distributed processing environment. The various software packages
are described below.

o The file transmission capability supports transmission of files between the Level 6 and
Series 60 (Level 6,62,64, or 66) or Series 2000 processors, using the polled VIP proto
col; or between the Level 6 and non-Honeywell processors, using the BSC protocol.

o The Remote Batch Facility (RBF) permits a Level 6 system to be used for job submission
and output delivery for one or more Series 60 (Level 66) or Series 6000 host processors,
using the Remote Computer Interface (RCI) or High-Level Data Link (HDLC) protocols.
Local processing (such as program development and user application execution) can occur
concurrently with remote batch processing.

o The Data Entry Facility (DE F) provides a data collection capability that includes crea
tion/modification of forms; formatted data input; validation, extraction and verification
of data; and formatted printing of data. The facility supports multiple independent
operator display stations that use VIP devices.

o A Terminal Concentration Facility permits various types of synchronous and asynchro
nous terminals to concurrently connect to a Level 6 and have their message traffic con
centrated (multiplexed) over one or more links to a host processor. The Terminal Concen
tration Facility smooths sporadic terminal traffic patterns, reduces the number of mo
dems and cross-country lines required by multi-terminal applications, and improves total
reliability.

SYSTEM CHARACTERISTICS 1-1.1
6/78
CB20A

*

o IBM workstation facility software includes the IBM 2780/3780 Workstation Facility and
the HASP Workstation Facility. The facilities provide a means of communicating with an
IBM 360/370 host system.

GeOS 6 MOD 400 facilities accommodate applications developed under the GCOS/Basic
Executive Systems (BES). These facilities include utilities to move source and object program
files between the two operating systems, and support of BES system service calls via a special
interface package. Files created under the BES File Manager are supported directly by MOD
400; programs created under BES must be relinked under MOD 400.

OPERATING FEATURES

The operating system supports concurrent execution of multiple tasks running under one
or more task groups. Each task group owns the resources necessary for execution of an applica
tion program (one or more related tasks). The task group runs independently in its own oper
ating environment while sharing the resources of the operating system.

Multiprogramming can be achieved by defining more than one application task group to
be run concurrently. Serial execution of tasks in a task group can be accomplished by step
ping through execution of the tasks in sequence; multitasking can be achieved by causing
tasks in the group to be executed concurrently.

Multiple online task groups can be run concurrently with a single batch task group. The
batch task group (used for program development or a batch-oriented user application) can
be rolled out to a disk to obtain additional memory for online applications.

The number of task groups being run is limited only by the amount of memory available.
Concurrently executing task groups may occupy independent, dedicated memory areas, or
they may contend for space within a memory pool. When one task group is deleted, the
released memory is available to other task groups in the same pool. The Monitor allocates
memory dynamically from pools and can relocate programs at load time. Once a task group
requests execution, it is dispatched according to its assigned priority level. When multiple
tasks share a priority level, they are serviced in a round-robin fashion.

Use of the file system by multiple independent users is facilitated by the arrangement
of file system entries (directories and files) in a tree-structured hierarchy. Each directory
or file is identified by a pathname that indicates the path from the root directory of the
hierarchical structure to the particular directory or file. File reference is simplified through
the use of pathnames relative to a working directory that indicates a user's current position
in the file system hierarchy. Access to sharable files and devices is controlled by file attrib
utes and concurrency procedures.

SUMMARY OF SYSTEM FEATURES

The GCOS 6 software offers the following capabilities:

o Provides a multi-user operating system
o Supports multiple concurrent programming environments, with applications being run

in one batch stream and one or more online streams
o Controls program preparation through the operating system
o Handles program preparation and execution of user applications concurrently
o Handles execution of multiple user applications
o Permits multitask execution within each user application
o Controls the execution sequence of user applications
o Supports real-time operations
o Provides communications support
o Is time and interrupt driven
o Allows device independent programming ,d'

o Supports program overlay capability '\io._j

SYSTEM CHARACTERISTICS 1-2
6/78
CB20A

(,

(

o Provides four programming languages: assembly language, FORTRAN, RPG, and
two levels of COBOL (entry level and intermediate)

o Provides a hierarchical file system with extensive utility support
o Supports four disk file organizations
o Supports code sharing via reentrant programs
o Permits multiple functions that interface with communications facilities to be run con

currently with application development and execution
o Supports file transmission between the Level 6 and other computers
o Provides the Remote Batch Facility, permitting the Level 6 system to be used for job

submission to a host processor
o Provides the Data Entry Facility, permitting forms creation and data collection
o Provides compatibility software for GCOS/BES and GCOS/BES2 programs and files
o Provides a Terminal Concentration Facility, permitting the concentration (multiplexing)

of message traffic.
o Provides IBM workstation facilities, permitting communication between the Level 6 and

an IBM 360/370 system.
o Supports data sharing via the record locking facility.
o Supports file protection via access control commands.

GUIDE TO USING THE MANUAL SET

A guide to the use of the manual set is provided below. Information is tailored for specific
classes of users applications programmers, systems programmers, and operators. (As used in
this guide, the applications programmer writes applications programs; the system programmer
configures the system and defines the environment for each application; the operator operates
the system from the operator terminal.) Included as a separate subsection is a guide for those
who will use the Level 6 in a distributed processing environment.

Applications Programmer's Manual Guide
Figure 1-1 illustrates the suggested sequence for using the manuals. To familiarize yourself

with the system facilities, use the System Concepts manual. To write an application program,
begin by using the Programmer's Guide manual. It illustrates: (I) various ways to gain access
to the system, (2) a sample Editor session, and (3) for application languages, the procedure
for performing program preparation and execution. Working with the small subset of system
commands used within examples is a good approach to learning the system command set.
This approach for getting started assumes that a system programmer has already configured
and started up a suitable application environment.

Through examples, the Programmer's Guide illustrates how to use the system facilities.
Other manuals provide reference material. The Program Preparation manual contains Editor
directives (statements) to create and update an application language source unit. For each
of the languages, the appropriate language reference manual contains the description of
the language statements. Operating system dependencies, if any, that affect how you write
the application are described in the Programmer's Guide. If the application uses commun
ications, refer to the Communications Processing manual. Read the Data File Organizations
and Formats manual if you require a better understanding of a language-supported file
organization that is to be used in an application or if you must calculate the size of a
data file. You can use Monitor macro calls, as described in the System Service Macro
Calls manual, in assembly language programs. Before your program can be entered for
execution, it must be linked as described in the Program Execution and Checkout manual.

For program compilation or assembly and execution, the procedures described in the
Programmer's Guide might be sufficient. To obtain more control over the execution of
your program or utilize the system facilities more completely or efficiently, use the
commands described in the Commands manual. If you wish to use the operator terminal,
read the Operator's Guide to learn how to use that terminal. In many cases, the description
of commands must be supplemented by system concepts described in the System Concepts
manual. Rather than read all the conceptual material at one time, you may find it more

SYSTEM CHARACTERISTICS 1-3
6/78
CB20A

meaningful toe refer to it in conjunction with the appropriate reference material. The
Commands manual also describes the utilities. The Patch, Debug, and Dump utilities are
described in the Program Execution and Checkout manual; file transmission from Level 6
to a host system is described in the appropriate File Transmission manual. Error messages
and return status codes are listed in the System Messages manual.

SYSTEM CHARACTERISTICS 1-3.1
6/78
CB20A

SYSTEM CONCEPTS

INTRODUCTION TO SOFTWARE
FACILITIES
OVERVIEW OF SOFTWARE
COMPONENTS

I
APPLICATIONj PROGRAMMER

PROGRAMMER'S GUIDE

GETTING STARTED
SAMPLE EXECUTION ENVIRONMENTS
SAMPLE EDITOR SESSION
SAMPLE PROGRAM PREPARATION AND
EXECUTION SESSIONS

I
ASSEMBLY, COBOL, FORTRAN,
RPG APPLICATION PROGRAMMER

I
PROGRAM PREPARATION

EDITOR

I
LANGUAGE REFERENCE

LANGUAGE
DESCRIPTION

I
PROGRAMMER'S GUIDE

OPERATING SYSTEM
DEPENOENCIES

I
PROGRAM EXECUTION
AND CHECKOUT

liNKER

I
COMMANDS

~
EXECUTION COMMANDS
UTILITIES

I
PROGRAM EXECUTIOI\;
AND CHECKOUT

PA rCH, DUMP,
DEBUG

J
FIl E TRANSMISSION U lEVEl 6 TO HOST

COMMUNICATIONS
PROCESSING

COMMUNICATIONS

DATA FILE ORGANIZATIONS
AND FORMATS

FILE ORGANIZATION
DESCRIPTION
FILE AND VOLUME
FORMATS

I
SYSTEM SERVICE
MACRO CALLS

MONITOR CALLS
DATA STRUCTURES
DEVICE DRIVERS

OPERATOR'S GUIDE

OPERATOR TERMINAL
USAGE

SYSTEM CONCEPTS

DETAILED SYSTEM
CONCEPTS

SYSTEM MESSAGES

ERROR AND STATuS
MESSAGES

Figure 1-1. Applications Programmer's Guide to Manuals

SYSTEM CHARACTERISTICS 1-4
6/78
CB20A

f'?" "',
[

~_/'

(

(-

System Programmer's Manual Guide
Figure 1-2 illustrates the suggested sequence for using the manuals. The System Building

manual provides you with the configuration directives (statements) and startup procedures
to configure and start up a MOD 400, a Remote Batch Facility (RBF), or a Data Entry
Facility (DEF) system. You must know the conceptual material in the System Concepts
manual in order to successfully use the configuration directives. To tailor an applications
environment suitable for the intended application, you use operator commands described
in the Operator's Guide manual. Error messages are listed in the System Messages manual.
If you are working with an application that runs under the BES operating system, the
System Concepts manual contains MOD 400 and BES compatibility considerations.

SYSTEM PROGHAMMEH

I
SYSTEM BUILDING

SYSTEM CONCEPTS

CDNFIGURATION AND STARTUP PROCEDURES
FOR MOD 400. REMOTE BATCH FACILITY (RBF).
AND DATA ENTRY FACILITY (OEF) OPERA TlNG SYSTEM

CONCEPTS

OPERATOR'S GUIDE

OPERATING ENVIRONMENT
COMMANDS

I I
SYSTEM CONCEPTS SYSTEM MESSAGES

MOD 400 AND BES
COMPATIBILITY

ERROR MESSAGES

Figure 1-2. System Programmer's Guide to Manuals

Operator's Manual Guide
Figure 1-3 illustrates the suggested sequence for using the manuals. Specific operator job

functions must be determined by each installation; a large system might have a person
assigned as an operator; a small system might have each programmer also act as an operator.
The Operator's Guide indicates those system procedures performed through the operator
terminal and describes operator commands used in system operation.

The Programmer's Guide contains examples using commands (described in the Commands
manual) that are similar to operator commands. The System Concepts manual provides an
understanding of the operating system. Note that the Operator's Guide describes using the
operator terminal for operator functions to enter operator commands to the system task
group, or for user functions to enter commands to a user task group. To run the utilities,
use the commands (described in the Commands manual) entered through the operator
terminal functioning as a user terminal. Error messages are listed in the System Message
manual.

SYSTEM CHARACTERISTICS 1-5 CB20

OPERATOR

I
OPERATOR'S GUIOE PROGRAMMER'S GUIDE

OPERATOR PROCEDURES
OPERATOR COMMANOS COMMANDS USED IN EXAMPLES

I--

I
SYSTEM CONCEPTS

COMMANDS

'--- SYSTE:l\I1 DESCRIPTION

UTILITIES

SYSTEM MESSAGES

EHI~OH MESSA(jE5

Figure 1-3. Operator's Guide to Manuals

Guide for Using the Manuals in a Distributed Processing Environment
GCOS 6 Mod 400 supports the use of Level 6 in a distributed processing environment. Using

Honeywell-supplied software packages, processing capability can be assigned to sites remote to
the host computer system. With the functional links provided by Honeywell, a Level 6 can be
configured as a host processor and specialized processing (e.g., forms data entry) assigned to
remote terminals. Also, the user can develop links with non-Level 6 host processors and dis
tribute the total processing load between the host and Level 6.

The software packages available to the user include the Data Entry Facility, Remote Batch
Facility, Terminal Concentration Facility, File Transmission Facility, Host Resident Facility
(Level 66), and IBM workstation facility software. Figure 1-4 indicates the documentation
available for the operation and use of such software. Configuration information, if applicable,
is contained in the System Building manual. Commands and error messages are contained in
the Commands and System Messages manuals respectively.

SOFTWARE DOCUMENT SET

This System Concepts manual briefly describes GCOS software, system features, and
operating concepts. Most of the background information needed to use the reference mate
rial in other manuals of this set is presented in Section 3 through 6 of this manual. Except

SYSTEM CHARACTERISTICS 1-6
6/78
CB20A

(

fli ,

REMOTE DATA
BATCH ENTRY
FACILITY FACILITY
USER USER

""" l ENTRY
REMOTE - ,;,~;W I BATCH
FACILITY GUIDE
USER'S
GUIDE

DATA
ENTRY
FACILITY

- OPERATOR'S
QUICK
REFERENCE:.
GUIDE

FILE
TRANSMISSION
USER

f--

f--

-

f--

L6iL6
USER'S
GUIDE

'W,"' J USER'S
GUIDE

L6iL64
INATIVU
uSI::R'S
GUIDE

L6iL64
IEMULATORI
USE R'S
GUIDE

'-------

L6iL66
USER'S
GUIDE

L6iS200i2000
f-- USER'S

GUIDE

L6i

r- ~~~~~OIBSC3780
GUIDE

LEVEL 66
HOST IBM

TERMINAL RESIDENT WORKSTATION
CONCENTRATION FACILITY FACILITY
USER USER USER

HASP

f-- WORKSTATION
TERMINAL FACILITY
CONCENTRATION USER'S GUIDE
FACILITY
USER'S
GUIDE

IBM
27BOl3780

f-- WORKSTATION

LEVEL 66
FACILITY
USER'S GUIDE

HOST RESIDENT
FACILITY
USER'S GUIDE

Figure 1-4. Guide for Using the Manuals in a Distributed Processing Environment

SYSTEM CHARACTERISTICS 1-6.1
6/78
CB20A

(

for summaries, this material is not duplicated in other manuals and covers the following
subjects:

o Task groups and tasking
o Memory definition and use
o Operating system features
o File system and communications concepts
o Operating environment configuration

This manual is the sole source for reference material on the compatibility of GCOS/BES I
and BES2 programs and files with a MOD 400 system. Programming conventions are pre
sented in Appendix B of this manual, and a glossary of GCOS 6 MOD 400 terms is in
Appendix D.

The contents of other documents in the manual set are summarized briefly below.

o GCOS 6 Program Preparation, Order No. CBOI - Overview of the programming steps to
prepare a program for execution. Suffix conventions for files used in program prepara
tion. Detailed description of Editor. Rules for writing assembly language programs
using SLIC (SAF/LAF independent code).

o GCOS 6 Commands, Order No. CB02 - Description of command line format, task
interrupt break function, activating an application program, and extending the com
mand set. Detailed description of commands, utilities, and language processor execu
tion. Description of additional command line arguments, terminal characteristics at
login, Intersystem Link (ISL) directives, and File Change directives; ASCII and
EBCDIC character sets.

o GCOS 6 Communications Processing, Order No. CB03 - Introduction to communica
tions software. Description of communications processing through COBOL, assembly
language, File System and FORTRAN; sample communications programs; Dump
MLCP (DUMCP) utility; TTY, VIP, and BSC control characters; ASCII and EBCDIC
character sets.

o GCOS 6 Sort/Merge, Order No. CB04 - Description of the Sort and Merge program
features, statement formats, and report contents. Includes file and memory require
ments, operating procedures, sample programs, using Sort as a subroutine, debug mode
execution, and ASCII collating sequence.

o GCOS 6 Data File Organizations and Formats, Order No. CB05 - Description of disk
and magnetic tape data file organizations support for application programs; disk and
magnetic tape record, file, and volume formats; unit record file formats; file and
volume headers; ASCII and EBCDIC character sets.

o GCOS 6 System Messages, Order No. CB06 - Description of messages reported by
system components. Procedure for adding user messages.

o GCOS 6 Assembly Language Reference, Order No. CB07 - Complete description of
all instructions, instruction formats, control statements, types of data handled, and
macro language statements. Description of Scientific Instructions and Commercial In
structions.

o GCOS 6 System Service Macro Calls, Order No. CB08 - Description of macro call
syntax, register and addressing conventions. Detailed description of system services
macro calls for the Monitor and File System and for defining data structures; physical
I/O device drivers; Trap Handler; Monitor and File System data structures; writing a
user device driver; contents of registers for system service macro calls; ASCII and
EBCDIC character set.

o GCOS 6 RPG Reference, Order No. CB09 - Complete description of RPG data proces
sing including: a primer on RPG programming, RPG specification form entries, descrip
tion and use of the RPG fixed logic cycle, and operating instructions with sample
programs.

o GCOS 6 Intermediate COBOL Reference, Order No. CBIO - Complete description of
the general features of Intermediate COBOL programs, language elements, language
syntax, the four major divisions of an Intermediate COBOL program, specific format

SYSTEM CHARACTERISTICS 1-7
6/78
CB20A

I

*

I

I

descriptions of all Intermediate COBOL statements (including programming examples
incorporating each statement), and the types of files and data handled, ASCII
collating sequence, COBOL glossary, comparison of standard COBOL with Inter
mediate COBOL, and Intermediate COBOL run-time considerations.

o GCOS 6 MOD 400 Program Execution and Checkout, Order No. CB21 - Overview
of program execution sequence. Detailed descriptions of Linker, Debug, Patch, Dump
Memory (MDUMP), Dump Edit (DPEDIT), and interpreting and using memory dumps.
Table of system service macro calls ordered by function code.

o GCOS 6 MOD 400 Programmer's Guide, Order No. CB22 - Description of various
possible programming environments at an installation and the ways to access the system
for each environment. Sample Editor session. Examples illustrating how to prepare
and execute COBOL, FORTRAN, SORT and assembly language programs; how to call
FORTRAN routines from an Entry-Level COBOL main program; and FORTRAN
chaining. Explanation of headers on listings.

o GCOS 6 MOD 400 System Building, Order No.CB23 - Description of system configu
ration and startup procedures for the MOD 400 operating system; the software packages
for distributed processing (as necessary); configuration directives; system disk layout;
system overlays; minimum system hardware and configuration requirements to do pro
gram preparation; and startup halts. Description of procedures to transfer files to system
disk; create a single-diskette system; place a shared version of a utility in the system
library; and load and execute the Intersystem Link (lSL) loader of ISL configuration.

o GCOS 6 MOD 400 Operator's Guide, Order No. CB24 - Description of routine system
startup, activation of the login capability, system operator interface with the system
(OIM), operator commands; task interrupt break function from the operator terminal;
additional operator command line arguments; listener component setup for login
capability; system halt conditions; ASCII character set.

o GCOS 6 MOD 400 FORTRAN Reference, Order No. CB25 - Complete description
of all statements, instruction formats, types of files and data handled, FORTRAN
run-time support routines (intrinsic functions, tasking, I/O), and compiler diagnostics.

o GCOS 6 MOD 400 Entry-Level COBOL Reference, Order No. CB26 - Complete
description of the general features of Entry-Level COBOL programs, language
elements, language syntax, the four major divisions of an Entry-Level COBOL
program, specific format descriptions of all Entry-Level COBOL statements (includ
ing programming examples incorporating each statement), and the types of files and
data handled, compiler diagnostics, ASCII collating sequence, COBOL glossary,
comparison of standard COBOL with Entry-Level COBOL, and Entry-Level COBOL
run-time considerations.

o GCOS 6 MOD 400 Programmer's Pocket Guide, Order No. CB27 - A pocket-size sum
mary of commonly-used commands, directives, and operating procedures as well as a brief
description of each coded error message.

o GCOS 6 MOD 400 Master Index, Order No. CB28 - An index of specific topics related
to GCOS 6 MOD 400. Topics are listed alphabetically. Each topic is keyed to the order
number of each manual in which the topic is described.

o Remote Batch Facility User's Guide, Order No. CB30 - Description ofremote batch
operations: communicating with the host, preparing job decks, managing job streams,
input and output processing, operator commands and messages, host software
control records.

o Data Entry Facility User's Guide, Order No. CB31 - Operation of the Data Entry
Facility. Description of operation of the Operator Display Station; forms and table
development; data entry and verification process; file printing; system supervisory
and utility operations; interfacing with data entry and applications programs; and
error and system messages.

o Data Entry Facility Operator's Quick Reference Guide, Order No. CB32 - A quick refer
ence guide to procedures for operator data entry, data verification, data modification
and file printing for the Data Entry Facility.

SYSTEM CHARACTERISTICS 1-8
6/78
CB20A

/

o Level 6/Level 6 File Transmission, Order No. CB33
o Level 6/Level 62 File Transmission, Order No. CB34
o Level 6/Leve164 (Release 0300) File Transmission, Order No. CB35
o Level 6/Leve166 File Transmission, Order No. CB36
o Level6/Series 200/2000 File Transmission, Order No. CB37
o LeveI6/BSC2780/3780 File Transmission, Order No. CB38
o Level6/Level64 (Release 0220) File Transmission, Order No. CB39

Each of the above documents describes the capability of the particular file trans
mission facility, including file organizations supported, code sets, line protocols, and
equipment requirements. Individual sections of the manuals provide the operating
information necessary to perform a file transfer from either end of a network (Level
6 and host).

o IBM 2780/3780 Workstation Facility User's Guide, Order No. CB40
HASP Workstation Facility User's Guide, Order No. CB41
Each of the above documents describes the capabilities of the particular workstation
emulation facility, including an overview of the facility, the commands and parameter
strings to be entered at the workstation, and programming information required to
interface with the IBM host system.

o Level 66 Host Resident Facility User's Guide, Order No. CB42 - A description of those
Level 66 software facilities that permit use of Level 66 resources to develop applications
for the Level 6.

o Terminal Concentration Facility User':> Guide, Order No. CB43 - Description of Ter
minal Concentrator Operations induding startup and shutdown and a description of
terminal operations using the concentrator facility.

o Honeywell Level 6 Minicomputer Handbook, Order No. AS22 - Descriptions of hard
ware models, central processor, processor architecture and features, instruction set,
registers, peripheral devices, control panel, software, various controllers and system
features, as well as maintenance and site preparation information.

o Level 6 System and Peripherals Operation, Order No. AT04 - Description of the opera
tion of the central processor control panels, the operation of each peripheral attachable
to Level 6 hardware, and operator trouble-shooting procedures.

SYSTEM CHARACTERISTICS 1-9
6/78
CB20A

I

(

(

SECTION 2
SOFTWARE FACILITIES

GENERAL FEATURES OF SOFTWARE

The system provides a comprehensive array of software to perform multitasking; real-time
and data communications applications; and batch, remote batch and data entry processing.
The operating system controls execution of tasks and accessing of external devices and files.
A complete set of program preparation software is available to develop and debug programs
written in COBOL, FORTRAN, RPG or assembly language. An extensive set of utility
programs is provided to support program development and execution, and transmission of
files from the Level 6 to other computers. System software components are summarized
in Figure 2-1.

OPERATING SYSTEM

MONITOR
FILE SYSTEM
PHYSICAL 1:0
COMMUNICATIONS

PROGRAM PREPARATION

EDITOR
MACRO PREPROCESSOR
ASSEMBLER
FORTRAN COMPILERa

ENTRY -LEVEL COBOL COM PI LERa
INTERMEDIATE COBOL COMPILER
RPG COMPI LER
LINKER
DEBUG

MOD 400-BES COMPATIBILITY"

EMULATOR
BUFFER MANAGER

UTILITY PROGRAMS

COMPARE (LEVEL 6/LEVEL 6)
COMPARE (LEVEL 6/IBM)
COPY (LEVEL 6/LEVEL 6)
COPY (LEVEL6/IBM OR IBM/IBM)
CREATE FILE
CREATE VOLUME (LEVEL 6)
CREATE VOLUME (IBM)
DUMP EDIT
DUMP MEMORY
DUMPMLCP
EXPORT PAM FILE
FILE CHANGE
FILE DUMP
IMPORT PAM FILE
ISL CONFIGURATOR
LIST CREATION DATE
LIST IBM CONTENTS
LIST NAMES
PATCH
PRINT/DEFERRED PRINT
RENAME FILE
RESET MAP
RESTORE
SAVE
SET DIAL
SORT/MERGE
TAPE POSITION
TRANSMIT FILE
WALK SUBTREE
WRITABLE CONTROL STORE

MLCP SOFTWARE

CHANNEL CONTROL PROGRAMS
OFf-LINE LOADER

SYSTEM CONTROL INTERFACES

COMMANDS
OPERATOR COMMANDS
SYSTEM SERVICE MACRO CALLS

CONF IGURATION

CONFIGURATION LOAD MANAGER
HONEYWELL-SUPPLIED SYSTEM

RUN- TIME ROUTINES

FORTRAN ROUTINESa
ENTRY-LEVEL COBOL ROUTINESa
INTERMEDIATE COBOL ROUTINES

HARDWARE SIMULATORS

SINGLE PRECISION SCIENTIFIC (SIP)
SIMULATOR

DOUBLE AND SINGLE PRECISION (DSIP)
SCIENTIFIC SIMULATOR

COMMERCIAL SIMULATOR

REMOTE BATCH FACILITY

DATA ENTRY FACILITY

TERMINAL CONCENTRATION FACILITY

IBM 2780/3780 WORKSTATION FACILITY

HASP WORKSTATION EMULATION FACILITY

LEVEL 66 HOST RESIDENT FACILITY

aThese SOftware components are available only with the SAF version of MOD 400.

Figure 2-1. GCOS Software

SOFTWARE FACILITIES 2-1
6/78
CB20A

I

*

*

*

*

I

*

•

The software is available in a SAF (short address form) version, which supports up to 64K
words of memory, and a LAF(1ong address form} version which supports up to I024K words
of memory. Hardware resources associated with this system are described in Appendix C.

INTERFACES TO OPERATING SYSTEM

The software supports the following control interfaces to the operating system:

o Commands submitted by a user to the command processor of the user task group
o Operator commands submitted by the operator to the command processor of the

system task group
o System service macro calls, specified in assembly language programs, that invoke

Monitor and file system services for user task groups

Command Language
There are five functional categories of commands:

o To control execution
o To control directories and files
o To invoke program preparation software
o To invoke utility software
o Interactive commands

Some control functions at the task group level are available through commands. Com
mands are described in the Commands manual.

Commands for Execution Control
Once a task group is created, commands written by the user can be executed under the

task group. More comprehensive control of execution is provided to the assembly language
program through system service macro calls. Commands are used to:

o Create then initiate other task groups, or spawn task groups. This provides a multi
programming capability.

o Abort or delete a task group, or terminate the task group issuing the request. The abort
and delete functions are not available through the batch task group.

o Create then initiate the execution of a sequence of tasks under a task group, or spawn
tasks within a group. Using this capability an application can be executed as a sequence
of steps. When the sequencing is done so as to have several tasks active simultaneously,
there is multitask execution in one task group.

o A batch task group cannot create another task group.
o Control of external switches for intertask communication.
o List the status of all tasks or open files in a task group.

Commands for Directory and File Control
The file system is based on a tree-structured directory hierarchy. To locate a file, the

directory pathname must be known. In order to write programs that are independent of
the pathname of the physical file, a program uses a logical file number (LPN). More com
prehensive control of directories and files is provided to the assembly language program
through system service macro calls.

Commands are used to:

o Create or release a directory or file
o List the pathname of the working directory; change the pathname of the working

directory
o Reserve (get) a file for processing (through use of a logical file number) .
o List, in the order searched, the directories that are. searched for a given pathname; list

file entries in a specified disk directory.

SOFTWARE FACILITIES 2-2
6/78
CB20A

(

o Modify the share, read, or write attributes of a disk file.
o Associate or dissociate a pathname with a logical file number.
o Remove a file from reserve status.

Commands for Program Preparation
Software to perform program preparation is invoked using a command. Component

specific arguments are provided in these commands. The command name is often identical
to the software name, e.g., COBOL, FORTRAN, LINKER, RPG.

Commands for Utility Software Execution
A utility is invoked through a command. The command is often identical to the software

name, e.g., PATCH, SORT, MERGE.

Interactive Commands
Interactive commands permit the user to:

o Establish and terminate access to the system
o Request execution of a batch task group
o Send messages to the operator
o Display the current time

Operator Commands
There are three functional categories of operator commands: execution control; directory,

file and device control; and system operation monitoring. Operator commands operate on a
task group level and cannot be used to control the execution sequence of tasks in the batch
task group or in a user online task group. Operator commands are entered through the opera
tor terminal or read from a command file. A description of the operator commands is found
in the Operator's Guide manual.

Operator Commands for Execution Control
Initially, operator commands are used to define the operating environment. Subsequently,

they can be used to control system operation from the operator terminal. Operator commands
are employed to:

o Create, initiate, abort or delete either a batch or online task group
o Spawn an online task group
o Temporarily suspend or reactivate an online task group
o Temporarily suspend and roll out, or reactivate and roll in the batch task group
o Load or unload a shareable bound unit from a system memory pool
o Load assembled firmware files into writable control store (WCS)

Operator Commands for Directory, File and Device Control
Operator commands are used to:

o Change a system library or working directory pathname
o Modify the share, read, or write attributes of a disk file
o Set or delete access (read, write, and execute) to files
o Set or delete access (list, modify, and create) to directories

Operator Commands to Monitor the System
Operator commands are used to:

o List all task groups and requests queued for batch execution
o List the status of all tasks or open files in a task group
o List the pathname of the working directory
o List, in the order searched, the directories that are searched for a given bound unit
o List access specified for files and directories

SOFTWARE FACILITIES 2-3
6/78
CB20A

I

I

I

System Service Macro Calls
System service macro calls are available to the assembly language program to perform a

wide variety of Monitor and file system service functions, similar in some instances to those
functions accessible through commands. There are two functional categories of system ser
vice macro calls: to control execution, and to control directories and files. The macro calls
are described in the System Service Macro Calls manual.

Macro Calls for Execution Control
Monitor service macro calls are used to:

o Control task groups and tasks
o Manage memory allocation
o Load and execute overlays
o Coordinate the use of resources within an online task group through semaphores
o Control execution based on real-time clock considerations
o Enable or disable user traps
o Display or suppress the display of messages on the operator's terminal
o Designate a task group's command-in, user-in, error-out, and user-out files
o Communicate directly with device drivers to control input/output and devices
o Control external switches for intertask group communication
o Associate or dissociate a pathname with a logical file number.

Macro Calls for Directory and File Control
Monitor service macro calls are used to:

o Create or release a directory or file
o Change or obtain the pathname of the working directory
o Rename a file or directory
o Open, close, get (reserve), or remove the reservation of a file
o Lock/unlock records in a file
o Get information describing a file
o Test the status of an outstanding file activity
o Wait on list until input or output is complete
o Read, write, rewrite, or delete a record of a file
o Read from, or write a block to a file

OPERATING SYSTEM SOFTWARE

The operating system contains software for execution control, the file system, physical
I/O, and communications.

Monitor Software
The Monitor contains software to execute requests for Monitor functions and to maintain

the control tables that are necessary for the orderly processing of requests. These functions
are obtained through commands, system service macro calls, and statements in higher-
level languages. Monitor software includes:

o Task manager - Handles the disposition of tasks within the system, and responds to
requests placed against tasks. It processes requests to activate tasks, returns control
to interrupted tasks, and synchronizes, suspends and terminates tasks.

o Clock manager - Handles all requests to control tasks based on real-time considera
tions, and responds to requests for the time of day and date in ASCII format.

o Memory Manager - Controls dynamic requests for memory or the return of memory
to a memory pool.

o Trap manager - Handles the transfer of execution control from an executing program
to a predefined trap location when a trap (a special condition such as a hardware
error) occurs. The trap manager handles system traps and allows a task group to con
nect its own trap routines for specific traps.

SOFTWARE FACILITIES 2·4 CB20

(

o Operator interface manager - Manages all messages sent simultaneously by multiple
task groups to the operator terminal or from the operator terminal to a task group.

o Loader - Loads the root and overlays of a bound unit dynamically from a disk.
o Listener/login - The listener monitors a selected set of local and remote terminals,

reporting any change of state (for example, connect, disconnect) to the login compon
ent. If a user submits a login command requesting access to the system, the login
component requests that a task be spawned for the user.

o Command processor - Processes all commands. It is the lead task of the batch task
group and can be the lead task of an online task group.

File System Software
The file system is based on a tree-structured hierarchy and software functions are provided

to create or maintain this directory structure, locate a file by its pathname, create and main
tain data files, control concurrent use of files, and provide for the logical transfer of records
between an application program and an external device. These functions are available
through commands or, for an assembly language program, through system service macro
calls, described in the Commands manual and System Service Macro Calls manual,
respectively.

The File System software handles input/output functions of each of the different sup
ported devices, including communications. For disk, it provides four file organizations and
access to them; namely, sequential, relative, indexed, and fixed relative file organizations.
(Fixed relative file organization is compatible with BES and BES2 files.) Sequential access
is provided for magnetic tape, communications, printer, card reader, and terminals. A des
cription of the data file organizations and their properties is found in the Data File Organ
izations and Formats manual.

The languages COBOL, FORTRAN, and RPG use the logical file organizations listed
above. The language reference manual for each language provides statements for accessing
the logical files.

An assembly language program can access files through file and data management macro
calls to the Monitor or through the physical I/O drivers; both methods are described in the
System Service Macro Calls manual.

The interface to communications software is described in the Communications ProceSSing
manual.

Physical Input/Output Software
An assembly language program can use physical input/output driver software which works

at the hardware physical level. Each peripheral and communications device type has a driver
which is a reentrant procedure that can control one or more devices. A description of the
peripheral drivers and the physical I/O macro calls is found in the System Service Macro Calls
manual. Macro calls for communications are described in the Communications ProceSSing
manual.

Communications Software
Communications software is accessible through the standard input/output interface, is

memory and MLCP resident, and interacts with Monitor software to process user communi
cations applications. With the Honeywell-supplied communications software, users need not
provide their own communications system programs.

The communications software is user-driven. It answers the phone in response to a user
issued connect; it polls terminals in response to user-issued reads. Users (application or
system software) must provide buffers to the communications software to accommodate
read and write operations.

Communications software provides a common I/O interface to its users through the stan
dard physical I/O interface (the $RQIO macro call). The communications software compon
ents and their functions are summarized below.

o Communications supervisor - Queues user service requests and activates the appropri
ate line protocol handler, interacts with the user program through system software when

SOFTWARE FACILITIES 2-5 CB20

I

a transaction is complete, and services connect/disconnect requests and line protocol
handler timeouts.

o Phone monitor - Provides data set control for detection of phone connect/disconnect,
and provides the capability of "hanging up" the phone connection upon user request.

o Line protocol handler (LPH) - Handles error recovery (parity, block control check);
initializes the LPH and channel control program; processes interrupts, timeouts, and ',,~/
messages; and handles protocol acknowledgment/negative acknowledgment.

o Poller - Used only for poll and select protocols. Queues poll requests, requests the LPH
to poll a terminal, and dequeues the request when the LPH has received data from the
terminal.

o MLCP driver - Sets up and processes I/O up to an LPH request, and services MLCP
interrupts, passing them to the LPH.

o Channel control program (CCP) - Handles character processing, inserts and deletes pro
tocol headers and framin,g characters (surrounding a message). An extension of the LPH,
the CCP resides in the MLCP and is independent of the central processor; thus character
processing overhead is eliminated from central processing.

o MLCP macro routines

For details on communications software functions, line protocol handlers, and the control
structures used for communications tasks, see the Communications Processing manual.

PROGRAM PREPARATION SOFTWARE

The software in this category allows you to write, compile, link, execute and debug an
application program. Each of the program preparation components, except for Debug, is
invoked by command described in the Commands manual.

o Editor - Used to create and update, on disk, a source unit written in one of the pro
vided programming languages. It will edit characters, expressions, or lines of text. The
Editor is reentrant and can support multiple users. A description of the Editor direc
tive language is found in the Program Preparation manual.

o Macro Preprocessor - Required to process an assembly language application source
unit containing calls to macto routines. A macro routine consists of a specified sequence
of assembly language source statements that you want specialized and included in your
source module. The Macro Preprocessor creates another source unit with assembly
source code replacing the macro calls. A description of the macro preprocessor lan
guage statements is found in the Assembly Language Reference manual.

o Assembler - Translates assembly source statements of a source unit into text of a re
locatable object unit and optionally produces a cross-reference listing indicating symbol
usage. The Assembler can process source for the Commercial Control Processor Models
and the Scientific Instruction Processor (SIP). The Assembler supports coding of user
defined generic instructions to be executed on the Writable Control Store (WCS).
Writable Control Store (WCS).

o FORTRAN Compiler - Translates FORTRAN source statements of a source unit into
text of a relocatable object unit and source listing or optionally, assembly language
source statements in a source unit. The language is based on the American National
Standards FORTRAN 77 subset. Offered in the language are the Instrument Society of
America (ISA) extensions for bit string manipulation and task management, and a
Honeywell extension for communications. FORTRAN programs and Entry-Level
COBOL programs can call each other. FORTRAN is intended for commercial and sci
entific application programming. A description of the FORTRAN language statements
is found in the FORTRAN Reference manual.

o Entry-Level COBOL Compiler - Translates source statements of a source unit into text
of a relocatable object unit. Entry-Level COBOL programs and FORTRAN programs can
call each other. Significant features of Entry-Level COBOL include: file handling for
sequential, relative, and indexed files; :.!rree-dimensional tables and indexing; CALL/
CANCEL capability; DISPLAY and COMP-I data; full American National Standards

SOFTWARE FACILITIES 2-6
6/78
CB20A

•

•

(

editing; 21 verbs; and communications through file management facilities. For descrip
tions of the Entry-Level COBOL language statements, refer to the Entry-Level COBOL
Reference manual.

o Intermediate COBOL Compiler - Translates source statements of a source unit into
text of a relocatable object unit. Intermediate COBOL supports Entry-Level COBOL
features plus additional features. Descriptions of the Intermediate COBOL language
statements are given in the Intermediate COBOL Reference manual.

o RPG Compiler - Translates RPG source statements of a source unit into a set of object
units consisting of a root, or a root plus multiple overlays. The compiler also produces a
file containing Linker directives; user-written Linker directives are thus unnecessary. When
the command processor is invoked to process the statements in this file, it invokes the
Linker, and supplies it with Linker directives necessary to create an executable bound
unit. The compiler supports an RPG language comparable to that in current industry-
wide use. Significant features include: look-ahead, control levels and matching fields on
input; table and array processing; forms alignment; and editing, detail, and total time
functions on output. The compiler generates Commercial Instruction code. A description
of the RPG language is found in the RPG Reference manual.

o Linker - Combines object units that are the output of a compiler or the Assembler and
produces a bound unit for subsequent loading. It resolves external references made
between object units being linked. Linker directives can be used to create reentrant
bound unit files. A description of Linker directives is found in the Program Execution
and Checkout manual.

o Debug - Used for testing programs at the machine language level. Hexadecimal patches
can be made to the program. Debug is invoked as a separate task group within the system.
A description of the Debug directives is found in the Program Execution and Checkout
manual.

UTILITY SOFTWARE

A comprehensive set of utility programs is available to support file management and
program development. All utility programs listed below are invoked by commands except
for Memory Dump (MDUMP) and Dump MLCP (DUMCP). The usage of the utility programs
is described in the Commands manual unless otherwise indicated.

o Compare - Compares two volumes, files or portions of files for equality, and lists the dis
crepancies.

o Copy - Copies a file or volume. Logically reorganizes the file. Copies can be placed on
tape or disk.

o Copy IBM - Copies Level 6 diskette files to IBM diskette files (and vice versa); also
copies one IBM volume to another IBM volume.

o Create IBM Volume - Formats an IBM 3740 diskette.
o Create Volume - Creates or modifies a volume. Formats and labels a disk or tape volume,

creates disk bootstrap records, or renames a disk volume.
o Dprint - Prints the contents of the specified file. By use of Dprint, the print request is

entered in a queue, and the user can continue with other commands or terminate the
session (logout).

o Dump Edit (DPEDIT) - Produces an edited logical or physical dump image of memory,
or edits and prints out a disk file containing a dump of main memory that was obtained
through the MDUMP bootstrap record. (Described in the Program Execution and Check
out manual.)

o Dump Memory (MDUMP) - Dumps the contents of memory to a disk file when a pro
gram aborts or halts, by using the bootstrap record MDUMP on a specially created disk
volume. The Dump Edit utility is then used to print the dump. (Described in the Program
Execution and Checkout manual.)

o Dump MLCP - Dumps contents of all or part of Multiline Communications Processor
(MLCP) memory. (Described in the Communications Processing manual.)

SOFTWARE FACILITIES 2-7
6/78
CB20A

I

*

I

*

o File Change - Changes the contents of a disk sector or control interval.
o File Dump - Performs both logical and physical dumps from disk or 9-track magnetic

tape; performs physical dump only from 7-track tape; output in both alphabetic and
hexadecimal notation.

o Import/Export PAM File - Converts members of GCOS/BES partitioned files to and
from GCOS 6 variable sequential files; used to transport programs between BES and
GCOS 6.

o ISL Configurator - Reads ISL (Intersystem Link) directives from a user input file and
generates an ISL loader.

o List Creation Date - Lists creation dates of files in a directory .
o List IBM Contents - Lists the contents of an IBM diskette.
o List Names - Lists the file and/or directory entries contained within the specified direc

tory.
o Patch - Applies hexadecimal patches to an object unit or bound unit. Provides a facility

for program correction without recompilation or reassembling. (Described in the Program
Execution and Checkout manual.)

o Print - Prints the contents of the specified file. Unless specified otherwise, the file is
written to the current user_out file. The user must wait for the print to complete before
entering another command.

o Rename File - Assigns a new name to an existing file or directory.
o Reset Map - Lists the number of logical sectors available for allocation on a disk volume.
o Restore - Restores the file structure and physically reorganizes the disk volume previous

ly saved (by the SAve command).
o Save - Saves the file structure and data of a disk volume onto a tape or disk file.
o Set Dial- Sets a phone number for subsequent use by a named channel/communications

terminal file.
o Transmit File - Supports file transmission between the Level 6 system and other Level 6

processors, or between the Level 6 and any of the following host processors: Level 62,
64, or 66; Series 200/2000; or non-Honeywell systems that use the BSC 2780/3780
protocol. Three utility programs, described in Section 7, provide the file transmission
capability .

o Walk Subtree - Executes specified command in specified directory and in all subordinate
directories.

Sort/Merge
Sort and Merge are invoked by separate commands. Sort may also be called from a COBOL,

FORTRAN, or assembly language program. The Sort program arranges records of a file in an
order based on the values of user-specified record key fields. Merge combines the records of up
to six sequentially ordered input files on the basis ofrecord key values. Up to 16 key fields
can be specified, with values to be arranged in ascending or descending order according to the
ASCII collating sequence. The data type of a key field can be character string, signed binary,
packed decimal, or signed/unsigned unpacked decimal. Sort/Merge options include record
selection, redefinition or rearrangement of record contents, and deletion of duplicate records.
See the Sort/Merge manual for a detailed description of these capabilities.

SOFTWARE FACILITIES 2-8
6/78
CB20A

•

•

(

RUN-TIME ROUTINES

Run-Time I/O Routines
The FORTRAN run-time I/O routines provide for data transfer, peripheral or communica

tions device manipulation, and the processing of data as specified in FORTRAN FORMAT
statements. These routines use the file system to accomplish open, close, and position file
functions, and to read and write formatted and unformatted records. They contain data con
version routines to edit integer, real, logical, and character data for formatted input and
output. Only those routines required by a particular FORTRAN program are linked to form
the bound unit.

The COBOL run-time I/O routines provide a logical I/O interface for the transfer and pro
cessing of data at program execution time. The routine is linked with the program's object
unit, and uses the file system to open, close, and position files and to read and write records
to peripheral or communications devices. Separate run-time routines are provided for Entry
Level and Intermediate COBOL.

The FORTRAN and COBOL routines produce diagnostic messages to inform the program
mer of inappropriate or inconsistent input/output statements.

FORTRAN Run-Time Routines
The software includes FORTRAN mathematical and bit string manipUlation routines.

These intrinsic functions are available in object module format, linked on an as-needed basis
to perform a variety of operations on behalf of a FORTRAN program. Optionally, they can
be loaded during configuration as an operating system extension available to all online appli
cations. Some of the operations performed by these routines are:

o Date and time subroutines
o Converting to and from integer and real values
o Truncation
o Determining the nearest whole number
o Transferring a sign
o Choosing: the largest value; the smallest value
o Finding: the length of a character entity; the square root; the natural logarithm; the

common logarithm
o Computing selected plane and spherical trigonometric functions
o Performing bit string manipulation operations on integer data: inclusive OR, exclusive

OR, products, complement, shift, clear or set a bit, and test a bit value.

FORTRAN routines are available to implement the management of tasks. Functions are
provided to:

o Initiate a task after a designated period of time
o Suspend a task

Communications programs are provided with two routines, ZFSTIN and ZFSTOT, to test
the status of the system buffer prior to issuing a READ or WRITE. Depending on the return
status, the FORTRAN program can loop on the test, place itself in the wait state, continue
other processing, or issue a READ or WRITE and stall if the I/O buffer is busy.

See the FORTRAN Reference manual for details about these routines.

HARDWARESEMULATORS

The SSIP and DSIP (single- and double-precision scientific instruction processor) provide
software simulation of

o Floating-point instructions (add, subtract, multiply, divide, compare, load, store, swap,
and negate) that are generated by the FORTRAN Compiler or the Assembler.

o Floating-point branch instructions (branch on bit settings of scientific indicator register
or scientific accumulator values).

SOFTWARE FACILITIES 2-9
6/78
CB20A

I

I The Commercial Simulator provides software simulation of commercial instructions (com
mercially oriented calculations and operations) that are generated by the Intermediate COBOL
Compiler, RPG Compiler, or Assembler. .

CONFIGURATION LOAD MANAGER

The Configuration Load Manager (CLM) accepts configuration directives from either a
Honeywell-supplied input file or a user-generated input file (CLM_USER) to perform system
configuration. Configuration directives are available to:

o Define system variables (e.g., real-time clock, scientific and commercial processors)
o Describe peripheral devices and their characteristics
o Define system, batch, and one or more online memory pools
o Identify system software and application-specific bound units that are to be perma

nently resident in the system area of memory
o Define the communications environment of the operating system

Configuration procedures are summarized in Section 4. A complete description of con
figuration directives appears in the System Building manual.

BES-MOD 400 COMPATIBILITY

The GCOS 6 MOD 400 Monitor and I/O system services are a superset of the GCOS/BES
online Executive system services. However, differences exist in:

o Assembly language programs containing calls to the BES Executive
o BES object modules that must be imported to execute on MOD 400
o BES COBOL programs that require the BES COBOL and run-time routines for MOD 400

execution
o Configuration commands

Appendix A of this manual describes the procedures to be used to convert and execute
BES programs under MOD 400.

SOFTW ARE FACILITIES 2-10
6/78
CB20A

(

(

(

Disk Device Files - The general form of a disk device-level access pathname is:

>SPD>dev _name [>volid 1

where dev _name is the symbolic name defined for the disk device during system building,
and volid is the name of the disk volume.

This pathname format is used only when access to the entire volume is required, e.g.,
during a volume copy or volume dump.

If the volid is not supplied, reservation of the disk is exclusive; i.e., the reserving task
group has read and write access, but other users are not allowed to share the file. This path
name form is used when creating a new volume.

Relative Pathname

DELTA
OLD>DELTA
<USERB>ALPHA
«PROJ2>USERA>DELTA
<

I

USERA

I
DELTA

OLD

DELTA

Full Pathname

A SYSOl>UDD>PROJl>USERA>DELTA
A SYSOl>UDD>PROJl>USERA>OLD>DELTA
A SYSOl>UDD>PROJl>USERB>ALPHA
A SYSOl>UDD>PROJ2>USERA>DELTA
A SYSOl>UDD>PROJl

SYSOI

I
UDD

I I
I I

PROJI PROJ2

1 I
USERB USERA

I I
ALPHA DELTA

Figure 3-1. Sample Pathnames

FILE SYSTEM 3-5 CB20

If the volid is specified, reservation is read/share; i.e., the reserving task group has read
access only, other users may read and write. This pathname form is used when dumping
selected portions of a volume without regard to the hierarchial file system tree structure.

The following are examples of device pathnames:

Peripheral Device
Line printer
Exclusive tape volume
File on exclusive tape volume
Exclusive diskette
Nonexclusive disk volume

Special Pathname Conventions

Pathname
>SPD>LPTOI
>SPD>MT902>VOL3
>SPD>MT902>VOL3>FILEA
>SPD>DSK02
>SPD>RCDO I>V23X

Star names and equal names are special pathname conventions available for use with
certain utility programs. They provide shorthand methods of specifying a related set of
entry names to commands.

Star Convention
A star name is an entry name that identifies a group of entries within a single directory.

It is composed of one or more nonnull components, one of which consists of an asterisk
(star), and can contain up to 12 ASCII characters, none of which can be the greater than
(», less than «), or circumflex (") character.

A star name can be used only as the final entry name of an input pathname for the
following commands:

o COpy
o COMPARE
o LIST NAMES
o LIST CREATION DATE

I 0 RENAME

I
These commands perform their function for each entry identified by the star name.

A star name identifies all directory entries having an entry name that matches the star
name. Each component, except the last, of a star name ends with a decimal point. A com
ponent position corresponds to the number of components from the left; i.e., the leftmost
component is in the first component position. A special type of matching is performed in
which components of a star name that do not contain an asterisk are compared with corres
ponding components of an entry name, while other entry name components are ignored.
Entries identified by a star name all have similar names in that they are all determined by the
star name template. For example, the star name *.IN.A refers to all three-component entry
names ending in .IN.A (Macro Preprocessor include files) in the working directory.

An asterisk may appear in any component position of an entry name; each asterisk is
treated as a special character. Each asterisk character used in a star name designates any
number of characters (including none) appearing in the corresponding component position
of the entry name. A double asterisk (**) may be used to indicate any number of contig
uous component positions within an entry name. One or more single asterisks may appear in
a star name; only one double asterisk component may be used. For exa..mple, the star
name * .MY _PROG. ** identifies all multiple-component file names, the second component
of which is MY _PROG, in the working directory.

A question mark character (?) may be used within a star name to match any character
position that appears in the corresponding component and character position within that
component of the entry name. Multiple question marks may be specified, each representing
exactly one character position. For example, the star name * .MY _ ????? * identifies all
three-component file names, the second component of which is an eight-character name
beginning with MY _, in the working directory .

For complete details concerning the star convention, refer to the Commands manual.

FILE SYSTEM 3·6
6/78
CB20A

(

Equal Convention
Three commands (i.e., COPY, RENAME and COMPARE) that accept pairs of pathnames as

their arguments allow the final entry name of the first pathname (input) to be a star name and
the final name of the second pathname (output) to be an equal name. An equal sign as a com
ponent of the output pathname means that the character string from the corresponding com
ponent of the input pathname is to be substituted for the equal sign. Use of this convention
allows the user to copy or compare multiple input files without specifying complete individual
names. Output file pathnames are determined by the equal name convention after the input
file pathnames containing star names have been resolved.

The equal names convention provides a powerful mechanism for mapping certain char
acter strings from the first pathname into the second pathname of the pair. Such a mecha
nism helps to reduce typing required to specify the second pathname, and it can be essential
for mapping character strings from the entry names identified by the star name into the
equal name, because these character strings are not known at the time the command is
issued.

Under the equal convention, the mapping of character strings from the star name into the
equal name is performed according to rules for constructing and interpreting equal names.
An equal name is an entry name composed of one or more nonnull components, one of
which consists of an equal sign, and can contain up to 12 ASCII characters, none of which
can be the greater than (» or less than «) characters. An equal sign can appear in any com
ponent position of an entry name; each is treated as a special character. The equal sign
represents the corresponding component of an entry name identified by the star name. An
error occurs if the corresponding component does not exist. A double equal sign (==) com
ponent can be used to represent all components of entry names identified by the star name
that have no other corresponding components in the equal name.

The percent sign (%) functions in the same manner as the question mark in a star name.
The percent sign can be used within an equal name to match any character that appears in
the corresponding component and character position within that component of the entry
name identified by the star name. An error occurs if the corresponding character does not
exist or if an equal sign appears in a component that also contains a percent sign. Multiple
percent signs can be specified, each one representing exactly one character positon.

For example, the command

I

COpy R DATA BASE S = I
creates a duplicate copy of the input file in the working directory, but assigns the name I
S.DATA_BASE to the duplicate file.

Likewise, the star convention can be used to address all files with a specific component
name in the working directory. The command

COpy * DATA_BASE = DATA

copies all two-component entry names with DATA_BASE as the second component and
assigns the name DATA as the second component of the newly created files.

DATA FILE ORGANIZATIONS AND ACCESS

Disk File Organizations

UFAS Sequential - Logical records are normally read from or written to a sequential file
in consecutive order. Records must be written sequentially although the file can be posi
tioned for writing by specifying a simple key. Records can be read, modified, or deleted
directly by specifying their exact control interval and record address (simple key). Records
cannot be inserted but they can be appended to the end of a file. Fixed or variable length
records may be used. The record size can exceed the control interval size. If a record is
deleted, the position it occupied cannot be reused.
UFAS Relative - A UFAS relative disk file can contain fixed or variable length records.
If variable length records are used they occupy fixed length slots, and the size of the largest

FILE SYSTEM 3-7
6/78
CB20A

I

record must be specified. A record can be updated (Le., rewritten), deleted, or appended
to the file. If a record is deleted, the position it occupied can be used for a new record. A
file can be created directly by specifying relative record numbers in random sequence. When
writing records, the user has the option of letting data management search for the next
available location.
UFAS Indexed - Each logical record contains a key field of fixed size that occupies a fixed \. /
position. Records are logically ordered by key value and can be accessed sequentially in key
sequence or directly by key value. Fixed- or variable-length records may be used. Variable
length records are handled in variable-length format. A record can be updated, deleted, or
inserted in key sequence into available free space. When no space is available to insert a
record in key sequence, the record is placed in an overflow area. When the file is initially
loaded, the records must be supplied in ascending sequence by key value.

Fixed Relative (EES Compatible) - Only fixed-length records are supported. Records are
accessed sequentially or directly by their position relative to the beginning of the file.
Records can be updated or appended to the file. A file can be created directly by supplying
relative record numbers in random sequence. When writing records, the user has the option
of letting data management search for an available location. Two types of files are sup
ported: those that allow deletable records and those that do not allow deletable records.
If deletable records are allowed, a deleted record position may be used for new record data.
If deletable records are not allowed, new records can be inserted anywhere in the file.
Fixed relative files are designed to be used with BESI or BES2 Executive system. A fixed
relative file is incompatible with file organizations on other GCOS systems.

Tape File Organization
Fixed- or variable-length records may be used. Records cannot be inserted, deleted, or

modified, but they can be appended to the end of the file. The tape can be positioned
forward or backward any number of records.

A block can be treated as one logical record called an "undefined" record. An undefined
record is read or written without being blocked or unblocked or otherwise altered by data
management.

A labelled tape is one that conforms to the current tape standard for volume and file labels
issued by the American National Standard Institute. The following types oflabelled tapes are
supported:

single-volume, single-file
multi-volume, single-file
single-volume, multi-file
multi-volume, multi-file

The following types of unlabelled tapes are supported:

single-volume, single-file
single-volume, multi-file

Data File Access
The languages COBOL, FORTRAN, and RPG use logical file organizations as described

above. Refer to the language reference manuals for the relationship between a language's
logical file and the system's physical fiie organization. Each language provides statements
for manipulating files. Files can be manipulated by assembly language programs through
File and Data Management macro calls to the Monitor or through the physical I/O drivers;
both methods are described in the System Service Macro Calls manual.

Any element of the file system can be protected from unauthorized access or use. Access
to a file or directory can be limited through establishment of an access control list for the file
or directory. Data integrity of shareable files can be protected through specification of con
current access privileges to particular task groups requesting use of the file. The two control
techniques are described in this section.

FILE SYSTEM 3-8
6/78
CB20A

(

Access Control Lists
The system offers an optional means of preventing accidental or unauthorized access to data

through the directory structure. The access rights to files and directories can be controlled
through access control lists established by individuals responsible for the files or directories.

Note:
The setting of access rights to system files/directories or other files/directories intended
for common use is the prerogative of system administrators.

An access control list (ACL) for a file or directory contains entries for all acceptable users,
each entry identifying a user (or class of users) and the access rights granted. The user iden
tifier stored in the ACL entry consists of the same components (person.account.mode) as the
identifier under which the user logs in. Conventions are available to designate classes of users
(for example, all users under a specific account) in ACL entries.

A user is allowed to access a file or directory in a particular way only if the identifier under
which he logged in and the type of access he requests correspond to appropriate entries in the
applicable ACL.

To grant access rights to all files or directories described in a particular directory, a common
access control list (CACL) can be established for the governing directory.

Each time a user requests access to any of the files or directories described in that directory,
the applicable ACL and CACl are both checked. Conflicts between ACL entries and CACL
entries that both pertain to a specific user are resolved through a priority matching scheme.
Use of CACLs permits users or classes of users to be authorized access to collections of files
or directories without requiring that each individual ACL be changed.

Access rights that can be granted in ACLs and CACLs include the following: road access,
write access, and/or execute access for files; list access, modify access and/or create access for
directories. Users can also be denied access to a directory or file.

File Concurrency
Concurrent read or write use of a file is established by the task group that reserves the

file. Concurrency has two aspects: (1) it establishes how tasks in the reserving task group
intend to access the file, and (2) it establishes what the reserving task group allows other
task groups to do with a file. If the file is already reserved, a task group's concurrency
request will be denied when its intended access conflicts with the access permitted by
another task group. The concurrency request will also be denied if what it allows others
to do conflicts with the access already established by another task group. For example, if
a task group reserves the file exclusively, other task groups are denied access. Of if a task
group permits read only access but does not permit write access, other readers are allowed
but writers are denied access.

Concurrency is controlled through the GET command or through the $GTFIL system
service macro call. The possible combinations of access intended for the reserving task group
and the sharability permitted other task groups are given in Table 3-1.

TABLE 3·1. DISK FILE CONCURRENCY CONTROL

Reserving Task Group

Read only

Read or Write

Other Task Groups

Read only (Read share)
Read or Write (Read/write share)

No read, no write (Exclusive use)
Read only (Read share)
Read or Write (Read/write share) -----------------------------

System File Concu"ency
Compiler generated programs, commands, Sort, and other system software always

request exclusive concurrency for files that they reserve for a user. The operator termi
nal must be reserved with read/write shared concurrency to allow concurrent access by

FILE SYSTEM 3·8.1
6/78
CB20A

,/

(

many task groups. For this reason, the command argument -COUT specifying the list
output file cannot be the operator terminal. If the command-in and user-in files are on
disk, they are reserved with read-only shared concurrency; if assigned to a user terminal,
they are reserved with exclusive concurrency. The user-out and command-out files are
always reserved for exclusive use.

Record Locking (Shared File Protection)
The record-locking facility is an optional file access feature that provides protection of and

controls contention for records within shared disk files. It is designed primarily to prevent
interference in applications where many users perform short transactions on common files.
If locking is to be implemented, a lock pool must be created at system configuration. (See
CLM command RLOCK in the System Building manual.)

Locking is performed on a file by a specific request when the file is reserved. This is accom
plished by a $GTFIL system macro call or a GET command that includes a _LOCK argument.

Record locking provides a shared-read, exclusive-write ability. The first user to access (read
or write) a record locks the record and prevents other users from writing into it. An attempt to
write into a locked record causes the system to note the interference and to issue an error
return code. When a record is locked, the entire control interval (CI) in which it is contained
becomes locked.

For record locking purposes, a logical file number (LFN) within a task group uniquely
identifies a user. Thus this facility prevents a record from being concurrently written by dif
ferent task groups. Moreover, a task group can be created so that different tasks within it use
different LFNx to access a given file. In this way, record locking can be used to eliminate inter
ference between tasks of a task group.

FILE SYSTEM BUFFERED OPERATIONS
A buffer is a storage area used to compensate for a difference in rate of flow of data,

or time of occurrence of events, during transmh,lon of data from one device to another.
As used in I/O programming, the term buffer refers to an I/O area in systems that pro
vide the possibility of I/O overlap. Buffering is the process of allocating and scheduling
the use of buffers. In sequential data processing, for example, overlap of input operations
and processing can be achieved by anticipatory buffering; i.e., the next block is read into
memory before it is needed. The program can then process records from block n while
block n+ I is being read into memory.

This system supports two types of buffered operations: one for unit record and termi
nal devices, the other for disk and magnetic tape devices.

Unit Record and Terminal Buffered Operations
All printers and most interactive terminals are provided with one File System buffer.

To provide a system buffer for the card reader or terminals configured as file types KDL,
TDH, or TDL, the B parameter in the CLM DEVICE directive must be specified. The
operator terminal (system LRN 0) cannot be buffered. By providing a File System
buffer, asynchronous I/O can be done; i.e., application code can execute in parallel with
I/O transfers.

All terminals (except the operator's) and printers, except file types KDL, TDH, and
TDL, have tabbing capability through software that converts the tab into spaces. Default
tabulation stops are set at position 11 and every tenth position thereafter for the line
length of the device.

Asynchronous I/O operates in two different ways, depending on whether data is obtained
from a device (reading) or transferred to a device (writing).

FILE SYSTEM 3-9
6/78
CB20A

Buffered Read Operations
An application task issues a logical READ to a File System buffered device. If the

buffer is full from a prior anticipatory read, the data in the buffer is transferred into the
application task's area; then a physical I/O transfer into the system buffer (an anticipa
tory read) is performed in parallel with continued task execution. If the buffer is not
full, task execution stalls until the anticipatory read is completed.

The timing of the initial anticipatory read performed for the card reader is different
from that of the interactive terminals; afterwards it is the same. An application task
issues an OPEN call to the card reader. Immediately after the OPEN is complete the FILE
System performs an asynchronous anticipatory read into the system buffer while the
application continues execution. All OPEN calls are synchronous.

For interactive terminals, immediately after the OPEN is complete an asynchronous
physical connect is performed while the application continues execution. Assembly or
FORTRAN applications can check the status of the OPEN to see if a READ can be
issued without stalling application execution. File System issues an asynchronous antici
patory physical read when a status check after the physical connect is complete. The file
status remains busy until the physical read is done and the system buffer is full. At this
point, the file status is "not busy" (Le., the anticipatory read is successfully completed),
and the application can issue a READ with the assurance of receiving data immediately.
If at any point after the OPEN is issued the assembly or FORTRAN application issues a
READ before the physical connect and anticipatory read have been completed, the READ
is synchronous and further central processor execution is stalled on this application until
the anticipatory read is complete. To avoid status check looping to test the input buffer
status or stalling on a READ, both assembly and FORTRAN applications can put them
selves into the wait state, thus making the central processor available for lower priority
tasks. After the OPEN, a COBOL application must issue READ requests. The COBOL
application will be put in wait state if it is executing its I/O statements in synchronous
mode. Otherwise, the COBOL run-time package performs the status checks and returns
a 91 status until successful completion. The COBOL program can either loop on the READ
or continue other processing.

The anticipatory read allows an application to control input from more than one inter
active terminal, each of which represents a data entry terminal. By testing the status of
the system buffer before a READ (FORTRAN, assembly) or by checking for the 91 .
status return after a READ (COBOL) even if a terminal operator is not present at the
time of the READ request, the application will not be stalled and it can continue to
poll other terminals.

Buffered Write Operations
A buffered write operation to a device works on behalf of the application program in the

same logical manner as the read - the program is permitted to execute in parallel with the
physical I/O transfer to the device. To achieve this parallel processing, no special operation
occurs on an OPEN call and no distinction is made between interactive and noninteractive
file types. Each WRITE call is completed by moving data from the application buffer to the
File System's buffer (performing any detabbing, if requested), initiating the transfer, and
returning control to the application program. If the program performs a second WRITE
while the system buffer is still in use for a previous transfer, the application is stalled until
the buffer is available and new data moved into it again. The application can avoid stalling
execution by checking the status of the system buffer before issuing a WRITE to an inter
active terminal to see if, in a special mode, it is still in use or not (FORTRAN, assembly) or
by testing for the 91 status return after the WRITE (COBOL, for interactive devices only).

If a WRITE call is issued while data is being entered (because of a read) into the system
buffer, the read is allowed to complete and input data is saved in the system buffer, a
synchronous write is reissued by File System, and output data is transferred directly from
the application buffer. However, tab characters are not expanded into spaces by software.

Special considerations for buffered write operations arise because, if a physical I/O error
occurs while data is being transferred from the system buffer to the device, the application
program must be aware that the error occurred on the previous write operation. Furthermore,

FILE SYSTEM 3·10 CB20

~ '.
\'lj

(

if an error does occur, the application program may need to have saved (or be able to
retrieve) the data record so that it can be repeated.

Disk and Magnetic Tape Buffered Operations
An assembly language application can request buffers through the system service macro

call to get a file for reservation. If File System needs buffers for blocking or unblocking, it
provides either the number of buffers specified or, by default, one buffer. If no buffers are
needed, none are provided, even if specified. Each buffer contains a disk control interval
(CI) or magnetic tape block. When an application program issues a READ and the desired
record is not in any buffer, the next empty available buffer is filled with the CI or block
containing the record; when all buffers are filled, an active buffer is selected for the next
different CI or block based on a least recent usage algorithm.

I/O assembly language macro calls for disk or magnetic tape operations are synchronous,
and the application stalls until the I/O operation is completed. Asynchronous I/O can be
obtained through File System Storage Management macro calls and, optional1y, through
physical I/O (PIO).

DEFERRED PRINTING

The deferred printing utility allows output streams to be printed concurrently with job exe
cution. The following procedure can be used to implement deferred printing.

1. Define an online task group whose function is to produce print output files; for example

CG $P 0 EFN XPR _POOL AB

XPR specifies the deferred print utility and uses printer>SPD>PRINTER or
>SPD> LPTOO, whichever is configured.

2. When a print file is to be printed, issue the following command:

DP file-name [ctl arg)

file-name - May be specified by a simple or absolute pathname
[ctl arg] - Optional arguments that allow various characteristics (e.g., line length,

headings) to be specified. These arguments are described in the COMMANDS
manual.

When step 2 is completed, a request is issued to system task group $P, and the user's group
may then accept other tasks or be logged out.

FILE SYSTEM 3-11
6/78
CB20A

(

SECTION 4

SYSTEM ACCESS

SYSTEM CONFIGURATION AND ENVIRONMENT DEFINITION

At larger installations a system programmer might design the configuration files and
the possibly different operating environments to be used at the installation. The daily
startup would be done by an operator. At smaller installations, especially those where
programmers run dedicated applications, each programmer might do the configuration
and startup for his application.

Creation of a usable system consists of a two-step procedure:

o Bootstrap a Honeywell-supplied system startup routine that provides a limited
operating environment for building the files used in the second step

o Specialize the system startup procedure by configuring a system to correspond to
the installed hardware and by defining the environment in which to prepare and
execute applications programs

The bootstrap operation simply consists of turning on the power supply to the hard
ware, mounting the cartridge disk or diskettes containing the MOD 400 operating system
software, and pressing several control panel keys including bootstrap load to execute a
standard bootstrap routine. The bootstrap operation includes the initial configuration
and startup operations; procedures are executed (1) to configure a limited system con
sisting of cartridge disks storage modules, or diskettes, and operator terminal, and (2)
to provide a one-user online environment that can be used to specialize system startup,
perform program preparation, or perform application program execution.

In the provided user environment, the user can employ the Editor to create two files
that specialize system startup:

o CLM_ USER - Contains configuration directives, which when executed, will con
figure a system to correspond to the actual installation hardware

o START_UP.EC - Contains operator commands, which when executed, will define
the installation-specific operating environment consisting of task groups

When these files have been created, the system is again bootstrapped. However, this time
directives in the CLM_ USER file control the configuration, and operator commands in
the START_UP.EC file define the operating environment. (Refer to the System Building
manual for complete details.)

Configuration directives are available to perform the following functions:

o Describe available central processing unit options, such as the real-time clock, scien
tific processor, additional overlay areas, and trap save areas.

o Describe peripheral and communications devices and their characteristics.
o Specify the memory pools that partition memory. The system and each user task

group, under which applications execute, must be associated with a single memory
pool. System and user memory pools are discrete.

o Indicate which operating system overlay areas should be permanently resident.
o Indicate that an application-specific bound unit should be permanently resident and

be part of the operating system.

The START_UP.EC file is described later in this section.

SYSTEM ACCESS 4-1 CB20

ACCESSING THE SYSTEM

Ways to Access the System
An installation can simultaneously support several ways to access a system, so a user

must determine the access available at a terminal. For simplicity of discussion, three types
of access will be described. Access can be (1) through a LOGIN command, (2) through
operator control, or (3) through a user's own applications design.

Logging In
The login function allows a user, without operator intervention, to activate an appli

cation from anyone of the designated terminals. The login function can be activated by
the operator after configuration is complete as described in the Operator's Guide. Depend
ing on the capability designed and configured for an installation, a user can login in one
of three ways. A user can:

1. Type in a LOGIN command as described in the Commands manual.
2. Type in the abbreviation of a specific LOGIN command line. A file contains, for

each abbreviation, an image of the LOGIN command line that can either be used at
all login terminals or that might be restricted to designated ones.

3. Turn on the terminal and be logged in through a direct login. Direct login is useful for
transaction processing applications where the user wants to interact with the application
and not the operating system, e.g., an application to provide, on request from the desig
nated direct login terminals, the current inventory of a product.

The Secondary User
The system contains a capability that allows a user to login as a secondary user of an

existing task group. In order to achieve this capability, the following functions must be per
formed:

1. A running task group must request the use of a terminal as a secondary user terminal.
The request for a secondary user terminal is entered by means of a Request Terminal
macro call. (The Request Terminal macro call is described in the System Service Macro
Calls manual.)

2. The user must login as a secondary user. The login command contains an optional argu
ment that permits a user to login as a secondary user. (The format of the login com
mand is described in the Commands manual.)

In an applications program, the user is permitted to specify multiple Request Terminal
macro calls. Each Request Terminal macro call will accept a particular terminal that can be
used as a secondary user terminal. The number of Request Terminal macro calls to be issued
by a task group and the amount of elapsed time likely to occur before each requestis
"answered" by a secondary login are factors the applications programmer must consider when
reviewing design objectives. Whatever cooperation is to exist between task group and secon
dary users is entirely the responsibility of the applications program designer.

Operator Assigned Access
The operator or another user must activate the application that is to be run and also

designate the terminal that is to be used to input commands or user input required by the
program executing the command. Terminals that are used for logging in cannot be assigned
by the operator or another user. An installation can have a mixture of terminals: some
that may be used for logging in and others that may be assigned through the operator or
another user.

User Designed Access
A user at an installation that allows use of the system for a single dedicated application,

must configure and startup the system, act as operator, determine what the application

SYSTEM ACCESS 4-2
6/78
CB20A

/ - ,

(

(

environment should be, and how to access the system for that application. If an installa
tion has one terminal, it is used both as an operator terminal and user terminal, as described
in the Operator's Guide.

The Activated Lead Task
When a user successfully gains access to the system, executable code for the lead task

(i.e., the controlling task of the application) is loaded and activated. The lead task can be
designated to be either the command processor or a user application. When the command
processor is the lead task, the user has complete flexibility to control execution by being
able to execute any command in the Commands manual. When an application is the lead
task, the command processor is not part of the task group.

COMMAND ENVIRONMENT

The command environment is that environment in which the user can communicate
with the operating system through the use of command lines entered at a terminal or read
from a command file. The essential parts of the command environment, from the user's
point of view, are the command processor and the command input file (command-in).
The command processor is the system software component which reads command lines
issued by the user. It interprets them into procedures that load and initiate execution of
bound units which fulfill the requests represented by the command lines. The command
input file (command-in) is the file from which the command lines are read. It can be a
terminal device, as in the case of an interactive user, or a command file stored on disk or
on cards, as in the case of a noninteractive user.

Three other files are involved with, but not limited to, the command environment.
These are the user input file (user-in), the user output file (user-out), and the error output
file (error-out).

The user-in file is the file from which a command function, during its execution, reads
its own input. When a task group request has been processed, and as long as no alternate
user-in file is specified as an argument in a subsequent command, the user-in file remains
the same as the command-in file. At the termination of a command which names an alter
nate user-in file, the user-in file reverts to its initial assignment. The directives submitted
to the Editor following the entry of the EDITOR command, for example, are submitted
through user-in. No specific action is required on the user's part to activate, or to connect
to, user-in unless the directives are to be read from a previously created disk file. The user
simply invokes the Editor and begins entering editor directives through the same terminal;
the attaching of the terminal to the user-in file is invisible to the user.

The user-out file is the file to which a task group normally writes its output. However,
certain system components (compilers, etc.) also write to list files (path.L) or to the out
put file defined in the -COUT argument. The user-out file is initially established by the
-OUT argument of the EBR, EGR, or SG command. (Thus, originally, it is the same device
as the error output file device.) It can be reassigned to another device by use of the FO
(file out) command or by the use of the $NUOUT (new user out) system service macro
call. Such a reassignment remains in effect for the task group until another reassignment
occurs. Again using the Editor as an example, any responses from the Editor, such as the
printing of a line of the file being edited, are issued through user-out. As in the case of
user-in, no special action is required of the user to attach his terminal to the user output
file. The only time such action would be required is if the output from the command were
to be directed to some device other than the terminal.

Error-out is used by the system to communicate to the user an error condition which may
be detected during the interpretation of a command or its subsequent execution. Such a
condition could be a missing command argument, reported by the command processor,
or a file not found condition, reported by the invoked command. The error output file is
the same as the initial user-out file. The user cannot reassign error-out through a command,
only through a $EROUT system service macro call.

Subsequent paragraphs in this section describe in detail the functions available to the
user at command level.

SYSTEM ACCESS 4-2.1
6/78
CB20A

./

/

(-

COMMAND LEVEL

When the system is in a state capable of accepting a command from command-in, it is
said to be at command level. The methods whereby command level is achieved and the
functions that the system performs while at command level are described in the following
paragraphs.

Achieving Command Level
Command level can be achieved in any of several ways. Regardless of the way in which

the system arrives at this state, the system indicates that it is at command level by issuing
a "ready" prompter message at the user's terminal. (This assumes that the user has not
disabled the ready message by issuing a READY _OFF command; if he has, the system
still comes to command level but the user is not informed.)

A user is initially at command level when the lead task of a user task group is the
command processor.

When executing a command function, command level can be returned to in one of two
ways.

o At normal termination of a command function, the system returns to command level
and awaits the entry of another command. This command can be some other function
that the user desires to execute, or it can be a BYE command, indicating that he has
no further work to do and wishes to terminate the current session.

o The user can interrupt the execution of an invoked command by pressing the "break"
or "interrupt" key on his terminal. The system then responds with the break message.
At this point he can enter the START command to resume processing where it was
interrupted, or he can enter a new command as described in the Commands manual.

Functions Performed at Command Level
When a command such as COPY, CWD (change working directory), or EGR (enter group

request) is read by the command processor, the system spawns a task whose objective is to
fulfill the requirements of the command. This action effectively consists of the following
steps:

o A task is spawned naming the requested bound unit i.e., command name. Task
spawning implies task creation, i.e., the allocation and initialization by the system of
any control structures and data areas required for task control.

o The loader is called to load the requested bound unit
o A request for its execution is placed against the created task and the command proc

essor enters the wait state to await completion of the requested task (command). At
this point the system leaves command level, which can be returned to only by com
pletion of execution of the command or by pressing the "break" or "interrupt" key
on the terminal, as described previously.

o If the command is an EGR, it places a group request against an application task group
and then the EGR command terminates. The request is queued if there are other out
standing requests against the application task group from previous EGRs.

o When the command terminates, the spawned task is deleted and a ready message is
optionally issued to indicate that the system has returned to command level and can
accept further commands.

SYSTEM ACCESS 4-3 CB20

COMMAND LINE FORMAT

Commands are read and interpreted by the command processor, which executes tbe lead
task in the batch task group, or can execute as the lead task in an online task group. Each
command causes a task to be spawned within this task group to perform the requested func
tion (e.g., create a task within an existing group, enter a group request, dump a file). When
the execution of a command terminates, control is returned to the command processor,
which can then accept another command.

A command line to the processor is a string of up to 127 characters in the form

command-name [arg I ... ar~] [; command-name [arg I ... ar~]] ...

where command-name is the pathname of the bound unit that performs the command's
function. Each subsequent arg entry is an argument whose functions are described in the
following sections. A command line can span two or more physical lines. A line is con
catenated with the next line by ending it with an ampersand (&). A command line consisting
of two or more concatenated lines can be cancelled by entering a single ampersand on the
next physical line. More than one command may be included in a command line by ending
each command with a semicolon.

Arguments
An argument of a command is an individual item of data passed to the task of the

named command. Some commands require no arguments; others accept one or more argu
ments as indicated in the syntax of each command description. The types of arguments
used are:

o Positional argument - An argument whose position in the command line indicates to
which variable the item of data is applied. The argument can occur in a command
line immediately after the command name or as the last argument following the con
trol arguments, as in the LIST NAMES command.

o Control argument - A keyword whose value specifies a command option. A keyword
is a fixed-form character string preceded by a hyphen (e.g., -ECL). It can be alone,
as in -WAIT, or it can be followed by a value, as in -FROM xx.

Except for -ARG or when the last argument of a command line is a positional argument,
keywords of control arguments can be entered in any order in the line, following the initial

SYSTEM ACCESS 4-4
6/78
CB20A

(--

SECTION 5

EXECUTION ENVIRONMENT

TASK GROUPS AND TASKS

System control of user applications and system functions is accomplished within the
framework of the task group, which consists of a set of related tasks. The simplest case of
a task can be considered to be the execution of code produced by one compilation or
assembly of a source program (after the code is linked and loaded).

The operating system allows the user to configure a system dedicated to online applica
tions or a combination of online and batch applications. This flexibility of configuration is
based on the concept of the task group as the owner of the system resources it requires
for execution.

By defining more than one application task group to run concurrently, the user can
achieve multiprogramming. He can step through an application in sequence, by causing
tasks in the group to be executed one at a time; or he can multitask an application, by
causing tasks within the group to be executed concurrently.

Since multiple applications can be loaded in memory at the same time, contending for
system resources, an environment must be defined for each application so that it knows the
limits of its resources. This defined environment is called a task group, whose domain
includes one or more tasks, a memory pool, files, peripherals, and priority levels. By
defining the total system environment to consist of more than one task group, the resources
are divided up so that more than one application can run concurrently. For Example, mem
ory is divided into memory pools, and task code of a task group is loaded only into that
task group's pool and obtains dynamic memory from that pool.

By using the resources of one task group repetitively, an application can be run as a
sequence of job or program steps. To achieve this, a task group can be created by a SPAWN
GROUP command to use the command processor, whose function is to process system-level
commands. Commands can be submitted only in the framework of a task group whose lead
task is the command processor. The command processor is activated as the lead task of the
task group. One method of sequencing the steps of an application task group is to submit a
command to the command processor to read an application command file containing a
sequence of names of bound units (files of executable code), where each bound unit corres
ponds to a program. When a bound unit name is encounted in the file, that bound unit is
loaded and executed before the next bound unit name is read. The following is an example of
bound unit names in a command file:

REP _DATA (The name of a program that gathers report data)
PR_RPT (The name of a program that prints the report)

Another method of sequencing application steps is to issue a SPAWN TASK command for
each task to be executed. The SPAWN TASK command causes the task to be loaded,
executed, and then deleted. Provided the command processor is instructed to wait for
completion of each spawned task, the tasks in the task group can be executed in sequence.
For example:

ST I -EFN REP _DATA -WAIT (Spawn a task to gather report data)
ST I -EFN PR_RPT -WAIT (Spawn a task to print the report)

Since the Level 6 can be thought of as a set of processors - the central processor, each
input/output device, and the real-time clock - the above procedure can be used to attain
another effect, that of multitasking within one task group. Consider the situation when the
command processor is the lead task, and it reads a file containing SPAWN TASK commands;
it does not wait for the execution of the individual tasks, but continues to spawn tasks
until it reads an end-of-file or &Q directive. All these spawned tasks are loaded and run

EXECUTION ENVIRONMENT 5-1
6/78
CB20A

I

concurrently in this task group, contending among themselves for the resources defined for
the task group. For example:

ST 1 -EFN REP DATA (Spawn a task to gather report data)
ST I -EFN PR_RPT (Spawn a task to print the report)

The command processor does not have to be the lead task of a task group. An application
consisting of one task could execute in a task group whose lead task is the application task.
Should your application require step control or multitasking, but you do not need the
control through commands, you can generate a task group whose lead task contains
assembly language system service macro calls whose functions are analogous to the CREATE
and SP AWN commands.

The above situations are illustrative and do not exhaust the various ways that you can
control program execution.

To summarize: a task group is the owner of system resources, and the context in which
system control of tasking is accomplished. A task may be characterized as the execution of
a sequence of instructions that has a starting point and an ending point, and performs some
identifiable function. It is the unit of execution of the operating system, and its execution
must be requested through the Monitor software.

The source language from which task code is derived may be any of the languages
supported by the operating system. Source code is compiled (or assembled) and linked to
form bound units consisting of a root and zero or more overlays.

Application Design Benefits of Task Group Use
Designing an application around the task group provides:

o Intertask communication
o Operating system control of multiple, unrelated task groups

Intertask Communication
The tasks in a task group execute asynchronously in response to the interrupt-driven

nature of the operating system and to a linear scan of priority levels assigned to each task
group. Tasks communicate through the control structures supplied with each request for
task execution.

Asynchronous tasks provide effective software response to information received from
real-time external sources such as communications or process control systems. Usually, the
task that is activated to handle the interrupt from the external source has a higher priority
and a shorter execution time than the task that processes the information. The task that
responds to the interrupt will use the operating system to request the execution of the
processing task, supplying along with the request the control structure containing a pointer
to the new information to be processed. The operating system responds to the request by
activating the requested task, or by queuing the request if there are other requests for the
execution of this task still pending.

Communications applications would have a high priority task to examine data received
at random intervals and decide which processing task should handle the data. This high
priority task uses the operating system to queue requests for the processing task, thereby
accommodating peak-load conditions in which data is received faster than it can be
processed.

In a process control system, the real-time clock might provide the interrupt that causes
the high priority task to scan and update temperature, thickness, or raw material level
sensors that monitor the physical status of the process. This information would then be
passed to a processing task that determines the necessary adjustments based on the new
data. Then a third task, having a priority between the other two, could be requested to
make whatever changes are required; for example, to change the flow rate of material
entering the process by closing a valve.

These two brief examples illustrate the value of priority assignments and communication
facilities between tasks.

EXECUTION ENVIRONMENT 5-2 CB20

(

(

The Configuration Load Manager (CLM) reads a directive file, and from the specifications
supplied, it sets up memory pools and indicates to the loader what system and user-written
software is to be resident for the life of the system.

The numbers and characteristics of memory pools are specified in MEMPOOL directives
to the CLM. The system and batch pools are defined by an "S" or a "B" on their respective
MEMPOOL directives; all other pool definitions are application online pools.

Online Pools
Online memory pools are defined in MEMPOOL directives submitted to the CLM

during configuration. The definition of online pools requires careful consideration based
on the following facts:

o The operating system acquires space on behalf of tasks of a task group from the pool
belonging to that task group-not from the system pool (for the exception to this
convention see "Sharable Bound Units" later in this section). This means that work
space for the task and space for some of the file control and other data structures
must be included in the calculation of the task's memory pool size. See the System
Building manual for these size calculations.

o Online pools can be shared by more than one task group, unless the pool is specified as
a serial usage pool.

o The batch pool can be rolled out to accommodate the extension of an online pool
into the batch pool area.

There are two types of online pools, exclusive and nonexclusive pools. Online pools
can also be specified as expandable and may expand into the batch pool space, thus
forcing a rollout of the batch task group. Expandable online pools need not be contiguous
with the batch pool.

EXECUTION ENVIRONMENT 5·5
6/78
CB20A

*

I

*

I

*

I

Calculation of the desired size of system pools is necessary before a trial configuration
can be made for an application. However, these calculations may be rough approximations in
the early stages of application development. Both the system pool and batch pool (if any)
must be explicitly defined in size. The configuration process allows one physical area of
memory in the online pool area to be defined as having a size equal to the remaining
memory available (* convention) without making precise calculations. The * convention
for nonexclusive pools is illustrated below.

Exclusive Online Pools
An exclusive pool is one whose boundaries do not overlap those of other pools. An exclu

sive pool is defined in a MEMPOOL directive to CLM with "E" as the first parameter. The
lower part of Figure 5-1 shows a configuration of five online exclusive pools. Each pool is to
be used for the tasks of one or more task group. The pools are shown "empty" as they would
be at the end of the configuration process.

I
I

POOL

,/ AE

I

I
POOL POOL

lAD lAC
I I

ONLINE POOLS

.'
'POOL

lAB
I

I

TASK
GROUP

LOW MEMORY

WORK SPACE

THIRD TASK

THIRD TASK CONTROL STRUCTURES

WORK SPACE

SECOND TASK

SECOND TASK CONTROL STRUCTURES

WORKSPACE

LEAD TASK

LEAD TASK CONTROL STRUCTURES

LOW MEMORY

Figure 5-1. Exclusive Memory Pools and Contents

The upper part of the figure is an idealized picture of the contents of pool AA at some
instant during processing and shows the memory layout for three concurrent tasks. The
figure does not accurately reflect the fact that memory is allocated and returned (in assembly

EXECUTION ENVIRONMENT 5-6
6/78
CB20A

(

language programs) dynamically when needed, and work space might not be contiguous
to the task code that requests it. Also, memory is allocated in contiguous blocks according
to an algorithm that uses multiples of 32 word blocks to calculate the amount of space
to assign to a pool. So the "holes" that would normally be present as a result of the opera
tion of the algorithm are missing. The memory manager adds one plus $AF words for control
information to the requested amount of space, divides this value by 32, rounds up to the next
whole number, and allocates this calculated amount of memory to a task.

The tasks in pool AA (and in all task groups) have priorities assigned to them that are
relative to the priority of the lead task, eliminating conflict for resources.

The generation of task groups to use the pools in the figure could be carried out entirely
from the operator's terminal or the system START_UP .EC command file using the command
processor. Alternatively, after creating a group whose lead task is the command processor, that
group could be used to generate task groups and tasks by reading its command file.

The characteristics of exclusive pools:

o Have "E" as the first parameter on a MEMPOOL directive
o Consist of one or more sets (all pools are defined by one or more MEMPOOL directives)
o Can be expandable (can cause roll-out of the batch task group)
o Have an explicit size except that one exclusive pool may have an * size if no other pool

has an * size.

Nonexclusive Online Pools
A nonexclusive pool set is a set of pools whose boundaries overlap those of other non

exclusive pool sets so that some memory locations are common to both pool sets. Figure
5-3 shows two pool sets which are really alternative defmitions of the same physical
memory area.

Nonexclusive pools are defined in MEMPOOL directives to CLM with a blank first
parameter. The characteristics of nonexclusive pools:

o Have a blank first parameter on a MEMPOOL directive
o Are an explicit size (except that the last pool in each pool set may be given an * size

provided no exclusive pool has an * size.)
o Can consist of more than one set
o Can be expandable (can cause roll-out to the batch task group)

Sharing Memory Pools
There are two ways of sharing memory pools. The first method involves assigning two or

more task groups to the same pool. As these tasks execute, they contend for the same
memory space. Therefore, they should be designed so that they can be suspended or take
some alternative action when no additional memory is available.

The second method of allowing task groups to share memory involves the definition of non
exclusive pool sets. Figure 5-2 shows how this might be done.

Pool sets SX/SW /SV and SZ/SY represent alternate definitions of the same physical
area of memory. This method of memory use has the advantage of providing flexible and
efficient use of resources at anyone time. But it has the disadvantage that, unless task
group requests are very carefully planned, software deadlock (memory usage conflicts)
can occur - the operating system does not prevent it. For example, if task groups using the
SZ/SY pool set never execute until those using the SX/SW /SV pool set have terminated,
there will never be a problem of deadlock (if only one task group uses each pool).

However, assume that a task group assigned to pool SY is generated and acquires some
of the pool space. Then, a task group assigned to pool SW is generated and acquires some
space. If each group requested its remaining space, and was willing to wait until the space
was available, a deadlock would occur-neither task would ever complete.

The surest way to avoid potential memory usage conflicts is to define all online pools as
exclusive pools, and additionally to confine pool use to one task group.

If you specify serial usage for a pool, the operating system will not allow a group that uses
the pool to be created when another group is already using the pool.

EXECUTION ENVIRONMENT 5-7
6/78
CB20A

I

*

*
I

I
*

I

I

I

MEMPDOL ,SZ,2000 .. SV,'"

MEMPQOL E.AA,2048"AB.1024,X

r--+--.,...----,;------ - - - - +-------;j
I : 1 I
I : 1 I

, r-----------':----7 J
I : 1 I;

I : / I;
I : 1 / :

I : 1 / ;
/ : / 1 :

I ' I /
/ : / /

: I : / /
: / '/ I

f-'---+-L..{' _1. ___ -----------{ /
I /

NONEXCLUSIVE POOL AREA : I

I---"--~-----------------¥
~ :
: :

MEMPOOL ,SX, 1000"SW,3500"SV,·

sw

Figure 5-2. Exclusive and Nonexclusive Pool Sets

Batch Pool and Roll-Out
If you configure a system to include a batch pool (by specifying "B" as the first

MEMPOOL parameter), it is a resource of the batch task group, whose lead task is the
command processor. The usual use for the batch dimension is for program development
programs that can be rolled out to provide additional memory for online tasks.

Tasks executing in the batch pool are subject to roll-out when a task executing in an
extendable online pool exhausts its assigned memory pool. The operating system initiates
roll-out of the batch pool as soon as all batch task group I/O transfers are complete. If no
I/O operations are in progress, the task group will be suspended immediately and the
entire pool area written out to the roll-out file (>SID>ROLLOUT) on the bootstrap disk
as one large record.

Online tasks that use the memory extension capability must be designed so th,at they can
wait for roll-out to occur. Furthermore, unless online task memory requests are coordi
nated, they could cause "thrashing" -the rapid roll-out/roll-in of the batch pool. Once
roll-out is started, it will complete before roll-in occurs, even though the condition that
caused roll-out has been removed. For example, Task A requests memory; none is available
in its pool; roll-out is requested; Task B immediately releases a block of memory in the same
pool large enough to accommodate Task A's request. Roll-out will proceed anyway. Roll-in
is initiated when the expanded memory usage is over only if no explicit roll-out request is
received.

EXECUTION ENVIRONMENT 5·8
6/78
CB20A

(

Operator commands can be used to cause roll-out and roll-in: the SSPB (suspend batch)
command causes execution of the batch task group to be terminated temporarily and the
group to be rolled out of memory; the ACTB (activate batch) command causes the suspended
batch task group to be rolled back into memory and execution to be resumed.

Batch Task Group
The properties of the batch task group and its tasks are as follows:

o The lead task is always the command processor.
o Tasks can only refer to peripheral devices, or mass storage directories and files that

are marked shareable.
o Task code cannot execute privileged central processor operation codes (I/O, HALT,

LEV).
o Tasks cannot issue system service macro calls or commands that alter the set of task

groups defined to the operating system, e.g., CREATE GROUP, DELETE GROUP,
ABORT GROUP, SPAWN GROUP.

o A monitor I/O read request will have its boundaries verified if the boundaries fall within
the batch pool.

o Real-time application tasks should not be scheduled for execution under the batch
task group if the batch pool is subject to roll-out.

Operating System Area
In response to CLM directives, the following software components and data structures

will be located in the fixed operating system area after the configuration process is
complete:

o Basic operating system software plus resident overlays (RESOLA directive)
o User-written extensions to operating system (LDBU or DRIVER directive)
o Device-drivers
o Intermediate request blocks needed for task groups (SYS directive)
o Trap save areas (SYS directive)
o Overlay area(s) for system software (SYS directive)
o File control structures (me description block (FDB) for nondisk devices)

The operating system area is fixed-its contents remain the same for the life of the
system - in contrast to other memory areas whose contents can vary. Almost all code loaded
into this area is reentrant so that a single copy of the code is available to multiple users,
thus minimizing memory requirements.

System Pool Area
The area adjacent to the resident software area is called the system pool. This area con

tains the system task group. In addition, the system pool accommodates the following
elements: .

o Current function invoked by an operator command
o Extended trap save areas (TSAs) needed during processing
o Control structures for the batch task group
o Shareable bound units
o File system directory and file definition blocks

System Task Group
The system task group differs from other task groups in the following ways:

o Cannot be aborted or suspended
o Always has read and write access to all of memory

EXECUTION ENVIRONMENT 5-9
6/78
CB20A

*

I

o Handles all system dialog (including operator commands) through the designated
operator terminal

o Never terminates, so it cannot be requested

Batch Task Group Control Structures
The following control structures are found in the system pool area whenever a batch

memory pool is configured:

o Group control block (GCB)
o Logical resource table (LRT)
o Logical me table (LFT)
o Task control block (TCB)
o Batch request block

File Control Structures in the System Pool Area
The elements in the system pool area that are used for flle control consist of:

o File description block (FDB)
o All buffer for shareable files
o Buffers for shareable files

Pool Attributes
The user can exercise more control over memory usage by providing online memory pools

with specialized attributes, as described below.

Protected Memory Pools1
A memory pool may be "protected" if it is so specified at configuration (by a CLM com

mand). A protected pool is one into which a task running in another pool may not write.
Through use of the Memory Management Unit (MMU), the operating system will prevent
write intrusion by foreign tasks. Such a task will receive an error notice from the operating
system when an intrusion is attempted.

The special size constraints that apply to protected pools are described in the System
Building manual.

Contained Memory Pools!
Any memory pool but the system memory pool may be "contained" if it is so specified

at configuration. Tasks running in a contained pool are prevented from writing outside their
own pool area. The constraints that apply to the size of contained memory pools are the
same as those that apply to protected memory pools.

Unprivileged Memory Pools
At configuration, any memory pool except the system pool or the batch pool may be

declared "unprivileged". A task running in an unprivileged pool cannot execute privileged
instructions, and will trap if such an execution is attempted.

The system pool is always privileged and the attribute cannot be altered.
The batch pool is always unprivileged and the attribute cannot be altered.
Exclusive and nonexclusive pools are privileged unless specified to be unprivileged

Serial-Usage Memory Pools
An exclusive or nonexclusive memory pool may be declared serial-usage. If so declared,

such a pool may be used by only one task group at a time.

Multi-Pool Memory Protection
On a system having a Memory Management Unit (MMU), a user may specify the write

protection/containment that the system is to provde. At CLM time, the user selects one of
the following options. The option selected prevails until the sytem is reconfigured.

1 Applies only to configurations having a Memory Management Unit (MMU).

EXECUTION ENVIRONMENT 5-10
6/78
CB20A

(

(

(

1. No protection or containment; i.e., no utilization of the MMU.
2. Protection of the system memory pool and/or containment of the batch memory pool.
3. Protection and/or containment of selected memory pools in addition to those of option 2.

Note that protection applies to memory pools and not to task groups. Thus, groups sharing
a memory pool are not protected from each other. Nor is the only group in a memory pool
secure from intrusion if the pool is a nonexclusive pool.

If a task group is to be protected from all other groups, it must be the only group using an
exclusive memory pool, and option 3 software protection must be specified at system con
figuration.

Memory Layout
To obtain efficient use of memory and of the Memory Management Unit the Configuration

Load Manager (CLM) sorts the memory pools in a configuration as follows:

o The system pool is in the first available memory after the system date structures.
o Nonprotected, non contained pools are next in order of size; the smallest one comes

first.
o Protected and/or contained pools come last in order of size; the smallest one comes

first.
o All nonexclusive pools are considered to be a single pool, for purposes of memory al

location.

Selecting Memory Pool Attributes For Task Group Execution
The different type memory pools provide system users with the means to respond to the

unique demands of multiple application programs. Through the use of memory pools the
user can at once exercise control over memory usage and at the same time provide individual
task groups with specialized protection attributes.

The degree to which the system can efficiently and effectively handle the concurrent
execution of multiple task groups depends on the number and type of memory pools available
for use.

Cases 1,2, and 3, below examine the considerations involved in the selection and use of
memory pools.

Case 1:
The user's program consists of a real-time data application program. The program must

co-exist with other user applications.
The data application program accepts data based on unpredictable external stimuli.

The application permits a "saturation" effect to occur when data collection exceeds the
effective rate of processing. The occurrence of "saturation" represents a signal to the ap
plication to initiate a data selection strategy.

The user should select an on-line pool of sufficient memory size to control the maximum
desired amount of data allowed to accumulate.

Case 2:
The user's application consists of process control software with a periodic need for all

of available user memory.
The application requires the total memory of the system only 30 seconds of every five

minutes. For the remainder of the time, only 10% of user available memory is required.
In this case the process control application ought to be loaded into an extendable online

pool. The size of the online pool should be 10% of available memory. The applications
periodic need for all of available memory can be fulfilled by defining a batch pool that con
sists of 90% of available memory. Whenever the process control application requires more
memory than that in its online pool, then the system will initiate a rollout of the batch
pool. During the period when the process control application does not require all of avail
able memory, then the use of the batch pool can be obtained by other applications.

EXECUTION ENVIRONMENT 5-10.1
6/78
CB20A

Case 3:
Multiple .applications with strict integrity requirements are to coexist with programs

under development test.
The user can choose to load each of the applications with integrity requirements into

a memory pool that has been designated as "protected". This will insure that the programs
under test do not accidently modify data in the programs to be protected.

BOUND UNITS

Task code is derived from the source language of programs that are compiled or assembled
to form object units. One or more object units are linked to form a bound unit that is placed
on a file. The bound unit is an executable program that can be loaded into memory. A task
represents the execution of a bound unit. Each bound unit consists of a root segment and
any related overlay segments.

Overlays
To minimize the amount of memory required to execute a bound unit containing applica

tion code, the bound unit can be created as a root and one or more overlays. Object units
whose code is to be loaded as overlays are defined as overlays by the Linker, The use of
overlays requires careful planning so that required code is not lost or repetitively loaded.

Nonfloatable and Floatable Overlays
Overlays are part of a bound unit which comprises a root or a root and one or more over

lays. There are two types of overlays: the nonfloatable overlay that is loaded into the same
memory location relative to the root each time it is requested, and the floatable overlay
that is linked at relative location 0 and can be loaded into any available memory location.

Floatable overlays must have the following characteristics:

o External location definitions in the overlay are not referred to by the root or any
other overlay.

o The overlay makes no immediate memory addressing (IMA) references to itself,
and no displacement references to the root or any other overlay.

o The overlay can contain IMA references with or without offsets to the root or any
other nonfloatable overlay.

o The overlay does not contain external references that are not resolved by the Linker.
o The overlay must be linked after all nonfloatable overlays have been linked.

A user program can use one or more areas of its available memory for placement of float
able overlays. To be most effective, the program must perform its own memory management
of these areas. To perform memory management, a user-written assembly language overlay
manager must be linked with the root of the program bound unit. Adequate memory space
must also be provided in the pool of the requesting task. If the user program does not con
trol the placement of a floatable overlay, the system will place the overlay in available
space in available memory.

EXECUTION ENVIRONMENT 5-10.2
6/78
CB20A

/t-f!" '\

t" .
~j

(

(

("

Assembly language programs can use system service macro calls to load and execute non
floatable overlays; memory management is handled by the Monitor. Similarly, COBOL
programs can use CALL/CANCEL statements to control nonfloatable overlays. FORTRAN
and RPG programs must link a user-written assembly language overlay manager with the
application program.

Resolving References
Forward references can be made to symbols defined in object units to be linked later.

Backward references can be made to symbols previously defined provided that the defined
symbols were not purged from the Linker symbol table by a Linker BASE or PURGE direc
tive. Since the specification of the BASE directive removes from the Linker symbol table all
previously defined, unprotected symbols that are at locations equal to or greater than the
location designated in the BASE directive, you must either define all symbols in a nonover
laid part of the root or plan the linking of subsequent overlays so that purging of needed
symbols does not occur.

Floatable overlays can refer to fixed addresses in the root or non floatable overlay, but
cannot refer to addresses in another floatable overlay.

When a root or an overlay of a bound unit is loaded, the loader examines the attribute
tables associated with the bound unit, if an alternate entry point is specified. The loader
tries to resolve any references to symbols that remain unresolved at load time by searching
the system symbol table (i.e., the resident bound unit attribute table); it cannot resolve any
references to symbols that do not exist in that table (Linker symbol tables do not exist at
load time).

Sample Overlay Layout
Figure 5-3 illustrates the layout of overlays in a memory pool AA. The Linker directives

to create and specify the location of these overlays are described in the Program Execution
and Checkout manual.

When the root is loaded, the largest contiguous amount of memory necessary to accom
modate the root and all nonfloatable overlays is allocated. Except for space for any floatable
overlays, no other memory requests need be made. In the figure, this memory area begins
at relative 0 of the root, and continues to the end of object unit OBJD. The root consists
of object units OBJl and OBJ2. When loaded, OBJ5 of overlay ABLE will replace the
previously loaded OBJ2 code of the root. Similarly, the overlay locations were specified so
that OBJC of overlay ZEBRA will replace part of OBJB.

Shareable Bound Units
Using shareable bound units is a way of minimizing application task group memory

requirements while making reentrant code available to multiple tasks. Unlike permanently
resident bound units that are loaded during system configuration, shareable bound units
are transient in the system pool and are loaded during processing. A counter is incremented
each time a request is made for the bound unit, and the unit remains in memory as long as a
task is using the code. As soon as the counter is decremented to zero, the system pool space
occupied by the bound unit is returned to available status.

Operator commands can be used to load and then unload a shareable bound unit.
To be recognized as shareable by the loader and loaded into the system pool, the bound

unit must have been so marked by the Linker in response to a SHARE directive when the
bound unit was linked. If the system pool does not have enough space to accommodate the
bound unit, at a given instant, it will be placed in the pool associated with the task group
that requested the bound unit, and cannot be shared.

Shareable bound units and the operating system extensions that are loaded when the
system is configured differ in another way. Namely, operating system extensions can be
referred to directly by any task, but a shareable bound unit must be accessed as a task. The
reason for the difference is that an operating system extension is loaded when the system is
configured-its symbols are included in the system symbol table at that time. Since there is
no symbol definition once configuration is complete, and since a shareable bound unit is
loaded after the system has been configured-no entry for it exists in the system symbol
table, and it must be accessed as a task.

EXECUTION ENVIRONMENT 5-11
6/78
CB20A

I

ADDRESS HIGH MEMORY

,-------
ADDITIONAL TASK
GROUP INFORMATION

} OVERLAY FLOAT
ADDITIONAL TASK
GROUP INFORMATION --------

1---------
OBJE.O

ROOT AND OVERLAY AREA

RELATIVE 0 FOR ROOT

TASK GROUP CONTROL
STRUCTURES

ADDITIONAL TASK
GROUP INFORMATION --------

MEMORY POOL
AB (TASK
GROUP A2
WILL USE
THIS AREAl

UNUSED MEMORY

08JO,0

{ ---------
OBJC.O --------

LOCATION 1105 OBJB.O

--------ROOT AND OVERLAY AREA

MEMORY POOL
AA (TASK
GROUP A1
WILL USE

OVERLAY FOX

RELATIVE 0 OF ROOT ------- THIS AREA) OBJA.O

TASK GROUP CONTROL
STRUCTURES --------

OBJ6.0

SYSTEM POOL

OBJ5.0 (==~~~---~-
OVERLAY ABLE

1---------
OPERATING SYSTEM

LOW MEMORY 08J2.0

ROOT
RELATIVE LOCATION IN MEMORY
OF MEMORY POOL AA

RELATIVE 0 OF
ROOT

08J1.0

TASK GROUP CONTROL
STRUCTURES

CONTENTS OF MEMORY POOL AA

Figure 5-3. Overlays in Memory

Table 5-2 compares permanently resident operating system extensions and transient
shareable bound units.

TABLE 5-2. COMPARISON OF OPERATING SYSTEM EXTENSIONS AND SHAREABLE
BOUND UNITS

Characteristics Operating System Extension Shareable Bound Units

Multiple Users Yes Yes
Permanent Resident (ftxed area) Yes No
Temporary Resident (dynamic area) No Yes
Symbols in System Table Yes No
Accessed symbolically? Yes No
Accessed as a task? Yesa Yes
Can have overlays? No Yes
Called by Bound Unit Name Nob Yes

aIf the extension is an assembly language bound unit, it may have within it sections of code or control structures
controlled by semaphores which would be accessible to other assembly language tasks.

bThe operating system does nQt "remember" extensions by their names; a request for one by name results in
another copy being brought into memory.

Loading Bound Units (Search Rules)
The loader follows preestablished search rules when searching through a set of direc

tories to locate a bound unit to be loaded. The loader initiates the search in response to a
command which contains an argument naming the bound unit to be loaded.

EXECUTION ENVIRONMENT 5-12
6/78
CB20A

(

Assigning Priorities to Application Tasks
Priorities are assigned to user task groups and tasks when they are created or spawned. The

command to generate a task group contains an argument that represents the base priority
level for the task group. The base priority level is relative to the highest system physical
priority level, i.e., the highest interrupt priority level number used by the system in that
configuration. When a task group is assigned a base priority level of zero, the lead task group
executes at the physical interrupt priority level that is the next level above that of the
highest level system task. When other tasks in the same task group are created or spawned,
they are given level numbers relative to the base priority level assigned to the task group. The
physical interrupt priority level at which a task executes is the sum of the highest system
physical priority level plus one, the base priority level of the task group, and the relative
priority level of a task within that group. This total must not exceed 62.

User tasks that are to execute in the online dimension are usually given higher priorities
(lower level numbers) than those in the batch dimension. Tasks that are I/O bound should
be run at a higher priority than tasks that are central processor bound. This permits 1/0-
bound tasks, which run in short bursts, to issue I/O data transfer orders as needed, wait for
I/O completion, and, while in the wait state, relinquish control of the central processor to
the central processor-bound tasks. Otherwise, if the central processor-bound tasks have a
higher priority, the I/O devices would be idle while I/O bound tasks waited to receive central
processor time.

Logical Resource Number (LRN)
An LRN is an internal identifier used to refer to task code and devices independently of

their physical priority levels. Use of LRNs makes assembly language application task code in
dependent of priority levels so that if circumstances require a change in priority levels, the
task code does not have to be reassembled.

Device LRNs
LRNs are assigned to devices in the CLM DEVICE directives when the system is configured.

The operator's terminal is assigned to LRN 0 at configuration. The bootstrap device is given
an LRN value of I, and, if an MLCP-connected operator's terminal is configured, the system
assigns it an LRN of 2. Figure 6-3 is an example of priority level assignments for devices and
system tasks and the related device LRNs.

LRN LEVEL

o
1
3
4
5

o

3
4
5
6
7
8
9
10
11

INT
CLOCK
OPERATOR'S TERMINAL
DISK
LINE PRINTER
SERIAL PRINTER
CARD READER
OPERATOR INTERFACE MANAGER INTERRUPT
SYSTEM TASK

Figure 6-3, Example of LRN and Priority Level Assignments
to System Tasks and Devices

Application Task LRNs
LRN assignments to application program tasks are not dependent on the system configur

ation on which the application task group is running. LRNs are assigned to task code within
an assembly language application program through specification of the create group/task
macro calls, as well as the macro calls that build data structures ($IORB, $TRB, etc.). LRNs
can be assigned at the control language level through the use of the commands (including
operator commands) for creation of tasks groups and tasks. An LRN for an application task
can have any value from 0 through 252. Within a task group, the LRN for each task must be
unique. More than one LRN can be associated with the same level. For example, two tasks
at level 23 can be assigned LRNs of 28 and 29, respectively.

TASK EXECUTION 6-5 CB20

I

Logical File Number (LFN)
Logical me numbers are internal me identifiers that are associated with me path names

either at the assembly language level, or for high-level languages at the command level,
through GET or ASSOCIATE commands.

Inter/Intra Task Group Communication
Whether or not information can be passed between task groups and tasks depends upon

the following considerations:

o Language in which task code is written
o Use of the same file by more than one task group
o Use of the message facility

Language Considerations
Task code written in assembly language can pass information to other assembly language

tasks in the same task group by using variable-length request blocks. (See the System Service
Macro Calls manual for details about building these data structures.) High-level languages
cannot use this mechanism directly, but would require called subroutines written in assembly
language.

Use of Common Files
Tasks within the same (or different) task group can communicate via disk files. The con

currrency status must be the same for all tasks using the meso The requesting tasks must
have access rights to the meso

Use of the Message Facility
The message facility allows online communications between two task groups using as

sembly language code. The task groups communicate by sending and receiving messages
to/from message queue container called mailboxes.

In using the message facility, the task groups issue commands to prepare the mailboxes
and system service macro calls to send and receive the messages.

Mailbox Preparation
The user or operator must create the mailbox root directory on the local volume, create

the needed mailboxes, and set access controls on the mailboxes.
The mailbox root directory is the directory that is to contain the simple names of the

mailboxes. It is created through a standard CREATE DIRECTORY command.
The user creates each needed mailbox through a CREATE MAILBOX command. This

command creates a directory corresponding to the mailbox name and a file ($MBX) within
that directory defining the mailbox attributes.

Since memory queuing of the messages is required, the CREATE MAILBOX command
must have the -MEM argument; the queue capacity (in bytes) is specified by the -SIZE argu
ment.

To prevent unauthorized use of the message queues, the user should set access controls
on each created mailbox. Access rights must be set as follows:

o The sender must have list access on the directory defining the mailbox.
o The receiver must have read access on the $MBX me for a given mailbox.

The following is an example of mailbox preparation (see the Commands manual for details
on the various commands).

1. Create the default mailbox root directory .1

CD>MDD
2. Create a mailbox (directory and file).

CMBX> SMITH -MEM -SIZE 100

1lf the user creates a mailbox root directory named MDD, then the format of the CMBX command can include a simple ;f ."
pathname (the system assumes the absolute pathname to be > MDD > mailbox directory> $MBX). If the user creates a mail- ~.
box root directory not named MDD, then the format of the the CMBX command must include an absolute patname. -j

TASK EXECUTION 6-6
6/78
CB20A

(

3. Create another mailbox (directory and file).
CMBX >JONES -MEM -SIZE 50

4. Set read access on the file created in step 2.
SET_ACL >MDD>SMITH>$MBX R *.Smith.*

5. Set list access on the directory created in step 2.
SET_ACL>MDD>SMITH L *.*.*

6. Set read access on the file created in step 3.
SET ACL>MDD>JONES>$MBX R *.JONES.*

7. Set ifst access on the directory created in step 3.
SET_ACL>MDD>JONES L *.*.*

Sending and Receiving Messages Between Task Groups
A task group that wishes to send a message to another task group must issue an Initiate

Message Group ($MINIT) macro to open the send portion of the message facility. The task
group then issues Send ($MSEND) macro calls to send message data. In the same way, a
task group that wishes to receive a message from another task group must issue an Accept
Message Group ($MACPT) macro call to open the receive portion of the message facility.
The task group then issues Receive ($MRECV) macro calls to receive message data. When
the message is received, both the sending and receiving task groups should issue a Terminate
Message Group ($MTMG) macro call.

The message facility can be used most effectively if it remains active for as long as the two
task groups wish to communicate. To accomplish this, the task groups should issue the Initiate
Message Group and Accept Message Group macro calls to invoke the message facility. Then a
task group can issue Send macro calls whenever it has data to send; the task group that is to
receive the data can issue Receive macro calls when it wants to receive the data. When the mes
sage (one message with multiple records) has been received, both task groups should issue a
Terminate Message Group macro call.

Refer to the System Service Macro Calls manual for a full description of the message facility
macro calls.

Sending Messages To A Task Group
A task group wishing to send a message to another task group issues an Initiate Message

Group ($MINIT) macro call to inform the system that a message is to be send and to provide
the name of the queue (mailbox) to which it will be sent. The task group than issues one or
more Send ($MSEND) macro calls to send message data. The Send macro calls name the mes
sage is returned by the Initiate Message Group macro call.

The message is made up of records. The last record carries the end-of-message indicator;
intermediate records may carry an end-of-quarantine indicator. The message is terminated by
the Terminate Message Group ($MTMG) macro call or, alternatively, by the SEND ($MSEND)
macro call.

The sending task group can issue the Count Message Group ($MCMG) macro call to ascertain
the number of messages currently in the mailbox.

Receiving Messages From A Task Group
A Task group wishing to receive a message from another task group issues an Accept Mes

sage Group ($MACPT) macro call to inform the system that a message is to be received from
a named queue (mailbox). The task group then issues one or more Receive ($MRECV) macro
calls to receive message data. The Receive macro calls name the message id received by the
Accept Message Group macro call.

The receiving task group can request the message in record sizes that are other than the sizes
in which the message was sent; the receiving task group delimits the amount of received
data by range, end-of-quarantine-unit, or end-of-message specifications. The task group must
issue a Terminate Message Group ($MTMG) macro call when the entire message has been re
ceived.

The receiving task group can issue a Count Message Group ($MCMG) macro call to ascertain
the number of messages in the mailbox.

TASK EXECUTION 6-6.1
6/78
CB20A

Task and Resource Coordination
Tasks can be coordinated in either of two ways:

o Through the use of tasking requests
o Through the use of semaphores

Task Requests
One task can request another to execute asynchronously with it, or the requesting task can

later wait for the completion of the requested task. Both tasks have access to the request block
provided by the requesting task, and thus can pass arguments between them.

Semaphores
Semaphores support an application-designed agreement among tasks to coordinate the use

of a resource such as task code or a file. A semaphore is defined by a task within a task group,
and is available only to the tasks within that group.

For each resource to be controlled, a semaphore is defined, and given a two-character ASCII
semaphore name. This name is a system symbol recognized by the Monitor, and not a program
symbol that needs Linker resolution. The agreement is: each requestor of a resource whose
use must be coordinated issues appropriate Monitor calls to the named semaphore to request
or to release the resource. The task that defines the semaphore assigns the semaphore's
initial value. The Monitor maintains its current value to coordinate requestors of the resource
being controlled. A req uestor obtains use of a resource if the semaphore value is greater than
zero at the time of the request. A requestor is either suspended waiting for the resource or
notified that no resource is available if the value is zero or negative.

Monitor service macro calls are used to:

o Define a semaphore and give an initial value ($DFSM)
o Reserve a semaphore-controlled resource ($ RSVSM); this macro call subtracts a resource,

or queues waiter for the resource; i.e., it decrements the current-value counter.
o Release a semaphore-controlled resource ($RLSM); this macro call adds a resource, or

activates the first waiter on the semaphore queue; i.e., it increments the current-value
counter.

o Request the reservation of a semaphore-controlled resource ($RQSM); this macro call
queues a request block (SRB) if the resource is not available. This macro call decrements
the current-value counter.

A semaphore is a gating mechanism, and the initial value given to it depends upon the type of
control you want to exercise.

TASK EXECUTION 6-6,2
6/78
CB20A

!(~

'''"-_/

SECTION 7
DISTRIBUTED SYSTEMS

(- FACILITIES

(

The GCOS system is designed to interface with communications and networking products
to provide components for implementation of a distributed systems environment. This section
describes the following GCOS facilities that use communications software to perform data
transfers: the Remote Batch Facility, the Data Entry Facility, utility programs that support I
file transmission between the Level 6 and other processors, the Terminal Concentration
Facility, Level 66 Host Resident Facility, and IBM Workstation software.

REMOTE BATCH FACILITY (RBF)

The Level 6 Remote Batch Facility (RBF) is a software package enabling Level 6 hard
ware to be used in a remote batch processing environment with Level 66 and Series 6000
host processing systems. Remotely located Level 6 peripheral devices can enter jobs into
and receive output from one to four host processors.

The Remote Batch Facility works in conjunction with a host processor and a Front-End
Network Processor (FNP), operating under control of General Remote Terminal Supervisor
(GRTS) or Network Processing Supervisor (NPS) software.

The Remote Batch Facility can use either of two line protocol conventions that control
the flow of data between the Level 6 and the FNP:

o Remote Computer Interface (RCI)
o High-Level Data Link Control (HDLC)

The Remote Batch Facility operates under control of the GCOS 6 operating system.
Remote batch and GCOS 6 local processing functions that are independent of the host proc
essor can be performed concurrently, provided adequate resources (i .e., memory; peripheral
devices) are available. Local processing of the following types can be performed:

o Program/system development and maintenance
o User-written processing applications
o User-written data communications applications

Remote batch terminal (RBT) software is run as a task executing in a unique task group
and using the resources reserved for that task group. In systems with adequate resources,
the Remote Batch Facility can support the concurrent operation of up to four remote batch
terminals. Each RBT permits the batch entry of remote jobs destined for processing in a
host system and the receipt of output from those jobs. Each RBT is associated with a stream;
i.e., a logical connection that lets data travel between two end points between a device or file
at an RBT and a host processor).

In remote batch processing, the following functions can be performed at an RBT:

o Enter a job or group of jobs for processing by a host processor.
o Combine input from more than one input medium or file into one job.
o Obtain the status of jobs in the host processor.
o Use the transparent binary feature to process cards in nonstandard binary format without

performing checksumming.
o Spool data to a file for temporary storage. Input jobs can be stored on a spool file and

later be transferred to the host. Batch output can be spooled and then printed or punched
at a later time.

DISTRIBUTED SYSTEMS F ACILITlES 7-1
6/78
CB20A

o Direct that job output be sent to any of the terminal's peripheral devices capable of
receiving output, to another RBT, or to the host computer site.

o Backspace an output file and resume output processing from that point.
o Change printer forms as specified on GCOS control cards.
o Abort a file that is being retrieved (output from host) or ajob that is being entered

(input to host).
o Restart job output processing, specifying the page and/or line number for printer

output or the card number for punch output.

RBF Confj.guration
The user must configure the system using configuration directives (see the System

Building manual). He then creates a task group for each RBT, defining initial input and out
put file assignments, modifying external switches associated with the task group and, finally,
invoking the RBT and identifying its processing stream.

Remote Batch Operations
Remote batch operations are controlled by entering commands from either the Level

6 operator terminal or an RBT console. Operator messages are issued on the console and
define conditions that may require operator action. If necessary, operator responses can be
entered through the console.

The Remote Batch Facility supports multiple communications lines to one to four host
processors. The lines can be either all dedicated (which are always connected), all switched
(which are connected by dialing a telephone and disconnected at the end of each session), or
a mixture of dedicated and switched.

Jobs to be processed can be prepared on cards, and read directly through the card reader
by an RBT. Alternatively, the job deck can be prepared using the Editor and read from a file
in ASCII code. Or, the cards can be spooled to a file and read in GBCD code.

Output records are delivered to a specified output file or device. If therequested device is
in use or inoperable, you can wait for device availability or direct the output to a different
device.

Refer to the Remote Batch Facility User's Guide for a complete description of the Remote
Batch Facility.

DATA ENTRY FACILITY (DEF)

The GCOS 6 Data Entry Facility (DEF) is a multifunctional data entry system. Data can be
entered through an operator control station, validated, edited, verified, and communicated to
a host computer for further processing.

DEF is a disk system combining Level 6 hardware with DEF software. DEF operates under
a task group under GCOS software and can operate simultaneously with other system functions
and tasks. It supports up to 12 operator display stations (VIP 7200 terminals) and up to
six line or serial printers.

The following functions can be performed using DEF:

o Develop forms; create, modify, delete, print, and view forms
o Develop tables; create, modify, delete, print, and view tables. The tables are used to ensure

that data is entered correctly or to replace data with other specified data.
o Enter or modify data records by using a form as a template. The entire form is displayed

on the screen, and variable (unprotected) areas can he written into or altered.
o Verify contents of all or specified fields by rekeying the data.
o Print entire files or selected records from files. The printout can be formatted or unfor

matted (all data in a single record is run together on one or more lines).

DEF functions may be run concurrently with other GCOS 6 facilities such as file transmission
to and from a host computer.

DISTRIBUTED SYSTEMS FACILITIES 7-2 C820

,;1#- "

\\~j

(

(

Interface ~th Progra~s
Data entry subroutines can be created to include capabilities such as arithmetic functions

(e.g., batch totals) or additional data validation and editing features. The subroutines are
automatically executed when the operator reaches the fields where they were specified.
Application programs may be run concurrently with other DEF functions; application pro
grams can be used for functions such as printing reports received on a DEF disk from a host
system or sorting and merging data files. Data entry subroutines and non-data-entry appli
cation programs can be written in COBOL or assembly language.

DEF Operations
All system operations, including data entry and system control, are performed from the VIP

7200 operator display station. Data entry and control is initiated from the keyboard. User
generated information (e.g., data entry forms) and system-generated information (e.g., selec
tion lists and prompting messages), and all entered data are displayed on the screen. Selection
lists indicate which options may be selected (e.g., data entry, supervisory functions). Prompting
messages request entry of specific responses or information.

Data is entered at an operator display station onto a form created for the particular appli
cation. As data is entered, specified data validation and editing takes place. If an error exists,
an alarm sounds. Error messages are displayed on the bottom line of the operator display sta
tion. The appropriate correction can be made and, if desired, additional data entered. The
data entered is stored on disk and is available to be processed, viewed, modified, deleted,
printed, or transmitted using the GCOS 6 file transmission utility program.

DEF Supervisory Functions
DEF supervisory functions have the capabilities listed below; access to these functions is

protected via a password to prevent unauthorized or accidental access to the functions:

o Copy forms, tables, and data files
o Rename forms, tables, and data files
o Delete forms, tables, and data files
o Assign any number of operator display stations to a selected printer or change the current

disk volume assignments for forms, tables, and data files.
o Examine and change the system status
o Change· the supervisory password

DEF Utilities
Utility routines provide the follo~ng capabilities:

o Display (1) form names, (2) names and types of tables (i.e., extract or verify table),
or (3) file names, number of records in each file, and each file's verification status

o Print (1) form names, (2) names and types of tables, or (3) file names, number of records
in each file, and each file's verification status

o Display names of disk volumes to which the operator display station has access for reading
and writing forms, tables, and data files.

o Temporarily change disk volumes that forms, tables, and data entry files are read from or
written to for the operator display station at which the user is working.

DEF Configuration

The user must configure the system using configuration directives (see the System Building
manual). He must lInk the DEF object modules to form a bound unit. He then creates a task
group for DEF and creates DEF-specific tasks.

For a complete description of the Data Entry Facility, refer to the Data Entry Facility
User's Guide manual.

FILE TRANSMISSION BETWEEN LEVEL 6 AND OTHER COMPUTERS
File transmission between the Level 6 and a variety of other processors (Level 6, 62, 64 and

66, Series 200/2000, and non-Honeywell processors) is implemented through three utility pro-

DISTRIBUTED SYSTEMS F ACIUTIES 7-3 CB20

I

grams: TRAN, TRANH, and TRANB. Each of these utility programs permits files to be trans
mitted to or received from one or more remotely located processors. Each processor must in
corporate appropriate file transmission software.

The TRAN utility program provides for file transmission between the Level 6 and one or
more Level 66 host processors. The TRANH utility program is used for file transmission
between the Level 6 and other Level 6 processors, or between the Level 6 and Level 62,
Level 64, or Series 2000 host processors. Both TRAN and TRANH transmit fIles in ASCII
format, using the polled VIP protocol.

A third utility program, TRANB, enables file transmission between the Level 6 and non
Honeywell processors that use the BSC2780/3780 protocol; TRANB converts ASCII data in
Level 6 files into EBCDIC 80-character records for transmission, and converts the received
EBCDIC records into ASCII format.

Each file transmission program is invoked by a command (either entered on a terminal
or included within a user EC command file). The command name corresponds to the name
of the utility program invoked: TRAN, TRANH, or TRANB. Each program provides error
analysis. For TRAN and TRANH, an initiate/accept dialog between file transmission soft
ware in each of the two processors determines whether a file can be transferred. A restart
capability is available when transmission between two Level 6 processors or between a
Level 6 and a Level 66 processor is aborted due to failure in the transmission line. File
transfer can be restarted at any record in the file being transferred at the time of failure.

Multiple file transmissions between the Level 6 and one or more processors can occur
concurrently. (For example, the Level 6 could transmit files to a Level 64 and a Level 66
host processor concurrently.) Each file transfer takes place over a different communications
line. An argument in the command that invokes the file transmission program specifies
whether a specific communications line is to remain connected after a file transfer or is to
be disconnected. As long as the line is connected, file transfers can be made by issuing the
appropriate command (TRAN, TRANH, or TRANB) for each transfer.

For details on the use of the file transmission utility programs to transmit files to a spe
cific processor, refer to the appropriate file transmission manual.

DISTRIBUTED SYSTEMS FACILITIES 7-4
6/78
CB20A

,,f "

!,-/,

(

(

TERMINAL CONCENTRATION FACILITY

Terminal Concentration permits various types of synchronous and asynchronous terminals
to concurrently connect to a Level 6 and have their message traffic concentrated (multiplexed)
over one or more links to a host processor. It therefore provides the means to smooth the
sporadic traffic patterns associated with terminals into a steady flow on a higher quality
line. Concurrently, it reduces the total number of modems and long-distance lines required
by multi-terminal applications and improves total reliability. Thus, by coordinating the move
ment of information to and from a host computer site, TCF relieves the host site of many
terminal communications processing operations.

The following are some of the features supported by TCF:

o Multiple links to the same or multiple different hosts
o User log-in capability to pick up host type and/or specific host link
o All terminals concentrated appear to the host as VIP 7700-like terminals
o Handling of terminal polling functions
o Concertration of messages
o Error detection and notification

The Terminal Concentration Facility is designed to run as a standard GCOS6 application.
The concentration software does not require exclusive control of the processor, and thus
allows other Level 6 functions (GCOS6 user applications, remote batch, data entry, etc.) to
share a link to a host processor.

TCF supports the following teletype compatible terminals:

o TTY 33, 35
o TN 300
o TWU 100 I (SARA 20)
o TWU 1003 (ROSY 24)
o VIP 7100 ("glass teletype")

The following VIP keyboard/display terminals are supported:

o VIP 7700R
o VIP 7700
o VIP 7760

mM WORKSTATION FACILITIES

Honeywell provides two software packages for use in communicating with an IBM 360/370
host system: IBM 2780/3780 Workstation Facility and the HASP Workstation Facility. The
software simulates the transmission facilities provided by the named workstation; with the
workstation facilities, connection can be established between a Level 6 and an IBM 360/370
host system.

2780/3780 Workstation Facility Capabilities
The IBM 2780/3780 Workstation Facility is used for either transmitting batch input to an

IBM 360/370 host system or receiving batch output from an IBM 360/370 host system. The
following capabilities are provided.

o Line printer horizontal format control
o Automatic restart
o Dual communications interface
o Auto answer (dial-up operation only)
o Multiple record transmission
o Error reporting and retransmission

DISTRIBUTED SYSTEMS FACILITIES 7·5
6/78
C1320A

In addition to the previously specified capabilities, the 3780 operational mode provides
the following additional capabilities.

o Space compression/expansion
o Conversion Mode
o Automatic disconnect

HASP WORKSTATION FACILITY CAPABILITIES

The HASP Workstation Facility is used for either transmitting batch input to an IBM
360/370 host system or receiving batch output from an IBM 360/370 host system. The fol
lowing capabilities are provided:

o BSC multi-leaving protocol
o EBCDIC transparency
o Data compression/expansion
o Switched or dedicated terminal communication facilities

HOST RESIDENT FACILITY

Honeywell's Level 66 Host Resident Facility (HRF) is a set of programs that run on a Level
66 system under the control of GCOS. The HRF permits Level 6 users to write, compile, as
semble, and link Level 6 programs on a Level 66. Once developed, HRF generated programs
can be sent to a Level 6 using the Level6/Level 66 File Transmission Facility and executed at
the convenience of the Level 6 operator. HRF includes a facility to permit the printing of
Level 6 memory dumps on a Level 66line printer.

DISTRmUTED SYSTEMS FACILITIES 7·6
6178
CB20A

(

t

(

APPENDIX C

HARDWARE SUPPORTED

HARDWARE RESOURCES

Figure C-I shows the hardware resources that can be used in a Level 6 configuration.
(Minimum configurations are given below.) For a complete description of central processors,
peripheral and communications hardware, refer to the Level 6 Minicomputer Handbook.

CENTRAL MEMORY MOC MSC MTC
PROCESSOR

~
[7J STORAGE

MODULE

CARD READER

G

Figure C-1. Level 6 Hardware

HARDWARE SUPPORTED C-1

MLCP

'"L

LEVEl6
COMPUTER

LEVEL 62.
640R 66
COMPUTER

SerIes
2000
Computer

Nan-
Honeywell
Computer

6/78
CB20A

I

Memory is available in multiples of 8K words up to I024K words, depending on the central
processor. A multiple device controller (MDC) controls terminals, printers, diskettes, and
card readers. A mass storage controller (MSC) controls fixed and removable cartridge disks,
and storage modules. A magnetic tape controller (MTC) controls 7-and 9-track magnetic
tape devices. The terminals that can be connected to the MDC are: keyboard-send-receive
(KSR) and automatic-send-receive (ASR) teleprinters (no paper tape); cathode ray tube
keyboard console (CRT); and typewriter console.

The multiline communications processor (MLCP) is a programmable communications con
troller that is programmed to handle supported asynchronous terminals, synchronous termi
nals, and communications to other computers. The MLCP can be programmed by the user
to handle devices not supported by Honeywell-supplied software.

The asynchronous terminals supported on the MLCP are: KSR teleprinters, CRT consoles,
and visual information projection (VIP) system terminals with line editing at the keyboard,
buffered line transmission, and full cursor control to edit text from the keyboard.

The synchronous terminals supported on the MLCP are: VIP terminals with keyboard,
screen, and receive-only printer (ROP) that can be used in a poll/select mode of operation.
The VIP is an interactive display terminal that, in addition to line cursor control, provides
forms control to display a form on the screen for formatted data entry, and function code
keys to transmit a function code to be interpreted by the receiver.

The synchronous BSC2780 communications protocol is used for communicating with
other Level 6 computers, Level 66 computers, and non-Honeywell computers.

Figure C-l also illustrates that data transfers occur over communications lines that are
either hard-wired, dedicated, or dial up.

EQUIPMENT REQUIREMENTS

Minimum Equipment for Program Preparation
The following equipment is required for program preparation:

o One Level 6 central processor with full or basic control panel and 32K words of memory
(SAF mode) or 40K words of memory (LAF mode).

o Operator terminal (with appropriate device-pac) connected through the mUltiple device
controller or the multiline communications processor. 1

o One million bytes disk storage. Diskettes, cartridge disk, or storage module can be used.
Diskettes must be connected through the multiple device controller and appropriate
device-pac. Cartridge disks must be connected through the mass storage controller and
appropriate device-pac. Storage modules must be connected through the storage module
controller and adapter. 1

Minimum Equipment for Online Applications
The following equipment is required to run online applications:

o One Level 6 central processor with full or basic control panel and the following memory:
24K words of memory (SAF mode); 32K words of memory (SAF mode with communi
cations); 32K words of memory (LAF mode); 40K words of memory (LAF mode with
communications).

o Operator terminal (with appropriate device-pac) connected through the multiple device
controller or the multiline communications processor. 1

o One-quarter million bytes disk storage. Diskettes, cartridge disk, or storage module can
be used. Diskettes must be connected through the multiple device controller and ap
propriate device-pac. Cartridge disks must be connected through the mass storage con
troller and appropriate device-pac. Storage Modules must be connected through the storage
module controller and adapter. l

1 A Multiple Device Controller is not available on Model 23 systems; the peripheral interface is achieved through adapters ,4 "
only. A Multiline Communications Processor is not available on Model 23 systems; the communications interface is achieved ','\. _j
through a Dual-Une Communications Processor.

HARDWARE SUPPORTED C-2
6/78
CB20A

(

Hardware Supported
Table C-l lists Level 6 equipment and options supported by the GCOS6 Mod 400 Operating

System.2

TABLE Col. HARDWARE SUPPORTED

Marketing
Category Identifier Description

CPS9350
CPS9351
CPS9352
CPS9353
CPS9354

Model 23 Central Processor
CPS9355
CPS9356
CPS9357
CPS9358
CPS9359

Central CPS9450
Processors CPS9451

Model 6/34 Central Processors
CPS9452
CPS9453

CPS9470
CPS9471

Model 33 Central Processors
CPS9472
CPS9473

CPS9560
CPS9561

Model 43 Central Processors
CPS9562
CPS9563

CPS9566
Model 47 Central Processors

CPS9567

CPS9570 Model 53 Central Processors

CPS9572 Model 57 Central Processor

Memory The user can add core memory, MOS single-fetch, MOS
double-fetch, or high density memory as desired, up to
the limits of the central processor.

Central CPF9503 Scientific Instruction Processor
Processor CPF9504 Portable Plug-in Control Panel
Options

The memory management unit and the watchdog timer are
both supported. These items, depending upon processor,
are available as standard equipment, a factory-installed option,
or as part of a field upgrade module.

2Table C-I is not a complete listing of Level 6 equipment. In some cases (e.g., cabinetry, cables), equipment is not listed
because its use is invisible to the software; in other cases, equipment is not listed because full software qualification had not
been performed at the time this document was published. Information relative to the operation of GCOS6 Mod 400 on
equipment not listed can be obtained from Honeywell marketing representatives. The user should also note that Table C-I
contains no information with respect to installation prerequisites; Table C-I cannot be used to conflgllIe end-user systems.

HARDWARE SUPPORTED C-3
6/78
CB20A

TABLE C-I (CONT). HARDWARE SUPPORTED

Marketing
Category Identifier

Multiple MDC9101
Device
Controller
(not required
on Model23)

Console KCM9101
Device-Pac
(Adapter)

KCM9301
KCM9302

Console TTU9101
Devices TTU9102

DKU9101
DKU9102
DKU9103
DKU9104
TWU9101
TWU9104
TWU9106
VIP7200
VIP7100

Printer PRM9101
Device-Pac PRM9301
(Adapter)

Printers Line Printers
PRU9103
PRU9104
PRU9105
PRU9106
PRU9108
PRU9109
PRF9102

Serial Printers
PRU9101
PRU9102
PRU9112
PRU9114

Card Reader CRM9101
Device-Pac
, .. ,
~Aaapter)

HARDWARE SUPPORTED

Description

Multiple device controller

Keyboard console device-pac

Single Console Adapter (Model 23 only)
Dual Console Adapter (Model 23 only)

Teleprinter console (ASR33)
Teleprinter console (KSR33)
CRT/keyboard console, 64-character set
CRT/keyboard console, 96-character set
CRT/keyboard console, 64-character set
CRT/keyboard console (VIP7205), 96-character set
Typewriter console, 30 characters-per-second, 64-character set
Typewriter console, 30 characters-per-second, 96-character set
Typewriter console, 120 characters-per-second, 96-character set
CRT/keyboard console
CRT/keyboard console

Printer device-pac
Printer Adapter (Model 23 only)

240 lpm, 96-character set
300 lpm, 64-character set
480 lpm, 96-character set
600 lpm, 64-character set
660 lpm, 96-character set
900 lpm, 64-character set
12-channel vertical format unit option forPRUs 9103, 9104, 9105,
9106,9109

60 lpm, 64-character set
60 lpm, 96-character set
120 cps, 96-character set (Lin a 21)
160 cps, 96-character set

Card reader device-pac

C4
6/78
CB20A

"

(

(

('

TABLE C-l (CONT). HARDWARE SUPPORTED

Marketing
Category Identifier

Card Readers CRU9101
CRU9102
CRU9103
CRU9104
CRF9101
CRU9108
CRU9109
CRU9110
CRU9111
CRU9112
CRU9113

Card Punch and CRM9103
Card Reader/
Punch Device-
Pac (Adapter)

Card Punch PCU9101

Card Reader/ CCU9101
Punch

Diskette DIM9301
Device-Pac DIM9101
(Adapter) DIM9102

Diskettes DIU9101
DIU9102
DIU9103
DIU9104

Cartridge Disk MSC9101
Controller

Cartridge Disk CDM9 10 1
Device-Pac
(Adapter)

Cartridge CDU9101
Disk CDU9102

CDU9103
CDU9104
CDU9114
CDU9116
CDU9115

Mass Storage MSC9102
(Storage Module)
Controller and
Device-Pac

HARDWARE SUPPORTED

Description

300 cpm, punched card
300 cpm, punched and marked sense card
500 cpm, punched card
500 cpm, punched and marked sense card
51-column option for CRUs 9101, 9102, 9103, 9104
300 cpm, punched card reader
300 cpm, punched and IBM marked sense card reader
300 cpm, punched and HIS marked sense card reader
500 cpm, punched card reader
500 cpm, punched and IBM marked sense card reader
500 cpm, punched and HIS marked sense card reader

Device-pac for card punch and card reader punch

100 cpm card punch

400/100 card reader/punch

Diskette Adapter (Model 23 only)
Diskette device-pac adapter for single-sided diskettes
Diskette device-pac adapter for double-sided diskettes

Single diskette (single-sided), 256K-Byte
Dual diskette (single-sided), 512K-Byte
Single diskette (double-sided), 512K-Byte
Dual diskette (double-sided), IMK-Byte

Cartridge disk controller

Cartridge disk device-pac

Low density 100 tpi removable disk (1.25 million words)
Low density 100 tpi fixed and removable disks (2.5 million words)
High density 200 tpi removable disk (2.5 million words) CDU9104
High density 200 tpi fixed and removable disks (5.0 million words)
100 tpi,low density, fixed and removable disks (2.5 million words)
200 tpi, high density, fIXed and removable disks (5.0 million words)
High density removable disk (2.5 million words)

Mass Storage Controller/Device Pac
This equipment used for connection of storage modules;
device-pac is included as part of controller.

C-5
6/78
CB20A

TABLE Col (CONT). HARDWARE SUPPORTED

Marketing
Category Identifier

Mass Storage MSU9101
Devices MSU9105
(Storage MSU9102
Modules) MSU9103

MSU9104
MSU9106

Magnetic Tape MTC9101
Controllers MTC9102

Magnetic Tape MTM9101
Device-Pacs MTM9102

Magnetic Tape MTU9104
Drives MTU9105

MTU9109
MTU9110
MTU9114
MTU9115
MTU9116
MTU9117
MTU9112
MTU9113
MTU9120
MTU9121

Multiline MLC9101
Communications MLe9102
Processor MLe9103

Communications- DCM9101
Pacs DCM9102
(Adapters) DCM9103

DCM9104
DCM9110

DCM9106

DCM9112

DCM9113

DCM9115

DCM9116

DCM9120

HARDWARE SUPPORTED

Description

40 megabyte, 411 cylinders
40 megabyte, 411 cylinders
80 megabyte, 823 cylinders
143/127 megabyte
288/256 megabyte
80 megabyte, 823 cylinders

Magnetic tape controller for NRZI drives
Magnetic tape controller for PE/NRZI drives

Device-pac for 7-track drives
Device-pac for 9-track drives

Magnetic tape drive (9-track NRZI, 45 ips)
Magnetic tape drive (9-track NRZI, 75 ips)
Magnetic tape drive (9-track NRZI/PE, 45 ips)
Magnetic tape drive (9-track NRZIjPE, 75 ips)
Magnetic tape drive (9-track PE only, 45 ips)
Magnetic tape drive (9-track PE only, 75 ips)
Magnetic tape drive (9-track NRZI, 45 ips)
Magnetic tape drive (9-track NRZI, 75 ips)
Magnetic tape drive (7-track NRZI, 45 ips)
Magnetic tape drive (7-track NRZI, 75 ips)
Magnetic tape drive (7-track NRZI, 45 ips)
Magnetic tape drive (7-track NRZI, 75 ips)

With Communications-Pac for eight asynchronous lines
With Communications-Pac for eight synchronous lines
Multiline Communications Processor only - required Communi-
cations-Pac(s) depending on choice of line speeds.

Communications-Pac, two asynchronous lines, with cable
Communications-Pac, one asynchronous line, with cable
Communications-Pac, two synchronous lines, with cable
Communications-Pac, one synchronous line, with cable
Communications-Pac - Autocall unit for one or two synchronous
or asynchronous lines
Communications-Pac, one synchronous HOLe line, with cable
(for RBF)
Communications-Pac, broadband HDLC line (Bell 301, 303
compatible to 72 KB)
Communications-Pac, broadband HOLC line (CCITT/V35
compatible to 72 KB)
Communications-Pac, broadband synchronous line, (MIL 188C
compatible to 72 KB)
Communications-Pac, dual asynchronous line, (MIL 188C
compatible to 96 KB)
Communications-Pac, HDLe MIL 188C

C-6
6/78
CB20A

"

.1'
I

'-lj

..

(

Category

Dual-Line
Communications
Adapter
(Model 23 only)

Terminals

Modems

TABLE Col (CONT). HARDWARE SUPPORTED

Marketing
Identifier

DCM9301
DCM93 02
DCM9303
DCM9304

Asynchronous
Terminals
ASR-33
ASR-3S
KSR-33
VIP7100
VIP7200

VIP720S
TWUlOOl
TWUl003
TWUlOOS
PRUIOOI
PRUl003
PRUIOOS
VIP 7800

Synchronous
Terminals
VIP7700R
VIP7700R
VIP7760-2A
VIP7700
VIP7700

Receive-only printer
for CRT terminals
TN300
TN1200
PRUI001
PRUl003
PRUIOOS

Description

Controls up to two asynchronous lines
Controls one asynchronous line
Controls up to two synchronous lines
Controls one synchronous line

Keyboard/printer, 110 baud
Keyboard/printer, 110 baud
Keyboard/printer, 110 baud
CRT/keyboard, up to 9600 baud
CRT/keyboard, with cursor control, line editing and buffered
transmission, up to 9600 baud
CRT/keyboard/display terminal, 96-character set
Keyboard/printer 30 cps
Keyboard/printer 30 cps
Keyboard/printer 120 cps
Printer Terminal 30 cps
Printer Terminal 30 cps
Printer Terminal 120 cps
CRT /Keyboard/ display terminal

Nonpolled CRT/keyboard with optional ROP; 2000 to 4800 baud
Polled CRT/keyboard with optional ROP; 2000 to 4800 baud
Polled CRT/keyboard with optional ROP; 2000 to 4800 baud
Nonpolled CRT/keyboard with optional ROP; 2000 to 4800 baud
Polled CRT/keyboard with optional ROP; 2000 to 4800 baud

Printer Terminal 30 cps
Printer Terminal 120 cps
Printer Terminal 30 cps (available on VIP7100 and VIP7200 only)
Printer Terminal 30 cps
Printer Terminal 120 cps

Modems supported for asynchronous communications terminals are:

o 103,1 113,1 202 type modems (these modems must be equipped with the option to
disconnect the data set after a carrier drop of 110 milliseconds)

For synchronous communications terminals they are:

o 201,203,208 type modems

Also supported are:

o Honeywell modem by-pass for both asynchronous and synchronous terminals
o Modem types where the connection, disconnection and dataset control settings can

be user specified

A modem is not required for a direct connect asynchronous terminal or synchronous
terminal with a timing source in the terminal or in the MLCP.

HARDWARE SUPPORTED C-7
6/78
CB20A

TABLE Col (CONT). HARDWARE SUPPORTED

System BuDder Products

Intersystem Link (GIS9010) and Writable Control Store (CPF9509)
are offered for system builder use only. Although Intersystem Link and
Writable Control Store are usable under GCOS6 Mod 400, full end-user
software support is not available.

HARDWARE SUPPORTED C-8
6/78
CB20A

j

byte
A sequence of eight consecutive binary digits operated upon as a unit.

calling sequence
A standard code sequence by which system services or external procedures are invoked.

CCP
See channel control program.

channel control program (CCP)
A program that resides in the MLCP and processes characters, protocol headers, and
framing characters.

CI
See control interval.

clock frequency
The line frequency, in cycles per second, that is the basis (coupled with the scan cycle)
for calculating the interval between real time clock-generated interrupts.

Cock Manager
A Monitor component that handles all requests to control tasks based on real-time consid
erations, and requests for the time-of-day and date in ASCII format.

clock request block
A control structure supplied by a task to request a servic.e from the Cock Manager.

clock scan cycle
The time in milliseconds between clock-generated interrupts.

clock timer block
TIle control structure used by the Clock Manager to control the clock-related processing
of tasks.

command
An order that is processed by the command processor.

command input file (command-in)
Any file or device from which commands to the command processor are read.

command language
The set of commands that can be issued by a user to control the execution of the user's
online or batch task.

command level
The state of the command processor, when it is capable of accepting commands, indicated
by the display of the RDY (ready) message.

command processor
A software component that interprets control commands issued by the operator or a user,
and invokes the required function.

commercial simulator
A software component that executes a set of business-oriented instructions.

communications device
A device that transfers data over communications lines and is connected through the MLCP.

GLOSSARY D-3
6/78
CB20A

*

I

concurrency
The read or write file access that the reserving task group intends for its tasks and the read
or write file access that the reserving task group allows to other task groups.

configuration
The procedure that involves the use of configuration directives to define a system that
corresponds to actual installation hardware.

control interval (Cl)
A logical unit of transfer between main memory and a disk device; the size is specified by
the user and remains constant for a file. The CI determines the buffer size.

CTB
See clock times block.

CRB
See clock request block.

device driver
A software component that controls all data transfers to or from a peripheral or communi
cations device.

device-pac
The adapter between an MSC or MDC controller and peripheral device (e.g., printer, disk
ette drive).

direct access
The method for reading or writing a record in a file by supplying its key value.

directive
A "secondary" level order read through the user-in file to a "secondary" processor.
Examples are Editor, Linker, Patch, Debug, and CLM (configuration) directives.

directory
A structure in a volume directory containing a description of a file or another directory.

disk
A generic name for mass storage devices such as diskette, cartridge disk, and storage
module.

dormant state
A task is in the dormant state when there is no current request for the task.

entry point
A symbolic start address within the root segment of a bound unit.

equal name convention
A special pathname convention that can be used with certain commands to automatically
construct the output path name entry name when the input pathname entry name has
been resolved.

error output file (error-out)
The file or device by which the system communicates error information to t..lJ.e user or
operator; established when a group request is entered.

exclusive online pool
A memory pool whose boundaries do not overlap those of other pools.

expandable online pool
An online pool that may expand into the batch pool space.

GLOSSARY D-4 CB20

I
I
I

~ I

(

(

Z
...J

(.:J
Z
o
...J
<l:
I
:J
U

I

HONEYWEll INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE SERIES 60 (LEVEL 6) GCOS 6 MOD 400
SYSTEM CONCEPTS ADDENDUM A

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

OROER NO., CB20A, REV.O

DATED I JUNE 1978

r\ Your comments will be promptly investigated by appropriate technical personnel and action will be taken 0 II as required. If you require a written reply. check here and furnish complete mailing address below.

FROM: NAME __ __ DATE ______________ __

TITLE __ _

COMPANV _______________________________ ___

ADDRE~ ______________________________________ _

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

I • I j
I,
'i I

"J,

I
1
I
I
, w
I z
I :::i
I ~

--.--------------------------------- 1c~

ATTENTION: PUBLICATIONS, MS 486

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

Postage Will Be Paid By:

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

FIRST CLASS
PERMIT NO. 39531
WALTHAM,MA
02154

I 0

I c5
I u.

J
I
I
I
I
I
I
I
I
t

I
I
I ,
I
I ,

/

, w

I z
I~
Iz

-- ~g

Honeywell

1<1:

,9
,~

I
I
I ,
i
J
I
I
I
I
I
I ,

(i
i "1 \. ,

'\....../
I
I
I
I
I .

