(ﬁ HEWLETT
PACKARD

HP 1000 A600/A600+ Computer

Reference Manual

izl

HealDPIEE

HP 1000 A600/A600+ Computer

Reference Manual

FEDERAL COMMUNICATIONS COMMISSION
RADIO FREQUENCY INTERFERENCE
STATEMENT

The Federal Communications Commission (in Subpart J, of Part 15,
Docket 20780) has specified that the following notice be brought to the
attention of the users of this product.

Warning: This equipment generates, uses, and can radiate radio frequency energy and
if not installed and used in accordance with the instruction manual, may cause in-
terference to radio communications. It has been tested and found to comply with the
limits for Class A computing devices pursuant to Subpart J of Part 15 of FCC Rules,
which are designed to provide reasonable protection against such interference. Opera-
tion of this equipment in a residential area is likely to cause interference in which case
the user at his own expense will be required to take whatever measures may be
required to correct the interference.

(ﬁp HEWLETT

PACKARD

HEWLETT-PACKARD COMPANY
Data Systems Division MANUAL PART NO. 02156-80001
11000 Wolfe Road Printed in U.S.A. April 1985

Cupertino, California 95014 E0485

PRINTING HISTORY

The Printing History below identifies the Edition of this Manual and any Updates that are included. Periodically, Update
packages are distributed which contain replacement pages to be merged into the manual, including an updated copy of this
Printing History page. Also, the update may contain write-in instructions.

Each reprinting of this manual will incorporate all past Updates, however, no new information will be added. Thus, the
reprinted copy will be identical in content to prior printings of the same edition with its user-inserted update information.
New editions of this manual will contain new information, as well as all Updates.

To determine what software manual edition and update is compatible with your current software revision code, refer to the
appropriate Software Numbering Catalog, Software Product Catalog, or Diagnostic Configurator Manual.

First Edition Mar 1982

Second Edition Jun 1983
Update 1 Dec 1983

Reprint Dec 1983 Update 1 has been incorporated.
Update 2 Dec 1984
Update 3 Apr 1985

Reprint Apr 1985 Updates 2 and 3 has been incorporated.

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be
liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is not
furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1982, 1983, 1984, 1985 by HEWLETT-PACKARD COMPANY

ii

DOCUMENTATION MAP

HP 1000 A600/A600+
Computer

HP 1000 A600/A600+

HP 1000
Model 16/17/19

HP 1000
Model 26/27/29

) Computer Computer System Computer System
ges:\?ilcl:?ﬂasﬂgl Reference Manual Insta}lation and Installation and
02156-90002 02156-90001 Service Manual Service Manual

- 02196-90001 02196-90002
HP 1000 A/L-Series HP 1000 A600 HP Micro/1000
HP 1000 L-Series Diagnostic Model 6 Computer System/Computer
Computer /O Operating and and Computer Installation and
Interfacing Guide Troubleshooting System Installation Service Manual
02103-90005 Manual and Service Manual 02430-90001
24612-90001 02136-90001

HP 1000 A600/A600+-

Engineering and
Reference
Documentation
02156-90003

HP 1000 A/L-Series
DDL Programming
Reference Manual
24612-90002

HP 1000 A/L-Series
Computer Kernel
Diagnostic
Reference Manual
24612-90003

HP 1000 A/L-Series
Computer Interface
Diagnostic
Reference Manual
24612-90004

iii

CONTENTS

Section I Page
GENERAL FEATURES
Architecture i 1-1
Virtual Control Panel 1-2
Bootstrap Loadersl 1-2
Self-Test Routines 1-2
Time Base Generatorun. 1-2
Power Supply........cooiiniiiiiiiiiiii 1-2
Input/Outputcooiiiiiiiiiiiiiiii., 1-3
L% 31 010) 20 P 14
Softwarecceeiiiiiiiiiiiii i 14
HP Interface Buscoiviiiiit, 14
Computer Networkot 14
Expansion and Enhancement 1-5
Specifications it 1-5
Section II Page
OPERATING FEATURES
Hardware Registers 2-1
A-Register il 2-1
B-Registercoviiiiiiii i 2-1
P-Registercoiiiiiiiit 2-1
Extend (E) Registerccovvveeann 2-1
Overflow (O) Register 2-1
Central Interrupt Register 2-1
Violation Register 2-1
Parity Error Register 2-1
Interrupt System Register 2-1
X-and Y-Registersc.oiiiiiiinnn, 2-1
WMAP-Registerccooiiiiiiiiiiiin. 2-1
C-and Q-Registersooeiiin. 2-2
Z-Registerooiitiiiiiiiiennaaeann. 2-2
IQRegisterciiiiiiiiiiiii 2-2
Virtual Registersc.ooiiiiiiii.. 2-2
M-Registeroovviiiviiieeeininnnennn. 2-2
T-Registeroiiiiiiiiiiiiiiininnnnn. 2-2
Controls and Indicators 2-2
Self-Testc.ovvniiiiiii i, 2-2
Bootstrap Loaders 2-3
Loader Selection for Auto-Boot 2-3
Program Startscooiiiiiiiiin 2-3
VCP Reentry for Extended Boot Loading 2-4
Device Parameters and Media Formats 2-4
Virtual Control Panel 2-4
VCP Program Operation 2-4
Loader Commandsccovvinuuen... 2-6
VCP User Considerations 2-6
VCP Slave Functions 2-6
Section III Page
PROGRAMMING INFORMATION
Data Formatsccciiiiiiiiiininiann. 3-1
Addressingcoiiiiiiiii i 3-1
Pagingc.cooiiiiiiiiiiii i 3-1
Direct and Indirect Addressing 3-3
Memory Mappingc.cceviuiereiinnnnennns 3-3

iv

Virtual Memory Areaccoviennnn 3-3
Code and Data Separation 3-3
Base-Relative Addressing 3-3
Reserved Memory Locations 3-4
Nonexistent Memoryooovviiinnnn. 3-4
Base Set Instruction Formats...................... 34
Memory Reference Instructions 34
Register Reference Instructions 3-4
Input/Output Instructions 3-5
Extended Arithmetic Memory
Reference Instructions 3-5
Extended Arithmetic Register
Reference Instructions 3-5
Extended Instructions 3-5
Floating Point Instructions 3-5
Double Integer Instructions 3-6
Language Instruction Set 3-6
Virtual Memory Instructions.................... 3-6
Operating System Instructions 3-6
CDS Instructionsceeiiinnennnnnnn. 3-6
Base Set Instruction Coding 3-6
Memory Reference Instructions 3-6
Register Reference Instructions 3-8
Shift/Rotate Groupcoviiiinnnnn. 3-8
Alter/Skip Groupcoiiiiiiiiia, 3-11
Input/Output Instructions...................... 3-13
Extended Arithmetic Memory
Reference Instructions 3-15
Extended Arithmetic Register
Reference Instructions 3-15
Extended Instruction Group 3-16
Index Register Instructions.................. 3-16
Jump Instructions 3-21
Byte Manipulation Instructions.............. 3-21
Bit Manipulation Instructions 3-23
Word Manipulation Instructions 3-24
Floating Point Instructions 3-25
Single Precision Operations 3-25
Language Instruction Set 3-26
Double Integer Instructions 3-28
Virtual Memory Instructions................... 3-30
Operating System Instructions 3-32
Execution Timesooviiiatt 3-33
Double-Precision Floating Point Instructions. ... 3-33
Assembly Languagel 3-34
RTE Implementation............................. 3-34
Section IV Page
DYNAMIC MAPPING SYSTEM
Memory Addressingccoviiiiiiiiiiiinn, 4-1
General Descriptions ...t 4-1
Page Mapping Register Instructions 4-1
Working Map Instructions 4-2
Cross-map Instructions 4-2
Detailed Descriptions e 4-3
DMS Instruction Execution Times 4-11
Assembly language and RTE Implementation 4-11

CONTENTS (Continued)

Section V Page Input/Output Priority, 7-1
CODE AND DATA SEPARATION Interface Elementsoooiiiiin.... 7-4
Code and Data Addressing 5-1 Global Registercccoiiiiiinnnnnnn. 7-4
General Descriptionsccovueeiieeiineennn. 5-1 Control Bitscciiiiiiiiiiiiian, 7-4
Procedure Call Instructions 5-1 FlagBitscoooviiiiiiiiiiiii e, 7-4
Procedure Exit Instructions 5-2 Data Buffer Registercoonn. 7-4
C, Q, Z, and IQ Instructions 5-2 Control Registerccoviiiieeeennnnnn, 7-4
Stack Frame Description 5-2 Direct Memory Accesscoevveeineennnnn. 7-4
Detailed Descriptionsccoovivvvinnn. 5-4 Control Word 1ot 7-5
Assembly Language and RTE Implementation.. ... 5-10 Control Word 2oiiiiiiiiiiinn, 7-5
Execution Timescooiiiiiiiiiiiinin, 5-10 Control Word 3 ...t 7-5
DMA Transfer Initialization 7-5
Self-Configured DMAcoevivian., 7-5
Section VI Page - DMADataTransferccoovvvveennnn. 7-7
INTERRUPT SYSTEM Non-DMA Data Transfer 7-7
Power Fail Interrupt ..., 6-1 Input Data Transfer (Interrupt Method) 7-7
Parity Error Interruptcoiiiiian. 6-3 Output Data Transfer (Interrupt Method) 7-17
Memory Protect Interrupt 6-3 Non-Interrupt Data Transfer 7-9
Unimplemented Instruction Interrupt 6-4 Diagnose Modeso, 7-10
Time Base Generator Interrupt 6-4 Diagnose Mode 1..................coiiiiin.. 7-10
Virtual Memory Area Interrupt 6-4 Diagnose Mode 2.............................. 7-10
CDS Segment Interrupt 6-4 Diagnose Mode 3..................ciiiiiia.., 7-10
Input/Output Interruptcooooiiiiit. 6-4
Interrupt Priorityc. i, 6-4
Central Interrupt Register 6-5 Appendix Page
Processor Status Register 6-5 Character Codes.............ooiiiiiiiiiiininnn. A-3
Interrupt Type Controlt 6-5 Octal Arithmeticoooiiiiiin. A4
Instruction Summaryccoviiiiiiiiia, 6-5 Octal/Decimal Conversions A-5
Mathematical Equivalents A-6
Octal Combining Tables A-8
Section VII Page Base Set Instruction Codes in Binary............. A-10
INPUT/OUTPUT SYSTEM Extend and Overflow Examples A-13
Input/Output Addressing 7-1 Interrupt and Control Summary A-14
Title Page Title Page
HP 1000 A600 Computersoovvvvennnnnn. 1-0 Stack Frame General Layout 5-3
A600 Computer Simplified Block Diagram 1-2 Input/Output System 7-2
Loading Device Parameters and Media Formats2-7 1/O Priority Assignmentc.cccvvene.... 7-2
Loader Command Format 2-10 Priority Linkage (Simplified) 7-3
Data Formats and Octal Notation 3-2 Interrupt Sequences..................ooiiiiiinin, 7-3
Base Set Instruction Formats 3-5 General Bit Definitions for Control Word 1......... 7-6
Shift and Rotate Functions 3-9 DMA Input Data Transfer..............coovenen... 7-8
Examples of Double-Word Shifts and Rotates....... 3-17 Input Data Transfer (Interrupt Method) 7-8
Basic Logical Memory Addressing Scheme 4-1 Output Data Transfer (Interrupt Method) 7-9
Expanded Memory Addressing Scheme 4-2

TABLES

Title Page
Available I/O Slots for Standard

Computer Configurations 1-3
Options and Accessoriesccoevenunne... 1-5
Specificationsooii i 1-6
Start-Up Switch Settingsot 2-3
Sample VCP Loader Call Back Checkout

Programcciiiiiiiiiiiiiiiiiiiin, 2-4A
VCP Characters and Associated Registers 2-5
VCP Commandscovurivieneennneecnennn 2-6
VCP Loader Command Errors 2-11
Memory Paging...........coviiniiiiiiininnennnnn 3-3
Reserved Memory Locations 3-4
Shift/Rotate Group Combining Guide 3-9
Alter/Skip Group Combining Guide 3-10

vi

Title Page

Typical Base Set Instruction Execution Times
Typical and Maximum Execution Times of
Selected Instructions
Instructions and Opcodes for
RTE-A Implementation
Dynamic Mapping Instructions Execution Times...
CDS Instruction Execution Times.................

- A600 Interrupt Assignments

Sample Power Fail Subroutine
Instructions for Select Code 00 through 07
Noninterrupt Transfer Routines
Diagnose Mode 1,
Diagnose Mode 2,

Instruction Page
ADA Addto Ao o 3-6
ADB AddtoB.......l 3-7
ADQA AddQto Al 5-9
ADQB AddQtoBl 5-9
ADX AddMemory to X 3-16
ADY Add Memory to Y 3-18
ALF Rotate A Left Four 3-9
ALR A Left Shift, Clear Sign 3-9
ALS ALeft Shift, 3-9
AND “And” to A 3-7
ARS ARight Shift 3-9
ASL Arithmetic Shift Left (32) 3-16
ASR Arithmetic Shift Right (32) 3-16
BLF Rotate B Left Four 3-9
BLR B Left Shift, Clear Sign 3-10
BLS BLeftShift 3-10
BRS B Right Shift 3-10
CACQ CopyAtoCandQ...................... 5-8
CAX Copy Ato X ..ooiiviii i, 3-18
CAY Copy AtoY ... 3-18
CAZ Copy AtoZ...oooveiii .. 5-8
CBCQ CopyBtoCandQ...................... 5-8
CBS Clear Bitsoiiiiiiiia.n. 3-23
CBT Compare Byteso0ouit. 3-22
CBX CopyBtoX ... 3-18
CBY CopyBtoY ..o 3-18
CBZ Copy BtoZ ... 5-8
CCA Clear and Complement A 3-11
CCB Clear and Complement B 3-11
CCE Clear and Complement E 3-11
CCQA CopyCand Qto A 5-8
CCQB CopyCand QtoB 5-8
CIQA Copy Interrupted to A 5-9
CIQB Copy Interrupted to B 5-9
CLA Clear A i i, 3-11
CLB Clear B.........coi i 3-12
CLC Clear Control 3-13
CLE Clear E ..., 3-10, 3-12
CLF Clear Flagcoceviit. 3-13
CLO Clear Overflow 3-13
CMA Complement A 3-12
CMB Complement B 3-12
CME ComplementE 3-12
CMW Compare Words 3-24
CPA Compare to Aoiiiiian. 3-7
CPB ComparetoB 3-7
CXA Copy Xto A ..o, 3-18
CXB Copy XtoB ... 3-18
CYA Copy Yto A ..o 3-18
CYB Copy YtoB ...l 3-18
CZA CopyZto A ..., 5-9
CZB CopyZtoB ... 5-9
DIV Dividecooviiiiii i 3-15
DLD Double Load 3-15
DST Double Storeoiiina., 3-15
DSX Decrement X and Skip if Zero 3-18

ALPHABETICAL INDEX OF INSTRUCTIONS

Instruction Page
DSY Decrement Y and Skip if Zero 3-18
ELA Rotate E Left with A 3-10
ELB Rotate E Left with B 3-10
ERA Rotate E Right with A 3-10
ERB Rotate E Right with B.................. 3-10
EXIT Procedure Exit 5.7
EXIT1 Procedure Exit With One Skip 5-7
EXIT2 Procedure Exit With Two Skips 5-7
FAD Floating Point Add 3-25
FDV Floating Point Divide................... 3-25
FIX Floating Point to Single Integer......... 3-25
FLT Single Integer to Floating Point 3-25
FMP Floating Point Multiply................. 3-25
FSB Floating Point Subtract................. 3-25
HLT Halt 3-13
INA Increment A 3-12
INB Increment B 3-12
IOR “Inclusive Or” to A 3-7
ISX Increment X and Skip if Zero 3-18
ISY Increment Y and Skip if Zero 3-19
ISz Increment and Skip if Zero 3-7
JLA Jumpandload A 3-21
JLB Jumpand Load B 3-21
JLY Jumpandload Y 3-21
JMP Jump ... 3-7
JPY Jump Indexed by Y 3-21
JSB Jump to Subroutine 3-7
LAX Load Alndexed by X 3-19
LAY Load AlIndexedby Y 3-19
LBT Load Byte 3-22
LBX Load BIndexed by X 3-19
LBY Load BIndexed by Y 3-19
LDA Load A 3-8
LDB Load B ...t 3-8
ILDMP ToadMapSet............ccovvivvinnn... 4-3
LDX Load X from Memory 3-19
LDY Load Y from Memory 3-19
LIA LoadInputto A........................ 3-14
LIB LoadInputto B 3-14
LPMR Load Page Map Register 4-3
LSL Logical Shift Left (32) 3-16
LSR Logical Shift Right (32)................. 3-16
LWD1 Select DATA1Map...............c..v.... 4-4
LWD2 Load DATA2Mapc.ocvvnnnn. 4-5
MBO00 Cross Move Bytes, Execute to Execute 4-9
MBO0O1 Cross Move Bytes, Execute to DATA14-9
MB02 Cross Move Bytes, Execute to DATA2 ...4-10
MB10 Cross Move Bytes, DATA1 to Execute ... 4-10
MB11 Cross Move Bytes, DATA1 to DATA1 ...4-10
MB12 Cross Move Bytes, DATA1 to DATA2 ...4-10
MB20 Cross Move Bytes, DATAZ2 to Execute ... 4-11
MB21 Cross Move Bytes, DATA2 to DATAL ...4-11
MB22 Cross Move Bytes, DATAZ2 to DATA2 ... 4-11
MBT Move Bytesccooiiiin. 3-22
MiA MergeInto A 3-14
MIB MergeInto B 3-14

ALPHABETICAL INDEX OF INSTRUCTIONS (Continued)

Instruction Page
MPY Multiply ..o 3-15
MVW MoveWordsc.cvvvvvvvinn.. 3-24
MWO00 Cross Move Words, Execute to Execute ... 4-7
MWO0l1 Cross Move Words, Execute to DATA1 ... 4-7
MWO02 Cross Move Words, Execute to DATA2 ... 4-8
MW10 Cross Move Words, DATA1 to Execute ... 4-8
MW11 Cross Move Words, DATA1 to DATAl....4-8
MW12 Cross Move Words, DATA1 to DATA24-8
MW20 Cross Move Words, DATA2 to Execute ...4-9
MW21 Cross Move Words, DATAZ2 to DATA1....4-9
MW22 Cross Move Words, DATA2 to DATA24-9
NOP No Operationcooein.. 3-10
OTA Output Ao 3-14
OTB Output B 3-14
PCALI Internal Procedure Call 5-4
PCALN Procedure Call, . ENTN Compatible 5-6
PCALR Procedure Call, ENTR Compatible 5-6
PCALV Variable External Procedure Call 5-5
PCALX External Procedure Call 5-4
RAL Rotate ALeft 3-10
RAR Rotate ARight......................... 3-11
RBL Rotate BLeftt 3-11
RBR Rotate BRight 3-11
RRL Rotate Left (32) 3-16
RRR Rotate Right (32) 3-16
RSS Reverse Skip Sense 3-12
SAX Store A Indexed by X 3-20
SAY Store A Indexed by Y 3-20
SBS Set Bits.........coiiiieiiiiiii e 3-23
SBT Store Byteccoviiiiiiiiiiin 3-23
SBX Store B Indexed by X 3-20
SBY Store B Indexed by Y............onnn. 3-20
SDSP Store Displayc.ooeo.... 5-7
SEZ Skipif EisZero 3-12
SFB Scan for Byte 3-23
SFC Skipif FlagClear 3-14
SFS Skipif FlagSet 3-14
SIMP Save Interrupted Map 4-4
SLA Skip if LSB of A is Zero........... 3-11, 3-12
SLB Skip if LSB of B is Zero 3-11, 3-12
SOC Skip if Overflow Clear.................. 3-14
SOS Skip if Overflow Set 3-14
SPMR Store Page Mapping Register 4-3
SSA Skip if Sign of AisZero................ 3-12
SSB Skip if Signof Bis Zero 3-13
STA Store A 3-8
STB Store B ... 3-8
STC Set Controlc.ciiiiiinnnnnnn. 3-14
STF Set Flag ...ovvvviiniie i, 3-15
STMP Store Map Set................cciiiui... 4-3
STO Set Overflowccovvveinnnn... 3-15
STX 06Store X to Memory 3-20
STY Store Y to Memorycooiuninnn. 3-20
SWMP Save Working Map 4-4
SZA Skipif AisZerocooiuin 3-13
SZB Skipif BisZeroo.ou. 3-13

viii

Instruction Page
TBS Test Bits.............ciiiiiiiiiinn, 3-23
XAX Exchange Aand X 3-20
XAY Exchange Aand Y 3-20
XBX Exchange Band X 3-21
XBY Exchange Band Y 3-21
XCAl Cross Compare A through DATA1 Map ... 4-6
XCA2 Cross Compare A through DATA2 Map ... 4-7
XCB1 Cross Compare B through DATA1 Map ... 4-7
XCB2 Cross Compare B through DATA2 Map ... 4-7
XJCQ Cross Map Jump (and Load C and Q) 4-4
XJMP CrossMapdJump 4-4
XLA1l Cross Load A through DATA1 Map 4-5
XLA2 Cross Load A through DATA2 Map 4-5
XLB1 Cross Load B through DATA1 Map....... 4-5
XLB2 Cross Load B through DATA2 Map....... 4-5
XOR “Bxclusive Or’ to A 3-8
XSA1l Cross Store A through DATA1 Map 4-6
XSA2 Cross Store A through DATA2 Map 4-6
XSB1 Cross Store B through DATA1 Map 4-6
XSB2 Cross Store B through DATA2 Map 4-6
.BLE Single to Double Floating Point 3-27
.CFER Transfer Complex or Double
Floating Point 3-26
.CPM Single Integer Arithmetic Compare...... 3-28
.CPUID Processor Identification 3-32
.DAD Double Integer Add 3-29
.DCO Double Integer Compare 3-29
.DDE Double Integer Increment 3-30
.DDI Double Integer Divide 3-30
.DDIR Double Integer Divide Reverse 3-30
.DDS Double Integer Decrement and
SkipifZeroc.ooiiiiiiit 3-29
.DFER Transfer Three Consecutive Words 3-26
.DIN Double Integer Increment 3-29
.DIS Double Integer Increment and
SkipifZeroooiiiin 3-30
.DMP Double Integer Multiply 3-30
.DNG Double Integer Negate.................. 3-29
.DSB Double Integer Subtract 3-29
.DSBR Double Integer Subtract Reverse 3-29
.ENTC Transfer Parameter Addresses 3-28
.ENTN Transfer Parameter Addresses 3-28
.ENTP Transfer Parameter Addresses 3-27
.ENTR Transfer Parameter Addresses 3-27
.FIXD Floating Point to Double Integer 3-26
.FLTD Double Integer to Floating Point 3-26
FLUN Unpack Floating Point Quantity 3-27
FWID Firmware Identification................. 3-32
JIMAP 16-Bit Subscript Mapping 3-31
IRES 16-Bit Subscript Resolution 3-31
JMAP 3-31
JRES L 3-31
.LBP Mapping with Registers 3-32
.LBPR Mapping with DEF 3-32
LPX Indexed Mapping with Registers 3-32
LPXR Indexed Mapping with DEF 3-32

Instruction Page
.NGL Double to Single Floating Point 3-28
.PACK Normalize Floating Point Quantity 3-28
.PMAP Map Specified Page..................... 3-31
PWR2 X Times 2 to the Power N 3-28
SETP SetATable............................ 3-27
.SIP Skip if Interrupt Pending 3-32
TADD Double Floating Point Add.............. 3-33-
TDIV Double Floating Point Divide 3-33
TFTD Double Integer to Double

Floating Point 3-33
TFTS Single Integer to Double

Floating Point 3-33

ALPHABETICAL INDEX OF INSTRUCTIONS (Continued)

Instruction Page
.TFXD Double Floating Point to -

Double Integer 3-33
TFXS Double Floating Point to

Single Integer 3-34
.TMPY Double Floating Point Multiply 3-34
.TSUB Double Floating Point Substract 3-34
.WFI Wait for Interrupt 3-32
XFER Transfer Three Consecutive Words 3-27
ZFER Transfer Eight Words 3-26
.FCM Complement and Normalize Single

: Floating Point 3-27

..TCM Negate Double Floating Point 3-28

General Features

HP 2186A

HP 2436A/2486A—OPTION 110
(WITH HP 40025A)

HP 21566A/B

1-0

Figure 1-1. HP 1000 A600 Computers

GENERAL FEATURES

SECTION

The HP 1000 A600/A600+ Computers and System Pro-
cessor Units (SPUs) (hereafter referred to as A600/A600+
computers) are members of the HP 1000 A-Series
Computer family. At the heart of the A600/A600+
computer is a compact two-board CPU/memory set that
yields extremely high performance for its price class. The
set consists of a processor board and a fully mapped mem-
ory controller board containing up to a half-megabyte of
single-bit parity memory. The A600/A600+ computers
deliver full minicomputer power to a wide variety of ap-
plications, and maintain software compatibility with
previous HP 1000 Computers. As shown in Figure 1-1, the
A600/A600+ hardware is available as:

e HP 2106AK/BK Board Computer — a two-board set
that may be used with optional 5- and 10-slot card
cages for user-designed systems.

e HP 2136A/C Computer — a desktop computer with
dual flexible mini-discs and 128kb of memory,
asynchronous serial interface card, HP-IB interface
card, and 3 slots available for additional memory or
I/0. Designed as a target system for volume end users.

e HP 2136B/D Computer — same as the HP 2136A/C
except without the dual flexible mini-discs and HP-IB
interface card, and with 5 available slots. Can serve
as a memory based node computer on a DS link.

e HP 2156A/B Computer — a complete 20-slot box
computer including power supply, cooling fans, and
128kb of memory in a standard 19-inch rack-mount
package.

e HP 2186A/C System Processor Unit — a desktop
computer with dual flexible mini-discs, 128kb of
memory, asynchronous serial interface card, HP-IB
interface card, RTE-A software, and 3 slots available
for additional memory and I/O.

e HP 2186B/D System Processor Unit — same as the
HP 2186A except without the dual flexible mini-discs
and with 4 available slots. Can serve as a memory
based node computer on a DS link.

e HP 2196A/C System Processor Unit — a 1.5 metre
cabinet containing the A600 computer with 128kb of
memory, asynchronous serial interface card, HP-IB
interface card, RTE-A software, and 16 slots available
for additional memory and I/O.

e HP 2196B/D System Processor Unit — same as the
HP 2196A except in a 720 mm cabinet.

e HP 2486A System Processor Unit — an A600+
computer system with 512k bytes of memory, 14 card
cage slots for CPU, memory, and 1/0, asynchronous
interface card, HP-IB interface, and RTE-A software.

e HP 2436A Computer — an A600+ computer with
128k bytes of memory and 14 card cage slots for CPU,
memory, and I/O.

® HP 2436E Computer — an A600+ execute-only
computer with 128k bytes of memory and 14 card cage
slots for CPU, memory, and I/O.

1-1. ARCHITECTURE

The A600/A600+ computer architecture is based on a
distributed intelligence concept that separates the pro-
cessing of input/output (I/O) instructions from that of
other instructions. The central processor unit (CPU)
resides on a single printed circuit board and features a
fully microprogrammed bit-slice control processor, which
executes one million instructions per second. The 56-bit
wide microinstruction format eliminates much discrete
decoding logic, thereby enhancing processor performance
while reducing physical size and complexity. The compact
one-board CPU executes the powerful HP 1000 instruction
set that includes index instructions and a full complement
of instructions for logical operations as well as bit and byte
manipulation. Also included in the standard base in-
struction set of A600/A600+ computers are double-
integer, single-precision floating point, virtual memory,
and high-level language instruction groups, which
substantially increase program execution speed. An
optional double-precision enhancement package adds 19
instructions to the A600 repertoire, including double-
precision floating point instructions. The CPU also
performs several system level functions, including mem-
ory protect, power fail/auto restart, time base generation,
parity error interrupt, unimplemented instruction
interrupt, and extensive self-tests.

The A-Series architecture also includes a feature called
Code and Data Separation (CDS) which accommodates
programs that have up to 4 million words of code.

All input/output instructions are executed by custom
silicon-on-sapphire (SOS) input/output processor (IOP)
integrated circuit chips that reside on the individual /'O
interface cards. A common backplane links the processor,
memory, and I/O cards. The instructions are fetched from
memory and decoded by the processor card. When an
instruction is decoded as being of the I/O type, it is
broadcast on the backplane for execution by the appro-

1-1

General Features

priate /O chip. Because each /O card is capable of op-
erating independently of the CPU, the A600/A600+ can
perform direct memory access (DMA) IO transfers very
efficiently. An 1/O card interacts with the CPU only on
DMA initiation and completion; beyond that, the entire
high-speed transfer is handled by the I/O card, leaving the
CPU free to work on other tasks. This achieves high ef-
ficiency in CPU and I/O throughput. Figure 1-2 is a
simplified block diagram of the A300/A600+ computer.

1-2. VIRTUAL CONTROL PANEL

The Virtual Control Panel (VCP) program is an interac-
tive program that enables an external device (such as a
terminal) to control the CPU in a manner similar to a
conventional computer control panel and also provides
additional features. That is, it allows the operator to ac-
cess the various registers (A, B, P, etc.), examine or
change memory, and control execution of a program. The
VCP program is stored in EPROM on the memory con-
troller card. In a typical application, the VCP could be an
HP 262x Terminal interfaced by an HP 12005 Asyn-
chronous Serial Interface Card. When not being used as
the VCP, the VCP-assigned terminal can be used in the
same way as any other terminal connected to the system.
When the A600/A600+ computer is operating as a node in
a computer network via DS/1000-IV, the VCP can be an
adjacent computer in the network.

1-3. BOOTSTRAP LOADERS

There are several bootstrap loaders stored in EPROM on
the memory controller card. The loaders provide program
loading from several sources including disc drives, PROM
storage modules, a DS/1000-IV network link, HP mini-
cartridge tapes, magnetic tape drives, and cartridge tapes
of the HP 7908/11/12/14 Disc Drives. The first three load-
ers can be selected for auto-boot by switches on the central
processor card; any of the loaders can be selected by
operator commands via the Virtual Control Panel.
However, for auto-boot from a disc drive other than the
flexible mini-disc of the HP 2136A/C and 2186A/C, the
system must be reconfigured during operating-system
generation.

1-4. SELF-TEST ROUTINES

Self-test routines are standard in the A600/A600+
computer and are stored in PROM on the central processor
card and on the memory controller card. These routines
are executed whenever computer power is turned on,
providing a convenient confidence-check of the processor
card, memory cards, and part of the logic on each input/
output card. Execution of these routines can also be in-
itiated by a switch on the central processor card or by
operator command via the Virtual Control Panel.

1-2

A600/A600+

1-5. TIME BASE GENERATOR

The processor card includes a time base generator which
can be used to time external events or to create a real-time
clock in software. The time base generator (TBG) can
generate an interrupt every 10 milliseconds. The TBG,
which can be enabled and disabled by standard I/O in-
structions, is disabled at power up.

The A600+ provides a programmable time base generator
(TBG), allowing finer resolution in counting time in-
crements. The programmable TBG also simplifies the
migration of real-time programs from one processor to
another.

1-6. POWER SUPPLY

A600/A600+ computers have a power supply designed to
continue normal operation in environments where ac line
power may fluctuate widely. Input line voltages and
frequencies may vary widely without affecting the op-
eration of the computer.

For the HP 2156 or 2196A/B/C/D computers, an optional
battery backup pack (12157A) can be installed in the

. > MEMORY K
MEMORY
CONTROLLER

< > PROCESSOR

. INTERFACE

A-SERIES BACKPLANE

. INTERFACE

~ INTERFACE

B INTERFACE

8200-32

Figure 1-2. A600 Computer Simplified Block Diagram

A600/A600+

power supply to sustain up to 4M bytes of memory for at
least 20 minutes in the event of a complete power failure,
thus providing an automatic restart capability. For the
HP 2436 or 2486A, an optional battery backup card
sustains up to 4M bytes of memory for at least 45 minuted.
An external battery can be connected when there is a need
to sustain memory for longer periods of time.

For the HP 2136A/B/C/D or 2186A/B/C/D computers, an
optional battery backup card (12013A) can be installed in
the card cage, rather than in the power supply, to sustain
for at least one hour up to 512k bytes of memory on the
memory controller card. The battery backup card does not
support memory expanded with memory array cards
(12103x).

Another power supply option (HP 2156A/B or 2196A/B/
C/D only) provides two 25-kHz voltages that can be re-
ctified at the load and used to power accessory plug-in
cards used for measurement and control applications.

1-7. INPUT/OUTPUT

The input/output system for A600/A600+ computers
features a custom SOS chip on each I/O card, enabling
each card to process its own /O instructions and handle
direct memory access (DMA) data transfers. The I/O sys-
tem has a multilevel vectored priority interrupt structure
with 53 distinct interrupt levels, each of which has a
unique priority assignment. Any I/O device can be
selectively enabled or disabled, or all /O devices can be
enabled or disabled under program control.

Data transfer between the computer and I/O devices can
take place under DMA control or program control. The
DMA capability provides a direct link between memory
and I/O devices. The total bandwidth through multiple
DMA channels is 4.27 million bytes (2.13 million words)
per second.

General Features

The A600/A600+ computer backplane provides the link
between the processor, memory, interface cards, and the
power supply. The backplane has slots for either 8 (HP
2136A/B/C/D or 2186A/B/C/D), or 20 (HP 2156A/B or
2196A/B/C/D), or 16 (HP 2436A/E or 2486A) plug-in
cards. In all computer configurations, one slot must be used
for the processor card and another for the memory control-
ler card. Depending on the computer configuration and
options included, additional card slots are used for each
optional memory array card, terminal interface card, disc
drive interface card, flexible mini-disc controller card, and
optional battery backup card. The standard computer con-
figurations and available I/0 slots are listed in Table 1-1.
The number of available I/O slots may be increased by
using an HP 12025A/B I/O Extender with the A600+
computer. (Hewlett-Packard does not support use of the
I/O extender with the A600 computer.)

The A600/A600+ computer uses the HP A/L-Series I/O
cards and an important feature of these cards is a
common-content Global Register which can be loaded with
the select code of a specific /O card. When the Global
Register is enabled all I/O instructions are executed only
by the I/O card whose select code is in the Global Register.
This not only facilitates setting up DMA transfers but also
makes reconfiguration of an I/O driver a simple matter of
changing the Global Register to the appropriate select
code. Also, since the Global Register can direct I/O in-
structions to a specific I/O card, the I/O-instruction ad-
dress bits can be used to access registers on an I/O card.
This feature is utilized in the design of the A/L-Series I/O
cards to increase their capabilities.

About one-third of the area on all A/L-Series I/O cards is
occupied by identical logic called the I/O Master, consist-
ing of an I/O processor chip and its associated logic. The
I/O Master is also available in breadboard form for users
who wish to design their own I/O cards. The I/O Master is
described in detail in the HP 1000 L-Series Computer 1/O
Interfacing Guide, part no. 02103-90005.

Table 1-1. Available IO Slots for Standard Computer Configurations

: STANDARD S IR N B OPTIONAL
COMPUTER ASIC HP-IB CONTROLLER ~ SLOTS | MEMORY - BACKUP
HP 2136A/IC 1 1 1 S8y g R
HP 2136B/D 1 — - EE T A R L BR |
HP 2156A/B - — 18 | 4 L—_
HP 2186A/C 1 1 1 3 | @ 1
HP 2186B/D 1 1 - 4 g 1
HP 2196A/C 1 1 - 16 | 4 -
HP 2196B/D 1 1 — 16 | 4 f—
HP 2436A/E —_ — - 14 | 4 2
HP 2486A 1 1 - 10 | 4 2
* Note: Optional memory array cards can not be used if battery backup card is in$tat!ed_ ,

Update 3 1-3

General Features

1-8. MEMORY

The A600/A600+ computers are available with standard
semiconductor memory systems based on 64k-bit dynamic
RAM (random-access memory) chips. The standard memory
system consists of a memory controller card with parity
memory, up to four memory array cards, and a memory
frontplane. The HP 12102A/B Controller Card uses 64k-bit
RAM chips and provides 128/512 kilobytes of parity mem-
ory. The HP 12103A/C/D Memory Array Cards provide
128k, 512k, and 1024k bytes of parity memory, respectively.

The A600+ (but not A600) computers are also available
with error-correcting (EC) memory systems based on 256k-
bit dynamic RAM chips. The 12110A/B Controller Card
uses 256k-bit chips and provides 512k and 1024k bytes of EC
memory, respectively. The HP 12111A/B/C EC Memory
Array Cards provide 512k, 1024k, and 2048k bytes of EC
memory, respectively, and require use of the 12110 con-
troller. Both parity memory and EC memory cards may be
used together in the same A600+ computer if the 12110
controller is used.

The maximum memory size available in A600/A600-+
computers is six million bytes for the HP 2136A/B/C/D or
HP 2186A/B/C/D, and eight million bytes for the HP
2156A/B, 2196A/B/C/D, 2436A/E, and 2486A. Addressing
physical memory configurations larger than 64k bytes is
made possible by the use of the Dynamic Mapping System
(DMS), which is standard in the A600/A600+ and is de-
scribed in Section 1V. The DMS is & powerful memory man-
agement scheme that allows A600/A600+ computer users to
address up to 32 megabytes of memory and provides user-
selectable write protection of each individual 2048-byte
page. The A600+ also provides read protection for each
page. For data integrity, memory parity checking is provided
as a standard feature (error correction is available), and a
parity-valid indicator light is provided on each memory ar-
ray card for quick fault isolation.

1-9. SOFTWARE

Software support for the A600/A600+ computers begins
with RTE-A, a member of HP’s family of Real-Time Exec-
utive (RTE) operating systems. RTE-A is a real-time
multiprogramming, multi-user system designed to take full
advantage of the A600/A600+ I/O structure to enhance
overall CPU and I/O throughput. RTE-A offers a wide range
of configurations, from a small, mernory-based, execute-only
system to a full disc-based system with online program
development. Utilizing the A600/A600+ mapped memory
system, RTE-A supports memory sizes from 128k bytes to
six megabytes (HP 2136A/B/C/D and 2186A/B/C/D) or
eight megabytes (HP 2156A/B, 2196A/B/C/D, 2486A, and
2436A/E). Memory can be divided into fixed and dynami-
cally allocated partitions at system generation time. Critical
programs can be made resident in fixed partitions to ensure
fastest possible response to requests for their execution.
Other programs can be assigned partitions from the dynamic
memory pool according to need, using the smallest available
block of memory.

RTE-A also supports Virtual Memory Addressing (VMA)
for access to data arrays much larger than main memory (up

A600/A600+

to 128 megabytes). The disc functions as an extension of
main memory so far as data is concerned, in a manner that is
transparent to the user and does not require any special
programming. In addition, RTE-A supports a special case of
VMA, called Extended Memory Area (EMA). With EMA, up
to two megabytes of a program’s data can be in main memory
at once, which affords faster processing of data arrays small
enough to use the EMA capability. The programmer chooses
the data array handling mode at program load time.

The HP 92078A software accessory package provides
support for programs that have up to 4M words of code
through a feature called Code and Data Separation (CDS).
With CDS, a large application program is automatically
segmented by the LINK loader program into one or more
code segments, in addition to a data segment which may
be up to 31k words in size; the program may also access a
VMA area. The code segments may reside on disc or in
memory, and the process of accessing code segments in
physical memory, or loading a code segment from disc into
physical memory, is automatically handled by a combi-
nation of microcode and software. CDS is described further
in Section V.

Disc-based RTE-A systems support program development
in FORTRAN 77, Pascal, BASIC, and Macro/1000 As-
sembly Language. Program development for the A600/
A600+ can also be performed on an HP 1000 System
under RTE-6/VM or RTE-IVB.

Diagnostic packages listed in Table 1-2 are used for test-
ing and fault location.

1-10. HP INTERFACE BUS

Among the I/O interface cards available for the A600/
A600+ computer is the HP 12009A HP-IB Interface Card
which can interface the A600/A600+ computer to a vari-
ety of HP peripherals and other equipment compatible
with the Hewlett-Packard Interface Bus (HP-IB). (HP-IB
is the Hewlett-Packard implementation of IEEE standard
488-1978, “Digital Interface for Programmable In-
strumentation”.) A single HP 12009A can control up to 14
HP-IB instruments and several can be used to achieve
concurrent operation of multiple HP-IB instrumentation
clusters under the RTE-A multiprogramming operating
system. However, a maximum of only four hard discs of
comparable speed (standard or high-speed) should be
assigned to a single HP 120094, as disc demands on bus
capacity are often so high as to impair performance of
other devices connected to the same HP-IB interface as the
discs.

1-11. COMPUTER NETWORK

The user can configure the A600/A600+ computer into an
HP DS/1000-1V Distributed System by using either an HP
12007A or an HP 12044A HDLC Interface. Both of these
interfaces support the high-level data link communica-
tions (HDLC) protocol, functioning as a preprocessor to

1-4 Update 2

A600/A600+

handle low and medium levels of protocol processing. The
A600/A600+ computers can be easily mixed with other
members of the HP 1000 family in a single computer
network. The HP 12042A Programmable Serial Interface
allows the sophisticated OEM to design his own cus-
tomized protocol for networks. HP provides a customer
course on how to program the PSI card.

1-12. EXPANSION AND ENHANCEMENT

Table 1-2 lists accessory products available to expand or
enhance the A600/A600+ computers.

General Features

1-13. SPECIFICATIONS

HP 1000 Computer Systems, A/L-Series Technical Data
Handbook, part no. 5953-8712 provides complete
specifications for the A600/A600+ computers and sys-
tems. Table 1-3 provides an abridged set of A600/A600+
specifications. Except where indicated, the specifications
are common to all A600/A600+ computers and systems.
The computers and computer systems have been product
accepted by the Underwriters’ Laboratories (UL) and the
Canadian Standards Association (CSA). The A600/A600+
computers and systems also meet the RFI standards of the
Federal Communications Commission (FCC) and Verband
Deutcher Electrotechniker (VDE).

Table 1-2. Options and Accessories
DESCRIPTION PRODUCT NO. OPTION NO.
Delete standard memory controller card — 014
230 Vac Operation — 015
512k Byte Memory Controlier Card 121028 —_
512k Byte EC Memory Controlier Card (A600+ only) 12110A —
1024k Byte EC Memory Controller Card (A600+ only) 121108 —_
128k Byte Memory Array Card 12103A —
512k Byte Memory Array Card 12103C —
1024k Byte Memory Array Card 12103D —
512k Byte EC Memory Array Card (A600+ only) 12111A —
1024k Byte EC Memory Array Card (A600+ only) 12111B —
2048k Byte EC Memory Array Card (A600+ only) 12111C —
Memory Connector for one memory array card 12038A —
Memory Connector for two memory array cards 120388 —
Memory Connector for three memory array cards 12038C —_
Memory Connector for four memory array cards 12038D —
Asynchronous Serial Interface 12005A —
Parallel Interface 12006A —
HDLC Interface (modem operation) 12007A —
PROM Storage Module 12008A —
HP-IB Interface 12009A —
Intelligent Breadboard 12010A —
Extender Board 12011A —
Priority Jumper Card 12012A —_
Battery Backup Card 12013A* —
Input/Output Extender (for A600+ only) 12025A/B —
8-Channel Asynchronous Multiplexer 120408 —
Programmable Serial Interface 12042A —_
HDLC Interface (hard-wired operation) 12044A —
High-Level Analog Input Card 12060At —
Expansion Muitiplexer Card 12061At —
Analog Output Card 12062At —
16-In/16-Cut Isolated Digital I/O Card 12063At —
DS/1000-lvV Data Link Slave Interface 12072A —_—
DS/1000-IV Modem Interface to HP 3000 12073A —_
LAP-B Network Interface 12075A —

Update 3 1-5

General Features

Table 1-2. Options and Accessories (Continued)

A600/A600+

DESCRIPTION PRODUCT NO. OPTION NO.
DS/1000-1V Direct Connect Interface to HP 3000 12082A —_
Battery Backup Card 12154A* —
Power Fail Recovery System 12157A -—
25 kHz Power Module 12158A** —
25 kHz Power Module 12159A —
Diagnostic Package for AB00/A600+ processor and interfaces 24612A% o
Diagnostic Package for A600/A600+ compatible hard disc drives 24398Bi% —
and magnetic tape units

2186A/B/C/D computers.

** Only supported on the HP 2156A/B and 2196A/B/C/D computers.
t Included with the HP 2186A/B/C/D, 2196A/B/C/D, and 2486A System Processor Units.

* The 12013A card is used only with the HP 2136A/B/C/D and 2186A/B/C/D, the 12157A card with the HP
2156A/B/C/D and 2196A/B/C/D, and the 12154A with the HP 2436A and 2486A.

+ Measurement and control accessories requiring 25 kHz ac power cannot be used with the HP 2136A/B/C/D or

Table 1-3. Specifications

CENTRAL PROCESSOR

Word Size:

Cycle Time:

Microinstruction Word Width:
Logical Address Space:
Instruction Set:

Memory Reference:

Register Reference:
Input/Output:

Extended Arithmetic:

Extended Instructions:

Bit, Byte, Word Manipulation:
Floating Point:

Dynamic Mapping

Double Integer:

EMA/VMA:

Language Instruction Set
Operating System Assist:
Double-Precision Floating Point
Code and Data Separation Set

COMMON SPECIFICATIONS

16 bits.
227 nanoseconds.
56 bits.
64k bytes.
182 standard instructions (239 for A600+).

14
39
13
12
32
10

6 (8 for A600+)
22 (40 for A600+)
9 (12 for A600+)
7 (9 for A60O+)
14 optional instructions (17 for A600+).

4

8 (A600+ only).
21 (A600+ only).

1-6

A600/A600+

General Features

Table 1-3. Specifications (Continued)

Registers:
Accumulators:

Index:

Program Counter:
Base Register:
Supplementary:
Memory Protect:
Parity: :
Interrupt:

Mode Reygister:

MEMORY
Memory Structure:

Memory Size:

Memory Cycle Time:

Memory Parity Checking:

INTERRUPT SYSTEM
Power Fall Provisions:

Time Base Generator Interrupt:

COMMON SPECIFICATIONS

Two (A and B), 16 bits each. Implicitly addressable, also explicitly addressable as
memory locations.

Two (X and Y), 16 bits each.

One (P), 15 bits.

One (Q), 15 bits.

Two (Overfiow and Extend), one bit each.

Two (V and Z), 15 bits each.

One (PE), 24 bits.

One (CIR), 6 bits.

One (C), one bit.

64 pages minimum of 2048 bytes per page, with direct access to current page or base
page (or a page on the stack for A600+) {page 00), and indirect or mapped access to
all other pages.

128k or 512k bytes is standard, expandable to:

2136A/B/C/D, 2186A/B/C/D: 6144k bytes.
2156A/B, 2196A/B/C/D, 2436A/E, 2486A: 8192k bytes.

Virtual memory for data arrays up to 128M bytes, divided between main memory and
disc. A600+ only: Virtual memory for programs up to 8M bytes, divided between main
memory and disc.

Size of memory supported by optional power fail provisions: :
2136A/B/C/D, 2186A/B/C/D: battery backup supports only memory controller card.
{No memory array card.) ,

2156A/B, 2196A/B/C/D, 2436A/E, 2486A: battery backup supports up to 8192k-byte
main memory.

RAM: 454 nanoseconds (two cycles).

ROM: 682 nanoseconds (three cycles).

Parity logic on the memory cards continuously generates single-bit parity for all words
written into memory and monitors the parity of all words read out of memory. Either
odd or even parity can be selected programmatically. A parity error generates an
interrupt to memory location 00005, which must contain an indirect JSB or JMP to a
user-supplied parity error handling subroutine (included in RTE-A). (No /O instructions
in trap cell.)

When primary line power falls below a predetermined level while the computer is
running, a power fail warning signal from the computer power supply causes an inter-
rupt to memory location 00004. This location is intended to contain a jump-to-
subroutine (JSB) instruction to a user-supplied power fail subroutine, such as that
included in the RTE-A operating system. A minimum of 5 milliseconds is available to
execute the power fail subroutine.

A time base generator interrupt is provided for maintaining a real time clock. The
interrupt request is made when the CPU signals, at 10-millisecond intervals, that its
intemal clock has rolled over. Timing accuracy of the time base generator is +2
seconds per 24-hour day.

Update 2 1-7

General Features

A600/A600+

Table 1-3. Specifications (Continued)

Unimplemented Instruction:

Memory Protect:

INPUT/OUTPUT
Determination of /O Address:

1/O Device Interrupt Priority:

Interrupt Masking:

Interrupt Latency Without DMA
Interference:

Direct Memory Access (DMA):

DMA Latency:

Data Packing Under DMA:

Maximum Achievable DMA Rate:
Self-Configured DMA Timing:

I/O Master Signals and Timing:

COMMON SPECIFICATIONS

An unimplemented instruction interrupt is requested when the CPU signals that the
last instruction fetched was not recognized. This interrupt provides entry to software
routines for the execution of instruction codes not recognized by the A600/A600+
processor or the I/O cards.

Memory protect logic on the memory controlier:

1. Protects memory on a page-by-page basis against alteration, access, or entry
by programmed instructions, except those referencing the A and B-registers.
A memory protect violation will interrupt the CPU and save the address of the
violating instruction in a register on the memory controller card, which the
A- or B-register can access by a single Assembly language instruction.

2. Prohibits execution of privileged instructions (mapping instructions and all VO
instructions except those referencing select code 01, the CPU switch register, and
the overflow register, but not including HLT, are privileged). This limits control of
I/O and mapping operations to the operating system or other privileged
programs.

The /O address select code is set for each interface card by select code switches on
the card and is therefore independent of interface card position in the card cage.

Depends upon /O interface card position in the card cage with respect to the proces-
sor card.

The 1/O Master Logic includes an interrupt mask register which provides for selective
inhibition of interrupts from specific interfaces under program control. This capability
can be programmed to temporarily cut off undesirable interrupts from any combination
of interfaces when they could interfere with crucial transfers.

4.7 to 40 microseconds; 5.1 microseconds typical. (Interrupts cannot be serviced
until 2 DMA cycle or an instruction in progress has completed execution.) The worst-
case latency of 40 microseconds is based upon time to complete loading or storing of
a map (LMAP, SMAP), the longest standard instruction.

The I/O processor chip supports DMA capability on each /O interface, which reduces
the number of interrupts from one per data item (byte or word) to one per complete
DMA block.

Time interval from Service Request by an /O device through completion of the DMA
1/O data transfer to or from the /O interface is 0.908 microseconds for input, 1.135
microseconds for output for the interface with highest hardware /O priority.

When byte mode is specified in DMA Control Word, the I/O processor chip automati-
cally manages byte packing or unpacking.

2.13 million words (4.27 megabytes) per second.
4.5 to 7.1 microseconds between successive block transfers of a chained series.

Refer to the HP 1000 L-Series /O interfacing guide, part no. 02103-90005.

1-8

A600/A600+

General Features
Table 1-3. Specifications (Continued)
COMMON SPECIFICATIONS
POWER SUPPLY FOR HP 2136A/B/C/D, 2186A/B/C/D
Output: DC voltages, tolerances, and Periodic and Random Deviation:
+5V +2% 40mV
+12V +5% 40mV
~-12Vv +5% 40mV
The total power output is limited to 175W up to 4.6 km (15,000 ft).
Short Circuit Protection: All dc power outputs are fault protected for short circuits. The DC outputs will current-
limit if short circuited. '
+5V Output Overvolitage The +5V is sensed for overvoltage and the +5V supply shuts down if its output volt-
Protection: age exceeds 5.5V. The ac power switch must be cycled to reset the +5V output.
POWER SUPPLY FOR HP 2156A/B, 2196A/B/C/D
Output: DC voltages and tolerances:
+5V +2%
+12V +6/—3%
-12V +6%
Optional AC Voltages 27V rms +8%, 25 kHz nominal, split phase from three pins on backplane-
and Tolerances: mating connector. Total harmonic distortion: <10%.
Maximum Output Current +5V +5M +12V -12V 25 kHz
Ratings: 68A 5.0A 5.2A 3.5A 2.5A
Short Circuit Protection: All dc and ac power outputs are fault protected for short circuits. The power supply
will shut down if any of the outputs are short circuited at turn on.
+5V Output Overvoltage The +5V output is sensed for overvoltage and the +5V supply shuts down if its output
Protection: voltage exceeds 5.5V. The ac power switch must be cycled to reset the +5V output.
DC REQUIRED: All packages have sufficient power and cooling capability to support all available inter-

faces and accessories except for HP 2136A/B/C/D and 2186A/B/C/D, which do not
support the 25 kHz Power Module, nor the interfaces which require 25 kHz.

POWER SUPPLY FOR HP 2436A/E, 2486A

Output: DC voltages and tolerances.
+5V +2%
+12V +6/~3%
-12Vv +6%
Maximum Output Current +5V +12V ~12V
Ratings: 50A 7.0A 3.0A
Short Clrcuit Protection: All dc power outputs are fault protected for short circuits. The power supply will shut

down if any of the outputs are short circuited at turn on.
25 kHz AC VOLTAGE FOR HP 2436A/E, 2486A

Device: HP 12159A 25 kHz Power Module.

Application: The Power Module provides 27V rms +8%, 25 kHz nominal, split phase from three
pins on the backplane-mating connector. Maximum output power is 30 Watts.

BATTERY BACKUP FOR HP 2136A/B/C/D, 2186A/B/C/D (OPTIONAL) '

Device: 12013-60001 Battery Backup Card.
Application: When fully charged, sustains a maximum of 512 kilobytes of.memory (memory con-
troller card only) for one hour.
Recharge time: 14 hours for fully discharged battery pack.
Battery type: Nickel-cadmium.

1-9

General Features

A600/A600+

Table 1-3. Specifications (Continued)

Device:

Recharge time:
Battery type:

Device:
Application:

Recharge Time:
Battery Type:

ELECTRICAL SPECIFICATIONS
(Excluding Terminal and
Keyboard)

AC Power Required:
Line Voltage:

Line Frequency:
Maximum Power Required:

PHYSICAL CHARACTERISTICS
(Including Terminal and
Keyboard)

Dimensions:

Height:
Width:
Depth:

Weight:

Ventilation:
Maximum Heat Dissipation:

Temperature:
Operating:

COMMON SPECIFICATIONS

BATTERY BACKUP FOR HP 2156A/B, 2196A/B/C/D (OPTIONAL)

12157-60001 Battery Backup Card
1420-0304 Battery Pack

Provides from 15 to 90 minutes of hold-up, depending on the system configuration,
state of charge, and temperature; additional hold-up time can be achieved by con-
necting an external battery.

12 hours for fully discharged battery pack.

Sealed lead acid.

BATTERY BACKUP FOR HP 2436A/E, 2486A

HP 12154A Battery Backup Module.

The Battery Backup Module provides from 45 to 210 minutes of memory sustaining
power depending upon system configuration, state of charge, and temperature; addi-
tional hold-up time can be achieved by connecting an external battery.

14 hours for fully discharged battery pack.
Nickel cadmium.

SPECIFICATIONS APPLICABLE ONLY TO HP 2136A/B/C/D AND 2186A/B/C/D

86-138V (115V —25%/+20%) standard,;
178-276V (230V —23%/+20%) option 015.

47.5 to 66 Hz.
300 Watts.

45 cm (17.7 in.).
39.1 cm (15.4 in.).
73.7 cm (29 in.).

2136A/C, 2186A/C: 31.8 kg (70 Ib).
2136B/D, 2186B/D: 26.4 kg (58 Ib).

Two 70 cfm fans provide cooling for terminal and SPU.

404 kilogram-calories/hr (1604 BTU/hr), including 262x option 090 terminal with
option 050 printer.

ENVIRONMENTAL SPECIFICATIONS

2136A/C, 2186A/C: 10° to 40°C (50° to 104°F).

2136B/D, 2186B/D: 0° to 55°C (32° to 131°F);
derated to: 5° to 55°C (41° to 131°F) if 12013A battery backup is installed; or
derated to: 5° to 40°C (41° to 104°F) if terminal with option 050 printer is used.

1-10

A600/A600+

General Features

Table 1-3. Specifications (Continued)

Non-operating:
Relative Humidity:

Altitude:
Operating:
Non-operating:
Vibration and Shock:

ELECTRICAL SPECIFICATIONS

AC Power Required:
Line Voltage:

Line Frequency:
Maximum Power Required:

PHYSICAL CHARACTERISTICS

Dimensions:

Height:
Width:
Depth:

Weight:
Ventilation:

Temperature:
Operating:

Non-operating:

Relative Humidity:
Altitude:
Operating:
Non-operating:
Vibration and Shock:

SPECIFICATIONS APPLICABLE ONLY TO HP 2136A/B/C/D AND 2186A/B/C/D (Continued)

—40° to 60°C (—40° to 140°F).
2136A/C, 2186A/C: 20% to 80% non-condensing.

2136B/D, 2186B/D: 5% to 95% non-condensing;
deratedto: 5% to 80% non-condensing if terminal with option 050 printer is used.

To 4.6 km (15,000 ft).
15.3 km (50,000 ft).
HP 1000 A600-Series products are type tested for normal shipping and handling

shock and vibration. (Contact factory for review of any application that requires opera-
tion under continuous vibration.)

SPECIFICATIONS APPLICABLE ONLY TO THE HP 2156A/B COMPUTER

86-138V (115V —25%/+20%) standard;
178-276V (230V —23%/+20%) option 015.

47.5 to 66 Hz.
700 Watts.

266 mm (10.5 in.).
483 mm (19 in.).
612 mm (24 in.).

29.5 kg (65 Ib).

Four fans provide approximately 10.1 cubic meters per minute (360 CFM) front-to-
rear airflow, half through the card cage and half to cool the power supply.

ENVIRONMENNTAL SPECIFICATIONS

0° to 55°C (32° to 131°F) up to 3048 metres (10,000 ft); 0° to 45°C (32°to 113°F) up to
4572 metres (15,000 ft).

—40° to 75°C (—40° to 167°F).
derated to: —40° to 60°C (—40° to 140°F) with 12157A power fail option.

5% to 95% non-condensing.

To 4.6 km (15,000 ft).
To 15.3 km (50,000 ft).
HP 1000 A600-Series products are type tested for normal shipping and handling

shock and vibration. (Contact factory for review of any application that requires opera-
tion under continuous vibration.)

1-11

General Features

A600/A600+

Table 1-3. Specifications (Continued)

Standard Line Voltage and
Line Frequency:

Line Voltage (With 7908R):

Line Voltage (With 7911R,
7912R, or 7914R):

Line Frequency:

Option 015 Line Voltage and
Line Frequency:

Line Voltage (With 7908R):

Line Voltage (With 7911R
7912R, or 7914R):

Line Frequency:

Power Requirements:

Maximum Current Required:

PHYSICAL CHARACTERISTICS

Dimensions:
Height:

Width:
Depth:

Weight:
Without disc drive:

7908R Disc Drive adds:
7911R/12R/14R Drive adds:

Racking Limitations:

Temperature:
Operating:

Non-operating:
Relative Humidity:
SPU only:

7908R/11R/12R/14R Disc:

ELECTRICAL SPECIFICATIONS

SPECIFICATIONS APPLICABLE ONLY TO HP 2196A/B/C/D SYSTEMS

88-127V (115V nominal).

90-105V (100V nominal) or
108-126V (120V nominal).

With 7908R: 47.5 to 66 Hz.
With 7911/12R/14R: 54 to 66 Hz.

187-253V (230V nominal).

198-231V (220V nominal) or
216-252V (240V nominal).

With 7908R: 47.5 to 66 Hz.
With 7911/12R/14R: 48 to 55 Hz.

Requires at least 20 Ampere grounded power receptacle for 115 Vac operation, or at
least 10 Ampere grounded power receptacle for 230 Vac operation (option 015). The
2196A/C requires split-phase power; the 219613/D requires single-phase power. An
additional power receptacle is required for the system console.

2196A/C: 16 Amperes per phase.
2196B/D: 16 Amperes.

2196A/C: 1613 mm (63.4 in.).
2196B8/D: 720 mm (28.3 in.).

635 mm (25 in.).
813 mm (32 in.).

2196A/C: 139.7 kg (307.5 Ib).
2196B/D: 94.3 kg (207.5 Ib).

37.0 kg (81.6 Ib).
67.3 kg (148 Ib).

The additional space in the top half of the 2196A/C cabinet is intended for instrumenta-
tion installed on rails and not on slides.

ENVIRONMENTAL SPECIFICATIONS

0°to 55°C (32°to 131°F) up to 3048 metres (10,000 ft); 0° to 45°C (32°to 113°F) up to
4572 metres (15,000 ft).

~40° to 60°C (—40° to 140°F).

5% to 85% with maximum wet bulb temperature not to exceed 25.6°C (78.1°F), ex-
cluding all conditions which cause condensation.

20% to 80% non-condensing.

A600/A600+

General Features

Table 1-3. Specifications (Continued)

SPECIFICATIONS APPLICABLE ONLY TO THE HP 2196A/B/C/D SYSTEMS (Continued)

Altitude:
Operating:
Non-operating:
Vibration and Shock:

To 4.6 km (15,000 ft).
To 15.3 km (50,000 ft).
HP 1000 A600-Series products are type tested for normal shipping and handling

shock and vibration. (Contact factory for review of any application that requires
operation under continuous vibration).

SPECIFICATIONS APPLICABLE ONLY TO THE HP 2436A/E AND 2486A

ELECTRICAL SPECIFICATIONS
AC Power Required:

Line Voltage:

Line Frequency:
Operating Current:

PHYSICAL CHARACTERISTICS

Dimensions:
Height:
Width:
Depth:

Weight:

Without Integral Discs:
Integral Discs Add:

Ventilation:

86-138V (115V —25%/+20%) standard:
178-276V (230V —23%/+20%) option 015.

47.5 to 66 Hz.
6A, max. in 115V configuration; 3A, max. in 230V configuration.

178 mm (7 in)
483 mm (19 in)
648 mm (25.5 in)

16.3 kg (36 Ib)
2.27 kg (5 Ib)

Air intake is in through the left; exhaust is out through the right.

ENVIRONMENTAL SPECIFICATIONS

Temperature:
Operating:

Non-operating:

Relative Humidity:
Without Option 110 Discs:

With Option 110 Discs:

Non-Operating:
Altitude:

Operating:

Non-operating:

0°to 55°C (32° to 131°F) to 3048 metres (10,000 ft) without Option 110 internal discs.
Maximum temperature is linearly derated 2°C (3.6°F) for each 304.8m (1000 ft} in-
crease of altitude. Resulting temperature range is 0° to 45°C (32° to 113°F) at 4572
metres (15,000 ft).

5° to 45°C (40° to 113°F) with Option 110 internal discs; maximum rate of change
<10°C (18°F) per hour.

—40° to 75°C (—40° to 167°F) (maximum temperature with Option 110 internal discs
is 60°C (140°F)).

Operating: 5% to 95% with maximum wet bult temperature not to exceed 40°C
(104°F), excluding all conditions which cause condensation.

Operating 20% to 80% with maximum wet bulb temperature not to exceed 29°C
(85°F), excluding all conditions which cause condensation.

5% to 95% non-condensing.

To 4.6 km (15,000 ft).
To 15.3 km (50,000 ft)

1-13/1-14

OPERATING FEATURES

SECTION

This section describes the bootstrap loaders, the Virtual
Control Panel (VCP) program, and the central processor
registers accessible to the programmer.

2-1. HARDWARE REGISTERS

The processor card has several working registers that can
be selected for display and modification via the Virtual
Control Panel program. (Interface card registers are de-
scribed in Section VI of this manual and in the interface
card reference manuals.) The functions of these processor
card registers are described in the following paragraphs.

2-2. A-REGISTER

The A-register is a 16-bit accumulator that holds the
results of arithmetic and logical operations performed by
programmed instructions. This register can be addressed
directly by any memory reference instruction as location
000000 (octal), thus permitting interrelated operations
with the B-register (e.g., “add B to A,” “compare B with
A,” etc.) using a single-word instruction.

2-3. B-REGISTER

The B-register is a second 16-bit accumulator which can
hold the results of arithmetic and logical operations
completely independently of the A-register. The B-register
can be addressed directly by any memory reference in-
struction as location 000001 (octal) for interrelated op-
erations with the A-register.

24, P-REGISTER

The 15-bit P-register holds the address of the next in-
struction to be fetched from memory.

2-5. EXTEND (E) REGISTER

The one-bit extend (E) register is used by rotate in-
structions to link the A- and B-registers or to indicate a
carry from the most-significant bit (bit 15) of the A- or
B-register by an add instruction or an increment in-
struction. This is of significance primarily for multiple-
precision arithmetic operations. If already set (logic 1), the
extend bit cannot be cleared by a carry. However, the
extend bit can be selectively set, cleared, complemented,
or tested by programmed instructions. If arithmetic in-
structions are not being executed, the E-register can be
used as a Flag.

2-6. OVERFLOW (O) REGISTER

The one-bit overflow (O) register is used to indicate that
an add instruction, divide instruction, or an increment
instruction referencing the A- or B-register has caused the
accumulators to exceed the maximum positive or negative
number that can be contained in these registers. The
overflow bit can be selectively set, cleared, or tested by
programmed instructions. If arithmetic instructions are
not being executed, the O-register can be used as a Flag.

2-7. CENTRAL INTERRUPT REGISTER

The central interrupt register is a six-bit register that
holds the select code of the last interface card or internal
condition whose interrupt request was serviced.

2-8. VIOLATION REGISTER

The violation register is a 15-bit register that records the
logical address of any fetched instruction that violates
memory protection or privileged instruction rules.

2-9. PARITY ERROR REGISTER

The 24-bit parity error register stores the physical address
of the last memory location that caused a parity error.

2-10. INTERRUPT SYSTEM REGISTER

The interrupt system register is a one-bit register that
indicates the status of the interrupt system. When set
(logic 1), the interrupt system is enabled; when cleared (0),
the interrupt system is disabled.

2-11. X- AND Y-REGISTERS

These two 16-bit registers, designated X and Y, are ac-
cessed through the use of the 32 index register instruc-
tions and two jump instructions described in Section III.

2-12. WMAP-REGISTER

This 16-bit register holds the logical map numbers used
for memory references by Dynamic Mapping System
instructions, as well as the state of the memory protect
system. (The DMS is described in Section IV.)

2-1

Operating Features

2-13. IMAP REGISTER

The IMAP register is a 16-bit register that holds the value
which the WMAP register had at the last interrupt. The
IMAP register may be accessed only by the SIMP
instruction.

2-14. C- AND Q-REGISTERS

The one-bit C-register determines whether the Code and
Data Separation (CDS) feature is enabled (0 = enabled; 1
= disabled). The Q-register is a 15-bit base register whose
value is added to memory addresses whenever CDS is
enabled and a memory address is between 2 and 1023,
inclusive.

2-15. Z-REGISTER

This 16-bit register is a bounds register used by Code and
Data Separation instructions to protect user memory (re-
fer to Section V).

2-16. IQ-REGISTER

This 16-bit register holds the value which the C- and
Q-registers had at the last interrupt.

2-17. VIRTUAL REGISTERS

There are two virtual registers, M and T, that are created
by the Virtual Control Panel program and which can be
accessed, via the VCP, to examine or change a program in
memory or to manually create a program in memory.

2-18. M-REGISTER

The M-register holds the address of the memory cell
currently being read from or written into by the Virtual
Control Panel.

2-19. T-REGISTER

The T-register indicates the contents of the memory lo-
cation currently pointed to by the M-register. It uses the
memory map indicated by the XQT portion of WMAP.

2-20. CONTROLS AND INDICATORS

Operator controls and indicators for an A600 computer
system are described in the appropriate installation and
service manual.

Light-emitting diodes (LEDs) on the processor card pro-
vide indications for the computer self-test.

2-2

A600/A600+

If the HP 12013A Battery Backup Card is installed and
enabled and line power fails or is removed, the card will
emit a one-second beep sound every ten seconds, indicat-
ing that the card is sustaining memory. (No audible in-
dication is provided by the HP 12157A Power Fail Recov-
ery System;however, a VCP message at system power-up
notifies the operator if memory has not been sustained.) If
the card does not sustain memory for the duration of a
power removal, it emits a single two-second beep when
power is restored. Also, during initial installation of the
card, some types of improper installation will cause the
card to emit a continual beep. (A switch on the battery
card allows the user to disable the card.)

2-21. SELF-TEST

The self-test consists of two test programs (Test 1 and Test
2) that automatically execute each time the computer is
powered up and which provide a quick, convenient check
of basic computer operation. (Also, the self-test can be
executed by pressing Reset switch S1 on the processor
card.) If either test program fails, the computer will not
operate. Successful completion of the self-test is followed
immediately by execution of either a bootstrap loader, the
Virtual Control Panel program, or a program sustained in
memory by an optional battery pack (or battery backup
card) as preselected by the user.

Test 1 is a microprogram stored in PROM on the processor
card which executes immediately upon power up. It checks
logic and registers on the processor card. On successful
completion Test 2 is started. If Test 1 detects a failure, it
stops executing and the processor-card LEDs indicate a
failure code. Test 1 execution time is negligible.

Test 2 is an assembly language program stored in EPROM
on the memory controller card and executes upon suc-
cessful completion of Test 1. Test 2 checks the computer’s
basic instruction set, several internal flags, and all the
memory. If memory was sustained by the optional battery
pack (or battery backup card), Test 2 checks it in a non-
destructive manner by reading each memory location,
thus making a parity check on the data. If a parity error
does occur, the location is read again. Soft errors (defined
as a parity error only on the first of two reads of a memory
location) are reported to the VCP (if present). If memory
was not sustained, Test 2 writes all ones to each memory
location and reads back the data and then writes all zeros
and reads back. (The memory is cleared.) Test 2 also
checks the I/O Master logic on each interface card to en-
sure that data transfer, flag, interrupt, and direct memory
access (DMA) functions are processed correctly. If Test 2
detects a failure, it stops executing and the processor-card
LEDs indicate a failure code. (If a VCP is in the system
and the failure does not hinder VCP operation, the VCP
program is entered and the failure code is displayed on the
VCP.) The LED indication on successful completion of
Test 2 depends on the computer action selected by the
Start-Up (BOOT SEL) switches on the processor card.
Test 2 has a maximum execution time of approximately 10
seconds; the more memory installed in the backplane, the
longer it takes to execute.

A600/A600+

2-22. BOOTSTRAP LOADERS

Bootstrap loading of a program for the A600 computer is
provided for by six loaders contained in PROMs on the
memory controller card. The loading devices are disc drive
(via HP-IB or disc interface), PROM storage module,
DS/1000-IV network link, HP 264x mini-cartridge tape,
cartridge tape of the HP 7908/11/12/14 Disc Drive, and HP
7970E Magnetic Tape Drive. There are two ways to invoke
a loader: auto-boot when power comes up; and by VCP
command. Auto-boot can only invoke four of the loaders:
two discs, PROM module, and DS/1000-IV; the VCP can
invoke any of the loaders by a command from the operator.
The VCP load commands are discussed later in this
section.

2.23. LOADER SELECTION FOR
AUTO-BOOT

The selection of an auto-boot is by means of four of the
BOOT SEL switches located on the processor card. These
switches, the Start-Up switches, are set during installa-
tion and also provide options other than auto-boot
selection. When a loader has been selected for auto-boot
and the self-test completes, the boot loader executes if
memory was lost; or the program in memory executes if
memory was sustained by the optional battery backup
pack (or card). Refer to Table 2-1 for Start-Up switch
settings.

2-24. PROGRAM STARTS

When an auto-boot completes without error, the loaded
program starts execution at memory location 02. The
loader sets the contents of the Aand B-registers as follows:

a. Cold start (memory not sustained):

1. A
2. B

I

loader command parameters.
pointer to string area.

I

b. Auto-restart (starts execution at location 04 if mem-
ory sustained):

1. A = zero.
2. B = zero.

c. %E command from VCP:

1. = —1.
2. B = zero.

d. %B, or %L command from VCP:

1. A = loader command parameters.
2. B = pointer to a string area where:

Word 1 = memory size (64k bytes).
Word 2 = string length (in bytes).
Word 3 = first word of string.
Word n = n-2 word of string.

Operating Features

Table 2-1. Start-Up Switch Settings

BOOT SEL switches*

S1 82 S3 S4 S5 S6 COMPUTER ACTION

cC €C C C 2z vy Loop on self-test Test 2 regard-

less of error.
¢cC C O C z vy Loop on self-test Test 2 and stop
on error.

Run VCP** routine on comple-
tion of seif-test.

If memory lost (not sustained),
run VCP routine; otherwise,
| restart program (JMP 4B). (Note
2, Note 4.)

- If memory lost, load and execute
program from PROM card;
otherwise, restart program (JMP
- 4B). (Note 2) (In order to auto-
boot from PROM, the card must
have select code 22. Equivalent
to loader command %BRM.)

If memory lost, load and execute
program via HDLC card; other-
wise, restart program (JMP 4B).
(Note 2) (In order to auto-boot
via HDLC, the card must have
select code 24. Equivalent to
loader command %BDS.)

If memory lost, load and execute
program from first file of disc (via
HP-1B); otherwise, restart pro-
gram (JMP 4B). (Note 2) (In or-
der to auto-boot via HP-1B, the
HP-IB interface card must have
select code 27 and the disc drive
must have HP-1B address 2.
Equivalent to loader command
%BDC.)

O C C 0 z vy If memory lost, load and execute
program from first file of disc (via
HP 12022A interface); other-
wise, restart program (JMP 4B).
(Note 2) (In order to auto-boot
via HP 12022A, the card must
~ have select code 32 and operate
with a hard disc drive having
address 0. Equivalent to loader
command %BDIl.)

pen (up); C = closed (down)
. system console uses ENQ-ACK handshake.
, system console does not use ENQ-ACK handshake.
C, normal mode, break enabled.
z = O, break disabled (not halts).
** Virtual Control Panel. ,
Notes: 1. When a loader finishes an auto-boot, it starts execu-
tion of the loaded program at location 02.
2. If auto-restart feature is disabled (switch M closed),
the program cannot restart and the boot loader (or
VCP routine) will execute.
3. Do not use any switch combination that is not shown
above.
4. Use this switch configuration for normal computer
operation.

*O=o0
y =C,
y=0
z

Operating Features

2-25. VCP REENTRY FOR EXTENDED
BOOT LOADING

The VCP PROM loader can be re-entered from a program
to boot load. It executes a program from a loading device.
The VCP code is re-entered as follows:

a. A VCP boot loader call allows the programmer to call

any of the VCP loaders. This allows a complete call

back sequence including a checkout routine. For a
sample VCP loader call back checkout program, refer
to Table 2-1A.
LDA COUNT Negative number of char-
acters in the boot string.
Starting address of the
string.

Call VCP loader sequence.
VCP loader is started and
the new program is loaded.
Negative number of char-
acters (bytes) in the string.
Starting address of the
string.

ASC 06,DC2027SYSTEM

LDB POINTER

COUNT DEC -12

POINTER DEF *+1

The string can be any allowable string entered after the
%B command (%Bxxffffbusctext). Note that %B is not
actually entered but is assumed when using this call.

If the VCP loader encounters an error, the loader will
report the error and return to the VCP> prompt.

b. With the disc loader, re-enter to boot load the specific
program described by the “ABS” code in the following
call back programming sequence.

CLA,CLE,INA Indicate disc call back — do not
suspend

HLT 3,C Return to VCP Loader

ABS... HP-IB bus address

ABS... Device unit number (head for

7906)
Absolute starting sector (Vector 1
dor 7908/11/12/14)

ABS... Cylinder offset (Vector 2 for
7908/11/12/14)
ABS... Vector 3 for 7908/11/12/14

This sequence assumes that the Global Register is set
prior to entry to the loader and that the absolute starting
gector is the combined cylinder/head/sector for that drive.
When the load is completed, the loader will start execution
in the standard JMP 2 manner. If & suspend after load was
specified by the E-register being set when called, the
program will return to the VCP after the load. In the case
of the suspend the operator can enter either a %E or a %R
to continue. Any error will return to the VCP, if present,
or start the original load over.

The 7906 will be accessed in the surface mode only, all
other discs will be accessed in the cylinder mode.

2-4

A600/A600+

2-26. DEVICE PARAMETERS AND MEDIA
FORMATS

There is a specific data format for each combinat
on of loader, interface card, loading device, and media. The
data formats are described in Figure 2-1.

2-27. VIRTUAL CONTROL PANEL

The Virtual Control Panel (VCP) program is an interac-
tive program that enables an external device (such as a
terminal) to control the CPU in a manner similar to a
conventional computer control panel. That is, it allows the
operator to load programs using the loaders, access the
various registers (A, B, P, etc. plus I/O card registers),
examine or change memory, and control execution of a
program. There are two VCP programs stored in PROM on
the memory controller card: one program is for use with an
HP 12005 Interface Card, and the other is for use either
with an HP 12007/12044 DS/1000-IV Card or the HP
12040B Multiplexer Card. Only one interface card in the
computer can serve as a VCP interface; the card selection
is established when the system is installed.

2-28. VCP PROGRAM OPERATION

The VCP program is executed from PROM as a software
program and uses the various machine registers (A, B,
etc.) during its execution. Therefore, these registers are
automatically saved upon entry to the VCP code. (The
save area is in boot RAM on the memory controller card.)
Thus, the response to an inquiry is the data that was saved
at the time of entry to the VCP. The exceptions to this are
indicated by the absence of an asterisk in Table 2-2. When
the operator enters the Run (%R) command, the VCP
program restores the machine with the current data in the
save area and starts execution as specified by the program
execution address in the P-register.

The VCP program can be entered in three ways as follows:

a. After a power-up, PROM execution is directed to the
VCP program instead of a boot load routine;

b. When the VCP interface card requests a slave cycle to
enable the VCP program (e.g., BREAK key pressed on
VCP); or

c. When a HLT (halt) instruction is executed with the
memory protect system disabled and one I/O card is
enabled for break (otherwise the instruction has no
effect).

After a power-up, the computer type and the total memory
gize is displayed (ECA is always zero, as there is no error
correcting memory) and the A-register is set to the
number of I/O chips that were tested during the self-test.
This enables the operator to verify that all installed

A600/A600+

Operating Features

Table 2-1A. Sample VCP Loader Call Back Checkout Program

LABEL OPCODE OPERAND COMMENTS
ASMBABLC | | '
ORG 2B
JMP START ‘Goto start of the program.
NOP ,
'NOP No pqwerfai!, auto restart.
"ORG 1008
START HLT 0 Test halt to compare string.
LDA COUNT NNegative number of characters in the boot string.
'LDB PNTR -Starting address of the string.
CHLT 0,C Call VCP loader sequence.
NOP ' : :
NOP
NOP | |
COUNT ‘ DEC -18 Negative numbers of characteis (bytes) in the string.
PNTR DEF | 41 Starting address of the string.
ASC 09,CT10020Test String
END

memory and /O cards were tested. (Also, the B-register
normally contains the revision code of the VCP PROMs;
however, some failures that occur during self-test Test 2,
such as two or more I/O cards having the same select code,
load the B-register with error identification information.)
When entered, the VCP displays the basic set of registers
(P, A, B, M, RW, and T) and issues the VCP prompt
(VCP>) for an operator entry. The operator can enter any
of the characters or commands listed in Tables 2-2 and 2-3
and the VCP program will respond as indicated in the
tables. A carriage return is entered to terminate a
command.

After a response to an inquiry the operator can change the
data contained in that register or memory location by
entering new data; for example (operator inputs are
underlined and <cr> indicates a carriage return):

_11001234 4321<cr>
A 004321

Data input is terminated by the operator entering a
carriage return. If during an input the program cannot
interpret a character, the program will output the
characters “!1?” (except when the VCP prompt is returned
because a change has not been accepted) and then start a
new line. Entry errors may be corrected by backspacing
over them and entering the correct information; during
any data input the operator can abort the input by enter-
ing a rub-out (DEL). The loader commands, %B, %L, and
%W can also be aborted by a rub-out. When entering data
into a register, leading zeros may be omitted. If the
operator types a question mark, the VCP will output a
“help” file that summarizes acceptable command entries.

2-4A/2-4B

A600/A600+) Operating Features

Table 2-2. VCP Characters and Associated Registers

CHARACTER |
ENTERED ~ RESPONSEt MEANING
A ; ; xxxxxx A-regisier contents
B* xxxxxx B-register conienis
E* X E-register contents
G - x000xx Global Register (GR) contents and status (bit 15 = 0 if enabled, 1 if
; disabled)
* X Interrupt system status (0=off, 1=0n)
M* ‘ Oxxxxx Memory address (pointer for T and Ln command)
o X O-register contents
P © OXXXXX Program execution address
RS : 000K Switch register contents
T] OXXXXX XXXXXX Memory contents pointed to by M
v ' XXXXXX Violation register (memory protect)
X XXXXXX X-register contents
Y* 4 xkxxxx , Y-register contents ;
RC oOooxx Central Interrupt Register contentsé
RD™ XKXXXX OO0 Data for I/O diagnose modes 1 and 2 (refer to paragraph 7-22)
RF*™ . ~ xxxxxx /O flags: Flags 20 thru 24, and Flag 30 (1 = flag set; 0 = flag clear)
Ri** OO0 Interrupt mask register -
RP XXXXXX XXXXX Xxxx | Parity violation register contents
RW* 0000 Working map set (WMAP)
Q* . cxxxxx Base register cohients and CDS mode bit (1 = disabled, 0 = enabled)
z e 0000 Bounds register contents L
R20** x00000K | DMa selt-configuration register
R21* X000 DMA control register
‘R22* X000 | DMA address register
R23** - XXXXXX DMA count register
R24** : xxxxxx I/O scratch register
R25™ | X00XX I/O scratch register
R26"* , XXXXXX /O scratch register
R30** XI00KX I/O card data register
R31** 0000 Optional /O card register
R32* L XXXXKX : Optional 1/O card register
T x = octal data except for RF**.
* Registers that are maintained in the VCP save area of boot RAM
** Applies only to the /O card whose select code equals the contents of the Global Register.
NOTE: When a register's contents are changed by the user the new value is retumned, if the VCP does not accept a
change, the VCP prompt is returned. ,

Update 3 2-5

Operating Features

2-29. LOADER COMMANDS

The loader commands can be entered via the VCP in
either of two ways:

a. Allow the parameter default values (given in Figure
2-1) to be used; or

b. Specify all necessary parameters.

The VCP loader command format is shown in Figure 2-2.
The loader command error messages and their meanings
are listed in Table 2-4.

2-30. VCP USER CONSIDERATIONS

When using the VCP to debug a program the user should
be aware of the following conditions:

a. The VCP program uses an interface card and modifies
the characteristics of that card. When the VCP pro-
gram exits, it sets Register 24 on the interface card to
all ones to allow software detection of a VCP in-
teraction and, thus, re-initialize the card for proper
operation. (This also causes an interrupt if the
interrupt system is enabled.) Also, the VCP will leave
the card in the output mode with both Flag 30 and
Control 30 set.

b. The status of the interrupt system (STC 4 (on) or CLC
4 (off)) is not indicated and will remain unchanged
unless %P is executed to preset the computer.

¢. Memory protect is indicated as the sign bit of RW
(WMAP register) and may be modified. (1 = enabled,
0 = disabled)

2-31. VCP SLAVE FUNCTIONS

The slave feature of an I/O processor chip is used in
conjunction with the VCP program. The slave feature
enable is read into the /O chip of the VCP interface card
on power-up and cannot be altered until the next power-up
condition. After power-up a change in the state of the
slave signal causes the I/O chip to generate a slave request
on the next instruction fetch. When the request is granted,
the I/O chip requests the CPU’s current P-register con-
tents and saves these contents in a register in the I/O chip.
The I/O chip then stores the starting address of the VCP
program into the CPU’s P-register, instructs the CPU to
enable the boot PROM, and allows execution to start. The
VCP program can be started in two other ways, as follows:

2-6

A600/A600+

Table 2-3. VCP Commands

COMMAND* MEANING

%B Load and go (boot). Execute a specified loader
routine and start program execution at comple-
tion of load. See Figure 2-2 for format.

%C " Clear memory. Set all memory to zero and per-
form a preset.

%E ' Execute. Start execution of program at location
P=2 (A-register equals —1 (all ones) and
B-register equals 0).

%L Load. Similar to %B except do not start execu-
tion. See figure 2-2 for format. (%L followed by
%R is equivalent to %B.)

%P Preset. Generate a control reset (CRS) signal
to all interface cards.

%R Run. Set all registers to the appropriate values
in the save area and start execution at address
specified by the P-register.

%T Test. !nitiate the self-test and return to VCP
(memory is sustained but the O system is
reset).

%W Write. Write to the selected device. (See
Figure 2-2 for format.) When writing to a disc
drive, the Count and Partial values defined in
Figure 2-1 must be in memory locations 00000
and 00001.

D Decrement. Decrement memory pointer and
display the contents of the M- and T-registers.
Valid only after T.

Ln List. List n blocks of eight memory locations
starting with location pointed to by the
M-register.

N Next. Same as D except increment the pointer.
Valid only after T..

RMxx List the 32 map registers in the DMS map set
specified by xx.

RMxxPyy Show the value of register yy in map set xx.
If a number is input after this command, the
register is changed to the new value.

? Output Help file.

*Must be followed by a carriage return.

a. On power-up and after the self-test the VCP program

starts execution if it is selected in lieu of a boot loader.
This selection may often be used because the loaders
can be invoked individually from the VCP.

A600/A600+

b. When a HLT* (halt) instruction is executed the /O
processor chip interprets it in the same manner as a
change in the slave enable signal. This allows a
program to have breakpoints for debugging purposes.
Note that a HLT instruction will not be executed, but
causes a memory protect interrupt if memory pro-
tection is on.

During execution of the VCP program, access to the
P-save register in the /O chip is accomplished with LIA/B
3 and OTA/B 3 (without the instruction’s Flag bit set). It
should also be noted that the I/O chip will not execute a

Operating Features

slave request until an STC 2 (enable break feature) in-
struction has been executed. This prevents re-entry of the
VCP program once it has been entered.

During the self-test, the starting address of the VCP
program is assigned to the break-enabled IO card by an
OTA/B 3,C* instruction with the Aor B-register set to the
address. This address can also be read back with an LIA/B
3,C* instruction.

* If break is not enabled on any I/O card, then the in-

struction has no effect.

MINI-CARTRIDGE TAPE

Parameters*: 000020

Parameters*: 000022

unit number.

* See Figure 22 for loader command formats.

Device: HP 264x Terminal.
Interface: HP 12005A Asynchronous Serial Interface.
Default

Transmits special escape sequence to invoke a read of a record and does checksum of the data. When
writing to tape, a block number is used to specify which 4k-word memory area is to be dumped to tape (0 = 0

If a file number is specified then the program will issue a find file command; if not, the tape is read from
where it stands. When writing to the tape, the program will not write a file mark; this allows sequential blocks
to be written in a series. There are only two units (0 and 1) on the terminal; it a larger unit number is

Format: Reads absolute binary file, writes 4k absolute binary block.
Loader:
7777 bytes, 1 = 10000 to 17777 bytes, etc.).
specified, the result will be unpredictable.
More than 32k words may be loaded into a system from a single cartridge tape.
PROM MODULE
Device: PROM (2k x 8 bits).
Interface: HP 12008A PROM Storage Module.
Default

Format: Count-Partial-Data.
Count = number of 64k byte blocks.
Partial = number of words of partial 64k byte block.
. Data = 16-bit words, one word per location until Count and Partial are satisfied.
Loader:

Uses STC-LIA process to transfer data. The PROM cannot be written to nor does it use the block number or

Figure 2-1. Loading Device Parameters and Media Formats (Sheet 1 of 3)

2-7

Operating Features A600/A600+

DISC DRIVE

Device:

Interface:

Defauit
Parameters™:

Format:

Loader:

DISC DRIVE (VIA DISC INTERFACE)

Device:

Interface:

Default
Parameters™:

Format:

Loader:

* See Figure 2-2 for loader command formats.
+ The Count is stored in location 00000 and the Partial in 00001.

HP 9895, 9134, 9133, 9121, 79086, 7908, 7910, 7911, 7912, or 7914 Disc Drive, or cartridge tape
drive of 7908/11/12/14 Disc Drive.

HP 12009A HP-IB Interface.

002027

Count-Partial-Data.t

Count = number of 64k byte blocks.

Partial = number of words of partial 64k byte block.

Data = 16-bit words, one word per location until Count and Partial are satisfied.

Uses HP-IB protocol to communicate with the disc. The load sequence is:

Device clear
Status check
Read/write 32k words via DMA
Status check

WP~

HP 2436A/86A internal fixed/micro-floppy disc drive.

HP 12022A Disc Interface.

000032
Same as Disc Drive via HP-IB, above.

Standard /O for commands to interface, and DMA for data.

»

2-8

Figure 2-1. Loading Device Parameters and Media Formats (Sheet 2 of 3)

A600/A600+

Operating Features

Device:
Interface:

Defauit

Format:

Loader:

Parameters”:

MAGNETIC TAPE
Device: HP 7970E or 7974A Magnetic Tape Drive.
interface: HP 12009A HP-IB Interface.
Default
Parameters™: 004027
Format: Memory image file.
Count-Partial-Data.
Count = number of 64k byte blocks.
Partial = number of words of partial 64k byte blmk
Data = 256 byte records read until EOF or until Count and Partial are satisfied.
Loader:

Uses HP-IB protocol to communicate with the magnetic tape. The load sequence is:

Device ID

Device clear

Rewind/file forward (if file specified)
Read/write

Status check

APl S

COMPUTER NETWORK

HP 1000 Computer.

HP 12007A/12044A HDLC Interface.

000024

Reads absolute binary or memory image files, writes a 32k memory image file.

Standard handshake using HP distributed system protocol Block number and unit number are not used.

* See Figure 2-2 for loader command formats.

Figure 2-1. Loading Device Parameters and Media Formats (Sheet 3 of 3)

2-9

Operating Features A600/A600+

LOADER COMMAND FORMAT:

%B/L/W av fffffbusc text

where:

dv = device type as follows:
DC = disc (cartridge or flexible) via HP-IB
CT = cartridge tape (HP 264x)
RM = PROM card
DS = DS computer network Link
MT = 7970E magnetic tape drive via HP-IB
DI = disc via 12022A card

fffff = file number (octal 0 to 77777 only)

b = 4k-word memory block number when writing to cartridge tape; HP-IB bus address of disc drive or drive address for
12022A interface; otherwise, use 0.

u = unit number (0 to 7) only if used on device. For the HP 7906 Disc Drive, the unit number is the head number. For
HP 7908, 7911, 7912, or 7914 Disc Drive that includes cartridge tape drive, unit 0 = disc drive and unit 1 = cartridge
tape drive.

s¢ = select code of interface card to be used.

text = file name, or ASCII string to be passed to the program after it is loaded. This is only available with the %B

and %L commands.

NOTE: See Figure 2-1 for default parameters for each loading device.

Note that spaces cannot be used in the command entry. The following formats are all acceptable:
% Bdvtext Device parameters are defaulted; text cannot start with a number.
%Bavfffffbusc No text passed.

%Bdviffffbusctext Text passed.

EXAMPLES:

%BDC Load and start execution of the default program on disc. (Disc parameters defaulted to 002027; see
Figure 2-1).

%BDC30 Load and start execution of the default program on the disc at select code 30 and default other
parameters. ‘

%LDC27025 Load (but don’t execute) and override parameter default values:
file number 2 (i.e., third file)
HP-IB bus address 7
unit 0
select code 25

%WDC27025 Same as above except write to file 2.

Figure 2-2. Loader Command Format

2-10

A600/A600+

Operating Features

Table 2-4. VCP Loader Command Errors Table 2-4. VCP Loader Command Errors (Continued)
ERROR ERROR
CODE MEANING CODE MEANING
2 Select code less than 20 octal. Magnetic Tape Loader Errors
3 No card with the select code you specified.
510 Time out during initialization/read 1D.
Cartridge Tape Loader Errors 511 Time out when issuing end/select unit.
512 Mag tape off line.
110 File forward error. Status in B-register. 513 No write ring.
111 Checksum error. 514 Time out during End command.
112 No data before EOF (end of file). 515 Time out waiting for rewind completion.
120 Write error. Status in B-register. 517 Time out waiting for DMA transfer.
520 Parity error during DMA transfer.
PROM Module Loader Errors 521 Time out doing a PHI flush.
522 Time out waiting for DSJ.
211 End of programs. 523 Bad DSJ response,
212 Bad format. 525 Time out waiting for Mag Tape Not Busy.
213 System larger than 32k must startoncard boundary. 530 Time out after issuing a command.
531 Parallel Poll time out after issuing a command.
DS/1000 Loader Errors 535 Bad status after read/write command.
550 No data transfer (read only).
310 Time out after CLC 0. Check select code specified. 560 Not mag tape ID.
311 Checksum error. P file not absolute binary.
312 Time out after download request.
313 Time out after file number.
314 Badtransfer (Centralgenerated). Status in B-register.
315 Time out after buffer request.
316 Time out after count echo. HP 12022A Disc Interface Loader Error
317 Time out waiting for data.
320 Time out after VCP mode requests a DS write. 610 Time out after SDH (sector drive head) for
321 Central will not accept data. Status in B-register. read/write.
325 Data block out of sequence 611 Time out after cylinder high.
612 Time out after cylinder low.
Disc |.oader Errors 613 Time out after sector.
614 Time out after sector count.
411 Time out reading disc type. Check HP-IB address. 615 Time out after read/write command.
412 Time out UDC (Universal Device Code) or reading 616 Time out after DMA read/write transfer.
status. Check disc. 617 Parity error during transfer.
413 Status error. Status in B-register. 620 Fixed disc not ready.
414 Time out during file mask. 630 Time out after request status register.
415 Time out during seek. 631 Time out after read status register.
416 Time out during read or write command. 632 Time out after waiting for not busy.
47 Time out during DMA of data. 633 Time out after request error register.
420 Parity error during DMA transfer. 634 Time out after read error register.
421 Time out during FIFO flush., 635 Status error:
422 Time out during DSJ (Device Specified Jump) — A-register = status register; B = error reg.
command. 650 Time out after SDH register for restore.
423 Bad DSJ return. Returned value in B-register. 651 Time out after restore.
460 Disc not identifiable. Disc ID in B-register. 660 Disc not defined.

2-11/2-12

PROGRAMMING INFORMATION

SECTION

This section describes the software data formats and the
base set machine-language instruction coding (including
single-precision floating point, virtual memory, high-level
language support instruction set (LIS), and operating
system instruction set (OSI)) required to operate the
computer and its associated input/output system. This
section also describes the double-precision floating point
instructions, which are standard in the A600+ base set.
Machine-language instruction coding for the Dynamic
Mapping System is presented in Section IV. Machine
language instruction coding for the CDS instruction group
is presented in Section V.

3-1. DATA FORMATS

As shown in Figure 3-1, the basic data format is a 16-bit
word in which bit positions are numbered from 0 through
15 in order of increasing significance. Bit position 15 of the
data format is used for the sign bit; a logic 0 in this
position indicates a positive number and a logic 1 in this
position indicates a negative number. The data is assumed
to be a whole number and the binary point is therefore
assumed to be to the right of the number.

The basic word can also be divided into two 8-bit bytes or
combined to form a 32-bit double word. The byte format is
used for character-oriented input/output devices; packing
two bytes of data into one 16-bit word is accomplished by
software drivers or by byte-packing hardware in the I/O
Master. In /O operations, the higher-order byte (byte 1) is
the first to be transferred.

The double-integer format is used for extended arithmetic
in conjunction with the extended arithmetic instructions
described under paragraphs 3-26 and 3-27. Bit position 15
of the most-significant word is the sign bit and the binary
point is assumed to be to the right of the least significant
word. The integer value is expressed by the remaining 31
bits.

Two floating point formats are shown in Figure 3-1. The
single-precision format is used with single-precision
floating point instructions included in the standard base
set of instructions, as described in paragraph 3-34. The
double-precision format is used with double-precision
floating point instructions that are included in the A600+
base set, as described in paragraph 3-40A. Bit position 15
of the most-significant word is the mantissa sign and bit
position 0 of the least-significant word is the exponent
sign. Bits 1 through 7 of the least significant word express
the exponent and the remaining bits express the mantissa.
A single-precision floating point number is made up of a
23-bit mantissa (fraction) and sign and a 7-bit exponent

and sign, thus providing six significant decimal digits in
the mantissa. A double-precision floating point number is
made up of a 55-bit mantissa and a 7-bit exponent and
sign, thus providing 16 significant decimal digits in the
mantissa. If either the mantissa or the exponent is
negative, that part must be stored in two’s complement
form. The number must be in the approximate range of
107 to 10**. When loaded into the accumulators, the
A-register contains the most-significant word and the
B-register contains the least-significant word.

Figure 3-1 also illustrates the octal notation for both
single-length (16-bit) and double-length (32-bit) words.
Each group of three bits, beginning at the right, is
combined to form an octal digit. A single-length (16-bit)
word can therefore be fully expressed by six octal digits
and a double-length (32-bit) word can be fully expressed
by 11 octal digits. Octal notation is not shown for byte or
floating-point formats, since bytes normally represent
characters and floating-point numbers are given in
decimal form.

The range of representable numbers for single-word data
is +32,767 to — 32,768 (decimal) or +77,777 to —100,000
(octal). The range of representable numbers for double-
word integer data is +2,147,483,647 to —2,147,483,648
(decimal) or +17,777,777,777 to —20,080,000,000 (octal).

3-2. ADDRESSING

3-3. PAGING

The computer memory is logically divided into pages of
1,024 words each. A page is defined as the largest block of
memory that can be directly addressed by the address bits
of a single-length memory reference instruction. (Refer to
paragraph 3-9.) These memory reference instructions use
10 bits (bits 0 through 9) to specify a memory address;
thus, the page size is 1,024 locations (2000 octal). Octal
addresses for each page, up to a maximum memory size of
32k, are listed in Table 3-1.

Provision is made to directly address one of two pages:
page zero (the base page consisting of locations 00000
through 01777) and the current page (the page in which
the instruction itself is located). Memory reference in-
structions reserve bit 10 to specify one or the other of these
two pages. To address locations on any other page, indirect
addressing is used as described in following paragraphs.
Page references are specified by bit 10 as follows:

Page Zero (Z).
Current Page (C).

a. Logic 0
b. Logic 1

Programming Information A600/A600+

DATA FORMATS
- - - > INCREASING MEMORY - - - >

Sign Bit /—- Least significant data bit

SINGLE INTEGER

151413121110 98 76 54 32 10\ Binary point
1
Byte 0 Byte 1

/ - v

PACKED
BYTE

FORMAT 15141312111098 76 54 32 10

Sign Bit Binary
’ point

DOUBLE INTEGER ! l

L

151413121110 98 76 54 32 10 151413121110 98 76 564 32 10
J

~
Intege
Mantissa sign :;‘1e3itsr Exponent sign ———\

FLOATING POINT

H‘\‘r

SINGLE PRECISION l

1541413121110 98 76 54 32 10 151413121110 98 76 54 32 10
A J

,}

~ . VT
Binary Mantissa Exponent
Point 23 bits 7 bits

Mantissa sign | | Exponent sign ———\
& Q1] Ll L2

DOUBLE PRECISION
FLOATING POINT

H

(OPTIONAL) 1541413 10 1514 2 10 1514 2 10 1514 8 76 54 32 10
E‘ AL J
~ ~—
Binary point Mantissa Exponent
55 bits 7 bits
OCTAL NOTATION
WORD
FORMAT

1514131211109 8 76 54 32 10

INTEGER
DOUBLE WORD

1514131211109 8 76 54 32 10 1514131211109 8 76 54 32 10

2270-2
Figure 3-1. Data Formats and Octal Notation

A600/A600+

Table 3-1. Memory Paging

MEMORY
SIZE PAGE

OCTAL
ADDRESSES

00000 to 01777
02000 to 03777
04000 to 05777
06000 to 07777
10000 to 11777
12000 to 13777
14000 to 15777
16000 to 17777
20000 to 21777
22000 to 23777
24000 to 25777
26000 to 27777
30000 to 31777
32000 to 33777
34000 to 35777
36000 to 37777

P RN RS oC®NOT D WN -

16K ¢

16 40000 to 41777
17 42000 to 43777
18 44000 to 45777
19 46000 to 47777
20 50000 to 51777
21 52000 to 53777
22 54000 to 55777
23 56000 to 57777
24 60000 to 61777
25 62000 to 63777
26 64000 to 65777
27 66000 to 67777
28 70000 to 71777
29 72000 to 73777
30 74000 to 75777
31 76000 to 77777

3-4. DIRECT AND INDIRECT
ADDRESSING

All memory reference instructions reserve bit 15 to specify
either direct or indirect addressing. For single-length
memory reference instructions, bit 15 of the instruction
word is used; for extended arithmetic memory reference
instructions, bit 15 of the address word is used. Indirect
addressing uses the address part of the instruction to ac-
cess another word in memory, which is taken as the new
memory reference for the same instruction. This new
address word is a full 16 bits long: 15 address bits plus
another dirct/indirect bit. The 15-bit length of the address
permits access to any location in the Logical address
space. If bit 15 again specifies indirect addressing, still
another address is obtained; thus, multistep indirect
addressing may be done to any number of levels. The first
address obtained that does not specify another indirect

Programming Information

level becomes the effective address for the instruction.
Direct or indirect addressing is specified by bit 15 as
follows:

a. Logic 0 = Direct (D).
b. Logic 1 = Indirect (I).

After three or more levels of indirect addressing, inter-
rupts are checked and, if an interrupt is pending, the
instruction will be interrupted and restarted when the
interrupt service routine is done.

3-5. MEMORY MAPPING

Memory mapping is a standard feature of the A600
computer and is used to access all locations of main
memory. Memory mapping is provided by the Dynamic
Mapping System described in Section IV.

3-5A. VIRTUAL MEMORY AREA

Under Virtual Memory Area (VMA) operation, a program
may access two separate data areas, one being the 32k
word logical address space, and the other being a virtual
address space of up to 16M words. The virtual address
space may be either memory-resident or disc-resident, and
up to 1M words per program may reside in memory. This
is accomplished through mapping pages of the logical
address space to the virtual address space.

3-5B. CODE AND DATA SEPARATION

When Code and Data Separation (CDS) is enabled, a
program’s address space is partitioned into two separate
address spaces: a code space and a data space of up to 31k
words each. Opcodes and the operand pointers that follow
the opcode reside in code space, and variables and con-
stants reside in data space. CDS instructions are provided
that remap the code segment to other physical pages in
memory, thus providing large program support. A
program’s code size may be up to 128 segments (each
having 31k words of code), which may be either memory-
resident or disc-resident. The optional HP 92078A pack-
age for the RTE-A operating system provides software
support for CDS.

3-5C. BASE-RELATIVE ADDRESSING

Under CDS, special hardware is used to access memory
locations relative to a base register called the Q-register.
When a memory address is in the range 2 through 1023,
the Q-register value is added to produce an effective
address in the data space. When CDS is enabled, code may
not reside on the base page, which means that jump in-
structions may not jump to the base page.

3-3

Programming Information

3-6. RESERVED MEMORY LOCATIONS

The first 64 memory locations of the physical base page
(octal addresses 00000 through (0077) are reserved as
listed in Table 3-2. The first two locations are reserved as
addresses for the two 16-bit accumulators (the A-and
B-registers). If options or input/output devices corre-
sponding to locations 00020 through 00077 are not in-
cluded in the system configuratior, these locations can be
used for programming purposes. The last 64 locations of
the physical base page (1700 to 1777) are reserved for use
by the Virtual Control Panel program for the string area.

3-7. NONEXISTENT MEMORY

Nonexistent memory is defined as those locations not
physically implemented in the machine. Any attempt to
write into a nonexistent memory location will be ignored
(no operation). Any attempt to read from a nonexistent
memory location will return an all-ones word (177777
octal); no parity error occurs. If the nonexistent memory is
protected, a memory protect interrupt will be generated.

3-8. BASE SET INSTRUCTION
FORMATS

The base set of instructions are classified according to
format. The six formats used are illustrated in Figure 3-2
and described in the following paragraphs except for the
DMS and CDS instructions, which are described in Sec-
tions IV and V. In all cases where a single bit is used to
select one of two cases (e.g., D/I), the choice is made by
coding a logic O or logic 1, respectively.

3-9. MEMORY REFERENCE
INSTRUCTIONS

This class of instructions, which combines an instruction
code and a memory address into one 16-bit word, is used to
execute some function involving data in a specific memory
location. Examples are storing, retrieving, and combining
memory data to and from the accumulators (A- and
B-registers) or causing the program to jump to a specified
location in memory.

The memory cell referenced (i.e., the absolute address) is
determined by a combination of 10 memory address bits (0
through 9) in the instruction word and 5 bits (10 through
14) assumed from the current contents of the M-register.
This means that memory referernce instructions can di-
rectly address any word in the current page; additionally,
if the instruction is given in some location other than the
base page (page zero), bit 10 (Z/C) of the instruction dou-
bles the addressing range to 2,048 locations by allowing
the selection of either page zero or the current page. (This
causes bits 10 through 14 of the address contained in the

34

A600/A600+

Table 3-2. Reserved Memory Locations

MEMORY
LOCATION PURPOSE
00000 A-register address.
00001 B-register address.
00002-00003 | Reserved.
00004 Power-fail interrupt.
00005 Memory parity interrupt.
00006 Time base generator interrupt.
00007 Memory protect interrupt.
00010 Unimplemented instruction interrupt.
00011 Reserved.
00012 Virtual Area Memory Interrupt.
00013 CDS Segment Interrupt.
00014-00017 | Reserved.
00020-00077 | Interrupt locations corresponding to
interface card select codes.
01700-01777 | VCP program string area.

M-register to be set to zero instead of assuming the cur-
rent contents of the M-register.) This feature provides a
convenient linkage between all pages of memory, since
page zero can be reached directly from any other page.

With CDS enabled, this feature becomes even more
powerful as the base register is added to all base page
references (addresses from 2 to 1777 octal, or MRG in-
structions with Z/C=0). This means that each single-word
instruction has direct access to data on the current page,
or data up to 1k word relative to the base register.

As discussed under paragraph 3-4, bit 15 is used to specify
direct or indirect memory addressing. Note also that since
the A- and B-registers are addressable, any single-word
memory reference instruction can apply to either of these
registers as well as to memory cells. For example, an ADA
0001 instruction adds the contents of the B-register
(address 0001) to the contents currently held in the
A-register; specify page zero for these operations since the
addresses of the A- and B-registers are on page zero.

3-10. REGISTER REFERENCE
INSTRUCTIONS

In general, the register reference instructions manipulate
bits in the A-register, B-register, and E-register; there is
no reference to memory. This group includes 39 basic
instructions which may be combined to form a one-word
multiple instruction that can operate in various ways on
the contents of the A-, B-, and E-registers. These 39 in-

A600/A600+

structions are divided into two subgroups: the shift/rotate
group (SRG) and the alter/skip group (ASG). The ap-
propriate subgroup is specified by bit 10 (S/A). Typical
operations are clear and/or complement a register, con-
ditional skips, and register increment.

3-11. INPUT/OUTPUT INSTRUCTIONS

The input/output instructions use bits 6 through 11 for a
variety of I/O instructions and bits 0 through 5 to apply
the instructions to a specific /O channel (if the Global
Register is disabled) or to an I/O card register. This
provides the means of controlling all peripherals con-
nected to the I/O channels and for transferring data to and
from these peripherals. Included also in this group are
instructions to control the interrupt system, overflow bit,
and computer halt.

BREEEEEEEOEREBRY
| | | | i

| i | i
| i _ZC | | i

Ilnstruc!ionl]
on | I
|
|
]
|

MEMORY

REFERENCE Memory Address |

i

|
| | :
! f
| |]
| i I
[} 1 '

]
REGISTER [Class

I ti
REFERENCE I nstruction

T
] |

]

|
|
| as |
Class] I instruction

INPUT/OUTPUT | Channet No.]

| | [] 1
I Class | I Instruction |
| |
N b
| Col
! | I i

|

;
armemenc L L] | eros |
HEFI\';ER!SJZE Memory Address]
ol l | ! I
Class : : Instruction :
! [
|
i

|
|
EXTENDED ' | {
No. of
L Shifts l

ARITHMETIC [l l
E
]
i
)

REGISTER
REFERENCE

| A/B
l Class

EXTENDED
INSTRUCTION | Class
GROUP)

|

|

FLOATING !
poINT, | !

DOUBLE INTEGER, I Class I
CDS, AND LIS

l Instruction]
I

|
Instruction]

8200-68

Figure 3-2. Base Set Instruction Formats

Programming Information

3-12. EXTENDED ARITHMETIC MEMORY
REFERENCE INSTRUCTIONS

As the single-word memory reference instruction de-
scribed previously, the extended arithmetic memory
reference instructions include an instruction code and a
memory address. In this case, however, two words are
required. The first word specifies the extended arithmetic
class (bits 12 through 15 and 10) and the instruction code
(bits 4 through 9 and 11); bits 0 through 3 are not needed
and are coded with zeros. The second word specifies the
memory address of the operand. Since the full 15 bits are
used for the address, this type of instruction may directly
address any location in memory. If the CDS mode is ena-
bled and the reference is to the base page, the base (Q)
register will be added to the second word before referenc-
ing memory. As with all memory reference instructions,
bit 15 is used to specify direct or indirect addressing.
Operations performed by this class of instructions are
integer multiply and divide (using double-length product
and dividend) and double load and double store.

3-13. EXTENDED ARITHMETIC REGISTER
REFERENCE INSTRUCTIONS

This class of instructions provides long shifts and rotates
on the combined contents of the A- and B-registers. Bits 12
through 15 and 10 identify the instruction class; bits 4
through 9 and 11 specify the direction and type of shift;
and bits 0 through 3 control the number of shifts, which
can range from 1 to 16 places.

3-14. EXTENDED INSTRUCTIONS

The extended instructions include index register in-
structions, bit and byte manipulation instructions, and
move and compare instructions. Instructions comprising
the extended instruction group are one, two, or three
words in length. The first word is always the instruction
code; operand addresses are given in the words following
the instruction code or in the A-and B-registers. The
operand addresses are 15 bits long, with bit 15 (most-
significant bit) generally indicating direct or indirect
addressing.

3-15. FLOATING POINT INSTRUCTIONS

The floating point instructions allow addition, subtrac-
tion, multiplication, and division of 32-bit floating point
quantities. Two conversion routines are provided for
transforming numerical integer representations to/from
floating point representations. The A600+ adds double
precision (64-bit) floating point instructions, as well as all
routines to convert from single and double integer to
single and double precision floating point, and vice versa.

3-5

Programming Information

3-16. DOUBLE INTEGER INSTRUCTIONS

The double integer instructions allow arithmetic and test
operations on 32-bit quantities. Bits 15 through 7 identify
the instruction class, and bits 6 through O specify the
instruction code. Double integer values contained in the
A- and B-registers have the most significant bits in the
A-register.

3-17. LANGUAGE INSTRUCTION SET

The language instruction set performs several frequently
used high-level language operations, including parameter
passing, array address calculaticns, and floating point
conversion, packing, rounding and normalizing. Bits 15
through 7 identify the instruction class, and bits 6 through
0 specify the instruction code.

3-18. VIRTUAL MEMORY INSTRUCTIONS

The virtual memory instructions perform accesses to
virtual memory and the extended memory area, which are
extensions of logical memory.

3-19. OPERATING SYSTEM
INSTRUCTIONS

The operating system instructions provide instructions for
ascertaining the CPU and firmware identification, and
instructions for interrupt conditions.

3-19A. CDS INSTRUCTIONS

The A600+ includes the CDS instruction set, which in-
cludes instructions for examining and modifying the base
(Q) register, bounds (Z) register, and CDS-mode (C) reg-
ister. This set also includes instructions for transferring
control between subroutines (which may or may not be
memory resident).

All instructions that reference multi-word data (double
integer, single and double precision floating point) as well
as instructions using sequential addressing (DMS move
instructions, .SETP and SFB) will have the base register
added to the initial address if the instruction is base re-
lative and CDS mode is enabled. Subsequent memory
references are then executed sequentially.

Instructions that leave an address in a register upon
completion (e.g., LBT, .ZFER, .SETP, MWO00) will contain
an address resolved for base relativity, incremented by the
proper count.

3-20. BASE SET INSTRUCTION CODING

Machine language coding for the base set of instructions
are provided in following paragraphs. Definitions for these

3-6

A600/A600+

instructions are grouped according to the instruction type:
memory reference, register reference, input/output,
extended arithmetic memory reference, and extended
arithmetic register reference.

Directly above each definition is a diagram showing the
machine language coding for that instruction. The gray
shaded bits code the instruction type and the blue shaded
bits code the specific instruction. Unshaded bits are
further defined in the introduction to each instruction
type. The mnemonic code and instruction name are in-
cluded above each diagram.

In all cases where an additional bit is used to specify a
secondary function (D/1,Z/C, or H/C), the choice is made by
coding a logic 0 or logic 1, respectively. In other words, a
logic 0 codes D (direct addressing), Z (zero page), or H (hold
flag); a logic 1 codes I (indirect addressing), C (current
page), or C (clear flag).

3-21. MEMORY REFERENCE
INSTRUCTIONS

The following 14 memory reference instructions execute a
function involving data in memory. Bits 0 through 9
specify the affected memory location on a given memory
page or, if indirect addressing is specified, the next ad-
dress to be referenced. Indirect addressing may be con-
tinued to any number of levels; when bit 15 (D/]) is a logic
0 (specifying direct addressing), that location will be taken
as the effective address. The A- and B-registers may be
addressed as locations 00000 and 00001 (octal),
respectively.

If bit 10 (Z/C) is a logic 1, the memory address is on the
current page. If bit 10 is a logic 0, the memory address
depends on whether CDS mode is enabled. If CDS mode is
enabled, the base (Q) register will be added to bits 0
through 9 to provide the memory address. If CDS mode is
not enabled, the memory address is on the base page
(page 0). If the A- or B-register is addressed, bit 10 must
be a logic 0 to specify page zero, unless the current page is
page zero.

ADA ADD TO A
1514 13121110 9|8 7 65 4 3|2 1 0

HEEEEEN

v
Memory Address

Adds the contents of the addressed memory location to the
contents of the A-register. The sum remains in the
A-register and the contents of the memory cell are un-
altered. The result of this addition may set the extend bit
or the overflow bit. (Extend and overflow examples are
illustrated on page A-13.)

A600/A600+

ADD TO BE

Programming Information

IOR “INCLUSIVE OR” TO A

8 7 6154 3]1210

HEEEE RN

15114 131211110 9|8 7 6]5 4 3|2 1 0

PCufoel1] HEREEE

\'4
Memory Address

Adds the contents of the addressed memory location to the
contents of the B-register. The sum remains in the
B-register and the contents of the memory cell are un-
altered. The result of this addition may set the extend bit
or the overflow bit. (Extend and overflow examples are
illustrated on page A-13.)

AND “AND” TO A
15114 131211110 9]8 7 6|5 4 3|2 1 0

Colofefrfolsel] [[] [[]T]

\\ J
\'4
Memory Address

Combines the contents of the addressed memory location
and the contents of the A-register by performing a logical
“and” operation. The contents of the memory cell are
unaltered.

CPA COMPARE TO A
15114 131211110 918 7 6]5 4 3|2 1 0

ol T[T [TT]

ID/I 1 In Iﬁ, T

Memory Address

Compares the contents of the addressed memory location
with the contents of the A-register. If the two 16-bit words
are not identical, the next instruction is skipped; i.e., the
P-register advances two counts instead of one count. If the
two words are identical, the next sequential instruction is
executed (do if true). Neither the A-register contents nor
memory cell contents are altered.

CPB COMPARE TO B

1514131211’”109 8 7 6154 31210

o T T T T T T T]

Y
Memory Address

Combines the contents of the addressed memory location
and the contents of the A-register by performing a logical
“inclusive or” operation. The contents of the memory cell
are unaltered.

(1Y4 INCREMENT AND SKIP IF ZERO
15114 131211110 98 7 6|5 4 3]2 1 0

Codofrfefrleed T[T [[]]]

\— /
\4
Memory Address

Adds one to the contents of the addressed memory loca-
tion. If the result of this operation is zero (memory con-
tents incremented from 177777 to 000000), the next in-
struction is skipped; i.e., the P-register is advanced two
counts instead of one count. If the result of this operation
is not zero, the next sequential instruction is executed. In
either case, the incremented value is written back into the
memory cell. Current page, direct addressing with this
instruction will produce undefined results if CDS is
enabled.

JMP JUMP
15]14 13121110 9|8 7 65 4 3|2 1 0

HEEEEEN

Y
Memory Address

Transfers control to the addressed memory location. That
is, a JMP causes the P-register count to set according to
the memory address portion of the JMP instruction so that
the next instruction will be read from that location.

JSB JUMP TO SUBROUTINE
15014 131211110 9]8 7 6]5 4 3]2 1 0

\Q Y]
Y
Memory Address

Compares the contents of the addressed memory location
with the contents of the B-register. If the two 16-bit words
are not identical, the next instruction is skipped; i.e., the
P-register advances two counts instead of one count. If the
two words are identical, the next sequential instruction is
executed (do if true). Neither the B-register contents nor
memory cell contents are altered.

& P LT TTT L]

-)
\'4
Memory Address

This instruction, executed in location P (P-register count),
causes the computer control to jump unconditionally to the
memory location (m) specified by the memory address
portion of the JSB instruction. The contents of the
P-register plus one (return address) is stored in memory
location m, and the next instruction to be executed will be

3-7

Programming Information

that contained in the next sequential memory location
(m + 1). A return to the main program sequence at P + 1
will be effected by a JMP indirect through location m. This
instruction has undetermined results if executed while
CDS is enabled.

LDA LOAD A

15114 1312]1110 9|8 7 65 4 3|2 1 0

Colefrfofofoe J [I T[]]]
o v /

Memory Address

Loads the contents of the addressed memory location into

the A-register. The contents of the memory cell are
unaltered.

LDB LOAD B

1514 1312]1110 9|8 7 6|5 4 3[|2 1 0

Llefofofr e T[T T []]
N — v /

NMemory Address

Loads the contents of the addressed memory location into
the B-register. The contents of the memory cell are
unaltered.

STA STORE A
15114 1312|1110 98 7 6|5 4 3|2 1 0

Cefrfefofsd [[[T [0]]

\ /
Y
Memory Address

Stores the contents of the A-register in the addressed
memory location. The previous contents of the memory
cell are lost; the A-register contents are unaltered. Cur-
rent page, direct addressing with this instruction will
produce undefined results if CDS is enabled.

STB STORE B
15114 13121110 98 7 65 4 3]2 1 0

Colefrfe ool T T[]

Ve
Memory Address

Stores the contents of the B-register in the addressed
memory location. The previous contents of the memory
cell are lost; the B-register contents are unaltered. Cur-
rent page, direct addressing with this instruction will
produce undefined results if CDS is enabled.

3-8

A600/A600+

XOR “EXCLUSIVE OR” TO A
15114 13 12]1110 98 7 6]5 4 3}2 1 0

%l T[T][]

\'4
Memory Address

Combines the contents of the addressed memory location
and the contents of the A-register by performing a logical
“exclusive or”operation. The contents of the memory cell
are unaltered.

3-22. REGISTER REFERENCE
INSTRUCTIONS

The 39 register reference instructions execute functions
on data contained in the A-register, B-register, and
E-register. These instructions are divided into two groups:
the shift/rotate group (SRG) and the alter/skip group
(ASG). In each group, several instructions may be com-
bined into one word. Since the two groups perform sepa-
rate and distinct functions, instructions from the two
groups cannot be mixed. Unshaded bits in the coding
diagrams are available for combining other instructions
from the same group. The ASG and SRG instructions are
not affected by the state of CDS.

3-23. SHIFT/ROTATE GROUP. The 20 instructions
in the shift/rotate group (SRG) are defined first; this group
is specified by setting bit 10 to a logic 0. A comparison of
the various shift/rotate functions are illustrated in Figure
3-3. Rules for combining instructions in this group are as
follows (refer to Table 3-3):

a. Only one instruction can be chosen from each of the
two multiple-choice columns.

b. References can be made to either the A-register or
B-register, but not both.

c. Sequence of execution is from left to right.

d. In machine code, use zeros to exclude unwanted
operations.

e. Code a logic 1 in bit position 9 to enable shifts or
rotates in the first position; code a logic 1 in bit posi-
tion 4 to enable shifts or rotates in the second position.

f. The extend bit is not affected unless specifically
stated. However, if a “rotate-with-E” instruction
(ELA, ELB, ERA, or ERB) is coded but disabled by a
logic 0 in bit position 9 and/or position 4, the
E-register will be updated even though the A-or
B-register contents are not affected; to avoid this
situation, code a “no operation” (four zeros) in the first
and/or second positions (3 zeros for ALS/BLS).

A600/A600+ Programming Information

1st Position 2nd Position

Table 3-3. Shift/Rotate Group Combining Guide ALF ROTATE A LEFT FOUR
— - _ ~ 1514131211109876543210
2.';21 ikil (] o i o]] o
RAL RAL
ARR L LetLEl LSLAl [B8
ALF s ALF S
ERA ERA Y |

ELA ELA
— : — — Rotates the A-register contents (all 16 bits) left four
— —_ places. Bits 15, 14, 13, and 12 rotate around to bit posi-

~BL$] 8LS tions 3, 2, 1, and 0, respectively. Equivalent to four suc-
:gf ‘(:’;ﬁ cessive RAL instructions.
28:{ LCLE] Lste) ¢ Ren ALR A LEFT SHIFT, CLEAR SIGN
EEZS Ere I (NENF) (T 765432 10
ELB | N ELB 7] L] g‘ [0 lo I [0 [0
1st Position 2nd Position
Shifts the A-register contents left one place and clears
sign bit 15.
A- or B-Register O ALS A LEFT SHIFT
¥ ¥
gtg i151413[12]11b0]9]8]7[6[5[4[3[2}110] 15 1413 1211110 9 8 7 5 5431210
[1] Jolo]o
ers 0 L[[TLIITTI{{[[]
1st Position 2nd Position
Arithmetically shifts the A-register contents left one
RAL ¥y £ f place, 15 magnitude bits only; bit 15 (sign) is not affected.
RBL ﬁsl l] [[] l l 1 l [[[l]0] The bit shifted out of bit position 14 is lost; a logic 0

replaces vacated bit position 0.

Yy (¥ ARS A RIGHT SHIFT
ggﬁ[b‘SIHHHHHIHLO/I} 15113 121110 98 7 6]5 4 3]2 1 0

1 JoTo o] T[] JoJo]

ey °
Qt:: S SaEEERERRENSRD | f | f

1st Position 2nd Position
Arithmetically shifts the A-registe tents right
ERA h ;[‘ ?[1 I [l l IJ] l (rﬁ}oj plz:ce,n;; :flaagiitsude iitsf)ﬂy:;?:SISr(scig) i:lnozlgffec:er:ie.
ERB A copy of the sign bit is shifted into bit position 14; the bit
IE—LL_J‘ shifted out of bit position 0 is lost.’
~EO BLF ROTATE B LEFT FOUR
ELB l"sHHHHlHlHM 18[1a13 121110 9]8 7 65 4 3]2 1 0
~ (£} v M

(""L“,——Lr_j,(ﬁ’_lﬁ\ 0j0i0i0
ot | [shefafiz]tio[e 8] 7[6]5]4[3]2]1]o D’-/ Lj./

1 8
\. _/ 1st Position 2nd Position
Rotates the B-register contents (all 16 bits) left four
Figure 3-3. Shift and Rotate Functions places. Bits 15, 14, 13, and 12 rotate around to bit posi-

3-9

Programming Information

tions 3, 2, 1, and 0, respectively. Equivalent to four suc-
cessive RBL instructions.

BLR B t.EFT SHIFT, CLEAR SIGN

1514131211109876543210
fofofojo]1]0]1 1]0[0 [1] [1]0]o
1st Position 2nd Position

Shifts the B-register contents left cne place and clears sign
bit 15.

BLS B LEFT SHIFT
1514131211109876543210
[ofofofof1]o]1 I ojofo

1st Position 2nd Position

Arithmetically shifts the B-register contents left one
place, 15 magnitude bits only; bit 15 (sign) is not affected.
The bit shifted out of bit position 14 is lost; a logic 0
replaces vacated bit position O.

BRS B RIGHT SHIFT
15114 13 12 111098765432
[oJoJoJo]1]o]1]0]0 |1 [1]

1st Position 2nd Position

Arithmetically shifts the B-register contents right one
place, 15 magnitude bits only; bit 15 (sign) is not affected.
A copy of the sign bit is shifted into bit position 14; the bit
shifted out of bit position 0 is lost.

CLE CLEAR E
15141312}11109 8 7 654 3|210
[o]oJoTo] To] T [[I0] [| [|

Clears the E-register; i.e., the extend bit becomes a logic 0.

ELA ROTATE E LEFT WITH A

15]14 13 12]11 10 9 a 7 s 5 43 2 1 o
[ofofofofojo] 1]

iy

1st Position 2nd Position

Rotates the E-register content left with the A-register
contents (one place). The E-register content rotates into
bit position O; bit 15 rotates into the E-register.

3-10

A600/A600+

ELB ROTATE E LEFT WITH B

3141312,11109 8 7 s 5 4 3[2 1 0
[ofofofof1Jo]1 |1 1]1]0

D’LT

1st Position 2nd Position

Rotates the E-register content left with the B-register
contents (one place). The E-register content rotates into
bit position 0; bit 15 rotates into the E-register.

ERA ROTATE E RIGHT WITH A
1514131211I09876543210
[o]ofofofoj0] 1101

gy

1st Position 2nd Position
Rotates the E-register content right with the A-register
contents (one place). The E-register content rotates into
bit position 15; bit 0 rotates into the E-register.

ERB ROTATE E RIGHT WITH B

15[14 13 12J1110 9]8 7 6]5 4 3|2 1 0

ofofofoltJon e o0] 1] Jafofn

Rotates the E-register content right with the B-register
contents (one place). The E-register content rotates into
bit position 15; bit O rotates into the E-register.

NOP NO OPERATION
15[14 1312]1110 98 7 6]5 & 3[2 1 0
[ofoToTofoToToJoTo o oo afo o o]

This all-zeros instruction causes a no-operation cycle.

RAL ROTATE A LEFT
151413 12J1110 9|8 7 6]5 4 3]2 1 0

[o]oTo ofo o1 fo 1Jof 1] fof1]0

Rotates the A-register contents left one place (all 16 bits).
Bit 15 rotates into bit position 0.

A600/A600+

RAR ROTATE A RIGHT
15[1413 12[1110 9]8 7 6]5 4 32 10
ofoj1fol1]1 0l11

m La

1st Position 2nd Position

Rotates the A-register contents right one place (all 16
bits). Bit 0 rotates into bit position 15.

RBL ROTATE B LEFT
a 7 s 5 4 3
01 10

LT l_j

1st Position 2nd Position

Rotates the B-register contents left one place (all 16 bits).
Bit 15 rotates into bit position 0.

Programming Information

Table 3-4. Alter/Skip Group Combining Guide
cta)] CLE
{cmal | [sEZ) ‘CME‘
CCA CCE
(cLB) | cLe)]
{cmBl | (,sEZ) .{cms}
cce CCE

b. References can be made to either the A-register or
B-register, but not both.

-

[.SSA] [.SLA] [LINA] {,S2A] [,RSS]

{,588) {,SLB) {,INB] {,828] {,RSS]

c. Sequence of execution is from left to right.

d. If two or more skip functions are combined, the skip
function will occur if either or both conditions are
met. One exception exists: refer to the RSS
instruction.

e. In machine code, use zeros to exclude unwanted

instructions.
RBR ROTATE B RIGHT CCA CLEAR AND COMPLEMENT A
’15’14131’211109876543210 15114 1312J1110 918 7 6|5 4 3]2 1 0
[ofofofofr{of1fof1]1] [1] 011 lofoloo L T [T T T 1T
L } ‘ } Clears and complements the A-register contents; i.e., the
contents of the A-register become 177777 (octal). This is
1st Position 2nd Posmon

Rotates the B-register contents right one place (all 16
bits). Bit 0 rotates into bit position 15.

the two’s complement form of —1.

cCB CLEAR AND COMPLEMENT B

SLA

SKIP IF LSB OF A IS ZERO

110 9

87 6

5 4 3

210

15114 13 12
e!ulo o]0

[1

K

L]

15114 1312

1110 9

87 6

5 4 3

210

[o]ojojo]

R

1] |

1]

| |

Skips the next instruction if the least-significant bit (bit 0)
of the A-register is a logic 0.

Clears and complements the B-register contents; i.e., the
contents of the B-register become 177777 (octal). This is
the two’s complement form of —1.

SLB SKIP IF LSB OF B IS ZERO CCE CLEAR AND COMPLEMENT E
1514131211109876543210 15’141:312111’09876543210
ofofofofafol [TTTT DT] lofofofo] [a] T DA [T 11|

Skips the next instruction if the least-significant bit (bit 0)
of the B-register is a logic 0.

3-24. ALTER/SKIP GROUP. The 19 instructions
comprising the alter/skip group (ASG) are defined next.
This group is specified by setting bit 10 to a logic 1. Rules
for combining instructions are as follows (refer to
Table 3-4):

a. Only one instruction can be chosen from each of the
two multiple-choice columns.

Clears and complements the E-register content (extend
bit); i.e., the extend bit becomes a logic 1.

CLA CLEAR A

1514 13121110 918 7 65 4 312 1 0
emeomo INEERREN

Clears the A-register; i.e., the contents of the A-register
becomes 000000 (octal).

3-11

Programming Information

CLB CLEAR B
1514131211109 8 7 6]54 31210

oo o T T T

Clears the B-register; i.e., the contents of the B-register
become 000000 (octal).

CLE CLEARE
15|14 13 121110 8 7 6|54 31210

ofofo] Lol [Jolof T [T[]

Clears the E-register; i.e., the extend bit becomes a logic 0.

CMA COMPLEMENT A
1514‘131211109 87 6|54 3]210

ofofofoaafol TTT T]

A600/A600+

octal) is made. The extend bit will be set if an all-ones
word (177777 octal) is incremented.

RSS REVERSE SKIP SENSE
15114 1312|1110 9|8 7 6|5 4 3]2 1 0

[o] o] DEEEEEEEEEL

Skip occurs for any of the following skip instructions, if
present, when the non-zero condition is met. An RSS
without a skip instruction in the word causes an uncon-
ditional skip. If a word with RSS also includes both SSA
and SLA (or SSB and SLB), bits 15 and 0 must both be
logic 1’s for a skip to occur; in all other cases, a skip occurs
if one or more skip conditions are met.

SEZ SKIP IF E IS ZERO

Complements the A-register contents (one’s complement).

CMB COMPLEMENT B
15114 13121110 9 {8 7 615 4 312 10

0fofo ol TT T 11711

Complements the B-register contents (one’s complement).

CME COMPLEMENT E
15144‘13121110 8 7 6|54 31210

[ofoofo] [1] [T[]

Complements the E-register content (extend bit).

INA INCREMENT A
1514131211109 87 6]54 3]210

[ofolofofoa] [[T T T T I !

Increments the A-register by one. The overflow bit will be
set if an increment of the largest positive number (077777
octal) is made. The extend bit will be set if an all-ones
word (177777 octal) is incremented.

INB INCREMENT B
15114 13121110 9|8 7 6|5 4 312 1 0

oJofofo W f T [T T T T Tl 1

Increments the B-register by one. The overflow bit will be
get if an increment of the largest positive number (077777

3-12

15[14 131211110 918 7 65 4 3|2 1 0

[ofofofo] [T { T Tl [111

Skips the next instruction if the E-register content (extend
bit) is a logic 0.

SLA SKIP IF LSB OF A IS ZERO
1514]31211109 87 6154 31210

[ofofolofoa T [T T T T Dl T 1

Skips the next instruction if the least-significant bit (bit 0)
of the A-register is a logic 0; i.e., skips if an even number is
in the A-register.

SLB SKIP IF LSB OF B IS ZERO
15/14 13121110 9|8 7 6]5 4 312 1 0

[ofofofofofo] [[T [[0] []

Skips the next instruction if the least-significant bit (bit 0)
of the B-register is a logic 0; i.e., skips if an even number is
in the B-register.

SSA SKIP IF SIGN OF A IS ZERO
15114 13’12 1110 98 7 615 4 3}j2 1 0
ofofofofod [[T [1T [111

Skips the next instruction if the sign bit (bit 15) of the
A-register is a logic 0; i.e., skips if a positive number is in
the A-register.

A600/A600+

S$SB SKIP IF SIGN OF B IS ZERO
15;14 13 12 11’10 918 7 6]5 4 3|12 10
fojojofofrfofl [[[J o]]

Skips the next instruction if the sign bit (bit 15) of the
B-register is a logic 0; i.e., skips if a positive number is in
the B-register.

SZA SKIP IF A IS ZERO

1’5”’14"1312“ 1110 9f8 7 6]5 4 3|2 1 0

JHEEEEEE RN

o]

Skips the next instruction if the A-register contents are
zero (16 zeros).

SZB SKIP IF B IS ZERO
15114 131211110 9|8 7 6]5 4 3|2 1 0
1]

Pl

Skips the next instruction if the B-register contents are
zero (16 zeros).

3-25. INPUT/OUTPUT INSTRUCTIONS

The following input/output instructions provide the
capability of setting, clearing or testing the flag and
control bits associated with DMA, programmed 1/O, in-
terrupts, memory protect, time base generator, parity
error, Global Register, and overflow. /O instructions with
select codes of seven or less have various functions. (Refer
to Table 5-3 for further information regarding specific
select-code functions.) /O instructions permit data trans-
fer between the A- and B-registers and either specific /'O
devices or between registers associated with memory
protect, parity error, or interrupts. The various registers
and VO devices are addressed by means of their register
numbers and select codes.

Bit 11, where relevant, specifies the A- or B-register or
distinguishes between set control and clear control;
otherwise, bit 11 may be a logic O or a logic 1 without
affecting the instruction (although the assembler will
assign zeros in this case). In those instructions where bit
position 9 includes the letters H/C, the programmer has
the choice of holding (logic 0) or clearing (logic 1) the
device flag after executing the instruction. (Exception: the
H/C bit associated with instructions SOC and SOS holds or
clears the overflow bit instead of the device flag.) Note
that this H/C option is not supported on some of the /O
instructions with select code less than 10 octal.

Bits 8, 7, and 6, specify the appropriate I/OQ instruction.
When the Global Register is enabled, bits 5 through 0

Programming Information

apply the instruction to a register on the I/O card whose
select code is in the Global Register. (The Global Register
is discussed further in paragraph 6-4).

NOTE

Execution of I/O instructions is inhibited
when the memory protect feature is
enabled. Refer to paragraph 5-3.

The following instruction descriptions assume that the
Global Register is disabled and, therefore, the instructions
are addressed to a select code. The extension of IO in-
structions is not affected by the state of CDS.

CLC CLEAR CONTROL
15014 13 12]1110 918 7 6)5 4 312 1 0

Lfofofofafaluerfo o] | []]]
N —

Select Code or
Register Number

Clears the control bit (Control 30) of the selected /O
channel or function. This turns off the specific device
channel and prevents it from interrupting. A CLC 00
instruction clears the control bits from select code 06
upward, effectively turning off all I/O devices.

CLF CLEAR FLAG
15114 1312|1110 9]8 7 6]5 4 3]12 1 0

fofofof [efefefoln] [[111

2\
Select Code or
Register Number

Clears the flag (Flag 30) of the selected I/O channel or
function. A CLF 00 instruction disables the interrupt
system for the time base generator and all interface cards;
this does not affect the status of the individual channel

flags.

CLO CLEAR OVERFLOW
15[14 1312]1110 98 7 65 4 3[2 1 0
1Jofofofo]1]1]ofo[1]o]o]o]o]a]s
Clears the overflow bit.

HLY HALT

151413‘12‘111‘09 8 7 615 4 312 10
[rfofofo] [1Mcfofofof | | | []

v
Select Code or
Register Number

Halts the computer, holds or clears the flag of the selected

I/O channel, and invokes the virtual control panel

3-13

Programming Information

program. The HLT instruction will be contained in the
T-register, which is displayed on the VCP when the VCP
program starts executing. The P-register (also displayed)
will contain the HLT location plus one. Note that if break
is not enabled on any /O card, the HLT instruction has no
effect.

LIA LOAD INTO A
15014 13 121110 9 210

Register Number

Loads the contents of the addressed /O buffer or special
function register into the A-register.

LiB LOAD INTO B
15]14 1312|1110 9]8 7 65 4 3|2 1 .0

il

Register Number

Loads the contents of the addressed I/O buffer or special
function register into the B-register.

MIA MERGE INTO A
2 10

15114 13 12]1110 9

@

Register Number

By executing a logical “inclusive or” function, merges the
contents of the addressed I/O buffer or special function
register into the A-register.

A600/A600+

0T8 OUTPUT B
15]14 13 12[1110 9f8 7 6]5 4 3[2 1 0

[[[]

Register Number

Ougputs the contents of the B-register to the addressed /O
buffer or special function register. The contents of the
B-register are not altered.

SFC SKIP IF FLAG CLEAR
15]14 1312|1110 9|8 7 6}5 4 3]2 1 0

HE RN

~/
Select Code or
Register Number

Skips the next programmed instruction if the flag (Flag
30) of the selected channel is clear (device busy).

SFS SKIP IF FLAG SET
15[14 13 12f1110 9[8 7 6|5 4 3]2 1 0

[T

Y

Select Code or
Register Number

Skips the next programmed instruction if the flag (Flag
30) of the selected channel is set (device ready).

S0C SKIP IF OVERFLOW CLEAR

15]14 1312|1110 9|8 7 6]5 4 3]2 1 0
Skips the next programmed instruction if the overflow bit
is clear. Use the H/C (bit 9) to either hold or clear the

overflow bit following the completion of this instruction
(whether the skip is taken or not).

S0S SKIP IF OVERFLOW SET

MIB MERGE INTO B
15 14]3(12 1'110 9 210
/
=

Register Number
By executing a logical “inclusive or” function, merges the
contents of the addressed I/O buffer or special function
register into the B-register.

OTA OUTPUT A
15 14 13 12|11 10 9 18 7 6|5 4 3|2 10

/

Registe:(Number
Outputs the contents of the A-register to the addressed /'O
buffer or special function register. The contents of the
A-register are not altered.

3-14

15114 131211110

.

Skips the next programmed instruction if the overflow bit
is set. Use the H/C bit (bit 9) to either hold or clear the
overflow bit following the completion of this instruction
(whether the skip is taken or not).

STC SET CONTROL
15114 1312|1110 98 7 65 4 3]2 1 0

T

Y
Select Code or
Register Number

Sets the control bit (Control 30) of the selected I/O channel
or function.

A600/A600+

Programming Information

STF SET FLAG DLD DOUBLE LOAD
15/141312]1110 908 7 6]5 4 3|2 1 0 15[1413 12]1110 9]8 7 6]5 4 3]2 1 0
- I l] oloToTo
\ /
Y

Select Code or N y

Register Number Y%

Memory Address

Sets the flag (Flag 30) of the selected 1/0O channel or
function. An STF 00 instruction enables the interrupt
system for the time base generator and all interface cards.

ST0 SET OVERFLOW

15114 131211110 9]8 7 6]5 4 3]2 1 0O

Sets the overflow bit.

3-26. EXTENDED ARITHMETIC MEMORY
REFERENCE INSTRUCTIONS

The four extended arithmetic memory reference in-
structions provide for integer multiply and divide and for
loading and storing double-length words to and from the
A- and B-registers. The complete instruction requires two
words: one for the instruction code and one for the address.
When stored in memory, the instruction word is the first
to be fetched; the address word is in the next sequential
location.

Since 15 bits are available for the address, these in-
structions can directly address any location in memory. As
for all memory reference instructions, indirect addressing
to any number of levels may also be used. A logic 0 in bit
position 15 specifies direct addressing; a logic 1 specifies
indirect addressing.

DIV DIVIDE
1511413 1211110 9|8 7 6|5 4 3|2 1 0
2 0(0|0

\\ /

\'4
Memory Address

Divides a double-word integer in the combined B- and
A-registers by a 16-bit integer in the addressed memory
location. The result is a 16-bit integer quotient in the
A-register and a 16-bit integer remainder in the
B-register. Overflow can result from an attempt to divide
by zero, or from an attempt to divide by a number too
small for the dividend. In the former case (divide by zero),
the division will not be attempted and the B- and
A-register contents will be unchanged except that a
negative quantity will be made positive. In the latter case
(divisor too small), the execution will be attempted with
unpredictable results left in the B-and A-registers. If
there is no divide error, the overflow bit is cleared.

Loads the contents of addressed memory location m (and
m+ 1) into the A- and B-registers, respectively. If m is base
relative and CDS mode is enabled, the base register will
be added to m and the references will come from m+Q and
m+Q+1 (even if m+1 is not base relative).

DST DOUBLE STORE
210
0/0|0

Memory Address

Stores the double-word quantity in the A- and B-registers
into addressed memory locations m (and m+1),
respectively. If m is base relative and CDS mode is en-
abled, the base register will be added to m and the ref-
erences will come from m+Q and m+Q+1 (even if m+1 is
not base relative).

MPY MULTIPLY
15]14 13 12]1110 9|8 7 6|5 4 3[2 1 0
: 0fofoJo

~/
Memory Address

Multiplies a 16-bit integer in the A-register by a 16-bit
integer in the addressed memory location. The resulting
double-length integer product resides in the B- and
A-registers, with the B-register containing the sign bit
and the most-significant 15 bits of the quantity. The
A-register may be used as an operand (i.e., memory ad-
dress 0), resulting in an arithmetic square. The instruc-
tion clears the overflow bit.

3-27 EXTENDED ARITHMETIC REGISTER
REFERENCE INSTRUCTIONS

The six extended arithmetic register reference instruc-
tions provide various types of shifting operations on the
combined contents of the B- and A-registers. The
B-register is considered to be to the left (most-significant
word) and the A-register is considered to be to the right
(least-significant word). An example of each type of shift
operation is illustrated in Figure 3-4.

3-15

Programming Information

The complete instruction is given in one word and includes
four bits (unshaded) to specify the number of shifts (1 to
16). By viewing these four bits as a binary-coded number,
the number of shifts is easily expressed; i.e., binary-coded
1 = 1 ghift, binary-coded 2 = 2 shifts . . . binary-coded 15
= 15 ghifts. The maximum number of 16 shifts is coded
with four zeros, which essentially exchanges the contents
of the B- and A-registers.

The extend bit is not affected by any of the following
instructions. Except for the arithmetic shifts, overflow
also is not affected.

The execution of extended arithmetic register reference
instructions is not affected by the state of CDS.

ASL ARITHMETIC SHIFT LEFT
15[14 13 12]1110 98 7 6]5 4 3[2 1 0
["{oTolololo]ofololofon [[[[

NI

Number of Shifts

Arithmetically shifts the combined contents of the B- and
A-registers left n places. The value of n may be any
number from 1 through 16. Zeros are filled into vacated
low-order positions of the A-register. The sign bit is not
affected, and data bits are lost out of bit position 14 of the
B-register. If any one of the lost bits is a significant data
bit (*1” for positive numbers, “0” for negative numbers),
the overflow bit will be set; otherwise, overflow will be
cleared during execution. See ASL example in Figure 3-4.
Note that two additional shifts in this example would
cause an error by losing a significant ‘1’

ASR ARITHMETIC SHIFT RIGHT
15]14 13 12]1110 9]8 7 6]5 4 32 1 0
[ToJoTofo o1 oJo ofole] | [|

N —

Number of Shifts

Arithmetically shifts the combined contents of the B- and
A-registers right n places. The value of n may be any
number from 1 through 16. The sign bit is unchanged and
is extended into bit positions vacated by the right shift.
Data bits shifted out of the least-significant end of the
A-register are lost. Overflow cannot occur because the
instruction clears the overflow bit.

LsL LOGICAL SHIFT LEFT
15[1a 13 12[1110 9]8 7 6]5 4 3[2 1 0
[1Jofofofojofofofofof1fo] | [|

A600/A600+

number from 1 through 16. Zeros are filled into vacated
low-order bit positions of the A-register; data bits are lost
out of the high-order bit positions of the B-register.

LSR LOGICAL SHIFT RIGHT
15f14 13 12]1110 9|8 7 6]5 4 3]2 1 0
[1fofofofrfol | | |

N —

Number of Shifts

Logically shifts the combined contents of the B- and
A-registers right n places. The value of n may be any
number from 1 through 16. Zeros are filled into vacated
high-order bit positions of the B-register; data bits are lost
out of the low-order bit positions of the A-register.

RRL ROTATE LEFT

15114 13 12 5 4 31210

ofo] | []
\—Vd

Number of Shifts

Rotates the combined contents of the B- and A-registers
left n places. The value of n may be any number from 1
through 16. No bits are lost or filled in. Data bits shifted
out of the high-order end of the B-register are rotated
around to enter the low-order end of the A-register.

RAR ROTATE RIGHT
15114 13 1211110 98 7 6]5 4 3|2 1 0
1) 0] ofof1fofo] | [|

e’

Number of Shifts

Rotates the combined contents of the B- and A-registers
right n places. The value of n may be any number from 1
through 16. No bits are lost or filled in. Data bits shifted
out of the low-order end of the A-register are rotated
around to enter the high-order end of the B-register.

3-28. EXTENDED INSTRUCTION GROUP

3-29. INDEX/REGISTER INSTRUCTIONS. The
index registers (X and Y) are two 16-bit registers accessi-
ble by the following instructions.

ADX ADD MEMORY TO X
1514 13 12J1110 98 7 65 4 32 10

Number of Shifts

Logically shifts the combined contents of the B- and
A-registers left n places. The value of n may be any

3-16

V"

Memory Address

Adds the contents of the addressed memory location to the
contents of the X-register. The sum remains in the

A600/A600+ Programming Information

B-REGISTER A-REGISTER

_.(:—’ Bits lost

0101101011100 111 |

[1011 000 101 000 101
ASR 5 U

(Arithmetic Shift Right !
5 places) 1

[1111110110 001 010

0010 101011010 111 |

————— »

Extended sign

Bits lost 4—-———1

ASL 5 : I 0000000 111 101 000 , 1 101 101 000 110 111 l

]
{Arithmetic Shift Left |
5 places) :
4

[0011110100011 011

0100011011 100 000 k—— Zeros Filled

—r———b Bits lost

(5N [P ORI 1 NI SV SN (R PRIy B P I S P [I e S —

LSR 5 [1011000 101000 101 | 0101101011100 111 |
(Logical Shift Right
5 places)
Zeros filled ——bl 0000010 110001010 ; 0010 101011010 111
i
i
Bits Iost‘——l E
J
b
LSL § [0101000 111101000 | 1101101 000 110 111 |
(Logical Shift Left i
5 places) :r
i
[0011110 100011011 | 0100011011100 000 |@—— Zeros filted
1
1
i
| [
]
RRR 8 : [0101110111000 010 | 0100 010 110 000 111 |
(Rotate Right |
8 places) :
|
[1000011101011 101 | 1100 001 001 000 101
]
!; L}
—1 '
i
RRL 7 [0110011 101111000 | 0110011 010 000 111 |
(Rotate Left
7 places)

\

R R R ——

—

0100 001 110 110 011]

i

Figure 3-4. Examples of Double-Word Shifts and Rotates

[1011110 000 110011

3-17

Programming Information

X-register and the contents of the memory cell are un-
altered. The result of this addition may set the extend bit
or the overflow bit. The A- and B-registers can be ref-
erenced as memory locations 0 and 1, respectively.

ADY ADD MEMORY TO Y

15141312111098]65432 10

Memor;rAddrass
Adds the contents of the addressed memory location to the
contents of the Y-register. The sum remains in the
Y-register and the contents of the memory cell are un-
altered. The result of this additior: may set the extend bit
or the overflow bit. The A- and B-registers can be ref-
erenced as memory locations 0 and 1, respectively.

COPY ATO X
6|54 3[2 1 0
1] 1]oJoJ o]0 [1

Copies the contents of the A-register into the X-register.
The contents of the A-register are unaltered.

CAY COPYATOY
15014 1312]11 10 9}8 7 605 4 302 1 0
sfojejofeftfifrJrJrJo1]ofo]1

Copies the contents of the A-register into the Y-register.
The contents of the A-register are unaltered.

CBX COPY B TO X

1514131211109 7 6154 3]12 1 0
1 00C 00D B0E 00D0E

Coples the contents of the B-register into the X-register.
The contents of the B-register are unaltered.

CBY COPYBTOY

15141312111098 76154 3|2 10
gfejojofrjof1frf1fafr]jof1fo]o]1
Copies the contents of the B-register into the Y-register.
The contents of the B-register are unaltered.

CXA COPY XTO A
15314 13 12]11 10 9] 8 7 5154 32 1 o

ofoJofofe]1f1]1] 1] 1]o]o]1]0]0

Copies the contents of the Y-regisber into the A-register.
The contents of the Y-register are unaltered.

3-18

A600/A600+

CXB COPY X TO B

15114 1312}11 10 9|8 7 6]5 4 3|2 1 0
0000 ODDann

1{ofof1 o]0

Copies the contents of the Y-register into the B-register.
The contents of the Y-register are unaltered.

COPY YTO A
5 4 3]2 10
1]o1]1[0]o

Copies the contents of the X-register into the A-register.
The contents of the X-register are unaltered.

CYB COPY Y TO B

15]14 1312]11 10 9f 8 7 6[5 4 3]2 1 o
Jalafafof1]1{0]o

Copies the contents of the X-register into the B-register.
The contents of the X-register are unaltered.

DSX DECREMENT X AND SKIP IF ZERO
15114 ’13 12111 10 9 210
oo Jo[1 [0 [1] 0 o1

Subtracts one from the contents of the X-register. If the
result of this operation is zero (X-register decremented
from 000001 to 000000), the next instruction is skipped;
i.e., the P-register count is advanced two counts instead of
one count. If the result is not zero, the next sequential
instruction is executed.

DSY DEECREMENT Y AND SKIP IF ZERO
15[14 13 12]11 10 9J8 7 6]5 4 3|2 1 0
1jojojof1]eftfaf1fef1f1{1]ofo]1

Subtracts one from the contents of the Y-register. If the
result of this operation is zero (Y-register decremented
from 000001 to 000000), the next instruction is skipped;
i.e., the P-register count is advanced two counts instead of
one count. If the result is not zero, the next sequential
instruction is executed.

ISX INCREMENT X AND SKIP IF ZERO
15§14 1312)11 10 918 7 6}5 4 3

(1Jofofof1|of1f1[1]1]f1]1]0 ﬂu]o

Adds one to the contents of the X-register. If the result of
this operation is zero (X-register rolls over to 000000 from
177777), the next instruction is skipped; i.e., the
P-register count is advanced two counts instead of one
count. If the result is not zero, the next sequential in-
struction is executed.

A600/A600+

ISY INCREMENT Y AND SKIP IF ZERO

15]14 1312]11 10 9f8 7 6|5 4 3]2 1 0
0] 1] [1[1]o o]0

Adds one to the contents of the Y-register. If the result of
this operation is zero (Y-register rolls over to 000000 from
177777), the next instruction is skipped; i.e., the
P-register count is advanced two counts instead of one
count. If the result is not zero, the next sequential in-
struction is executed.

LAX LOAD A INDEXED BY X
15]14 13 12]11 10 9]8 7 6]5 4 3]2 1 0
ofof1To

Operand Address

Loads the A-register with the contents indicated by the
effective address, which is computed by adding the con-
tents of the X-register to the operand address. The effec-
tive address is loaded into the M-register; the X-register
and memory contents are not altered. Indirect addressing
is resolved before indexing; bit 15 of the effective address
is ignored. If CDS mode is enabled, the operand address is
resolved for base relativity and the base register will be
added before indexing. The index value can be positive or
negative.

LAY LOAD A INDEXED BY Y
15114 13 1211110 918 7 615 4 32 10

{1]1f1{o]1]o]1]0

——

Operand Address
Loads the A-register with the contents indicated by the
effective address, which is computed by adding the con-
tents of the Y-register to the operand address. The effec-
tive address is loaded into the M-register; the Y-register
and memory contents are not altered. Indirect addressing
is resolved before indexing; bit 15 of the effective address
is ignored. If CDS mode is enabled, the operand address is
resolved for base relativity and the base register will be

Programming Information

tive address is loaded into the M-register; the X-register
and memory contents are not altered. Indirect addressing
is resolved before indexing; bit 15 of the effective address
is ignored. If CDS mode is enabled, the operand address is
resolved for base relativity and the base register will be
added before indexing. The index value can be positive or
negative.

LBY LOAD B INDEXED BY Y
15014 13 12]11. 10 9] 8 7 6]5 4 3f2 1 0
1]0/0j0]1]0 ‘ 1]of1]o0

g

Operand Address

Loads the B-register with the contents indicated by the
effective address, which is computed by adding the con-
tents of the Y-register to the operand address. The effec-
tive address is loaded into the M-register; the X-register
and memory contents are not altered. Indirect addressing
is resolved before indexing; bit 15 of the effective address
is ignored. If CDS mode is enabled, the operand address is
resolved for base relativity and the base register will be
added before indexing. The index value can be positive or
negative.

LDX LOAD X FROM MEMORY
15[14 13 12]1110 9]8 7 65 4 3]2 1 0

g

Memory Address

Loads the contents of the addressed memory location into
the X-register. The A- and B-registers may be addressed
as locations 00000 and 00001, respectively; however, if it
is desired to load from the A- or B-register, copy instruc-
tions CAX or CBX should be used since they are more
efficient.

added.before indexing. The index value can be positive or LDY LOAD Y FROM MEMORY
negative 1110 9]8 7 65 4 3[2 1 0
LBX LOAD B INDEXED BY X Jrjoj1]a] {01 1fof1
15114 13 1211 10 98 7 65 4 32 1 ©
1jojojofrjojfr]t1f1]1]ofoJo]1]0 = ~ d
D/l Memory Address

N ., Loads the contents of the addressed memory location into

g

Operand Address

Loads the B-register with the contents indicated by the
effective address, which is computed by adding the con-
tents of the X-register to the operand address. The effec-

the Y-register. The A- and B-registers may be addressed
as locations 00000 and 00001, respectively; however, if it
is desired to load from the A-or B-register, copy in-
structions CAY or CBY should be used since they are more
efficient.

3-19

Programming Information

SAX STORE A INDEXED BY X

A600/A600+

SBY STORE B INDEXED BY Y

5 [CXCERT) (T ICEC RN}

Operand Address

Stores the contents of the A-register into the location
indicated by the effective address, which is computed by
adding the contents of the X-register to the operand
address. The effective address is loaded into the
M-register; the A- and X-register contents are not altered.
Indirect addressing is resolved before indexing; bit 15 of
the effective address is ignored. If CDS mode is enabled,
the operand address is resolved for base relativity and the
base register will be added before indexing. The index
value can be positive or negative.

SAY STORE A INDEXED BY Y

Operand Address

Stores the contents of the A-register into the location
indicated by the effective address, which is computed by
adding the contents of the Y-register to the operand
address. The effective address is loaded into the
M-register; the A- and Y-register contents are not altered.
Indirect addressing is resolved before indexing; bit 15 of
the effective address is ignored. If CDS mode is enabled,
the operand address is resolved for base relativity and the
base register will be added before indexing. The index
value can be positive or negative.

SBX STORE B INDEXED BY X
1514131211 10 918 7 6 15 4 3 2 10
Ao i ji o Jefo]u]e

v
Operand Address

Stores the contents of the B-register into the location
indicated by the effective address, which is computed by
adding the contents of the X-register to the operand
address. The effective address is loaded into the
M-register; the B- and X-register contents are not altered.
Indirect addressing is resolved before indexing; bit 15 of
the effective address is ignored. If CDS mode is enabled,
the operand address is resolved for base relativity and the
base register will be added before indexing. The index
value can be positive or negative.

3-20

Operand Address

Stores the contents of the B-register into the location
‘indicated by the effective address, which is computed by
adding the contents of the Y-register to the operand
address. The effective address is loaded into the
M-register; the B- and Y-register contents are not altered.
Indirect addressing is resolved before indexing; bit 15 of
the effective address is ignored. If CDS mode is enabled,
the operand address is resolved for base relativity and the
base register will be added before indexing. The index
value can be positive or negative.

STX STORE X TO MEMORY
2 10

15114 13 12J1110 918 7 6|5 4 3

v
Memory Address

Stores the contents of the X-register into the addressed
memory location. The A-and B-registers may be ad-
dressed as locations 00000 and 00001, respectively. The
X-register contents are not altered.

STORE Y TO MEMORY

A

Memory Address

Stores the contents of the Y-register into the addressed
memory location. The A- and B-registers may be ad-
dressed as locations 00000 and 00001, respectively. The
Y-register contents are not altered.

XAX EXCHANGE A AND X

15]14 1312]11 10 9|8 7 6[5 4 32 1 0

Exchanges the contents of the A- and X-reglsters

XAY EXCHANGE A AND Y
15114 1312111 10 9)8 7 6“ ; ‘ 2 1 0

Exchanges the contents of the A- and Y-registers.

A600/A600+

XBX EXCHANGE B AND X
15141312111098 7 6 54 32 1 0

Exchanges the contents of the B- and X~reglsters

XBY EXCHANGE B AND Y
15 14 1312 11 10 9 ’8 16 5 4‘ 3 2 ‘l l)

Exchanges the contents of the B- and Y-registers.

3-30. JUMP INSTRUCTIONS. The following four
Jjump instructions allow a program to either jump to or exit
from a subroutine.

JLA JUMP AND LOAD A

1511413 12J1110 9/8 7 6]5 4 3}2 1 0

~/
Memory Address
This instruction, executed in location P, causes computer
control to jump unconditionally to the memory location
specified by the second word of the instruction. The
contents of the program counter plus two are stored in the
A-register. A return to the main program will be effected
by a JMP indirect through location 00000 (the A-register).

JLB JUMP AND LOAD B

1511413 12]1110 918 7 6]5 4 3]12 1 0

\'4
Memory Address

This instruction, executed in location P, causes computer
control to jump unconditionally to the memory location
specified by the second word of the instruction. The
contents of the program counter plus two are stored in the
B-register. A return to the main program will be affected
by a JMP indirect through location 00001 (the B-register).

JLy JUMP AND LOAD Y
15114 13 12]11 10 918 7 65 4 3]2 1 0

Memory Address

This instruction is designed for entering a subroutine. The
instruction, executed in location P, causes computer

Programming Information

control to jump unconditionally to the memory location
specified in the memory address. Indirect addressing may
be specified. The contents of the P-register plus two (re-
turn address) is loaded into the Y-register. A return to the
main program sequence at P + 2 may be effected by a JPY
instruction (described next).

JPY JUMP INDEXED BY Y

15114 13 12J1110 918 7 65 4 3]2 10

hd

Operand Address

Transfers control to the effective address, which is
computed by adding the contents of the Y-register to the
operand address. Indirect addressing is not allowed. The
effective address is loaded into the P-register; the
Y-register contents are not altered. Memory protect
checks are performed on all references to memory (read,

write, fetch), except references to memory locations 0 and
1 (A and B).

3-31. BYTE MANIPULATION INSTRUCTIONS.
A byte address is defined as two times the word address
plus zero or one, depending on whether the byte is in the
high-order position (bits 8 through 15) or low-order posi-
tion (bits O through 7) of the word containing it. If the byte
of interest is in bit positions 8 through 15 of memory
location 100, for example, then the address of that byte is
2* 100 + 0, or 200; the address of the low-order byte in the
same location is 201 (2* 100 + 1). Because of the way byte
addresses are defined, 16 bits are required to cover all
possible byte addresses in the 32k-word Logical address
space (memory goes to 4M bytes). Hence, for byte ad-
dressing, bit 15 does not indicate indirect addressing.
Memory references to byte addresses on base page (4-
3777) with CDS mode enabled will have 2«Q (byte base
register) added to the base relative address.

Byte addresses 000 through 003 reference bytes in the
A- and B-registers. These addresses will not cause mem-
ory violations. The user should, however, be careful in
referencing these byte addresses; for example, storing into
byte address 002 or 003 would destroy the byte address
originally contained in the B-register.

NOTE

Instructions that store an interrupt
count into the code sequence on inter-
rupt (CBT, MBT, CMW, and MVW),
have undefined results if executed with
CDS mode enabled.

3-21

Programming Information

CBT COMPARE BYTES

15f1a 13 12[11 10 o8 7 65 4 3f2 1 0
ojofrjofr} [rjofrjtjo

ojojo(ojojoj0ojo|0j0}jO|0|0}O(O|D

Return if array 1 = array 2

Return if array 1 < array 2

Return if array 1 > array 2

Compares the bytes in string 1 with those in string 2. This
is a three-word instruction where

Word 1 = Instruction code,

Word 2 = Address of word containing the string
count, and

Word 3 = All-zeros word reserved for use by

microcode.

The operand addresses are in the A- and B-registers. The
A-register contains the first byte address of string 1 and
the B-register contains the first byte address of string 2.

The number of bytes to be compared is given in the mem-
ory location addressed by Word 2 of the instruction; the
number of bytes to be compared is restricted to a positive
integer greater than zero. The strings are compared one
byte at a time; the ith byte in string 1 is compared with the
ith byte in string 2. The comparison is performed
arithmetically; i.e., each byte is treated as a positive
number. If all bytes in string 1 are identical with all bytes
in string 2, the “equal” exit is taken. As soon as two bytes
are compared and found to be different, the “less than” or
“greater than” exit is taken, depending on whether the
byte in string 1 is less than or greater than the byte in
string 2. The three ways this instruction exits are as
follows:

a. No skip if string 1 is equal to string 2; the P-register
advances one count from Word 3 of the instruction.
The A-register contains its original value incre-
mented by the count stored in the address specified in
Word 2.

b. Skips one word if string 1 is less than string 2; the
P-register advances two counts from Word 3 of the
instruction. The A-register coritains the address of the
byte in string 1 where the comparison stopped.

c. Skips two words if string 1 is greater than string 2;
the P-register advances three counts from Word 3 of
the instruction. The A-register contains the address of
the byte in string 1 where the comparison stopped.

For all three exits, the B-register will contain its original
value incremented by the count stored in the address
specified in Word 2. This instruction is interruptible. The
interrupt routine is expected to save and restore the

3-22

A600/A600+

contents of the A- and B-registers. During the interrupt,
the remaining count is stored in Word 3 of the instruction.
This instruction has undefined results if executed with
CDS mode enabled.

LBT LOAD BYTE
15014 13 12]1110 98 7 6|5 4 32 10

This one word instruction loads into the A-register the
byte whose address is contained in the B-register. The
byte is right-justified with leading zeros in the left byte.
The B-register is incremented by one.

MBT MOVE BYTES
150114 13 12]11 10 918 7 65 4 32 1 0

Moves bytes in a left-to-right manner; i.e., the byte having
the lowest address from the source is moved first. This is a
three word instruction where

Word1 = Instruction code,

Word2 = Address of word containing the byte
count, and

Word 3 = All-zeros word reserved for use by

microcode.

The operand addresses are in the A- and B-registers. The
A-register contains the first byte address source and the
B-register contains the first byte address destination.

The number of bytes to be moved is given by a 16-bit
positive integer greater than zero addressed by Word 2 of
the instruction. The byte address in the A- and B-registers
are incremented as each byte is being moved. Thus, at the
end of the operation, the A- and B-registers are incre-
mented by the number of bytes moved. Wraparound of the
byte address would result from a carry out of bit position
15; therefore, if the destination became 000, 001, 002, or
003, the next byte would be moved into the A-or
B-register and destroy the proper byte addresses for the
move operation. For each byte move, a memory protect
check is performed.

This instruction is interruptible. The interrupt routine is
expected to save and restore the contents of the A- and
B-registers. During the interrupt, the remaining count is
stored in Word 3 of the instruction. This instruction has
undefined results if executed with CDS mode enabled.

A600/A600+

SBT STORE BYTE
1514131711109876543210
+— . - : 1[" Iu

Stores the A-register low-order (right) byte in the byte
address contained in the B-register. The B-register is
incremented by one. A memory protect check is performed
before the byte is stored. The left byte in the A-register
does not have to be zeros. The other byte in the same word
of the stored byte is not altered.

SFB SCAN FOR BYTE
15141312111098 7 6 54 3|12 1 0

| KAERE

This is a one word instruction with the operands in the
A- and B-registers. The A-register contains a termination
byte (high-order byte) and a test byte (low-order byte). The
B-register contains the first byte address of the string to
be scanned.

A string of bytes is scanned starting at the byte address
given in the B-register. Scanning terminates when a byte
in the string matches either the test byte or the termina-
tion byte in the A-register. The manner in which the
instruction exits depends on which byte is matched first. If
a byte in the string matches the test byte, the instruction
will not skip upon exit; the B-register will contain the
address of the byte matching the test byte. If a byte in the
string matches the termination byte, the instruction will
skip one word upon exit; the B-register will contain the
address of the byte matching the termination byte plus
one.

The scanning operation will not continue indefinitely even
if neither the termination byte nor test byte exists in
memory. These bytes are in the A-register with byte
addresses 000 and 001, respectively. Thus, if no match is
made by the time the B-register points to the last byte in
memory, the B-register will roll over to zero and the next
test will match the termination byte in the A-register with
itself.

This instruction is interruptible. The interrupt routine is
expected to save and restore the contents of the A- and
B-registers.

3-32. BIT MANIPULATION INSTRUCTIONS. The
following three instructions allow any number of bits in a
specified memory location to be cleared, set, or tested.

Programming Information

CBS CLEAR BITS
15114 131211110 918 7 6]5 43 210

o] I

N —

N

Memory Address

Clears bits in the addressed location. This is a three-word
instruction where

Word1 = Instruction code,
Word2 = Address of a 16-bit mask, and
Word 3 = Address of word where bits are to be

cleared.

The bits to be cleared correspond to logic 1’s in the mask.
The bits corresponding to logic 0’s in the mask are not
affected. A memory protect check is performed prior to
modifying the word in memory.

SBS SET BITS

Memory Address

Sets bits in the addressed location. This is a three-word
instruction where

Word1 = Instruction code,
Word2 = Address of a 16-bit mask, and
Word3 = Address of word where bits are to be set.

The bits to be set correspond to logic 1’s in the mask. The
bits corresponding to logic 0’s in the mask are not affected.
A memory protect check is performed prior to modifying
the word in memory.

TBS TEST BITS

15114 13 12]11 10 9}8 7 6]5 4 32 1 0
[ToTo]o]aT

D/'

2 1 |

Va

Memory Address

Tests (compares) bits in the addressed location. This is a
three-word instruction where

Word 1
Word 2

Instruction code,

Address of a 16-bit mask, and

3-23

Programming Information

Word 3 = Address of word in which bits are to be

tested.

The bits in the addressed memory word corresponding to
logic I’s in the mask are tested. If all the bits tested are 1’s,
the instruction will not skip; otherwise the instruction
will skip one word (i.e., the P-register will advance two
counts from Word 3 of the instruction).

3-33. WORD MANIPULATION INSTRUCTIONS.
The following instructions facilitate the comparing and
moving of word arrays.

CMW COMPARE WORDS

ojojofojoj0 0fjO0|0O{0OJO|O|0O}jO 0|0

Return if array 1 = array 2

Return if array 1 < array 2

<
Return if array 1 > array 2

A600/A600+

b. Skips one word if array 1 is less than array 2; the
P-register advances two counts from Word 3 of the
instruction. The A-register contains the address of the
word in array 1 where the comparison stopped.

c. Skips two words if array 1 is greater than array 2; the
P-register advances three counts from Word 3 of the
instruction. The A-register contains the address of the
word in array 1 where the comparison stopped.

For all three exits, the B-register will contain its original
value incremented by the word count stored in the address
specified in Word 2. This instruction is interruptible. The
interrupt routine is expected to save and restore the
contents of the A- and B-registers. During the interrupt,
the remaining count is stored in Word 3 of the instruction.
This instruction has undefined results if executed with
CDS mode enabled.

MVW MOVE WORDS
15]14 13 12]11 10 9}8 7 65 4 3}j2 1 0

Compares the words in array 1 with those in array 2. This
is a three-word instruction where

Word 1 = Instruction code,

Word 2 = Address of word containing the word
count, and

Word3 = All-zeros word reserved for use by

microcode.

The operand addresses are in the A- and B-registers. The
A-register contains the first word address of array 1 and
the B-register contains the first word address of array 2.
Bit 15 of the addresses in the A- and B-registers are ig-
nored; i.e., no indirect addressing allowed.

The number of words to be compared is given in the
memory location addressed by Word 2 of the instruction;
the number of words to be compared is restricted to a
positive integer greater than zero. The arrays are com-
pared one word at a time; the ith word in array 1 is
compared with the ith word in array 2. This comparison is
performed arithmetically; i.e., each word is considered a
two’s complement number. If all words in array 1 are
equal to all words in array 2, the “equal” exit is taken. As
soon as two words are compared and found to be different,
the “less than” or “greater than” exit is taken, depending
on whether the word in array 1 is less than or greater than
the word in array 2. The three ways this instruction exits
are as follows:

a. No skip if array 1 is equal to array 2; the P-register
advances one count from Word 3 of the instruction.
The A-register contains its original value incre-
mented by the word count stored in the address
specified in Word 2.

3-24

Moves words in a left-to-right manner; i.e, the word hav-
ing the lowest address in the source is moved first. This is
a three-word instruction where

Word 1 = Instruction code,

Word 2 = Address of word containing the count,
and

Word3 = All-zeros word reserved for use by

microcode.

The operand addresses are in the A- and B-registers. The
A-register contains the first word address source and the
B-register contains the first word address destination. The
number of words to be moved is a 16-bit positive integer
greater than zero addressed by Word 2 of the instruction.
The word addresses in the A- and B-registers are in-
cremented as each word is being moved. Thus, at the end
of the operation, the A- and B-registers are incremented
by the number of words moved.

Wraparound of the word address would result from a carry
into bit position 15 (i.e., at 32767). If the destination
address became 000 or 001, the next word would be moved
into the A-or B-register and destroy the proper word
addresses for the move operation. For each word move, a
memory protect check is performed.

This instruction is interruptible. The interrupt routine is
expected to save and restore the contents of the A-and
B-registers. During the interrupt, the remaining count is
stored in Word 3 of the instruction. This instruction has
undefined results if executed with CDS mode enabled.

A600/A600+

3-34. FLOATING POINT INSTRUCTIONS

The floating point instructions allow addition, subtrac-
tion, multiplication, and division of single precision
floating point quantities, and conversion of quantities
from floating point format to integer format or vice versa.
The A600+ has additional instructions to convert single
precision floating point quantities to double integer and
vice versa. Data formats are shown in Figure 3-1. Except
for zero, all floating point operands must be normalized
(i.e., sign of mantissa differs from most significant bit of
mantissa).

The execution times of the floating point instructions are
specified in under paragraph 3-40. These instructions are
noninterruptible except during indirect address resolu-
tion; any attempted interrupt is held off for the full
execution time of the currently active floating point in-
struction. However, DMA operation is not held off.

3-35. SINGLE PRECISION OPERATIONS. Over-
flow for single precision operations occurs if the result lies
outside the range of representable single precision floating
point numbers [—2'%, (1-2723)2!%7]. In such a case, the
overflow flag is set and the result (1-272%)2'%7 is returned
to the A- and B-registers. Underflow occurs if the result
lies inside the range [—27'2°)1+2722], In such a case, the
overflow flag is set and the result 0 is returned to the A-
and B-registers.

FAD FLOATING POINT ADD

15]14 13 12]1110 9]8 7 6]5 4 3f2 1 0

To} oofo]ofafo]o 0

\\ /
Y

Memory Address

Adds the floating point quantity in the A- and B-registers
to the floating point quantity in the specified memory
locations. The floating point result is returned to the
A- and B-registers.

FSB FLOATING POINT SUBTRACT
15]14 13 12]1110 9f8 7 65 4 3]2 1 0

\'4
Memory Address

Subtracts the floating point quantity in the specified
memory locations from the floating point quantity in the
A- and B-registers. The floating point result is returned to
the A- and B-registers.

Programming Information

FMP FLOATING POINT MULTIPLY
15]14 13 12§1110 98 7 6
e ol o

\'
Memory Address

Multiplies the floating point quantity in the A- and
B-registers by the floating point quantity in the specified
memory locations. The floating point result is returned to
the A- and B-registers.

FDV FLOATING POINT DIVIDE
1511413 1241110 98 7 6|5 4 3|2 1“0

Memory Address

Divides the floating point quantity in the A-and
B-registers by the floating point quantity in the specified
memory locations. The floating point result is returned by
the A- and B-registers.

FLOATING POINT TO
FIX SINGLE INTEGER

1514 1312f1110 9]8 7 6]5 4 3[2 1 0

Converts the floating point quantity in the A- and
B-registers to single integer format. The integer result is
returned to the A-register. If the magnitude of the floating
point number is <1, regardless of sign, the integer 0 is
returned. If the magnitude of the exponent of the floating
point number is =186, regardless of sign, the integer 32767
(077777 octal) is returned as the result and the overflow
flag is set.

SINGLE INTEGER TO
FLT FLOATING POINT

15[14 1312]1110 9|8 7 6|5 4

Converts the single integer quantity in the A-register to
single precision floating point format. The floating point
result is returned to the A- and B-registers.

3-25

Programming Information

FLOATING POINT TO
DOUBLE INTEGER

1514 1312]11 10 9]s 7 6]5 4 3|2 1 0
[r]ofoJof1]o]1]ofof1]oofof1]o]0

Converts the floating point quantity in the A-and
B-registers to double integer format. The integer result is
returned to the A- and B-registers. (The A-register
contains the most-significant word and the B-register
contains the least-significant word.) If the magnitude of
the floating point number is <1, regardless of sign, the
integer 0 is returned. If the magnitude of the floating
point number is =32, regardless of sign, the integer 22*—1
is returned as the result and the overflow flag is set.

.FIXD*
(A600+ only)

.FLTD* DOUBLE INTEGER TO

(A600+ only) FLOATING POINT
15§14 13 12J11 10 9|8 7 615 4 3|2 1 O
1jofojof1|o[1]Jofof[1]of1]o}1]/0]0
Converts the double integer quantity in the A- and

B-registers to single precision floating point format. The
floating point result is returned to the A- and B-registers.

3-36. LANGUAGE INSTRUCTION SET

The The Language Instruction Set consists of fourteen
(seventeen for A600+) instructions that perform certain
frequently used high-level language operations including
parameter passing, array address calculations, and float-
ing point conversion, packing, rounding and normaliza-
tion operations.

For multiple-word instructions, indirect addressing to any
number of levels is permitted for the word(s) indicated as a
memory address. A logic 0 in bit position 15 specifies
direct addressing; a logic 1 specifies indirect addressing.

The following paragraphs provide machine language
coding and definitions for the Language Instruction Set.
Data formats are shown in Figure 3-1. For a more detailed
description of instructions in the Language Instruction
Set, refer to the Relocatable Library Reference Manual,
HP part no. 92077-90037.

TRANSFER EIGHT WORDS
6|5 4 3|2 1 0

ZFER*

Memory Address

Transfers eight consecutive words from one memory lo-
cation to another. The source address +8 is returned to the

3-26

AB00/A600+

A-register; the destination address +8 is returned to the
B-register. This is a three word instruction where:

Word 1 = Instruction code.
Word 2 = Destination address.
Word 3 = Source address.

Wraparound of either address produces undefined results.

Under CDS, the source and/or destination addresses may
be adjusted for base relativity.

TRANSFER COMPLEX

.CFER* OR DOUBLE FLOATING POINT
15114 13 12|11 10 98 7 6|5 4 3|2 1 0
D/'
D/|

- —

-

Memory Address

Transfers a double precision floating point quantity (four
consecutive words) from one memory location to another.
The source address +4 is returned to the A-register; the
destination address +4 is returned to the B-register. This
is a three word instruction where:

Word 1 = Instruction code.
Word 2 = Destination address.
Word 3 =Source address.

Wraparound of either address produces undefined results.

Under CDS, the source and/or destination addresses may
be adjusted for base relativity.

TRANSFER THREE

.DFER* CONSECUTIVE WORDS
15014 13 12f11 10 9|8 7 6]5 4 3]2 1 0
1jojojoj1|o|1]jo|1]{ojojojo]1{o|1
>

D/I

“v*

Memory Address

Transfers three consecutive words from one memory lo-
cation to another. The source address +3 is returned to the
A-register; the destination address +3 is returned to the
B-register. This is a three word instruction where:

Word 1 = Instruction code.
Word 2 = Destination address.
Word 3 = Source address.

Wraparound of either address produces undefined results.
Under CDS, the source and/or destination addresses may
be adjusted for base relativity.

A600/A600+

TRANSFER PARAMETER
.ENTP* ADDRESSES

15114 13 12]11 10 918 7 65 4 3|2 1 0

Transfers the true addresses of parameters from a calling
sequence into a subroutine; adjusts return address to‘the
true return point. There must be exactly two words be-
tween the subroutine entry point and the .ENTP in-
struction. A true address is determined by eliminating all
indirect references. The true return address is returned to
the A-register. Used for privileged or re-entrant
subroutines. This instruction has undefined results if
executed with CDS mode enabled.

. TRANSFER PARAMETER

.ENTR* ADDRESSES

15114 13 12111 10 9]8 7 5 4 3]2

Transfers the true addresses of parameters from a calling
sequence into a subroutine; adjusts return address to the
true return point. A true address is determined by
eliminating all indirect references. No more than three
levels of indirect addressing are allowed per parameter.
This instruction has undefined results if executed with
CDS mode enabled.

TRANSFER THREE
XFER* CONSECUTIVE WORDS

15014 1312]11.10 9] 8 7 6|5 4 3|2 1 o

Transfers three consecutive words from one memory lo-
cation to another. The A-register must contain the source
address and the B-register must contain the destination
address. The source address +3 is returned to the
A-register; the destination address +3 is returned to the
B-register. Wraparound of either address produces un-
defined results. Under CDS, the source and/or destination
addresses may be adjusted for base relativity.

.SETP*
15114 13 12]11 10 9|8 7 65 4 3|2 1

SET A TABLE
0

Address where Count is given

Sets a table of increasing numbers in consecutive memory
locations. The A-register must contain the initial number
and the B-register must contain the initial memory address
(direct only); the succeeding memory location must give the
address where the number of memory locations (count = 0)
is given. Entries in the table are established by incrementing

*For HP Assembly Language usage, refer to paragraph
3-41.

Programming Information

the initial address and number by one (1) for each successive
entry until the last number, initial number, the initial
address+COUNT and the A-register equals the initial
value+COUNT. Wraparound will produce undefined
results. This instruction is interruptible. On return the B-
register equals the initial address + COUNT. Under CDS,
the memory addresses may be adjusted for base relativity.

NOTE

If the initial address + COUNT -1 re-
sults in an address which is beyond the
end of logical memory, addresses within
the base page are destroyed.

COMPLEMENT AND NORMALIZE
SINGLE FLOATING POINT

1

..FCM*
15114 13 12111 10 9J8 7 65 4 3|2

Complements and normalizes in place a packed single
precision floating point quantity located in the A-and
B-registers. The result is returned to the A-and
B-registers.

.BLE*
(A600+ only)

SINGLE FLOATING POINT TO
DOUBLE FLOATING POINT

15114 13 1211 10 9)8 7 6]5 4 3J2 1 0

N 4

MemoerAddress
Converts the single precision floating point quantity in
specified memory locations to a double-precision floating
point quantity. The result is returned to other specified
memory locations. This is a four-word instruction where:

Word 1 = Instruction code.
Word 2 = Return address.
Word 3 = Address of result.
Word 4 = Address of operand.

UNPACK FLOATING

.FLUN* POINT QUANTITY

15]14 13 12111 10 9]8 7 65 4 32 1 0

Unpacks a floating point quantity. The lower part of the
floating point quantity must be in the B-register. The
exponent is returned to the A-register, the lower part of
the mantissa is returned to the B-register.

Update 3 3-27

Programming Information

.NGL* DOUBLE FLOATING POINT
(A600+ only) TO SINGLE FLOATING POINT

15114 13 12|11 10 9]8 7 615 4 312 1 0

Memory Address

Converts the double precision floating point quantity in
the specified memory locations to a single precision float-
ing point quantity. The result is placed in the A-and
B-registers. Overflow is cleared unless, during execution,
rounding results in overflow or underflow of the exponent,
in which case overflow is set and the result is truncated to
the greatest positive number. This is a three word in-
struction where:

Word 1 = Instruction code.
Word 2 = Return address.
Word 3 = Address of operand.

NORMALIZE FLOATING
POINT QUANTITY

.PACK*

15114 13 12|11 10 9] 8 7 6 54 32’1 0

Converts the signed mantissa of a floating point quantity
into a normalized format. The floating point quantity
must be in the A- and B-registers. The succeeding in-
struction must reserve one word of memory for temporary
storage of the exponent. The first word of the two word
floating point result is returned to the A-register; the
second word, to the B-register.

X TIMES 2 TO

.PWR2* THE POWER N

5141312111098 76543210

Calculates for floating point x and integer n: y = x*2". The
floating point quantity must be in the A- and B-registers;
the succeeding instruction must define integer n. The first
word of the two word floating point result is returned to
the A-register; the second word, to the B-register.

NEGATE DOUBLE
FLOATING POINT

..TCM*
(A600+ only)

15114 13 12§11 10 9|8 7 6

5 4 3j]2 10

v

Memory Address

Negates a packed double precision floating point quantity
located in the specified memory locations. The result is
returned to the same specified rnemory locations.

3-28

A600/A600+

.ENTN TRANSFER PARAMETER ADDRESSES
151413121110987 6 5 4 3]2 ‘I 0

Transfers the true addresses of parameters from a calling
sequence into a subroutine; adjusts return address to the
true return point. The return address stored in the SUB
entry point references the word following the last pa-

- rameter DEF in the calling routine. A true address is

determined by eliminating all indirect references. This
instruction has undefined results if executed with CDS
mode enabled.

.ENTC TRANSFER PARAMETER ADDRESSES

Transfers the true addresses of parameters from a calling
sequence into a subroutine; adjusts return address to the
true return point. The return address stored in the SUB
entry point references the word following the last pa-
rameter DEF in the calling routine. There must be exactly
two words between the subroutine entry point and the
_ENTC instruction. A true address is determined by
eliminating all indirect references. The true return ad-
dress is returned to the A-register. Used for privileged or
re-entrant subroutines. This instruction has undefined
results if executed with CDS mode enabled.

.CPM* SINGLE INTEGER ARITHMETIC COMPARE
15]14 13 12]11 10 9}8 7 6]5 4 3]2 1 0

Return if operand 1 = operand 2

Return if operand 1 < operand 2

Return if operand 1 > operand 2

Arithmetically compares operands addressed by second
and third word. Does not skip if operands are equal;
however, skips one instruction if the first operand is less
than the second, or skips two instructions if the first
operand is greater than the second.

3-37. DOUBLE INTEGER INSTRUCTIONS

The double integer instructions allow arithmetic and test
operations on 32-bit integer quantities. The data format
for double integer values is shown in Figure 3-1. Double
integer values contained in the (A,B) registers have the
most significant bits in the A-register. Values stored in

*For HP Assembly Language usage, refer to paragraph
3-41.

A600/A600+

memory require two locations. The operand address in a
double integer instruction points to the first memory
location, which contains the most significant bits. Double
integer instructions clear the overflow register upon en-
try, and will set the O-register if an overflow occurs. The
E-register is never cleared by a double integer instruction.

DOUBLE INTEGER ADD
8 7 6]5 4 3]21 0

.DAD*
1514 13 12

g

Memory Address
Performs the double integer operation:

(A,B) = (A,B) + <OPND)

The contents of <OPND> are unaltered. In the event of
overflow, the overflow bit is set and the returned result
contains the lower 32-bits of the actual sum, in unsigned
form. The extend bit will be set if an unsigned carry out of
the A-register occurs.

Programming Information

DOUBLE INTEGER DECREMENT

.DDS* AND SKIP IF ZERO
15114 13 12111 10 9]8 7 615 4 3]2 1 0

Memory Address
Performs the double integer operation:

<OPND> = <OPND> -1

If the new value of <OPND> equals zero, the next in-
struction will be skipped. The value in <OPND> is
treated as an unsigned number, and a borrow out of the
<OPND> is ignored.

.DNG DOUBLE INTEGER NEGATE
1514 13 12§11 10 9] 8 7 615 4 3 2 1

Performs the double integer operation:

(AB) = - (AB)

.DSB* DOUBLE INTEGER SUBTRACT
15014 13 12411 10 918 7 6}5 4 3]2 1 0 An input value of (100000, 000000) is left unchanged and
e ; 0:"0 overflow is set. An input value of zero will cause the
: extend bit to be set.
~ _ .DCO DOUBLE INTEGER COMPARE

g

Memory Address
Performs the double integer operation:

(A,B) = (A,B) - <OPND>

The contents of <OPND> are unaltered. In the event of
overflow, the overflow bit is set and the returned result
contains the lower 32-bits of the actual difference, in
unsigned form. The extend bit will be set if an unsigned
borrow out of the A-register occurs.

DOUBLE INTEGER
.DSBR* SUBTRACT REVERSE

15114 13 12]11 10 9] 8 7 6 54 31210

{of{1]1{o]0

"V

Memory Address

Performs the double integer operation:

(A,B) = <OPND> - (A,B)

The contents of <OPND> are unaltered. In the event of
overflow, the overflow bit is set and the retufned result
contains the lower 32-bits of the actual difference, in
unsigned form. The extend bit will be set if an unsigned
borrow occurs.

15014 13 1211 10 918 7 65 4 312 1 F

- -

Memory Address
Compares the double integers (A,B) and <OPND>

If (A,B) = <OPND> Return to P+2
If (A,B) < <OPND> Return to P+3
If (A,B) > <OPND> Return to P+4

where P is the address of the .DCO instruction. The value
of both double integers and the overflow bit are unaltered.

.DIN DOUBLE INTEGER INCREMENT

Performs the double integer operation:
(AB) = (AB) + 1

An input value of (077777, 177777) will return a result of

(100000, 000000) and set overflow. An input value of

(177777, 177777) will return a result of zero and cause the
extend bit to be set.

*For HP Assembly Language usage, refer to paragraph
3-41.

3-29

Programming Information

.DDE DOUBLE INTEGER DECREMENT
15141312111098 7 6]5 4 312 1 0
Performs the double integer operation:

(AB) = (AB) - 1

An input value of (100000,000000) will return the result
(077777, 177777) and set overflow. An input value of zero
will return the result (177777, 177777) and cause the
extend bit to be set.

DOUBLE INTEGER INCREMENT
.DIS AND SKIP IF ZERO

8 76[54 3[]21 0

15114 13 12111 10 9]

Memory Address

Performs the double integer operation:

<OPND> w <OPND> {1

If the new value of <OPND> equals zero, the next in-
struction will be skipped. The value in <OPND> is
treated as an unsigned number, and a carry out of the
<OPND> is ignored.

.DDI*

(A600+ only) DOUBLE INTEGER DIVIDE

A600/A600+

The contents of <OPND> are unaltered. If overflow or
divide by zero occurs, the result (077777, 177777) is re-
turned and overflow is set.

.DMP*
(A600+ only) DOUBLE INTEGER MULTIPLY

15114 13 12111 10 9|8 7 6}5 4 3}j2 1 0

“v*

Memory Address
Performs the double integer operation:

(A,B) = (A,B) - <OPND>

The contents of <OPND> are unaltered. If overflow or
divide by zero occurs, the result (077777, 177777) is re-
turned and overflow is set.

.DDIR* DOUBLE INTEGER
(A600+ only) DIVIDE REVERSE

15114 13 12]11 10 9f8 7 6]5 4 3]21 0

d |

Va

Memory Address

Performs the double integer operation:

(A,B) = <OPND> + (A,B)

3-30

15114 13 12]11.10 9|8 7 6|5 4 3]2 1 0

Vo

Memory Address
Performs the double integer operation:

(A,B) = (A,B) x <OPND>

The contents of <OPND> are unaltered. If overflow
occurs, the result (077777, 177777) is returned and over-
flow is set.

3-38. VIRTUAL MEMORY INSTRUCTIONS

The Virtual Memory Instructions perform accesses to
virtual memory and the extended area, which are ex-
tensions of logical memory. If an addressed data item is in
physical memory, the instructions perform the required
mapping, including modification of map registers and
entry of the appropriate page numbers into the user’s
logical address space. If an addressed data item is not in
physical memory, a fault is generated to a macrocode
routine which swaps the data from the disc into physical
memory and then restarts the VMA instruction. The fault
sequence generated depends on whether the CDS mode is
enabled. If CDS mode is disabled, a JSB,I through memory
location 04 in the user map is effected. Memory location 04
is expected to contain the address of the entry point of the
VMA fault-handler in the user space (indirect addressing
is not allowed). If CDS mode is enabled, an interrupt is
generated to trap cell 12 octal in the system map. As the
VMA fault interrupt is the lowest priority interrupt, any
other pending interrupts will be serviced first.

NOTE

VMA always maps the page that the
requested VMA address is on in addition
to the next page, ensuring that entire
data items up to 1k words in size are
mapped-in. The exception to this is
.PMAP, which only maps-in the re-
quested page.

*For HP Assembly Language usage, refer to paragraph
3-41.

A600/A600+

.PMAP* MAP SPECIFIED PAGE

15]14 13 12j11 10 9|8 7 65 4 3|2 1.0

Error return

Normal return

On entry, the A-register is loaded with the number of the
user-map register to be altered and the B-register is
loaded with the page ID, which are the parameters passed
to the routine. If an attempt is made to map in the last+1
page, that PMR is mapped read and write protected. When
no error occurs, a normal return occurs to the second word
after the instruction; mapping is complete; and the
contents of the A- and B-registers are incremented. If a
fault occurs and the sign bit is set in the A-register, an
error return to the word that follows the instruction oc-
curs. If a fault occurs, and the sign bit is not set in the
A-register, a normal fault sequence is generated. The
O-register is undefined. The E-register is set if an attempt
was made to map the last+1 page; otherwise it is cleared.

The .PMAP instruction uses the last user page (31) of
memory and then maps that logical page read and write
protected. After a .PMAP call, memory references to
address >75777 octal will cause memory protect
violations.

.IMAP* 16-BIT SUBSCRIPT MAPPING
15014 13 12§11 10 9] 8 7 6]5 4 3|2 1 0

O
Word 2 = DEF dope vector
Word 3 = Subscript N

Word N+2 = Subscript 1

Performs a subscript calculation and maps the result into
logical memory. Each of the subscripts and dimensions are
16-bit integers. However, the calculation uses 32-bit adds
and multiplies. The subscripts are sign-extended to 32
bits. The subscript words cannot address the A- or
B-register.

Word 2 points to a table that specifies in order the number
of dimensions, dimension sizes, the number of words per
element, and a two-word offset.

On a normal return, the A-register is undefined and the
B-register contains the logical address.

.IRES* 16-BIT SUBSCRIPT RESOLUTION
15114 1312]11 10 9|8 7 6|5 4 3|2 1 0

Word 2 = DEF dope vector

Word 3 = Subscript N

LWord N+2 = Subscript 1

Programming Information

Performs a subscript calculation. Each of the subscripts
and dimensions are 16-bit integers. However, the calcu-
lation uses 32-bit adds and multiplies. The subscripts are
sign-extended to 32 bits. The subscript words cannot
address the A- or B-register.

Word 2 points to a table that specifies in order the number
of dimensions, dimension sizes, the number of words per
element, and a two-word offset.

On a normal return, the A- and B-registers contain the
address of the array element in double-integer format
(most significant word in the A-register).

.JMAP*

(A600+ only) 32-BIT SUBSCRIPT MAPPING

15014 13 12111 10 98 7 6}]5 4 3]21 0

Word 2 = DEF dope vector
Word 3 = Subscript N

I Word N+2 = Subscript 1

Performs a subscript calculation and maps the result into
logical memory. Each of the subscripts and dimensions are
32-bit integers, and the calculation uses 32-bit adds and
multiplies. The subscript words cannot address the A- or
B-register.

Word 2 points to a table that specifies the number of
dimensions, dimension sizes, the number of words per
element, and a two-word offset.

On a normal return, the A-register is undefined and the
B-register contains the logical address.

-JRES*

(A600+ only) 32-BIT SUBSCRIPT RESOLUTION

15114 13 121110 98 7 615 4 3]J2 1 0

Word 2 = DEF dope vector
Word 3 = Subscript N

Word N+2 = Subscript 1

Performs a subscript calculation. Each of the subscripts
and dimensions are 32-bit integers, and the calculation
uses 32-bit adds and multiplies. The subscript words
cannot address the A- or B-register.

Word 2 points to a table that specifies the number of
dimensions, dimension sizes, the number of words per
element, and a two-word offset.

*For HP Assembly Language usage, refer to paragraph
3-41.

3-31

Programming Information

On a normal return, the A- and B-registers contain the
address of the array element in double-integer format
(most significant word in the A-register).

.LPXR* INDEXED MAPPING WITH DEF

15114 13 12]11 10 9]8 7 6|5 4 3

}Eﬁ |
| [
- v i

Memory Address

On entry, the pointer specified by the second instruction
word is resolved, and the double word it points to is loaded
into the A- and B-registers. The offset specified in the
third instruction word is resolved, and the double word it
points to is added to the contents of the A- and B-registers.
The result is treated as a 26-bit VMA pointer and is
mapped. On exit, the B-register contains the logical
address of the data item, and the A-register is undefined.
The offset word cannot refer to the A- or B-register.

.LPX* INDEXED MAPPING WITH REGISTERS

15[14 13 12[11 10 9] 8 7 6]5 4 3]2 1

J]

Memory Acidress
On entry, the second instruction word either directly or
indirectly points to a double integer in memory, which is
to be added to the double integer in the A- and B-registers
to form a double-word VMA pointer. If bit 15 of the
A-register is set, the B-register contains the address of a
data item presently residing in logical memory and the
.LPX instruction does nothing; otherwise, the data item is
mapped. On exit, the B-register contains the logical
address of the data item, and the A-register is undefined.

MAPPING WITH DEF

A600/A600+

.LBP* MAPPING WITH REGISTERS

15[14 13121110 9|8 7 6]5 4 32 1 O

On entry, the 26-bit VMA pointer is contained in the
A-register (most significant word) and B-register; if bit 15
of the A-register is set, the B-register contains the address
of a data item presently residing in logical memory;
otherwise, the data item is mapped. On exit, the B-register
contains the logical address of the data item, and the
A-register is undefined.

3-39. OPERATING SYSTEM INSTRUCTION
SET

The operating system instructions provide instructions for
ascertaining the CPU and firmware identification, and
instructions for interrupt conditions.

.CPUID PROCESSOR IDENTIFICATION
1514 1312|1110 9|8 7 6}5 4 3|2 1 0
The A-register is loaded with a number that identifies the
type of processor installed in the computer system, where:

Octal 2 = A600
Octal 3 = A700
Octal 4 = A900
Octal 5 = A600+

.FWID* FIRMWARD IDENTIFICATION

the revision code of the firmware.

.WFI* WAIT FOR INTERRUPT

5 4 3]21 0

g

Memory Address

On entry, the pointer specified by the second instruction
word is resolved and the double word it points to is loaded
into the A- and B-registers. This value is treated as a
26-bit VMA pointer and is mappec.. On exit, the B-register
contains the logical address of the data item, and the
A-register is undefined.

*For HP Assembly Language usage, refer to paragraph
3-41.

3-32

15|14 13 12J11 10 9]8 7 6}5 4 3

This instruction is equivalent to a JMP * except that the
processor does not perform memory accesses, which would
decrease the effective bandwidth of the memory back-
plane. This instruction is interruptible.

.SIp* SKIP IF INTERRUPT PENDING
15114 13 12]11 10 8 7 6]5 432 10

rit ¥

The processor skips if an I/O interrupt is pending (INTRQ-
is asserted on the A-series backplane), which is inde-
pendent of the Level 2 and Level 3 interrupt masks.

A600/A600+

3-40. EXECUTION TIMES

Table 3-5 lists the execution times required for the various
base set instructions.

3-40A. DOUBLE-PRECISION FLOATING
POINT INSTRUCTIONS
(A600+ ONLY)

The double-precision floating point instructions are
standard in the A600+ base set and provide for add,
subtract, multiply and divide operations on a double-
precision value, as well as instructions that convert
double-precision floating point values to or from single
and double integer fixed values.

Overflow for double precision operations occurs if the re-
sult lies outside the range of representable double preci-
sion floating point numbers [—2'%" (1-273%)2-127], In such
a case, the overflow flag is set and (1—2-%*)2'%" js returned
as the result. Underflow occurs if the result lies inside the
range [—27'%9(14+273%),271%], In such a case, the overflow
flag is set and 0 is returned as the result.

.TADD* DOUBLE FLOATING
(A690+ only) POINT ADD

15114 13 12j11 10 9|8 7 6]5 4 3]2 1 0

Programming Information

Word 1 = Instruction code.
Word 2 = Address of result.
Word 3 = Address of dividend.
Word 4 = Address of divisor.

.TFTD* DOUBLE INTEGER TO
(A600+ only) DOUBLE FLOATING POINT

1514 13 12|11 10 9|8 7 6|5 4 3 |2

g

Memory Address

Converts the double integer quantity in the A-and
B-registers to double precision floating point format. The

floating point result is returned to the specified memory
locations.

TFTS* SINGLE INTEGER TO
(A600+ only) DOUBLE FLOATING POINT

15114 13 12§11 10 9} 8 7 6]5 4 3121

v’

Memory Address

Adds two double precision floating point quantities (au-
gend plus addend). This is a four-word instruction where:

Word 1 = Instruction code.
Word 2 = Address of result.
Word 3 = Address of augend.
Word 4 = Address of addend.

.TDIV* DOUBLE FLOATING
(A600+ only) POINT DIVIDE

15§14 13 12§11 10 918 7 6}5 4 3|2 1 0“

v

Memory Address

Divides one double precision floating point quantity by
another (dividend by divisor). This is a four-word in-
struction where:

-~

Memory Address
Converts the single integer quantity in the A-register to
double precision floating point format. The floating point
result is returned to the specified memory locations.

.TFXD* DOUBLE FLOATING
(A600+ only) POINT TO DOUBLE INTEGER

15114 13 12J1110 98 7 6 543J1210

g

Memory Address

Converts the double precision floating point quantity in
the specified memory locations to double integer format.
The integer result is returned to the A- and B-registers.
(The A-register contains the most-significant word and
the B-register contains the least-significant word.) If the
magnitude of the floating point number is <1, regardless
of sign, 0 is returned as the result. If the magnitude of the
exponent of the floating point number is =32, regardless
of sign, the integer 2°'—1 is returned as the result and the
overflow flag is set.

*For HP Assembly Language usage, refer to paragraph
3-41.

3-33

Programming Information

.TFXS* DOUBLE FLOATING
(A600+ only) POINT TO SINGLE INTEGER

-

151a 13 12]1110 98 7 65 4 3|2 1 0

'

Memory Address

Converts the double precision floating point quantity in
the specified memory locations to single integer format.
The integer result is returned to the A-register. If the
magnitude of the floating point number is <1, regardless
of sign, 0 is returned as the result. If the magnitude of the
exponent of the floating point number is =16, regardless
of sign, the integer 2'°—1 is returned as the result and the
overflow flag is set.

DOUBLE FLOATING
POINT MULTIPLY

.TMPY*
(A600+ only)

14 13 12|11 10 9|8 7 6

~

Memory Address

Multiplies one double precision floating point quantity by
another (multiplicand by multiplier). This is a four-word
instruction where:

Word 1 = Instruction code.

Word 2 = Address of result.

Word 3 = Address of multiplicand.
Word 4 = Address of multiplier.

.Tsus* DOUBLE FLOATING
(A600+ only) POINT SUBTRACT

15014 13 12|11 10 98 7 65 4 3|2 1 0

A600/A600+

Subtracts one double precision floating point quantity
from another (minuend minus subtrahend). This is a
four-word instruction where:

Word 1 = Instruction code.

Word 2 = Address of result.
Word 3 = Address of minuend.
Word 4 = Address of subtrahend.

3-41. ASSEMBLY LANGUAGE

New instructions not recognized by the HP Macroas-
sembler require different handling in HP Assembly
Language programming. These instructions are as-
terisked in the preceding paragraphs and must be used in
the form: JSB x where x is the instruction. (The in-
struction, x, must be declared as an external at the be-
ginning of the assembly language program). Most of these
instructions correspond to library subroutines** and must
be implemented into HP RTE systems (as described in the
following paragraph) to enable their execution in
firmware instead of software.

3-42. RTE IMPLEMENTATION

New instructions are implemented in an RTE-A system by
changing library entry points during the parameter input
phase of system generation. (Refer to the appropriate RTE
manual for the system generation procedures.) Using the
list of entry point opcodes given in Table 3-6, make the
entry changes as indicated below:

LPMR,RP,105700
SPMR,RP,105701

.ADGB,RP,105413

Alternatively, entry points may be changed by loading
(via LINK) a “replacement” module when user programs
are loaded. Opcode replacement modules RPL60 through
RPL63 are included in the RTE-A system.

**Refer to the Relocatable Library Reference Manual, HP
part no. 92077-90037.

-
Memory Acdress

3-34

*For HP Assembly Language usage, refer to paragraph
3-41.

A600/A600+

Table 3-5. Typical Base Set Instruction Execution
Times, A600/A600+

INSTRUCTION

EXECUTION TIME (usec)

Programming Information

Table 3-5. Typical Base Set Instruction Execution
Times A600/A600+ (Continued)

Memory Reference Group

(Direct)
LDA/B, ADA/B, IOR, XOR, AND
STA/B, I1SZ, JSB
CPA/B without skip
with skip
JMP

(Indirect)

JSB,|

JMP,|

Each indirect address level except
the first for JMP,|

Alter/Skip Group

INA/B, SZA/B, SSA/B, SLA/B,
SEZ, RSS, or any combination
without skip
with skip
CCA/BIE, CLA/B/E, CMA/B/E, or
any combination within group
without skip
with skip

Shift/Rotate Group

NOP, A/BLF, A/BRS, ELA/B,
ERA/B, RAR, RBR, or any
combination
with SLA and skip
with SLA and no skip
with SLA, CLE and skip
with SLA, CLE and no skip
A/BLR, A/BLS, CLE alone
combinations within subgroup
combinations with other
subgroup

combinations with SLA, no skip

combinations with SLA, skip

Extended Arithmetic Group
(A600 only)

ASL with one shift

ASR with one shift

Div

DLD

DST

JLA/B

LSL/R, RRL/R with one shift
MPY

LSR with one shift

RRR with one shift

(A600+ only)

ASL with one shift
ASR with one shift
DIV
DLD
DST

0.908/0.908
1.362/1.362
1.135/1.135
1.588/1.588
0.681/0.681

1.816/1.589
1.589/1.362

0.454/0.454

0.908/1.135 to 1.362
1.362/1.135 to 1.362

1.135/1.135 to 1.362
1.589/1.135 to 1.362

1.135/1.135 to 2.270
1.816/1.135 to 2.270
1.589/1.135 to 2.270
1.816/1.135 to 2.270
1.589/1.135 to 2.270
1.362/1.135 to0 2.270
1.816/1.135 to 2.270

1.362 to 2.043/
1.135 to 2.270
1.816 to 2.270
1.135 to 2.270
2.043 to 2.497
1.135 to 2.270

(A600 only)

2.043 plus 0.454/shift
1.362 plus 0.227/shift
2.724 to 10.670
2.724

2.497

2.043

1.135 plus 0.227/shift
5.902

1.135 plus 0.227/shift
1.135 plus 0.227/shift

(A600+ only)

1.816
1.362
2.497 to 10.44
1.816
2.043

INSTRUCTION EXECUTION TIME* (usec)
(A600+ only) (Continued)
JLA/B 1.362
LSL/R. RRL/R with one shift 1.135
MPY 5.498
LSR with one shift 1.135
RRR with one shift 1.589
Input/Output Group
HLT 298.97/17.49
By select code
- 8CO: CLF, STF 2.724/1.362
SFC, SFS without skip 2.851/1.589
with skip 3.178/1.589
LIA/B : 10.90/6.356
OTA/B 7.945/4.944
CLC 2.951/1.362
8C1: CLF, STF 1.816/1.362
SFC, SFS without skip 2.043/1.362
with skip 2.2701.362
LIA/B 2.270/1.675
OTA/B 1.816/2.275
S§C2: STF, CLF 4.767/2.043
SFC, SFS without skip 2.951/1.589
with skip 3.228/1.589
LIA/B 10.90/6.356
OTA/B 7.945/4.767
STC 4.540/2.043
SC3: LIAB 10.90/6.356
OTA/B 12.03/5.488
SC4: SFC, SFS without skip 2.951/1.362
with skip 3.178/1.362
LIA/B 3.632/1.362
OTA/B 4.086/1.362
CLC, 8TC 2.724/1.589
8C5: SFC, SFS without skip 2.951/1.589
with skip 3.228/1.589
STF, CLF 2.724/1.362
LIAB 2.951/1.589
CLC, STC 2.497/1.362
8C6: SFC, SFS without skip 2.951/1.589
with skip 3.228/1.589
STF, CLF 2.497/1.362
STC 2.951/1.362
CcLC 3.632/1.362
SC7: LIA/B, STC 2.497/1.362
SC20 and up:
CLC, CLF, STC, STF 5.448/2.951
SFC, SFS without skip 5.448/2.951
with skip 7.040/4.086
LIAB 8.170/5.902
MIA/B 8.390/5.902
OTA/B 7.260/4.994

3-35

Programming Information

Table 3-5. Typical Base Set Instruction Execution
Times, A600°'A600+ (Continued)

A600/A600+

Table 3-5. Typical Base Set Instruction Execution
Times, A600/A600+ (Continued)

INSTRUCTION

EXECUTION TIME* (usec)

INSTRUCTION

EXECUTION TIME* (u.sec)

Extended Instruction Group
(index Register Instructions)

ADX/Y, LDX/Y

CAX/Y, CBX/Y, CXA/B, CYA/B

DSX/Y, ISX/Y without skip
with skip

JLy, JPY

LAX/Y, LBX/Y, STX/Y

SAX/Y, SBX/Y

XAX/Y, XBX/Y

Each indirect address level

Bit/Byte/Word Manipulation
Group

(Bit Maniputation Instructions)

CBS, SBS
TBS without skip
with skip

(Byte Manipulation Instructions)

CBT
Each additional byte
LBT (even or odd byte address)
MBT
Each additional byte
SBT if even byte address
If odd byte address

SFB for compare exit
For terminal exit
Each added byte, either exit

(Word Manipulation Instructions)

CMW

Each additional word
MVW

Each additional word

Floating Point Group

.FAD
.FDV
FIX
FLT
FMP
.FSB

Dynamic Mapping Instruction
Group

Double Integer instruction
Group

.DAD, .DSB, .DSBR
.DCO

.DDE, .DIN

.DDS, .DIS

.DNG

.DMP (A600+)

1.816/1.589, 1.362
0.908/0.908
0.908/1.135
1.362/1.135
2.043/1.135
2.270/1.589
2.497/1.816
1.135/1.135
0.454/0.454

3.859/2.724
3.859/2.951
4.086/2.951

2.597/2.270
4.313/3.589
2.724/2.270 or 1.816
3.641/4.313-6.129
3.859/0.454-1.022
3.405/2.724
2.951/2.270

1.816/2.497
2.043/2.724
2.270/1.135

2.951/2.755
2.0433/1.135
2.951/2.270
1.135/0.908

7.0 to 27.7/8.8 t0 17.7
6.1 to 30.0/5.4 to 27.9
2.5 10 10.2/2.4 t0 6.3
1.6t0 13.4/22 10 5.6
16.6 to 26.6/17.0 to 21.1
8.2 to 27.7/9.5 to 18.8

Refer to Section IV for
detailed descriptions and
execution times.

(Typical Values)

3.178/2.497
4.086/2.497-2.951
1.135/1.135-1.589
4.313/3.859
1.589/1.589
3.178-13.847

Double Integer Instruction
Group (Continued)

.DDI (AB0O+)
.DDIR (A600+)

Virtual Memory Instructionst

IMAP

Additional per subscript
IRES

Additional per subscript
.LBP
.LBPR, .LPX
.LPXR
.PMAP

tNote: The times listed do not inclu

in from the disc.

Program Language Support
Group

.CFER
.CPM
.DFER
.ENTC

Additional per parameters
.ENTN, .ENTP

Additional per parameteri
.ENTR

Additional per parameter}
.FCM
.SETP

Additional per table entry
XFER
ZFER

(Typical Values)

3.632-16.344
4.540-17.479

13.62/23.15
11.62/10.44
3.859/13.39
11.12/10.44
10.442/10.67
12.935/11.80, 12.03
15.209/13.85
7.718/7.264

de access time to bring data

6.583/5.675
2.951/2.951
5.675/4.767
4.086/2.270
1.589/0.908
3.632/2.270, 2.951
1.589/0.908
3.405/2.724
1.589/0.908
1.1t05.675/1.135t0 5.448
1.816/2.924
0.681/0.454
5.902/3.859
11.35/9.761

+Assumes no indirect reference on parameter; add 0.454 for each

indirect level.

Operating System Instructions

.CPUID, .FWID
.SIP without skip

with skip
WFI

0.908/0.908
0.908/0.908
1.362/1.362
Until interrupt

Note: Actual times may vary from those listed above for several
reasons. Memory refresh during a processor memory
access can make an instruction approximately 3% slower.
Heavy DMA activity can also degrade instruction times due

to contention for memory.

3-36

A600/A600+

Table 3-5A. Typical and Maximum Execution Times

of Selected Instructions

EXECUTION TIME (us)

INSTRUCTION

TYPICAL MAXIMUM
Single-Precision Floating Point
(A600/A600+) (A600/A600+)

.FIXD 7.5/1.8 9.5/7.9
.FLTD 7.0/1.5 7.7/7.0
.FAD NA/8.8 NA/17.7
.FsB NA/9.5 NA/18.8
.FMP NA/17.0 NA/21.1
.FDV NA/5.4 NA/27.9
FLOAT NA/2.2 NA/5.6
FiX NA/2.4 NA/6.3

Double-Precision Floating Point (A600+ only)

.TADD 11.3 27.9
.TDIV 12.9 65.1
.TFTD 5.2 9.9
TFTS 45 8.8
.TFXD 4.3 9.7
.TFXS 4.0 8.6
TMPY 11.3 64.0
.TSuB 12.9 29.5
Language Instruction Set

(A600/A600+) (A600/A600+)
.BLE 6.4/5.2 6.4/—
.FLUN 1.4/1.3 1.4/—
.NGL 8.2/4.5 8.6/8.3
.PACK 7.71.8 21.3/9.9
.PWR2 32113 3.6/3.1
.TCM 10.4/9.7 10.9/10.4
Double-Integer Instructions

(A600/A600+) (A600/A800+)
.DDI 14,5/3.632 15.4/16.344
.DDIR 15.4/4.570 16.3/17.479
.DMP 13.6/3.178 14.8/13.847
.DAD, .DSB, NA/2.497 —_—

.DSBR

.DIN, .DDE/.DNG NA/1.135 NA/1.589
.DIS, .DDS NA/3.859 —
.DCO NA/2.497 NA/2.951

Programming Information

3-37

Programming Information

Table 3-6. Instructions and Opcodes for RTE-A Implementation

A600/A600+

INSTRUCTION OCTAL INSTRUCTION OCTAL INSTRUCTION OCTAL INSTRUCTION OCTAL
MNEMONIC OPCODE MNEMONIC OPCODE MNEMONIC OPCODE MNEMONIC OPCODE
LPMR 105700 TBS 105775 JRES 105252 .CZB 105410
SPMR 105701 MVW 105777 JMAP 105245 .CAZ 101411
LDMP 105702 CMwW 105776 .LPXR 105254 .CcBz 105411
STMP 105703 XFER 105220 .LPX 105255 .CIQA 101412
LWD1 105704 .ENTR 105223 .LBPR 105256 claB 105412
LWD2 105705 .ENTP 105224 .LBP 105257 .ADQA 101413
SWMP 105706 .ENTN 105234 .FAD 105000 .ADQB 105413
SIMP 105707 .ENTC 105235 .FAD 105000
XJMP 105710 .DFER 105205 .FSB 105020
XJCQ 105711 .CFER 105231 FSB 105020
XLA1 101724 ..FCM 105232 .FMP 105040
XLA2 101421 ZFER 105237 FMP 105040
XLB1 105724 .SETP 105227 FDV 105060
XLB2 105721 $SETP 105227 FDV 105060
XSA1 101725 .CPM 105236 FIX 105100
XSA2 101722 .DNG 105203 FIX 105100
XSB1 105725 .DCO 105204 IFIX 105100
XSB2 105722 .DIN 105210 FLT 105120
XCA1 101726 .DDE 105211 FLT 105120
XCA2 101723 .DIS 105212 FLOAT 105120
XCBi1 105726 .DDS 105213 .CPU 105300
XcB2 105723 .DAD 105014 FWID 105301
MWO00 105727 .DSB 105034 WFi 105302
MWO1 105730 .DSBR 105114 SIP 105303
MWO02 105731 .PMAP 105240 DLD 104200
MW10 105732 CXA 101744 .DST 104400
MW11 105733 CYA 101754 MPY 100200
MW12 105734 CXB 105744 .DIV 100400
MW20 105735 cYB 105754 .TADD 105002
MW21 105736 XAX 101747 TSuB 105022
MwW22 105737 XAY 101757 TMPY 105042
MB0O 101727 XBX 105747 .TDIV 105062
MBO1 101730 XBY 105757 .TCM 105233
MBO2 101731 STX 105743 TFTS 105122
MB10 101732 STY 105753 TFTD 105126
MB11 101733 LDX 105745 TFXS 105102
MB12 101734 LDY 105755 .TFXD 105106
MB20 101735 ISX 105760 NGL 105214
MB21 101736 ISY 105770 .BLE 105207
MB22 101737 DSX 105761 .FLUN 105226
SAX 101740 DSY 105771 .PACK 105230
SAY 101750 ADX 105746 FIXD 105104
SBX 105740 ADY 105756 FLTD 105124
SBY 105750 JLA 100600 .PWR2 105225
CAX 101741 JLB 104600 .DMP 105054
CAY 101751 XLA 101724 .DDI 105074
cBX 105741 XLD 101724 .DDIR 105134
cBY 105751 XLB 105724 .PCALI 105400
LAX 101742 XSA 101725 .PCALX 105401
LAY 101752 XST 101725 .PCALV 105402
LBX 105742 XSB 105725 .PCALN 105404
LBY 105752 XCA 101726 .PCALR 105406
JLy 105762 XCB 105726 EXIT 105417
JPY 105772 MWF 105732 EXIT1 105415
LBT 105763 MWI 105730 EXIT2 105416
SBT 105764 MWW 105733 .SOSsP 105406
MBT 105765 MBF 101732 .CCQA 101406
CBT 105766 MBI 101730 .ccas 105406
SFB 105767 MBW 101733 .CACQ 101407
SBS 105773 IMAP 105250 .CBCQ 105407
CBS 105774 IRES 105244 .CZA 101410

3-38

DYNAMIC MAPPING SYSTEM

SECTION

v

The basic addressing space of the HP 1000 A600 computer
family is 32768 words, which is referred to as logical
memory. The amount of memory actually installed in the
computer system is referred to as physical memory. The
Dynamic Mapping System (DMS) is standard logic in the
HP 1000 A600 computer and provides an addressing
capability for up to 16 million words of physical memory.
The DMS allows logical memory to be mapped into
physical memory through the use of dynamically-
alterable memory maps.

4-1. MEMORY ADDRESSING

The basic memory addressing scheme provides for ad-
dressing 32 pages of logical memory, each of which con-
sists of 1024 words. This memory is addressed through a
15-bit logical address bus as shown in the following figure.
The upper 5 bits of this bus provide the logical page ad-
dress and the lower 10 bits provide the relative word offset
within the page.

Also associated with any memory access is a 5-bit logical
map number. The DMS converts the logical map number
and the logical page address into a 14-bit physical page
number, thereby allowing 16k (2'%) pages of physical
memory to be addressed. This conversion is accomplished
by having the 5-bit logical map number and the 5-bit
logical page address access 1024 page mapping registers
(PMRs), each of which is 16 bits wide. Each of these map
registers contains the user-specified (by DMS instruc-
tions) 14-bit page address. This new page address is
combined with the original 10-bit page offset to form a
24-bit memory address as shown in the Figure 4-2.

/ o JE————y |
. 10 . PAGE OFFSET
BITS . . :
~ 9
LOGICAL

ADDRESS | —____ 19

Figure 4-1. Basic Logical Memory Addressing Scheme

The PMRs also contain two bits of memory protection
information. Bit 15 indicates that the page is read pro-
tected when the memory protect system is enabled. Bit 14
indicates that the page is write-protected when the mem-
ory protect system is enabled. Any attempt by the pro-
cessor to write into a write-protected page or a read from a
read-protected page will result in a memory protect vio-
lation. In the case of a read protect violation, the memory
will return 177777. In the case of a write protect violation,
memory will not be altered. However, DMA can access
protected memory at any time.

If a memory protect violation occurs, the DMS signals the
memory protect logic on the memory controller card that a
violation has occurred, which causes the memory protect
logic to generate an interrupt. As discussed in the Section

VI, memory protect violations are interrupted to select
code 07.

The width of the PMRs is limited to a 16-bit word, of which
one bit specifies write protection and another specifies
read protection, so the maximum width of the physical
page address is 14 bits.

4-2. GENERAL DESCRIPTIONS

4-3. PAGE MAPPING REGISTER
INSTRUCTIONS

The page mapping register instructions allow the
privileged user to alter the PMRs, each of which have the
following format:

PAGE MAPPING REGISTER FORMAT

0
. physical page number
13
14 — write protect this page
15 — read protect this page (always zero on

A600)

The page mapping register instructions are:

LPMR - load a PMR indexed by register A from
register B.

SPMR - store a PMR indexed by register A to
register B.

LDMP - load a map from memory.

STMP - store a map to memory.

4-1

Dynamic Mapping System

4-4. WORKING MAP INSTRUCTIONS

The computer will maintain three logical maps,
cumulatively called the Working Map Set (WMAP). The
working map instructions allow the system to alter the
logical maps, and also to initiate a user program.

The A600+ has an additional working map called the code
map. The code map is defined as the Execute map that has
been inclusively ORed with 1, following which the original
Execute map is redefined as the data map. This use of
separate maps for both code and data occurs only when
CDS mode is enabled, and effectively doubles the logical
address space for user programs.

The Execute map is the map number used for instruction
fetches and normal memory accesses. The data maps
(DATA1 and DATAZ2) are the map numbers used in
cross-map memory references. There are two data maps to
allow the system to do cross-map moves from one area of
memory to another without having to go through the sys-
tem map. In addition, this feature allows the system to be
able to quickly access one area of memory (such as a
System Available Memory map) while being able to also
access another (such as the user’s map). A memory ref-
erence to locations 0 or 1 in the Execute map are defined to
access the A- or B-registers, respectively. References to 0
or 1 in the data maps are defined to access physical mem-
ory locations.

The format of WMAP is as follows:

WMAP FORMAT:
0

) Execute map number
4

A600/A600+

10
. DATA2 map number
14

15 — memory protection enable

Upon servicing interrupts, the computer saves the cur-
rently executing WMAP in a register called IMAP, and
loads WMAP with the following values:

The DATA1 map is set to the old Execute map.
b. The new Execute map is set to zero.
c. The DATA2 map contains an undefined value.

d. Memory protection is disabled.

The working map instructions are:

XJCQ - cross jump and load CQ (A600+ only)
XJMP - cross jump

SWMP - store current WMAP into memory
SIMP - store current IMAP into memory

LWD1 - load WMAP field DATA1 from memory
LWD?2 - load WMAP field DATA2 from memory

4-5. CROSS-MAP INSTRUCTIONS

While the working map instructions provide a way to load
the working map set, the cross-map instructions provide a
means to use them.

These instructions are non-privileged. For all of these
instructions, indirect DEF references are done through
the Execute map, while the final reference is done through
the specified map. When Code and Data Separation (CDS)
is enabled, any memory accesses involving the Execute
map number are considered to be data accesses, and the
base register hardware will add the base (Q) register value
to memory addresses from 2 through 1023. Memory ac-
cesses involving the DATA1 or DATA2 map numbers are
done with CDS disabled, so accesses to the base page will
not have the base register added.

0 o\\

9 PHYSICAL
ADDRESS

5
DATA1 map number
9
0
PAGE
OFFSET
9
LOGICAL 0
ADDRESS | ogicaL 10
PAGE
ADDRESS -
14 14—
MAP 0
NUMBER .
4
10

PAGE
MAPPING
REGISTERS
(PMRs)

13 23 /

14 WRITE-PROTECT
15 READ PROTECT

Figure 4-2. Expanded Memory Addressing Scheme

A600/A600+

Abbreviations used are:

“0” - means logical Execute map
“1” - means logical DATA1 map
“2” - means logical DATA2 map

The cross map instructions are:

XLALI - cross load A through the DATA1 map
XLB1 - cross load B through the DATA1 map
XLA2 - cross load A through the DATA2 map
XLB2 - cross load B through the DATA2 map
XSAL1 - cross store A through the DATA1 map
XSB1 - cross store B through the DATA1 map
XSAZ2 - cross store A through the DATA2 map
XSB2 - cross store B through the DATA2 map
XCA1 - cross compare A through the DATA1 map
XCB1 - cross compare B through the DATA1 map
XCA2 - cross compare A through the DATA2 map
XCB?2 - cross compare B through the DATA2 map
MWOO - cross move words from Execute to Execute
MWO1 - cross move words from Execute to DATA1
MWO02 - cross move words from Execute to DATA2
MW10 - cross move words from DATA1 to Execute
MW11 - cross move words from DATA1 to DATA1
MW12 - cross move words from DATA1 to DATA2
MW?20 - cross move words from DATAZ2 to Execute
MW21 - cross move words from DATAZ2 to DATA1
MW22 - cross move words from DATAZ2 to DATA2
MBOO - cross move bytes from Execute to Execute
MBO01 - cross move bytes from Execute to DATA1
MBO2 - cross move bytes from Execute to DATA2
MB10 - cross move bytes from DATA1 to Execute
MB11 - cross move bytes from DATA1 to DATA1
MBI12 - cross move bytes from DATA1 to DATA2
MB20 - cross move bytes from DATA2 to Execute
MB21 - cross move bytes from DATAZ2 to DATA1
MB22 - cross move bytes from DATA2 to DATA2

If CDS mode is enabled, the base (Q) register will be added
to base relative addresses in the Execute map only. Cross
map references to addresses in one of the alternate maps
are not checked for base relativity.

4-6. DETAILED DESCRIPTIONS

The following paragraphs provide machine language
coding and definitions for the DMS instructions.

LPMR LOAD PAGE MAPPING REGISTER
15014 13 121110 9|8 7 6|5 4 3|2 1 0

Loads the contents of the B-register into the page mapping
register (PMR) addressed by the contents of the
A-register. Any attempt to address a PMR outside the
range of 0 to 1023 produces undefined results. The format
for the PMR contents is: bit 15 = read protect; bit 14 =
write protect; and bits 13 to 0 = physical page number.
This instruction is privileged. After the operation, the
A-register is incremented.

Dynamic Mapping System

SPMR STORE PAGE MAPPING REGISTER

15/1413 12]1110 918 7 6)5 4 3/2 1 0

Loads the contents of the page mapping register (PMR)
addressed by the value in the A-register into the
B-register. Any attempt to address a PMR outside the
range of 0 to 1023 produces undefined results. The format
for the PMR contents is: bit 15 = read protect; bit 14 =
write protect; and bits 13 to 0 = physical page number.
This instruction is privileged. After the operation, the
A-register is incremented.

LDMP LOAD A MAP

15§14 13 1241110 918 7 65 4 32 1 0

D)
D
L

Loads the map number specified by Word 2 from the 32-
word block of memory specified by Word 3, where:

Word 1 = Instruction code.
Word 2 = Pointer to Map number.
Word 3 = Pointer to Map image.

There are 32 maps of 32 PMRs each; the beginning PMR
number of a map is related to the map number as follows:

PMR number = Map number x 32

Undefined results occur when a map number outside the
range of 0 to 31 is addressed, when modification of a
currently executing map is tried, or when the resolved
address of the map image is outside the range of 2 to 77740
octal.

All memory references are done in the Execute map and
may include the A- and B-registers. This instruction is
privileged and is interruptible in that it may be inter-
rupted during indirect address resolution after three
levels of indirection, and then restarted.

STMP STORE A MAP
1511413 12j1110 9|8 7 6|5 4 3|2 1 0

Dy

o,:[

Stores the map number specified by Word 2 to the 32-word
block of memory specified by Word 3, where:

Word 1 = Instruction code.
Word 2 = Pointer to Map number.
Word 3 = Pointer to Map image.

4-3

Dynamic Mapping System

There are 32 maps of 32 PMRs each; the beginning PMR
number of a map is related to the map number as follows:

PMR number = Map number X 32

Undefined results occur when a map number outside the
range of 0 to 31 is addressed, when modification of a
currently executing map is tried, or when the resolved
address of the map image is outside the range of 2 to 77740
octal.

All memory references are done in the Execute map and
may include the A- and B-registers. This instruction is
privileged and is interruptible in that it may be inter-
rupted during indirect address resolution after three
levels of indirection, and then restarted.

XJMP

CROSS MAP JUMP

15114 13 12|11 10 9]8 7

Resolves indirect references, sets the program counter to
the resolved address specified by Word 3, and loads
WMAP with the contents of Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to new WMAP number.
Word 3 = Pointer to next instruction (new PC value).

All memory references (direct and indirect) are done in the
Execute map and may include the A- and B-registers. The
next instruction will be fetched using the new WMAP.
This instruction is privileged and is interruptible in that it
may be interrupted during indirect address resolution
after three levels of indirection, and then restarted.

CROSS MAP JUMP
(AND LOAD C AND Q)

XJca
(A600+ only)

15414 13 12

ID
|
ID
|
Resolves indirect references, sets the program counter to
the resolved address specified by Word 3, loads the WMAP

specified by Word 2, and loads the C- and Q-registers with
new values addressed by Word 4, where:

Word 1 = instruction opcode.

Word 2 = pointer to new WMAP number.

Word 3 = pointer to next instruction (new PC value).
Word 4 = point to new C- anc Q-register values.

1sfa 13 12[1110 o8 7 65 4 3]2 10

A600/A600+

All memory references (direct and indirect) are done in the
Execute map and may include the A- and B-registers. The
next instruction will be fetched using the new WMAP,
under a CDS mode specified by the new C-register value.
This instruction is privileged and is interruptible in that it
may be interrupted during indirect address resolution
after three levels of indirection, and then restarted.

SwWmpP SAVE WORKING MAP

15114 13 12]11 10 9]8 7 6]5 4 3j2 1 0

Stores WMAP at the memory location pointed to by Word
2, where:

Word 1 = Instruction code.
Word 2 = Pointer to destination in memory.

All memory references are done in the Execute map and
may include the A- and B-registers. This instruction is
privileged and is interruptible in that it may be inter-
rupted during indirect address resolution after three
levels of indirection, and then restarted.

SIMP SAVE INTERRUPTED MAP

Stores IMAP at the location pointed to by Word 2, where:

I

Word 1
Word 2

Instruction code.
Pointer to destination in memory.

All memory references are done in the Execute map and
may include the A- and B-registers. This instruction is
privileged and is interruptible in that it may be inter-
rupted during indirect address resolution after three
levels of indirection, and then restarted.

LOAD DATA1 MAP

LwD1

Loads the DATAI1 register from the memory location
pointed to by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to new DATA1 map.

4-4 Update 2

A600/A600+

All memory references are done in the Execute map and
may include the A- and B-registers. This instruction is
privileged and is interruptible in that it may be inter-
rupted during indirect address resolution after three
levels of indirection. Map numbers outside the range of
0-31 produce undefined results.

LWD2 LOAD DATA2 MAP

15014 13 1211110 918 7 615 4 312 1 0

Loads the DATAZ2 register from the memory location
pointed to by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to new DATA2 map.

All memory references are done in the Execute map and
may include the A- and B-registers. This instruction is
privileged and is interruptible in that it may be restarted
during indirect address resolution after three levels of
indirection. Map numbers outside the range of 0-31 pro-
duce undefined results.

XLA1 CROSS LOAD A THROUGH DATA1 MAP

Loads the A-register from the memory location pointed to
by Word 2, where:

15114 1312|1110 9]8 7 6|5 4 3}J2 1 0

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA1 map.

All indirect memory references are done in the Execute
map and may include the A- and B-registers and will be
checked for base relativity if CDS mode is enabled. The
direct memory reference is done in the DATA1 map.
Because A- and B-register addressing and base relative
checking are disabled in the DATA1 map, direct addresses
0 and 1 and 2 through 1777 refer to physical memory
locations. This instruction is interruptible in that it may
be interrupted during indirect address resolution after
three levels of indirection, and then restarted.

XLA2 CROSS LOAD A THROUGH DATA2 MAP

15114 13 12]1110 9]8 7 6]5 4 3

Loads the A-register from the memory location pointed to
by Word 2, where:

Dynamic Mapping System

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA2 map.

All indirect memory references are done in the Execute
map and may include the A- and B-registers and will be
checked for base relativity if CDS mode is enabled. The
direct memory reference is done in the DATA2 map.
Because A- and B-register addressing and base relative
checking are disabled in the DATA2 map, direct addresses
0 and 1 and 2 through 1777 refer to physical memory
locations. This instruction is interruptible in that it may
be interrupted during indirect address resolution after
three levels of indirection, and then restarted.

XLB1 CROSS LOAD B THROUGH DATA1 MAP

15114 13 12]11 10 9} 8 7 6}5 4 3121

Loads the B-register from the memory location point to by
Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA1 map.

All indirect memory references are done in the Execute
map and map include the A- and B-registers and will be
checked for base relativity if CDS mode is enabled. The
direct memory reference is done in the DATA1 map.
Because A- and B-register addressing and base relative
checking are disabled in the DATA1 map, direct addresses
0 and 1 and 2 through 1777 refer to phyical memory
locations. This instruction is interruptible in that it may
be interrupted during indirect address resolution after
three levels of indirection, and then restarted.

XLB2 CROSS LOAD B THROUGH DATA2 MAP

15[14 13 12[11 10 o]'8 7

Loads the B-register from the memory location pointed to
by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA2 map.

All indirect memory references are done in the Execute
map and may include the A- and B-registers and will be
checked for base relativity if CDS mode is enabled. The
direct memory reference is done in the DATA2 map.
Because A- and B-register addressing and base relative
checking are disabled in the DATA2 map, direct addresses
0 and 1 and 2 through 1777 refer to physical memory
locations. This instruction is interruptible in that it may
be interrupted during indirect address resolution after
three levels of indirection, and then restarted.

4-5

Dynamic Mapping System

XS8A1 CROSS STORE A THROUGH DATA1 MAP

13 12{1110 9f8 7 6|5 4 3

15114

Stores the A-register contents in the memory location
pointed to by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATAI map.

All indirect memory references are done in the Execute
map and may include the A- and B-registers and will be
checked for base relativity if CDS mode is enabled. The
direct memory reference is done in the DATA1 map.
Because A- and B-register addressing and base relative
checking are disabled in the DATA1 map, direct addresses
0 and 1 and 2 through 1777 refer to physical memory
locations. This instruction is interruptible in that it may
be interrupted during indirect address resolution after
three levels of indirection, and then restarted.

XSB1 CROSS STORE B THROUGH DATA1 MAP

1514 1312|1110 918 7 6

Stores the B-register contents in the memory location
pointed to by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA1 map.

All indirect memory references are done in the Execute
map and may include the A- and B-registers and will be
checked for base relativity if CDS mode is enabled. The
direct memory reference is dorie in the DATAL map.
Because A- and B-register addressing and base relative
checking are disabled in the DATA1 map, direct addresses
0 and 1 and 2 through 1777 refer to physical memory
locations. This instruction is interruptible in that it may
be interrupted during indirect address resolution after
three levels of indirection, and then restarted.

XSA2 CROSS STORE A THROUGH DATA2 MAP

1514 13 12]11 10 918 7 6 5 4 321!]

Stores the A-register contents in the memory location
pointed to by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA2 map.

4-6

A600/A600+

All indirect memory references are done in the Execute
map and may include the A- and B-registers and will be
checked for base relativity if CDS mode is enabled. The
direct memory reference is done in the DATA2 map.
Because A- and B-register addressing and base relative
checking are disabled in the DATAZ2 map, direct addresses
0 and 1 and 2 through 1777 refer to physical memory
locations. This instruction is interruptible in that it may
be interrupted during indirect address resolution after
three levels of indirection, and then restarted.

XSB2 CROSS STORE B THROUGH DATA2 MAP

1514 13 12]J11 10 9]8 7 6|5 4 3

Stores the B-register contents in the memory location
pointed to by Word 2, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA2 map.

All indirect memory references are done in the Execute
map and may include the A- and B-registers and will be
checked for base relativity if CDS mode is enabled. The
direct memory reference is done in the DATA2 map.
Because A- and B-register addressing and base relative
checking are disabled in the DATA2 map, direct addresses
0 and 1 and 2 through 1777 refer to physical memory
locations. This instruction is interruptible in that it may
be interrupted during indirect address resolution after
three levels of indirection, and then restarted.

XCA1 CROSS COMPARE A THROUGH

DATA1 MAP

Compares the A-register contents with a value in the
memory location pointed to by Word 2 and skips if the
values are not equal, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA1 map.

All indirect memory references are done in the Execute
map and may include the A- and B-registers and will be
checked for base relativity if CDS mode is enabled. The
direct memory reference is done in the DATA1 map.
Because A- and B-register addressing and base relative
checking are disabled in the DATA1 map, direct addresses
0 and 1 and 2 through 1777 refer to physical memory
locations. This instruction is interruptible in that it may
be interrupted during indirect address resolution after
three levels of indirection, and then restarted.

A600/A600+

XcB1 CROSS COMPARE B THROUGH
DATA1 MAP

1511413 12|1110 9|8 7 6|5 4 3|2 1 0

Compares the B-register contents with a value in the
memory location pointed to by Word 2 and skips if the
values are not equal, where:

Word 1 = Instruction code.
Word 2 == Pointer to memory location in DATA1 map.

All indirect memory references are done in the Execute
map and may include the A- and B-registers and will be
checked for base relativity if CDS mode is enabled. The
direct memory reference is done in the DATA1 map.
Because A- and B-register addressing and base relative
checking are disabled in the DATA1 map, direct addresses
0 and 1 and 2 through 1777 refer to physical memory
locations. This instruction is interruptible in that it may
be interrupted during indirect address resolution after
three levels of indirection, and then restarted.

XCA2 CROSS COMPARE A THROUGH
DATA2 MAP

15114 13 12J1110 98 7 6|5 4 3 210

Compares the A-register contents with a value in the
memory location pointed to by Word 2 and skips if the
values are not equal, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA2 map.

All indirect memory references are done in the Execute
map and may include the A- and B-registers and will be
checked for base relativity if CDS mode is enabled. The
direct memory reference is done in the DATA2 map.
Because A- and B-register addressing and base relative
checking are disabled in the DATA2 map, direct addresses
0 and 1 and 2 through 1777 refer to physical memory
locations. This instruction is interruptible in that it may
be interrupted during indirect address resolution after
three levels of indirection, and then restarted.

XCB2 CROSS COMPARE B THROUGH
DATA2 MAP

15[14 13 12[1110 9|8 7 6|5 4 3[2 1 0

Dynamic Mapping System

Compares the B-register contents with a value in the
memory location pointed to by Word 2 and skips if the
values are not equal, where:

Word 1 = Instruction code.
Word 2 = Pointer to memory location in DATA2 map.

All indirect memory references are done in the Execute
map and may include the A- and B-registers and will be
checked for base relativity if CDS mode is enabled. The
direct memory reference is done in the DATA2 map.
Because A- and B-register addressing and base relative
checking are disabled in the DATA2 map, direct addresses
0 and 1 and 2 through 1777 refer to physical memory
locations. This instruction is interruptible in that it may
be interrupted during indirect address resolution after
three levels of indirection, and then restarted.

CROSS MOVE WORDS,
EXECUTE TO EXECUTE

MWo0

15114 13 12]1110 9]8 7 6|5 4 3|2 1+ 0
1] frjofrfefrfa]
Moves a block of words from the Execute map to the
Execute map. The A-register specifies the source address,
the B-register specifies the destination address, and the
X-register specifies the number of words to be moved
(which must be a positive integer equal to or greater than
zero). Address bit 15 must be zero, as indirect source and
destination references are not allowed. On return, the
A-register contains the last memory address in the source
block moved plus one, the B-register contains the last

memory address in the destination block moved plus one,
and the X-register is zero.

If CDS mode is enabled, the A- and B-registers will be
checked for base relativity before execution. Upon exit
these registers will contain the base relative address,
incremented by the count in the X-register.

This instruction produces undefined results if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

Mwo1 CROSS MOVE WORDS,

EXECUTE TO DATA1

15114 13 12|1110 98 7 6]5 4 3|2 1 0

Moves a block of words from the Execute map to the
DATA1 map. The A-register specifies the source address
in the Execute map, the B-register specifies the destina-
tion address in the DATA1 map, and the X-register
specifies the number of words to be moved (which must be
a positive integer equal to or greater than zero). Address
bit 15 must be zero, as indirect source and destination

4-7

Dynamic Mapping System

references are not allowed. Or return, the A-register
contains the last memory address in the source block
moved plus one, the B-register contains the last memory
address in the destination block moved plus one, and the
X-register is zero.

If CDS mode is enabled, the A-register will be checked for
base relativity before execution. Upon exit this register
will contain the base relative address, incremented by the
count in the X-register.

This instruction produces undefined results if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

Mwo02 CROSS MOVE WORDS,

EXECUTE TO DATA2

15[14 13 1211110 918 7 6|5 4 3]2 1 0

Moves a block of words from the Execute map to the
DATA2 map. The A-register specifies the source address
in the Execute map, the B-register specifies the destina-
tion address in the DATA2 map, and the X-register
specifies the number of words to he moved (which must be
a positive integer equal to or greater than zero). Address
bit 15 must be zero, as indirect source and destination
references are not allowed. On return, the A-register
contains the last memory address in the source block
moved plus one, the B-register contains the last memory
address in the destination block moved plus one, and the
X-register is zero.

If CDS mode is enabled, the A-register will be checked for
base relativity before execution. Upon exit this register
will contain the base relative address, incremented by the
count in the X-register.

This instruction produces undefined results if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

Mw10 CROSS MOVE WORDS,

DATA1 TO EXECUTE

15]114 13 12]1110 9]8 7 6}5 4 312 1 0

Moves a block of words from the DATA1 map to the
Execute map. The A-register specifies the source address
in the DATA1 map, the B-register specifies the destina-
tion address in the Execute map, and the X-register
specifies the number of words to be moved (which must be
a positive integer equal to or greater than zero). Address
bit 15 must be zero, as indirect source and destination
references are not allowed. On return, the A-register

4-8

A600/A600+

contains the last memory address in the source block
moved plus one, the B-register contains the last memory
address in the destination block moved plus one, and the
X-register is zero.

If CDS mode is enabled, the B-register will be checked for
base relativity before execution. Upon exit this register
will contain the base relative address, incremented by the
count in the X-register.

This instruction produces undefined results if the source

or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

MW11 CROSS MOVE WORDS, DATA1 TO DATA1

1511413 1211110 918 7 6}15 4 3]2 1 0

Moves a block of words from one location in the DATA1
map to another in the DATA1 map. The A-register
specifies the source address, the B-register specifies the
destination address, and the X-register specifies the
number of words to be moved (which must be a positive
integer equal to or greater than zero). Address bit 15 must
be zero, as indirect source and destination references are
not allowed. On return, the A-register contains the last
memory address in the source block moved plus one, the
B-register contains the last memory address in the des-
tination block moved plus one, and the X-register is zero.

This instruction produces undefined results if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

MW12 CROSS MOVE WORDS, DATA1 TO DATA2

15]1413 12]1110 9|8 7 65 4 3|2 1 0

0

Moves a block of words from the DATA1 map to the
DATA2 map. The A-register specifies the source address
in the DATA1 map, the B-register specifies the destina-
tion address in the DATA2 map, and the X-register
specifies the number of words to be moved (which must be
a positive integer equal to or greater than zero). Address
bit 15 must be zero, as indirect source and destination
references are not allowed. On return, the A-register
contains the last memory address in the source block
moved plus one, the B-register contains the last memory
address in the destination block moved plus one, and the
X-register is zero.

This instruction produces undefined results if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

A600/A600+

CROSS MOVE WORDS,
DATA2 TO EXECUTE

Mw20

15]14 13 12]11 10 8 6]5 4 3|2 1

12

Moves a block of words from the DATA2 map to the
Execute map. The A-register specifies the source address
in the DATAZ2 map, the B-register specifies the destina-
tion address in the Execute map, and the X-register
specifies the number of words to be moved (which must be
a positive integer equal to or greater than zero). Address
bit 15 must be zero, as indirect source and destination
references are not allowed. On return, the A-register
contains the last memory address in the source block
moved plus one, the B-register contains the last memory
address in the destination block moved plus one, and the
X-register is zero.

If CDS mode is enabled, the B-register will be checked for
base relativity before execution. Upon exit this register
will contain the base relative address, incremented by the
count in the X-register.

This instruction produces undefined results if the source

or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

MW21 CROSS MOVE WORDS, DATA2 TO DATA1

151413 1241110 98 7 6|5 4 3|2

Moves a block of words from the DATA2 map to the
DATA1 map. The A-register specifies the source address
in the DATA2 map, the B-register specifies the destina-
tion address in the DATA1 map, and the X-register
specifies the number of words to be moved (which must be
a positive integer equal to or greater than zero). Address
bit 15 must be zero, as indirect source and destination
references are not allowed. On return, the A-register
contains the last memory address in the source block
moved plus one, the B-register contains the last memory
address in the destination block moved plus one, and the
X-register is zero.

This instruction produces undefined results if the source

or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

MW22 CROSS MOVE WORDS, DATA2 TO DATA2

15114 13 121110 9|8 7 6|5 4 3|2 1

Dynamic Mapping System

Moves a block of words from the DATA2 map to the
DATA2 map. The A-register specifies the source address,
the B-register specifies the destination address, and the
X-register specifies the number of words to be moved
(which must be a positive integer equal to or greater than
zero). Address bit 15 must be zero, as indirect source and
destination references are not allowed. On return, the
A-register contains the last memory address in the source
block moved plus one, the B-register contains the last
memory address in the destination block moved plus one,
and the X-register is zero.

This instruction produces undefined results if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

CROSS MOVE BYTES,
EXECUTE TO EXECUTE

15114 13 1241110 9|8 7 6]5 4 3]2 1 0

Moves a block of bytes from one location in the Execute
map to another in the Execute map. The A-register
specifies the source address and the B-register specifies
the destination address. The X-register specifies the
number of bytes to be moved (which is an unsigned 16-bit
number that may equal zero). Indirect addressing is not
allowed because a byte address uses all 16 bits. A byte
address is two times the word address plus zero or one,
which specifies the high order (bits 15 to 8) or low order
(bits 7 to 0) position, respectively. On return, the
A-register contains the last memory byte address in the
source block moved plus one, the B-register contains the
last byte address in the destination block moved plus one,
and the X-register is zero.

If CDS mode is enabled, the A- and B-registers will be
checked for base relativity before execution. Upon exit
these registers will contain the base relative address,
incremented by the count in the X-register.

This instruction produces undefined results if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

MBO1 CROSS MOVE BYTES,

EXECUTE TO DATAT1

15114 13 12|11 10 9

87 6|54 3/2 10

Moves a block of bytes from a location in the Execute map
to one in the DATA1 map. The A-register specifies the
source address in the Execute map, and the B-register
specifies the destination address in the DATA1 map. The
X-register specifies the number of bytes to be moved
(which is an unsigned 16-bit number that may equal zero).
Indirect addressing is not allowed because a byte address

4-9

Dynamic Mapping System

uses all 16 bits. A byte address is two times the word
address plus zero or one, which specifies the high order
(bits 15 to 8) or low order (bits 7 to 0) position, respective-
ly. On return, the A-register contains the last memory
byte address in the source block moved plus one, the
B-register contains the last byte address in the destination
block moved plus one, and the X-register is zero.

If CDS mode is enabled, the A-register will be checked for
base relativity before execution. Upon exit this register
will contain the base relative address, incremented by the
count in the X-register.

This instruction produces undefined results if the source
or destination address rolls over. [t is interruptible, with
the context saved in the A-, B- and X-registers.

MB02 CROSS MOVE BYTES,
EXECUTE TO DATA2

15[14 13 1241110 9|8 7

Moves a block of bytes from a location in the Execute map
to one in the DATA2 map. The A-register specifies the
source address in the Execute raap, and the B-register
specifies the destination address in the DATA2 map. The
X-register specifies the number of bytes to be moved
(which is an unsigned 16-bit number that may equal zero).
Indirect addressing is not allowed because a byte address
uses all 16 bits. A byte address is two times the word
address plus zero or one, which specifies the high order
(bits 15 to 8) or low order (bits 7 to 0) position, respective-
ly. On return, the A-register contains the last memory
byte address in the source block moved plus one, the
B-register contains the last byte address in the destination
block moved plus one, and the X-register is zero.

If CDS mode is enabled, the A-register will be checked for
base relativity before execution. Upon exit this register
will contain the base relative address, incremented by the
count in the X-register.

This instruction produces undefined results if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

MB10 CROSS MOVE BYTES,
DATA1 TO EXECUTE

08’71432

Moves a block of bytes from a location in the DATA1 map
to one in the Execute map. The A-register specifies the
source address in the DATA1 map, and the B-register
specifies the destination address in the Execute map. The
X-register specifies the number of bytes to be moved
(which is an unsigned 16-bit number that may equal zero).
Indirect addressing is not allowed because a byte address
uses all 16 bits. A byte address is two times the word

4-10

A600/A600+

address plus zero or one, which specifies the high order
(bits 15 to 8) or low order (bits 7 to 0) position, respective-
ly. On return, the A-register contains the last memory
byte address in the source block moved plus one, the
B-register contains the last byte address in the destination
block moved plus one, and the X-register is zero.

If CDS mode is enabled, the B-register will be checked for
base relativity before execution. Upon exit this register
will contain the base relative address, incremented by the
count in the X-register.

This instruction produces undefined results if the source

or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

MB11 CROSS MOVE BYTES, DATA1 TO DATA1

15[14 13 12f1110 9|8 7 6f5 4

Moves a block of bytes from one location in the DATA1
map to another in the DATA1 map. The A-register
specifies the source address and the B-register specifies
the destination address. The X-register specifies the
number of bytes to be moved (which is an unsigned 16-bit
number that may equal zero). Indirect addressing is not
allowed because a byte address uses all 16 bits. A byte
address is two times the word address plus zero or one,
which specifies the high order (bits 15 to 8) or low order
(bits 7 to 0) position, respectively. On return, the

' A-register contains the last memory byte address in the

source block moved plus one, the B-register contains the
last byte address in the destination block moved plus one,
and the X-register is zero.

This instruction produces undefined results if the source

or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

MB12 CROSS MOVE BYTES, DATA1 TO DATA2

15[1413 12]1110 9|8 7 6]5 4 32 1 0

Moves a block of bytes from a location in the DATA1 map
to one in the DATA2 map. The A-register specifies the
source address in the DATA1 map, and the B-register
specifies the destination address in the DATA2 map. The
X-register specifies the number of bytes to be moved
(which is an unsigned 16-bit number that may equal zero).
Indirect addressing is not allowed because a byte address
uses all 16 bits. A byte address is two times the word
address plus zero or one, which specifies the high order
(bits 15 to 8) or low order (bits 7 to 0) position, respective-
ly. On return, the A-register contains the last memory
byte address in the source block moved plus one, the
B-register contains the last byte address in the destination
block moved plus one, and the X-register is zero.

A600/A600+

This instruction produces undefined results if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

MB20 CROSS MOVE BYTES,

DATA2 TO EXECUTE

15[14 13 1211110 9|8 7 6|5 4 3|2 1

Moves a block of bytes from a location in the DATA2 map
to one in the Execute map. The A-register specifies the
source address in the DATA2 map, and the B-register
specifies the destination address in the Execute map. The
X-register specifies the number of bytes to be moved
(which is an unsigned 16-bit number that may equal zero).
Indirect addressing is not allowed because a byte address
uses all 16 bits. A byte address is two times the word
address plus zero or one, which specifies the high order
(bits 15 to 8) or low order (bits 7 to 0) position, respective-
ly. On return, the A-register contains the last memory
byte address in the source block moved plus one, the
B-register contains the last byte address in the destination
block moved plus one, and the X-register is zero.

If CDS mode is enabled, the B-register will be checked for
base relativity before execution. Upon exit this register
will contain the base relative address, incremented by the
count in the X-register.

This instruction produces undefined results if the source

or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

MB21 CROSS MOVE BYTES, DATA2 TO DATA1

15]1413 1211110 9|8 7 6|5 4 3|2 1 0

Moves a block of bytes from a location in the DATA2 map
to one in the DATA1 map. The A-register specifies the
source address in the DATA2 map, and the B-register
specifies the destination address in the DATA1 map. The
X-register specifies the number of bytes to be moved
(which is an unsigned 16-bit number that may equal zero).
Indirect addressing is not allowed because a byte address
uses all 16 bits. A byte address is two times the word

Dynamic Mapping System

address plus zero or one, which specifies the high order
(bits 15 to 8) or low order (bits 7 to 0) position, respective-
ly. On return, the A-register contains the last memory
byte address in the source block moved plus one, the
B-register contains the last byte address in the destination
block moved plus one, and the X-register is zero.

This instruction produces undefined results if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

MB22 CROSS MOVE BYTES, DATA2 TO DATA2

15014 13 121110 9|8 7 6|5 4 3|2 1 0

Moves a block of bytes from one location in the DATAZ2
map to another in the DATA2 map. The A-register
specifies the source address and the B-register specifies
the destination address. The X-register specifies the
number of bytes to be moved (which is an unsigned 16-bit
number that may equal zero). Indirect addressing is not
allowed because a byte address uses all 16 bits. A byte
address is two times the word address plus zero or one,
which specifies the high order (bits 15 to 8) or low order
(bits 7 to 0) position, respectively. On return, the
A-register contains the last memory byte address in the
source block moved plus one, the B-register contains the
last byte address in the destination block moved plus one,
and the X-register is zero.

This instruction produces undefined results if the source
or destination address rolls over. It is interruptible, with
the context saved in the A-, B- and X-registers.

4-7. DMS INSTRUCTION EXECUTION
TIMES

Tables 4-1 and 4-2 list the execution times for the various
DMS instructions.

4-8. ASSEMBLY LANGUAGE AND
RTE IMPLEMENTATION

Refer to paragraphs 3-42 and 3-43 for information on
implementing the DMS instructions in HP Assembly
Language and in an HP RTE-A operating system.

Dynamic Mapping System

A600/A600+

Table 4-1. Dynamic Mapping Instructions Execution Times (A600 Only)

INSTRUCTION

EXECUTION TIME (us)

XLA1/XLB1, XSA1/XSB1
XLA2/XLB2, XSA2/XSB2
XCA1/XCB1, skip/no skip
XCA2/XCB2, no skip

MB00/MB01/MB10/MB11
MB02/MB12/MB20/MB21/MB22
MWO00/MWO1/MW10/MW 11
MWO02/MW12/MW20/MW21/MW22

LPMR/SPMR
LDMP/STMP
LWD1

LWD2
SWMP

SIMP

XJMP

2.75

3.178
3.405/2.951

3.178

2.043 plus 4.086 per byte moved
2.724 plus 4.086 per byte moved
2.043 plus 1.362 per word moved
2.724 plus 1.362 per word moved

4.086
40.4
3.632
3.859
4.767
3.859
7.037

Note: Memory refresh during a processor memory access can make an instruction approximately 3% slower. Heavy
DMA activity can also degrade instruction times due to contention for memory.

Table 4-2. Dynamic Mapping Instruction Execution Times (A600+ Only)

INSTRUCTION

EXECUTION TIME (us)

XLA1/B1/A2/B2
XSA1/B1/A2/B2

XCA1/B1/A2/B2 Skip/No Skip

MB00/01/02/10/11/12/20/21/22

MWO00/11/12
MWO01/02/10/12/20/22
LPMR/SPMR
LDMP/STMP
LWD1/LWD2
SWMP/SIMP

XJMP

XJCQ

1.589 — 1.816 plus 0.681
per indirect

1.816

1.589 — 3.405 plus 2.270 — 2.720
per byte

2.724 plus 0.908 per additional word
2.724 plus 1.135 per additional word
3.632

38.15/38.36

1.362

3.859/2.724

3.859

5.448

4-12

- CODE AND DATA SEPARATION

(A600+ ONLY) |[v

The basic logical address space of the HP 1000 A-Series
architecture is 32768 words, in which both code and data

reside. Code and Data Separation (CDS) is an enhance- -

ment to the A-Series architecture which separates code
and data into separate logical address spaces. The main
benefit of CDS is that it provides support of programs that
may have up to 4M words of code, and this code may be
either memory-resident or disc-resident. The optional HP
92078A package for RTE-A provides software support for
CDS. Refer to the RTE-A Programmer’s Reference Man-
ual for a description of how to take advantage of CDS by
using Macro/1000 and other HP languages.

5-1. CODE AND DATA ADDRESSING

CDS utilizes the Dynamic Mapping System environment
of the A-Series architecture, and uses separate DMS maps
to reference code and data. The term “code” refers to
opcodes, DEFs to parameters, in-line constants, current-
page links and constants for Memory Reference Group
(MRG) instructions. The term “data” refers to variables
and constants used by a program.

When CDS is disabled, both code and data are accessed
through the logical address space of the computer, which
is 32k words. The DMS maps this logical address space
into the physical address space of up to 16M words. This is
accomplished through the use of 32 memory maps of 32
pages each. A program executes in a single map, which is
called the Execute map, although it may access memory
through other maps using DMS instructions.

When CDS is enabled, code and data are accessed through
separate maps. The Execute map number specifies which
map is used to access data, and the Execute map number
inclusive-ORed with ‘1’ is used to access code. The Execute
map number must be an even number between 0 and 30,
inclusive. In all subsequent descriptions, DATA[n] and
CODEI[n] refers to memory locations in data space and
code space, respectively. In addition, when CDS is enabled
the base register (Q) is enabled, and all Execute map
memory addresses that lie in the range 2 through 1023
have the Q-register added by the memory accessing
hardware before the memory location is accessed. Loca-
tions O and 1 of data space are still defined to reference the
A- and B-registers. Cross-map memory accesses, such as
XLA1, are done with CDS disabled.

As an example, consider a DLD 500 instruction that is
executed with CDS on, with an Execute map number of 2,
and with the Q-register equal to 5000. The DLD opcode
and the DEF 500 are read from memory using map
number 3, because these words are considered to be code.
The memory values loaded into A and B will be read
through map number 2, because these words are consi-

dered to be data. The actual address of the memory loca-
tions to be loaded is 5500, because the hardware auto-
matically adds the Q-register to memory addresses be-
tween 2 and 1023.

Most instructions separate code and data as was described
for the previous example, but the Memory Reference
Group has some exceptions. The JSB, STA current page
direct, STB current page direct, and ISZ current page
direct instructions may not be used when CDS is enabled
because they attempt to write into code space. MRG
references to base page always access memory in the data
space, but MRG references to the current page always
access code space for the first memory access and data
space for all subsequent direct/indirect levels. That means
that an LDA current page direct will load a constant from
code space, that an LDA current page indirect will access a
current page link in code space and then data in data
space, and so on for the other MRG instructions. Note also
that base page MRG references are useful for accessing
variables that are Q-relative, such as the local variables or
parameter pointers in a stack frame (to be described later).

The following restrictions must be met when CDS is
enabled, otherwise undefined results may occur. The
Q-register value must lie in the range of 1024 through
32767. The program counter must lie in the range 1024 to
32767, which means that jump instructions may not jump
to the base page or to the A- or B-register.

Support for linking of relocatable code is provided by the
RTE-A LINK program.

5-2. GENERAL DESCRIPTIONS
5-3. PROCEDURE CALL INSTRUCTIONS

The procedure call (PCAL) instructions are used to invoke
a procedure, which may reside in code or data space. All of
the PCAL instructions adjust the Q-register to allocate
and set up a new stack marker (memory locations used to
link procedure invocations and exits), and branch to the
new procedure.

The PCAL instructions are:

PCALI - procedure call to current segment
PCALX - procedure call to any segment
PCALV - procedure call to any segment (variable)

PCALR - procedure call to .ENTR-compatible non-
CDS code in data space

PCALN - procedure call to .ENTN-compatible non-
CDS code in data space

5-1

Code and Data Separation

The PCALI instruction is the fastest PCAL instruction,
and it is used to call a procedure that resides in the current
code address space.

Two of the PCAL instructions (PCALX, PCALYV) are
capable of remapping the logical code space to another
area of physical memory. Each logical code space is called
a segment, and these PCALs are called cross-segment
PCAL instructions.

The last two PCAL instructions (PCALR, PCALN) are
used to call code that is not CDS-compatible. Such code
resides in the data space, and must follow the ENTR or
.ENTN procedure call sequence.

The standard PCAL call sequence is:

PCAL opcode (PCALI,PCALX, PCALV, PCALR, or PCALN)
LABEL PE

DEC AC [,I]

DEF A_1[,1]

DEF A_AC [,]]
(return point from procedure PE)

PE DEC FS
(next instruction to be executed in procedure PE)

EXIT opcode (EXIT, EXIT1, or EXIT2)

The PCAL opcode is the appropriate opcode to be used to
access the new procedure. If the new procedure is in the
same segment, then PCALI should be used. If the new
procedure is in another segment, then PCALX or PCALV
should be used. If the new procedure is not CDS-
compatible, then PCALR or PCALN should be used. Note
that the selection of the PCAL opcode is done auto-
matically by the RTE-A LINK program, which will also
automatically segment your program for you.

The LABEL to the new procedure points to the location of
the new procedure. In the case of PCALI, PCALR,
PCALN, the LABEL is a DEF (a 15-bit logical address,
possibly indirect) to the new procedure. In the case of
PCALX, the LABEL consists of a word which contains
information that determines how the logical code space
must be remapped to get to the new procedure. In the case
of PCALV, the DEF (which may be indirect) points to a
word in data space which specifies how code space should
be remapped.

AC is a word which specifies how many parameter poin-
ters follow. Parameter pointers are 15-bit logical ad-
dresses (with the 16th bit specifying indirection) which

5-2

(A600+ Only)

point to variables that are being passed as parameters to
the new procedure. From 0 to 255 parameter pointers may
be passed in the PCAL call sequence.

5-4. PROCEDURE EXIT INSTRUCTIONS

There are three procedure exit instructions (EXIT, EXIT1,
EXIT2). These instructions will remap the logical code
space if necessary, adjust the Q-register value back to that
of the calling procedure, and set the P-register to the
return point in the calling procedure.

The EXIT instructions are:

EXIT - procedure exit with no skips
EXIT1 - procedure exit with one skip
EXIT2 - procedure exit with two skips

5-5. C, Q, Z, AND IQ INSTRUCTIONS

Other instructions are provided to access the C-, Q-, Z- and
1Q-registers. These are:

CCQA (CCQB) - copy C and Q to A (or B)
CACQ (CBCQ) - copy A (or B) to C and Q
CZA (CZB) - copy Z to A (or B)

CAZ (CBZ) - copy A (or B)to 2

CIQA (CIQB) - copy IQ to A (or B)
ADQA (ADQB)- add Q to A (or B)

SDSP - store display

5-6. STACK FRAME DESCRIPTION

A stack frame is an area of memory in the logical data
space that contains variables local to a procedure and
pointers to variables of other procedures. The stack frame
also contains six words of information called the stack
marker, which links the procedure call chain from one
procedure invocation to the next. The general layout of a
stack frame is shown in Figure 5-1.

The Z-register, also called the bounds register, increases
the reliability of CDS software. The bounds register de-
tects the growth of a stack frame past the end of the
allowed data space into areas used by VMA or memory
used for other purposes. On every PCAL instruction, the
microcode checks that the NEXT_Q value of a created
stack marker is less than the Z-register. If this check fails
then the program will interrupt to the memory protect
handler (see PCALI description for more detail).

(A600+ Only)

Code and Data Separation

previous
stack frame

STATIC_Q

PREV_Q

RETURN_P

RETURN_CST ARG_COUNT

NEXT_Q

reserved

0 or more words of
parameter pointers

0 or more words of
local variable space

required).

next stack frame

PREV_Q is the Q-reglster value for the calimg procedure.

RETURN Pis the return address in the calling procedure

stack
market

parameter

pointers:

Iot;ai variable

space

R is the return segment indicator: R = 0 indicates the return address is in the same segment as the calling procedure (a
segment reload is not requ:red) R = 1 indicates the return address is in segment RETURN CST (a segment reload is

ARG_ COUNT i isa numher (0~255) that is the c&unt of actual parameters passed to the called procedure This field is
maintained for all PCAL instructions. ‘

NEXT_Q is the Q-regcster value to use when bu:ldnng the next stack frame during a subsequent PCAL. NEXT_Q may be
adjusted during the execution of a procedure ta glter the size of the local variable space

STATIC_Q is a word that is used by biock-structuned ianguages such as Pascal. Thzs word and the RESERVED word are
reserved for use by Hewlett-Packard software.

Stack
Frame

Figure 5-1. Stack Frame General Layout

5-3

Code and Data Separation

5-7. DETAILED DESCRIPTIONS

PCALI INTERNAL PROCEDURE CALL

15]14 13 12]11 10 9} 8 7 6

DEF to subroutine

N = argument count (0 <N < 255)

[onf

io/] :
N DEFs to arauinents j

Function: Procedure call to current code
segment
Use: Current Code Segment
PCALI
DEF pe {.I]
DEC ac
DEF a_1 [,I]
DEF a_ac [,1]
Current Code Segment
pe EQU *
DEC fs
Operands: pe : Procedure entry point
ac : Actual argument count
a_i: Actual argument i
(multiple indirects are
supported)
fs : Frame size in words
Interruptible: Yes

PCALI determines the new Q-register value for the called
stack frame, which may be found at the current NEXT_Q
value. The old Q value is written into the new stack frame
at PREV_Q, which provides a link from the new stack
frame to the old stack frame. The argument count (AC) of
parameters to be passed is read from CODE([P+2], and the
parameter pointers are copied from CODE[P+3] to
DATA[new Q+6] after the parameter pointers have been
resolved for indirection and base relativity. The value of
AC is written into the ARG_COUNT location of the stack
marker. Indirects are followed in memory until a direct
address is found. If the (direct) address is between 2 and
1023, the current Q-register value is added before the
parameter pointer is copied into data space. PCALI may
be interrupted during parameter pointer resolution and
copying, and the PCALI instruction may simply be re-
started after the interrupt has been processed because the
actual state of the calling procedure (specifically the P-
and Q-registers) has not been altered.

5-4

(A600+ Only)

The actual parameter count (AC) is stored in the ARG_
COUNT field of the new stack frame, and the upper byte of
that word (RTN_CST) is undefined. The return point of
the procedure (P+3+AC) is stored in the RETURN_P
location of the new stack frame. The ‘R’ bit contains zero,
which designates that a subsequent EXIT instruction
should exit without loading a new segment.

The called procedure entry (PE) is found by resolving the
address at CODE[P+1], and CODE[PE] contains the
called frame size (FS). The NEXT_Q value of the new
stack frame is set to the new Q value plus FS.

If the new NEXT_Q is greater than or equal to the bounds
register (Z), stack overflow has occurred and a memory
protect interrupt will be executed to memory location 07 of
map zero. After the interrupt, the instruction violation
register is equal to the fetch address of the PCAL in-
struction, and the program counter value at the time of
the interrupt is undefined. The Q-register and 1Q-register
point to the offending stack marker. The new stack
marker and formal arguments may have been written into
memory locations at addresses greater than the Z-register
value. To provide a safety zone, set the Z-register to 264
words below the area you want to protect.

If stack overflow did not occur, PCALI branches to the
called procedure by setting the program counter, P, to
PE+1 and the Q-register to the new Q value.

PCALX EXTERNAL PROCEDURE CALL

8 7 654 3121 0

15]14 13 12]11 10 9

0 | Code label to subroutine
N = argument count (0 <N < 255)
D/|I

[ou

N DEFs to arguments

Procedure call to procedure in
external segment.

Function:

Use: Current Code Segment

PCALX
LABEL pe
DEC ac
DEF a_1 [,I]

DEF a_ac [,I]

External Code Segment

pe EQU *
DEC fs

(A600+ Only)

Operands: pe : Code label (Code Segment
Table index and Segment
Transfer Table index) to
procedure.
ac : Actual argument count
a_i: Actual argument i
fs : Frame size in words
Interruptible: Yes

PCALX determines the new Q-register value for the called
stack frame, which may be found at the current NEXT_Q
value. The old Q value is written into the new stack frame
at PREV_Q, which provides a link from the new stack
frame to the old stack frame. The actual count (AC) of
parameters to be passed is read from CODE[P +2], and the
parameter pointers are copied from CODE[P+3] to
DATA[new Q+6] after the parameter pointers have been
resolved for indirection and base relativity. PCALX may
be interrupted during the parameter pointer resolution
and copying, and the PCALX instruction may simply be
restarted after the interrupt has been processed because
the actual state of the calling procedure (specifically the
P- and Q-registers) has not been altered.

The return point of the procedure (P+3+ACQC) is stored in
the RETURN_P location of the new stack frame. The ‘R’
bit contains one, which designates that a subsequent
EXIT instruction should load the new segment indicated
by RETURN_CST in the stack marker. The current
segment number is read from CODE[2000B], ANDed with
177400B, inclusive ORed with AC, and stored in
DATA[new Q+3l.

PCALX now attempts to load the external segment. The
upper byte of CODE[P+1] contains the CST (Code Seg-
ment Table) index. The PCALX instruction looks up the
CST entry through the base page of the code map set. (The
code map set number is the Execute map number inclusive
ORed with one.) The memory address of the CST entry is
the CST index shifted left two times. Restriction: the CST
index must be in the range 0 through 127. Note that this
process of looking up a CST entry is done with the base
register hardware and A/B addressability off. If bit 15 of
the CST entry is ‘1’, then the called procedure is not in
memory. PCALX will interrupt to memory location 13
octal of map zero and this location must contain a JSB to
the segment interrupt handler. The program counter at
the time of the interrupt points to the offending PCALX
instruction, and the Q value is unchanged. After the
segment is loaded, the PCALX instruction may be re-
executed. The CDS segment interrupt is the lowest prior-
ity interrupt, and if other interrupts are present when a
fault is detected, the instruction is simply restarted after
the other interrupts are serviced. The following para-
graphs describe what PCALX does if the segment is
present in memory.

This paragraph describes how a code segment is ‘mapped
in’. The lower 14 bits of the CST entry contain the starting
physical page of the new code segment, which the

Code and Data Separation

microcode maps in by setting the PMRs (page mapping
registers) of code page 1 to the physical page number, code
page 2 to the physical page number plus 1, code page 3 to
the physical page number plus 2, and so on. These page
mapping registers are write-protected to protect the code
against alteration. The base page PMR of the code map is
not altered.

After the new code segment has been mapped in, the entry
point of the called procedure is determined. The low byte
of the external label (in CODE[P+1] in the old segment)
contains the STT (Segment Transfer Table) index. Be-
ginning at location 2001B in code space is a table of ad-
dress pointers (with bit 15 set to zero) that point to the
externally accessible procedures in this segment. Location
2001B plus the STT index contains the 15 bit address of
the called subroutine, and this value is the called proce-
dure entry (PE).

CODE[PE] contains the called frame size (FS). The
NEXT_Q value of the new stack frame is set to the new Q
value plus FS. If the new NEXT_Q is greater than or
equal to the bounds register (Z) then stack overflow has
occurred, and a memory protect interrupt will be executed
at memory location 07 of map zero. After the interrupt, the
instruction violation register is equal to the fetch address
of the PCALX instruction, and the program counter
contains an undefined value. The Q-register and IQ-
register point to the offending stack marker. The new
stack marker and formal arguments may have written
into memory locations at addresses greater than the
Z-register value.

Now that the new stack marker is complete, PCALX

branches to the called procedure by setting the program
counter, P, to PE+1 and the Q-register to the new Q value.

PCALV VARIABLE EXTERNAL PROCEDURE CALL

15114 13 121110 9]8 7 6 |5 ‘,,3 2 10

D/. DEF to code label to subroutine

N = argument count (0 <N < 255)

01
Io/ll N DEFs to arguments

Function: Procedure call, Code to Code, Ex-

ternal procedure

Use: Current Code Segment

PCALV
DEF x1 (,I]
DEC ac
DEF a_1[,I]

DE.F a_ac [,I]

5-5

Code and Data Separation

External Code Segment
pe EQU *
DEC fs

Data Segment
xl LABEL pe

Operands: pe : Procedure entry point
xl : Procedure variable

ac ;: Actual argument count
a_1i: Actual argument i

fs :Frame size in words

Interruptible: Yes

The difference between the PCALX and PCALV in-
structions is that the code label is in the call sequence in
PCALX, while in PCALV it is in the data space. The
pointer to the external label may be a multi-level indirect.
See PCALX for a description of segment loading.

PCALR PROCEDURE CALL, .ENTR COMPATIBLE

1514131211109 8 17

0

I
O;,§ DEF to subroutine

N = argument count (0 <N < 255)

N DEFs to arguments

Procedure call, Code to Data, . ENTR
compatible

Function:

Use: Current Code Segment

PCALR

DEF pe [,I]
DEC ac
DEF a_1 [,[]

DE.F a_ac [,I]

Data Segment

BSS fc

pe NOP
JSB .ENTR
DEF pe—fc

Operands: pe : Procedure entry point
ac : Actual argument count
a_i: Actual argument i

fc : Formal argument count

Interruptible: Yes

5-6

(A600+ Only)

PCALR is similar to PCALI except it is used for invoking
procedures in the data segment that are .ENTR com-
patible. The mechanism for calling non-CDS-code involves
copying a .ENTR call sequence (minus the JSB) into the
stack frame. PCALR then turns off CDS, and executes the
function of a JSB to the non-CDS-code procedure by writ-
ing a return address into the new procedure entry and
branching to the procedure entry plus one. The procedure
entry address must be between 1024 and 32766.

A “DEF *+AC+1” is written into the reserved word lo-
cation (of the stack marker) for PCALR so as to follow the
.ENTR calling convention.

The stack frame created by PCALR (and PCALN) is:

Stack
Marker

Q —»

DEF a_1

DEF a_ac
EXIT
EXIT1
EXIT2

NEXT_Q in the stack marker is undefined.

PCALN PROCEDURE CALL, .ENTN COMPATIBLE

15]14 13 12[11 10 9] 8 7

65 4 3]21 0

D;,] DEF to subroutine

N = argument count { 0 < N < 255)

0/ ||

I N DEFs to arguments
/1

Procedure call, Code to Data,
Constant Internal procedure,
.ENTN compatible

Function:

Use: Code Segment

PCALN
DEF pe [,I]
DEC ac

DEF a_1 [,I]

DEF a_ac [,I}

Data Segment

BSS fc

pe NOP
JSB .ENTN
DEF pe-fc

(A600+ Only)

Operands: pe : Procedure entry point
ac : Actual argument count
a_i: Actual argument i
fc : Formal argument count
Interruptible: Yes

The stack frame created by PCALN is similar to the stack
frame created by PCALR. The difference between PCALR
and PCALN is that the PCALR writes the return address
at the non-CDS-code procedure entry, PE, with a return
address of the new Q-register value plus 5, while PCALN
writes a return address of the new Q value plus 6. Thus,
the return address in PCALR points to a word that points
around a parameter list (as in the .ENTR convention),
while the return address in PCALN points to the pa-
rameter list (as in the . ENTN convention).

SDSP STORE DISPLAY

15114 13 12f1110 98 7 65 4 3J2 1 0
110 |1

DEC delta level offset

D/,l DEF location of d 1+1 words for display

Function: Store display in memory.
Use: SDSP
DEC dl
DEF dsp [,I]
Operands: dl : delta level offset
dsp: location of dl+1 words for
display
Interruptible: Yes

The store display instruction is used by block-structured
languages such as PASCAL to store a number of
STATIC_Q words into memory. SDSP begins by storing
the current Q-register value into the DATA[disp). The
following is done dl times: the value just stored into
memory is used as an address in memory, and this value,
logically ANDed with 77777B, is stored in the word after
the last word stored. The following table shows what is
placed in the display by the SDSP instruction.

LOCATION VALUE

disp Q value for current procedue

disp+1 Q value for first lexically enclosing
procedure

disp+2 Q value for second lexically enclos-
ing procedure

disp+dl Q value for dl-th lexically enclosing

procedure

Code and Data Separation

EXIT PROCEDURE EXIT

15(14 13 12[1110 9|8 7 6]5 4 3[2 1 ¢
| 111

Function: Exit from procedure.
Use: EXIT
Interruptible: No

The EXIT instruction is used by any called procedure (in
CDS mode or non-CDS mode) to return to the calling CDS
procedure. The RETURN_P word in the stack marker
holds the return address, and if bit 15 of that word is 1,
then a new segment must be loaded first. The return
segment is specified by the RETURN_CST field of the
current stack marker. (See ‘mapping in’ in the PCALX
description.) If the returning segment is not in memory,
then an interrupt to memory location 13 octal of map zero
will occur, with the P- and Q-registers unaltered by EXIT.
The CDS segment interrupt is the lowest priority
interrupt, and if other interrupts are present when a fault
is detected then the instruction is simply restarted.

If EXIT was able to load the segment, or if the EXIT was to
the current segment, then the C- and Q-registers are
loaded from the PREV_Q word, and the P-register is set to
RETURN_P.

EXIT1 PROCEDURE EXIT WITH ONE SKIP

15]14 13 12]1110 9|8 7 6|5 4 3|2 1 0

1] " 0 1101

Function: Exit from procedure at normal exit
+ 1.

Use: EXIT1

Interruptible: No

EXIT1 is functionally identical to EXIT except that the
program counter is set to RETURN_P plus one.

EXIT2 PROCEDURE EXIT WITH TWO SKIPS

15/1413 1211110 98 7 6|5 4 3|2 1 0
¥ B S T 11110

Function: Exit from procedure at normal exit
+ 2.

Use: EXIT2

Interruptible: No

EXIT2 is functionally identical to EXIT except that the
program counter is set to RETURN_P plus two.

5-7

Code and Data Separation

CACQ COPY A TO C AND Q

Function: Copy A-to C- and Q-registers
Use: CACQ

Operands: A : value to load into C and Q
Interruptible: No

The value contained in the A-register is copied to the
C- and Q-registers. Bits 14 through 0 are copied into the
Q-register. If bit 15 of the A-register is one, then CDS is
turned off before the next instruction is fetched; otherwise,
CDS is turned on.

CBCQ COPY BTO C AND Q

1514131211109 87 615 4 3

Function: Copy B- to C- and Q-registers
Use: CBCQ

Operands: B : value to load into C and Q
Interruptible: No

The value contained in the B-register is copied to the
C- and Q-registers. Bits 14 through 0 are copied into the
Q-register. If bit 15 of the B-register is one, then CDS is
turned off before the next instruction is fetched; otherwise,
CDS is turned on.

CCQA COPY CANDQTO A

151413 1241110 9|8 7 6 5 4 3

Function: Copy C- and Q-registers to
A-register

Use: CCQA

Operands: A gets values in C and Q

Interruptible: No

The C- and Q-registers are copied into the A-register. If
CDS is enabled (C = 0), then bit 15 of the A-register is set
to zero, otherwise, it is set to logic one.

5-8

(A600+ Only)

ccas COPY C ANDQTO B

15[1413 12]1110 9|8 7 6|5 4 3

Function: Copy C- and Q-registers to
B-register

Use: . CCQB

Operands: B gets values in C and Q

Interruptible: No

The C- and Q-registers are copied into the B-register. If
CDS is enabled (C = 0), then bit 15 of the B-register is set
to zero, otherwise, it is set to logic one.

CAZ COPY ATO Z

Function: Copy A-register to Z-register
Use: CAZ

Operands: Z gets value in A
Interruptible: No

The contents of the A-register are copied into the
Z-register. The results of setting bit-15 of the Z-register
are undefined.

CBz COPY B TO Z

Function: Copy B-register to Z-register
Use: CBZ

Operands: Z gets value in B
Interruptible: No

The contents of the B-register are copied into the
Z-register. The results of setting bit-15 of the Z-register
are undefined.

(A600+ Only)

CZA COPY ZTO A

15114 13 12]1110 98 7 6|5 4 3|2 1

Function: Copy Z-register to A-register
Use: CZA

Operands: A gets value in Z
Interruptible: No

The contents of the Z-register are copied into the
A-register.

CzB COPY ZTO B

15 1 13 12]1110 9 |8

3

Function: Copy Z-register to B-register
Use: CZB
Operands: B gets value in Z

Interruptible: No

The contents of the Z-register are copied into the
B-register.

ClQA COPY INTERRUPTED Q TO A

15014 13 12j1110 9|8 7 6}5 4 3|2 1 0

Function: Copy interrupted Q-register to
A-register

Use: CIQA

Operands: IQ : interrupted Q and C values

Interruptible: No

The A-register is loaded with the value of the IQ-register,
which is the value of the C- and Q-registers at the time of
the last interrupt or fault.

Code and Data Separation

cias COPY INTERRUPTED Q TO B

15114 1312|1110 98 7 6|5 4 3|2 1

Function: Copy interrupted Q-register to
B-register

Use: CIQB

Operands: 1Q : interrupted Q and C values

Interruptible: No

The B-register is loaded with the value of the IQ-register,
which is the value of the C- and Q-registers at the time of
the last interrupt or fault.

ADQA ADD QTO A

15114 13 1211110 9|8 7 6|5 4 3|2

10

Function: Add Q-register to A-register
Use: ADQA
Interruptible: Yes

The Q-register is added to the A-register (A = A+Q). The
ADQA instruction produces undefined results if executed
while CDS is disabled.

ADQB ADDQTO B

15114 13 12§1110 9|8 7 6]5 4 3|2

Function: Add Q-register to B-register
Use: ADQB
Interruptible: Yes

The Q-register is added to the B-register (B = B+Q). The
ADQB instruction produces undefined results if executed
while CDS is disabled.

5-9

Code and Data Separation

5-8. ASSEMBLY LANGUAGE AND RTE
iIMPLEMENTATION

Refer to the Assembly Language and RTE Implementa-
tion paragraphs in Section III for information on im-
plementing the CDS instructions in HP Assembly
Language and in an HP RTE-A cperating system.

5-9. EXECUTION TIMES

Table 5-1 shows the execution times for the CDS
instructions.

(A600+ Only)

Table 5-1. CDS Instruction Execution Times

INSTRUCTION TIME (usec)
EXIT
no. segment mapping 2.27
with segment mapping 19.522
EXIT1
no segment mapping 2.497
with segment mapping 19.749
EXIT2
no segment mapping 2.73
with segment mapping 19.976
PCALI (no pararneters) 4,54
per parameter passed 0.908
per indirect 0.45
PCALX (includes segment mapping) 22.7
per parameter 0.908
per indirect 0.45
PCALYV (includes segment mapping) 23.154
per parameter 0.908
per indirect 0.45
PCALR 7.264
per parameter 0.908
per indirect 0.45
PCALN 6.81
per parameter 0.908
per indirect 0.45
CACQ,CBCQ 1.362 - 1.589
CCQA,CCQB 0.908
CAZ,CBZ 0.908
CZA,CZB 0.908
CIQACIQB 1.589
ADQA ADQB 0.908
SDSP
display size = 0 2.043
per element of display 0.908

INTERRUPT SYSTEM

SECTION

Vi

The vectored priority interrupt system has up to 53 dis-
tinct interrupt levels, each of which has a unique priority
assignment. In the A600/A600+ computer, the interrupt
priority of an I/0 card is based on the card’s proximity to
the processor card and is independent of the card’s select
code. The I/O card in the slot nearest to the processor card
has the highest interrupt priority. Each 1/0 card has
higher interrupt priority than I/O cards farther from the
processor card and lower priority than cards closer to the
processor card. As shown in Table 6-1, the select code of an

interrupt level is associated with an interrupt location in

memory.

Any device can be selectively enabled or disabled under
program control, thus switching the device into or out of
the interrupt structure. In addition, the interrupt system
is divided into types of interrupts (Table 6-1). Interrupt
Type 3 can be enabled or disabled under program control
using a single instruction, and interrupt Types 2 and 3
combined can be enabled or disabled using a single in-
struction. Interrupt Type 4 cannot be disabled, but is
lower priority than Types 1 through 3.

When a qualified interrupt is serviced, the state of the
interrupted routine is saved in the IMAP and IQ registers,
CDS mode and memory protect are turned off, the Execute
map is set to 0 (System map), and the DATA1 map is set to
the Execute map of the interrupted process. After this new
state of the machine is set up, a fetch from the appropriate
trap cell is performed. Trap cells are expected to contain a
JSB to an appropriate routine which will then service the
interrupt and restore the state of the interrupted process
before restarting it. If a JSB or JMP instruction is not
contained in the trap cell, instruction execution will
proceed at the address which was interrupted, but in the
System map.

6-1. POWER FAIL INTERRUPT

The computer power supply is equipped with power-
sensing circuits. When primary line power fails or drops
below a predetermined level while the computer is
running, an interrupt to memory location 00004 is
automatically generated. Memory location 00004 is in-
tended to contain a jump-to-subroutine (JSB) instruction
referencing the entry point of a user-supplied power fail
subroutine (included in RTE-A). The interrupt capability
of lower-priority (all Type 2 and 3) operations is auto-
matically inhibited while a power fail subroutine is in
process.

Table 6-1. A600/A600+ Interrupt Assignments

SELECT INTER-
CODE | INTERRUPT RUPT
(OCTAL)| LOCATION ASSIGNMENT TYPE
04 00004 Power Fail interrupt 2
05 00005 Memory Parity Interrupt 1
06 00006 Time Base Generator 3
Interrupt
07 00007 Memory Protect Interrupt 2
10 00010 Unimplemented Instruction 1
Interrupt

11 00011 Reserved
12 00012 VMA page fault 4
13 00013 CDS segment fault 4
14-17 00014-00017 | Reserved
20-77 | 00020-00077| VO Card Interrupts 3

A minimum of five milliseconds is available between the
detection of a power failure and the loss of usable power
supply power to execute a power fail subroutine; the
purpose of such a routine is to transfer the current state of
the computer system into memory and then halt the
computer. A sample power fail subroutine is given in
Table 6-2. The optional battery backup card/module will
supply enough power to preserve the contents of memory
for a sustained line power outage of at least 20 minutes.

The user has a switch-selectable option of what action the
computer will take upon restoration of primary power.
When processor switch U1S8 is closed, the computer will
execute either a loader or the Virtual Control Panel
routine, depending on the setting of the Start-Up switches.

NOTE

Switch U188 is mounted on the pro-
cessor card and is not an operator con-
trol. The setting of this switch is nor-
mally determined by the System
Manager prior to or during system
installation.

6-1

Interrupt System

Table 6-2. Sample Power Fail Subroutine

A600/A600+

LABEL OPCODE OPERAND COMMENTS
PFAR NOP Power Fail/Auto Restart Subroutine.
SFC 4B Skip if interrupt was caused by power failure.
JMP up Power being restored; reset state of system.
DOWN CLC 0B Shut down any DMA or /0.
STA SAVA Save A-register contents. ; ,
CCA Set flag indicating that computer was running when power failed.
STA PFFLG ,
STB SAVB Save B-register contents.
ERA,ALS Transfer E-register content to A-register bit 15.
soC Increment A-register if Overflow is set.
INA ~
STA SAVEO Save E- and O-register contents.
LDA PFAR Save contents of P-register at time of power failure.
STA SAVP ,
SIMP Save IMAP contents.
DEF SAVI
Insert user-written routine to save |/O states.
SFS 4B
JMP *—1 Wait in case power comes back up.
upP LDA PFFLG Was computer running when power failed?
SZA,RSS
HLT 4B No, then halt. , ,
CLA Yes, then reset computer Run flag to initial state.
STA PFFLG
Insert user-written routine to restore /O devices.
LDA SAVEO Restore the contents of the E-register and O-register.
CLO
SLAELA
STF 1B Set O-register.
LDA SAVA Restore A-register contents.
LDB SAVB Restore B-register contents.
STC 4B Reset power fail logic for next power failure.
XJMP Cross jump to program executing at power failure.
DEF SAVI
DEF SAVP,|
SAVEO oCT 0 Storage for E and O.
SAVA oCT 0 Storage for A.
SAVB oCT 0 Storage for B.
SAVP ocT 0 Storage for P.
PFFLG oCT 0 Storage for Run flag.
SAVI ocCT 0 Storage for IMAP.

Note: The memory maps used must be saved and restored, as must (if used) the states of the interrupt mask register,

memory protect (conditional restore), and Global Register.

6-2

A600/A600+

When switch U1S8 is open, the automatic restart feature
is enabled. After the self-test is executed following the
return to normal power levels, an interrupt to location
00004 occurs. This time the power-down portion of the
subroutine is skipped and the power-up portion begins.
(Refer to Table 6-2.) Those conditions existing at the time
of the power fail interrupt are restored and the computer
continues the program from the point of the interruption.

Note that an auto-restart interrupt to location 00004 oc-
curs only if that location’s contents are not zero; otherwise,
the system is re-booted. This is done so that if power fails
and is restored during a boot, an attempt to restart a
partially loaded program can be avoided. To enable this to
happen the program being loaded should initially load
location 00004 with zero and load the power-fail JSB
instruction only when the load is otherwise complete.

If the computer memory does not contain a subroutine to
service the power fail interrupt, location 00004 should
contain a JSB to a routine to restart the interrupted
process.

At the end of a restart routine, consideration should be
given to re-initializing the power-fail logic and to restor-
ing the interrupt capability of the lower priority functions.

6-2. PARITY ERROR INTERRUPT

Parity checking of memory is a standard feature in the
A600/A600+ computer. The parity logic continuously
generates correct parity for all words written into memory
and monitors the parity of all words read out of memory.
Parity can be programmatically set to even parity (STF
05) or to odd parity (CLF 05). Correct odd parity is defined
as having the total number of “1” bits in a 17-bit memory
word (16 data bits plus the parity bit) equal to an odd
value. If a “1” bit (or any odd number of “1” bits) is either
dropped or added in the transfer process involving a
standard memory array card, a Parity Error signal is
generated when that word is read out of memory.

The Parity Error signal will generate an interrupt to
memory location 00005 if the parity system was previ-
ously enabled by a STC 05 instruction. Parity interrupts
turn off the Parity system. Location 00005 may contain
either a JSB instruction referencing the entry point of a
user-supplied parity error subroutine (included in RTE-A)
or a JMP instruction pointing to a HLT instruction (/O
instructions, including a HLT instruction may not be in a
trap cell). A parity error during a DMA transfer will cause
an interrupt to the memory location corresponding to the
select code of the I/O card making the transfer if the
proper bit has been set in the control word.

The address of the parity error will be loaded auto-
matically into the parity register which is accessible to the
user by a programmed LIA 05 or LIB 05 instruction for
bits 0 to 15 and by a LIA 05,C or LIB 05,C for bits 16 to 23.

Interrupt System

If a parity error occurs in the A600+ during a fetch of an
instruction, that instruction is not executed. If a parity
error occurs during the execution of an instruction, mem-
ory writes are disabled. When a parity error occurs, it is
recommended that the entire program or set of data
containing the error location be reloaded.

6-3. MEMORY PROTECT INTERRUPT

The memory protect feature provides the capability of
protecting selected pages of memory against access or
entry by programmed instructions, except that A- and
B-registers may always be referenced as memory locations
0 and 1.

The memory protect logic, when enabled by an STC 07
instruction, also prohibits the execution of all I/O in-
structions except those referencing I/O select code 01 (the
processor card switch and LED registers and the overflow
register). (Execution of all HLTSs is prohibited.) Thus, an
executive or privileged program residing in protected
memory can have exclusive control of the I/O system.

The memory protect system is disabled automatically by
any interrupt and must be re-enabled by an STC 07 or
XJMP instruction at the end of each interrupt subroutine.

Programming rules pertaining to the use of memory
protect are as follows (assuming that an STC 07 instruc-
tion has been given):

a. Locations 00000 and 00001 in the Execute map are
the A- and B-registers and are not in protected
memory. Locations 00000 and 00001 in the DATA1
and DATA2 map are real memory locations (not the
A- and B-registers) and may reside in a protected
page.

b. A user-specified 1024-word page of memory is pro-
tected by Page Mapping Register instructions de-
scribed in Section IV.

c. Execution will be inhibited and an interrupt to loca-
tion 07 will occur if any instruction attempts to access
a location in protected memory, or if any privileged
instruction is attempted (excluding those addressing
select code 01 but not HLT 01).

Following a memory protect interrupt, the address of the
offending instruction will be present in the violation
register. This address is made accessible to the pro-
grammer by an LIA 07 or LIB 07 instruction, which loads
the address into the A- or B-register.

Note that DMA operation is not affected by memory
protect.

6-3

Interrupt System

6-4. UNIMPLEMENTED INSTRUCTION
INTERRUPT

An unimplemented instruction interrupt (to memory
location 00010) is requested when the CPU signals that
the last instruction fetched was not recognized. This
interrupt provides a straightforward entry to software
routines for the execution of instruction codes not rec-
ognized by the computer hardware. The unimplemented
instruction interrupt must receive immediate service in
order to recover the instruction code that caused it. For
this reason, and because it is desirable to permit the use of
unimplemented instructions anywhere, the unim-
plemented instruction interrupt is never inhibited.

6-5. TIME BASE GENERATOR
INTERRUPT

A time base generator interrupt request is made when the
CPU signals that its internal clock divider chain has rol-
led over. The clock divider is set to roll over at 10-
millisecond intervals for maintaining a real-time clock.
The interrupt occurs through location 00006 and can be
masked (inhibited) by using bit 1 of the interrupt mask
register. (The interrupt mask register allows interrupts
from the TBG and the /O cards to be selectively masked.
For details on the interrupt mask register, refer to the HP
1000 L-Series Computer I/O Interfacing Guide, part no.
02103-90005.) The TBG can also be turned on by an STC
06 instruction and turned off by a CLC 06 or CLC 00
instruction. The A600+ provides a programmable TBG.

6-6. VIRTUAL MEMORY AREA
INTERRUPT

During the execution of a VMA instruction, the hardware
may determine that the desired VMA address does not
reside in physical memory and needs to be loaded from
disc. This causes a VMA interrupt to memory location
000012 (octal). This interrupt can occur only when Code
and Data Separation (CDS) is enabled.

6-7. CDS SEGMENT INTERRUPT

During the execution of a CDS instruction, the hardware
may determine that a desired CDS segment does not re-
side in physical memory and needs to be loaded from disc.
This causes a CDS segment interrupt to memory location
000013 (octal).

6-8. INPUT/OUTPUT INTERRUPT

Interrupt locations 20 through 77 (octal) are reserved for
T/O devices. In a typical I/O operation, the computer issues
a programmed command such as Set Control/Clear Flag
(STC,C) to one or more external devices to initiate an
input (read) or an output (write) operation, via either

6-4

A600/A600+

programmed /O or DMA. While the I/O card is in the
process of transferring data, the computer may be either
running a program or looping, waiting for a flag to get set.
Upon completion of the read or write operation, the
interface flag is set. If the corresponding control bit is set,
the interface will interrupt. Its request will be passed
through a priority network so that only the highest prior-
ity interrupting device will receive service. The computer
will acknowledge the interrupt and the highest priority
device will receive service when the current instruction
has finished executing, except under the following
circumstances:

a. Interrupt system disabled or interface card interrupt
disabled (or masked).

b. JMP indirect or JSB indirect instruction not suffi-
ciently executed. These instructions inhibit all in-
terrupts except power fail, parity error or memory
protect until the succeeding instruction is executed.
After three successive levels of indirect addressing,
the logic will allow a pending I/O interrupt.

c. A DMA (direct memory access) data transfer is in
process.

d. Current instruction is any I/O instruction. The
interrupt in this case must wait until the succeeding
instruction is executed.

After an interface card has been issued a Set Control (STC
instruction) and its flag bit becomes set, all interrupt
requests from lower-priority devices are inhibited until
this flag bit is cleared by a Clear Flag (CLF) instruction. A
service subroutine in process for any device can be in-
terrupted only by a higher-priority device; then, after the
higher-priority device is serviced, the interrupted service
subroutine can continue. In this way it is possible for
several service subroutines to be in the interrupt state at
one time; each of these service subroutines will be allowed
to continue after the higher-priority device is serviced. All
such service subroutines normally end with a JMP indi-
rect or XJMP instruction to return the computer to the
point of interrupt.

Note that interrupt trap cells must contain a JMP or JSB
instruction because maps change on interrupt.

6-9. INTERRUPT PRIORITY

The interrupt servicing priority among the system in-
terrupts is as follows:

a. Parity error (select code 5).
b. Unimplemented instruction (select code 10).
¢. Memory protect (select code 7).

d. Power fail (select code 4).

A600/A600+

e. Time base generator (select code 6).
f. T/O interrupts (select codes 20 through 77).

g. Virtual Memory Area (select code 12) and CDS
Segment (select code 13).

6-10. CENTRAL INTERRUPT REGISTER

Each time an interrupt occurs, the address of the interrupt
location is stored in the central interrupt register. The
contents of this register are accessible by executing an
LIA 04/LIB 04 or MIA 04/MIB 04 instruction. This loads
(or merges) the address of the most recent interrupt into
the A- or B-register.

6-11. PROCESSOR STATUS REGISTER
The processor status register is two registers: one for input
and one for output. The input register shows the status of
the processor card switches and is read into the upper
eight bits of the A- or B-register by an LIA/B 01 in-
struction. The switch, bit, and function relationships are
as follows:

SWITCH BIT MEANING

U1s1 8 Boot select
U182 9 Boot select
U183 10 Boot select
Uis4 11 Boot select
U185 12 VCP program select
U1S6 13 Not used
U187 — Not used
U1S8 15 Auto-restart enabled (1)/
disabled (0)
—_— 14 Interrupt mask bit 1

(1 = TBG interrupt masked)

Interrupt System

The output register drives the processor card LEDs. The
output of the lower eight bits of the A- or B-register are
sent to the LEDs by an OTA/B 01 instruction. A logic 1 in
the appropriate register lights the corresponding LED.

6-12. INTERRUPT TYPE CONTROL

I/O address 00 is the master control address for Type 3
interrupts (TBG and I/O cards). An STF 00 instruction
enables Type 3 interrupts and a CLF 00 disables Type 3
interrupts. (Type 3 interrupts are disabled when power is
initially applied.) /O address 04 is the master control
address for Type 2 interrupts (power fail and memory
protect) and Type 3 interrupts combined. An STC 04
instruction enables Type 2 interrupts and a CLC 04
disables Type 2 and 3 interrupts.

6-13. INSTRUCTION SUMMARY

Table 6-3 is a summary of instructions for select codes 00
through 07. For a summary of instructions used with the
T/O cards, refer to an I/O card reference manual.

The Type 2 and 3 interrupt mask from I/O address 04 is a
different Type-3 mask than the Type-3 mask at I/O address
00. If either of these two masks are set, Type 3 interrupts
will be disabled. In addition to these two interrupt masks,
the Time Base Generator flag interrupt can also be masked
by bit 1 of the Interrupt Mask Register. If any of these three I
masks are set then the TBG flag interrupt will be disabled.

Update 3 6-5

Interrupt System

A600/A600+

Table 6-3. Instructions for Select Codes 00 through 07

INSTRUCTION FUNCTION INSTRUCTION FUNCTION
STC 0 NOP STC 4 Enable Type 2 and 3 interrupts
cLco System reset CLC 4 Disable Type 2 and 3 interrupts
STF O Enable Type 3 interrupts STF 4 NOP
CLF O Disable Type 3 interrupts CLF 4 NOP
SFS 0 Skip if Type 3 interrupts enabied SFS 4 Skip if power is stable
SFC 0 Skip if Type 3 interrupts disabled SFC 4 Skip if power going down
LI* o0 Load from interrupt mask register LI 4 Load from central interrupt register
MI* 0 NOP MI* 4 Merge from CIR (A600+)
oT* 0 Qutput to interrupt mask register oT" 4 Output to central interrupt register
STC 1 NOP STC 5 Enable parity error interrupts
CLC 1 NOP CLC 5 Disable parity error interrupts
STF 1 Same as Set Overflow (STO) STF 5 Set parity sense to even parity
CLF 1 Same as Clear Overflow (CLO) CLF 5 Clear parity sense to odd parity
SFS 1 Same as Skip it Overflow Set (SOS) SFS 5 Skip if parity sense is even
SFC 1 Same as Skip if Overflow Clear (SOC) SFC 5 Skip if parity sense is odd
L1 Load from processor switch register L5 Load from parity register (bits 0-15)
MI* 1 Merge from processor status register L* 5,C Load from parity register (bits 16-23)
oT* 1 Output to processor LED register MI* 5 NOP
oT 5 NOP
STC 2 Enable break feature STC 6 Turn on time base generator
CLC 2 NOP CLC & Turn off time base generator
STF 2 Disable Global Register STF 6 Set time base generator flag
CLF 2 Enable Global Register CLF 6 Clear time base generator flag
SFS 2 Skip if Global Register disabled SFS 6 Skip if time base generator flag set
SFC 2 Skip if Global Register enabled SFC 6 Skip if time base generator flag clear
Lr2 Load from Global Register Li* 6 Load TBG frequency (A600+)
MI* 2 NOP MI* 6 NOP
oT* 2 Output to Global Register (Note 1) oT* 6 Set TBG frequency (A600+)
STC 3 NOP STC7 Enable memory protect
CLC 8 NOP CLC 7 NOP
STF 3 NOP STF 7 NOP
CLF 3 NOP CLF 7 NOP
SFS 3 NOP SFS 7 NOP
SFC 3 NOP SFC 7 NOP
L3 Load from P SAVE L~ 7 Load from violation register
M+ 3 NOP M 7 NOP
oT* 3 Output to P SAVE oT* 7 NOP
L 3,C Load from ROM P
oT* 3C Output to ROM P
*= AorB.

Note 1. An OTA/B 2 with A/B equal to one through seven establishes a diagnose mode; refer to paragraph 7-22 for details.

INPUT/OUTPUT SYSTEM

The purpose of the input/output system is to transfer data
between the computer and external devices. As shown in
Figure 7-1, data can be transferred either by a direct
memory access (DMA) feature or through the A- or
B-register in the CPU (non-DMA). Each A/L-series I/O
card has DMA logic and DMA is normally used for most
/O data transfers. Once the DMA logic has been in-
itialized, no programming is involved and the transfer
occurs in two distinct steps as follows:

a. Between the external device and its I/O interface card
in the computer;

b. Between the I/O card and memory via the backplane
data bus. This two-step process also applies to a DMA
output transfer except in reverse order.

As mentioned above, data may be transferred under
program control without using the DMA feature. This
type of transfer allows the computer to manipulate the
data during the transfer process. A non-DMA input
transfer is a three-step process as follows:

a. Between the external device and its I/O card;

b. Between the I/O card and the A- or B-register via the
data bus and the processor card; and

c. Between the A- or B-register and memory via the
processor and the data bus.

Note that in the DMA transfer the processor card is
bypassed. Since a DMA transfer eliminates programmed
loading and storing via the accumulators, the time in-
volved is very short. Further information on the DMA
feature is given in paragraph 7-9.

7-1. INPUT/OUTPUT ADDRESSING

As shown in Figure 7-2, an external device is connected by
cable directly to an interface card located in the computer
mainframe. The interface card, in turn, plugs into one of
the input/output slots, each of which is assigned a fixed
interrupt priority. Note, however, that the select code of
the A/L-Series interface cards is independent of the
priority. The computer communicates with a specific de-
vice on the basis of its select code which is set by switches
on the interface card.

Figure 7-2 shows an interface card inserted in the I/O slot
having the highest priority. If it is decided that the as-
sociated device should have lower priority, its interface

card and cable may simply be exchanged with those
occupying some other I/O slot. This will change the prior-
ity but not the I/O address (select code). Due to priority
chaining, there can be no vacant slots from the highest
priority slot to the lowest priority slot used. Only select
codes 20 through 77 (octal) are available for input/output
cards; the lower select codes (00 through 17) are reserved
for other features.

7-2. INPUT/OUTPUT PRIORITY

The plug-in card slots of the A600/A600+ computers are
numbered 1 through 20 (HP 2156A/B and 2196A/B/C/D) or
1 through 8 (HP 2136A/B/C/D and 2186A/B/C/D). Gen-
erally, slots 1 and 2 are used for the memory controller
and processor cards and the remaining slots are available
for I/O cards, with slot 3 having the highest I/O interrupt
priority. Also, in the 16-slot computer (HP 2436A/E and
HP 2486A) slots 8 and 16 are reserved for the 25 kHz
power module and the battery backup card, respectively.
An 1/O channel consists of an I/O device (or devices) and its
I/O card and is assigned the number of the card slot.

When an input/output device is ready to be serviced, it
causes its interface card to request an interrupt so that the
computer will interrupt the current program and service
the device. Since many device interface cards will be
requesting service at random times, it is necessary to
establish an orderly sequence for granting interrupts.
Also, it is desirable that high-speed devices should not
have to wait for low-speed device transfers. Both of these
requirements are met by a series-linked priority structure
illustrated by Figure 7-3. The bold line, representing a
priority enabling signal, is routed in series through each
card capable of causing an interrupt. The card cannot
interrupt unless this enabling signal is present at its
input.

Each device (or other interrupt function) can break the
enabling line when it requests an interrupt. If two devices
simultaneously request an interrupt, the device with the
highest priority will be the first one that can interrupt
because it has broken the enable line for the lower-priority
device. The other device cannot begin its service routine
until the first device is finished. However, a still higher-
priority device (one interfaced through a lower-numbered
slot) may interrupt the service routine of the first device.
Figure 7-4 illustrates a hypothetical case in which several
devices request service by interrupting a CPU program.
Both simultaneous and time-separated interrupt requests
are considered.

7-1

Input/Output System

A600/A600+

PROCESSOR
€| FRONTPLANE
PROCESSOR
CARD
MEMORY
CONTROLLER
A-REG. B-REG. AND ARRAY
CARDS
+ BACKPLANE +
;0 INTERFACE /O INTERFACE /O INTERFACE
CARD CARD CARD
SERIPHERAL PERIPHERAL PERIPHERAL
DEVICE DEVICE DEVICE
8200-34
Figure 7-1. Input Output System
MEMORY
PROCESSOR CONTROLLER
CARD CARD
= —___’_-_—__H_T._'T_{_}_J__* 1] -
| memory
FRONTPLANE
HHHHHAHHHHHHHHARHRA]
TO I/O DEVICE WITH TO I/O DEVICE WITH
LOWEST PRIORITY HIGHEST PRIORITY
(SYSTEM DISC DRIVE)

8200-33

Figure 7-2. V/O Priority Assignment

A600/A600+

Assume that the computer is running a CPU program
when an interrupt from I/O channel 5 occurs (at reference
time t1), and that the card in slot 5 is assigned select code
22. With the I/O card supplying the select code as the
memory address, a JSB instruction in the interrupt loca-
tion for select code 22 causes a program jump to the service
routine for the channel-5 device (select code 22). The JSB
instruction automatically saves the return address (in a
location which the programmer must reserve in his
routine) for a later return to the CPU program.

The routine for channel 5 (select code 22) is still in prog-
ress when several other devices request service (set flag).
First, channels 6 and 7 request simultaneously at time t2;
however, since neither one has priority over channel 5,
their flags are ignored and channel 5 continues transfer.
But at t3, a higher priority device on channel 3 requests
service. This request interrupts the channel 5 transfer and
causes the channel 3 transfer to begin. The JSB instruc-
tion saves the return address for return to the channel 5
routine.

During the channel 3 transfer, the channel 4 flag is set

Input/Output System

(t4). Since it has lower priority than channel 3, channel 4
must wait until the end of the channel 3 routine. And
since the channel 3 routine, when it ends, contains a

_ return address to the channel 5 routine, program control

temporarily returns to channel 5 (even though the waiting
channel 4 has higher priority). The JMP,I instruction used
for the return inhibits all interrupts until fully executed.
At the end of this short interval, the channel 4 interrupt
request is granted.

When channel 4 has finished its routine, control is re-
turned to channel 5, which at last has sufficient priority to
complete its routine. Since channel 5 has been saving a
return address in the main CPU program, it returns
control to this point.

The two waiting interrupt requests from channels 6 and 7
are now enabled. Channel 6 has the higher priority and
goes first. At the end of the channel 6 routine control is
temporarily returned to the CPU program. Then the low-
est priority channel (channel 7) interrupts and completes
its transfer. Finally, control is returned to the CPU
program, which resumes processing.

PARITY PRIORITY
ERROR ENABLE SELECT
SIGNAL _ CODE
ot 1
MEMORY ‘) PARITY 05
PROTECT ERROR
SIGNAL
——_’.—._‘
COMPUTER | POWER l MEMORY 07
LOGIC | FAIL PROTECT
SIGNAL
POWER 04
TBG FAIL
SlGNAL
TIME BASE
GENERATOR
HIGHEST o
1/O PRIORITY oevrcg
INTERFACE
CARD ‘
o
%1 bevice
INTERFACE f'
CARD
< Vo
DEVECE%
INTERFACE
CARD
o
—< DEVICE
INTERFACE
CARD
LOWEST ¥
11O PRIORITY 8200-35

INTERRUPTING
CHANNEL COMPUTER SERVICING
(SHADED CHANNEL)
CPU
TIME | |prOGRAm| 3 |4 |56 |78
n o |s
2 |%}ToceTHER
6 |3
“ |4

"~ ® END OF SERVICE SUBROUTINE

8200-36

Figure 7-3. Priority Linkage (Simplified)

Figure 7-4. Interrupt Sequences

Input/Output System

7-3. INTERFACE ELEMENTS

The interface card provides the communication link
between the computer and one or more external devices.
The interface card includes several basic elements which
either the computer or the device can control in order to
effect the necessary communication. These basic elements
are the Global Register, control bits, flag bits, data buffer
register, and control register. Other registers, associated
only with DMA, are discussed in paragraph 7-9. The
control and flag bits and the data buffer and control
registers of an interface card can be addressed directly
when the card’s select code is in the Global Register (GR)
and the GR is enabled. Refer to the interface card refer-
ence manuals for specific information on the data and
control registers.

7-4. GLOBAL REGISTER

In the A-Series computers, the select code that is in the
Global Register specifies which I/O card is enabled to
execute IO instructions. The Global Register (GR) is a
register on each /O card that can be loaded with the select
code of any one of the I/O cards. (At any given time, the GR
on all I/O cards is loaded with the same select code.) When
the GR is enabled, an I/O instruction is executed only by
the I/O card whose select code matches the select code in
its GR. Also, the GR allows other registers on the selected
I/O card to be accessed programmatically by I/O in-
structions. The Global Register cn all I/O cards may be
simultaneously loaded with an OTA/B 02 instruction,
enabled with a CLF 02 instruction, and disabled with an
STF 02 instruction.

7-5. CONTROL BITS

The control bits on an interface card are used to turn on a
specific I/O function. In addition, a control bit must be set
to allow the corresponding flag bit to interrupt. There are
three control bits associated with each I/O select code:
control 20, 21, and 30. Control 30 is the only control bit
that can be accessed with or without the Global Register
being enabled. When control 30 is set it generates an
action command, allowing one word or character to be
read or written. Control 20 and 21 can only be accessed
when the Global Register is enabled. When control 20 is
set it turns on DMA self-configuration. The setting of
control 21 enables DMA transfers.

7-6. FLAG BITS

The flag bits (when set) are used primarily to interrupt or
to signal completion of a task. Flag 30, the only flag bit
accessible without using the Global Register, signals
either one data element has been transferred or that an
interrupting condition has been detected. There are three
other flags, all of which must be accessed with the Global
Register enabled. Flag 20 signals DMA self-configuring

7-4

A600/A600+

transfer complete; flag 21 signals DMA transfer complete;
and flag 22 signals parity error during DMA. The device
cannot clear the flag bit. If the corresponding control bit is
set, priority is high, and the interrupt system is enabled,
then setting the flag bit will cause an interrupt to the
location corresponding to the I/O card’s select code.

7-1. DATA BUFFER REGISTER

The data buffer register (designated Register 30) is used
for the intermediate storage of data during an I/O trans-
fer. Typically, the data capacity is 16 bits.

7-8. CONTROL REGISTER

The control register (designated Register 31) enables a
general purpose interface card to be configured for
compatibility with a specific I/O device or to be pro-
grammed for particular modes of operation. The control
register must be programmatically set up for a particular
application. Refer to the interface card manuals for
specific information on the control register.

7-9. DIRECT MEMORY ACCESS

The direct memory access (DMA) capability of each
A/L-Series interface card provides a direct data path
between memory and a peripheral device, making it
practical to use DMA for most data transfers. The use of
DMA to perform I/O data transfers reduces the number of
interrupts from one per byte or word to one per complete
DMA block transfer. (Maximum DMA block size is 65,536
bytes.)

The maximum DMA transfer rate is 4.27 million bytes per
second; this is also the combined limit for DMA transfers
by two or more I/O cards. Except when the DMA feature is
operating at full bandwidth, the central processor can
interleave memory cycles with the DMA operation. The
DMA feature is provided by the following elements:

a. The common backplane that links the processor,
memory, and I/O cards;

b. The capability of the I/O cards to execute I/O in-
structions; and

c. The Global Register which:

1. Enables only the I/O card whose select code is in
the Global Register to execute /O instructions,
freeing the address bits of the I/O instruction; and

2. Enables the I/O-instruction address bits to be
used to access registers on the I/O card specified
by the Global Register.

A600/A600+

Each I/O card has four registers associated with DMA.
Three of them must be loaded with control words that
specify the DMA operation. The fourth register is used for
a special type of DMA operation called self-configured
DMA which is discussed later. All of these registers can be
accessed only when the select code of the desired I/O card
is in the Global Register. The DMA registers and their
functions are as follows:

a. Register 20, DMA Self-Configuration Address
Register;

b. Register 21 (for Control Word 1), DMA Control
Register;

c. Register 22 (for Control Word 2), DMA Address
Register; and

d. Register 23 (for Control Word 3), Word/Byte Count
Register.

7-10. CONTROL WORD 1

Control Word 1 (CW1) must be loaded into Register 21 of
the desired I/O card as part of the DMA initialization
process. The general definitions of the bits in Control
Word 1 are given in Figure 7-5. Note that the require-
ments of individual I/O cards may vary slightly from the
general definitions and that it is necessary to refer to the
I/O card reference manuals for specific programming
information.

7-11. CONTROL WORD 2

Control Word 2 (CW2) loads into Register 22 the address
of the first memory location to be read from or stored into
when the DMA operation is initiated. The most significant
bit, bit 15, is not used by the DMA control logic; when
CW2 is read for status, bit 15 is the complement of bit 7 in
CW1 (Figure 7-5).

7-12. CONTROL WORD 3

Control Word 3 (CW3) loads into Register 23 the two’s-
complement number of data elements to be transferred by
DMA. Data elements may be either words or bytes as
specified by bit 13 of CW1 (Figure 7-5). The end of a DMA
data transfer is indicated by the transition from -1 to 0 of
the value in Register 23 (the Word/Byte Count Register);
this causes the I/O card to generate a completion interrupt
if enabled to do so by Control Word 1. (A DMA transfer can
also be terminated in other ways as described in the
interface card manuals.)

7-13. DMA TRANSFER INITIALIZATION

A DMA data transfer is started by:

Input/Output System

a. Loading the Global Register with the select code of
the desired I/O card;

b. Loading the three DMA registers: DMA control into
Register 21, DMA address into Register 22, and
word/byte count into Register 23;

c. Loading the control register (Register 31) of the I/O
card (described in the individual interface card
reference manuals); and

d. Issuing an STC instruction to Register 21 (DMA
Control Register).

A typical programming sequence to configure the DMA
logic for a DMA transfer is as follows:

LDA SC Load select code

oTA 2,C Set up and enable Global Register
CLC 21B Disable DMA transfers for this card
LDA CuW1 Load DMA control word

OTA 21B Output DMA control word

LDA CW2 Load DMA starting address

0TA 22B Output DMA starting address
LDA CW3 Load DMA word/byte count

0TA 23B Output DMA word/byte count
LDA CNTL Load /O card cntrol word

0TA 31B Output I/O card control word

STC 21B,C Start DMA and device

(continue any other processing)

7-14. SELF-CONFIGURED DMA

Each I/O card also has logic that can automatically load
the DMA registers discussed previously with the DMA
control words from sequential locations in memory. This
process is performed by using the I/O card’s Register 20,
the Self-Configuration Fegister. The DMA self-
configuration feature is initialized by setting the value of
Register 20 to the memory address of a list of DMA
“triplets” or “quadruplets”.

A triplet is of the form: DMA control word, DMA transfer
address, and word/byte count. The triplet words are the
words to be loaded into Registers 21, 22, and 23, respec-
tively.A quadruplet is of the form: DMA control word,
I/O-card control word, transfer address, and word/byte
count. Bit 8 of the DMA control word (Control Word 1)
determines whether a triplet or quadruplet is loaded. (A
quadruplet is used only when the I/O-card control word
must be changed; refer to the interface card manuals for
detailed information.) As each register is loaded, the
contents of Register 20 are incremented, leaving it point-
ing to the memory location to be loaded into the next
register.

DMA self-configuration can be chained to enable con-
secutive DMA transfers via the same I/O card with a
minimum of interrupts. If bit 15 of Control Word 1 in a
triplet (or quadruplet) is a logic 1, the DMA registers will

7-5

Input/Output System

15 14 12 12 11 10 9 8 7 6 5 4 0

CONT| DVCMD | BYTE | RES | CINT { REM | FOUR [AUTO IN Various | ADDR EXT BUS

CONT (Continue), bit 15.
Bit 15 = 1: Enable a DMA re-configuration upon completion of a self-configured DMA transfer.
Bit 15 = 0: Stop DMA after current transfer.

DVCMD (Device Command), bit 14.
Bit 14 = 1: Issue a Device Command signal for each data element transferred.
Bit 14 = 0: No Device Command signal issued.

BYTE (Byte/word transfer), bit 13.
Bit 13 = 1: Conduct DMA transfer in byte mode.
Bit 13 = 0: Conduct DMA transfer in word mode.

RES (Residue), bit 12.
Bit 12 = 1. Write word/byte count back into memory.
Bit 12 = 0: Word/byte count is not written.

CINT (Completion Interrupt), bit 11.
Bit 11
Bit 11

1. Inhibit DMA completion interrupt.

"

: 0: Request completion interrupt when word/byte count goes from —1 to 0 and bit 15 equals 0.

REM (Remote), bit 10.
Bit 10 == 1: Enable remote (non-standard) memory for DMA transfer.
Bit 10 == 0: Remote memory not enabled.

FOUR (Fetch four control words), bit 9.

Bit 9 = 1: Causes DMA self-configuration to fetch four control words; i.e., three DMA control words and one /O card
control werd.

Bit 9 = 0: Fetch three control words for DMA self-configuration.

AUTO (Automatic), bit 8. This bit is read only during self-configured DMA.

Bit 8 = 1: Initiate first data transferonce DMA is configured to output, without waiting for an SRQ. For input transfers,
enable a Device Command signal after the last data element is transferred.

Bit 8 = 0: For output transfers, wait for a Service Request (SRQ) signal before performing the first transfer. For input
transfers, the last data element is not followed by a Device Command.

IN (Transfer In), bit 7.
Bit 7 = 1: Perform DMA transfer from I/O device to memory.
Bit 7 = 0. Perform DMA transfer from memory to I/O device.

Various, bits 5 and 6, User definable.
ADDR EXT BUS, bits 4-0

These five bits allow DMA accesses to physical memory by referencing one map set of 32 registers each.

8200-53

7-6

Figure 7-5. General Bit Definitions for Control Word 1

A600/A600+

A600/A600+

be loaded with the next triplet or quadruplet in memory
(as pointed to by Register 20) upon completion of the
current DMA block transfer. When bit 15 (and bit 11) is a
logic 0, the current DMA block transfer is followed by a
completion interrupt if enabled by Control Word 1.

7-15. DMA DATA TRANSFER

Figure 7-6 illustrates, in general, the sequence of oper-
ations for a DMA input data transfer (the minor differ-
ences for an output transfer are explained in text). Note
that the Global Register has been enabled and loaded with
the I/O card’s select code.

The initialization routine sets up the DMA control reg-
isters on the I/O card (1) and issues the start command
(STC 21,C) to the DMA Control Bit (Control 21). (If the
operation is an output, the I/O card buffer is also loaded at
this time.) The DMA logic is now turned on and the
computer program continues with other instructions.

Setting the DMA Control bit (2) causes the I/O card to
send a Start signal (with a data word if it is an output
transfer) to the external device (3). The device goes
through a read or write cycle and returns a Done signal
(with a data word if it is an input transfer). The Done
signal (4) requests the DMA logic (5) to transfer a word
into (or out of) memory (6). The process now loops back to
step 3 to transfer the next word.

After the specified number of words has been transferred,
the DMA logic generates a completion interrupt (7). The
program control is now forced to a completion routine (8),
the content of which is the programmer’s responsibility.

For more detailed information on DMA, refer to the /O
interfacing guide, part no. 02103-90005.

7-16. NON-DMA DATA TRANSFER

The following paragraphs describe how data is transferred
between memory and input/output devices without using
DMA. The sequences presented are simplified in order to
present an overall view without the involvement of
software operating systems or device drivers.

7-17. INPUT DATA TRANSFER
(INTERRUPT METHOD)

Figure 7-7 illustrates the sequence of events required to
input data using the interrupt method. Note that some
operations are under control of the computer program
(programmer’s responsibility) and some of the operations
are automatic. Note also that the Global Register has been
loaded and enabled and the I/O card’s control register has
been loaded.

The operations begin (1) with the programmed instruction
STC 30,C which sets the Control bit (Control 30) and

Input/Output System

clears the Flag bit (Flag 30) on the I/O card. Since the next
few operations are under control of the hardware, the
computer program may continue the execution of other
instructions. Setting the Control bit causes the card to
output a Start signal (2) to the device, which reads out a
data character and asserts the Done signal (3).

The device Done signal sets the Flag bit, which in turn
generates an interrupt (4) provided that the interrupt
conditions are met; i.e., the interrupt system must be on
(STF 00 previously given), no higher priority interrupt is
pending, and the Control bit is set (done in step 1).

The interrupt causes the current computer program to be
suspended and control is transferred to a service sub-
routine (5). It is the programmer’s responsibility to pro-
vide the linkage between the interrupt location (which
agrees with the select code) and the service subroutine. It
is also the programmer’s responsibility to include in his
service subroutine the instructions for processing the data
(loading into an accumulator, manipulating if necessary,
and storing into memory).

The subroutine may then issue further STC 30,C in-
structions to transfer additional data characters. One of
the final instructions in the service subroutine must be
CLC 30,C. This step (6) restores the interrupt capability to
lower priority devices and returns the I/O card to its static
“reset” condition (Control clear and Flag clear). This
condition is initially established by the computer at power
turn-on and it is the programmer’s responsibility to return
the /O card to the same condition on the completion of
each data transfer operation. At the end of the subroutine,
control is returned to the interrupted program via pre-
viously established linkages.

The subroutine may then output further data to the I'O
card and reissue the STC 30,C command for additional
data character transfers. One of the final instructions in
the service subroutine must be a clear control (CLC 30,C).
This step (7) allows lower priority devices to interrupt and
restores the I/O card to its static “reset” condition (Control
clear and Flag clear). At the end of the subroutine, control
is returned to the interrupted program via the previously
established linkages.

7-18. OUTPUT DATA TRANSFER
(INTERRUPT METHOD)

Figure 7-8 illustrates the sequence of events required to
output data using the interrupt method. Again note the
distinction between programmed and automatic opera-
tions. Note also that the Global Register has been loaded
and enabled and that the I/O card’s control register has
been loaded. It is assumed that the data to be transferred
has been loaded into the A-register and is in a form suita-
ble for output.

The output operation begins with a programmed in-
struction (OTA 30) to transfer the contents of the

7-7

Input/Output System AB600/A600+
INTERFACE CARD

COMPUTER

PROGRAM o e

INITIALIZATION SET CONTROL 777, INPUT

ROUTINE “ 777772 DEVICE
. ©
° DMA START
: LOGIC
0 DATA
DATA

‘INTERRUPT

BUFFER

ROUTINE

COMPLETION

MEMORY

G IIIIIIIIIIIY,

B> PROGRAMMER'S RESPONSIBILITY

@ AUTOMATIC OPERATIONS

8200-40

Figure 7-6. DMA Input Data Transfer

INPUT TRANSFER

COMPUTER

PROGRAM

STC 30.C

INTERRUPT

SERVICE
SUBROUTIN =

N

INTERFACE CARD

CLEAR CONTROL

BUFFER

INPUT
SET CONTROL | OEVICE
CLEAR FLAG e
777774 START
SETFLAG [T, DONE

DATA

semfp PROGRAMMER'S RESPONSIBILITY
EZZ2> AUTOMATIC OPERATIONS

8200-41

7-8

Figure 7-7. Input Data Transfer (Interrupt Method)

A600/A600+

Input/Output System

OUTPUT TRANSFER
COMPUTER INTERFACE CARD
RAM f
- OUTPUT
OTA 30 BUFFER ﬁEViCE
STC 30,C :
[]
® SET CONTROL
o CLEAR FLAG START
[]
INTERRUPT } SET FLAG DONE
M CLEAR CONTROL}
SERVICE N
SUBROUTINE mmmlp PROGRAMMER'S RESPONSIBILITY
EZZ7> AUTOMATIC OPERATIONS
‘ . '8200-42

Figure 7-8. Output Data Transfer (Interrupt Method)

A-register to the I/O card buffer (1). This is followed (2) by
the instruction STC 30,C which sets the Control bit
(Control 30) and clears the Flag bit (Flag 30) on the I/O
card. Since the next few instructions are under control of
the hardware, the computer program may continue the
execution of other instructions. Setting the Control bit
causes the card to output the buffered data and a Start
signal (3) to the device, which writes (e.g., records, stores,
etc.) the data character and asserts the Done signal (4).

The device Done signal sets the card’s Flag bit, which in
turn generates an interrupt (5) provided that the interrupt
system is on, priority is high, and the Control bit is set
(done in step 2). The interrupt causes the current com-
puter program to be suspended and control is transferred
to a service subroutine (6). It is the programmer’s re-
sponsibility to provide the linkage between the interrupt
location (which agrees with the select code) and the ser-
vice subroutine. The detailed contents of the subroutine
are also the programmer’s responsibility and the contents
will vary with the type of device.

The subroutine may then output further data to the /O
card and reissue the STC 30,C command for additional
data character transfers. One of the final instructions in
the service subroutine must be a clear control (CLC 30,C).
This step (7) allows lower priority devices to interrupt and
restores the I/O card to its static “reset” condition (Control
clear and Flag clear). At the end of the subroutine, control
is returned to the interrupted program via the previously
established linkages.

7-19. NON-INTERRUPT DATA TRANSFER

It is also possible to transfer data without using the
interrupt system. This involves a “wait-for-flag” method
in which the computer commands the device to operate
and then waits for the completion response. In using this
method to transfer data, computer time is relatively
unimportant. It is assumed that the interrupt system is
turned off (STF 00 not previously given). It is also as-
sumed that the Global Register has been loaded and
enabled and that the I/O card’s control register has been
loaded. As shown in Table 7-1, the programming is very
simple; each of the routines will transfer one word or
character of data.

7-20. INPUT. As described in paragraph 7-17, an STC
30,C instruction begins the operation by commanding the
device to read one word or character. The computer then
goes into a waiting loop, repeatedly checking the status of
the Flag bit (Flag 30). If the Flag bit is not set, the JMP
*—1 instruction causes a jump back to the SFS instruction.
(The *~—1 operand is assembler notation for “this location
minus one.”) When the Flag bit is set, the skip condition
for SFS is met and the JMP instruction is skipped. The
computer thus exits from the waiting loop and the LIA 30
instruction loads the device input data into the A-register.

7-21. OUTPUT. The first step, which transfers the data
to the I/O card buffer, is the OT'A 30 instruction. Then STC
30,C commands the device to operate and accept the data.

7-9

Input/Output System

Table 7-1. Noninterrupt Transfer Routines

A600/A600+

complete the only /O card receiving priority will be the
highest priority I/O card (i.e., the one directly under the
processor card. When a subsequent LIA/B 2 instruction is
executed, the I/O card receiving priority sets the A- or
B-register equal to its select code and identification data
(ID) and passes priority to the next I/O card. Having
responded once it will not respond again unless Mode 1 is
established again. The next LIA/B 2 executed sets the A-
or B-register equal to the second I/O card’s select code and

Table 7-2. Diagnose Mode 1

INSTRUCTIONS COMMENTS
INPUT ROUTINE

sTC 30,C Start device

SFS 30 Is input ready?

JMP »-1 No, repeat previous instruction

LIA 30 Yes, load input into A-register
OUTPUT ROUTINE

0TB 30 Output data to /O card's data register

STC 30,C Start device

SFS 30 Has device accepted the data?

JMP »-1 No, repeat previous instruction

NOP Yes, proceed

A/B BITS MEANING

The computer then goes into a waiting loop as described in
the preceding paragraph. When the Flag bit becomes set,
indicating that the device has accepted the output data,
the computer exits from the loop. (The final NOP is for
illustration purposes only.)

7-22. DIAGNOSE MODES

A diagnose mode allows the I/O cards to be accessed for
diagnostic or test purposes. A diagnose mode is estab-
lished when an OTA/B 2 instruction (output to the Global
Register) is executed with the A- or B-register value equal
to one through seven. (The diagnose mode is terminated
when an OTA/B 2 instruction is executed with the A- or
B-register equal to zero.) When establishing a diagnose
mode the current contents of the Global Register (GR) is
not altered. The diagnose mode can be on an individual /'O
card or on all VO cards. If the GR is disabled then all /O
cards accept the diagnose mode. If the GR is enabled, only
the I/O card whose select code is in the GR will accept the
diagnose mode. Diagnose Mode 7 is used to disable any
service request (SRQ) signal coming into the I/O chip
which may cause DMA to cycle during a test. (Mode 7 can
be disabled only by a CRS signal (CLC 0).) Diagnose
Modes 4 through 6 are reserved for future definition.
Diagnose Modes 1 through 3 are described in the following
paragraphs.

7-23. DIAGNOSE MODE 1
When an OTA/B 2 instruction is executed with the A- or
B-register equal to one each /O card responds by turning

off priority to the next I/O card. When the instruction is

7-10

15 intelligent interface

14
13

ﬁ Interface card type identification number
10
9

7 Interface card revision code

5 Interface card select code

ID. The second I/O card at completion of the instruction
passes priority to the next I/O card. This process continues
until the last IO card responds. After the last /O card
responds the next LIA/B 2 will not affect the A- or
B-register and therefore can be detected as a no response.
(An OTA/B 2 with the A- or B-register equal to O ter-
minates this sequence.)

Table 7-3. Diagnose Mode 2

A/B BITS MEANING
15]
14 Always zero
13
12 1 = Break feature is enabled
11 1 = Receiving interrupt priority
10 Always zero
9 Control bit
8 Flag bit
7 1 = Global register equals select code of interface card
6 Global register enabled/disabled

Current global register vaiue

O—=-MnNWaHrOG

A600/A600+

Mode 1 can also be used to retrieve the select code and ID
of a desired I/O card without going through the priority
process. This is accomplished by establishing Mode 1 and
then executing an LIA/B xx, where xx is the [/O card select
code. This procedure will not modify a priority sequence
already in process. The Mode 1 select code and ID format is
shown in Table 7-2.

7-24. DIAGNOSE MODE 2

Diagnose Mode 2 causes an I/O card to respond to an
LIA/B 2 instruction in the same manner as in Mode 1
except that the data set into the A- or B-register is as
shown in Table 7-3.

Input/Output System

7-25. DIAGNOSE MODE 3

Diagnose Mode 3 allows an I/O chip to do a DMA transfer
without affecting the /O card. When Mode 3 is entered the
I/O chip does a DMA input transfer of the data in the
configuration address register to the location in memory
pointed to by the DMA address register. The configuration
address register is incremented after each transfer so that
the data can be verified. The transfer continues until the
DMA count is incremented to zero. Mode 3 also prevents
any STC instructions from generating a device command
to the I/O card.

7-11/7-12

APPENDIX

A

A-1/A-2

A600/A600+ Appendix

CHARACTER CODES

ASCIt First Character Second Character ASCII First Character Second Character
Character Octal Equivalent Octal Equivalent Character Octal Equivalent Octal Equivalent
A 040400 000101 ACK 003000 000006
B 041000 000102 BEL 003400 000007
C 041400 000103 8BS 004000 000010
D 042000 000104 HT 004400 000011
E 042400 000105 LF 005000 000012
F 043000 000106 vT 005400 000013
G 043400 000107 FF 006000 000014
H 044000 000110 CR 006400 000015
| 044400 000111 SO 007000 000016
J 045000 000112 Si 007400 000017
K 045400 000113 DLE 010000 000020
L 046000 000114 DC1 010400 000021
M 046400 000115 DC2 011000 000022
N 047000 000116 DC3 011400 000023
o 047400 000117 DC4 012000 000024
P 050000 000120 NAK 012400 000025
Q 050400 000121 SYN 013000 000026
R 051000 000122 ETB 013400 000027
S 051400 000123 CAN 014000 000030
T 052000 000124 EM 014400 000031
§] 052400 000125 suB 015000 000032
v 053000 000126 ESC 015400 000033
w 053400 000127 FS 016000 000034
X 054000 000130 GS 016400 000035
Y 054400 000131 RS 017000 000036
2 055000 000132 us 017400 000037
SPACE 020000 000040
a 060400 000141 ! 020400 000041
b 061000 000142 " 021000 000042
c 061400 000143 # 021400 000043
d 062000 000144 $ 022000 000044
e 062400 000145 % 022400 000045
f 063000 000146 & 023000 000046
g 063400 000147 ’ 023400 000047
h 064000 000150 (024000 000050
i 064400 000151) 024400 000051
j 065000 000152 * 025000 000052
k 065400 000153 + 025400 000053
! 066000 000154 , 026000 000054
m 066400 000155 - 026400 000055
n 067000 000156 . 027000 000056
o} 067400 000157 / 027400 000057
p 070000 000160 : 035000 000072
q 070400 000161 ; 035400 000073
r 071000 000162 < 036000 000074
s 071400 000163 = 036400 000075
t 072000 000164 > 037000 000076
u 072400 000165 ? 037400 000077
v 073000 000166 @ 040000 000100
w 073400 000167 [055400 000133
x 074000 000170 \ 056000 000134
y 074400 000171] 056400 000135
z 075000 000172 A 057000 000136
- 057400 000137
0 030000 000060 ' 060000 000140
1 030400 000061 { 075400 000173
2 031000 000062 l 076000 000174
3 031400 000063 } 076400 000175
4 032000 000064 ~ 077000 000176
5 032400 000065 DEL 077400 000177
6 033000 000066
7 033400 000067
8 034000 000070
9 034400 000071
First Character Second Character
NUL 000000 000000 A Al
SOH 000400 000001 4
STX 001000 000002 V \
ETX 001400 000003 L L I
EOT 002000 000004
ENQ 002400 000005 Ls[14[13]12[11]10] o[8[7][54 [3] 2]]0]

A3

Appendix A600/A600+
OCTAL ARITHMETIC
ADDITION
TABLE EXAMPLE
0]01 02 03 04 05 06 07 Add: 3677 OCTAL
31 OCTAL
1]02 03 04 05 06 07 10 + 13
(111-) CARRIES
2|03 04 05 06 07 10 11 S
3|04 05 06 07 10 11 12 5230 OCTAL
4l05 06 07 10 11 12 13
5/06 07 10 11 12 13 14
607 10 11 12 13 14 15
7010 11 12 13 14 15 16
MULTIPLICATION
TABLE EXAMPLE
1102 03 04 05 06 07 Multiply: 657 OCTAL
X 54 OCTAL
2|04 06 10 12 14 16 —
3lo6 11 14 17 22 25 3274
4153
410 14 20 24 30 34 E—
512 17 24 31 36 43 45854 OCTAL
6 (14 22 30 36 44 52
(Reminder: add in octal)
7116 26 34 43 52 61
COMPLEMENT

To find the two’s complement form of an octal number. (Same procedure whether converting from positive to negative

or negative 1) positive.)

RULE

1.

2. Add one.

Subtract from the maximum
representable octal value.

EXAMPLE

Two's complement of 556,

177777
— 000556

177221
+ 1

1772224

8200-43

A4

A600/A600+

Appendix
OCTAL/DECIMAL CONVERSIONS
OCTAL TO DECIMAL
TABLE EXAMPLE
Convert 463, to a decimal integer.
400, = 2564
60, = 48,
3 = 310
307 decimal
00 8192
77177 32767
DECIMAL TO OCTAL
TABLE DECIMAL OCTAL EXAMPLE
1 1 Convert 5229,, to an octal integer.
10 12
20 2 5000,, = 11610,
4 50
100 144 200,, = 310,
szg 4 20,, = 24,
1000 1750 9, = 11,
2000 3720
5000 11610 12155,
10000 23420
20000 47040 (Reminder: add in octal)
32767 71
NEGATIVE DECIMAL TO TWO'S COMPLEMENT OCTAL
TABLE DECIMAL 2's COMP EXAMPLE
-1 117777 Convert —629,, to two’s complement octal.
:;g :;;g =500, = 177014,
-40 177730 —-100,, = 177634,
-100 177634
-200 177470 —20, = 177754, (Add in octal)
~2000 174060 176613,
~5000 166170
- 10000 154360
- 20000 130740
-32768 100000
For reverse conversion (two’s complement octal to negative decimal):
1. Complement, using procedure on facing page.
2. Convert to decimal, using OCTAL TO DECIMAL table.
8200-44

A-5

Appendix A600/A600+
MATHEMATICAL EQUIVALENTS
2 + mIN DECIMAL
2" " 27" 55 536 16 0.00001 52587 89062 &
1 0 1.0 131 072 17 0.00000 76293 94531 25
2 1 0.5
4 2 0.25 262 144 18 0.00000 38146 97265 625
524 288 19 0.00000 19073 48632 8125
8 3 0.125 1 048 576 20 0.00000 09536 74316 40625
16 4 0.0625
32 5 0.03125 2 097 152 21 0.00000 04768 37158 20312 5
4 194 304 22 0.00000 02384 18579 101566 25
64 6 0.01562 5 8 388 608 23 0.00000 01192 09289 55078 125
128 7 0.00781 25
256 8 0.00390 625 16 777 216 24 0.00000 00596 04644 77539 0625
33 554 432 25 0.00000 00298 02322 38769 53125
512 9 0.00195 3125 67 108 864 26 0.00000 00149 01161 19384 76562 5
3 024 10 0.00097 656525
2 048 M 0.00048 82312 % 134 217 728 27 0.00000 00074 50580 59692 38281 25
268 435 456 28 0.00000 00037 25290 29846 19140 625
4 096 12 0.00024 41406 25 536 870 912 29 0.00000 00018 62645 14923 09570 3125
8 192 13 0.00012 20703 125
16 384 14 0.00006 10351 5625 073 741 824 30 0.00000 00009 31322 57461 54785 15625
2 147 483 648 31 0.00000 00004 65661 23730 77392 57312 5
32 768 15 0.00003 05175 78125 4 294 967 296 32 0.00000 00002 32830 64365 38696 28906 25
10 = 7 IN OCTAL
107 ¢ 1077 107" n 107"
1 0 1.000 00C 000 000 GO0 000 00 112 402 762 000 10 0.000 000 000 006 676 337 66
12 1 0063 146 314 631 463 146 31 1 351 035 564 000 11 0.000 000 000 000 537 657 77
144 2 0.005 075 341 217 270 243 66 16 432 451 210 000 12 0.000 000 000 000 043 136 32
1 750 3 0.000 40€ 111 564 570 651 77 221 411 634 520 000 13 0.000 000 000 000 003 411 35
23 420 4 0.000 032 155 613 530 704 15 2 657 142 036 440 000 14 0.000 000 000 000 000 264 11
303 240 5 0.000 00Z 476 132 610 706 64 34 327 724 461 500 000 15 0.000 000 000 000 000 022 01
3641 100 6 0.000 000 206 157 364 055 37 434 157 115 760 200 000 16 0.000 000 000 000 00C 001 63
46 113 200 7 0.000 000 015 327 745 152 75 5 432 127 413 542 400 000 17 0.000 000 000 000 000 000 14
575 360 400 8 0.000 000 001 257 143 561 06 67 405 553 164 731 000 000 18 0.000 000 000 000 000 000 01
7 346 545 000 9 0000 000 000 104 560 276 41

8200-45

A-6

A600/A600+

Appendix
MATHEMATICAL EQUIVALENTS
2% IN DECIMAL
x 2% x 2% x 2%
0.001 1.00069 33874 62581 0.01 1.00695 55500 56719 0.1 1.07177 34625 36293
0.002 1.00138 72557 11335 0.02 1.01395 94797 90029 0.2 1.14869 83549 97035
0.003 1.00208 16050 79633 0.03 1.02101 21257 07193 0.3 1.23114 44133 44916
0.004 1.00277 64352 01078 0.04 1.02811 38266 56067 0.4 1.31950 79107 72894
0.005 1.00347 17485 09503 0.05 1.03526 49238 41377 0.5 1.41421 35623 73095
0.006 1.00416 75432 38973 0.06 1.04246 57608 41121 06 1.51571 65665 10398
0.007 1.00486 38204 23785 0.07 1.04971 66836 23067 0.7 1.62450 47927 12471
0.008 1.00556 05803 98468 0.08 1.05701 80405 61380 0.8 1.74110 11265 92248
0.009 1.00625 78234 97782 0.09 1.06437 01824 53360 09 1.86606 59830 73615
n10g4 2, nlog, 10 IN OCTAL
n 7 0gy02 n log, 10 n n logy, 2 n log, 10
1 0.30102 99957 3.32192 80949 6 1.80617 99740 19.93156 85693
2 060205 99913 6.64385 61398 7 2.10720 99696 23.25349 66642
3 0.90308 99870 9.96578 42347 8 2.40823 99653 26.57542 47591
4 1.20411 99827 13.28771 23795 9 2.70926 99610 29.89735 28540
5 1.50514 99783 16.60964 04744 10 3.01029 99566 33.21928 09489
MATHEMATICAL CONSTANTS IN OCTAL SCALE
m (3.11037 552421) g, e = (2.55760 521305) g, Y = (044742 147707) g,
71 - (0.24276 301556) (g, e~ = (0.27426 530661) g, In7y = -(0.43127 233602) g,
V= (161337 611067) (g € = (1.51411 230704) g, log; ¥ = -(0.62573 030645) g,
Inm = (1.11206 404435) g, logo € = (0.33626 754251) g, V2 = (1.32404 746320) g,
log, ™ = (1.51544 163223) (g, log; e = (1.34252 166245) g In2 = (0.54271 027760} g,
10+ (312305 407267) g, log, 10 - (3.24464 741136) g, in 10 = (2.23273 067355) g,
8200-46

A1

Appendix

A600/A600+

OCTAL COMBINING TABLES

MEMORY REFERENCE INSTRUCTIONS

INDIRECT ADDRESSING

Refer to octal instruction codes given on the following page.
To combine code for indirect addressing, merge "“100000"* with octal instruction code.

REGISTER REFERENCE INSTRUCTIONS

SHIFT-ROTATE GRCUP (SRG)

1 select to cperat: A or B.

2 select 1 to 4 insiructions, not more than one
from each colurn.

3 combine octal codes (leading zeros omitted)
by inclusive or

4 order of execut onis from column 1 to column 4.

A OPERATIONS

1 2 3 4
ALS (1000} CLE (4C) SLA (10} ALS (20)
ARS (1100) ARS (21)
RAL (1200) RAL (22)
RAF (1300) RAR (23)
ALR (1400) ALR (24)
ERA {1500) ERA (25)
ELA (1600) ELA (26)
ALF (1700) ALF (27)

B OPERATIONS

1 2 3 4
BLS (5000) CLE (4(40) SLB {4010} BLS (4020)
BRS (5100) BRS (4021)
RBL (5200) RBL (4022)
RBR (5300) RBR (4023)
BLR (5400) BLR (4024)
ERB (5500) ERB (4025)
ELB (5600) ELB (4026)
BLF (5700) BLF (4027)

ALTER-SKIP GROUP (ASG)

1. select to operate on A or B.

2. select 1 to 8 instructions, not more than one
from each column.

3. combine octal codes (leading zeros omitted)
by inclusive or.

4. order of execution is from column 1 to column 8.

A OPERATIONS

1 2 3 4
CLA (2400) SEZ (2040) CLE (2100) SSA (2020}
CMA (3000) CME (2200)
CCA (3400) CCE (2300)

5 6 7 8

SLA (2010) INA (2004) SZA (2002) RSS (2001)

B OPERATIONS

1 2 3 4
CLB (6400) SEZ (5040) CLE (6100) SSB (6020)
CMB (7000) CME (6200)
CCB (7400) CCE (6300)

5 6 7 8

SLB (6010} INB (6004) SZB (6002) RSS (6001)

INPUT/OUTPUT INSTRUCTIONS
CLEAR FLAG

Refer to octal instruction codes given on the following page.
To clear flag after execution (instead of holding flag), merge “001000" with octal instruction code.

8200-47

A-8

A600/A600+

INSTRUCTION CODES IN OCTAL

Appendix

Memory Reference
ADA 04(0XX)—
ADB 04(1XX)—
AND 01(0XX)—
CPA 05(0XX)—
CPB 05(1XX)—
IOR 03(0XX)—
ISZ 03(1XX)—
JMP 02(1 XX)—
JSB 01(1XX)~—
LDA 06(0XX)—
LDB 06(1XX)—
STA 07(0XX)—
sTB 07(1XX)~—
XOR 02(0XX)—~
Binary
Shift-Rotate
ALF 001700
ALR 001400
ALS 001000
ARS 001100
BLF 005700
BLR 005400
BLS 005000
BRS 005100
CLE 000040
ELA 001600
ELB 005600
ERA 001500
ERB 005500
NOP 000000
RAL 001200
RAR 001300
RBL 005200
RBR 005300
SLA 000010
SLB 004010
Alter-Skip
CCA 003400
cCB 007400
CCE 002300
CLA 002400
CLB 006400
CLE 002100
CMA 003000
CMB 007000
CME 002200
INA 002004
INB 006004
RSS 002001
SEZ 002040
SLA 002010
SLB 006010
SSA 002020
SSB 006020
SZA 002002
SZB 006002

Input/Output

CLC 1067 -

CLF 1031-

CLO 103101
HLT 1020-

LIA 1025-

LB 1065—

MIA 1024

miB 1064~

OTA 1026—

oTB 1066—

SFC 1022 -

SFS 1023~

SOC 102201
SOS 102301
STC 1027-

STF 1021~

STO 102101

Extended Arithmetic

ASL
ASR
DIV
JLA
DLD
DST
JLB
LSL
LSR
MPY
RRL
RRR

1000(01X)—
1010(01X) -
100400
100600
104200
104400
104600
1000(10X)~
1010(10X)—
100200
1001(00X)—
1011(00X)~

Binary

Ext. Inst. Group

ADX 105746
ADY 105756
CAX 101741
CAY 101751
cBs 105774
CBT 105766
cBX 105741
cBY 105751
CMW 105776
CXA 101744
CXB 105744
CYA 101754
cyB 105754
DSX 105761
DSY 105771
ISX 105760
ISY 105770
JLy 105762
JPY 105772
LAX 101742
LAY 101752
LBT 105763
LBX 105742
LBY 105752
LDX 105745
LDY 105755
MBT 105765
MVW 105777
SAX 101740
SAY 101750
SBS 105773
SBT 105764
SBX 105740
SBY 105750
SFB 105767
STX 105743
STY 105753
TBS 105775
XAX 101747
XAY 101757
XBX 105747
XBY 105757
Floating Point

FAD 105000
FDV 105060
FIX 105100
.FIXD* 105104
FLT 105120
.FLTD* 105124
FMP 105040
FSB 105020

.TADD* 105002
T0IV* 105062
TFTD* 1056126
TJFTS* 105122
.TFXD* 105106
.TFXS* 105102
JMPY* 105042
.Tsup” 105022

Language Inst. Set

.BLE” 105207
.CFER 105231
.DFER 105205
.CPM 105236
.ENTC 105235
.ENTN 105234
ENTP 105224
.ENTR 105223
..FCM 105232
.FLUN* 105226
.NGL* 105214
.PACK* 105230
PWR2" 105225
.SETP 105227
. TCM” 105233
XFER 105220
.ZFER 105237

Double Integer

.DAD 105014
.DCO 105204
.DDE 105211
.DDS 105213

.DDF 105074
.DDIR* 105134
.DIN 105210
.DIS 105212
.DMP* 105054
.DNG 105203
.DSB 105034
.DSBR 105114

VMA/EMA

.IMAP 105250
IRES 105244

.LBP 105257
.LBPR 105256
.LPX 105258

.LPXR 105254

.PMAP 105240

Oper. Syst. Set

.CPUID 105300
FWID 105301
SIP 105303
WFI 105302

Dynamic Map Syst.

LDMP
LPMR
LWD1
LWD2
MBO0O
MBO1
MBo2
MB10
MB11
MB12
MB20
MB21
mB22
MWO0O0
MWO1
Mwo02
Mw10
MWt
Mwi12
MW20
Mw21
Mw22
SIMP
STMP
SPMR
SWMP
XCA1
XCA2
XCB1
XcB2
XJIMP
XJcQ
XLA1
XLA2
XLB1
XLB2
XSA1
XSA2
XSB1
XsB2

105702
105700
105704
105705
101727
101730
101731
101732
101733
101734
101735
101736
101737
105727
105730
105731
105732
105733
105734
105735
105736
105737
105707
105703
105701
105706
101726
101723
105726
105723
105710
105711
101724
101721
106724
105721
101725
101722
105725
105722

Code and Data Sep.

ADQA
ADQB
CACQ
CAZ
CBCQ
cBZ
CCQA
ccas
CIQA
ciaB
CZA
CczB
EXIT
EXIT1
EXIT2
PCALI
PCALN
PCALR
PCALV
PCALX
SDsSP

101413
105413
101407
101411

105407
105411

101406
105406
101412
105412
101410
105410
105417
105415
105416
105400
105404
105403
105402
105401

105405

A-9

Appendix A600/A600+
BASE SET INSTRUCTION CODES IN BINARY
15 [14 13 12 [n 10 9 |8 7 6 | 5 a 3| 2 1 0
MEMORY REFERENCE INSTRUCTIONS
D/l | AND 001 0 ZC |« MEMORY ADDRESS >
o/ | xoR 010 0 zc
on | IoR 011 0 zC
D/ | JsB 001 1 zC
oi | JMP 010 1 zc
o/ | 1sz 011 1 ZIC
DI | AD® 100 AB ZIC
oi | cp 101 AB ZC
oI | LD* 110 AB ZC
DI | ST 111 AB ZC
SHIFT/ROTATE GROUP
) 000 A/B 0 DE |'Ls 000 TCLE DE #SL” | 'LS 000
AB 0 DE |'RS 001 DIE *RS 001
AB 0 DE |RL 010 D/E R'L 010
A/B 0 DE |RR 011 DIE R'R 011
AB 0 DE |°LR 100 DIE ‘LR 100
AB 0 DE |ER 101 DIE ER’ 101
AB 0o DE |EU 110 DIE EL* 110
A/B 0 DE |°'LF 111 DIE "LF 111
NOP 000 000 000 000
ALTER/SKIP GROUP
0 000 AB 1] oo o CLE 01 | sEz ss* sU | N sz RSS
AB o™ 10 CME 10
A/B ccr 11 CCE 11
INPUT/OUTPUT GROUP
1 000 1 _HC HLT 000 - SELECT CODE —————»
1 0 STF 001
1 1 CLF 001
1 0 SFC 010
1 0 SFS 011
AB 1 HC MF 100
A/B 1 HC LF 101
AB 1 HC OT 110
0 1 HC STC 111
1 1 HC CLC 111
1 0 STO 001 000 001
1 1 cLo 001 000 001
1 HC SOC 010 000 001
1 HC SOS 011 000 001
EXTENDED ARITHMETIC GROUP
1 000 MPY* 000 010 000 000
DIV* 000 100 000 000
JLA 000 110 000 000
DLD** 100 010 000 000
DST* 100 100 000 000
JLB 100 110 000 000
ASR 001 000 0 1
000 1
i\sSlF-c 88? 000 ? 0 NUMBER
l—— OF ———p
LSL 000 000 10 BITS
RRR 001 001 0 o
RRL 000 001 0o o
FLOATING POINT INSTRUCTIONS
1 000 101 00 FAD 000 0 000
FSB 001
FMP 010
FDV 011
FIX 100
FLT 101

Notes:

* = A or B, according to bit 11,
D/l, A/B, Z/C, D/E. H/C coded 0/1.
**Second word is Memory Address.

tCLE: Only this bit is required.
Only this bit and bit 11 (A/B as applicable) are required.

$SL™:

8200-56

AB00/A600+ Appendix

BASE SET INSTRUCTION CODES IN BINARY (Continued)

EXTENDED*NSTHUCT‘ON 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
GROUP
SAX/SAY/SBX/SBY 110 0 0 |AB] O 1 1 1 1 1 0 [xy| o O 0
CAX/CAY/CBX/CBY 110 o0 o |aB| 0 1 1T 1 1]1 0 |xY| o o 1
LAX/LAY/LBX/LBY 1o o ofaBlo 1|1 1 1|1 o |xv]o 1 o
| STXISTY 1o o o1 o 11 1 a1 o lxy|o 1 1
. CXA/CYA/CXB/CYB 1{o o o faB|] 0o 1 11 1|1 o fxy|] 1t o o0
LDX/LDY 1o o of1 o 11 1 1|1 o |xv|] 1 o 1
- ADX/ADY 1o o o1 o 1|1 1 1]1 olw|l1 1 o
XAX/XAY/XBX/XBY 1o o ofaBlo 1|1 1 1|1 olx| 1 1 1
- ISXISY/DSX/DSY 1o o ot o 1|1 1 11 1 lxvlo ofw
" JUMP INSTRUCTIONS N A R //// 0o 0
S ,, — ; ‘ : — P
g ; = ‘ S PY =1 '
 BYTE INSTRUCTIONS 1o o o1 o 1|1 1 11 1 o / /////////
| | |) BT =0 1
88T =1 0 o
MBT =1 0 1
, . CBT =1 1 0
. ‘ | - RN ‘ ‘ SFB =1 11 -
BIT INSTRUCTIONS 110 0 0 |1 0o 1 1 11 11 1 / //////// ;
‘ ' ‘ . sBS =0 1 f
CBS = 1 0 0
188 =1 0 1
WORD INSTRUCTIONS 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 //A
CMW = 0
MVW = 1
8200-52

A-11

Appendix A600/A600+

BASE SET INSTRUCTION CODES IN BINARY (Continued)

15 |14 13 12 | 1 10 o9 | 8 7 6 | 5 a4 3 | 2 1 0
DOUBLE INTEGER INSTRUCT!ONS
1 000 101 000 001 DAD 100
o011 0SB 100
001 001 DSBR 100
010 000 DNG 011
001 .DCO 100
DIN 000
DDE 001
DIS 010
.0DS 011
LANGUAGE INSTRUCTION SET
7 0500 101 010 0 00 'DFER 101
10 XFER 000
ENTR 011
ENTP 100
SETP 111
11 .CFER 001
FCM 010
ENTN 100
ENTC 101
CPM 110
ZFER 111
VIRTUAL MEMORY INSTRUCTIONS
7 500 701 010 700 PMAP 000
JIRES 100
101 IMAP 000
LPXR 100
LPX 101
LBPR 110
LBP 111
OPERATING SYSTEM INSTRLCTION SET
1 000 101 011 000 CPUID 000
FWID 001
WFI 010
SIP 011
DMS INSTRUCTIONS
1 500 » o1 111 000 LPMR 000
| SPMR 001
| LDMP 010
1 STMP 011
: LWD1 100
1 SWMP 110
1 SIMP 111
| 001 XJMP 000
AB 010 XL*1 100
AB XS*1 101
AB XC*1 110
BW M°00 111
BW 011 M°01 000
BW M°10 010
BW M°11 011
Notes: * = A (0) or B (1), according to bit 11.

A0
“ = 3 (0) or W (1), ascording to bit 11.

8200-57

A-12

AB00/AB00+ Appendix A
DOUBLE-PRECISION INSTRUCTION CODES IN BINARY
15 14 13 12 1 10 9 8 7 6 5 4 2 1 0
SINGLE-PRECISION FLOATING POINT INSTRUCTIONS
1 000 101 001 000 FIXD 100
010 FLTD 100
010 010 PWR2 101
FLUN 110
o11 PACK 000
DOUBLE-PRECISION FLOATING POINT INSTRUCTIONS
1 000 101 000 000 .TADD 010
‘ 010 .TsuB 010
100 | TMPY 010
, 110 .TDIV 010
001 000 TFXS 010
3 TFXD 110
010 TFTS 010
TFTD 110
010 000 .BLE 111
001 NGL 100
011 .TCM 011
DOUBLE INTEGER INSTRUCTIONS
1 000 101 o) 101 DMP 100
11 .DDI 100
001 011 .DDIR 100
CODE AND DATA SEPARATION
1 000 001 100 000 CCQA 110
: CACQ 111
001 CzZA 000
CAZ 001
CIQA 010
4 ADQA 0ti
101 100 000 PCALI 000
PCALX 001
PCALV 010
PCALR 011
PCALN 100
SDSP 101
ccas 110
cBCQ 111
001 czB 000
CBZ 001
ciaB 010
ADQB 011
EXIT1 101
EXIT2 110
EXIT 111

A-13

Appendix A

EXTEND AND OVERFLOW EXAMPLES

A600/A600+

SAME SIGN (POSITIVE)

SIGN SIGN
2 —t
B REGIST
A STER ol o o |
AUGEND , ,
< LS
9)
< 1 4
ADDEND ol o o] 1
b] Y
LY C
2 4
OV=UNCHANGED oV=1
L 0] . ~E—UNCHANGED '] , “E=UNCHANGED
1§ L4
SAME SIGN (NEGATIVE)
SIGN SIGN
9 b)
< L4
A/B REGISTER o N
AUGEND))
L 8 LS
) b]
< | &
ADDEND 110 1 1
b] by
< | §
- 4
RESULT A/B 0 ov=1 1 OV=UNCHANGED
) = _y E=1
C LS
DIFFERENT SIGNS
SIGN SIGN
Z -
A/B REGISTER
AUGEND o191, ol I
< Y
Y b
[§ <
ADDEND 1o, 1]
L4 [4
4 -
OV=UNCHANGED OV=UNCHANGED
RESULT A/B
S '] , E=UNCHANGED 01, E=1
| § L §
SIGN SIGN
4 -
A/B REGISTER e * 1o
AUGEND N N
LS <
b] b]
[§ | §
ADDEND o 1 o1
) b Y
€ C
< —
OV=UNCHANGED OV=UNCHANGED
RESULT A/B 01 . E=1 ' | , E=UNCHANGED
L § L 8

8200-48

A-14

A600/A600+ Appendix A
INTERRUPT AND CONTROL SUMMARY
INST 8.C. 00 S.C. 01 S.C. 02 S.C.03 S.C. 04 S.C. 05 S.C. 06 S.C. 07
STC NOP NOP Enable break NOP Enable Type Enable parity | Turn on Time Turn on memory
mode. 2and 3 error Base Generator. | protect.
interrupts. interrupts.
CLC | System reset. NOP NOP NOP Disable Type Disable parity | Turn off Time NOP
2and 3 error Base Generator.
interrupts. interrupts.

STF Enable Type 3 sTO Disable Global NOP NOP Set parity Set Time Base NOP
interrupts. Register. sense to even | Generator

parity. flag.

CLF Disable Type 3 CLO Enable Global NOP NOP Set parity Clear Time NOP
interrupts. Register. sense to odd | Base Generator

parity. flag.

SFS Skip if Type 3 80S Skip if Global NOP Skip if power Skip if parity | Skip if Time NOP
interrupts are Register is not going down | senseis even. | Base Generator
enabled. disabled. flag is set.

SFC | Skip if Type 3 soC Skip if Global NOP Skip if power Skip if parity | Skip if Time NOP
interrupts are Register is is going down. | sense is odd. | Base Generator
disabled. enabled. flag is clear.

LI* Load from in- Load from pro- | Load from Load from Load from cen- | Load bits 0-15 NOP Ltoad from
terrupt mask cessor switch Global PSAVE or (with tral interrupt from parity violation
register. register. Register. ,C) ROMP, register. error register, register.

or (with ,C)
bits 16-23.
MI* NOP Merge from pro- NOP NOP NOP NOP NOP NOP
cessor switch
register.

or* Output to in- Output to pro- Output to Output to Output to cen- NOP NOP NOP
terrupt mask cessor LED Global PSAVE or tral interrupt
register. register. Register. (with ,C) ROMP register.

(Note 1)
Note 1: An OTA/B 2 with A/B equal to one through seven establishes a diagnose mode; refer to paragraph 7-22 for details.

A-15/A-16

READER COMMENT SHEET

HP 1000 A600/A600+ COMPUTER
Reference Manual

02156-90001 April 1985

Update No.
(if Applicable)

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications.
Please use additional pages if necessary. If you have technical questions or if you want to order publications, make

your inquiries to a representative of your local HP office. Thank you for your comments! No postage necessary if
mailed in the U.S.A.

FROM:

Company

Address

Phone No. Ext.

I " || I NO POSTAGE
NECESSARY

IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CI.LASS PERMIT NO. 141 CUPERTINO, CA.

—- POSTAGE WILL BE PAID BY —

Hewiett-Packard Company
Data Systems Division

11000 Wolfe Road

Cupertino, California 95014
ATTN: Technical Publications

(D

HEWLETT
PACKARD

MANUAL PART NO. 02156-90001
Printed in U.S.A. April 1985
E0485

HEWLETT-PACKARD COMPANY
Data Systems Division

11000 Wolfe Road

Cupertino, California 95014

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	01-00
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	02-01
	02-02
	02-03
	02-04
	02-04A
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	A-01
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	replyA
	replyB
	xBack

