HONEYWELL

DPS 8 & DPS 88
ASSEMBLY
INSTRUCTIONS

SOFTWARE

DPS 8 & DPS 88

ASSEMBLY
INSTRUCTIONS
SUBJECT
Description of the Assembly Instructions for the CP-6 and DPS 8/DPS 88
Information Systems ,
SPECIAL INSTRUCTIONS

This is the first revision to DH03-00, dated April 1980. Because of extensive
changes, change bars have not been used.

SOFTWARE SUPPORTED

CP-6, Software Release B03
GCOS 8, Software Release 2300

ORDER NUMBER
DHO03-01 June 1984

Honeywell

PREFACE

This manual contains information that enables the user to code programs in
symbolic machine language which is then translated into binary machine

instructions.

This manual is directed to users who are experienced in coding within the
environment of a large-scale computer installation. Considerable knowledge and
practical experience 1is required in the use of address modification with
indirection, hardware indicators, fault interrupts and recovery routines, macro
operations, pseudo-operations, and other features normally encountered in a
large computer with a flexible instruction repertoire under control of a master
executive program. It is assumed that the wuser is familiar with the twos
complement number system as employed in a sign-number machine {(see Appendix F).

This manual includes the processor capabilities, modes of operation,
detailed descriptions of machine instructions, virtual memory addressing,
paging, and the representation of data. It should prove useful to programmers
who ire responsible for analyzing conditions that cause system failures.

Related manuals:

GCOS 8 OS GMAP User”s Guide, Order Number DHOL.

The information and specifications in this document are subject to change without notice. Consult
your Honeywell Marketing Representative for product or service availability.

©Honeywell Information Systems Inc., 1984 File No.: 1Q23, 1V23, 1W23 DH03-01

LISTING OF MANUALS

A listing of large system software manuals is available to any Honeywell user
who has access to an uppercase and lowercase ASCII terminal with a line length
of 80 or more characters. The manuals are categorized both by software release
and by software category. This listing 1is updated regularly to enable ordering
of manuals as soon as they are published. Instructions on how to order manuals
are output with the listing.)

3 ha 14 3
Tc obtain the L;st;ng:

1. Dial appropriate telephone number to connect your terminal with the
Multics system in Phoenix.

1200-baud 300-baud 150-baud
terminals terminals terminals

(602)249-5356 249-7501 249-7801 249-7554
249-6430 249-7701

System response - computer system identification

Example: Multics MR10.1l: Honeywell LCPD Phoenix, System M
Load=35.0 out of 125.0 urnits: users=35

2. Enter the following login command: login Sam (the identifier "Sam"
must be used - it is not a sample
for any proper name)
Press carriage return key.

System response - request for password

Example: Password:

(password strikeover mask)

3. Enter the password: I Multics

Press carriage return key.

System response - Welcome message followed by a query and "r" message

Example: Welcome to the Multics system
For services available online type:
:list
r1111.7 Thu (ready message)

4. To obtain a list of commands, enter: l :list l

Press carriage return Key.

System response - list of commands available for specific topics and

r" message,

5. Enter command selected and press carriage return key.

6. To log off Multics system, enter: | logouf—i

System response - logout message

Example: Sam SRB logged out 02/04/84 1110.3 mst fri
CPU usage 3 sec, memory usage 22.4 units

iii/iv DH03-01

CONTENTS

L
[
[Te]
o

Section I Introduction
Processor Features
Functional Units . . .

Address Modification . .
Faults And Interrupts . .
Execution Of Interrupts .
Processor Modes Of Operation
Addressing Modes . . .
Absolute Mode . . .
Paging Mode
Interval Timer

o e o ¢ o o o
)
.
.

e o o o o
. .
. .

. .
UUSUSL

.

.

.
R e e e e
AR BWNINN

.
e e o e o
]

o« s s e
e e o o
* & o o
e o o o
* s o o e s o
.
o s e e
.

Section II Representation Of Data « + + « « .« .
Bit Groupings« + . . .
Position Numbering «
The Machine Word
Character-Strings . « e e e e s

Character P051t10ns « e e e e
Bit Positions
Literals
Binary Numbers
Fixed-Point Numbers
Floating-Point Numbers o« . .
Normalized Binary Floatlng-POlnt Numbers
Hexadecimal Floating-Point Numbers . . .
Binary Representation Of Fractional
Values . . v o 4 o ¢ o o s 5 s s e o s
Decimal Numbers . . . o e e e e e

e o o o o o o
[}

« o e o
s e e e
.
.
.

Decimal Data Character Codes .
Floating-Point Decimal Numbers
Decimal Number Ranges

|
HEHW®E OO bW W RN

= O

e o o o o
1

1
3 N WD -

Section III Memory Characteristics
General Description
Virtual Memory

Working Spaces And Pages .
Segments . . . ¢ . . . ¢ e v e e e e e
Descriptors e e o s s e e o o o
Standard Descrxptor e o e s e e e e .
Standard Descriptor With Working Space
Number « ¢ ¢« ¢ « ¢« « o« .
Super-Descriptor
Super-Descriptor With Worklng Space
Number « ¢ « &
Domains . . ¢ ¢« 4 4 4 ¢ e e e e e e e e .
Entry Descriptor

s e o 0
* e e

1

WWwwwwww NN l\.)NMNNMNNNNNNN

Dynamic Linking Descriptor .
Shrinking

« o o e

wwwu'uw ww
wWwn o

[}
SO W []

Section IV Processor Accessible Registers
Accumulator Register (A)« . . .
Quotient Register (Q) - .
Accumulator-Quotient Register (AQ) . .
Exponent Register (E) e e e e e o o o
Exponent-Accumulator-Quotient Register
Index Registers (¥n)
Indicator Register (IR)

bhh?bhhh

v DHO3-01

Section V

CONTENTS (cont)

Timer Register (TR)
Instruction Counter (IC)
Address Registers (ARn)
Pointer And Length Reg1sters (DPS 8) .
Pointer And Length Registers (DPS 88)
Mode Register (MR)
Cache Mode Register (CMR)
Fault Register (FR)
Fault Register Format . . .« o » .
Control Unit History Reglsters (CUn) .
Operations Unit History Registers (oun)
Decimal Unit History Registers (DUn) .
Virtual Unit History Registers (VUn) .
Working Space Registers (WSRn)
Safe Store Register (SSR)
Linkage Segment Register (LSR)
Argument Stack Register (ASR)
Parameter Stack Register (PSR)
Instruction Segment Register (ISR) . .
Operand Descriptor Registers (DRn) . .
Segment Identity Registers (SEGIDn) .
Instruction Segment Identity Register -
SEGID (IS) e e e e e e
Pointer Registers (PRn) I
Data Stack De5cr1ptor Register (DSDR)
Data Stack Address Register (DSAR) . .
Page Directory Base Register (PDBR)
Option Register (OR)

Address Modification And Development . .

Address Modification Features
Basic Modification
Indirect Addressing

Tag Field e e
Types Of Address Modlflcatlon e
Register (R) « e .

Register Then Indlrect (RI) . .
Indirect Then Register (IR) . .
Indirect Then Tally (IT)

Indirect Word Format ., . . .

Variations Under IT Modlflcatxon

Address Modification Octal Codes .
Address Modification Flowchart . .
Floatable Code , . . - .
Address Modification Wxth Address
Registers . .
Single-Word Address Modlflcatlon
Multiword Address Modification .
Multiword Modification Field . .
Operand Descriptors
Bit String Operand Descriptor .
Alphanumeric Operand Descriptors
Numeric Operand Descriptors . .
J.IIULLBLC NO[Q . - . .

* e o s

.

.

L)

* o s+ w &

« e s e

¢ o s o &

Operand Descriptor Address Preparatlon

Bit String Address Preparation
Alphanumeric/Numeric Address
Preparation
Address Development . . . e e e e
Virtual Memory Addre551ng « e e e
Operand Address Procedure . . .
Instruction Address Procedure .
Virtual Address Generation
tandard Descriptor

vi

4-37
4-38
4-38
4-39
4-40
4-40
4-41

4-42
4-43
4-43

L
L]
b e P
[=A ¥, I

[
HHEWONWWN e

'
P
[VLV

mmmmmmmgrmmmmmm
1

[(%3 8

U b

5-26

5-26
5-27
5-30
5-31
5-34
5-34
5-35
5-35
5-38
5-39
5-41

5-42
5-47
5-47
5-47
5-48
5-48
5-48

DHO03-01

Section VI

CONTENTS (cont)

Super-Descriptor
Absolute Addressing Mode
Paging Addressing Mode o e .

Page Table Directory Word Format . .

Page Table Word Format
Mapping The Virtual Address To A Real
Address o e e e . .

Locating The Page Table Dlrectory Word

Dense Page Table
Fragmented Page Table
Associative Memory « « . .

Address Truncation
Bounds Checking
Word And Double-Word Operatlons ..
Byte Operations . . . o .o .

Bit Strings And Index Table Of
Translate Instruction
Bound Check Equations
Address Wraparound « « . .
Multiprocessor Memory Management . . .

Machine Instructions « ¢ « « « o &

Basic Features « v « « « o o .« .
Single-Word Instructions
Boolean Operations
Comparison Operations
Data Movement Instructions
Data Shifting Instructions
Effective Address To Register
Instructions e e e e e e s
Fixed-Point Arithmetic Instructlons . .
Floating-Point Arithmetic Instructions
Special Processor Instructions
Multiword Instructions « « + . .
Alphanumeric Instructions
Numeric Instructions
Bit String Instructions
Conversion Instructions-.
Multiword Instruction Capabilities . .
Edited Move Micro-Operations
Instruction Repertoire &
Functional Classifications
Address Register Instructions
Address Register Load « « « . .
Address Register Store . . N
Address Register Special Arlthmetlc . .
Boolean Operation Instructions
Boolean EXpressions« « o+ « o
Evaluation Of Boolean Expressions . . .
Boolean AND « <« ¢ « « + &
Boolean OR . . . e e e e e e e e e e
Boolean EXCLUSIVE OR e e e e e e e e e
Boolean COMPARATIVE AND
Boolean COMPARATIVE NOT AND .,
Descriptor Register Instructions
Descriptor Register Load

Descriptor Register Save «

Descriptor Register Store
Fixed-Point Instructions
Data Movement Load « « . « . .
Data Movement Store« . + . .
Data Movement Shift
Fixed-Point Addition « . .
Fixed-Point Subtraction

vii

[SANC NS
| I I |
~ -~
w W N

b O
NN b

UL L
HEHEOO OOV &S &EWWN

AN ANARANANANANNTNTNATANANANNNC NN AR
|

=10

CONTENTS (cont)

Fixed-Point Multiplication . .,
Fixed-Point Division,
Fixed-Point Comparison
Fixed-Point Negate
Floating-Point Instructions
Data Movement Load, . . .
Data Movement Store
Floating-Point Addition . . .,
Floating-Point Subtraction
Floating-Point Multiplication
Floating-Point Division, .,
Floating-Point Comparison . . .,
Floating-Point Negate
Floating-Point Normalize
Floating-Point Round
Multiword Instructions e e .
Operand Descriptors And Indlrect P01nters
Operand Descriptor Indirect Pointer
Format
Alphanumeric Instructions . .,
Alphanumeric Operand Descriptor Format
Alphanumeric Compare
Alphanumeric Move
Numeric Instructions
Numeric Operand Descriptor Format . .
Numeric Compare
Numeric Move
Bit String Instructions . . o e e e
Bit String Operand Deserlptor Format .
Bit String Combine
Bit String Compare
Bit String Set Indicators
Data Conversion Instructions, . .
Data Conversion
Arithmetic Instructions
Decimal Addition
Decimal Subtraction
Decimal Multiplication
Decimal Division . . . « o o s e o
Micro-Operations For Edit Instructlons MVE,
MVNE, And (DPS 88: MVNEX)
Micro-Operation Sequence
Edit Insertion Table

Edit Flags . . e e e 4 e e e e
MVNE, MVE, And (DPS 88. MVUNEX)
leferences . e . . e e e e

Numeric Edit (MVNE And MVNEX) « e e e
Alphanumeric Edit (MVE) e e e e e e .
Micro Operations
Pointer Register Instructions
Pointer Register Load
Pointer Register Store ., . « e e e e .
Pointer Register Mlscellaneous o e e e
Privileged Instructions
Register Load
Register Store
Clear Associative Memory Pages
Clear Cache v v v v ..
Memory Control (DPS 8 Only)
System Control
Transfer Instructions
Conditional Transfer
Unconditional Transfer
Domain Transfer (CLIMB)

viii

6-26
6-26
6-27
6-27
6-27
6-27
6-27

6-28
6-28
6-28
6-29

6-30
6-30
6-30
6-31
6-32
6-32
6-32
6-32
6-33
6-33
6-33
6-34
6-34
6-34
6-34
6-35
6-35
6-35
6-35

DHO3-01

Section VII

Section VIII

Appendix A

CONTENTS (cont)

Miscellaneous Operations, . .
All Mode Instructions
Binary-To-BCD Conversion
Execute Instructions
Gray-To-Binary Conversion
Programmed Fault

« e o s e »
L Y)
.

No Onex.a_LGu e s e s e s s s & e o e s »

Repeat Instructions

Processor Instructions e s s e e o
Format Of Instruction Descrlptlon e e e e
Abbreviations And Symbols
Common Attributes Of Instructions .,

Illegal Modification
Parity Indicator

Instruction Word Formats
Single-Word Instructions
Multiword Instructions . . “ e .

Address Register Special Arlthmetlc
Instructions+« « . .
List Of Instructions
Conversion Constants
Micro Operations R T
Micro Operation Code ASSLQnment Map . . .
Terminating Micro Operations
Micro Operation Example

Faults And Interrupts e . e e e s

Description Of Faults And Interrupts .
Fault Procedure .,
Fault Priority
Fault Recognition
Fault Categories e .

.
.
.

Instructlon-Generated Faults o s e e s .
Program-Generated Faults
Virtual Memory-Generated Faults .,

Hardware-Generated Faults
Mode Faults
Privileged Master Mode Faults . .
Master Mode Faults

Slave Mode Faults
Any Mode Faults,

¢ o o o
.
.

Miscellaneous Faults ., . . . « o s s o
Segment Descriptor Flag Faults . .« .
Page Table Word Control Field Faults -
Mode Register Fault Traps (DPS 8 Only) .
Input-Output Multiplexer (IOM)-Detected

Faults (DPS 8 Only) & v o & .
User Faults

IOM Central-Detected User Faults

System Faults e .
System Controller-Detected Faults o . .

Channel-Detected Faults

IOM Central-Detected System Faults

Interrupt Procedure . . .o
System Controller Interrupts (DPS 8) o .
Central Interface Unit Interrupts (DPS

88)

Multiword Instructlon Interrupts o .
Pointer And Length Registers . . .
IC Values Stored On Faults And Interrupts

Inward Climb . . . e e « e . :

@ e e e e e e* e s ° e o e e & =

Operation Code Map ¢ & ¢« v & o o .

ix

Page

6-36

(=)}
|
w
=)

6-36

N
|
w
()}

6-37

NN
LI I |
W W w
~ o~

NN NN NN
1
le\O_U'\U'lU"W!—'I‘-‘

\l\l\l\l\l\IT
I
nuuonuowo
o
>

[|
Lt

1 i
B 0L NN N

N

=
©® 00 ®

DHO03-01

Appendix B

Index

Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure -

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

CONTENTS (cont)

Standard Character Set

ILLUSTRATIONS

Status Of Processor Mode Determinants
Layout Of Segments On Pages
Domain Of Noncontiguous Segments
Shrunken Descriptor For Corresponding New
Segment 000000,
Accumulator Register (A) Format
Quotient Register (Q) Format
Accumulator-Quotient Register (AQ) Format . .
Exponent Register (E) Format
Exponent-Accumulator-Quotient Reglster (EAQ)
Format f e e v e e e e e e e e
Index Register (Xn) Format
Indicator Reglster (IR) Format
Timer Register (TR) Format « e e e .
Instruction Counter (IC) Format
Address Register (ARn) Format
Pointer And Length Register Formats (DPS 8) .
Pointer And Length Register Formats (DPS 88)
Mode Register (MR) Format
Cache Mode Register (CMR) Format
Fault Register (FR) Format . . . c e e e
Control Unit History Register (CUn) Format .
Operations Unit History Register (OUn) Format
Virtual Unit History Register (VUn) Format .
Working Space Register (WSRn) Format
Safe Store Register (SSR) Format
Linkage Segment Register (LSR) Format
Argument Stack Register (ASR) Format
Parameter Stack Register (PSR) Format
Instruction Segment Register (ISR) Format . .
Segment Identity Register (SEGIDn) Format . .
Instruction Segment Identity Register - SEGID
(IS) Format
Data Stack Descriptor Reglster (DSDR) Format
Data Stack Address Register (DSAR) Format .
Page Directory Base Register (PDBR) Format
Option Register (OR) Format .,
Address Modification Flow Chart . . .
Flowchart For Operand Descriptor Addre
Preparation ., . . ,
Virtual Address Generation Usin

S

m.o

.« . .
andard

o

a <

g g
Descriptor ., “ e e e e 4
Virtual Address Generatlon 051ng
Super-Descriptor e e e .

BASE For Standard Descrlptor (DPS 88) o« o e
BOUNDS For Standard Descriptor (DPS 88) .
Resulting Virtual Address Check

Working Space Page Table Directory Format
Page Table Word Format . ., ., .,
Virtual Address
Locating The PTDW « e s e
Virtual Address, Dense Page Table .
Dense Page Table Mapping DPS 8 . .
Dense Page Table Mapping DPS 88 . .
Fragmented Page Table . . , ., . . .

.
.

" e e e

e 0 s
.
.

e o s e
.

s ¢ e e s

Page

i-1

W
- w e
o

-

BB bW
|
UV b Lo

5-62
5-63
5-64

DHO3-01

CONTENTS (cont)

Page
Figure 5-16. Virtual Address, Fragmented Page Table 5-65
Figure 5-17. Fragmented Page Table, Directory Entry 5-65
Figure 5-18. Fragmented Page Table Addressing (DPS 8) . . . 5-66
Figure 5-19. Fragmented Page Table Addressing (DPS 88) . . . 5-§7
Figure 5-20. Associative Memory Word « . . . 5-68
Figure 6-1. Address Register Special Arithmetic 6-8
Figure 6-2, Micro-Operation {(MOP) Character Format §-28
Figure 7-1. Single-Word Instruction Format ., 7-6
Figure 7-2. Multiword Instruction Format 7-7
Figure 7-3. Address Register Special Arithmetic Instruction
Format Y A
Figure 8-1. Fault Trap Address e+ + « « . 8-23
Figure 8-2. Channel Status Word « 8-24
Figure 8-3. Safe Store Stack (DPS 88) 8-33
Figure 8-4. Safe Store Stack (DPS 8) « « B8-34
TABLES
Table 2-1. Ranges Of Fixed-Point Numbers 2-5
Table 2-2. Ranges Of Binary Floating-Point Numbers 2-7
Table 4-1. Processor Accessible Registers 4-2
Table 4-2. Processor Faults By Priority . . e e o e e o 4-13
Table 4-3. System Controller Illegal Action Codes e v . . 4-24
Table 4-4. Fault Register Format . . . e s o e o s o o 4-25
Table 5-1. Address Modification Octal Codes e o + o « o o 5-24
Table 5-2. Register Codes ¢ v v 4 v v ¢ « o « o 5=32
Table 5-3. Bound Check Equations . . . « e o . 5=72
Table 6-1. Alphanumeric Character Number (CN) Codes .« « . 6-20
Table 6-2. Alphanumeric Data Type (TA) Codes 6=20
Table 6-3. Sign And Decimal Type (S) Codes . . . « « + . 6-23
Table 6-4. Default Edit Insertion Table Characters e+« . 6-29
Table 7-1. Binary-To-BCD Conversion Constants 7-64
Table 7-2. Micro Operation Code Assignment Map 7-522
Table 8-1. Processor Faults By Fault Code (DPS 8) 8-3
Table 8-2. Processor Faults By Fault Code (DPS 88) 8-4
Table 8-3. Processor Modes e e e e s e . 8-11
Table 8-4. IOM Central Status Codes (DPS 8) e s e e e 8-25
Table 8-5. IOM Channel Status Codes (DPS 8) 8-26
Table 8-6. System Controller Fault Codes (DPS 8) 8-27
Table 8-7. IOM Central System Faults (DPS 8) 8-28
Table 8-8. Classes Of Faults And Interrupts (DPS 8) . . . 8-36
Table 8-9,. Classes Of Faults And Interrupts (DPS 88) . . . 8-37
Table A-1. Operation Code Map (Bit 27 =0) A-2
Table A-2. Operation Code Map (Bit 27 =1) A-3

x1i DHO3-01

SECTION I

INTRODUCTION

The assembler contains a set of machine instructions used to produce code
for the Honeywell hardware and operating systems. The systems are highly modular,
allowing system configuration to be matched to the work load mix. This section
describes the essential characteristics of the central processors for these systems.

Each processor module in the system has full program ex .cution capability.
The processors conduct all "actual computational processing (data movement,
arithmetic, logic, comparison, and control operations) within the information
system. The processor communicates only with the system controller (DPS 88:
Central Interface Unit) and associated memory. The processors contain several
special features that make significant contributions to multiprogramming, high
throughput, and rapid turnaround. These features are under the control of the
operating system which maintains automatic supervision and complete control of
the multiprogramming/multiprocessing environment.

PROCESSOR FEATURES

A processor contains the following general features:

1. Memory protection to place access restrictions on specified segments.

2. Capability to interrupt program execution in response to an external
signal (e.g., I/0 termination), to save processor status, and to restore
the status at a later time without loss of program continuity.

3. Capability to fetch instructions and to buffer instructions.

4. Overlapping instruction execution, address preparation, and instruction
fetch. While an instruction is being executed, address preparation
for the next operand (or the operand following it) or the next instruction
pair is taking place.

5. Interleaving direct main memory accesses to interleaved system controller
modules,

6. ****DPS8: Intermediate storage of address and control information in
high-speed registers addressable by content (associative memory) ,****

7. Absolute address computation at execution time.

8. Ability to hold recently referenced operands and instructions in a
high-speed look-aside memory.

1-1 DH03-01

Functional Units

The processor consists of independent units., The decimal unit performs
decimal arithmetic and bit-string/character-string operations. The virtual unit
is used to derive an absolute memory address from a virtual address. This
process, called mapping, uses a page table to translate the virtual address into
an absolute address.

Address Modification

. The address modification capability enables the user to dynamically develop
an address contained in an instruction (or indirect word). Before each main
memory access, two major phases of address preparation take place:

1. Address modification by register or indirect word content, if specified
by the instruction word or indirect word.

2. Address modification in which a virtual memory address is translated
(mapped) into an absolute address for accessing main memory (no user
control),

The address modification procedure can go on almost indefinitely (limited
by lock-up time) with one type of modification leading to repetitions of the
same type or to other types of modification before accessing main memory for an
operand.

Faults And Interrupts

The processor detects certain illegal instruction usages, faulty communication
with main memory, programmed faults, certain external events, and arithmetic
faults. Many of the processor fault conditions are deliberately caused by the
software and do not necessarily involve error conditions, The processor communicates
with the other system modules (I/0 multiplexers and other processors) by setting
and answering external interrupts. When a fault or interrupt is recognized, a
"trap" results. When the processor responds to a fault or interrupt, control is
transferred to an operating system module via an inter-domain transfer using an
entry descriptor obtained from a fixed memory location.

The interrupt, fault, and systems entry (PMME) vector locations in real
memory containing the entry descriptors are as follows:

Vector Location
Interrupt 30-31 (octal)
Fault 32-33 (octal)

Systems Entry 34-35 (octal)

Backup Fault 40-41 (octal) ****DpS 88: No backup fault***x

1-2 DHO3-01

Interrupts and certain low-priority faults are recognized only at specific
times during program execution. If, at these times, bit 28 in the instruction
word is set ON, the trap is inhibited and program execution continues. The
interrupt or fault signal is saved for future recognition and is reset caly when
the trap is recognized.

Execution Of Interrupts

in a multiprogramming/multiprocessing computer system, both the hardware
and software must be freed from the burden of checking other components of the
system either for completion of, or requests for, service. To accomplish this,
all active modules that have completed assigned tasks, or that require service,
generate faults or interrupts to the normal flow of instructions in a processor.

Each system controller (DPS 88: Central Interface Unit) has its program
interrupt cells connected in a priority sequence. Any interrupt request generated
by an active module will set the particular interrupt cell thrat the interrupting
device has been assigned to use.

Normally, upon the completion of executing each instruction word pair in
the processor, a check is made for the presence of an interrupt. If no interrupts
are present, or if interrupts have been inhibited, instruction execution continues
in the normal sequence. 1If one or more interrupts are present (and not inhibited),
the system controller (DPS 88: Central Interface Unit) reports the identity of
the highest priority cell that is set and then resets that interrupt cell. This
causes the processor to execute an inward CLIMB. The processor servicing an
interrupt may load the interrupt enable registers with suitable combinations of
bits to prevent any undesired interrupts and to prevent other processors from
being interrupted. Servicing of the interrupt can then proceed without use of
the interrupt inhibit bit. The processor can be protected against undesirable
interrupts but can be interrupted, in turn, by enabled, higher-priority interrupts.

Each input/output module will generate interrupts to indicate events such
as:

1. Successful completion of a requested I/O action

2. Unsuccessful initiation of a requested I/O action

3. Special interrupts (e.g., unit becoming READY)

4. Error ceonditions

1-3 DH03-01

PROCESSOR MODES OF OPERATION

The three processor modes of operation are Privileged Master mode, Master
mode, and Slave mode. The determinants involved in defining these processor
the privileged bit in
the instruction segment register (ISR), and the housekeeping bit in the page
table word (PTW) for the instruction.

modes are the master mode bit in the indicator register,

The status of the determinants for each mode is shown in Figure 1-1.

Processor Modes 2

Determinants Privileged Master Slave
Master Mode Bit ON ON OFF

in
Indicator Register
Privileged Bit in
Instruction Segment ON OFF OFF
Register
Housekeeping Bit
in Page Table Word on P ON/OFF OFF
for the Instruction

3p11 other combinations are illegal and result in a Security Fault, Class

1.

PWhen working space zero is referenced, the housekeeping bit is assumed to

be ON and the processor addresses real memory directly.

Figure 1-1.

Status Of Processor Mode Determinants

DH03-01

A fault or an interrupt causes the processor to enter Privileged Master
mode. If the processor is in Privileged Master mode, an instruction can change
to Master mode by transferring to a segment not marked privileged. The reverse
is also true when transferring to a segment marked privileged. The use of a
CLIMB instruction between Master and Privileged Master modes, like the transfer,
not only allows a change of processor execution modes but also a change of
domains, Refer to the CLIMB instruction definition, documented later in the
manual, for a detailed description of the variations of the CLIMB instruction.

The master mode bit in the indicator register can be turned ON as follows:

1. Occurrence of an interrupt or a fault

2. Execution of the PMME version of the CLIMB instruction, which causes a
system entry

3. Execution of the OCLIMB version of the CLIMB instruction where the
master mode bit of the restored indicator register is ON

The following mode-dependent processor functions are listed by mode. None
of these functions are permitted in Slave mode.

Functions allowed in Master and Privileged Master modes:

1. Accessing through working space register zero

2. Reading operands from a housekeeping page of type T = 0, 2, 4, or 6
segments

3. Executing instructions from housekeeping pages of type T = 0 segments

4. Executing an ICLIMB or GCLIMB instruction or a transfer to a privileged
executable segment.

Functions allowed only in Privileged Master mode:

1. Executing Privileged Master mode instructions (e.g., load working space
registers)

2. Executing Privileged Master mode options of the LDDn, LDPn, or CLIMB
instructions, such as copying the safe store register (SSR) toa descriptor
register (DRn)

3. Accessing or executing in working space zero (absolute addressing)

4. Writing on housekeeping pages of type T = 0, 2, 4, or 6 segments,
using instructions other than CLIMB, SDRn, STDn

1-5 DHO3-01

ADDRESSING MODES

Absolute Mode

Virtual memory provides an absolute addressing mode. When the processor
utilizes the absolute addressing mode, a virtual address is generated. However,
the virtual address is not mapped to a real address; it is used as the real
address (with a maximum size limitation of 2*%*2¢ bytes (64 mb) ****DpS 88 maximum
size is 2**28 bytes (256 mb) **xx)

The processor utilizes the absolute addressing mode each time working space
number zero is referenced. Any time a working space other than zero (WSN=0) is
referenced the processor utilizes the paging mode. For example, assume that the
descriptor contained in the instruction segment register (ISR) points to working
space register (WSR) 1, which contains zero, that the instruction refers to DR2,
which points to WSR 3, and that WSR 3 contains 20. Then, the instructions and
operands with ISR modification (bit 29 OFF) would be accessed in the absolute
addressing mode, and operands referenced with bit 29 ON and DR2 selected would
be accessed in the paging mode from working space 20.

To utilize the absolute addressing mode, the processor must be in Privileged
Master mode. The master mode bit in the indicator register and the privileged
bit in the instruction segment register must be ON. 1If these two conditions are
not met, an attempted reference to WSN 0 results in a Command fault. The housekeeping
bit is assumed ON when WSN 0 is referenced.

Paging Mode

The memory paging mode is an integral part of the address translation process
for mapping a virtual memory address to a real memory address. Each of the 512
working spaces is supported by a page table. The location of the page table
supporting a particular working space (WS) is found by using the nine-bit working
space (WS) number to index a 512-word table that contains the supporting page
table”s absolute memory address. This 512-word table is called the page table
directory (PTD). This table is located in memory by a special base register
called the page directory base register (PDBR).

INTERVAL TIMER

The processor contains a timer that provides a program interrupt (timer
runout fault) at the end of a variable interval. The timer is loaded by the
operating system and can be set to a maximum of approximately four minutes total
elapsed time,

1-6 DHO3-01

SECTION II

REPRESENTATION OF DATA

BIT GROUPINGS

The processor is functionally organized to process 36-bit groupings of
information. Special features are also included for ease in manipulating 4-bit
groups, 6-bit groups, 9-bit groups, 18-bit groups, and 72-b.: double-precision
groups. These bit groupings are usegd by the hardware and software to represent
a variety of forms of information.

POSITION NUMBERING

The numbering of bit positions, character positions, words, etc., starts
with zero and increases from left to right as in conventional alphanumeric text.

THE MACHINE WORD
The machine word consists of 36 bits arranged as follows:

1 1 3
0 7 8 S

One Machine|Word

Upper Half-Word Lower Half-Word

Data transfers between the processor and memory are double-word oriented;
36 bits are transferred at a time for single-precision data and two parallel
36-bit word transfers occur for double-precision data. When words are transferred
to a memory unit, EDAC bits are added to each 36-bit word before storing it.
When words are requested from a memory unit, the EDAC bits are read from memory,

verified, and removed from the transferred word before sending the word to the
processor,

2-1 DH03-01

The processor has many built-in features for efficient transferring and
processing of pairs of words. 1In transferring a pair of words to or from memory,
a pair of memory locations is accessed; their addresses are an even number and
the next higher odd number. A pair of machine words is arranged as follows:

0 ' 3 3 7
0 5 6 1
A Pair of Machine Words -]
Even Address “0dd Address

In addressing such a pair of memory locations in an instruction that is
intended for handling pairs of machine words, either of the two addresses may be
used as the effective address (Y). Thus,

If Y is even, the pair of locations (Y, Y+1l) is accessed. If Y is odd, the
pair of locations (¥-1, Y) is accessed. The term "Y-pair" is used for each
such pair of addresses. Preferred coding practice refers to the even address;
the GMAP assembler issues a warning diagnostic if Y is odd.

CHARACTER-STRINGS

Character Positions

Alphanumeric data is represented by 9-bit, 6-bit, or 4-bit characters. A
machine word contains either four, six, or eight characters, respectively. The

character positions within the word are as follows:
'

9-Bit Character (Bytes):

0 00 11 2 2 3 Bit positions
0 8 9 7 8 6 7 5 within word
0 1 2 3 1] Byte positions
] within word
6-Bit Characters:
0 00 11 11 22 23 3
0 5 6 1 2 7 8 3 4 9 0 5
0 1 2 3 4 5

2-2 DH03-01

4-Bit Characters (Packed Decimal):

00 00 001 11 111 2 2 222 33 3
01 45 8 90 3 4 789 678
z] o 1z 2 3 |z} 4 5 Jz| s 7

The Z represents the bit value 0; other numbers in the fields represent the

character positions.

it Positions

Bit positions within a character are as follows:

[0]1]2]3] 4-bit character

Jof1]213]4]5] 6~-bit character

[o{1i{2]{3]4[5]6[7]8] 9-bit character

Thus, both bit and character positions increase from left to right as in

normal reading.

LITERALS

For information on literals refer to the GMAP User”s Guide.

DHO03-01

BINARY NUMBERS

Fixed-Point Numbers

Binary fixed-point numbers are represented with half-word, single-word, and
double-word precision as shown below.

Precision Representation
0 1
0 7
Upper Half
1 3
Half-word 8 5
Lower Half

0 3
0
Single-word assumed
decimal
point
0 33 7
0 5 6 1
Double-word - .]
Even Address 0dd Address

Instructions can be divided into two groups according to the way in which
the operand is interpreted: the "logic" group and the “algebraic"™ group.

For logic operations, operands and results are regarded as unsigned, positive
binary numbers. 1In the case of addition and subtraction, the occurrence of an
overflow is reflected by the carry out of the most significant (leftmost) bit
position:

1. Addition - If the carry out of the leftmost bit position equals 1
(Carry indicator ON), the sum is above the range.
2. Subtraction - If the carry out of the leftmost bit position equals 0

(Carry indicator OFF), the difference is below the range.

In the case of comparisons, the Zero and Carry indicators show the relation.

2-4 DH03-01

For algebraic operations, operands and results are regarded as signed binary
numbers, and the leftmost bit is used as a sign bit (a 0 being plus and 1
minus). When the sign is positive, all the bits represent the absolute value of
the number; when the sign is negative, they represent the twos complement of the
absolute value of the number.

In the case of addition and subrtraction, the occurrence of an overflow is
reflected by the carries into and out of the leftmost bit position (the sign
position). 1If the carry into the leftmost bit position does not egual the carry
out of that position, then overflow has occurred. If overflow has been detected
and if the sign bit eguals §, the result is below range; if with overflow the
sign bit equals 1, the result is above range.

In integral arithmetic, the location of the decimal point is assumed to the
right of the least significant bit position; that is, depending on the precision,
to the right of bit position 35 or 71 (17 for upper half-word).

The number ranges for the various cases of precision,
arithmetic are given in Table 2-1.

interpretation, and

Table 2-1. Ranges Of Fixed-Point Numbers

Precision
Inter- o 7 , - —
pretationjArithmetic Half-Word Single-Word Double-Word
(Xn, Y5 . 17) (A,Q,Y) (3Q, Y-pair)
Integral -217§N§(217‘1) -235§N§(235-1) -271§N<(271-1)
Algebraic =
Fractionall|-1< N<(1-2717) }-1 < m<1-27%%) [-1cn < a-277h)
Logic - =
Fractional 0§N§(1-2—18) 0§N§(l-2-36) 0§N§(l-2-72)

DH03-01

Floating-Point Numbers

Binary floating-point numbers are represented with single-word and double-word
precision. The upper eight bits represent the integral exponent to the base 2
in twos complement form, and the lower 28 or 64 bits represent the fractional
mantissa in twos complement form. The format for a floating-point number is:

assumed
radix point

(=]
o

~J

o

Single-Word
Precision: S S

Exponent Mantissa
44— FXP - — —_—)

assumed
radix point
00 0 0]0 7
0 1 7 840 1
Double-Word
Precision: S S
Exponent Mantissa
¢———Fxponent 4 ¢ »

where S = sign bit

Before performing floating-point additions or subtractions, the processor
aligns the number that has the smaller exponent, To maintain accuracy, the
lowest permissible exponent of -128, together with the mantissa of zero, has
been defined as the machine representation of the number zero (which has no
unique floating-point representation), Whenever a floating-point operation yields
an untruncated resultant mantissa equal to zero (71 bits plus sign because of
extended precision), the exponent is automatically set to -128.

Normalized Binary Floating—-Point Numbers

For normalized binary floating-point numbers, the binary point is placed at
the left of the most significant bit of the mantissa (to the right of the sign
bit). Numbers are normalized by shifting the mantissa (and correspondingly adjusting
the exponent) until no leading zeros are present in the mantissa for positive
numbers, or until no leading ones are present in the mantissa for negative
numbers. 2Zeros fill in the vacated bit positions.

The number ranges resulting from the various cases of precision, normalization,
and sign are given in Table 2-2.

2-6 DH03-01

Table 2-2. Ranges Of Binary Floating-Point Numbers

Sign Single Precision Double Precision
positive|2712%¢n< (1-2727) 2127 27129¢n< (1-2763) 2127
Normalized
Negative (-l+2'26)2'1293N3-2127 (-1+2°62)2'129353—2127
positive|27155¢n< (1-2727) 2127 27191en< (1-2763) 2127
Unnormalized ~
Negative —2'1553N3-2127 -2'1913N3-2127

NOTE: The floating-point number zero is not included in the table.

Hexadecimal Floating-Point Numbers

The hexadecimal option may be used in floating-point operations to declare
hexadecimal constants, either explicitly or by default. The term hexadecimal
refers to a. floating-point format where the mantissa is a binary number, while
the exponent represents a power of 16 (2**4). The mantissa is shifted by the
number of places for 4-bit groups as required by the exponent.

When decimal data is declared in source images, the characters "X" or "XD"
are specified in the variable field of the DEC pseudo-operation in place of "E"
or "D" to indicate single- or double-precision hexadecimal floating-point binary
data, respectively. {See the GMAP User”s Guide.) These characters control the
computation of the exponent, the positioning of the binary mantissa, and the
storage required by the data. When reading the converted data, the user should
be aware that the exponent represents a power of 16; therefore, a normalized
positive mantissa may have as many as three leading binary zeros.

The hexadecimal floating-point mode is enabled only when both bit 32 of the
Indicator Register and bit 33 of the Mode Register (DPS 88: bit 0 of the Option
Register) are set to 1. The operating system sets the Mode Register (DPS 88:
Option Register) via an operating system service request before giving control
to a process. After the hexadecimal floating-point mode is requested, the user
controls the floating-point mode via the Indicator Register. If the bits are
not both 1s, the floating-point mode will be binary.

I1f a decimal point is present in the variable field of the DEC pseudo-operation
and no other controls are defined, the mechanism defaults to floating-point
format. The HXFLPT pseudo-operation will alter the default mechanism to hexadecimal
floating-point format. The default mechanism may be further controlled by including
the ON, OFF, SAVE, or RESTORE options in the variable field of the HXFLPT
pseudo-operation. (See the GMAP User”s Guide for additional information.)

2-7 DH03-01

Binary Representation Of Fractional Values

A decimal fraction of a given number of digits cannot necessarily be represented
exactly by a binary fraction of any finite number of bits. Consider, for example,
the value 1/5, which is represented in decimal notation as 0.2. Trying to
represent it by a four-bit binary fraction, one obtains (.0011), or 3/16; with
eight bits, one obtains (.00110011), or 51/256. In fact, the ekact value must
be written as

(0.2)19 = (0.0011)2 .o

which means that the bit pattern 0011 in the binary expansion keeps repeating
indefinitely. If the decimal value 0.2 is converted to a binary expansion of 71
bits and then converted back, the one-digit result would be 0.1, quite different
from 0.2. The four-digit result would be 0.1999, which is almost (but not
quite) equal to 0.2. If computations were involved instead of only conversions,
the imprecision in the decimal result could be propagated.

Various adjustments can be made to binary fractional values to make exact
decimal results highly probable. The sure way is to use decimal numbers;
alternatively, one may use binary integer notation to represent all values,
whether integral or fractional, but this may make multiplication or division of
an operand by a power of ten necessary in the course of a computation.

DECIMAL NUMBERS

Scaled decimal numbers that are used directly in hardware arithmetic commands
are expressed as decimal digits in either the 4-bit or 9-bit character format.
They are expressed as unsigned numbers or as signed numbers using a separate
sign character.

Decimal data utilizes the following formats:

00 00 001 11 111 22 222 33 3

0 1 4 5 8 9 0 3 4 7 8 9 2 3 6 7 8 1 2 5

IZI 0 1 Z 2 3 Z 4 5 Z 6 -I- 7
Packed Decimal (4-bit)

00 001 111 2 22 3

0.1 8 90 789 6 7 8 5

¥4 0 Z 1 7 2 7 3

ASCII (9-bit)

The “2”° represents the bit value 0 while other numbers in the fields represent
the character positions.

2-8 DH03-01

Decimal Data Character Codes

During arithmetic operations, decimal digits and signs are checked by the
hardware as 4-bit data (the 4 least significant bits from a 9-bit numeric). The
following interpretations are made:

Bit Pattern for
Character

Interpreted as

Illegal Procedure
(IPR) 1if

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

WoodOUM WO

found where
descriptor
specifies sign

1010
1011
1100
1101
1110
1111

+ 40+ ++

found where
descriptor
specifies digits

The following codes (9-bit zones are created by prefixing binary 00010) are
generated for output signs; the octal values are:

Plus Minus
4-bit 14 (13) 15
9-bit 053 055
For several numeric instructions,

generated.

a sign value of 13 can be optionally

DH03-01

Floating-Point Decimal Numbers

» The format for a floating-point decimal number expressed in 9-bit characters
is:

9-Bit 8-bit

SIGN | 10™. . .102 101 100 o| ExpPONENT

where: SIGN can start at any legal 9-bit character boundary.

In 4-bit character notation, there are four formats for floating-point decimal
numbers:

4-Bit 8-Bit

o] ston | 10™... Jo]| 103 102 Jo| 10! 10% Jo] Expo | NENT

Even character boundary, odd § of digits (# of digits = n+l)

siGN o] 10™... 103 Jo] 102 10l Jol 10° Expo |o| nEnT

0dd character boundary, odd # of digits (# of digits = n+l)

The 8-bit exponent field, which now spans two character positions, is
interpreted the same as in 9-bit character mode. The other two formats are
formed with n+l even. This effectively exchanges the two exponent representations
in the formats shown,

2-10 DH03-01

Decimal Number Ranges

The number ranges for decimal numbers are:

1. Fixed-point unsigned integer:

Range = 0...10%3

2. Fixed-point signed integer:

Range = + 1062

3. Floating-point (implicitly signed):
a. 9-bit format range - + 1081 «x 10%127
b. 4-bit format range - + 1090 * 10%127

c. Zero = +0 * 10127

2-11 DH03-01

SECTION ITI

MEMORY CHARACTERISTICS

GENERAL DESCRIPTION

Each memory module is composed of a system controller (DPS 88: Central
Interface Unit) and associated memory units. Systems are memory-oriented,
permitting processor and I/0 multiplexer functions to execute asynchronously and
simultaneously.

The memory module has neither program execution nor arithmetic capability,
but acts as a passive system component. It serves the processor and I/0 multiplexer
modules that call upon the memory module to save or retrieve information or to
communicate with other system components.

In the memory module 36-bit words are paired with EDAC bits to provide
error detection and correction. For purposes of memory management, the memory
is organized into pages of 1024 words (4096 bytes) each.

Increased system throughput is achieved by operating the memory module and
associated memory units on a 72-bit parallel basis. This corresponds to two
single-word instructions, two data words, or one double-precision fixed-point or
floating-point number.

Systems with more than one system controller provide an increased effective
information rate, since each system controller operates independently and its
functions can be overlapped with those of other system controllers.

Additional overlap is provided by address interleaving. Address interleaving
considerably reduces the possibility of the same memory unit being accessed in
succession. Furthermore, the processor and system controller are especially
designed to utilize memory accesses of two memory units in rapid succession.
These two factors contribute to higher access rates and more effective memory
cycle times,

3-1 DH03-01

VIRTUAL MEMORY

Virtual memory (VM) provides an extremely large, directly addressable memory
space (2**43 bytes) and a complement of registers and instructions to manage
virtual address space. To provide for efficient management and control, the VM
space is divided into equal parts called "working spaces". The working spaces
are further divided into variable sizes called "segments". A segment within a
working space is described by a "segment descriptor"™, which has a base relative
to the origin of the working space and a bound relative to the base, together
with control information. Thus, for all memory references, virtual memory addresses
are prepared relative to a particular working space and to a particular segment
base within the working space. These virtual memory addresses are then mapped
to real memory addresses by a hardware algorithm, of which memory paging is an
integral part.

To access (generate a memory address for) an area of VM, a process (used
here to mean the smallest working unit of software) must have a segment descriptor
that "frames" the particular segment of VM and that gives the desired permission
for using this segment of VM; that is, Read permission, Write permission, or
Execute permission. A process cannot create a segment descriptor, nor change
the base and bound to access an area of VM not enclosed by the area originally
"framed", nor increase the permissions field. Therefore, a process is limited
to accessing only those areas of VM described by segment descriptors that are
available to the process. Segment descriptors are passed to a process either by
the operating system or by another process (all descriptors are created by the
operating system but they may be passed by one process to another process).

In the most secure form of operation, segment descriptors are passed to a
process only through one or more of three segment descriptor "stacks™ maintained
in main memory. Each of these stack areas of memory is defined by a special
hardware register. A unique transfer of domain (CLIMB) instruction is provided
that allows the process to specify which descriptors in the stacks are to be
passed to another process. Then, during the execution of this instruction, the
descriptor stack registers are manipulated by the hardware to pass descriptors
as specified by the process performing the transfer.

The hardware environment for the virtual memory is composed of four elements:
working spaces, domains, segments, and pages. The working spaces and pages are
physical elements, whereas the segments and domains are logical elements. These
elements are treated as separate components of the virtual memory but must be
interpreted in the context of the whole environment, since they are closely
related in their interaction with each other.

Working Spaces And Pages

The virtual memory is divided into 512 (0 through 511) egual working spaces
of 2**34 bytes, each of which is divided into fixed-length parts called pages.
These pages are used for memory management and have a fixed size of 1024 words
(4096 bytes) each.

. page table that identifies the real
memory allocation. The page table for each working space is located in real
memory by a pointer that resides in the page table directory. This directory
has 512 entries and the pointer to the directory is stored in the page directory

base register (PDBR) that can only be altered in the Privileged Master mode.

3-2 DHO03-01

In a memory operation, there is a virtual address and a real address. The
virtual address is automatically transformed to a real address by the hardware.
The virtual address has three components: a working space number (WSN), a page
number, and a byte number (commonly called an offset).

Segments

Another division of the working space is the segment. Each segment is a
logical entity of variable length and may be as small as one byte. Conseguently,
a segment may reside on a portion of a page or Span several pages (see Figure
3-1).

Working Space

¢ Segment a
Page 0
¢ Segment b

Page 1
> -
Page 2 ‘ Segment ¢
4
3
Page 3<
4

—_

Figure 3-1. Layout Of Segments On Pages

The relationship of a segment and a page is analogous to the relationship
of a file and a tape reel. As a multifile reel may contain many files on one
reel, a page may contain several segments. As a multireel file has one file
that occupies several reels, a Segment may extend over several pages.

3-3 DHO3~-01

A segment is characterized by its elements and the form of access to these
elements, which can be Execute, Read, or Write. Segments are classified either
as descriptor segments or nondescriptor segments. The descriptor segments may
be used as linkage, parameter, argument, or safe store segments; whereas the
nondescriptor segments may be instruction-only, data-only, instruction and data
segments, or data stack segments as illustrated in the following diagram:

‘/’////////,/ Segment \\\\\\\‘

Descriptor Nondescriptor
Segments Segments
Linkage Parameter Argument Safe Store Instruction Data Data Stack
Segment Segment Segment Segment Segment Segment Segment
(LS) (PS) (AS) (ss) (I8) (DS) (DSS)

A segment of either class may also be described in one of the eight operand
descriptor registers (DRn).

Descriptors

A descriptor consists of a 72-bit word-pair and locates a segment in virtual
memory. When the processor hardware obtains a descriptor from memory, the processor
assumes that the descriptor is located on an even-word boundary and ignores the
least significant bit of the virtual word address. If a descriptor is stored
from a register, the processor hardware stores on an even-word boundary.

To allow a process to have access to a segment, a copy of the descriptor
must be obtained to locate the segment in virtual memory. Also, the descriptor
delimits, through a set of flags, what forms of access to the segment are available.

Those segments containing instructions, data, or a combination of both
(nondescriptor segments) are commonly called operand segments and have descriptors
that are either type 0, 2, 4, or 6 to indicate operand storage. The segments
containing only descriptors, that is, descriptor segments, have descriptors that
are either type 1 or 3 to indicate descriptor storage. Operand memory references
are always accomplished through operand segment descriptors, usually to
nonhousekeeping pages, whereas descriptor references are made through descriptor
segment descriptors to housekeeping pages.

3-4 DHO3~01

Ten types of descriptors are available. Four of the ten descriptor types
are used to define segments that contain data or instructions, and two are used
for segments containing segment descriptors. The remaining four descriptors are
used only during the execution of the special transfer-of-domain (CLIMB) instruction.
The list of descriptor types is given below.

Type Descriptor
Standard

Super
Super with WSN

N da O

Standard
Standard with WSN

w =

Dynamic linking
Entry
Entry
Entry

=0 oowum

Descriptor
Segment

Standard
Descriptor

WSR WSN
Descriptor Type 1 3

STANDARD DESCRIPTOR

Standard with WSN

Contents

Instructions/operands
Operands
Operands
Operands

Descriptors

Descriptors

Used only with
CLIMB

Segment

Nondescriptor
Segment

Standard Super
Descriptor Descriptor

WSR
0

WSN WSR WSN
2 4 6

The format of the standard descriptor is:

0 12 22 33 3
0 9 0 8 9 12)
Bound Flags WSR |Type Even
20 9 3 I 4] Word
Base 0dd
36 Word
Bound - A 20-bit field that is the maximum valid byte address within the

segment; bits 0-17 are the word address and bits 18-19 are the
The bound is relative to the base. A zero
bound indicates a one-byte segment if bit 27 is 1.

9-bit byte address.

3-5 DH03-01

Flags - A 9-bit field that describes the access privileges as well as
other control information associated with the descriptor:

Flag
Bit Code Meaning

20 R Read
0 Read not allowed
1 Read allowed

21 17 Write
0 Write not allowed
1 Write allowed

22 S Store by STDn
0 Descriptor may not be stored in a type 1 or 3
segment by the STDn instruction.
1 Descriptor may be stored in a type 1 or 3
segment by the STDn instruction. o

23 C Cache Use Control
0 <<Lé66
Cache (2K or 8K) is not used for any fetches
through this descriptor.
<<DPS 8/20 and 8/44
Cache (2K) is not used for fetches through
this descriptor. (8K cache not bypassed.)
<<DPS 8/47, 8/49, 8/52, 8/62, 8/70, and 88
Cache is always used. Not interpreted by
hardware.
1 Cache is utilized for all memory references
through this descriptor.

24 X Reserved for software.

25 E Execute
0 Execute not allowed
1 Execute allowed

26 P Privilege
0 Privileged Master mode not required for
execution,
1 Privileged Master mode required for execution

27 B Bound valid
0 Bound is not valid; segment is empty.
1 Bound field is maximum valid address

28 A Available segment
0 Segment not available; references not allowed.
1 Segment available; references are allowed.

WSR - A 3-bit field that specifies which of the eight working space
registers to use with this descriptor. The working space register
supplies the working space number (WSN).

3-6 DHO03-01

Type

Base

A 4-bit field that defines the descriptor type. The two types
for standard descriptors are:

Type 0 The descriptor "frames" instruction/operand space.

1 The descriptor "frames" an address space containing
descriptors.

Type

A 36-bit virtual byte address that is relative to the working
space defined in the WSR. Bits 0-33 are a 34-bit word address

a

and bits 34-35 represent a 9-bit byte within the word.

STANDARD DESCRIPTOR WITH WORKING SPACE NUMBER

The format of the standard descriptor with working space number (WSN) is:

0 12 2 2 33 3
0 9 0 2.3 12 5
Bound Flags WSN Type Even
20 3 9 4] Word
Base 0dd
36 Word

This format is the same as that for the standard descriptor with the exception
that the flags field has been truncated to allow the descriptor to contain the
actual working space number rather than point to a working space register. The
three flag bits are the same as the corresponding flag bits of the standard
descriptor,

1.
2.
3.
4.

5.

WSN

Type

The state of the truncated flags is assumed as follows:

Execute not allowed (NE)

Not privileged (NP)

Bound valid (B)

Segment is available (A)

Bypass cache (for DPS 8/20 and 8/44 only) (NC)

The actual working space number.

The two types of the standard descriptor with WSN are:

Type 2 The descriptor "frames" operand space.

Type = 3 The descriptor "frames" an address space containing
descriptors.

3-7 DHO3-01

SUPER-DESCRIPTOR

When segments larger than 256K (2**18) words are required, super—-descriptors
are used to define the large segments, The definitions of the flags, WSR, WSN,
and type fields of the super-descriptor are the same as those of the standard
descriptor. The base and bound fields are automatically extended on the right
to a length of 36 bits. The base is extended with zeros and the bound is
extended with 1s. Therefore, a super-descriptor with base, location, and bound
of zero describes a segment that begins at location zero of a working space and
extends 2**26 bytes (16 million words). A super-descriptor with a base of 1,
and location of zero, and a bound of 3 describes a segment that starts at
location 2**26 and extends 2**28 bytes (64 million words).

The format of the super descriptor is:

0 01 12 22 33 3
0 9 0 9 0 8 9 12 5
Base Bound Flags WSR | Type Even
10 10 9 3 4 Word
Location 0dd
36 Word

Base - A 10-bit virtual address (unit 2**26 bytes) within a working
space. The 10-bit base is converted to a 36-bit base (unit 1
byte) by extending to the right by 26 zero bits.

Bound - A 10-bit virtual address (unit 2**26 bytes) that is the maximum
valid address within the segment. Conversion to a 36-bit bound
(unit 1 byte) is accomplished by extending the 10-bit field to
the right by 26 one bits. The bound is relative to the base.

Flags - The flags field describes the access privileges associated with
the descriptor and is identical to the flags field for the
standard descriptor.

WSR - A 3-bit field that specifies which of the eight working space
registers to use with this descriptor. (Identical to the WSR
field for the standard descriptor.)

Type - A 4-bit field that defines the type for the super—descriptor.
Type = 4 The descriptor "frames"” operand space.

Location - A 36-bit byte virtual address relative to the base; that is, an

offset from the 10-bit base. The area framed by the
super-descriptor extends from (Base + Location) through (Base +
Bound) .

3-8 DH03-01

SUPER-DESCRIPTOR WITH WORKING SPACE NUMBER

The format of the super-descriptor with working space number (WSN) is:

0 01 12 2 2 33 3
0 9 0 9 0 2 3 1 2 5
Base Bound Flags WSN Type
i0 10 S 4

Location
36

Even
Word

0dd
Word

This format is the same as that for the super-descriptor with the exception
that the truncated flags field contains three bits that are defined identically

as the corresponding three bits of the standard descriptor.

truncated flags is assumed as follows:

1. Execute not allowed (NE)
2. Not privileged (NP)
3. Bound valid (B)

4. Segment is available (A)

5. Bypass cache (For DPS 8/20 and 8/44 only) (NC)

WSN - The actual working space number.

Type - A 4-bit field that defines the descriptor type
WSN".
Type = 6 The descriptor "frames" operand space.

The state of the

as "super with

DHO03-01

Domains

Another logical element of the virtual environment is the domain. The
domain is a flexible and temporary range of operation that may encompass several
noncontiquous segments in one or more working spaces (see Figure 3-2). fTwo or
more domains may ‘interact by including the same segment. Each domain contains
exactly one linkage segment to define the domain. A change of domain implies a
change of linkage segment and vice versa. The linkage segment contains descriptors
for the segments constituting the domain. Descriptors for the domain may be in
descriptor segments described in the linkage segment, in descriptor registers,
or in the parameter segment.

WSN X WSN Y
o -
Page 0 ¢ Segment a # Page 0
- «
Page 1 ¢ Segment d p Page 1
Segment b
- <
Page 2 ¢ Domain } Page 2
- L
Page 3 ¢ Segment e p Page 3
> o
Segment ¢
Page 4 ¢
-

Figure 3-2. Domain Of Noncontiguous Segments

Like the linkage segment, only one argument segment is contained in a domain.
This segment provides additional descriptor storage in the form of a descriptor
stack which is accessed through the argument stack register (ASR). The stack is
empty until descriptors are entered during execution. This segment is used
mainly to store descriptors previously loaded in registers, while the registers

are used for other descriptors, and to form descriptor segments for communication
across domains,

3-10 DH03-01

The parameter segment contains one descriptor for each parameter and its
contents may vary from call to call., Unlike the descriptors in the linkage
segment which are available each time control is passed to a domain, the descriptors
in the parameter segment are specific to the call and become unavailable when
control is returned from the called domain. Thus, the descriptors in the parameter
segment for a domain provide accessibility in the called domain to the described
segments only while the call is active.

The bounds and forms of access of the domain are set by the descriptors
that define the segments that contain the items to be accessed within a domain.
Change from one domain to another is normally performed by the execution of an
ICLIMB instruction that establishes a new linkage segment and, usually, a new
parameter segment. An interrupt or fault also causes a change of domain.

Also associated with the process are the safe store stack and the data
stack segments. The safe store stack is always used (except for GCLIMB and
PCLIMB) in a change of domain, but a new domain may or may not choose to access
a different portion of the data stack segment, It does not have access to that
portion used by the calling domain.

Normally, a change of domain is accomplished through a succession of operations
that are associated with the ICLIMB instruction. Starting with two separate
domains, which for convenience are referred to as calling domain and called
domain, the entry descriptor accessed in the calling domain describes the
called-domain linkage segment and identifies a specific initial instruction in
an instruction segment described in that linkage segment. The contents of the
domain registers (LSR, ASR, PSR, and DSAR), as well as those of any other registers
specified by the type of entry descriptor, are safestored.

The change-of-domain CLIMB instruction indicates whether there are parameters
and the number of arquments. The arguments may be either vectors or descriptors.
If the arguments are vectors, descriptors are prepared for the vectors, stored
in the parameter segment of the called domain, and the argument segment becomes
empty. Refer to the description of the LDDn instruction documented later, for
information concerning vector operations.

The source of the list of vectors or descriptors is given as the contents
of pointer register zero. (Descriptor register zero identifies the segment in
which the list occurs and indicates whether vectors or descriptors are listed.
Address register zero gives the offset in that segment of the 1list.) On
change-of-domain return, the contents of the calling-domain“s domain registers
and any other register contents that were safestored are restored.

3-11 DHO3-01

ENTRY DESCRIPTOR

An entry descriptor is required to call a new domain. The entry descriptor
describes the linkage segment that defines the new domain, a segment containing
instructions to be initially executed in the domain, and an offset relative to
the origin of that segment to which control is transferred. The entry descriptor
is used with the CLIMB instruction and has the following format:

0 111 22 33 3
0 7 89 8 9 12 5
Entry Location F ISEG No. WSR lType Even
18 10 3 4] Word
LBOUND Linkage Base 000 0dd
10 26 Word

Entry Location

ISEG No.

WSR

Type

LBOUND

Linkage Base

An 18-bit word address that is loaded into the instruction
counter when the entry descriptor is used as an argument
of the CLIMB instruction. The entry location is relative
to the base of the new instruction segment,

Bit 18 is the "store" permission bit and is interpreted
the same as flag bit 22 of the standard and
super-descriptors,

The number of the descriptor to be loaded into the
instruction segment register (ISR). The ISEG number is
expressed in units of descriptors and is an index relative
to the new linkage segment base. The ISEG number is
extended with three zeros to be expressed in bytes and
is also used in loading the SEGID (IS) register as follows:

11
ISEG No.

bits 0-1
bits 2-11

The working space register containing the number of the
working space to which the linkage base is relative,

A 4-bit field that defines the entry descriptor type.

Type = 8, 9, or 11 Each number has a special meaning
for the CLIMB instruction
(determining the registers to be
saved in the safe store stack upon
change of domain),

The bound of the linkage segment expressed in units of
descriptors. To form a standard descriptor bound, bound
= 0000000 | |LBOUND| |111.

The wvirtual starting address of the linkage segment
relative to the working space defined by the working
space register pointed to by the WSR field. When an
entry descriptor is utilized, the associated linkage
segment must be contained in the first 2**26 bytes of
the working space. The last three bits of the linkage
base are shown as zeros since the linkage segment must
start on a double-word boundary; in actual practice,
the hardware ignores the contents of these three bits.

3-12 DHO03-01

DYNAMIC LINKING DESCRIPTOR

The dynamic linking descriptor has a double-word format with a type field
of T=5 entered in bits 32-35 of the even word. Bits 0-21, 23-31, and 36-71 are
available to software for defining how the linkage is to be resolved. Bit 22 is
for store permission. A dynamic linking fault will occur when the CLIMB instruction
attempts to address through a dynamic linking descriptor. Any attempt by the
STDn instruction to store a dynamic linking descriptor with the store permission
bit (bit 22) of word one equal to zero in a type T=1 or 3 segment causes an SCL2
fault. The dynamic linking descriptor has the following format:

0 2 33 3
0 2 1 2 5
Reserved for Software Reserved for Software Type Even
22 11 9 4 Word
Reserved for Software 0dd
36 Word
Type - A 4-bit field that defines the dynamic linking descriptor.
Type = 5
NOTE: The software usually replaces this descriptor with
a Type = 11 entry descriptor while processing a
dynamic linking fault.
SHRINKING

A feature commonly used to provide descriptor access control is called
shrinking. This is the only means available to the Slave mode for the creation
of descriptors. 1In this process a new descriptor of decreased scope is formed
in one of the descriptor registers from a descriptor already available. 1In
essence a new subordinate segment identified by the shrunken descriptor is formed
as shown in Figure 3-3.

3-13 DH03-01

Given

Segment
DRn
Given New Shrunken
Descriptor Segment Descriptor

4—”/’/””F

Figure 3-3. Shrunken Descriptor For Corresponding New Segment

Shrinking is used to prepare parameter descriptors for another domain, to
facilitate access to portions of the domain, and to restrict access to specific
shared portions of the domain. Shrinking operations may be performed on both
standard and super-descriptors, but the result is always a standard descriptor.
A shrunken descriptor may be stored in a descriptor segment on a housekeeping
page or in the descriptor stack addressable by the Argument Stack Register (ASR).
Storing requires that the descriptor to be stored has store permission.

Shrinking is done via the Load Descriptor Register n (LDDn) instruction, or
a domain call or transfer version of the CLIMB instruction (ICLIMB or PCLIMB).
In both instances, operands are used to define the shrinking operation in terms
of a base address, size, and segment. The operands are called vectors and each
is composed of two contiguous words. Each vector specifies one of the following
functions to be performed by the instruction: copy descriptor, normal shrink,
or data stack shrink. An operand of a Load Descriptor instruction may be in the
same segment as the Load Descriptor Register n instruction or in another segment,
If the operand is in a descriptor segment, it is a descriptor, not a vector, and
replacement occurs rather than shrinking.

A companion of the vector is an internal offset (a combination of a segment
identifier (SEGID) and an address value) called a pointer. The pointer is a
36-bit operand with sufficient information to identify an operand within a domain.
Since a pointer is relative to a domain, it can be used only to address operands
within its domain. Pointers for one domain cannot be used in another domain;
however, pointers can be exchanged and used by several instruction segments
within a domain.

3-14 DH03-01

SECTION IV

PROCESSOR ACCESSIBLE REGISTERS

A processor register is a hardware assembly that holds information for use
in some specified manner. An accessible register is a register whose contents
are available to the user. Some accessible registers are explicitly addressed
by particular instructions, some are implicitly referenced during the execution
of instructions, and some are used in both ways. The accessible registers are
listed in Table 4-1. Refer to the "Processor Instructions” section for a discussion
of each instruction to determine the way in which the registers are used.

4-1 DH03-01

Table 4-1.

Processor Accessible Registers

Length
Register Name Mnemonic (bits) Quantity
Accumulator Register A 36 1
Quotient Register Q 36 1
Accumulator-Quotient Register1 AQ 72 1
Exponent Register E 8 1
Exponent-Accumulator-Quotient Registerl EAQ 80 1
Index Registers Xn 18 8
Indicator Register IR 18 1
Timer Register TR 27 1
Instruction Counter IC 18 1
Address Registers ARn 24 8
Mode Register (Not in DPS 88) MR 34 1
Cache Mode Register (Not in DPS 88) CMR 28 1
Fault Register FR 72 1
Control Unit History Registers CUn 72 16
(Not in DPS 88)
Operations Unit History Registers OUn 72 16
(Not in DPS 88)
Decimal Unit History Registers DUn 72 16
(Not in DPS 88)
Virtual Unit History Registers vun 72 16
(Not in DPS 88)
Working Space Registers WSRn 9 8
Safe Store Register SSR 72 1
Linkage Segment Register LSR 72 1
Argument Stack Register ASR 72 1
Parameter Stack Register PSR 72 1
Instruction Segment Register ISR 72 1
Operand Descriptor Registers DRn 72 8
Segment Identity Registers SEGIDn 12 8
Instruction Segment Identity Register SEGID(IS) 12 1
Pointer Registers PRn 108 8
Data Stack Descriptor Register DSDR 72 1
Data Stack Address Register (DPS 8) DSAR 17 1
Data Stack Address Register (DPS 88) DSAR 15 1
Page Directory Base Register (DPS 8) PDBR 15 1
Page Directory Base Register (DPS 88) PDBR 17 1
Option Register (DPS 8) OR 3 1
Option Register (DPS 88) OR 36 1
Pointer and Length Registers P&L 36 8
Pointer and Length Registers (DPS 88)4 P&L 36 2
Stack Control Register SCR 2 1
lrhese registers are not separate physical assembl but are nations of
their constituent registers,
zThe pointer registers are not distinct physical regi rs but ccllective

r re not n
group of registers (DRn, ARn, SEGIDn).

3Phe PDBR uses 15 bits for DPS 8; 17 for DPS 88.
The OR uses 3 bits for DPS 8; 36 for DPS 88.

4rhe pointer and length registers are described later in this document

DHO3-01

In the descriptions that follow, the diagrams given for register formats do
not imply that a physical assembly possessing the pictured bit pattern actually
exists, The diagram is a graphic representation of the form of the register
data as it appears in memory when the register contents are stored or how data
bits must be assembled for loading into the register.

If the diagrams contain the character "x" or "0", the value of the bit in
the position shown is irrelevant to the register. Bits pictured as "x" are not
changed in the receiving cell when the register is stored. Bits pictured as "Q"
are set to 0 in the receiving cell when the register is stored. Neither "x"
bits nor "0" bits are loaded into the register.

ACCUMULATOR REGISTER (A)

Format: 36 bits

o O
e
QO

A-Upper A-Lower

18 18

Figure 4-1. Accumulator Register (A) Format

Description:

A 36-bit physical register.

Function:
In fixed-point binary instructions, holds operands and results.

In floating~point binary instructions, holds the most significant part of
the mantissa and the result,

In shifting instructions, holds original data and shifted results.

In address preparation, may hold two logically independent offsets, A-upper
and A-lower, or an extended range bit- or character-string length.

4-3 DH03-01

QUOTIENT REGISTER (Q)

Format: 36 bits

0 11 3
0 7 8 5
Q-Upper Q-Lower

18 18

Figure 4-2. Quotient Register (Q) Format

Description:

A 36-bit physical registér.

Function:
In fixed-point binary instructions, holds operands and results,

In floating-point binary instructions, holds the least significant part of
the mantissa.

In shifting instructions, holds original data and shifted results.

In address preparation, may hold two logically independent offsets, Q-upper
and Q-lower, or an extended range bit- or character-string length.

ACCUMULATOR-QUOTIENT REGISTER (AQ)

Format: 72 bits

(SN
o W

Even Word 0dd Word

[=)] _Jf—‘\-l

36 3

Figure 4-3. Accumulator-Quotient Register (AQ) Format

4-4 DHQ3-01

Description:

A combination of the accumulator (A) and quotient (Q) registers.

Function:

In fixed-point binary instructions, holds double-precision operands and
results,

In floating-point binary instructions, holds the mantissa and the result.

In shifting instructions, holds original data and shifted results,

EXPONENT REGISTER (E)

Format: 8 bits

0 00 3
0 7.8 5
exponent 0000000000000000000000O0O0O0O0O0O

8 28

Figure 4-4. Exponent Register (E) Format

Description:

An 8-bit physical register.

Function:

In floating-point binary instructions, holds the exponent.

4-5 DH03-01

EXPONENT-ACCUMULATOR-QUOTIENT REGISTER (EAQ)

Format: 80 bits

~N ©
o o
= ~J

0 (E) (AQ)

exponent mantissa

Figure 4-5., Exponent-Accumulator-Quotient Register (EAQ) Format

Description:

A combination of the exponent (E), accumulator (A), and quotient (Q) registers.
Although the combined register has a total of 80 bits, only 72 are involved in
transfers to and from main memory. The low-order 8 bits are discarded on store
and zero-filled on load (that is, Q-register bits 28-35 are zero on load; bits
64-71 of the AQ Register are ignored). See "Floating-Point Arithmetic Instructions"
documented later in this manual.

Function:

In floating-point binary instructions, holds operands and results,

INDEX REGISTERS (Xn)

Format: 18 bits each

0 1
0 7
18

Figure 4-6. Index Register (Xn) Format

4-6 DHO3-01

Description

Eight 18-bit physical registers numbered 0 through 7, Index register data
may occupy the position of either an upper or lower 18-bit half-word operand.

Function:
In fixed-point binary instructions, hold half-word operands and results,

In address preparation, hold bit, character, or word offsets or held extended
range bit- or character-string lengths.

INDICATOR REGISTER (IR)

Format: 18 bits

0 1112222222222333 3
0 789 0123456789012 5
X X XX X X XX XX XX XXX X X xjalbJcldfjelflglh}ililk]lim]0]ln] MB2Z

18 1111111111111 1 3

Figure 4-7. Indicator Register (IR) Format

Description:

An assemblage of 14 indicator flags from various units of the processor.
The data occupies the position of a lower 18-bit half-word operand. When interpreted
as data, a bit value of 1 corresponds to the ON state of the indicator; a bit
value of 0 corresponds to the OFF state.

4-7 DH03-01

Function:

The functions of the individual indicator bits are given below.

Key Indicator name

a Zero

b Negative

c Carry

d Overflow

e Exponent overflow

Action

This indicator is set ON whenever the output of
the main binary adder consists entirely of zero
bits for binary or shifting instructions or the
output of the decimal adder consists entirely of
zero digits for decimal instructions; otherwise,
it is set OFF.

This indicator is set ON whenever the output of
bit 0 of the main binary adder has value 1 for
binary or shifting instructions or the sign character
of the result of a decimal instruction is the negative
sign character; otherwise, it is set OFF.

This indicator is set ON for any of the following
conditions; otherwise, it is set OFF.

(1) If a bit propagates leftward out of bit 0 of
the main binary adder for any binary or shifting
instruction.

(2) If |valuel| <= |value2| for a decimal numeric
comparison instruction.

(3) 1If charl <= char2 for a decimal alphanumeric
comparison instruction.

This indicator is set ON if the arithmetic range
of a register is exceeded in a fixed-point binary
instruction or if the target string of a decimal
numeric instruction is too small to hold the integral
part of the result. It remains ON until reset by
the Transfer On Overflow (TOV) instruction or is
reset by some other instruction that loads the IR.
The event that sets this indicator ON may also
cause an overflow fault. (See overflow mask
indicator below.)

This indicator is set ON if the exponent of the
result of a floating-point binary or decimal numeric
instruction is greater than +127. It remains ON
until reset by the Transfer On Exponent Overflow
(TEO) instruction or is reset by some other
instruction that loads the IR. The event that sets
this indicator ON may also cause an overflow fault.
(See overflow mask indicator below.)

4-8 DHO03-01

Key

9

h

i

3

Indicator name

Exponent underflow

Overflow mask

Tally runout

Parity error

Parity mask

Action

This indicator is set ON if the exponent of the
result of a floating-point binary or decimal numeric
instruction is less than -128. It remains ON until
reset by the Transfer On Exponent Underflow (TEU)
instruction or is reset by some other instruction
that loads the IR. The event that sets this indicator
ON may also cause an overflow fault. (See overflow
mask indicator.)

This indicator is set ON or OFF only by the
instructions that load the IR. When set ON, it
inhibits the generation of the fault for those events
that normally cause an overflow fault. If the
overflow mask indicator is set OFF after occurrence
of an overflow event, an overflow fault does not
occur even though the indicator for that event is
still set ON. The state of the overflow mask
indicator does not affect the setting, testing, or
storing of any other indicator, nor does it affect
the overflow fault caused by the truncation
indicator.

This indicator is set OFF at initialization of any
tallying operation, It is then set ON for any of
the following conditions:

(1) If ‘any Repeat instruction terminates because
of tally exhaust.

(2) If a Repeat Link (RPL) instruction terminates
because of a zero link address.

(3) If a tally exhaust is detected for an Indirect
then Tally modifier. The instruction is
executed whether or not tally exhaust occurs.

(4) If a string scanning instruction reaches the
end of the string without finding a match
condition.

This indicator is set ON whenever a systemcontroller
(DSp 88: Central 1Interface Unit) signals an
uncorrectable error or the processor detects an
internal parity error condition. The indicator is
set OFF only by instructions that load the IR,

This indicator is set ON or OFF only by the
instructions that load the IR. When it is set ON,
it inhibits the generation of the parity fault for
all events that set the parity error indicator.
If the parity mask indicator is set OFF after the
occurrence of a parity error event, a parity fault
does not occur even though the parity error indicator
may still be set ON. The state of the parity mask
indicator does not affect the loading, testing, or
storing of any other indicator.

4-9 DH03-01

Key

k

1

m

MB2Z

Indicator name

Master mode

Truncation

Multi-word instruction
interrupt

Hex mode

Action

This indicator is set OFF only by the execution of
the Transfer After Setting Slave (TSS) instruction
or the execution of an OCLIMB or RET instruction
with an operand in which the bit is OFF., It is
set ON only by the execution of the PMME version
of the CLIMB instruction, the execution of an OCLIMB
instruction with an operand in which the bit is
ON, or an occurrence of a fault or interrupt.

This indicator is set ON whenever the target string
of a decimal numeric instruction is too small to
hold all the digits of the result or the target
string of a bit string or alphanumeric instruction
is too small to hold all the bits or characters to
be stored. Also see the overflow indicator for
decimal numeric instructions. The event that sets
this indicator ON may also cause an overflow fault.
(See overflow mask indicator above.)

This indicator is set OFF by the execution of the
SPL instruction and by the end of execution of all
multi-word instructions, and is set ON by the events
described below. The indicator has meaning only
when determining the proper restart resequence for
an interrupted multi-word instruction. The events
that set this indicator are:

(1) Any fault during the execution of a multi-word
instruction.

(2) Occurrence of an interrupt signal during
execution of those multi-word instructions that
are interruptible,

(3) If the processor is in Master or Privileged
Master mode, by the execution of a Load Indicator
Register (LDI) or Return (RET) instruction with
bit 30 set to 1 in the IR data.

This indicator is set ON or OFF only by the
instructions that load the IR. When set ON, it
causes the floating-point instructions to be executed
in the hexadecimal exponent mode if bit 33 of the
mode register (DPS 88: bit 0 of the option Register)
is also ON,. (This function may not be available
on all processors.)

Bit 31 and bits 33-35 must be zero (MBZ).

4-10 DHQ3-01

TIMER REGISTER (TR)

Format: 27 bits

0 2 2 3
[o] 6 7 5
Timer value CC8G000CG¢C

27 9

Figure 4-8. Timer Register (TR) Format

Description:

A 27-bit settable, free running clock. The value decrements at a rate of
512 kHz. Its range is 1.953125 microseconds to approximately 4.37 minutes,

Function:

The TR may be loaded with any convenient value with the Load Timer Register
(LDT) instruction. When the value next passes through zero, a timer runout
fault is signalled., 1If the processor is in Slave mode with interrupts not
inhibited or is stopped at an uninhibited Delay Until Interrupt Signal (DIS)
instruction, the fault occurs immediately. If the processor is in Master or
Privileged Master mode or has interrupts inhibited, the fault is delayed until
the processor returns to Slave mode or stops at an uninhibited Delay Until
Interrupt Signal (DIS) instruction,

INSTRUCTION COUNTER (IC)

Format: 18 bits

Instruction address

18

Figure 4-9. Instruction Counter (IC) Format

4-11 DH03-01

Description:

An 18-bit physical register.

Function:

Holds the address of the current instruction being executed., The IC is
incremented by one by the control unit for the seguential execution of single-word
instructions or by the appropriate amount (2, 3, or 4) for multi-word instructions.
The content of the IC is changed by a transfer-of-control instruction or by a
fault or interrupt. Upon recognition of a fault, the contents of the instruction
counter are as shown in the list of faults in Table 4-2.

Faults in Groups I and II terminate the operations in the processor
unconditionally.

Faults in Groups III and IV (DPS 88: Groups III, IV, V, VI) terminate the
operations in the processor when the operation currently being executed is completed.

Faults in Group V (DPS 88: Group VII) are recognized under the same conditions
that program interrupts are recognized. Faults in Group V (DPS 88: Group VII)
have priority over program interrupts and are also subject to being inhibited
from recognition by engaging the inhibit bit in the instruction word.

4-12 DH03-01

Table 4-2. Processor Faults By Priority

Group
Priority
Fault Code Fault Name Priority L IC Contents (1)
(5) DPS 8
DPS 8 DPS 88 8/47 DPS 88
8/49
01100 Startup (SUF) 1 1 I I N+0, +1, or +2
0111l Execute (EXF) 2 2 I I N+0, +1, or +2
01011 Operation not
completed (FONC) 3 4 11 II N+0, +1, or +2
00111 Lockup (LUF) 4 5 IT II N+0, +1, or +2
01110 Divide check
(FDIV) 5 7 IIT ITI N(3)
01101 Overflow (FOVF) 6 8 IIT I1I N
01001 Parity (FPAR) 7 v 11 N(2)
DPS 88: (MEM SYS) 6
00101 Command (FCMD) 8 9 v v N
00001 Store memory (STR) 9
DPS 88: (BND) 10 v Iv N (3)
00010 Master mode entry
(MME) 10 11 Iv v N(3)
00110 Derail (DRL) 11 12 v v N(3)
01010 Illegal procedure
(IPR) 12 13 Iv v N
00011 Fault tag (FTAG) 13 14 v \'4 N (3)
10000 Security fault,
Class 1 (SCL1l) 14 17 v v N
©10001 Dynamic linking
(DYNLF) 15 18 v v N
10010 Missing segment
({MSE) 16 19 Iv VI N
10011 Missing working
space (MWS) 17 20 v v N
10100 Missing page (MPG)] 18 21 Iv VI N
10101 Security fault,
Class 2 (SCL2) 19 22 v Vi N
00000 (4) Safe store stack
fault (SSSF) 20 v VI
10111 DPS 88: (SSSF) 23
01000 Connect (CON) 21 27 v VII N
00100 Timer runout
{TROF) 22 28 \Y VII N
00000 Shutdown (SDF) 23 29 v VII N
NOTES: 1. N = address of last instruction executed.

2.

The processor stops the execution stream at the point where

the parity error is detected.

Therefore,

the processor was doing the following may result:

depending upon what

o If parity fault occurred on operand fetch, operation N+1
was completed with faulty data

o If parity fault occurred on instruction fetch, opera’ion
N+l was not completed

DHO3-01

ADDRESS

o If parity fault occurred on Indirect Tally (IT), IT was not completed
These operations are considered complete when the fault is recognized.

The Safestore Stack fault occurs in conjunction with a programmed CLIMB
instruction, or in conjunction with the wired-in CLIMB instruction
that is the result of a fault or interrupt. The Safestore Stack fault
is an indication to the operating system that the Safestore Stack has
only one or two 64-word frames remaining. See Section VIII for additional
information.

****x DPS 8: A specific value may not be predictable when the cache
memory option is enabled.****

REGISTERS (ARn)

Format: 24 bits each
0 11 12 2
0 78 90 3
Word Char Bit
18 2 4

Figure 4-10. Address Register (ARn) Format

Description:

Eight 24-bit physical registers numbered 0 through 7 that are associated
with the operand descriptor registers (DRn) and that allow addressing on a word,
character, or bit basis.

Function:

The

address registers provide address modification to the word, byte, and

bit level:

Word - 18 bits; a word offset within the segment described by the associated

operand descriptor register.

Char - 2 bits; designates one of the four 9-bit characters (bytes) of which

Bit

the word is composed.

- 4 bits; designates one of the 9 bits within the character.

4-14 DH03-01

POINTER AND LENGTH REGISTERS (DPS 8)

0 00111 3
0 8 9 012 _ a 5
0 0 ——=———mm——————- 0jz|NjoO Tally Counter
1 0 === OJZ N0 Tally Counter
3111 24
0 0111 2 2222 23333 3
0 3 012 3 4567 9 0123)
2 Descriptor 1 Pointer ojTajo 0 OYIfFfAajJo 0 O
24 2 3 3
3 Level 00 Descriptor 1 Length Residue
10 2 24
0 11 22222 23333 3
0 l1 2 3 4 56 7 9 0123 5
4 Descriptor 2 Pointer OJTAIC 0 OJRILJAJO F D
24 2 3] 1 3
5 O=———mm e 0 Descriptor 2 Length Residue
12 24
0 11 2 2222 23333 3
0 1 2 3 4 56 17 39 0123 5
6 Descriptor 3 Pointer O|TAJO0 0 OJR[F]JA] UBH
24 2 3 3
7 0--————————————— - 0 Descriptor 3 Length Residue
W) 3T
Figure 4-11. Pointer And Length Register Formats (DPS 8)
Z - Bit string instruction results are all zero,
N - Negative overpunch found in 6-4 alphanumeric move,
Tally Counter - The number of characters examined by the SCD, SCDR, SCM,
SCMR, TCT, or TCTR instruction (up to the interrupt).
Descriptor
Pointer - The last double-word accessed by the descriptor (bits 17-23
valid only for initial access).
TA - Bits 21-22 (alphanumeric type) of each descriptor,
I - Used by hardware to control restarting of interrupted

instruction (ignore request).

4-15 DHO3-01

F - First time. (Information in descriptor is valid.)

A - Used by hardware to control restarting of interrupted
instruction.
Level - = The difference in the number of characters received by the

processor and the number sent from the processor.

L - Logical OR of bits 34-35 of descriptor 2.
D - Descriptor 2 is a direct type (DU).
Descriptor

Length Residue - The amount of data left in each descriptor.

R - The last cycle performed must be repeated. (This bit cannot
be loaded.)
UBH - Used by hardware; may contain any bit pattern.

POINTER AND LENGTH REGISTERS (DPS 88)

0 00111 3
0 89012 5
0 0 ——~—m—mm—m——— olzInjo TALLY COUNTER
1 0 ————————m——me olzInjo TALLY COUNTER
93111 24
Figure 4-12. Pointer And Length Register Formats (DPS 88)
2 - All bit string instruction results are zero.
N - Negative overpunch found in 6-4 alphanumeric move.
Tally
Counter - The number of characters examined by the SCD, SCM, SCMR, TCT,

or TCTR instruction up to the interrupt.

MODE REGISTER (MR)

*xxx DPS 8 ONLY ****

Format: 34 bits

Even-word of Y-pair as stored by Store Central Processor Register (SCPR)
instruction with TAG = 06.

4-16 DHO3-01

0 11111122222222223331333

0 4 56 789 0123456789 012345
OPCODE

FFV 0fjalb ijjfk}ljmjnjo]p

cjdle]lt] g h Jo o

151111111 2 2 211111111

Figure 4-13, Mode Register (MR) Format

Description:

An assemblage of flags and registers from the control unit. The mode register
and the cache mode register are both stored into a Y-pair by a Store Central
Processor Register (SCPR) instruction with TAG = 06. The mode register is loaded
by a Load Central Processor Register (LCPR) instruction with TAG =04.

Function:

The mode register controls the operation of those features of the processor
capable of being enabled and disabled.

The functions of the constituent flags and registers are:

Flag or
Key register Function
FFV A floating fault vector address. The 15 high-order bits of
the beginning address of an 8-word block constituting a floating
fault vector. Traps to these floating faults are generated
by other conditions settable by the mode register.

a OC TRAP Trap on OPCODE match. If this bit is set ON and OPCODE
matches the operation code of the instruction for which an
address is being prepared (including indirect cycles), generate
the second floating fault (XED FFV+2). (See NOTE below.)

b ADR TRAP Trap on ADDRESS match. If this bit is set ON and the computed
address (TPR.CA) matches the setting of the address switches
on the processor maintenance panel, generate the fourth floating
fault (XED FFV+6). (See NOTE below.)

OPCODE The operation code on which to trap if OC TRAP (bit 16, key

a) is set ON or for which to strobe all control unit cycles
into the control unit history registers if 0.C$¢#¢ (bit 29,
key j) is set ON,

or

Processor conditions (codes as follows) if OC TRAP (bit 16,
key a) and O0.C$¢ (bit 29, key j) are set OFF and ¢ VOLT (bit
32, key m) is set ON.

4-17 DHO3-01

Key

Flag or
register

Function

Key

Condition

Set control unit overlap inhibit if set ON. The control
unit waits for the operations unit to complete execution
of the even instruction of the current instruction pair
before it begins address preparation for the associated
odd instruction. The control unit also waits for the
operations unit to complete execution of the odd
instruction before it fetches the next instruction pair.

Set store overlap inhibit if set ON. The control unit
waits for completion of a current main memory fetch
(read cycles only) before requesting a main memory access
for another fetch.

Set store incorrect data parity if set ON. The control
unit causes incorrect data parity to be sent to the
systém controller for the next store instruction and
then resets bit 20 (key e).

Set store incorrect zone-address-command (2AC) parity
if set ON. The control unit causes incorrect
zone-address—-command (ZAC) parity to be sent to the system
controller for each main memory cycle of the next store
instruction and resets bit 21 (key f) at the end of the
instruction.

Set timing margins. If ¢ VOLT (bit 32, key m) is set
ON and the margin control switch on the processor
maintenance panel is in PROG position, set processor
timing margins as follows:

22,23 Margin

0,0 normal
0,1 slow
1,0 normal
1,1 fast

Set +5 voltage margins. If ¢ VOLT (bit 32, key m) is
set ON and the margin control switch on the processor
maintenance panel is in the PROG position, set +5 voltage
margins as follows:

4,25 Margin
0,0 normal
0,1 low
1,0
1,1

high
normal

4-18 DHO3-01

3

k

* %k % %k

0.C$¢

STROBE ¢

FAULT RESET

VOLT

HEX

MR ENABLE

Function

Trap on control unit history register counter overflow if
set ON. If this bit and STROBE ¢ (bit 30, key k) are set ON
and the control unit history register counter overflows,
generate the third floating fault (XED FFV+4). Further, if
FAULT RESET (bit 31, key 1) is set, reset STROBE £ (bit 30,
key k), locking the history registers. A Load Central Processor
Register (LCPR) instruction (with TAG = 04) that sets bit 28
(key 1) ON resets the control unit history register counter
to zero. {See NOTE below.)

Strobe control unit history registers on OPCODE match. 1If
this bit and STROBE # (bit 30, key k) are set ON and the
operation code of the current instruction matches OPCODE,
strobe the control unit history registers on all control
unit cycles (including indirect cycles).

Enable history registers. 1If this bit is set ON, all hlstory
registers are strobed at approprlate points in the various
processor cycles. If this bit is set OFF or MR ENABLE (bit
35, key n) is set OFF, all history registers are locked.

ThlS bit is set OFF w1th a Load Central Processor Register
(LCPR) instruction (with TAG = 04) providing a 0 bit, by an
Operation Not Completed fault and, conditionally, by other
faults (see FAULT RESET (bit 31, key 1) below). Once set
OFF, this bit must be set ON with a Load Central Processor
Register (LCPR) instruction (with TAG = 04) providing a 1
bit to re-enable the history registers.

History register lock control. If this bit is set ON, set
STROBE ¢ (bit 30, key k) OFF, locking the history reglsters
for all faults 1nclud1ng the floating faults. (See NOTE
below.)

Test mode indicator, This bit is set ON whenever the TEST/NORMAL
switch on the processor maintenance panel is in TEST position
and is set OFF otherwise, It serves to enable the program
control of voltage and timing margins.

Hexadecimal exponent mode floating-point format is enabled.
Enable mode register. When this bit is set ON, all other

bits and controls of the mode register are active. When
this bit is set OFF, the mode register controls are disabled.

NOTE: The traps described above (ADDRESS match, OPCODE match, control
unit history register counter overflow) occur after completion of
the next odd instruction following their detection. The complete
priority sequence (in increasing order) is:

N UL WN

Connect

- Timer runout

Shutdown

OPCODE trap

Control unit history register counter overflow
Address match trap

Interrupts

4-19 DHQ03-01

CACHE MODE REGISTER (CMR)

**%% DPS 8 ONLY **#*%

Format: 28 bits

Odd-word of Y-pair as stored by Store Central Processor Register (SCPR)
instruction with TAG = 06.

) 555555555566 666 677

(] Q1 23456782901 3.4 9. 0 1
CACHE DIR ADDRESS albjo]cldje]fjojgihli] j Jo 0 0 0 0 Of k
1511111111111 2 6 2

Figure 4-14. Cache Mode Register (CMR) Format

Description:

An assemblage of flags and registers from the control unit. The mode register
and cache mode register are both stored into the Y-pair by a Store Central
Processor Register (SCPR) instruction with TAG = 06. The cache mode register is
loaded by a Load Central Processor Register (LCPR) instruction with TAG = 02.

The data stored from the cache mode register is address-dependent. The
algorithm used to map main memory into the cache memory is effective for the
Store Central Processor Register (SCPR) instruction. 1In general, the user may
read out data from the directory entry for any cache memory block by proper
selection of certain subfields in the 24-bit absolute main memory address. In
particular, the user may read out the directory entry for the cache memory block
involved in a suspected cache memory error by ensuring that the required 24-bit

absolute main memory address subfields are the same as those for the access that
produced the suspected error.

The fault handling procedure(s) should bypass cache (segment descriptor bit
23 = 0) and the history registers and cache memory should be disabled as quickly

as possible in order that vital information concerning the suspected error not
be lost.

Function:

The cache mode register provides configuration information and software

control over the operation of the cache memory. Except for those items identified
below by an "x" in the column headed L, the cache mode register can be loaded by
a Load Central Processor Register (LCPR) instruction with TAG = 02.

4-20 CHO3-01

The functions of the constituent flags and registers are:

Key L
b4
a x
b x
c
d
e
£
9
h x
1 x
J x
k
¥ % k&

Register

CACHE DIR
ADDRESS

PAR BIT
LEV FUL

CSH1 ON
CSH2 ON

OPND ON
INST ON

CSH REG

STR ASD

COL FULL
RRO A,B

LUF MsSB,LSB

Function

15 high-order bits of the cache memory block address
from the cache directory.

Cache memory directory parity bit.
The selected column and level is loaded with active data.

Enable the upper 1024 words of cache memory (4096 words if
8K cache memory).

Enable the lower 1024 words of cache memory (4096 words if
8K cache memory).

Enable cache memory for operands.
Enable cache memory for instructions.

Enable cache-to-register (dump) mode. When this bit is set
ON, double-precision operations unit read operands (e.q.,
LoadAQ(LDAQ)operands)arereadfromthecachememoryaccording
to the mapping algorithm and without regard to matching of
the full 24-bit main memory address. All other operands
address main memory as though the cache memory were disabled.
This bit is reset automatically by the hardware for any fault
or interrupt.

Enable store aside. The processor proceeds after the cache
memory cycle is complete.

Selected cache memory column is full,
Cache round-robin counter.

Lockup fault timer setting. The lockup fault timer may be
set to one of four different values according to the value
of this field.

LUF Lockup
value time

2 ms
4 ms
8 ms
16 ms

WO

The lockup timer is set to 32 ms when the processor is initialized
in Master mode.

4-21 DH! ,-0.

FAULT REGISTER (FR)

*#%%% DPS 8 ONLY **##

Format: 72 bits

Even-word of Y-pair as stored by Store Central Processor Register (SCPR)
instruction with TAG = 01.

000000000O01111111 12 22 22 33333
0.1 234567894071 23405°F¢6 9.0 3.4 1.8 123405
albjcldle]flglhlililkilm]n]o}o IAA IAB IAC IAD plajlrls
1111111111111111 4 4 4 41111

Odd-word of Y-pair as stored by Store Central Processor Register (SCPR)
instruction with TAG = 01 (if 8K cache memory is installed).

3333444444434 7
6 78901234567 1
tlufvivlx|y|z}a]le]c|djo o oo 0000000000000 0000000000
T11111111171 25

Figure 4-15. Fault Register (FR) Format

Description:

A combination of flags and registers all located in the control unit. The
register is stored and cleared by a Store Central Processor Register (SCPR)
instruction with TAG = 01l. Note that the data is stored into the word pair at
location Y and that bits 47-71 of Y+1 are cleared. The fault register cannot be
loaded.

Function:

The fault register contains the conditions in the processor for several of
the hardware faults. Data is stored into the fault register during a fault
sequence. Once a bit or field in the fault register is set, it remains set
until the register is stored and cleared. The data is not overwritten during
subsequent fault events, except that bits 16-31 are stored for each memory error
and may be overwritten.

4-22 DHO03-01

The functions of the constituent flags and registers are:

Flag or
register

ILL OP
ILL MOD
ILL SLV

ILL PROC

NEM
00B

DU MISC

PROC PARU
PROC PARL
$CON A
$SCON B
$CON C
$CON D

DA ERR1

DA ERR2

IAA
IAB
IAC
IAD

CPAR DIR

CPAR STR

CPAR IA

CPAR BLK

Function

An illegal operation code was detected.

An illegal address modifier was detected.
An illegal slave procedure was encountered.
than the above three was

All illegal procedure other

encountered.
A nonexistent main memory address was requested.
A boundary violation occurred.

An illegal decimal digit or sign or invalid micro-operation
was detected by the decimal unit.

A parity error was detected in the upper 36 bits of data.

A parity error was detected in the lower 36 bits of data.

A SCONNECT signal was received through port A,

A SCONNECT signal was received through port B.

A SCONNECT signal was received through port C.

A SCONNECT signal was received through port D.

Operation 1is not complete. Processor/system controller
interface sequence error 1 was detected. ($DATA-AVAIL received
with no prior $SINTERRUPT sent.)

Operation not complete. Processor/system controller interface
sequence error 2 has been detected. (Multiple $DATA-AVAIL
received or $DATA-AVAIL received out of order.)
Coded illegal action, port A (see Table 4-3).
Coded illegal action, port B (see Table 4-3).
Coded illegal action, port C (see Table 4-3).
Coded illegal action, port D (see Table 4-3).

A parity error was detected

directory.

in the cache memory primary

A data parity error was detected in the cache memory.

An illegal action was received from a system controller during
a store operation with cache memory enabled. This implies
that the data is correct in cache memory and incorrect in
main memory.

A cache memory parity error occurred during a cache memory
data block load.

DHO03-01

The following functions are stored only if the 8K cache memory option is
installed:

Flag or
Key register Function
t BUFO-A Buffer overflow, port A
u BUFO-B Buffer overflow, port B
v BUFO-C Buffer overflow, port C
W BUFO-D Buffer overflow, port D
X BUFO-PD Buffer overflow, primary directory
y WNI-PE Interface parity error, system controller to processor (any
port)
z DIR-0-PE Parity error, level 0
a DIR-1-PE Parity error, level 1
b DIR-2-PE Parity error, level 2
c DIR-3-PE Parity error, level 3
d MTCH-ERR Multimatch error (duplicate directory)
Table 4-3., System Controller Illegal Action Codes
Code Priority Fault Reason
(Octal)
00 - None No 1llegal action
01 - Command Unassigned
02 05 Store Nonexistent addrefs
03 01 Command Stop on condition
04 -- Unassigned
05 12 Parity Data parity, store unit to system controller
06 11 Parity Data parity in store unit
07 10 Parity Data parity in store unit and
store unit to system controller
10 04 Command | NOT controll
11 13 Command Port not enabled
12 03 Command Illegal command
13 07 Store Store unit not ready
14 02 Parity Zone-address—command parity,
processor to system controller
i5 06 Parity Data parity, processor to system controller
16 08 Parity Zone-address-command parity,
system controller to store unit
i7 09 Parity Data parity, system controller to store unit

lrault not returned if 4 megaword system controller

& % %k

4-24 DHO3-01

FAULT REGISTER FORMAT

k*x%* DPS 88 ONLY ***%*

Table 4-4. Fault Register Format
Reg. Prior=- Fault
Bit ity Group Mnemonic Description
00 1 1 SUF Start Up Fault
01 2 1 EXF Execute Fault
02 3 2 -——= (undefined)
03 4 2 ONC Operation Not Complete Fault
04 5 2 LUF Lockup Fault
05 6 2 MEMSYS Memory System Fault
06 7 3 DIV Divide Check Fault
07 8 3 OFL Overflow Fault
08 9 4 CMD Command Fault
09 10 4 BND Bound Fault
10 11 5 MME Master Mode Entry Fault
11 12 5 DRL Derail Fault
12 13 5 IPR Illegal Procedure Fault
13 14 5 FTAG Fault Tag
14 15 5 -—- (undefined)
15 16 5 ——— (undefined)
16 17 5 SCL1 Security Fault, Class 1
17 18 5 DYNL Dynamic Linking Fault
18 19 6 MSE Missing Segment Fault
19 20 5 Mws Missing Work Space Fault
20 21 6 MPG Missing Page Fault
21 22 6 SCL2 Security Fault, Class 2
22 23 6 SSSF Safe-store Stack Fault
23 24 6 — {(undefined)
24 25 7 DIS DIS-Hypermode Entry Fault
25 26 7 CI0C CIOC Hypermode Entry Fault
26 27 7 CON Connect Received Fault
(CPU is destination)
27 28 7 TRO Timer Runout Fault
28 29 7 SDF Shut Down Fault
29 30 7 - (undefined)
30 31 7 - (undefined)
31 32 7 HTRO Hypertimer Runout
32 33 -—- IFLT Interrupt
33 Bits 33, 34, and 35 are currently not
34 implemented. On occurrence of a SFR instruction,
35 these bits are zeroed.

% % J% %

DH03-01

CONTROL UNIT HISTORY REGISTERS (CUn)

*#%% DPS 8 ONLY **%*

Format: 72 bits each

Even-word of Y-pair as stored by Store Central Processor Register (SCPR)
instruction with TAG = 20.

0000000000111111111 2223 3
0 123456789012345678 7.8 90 5
albjcldielflgihtililkjlimfnjolprlglr OPCODE Ilp TAG

1111111111111 11111 10 1 1 3

0dd-word of Y-pair as stored by Store Central Processor Register (SCPR)
instruction with TAG = 20.

3 55 55 66666666 77
6 3 4 8 9

ADDRESS CMD SEL sjejulvivwlxlylz}i*

18 5 4111111111

Figure 4-16. Control Unit History Register (CUn) Format

Description:

Sixteen combinations of flags and registers from the control unit (may be
optionally increased). The sixteen registers are handled as a rotating queue
controlled by the control unit history register counter. The counter is always
set to the number of the oldest entry and advances by one for each history
register reference (data entry or Store Central Processor Register (SCPR)
instruction). Multicycle instructions such as Load Address Registers (LAREG)
have an entry for each of their cycles.

Function:

A control unit history register entry shows the conditions at the end of
the control unit cycle to which it applies. The sixteen registers hold the
conditions for the last sixteen control unit cycles. Entries are made according
to controls set in the mode register.

NOTE: Bits 54-71 of the odd-word of the control unit history register are
undefined when the virtual memory option is installed and operational.

4~26 DHO3-01

=
[} =] 3 — POl S - oW h (1] Q. [¢] e o h

The meanings of the constituent flags and registers are:

Flag Name Meaning

PIA 1 = Prepare instruction address

POA 1 = Prepare operand address

RIW 1 = Request indirect word

SIW 1 = Restore indirect word

POT 1 = Prepare operand tally (indirect tally chain)

PON 1 = Prepare operand no tally (as for POT except no chain)
RAW 1 = Request read-alter-rewrite word

SAW 1 = Restore read-alter-rewrite word

TRGO 1 = Transfer GO (conditions met)

XDE 1 = Execute even instruction from Execute Double (XED) pair
XDO 1 = Execute odd instruction from Execute Double (XED) pair
Ic 1 = Execute odd instruction of the current pair

RPTS 1 = Execute a repeat instruction

WI 1 = Wait for instruction fetch

AR F/E 1 = Address register has valid data

XIp 1 = NOT prepare interrupt address

FLT 1 = NOT prepare fault address

BASE 1 = NOT slave mode

OPCODE Operation code from current instruction word

I Interrupt inhibit bit from current instruction word

P Pointer register flag bit from current instruction word
TAG Current address modifier (this modifier is replaced by the

contents of the TAG fields of indirect words as they are
fetched during indirect chains)

ADDRESS Current computed address (lower 18 bits)

CMD System controller command

SEL Port select bits (valid only if port A-D is selected)
XEC-INT 1 = An interrupt is present

INS-FETCH 1 = Perform an instruction fetch

CU-STORE 1 = Control unit store cycle

4-27 DHO0O3-01

Key Flag Name

v OU-STORE

w CU-LOAD

x OU-LOAD

y DIRECT

z PC-BUSY

* BUSY
Jkkk

Meaning

Operations unit store cycle
Control unit load cycle
Operations unit load cycle

Direct cycle (for example, DU, DL, shift)

Port control logic not busy

Port interface busy/cache memory read

OPERATIONS UNIT HISTORY REGISTERS (OUn)

%% DPS § ONLY **#

Format: 72 bits each

Even-word of Y-pair as stored by Store Central Processor Register (SCPR)

instruction with TAG

40.

0 00111111111 2222333333
0 89 01234658678 6789012345
_ 0 RS REG efflglh}lilitk]1l]m

Oop CODE b cJA[EAC
311 21 9111111111

Odd-word of Y-pair as stored by Store Central Processor Register (SCPR)

instruction with TAG 40.

3333444 4 4455 55 7

6 789012 78901 3 4 1

njo}jplql|a|3 2|3)42|5)6]7]jo 0 o ICT TRACKER

111111111111111 3 18
Figure 4-17. Operations Unit History Register (OUn) Format

4-28 DH03-01

Description:

Sixteen combinations of flags and registers from the operations unit and
control unit (may be optionally increased). The sixteen registers are handled
as a rotating queue controlled by the operations unit history register counter.
The counter is always set to the number of the oldest entry and advances by one
for each history register reference (data entry or Store Central Processor Register
(3CPR) instruction).

Function:

An operations unit history register entry shows the conditions at the end
of the operations unit cycle to which it applies. The sixteen registers hold
the conditions for the last sixteen operations unit cycles. As the operations
unit performs various cycles in the execution of an instruction, it does not
advance the counter for each such cycle. The counter is advanced only at successful
completion of the instruction or if the instruction is terminated for a fault
condition. Entries are made according to controls set in the mode register,

The meanings of the constituent flags and registers are:

Key Flag Name Meanin
L&Yy rlag Name Z€éaning
RP REG Primary operations unit operation register. RP REG receives

the operation code and other data for the next instruction
from the control unit during the control unit instruction
fetch cycle while the operations unit may be busy with a
prior instruction. RP REG is further substructured as:

OP CODE The 9 high-order bits of the 10-bit operation code from the
instruction word. Note that some instructions do not invelve
bit 27; hence the 9-bit field is sufficient to determine the
instruction,

a 9 CHAR Character size for Indirect then Tally address modifiers (bit
30 of IT word):

0
1

6-bit
9-bit

W

b TAGl,2,3 The 3 low-order bits of the address modifier from the instruction
word. This field may contain a character position for an
Indirect then Tally address modifier.

c CR FLG Character modification (IT) flag
d DR FLG Direct operation flag (0 = DU, 1 = DL)
EAC Address counter for LREG/SREG instructions
RS REG Secondary operations unit operation register. OP CODE is

moved from RP REG to RS REG during the operand fetch cycl:
and is held until completion of the instruction.

e FRB1-FULL 1 = OP CODE buffer is loaded
f FRP-FULL 1 = RP REG is loaded
g FRS-FULL 1 = RS REG is loaded

4-29 DHu3-0

=

ey Flag Name Meaning

h FGIN 1 = First cycle for all OU operations. RP operation code in
execution
i FGOs 1 = Second cycle for multicycle OU operations
j FGD1l 1 = First divide cycle
k FGD2 1 = Second divide cycle
1 FGOE i = Exponent compare cycle
m FGOA 1 = Mantissa alignment cycle
n FGOM 1 = General operations unit cycle
o FGON 1 = Normalize cycle
p FGOF 1 = Final operations unit cycle
q FSTR-OP-AV 1 = Store (output) data available (reset by CU)
r DA-AV 1 = Data not available
A A-REG 1 = A-register not in use
Q Q-REG 1 = Q-register not in use
0 XO0-RG 1 = X0 not in use
1 X1-RG 1 = X1 not in use
2 X2-RG 1 = X2 not in use
3 X3-RG 1 = X3 not in use
4 X4-RG 1 = X4 not in use
S X5-RG 1 = X5 not in use
6 X6-RG 1 = X6 not in use
7 X7-RG 1 = X7 not in use
ICT TRACKER The current value of the instruction counter., Since the
control unit and operations unit run asynchronously and overlap
is usually enabled, the value of ICT TRACKER may not be the
address of the operations unit instruction currently being
executed.
kkkk

4-30 DHO3-01

DECIMAL UNIT HISTORY REGISTERS (DUn)

*%%x DPS 8 ONLY **#*%

Format: 72 bits each

Decimal unit history register data is stored by a Store Central Processor
Register (SCPR) instruction with TAG = 10. No format diagram is given since the
data is defined as individual bits.

Description:

Sixteen combinations of flags from the decimal unit (may be optionally
increased). The sixteen registers are handled as a rotating queue controlled by
the decimal unit history register counter. The counter is always set to the
number of the oldest entry and advances by one for each history register reference
(data entry or Store Central Processor Register (SCPR) instruction).

The decimal unit and the control unit run synchronously. There is a control
unit history register entry for every decimal unit history register entry and
vice versa (except for instruction fetch and descriptor fetch cycles). TIf the
processor is not executing a decimal instruction, the decimal unit history register
entry shows an idle condition.

Function:

A decimal unit history register entry shows the conditions in the decimal
unit at the end of the control unit cycle to which it applies. The sixteen
registers hold the conditions for the last sixteen control unit cycles. Entries
are made according to controls set in the mode register.

A minus sign (-) preceding the flag name indicates that the complement of
the flag is shown. Unused bits are set ON.

The meanings of the constituent flags are:

Bit Flag Name Meaning
0 -FPOL Prepare operand length
1 -~FpOP Prepare operand pointer
2 ~-NEED-DESC Need descriptor
3 -SEL-ADR Select address register
4 -DLEN=DIRECT Length equals direct
5 -DFRST Descriptor processed for first time
6 -FEXR Extended register modification
7 -DLAST-FRST Last cycle of DFRST

4-31 DHO03-01

Bit

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39

Flag Name

-DDU-LDEA
-DDU-STAE
-DREDO
-DLVL<WD-52%
-EXH
DEND-SEQ
-DEND
—DU=Rb+WRT
-PTRAQO
-PTRAOQ1
FA/I1
FA/I2
FA/I3
-WRD
-NINE
-SIX
-FOUR

-BIT

FSAMPL
-DFRST-CT
-ALI
-MIF

-INHIB-STC1

DUD
-GDLDA
-GDLDB

-GDLDC

Meaning

Decimal unit load
Decimal unit store
Redo operation without pointer and length update
Load with count less than word size
Exhaust
End of sequence
End of instruction
Decimal unit read or write
PR address bit 0
load/store registers
PR address bit 1
Descriptor 1 active
Descriptor 2 active
Descriptor 3 active
Word operation
9-bit character operation
6-bit character operation
4-bit character operation
Bit operation
Unused
Unused
Unused
Unused
Sample for multiword instruction interrupt
Specified first count of a sequence
Adjust length
Multiword instruction interrupt
Inhibit STC1 (force "STCO")
Unused
Decimal unit idle
Descriptor load gate A
Descriptor load gate B

Descriptor load gate C

DHO3-01

Bit Flag Name Meaning

40 NLD1 Prepare alignment count for first numeric operand load
41 GLDP] Numeric operand one load gate

42 NLD?2 Prepare alignment count for second numeric operand load
43 GLDP2 Numeric operand two load gate

44 ANLD1 Alphanumeric operand one load gate
45 ANLD?2 Alphanumeric operand two load gate
46 LDWRT1 Load rewrite register one gate

47 LDWRT2 Load rewrite register two gate

48 -DATA-AVLDU Decimal unit data available

49 WRT1 Rewrite register one loaded

50 GSTR Numeric store gate

51 ANSTR Alphanumeric store gate

52 -FSTR-OP-AV Operand available to be stored

53 -FEND-SEQ End sequence flag

54 -FLEND<128 Length less than 128

55 FGCH Character operation gate

56 FANPK Alphanumeric packing cycle gate

57 FEXMOP Execute MOP gate

58 FBLNK Blanking gate

59 Unused

60 DGBD Binary-to-decimal execution gate .
61 DGDB Decimal-to-binary execution gate
62 DGSP Shift procedure gate

63 FFLTG Floating result flag

64 FRND Rounding flag

65 DADD-GATE Add/subtract execution gate

66 DMP+DV-GATE Multiply/divide execution gate

67 DXPN-GATE Exponent network execution gate

68 Unused

69 Unused

70 Unused

71 Unused

% % &k

4-33 DH03-01

VIRTUAL UNIT HISTORY REGISTERS (VUn)

% DPS § ONLY ##

Format: 72 bits each

Even-word of Y-pair as stored by Store Central Processor Register (SCPR)
instruction with TAG = 00.

11222222222
890123454678

=

111
4 5 6

o
)

o~
—
W

2333333
9 012345

| G

Op CODE

(1)
o
Q

dlejflg|hfijijkllmIn}olplalc]s)tjulvivlx viz

1011111111111111111111111111

Odd-word of Y-pair as stored by Store Central Processor Register (SCPR)
instruction with TAG = 00.

3 56 6 66 666677
90123 678901
BITS 20-23
REAL MEMORY ADDRESS alblc] oF virruaL |ale|f]lg|n
ADDRESS
24 111 411111

Figure 4-18., Virtual Unit History Register (VUn) Format

Description:

Sixteen combinations of flags and registers from the virtual unit (may be
optionally increased). The sixteen registers are handled as a rotating queue
controlled by the virtual unit history register counter. The counter is always
set to the number of the oldest entry and advances by one for each history

register reference (data entry or Store Central Processor Register (SCPR)
instruction).

NOTE: The virtual memory option must be installed in the processor and
enabled to enter data into and retrieve data from the virtual unit
history registers.

Function:

A virtual unit history register entry shows the conditions in the virtual
unit at the end of an address preparation cycie in the virtual mode. The sixteen
registers hold the conditions for the last sixteen such address preparation
cycles, Entries are made according to controls set in the mode register.

4-34 DHO3-01

(o}

Qo

The meanings of the constituent flags and registers are:

Flag Name

OP CODE

DFA

FABS
FAM-MCH
FPTD

FKTW

FPTWK

FPTWD
FWR-PTW
FV1l

FvV2

FCD

FCLR

FSAS

FXD

FFXD

FXID

FDT

FIDT

FSSW

FVU-OP

FSSR

DSLAVE
DMASTER
FVU-STR-FLT
FVU-CMD-FLT
FVU-ILP-FLT
Bits 36-59
are RADDROO

through
RADDR23

Meaning

The ten bits of the operation code from the instruction

word.,

Final address preparation cycle
Absolute address preparation cycle
Associative memory match

Fetch page table directory word cycle

Fetch key table word cycle

Fetch page table word (PTW) cycle for fragmented page table

Fetch PTW cycle for dense page table

Write (modify) PTW cycle

Fetch vector word 0 and 1 cycle

Fetch vector word 2 and 3 cycle

Fetch descriptor for copy or shrink cycle
Clear memory

Store to argument stack cycle

Fetch transfer descriptor cycle

Fetch fault/interrupt transfer descriptor cycle
Fetch transfer descriptor from indirect cycle
Domain transfer

Interdomain transfer

Safe store write cycle

Virtual unit operational

Safe store read cycle

Slave mode

Master mode

Store fault

Command fault

Virtual unit IPR fault

Real memory address

DHO3-01

Key Flag Name Meaning

a FPIA-VU Prepare instruction address for virtual unit
b FTRGO-VU Transfer to GO flag for virtual unit
€ FEA-VU : Effective address for virtual unit
Bits 63-66
are RVA2(0 Virtual address bits 20-23; associative memory
through row select
RVA23
d DAMSEL1+3
) Associative memory column select
e DAMSEL2+3
f FVU-FAULT Virtual unit fault indicator
g EXT-SEG-FLG External segment flag
h FHOLD-START Inhibit virtual unit initialization
kkkk

WORKING SPACE REGISTERS (WSRn)

Format: 9 bits each

o o
=]

Working Space Number

Figure 4-19. Working Space Register (WSRn) Format

Description:

Eight 9-bit registers located in the virtual unit that hold the working
space (WS) number that is used to form a virtual address.

Function:

A working space register is referred to by the WSR field of a descriptor.
The LDWS and STWS instructions are used to load and store the working space
registers, respectively. To execute these two instructions, the processor must
be in Privileged Master mode. When the processor is initialized and cleared,
working space register 0 is set to all zeros (DPS 88: working space registers
U-7 are set to zeros). The working space registers provide the means for sharing
and isolating working spaces.

4-36 DH03-01

SAFE STORE REGISTER (SSR)

Format: 72 bits

0 12 22 2 2 33 3
0 9 0 23 8 9 12 5

Bound Flags WSR Type=1 Even-

: 9 3 4 Word
Flags WSN Type=3
20 3 9 4

Base 0dad-

Word

36

Figure 4-20. Safe Store Register (SSR) Format

Description:

A 72-bit register located in the wvirtual unit that holds a Type 1 or 3
standard descriptor that describes the safe store stack of the current process,
Note that, the format for a Type 3 descriptor differs in that the Flags field is
truncated at bit 22 to allow the descriptor to contain. the actual working space
number (WSN) rather than point to a Working Space Register (WSR).

Function:

The safe store register describes the safe store stack of the current process
(see Figure 8-3). The safe store register is loaded and stored with the Privileged
Master mode instructions LDSS and STSS. A 2-bit hardware stack control register
(SCR) is associated with the safe store register. The SCR determines the size
of the safe store frame as follows:

00 - 16 words
01 - 24 words
11 - 64 words

When the frame size is 64 words, the actual number of words stored may
~depend on the state of indicator register bit 30 (multiword instruction interrupt
or fault). The actual number of words stored is:

%% DPS 8:
DpPs 8/70, 8/50, 8/52, and 8/62 store 48 words; however, if IR bit 30=1, 56
words will be stored.
DPS 8/20 and 8/44 store 48 words; however, if IR bit 30=1, 52 words will be
stored. ***x ’
*x** DPS 88 stores 50 words, ****

4-37 DH03-01

LINKAGE SEGMENT REGISTER (LSR)

Format: 72 bits

0 12 2 2 33 3
0 9 0 8 9 1 2 5
Bound Flags WSR Type= Even-
' 1 Word
20 9 31 4
Base Odd-
Word
36

Figure 4-21. Linkage Segment Register (LSR) Format

Description:

A 72-bit register that holds a type 1 standard descriptor that describes
the linkage segment of the current domain of the currently executing process.

Function:

The linkage segment register is loaded only by executing a CLIMB instruction.
The linkage segment register may be stored by transferring the contents of the
LSR to an operand descriptor register (DRn) and then storing DRn. When the
bound field of the LSR is loaded, bits 0-6 are forced to zero and bits 17-19 are
forced to 111.. Thus, the size of the linkage segment is effectively limited to
1024 descriptors.

ARGUMENT STACK REGISTER (ASR)

Format: 72 bits

0 12 2 2 33 3
0 9 0 8 9 12 5

Bound Flags WSR Type= Even-

1 Word
20 9 3 4

Base 0dd-

word

36

Figure 4-~22. Argument Stack Register (ASR) Format

4-38 DH03-01

Description:

A 72-bit register that holds a type 1 standard descriptor that describes
(cr frames) the argument stack of the current domain of the currently executing
process.

Function:

Instructions are provided for loading (Privileged Master mode) and storing
the argument stack register. The argument stack register is utilized by and may
have its contents changed by the hardware during the execution of a Save Descriptor
Register (SDRn) or CLIMB instruction, When the bound field of the ASR is loaded,
bits 0-6 are forced to zero; if flag-bit 27 = 1 (not empty), bits 17-19 are
forced to 111. Thus, the size of the argument stack is effectively limited to
1024 descriptors,

PARAMETER STACK REGISTER (PSR)

Format: 72 bits

0 12 22 33 3
0 9 0 8 9 12 5

Bound Flags WSR Type= Even-

1 Word
20 9 3 4

Base - 0da-

Word

36

Figure 4-23. Parameter Stack Register (PSR) Format

Description:

A 72-bit register that holds a type 1 standard descriptor that frames the
parameter stack of the current domain of the currently executing process,

Function:

Instructions are provided for loading (Privileged Master mode) and storing
the parameter stack register. The parameter stack register is utilized by and
may have its contents changed by the hardware during the execution of the CLIMB
instruction. When the bound field of the PSR is loaded, bits 0-6 are forced to
zero; if flag-bit 27 = 1 (not empty) bits 17-19 are forced to 111. Thus, the
size of the parameter stack is effectively limited to 1024 descriptors.

4-39 DHO03-01

INSTRUCTION SEGMENT REGISTER (ISR)

Format: 72 bits

0 12 22 33 3
0 9 0 8 9 1 2 5
Bound Flags WSR Type= Even-
0 Word
20 9 3 4
Base 0dd-
Word
36

Figure 4-24. Instruction Segment Register (ISR) Format

Description:

A 72-bit register that holds a type 0 standard descriptor that describes
the current instruction segment for the current domain of the currently exacuting
process,

Function:

The instruction segment register may not be loaded or stored directly. The
register is loaded during the execution of a CLIMB or transfer instruction with
bit 29 ON. The ISR may be stored indirectly by moving its contents to an
operand descriptor register (DRn) and then storing DRn, If bit 29 of an instruction
word is zero or the AR bit in the MF field of a multiword instruction is zero,
the instruction segment register is used in forming the virtual address of the
operand. The base and bound values placed in the ISR are constrained; the 5
least significant bits of the base field must be zero and the 5 least significant
bits of the bound field must be 1s.

OPERAND DESCRIPTOR REGISTERS (DRn)

Format: 72 bits each

Description:

Eight 72-bit registers that hold operand descriptors that describe address
space contained within the current domain of the currently executing process.
The format of the descriptors is in accordance with the type fields; type fields
0, 2, 4, and 6 are used for operand segments and type fields 1 and 3 are used
for descriptor segments,

4-40 DH(3-01

Function:

Instructions are available for loading and storing the operand descriptor
registers and for modifying their contents. An operand descriptor register is
invoked for virtual operand address development when bit 29 of the instruction
is 1, and address bits 0, 1, and 2 specify which the combined operand descriptor
register (DRn) and address register n (ARn) is to be used. Each of these eight
operand descriptor registers is associated with a corresponding address register,
For example, an AR3 modification refers to the segment whose descriptor is the
contents of DR3. For multiword instructions, the use of ARn and the associated
DRn is specified by the AR bit in the MF field. Refer to "Multiword Modification

Field" documented later in this manual.

SEGMENT IDENTITY REGISTERS (SEGIDn)

Format: 12 bits each

0 22 22 3

Q 34 56 5
s D

_24 2 10

Figure 4-25. Segment Identity Register (SEGIDn) Format

Description:

Eight 12-bit registers that have a one-to-one correspondence with the operand
descriptor registers (DRn). The segment identity registers point to the source
of the descriptor in the DRn.

Function:

The Load Pointer Register (LDPn) and Store Pointer (STPn) instructions are
available for directly loading and storing the segment identity registers. The
S and D field codes used in these registers indicate the origin of the descriptor
(S = segment, D = descriptor offset).

4-41 DH03-01

When S = 0:

For D = 1760 through 1777 (octal), the descriptors identified by S, D were
obtained from:

1760 Undefined
1761 Undefined
1762 Instruction Segment Register (ISR)
1763 Data Stack Descriptor Register (DSDR)
1764 Safe Store Register (SSR)

1765 Linkage Segment Register (LSR)

1766 Argument Stack Register (ASR)

1767 Parameter Stack Register (E§R)

1770 DRO, Descriptor Register
1771 DR1, Descriptor Register
1772 DR2, Descriptor Register
1773 DR3, Descriptor Register
1774 DR4, Descriptor Register
1775 DR5, Descriptor Register
1776 DR6, Descriptor Register
1777 DR7, Descriptor Register

L Self Identifying

DO0UO0OO0UODUDUDDODDOUO
L | T T 1 T T T T B T I

NOOMeWwNn~O

For D = 0000 through 1757 (octal), the descriptor in DRn was loaded from
the parameter stack and D was the index to the desired descriptor.

When S = 2, the descriptor DRn was loaded from the argument stack using D
as the index to the descriptor.

When S = 1 or 3, the descriptor in DRn was loaded from the linkage segment
using D as the index to the descriptor.

INSTRUCTION SEGMENT IDENTITY REGISTER - SEGID (IS)

Format: 12 bits

0 22 22 3

0 34 56 5
s D

24 2 10

Figure 4-26. Instruction Segment Identity Register - SEGID (IS) Format

4-42 DHO3-01

Description:

A 12-bit register that is associated with the instruction segment register
(ISR) in the same manner that a SEGIDn register is associated with an operand
descriptor register (DRn). This register points to the source of the descriptor
in the ISR. -

Function:

The instruction segment identity register may not be loaded or stored directly;
it is loaded with the identity of the source of the descriptor when a transfer
or CLIMB instruction loads the Instruction Segment Register (ISR). The S and D
field codes used in these registers indicate the origin of the descriptor., See
SEGIDn codes.

POINTER REGISTERS (PRn)

Format: A collective grouping of registers

Description:

Eight "convenience" logical combinations of registers.

Function:

The pointer registers are not physical registers but are convenient terms
used to refer to operand descriptor register (DRn), segment identity register
(SEGIDn), and address register (ARn) utilized as a collective register.

DATA STACK DESCRIPTOR REGISTER (DSDR)

Format: 72 bits

0 12 2 2 33 3
0 9 0 8 9 1 2 5
Bound Flags WSR Type= Even-
0 Word
20 9 3 4
Base 0dad-
Word
36

Figure 4-27. Data Stack Descriptor Register (DSDR) Format

4-43 DH03-01

Description:

A 72-bit register located in the virtual unit that holds a type 0 standard
descriptor that frames the data stack area of memory for the current process.

Function:

Privileged Master mode instructions are available for loading and storing
the data stack descriptor register. The contents of the data stack descriptor
register are utilized by the hardware when the vector of the Load Descriptor
Register (LDDn) or CLIMB instruction indicates that a working data stack descriptor
is to be generated.

DATA STACK ADDRESS REGISTER (DSAR)

Format:

kkkk DPS 8 *khk

17 bits
0 11 3
0 7 8 5
Base of next
stack area 1]
17 1 18
kkkk DPS 88 *kkk%
15 bits
0 1 1 3
0 5 8 5
Base of next
stack area 000
15 3 18

Figure 4-28. Data Stack Address Register (DSAR) Format

Description:

A 17-bit (DPS 88: 15-bit) special-purpose index register that points to
the next available double-word (DPS 88: mod 8 word) location within the data
stack area of memory framed by the Data Stack Descriptor Register (DSDR). Bit
17 (DPS 88: 15-17) is always zero.

4-44 DHO03-01

Function:

Privileged Master mode instructions are available for loading and storing
the Data Stack Address Register. The contents of the DSAR may be altered during
the execution of the Load Descriptor Register (LDDn) instruction, Load Data
stack Address Register (LDDSA) instruction, or CLIMB instruction.

PAGE DIRECTORY BASE REGISTER (PDBR)

Format:

kkkk DPS § k%%

15 bits
0 11 3
0 4 5 5
Base location Zeroes -I
15 21
kkkk DPS 88 *kk*k
17 bits
0 11 3
0 6 7 5
Base location Zeroes
17 1 18

Figure 4-29. Page Directory Base Register (PDBR) Format

Description:

A 15-bit (DPS 88: 17-bit), modulo 512 word register that contains the base
location of the working space page table directory.

Function:

Privileged Master mode instructions (LPDBR, SPDBR) are available for loading
and storing the page directory base register,

4-45 DHO03-01

OPTION REGISTER (OR)

Format:

*X*k DPS 8 khk*

3 bits
0 111 2 3
0 7 8 9 4 5
D}S C
Sis R
CiB C
FF F
18 11 41 11
d* k kX DPS 88 kX
36 bits
000O0GC 22222 23 33 3
01234 34567 9 0 23 5
S|D CI1u CIU D
H} L |S|]s CJH}] C 0 1 E
Ef U |B|C Ijp} P ICR ICR C
X} F |F]F U U O
R
1 2 11 1811 2 3 3 3

Figure 4-30. Option Register (OR) Format

Description:

**x* DPS 8: A 3-bit register located in the virtual unit that controls the
clearing of data stack space, bypassing the safe store portion of an inward
CLIMB (ICLIMB) instruction, and bypassing cache memory. Bit 18 1is the Data
Stack Clear Flag (DSCF), bit 19 is the Safe Store Bypass Flag (SSBF), and bit 24
is the Cache Read Control Flag (CRCF)., **xx

%%x DPS 88: This 36-bit register controls various options in the CPU.
Instructions are provided for loading (LDO, LDHAC, LGCOS, LMSD, LVMS) and Storing
(STO) . khkk

Function:
The option register is loaded with the Load Option Register (LDO) instruction

and stored with the Store Option Register (STO) instruction.

4-46 DHO3-01

SECTION V

ADDRESS MODIFICATION FEATURES

Address modification features permit the user to alter an address contained
in an instruction (or in an indirect word referenced by an instruction). The
address modification procedure 1is generally directed by the tag field of the
instruction or indirect word.

Basic Modification

Address modification is performed in 4 basic ways: Register (R), Register
Then Indirect (RI), Indirect Then Register (IR), Indirect Then Tally (IT). A
fifth way, address register modification, is discussed later in this section
under "Address Modification With Address Registers"™. Each of these basic types
has a number of variations in which selectable registers can be substituted for
R in R, RI, and IR and in which various tallying or other substitutions can be
made for T in IT. I indicates indirect address modification and is represented
by the asterisk placed in the variable field of the program statement as *R or
R* when IR or RI is specified. To indicate IT modification, only the substitution
for T appears in the variable field; the asterisk is not used.

Indirect Addressing

Generally, in indirect addressing, the content of bits 0-17 in the word
addressed by the instruction address (y) is treated as another address, rather
than as the operand of the instruction. Indirect address modification is performed
by the hardware whenever called for by a program instruction. When I modification
is called for by a program instruction, an indirect word is always obtained from
memory. This indirect word may call for I modification again, or it may specify
the effective address (Y) to be used for the original instruction. Indirect
addressing for RI, IR, and IT modification is indicated by a binary 1 in either
position of the tag modifier field (bit positions 30 and 31) of an instruction
or indirect word.

NOTE: A 1 in bit position 30 or 31 of an indirect word does not necessarily
mean further indirection.

5-1 DHO3-01

Tag Field

An address modification procedure generally takes place as directed by the
tag field of an instruction and the tag field of an indirect word. Repeat mode
instructions and character store instructions do not provide for address
modification.

The tag field consists of two parts, tag modifier (tm) and tag designator
(td), appear as follows:

3 3 3 3 3 3
Bit = 0 1 2 3 4 5
t
— "¢ td »
y tag field »

where:
tm specifies one of four possible modification types: Register (R), Register

Then Indirect (RI), Indirect Then Register (IR), and Indirect Then Tally
(IT).

td specifies the activity for each modification type:

1. In the case of tm = R, RI, or IR, td is called the register designator
and generally specifies the register to be used in indexing.

2. In the case of tm = IT, td is called the tally designator and specifies
the tallying in detail.

The following table shows the valid mnemonics for address modification and
their relationship to the classes R, RI, IR, and IT,

tm=00 tm=01 te=11 tm=10
td R RI IR IT
00 Blank *
00 N N* *N F
01 AU AU* *AU --
02 Qu Qu* *QU -
03 DU - *DU -
04 I1C IC* *IC SD
05 AL AL* *AL SCR
06 QL QL* *QL -
07 DL - *DL -
10 0 o* *0 CI
11 1 1* *]1 1
12 2 2% *2 sC
13 3 3* *3 AD
14 4 4* *4 DI
15 5 5% *5 DIC
16 6 6* *6 ID
17 7 7* *7 IbC

5~-2 DHO03-01

Types Of Address Modification

The four basic modification types, their mnemonic substitutions as used in
the variable field of the program statement, and their binary forms are as
follows:

Modification Coding Binary
Type Mnemonic Forms Example
3 33 3
0 12 S
tm td
3 33 3
0 12 5
R BETA, (R) 001J1 1 01 BETA,S
3 33 3
012 5
RI BETA, (R) * 01jrL o 10 BETA,2*
3 33 3
0 1 2 5
IR BETA ,* (R) 11 Il 1 11 BETA ,*7
3 33 3
0 1l 2 5
IT BETA, (T) 101]}1 ¢ 10 BETA,SC

The parentheses enclosing R and T indicate that substitutions are made by
the user for R and T as explained under the separate discussions of R, IR, RI,
and IT modification below. Binary equivalents of the substitution are used in
the tm subfield.

REGISTER (R)

The processor performs register address modification whenever an R-type
variation is coded. The assembler places binary zeros in both positions of the
modifier subfield tm of the general instruction. Accordingly, 1 of 16 variations
under R will be performed by the processor, depending upon bit configurations
generated by the assembler, and will be placed in the designator subfield (td)
of the general instruction. The 16 variations, their mnemonic substitutions
used on the assembler coding sheet, the td field binary forms presented to the
processor, and the effective address Y generated by the processor are indicated
below.

5-3 DHO03-01

A type of address modification variation is provided under R modification.
The use of the instruction address field as the operand is called direct operand
address modification, of which there are two types: (1) Direct Upper (DU) and
(2) Direct Lower (DL). With the DU variation, the address field of the instruction
serves as bit positions 0-17 of the operand and zeros serve as bit positions
18-35 of the operand. With the DL variation, the address field of the instruction
serves as bit positions 18-35 of the operand and zeros serve as bit positions
0-17 of the operand.

IC modification should only be used with an absolute operand. A relative
operand that has IC modification is flagged with an R by the assembler.

Binary
Modification Mnemonic Form Effective
Variation Substitution (td Field) Address
(R)=X0 0 1000 Y=y+C (X0)
=X1 1 1001 Y=y+C (X1)
=X2 2 1010 Y=y+C (X2)
=X3 3 1011 Y=y+C (X3)
=X4 4 1100 Y=y+C (X4)
=X5 5 1101 Y=y+C (X5)
=X6 6 1110 Y=y+C (X6)
=X7 7 1111 Y=y+C (X7)
=A AU 0001 Y=y+C(A)
0-17 0-17
=A AL 0101 Y=y+C (A)
18-35 18-35
=Q QU 0010 Y=y+C (Q)
0-17 0-17
=Q QL 0l10 Y=y+C (Q)
18-35 18-35
=IC IC 0100 Y=y+C (IC)
direct upper DU 0011 Bits 0-~17 of operand = y;
bits 18-35 of operand = 0
direct lower DL 0111 Bits 0-17 of operand = 0;
bits 18-35 of operand = y
=None Blank or N 0000 Y=y

=Any symbolic Any defined
index register symbol

1 Symbol must be defined as one of the index registers by using an applicable
pseudo-operation (EQU or BOOL).

5-4 DHO03-01

The following examples show how R-type modification variations are entered
and how they affect effective addresses.

Examples:
: Effective
1 8 16 Address
(1) EAXO 1
LDA B,0 Y=B+1
(2) LDA =2,DL
LDa C,AL Y=C+2
(3) EAQ 3
LDA M,QU Y=M+3
(4) ABC LDA -2,IC Y=ABC-2
(5) XY2Z LDA *,DU operand =XYZ ,operand =0
0-17 18-35
(6) EAX7 ABC
LDA 1,7 Y=ABC+1
(7) LDA 2,DL operand =0,operand =2
0-17 18~35
(8) LDA B Y=B
(9) LDA B,N Y=B
(10) EAX ALPHA,10
LDA C,ALPHA
ALPHA EQU 2 Y=C+10

Coding examples of R-type modification follow:

o (R) = N
ALPHA LDA ADRES1,N
is equivalent to
ALPHA LDA ADRES1

No address modification results; ADRES1 is the effective operand.

o (R) = Xn where n =0 to 7
ALPHA LDA ADRES2,5

X5 contains the value 2.

ADRES2 DEC 12
oCT 7777
ocCT 123456765432

ADRES2+2 becomes the effective address and its contents (octal
123456765432) are loaded into the A-register.

5-5 DH03-01

A-register X5

Before 773412315026 000002
After 123456765432 000002
o (R) = AU, AL, QU, QL

ALPHA LDA ADRES3,QU
Bits 0-17 of the Q-register contain the value 3.
ADRES3 DEC 10

oCT 12

OCT 14

OCT 16

ADRES3+3 becomes the effective address and its contents (octal 16) are
loaded into the A-register.

A-register Q-register
Before 123456765432 000003 123456
After 000000000016 000003 123456

(R) = DU,DL

ALPHA LDA ADRES4,DU

There is no memory access to obtain modification of ADRES4. The address
represented by the symbol ADRES4 is placed in bits 0-17 of the A-register;
bits 18-35 are filled with zeros.

ADRES4 OCT 10 (assume ADRES4 is at location 001002 octal)

Before 000000000016

After 001002000000

5-6 DHO3-01

A simple program segment, the movement of 50 words from ABC to XYz, may
help illustrate the power of address modification.

Without Address Modification With Address Modification

START LDX1 =0B17 START LDX1 0,DU
LDA ABC LDA ABC,1
STA XYZ STA XYz,1
LDA =1B17 ADLX1 1,DbU
ASA START+1 CMPX1 50,DU
ASA START+2 , TNC START+1

ADLX1 =1B17
CMPX1 =50B17
TNC START+1

REGISTER THEN INDIRECT (RI)

Register Then Indirect address modification is a combination in which both
indexing (register modification) and indirect addressing are performed. For
indexing modification under RI, the mnemonic substitutions for R are the same as
those given under the discussion of register (R) modification with the exception
that DU and DL are invalid for RI usage. For indirect addressing (I), the
processor interprets the contents of the operand address associated with the
original instruction or with an indirect word.

Under RI modification, the effective address Y is found by first performing
the specified register modification on the operand address of the instruction;
the result of this R modification under RI is the address of an indirect word
which is then retrieved.

After the indirect word has been accessed from memory and decoded, the
processor carries out the address modification specified by this indirect word.
If the indirect word specifies RI, IR, or IT modification (any type specifying
indirection), the indirect sequence is continued. When an indirect word is
found that specifies R modification, the processor performs R modification, using
the register specified by the td field of this last-encountered indirect word
and the address field of the same word, to form the effective address Y.

The variations DU and DL of register modification (R), when used with Register
Then Indirect modification (RI), cause an Illegal Procedure (IPR) fault.

To refer to an indirect word from the instruction itself without including
register modification of the operand address, the "no modification" variation
should be specified; under RI modification, this is indicated by placing only an
asterisk (*) in the tag position.

The following examples illustrate the use of RI modification, including the
use of (R) = N (no register modification). The asterisk appearing in the modifier
subfield is the assembler symbol for I (Indirect). The address-subfield,
single-symbol expressions shown are not intended as realistic coding examples,
but to show the relation between operand addresses, indirect addressing, and
register modification,

5-7 DHO3-01

Examples:

Modification Effective
1 8 16 Type Address
(1) EAA 1
EAX1 2
STA Z ,AU* (RI) Y=B+2
ORG Z+1
ARG B,1l (R)
(2) EAQ 3
MPY Z,* (RI) Y=B+3
2 ARG B,QU (R)
(3) EAX3 3
EAXS 5
STQ Z,* (RI) Y=
yA ARG B,5* (RI)
ORG B+5
ARG C,3* (RI)
orG C+3
ZERO M (R)

Coding examples of RI modification follow:

o

(RI) = N*

ALPHA LDA ADRES]1,N*

is equivalent to

ALPHA LDA ADRES],*

The indirect word at ADRES1 is obtained; if this indirect word

specifies further indirect modification, the process continues
until an indirect word is obtained with (R) modification.

(RI) = (Xn)* where n = 0 to 7
EAXS 5
EAX2 2

ALPHA LDA ADRES2,5*

The indirect word at ADRES2+5 is obtained. 1If the indirect word
at this location is

LDQ ADRES3,2

the effective address is ADRES3+2,

5-8 DH(03-01

INDIRECT THEN REGISTER (IR)

Indirect Then Register address modification is a combination in which both
indirect addressing and indexing (register modification) are performed. IR
modification is not a simple inverse of RI; several important differences exist.

Under IR modification, the processor first fetches an indirect word from
the memory location specified by the address field y of the machine instruction:
the C(R) of IR are safe-stored for use in making the final index modification to
develop the effective address Y.

Next, the address modification, if any, specified by this first indirect
word is examined. If this modification is again IR, another indirect word is
retrieved from storage immediately; and the new C(R) are safe-stored, replacing
the previously safe-stored C(R). If an IR loop develops, the above process
continues, each new C(R) replacing the previously safe-stored C(R), until a type
other than IR is encountered in the sequence.

If the indirect sequence produces an RI indirect word, the R-type modification
is performed immediately to form another address; but the I of this RI treats
the contents of the address as an indirect word. The chain then continues with
the C(R) of the last IR still safe-stored, awaiting final use. At this point
the new indirect word might specify IR-type modification, possibly renewing the
IR loop noted above; or it might initiate an RI loop. 1In the latter case, when
this loop is broken, the remaining modification type is R or IT.

When either R or IT is encountered, it is treated as type R where R is the
last safe-stored C(R) of an IR modification. At this point the safe-stored C(R)
is combined with the y of the indirect word that produced R or IT, and the
effective address Y is developed.

If an indirect modification without register modification is desired, the
"no modification" variation (N) of register modification should be specified in
the instruction. This normally will be entered on coding sheets as *N in the
modifier part of the variable field. (The entry * alone is equivalent to N*
under RI modification and must be used in that way.)

5-9 » DHO3-01

Coding examples of IR modification follow:

Example 1
(IR) = *N
ALPHA LDA ADRES1,*N

The indirect word at ADRES1l is obtained. 1If the indirect word at this
location is:

ADRES1 LDQ ADRES2
the effective address is:

ADRES2

Example 2

Indirect Then Register and then Register or Indirect Then Tally
(IR) = *(Xn) where n = 0 to 7
EAXS 15
ALPHA LDA ADRES1,*S
The indirect word at ADRES1 is obtained. If the indirect word is:
ADRES1 LDQ ADRES2, (R)
or
ADRES1 LDQ ADRES2, (T)
the effective address is:

ADRES2+15

Example 3

Indirect Then Register and then Register Then Indirect

(IR) = *(Xn) where n = 0 to 7

EAXS 16

EAX2 17
ALPHA LDA ADRES1,*5
ADRES1 LDQ ADRES2, 2*
ADRES2+17 LDA ADRES4

the effective address is:

ADRES4+16

5-10 DHO3-01

Example 4

Indirect Then Register and then Indirect Then Register
(IR) = *(Xn) where n =0 to 7

EAX5 18

EAX3 19
ALPHA LDA ADRES]1,*5
ADRES1 LDA ADRES2,*3
ADRES2 LDA ADRES3
the effective address is:

ADRES 3+19

The following examples illustrate the use of IR-type modification, intermixed
with R and RI types, under the several conditions noted above.

5-11 DH03~-01

Examples:

(L)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Modification Effective

1 8 16 Type Address

LDQ 1,DL

LDA Z,*QL (IR) Y=M+1
Z ARG M (R)

EAX3 2

EAXS 3

~ ABC LDA 2,*3 (IR) Y=C+2

Z ARG B,5* (RI)

ORG B+3

ARG c,IC (R)

EAX3 4

EAXS 5

EAQ 6

EAX7 7

LDA 2,*3 (IR) Y=M+6
2z ARG B,*5 (IR)
B ARG C,*Qu (IR)
c ARG M,7 (R)

EAX3 8

LDQ 9,DL

LDA Z,*DL (IR) C(A)=M
3 ARG B,3* (RI)

ORG B+8

ARG M, 0L (R)

LDA 10,DL

LDA 2 ,*AL (IR) Y=B+10
Z ARG B,AD (IT)

EAX3 11

LDA Z2,*N (IR) Y=B
z ARG B,3 (R)

EAXS 12

LDA Z,*N (IR) Y=M+12
3 ARG B,*S (IR)
B ARG M,DU (R)

EAXS 13

LDA Z,* (RI) Y=M+13
2 ARG B,*5 (IR)
B ARG M,DU (R)

EAX1 14

LDA X,* (RI) Y=2+14
X ARG B,*1 (IR)
B ARG z,1D (IT)
Z TALLY A,l0 (IT)

5-12 DH03-01

INDIRECT THEN TALLY (IT)

indirect Then Tally address modification is a combination in which both
indirect addressing and automatic incrementing/decrementing of fields in the
indirect word are. performed as hardware features, thus relieving the user of
these responsibilities. The automatic tallying and other functions of IT
modification allow processing of tabular data in memory, provide a means for
working upon character data, and allow termination on user-selectable numeric
tally conditions. 1If an unassigned IT tag is used, an Illegal Procedure (IPR)
fault occurs.

The variations under IT modification are summarized below. The mnemonic
substitution for IT is (T); the designator I for indirect addressing in IT is
not represented. (Note that one of the substitutions for T is I.)

Binary
Mnemonic Form Effect on Processor and Indirect
Variation Substitution (td Field) (Tally) Word for Each Reference

Fault F 0000 None. The processor is forced to
a fault trap. The indirect word
is not examined.

Character indirect CI 1000 None. Applies to TALLY, TALLYB.

Sequence character sC 1010 Obtain the operand address from
the tally word; then add 1 to the
character position value in the
tag field and subtract 1 from the
tally count field; add 1 to the
address field and set the character
position value to zero when the
character position crosses a word
boundary. Applies to TALLY,
TALLYB.

Sequence character SCR 0101 Subtract 1 from the character

reverse position value in the tag field
and add 1 to the tally count field;
subtract 1 from the address field
and set the character position
value to 3 (TALLYB) or 5 (TALLY)
when the character position crosses
a word boundary. Then obtain the
operand address from the tally
word. Applies to TALLY, TALLYB.

Indirect I 1001 None. The operand address is the
word to which the tally word address
field refers. Applies to all tally
pseudo-operations.,

5-13 DHO03-01

Binary

Mnemonic Form Effect on Processor and Indirect
Variation Substitution (td Field) (Tally) Word for Each Reference
Increment address, ID 1110 Obtain the operand address from
decrement tally the tally word; add 1 to the address

field and subtract 1 from the tally
count field. Applies to all tally
pseudo-operations.

Decrement address, DI 1100 Subtract 1 from the address

increment tally field, add 1 to the tally count
field, and then obtain the operand
address from the tally word.
Applies to all tally
pseudo-operations,

Increment address, IDC 1111 Obtain the operand address from
decrement tally, the tally word and then add 1
and continue to the address field and subtract

1 from the tally count field,
Additional address modification
will be performed as specified by
the tag field. Applies to TALLYC.

Decrement address, DIC 1101 Subtract 1 from the address
increment tally, field, add 1 to the tally count
and continue field, and then obtain the operand

address from the tally word.
Additional address modification
will be performed as specified by
the tag field. Applies to TALLYC.

Add delta AD 1011 Obtain the operand address from
the tally word and then add an
increment to the address field and
subtract 1 from the tally count
field. Applies to TALLYD.

Subtract delta SD 0100 Subtract an increment from the
address field; add 1 to the tally
count field, and then obtain the
operand address from the tally
word. Applies to TALLYD.

5-14 DH03-01

Indirect Word Format

The location of the indirect word is specified by

the instruction or previous indirect word (IDC or DIC).
the indirect word to be fetched and interpreted as specified by the td subfield
of the instruction or previous indirect word that referred to the indirect word.

The format of the indirect word is:

the address field (y) of
IT modification causes

0 11 23 3
[¢] 7 8 3.0)
y Tally Tag
where:

y = address field
Tally = tally field

Tag = tag field

Depending upon the prior tally designator,

word is used in one of the following ways:

Tally Designators Tagq Field
3 3 3 3
1 2 3 4
I,DI,ID,F Ignored
DIC,IDC,IR,RI tm td
CI,sC,SCR tb 0 0 ct
AD,SD Delta
~ where:
tm = tag modifier
td = tag designator
tb = character size indicator (0=6-bit, 1=9-bit)
cf = character position field
Delta = delta field (Size of increment)

the tag field for the indirect

DHO3-01

Variations Under IT Modification

Fault (T) = F Variation. The Fault variation enables the user to force
program transfers to operating system routines or to corrective routines
during the execution of an address modification sequence. (This will usually
indicate some abnormal condition for which the user desires protection.)

Character Indirect (T) = CI vVariation. The Character Indirect (CI) variation
is provided for operations on 6-bit or 9-bit characters in any situation
where repeated reference to a single character in memory is required. The
character size field (tb) of the indirect word specifies the character
size,

For this variation substitution, the effective address is the address field
of the CI indirect word obtained via the tentative operand address of the
instruction or preceding indirect word that specified the CI variation.
The character position field (cf) of the indirect word is used to specify
the character to be involved in the operation.

This variation is similar to the SC variation except that no incrementing
or decrementing of the address, tally, or character position is performed.
Some examples are:

Modification Effective Character
1 8 16 Type Address Position
LDA z,CI (IT) Y=B 4
pA TALLY B,,4
1 8 16
LDA ADDR,CI

ADDR TALLY ADD,,3
or

ADDR TALLYB ADD,,3

The effective address is ADD. The character in character position 3 is
loaded into the A-register in character position 5 for 6-bit characters or
into position 3 for 9-bit characters. The remainder of the A-register is
loaded with all zero bits.

Seguence Character (T) = SC Variation. The Sequence(Zharacter (SC) variation

- F £ _tib Ae O_lir P % ey
is provided for programmed operations of §-bit or 3-bit characters that are

accessed sequentially in memory. The character size indicator (tb) of the
indirect word is used to specify the character size. Processor instructions

A A 3 T A3 ers A T 3 ;b
that exclude character operations are so indicated in the individual instruction

descriptions. For the SC variation, the effective operand address is the
address field of the indirect word obtained via the tentative operand address
of the instruction or preceding indirect word that specified the SC variation.

5-16 DH03-01

Characters are operated on in sequence from left to right within the machine
word., The character position field (cf) of the indirect word is used to
specify the character to be involved in the operation. The Tally Runout
indicator is set when the tally field of the indirect word reaches 0. The
following is an example of the coding:

P 8 16

LDA a,sc
A TALLY TABLE, 70,4
TABLE BSS 13

in which 70 is the count and 4 designates the character position of the
tally start,

For register loads under the SC variation, a character is fetched from the
indicated position of the memory location and is written into the lower end
of the register; the remaining bits of the register are set to zero. For
stores under the SC variation, a character is fetched from the lower end of
the register and written into the indicated position in the memory location;
the remaining character positions in the memory location remain unchanged.

The tally field of the indirect word is used to count the number of times a
reference is made to a character. Each time an SC reference is made to the
indirect word, the tally is decremented by 1, and the character position is
incremented by 1 to specify the next character position. When character
position 5 (for 6-bit characters) or 3 (for 9-bit characters) is incremented,
it is changed to position 0 and the address field of the indirect word is
incremented by 1. All incrementing and decrementing are done after the
effective address has been provided for the current instruction execution.
The effect of successive references using SC modification is shown in the
following examples:

Effective Character
1 8 16 Address Position Reference
LDA Zz,SC B 0 1

Z TALLY B,80,0 B 1l 2
B BSS 14 . . .

B S 6

B+1 0 7
The Tally Runout indicator . . .
is set on the 80th reference.

B+n 0 6n+l

5-17 DHO03-01

ADD1 LDA ADDR,SC
TTF ADD1
ADDR TALLY ADD,12,3 (6-bit characters)
or
ADDR TALLYB ADD,12,3 (9-bit characters)
ADD BSS 4

The first effective address is ADD. The character in character position 3
is loaded into the A-register in position 5 (for 6-bit characters) or into
position 3 (for 9-bit characters), The second reference will load ADD
character 4 (if 6-bit) or ADD+1 character 0 (if 9-bit), etc. The tally is
decremented from 12 to 0. The destination in the A-register does not change.

Sequence Character Reverse (T) = SCR Variation. The SCR variation is the
reverse of SC. The character position is decremented by 1 and the tally is
incremented by 1 before the indirect word address field and character position
are used as the operand character address. When the character position
attempts to go negative, it is set to the maximum value (3 or 5) and the
address is decremented by 1.

Indirect (T) = I Variation. The Indirect (I) variation of IT modification
is in effect a subset of the ID and DI variations described below in that
all three -- I, ID, and DI -- make use of one indirect word in order to
refer to the operand. The I variation is functionally unique, however, in
that the indirect word accessed by an instruction remains unaltered; no
incrementing/decrementing of the address field or tally occurs. Since the
tag field of the indirect word under I is not interrogated, this word will
always terminate the indirect chain.

The following differences in the coding and the effects of *, *N

, and I
should be observed:

1. RI modification is coded as R* for all cases, excluding R=N.

For R=N under RI, the modifier subfield can be written as N* or
as * alone, according to preference.

When N* or just * is coded, the assembler generates a machine
word with octal 20 in bit positions 30-35; octal 20 causes the
processor to add 0 to the address field y of the word containing
the N* or * and then to access the indirect word at memory location
Y.

5-18 DH03-01

2. IR modification is coded as *R for all cases, including R=N,.
For R=N under IR, the modifier subfield must be written as *N.

When *N is coded, the assembler generates octal 60 in bit positions
30-35 of the associated machine word; octal 60 causes the processor
to (1) retrieve the indirect word at the location (y) specified
by the machine word, and (2) effectively safe store zeros (for
possible final index modification of the last indirect word).

3. IT modification is coded using only a variation designator (I,
ip, DI, sSC, SCR, CI, aD, SD, F, IDC, or DIC); that is, no asterisk
(*) is written, Thus, a written IT address modification appears
as ALPH,DI; BETA,AD; etc.

For the variation I under IT, the assembler generates a machine
word with octal 51 in bit positions 30-35; 51 causes the processor
to examine one, and only one, indirect word to be retrieved from
memory to obtain the effective address Y. For example:

Modification Effective
1 g 10 Iype Address
EAXS 1
LDA z,1 (IT) Y=B
Z ARG B,*S (IR)
Increment Address, Decrement Tally (T) = ID Variation. The ID variation

under 1T modification provides automatic (hardware) incrementing or
decrementing of an indirect word that is best used for processing tabular
operands (data located at consecutive memory addresses). The indirect word
always terminates the indirect chain. .

In the ID variation, the effective address is the address field of the
indirect word obtained via the tentative operand address of the instruction
or preceding indirect word, whichever specified the ID variation. Each
time such a reference is made to the indirect word, the address field of
the indirect word is incremented by 1 and the tally portion of the indirect
word is decremented by 1. The incrementing and decrementing are performed
after the effective address is provided for the instruction operation. When
the tally reaches zero, the Tally Runout indicator is set.

The following examples show the effect of ID:

Modification Effective
1 8 16 Iype Address _______ Reference
LDA 2,ID (IT) B 1
2 TALLY B,12 B+1l 2
B BSS 12 . .
B+n B;l
The Tally Runout indicator is . .
set on the 12th reference. . .

5-19 DHO03-01

1 8 16
ADRES1 LDA ADRES2,1D
TTF ADRES1

ADRES 2 TALLY ADRES3,10

ADRES 3 BSS ‘10

The first effective address is ADRES3; the second is ADRES3 plus 1, etc.
The tally is decremented from 10 to zero. The TTF instruction checks the
Tally Runout indicator, 1If the tally is not zero, transfer is made to
ADRES1. If the tally is zero, processing continues with the instruction
following TTF. Without the TTF instruction, only one effective address is
obtained.

Decrement Address, Increment Tally (T) = DI Variation. The DI variation
under IT modification provides automatic (hardware) incrementing and
decrementing of an indirect word that is best used for processing tabular
operands (data located at consecutive memory addresses). The indirect word

always terminates the indirect chain.

In the DI variation, the effective address is the modified address field (1
less than the value before modification) of the indirect word obtained via
the tentative operand address of the instruction or preceding indirect word,
whichever one specified the DI variation. Each time a reference is made to
the indirect word, the address field of the indirect word is decremented by
1 and the tally portion is incremented by 1. The incrementing and decrementing
are performed prior to providing the effective address for the current
instruction operation,

The effect of DI is shown in the following examples:

Modification Effective

i 8 16 Type Address Reference
LDA z,DI (IT) B-1 1
Z TALLY B,-18 B-2 2
B BFS 18 : :
B-n h
The Tally Runout indicator . .

is set on the 18th reference; .
there, the 12-bit tally field

in the indirect word overflows

and becomes all zeros.

5-20 DH03-01

1 8 16

ADRES1 LDA ADRES2,DI

TTF ADRES1

ADRES2 TALLY ADRES3,-10
ADRES3 BFS 10

The first effective address is ADRES3 -1; the second is ADRES3 -2; etc.
The tally increases from -10 to 0.

Increment Address, Decrement Tally, and Continue (T) = IDC Variation. The
IDC variation under IT modification functions In a manner similar to the ID
variation except that, in addition to automatic incrementing/decrementing,
it permits the user to continue the indirect chain in obtaining the instruction
operand. Where the ID variation is useful for processing tabular data, the
IDC variation permits processing of scattered data by a table of indirect
pointers., More specifically, the ID portion of this variation gives the
sequential stepping through a table; and the C portion (continuation) allows
indirection through the tabular items. The tabular items may be data pointers,
subroutine pointers, or a transfer vector.

The address and tally fields are used. as described under the ID variation.
The tag field uses the set of instruction address modification variations
under the following restrictions: no variation is permitted that requires
an indexing modification in the IDC cycle since the indexing adder is in
use by the tally phase of the operation. Thus, permissible variations are
any form of IT or IR; but if RI or R is used, R must equal N.

The effect of successive references using IDC modification is indicated in
the following examples:

Effective
1 8 16 Address Reference
LDA 2,IDC X 1
Z TALLYC B,10,I Y 2
B ARG X 2 3
ARG Y . .
ARG Z . .

The Tally Runout indicator
is set on the 10th reference.

B! 8 16
ADRES1 LDA ADRES2,IDC

TTF ADRES1
ADRES2 TALLYC ADRES3,4,*
ADRES3 ARG AD1

ARG AD2

ARG AD3

ARG AD4

AD1 is the first effective address, AD2 is the second, AD3 is the third,
and AD4 is the fourth.

5-21 DHO03-01

Decrement Address, Increment Tally, and Continue (T) = DIC Variation. The
DIC variation under IT modification performs in much the same way as the DI
variation except that, in addition to automatic decrementing or incrementing,
it allows the user to continue the indirect chain in obtaining an instruction
operand. The continuation function of DIC operates in the same manner and
under the same restrictions as IDC except that (1) it increments in the
reverse direction, and (2) decrementing/incrementing is performed prior to
obtaining the effective address from the tally word. (Refer to the first
example under IDC; work from the bottom of the table to the top.) DIC is
especially useful in processing last-in, first-out lists. Some examples
follow:

Modification Effective

-1 8 16 Type Address Reference

LDA Z,DIC (IT)
B ’-10 'I

yA TALLYC B,10,I (IT) Y 1
ARG Z X 2
ARG X Z 3
ARG Y . .

B NULL

Assuming an initial tally of -10, the Tally Runout indicator is set on
the 10th reference; there, the 12-bit tally field in the indirect word
overflows and becomes all zeros.

1 8 16

ADRES1 LDA ADRES2,DIC
TTF ADRES 1

ADRES2 TALLYC ADRES3,-4,*N
ARG AD4,*
ARG AD3
ARG AD2,*N
ARG AD1,*N

ADRES3 BSS 1

AD1 ARG A

AD2 ARG B

AD4 ARG c

A is the first effective address, B is the second, AD3 is the third, and C
is the fourth.

Add Delta (T) = AD Variation. The Add Delta (AD) variation is provided for
programming situations where tabular data to be processed is stored at
equally spaced locations, such as data items, each occupying twoc or more
consecutive memory addresses., It functions in a manner similar to the ID
variation, but the incrementing (delta) of the address field is selectable
by the user.

Each time such a reference is made to the indirect word, the address field
of the indirect word is increased by delta and the tally portion of the
indirect word is decremented by 1. The addition of delta and decrementing
are done after the effective address is provided for the instruction operation.

5-22 DH03-01

The following examples show the effect of successive references using AD
modification:

Modification Effective

1 78 16 Type Address Reference
LDAQ zZ ,AD (IT) B 1
ya ETALLY B,20,2 B+2 2
B EBSS 40 B+4 3
é+22 n+l
‘The Tally Runout indicator . .
is set on the 20th reference, . .
1 18 16
ADRES 1 LDAQ ADRES2,AD
TTF ADRES1

ADRES2 ETALLYD ADRES3,10,2

ADRES3 EBSS 20

The first effective address is ADRES3; the second is ADRES3+2. The tally
decreases from 10 to 0.

- Subtract Delta (T) = SD Variation. The Subtract Delta (SD) variation is
useful in processing tabular data in a manner similar to the AD variation
except that the table can easily be scanned from back to front using a
programmer-specified increment, The effective address from the indirect
word is decreased by delta and the tally is increased by 1 each time the
indirect word is used. This is done before supplying the operand address
to the current instruction, making the SD variation analogous to the DI
variation,

5-23 DHO3-01

Address Modification Octal Codes

Address modification and 2 digit octal codes for each type of modification
are listed in Table 5-1.

Table 5-1. Address Modification Octal Codes

LOW ORDER OCTAL DIGIT

6 *N *AU *QU *DU *IC *AL *QL *DL

0 1 2 3 4 5 6 7
H 0 N AU QU DU IC AL QL DL
I
G
H 1 0 1 2 3 4 5 6 7
0
R 2 N* AU* QuU* IC* AL* QL*
D
E
R 3 o* 1* 2% 3* 4% 5% 6* 7*
0
C 4 F SD SCR
T
A
L 5 CI I sC AD DI DIC ID IDC
D
I
G
I
T

5-24 DHO03-01

Address Modification Flowchart

The process of address modification is illustrated in flowchart form in
Figure 5-1. Address register modification is not included in this example,

Instruction
Containing
Y, tm td

Fault Routine

Examine tm :::
Subfield

1

¥] ¥
I tm = 10 tm =]11 tm = 01 tm = 00
Type IT TYPE IR Type RI Type R
| Modification Modification Modification Modification

td=0111 or 001l
DU or DL?

Obtain indirect
word using operand
address. Save req.

td = 0000
None?

Is it the IT - Examine reg. Perform type R
variable of o Field of indirect modification

a Fault ? word specified by td
to get address
of indirect word.

td = 0011 or
0111 DU or DL
2

Pull indirect No
word
R+IT I Add contents of
register specified
Reg. specifies Reg. specifies Reg. specifies by td to operand
RI type IR none, Modify address to get
" address with effective address
saved reg. to Y. =
obtain effective
operand address
Reg. is used to
modify operand Fetch
address to obtain indirect
effective address word
of indirect word.

next indirect word

Get indirect word specified ? specified ?
and examine reg.

Perform increment- Is Type R No Is Type RI Yes Convert type R to
(::)*‘———” ing/decrementing. | Modification Modification None. Load the

Yes No

Perform other IT @ °

Modifications (I, 9
Ip,bI1,SC,SCR,CI, Obtain operand

(Ei}————~c AD, SD). Obtain from effective Execute the
indirect word. address Y instruction
Obtain effective

address from
indirect word,

Figure 5-1. Address Modification Flow Chart

5-25 DHO3-01

Floatable Code

Program statements may be written in floatable code. Such statements may
then be executed from any location in memory without relocation at load time.
Floatable code is created by use of instruction counter (IC) modification in all
references to locations within a program. Thus, to transfer to location SYM,
the following statement can be written:

TRA SYM-*,IC
or
TRA SYM,$

The assembler accepts the currency symbol ($) as a valid IC register designator.
The following tag fields in a machine instruction are permitted:

Mnemonic Octal Code
$ 04
S$* 24

The assembler computes the difference between the value of the address
location argument of the variable field and the current location as the content
of the address field of the instruction word. The IC is then supplied for
modification. *$ is illegal and will be assembled as *IC,

NOTE: The FLOAT pseudo-operation or $ modification does not apply when
used with SYMREF symbols or within the range of a BLOCK pseudo-operation.

Address Modification With Address Registers

Address registers (ARn) provide a second-level indexing capability.

The address register format allows addressing on a character or bit basis
and is used by the character and bit manipulation instructions of the processor.,
When an address register is used to modify an address in which character and/or
bit addressing is not used, the character and bit positions of the address
register are ignored.

5-26 DHO3-01

SINGLE-WORD ADDRESS MODIFICATION

When an address register is to be used in address preparation, its application
is specified in the instruction word. All single-word instructions to which
address modification is applicable have the same instruction word format:

0 0 0 0 1 1 2 2 2 3 33 3
0 2 3 4 7 8 7 8 9 0 12 5
TAG
AR# S y OP CODE I | AR
Tm Td

AR# - Address register number, if bit 29 = 1.

S - Sign bit, if bit 29 = 1.

Y - Address field bits 0-17 or bits 3-17, depending on the state of bit
29. Must be an absolute value if AR mode is used.

OP CODE - 10-bit operation code field.

I - Program interrupt inhibit bit,

AR -~ Address register bit. If bit 29 = 1, use address register specified
in bits 0, 1, and 2 of y field for address modification. Bit 3 (sign)
is then extended to bits 0, 1, and 2. If bit 29 = 0, no address
register modification is performed.

TAG - Tag field: Used to control address modification.

Tm - (Bits 30-31): Type of address modification.
Td - (Bits 32~35): Index register or modification variation designator.

NOTE: Address register modification is 1illegal (DPS 88, DPS 8/20 and 8/44:

legal) for instructions executed under control of RPT, RPD, and RPL
instructions. Address register modification is ignored in an indirect
word in a multilevel indirection condition.

The address preparation for a single-word instruction with bit 29 = 1 proceeds

as follows:

1. The three most significant bits of y (0, 1, 2) are decoded to determine
which of the eight address registers is to be used.

2. Bit 3 of the y field is extended to fill bit positions 2, 1, and 0,
thus forming a twos complement signed number.

3. The twos complement y field is then added to the contents of the
specified address register. The character and bit positions of the
address register are ignored and the contents of the address register
remain unchanged.

4.

Address modification continues as specified by the tag field of the
instruction word. :

5-27 DH03-01

Diagramatically, address preparation is described below:

0 000 1
0 234 7
ss]S
+

0 11 2
0 1.8 3

AR ignored-]
0 1
0 7

y + AR

Continue modification
as specified by
tag field

0 1
(1] i

Effective Address

y field of instruction
with bit 3 extended

Contents of an address
register

Sum of y field and
address register

All legal modifications
are allowed. Indirect
words cannot specify an
address register

Operand address

When bit 29 = 0, the first step of the address modification procedure using
the address register is omitted and the only address modification performed is
that specified by the tag field.

5-28

DHO3-01

When an address register is specified, extending bit 3 of the y field to
form a twos complement signed number effectively designates bit 3 as a sign bit.
This leaves 14 bits, 4 through 17, with which to designate an address offset.
Thus an address offset with values between -2**14 and 2**14-1 can be specified.
An address register, then, contains a complete 18-bit memory address which may
be offset + 16K by the partial address contained in the y field of the instruction,

as shown below.

0
J’ MEMORY A:L
lg ud tr
AR - 16K Offset Range y field, bit 3 =1
Points Here
4 l + 16K Offset Range y field, bit 3 = 0
& oA
256K
Coding Examples:
1. LDQ 4,N,2

Effective Address =
4 + bits 0-17 of C(AR2)

2. LDQ -4,N,2

Effective Address =
-4 + bits 0-17 of C(AR2)

5-29 DH03-01

MULTIWORD ADDRESS MODIFICATION

The general format of a multiword instruction is as follows:

Memory
Loc. O 11 2 2 2 3
0 7. 8 7 8 9 5
0 Variable Field , OP CODE I MF1 Instruction
Word
1 , Operand Descriptor 1 or Indirect Word Descriptor 1
2 Operand Descriptor 2 or Indirect Word Descriptor 2
3 Operand Descriptor 3 or Indirect Word Descriptor 3
where:

Variable Field

OP CODE

MF1

Contains additional information «concerning the
operation to be performed, depending on the particular
instruction.

The 10-bit operation code field; octal representation
consists of three octal digits corresponding to bit
positions 18-26 and a 1 for bit position 27.

The program interrupt inhibit bit,

Modification field 1 (MF1) describes address
modification that is to be performed for descriptor
1. When descriptors 2 and 3 are present, most
instructions provide a corresponding MF2 (bits 11-17)
and MF3 (bits 2-8) within the variable field to describe
the address modification to be performed on these
operands. Exceptions to this are the MVT, TCT, and
TCTR instructions,

5-30 DHO3-01

MULTIWORD MODIFICATION FIELD

Each modification field (MF) contained in a multiword instruction is a
7-bit field specifying address modification to be performed on the operand
descriptors. The modification field is interpreted as follows:

2 3 4 5 through 8 ‘___bits (MF3)
11 12 13 14 through 17 4___bits (MF2)
29 30 31 32 through 35 *___bits (MF1)
AR RL ID REG l subfield
1 1 1

AR -

RL -

ID -

REG -

4 ¢ number of bits

Address Register Specifier
0 - No address register used.

1 - Bits 0-2 of the operand descriptor address field specify the address
register to be used in computing the effective address of the
operand.

Register or Length

0 - Operand length is specified in the N field (bits 32-35) of the
operand descriptor.

1 - Length of operand is contained in the register that is specified
by code in the N field (bits 32-35) of the operand descriptor, in
the machine format of REG (the coding format is different).

Indirect Operand Descriptor

0 - The operand descriptor follows the instruction word in its sequential
memory location.

1 - The operand descriptor location contains an indirect word that
points to the operand descriptor. Only one level of indirection
is allowed.

Address modification register selection for R-type modification of
the operand descriptor address field. The REG codes are approximately
the same as the single-word modifications. In addition, for indirect
string length specification (RL = 1), the N field codes are similar
to the REG field. A comparison of these codes follows.

5-31 DHO3-01

Table 5-2.

Register Codes

_ Operand Descriptor
Octal R Type REG (MF Field) N (32-35)
Code (MF Field) (See Note 1) If RL = 1 (See Note 2)
00 No Register (N) No Register (N) Illegal (causes IPR)
01 AU AU AU
02 Qu QU QU
03 DU Illegal (causes IPR) Illegal (causes IPR)
04 iC IC Illegal (causes IPR)
05 AL A A
06 oL Q Q
07 DL Illegal (causes IPR) Illegal (causes IPR)
10 0 0 X0
11 1 1 X1
12 2 2 X2
13 3 3 X3
14 4 4 X4
15 5 5 X5
16 6 6 X6
17 7 7 X7

The index register designations ma
user to have a value in the octal range of 0, 1,

—i

Yy be specified by a symbol defined by the

(or 10, 11,...,17 when

the RL usage is in a descriptor that does not follow the multiword instruction
immediately - an indirect descriptor).

Example:

1

8 16

XA BOOL 17

is used to specify a move of the n

MLR (0,1),(0,1)
ADSC9 A,0,XA
ADSC9 B,0,Xa

value of index register 7.

umber of characters specified by the current

DH03-01

Similarly,

1 8 16

MLR 0,1,1),(0,1)
ARG LA
ADSC9 B,0,XA

LA ADSC9 A,0,XA

provides for the sending address of the move to be specified indirectly in the
word labeled LA,

As a precautionary measure, all index register symbols should be defined
with octal values in the range 10, 11,...,17, since the assembler uses only the
low-order 3 bits in all contexts except the indirect descriptor where the symbol
cannot be identified from context as an index register designation.

NOTE 1 (When used as a REF field of an indirect operand descriptor)

When the REG field of an indirect word contains one of the register codes,
the specified register contents are interpreted as a word index (see "Indirect
Word" later in this section).

When the REG field of the modification field contains one of the register
codes, the designated register content is interpreted as a character or bit
index. For an alphanumeric descriptor, this index is the number OF 9-bit,
6-bit, or 4-bit characters; depending upon the data type specified in the
descriptor. For a numeric descriptor, it is the number of 9-bit or 4-bit
Characters, also dependent upon the data type specified. For a bit descriptor,
it is the number of bits,

The A- and Q-registers provide for indexing by a number greater than 2**18-1.
When one of these registers is specified, the number of right-justified
bits for indexing depends on the type of unit reference specified in the
operand referring to the A- or Q-register, as follows:

18 bits for full-word (36-bit) operations

20 bits for 9-bit character operations

21 bits for 6-bit and 4-bit character operations

24 bits for bit operations
All addressing is modulo addressing. For example, when software desires to

index backwards by N words, it indexes forward by 2**18-N words. This same
method is also used in character and bit indexing.

~Unit No. of Units/ Word No. to Effectively yield -N
Word 1 218 _y
9-bit character 4 4 x 218 _y (220 -N)
4-bit character 8 8 x 218 _y (221 -N)
6-bit character 6 6 x 218 _x
1 bit ‘ 36 36 x 218 g

5-33 DH03-01

NOTE

Sigge thezTodulo addressing for 9- and 4-bit characters is a power of 2
(2 and 2 respectively) and the hardware ignores the remaining high-order
bits, the A and Q can be loaded with a -N directly. For 1-bit and 6-bit
Ccharacters, A and Q can be respectively loaded with 36,DU and 6,DU and N
can then be subtracted.

The content of the IC is always interpreted as a word address when used in
address modification. During the entire execution of a multiword instruction,
the IC points to the instruction word. Thus, if IC address modification is
involved with a descriptor word, the instruction word address is used.

Specifying DU or DL type address modification in the REG field of an indirect
operand descriptor is illegal and causes an IPR fault,

DU address modification is legal for MF2 of the SCD, SCDR, SCM, and SCMR
instructions; for all other instructions, an IPR fault occurs.

2 (When used as a register designator in a descriptor)

Except in the cases of A and Q, when a string length is contained in a
register, the full 18 bits is interpreted as the length., Lengths in A or Q
utilize the same number of bits as stated in Note 1 above for the REG field
of a modification field (MF).

Operand Descriptors

The operand descriptors describe the data to be used in the operation and

provide the basic address for obtaining the data from memory. A unique operand
descriptor format is required for each of the three data types: bit string,
alphanumeric, and numeric. The operand descriptor machine formats are as follows:

BIT STRING OPERAND DESCRIPTOR

=
Ivo
w o
3
0
O
o N
w N
P N

Coding format for the bit string descriptor, BDSC, is:

BDSC - Bit descriptor

1 8 16

BDSC LOCSYM,N,c,b,AM

5-34 DH03-01

ALPHANUMERIC OPERAND DESCRIPTORS

0 0o 1 122222 3
0 2 3 7 801234 5
y cN jta o N
Coding formats for the alphanumeric descriptors are:
ADSCS - ASCII alphanumeric descriptor
1 8 16
ADSC9 LOCSYM,CN,N,AM
ADSC9 sets the TA field for 9-bit ASCII characters.
ADSCé - BCI alphanumeric descriptor
1 8 16
ADSC6 LOCSYM,CN,N,AM
ADSC6 sets the TA field for 6-bit BCI characters.
ADSC4 - Packed decimal alphanumeric descriptor
1 8 16
ADSC4 LOCSYM,CN,N,AM
ADSC4 sets the TA field for 4-bit packed decimal characters.
NUMERIC OPERAND DESCRIPTORS
0 0o 112 2222 23 3
0 2 3 780 1234 9 0 5
y CcN JTN} s SF N
or
SX
5-35 DH03-01

Coding formats for the numeric descriptors are:

NDSC9 - ASCII numeric descriptor

) 8 16

NDSC9 LOCSYM,CN,N,S,SF ,AM
NDSC9 sets the TN field for 9-bit ASCII characters.
NDSC4 - Packed decimal numeric descriptor

1 8 _16

NDSC4 LOCSYM,CN,N,S,SF ,AM
NDSC4 sets the TN field for 4-bit packed decimal characters.

The legend for the machine and coding formats of the descriptors is as
follows:

Yy = original data word address.
18 bits (0-17) if address register not specified in MF,
15 bits (3-17) if address register specified in MF, with bit 3 extended;
i.e., if bit 3 is zero, bits 0-2 are also considered to be zZero;
if bit 3 is 1, bits 0-2 are also considered to be 1ls.

¢ = original character position within a word of 9-bit characters.
Code Char.
00 0
01 1
10 2
11 3
b = original bit position within a 9-bit character.
Code Bit Code Bit
0000 0 0101 5 All other combinations of
0001 1 0110 6 these 4 bits are illegal
0010 2 0111 7 codes and will cause an IPR
0011 3 1000 8 fault.
0100 4
N = either the number of characters or hits in the data gtr ng or a 4-b

code (bits 32-35) that specifies a register that contains the numbe
of characters or bits,

CN = original character number within the data word specified by the original

data word address. Code for the CN depends on the data type as shown
below. Coding entry is by character.

5-36 DHQ3-01

Data CN Legal Illegal
Type Character Codes Codes
9-bit 000 001
010 011
100 101
110 111
6-bit 000 110
001 111
010

011l

100

101

N WN - O WN O

4-bit 000
001
010
011
100
101
110
111

~NoewN - O

a code that defines which type of alphanumeric character is used in the
data.

Data
Code Type
00 9-bit
01 6-bit
10 4-bit
11 Illegal - causes IPR fault

a code that defines which type of numeric character is specified.

Data
Code Type
0 9-bit
1 4-bit

sign and decimal type (coding entry is by character).

S
Character Code Description
0 00 Floating-point, leading sign
1 01 Scaled fixed-point, leading sign
2 10 Scaled fixed-point, trailing sign
3 11 Scaled fixed-point, unsigned

sign and scaling (for X operation codes)

If TN = 0 (unpacked data)

00 leading sign, overpunched, scaled
01 leading sign, separate, scaled

10 trailing sign, separate, scaled

11 trailing sign, overpunched, scaled

If TN = 1 (packed data)

00 leading sign, separate, floating point
01 leading sign, separate, scaled

10 trailing sign, separate, scaled

11 no sign, scaled

5-37 DH03-01

SF = scaling factor

A twos complement binary number that gives the scale point position
for scaled decimal numbers, The decimal point is assumed to be immediately
to the right of the least significant digit. The scaling factor is
treated as a power of ten exponent where a positive number moves the
scaled decimal point to the right and a negative number moves it to
the left. Since the SF field is six bits, the largest number expressible
is M x 10**31 and the smallest number is M x 10**-32, where M is the
value of the data described by the numeric operand descriptor.

This field is ignored if S = 00.

Example: If data = 12345, S is not 00, and SF = -3, the value is
' 12.345.

AM = address register modification

INDIRECT WORD

The basic instruction word containing the operation code is followed by
either zero, two, or three descriptor words, with the number of descriptor words
determined by the particular instruction. The descriptor words contain either
the operand descriptor or an indirect word that points to the operand descriptor.
When an indirect word points to the descriptor, the format of the indire~t word
is as follows:

0 00 11 2 2 33 3 3
0 23 7.8 8_9 01 2 5
Address Ignored AR 00 REG
Address Register Number Register Modi&ication
(if bit 29 specifies address register Specifier
modification)

Address Register Modification
Specifier

The AR and REG fields are identical in function with the corresponding
modification fields in the instruction word, except that the register content
specified by the REG field of an indirect word is interpreted as word index
only.

Indirect words can be generated with the ARG pseudo-operation as follows:

0

1 16

ARG LOCSYM,RM,AM
where:
LOCSYM = address
RM = register modification

AM address register modification

5-38 DHO03-01

For example:

1 8 16

ARG DFPRSS,,4 (7,,4)

OPERAND DESCRIPTOR ADDRESS PREPARATION

A flowchart of the operations involved in operand descriptor address preparation
is shown in Figure 5-2. The chart depicts the address preparation for operand
descriptor 1 of a multiword instruction as described by modification field 1
(MF1). A similar type address preparation would be carried out for each operand
descriptor as specified by its MF code. A detailed description of the flowchart
follows:

(:) The multiword instruction is obtained from memory.

(2 The indirect (ID) bit of MF1l is queried to determine if the descriptor
for operand one is present or is an indirect word.

(:) This step is reached only if an indirect word was in the operand
descriptor location. Address modification for the indirect word is
now performed. If the AR bit of the indirect word is 1, address
register modification step (:) is performed.

The y field of the indirect word is added to the contents of the
specified address register.

A check is now made to determine if the REG field of the indirect word
specifies that a register type modification be performed.

The indirect address as modified by the address register is now modified
by the contents of the specified register, producing the effective
address of the operand descriptor.

Q@ ©® © 6

The operand descriptor is obtained from the location determined by the
generated effective address in .

©)

Modification of the operand descriptor address begins. This step is
reached directly from (f) if no indirection is involved. The AR bit
of MFl is checked to determine if address register modification is
specified.

©,

Address register modification is performed on the operand descriptor
as described under "Address Modification with Address Registers™ above
except that the character and bit positions of the specified address
register are not ignored. Rather, they are used in one of two ways
depending upon the type of operand descriptor; i,e., whether the type
is a bit string descriptor or a numeric or alphanumeric descriptor.

5-39 DHO03-01

#

Fetch
Instruction
from Memory

No MF1

ID=1

No MF1 Yes

AR=1

Y

Modify Y of
Operand
Descriptor
by AR

Figure 5-2.

Modify Y of
Operand
Descriptor
with REG

Fetch

Operand from

Memory
®
&)

©

Yes

AR

Word=1

of Indirect

®

1

with AR

Modify Y of
indirect Word

code

of Indirect
Word Contain

Modify Y of
Indirect Word
with REG

- ©®

Fetch Oper.
Descriptor
from Memory

0

Flowchart For Operand Descriptor Address Preparation

DHO3-01

Bit String Address Preparation

Yy, ¢, and b fields of
descriptor with bit 3
of y extended

contents of address
register specified by
bits 0, 1, 2 of y

modified descriptor
address

0 00 1 1 1 2 2
0 23 7 8 9 0 3
Ty c b
‘__.
+
WORD CHAR BIT
yields
Y C B
where:
Y = WORD + y

C = CHAR + ¢

BIT + b

o]
"

1. If (BIT + b) exceeds 8,
and B = (BIT + b) -9:

BIT = 7
b= 5
BIT + b =
2. If (CHAR + c + carry from B)

word address and C =
CHAR = 2

c= 3

carry = 1

12, carry 1 to C and B

2

= 12

a carry is generated to character position C

exceeds 3, a carry is generated to the
(CHAR + c + carry from B) -4:

6, carry 1 to word address and
6 -4 =

DH0O3-01

Alphanumeric/Numeric Address Preparation

First the data type designator (TA for alphanumeric, TN for numeric) is
checked to determine the character size. If the data is in 9-bit characters,
then the descriptor address and CN fields can be added directly to the address
register contents as follows:

0 00 1 1 12
0 2 3 7 8 90
y and CN fields of the
' y CN 0 numeric or alpha numeric
descriptor, bit 3 extended
+
0 1 1
0 -7 9 :
contents of WORD and CHAR
WORD CHAR positions of address
register designated by
bits 0, 1, 2 of y
yields
0 1 1
0 7 9
CHAR
WORD + y + CN modified character
address

Bits 20-23 of the address register are ignored. CHAR is added to bits 18
and 19 of CN. Bit 20 of the descriptor is zero and is not used. If CHAR + CN
is greater than 3, a carry is generated to WORD + y and CHAR + CN = (CHAR + CN)
-4.

If the data is in 4- or 6-bit characters, the 9-bit character representation
contained in the CHAR and BIT portions of the specified address register is
interpreted to determine the corresponding 4- or 6-bit character position within
the memory word. Translation to a 4-bit character location can be accomplished
as follows:

C = 2 (CHAR) + [(BIT + 4)/9 truncated]

If CHAR = 3 and BIT = 7,

then C = 2(3) + 1 =7

If CHAR = 3 and BIT = 4,
‘then C=2(3) +0=26

220820 = 0O 0WED

9 (CHAR) + BIT
C = 6 (truncated)

If CHAR = 3 and BIT = 7,

9 (3) + 7
6

then C = =5

5-42 DHQ2-01

The remainder of 4 which represents the bit position within character position
5 is ignored. This means forcing the address register to point to the next
lower character boundary.

The address modification can now take place.

0 00 11 2
0 2 3 7.8 0
y and CN fields of the
§ ‘ v CN numeric or alphanumeric
descriptor, bit 3 extended
+
0 11 2 contents of WORD position
0 7.8 0 of address register desig-
nated by bits 0, 1, 2 of y;
WORD CAR CAR is the character loca-
tion translated from
CHAR and BIT of address
register
yields
0 11 2
0 7 8 0
CN +
WORD + y CAR

For 4-bit character mode, if CN + CAR is greater than 7, a carry is generated
to WORD + y and CN + CAR = (CN + CAR) -8.

For 6-bit character mode, a carry is generated to WORD + y when CN + CAR is
greater than 5 and CN + CAR = (CN + CAR) =-6.

The REG field of MF1 is checked for a legal code. If DU is specified in
the REG field of MF2 in one of the four multiword instructions (SCD, SCDR,
SCM, SCMR) for which DU is legal, the CN field is ignored and the character
or characters are arranged within the 18 bits of the word address portion
of the operand descriptor as follows:

Operand descriptor word address field (y) Character type (TA)
0 00 1
0 8 9 7
9-bit characters
CHAR 0 CHAR 1
0 00 11 1
0 5 6 1 2 7
6-bit characters
CHAR 0 CHAR 1 ignored
00 00 00 1
0 1 4 5 8 9 7 ’
4-bit characters
0] CHAR 0 CHAR 1 ignored

5-43 DHO03-01

In the cases where only one character is involved (SCM, SCMR), only character
0 is used.

The count contained in the register specified by the REG field code is
appropriately converted and added to the operand address. The count conversion
required depends upon the type of data.

Bit Operations. The bit count contained in the register is effectively
divided by 36 to give a word count (WD) with a bit remainder (BR).
Dividing the bit remainder by 9 gives a character count with a bit
remainder. Thus the original bit count (BC) is converted to a word
count, 9-bit character count (CC) and bit remainder, and is in proper
form to add to the bit operand address. An example of the effective
conversion is shown below:

bit count from register/36 = WD and BR

BR/9

CC and BC

Expressed as a 24-bit address modifier

0 1 1 1 2 2
0 7. .8 9 0 3
WD cc BC converted bit
count
+
0 1 1 1 2 2
0 7 8 9 0 3 modified bit
descriptor
ym cm bm operand
address
yields YCB:
0 1 1 1 2 2
0 7 8 9 0 3
CC+ BC+ effective bit
WD + ym cm bm address

Carries may occur from (BC # bm) to (CC + cm) and from (CC + cm) to
(WD + ym) as described in .

5-44 DHO03-01

There are two conditions to note in forming WD:

1. If WD is a small number (expressible in less than 18 bits), it is
right-justified in the 18-bit word area with zero-fill in the
most significant bit positions, Thus bit counts are always positive;
they are not twos complement and there are no bit extensions.

2. If the bit count comes from the A- or Q-registers, division by 36
may produce a WD greater than 2**18-1. In such a case, the result
is interpreted modulo 2**18. For example, if the bit count is
(2%*24)-1:

(2**24)-1
36 = 466,033 with BR = 27
Thus, WD = 466,033 - 262,144 = 203,889
And, BR/9 = 27/9 = 3 with 0 remainder
So that, WD = 203,889
CC = 3
BC =0

No errors occur; the operation is legal and the results are
predictable.

Character Operations. The character count contained in the register
1s divided by 4, 6, or 8 (depending upon the data type), which gives a
word count with a character remainder. The word and character counts
are then appropriately arranged in 21 bits (18-word address and 3 for
character position) and added to the modified descriptor operand address.
The appropriate carries occur from the character positions to the word
when the summed character counts exceed the number of characters in a
36-bit word. When the A- or Q-registers are specified, large counts
can cause the result of the division to be greater than 2**18-1, which
is interpreted modulo 2**18, the same as for bit addressing.

5-45 DH03-01

Q:) The operand is retrieved from the calculated effective address location.
EXAMPLES:

1 8 ___16 32

* OPERAND DESCRIPTOR EXAMPLES

MLR ,+020,1 move blanks to output record
ADSC6 ,,

ADSC6 PRTOUT,0,55+80-31

MLR move columns 31-80

ADSCé6 RDWRK+5,0,80-31+1 to print columns 55-104
ADSCé6 PRTOUT+9,0,80-31+1

LDX7 31-1,DU ditto

LDX6 55-1,DU

LARS =V 18/RDWRK

LAR4 =V18/PRTOQT

MLR (L,0s7),(1s,s,6)

ADSCé6 +¢80-31+1,5
ADSCé r¢80-31+1,4

LARS =V 18/RDWRK ditto
LAR4 =V18/PRTOUT
LDX3 80-31+1,DU

MLR (1,1),(1,1)

ADSCé6 5,0,X3,5
ADSCé6 9,0,X3,4

5-46 DHO03-01

ADDRESS DEVELOPMENT

Virtual Memory Addressing

Virtual memory provides the processor with a virtual memory capability,
consisting of a directly addressable virtual space of 2**43 bytes and the mechanisms
for translating this virtual memory address to a real memory address. Memory
paging is an integral part of the translation process for converting a virtual
memory address to a real memory address. An absolute addressing mode that allows
bypassing the translation process is also provided. When the processor is operating
in the absolute addressing mode, the virtual memory address and the real memory
address are the same, and the total address space is limited to 2**26 (DPS 88:
2**28) bytes.

To provide for virtual memory management, assignment, and control, the 2%*43
byte virtual memory space is divided into smaller units called working spaces
and segments.,

a. Working Spaces (WS)

The 2**43 virtual memory space is first divided into 512 working spaces.
Each WS is 2**34 bytes in size. The WS number to be used in generating
a particular virtual memory address is contained either in one of the
eight working space registers (WSRs) or in the descriptor register
being used.

b. Segments

A segment is part of a working space and may be as small as one byte
or as large as four working spaces (2*¥*36 bytes). Thus, unlike the
fixed size of a WS, a segment size is variable. Segments are described
by two 72-bit data items called descriptors.

When used in virtual address generation, the descriptor (more commonly
referred to as the segment descriptor) is contained in a register such
as the instruction segment register (ISR). For operands, the descriptor
may be contained in other registers. The area of virtual memory
constituting a segment is "framed" by the segment descriptor by defining
a base value relative to the WS and a bound value relative to the
base.

Virtual memory affects memory address development for both instructions and
operands in Privileged Master, Master and Slave modes of operation.

OPERAND ADDRESS PROCEDURE

The first phase of operand address development proceeds as follows: The
effective address (EA) of the operand is formed. The EA is defined as the
address that is formed after all register modification and indirection have been
completed and is either an 18-bit (word), 20-bit (byte), or 24-bit (bit) address,
depending upon the instruction.

5-47 DH03-01

After the EA has been formed, the processor hardware forms the virtual
memory address of the operand using the base, bound, and WS values from 1 of 9
segment descriptors. If bit 29 of the instruction for which the operand address
is being prepared is zero, then the operand resides in the instruction segment
and the base, bound, and WS from the instruction segment register (ISR) are used
to form the virtual address of the operand; if bit 29 of the instruction is one,
then descriptor register n (DRn) specified by bits 0, 1, and 2 of the address
field of the instruction is used. Note that specifying DRn constitutes specifying
ARn and vice versa.

When indirect EA development is involved, the following rules apply:

a. ~When DRn and ARn are involved (instruction bit 29 = 1), ARn is applied
only to the first address in a chain of indirect addresses. However,
the base, bound, and WS from DRn are applied to each memory reference
in the indirect chain.

b. When no DRn/ARn is specified (instruction bit 29 = 0), the base and
bound of the ISR are applied to each memory reference in an indirect

chain.
c. A word in an indirect chain cannot specify a DRn.
d. An XEC or XED instruction does not constitute an indirect chain; therefore,

the instruction executed may specify a different DRn than the XEC/XED

instruction, or no DRn. If the instruction executed by the XEC/XED
does not specify a DRn, the base, bound, and WS from the ISR are used
to form the virtual address of the operand.

INSTRUCTION ADDRESS PROCEDURE
Virtual addresses for instructions are always formed using the value in the

instruction counter (IC) and the base, bound, and WS the ISR.

Virtual Address Generation

The mechanics of generating the virtual memory address depend on whether
the involved segment descriptor is a standard descriptor or a super-descriptor.
For all memory accesses, a virtual address must be generated. Thus, the procedure
described below for generating the operand virtual address with a standard descriptor
also applies to virtual address generation for accessing the instruction, argument,
parameter, and linkage segments (the registers holding the descriptors that define
these segments may only contain standard descriptors).

The method of forming an operand virtual address with a standard descriptor
is shown in Figure 5-3. 1If instruction bit 29 = 0, the ISR is used; if bit

5-48 DH03-01

0 17 18 19 20 23 0 19
0-==—-- o[EA B | BIT [DRn BOUND or |
- | 1SR BOUND |
+ \
3334 35 BOUNDS CHECK
STR FAULT IF _
CARRY IS BASE FROM DRn B
GENERATED OR ISR
STR FAULT IF
OUT-OF-BOUNDS
T BITS 0 AND 1 | 01 33 34 35
MUST BE SAVED _
TO MAKE ‘ EA + BASE B RELATIVE VIRTUAL ADDRESS
THE WSN Access|]
CONTROL CHECK f
OR i+
!
0 67 8
r—wsn
0 8 9 40 41 42
B T———
EFFECTIVE | BYTE ADDRESS WITHIN] VIRTUAL ADDRESS
WSN WORKING SPACE
where: B - byte

WNS - working space number

Figure 5-3. Virtual Address Generation Using Standard Descriptor

The bound check is applied to the effective address at the byte level. The
bound check is shown for byte or bit instruction; the checks for single word or
multiword instructions require inclusion of the base in upper- and lower-bound
algorithms,

If a carry is generated when the EA is added to the base, an out-of-bound
situation exists, resulting in an STR or BND fault.

The effective WSN is formed by ORing the low-order two bits of the workin
space number with bits 0 and 1 of the sum of EA + BASE. !

The bit address from the EA becomes the bit address of the virtual address.

5-49 DH03-01

SUPER-DESCRIPTOR

*kkk DPS 8 *kkk

The method of forming an operand virtual address with a super-descriptor is
shown in Figure 5-4.

5-50 DHO3-01

0 1112 2 0 12 3
90

0 7 89 0 3 0 5
e —— 0 EA B[BIT lﬁan BOUND | 1-—-——m—m—m 1
+
3133
0 3|45
STR FAULT IF
CARRY IS 'TOCATION FROM DRN | B
GENERATED
3 33
0 3 45
TOCATION + EA B
T T 3
_ 01 T3] 0 T—] 5
STR FAULT IF 0 9 0 5T
CARRY IS BOUNDS CHECK
GENERAGED DRn BASE | O----————- 0
—
BITS 0 AND 1 3 33 OUT-OF-BOUNDS
MUST BE SAVED 012 3 45
TO MAKE THE *
WS ACCESS ‘ l EA + LOC + BASE | B] RELATIVE VIRTUAL ADDRESS
CONTROL CHECK
OR
0 678
4
2
BYTE ADDRESS
EFFECTIVE| WITHIN WORKING VIRTUAL ADDRESS
WSN SPACE
33 444
0 8 9 01 012
EFFECTIVE | PAGE NUMBER|WORD|B
WSN
WSN = WORKING SPACE NUMBER

B BYTE

Figure 5-4. Virtual Address Generation Using Super-Descriptor

5-51 DHO3-01

hkkk DPS B8 *%xk%

TheprocessordoesnotusetheSuper—descriptordirectlyforaddressgeneration.
Instead, each time a DRn is loaded with a super-descriptor, or each time the
LDEAn instruction is executed, the processor generates a standard descriptor
from the super descriptor and holds this generated descriptor in a temporary
working register. Then, any time a DRn containing a super descriptor is referenced
for address generation, the processor uses the standard descriptor previously
generated.

The above procedure is transparent to software, and improves processor
efficiency when super-descriptors are used. Any software operation (such as
copy to another DR or store in memory) with a super-descriptor contained in a
DRn is performed using the super-descriptor, not the generated standard descriptor.

The following steps describe how the processor generates a standard descriptor
from a super-descriptor:

1. Base for standard descriptor is formed as shown in Figure 5-5. If a
carry occurs, flag bit 27 of the formed descriptor is forced to zero
(empty). Thus, any attempt to generate an address using the formed
standard descriptor will result in a BND fault.

0 01 3
0 90 5
DRn BASE 0--—=mmmmmm e e o 0

LOCATION from DRn

BASE for Standard Descriptor

Figure 5-5., BASE For Standard Descriptor (DPS 88)

5-52 DH03-01

2. Bound for standard descriptor is formed as shown in Figure 5-6.

o If resulting bits 0-15 are zero, bits 16-35 become the 20-bit
bound field.

o If resulting bits 0-15 are not zero, the 20-bit bound field of
the standard descriptor is forced to all ones.

o If a borrow occurs in the above operation, flag bit 27 of the
formed descriptor is forced to zero (empty). Thus any attempt to
access the segment using the formed standard descriptor will result
in a BND fault,

0 01 3
0 90 5

DRn BOUND 1~ - = = = = == = - - - - — - - e .- Lo 1
0 3
0 5

LOCATION from DRn
0 11 3
0 6 7 5
20-Bit BOUND
Figure 5-6. BOUNDS For Standard Descriptor (DPS 88)

When a T = 6 descriptor is loaded into a DRn register, a "standardized"
descriptor is formed. If this standardized descriptor is to be marked "empty",
i.e., bit 27 = 0, the instruction loading the DRn will terminate with a BND
fault, This action is required since T = 2, 3, 6 descriptors are assumed to

have bit 27 = 1.

5-53 DHO3-01

Absolute Addressing Mode

Virtual memory provides an absolute addressing mode. When the processor
utilizes the absolute addressing mode, the virtual address is generated as previously
described., However, the virtual address is not mapped to a real address; it is
used as the real address but with a maximum size limitation of 2**26 (DPS 88:
2**28) bytes.

The processor utilizes the absolute addressing mode each time working space
number zero is referenced. For example, assume that the descriptor contained in
the instruction segment register (ISR) points to working space register 1, containing
zeros; that the instruction refers to DR2, that points to WSR 3; and that WSR 3
contains 20. Then, the instruction and operands with bit 29 OFF would be accessed
in the absolute addressing mode, and operands referenced with bit 29 ON and the
DR2 selected would be accessed in the virtual addressing mode from working space
20 (assuming bits 0-1 of the resulting virtual address = 00).

To utilize the absolute addressing mode, the processor must be in Privileged
Master mode. The master mode bit in the indicator register and the privileged
bit of the segment descriptor must be ON. If these two conditions are not met,
an attempted reference to working space zero in Master or Slave mode causes a
Command fault. The housekeeping bit is assumed ON when working space zero is
referenced.

5-54 DHO3-01

When the processor utilizes the absolute addressing mode, address preparation
proceeds as in normal virtual address development. After the resulting virtual

address has been generated and bound checks have been made, the processor performs
the checks indicated below.

kkkk DPS 8 *kkk

N
STIES
RS

EFFECTIVE EFFECTIVE WSN
WSN BYTE ADDRESS B

Used as the 26-bit absolute
byte address of real memory.

If EWSN bits 0-8 = 0,
then bits 9-16 must be zero.
If not zero, an STR fault occurs.

*kkk DPS 88 *k*k*

0 00 11 444
0 8 9 45 012
EFFECTIVE EFFECTIVE WSN
WSN BYTE ADDRESS B
9 6 26] 2

Used as the 28-bit absolute
byte address of real memory.

If EWSN bits 0-8 = 0, then
bits 9-14 must be zero. If not
zero, an STR fault shall occur.

Figure 5-7. Resulting Virtual Address Check

DH03-01

Paging Addressing Mode

Memory paging is an integral part of the address translation process for
mapping a virtual memory address to a real memory address. Each of the 512
working spaces is supported by a page table. The location of the page table
supporting a particular WSN is found by using the 9-bit WSN to index a 512-word
table that contains the supporting page table directory words. This 512-word
table is called the working space page table directory (WSPTD). This table is
located in real memory by a special register called the page directory base
register (PDBR).

PAGE TABLE DIRECTORY WORD FORMAT

The format of the page table directory word (PTDW) is given below.

*kkk DPS 8 *k*xx

0 1 1 1 2 2 2 2 2 3
0 7 8 9 0 1 2 7 8 5
ABSOLUTE LOCATION OF PAGE TABLE (MOD64) Q P T RESERVED PT BOUND
(MOD 64)
18 2 1 1] 6 8
Type of PT
Present

WS Access Control

*kk¥ DPS 88 *kk%

0 o 22 2 2 2 2 2 3
1 0 1 2 3 4 5 _6 5
R ABSOLUTE LOCATION OF PAGE TABLE (MOD64) Q P T R PT BOUND
(MOD 64)
1 20 2 1] 1 1 10
Figure 5-8. Working Space Page Table Directory Format

DPS 8 DPS 88

Bits Bitg Description

0-17 1-20 Absolute location of page table.

18,19 21,22 WS access control provides a hardware method to force the
isolation of working spaces. When one or more working
spaces is allocated to a process, software will record in
these bit positions of the associated PTDW, the two bits
that will be checked against the first two bits of EA+LOC+BASE.
This check can result in a fault.

20 23 0, the page table is not present.

1, the page table is present.

5-56 DH03-01

DPS 8 DPS 88

Bits Bits Description

21 24 = 0, the page table is dense.
= 1, the page table is fragmented,

22-27 0,25 Reserved to enable future increase in page table size.

28-35 26-35 Modulo 64 size of a dense page table. All zeros means
size is 64 words. Has no meaning for a fragmented page

table.
When the page table directory word (PTDW) is accessed and bit 20 = 0

(DPs 88: bit 23=0), a Missing Working Space fault is generated.

PAGE

TABLE WORD FORMAT

The format of the page table word is given in Figure 5-9,

*kkk DPS 8 *kkx

0 0o 1 1 2 2 2 3 3
3.4 7 8 7.8 9 0 5
RES ABSOLUTE ADDRESS OF PAGE RESERVED FOR|} RES CONTROL
(MOD 1024) SOFTWARE FIELD
4 14 10 2 6
kkkk DPS 88 *kkx
0 00 11 ' 2 2 2 3 3
0 12 7 8 7 8 9 0 5
RES ABSOLUTE ADDRESS OF PAGE RESERVED FOR| RES CONTROL
(MOD 1024) SOFTWARE FIELD
2 16 10 2 6
Figure 5-9. Page Table Word Format
Bits Description
0-3 Reserved for future increase in memory size.
0-1 (DPS 88)
4-17 Absolute address of page.
2-17 (DPS 88)
18-27 Reserved for software use and may not be altered by the
hardware.
28,29 Reserved for hardware use and may be changed by the hardware.

5-57 DHO3-01

Control Field:

30 - Processor page present/missing bit
= 0, page is not in memory (missing) Interpreted only
= 1, page is in memory (present) }’ by processor
Bit 31 is
31 - Write control vit interpreted by
= 0, page may not be written by processor processor and
= 1, page may be written by processor I0X (DPS 88),
but not by IOM.
32 - Housekeeping bit
= 0, nonhousekeeping page Interpreted only by processor
= 1, housekeeping page
33 - IOM (DPS 88 : IOX) page present/missing bit Not inter-
= 0, page is not in memory (missing) preted by
= 1, page is in memory (present) processor

34 - Page modified bit
0, page was not modified Interpreted only by processor
1, page was modified

35 - Page access bit
0, page was been accessed Interpreted only by processor
1, page was accessed

won

When the processor accesses the page table word (PTW), the hardware checks
bit 30. If bit 30 = 0, a Missing Page fault occurs and no other faults that
might be caused by the page table word are checked. Refer to the discussion of
"page Table Word Control Field Faults" later in this document.

Note that the processor and the IOM (DPS 88: I0X) have separate bits to
indicate a missing page. Thus, during I/0, a page may be present to the IOM
(DPS 88: IOX) but missing to the processor or vice-versa. When a page is
accessed, and the PTW is accessed in main memory by hardware, bit 35 of the PTW
is set to 1 by the hardware.

When a write occurs to a page, and the modified bit in the page table word
in the paging associative memory or paging buffer is 0, this bit is set to 1 and
bits 34 and 35 of the page table word in main memory are set to 1 by the
hardware.

Note that if a write occurs to a page, and the modified bit in the page
table word in the paging associative memory or paging buffer is 1, no changes
are made to the page bits. Software may have reset the page access bit, bit 35,
to zero. This bit remains zero under this condition.

Mapping The Virtual Address To A Real Address

If a prior memory reference to the same page has already mapped that page
to real memory, and if that mapping is still present in the associative memory
or paging buffer of the processor, then the mapping is accomplished by concatenating
the Word field of the virtual address to the modulo 1024 real address of the
page, to produce the real address for the memory reference. Otherwise the mapping
proceeds by locating and obtaining the Page Table Directory Word (PTDW).

5-58 DH03~01

If the PTDW indicates that the page table is not present (PTDW.P=0), then
the mapping is not completed, and a Missing Working Space fault is generated.
If the page table is present (PTDW.P=1) but PTDW.Q # bits 0-1 of the relative
virtual address, then the mapping is not completed, and a Security Fault, Class
2, is generated.

If PTDW.T=0, then the page table is a Dense Page Table.
If PTDW.T=1, then the page table is a Fragmented Page Table.

Regardless of which type of page table is used, the virtual address can be
interpreted as shown in Figure 5-10. More detailed interpretations of the virtual
address are also shown in Figures 5-12 and 5-16.

O
— -~
INPFN

o

00 O
o O
o W
— ()

EFFECTIVE WSN PAGE NUMBER WORD B

Figure 5-10. Virtual Address

5-59 DHO03-01

LOCATING THE PAGE TABLE DIRECTORY WORD

The Page Directory Base Register (PDBR) contains the 0 modulo 512 word
address of the Working Space Page Table Directory (WSPTD). Figure 5-11 shows
how the hardware uses the effective WSN from the virtual address as an offset
into the WSPTD to obtain the Page Table Directory Word (PTDW) for the particular
working space.

kkk%k DPS g kkkk

) 1
0 4
0 1 0 0
PDBR 0 4 0 8
WSPTD
5)
C(PDBR) EFFECTIVE
WSN
9-BIT 0] 3
EFFECTIVE PTQW 0 2
WSN
511 ABSOLUTE WORD ADDRESS
OF PTDW
*dkk DPS 88 E X % X3
0 1
0 6
0 1 0 0
PDBR 0 6 0 8
’ = WSPTD
C (PDBR) EFFECTIVE
WSN
9-BIT 0 I 2
EFFECTIVE ‘ gTDW 0 5
WSN
511 ABSOLUTE WORD ADDRESS
OF PTDW

Figure 5-11. Locating The PTDW

DENSE PAGE TABLE

The Dense Page Table that supports a particular working space must have the
entire table in real memory, one word (PTW) per page. The location and size of
the page table (PT) is defined by the Page Table Directory Word (PTDW). The
maximum size of a Dense PT is 16K (DPS 88: 64K) words.

When the PTDW specifies a Dense PT, the virtual address is interpreted as
shown in Figure 5-12.

5-60 DHO3-01

kkkdk DPG B dkkx

0 00 11 33 4 4 4
0 8 9 6 7 0 1 0 1 2
EFFECTIVE WSN MBZ PAGE NUMBER WORD B
%* %k ¥k DPS 88 % de g de
0 00 11 33 4 4 4
0 8 9 4 5 0 1 0 1 2
EFFECTIVE WSN MB2Z PAGE NUMBER WORD B
Figure 5-12. Virtual Address, Dense Page Table
FIELD INTERPRETATION
EFFECTIVE
WSN The working space to be accessed.
MBZ Myst be zero for a Dense PT. Thus, the upper 28 x 16K (DPS 88:

2° x 64K) pages of a working space are not addressable via a
Dense PT, If these bits are not zero an STR or BND fault shall
occur.

PAGE# This page number is used as the offset, or Index, into the PT
for this working space to locate the PTW. The page number is
relative to the PT base address, which comes from the PTDW.

WORD Locates the word within the 1024 word page that is being accessed.

B The byte position within the word.

Virtual to real mapping through a Dense PT is shown in Figure 5-13 for DPS
8, and is shown in Figure 5-14 for DPS 88.

The PTDW contains the base address (0 modulo 64) of the PT. The address of
the PTW is equal to the base address plus the 1l4-bit (DPS 88: 16-bit) page
number. The mapping of the virtual address to the real address is completed
when the PTW is obtained. The mapping is then saved by the hardware in the
associative memory or paging buffer. The PTW contains the real address (0 modulo
1024) of the page. The 10-bit Word field of the virtual address is concatenated
with the page real address to form the real word address.

5-61 DHO3-01

* %k k DPS 8 *xxk

PTDW | BASE OF, pT
BT
BT BASE OF, PAGE_
14-BIT PAGE
PAGE #
ADDRESSED
16K MAX WORD —® orD
1K
PTW ADDRESS
0 1 2
0 7 3
ABSOLUTE PT BASE ADDRESS FROM PTDW | 0 -—————- 0
0 0|1 + 3 2 3
0 9|7 0 8 5
0 ——mmmmmmmmmmmo ol 14-BIT PAGE ¢ FROM PT SIZE FROM
VIRTUAL ADDRESS PTDW (MOD 64) 1 =--m=mn 1
(CARRY IGNORED)
0 2
0 2+ _ 3
PTW ABSOLUTE WORD ADDRESS - - .
*
SIZE CHECK
WORD ADDRESS
0 1 3 4
4 7 1 0
ABSOLUTE PAGE WORD BART OF
ADDRESS FROM PTW VIRTUAL ADDRESS STR FAULT IF
OUT-OF-BOUNDS
0 2
0 3

ABSOLUTE WORD ADDRESS

Figure 5-13.

5-62

Dense Page Table Mapping DPS 8

DHO3-01

* ok kk DPS 88 ***x

PTDW |_BASE_OF, PT
BT
BTW BASE_OF, PAGE
16-BIT BAGE [7
PAGE #
ADDRESSED
64K MAX WORD — yorp
K
PTW ADDRESS
0 2 2
1 0 6
ABSOLUTE PT BASE ADDRESS FROM PTDW | 0 =---=-- 0
0 0f1 3, 2 3
0 9!5 o, 6 5
A 0] 16-BIT PAGE # FROM PT SIZE FROM
VIRTUAL ADDRESS PTDW (MOD 64) |1 =------ 1
(CARRY IGNORED)
0 2
0 5 \
PTW ADDRESS Tl
\ !
SIZE CHECK
WORD ADDRESS
0 103 4
2 71 0

I PAGE ADDRESS FROM PTW]

WORD PART OF
VIRTUAL ADDRESS

4

o O

|
-

BOUND FAULT IF

OUT-OF-BOUNDS

REAL WORD ADDRESS

Figure 5-14. Dense Page Table Mapping DPS 88

5-63 DH03-~01

FRAGMENTED PAGE TABLE

The Fragmented PT provides a special way for accessing pages in a large
working space without requiring a large, contiguous page table to be present in
real memory. The algorithm is similar to a directory set associative cache
memory addressing scheme. The maximum size of a Fragmented PT is 384 words.
The first 128 words are a directory containing page keys that correspond to up
to 256 PTWs in the last 256 words of the PT. See Figure 5-15. This allows for
mapping of up to 256K words of memory with one setting of the PT. These 256
pages can be noncontiguous virtual pages, and are a subset of the total working
space. The only difference in virtual to real memory mapping when a Fragmented
PT is used is the method of locating the PTW. As was the case with the Dense
PT, the base address of the Fragmented PT is contained in the PTDW, obtained
from the WSPTD.

PTDW FRAGMENTED PT ¢ BASE OF PT

2 * (PAGE # ENTRY)

PAGE KEY 0 PAGE KEY 1 4 KEYS FOR EACH
OF THE 64 ENTRIES
IN THE DIRECTORY

PAGE KEY 2 PAGE KEY 3

128 PTW ORIGIN
¢

4 * (PAGE # ENTRY)
+ KEY MATCH NUMBER

PTW) PAGE TABLE
WORD

383

Figure 5-15. Fragmented Page Table

When the PTDW specifies a Fragmented PT, the virtual address is interpreted
as shown in Figure 5-16.

5-64 DHO3-01

22
4 5

o o
o ©
o w
= W
O
SN
N >

PAGE NUMBER
EFFECTIVE WSN WORD B
PAGE KEY PAGE # ENTRY

Figure 5-16. Virtual Address, Fragmented Page Table

The directory in the first 128 words of the Fragmented PT consists of 64
word pairs (directory entries), each containing four (i = 0, 1, 2, 3) 1l6-bit
page keys with an associated bit (K) to indicate if the corresponding key is
valid. See Figure 5-17.

00 111 3
1 1.8 9 5
K PAGE KEY 0 K PAGE KEY 1
K PAGE KEY 2 K PAGE KEY 3

BITS 0,18 NOT INTERPRETED BY HARDWARE

K
K

0, PAGE KEY NOT VALID
1, PAGE KEY VALID

Figure 5-17. Fragmented Page Table, Directory Entry

The address of a particular directory entry is determined by multiplying
the 6-bit page number entry from virtual address bits 25-30 by 2, and adding
this quantity to the modulo 64 base address for the page table, obtained from
the PTDW. See Figures 5-18 and 5-19. The 16-bit page key field from virtual
address bits 9-24 is compared with each of the valid page key fields in the
selected directory entry. If the page key from the virtual address matches none
of the valid page keys in the selected directory entry (or if there are not
valid page keys), then the operation terminates with a Missing Page fault. 1If
the page key from the virtual address matches more than one valid page key in
the selected directory entry, then the operation ends with a Missing Page fault
(DPS 88, DPS 8/20 and 8/44: the first matching page key 1is used). After a
match is found, the address of the PTW, in the last 256 words of the PT, is
equal to the modulo 64 base address for the PT, obtained from the PTDW, plus
128, plus 4 times the 6-bit page number entry from virtual address bits 25-30,
plus i, where i identifies the matching page key (i = 0, 1, 2, 3). See Figures
5-18 and 5-19.

The mapping of the virtual address to the real address is completed when
the PTW is obtained. The mapping is then saved by the hardware in the associative
memory or paging buffer.

No hardware size check is performed when accessing the fragmented page
table. It is the responsibility of systems software to ensure that fragmented
page tables are always allocated in a contiguous block of 384 words.

5-65 DH03-01

ADDRESS OF DIRECTORY ENTRY

0 11 2
Q e 1 3
PT BASE .(FROM PTDW) 0 ——==--- 0 | MOD 64 ADDRESS
2 + 3
5 0
Q —-——-mmmmmmmmomm——oooo—seooos 0| PAGE # 0 2 * (PAGE # ENTRY)
ENTRY FROM VIRTUAL ADDRESS
0 (CARRY IGNORED) 2
Q 3
24-BIT REAL ADDRESS OF DIRECTORY ENTRY
ADDRESS OF PTW
0 1 2
Q i
PT BASE (FROM PTDW) 0 —--=-=- 0 | MOD 64 ADDRESS
2+ 3
5 0
0000000000CO0O0O0O0OO|L] PAGE ¥ | 00 128 + 4 * (PAGE # ENTRY) +i
ENTRY i=0,1,2,3
0 (CARRY IGNORED) 2
0 3
24-BIT REAL ADDRESS OF DIRECTORY ENTRY

Figure 5-18. Fragmented Page Table Addressing (DPS 8)

5-66 DHO03-01

ADDRESS OF DIRECTORY ENTRY

0 12 2
1 9 0 6
PT BASE (FROM PTDW) 0 ————-—- 0
2 + 3
5 0
0000000GO0O0O0O0O0OO0OO0GO OGO O| PAGE # 0
ENTRY
0 (CARRY IGNORED) 2
Q 5
26-BIT REAL ADDRESS OF DIRECTORY ENTRY
ADDRESS OF PTW
0 2 2
1) 6
PT BASE (FROM PTDW) Q0 —=———== 0
2 + 3
5 0
0000000000000 O0OO|1] PAGE $# | 0 0
ENTRY
G (CARRY IGNORED) l 2
) 5

26-BIT REAL ADDRESS OF DIRECTORY ENTRY

MOD 64 ADDRESS

2 * (PAGE # ENTRY)
FROM VIRTUAL ADDRESS

MOD 64 ADDRESS

128 + 4 *

(PAGE # ENTRY) +i
i=0,1,2,3

Figure 5-19. Fragmented Page Table Addressing (DPS 88)

DHO3-01

ASSOCIATIVE MEMORY

*kkk DPS § kkkk

After a virtual address has been mapped to a real address as described in
the previous paragraphs, this information is stored in the associative memory
(AM) so that a subsequent reference to this page can be mapped in one step. The
data stored in the associative memory is shown below.

0 0o 22 4 4 4 4 4
0 8 9 6 7 0.1 2 3 4
EFFECTIVE 18 MOST SIGNIFICANT BITS ABSOLUTE PAGE W H I M

WS OF VIRTUAL PAGE NO. ADDRESS
9 18 14
AN —~— v
PAGE CONTROL
BITS '
Figure 5-20. Associative Memory Word
Bits Description
0-26 The first 27 bits of the virtual address. (Note: bits 27-30
of the virtual address are used as the entry to the associative
memory.)
27-40 The absolute page address from the page table word.
41-44 Page control bits:

W - write

H - housekeeping

I - IOM page present/missing
M - modified

When an operand virtual address is mapped from an associative
memory entry and the operation modifies the page, the hardware
checks the modified (M) control bit., If the M bit in the AM
entry is OFF, the processor turns the M bit of the AM entry
ON, refetches the page table word for this AM entry from
main memory, and turns the M control bit in the page table
word ON. The access bit in the page table word is also set
ON at this time, since it may have been turned OFF by the
software. If the M bit of the AM entry is ON at the beginning
of the mapping, no change is required.

The associative memory is arranged in 16 rows by four columns (DPS 8/20 and
8/44: 64 by two columns). Each intersection of a row and a column contains a
45-bit entry as shown above. 1In the first phase of virtual to real memory
mapping, bits 37-40 of the virtual address are used to select one of 16 (DPS
8/20 and 8/44: 64) rows. Then, bits 0-26 of the effective virtual address are
compared against bits 0-26 of each of the four (DPS 8/20 and 8/44: two) row
entries. If a match is found, the accompanying 14-bit absolute page address
(modulo 1024) is obtained. TIf two or more matches are found, an STR fault is
generated and the associative memory is disabled. The 10-bit word part of the
virtual address is appended to form the absolute memory word address. Note that
the two-bit comparison with bits 18 and 19 of the page table directory word is
not made for PTWs mapped in the associative memory.

5-68 DH03-01

When a new address not contained in the associative memory has been mapped
and the associative memory is full, the new entry replaces the oldest entry in
the row (round-robin algorithm).

The associative memory may be disabled (any further comparisons or matches
are ignored) by:

a. Setting the "PTW-AM Control"” switch on the VU Maintenance Display and
Control panel toc the COFF position.

b. Executing a CAMP instruction with effective address bits 16-17 = 01.

c. 'Encountering an address compare of two or more columns in one of the

16 rows.

The associative memory is enabled and cleared when the "PTW-AM Control"
switch is in the ON position and a CAMP instruction with effective address bits
16-17 = 10 is executed.

The associative memory is cleared whenever:

a. The processor is manually initialized.

b. It is enabled, and the CAMP instruction is executed with effective
address - bits 16-17 equal to 00, 10, or 11. If EA bits 16-17 = 01, the
associative memory is disabled but not cleared.

c. It is disabled, and the CAMP instruction is executed with effective
address bits 16-17 = 10.

d. It is enabled, and the LPDBR instruction is executed.

*kkk

Address Truncation

The instruction set contains instructions that operate on words, double-words,
9-bit bytes, 6-bit characters, 4-bit characters, and bits. Instructions and
indirect and tally words that specify 6- or 9-bit characters are considered word
instructions. 1In accessing the operand,.the full byte level virtual address is
determined. The address is then truncated in accordance with the address type
of the instruction, and the access is also in accordance with the type of instruction,

An exception to this procedure applies to the 8-word instructions, such as
LREG and SREG. The effective address is truncated to a modulo 8 word address
prior to adding the base. Following the addition of the base, the virtual
address is then truncated to a double-word address.

Correctness of operation of an instruction as influenced by such address
truncation is the responsibility of the user.

5-69 DHO3-01

Bounds Checking

One of the capabilities provided by virtual memory is that of specifying
the base and bound of a segment to the 9-bit byte level, enabling a higher level
of security control and more efficient use of main memory. Since the processor
interfaces with word-oriented main memories, certain restrictions are also imposed
to minimize the impact on performance and hardware complexity. The size of a
segment described by a super-descriptor is modulo 2**26 bytes; therefore, the
bounds checking is always the same: BOUND (extended with 26 one bits) > LOCATION
+ EFFECTIVE ADDRESS. Thefollowinginformationappliesonlytostandatddegbriptors.

WORD AND DOUBLE-WORD OPERATIONS

Word, double-word, or a succession of word accesses as in the LREG and SREG
instructions are made to real memory word or double-word boundaries. Segments
that begin or end on byte or word positions and that do not correspond to word
or double-word boundaries may be accessed by word or double-word instructions.
The processor adds the 2-bit byte position held in an address register (if
selected) to the byte position of the base before truncating the final virtual
address to point to a word or double-word. If this truncation results in the
virtual address dropping below the base value, a lower bound check will declare
an out-of-bounds condition in this case and an STR (DPS 88: BND) fault occurs.
Thus, the first word or double-word of a segment may be accessed with word-oriented
instructions only when the word or double-word is entirely within the segment.

Half-word accesses such as the LXLn instruction are treated as word accesses
in both the lower and upper bounds check. If a segment begins in the middle of
a word, the LXLn and SXLn instructions cannot be used to access the lower half-word.
If the segment ends in the middle of a word, the LDXn, STXn, LXLn, ADXn, etc.,
instructions cannot be used to access the upper half-word. -

The STCA, STCQ, STBA, and STBQ instructions store 6-bit or 9-bit characters
into character/byte locations within a word. These are considered as word accesses
and require the entire word to be within the segment.

Indirect and tally words that specify character/byte locations are considered
as addressing words that must be fully contained in the segment. The virtual
address is truncated to the next lowest word boundary; that is, the character
position in the base is not added to the character position held in the indirect
and tally word.

NOTE: The preceding information is included to provide a warning for operating
system and user software. If segments are "shrunk" (see the LDDn
and CLIMB instructions), and the byte portion of the virtual base is
changed, a word or double-word access to the new segment may be
truncated to a different location within the segment.

All instruction segments must begin at a 0 modulo 8 location and end at a 7
modulo 8 location. Any transfer or CLIMB instruction that attempts to load the
instruction segment register must specify a segment base whose 5 least significant
bits are 0s, and a segment bound whose five least significant bits are 1s. This
condition allows the processor to access blocks of eight words for LPL, SPL,
LREG, SREG, LAREG, and SAREG instructions with the assurance that if the first
word is on an assigned page and is within the segment boundary, the other words
will also be so located.

5-70 DH(3-01

All descriptors loaded into the SSR, PSR, LSR, ASR, or DSDR registers must
begin and end on double-word boundaries (the three least significant bits of the
base are 0s and the three least significant bits of the bound are 1s).

k**x% DpPS 88: SSR, DSR

base = 0 mod 32 bytes
bound = 31 mod 32 bytes ***%

BYTE OPERATIONS

For all 9-bit and 4-bit character operations using multiword instructions,
the upper bound check is made at the 9-bit byte level. A lower bound check is
not required since the effective address is always greater than or equal to
zero,

For all 6-bit character operations using multiword instructions (except for
DPS 8/20 8/44 instructions), the boundary checking is on a double-word basis,
meaning that a double-word containing any 6-bit character of the operand must be
fully in bounds. If attempted access is made to a segment with a base or bound
not on a double-word boundary, an STR (DPS 88: BND) fault is generated.

BIT STRINGS AND INDEX TABLE OF TRANSLATE INSTRUCTION

Multiword bit string instructions and the index table of the Translate
instructions (MVT, TCT, and TCTR) have double-word bound checking applied. Thus,
a double-word that includes any part of these operands must be fully in bounds.
If access is attempted to a segment that has a base or bound not on a double-word
boundary, an STR (DPS 88: BND) fault is generated.

5-71 DH03-01

BOUND CHECK EQUATIONS

The address truncation procedure described previously forces bounds checking
to vary depending upon the type of instruction specified. The resulting three
upper bound and lower bound checks are listed in Table 5-3. An STR (DPS 88:
BND) fault is genérated if the bound checks are violated.

Table 5-3. Bound Check Equations

Instruction Bound Check

Double-Word

(includes bit Upper (BASE + EA)4_3,||111 < BASE + BOUND

string and 6-

bit character Lower (BASE + EA)4_3,]|000 > BASE

instructions)

Single-Word Upper (BASE + EA)j_33 ||11 < BASE + BOUND
Lower (BASE + EA)g_33 ||00 > BASE

Byte Upper EA 3.9 < BOUND

(includes

9-bit byte,

4-bit byte) Lower Always satisfied

The base, bound, and effective address (EA) addresses represented in the
bound check equations are for 9-bit bytes, For 4-bit byte and bit instructions,
the effective address represents the 9-bit byte in which these small quantities
are contained. The single- and double-word bound check equations include the
effect of address truncation; the truncated address is then extended to the
largest byte contained therein for the upper bound check and to the lowest byte
for the lower bound check. The byte checks refer to the byte accessed; in
multibyte instructions such as MLR, the access checks are applied to each byte.

Physical accesses, which may be larger than those corresponding to a given
instruction (and which therefore may include bytes not contained in the segment),
are not bound checked beyond the byte range corresponding to the instruction.

Bound checking is also performed on page table sizes for dense page tables.
The page number from the virtual address is bounded by:

***x* DPS 8: page number

17-30 < WSPTD PT Bound ,g_35 |[111111
and page number

n

7719 must be zero ***x
<

**** DPS 88: Page number jz_s3q WSPTD PT BOUND 26535 fl111111
and page numéer 9-14 Wust be zero EEX*

5-72 DHO03-01

In the absolute addressing mode, the virtual address is checked for the 26-bit
(DPS 88: 28-bit) range of byte address.

**** DPS 8: Virtual address 9—1g Must be zero ****

kxx* DPS 88: Virtual address g-14 Must be zero ****

ADDRESS WRAPAROUND

The execution of a multiword instruction that develops addresses at both
the upper and lower boundaries of a maximum size segment is not permitted. This
restriction is required due to the address wraparound development of the effective
address (EA). For each 9-bit byte (each effective address byte), checks are
made as follows:

a. For left-to-right instructions: following the calculation of the first
effective address, bits 0-19 of all subsequent effective addresses are
greater than those of the first effective address.

b. For right-to-left instructions: following the calculation of the first
effective address, bits 0-19 of all subsequent effective addresses are
less than those of the first effective address.

If these checks are violated, an STR (DPS 88: BND) fault is generated.

Multiprocessor Memory Management

The virtual memory option permits base and bound segments to be located on
a byte boundary, both as a virtual address and a real address. Normal software
multiprocessor protection does not exist across a segment boundary. Therefore,
data may be lost when:

o two processors simultaneously refer to and change the same double word
in memory,

o the double word contains a segment boundary, and

o one or both processors are executing a multiword instruction, unless

the segment bouldary is modulo two words.

This condition may occur since the processor always reads a double-word
from memory, changes the character(s) involved in the operation, and writes the
double-word back to memory. Thus, between the reading of the double-word for a
multiword instruction on one processor and the subsequent double-word store, a
second processor could change that part of the double-word not affected by the
multiword instruction, and the changed data would be destroyed when the double-~word
is stored.

5-73 DH03-01

SECTION VI

MACHINE INSTRUCTIONS

BASIC FEATURES

Many of the instructions available in the instruction repertoire are familiar
to experienced users of large-scale computers. However, additional instructions
have been provided to supply extended capability for character handling, decision
making, and advanced programming techniques involving list processing. Inaddition,
numerous instructions are provided that have capabilities for processing bytes,
BCD characters, packed decimal data, and bit strings.

SINGLE-WORD INSTRUCTIONS

Single-word instructions provide for multiple variations by permitting the
user to specify not only the type of address modification desired, but also the
source and/or destination registers associated with particular operation codes.
For example, the operation field for a Transfer and Set Index Register n (TSXn)
instruction specifies the index in the operation field, leaving full address
modification capability free for destination calculation.

The processor performs efficient operations on 6-, 9-, 18-, 36-, and 72-bit
operands.

The following operations are performed by single-word instructions:

Boolean Operations

Comparison Operations

Data Movement Instructions

Data Shifting Instructions

Effective Address to Register Instructions
Fixed-Point Arithmetic Instructions
Floating-Point Arithmetic Instructions
Special Processor Instructions

0O00000O0O0

Boolean Operations

The logical operations AND, OR, and EXCLUSIVE OR are permitted between
storage and the index registers, A- and Q-registers, and the AQ-register.

6-1 DH03-01

Comparison Operations

Comparison operations do not alter the contents of storage or the specified
register, but merely set or clear the appropriate indicators as the result dictates.
The compare instructions enable the user to make many types of program decisions.

Fixed-point compare instructions permit comparison of absolute values,
(algebraic or characters); provide for tests of word fields; permit searches for
identical, selectable word fields; and permit searches for a value within selectable
limits.

Floéting—point compare instructions are included for single- and
double-precision operations on absolute values and algebraic values. All compare
instructions are repeatable using the RPT, RPD, or RPL instructions.

Data Movement Instructions

Character handling and manipulation are facilitated by the "indirect and
tally” (IT) address modification option, and by instructions for directly storing
selected characters of the accumulator or quotient register. 1Instructions are
also included for directly loading the index registers from either memory or the
A- and Q-registers, directly storing any register into memory, and loading registers
with the twos complement (negative) of the contents of the memory location specified.

Data Shifting Instructions

Shifting is accomplished using a "gear-shifting" algorithm, so that long
shifts are executed essentially as fast as short shifts. The A- and Q-registers
can be shifted individually or as one unit. The shift commands include right-
or left-shift arithmetic, right-shift logical, and left-shift rotate (right-shift
rotate is omitted because the high speed of the left-shift rotate makes the
right-shift rotate unnecessary).

Effective Address To Register Instructions

The Effective Address to Register instructions permit the effective address
of such an instruction to be placed in any of the index registers, in the
A-register, or in the Q-register. Thus, any effective address referenced frequently
in a program can be stored in a register and used without lost processing time
in repeatedly redeveloping the effective address. Furthermore, the instructions
provide the user with the capability of transferring data among any of the index
registers and to the A-register and the QO-register.

6-2 DH03-01

Fixed-Point Arithmetic Instructions

Instructions for both fractional and integral multiplication and division
afford the programmer freedom from scaling the results of such operations.
Fractional multiplications are performed with the multiplicand in the A-register;
the result appears in bit positions 0 through 70 of the AQ-register, automatically
scaled with the binary point to the right of position 0. 1Integral multiplications
are performed with the multiplicand in the Q-register; the result appears in bit
positions 1 through 71 of the AQ-register, automatically scaled with the binary
point to the right of position 71.

Fractional divisions use the full range of the AQ-register for the dividend;
the quotient appears in the A-register with the remainder in the Q-register.
The binary point is automatically scaled to the right of position 0. Integral
divisions have the dividend in the Q-register, with the binary point to the
right of position 35. After division, the quotient is in the Q-register with
the binary point automatically placed to the right of position 35; the remainder
is in the A-register.

Normally, integral operations of divide and multiply occur in the Q-register,
and fractional operations of divide and multiply occur in the A-register. This
convention permits easy programming of fixed-point arithmetic operations.

Instructions are provided for combining the contents of memory locations
directly with the contents of registers and storing the results in the same
locations, without recourse to separate store instructions. 1In all such cases,
the programmer can use the 18-bit indexing registers, X0 through X7, and the
36-bit A~ and Q-registers. In effect, the Add and Subtract to Storage instructions
make arithmetic accumulators of all available memory locations. In all such
cases, the register contents are undisturbed.

Floating-Point Arithmetic Instructions

Floating-point operations can be performed on both single- and double-precision
data words; complete sets of data movement, arithmetic, and control instructions
are provided for use in both types of operations. Unless otherwise specified by
the programmer, the mantissas of all floating-point operation results, except
divides, are automatically normalized by the hardware. In additions and
subtractions, the operands are automatically aligned.

Operations on floating-point numbers are performed using an extended register
composed of a 72-bit AQ-register, which holds the mantissa, and a separate 8-bit
exponent register; operations on the exponent and mantissa are performed by two
separate adders. The existence of separate exponent and mantissa registers and
adders enables the programmer to efficiently intermix single- and double-precision
instructions.

The floating-point instruction repertoire includes two special divide
instructions: Floating Divide Inverted (FDI) and Double-Precision Floating Divide
Inverted (DFDI). These instructions cause the contents of the memory location
to be divided by the contents of the AQ-registers - the reciprocal of other
divide instructions in the repertoire. Thus, regardless of whether the contents
of the AQ-register must be a dividend or a divisor, the programmer can always
perform a division without recourse to wasteful data movement operations.

6-3 DHO03-01

Floating Negate, Normalize, Add to Exponent, and Single- and Double-Precision
Compare instructions further facilitate effective programming.

Special Processor .Instructions

Slave mode instructions available to provide the operating system with program
gating for multiprocessor configurations include: LDAC, LDQC, and SZNC. They
provide for clearing the referenced memory cell to zero after the contents are
transferred to the processor. The DPS 88 instructions STAC and STACQ provide
for conditional storing in the referenced memory cell, depending on the current
contents of the memory cell.

The slave mode instructions providing rounded floating-point results include:
DFSTR, FRD, DFRD, and FSTR.

Four master mode instructions provide system information and control for
DPS 8: LCPR, SCPR, RSCR, and SSCR.

MULTIWORD INSTRUCTIONS

Multiword instructions fall into four general categories:

1. Alphanumeric instructions
2. Numeric instructions
3. Bit string instructions

4. Conversion instructions

Alphanumeric Instructions

Alphanumeric instructions permit moving, transliteration, editing, and
comparing of alphanumeric data. The operands for these instructions (with the
exception of comparisons) can be any combination of alphanumeric types (9-bit,
6-bit, or 4-bit) and are translated as part of the instruction execution to
permit the different types of character strings to be manipulated in the same
instruction.

Numeric Instructions

Numeric instructions include decimal arithmetic functions in addition to
moving, comparing, and editing of numeric data. Decimal add, subtract, multiply,
and divide operations are permitted. The numeric instructions can be two- or
three-operand instructions. The operands themselves can be either 9-bit or 4-bit
packed decimal. The numbers employed as data can be floating-point with leading
sign, scaled fixed-point with trailing sign, leading sign, or no sign. As with
alphanumeric instructions, numeric instructions achieve these various
characteristics within a single multiword instruction (in conjunction with
associated operand descriptors).

6-4 DHO3-01

Bit String Instructions

Bit string instructions allow a comparison to be made between two bit strings
on a bit-by-bit basis and provide a capability for performing Boolean operations
to combine strings and set indicators.

Conversion Instructions

Conversion instructions provide for decimal/binary and binary/decimal
conversion.

Multiword Instruction Capabilities

The capabilities of the multiword instructions are given below.

1.

Decimal Arithmetic Capability

Data types as packed decimal and direct ASCII (may be intermixed).

Decimal arithmetic operands of 1 to 63 digits in length (including
sign).

Numeric data as fixed-point and/or floating-point (intermixed fixed-
and floating-point data is allowed).

A full set of decimal arithmetic instructions (each is a multiword
instruction with either two or three descriptor words) including
add, subtract, multiply, and divide.

All numeric instructions with a hardware rounding option.

Manipulation Capability

Four native data modes - ASCII, BCD, packed decimal (numeric only),
and bit string. (DPS 88: A fifth data mode - EBCDIC)

Movement Capability

Alphanumeric movement from left or right with character-fill.
Numeric move with fill and/or rounding and scale change.

Bit string manipulation using any of 16 different Boolean operations.
Radix conversion and transliteration instructions.

Comparison Capability

Alphanumeric comparison with fill.

Numeric comparisons between fields of the same or different format
and character type.

Bit string comparisons with fill.

String scan for a match of one or two characters.

6-5 DHO3-01

5. Second-Level Indexing Capability

a. Eight address registers providing for second-level indexing for
all instructions {including single-word instructions).

Edited Move Micro-Operations

Both alphanumeric and numeric edited move instructions (MVE and MVNE; DPS
88: MVNEX) utilize micro-operations (MOPS) to perform editing functions. The
sequence of micro-steps to be executed is contained in memory and is referenced
by the second operand descriptor of the edited move instructions.

Micro-operations provide alphanumeric and numeric edited move instructions
with the capability to edit character and numeric strings on a character-by-character
or digit-by-digit basis, or in concatenated series of characters and digits.

Micro-operations are not altered by their execution; therefore, a sequence
of micro-operations can be set to describe a data field and then can be used
repeatedly by the edit instructions. A single instruction can perform a complicated
edit function with great speed.

The special edit characters are contained in a hardware edit table and
table entries are modified using micro-operations designed for this purpose.
Refer to "Micro-Operations For Edit Instructions MVE, MVNE, And (DPS 88: MVUNEX)"
later in this section for detailed information.

Instruction Repertoire

The processor interprets a 10-bit field of the instruction word as the
operation code. This field size yields 1024 possible instructions of which over
half are implemented.

Functional Classifications

Detailed below are the processor instructions and operation codes sorted
alphabetically on the mnemonic by function. Under each category, the mnemonic,
the operation code, and a brief description are given.

6-6 DH03-01

ADDRESS REGISTER OPERATIONS ADDRESS REGISTER OPERATIONS

ADDRESS REGISTER INSTRUCTIONS

This set of instructions provides the capability for using address registers
to manipulate the address portion of numeric and alphanumeric descriptors. If
an address register is to be used in address preparation, its usage is specified
in the instructionword., All single-word instructions to which address modification
is applicable have the same machine instruction word format:

000 11 22 23 33 3
0 23 1.8 2.8 90 1.2 5
LOCSYM Tm Td
OP CODE I]AR _
AR$ DISPLACEMENT (y) TAG
AR# — One of eight address registers (0-7).
LOCSYM - Represents either address of operand or displacement from a

base.

DISPLACEMENT (y) - A 15-bit displacement from the address register address (twos
complement: values from -16,384 to +16,383).

OP CODE - A 10-bit operation code field.
1 — Program interrupt inhibit bit.
AR - If bit 29 is 1, an address register is to be used and is

specified by bits 0, 1, and 2 of the y field. If bit 29 is
0, no address register is used.

TAG - Tag field controls all other address modification. If an
address register 1is used on an instruction with indirect
addressing, it is applied only on the fetch of the indirect
word.

Tm - tag modifier
Td - tag designator

Address Register Load

AARN 56n (1) Alphanumeric Descriptor To Address Register n
LARN 76n (1) Load Address Register n

LAREG 463 {1) Load Address Registers

NARn 66n (1) Numeric Descriptor to Address Register n

6-7 DHO3-01

ADDRESS REGISTER OPERATIONS ADDRESS REGISTER OPERATIONS

Address Register Store

ARAnN 54n (1) Address Register n to Alphanumeric Descriptor
ARnN 64n (1) Address Register n to Numeric Descriptor
SARN 74n (1) Store Address Register n

SAREG 443 (1) Store Address Registers

Address Register Special Arithmetic

This set of instructions provides the capability for replacing, adding to,
or subtracting from the contents of an address register on either a word, character,
or bit address basis. The operation is register-to-register, with no memory
fetch involved.

The special arithmetic instructions have the same instruction format:

0 0 0 0 11 2 2 2 3 33 3
0 2 3 4 7.8 7 8 9 0 12 5
AR$# s ¥ OP CODE I | AR} MBZ DR
Figure 6-1. Address Register Special Arithmetic

AR# - Selects address register to be altered.

s - Sign bit.

y - Used as a word displacement (no character or bit position included)
along with the contents specified in the DR field to alter the contents
of the specified address register. Bit 3 provides negative (twos
complement) or positive word displacement,

OP CODE - 10-bit operation code field.

I - Program interrupt inhibit bit.

AR - Address register bit.

I£ bit 29 = 1, the sum of the DR (in characters, words, or bits) and
the y field (in words) are added to or subtracted from the contents of
the AR specified in bits 0-2.

If bit 29 = 0, the above described sum or its twos complement is

loaded into the AR for addition or subtraction, respectively.

If the mnemonic is coded with X (for example, AWDX), bit 29 is forced
to zero.

6-8 DH(Q3-01

ADDRESS REGISTER OPERATIONS ADDRESS REGISTER OPERATIONS

MB2Z - Bits 30-31 must be zero.
The opefand length is contained in the register specified by DR.
DR - Displacement register.

Specifies which register contains the displacement value. The register
codes and register lengths are the same as those used in MF fields
except that IC modification is illegal. See Table 5-2.

The operations for adding a value to the contents of an address register
proceed identically as with effective operand address preparation from an operand
descriptor, with the final results being stored in the specified address register.
The subtract operation differs only in that the contents of the register specified
by the code in the DR field are first added to the y field. This result is then
subtracted from the actual contents of the address register or from the implied
zero contents and the result is placed in the address register. The codes for
DU, DL, and IC are illegal for the DR field and cause an IPR fault.

Indicators are unaffected by these instructions.

A4BD 502 (1) Add 4-Bit Displacement to Address Register

A6BD 501 (1) Add 6-Bit Displacement to Address Register

A9BD 500 (1) Add 9-Bit Displacement to Address Register

ABD 503 (1) Add Bit Displacement to Address Register

AWD 507 (1) Add Word Displacement to Address Register

S4BD 522 (1) Subtract 4-Bit Displacement from Address Register
S6BD 521 (1) Subtract 6-Bit Displacement from Address Register
S9BD 520 (1) Subtract 9-Bit Displacement from Address Register
SBD 523 (1) Subtract Bit Displacement from Address Register
SWD 527 (1) Subtract Word Displacement from Address Register

6-9 DHO03-01

BOOLEAN OPERATIONS BOOLEAN OPERATIONS

BOOLEAN OPERATION INSTRUCTIONS

The logical operations AND, OR, an