

(-

(

SUBJECT

SERIES 60 (LEVEL 6)

GCOS 6 MOD 400 OPERATOR'S GUIDE

Operator's Procedures and Commands for the Series 60 (Level 6) GCOS 6 MOD
400 Operating System

SOFrW ARE SUPPORTED

This manual supports Release 0100 ofthe Series 60 (Level 6) GCOS 6 MOD 400
Operating System. See the Manual Directory of the latest GCOS 6 MOD 400
System Concepts manual (Order No. CB20) for information as to later releases
supported by this manual.

ORDER NUMBER

CB24, Rev. 0 January 1978

Honeywell

Preface

This manual defines the procedures and commands used to operate the GCOS
6 MOD 400 Operating System from the operator terminal.

Unless otherwise stated, the term GCOS refers to the GCOS 6 MOD 400
software. The term Level 6 refers to the Series 60 (Level 6) hardware on which
the software executes.

Section 1 is a greatly condensed overview of GCOS software elements and
structures that are defined in detail in the System Concepts manual. It is
included as refresher information; it is not designed to describe all aspects of the
system.

Section 2 briefly describes daily routine system startup procedures, assuming
that the system has already been configured and initialized, and also discusses
activation of the listener component.

Section 3 describes certain aspects of system/operator communication with
the operator terminal and through the software Operator Interface Manager.

Section 4 is a detailed description of the formats and functions of operator
commands used in system control.

Section 5 discusses the task interrupt (break) function.

Appendix A is a detailed discussion of command line arguments that might be
used in situations more complex than those described in earlier sections.

Appendix B describes the systems special listener and login component,
which is used to provide system monitoring over other terminals.

Appendix C describes system halts that occur when there is not enough
memory for the system, or that might occur at system startup.

Appendix D lists the ASCII character set, with equivalent hexadecimal values.

© 1978, Honeywell Information Systems Inc. File No.: 1S13 CB24

(

MANUAL DIRECTORY

The following publications comprise the acos 6 manual set. The Manual
Directory in the latest acos 6 MOD 400 System Concepts manual lists the
current revision number and addenda (if any) for each manual in the set.

Order
No.

COOl
COO2
COO3
CB04
CB05
CB06
CB07
CB08
CB09
CBlO
CB20
CB21
CB22
CB23
CB24
CB25
CB26
CB30
CB31
CB33
CB34
CB35
CB36
CB37
CB38
CB39

Manual Title

GCOS 6 Program Preparation
GCOS 6 Commands
GCOS 6 Communications Processing
GCOS 6 SortlMerge
GCOS 6 Data File Organizations and Formats
GCOS 6 System Messages
GCOS 6 Assembly Language Reference
GCOS 6 System Service Macro Calls
GCOS 6 RPG Reference
GCOS 6 Intermediate COBOL Reference
GCOS 6 MOD 400 System Concepts
GCOS 6 MOD 400 Program Execution and Checkout
GCOS 6 MOD 400 Programmer's Guide
GCOS 6 MOD 400 System Building
GCOS 6 MOD 400 Operator's Guide
GCOS 6 MOD 400 FORTRAN Reference
GCOS 6 MOD 400 Entry-Level COBOL Reference
Remote Batch Facility User's Guide
Data Entry Facility User's Guide
Level 61Level 6 File Transmission
Level 61Level 62 File Transmission
Level 61Level 64 (Release 0300) File Transmission
Level 61Level 66 File Transmission
Level 61Series 20012000 File Transmission
Level 61BSC 2780 File Transmission
Level 61Level 64 (Release 0220) File Transmission

In addition, the following documents provide general hardware information:

Order
No. Manual Title

AS22 Honeywell Level 6 Minicomputer Handbook
AT04 Level 6 System and Peripherals Operation Manual

iii CB24

(

(

Section 1. Introduction to GCOS 6 MOD
400 Software System

Task Group 1-1
Task Group Identification (Group Id) ... 1-1
User Identification (User~d) 1-1
LFN and LRN Maximum Values....... 1-2

File System Pathnames 1-2
Definition of a File. 1-2
Definition of a Directory. 1-2
Directory or File Name Construction ... 1-2
Pathname Construction. 1-2
DevicePathname 1-3

Device Files (Other Than Disk and
Tape)................ 1-3

Tape Files. .. 1-3
Disk Device Files 1-3
Device Pathname Examples 1-4

Absolute Pathname 1-4
Relative Pathname and Working

Directory 1-4

Section 2. Routine System Startup and
Login Activation

Routine System Startup.. 2-1
System Startup Response 2-2
Activating Login Capability through

Listener .. 2-2

Section 3. System Operator Interface
with the System

System Operator and Operator Terminal .. 3-1
Operator Terminal 3-1
System Operator 3-1

Operator Interface Manager (OIM) 3-1
Output Message........... 3-2

Output Message Queuing 3-2
Output Message Format and Length 3-2

Input Message 3-2
Input Response Message 3-2
Response to Task Group Message

Requests 3-3
Input Message Format and Length . .. 3-3
Input Message Control 3-4
Input Directive Message to OIM 3-5

Outstanding Output Message List 3-5
Change Default Task Group 3-5
Change Output Pacing Rate 3-5
Task Interrupt (Break) from

Operator Terminal 3-5
Error Messages Issued by OIM 3-5

Sample Dialog Between System Operator
and the System 3-6

v

Contents

Increasing Response Time for Operator
Command Execution 3-6

Unit Record Device Timeout 3-6

Section 4. Operator Commands
Operator Commands and Commands 4-1

Operator Commands. 4-1
Operator Commands for Execution

Control 4-1
Operator Commands for Directory, File,

and Device Control.. 4-1
Operator Commands to Monitor the

System 4-2
Commands.. 4-2

Command Processor Standard
Input/Output Files. 4-2

Command-In File. .. 4-2
Operator-Out File 4-2
Error-Out File 4-2
User-Out File 4-2
Concurrency of Standard I/O Files 4-3

Input Command Line 4-3
Command Line Format 4-3
Argument 4-3

Positional Argument 4-3
Keyword Argument 4-3
Control Argument 4-3

Spaces in Command Lines 4-4
Operator Command Formats and

Descriptions 4-4
ABORT BATCH. .. 4-6
ABORT BATCH REQUEST. 4-7
ABORT GROUP 4-8
ABORT GROUP REQUEST. 4-9
ACTIVATE BATCH 4-10
ACTIVATE GROUP............ 4-11
CHANGE SYSTEM DIRECTORY 4-12
CHANGE WORKING DIRECTORY 4-13
CREATE BATCH 4-14
CREATE GROUP 4-15
DELETE BATCH 4-17
DELETE GROUP 4-18
ENTER BATCH REQUEST. 4-19
ENTER GROUP REQUEST. 4-20
EXECUTION COMMAND 4-22
FILE OUT .. 4-25
LIST SEARCH RULES 4-26
LIST WORKING DIRECTORY 4-27
LOAD SHARABLE BOUND UNIT 4-28
MODIFY EXTERNAL SWITCHES 4-29
MODIFY FILE .. 4-30
REASSIGN........................... 4-31

CB24

SET DATE 4-32
SPAWN GROUP 4-33
STATUS GROUP 4-35
STATUS SySTEM 4-37
SUSPEND BATCH. 4-39
SUSPEND GROUP 4-40
TIME 4-41
UNLOAD SHARABLE BOUND UNIT.. 4-42
WRITABLE CONTROL STORE (WSC)

LOAD 4-43

Section 5. Task Interrupt (Break) from
Operator Terminal

Break Function Usage :............ 5-1
Break Procedures 5-1
UW and PI Commands in User Application

Programs. .. 5-2
Break Command Examples 5-2

Appendix A. Additional Command
Line Arguments

Argument Passing .. A-I
Input Command Line Parameter

Substitution. A-I
EC File Execution Command. A-2
Group Request Commands A-3

Appendix B. Listener Component and
Login Capability

Installing a System Login Capability B-1
Memory Pools for Login Tasks B-1
Terminal Login Characteristic File B-1

G-Record in Login File B-1
T-Record in Login File B-2
A-Record in Login File B-2

Listener Activation B-2
Designing the Login Terminal File B-3
Terminal State .after Listener is

Activated. B-3

vi

Noncommunications Terminal State
With Listener B-3

Communications Terminal State with
Listener '. .. B-4

Changing Login Message of the Day B-4

Appendix C. System Halts
Insufficient Memory Halts. C-1
Startup Halts " C-1

Bootstrap Halt Conditions C-l
Initialization Halt Conditions C-l

Appendix D. ASCII Character Set and
Hexadecimal Equivalents

ASCII Control Characters D-l
ASCII Special Characters D-l

2-1

3-1

3-1
3-2

3-3
3-4

4-1

5-1

D-1

Figures

Stages of System Configuration and
Startup 2-1

Sample Operator/System Dialog 3-7

Tables

Input Message Format and Use.... 3-3
Length of Inpu.t Messag'iJ by Device

Type 3-3
Input Message Control Format 3-4
Error Messages Issued by Operator

Interface Manager (OIM) 3-6
Operator Commands - Function

and Command Names " 4-4
System Programs Supporting UW

(Unwind) Command 5-2
ASCIL'Hexadecimal Equivalents ... D-2

CB24

~~
(\.

\.J

;r-",
~-~

(

('

Section 1

Introduction to GCOS 6
MOD 400 Software System

This section is a brief introduction to certain aspects of the GCOS MOD 400 Operating System.
The manual System Concepts describes the system, its components, and its unique features in
greater detail, and is necessary for a more complete understanding of system terms, structure,
and elements that are only referred to in this Operator's Guide.

TASK GROUP

A task. group is a named set of one or more tasks that share the same set of system resources and
is the framework within which all user applications and software service functions operate.

TASK GROUP IDENTIFICATION (Group Id)

EvelY task group has its own unique identifier or group id. For Honeywell-supplied task groups
and for the system task group, the group id is $8; for the batch task group it is $B. Commands may
include the group id to indicate which task group is to be acted on; in other commands the group
id is either implied or is the default group id. Operator and user communication with task groups
may use the group id in responding to the task group's messages.

An online task group identifier can by any two alphabetic and/or numeric characters, e.g., A5,
2B, AA, 32, etc.

USER IDENTIFICATION (User _Id)

A user identification or user _id uniquely identifies the user for whom the task group is cur­
rentlyactive, and is included in some operator commands for activating a task group when indicated
as a valid argument.

The useLid field comprises three elements or subfields, separated by periods, with no inter­
vening spaces, and terminated by a space, as for example:

person.account.mode~

person
Name of a person who may access the system. It has from 1 to 12 characters.

account
Name of an account to which work is charged. It has from 1 to 12 characters.

mode
Identifies the unique operating characteristic (mode) of this task group, i.e., interactive, batch,
etc., and helps distinguish a user's output when the same task group is run more than once. It
has from one to three characters.

The user_id cannot exceed a total of29 characters, including the period separators. It can contain
only uppercase letters, numbers, the underscore C), and the dollar sign ($).

A user_id remains the same for the duration of the group request.

The user _id may contain all three subfields, only the first two, or only the first, as for
example:

WRIT_JR$.DOCUM01.AB8~

WRIT_JR$.DOCUM01~

WRIT_JR$~

INTRODUCTION TO GCOS 6
MOD 400 SOFTWARE SYSTEM 1-1 CB24

LF,tI.ANIJ LAN MAXIMUM VALUES

The logical file number (LFN) is associated with file pathnames within tasks through the
. ASSOCIATE PATH or GET FILE command (see the Commands manual). Its value is from 0
through 255.

The logical resource number (LRN) is used for one task to communicate with another task in
the same task group or with a system device driver. Its value is from 0 through 252.

FILE SYSTEM PATHNAMES

The File System is a tree-structured hierarchy through which each volume of storage is identified
to the system. The basic element of this structure is the file. A special file called the directory
contains information about other files.

DEFINmON OF A FILE

A file is any unit of storage outside the central processor, which can supply data to or receive
data from a task. A file can be a peripheral device such as a printer, card reader, or terminal; or it
can be a collection of data stored within a directory structure on a magnetic (tape or disk) storage
device. A source unit, object unit, listing, or bound unit is stored as a source unit file, object unit
file, list file, or bound unit file, respectively.

DEFINrrlON OF A DIRECTORY

A directory is a file that contains information about other "subordinate" storage system entries,
which in tum may represent other directories or data files. An entry named in a directory is sub­
ordinate to that directory, and is "contained" within it. The information in the containing directory
describes physical and logical attributes of the subordinate files.

The directory at the base of a tree structure is the root directory. Its name is the same as the name
(volume id) of the volume where it resides.

When first created, a volume has only a root directory, within which names and attributes of
subordinate directories can be created later.

All references to directories and files begin either explicitly or implicitly with a root directory
name.

DIRECTORY OR FILE NAME CONSTRUCTION

A directory or file name can consist of the following ASCII characters:

• Uppercase letters (A through Z)

• Decimal digits (0 through 9)

• Underscore character C)

• Period (.)

• Dollar sign ($).

Any name must begin with a letter or the dollar sign ($). The underscore is used to join two or
more words that the system is to interpret as one name, e.g., DATE_TIME. The period separates a
name from its alphabetic or numeric suffix characters. For example, in the name of a COBOL
source fIle called cobprog.C, cobprog is any user-specified name, and C is the suffix, indicating to
the system that this is a COBOL source fiie.

The length of a root directory name or volume identifier can be from one (nonblank) to six char­
acters. A directory (other than root) or file can have from one (nonblank) to twelve characters. A
specified file name must provide for any possible suffix that might be appended by the system so
that its resultant overall length does not exceed 12 characters.

PATHNAME CONSTRUCTION

A pathname is a string comprising one or more directory names and possibly one file name. All
subordinate names of directories or files within a directory must be unique. The pathname describes

INTRODUCTION TO GCOS 6
MOD 400 SOFTWARE SUPPORT 1-2 CB24

(\
, ,

'~

(

the access path to the entity to be acted on. A pathname begins with a root directory name, followed
by none or more directory names and possibly a file name, in order of their hierarchy.

The progressive relationship among pathname elements in the hierarchy is indicated by the
following symbols:

• Circumflex (") - Denotes a root directory only, and must precede the root directory
name, with no intervening space (e.g., "VOLOll).

• Greater than symbol (>) - Indicates movement in the hierarchy away from the root, and
connects two directory names or a directory name and a file name. It can also be the first
character in a pathname, in which case it is immediately subordinate to the root directory
of the system volume.

Each successive symbol in the string indicates a change of one directory level; the name
immediately following the symbol is at the next subordinate level to the name immedi­
ately preceding it. Reading a pathname from left to right shows the access through the tree
structure, away from the root, to the last element in the pathname. For example, if the root
directory VOLOll contains the directory name DIRl, then the pathname for DIRl is
"VOLOll>DIRl. However, if directory DIRl in turn contains the file FILEA, then the
pathname for FILEA is "VOLOll>DIRl>FILEA. The symbol is never followed by a
space, nor preceded by a space except as the first character in a pathname.

• Less than symbol «) - Indicates movement in the hierarchy toward the root, and a
change of one level in that direction. Additional < symbols show successive level changes.

The last element in a pathname is the name of the entity that is to be acted on, and may denote
either a directory name or file name, according to the action to be done.

Total length of any pathname, including all hierarchical symbols, cannot exceed 58 characters,
except that a working directory pathname cannot exceed 44 characters.

DEVICE PATHNAMES

Reference to any device is through the Symbolic Peripheral Device (SPD) directory, which is
subordinate to the system root.

DEVICE FILES (Other than Disk and Tape)

The general form of a device file pathname is:
>SPD>dev _name

wheredev_name is the symbolic name defined for the card reader, punch, printer, or terminal
device during system building.

Device files are always reserved for exclusive use (i.e., the reserving task group has read and
write access but other users are not allowed to share the file).

TAPE FILES

The general form of a tape file (device) pathname is:

>SPD>dev _name[>volid[>filename])

wheredev _name is the symbolic name defined for the tape device during system building, volid
is the name of the tape volume, and filename is the name of the file on the volume.

Tape devices are always reserved for exclusive use (i.e., the reserving task group has read and
write access but other users are not allowed to share the file).

DISK DEVICE FILES

The general form of a disk device-level access pathname is:

>SPD>dev _name[>volid]

where dev -D.8llle is the symbolic name defined for the disk device during system building and volid
is the name of the disk volume.

INTRODUCTION TO GCOS 6
MOD 400 SOFI'W ARE SUPPORT 1-3 CB24

This pathname fonnat is used onlywh,en access to the entire volume is required (such as during
a volume copy or a volume dump).

If the volid is not supplied, reservation of the disk is exclusive (i.e., the reserving task group has
read and write access but other users are not allowed to share the file). This pathname fonn is
used when creating a new volume.

If the volid is specified, reservation is read/share (i.e., the reserving task group has read access
only; other users may read and write). This pathname is used when dumping select portions of a
volume without regard to the hierarchical file system tree structure.

The following are examples of device pathnames.

DEVICE PATHNAME EXAMPLES

Peripheral Device
Line printer
Exclusive tape volume
File on an exclusive
tape volume
Exclusive diskette
Nonexclusive cartridge
disk volume

ABSOLUTE PATHNAME

Pathname
>SPD>LPrOl
>SPD>MT902>VOL3
>SPD>MT902> VOL3>FILEA

>SPD>DSK02
>SPD>RCDOl>V23X

An absolute pathname begins with a directory name preceded by circumflex (1\) or a
greater-than symbol
symbol, the first element is immediately subordinate to the root directory of the system volume.

RELATNE PATHNAME AND WORKING DIRECTORY

A relative pathname is one that does not begin with the circumflex or greater-than symbol.
For a relative pathname that does not begin with a less-than symbol, the first (or only) name in
the pathname identifies a directory or file immediately subordinate to a directory known as the
working directory. The working directory is the user's current working position in the fIle system
hierarchy.

The simplest form of a relative pathname has only one element, the name ofthe desired entry
in the working directory.

The following are examples of relative pathnames and the full pathnames they represent when
the working directory pathname is

>UDD>PROJl>USERA

and the system was initialized from the volume SYSOl.

INTRODUCTION TO GCOS 6
MOD 400 SOFTWARE SUPPORT 1-4 CB24

'\

.. ~ j

c

(

(

Relative Pathname

DELTA
OW>DELTA
<USERB>ALPHA
«PROJ2>USERA>DELTA
<

I

USERA

I
DELTA

OLD

DELTA

INTRODUCTION TO GCOS 6
MOD 400 SOFTWARE SUPPORT

Full Pathname

" SYSOI >UDD >PROJ 1 >USERA>DELTA
" SYSOl>UDD>PROJl>USERA>OLD>DELTA
" SYSOl>UDD>PROJl>USERB>ALPHA
" SYSOl>UDD>PROJ2>USERA>DELTA
" SYSOl>UDD>PROJl

SYSOI

I
UDD

I I
I I

PROJI PROJ2

I I
USERB USERA

I I
ALPHA DELTA

1-5 CB24

(

(

Section 2

Routine System Startup and Login Activation

System configuration and startup includes the four stages shown in Figure 2-1. The first three
stages concern configuration and startup at system installation; the System Building manual
describes them in detail. This section discusses the fourth stage, which is the daily routine
system startup in normal operations. It also discusses activation of the system listener compo­
nent for login commands.

INITIAL STARTUP:
BOOTSTRAP USING
HON EYWE LL-SUPPLI E D
CONFIGURATION ,
ADJUST CONFIGURATION TO
INSTALLATION HARDWARE:
SPECIALIZE CHANNEL
NUMBERS, CHANGE

>SID>CLM SAMPLE
TO >SID>CLM-USER,
AND BOOTSTRAP SYSTEM

I
USER SPECIALIZATION AND
BOOTSTRAP:
MODIFY CLM USER, CREATE
OPTIONAL START UP FI LE,
AND BOOTSTRAP -

I
USER STARTUP:
BOOTSTRAP INSTALLATION
SPECIFIC CONFIGURATION
CONTAINED IN CLM USER

WHEN DONE:

ONCE A SYSTEM INSTALLATION:
LATER TO CORRECT ANY ERRORS
IN A SPECIALIZED CONFIGURATION.

ONCE AT SYSTEM INSTALLATION;
THIS SYSTEM WI LL CONVEN IENTL Y
SUPPORT FURTHER APPLICATION
DEVELOPMENT IF THE PROPER
PERIPHERALS ARE AVAILABLE

AT SYSTEM INSTALLATION;
WHEN ADDITIONAL HARDWARE IS
INSTALLED; OR WHEN A NEW
APPLICATION-SPECIFIC OPERATING
ENVIRONMENT IS CREATED.

USER STARTUP FROM POWER-UP
AS SYSTEM IS NORMALLY USED.

Figure2-1. Stages of System Configuration and Startup

ROUTINE SYSTEM STARTUP

Specific operating procedures may differ among various installations. However, some parts of
the routine daily system startup are the same for all systems_ The following procedures are
based on the assumptions that (1) a user-specialized system startup configuration is available,
and (2) the central processor and all peripheral devices were previously turned off.

1. Turn the power on for the central processor and all peripheral devices.

2. Mount the disk volume containing the specialized CLM_ USER and START_UP .EC files,
onto the bootstrap disk device.

3. Press the following keys on the central processor control panel; this starts the hardware
quality logic test (QLT):

§top

CLea!!

boad

~xecute

4. Wait for the TRAFFIC light to go out, then press Execute to execute the bootstrap routine.

ROUTINE SYSTEM STARTUP
AND LOGIN ACTIVATION 2-1 CB24

SYSTEM STARTUP RESPONSE

When the system software is ready for use, the operator terminal displays the message:

($8) GC086 MOD400- {~} rrr-mm/dd/hh/mm

followed by user-specialized configuration messages. The actual value for rrr in the message is
the 3-digit software release number (e.g., 100, 110,210, etc.) for this system. The month, day,
hour, and minute that the system was linked are indicated by mm/dd/hh/mm.

ACTIVATING LOGIN CAPABILITY AND LISTENER

To provide access to the system from user-designated terminals requires that the listener
component be activated from the operator terminal as the lead task of a task group. Listener can
be activated only after system startup is complete and the system is operational. None of the
terminals to be monitored for a LOGIN command can be reserved during listener activation.
Once activated, listener cannot be turned off until the system is again started up.

Listener is activated with the CG (CREATE GROUP) and EGR (ENTER GROUP REQUEST)
operator commands, or with an SG (SPAWN GROUP) operator command, using the arguments
shown below in addition to those described for those commands in Section 4. These command
formats are:

CG it! hast'_Ivl -EFlI; LISTENER -POOL id

E(;lt id lIst'r __ id -OUT >SI'D>CONSOLE -ARG

or

IT/'pathL'.' r U"pathL'."~ [x] ["message"]

S(; id lIsPI'_id hasp_Iv 1 -EFN LISTENER -POOL id -OUT >SPD>CONSOLE -ARG fJ/'pathL'.' r [] I" "]
~"pathL'."~ x messag!'

{ 'path~' }
"path~ "

x

Pathname of the terminals file, which lists the terminals on which users may log in, and
which contains the terminal characteristics records (see Appendix B). The last character in
the pathname must be a blank, and the entire pathname must be enclosed in either single or
double quotes. An omitted (default) pathname must be written as a pair of enclosing single or
double quotes (' ') or (" "), and results in the default pathname >SID>TERMINALS for use by
listener.

The first character in the 2-character pool id and group id when default values are used. The
second character, from 0 through 9 or A through Z, is appended when a task group is spawned
as a result of the LOGIN command. When this argument is omitted, its default value is L.

When a user specifies a group id in a LOGIN command or in a login_line for a T-record or
A-record (see Appendix B), listener uses that as a group id instead of generating a group id.

"message"
The message-of-the-day, enclosed in quotes to provide for embedded blanks, which listener
transmits to all login terminals for display.

After listener is activated, the system returns a message containing a message number, which
requests a response. The message number must be included in the operator's response, from the
operator terminal to listener, that changes the message-of-the-day. The response message
cannot exceed 63 characters, and is in the format:

dmsg_nodmessage-of-the-day

Appendix B describes the login and listener characteristics, files, and required resources.

ROUTINE SYSTEM STARTUP
AND LOGIN ACTIVATION 2-2 CB24

(1-"

~~

(

(

Section 3

System Operator Interface
with the System

SYSTEM OPERATOR AND OPERATOR TERMINAL

The system operator and the system task group have two-way communication through the
operawr terminal.

OPERATOR TERMINAL

The operator terminal is the single terminal-like keyboard device on the system that is
designated as the control terminal for the system, and which must be assigned LRN 0 at system
configuration to be identified as such by the system.

It is used to communicate with the:

1. System task group ($S).

2. User application task group.

Communication with the system task group ($S) can be only through the operator terminal,
using the operator commands described in Section 4. However, the user or operator at the
operator terminal can communicate with a user application task group by including the explicit
or default task group id in any command or message directed to that task group.

The operator terminal is usually located near other peripheral devices, e.g., card reader,
printer, or disk drive, so that the operator can quickly respond to system messages requesting
action on those devices.

When in some cases the user may not require an operator terminal, for example, to use the
terminal as a work station, none need be designated (i.e., LRN 0 is not assigned to a terminal at
system configuration). However, the absence of an operator terminal results in certain conditions
that are described in the Program Execution and Checkout and Commands manuals.

SYSTEM OPERATOR

The system operator is the person who, from the designated operator terminal, controls system
operation and communicates with the system.

OPERATOR INTERFACE MANAGER (OIM)

The system communicates with the system operator through a system software component
called the Operator Interface Manager (OIM), which controls the operator terminal input and
output.

The OIM recognizes and processes these kinds of messages:

1. Output messages - Messages from a task group to the operator terminal.

2. Input messages - Messages from the system operator to a task group or to the OIM
itself.

Message functions and formats are described more fully below.

The OIM provides standardized communication between tasks and the operator by:

• Imposing consistent spacing in operator input commands and in output messages to
prevent overprint and ensure correct interpretation.

• Managing multiple input requests from the operator terminal.

• Ensuring prompt printing of critical output messages.

• Permitting the system operator to select which output request he will respond to and when.

SYSTEM OPERATOR INTERFACE
WITH THE SYSTEM 3-1 CB24

OUTPUT MESSAGE
"':;. .-"

Every output message written from a task group to the operator terminal has as its prefix the
task group identifier., or id (see Section 1). When the message requires an operator's response,
becaUse the program executed a $OPRSP macro call, a message number will precede that id.
(The operator)nterface manager (OIM) inserts these task group id and message number
prefixes.)

OUTPUT MESSAGE QUEUING

Regardless of the number of task groups active in the system., a maximum of 10 numbered
output messages that require operator response can be outstanding at one time. After a task has
issued the tenth (message number 9) output message, and nine earlier messages are still
outstanding, any task cannot issue any more messages requiring a response(i.e., with a message
number prefix), until the operator responds to one or more of the 10 outstanding messagE;s. Any
task attempting to issue an eleventh (or successive) message is stalled until the operator
responds to an outstanding message. OIM issues the message "OUTPUT STALLED, QUERY
ANSWER REQUIRED." .

OUTPUT MESSAGE FORMAT AND LENGTH

The operator interface manager (OIM) imposes these standard format features on every
output message:

1. A carriage return (CIR) and line-feed follows every message.

2. The first byte in the message is a control byte provided by the user program. This byte
specifies either single or triple line spacing (head-of-form).

3. Every message is displayed at a standard pacing rate, or standard roll-up rate on a screen
display. The operator can change the pacing rate with an input directive to the OIM (as
described later).

4. Maximum message length, resulting from $OPMSG and $OPRSP macro calls, is 140
bytes. Any longer length specified by a task input/output request block (lORB) is reset to
140 by the OIM without notification to the task. If an issuing task is to specify a message
length greater than the physical line length of the operator terminal, that task must
provide enough embedded carriage returns and line feeds so that the message can be
displayed on two or more lines.

INPUT MESSAGE

An input message is sent by the operator from the operator terminal to a task group or to the
OIM itself.

In the following descriptions of input message formats, the delta (.i) character represents
exactly one input space that the operator must include in his message; the characters C/R
indicate a carriage return.

Once input is begun, it must be completed by a carriage .return before the end of five minutes.
Otherwise any input entered after that time is discarded.

INPUT RESPONSE MESSAGE

There are two input response message formats in response to numbered output request
messages.

1. The first requires the same message number prefix that was in the request output
message, and is expressed as:

dndtext C/R
n - Output request message number
text - Message text

SYSTEM OPERATOR INTERFACE
WITH THE SYSTEM 3-2 CB24

(

(

2. The second needs no message number prefix; OIM assumes it is a response to message
number O. It is entered as:

atext CIR

Specifying either format when there is no output message with number n or 0 causes an error
message.

RESPONSE TO TASK GROUP MESSAGE REQUESTS

There are two kinds of input responses to task group requests that are not specifically related
to a numbered output message.

1. Response message prefix is the group id, so that this response is directed to the issuing
task group.

2. Response message has no group id prefix. The message is thus intended for the operator­
selected default task group. This format is best for an operator communicating with only
one task group, and removes the need for specifying the group id with every input
response.

The system task group (id is $S) is the default task group immediately following system
configuration. Operator commands therefore do not require the a$Sa id prefix. However, any
change in the default id, from $S, by a directive to OIM (described below) would require that
subsequent operator commands to the system task group $S be preceded by a$Sa.

INPUT MESSAGE FORMAT AND LENGTH

Input message formats are summarized in Table 3-1.

Input Message
Format

TABLE 3-1. INPUT MESSAGE FORMAT AND USE

Usage

messageClR Serial input to the task group defined as default task group to OIM by the operator.
Until changed, the system task group $S is the default task group immediately
following configuration.

.1idAmessageC/R Serial input to task group specified by id .

.1messageC/R Input response to output message number O .

.1n.1messageC/R Input response to message number n (n is 0 through 9).

A carriage return terminates an input message and establishes its physical line length.
Whatever the physical line length for a device (see Table 3-2), OIM accepts up to 140 bytes per
line. When line length exceeds that limit, OIM considers the line as ended at 140 bytes, and
treats the line as though a carriage return had been entered.

TABLE 3-2. LENGTH OF INPUT MESSAGE BY DEVICE TYPE

Maximum Message Length (bytes)

Physical Line Length Keyboard Screen/Printer
Device Type (bytes) Input Output"

KSR 72 140 140
136(+4)h

CRT 80 140 140
136(+4)

Keyboard 132 140 140
Typewriter 136(+4)
Console

aThe user must embed carriage control characters suitable for the device in the program
output message to continue legible output beyond the physical line length limit.

bA 4-character message identifier.

SYSTEM OPERATOR INTERFACE
WITH THE SYSTEM 3-3 CB24

INPUT MESSAGE CONTROL

An input message can be entered even while the operator terminal is producing output, as
follows:

1. Press the first input character key.

2. Wait until the output line is completed.

3. The system displays the input character.

4. Complete the input message.

To halt output to the operator terminal, enter one space only, omitting a carriage return. To
resume output, type in the at-sign character @ on the same line to delete the space, then enter a
carriage return.

To delete an input message line not yet accepted by the system (i.e., not followed by a carriage
return):

1. Press and hold the CTRL (Control) key and press X.

2. System responds with *DEL*.

3 Do a carriage return.

This results in an "empty" line being sent to the system.

To correct partial input, i.e., delete erroneous input and enter correct input on the same line:

1 Press and hold the CTRL (Control) key and press X.

2. System responds with *DEL*.

3. Enter correct text on the same line.

4. Do a carriage return.

To delete one or more characters in a line, when a carriage return was not done, press the @ key
immediately following entry of the erroneous character, on the same line. Each successive strike
of the @ key deletes a character immediately preceding the last deleted character.

To enter control characters as data characters: press the\ (back slash) before pressing any of
the following control characters to enter these characters as data characters: @ (at sign), CTRL
X, CR (carriage return), and\ (back slash).

Table 3-3 shows input message control formats.

TABLE 3-3. INPUT MESSAGE CONTROL FORMAT

Input Message
Control Format Control Function

A (no CIR) Halt output.

A@CIR Halt, then resume output.

AtextCTRL X Delete input designated by "text."
(System responds
with *DEL*)
CIR

AtextCTRL X Delete input designated by "text."
(System responds Replace on same line with "correct text."
with *DEL*)
correct text
CIR

@ (no CIR) Delete the last entered character.

\ (back slash) Enter the next entered character as data rather than as a control character.

SYSTEM OPERATOR INTERFACE
WITH THE SYSTEM 3-4 CB24

(

INPUT DIRECTIVE MESSAGES TO OIM

The system operator can issue directives for the Operator Interface Manager to:

• List outstanding output messages (those to which the operator has not yet responded).

• Change the default task group.

• Change the output pacing rate on the operator terminal display.

• Simulate the BREAK key action.

Every OIM directive must begin with an uppercase C, preceded and followed by exactly one
space (i.e., aCa) and end with a carriage return.

Outstanding Output Message Ust

To obtain a list of outstanding output messages, enter:

aCa?C/R

Change Default Task Group

During operator/task group dialog, a task group can be designated as the default task group so
that a group id prefix need not be specified with an input message to that group. (Note that
immediately following system configuration the system task group id $S is the default group id.)

To change the default task group id, enter:

aCa:id:C/R

id - The new default task group id.

This directive would be initially used to change the default task group from the system task
group $S to a user application task group id, and used later to change another group to the
default task group.

Change Output Pacing Rate

The pacing rate on an output display is the frequency at which each new output line appears
(e.g., one line per second, or per five-tenths of a second, etc.). This control over pacing rate is
useful with high-speed screen displays.

To change the pacing rate, enter:

aCaPnnnC/R

nnn - New pacing rate in tenths of a second. A value of 000 implies a pacing rate that
is the fastest physically possible for that device. A value of 999 represents 99.9
seconds, or over 1-112 minutes.

Default pacing value is 000.

Task Interrupt (Break) From Operator Terminal

The operator can interrupt (break) a task from the operator terminal. Operator entry is:

aCaBid

Detailed procedures, response commands, and conditions for using the break function are fully
described in Section 5.

ERROR MESSAGES ISSUED BY OIM

The operator interface manager issues the messages shown in Table 3-4, at the operator
terminal. (Note that these messages do not have any numeric codes.)

SYSTEM OPERATOR INTERFACE
WITH THE SYSTEM 3-5 CB24

TABLE 3-4. ERROR MESSAGES ISSUED BY OPERATOR INTERFACE MANAGER (OIM)

Message Meaning

GROUP id DID NOT Task group identified by id did not accept the last-entered input
ACCEPT INPUT directed to it.

INVALID COMMAND x The command whose first character is x is invalid.

TERMINAL LINE The previously disconnected line between the operator terminal and
RECONNECTED the MLCP has been re-established.

NO BREAK ORDER FOR id The .:1C.:1Bid (break) command is illegal for the task group identified
by id.

NO QUERY FOR ANSWER n Operator's input message includes the message number n; there is
no outstanding output message with that number.

OUTPUT STALLED, Task attempted to issue an output message but no message number
QUERY ANSWER REQUIRED available since there are already 10 outstanding messages. Task

stalled until operator responds to an outstanding message, and that
message number becomes available.

SAMPLE DIALOG BETWEEN SYSTEM OPERATOR AND THE SYSTEM

Figure 3-1 represents a sample dialog between the system operator and the system. The boxed
entries represent operator input at the operator terminal.

INCREASING RESPONSE TIME FOR OPERATOR COMMAND EXECUTION

When entering numerous successive commands and input messages to the system task group
$8 at the operator terminal, the operator may want to increase command execution speed,
especially with a diskette-based system.

To obtain faster response, enter the command

EC >8PD>CON80LE

from the operator terminal (or as the last command in the 8TART_UP.EC file).

This command will cause input to be processed directly by the command processor rather than
through the OIM, and will result in faster response at the operator terminal. This direct
processing of operator commands requires several hundred more words of main memory from
the system memory pool.

Another result of the EC >8PD>CON80LE command is that the RDF (READY OFF) and
RDN (READY ON) commands (described in the Commands manual) can be used as operator
commands.

To restore the operator terminal to its former response rate, and to return the memory that
was required to the memory pool, enter:

&Q..:l or ..:l$8..:l&Q..:l

as applicable.

UNIT RECORD DEVICE TIMEOUT

A unit record device (card reader, card punch, printer) may be omine because it was not
turned on, was turned off, it failed, or ran out of cards or paper.

When an input or output order is issued to the omine device, or it goes omine while the order is
being processed, the operator is notified and has five minutes to correct the condition, after
which the condition is reported as an 0105 (device not ready) error.

A user can program an application program to test for this error condition and to then reissue
the order anytime after the device goes online again.

However, a task request for a system program, such as a compiler, terminates abnormally [~

when the device remains omine after five minutes. ~ . ./

SYSI'EM OPERATOR INTERFACE
WITH THE SYSTEM 3-6 CB24

(-

(

($)GCOS6 MOD400-{~} 110-11/03/14/05

CG AB 26 -POOL AB
EGR AB IW >SPD>CONSOLE -WD 1\ USER

I/O (AB) KEY IN THE TIME PLEASE

I lI1021

(AB)END OF SECTION 1

CG YZ 21 -POOL AS
EGR YZ lW >SPD>CONSOLE -WD I\USER

110 (AB) KEY IN THE TIME AGAIN

#1 (YZ) MOUNT UNLINED PAPER PRINTER 1

lI1l1DONE

(YZ) ENTER LIST FOLLOWED BY "FINI"

lIClI:YZ:
JONES
SMITH
LAPIERRE
FINI

lIClI:$S

I SSPG AB

(YZ) ENTER LIST FOLLOWED SY "FINI"

lIYZlILOWELL
lIYZlIHART
lIYZlIFINI

#0 (AS) KEY IN THE TIME AGAIN

I lIOll1100

Output of system task group sign-on message

Input to default task group ($S)

Task group AS requests response

Operator response to message 0

Information message from task group AS

Input to default task group ($S)

Task group AS requests response

Task group YZ requests action and response

Response to preceding message 1

Information message indicating need for input

Operator defines new default task group as YZ

Operator changes default task group to system
task group ($S)

Operator command input to default task group
$S to suspend task group AB

Information message from group YZ

Operator serial input to task group YZ

Operator request for list of outstanding messages

Redisplay of message 0

Operator response to redisplayed message 0

Figure 3·1. Sample Operator/System Dialog

SYSTEM OPERATOR INTERFACE
WITH THE SYSTEM 3-7 CB24

.~ j

(

(

Section 4

Operator Commands

This section describes operator commands used by the system operator to control the
operating system from the operator terminal. The system operator is one who communicates
with the system through the terminal device that was assigned logical resource number (LRN) 0
at system configuration; that terminal is the designated operator terminal.

OPERATOR COMMANDS AND COMMANDS

An order to be processed by the command processor is a command. A "secondary level" order
passed through the command processor to a secondary processor such as the Linker or
Configuration Load Manager is a directive.

In this manual, the terms "operator command" and "command" have different meanings and
functions, as described below.

OPERATOR COMMANDS

An operator command operates at the task group level; and is directed to and executed in the
system task group ($S). An operator command cannot be used to control the execution sequence
of tasks in a batch or user online task group.

An operator command can be entered only through the designated operator terminal, or can
be read from a command-in file.

The principal uses of an operator command are to:

• Control execution

• Control directories, files, or devices

• Monitor system operation

OPERATOR COMMANDS FOR EXECUTION CONTROL

Operator commands used for execution control define the initial operating software
environment, and then control system operation from the operator terminal; specifically they:

• Create, initiate, abort, or delete a batch or online task group

• Spawn an online task group

• Temporarily suspend and roll out, or reactivate and roll in, the batch task group

• Temporarily suspend or reactivate an online task group

• Load or unload a sharable bound unit from a system memory pool

• Load assembled firmware files into writable control store (WCS)

OPERATOR COMMANDS FOR DIRECTORY, FILE, AND DEVICE CONTROL

Operator commands effect directory, file, and device control to:

• Change a system library or working directory pathname

• Modify the attributes of a disk file

• Cancel volume mount requests

• "Swap" similar device types

OPERATORCO~DS 4-1 CB24

OPERATOR COMMANDS TO MONITOR THE SYSTEM

Operator commands are used in monitoring the system to:

• List devices assigned and/or available

• List task groups and queued requests for batch execution

• List status of tasks or files in a task group

• List working directory pathname

• List the directories that are searched when a bound unit is requested

COMMANDS

Commands, as differentiated in this manual from operator commands, enable any user to
control any user task group through any device or file that can accept commands and deliver
them to the command processor. Such a device or file, e.g., an MDC- or MLCP-connected
terminal, is known as a command-in file. The Commands manual lists and describes commands
in this category.

COMMAND PROCESSOR STANDARD INPUT/OUTPUT FILES

The files associated with the command processor are:

• Command input file, or command-in file

• Operator output file, or operator-out

• Error output file, or error-out

• User output file, or user-out

Their functions and characteristics are described below.

COMMAND-IN FILE

The command-in file is the file from which operator command lines are read. More
specifically, it is the device designated as the operator terminal (the LRN 0 device established at
system building). It can at times, however, be assigned temporarily to another device or file as
during the execution of the EC command. At the termination of execution of this command, the
command-in file reverts to the operator terminal.

OPERATOR-OUT FILE

The operator-out file is the file to which a command function writes its output. At the
conclusion of command processor initialization, and as long as no alternate operator-out file has
been specified, the operator-out file is the device designated as the operator terminal at system
building.

The operator-out file can be directed to another device through the use of the FILE OUT
command. It remains assigned to this device until another FILE OUT command is processed, at
which time it can be directed to yet another device, or back to the operator terminal, at the
system operator's discretion.

ERROR-OUT FILE

The error-out file is the file to which the command processor and any commands invoked by it
write information related to error conditions detected by it. The error-out file is always the
operator terminal; it cannot be reassigned by any operator command or command argument.

USER-OUT FILE

The user-out file is the file to which a task group normally writes its output. However, certain
system components (compilers, etc.) also write to list files (NAME.L) or to the output file defined
in the -COUT argument. The user-out file is initially established by the -OUT argument of the
EBR, EGR, or SG command. (Thus, originally, it is the same device as the error-out file device.)

OPERATOR COMMANDS 4-2 CB24

C·
' \
"~

(

It can be reassigned to another device by use of the FILE OUT command or by use of the NEW
USER OUT ($NUOUT) monitor call. Such a reassignment remains in effect for the task group
until another reassignment occurs. See the Commands manual.

CONCURRENCY OF STANDARD I/O FILES

Standard 110 files are reserved when a task group is spawned or requested. All nondisk
standard 110 files are reserved for exclusive use. References to these files from within a task
group will succeed; attempts to reserve these files from other task groups will fail. Although the
operator terminal must be reserved with shared concurrency to allow read and write access by
multiple groups, it can be used as a standard 110 file without any concurrency conflicts.

Disk standard 110 input files are reserved to allow multiple readers with no writers. Disk
standard 110 output files are reserved for exclusive use.

INPUT COMMAND LINE

Operator commands are read and interpreted by the command processor, which executes as
the lead task in the system task group. Each command causes a task to be spawned within the
system task group to perform the requested function (e.g., create an online task group, enter a
group request, abort a group). When the execution of a command terminates, control is returned
to the command processor, which can then accept another command.

COMMAND LINE FORMAT

A command line to the processor is a string of up to 127 ASCII characters in the form:

command-name [arg 1 ••• arg n]

where command-name is the pathname of the bound unit that performs the command's function.
Each subsequent arg entry is an argument whose functions are described below. A command
line cannot be continued onto the next line.

ARGUMENT

An argument of a command is an individual item of data passed to the task of the named
command. Some commands require no arguments; others accept one or more as indicated in the
syntax of each command description. Optional arguments are enclosed in brackets; e.g., [path].
There are positional and keyword arguments (see below). Other types of arguments are the
additional arguments that follow the -ARG keyword, available in some commands, and those
following path in the EC command. They represent data that is to be used in the task group
being activated and will be discussed below.

POSITIONAL ARGUMENT

A positional argument is an argument whose position in the line indicates to which variable
the item of data is applied. It can occur in a command line immediately after the command name
or as the last argument following the control arguments, as in the LIST NAMES commands.

KEYWORD ARGUMENT

A keyword argument is a fixed-form character string preceded by a hyphen, thus -ECL. It can
be alone, as in -WAIT, or it can be followed by a value, as in -FORM xx.

CONTROL ARGUMENT

A control argument is an additional argument or keyword argument and its value that
specifies a command option; e.g., the pathname of an alternate input or output file. In the
command syntax descriptions in this manual, control arguments are denoted by the term
"ctLarg"; the argument descriptions define the specific keywords for that command. Unless
otherwise noted, a control argument is optional, as indicated by enclosing brackets, i.e.,
[ctLarg]. A required control argument is so described in the syntax definition, without enclosing
brackets.

OPERATOR COMMANDS 4-3 CB24

Except when the last argument of a command line is a positional argument, keywords of
control arguments can be entered in any order in the line, following the initial positional
arguments.

SPACES IN COMMAND LINES

Arguments in command lines are separated from each other by spaces. Unless otherwise
indicated, a space in a command line syntax represents one or more space characters, or one or
more horizontal tab characters, or a combination of these. Spaces can be embedded within an
argument by enclosing the argument in single (') or double (") quote characters. If the enclosing
character is also required within the argument, it is represented by two successive characters,
thus: .. NAME= SMITH"" AREA 203."

OPERATOR COMMAND FORMATS AND DESCRIPTIONS

The rest of this section describes the formats, arguments, control arguments, and functions of
the operator commands. Some complex cases include examples. Table 4-1 lists these commands
by functional category, function name and command name. The command descriptions on
subsequent pages are in alphabetic order by function name.

TABLE 4-1. OPERATOR COMMANDS - FUNCTION AND
COMMAND NAMES

Function Name Command Name

EXECUTION CONTROL COMMANDS

Abort Group ABORT_GROUP
Create Group CG
Delete Group DG
Enter Group Request EGR
Execution Command EC
Modify External Switches MSW
Spawn Group SG
Status Group STG

FILE AND DIRECTORY CONTROL COMMANDS
Change System Directory CSD
Change Working Directory CWD
File Out FO
List Search Rules LSR
List Working Directory L WD
Modify File MF

INTERACTIVE COMMANDS

Enter Batch Request
Time

EBR
TIME

OPERATIONS COMMANDS

Abort Batch Request
Abort Batch
Abort Group Request
Activate Batch
Activate Group
Create Batch
Delete Batch
Load Sharable Bound Unit
Reassign
Set Date
Status System

OPERATOR COMMANDS 4-4

ABR
ABORT_BATCH
AGR
ACTB
ACTG
CB
DB
LOAD
RAS
SD
STS

CB24

(

TABLE 4-1 (CONT). OPERATOR COMMANDS - FUNCTION AND
COMMAND NAMES

Function Name Command Name

OPERATIONS COMMANDS

Suspend Batch
Suspend Group
Unload Sharable Bound Unit
Writable Control Store Load

OPERATOR COMMANDS

SSPB
SSPG
UNLD
WCSLD

4-5 CB24

ABORT BATCH

Command Name: ABORT-BATCH

Suspend, terminate, and delete the batch task group.

FORMAT:

ABORT-BATCH

ARGUMENT DESCRIPTION:

No arguments are required for permitted with this command.

FUNCTION DESCRIPTION:

---- -~-------

The ABORT BATCH command causes suspension and termination of the batch task group,
whether active or dormant. It removes all data structures which define and control the exec­
ution of the task group, and returns all memory used by the group to the batch memory pool. Any
files that were open during the execution of the task group are closed. Any requests pending
against the batch task group are cancelled.

The action of the ABORT BATCH command is similar to the DELETE BATCH command, the
difference being that the latter must wait until the task group becomes dormant, while the
former takes effect as soon as all outstanding input or output orders are complete.

OPERATOR COMMANDS 4-6 CB24

..

(

ABORT BATCH REQUEST

Command Name: ABR

Tenninate the execution of the current batch request.

FORMAT:

ABR

ARGUMENT DESCRIPTION:

No arguments are required or pennitted with this command.

FUNCTION DESCRIPTION:

The ABORT BATCH REQUEST command stops execution of the current request in the batch
task group. It removes all defining and controlling data structures except those associated with
the command processor, arid reruns all associated memory to the batch memory pool. Any files
that are open and in use by the batch task group are closed. At the conclusion of execution of the
ABR command, the command processor honors the next request in the batch request queue, if
any. The ABR takes effect as soon as all outstanding input or output orders are complete.

OPERATORCO~DS 4-7 CB24

ABORT GROUP

Command Name: ABORT_GROUP

Suspend, terminate, and delete the indicated online task group.

FORMAT:

ABORT_GROUP id

ARGUMENT DESCRIPTION:

id
The group identification of a task group previously created by a CG or SG command specifying
the same id.

FUNCTION DESCRIPTION:

The ABORT GROUP command causes suspension and termination of an existing online task
group whether active or dormant. It removes all data structures which define and control the
execution of the task group, and returns all memory used by the group to the appropriate
memory pool. Any files open during the execution of the task group are closed. Any requests
pending against the group are cancelled. The action of the ABORT GROUP command is similar
to the DELETE GROUP command, except that the latter must wait until the task group
becomes dormant, while the former takes effect as soon as all outstanding input or output orders
are complete.

Example:
ABORT_GROUP AX

A task group identified as AX is terminated.

OPERATOR COMMANDS 4-8 CB24

-"
",.j

(

(

ABORT GROUP REQUEST

Command Name: AGR

Terminate the execution of the current request in the indicated task group.

FORMAT:

AGR id

ARGUMENT DESCRIPTION:
id

The group identification of a task group previously created by a CG or SG command specifying
the same id.

FUNCTION DESCRIPTION:

The ABORT GROUP REQUEST command stops execution of the current request in the
indicated task group. It removes all defining and controlling data structures except those
associated with the lead task (as defined by the CG or SG command specifying this id) and
returns associated memory to the appropriate memory pool. Any files that are open and in use by
this task group are closed. At the conclusion of execution of the AGR command, the lead task
processes the next request against this group, if any. The AGR takes effect as soon as all
outstanding input or output orders are complete.

Example:
AGR AX

Execution of a request against a task group identified as AX is terminated. Upon termination of
this request, the next request in this task group's request queue is executed.

OPERATOR COMMANDS 4-9 CB24

ACTIVATE BATCH

Command Name: ACTB

Roll in and resume execution of the previously rolled-out and suspend batch task group.

FORMAT:

ACTB

ARGUMENT DESCRIPTION:

No arguments are required or permitted with this command.

FUNCTION DESCRIPTION:

The ACTIVATE BATCH command causes the roll in and resumption of execution of any tasks
that were active at the time a SUSPEND BATCH command was issued. All tasks that were
active at suspension are requeued on their respective level queues.

Execution resumes when the group is rolled in again; i.e., when all online task groups that
extended into batch memory have returned that memory to the batch memory pool. See the
SSPB command.

Note:
It is possible that while the batch task group is rolled out as a result of an SSPB
command, one or more online task groups running in extendable memory pools
have obtained memory from the batch pool and have not returned that memory
when the ACTB is issued. In that case the batch task group cannot be rolled in
until all the batch memory is returned by the online groups.

OPERATOR COMMANDS 4-10 CB24

(

(-

ACTIVATE GROUP

Command Name: ACTG

Resume execution of a previously suspended online task group.

FORMAT:

ACTGid

ARGUMENT DESCRIPl'ION:
id

The name of a task group previously suspended which is to be reactivated.

FUNCTION DESCRIPl'ION:

The ACTIVATE GROUP command resumes execution of any tasks that were active at the time
a SUSPEND GROUP command with the same group id was issued. All tasks that had been
active at the time of suspension are requeued on their respective level queues.

Example:
ACTG AX

The task group AX, previously suspended, is to be returned to the active state.

OPERATOR COMMANDS 4-11 CB24

CHANGE SYSTEM DIRECTORY

'Command Name: CSD

Defme a new pathname for one of the' system directories.

FORMAT:

CSD [path][ctLarg]

ARGUMENT DESCRIPrION:

[path]
The pathname of the new system directory. If this argument is omitted, the path name

>SYSLIBI is assumed.

[ctLarg]
Only one control argument is recognized:

-LIBx
The name ofthe system directory that is to be changed to the new pathname. Possible values
are LIBI and LIB2. If not specified, the default is LIBl.

FUNCTION DESCRIPTION:

The CHANGE SYSTEM DIRECTORY command allows the system operator to change the
pathname of one of the two directories that the system uses in its search for bound units. The
pathname given can be either a simple name, a relative pathname, or a full pathname. Ifit is a
simple name or a relative pathname, elements of the system task group's working directory are
used to construct a full pathname. The working directory is system_volume_name, unless it was
modified by a CHANGE WORKING DIRECTORY command. Both system directory pathnames
can be changed by using two CSD commands.

The system uses a set of rules, known as search rules, to govern its search of directories for a
given path. These rules are described in detail in the discussion of the LIST SEARCH RULES
command.

Example:
CSD NEW_DIR -LIB2

Assuming that the system task group's working directory has not been modified, the system
constructs the pathname >NEW_DIR, and uses this pathname whenever LIB2 is referred to.

OPERATOR COMMANDS 4-12 CB24

(, -".
_./

(

(

CHANGE WORKING DIRECTORY

Command Name: CWD

Change the system task group's working directory to the specified path.

FORMAT:

CWD path

ARGUMENT DESCRIPTION:

path
The pathname of the new working directory. It may be a relative name or a full pathname; it
cannot exceed 44 characters.

FUNCTION DESCRIPTION:

The CHANGE WORKING DIRECTORY allows the system operator to modify the pathname of
the system task group's default working directory. After command processor startup, the
working directory is system-volume-.name. However, there can be directories subordinate to
this directory, and these subdirectories can contain files used by the system task group. If these
files are to be referred to by simple pathnames then it is necessary to change the directory point
of reference to the directory that immediately contains these files.

For example, the series of functions that the system operator routinely performs at the
beginning of a day's operations, after system initialization, could be cataloged in a file contained
in a directory subordinate to the working directory, and used as input to the execution command
processor (see the EC command).

After issuing a CWD command naming the subdirectory as its path argument, the EC command
could be given, specifying the simple name of the file containing the functions to be performed.

Example:

A file containing a series of CREATE GROUP operator commands is in a directory
EC_ROUTINES, subordinate to the working directory. The name of the file is CR_GRPS,
and it is used each day to create a predetermined set of task groups for the day's
operations. The system operator issues a command,

CWO EC_ROUTINES

to move the directory point of reference to the EC_ROUTINES directory level. He then
issues a command,

EC CR_GRPS

to initiate the execution of the set of GC commands.

OPERATOR COMMANDS 4-13 CB24

CREATE BATCH

Command Name: CB

Perform the initialization necessary to initiate the batch task group.

FORMAT:

CB base_Ivl [ctLarg]

ARGUMENT DESCRIPTION:

b&Se-lvl
A base priority level, relative to the highest system physical level, at which tasks in the batch
task group will execute. A base (or relative) level of 0, if specified, is the next higher level
above the system priority level. The sum of the highest system physical level plus 1, and the
base level, and the relative level of a task, must not exceed 6210,

[ctLarg]
One or more control arguments from the following:

-LRNn
Specifies the highest logical resource number (LRN) to be referred to by any task in the
batch task group. The highest LRN used by the system task group is the default if this
argument is not specified.

-LF'Nn
Specifies the highest logical file number used by any task in the batch task group. If -LFN is
not specified, n assumes the value 15. Refer to the ASSOCIATE PATH or GET FILE
command in the Commands manual.

FUNCTION DESCRIPI'ION:

The CREATE BATCH command causes allocation and initialization of all data structures used
by the system to define and control the execution of the batch task group. It causes the loading of
the command processor, and defines it as the lead task of the task group. It does not cause the
activation of the command processor; this is done by the use of the ENTER BATCH REQUEST
command.

Example:
CB 20 -LFN 6

The batch task group control data structures are created and initialized. No task in the group is
expected to execute at a priority level lower than 20, nor refer to a logical file number greater
than 6. .

OPERATOR COMMANDS 4-14 CB24

(." j

(

(

(

CREATE GROUP

Command Name: CG

Perfonn the initialization necessary to initiate an online task group.

FORMAT:

CG id base_Ivl ctLarg

ARGUMENT DESCRIPI'ION:

id
The group identification of the new task group, expressed in two characters. A user task group
cannot have the'$ as the first id character.

base.-!vl
A base priority level, relative to the highest system physical level, at which tasks in the batch
task group will execute. A base (or relative) level of 0, if specified, is the next higher level
above the system priority level. The sum of the highest system physical level plus 1, and the
base level, and the relative level of a task, must not exceed 6210,

ctLarg

One or more control arguments from the following:

The -POOL argument is required.

{ -EFN root }
-EFN root?entry

The root segment of a bound unit root is to be loaded as the lead task if it is not already
loaded and linked as sharable.
The root segment name can be suffixed with ?entry, where entry is a symbomlic start
address within the root segment. If?entry is not given, the start address established when
the bound unit was linked is assumed.

-ECL
The root segment of the command processor is to be loaded as the lead task.

-LRNn
Specifies the highest logical resource number (LRN) that will be referred to by any task in
the task group. The highest LRN us by the system task group is the default if this argument
is not specified.

-LFNn
Specifies the highest LFN used by any task in the task group. If -LFN is not specified, n
assumes the value of 15. Refer to the ASSOCIATE PATH or GET FILE command in the
Commands manual.

-POOL id
id is a two-character ASCII identifier and is the name of the memory pool from which all
memory required by this task group is to be taken. This argument is required, and must
name a pool defined at system initialization by a CLM MEMPOOL directive.

Note:
-EFN or -ECL, but not both, can be specified. If neither is specified, -ECL is
assumed.

FUNCTION DESCRIPTION:

The CREATE GROUP command causes the initialization and allocation of all data structures
used by the system to define and control the execution of a task group. It causes the loading of the
root segment of the lead task of the task group. It does not cause the system to activate any task
within the task group.

OPERATOR COMMANDS 4-15 CB24

--------------- --- ------

Example:
CG AX 10 -EFN MAIN-.PG?ENTRY1 -LRN 18 -POOL A2

A task group identified as AX is created. The lead task of the group is the program MAIN-.PG, in
the system task group's working directory, whose execution is to be started at the symbolic
address ENTRYl. No task in the group will execute at a base priority level lower than 10, nor
refer to a logical resource number higher than 18. Memory will be obtained from the pool
identified as A2 at system configuration.

OPERATOR COMMANDS 4-16 CB24

(... --~

j

(

(

(

DELETE BATCH

Command Name: DB

Mark the batch task group as eligible for deletion when it becomes dormant.

FORMAT:

DB

ARGUMENT DESCRIPI'ION:

No a~ents are required or permitted with this command.

FUNCTION DESCRIPI'ION:

The DELETE BATCH command removes all ofthe data structures that were constructed by the
CB command issued previously. No more ENTER BATCH REQUEST commands can be issued
for the batch task group after the DB command has been executed. The DB command takes effect
immediately if the task group is dormant when the command is issued. If it is active (i.e., if its
code is being executed and/or there are still requests in the task group's request queue), the DB
command takes effect when execution terminates and there are no more requests in the queue.

When the batch task group is deleted, the memory occupied by the data structures defining the
group is returned to the system memory pool.

OPERATOR COMMANDS 4-17 CB24

DELETE GROUP

Command Name: DG

Mark the online task as eligible.for deletion when it becomes dormant.

FORMAT:

DO id

ARGUMENT DESCRIPTION:
id

The group identification of a task group previously created by a CG command specifying the
same id.

FUNCTION DESCRIPTION:

The DELETE GROUP command removes all of the data structures that were constructed by the
CG command issued previously with this id. No more ENTER GROUP REQUEST commands
can be issued for this task group after the DG command has been executed. The DG command
takes effect immediately if the task group is dormant when the command is issued. Ifit is active
(i.e., if its code is being executed and/or there are still requests in this task group's request
queue), the DG command takes effect when execution terminates and there are no more
requests in the queue.

When a task group is deleted, the memory occupied by the data structure defining the group and
any memory associated with the execution of the group are returned to the appropriate memory
pool.

OPERATOR COMMANDS 4-18 . CB24

\ ,
",j

(

(

ENTER BATCH REQUEST

Command Name: EBR

Enter a request in the batch request queue for execution of the command processor.

FORMAT:

EBR useLid in_path [ctLarg]

ARGUMENT DESCRIPTION:

user.-ld
A field comprising three subfields in the form person.account.modea , which identifies this
request. See Section 1 for description of user~d.

i~path

The name of the file from which the command processor is to read its commands.

[ctLarg]
One or more control arguments from the following:

-OUT ouLpath
Defines the pathname of the file which is to receive output from the batch task group. Ifnot
specified, one of the following assumptions is made:

If i~path specifies a disk file, ouLpath = i~path.AO
If i~path specifies an interactive terminal, ouLpath = i~path
If i~path specifies an input-only device, ouLpath is null.

-WD path
Specifies that path is to be used as the working directory pathname instead of null.

-ARG arg arg ... arg
Indicates that additional arguments required by the task group during execution follow.
These additional arguments are passed to the command processor to be used as necessary
and are substituted for parameters in the command-in file. If used, the -ARG control
argument must appear last. Refer to the beginning of this section for an explanation of the
use of additional arguments.

FUNCTION DESCRIPTION:

The EBR command initiates execution of the command processor as the lead task in the batch
task group previously created by the CB command. When the task group is dormant when the
EBR command is issued, execution begins immediately. When the group is not dormant, the
request for execution is queued, for execution when the task group becomes dormant, i.e., when
the current batch request is terminated.
The command processor will first execute the EC file working-directory >START_UP.EC (if
there is one). The working directory is the one specified in the optional -WD path argument.
Whether or not these files exist, the command processor remains active expecting more commands.

Since the command processor obtains its commands from the file named in the i~path argument,
that file must begin with a command, although it may contain other items, such as Editor directives,
that the called command function may require for execution.

When displayed by system software, a user identification (user .-ld) is shown as person.account.ABS.

Example:
EBR BROWN. LIBRARY CMMD-IN

The batch task group is to be activated by a request identified as BROWN. LIBRARY. It will
receive its input from and direct its output to files identified as CMMD_IN and
CMMD_IN.AO, respectively. The working directory pathname for this request is null,
since -WD was not specified.

OPERATOR COMMANDS 4-19 CB24

ENTER GROUP REQUEST

Command Name: EGR

Activate the lead task of an online task group previously created by a CREATE GROUP
command.

FORMAT:

EGR id useLid [in_path][ctLarg]

ARGUMENT DESCRIPTION:

id
The group identification of a task group previously created by a CG command specifying the
same id.

user-1d

A field comprising three subfields in the form person.account.mode.:l, which identifies this
request. See user_id description in Section l.

[i~path]

The name of the file from which commands or user input are to be read by the task group
during execution. This argument is set to null if it is not specified. It is required if the CG
command specified the control argument-ECL.

[ctLarg]
One or more control arguments from the following:
-OUT out-path

Defines the pathname of the file that is to receive user output from the task group. If not
specified, one of the following assumptions is made:
i~path specifies a disk file, out-path = i~path.AO
If i~path specifies an interactive terminal, out-path = i~path

If i~path is not specified, out-path is null
If i~path specifies an input-only device, out-path is null.

-WD
Specifies that path is to be used as the working directory pathname.

-ARG arg arg ... arg
Indicates that additional arguments required by the task group during execution follow.
These additional arguments are passed to the lead task to be used as necessary and are
substituted for parameters in the command-in file. If used, the -ARG control argument
must appear last. Refer to the beginning of this section for an explanation of the use of
additional arguments.

FUNCTION DESCRIPTION:

The EGR command initiates execution of the lead task of a task group previously created (by a
CG command). If the task group is dormant when the EGR command is issued, task execution
begins immediately. When the group is not dormant, the request for execution ofthe lead task is
queued, for execution when the task group becomes dormant; (an earlier EGR command
activated this task group and execution has not yet terminated.

Execution of the lead task begins at the point specified by the -EFN argument.

When the comma.nd processor is the lead task; the processor will first execute the EC file
working-directory>START_VP.EC (if there is one). The working directory is the one specified
in the -WD path argument. Whether or not these files exist, the command processor remains
active expecting more commands. After the START_VP.EC file is executed, execution begins
with reading the file named in the i~path argument. That named file must begin with a
command, although it may contain other items required for execution of the called command
function.

OPERATOR COMMANDS 4-20 CB24

/

(

(

(

Example:

EGR AX SMITH.SERVICES MPG_DATA -WD >UDD>SERVICES>SMITH -AGR '07/12/76 llOOAM'

The task group identified as AX in a previous CG command is to be activated. This request
is identified as SMITH.SERVICES. The task group expects its input data to come from a file
named MPG-.DATA, in the issuer's working directory, and will write its output to a file
named MPG-.DATA.AO, in the same working directory. The working directory for group
AX will be >UDD>SERVICES>SMITH. The lead task expects one argument, a date and
the time item. The item is enclosed in apostrophes because there is an embedded space, but
it is to be interpreted as a single argument.

OPERATOR COMMANDS 4-21 CB24

EXECtniON COMMAND

Command Name: EC

Call the command processor to read operator commands from a designated file.

FORMAT:

EC path [ctLarg]

ARGUMENT DESCRIPTION:

path
The name ofa file containing operator commands and EC directives. Ifpath is a disk file, the
system appends .EC to path.

[ctLarg]
The list of additional character string arguments, arg arg ... arg, that are to be substituted
for substitutable parameters in the input lines of the command-in file. The pathname of the
EC file is substituted for all occurrences of &0 in the command-in file, the first additional
argument for all occurrences of &1, the second additional argument for all occurrences of &2,
etc. Refer to the beginning of this section for details about additional arguments.

FUNCTION DESCRIPTION:

The command processor reads from a previously created file a series of operator commands and
EC directives. It provides a mechanism to execute a sequence of routinely performed functions
without manual entry of commands through the operator terminal.

The file path.EC is a sequentially processed file containing ASCII images of one or more
operator commands and EC directives. These images are interpreted by the command processor
as indicated below.

When a command is encountered, it is simply passed to the command processor for intertre­
tation and execution. This means that the syntax ofthe command as read from the file path.EC
must be identical to that entered from a terminal device ifthe function were requested manually.
All arguments must be supplied as specified in the individual operator command descriptions.

When a command execution terminates, control is returned to the command processor, which
then reads the next line from the file.
The EC file can also contain EC control directives that are not passed to the command processor,
but are interpreted and acted upon by the directive routines. These directive lines are identified
by a character string beginning with & and followed by a A (space or tab character). They
provide control over certain operational aspects of the command processor as well as a degree of
control over the logic of execution of the series of commands. Any & directive other than those
described below is treated as an &QA directive, except that an error status code is returned to the
task that invoked the EC command. This code comprises the last four hexadecimal digits of the
error code (see System Messages manual).

The EC control directives are described in detail below.

&A
This signifies a comment line and is not processed further. It is visible only by obtaining a
listing of the EC file, and can be used, for example, to describe the function performed by the
commands contained in the file.

&M
This directive signifies that the current command-in me (EC fiie) is to be substituted for the
user input stream. This means that whenever the executing task refers to its user-in file, the
data which would normally be read from this file is obtained instead from the file being read
by the command processor.

&DA
This directive restores the user-in file to that which existed when the EC file was invoked.

&FA
Command line printing is to be turned off; i.e., command lines are, not to be written to the
user-out file. This is the default; command lines are not normally written to user-out.

OPERATOR COMMANDS 4-22 CB24

(

&NIl
Command line printing is to be turned on. Each command line read from the EC file is written
to the user-out file before being passed to the command processor. The & directive lines, except
for &PIl lines, are not written.

&PIl
The entire line, except for the &P Il, is written to the user-out file . Printing of &P Illines occurs
regardless of whether command line printing is on or off.

&IFIl
This directive permits the interrogation by the command processor of an error status code
returned by the command executed immediately prior to the &IFIl directive. For
compatibility across all GCOS systems, it has the format:

&IF MEQUALSIl&STATUSIlO]Il&THENIl&ELSEIl&QUIT

and is interpreted as follows:

If the error status code returned from the execution of the immediately preceding command
line is zero, continue with the next command or directive line; otherwise quit.

The &IFIl directive enables the command processor to exit from any further processing ofthe
EC file when an error condition resulting from the interpretation or execution of a command
would make meaningless the execution of any subsequent commands.

&QIl
The execution of the current EC file is terminated, and control is returned to the invoking
task. Implicit &QIl directives may be executed as described above, by invalid & directives or
because of error status codes returned by the interpretation or execution of a command line.
To ensure proper termination of the EC command, every EC file should have the &QIl
directive as its last line.

Example:
At the beginning of each day's operations, the system operator is required to create and
initiate three task groups. One is the batch task group used for program development; the
other two are online task groups, one using the command processor and the other a
daily-run production program. The operator has created an EC file in the system task
group's initial working directory, system_volumLname. The name of the file is
CR_GRPS.EC and the following operator commands are contained in it:

CB
CG
CG
EGR

10 -LRN 10 -LFN 8
EC 5 -LRN 12 -POOL Al
PR 2 -LRN 15 -LFN 6 -EFN

EC GRP.PRIME >SPD>VIPOI
PROD-.A -POOL PI

EBR DEV.PROG >SPD>KSR02 -OUT>SPD>LPTOI -WD >UDD>PROG>DEV
EGR PR ADMIN.PROJ >SPD>CDROI -OUT >SPD>LPT02
&PIlGROUPS CREATED AND ACTIVATED
&QIl

The batch task group, created by the CB command, runs at base levellO with the EeL processor
as its lead task. Its user_id, established by the EBR command, is DEV.PROG. Its working
directory is >UDD>PROG>DEV. Its input (commands and user input) comes from an
interactive terminal KSR02, and its error and user output is directed to line printer LPTOl.

The first CG command creates an online task group EC, which, because no EFN is specified, uses
the command processor as its lead task. This task group can be used to create other groups in
response to the day-to-day needs of the installation, using whatever commands are required.
Task group EC operates at base level 5 and utilizes memory from the memory pool as Al at
system building. Its input and output are through the terminal VIPOl.

The second CG command creates an online task group PR, which uses a bound unit named
PROD-.A and its lead task. It operates at the highest level of the three tasks and obtains its

OPERATOR COMMANDS 4-23 CB24

-------.-- _ ..

memory from the memory pool PI. It receives its user input from a card reader CDR01 and
writes its user and error output to a second line printer LPT02.

At the conclusion of processing of the EC file, a message is directed to the system operator
stating that the task groups have been created and activated. If any errors were encountered in
the interpretation or execution of the operator commands, an appropriate error message
displayed to the system operator and processing of the EC file continues.

The sequence of commands in the above example is intended to show that, once a set of task
groups has been created, the order of activation (by the EBR or EGR command) is immaterial.
While group EC may begin its execution first by virtue ofits request having been processed first,
as soon as the request for group PR is processed, group PR takes priority over group EC because
its priority level is higher.

OPERATOR COMMANDS 4-24 CB24

(

(

FILE OUT

Command Name: FO

Change the destination to which system messages to the operator are sent.

FORMAT:

FO [path]

ARGUMENT DESCRIPTION:

[path]
The pathname of the new destination for operator output. It can represent any file or device
capable of being used for output. If the argument is omitted, the operator-out file reverts to
that established at the conclusion of command processor startup.

FUNCTION DESCRIPTION:

The FILE OUT command defines a new file or device pathname to which output generated by
the system task group will be written. The file or device is reserved with exclusive concurrency
except that the operator terminal is reserved with shared read/write. When the command
processor is initially activated, the system output file path name is >SPD>CONSOLE. Error
output is also written to the same file.

The FO command makes it possible for the operator to redirect the message output (but not the
error output) to a different file or device for reasons, say, of high output message activity, in
which case a faster output device such as a line printer might be desirable.

The use of the FO command without the path argument resets the destination of the operator
output to the operator terminal.

Example:
FO >SPD>LPTOI

The output generated by the system task group is directed to the line printer LPTOl.

OPERATOR COMMANDS 4-25 CB24

UST SEARCH RULES

Command Name: LSR

Display the search rules currently defined for the system task group.

FORMAT:

LSR

ARGUMENT DESCRIPI'ION:

No arguments are required or permitted with this command.

FUNCTION DESCRIPTION:

The LIST SEARCH RULES command writes to the operator output file the full pathnames of
the directories used by the loader in its search for bound units.

The search rules define three directory pathnames and the sequence in which they are used
during a search. The first of these is the system task group's working directory; its pathname is
" system_volume_name at the completion of command processor startup, and remains so until
modified by one or more CHANGE WORKING DIRECTORY commands. The second is the
system directory LIBI. The third is the system directory LIB2. The pathnames associated with
Lffil and LIB2 can be changed through the use of the CHANGE SYSTEM DIRECTORY
command. The pathnames returned by the LSR command always reflect the current directory
pathnames.

Example:
The system task group's initial working directory is "SYSVOL, the pathname value for LIBI
and LIB2 is "SYSVOL>SYSLIBI, and no CWD or CSD commands were issued. The LSR
command returns

"SYSVOL
" SYSVOL>SYSLIBI
" SYSVOL>SYSLIB2

A CSD NEW -DIR -LIB2 command was executed at some point prior to issuance of the LSR
command. The LSR command now returns

"SYSVOL
" SYSVOL>SYSLIBI
" SYSVOL>NEW _DIR

4·26 CB24

(

LIST WORKING DIRECTORY

Command Name: LWD

List the full pathname of the working directory of the system task group.

FORMAT:

LWD

ARGUMENT DESCRIPrION:

No arguments are required or permitted with this command.

FUNCTION DESCRIPTION:

The LIST WORKING DIRECTORY command can be used to write to the operator-out file the
full pathname of the working directory currently being used by the system task group. It is
useful to be able to establish the identity of the working directory after having made several
changes of working directories through the use of CHANGE WORKING DIRECTORY
commands. The LWD command causes the full pathname of the working directory to be written
to the operator-out file in the form

1\ volume_name[>dirl] .. :

The ellipsis indicates that one or more subordinate levels may be included in the pathname of
the current working directory, depending on the nature of previously issued CWD commands.

Example:
Assume that the system task group's initial working directory pathname was 1\ VOL_Ol as
established at command processor startup, and that a CWD EC-DIR command has been
issued since that time. The LWD command returns

1\ VOL_Ol>EC_DIR

If, starting with this working directory, a CWD <command is issued, a subsequent LWD
command would return

1\ VOL_Ol

OPERATOR COMMANDS 4-27 CB24

LOAD SHARABLE BOUND UNIT

Command Name: LOAD

Load a sharable bound unit into the system memory pool.

FORMAT:

LOAD path

ARGUMENT DESCRIPTION:

path
Pathname of the sharable bound unit to be loaded.

FUNCTION DESCRIPTION:

This command (or a command from the system START_UP.EC file) loads the named sharable
bound unit into the system memory pool. The effect of this command is as though a "dummy"
task group had been created with the sharable bound unit as its lead task, but without a group
data structure, then not using or terminating the task group.

The bound unit to be loaded must have been linked with both the SHARE and SYS directives
otherwise an error message results and the bound unit is not loaded.

Any bound units loaded by this command can be unloaded only with an UNLD operator
command (described later in this section), otherwise the named bound unit will remain in the
system memory pool.

OPERATOR COMMANDS 4-28 CB24

(

(

MODIFY EXTERNAL SWITCHES

Command Name: MSW

Modify selected external switches associated with the indicated task group.

FORMAT:

MSW id ctLarg

ARGUMENT DESCRIPrION:

id
The group identifier of the task group whose switches are to be modified.

ctLarg
One or more control arguments from the following:

-ONSJvSa ...

Set the external switch indicated by S i ON. Each S i is a hexadecimal digitfrom 0 through F.

-OFF SJSi] ...
Set the external switch indicated by Si OFF. Each Si is a hexadecimal digit from 0 through
F.

-ALL v
Set all switches to the value v. The value v can be either ON or OFF.

FUNCTION DESCRIPTION:

The MODIFY EXTERNAL SWITCHES command enables the system operator of modify the
external switches by which a user task group can control its execution. An external switch can
be thought of as a hardware switch on a control panel, which can be set on or off manually by an
operator. There is a separate word associated with each task group created, giving each group
the capability of addressing 16 switches. A user program can contain instructions or statements
which interrogate the settings of one or more of these switches, and can use these settings to
control the execution logic of the program.

Example:
MSW AX -ON 25 -OFF 7B

In the task ,group identified as AX, external switch numbers 2 and 5 are to be set ON, and
external switch numbers 7 and B are to be set OFF.

OPERATOR COMMANDS 4-29 CB24

MODIFY FILE

Command Name: MF

Modify the attributes of the specified file.

FORMAT:

MF path ctLarg

ARGUMENT DESCRIPI'ION:

path
The pathname file whose attributes are to be changed.

ctLarg
One or more control arguments from the following:

j -SHARE}
t -SHR

Specifies that the named file is to be made accessible to the batch task group.

{ -NONSHARE}
-NS

Specifies that the named file is to be made inaccessible to the batch task group.

{ -READ}
-RD .

Specifies that no users are given permission to write to the named file; only reading is
permitted.

{ -WRITE}
-WR

Specifies that users are permitted access to the named file in the output, update, or extend
mode.

Note:
The arguments within the argument pairs -SHARE and -NONSHARE, and
-READ and -WRITE, are mutually exclusive.

FUNCTION DESCRIPTION:

The MODIFY FILE command allows the accessibility and permission attributes of a file to be
modified. When a file is first created (see CREATE FILE command in the Commands manual) it
is accessible to both online and batch task groups. It can also be read from and written to by any
task. Its initial attributes are thus SHAREIWRITE.

If a file is made inaccessible to the batch task group (through the use of the -NS control
argument), no access of any kind by the batch task group is permitted. Furthermore, directories
can be given the -NS attributes; in this case the directory and all subdirectories and files
contained within it are inaccessible to the batch task group.

Read protection can also be given a file by the use of the -RD control argument. This argument
makes the file a read-only file, preventing any task groups, online or batch, from writing to the
file. It can still be read by online tasks and, unless the -NS argument has also been specified, by
bat.ch tasks as well. Attributes assigned to nondisk files by this command remain in effect only
for the current initialization of the system. If the system is reinitialized, attributes for these files
revert to SHAREIWRITE.

Example:

MF >UDD>PROJ1>USERA>FlLEOl -NS

A file is to be made inaccessible to the batch task group. It remains accessible by online tasks and
the read/write protection remains unchanged.

OPERATOR COMMANDS 4-30 CB24

(

(

REASSIGN

Command Name: RAS

Exchange one device for another of the same type, or cancel a mount request for a device or
volume.

FORMAT:

RAS ctLarg

ARGUMENT DESCRIPrION:

ctLarg
One control argument from the following:

-SWAP dev --namel dev --name2
The device controlled by the driver associated with dev--namez is to be interchanged with the
device under the control of the device driver associated with dev--namel. Both devices must be
of the same type and must be omine (in standby).

-CANCEL name
This control argument is used when a device or volume named in a file manager mount
message is unavailable. It instructs the file manager to continue processing along the "not
found" path. For disk, if the mount message is "MOUNT 1\ vol id", the form of the name
argument is 1\ voLid; if the mount message is "MOUNT >SPD >dev _name", the form of the
name argument is dev _name. For magnetic tape, the form of the name argument is always
dev_name.

FUNCTION DESCRIPrION:

The REASSIGN command enables the system operator to substitute one device for another of
the same type. In case of a disk device malfunction, for example, the device can be replaced by
another through the use of the -SWAP control argument. This argument gives the symbolic
device names of the replaced and replacing devices as dev--namel and dev--name2, respectively.
The device names are those assigned to the devices at system building.

If a task issues a request for a file or volume of the file manager, and that file or volume is not
mounted, the file manager issues a mount message to the system operator. If the operator
determines that the requested volume, or the device upon which it is to be mounted, is
unavailable, he can respond to the message with an RAS command specifying the -CANCEL
control argument, causing the file manager to respond to the task with a not found status code.

ABORT GROUP REQUEST or ABORT BATCH REQUEST must not be directed to a task group
which has a mount request outstanding. Prior to aborting the task group, any mount request
issued for it must first be cancelled through the use of the REASSIGN command.

Example 1:
RAS -SWAP LPTOO LPTOl

The printer LPTOO is to be interchanged with printer LPrOl.

Example 2:
RAS -CANCEL 1\ USER04

A task has requested the mounting of a volume USER04, and the file manager issued a message
to the operator directing him to mount the volume. The operator determined that the volume is
not available. He issues the RAS command to inform the file manager that the volume is
unavailable, and that it is to return a volume not found status code to the task.

OPERATOR COMMANDS 4-31 CB24

SET DATE

Command Name: SD

Set the system internal clock to the indicated date and time.

FORMAT:

SD 'yyyy/mm/ddahh[mm[:ss]]'

ARGUMENT DESCRIPTION:

'yyyy/mm/ddahh[mm[:ss]]'

The date and time to which the clock is to be set. yyyy is the year, mm is the month and dd is the
day, in decimal. hh is the hour of day, and the optional mm and :ss specify minutes and seconds,
respectively. The A represents exactly one space.

FUNCTION DESCRIPTION:

The SD command permits the system operator to initialize the system's internal clock to a
specified date and time of day. The date and time, expressed as an ASCII character string, are
converted to an internal form representing the number of milliseconds elapsed since
January 1, 1901. The use of this command enables the system to respond appropriately to any of
the several executive system service calls related to task control based on the passage of time.

The date/time value specified must be enclosed in apostrophes or quotes because of the
embedded space between the dd and hh portions.

The SET_DATE should be issued immediately after system initialization. The date/time, once
specified, should not be respecified to an earlier date/time without reinitializing the system.

OPERATOR COMMANDS 4-32 CB24

(

(

(

SPAWN GROUP

Command Name: SG

Create, request the execution of, and then delete a task group.

FORMAT:

SG id useLid basLlvl [in_path] ctLarg

ARGUMENT DESCRIPTION:
id

The group identification of the task group to be spawned, expressed in two characters. A
user task group cannot have the $ as its id first character.

user_id

A field comprising the subfields person.account.modei1, which identifies this request. See
user _id description in Section 1.

base_Ivl

A base priority level, relative to the highest system physical level, at which tasks in the
batch task group will execute. A base (or relative) level ofO, if specified, is the next higher
level above the system priority level. The sum of the highest system physical level plus 1,
and the base level, and the relative level of a task, must not exceed 62 10,

[in_path]

The name of the file from which commands and user input are to be read by the task group
during its execution. The file name is set to null if the in_path argument is not specified.
in_path must be specified if the command argument -ECL (see below) is used or implied.

ctL..arg

One or more control arguments from the following. The -POOL argument is required.

-OUT ouLpath
Defines the pathname of the file which is to receive user output from the task group. If
not specified, one of the following assumptions is made:

If in_path specifies a disk file, ouLpath = in_path.AO

If in_path specifies an interactive terminal, ouLpath = in_path.

If in_path is not specified, ouLpath is null.

If in_path specifies an input-only device, ouLpath is null.

-WD path
Specifies that path is to be used as the working directory pathname.

-EFN root
-EFN root?entry

The name of a bound unit root segment to be loaded as the lead task, if not already loaded
and linked as sharable. The root segment name can be suffixed ?entry, where entry is a
symbolic start address within the root segment. If ?entry is not given, the start address
established when the bound unit was linked is assumed.

-ECL
Specifies that the lead task of the spawned task group will be the command processor.

-LRNn
Specifies the highest LRN that will be referred to by any task in this task group. The highest
LRN used by the system task group is the default if this argument is not specified.

-LFNn
Specifies the highest LFN used by any task in the spawned task group. If -LFN is not specified,
n assumes the value 15.

OPERATOR COMMANDS 4-33 CB24


~~~------

-POOL id 
id is a 2-character ASCII identifier and is the name of the memory pool from which all memory 
required by the spawned task group is to be taken. This argument is required, and must name 
a pool defined by a CLM MEMPOOL directive. 

ARG ~~ - arg arg ... arg 
Indicates that additional arguments required by the spawned task group during execution 
follow. These additional arguments are passed to the lead task of the spawned group to be used 
as necessary and are substituted for parameters in the command-in file. If used, the -ARG 
control argument must appear last. Refer to the beginning of this section for an explanation of 
the use of additional arguments. 

Note: 
If any SG command, -EFN or -ECL, but not both, can be specified. If neither is 
specified, -ECL is assumed and the in_path argument is required. 

FUNCTION DESCRIPTION: 

The SPAWN GROUP command combines the functionality of the CREATE GROUP, ENTER 
GROUP REQUEST, and DELETE GROUP commands. It implicitly causes the execution of 
these three functions in sequence; i.e., allocates and creates the data structures required to 
define and control the execution of the task group, places a request against the group, thereby 
activating it, and, when execution terminates, removes all controlling data structures and 
returns memory used by the task group to the appropriate memory pool. 

The operator can use the SG command to create and activate a task group whose existence is 
dependent upon the actions of the task group itself, rather than upon any explicit action on the 
part of the operator. A task group using the command processor as its lead task is an example of 
such a group; it is initiated by the SG command, and it is terminated by a BYE command entered 
by the user on whose behalf the task group is running. The duration of any task group may vary, 
the significant difference between a spawned task group and a created task group is that, in the 
former case, the operator need not know when its execution terminates in order to delete the 
group and return its resources to the system. He does, however, have the ability at any time to 
determine the status of the group in question, through the use of t~e STATUS GROUP 
command. 

Example: 
An installation runs an application which is to begin at 10:00 A.M. each day, and lasts for an 
indeterminate period. The application updates a master file, accepting transaction input 
from a remote terminal device. It writes its output to a mass storage file for later conversion 
to hard copy. At the specified time the system operator enters the command: 
so UM SMITH.REMOTE 10 >SPD>VlP06 -EFN UPMAST -OUT MSTRLST -POOL M1 -WD UDD>REMOTE>SMITH 

The data structures defining and controlling task group UM are allocated and initialized. A 
request identified as SMITH. REMOTE as entered against the task group. The group's 
working directory is >UDD>REMOTE>SMITH. A bound unit, UPMAST, contained in 
this working directory, is defined as the lead task of the group, and obtains its input data 
from the device whose pathname is >SPD> VIP06. It writes its output to a file, MSTRLST, 
also contained in the working directory. The base level at which the application runs is 10, 
and memory is obtained from the memory pool identified as Ml. 

It is assumed that when the user has completed the entry of transaction items he enters a 
unique termhUition code which is interpreted by the UPMAST progra..-n as a signal to issue 
a system service call to the Monitor to terminate execution of the application. When this 
occurs, the system deletes the task group and returns all of the group's resources to the 
system for use by other task groups. 

When the application has terminated, the output written to the MSTRLST file can be 
transcribed to hard copy by entering a request to the batch task group to print the contents 
of the file. 

OPERATORCO~DS 4-34 CB24 



( 

( 

(--

STATUS GROUP 

Command Name: STG 

Display the status of the indicated task group. 

FORMAT: 

STG id [ctLarg] 

ARGUMENT DESCRIPTION: 

id 
The identifier of the group whose status is requested. The batch task group identifier is $B. 

[ctLarg] 
One or more control arguments from the following. 

-TASKS 
Specifies that the statuses of all tasks in the indicated task group are to be listed. This is the 
default if no control arguments are present. 

-FILES 
Requests the names of all files that are currently associated with the indicated task group, 
their types, concurrencies and LFNs, and whether they are open or closed. 

FUNCTION DESCRIPTION: 

The STATUS GROUP command writes to the operator-out file a summary of the current status 
of a task group. In addition to information pertinent to the group as a whole, two other categories 
of status information are displayed; that relating to tasks within the group and that relating to 
files currently associated with the group. 

The following items provide status information relative to the task group as a whole: 

• Task group identification 

• Current state of the task group: 
B = Batch, not rolled out 
R = Batch, rolled out 
S = Suspended 
X = Task is being terminated 
D = Dormant 
A = Active 

• Memory pool identification, if the task group is not batch 

• Current user_id. UseLid for the batch task group is person.account.ABS. 

• Full pathname of the error-out file 

• Full pathname of the user-out file. 

Task-specific status information consists of the following group of items for each task: 

• Task logical resource number (if a created task) or the letters ST (if a spawned task) 

• Task priority level 

• Current state of the task: 
D = Dormant 
S = Suspended 
W = Waiting 
A = Active 

• First six characters of the task's bound unit name 

• Full pathname of the command-in file 

• Full pathname of the user-in file. 

OPERATOR COMMANDS 4-35 CB24 



.... _------ -----

File-specific information consists of the following group of items for each file: 

• Full pathname of the file 

• Concurrency of the file, represented by a digit from 1 through 5. The significance of the 
digits, for the task group specified by the id argument, and for other task groups, is as 
follows: 

For Group id 

1 = Read Only 
2 = Read Only 
3 = Read or Write 
4 = Read or Write 
5 = Read or Write 

For Other Groups 

Read Only 
Read or Write 
No Read, No Write 
Read Only 
Read or Write 

• File type. The rightmost six bits of the status word form a hexadecimal value for the file 
type; i.e., the left hexadecimal digit of the hexadecimal value can only represent 0 
through 3. See the COMMAND IN macro call in the System Service Macro Calls manual 
for the file type descriptions. 

• Logical file number, if one is associated with the file, otherwise spaces. 

• Open/closed status of the file. 0 for open, C for closed. 

If there are no files currently associated with the task group, a single item NO FILES is 
returned. 

The task group status information is always returned when this command is used. The task­
specific information is returned if no control arguments are given, or if explicitly requested by 
the -TASKS argument. If the -FILES argument is specified, the file-specific, but not the 
task-specific, information is given. 

When the system hardware includes the memory management unit (MMU), use the following 
command to display the status of the batch task group $B: 

~$saSTG~$B 

OPERATOR COMMANDS 4-36 CB24 

/ 



(-. 

STATUS SYSTEM 

Command Name: STS 

Display general system status. 

FORMAT: 

STS [ctLarg] 

ARGUMENT DESCRIPTION: 

[ctLarg] 
One or more control arguments from the following. 

-BA 
Specifies that the set of devices available to the batch task group is to be listed. An 
indication of the active files on each device is given, as well as the volume identifier of the 
mounted volume on each device. 

-ALL 
Specifies that the same information as described under -BA above is to be listed for all 
devices. 

-AVAIL 
All devices which have no open files associated with them are to be listed, with the volume 
identifier of the mounted volume. If no control arguments are specified with the command, 
this is the default. 

-SYMPD dev _name 
The status of the specific device dev _name is to be listed, including the volume identifier of 
the mounted volume. 

-GROUP 
All task groups are listed, including their pool identifiers and current request user _id's. 

-LBR 
All entries on the batch request queue are listed, including each user id and pathname. 

FUNCTION DESCRIPTION: 

The STATUS command allows the system operator at any time to ascertain the general status of 
the system with regard to task groups, their associated peripheral devices, memory pools, and/or 
entries in the batch reques queue. 

When the -GROUP control argument is used, the following status information is returned for 
each group: 

• Task group identification 

• Current state of the task group: 
B = Batch, not rolled out 
R = Batch, rolled out 
S = Suspended 
X = Task is being terminated 
D = Dormant 
A = Active 

• Memory pool identification, if the task group is not batch 

• Current user identification 

When the -LBR control argument is used, the following information is returned: 

• Batch request's user identification 

• Command/user inp}lt file pathname 

This information is repeated for each request currently in the batch task group request queue, 
and reflects the values specified in the user _id and in_path parameters of each EBR command 
currently awaiting execution. 

OPERATOR COMMANDS 4-37 CB24 



All of the remaining control arguments are related to the status of peripheral devices. When any 
of these is used, a display is returned in the form: 

b dev-.name vaLid { rPn } 

Contents of the display are defined as: 

b 
B if the device is accessible to the batch task group; otherwise spaces 

dev_name 
Device unit name or file name of a device specified in a CLM DEVICE directive 

voLid 
Name of the volume mounted on dev_name 

D 
Device is currently disabled 

nn 
00 if device contains no active files (i.e., device is available); or 01-991(10 indicating the 
number of currently active files on the device 

If there are no devices satisfyi~g the requested status, the command returns 

NO DEVICES WITH STATUS REQUESTED 

OPERATOR COMMANDS 4-38 CB24 

./ 



( 

SUSPEND BATCH 

Command Name: SSPB 

Temporarily terminate the execution of the batch task group, and roll it out of memory. 

FORMAT 

SSPB 

ARGUMENT DESCRIPTION: 

No arguments are required or permitted with this command. 

FUNCTION DESCRIPTION: 

The SUPSPEND BATCH command stops execution of any tasks that may be active in the batch 
task group, after completion of any outstanding input/output requests. Then, provided that at 
least one memory pool was configured (with the x argument of the CLM directive MEMPOOL), 
the batch group is then rolled out. The task group remains suspended and rolled out until it is 
reactivated by an ACTIVE BATCH command. All controlling structures remain intact and 
memory used by the group is returned to the memory pool during the suspended state. 

The batch task group is rolled out (if memory was configured as indicated above) following the 
suspend action. It cannot be rolled in until the operator issues an ACTB (ACTIVATE BATCH) 
command. 

If another task group that forced the batch task group to be rolled out (with a $SUSPG (Suspend 
Group) macro call) is aborted or terminated without explicitly enabling roll-in of the batch task 
group, the operator must issue an ACTB command for the batch task group to be rolled in. 

OPERATORCO~DS 4-39 CB24 



SUSPEND GROUP 

Command Name: SSPG 

._-------. --... --- ..... . 

Temporarily terminate the execution of the specified online task group. 

FORMAT: 

SSPG id 

ARGUMENT DESCRIPTION 

id 
The name of a task group previously activated which is to be suspended. 

FUNCTION DESCRIPTION 

The suspend group command stops execution of any tasks that may be active within the 
indicated task group, after completion of any outstanding input/output requests. The task group 
remains in the suspended state until reactivated by an ACTIVATE GROUP command 
specifying the same group id. All controlling data structures remain intact and memory used by 
the task group is not to the group's memory pool during the suspended state. 

If another task group that forced this task group to be suspended, with a $SUSPG (Suspend 
Group) macro call, is aborted or terminated, the operator must issue an ACTG command to 
activate the task group. 

OPERATOR COMMANDS 4-40 CB24 

./ 



TIME 

Command Name: TIME 

Display the current date and time in ASCII format. 

FORMAT: 

TIME 

ARGUMENT DESCRIPTION: 

No arguments are required or permitted with this command. 

FUNCTION DESCRIPTION: 

The TIME command returns the current date and time of day in an ASCII character string of the 
form 

yyyy/mm/dd hhmm:ss.mmm 

yyyy is the current year 
mm is the current month 
dd is the current day within the month 
hhmm is the time in hours and minutes 
ss is the current second within the minute 
mmm is the current millisecond 

The information returned by the TIME command depends upon the accuracy of the data entered 
in the SET DATE command. 

OPERATOR COMMANDS 4-41 CB24 



UNLOAD SHARABLE BOUND UN" 

Command Name: UNLD 

Unload from the system memory pool the sharable bound unit previously loaded with the LOAD 
operator command. 

FORMAT: 

UNLD path 

ARGUMENT DESCRIPTION: 

path 
Pathname of the bound unit to be unloaded. 

FUNCTION DESCRIPTION: 

The UNLD command removes from the system memory pool the sharable bound unit, with the 
same pathname, that was previously loaded by the LOAD operator command (described earlier 
in this section). Memory space used by the bound unit is returned to the system memory pool. 

The UNLD command does not take effect until there are no more users for the sharable bound 
unit. 

An attempt to unload any bound unit not previously loaded by the LOAD operator command 
results in an error message; the bound unit is not unloaded. 

OPERATOR COMMANDS 4-42 CB24 



( 

( 

(/ 

WRn-ABLE CONTROL STORE (WCS) LOAD 

Command Name: WCSLD 

Load one or more firmware object text files, stored on disk, into the writable control store (WCS). 

FORMAT: 

WCSLD ~pathl] [path2]'" [pathn~ [{~gUMF} [(XXX,yyy~ 

[t:~LL} (XXXX,xxxx,XXXX,XXXX)] [-OFF] [{~g:U} (X~ 

ARGUMENT DESCRIP1'IONS: 

path ... path 
Full or relative pathname(s) of firmware object text file(s) to be loaded 

{:gUMP} (xxx,yyy) 

Dump locations of the WCS, from locations xxx through yyy inclusive, to the user-out file after 
the WCS is loaded. xxx is the beginning (start) address of the area to be dumped, yyy is the 
inclusive end address. When both are omitted, the default is that the entire contents of the 
WCS random-access memory (RAM) are dumped. When xxx is omitted the default is the low 
address for any RAM in the WCS; when yyy is omitted, the default is the RAM's highest 
address. For the largest possible RAM the low address is 80016> the highest is FFF !flo 

-FILL , -FILL} 
-FL t -FL (xxxx,xxxx,xxxx,xxxx) 

Fill all remaining locations in the WCS, that were not written to when the fIrmware files 
were loaded, with the user-specified firmware word that comprises four 4-character 
hexadecimal words, separated by commas, all enclosed by a pair of parentheses. 

-CPU(x) 
Apply all arguments in this command to the WCS associated with the central processor on the 
channel indicated by x. 

-OFF 
Disable the wes (i.e., set it offline) after the wes loader has completed all actions indicated 
by the other WCSLD arguments. 

Although all arguments for this command are optional, at least one argument must be specified. 
Numerical values in arguments are hexadecimal. 

FUNCTION DESCRIPTION: 

The WCSLD command causes the wes loader to be executed under Monitor control in the 
system task group. The loader loads the WCS with user firmware in the form of object text files 
previously created by a wes assembler and stored on disk. The writable control store (WCS) is 
that hardware storage in microinstruction memory, located immediately above 
Honeywell-supplied firmware, into which the user can load his own firmware. (See the 
hardware manual Writable Control Store User's Guide, Order No. FQ41.) 

According to the specified arguments, the WCS loader functions are: 

1. Load one or more firmware files into wes. 
2. Fill unused locations in the wes with an operator-specified firmware word. 

3. Dump contents of the wes. 
4. Disable the WCS. 

The operator can request any function in any order separately or concurrently with another. 
However, the loader will execute each function, if requested , in the order shown above. Multiple 
firmware files (e.g., path!> pat~, pathru etc.) are loaded in the order in which specified. An 

OPERATOR COMMANDS 4-43 CB24 



attempt to load more than one file in the same location in one execution of the loader causes a 
warning error message. 

The WCS loader assumes that all firmware object text files were generated by the WCS 
assembler, and that their pathname(s) end with the suffix .WO. 

When the loader has completed its execution, it reports to the operator the internal name of each 
loaded file, its revision number, the date that it was assembled, and 20 characters of additional 
identification information. It does not identify the loaded files by their external directory 
names. 

When the WCS does not include any RAM's (random-access memory), the only arguments that 
can be entered with the WCSLD command are -OFF and -DUMP. 

The -OFF argument can be used to prevent user-coded generic instructions from being executed 
in the WCS PROMs. 

OPERATOR COMMANDS 4-44 CB24 

(' 

\./ 



( 

Section 5 

Task Interrupt (Break) 
from Operator Terminal 

The user at the operator terminal can interrupt or "break" a running task in order to reenter 
commands, temporarily halt the task, or to terminate it. The break sequence begins with the 
command .:lC.:lBid (id is the task group identifier). Subsequent steps and other conditions are 
described later in this section. 

At a user terminal that is not the operator terminal, the break can be activated by pressing the 
appropriate BRK (Break) or INTERRUPr key. Conversely, pressing the BRK or INTERRUPr 
key at the operator terminal has no break effect. 

BREAK FUNCTION USAGE 

Typically a break from the interactive command-in terminal can be used to interrupt: 

• Any program running in a task group whose lead task is the command processor. 

• Any program invoked through a $CMDLIN (process command line) Monitor macro call 
from the lead task. 

The break cannot be used with a program that is designated as the lead task in a create group 
or spawn group command. It can be used only under the following conditions: 

• When entered from an interactive command-in terminal (see the Commands manual). 

• When used to interrupt a program invoked from the lead task and by a command to the 
command processor. 

• When the task to be interrupted is not running under the system task group ($S). The break 
cannot be used to interrupt execution of any operator commands. 

BREAK PROCEDURES 

A break is effective only with an active running task. If the command processor is inactive, 
waiting for input, a break typein from the operator terminal will have no effect, and will result 
in the message: 

NO BREAK ORDER FOR id 

To effect a break (task interrupt) in a running task from the operator terminal: 

1. Type .:lC.:lBid (id is the task group identifier) 

2. The system then: 

a. Might truncate the current output line 

b. Temporarily suspends the active task 

c. Puts the lead task into "break mode" 

d. Issues the break prompter message ** BREAK** 

3. Enter a response according to one or more of the following shown in a, b, c, or d below. 

a. Enter any command (see the Commands manual), that is not an operator command (see 
Section 4). This may be followed by another command or by one of the response commands 
described later in this section. When the entered command that is not SR, BYE, 
NEW _PROC, UW, or PI (described later), completes execution, the lead task again 
enters break mode and issues another *BREAK** prompter message requesting another 
response. 

TASK INTERRUPT (BREAK) 
FROM OPERATOR TERMINAL 5-1 CB24 



--~~~------ ------

b. Enter one of the following break mode responses to the **BREAK** message: 

(1) SR (Start) This resumes execution of the suspended task i.e., as though the break 
had not been made. 

(2) BYE (Bye) This aborts and deletes the current task group request. 

(3) NEW _ PROC (New Process) This aborts all task requests in the task group except 
for the lead task; then restarts the task group, using the same arguments as specified 
in the initial task group request. 

Any of these commands terminates the current break, i.e., there will be no other 
**BREAK** message after they are executed. 

c. Enter UW (Unwind) If the current task is a Honeywell program listed in Table 5-1, it 
terminates itself and returns all its resources. The break responses indicated in 3a and 3b 
above are also usable with these programs. These system programs must be running in a 
task group whose lead task is the command processor. 

If the terminated task was invoked following a break, the lead task reenters break mode, 
issues another **BREAK** prompter message, and awaits a response. 

If the terminated task did not follow a break, processing continues as though the task 
terminated normally. 

A UW command to any system program other than shown in Table 5-1 results in a 0343 or 
0344 error return, followed by another **BREAK** prompter message. 

d. Enter PI (Program Interrupt) For Linker and Editor, suppress output and return to 
directive input level. The PI command suppresses output resulting only from the Linker 
MAP directive and from the Editor P-type directives. 

The PI command is meaningful only to the Linker and Editor running in a task group 
whose lead task is the command processor. The commands described in 3a, 3b, and 3c 
above are also usable with Linker and Editor. 

TABLE 5-1. SYSTEM PROGRAMS SUPPORTING UW (UNWIND) COMMAND 

Command Name 

ASSEM 
COBOL 
CP 
CPA 
CV 
DP 
ED 
FC 
FD 

Function 

Assembler 
COBOL Compiler 
Copy 
Compare 
Create Volume 
Dump Edit 
Editora 

File Change 
File Dump 

Command Name 

LCD 
LINKER 
LS 
MACROP 
MERGE 
PR 
SORT 
STG 

aBoth Editor and Linker also support the PI (Program Interrupt) command. 

UW AND PI COMMANDS IN USER APPLICAnON PROGRAMS 

Function 

List Creation Date 
Linkera 

List Names 
Macro Preprocessor 
Merge 
Print 
Sort 
Status Group 

PI and UW commands are effective in user application programs only when the task to be 
interrupted has been previously enabled for the necessary trap. The user program must include the 
$TRPIID and $ENTRP Monitor service macro calls for the simulated trap. 

BREAK COMMAND EXAMPLES 

Example 1: 
The Editor is executing a print directive, and during output, the user enters the break message 
acaBid, thereby stopping further output. After the **BREAK** message appears, the user 
responds with PI, which returns the program to directive input level. A response ofUW instead 
of PI, would have terminated the Editor. 

TASK INTERRUPr (BREAK) 
FROM OPERATOR TERMINAL 5-2 CB24 

/ 



( 

( ---- .. 
/ 

Example 2: 
An LS (LIST NAMES) command is executing with output going to the operator terminal. The 
user wants to change the output path to the line printer. One possible method is: 

1. Enter ACABid 

2. System responds with **BREAK** 

3. Enter FO >SPD>LPT01 

4. FO execution terminates; the system 
issues another **BREAK** message. 

5. Enter SR (start) command. 

Another possible method is: 

1. Enter ACABid 

2. System responds with ** BREAK** 

3. Enter the UW command 

4. Enter FO >SPD>LPT01 

5. Enter LS 

Example 3: 

Lead task enters break mode 

File out command specifying a line prin­
ter 

Resume execution of the LS command. 

Lead task enters break mode. 

The current LS task terminates itself. 

File out command specifying a line prin­
ter 

Start the list names (LS) program from 
the beginning. 

This example shows successive nested break functions. Though representing a continuous 
procedure, the example is shown in numbered sequences for clarity. 

1. The first sequence includes a command to the command processor to invoke the Editor, then 
to read and print the file PATH1. A break command is entered to interrupt the output, 
which was found to be from the wrong file. 

2. Following issuance of the **BREAK** message, the user enters LS (list names) to obtain 
a display ofPATH2 file names. He then enters another break command to interrupt that 
LS command in order to change the pathname from PATH2 to PATH3. 

3. A new LS command is entered to list the files in PATH3; however, the preceding LS 
command (for PATH2) is not terminated, but remains suspended. The required file is 
found at the beginning of the listing, the rest of the PATH3 list is not needed so the user 
enters a break command to interrupt listing of PATH3. 

The following command sequences are keyed to preceding numbered descriptions. 

1. Enter RDN The system will print RDY: as each 
command completes execution. 

Enter ED 

Enter R PATH1 

Enter 1,&P 

Editor issuing print lines 

Enter ACABid 

System issues **BREAK** 

2. Enter LS -PN PATH2 

System printing the list 

Enter ACABid 

System issues **BREAK** 

TASK INTERRUPf (BREAK) 
FROM OPERATOR TERMINAL 5-3 

Activates the Editor 

Read the file PATH! 

Print the file PATH1 

Causes a break in printing 

Command processor is in break mode 

List the PATH2 directory 

User determines list is for wrong directory 

Causes a break in the LS command for 
PATH2 

Command processor is in break mode 

CB24 



3. Enter LS -PN PATH3 -FILE 

System issuing the list 

Enter .:lC.:lBid 

List files in PATH3 directory 

User finds desired file, no more output 
needed 

Causes break in LS command for 
PATH3 

System issues **BREAK** Command processor is in break mode 

Subsequent actions are described as separate alternatives in Example 4 below. 

Example 4: 
This example consisting of five discrete actions, continues from Example 3, and in 
particular shows the use of the UW command to terminate successively activated tasks 
(i.e., unwind stacked tasks). Each part of the example is a separate procedure, indepen­
dent from the others, and shows an alternative method of continuing with Example 3. 

1. Start again at command level. 

Enter NEW _PROC Aborts all prior tasks; the command 
processor is ready for input. 

2. Return to the Editor directive input level. 

Enter UW 

System issues **BREAK** 

Enter UW 

System issues **BREAK** 

Enter PI 

Enter next Editor directive 

LS command for PATH3 terminates 
itself. 

Since the LS for P A TH3 followed a 
break, the command processor reenters 
command mode. 

LS command for PATH2 terminates 
itself. 

Since the LS for P A TH2 followed a 
break, the command processor reenters 
command mode. 

Editor is ready for the next Editor input 
directive. 

3. Return to command level by terminating in turn each previously activated task. 

Enter UW LS command for PATH3 terminates 
itself. 

System issues **BREAK** 

Enter UW 

System issues **BREAK** 

EnterUW 

System issues RDY: 

Enter next command 

4. Complete the printout of P ATHI file. 

EnterUW 

System issues **BREAK** 

EnterUW 

System issues **BREAK** 

TASK INTERRUPT (BREAK) 
FROM OPERATOR TERMINAL 5-4 

Command processor enters break mode. 

LS command for PATH2 terminates 
itself. 

Command processor enters break mode. 

The Editor terminates itself. 

Prompter message at command level. 

LS command for PATH3 terminates 
itself. 

Command processor enters break mode. 

LS command for PATH2 terminates 
itself. 

Command processor enters break mode. 

CB24 



( 

( 

(/ 

Enter 8R 

Editor issues print lines. 

5. Delete current task group request. 

Enter BYE 

TASK INTERRUPr (BREAK) 
FROM OPERATOR TERMINAL 5-5 

Restarts printing out of PATH! from 
point of interrupt. 

Deletes all task group request struc­
tures except the lead task. Another task 
group request is required to activate the 
lead task. 

CB24 





(--

( 

(/ 

Appendix A 

Additional Command Line Arguments (ARG) 

This appendix shows in detail how to use additional arguments that appear in command lines 
of operator commands, and applies when a user contemplates sophisticated use of the system. 

For command lines dealing with task or group activation there is a mechanism for handling 
additional arguments entered in the command line. If an activated task is a user application, the 
arguments are passed to the task for processing. On any command-in file that is not an inter­
active file or on a user-in file that is the same as a noninteractive command-in file, parameter 
substitution of command line arguments also occurs. 

ARGUMENT PASSING 

The arguments following the keyword -ARG in the EGR, EBR, and SG commands are passed 
to the activated task. If the task is the command processor, the argument list is used for parameter 
substitution. When the activated task is software used in program preparation or a utility, it uses 
the values in the argument list for its own required arguments. 

Examples: 
EGR AX SMITH. SERVICES -OUT>SPD>LPTOO -WD 1\ VOLA>JR -ARG -IN >SPD>CRDOO -LL 80 

A previous CG command has identified ED, for Editor as the name of the bound unit root 
segment to be loaded as the lead task. The arguments supplied to the Editor, namely, the 
input file pathname and maximum line length are included in the argument list for the 
EGR command. 
EGR AX SMITH. SERVICES -OUT >SPD>LPTOO -WD A VOLA>JR -ARG FILEA >UDD>BOOKS>FILEA -PR 20 

A previous CG command has identified CPA, for the compare utility, as the name of the 
bound unit root segment to be loaded as the lead task. The first and second arguments in the 
argument list are used for the first and second positional arguments in the compare 
command line. The third argument in the list is an optional keyword argument passed to 
the utility. 

If the task being activated is a user application that is to be passed arguments, it must 
contain an assembly language routine that looks at the argument list in its parameter 
block. The parameter block is a variable size augment to the task request block. These 
structures are described in the System Service Macro Calls manual. 

INPUT COMMAND LINE PARAMETER SUBSTITUTION 

A substitutable parameter in the command-in file is an ASCII character string whose first 
character is an ampersand followed by one or more digits, e.g., &0, &1, ... The digit indicates 
the position in the argument list of the data element to be substituted, namely, the first 
argument is substituted for &0, the second for &1, etc. Depending on the case, the first argument 
can be path or the first additional argument. 

If the argument list is smaller than the number of substitutable parameters present in the 
command-in file, the null parameter is substituted for all parameters not supplied in the 
argument list; e.g., XY&lZ is the substitutable line; after substitution with the null parameter 
for &1, it is XYZ. 

Parameter substitution enables a user to change parameters in a non interactive EC file. For 
example, this can be applied when an EZ command line is an abbreviation for a set of 
parameterized functions. Parameters are substituted for all lines read from the command-in 

ADDITIONAL COMMAND LINE 
ARGUMENTS (ARG) A-I CB24 



file. When &A is present in the EC file, parameters are substituted for all lines read from the 
user-in file. 

Nesting of argument lists is supported when a command line with additional arguments 
specifies a command file that, in turn, contains a command line with additional arguments that 
specifies a command file etc. At each level of nesting, the argument list to be used for the 
parameterized command file is taken from the arguments in the command line that specified the 
command file. 

EC FILE EXECUTION COMMAND 

The EC command has the format: 

EC path [arg 1 arg 2' •• J 
In the parameterized command-in file path is substituted for all occurrences of &0 arg 1 for all 

occurrences of &1, etc. To parameterize directives to system software, e.g., Linker, in the EC file, 
an &A directive must precede the command line activating the system software. This changes 
the user-in file to be identical to the command input file which is the EC file. 

Example: 
A task. group AX has previously been created with the command processor as its lead task. 
To execute the EC file, enter the following command lines: 

a$SaEGR AX IW >SPD>CONSOLE -WD 1\ VOLA>JR 
aAXaEC ASM_LNK TEST>SPD>LPT01 -NLTEST.L START_AD DIR>SEC 

The contents of the EC file ASM_LNK.EC are: 

ASSEM &1 -COUT &2 &3 
&A 
LINKER &1 -COUT &4 
parameterized linker directives 

After substitution the command lines contain: 

ASSEM TEST -COUT >SPD>LPT01 -NL 
&A 
LINKER TEST -COUT TEST.L 
parameterized linker directives 

After EGR is executed, both user-in and command-in files are the operator terminal. Mter 
the EC is executed, user-in is still the terminal whereas command-in is ASM_LNK.EC. The 
&A directive in the EC file is required to change the user-in file to be the same as the 
command-in file, namely, ASM_LNK.EC. If &A is not included, Linker directives are read 
from >SPD>CONSOLE. TEST is substituted for all occurrences of &1, >SPD>LPT01 for 
&2 -NL for &3 and TEST.L for &4. The first parameter &0 is not used. The arguments 
srART_AD and DIR>SEC are substituted for parameters in Linker directives. 

Example: 
The command line is: 

EC ASMBLTEST -COUT TEST.L -SAF 

The contents of the EC file, ASMBL.EC are: 

&PaSTART ASSEMBLY of &1 
ASSEM &1 &2 &3 &4 &5 &6 &7 &8 
&PaEND ASSEMBLY 
&Qa 

After substitution the command lines contain: 

&PaSTART ASSEMBLY OF TEST 
ASSEM TEST -COUT TEST.L -SAF 
&PaEND ASSEMBLY 
&Qa 

ADDITIONAL COMMAND LINE 
ARGUMENTS (ARG) A-2 CB24 



(~/ 

ASMBLis not substituted for any parameter. Since the first parameter, &1, is a positional 
parameter, the first argument must always refer to path, TEST in the example. Entries for 
the keyword parameters can appear in any order in the argument list or not appear at all. 

Example: 
If in the above example the command line was mistakenly entered as: 

EC ASMBL TEST -COUT -SAF 

After substitution the ASSEM command line contains: 

ASSEM TEST -COUT -SAF 

The positional argument following -COUT is missing and the next argument, -SAF, is 
substituted in its place resulting in an incorrect command line. 

GROUP REQUEST COMMANDS 

The following commands have parameter substitution performed on the command-in files 
read by the lead task. The operator command formats are shown; corresponding commands do 
not have a user _id argument. 

EBR useLid in_path [ctLarg -ARG arg 1 arg 2 ••• ] 

EGR id user_id [in_path][ctLarg -ARG arg 1 arg 2"'] 

SG id useLi base_Ivl [in_path] [ctLarg -ARG arg 1 arg 2"'] 

The lead task can be the command processor or an applications task each with its own rules for 
parameter substitution. 

1. If the command processor is the lead task, in_path is substituted for all occurrences of &0, 
the first argument following -ARG for &1, the second for &2, etc ... 

2. Ifan applications task is the lead task, the first argument following -ARG is substituted 
for all occurrences of &0, the second for &1, etc ... 

Example: 
The command line is: 

EBR IW TRYEDT -OUT >SPD>LfYl'Ol-WD /\ VOLA>JR -ARG TRYCOM 1100 

The contents of the noninteractive file TRYEDT are: 

&PaEDIT COMMANDS ARE IN &0 
ED 
R&l 
&2, &3P 
QT 
BYE 

After substitution, the command lines contain: 

&PaEDIT COMMANDS ARE IN TRYEDT 
ED 
RTRYCOM 
1,100P 
QT 
BYE 

The command processor is the lead task. TRYEDT is substituted for &0, TRYCOM for &1,1 
for &2 and 100 for &3. 

Example: 
This example illustrates the nesting of arguments in successive command lines. The task 
group activation command line is: 

EGR AX SMITH.SERVICES MPG DATA -WD /\ VOLA>JG -ARG TEST -NL TEST.L 
The first line of the non interactive command-in file MPG--DATA is: 

EC ASM_LNK &1 >SPD>LfYl'Ol &2 &3 START_AD DIR>SEC 

ADDITIONAL COMMAND LINE 
ARGUMENTS (ARG) A-3 CB24 



The contents of the EC file ASM_LNK.EC are: 

ASSEM &1 -COUT &2 &3 
&A 
LINKER & 1 -COUT &4 
parameterized linker directives 

After the first substitution, the EC command line is: 

EC ASM_LNK TEST >SPD>LPl'Ol-NLTEST.L START_AD DIR>SEC 

After substitution using the argument list in the EC command, the command lines in 
ASM_LNK.EC are: 

ASSEM TEST -COUT >SPD>LPl'Ol -NL 
&A 
LINKER TEST -COUT TEST.L 
parameterized linker directives 

A previous CG has created the AX task group whose lead task is the command processor. 
The additional arguments in the EGR command are substituted for the parameters in the 
command input file, MPG_DATA. 

After EGR is processed the command-in and user-in file is MPG _DATA. After the EC line is 
processed command-in is ASM_LNK.EC and user-in is still MPG_DATA. Linker reads its 
directives from user-in. If these directive are to be parameterized they must be in the 
command-in file. The &A directive changes the input file read by Linker from MPG _DATA 
to ASM_LNK.EC and the arguments in the EC line apply to parameterized lines in the EC 
file ASM_LNK.EC. 

After the lines in ASM_LNK.EC are processed, the command and user-in files revert back 
to MPG_DATA. For parameterized command lines that follow the first EC line in 
MP(LDATA the argument list is that of the EGR command. 

ADDITIONAL COMMAND LINE 
ARGUMENTS (ARG) A-4 CB24 

c 



(/ 

AppendixB 

Listener Component and Login Capability 

INSTALLING A SYSTEM LOGIN CAPABILITY 

System software includes a "listener" component that permits a user, with the LOGIN 
command, to gain access to the system from a user-designated noncommunications terminal 
(MDC-connected) or communications terminal (MLCP-connected). See the Commands manual 
for details. 

To provide a system with login capability: 

1. At configuration, provide enough memory pools, to be used as default pools, in the same 
number as the maximum number of concurrently logged-in users. 

2. Before activating the listener component, create a terminals file that describes the login 
characteristics of each terminal to be used for login purposes. A terminal can (a) require a 
LOGIN command typein, (b) allow a user to type an abbreviation for the LOGIN command 
line, (c) immediately log in the terminal, without any typein, when it is ready or connected. 

3. Activate the listener component as the lead task of a task group. 

MEMORY POOLS FOR LOGIN TASKS 

At login, a user may either specify a memory pool or use a default pool. If an installation 
provides default pools, they must be defined at configuration in the same number as the maximum 
number of users who can concurrently gain system access through the login procedure. The 
pools can be defined as completely overlapping by specifying each pool in a separate MEMPOOL 
directive. If no memory pools are configured specifically for login users, a pooLid must be 
specified in the LOGIN command line for each terminal. 

The default pooLid consists of two characters: the first is an alphabetic character specified by 
the user when listener is activated; the second is a system-appended character from 0 through 9 
and A through Z in that order, i.e., the first character must be determined at configuration even 
though not used until listener activation. This first character must be unique, i.e., not used for 
any memory pool other than for login. 

TERMINAL LOGIN CHARACTERISTIC FILE 

Each installation must create and name a terminals file that describes the login characteristics 
of each terminal to be monitored for system access requests. The file is created with the Editor 
and consists of variable-length records, whose arguments within a record are separated by one 
or more blank characters. The file consists of G-, T-, and A-type records and has the following 
layout: 

G-Record (only one per file) 

[A-Records - one or more for all terminals] 

T -Record - for a specified terminal 

[A-Records - one or more for the above terminal] 

T -Record - for another specified terminal 

[A-Records - one or more for the above terminal] 

G-RECORD IN LOGIN FILE 

There is one G-record in the login terminals file, in the format: 

G base.-lvl max-user 

LISTENER COMPONENT AND 
LOGIN CAPABILITY B-1 CB24 



base-.lvl 
Level, relative to the lowest numeric (highest priority) level not used by the system group, on 
which the lead task of groups spawned by listener for terminals, are to execute. 

max-user 
Maximum number of concurrent logged-in users allowed on the system. This value does not ~ 
include task groups created or spawned by commands other than LOGIN. Additionallogins 
exceeding this limit are terminated with a 3915 error status return. 

T-RECORD IN LOGIN FILE 

There is one T -record in the terminal login file for each terminal on which a user may log in, in 
the format: 

T dev -.name [login.-line] 

dev-.name 
Symbolic device name of the terminal, as specified at configuration. 

logiuine 
The login command line image (including the LOGIN or L characters) used instead of a user 
typein when a terminal is to be used for direct login. 

A-RECORD IN LOGIN FILE 

An A-record contains a character abbreviation and the associated LOGIN command line 
image that the listener will use when a user types in the abbreviation. A variable number of 
A-records may follow the G-record and/or any T-record. When a user enters an abbreviation, 
listener scans the A-records following the T -record for that terminal and if a match is found, uses 
that login line for logging in. If the abbreviation is not found, listener scans the A-records 
following the G-record for a match, and if a match is found, uses that login line for logging in. If 
no match is found, an error is displayed at the terminal. The format for the A-record is: 

A abbrev login.-line 

abbrev 
A 1-character abbreviation that a user can optionally type in when logging in on this terminal. 

logiuine 
The LOGIN command line image associated with the abbreviation. 

LISTENER ACTIVATION 

To provide terminal monitoring, the listener component must be activated as the lead task of a 
task group from the operator terminal any time after startup is complete and the configured 
system is operational. During activation of listener, none of the terminals to be monitored for a 
LOGIN command may be reserved. Once activated, listener cannot be turned off until the 
system is again started up. 

Listener is activated with the CG (CREATE GROUP) and EGR (ENTER GROUP REQUEST) 
operator commands, or with an SG (SPAWN GROUP) operator command, using the arguments 
shown below in addition to those described for those commands in Section 4. These command 
formats are: 

CG id base....Jvl -EFN LISTE!'lER -POOL id 

EBR id user_id -OUT >SPD>CONSOLE -ARG [ x] ["nlPssa<tp '] [{ 'pathll' }] , 
"pathll" " 

SG id user.,jd base....Jvl -EFN LISTENER -POOL id -OUT >SPD>CONSOLE -ARG [{.:~:~~~:,}] [x] I Hmessage"] 

LISTENER COMPONENT AND 
LOGIN CAPABILITY B-2 CB24 

-, / 

-------



( 

{ 'pathL.' } 
"pathL." 

x 

Pathname of the terminals file, which lists the terminals on which users may log in, and 
which contains the terminal characteristics records. 

The last character in the pathname must be a blank, and the entire pathname must be 
enclosed in either single or double quotes. An omitted (default) pathname must be written as a 
pair of enclosing single or double quotes (' ') or (" "), and results in the default pathname 
>SID>TERMINALS for use by listener. 

The first character in the 2-character pool id and group id when default values are used. The 
second character, from 0 through 9 or A through Z, is appended when a task group is spawned 
as a result of the LOGIN command. When this argument is omitted, its default value is L. 

When a user specifies a group id in LOGIN command or in a logiILJine for a T-record or 
A-record, listener uses that as a group id instead of generating a group id. 

"message" 
The message-of-the-day, enclosed in quotes to provide for embedded blanks, which listener 
transmits to all login terminals for display. 

DESIGNING THE LOGIN TERMINAL FILE 

For a terminal to have the direct login characteristic, the LOGIN command line image must 
be in the T-record for that terminal. 

For a terminal to optionally accept abbreviations for LOGIN commands required A-records 
with the desired command line image and the absence of a login line in the T-record for that 
terminal. One or more abbreviations can be specified. The A-records following a T-record are 
associated only with that terminal. The A-records following the G-records allow all terminals to 
use those abbreviations for command lines. When the same abbreviation is used in an A-record 
following G-record, and in an A-record following a T-record, the command line image in the 
A-record following the T-record is used for the terminal. 

TERMINAL STATE AFTER LISTENER IS ACTIVATED 

When first activated, listener performs specific operations affecting the state of a terminal, 
and again when the session terminates. The output on the terminal that a user sees and the state 
of the terminal depend on whether it is a noncommunications or a communications terminal. 

NONCOMMUNICATIONS TERMINAL STATE WITH LISTENER 

If a terminal is not ready when listener is activated, no initial output messages from listener 
or the login component are displayed when the terminal comes on line. 

When listener is activated: 

1. If there are terminals online ready for direct login, they display the message-of-the-day. A 
task group is spawned for each such terminal, using the logiILline image contained in 
that terminal's T-record in the terminal login file. The lead task defined in the login line is 
executed. The application should display a prompter message to the terminal indicating 
that it is ready to accept input. When the lead task terminates, the message-of-the-day is 
displayed and a task group is immediately spawned again. 

2. Terminals that require a user login display the message-of-the-day and the user login 
prompter message identifying the system and giving the date and time: 

LOGIN systeIlLid yyyy/mm/dd hhmm:ss.t 

The user can then type in the LOGIN command. When the lead task terminates, the 
message-of-the-day is displayed followed by the login prompter message. 

USTENER COMPONENT AND 
LOGIN CAPABIUTY B-3 CB24 



COMMUNICATIONS TERMINAL STATE WITH LISTENER 

Although a communications terminal may not be ready when the listener is activated, 
listener displays a message when the terminal comes online. Otherwise, when listener is 
activated, the same operations are done for communications terminals as for noncommunications 
terminals described above. 

When the lead task terminates: 

1. A terminal connected by phone and with the hangup option, is disconnected. The user 
must dial in again to use the terminal. 

2. A terminal connected through a modem by-pass or by phone without the hangup option, 
displays themessage-of-the-day; either the login prompter message is displayed or, for a 
direct login, a login task group is spawned. 

CHANGING THE LOGIN MESSAGE OF THE DAY 

After listener is activated, it places an operator response request to the operator terminal. The 
request number must be used in the response to listener from the operator terminal that 
changes the message-of-the-day. The message to the listener cannot exceed 63 characters and is 
in the form: 

amsg-Iloamessage-of-the-day 

LISTENER COMPONENT AND 
LOGIN CAPABILITY B-4 CB24 

\ 
j 

c 



( 

f 

" 

(/ 

Appendix C 

System Halts 

This appendix describes conditions causing system halts during system execution and startup. 

INSUFFICIENT MEMORY HALTS 

During execution, the system halts in certain cases when it is out of memory resources, with 
the registers containing special information as indicated below. 

• If the number of trap save areas (TSA) in the system is exhausted, the system halts on level 
2 (status register = 4002). The contents oflocation 10 equal zero. Increase the TSAs using 
CLM SYS directive. 

• If the number of indirect request blocks (lRBs) in the system is exhausted, the system halts 
on level 2 with ASCII IR in R1 (status register = 4002, D1 = 4952). Increase the IRBs using 
CLM SYS directive. 

STARTUP HALTS 

The following conditions cause a halt during startup bootstrap and initialization. 

BOOTSTRAP HALT CONDITIONS 

During bootstrap, if the Halt option (xx04 or xx06) is requested 

R1 will contain the bootstrap channel after halting 

R2 will contain address mode flag 0 - SAF, 1 - LAF 

R3 will contain disk type flag 0 - cartridge or storage module, 1 - diskette 

Other halts during bootstrap routine are: 

R1 = 1611 
The next sector of the file (Z3EXECUTIVE (S/L» being read is beyond the range of the 
last sector. No retry is possible. 

R1 = 1612 
The bound unit (Z3EXECUTIVE (S/L» to be loaded was not found on the volume major 
directory. Check to see if proper disk is mounted. No retry is possible. 

R1 = 1616 
An I/O error has occurred. R6 contains the error bits of the hardware status word. Press 
Execute to retry the 110 function. 

WfflALIZATION HALT CONDITIONS 

The following conditions will result in a halt during initialization. The halt condition code is 
displayed in register Rl. Any further breakdown of the error is displayed in the register 
indicated in the code explanations below, (which are not printed out). 

* 
9902 
9903 
9905 
9906 
9907 
9908 
9909 

ERROR ASSIGNING USER INPUT, R2 = ERROR 
ERROR SPAWNING CLM, R2 = ERROR 
ERROR REASSIGNING USER INTO CONSOLE, R2 = ERROR 
ERROR CHANGING SYSTEM DIRECTORY, R2 = ERROR 
ERROR CHANGING WORKING DIRECTORY, R2 = ERROR 
NO OP CONSOLE, EITHER LOCAL OR REMOTE 
AVAILABLE 

SYSTEM HALTS C-l CB24 



9910 
9911 
9912 
9913 
9914 
9915 
9916 
9917 
9918 
9921 

FILE NOT FOUND, B2 ~FILE NAME 
10 ERROR, R2 = ERROR, B5 ~WHERE CALL WAS FROM 
NO MEMORY FOR OPENING ROLLOUT FILE 
ERROR OPENING ROLLOUT FILE, R2 = ERROR 
ERROR DOING COMMAND IN, R2 = ERROR 
ERROR DOING USER OUT, R2 = ERROR 
ERROR CLOSING USER OUT, ERROR OUT, USER IN, COMMAND IN 
FILE CONTAINS ILLEGAL REMOTE EXTENT RECORD 
LRN 2 NOT LEFT AVAILABLE FOR MLCP OP CONSOLE'S ALTERNATE 
NO MEMORY FOR INPUT BUFFER OVER 140 BYTES 

9922 PROBLEM SPAWNING TASK WHICH DOES PCL FOR EC START_UP 
9923 PROBLEM IN OPENING THE ERROR MESSAGE LIBRARY 
9940 OUTPUT BY OIM, MSG TO GO OUT, BUT NO OP CONSOLE YET 

SYSTEM HALTS C-2 CB24 



( 

( 

( " / 

. / 

AppendixD 

ASCII Character Set and Hexadecimal Equivalents 

This appendix contains lists of ASCII control characters and special graphic characters. Table 
D-I shows the ASCII/hexadecimal equivalent values. 

ASCII CONTROL CHARACTERS 

ACK Acknowledge 
BEL Bell 
BS Backspace 
CAN Cancel 
CR Carriage Return 
DCI Device Control I 
DC2 Device Control 2 
DC3 Device Control 3 
DC4 Device Control 4 
DEL Delete 
DLE Data Link Escape 
EM End of Medium 
ENQ Enquiry 
EOT End of Transmission 
ESC Escape 
ETB End of Transmission Block 
ETX End of Text 

ASCII SPECIAL GRAPHIC CHARACTERS 

> Greater-than Sign 
Period, Decimal Point 

< Less-than Sign 
( Left Parenthesis 
+ Plus Sign 

I Logical OR 
& Ampersand 

Exclamation Point 
$ Dollar Sign 

* Asterisk 
Right Parenthesis 
Semicolon 

/ Slash 
I Vertical Line 

Comma 
Underscore 

ASCII CHARACTER SET AND 
HEXADECIMAL EQUIVALENTS 

FF 
FS 
GS 
HT 
LF 
NAK 
NUL 
RS 
SI 
SO 
SOH 
SP 
STX 
SUB 
SYN 
US 
VT 

? 

# 
@ 

" 
= 
{ 
} 
\ 
[ 
] 
% 
1\ 

D-l 

Form Feed 
Field Separator 
Group Separator 
Horizontal Tab 
Line Feed 
Negative Acknowledgment 
Null 
Reader Stop 
Shift In 
Shift Out 
Start of Heading 
Space 
Start of Text 
Substitute 
Synchronous Idle 
Unit Separator 
Vertical Tab 

Question Mark 
Grave Accent, 
Colon 
Number Sign 
At Sign 
Prime, Apostrophe 
Equal sign 
Quotation Mark 
Tilde 
Opening Brace 
Closing Brace 
Reverse Slant 
Opening Bracket 
Closing Bracket 
Percent 
Circumflex 

CB24 



TABLE D·I. ASCII HEXADECIMAL EQUIVALENTS 

H2 0 

0 NUL 

I SOH 
2 STX 
3 ETX 

4 EOT 
5 ENQ 

6 ACK 
7 BEL 
8 BS 

9 HT 

A LF 

B VT 

C FF 

D CR 

E SO 
F SI 

ASCII CHARACTER SET AND 
HEXADECIMAL EQUIVALENTS 

1 

DLE 

DCI 
DC2 
DC3 
DC4 

NAK 
SYN 
ETB 
CAN 

EM 

SUB 
ESC 

FS 
GS 

RS 

US 

HI 

2 3 

SP 0 

! I 
,. 2 

# 3 
$ 4 

% 5 

& 6 
, 

7 

( 8 

) 9 

* 
+ 
, < 
- = 

> 
/ ? 

D-2 

4 5 6 7 

(a P . 
P 

A Q a q 

B R b r 

C S c s 

D T d t 

E U e u 

F V f v 

G W g w 

H X h x 
I Y i y 

J Z j z 

K [ k ) 
I 

L \ I I 
I 

M ] m I 
I 

N A n -
0 0 DEL -

(\ 
I , 

"'-/ 

, / 

CB24 



( 

INDEX 

ABORT 
ABORT BATCH REQUEST (ABR) 

4-7 
ABORT BATCH (ABORT_BATCH) 

4-6 
ABORT GROUP REQUEST (AGR) 

4-9 
ABORT GROUP (ABORT _GROUP) 

4-8 

ABSOLUTE PATH NAME 
ABSOLUTE PATHNAME, 1-4 

ACCESS 

CQl.iMAND, 

COMMAND, 

COMMAND, 

COMMAND, 

FILE ACCESS PROTECTION, 4-30 
LOGIN COMMAND TO ACCESS SYSTEM, B-1 

ACTIVATE 
ACTIVATE BATCH (ACTB) COMMAND, 4-10 
ACTIVATE GROUP (ACTG) COMMAND, 4-11 

A-RECORD 
LOGIN FILE A-RECORD, B-2 

AMPERSAND 
AMPERSAND (&) PARAMETER 

SUBSTITUTION, A-I 

ARG ARGUMENTS 
ARG ARGUMENTS PASSED TO TASK, A-I 
COMMAND LINE (ARG) ARGUMENTS, A-I 

ARGUMENT 
ARGUMENT NESTING, A-2 
CONTROL ARGUMENT, 4-3 
INPUT-COHMAND ARGUMENT, 4-3 
KEYWORD ARGUMENT, 4-3 
POSITIONAL ARGUMENT, 4-3 

ASCII 
ASCII AND HEXADECIMAL EQUIVALENT 

CHARACTERS, D- 2 
ASCII CHARACTERS, D-l 

BATCH COMMANDS 
ABORT BATCH REQUEST (ABR) COMMAND, 

4-7 
ABORT BATCH (ABORT_BATCH) COMMAND, 

4-6 
ACTIVATE BATCH (ACTB) COl-1MAND, 4-10 
CREATE BATCH (CB) COl1MAND, 4-14 
DELETE BATCH (DB) COMMAND, 4-17 
ENTER BATCH REQUEST (EBR) COMMAND, 

4-19 
SUSPEND BATCH (SSPB) COMMAND, 4-39 

BOUND UNIT COMMANDS 
LOAD SHARABLE BOUND UNIT (LOAD) 

COMMAND, 4-28 
UNLOAD SHARABLE BOUND UNIT (UNLD) 

COMMAND, 4-42 

BREAK 
BREAK COMMAND EXAMPLES, 5-2 

BREAK (CONT • D) 
BREAK (TASK INTERRUPT) PROCEDURES, 

5-1 
BYE RESPONSE COMMAND TO BREAK, 5-2 
onl DIRECTIVE FOR BREAK (TASK 

INTERRUPT), 3-5 
PROGRAM INTERRUPT (PI) RESPONSE 

COMMAND TO BREAK, 5-2 
START (SR) RESPONSE COMMAND TO 

BREAK, 5-2 
UNWIND (UW) RESPONSE COMMAND TO 

BREAK, 5-2 

CHARACTER 
CHARACTER DELETE IN INPUT MESSAGE, 

3-4 
CONTROL CHARACTER AS DATA 

CHARACTER, 3-4 

CHARACTERS 
ASCII AND HEXADECIMAL EQUIVALENT 

CHARACTERS, D-2 
ASCII CHARACTERS, D-l 

CODES, HALT 
INITIALIZATION HALT Rl-REGISTER 

CODES, C-l 

COMMAND 
BREAK COMMAND EXAMPLES, 5- 2 
COM1~D LINE PARAMETER 

SUBSTITUTION, A-I 
COMMAND LINE (ARG) ARGUMENTS, A-I 
COMMAND PROCESSOR EXECUTION, 4-19 
EC FILE EXECUTION COMMAND, A-2 
EXECUTION COMMAND (EC) CONTROL 

DIRECTIVES, 4-22 
LISTENER ACTIVATION COMMAND, 2-2 
LOGIN COMMAND TO ACCESS SYSTEM, 

B-1 
OPERATOR COMMAND FUNCTIONS AND 

NAMES (TBL), 4-4 

COMMAND-IN FILE 
COMMAND PROCESSOR COMMAND-IN FILE, 

4-2 

i-I 

COMMAND NAMES 
ABORT BATCH, 4-6 
ABORT-GROUP, 4-8 
ABR, 4-7 
ACTB, 4-10 
ACTG, 4-11 
AGR, 4-9 
CB, 4-14 
CG, 4-15 
CSD, 4-12 
CWD, 4-13 
DB, 4-17 
DG, 4-18 
EBR, 4-19 
EC, 4-22 
EGR, 4-20 
FD, 4-25 
LOAD, 4-28 

CB24 



INDEX 

COMMAND NAMES (CONT'D) 
LSR, 4-26 
LWD, 4-27 
MF, 4-30 
r-1SW, 4-29 
RAS, 4-31 
SD, 4-32 
SG, 4-33 
SSPB, 4-39 
SSPG, 4-40 
STG, 4-35 
STS, 4-37 
TIME, 4-41 
UNLD, 4-42 
\vCSLD, 4-43 

COMMAND PROCESSOR FILES 
COMMAND-IN FILE, 4-2 
ERROR-OUT FILE, 4-2 
INPUT/OUTPUT FILE, 4-2 
OPERATOR-OUT FILE, 4-2 
USER-OUT FILE, 4-2 

COMMANDS, FUNCTIONS AND NAMES 
ABORT BATCH (ABORT BATCH), 4-6 
ABORT BATCH REQUEST (ABR) , 4-7 
ABORT GROUP (ABORT GROUP), 4-8 
ABORT GROUP REQUEST (AGR) , 4-9 
ACTIVATE BATCH (ACTB), 4-10 
ACTIVATE GROUP (ACTG), 4-11 
CHANGE SYSTEM DIRECTORY (CSD) , 4-12 
CHANGE WORKING DIRECTORY (CWD) , 4-13 
CREATE BATCH (CB), 4-14 
CREATE GROUP (CG), 4-15 
DELETE BATCH (DB), 4-17 
DELETE GROUP (DG) , 4-18 
ENTER BATCH REQUEST (EBR) , 4-19 
ENTER GROUP REQUEST (EGR) , 4-20 
EXECUTION COMr·1AND (EC), 4-22 
FILE OUT (FO), 4-25 
LIST SEARCH RULES (LSR) , 4-26 
LIST WORKING DIRECTORY (LWD), 4-27 
LOAD SHARABLE BOUND UNIT (LOAD), 

4-28 
MODIFY EXTERNAL SWITCHES (MSW) , 4-29 
MODIFY FILE (MF), 4-30 
REASSIGN (RAS), 4-31 
SET DATE (SD), 4-32 
SPAWN GROUP (SG), 4-33 
STATUS GROUP (STG) , 4-35 
STATUS SYSTEM (STS), 4-37 
SUSPEND BATCH (SSPB), 4-39 
SUSPEND GROUP (SSPG), 4-40 
TIME (THiE), 4-41 
UNLOAD SHARABLE BOUND UNIT (UNLD), 

4-42 
WRITABLE CONTROL srORE LOAD (WCSLD), 

4-43 

COMMUNICATIONS TERMINAL 
COMMUNICATIONS TERMINAL WITH 

LISTENER, B-4 

CONCURRENCY, FILE 
FILE CONCURRENCY, 4-3 

i-2 

CONCURRENCY, FILE (CONT'D) 
FILE CONCURRENCY INFORMATION, 4-36 

CONTROL 
ASCII CONTROL CHARACTERS, D-l 
CONTROL ARGUMENT, 4-3 
CONTROL CHARACTER AS DATA 

CHARACTER, 3-4 
EXECUTION COMMAND (EC) CONTROL 

DIRECTIVES, 4-22 
INPUT MESSAGE CONTROL FUNCTIONS/ 

FORMAT (TBL) , 3-4 
OPERATOR COMMAND FOR EXECUTION 

CONTROL, 4-1 
OPERATOR COMr-1AND FOR FILE 

DIRECTORY DEVICE CONTROL, 4-1 

CORRECTION, HESSAGE 
CORRECTION TO INPUT MESSAGE, 3-4 

CREATE 
CREATE BATCH (CB) COMMAND, 4-14 
CREATE GROUP (CG) COHMAND, 4-15 

DATE, SET 
SET DATE (SD) COMMAND, 4-32 

DEFINITION 
DEFINITION OF A FILE, 1-2 
DEFINITION OF DIRECTORY, 1-2 
OPERATOR COMMAND DEFINITION, 4-1 
TASK GROUP DEFINITION, 1-1 

DELETE 
CHARACTER DELETE IN INPUT MESSAGE, 

3-4 
DELETE BATCH (DB) COMMAND, 4-17 
DELETE GROUP CO!{MAND (DG) , 4-18 
INPUT MESSAGE DELETE, 3-4 

DEVICE 
DEVICE FILE PATHNAME, 1-3 
DEVICE PATHNAME, 1-3 
DISK DEVICE PATHNAME, 1-3 
OFFLINE UNIT RECORD DEVICE TIMEOUT, 

3-6 
OPERATOR COMMAND FOR FILE DIRECTORY 

DEVICE CONTROL, 4-1 
PERIPHERAL DEVICE EXCHANGE, 4-31 
PERIPHERAL DEVICE STATUS 

INFORMATION, 4-38 
TAPE DEVICE PATHNAME, 1-3 

DIALOG, OPERATOR/SYSTEM 
OPEAA'l'OH AND SYS'l'EH DIALOG EXAMPLE 

(FIG), 3-7 
SAMPLE OPERATOR AND SYSTEM DIALOG, 

3-6 

DISK PATH NAME 

EC 

DISK DEVICE PATHNAME, 1-3 

EC FILE EXECUTION COMMAND, A-2 
EXECUTION COMMAND (EC) cm1MAND, 4-22 

CB24 



(-

• 

INDEX 

ENTER 
ENTER BATCH REQUEST (EBR) COW~ND, 

4-19 
ENTER GROUP REQUEST (EGR) CO~~ND, 

4-20 

ERROR MESSAGES 
OPERATOR INTERFACE MANAGER (OIM) 

ERROR MESSAGES, 3-5 

ERROR-OUT 
CO~ND PROCESSOR ERROR-OUR FILE, 

4-2 

EXCHANGE, DEVICE 
PERIPHERAL DEVICE EXCHANGE, 4-31 

EXECUTION 
EC FILE EXECUTION CO~ND, A-2 
EXECUTION CO~ND (EC) CO~ND, 4-22 
LEAD TASK EXECUTION, 4-20 
OPERATOR CO~ND FOR EXECUTION 

CONTROL, 4-1 

FILE 
COMMAND PROCESSOR CO~1AND-IN FILE, 

4-2 
CO~1AND PROCESSOR ERROR-OUT FILE, 

4-2 
CO~1AND PROCESSOR INPUT/OUTPUT 

FILE, 4-2 
CO~ND PROCESSOR OPERATOR-OUT 

FILE, 4-2 
CO~ND PROCESSOR USER-OUT FILE, 4-2 
DEFINITION OF A FILE, 1-2 
DEVICE FILE PATHNAHE, 1-3 
EC FILE EXECUTION CO~ND, A-2 
FILE ACCESS PROTECTION, 4-30 
FILE CONCURRENCY, 4-3 
FILE CONCURRENCY INFORMATION, 4-36 
FILE OUT (FO) CO~D, 4-25 
FILE STATUS INFORMATION, 4-36 
MODIFY FILE (MF) CO~ND, 4-30 
OPERATOR CO~ND FOR FILE DIRECTORY 

DEVICE CONTROL, 4-1 

FILE NAME 
FILE NAME CONSTRUCTION, 1-2 

FILE SYSTEM 
FILE SYSTEM, 1-2 
FILE SYSTEM DIRECTORY, 1-2 
FILE SYSTEM PATHNAME, 1-2 

FIRMWARE 
FIRMWARE OBJECT FILES, 4-43 

FORMAT 

GET 

INPUT MESSAGE FORMAT, 3-3 
INPUT COMMAND LINE FORMAT, 4-3 

OIM DIRECTIVE GET MESSAGE LIST, 3-5 

i-3 

G-RECORD IN LOGIN 
LOGIN FILE G-RECORD, B-1 

GROUP 
ABORT GROUP REQUEST (AGR) COMMAND, 

4-9 
ABORT GROUP (ABORT GROUP) COMMAND, 

4-8 
ACTIVATE GROUP (ACTG) COMMAND, 4-11 
CREATE GROUP (CG) CO~ND, 4-15 
DELETE GROUP CO~ND, 4-18 
ENTER GROUP REQUEST (EGR) COMMAND, 

4-20 
GROUP REQUEST PARAMETER 

SUBSTITUTION, A-3 
OIM DIRECTIVE CHANGE DEFAULT TASK 

GROUP, 3-5 
SPAWN GROUP (SG) COMMAND, 4-33 
STATUS GROUP (STG) CO~ND, 4-35 
SUSPEND GROUP (SSPG) COMMAND, 4-40 
TASK GROUP DEFINITION, 1-1 
TASK GROUP IDENTIFICATION (GROUP 10), 

1-1 
TASK GROUP STATUS INFORMATION, 

4-35, 4-37 
TASK GROUP USER IDENTIFICATION 

(USER-ID), 1-1 

HALTS 
BOOTSTRAP HALTS, C-l 
INITIALIZATION HALTS, C-l 
STARTUP HALTS, C-l 
SYSTEM HALTS, C-l 

HEXADECIMAL 
ASCII AND HEXADECIMAL EQUIVALENT 

CHARACTERS, D-2 

IDENTIFICATION 
TASK GROUP IDENTIFICATION (GROUP 

ID), 1-1 
TASK GROUP USER IDENTIFICATION 

(USER-ID), 1-1 

INITIALIZATION 
INITIALIZATION HALT Rl-REGISTER 

CODES, C-l 
INITIALIZATION HlI.LTS, C-l 

INPUT MESSAGE 
CHARACTER DELETE IN INPUT MESSAGE, 

3-4 
CORRECTION TO INPUT MESSAGE, 3-4 
INPUT MESSAGE CONTROL FUNCTIONS/ 

FORMAT (TBL), 3-4 
INPUT MESSAGE DELETE, 3-4 
INPUT MESSAGE FORMAT, 3-3 
INPUT MESSAGE LENGTH, 3-3 
INPUT MESSAGE OIM, 3-1 
INPUT (OPERATOR RESPONSE) MESSAGE, 

3-3 

INPUT COMMAND 
INPUT COMMAND ARGUMENT, 4-3 
INPUT COMMAND LINE, 4-3 

CB24 



INDEX 

INPUT COMMAND (CONT'D) 
INPUT COMMAND LINE FORMAT, 4-3 
INPUT COMMAND SPACES IN COMMAND 

LINE, 4-3 

INPUT/OUTPUT FILE 
COMMAND PROCESSOR INPU~/OUTPUT 

FILE, 4-2 

INTERRUPT 
BREAK (TASK INTERRUPT) PROCEDURES, 

5-1 
OIM DIRECTIVE FOR BREAK (TASK 

INTERRUPT), 3-5 
PROGRAM INTERRUPT (PI) RESPONSE 

COMMAND TO BREAK, 5-2 
TASK INTERRUPT (BREAK), 5-1 

KEYWORD ARGUMENT 
KEnmRD ARGUMENT, 4-3 

LFN 
LOGICAL FILE NUMBER (LFN), 1 ... 2 

LINE, COMMAND 
COMMAND LINE PARAMETER 

SUBSTITUTION, A-I 
COMMAND LINE (ARG) ARGUMENTS, A-I 
INPUT COMMAND LINE, 4-3 
INPUT COMMAND LINE FORMAT, 4-3 
INPUT COMMAND SPACES IN COMMAND 

LINE, 4-3 

LIST 
LIST SEARCH RULES (LSR) COMMAND, 

4-26 
LIST WORKING DIRECTORY (LWD) 

COMMAND, 4-27 
OIM DIRECTIVE, GET MESSAGE LIST, 

3-5 

LISTENER 
ACTIVATING LISTENER, 2-2 
CHANGE LISTENER MESSAGE-OF-THE-DAY, 

B-4 
COMMUNICATIONS TERMINAL WITH 

LISTENER, B-4 
LISTENER ACTIVATION, B-2 
LISTENER COMPONENT, B-1 
LISTENER MESSAGE-OF-THE-DAY, B-3 
NONCOMMUNICATIONS TERMINAL WITH 

LISTENER, B-3 
TERMINAL STATE WITH LISTENER, B-3 

LOAD 
LOAD SHARABLE BOUND UNIT (LOAD) 

COMMAND, 4-28 
WRITABLE CONTROL STORE LOAD (WCSLD) 

COMMAND, 4-43 

LOADER 
WRITABLE CONTROL STORE (WCS) LOADER, 

4-43 

LOGICAL 
LOGICAL FILE NUl·1BER (LFN), 1 ... 2 
LOGICAL RESOURCE NUMBER ct .. RN1, 1 .. 2 

LOGIN 

LRN 

ACTIVATING LOGIN CAPABILITY, 2-2 
LOGIN COMMAND TO ACCESS SYSTEM, 

B-1 
LOGIN FILE A-RECORD, B-2 
LOGIN FILE G-RECORD, B-1 
LOGIN FILE RECORD, B-2 
LOGIN FILE T-RECORD, B-2 
LOGIN TERMINAL FI.LE ATTRIBUTES, 

B-1 
LOGIN TERMINAL FILE DESIGN, B-3 
MEMORY-POOLS FOR LOGIN TASKS, B-1 

LOGICAL RESOURCE NUMBER (LRN) r 1-2 

MANAGER, OPERATOR INTERFACE 
OPERATOR INTERFACE ,MANl\GER COIM), 

3-1 
OPERATOR INTERFACE MANAGER (OIM) 

ERROR MESSAGES, 3~5 

MEMORY POOLS 
MEMORY POOLS FOR LOGIN TASKS, B-1 

MESSAGE 
CHARACTER DELETE IN INPUT MESSAGE, 

3-4 
CORRECTION TO INPUT MESSAGE, 3-4 
INPUT MESSAGE CONTROL FUNCTIONS/ 

FORMAT (TBL), 3-4 
INPUT MESSAGE DELETE, 3-4 
INPUT ~mSSAGE FORMAT, 3-3 
INPUT MESSAGE LENGTH, 3-3 
INPUT MESSAGEOIM, 3-1 
INPUT (OPERATOR RESPONSE) MESSAGE, 

3 .. 3 
MESSAGE ENTRY DURING OUTPUT, 3-4 
MESSAGE FUNCTIONS, 3-1 
MESSAGE TO HALT OUTPUT, 3-4 
OIM DIRECTIVE GET MESSAGE LIST, 

3-5 
OUTPUT 
OUTPUT 
OUTPUT 
OUTPUT 

MESSAGE 
MESSAGE 
lI1ESSAGE 
MESSAGE 

NUMBER, 3-2 
OIM, 3-1 
PREFIX, 3-2 
QUEUE, 3-2 

MESSAGE-OF-THE-DAY, LISTENER 
CHANGE LISTENER MESSAGE-OF-THE­

DAY, B-4 
LISTENER MESSAGE-OF-THE-DAY, B-3 

MESSAGES 
OPERATOR INTERFACE MANAGER (OIM) 

ERROR t{ESSAGES, 3-5 

MODIFY 

i-4 

MODIFY EXTERNAL SWITCHES (MSW) 
COMMAND, 4-29 . 

MODIFY FILE (MF) COMMAND, 4-30 

CB24 

• 



( 

• 

(/ 

INDEX 

NESTING, ARGUMENT 
ARGUMENT NESTING, A-2 

NUMBER 
LOGICAL FILE NUMBER (LFN), 1-2 
LOGICAL RESOURCE NUMBER (LRN), 1-2 
OUTPUT MESSAGE NUMBER, 3-2 

OIM (OPERATOR INTERFACE MANAGER) 
INPUT MESSAGE OIM, 3-1 
OIM DIRECTIVE CHANGE DEFAULT TASK 

GROUP, 3-5 
OIM DIRECTIVE CHANGE OUTPUT PACING 

RATE, 3-5 
OIM DIRECTIVE FOR BREAK (TASK 

INTERRUPT), 3-5 
OIM DIRECTIVE GET MESSAGE LIST, 

3-5 
OPERATOR INTERFACE MANAGER (OIM), 

3-1 
OPERATOR INTERFACE MANAGER (OIM) 

ERROR MESSAGES, 3-5 
OUTPUT MESSAGE OIM, 3-1 

OPERATOR 
INCREASE OPERATOR TERMINAL RESPONSE 

SPEED, 3-6 
INPUT (OPERATOR RESPONSE) MESSAGE, 

3-3 
OPERATOR AND SYSTEM DIALOG EXAMPLE 

(FIG), 3-7 
OPERATOR COMr-1AND FUNCTIONS AND 

NAMES (TBL), 4-4 
OPERATOR COMMANDS, 4-1 
OPERATOR INTERFACE MANAGER (OIM), 

3-1 
OPERATOR INTERFACE MANAGER (OIM) 

ERROR MESSAGES, 3-5 
OPERATOR OIM DIRECTIVE MESSAGES, 

3-5 
OPERATOR TERMINAL, 3-1 
SAMPLE OPERATOR AND SYSTEM DIALOG, 

3-6 

OPERATOR COr~ND 

PACING RATE 
OIM DIRECTIVE CHANGE OUTPUT PACING 

RATE, 3-5 

PARAMETER 
AMPER.SAND (&) PARAMETER 

SUBSTITUTION, A-I 
CO~1AND LINE PARAMETER SUBSTITUTION, 
A-I 

GROUP REQUEST PARAMETER 
SUBSTITUTION, A-3 

PATHNAME 
ABSOLUTE PATHNAME, 1-4 
DEVICE FILE PATHNAME, 1-3 
DEVICE PATHNAME, 1-3 
DISK DEVICE PATHNAME, 1-3 
FILE SYSTEM PATHNAME, 1-2 
PATHNAME CONSTRUCTION, 1-2 
PATHNAME SYMBOLS, 1-3 
RELATIVE PATHNAME, 1-4 
TAPE DEVICE PATHNAME, 1-3 

PERIPHERAL DEVICE 

PI 

PERIPHERAL DEVICE EXCHANGE, 4-31 
PERIPHERAL DEVICE STATUS 

INFORMATION, 4~38 

PROGRAM INTERRUPT (PI) RESPONSE 
COMMAND TO BREAK, 5-2 

POSITIONAL ARGUMENT 
POSITIONAL ARGUMENT, 4-3 

PREFIX, MESSAGE 
OUTPUT MESSAGE PREFIX, 3-2 

PROCESSOR, COMMAND 
COMMAND PROCESSOR EXECUTION, 4~19 

PROGRAM 
PROGRAM INTERRUPT (PI) RESPONSE 

COMMAND TO BREAK, 5-2 

OPERATOR COMMAND DEFINITION, 4-1 PROTECTION, FILE ACCESS 
OPERATOR COMMAND FOR EXECUTION FILE ACCESS PROTECTION, 4-30 

CONTROL, 4-1 
OPERATOR COMMAND FOR FILE DIRECTORY QUEUE, MESSAGE 

DEVICE CONTROL, 4-1 OUTPUT MESSAGE QUEUE, 3-2 
OPERATOR Cm-1MAND TO MONITOR SYSTEM, 

4-2 REASSIGN 

OPERATOR-OUT FILE 
COMMAND PROCESSOR OPERATOR-OUT FILE, 

4-2 

OUTPUT 
MESSAGE ENTRY DURING OUTPUT, 3-4 
MESSAGE TO HALT OUTPUT, 3-4 
OIM DIRECTIVE CHANGE OUTPUT PACING 

RATE, 3-5 
OUTPUT MESSAGE NUMBER, 3-2 
OUTPUT MESSAGE OIM, 3-1 
OUTPUT MESSAGE PREFIX, 3-2 
OUTPUT MESSAGE QUEUE, 3-2 

i-5 

REASSIGN (RAS) COMMAND, 4-31 

RECORD 
LOGIN FILE RECORD, B~2 
OFFLINE UNIT RECORD DEVlCE TlMEOUT, 

3-6 

RELATIVE PATHNAME 
RELATIVE PATHNAME, 1-4 

REQUEST 
ABORT BATCH REQUEST (ABR) COMMAND, 

4-7 

CB24 



INDEX 

REQUEST {CONT'D} 
ABORT GROUP REQUEST (AGR) COMMAND, 

4-9 
ENTER BATCH REQUEST (EBR) COMMAND, 

4-19 
ENTER GROUP REQUEST (EGR) COMMAND, 

4-20 
GROUP REQUEST PARA!-1ETER 

SUBSTITUTION, A-3 

RESOURCE, LOGICAL NUMBER 
LOGICAL RESOURCE NUMBER (LRN), 1-2 

RESPONSE 
INCREASE OPERATOR TERMINAL RESPONSE 

SPEED, 3-6 
INPUT (OPERATOR RESPONSE) MESSAGE, 

3-3 
SYSTEM STARTUP RESPONSE, 2-2 

RESPONSE COMMANDS TO BREAK 
BYE RESPONSE, 5-2 
PROGRAM INTERRUPT (PI) RESPONSE, 5-2 
START (SR) RESPONSE, 5-2 
UNWIND (UW) RESPONSE, 5-2 

ROOT DIRECTORY 
ROOT DIRECTORY, 1-2 

RULES, SEARCH 
LIST SEARCH RULES {LSR} COMMAND, 

4-26 

SEARCH, LIST 
LIST SEARCH RULES {LSR} COMMAND, 

4-26 

SET DATE 
SET DATE (SD) COMMAND, 4-32 

SHARABLE BOUND UNIT COMMANDS 
LOAD SHARABLE BOUND UNIT (LOAD) 

COMMAND, 4-28 
UNLOAD SHARABLE BOUND UNIT (UNLD) 

COMHAND, 4-42 

SPACES IN COMMAND LINE 
INPUT COMMAND SPACES IN COMMAND 

LINE, 4-3 

SPAWN 
SPAWN GROUP (SG) COMMAND, 4-33 

SPEED, OPERATOR TE~1INAL 
INCREASE OPERATOR TERMINAL RESPONSE 

SPEED, 3-6 

STARTUP 
STARTUP HALTS, C-l 
SYSTEM STARTUP, 2-1 
SYSTEM STARTUP RESPONSE, 2-2 

STATUS 
FILE STATUS INFORMATION, 4-36 
PERIPHERAL DEVICE STATUS 

INFORMATION, 4-38 

STATUS (CONT'D) 
STATUS GROUP (STG) COMMAND, 4-35 
STATUS SYSTEM (STS) COMMAND, 4-37 
TASK GROUP STATUS INFORMATION, 

4-35, 4-37 
TASK STATUS INFORMATION, 4-35 

STORE, WRITABLE CONTROL (WCS) 
WRITABLE CONTROL STORE LOAD 

(WCSLD) COMMAND, 4-43 
WRITABLE CONTROL STORE (WCS) LOADER, 

4-43 

SUBSTITUTION, PARAMETER 
AMPERSAND (&) PARAMETER 

SUBSTITUTION, A-I 
COMMAND LINE PARAMETER SUBSTITUTION, 
A-I 

GROUP REQUEST PARAMETER 
SUBSTITUTION, A-3 

SUSPEND 
SUSPEND BATCH (SSPB) COMMAND, 4-39 
SUSPEND GROUP (SSPG) COMMAND, 4-40 

SWITCHES, MODIFY 
MODIFY EXTERNAL SWITCHES (MSW) 

COMMAND, 4-29 

SYMBOLS, PATHNAME 
PATHNAME SYMBOLS, 1-3 

SYSTEM 
CHANGE SYSTEM DIRECTORY (CSD) 

COMMAND, 4-12 
STATUS SYSTEM (STS) COMMAND, 4-37 
SYSTEM HALTS, C-l 
SYSTEM STARTUP, 2-1 
SYSTEM STARTUP RESPONSE, 2-2 

TAPE DEVICE PATHNAME 
TAPE DEVICE PATHNAME, 1-3 

TASK 
ARG ARGU~mNTS PASSED TO TASK, A-I 
BREAK (TASK INTERRUPT) PROCEDURES, 

5-1 
LEAD TASK EXECUTION, 4-20 
OIM DIRECTIVE CHANGE DEFAULT TASK 

GROUP, 3-5 
OIM DIRECTIVE FOR BREAK {TASK 

INTERRUPT}, 3-5 
TASK GROUP DEFINITION, 1-1 
TASK GROUP IDENTIFICATION (GROUP 

ID), 1-1 
TASK GROUP STATUS INFORMATION, 

4-35, 4-37 
TASK GROUP USER IDENTIFICATION 

{USER-ID}, 1-1 
TASK INTERRUPT (BREAK), 5-1 
TASK STATUS INFORMATION, 4-35 

TERMINAL 
COMMUNICATIONS TERMINAL WITH 

LISTENER, B-4 

i-6 CB24 

/ 

• 

c 



• 

(j 

TERMINAL (CONT'D) 
INCREASE OPERATOR TERMINAL RESPONSE 

SPEED, 3-6 
LOGIN TERMINAL FILE ATTRIBUTES, B-1 
NONCOMMUNICATIONS TERMINAL \'i'ITH 

LISTENER, B-3 
OPERATOR TERMINAL, 3-1 
TERMINAL STATE WITH LISTENER, B-3 

TIME 
TIME (TIME) COMMAND, 4-41 

TIMEOUT 
OFFLINE UNIT RECORD DEVICE 

TIMEOUT, 3-6 

T-RECORD 
LOGIN FILE T-RECORD, B-2 

UNLOAD 
UNLOAD SHARABLE BOUND UNIT (UNLD) 

COMMAND, 4-42 

UNWIND 
UNWIND (UW) RESPONSE COMMAND TO 

BREAK, 5-2 

USER-ID 
TAS~ GROUP USER IDENTIFICATION 

(USER-ID), 1-1 

USER-OUT FILE 

WCS 

COMMAND PROCESSOR USER-OUT FILE, 
4-2 

INDEX 

WRITABLE CONTROL STORE (WCS) LOADER, 
4-43 

WORKING DIRECTORY 
CHANGE WORKING DIRECTORY (CWD) 

COMMAND, 4-13 
LIST WORKING DIRECTORY (LWD) 

COMMAND, 4-27 
WORKING DIRECTORY, 1-4 

WRITABLE CONTROL STORE (WCS) 
WRITABLE CONTROL STORE LOAD (WCSLD) 

COMMAND, 4-43 
WRITABLE CONTROL STORE (WCS) LOADER, 

4-43 

i-7 CB24 



C~ 



• 





I 
1 
I 
1 
I 

('--
z 
::i 
l:) 
z 
o 
...J 
<:( 

I­
::J 
U 

I 
I 
I 

.1 

( 

HONEYWELL INFORMATION SYSTEMS 
Technical Publications Remarks Form 

TiTlE SERIES 60 (LEVEL 6) GCOS 
MOD 400 OPERATOR'S GUIDE 

ERRORS IN PUBLICATION 

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION 

ORDER No·1 CB24, REV. 0 

DATED I JANUARY 1978 

r\ Your comments will be promptlv investigated bV appropriate technical personnel and action will be taken 0 1I as required. If you require a written replv, check here and furnish complete mailing address below. 

FROM: NAME __________________________________________ _ DATE ______________ __ 

TITLE ________________________________________ ___ 

COMPANV ______________________________________ __ 

ADDRE~ ______________________________________ __ 



PLEASE FOLD AND TAPE -
NOTE: U. S. Postal Service will not deliver stapled forms 

w 
Z 
...J 

C) 
Z 
o 
...J 
« 
I­
::> 
u 

1 
I 
I· 
1 
1 w 
1 z 
1 .:J 
I ~ 

----------------------------------------------------------------------------------4- 3 
1 ~ 
I 5 

Business Reply Mail 
Postage Stamp Not Necessary if Mailed in the United States 

FIRST CLASS 
PERMIT NO. 39531 
WALTHAM,MA 
02154 

1 u.. 

I 
I 
1 
1 
1 
I 
I 
I 

( 
----------------P-os-ta-ge-W-i-u-B-e-Pa-id-B-y-: ---------------------\,~j 

ATTENTION: PUBLICATIONS, MS 486 

HONEYWELL INFORMATION SYSTEMS 
200SMITH STREET. 
WALTHAM, MA 02154 

UJ 
z 
:J 
C) 
z 

------------------------------------------------ ~3 

Honeywell 

I « 
,5 
10 2 
I 
1 
I 
1 ~ 
I 
J 
I 
I 
I 
I 
I o 



• 



Honeywell 
Honeywell Information Systems 

In the U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154 
In Canada: 2025 Sheppard Avenue East, WiliowdaJe, Ontario M2J 1W5 

In Mexico: Avenida Nuevo Leon 250, Mexico 11, D. F. 

21149, 3678, Printed in U.S.A. 

o 

I 

CB24, Rev. 0 

; 
I' 
! 


