

(

SUBJECT

SERIES 60 (LEVEL 6)

GCOS 6 MOD 400
PROGRAMMER'S GUIDE

Descriptions of Mod 400 Operating }1~nvironnwnts, User Access to the System,
and Selected Examples of the Use of System Software Components

SOFTWARE SUPPORTED

This publication supports Release 0100 of the Series 60 (Level 6) GCOS f.i
MOD 400 Operating System; see the Manual Directory of the latest GCOS 6
MOD 400 System Concepts manual (Order No'. CB20) for information as to later
releases supported by this manual.

ORDER NUMBER

CB22, Rev, 0 January 1978

Preface

The purpose of this manual is to provide the user with programmer-oriented
information regarding the various operating environments available under the
GCOS 6 Mod 400 Operating System and programmer procedures for terminal
startup and access to the system. Also contained in this manual are examples of
the use of various system software components: the editor, macro preprocessor,
assembler, COBOL and FORTRAN compilers, and the sort program.

This material is presented in 9 sections, as outlined in the Introduction. The
Introduction also presents suggested usages of the Mod 400 manual set for
application programmers, system programmers, and operators.

© 1978, Honeywell Information Systems Inc. File No.: 1823 CB22

(=-

(

MANUAL DIRECTORY

The following pUblications constitute the GCOS 6 manual set. The Manual
Directory in the latest GCOS 6 MOD 400 System Concepts manual lists the
current revision number and addenda (if any) for each manual in the set.

Order
No.

CBOI
CB02
CB03
CB04
CB05
CB06
CB07
CB08
CB09
CBIO
CB20
CB21
CB22
CB23
CB24
CB25
CB26
CB30
CB31
CB33
CB34
CB35
CB36
CB37
CB38
CB39

Manual Title

GCOS 6 Program Preparation
GCOS 6 Commands
GCOS 6 Communications Processing
GCOS 6 Sort/Merge
GCOS 6 Data File Organizations and Formats
GCOS 6 System Messages
GCOS 6 Assembly Language Reference
GCOS 6 System Service Macro Calls
GCOS 6 RPG Reference
GCOS 6 Intermediate COBOL Reference
GCOS 6 MOD 400 System Concepts
GCOS 6 MOD 400 Program Execution and Checkout
GCOS 6 MOD 400 Programmer's Guide
GCOS 6 MOD 400 System Building
GCOS 6 MOD 400 Operator's Guide
GCOS 6 MOD 400 FORTRAN Reference
GCOS 6 MOD 400 Entry-Level COBOL Reference
Remote Batch Facility User's Guide
Data Entry Facilit,Y User's Guide
Level 61Level 6 File Transmission
Level 6/Level 62 File Transmission
Level 61Level 64 (Release 0300) File Transmission
Level 61Level 66 File Transmission
Level 61Series 20012000 File Transmission
Lellel 61BSC 2780 File Transmis!;ion
Level 61Level 64 (Release 0220) File 'Transmission

In addition, the following documents provide general hardware information:

Order
No.

AS22
AT04

Manual Title

Honeywell Level 6 Minicomputer Handbook
Level 6 System and Peripherals Operation Manual

iii CB22

Section 1. Introduction
Guide to Using the Manual Set 1-1

Applications Programmer's Manual
Guide 1-2

System Programmer's Manual Guide 1-2
Operator's Manual Guide.............. 1-2
RBF and DEF User Manual Guide..... 1-5

Section 2. Operating Environments
Operator-Only Environment 2-1
All-Online Environment... 2-1
Online/Batch Environment............... 2-1
Dedicated Application Environment 2-2
Mixed Environment. .. 2-2

Section 3. User Terminal Startup
Startup with the Login Facility... 3-1
Task Group-Specific Terminal Startup. 3-1

Section 4. User Access to the System
Access by Loggin In .. 4-1

Direct Login Terminal................. 4-1
Abbreviated Login Terminal 4-1
Full Login Terminal 4-1

Command Processor as
Lead Task .. 4-2

Application as Lead Task 4-2
Access through the Operator or

Another User.......................... 4-2
Serial Execution of Application

Tasks 4-2
Concurrent Execution of Application

Tasks 4-3
Concurrent Execution from Several

Task Groups 4-3
Execution of an Application from the

Batch Task Group 4-3
Execution from the Data Entry

Facility (DEF) 4-4
Access through the

Operator Terminal 4-4

Section 5. Using the Editor
Editor Directive Description.. 5-1

Section 6. Using the Assembler and
~acroPreprocessor

Sample Assembly Language Session
(SMPMAC) 6-1

Sample Assembly Language Multitask
Program (BRDCST) 6-6

v

Contents

Section 7. Using the COBOL Compiler
Sample Card-to-Disk Program........ 7-1

Volume and File Creation. 7-2
Source Loading........ 7-2
Compiling with COBOL 7-2
Linking. .. 7-2
Executing. .. 7-3

Sample COBOL Terminal Session
(AC8111) 7-3

Calling FORTRAN Routines from an
Entry-Level COBOL Main Program.. 7-7

Section 8. Using the FORTRAN
Compiler

Sample FORTRAN Terminal Session
(MA TINV) 8-1

FORTRAN Chaining 8-1

Section 9. Using the Sort

Figures

1-1 Applications Programmer Guide
to Manuals.................. 1-3

1-2 System Programmer Guide to
Manuals.................... 1-4

1-3 Operator Guide to Manuals 1-4
1-4 RBF and DEF User Guide to

Manuals 1-5
5-1 Sample Editor Directives in File

SMPCMDFL 5-1
5-2 Terminal Responses from

Sample Editor Directives of
Figure 5-1 5-2

5-3 Sample of Unexpanded Assembly
Language Program with Macro
Calls and Statements
(SMPMAC.P) 5-9

5-4 Sample of Unexpanded Macro
Routine (SAMPLl) Contained
in EXEC_Lffi Directory. 5-10

5-5 Sample of Unexpanded Macro
Routine (SAMPL2) Contained
in EXEC_Lffi Directory...... 5-11

6-1 Sample Terminal Session
(SMPMAC) 6-1

6-2 Macro Preprocessor Output
(SMPMAC) 6-2

6-3 Cross Reference Listing
(SMPMAC) 6-3

CB22

6-4 . Assembler Output Listing 8-2 Source and Linker Output
(SMPMAC) 6-4 Listing (MA TINV) 8-2

6-5 Linker Output Listing 8-3 Assembly Listing of Program
(SMPMAC) 6-5 CHAIN 8-7

6-6 Sample Terminal Session 8-4 FORTRAN Programs Calling
(BRDCST) 6-7 the CHAIN Function 8-7

7-1 Sample Terminal Session 8-5 Linker Output for Chained
(AC8111) 7-3 Programs 8-9

7-2 Sample Listings for AC8111 7-4 8-6 Linker Directives for Chained
7-3 COBOL Listing of COBFRT 7"8 Programs 8-15
7-4 FORTRAN Listing of FRTRAN 7-9 8-7 Exeeution Output from Chained
7-5 Operator Terminal Session for Programs 8-15

COBFRT 7-9 9-1 Sample Sort Terminal Session 9-1
8-1 Sample Terminal Session

(MATINV) 8-1

.."

vi CB22

(

Section 1

Introduction

The GCOS 6 Mod 400 operating system for the Models 6/30 and 6/40 minicomputers provides a
comprehensive set of system services which form a base for executing user-written applications,
Honeywell-supplied applications, and program development tools. It provides an online, inter
rupt-driven operation for multiple users and a single, low-priority batch operation typically
used for program development and associated activities.

A number of different operating environments are possible, controlled in part by options
exercised at system configuration, and in part by options chosen by the system operator at
startup or at various times during the operating day. These environments are more fully
described in Section 2, "Operating Environments."

Access to the system by users can be achieved in a variety of ways, again depending in part on
system configuration options selected. These options are concerned mainly with the definition of
local and/or remote terminal devices and how they are connected to the system. These are
described in Section 3, "User Terminal Startup." Other access options, normally under the
control of the system operator, are concerned with the procedures by which a user identifies
himself(logs in) to the system through a connected terminal. This subject is treated in Section 4,
"User Access to the System."

The remaining sections comprise descriptions and examples of the use of various system
components: the Editor (Section 5), the Assembler and Macro Preprocessor (Section 6), the
COBOL Compiler (Section 7), the FORTRAN Compiler (Section 8), and the Sort component
(Section 9). Each of these sections presents terminal and/or line printer listings representing the
actions performed. In these listings, heading lines may vary in detail depending on the
component that initiated the listing or, in some cases, may be omitted. However, in actual use,
the user will see heading lines consisting of three major fields of information, as shown below.

1. System Identification: GCOS6 MOD400- ~ rrr-mm/dd/hhmm

S - SAF
L - LAF

rrr - Release number of the operating system
mm/dd/hhmm - Date/time when operating system was created (month, day,

hour, and minute)

2. Component Identification: xxxxx-rrrr-mm/dd/hhmm

xxxxx - Component name
rrrr - Revision number of component

mm/dd/hhmm - Date/time that specified revision of component was created
(month, day, hour, and minute)

3. Time of program execution: yyyy/mm/dd hhmm:ss.t

Date/time of program execution (year, month, day, hour, minute, second, and tenth of
second)

GUIDE TO USING THE MANUAL SET

This guide to the manuals is arranged according to functions that might be performed by an
applications programmer, a systems programmer, or an operator. As used in this guide, the
applications programmer writes applications programs; the system programmer configures the
system and defines the environment for each application; and the operator operates the system
from the operator terminal. These functions could be performed by three different persons or by
the same person serving in the different capacities.

INTRODUCTION 1-1 CB22

APPLICATIONS PROGRAMMER'S MANUAL GUIDE

Figure 1-1 illustrates the suggested sequence in using the manuals. If you wish to start using
the system by writing an application program, begin by using the Programmer's Guide manual.
It illustrates: (1) various ways to gain access to the system, (2) a sample Editor session, and (3)
for application languages, the procedure for performing program preparation and execution.
Working with the small subset of commands used in the examples is a good approach to learning
the system command set. This approach for getting started assumes that a system programmer
has already configured and started up a suitable application environment. While using the
system, you may wish to familiarize yourself with the system facilities described in the System
Concepts manual.

Through examples, the Programmer's Guide illustrates how to use the system facilities.
Other manuals provide reference material. The Program Preparation manual contains Editor
directives (statements) to create and update an application language source unit. For each of the
languages the appropriate language reference manuals contain the description of the language
statements. Operating system dependencies, if any, that affect how you write the application
are described in the Programmer's Guide. If the application uses communications, refer to the
Communications Processing manual. Read the Data File Organizations and Formats manual if
you require a better understanding of a language-supported file organization that is to be used
in an application, or if you must calculate the size of a data file. You can use Monitor macro calls,
as described in the System Service Macro Calls manual, in assembly language programs. Before
your program can be entered for execution, it must be linked as described in the Program
Execution and Checkout manual.

For program compilation or assembly and execution, the procedures described in the
Programmer's Guide might be sufficient. To obtain more control over the execution of your
program or utilize the system facilities more completely or efficiently, use the commands
described in the Commands manual. If you wish to use the operator terminal, read the
Operator's Guide. In many cases, the description of commands must be supplemented by system
concepts described in the System Concepts manual. Rather than read all the conceptual material
at one time, you may find it more meaningful to refer to it in conjunction with the appropriate
reference material. The Commands manual also describes the utilities. An assembly language
program, the Patch, Debug, and Dump utilities are described in the Program Execution and
Checkout manual; file transmission from Level 6 to a host system is described in the File
Transmission manual appropriate to the host system. Error messages and return status codes
are listed in the System Messages manual.

SYSTEM PROGRAMMER'S MANUAL GUIDE

Figure 1-2 illustrates the suggested sequence for using the manuals. The System Building
manual provides you with the configuration directives (statements) and startup procedures to
configure and start up a MOD 400, a Remote Batch Facility (RBF), or a Data Entry Facility
(DEF) system. You must know the conceptual material in the System Concepts manual in order
to successfully use the configuration directives. To tailor an applications environment suitable
for the intended application, use the operator commands described in the Operator's Guide
manual. Error messages are listed in the System Messages manual. If you are working with an
application that runs under the BES operating system, the System Concepts manual contains
MOD 400 and BES compatibility considerations.

OPERATOR'S MANUAL GUIDE

Figure 1-3 illustrates the suggested sequence for using the manuals. Specific operator job
functions must be determined by each installation; a large system might have a person assigned
as an operator; a small system might have each programmer also act as an operator. The
Operator's Guide indicates the system procedures performed through the operator terminal and
describes operator commands used in system operation.

The Programmer's Guide contains examples using commands (described in the Commands
manual) that are similar to operator commands. The System Concepts manual provides an
understanding of the operating system. Note that the Operator's Guide describes using the

INTRODUCTION 1-2 CB22

f\
)

(

INTRODUCTION

APPLICATIONS PROGRAMMER

PROGRAMMER'S GUIDE

GETTING STARTED
SAMPLE EXECUTION ENVIRONMENTS
SAMPLE EDITOR SESSION
SAMPLE PROGRAM PREPARATION AND
EXECUTION SESSIONS

I
ASSEMBL Y. COBOL. FORTRAN.
RPG APPllCATION PROGRAMMER

I
PROGRAM PREPARA nON

EDITOR

LANGUAGE REFERENCE

LANGUAGE
DESCRIPTION

PROGRAMMER'S GUIDE

OPEAATING SYSTEM
DEPENDENCIES

PROGRAM EXECUTION
ANO CHECKOUT

LINKER

COMMANDS

EXECUTION COMMANDS
UTILITIES

PROGRAM EXECUTION
AND CHECKOUT

PATCH, DUMP, r---DEBUG

FILE TRANSMISSION

I.EVEL 6 TO HOST

SYSTEM CONCEPTS

INTRODUCTION TO SOFTWARE
FACILITIES
OVERVIEW OF SOFTWARE
COMPONENTS

COMMUNICATIONS
PROCESSING

COMMUNICATIONS

DATA FILE ORGANIZATIONS
AND FORMATS

FILE ORGANIZATION
DESCRIPTION
FILE AND VOLUME
FORMATS

1
SYSTEM SERVICE
MACRO CALLS

MONITOR CALLS
DATA STRUCTURES
DEVICE DRIVERS

OPERATOR'S GUIDE

OPERATOR TERMINAL
USAGE

SYSTEM CONCEPTS

DETAILED SYSTEM
CONCEPTS

SYSTEM MESSAGES

ERROR-AND STATUS
MESSAGES

Figure 1·1. ApplicatioDs Programmer Guide to Manuals

1-3 CB22

SYSTEM PROGRAMMER

I
SYSTEM BUILDING

SYSTEM CONCEPTS

CONFIGURATION AND STARTUP PROCEDURES
FOR MOD 400, REMOTE BATCH FACILITY (RBFI,
AND DATA ENTRY FACILITY (DEF) OPERATING SYSTEM

CONCEPTS

OPERATOR'S GUIDE

OPERATING ENVIRONMENT
COMMANDS

I I
SYSTEM CONCEPTS SYSTEM MESSAGES

MOD 400 AND BES
COMPATIBILITY

ERROR MESSAGES

Figure 1·2. System Programmer Guide to Manuals

/

OPERATOR

I
OPERATOR'S GUIDE PROGRAMMER'S GUIDE ,

OPERATOR PROCEDURES
COMMANDS USED IN EXAMPLES OPERATOR COMMANDS

r--

I SYSTEM CONCEPTS

I I COMMANDS

I I
- SYSTEM DESCRI?TiON

UTILITIES

SYSTEM MESSAGES

ERROR MESSAGES

Figure 1-3. Operator Guide to Manuals

~DUcnON 14 CB22

(

(

operator tenninal for operator functions to enter operator commands to the system task group,
or for user functions to enter commands to a user task group. To run the utilities, use the
commands (described in the Commands manual) entered through the operator terminal func
tioning as a user terminal. Error messages are listed in the System Messages manual.

RSF AND DEF USER MANUAL GUIDE

Figure 1-4 illustrates the suggested sequence for using the manuals. The system programmer
configuration functions have been done and the system is ready to be used for Remote Batch
Facility (RBF) functions or Data Entry Facility (DEF) functions. The Programmer's Guide
manual provides sample login execution environments typical of ones that might be at your
facility. The Remote Batch Facility User's Guide is used for RBF operations and the Data Entry
Facility User's Guide is used for DEF operations.

INTRODUCTION

PROGRAMMER'S GUIDE

EXECUTION ENVIRONMENTS

I
RBF USER

I
RBF USER'S GUIDE

REMOTE BATCH
DESCRIPTION

I
DEF USER

I
DEF USER'S GUIDE

DATA ENTRY
FACILITY DESCRIPTION

Figure 1-4. RBF and DEF User Guide to Manuals

1-5 CB22

/

(

(--

Section 2

Operating Environments

The Mod 400 operating system allows a wide variety of operating environments, ranging from
a single operator-controlled configuration to one in which the operator, other users, or a
combination if both can control the configuration at any time during the operating day. This
range of operating environments is described in this section.

OPERATOR-ONLY ENVIRONMENT

This environment is one in which a designated operator and a limited number of users
(typically programmers developing application programs) use the system on a first-come first
served basis for developing and testing programs. All work is done through the operator
tenninal, through either the system task group or a single online task group created by the
system startup procedure. Certain functions can be performed through either of the two task
groups; others can be done only through the system task group or the online task group - refer
to the Operator's Guide and the Commands manuals for details on which functions can be
performed from each task group.

ALL-ONLINE ENVIRONMENT

An all-online environment is one in which one or more users can concurrently use the
facilities of the operating system to perform interactive tasks of any kind permitted by the
command language described in the Commands manual, plus any user applications that can be
invoked through the command processor. This latter category consists of user programs in the
form of bound units that are called from a task group in which the command processor is
declared as the lead task when the task group is created. A task group can also be created by the
operawr or another online user, declaring the application bound unit as the lead task; in this
case the creation of the task group and its activation results directly in the execution of the
declared bound unit, without the need to enter its name as a command.

An example of this kind of environment is one in which several task groups have the command
processor as lead task and one or more other task groups have specific application programs such
as the Data Entry Facility and user-created programs as lead tasks. The former task groups can
be used for editing source program files, entering requests for jobs to be run in the batch task
group (see below), requesting printouts of files, etc. Concurrent with these activities can be the
execution of the user application programs constituting the latter set of task groups. From the
user's point of view, each task group has the appearance of having control of the system.

ONLINE/BATCH ENVIRONMENT

This environment differs from the all-online environment only in that, in addition to the
creation of the online task groups, a batch task group has also been created by the designated
operator from the operator terminal. Once this task group has been created, any online task
group having the command processor as its lead task can enter requests for jobs to be run
through the use of the EBR (ENTER BATCH REQUEST) command. Typical of such batch jobs
would be requests for compilations, links, application program checkout runs, and the like.

Creation and utilization of the batch task group requires the existence of at least the
designated operator terminal, through which the batch task group is created and through which
requests to it can be entered. Jobs run in the batch task group are normally controlled by a
previously created file containing commands directing the execution of the jobs, and not by
interactive dialog from a terminal. Section 4 contains additional information on the use of the
batch task group.

OPERATING ENVIRONMENTS 2-1 CB22

DEDICATED APPLICATION ENVIRONMENT

This is an environment in which system startup or operator action subsequent to startup
results in the creation of one or more task groups in which a user application, and not the
command processor, is the lead task. In such an environment no interactive processing takes
place; rather, whatever processing occurs is dependent on the nature of the application - e.g.,
data entry, an inventory application, etc.

MIXED ENVIRONMENT

The Mod 400 system does not restrict the user to anyone of the foregoing environments at any
given time. Given a large enough system, any of these can be combined with any others to
provide concurrent interactive, batch, and dedicated operations on a selected terminal basis.
That is, a selected set of terminals can be associated with interactive tasks, while others can be
related to the dedicated application tasks.

OPERATING ENVIRONMENTS 2-2 CB22

Section 3

User Terminal Startup

Tenninal startup procedures vary according to the type of terminal and whether the terminal
is a noncommunications or a communications terminal. A noncommunications terminal is one
that is connected to the system through the multiple device controller (MDC), while a
communications terminal is connected through the multiline communications processor
(MLCP). An MLCP-connected terminal can be connected either through a modem or through a
dial-up telephone line. In the former case, when the modem is made ready, the terminal is
connected and ready for operation. With a dial-up connection, the user must dial the number
which connects the telephone to the system and wait for the signal that indicates the connection
is made. For an MDC-connected terminal, simply turning on the power to the terminal suffices
to connect it to the system. Subsequent actions depend on whether or not the listenerllogin
processor is activated, and whether the terminal is declared by the operator to be associated with
a specific task group.

STARTUP WITH THE LOGIN FACILITY

If the operator has activated the listenerllogin processor, and the terminal being started up is
one which is monitored by the login processor, then the user must log in using the procedures
described in the Operator's Guide manual after performing the actions required for physically
connecting the terminal to the system. When the connection is made to an MLCP-connected
terminal, the system will display a system identification message, a message of the day ifone is
defined, and indicate that it is ready to accept a login request. For an MDC-connected terminal,
displays occur only if the terminal is active when the login processor is activated.

TASK GROUP-SPECIFIC TERMINAL STARTUP

If a terminal is declared by the operator to be associated with a specific task group, and is not
monitored by the login processor, then, when the terminal is. connected, it is ready to accept
whatever input or output is dictated by the logic of the task's execution. If the command
processor is the lead task, a ready message will be issued, indicating that the terminal is ready to
accept commands. If a user application is the lead task, it should issue a message to the terminal
indicating that it has recognized the availability of the terminal and is ready for execution.

USER TERMINAL STARTUP 3-1 CB22

. ,
t

Section 4

User Access To The System

Once a tenninal has been connected to the system as described in Section 3, a user can gain
access to the system in any of several ways. Which of these ways is used at any given time
depends upon operator actions taken during and after system startup. Examples of various
access procedures are given in this section. Each example states any prerequisite operator
actions which would have been performed.

ACCESS BY LOGGING IN

ConfIguration and system startup have been done. The operator, through the system task
group, has activated the login function as described in the Operator's Guide manual. The
tenninal is one which is connected through the MDC, and was active when the login function
was activated. The system message of the day has been displayed and the login prompter
message has been printed. The user's login procedure at this point depends on the terminal login
characteristics for this terminal. Procedures are described below.

DIRECT LOGIN TERMINAL

In addition to the message of the day, if the command processor is the lead task, the ready
message will have been displayed, and no further action is required. The user can begin to enter
commands.

If an application is the lead task, further action, if any, depends on the characteristics and
logic of the application .

ABBREVIATED LOGIN TERMINAL

After the login prompter message has been issued, the user enters a one-character abbreviation
such as

A

If the login line corresponding to the abbreviation "A" indicates that the command processor
is the lead task, the system responds with the ready message, and the user can then begin to
enter commands.

If an application is the lead task, further action, if any, depends on the characteristics and
logic of the application. A terminal that accepts an abbreviated login also accepts a full login
command line.

FULL LOGIN TERMINAL

After the login prompter message has been issued, the user must enter a full login line as
described in the Commands manual. If the login line specifIes or implies that the command
processor is the lead task, the system responds with the ready message, and the user can begin to
enter commands.

If the lead task is an application, further action, if any, depends on the characteristics and
logic of the application.

USER ACCESS TO THE SYSTEM 4-1 CB22

COMMAND PROCESSOR AS LEAD TASK

For a user named W. Smith to log in to the system, specifying the command processor as the
lead task., a login line such as

L SMITHW -HD " VOL22>SMITHW

could be used, where, "VOL22>SMITHW is the working directory pathname. As soon as the
ready message is displayed, the user can begin to enter commands for either serial or concurrent
execution. In particular, if the -HD argument was not used, the working directory can be
specified with a CWD (CHANGE WORKING DIRECTORY) command

CWD " VOL22>SMITHW

APPLICATION AS LEAD TASK

For the same user to log in specifying a task other than the command processor, his login line
could be

L SMITHW -PO MS_UPDATE -HD "VOL22> SMITHW

where MS_ UPDATE is the name of the bound unit which is to be the lead task. The bound unit is
located in the directory "VOL22>SMITHW. If it is located in some other directory, a full
pathname must be used as the argument, such as

L SMITHW -PO " VOL23>MS_UPDATE -HD "VOL22>SMITHW

After the login line is processed, control rests with the application. It is strongly advised that
the application issue some kind of message indicating that it has been successfully loaded and is
ready to begin, or has begun, execution. It may be simply an informative message or a message
requesting some action on the part of the terminal user.

ACCESS THROUGH THE OPERATOR OR ANOTHER USER

The system operator or an online user can create and activate an online task group through
the use of the CG (CREATE GROUP) and EGR (ENTER GROUP REQUEST) commands, or
through the SG (SPAWN GROUP) command. The application being run in this task group can
be in the form of a series of commands implying either serial or concurrent execution, as shown
below.

SERIAL EXECUTION OF APPLICATION TASKS

The operator or another user has created and activated a new online task group whose lead
task is the command processor, and whose command-in file is the MDC- or MLCP-connected
terminal being used by the new user.

As soon as the ready message is displayed, the new user can begin to enter commands. After
each command request is terminated, indicated by the display of the ready message, control
returns to command input level and another command can be entered. The following example
shows the entry of commands to initiate a COBOL compilation, the assignment of the user-out
file to a line printer, and the printing of the COBOL compilation listings.

COBOL PROGA [ctLarg] Invoke the COBOL compiler

compiler responses

USER ACCESS TO THE SYSTEM 4-2 CB22

/

c

(-

RDY:

FO >SPD>LPl'Ol

RDY:

PR PROGA.L

RDY:

Indicates end of compilation

Assign user-out to line printer

Indicates assignment complete

Invoke PRINT command to print compilation output

Indicates printout complete

CONCURRENT EXECUTION OF APPUCATION TASKS

The operator or another user has created and activated a new online task group whose
lead task is the command processor, and whose command-in file is the MDC- or
MLCP-connected terminal being used by the new user.

As soon as the ready message is displayed, the new user can begin to enter commands.
This example shows the entry of commands to initiate a COBOL compilation, the
assignment of the user-out file to a line printer, and the printing of a file which is
unrelated to the compilation, and thus has no time dependency upon completion of the
compilation.

ST 1 -EFN COBOL [ctLarg] Invoke COBOL compiler task at relative level 1

RDY:

FO >SPD>LPl'Ol

RDY:

Indicates completion of the ST command;
compilation is in progress

Assign user-out file to line printer

Indicates assignment complete

ST 3 -EFN PR -ARG FILEl Invoke PRINT task to print FILEl, unrelated to
compilation

RDY: Indicates completion of the ST command; printing
is in progress concurrent with compilation

This is an example of multitasking. The respons~s from the COBOL compiler, indicated
in the previous example, will be interspersed with other input and output lines, depending
on when they occur in relation to these lines. The user should always ensure that a ready
message has occurred in response to his last command entry before making another entry.

CONCURRENT EXECUTION FROM SEVERAL TASK GROUPS

Several task groups have been created and activated, each associated with a different
command-in terminal, and each having the command processor as its lead task.

As soon as the ready message appears at each terminal, the user at that terminal can
begin to enter commands to do serial or concurrent application execution. The task groups
are concurrently active for execution and contend with each other for system resources.
Each user appears to have control of the system.

EXECUTION OF AN APPUCATION FROM THE BATCH TASK GROUP

An application environment has been specified consisting of several online task groups
and the batch task group (whose lead task is the command processor).

A user can enter one or more EBR (ENTER BATCH REQUEST) commands from each of
the online task groups to obtain processing in the batch task group. These requests are
queued and will be satisfied on a first-in first-out basis. The EBR requires a command-in
file containing commands to be executed in the batch task group. The file is normally
disk-resident in the user's working directory having previously been created. If a terminal
were specified as the command-in device, the user at the terminal must wait to enter a
command, until the command processor processes this EBR command. Otherwise, batch
processing will stall waiting for this batch request to complete.

USER ACCESS TO THE SYSTEM 4-3 CB22

To request is to execute the command file, PAYR_IN, on directory I\ZSYSOl>IW. The
application is to compile, link, and execute an application program PAYROLL.

EBR PAYR_IN -WD 1\ ZSYSOl>IW

The me PA YR_IN contains the following commands:

COBOL PAYROLL -LO -COUT >SPD>LPI'O1

LINKER PAYROLL -COUT >SPD>LPI'OI

UB I\ZSYS02>ZCRT

LINK PAYROLL

MAP;QT

GET DEPI'4 2

GET >SPD> LPI'02 3

PAYROLL

BYE
Any time after the file PA YR_IN has been created, it can be invoked through an EBR to

control batch execution. The command file can contain any combination of legitimate
commands, such as compile/link/execute sequences, including any necessary file control
commands (GET, REMOVE); or file print/dump commands. The main constraint is that the
commands be entered into the file in the same manner as if they were being executed from
the online terminal, keeping in mind any time dependencies that might exist among
various tasks. Responses from the invoked commands that would normally be written to
the user terminal in an online environment are written to a file PA YR_IN.AO in the working
directory of the user who issued the EBR command.

EXECUTION FROM THE DATA ENTRY FACILITY (DEFJ

One or more task groups whose lead task is the Data Entry Facility (DEF) have been
spawned.

When DEF has indicated at the terminal that it is ready to accept data entry actions, the
user can begin to enter directives. No other preliminary actions are required.

Refer to the Data Entry Facility User's Guide manual for details on the operation of the
Data Entry Facility.

It should be noted that the presence of the Data Entry Facility in no way restricts the
presence of other online task groups or the batch task group. These functions can be carried
on concurrently as described in the preceding paragraphs.

ACCESS THROUGH THE OPERATOR TERMINAL

A special case of system access is that in which all interactive and/or batch executions
are initiated through the operator terminal. The major difference between this execution
mode and those described previously is that the interface to the system is through the
Operator Interface Manager (OIM), described in detail in the Operator's Guide manual. The
most user-visible aspect of this mode is the issuance by the OIM of task group id
designations and message numbers, which require, in many cases, task group id and
message number entries from the operator terminal in response.

The operator terminal is the only way in which the system as initially delivered to the
user can be accessed. Initial startup results in the creation of the system task group ($S)
and one online task group ($H). For small system environments in which the operator and
one or more users (e.g., programmers writing and debugging their own programs through
the operator terminal on a first-come, first-served basis) share the operator terminal, this
type of startup, appropriately modified for the physical system configuration, may be
sufficient.

USER ACCESS TO THE SYSTEM 4-4 CB22

(

(

Typically, the operator in this kind of configuration could initiate other task groups in
any of the combinations described in Section 2 through the system task group, and also use
the $H task group for any function which is not normally done in the system task group
(e.g., editing files, assembling or compiling, linking, debugging, and the like). In particular,
in the originally-released system, the $H task group is used to construct new CLM_ USER
files for system startup, and STARTUP.EC files for use during the startup process. There is
no requirement that the Elxistence of the $H task group be maintained permanently - the
originally-released STARTUP.EC file which results ic tile creation of the $H task group
can be modified at any time to delete the function of creating this task group.

Any of the operations described above can be done through the operator terminal from an
online task group such as $H, or any other online task group created as a function of system
startup or at some later time, and specifying the operator terminal as its command-in file.
Most of the examples in Sections 5 through 9 show operations using the online task group
$H. They illustrate the issuance of the task group identification prefix by the OIM in
operator terminal typeouts, and in some cases the changing of the OIM default task group
identification to $H, eliminating the need to enter the prefix explicitly when issuing
commands to this task group. If these same operations were done in a task group associated
with a terminal other than the operator terminal, the prefixes would not be issued nor need
to be specified at that terminal.

USER ACCESS TO THE SYSTEM 4-5 CB22

Section 5

Using the Editor

This section illustrates how Editor directives are used to modify the contents of four files,
merge fileg into one file, and place macro routines in the macro library directory. The Editor
directives are in file SMPCMDFL; the four files to be altered are SMPM01 (example 1),
SMPM02 (example 2), SMPM03 (example 3), and SMPM04 (example 4). The examples are
shown below. SMPM01 and SMPM02 are altered and written to files SMMPL1 and SMMPL2,
respectively, and then combined to form file SMPMAC.P containing macro statements and calls
to be processed by the macro preprocessor. SMPM03 and SMPM04 are altered and written as
files SMMPL3 and SMMPL4, respectively; they are again altered and written as macro library
routine files SAMPL1 and SAMPL2, respectively, into the MACRO <EXEC_LIB directory to be
used during macro preprocessing. Editor output directed to the operator's terminal is shown in
an operator's terminal typeout.

EDITOR DIRECTIVE DESCRIPTION

The following is a line-by-line explanation of the action taken by the Editor when it processes
the directive file, 1\ SYSMAC>SMPCMDFL, of Figure 5-1, and an explanation of the operator
terminal typeouts displayed in Figure 5-2. Editor directive lines are identified by line number.
In the typeout, the response to these directives begins after the line ($H) EDIT-0100-11/21/0827.
'!he default working directory is 1\ SYSMAC so that either a full pathname of the form
I\SYSMAC>SMPM04 or simple pathname SMPM01 can be used.

1 R ~SYSMAC>SMPM01
2 X
3 &,9CLE
4 L4
!) L!)

& Lb
7 L7
8 IF

SETA
SETA
SETA
SETA
SETA

9 21 LIBM
10 =.-lJS~(SMMPL1)
11 X
12 1,SOX
13 R SMPM02

, PROG2.START2[,)NAME'
EQU
RESV
TEXT
XDEF

14 l,13VL/#L/.-12J13GL/#L/.-9J.S'#L'1L'P=
15 1,SM(SMMPL~)X

1& R SMPM03
17 8,17S/SETij/5ETA/8,17P
18 1,SM(5MMPL3)X
19 R ~SVSMAC>SMPM04
20 X29A IFE ?G7,?LC,IFEl
21 FAIL
22 ENOIT IFNL 1P2,?LC,*
23 IFE1 NULL1F
24 I 5S •• LE/L/SS/LO I ~'''/L[)
25 1,SK(SMMPL4)
2& Xl,SO
27 8(SMMPLl)
28 W "SYSMAC>SMMPLl
29 1,SOX
30 B(SMt<\PL2)
31 ~ ~SYSMAC>SMMPL2

32 1,50

Figure 5-1. Sample Editor Directives in File SMPCMDFL

USING THE EDITOR 5-1 CB22

33 8(SMMPL3)
34 w ~SYSMAC>SMMPL3
35 1,SO
36 8(SMMPL4)
37 W ASYSMAC>SMMPL4
38 I,SOX
39 R SMMPLI
40 IINSERT/LO/AOO L7/LO
41 15R SMMPL2
42 X52LO
43 E FO >SPO>LPTOO
44 I,SLW SMPMAC.P
45 1,SO
46 R SMMPL3
47 X/L4/'/LE/S/SETB/SETAI
48 1,SLW AZOOB02>LOO>MACRO>EXEC-LIB>5AMPLl
49 1,.0
50 R SMMPL4
51 IOLET/D
52 Q
53 1,'LW AZOOB02>LOO>MACRO>EXEC-LI8>SAMPL2
54 X
55 E FO
56 Q

Figure 5-1 (cont). Sample Editor Directives in File SMPCMDFL

• GROUPSD
CSD)ON-LINE DEBUG REV. 1976/11/20 IllS 04 SYSREV. 11014
C .SH,

RON
<lH)RDY,
CWD ·SYSMAC
(lH)RDY,
LWD
<lH) ·SYSMAC
(SH)RDY,
ED -LINE_LN 75 -IN ·SYSMAC>SMPCMDFL
<lH)EDIT 0120
(SH) 16 ->
<lH)EDIT MODE
<lH) 2
(IH) 18 ->
<lH) 18
(IH) ° ->
(IH) 18
(110 1.

(0) ·SYSMAC>SMPMOI

MOD (0) ·SYSMAC>SMPMOI
(SMMPLI)
(0) ·SYSMAC>SMPMOI
(SMMPLI)

<lH) 2. THESE UNPROTECTED COMMENT LINES WILL BE DROPPED
<lH) 3· WHEN MACRO PREPROCESSED.
(IH) 4·
<lH) 5 ?G4
<lH) 6
<lH) 7 ?G5
<lH) 8
<lH) 9
<lH) 10
(lH) II
<lH) 12 ?G6

?Gl <Gl INITIAL VALUE-S)
?IX<ILE#?PE)?GB?Pl
?P3?VL(35)?P41LZlLA
?G4
?P6?P8?GB?AL(?PC)?P7
?SS(?P4#7#1)
?VP<1I)
?G7

<lH) 13
(lH)
<lH)
(lH)
(lH)
<lH)
(lH)L4
(lH)L5

fGA
ENDM

ILII
IL5
IL6
IL7
IL7
IL8
IL9
ILB
ILII ?P9+?G3

(IH)L6
(IH)L7
<lH)L8

14 ° ->
IS
36

(0) ·SYSMAC>SMPM02
<SMMPLI)
(SMMPL2)

SETA ORG
SETA DC
SETA LDR
SETA STR
SETA CALL

Figure 5-2. Terminal Responses from Sample Editor Directives of Figure 5-1

USING THE EDITOR 5-2 CB22

(IN) L9 SETA LB
(SN) LA SETA BBT
(IN) La SETA SLD
(SN) U SETA
(SN) LD SETA r Z -32"]
(IN) • -~ (I) ·SYS!tAC>SMPM03
(IN) 18 (SMMPLI)
(SN) 36 <SMMPL2)
(IN) 45 (SMMPL3)
(IN) 34 -~ (0) ·SYSMAC~SMPM04
(IN) 18 (SMMPLI)
(IH) 36 (SMMPL2)
(IN) 45 (SMMPL3)
(IN) 28 1G5 1PZ ?SS(?LE .. l .. S)
(SN) 10 DELTI DC "DELETE LINE ENDING IN S"S
(IN) 28 ·DEL DC -DELETE LINE BEGINNING IN ...
(lH) 36 -~ MOD (0) ·SYSMAC~SMPM04
(S8) 18 (SHMPL1)
(18) 36 (SMMPL2)
(18) 45 (SMMPL3)
(lH) 36 (SMMPL4)
(lH) 0 (0) ·SYSMAC~SMPM04
(IH) 0 -~ (SMMPLI) ·SYSMAC> SMMPL 1
(SH) 36 (SMMPL2)
(S8) 45 (SMMPL3)
(SH) 36 (SMMPL4)
(SH) 0 (0) ·SYSMAC~SMPM04
(SH) 0 (SMMPLI) • SYSMAC> SMMPL 1
(SH) 0 (SMMPL2) ·SYSMAC>SMMPL2
(SH) 0 (SMMPL3) ·SYSMAC>SMMPL3
(SH) 0 -> (SMMPL4) ·SYSMAC>SMMPL4
(SH) 3 - INSERT LN 2 LIBM STATEMNT BEFORE THIS LN •• THEN DEL THIS LN
(SH") II - ADD L1 SETA VALUE W/CHANGE FUNCTION •• THEN DELT THIS LN
(SH) 0 (0) ·SYSMAC>SMPM04
(SH) 0 (SMMPLl) ·SYSMAC>SMMPLI
(SH) 0 (SMMPL2) ·SYSMAC~SMMPL2
(SH) 0 (SMMPL3) ·SYSMAC>SMMPL3
(lH) 52 -> MOD (SMMPL4) ·SYSMAC>SMMPL2
(SH) 52 ·USED EDIT READ FUNCT TO ADD ·SMPMOa- PORTION TO FILE-
(lH) 0 (0) • SYSMAC>SMPMO 4
(SH) 0 (SMMPL1) • SYSMAC> SMMPL I
(SH) 0 (SMMPL2) ·SYSMAC>SMMPL2
(lH) 0 (SMMPL3) ·SYSMAC>SMMPL3
(SH) 45 -> (SMMPL4) ·SYSMAC>SMMPL3
(SH)MODIFIED BUFFERS EXIST .. QUIT DEFERRED
(SH) 0 (0) ·SYSMAC>SMPM04
(SH) 0 (SMMPLI) ·SYSMAC>SMMPLI
(SH) 0 (SMHPL2) ·SYSMAC>SMMPL2
(SH) 0 (SMHPL3) ·SYSMAC~SMMPL3
(SH) 35 -~ (SHHPL4) ·ZOOB02>LDD>MACRO>EXEC_LIB~SAMPL2
(lH)RDYa

Figure 5·2 (cont). Terminal Responses from Sample Editor Directives of Figure 5·1

USINGTHE EDITOR 5·3 CB22

Line
No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Terminal
Editor Directive Description Typeout

R 1\ SYSMAC>SMPM01
Read the 16-line file (example 1) into the current buffer (0).

X
Display the status of the current buffer (denoted by ~). Sixteen 16->(0) ...
lines were read into current buffer (0).

6,9Ctext
Change lines 6 through 9 of the buffer with this text for line 6.

Text for line 7.

Text for line 8.

Text for line 9.

Text, this additional line is inserted after the previous four lines
were changed. Note that the Editor recognizes tab characters.

IF
Terminate input mode and enter edit mode.

2ItextlFI?
Insert text before line 2.
Terminate input mode.
Display current mode. EDIT MODE

=.-1;$K(SMMPL1)
Display current line pointer. 2
Move the current line pointer back one line to a new current line
pointer position. Copy the lines from that position to the last
line in the current buffer into auxiliary buffer, SMMPLl.

X
Display status of current and auxiliary buffers. There are 18 18-> MOD (0) ...
lines in current buffer (0), which has been modified (MOD) since 18 (SMMPL1)
it was read in, and 18 lines in auxiliary buffer SMMPLl.

1,$DSX
Delete the first through last line of the current buffer (0).
Display status of buffers. 0->(0) ...

18 (SMMPL1)

R SMPM02
Read 36-line file (example 2) into the current buffer (0).

1,13VL/#U.-12;13GU#U.-9;S'#L'?L'P=
For lines 1 through 13, display line numbers and all lines that 1*
do not contain the expression #L. 2*THESE ...

4*
Move the current line pointer back 12 lines from line 14 to line 2. 5?G4#L4 ...
For lines 2 through 13, display all lines and their line numbers
containing the expression #L.

13?GA #L4 ...

USING THE EDITOR 5-4 C422

("

\

'-.

/

(

Line
No~ Editor Directive Description

Move the current line pointer back nine lines to line 5 and
substitute ?L for # L.

Print current line.
Print current line pointer value.

15 1,$M(SMMPL2)X
Move line 1 through the last line of the current buffer to
auxiliary buffer SMMPL2. The contents ofthe current buffer (0)
are erased. Display the status of the buffers.

16 R SMPM03
Read 45-line file (example 3) into current buffer (0).

17 8,17S/SETB/SETAJ8,17P
For lines 8 through 17, substitute SETA for SETB.
Print lines 8 through 17 without line numbers.

18 1,$M(SMMPL3)X
Move line 1 through last line of the current buffer into auxiliary
buffer SMMPL3 and erase buffer (0).

Terminal
Typeout

ENDM
14

0->(0) ...
18 (SMMPLl)
36(SMMPL2)

L4 SETA ...

LDSETA ...

Display buffer status. 0->(0) ...

19 R A SYSMAC>SMP04
Read the 34-line file (example 4) into the current buffer (0).

20 X29A
Display buffer status, 34 lines are currently in buffer (0).

Append, after line 29, four lines of text. Text for line 30.

21 Text for line 3l.

22 Text for line 32.

23 text!F
Last line of text (line 33).
Terminate input mode and enter edit mode.

24 ISS .. LEIU$$/LDI A A ILD
Search the current buffer for the first occurrence of the
expression SS .. LE, where .. are any two characters.

18 (SMMPL1)
36 (SMMPL2)
45 (SMMPL3)

34->(0) ...
18 (SMMPL1)

45 (SMMPL3)

List the line and its line number. 28?G5?PZ ?SS(?LE ...

USING THE EDITOR 5-5 CB22

Line
No. Editor Directive Description

Locate a line that ends with $ as the last character. The first
dollar sign is escaped using a nonprinting C,i.e.,lC$$. The
second dollar sign retains its special meaning, and indicates:
locate the last character in a line ending in dollar sign.
List the line and its number; then delete the line.

Locate a line beginning with ". The second circumflex is
escaped by using the nonprinting IC,i.e., "IC".
List, then delete the line and its line number.

25 1,$K(SMMPL4)
Copy the current buffer contents from first through last line into
auxiliary buffer SMMPL4.

26 X1,$D
Display the status of the buffers.

Delete first through last line of current buffer.

27 B(SMMPL1)

28

The auxiliary buffer, SMMPL1, is made the current buffer prior
to writing.

W " SYSMAC>SMMPL1
Write the current buffer contents as a file whose pathname is
" SYSMAC>SMMPLl.

29 1,$DX
Delete the first through last line of the current buffer.
Display the buffer status. The pointer points to current buffer,
SMMPLl.

30 B(SMMPL2)
The auxiliary buffer, SMMPL2, is made the current buffer prior
to writing.

31 W" SYSMAC>SMMPL2
Write the current buffer contents as a file whose pathname is
" SYSMAC>SMMPL2.

32 1,$D
Delete the first through last line of the current buffer.

33 B(SMMPL3)
The auxiliary buffer, SMMPL3, is made the current buffer prior
to writing.

USING THE EDITOR 5-6

Terminal
Typeout

10DELT$ DC ... D'$'

28 "DEL DC
'DELETE ...

36->MOD(0) ...
18 ...

36 (SMMPL4)

0(0) ...
0->(SMMPL1) ...

36(SMMPL4)

CB22

\~

Line Terminal
No. Editor Directive Description Typeout

(34 W 1\ SYSMAC>SMMPL3
Write the current buffer contents as a file whose pathname is
1\ SYSMAC>SMMPL3.

35 1,$D
Delete the first through last line of the current buffer.

36 B(SMMPU)
The auxiliary buffer, SMMPL4, is made the current buffer prior
to writing.

37 W 1\ SYSMAC>SMMPL4.
Write the current buffer contents as a file whose pathname is
1\ SYSMAC>SMMPL4.

38 1,$DX
Delete the first through last line of the current buffer.
Display the status of the buffers. SMMPU is the current buffer. 0(0) ...
All the buffers have been cleared. o (SMMPL1) ..

O->(SMMPU) ...

39 R SMMPL1
Read the file SMMPL1 into the current buffer, SMMPU.

;;.. 40 /lNSERT/LDIIADD L7/LD
i Locate the first line containing the expression, INSERT, list it 3* INSERT LN ...

and its line number, and then delete it.
Starting at the current line, locate the first line containing the 11* ADDL7SETA ...
expression, ADD L 7, list it and its line number, and then delete
it.

41 15RSMMPL2
Read the file, SMMPL2, into the current buffer after line 15 of
the buffer. Two files are being merged.

42 X52LD
Display the status of the buffers. Current buffer, SMMPU, now 0(0) ...

has 52 lines.

52->MOD(SMMPL4) ...

List line 52 then delete it. 52* USED EDIT ...

43 E FO >SPD>LPTOO
The Execute directive allows you to execute the ECL command
FO to change the output file from the operator's terminal to the
line printer.

44 1,$LW SMPMAC.P
List the first through last line of current buffer on the line

(printer (Figure 5-3). Write the current buffer as a file whose
pathname is SMPMAC.P.

USING THE EDITOR . 5-7 CB22

Line Terminal
No. Editor Directive Description Typeout

45 1,$D '",-/
Delete the first through last line of the current buffer.

46 R SMMPL3
Read the file, SMMPL3, into the current buffer, SMMPL4.

47 X1L4/;/LE/SISETB/SET AI
Display the status of the buffers. 0(0) ...

45->(SMMPL4) ...
Locate the first line containing the expression, L4. Starting
with the line containing L4 through the line containing the
expression LE, substitute SETA for all occurrences of SETB.

48 1,$LW /\ ZOOB02>LDD>MACRO>EXEC_LIB>SAMPL1
List the first through last line of the current buffer on the line
printer (Figure 5-4).

Write the current buffer as a library routine file whose path-
name is /\ ZOOB02>LDD>MACRO>EXEC_<>%+>SAMPLl.

49 1,$D
Delete the first through last line of the current buffer.

50 R SMMPL4
Read the file, SMMPL4, into the current buffer.

51 IDLET/D '. ,/

Locate and delete the line containing the expression DLET.

52 Q
Quit. The quit is deferred since a buffer has been modified and MODIFIED BUFFERS
has not been written to a file. You have one more chance to write EXIST ...
the contents of the current buffer as a file.

53 1,$LW /\ ZOOB02> LDD> MACRO>EXEC_LIB>SAMPL2
List the first through last line of the current buffer on the line
printer (Figure 5-5).
Write the current buffer contents as a library routine file whose
pathname is /\ ZOOB02>LDD>MACRO>EXEC_LIB>SAMPL2.

54 X
Display buffer status. Status is always displayed on the 0(0) ...
operator's terminal even though the output file is the printer.

35->(SMMPL4)

55 E FO
The Execute directive allows you to execute the ECL comand
FO to change the output file from the line printer back to the
operator's terminal.

56 Q (1-"
I

Quit. Exit from the Editor. "-. . ./

USING THE EDITOR 5-8 CB22

(

TITLE SMPMAC,'3/1/77' ~DITOR/MACRO EXAMPLE
LI~M '~XEC-LIB',SAMPL1,SA~PL2

1
2
3
4
5
a
7
6
q

SMPLM MAC Pl:0,P2:2,P3='SAMPLE',P4='PRuGRAM',P~=ZERO,Pa=('

10
11
12
1J
14
15
1&
17
18
19
20
21
22
23
24
25
26
27
28
29
30
.51
32
33
34
35
3&
37
38
39
40
41
42
43
lUI
4':)

40
47
48

P7=),P8=T~O,P9:SCOMM,PA=A,PB:B,PC=T2,PD=SAMPLE,PE=PRDG2
* SET LOCAL VALUES wITHIN MACRO ROUTINE *
LE SETA ' PROG2.START2[,]NAME'
L4 SETA EQU
L5 SETA RESV
La SETA TEXT
L7 SETA XOEF
L8 SETA XLOC
L9 SETA XVAL
LA 5tH [Z'Ol']
lb SETA COMM
lZ SETA " ,

* * THESE U~PRUTECTED COMME~T LI~ES ~ILl ijE DNOPPEl
* WHEN MACKU P~EP~OCESSED.

* ?G4

?G~

?G6
?GA

G3
G4
GS
G6
G7
GA
Gf;
*

?L4
'tL5
'!lo
?l7
?L7
?L6
?L9
'!L8
?L4
EIIIUI'I
SETN
Sf:.T A
SETA
SETA
SETI~

SI:T A
SE:.T A

?Gl lG1 INITIAL VALUE=.)
?IX(?LE,1PE)1G~?P1
?P31Vl(35)1P4?LZ?LA
?G4
?Pb1P8?Gb?AL(1PC)?P7
'ISS ("lP4, 7 ,1)
?VP(tt)
?G7
?P':I+?G3

1
'ZERO'
'NAME'
'$COMM'
100
'COM1' , , ,

(APUSTROPHf'S OkOPPED WHEN sueSTI.)

**** THE FOLLO~ING PORTIUN OF CODE IS ADDEO FROM "SMPLM" ****
*

SMPLM, (CALL IN-LINE MACRO ROUTINE)

* **** THE FOLLOWlNG POMTION Of CODE IS ADDEO FRO~ "SAMPL1" ****
* CALLl SAMPLI 1"",,+,150,;
"START,$C

* **** THE F~LLO~ING PORTIUN OF COUE IS ADDEO FROM "SAMPL2" ****
*

4q CALL2 SAMPL2 SF"""",
50 , l I Nt(
51 EN!,) SMPMAC, START

Figure 5-3. Sample of Unexpanded Assembly Language Program with Macro Calls
and Statements (SMPMAC.P)

USING THE EDITOR 5-9 CB22

1
2-
3
4
5
&
7
8
9

10
11
12
13
14
15
1&
17
18
19
20
21
22
23
24
25
2&
27
28
29
30
31
32
33
]q

35
t&
37
38
39
40
41
42
43
44
45

SAMPL1 MAC Pl=O,P2=2,P3='SAMPLE',P4='PROGRAM',P5=ZERO,P&=(,P7:)J
P8.TWO,p,.aCOMM,PA=A,P8=B,PD=SAMPLE,PE=PROGRAM

*
* * SET LOCAL VALUES WITHIN MACRO ROUTI"'E *
*
*
L4 SETA ORG
L5 SETA DC
L& SEU LOR
1.7 SETA STR
1.8 SETA CALL
L9 SETA LB
LA SETA eST
L8 SEU SLD
LC SETA '='
LD SETA [Z'32']
LE SETA 'PROG2.START2[,]NAME'
*
*
* SET GLO!;AL VALUES ~lTHIN MACRO ROUTINE *

*
* GH SETA 'ORG INTO COMMON'
GG SETA 'ORG INTO INTERNAL laC'
GC SETA 'EXTERN VAL REFERENCE'
GO SElA 'COMMON REFERENCE'
Gf SETA 'EXTERNAL lOCATION RE~ERENCE'
GF SETA 'FOR~AROS TEMP lAoEL ~EFERENCE'
*
* UNPROTECTED LINES OMITTED wHEN PRE-PROCESSED
* 114 1P9 ?GH

1LS 1VR(1P3,1PD)1GB?S~(?P4,1PE)
1L4 ?G41P7?P8 1GG

?PC 1l& SR1,1lC?PB ?r;C
?l1 SR1,<?GA ?GD

[*]
?PD 1L& SR1,<?PA ?GE
[*l

1L8 PROG2.1SS(1LE,7,&)1GBNAME
11.9 ?G4?P7?Pl1GB1LC1VL(13)
1LA >1P7$F 1GF
11.8 $S11G8?LCZ'1CH(1,-2)?CH(2,-2)1CH(3,-211CH(4,-2) ,

ENDCL1 ENDM

Figure 5-4. Sample of Unexpanded Macro Routine (SAMPL1) Contained
in EXEC_Lm Directory

USING THE EDITOR 5-10 CB22

(~-\

~/

/

/

1
2
3
4
5
&
7
8
9

10
11
12
13
14
15
1&
17
18
19
ao
21
22
23
24
25
2&
27
28
29
30
31
32
33
34
3S

SAMPL2 MAC P 1 =0, P2=2. P 3=' SAI"'PLE' , PtI=' PI.I(lGi< AI'" , • P5=ZEt<O, Pb= (, P7=) ;
P8=TwO,P9=SCOM~,PA=A.PB=B
* SET LOCAL VALUES ~ITHI~ MACRO ~OUTlhE *
L4
LA
LO
LE
LG
LC
LP
Lf,l
LI
LV
LZ

SETA >=[Z'1300'1
SETA 10LD
SETA SRI
SETA 'P~OG2.STA~T[,JNAMr.'
SE TA SOk
SET~ -32768
SErN $27~7
SETI\! 0
SETA BE Z
SETA HI. T
SETA ','

* SET
G7

GLOijAL VALUES >'IITHIN foi'ACKU ROtH I,-t *
SETN -32768

G2 SETA '8ACKAA~DS rEMp LA~EL kEFERE~CE'

GS SETA CTRL

* * UNf>"'OTECTEU LINES OMITTED 1'·I1E·~ Ph'E-PHDCI:SSf:.U

* 1P1
1P1

E"IOIT
IFf1

GTENO
ENOCL.2

?LA
?LA
?LG
'ill
?LV
1G5
IFE
FAIL
IFNL
iIIuLL
IFNE
FAIL
GOTO
ENO~t

?P~'iLZ?L4,=1LIJ
?P5'iL Z?L 4, = ?Ll)
?LO,?Vf;(3]
?LO,-1C ?G2

?PZ ?SS('?Lr..1.~)

?G7,?LC,IFEl

?P2,?LC,*

?G7,1LP,GTENO

ENIJIT

Figure 5-5. Sample of Unexpanded Macro Routine (SAMPL2) Contained
in EXEC_LIB Directory

Example 1:

File SMPM01 before Editing

1 TITLE. SMPMAC,'3/1177' EOITfiRItl-ACi-u EUl1PLE
2 * IN&EkT LN 2 LId~ STATEM~T 8EFORE THIS L~ •• THF~ nEL THIS L~
3 SMPLM ~AC Pl=O,P2=?,P5='SAMf>LE',P4='PR[GRAM',P5=ZERo,P6=(J
4 P7=),P~=T~U,P9=$COM~,P~=A,P~=~,PC=T2,P0=SAMPLE,PE=PROG2

5 * SET LUCAl VALUE~ ftITHI~ MACNU R~UTJ~~ *
& LE ~SE CHA~GE FUNCTluN TO AOO SETA VALUE fO~ THIS LN
7 L4 USE CHANGE FUNCTION TU ADO seTA VALUE FOR THIS LN
8 L~ USE CHANGE FUNCTIO~ TO ADD SETA VALUE fOR THIS LN
9 L6 USE CHANGE FUNCTION TO ADD SETA VALUE FOR THIS LN

10 * AOO L7 SETA VALUE WICHANGE FUNCTION •• THt~ DELT THIS LN
11 L8 SfTA xLDC
12 L9 SETA XVAL
13 LA S~TA [Z'01']
14 L~ SETA COMM
15 LZ SETA '.'
1& *USED EDIT READ FU~CT TO ADO "SMPM02" PORTION TO FILE*

USINGTHE EDITOR 5-11 CB22

Example 2:

File SMPM02 before Editing

1 *
2 * THf:.SE UIII ... "'UTEC TEll C(1I.~M!:"'T LI'~E.S "'ILL t<E 1)j.((if'Ph,i
3 * "'HEN MlCRO P~EP~OCESSEO.

" .,
&
7
8
9

10
11
12
13
1"
15
1&
11
18
19
C?O
21
22
c?3
2"
2S
2&
27
28
29
30
31
32
H
]Ii

35
3&

'!Gb
lGA

G3
G"
G5
Gf>
(;7
GA
G~

*

tiL"
ilL.,
"1.1:1
IIl7
~17

"1.8
#L9
"Lri
#1."
E,JO~I

SUN
St::T"
SUA
llUA
::it: T,"
SI: TA
SETA

lG1 (&1 I~ITIAL VAL~t=$)
?lX(~LE,?PE)?G~?Pl
?P3?VL(35)?P4~LZ~LA
?GIl
?PblP8?GH?AL(?PC)lPI
?SSC?PII,7.t)
?VP (1 t)

?G7
?P9+?G3

1
'ZERO'
'NAI"E'
'$COMI~ ,
11)0

'COl<,1 ' , , ,
**** THE FULLOi'lM:i POl<T10N GF CODE IS API'H, Fh't.~; "SMPL~'" ****
*
* **** THE. FOLLO~'Ii~G PORT10r, OF COl)l:. IS A IJi.i t:L1 Fkulv. "SAMPL1" ****
* CALL1 SAMPL1 1"",,+,150,;
"STA~T,,JC

* **** THE FuLLU"'lIllG PORl Iulli Of. COuE IS AnvED FioIOt-, "SAMPL?" ****
* CALL2 SAMPL2 SF""""J
, 1.1 iIIK

END 5MPMAC,START

USING THE EDITOR 5-12 CB22

(

Example 3:

File SMPM03 before Editing

1
2
3

SA~PL1 MAC P1=O,P2=2,P3='SA~PLE',~4='PRDGRA~',P5=ZERO,P&=(,P7=);
P8=T~O,P9=$COMM,PA=A,P8=8,PO=SAMPLE,PE=P~UGRAM

*
41 *
5 * SET LOCAL VALUES ~ITHIN MACRO ~OUTIN~ *
& . ..,
7
8
9

* L4I
L5
L&
L.7
L8
L9
LA
La
LC
LD
LE

*
*

SETB
SETB
SE.Tri
SET I:!
SETt;
SET~

SETI:!
SETtl
seTH
SETH
SE.TB

URG
DC
LOR
STR
CALL
L8
bST
SLO
'= ,
[Z' 3c?' l
'PROG2.STANT2l,1~.M~'

* SET GLUHAL VALuES ~ITHIN MACkO ~UUTINE *
*
* GH 'ONG I~TO COM~ON'

'ORG INTO INTtR~AL LOC'
'EXT~RN VAL ~lFERlNCt'
'COMMON ~lFE~ENce'

GG
GC
GO
GE
GF

SETII
SETA
SETA
SUA
SETA
SETA

LExTE~NAL LOCATION ~EFEkE~CE'
'FOR~AROS TEMp LAMtL RE.~E.RE~CF'

*

*

1PC

1L4
1L5
1L4
"!Lb
1L7

1Lb

1P9 1GM
1VR(1P3,1PD)1G~?S~(1P4,?PE)

1G41P71P8 1G~
$kl,1LC1Pri
~Rl,<1GA 1GU

$Rl,<?PA 'i'GE:

PRUG2.1SS(lLE,7,b)?GhNAME
?G41P71P11GS?LC?VL(13)
>?P7Sf 1GF

?GC

10
11
12
13
14
15
1&
17
18
19
20
21
22
23
24
25
2&
27
28
2·9
30
31
12
33
34
35
3&
37
38
39
40
41
42
413
44
45

1L8
1L9
1LA
1LB
END~1

SS11GB1LCZ'1CH(1,-2)1CH(2,-2)7CH(3,-i!)1CH(4,-i!) ,
ENDCL1

USING THE EDITOR 5-13 CB22

Example 4:

File SMPM04 before Editing

1
2
3
1.1
5
6
7
8
9

5A~PL2 MAC Pl=0,P2=2,P3='SA~~L~',~U='P~OGkAM',P5=ZERO,P&=(,P7=);

10
11
12
13
III
15
1&
17
IB
19
20
21
22
23
21.1
2~

2&
27
2~
29
30
:S1
~2

B
34

P8=Twu,pq=$COM~,PA=A,pe=H

* SET LOCAL VAL~~S ~IT~I~ ~ACRU ROUTI~t *
LI.I SETA ~=[Z'1300'J
LA SETA IOLO
LO SETA ~kl

LE SETA 'p~OG2.5TAkTI,l~AM~'
LG SUA 5010
LC SElI~ -327bll
0ELT$ DC 'OElETt lINE. t~UI~G .l~ 5'$
LP S~ TN 327&7
Ll~ Si:. T" i'
Ll SE TA ki::Z
LY SETA HLT
II SETA ','
* SET GLLJl'iAL VALUES I'IlHJiJ MACrlO kUIITI;,c *
G7 HT(\; -3271>1;
G2 SETA 'HAC~~Ajo/OS T~MP LA~FL ktftHE~CE'

G~ SUA CTrll

* * UNPRO T toC TI: [; 1.1 f\lt S lIt,lIT T E.D ·~Hf: 1-, PwE - PkllC ESSE. II

* 11"1
'IP I

"Ot:L

GTEI\JIl
OLU
EIIIOCL?

'lLA
?LA
fLG
?Ll
1LY

?P~?LZ1Ljj,=1ll)
?PS'!L l?L4, = '!LU
':'U),?VG(3)
?l.D, -$C 11:;2

1G5 ?Pl ?5S(?Lt,1,~)
DC 'l1EL.ETE LINE f1Ei;FJI~IliI{; Ii. A'
IF~E ?G7,?LP,GTEN~

rAIL
GUTO 1:'. "'l> IT
DC 'OEL~TE LINE ~EFURE QUIT'

USING THE EDITOR 5-14 CB22

("

Section 6

Using the Assembler and Macro Preprocessor

This section illustrates the use of the assembler to construct programs containing macro calls.
Two assembly language samples are presented. One illustrates the output of different assembly
language program processors. The other illustrates an assembly language program that con
tains multiple tasks. Both samples provide the operator terminal session listings that contain
the commands to invoke the system software.

SAMPLE ASSEMBLY LANGUAGE SESSION (SMPMAC)

Figure 6-1 contains a sample operator terminal session to preprocess, assemble with cross
reference, and link the assembly language program SMPMAC. It is assumed that the Honey
well-supplied startup has been done prior to this session.

The typeout illustrates the following points. The working directory is changed to SYSMAC
where the program's files are located. The file, SMPMAC, that is processed by the Macro
Preprocessor is in Figure 5-3. The macro routines, SAMPL1 and SAMPL2, called by the
program are listed in Figures 5-4 and 5-5. A listing of the output file SMPMAC.A from the macro
preprocessor is shown in Figure 6-2.

CI~D tSYSMAC
($H)RDY:
tZSYS51>SYSLIB2>MACROP tSYSMAC>SMPMAC -SZ 10
($H)MACROP-OI00-ll/17/1404
($H)OOOO ERR COUNT
($H)RDY:
ASSEM tSYSMAC>SMPMAC -SZ 10 -SAF -LE -XREF -COUT >SPD>LPTOO
($H)ASSEM-OI00-11/17/1346
($H)OOOO ERR COUNT
($H)ASSEM: (020105) ID 1380 0000 0000
($H) >SPD>LPTOO
($H)RDY:
FO >SPD>LPTOO
($H)RDY:
LINKER tSYSMAC>SMPMAC -COUT >SPD>LPTOO -SZ 10
($H)LINKER-OI00-11/23/1258
LDEF A,X'lOO'
VDEF B,X'2'
LINK SMPMAC
MAP
QT
($H)SAF OR SLIC PROG2.0 NT FND
($H)SAF OR SLIC PROG2.0 NT FND
($H)ROOT SMPMAC
($H)LINK DONE
($H)RDY:

Figure 6-1. Sample Terminal Session (SMPMAC)

USING THE ASSEMBLER
AND MACRO PREPROCESSOR 6-1 CB22

1
2
3
4
5
&
7
8
9

10
11
12
13
14
1~
1&
17
18
19
20
21
22
2,S
24
2~

2&
27
28
29
,SO
31
32
33
34
3~
3&
37
38

*

* ZERO

NAME

SCUMM
COM1

*

*

START

* $C

*

* SF
:iF

TITLE. SMPMAC,',S/1/77' E0I10k/~AC~O EXAMPLE

THE FOLLO~ING PORTION UF CODE IS ADDED FROM "SMPLM" ****
EQU $ (G1 INITIAL VALUE=$)
RESV 2,11
H:XT 'SAMPLE', 'PHOGRAM', Z'01'
XDEF ZERO
XUEF (TWO,2)
XLOC A
XVAl a
COMM 100
E~U $COMM+l

THE F0LLO~ING PORTION OF CODE IS ADUED FkO~ "SAN~ll" ****
OkG
DC
ORG
LOIol
STl-1

lOf(

CALL
LB
8tH
tilD

$CQMM
1,2
ZERO+1SO
$Hl,=B
$Rl,<COfvll

PROG2.STAkT2,~AME.

ZE",O+t,=Z'32'
>+$F
bSl,=Z'Ol020304'

UWG INTG l~TER~AL LOC
EXTEk~ ~Al REFEkENCE
COM~U~ kEFERENCE

EXTE~~AL LUCATIOH kE~ERENCE

THE FOLLU~lNG PORTION UF COOE IS AODED FkOM "SAMPL2" ****
IOLD ZEkO,>=Z'130u',=Sk1
IOLO lE.kO,>=Z'1300',=$Rl
SOk $Rl,1
BEZ $Rl,-$C BACK~ARUS TEMP LA~EL REFERENCE
~Ll

CTkL LINK PROG2
END SMPMAC,START

Figure 6·2. Macro Preprocessor Output (SMPMAC)

Figure 6·3 illustrates a cross· reference listing produced by the Assembler. See the Program
Preparation and Checkout manual for an explanation of cross·reference symbols.

Figure 6-4 illustrates the Assembler listing of the assembled Macro Preprocessor output.
Figure 6·5 illustrates the link map of the previously assembled program SMPMAC.

USING THE ASSEMBLER
AND MACRO PREPROCESSOR 6·2 CB22

(

(

TITLE SMPtvlAC,'3/1177'
S **** 5
:ie 23 35
SCOMM 12 13 17

N SF 32
M SF 33 27

SR1 **** 20 21 23
SS1 **** 28
A 10 23
B 11 20
COM1 13 21
NAME 7 25

U PROG2 **** 25
START 2u 38

U START2 **** 25
N TwO 9

ZERO 5 8 19 2b

II III

11 I.A~ELS

25 REFERENC~S
38 RECORDS

2 U FLAGS
1 M FLAGS
2 N FLAGS

Legend:

I - Optional error flag:

II -

M - Designated label occurs more than
once in the label field in the module;
i.e., the label is multiply defined.

U Designated label is not defined;****
is also included in the definition field.

N Designated label is not referenced in
the module.

Identifiers (e.g., registers) and an alphabetical
list of all labels in the assembly language source
module. Identifiers do not have to be defined
and are never flagged.

EOITOk/MAC~O EXAMPLE a

IV

3i:! 33 34 35

32 33

III - Number of the line in which the symbolic
name is defined in the module. Asterisks
(****) indicate that the symbolic name was
not defined in this module.

IV - Number of each line that contains a refer·
ence to the symbolic name.

aThe contents of the assembly program TITLE
statement become the heading for the cross
reference listing.

Figure 6-3. Cross-Reference Listing (SMPMAC)

USING THE ASSEMBLER
AND MACRO PREPROCESSOR 6-3 CB22

SMPMAC

OOObOI
000002
000003
000004
000005
0000011

000007

000008

00000'1

000010
OOuOll
OOOOIi!
001/013
0001/1'1
000015
00001&
000017
OuOOlb

OUOI/I'I
000020
OOlIO.!1
oooon
00002~
OOoui!1I
OUOU2~

OOUO.!b

001)02/
OOIlUcb
UUOO;!'1
0110030
0110031
oooo.so!

3/1177

0000

0002
Oli03
0004
00u5
\iOOb
0007
OU08

IlOOu
(JOOO
(.1001
uU"Ib
OO'lb
0096

'j~'CjA

",,9C
Ou'lE
OOAO
(>\lA\
OvAi?
OvA'I
uuA!!
OuAt>

U(,A'I
OOAI>
IiOAC

OU0033 IIOAI)
('UU
V~tlU

0000311 OOtH
OOOO$!; 0">12
OOOldb 00'.14
000037
QOOi)3!! uOtl~

ouoo ERR C{lU"'T
-(---11-

'"

GCOSb/MOT 0101 ASSEM8LEW

0000
0000 0000

')341
4050
4CIIS
5052
4FII7
5241
4001

QUOO

0002

ovll<l
0(101

OuOI
OU02

'1670 IJ000
'1FOO 1/001

q~OU 0(1('0

fllCO 00113
LJ3bU 0000
OF /10
0(102
Il2CO ~f~E

3c?OO
o~Oo
qllf 0 01<>2 0304

dlCO n~"
1300
OO~1

!lIeu FF~i'
130(,
ClOSI
1041
1'101 FFt:.7
OVOU

1/09b

(V

K

K

1

T

v

*

* lEWD

NAME

SCO"''''
COMl

*

*

STAIH

*
:i>C

*

•

*
~F

iF

'EDITOR/MACRO EXAMPL PAGE 0001 lQOI/OI/Ol 00211:5'1.4

TITLE SMPMAC,'3/1/11' EDITOR/MACRO EXAMPLE

THE FOLLO~ING PORTION OF CODE IS ADDED FROM ·SMPLM" ****

THE

EQU
flESV

TEXT

XIJH

XDEF

~LOC

XVAL
C(1~I(YI

F.QO

H1L.LlJi',l iiG

URG
uC

or.!>
LO~

5111

LD~

CALL

L~

" .. ,
&Ui

S
2,0

(GI INITIAL VALUE=S)

'SAt-JP·LE', 'PROGRAM', Z'OI'

ZERO

n.JO,2)

A
II
100
$COMtHI

,",DIITION OF COllE IS ADDED FIIOM "SAMPLI" **.*
'SCOM", O~G INTO COMMON
1,2

Zt:.IW+ 150 ORG INTO INTERNAL LOC
$1'11,=>; EHERN VAL REFERENCE
$RI,<COIiI COMMON REFEilE'~CE

$~I,<A EHERNAL LOCATlnw kEFEkENCE

P~UG2.STARI2,NAME

ZI::QO+\,=Z'32'

>+$F FOI/~ARDS TEMP LA~EL REFERENCE
:iSI,=1'OI0203Q4'

THI:. FOLLP~ING PORTION OF CODE IS ADDED FROM ·SAMPL2" ****

IOLO

SOf<
bEZ
hLT
CTwL
~"U

ZF.RO,>=Z'1300',=$~1

SRI, I
SRl,-SC BACKwA~OS TEMP LAREL REFEREhCE

LIN~ P~UG2

SNIPMAC, STAIiI

VI

Legend:
I Optional error flag(s) :

A Operand field format error
C Numeric conversion error
o Short displacement out of range
E Illegal address'expression
F Illegal forward reference
H Improper header
L Label field format error
M Multiply-defined symbol
N No matching left parenthesis
o Illegal operation code
P Assembler control statement error
Q Address<O or ;;.32K
R Illegal register reference
S Imprciper statement format
T T ru ncati on warning for string

constant
U Undefined symbol
X Expression too complex
Z Conditional assembly error

There can be up to four error flags per line.
If there are more than four errors, only the
first four are listed and included in the error
count; subsequent errors are ignored.

II - Record number; a 6-digit decimal represen
tation corresponding to the sequential count
of the number of logical records read.

III - Program counter; 4-digit hexadecimal repre·
sentation of the relative address of the
corresponding source statement on the
right·hand side of the listing.

IV - Machine code; 4-, 8-, or 12-digit hexa·
decimal representation of the corresponding
assembly language instruction or Assembler
control statement shown on the right·hand
side of the listing.

V - Type flag; 1·character flag (preferably a
non hexadecimal digiti that specifies the
label type of the referenced symbol:
K Common
T Temporary
X External
P P-relative reference to external

or common symbol

VI - Verbatim representation, including com
ments, of the source statement, as defined
in the Assembly Language manual.

Figure 6-4. Assembler Output Listing (SMPMAC)

USING THE ASSEMBLER
AND MACRO PREPROCESSOR 6-4 CB22

(

LINKER-OtOO-tI/23/1258 GCOSb MQD400-StOO-12/01/1413
RU= SMPMAC LINKED ON: 1977/12/08 1420:55.9 -SAF

SMPMAC 3/t 177
1977/12/08 1420:12.4 ASSFMRLER-Ol00-ll/17/134b GCOS6 MQ0400-S100-12/0t/1413 P

EDITOR/MACRO FXAMPL
SAF OR SLIC PROG2.0 NT FND
SAF OR SLIC PROG?O NT FND

** SMPMAC LINK MAP 1917/12108
**SHRT OOFA
*·LOW 0000
**'iIGH 0119
.*SCOMM 0000
**r.URRENT 0119

**EXT OEFS
P 7HCOMM
P 7HPEl

A

** ROOT
* SMPMAC
C lCOMM

ZEQO

**IJNOEF
* SMPMAC

START2

****** •• **
ROOT ~MPMAC

.*********
Hlr.HFST nvl.Y

SAF

ROOT SMPMAC

0000
0000
0100

0000
0000
0000
0064

nooo
01(13

A 0002

TwO 0002

INUM OF SYMS o

BASF 0000

1420:55.9

ST OOFA - •• UI HTGH=0119

*srZE OF ROOT ANn STATIC OVLYS= 0119 HT REl RCO=

LINK OONf

II III

Legend:
I - Indicates whether there is a protected symbol,

multiply-defined symbol, or symbol that defines
the labeled or unlabeled common; designated by
P, M, and C, respectively.

II - Module and symbol names. (Module names are
preceded by *.)

III - Base address of module, address or value of
symbol.

Figure 6·5. Linker Output Listing (SMPMAC)

USING THE ASSEMBLER
AND MACRO PREPROCESSOR 6-5 CB22

SAMPLE ASSEMBLY LANGUAGE MULTITASK PROGRAM (BRDCST)

Figure 6-6 contains a sample terminal session to compile, link, execute, and start debugging
the assembly language, program BRDCST, on that system. A specialized system is configured
with CIM_USER containing the following configuration directives:

DEVICE KSROO,5,0,X'0500',CONSOLE
MEMPOOL S,,5000
DEVICE CDROO,26,26,X'1300'
MEMPOOL E,AA,14336"BB,11264
MEMPOOL B,,8850

SYS 60,16,SSIP,3
DEVICE DSK01,17,17,X'480'
DEVICE DSK02,18,18,X'1200'
DEVICE DSK03,19,19,X'1280'
DEVICE LPTOO,20,20,X'1380' ,LPTOO
QUH

The typeout illustrates the following points. A task group, $H, is spawned. Editor is used to
print the file containing BRDCST source text, a portion of which is shown in Example 1. The
Macro Preprocessor, required for processing of $IORB, $CRTSK, and $RQTSK macro calls, is
not on the directory search path and a full pathname must be used. A task group, BC, in which to
execute BRDCST is created and BRDCST is loaded for execution.

Example 1 is a listing of BRDCST. It is presented to illustrate how tasks are created and
invoked in an assembly language multitask program.

USING THE ASSEMBLER
AND MACRO PREPROCESSOR 6-6 CB22

(

Example 1:

SG $H H.L.A 38 >SPD>CONSOLE -OUT >SPD>CONSOLE -POOL AA -WD AZOOBOO
($S)RDY:
C :$H:

RDN
($H)GROUP READY
($S)GROUP $H DID NOT ACCEPT INPUT
RDN
($H)RDY:
CWD AETSCOM>MAN EX
($H)RDY: -
FO >SPD>LPTOO
ED
($H)EDIT rrrr-mm/dd/hhmm
R BRDCST.P
l,$P
Q
FO >SPD>CONSOLE
($H)RDY:
AZrrr02>SYSLIB2>MACROP BRDCST -SZ 20 -IC
($H)MACROP rrrr-mm/dd/hhmm
($H)OOOO ERR COUNT
($H)RDY:
ASSEM BRDCST -SIZE 1 -COUT >SPD>LPTOO
($H)ASSEM rrrr-mm/dd/hhmm
($H)OOOO ERR COUNT
($H)RDY:
LINKER BRDCST -C >SPD>LPTOO -S 2
($H)LINKER rrrr BU=BRDCST LINKED ON: yyyy/mm/dd nnmm:ss,t
IN AETSCOM>r'IAN EX
LN BROCST -
START BROCST
MP
QT
($H)ROOT >BRDCST
($H)LINK DONE
{$H)RDY:
C : $S:

CG BC 40 -LRN 30 -POOL SS -EFN AETSCOM>MAN EX>BRDCST
($S)RDY: -
EGR BC B.E.N >SPD>CONSOLE -\>JD AETSCOM -OUT >SPD>CONSOLE
($S)RDY:

Figure 6-6. Sample Terminal Session (BRDCST)

Partial Program Listing of BRDCST

TITLE BRDCST
LIBM >LDD>MACRO>EXEC LIB'

*
*
*
*
*
*

DEVTBL

THIS TEST PROGRAM IS A
MEDIA TRANSCRIPTION TEST.
IT CAN EXECUTE AS AN
ON-LINE OR BATCH
DRIVER TEST ••• ,.,

RES V 0
DC <CRDBLK
DC <TIYBLK
DC <DSKBLI
DC <PRTBLK

USING THE ASSEMBLER
AND MACRO PREPROCESSOR

LRN 261 LRN 13
LRN 17
LRN 20

6-7

POINTERS TO DEVICE I/O
REQUEST BLOCKS

CB22

(

Section 7

Using the COBOL Compiler

This section illustrates the use of the COBOL compiler to construct programs written in the
COBOL language. It shows how to load a source program from a card deck into a mass storage
COBOL source file and how to subsequently invoke the compiler to process the source program
from the mass storage file. Two samples are presented; one shows the procedure for running an
application, and the other is the ouput listing from an actual compilation and link.

SAMPLE CARD-TO-DISK-FILE PROGRAM (CARDIN)

Example 1 is a sample COBOL source program that places data read from cards onto a disk
fIle. The following paragraphs illustrate a procedure for creating application files, loading
source, compiling, linking, and executing. System startup has created the application task
group $H. After startup, the current working directory is 1\ Zrrr01>SYSLIBl. The following
swnmarizes the contents of volumes used in commands:

Volume Device Unit Contents

ZnTOO
Zrrr01
Zrrr04
VOL03

DSKOO
DSK01
DSK02
DSK03

Example 1:

Bootstrap, Monitor, Linker
SYSLIB1, SYSLIB2
COBOL Compiler
Application Files

Program Listing of CARDIN

000010
000020
000030
000040
000050
000060
000070
000080
000090
000100
000110
000113
000116
000120
000130
000140
000150
000160
000170
000180
000190
000200
000210
000220
000230
000240
000250
000260

IDENTIFICATION DIVISION.
PROGRAM-ID. CARDIN.
ENVIRONMENT DIVISION.
CO~FIGURATION SECTION.
INPUT-OUTPUT SECTION.
F I L E - CON T R OL •

SELECT CARD ASSIGN TO OA-CARD-READER.
SELECT MASTER ASSIGN TO OC-MSD.

DATA DIVISION.
F I L ESE C T I ON •
FD CARD LA8EL RECORDS OMITTED.
C1 CARD-REC PIC X(SO).
FD MASTER LABEL RECORDS OMITTED.
G1 MASTER-REC PIC X(80}.
PROCEDURE DIVISION.
CARDIN.

LOO?

EOF.

OPEN INPUT CARD.
OPEN OUTPUT MASTER.

READ CARD RECORD AT END GO TO EOF.
MOVE CARD-REC TO MASTER-REC.
wRITE MASTER-REC.
GO TO LOOP.

CLOSE CARD.
CLOSE ;~ASTER.

STOP RUN.
END COHOL

US1NG THE COBOL COMPILER 7-1 CB22

VOLUME AND FILE CREATION

I1CI1 :$H:
RDN
CV >SPD>DSK03 -FT VOL03 Format volume VOL03
CD "VOL03>SOURCE Create directories for
CD " VOL03>OBJECT source, object and user files
CD " VOL03>FILES
CF "VOL03>FlLES>OLD_MASTER -N_REL -RSZ 128 Create user file
FO >SPD>LPTOO
LS -PN " VOL03 List contents of created
LS -PN " VOL03>OBJECT directories
LS -PN "VOL03>FILES
FO

SOURCE LOADING

The following illustrates loading a source deck using the CP command. Place the source decks
for CARDIN in the card reader in the following sequence:

CARDIN source deck
EOF (11-5-8-9) card

Enter the following command:

CP >SPD>CDROO /I. VOL03>SOURCE>CARDIN.C

COMPIUNG WITH COBOL

In the following ECL commands, the working directory is /I. VOL03>OBJECT. The search
path for bound units (executable programs) is current working directory, LIBI, then LlB2,
where their pathname is initially 1\ ZrrrOI>SYSLIBl. The COBOL Compiler is not in any
directories in the search path; its full pathname must be given. However, the command

COBOL <SOURCE>CARDIN ...

can be used if you change the pathname for the directory LlB2 by issuing an operator command
to the system task group using:

A$SACSD -LlB2 1\ Zrrr04
(where A is exactly one space)

"VOL03>OBJECT will contain temporary work files required for the compiler and the
created object files used by the Linker. The compiler argument LD will list source, data map, and
errors; LO will, in addition, list the object text.

To compile CARDIN enter the following:

cwn /I. VOL03>OBJECT
COBOL <SOURCE>CARDIN -LO -COUT >SPD>LPTOO

UNKING
The working directory is still /I. VOL03>OBJECT. The Linker LIB directive directs the

Linker to search the secondary directory for COBOL run-time routines (ZCRT) required for
linking. To link, enter the following commands:

LINKER CARDIN -COUT >SPD>LPTOO -SIZE 4

LIB /I. Zrrr04>ZCRT

LINK CARDIN

MAP;QT

USING THE COBOL COMPILER 7-2 CB22

EXECUTING

The internal file names OA and OC translate to logical file numbers 01 and 03, respectively,
and must be associated with the pathnames or the physical devices through a GET or ASSOC
command. To execute the program, enter CARDIN.

Enter the following commands:

GET 01 >SPD>CDROO

GET 03 A VOL03>FILES>OLD_MASTER

CARDIN

SAMPLE COBOL TERMINAL SESSION (AC8111)

Figure 7-1 illustrates an operator terminal session in which a system is configured, and the
COBOL program AC8111 is compiled, linked, and executed on that system. The Entry Level
COBOL compiler is specified in this session. To secify the Intermediate COBOL compiler,
change the COBOL command and the LINKER LIB directive as follows.

COBOLI AC8111 -LO -COUT >SPD>LPTOO
LIB A ZSYS51>ZCffiT;LINK AC8111;MAP;QT

The LINKER LIB directive directs the Linker to search the secondary directory for COBOL
run-time routines required for linking. To execute the program, enter AC8111.

RDN
($H)RDY:
CI~D tSTCOB1>SOURCE>ACC208
($H)RDY:
COBOL AC8111 -LO -COUT >SPD>LPTOO
($H)COBOL 0200 11/22/1511
($H) 0000 ERRORS
($H)END COMPILATION
($H)RDY:
LINKER AC8111 -COUT >SPD>LPTOO -SZ 4
($H)LINKER-OI00-ll/23/1258
LIB tZSYS51>ZCRT;LINK AC8111;MAP;QT
($H)ROOT AC8111
($H)LlNK DONE
($H)RDY:
AC8nl
($H)Q208NUAOII001
($H)Q208NUAOIIOOI
($H)
($H)RDY:

1 234
P P P P

Figure 7-1. Sample Terminal Session (AC811l)

Figure 7-2 is a listing of the program AC8111 , its compiled object text, and the output from the
Linker. The program was compiled using the entry-level compiler.

UmNGTHECOBOLCOMPllER 7-3 CB22

SOURCE PROGRAM

1
2
3
IJ

c;
6
7
II
9

10
1 1
12
1'3
14
15
16
17
18
19
?O
?1
?2
23
24
?5
26
in
?II
?9
30
3 t
32
33
34
35
30
37
38
39
40
4\
42
43
44
45
46
47
4~

119
50
'51
52
53
S4
'55
c;o
57
58
'5q
bO
61
62
63

TDFNTIFICATION DTVISTON.
*PROGPAM ~20AAOtl01.C080L FPOM Q20AACC.ARCHIVF.

PROGRAM-ID. AeAt!l.
ENVIRON~ENT nIVISlo~.

CONFTGURATION SUTTON.
SOI/RCE-COMPUTER. LEVEL-b.
ORJECT-COMPUTER. LEVEL-b PROGRAM COLLATING SFQUENCE IS ASCII.
DATA DIVTSION.
wORKTNG-STORAGE SECTTON.
o t QDSPL YPEr.

05 ~OSPLYFIl(.

10 FILLER
to (HCASE
10 FILLER
10 QSTATUS
10 FIl.LER

05 QDSPlYVRl.

PIC
PIC
PIC
PIC
PTC XX

X (t 3)
XX
'IX
XX

10 QACTRESLT PIC
10 FILLER PIC
10 QEl(PPESLT PIC
10 FILLFR PTC

X(t2)
XX
)lCt2)
)IX

01 SUMMARYS.
05 SUM-LINE
05 RESULTS.

PIC)1(7)

10 TESTIR PIC XX.
10 TEST?R PIC XX.
to TEST3R PTC XX.
10 TEST4R PIC XX.

VAl.Uf
VALUE
VALUE
VALUE
VAL liE

VALUE
VALUE
VAL'E
VALUE

"fl2J}.8.N.UA-O-t.~ "
SPACES.
SPACES.
SPACES.
SPACES.

SP4C-ES
SPACES.
SPACES.
SPACES.

VALUE "1 ? -; 4".

* * * TFST GO TO--FORWARD AND RACK * * *
PROCEDURE !)IVISION.
ANFAfIlG.

DISPLAY ~OSPLYFIX.

GO TO PARA-3.
WRAI.

MOVE "GO TO PARA-3" TO
TO

QTCASE.
TfST1R.

MOVE "FELL THRU"
MOVE "01" TO
MOVE "F" TO
DISPLAY QDSPLYRfC.

PARA-I.
MOVE
GO

WRA2.

.. p ..

TO
TO
fOJI.

TfST3R.

MOVE "GO TO FOJ1" TO
MOVE "FEl.L THRU" TO
MOVE "04" TO QTCASE.
MOVE "E" TO TfSTI./R.
DISPLAY QDSPLYREC.

PARA-2.
MOVE
GO

W6A3.
TO

TO TfST2R.
PARA-t.

MOVE "GO TO PARA-I" TO
MOVE "FELL THRU" 10
MOVE "03" TO QTCASE.
~OVE "F" TO TfST3R.
DISPLAY QQSPlYREC.

PARA-3.
MOVE
GO

W8A4.

"PH
TO

TO TFST1R.
PIIRA-?

QE)lPRfSLT.
G1A.CTRfSLI.

GlEXPRESLT.
QACTRESLT.

Glf)(PRESLT.
.Q.A.C..IR.£.8LI.

GlEXPRESlT. MOVE
MOVE

"GO TO PARA-?"
"FELL THRU"

TO
TO QACTR~Sl T.

Figure 7-2. Sample Listings for AC8111

USING THE COBOL COMPILER 7-4 CB22

(
-44
6S
66
~7
68
69
1-0
71
72
n
74
75

MOVE "02"IO- JU-CASE-
MOVE "F" TO TEST2R.
OISPLAY QOSPLYREC.

fOJI.
MOVE "PH TO TEST4R.
MOVE SPACES TO QTCASF.
MOV-£: SPACFS TO QSTAlllS.
OISPLAY QOSPLYFJX SUM-LINE.
MOVE SPACFS TO QDSPLYFIX.
OISPLAY QDSPLYFIX RFSULTS.
STOP RIIN.

FNO COROL.

OATA ALLOCATION MAP
"'U"" ut\ ""'" LHAD AI PICTIIRE

WORKING-STORAGE SECTION
~. 01 QPSPbYREC ___ O~O~O"..O~ __ ~X+(.\I-O-U-01J-OIJ.<Oll.l--'lo"-,)J---I\~---- -------------

O~ QOSPLYFIX 0000 X(000021)
10 FILLER 0000 X(0000I3)
• 1\ ,.. ... ,.~ __ • OOO~ H -l(.{"I\I\"t\.", ----- ._---------------_._-

10 FTLLER 0007 H X(000002)
10 QSTATUS 0008 H X(000002)

1---~---Il~O'--$...J.l--b-E-R-. - -.-- 00 0 Q H .--X-c..o.o..o..o-O-a-l---~. -. ... __ _n_. -_ " ..

OS QOSPLYVBL OOOA H X(000028)
10 QACTRESLT OOO~ H X(0000I2)

\-____ -l0..(lA'--.,...,.·W' 7 Ilb-I"'~"DIf---____ _ _ 0 0 1 0 -.l:l--~O""" __ .
10 QfXPRFSLT OOlt H X(OOOOmTDATAAI.IO(;Ano"N--M"A-pJ-------
10 FILLER 0017 H X(000002)

r--'- -' -'()l---o-'5--:i~~~ ---gg-::--- ------~~-~~~~;~-
I O~ RFSllLTS OOIC H X<000008)
~--- 1 (I TFS~-------- - -----OJ}-t-C-----H----X-C-On-o-O-O.?->----

10 TFST2R 0010 H X(OOOOO?)
10 TEST3R 001E H X(OOOOO?)

- _-_.

"----

-.. (STARTINif-,i\DDRESSOFDAtAf

,--I --.-+--t--- .______ (DATA NAME)
'--_____ . --" .---.-.:::::::..-::::::::::::::--.~--------.------------(GROUP AND-ELEMENTARViTEM-

LEVEL NUMBERS)
{6ROUP-tEVft NUMBERS) - - --

Figure 7-2 (cont). Sample Listings for AC8111

USING THE COBOL COMPILER 7-5 CB22

OBJECT CODE

STATE"ENT NUMBER 31 \
,0021 003CJ DC
! STUEMENT N"MSER--3.2------------n------ -----------------
i 003Q Q9CO FFC6 LAB
I 003R q~70 0000 LOR
! OOJD E870 0015 LDR---------------f-----------------
, 003F 0380 0000 LNJ SB~,<ZCRTYt

STATEMENT NUMBER 33

i~E;~N~~:~--~-n _n -- --- --- 1pAR"t"IACOBJECTTi~fTING)-

! :~i~EN~~i3 NUMBER -~~S---------------------- _____________ . __________ _
: 0043 OF87 B
- 0044 474F DC
-~44.s----2nS4_------- -- --- -DC
004b 4F20 DC
0047 504t DC
~~..-' TOC-- ---~-f.-----------------------

1
t (SUBROUTINE CALL)

(INSTRUCTION MNEt-lONIC)

L-_ ----------{INSTRUCTION)

L--------------{LOCATION OF INSTRUCTION)

LIMKFR-OtOO-'t/21/t2~8 GcnSb M00400-StOO-tt/2qIOb~0
AU: AC~t't Ll~KEn ON: '90t/0"Ot 0002:44.1 -SAF

ACAttl OtlOl101
cn~nL RFV. 0200 OATF 01/01/01 TTMF 0000 •

lCRTYli 770208
HRS ASSEMFllER ~.49 Obl02/77 t140.3 EnT THU
eCl COPYRIGHT IQ71. FlY HONFYWEL.L INFORMATION SYSTEMS I-NC

lCSTOP 770208
HRS ASSEMQLER ?49 06/01177 131b.9 EOT THU
ec) COPYRTGHT Iq7b FlY HONFYWF.LL INFORMATION SYSTEMS INC

ZCRTFR 770208
HRS ASSE M6LfR ~.49 Ob10?177 t914.4 EDT THU
eel cnpYRTG~T tq7b FlY HO~FYWELL T~FORMATION SYSTEMS INC

u ACAI t t
uSTART OOB
**LOW 0000
**HIGH 03At
ur.URRfNT 03A 1

u!:XT OEFS
p lHCOMM 0000
p 7HREL 0000

** ROOT
* ACAtlt

ACAllt
* lCRTYU

7CRTYl

0000
0000
00~3
02R9
02Ft

LINK ~AP '90t/01/0t 0002:44.1

7CMATN OO"'H

ZCRTY2 03t2 ZCRTYJ 0334

Figure 7·2 (cont). Sample Listings for AC8111

USING THE COBOL COMPILER 7-6 CB22

'
\

,/

I -"
\
'-..j

(
* 7CSTOP

lCSTnp
* lCRTFR

lCRTFR

**IJ~DEF

* ACA111
* lCRTYU
* lC~TOP

* 7CfHFR

ROOT ACA111

HIGHfST nVLY
**********.

SAF

RonT AC8111

OnE
OHE
0341
03'53

0000
02R9
onE
0341

INIIM OF SYMS

8ASF 0000 ST 0033

*SIlf OF RnOT A~n STATTC OVLYS= 03Al HI REL RCD= q

LlNKDO.t.IF

Figure 7·2 (cont). Sample Listings for AC8111

CALLING FORTRAN ROUTINES FROM AN ENTRY-LEVEL COBOL MAIN PROGRAM

Entry-Level COBOL programs can call FORTRAN subroutines and conversely. This enables
a COBOL application to utilize the features of the FORTRAN language, such as the intrinsic
routines, and FORTRAN run-time libraries.

The COBOL main program must be linked with all the called FORTRAN routines to form one
bound unit. The FORTRAN routines and libraries must either be in the working directory or one
of the libraries searched by the Linker, as specified by the Linker LIB and LIBn directives.

Figure 7-3 is a sample Entry-Level COBOL source program, COBFRT, whose function is to
calculate and print the square roots of three integers. Since the COBOL library does not have a
square root routine, a FORTAN subroutine, FRTRAN in Figure 7-4, is used to convert the
passed COBOL integer argument values to read values and call the FORTRAN square root
routine.

The commands entered from the operator terminal are listed in Figure 7-5. COBFRT.O and
FRTRAN.O are both in the working directory FRTCOB, the COBOL run-time library, ZCRT, is
in the directory specified by the Linker directive LIB, and the FORTRAN run-time library,
ZFRT, is in the directory specified by LIB2. The system volume, ZSYS51, contains the
FORTRAN and COBOL compilers, ZFRT, ZCRT and the operating system software. Volume
mTCOB contains the source modules (COBFRT.C and FRTRAN.F), the object modules
(COBRFT.O and FRTRAN.O) and the linked bound unit COBFRT.

USING THE COBOL COMPILER 7-7 CB22

1
2
3
Lj

'.:I
b

7
1:1
9

10
11
'2
1 :s
14
1~
16
t 7
18
t9
?O
?1
:>2
?3
?4
?~
?b
n
?I:\
?9
~O

~1
~2
33
~4

~~
~b
~7

'8
39
110
III
1J2
113
114
4S
IJb
47
1J8
1J9

~O DIAGNOSTICS

TOFNTIFICATlnN DTVTSTU~.
PROGRAM-ru. CD~FRT.

* THIA p~nGRAM fS AN FXAMPLF OF A cnSOL PRURRAM
* CALLING A fn~Tf./AN PRUr.HIIM TO RE.T THF ~blIJARE. HOUTS
* OF ~OME INTFI(r.ERS AMl) f./FT"kNING [HAT VALUF TO THE.
* CObnl PRURHAM 1n ~E OTSLP~YFU.

* FNVIRONMFNT n!Vl~10N.
COMF TGII~a, TOM ~ErTTON.

QOllkn-COMPuTER. HTS-SF~TES-f,O LFI/FL-b.
"8JErl-CnMPUTER. HTS-SFRTES-f,O lEVFL-b.
nATA l)ll/TSTON.
WUQKTNG-qIOkAGF ~ErTTuN.

77 WORK COMP-l I/ALIIE. to.
71 VALb?'.:I Plr 999 VALUF f,2~.

71 ANq~~ PIC 99.
77 VAL144 PIC Q'IQ VAlUF 141l.
77 ANSI:> PIC Q9.
77 VAL9~OI Pir <.)999 I/AL"E 9AOt.
77 ANQ'l9 PIC 99.
01 IINSLN.

02 FILlFR PIC xx
o~ rNTI/AL PIC 999'1
02 FIlLF~ Plr Xlf.)
02 QQVAL Pir 9'199
02 FilLFR PIC xxx

PHOCFUIIRF. I'lVISI"N.
PAPAl.

MOVE I/AL625 TO WOkK.

I/AllIE
VALliE
VALliE
VALUE
VAlliE

CALL "FRT~AN" USING WORK.
MOVE WORK TOANS?~.
MOVE \/AL144 TO wORK.
rALL "FRTRAN" 'JSING WORK.
MOVE W"RK TO ANS12.
MOVE I/AL9801 TO WORK.
CALL "F'iHRAN" IISTNG WORK.
MOVE wnRK TO ANS9'1.
nlSPLAY "INTFGFR sn. RT.".
MOVE I/AL62~ TO INlVAl.
MOVE ANS?5 Tn SQVAl.
nlSPLAY ANSLN.
MOVE \/AL144 TO INlVAL.
MOVE ANS1~ TO SQVAl.
OIQPLAY ANSLN.
MOVE I/AL9801 Tn TNTI/AL.
MOVE ANS9'1 T" qYVAL.
OlSPLAY AN~lN.

STOP RUN.
FNO CO~OL

SPACES.
lFrcO.
SPACES.
ZFRO.
SPACES.

Figure 7·3. COBOL Listing of COBFRT

USING THE COBOL COMPILER 7·8 CB22

('\

~j

(
1 SlJBRQIIT T NF. FRTR AN fl)
2 J = 1
3 X = FLOATfJ)
q Y = SQRT(X)
5 I = NTNT(V)
o RETIIRt.I
7 END
o DIAGNOSTICS

Figure 7·4. FORTRAN Listing of FRTRAN

r.m~J

(A.~)nny:
r.\'!T) "FPTr.··R
(AA H?TlY:
crmOL CORFPT -Cf)T)T >C:DT»T PTn0
(AA)C(1P(1L 0;>nn 11nU1~11
(A.A) on0f) ,.PD(10S
(AA)F~'n C(lJ(PIJ.HT (1'1

(AA)pny~

J::()PTPAN I==PTPAI'I -C()lIT >spn>I.PTOO
(AA) FOPTRAM u4j:[) 11 I??'/ 11 1 (")
(AA) 0nOr} F PD Cntnrr FPTo AI·!
(AA)PDY:
LINKFP COBFPT -cn!TT >SPD>T PTf)O
(AA)LINKER-0100-1 1/23/12~8
LIB "ZSYS51>ZCRT
LIB2 -ZSYS51>ZFpT
LINK COBFPT
l(AP,QT
(AA)ROOT COBFPT
(AA)LINK DOm:
CAA)RDY'
CnBFRT
(AA) INTEGER
(AA) 0625
(AA) 0144
(AA) 9801
(AA)RDY'

SO·~· RT~'

0025
0012
0099

Figure 7·5. Operator Terminal Session for COBFRT

USING THE COBOL COMPILER 7·9 CB22

(-'.

Section 8

Using the FORTRAN Compiler

This section illustrates the use of the FORTRAN compiler to construct programs written in
the FORTRAN language, and to perform FORTRAN chaining.

SAMPLE FORTRAN TERMINAL SESSION (MATINY)

Figure 8-1 illustrates an operator terminal session in which the FORTRAN program
MATINV is compiled, linked, and executed. The FORTRAN compiler is on the search path, and,
therefore, a full pathname is not needed to locate the compiler. The Linker LIB directive directs
the linker to search the secondary directory for FORTRAN runtime routines (ZFRT) required
for linking. Two files, unit number 2 and 3, are associated with device pathnames. To execute
the program, enter MATINV. Figure 8-2 shows the MATINV source listing and the linker
output when the program was linked.

FORTRAN VL782 SUBl MATINV -COUT >SPD>LPTOO
($H) FORTRAN
($H) 0000 ERR COUNT MATINV
($H)BDY:
LINKER VOL2 TEST MATINV -COUT >SPD>LPTOO
($H)
LINKER
LIB ZF0400 ZFRT
LINK MATINV;MP;QT
($H)ROOT fl\ATINV
($H)LINK DONE
($H)RDY:
ASSOC 2 >SPD>CDROO
($H)RDY:
ASSOC 3 >SPD>LPTOO
($H)RDY:
MATINV
($H) STOP
($H)RDY:

FORTRAN CHAINING

Figure 8-1. Sample Terminal Session (MATINV)

A method of creating and controlling execution of overlays within FORTRAN programs to
conserve memory space, commonly known as CHAINing, can be used wherein an executable
bound unit (overlay) is executed as a chain prior to invoking the next chain.

The source statement for referencing a chain is:

CALL CHAIN(e)

where e is an integer expression resulting in a value greater than or equal to zero, identifying
the chain to be loaded. Proper linking results in a bound unit with overlays that require
minimum memory for execution.

Although there are no rules for defining the best method of segmenting a FORTRAN
application into chains, the following should be considered:

1. The largest chain determines the overall memory requirement.

2. Any chain may be called by any other chain as many times as required.

USINGTHE FORTRAN COMPILER 8-1 CB22

~
~
6
~

~
o

~
~

~

o
-txI
~

r-~~ . ,

~

MATT~V ~r~~b ~~unO~-~1~O-11/'11 F~RTN~N ~aE" 11/~2/1'1q lq77/t2/0~ t312:3b.q SAF PAGE 001

1 C ~aTql~ I~~~R~I"~

3 O'~F~~ln~ A(2n,~Ol,R(~O,2n),lPVnTf2n),I~D~xf

~ ~PITE(;,l'

5 7 Fn~""'~_!J~..!..~'II~i>1!l!J:j\'-'--,,_L'-L ':1C~!ir..l\~.:"" ~~ ___ A'!.'L'_'~ _________ "-_~ _____,.,

6 ~FA" (2,1' N,M
7 1 FnRMAT(Tc,l~)
8 2 F "R MAT (7..LF-'.'...l1Qc.o • ...::/I'-','--__ _
9 on 0 T : 1,N

10 'I I(FA" (".2' f4(I,Jl,.J:l,M)
11 Un 1 4--1.!J..1_~ ... _. ______ _____ ._. ___ ~ ____ . ____ .. _. ___ .. ______________ ..,.,..-,__
'2 14 ~PITff3,21(~(T,~),J=1,M'
t3 On 11 I=l,M
t4 Dn_'1 J=l,N
15 IF(T-T)12.1~,12

16 12 6(I,J,:n.

FlF:MFNT

~3 T = A(J.K'
~4 1no C"NTIMUF
~S 1ns C"NTP'U

--:------... .".- '" .,= ...] " .1& . IPvnTfH'OL)=IPVt'lTfIr:ot)+l
;~{"f,>D C·l.,TFRCH4NGE ROW'4 TO PIIT Pl'VOT ELEMENT ON l'lI4GnNAL
1\\ .•. ~. IF (TRn~-ICOlll /Ill. 2 Et()_._LI.l 0

Figure 8-2. Source and Linker Output Listing (MATINV)

rf\,
\ ./

~
~
6
e3
~
o
i
::g
~
~

~

o
~
~

.~

~9

42
43

as
40

2110 A(ICOL,l) =T
IF(M)~b~,~on,~ln

~

T=BrIPow,I.)
tj(IPO'N,I) =~(TcnL,L)

.ib;i'::'t

L= M_T+I
IF(TN~EY(I,1)-IMDFXrL,2')~3~,71n,~3n

70 :, C"NTl'Il.J"' ... _._._ ___ ..

Figure 8-2 (cont). Source and Linker Output Listing (MATINV)

,~

~
~
6
~

~
a

~
~

:r

a
~

AO 7tO CnNTIMU~
Al ~PITEr3,1~)

A2 10 FnRMAT(II~X,2?~TNVE~S~ OF MATPIX AI)
(1,3 un 1~ 1 = l,N
AQ 1~ t,PITEr3,2'(~(T,.T),J=1,"'"

__ ~ 5 "P I :J;~h~'L'_._. ________ . _________ . ________________, __ ..,.
A6 uau FORMAT(1H1J
11.7 7t111 STOD 1
A{1 END

o IJTAf:",nSTJrS

~ATIN~ 77 ' 2"'2 0 0
FOPTPAN ~a~o 11/2~/1119 t977/1~/02 l'1~:'b.9 SaF

7FYFTO 77'1'0 11 0
~R!-l ~3<\E"1:l1 1::"" "."0 11/1"'/77 10'5.9 fen TI-IU
(C, ropv"" rr.HT 19"'7 t3Y I-lO"'t;JI:!!':I.'-JNFOQI'1~LT~qY'l r"'MC:: !.~_.

lFSFTO 711110"0
MRS ASqEMpl EP ?C:;O 11/1"'/77 ~O~.~l~E~q~I~T~M~UL-~~. ___________________ ~~~ __ ~
(C1 rJotQlCHT 1977 ~v 40~Ev~~LI TNFOPMAITQM C::YC::IFM<\ T~r

IF!-lK'''l
----------._------_._._--_._-
7F~FTO 77"'501 00
HRS 4Sc::E M8lEP ~."'O '0/0~/17 "7"8.3 EOI MON
(Cl r.QPyQI~HT 1917 BV ~~~TNFOPMAITON !-lySI~F~M2q_LTllN~C ________________ ~ ____ ___

7FPFTu 77111000
H~C: ASClE'~r;1 1'1:' '.0:;0 11/1')/77 10C;a.o'E~L..1~

eel CooYOIGHT 1917 rlV ~O~EY~"'Ll TNFOPM4TJQN !-l'!-lTF~q TNt

,lEE.F:TQ17 112100
HHq 6S'lEM~IEP '."'0 '1/2'/77 15'9.ij Ec::T MnN
(C1 rOPY""If:HT 1977 b V HO"'Ev~FLL TN"'OQM~TTO~ qYc::T~Mq TNr.
7FFKOl

";,

."

lFl.oTE 77(1P9"0,.;,·J
Mi.s·.ASS,EM8LEQ ;>.0:;0 10/B177 09J7.8 EnT THU \",('-.
(Cl r.ooyRlf:HT 197 7 8 v 40~EYWFLI 'N~OPMAT'UN q'~T~Mq TNr

ZF Uf T 0 17111 000 ______ . ___ .. _______ _

Figure 8-2 (cont). Source and Linker Output Listing (MA TINV)

~

~
~

I
(")

!
<:p
en

(")

~

~
~~;-':i" <

.ttRS AS!\EMBLE~ ?"'O 11/1n/77 '&?3.8 EST r"lu , .
Z"!IlCOt:lyqISH" 1917 BY 140NEVI'I~Ll TNFOPNIATTON ~YSTF.Io1!'t TNr,,~t~~~"Ai>

t p""j ·'M"

** MATIMV I.I~K ~~p 1977/1~/"2 1'1",:~9.1
**~T .nJi1_~

'~~:H ~ ~~~ .. " .. ':~f~(\;j
.HtuBRE'NT t C6S'J":';~

**I=:X" I'IEF'S
P lHrOMM nono

"'~' 'HBEL nooO::~;f~ .
.,BOOT nono .• >
* MATI"'V nOno
C ~ZF'~QK. nono

IF'4ATN n1314
'It lFVFIO "EAD f'f"\~l;

.ZFVXRI I)EAO, . A;r~,~
'It !fREtO IIEFl5'.".c f . ~' ,.,';'2

7FQi'/FS "E1I5 7F~RF'S OEns ?F~w"S nFt 1 ?HIR"S "F14
* . 7F~FTO "F"'5 .

n

7
?FFMAO '2 11 8 lFFL.F'I 12A~ ?FFLFO t2R8

?FF'L.~I '2A5 7FF'L.AO 12 A5 lfFClI 12nE ?EF'CLO t2nE
7EFC~I 121"1 ?FFCQo 12F1 ?EF'tFI 12F4 7 EftY.O 12F4

~\ ?FF'C"I 12'W '~iFI="C40 121'19 lFEwFF nU:'2 lFFRFF UC2 l.tr:I';'
:~ lFFIFI t3~O ?FF.IFO 1360 7FFIAl '361 ?F!IAO tU? f "';tr(
;' lFF' JF' I I HI,) 7FFJ~O 1360 lFF JA I 13EoA lFI" JAQ t3U,j·,:~;·/'ii.

7FF'/(F'113"''' 7FF'I(F'O 13"'E 7FF'K6113"4 7FF'KAO 13"4
HF'.)F'I 1~n2 7FFI)I:0 1502 7FF'OAI ll1FC 7FFt>AO 14FC
?FF'~~l 111F'F 7FFkAO 14F'F ?F'-RFI 1S115 lEFRFO 1505

'It lFTQTE lqr3 'N"":~'(
?FrOTE 190 7FFINI 191'12 i /~/;:\~;;~~~

'! 7FIIFlO lAnd ~. >.Y,:gl

Figure 8-2 (cont). Source and Linker Output Listing (MA TINV)

.~

~
~
6
~

~
C":l

~
::tI

'fJ
CD

C":l
t::I:j

~

7FI.>jl lA n O 7Fr.fol UOD 7FIJ,."F 1 A 1'113 7flllWF tAf'A
7F~",PT 'A1:4 7FRIo("'D UllO 7HlURl lAC;8 7F~UR4 'Cl'Il
7F<;JR/) 'o()\J

**UNnE'"
... MAT I~'" 1I0no
1< 7FvFTiJ IIERJ
1< 7F <:F TU "1:.1>5
1< 7fI'!FT() IIFr:;S
1< lFPFTO IIF"O
'* 1FI"FTO nF A5
*, 7FfOTE. 19(,3,
... 7F'IFTl) 'jlnt)

-"**
l?onT MATI"V

*******"**
Hlt'!HI"~T "'Vi '(''''',''1 0'" 'lYMa 1'1 t

SAl'

*******,.*,.
Qonl "'ATP!v -----di-SI:-"-onO------ST-oi;-lu----;;;-:-:~ I HIGH;, C6$

i:':<-~

.-********* ,,-,t<;-*~
*sril'" I'!F RnoT Af\j~ C:fATTC QIILYS= tCAS i1T QEI. Pcn: C;8':~
*******_** -,----- , 'I
LIMK un~",

*********'IC ... -- _-- -- _.-._-,-----_._---,

Figure 8·2 (cont.). Source and Linker Output Listing (MATINV)

(

3. The first statement executed in a loaded chain is always the first executable statement of
the first main program in the chain. (A chain cannot begin with a subroutine.)

4. All data passed between chains must be in unlabeled or labeled COMMON blocks that
have been defined within the root. Because of Linker constraints, the first occurrence of a
COMMON block defines its size, therefore care must be exercised when using COMMON
blocks of different sizes.

5. Within programs in a chain, either labeled or unlabeled COMMON may be freely used as
a means of data communication.

6. Data statements (for data not in COMMON) within a program of a chain cause the data to
be initialized each time the chain is loaded.

7. Files are common to all chains since the run-time work area is defined within the root.

Figure 8-3 shows an assembly-language program, CHAIN, whose function is to load the
chains specified in the CALL statements of the FORTRAN programs shown in Figure 8-4. These
latter programs call each other at various times and print messages indicating their loading and
execution.

Oc.OOOl TITLE CHATN
000002 xLur ZFIOTE
000003 CTRL LINK ZFI01F
000004 XDFF CHAIN

nooo
000005 .. CALL CHAIN (OVII)
000006 0000 117"il CHAIN CL =$Pl
000007 0001 A84F onOI LO~ $~2, .. $~7.1
000008 0003 oCFF lOV S~b,-I

000009 0004 0001 MCl
000010 0005 0700 DC 7'0700'
000011 .. EHROR RETURN
000012 OOOb 113f10 0000 l(JMP <'ZF rOTE
oooon 0008 0000 DC 0
000014 FNDCHN RFSV 0
000015 0009 END CHAIN

0000 ERR COUNT
0012e WOPO SYM~OL TABLE

Figure 8-3. Assembly Listing of Program CHAIN

1 PROGRAM PROGOO
2 COMMON IC
3 COMMON x,TFLR
4 DIMENSION AR~Y(~2}
5 COMMON IlABI/0UMMY(50)
6 COMMON ILAS21 OllNX (527)
7 IC = 0
8 WRTTF (3,':»)
9 5 FORMAT(' 1'1' PROt;O APPEARS ON FXF.:(lITF LINE - CALLS CHATN O'll

10 CAli. CHAIN(O)
11 FiliI)

1
2
3
4
5
b
7

o OJAGN('ISTIrS

PROGRAM PROGO!
(OMMON Te,x

COMMON ILACII DATAlr2"i)
COMMON ILAC?I OAIA2(378)

CHARACTl:R 11*20
If:=TC+!
REAO(2,21':l) A

Figure 8-4. FORTRAN Programs Calling the CHAIN Function

USING THE FORTRAN COMPILER 8-7 CB22

8 ~I~ FORMAT(A20)
q WRTTF(,,21~) A

10 CALL PROr.O
It WRI1~ (3,~)

12 '5 FOR~AT(/' PROGI IS rHAIN 0 WHICH CALLS CHAIN t')
13 CALL CHAIN (t)
14 ENO

I
2
3
4

o DIAGNOSTICS

~U~ROUTINE PROGD
rOMMON ILACll DATA1(25)
COMMON ILAC21 OATA?(378)

wR ITE 0.305)
5
b

30~ fOWMAT('5X,' SUBROUTTNE PROGO LOADED'Il
RI:::TURN

7 ENO
0 DIAGNOSTICS

I PROGRAM PROG02
2
3
4

COMMON ILARI/0UMMy(r,O)
OIMENSTON ARRY(b2), ARRYI(IS7)
CHARACTER*A AI,A3,A4

5
b
7
8
q

COMMON IC,l,IQ
TF (TC.GT.I) GO TO 10
TQ:O
AI:' CHAIN 0'
WRTTF t ',&;) At

10 ~ fO~MAT(/' PROG2 IS CHAIN t - WHTCH CALLS -',AA)
II
12
13
14
to;
1&
t 7
18
lq

0

I
2
3
q

5
b
7

CALL CHATN(O)
10 A':' CHAIN ?'

TF (JQ.EQ.4) GO TO 20
WWTTro,&;) A3
CUL CHATN (?)

~O A4:' CHAIN "
WtHTF(',C;) A4
STOP
FNn

D Ur.NOS TI C S

PIWGRAM PkOG03
r.HAIUCTER A*?O
WIHTFt~,o;)

Rt.AOf2.21,)} A

?1r; FORMAlfAi?O}
~JR T TF o,? I C;) A
CAl L (HAYNf:S)

8 C; FORMAT(/' ~RUr.3 l~ rHA}N ? - WHICH CALLS CHAIN "I)
q FN!)

0 \) Ur.NOS T IrS

I PROGRAM p~oGOq
2 CUMMnN IC,F,T
3 CUMMON IlA~ll nUMMYt&;O)
q T:: Tt I
':) K:4
b TF (T .El,j.q) I<:?
7 IF tT.F~.~) bOTO Qq
8 W~J'Fl',o;) K-l
q &; FUR~~T(I' PROG4 IS CHATN 3 - CALLS CHATN',T2/)

10 CAI.L CHAIN (1<-1)
11 Qq STOP
12 EN!)

o UTAr, OSTICS

FIgure 84 (cont). FORTRAN Programs Calling the CHAIN Function

USINGTHE FORTRAN COMPILER 8-8 CB22

(-

Figure 8-5 is the output listing resulting from the linking of the programs constituting the
chain.

LINKER-OtOO-tI/23/t2~8 GCOS6 MOD400-S100-11/2QI0620
au: TSTCHI LTNKED ON: 1977/12/02 1354:06.5 -SAF

PROGOO 77120200
FORTRAN M4EO 11/22/1119 1977112/02 1352:46.3 SAF

CHAIN
1977/12/02,1326:22.5 ASSEM8LFR-Ol00-tI/17/t34b GCOS6 MOD400-S100-11/29/0620

ZfSfIO 77111000
HRS ASSEMBLER ?~o 11/10/77 1030.1 EST THU
ec) COPYRIGHT 1977 BY HONEYWELL INFORMATION SY~TfMS tNC
ZFSKOI

ZFCFIO 77050100
HRS ASSEMBLER ?~O 10/03/77 0708.3 EDT MON
ee) COPyRIGHT 1977 BY HONEYWELL TNFORMATION SYSTEMS TNC

ZFPFIO 77111000
HRS ASSEMBLER 2.~0 11/10/77 1054.0 EST THU
ec) COPYRIGHT 1977 bY HONEYWELL INFORMATION SYSTEMS TNC

ZFEFIO 77112100
HRS ASSEM8LER ?~o 11/21/77 1539.8 EST MON
eel COPYRIGHT 1977 ~Y HONEYwELL INFORMATION SYSTEMS INe
ZFEKOI

ZFIOTE 77072900
HRS ASSEM8LER ?SO 10/13/77 0937.6 EOT THU
eel COPYRIGHT 1977 BY HONEYwELL INFORMATION SYSTEMS INC

ZFUFJO 77111000
HRS ASSEMBLER ?50 11/10/77 Ib23.6 EST THU
ee) COPyRIGHT 1977 BY HONEYWFLL INFORMATION SYS1EMS TNC

** TSTCHI
**START Obb6
**lOW 0000
uHIGH 111liC
**SCOMM 0164
uCURRFNT 14':)e

ufXT DEFS
P 7HCOMM 0000
P 7HRH 0000

**
*
C
C
C
e

*
*
*
*

POOT
PROGOO
$ZFWRK
SCOMM
LABI
I.AR2
PROGOO
CHAIN
CHAIN
ZFSFIO
ZFSwFS
lFQfIO
ZfQlIIRK
lfPFIO
lFPAUS
ZFEFtO
ZFAN
ZFF:MA I
ZFfLAI
ZFfeSI

0000
0000
0000
01bll
01bA
01CE
Obb8
OM3
00A3
ObAe
ObAe
07l1e
07l1e
071i7
075C
07Qe
07ge
OA7F
OA7e
OAOB

LINK MAP 1977/1?/02 1354:00.5

ZFSRFS ooce

ZFPSTP 0757

ZFfF10
ZFfMAO
7FELAO
lFEeso

07Qe
OA7F
OA7e
OAD8

ZFSwUS 0108

ZFE'MEI
ZFElEI
ZFEeLI
7FEeEl

OA82
OA82
OAI)5
OAD8

ZFSRUS

7.FEME'O
ZFELEO
ZFEeLO
7FECEO

Figure 8-5. Linker Output for Chained Programs

USING THE FORTRAN COMPILER 8-9

0128

OA82
OA82
OAD5
OAOB

CB22

7FFCA I OADO lFECAO OADO lFE~FF OCR9 ZFERFF OCB9
7Ff.I f I 0864 7FfIEQ 0864 lFEI"I OBC;E ZHIAO OB5E
7FFJEI OBn4 lFEJEO 0864 7FEJAl 0861 ZFFJAO 0861
ZFFKfl OBt;6 7FFKEO OB'56 ZFEKAI OBS~ lFEKAO 0858 ,/

7FEOEl OCF9 lFFOEO OCF9 ZFEDAI ocn ZFEDAO OCF3 (

ZFFRAI OCF6 ZFFHAD OCF6 ZFEREI OCFC ZFERED OCFC \

'-
* 7FIOH: t1~A

7FlOH. l1~A IF-F INl l1C9
* ZFIIFlO 1202

7FLBI 1204 UGFI 12q4 7FtlWlJF 1202 ZFIJRUF 1221
lFAwRT 1231 7fRRFD 1244 ZFSUIH 124F lFSUA4 131'8
7FSUR6 13R7

**UNOEF
* PROGOO 0000

" C.HA IN 06113
* 7FSFTO OollC
* 7FQFJO 07l1C
* 7FPFTO 07"7
* ZFEFJO 07QC

* 7FJOTE liRA

" ZFtJFTU 1202

PROGOI 77120200
FORTRAN MIJf'1) 11/2<'/1119 1977112/02 1'15?:1J6.3 SAF

PfHlG[) 77120200
FORTRAN MiJED 11/2?11119 1977/1<'/02 135?:1J6.3 SAF

** TSTCHI LINK MAP 197711 ?/02 t3~iJ:06.5

"*START 17R2
**LOW 145C
**HIGH 180F
**'COW" 01biJ
**CURRFNT , aOF

**EXT DEI'S
P 7HCOMM 0000
P 7HREL 0000

"* ROOT 0000
* PROGOO 0000
C $ZF~jRK 0000
C $COMM 0164
C I AR 1 01hA
C I A~2 o IrE.

PROGOO 0668

" CHAIN 06A3
CHIlIN 06A3

* 7FSFJO ObAC
7FSWFS 06AC nSRFS nbCC 7FSwllS 0708 ZFSRUS 072B

* 1 If., to n4C
ZFQWRK 074C

* ZFPFIO 0757
ZFPAUS 07O:;C lFPSTP 0757 .. ZFEFIO 079C
lFAN 079C lFEFTO 079C ZFEMEI OA82 lFEMEO OA82
ZFEMAI OA7F lFEMAO OA7F ZFEL·E I OA82 Zf"ELEO OA82
ZF~LAI OA7C 7FELAO OA7C ZFECLI OA05 7FECLO OADS
ZFECSI OA08 lFECSO OA08 ZFECEI OAOS ZFECEO OADS
ZFJ"CAI OADO ZFECAO OAOO ZFE~FF OCB9 ZFERFF OCR9
ZFf.lEl OB64 lFEIf'O 0864 ZFEIAI OB5E lFE I AO OSSE
ZFEJEI 0864 ZFEJEO OB64 ZFEJAI OB61 ZFEJAO OB61
ZFEKEl 085& 7FEKI'O 01356 ZFEKAI 0858 ZFEKAO 0858
ZFEOEI OCF9 lFEDEO OCF9 ZFEDAI ocn ZFEDAO ocn
ZFERAI OCF6 lFfRAO oeF6 ZFEREI oeFC ZFEREO OCFe .. ZFIOTE l1RA
ZFIOTE l1RA ZFFINI llC9

.* 7FUFJO 1202
t'

Figure 8-5 (col!-t). Linker Outp~t for Chained Programs ~.j

USING THE FORTRAN COMPILER 8-10 CB22

ZFLBt 1204 7FGFI 1294 ZFUWlIF 1202 ZFlIRUF 1221
ZFAWRT 1231 ZFRREO 1244 IFSURI 124F ZFSUR4 BF6
ZFSURo 1387

(P ENDCHN U5e

**)(ROGOO 145e

* PROGOI 145e
C LACI 14&:;C
C LAC2 t4AE

PROGOI 1782

* PROGO 170F
PROGO 170F

**UNOEF
* PROGOO 0000
* CHAIN 00A3

* ZFSFIO OoAe
* IFQFIO 0711e
* ZFPFIO 0757

* 7FEFJO 07Qe

* lFIOTE liRA
* 7FlJFIO 1202
* PROGOI 145C
* PROGO t70F

PROG02 77120200
FORTRAN M4EO tl/2?1t119 1977/12102 135Z:40.3 SAF

7FBFIO 77091000
HRS ASSEMBLER 2.&:;0 10/1'5177 1012.0 EOT SAT
(C) COPYRIGHT 1977 BY HONEYWF.LL INFORMATION SYSTfMS INC

** TSTCHI LINK MAP 1977/12/02 1354:00~5
**START 1012
**LOW U5e

~-t

**HIGH toE'8 . .,
i **SCOMM 01&4

**CURRENT IbEB

.. rn DE'S
P ZHCOMM 0000
P 7HRH 0000

** ROOT 0900

* PROGOO 0000
C $ZFWRK 0000
C SCOMM Olhll
e LARI 01hA
t LAB2 OICE

PROGOO Obh8

* CHAIN 00A3
CHAIN 00A3

* ZFSFTO ObAC
7FSWFS ObAC ZFSRfS ObCC ZFSWLJS 0708 ZFSRLJS 07?B

* IFQFIO 07llC
7Fr.1wRK 07llC

* IFPFTO 07r::.7
ZFPAUS 07&:;C IFPSTP 0757

* ZFEFTO 079C
IFAN 079C 7FFFTO 079C 7FEMfI OA82 IFfMfO OA82
7FF.MAI OA7F 7FEMAO Oll7F ZFELFI 01182 ZFfLEO OA82
ZFELAI OAlC 7FELAO OA7C ZFECL I OA05 lFECLO OA05
7FECSI OA08 lFfCSO OA08 7FfCF.I OA06 ZFECEO OA08
ZFEC A I OAoO 7FECAO OAOO IFfwFF OCRq IFERFF Ocaq
7FEIEI OBhll 7FF.IFO OBb4 ZFF I A I OBr;E ZFEI AO OB,,)£
ZFEJFI OBh4 7FfJEO OBM IFfJAI OBh1 lFEJAO OB&I
ZFEKfI 08'io 7FEKFO OB50 IFEKAI OB'iB IFtKAO 0656

(-' 7FEDfI OCF9 7FfDEO OCFq ZFEDAI ocn ZFEDAO OCF3

Figure 8-5 (cont). Linker Output for Chained Programs

USINGTHE FORTRAN COMPILER 8-11 CB22

IFERAI OCFb 7FFRAO OCFb lFERFI OCFC IFF-REO OCFC
* IFIOTE 11RA

IFIOTE 111U ZF FIN I 11e9
* 7FUFTO 1202 ('.".

7HBt 1204 2FGFl t2q4 lFllwUF 1202 7FURUF 1221 \... .. .J ZFAWRT 1231 7fRRED 1244 7fSU81 124F 7fSU84 BF8
7FSUS6 13M

P ENDCHN 14'5C

** XROGOO ta5C

** XROG02 14SC
* PROG02 ta5C

PROG02 lb12
* ZFRFTO 16R3

ZFRCMC IbP3

**UNDEF
* PROGOO 0000
* CHAIN 0043

* ZFSFIO ObAC
* ZFQFJO 074C
* IFPFIO 0757
* IFEFtO 07QC

* IFIOTE 118A
* ZFUFJO 1202
* PROG02 14SC
* IFBFIO 1683

~.O&O) 77111100
'OItT.AN "'UD tlIZIIlU' '''1/11101 n52 •••• 1 ,A,

** T5TCH! liNK MAP 1 q7711?10~ n~4:0b.':>
**SJART ll1C;C
**l.ll~J t4C;e
* 11:1041 r.t1 14ilt>
**'(0"'''' 011.4
**CUPkFNT 1qRo /

**FxT Ot:.FS
P 7HfUM"1 00(10
P 7HR~l nooo

** ROOT nono .. PRnt~Oo OUIl"
('lFo'JPK 0000
C 'CIlMM 0lh4
(I AR I OlhA
C I.AI>2 o IrE'

PR!"I60tl Ot'lhH

'" r.H Al"J OoA ~~

r~1A pi Oo/l~ .. 7H1FTu (lnA(.
7F~",FS noAt. 7t ~Io/I'S nbce 7F~w"S 010b 7F SkitS 0.,211

* 7F OF TO o 7'll
lFOIlRK 07 /ll

* 7FPfTu 07<:;1
lFPilliS n7<:;C 7~PSTP 07C;! .. 7f'n Tu 07°C
7t AN OrQl 7tFFTll n7 QC 7F FIII!E 1 OA~<.' lFFMFO o A,II 2
7FFMAj nil 7F HfMIIO OA7F lFFLFI OAII2 7ffLftJ OA·/I<.'
7HL A I nA7C 7t FLAU OAn 7H~Cl.l OAD~ 7FFClO 04·0,:>
7HC'Q (lAOI:\ 7I-Fc')n OA[)B 7Ff CF 1 OANI lHCfLl OAOb
If'FCA I OAOU HFCAO OAno UfwFF 0(.R9 7FFI-IH OC.R'I
HF IF 1 OHh4 7t'F If 0 O~h4 7FFJIII OHO:;E: ZfF 1 AU ()~'it:.

7FF JF 1 Orjh4 7FFJFO /)1104 7HJAI Otihl 7FFJAO 01;1.1
lFFII.F 1 (loC;o 7FF: ... FLl OH';b HF",AI OH'its 7FFKAtJ OHC;H
7FFOFl OeFQ 7FFOF"O nCF"9 lFFOA I nCF"3 7FFI)Afj ocn
l~FI<AI (lCFb 7t- FIHO nefb 7HRFI nCFC lHkfU OCH .. IF TOTE 11111\ £. ~' .

Figure 8-5 (cont). Unker Output for Chained Programs ~.j

USING THE FORTRAN COMPILER 8-12 CB22

7f rUrE: llHA 7fFl~ll l1CQ

'" 7 F 11FT II 1202
7Fltil 12ntl Hr. .. , 120 4 7H/IIIIIF I~02 7ftlRIIF 12i'1

(
lFAwRl 1"~1 7F<1h'F"U 1244 7F.SU~1 1211f ZFSUH4 BFI:\
7F ~URI) 1,'17

P FNO(HN \11"'(

"'''' lCRObOO 14<;C

"'* l(ROGO~ tLI"'C

** ltROt;05 \11<;(
* PHOGO-S 14<;(

PRO(;O:S 14<;(

**IJNOI::F

'" PHOGOO 0000

'" CHAIN 0l>A3
* lFSfto ObAC

'" 7ffJFTO 074C

* lFPFTO 07«;7
* 7FEFTO 07QC
* ZFJOTE URA

* lFI.JFJO 1202
* PROG03 14'iC

PROG04 77120200
FORTPA~J M4F.O t II2?!t I t9 tQ77/1?/02 n.,?;4b.3 SAf

** TSTCHI I.INK MAl' \Q77/12/02 1'.,4;00.5
.. * *ST ART 14<;C
**LOW ICIC;C
**HI!;H 1482
**'COMM 0164
**CU~HENf t4R2

,~ *"'EXT 0l::F8

'. P lHrOMM 0000
P lHRH 0000

** poor 0000
* PHOGOO 00 00
C ';lFw~K 0000
C $COM'" 01"4
C LAAl °1"A
C LAR2 01n

PlmGoo ObMI
* rHAIN 1)/>113

CHAItI Ob A5
* 7F5Ffl) OollC

7FSwFS Obit; 71- St<F"S OoCC 7F SwllS 0708 lf SRI IS 07 ?tl

'" 7FIlFIll 07 'IC
7FfJ".PK o TIIC .. 7FPFJ() 07<;7
lFPAII8 07"(7FPSTP 07<)7

'" 7.FFFTlJ 07 QC
7F6N 07"(7Ht- TU 01Qe 7I'FMF I OAII2 7FFMF() OAA2
7FF "'1 A I OA7F 7t-FMAll OA7F 7FFLFl OAA2 7FFLF{J OAII(>
7.FHAI OAn 7I'F"LAll OA7C 7FfCll OAD5 lFFClO OAO.,
7FF"ClH OAnd 7H(~U o A 1'\8 7FfCn oA/)B 7FF(FO OAOij
7FFCAI nArH) 7fFCAO OAOO nFwH O(Rq 7FFHH O(R'/
7FfIF I Onf-4 7t-flF.O OB6t1 7FF.IAI Oij<;t 7FfI A(J Oh<;E
7FFJFl n~"4 7FFJF() OBM 7HJAI OIHIl 7FFJ!<O OB61
7FFKFI Oli";b 7I-F"KfU Oij<;& 2'FfKAI nB'ib 7HkAU OB'ib
7F F.OF I OLF9 7FFOFO OCFQ 7FFDAI OCFj 2'FFOAlJ OlF3
2'FFHA I n(F"o 7t-Ft<AO nCFf;) 7t- F.:~f 1 OCFC 2'l'FRFli neFC

.. 2'FTliH 11~A

7fTOTE URA 7FFINJ l1rq

("~
* 7.Ft/FIO 12n2

Figure 8-5 (cont). Unker Output for Chained. ProIrams

USINGTHE FORTRAN COMPILER 8-13 CB22

lFUil
IF hiP r
7FSURb

P I'"NI)CHN

*" l(lo/OGOO

12F'4
1231
1917
14"C

** lCROG02 14"C
** XROG03 14"C

** XROG04 14",C
" PROG 0 4 14"C

PROG04 14"C

"*UNOEF
" PRnGOO 0000
* CHAIN ObA3
* 7FRFTu ObAC
" ZFIlF TO 07 11C
"]fPFTO 07"7
* 7FFFTU O/<)C
"]fTOT!:. tlRA
" 7FlIFTU 1202
* PROG04 14"C

*"***"*"* ..
ROOT TSTeHI

*******"**
HIGHEST 0'1' Y

""**" .. *"."
SAF

"**"*"
RonT TSTCHI
""*****"*"
OVL Y XIWGOtl
* •• ,,*.****
OVLY XRnGoc
* •• ***.**.
OVL Y lo~nGo:i

".*".**,,
OVL Y lOWG04
.. *"" ****

7F r.t- t
HRREO

bASE 0000

1/ no bASE 145C

tJ 02 HdSF 145L

II 03 tldSF 14C;C

o

*SrZF OF ROOl ANn R1ATTC UVLYS= 1801'
**".* " ..
LI'IIK onNF

."*"*"**

7.FllwllF
7FRURI

1202
1241-

Sf Ob"8

ST 17A2

ST lb12

Sf 14"(;

ST 14"C

lFIIIWf
If'!>UR4

t 2?1
13Fh

- ••• 1 HTGH::1t10F

- ••• 1 HTGH=1bFij

- ••• 1 HTGH::1LlRb

- ••• 1 ~tTGH::lIH~2

Figure 8-5 (cont). Linker Output for Chained Programs

Figure 8-6 illustrates the linker directives required to create the bound unit TSTCHl,
comprising the programs listed in Figures 8-3 and 8-4.

Figure 8-7 shows the output resulting from the execution of the chained programs.

USING THE FORTRAN COMPILER 8-14 CB22

(

LIB AVL5901>LDD>OBJECT>FRIOR
LINK PROGOO
MAP
OVLY XROGOO DEFINES OVERLAY 0 (CHAIN O)
LDEF ENDCHN,$ DEFINES BASE FOR OVERLAYS
PROT ENDCHN
BASE ENDCHN
LINK PROGOI
MAP
BASE ENDCHN
OVLY XROGOI DEFINES OVERLAY 1 (CHAIN I)
LINK PROG02
IvlAP
OVLY XROG02 DEFINES OVERLAY 2 (CHAIN 2)
BASE ENDCHN
LINK PROG03
MAP
OVLY XROG03 DEFINES OVERLAY 3 (CHAIN 3)
BASE ENDCHN
LINK PROG04
MAP
QT

Figure 8-6. Linker Directives for Chained Programs

PROGO ~PPEARS nN FXFCUTE LINE - CALLS CHAIN 0

CARD t
SllBROIJT I NF PRnGI) L 0 AOFO

PROGt IS CHAIN 0 wHICH CALLS CHAI~ 1

PROGZ TS CHAIN 1 - ~HICH CALLS - CHATN 0
CARD Z

~UBROll'TNF PRnGn l.OAOFO

PROG1 IS CHAIN o wHICH CAllS CHAI~ 1

PRIJGZ IS CHAIN 1 - wHICH CALLS - CHATN Z

PROG3 IS CHAIN 2 - wHICH CAllS CHAI~ 3

CARD 3

PROGII TS CHAIN 3 - CAllS CHAIN 3

PROGII IS CHAIN 3 - CAll.S CHAIN 3

PROGII IS CHAIN 3 - CALLS CHAIN 3

PROGLI IS CHAIN 3 - C~lLS CHAIN 1

PROG? IS CHAIN 1 - wHICH CALLS - CHAIN 3

Figure 8-7. Execution Output from Chained Programs

USING THE FORTRAN COMPILER 8-15 CB22

(

(

Section 9

Using the Sort

Figure 9-1 contains a sample session at the operator terminal to sort a file using the Sort
utility. Sort descriptors are entered through the operator terminal. Refer to the Sort/Merge
manual for details on the use of the Sort component.

C :$H:
SO "1977/02/15 1428"
($H)RDY:
CWO "SRTI02
($H)RDY:
"Zrrr06>SORT
($H)ENTER SORT DESCRIPTION
FILES: -IF IDSF06 -OF ODSF02 -WF ASRTCW2>WDSF02
KEYS: CHAR (6) 78 0, CHAR 4 36
QUIT
($H)MOUNT ASRTCW2>WDSF02
($H)SORT-rrrr-6mm/dd/hhmm
($H)INPUT FILE : ASRTI02>IDSF06
($H)RECORDS READ 000350
($H)OUTPUT FILE:ASRTI02>ODSF02
($H)RECORDS WRITTEN 000350
($H)RECORDS DELETED 000000
($H)RDY:

Figure 9-1. Sample Sort Terminal Session

The Sort utility is on volume Zrrr06 and the application files are on SRTI02. The Sort is
invoked by entering the pathname, 1\ Zrrr06>SORT. The Sort description statements are then
entered. In this example, the work file is not mounted, and a message to mount
1\ SRTCW2> WDSF02 is issued.

USINGTHE SORT 9-1 CB22

(

(..

ACCESS
ACCESS BY LOGGING IN, 4-1
ACCESS THROUGH THE OPERATOR OR

ANOTHER USER, 4-2
ACCESS THROUGH THE OPERATOR

TERMINAL, 4-4
USER ACCESS TO THE SYSTEH, 4-1

ASSEMBLER
ASSEMBLER OUTPUT LISTING (SMPI-1AC)

(FIG), 6-4
USING THE ASSEMBLER AND 1-1ACRO

PREPROCESSOR, 6-1

BATCH
EXECUTION OF AN APPLICATION FROM

THE BATCH TASK GROUP, 4-3

CALL
CALL FORTRAN ROUTINES FR0l1 AN

ENTRY-LEVEL COBOL l~IN
PROGRAM, 7-7

CALLING
FORTRAN PROGRAMS CALLING THE CHAIN

FUNCTION (FIG), 8-7

CHAINING
FORTRAN CHAINING, 8-1

COBOL
CALL FORTRAN ROUTINES FROM AN

ENTRY-LEVEL COBOL MAIN
PROGRAM, 7-7

COBOL LISTING OF COBFRT (FIG), 7-8
COMPILING WITH COBOL, 7-2
SAMPLE COBOL TERMINAL SESSION

(AC8111), 7-3
USIFlG THE COBOL COMPILER, 7-1

com1AND
COl1MAHD PROCESSOR AS LEAD
TASK, 4-2

COUPILER
USIUG THE COBOL COl-tPILER, 7-1
USING TIlE FORTRAN COMPILER, 8-1

CONCURRENT
CONCURRENT EXEClI""TION FROM SEVERAL

TASK GROUPS, 4-3
CONCURRENT EXECUTION OF APPLICATION

TASKS, 4-3

DATA
EXECUTION FROM THE DATA ENTRY

FACILITY (DEF), 4-4

DEDICATED

DEF

DEDICATED APPLICATION
ENVIRONr1ENT, 2-2

RBF AND DEF USER GUIDE TO MAIWALS
(FIG), 1-5

RBF AND DEF USER ~AHUAL GUIDE, 2-1

INDEX

EDITOR
EDITOR DIRECTIVE DESCRIPTION, 5-1
SAlWLE EDITOR DIRECTIVES IN FILE

SMPCMDFL (FIG), 5-1

ENVIRONr1ENT
ALL-ONLINE ENVIRONMENT, 2-1
DEDICATED APPLICATION

ENVIRONMENT, 2-2
r-1IXED ENVIRONMENT, 2-2
ONLINE/BATCH ENVIRONMENT, 2-2
OPERATOR-ONLY ENVIRONMENT, 2-1

EXECUTION
CONCURRENT EXECUTION FROM SEVERAL

TASK GROUPS, 4-3
CONCURRENT EXECUTION OF APPLICATION

TASKS, 4-3
EXECUTION FROM THE DATA ENTRY

FACILITY (DEF) , 4-4
EXECUTION OF AN APPLICATION FROM

THE BATCH TASK GROUP, 4-3
EXECUTION OUTPUT FROM CHAINED

PROGRAMS (FIG), 8-15
SERIAL EXECUTION OF APPLICATION

TASKS, 4-2

FORTRAN
CALL FORTRAN ROUTINES FROM AN

ENTRY-LEVEL COBOL l1AIN
PROGRAH, 7-7

FORTRAN CHAINING, 8-1
FORTRAN LISTING OF FRTRAN

(FIG), 7-9
FORTRAN PROGRA~1S CALLING THE CHAIN

FUNCTION (FIG), 8-7
SAMPLE FORTRAN TERMINAL SESSION

(MATINV), 8-1
USING THE FORTRAN COMPILER, 8-1

GUIDE
APPLICATIONS PROGRAMMER's MANUAL

GUIDE, 1-2
APPLICATIONS PROGRAMMER GUIDE TO
MANU~LS (FIG), 1-3

GUIDE TO USING THE MANUAL SET, 1-1
OPERATOR'S ~NUAL GUIDE, 1-5
OPERATOR GUIDE TO ~1ANUALS

(FIG), 1-4
RBF AND DEF USER GUIDE TO MANUALS

(FIG), 1-5
RBF AND DEF USER MANUAL GUIDE, 2-1
SYSTEI1 PROGRAMMER'S MANUAL

GUIDE, 1-2
SYSTEM PROGRAMl1ER GUIDE TO ~ANUALS

(FIG), 1-4

LEAD TASK

i-1

APPLICATION AS LEAD TASK, 4-2
COl1r1AHD PROCESSOR AS LEAD

TASK, 4-2

CB22

INDEX

LINKER
LINKER DIRECTIVES FOR CHAINED

PROGRAMS (FIG), 8-15
LINKER OUTPUT FOR CHAINED PROGRAMS

(FIG), 8-9
LINKER OUTPUT LISTING (SMP~mc)

(FIG), 6-5
SOURCE AND LINKER OUTPUT LISTING

(MATINV) (FIG), 8-2

LISTING
ASSEHBLER OUTPUT LISTING (SMPMAC)

(FIG), 6-4
ASSEMBLY LISTING OF PROGRM4 CHAIN

(FIG), 8-7
COBOL LISTING OF COBFRT (FIG), 7-8
CROSS REFERENCE LISTING (SliPl4AC)

(FIG), 6-3
FORTRAN LISTING OF FRTRAN

(FIG), 7-9
LINKER OUTPUT LISTING (SUPl4AC)

(FIG), 6-5
SAl1PLE LISTINGS FOR AC8111

(FIG), 7-4
SOURCE AND LINKER OUTPUT LISTING

(MATINV) (FIG), 8-2

LOADING
SOURCE LOADING, 7-2

LOGIN
ABBREVIATED LOGIN TERMINAL, 4-1
DIRECT LOGIN TERlUNAL, 4-1
FULL LOGIN TEmUNAL, 4-1
STARTUP WITH THE LOGIN

FACILITY, 3-1

MACRO
MACRO PREPROCESSOR OUTPUT (SMPlfAC)

(FIG), 6-2
SAMPLE OF UNEXPANDED 14ACRO ROUTINE

(SAliPLl) (FIG), 5-10
SAliPLE OF m~EXPANDED 1,fACRO ROUTINE

(SAl1PL2) (FIG), 5-11
SAMPLE OF m~EXPANDED PROGRAM WITH

14ACRO CALLS (Sl1PMACP) (FIG), 5-9
USING THE ASSEMBLER AND HACRO

PREPROCESSOR, 6-1

MANUAL
APPLICATIONS PROGRAl·~l1ER' S ~tANUAL

GUIDE, 1-2
GUIDE TO USING THE 14ANUAL SET, 1-1
OPERATOR'S MANUAL GUIDE, 1-5
RBF AND DEF USER MANUAL GUIDE, 2-1
SYSTEM PROGRAl1MER' S MANUAL

GUIDE, 1-2

MANUALS
APPLICATIONS PROGRAmmR GUIDE TO

MANUALS (FIG), 1-3
OPERATOR GUIDE TO MANUALS

(FIG), 1-4
RBF AND DEF USER GUIDE TO MANUALS

(FIG), 1-5

MANUALS (CONT)
SYSTEM PROGRAMMER GUIDE TO MANUALS

(FIG), 1-4

MULTITASK
SAl1PLE ASSEUBLY LANGUAGE MULTITASK

PROGRAM (BRDCST), 6-6

ONELINE/BATCH
ONLINE/BATCH ENVIRONliENT, 2-.2

OPERATING
OPERATING ENVIRONMENT, 2-1

OPERATOR
ACCESS THROUGH THE OPERATOR OR

ANOTHER USER, 4-2
ACCESS THROUGH THE OPERATOR

TERMINAL, 4-4
OPERATOR GUIDE TO MANUALS

(FIG), 1-4
OPERATOR TERMINAL SESSION FOR

COBFRT (FIG), 7-9

OUTPUT
ASSEMBLER OUTPUT LISTING (SMPMAC) 8

(FIG), 6-4
EXECUTION OUTPUT FROM CHAINED
PROG~1S (FIG), 8-15

LINKER OUTPUT FOR CHAINED PROGRAMS
(FIG), 8-9

LINKER OUTPUT LISTING (SMPlmC)
(FIG), 6-5

l·mCRO PREPROCESSOR OUTPUT (SMPlmC)
(FIG), 6-2

SOURCE AND LINKER OUTPUT LISTING
(MATINV) (FIG), 8-2

PROGRAM
ASSEMBLY LISTING OF PROGRAM CHAIN

(FIG) 8-7
CALL FORTRAN ROUTINES FROM AN

ENTRY-LEVEL COBOL MAIN
PROGRAl4, 7-7

SAMPLE ASSEMBLY LANGUAGE MULTITASK
PROGRAl4 (BRDCST), 6-6

SAMPLE CARD-TO-DISK PROGRAM, 7-1
SAl1PLE OF UNEXPANDED PROGRAM WITH

MACRO CALLS (SMPMACP) (FIG), 5-9

PROGRAMS
EXECUTION OUTPUT FROM CHAINED

PROGRAMS (FIG), 8-15
FORTRAN PROGRAMS CALLING THE CHAIN

FUNCTION (FIG), 8-7
LINKER DIRECTIVES FOR CHAINED

PROGRAMS (FIG), 8-15
LINKER OUTPUT FOR CHAINED PROGRAMS

(FIG), 8-9

RBF

i-2

RBF Al~D DEF USER GUIDE TO MANUALS
(FIG), 1-5

RBF AND DEF USER MANUAL GUIDE, 2-1

CB22

,/

(
SAMPLE

SM1PLE ASSEMBLY LANGUAGE HULTITASK
PROGRAM (BRDCST), 6-6

SAMPLE ASSEI~LY LANGUAGE SESSION
(Sr·1PMAC), 6-1

SAMPLE CARD-TO-DISK PROGRAr.1, 7-1
SAMPLE COBOL TERrUNAL SESSIOll

(AC8111), 7-3
SAl-1PLE EDITOR DIRECTIVES IN FILE

Sl1PCMDFL (FIG), 5-1
SAMPLE FORTRAN TEIDUNAL SESSION

(riATINV), 8-1
SAMPLE LISTINGS FOR AC8111

(FIG), 7-4
SM1PLE OF UNEXPANDED MACRO ROUTmE

(SAMPLl) (FIG), 5-10
SAl4PLE OF UNEXPANDED MACRO ROUTINE

(SM1:PL2) (FIG), 5-11
SAMPLE OF UNEXPANDED PROGRAr1 WITH

MACRO CALLS (St1PMACP) (FIG), 5-9
SAMPLE SORT TEIDlINAL SESSION

(FIG), 9-1
SAI4PLE TERMINAL SESSION (AC8111)

(FIG), 7-3
SAMPLE TERMINAL SESSION (BRDCST)

(FIG), 6-7
SAMPLE TEIDUNAL SESSION (liATINV)

(FIG), 8-1
SAl1PLE TERMINAL SESSION (Sr1Pl·iAC)

(FIG), 6-1

SERIAL
SERIAL EXECUTION OF APPLICATION

TASKS, 4-2

SORT
SAMPLE SORT TERMINAL SESSION

(FIG), 9-1
USING THE SORT (FIG), 1-4

SOURCE
SOURCE AND LINKER OUTPUT LISTING

(liATINV) (FIG), 8-2
SOURCE LOADING, 7-2

STARTUP
STARTUP WITH THE LOGIN

FACILITY, 3-1
TASK GROUP-SPECIFIC TERMINAL

STARTUP, 3-1
USER TERMIl~AL STARTUP, 3-1

SYSTEM
SYSTEM PROGRAl-!MER I S MANUAL

GUIDE, 1-2
SYSTEM PROGRMnmR GUIDE TO ~UALS

(FIG), 1-4
USER ACCESS TO THE SYSTEU, 4-1

TASK
APPLICATION AS LEAD TASK, 4-2
COMMAND PROCESSOR AS LEAD

TASK, 4-2
CONCURRENT EXECUTION FRon SEVERAL

TASK GROUPS, 4-3

INDEX

TASK (CONT)
EXECUTION OF AN APPLICATION FROM

THE BATCH TASK GROUP, 4-3
TASK GROUP-SPECIFIC TERMINAL

STARTUP, 3-1

TASKS
CONCURRENT EXECUTION OF APPLICATION

TASKS, 4-3

TERMINAL
ABBREVIATED LOGIN TERMINAL, 4-1
ACCESS THROUGH THE OPERATOR

TERMINAL, 4-4
DIRECT LOGIN TERMINAL, 4-1
FULL LOGIN TERMINAL, 4-1
OPERATOR TERMINAL SESSION FOR

COBFRT (FIG), 7-9
SAMPLE COBOL TERMINAL SESSION

(AC8111), 7-3
SAMPLE FORTRAN TERlUNAL SESSION

<r-fATINV), 8-1
SAMPLE SORT TERMINAL SESSION

(FIG), 9-1
SAMPLE TERMINAL SESSION (AC8111)

(FIG), 703
SAMPLE TERMINAL SESSION (BRDCST)

(FIG), 6-7
SAMPLETERl1INAL SESSION (MATINV)

(FIG), 8-1
SAMPLE TEIDlINAL SESSION (SMPMAC)

(FIG), 6-1
TASK GROUP-SPECIFIC TERl1INAL

STARTUP, 3-1
TERMINAL RESPONSES FROM DIRECTIVES

OF FIG 5-1 (FIG), 5-2
USER TERl1INAL STARTUP, 3-1

VOLunE
VOLuzm AND FILE CREATION, 7-2

i-3 CB22

I
I
I
I

(--'

•

w
z
:::i
Cl z
o
..J
<{

I
:>
U

(-I
--I

I
I
I
I
I
I

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TiTlE SERIES 60 (LEVEL 6) GCOS 6 MOD 400
PROGRAMMER'S GUIDE

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATlQN

ORDER NO·1 CB22, REV. 0 II

DATED I JANUARY 1978 I

r\. Your comments will be promptly investigated by appropriate technical personnel and action will be taken 0 l.(as required. If you require a written reply. check here and furnish complete mailing address below.

FROM: NAME __ __ OATE ______________ _

TITlE ______________________________________ _

COMPANY __________________________________ _

ADDRE~ _______________________________ __

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

I
I
I
I

0"
G
w
Z
-l

C)
Z
o
-l
«
I
:::>
u

I
I
I "
I
I w
Ie.
I -l

I ~

---4c g
I ~
I c5

ATTENTION: PUBLICATIONS, MS 486

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

Postage Will Be Paid By:

HONEYWEll INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

FIRST CLASS
PERMIT NO. 39531
WALTHAM,MA
02154

i

I lL-

l
I
I
I
I
I
I
.~

------ \""--

w
2
::i
C)
z

-- ~g

Honeywell

I «
1°
I~
I
I
I .
I
I
J
I
I
I
I
I
I

;1"- -"

~

o

r,

•

o

Honeywell
Honeywell Information Systems

In the U.S.A.: 200 Sm~h Street. MS 486. WaHham. Massachusetts 02154
In Canada: 2025 Sheppard Avenue East. Willowdale. Ontario M2J 1 W5

In Mexico: Avenida Nuevo Leon 250. Mexico 11. D.F.

20682,5578, Printed in U.S.A. CB22, Rev. 0

o

)

•

{ , .

o

