

SUBJECT

SERIES 60 (LEVEL 66)

SOFTWARE
DATA MANAGEMENT-IV

SYSTEM OVERVIEW

Overview of Data Management-IV Components

ORDER NUMBER

DF73, Rev. 0 August 1977

Honeywell

PREFACE

This publication provides an overview of Honeywell's Data Management-IV
(DM-IV) system and the features of its individual components. It is directed
toward both data processing personnel and other personnel who will be involved
with application systems using DM-IV.

This document is the first and most general of a series of publications
describing the administration and use of DM-IV systems. This system overview is
divided into four sections:

• Section I briefly describes the DM-IV processing environment and the
types of data processing problems which the DM-IV system helps provide
solutions to.

• The salient technical features of each of the DM-IV components are
described in Section II.

• Section III presents various scenarios which illustrate some ways in
which each of the components might be used, thus describing types of
requirements for which the components are most useful.

• Descriptions of some of the facilities which assist the
processing staff are contained in Section IV.

data

The following chart shows the relationships between the DM-IV documents.
This is followed by an annotated listing of the documents.

© 1977, Honeywell Information Systems Inc. File No.: 1Pl2

DF73

- ___ ...

SERIES 60 (LEVEL 66)

DATA MANAGEMENT-IV
SYSTEM OVERVIEW

ADDENDUMB

SUBJECT

Additions and Changes to Data Management-IV System Overview

SPECIAL INSTRUCTIONS

This is the second addendum to DF73, Revision 0, dated August 1977. Insert the
attached pages into the manual according to the collating instructions on the
back of this cover. Change bars in the margins indicate technical additions and
changes; asterisks indicate deletions. These changes will be incorporated into
the next revision of the manual.

Note:
Insert this cover after the manual cover to indicate updating of the
document with Addendum B.

ORDER NUMBER

DF73B, Rev. 0 July1979

24562
1979
Printed in U.S.A.

Honeywell

COLLATING INSTRUCTIONS

To update the manual, remove old pages and insert new pages as follows:

Remove

v, vi
2-9, blank
i-1 through i-3

Insert

v, vi
2-9, 2-10
i-1 through i-3

G)Honeywell Information Systems Inc., 1979

7179

File No.: 1P1c

DF73B

SERIES 60 (LEVEL 66)

SOFTWARE

DATA MANAGEMENT-IV
SYSTEM OVERVIEW

ADDENDUM A

SUBJECT

Additions and Changes to Data Management-IV System Overview

SPECIAL INSTRUCTIONS

This is the first addendum to DF73, Revision 0, dated August 1977. Insert the
attached pages into the manual according to the collating instructions on the
back of this cover. Change bars in the margins indicate technical additions and
changes; asterisks indicate deletions. These changes will be incorporated into
the next revision of the manual.

Note:
Insert this cover after the manual cover to indicate updating of the
document with Addendum A.

ORDER NUMBER

DF73A, Rev. O January 1978

20858
3578
Printed in U.S.A. Honeywell

COLLATINr. INSTRUCTIONS

To update the manual, remove old pages and insert new pages as follows:

Remove

iii through vi
2-1, 2-2
2-9, blank
3-1, 3-2
4-1, 4-2

Insert

iii through vi
2-1, 2-2
2-9, blank
3-1, 3-2
4-1, 4-2

~ 1978, Honeywell Information Systems Inc.

1/78 .

File No. : 1Pl2

DF73A

General

r
Data Manager

---_±:_--
Data Base
Administrator
Ref. Man. DF77

Admin is

---1-- -

OM-IV
Interactive
I-0-S/II DF78

OM-IV
System Overview

DF73

I
OM-IV Administration/
Application Summary

Trans~ction
Processor

--_.:::i---
DM-IV/TP
Site Manual

DF45

tration

--- - -
DM-IV/TP
Reference
Manual DF44

J_

COBOL-74
Manuals - DF76,
DEOl, DE02 / DE03

OF74

l
COBJL-74

Data Manipulation
--_t:_--

Data Base
Administrator
Ref. Man. DF77

-- +--
!JM-IV(COBOL-74)
Programmer
Ref. Man. DF76

COBOL-74
Reference
Manual DEOl

Programming
and Use

COBOL-74
user's Guide

DE02

0019

1/78

Related Documents

Unified File
Access System
(UFAS) DC89

COBOL-74
Pocket Guide

DE03

File Management
Supervisor

0045

iii

FORT~
Data Manipulation
--_:i-- -

Data Base
Administrator
Ref. Man. DF77

-- - ---
OM-IV (FORTRAN)
Programmer
Ref. Man. DG27

FORTRAN
Reference
Manual DG75

FORTRAN
Pocket Guide

0082

Query & l Reporting
Processor

---1-- -
Data Base
Administrator
Ref. Manual DF77

J_

DM-IV/QRP
Administrator
Guide DF81

..:::t:..
DM-IV/QRP
Reference
Manual DF79

J_

OM-IV Procedural
Language (PLP)
Ref Man. DF80

OF73A

Order
~

DF73

DF74

DF76

DF77

DF78

DF79

DF80

DF81

1/78

Title and Description

Data Management-IV System Overview

Basic introduction to the features incorporated in each of the DM-IV
components.

Data Management-IV Administration/Application Summary

Description of the responsibilities of the Data Base Administrator and
application programmers with respect to the data base and transaction
processing. Serves to introduce both the Data Base Administrator (DBA)
and programmers to the tools used by the OBA and to the data base
management facilities of DM-IV.

Data Management-IV (COBOL-74) Programmer Reference Manual

Description of
Language used
subschema Data
data available

the Integrated Data Store/II (I-D-S/II) Data Manipulation
in COBOL-74. Also furnishes an introduction to the

Description Language (DDL) used by the DBA to describe
to a COBOL-74 program.

Data Management-IV Data Base Administrator Reference Manual

Description of the languages used to describe the logical and physical
structure of the data base, its records, and the relationships between
records. Description of DBA utilities and samples of reports available I
to the DBA. Descriptions of the subschema DDL for COBOL-74 and FORTRAN.

Data Management-IV Interactive I-D-S/II

Description of the use of the Interactive I-D-S/II facility within
DM-IV.

Data Management-IV Query and Reporting Reference Manual

Description of the programmer and end user interfaces provided in
DM-IV/QRP. Instructions are given for the use of the DIALOG and
DESCRIBE interactive facilities and for Query Language and the QRP
Procedure Language.

Data Management-IV Procedural Lanquage Reference Manual

Description of programming using the Procedural Language Processor, an
option of QRP.

Data Management-IV Query and Reporting Administrator Guide

Description of the Data Base Administrator's tasks in defining the
subschema and describing user requirements for DM-IV/QRP.

iv DF73A

Order
No.

DF44

DF45

DG27

1/78

Title and Description

Data Management-IV Transaction Processor Reference Manual

General description of DM-IV/TP and its components,
application programmer's view of the system.
procedures for programming Transaction Processing
implementing them to form an operational system.
design considerations for TPR preparation and
operation.

Data Management-IV Transaction Processor Site Manual

with emphasis on the
Description of the
Routines (TPR's) and
Also included are

transaction terminal

System generation, installation, and operating procedures for DM-IV/TP.
Includes TP Data Base Manager Interface, site operation, and TP
recovery/restart procedures.

Data Management-IV (FORTRAN) Programmer Reference Manual

Description of the Integrated Data Store/II (I-D-S/II) Data Manipulation
Language used in FORTRAN. Also furnishes an introduction to the
subschema Data Description Language (DDL) used by the Data Base
Administrator to describe data available to a FORTRAN program.

v DF73A

Section I

Section II

I
Section III

Section IV

Index •

Figure 2-1

Figure 3-1

7179

CONTENTS

Introduction •••••••••••
The Data Management Problem ••
The Transaction Processing Problem •
The Problem of End User Access on Demand •

Overview of DM-IV Components •••
DM-IV Data Manager ••••••
DM-IV Transaction Processor ••
DM-IV Query and Reporting Processor.
Procedural Language Processor.
Batch Processing •••••
Time Sharing Processing ••
Pointer Array Set ••••

Using Data Management-IV ••
Requirements of the Data Base •••
Entry of Game Results •••
Add a Player to the Roster ••
Trading a Player •••••
Request for a Single Data Item ••
Produce Injured Players Report
Analyze Gate Receipts •••••
Produce a Quick Report, Subject to
Request a Player's History
Request an Updated Report.
Use DM-IV Journals ••••

Change ••

Locate Data Item Names • • • ••••
Find Particular Data Names ••
Find ALL Data Names ••••••••

Facilities for the Data Processing Staff.

ILLUSTRATIONS

DM-IV Components and Processing Environments.

DM-IV Application Environment •

vi

Page

1 -1
1 -1
1 -2
1 - 3

2-1
2-2
2-5
2-7
2-8
2-9
2-9
2-10

3-1
3-2
3-3
3-5
3-5
3-5
3-6
3-7
3-8
3-8
3-10
3-10
3-11
3-11
3-12

4-1

i-1

2-1

3-1

DF73B

The DM-IV/TP system incorporates software necessary to manage the
communications in a high-volume transaction oriented environment, control the
concurrent execution and data base accesses of many transactions, and preserve
system and data base integrity. This frees the application programmers to
concentrate on the application, thus improving programmer productivity by
avoiding the need to design and test the transaction management functions.

The programming of Transaction Processing Routines (TPR's) is done in
COBOL-74; these TPR's are treated as subprograms of the transaction processing
system. No special languages or preprocessors are needed, thus minimizing
retraining requirements and allowing programmers to code in a standardized
language and use the standard COBOL-74 compiler. Communication between TPR's
and DM-IV/TP is via the Linkage Section, which uses a predefined interface
format.

With these TPR's, transactions can be entered from remote locations and
processed to update the data base or provide data to the transaction terminal
operator. No knowledge of computers or the programs is required to enter
transactions. The human interfaces are designed by the user, so they can be
oriented to the requirements of the terminal operators. Transactions can be
designed to serve for data entry, issuing messages only when errors are
detected, or transactions can be designed so the system has a conversation with
the terminal operator and guides the operator through the process. DM-IV allows
the processing modes to vary among transaction types; the user is not
restricted to using one processing mode or only a few transaction types.

Regardless of processing mode, DM-IV/TP makes it possible for many users to
concurrently access the data base (for both retrieval and update) as if they
were the only users online. DM-IV/TP prevents problems caused by simultaneous
need for the same resources.

THE PROBLEM OF END USER ACCESS ON DEMAND

Not all information requirements can be preplanned; frequently, very
little time is available to obtain the information needed to solve some problems
and assist in making decisions. Even when the lead time for a request is
sufficient to design and write a program, there might not be sufficient
resources to obtain the desired results without impacting other projects. Very
often, these are "spur of the moment" or one-time problems. Even without data
base management systems, the data has often been available to programs -- albeit
scattered and difficult to access; the more significant obstacle has been the
time and other resources needed for programming.

Merely being able to access data (a capability achieved through the DM-IV
Data Manager) is not sufficient by itself; to meet the user requirements, it is
necessary to retrieve (and possibly update) specific data, manipulate it, and
present it to the user in some desired format.

These problems are addressed by the DM-IV Query and Reporting Processor,
and its several subsystems.

1-3 DF73

DIALOG is an interactive query system, allowing the user to directly
interface with the system, eliminating the need to describe the requirements to
a programmer or wait for programs to be written. By their very nature, many
queries are heuristic processes in which it is difficult to state in advance
exactly what is needed. New questions arise as the previous ones are answered.
Through DIALOG, even the untrained user is prompted so the desired results can
be obtained.

No knowledge of data structure is needed; the user specifies only which
fields are needed and can be retrieved. Common queries do not need to be
repeated; queries can be saved. In addition, precise or informal report
formats can be specified.

In many cases, the users with little training can prepare the
programs themselves, thus obviating the need to wait for the availability of
programmers and freeing the programming staff for larger, more complex
development efforts.

Oftentimes, it is necessary to develop programs on short notice or when
limited resources are available. Other programs must be modified frequently to
meet changing requirements. The QRP Procedural Language Processor (PLP) is
well-suited for programs which must be developed quickly or frequently changed.
Long reaction times caused by the time required to code and debug new programs
or changes in other languages have often proven frustrating when information
requirements change frequently. In PLP, programs are written at a higher level
so the computer does more of the work. The programmer has less to code, plus
has an online debugging capability, so programs can be developed (and changed)
more quickly. Not only does this satisfy the new requirement sooner, but it
also increases the productivity of the programming staff.

DF73

I

SECTION II

OVERVIEW OF OM-IV COMPONENTS

Data Management-IV is an evolutionary development integrating proven
systems with new features designed to enhance ease of use and performance,
resulting in a comprehensive approach toward meeting the dynamic requirements
associated with the user's information resources.

I
I

I
I

I
I

I

COBOL-74
I-D-S/Il DML

I
I

I
I

COBOL-74/
FORTRAN
I-D-S/II DML

8

PROCEDURAL
LANGUAGE
PROCESSOR

COMMON
DATA MANAGER
(I-D-S/II)

QUERY
AND REPORT
PROCESSOR

\

\

i-r-----1~ COMMON
DATA
BASE

\
\
\
\

\
\
\

Figure 2-1. OM-IV Components and Processing Envirorunents

Figure
components.

2-1 illustrates the relationships between the various OM-IV
These components serve the following processing environments:

1/78

• • • • • •

Application development
Data base administration
Transaction processing
Interactive data access
Batch production
Time sharing

2-1 DF73A

OM-IV DATA MANAGER

The heart of OM-IV is the Data Manager, for all other components process
information by interfacing with the data base. The Data Manager administers the
creation of the physical and logical structures of the data base (the schema)
and controls the creation of the application-specific views (subschema) of the
data base which are used in processing. It further serves as the interface
between the data base and the various OM-IV processors which access the data
base and perform operations upon it. The Data Manager also provides several
facilities to support data base administration (see Section IV).

The OM-IV Data Manager includes Integrated Data Store/II (I-D-S/II), an
advanced, comprehensive data base management system. Through I-D-S/II, the Data
Manager has implemented the recommendations and specifications of the Committee
on Data Systems Languages (CODASYL) , as well as providing additional features to
increase its flexibility.

The multiplicity of data structures available in I-D-S/II permits a wide
variety of complex data relationships to be represented in the data base. In
the past, the lack of suitable structures has hindered the development of
efficient and effective data bases. With OM-IV, complex relationships can be
represented without requiring that simple relationships be made complicated.
Besides making it feasible to represent the complex relationships among records
in a user's application, this flexibility also makes it possible to more easily
structure the data for ease of access and fast retrieval, which is essential in
online processing.

The basic element of the data base is the record, which is composed of data
fields. This is somewhat analogous to a hardcopy record, such as an order form,
personnel record, etc., which also has various fields. Data structures are
created by relating records to each other, thus creating sets.

These sets, which can be likened to file folders, are defined by relating
records of two or more types. The simplest relationship is one in which an
"OWNER" record can be related to one or more "MEMBER" records of a single type.
For example, just as a file folder for a vendor could contain purchase orders, a
set for a vendor can be composed of purchase order records. Sets can also be
composed of OWNER records with several MEMBER record types, MEMBER records
having several OWNERS in different relationships (networks) , OWNER records
having several MEMBER types in different relationships (trees), multilevel
relationships (hierarchies) , and OWNER records having MEMBERS which can have the
OWNER record type as members also (cycles). All of these basic structures can
be used and combined in one or more integrated areas (i.e., GCOS files) in the
same data base.

I-D-S/II also permits areas to use an indexed organization, with up to 64
record key types being used for the logical sequencing and indexing of records
in the data base.

All data fields, records, sets, and areas in a data base are defined using
a single independent language -- the schema Data Definition Language (DDL) -
which is common to all OM-IV components. Language specific descriptions
using a subschema Data Definition Language -- .are used to describe the data
actually used by the programs. This approach affords flexibility by making it
possible for any OM-IV component to access data in the data base, regardless of
how it was created.

2-2 DF73

The centralized control which is a characteristic of the schema supports
the concept of using a data base administrator (DBA) , an individual or group,
who is responsible for the overall administration and control of the data base.

By having a centralized point for the administration and control of data as
a resource, together with a flexible, powerful processor for presenting this
resource to the user, it is possible for each user to have a view of the data
base without imposing that view on all other potential users and without being
burdened with total responsibility for control.

Besides being responsible to the users for designing the data base to meet
the user requirements, the DBA is also responsible for the physical design of
how data is stored. The physical description of the storage structure is
described using the schema Device Media Control Language (DMCL). The data
structures (logical) and storage structures (physical) are independent; thus
data structures are not constrained by physical limitations and improvements can
be made to the storage structure without affecting the logical representation of
data.

Besides the DMCL, the use of subschemas contributes to program/data
independence. It avoids the problems caused by the lack of separation between
data and how it is used. In the past, descriptions of data and the methods for
accessing it were embedded within the programs using the data. If the data or
its organization were changed, the programs had to be changed. Programs could
not be written unless full details regarding data storage were available.
Besides making it more difficult to use data, it might not have always been
desirable (for security reasons) to give the programmer access to all the data
when only part of the data was needed. With DM-IV, a program needs a
description of only those data and relationships that are relevant to the
application; even the existence of certain data items and relationships can
easily be kept invisible to the program.

The subschema is a language dependent subset of the schema. Data
descriptions in the subschema are described in a subschema DDL which is
syntactically compatible with the programming language used for data
manipulation. Thus, when the subschema is incorporated in a program, the
definitions of the data base entities conform to the conventions of data
definition in the language. In addition, the subschema can be used to reformat
data fields by dividing them (e.g., splitting a date into year, month, day) or
changing their representation (e.g., binary format to ASCII or changing the size
of a field).

Freed from the mundane details of accessing the data, the programmer can
concentrate on the application. In addition, this facilitates access by
personnel with minimal technical training. Furthermore, the independence
between data and programs provides much greater flexibility and adaptability to
changing requirements. The data base can be changed to meet the requirements of
some applications without requiring that all programs be recompiled. The
transformation between the schema DDL/DMCL view of the data base and the
subschema view is handled by the Data Base Control System (DBCS).

With many users needing to retrieve and update data, often simultaneously,
true sharing of the data resource is a necessity. If the user is forced to wait
beyond tolerable limits, the value of the information may deteriorate. The
DM-IV Data Manager supports concurrent access by multiple users while protecting
against potential problems which might occur if a record were changed while
another user was reading it.

2-3 DF73

Concurrent access is controlled through the File Management Supervisor
(FMS). Through FMS concurrent access control, it is possible to prevent other
programs from read or read/write access while the record has been read (and is
expected to be modified) by a program. The type of protection is specified by
the OBA.

Records remain locked only as long as it is necessary to prevent conflict.
Thus, a program may have to wait momentarily to preserve data base integrity,
but the wait should be short, thus facilitating high throughput and fast
response time. Additional concurrent access controls are implemented in the
DM-IV Transaction Processor, so transactions can be processed simultaneously.

Dc>.t.::i. and storage structures can be designed for fast retrieval,
especially necessary in transaction processing. The use of
structures is especially well-suited for applications that require
points into the data base, thus allowing shorter access paths.

which is
integrated

many entry

Deletion of records can be deferred for throughput reasons by specifying
logical (rather than physical) deletion of records. With logical deletion, the
record still exists but there is no means of accessing it. The records can be
physically deleted later by using a Data Manager utility. The utility (Q2DEL)
also serves to compact the data base.

The capability for multi-user access demands precautions for data security.
In DM-IV Data Manager, the privacy locks recommended by CODASYL are combined
with the file permissions monitored by FMS. During execution of a program,
privacy locks make it impossible to operate on specified fields, record types,
set types, or areas unless the correct privacy key is supplied. Separate
privacy locks can be specified for each Data Manipulation Language (DML)
operation. In addition, privacy locks can be used to protect against
compilation of a subschema, validation of a subschema, or any unauthorized

'access or modification of the schema or a subschema. Of course, by not defining
elements or relationships in a subschema, an application has no way of even
knowing that they exist.

Individual areas can be protected via FMS access permissions. Several
types of permissions exist, with the basic ones being "read only" and
"read/write". Permissions can be granted to all users or selectively to
specific users (or everybody except specific users).

The DM-IV Data Manager, in combination with FMS, also provides for system
integrity with the recovery/restart capability. As records are added and
modified or set relationships are changed, these actions are journalized. When
a process aborts, the data base can be quickly recovered and the program
restarted.

Data integrity is also fostered by preventing bad data from entering the
data base in the first place. Rather than requiring that each individual
application incorporate data validation routines, user-coded procedures can be
incorporated in the Data Manager. These procedures can be used to edit data,
perform calculations, or reject data that should not be placed on the data base.

2-4 DF73

DM-IV TRANSACTION PROCESSOR

The DM-IV Transaction Processor CDM-IV/TP} is a communications-oriented
executive which manages the transaction processing environment, including all
use of data base/data communication facilities. DM-IV/TP provides the user with
the capability of simultaneously processing a variety of transactions which may
access the data base, allowing storage and retrieval of information on an
online, real-time basis. The Transaction Processor's flexibility and capability
for handling a high-volume of input and output facilitates obtaining information
where and when it is needed and in a form most suitable to the end user.

Transaction processing is event-oriented; in an enterprise, the creation
of transactions themselves is also event-oriented. Through DM-IV/TP, inquiries
or data resulting from the normal flow of business can be entered from a remote
terminal and immediately processed. Any pertinent updating of the data base is
initiated and the transaction reply is immediately returned to the terminal
user.

Because the Transaction Processor is based on events, actions are performed
immediately upon receipt of new data or when current data is needed instead of
waiting until there are enough transactions to process a batch or until the end
of a day (or other period). The Executive Manager of DM-IV/TP includes the
software necessary for controlling the simultaneous processing of transactions
from many terminals.

The applications processing required for transactions is contained in
user-written Transaction Processing Routines (TPR's}. TPR's contain coding to
read and process input data, access records on the data base, and build output
messages to be returned to the terminal operator or other destinations.

Programming productivity is enhanced in several ways. The programmer deals
with only a single transaction, without being concerned with the fact that other
transactions are being processed at the same time. Because the TPR's are
generally fairly short and straightforward, design and debugging time is
reduced. Furthermore, no special language is needed; TPR's are coded in a
standard subset of COBOL-74 (COBOL-74 input/output and associated statements are
not used) and the standard I-D-S/II Data Manipulation Language (DML) for
COBOL-74. Simple interfaces are used to interact with the Transaction
Processor's executive routines. Thus, training time is minimized and the
programmers are able to use a comprehensive subset of the COBOL-74 language.

From the application programmer's viewpoint, DM-IV/TP can be likened to
batch processing wherein a driver program reads the input and determines which
subroutines to call for processing the input record. Unlike batch processing,
input records are independent in transaction processing. When additional data
is needed to complete a transaction, the system can have a "conversation" with
the terminal operator.

The form of input to be processed -- and also of the corresponding output
messages (if any) is determined by the user's programming with the TPR's.
Thus, the form of interaction is designed by the user to suit the application
requirements and skill levels of the terminal operators. Although most
transactions consist of a single input record (which might be several lines),
conversational transactions are also supported.

2-5 DF73

Characteristically, the end user -- the person initiating the transaction
from a remote terminal is not expected to understand programming or be
computer-oriented. Rather, the end user understands the applications
transactions. These could be orders, bank deposits, shipments of goods from
inventory, requests for status, or any other kind of transaction. Entering a
transaction is as simple as entering a user-defined code to identify the type of
transaction, followed by the data, and waiting for the result. The Transaction
Processor also supports special purpose terminals designed specifically for the
application.

DM-IV/TP places no limit on the number of different transaction types which
can be used in a transaction processing system. Separation of the processing
requirements into different transaction types is based on the requirements of
the application. If necessary, transactions can be serviced by several TPR's.
Transactions of different types can use the same TPR's; this reduces the coding
requirement and also ensures that common processes can be handled identically
for several types of transactions.

Because each transaction performs only a limited number of specific
functions, rather than a wide variety of functions that might occur in a batch
program, security is enhanced. Each transaction can have a different subschema
and different permissions for operating on the data base, thus restricting the
actions of a TPR. In addition, a terminal user can be authorized to enter only
certain types of transactions, thus limiting the types of functions which can be
performed and, consequently, the types of data which can be made available.

Because each user's transaction processing requirements are different, the
DM-IV/TP software is customized before it is used. "System generation" is used
to define the environment in which the TPR's are to be processed; a system
generation source program is processed by a special translation program which is
used to generate the TP Executive needed for the user's application. This
results in the DM-IV/TP routines being customized for the user's own
hardware/software environment and application requirements.

The schema and subschema which the application uses as well as the system
resources that will be required at run time are specified at system generation.
For instance, it is at system generation time that hardware information such as
maximum line length and screen size of terminals, and software information such
as message identifiers is stated so that they can be available to DM-IV/TP to
format and transmit messages.

When developing transaction processing applications, the programmer is
actually using several interfacing "layers" of system software. In addition to
the data base, the first level is the communications network and the operating
system of the Front-end Network Processor (FNP); then the central computer
unit, its operating system, GCOS, and the File Management Supervisor, FMS; and
the DM-IV Transaction Processor, which operates as a privileged slave program.

The Transaction Processor software is logically divided into five major
functional areas.

• Executive manager Schedules and coordinates all Transaction
Processor activities and allocates system resources for optimum
performance. Enhances throughput by allowing parallel processing of
similar transactions and their independent tasks.

2-6 DF73

• Message manager - Accepts and delivers transaction messages, validates
terminals, transliterates and journalizes all incoming messages,
activates transaction processing, and handles message exchange with
the networking software of GCOS. Links an entire network of terminals
to a centralized data base.

• Transaction manager - Controls and coordinates all activities while
each transaction is being processed, including scheduling and
allocating transaction resources and communicating with the user's
customized application programs that perform the actual processing.
These programs are in memory only during execution, reducing memory
occupancy.

• Data base manager - Interfaces with the DM-IV Data Manager to allow
concurrent access to the data base by all transaction programs in
execution, while controlling these accesses and protecting the data
base integrity. Journalizes all updates to the data base for recovery
operations.

• System integrity manager - Provides the procedures to resume normal
transaction processing after a hardware or software malfunction.
Maintains data base integrity by rebuilding a file damaged during a
malfunction from data journalized by the Data Base Manager.

DM-IV QUERY AND REPORTING PROCESSOR

The DM-IV Query and Reporting Processor is a group of subsystems designed
to meet the requirements for quick reaction time, simplified programming, and
direct access by end users. The driving force in the QRP is the Application
Definition File (ADF), which defines the users' processing requirements and
serves as a subschema. Because the ADF contains the description of the
structure of the data base, it is not necessary for the user to be aware of the
access paths used to retrieve records or know where fields are located. The
user (or programmer) must know only the names of the fields to be referenced.
Thus, by placing more information in the subschema, less information must be
supplied when using QRP. Depending on the needs of the user, additional
information can be supplied for more sophisticated retrievals or for obtaining
reports in specific formats.

QRP includes two conversational query facilities. One, the DESCRIBE
subsystem, aids the user who does not know the correct names for the fields in
the data base. Using the ADF, DESCRIBE displays the names and descriptions of
the fields which the user is allowed to access. The user is not given the names
of fields which apply to other applications or which the user is not allowed to
use. Thus, the ADF provides security and also gives a user a data base view
specific to the user's application.

Through the DIALOG subsystem, QRP provides the casual user with a simple
interactive capability for retrieving the. values of selected data fields from
the data base. No programming training is needed; DIALOG is designed for use
by the person actually needing the information. DIALOG prompts the user with
simple questions to aid in formulating the request and also incorporates a
tutorial capability to describe all the possible options.

2-7 DF73

When the user has completed developing the query, QRP generates a program
to execute the request and the program output is returned directly to the user's
terminal. Executing the program in direct access mode (DAC) rather than time
sharing improves the efficiency of the program while still retaining interactive
responsiveness. For example, if the BROWSE capability is used, a program is
generated to read the data base and display the contents of the desired data
items at the terminal. Recurring queries can be saved so they need not be
completely respecified each time they are needed.

Procedures can be written using the QRP Query Language to prepare informal
or precise-format reports. The Query Language lets the user write formatted
reports without writing statements to access the data base. Formats can include
single-level reports with heading/footing lines, subtotals and totals, or
multi-level reports with page layout and data element editing control. These
reports can be directed to the originating terminal, central-site or remote
printers, or time sharing report files. Parametric information can be supplied
by the user at run time to tailor the procedure to the immediate processing
needs.

Several types of common functions are performed automatically by QRP, thus
allowing the user to specify only what needs to be done rather than how it is to
be done. Selection criteria can be defined to restrict the collection of
records to be used or records can be randomly sampled from the data base. If
desired, these records can be sorted, using selected entries, data items, and/or
variable values for up to fifty identifiers, in ascending or descending
sequence. Besides the arithmetic calculations which can be performed by the
user, the SUM, COUNT, STD DEV (standard deviation), AVERAGE (arithmetic mean),
MIN (minimum) , and MAX (maximum) of the values in the selected records can be
automatically computed and displayed in heading or footing lines.

A more advanced capability, the QRP Procedure Language, provides the more
experienced users with the option of writing their own retrieve statements, as
well as other features. These extensions include a table lookup procedure and
the ability to enter data interactively to an executing procedure.

To assure usability by the end user, it is necessary for a system to use
familiar terminology. The Personal Language feature makes it possible for the
QRP components to communicate with the user in application specific terminology
or another language. The user can use native languages such as English, French,
German, etc., or the user installation can define their own application
languages or terminology.

PROCEDURAL LANGUAGE PROCESSOR

The Procedural Language Processor (PLP) an option of QRP, offers additional
capabilities while still maintaining the ease of use of the basic QRP. Like
QRP, PLP does not require the programmer to provide any descriptions of data -
merely the names of the data fields to be used. With PLP, there is a more
powerful and extended data retrieval and processing capability, plus fields in
the data base can be updated.

Programs written in the QRP Procedure Language are fully upward compatible
with PLP. PLP extends the functionality of many QRP statement types as well as
adding more types of statements. Thus, if processing requirements grow and the
PLP features are needed, no conversion from QRP Procedure Language is necessary;
the user merely builds upon the existing procedure.

2-8 DF73

PLP provides improved capabilities for performing retrievals from a data
base and generating reports based on the content of the records and
calculations. Criteria for selectively retrievin~ records can be combined or
can be based on the results of previous operations. PLP can also operate on
several data bases in the same program.

Unlike other QRP subsystems,. PLP permits the user to update the data base.
In addition, new data bases can be created by combining or splitting data bases
or extracting a subset of another data base. Auxiliary sequential files can
also be read or written. Sequential files created by other components can be
processed, if certain conventions are followed in 'Writing the file. For data
integrity, checkpoints can be taken during update processing. Audit trails can
also be produced to provide complete historical information of update activity
against the data base.

PLP can increase programming productivity and improve reaction time since
data base processing tasks can be accomplished with fewer language statements
than other procedural languages, such as COBOL-74 and FORTRAN. PLP is also
easier to modify, thus making PLP suitable for applications which are subject to f
frequent design changes.

BATCH PROCESSING

Even in environments where much of the processing is event-oriented and
requires quick reaction times, there still may be applications which are more
suited to batch processing. For applications with very long, complex reports or
large volumes of input with less critical timeliness requirements (e.g., daily,
weekly, etc.), batch processing may be preferred. DM-IV makes available the
full functionality of COBOL-74 and FORTRAN. Programs written in COBOL-74 and
FORTRAN can access the data base through I-D-S/II or can access conventional
files through file input/output statements.

Programs written in COBOL-74 for batch processing can execute concurrently
with DM-IV TP and QRP/PLP online processing. The data base and other resources
are shared, so information is available to users regardless of the processing
mode or DM-IV subsystems used.

TIME SHARING PROCESSING

OM-IV permits a COBOL-74 program that may contain I-D-S/II DML statements
to be compiled as the result of the Time Sharing System CRN command and to
access a data base under control of the Time Sharing Executive.

1/78 2-9 DF73A

I

l

I

POINTER ARRAY SET

The pointer array set implementation supports the following
functionalities:

1. Fast search of a non-VIA set.

2. Multimember sets.

3. Manual or automatic sets.

4. Efficient search techniques such as binary searches and multilevel
pointer arrays.

5. Elimination of redundant data for duplicate keys in the Pointer Array
record.

6. Local or global sets.

2-10 DF73B

I

SECTION III

USING DATA MANAGEMENT-IV

This section illustrates, through use of a series of scenarios, the OM-IV
components that can be used to process different types of information
requirements. The interaction of these components is shown in Figure 3-1.

DATA

DATA BASE
DEFINITIONS

1/78

FILE
CATALOGS

DATA
FILES

END-USER
LANGUAGE

OM-IV QUERY
REPORTING
PROCESSOR

DESCRIBE SUB
SYSTEM

DIALOG SUB
SYSTEM

r
I __ .J

COMPONENTS

TRANSACTION
PROCESSING

OM-IV
TRANSACTION
PROCESSOR

I
I
I
I
I

PROCEDURAL
LANGUAGES

QRP/PLP
PROCEDURAL
LANGUAGES

COBOL-74
FORTRAN

____ _.

I
I
I
I
I

' ' ' ' ' ' '
......

' '
......

'
......

____ _J

!
OM-IV

DATA

MANAGER

OM-IV

FILE

MANAGEMENT

Figure 3-1. OM-IV Application Environment

3-1

FUNCTIONS

INQUIRY

UPDATE

REPORT GENERATION

BUILD

PROCESS

DATA STRUCTURE
CONTENT CONTROL

DATA SECURITY
INTEGRITY

DATA/PROGRAM
INDEPENDENCE

DATA
RESTRUCTURING

FILE CATALOG
PRIVACY CONTROL

FILE CONCURRENT
ACCESS CONTROL

FILE RECOVERY
RESTART

DF73A

The examples in this section are based on a data base supporting a
hypothetical basketball league. The primary purpose of the data base is to
serve as a repository of data on the performance of teams and individual players
throughout a season, as well as maintaining certain business information.
Information contained in the data base is of interest at both the league and
individual team levels. The data base is stored at the league's centralized
headquarters, but certain data is available to any team, while other data can be
accessed by the team to which it pertains.

REQUIREMENTS OF THE DATA BASE

To support the information requirements of the hypothetical league, several
types of records and relationships between records are defined. The full data
base is described by the Data Base Administrator (DBA) in the schema. The
logical relationships (data stucture) are described using the schema Data
Description Language (DDL), while the physical placement of records (storage
structure) is governed by the schema Device Media Control Language (DMCL). This
permits either the data structure or storage structure to be changed without
causing the other to change.

Each team in the league would have a record in the data base. This record
could contain information on the team, its won-lost record, and ticket sales and
gate receipts. Game records, which could contain schedule information and
results from individual games, would relate teams to each other. For example,
one team is related to a game record by its having a home game while for another
team, the game record represents an away game. Through this record, a team's
schedule and opponents can be found.

Records would also be created to store data on individual players. For
example, this could include the player's name, season performance data, and
other information. Player records would be associated to the team for which
they play by being member records of a set owned by the team record.

There is a file of players' statistics by game, which can be used to
determine a player's performance against any specific opponent.

Another relationship results from the need for an injury list. Players may
optionally be members of a set consisting of all the injured players. This
facilitates preparing reports which list injured players.

Through the Data Manager and the other DM-IV components, the data base
becomes accessible to any of its users from remote locations. For security
reasons, records for each team could be placed in separate data base areas
(i.e., GCOS files). Using FMS file permissions, a team could be given read
permission for all areas but only be able to write within its own area.

The data base administrator (DBA) can assign privacy locks for various
entities (sets, records, etc.) with respect to each type of operation. These
operations will not be permitted on the specified entity unless the correct
privacy key is supplied at run time to satisfy the privacy lock. The data is
thereby protected from unauthorized retrieval~

Several users can access the data base (or even the same records)
concurrently. The File Management System {FMS) controls concurrent access,
protecting from attempts by two users to simultaneously modify the record.

3-2 DF73

When records are modified or added, they can be journalized to afford
system integrity and provide a recovery/restart capability.

In the following examples which include terminal input/output, text in
capital letters represents messages from the system to the terminal. User
responses are indicated in lower case. Where comments are necessary to explain
the example, they are enclosed within parentheses.

ENTRY OF GAME RESULTS

One of the most critical requirements for timely information is that the
initial entry of the data be quick and accurate. In this example, game results
and player statistics must be reported for perhaps ten games in as many
locations on any given day. Online access from these remote locations is a
necessity.

Transaction Processing Routines (TPR's) can be written so the input can be
processed as transactions by DM-IV/TP. The actual form of the transaction and
its operator interface is designed by the user. One approach might be to use a
"TSCORE" transaction for reporting team scores and a "PSCORE" transaction for
entering totals for individual players. A session might look like:

tscore,770203,bulldogs,106,93
BULLDOGS 106 - GREYHOUNDS 93 ON 770203 (Verification message)
smith,12,7,6,3,9,11 (various statistics in predefined format)
SMITH SCORED 30 points
jones,6,3,5,5,4,4
FTA MUST BE GREATER THAN FT; REENTER LINE
jones,6,4,3,5,4,4
JONES SCORED 15 POINTS

3-3 DF73

In the above example, the operator must be familiar with and experienced
with the input format. Such an operator could quickly enter many transactions.
However, the transaction can also provide prompting to assist the less
experienced user. In addition, the transaction could be written as a single
conversational transaction which processes all of a team's input, thus
associating the input records to the team. This "SCORE" transaction might look
like:

score
ENTER TEAM NAME, GAME DATE
greyhounds, 770102
ENTER PLAYER NAME
smith
ENTER FIELD GOALS, FREE THROWS MADE, ATTEMPTED
12 I 7 t 6
TOTAL POINTS SCORE WAS 30
ENTER FOULS
3
ENTER OFFENSIVE, DEFENSIVE REBOUNDS
9, 11
ENTER PLAYER NAME

TEAM TOTALS -
POINTS = 106 (provides a check that detailed input was correct)

A dedicated user probably does not need that much prompting; too much time
will be spent waiting for the prompting messages. Possibly, the input format
may only be shown once (or repeated if operator makes an entry error) :

ENTER TEAM NAME, GAME DATE
greyhounds, 770102
PLAYER, FG, FT, FTA, F, OR, DR
smith, 12, 7, 6, 3 1 9, 11
SMITH SCORED 30 POINTS
jones, 6, 3, 5, 5, 4, 4
FTA MUST BE GREATER THAN FT: REENTER LINE
jones, 6, 4, 3 1 5, 4, 4
JONES SCORED 15 POINTS

TEAM TOTALS -
POINTS = 106

If the terminal supports forms mode, a form could be displayed on the
terminal for the operator to "fill in the blanks." In this way, there would be
no need for a different style of dialog for experienced and inexperienced users;
the casual user would be guided by the form and the dedicated user would be able
to use the system rapidly without having to wait for prompting messages.

3-4 DF73

ADD A PLAYER TO THE ROSTER

When a new player Joins a team, it may be of importance to the team records
to immediately add the record to the data base even though the complete data are
not available. On the other hand, if it were decided that the complete set of
data should be gathered and the record not created until all data became
available, the addition could be handled using some of the same TPR's, but using
other TPR's in addition.

With the conversational capabilities of transaction processing, it is
possible to write a transaction to create a record and supply only part of the
information necessary to complete the record. At one or more points during the
processing, the transaction can, utilizing the conversational mode of TP,
determine if the user wishes to continue building the record. If so, the
transaction can store the data received up to this point, bypassing the
remaining TPR's of the transaction, and terminate. At a later time, when the
balance of the information becomes available, the user can execute the balance
of the TPR's (which will have been made available by use of another transaction
name; i.e., another entry point). This can also be done without conversational
processing; the TPR's can process whatever data is available and then terminate.
If the data is insufficient, the transaction can be aborted without creating a
record.

Note that in both cases (either the full or partial supply of data), the
same TPR's can be used. The difference in the processing is the early
termination and the reentry at a different point. When reentered, the balance
of the same set of TPR's (as would have been used if all the data had been
entered at the same time) will be used to process the data.

TRADING A PLAYER

The trading of players between teams in the basketball league does not
entail the addition of records to the data base because the players' records are
already in the data base. All that is necessary in such a case is for the
relationships of the players' records to be changed. A player record is removed
from the roster set of one team and the same physical record is logically
inserted into the roster set of another team. All other relationships in which
the player record participated would remain the same.

REQUEST FOR A SINGLE DATA ITEM

At times, it may be necessary to check the value of only a single data item
(or a very limited number of items). Unless this is a very common occurrence,
it is probably unreasonable to write a program for it. Instead, the DIALOG
subsystem of QRP or Interactive I-D-S/II can be used to perform the necessary
retrievals.

3-5 DF73

For example, consider a situation in which it is necessary to check the
total points made by a player in a specific game. The user can quickly log on
to DM-IV and to the DIALOG subsystem. Presuming that the user knows the name of
the Application Definition File (ADF) and the entry and item names, the user can
perform the following ad hoc query:

APPLICATION FILE IS - statsadf
DATA-FILE-REFERENCE IS - playerstats
FUNCTION - browse
ENTRY IS stats

DATA TO BE DISPLAYED - totpts

SELECTION CRITERIA - team = "bulldog"
OR PLAYER = "adams" (AND is implied by testing different field)
OR = gamedate = "770308"
OR = (carriage return)
ADDITIONAL CRITERIA - (carriage return)

SNUMB NNNNN
NNNNN

TOTPTS 14

(Generated to facilitate identification of output)

ACTIVITY TERMINATED

If the user did not know the necessary names, he could have used the
DESCRIBE subsystem to obtain the names and descriptions of the fields.

The degree of complexity of the data structure which must be traversed to
locate given data determines the feasibility of using Interactive I-D-S/II for a
query. The complete range of I-D-S/II Data Manipulation Language is available
to the programmer.

PRODUCE INJURED PLAYERS REPORT

A special report containing the names, dates of injuries, and expected
dates of return of the players on the injured list is wanted. The end user uses
the QRP Query language to produce the report:

QUERY LEAGUERECORDADF
REPORT INJURED ON PRINTER
PAGE HEADING IS HEADl
PAGE FOOTING IS FOOTl.
HEADl. LINE "INJURED PLAYERS LIST" COL 30. SPACE 2

LINE "PLAYER", "DATE INJURED" COL 24, "TYPE INJURY" COL 40,
"EXPECTED RETURN" COL 60

SPACE 1
FOOTl. SPACE 1

LINE "DATE", %DATE, "PAGE NUMBER" COL 62, %PAGE NUMBER
DETAIL. LINE NAME, DATEINJURED COL 27, TYPEINJURY COL 40, ESTRETURN COL 64
PRINT INJURED

3-6 DF73

The Query statement identifies the Application Definition File to be used.
The REPORT line names the procedure to produce the report (INJURED) and
indicates the report is to be directed to the printer. The locations of items
in the heading are indicated by column number with the first listed item
automatically being started in column 1. The percent sign indicates the system
is to supply the data, in this case, the current date (that the run is made),
and the page number(s). The PRINT instruction calls for the report by the
assigned name. The output for this query is as follows:

PLAYER

COLLINS
STEWART
ABBOT

DATE 770430

LEW
BOB
NED

ANALYZE GATE RECEIPTS

INJURED PLAYERS LIST

DATE INJURED

770407
770416
770310

TYPE INJURY

SPRAINED ANKLE
FRACTURE-WRIST
NECK INJURY

The league wants a study of gate receipts for each
The data to be included in the report for each arena is the
the visiting team, the team's standing, and the percent of
for that game. Because of the calculations involved,
Language Processor option (PLP) can be used.

EXPECTED RETURN

770424
770630
770420

PAGE NUMBER 1

arena of the league.
game date, name of
the arena seats sold
the QRP Procedural

Using PLP, a report is described in the same manner as for Query. (See
REPORT statement in Query example of Injured Players List.) If part of this
procedure had originally been done using Query Language, the same REPORT
statement could be used.

In setting up the calculations for the report, the arena capacity is
available by retrieval of the home team's record. The game record for the first
game at the specified arena is located and the game date is then available, as
is the number of tickets sold. The game record serves as a relationship record
for home and visiting teams, so the visiting team record is easily located using
the relationship. The visiting team's standing must be calculated using the
won-lost data from that team's record. The percentage of seats sold is
calculated using fields retrieved from the home team record and game record
(capacity and tickets sold) •

The two calculated values (percent sold and visiting team's standing), and
the information from the records (game date and visiting team name) are printed.
The retrieval, calculation, and printing is done automatically for each game at
that arena. The game record for the next game played at the arena is found and
the procedure is repeated, etc. When all games at that arena have been found,
"processed," and printed, the procedure terminates.

The QRP REPORT statement causes the appropriate page heading lines and
detail lines to be produced via the PRINT statement.

3-7 DF73

If additional processing that entailed inserting data in the data base were
required, the complete procedure as it was written (with the added coding) could
be run. No rewriting would be necessary.

The report developed from the procedure would be as follows:

DATE
OF GAME

770410
770412
770413

ICE PALACE GATE RECEIPT STUDY

VISITING
TEAM

BULLDOGS
TERRIERS
DASHERS

STANDING
OF TEAM

.667

.500

.333

PERCENT OF ARENA
SEATS SOLD

95
95
90

PRODUCE A QUICK REPORT, SUBJECT TO CHANGE

Late in the week, a user requests a weekly report to be produced only for
the remainder of the season. The first weekly report is to show each of the
team's players total playing time and total score for the previous month for all
out-of-town games, with the subsequent weekly reports to show accrued totals.
However, the user may want to change the report to include home games, or
incorporate other data.

The time frame for the availability of the reports
to be available after the following Sunday's results
subsequent weekly reports to be available as soon
Sunday's game results have been entered.

is for the first report
are entered, and the
as possible after each

Because the report is both required immediately and is subject to change,
the programmer chooses QRP which eliminates the need for knowing data structure
and permits the programmer's time to be used in writing the statements that will
process the requested data for the report. Since all statistical data is
permitted to all users, the program can use an existing ADF for the data
descriptions.

REQUEST A PLAYER'S HISTORY

One report that will be used by all teams either on a regular basis for all
players, or on a request basis for a particular player is a complete report of
the player's history.

If the program were written as a transaction, the user could request the
information for a particular player at any time from a remote terminal, and
receive the listing at the terminal. The transaction would require input, and
this could be listed with the transaction name if the user were familiar with
the use of the transaction, or if not, the transaction could be written to
prompt for the necessary information. This report could be requested for a
period starting with the first game of the season, and carry through to include
the most recently entered history.

3-8 DF73

In the example below, the system allows the user to determine a player's
record for the season against all teams in the league or a specific team; for
performance against a specific team, the record for an individual game can be
obtained. Several variations of a "RECORD" transaction are shown:

recrd,paulson
ALL TEAMS OR ONE?
all
PAULSON HAS PLAYED 37 GAMES AND SCORED 406 POINTS
rec rd, p auls on
ALL TEAMS OR ONE?
greyhounds
ALL GAMES OR ONE?
all
PAULSON HAS PLAYED 3 GAMES AND SCORED 47 POINTS AGAINST - GREYHOUNDS
recrd,smith
ALL TEAMS OR ONE?
greyhounds
ALL GAMES OR ONE?
770412
TEAMS DID NOT PLAY THAT DAY; TRY AGAIN
770413
SMITH SCORED 12 POINTS AGAINST GREYHOUNDS ON 770413

Another example .of a conversational type transaction is shown below. In
this example, the TPR's are programmed to allow the user to browse through the
data base while developing the query. In this example, the name of the
transaction is BROWSE.

NOTE: 0 is entered when prompting is needed.

browse
TYPE OF INFO NEEDED? 0

l BY DIVISION
2 BY TEAM
3 BY PLAYER

TYPE OF INFO NEEDED? 3
ENTER PLAYER NAME? jones a
SPECIFY TEAM - PLAYER NAME JONES A IS LISTED FOR BULLDOGS, GREYHOUNDS
? bulldogs
WHICH STATISTICS? 0

1 POINTS
2 REBOUNDS
3 FOULS

WHICH STATISTICS? 1
SEASON TOTAL IS 352 POINTS; DO YOU NEED MORE? yes
WHICH BREAKDOWN? 0

1 AGAINST A TEAM
2 INDIVIDUAL GAME

WHICH BREAKDOWN? 1
WHICH TEAM? greyhounds
SEASON TOTAL AGAINST GREYHOUNDS IS 43 POINTS IN 3 GAMES
OTHER STATISTICS NEEDED FOR THIS PLAYER? no
TYPE OF INFO NEEDED? 3 1 smith lr, retrievers, 2
SEASON TOTAL IS 105 REBOUNDS; DO YOU NEED MORE? no

In the QRP environment, procedures for
stored in the user's file to be available
generating a query each time information
transaction environment, the user would
execution time.

producing these reports would be
at any time without the necessity of
is required. Again, as in the
supply parametric information at

3-9 DF73

REQUEST AN UPDATED REPORT

After the day's game history information has been entered into the system,
the new data can be used in calculating updates to all reports dependent on game
history and players' statistics. One of these reports is the standings of the
teams within the league. The manipulation of data that is necessary to produce
the report is accomplished using the Transaction Processor -- treating the
production of the report as a transaction.

To obtain the League Standing report, the user need only request the report
(LSR transaction in the example below) and furnish the date for which he wants
the report. In this example we assume the most current date's standings are
wanted. (The histories from yesterday's games will have already been entered,
but today's games have not yet been played.) The request, entered from a remote
terminal, might progress as follows. (The user has signed onto the Transaction
Processor system.)

THIS IS TP **HELLO**
LSR (user request for LSR transaction)
FOR WHAT DATE - (yesterday's date)

The report showing teams' standings by division and conference within the
league can be printed just below the conversation shown above.

Actually when a transaction requires so little input and is, as in this
example, a transaction that will be used frequently, it is much more realistic
to assume the terminal operator requesting the report would prefer to
immediately give the transaction all the information it needs rather than wait
for a prompt. If the transaction were so programmed, the exchange at the
terminal could be as follows:

THIS IS TP **HELLO**
LSR, (yesterday's date)

The user supplies the date at the same time the transaction is requested
and the report can then follow immediately after. The League Standings report
can be printed at many terminals automatically so that the information is
immediately available to all interested parties. These parties could include
not only the teams themselves, but also the news media. This listing,
originating from the League office, could then be considered the current
"official" Standings report.

USE DM-IV JOURNALS

Auditors are checking the league's books
financial off ice to supply a journal
transactions for the second quarter so they
numbers that have not been justified against

3-10

and during the audit request the
reflecting the accounts payable
can check those purchase order

an account.

DF73

(

The office personnel realize that the auditors can use any complete list of
transactions for that quarter instead of the actual (printed) journals that are
kept in the office. Since DM-IV journalizes all transactions that are entered
into the system as a precaution against system failure and a means of restoring
the system after the failure, there already exists a complete list of
transactions on magnetic tape.

The auditors are able to write a program to scan the tape and list those
account names which carried the missing purchase order numbers, thereby
providing them with the information they need in a fraction of the time it would
have required to manually compare all the journal entries in the printed
journals.

LOCATE DATA ITEM NAMES

Find Particular Data Names

If, in requesting a player's history, the user does not want a complete
list of all statistics, the QRP DESCRIBE subsystem can be used to find the data
names for items the user wants listed after the DATA ITEMS TO BE SUPPLIED
prompt. These items are listed by data names that are specified in the ADF
entries, and which the user can list using DESCRIBE as follows:

*DMIV
*DESCRIBE

ADF OBJECT FILE --statisticsadf
DATA-FILE-REFERENCE ?
DATA-FILE-REFERENCES ARE

PLAYERS TATS
GAMESTATS

DATA-FILE-REFERENCE --playerstats

ENTRY --playername
ITEM --?

MINPLAYED
FIELDGOALS
FREE THROWS
REBOUNDS
ASSISTS
TOTPTS

2,N
5,A
5,A
2,N
2,N
3,N

(user does not know)

(user knows this name)
(but requests item names)
(two numeric characters)
(five alphanumeric characters)
(etc.)

The DESCRIBE subsystem has now given the user the names and characteristics
of the data items contained within the user's virtual record. These data items
are available through all QRP/PLP components.

3-11 DF73

Find All Data Names

Had the user wanted to know
DESCRIBE would have listed
DATA-FILE-REFERENCE request with
mark (?) as shown above.

names of all the data items in the entire file,
them if the user had responded to the

the word ENTIRE instead of the interrogation

ADF OBJECT FILE - statisticsadf
DATA-FILE-REFERENCE - entire

(a complete listing of the file follows)

3-12 DF73

I

SECTION IV

FACILITIES FOR THE DATA PROCESSING STAFF

DM-IV provides a variety of programming and administrative aids to help the
data processing staff to efficiently and effectively satisfy the information
requirements of the user.

The responsibilities of the data base administrator (OBA) include the
design, creation, implementation, modification, and maintenance of the data
base. In describing the logical structure of the data base, the OBA uses the
schema Data Description Language (DDL); the storage structure is described using
the schema Device Media Control Language (DMCL). When these descriptions are
translated, several reports are produced. Besides listing diagnostics from the
translation process, the reports provide cross references and extracts by type
of entity named, storage capacities, and distribution of records to the storage
media.

Similarly, reports are produced when the subschema DDL is translated and
validated to ensure that it is a proper subset of the schema.

To help ensure the security of the data base, some reports can only be
produced after privacy locks are satisfied by privacy keys supplied by the OBA.
Only the OBA is allowed to validate subschemas; the privacy locks also prevent
unauthorized listing of the schema or subschema definitions or of the run-time
privacy locks. Another report lists the names of all programs that have been
compiled against each subschema.

The OM-IV Data Manager includes several utility programs. Using
utilities, data base files can be built, copied, and compressed.
utilities also provide analysis functions which permit the OBA to examine
distribution of records and available space on the data base.

these
These

the

The use of the OM-IV Data Manager instead of traditional file structures
should reduce the programming effort. Definition and documentation of the data
base are done by the DBA; the programmer concentrates on accessing the needed
records and programming the application processing.

The use of QRP or PLP further reduces the programmer's level of concern
with the data base. The information needed for accessing records and fields in
the data base is contained in the Application Definition File, so it does not
have to be supplied by the programmer. The programmer or end user can use the
DESCRIBE facility to obtain a listing of the names and descriptions of the
fields which the programmer is entitled to use.

1/78 4-1 DF73A

The QRP DIALOG facility can be used for determining the content of fields
in the data base. The OBA (or a programmer) can also use Interactive I-D-S/II
to access the data base. In Interactive I-D-S/II, the programmer has available
the full range of Data Manipulation Language (DML) statements, including the use
of privacy keys. Besides serving as a vehicle for quick retrievals or updates,
Interactive I-D-S/II can be used to test the logic of a program's usage of DML.

The DM-IV/QRP PERFORM subsystem can be used by the OBA to inte:c·actively
generate the Job Control Language needed for executing any of the Data Manager
or QRP/PLP utility programs.

Like the Data Manager, the Transaction Processor gives the OBA reports
which can be used to monitor performance and workload. Through these reports,
it is possible to determine which transactions represent the bulk of the
workload, which terminals are most active, and various internal factors,
including resource uti.lization.

4-2 DF73

INDEX

ADF
Application Definition File (ADF)

2-7

ADMINISTRATOR
data base administrator (OBA) 2-3

APPLICATION
Application Definition File 4-1
Application Definition File CADF)

2-7

BROWSE
BROWSE 2-8

COBOL-74
COBOL-74 2-S
COBOL-74 and FORTRAN 2-9

CONCURRENT
Concurrent access 2-4

CONTROL
Data Base Control System CDBCS) 2-3
schema Device Media Control Language

CDMCU 2-3, 4-1

DATA
data base administrator CDBA> 2-3
Data Base Control System CDBCS) 2-3
Data base manager 2-7
Data integrity 2-4
Data Manager 1-2, 2-2
Data Manipulation Language CDML)

2-4
data relationships 2-2
data structures 2-2
I-D-S/II Data Manipulation Language

C DMU 2-5
Integrated Data Store/II CI-D-S/II)

1-2, 2-2
schema Data Definition Language

(DDL> 2-2
schema Data Description Language

(DDL> 4-1
security of the data base 4-1
share data 1-2
subschema Data Definition Language

2-2

DBA
data base administrator (DBA) 2-3

7179 i-1

DBCS
Data Base Control System CDBCS) 2-3

DDL
schema Data Definition Language

(DDL) 2-2
schema Data Description Language

(DOU 4-1
subschema DDL 4-1

DEFINITION
Application Definition File 4-1
Application Definition File CADF>

2-7
schema Data Definition Language

CDDL> 2-2
subschema Data Definition Language

2-2

DESCRIBE
DESCRIBE 2-7
QRP DESCRIBE 3-12

DESCRIPTION
schema Data Description Language

CDDL> 4-1

DEVICE
schema Device Media Control Language

Ci>MCL> 2-3, 4-1

DIALOG
DIALOG 1-4, 2-7, 3-6
QRP DIALOG 4-2

DMCL
schema Device Media Control Language

CDMCU 2-3, 4-1

DML
Data Manipulation Language CDML)

2-4
I-D-S/II Data Manipulation Language

CDML> 2-5

EXECUTIVE
Executive manager 2-6

FMS
File Management Supervisor CFMS)

2-4
FMS access permissions 2-4

DF73B

I

FORTRAN
COBOL-74 and FORTRAN 2-9

GENERATION
System generation 2-6

I-D-S/II
I-D-S/II 2-9
I-D-S/II Data Manipulation Language

(DMU 2-5
Integrated Data Store/II (I-D-S/II)

1-2, 2-2
Interactive I-D-S/II 3-7, 4-2

INDEPENDENCE
program/data independence 1-2, 2-3

INDEXED
indexed organization 2-2

INTEGRATED
integrated areas 2-2
Integrated Data Store/II CI-D-S/II)

1-2, 2-2

I NT EGR ITY
Data integri~y 2-4
System integrity manager 2-7

INTERACTIVE
Interactive l-D-S/II 3-7, 4-2

LANGUAGE
Data Manipulation Language CDML)

2-4
I-D-S/II Data Manipulation Language

(DMU 2-5
Personal Language feature 2-8
Procedural Language Processor
Procedural Language Processor

2-8
QRP Procedure Language 2-8
QRP Query language 3-7
Query Language 2-8

1-4
(PLP)

schema Data Definition Language
(DOU 2-2

schema Data Description Language
(DDL) 4-1

schema Device Media Control Language
CDMCU 2-3, 4-1

subschema Data Definition Language
2-2

LOCKS
privacy locks 2-4

MANAGER
Data base manager 2-7
Data Manager 1-2, 2-2
Executive manager 2-6
File Management Supervisor

2-4
Message manager 2-7

(FMS)

System integrity manager 2-7
Transaction manager 2-7

7179 i-2

MANIPULATION
Data Manipulation Language (DML)

2-4
I-D-S/II Data Manipulation Language

(DMU 2-5

MEDIA
schema Device Media Control Language

(DMCL) 2-3, 4-1

MEMBER
MEMBER record 2-2

MESSAGE
Message manager 2-7

OWNER
OWNER records 2-2

PERFORM
PERFORM 4-2

PERMISSIONS
FMS access permissions 2-4

PERSONAL
Personal Language feature 2-8

PLP
PLP 3-8
Procedural Language Processor (PLP)

2-8

POINTER ARRAY
POINTER ARRAY SET 2-10

PRIVACY
privacy Locks 2-4

PROCEDURAL
Procedural Language Processor
Procedural Language Processor

2:-8

PROCEDURE
QRP Procedure Language 2-8

PROCESSOR
Procedural Language Processor
Procedural Language Processor

2-8
Query and Reporting Processor

2-7

1-4
(PLP)

1-4
(PLP)

1-3,

Transaction Processor 1-2, 2-4, 2-5,
3-11

QRP
QRP
QRP
QRP
QRP
QRP

QUERY

3-9, 3-10
DESCRIBE 3-12
DIALOG 4-2
Procedure Language
Query Language 3-7

QRP Query language 3-7

2-8

Query and Reporting Processor 1-3,
2-7

Query Language 2-8

DF73B

RECORD
MEMBER record 2-2
OWNER records 2-2
record 2-2
record relationships 1-2

RECOVERY/RESTART
recovery/restart capability 2-4

RELATIONSHIPS
data relationships
record relationships

REPORTING

2-2
1-2

Query and Reporting Processor 1-3,
2-7

SCHEMA
schema Data Definition Language

CDDL) 2-2
schema Data Description Language

C DDL> 4-1
schema Device Media Control Language

(DMCL> 2-3, 4-1

SECURITY
security of the data base 4-1

SET
POINTER ARRAY SET 2-10

SHARE
share data 1-2

SUBSCHEMA
subschema 2-3
subschema Data Definition Language

2-2
subschema DDL 4-1

SYSTEM
Data Base Control System CDBCS) 2-3
System generation 2-6
System integrity manager 2-7

TRANSACTION
TPR 3-4
TPR's 3-6, 3-10
Transaction manager 2-7
Transaction Processing Routines 1-3
Transaction Processing Routines

CTPR's> 2-5
Transaction Processor 1-2, 2-4, 2-5,

3-11

7179 i-3

I

DF73B

(_']

z
0
_J

<t
f
:J
CJ

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE SERIES 60(LEVEL 66) DATA MANAGEMENT-IV SYSTEM
OVERVIEW, ADDENDUM B

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

ORDER NO. , DF7 3B, REV. 0

OATEO I JULY 1979

r\ Your comments will be promptly investigated by appropriate technical personnel and action will be taken D L/ as required. If you require a written reply, check here and furnish complete mailing address below.

FROM: NAME~~~~~~~~~~~~~~~~~~~~~~

TITLE ~~~~~~~~~~~~~~~~~~~~~~

COMPANY~~~~~~~~~~~~~~~~~~~~-

AODRESS~~~~~~~~~~~~~~~~~~~~~~-

J

PLEASE FOLD ANO TAPE-
NOTE: U.S. Postal Service will not deliver stapled forms

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTE.MS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

(

Honeywell
Honeywell Information Systems

In the U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1 W5

In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

19212, 35877, Printed in U.S.A. DF73, Rev. (

