HP 2000 SERIES CONTRIBUTED LIBRARY

TIME-SHARED BASIC/2000 PROGRAM DOCUMENTATION

VOLUME III

(600) MANAGEMENT SCIENCES AND OPERATIONS RESEARCH (700) BUSINESS AND MANUFACTURING APPLICATIONS

Printed in U.S.A. June 1974

36000-91003

TIME-SHARED BASIC/2000 CONTRIBUTED LIBRARY HANDBOOK

VOLUME III

(600) MANAGEMENT SCIENCES AND OPERATIONS RESEARCH (700) BUSINESS AND MANUFACTURING APPLICATIONS

The Hewlett-Packard Company makes no warranty, expressed or implied, and assumes no responsibility in connection with the operation of the contributed program material attached hereto.

HEWLETT-PACKARD, SOFTWARE CENTER, 11000 Wolfe Road, Cupertino, California 95014 Area Code 408 257-7000 TWX 910-338-022136000-91003 6/74 Volume IIICopyright Hewlett-Packard Company 1974Printed in U.S.A.

CLASSIFICATION CODE CATEGORY

(Not all categories have programs. Please refer to the INDEX to HP BASIC Program Library for available programs in HP BASIC)

DATA HANDLING (VOLUME I)

- FDITING
- INFORMATION STORAGE AND RETRIEVAL TABLE HANDLING
- CHARACTER/SYMBOL MANIPULATION CODE/RADIX CONVERSION
- CODE/RADIX CONVERSION DUPLICATION SORTING AND MERGING DATA HANDLING UTILITIES MEDIA CONVERSION FILE MANAGEMENT

- SPECIAL FORMAT DATA TRANSFER PLOT ROUTINES IN HP BASIC

200 TESTING, DEBUGGING AND PROGRAMMING AIDS (VOLUME I)

- 201 TRACING
- TRACING INSTRUMENT TEST DISC/DRUM EQUIPMENT TEST MAGNETIC TAPE EQUIPMENT TEST GRAPHIC EQUIPMENT TEST MEMORY SEARCH AND DISPLAY DUMPING CORE STORAGE TEST CORTON DEOCRESSING NUMBERST

- CORE STORAGE TEST CENTRAL PROCESSING UNIT TEST RREAK POINTS DEBUGGING AIDS PROGRAMMING AIDS PAPER TAPE EQUIPMENT TEST PUNCH CARD EQUIPMENT TEST PRINTER EQUIPMENT TEST ACD = D 40 SQUIPMENT TEST

- 217
- A/D D/A EQUIPMENT TEST TELECOMMUNICATIONS EQUIPMENT TEST
- 218 SPECIAL DEVICE EQUIPMENT TEST 219 DATA ACQUISITION SYSTEMS TEST

MATH AND NUMERICAL ANALYSIS (VOLUME II)

- 301 MATHEMATICS, GENERAL 302 EXTENDED-PRECISION ARITHMETIC 303 COMPLEX ARITHMETIC
- BCD/ASCII ARITHMETIC BOOLEAN ALGEBRA
- FUNCTIONS, COMPUTATION OF INTERPOLATION/EXTRAPOLATION

- INTERPOLATION/EXTRAPOLATION CURVE FITTING NUMERICAL INTEGRATION POLYNOMIALS AND POLYNOMIAL EQUATIONS MATRIX OPERATIONS EIGENVALUES AND EIGENVECTORS SYSTEMS OF LINEAR EQUATIONS SYSTEMS OF NON-LINEAR EQUATIONS INTEGRAL TRANSFORMS NUMERICAL DIFFERENTIATION ORDINARY DIFFERENTIAL EQUATIONS PARTIAL DIFFERENTIAL EQUATIONS

PROBABILITY AND STATISTICS (VOLUME II)

- 401 UNIVARIATE AND MULTIVARIATE PARAMETRIC STATISTICS 402 TIME SERIES ANALYSIS 403 DISCRIMINANT ANALYSIS
- 40 4
- REGRESSION ANALYSIS RANDOM NUMBER GENERATORS

- 40.8
- MANDOM NUMBER GENERATORS PROBABILITY DISTRIBUTION SAMPLING NON-PARAMETRIC STATISTICS STATISTICS, GENERAL CORRELATION ANALYSIS ANALYSIS OF VARIANCE AND COVARIANCE FACTOR ANALYSIS STALING
- SCALING GENERAL PROBABILITY

SCIENTIFIC AND ENGINEERING APPLICATIONS (VOLUME II)

- SOCIAL AND BEHAVIORAL SCIENCES
- GEOPHYSICS
- GEOLOGY OCEANOGRAPHY

- 505 PHYSICS
- MEDICAL SCIENCES CHEMISTRY
- CHEMISIAY RIOLOGY ASTRONOMY AND CELESTIAL NAVIGATION PETROLEUM ENGINEERING HYDRAULIC ENGINEERING NUCLEAR ENGINEERING 50.9

- ELECTRICAL ENGINEERING MECHANICAL ENGINEERING CIVIL ENGINEERING CHEMICAL ENGINEERING

- AERONAUTICAL ENGINEERING STRUCTURAL ENGINEERING
- SYSTEM THEORY

600 MANAGEMENT SCIENCES AND OPERATIONS RESEARCH (VOLUME III)

- CRITICAL PATH ANALYSIS
- OPTIMIZATION PROGRAMS LINEAR PROGRAMMING 69 4
- DISCRETE SYSTEMS SIMULATION CONTINUOUS SYSTEMS SIMULATION FORECASTING TECHNIQUES
- DYNAMIC PROGRAMMING

700 BUSINESS AND MANUFACTURING APPLICATIONS (VOLUME III)

- JOB REPORTING
- QUALITY ASSURANCE PERFORMANCE ANALYSIS QUALITY ASSURANCE TESTING

BUSINESS INFORMATION SYSTEMS BUSINESS SERVICES

ENGINEERING (EDUCATION) ECONOMICS (EDUCATION) SCIENCE (EDUCATION) FINE ARTS (EDUCATION) SOCIAL SCIENCE (EDUCATION) HISTORY (EDUCATION) ENGLISH (EDUCATION) FOREIGN LANGUAGES (EDUCATION) READING (EDUCATION) BUSINESS (EDUCATION) ENUCATIONAL ADMINISTRATION

EDUCATIONAL ADMINISTRATION VOCATIONAL (EDUCATION)

MATHEMATICS (EDUCATION) PROGRAMMING AND COMPUTER SCIENCE (EDUCATION) ENGINEERING (EDUCATION)

- NUMERICAL CONTROL BILL OF MATERIALS PAYROLL ACCOUNTING WORK-IN-PROCESS CONTROL 707
- INVENTORY ANALYSIS ACCOUNTS PAYABLE SALES FORECASTING

EDUCATION (VOLUME IV)

UNCLASSIFIED (VOLUME V)

717

870

903 GAMES

- SALES FORECASTING ACCOUNTS RECEIVABLE FINANCIAL ANALYSIS INVESTMENT ANALYSIS ECONOMIC ANALYSIS BUDGETING PROGRAMS 712
- 714

VOLUME III CONTENTS

600 MANAGEMENT SCIENCES AND OPERATIONS RESEARCH

NAME TITLE

ORDER NO.

CRITICAL PATH EVALUATION	36171
TOP MANAGEMENT DECISION GAME	36065
DYNAMIC PROGRAMMING MODEL	36067
CRITICAL PATH ANALYSIS	36504
CRITICAL PATH ANALYSIS	36505
LINEAR PROGRAMMING-VARIABLES RESTRICTED	36512
TO VALUES OF ONE OR ZERO	
LINEAR PROGRAMMING	36516
LINEAR PROGRAMMING TWO-PHASE SIMPLEX	36517
METHOD	
NETWORK FLOW	36529
SMALL SYSTEMS SIMULATOR	36552
COMMITTEE CHOICE ANALYSIS	36550
LINEAR PROGRAMMING MODEL	36068
SOLVES EITHER A LINEAR OR QUADRATIC	36710
PROGRAMMING PROBLEM	
LINEAR TREND FORECASTING	36069
QUEUEING SYSTEM	36655
QUEUEING SYSTEM	36656
MAXIMUM FLOW IN A CAPACITATED NETWORK	36609
SHORTEST ROUTE PROOBLEM	36610
FIRST DIFFERENCES, PERCENT CHANGES,	36801
PERCENT DIFFERENCE	
TRANSPORTATION PRODUCT	0/000
	CRITICAL PATH EVALUATION TOP MANAGEMENT DECISION GAME DYNAMIC PROGRAMMING MODEL CRITICAL PATH ANALYSIS CRITICAL PATH ANALYSIS LINEAR PROGRAMMING-VARIABLES RESTRICTED TO VALUES OF ONE OR ZERO LINEAR PROGRAMMING LINEAR PROGRAMMING TWO-PHASE SIMPLEX METHOD NETWORK FLOW SMALL SYSTEMS SIMULATOR COMMITTEE CHOICE ANALYSIS LINEAR PROGRAMMING MODEL SOLVES EITHER A LINEAR OR QUADRATIC PROGRAMMING PROBLEM LINEAR TREND FORECASTING QUEUEING SYSTEM MAXIMUM FLOW IN A CAPACITATED NETWORK SHORTEST ROUTE PROOBLEM FIRST DIFFERENCES, PERCENT CHANGES, PERCENT DIFFERENCE

700 BUSINESS AND MANUFACTURING APPLICATIONS

NAME	TITLE OR	DER NO.	
ANNUI T	ANNUITY ANALYSIS	36074	
BALSHT	PROFORMA INCOME STATEMENT AND BALANCE Sheet	36075	
BNDPRC	BOND PRICE ANALYSIS	36076	
BNDSWH	BOND SWITCH ANALYSIS	36077	
BNDYLD	BOND YIELD ANALYSIS	36078	
BNKRSV	BANK RESERVE CALCULATIONS	36079	
BUDGET	DEPARTMENTAL MANAGER'S BUDGETING PROGRAM	36073	
CAPDCF	CAPITAL INVESTMENT ANALYSIS (DISCOUNTED	36825	
	CASH FLOW METHOD)		
CAPINV	CAPITAL INVESTMENT ANALYSIS	36080	
CSHFL	CASH FLOW ANALYSIS	36142	
CTC 1	CTC MANUFACTURING PARTS CONTROL	36210	
CTC2	CTC INVENTORY CONTROL FOR FINISHED PRODUCTS	36211	
стсз	CTC PROJECTION PROGRAMS	36212	
CTC4	CTC PAYROLL PROGRAMS	36213	
CTC5	CTC ACCOUNTS RECEIVABLE	36214	
CTC6	CTC ACCOUNTS PAYABLE	36638	
DEPCOM	DEPRECIATION METHOD COMPARISON	36082	
DROIPB	DISCOUNTED RETURN ON INVESTMENT AND	36179	
	PAYBACK		
EQUI TY	COST OF EQUITY CAPITAL	36083	
EXDRSK	EXTENDED RISK ANALYSIS	36084	
EXPEND	BUDGET EXPENDITURES VS. TARGETS MONITOR	36111	

600

VOLUME III CONTENTS (Continued)

700 BUSINESS AND MANUFACTURING APPLICATIONS (Continued)

NAME	TITLE ORDI	ER NO.
EXSM00	EXPONENTIAL SMOOTHING ON PRICE DATA	36085
FINFLO	FLOWS	30/11
GCHLIN	RATING INVESTMENT FUNDS	36503
GDAPI	ABNORMAL PERFORMANCE INDEX	36507
GDPA	EFFICIENT 'CORNER' PORTFOLIOS	36508
GFNRAT	FINANCIAL RATIOS	36510
GIRRPV	INVESTMENT RETURN (CASH FLOW)	36513
GKASSF	WARRANT PRICE CALCULATION	36514
GKCOST	PRICE/EARNINGS RATIO CALCULATION	36515
GNMR VB	SECURITIES PORTFOLIO ANALYSIS AND	36530
	DETERMINATION	
CRIEVA	GRUSS NATIONAL PRODUCT SUMMARY	36086
CETUN	RISK ANALISIS IN CAPITAL INVESTMENT	36543
GTHOP	SECURITIES ERS CROWTH	36545
GUPDOT	PLATTING DATA	30333
IATA.1	CALCULATE AIR ERFIGHT RATES	36334
TATA-C	CALCULATES BREAKPOINT OF LATA CONTAINERS	362 41
IATATA	ANALYSIS OF LATA AND ATA UNITIZATION	36876
	PROGRAM	00010
IN/OUT	INPUT/OUTPUT ANALYSIS ON ECONOMIC FLOWS	36088
INACNT	NATIONAL INCOME & PRODUCT ACCOUNTS	36087
INSTMT	INCOME STATEMENT	36089
LEASIN	LEASE INCOME	36194
LENDER	SIMPLE LOAN ANALYSIS	36090
LESSEE	LEASE ANALYSIS AS DETERMINED BY THE LESSEE	36091
LOAN	LOAN AMORTIZATION	36226
MARKOW	SECURITIES PORTFOLIO USING MARKOWITZ MODEL	36092
MCOST	COMPARE AND EVALUATE UP TO 1000 MORTGAGE	36709
	PAYMENT PLANS SIMULTANEUUSLT	26402
MKBUY	MAKE-BUT DECISION ANALISIS	36073
MURGAG	MUNICAGE ANALISIS Data center inventory report cenerator	36177
REF SALES	SALES COMMISSION DEPODT	36895
SAUTNO	COMPOUND INTEREST	36708
STRINC	STOCK MERGER INCENTIVE PROGRAM	36096
STEPTN	STOCK RETURNS REPORT	36098
STKSMO	EXPONENTIAL SMOOTHING AS A STOCK GUIDE	36099
STKVAL	STOCK VALUE & EVALUATION REPORT	36100
TRCK-1	CALCULATE TRUCK FREIGHT RATES	36174
TRUINT	TRUE ANNUAL INTEREST RATE, ANALYSIS	36101
VRRC	INVESTMENT STRATEGY ANALYSIS	36557

600

VOLUME III CONTENTS

600 MANAGEMENT SCIENCES AND OPERATIONS RESEARCH

NAME TITLE	PROGRAM NUMBER
CPATH :CRITICAL PATH EVALUATION	36171P
DECSN : TOP MANAGEMENT DECISION GAME	36065C
DYNPRO:DYNAMIC PROGRAMMING MODEL	36067A
GCPATH: CRITICAL PATH ANALYSIS	36504A
GCPM1 :CRITICAL PATH ANALYSIS	36505A
GINTLP:LINEAR PROGRAMMING-VARIABLES	36512A
RESTRICTED TO VALUES OF ONE OR ZERO	
GLP :LINEAR PROGRAMMING	36516A
GLPSA1:LINEAR PROGRAMMING TWO-PHASE SIMPLEX	36517A
METHOD	
GNETFL:NETWORK FLOW	36529A
GSSS :SMALL SYSTEMS SIMULATOR	36552A
GVOTE : COMMITTEE CHOICE ANALYSIS	36550A
LINPRO:LINEAR PROGRAMMING MODEL	36068C
LINQUP:SOLVES EITHER A LINEAR OR QUADRATIC	36710A
PROGRAMMING PROBLEM	
LNTRND:LINEAR TREND FORECASTING	36069A
MZMZ1 :QUEUEING SYSTEM	36655A
MZMZS :QUEUEING SYSTEM	36656A
MAXFLO: MAXIMUM FLOW IN A CAPACITATED NETWORK	36609A
SHORTR: SHORTEST ROUTE PROBLEM	36610A
TIMDIF:FIRST DIFFERENCES, PERCENT CHANGES,	36801A
PERCENT DIFFERENCE	
TRANSP: TRANSPORTATION PROBLEM	36230A

700 BUSINESS AND MANUFACTURING APPLICATIONS

ANNUIT: ANNUITY ANALYSIS	36074A
BALSHT: PROFORMA INCOME STATEMENT AND BALANCE SHEET	36075A
BNDPRC:BOND PRICE ANALYSIS	36076B
BNDSWH: BOND SWITCH ANALYSIS	36077A
BNDYLD: BOND YIELD ANALYSIS	36078B
BNKRSV: BANK RESERVE CALCULATIONS	36079A
BUDGET: DEPARTMENTAL MANAGER'S BUDGETING	36073A
PROGRAM	
CAPDCF: CAPITAL INVESTMENT ANALYSIS	36825A
(DISCOUNTED CASH FLOW METHOD)	
CAPINV: CAPITAL INVESTMENT ANALYSIS	36080A
CSHFL :CASH FLOW ANALYSIS	36142B
CTC1 :CTC MANUFACTURING PARTS CONTROL	36210B
CTC2 :CTC INVENTORY CONTROL FOR FINISHED	36211B
PRODUCTS	
CTC3 :CTC PROJECTION PROGRAMS	36212B
CTC4 :CTC PAYROLL PROGRAMS	36213B
CTC5 :CTC ACCOUNTS RECEIVABLE	36214B
CTC6 :CTC ACCOUNTS PAYABLE	36638A
DEPCOM: DEPRECIATION METHOD COMPARISON	36082A
DROIPB:DISCOUNTED RETURN ON INVESTMENT AND	36179A
PAYBACK	
EQUITY:COST OF EQUITY CAPITAL	36083A
EXDRSK: EXTENDED RISK ANALYSIS	36084A
EXPEND: BUDGET EXPENDITURES VS. TARGETS MONITOR	36111B

VOLUME III CONTENTS (Continued)

700 BUSINESS AND MANUFACTURING APPLICATIONS (Continued)

NAME TITLE	PROGRAM NUMBER
EXSMOO: EXPONENTIAL SMOOTHING ON PRICE DATA	36085B
FINFLO: CALCULATES PRESENT VALUE - STREAM OF	36711A
CASH FLOWS	
GDPA : EFFICIENT 'CORNER' PORTFOLIOS	36508B
GFNRAT: FINANCIAL RATIOS	36510A
GIRRPV: INVESTMENT RETURN (CASH FLOW)	36513A
GKASSF:WARRANT PRICE CALCULATION	36514A
GKCOST:PRICE/EARNINGS RATIO CALCULATION	36515A
GNMRVB:SECURITIES PORTFOLIO ANALYSIS AND	36530A
DETERMINATION	
GNFSUM: GROSS NATIONAL PRODUCT SUMMARY	36086A
GRISKA:RISK ANALYSIS IN CAPITAL INVESTMENT	36543A
GSTKVL:STOCK VALUATION	36545A
GTHOR : SECURITIES EPS GROWTH	36553A
IATAZ1:CALCULATE AIR FREIGHT RATES	36164B
IATAZC: CALCULATES BREAKPOINT OF IATA	36241B
CONTAINERS	
INZOUT: INPUT/OUTPUT ANALYSIS ON ECONOMIC FLOWS	36088B
INACNT:NATIONAL INCOME & PRODUCT ACCOUNTS	36087A
INSTMT: INCOME STATEMENT	36089B
LEASIN:LEASE INCOME	36194A
LENDER:SIMPLE LOAN ANALYSIS	36090A
LESSEE:LEASE ANALYSIS AS DETERMINED BY THE LESSEE	36091B
LOAN :LOAN AMORTIZATION	36226A
MARKOW: SECURITIES PORTFOLIO USING MARKOWITZ MODEL	36092B
MCOST : COMPARE AND EVALUATE UP TO 1000	36709A
MORTGAGE PAYMENT PLANS SIMULTANEOUSLY	
MKBUY :MAKE-BUY DECISION ANALYSIS	36093A
MORGAG:MORTGAGE ANALYSIS	36094C
REP : DATA CENTER INVENTORY REPORT GENERATOR	36177A
SALES :SALES COMMISSION REPORT	36095A
SAVING:COMPOUND INTEREST	36708A
SIMLAT: SIMULATION OF INVESTMENT RETURNS WITH	36888-18019
SENSITIVITY ANALYSIS	
STKINC:STOCK MERGER INCENTIVE PROGRAM	36096A
STKRTN:STOCK RETURNS REPORT	36098A
STKVAL: STOCK VALUE AND EVALUATION REPORT	36100A
TRCKZ1:CALCULATE TRUCK FREIGHT RATES	36174A
TRUINT: TRUE ANNUAL INTEREST RATE ANALYSIS	36101A

MANAGEMENT SCIENCES AND OPERATIONS RESEARCH (600)

CONTRIBUTED PROGRAM BASIC

	CRITICAL PATH EVALUATION CPATH 36171
DESCRIPTION:	This program will compute CPATH and print a summary of earliest and latest event times and actual and maximum activity times, and indicate which are on the critical path.
INSTRUCTIONS:	<pre>Self-explanatory The user has the option to enter data from the teletype as it becomes necessary, or to enter it internally with data-statements. If entered internally, use the following format: 9900 DATA # of events, list of ID numbers of events 9901 DATA # of activities, list of (for each activity) the ID # of the event preceding it, the ID # of the event succeeding it, and the time necessary to complete it. 600</pre>
SPECIAL CONSIDERATIONS:	The program will handle up to 75 events and 150 activities. To change bounds, alter dim-statement 9012 and delete input checks for 75 and 150. At least one activity is necessary. For each activity, the predecessor event must have a lower ID # than the successor event.

ACKNOWLEDGEMENTS:

CPATH, page 2

RUN

CPATH

* CRITICAL PATH *

DO YOU WISH TO ENTER DATA FROM THE TELETYPE AS IT BECOMES NECESSARY, OR TO ENTER IT INTERNALLY WITH 'DATA'-STATEMENTS? (ENTER 'T' FOR TELETYPE, 'D' OTHERWISE)?T HOW MANY EVENTS DO YOU HAVE?6 ENTER THE ID NUMBER OF THE FIRST EVENT?1 THE ID NUMBER OF THE NEXT EVENT?2 NEXT?3 NEXT?4 NEXT?5 NEXT?6 HOW MANY ACTIVITIES DO YOU HAVE?7 FOR THE FIRST ACTIVITY, ENTER THE NUMBER OF THE EVENT PRECEEDING IT, The number of the event succeeding it, and the time of the activity. ?1,2,1 FOR THE NEXT ACTIVITY?2,5,1 NEXT?5,6,1 NEXT?1,6,5 NEXT?1,3,1 NEXT?3,4,1 NEXT?4,6,1 *************** *** EVENT TIMES *** EVENT EARLIEST TIME LATEST TIME 1 ø Ø CRITICAL PATH 2 1 3 3 1 3 4 2 4 5 2 4 6 5 5 CRITICAL PATH

*** ACTIVITY TIMES ***

PREDECESSOR	SUCCESSOR	ACTUAL TIME	MAXIMUM TIME	
1	2	1	3	
2	5	1	3	
5	6	1	3	
1	6	5	5	CRITICAL PATH
1	3	1	3	
3	4	1	3	
4	6	1	3	

DO YOU HAVE ANOTHER PROBLEM? ('Y' FOR YES, 'N' FOR NO)?N

DONE

MANAGEMENT SCIENCES AND OPERATIONS RESEARCH (600) CONTRIBUTED PROGRAM **BASIC**

TITLE:	TOP MANAGEMENT DECISION GAME 36065	(N 5
DESCRIPTION:	This program furnishes the simulated business conditions and the mechanics for operating a <u>business game</u> for any number from 10 to 60 participants. The participants form into teams representing ficticious companies and make decisions on price, promotion, production, capacity, research, incen- tives, and training in a one product market. The program provides a set of interrelated market and internal conditions that approximate real con- ditions, even including some random perturbation. The team decisions are converted into results fast enough so the results can be given back to the teams during the same class period, enabling the teams to make up to three sets of decisions during a two or three hour period. This quick feedback results has been found to have excellent educational reinforcing character tics.(See "ECONOMIC BACKGROUND" for further discussion.) An income state ment for each team is printed out. The program recalculates sales units when the combination of production cost and beginning inventory are too low to meet sales units as generated by the first part of the program. Each income statement is completely formated to 7 significant digits and each income statement is printed on an 11 inch sheet of paper.	s e e of ris-
INSTRUCTIONS:	Data is put into lines 351 to 372. Line 370 is for beginning inventory fieach team. This is to be entered in order as to team number. Line 371 is for training expense and it is to be entered the same as line 370. Line 372 is for units available for sale. This figure is from form IV line 3 and this also is to be entered the same as line 371.	or s
	Line 370, at the start of the game, is 310000 for all teams. Line 372, a the start of the game, is 96000 for all teams. These lines are also printed in the new data printout block. Line 372, in the new data block, will only be ending inventory from the previous period and the beginning inventory for the next period less the new production for that period.	t
	Because of line 371 there is no need to enter for training in the Data block. The (6) is automatically entered in the Data block.	
	The first time incentive is instituted it will be understated in the in- come statement and it should be corrected manually. Incentive coding is be entered as: 10 = either skilled or unskilled labor 20 = both skilled and unskilled labor 30 = semiskilled labor only 40 = semiskilled and one other type of labor 50 = all three types of labor	to
SPECIAL CONSIDERATIONS:	None	
ACKNOWLEDGEMENTS:	Professor Joseph Nordstrom Bowling Green University	

ECONOMIC BACKGROUND

This game gives the participant practice in making top level management decisions under time pressure. The decisions to be made call for attention to the inter-dependencies among the various decision areas, in other words, to the need for integrated policy thinking. Through the use of a Hewlett-Packard table top computer (Model 2114A with an 8K word memory) which can be brought right into the classroom, the results of participant decisions can be made available to them in a very short time after the decisions are made. In fact, during a two hour class period, the participants can play two or three periods of the game, getting their results back each period only minutes after turning in their decisions. Finally, the simulated business situation programmed into the computer is considerably more complicated than would be possible for a paper and pencil game with the same turn-around speed. All the calculations described below are performed as automatic functions of the computer program.

As is the case in the market place, some carry-over exists in this game from period to period. For example, the promotion contracted for in one period will also affect sales in the following periods. The same is true of expenditures for Research and Training.

This game, departing from the practices present in most similar games, makes the participant teams compute their own accounting statements. The computer printout does not supply these figures. The participants are thus forced to consider accounting relationships more than otherwise. Experience has shown that this feature is a valuable part of this game.

The participant should develop a sense of the market as he plays. He should attempt to "psych-out" the demand relationships as functions of his decisions. It is to his interest, therefore, to adopt somewhat more extreme strategies in this game than would be safe under real business conditions. In this way, he can learn without cost, and in a short time, lessons that might cost much more, both in time and money in the real market. It is worth pointing out especially here the role of <u>strategy</u> in business as opposed to <u>decision</u>. The participant will learn little from a policy of changing decision rationale frequently. He will learn much more from the results of having made a series of decisions according to a certain rationale that he wishes to test, i.e., a strategy. This is true in real life and is true in this game.

Market Demand

In general, demand is a function of price and promotion; the higher the promotion or the lower the price, the higher will be the demand.* The participant must be concerned not only with demand relations, however, but also with production costs at various levels of capacity. Inventory costs also must be considered. These factors can be controlled to some degree by attention to investment in training, incentive and research activities, but the final results will be dependent on all these elements acting together. Finally, there are forces acting on demand that are outside the control of the participants, i.e., the general market trends. The game starts off with a growth trend for a few periods to invite attention to necessary increases in capacity. Then there is a market decline for a few periods, inviting attention to inventory costs and overextended production capability. Finally, there is another rise in demand. The result affords an excellent opportunity for the participant to practice forecasting talents.

^{*}With price the demand relationship is continuous. With promotion, however, the demand rises with promotion expense up to a maximum of \$1,000,000 expense per period, whereupon the promotion effect saturates and no further increase in demand results from increased promotional outlay.

The market trend is given to the game by the following relationship:

 $F2 = 1 + .2P - .036P^2 + .0019P^3$

where P is the number of the period being played.

The relation of demand to price and promotion is given by the following:

 $F1 = \frac{75}{P} \times \frac{300+S}{1500+S}$

where P is the price and S is the promotion expense. In the case of total demand, mean price and promotion figures are used. In the case of team demand, the team's price and promotion figures are used.

For the total demand, the relation is:

 $D = N \times F1 \times F2 \times 60,000$

where N is the number of teams. F1 gives the effects of price and promotion, and F2 gives the effect of the general market trend. The base demand is seen to be 60,000 units per team.

In addition to the factors mentioned above, there is a random perturbation of demand figures, so that a team's demand will not conform precisely to the functions noted above. This perturbation produces up to ten percent variation from the defined functions and can be thought of as the result of extraneous market conditions.

The Production Decision

The production cost is constant in any given period up to a production level which is 5000 units less than full capacity. Above this point, there is a per unit increase of 70 percent for production cost. For the participant this will result in gradually increasing average costs as he approaches and exceeds capacity. It might be noted that the participant may assume that he cannot produce above capacity. This is an erroneous assumption. Production in excess of capacity can be justified theoretically on the basis of creating a night shift, or farming some of the work out, etc.

The Capacity Decision

The capacity decision is made three periods in advance of the availability of the facilities contracted for. The facilities are not paid for until they are ready. The payment results in a reduction of the cash, but does not result in a commensurate reduction of profits in the period in which the facilities become available. The reduction in profits comes about through a steady state increase in administrative or overhead costs, so that, on a period by period basis, the cost is amortized. The amount of return on investment for money put into increased plant capacity will be favorable if this extra capacity is used, but it will just be extra expense if not used.

The Research Decision

Because it has been found advisable in this game for all teams to consider that they are selling the same product, research in product design is not appropriate. Therefore, it is assumed that research input is for the purpose of improving the process and that success in research will result in lower production costs. The research expenditures create a probability of breakthrough, the more expenditure the more the probability. Only one breakthrough is possible in any one period and it lowers the production costs by 1.5 percent for every period from the point of breakthrough on. New breakthroughs increase the cost saving by the same factor. Obviously, the more production that is scheduled, the larger will be the resulting saving. The assignment of probabilities of breakthrough results from a random number simulation in the program. The characteristics of this probability function are such that a steady \$80,000 per period investment in inventory yields the best return on investment.

The Incentive Decision

It is assumed that trying to apply a wage incentive to either the skilled or unskilled classifications will result in no improvement at all, due to the practical difficulties involved. However, applying a wage incentive program for the semi-skilled workers will result in some substantial improvement. The improvement will take the form of increase in apparent capacity, so that, when a team is producing at or above stated capacity, the production costs will be less, enough so that a satisfactory return on investment (in the incentive plan) occurs. It is assumed that unit production costs will not be affected, because the form of the incentive is such that labor will get as much per unit of production under incentive as before. Therefore, savings will result from a reduction in the costs of above capacity production, in the manner stated.

The Training Decision

The training decision assumes that there will be a lower production cost associated with increased training expense. The effect of this training input, however, will attenuate over time so that the effect will be far less two or three periods hence than it is directly after instituting the program.

In Summary

The carry over of effects (Research, Training, etc.) occurs thru the continual updating of the last (data statement) matrix in the printout, as mentioned in the Instructions for the Referee. It is important either to carry out this updating thru entering the new data by hand from the last matrix or by entering it by tape in the manner described.

It should be noted that this game was developed for 12 periods of play. If the instructor plays many more periods, it would be advisable to move from [P = 12] back to [P = 5, P = 6, etc.]. If this is not done, the instructor will find the market tendency rising at a rate without bound.

In general, there is no existing equity relationship in the case, because there is no fixed asset item nor is long term indebtedness or equity mentioned. Some instructors using the game may wish to add these figures, making it possible to develop balance sheet relationships and financial ratios which are not possible under present conditions. This will be easy to accomplish.

INSTRUCTIONS FOR THE REFEREE

The referee should first make sure that the Basic compiler is in the computer (Hewlett-Packard Model 2114A, 8K memory) and operative. He should then read in the game tape. After initializing the game program according to INSTRUCTIONS FOR INITIALIZING, the game will be ready to play.

The participants in the game should be divided into teams, ideally no fewer than three, nor more than seven participants in each team. It is best when there are at least three teams and the computer program will not handle more than eight teams. Each team should be encouraged to select a chairman (or president), an accountant, and appoint members to represent the marketing, personnel, and production functions.

The referee should then make sure that each team has an official team booklet, with copies of Forms I through IV arranged in a set for three years (four periods each year). The official set should have initial data (as per copy attached to this set of instructions) entered on the forms. This should include data regarding production, capacity, inventory value, administrative cost, and cash balance. Each member of each team should have a set of PLAYERS' INSTRUCTIONS, a copy of Chart I showing the past twenty-four periods of sales experience for his team, and copies of Forms I through IV that he can use for calculations. It is advisable to make this material available for study sometime before initiating play of the game.

The referee should then explain the philosophy of the game, pointing out that it is up to the teams to find out how the market reacts to their decisions and explaining the decisions to be made in the play for the first period on Form I. It is wise at this point to discuss the basic nature of the game, the fact that the teams are interdependent, the fact that market response will be dependent on the team decisions, to some degree, but that the market response will also be determined by general economic trends and by some random variation. Also, it can be pointed out that one quarter's decisions will affect results not only for that quarter, but for future quarters as well.

Receiving the Decisions

Upon receiving the booklets (with decisions) from the teams, the referee should verify the calculations and the entries, making sure that enough lead time is given for decisions regarding new production and capability. He should check profit calculations and should assure himself that each team has entered the cost of negative cash balance, if the team incurred some.

Entering Data

The referee then types the decisions into the computer program as data. (See INSTRUCTIONS FOR ENTERING DATA.) Decisions as to price, promotiom, production, capacity, research, and incentives are typed into memory locations from 351 to 358 (as needed), team one's decisions being typed into 351, team two's into 352, etc. In the event that some team other than team one is the first to turn in its decisions, that team's decisions can be entered as soon as the form arrives. For example, if team four is the first to turn in its decisions can be entered as be entered into memory location 354. Decisions as to training are entered into memory locations 361 through 368 (as needed) in the same way that data was entered in the 351-358 block. The referee should check the means for entering training data carefully before proceeding. It should be noted that the data for incentive wages and for training must be coded before entry.

For incentive wages, the questions involve only whether the team has paid the full cost of the incentive plan and whether the plan is for the semi-skilled workers or not. A plan for another group of workers produces no effect at all. A plan, fully paid for, for semi-skilled workers, increases plant capacity, thereby causing less production expense when the plant is working near or above capacity. In coding the plan, the number entered should be 30 or more if the plan is for semi-skilled workers and less than 30 if the plan is for one of the other two classes of employees, or if there is no plan.

As for training, the number entered is a function of the number of periods since a training program was installed. In the first period, whether or not a training program was installed, this number will be (0). This is because the results of the training program are not apparent in the period for which it is installed. In the next period, if a training program was installed in the first period, the number should be (6). One period after the introduction of an additional new training program, six should be added to the number which appears as the last item of data in subject team's line in the last matrix printed out from the previous period (the matrix characterized as data statements). The data for the present period should be corrected by this increase. Note that, in entering such data, the whole data line must be entered, even though most of the data is as it was. For example, if team 4 had initiated a training program last period, and this period's data line had been "364 DATA 70,1,12,525,80,3.235", it should be re-entered as "364 DATA 70,1,12,525,80,9.235".

Running the Program

First, the "ON" button for the tape punch should be pressed and the "HERE IS" button should also be pressed. This will avoid any residual punching on the tape. Now, press the "OFF" button on the tape punch. At this point, after making sure that the program is initialized and all new data is fed in, type "RUN" and press the carriage return button. This should cause three matrices to be printed out along with two pieces of summary information. At the end of the second piece of summary information, "Total Promotion, \$XXX", there will be a pause of one second. During this second, press the "ON" button of the tape punch. All the new data for data block 361 through 36n will be typed out and punched onto the tape (n depending on the number of teams). At the end of this series of data statements there will be another pause of one second. At this point press the "OFF" button. This will insure that only the data statements are present on the tape. The computer will then type "READY". After this has happened, press the "ON" button again and press "HERE IS". This will give you some blank tape at the end of the data. Then press the "OFF" button. Immediately then put this piece of tape in the tape reader and read in the new data. The computer is now initialized for the next period of play. The first matrix printed out will simply show the team decisions for the referee's verification.

The referee should then insert the "sales" figures (in units), the "Prod Cost" figures (in dollars), and the "Admin Cost" figures (in dollars) from the second matrix in the appropriate places on the team forms. The last column, "unit cost", will be useful in the final game analysis. He can then hand the official booklets back to the teams. During the second play of the game, the teams will need assistance in completing the forms especially the Income Statement. It is probably appropriate to explain the forms to the participants as a group, going down through the necessary calculations.

Summarizing Results

After each period is decided, the referee should post on the blackboard: 1) the prices charged by each team last period; 2) a combined sales total for all teams; 3) the total amount charged by all teams for promotion. After each four periods post the year's profit for each team. <u>Each period represents</u> three months.

At the end of each four periods (i.e., each year) the referee will calculate a total profit for each team for the year. He will charge the team an income tax payable in the following period of play. This income tax will be 50% of the total profit calculated. This figure will be entered on Form II on line 15, labeled "Tax". The team must treat this as an expense in said period.

Upon completing the game for any one day's play, the referee should retain all official team booklets, allowing the participants to keep their calculation sheets. He should also read out the present stage of the game onto tape. This he does by first typing "PLIST" on the teletype, waiting a second and then pressing the "ON" button for the tape punch. The tape will be furnished with blank leader and follower in the process and can be used to initiate play of the game for the next period. Only the new decision data and the new period number will have to be furnished.

Game Analysis

Upon completion of all the plays of the game, the referee should post records of the performances of all teams. A suitable form for such a presentation is embodied in Chart II with a series of trend lines for each team depicting various criteria useful in analyzing the game experience. The teams should be encouraged to analyze their own experiences for the benefit of the other teams in the analysis session. The referee can comment as he feels appropriate. The data for the presentation can be found in the official team booklets and in the printouts from the computer.

<u>Note</u>: (1) It may be useful at times to experiment with the game in order to determine how the total demand function behaves. For such purpose, the experimenter may wish to print out only a selected portion of the total printout. He can eliminate printing Matrix A for example, simply by one instruction, "9 GO TO 17". Similarly he can eliminate printing the second matrix by typing "285 GO TO 330". The last (data statement) matrix can be omitted by typing "379 GO TO 400". When these matrices are again desired, simply type "9" then return, "285" then return, and "379" then return.

<u>Note</u>: (2) A copy of the referee's data sheet is included at the conclusion. It is useful to enter team decision data on this sheet before entering the data into the computer. In this way errors in entering data can be avoided. Further, information on this sheet will be useful in the final game analysis.

INSTRUCTIONS FOR INITIALIZING GAME

 The letter "N" represents the number of teams in the game. In order to set up the program for a given play of the game, this number will have to be inserted in the following manner:

Type "4 LET N = (the number of teams)"

For example, if the number of teams is to be 5, the instruction is:

"4 LET N = 5"

 Next, the period of play must be inserted. Assuming that this is the first period, this is done as follows:

Type "5 LET P = 1"

For the third period of play it would be:

"5 LET P = 3"

This instruction will give a market trend to the demand function throughout the game. As originally set up, this trend will call for rising total demand (all other things being equal) during the initial four periods. The demand will then level off and drop until the ninth period. The demand will then level off and rise again.*

3. The tape is set up initially for eight teams. For this reason, data will have to be omitted for any teams above the actual number playing. This will have to be done in two different data blocks, 351 to 358 and 361 to 368. The omissions should be from the higher numbers in each case to the lower numbers. For example, if the actual number of teams is 5, simply type the following numbers, pressing "return" after each number:

356, 357, 358, 366, 367, 368

4. The data representing cumulative effects of past decisions are already entered in the initial tape. These entries won't have to be changed for the first period's play.

The game is now ready for the first period.

^{*}If the instructor contemplates playing many more than twelve periods, it would be wise to move from period 12 to period 5 and then to period 6, etc. Using period numbers much higher than 12 will introduce demands that will probably be too high for practical purposes.

PLAYER INSTRUCTIONS (To be given to all players)

You are a member of a closely knit management team that is competing directly with several companies for a share of an industrial market. All of the companies are selling a product that is technically similar. Price and promotional effort are the key elements affecting volume. Profits result from a careful assessment of market demand, competitor's activities, and sound production and expense planning and control.

As in any business, a number of forms must be used to communicate your decisions and to report the company's position. Each period you must determine the: (1) product price, (2) promotion expenditure, (3) amount to be spent on plant expansion, (4) volume of raw material to be placed into production, (5) amount of research investment, (6) amount of expenditure for an incentive program, and (7) amount of investment in a training program. These decisions will be fed into a computer simulation representing a real market situation, and the results will be given back by the referee. Your team's results will be determined by (1) your decisions, (2) your competitors' decisions, and (3) the market conditions (affected by some trend indices). Additionally, there will be some random variation.

Selling Price (Line 1)

All other things being equal, the higher your promotion outlay, the more units of your product the market will absorb and the lower the price the more units of your product the market will absorb. However, the number of units sold by your firm will depend on the price and promotion outlays set by your firm in relationship to competitor's actions. There will be cyclical, seasonal and random influence in total market demand, as well as influence from the average price charged by all competitors and the total amount they spend on promotion. Orders must be filled from currently available merchandise; and inventory deficiency results in lost sales.

Selling prices can only be changed in one dollar increments with a maximum variation of two dollars per unit from one period to the next. Assume that the last price charged was \$30.00 per unit and your company sold 59,000 units.

Over the past several years each competitor has maintained an equal share of the market. Chart I portrays your company's sales volume over the last twenty-four periods. Your marketing research staff has reported that they expect the upward trend to continue.

Promotion Budget (Line 2)

This is the amount spent for advertising and personal sales effort. The budgeted amount cannot be altered more than \$100,000 from one period to the next, and changes made in \$50,000 steps. Your promotion budget last period was \$450,000. The effect of promotional effort is somewhat cumulative. That is, there will be some effect on sales in later periods due to this period's promotion.

Production (Line 3)

During any period you may begin the ordering and production cycle for any number of raw materials units. The complete cycle requires two periods: one period for the raw materials to arrive after they have been ordered and one period to change the inputs into finished goods. Therefore, if a stock of finished inventory is needed for sale during period five for example, the raw material order must be placed no later than the beginning of the third period. Therefore, the production decision must be made for the third period.

Two periods ago, 60,000 units of raw material were ordered. They can be sold during this first game period. Last period, 65,000 units were ordered and will be saleable during period II. If you wish to have additional inventory available for sale during the third period, enter the desired quantity now on line three, period III.

There is a 10% inventory carrying charge each period. This charge is based on <u>cost value</u> of the ending inventory. Your ending inventory last period was 41,000 units, valued at \$310,000. Thus the carrying charge would have been \$31,000 last period.

Your manufacturing cost is about \$10 per unit when production is near plant capacity. Above capacity production leads to overtime rates and other charges; if your plant operates much under its full potential, the \$700,000 fixed charges will raise the unit costs. However, this should not be construed as forbidding you to produce above capacity.

Plant Capacity Additions (Lines 4, 5, and 6)

Initially, your plant has a 75,000 unit per period capacity. Every \$60,000 spent for expansion will increase the plant's capacity 1,000 units. An expansion program initiated during one period is not completed until three periods have passed. Payments are not made for plant additions until the new space is available for use.

Your plant will have a 77,000 unit capacity during Period III. If you believe more capacity will be needed during the fourth period, this expansion program must be started now in the first period. Enter this decision on lines 7, 8, and 9 in the space provided under Period IV.

Research and Development (Line 7)

An investment may be made for research and development during any period. The more money that is put into research, the greater the probability of a breakthrough. For any investment made there is a period of delay due to the time needed for research before any results are realized. If a breakthrough does occur, the advantages will be realized through a reduction in total production cost for each period after the research investment repays itself. Repetitive breakthroughs are possible if research investments are repeated. The same total amount invested over time as a steady state input will give a greater possibility of breakthrough than if it is invested all in one period. That is, crash research must be made in multiples of \$20,000. There is an investment maximum of \$160,000 per period.

Incentive Wage Program (Line 8)

An incentive program may be installed for all levels of the production force: unskilled, semi-skilled, and skilled. Any one, all, or a combination of these segments may be put on incentive during any period. The costs of the program include an initial cost for determining each job's productivity measurement, for establishing evaluation methods, and for making accounting adjustments. This cost is \$50,000 for any or all groups of workers able to be put on incentive. There will also be a steady-state cost of \$10,000 per period for each skill level on incentive. This is needed to maintain the control, evaluation, and accounting procedures. The advantage of this program's establishment is that it may substitute for additions to the plant capacity. The increased production advantage of the program discontinues if the payments cease. As 60% of the work force is semi-skilled, the benefits of this group being put on incentive would be evidenced soonest -- during the period in which introduced. If this program is introduced, enter the amount of incentive expenditure on Line 4 of Form I. The <u>total</u> unit production, including increments added by incentives, will be taken into account when the computer calculates the production cost.

Training Program (Line 9)

It has been determined that the introduction and use of an extensive training program for production workers will result in lower total production costs whether production is at full capacity or not. If it is decided to begin this program, the expense will be one investment of \$30,000. This expense will include the cost of instructors and educational material. It will take a period before the details of the program's setup are complete and the instructors are trained. Then there will be a reduction in production costs. The amount of total production cost reduction will exist from time to first effect, in decreasing amount from period to period.

Negative Cash Balance

At the end of every period in which your cash balance is negative, you will be charged an extra 5% of the amount by which it is negative. Make your calculations on scratch paper first to see if you will have a negative cash balance. Then add this cost if so. This is the cost of borrowing money to cover debts.

Income Tax

At the end of each four periods (1 year) the referee will calculate an income tax to be paid in the following period. It will be entered in Form II, line 15 and also in the space provided.

Completing the Income Statement

- Step 1: The unit sales will be entered in Form II, line one, by the judge. Multiply the unit sales figure by the price charges by the company this period. Enter the dollar sales volume on line two.
- Step 2: Line three, Beginning Inventory, is the same as line six, Ending Inventory, from the previous period.
- Step 3: Line four, Production Cost, is entered on Form II by the judge.

- Step 4: Line five, Merchandise Available for Sale, is the sum of lines three and four.
- Step 5: Multiply the Unit Sales, line one, by the average unit cost (Form IV, line six) and enter the product on line <u>seven</u> as the Cost of Goods Sold. Form IV is provided as a worksheet to aid in calculating the number of units of ending inventory and also the average unit cost.
- Step 6: Subtract line 7, Cost of Goods Sold, from line 5, Merchandise Available for Sale, and enter on line 6, Ending Inventory.
- Step 7: Subtract line 7, Cost of Goods Sold, from line 2, Sales, and enter the difference on line 8, Gross Margin.
- Step 8: Enter the Promotion Expense on line 9, from Form I, line 2.
- Step 9: Enter the Research Expense on line 12 from Form I, line 7.
- Step 10: Enter the Incentive Cost on line 10, from Form I, line 8.
- Step 11: Enter the Training Expense on line 11 from Form I, line 9.
- Step 12: Inventory Carrying Charge, line 13, is 10% of line 6, Ending Inventory.
- Step 13: The Overhead is provided by the judge. It is a function of capacity.
- Step 14: Add lines 9 through 15 and subtract the total from line 8. Enter the difference on line 16.

Negative Cash Balance

- Step 1: Complete the Cash Available Statement Form III. The "cash end this period" is the result of subtracting the sum of lines 4 and 5 from the sum of lines 1, 2, and 3.
- Step 2: If there is a negative cash balance at the end of the period, enter 5% of that figure as a penalty on the Income Statement, Form II, line 15. Reduce the Net Income (or increase the Net Loss) for the company for every period that there is a negative cash balance on Form III.

Average Unit Cost (Form IV, Line 6)

Calculate the average unit cost by dividing the value of total merchandise for sale (Form II, line 5) by the number of units available for sale (Form IV, line 30). This figure should be entered on line 6 of Form IV.

- JUDGE'S FORM

Class	Date
Number of Teams	Judge

Location	Designation	Team #	Price	Prom.	Prod.	Cap.	Research	Incentive
	DATA		· · · · · · · · · · · · · · · · · · ·					
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							

JUDGE'S FORM

Class	Management	460	(B))
				-

_____ Date____

te<u>2/18/70</u>

Number of Teams 5

Judge<u>Nordstrom</u>

Location	Designation	Team #	Price	Prom	Prod	Can	Pesearch	Incentive
351	DESTIGNATION	1	30	500	65	75	100	30
352		2	30	950	100	80	160	20
353		3	31	500	55	75	30	10
354			20	650	90	80	10	10
255	DATA	5	26	500	65	75	90	20
	DATA		20	500	05	/5		
	DATA							
	DATA							
••••••••••••••••••••••••••••••••••••••								
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							····
	DATA							
	DATA							
~~~~~	DATA							
	DATA							

#### FORM I MANAGEMENT DECISIONS

Company	Year
---------	------

- 1. Selling Price
- 2. Promotion Budget
- 3. Production, Units
- 4. Plant Cap. Add'ns, Units
- 5. Plant Cap. Add'ns, \$
- 6. Cum. Cap. Add'ns, \$
- 7. Research Inv't, \$

- 8. Incentive Prog. Exp., \$
- 9. Training Prog. Inv't, \$

I	II	III	IV

#### FORM II INCOME STATEMENT

		1		
1.	Sales, Units		 	
2.	Sales, \$		 	
3.	Begin, Inv'y, \$		 	
4.	Production Cost, \$		 	
5.	Mdse. Av. for Sale, \$		 	 Year's Profit
6.	Ending Inv'y, \$			
7.	Cost of Goods Sold, \$		 	 _
8.	Gross Margin, \$			Income Tax
9.	Promotion Exp., \$			
10.	Incentive Cost, \$			
11.	Training Exp., \$			 Net After Tax
12.	Research Exp., \$	L		
13.	Inv'y Carrying Charge, \$			
14.	Overhead, \$			
15.	Cash Shortage Charge, \$			
16.	Net Income (loss), \$			

.

#### FORM I MANAGEMENT DECISIONS

Company____X_____Year___197X______

		I	II	III	IV.
1.	Selling Price				
2.	Promotion Budget				
3.	Production, Units	60,000	65,000		
4.	Plant Cap. Add'ns, Units			2,000	
5.	Plant Cap. Add'ns, \$			120,000	
6.	Cum. Cap. Add'ns, \$	75,000	75,000	77,000	
7.	Research Inv't, \$				
8.	Incentive Prog. Exp., \$				
9.	Training Prog. Inv't, \$			<u> </u>	

#### FORM II INCOME STATEMENT

			T	T	
۱.	Sales, Units				
2.	Sales, \$				
3.	Begin. Inv'y, \$	310,000			
4.	Production Cost, \$				
5.	Mdse. Av. for Sale, \$				 Year's Profit
6.	Ending Inv'y, \$				
7.	Cost of Goods Sold, \$				-
8.	Gross Margin, \$				 Tax
9.	Promotion Exp., \$				
10.	Incentive Cost, \$				
11.	Training Exp., \$				 Net After Tax
12.	Research Exp., \$				
13.	Inv'y Carrying Charge, \$				
14.	Overhead, \$	700,000			
15.	Cash Shortage Charge, \$				
16.	Net Income (loss), \$				

#### FORM III CASH AVAILABLE

•

1.	Cash,	End	of	Last	Per.	
••	ousing	LIIG	<b>U</b> 1	LUJU		

2. Inv'y End Last Period

3. Net Income This Period

4. Paid for Add'l Plant Cap.

5. Inv'y End This Period

6. Cash End This Period

I	II	III	IV

#### FORM IV INVENTORY WORKSHEET

1.	Beginning	Inv'y
----	-----------	-------

2. Units This Period

3. Total Units for Sale

4. Unit Sales, This Per.

5. Ending Inv'y, Units

6. Av. Unit Cost (II5/IV3)

#### FORM III CASH AVAILABLE

- 1. Cash, End of Last Per.
- 2. Inv'y End Last Period
- 3. Net Income This Period
- 4. Paid for Add'l Plant Cap.
- 5. Inv'y End This Period
- 6. Cash End This Period

I	II	III	IV
660,000			
310,000			
		120,000	
		_	

#### FORM IV INVENTORY WORKSHEET

Т

Г

- 1. Beginning Inv'y
- 2. Units This Period
- 3. Total Units for Sale
- 4. Unit Sales, This Per.
- 5. Ending Inv'y, Units
- 6. Av. Unit Cost (II5/IV3)

31,000		
60,000		
91,000		

Т



Pregame Period

CHART II FINAL ANALYSIS SHEET



RUN

.

RUN DECSN

NO •	PRICE	PROM	OTION	F	ROD	UCTION	CAPAC I	TΥ	R	ES	EARCH	INCE	NTIVE
t	30	500	i		65		75			10	ø	30	
2	30	850	)		100 80			130			20		
3	31	500	)		55	55 75			30			10	
4	29	650			90		80			10		ø	
5	30	500	1		65		75			80		30	
6	30	550	)		90	80			100		30		
7	28	450	)		70		80		1	5Ø		20	
8	27	700	I		90		86			60		10	
TEAM	NO.	9	ALES			PROD	COST		ADMI	N	COST	UNIT	COST
1			90011.	1		640.	25		700			9.8	5
2	105377 .			•	1354.37				735			13.5438	
3			81906.	7		550			700			10	
4			94503.	2		1105			735			12.	2778
5			82772.	2		650			700			10	
6			89066.	8		954 •	465		735			10.	6052
7			86677.	I .		700			735			10	
8			107639	•		987 •	955		777			10.	9773
TOTAL	. POTEN	TIAL	SALES,		7	37953.	UNIT	s					
TOTAL	PROMO	TION	5 S	470	0								
361	DATA	55	.985			, Ø	, 700	,	75	,	ø		
362	DATA	90	.985			,0	, 735	,	80	,	ø		
363	DATA	55	• 1		36	, 700	, 75		ø				
364	DATA	70	» 1	,	12	, 735	. 80		ø				
365	DATA	55	1	,	96	, 700	, 75		Ø				
366	DATA	60	.985			, 0	, 735	,	80	,	0		
367	DATA	50	» 1	,	60	, 735	, 80		0				
368	DATA	75	.985			, 0	, 777	,	86	,	ø		

DONE

## CONTRIBUTED PROGRAM **BASIC**

TITLE:	DYNAMIC PROGRAMMING MODEL	DY NP RO 36067
DESCRIPTION:	DYNPRO solves, by a standard algorithm, a somewhat general-purp dynamic programming model. The solution is imbedded in the inl state.	ose et
INSTRUCTIONS:	Before running, be certain that the dimension in line 9398 are as large as one more than the number of values in the state var e.g., if there are 20 values in the state variable, 9398 must b as large as: DIM F(21,4), G(21,4). The user must also supply his own functions for the routines th unique to his application. These routines, and their locations described within the DYNPRO listing between lines 9012 and 9068 Variable definitions are provided between lines 9070 and 9104, between 9180 and 9218. Function definitions are provided betwe lines 9112 and 9176. The user may also need to add or delete lines from the input da routine to meet his application. This routine is from line 946	at least iable, e at least at are are and en ta 8 to 9496.
SPECIAL CONSIDERATIONS:	DYNPRO is limited to one state variable.	
ACKNOWLEDGEMENTS:		

RUN

GET-SDYNPRO

9398 DIM F(12,4),G(12,4) RUN Dynpro

* DYNAMIC PROGRAMMING MODEL *

HOW MANY VALUES ARE THERE IN THE STATE VARIABLE?11 IF DIM-STATEMENT HAS NOT BEEN ADJUSTED TO F(LAST INPUT+1,4), ETC., Then Stop Program and do so now.

HOW MANY STAGES ARE THERE? 4

WHAT IS THE SALES PRICE?35

AND WHAT IS THE COST?30

AND THE FLOW RATE OF FEED?1.5

**************************************	OPT ALLOCATION	**************************************	OPT OUTLET
	**********	********	
STAGE NUMBER: 4			
• 8	•116812	16.6441	• 41 622 1
• 79	• 115658	16-2115	• 41 5005
• 78	• 1 1 6 3 8 9	15•7885	• 412956
• 77	• 1 1 5 7 3 2	15+351	- 41 1 469
• 76	• 113686	14-9231	• 418787
• 75	•111871	14•4966	• 4899 47
•74	• 112755	14.0723	• 407525
• 73	• 189856	13•6493	• 497239
• 72	• 109878	13+2256	• 485239
• 71	•186563	12+8095	• 403973
•7	• 197595	12•3925	• 482 469
STAGE NUMBER: 3			
• 6	9 • 65217E- 02	8 • 35339	•385733
• 59	9•59289 <b>E-0</b> 2	7.96598	• 38 3 4 68
• 58	9.25583E- <b>0</b> 2	7.58021	• 382 725
• 57	• 872752	7 • 19929	• 3 7 9 8 7
• 56	5 <b>. 75 487E - 8</b> 2	6.82194	• 378721
• 5 5	8.88957E-82	6 • 44588	• 37 63 67
•54	8 • 62 1 93E - 82	6. 87971	• 3 7 4 9 2 8
•53	8.55161E-82	5.71571	• 3722 63
• 52	8.32651E-82	5.35618	• 379397
• 51	8.27526 <b>E-82</b>	5.00202	• 367436
•5	7.93429 <b>5-82</b>	4.65316	•36683
STAGE NUMBER: 2			
• 4	5.57667 <b>E-0</b> 2	1 • 57986	• 338941
• 39	5.14664 <b>E-8</b> 2	1 • 32999	• 33 5 2 5 7
• 38	• \$46573	1 • 89 452	• 332367

• 37	4.35539E-02	• 87569	• 328 432
• 36	4• 09548E- 02	• 67 47 25	• 32 42 6
• 35	3•29919E-02	• 493731	• 321743
• 3 4	2•91687E-02	• 3366	• 31 692 1
• 33	2 • 46202E-82	•204355	• 3 1 2 0 3 9
• 32	1•66858E-02	• 101871	• 308525
• 3 1	• 011286	3•20753E-02	• 30294
• 3	1•97483E-03	1 • 22 468 <b>E - 0</b> 3	• 2988 48
STAGE MUMBED. 1			
•2	9•87229 <b>E-0</b> 3	-•226361	• 19867
•19	3•33882 <b>E-0</b> 3	877742	• 189573
+18	9 • 7 58 68 <b>E - 83</b>	229798	• 178799
•17	3 • 17376 <b>E- 0</b> 3	- 7 • 58557E- 82	• 1 6 9 6 1 6
•16	8•93324E- <b>83</b>	- • 211652	• 1 5 8 9 2 7
•15	2+837 <b>82E-0</b> 3	-6.72083E-02	• 1 49 6 5 9
•14	7•82094E-03	-•185064	• 139056
•13	1 • 15506E-02	-•273163	• 128603
• 12	3•61285E-03	-8.55038E-02	•119564
•11	9•97365E-03	-•236801	• 108811
• 1	3•13576E-03	- 7 • 48 49 7E- 02	9•96338E-02
******	*****	*****	*********

DONE

### MANAGEMENT SCIENCES AND OPERATIONS RESEARCH (600)

CONTRIBUTED PROGRAM BASIC

TITLE:	GCPATH GCPATH 36504					
DESCRIPTION:	Each project has several characteristics that are essential for analysis by the Critical Path Method:					
	<ol> <li>The project consists of a well-defined collection of jobs (or activities) which, when completed, mark the end of the project.</li> </ol>					
	(2) The jobs may be started and stopped independently of each other, within a given sequence. (This requirement eliminates continuous- flow process activities, such as oil refining, where "jobs" or operations necessarily follow one after another with essentially no slack.)					
	(3) The jobs are ordered - that is, they must be performed in technol- ogical sequence. (For example, the foundation of a house must be constructed before the walls are erected.)					
	First of all, each job necessary for the completion of a project is listed with a unique identifying symbol (such as a letter or number), the time required to complete the job, and its immediate prerequisite jobs. For convenience in graphing, and as a check on certain kinds of data errors, the jobs may be arranged in "technological order," which means that no job appears on the list until all of its predecessors have been listed. Tech- nological ordering is impossible if a cycle error exists in the job data (e.g., job a precedes b, b precedes c, and c precedes a).					
	Then each job is drawn on the graph as a circle, with its identifying symbol and time appearing within the circle. Sequence relationships are indicated by arrows connecting each circle (job) with its immediate successors, with the arrows pointing to the latter. For convenience, all circles with no predecessors are connected to a circle marked "Start"; likewise, all circles with no successors are connected to a circle marked "Finish." (The "Start" and "Finish" circles may be considered pseudo jobs of zero time length.)					
	Typically, the graph then depicts a number of different "arrow paths" from Start to Finish. The time required to traverse each path is the sum of the times associated with all jobs on the path. The critical path (or paths) is the longest path (in time) from Start to Finish; it indicates the minimum time necessary to complete the entire project.					
SPECIAL CONSIDERATIONS:	This critical path analysis is described by Levy, Thompson and Wiest in "The ABC's of the Critical Path Method" (Harvard Business Review, September- October, 1963). This documentation contains excerpts from the article; per- mission to reprint has been granted by the publishers.					
ACKNOWLEDGEMENTS:	Graduate School of Business Stanford University					

#### **INSTRUCTIONS:**

The problem description is entered in a set of data statements beginning with line 1000. A problem consists of a number of <u>jobs</u>. Each job requires a specified amount of <u>time</u> to complete. Some jobs cannot be started until one or more of the other jobs have been completed. If job <u>a</u> must be completed before job <u>b</u> is begun, we say that <u>a</u> is a <u>predecessor</u> of <u>b</u>.

Each job must be assigned an identifying job number. There are no restrictions on these numbers except that no two jobs may be assigned the same number. Each job can be described in a data statement. The required information follows:

Job number

Completion time

Predecessor jobs (if any)

-1

For example:

1002 DATA 10, 30, 1, 15, -1

This describes job number 10, which requires 30 days to complete and cannot be started until jobs number 1 and 15 have both been completed.

Jobs may be described in any order.

After entering data statements, <u>RUN</u> the program. The job characteristics will be repeated, followed by the earliest completion time for the entire project. Then the program will print the earliest and latest starting and finishing times for each job, consistent with the earliest completion time for the entire project. Jobs on the "critical path" will also be indicated.

```
RUN
RUN
GCPATH
HAVE YOU ENTERED YOUR DATA ALREADY?NO
ENTER THE PROJECT DESCRIPTION IN DATA STATEMENTS
BEGINNING WITH LINE 1000
FOR EACH JOB, GIVE THE FOLLOWING DATA --
  JOB NUMBER
  TIME REQUIRED TO COMPLETE
  PREDECESSOR JOBS (IF ANY)
  - 1
JOBS MAY BE ENTERED IN ANY ORDER
AFTER ENTERING YOUR DATA STATEMENTS, RE-RUN THE PROGRAM
DONE
1000 DATA 1,10,-1
1001 DATA 10,30,1,15,-1
1002 DATA 8,20,10,30,-1
1003 DT-ATA 30,40,25,-1
1004 DATA 25,20,1,15,-1
1005 DATA 15,20,-1
RUN
GCPATH
HAVE YOU ENTERED YOUR DATA ALREADY?YES
JOB TIME PREDECESSORS
      ----
             -----
----
1
      10
 10
       3Ø
                  15
             1
            10
 8
       20
                  30
 30
       40
             25
       20
                  15
 25
             1
 15
       20
EARLIEST COMPLETION TIME FOR THE ENTIRE PROJECT = 100
         EARLIEST
                         LATEST
         START FINISH START FINISH
JOB
---
         ----
                ----
                        ---- ----
         ø
1
                              20
                10
                        10
 10
         20
                5Ø
                        50
                              8Ø
                20
                             20
                                       *** CRITICAL ***
 15
         ø
                        ø
         8Ø
                100
                        80
                             100
                                       *** CRITICAL ***
 8
 3Ø
         40
                8Ø
                        40
                              80
                                       *** CRITICAL ***
                             40
 25
                                       *** CRITICAL ***
         20
                        20
                40
DONE
```
TITLE:	CRITICAL PATH ANALYSIS	GCPM1 36505
DESCRIPTION:	The BASIC program GCPM1 can be used to perform a critical path on any complex project which is capable of being represented a of individual tasks. As a practical matter, the number of job network should not exceed 45.	analysis s a network s in the
	The program assumes the user can provide the following informa	tion:
	<ol> <li>The number of jobs in the project (including a dummy terminy which takes no time to complete but which cannot be started other jobs are completed);</li> </ol>	nal job d until all
	<ol> <li>For each job, a list of jobs which are its immediate succe lowing jobs) and the time required on the job until each so job can be started.</li> </ol>	ssors (fol- ucceeding
INSTRUCTIONS:	See Page 2	
SPECIAL		
CONSIDERATIONS:	Example Problem:	
	The critical path analysis of the network on Page 3 is provide run. A single critical path is found with a minimum time to c 33 units. Then the completion time for a branch (6,8) which i critical path is reduced from 3 units to one unit. Since the by an amount less than the slack time for job 6, no change in path occurs. Finally, jobs on the critical path are "crashed" require less time. This has the effect of reducing the time t completion.	d as a sample ompletion of s not on the reduction is the critical or made to o project
	(maduate School of Rusiness	
ACKNOWLEDGEMENTS:	Stanford University	

#### INSTRUCTIONS

It is important that the user understand the diagramming conventions which are assumed by this program. Figure 1 provides an example of a statement of tasks and the corresponding CPM network. The network is an activity-node diagram. That is, each node represents a different job. Job 11 is the dummy terminal node mentioned above. Note that the program permits a succeeding job to start before its predecessor is "finished." For example, job 3 has as successors both jobs 5 and 6. Job 5 cannot start until six time units of work have been completed on job 3; job 6, however, can begin once five units of work have been completed on job 3. If, for a particular problem, every job must "finish" before a successor starts, all branch times emanating from an individual node will be equal.

Problem information is input on DATA statements starting with line 8000. The network must be drawn and jobs numbered in such a way that for every job, any and all succeeding jobs have a higher job number. The first job in the network should be given the job number of one (1). An error message would be printed if, for example, job number 3 were listed as a successor of job number 4.

Once program execution is commenced by a RUN command, the program will output:

- 1. The earliest possible time each job can be started;
- 2. The latest possible time each job can be started and still complete the project (network) in the minimum amount of time;
- 3. The minimum time in which the project can be completed;
- 4. A list of all jobs which are on the project's critical path(s); and
- 5. One critical path through the network.

There is frequently more than a single critical path. When this occurs, all jobs with zero slack are printed but only a single path is traced. The user is left to trace the remaining paths.

Once this information is printed the user is given the opportunity to study the effect of changes in job times (although no jobs may be removed from or added to the original network). If the query

HOW MANY LINKS OF THE NETWORK DO YOU WISH TO CHANGE?

is answered with a zero, 'O', execution will terminate. A response of any other number less than the total number of jobs in the network will produce the reply

FOR EACH LINK TYPE: FIRST JOB, SECOND JOB, TIME INVOLVED.

A response of 2,3,5 would mean that job 2 must now be worked on for five time units before job 3 can commence. This user input overrides information supplied in the original data statement.

Data Input

Input is through DATA statements starting with line 8000. The first line is

8000 DATA N

where N is the number of jobs, including the dummy terminal job, in the network. The second line of input is (numbering lines by 10)

8010 DATA S1, 1S1, 1T1, 1S2, 1T2, ..., MS1, MT1

#### where

- S1 = the number of successor jobs to job 1;
- 1S1 = the number of the "first" successor to job 1;
- ITI = the time to be worked on job 1 before the "first" successor, IS1, can be started;

MS1 = the number of the "last" successor to job 1; and

MT1 = the time required to be worked on job 1 before the "last" successor, MS1, can be started.

All following lines should list jobs 2, 3, ..., N and the appropriate successors and branch working times.

GCPM1	,	page	3
-------	---	------	---

Job	Immediate Successors	Beginning Successor Job
1	3	10
2	3	6
	4	5
3	5	6
	6	5
4	7	2
5	8	5
	9	7
6	8	3
	10	1
7	10	6
8	10	8
9	11	5
10	11	4
11		



8000 DATA 11 8010 DATA 1,3,10 8020 DATA 2,3,6,4,5 8030 DATA 2,5,6,6,5 8040 DATA 1,7,2 8050 DATA 2,8,5,9,7 8060 DATA 2,8,3,10,1 8070 DATA 1,10,6 8080 DATA 1,10,8 8090 DATA 1,11,5 8100 DATA 1,11,4

#### RUN

GCPMI

EVE	NT NUMBER	EARLIEST	START LATEST START	SLACK TIME
1		ø	Ø	Ø
2		Ø	4	4
3		10	10	ø
4		5	21	16
5		16	16	ø
6		15	18	3
7		7	23	16
8		21	21	ø
9		23	28	5
10		29	29	ø
11		33	33	ø
THE	TIME TO	PROJECT COMP	PLETION IS: 33	
THE	JOBS ON	THE CRITICAL	. PATH ARE:	
1	> 3	> 5 > 8	> 10 > 11	
ONE	CRITICAL	. PATH THROUG	SH THE NETWORK IS:	
1	> 3	> 5 > 8	> 10 > 11	

HOW MANY LINKS OF THE NETWORK DO YOU WISH TO CHANGE? ?1 FOR EACH LINK TYPE:FIRST JOB,SECOND JOB,TIME INVOLVED. ?6,8,1

EVE	NT NUMBER	EARLIEST	START LATEST START	SLACK TIME
1		ø	ø	Ø
2		ø	4	4
3		10	10	ø
4		5	21	16
5		16	16	Ø
6		15	20	5
7		7	23	16
8		21	21	ø
9		23	28	5
10		29	29	ø
11		33	33	ø
THE	TIME TO F	ROJECT COM	PLETION IS: 33	
THE	JOBS ON 1	THE CRITICAL	L PATH ARE:	
1	> 3	> 5 > 8	> 10/ > 11	
ONE	CRITICAL	PATH THROU	GH THE NETWORK IS:	
1	> 3	> 5 > 8	> 10 > 11	

HOW MANY LINKS OF THE NETWORK DO YOU WISH TO CHANGE? ?2 FOR EACH LINK TYPE:FIRST JOB,SECOND JOB,TIME INVOLVED. ?1,3,7 ?5,8,3

EVEN	T NUMBER	EARLIEST	START LATEST START	SLACK TIME
1		ø	ø	ø
2		ø	1	1
3		7	7	Ø
4		5	16	11
5		13	13	ø
6		12	15	3
7		7	18	11
8		16	16	0
9		20	23	3
10		24	24	Ø
11		28	28	ø
THE	TIME TO P	ROJECT COMP	PLETION IS: 28	
THE	JOBS ON T	HE CRITICAL	PATH ARE:	
1	> 3	> 5 > 8	> 10 > 11	
ONE	CRITICAL	PATH THROUG	SH THE NETWORK IS:	
1	> 3	> 5 > 8	> 10 > 11	

HOW MANY LINKS OF THE NETWORK DO YOU WISH TO CHANGE?

.

TITLE:	GINTLP LINEAR PROGRAMMING - VARIABLES RESTRICTED TO VALUES OF ONE 36512 OR ZERO
DESCRIPTION:	This program will solve linear programming problems in which all variables are restricted to values of either zero or one. An objective function of the form:
	$c_1 x_1 + c_2 x_2 + \dots + c_N x_N$
	will be <u>minimized</u> subject to a series of M constraints, each of the form:
	$a_{i1}X_1 + a_{i2}X_2 + \dots + a_{iN}X_N \ge B_i$ (for i = 1,, M)
	And, of course:
	$X_j = 0,1$ (for j = 1, 2,, N)
INSTRUCTIONS:	Input can be via DATA statements or the terminal. If data statements are used, they should be entered beginning at line 9000, in the following order:
	number of constraints (M) < = 20
	number of variables (N) < = 40
	for each constraint:
	coefficient for variable 1 (a _{il} )
	coefficient for variable 2 (a _{i2} )
	$\cdots$
	right-hand side (B)
	coefficients for objective function $(c_1, c_2, \ldots, c_N)$
ACKNOWLEDGEMENTS:	Graduate School of Business Stanford University

```
RUN
RUN
GINTLP
PLEASE INDICATE INPUT SOURCE --
    'T' FOR TERMINAL
   'D' FOR DATA STATEMENTS
SOURCE --?T
NUMBER OF CONSTRAINTS --?3
NUMBER OF VARIABLES --?5
COEFFICIENTS FOR CONSTRAINT 1
  VARIABLE 1
                  : ?1
  VARIABLE 2
VARIABLE 3
                     : ?-3
                     : ?5
  VARIABLE 4
VARIABLE 5
                    : ?1
                     : ?-4
  RIGHT-HAND SIDE : ?2
COEFFICIENTS FOR CONSTRAINT 2
  VARIABLE 1
VARIABLE 2
                   : ?-2
                     : ?6
  VARIABLE 3
VARIABLE 4
VARIABLE 5
                    : ?-3
                     : ?-2
                     : ?2
  RIGHT-HAND SIDE : 70
COEFFICIENTS FOR CONSTRAINT 3
  VARIABLE 1 : ?0
VARIABLE 2 : ?-1
VARIABLE 3 : ?2
VARIABLE 4 : ?-1
VARIABLE 5 : ?-1
                     : ?-1
                    : ?-1
                     : ?-1
  RIGHT-HAND SIDE : ?1
COEFFICIENTS FOR OBJECTIVE FUNCTION --
  VARIABLE I
                     : ?5
  VARIABLE 2
                     : ?7
  VARIABLE 3
VARIABLE 4
VARIABLE 5
                     : ?10
                     : ?3
                     : ?1
ANSWERS :
VARIABLE
                  VALUE
 1
                   ø
 2
                   1
 3
                   1
 4
                   ø
 5
                   ø
MINIMUM VALUE OF THE OBJECTIVE FUNCTION = 17
```

TITLE:	GLP LINEAR PROGRAMMING 36516	
DESCRIPTION:	This program will solve a standard linear programming problem of modest size. Up to 28 constraints may be used, and up to 45 variables. Cases in which the number of variables <u>plus</u> the number of constraints exceeds 40 may, however, prove too large.	
INSTRUCTIONS:	The problem description must be entered in data statements beginning with line 2000. For each non-zero coefficient in a constraint, the following information is required:	
	<u>Constraint number, variable number, coefficient</u>	
	For each coefficient in the objective function, the following information is required:	
	"OBJ," variable number, coefficient	
	For each constraint, the following information is entered:	
	a) If the value must be <u>less</u> than or equal to the right-hand-side value:	
	constraint number, "<=", right-hand-side value	
	b) If the value must be <u>equal</u> to the right-hand-side value: constraint number, "=", right-hand-side value	
	c) If the value must be <u>greater</u> than or equal to the right-hand-side value:	
	constraint number, <u>"&gt;=</u> ", right-hand-side value	
	Each group of three items must be entered in order (as described), but groups may be entered in any order.	
	After entering the data statements, <u>RUN</u> the program. It will ask you if you want to <u>MAXIMIZE</u> or <u>MINIMIZE</u> the value of the objective function. Then it will request the number of variables and the number of constraints.	
	The output includes information on the optimal value of the objective function, the values of the variables in the solution, the constraints that were binding (and their shadow-prices), and the constraints that were slack (and the amounts by which they were slack). Most of the information is self-explanatory. The major exception is the set of shadow-prices. Roughl a shadow-price indicates the amount by which the objective function would change if the constraint in question were changed by one unit. This provid some information concerning the desirability of changing constraints and shows how sensitive the results are to the particular assumptions employed.	у, es
ACKNOWLEDGEMENTS:	Graduate School of Business Stanford University	

RUN 2000 DATA 1,1,2 2001 DATA 1,2,3 2002 DATA 2,1,5 2003 DATA 2,2,4 2004 DATA "0BJ",1,300 2005 DATA "OBJ",2,360 2006 DATA 1,"<=",1000 2007 DATA 2,"<=",2000 RUN GLP DO YOU WANT TO MAXIMIZE OR MINIMIZE?MAXIMIZE NUMBER OF VARIABLES?2 NUMBER OF CONSTRAINTS?2 --SOLUTION -----VALUE OF THE OBJECTIVE = 137143. VARIABLES ***************** VARIABLE VALUE ---------142.857 2 285.714 1 BINDING CONSTRAINTS ************************* CONSTRAINT SHADOW-PRICE ----------85.7143 1 2 25.7143 SLACK CONSTRAINTS CONSTRAINT SLACK

	LINEAR PROGRAMMING TWO-PHASE SIMPLEX METHOD	GLPSA1 36517
DESCRIPTION:	This program solves a linear programming problem via the two-phase smethod and permits the user to perform sensitivity and parametric ar on the right-hand side and cost coefficients. The program does not the opportunity for post-optimality analysis of the technological coefficients. The data for the problem matrix is provided in a series DATA statements while user prompts after the program start determine nature of the problem (maximization or minimization, number of varia and constraints, and the direction of constraint inequalities). The will solve a problem having 28 or fewer constraints and for which the of variables, all constraints and surplus variables ( $\geq$ inequalities) than or equal to 69.	simplex halyses provide o- s of e the ables e program he sum ) is less
INSTRUCTIONS:	See Page 2	
ACKNOWLEDGEMENTS:	Graduate School of Business Stanford University	

#### **INSTRUCTIONS:**

#### Input of the Problem Matrix

ыI

The program will solve problems organized in either of the following two forms:

	minimize	Σ c _j X _j		
	subject to	N ∑ a _{ij} X _j ≤ b _i j=1	,	i = 1,2, , L
(1)		N Σ a _{ij} X _j = b _i j=1	,	i = L + l, , L + E
		$\sum_{j=1}^{N} a_{ij} \sum_{j=1}^{X_j} b_{j}$	,	i = L+E+1, , L+E+G
		Xj ≥ 0		j = 1, 2, , N
or	maximize	N Σc _{ij} X _j j=]		
	subject to	$\sum_{j=1}^{N} a_{ij} X_{j} \leq b_{i} ,$		i = 1,2,, L
(2)		N Σa _{ij} X _j = b _i , j=1 ij j = b _i ,		i = L + 1, , L+E
		$\sum_{j=1}^{N} a_{ij} \sum_{j=1}^{X} \sum_{j=1}^{D} b_{j}$		i = L+E+1, , L+E+G
		X _j ≥ 0		j = 1,2, , N

where

N = the number of primal variables in the original problem,

- L = the number of constraints with a  $\leq$  inequality,
- E = the number of contraints which hold with equality, and
- G = the number of constraints with a  $\geq$  inequality.

Note that regardless of whether the problem requires maximization or minimization, the problem contraint matrix is organized with the Type I ( $\leq$ ) inequalities first, equalities second, and Type II ( $\geq$ ) inequalities last. This problem organization also requires that all bibe greater than or equal to zero. In the event a given b, is negative, the corresponding constraint can be multiplied by -l and the inequality reversed to conform with the program requirements.

INSTRUCTIONS: (continued)

Input of the Problem Matrix (continued)

The DATA statements used to input the problem matrix should be numbered consecutively, starting with statement number 5000. The largest allowable statement number is 9998. The  $a_{ij}$  elements should be entered first, constraint row by contraint row. Then the  $c_j$  coefficients should be entered, followed by the right-hand side or  $b_i$  elements. The resulting list of data statements should appear as follows:

 5000
 DATA
  $a_{11}$ ,  $a_{12}$ , ...,  $a_{1N}$  

 5010
 DATA
  $a_{21}$ ,  $a_{22}$ , ...,  $a_{2N}$  

 ...
 ...
 ...

 DATA
  $a_{M1}$ ,  $a_{M2}$ , ...,  $a_{MN}$  

 ...
 DATA

  $a_{M1}$ ,  $a_{M2}$ , ...,  $a_{MN}$  

 ...
 DATA

  $a_{M1}$ ,  $a_{M2}$ , ...,  $c_n$  

 ...
 DATA

  $b_1$ ,  $b_2$ , ...,  $b_m$ 

Running the Program

After all DATA statements are entered, type the statement

RUN

to commence execution. The program will then respond with

TYPE: '1' FOR MAXIMIZATION OR '-1' FOR MINIMIZATION.

Enter the appropriate answer and then press the carriage return so that execution can continue.

The next prompt will be

TYPE: THE NUMBER OF CONSTRAINTS, NUMBER OF VARIABLES.

To answer this query enter the total number of constraints (M = L + E + G) and the number of problem variables (N); these two numbers should be separated by a comma. Once the carriage has been returned after this entry, a final query will be printed.

TYPE: NUMBER OF LESS THAN, EQUAL, GREATER THAN CONSTRAINTS.

To answer this prompt enter the values of L, E, and G, all separated by commas, and return the carriage.

The program will then respond with a list of original problem variable numbers (YOUR VARIABLES = 1, 2, ..., N), the numbers of all slack or surplus variables added to the inequality constraints, and the numbers of all artificial variables added so that an initial feasible solution can be found. The program then proceeds to solve the problem. If no feasible solution can be found for the original problem, the following message will be printed.

THE PROBLEM HAS NO FEASIBLE SOLUTION;

execution is then terminated. If a feasible solution exists but an optimal solution cannot be found due to the absence of a convex feasible region, the message

THE SOLUTION IS UNBOUNDED

will be printed and execution terminated.

If an optimal solution is located, the optimal values of the primal variables, dual variables, and the objective function are printed. The zero values of all non-basic primal and dual variables are not printed.

<u>Right-Hand Side Ranging</u> Once the optimal solution is printed, the opportunity to do sensitivity analysis on this solution is announced by the message:

NOW YOU CAN DO SENSITIVITY ANALYSIS ON THE RIGHT HAND SIDE.

For any set, I, of right side b, elements, the associated constraints

can be changed to

$$\sum_{j=1}^{N} a_{ij} X_{j} \leq p_{i} + \theta$$

(The  $\leq$  constraint is used for illustration) The program then finds the upper and lower bounds on  $\theta$ . These bounds indicate the amount by which each of the b. (i in the set I) can be increased or decreased so that the current optimal basis remains feasible. This basis is no longer feasible when one of the basic variables becomes negative. The basic variables which goes to zero when  $\theta$  reaches its upper and lower bounds are also identified by the program.

To perform the analysis the program asks

HOW MANY CAPACITIES DO YOU WISH TO CHANGE?

A response of p sends the program to another section where sensitivity analysis of the cost coefficients is performed. Right-hand side ranging can be performed on from one to M constraints. The next query,

#### WHICH CAPACITIES DO YOU WISH TO CHANGE?

requires a specification of the index numbers (i = 1, 2, ..., M) of the b, to be included in a ranging analysis. If the number of a constraint is entered more than once, the  $\theta$  added to b, will be multiplied by the number of times the constraint is entered. For example, if the first constraint is entered twice, the result will be

$$\sum_{j=1}^{N} a_{ij} x_{j} \leq b_{j} + 2\theta$$

Thus, in determining a bound on  $\theta$ ,  $b_1$  will increase twice as fast as the  $b_i$  of a constraint which is entered only once.

The program repeatedly offers the opportunity to perform righthand side analyses until a zero response is given to the original query.

#### Cost Coefficient Ranging

The opportunity to perform a ranging analysis on the c_i coefficients is announced by

YOU MAY NOW DO SENSITIVITY ANALYSIS ON THE COST FACTORS.

For a selected set of variables, J, in the original objective function

is changed to

$$\sum_{j=1}^{N} c_j X_j + \Theta \Sigma X_j.$$

That is, each selected coefficient c, becomes  $c_1 + \theta$ . The program then determines the upper and lower bounds on  $\theta$  such that the original optimal solution remains optimal. This determines the amount by which each c, in the set J can be increased or decreased without changing anything but the objective function^J value of the optimal solution.

GLPSA1, page 4

INSTRUCTIONS: (continued)

<u>INSTRUCTIONS:</u> (continued)

The program queries used to perform this analysis are

HOW MANY COSTS DO YOU WISH TO CHANGE?

and

WHICH COSTS DO YOU WISH TO CHANGE?

Entries are provided in the same manner as for right-side ranging. Entry of a variable index number more than a single time has the same effect on the rate of that variable's increase and decrease as is the case in the right side analysis.

A zero response to the initial cost change query sends program control to sections to perform parametrix analysis of right-hand side and cost coefficients.

Parametric Analysis -- Right-Hand Side

The opportunity to perform a complete parametric analysis of one or more right-hand side elements,  $b_i$ , is announced by

YOU MAY NOW DO PARAMETRIC ANALYSIS ON THE RIGHT HAND SIDE.

Recall that after slack and surplus variables were added, the original problem had constraints of the form

N  

$$\Sigma_{a_{ij}X_{j}} = b_{i}$$
  $i = 1, ..., M.$   
 $j=1$ 

Parametric analysis allows us to select a set, I, of b, elements and change them to  $b_i + \theta$ . Then  $\theta$  is increased, or decreased (an option hot explicitly available or needed in right side ranging), up to the point where a basis change occurs. The new optimal solution is printed at this point, and  $\theta$  is allowed to continue in its change in value over several optimal bases until the solution is no longer bounded or until the problem becomes infeasible.

The program will ask

HOW MANY CAPACITIES DO YOU WISH TO CHANGE?

A zero response stops execution. As with previous queries, if analysis is to be done, enter the number of constraints to be used. The inquiry

WHICH CAPACITIES DO YOU WISH TO CHANGE?

is answered with the numbers of the constraints being analyzed. If the direction of change desired is a decrease in b, i.e.,  $b_i - \theta$ , precede the constraint number with a minus sign. Entering a constraint's number more than once causes the rate of change for  $\theta$  to be increased by a multiple of the times a number is entered.

Once the response to the above question is entered, the analysis will be performed and printed. There are then four possible options open to the program user:

- A parametric analysis can be performed on the same constraints as were considered in the previous analysis but the direction of change in the b, will be reversed. The starting point for this analysis will be the final optimal solution reached in the preceding parametric analysis, <u>not</u> the original optimal basis and original right hand side.
- 2. A parametric analysis may be performed on a new set of capacities using as a starting point the basis and right hand side reached at the conclusion of the previous parametric analysis.
- 3. A parametric analysis can be performed on a new set of capacities using the original right side and optimal basis. (This requires a resolving of the problem.)
- 4. Execution can be terminated.

<u>INSTRUCTIONS:</u> (continued)

To select an option, the following prompt should be answered.

TYPE: A '1' TO REVERSE THE PREVIOUS PARAMETRIC ANALYSIS, A '2' TO START ANOTHER PARAMETRIC ANALYSIS FROM THIS POINT, OR A '3' TO DO ANOTHER PARAMETRIC ANALYSIS ON THE ORIGINAL CAPACITIES. TYPE A '0' TO QUIT.

A response of zero stops execution. A 1 answer performs the reversed analysis and returns with the above prompt; a 2 or a 3 response will produce the prompts

YOU MAY NOW DO PARAMETRIC ANALYSIS ON THE RIGHT HAND SIDE HOW MANY CAPACITIES DO YOU WISH TO CHANGE?

Respond in the same form as the previous such query and the analysis will be performed. Return will be to the four-option point in the program.

**RUN** 

5000 DATA 4,9,7,10 5010 DT+ATA 1,1,3,40 5020 DATA 4000,6000 5030 DATA 12,20,18,40 RUN GLPSA1 TYPE: '1' FOR MAXIMIZATION, OR '-1' FOR MINIMIZATION. ?1 Type: The number of constraints, number of variables. ?2,4 TYPE: NUMBER OF LESS THAN, EQUAL, GREATER THAN CONSTRAINTS. ?2.+,0,0 YOUR VARIABLES 1 THROUGH 4 SLACK VARIABLES 5 THROUGH 6 ANSWERS: PRIMAL VARIABLES: VARIABLE VALUE 1 666.667 Δ 133.333 DUAL VARIABLES: VARIABLE VALUE 2.93333 1 2 .266667 VALUE OF OBJECTIVE FUNCTION 13333.3 YOU CAN NOW DO SENSITIVITY ANALYSIS ON THE RIGHT HAND SIDE. HOW MANY CAPACITIES DO YOU WISH TO CHANGE? 1 WHICH CAPACITIES DO YOU WISH TO CHANGE?1 THE BOUND ON THE DECREASE IS 2500. AT WHICH POINT VARIABLE 1 GOES TO ZERO. THE BOUND ON THE INCREASE IS 20000 AT WHICH POINT VARIABLE 4 GOES TO ZERO. HOW MANY CAPACITIES DO YOU WISH TO CHANGE?Ø YOU MAY NOW DO SENSITIVITY ANALYSIS ON THE COST FACTORS. HOW MANY COSTS DO YOU WISH TO CHANGE?2 WHICH COSTS DO YOU WISH TO CHANGE?2,3 THE BOUND ON THE INCREASE IS 3.33333 AT THIS POINT VARIABLE 3 CAN ENTER THE BASIS.VARIABLE 1 WILL LEAVE THE BASIS. THE DECREASE IS NOT BOUNDED. HOW MANY COSTS DO YOU WISH TO CHANGE?Ø

YOU CAN NOW DO PARAMETRIC ANALYSIS ON THE RIGHT HAND SIDE.

HOW MANY CAPACITIES DO YOU WISH TO CHANGE?! WHICH CAPACITIES DO YOU WISH TO CHANGE?1 THE NEXT BOUND ON THE CHANGE IS 20000 • VARIABLE 4 WILL GO TO ZERO .VARIABLE 2 WILL ENTER THE BASIS. THE NEW OPTIMAL SOLUTION IS: ANSWERS: PRIMAL VARIABLES: VARIABLE VALUE 1 6000 2 ø DUAL VARIABLES: VARIABLE VALUE 1 1.6 2 5.6 VALUE OF OBJECTIVE FUNCTION 72000. THE NEXT BOUND ON THE CHANGE IS 30000. • VARIABLE 1 WILL GO TO ZERO.VARIABLE 5 WILL ENTER THE BASIS. THE NEW OPTIMAL SOLUTION IS: ANSWERS: PRIMAL VARIABLES: VARIABLE VALUE 2 6000. 5 ø DUAL VARIABLES: VALUE VARIABLE 1 ø 20. 2 VALUE OF OBJECTIVE FUNCTION 120000. THERE IS NO FURTHER BOUND ON THE CHANGE. TYPE: A 'I' TO REVERSE THE PREVIOUS PARAMETRIC ANALYSIS, A'2' TO START ANOTHER PARAMETRIC ANALYSIS AT THIS POINT, OR A '3' TO DO ANOTHER PARAMETRIC ANALYSIS ON THE ORIGINAL CAPACITIES. TYPE A '0' TO QUIT. ?Ø DONE

•

	GNETFL NETWORK FLOW DETERMINATION (MAX/MIN) 36529
DESCRIPTION:	This program finds the minimum-cost feasible flow through a network. The network is made up of <u>nodes</u> and <u>arcs</u> . Each arc runs <u>from</u> one node <u>to</u> another, and can handle <u>flows</u> within a specified range. Each unit of flow along a given arc has an associated <u>cost</u> . Finally, the total flow <u>into</u> a node must equal the total flow <u>out of</u> the node. Given the description of such a network, the program will find a set of flows that meets all the re- quirements at either minimum or maximum total cost.
INSTRUCTIONS:	Each node is assigned an arbitrary number between 1 and 99. The network is described by giving the following information for each arc: From node number To node number Cost per unit of flow Upper bound (maximum flow) Lower bound (minimum flow) For example: 1000 DATA 20,30,3,10,40 This describes an arc from node 20 to node 30; each unit of flow along the arc adds 3 units to total cost; and the flow must be between 10 and 40 units inclusive. All numbers must be integers (whole numbers). Data should be entered in data statements, beginning with line 1000. The program has been modified to allow maximization. If this option is specified, all cost figure is multiplied by -1 before processing begins, and the total cost figure is multiplied by -1 prior to output. Node prices (the values of the dual variables) are not altered prior to output.
ACKNOWLEDGEMENTS:	Graduate School of Business Stanford University

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1022 1022 1022 1022	DATA DATA DATA DATA DATA DATA DATA DATA	20,30,0 21,30,0 22,30,0 23,30,0 30,1,0, 1,10,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,12,0, 1,22,2,8 1,22,2,1 1,22,2,1 1,22,2,5 1,22,2,1 1,22,2,5 1,22,2,5 1,22,2,5 1,22,2,5 1,22,2,5 1,22,2,5 1,22,2,5 1,22,2,5 1,22,2,5 1,22,2,5 1,22,2,5 1,22,2,5 1,22,2,5 1,22,2,5 1,22,2,5 1,22,2,5 1,22,2,5 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,2,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,2,2,26 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,22,6 1,3,2,25,2 1,3,2,25,2 1,3,2,25,25 1,3,2,25,25 1,3,2,25,25 1,3	20,20 20,20 25,25 30,30 15,15 100,0 15,0 40,0 100,0 100,0 20,100,0 2,100,0 4,100,0 100,0 100,0 100,0 100,0 4,100,0 100,0 100,0 9,100,0 9,100,0	. Ø Ø
	<b>T</b> 0	COST	UDDED	LOVER
20	30	ø	20	20
21	30	ø	25	25
22	30	ø	3Ø	30
23	30	ø	15	15
30	1	ø	100	Ø
1	10	ø	15	ø
1	11	ø	30	ø
1	12	ø	15	ø
1	13	0	40	ø
10	20	4	100	ø
1Ø	21	5	100	Ø
10	~~	~		-
10	22	8	100	ø
11	22	8 20	100	0
	22 23 20	8 20 22	100 100 100	0 0 0
11	22 23 20 21	8 20 22 20	100 100 100 100	0 0 0
11	22 23 20 21 22	8 20 22 20 14	100 100 100 100 100	0 0 0 0
11 11 11	22 23 20 21 22 23	8 20 22 20 14 4	100 100 100 100 100 100	0 0 0 0 0 0
11 11 11 12 12	22 23 20 21 22 23 20 21	8 20 22 20 14 4 3	100 100 100 100 100 100 100	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 11 11 12 12 12	22 23 20 21 22 23 20 21 22	8 20 22 14 4 3 12 5	100 100 100 100 100 100 100 100	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 11 11 12 12 12 12	22 23 20 21 22 23 20 21 22 21 22	8 20 22 20 14 4 3 12 5 17	100 100 100 100 100 100 100 100 100	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
11 11 11 12 12 12 12 12	22 23 20 21 22 23 20 21 22 20 21 22 23 20	8 20 22 20 14 4 3 12 5 17 8	100 100 100 100 100 100 100 100 100 100	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 11 11 12 12 12 12 12 13 13	22 23 20 21 22 23 20 21 22 20 21 20 21	8 20 22 20 14 4 3 12 5 17 8 14	100 100 100 100 100 100 100 100 100 100	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 11 11 12 12 12 12 13 13 13	22 23 20 21 22 23 20 21 22 23 20 21 22 20 21 22	8 20 22 20 14 4 3 12 5 17 8 14 6	100 100 100 100 100 100 100 100 100 100	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 11 11 12 12 12 13 13 13	22 23 20 21 22 23 20 21 22 23 20 21 22 23 20 21 22 23	8 20 22 20 14 4 3 12 5 17 8 14 6 29	100 100 100 100 100 100 100 100 100 100	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

#### DO YOU WANT TO MAXIMIZE OR MINIMIZE?MINIMIZE

SOLUTION

FROM	TO	FLOW
29	30	20
21	30	25
22	30	3Ø
23	30	15
30	1	90
1	10	15
1	11	20
1	12	15
Ĩ	13	40
10	20	Ø
10	21	15
10	22	ø
10	23	ø
11	20	ø
11	21	5
11	22	ø
11	23	15
12	20	15
12	21	a
12	22	ā
12	23	ã
13	20	ŝ
13	21	5
13	20	20
10	<u> </u>	30 A
13	23	ø

## NON-ZERO NODE PRICES

## MINIMUM TOTAL COST = 570

DONE

.

.

	SMALL SYSTEMS SIMULATOR	GSSS 36552
DESCRIPTION:	GSSS (Small Systems Simulator) allows the user to simulate the be of certain types of systems. Almost anything can move through a system. The term <u>item</u> is used in GSSS to denote such an entity. item is <u>created</u> , moved through the system, then <u>destroyed</u> .	havior simulated Each
INSTRUCTIONS:	See Page 2	
ACKNOWLEDGEMENTS:	Graduate School of Business Stanford University	

#### INSTRUCTIONS:

The system to be simulated is described by a set of <u>blocks</u>. Each must be given a number between 1 and 49. There are six different kinds of blocks.

The CREATE block creates items at various intervals. Associated with a create block is a <u>mean</u> time and a <u>spread</u>. If the spread is positive, the time between creations is drawn randomly from a rectangular distribution of values between (mean - spread) and (mean + spread). If the spread is negative, the time between creations is drawn randomly from a normal distribution with the specified mean and a standard deviation equal to the absolute value of the spread. In either case, values below zero are considered to equal zero when drawn. After creation, an item is moved to the <u>next block</u> associated with the CREATE block.

The BRANCH block routes an item to one of two next-blocks, depending on the value of a random number drawn from a rectangular distribution between zero and one. Associated with the BRANCH is a probability. If the random number is smaller than this value, the item is routed to <u>next-block-A</u>. Otherwise, it is routed to <u>next-block-B</u>.

The ADVANCE block simulates any activity that requires time. The actual time is drawn randomly, based on the <u>mean and spread</u> associated with the block. If the spread is positive, a rectangular distribution is used, otherwise a normal distribution is used. Procedures are the same as those used for a CREATE block.

Most simulations involve <u>facilities</u> of limited capacity. GSSS allows the use of up to 49 facilities, numbered 1 to 49. Each facility has a capacity (if none is given, the capacity is assumed to equal 1).

The number of items <u>in</u> a facility at any time must be less than or equal to its capacity. If a facility is <u>full</u>, no item will be allowed to <u>enter</u> it until another <u>leaves</u>.

The ENTER block represents the act of entering a facility if it is available (not full), waiting up to some maximum time limit if it is not available, and going elsewhere if the maximum waiting time is exceeded. A facility number is associated with the ENTER block. If it is available, the item will enter it and go to <u>next-block-A</u>. If the facility is not available, the item will remain in the ENTER block. When the facility becomes available, the item will then enter it and go on to <u>next-block-A</u>. However, if the delay exceeds the maximum waiting time associated with the ENTER block, the item will not enter the facility, and will instead go on to next-block-B.

Once in a facility, an item remains until it passes through a LEAVE block.

When an item has passed through the simulated system it has served its purpose. Since only 100 items can be in the entire system at any one time, it is essential to route them to a DESTROY block when they are no longer needed.

A diagramatic representation of a simple system is shown on the following page. The number of each block is shown immediately above it.

The description of the system to be simulated should be entered in DATA statements beginning with line 9000. For example:

9000 DATA 1, "CREATE", 5, 2, 2

This describes block number 1 - a CREATE block with a mean time of 5 and a spread of 2. The final "2" indicates the number of the next block.

The formats are:

block number, "CREATE", mean, spread, next block

block number, "DESTROY"

block number, "BRANCH", probability, Next-block-A, Next-block-B

block number, "ENTER", facility, wait time, Next-block-A, Next-block-B

block number, "LEAVE", facility, next block

block number, "ADVANCE", mean, spread, next block

The capacity of a facility is given in one line. For example:

9014 DATA 1, "FACILITY", 2

This indicates that facility 1 has a capacity of 2 items.

#### INSTRUCTIONS: (continued)



Only one more piece of information is required: the number of items to be moved through the system during the simulation. This is also given in one line. For example:

#### 9015 DATA 50, "ITEMS"

This indicates that 50 items are to be moved through the system during the simulation.

RUN					
9000	DATA	1 . "CI	REATE"	,5,2,2	2
9001	DATA	2,"BI	RANCH"		,4
9002	DATA	3. "Al	DVANCE	",6,3.	,5
9003	DATA	4,"A)	DVANCE	"15,	5,6
9004	DATA	5,"El	NTER",	1,10,	7,13
9005	DATA	6,"EI	NTER",	1,15;8	3,14
9006	DATA	7,"Al	DVANCE	"33,1	,9
9007	DATA	8,"AI	DVANCE	",7,2	10
9008	DATA	9,"L	EAVE",	1,11	
9009	DATA	10,"1	LEAVE"	,1,12	
9010	DATA	11,*1	DESTRO	Y۳	
9011	DATA	12,"1	DESTRO	Y <b>n</b>	
9012	DATA	13,"1	DESTRO	Y۳	
9013	DATA	145"	DESTRO	Y"	
9014	DATA	1,"F/	ACILIT	Y",2	
9015	DATA	50,"	ITEMS"		
RUN					
GSSS					
SYSTI	EM DES	SCRIP	TION		
1	CRE	TE	5	2	2
2	BRAI	NCH	•3		3
3	ADV	ANCE	6	3	5
4	ADV	ANCE	15	5	6

3	ADVANCE	0	3	2	
4	ADVANCE	15	5	6	
5	ENTER	1	10	7	13
6	ENTER	1	15	8	14
7	ADVANCE	3	1	9	
8	ADVANCE	7	2	10	
9	LEAVE	1	11		
10	LEAVE	1	12		
11	DESTROY				
12	DESTROY				
13	DESTROY				
14	DESTROY				
1	FACILITY	2			
50	ITEMS				

### -----

#### SIMULATION RESULTS

-----

BLOCK #	# ENTERED	# LEFT	# REMAINING
1		54	
2	54	54	ø
3	14	14	Ø
4	40	36	4
5	14	14	ø
6	36	36	ø
7	14	14	ø
8	36	36	Ø
9	14	14	Ø
10	36	36	ø
11	14		
12	36		
13	ø		
14	Ø		
		CURRENT # OF	AVERAGE # OF
FACILITY #	CAPACITY	OCCUPANTS	OCCUPANTS
1	2	Ø	1.12186

4

SIMULATED TIME = 271.843

CONTRIBUTED PROGRAM BASIC

#### TITLE:

#### COMMITTEE CHOICE ANALYSIS

GVOTE 36550

DESCRIPTION: This program uses simulation to estimate the probability that a committee of M members will have transitive preferences among N mutually exclusive alternatives when using majority votes in pairwise comparisons. Each member is assumed to have transitive preferences. This is accomplished by drawing random numbers to represent the "score" assigned to each alternative, then assuming that each member always votes for the member of a pair with the largest "score." Each pair is subjected to vote using the set of scores drawn for the trial, then the votes are analyzed to determine whether or not they are transitive.

**INSTRUCTIONS:** The procedure used to check transitivity of committee choices is as follows. First, matrix V is filled in with the results of the vote. V (row, column) = the excess of the votes in favor of the row over the column. Values along the diagonal are set to zero; those below the diagonal simply equal -1 times the corresponding element above (i.e.,  $V_{ji} = -V_{ij}$ ). Next, the numbers are changed to: (-1) if negative, (+1) if positive and the row sums calculated. The sum for a row is the value of (number of inferior alternatives - number of superior alternatives). Let C_i represent the sum for row (alternative) i. Then the alternatives rank (R_i) is simply:

$$R_{i} = \frac{N+1}{2} - \frac{C}{2}$$

Since the committee is assumed to have an odd number of members, no one of whom is indifferent between any two alternatives, if the committee's preferences are transitive, no two alternatives will have the same rank. Thus no two will have the same value of  $C_i$ . To check for transitivity then, one merely checks to see if any two values of  $C_i$  are the same.

The program allows the user to specify the committee size, the number of alternatives to be considered, and the number of trials to be run.

ACKNOWLEDGEMENTS:

Graduate School of Business Stanford University

RUN GVOTE

DO YOU WANT INSTRUCTIONS?YES THIS PROGRAM SIMULATES THE VOTING OF A COMMITTEE EACH MEMBER IS ASSUMED TO HAVE TRANSITIVE PREFERENCES AMONG A NUMBER OF ALTERNATIVES, ONE OF WHICH IS TO BE CHOSEN BY MAJORITY VOTE THE NUMBER OF COMMITTEE MEMBERS SHOULD BE ODD, SO THERE ARE NO TIES. THUS, GIVEN TWO ALTERNATIVES, The committee will always "Prefer" one over the other YOU MAY CHOOSE THE NUMBER OF ALTERNATIVES AND THE NUMBER OF MEMBERS YOU MAY ALSO CHOOSE THE NUMBER OF 'TRIALS' You may think of each trial as a different committee VOTING ON THE SAME SET OF ALTERNATIVES. ALTERNATIVELY, YOU MAY THINK OF EACH TRIAL AS THE SAME COMMITTEE VOTING ON A DIFFERENT SET OF ALTERNATIVES. FOR EACH TRIAL, THE PROGRAM WILL DETERMINE IF THE COMMITTEE'S 'PREFERENCES' ARE TRANSITIVE. IF SO -- A 'T' WILL BE PRINTED IF NOT -- A '*' WILL BE PRINTED AT THE END, THE PERCENT OF THE TRIALS IN WHICH THE COMMITTEE'S PREFERENCES WERE TRANSITIVE WILL BE PRINTED HOW MANY ALTERNATIVES (<=20)?5 HOW MANY MEMBERS (<=100)?3 HOW MANY TRIALS?100 TTT****TT*T*T*TTTTTTT***TT*****TTTT* PERCENT TRANSITIVE = 70

.

CONTRIBUTED PROGRAM **BASIC** 

TITLE:	LINEAR PROGRAMMING MODEL	LINPRO 36068
DESCRIPTION:	Given A=(A(I,J)), B=(B(1),,B(M)), and C=(N)), the standard li gramming problem is to find any or all non-negative X=(X(1),, maximize, (or minimize), the matrix product C*X, subject to the A*X <=B. C*X+C(N+1) is called the objective function, and the i contained in A*X <=B, (or A*X>=B), are called the linear constr	near pro- X(N)) which condition nequalities aints.
	LINPRO will generate its own slack and artificial variables, pri tableau of the initial problem, the basis after each iteration, for the variables and dual variables, the value of the objective and the final tableau.	nt a matrix the answers function
	First, arrange your constraints so that the 'less than' inequali the strict equalities which, in turn, precede the 'greater than'	ties precede inequalities.
	Do not include coefficients for slack, surplus, or artificial va	riables.
	The program will ask you to:	
	Input whether you wish to see the pivot steps and simplex tablea whether you are maximizing the objective function (as you put it or minimizing it. Input the number of constraints and variables program. Input the number of 'less than inequalities, strict eq and 'greater than' inequalities. Input the constraints and obje function. Remember to always type zeros when applicable.	ux. Input in data), in your ualities ctive
SPECIAL CONSIDERATIONS:	The A = (Aij) matrix is restricted to 30 X 50 (line 60). This p uses the extended tableau method. For a large program the user use a program which uses the condensed tableau method.	rogram should
ACKNOWLEDGEMENTS:	Donald E. Ramirez University of Virginia	

.

RUN LINPRO

A PROGRAM TO SOLVE LINEAR PROGRAMS WITH CONSTRAINTS OF THE FORM A*X<=B, A*X=B, AND A*X>=B WHERE B IS A NONNEGATIVE VECTOR. DO YOU WISH TO SEE THE PIVOT STEPS (Y OR N)?Y Do you wish to see the simplex tableaux (y or n)?N IF MAX, TYPE '1'; IF MIN, TYPE '-1'?1 TYPE: NUMBER OF CONSTRAINTS, NUMBER OF VARIABLES?2,2 TYPE: NO. OF LESS THANS, NO. OF EQUALITIES, NO. OF GREATER THANS?1,0,1 ENTER THE SIMPLEX TABLEAU IN THE ORDER: <= INEQUALITIES, EQUALITIES, >= INEQUALITIES, OBJECTIVE FUNCTION. ?1,2,3 ??2,3,4 ??3,4,5 YOUR VARIABLES 1 THROUGH 2 SURPLUS VARIABLES 3 THROUGH 3 SLACK VARIABLES 4 THROUGH 4 ARTIFICIAL VARIABLES 5 THROUGH 5 BASIS BEFORE ITERATION 1 VARIABLE VALUE 3 ۸ 5 4 PIVOT COORDINATE IS ( 2 , 2 ) BASIS BEFORE ITERATION 2 VARIABLE VALUE .333333 4 2 1.33333 PIVOT COORDINATE IS ( 1 , 3 ) BASIS BEFORE ITERATION 3 VARIABLE VALUE 3 • 5 2 1.5 PIVOT COORDINATE IS ( 2 , 1 ) ANSWERS: VARIABLE VALUE. 3 2 3 1 DUAL VARIABLES: COLUMN VALUE Ø 3 ۸ 3 **OBJECTIVE FUNCTION VALUE = 14.** ITERATIONS IN 3 DONE RIIN LINPRO A PROGRAM TO SOLVE LINEAR PROGRAMS WITH CONSTRAINTS OF THE FORM A*X<=B, A*X=B, AND A*X>=B WHERE B IS A NONNEGATIVE VECTOR. DO YOU WISH TO SEE THE PIVOT STEPS (Y OR N)?N DO YOU WISH TO SEE THE SIMPLEX TABLEAUX (Y OR N)?N IF MAX, TYPE '1'; IF MIN, TYPE '-1'?1 TYPE: NUMBER OF CONSTRAINTS, NUMBER OF VARIABLES?4,4 TYPE: NO. OF LESS THANS, NO. OF EQUALITIES, NO. OF GREATER THANS?1,1,2 ENTER THE SIMPLEX TABLEAU IN THE ORDER: <= INEQUALITIES, EQUALITIES, >= INEQUALITIES, OBJECTIVE FUNCTION. ?1,2,3,4,5 ??2,3,4,5,6 ??3,4,5,6,7 ??4,5,6,7,8 ??1+1+1+1+0

```
YOUR VARIABLES 1
                         THROUGH 4
     SURPLUS VARIABLES 5 THROUGH 6
                          THROUGH 7
     SLACK VARIABLES 7
     ARTIFICIAL VARIABLES 8
                                THROUGH 10
ANSWERS:
               VALUE
VARIABLE
 7
                2.
5
                2.
6
                4.
                з.
 1
DUAL VARIABLES:
COLUMN
               VALUE
                Ø
 5
                ø
 6
 7
                0
                • 5
8
OBJECTIVE FUNCTION VALUE = 3.
       ITERATIONS
IN 4
DONE
RUN
LINPRO
A PROGRAM TO SOLVE LINEAR PROGRAMS WITH CONSTRAINTS OF THE FORM
A*X<=B, A*X=B, AND A*X>=B WHERE B IS A NONNEGATIVE VECTOR.
DO YOU WISH TO SEE THE PIVOT STEPS (Y OR N)?N
DO YOU WISH TO SEE THE SIMPLEX TABLEAUX (Y OR N)?Y
IF MAX, TYPE '1'; IF MIN, TYPE '-1'?1
TYPE: NUMBER OF CONSTRAINTS, NUMBER OF VARIABLES?4,4
TYPE: NO. OF LESS THANS, NO. OF EQUALITIES, NO. OF GREATER THANS?1,1,2
ENTER THE SIMPLEX TABLEAU IN THE ORDER: <= INEQUALITIES,
EQUALITIES, >= INEQUALITIES, OBJECTIVE FUNCTION.
?1,2,3,4,5
??2,3,4,5,6
??3,4,5,6,7
??4,5,6,7,8
??1,1,1,1,0
     YOUR VARIABLES 1 THROUGH 4
     SURPLUS VARIABLES 5
                           THROUGH 6
     SLACK VARIABLES 7 THROUGH 7
     ARTIFICIAL VARIABLES 8
                                THROUGH 10
TABLEAU AFTER Ø
                      ITERATIONS
                                                   ø
                                                          0
                                                                5
                                Ø
                                             ø
 1
       2
             3
                    4
                          ø
                                       1
                                       Ø
                                                   Ø
                                                          Ø
                                                                6
2
       3
                    5
                          Ø
                                Ø
                                             1
             4
                                             0 *
                                                          Ø
                                                                7
 3
       4
             5
                    6
                         - 1
                                0
                                       Ø
                                                   1
                    7
                                       ø
                                             ø
                                                   Ø
                                                                8
 4
       5
             6
                          Ø
                               - 1
                                                          1
                   - 1
                                                          Ø
                                                                Ø
- 1
      - 1
            - 1
                          Ø
                                Ø
                                       Ø
                                             0
                                                   Ø
                                       Ø
                                             ø
                                                          Ø
-9
      -12
            -15
                   -18
                          1
                                1
                                                   Ø
                                                               -21
```

```
TABLEAU AFTER 4
                       ITERATIONS
 Ø
        • 5
                      1.
                                   1.5
                                                 ø
                                                       ø
                                                              1
                                                                    -.5
 Ø
        Ø
               2.
 Ø
        ۰5
                                   1.5
                      1 .
                                                 1
                                                       Ø
                                                              Ø
                                                                     1.5
- 1
        Ø
               2.
 Ø
        1.
                     2.
                                   3.
                                                 Ø
                                                       t
                                                              Ø
                                                                     2.
       - 1
 Ø
               Δ.
 1
        1.5
                     2
                            2.5
                                          ø
                                                 ø
                                                       Ø
                                                              • 5
                                                                            0
 0
        3.
 Ø
        • 5
                     1
                            1.5
                                          ø
                                                 ø
                                                       0
                                                              • 5
                                                                            Ø
 Ø
        3.
 Ø
        Ø
               ø
                     Ø
                            Ø
                                   Ø
                                          ø
                                                 T
                                                       1
                                                              1
                                                                     Ø
ANSWERS:
 VARIABLE
                 VALUE
 7
                  2.
 5
                  2.
 6
                  4.
                  з.
 1
DUAL VARIABLES:
 COLUMN
                 VALUE
 5
                  Ø
 6
                  Ø
 7
                  0
 8
                  • 5
OBJECTIVE FUNCTION VALUE = 3.
       ITERATIONS
IN 4
DONE
RUN
LINPRO
A PROGRAM TO SOLVE LINEAR PROGRAMS WITH CONSTRAINTS OF THE FORM
A*X<=B, A*X=B, AND A*X>=B WHERE B IS A NONNEGATIVE VECTOR.
DO YOU WISH TO SEE THE PIVOT STEPS (Y OR N)?Y
DO YOU WISH TO SEE THE SIMPLEX TABLEAUX (Y OR N)?
??Y
IF MAX, TYPE '1'; IF MIN, TYPE '-1'?1
TYPE: NUMBER OF CONSTRAINTS, NUMBER OF VARIABLES?2,2
TYPE: NO. OF LESS THANS, NO. OF EQUALITIES, NO. OF GREATER THANS?1,0,1
ENTER THE SIMPLEX TABLEAU IN THE ORDER: <= INEQUALITIES,
EQUALITIES, >= INEQUALITIES, OBJECTIVE FUNCTION.
?1,2,3
??2,3,4
??3,4,5
                          THROUGH 2
     YOUR VARIABLES 1
     SURPLUS VARIABLES 3
                               THROUGH 3
     SLACK VARIABLES 4
                            THROUGH 4
     ARTIFICIAL VARIABLES 5
                                   THROUGH 5
TABLEAU AFTER Ø
                       ITERATIONS
 1
       2
              Ø
                     1
                            Ø
                                   3
 З
        3
             - 1
                     Ø
                            1
                                   4
-3
      - 4
              Ø
                     Ø
                            ø
                                   5
-2
      - 3
              1
                     Ø
                            Ø
                                  - 4
```

```
BASIS BEFORE ITERATION 1
VARIABLE VALUE
 4
               3
5
               4
PIVOT COORDINATE IS ( 2 , 2 )
TABLEAU AFTER 1 ITERATIONS
-.3333333
            Ø
                  •666667
                             1
                                   -•666667
                                                •333333
•666667
                 -.3333333
                                    •333333
            1
                              Ø
                                                1.33333
-.3333333
            0
                 -1.33333
                              Ø
                                    1.33333
                                                10.3333
Ø
      Ø
            Ø
                  0
                        1
                              Ø
BASIS BEFORE ITERATION 2
VARIABLE VALUE
               •333333
4
2
               1.33333
PIVOT COORDINATE IS ( 1
                          , 3
                                 )
TABLEAU AFTER 2
                  ITERATIONS
                                   - 1
                                          • 5
- • 5
            Ø
                  1
                        1.5
                                    0
                                          1.5
                  Ø
• 5
            1
                        • 5
            0
                  2
                        Ø
                              11.
-1
      ø
Ø
      Ø
            Ø
                  0
                        1
                              0
BASIS BEFORE ITERATION 3
VAR I ABLE
              VALUE
3
               • 5
2
               1.5
PIVOT COORDINATE IS ( 2
                          , 1
                                )
                  ITERATIONS
TABLEAU AFTER 3
Ø
     1.
                  1
                        2
                             - 1
                                    2
 1
      2
            Ø
                  1
                        0
                              3
Ø
      2
            Ø
                  3
                        Ø
                              14.
Ø
      ø
                  Ø
                        1
                              Ø
            Ø
ANSWERS:
VARIABLE
              VALUE
3
               2
1
               3
DUAL VARIABLES:
COLUMN
              VALUE
3
               0
               3
 4
OBJECTIVE FUNCTION VALUE = 14.
IN 3 ITERATIONS
```

	SOLVES EITHER A LINEAR OR QUADRATIC PROGRAMMING PROBLEM	LINQUP 36710
DESCRIPTION:	This program solves either a linear or quadratic programming proble	m.
INSTRUCTIONS:	Enter the following data beginning in line number 9900. 1. Problem type: "MAX" or "MIN". 2. Number of terms in the objective function (i.e., the expression $x_1x_2-x_1-3x_2$ consists of three terms). 3. Number of allocation variables (i.e., the expression $x_1x_2-x_1-3x_1$ has two allocation variables: $x_1$ and $x_2$ ). 4. Number of constraint equations in the problem. 5. The terms of the objective function expressed in the following "entry 1", "entry 2", "coefficient" where "entry 1" is the number of an allocation variable and 2" is the number of an allocation variable; (i.e., the term would be expressed as 1,2,1 and the term -2X ₁ would be expressed as 1,2,1 and the term is 1 6. The coefficients of the constraint equations written in the follmanner for both maximization and minimization: $H(x_1, x_2, \dots, x_n) \ge 0$ (for example, $-4x_1-2x_2+7\ge 0$ would be entered as $-4,-2,7$ ). The input given in the sample RUN is for the quadratic programming Max $6x_1 + 3x_2 - x_1^2 + 4x_1x_2 - 4x_2^2$ subject to: $x_1 + x_2 \le 3$ $4x_1 + x_2 \le 9$	format: I "entry 1 X1X2 ressed inear). lowing problem:
SPECIAL CONSIDERATIONS:	The program begins at line number 9000. The following variables are used in the program: A, F, I, I8, I9, J, K, L, P, Q, R, S, U, W, X, Z5, Z6, Z7, Z8, A, B, M, R\$, S\$, T\$, V\$, Y are array names	Z9
ACKNOWLEDGEMENTS:	Babson College Babson Park, Massachusetts	

 9900
 DATA
 "MAX"

 9901
 DATA
 5,2,2

 9902
 DATA
 1,1,-1

 9903
 DATA
 2,2,-4

 9904
 DATA
 1,2,4

 9905
 DATA
 1,0,6

 9906
 DATA
 2,0,3

 9907
 DATA
 -1,-1,3

 9908
 DATA
 -4,-1,9

#### RUN LINQUP

OBJECTIVE IS TO MAXIMIZE THE SUM OF THE FOLLOWING TERMS:

* XC 1 ) * X( 1 - 1 ) * X(2 -4 ) * X( 2 ) 4 * XC 1 ) * X( 2 ) XCI ) 6 * 3 * X( 2 )

THE CONSTRAINTS ARE:

Н 1 =: - 1 * XC 1 ) - 1 * X(2 ) 3 >= Ø н 2 =: * XC 1 - 4 ) - 1 * X(2 ) 9 >= Ø

DO YOU WISH TO SELECT THE PIVOT ELEMENTS MANUALLY, YES OR NO ?N0 DO YOU WISH PRINTOUT OF INTERMEDIATE TABLEAUS, YES OR NO ?N0 ALLOCATION VARIABLES AND ASSOCIATED LAGRANGE MULTIPLIERS X 1 = 2. MU 1 = Ø = 1 MU 2 = Ø X 2 CONSTRAINT RELATIONS AND ASSOCIATED LAGRANGE MULTIPLIERS = 0 MU 3 = 2

H 1 = 0 MU 3 = 2 H 2 = 0 MU 4 = 1 OBJECTIVE FUNCTION = 15

	LINEAR TREND FORECASTING LINTRND 36069
DESCRIPTION:	LNTRND computes a simple linear trend forecast with seasonal adjustments for monthly data. (A good fit will result only if the trend is linear.)
INSTRUCTIONS:	Data should be entered in the following order, beginning in line 9900: 1. N = no. of years for which data will be entered. 2. $A_{1_1} \dots A_{1_{12}}$ values for year #1 $A_{2_1} \dots A_{2_{12}}$ values for year #2 $\vdots$ $A_{N_1} \dots A_{N_{12}}$ values for year #N Output will be of the following form: first the A&B values of the linear forecasting equation: Y = A + B * X, and then the forecasts and seasonal values for the next 12 month period.
SPECIAL CONSIDERATIONS:	N must be <9, otherwise alter dim-statements in line 9230 to A[N,12], B[N,12], D[N,12], E[12], F[12].
ACKNOWLEDGEMENTS: I	

GET-SLNTRND LIST-9900 LNTRND

 9900
 DATA
 4,2,2,2,2,2,4,2,6,2,8,3,3,2,3,4,4,4,4,5,4,8,5

 9901
 DATA
 5,5,2,5,4,5,6,5,3,5,4,5,6,5,7,5,8,6,6,6,6,1

 9902
 DATA
 6,6,1,6,3,6,5,6,7,6,8,6,9,6,7,6,7,6,9,7,7

 9903
 DATA
 7,7,7,1,7,7,2,7,3,6,9,7,7,7,4,7,5,7,5

 9999
 END

RUN LNTRND

* LINEAR TREND FORECASTING *

************

LINEAR FORECASTING EQUATION IS: Y = 3.08732 + .105705 * X .

DATA FOR PERIODS 1 THRU 48 WERE SUPPLIED AS INPUT. THE NEXT 12 MONTHS ARE FORECAST HERE:

PERIOD	FORECAST	SEASONAL	FACTOR
49	7•97485	•964679	
50	8 • 1 1 9 4 3	•969768	
51	8•40676	•991567	
52	8.5377	•994611	
53	8 • 6 1 5 0 3	•991411	
54	8 • 7 86 5 9	•999002	
55	8•6036	•96658	
56	8.57601	•952173	
57	8•939	•980962	
58	9.76507	1.05933	
59	9.97208	1.06952	
60	9•99914	1.0604	
*****	******	*****	*****

TITLE:	QUEUEING SYSTEM	M7 M7 1 36655
DESCRIPTION:	This program calculates all the necessary information for a Queueing with single server, Poisson input and Exponential service times.	∣system
INSTRUCTIONS:	The program asks for $\lambda$ (the input rate) and $\mu$ (the service rate). In Queueing Theory, $\int = \lambda \\ \mu$ is defined as the traffic intensity. For the existence of the steady state probability distribution, $f$ must be let than one.	the ?ss
SPECIAL CONSIDERATIONS:	FOR INSTRUCTIONAL PURPOSES Suitable Courses: Introduction to Operations Research Introduction to Queueing Theory	
ACKNOWLEDGEMENTS:	David Y. W. Cheng Fu Shing Mfg. & Lumber Co., Ltd.	

RUN MXMZ1

WHAT ARE THE VALUES OF ARRIVAL RATE, AND SERVICE RATE ?.3,.56

THE TRAFFIC INTENSITY = .535714

THE STEADY STATE QUEUE LENGTH DISTRIBUTION AS FOLLOWS:

.

UC	ø	)	=	• 46 42 8 6
UC	1	)	=	.248724
UC	2	)	Ξ	.133245
UC	3	)	=	7.13814E-02
UC	4	)	Ξ	3.82401E-02
UC	5	)	=	2.04857E-02
UC	6	)	Ξ	1.09745E-02
UC	7	)	=	5.87920E-03
UC	8	)	=	3.14957E-03
UC	9	)	=	1.68727E-03
UC	10	)	=	9.03896E-04
UC	11	)	=	4.84230E-04
UC	12	)	=	2.59409E-04
UC	13	)	Ξ	1.38969E-04
UC	14	)	=	7.44478E-05
UC	15	)	Ξ	3.98827E-05
UC	16	)	=	2.13658E-05
UC	17	)	=	1.14459E-05
UC	18	)	Ŧ	6.13176E-06
UC	19	)	=	3.28487E-06
UC	20	)	=	1.75975E-06
υc	21	)	=	0.

THE PROBABILITY OF FINDING MORE THAN N IN THE QUEUE IS P(N):

PCØ ) = .535714 P(1 ) = .28699 ) = .153745 P( 2 P(3 ) = 8.23632E-02P( 4 ) = 4.41232E-02 P(5 ) = 2.36374E-02P( 6 ) = 1.26629E-02P( 7 ) = 6.78370E-03 P( 8 ) = 3.63413E-03P( 9 ) = 1.94685E-03P( 10 ) = 1.04296E - 03PC 11 ) = 5.58727E-04 ) = 2.99318E-04 P( 12 P( 13 ) = 1.60349E-04PC 14 ) = 8.59013E-05 ) = 4.60186E-05 P( 15 PC 16 ) = 2.46528E-Ø5 ) = 1.32069E-05 P( 17 P( 18 = 7.07511E-06P( 19 ) = 3.79024E-06P( 20 ) = 2.03049E-06 P( 21 ) = 1.08776E-06P( 22 ) = 0. THE EXPECTED QUEUE LENGTH = 1.15385 THE VARIANCE OF QUEUE LENGTH = 2.48521 THE EXPECTED WAITING TIME = 2.06044 THE VARIANCE OF WAITING TIME = 11.6041 THE EXPECTED LENGTH OF BUSY PERIOD = 3.84615 NOTE ---THIS PROGRAM FORCES ALL PROBABILITIES LESS THAN

0.000001 TO ZERO.
IF HIGHER ACCURACY IS DESIRED, LINE #250, AND #330 MUST BE PEARRANGED.

DONE

RUN MZMZ1

WHAT ARE THE VALUES OF ARRIVAL RATE, AND SERVICE RATE  $? \cdot 5, \cdot 3$ 

.

THE TRAFFIC INTENSITY = 1.66667

THE STEADY STATE DISTRIBUTION DOES NOT EXIST

### MANAGEMENT SCIENCES AND OPERATIONS RESEARCH (600)

TITLE:	M/M/S QUEUEING SYSTEM	MZMZS 36656
DESCRIPTION:	This program calculates all the necessary information for a Queuein with S servers, Poisson input and Exponential service times. The s rate between different servers is assumed homogeneous.	ig systen ;ervice
INSTRUCTIONS:	The program will ask for $\lambda$ (the input rate), $\mu$ (the service rate) and (the number of server). In the Queueing Theory, $\int = \lambda$ is defined as traffic intensity. For the existence of the steady state probabili distribution, $\int$ must be less than one.	IS the ty
SPECIAL CONSIDERATIONS:	FOR INSTRUCTIONAL PURPOSES Suitable Courses: Introduction to Operations Research Introduction to Queueing Theory	
ACKNOWLEDGEMENTS:	David Y. W. Cheng Fu Shing Mfg. & Lumber Co., Ltd.	

RUN MZMZS

WHAT ARE THE VALUES OF ARRIVAL RATE, AND SERVICE RATE ?4,2.5 WHAT IS THE NUMBER OF SERVERS ?2

THE TRAFFIC INTENSITY = .8

THE STEADY STATE QUEUE LENGTH DISTRIBUTION FOR N CUSTOMER IN THE SYSTEM IS U(N), AND THE PROBABILITY OF FINDING MORE THAN N IN THE QUEUE IS P(N):

υc	ø )	) = .111111	
	0,	- ••••••	P(Ø) = •888889
UC	1	) = .177778	P(1) = .711111
UC	2	) = .142222	
ΰ¢	3	) = .113778	F(2) = • 566869
UC	4	) = 9.10222E-02	P(3) = •455111
	5	1 - 7.981785-09	P(4) = .364089
		/ - / • 201/02-02	P(5) = .291271
UC	6	) = 5.82542E-02	P(6) = .233017
UC	7	) = 4.66034E-02	P(7) = .186413
U¢	8	) = 3.72827E-02	
UC	9	) = 2.98262E-02	P(8) = •149131
UC	10	) = 2.38609E-02	P(9) = .119304
		) = 1.90887F = 02	P(10) = 9.54435E-02
	••	) = (1507)	P(11) = 7.63547E-02
00	12	) = .015271	P( 12 ) = 6.10838E-02
UC	13	) = 1.22168E-02	P(13) = •048867
UC	14	) = 9.77343E-03	P(14) = 3.90936F-02
UC	15	) = 7.81874E-03	D( 15 ) = 2 107405-00
UC	16	) = 6.25499E-03	P(15) = 3.12149E-02
UC	17	) = 5.00399E-03	P(16) = 2.50199E-02
uc	18	) = 4.00319F-03	P(17) = 2.00158E-02
			P(18) = 1.60127E-02
	17	) - 3.20233E-03	P(19) = 1.28101E-02
UC	20	) = 2.56204E-03	P(20) = 1.02481E-02
UC	21	) = 2.04964E-03	P(21) = 8.19838E-03
UC	22	) = 1.63971E-03	P( 22 ) = 6.55866F-03
U¢	23	) = 1.31177E-03	
UC	24	) = 1.04941E-03	P(23) = 5.24688E-03
UC	25	) = 8.39530E-04	P(24) = 4.19748E-03
110	26	= 6.71624 = 04	P( 25 ) = 3.35801E-03
	~~		P(26) = 2.68638E-03
UC	27	) = 5.37299E-04	P( 27 ) = 2.14911E-03
UC	28	) = 4.29839E-04	P(28) = 1.71924E-03
U¢	29	) = 3.43871E-04	P( 29 ) = 1.37530F-03

	UC	30	)	=	2.75097	E-04	<b>D</b> /	24	、	_	1 10010	- 40
	UC	31	>	=	2.20078	E-04		30	,	•	1.100101	-03
	UC	32	)	=	1.76062	E-04	P (	31	)	=	8.801221	-04
	UC	33	)	=	1 • 408501	E-04	Р(	32	)	=	7.040501	-04
	UC	34	)	=	1.12680	E-04	Р(	33	)	=	5-631451	-04
	UC	35	)	=	9 • Ø1 4381	E-05	Ρ(	34	)	=	4.504921	-04
	UC	36	>	=	7.21150	E-05	Ρ(	35	)	=	3.603701	-04
	UC	37	,	=	5.769201	E-05	Р(	36	)	=	2.882481	-04
	UC	38	)	=	4.61536	E-05	Ρ(	37	)	=	2.305511	-04
	UC	39	>	=	3.692291	E-05	P(	38	)	Ξ	1.84417	-04
	UC	40	)	=	2.95383	E-05	Ρ(	39	)	=	1.474628	-04
	υc	41	)	=	2.363061	E-05	Ρ(	40	)	=	1.17898	-04
	υc	42	)	=	1.890451	E-05	P(	41	)	Ξ	9 • 429 45	-05
	UC	43	,	=	1.51236	E-05	P(	42	)	=	7.534031	-05
	UC	44	,	=	1.209898	E-05	P(	43	)	=	6.020071	-05
	UC	45	)	z	9.679101	E-06	P(	44	)	=	4.81606	-05
	UC	46	,	=	7.743281	E-06	Ρ(	45	)	=	3.850468	2-05
	υc	47	,	=	6.19463	E-06	P(	46	)	=	3.075608	:-05
	uc	48	)	=	4.955708	<b>E-06</b>	P(	47	)	=	2.455718	:-05
	UC	49	, ,	=	3.96456	5-06	P(	48	)	=	1.955038	-05
		50	, ,	=	3,17165	- 06	P(	49	)	=	1.561648	:-05
		51	Ś	-	2.53732	- 96	P(	50	)	=	1.23978	:-05
		50	Ś	-	2.029851	5-06	P(	51	)	=	9.894378	-06
		52	Ś	-	1 403000		P(	52	)	=	7.867818	-06
		55	Ś	-	1.00011		P (	53	)	=	6.198888	-06
		54	Ś	-	1.279111	- 04	P (	54	)	=	4.887588	-06
		55	,	Ξ	1.039291	2-06	P(	55	>	=	3.814708	-06
	00	26	,	=	0.		P(	56	)	=	0.	
THE	PROE	BABILI	T	<b>Y</b> 1	THAT ALL	SERVERS	WILL	. BE E	<b>U</b> S	SΥ	= .71111	1
THE	PROE = o	BABILI 56888	(T) 39	<b>Y</b> 1	ГНАТ АТ І	LEAST ONE	CUS	TOMER	ېږ ۱	/11	L BE WAI	TING
THE	EXPE	ECTED	QL	JEL	JE LENGTH	4 = 4.444	44					
THE EXPECTED NUMBER OF CUSTOMERS ACTUALLY WAITING = 2.84444												
THE	EXPE	ECTED	W/	411	FING TIME	E = .7111	11					
THE	THE EXPECTED NUMBER OF BUSY SERVERS = 1.6											
NOTE THIS PROGRAM FORCES ALL PROBABILITIES LESS THAN 0.000001 TO ZERO. IF HIGHER ACCURACY IS DESIRED, LINE #460, #530, AND #580 MUST BE REARRANGED.												

```
M/M/S, Page 4
```

RUN M/M/S WHAT ARE THE VALUES OF ARRIVAL RATE, AND SERVICE RATE ?3.5,1 WHAT IS THE NUMBER OF SERVERS ?3 THE TRAFFIC INTENSITY = 1.16667 THE STEADY STATE DISTRIBUTION DOES NOT EXIST DONE

### MANAGEMENT SCIENCES AND OPERATIONS RESEARCH (600)

TITLE:	MAXFLO MAXIMUM FLOW IN A CAPACITATED NETWORK USING THE 36609 LABELING TECHNIQUE OF FORD & FULKERSON
DESCRIPTION:	Consider a connected network consisting of a single source, a single sink, and some intermediate nodes. We assume that there is a capacity restriction $c_{jj} > 0$ (usually $c_{jj} \neq c_{jj}$ ) on each arc connecting node i and node j. The problem is to assign flow for the various arcs in such a way that the sum of flow from source to sink is maximized, yet none of the capacity constraint has been violated.
	Label the nodes in such a way that node l is the source and node N is the sink in a N-node network.
	Input data starting on line 2000 as follows:
	2000 DATA N The number of nodes 2001 DATA I,J,C(I,J) The capacity from i to j ,., .
	,,, . DATA N,N,O Last line must be N,N,O
	continued on following page
SPECIAL CONSIDERATIONS:	FOR INSTRUCTIONAL PURPOSES Suitable Courses: Introduction to Operations Research Introduction to Graph Theory
ACKNOWLEDGEMENTS:	David Y. W. Cheng Fu Shing Mfg. & Lumber Co., Ltd.

INSTRUCTIONS - continued

"MAXFLO SAMPLE PROBLEM"



RUN

2000	DATA	15
2001	DATA	1,2,20
2002	DATA	1,3,18
2003	DATA	1,4,12
2004	DATA	1,5,16
2005	DATA	2,1,4
2006	DATA	2,3,6
2007	DATA	2,6,18
2008	DATA	3,1,5
2009	DATA	3,2,6
2010	DATA	3,4,8
2011	DATA	3,7,30
2012	DATA	3,8,25
2013	DATA	4, 1, 7
2014	DATA	4,3,2
2015	DATA	4,9,16
2016	DATA	5,1,8
2017	DATA	5,7,22
2018	DATA	5,9,14
2019	DATA	6,2,8
2020	DATA	6,3,3
2021	DATA	6,7,3
2022	DATA	6,10,4
2023	DATA	7,3=0
2024	DATA	7,6,5
2025	DATA	7,10,8
2026	DATA	7,11,5
2027	DATA	8,3,14
2028	DATA	8,9,3

```
2029 DATA 8,11,7
2030 DATA 8,12,4
2031
     DATA 9,4,10
2032
     DATA 9,5,5
     DATA 9,8,4
2033
2034
     DATA 9,12,6
2035
     DATA 10,6,1
     DATA 10,7,6
2036
     DATA 10,13,15
2037
2038
     DATA 10,14,8
2039
     DATA 11,7>
2040
     DATA 11,12,1
2041
     DATA 11,13,10
2042
     DATA 11,15,12
2043
     DATA 12,8,4
2044
     DATA 12,9,9
2045 DATA 12,11,8
2046
2047
     DATA 12,14,7
     DATA 13,10,8
2048 DATA 13,11,9
2049
     DATA 13,15,3
2050 DATA 14,10,2
2051 DATA 14,12,3
2052
2053
     DATA 14,15,4
     DATA 15,11,22
2054
     DATA 15,13,22
2055 DATA 15,14,22
2056 DATA 15,15,0
2023 DATA 7,3,10
2039 DATA 11,7,2
RUN
MAXFLO
THE CHAIN CONNECT NODE 1 (SOURCE) AND NODE 15 (SINK):
1 3 7 11 15
    FLOW = 5
THE CHAIN CONNECT NODE 1 (SOURCE) AND NODE 15 (SINK):
     3 8
                 11
                      15
1
    FLOW = 7
THE CHAIN CONNECT NODE 1 (SOURCE) AND NODE 15 (SINK):
1 2 6
FLOW = 3
               10 13 15
THE CHAIN CONNECT NODE 1 (SOURCE) AND NODE 15
                                             (SINK):
1 2 6 10 14 15
FLOW = 1
THE CHAIN CONNECT NODE 1 (SOURCE) AND NODE 15 (SINK):
1 3 7 10 14 15
    FLOW = 3
THE OPTIMAL SOLUTION AS FOLLOWS:
         F( 1, 2)=
                     4.00
         F( 1, 3)=
                     15.00
         F(2,6)=
                     4.00
         F( 3, 7)=
                    8.00
         F( 3, 8)=
                      7.00
         F( 6,10)=
                      4.00
         F( 7,10)=
F( 7,11)=
                      3.00
                      5.00
         F( 8,11)=
                      7.00
         F(10,13)=
                      3.00
         F(10, 14) =
                      4.00
         F(11, 15) =
                     12.00
         F(13,15)=
                      3.00
```

```
F(14,15)= 4.00
THE MAXIMUM FLOW = 19
```

.

#### MANAGEMENT SCIENCES AND OPERATIONS RESEARCH (600) CONTRIBUTED PROGRAM **BASIC**

SHORTEST ROUTE PROBLEM USING THE METHOD OF DYNAMIC SHORTR TITLE: PROGRAMMING WITH SUCCESSIVE APPROXIMATION IN FUNCTIONAL SPACE 36610 In an N-node network, where the distance (or cost) from node i to node j is **DESCRIPTION:**  $c_{jj}$  ( $c_{jj}$ >=0). The problem is to find a chain from node 1 to node N, such that the total distance (or cost) is minimized. Label the nodes in such a way that node 1 is the origin and node N is the INSTRUCTIONS: destination in a N-node network. Input data start on line 2000 as follows: The number of nodes 2000 DATA N 2001 DATA I,J,C(I,J) Only the existing arcs . , . , . . . . . . . • . .,., DATA N,N,O Last line must be N,N,O . . . . In 2), C(I,J) or C(J,I) need only be entered once if it is a two-way traffic network, must be entered separately if it is a one-way traffic network. 3 8 2 2 5 ٢ 8 8 10 1 .5 8 ŝ 3 6 6 9 SPECIAL FOR INSTRUCTIONAL PURPOSES CONSIDERATIONS: Suitable Courses: Introduction to Operations Research Introduction to Dynamic Programming

ACKNOWLEDGEMENTS: | David Y. W. Cheng Fu Shing Mfg. & Lumber Co., Ltd.

2000 DATA 10 2001 DATA 1,2,7 2002 DATA 1,3,8 2003 DATA 2,3,7 2004 DATA 2,4,8 DATA 2,5,6 2005 2006 DATA 3,5,6 DATA 3,6,4 2007 2008 DATA 4,5,2 2009 DATA 4,7,3 2010 DATA 4,8,3 DATA 5,6,7 2011 2012 DATA 5,7,2 2013 DATA 5,8,6 2014 DATA 6,8,9 2015 DATA 7,8,5 DATA 7,10,9 2016 DATA 6,9,6 2017 2018 DATA 8,9,8 2019 DATA 8,10,8 2020 DATA 9,10,8 2021 DATA 10,10,0 RUN SHORTR TYPE 1-FOR ONE WAY TRAFFIC (C(I,J)#C(J,I)) 2-FOR TWO WAY TRAFFIC (C(I,J)=C(J,I)) 21 ITERATIONS, WE FOUND THE OPTIMAL SOLUTION AS FOLLOWS: AFTER 5 FROM то DISTANCE 7.00 1 2 2 5 6.00 2.00 5 7 7 10 9.00 TOTAL DISTANCE = 24DONE RUN SHORTR TYPE 1-FOR ONE WAY TRAFFIC (C(I,J)#C(J,I)) 2-FOR TWO WAY TRAFFIC (C(I,J)=C(J,I)) 20 ITERATIONS, WE FOUND THE OPTIMAL SOLUTION AS FOLLOWS: AFTER 9 DISTANCE FROM то 2 7.00 1 6.00 5 2 7 2.00 5 7 10 9.00 TOTAL DISTANCE = 24DONE

TITLE:	TIMDIF FIRST DIFFERENCES, PERCENT CHANGES, PERCENT DIFFERENCE 36801
DESCRIPTION:	This program calculates first differences, percent changes, or percent differences for up to 1000 time periods. The average change, variance, standard deviation, and Durbin-Watson statistic are also calculated. Data may be entered through DATA statements or a data file.
INSTRUCTIONS:	Enter data in DATA statements beginning at line 5000, or store data on a sequential file. When running, the program will ask the user to select various options.
SPECIAL CONSIDERATIONS:	If file input is used, the data must be stored on a sequential file.
ACKNOWLEDGEMENTS:	Larry Lazzarini De Paul University

RUN

TIMOIF

DO YOU WANT INSTRUCTIONS(1=YES,Ø=NO)?1 THIS PROGRAM READS IN A VECTOR OF VALUES (1000 ELEMENTS MAXIMUM) AND CALCULATES EITHER (1)FIRST DIFFERENCES, (2) PERCENTAGE CHANGES, OR (3) PERCENT DIFFERENCES, DEPENDING ON THE USER'S OPTION. ENTER DATA IN DATA STATEMENTS STARTING ON LINE 5000 AS FOLLOWS:

5000 DATA N1,N2,N3,N4, ETC.

N1,N2,N3,N4, ETC. ARE THE VALUES. THIS PROGRAM WILL Optionally use data file input instead of data statements.

DONE

5000 DATA 59-22,54-74,17-57,20-45,65-64,71-22,19-06,60-27,38-12,75-26 5010 DATA 38.2,63.35,10.21,13.13,78.57,93.89,97.26,95.13,66.81,26.84 5020 DATA 22.18,99.34,67.22,92.37,92.38,83.35,31.96,26.08,71.6,95.51 DATA 30.48,43.91,90.45,67.93,2.1,60.39,39.33,17.2,75.23,68.93 5030 5040 DATA 87.59,57.04,97.33,3.09,72.51,93.25,18.97,97.37,2.07,35.07 5050 DATA 76.11,66.37,15.03,96.86,14.04,21.08,42.28,58.71,46.96,41.06 DATA 13.02,54.76,46.82,21.13,49.69,58.08,55.2,11.55,95.28,30.73 5060 5070 DATA 11.99,70.13,16.31,7.81,94.65,45.6,28.78,84.26,61.72,9.79 5080 DATA 80.18,73.12,94.39,59.18,49.1,4.08,29.88,2.81,88.32,30.93 5090 DATA 80.4,56.34,65.96,16.82,31.3,60.68,44.71,65.95,12.37,44 6000 END RUN TIMDIF DO YOU WANT INSTRUCTIONS(1=YES, Ø=NO)?NO ??0 1= DATA ON FILE, Ø= DATA IN DATA STATEMENTS. WHICH ?Ø DO YOU WANT YOUR RAW DATA PRINTED(1=YES,Ø=NO) ?1 # OF VALUES? 100 ENTER THE NUMBER OF YOUR OPTION 1 FOR 1ST DIFF., 2 FOR % CHANGES, 3 FOR % DIFF. 21 RAW DATA: 54.74 65.64 71.22 19.06 17.57 20.45 60.27 59.22 38.12 75.26 38.20 63.35 10.21 13+18 78.57 93.89 97.26 95.13 66.81 99.84 67.22 92.37 26.84 22.18 92.38 88.35 81.96 26.08 71.60 95.51 30.48 43.91 90.45 67.93 2.10 60.39 39 • 33 17.20 75.23 68.93 87.59 57.04 97.33 3.09 72.51 18.97 97.37 93.25 2.07 35.07 76.11 66.37 15.03 96.86 14.04 21.08 42.28 58.71 46.96 41.06 13.02 54.76 46.82 21.13 49.69 58.08 55.20 11.55 95.28 30.73 11.99 70.18 16.81 7.81 94.65 45.60 28•78 84.26 61.72 9.79 80.18 94.39 59.18 4.08 29.88 2.81 73.12 49.10 88.32 30.93 80.40 56.34 65.96 16.82 31.30 60.68 44.71 65.95 12.37 44.00 MEAN - 51.0050

	*******	-	51 9 9 5 5 7
	VARIANCE	=	875.174
STANDARD	DEVIATION	Ŧ	29•5833
DURBIN-WATSON	STATISTIC	=	2.12907

TRANSFORME	ED DATA:						
-4.48	-37.17	2.88	45 • 19	5.58	-52.16	41.21	-22.15
37.14	-37.06	25.15	-53-14	2.97	65.39	15.32	3.37
-2.13	-28.32	-39.97	-4.66	77.66	-32.62	25.15	0.01
-4.03	-6+39	-55.88	45.52	23.91	-65.03	13.43	45.54
-22.52	-65.83	58.29	-21.06	-22.13	58.03	-6.30	18+66
-30.55	40.29	-94.24	69.42	20.74	-74-28	78.40	-95.30
33.00	41.04	-9.74	-51+34	81.83	-02.02	7.04	21.20
10+43	-11-75	- 40 45	-28.04	41•74	-19 74	-25.69	28.50
-0.00	-2.00	-43.05	-16.90	-04.00	-10+74	-51 02	-53.37
-7.06	00.04	-49.05	-10.02	- - - - - - - - - - - - - - - - - - -	-22+34	-31+93	95.51
-7.00	21.27	-35+21	-10+00	-43-02	23.00	-21.01	-15.97
- 37 • 39	-53.58	-24.00	9.02	-47+14	14+40	29.30	-13.97
	00000	01000					
STAND DURBIN-WAT	VARI DARD DEVIA SON STATI	MEAN = ANCE = 1 TION = 4 STIC = 3	153737 882•29 3•3854 •03707				
ANOTHER OP	TION (1=Y	ES,Ø=NO)	? 1				
ENTER THE 1 FOR 1ST ?2	NUMBER OF DIFF., 2	YOUR OPT For % Chai	ION NGES, 3 F(	)R % DIFF.			
DAU DATA							
KAW DAIA:	5 A 7 A	17 67	00 45	6 - 6 4	71 00	10 06	60.07
28.10	34•14 75-04	17.57	20.45	10.01	12.19	19.00	02 20
07.06	75.20	56.81	03+35	10.21	13.10	67.00	93.09
97.20	95.15	81.04	20.04	22 • 10	99+04	301.48	42.01
92.00	67.93	2.10	20.00	71.50	17.20	30 • 40	43.91
87.59	57.04	97.33	3.09	72.51	93.25	18.97	97.37
2.07	35.97	76.11	66.37	15.03	96.86	14.04	21.08
42.28	58.71	46.96	41.26	13.92	54.76	46.82	21.13
49.69	58.08	55.20	11.55	95.28	30.73	11.99	70.18
16.81	7.81	94.65	45.60	28.78	84.26	61.72	9.79
80.18	73.12	94.39	59.18	49.10	4.08	29.58	2.81
88.32	30.93	80.40	56.34	65.96	16.82	31.30	60.68
44 • 71	65.95	12.37	44.00				
	1	MEAN = 5	1.9959				
	VARI	ANCE = 8	75•174				
STAND	ARD DEVIA	TION = 29	• 5833				
DURBIN-WAT	SON STATI	STIC = 2	12907				
I RAN SPURIE	D DATA:	116 20	200 09	149 54	06 76	216 01	43 OF
72+43 197-43	50 74	110+34	320.90	100.00	20 • 75	310+21	03+25
97.81	70.23	105.04	82.64	129.09	67-33	119.50	103-39
95.64	92.77	31-82	274-54	133.39	31-91	144-06	205.00
75.10	3.09	2875.71	65-13	43-73	437-38	91.63	127-07
65.12	170.63	3.17	2346.60	128.60	20.34	513.28	2.13
1694.20	217.02	87.20	22.65	644 • 44	14.50	150.14	200.57
135.86	79.99	87.44	31.71	420.58	85.50	45.13	235 • 16
116.88	95.04	20.92	824.94	32.25	39.02	585.32	23.95
46•46	1211.91	48.18	63.11	292.77	73.25	15.86	819.00
91 • 19	129.09	62.70	82.97	8 • 31	732•35	9•40	3143.06
35.02	259.94	70.07	117.07	25.50	186.09	193.87	73•68
147+51	18.76	355•70					

MEAN = 259.454 VARIANCE = 270728. STANDARD DEVIATION = 520.315 DURBIN-WATSON STATISTIC = 2.31805

ANOTHER OPTION (1=YES,Ø=NO) ?1

```
ENTER THE NUMBER OF YOUR OPTION
1 FOR 1ST DIFF., 2 FOR % CHANGES, 3 FOR % DIFF.
?3
RAW DATA:
            54.74
                   17.57
                             20.45
                                      65•64
                                               71.22
                                                        19.06
                                                                 60.27
    59.22
                   38•2Ø
66•81
                            63•35
26•84
    38.12
            75.26
                                       10.21
                                                13.18
                                                        78.57
                                                                  93.89
           95.13
                                              99.84
                                                        67.22
    97.26
                                       22.18
                                                                 92.37
   92.38
           88•35
                    81.96
                             26•Ø8
                                       71.60
                                                95.51
                                                         30.48
                                                                 43.91
                             60•39
   90.45
            67.93
                     2.10
                                                17.20
                                                         75.23
                                                                  68.93
                                       39.33
    87.59
            57.04
                    97.33
                               3.09
                                       72.51
                                                93.25
                                                         18.97
                                                                 97.37
                                                        14.04
                                                                 21.08
    2.07
            35.07
                    76 • 11
                             66•37
                                      15.03
                                                96.86
   42.28
            58.71
                    46.96
                             41.06
                                      13.02
                                                54.76
                                                        46.82
                                                                 21.13
    49.69
            58.08
                     55.20
                              11.55
                                       95.28
                                                30.73
                                                         11.99
                                                                  70.18
                                                                  9.79
                                               84•26
                                                        61.72
   16.81
            7.81
                     94.65
                             45.60
                                      28.73
    80.18
            73.12
                     94.39
                             59.18
                                      49.10
                                                4.08
                                                         29.88
                                                                  2.81
                                                         31.30
                     80.40
                                      65.96 16.82
                                                                 60.68
    88•32
            30.93
                              56.34
    44.71
            65.95
                     12.37
                              44.00
    MEAN = 51.9959
VARIANCE = 875.174
STANDARD DEVIATION = 29.5833
DURBIN-WATSON STATISTIC = 2.12907
```

TRANSFORME	ED DATA:						
-8.18	-211.55	14.08	68.85	7.83	-273.66	68•38	-58.11
49.35	-97.02	<b>39 •</b> 7Ø	-520.47	22.53	83.23	16.32	3.46
-2.24	-42.39	-148.92	-21.01	77•78	-48.53	27•23	0.01
-4.56	-7.80	-214.26	63.58	25.03	-213.35	30.59	51.45
-33-15	-3134.76	96.52	-53.55	-128.66	77.14	-9.14	21.30
-53.56	41.40	-3049.84	95.74	22•24	-391.57	80.52	-4603.86
94.10	53.92	-14.68	-341.58	84•48	-589.89	33.40	50.14
27.99	-25.02	-14.37	-215.36	76.22	-16.96	-121.58	57•48
14.45	-5.22	-377.92	87.88	-210.06	-156.30	82.92	-317+49
-115.24	91•75	-107.57	-58.44	65•84	-36.52	-530•44	87•79
-9.66	22.53	-59.50	-20.53	-1103-43	86•35	-963.35	96.82
-185-55	61.53	-42.71	14.58	-292.15	46.26	48.42	-35.72
32•21	-433.14	71.89					

.

	MEAN	≠	-174.316
	VARIANCE	=	426472.
STANDARD	DEVIATION	=	653.048
DURBIN-WATSON	STATISTIC	=	2.24311

ANOTHER OPTION (1=YES, Ø=NO) ?Ø

	TRANSPORTATION PROBLEM		TRANSP 36230
DESCRIPTION:	This program provides of linear programs, and de	otimal solutions to the transportation class termines the cost of implementing the soluti	s of ion.
INSTRUCTIONS:	Enter data beginning in	line 9000 as follows:	
	1. i,j	<pre>i = number of rows; j = number of columns</pre>	
	2. a _l ,a ₂ ,,a _i	a _i = rim value for row i	
	3. b ₁ ,b ₂ ,,b _j	b _j = rim value for column j	
	4. c ₁₁ ,c ₁₂ ,,c _{1j}		
	^c ₂₁ , ^c ₂₂ ,, ^c _{2j} : : : : ^c _{i1} , ^c _{i2} ,, ^c _{ij}	c _{ij} = elements of the cost/profit matrix, <u>row</u> by <u>row</u>	
SPECIAL CONSIDERATIONS:	The program is capable o a maximum size of 20 x 2	of handling either cost or profit matrices u 20.	up to
	The rim requirements (so integers.	ources and destinations) must be represented	d as
	This program is based on Ford and Fulkerson in <u>M</u> a	n a restricted primal-dual algorithm descril anagement Science, 3, No. 1 (1956), pp. 24-3	bed by 32.
ACKNOWLEDGEMENTS:	Lynn W. Marples University of Western O	ntario, Canada	

-

RUN 9000 DATA 3,3 9001 DATA 1,2,3 9002 DATA 3,2,1 9003 DATA 1,2,3, 6,4,2, 1,4,7 RUN TRANSP THE TRANSPORTATION PROBLEM TYPE: +1 FOR COST MINIMIZATION OR -1 FOR PROFIT MAXIMIZATION. WHICH?+1 OPTIMAL SOLUTION ø 1 ø ø 1 1 3 ø ø **OBJECTIVE FUNCTION = 11** DONE RUN TRANSP THE TRANSPORTATION PROBLEM TYPE: +1 FOR COST MINIMIZATION OR -1 FOR PROFIT MAXIMIZATION. WHICH?-1 OPTIMAL SOLUTION 1 ø ø 2 ø ø ø 2 1 **OBJECTIVE FUNCTION = 28** DO NE

TITLE:	ANNUITY ANALYSIS	ANNUIT 36074
DESCRIPTION:	This program performs the calculations necessary for determining payment and withdrawal annuities.	both
	See any standard textbook on annuities for the computational meth	od.
INSTRUCTIONS:	To use this program, supply values for the variables as required	by the
	Variables are denoted as follows:	
	N = Number of periods P = Original principal amount A = Total amount at end of n periods I = Interest rate per period, in percent R = Amount of payment/withdrawal each period	
	For a payment annuity, you may give any three of N,A,I,R and find fourth.	the
	For a withdrawal annuity, you give any three of N,P,I,R and find fourth.	the
	For loan or mortgage, use the withdrawal annuity option.	
	After each case, you may choose one of the following alternatives	:
	<pre>1 = Another case, same unknown variable 2 = Another case, different unknown 3 = Another case, other type of annuity 4 = Total interest paid over n periods 5 = Table of withdrawals, principal, and interest 6 = Stop the program</pre>	
SPECIAL CONSIDERATIONS:	The answer does not account for any simple interest that might ha been paid on deposits prior to the first compounding period.	ve
ACKNOWLEDGEMENTS:		

GET-SANNUIT RUN ANNUIT

* ANNUITY *

THIS PROGRAM COMPUTES PAYMENT AND WITHDRAWAL ANNUITIES.

DEFINITION OF VARIABLES: --N = NUMBER OF PERIODS --A = AMOUNT LEFT AT END OF N PERIODS --I = INTEREST IN PERCENT PER PERIOD --R = AMOUNT OF PAYMENT PER PERIOD --P = ORIGINAL PRINCIPAL AMOUNT WHICH ANNUITY TYPE (1=PAYMENT, 2=WITHDRAWAL)?2 WHICH VARIABLE IS UNKNOWN (1=N,2=P,3=I,4=R)?4 WHAT ARE N(INTEGER),P(\$),I(PCT)?10,1000,10

WITHDRAWAL EACH PERIOD =  $R = 162 \cdot 746$ 

......

ANOTHER CASE? ENTER ONE OF THE FOLLOWING: 1)'1' FOR ANOTHER CASE, SAME TYPE; 2)'2' FOR ANOTHER CASE, DIFFERENT UNKNOWN; 3)'3' FOR ANOTHER CASE, OTHER TYPE OF ANNUITY; 4)'4' TO GET TOTAL INTEREST PAID OVER THE N PERIODS; 5)'5' FOR A TABLE OF WITHDRAWALS, PRINCIPAL, AND INTEREST; OR 6)'6' TO TERMINATE?5

PERIOD	PRINCIPAL	INTEREST	PRINC BAL	INT TO DATE
0			1000	
1	62 • 75	100	937.255	100
2	69.02	93.73	868+234	193.73
3	75.92	86 • 82	792.312	280.55
4	83+51	79.23	708•798	359•78
5	91 • 87	70 • 88	616+932	430 • 66
6	101.05	61 • 69	515.88	492.35
7	111+16	51 • 59	404.723	543.94
8	122.27	40 • 47	282 • 45	584 • 41
9	134+5	28.25	147•949	612.66
10.	147.95	14.79	0	627 • 455

ANOTHER CASE? ENTER ONE OF THE FOLLOWING: 1)'1' FOR ANOTHER CASE, SAME TYPE; 2)'2' FOR ANOTHER CASE, DIFFERENT UNKNOWN; 3)'3' FOR ANOTHER CASE, OTHER TYPE OF ANNUITY; 4)'4' TO GET TOTAL INTEREST PAID OVER THE N PERIODS; 5)'5' FOR A TABLE OF WITHDRAWALS, PRINCIPAL, AND INTEREST; OR 6)'6' TO TERMINATE?6

CONTRIBUTED PROGRAM BASIC

	PROFORMA INCOME STATEMENT AND BALANCE SHEET 36075	
DESCRIPTION:	BALSHT provides a listing of a simple proforma income statement and balance sheet.	
	Data can be entered either from the teletype as it becomes necessary, or internally with Data-Statements. Your choice on the above option will be asked as the first question. Then enter, (either as data beginning in line 9900, or with INPUT Statements) the following values:	
	Bl = Base period sales total B2 = Base period net fixed assets B4 = Base period long-term debt remaining B5 = Base period total owners' equity B6 = Base period accumulated retained earnings S2 = Federal corporate tax rate on profit S3 = Promised period dividends R1 = Amount of cash the user wishes to hold after the base period R2 = Accounts/Receivable turnover R3 = Inventory turnover	
	Rb = Accounts/Payable turnover (i.e., A/P as fraction of sales) Then enter the next 24 values in 6 groups of 4 (for the next 4 periods):	
	<pre>Ihen enter the next 24 values, in 6 groups of 4 (for the next 4 periods): L(1,1 thru 4) = Estimated percentage growth in sales for next 4 periods L(2,1 thru 4) = Cost of goods sold as an estimated % of sales L(3,1 thru 4) = General selling &amp; administrative expense as an estimated</pre>	

~

ACKNOWLEDGEMENTS:

RUN BALSHT

* PROFORMA INCOME STATEMENT & BALANCE SHEET * THIS PROGRAM WILL PROVIDE A LISTING OF A SIMPLE PROFORMA INCOME STATE-MENT AND BALANCE SHEET. DO YOU WISH TO ENTER YOUR DATA FROM THE TELETYPE AS IT BECOMES NECESSARY, OR INTERNALLY WITH DATA-STATEMENTS? (ENTER 'T' OR 'D')?T PLEASE ENTER THE FOLLOWING VALUES: WHAT IS THE BASE PERIOD'S TOTAL SALES? 50000 WHAT IS THE NET FIXED ASSETS FOR THE BASE PERIOD?450000 WHAT IS THE REMAINING LONG-TERM DEBT FOR THE BASE PERIOD?35000 WHAT IS THE TOTAL OWNER'S EQUITY FOR THE BASE PERIOD?800000 WHAT ARE THE RETAINED EARNINGS FOR THE BASE PERIOD?31000 WHAT IS THE FEDERAL CORPORATE TAX RATE? .48 WHAT IS THE QUARTERLY PROJECTED AMOUNT OF DIVIDENDS?8000 WHAT AMOUNT OF CASH WOULD YOU LIKE TO RETAIN FOR EACH QUARTER?30000 WHAT IS THE NORMAL ACCOUNTS/RECEIVABLE TURNOVER?2.25 WHAT IS THE NORMAL INVENTORY TURNOVER?1.50 WHAT PERCENTAGE OF SALES ARE THE ACCOUNTS/PAYABLE (1.E., A/P TRNOVR)?.20 NOW ENTER FOUR VALUES FOR EACH QUESTION. EACH VALUE APPLIES TO THE RES-PECTIVE QUARTER: ENTER THE ESTIMATED PERCENTAGE GROWTH IN SALES ? . 10 ?? . 10 . . 15 . . 20 ENTER THE COST OF GOODS SOLD AS AN ESTIMATED PERCENTAGE OF SALES ? • 48, • 49, • 50, • 51 ENTER THE GENERAL SELLING & ADMINISTRATIVE EXPENSE AS A PERCENT OF SALES ? . 10 . . 12 . . 12 . . 12 ENTER THE ESTIMATED AMOUNT OF FIXED ASSET PURCHASES PER QUARTER ?2000,5000,5000,1000 ENTER THE ESTIMATED AMOUNT OF FIXED ASSET RETIREMENTS PER QUARTER ?1000,1000,1000,1000 ENTER THE PLANNED DEBT PAYMENTS PER QUARTER ?25000,25000,25000,25000 2500,2500,2500,2500 DO YOU WISH A BALANCE SHEET ONLY (TYPE '1'); AN INCOME STATEMENT ONLY (TYPE '2')) OR BOTH (TYPE '3')?3 ***** INCOME STATEMENT ***** 9TR #1 QTR #2 QTR #3 QTR #4 SALES 55000. 60500. 69575. 83490 . COST OF GOODS SOLD 26400 29645 34787.5 42579.9 10018+8 GS AND A EXPENSES 5500 7960 0740

ANNUAL DIVIDENDS	8000	8000	8000	8000
PROFIT AFTER TAX	12012	12269•4	13748•	16063•5
FED. INCOME TAX	11088	11325+6	12690.5	14827•8
PROFIT BEFORE TAX	23100	23595	26438+5	30891•3
	3300	1200	0347	10010+0

	*** BALAN	CE SHEET	***	
	QTR #1	0TR #2	OTR #3	QTR #4
CASH	377489.	370485.	362829•	357852 •
ACCOUNTS RECEIVABLE	24444•4	26888•9	30922+2	37106.7
INVENTORY	36666•7	40333•3	46383+3	55660.
TOTAL CURRENT ASSETS	438600•	437707.	440135.	450619•
NET FIXED ASSETS	451000.	455000.	459000•	459000.
TOTAL ASSETS	889600 •	892707.	899135.	909619•
ACCOUNTS PAYABLE	11000	12100	13915	16608
ACCRIED TAXES	11088	11325.6	12690.5	14827.8
TOTAL CURRENT LIAB.	22088	23425•6	26605.5	31525.8
DEBT FINANCING	32500	30000	27500	25000
EQUITY	800000 •	800000 .	800000 .	800000 .
RETAINED EARNINGS -	35012 •	39281•4	45029•4	53092 • 9
TOTAL LIABILITIES	889600•	892707.	899135.	909619•
-				

*****

### BUSINESS AND MANUFACTURING APPLICATIONS (700)

# CONTRIBUTED PROGRAM BASIC

.

	BOND PRICE ANALYSIS	BNDPRC 36076
DESCRIPTION:	BNDPRC computes the price and accrued interest for a bond, given in coupon, redemption price, yield, and maturity life.	ts
INSTRUCTIONS:	Self-explanatory	
ACKNOWLEDGEMENTS:		

.

RUN BNDPRC

BOND PRICE

BUSINESS AND MANUFACTURING APPLICATIONS (700)

TITLE:	BOND SWITCH ANALYSIS	BNDSWH 36077
DESCRIPTION:	BNDSWH calculates the effect of a bond switch, and provides a s analysis on various input.	sensitivity
INSTRUCTIONS:	In all output provided, there are three columns of data. This purpose of comparison. The left-most column is for the results old bond is kept until the terminal date, and then sold. The m is for the results if the old bond is sold now, and the net rev sale is immediately reinvested in the same bond. The last colu the results if the old bond is sold now, and the net revenue or immediately reinvested on the new bond, which is held to the te and then sold.	is for the if the niddle column venue on its umn is for its sale is erminal date
	The following input information is necessary: (This can be ent data-statements beginning in line 9900, or directly with input- The first question will ask you to indicate your choice of meth	tered as -statements. nod.)
	Bl = book value of old bond Pl = price of old bond Cl = coupon on old bond Ml,M3 = maturity on old bond in years, months Rl = proceeds on redemption of old bond Tl = tax rate on old bond interest payments	
	P2 = price of new bond C2 = coupon on new bond M2,M4 = maturity on new bond in years, months R2 = proceeds on redemption of new bond T2 = tax rate on new bond interest payments	
	<pre>S1,S2 = years, months to terminal date Y3 = predicted yield on old bond to terminal date Y4 = predicted yield on new bond to terminal date T3,T4 = capital loss rate now, capital gains rate now T5,T6 = capital loss rate at terminal date, capital gains rate D3 = capital gains rate at maturity of old bond D4 = capital gains rate at maturity of new bond Y9 = after-tax reinvestment rate on coupons</pre>	then
SPECIAL CONSIDERATIONS:	There is a storage problem with BNDSWH. If using input-stateme delete lines 9900-9998 and run. If using data-statements, dele lines 9024-9108 and run.	ents, ete
	Terminal data must be $\leq$ 5 years hence. Otherwise change line 9 dimension of A in line 9114 to 2 * S1 + S2/6 + 2.	9074, and
	Increment on yield spread and yields must be such that no more partitions are used. To increase, change line 9279 or line 930 make dimension of A in line 9114 (Z5-Z4)/Z6.	than 10 D2 and
ACKNOWLEDGEMENTS:		

BNDSWH, page 2

RUN GET - \$BNDSH+ WH RUN BNDSWH * BOND SWITCH * THIS PROGRAM CALCULATES THE EFFECT OF A BOND SWITCH. DO YOU WISH TO ENTER YOUR DATA FROM THE TELETYPE AS IT BECOMES NECES-SARY, OR INTERNALLY WITH DATA-STATEMENTS? (ENTER 'T' OR 'D')?T WHAT IS THE BOOK VALUE OF THE OLD BOND?90 WHAT IS THE PRICE OF THE OLD BOND?100 COUPON ON OLD BOND?5 MATURITY ON OLD BOND IN YEARS, MONTHS?3,6 PROCEEDS ON REDEMPTION OF OLD BOND?120 TAX RATE ON OLD BOND INTEREST PAYMENTS? . 45 WHAT IS THE PRICE OF THE NEW BOND?80 COUPON ON NEW BOND? 7.50 MATURITY ON NEW BOND IN YEARS, MONTHS?5,0 PROCEEDS ON REDEMPTION OF NEW BOND?115 TAX RATE ON NEW BOND INTEREST PAYMENTS? + 45 HOW MANY YEARS, MONTHS TO TERMINAL DATE?4,0 PREDICTED YIELD ON OLD BOND TO TERMINAL DATE ?. 25 PREDICTED YIELD ON NEW BOND TO TERMINAL DATE? . 30 CAPITAL LOSS RATE NOW, CAPITAL GAINS RATE NOW? . 15, . 33 CAPITAL LOSS RATE AT TERMINATION DATE, CAPITAL GAINS RATE THEN? 15, 33 CAPITAL GAIN RATE AT MATURITY OF OLD BOND? . 33 CAPITAL GAIN RATE AT MATURITY OF NEW BOND? . 33 AFTER TAX REINVESTMENT RATE ON COUPONS? 055 -----ENTER THE NUMBER OF THE SENSITIVITY TABLE YOU PREFER: 10 TO TERMINATE PROGRAM 'I' FOR TERMINAL DATE SENSITIVITY '2' FOR YIELD SPREAD SENSITIVITY '3' FOR YIELDS SENSITIVITY '4' FOR NO TABLES, FINAL VALUES 21 SENSITIVITY OF YIELD AND TERMINAL VALUE TO TERM. DATE IN YEARS HENCE. YIELD TO TERMINAL DATE TERM. DATE (IN YEARS) NEW BOND OLD BOND TAX SW. -54.36 • 5 -52+39 -76.03 -22.16 -34.65 -20.81 1 -9.76 -17.82 1.5 -8.7 2 -2.26 -3.14 -8+65 2.5 1.03 -2.84 1.18 3.44 1.22 3 3.6 3+5 5.41 5.21 4+15 4 6.84 6 • 61 6.05 4.5 8.02 7.76 7.61 5 9.01 8.74 8.92 TERMINAL VALUE IN DOLLARS. TERM. DATE (IN YEARS) OLD BOND TAX SW. NEW BOND •.5 75.22 74.22 63.84 81 • 91 80.69 70.71 1 78.28 1.5 89.3 87.84 2 97.42 95.74 86.66 2.5 104.88 104.48 95.96 112.62 106.31 3 113.11 3.5 122.22 121.43 117.57 132.3 131+19 128-4 4 4.5 143+48 1 42 140.48 5 155-88 154 153.98

ENTER THE NUMBER OF THE SENSITIVITY TABLE YOU PREFER: '0' TO TERMINATE PROGRAM '1' FOR TERMINAL DATE SENSITIVITY '2' FOR YIELD SPREAD SENSITIVITY '3' FOR YIELDS SENSITIVITY '4' FOR NO TABLES, FINAL VALUES

ENTER THE RANGE OF SPREADS YOU WISH TO CONSIDER. (NEW BOND YIELD TO OLD BOND YIELD AT TERMINAL DATE). ENTER THE HIGH SPREAD IN BASIS PTS., THE LOW SPREAD, & THE SENSITIVITY INCREMENT?-200,200,50

SENSITIVITY OF YIELD AND TERMINAL VALUE TO SPREAD AT TERMINAL DATE. (OLD BOND YIELD HELD CONSTANT).

SPREAD YIELD TO TERMINAL DATE (IN BASIS PTS.)

	OLD BOND	TAX SW.	NEW BOND
-200	6+84	6•61	7.06
-150	6•84	6•61	6•98
-100	6 • 8 4	6•61	6+91
- 50	6 • 84	6+61	6.84
0	6 • 84	6 • 61	6.77
50	6 • 8 4	6 • 61	6•69
100	6 • 84	6•61	6 • 62
150	6.84	6 • 61	6+55
200	6 • 84	6•61	6•48
SPREAD	TERMINAL VALUE	IN DOLLARS.	
(IN BASIS	PTS.)		
	OLD BOND	TAX SW.	NEW BOND
-200	132.3	131+19	132.99
-150	132•3	131+19	132+65
-100	132•3	131+19	132+31
- 50	132•3	131+19	131+97
0	132•3	131 • 19	131 • 64
50	132•3	131 • 19	131.3
100	132•3	131+19	130•97
150	132•3	131+19	130 • 64
200	132.3	131 • 19	130.32

-----

ENTER THE NUMBER OF THE SENSITIVITY TABLE YOU PREFER: '0' TO TERMINATE PROGRAM '1' FOR TERMINAL DATE SENSITIVITY '2' FOR YIELD SPREAD SENSITIVITY '3' FOR YIELDS SENSITIVITY '4' FOR NO TABLES, FINAL VALUES ?3

ENTER THE RANGE OF OLD BOND YIELDS AT TERMINAL DATE INPUT HIGH YIELD, LOW YIELD, AND INCREMENT DESIRED?.35 ??.20,.025

SENSITIVITY OF YIELD AND TERMINAL VALUES TO YIELD AT TERMINAL DATE. (SPREAD HELD CONSTANT).

YIELD YIELD TO TERMINAL DATE (OLD BOND)

	OLD BOND	TAX SW.	NEW BOND
•2	6+43	6.2	6.77
•225	6+64	6+41	6+41
•25	6+84	6 • 61	6.05
•275	7.05	6.81	5 • 71
•3	7.26	7.01	5.37
• 325	7+46	7.21	5.04
•35	7.66	7 • 41	4 • 71

YIELD (OLD BOND)	TERMINAL VALUE	IN DOLLARS.		
	OLD BOND	TAX SW.	NEW BOND	
•2	130.29	129+24	131-64	
•225	131.3	130-22	129.99	
•25	132+3	131+19	128+4	
•275	133+31	132 • 16	126.86	
• 3	134+31	133+13	125.37	
•325	135.32	134+1	123.92	
•35	136.32	135.08	122.52	
ENTER THE NU	MBER OF THE SEN	SITIVITY TABLE	YOU PREFER:	
'0' TO TE	RMINATE PROGRAM			
'1' FOR T	ERMINAL DATE SE	NSITIVITY		
'2' FOR Y	IELD SPREAD SEN	SITIVITY		
'3' FOR Y	IELDS SENSITIVI	TY		
'4' FOR N	O TABLES, FINAL	VALUES		
?4				
********	*********	*********	******	******
YIELD TO	SALE DATE A/T I	F OLD BOND KEP	T: 6.843	
YIELD IU	SALE DATE A/I U	N TAX SWITCH:	6+61	
YIELD TO	SALE DATE A/T U	N SWITCH TO NE	M ROND: 0.025	
<b>TERMINAL</b>	VALUE IF OLD BO	ND KEPT: \$ 263	•28	
TERMINAL	VALUE OF TAX SW	ITCH : \$ 131	•19	
TERMINAL	VALUE OF SWITCH	TO NEW BOND:	\$ 128.4	
ENTER THE NU	MBER OF THE SEN	SITIVITY TABLE	YOU PREFER:	
'0' TO TE	RMINATE PROGRAM			
'1' FOR T	ERMINAL DATE SE	NSITIVITY		
'2' FOR Y	IELD SPREAD SEN	SITIVITY		
'3' FOR Y	IELDS SENSITIVI	TY		
4' FOR N	O TABLES, FINAL	VALUES		
?0				
*****	**********	******	*****	*****

DONE

•

### BUSINESS AND MANUFACTURING APPLICATIONS (700)

TITLE:	BNDYLD BOND YIELD ANALYSIS 36078
DESCRIPTION:	BNDYLD computes after-tax yield to maturity of a bond, given its coupon, redemption price, maturity life, price, and the tax rates applied to interest and capital gains.
	The user has the option to enter the input either with the teletype, or with data-statements.
	If the user chooses to use the data-statement option, he should enter the following data beginning at line 9900:
	C = amount in dollars of the annual coupon R = redemption price M1, M2 = maturity life (M1 = years, M2 = months) P = price T1 = tax rate applied to interest T2 = tax rate applied to capital gains
SPECIAL CONSIDERATIONS:	This program uses the Fisher Algorithm for determining the exact rate of return.
ACKNOWLEDGEMENTS:	

RUN BNDYLD

BOND YIELD

```
SETTLEMENT DATE (MO,DAY,YR)?1,1,1970
MATURITY DATE (MO,DAY,YR)?8,1,1993
ANNUAL COUPON(%)?4.1
BOND PRICE ?81.621946
```

**********

THE BOND YIELD IS : 5.50025 %

*****

### BUSINESS AND MANUFACTURING APPLICATIONS (700)

TITLE:	BANK RESERVE CALCULATIONS BOKRSV 36079
DESCRIPTION:	BNKRSV calculates the required bank reserve, and the reserve position at the close of a given bank's business day.
INSTRUCTIONS:	Enter all values in dollars. BKKRSV will require a number of input values. There is no data to enter as data-statements. For a user familiar with the program, the following changes could be made to expedite the input routine: 9047 READ C.D.E.F.G.H.H1 9048 GOTO 9130 9201 READ J.J.J.Z.K8.K1.K.L.M.N.O.P.P9 9203 GOTO 9340 and at 9900 enter the data for the above values. The names of the above variables can easily be seen from the listing of BNKRSV from line 9060 to 9125 and 9215 to 9335.
ACKNOWLEDGEMENTS:	

BNKRSV, page 2

RUN

RUN

BNKRSV

* BANK RESERVE CALCULATIONS

THIS PROGRAM CALCULATES THE REQUIRED BANK RESERVE, AND THE RESERVE POSITION AT THE CLOSE OF A GIVEN BANK'S BUSINESS DAY. PLEASE ENTER THE FOLLOWING BALANCES AT THE CLOSE OF BUSINESS YESTERDAY: DEMAND DEPOSITS OF BANKS? 15000 U.S. GOVERNMENT DEMAND DEPOSITS?102000 OTHER DEMAND DEPOSITS?412000 CASH ITEMS IN PROCESS?11500 DEMAND DEPOSITS DUE FROM BANKS?18500 TIME DEPOSITS?10500 CURRENCY AND COIN? 9500 THE REQUIRED RESERVE IS EQUAL TO \$ 50695. WOULD YOU LIKE TO CALCULATE THE STATEMENT OF RESERVE POSITION?YES PLEASE ENTER THE FOLLOWING AMOUNTS: FEDERAL RESERVE BANK BALANCE YESTERDAY?65000 NUMBER OF DAYS REMAINING IN THE PERIOD?21 CUMULATIVE EXCESS OR DEFICIENCY(-) AS OF YESTERDAY 32000 FEDERAL FUNDS RATE (IN DECIMALS)?+115 COLLECTED FLOAT TO BE CREDITED TODAY?11000 CASH LETTER?2150 SECURITIES COLLECTED OR PURCHASED (-) BY THE FED?95000 CASH SHIPPED OR ORDERED (-)?30000 TRANSFERS IN OR OUT (-)?-12000 TREASURY TAX & LOAN CHARGE? 150000+ OTHER CREDITS OR DEBITS(-)?9000 FUTURE TRANSACTIONS -CREDITS OR DEBITS(-)?-6500 *** STATEMENT OF RESERVE POSITION *** DAYS REMAINING IN RESERVE PERIOD 21 **RESERVE BALANCE AT THE CLOSE YESTERDAY** 65000. ADD COLLECTED FLOAT TO BE CREDITED TODAY 11000 -----SUBTOTAL 76000. 1 LESS CASH LETTER 2150 -----SUBTOTAL 73850. SECURITIES COLLECTED OR PURCHASED(-) 95000. CASH SHIPPED OR ORDERED(-) 30000 TRANSFERS IN OR OUT (-) -12000 TREASURY TAX & LOAN CHARGE -15000 OTHER CREDITS OR DEBITS(-) 9000 107000. ESTIMATED RESERVE BALANCE AT CLOSE TODAY 180850 . LESS REQUIRED RESERVE 50695. _ _ _ _ _ _ _ _ _ INDICATED RESERVE EXCESS OR DEFICIENCY 130155. PRIOR CUMULATIVE EXCESS OR DEFICIENCY 32000 CUMMULATIVE EXCESS OR DEFICIENCY TO DATE 162155. CUM EXCESS OR DEF AFTER FUTURE TRANSACTIONS 155655. AVRG FOR DAYS REMAINING 7412.14 -----LEVEL OF REQUIRED CUMULATIVE FED FUNDS EXCESS OR DEMAND DEP RESERVE DEFICIENCY POSITION VALUE ----------_ _ _ _ _ _ _ _ _ ----476100. 44347. 136503. 298658+ 95405. 480900. 44923. 135927. 298082. 95221 . 135351 • 297506. 95037. 485700. 45499.

490500 •	46075.	134775.	296930.	94853•
495300.	46651 •	134199•	296354.	94669•
500100 .	47227.	133623.	295778.	94485+
504900.	47803.	133047.	295202 •	94301 •
509700 •	48379.	132471 •	294626.	94117.
514500 •	48955.	131895.	294050.	93933•
519300 •	49531+	131319.	293474.	93749•
524100 .	50107.	130743.	292898.	93565•
528900 •	50683•	130167.	292322 •	93381 •
533700.	51259.	129591 •	291746.	93197.
538500.	51835 •	129015.	291170.	93013•
543300•	52411+	128439.	290594.	92829•
548100.	52987.	127863.	290018.	92645.
552900.	53563•	127287.	289442.	92461 •
557700.	54139+	126711.	285866+	92277.
562500.	54715.	126135.	288290 •	92093•
567300.	55291 •	125559.	287714.	91909•
572100.	55867.	124983.	287138.	91725 •
576900.	56443.	124407.	286562.	91541 •
581700 •	57019.	123831 •	285986.	91357•
********	********	************	***********	********

## BUSINESS AND MANUFACTURING APPLICATIONS (700) CONTRIBUTED PROGRAM **BASIC**

TITLE:	DEPARTMENTAL MANAGER'S BUDGETING PROGRAM 360	)GET )73
DESCRIPTION:	This program asks for projected controllable expenses for a six month p iod and produces an itemized budget summary table of all expenses for t period. Uncontrollable costs such as overhead, taxes and depreciation calculated by the program and automatically included in this summary so that the user need only be concerned with controllable costs. The item budget summary is stored in a file as well as being printed so the data easily available for additional processing as needed.	er- that are nized a is
	The projected controllable expenses that BUDGET requests are listed bel	low:
	. Salaries . Travel Expense . Printing and Reproduction . Means and Lodging . Operating Supplies . Other Expense . Equipment Costs . Advertising and Promotion . Demo and Loan Expense	
	When all controllable expenses have been typed-in, BUDGET immediately be printing the itemized budget summary. When this has been done, the pro- halts. BUDGET simplifies the budgeting task faced at least bi-annually every department manager. It has two primary benefits:	begins bgram y by
	. It permits the manager to concentrate on controllable costs only; the program takes care of all uncontrollable expenses.	5
	. The manager can use the program to explore an entire series of alterr budgets when faced with cutting the total expense. Since the more la ious calculations are performed by the program, the manager is free t explore alternatives.	iate abor- to
INSTRUCTIONS:	Load the Program. Establish a File. The BUDGET program uses one file which must be established before the p gram is run. Set up the file by typing the command below: OPE-BFILE,6 Opening this file, simply allocates storage. The BUDGET program itself places data on file. RUN Information Needed by Budget (General) . Date . Operating Supplies . Location Code . Equipment Costs . Personnel Count . Demo & Loan Expense . Salaries . Travel Expense . Transfers in and out . Meals & Lodging . % Salary increase in July . Other Expense . Total for each controllable expense item . Total operating Expense . Freight Out . Total operating Expense . Training Sold . Depreciation . Advertising and Promotion Information Saved by Budget Budget places all the information found in the summary printout in a fit Each time the program is run, the old data is erased and replaced with the newly calculated data.	pro- f ile.

TITLE: DEPARTMENTAL MANAGER'S BUDGETING PROGRAM (cont.) Message Response/Explanation SPECIAL CONSIDERATIONS: NON-EXISTENT FILE OPEN FILE REQUESTED MISSING OR PROTECTED OPEN FILE FILE Another system user has already gotten BUDGET and has priority access to the file. He must SCRATCH-BUDGET before you can write on the file. READ ONLY FILE END OF FILE/ END OF RECORD FILE NOT LARGE ENOUGH. Type the commands below; then restart BUDGET from beginning. KIL-BFILE OPE-BFILE,6 Data is of wrong type (letters instead of BAD INPUT, RETYPE FROM ITEM 1 numbers). Retype correctly. Non-numeric characters (e.g. '\$', ',') were EXTRA INPUT, typed when only numbers were expected. Program does the best it can. Check budget summary to see particular value. May be necessary to re-run entire program. WARNING ONLY

ACKNOWLEDGEMENTS:

RUN GET-BUDGET RUN BUDGET

HEWLETT-PACKARD DEPARTMENTAL BUDGET PROGRAM TODAY'S DATE?NOVEMBER 12, 1970 LOCATION CODE?6733-89 TYPE PERSONNEL COUNT BY MONTH ?4 ?4 ?5 ?5 ?7 ?8 SALARIES FOR MAY TYPE 4 ? 490 2610 ?900 ?950 TYPE 1 SALARIES FOR MONTH 3 'S HIRES (MINUS FOR LOSSES) ?1000 TYPE 2 SALARIES FOR MONTH 5 'S HIRES (MINUS FOR LOSSES) ?800 ?750 SALARIES FOR MONTH 6 TYPE 1 'S HIRES (MINUS FOR LOSSES) ?550 WHAT % SALARY INCREASE IN JULY (NORMAL IS 5.0)?5 WHAT % SALARY INCREASE IN OCTOBER (NORMAL IS 2.0)?2 TRANSFERS IN ?0 ?Ø ?Ø ?Ø ?Ø ?Ø TRANSFERS OUT ?Ø ?Ø ?Ø ?Ø ?Ø 20 PRINTING & REPRODUCTION ?1000 ?800 ?2300 20 2910 ?1190 OPERATING SUPPLIES ?250 ?104 ?125 ?200 ?245 ?180 EQUIPMENT COSTS ?1500 ?1400 74500 ?95Ø ?3300 22400 DEMO & LOAN EXPENSE ? 450 ?300 ?225 ?580 7125 2350 TRAVEL EXPENSE ?560 7 400 ?350 ? 605

<pre>?160 ?350 MEALS &amp; LODGING ?360 ?400 ?250 ?300 ?150 ?280 OTHER EXPENSE ?105 ?280 OTHER EXPENSE ?105 ?200 ?50 ?390 ?0 ?125 ADVERTISING &amp; PROMOTIC ?0 ?1300 ?1090 ?1100 ?500 ?0</pre>	DN						
NOVEMBER 12, 1970							
6733-89							
LOCATION TARGET	MAY 2950	JUN 2950	JUL	AUG	SEP	0CT T	0TAL 25997
DIUS TRANSFERS IN	2750	2750	4071	-1077	J0-7	02.50	23771
PLUS IRANSPERS IN	9	9	0	0	9	0	9
LESS IRANSPERS OUT	Ø	Ø	ю	ы	Ю	9	6
NET SALARIES	2950	2950	4097	4097	5647	6256	25997
PRINTING & REPRO	1000	800	2300	0	910	1190	6200
OPERATING SUPPLIES	250	104	125	200	245	180	1104
EQUIPMENT COSTS	1500	1400	4500	950	3300	2400	14050
DEMO & LOAN COSTS	450	300	225	580	125	350	2030
TRAVEL EXPENSE	560	400	350	605	160	350	2 42 5
MEALS & LODGING	360	400	250	300	150	280	1740
OTHER EXPENSE	105	200	50	390	Ø	125	870
TOTAL OPERATING EXPENS	SE 7175	6554	11897	7122	10537	11131	54416
ADVERTISING & PROMOTIO	IN Ø	1300	1090	1100	500	ø	3990
TOTAL CONTROLLABLE EXP	P 7175	7854	12987	8222	11037	11131	58406
PAYROLL TAXES	333	248	307	254	313	327	1782
DEPRECIATION	Ø	Ø	0	Ø	Ø	Ø	Ø
OCCUPANCY COSTS	320	320	400	400	560	640	2640
FREIGHT OUT	0	0	Ø	0	Ø	Ø	Ø
OVERHEAD CHARGES	Ø	0	Ø	0	Ø	Ø	Ø
TRAINING SOLD	Ø	0	0	Ø	Ø	Ø	0
TOTAL LOCATION EXPENSE	7828	8422	13694	8876	11910	12098	62828
PERSONNEL COUNT	4	4	5	5	7	8	33
	CAPITAL INVESTMENT ANALYSIS (DISCOUN	CAPD ITED CASH FLOW METHOD) 368	CF 25				
-------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------	--	--	--	
DESCRIPTION:	CAPDCF is a general purpose program in the evaluation of capital investm determined and the rate of return is analysis. An iterative technique is rather than the trial and error tech	intended to aid the financial manag ment alternatives. Cash flows are calculated using discounted cash f used to determine the rate of retu nique.	er low rn				
INSTRUCTIONS:	The program can be run either interactively or from a set of data entered before running the program. The user inputs basic data concerning the investment and the associated cash flows. This includes such information as investment amount, tax rate, etc. Also the user enters information re- garding the cash flows (referred to as earnings and expenses in the pro- gram). The user can enter normal and/or extraordinary cash flows. He can enter the specific cash flows or he can characterize them such as "rapid decline in early years", "straight line decline", etc. Depreciation infor- mation is also entered by the user.						
	Input to the program whether it is f is the same information. An asteris	rom data statements or conversation k (*) indicates required informatio	ally n.				
	Basic Data						
	* Investment Amount	Il					
	* Investment Tax Credit * Salvage Value	S1					
	* Length of Life of Investment * Income Tax Rate						
	Normal Earnings Data						
	where						
	2 - Uniform earnings 3 - Straight line decline 4 - Rapid decline in early years 5 - Rapid decline in later years						
	If earnings option = 1, earnings are option = 2 thru 5, enter the followi	e entered for each period. If earning:	ngs				
	Earnings Life in Periods Initial Earnings % of Initial Earning to be Final	E2 E3 E4					
	<u>Extra Earnings Data</u>						
	* Extra Earnings Option Where	E5					
	l - Extra earnings exist O - No extra earnings If option = l, the following						
	Number of Extra Earnings	E6					
	For 1 to E6						
	Period, Earnings (continued on next page)	E7, A(E7)					
ACKNOWLEDGEMENTS:	Ray McCarthy HP/Automatic Measurements Division						

CAPDCF, Page 2

Instructions: (Cont'd.) Normal Expense Data X1 * Expense Option Where 1 - Each is entered 2 - Uniform expenses 3 - Straight line decline 4 - Rapid decline in early years 5 - Rapid decline in later years 0 - No normal expenses If expense option = 1, expenses for each period are entered. If expense option = 2 thru 5 enter the following: Expense Life in Periods Χ2 Initial Expense Χ3 % of Initial Expense to be Final Χ4 Extra Expense Data * Extra Expense Option Χ5 Where 1 - Extra expenses exist 2 - No extra expenses If option = 1, the following: Number of Extra Expenses Χ6 For 1 to X6 Period, Expense in Period X7, Y(X7)Depreciation Data * Depreciation Option D1 Where 1 - Each is entered 2 - Straight line 3 - Declining balance 4 - Sum of years digits If depreciation option = 1, depreciation amounts for each period are entered. If depreciation option = 2 thru 4, enter the following: Percent of Investment Not to be Depreciated D2 Number of Years to be Depreciate D3 SAMPLE INVESTMENT TO BE ANALYZED A \$350,000 numerically controlled machine tool purchase is to be evaluated. The following is assumed: 7% investment tax credit

50% income tax rate 12 year depreciation period using the sum of the years digits' method \$100 per hour gross income when working 40% machine utilization Two shift operation, 6 days a week, 48 weeks a year \$6 per hour operator cost including fringe benefits \$250 per day for overhead (space maintenance, programming support, and tooling expense) \$25,000 major overhaul required every five years \$35,000 salvage value

Preliminary Calculations: Estimated annual machine tool utilization:

16hrs/dayx.4utilization6.4hrs/dayx6days/week38.4hrs/weekx48weeks/yr1843hrs/year

```
Instructions: (Cont.)
Estimated annual gross income:
     1843 hrs/yr
  <u>x $100</u> per hour
$184,320
Estimated annual operating expenses:
      16 operator hrs/day
    6 days/week
  х _
       96 hrs/week
      <u>$6</u> operator cost/hour
  Х
     $576 per week
  x 48 weeks/yr
 $27,648 per year
 +72,000 overhead/yr ($250/day x 6 days x 48 weeks)
 $99,648 normal annual operating expense
  Investment tax credit
$350,000 purchase price
x .07 investment credit %
 $24,500
  Extraordinary Expenses
   YR 5 & 10 - $25,000 (overhaul)
  Extraordinary Earnings
   YR 12 - $35,000 (salvage value)
  Depreciation
   Sum of the years digit method
Included in this documentation are sample RUNs illustrating use of the program both by (1) enter-
ing DATA statements, and (2) entering data conversationally.
Change Option: Upon completion of a run, the user may optionally change some of the data from the
previous run. This facility simplifies re-runs. A sample RUN illustrating this feature is also
included.
Data Statement Format
nnn DATA II, CI, SI, LI, TI
nnn DATA El, E2, E3, E4
or
nnn DATA 1, E(1), E(2) .....E(L1)
nnn DATA 1, E6, E7_{(1)}, A(E7)_{(2)}, A(E7) ....E7_{(E6)}, A(E7)
       or
nnn DATA 0
nnn DATA X1, X2, X3, X4
      or
nnn DATA 1, X(1), X(2), .... X(L1)
nnn DATA 1, X6, X7<sub>(1)</sub>, Y(X7), X7<sub>(2)</sub>, Y(X7) .... X7<sub>(x6)</sub>, Y(X7)
nnn DATA 0
nnn DATA D1, D2, D3
      or
nnn DATA 1, D(1), D(2), .... D(L1)
```

CAPDCF, Page 4

Instructions: (Cont'd) Calculations Formulas Earnings F = Final Earnings = (.01 E4) E3 Uniform  $e_n = E3, N = 1, \dots, L1$ Straight Line  $e_n = E3 - (n-1) (E3-F)$ , n = 1, ... E2 (E2-1) Rapid Decline in Early Years  $e_1 = E3$  $e_n = e_{n-1} - \frac{2(E2-n+1)(E3-F)}{E2(E2-1)}$ , n=2, ... E2 Rapid Decline in Later Years  $e_1 = E3$  $e_n = e_n - 1 - \frac{2(N-1)(E3-F)}{F2(F2-1)}$ , n=2, ...,E2 Expenses F = Final Expenses = (.01 x 4) x 3 Uniform  $X_n = X3, N = 1, ... L1$ Straight Line  $X_n = X3 - (N-1)(X3-f)$ , n = 1, ..., X2Rapid Decline in Early Years  $X_{1} = X3$  $X_n = X_{2-1} - \frac{2(X2-n+1)(X3-F)}{X2(X2-1)}$ , n=2, ..., X2 Rapid Decline in Later Years  $X_{1} = X3$  $X_n = X_{n-1} - \frac{2(n-1)(X3-F)}{X2(X2-1)}$ , n=2, ...,X2 Depreciation D = Depreciable Investment = (I1-C1) (1- .01D2) Straight Line  $d_n = \frac{D}{D3}$ , n = 1, .....D3 Double Declining Balance

 $\begin{array}{c} d_n = \frac{2D}{D3} \\ D = D - d_n \end{array} \right\} \qquad n = 1, \dots, D3$ 

Sum of the Years Digits

- $d_n^{-} = \frac{2D (D3-n+1)}{D3 (D3+1)}$ , n=1, ....,D3
- <u>NOTES</u>: DATA statements numbers may be any number between 1 and 999. The time period used in the program must be consistent throughout. The product life length and cash flow inputs must be the same. The program converts to annual for return calculations.

10 DATA 350000.,24500,35000.,12,50
20 DATA 2,0,184320.,0
30 DATA 1,1,12,35000.
40 DT+ATA 2,0,99648.,0
50 DATA 1,2,5,25000,10,25000
60 DATA 4,0,12

RIJN Capdcf

CAPITAL INVESTMENT ANALYSIS

ENTER TIME PERIOD TO BE USED FOR CASH FLOWS AND LIFE: (1)ANNUAL, (2)SEMI-ANNUAL, (3)QUARTERLY, (4)MONTHLY?1

IS INPUT FROM (1)DATA STATEMENTS OR (2)CONVERSATIONALLY ?!

RETURN ON INVESTMENT IS 13.9504 PERCENT (ANNUAL)

DO YOU WISH A COMPLETE REPORT?Y

### CAPITAL INVESTMENT ANALYSIS

INVESTMENT COST	·	350000	SALVAGE	VALUE	35000	
INVESTMENT TAX	CREDIT	24500	LIFE OF	INVESTMENT	12	YEARS
NET INVESTMENT	COST	325500	INCOME 1	FAX RATE	50.00	PERCENT

	NORMAL	EXTRA	NORMAL	EXTRA	BEFORE TAX
PERIOD	EARNINGS	EARNINGS	EXPENSES	EXPENSES	CASH FLOW
1	184320	0	99648	0	84672
2	184320	0	99648	0	84672
3	184320	0	99648	0	84672
4	184320	0	99648	0	84672
5	184320	0	99648	25000	59672
6	184320	0	99648	0	84672
7	184320	0	99648	0	84672
8	184320	0	99648	0	84672
9	184320	0	99648	0	84672
10	184320	0	99648	25000	59672
11	184320	0	99648	0	84672
15	184320	35000	99648	0	119672

#### RUN

6-EXIT

		TAXABLE	I NC OME	AFTER TAX	DISCOUNTED
PERIOD	DEPRECIATION	INCOME	TAX	CASH FLOW	CASH FLOW
1	48462	36210	18105	66567	58417
2	44423	40249	20124	64548	49710
3	40385	44287	22144	62528	42260
4	36346	48326	24163	60509	35889
5	32308	27364	13682	45990	23938
6	28269	56403	28201	56471	25795
7	24231	60441	30221	54451	21827
8	20192	64480	32240	52432	18445
9	16154	68518	34259	50413	15563
10	12115	47557	23778	35894	9724
11	80 <b>77</b>	76595	38298	46374	11026
15	4038	115634	57817	61855	12906

TOTAL DISCOUNTED CASH FLOW	325500
INITIAL INVESTMENT	325500
NET PRESENT VALUE OF INVESTMENT	0

?1 DONE RUN CAPDCF CAPITAL INVESTMENT ANALYSIS ENTER TIME PERIOD TO BE USED FOR CASH FLOWS AND LIFE: (1)ANNUAL, (2)SEMI-ANNUAL, (3)QUARTERLY, (4)MONTHLY?1 IS INPUT FROM (1)DATA STATEMENTS OR (2)CONVERSATIONALLY?2 INVESTMENT AMOUNT?350000 INVESTMENT TAX CREDIT AMOUNT?24500 SALVAGE VALUE?35000 LIFE OF INVESTMENT?12 INCOME TAX RATE?50 EARNINGS OPTIONS: I-EARNINGS FOR EACH PERIOD ARE ENTERED 2-UNIFORM EARNINGS 3-STRAIGHT LINE DECLINE 4-RAPID DECLINE IN EARLY YEARS 5-RAPID DECLINE IN LATER YEARS 6-EXIT WHICH OPTION?2 ENTER SINGLE EARNING AMOUNT?184320 ANY EXTRAORDINARY EARNINGS?YES ENTER THE NUMBER OF EXTRAORDINARY EARNINGS?! FOR EACH EARNING, ENTER PERIOD # AND AMOUNT EARNING # 1 ?12,35000 ANY NORMAL EXPENSES?YES EXPENSE OPTIONS: 1-EXPENSES FOR EACH PERIOD ARE ENTERED 2-UNIFORM EXPENSES 3-STRAIGHT LINE DECLINE 4-RAPID DECLINE IN EARLY YEARS 5-RAPID DECLINE IN LATER YEARS

DO YOU WISH TO (1)QUIT, (2)ENTER NEW SET OF DATA, OR (3)CHANGE CURRENT

WHICH OPTION?2 ENTER UNIFORM EXPENSE AMOUNT?99648 ANY EXTRAORDINARY EXPENSES?YES ENTER THE NUMBER OF EXTRAORDINARY EXPENSES?2 FOR EACH EXPENSE, ENTER PERIOD # AND AMOUNT EXPENSE # 1 ?5,25000 EXPENSE # 2 ?10,25000 DEPRECIATION OPTIONS; 1-EACH IS ENTERED 2-STRAIGHT LINE 3-DECLINING BALANCE 4-SUM OF YEARS DIGITS 5-EXIT WHICH OPTION?4 ENTER % OF INVESTMENT NOT TO BE DEPRECIATED?0 ENTER NUMBER OF YEARS TO DEPRECIATE?12 RETURN ON INVESTMENT IS 13.9504 PERCENT (ANNUAL) DO YOU WISH A COMPLETE REPORT?NO DO YOU WISH TO (1)QUIT, (2)ENTER NEW SET OF DATA, OR (3) CHANGE CURRENT ?1 DONE 10 DATA 350000.,24500,35000.,12,50 20 DATA 2,0,184320.,0 30 DATA 1,1,12,35000. 40 DATA 4,12,200000.10 50 DATA 1,2,5,25000,10,25000 60 DATA 4,0,12 RUN CAPDCF CAPITAL INVESTMENT ANALYSIS ENTER TIME PERIOD TO BE USED FOR CASH FLOWS AND LIFE: (1)ANNUAL, (2)SEMI-ANNUAL, (3)QUARTERLY, (4)MONTHLY?1 IS INPUT FROM (1)DATA STATEMENTS OR (2)CONVERSATIONALLY?1 RETURN ON INVESTMENT IS 12.2004 PERCENT (ANNUAL) DO YOU WISH A COMPLETE REPORT?Y CAPITAL INVESTMENT ANALYSIS

.

INVESTMENT	COST	350000	SALVAGE	VALUE	35000	
INVESTMENT '	TAX CREDIT	24500	LIFE OF	INVESTMENT	12	YEARS
NET INVESTM	ENT COST	325500	INCOME 1	TAX RATE	50.00	PERCENT

PERIOD	NORMAL Earnings	EXTRA EARNINGS	NORMAL EXPENSES	EXTRA EXPENSES	BEFORE TAX Cash flow
1 2 3 4 5 6 7 8 9 10 11 12	1 84320 1 84320	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200000 170000 142727 118182 96364 77273 60909 47273 36364 28182 22727 20000	0 0 25000 0 0 0 25000 0 0 0 0 0 0 0 0 0	-15680 14320 41593 66138 62956 107047 123411 137047 147956 131138 161593 199320
PERIOD	DEPRECIATION	TAXABLE INCOME	INCOME Tax	AFTER TAX Cash flow	DISCOUNTED Cash flow
1 2 3 4 5 6 7 8 9 10 11 12 TOTAL DI INITIAL NET PRES	48462 44423 40385 36346 32308 28269 24231 20192 16154 12115 8077 4038 SCOUNTED CASH F INVESTMENT ENT VALUE OF IN	-64142 -30103 1208 29792 30649 78778 99180 116855 131802 119023 153516 195282	-32071 -15052 604 14896 15324 39389 49590 58427 65901 59511 76758 97641 325500 325500 0	16391 29372 40989 51242 47632 67658 73821 78620 82055 71627 84835 101679	14608 23331 29019 32333 26787 33912 32978 31302 29118 22653 23913 25545
DO YOU W ?3 CHANGE O 1-BAS 2-EAR 3-EXP 4-DEP 5-EXI WHICH CH CHANGE E EXPENSE 1-EXP 2-UNI 3-STR 4-RAP 5-RAP 6-EXI	ISH TO (1)QUIT, PTIONS: IC DATA NINGS DATA ENSE DATA RECIATION DATA T ANGE OPTION?3 XPENSE OPTIONS? OPTIONS: ENSES FOR EACH FORM EXPENSES AIGHT LINE DECL ID DECLINE IN E ID DECLINE IN L T	(2)ENTER N Y Period Are 1 Ine Arly Years Ater Years	EW SET OF DATA Entered	♪ OR (3)CHAN	IGE CURRENT

WHICH OPTION?5 ENTER EXPENSE LIFE IN YEARS?12 INITIAL EXPENSE?200000 ENTER % OF INITIAL EXPENSE TO BE FINAL VALUE?10

CHANGE EXTRAORDINARY EXPENSES?N ANY MORE CHANGES?N

### DO YOU WISH A COMPLETE REPORT?Y

### CAPITAL INVESTMENT ANALYSIS

INVESTMENT COST	r 35	0000 SALV	AGE VALUE	35000	
INVESTMENT TAX	CREDIT 2	4500 LIFE	OF INVES	TMENT 12	YEARS
NET INVESTMENT	COST 32	5500 INCO	ME TAX RA	TE 50.00	PERCENT

PERIOD	NORMAL Earnings	EXTRA EARNINGS	NORMAL Expenses	EXTRA EXPENSES	BEFORE TAX Cash flow
1	184320	0	200000	0	-15680
2	184320	0	197273	0	-12953
3	184320	0	191818	0	-7498
4	184320	0	183636	0	684
5	184320	0	172727	25000	-13407
6	184320	0	159091	0	25229
7	184320	0	142727	0	41593
8	184320	0	123636	0	60684
9	184320	0	101818	0	82502
10	184320	0	77273	25000	82047
11	184320	0	50000	0	134320
12	184320	35000	20000	0	199320
		TAXABLE	I NC OME	AFTER TAX	DISCOUNTED
PERIOD	DEPRECIATION	INCOME	TAX	CASH FLOW	CASH FLOW
1	48462	-64142	-32071	16391	15790
2	44423	-57376	-28688	15735	14604
3	40385	-47883	-23941	16443	14702
4	36346	-35663	-17831	18515	15948
5	32308	-45715	-22857	9450	7842
6	28269	-3040	-1520	26749	21383
7	24231	17362	8681	32912	25346
8	20192	40491	20246	40438	30002
9	16154	66348	33174	49328	35257
10	12115	69932	34966	47081	32419
11	8077	126243	63122	71198	47229
15	4038	195282	97641	101679	64978

TOTA	AL DI	SCOL	INTED	CASH	FLOW	325500
INIT	TAL	INVE	STMEN	IT		325500
NET	PRES	ENT	VALUE	C OF	INVESTMENT	0

DO YOU WISH TO (1)QUIT, (2)ENTER NEW SET OF DATA, OR (3)CHANGE CURRENT **a** ?1

DONE

TITLE:	CAPITAL INVESTMENT ANALYSIS	4PINV 5080
DESCRIPTION:	CAPINV provides a listing of gross cash flow, annual depreciation, ann tax, net cash flow, and discounted cash flow, for a long-term capital investment.	ual
INSTRUCTIONS:	The user will be required to input the following values: A1 = initial investment A2 = number of cash flows A(1) = for I = 1 to A2, the values for the cash flow A3 = depreciable amount A4 = depreciable life A5 = salvage value A6 = method of depreciation: 1. straight line 2. double-declining balance to straight line 3. sum-of-the-years digits A7 = discount rate A8 = tax rate	
SPECIAL CONSIDERATIONS:	50 years of cash flows	
AGRNOWLEDGEMENIS:	1	

### RUN

GET-SCAPINV RUN CAPINV

* CAPITAL INVESTMENT ANALYSIS *

THIS PROGRAM PRINTS THE GROSS CASH FLOW, ANNUAL DEPRECIATION, ANNUAL TAX, NET CASH FLOW, AND DISCOUNTED CASH FLOW FOR A LONG-TERM CAPITAL INVESTMENT.

WHAT IS THE INITIAL INVESTMENT?25000

HOW MANY CASH FLOWS DO YOU WISH TO ENTER?10

ENTER 10 GROSS CASH FLOWS?2+3500,3000,3000,2750,2750,2500,2500,2000 ??1750,1600

TYPE DEPRECIABLE AMOUNT, LIFE, AND SALVAGE VALUE?15000,12,8000

DEPRECIATION METHODS:

1. STRAIGHT LINE 2. DOUBLE DECLINING TO STRAIGHT LINE 3. SUM-OF-THE-YEARS DIGITS ENTER NUMBER OF DEPRECIATION METHOD?2

ENTER DISCOUNT RATE AND TAX RATE? . 333, . 450

#### *********************

YEAR	GROSS CASH Flow	ANNUAL	ANNUAL TAX	NET CASH Flow	DISCNTD Cash Flow
1	3500	2500	450	3050	2288.07
2	3000	2083.33	412.5	2587.5	1456+2
3	3000	1736 • 11	568.75	2431+25	1026-45
4	2750	1446.76	586+458	2163.54	685.243
5	2750	1205+63	694.965	2055.04	488+28
6	2500	1004.69	672 • 888	1827.11	325 • 675
7	2500	837.245	748.24	1751.76	234+241
8	2000	697 . 704	586.033	1413.97	141.84
9	1750	581 • 42	525 • 861	1224 • 14	92.1212
10	1600	484.517	501.967	1098-03	61 • 9889
TOTAL	25350	12577.4	5747.66	19602•3	6800 • 1 1

DO YOU WISH ANOTHER RUN; 1=YES, 2=N0?2

DONE

## BUSINESS AND MANUFACTURING APPLICATIONS (700)

CONTRIBUTED PROGRAM **BASIC** 

	CASH ELON ANALVETS	CSHFL 36142
TILE:	CASH FLOW AWALTSIS	
DESCRIPTION:	Program calculates:	
	1. Present value of up to 4 cash flows for a given cost of ca	pital.
	<ol><li>Implicit rate of return which equates the present value of cash flow to zero.</li></ol>	the
	3. Period in which the payback occurs if applicable.	
INSTRUCTIONS:	You will be asked to type in:	
	1. Cost of capital in % per period.	
	2. Number of periods (less than 121).	
	3. Number of cash flows being considered.	
SPECIAL		
CONSIDERATIONS:	None	

ACKNOWLEDGEMENTS:

RUN

RUN CSHFL WHAT IS THE ESTIMATED COST OF CAPITAL IN PERCENT?15 WHAT IS NUMBER OF PERIODS?5 HOW MANY FLOWS ARE BEING CONSIDERED, 1, 2, 3, OR 4?4 ENTER CASH FLOWS, SEPARATE BY COMMAS, MINUS FOR OUTLAYS FLOW 1, FLOW 2, FLOW 3, FLOW 4 INCOME?-100,-100,-100,-100 PERIOD Ø PERIOD 1 INCOME? 50, 40, 30, 20 PERIOD 2 INCOME?40,30,20,10 PERIOD 3 INCOME? 30, 20, 10, 50 PERIOD 4 INCOME?20,10,50,40 PERIOD 5 INCOME? 10, 50, 40, 30 FLOW 1 PAYBACK FOR INITIAL INVESTMENT ON FLOW 1 IS IN PERIOD 4 PRESENT VALUE OF FLOW 1 IS 9.85631 RATE OF RETURN EQUATING P.V. OF FLOW TO ZERO IS 20.272 PERCENT FLOW 2 PAYBACK FOR INITIAL INVESTMENT ON FLOW 2 IS IN PERIOD 5 PRESENT VALUE OF FLOW 2 IS 1.19359 RATE OF RETURN EQUATING P.V. OF FLOW TO ZERO IS 15.5199 PERCENT FLOW 3 PRESENT VALUE OF FLOW 3 IS-3.7403 RATE OF RETURN EQUATING P.V. OF FLOW TO ZERO IS 13.5603 PERCENT FLOW 4 PRESENT VALUE OF FLOW 4 IS-4.38605 RATE OF RETURN EQUATING P.V. OF FLOW TO ZERO IS 13.3588 PERCENT

```
DONE
```

## BUSINESS AND MANUFACTURING APPLICATIONS (700)

	CTC MANUFACTURING PARTS CONTROL	CTC1 36210
DESCRIPTION:	These CTC Manufacturing Parts Control programs are part of a tot accounting system written by Computer Terminal Corporation for t (See A706-36213 CTC Payroll Program, A717-36212 CTC Projection P A711-36214 CTC Accounts Receivable, and A708-36211 CTC Inventory for Finished Products.) Abstracts of the 23 manufacturing parts programs are on the following page along with an index to the do	al he HP 2000A. rograms, Control control cumentation.
INSTRUCTIONS:	Supplementary documentation is required. Order HP 36210, Opt for complete documentation.	ion DØØ
SPECIAL CONSIDERATIONS:	This package was written for a 2000A with a non-standard disc. structure has 200 physical records per file. Teleprinter output is directed to a 132 column AB Dick printer. Non-printing control characters direct the cursor on the HP 2600 (The characters are ignored by a standard teletype.) These differences mean that the user will need to modify the sof run on a standard HP 2000A system. Although it will RUN without cation on an HP 2000C, its 64 word/record limitation makes inefi	The file DA CRT. ftware to t modifi- ficient
ACKNOWLEDGEMENTS:	Jackie Shelton Computer Terminal Corporation	

#### INDEX TO MANUFACTURING PARTS CONTROL PROGRAMS

- I. INTRODUCTION
  - A. Brief Description of Programs
  - B. File Structure
    - Basic Data Files
    - 2. Sub-Assembly-Component File
    - 3. Multiple Pull File
    - 4. Transaction File
    - 5. Auxiliary File
  - 6. Scratch Files C. File Set Up Procedures
- II. DETAILED INSTRUCTIONS TO PROGRAMS
  - A. UPDTG Provides direct updating of (1) any entry within a part number, or (2) a particular entry for several part numbers. Under type (1) a display of all the information stored on the part number is given.
  - B. UPDTQ Provides automatic on order or on hand updates including multiple pulls and returns for subassembly-component groups.
  - C. MULFIL Creates a file which is used in doing a play multiple pull. 'X' subassemblies are entered with the quantity to be pulled. Each component part involved and the total quantity to be pulled is placed on this file.
  - D. MULPRT This program uses the file created in program MULFIL to do a play multiple pull. It pretends to pull the quantity listed for each component part. found on the play pull file. The print-out lists the part numbers, the on hand value before and after the pull, and flags the parts which are short. A listing of only those parts which are short can also be made.
  - E. DELADI Provides deletion of a part number, addition of a part number, or the change of a part number on the file to another number not on the file.
  - F. SUBDIS Provides a quick display of a subassembly with its component parts and the number of times each is used in the subassembly.
  - G. CSTANL Calculates (1) the total cost of all parts on file: on hand, on order, (2) the total cost of 'A' items: on hand, on order, (3) the total cost of 'B' items: on hand, on order, (4) the total cost of 'C' items: on hand, on order, (5) the total maximum cost on hand, (6) the total minimum cost on hand, and various \$ usage values.
  - H. UPDTSB Provides updating of the subassembly-component file which contains each subassembly and a list of its component parts.
  - I. IPRT Provides formatted data of the entire inventory file.
  - J. TPRT Provides formatted data of the whole transaction file or just the last five transactions made.
  - K. FSUBP Provides formatted data of the subassembly-component file.
  - L. OBSPRT Provides formatted data of obsolete parts (those having all usages as zero).
  - M. CATPRT Gives three types of catalogues of the inventory files: (1) part number and description, (2) part number, description and standard cost, or (3) part number, description, standard cost, quantity on hand and cost on hand. The listing is in order of part number.
  - N. MODGØ Allows for modification of the auxiliary file.
  - O. AVE\$T Figures the total average dollar weekly usage for all parts and places this value on the auxiliary file. The value is used to figure the category and maximum and minimum values for each part number.
  - P. USEPRD Prints all part numbers with their descriptions which are used in the specified product.
  - Q. USECNT Prints (1) the total number of different parts used in each product and (2) the total usage of each product.
  - R. COUNT Counts the number of parts in files G1 through G9 and figures the number of parts left available in each file.

INDEX TO MANUFACTURING PARTS CONTROL PROGRAMS

- S. CATSRT Prints part numbers belonging to a specified category (A, B, or C). Figures cost on hand for each part printed and totals the cost on hand for each category.
- T. PRDCST The program figures (1) the cost to build each product or (2) the cost of a specified subassembly.
- U. OHCLER This program allows the user to clear the on order value, the on hand value, or the usage of one of the 21 products for all parts on one of the data files (G1 G9).
- V. TRA\$ This program lets the user input part numbers and quantities. This data is saved on a scratch file which has to be opened before the program is run. The data can be updated and a Transfer of \$ Amounts report printed.
- W. EXTCST With this program, the user can enter a part number and quantity and the program will return with the part description, standard cost, and extended cost (standard cost x quantity).

.

1

# BUSINESS AND MANUFACTURING APPLICATIONS (700)

	CTC INVENTORY CONTROL FOR FINISHED PRODUCTS 36	CTC2 211
DESCRIPTION:	These CTC Inventory Control for Finished Products Programs are part a total accounting system written by Computer Terminal Corporation f the HP 2000A. (See A706-36213 CTC Payroll Program, A708-36210 CTC Manufacturing Parts Control, A711-36214 CTC Accounts Receivable, A717-36212 CTC Projection Programs.) Abstracts of the 31 inventory control programs are on the following page along with an index to th documentation.	of or
INSTRUCTIONS:	Supplementary documentation is required. Order HP 36211, Option E for complete documentation.	000
SPECIAL CONSIDERATIONS:	This package was written for a 2000A with a non-standard disc. The file structure has 200 physical records per file. Teleprinter output is directed to a 132 column AB Dick printer. Non-printing control characters direct the cursor on the HP 2600A CR (The characters are ignored by a standard teletype.) These differences mean that the user will need to modify the softwar to run on a standard HP 2000A system. Although it will RUN without modification on an HP 2000C, its 64 word/record limitation makes inefficient use of the system.	T.
ACKNOWLEDGEMENTS:	Jackie Shelton Computer Terminal Corporation	

#### INDEX TO INVENTORY CONTROL FOR FINISHED PRODUCTS

#### I. INTRODUCTION

- A. Brief Description of Programs
- B. File Structure
  - l. Unit File
  - 2. Transaction File
  - 3. Customer Sort File
- II. PROGRAM INSTRUCTIONS
  - A. UPDTIC This program allows the user to add a new unit to the unit files or modify a unit already on the files. The user can delete a unit through the modification portion of the program. He can also view the information stored on a unit without making any changes.
  - B. ICPRT This program provides formatted output of the unit files. The user can specify the beginning and ending units. He can also control the type of listing to be made by entering values for these ten variables: vendor #, transaction type, sales location, vendor # location, lease status, field service location, terms, salesman, agreement #, and tax rate.
  - C. ICTPRT This program provides formatted output of the transaction file which keeps record of any changes made to the unit files.
  - D. TASOLD This program provides formatted output of those units which are leases sold to Trans-America. The user can specify the customer number interval he wants printed.
  - E. UPDTAQ This program allows the user to add several new units to the files at once. Their data items are the same except for product number, serial number, and the date.
  - F. EXLSE This program provides formatted output of leases expiring 'X' days from the current date. The user specifies the unit interval over which the program is to search and the number of days to expiration. Sales location and lease status are variable also.
  - G. OWNSUM This program summarizes the ownership of leased and sold units by product.
  - H. UNTSUM This program is a summary of ownership by individual units (leased). It calculates the remaining life of the lease, the remaining rental billing and the remaining maintenance billing for each unit.
  - I. STPRT User enters customer number unit locations (up to 50) to be printed for all products. All standard information is printed. User also specifies transaction, lease status and state name. He can determine the beginning and ending units to be searched also.
  - J. UNTDIS User enters a product type and serial number and the program displays all standard information stored on the specified unit.
  - K. CTCSUM The program is a summary of CTC individual leased units. A rental credit figure is calculated in addition to the information given in program UNTSUM (except invoice # and lease status). Totals are given at the end of each product.
  - L. ISFPRT User specifies a certain number of sales locations or field service locations over which the program should search for units to be printed. It takes one pass over the files for each location entered (limit of 25), user also can specify the transaction of the units to be printed.
  - M. SALPRT Print out of the unit files keyed on sales location. User enters the sales location he wants printed. A new page is started for each sales location. Customer name, transaction and lease status are in decoded form.
  - N. SUMALL The program gives a summary count of all units for each product by transaction type.
  - 0. SUMFS The program summarizes the sold and leased units for each product by sales location. Total units and maintenance is given for each location.
  - P. CUS1 The program prints the product number, serial number and transaction code of each unit on file which belongs to a user specified customer. The program can be used for only one customer per pass over the unit files.

INDEX TO INVENTORY CONTROL FOR FINISHED PRODUCTS

- Q. CUSSRT This program prints the units belonging to each customer on file. For each pass over the unit files, the units for 18 sequential customer numbers are found and printed, however, if a customer has over 352 units on file the program will abort. All information stored is printed for each unit found.
- R. ICCSRT This program sorts the units by customer number and agreement number. It sorts 20 customers at a time, placing the customer number and product/serial number of each unit belonging to the customer on the customer sort file. Several reports can be generated from this file.
- S. SALEXP Prints units expiring X days from the current date entered by sales location. The user enters the sales locations (up to 25) to be printed.
- T. ICTANL This program does an analysis on the transaction file. It finds each product/ serial number on the file and prints the final status of the unit as found on the unit files.
- U. FREUNT Prints the units (product/serial number) which are provided for in the files but are not yet in use.
- V. AGETRA This program ages the date found on each unit on file. The user has the following options: unit interval to be searched and transaction type. If the transaction type equals 2, the user needs to specify whether the customer number of the unit should be equal to 9999 or not equal to 9999.
- W. INSTLS Prints by product/serial number, the leased units on file whose date falls between a beginning and ending date inclusive specified by the user.
- X. TAPAY Picks up all TA units which are not leases. Prints product, serial number, date and invoice number for each unit found. Columns for lease period, net amount, tax rate, extended tax and total are given to be filled in by user.
- Y. PRT22 This program searches the unit files to find all customers which have 2200 products which are in transit, sold, or leased. The program then sorts them into customer number order and prints their name/addresses (formatted for labels).
- Z. AALSES Prints an analysis of annual leases for account 2801-2802. It picks up only annual leases belonging to TA or CTC. Remaining life and revenue of the lease is also calculated and printed.
- Z-1. CBIPRT This program prints the cycle billing each month. The program prints invoices for each customer falling in an interval specified by the user. It picks up the leased units only from the customer sort file. Thus, that file must be up to date when the cycle billing is run.
- Z-2. ICMODQ This program allows the user to quickly update a particular data item of several units. The user picks the data item he wants to modify and enters the product/ serial number and new value of each unit to be modified.
- Z-3. ICCPRT This program prints units by customer and agreement number as found on the customer sort file. The user can specify the transaction and lease status of the units to be printed.
- Z-4. NACBIL Prints the NAC leased units by customer as found on the customer/unit sort file.
- Z-5. EXLSEA Prints units expiring in X days by customer and agreement number as found on the customer/unit sort file.

#### III. APPENDIX

- A. General Procedures
- B. Serial Number Limits
- C. Data Entry Boundaries (Code Breakdown)

## BUSINESS AND MANUFACTURING APPLICATIONS (700) CONTRIBUTED PROGRAM **BASIC**

TITLE:	CTC PROJECTION PROGRAMS	CTC3 36212
DESCRIPTION:	These CTC Projection Programs are part of a total accounting syste by Computer Terminal Corporation for the HP 2000A. (See A706-3621 roll Program, A708-36210 CTC Manufacturing Parts Control, A711-362 Accounts Receivable, and A708-36211 CTC Inventory Control for Fini Projects.) Abstracts of the 10 projection programs are on the fol page along with an index to the documentation.	m written 3 CTC Pay- 14 CTC shed lowing
INSTRUCTIONS:	Supplementary documentation is required. Order HP 36212, Option for complete documentation.	1 DØØ
SPECIAL CONSIDERATIONS:	This package was written for a 2000A with a non-standard disc. The structure has 200 physical records per file. Teleprinter output is directed to a 132 column AB Dick printer. Non-printing control characters direct the cursor on the HP 2600A (The characters are ignored by a standard teletype.) These differences mean that the user will need to modify the softw run on a standard HP 2000A system. Although it will RUN without m tion on an HP 2000C, its 64 word/record limitation makes inefficie of the system.	e file CRT. Mare to Modifica- Int use
ACKNOWLEDGEMENTS:	Jackie Shelton Computer Terminal Corporation	

#### INDEX TO PROJECTION PROGRAMS

- I. INTRODUCTION
  - A. Brief Description of Programs
  - B. File Structure
    - Basic Input File (IN1)
    - 2. Intermediate File (IN2)
    - 3. Income Statement File (R1)
    - 4. Cash Flow File (R2)
    - 5. Balance Sheet File (R3)
- II. DETAILED INSTRUCTIONS TO PROGRAMS
  - A. INMAIN This program provides complete maintenance of the input file (IN2). The user can (1) create the input file, (2) modify any item of the input file, (3) obtain a listing of the input file, or (4) destroy the input file (set all values to zero).
  - B. IN2CAL This program calculates the intermediate file (IN2).
  - C. INST1 This program sets up the income statement file (R1). The user enters manual inputs needed which he can also modify. The user can indicate the month interval over which the program should calculate (1 to 48).
  - D. RIPRT This program sets up the income statement. User indicates the projected year to be printed and if he wants the listing by month or quarter.
  - E. PJPLAC The program shows the projected placement of each product by sale type; i.e., the number of units projected for each product. Totals are given at the end of each product. A separate listing of totals only is given at the end of the program.
  - F. CSHFLO This program sets up the projected cash flow file (R2). Manual inputs for initial and monthly items are needed which can be modified also. User indicates the month interval to be set up (1 to 48).
  - G. R2PRT This program prints the cash flow statement. User indicates the projected year to be printed and if he wants the listing by month or quarter.
  - H. BSHEET This program sets up the balance sheet file (R3). User can enter and modify begining balances. He also specifies the monthly interval (1 to 48) over which the file is to be set up.
  - I. R3PRT This program prints the balance sheet. User indicates projected year to be printed and if he wants the listing by month or quarter.
  - J. EXPROJ Allows the user to expand the data on the basic data file (IN1) and the monthly constants on the income statement file (R1) from a base year and month through year 4, month 12. This is done on a yearly % which eliminates the user manually inputting each quantity and constant.

#### III. APPENDIX

- A. Sales Types and Abbreviations Used (Listed in Order Stored)
- B. Product Model Numbers (Listed in Order Stored)
- C. Description of Intermediate File Calculations
- D. Income Statement Format and Calculations
- E. Income Statement Constants
- F. Cash Flow Format and Calculations
- G. Cash Flow Constants
- H. Balance Sheet Format and Calculations
- I. Balance Sheet Constants

### BUSINESS AND MANUFACTURING APPLICATIONS (700) CONTRIBUTED PROGRAM **BASIC**

TITLE:	CTC PAYROLL PROGRAMS	CTC4 36213
DESCRIPTION:	These CTC Payroll Programs are part of a total accounting system w by Computer Terminal Corporation for the HP 2000A. (See A717-36212 Projection Programs, A708-36210 CTC Manufacturing Parts Control, A711-36214 CTC Accounts Receivable, A708-36211 CTC Inventory Contry Finished Products.) Abstracts of the 34 payroll programs are on the following page along with an index to the documentation.	ritten 2 CTC ol for he
INSTRUCTIONS:	Supplementary documentation is required. Order HP 36213, Option for complete documentation.	n DØØ
SPECIAL CONSIDERATIONS:	This package was written for a 2000A with a non-standard disc. Th structure has 200 physical records per file.	e file
	Teleprinter output is directed to a 132 column AB Dick printer.	
	Non-printing control characters direct the cursor on the HP 2600A (The characters are ignored by a standard teletype.)	CRT.
	These differences mean that the user will need to modify the softw run on a standard HP 2000A system. Although it will RUN without m cation on an HP 2000C, its 64 word/record limitation makes ineffic of the system.	are to odifi- ient use
ACKNOWLEDGEMENTS:	Jackie Shelton Computer Terminal Corporation	

- Ι. INTRODUCTION
  - Brief Description of Each Program Α. Β.
    - Description of File Structure
      - Employee Data Base Files 1.
      - Employee Pay Records 2.
      - 3. Payroll Transaction File
      - 4. Auxiliary File
      - 5. Commission/Adjustment File
    - State/Department/Employee # Sort File 6.
    - 7. Alphabetic Sort File
    - 8. Employee Earnings History Files
- DETAILED DESCRIPTION OF EACH PROGRAM II.
  - Α. FADD Adds a new employee to the employee data base files. The employee number is assigned sequentially by the program beginning with number 1001.
  - EMOD Β. Modifies any item under the specified employee number in the employee data base files.
  - с. FFPRT Provides formatted output of the employee data base files.
  - Provides formatted output of the payroll transaction file which keeps record of D. ETPRT any changes made to the payroll files.
  - Ε. ESRT1 Sorts the employee names into alphabetical order printing the employee numbers in that order on a separate file.
  - F. ECAT Prints a cross reference employee catalogue. One listing prints the employee numbers in ascending order with their corresponding names; the other listing prints the employee names in alphabetical order with their corresponding numbers.
  - G. PAYPER Allows entry of the bi-weekly payroll hours, commissions, or adjustments.
  - Provides formatted output of the regular bi-weekly payroll hours entered with pro-Η. PAYPRF gram PAYPER.
  - Ι. PAYREC 1. Allows the clearing of all employee accrued vacation or accrued sick hours in the current pay records.
    - Allows the modification of any item of the current pay records (i.e., hours or earnings).
    - 3. Allows the initialization or modification of the accumulated quarter-to-date (QTD) and year-to-date (YTD) totals.
    - 4. Allows the clearing of all QTD, YTD, or both totals.
  - CLRAJ Clears the commission/adjustment file. All information on the file is lost. J.
  - Gives a proof of commissions entered with program PAYPER. The F.I.C.A., Federal, Κ. C/APRF 1. Disability, and Net Pay is figured during this run. User indicates when commissions are to be added to the QTD and YTD totals.
    - Gives a proof of adjustments entered with program PAYPER. User indicates when 2. adjustments are to be made to the QTD and YTD totals.
  - MODAJ Enables user to modify the commission and/or adjustments input with program PAYPER. 1.
  - Sorts all employee numbers on file into states and into departments within each Μ. ST/DPT state printing the state, department, and employee numbers on a file in that order.
  - Figures the current earnings, F.I.C.A., and Federal tax for the current bi-weekly payroll. This information is stored in each employee's current pay record. Ν. PAYFIG
  - Formatted print out of the information to be printed on the checks. Program assigns 0. CKREG check numbers and adjustments, commissions and YTD totals are included in the listing. Department, state, and company totals are given for both adjustments and the current pay (regular and commissions). Current pay is <u>not</u> added to QTD and YTD totals with this program!!
  - Ρ. EMPCNT Counts the number of active employees in each state giving a listing of this count.
  - Prints the QTD and YTD accumulated totals for all employees on file. 0. ACCPRT
  - R. **QTRLEG** Prints the quarterly payroll tax ledger required at the end of each quarter with state and company totals.
  - Prints the 941A forms required at the end of each quarter with state and company s. 941A totals.
  - W2FORM Prints the W-2 Forms required at the end of each year. Τ.
  - Prints (1) data base information of specified employee on labels, or (2) time card П. EMPLAB labels for all active, non-exempt employees.
  - ۷. EDIT Prints the payroll calculation edit required after each bi-weekly payroll run.

(continued on next page)

- II. DETAILED DESCRIPTION OF EACH PROGRAM (continued)
  - W. CURADD Adds the payroll for the current period to the QTD and YTD totals. It also places in the employee earings file each check amount, number, and date issued an employee that current pay period (regular check, adjustment check, and commission check). This should be run after the check register and before the checks are printed.
  - X. EMPDEL Deletes employees from the payroll files. User can also instruct the program to pick up all the deleted employee numbers so they can be re-assigned to new employees with program EADD. This program should be run at the end of each year.
  - Y. LABDIS Prints the labor distribution report required after each bi-weekly payroll run.
  - Z. CKPRT Prints checks for either the regular payroll or the commissions.
  - Z-1. WKCOMP Prints the workman's compensation distribution report required at the end of each bi-weekly payroll.
  - Z-2. ERNHIS The program provides 3 user options: (1) a complete earnings history for each employee on file, (2) an earnings history for one particular employee only, or (3) to clear the earnings history files for a new quarter.
  - Z-3. SALREV This is a special report which prints the information stored in the data base files which pertains to each employee's salary. User enters the department numbers of those he wants printed.
  - Z-4. VACSIC The user has 2 options: (1) to add the monthly accrued vacation and sick hours to each employee's pay records, or (2) to deduct the vacation and sick hours earned during the current pay period from the accrued vacation and sick hours.
  - Z-5. VSPRT This program gives formatted output by state and department of each employee's accrued vacation and sick hours. State and company totals are given also.
  - Z-6. INTVS Allows user to quickly initialize the vacation or sick accrued hours of specified employees.
  - Z-7. CKA/C Prints a check register on commissions and adjustments only.
- III. APPENDIX
  - A. General Procedures
  - B. Bi-Weekly Payroll Procedures
  - C. Quarterly Procedures
  - D. Yearly Procedures
  - E. List of State Codes and Corresponding Cut-offs
  - F. Department Codes

# BUSINESS AND MANUFACTURING APPLICATIONS (700) CONTRIBUTED PROGRAM **BASIC**

	CTC5 CTC ACCOUNTS RECEIVABLE 36214
DESCRIPTION:	These CTC Accounts Receivable programs are part of a total accounting system written by Computer Terminal Corporation for the HP 2000A. (See A717-36212 CTC Projection Programs, A706-36213 CTC Payroll Programs, A708-36210 CTC Manufacturing Parts Control, A708-36211 Inventory Control for Finished Products.) Abstracts of the 13 accounts receivable programs are on the following page along with an index to the documentation.
INSTRUCTIONS:	Supplementary documentation is required. Order HP 36214, Option DØØ for complete documentation.
SPECIAL CONSIDERATIONS:	This package was written for a 2000A with a non-standard disc. The file structure has 200 physical records per file. Teleprinter output is directed to a 132 column AB Dick printer. Non-printing control characters direct the cursor on the HP 2600A CRT. (The characters are ignored by a standard teletype.) These differences mean that the user will need to modify the software to run on a standard HP 2000A system. Although it will RUN without modifica- tion on an HP 2000C, its 64 word/record limitation makes inefficient use of the system.
ACKNOWLEDGEMENTS:	Jackie Shelton Computer Terminal Corporation

### INDEX TO ACCOUNTS RECEIVABLE

### I. INTRODUCTION

- A. Brief Description of Programs
- B. File Structure
  - 1. Name File
  - Invoice File 2.
  - Transaction File 3.
  - 4. Alphabetic File

  - Auxiliary File
     Accounting Distribution File
- C. File Set Up Procedures
- II. DETAILED INSTRUCTIONS TO PROGRAMS
  - A. INV Provides (1) entry of new invoices, credit invoices and payments or (2) modification of existing invoices under a specified customer number.
  - CUSADR Allows user to add a new customer to the name/address file or modify the name/address Β. of a customer already on file.
  - Provides three types of formatted listings of the files: (1) an aged listing of CTC C. NEWAGE owned invoices only, (2) an aged listing of TA owned invoices only, and (3) an aged listing of all invoices on file. The user can obtain a listing of all customers, one customer, or just the grand total of the type of listing specified.
  - Provides the formatted output of two catalogues: (1) a customer number-name/address-listing and (2) a customer name/address-number alphabetical listing. CATLOG D.
  - E. SORT2 Sorts the name file into alphabetical order printing the customer numbers in that order on a separate file which is used in Program--CATLOG.
  - NEWTRA Provides (1) formatted output of the entire accounting transaction file and (2) F. formatted output of just the LAST X transactions on file.
  - Provides additional formatted output of the transaction file. It picks up only G. ACCLEG those transactions which are new invoices, credit invoices, payments or deletions made with Program--INV. Totals are given at the end of the listing to enable the user to check for data entry errors.
  - Ages the top X customers who have accounts more than 60 days over due. User AGETOP н. specifies the top X he wants aged up to 50.
  - Ages a specified interval or group of customer numbers placing each customer's Ι. AGEPG aging on a separate page with separate headings. No grand totals are given.
  - Ages invoices over 60 days old only. The program prints the aging in order of J. AGE60 of customer number. Grand totals are given at the end.
  - Prints customer names and addresses on mailing labels. The labels may be in order ARNLAB Κ. of customer number or alphabetically.
  - Allows the user to (1) input account data groups onto the account distribution ARINPT L. file or (2) obtain a formatted listing of the account distribution file.
  - M. ARSORT Sorts the account data groups on the account distribution file by account number or reference number. Only 350 groups can be sorted at one time.

## BUSINESS AND MANUFACTURING APPLICATIONS (700)

CONTRIBUTED PROGRAM **BASIC** 

TITLE:	CTC ACCOUNTS PAYABLE	36 <b>63</b> 8
DESCRIPTION:	These CTC Accounts Payable programs are part of a total accounting written by Computer Terminal Corporation, now named Datapoint Corpo (See also A706-36213 CTC Payroll Program, A717-36212 CTC Projection grams, A711-36214 CTC Accounts Receivable, A708-36211 CTC Inventory for Finished Products, and A708-36210 CTC Manufacturing Parts Contr Abstracts of the 24 accounts payable programs are on the following along with an index to the documentation.	system ration. Pro- Control ol.) page
INSTRUCTIONS:	Supplementary documentation is required. Order HP 36638, Option for complete documentation.	DØØ
SPECIAL CONSIDERATIONS:	This package was written for a 2000A with a non-standard disc, but been modified to run on a 2000F.	has
	Teleprinter output may be directed to a 132 column AB Dick, or equi lent printer.	va-
	Non-printing control characters direct the cursor on the HP 2600A C (The characters are ig <b>nor</b> ed by a st <b>an</b> dard teletype.)	RT.
	Programs APDTAP and APDSTP make use of a Datapoint 2200 Computer wi cassette tape facilities. They are included in this package as an tional feature for any users who have this capability.	th op-
	These differences mean that the user will need to modify the softwa run on a standard HP 2000A system. Although it will RUN without mo cation on an HP 2000C, or 2000C'/F, its 64 word/record limitation m inefficient use of the system.	re to difi- akes
ACKNOWLEDGEMENTS:	Jackie Shelton	

Datapoint Corporation

С.

- I. INTRODUCTION
  - A. Brief Description of Programs
  - B. File Structure
    - 1. Name/Address File
    - 2. Daily Input File
    - 3. Checks Held File
    - 4. Check History File
    - 5. Auxillary Data and Name Sort File
    - 6. Scratch Files File Set Up Procedures
- II. Detailed Program Instructions
  - A. APNAME This program allows the user to enter new vendors into the name/address file or modify the name/address of a vendor already on file.
     B. APNSRT This program sorts the vendor names into alphabetical order printing the vendor numbers in that order on the auxiliary data and sort file.
  - C. APNCAT With this program, the user can obtain (1) a formatted catalogue of vendor number order or alphabetically; or (2) a list of all vendor numbers not in use.
  - D. APCHIS This program prints the check history of all vendors who have one. User specifies the vendor number interval to be printed.
  - E. APCHPT This program allows the user to obtain (1) a quick display of all checks in the checks held file for a particular vendor or (2) a formatted print out of the checks held by vendor type and vendor number or (3) a grand total only of check amounts on the file.
  - F. APINPT/ This program allows the user to input invoices for vendors on file, modify APIPRT invoices already on the input file, print the input file (in order of entry), or clear all data from the input file. (Chains to APIPRT)
  - G. APCKRG This program prints the check register. Auto checks (checks printed by the computer) are listed first with a total amount at the end. Hand written checks follow with a total amount also. A total of both auto and hand checks is given at the end. The check numbers are assigned to each invoice with Program--APCKAS. When that program is finished, it automatically runs APCKRG. However, APCKRG can be run alone if the check numbers have been assigned.
  - H. APCKPT This program prints the auto checks found on the check register. Proper check forms need to be loaded into the printer. The two programs have slightly different formatting.
  - I. APDIST This program prints an account distribution determined from the account numbers of the invoices on the input file. Totals for each account number and a grand total are also given.
  - J. APADCH This program adds each check found on the check register to the checks held file. This should be run only after a correct check register has been obtained.
  - K. APPERG This program allows the user to delete checks from the checks held file. The user indicates if the checks to be deleted are voided or released and then enters the checks he wants purged. The program deletes the checks from the checks held file and adds them to the check history file if there is an appropriate history.
  - L. APCKAS This program assigns auto check numbers to the invoices on the input file. When all check numbers have been assigned, the program will go on to print the check register (Program--APCKRG).
  - M. APCH#P This program prints the checks held file in check number order.
  - N. APDTAP/ APDSTP This program prints an account distribution as in program APDIST. However, at the end of the distribution report, APDTAP chains to APDSTP which prints an 80 character string (general ledger entry) for each account number, grand total, and batch total of the distribution on a cassette tape in the front deck of a 2200 version II machine.
  - 0. APNLAB This program prints vendor name/addresses on tab labels in vendor number or alphabetical order, or prints a group of user specified vendor numbers.
  - P. APCHAG This program provides the user with an aging of the checks held file in order of vendor number.
  - Q. APCHGA This program ages the checks held file as in program APCHAG but prints the grand totals only.
  - R. APAGV/ APAGVP APAGVP APAGVP APAGVP APAGVP the checks held file as in APCHAG; however, this aging is sorted by vendor type also.

- S. APAGPG Ages the checks held file by vendor placing each vendor on a separate page. The user may specify an interval or group of vendor numbers he wishes to be aged.
- T. CTC6 This program may be used to initialize the files. Just GET and RUN CTC6 to perform the initialization.

BUSINESS AND MANUFACTURING APPLICATIONS (700)

	DEPRECIATION METHOD COMPARISON	DEPCOM 36082
DESCRIPTION:	This program computes and prints the monthly depreciation of a give investment by four methods: straight line, double declining balance sum-of-the-year's-digits, and 150% declining balance, and provides output for easy, direct comparison.	n , an
INSTRUCTIONS:	After RUN, DEPCOM is mostly self-explanatory. If the user is familiar with the program, and would rather use READ statements than INPUT statements, alter the program as follows: 9003 READ Z\$,I1,S1,L1,A1,Z1,R,Y 9005 GOTO 9088 9900 DATA Y if yearly summary, N if not, investment salvage value, life, month, year of investment, rate of return, option indication.	1
SPECIAL CONSIDERATIONS:	Depreciable life must be an integer greater than one and less than (To alter high value, change dimension statements for A,B,C,D,H,I,C in lines 9112 and 9114, and check in line 9046.)	76. Ј,К
ACKNOWLEDGEMENTS: I		

DEPCOM, page 2

#### RUN

GET-SDEPCOM RUN DEPCOM

**** DEPRECIATION METHOD COMPARISON **** 

THIS PROGRAM COMPUTES AND PRINTS DEPRECIATION BY MONTHS BY FOUR METHODS: STRAIGHT LINE, DOUBLE DECLINING BALANCE, SUM-OF-THE-YEARS-DIGITS, AND 150 PERCENT DECLINING BALANCE.

IF ONLY A YEARLY SUMMARY IS DESIRED TYPE Y, OTHERWISE N.  $?\mathsf{N}$ 

WHAT IS THE AMOUNT OF YOUR INVESTMENT ?? 35000

WHAT IS THE SALVAGE VALUE ?? 15000

WHAT IS THE DEPRECIABLE LIFE (IN YEARS)??5

IN WHICH MONTH, AND IN WHICH YEAR, IS YOUR INVESTMENT MADE? (PLEASE ENTER AS MM, 19YY)?7, 1969

WHAT IS THE DISCOUNT RATE (IN DECIMAL NOTATION) FOR COMPUTING THE PRESENT VALUE OF THE ANNUAL DEPRECIATION??.15

YOU HAVE THE OPTION TO SWITCHOVER FROM THE DOUBLE DECLINING BALANCE METHOD TO THE STRAIGHTLINE METHOD AT APPROPRIATE TIMES. TO PREVENT ANY SWITCHOVER PLEASE TYPE Ø. TO SPECIFY A SPECIFIC YEAR OF SWITCHOVER, PLEASE TYPE THE YEAR. TO OBTAIN AN AUTOMATIC SWITCHOVER WHEN THE ANNUAL STRAIGHTLINE DEPRECIATION BECOMES GREATER THAN THE DOUBLE DECLINING BALANCE VALUE, PLEASE TYPE 1.?1

DA	TE	STRA I GHTL INE	DBL DECLINING	SUM-OF-THE	150% DECLINING
YR	MO		BALANCE	YEARS '-DIGITS	BALANCE
1969	1	0	0	Ø	0
1969	2	0	0	0	Ø
1969	3	0	Ø	0	0
196 <b>9</b>	4	0	0	0	Ø
196 <b>9</b>	5	0	0	0	0
1969	6	0	0	Ø	0
1969	7	0	0	0	0
1969	8	333+333	666•667	555•556	500
1969	9	333+333	666•667	555+556	500
1969	10	333•333	666•667	555+556	500
196 <b>9</b>	11	333+333	666•667	555+556	500
19 <b>69</b>	12	333+333	666•667	555•556	500
TOTAL	1969	1666•67	3333•33	2777•78	2500
CUM DE	PR	1666•67	3333•33	2777•78	2500
UNDEPR	BAL	18333+3	16666•7	17222•2	17500
1970	1	333+333	666•667	555•556	500
1970	2	333+333	666•667	555•556	500
1970	3	333•333	666•667	555•556	500
1970	4	333•333	666•667	555•556	500
1970	5	333•333	666•667	555+556	500
1970	6	333•333	666•667	555+556	500
1970	7	333•333	666•667	555•556	500
1970	8	333•333	400	444.444	350
1970	9	333+333	400	444.444	350
1970	10	333•333	400	444.444	350
1970	11	333+333	400	444.444	350
1970	12	333+333	400	444•444	350
TOTAL	1970	4000•	6666•67	6111•11	5250
CUM DE	PR	5666•67	10000	8888•89	7750
UNDEPR	BAL	14333+3	10000	11111•1	12250

*******					
1971	1	333.333	400	444.444	350
1971	2	333.333	400	AAA . AAA	350
1971	2	333.333	400		250
1071	5	222-222	100		350
1971	7	333+333	400	444+444	350
17/1	5	333+333	400	444+444	350
1971	6	333+333	400	444.444	350
1971	7	333•333	400	444.444	350
1971	8	333•333	200	333+333	245
1971	9	333•333	200	333+333	245
1971	10	333.333	200	333+333	245
1971	11	333.333	200	333.333	245
1971	12	333.333	200	333,333	245
	16	333+333	200	333+333	245
TOTAL 16	.7.	1000	2844	A777 78	2475
IVIAL IS		4000*	3800	4///0/8	3013
		0/// /7	10000		
COM DEFR	C	9000+0/	13800	13066+7	11425
UNDEPR E	BAL	10333•3	6200	6333•33	8575
*******					
1972	1	333+333	200	333+333	245
1972	2	333+333	200	333+333	245
1972	3	333.333	200	333,333	245
1972	Ă	333,333	200	333,333	245
1970	-	333+333	000	333+333	245
1972	5	333+333	200	333+333	245
1972	6	333+333	200	333+333	245
1972	7	333•333	200	333•333	245
1972	8	333+333	200	222+222	171.5
1972	9	333+333	200	222+222	171.5
1972	10	333+333	200	222.222	171.5
1972	11	333.333	200	222.222	171.5
1972	12	222.222	200	222,222	171.5
1772	12	333+333	200	222.4222	171.05
			<b>A</b> 1 <b>A A</b>	• • • • • • •	
IUTAL IS	112	4000•	2400	3444•44	2212+2
	_				
CUM DEPR	2	13666 • 7	16200	17111•1	13997•5
UNDEPR E	BAL	6333•33	3800	2888•89	6002•5
1973	1	333.333	200	222.222	171.5
1973		333,333	200	222,222	171.5
1973	2	333+333	200	222 • 222	171+5
1773	3	333+333	200	222+222	171+5
1973	4	333+333	200	222.222	1/1+5
1973	5	333+333	200	222+222	171+5
1973	6	333•333	200	222.222	171•5
1973	7	333•333	200	222+222	171+5
1973	8	333•333	200	111.111	120.05
1973	9	333+333	200	111.111	120.05
1973	10	333.333	200	111.111	120.05
1973	11	333.333	200	111.111	120.05
1973	10	222.222	200	111-111	100.05
17/3	12	333+333	200	111+111	120.03
	.70		0.000	<b></b>	
IUTAL IS	//3	4000•	2400	2111.11	1800 • 75
~~~~					
CUM DEPR	C C	1/666+7	18600	19222+2	15798+2
UNDEPR E	BAL	2333•33	1 400	777•781	4201 • 75
1974	1	333•333	200	111.111	120.05
1974	2	333+333	200	111.111	120.05
1974	3	333.333	200	111-111	120.05
1974	Ă	333,333	200	111.111	120-05
1074	-	333-333	200	111.111	100.05
17/4		222+233	600	111+111	120.03
17/4	0	333+333	200	111+111	120.05
1974	1	333+333	200	111+111	120.05
1074		0	Ø	Ø	0
17/4	8	-	Ø	Ø	Ø
1974	8 9	0		-	
1974 1974	8 9 10	0	0	0	0
1974 1974 1974 1974	8 9 10 11	0 0	0	0 0	0 0
1974 1974 1974 1974	8 9 10 11 12	0 0 0	0 0 0	0 0 0	0 0 0
1974 1974 1974 1974	8 9 10 11 12	0 0 0	0 0 0	0 0 0	0 0 0
1974 1974 1974 1974 1974	8 9 10 11 12 974	0 0 0 2333•33	0 0 0 1 400	0 0 0 777-778	0 0 840-35
1974 1974 1974 1974 1974 TOTAL 19	8 9 10 11 12 974	0 0 0 2333•33	0 0 0 1 400	0 0 777.778	0 0 840•35
1974 1974 1974 1974 1974 TOTAL 19	8 9 10 11 12 974	0 0 0 2333•33 20000	0 0 1 400 2000	0 0 777.78 20044 -	0 0 840•35
1974 1974 1974 1974 1974 TOTAL 19 CUM DEPR	8 9 10 11 12 974	0 0 0 2333•33 20000	0 0 1 400 20000	0 0 777.778 20000.	0 0 840•35 16638•6
1974 1974 1974 1974 1974 TOTAL 19 CUM DEPR	8 9 10 11 12 974 8	0 0 0 2333•33 20000	0 0 1 400 20000	0 0 777.778 20000.	0 0 840•35 16638•6 3361•4

THE PRESENT VALUE OF THE DEPRECIATION AT THE BEGINNING OF 1969 AT •15 IS AS FOLLOWS: 13408•6 14729•5 14647•5 12219•2

.

DONE

TITLE:	DISCOUNTED RETURN ON INVESTMENT AND PAYBACK 36179		
DESCRIPTION:	DROIPB is a BASIC language program for calculating Discounted Return on Investment and PayBack.		
INSTRUCTIONS:	1. The program will first ask for INITial INVestment, which you should enter without commas between thousands and hundreds (because commas are input delimiters), followed by carriage return. Then you will be asked to type in LIFE of the investment, which you should also follow by carriage return.	1	
	2. After initial investment and life, you will be asked for CAPital COST and DEPReciable LIFE (YRS) in separate queries. The CAP COST query is repeated, allowing you to enter the total investment in smaller parts, each with its own depreciable life. When you've typed in the last CAP COST and DEPR LIFE you wish to enter, type a zero in response to the CAP COST query to continue with the remaind of the program.	ier	
	NOTE: Do not enter a depreciable life greater than the useful LIFE typed in answer to the second query.		
	3. The program next lists three choices of depreciation method and 'asks' you which method you want to use in figuring return on investment and payback. For straight line depreciation, you would type in a 'l', as in the Program Use Example. For double declining balance to straight line depreciation, you would type a '2', and for sum-of-years digits depreciation, you would type a '3'.])r	
	4. The next step is entry of cash flow figures for each year of the investment's useful LIFE. As with all the other queries, your answers must be followed by carriage return.		
	5. After you type in your answer to the TAX RATE %? query and carriage return, the program prints out interim calculations of depreciation, taxable income, taxes, and cash flow after tax. If you are using depreciation method 2 or 3, depreciation may be greater than first or even second year cash flow. When that is true the DROIPB program lists a negative taxable income for the investme and adds the reduction in taxes to cash flow after taxes. When the investment is recovered, the program types out years to payback and rate or return, as shown in the example. If the investment is not recovered, the program tells you so, along with other information.	ie, ent	
ACKNOWLEDGEMENTS:	Ted Proske Hewlett-Packard/Automatic Measurements Division		

RUN

RUN DROIPB * DISCOUNTED RETURN ON INV * INIT INV \$:?129876.80 LIFE (YRS):?7 CAP COST \$:?120200 DEPR LIFE (YRS):?5 CAP COST \$:?9676.7-80 DEPR LIFE (YRS):?1 CAP COST \$:?0 DEPR METHODS: 1. STRT LINE, 2. DBL DECL BAL TO STRT LINE, 3. SUM OF YRS DIGITS. *** USE METHOD NO.:?1 CASH FLOW ?125314.56 YEAR 1 YEAR 2 ?150377.47 ?169174.66 YEAR 3 ?169174.66 YEAR 4 YEAR 5 ?169174.66 YEAR 6 ?169174.66 YEAR 7 ?169174.66 TAX RATE \$?52 CASH FLOW TAXES CASH FLOW DEPR TAXABLE INCOME AFTER TAX 33716.8 125315. 91597.8 47630.8 77683.7 150377. 24040 126337. 65695.5 84682. 169175. 24040 145135. 75470. 93704.6 169175. 24040 145135. 75470. 93704.6 169175. 24040 145135. 75470. 93704.6 87970.8 81203.8 169175. 169175. Ø 169175. ø 169175. 87970.8 81203.8

YEARS TO PAY BACK = 1.61634 RATE OF RETURN = 62.8425 %

DONE

BUSINESS AND MANUFACTURING APPLICATIONS (700)

TITLE:	COST OF EQUITY CAPITAL EQUITY 36083
DESCRIPTION:	EQUITY computes the cost of equity capital by computing the dividends and the share price for future periods, and finds the discount rate by equating the present value of the stream to the current share price.
INSTRUCTIONS:	The user must enter the following values: P = current price per share D(I) = current dividend per share N = number of growth segments (each segment is assumed to have a different growth rate, and may cover one or more periods). G(I) = for each segment the growth rate in decimal L(I) = for each segment the last period covered by the growth rate of that segment
SPECIAL CONSIDERATIONS:	 20 growth segments, and 100 periods To increase, change dim-statements in lines 9105 and 9110 2. 100 iterations on the search and compare routine
ACKNOWLEDGEMENTS:	
RUN GET-SEQUITY RUN EQUITY

* COST OF EQUITY CAPITAL *

THIS PROGRAM WILL COMPUTE THE COST OF EQUITY CAPITAL BY COMPUTING DIVI-DENDS AND THE SHARE PRICE FOR FUTURE PERIODS, (BASED ON THE GORDON MODEL), AND THEN FIND THE DISCOUNT RATE BY EQUATING THE PRESENT VALUE OF THE STREAM TO THE CURRENT SHARE PRICE.

PLEASE ENTER THE CURRENT PRICE/SHARE, AND DIVIDEND/SHARE?1 +00,10

HOW MANY GROWTH SEGMENTS ARE THERE?8

FOR EACH GROWTH SEGMENT, ENTER THE GROWTH RATE IN DECIMAL, & THE LAST EFFECTIVE PERIOD FOR STOP RUN EQUITY

* COST OF EQUITY CAPITAL *

THIS PROGRAM WILL COMPUTE THE COST OF EQUITY CAPITAL BY COMPUTING DIVI-DENDS AND THE SHARE PRICE FOR FUTURE PERIODS, (BASED ON THE GORDON MODEL), AND THEN FIND THE DISCOUNT RATE BY EQUATING THE PRESENT VALUE OF THE STREAM TO THE CURRENT SHARE PRICE.

PLEASE ENTER THE CURRENT PRICE/SHARE, AND DIVIDEND/SHARE?100,10

HOW MANY GROWTH SEGMENTS ARE THERE?8

FOR EACH GROWTH SEGMENT, ENTER THE GROWTH RATE IN DECIMAL, & THE LAST EFFECTIVE PERIOD FOR EACH SEGMENT. SEGMENT 1 ?.02,2 SEGMENT 2 ? . 03, 4 SEGMENT 3 SEGMENT 4 ? . 04,6 ? . 05, 10 SEGMENT 5 ?.06,12 SEGMENT 6 ? . 07, 15 SEGMENT 7 ? . 08,20 SEGMENT 8 ? . 10,25

A SHARE PRICE OF \$ 100 , DIVIDEND OF \$ 10 , AND INITIAL GROWTH RATE OF 2 %, YIELD A COST OF EQUITY CAPITAL OF 15.74 PERCENT.

DO YOU WISH TO RUN SOME DIFFERENT DATA? ENTER '0' FOR ALL NEW INFORMATION. ENTER '1' FOR SAME SHARE PRICE & DIVIDEND, NEW GROWTH RATES OR PERIODS. ENTER '2' FOR SAME GROWTH RATES & PERIODS, NEW SHARE PRICE OR DIVIDEND. ENTER '3' TO TERMINATE. ?2

PLEASE ENTER THE CURRENT PRICE/SHARE, AND DIVIDEND/SHARE?100,5

A SHARE PRICE OF \$ 100 , DIVIDEND OF \$ 5 , AND INITIAL GROWTH RATE OF 2 %, YIELD A COST OF EQUITY CAPITAL OF 12.45 PERCENT.

DO YOU WISH TO RUN SOME DIFFERENT DATA? ENTER '0' FOR ALL NEW INFORMATION. ENTER '1' FOR SAME SHARE PRICE & DIVIDEND, NEW GROWTH RATES OR PERIODS. ENTER '2' FOR SAME GROWTH RATES & PERIODS, NEW SHARE PRICE OR DIVIDEND. ENTER '3' TO TERMINATE. ?3

BUSINESS AND MANUFACTURING APPLICATIONS (700)

CONTRIBUTED PROGRAM BASIC

TITLE:	EXTENDED RISK ANALYSIS
DESCRIPTION:	Dependent upon a number of estimates, EXDRSK performs an extended risk analysis, determining the advantages or disadvantages involved in making certain financial investments. The output is in the form of the average cash flows per future period, the expected payback period, the expected rate of return, and the probability of various rates of return.
INSTRUCTIONS:	<pre>In order to determine the potential risk involved in making a given invest- ment, some estimates of expenditures are needed for future periods. Eight factors are considered: 1. Investment amount 2. Market Size (units) 3. Selling price/unit 4. Share of market 5. Variable costs (\$/unit) 6. Fixed cost (\$/period) 7. Useful life (periods) 8. Residual value For each factor you will be asked to give 3 estimates. The first is the value which you think the factor has only one chance in ten of falling below that is, a low guess. The second estimate should be that which you believe to be the most likely. The third is that which you figure the factor has only one chance in ten of exceeding. Thus the estimates should be typed: '*FACTOR X: low, most likely, high'.</pre>
ACKNOWLEDGEMENTS:	

RUN

GET-EXDRSK RUN EXDRSK

* EXTENDED RISK ANALYSIS *

DEFINITION OF FACTORS

NUMBER	FACTOR
1	INVESTMENT
2	MARKET SIZE (UNITS)
3	SELLING PRICE PER UNIT
4	SHARE OF MARKET
5	VARIABLE COSTS (\$/UNIT)
6	FIXED COST (\$/PERIOD)
7	USEFUL LIFE (PERIODS)
8	RESIDUAL VALUE
0	RESIDUAL VALUE

IF PRICE, SALES AND OPERATING COSTS ARE INTERDEPENDENT Type 1; Otherwise, type 0?1

DO YOU NEED INPUT INSTRUCTIONS? (Y OR N)?Y

FOR EACH FACTOR YOU WILL BE ASKED TO GIVE 3 ESTIMATES. THE FIRST IS THE VALUE WHICH YOU THINK THE FACTOR HAS ONLY ONE CHANCE IN TEN OF FALLING BELOW -- THAT IS, A LOW GUESS. THE SECOND ESTIMATE SHOULD BE THAT WHICH YOU BELIEVE TO BE THE MOST LIKELY. THE THIRD IS THAT WHICH YOU FIGURE THE FACTOR HAS ONLY ONE CHANCE IN TEN OF EXECEEDING.

THUS THE ESTIMATES SHOULD BE TYPED: ** FACTOR X: LOW, MOST LIKELY, HIGH*

E١	TER ESTIM	ATE	S	FOR:
*	FACTOR 1		:	
	PERIOD	1		?6000,10000,13000
	PERIOD	3		?10000,15000,18000
	PERIOD	5		?1000,3000,5000
	PERIOD	7		?0,1000,3000
*	FACTOR 2	•	:	
	PERIOD	1		?0,0,0
	PERIOD	З		?0,500,750
	PERIOD	5		?500,3500,4000
	PERIOD	7		?2000,5000,6500
*	FACTOR 3		:	
	PERIOD	1		?0,0,0
	PERIOD	3		?5,75,100
	PERIOD	5		?50,50,50
	PERIOD	7		?50,50,50
*	FACTOR 4		:	
	PERIOD	1		?0,0,0
	PERIOD	3		?•05••075••10
	PERIOD	5		?•075••10••15
	PERIOD	7		? • 10 • • 15 • • 25
*	FACTOR 5		:	
	PERIOD	1		?50,75,100
	PERIOD	3		?40,70,90
	PERIOD	5		?30,40,50
	PERIOD	7		?20,25,30
*	FACTOR 6		:	
	PERIOD	1		?1000,1500,2000
	PERIOD	3		?1000,1500,2000
	PERIOD	5		?500,750,1000
	PERIOD	7		?450,700,850
*	FACTOR 7		:?	15,20,25
*	FACTOR 8		:?	0 • • 0 • 0

SIMULATION ITERATIONS FOLLOW. AFTER EACH INTERNAL ITERATION A '-' WILL BE PRINTED. USUALLY 20 ITERATIONS ARE NECESSARY. PLEASE BE PATIENT!

----• • --• ------_ -AVERAGE CASH FLOWS -- 20 SIMULATIONS PERIOD 1 -11010-1 PERIOD 2 -1997.07 PERIOD 3 -16100.5 PERIOD 4 -1557.01 PERIOD 5 -684.212 PERIOD 6 10012.9 PERIOD 7 25352.7 PERIOD 8 23504+1 PERIOD 9 21835.8 PERIOD 10 22715.5 PERIOD 11 24369.5 PERIOD 12 29071.9 PERIOD 13 21144. PERIOD 14 19676•4 PERIOD 15 23934.7 EXPECTED PAYBACK PERIOD BETWEEN 1 AND 2 PERIODS. EXPECTED RATE OF RETURN .29209 RATE OF RETURN PROBABILITY -•15 ø Ø - • 1 -.05 Ø Ø ø •05 ø • 1 Ø •15 Ø Ø •2 •25 •15 •85 • 3 TYPE 1 IF YOU WANT AVERAGE VALUES PRINTED FOR FACTORS 1-6; OTHERWISE 0?1 FACTOR AVERAGE VALUE PERIOD 9526.49 1 1 Ø 2 1 14255.5 3 1 1 ø 4 3056.95 5 1 1 ø 6 1487.59 7 1 1285.99 8 1 1140.59 9 1 1013.91 10 1 1 1621.54 11 1479.5 12 1 1193.32 1 13 1 1424.61 14 1361.03 15 1 2 1 Ø 248.333 2 2 2 469 • 456 3 2 1617.31 4

~		
2	2448•23	5
2	3325.08	6
<u> </u>	0020000	0
2	4836+89	1
2	4430.28	8
2	1261.9	9
2	420407	
2	4411•69	10
2	4721.97	11
ō	5092.40	10
2	3003+47	12
2	4412•26	13
2	4157.02	14
-	A7E9 /9	16
2	4/30 • 60	15
з	a	1
5		
3	29+5523	2
3	59 • 4255	3
2	50.0049	Δ
3	32.0700	4
3	50	5
3	50	6
2	50	7
3	50	1
3	50	8
3	50	9
	50	10
3	50	10
3	50	11
3	50	12
	e a	
3	30	15
3	50	14
3	50	15
5	50	1
4	Ø	1
A	4.750125-00	0
4	4.130132-02	2
4	9•48336E-02	3
4	• 119901	4
	107/05	c
4	•13/695	2
4	•185985	6
4	. 229494	7
→	00(450	a
4	•226453	8
4	•227589	9
4	•21975	10
<u>^</u>	. 229488	11
-	•227800	
4	•231371	12
4	·222942	13
۵	.211108	14
-	•211100	17
4	• 22 / 492	15
5	77.7686	1
5	70.0801	0
	10.7021	
5	66+9793	3
5		
5 5	50.8399	4
5 5 5	50.8399 10.5705	4
5 5 5	50•8399 40•5705	4 5
5 5 5 5	50•8399 40•5705 32•5466	4 5 6
5 5 5 5 5 5	50 • 8399 40 • 5705 32 • 5466 25 • 38 45	4 5 6 7
5 5 5 5 5 5 5	50.8399 40.5705 32.5466 25.3845 24.455	4 5 6 7
5 5 5 5 5 5	50+8399 40+5705 32+5466 25+3845 24+455	4 5 6 7 8
5 5 5 5 5 5 5 5	50+8399 40+5705 32+5466 25+3845 24+455 25+2716	4 5 6 7 8 9
5 5 5 5 5 5 5 5 5 5	50+8399 40+5705 32+5466 25+3845 24+455 25+2716 25+2716 25+3307	4 5 6 7 8 9 10
5 5 5 5 5 5 5 5 5 5 5	50+8399 40+5705 32+5466 25+3845 24+455 25+2716 25+3307 25+204	4 5 6 7 8 9 10
5 5 5 5 5 5 5 5 5	50.8399 40.5705 32.5466 25.3845 24.455 25.2716 25.3307 25.204	4 5 6 7 8 9 10 11
5 5 5 5 5 5 5 5 5 5 5 5 5 5	50.8399 40.5705 32.5466 25.3845 24.455 25.2716 25.3307 25.204 23.1036	4 5 6 7 8 9 10 11 12
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	50.8399 40.5705 32.5466 25.3845 24.455 25.2716 25.3307 25.204 23.1036 25.7729	4 5 6 7 8 9 10 11 12 13
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	50.8399 40.5705 32.5466 25.3845 24.455 25.2716 25.3307 25.204 23.1036 25.7729 25.0214	4 5 6 7 8 9 10 11 12 13 14
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	50.8399 40.5705 32.5466 25.3845 24.455 25.2716 25.2307 25.204 23.1036 25.7729 25.0214	4 5 6 7 8 9 10 11 12 13 14
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	50.8399 40.5705 32.5466 25.3845 24.455 25.2716 25.3307 25.204 23.1036 25.7729 25.0214 25.9379	4 5 6 7 8 9 10 11 12 13 14 15
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	50.8399 40.5705 32.5466 25.3845 24.455 25.2716 25.3307 25.204 23.1036 25.7729 25.0214 25.9379	4 5 6 7 8 9 10 11 12 13 14 15
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	50.8399 40.5705 32.5466 25.3845 24.455 25.2716 25.204 23.1036 25.7729 25.0214 25.9379 1483.62	4 5 6 7 8 9 10 11 12 13 14 15
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	50.8399 40.5705 32.5466 25.3845 24.455 25.2716 25.3307 25.204 23.1036 25.7729 25.0214 25.9379 1483.62 1525.24	4 5 6 7 8 9 10 11 12 13 14 15 1
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	50.8399 40.5705 32.5466 25.3845 24.455 25.2716 25.204 23.1036 25.7729 25.0214 25.9379 1483.62 1525.26	4 5 6 7 8 9 10 11 12 13 14 15 1
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	50.8399 40.5705 32.5466 25.3845 24.455 25.2716 25.204 23.1036 25.7729 25.0214 25.9379 1483.62 1525.26 1369.7	4 5 6 7 7 8 9 10 11 12 13 14 15 1 1 2 3
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	50.8399 40.5705 32.5466 25.3845 24.455 25.2716 25.3307 25.204 23.1036 25.7729 25.0214 25.9379 1483.62 1525.26 1369.7 1091.37	4 5 6 7 8 9 10 11 12 13 14 15 1 1 2 3 4
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	50.8399 40.5705 32.5466 25.3845 24.455 25.2716 25.204 23.1036 25.7729 25.0214 25.9379 1483.62 1525.26 1369.7 1091.37	4 5 6 7 8 9 10 11 12 13 14 15 1 1 2 3 4
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	50.8399 40.5705 32.5466 25.3845 24.455 25.2716 25.204 23.1036 25.7729 25.0214 25.9379 1483.62 1525.26 1369.7 1091.37 761.521	4 5 6 7 7 8 9 10 11 12 13 14 15 1 1 2 3 4 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	50.8399 40.5705 32.5466 25.3845 24.455 25.2716 25.3307 25.204 23.1036 25.7729 25.0214 25.9379 1483.62 1525.26 1369.7 1091.37 761.521 761.268	4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	50.8399 40.5705 32.5466 25.3845 24.455 25.2716 25.204 23.1036 25.7729 25.0214 25.0214 25.9379 1483.62 1525.26 1369.7 1091.37 761.521 761.268 682.592	4 5 6 7 7 8 9 10 11 12 13 14 15 1 1 2 3 4 5 6 7
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	50.8399 40.5705 32.5466 25.3845 24.455 25.2716 25.204 23.1036 25.7729 25.0214 25.9379 1483.62 1525.26 1369.7 1091.37 761.521 761.268 682.592	4 5 6 7 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	50.8399 40.5705 32.5466 25.3845 24.455 25.2716 25.307 25.204 23.1036 25.7729 25.0214 25.9379 1483.62 1525.26 1369.7 1091.37 761.521 761.268 682.592 650.594	4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	50.8399 40.5705 32.5466 25.3845 24.455 25.2716 25.204 23.1036 25.7729 25.0214 25.0214 25.9379 1483.62 1525.26 1369.7 1091.37 761.521 761.268 682.592 650.594 616.5	4 5 6 7 7 8 9 10 11 12 13 14 15 1 1 2 3 4 5 6 6 7 8 9
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	50.8399 40.5705 32.5466 25.3845 24.455 25.2716 25.204 23.1036 25.7729 25.0214 25.9379 1483.62 1525.26 1369.7 1091.37 761.521 761.268 682.592 650.594 616.5 646.957	4 5 6 7 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	50.8399 40.5705 32.5466 25.3845 24.455 25.2716 25.204 23.1036 25.7729 25.0214 25.9379 1483.62 1525.26 1369.7 1091.37 761.521 761.268 682.592 650.594 616.5 646.957 668.708	4 5 6 7 7 8 9 10 11 12 13 14 15 1 1 2 3 4 5 5 6 7 8 9 10
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	50.8399 40.5705 32.5466 25.3845 24.455 25.2716 25.204 23.1036 25.7729 25.0214 25.0214 25.9379 1483.62 1525.26 1369.7 1091.37 761.521 761.268 682.592 650.594 616.5 646.957 668.708	4 5 6 7 7 8 9 10 11 12 13 14 15 1 1 2 3 4 5 6 6 7 8 9 10 11
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	50.8399 40.5705 32.5466 25.3845 24.455 25.2716 25.204 23.1036 25.7729 25.0214 25.9379 1483.62 1525.26 1369.7 1091.37 761.521 761.268 682.592 650.594 616.5 646.957 668.708 685.373	4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 1 1 1 1 1 1 1 1 1 1 1 1
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	50.8399 40.5705 32.5466 25.3845 24.455 25.2716 25.204 23.1036 25.7729 25.0214 25.0214 25.9379 1483.62 1525.26 1369.7 1091.37 761.521 761.268 682.592 650.594 616.5 646.957 668.708 685.373 696.134	4 5 6 7 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 7 8 9 10 11 12 13
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	50.8399 40.5705 32.5466 25.3845 24.455 25.2716 25.204 23.1036 25.7729 25.0214 25.9379 1483.62 1525.26 1369.7 1091.37 761.521 761.268 682.592 650.594 616.5 646.957 668.708 685.373 696.134 648.356	4 5 6 7 7 8 9 10 11 12 13 14 15 1 1 2 3 4 5 6 6 7 8 9 9 10 11 12 13 14
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	50.8399 40.5705 32.5466 25.3845 24.455 25.2716 25.204 23.1036 25.7729 25.0214 25.9379 1483.62 1525.26 1369.7 1091.37 761.521 761.268 682.592 650.594 616.5 646.957 668.708 685.373 696.134 648.356	4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
5 5 5 5 5 5 5 5 5 5 5 5 5 5	50.8399 40.5705 32.5466 25.3845 24.455 25.2716 25.204 23.1036 25.7729 25.0214 25.0214 25.9379 1483.62 1525.26 1369.7 1091.37 761.521 761.268 682.592 650.594 616.5 646.957 668.708 685.373 696.134 648.356 693.68	4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 9 10 11 12 13 14 15

BUSINESS AND MANUFACTURING APPLICATIONS (700) CONTRIBUTED PROGRAM **BASIC**

EXPEND TITLE: BUDGET EXPENDITURES VS TARGETS MONITOR 36111 **DESCRIPTION:** This program can be used to create, update or list budgetary data. Expenditure vs targets can be continuously monitored. Up to 15 files can be handled, each with up to 20 accounts or major items. Each file represents one location code in the Hewlett-Packard accounting system, although a code for major programs, projects, etc., could easily be substituted. Under each location code the account numbers and/or major projects are listed, one per record. For each entry, the program lists the record number, name, dollars expended, and dollars targeted. For each location code, the program also lists the total targeted and total expended. NOTE: This program creates its own data base. **INSTRUCTIONS:** Load the program. OPEN-FL1,20 OPEN-FL2,20 OPEN-FL15,20 OPEN-FL16,48 Before running the first time (or to clear all the files at the beginning of a new period) enter the following: LET Z = Ø PRINT # 16, 16; Z 8 q STOP RUN When the program stops, delete the three statements you executed. The purpose of this exercise is to ensure that all of the files have been cleared of old data. Records can be any combination of account numbers and major items (projects). The example shown illustrates major items accumulated under account numbers; hence, the figures for the account numbers are in effect subtotals. Data could just as easily be listed the other way; i.e., with various account numbers subtotalled under a major item. The program is self-instructional for generating, updating, and listing data. SPECIAL To prevent double entry of items when listing subtotals use minus signs CONSIDERATIONS: (the program ignores all figures preceded by a minus sign). ACKNOWLEDGEMENTS: | Jack Peters HP, Data Systems Division

RUN EXPEND DO YOU WISH INSTRUCTIONS?YES THIS PROGRAM CAN BE USED TO CREATE, UPDATE, OR LIST BUDGETARY DATA SO AS TO PERMIT CONTINUOUS MONITORING OF EXPENDITURES VS TARGETS. NOTE THAT THE PROGRAM CAN HANDLE UP TO 15 LOCATION CODES WITH 20 ACCOUNTS AND/ OR MAJOR ITEMS PER LOCATION CODE. THE NAME OF EACH RECORD CAN BE UP TO 32 CHARACTERS INCLUDING SPACES. EACH RECORD ALSO INCLUDES \$ EXPENDED AND \$ TARGETED (UP TO 8 DIGITS) DO YOU WISH TO 'GENERATE'NEW FILES(S), 'UPDATE' EXISTING FILES, OR 'LIST' DATA? ? GENERATE DO YOU NEED THE FILE NO. LIST? ?YES FILE NO. NAME 1 ø 2 ø 3 ø 4 ø 5 ø 6 ø 7 ø 8 ø 9 ø 10 ø 11 ø ø 12 13 ø 14 ø 15 ø THERE ARE 15 FILES AVAILABLE HOW MANY NEW FILES?1 INPUT THE NUMBER OF AN AVAILABLE FILE?2 INPUT NEW FILE NAME ?FLIP HOW MANY RECORDS (ONE PER ACCOUNT OR NAME) DO YOU REQUIRE?1 INPUT YOUR BUDETARY DATA NAME OR ACCOUNT NUMBER

RUN Expend

OPE-FL15,20 OPE-FL16,48 7 LET Z=0 8 PRINT #16,11+6;Z 9 STOP

OPE-FL4,20 OPE-FL5,20 OPE-FL6,20 OPE-FL7,20 OPE-FL8,20 OPE-FL9,20 OPE-FL9,20 OPE-FL10,20 OPE-FL12,20 OPE-FL12,20 OPE-FL13,20 OPE-FL14,,+20 OPE-FL16,48

OPE-FL1,20

0PE-FL2,20 0PE-FL3,20

RUN

C RE

```
$ EXPENDED
$ TARGETED
ENTER RECORD NO. 1
?PRINTING
??1000
??3000
ENTER DATE?7/25/73
7/25/73
FINISHED?NO
DO YOU WISH TO 'GENERATE'NEW FILES(S), 'UPDATE'
EXISTING FILES, OR 'LIST' DATA?
?GENERATE
DO YOU NEED THE FILE NO. LIST?
?YES
FILE NO.
               NAME
     1
              FLIP
     2
             FLIP
     3
              ø
     4
              ø
     5
              ø
     6
              ø
     7
              ø
     8
              ø
     9
              ø
     10
              ø
     11
              ø
     12
              ø
     13
              ø
     14
              ø
     15
              ø
THERE ARE 14
                 FILES AVAILABLE
HOW MANY NEW FILES?1
INPUT THE NUMBER OF AN AVAILABLE FILE?3
INPUT NEW FILE NAME
?FLIP1
HOW MANY RECORDS (ONE PER ACCOUNT OR NAME) DO YOU REQUIRE?10
INPUT YOUR BUDETARY DATA
NAME OR ACCOUNT NUMBER
S EXPENDED
$ TARGETED
ENTER RECORD NO. 1
?LABOR
??500
??400
ENTER RECORD NO. 2
?SHIPPING
??300
??350
ENTER RECORD NO. 3
?POSTAGE
        ??250
??300
ENTER RECORD NO. 4
?ORDER PROCESSING
??600
??500
ENTER RECORD NO. 5
?TRAVEL
??1245
??500
ENTER RECORD NO. 6
?TRADE SHOWS
??Ø
??Ø
ENTER RECORD NO. 7
?CLERICAL
??279
??200
ENTER RECORD NO. 8
?FACILITIES
??2500
??2500
ENTER RECORD NO. 9
? MARKET ING
??2990
??2000
```

ENTER RECORD NO. 10 ?ADVERTISING ??350 ??300 ENTER DATE?7/27/73 7/27/73 FINISHED?NO DO YOU WISH TO 'GENERATE'NEW FILES(S), 'UPDATE' EXISTING FILES, OR 'LIST' DATA? ?UPDATE DO YOU NEED THE FILE NO. LIST? ? NO INPUT THE NO. OF THE FILE TO BE CHANGED?1 DO YOU WISH TO DELETE THIS FILE?NO DO YOU WANT DATA LISTED FOR THIS FILE?YES DATA FOR FLIP TOTAL TARGETED \$ 3000 RECORD NAME EXPENDED TARGETED 1000 3000 1 PRINTING TOTAL EXPENDED \$ 1000 DO YOU WISH TO UPDATE EXPENDITURES?N+YES INPUT RECORD NO. ?1 HOW MANY NEW EXPENDITURES?1 NEXT EXPENDITURE ?1400 MORE EXPENDITURES TO BE UPDATED?NO DO YOU WISH TO ADD RECORDS?NO DO YOU WISH TO CHANGE ANY OTHER RECORDS?NO DO YOU WISH TO CHANGE ANY OTHER FILE?NO ENTER DATE?7/27/73 7/27/73 DO YOU WANT ANY LISTING?YES DO YOU WANT ALL FILES LISTED?YES 7/27/73 DATA FOR FLIP TOTAL TARGETED \$ 3000 EXPENDED TARGETED RECORD NAME 1 PRINTING 2400 3000 TOTAL EXPENDED \$ 2400 DATA FOR FLIP TOTAL TARGETED \$ Ø RECORD EXPENDED TARGETED NAME TOTAL EXPENDED \$ Ø DATA FOR FLIPI TOTAL TARGETED \$ 7050 EXPENDED TARGETED RECORD NAME LABOR 500 400 1 2 SHIPPING 300 35Ø POSTAGE 250 300 з ORDER PROCESSING 600 500 4 5 TRAVEL 1245 500 TRADE SHOWS ø ø 6 7 CLERICAL 279 200 FACILITIES 2500 2500 8 9 MARKETING 2990 2000 10 ADVERTISING 35Ø 300

TOTAL EXPENDED \$ 9014

DATA	FOR	Ø	TOTAL	TARGETED	\$ Ø
DATA	FOR	Ø	TOTAL	TARGETED	\$ ø
DATA	FOR	ø	TOTAL	TARGETED	\$ ø
DATA	FOR	Ø	TOTAL	TARGETED	\$ ø
DATA	FOR	Ø	TOTAL	TARGETED	\$ ø
DATA	FOR	Ø	TOTAL	TARGETED	\$ ø
DATA	FOR	Ø	TOTAL	TARGETED	\$ ø
DATA	FOR	Ø	TOTAL	TARGETED	\$ ø
DATA	FOR	Ø	TOTAL	TARGETED	\$ ø
DATA	FOR	Ø	TOTAL	TARGETED	\$ ø
DATA	FOR	ø	TOTAL	TARGETED	\$ ø
FINIS	SHED?1	ES			
DONE					

CONTRIBUTED PROGRAM **BASIC**

TITLE:	EXPONENTIAL SMOOTHING ON PRICE DATA	EXSMOO 36085
DESCRIPTION:	EXSMOO uses exponential smoothing to forecast data which is thoug have a trend and/or seasonal effect. Output is provided per peri- a comparison between different methods of smoothing.	ht to od as
	S _t = Actual demand in month t	
	$\overline{\mathrm{S}}_{\mathrm{t}}$ = Moving average of S _t after month t	
	a = Smoothing constant (0.1 - 0.2)	
	$S_{t} = C_{1} + C_{2} * t + C_{3} * F_{t} + error$	
	C ₁ is the average coefficient C ₂ is the trend coefficient C ₃ is the seasonal coefficient	
INSTRUCTIONS:	$\left\{ \overline{S}_{t} = \overline{S}_{t-1} + a(S_{t} - \overline{S}_{t-1}) \right\}$ Straight	
	New estimate = 01d estimate + a(Actual-Old estimate)	
	$(\overline{S}_{t} = (S_{t}/(F_{t}-L)) + (1 - a) * \overline{S_{t-1}})$	
:	\langle where: $F_t = \beta(S_t/\overline{S_t}) + (1 - \beta) * (F_t-L)$ for next year Seasonality	
	(L = Number of periods in cycle	
INSTRUCTIONS:	You will be asked to input the following data:	
	 N1 = The number of months (periods) N2 = The number of periods to be used for the initialization of the forecasting methods N3 = The number of periods in the periodicity of the seasonal efference A1 = The smoothing constant a 	ect
	Then the actual values for each period are to be entered. This c done with input or data-statements.	an be
	To enter data internally, begin at line 9900 and enter the actual amounts for each period to be considered, and enter "D" in answer the question on how the data is to be entered.	to
	Also note that the number of periods in the seasonality must be lo than the number of periods provided for the initialization of the forecasting methods.	288
SPECIAL CONSIDERATIONS:	As it stands, EXSMOO will handle only up to 8 years (i.e., 72 per of forecasting. For enlargement change dim-statement 9116 to boun of N1 + 2.	iods) nds
ACKNOWLEDGEMENTS:		

RUN GET-\$EXSMOO RUN EXSM00 * EXPONENTIAL SMOOTHING * DO YOU NEED A PROBLEM DESCRIPTION? ('Y' OR 'N') ?N FOR HOW MANY PERIODS WILL YOU ENTER DATA?30 HOW MANY OF THESE PERIODS ARE TO BE USED TO INITIALIZE THE FORCASTING METHODS?12 WHAT IS THE PERIODICITY OF THE SEASONAL EFFECT? E.G. 12 FOR YEARLY. NOTE: THIS VALUE MUST BE LESS THAN YOUR ANSWER TO THE PREVIOUS QUESTION. ?6 WHAT IS YOUR ALPHA FOR SMOOTHING FORCASTS? . 10 WHAT IS THE ALPHA FOR SMOOTHING THE SEASONAL EFFECT? . 20 WHAT IS THE ALPHA FOR THE TREND EFFECT? . 15 DO YOU WISH TO ENTER YOUR DATA FROM THE TELETYPE, OR INTERNALLY WITH DATA-STATEMENTS? ('T' FOR TELETYPE, OTHERWISE 'D')?T WHAT IS THE VALUE FOR THE FIRST PERIOD?100 SECOND PERIOD?75 NEXT?73 NEXT?72 NEXT?70 NEXT? 60 NEXT?100 NEXT?90 NEXT?80 NEXT?70 NEXT?60 NEXT?50 NEXT?110 NEXT?50 NEXT? DONE RUN EXSM00 * EXPONENTIAL SMOOTHING * DO YOU NEED A PROBLEM DESCRIPTION? ('Y' OR 'N') ?N FOR HOW MANY PERIODS WILL YOU ENTER DATA?30 HOW MANY OF THESE PERIODS ARE TO BE USED TO INITIALIZE THE FORCASTING METHODS?12 WHAT IS THE PERIODICITY OF THE SEASONAL EFFECT? E.G. 12 FOR YEARLY. NOTE: THIS VALUE MUST BE LESS THAN YOUR ANSWER TO THE PREVIOUS QUESTION. ?6 WHAT IS YOUR ALPHA FOR SMOOTHING FORCASTS ?. 10 WHAT IS THE ALPHA FOR SMOOTHING THE SEASONAL EFFECT ?. 20 WHAT IS THE ALPHA FOR THE TREND EFFECT ?. 15 DO YOU WISH TO ENTER YOUR DATA FROM THE TELETYPE, OR INTERNALLY WITH DATA-STATEMENTS? ('T' FOR TELETYPE, OTHERWISE 'D')?T

EXSMOO, page 2

DONE

13	110	99•9594	68.1002	98 • 8338
14	99	83•5456	78.074	77.6086
15	85	79.0011	83•4328	75.9716
16	80	74.0594	84•2659	74.0971
17	75	68•5953	83 • 6642	71 • 1 631
18	70	58+9741	81 • 8989	61 • 20 91
19	105	112 • 645	79 • 1 95	108+98
20	100	94+6555	85•7386	86•6389
21	95	87.2416	89•7833	81 • 6393
22	90	82•4296	91•7808	79 • 4361
23	85	77.0604	92.1072	76.3484
24	80	67.777	91.0753	67.093
25	110	124.38	88.9447	116.274
26	100	106+881	94•6806	95•4287
27	75	98 • 174	96•7984	89.123
28	70	89 • 6729	92.2166	83 • 532
29	65	80 • 91 9	87.2032	77.6849
30	60	69 • 2 68 6	81 • 8599	67•2988
MEAN ABSO	LUTE DEVIATION:			
		10.7023	14•9401	10.0792
THEIL'S	'U' SQUARED:			
		•356144	• 839939	•308655
*******	******	*****	*****	*****

AND SEASONALS TREND

EXPONENT IAL

SMOOTHING

WITH

EXPONENTIAL

SMOOTHING

WITH TREND

WHAT IS THE VALU	E FOR	THE	FIRSI	PERIODINO
SECOND PERIOD 75				
NEXT?73				
NEXT?72				
NEXT? 70				
NEXT?60				
NEXT?100				
NEXT?90				
NEXT?80				
NEXT?70				
NEXT?60				
NEXT?50				
NEXT?110				
NEXT?99				
NEXT?85				
NEXT?80				
NEXT?75				
NEXT? 70				
NEXT?105				
NEXT?100				
NEXT?95				
NEXT?90				
NEXT?85				
NEXT?80				
NEXT?110				
NEXT?100				
NEXT?75				
NEXT?70				
NEXT?65				
NEXT?60				

PERIOD

SALES

.

EXPONENTIAL

SMOOTHING

SEASONALS

WITH

CONTRIBUTED PROGRAM **BASIC**

TITLE:	CALCULATES PRESENT VALUE - STREAM OF CASH FLOWS	FINFL0 36711
DESCRIPTION:	This program calculates the present value of a stream of cash flow assumption is made that the flows occur at the end of each of the after the initial period when the investment is made. Each perioc fined as one year unless the cost of capital percentage and number periods are adjusted accordingly. This program will calculate all of return between zero and one hundred percent which equate the P. the initial investment.	ws. The periods is de- of rates V. to
INSTRUCTIONS:	Enter figures as requested in program.	
ACKNOWLEDGEMENTS:	Babson College Babson Park, Massachusetts	

RUN

RUN FINFLO

DO YOU WANT INSTRUCTIONS?YES

THIS PROGRAM CALCULATES THE PRESENT VALUE OF A STREAM OF CASH FLOWS. THE ASSUMPTION IS MADE THAT THE FLOWS OCCUR AT THE END OF EACH OF THE PERIODS AFTER THE INITIAL PERIOD WHEN THE INVESTMENT IS MADE. EACH PERIOD IS DEFINED AS ONE YEAR UNLESS THE COST OF CAPITAL PERCENTAGE AND NUMBER OF PERIODS ARE ADJUSTED ACCORDINGLY. THIS PROGRAM WILL CALCULATE ALL RATES OF RETURN BETWEEN ZERO AND ONE HUNDRED PERCENT WHICH EQUATE THE P.V. TO THE INITIAL INVESTMENT.

WHAT IS THE INITIAL INVESTMENT IN PERIOD 0?10000 THIS PROGRAM ASSUMES AN INITIAL OUTLAY FOR THE INVESTMENT THE SIGN HAS BEEN CHANGED TO REFLECT THIS CONDITION FOR HOW MANY PERIODS DO YOU WISH TO ENTER CASH FLOWS, PERIOD 1 ON?4

PERIOD #	CASH FLOW
*******	*******
1	?200
2	?4500
3	?6000
4	?5700

ENTER COST OF CAPITAL IN PERCENT?11

DO YOU WANT A LISTING OF THE P.V. IN EACH PERIOD?YES

P•V•

180.18
3652.3
4387.15
3754.77

NET PRESENT VALUE OF ALL FLOWS IS \$ 1974.4

THE CALCULATED RATES OF RETURN BETWEEN 0% AND 100% ARE: 17.9799 %THE P.V. AT THIS RATE OF RETURN IS \$ 9998.12

DONE

BUSINESS AND MANUFACTURING APPLICATIONS (700) CONTRIBUTED PROGRAM BASIC

	RATING INVESTMENT FUNDS	GCHLIN 36503
DESCRIPTION:	This program performs an analysis of the type advocated by Treynor "How to Rate Management of Investment Funds," (<u>Harvard Business Re</u> January-February 1965). Basically, it fits a least-squares regress line to data on the quarterly rates of return for two entities. Po- bilities include: mutual funds, individual stocks, indices of stor returns, and portfolios.	in <u>view</u> , sion ossi- ck
INSTRUCTIONS:	Three data bases can be used with the program. The GPDQI file give and dividend data on 98 industrial indices compiled by Standard and The GPDQF file contains comparable information on 100 open-end mut The GPDQS file contains information on the 30 stocks used to compu- Jones' 30 Industrial Stock Average. Any of these files may be inve simply responding appropriately when asked. The particular entry of must be indicated by number. For listings, see the descriptions of GPDQ files.	es price d Poor's. ual funds. te Dow- oked by desired f the
	If the user chooses a <u>portfolio</u> for analysis, the program will read named <u>PDQP</u> in the user's own account. The user-specified number w cate the record to be read by the program. The record must follow mat used in GPDQF, GPDQI and GPDQS.	d a file ill indi- the for-
	The user may opt to have the treasury bill rate subtracted from each before the remainder of the analysis is performed. This will prov- analysis of <u>excess returns</u> i.e., returns over and above the pure rate for the quarter in question.	ch return ide an e interest
	Any period may be requested. The program will utilize only quarter which the requisite data are available.	rs for
	(continued on Page 2)	
SPECIAL CONSIDERATIONS:	Following a summary of relevant statistics and the information abour regression line, the program provides a scatter diagram of the resu An asterisk represents one point, the digit "2", two points, etc. approximate regression line may be drawn from the letter "L" throug intersection of the two M's (as illustrated on the sample run).	ut the ults. An gh the
	The program also computes and prints the "differential return" for quarter. This is the difference between the actual y-value and the of the x-value and the slope of the regression line. A rough graph is also provided. The asterisks may be connected to obtain a time- illustrated on the sample run).	each ≥ product nic plot -plot (as
ACKNOWLEDGEMENTS:	Graduate School of Business	

Stanford University

INSTRUCTIONS: (continued)

GPDQF

GPDQF is a file of data on quarterly prices and dividends paid by 100 open-end mutual funds. The funds were chosen randomly from those for which data were readily available for the period 1965-1970. For each quarter, the following information is given:

"opening price"

- net asset value per share as of the close of the market on the last trading day of the previous quarter.

"dividends"

- all dividends received by an investor who held one share at the beginning of the quarter; any other distributions that qualify as income are also included.

"ending price"

- the total value of the holdings of an investor who held one share at the beginning of the quarter. This includes the net asset value of the share (or shares, in the case of splits) at the close of the market on the last trading day of the quarter. It also includes the value of any distributions received during the quarter that qualify as capital gains.

Each fund is allocated one record on the file. Fund number 1 is on record 1; fund number 2 on record 2, etc. Each record contains 40 quarters of information, as follows:

opening price	lst quarter of lst year
dividends	lst quarter of lst year
closing price	lst quarter of lst year
opening price	2nd quarter of 1st year
dividends	2nd quarter of 1st year
closing price	2nd quarter of 1st year

etc.

Any missing value is represented by -999.

Following the 120 data values on each record are:

- the first year for which data are given (e.g. 1963)
- the name of the fund (up to 20 characters)

This file uses the same format as GPDQI and GPDQS. The funds are listed as follows:

1	ABERDEEN FUND
2	AFFILIATED FUND INC.
3	AMERICAN BUSINESS SHARES INC.
ă	AMERICAN INVESTORS FUND INC.
5	AMERICAN MUTUAL FUND INC
č	ANCHOR - FUNDAMENTAL INVESTORS
7	ANCHOR - CROWTH FUND
0	ACCOCTATED EUND TOUST
0	
9	AXE HOUGHTON FUND A INC.
10	AXE-HUUGHIUN FUND B INC.
11	AXE-HOUGHION STUCK FUND INC.
12	AXE SCIENCE CORP.
13	BOSTON FUND INC.
14	BROAD STREET INVESTING CORP.
15	BULLOCK FUND LTD.
16	CENTURY SHARES TRUST
17	CHASE FUND OF BOSTON
18	CHASE SHAREHOLDERS TRUST OF BOSTON
19	CHEMICAL FUND INC.
20	COLONIAL FUND INC.
21	AMERICAN EXPRESS INCOME FUND INC.
22	AMERICAN EXPRESS INVESTMENT FUND INC.
23	AMERICAN EXPRESS STOCK FUND INC
24	COMPOSITE BOND AND STOCK FUND
25	COMPOSITE FUND INC
20	CONFOSTIC FOND THE.

26 CONCORD FUND INC. DE VEGH MUTUAL FUND INC. 27 28 DELAWARE FUND INC. BULLOCK -- DIVIDEND SHARES INC. 29 DREYFUS FUND INC. 30 31 ENERGY FUND INC. EQUITY FUND INC. 32 FIDELITY CAPITAL FUND INC. FIDELITY FUND INC. 33 34 35 FINANCIAL INDUSTRIAL FUND 36 FLORIDA GROWTH FUND INC. 37 FOUNDERS MUTUAL FUND 38 GROUP SECURITIES INC. -- COMMON STOCK FUND GROWTH INDUSTRY SHARES INC. 39 40 GUARDIAN MUTUAL FUND INC. HAMILTON FUNDS INC. -- SERIES HDA INCOME FUND OF BOSTON INC. 41 42 INVESTMENT COMPANY OF AMERICA INVESTMENT TRUST OF BOSTON INVESTORS RESEARCH FUND INC. 43 44 45 ISTEL FUND INC. 46 JOHNSTON MUTUAL FUND INC. 47 KEYSTONE CUSTODIAN FUND B-1 KEYSTONE CUSTODIAN FUND B-2 48 49 50 **KEYSTONE CUSTODIAN FUND B-4** KEYSTONE CUSTODIAN FUND K-1 KEYSTONE CUSTODIAN FUND K-2 KEYSTONE CUSTODIAN FUND S-1 51 52 53 54 **KEYSTONE CUSTODIAN FUND S-2** KEYSTONE CUSTODIAN FUND S-3 KEYSTONE CUSTODIAN FUND S-4 55 56 57 KNICKERBOCKER FUND KNICKERBOCKER GROWTH FUND INC. 58 LIFE INSURANCE INVESTORS INC. 59 LOOMIS-SAYLES MUTUAL FUND 60 MAGNA INCOME TRUST 61 MASSACHUSETTS INVESTORS GROWTH STOCK FUND 62 63 MASSACHUSETTS INVESTORS TRUST MUTUAL SHARES CORP. 64 65 MUTUAL TRUST NATIONAL INVESTORS CORP. NATIONAL SECURITIES SERIES - BALANCE SERIES 66 67 68 NATIONAL SECURITIES SERIES -- BOND SERIES NATIONAL SECURITIES SERIES -- DIVIDEND SERIES 69 70 NATIONAL SECURITIES SERIES -- PREFERRED STOCK SERIES NATIONAL SECURITIES SERIES -- INCOME SERIES NATIONAL SECURITIES SERIES -- STOCK SERIES NATIONAL SECURITIES SERIES -- GROWTH STOCK SERIES 71 72 73 74 ONE WILLIAM STREET FUND INC. 75 OPPENHEIMER FUND INC. PENN SQUARE MUTUAL FUND 76 PHILADELPHIA FUND INC. 77 78 PINE STREET FUND INC. 79 PIONEER FUND INC. 80 PRICE (T. ROWE) GROWTH STOCK FUND PURITAN FUND INC. PUTNAM (GEORGE) FUND PUTNAM GROWTH FUND 81 82 83 SCUDDER STEVENS AND CLARK - BALANCED FUND 84 SCUDDER STEVENS AND CLARK - COMMON STOCK FUND 85 SIGMA INVESTMENT SHARES 86 87 SIGMA TRUST SHARES SOUTHWESTERN INVESTORS INC. 88 SOVEREIGN INVESTORS INC. 89 STEIN ROE AND FARNHAM - BALANCED FUND STEIN ROE AND FARHNAME - STOCK FUND 90 91 TWENTIETH CENTURY GROWTH INVESTORS 92 93 VALUE LINE FUND INC. VALUE LINE INCOME FUND INC. 94 VALUE LINE SPECIAL SITUATIONS FUND 95 96 WALL STREET INVESTING CORP. WASHINGTON MUTUAL INVESTORS FUND INC. 97 98 WELLINGTON FUND INC. WHITEHALL FUND INC. 99 100 WISCONSIN FUND INC.

GPDQS

GPDQS is a file of quarterly prices and dividends for the thirty stocks used in 1971 to compute Dow-Jones' Industrial average. For each quarter, the following information is given:

"opening price"

- this is the price of one share of the stock as of the close of trading on the last trading day of the previous quarter.

"dividends"

- this includes all dividends received during the quarter by a person who held one share at the beginning of the quarter. Any distribution treated as income is also included.

"closing price"

- this is the value of the holdings of an investor who held one share at the beginning of the quarter. The value is calculated as of the close of the last trading day in the quarter.

Each stock is allocated one record on the file. Stock number 1 is on record 1; stock 2 on record 2, etc. Each record contains 40 quarter of information as follows:

opening price	lst	quarter	of	lst	vear
dividends	lst	quarter	of	lst	year
closing price	lst	quarter	of	lst	year
opening price	2nd	quarter	of	lst	year
dividends	2nd	quarter	of	lst	year
closing price	2nd	quarter	of	lst	year

etc.

Any missing value is represented by -999.

Following the 120 data values on each record are:

- the first year for which data are given (e.g., 1963)
- the name of the stock (up to 20 characters)

The file uses the same format as GPDQI and GPDQF. The stocks are listed as follows:

1	ALLIED CHEMICAL
2	ALUMINUM COMPANY OF AMERICA
3	AMERICAN BRANDS
4	AMERICAN CAN COMPANY
5	AMERICAN TELEPHONE AND TELEGRAPH
6	ANACONDA
7	BETHLEHEM STEEL
8	CHRYSLER CORPORATION
9	DUPONT (E.I.) DE NEMOURS
10	EASTMAN KODAK
11	GENERAL ELECTRIC
12	GENERAL FOODS
13	GENERAL MOTORS
14	GOODYEAR TIRE AND RUBBER
15	INTERNATIONAL HARVESTER
16	INTERNATIONAL NICKEL COMPANY OF CANADA
17	INTERNATIONAL PAPER COMPANY
18	JOHNS-MANVILLE CORPORATION
19	OWENS-ILLINOIS
20	PROCTER AND GAMBLE
21	SEARS ROEBUCK
22	STANDARD OIL OF CALIFORNIA
23	STANDARD OIL OF NEW JERSEY
24	SWIFT AND COMPANY
25	TEXACO
26	UNION CARBIDE
27	UNITED AIRCRAFT
28	U.S. STEEL
29	WESTINGHOUSE ELECTRIC
30	WOOLWORTH (F.W.) COMPANY

GPDQI

GPDQI is a file of quarterly prices and dividends for 98 common stock indices published by Standard and Poor's and returns on 90-day Treasury bills. For each quarter, the following information is given:

"opening price"

- this is the value of the index as of the end of the previous quarter, as reported by Standard and Poor's.

"dividends"

- this is the value of dividends paid by the stocks in the index during the quarter, as reported by Standard and Poor's.

"closing price"

- this is the value of the index as of the end of the quarter, as reported by Standard and Poor's.

Each index is allocated one record on the file. Index number 1 is on record 1; index 2 on record 2, etc. Each record contains 120 numbers, as follows:

opening price	lst quarter of lst year
dividends	lst quarter of lst year
closing price	lst quarter of lst year
opening price	2nd quarter of 1st year
dividends	2nd quarter of 1st year
closing price	2nd quarter of 1st year

Any missing value is represented by -999.

Following the 120 data values on each record are:

- the first year for which data are given (e.g., 1963)

- the name of the index (up to 20 characters)

For 90-day Treasury bills, the three values are:

"opening price"

- the average of the bid and ask prices at the end of the previous quarter for the 90-day bill expiring on the date nearest the end of the quarter (e.g., 98.8)

"dividends"

- zero

"closing price"

- 100

The file uses the same format as GPDQF and GPDQS. The indexes are listed as follows:

1	500 STOCKS
2	425 INDUSTRIALS
3	20 RAILS
4	55 UTILITIES
5	CAPITAL GOODS
6	CONSUMER PRODUCTS
7	HIGH GRADE
8	LOW PRICED
9	AEROSPACE
10	AIR TRANSPORT
11	ALUMINUM
12	AUTOMOBILE
13	AUTO PARTS
14	AUTO TRUCKS & PARTS
15	BREWERS
16	DISTILLERS
17	SOFT DRINKS

- 18 CEMENT
 - 19 **HEATING & PLUMBING**

ROOFING & WALLBOARD 20 HOME FURNISHINGS 21 22 23 CHEMICALS BITUMINOUS COAL 24 CONFECTIONERY 25 CONTAINERS - METAL & GLASS 26 CONTAINERS - PAPER 27 28 COPPER DRUGS 29 ELECTRICAL EQUIPMENT 30 ELECTRICAL HOUSEHOLD APPLIANCES 31 ELECTRONICS BUILDING MATERIALS COMPOSITE 32 FINANCE COMPANIES 33 34 SMALL LOAN FOOD - BISCUIT BAKERS FOOD - BREAD & CAKE 35 36 37 FOOD - CANNED FOOD - CORN REFINERS FOOD - DIARY PRODUCTS 38 39 FOOD - MEAT PACKING 40 FOOD - PACKAGED FOODS 41 GOLD MINING 42 LEAD & ZINC 43 44 MACHINE TOOLS 45 AGRICULTURAL MACHINERY 46 CONSTRUCTION & MATERIAL HANDLING 47 INDUSTRIAL MACHINERY 48 OIL WELL EQUIPMENT 49 SPECIALTY MACHINERY 50 STEAM GENERATING EQUIPMENT 51 METAL FABRICATING 52 METAL MISCELLANEOUS 53 MOTION PICTURES 54 OFFICE EQUIPMENT CRUDE OIL PRODUCERS 55 56 INTEGRATED OILS - DOMESTIC INTEGRATED OILS - INTERNATIONAL 57 58 PAPER 59 PUBLISHING RADIO & TV BROADCASTERS RADIO & TV MANUFACTURERS 60 61 <u>6</u>2 RAILROAD EQUIPMENT 63 **TEXTILES - SYNTHETIC FIBERS DISCOUNT STORES** 64 65 DEPARTMENT STORES 66 FOOD STORES 67 MAIL ORDER 68 VARIETY STORES SHIPBUILDING 69 70 SHIPPING 71 72 SHOES SOAPS 73 74 STEEL SUGAR-BEET REFINERS 75 FOOD COMPOSITE 76 77 SUGAR-CAN REFINERS SULPHUR TEXTILES - APPAREL MAHUFACTURERS 78 79 TEXTILE PRODUCTS 80 **TIRE & RUBBER** TOBACCO - CIGARETTE MANUFACTURERS TOBACCO - CIGAR MANUFACTURERS 81 82 83 **VEGETABLE OILS** 84 **VENDING MACHINES** 85 ELECTRIC COMPANIES 86 87 NATURAL GAS DISTRIBUTORS PIPELINES 88 TELEPHONE BANKS - NEW YORK CITY BANKS - OUTSIDE NEW YORK CITY 89 90 91 **OIL COMPOSITE** INSURANCE - FIRE & CASUALTY INSURANCE - LIFE 92 93 INVESTMENT COMPANIES 94 95 COSMETICS 96 ELECTRONIC MAJOR COMPANIES 97 HOLDING COMPANIES TRUCKERS 98 90-DAY TREASURY BILL 99

RUN RUN GCHLIN Y-VARIABLE (VERTICAL AXIS) FUND, INDEX, PORTFOLIO OR STOCK?FUND NUMBER?2 AFFILIATED X-VARIABLE (HORIZONTAL AXIS) FUND, INDEX, PORTFOLIO OR STOCK? INDEX NUMBER?1 500 STOCKS DO YOU WANT THE TREASURY BILL RATE SUBTRACTED FROM EACH RETURN?YES FIRST QUARTER --YEAR?1964 QUARTER?3 LAST QUARTER--YEAR?1971 QUARTER?2 х Y MAXIMUM 13.394 15.377 -19.597 MINIMUM -18.146 AVERAGE 0.632 0.555 7.020 STD DEV 7.110 AVG/STD DEV 0.090 0.078 **REGRESSION LINE --**= 0.09507 + Ø.96679* X Y 0.28109 0.03942 STANDARD ERRORS: R-SQUARED : .958573 EACH AXIS RUNS FROM -19.5969 ΤO 15.3768 . 1 1 1 1 . 1 t 1 1 1 !* 1 ₽≢ M-----------------2!* 1 * I 1 . 1 1 ţ L I

M

DIFFERENTIAL RETURNS (Y - B*X) --

YEAR	QTR	VALUE	- Ø +
1964	3	1.181	! *
1964	4	-1.233	*
1965	1	0.841	*
1965	2	-2.003	*< !
1965	3	ؕ963	1 4
1965	4	Ø.847	1 t
1966	1	1.415	:)
1966	2	ؕ852	1 ¥
1966	3	0.535	: ≠
1966	4	1.072	!*
1967	1	-0.930	*
1967	2	1.041	· · · · ·
1967	3	0.108	*
1967	4	-0.257	*(!
1968	1	-0.128	*
1968	2	1.291	! *
1968	3	3.093	! *
1968	4	2.661	!
1969	1	-0.195	*!
1969	2	-3.379	× !
1969	3	-2.714	* !
1969	4	-0.331	*!
1970	1	0.013	*
1970	2	0.800	<u>!</u> *
1970	3	-1.472	*!
1970	4	-1.373	* !
1971	1	0.022	*
1971	2	-0.057	*

DONE

CONTRIBUTED PROGRAM BASIC

TITLE:

ABNORMAL PERFORMANCE INDEX

GDAPI 36507

This program allows the user to compute an "abnormal performance index" based on price changes of stocks for which similar events have taken place.

INSTRUCTIONS:

DESCRIPTION:

One or more "events" may be analyzed. For each event, the closing price of the relevant stock must be obtained for a specified number of periods prior to the event and for a specified number of periods after the event, as well as the closing price on the day of the event. If the market was closed on the appropriate date of a period, no price should be entered for that period (i.e., it should be skipped entirely). The user must also indicate the "beta" or "market sensitivity" of the stock. A period may be any number of (calendar) days, but every period must be of the same length. The program determines the percentage change in Standard and Poor's 500stock index for each period, multiplies that value by the stock's market sensitivity, and subtracts the result from the percentage price change for the stock during the period. This difference is the "abnormal" percentage price change for the stock for the period.

Abnormal percentage price changes are computed for the specified number of period prior to and subsequent to each event. The values are then averaged to obtain an "average abnormal percentage price change" for every period in the specified range. Finally, an abnormal price index (API) is constructed from the average values. The index is assigned a beginning value of 100. Each period's value is then obtained by multiplying the previous period's value by one plus the average abnormal percentage price change.

(Instructions continued on page 2)

ACKNOWLEDGEMENTS: |

Graduate School of Business Stanford University INSTRUCTIONS: (continued)

Enter the data to be analyzed in data statements, beginning at line 5000. For each event, the following information is required:

event description

date of event

market sensitivity (beta) of stock

prices

For example:

5000 DATA "EFFECT OF UAL CRASH ON DOUGLAS STOCK"

5001 DATA "JANUARY 5, 1965"

5002 DATA 1.23

5003 DATA 38,39,38.625,38.5,etc.

The data statements should be followed with an END statement. For example:

9999 END

After entering the data statements, it is possible to save the program and data by typing:

SAVE

This will save the material in the user's account under the name GDAPI. To re-use it at some other time, type:

GET-GDAPI

(instead of GET-\$GDAPI)

Once the data have been entered, the program can be RUN. The user will first be asked if he is using FILES or DATA statements. Assume that the appropriate answer is DATA statements. The user will then indicate the total number of events included in the data statements and whether or not he wishes to analyze them all. If the answer to the latter question is NO, he will be asked to specify the numbers of the events to be analyzed. The program will then ask for the number of days per period. Finally, the number of periods prior to each event and subsequent to each event must be specified. (NOTE: If Pl periods prior to each event and P2 periods subsequent to each event are to be analyzed, the user must have included Pl + P2 + l prices for each event.)

The program will list the events to be analyzed, perform the required computations, and indicate the minimum and maximum values of the abnormal performance index over the period. The user may then select his own scale for the final graph or let the program automatically select a scale running from the minimum to the maximum value. Finally, the program will print a list of the values and an accompanying graph. The program may be re-run to analyze a different set of events.

For convenience, a file capability is also included. If the user indicates that he is using FILES, the program will request the name of the file to be used. For each event, the description, date and beta of the stock must be included in the DATA statements (as before), but the prices will be obtained from the specified file. The prices for the first stock should be included in record 1, those for the second in record 2, etc. The use of files expands the size of problem that can be analyzed, since only about 2500 numbers can be entered in data statements before the available space will be fully used.

The program uses the values of Standard and Poor's 500-stock index on file GSP5.

GSP5

GSP5 file contains data on the value of Standard and Poor's 500-stock index on a daily basis, beginning with the first day of 1964. Values are in sequence, with one for each day of the year. A day on which the exchange is closed is indicated by an entry of -999. Data for 1964 are on records 1, 2, and 3. Data for 1965 are on records 4, 5, 6, etc. The third record used for every year is filled out with -999 values.

RUN

5050 5060 5070 5080 5090 5100	DATA DATA DATA DATA DATA DATA	556.75,570,575.5,566.5,569,564.5,564,558,562.5,568 568,568.5,575.25,585,588.5,584.5,583.5,579.75,577.25,574.5 580,582,586.5,588.5,589,594.25,595.25,598,598.5,597 588.25,584.5,585.25,596.75,590.25,586,584,582.25,585.5,582 590,594,584,583,581,583.5,576.5,570.25,579.5,584 584.75
5110	DATA	"IBM 370 ANNOUNCEMENT"
5120	DATA	"JUNE 30, 1970", 9
5160	DATA	258.5,250.5,245.5,248,241,242,259,267,278,287
5170	DATA	283,283,271.25,270,266.25,268.25,265.5,259.259.259
5180	DATA	271,265.75,272,270.25,268.5,257.12,255,258,257.5,257.5
5190	DATA	250,254,250.75,244.5,242.5,242.5,254.25,250.25,247.75,251.25
5200	DATA	252,254,259.5,258,257.75,254,257,253.75,253.25,252.75
5210	DATA	252•5
5220	DATA	"IBM SYSTEM 3 ANNOUNCEMENT"
5230	DATA	"JULY 30, 1969", 9
5270	DATA	313.5, 314.25, 314.25, 314, 312.25, 315.5, 325.5, 320.5, 329.75, 331.5
5280	DATA	337.75, 337.5, 348, 351.25, 348, 336, 333.5, 327, 331.5, 321.5
5290	DATA	323.5, 328.5, 327.5, 323, 318.25, 320.25, 317, 316.5, 313.12, 313
5300	DATA	315.5, 324.5, 329.5, 326.75, 334.5, 336, 333.75, 333.5, 329.25, 330.5
5310	DATA	335, 338, 75, 339, 5, 341, 25, 342, 346, 87, 349, 350, 25, 341, 340
5320	DATA	342.75
5330	DATA	"CDC 7600 ANNOUNCEMENT"
5340	DATA	"DECEMBER 3, 1968",1.47
5380	DATA	140 12 139 15 141 143 5 143 75 141 62137 75 141 75 141 62
5303	DATA	
5400	DATA	130,130,75,140,141,40,147,154,05,157,10,155,62,135,62,140,147,142,62
5405	DATA	141. (5) 140 (41. 02) 147 (54. 25) 157. 12 (55. 62) 156. 62 (57. 87
5410	DATA	159,161,161,158,147,62,155,150,148,87,150,150,75
5420	DATA	146.75.144.25.147.146.75.146.25.146.146.25.140.144.25.140.27.120.130.130.130.130.130.130.130.130.130.13
5430	DATA	138
5440	DATA	"CDC 70 ANNOLINCEMENT"
5450	DATA	"MARCH 18, 1971", 1, 47
5490	DATA	59.75.60.5.60.5.62.62.62.62.62.60.75.61.25.58.75.61
5500	DATA	60.75,59.5,58.25,58.62.59.62.58.57.5.56.75.56.87.56.37
551Ø	DATA	58.5,60.5,61,62,65,65,63,75,65,25,65,5,65
5520	DATA	64.62.65.64.37.63.25.62.12.62.25.62.62.62.5.63.63.75
5530	DATA	63.62,63.5,63.25,63.62,64.75,65.12,68.5,67,67.25.66.62
5540	DATA	65
555Ø	END	

RUN GDAPI

ARE YOU USING 'FILES' OR 'DATA' STATEMENTS ?DATA HOW MANY EVENTS DO YOU HAVE IN ALL?5 DO YOU WISH TO ANALYZE THEM ALL?YES HOW MANY DAYS ARE THERE PER PERIOD (E.G. 1 FOR DAILY DATA, 7 FOR WEEKLY DATA). NUMBER OF DAYS?1 FOR HOW MANY PERIODS PRIOR TO EACH EVENT DO YOU HAVE PRICES?30 FOR HOW MANY PERIODS AFTER EACH EVENT DO YOU HAVE PRICES?20

EVENT DATE EVENT --------1 APRIL 7,1964 IBM 360 ANNOUNCEMENT 2 JUNE 30, 1970 IBM 37Ø ANNOUNCEMENT 3 JULY 30, 1969 IBM SYSTEM 3 ANNOUNCEMENT 4 DECEMBER 3,1968 CDC 7600 ANNOUNCEMENT 5 MARCH 18,1971 CDC 70 ANNOUNCEMENT

MINIMUM API = 95.89482 MAXIMUM API = 109.37471 DO YOU WANT TO CHOOSE THE SCALE?NO

PERIOD	API	95.895	100	109.375
		+		
-30	100-000		*	
-29	100.597		<u>!</u> ¥	
-28	100.731		! *	
-27	101.513			
-26	101.152		1 *	
-25	101.062			
-24	101-049		! *	
-23	101.584			
-22	101.631		*	
-21	103.002		1	
-20	103.003		! /	
-19	102.622		· *	
-18	102.427			
-17	103.038			
-16	102.531		!	
-15	101-470		· · · · · ·	
-14	101.119		. *	
-13	100.756			
-12	101.922		! *	
-11	100.560		! *<	
-10	101.664		! *	
-9	101.628		! *	
-8	102.137		! *	
-7	102.906		! *	
-6	104.843		Ĩ	*
-5	105.164		1	the second se
-4	104.128		!	*
-3	104.595		!	*
-2	104.730		1	*
~1	104.791		!	*
Ø	104.192		********	*
1	105.276		!	*
2	95.895	*		
3	109.375		I	*
4	108.022		1	*
5	108.470		I	¥
6	108.222		I	×
7	107.594		I.	Ť
8	107.626		I	*
9	108.337		1	*
10	108.301		ľ	Ť
11	108.327		I	Ť
12	108.329		1	<u>*</u>
13	108.117		I	<u>₹</u>
14	108.554		I	ţ
15	108.531		I	* .
16	109.308		I	*
17	108.253		I	J.
18	107.793		I	1
19	107.586		I	<u>/*</u>
20	107.278		I	*

DONE

TITLE:	EFFICIENT "CORNER" PORTFOLIOS	GDPA 36508
DESCRIPTION:	This program finds the set of efficient "corner" portfolios fr up to 100 securities. The amount invested in each security mu in specified bounds. The program assumes that returns follow index" or "diagonal" model:	om a set of st lie with- the "single-
	$R_i = A_i + B_i R_m + c_i$	
	where: R _i = return on security i	
	A _i , B _i = constants	
	R _m = an index (usually of the return on some "market por	tfolio")
		e of Q _i
INSTRUCTIONS:	Inputs to the program should be inserted beginning with line 5 statements. The values (in order) are:	000 as DATA
	1) expected value of R _m	
	2) variance of R _m	
	3) number of securities	
	4) lower limit on each holding (e.g., .02 for 2%)	
	5) upper limit on each holding (e.g., .10 for 10%)	
	6) for each security:	
	a) the value of A _i	
	b) the value of B _i	
	(Continued on Dece 2)	
	(continued on Page 2)	
SPECIAL CONSIDERATIONS:	This program uses the critical line algorithm developed by Mar In some cases, round-off problems may cause the procedure to p erroneous results. This is usually evident from the compositi portfolios. Slight changes in the inputs may cure the problem	kowitz. roduce on of the
ACKNOWLEDGEMENTS:	Graduate School of Business Stanford University	

INSTRUCTIONS: (continued)

The section of the program that reads the data is located between lines 1000 and 1050 and may be changed to (1) read the data from a file and/or (2) to set different upper and lower bounds for different securities.

When the program is run, it will first ask:

STARTING, CONTINUING OR FINISHING?

Respond with <u>STARTING</u> (or just <u>S</u>). The program will then determine all the corner portfolios, beginning with the one offering the greatest expected return. For selected corner portfolios, the following information will be printed:

portfolio number: (in sequence, used for later identification)

expected return

standard deviation of return

associated interest rate (that pure rate of interest that would make the portfolio optimal if funds could be freely borrowed or lent at the pure rate of interest)

Information about some corner portfolios will not be printed if they differ insignificantly from those for which information is shown.

After this phase, the program will again ask:

STARTING, CONTINUING OR FINISHING?

This time, respond <u>CONTINUING</u> (or just <u>C</u>). The program will then ask for the LOWEST-NUMBERED PORTFOLIO YOU WOULD LIKE TO SEE. Use the numbers from the previous printout. The program will indicate the percent to be invested in each security (except those for which the percent is zero). When you do not wish to see another portfolio, simply respond with a portfolio number larger than any shown on the previous printout. The program will again ask:

STARTING, CONTINUING OR FINISHING?

Respond with FINISHING, (or simply F), and the program will terminate.

.

.

RUN

RUN GDPA

STARTING, CONTINUING, OR FINISHING?S

PORT	EXP RTN	STD DEV	ASSOC. INT RATE
1	2.63903	•667977	
2	2.63896	•66796	2.62654
3	2.63856	.660434	2.61667
7	2.62528	.651724	1.5445
8	2.61913	•648087	1.50027
9	2.6085	•641963	1.48642
10	2 • 57222	•621961	1.39845
11	2.56347	•617367	1.37759
12	2.56241	•616813	1.37474
13	2.55962	•615364	1.37342
14	2.53189	.601056	1.3609
15	2.47137	.570292	1.33783
16	2.46151	•565374	1.31717
17	2.46108	•565162	1.31553
18	2.46054	•564898	1.31383
19	2.45555	•562452	1.30121
20	2.44827	•558914	1.29639
21	2.40004	•535779	1.26948
22	2.37004	•521658	1.25443
23	2.36306	•5184	1.25071
24	2.33072	.503413	1.23759
25	2.27052	•475986	1.21354
26	2.27031	•475896	1.21344
27	2.18365	•437799	1.16069
28	2.16712	•430769	1.147
29	2.16033	•427914	1.14006
30	2.15239	.4246	1.13
31	2.14712	•422415	1.12458
32	2.12216	•412283	1.08771
33	2.11055	.407726	1.0568
34	2.09365	.401449	•965182
35	2.09151	.400691	•946533
37	2.09151	.400691	•79256
38	2.0915	•40069	•703653
39	2.07266	•395631	•476815
40	2.03619	•388058	292809
41	2.02612	•38649	639503
42	2.00468	•383862	-1.83871
43	2.00018	•383522	-5.4019
44	1.99761	•383455	

STARTING, CONTINUING, OR FINISHING?C

LOWEST-NUMBERED PORTFOLIO YOU WOULD LIKE TO SEE?1

SEC	PERCENT
1	10
3	10
4	10
7	10
9	10
10	10
12	10
13	10
15	10
20	10

NEXT (LOWEST-NUMBERED) PORTFOLIO YOU WOULD LIKE TO SEE?21

•

SEC	PERCENT
1	8
2	10
3	8.08
4	5.64
6	10
7	7.05
9	10
10	10
12	10
13	•28
15	3.48
16	4.71
17	10
18	2.77

NEXT (LOWEST-NUMBERED) PORTFOLIO YOU WOULD LIKE TO SEE?44

PERCENT
10
10
10
2.78
10
5.19
2.03
10
10
10
10
10

NEXT (LOWEST-NUMBERED) PORTFOLIO YOU WOULD LIKE TO SEE?100

STARTING, CONTINUING, OR FINISHING?F

DONE

CONTRIBUTED PROGRAM BASIC

TITLE:	FINANCIAL RATIOS	GFNRAT 36510
DESCRIPTION:	This program uses balance sheet and income statement data to comput various financial ratios. The data may be entered either via the terminal or in data statements.	te
INSTRUCTIONS:	If data are entered by the user as the program is being run, the or will be indicated as the program proceeds. If the user elects to e the data in data statements, the same order should be followed, wit the statements entered beginning at line 9000.	rder enter th
ACKNOWLEDGEMENTS:	Graduate School of Business Stanford University	

RUN RUN GFNRAT PLEASE INDICATE INPUT SOURCE --'T' FOR TERMINAL 'D' FOR DATA STATEMENTS SOURCE -- ?T NET RECEIVABLES -- ?53985080 NET INVENTORIES -- ?141576993 NET INVENTORIES -- PREVIOUS YEAR-END -- ?109814927 CURRENT ASSETS -- ?225925178 TOTAL ASSETS -- ?323223797 CURRENT LIABILITIES -- ?107781631 PREFERRED STOCK -- ?0 COMNON STOCK -- ?40569128 CAPITAL AND EARNED SURPLUS -- ?120721744 NET SALES -- ?344740452 COST OF GOUDS SOLD -- ?229779697 SELLING, GENERAL AND ADMINISTRATIVE EXPENSES -- ?73472649 NET PROFIT -- ?13584388 DIVIDENDS ON PREFERRED STOCK -- ?0 CURRENT RATIO: 2.09614 ACID TEST RATIO: .782584 RECEIVABLES TURNOVER: 6.38585 TIMES TIMES AVERAGE INVENTORY TURNOVER: 1.82806 LT DEBT/TOTAL CAPITALIZATION: •25135 TOTAL DEBT TO EQUITY: 1.00398 GROSS PROFIT MARGIN: 33.347 PERCENT SELLING, GENERAL AND ADMIN. EXPENSES TO SALES: 21.3125 PERCENT NET PROFIT MARGIN: 3.94047 PERCENT RATE OF RETURN ON COMMON STOCK EQUITY: 8.42229 PERCENT TURNOVER RATIO: 1.06657 TIMES EARNING POWER: 4.20278 PERCENT DONE

DOME

CONTRIBUTED PROGRAM **BASIC**

TITLE:	INVESTMENT RETURN (CASH FLOW)	GIRRPV 36513
DESCRIPTION:	This program calculates internal rates of return and/or present val for sets of cash inflows and outflows over time.	ues
INSTRUCTIONS:	The data may be entered from the terminal or from data statements. investment is assumed to begin at time period zero. The flow at period is assumed to occur at the end of the first period; that at period the end of the second period, etc. If all flows except the initial are the same, the program does not require each to be entered expli	The riod 1 2 at one citly.
	To determine the internal rate of return, respond <u>IRR</u> when asked for next choice. To determine the present value, respond <u>PV</u> ; the prograthen request a discount rate. To do a new problem, respond <u>NEW</u> . The program, respond <u>STOP</u> .	or the am will o stop
	Every outflow must be entered as a minus number (including the one zero). Inflows must be entered as positive numbers the plus sig tional.	in period "n is op-
	If data statements are used, the following information should be ir for each investment:	cluded
	 the number of periods the cash flow for period zero the cash flow for period one "YES" if all the rest of the flows are the same; "NO" if the remaining flows differ from the first if the remaining flows differ: flow for the second period flow for the third period, etc. Data statements should be entered beginning at line 9000. Addition investments may be included by adding more data statements. 	ıal
ACKNOWLEDGEMENTS:	Graduate School of Business Stanford University	

RUN

PLEASE INDICATE INPUT SOURCE --(FOR TERMINAL) Т D (FOR DATA STATEMENTS) SOURCE?T NUMBER OF PERIODS AFTER PERIOD ZER0?5 + REPRESENTS A NET INFLOW, - REPRESENTS A NET OUTFLOW INITIAL CASH FLOW IN PERIOD ZERO?-18000 CASH FLOW IN FIRST PERIOD? 5600 ARE ALL THE REST OF THE FLOWS THE SAME?YES WHAT NEXT (IRR, PV, NEW OR STOP)?IRR THE INTERNAL RATE OF RETURN IS 16.8 PERCENT WHAT NEXT (IRR, PV, NEW OR STOP)?PV DISCOUNT RATE (IN PERCENT)?10 NET PRESENT VALUE IS 3228.41 WHAT NEXT (IRR, PV, NEW OR STOP)?NEW NUMBER OF PERIODS AFTER PERIOD ZER0?5 + REPRESENTS A NET INFLOW, - REPRESENTS A NET OUTFLOW INITIAL CASH FLOW IN PERIOD ZER0?-3500 CASH FLOW IN FIRST PERIOD?200 ARE ALL THE REST OF THE FLOWS THE SAME?NO PERIOD 2 FLOW?2000 PERIOD 3 PERIOD 4 FLOW?1400 FLOW?600 PERIOD 5 FLOW?-100 WHAT NEXT (IRR, PV, NEW OR STOP)?PV DISCOUNT RATE (IN PERCENT)?10 NET PRESENT VALUE IS -265.732

WHAT NEXT (IRR, PV, NEW OR STOP)?STOP

DONE

CONTRIBUTED PROGRAM **BASIC**

	WARRANT PRICE CALCULATION	GKASSF 36514
DESCRIPTION:	This program allows the user to calculate the "normal" price of a warrant and the "normal" change in the warrant's price per dollar change in the price of the associated stock.	
INSTRUCTIONS:	Required inputs are requested by the program, as shown in the sam	nple run.
SPECIAL CONSIDERATIONS:	The formula used is that given on page 204 of <u>Beat the Market</u> by Kassouf and Thorpe.	
ACKNOWLEDGEMENTS:	Graduate School of Business Stanford University	
RUN

RUN GKASSF

COMMON STOCK PRICE?45 NUMBER OF SHARES PER WARRANT?1 EXERCISE PRICE?50 PREVIOUS YEAR'S HIGH FOR STOCK?60 PREVIOUS YEAR'S LOW FOR STOCK?40 MONTHS REMAINING BEFORE EXPIRATION?72 CURRENT YIELD (E.G. 05)?03 NUMBER OF OPTIONS OUTSTANDING?50000 NUMBER OF COMMON SHARES OUTSTANDING?150000

NORMAL WARRANT PRICE = 15.5202 *NORMAL* CHANGE IN WARRANT PRICE PER DOLLAR CHANGE IN STOCK PRICE = .645292

DONE

BUSINESS AND MANUFACTURING APPLICATIONS (700) CONTRIBUTED PROGRAM **BASIC**

	PRICE/EARNINGS RATIO CALCULATION	GKCOST 36515
DESCRIPTION:	This program calculates the theoretical P/E ratio for a give takes advantage of the fact that most firms' financial futur thought of as years segmented into periods of similar financ Within each segment, the firm's growth rate, dividend payout discount rate are assumed constant. The common stock P/E ra culated assuming an initial EPS of \$1.00. To get the theore price of the stock, you need only multiply the P/E ratio by beginning EPS.	n firm. It e may be ial policy. ratio and tio is cal- tical market the actual
	To use this program, segment your firm's future into years o financial nature, then input the starting year and ending ye segment as well as its characteristic growth rate, payout ra discount rate for each segment. For your final ending year, The program uses an infinite model for the last year.	f similar ar of each tio, and Type "Ø".
	Be sure to remember that when entering ratios and rates percingut as "33", not ".33" or "33%".	entages are
	There are two output formats, a long and short form. The lo prints out all intermediate calculations while the short for out just the answer.	ng form m prints
SPECIAL CONSIDERATIONS:	You may rerun this program using a modified version of your data as follows:	initial
	"No" change in the existing values "Individually" change each segment's value "Percentage" change in all segment values "One" new value to be applied to all segments	
ACKNOWLEDGEMENTS:	Graduate School of Business Stanford University	

RUN

RUN GKCOST

SHARE PRICE (P/E) CALCULATIONS

DO YOU WISH DIRECTIONS ?NO

HOW MANY SEGMENTS WILL YOU USE (MAX IS 20) ?4 PLEASE INPUT YOUR DATA IN THE FOLLOWING ORDER, SEPARATED BY COMMAS: STARTING YEAR, ENDING YEAR, GROWTH RATE, PAYOUT RATIO, DISCOUNT RATE ?1.5.25.0.12 ?6.10.15.20.12 ?11.20.10.30.12 ?21.0.4.60.12

'LONG' OR 'SHORT' FORMAT ?LONG

SHARE PRICE (P/E) CALCULATIONS

SEGMENT		YEA	RS	G	ROWTH	DI	VII	DEND	DIS	COI	UNT		
NO •		S	E		RATE	P	AYC)UT	R	AT	Ξ		
1		1	5		0.250	I	ø.e	00	ø	• 1 2	20		
2		6	10		0.150	1	ؕ2	200	ø	•11	20		
3		11	20		0.100	(Ø . 3	300	ø	.14	20		
4		21	ø		0.040	1	0.6	500	ø	• 14	20		
PPIOR		COMP	OUND		CUDDEN	Ŧ		DIVID	END		G-P.V		SEGMENT
SEGMENT	Y	CPAU	TU		DECIMM	TNC	Y	DIVIL	T T	Y	DISCOUNT	_	DIUIDEND
FDC	Λ	FACT	08		EDC DECIMN	140	л	RATIO		Λ	FACTOR	-	VALUE
		a	. 99		1.0	a		лн. 30 Я.	aa		7.04		Ø Ø
1.00		3	.05		3.0	5		ä	20		5.42		3.31
3.05		2	.01		6.1	4		ø.	30		9.07		16.70
6.14		2	•59		15.9	2		Ø	60		13.00		124.18
SEGMENT		PRI	CE		TOTAL								
DIVIDEND) +	DIS	COUNI	-	VALUE								

20.13	20.13
32.16	35.47
39.98	56.68
0.00	124.18
	20.13 32.16 39.98 0.00

DESIRED RERUN OPTION: 'MODIFY', 'START' OVER, 'END' RUN ?MODIFY

MODIFICATION OPTIONS: 'NO' CHANGE, 'INDIVIDUALLY', 'PERCENTAGE', 'ONE' VALUE

MODIFY GROWTH RATE ?NO

MODIFY PAYOUT RATIO ?INDIVIDUALLY HOW MANY SEGMENTS ?2 WHICH ONES ?2,4 SEGMENT 2 ?25 SEGMENT 4 ?75 MODIFY DISCOUNT RATE ?PERCENTAGE What percentage change do you wish ?50

DIRECTIONS THIS RERUN ?NO

'LONG' OR 'SHORT' FORMAT ? SHORT

SHARE PRICE (P/E) CALCULATIONS

SEGMENT	YE	ARS	GROWTH	DIVIDEND	DISCOUNT	TOTAL
NO.	S	E	RATE	PAYOUT	RATE	VALUE
1	1	5	Ø•25Ø	0.000	0.180	7.223
2	6	10	0.150	0.250	0.180	16.524
3	11	20	0.100	0.300	0.180	29.720
4	21	ø	0.040	0.750	0.180	88.702

DESIRED RERUN OPTION: 'MODIFY', 'START' OVER, 'END' RUN ?END

DONE

TITLE:	GNMRVB SECURITIES PORTFOLIO ANALYSIS AND DETERMINATION 36530
DESCRIPTION:	GNMRVB traces out the relationship between minimum non-market risk and market sensitivity (beta) for portfolios composed from a set of stocks. GMRGB finds the portfolio which gives the minimum amount of non-market risk for a given level of market sensitivity (beta). Formally, they solve the following problem:
	Minimize: $\sum_{i=1}^{N} X_i^2 R_i^2$
	subject to: $\sum_{i=1}^{N} X_i B_i = B_i$
	$\sum_{i=1}^{N} X_i = 1$
	X _i > 0 for all i
	The value of X _i is the proportion of the portfolio invested in security i. R _i is a measure of the security i's relative non-market risk. B _i is a measure of security i's market sensitivity (beta). B is the level of beta for the entire portfolio. The relative non-market risk of the portfolio is given by: $\sqrt{\sum_{i=1}^{N} X_i^2 R_i^2}$
	GNMRVB is used in conjunction with GMRGB. After the relationship between minimum non-market risk and beta has been traced out, the "best" combination can be chosen. The corresponding value of beta can then be used with program GMRGB to find the composition of that portfolio.
INSTRUCTIONS:	 GNMRVB and GMRGB require data statements beginning at line 9000 as follows: 1) the number of securities 2) for each security: a) the value of beta b) the security's relative non-market risk
	GNMRVB requests a "STEP SIZE". This is the interval for calculation and printing of beta levels. Values are always selected so that 1.00 is included. The smaller the step size, the more detailed the results (and, of course, the longer the time required to obtain them).
SPECIAL CONSIDERATIONS:	These programs use a special case of Markowitz' critical line algorithm. In some cases, they may produce errors due to roundoff problems. In such cir- cumstances, the difficulty may be avoided by changing the data slightly.
ACKNOWLEDGEMENTS:	Graduate School of Business Stanford University

RUN 9000 DATA 5 9010 DATA .84..386 9012 DATA 1.06.374 9014 DATA 1.17,.791 9016 DATA 1.01.540 9018 DATA 1 70,1.562 RUN GNMRVB HAVE YOU ENTERED YOUR DATA? YES STEP SIZE? .05 BETA REL. NON-MKT RISK _____ ----1.700 1.562 1.650 1.417 1.600 1.276 1.550 1.142 1.500 1.017 1.450 0.902 * * 1.400 Ø:789 1.350 0.680 * Ø:576 1.300 * 1.250 * 0.479 1.200 0.392 * 1.150 Ø.323 * * 1.100 0.275 1.050 0.241 * Ø.228 * 1.000 0.950 0.239 * 0.900 0.286 * 0.850 0.365 DONE RUN GMRGB HAVE YOU ENTERED YOUR DATA? NO ENTER DATA BEGINNING AT LINE 9000 FIRST, THE NUMBER OF SECURITIES THEN, FOR EVERY SECURITY --1) THE VALUE OF BETA 2) THE SECURITY'S RELATIVE NON-MARKET RISK WHEN YOU HAVE ENTERED YOUR DATA STATEMENTS, **RE-RUN THE PROGRAM** DONE 9000 DATA 5 9010 DATA .84..386 9012 DATA 1.06,.374 9014 DATA 1.17,.791 9016 DATA 1.01,.540 9018 DATA 1.70,1.562 RUN GMRGB HAVE YOU ENTERED YOUR DATA?YES DESIRED LEVEL OF BETA?1 SEC PERCENT - - ------34.14 1 2 37.32 8.45 3 4 17.80 5 2.30 1.00 BETA = RELATIVE NON-MARKET RISK = 0.23

*

* *

*

*

BUSINESS AND MANUFACTURING APPLICATIONS (700)

CONTRIBUTED PROGRAM **BASIC**

TITLE:	GROSS NATIONAL PRODUCT SUMMARY	GNPSUM 36086
DESCRIPTION:	GNPSUM produces figures for GNP, consumption, investment, and gover spending for a series of years from a model in which consumption is function of income in the previous period, and investment depends i on changes in consumption.	nment a n part
INSTRUCTIONS:	<pre>The following coefficients are to be input by the user: (Note: All dollar values should be entered in exponential notation Example: \$6 million = 6E + 6.)</pre> The first four values refer to a base period: A = the fraction consumption was of personal income B = the actual value of investment expenditures E = the value of government spending in this base period Y(1) = the total GNP for this base period The next five values are general information: N = the number of periods the user wishes to analyze G = the fraction disposable income is of total GNP C = the additional investment added each period F = the additional government spending each period D = the fraction of the consumption increment that is	od to s C * T) to
SPECIAL CONSIDERATIONS:	Maximum of 29 periods. To increase this dimension alter line 9345.	
ACKNOWLEDGEMENTS:		

RUN GET-SGNPSUM RUN **GNP SUM** * GNP SUMMARY * THIS PROGRAM PRINTS A SUMMARY OF FIGURES FOR GNP, CONSUMPTION, INVEST-MENT, AND GOVERNMENT SPENDING FOR A SERIES OF CONSECUTIVE YEARS. THE FOLLOWING FOUR QUESTIONS REFER TO A BASE PERIOD: FOR THE BASE PERIOD, WHAT FRACTION OF PERSONAL INCOME WAS CONSUMPTION ? • 91 WHAT WAS THE TOTAL INVESTMENT DURING THIS PERIOD? (IN DOLLARS)?10E+9 WHAT WAS THE GOVERNMENT SPENDING FOR THIS PERIOD?112E+9 AND WHAT WAS THE TOTAL GNP FOR THIS BASE PERIOD?465E+9 ---HOW MANY PERIODS DO YOU WISH TO ANALYZE?12 FOR THIS MODEL, WHAT FRACTION OF GNP SHOULD BE USED AS DISPOSABLE INCOME ?.72 HOW MUCH NEW INVESTMENT SHOULD BE ADDED EACH PERIOD?2.5E+6 HOW MUCH NEW GOVERNMENT SPENDING SHOULD BE ADDED EACH PERIOD?100E+6 WHAT FRACTION OF THE CHANGE IN CONSUMPTION FROM PERIOD TO PERIOD SHOULD BE RE-INVESTED? . 333 DOES THE NORMAL BUSINESS INVESTMENT HAVE A RANDOM COMPONENT?YES YEAR GNP CONSUMPTION INVESTMENT GOV'T. EXP.

Ø	4+65000E+11	3+43000E+11	1.00000E+10	1.12000E+11
ĩ	4•26771E+11	3.04668E+11	1.00025E+10	1.12100E+11
2	3 • 88622E+11	2.79620E+11	-3.29849E+09	1.12300E+11
3	3 • 67908E+11	2 · 54625E+11	8.83005E+08	1.12400E+11
4	3•54477E+11	2+41053E+11	9•23935E+Ø8	1.12500E+11
5	3 • 50012E+11	2+32253E+11	5.15860E+09	1.12600E+11
6	3•48810E+11	2.29328E+11	6•78220E+09	1.12700E+11
7	3.50575E+11	2.2854ØE+11	9•23503E+09	1.12800E+11
8	3 • 52299E+11	2 • 29 69 7E+11	9•70215E+09	1.12900E+11
9	3.54436E+11	2+30826E+11	1.06095E+10	1.13000E+11
10	3 • 56365E+11	2 • 3222 6E+11	1.10390E+10	1.13100E+11
11	3.56676E+11	2+33491E+11	9.98527E+09	1.13200E+11
12	3 • 5 73 83E+11	2•33694E+11	1 • 03885E+10	1 • 1 3 3 0 0 E + 1 1

DONE

CONTRIBUTED PROGRAM **BASIC**

	RISK ANALYSIS IN CAPITAL INVESTMENT	GRISKA 36543
DESCRIPTION:	The evaluation of a capital investment project starts wit that the productivity of capital is measured by the rate pect to receive over some future period. A dollar receiv worth less to us than a dollar in hand today. Expenditur hence are less costly than expenditures of equal magnitud now. For this reason we cannot calculate the rate of ret unless we take into account (a) when the sums involved in are spent and (b) when the returns are received.	th the principle of return we ex- red next year is res three years le two years from curn realistically an investment
	Comparing alternative investments is thus complicated by usually differ not only in size but also in the length of expenditures will have to be made and benefits returned.	the fact that they time over which
	It is these facts of investment life that long ago made a comings of approaches that simply averaged expenditures a lumped them, as in the number-of-years-to-pay-out method. stimulated students of decision making to explore more pr determining whether one investment would leave a company long run than would another course of action.	pparent the short- nd benefits, or These shortcomings recise methods for better off in the
	It is not surprising, then, that much effort has been app ment of ways to improve our ability to discriminate among tives. The focus of all of these investigations has been definition of the value of capital investments to the com versy and furor that once came out in the business press priate way of calculating these values has largely been r the discounted cash flow method as a reasonable means of of return that can be expected in the future from an inve	lied to the develop- investment alterna- to sharpen the pany. The contro- over the most appro- resolved in favor of measuring the rate estment made today.
	Thus we have methods which, in general, are more or less cal formulas for comparing the outcomes of various invest binations of the variables that will affect the investmen niques have progressed, the mathematics involved has beco precise, so that we can now calculate discounted returns percent.	elaborate mathemati- ments and the com- ts. ¹ As these tech- me more and more to a fraction of a
SPECIAL		
CONSIDERATIONS:	Analysis of the sort advocated by Hertz in "Risk Analysis ment," (Harvard Business Review, January-February 1964) of this program. This documentation contains excerpts from to reprint has been granted by the publishers. See for example, Joel Dean, <u>Capital Budgeting</u> (New York Press, 1951); "Return on Capital as a Guide to Manageri Association of Accounts Research Report No. 35, Decembe Young, "Overcoming Obstacles to Use of Discounted Cash Shares," NAA Bulletin, March 1963, p. 15.	in Capital Invest- an be performed using the article; permission , Columbia University al Decisions," National r 1, 1959; and Bruce F. Flow for Investment
ACKNOWLEDGEMENTS:	Graduate School of Business	

Stanford University

DESCRIPTION: (continued)

Summary of New Approach

After examining present methods of comparing alternative investments, Mr. Hertz reports on his firm's experience in applying a new approach to the problem. Using this approach, management takes the various levels of possible cash flows, return on investment, and other results of a proposed outlay and gets an estimate of the odds for each potential outcome.

Currently, many facilities decisions are based on discounted cash flow calculations. Management is told, for example, that Investment X has an expected internal rate of return of 9.2%, while for Investment Y a 10.3% return can be expected.

By contrast, the new approach would put in front of the executive a schedule which gives him the most likely return from X, but also tells him that X has 1 chance in 20 of being a total loss, 1 in 10 of earning from 4% to 5%, 2 in 10 of paying from 8% to 10%, and 1 chance in 50 of attaining a 30% rate of return. From another schedule he learns what the most likely rate of return is from Y, but also that Y has 1 chance in 10 of resulting in a total loss, 1 in 10 of earning from 3% to 5% return, 2 in 10 of paying between 9% and 11%, and 1 chance in 100 of 30%.

In this instance, the estimates of the rates of return provided by the two approaches would not be substantially different. However, to the decision-maker with the added information, Investment Y no longer looks like the clearly better choice, since with X the chances of substantial gain are higher and the risks of loss lower.

Two things have made this approach appealing to managers who have used it:

- 1. Certainly in every case it is a more descriptive statement of the two opportunities. And in some cases it might well reverse the decision, in line with particular corporate objectives.
- This is not a difficult technique to use, since much of the information needed is already available - or readily accessible - and the validity of the principles involved has, for the most part, already been proved in other applications.

The enthusiasm with which managements exposed to this approach have received it suggests that it may have wide application. It has particular relevance, for example, in such knotty problems as investments relating to acquisitions or new products, and in decisions that might involve excess capacity.

INSTRUCTIONS:

The program will first ask how many trials (iterations) you want. Each trial simulates one possible set of outcomes. Since each takes some time, it is a good idea to limit the analysis to forty or fifty trials, at least at first.

The program will ask if you want price, sales, and operating costs to be interdependent. If you say NO, each will be drawn "randomly", without regard to the values drawn for the other two. If you say YES, they will be determined together. One draw will be made: if price and operating costs are especially high, the share of market will be especially low, and vice-versa.

The program will also ask if you want to select the output format. If you say NO, the program will summarize the possible rates of return from -15% to +30%, in ranges of 5\%. If you say YES, the program will allow you to select the ranges to be used.

The program will next request three estimates for each of nine factors. These have the following interpretations:

"low value:	there should be roughly 9 chances out of 10 that the actual value will exceed this estimate.
"most likely" value:	this is the best single estimate of the actual value
"high" value:	there should be roughly 1 chance out of 10 that the actual value will exceed this estimate

Given this information, the program will perform the desired number of simulations and provide the requested summary information.

<u>Warning</u>: If the number of trials is not large, the results may depend to a considerable extent on the particular "draws" made during the simulation. RUN RUN GRISKA

ABOVE

ΔØ

RISK ANALYSIS PROGRAM HOW MANY ITERATIONS (TRIALS) DO YOU WANT?40 DO YOU WANT PRICE, SALES AND OPERATING COSTS TO BE INTERDEPENDENT?YES DO YOU WANT TO SELECT THE OUTPUT FORMAT?YES RATE OF RETURN RANGE --FROM (%)?-10 TO (%)?+40 INTERVAL WIDTH (2)?5 FOR EACH FACTOR, ENTER THREE ESTIMATES --LOW, MOST LIKELY, HIGH INVESTMENT (IN DOLLARS)?900,1000,1100 MARKET SIZE (IN UNITS)?800,1000,1200 SELLING PRICE (IN DOLLARS)?.90,1.00,1.10 Market growth rate (% Per Year)?-10,0,10 SHARE OF MARKET (1)?40,50,60 RESIDUAL VALUE OF INVESTMENT (IN DOLLARS)?0,100,200 OPERATING COSTS (IN DOLLARS PER UNIT)?.35,.50,.65 FIXED COSTS (IN DOLLARS PER YEAR)?40,50,60 USEFUL LIFE (IN YEARS)?9,10,11 AVERAGE CASH FLOWS ------209.55 YEAR 1 YEAR 2 YEAR 3 YEAR 4 218.00 227.16 237-11 YEAR 5 247.94 YEAR 6 259.73 YEAR 7 272.59 YEAR 8 286.62 YEAR 9 326.03 YEAR 10 172.21 YEAR 11 37.11 AVERAGE TOTAL INVESTMENT = 999.433 EXPECTED PAYBACK PERIOD: 3 TO 4 YEARS EXPECTED RATE OF RETURN (%): 18.4275 RATE OF RETURN (%) FROM TO PROB. PROB. R IS GREATER -------------------BELOW -10 Ø 1 0.000 -10 -5 1.000 -5 0.025 0.975 ø 5 a 0.000 0.975 5 10 0.250 0.725 10 15 0.125 0.600 15 20 0.200 0.400 2Ø 25 0.200 0.200 25 30 0.075 0.125 35 0.050 3Ø 0.075 35 40 0.025 0.050

.05

0.000

FACTOR	AVERAGE VALUE
INVESTMENT (IN DOLLARS)	999.43
SELLING PRICE (IN DOLLARS)	1.00
MARKET GROWTH RATE (S PER YEAR)	2.89
SHARE OF MARKET (1)	49.55
RESIDUAL VALUE OF INVESTMENT (IN DOLLARS)	107.86
OPERATING COSTS (IN DOLLARS PER UNIT)	0.51
FIXED COSTS (IN DOLLARS PER YEAR)	49.84
USEFUL LIFE (IN YEARS)	9.87

DONE

BUSINESS AND MANUFACTURING APPLICATIONS (700)

CONTRIBUTED PROGRAM **BASIC**

TITLE:	STOCK VALUATION GSTKVL 36545
DESCRIPTION:	The program computes the present value of a stock, based on alternative assumptions about the growth rates for dividends and earnings, the terminal price/earnings ratio, and the relevant rate of discount.
INSTRUCTIONS:	The user must include data statements, beginning at line 1000, indicating for each of a number of time segments:
	a) the growth rate in dividends per share b) the payout ratio c) the final period of the segment
	The program will request:
	a) the current earnings per share b) a range of terminal price/earnings ratios to be analyzed c) a range of returns (discount rates) to be analyzed
	The ranges will be divided into equally spaced values and a table of impli- present values for the stock printed.
	Example
	Florida Power has averaged about 9% growth in EPS over the past few years. We assume that eventually this unusually rapid growth will slow. Presumab at that time Florida Power's P/E ratio will drop to that of a "non-growth" utility (currently 10 to 13) and the firm will probably be paying out abou 70% of earnings in dividends; the current payout ratio is 55%. Based on this and other information, suppose we make the following projections:
	Time Period EPS Growth Rate Payout Ratio
	Next 5 years 8% .60 Years 6 - 10 6% .65
	Furthermore, we assume that in year 10, Florida Power shares will sell at 10 to 13 times earnings. Latest 12 month EPS are \$2.94. High grade bonds are yielding around 8%. The attached example run shows how to find the prices we could pay for Florida Power stock and earn annual returns of between 8 and 15 percent over the next 10 years, assuming our forecasts are valid.
ACKNOWLEDGEMENTS:	Graduate School of Business Stanford University

RUN

RUN GSTKVL HAVE YOU ENTERED YOUR DATA STATEMENTS?NO EACH CASE REQUIRES THE FOLLOWING DATA --THE NUMBER OF SEGMENTS THEN, FOR EACH SEGMENT --THE GROWTH RATE IN DIVIDENDS PER SHARE PAYOUT RATIO FINAL PERIOD OF THE SEGMENT ENTER DATA STATEMENTS BEGINNING AT LINE 1000 FOR MULTIPLE RUNS, SIMPLY PROVIDE ADDITIONAL SETS OF DATA AFTER DATA STATEMENTS HAVE BEEN ENTERED, RE-RUN THE PROGRAM DONE 1000 DATA 2, .06, .6, 5, .06, .65, 10 RUN GSTKVL HAVE YOU ENTERED YOUR DATA STATEMENTS?YES CURRENT EARNINGS/SHARE?2.94 GROWTH RATES --PERIOD 1 .06 PERIOD 2 .06 RANGE OF TERMINAL P/E RATIOS --LOW?1Ø HIGH?13 RANGE OF RETURNS DESIRED (DECIMAL) --LOW? .08 HIGH? .15 ----- P/E RATIO -----12 RETURN 10 11 13 40.7778 48.0941 43.2166 45.6553 •08 .0975 35.5739 37.6506 39.7272 41.8038 .115 31.1527 32.9254 36.471 34.6982 .1325 27.3835 28.9007 30.4178 31.9349 .15 24.1597 25.4611 26.7626 28.064 CODES FOR NEXT TASK: Ø: ALL NEW DATA 1: SAME CURRENT EPS, NEW PROJECTIONS 2: NEW EPS, SAME PROJECTIONS 3: STOP NEXT TASK?3

DONE

BUSINESS AND MANUFACTURING APPLICATIONS (700) CONTRIBUTED PROGRAM **BASIC**

	SECURITIES EPS GROWTH	GTHOR 36553
DESCRIPTION:	This program finds the number of years of constant growth in earn share required to justify the current price of a stock. It also the present values of the dividends and terminal share price for year of growth.	ings per provides one less
INSTRUCTIONS:	All input is from the terminal. The program asks the user to enta growth rate, the current share price, earnings per share, initial rate in EPS, number of years of declining growth, discount rate, a current payout ratio.	er the growth and
ACKNOWLEDGEMENTS:	Graduate School of Business Stanford University	

RUN RUN GTHOR

DO YOU WANT INSTRUCTIONS?YES

THIS PROGRAM FINDS THE NUMBER OF YEARS OF CONSTANT GROWTH IN EARNINGS PER SHARE REQUIRED TO JUSTIFY THE CURRENT SHARE PRICE. YOU MUST SPECIFY THE INITIAL GROWTH RATE IN EPS AND THE NUMBER OF YEARS DURING WHICH THIS GROWTH RATE WILL DECLINE TO 4 PERCENT (OR .04) PER YEAR. IN ADDITION TO PROVIDING THE NUMBER OF YEARS OF CONSTANT GROWTH REQUIRED AT THE RATE YOU SPECIFY, THE PROGRAM ALSO

PROVIDES THE PRESENT VALUES OF THE DIVIDENDS AND TERMINAL SHARE PRICE FOR ONE LESS YEAR OF GROWTH. THIS ENABLES You to examine the sensitivity of your assumptions. IN COMPUTING ANNUAL DIVIDENDS THE PROGRAM ASSUMES THAT THE PAYOUT RATIO WILL REMAIN AT ITS CURRENT LEVEL FOR FIVE

THE PAYOUT RATIO WILL REMAIN AT ITS CURRENT LEVEL FOR FIVE YEARS AND THEN CHANGE GRADUALLY UNTIL IT REACHES .6 IN THE YEAR WHEN ANNUAL GROWTH IN EPS DROPS TO 4 PERCENT.

IF YOU WANT TO USE A FINAL GROWTH RATE OTHER THAN .04 Type IT (AS A DECIMAL); OTHERWISE TYPE .04 GROWTH RATE?.04

WHAT IS THE CURRENT SHARE PRICE?66 EARNINGS PER SHARE?2.87 INITIAL GROWTH RATE IN EPS (AS A DECIMAL)?.10 NUMBER OF YEARS OF DECLINING GROWTH?6 THE DISCOUNT RATE (AS A DECIMAL)?.12 THE CURRENT PAYOUT RATIO (AS A DECIMAL)?.48

YOUR INPUT IMPLIES A FINAL P/E RATIO OF 7.5 IF THIS IS NOT SATISFACTORY YOU MAY CHANGE IT BY TYPING ANOTHER P/E RATIO; OTHERWISE TYPE Ø. VALUE?12

PRICE OF 66 ASSUMES 41 YEARS OF CONSTANT GROWTH IN EPS. THE PRESENT VALUE(INTRINSIC VALUE) IS 59.1801 INTRINSIC VALUE FOR N1= 40 IS 58.7523 SHARE PRICE IN 46 YEARS= 2337.91

DO YOU WANT TO RUN MORE DATA?NO

DONE

BUSINESS AND MANUFACTURING APPLICATIONS (700)

CONTRIBUTED PROGRAM **BASIC**

	PLOTTING DATA GVPDQT 36554	
DESCRIPTION:	These two programs allow the user to plot data from the GPDQ data bases and/o his own data bases. GVPDQT uses a teletype for output, and VPDQ uses the Tektronix 4010 terminal for output. For further information about the files, see the descriptions contained in this documentation, and a similar program, GCHLIN, HP No. 36503A.	r
INSTRUCTIONS:	By and large, the programs provide the information required for their use. The user can select a fund from the GPDQF file, an index from the GPDQI file, a stock from the GPDQS file, or a record from a file in his own account named PDQP. Another file, STRING, whose entries form a subset of the ASCII charac- ter set, is also used by this program.	
	(continued on page 2)	
SPECIAL CONSIDERATIONS:	For detailed instructions for using the Tektronix 4010 display, see "Special Considerations" section of VSUB, HP No. 36558, page 3.	
ACKNOWLEDGEMENTS:	Graduate School of Business Stanford University	

INSTRUCTIONS: (continued)

PDQF

GPDQF is a file of data on quarterly prices and dividends paid by 100 open-end mutual funds. The funds were chosen randomly from those for which data were readily available for the period 1965-1970. For each quarter, the following information is given:

"opening price"

- net asset value per share as of the close of the market on the last trading day of the previous quarter.

"dividends"

- all dividends received by an investor who held one share at the beginning of the quarter; any other distributions that qualify as income are also included.

"ending price"

- the total value of the holdings of an investor who held one share at the beginning of the quarter. This includes the net asset value of the share (or shares, in the case of splits) at the close of the market on the last trading day of the quarter. It also includes the value of any distributions received during the quarter that qualify as capital gains.

Each fund is allocated one record on the file. Fund number 1 is on record 1; fund number 2 on record 2, etc. Each record contains 40 quarters of information, as follows:

opening price	lst quarter of lst year
dividends	lst quarter of lst year
closing price	lst quarter of lst year
opening price	2nd quarter of 1st year
dividends	2nd quarter of 1st year
closing price	2nd quarter of 1st year

etc.

Any missing value is represented by -999.

Following the 120 data values on each record are:

- the first year for which data are given (e.g. 1963)
- the name of the fund (up to 20 characters)

This file uses the same format as GPDQI and GPDQS. The funds are listed as follows:

ABERDEEN FUND
AFFILIATED FUND INC.
AMERICAN BUSINESS SHARES INC.
AMERICAN INVESTORS FUND INC.
AMERICAN MUTUAL FUND INC.
ANCHOR - FUNDAMENTAL INVESTORS
ANCHOR - GROWTH FUND
ASSOCIATED FUND TRUST
AXE-HOUGHTON FUND A INC.
AXE-HOUGHTON FUND B INC.
AXE-HOUGHTON STOCK FUND INC.
AXE SCIENCE CORP.
BOSTON FUND INC.
BROAD STREET INVESTING CORP.
BULLOCK FUND LTD.
CENTURY SHARES TRUST
CHASE FUND OF BOSTON
CHASE SHAREHOLDERS TRUST OF BOSTON
CHEMICAL FUND INC.
COLONIAL FUND INC.
AMERICAN EXPRESS INCOME FUND INC.
AMERICAN EXPRESS INVESTMENT FUND INC.
AMERICAN EXPRESS STOCK FUND INC.
COMPOSITE BOND AND STOCK FUND
COMPOSITE FUND INC.

CONCORD FUND INC. 26 DE VEGH MUTUAL FUND INC. 27 28 DELAWARE FUND INC. 29 BULLOCK -- DIVIDEND SHARES INC. DREYFUS FUND INC. 30 31 ENERGY FUND INC. EQUITY FUND INC. 32 FIDELITY CAPITAL FUND INC. 33 34 FIDELITY FUND INC. 35 FINANCIAL INDUSTRIAL FUND 36 FLORIDA GROWTH FUND INC. FOUNDERS MUTUAL FUND 37 38 GROUP SECURITIES INC. -- COMMON STOCK FUND GROWTH INDUSTRY SHARES INC. GUARDIAN MUTUAL FUND INC. 39 40 41 HAMILTON FUNDS INC. -- SERIES HDA 42 INCOME FUND OF BOSTON INC. INVESTMENT COMPANY OF AMERICA 43 44 INVESTMENT TRUST OF BOSTON 45 INVESTORS RESEARCH FUND INC. 46 ISTEL FUND INC. 47 JOHNSTON MUTUAL FUND INC. 48 **KEYSTONE CUSTODIAN FUND B-1** KEYSTONE CUSTODIAN FUND B-2 KEYSTONE CUSTODIAN FUND B-4 49 50 51 **KEYSTONE CUSTODIAN FUND K-1** KEYSTONE CUSTODIAN FUND K-2 KEYSTONE CUSTODIAN FUND S-1 52 53 **KEYSTONE CUSTODIAN FUND S-2** 54 KEYSTONE CUSTODIAN FUND S-3 55 56 **KEYSTONE CUSTODIAN FUND S-4** 57 KNICKERBOCKER FUND KNICKERBOCKER GROWTH FUND INC. 58 LIFE INSURANCE INVESTORS INC. 59 LOOMIS-SAYLES MUTUAL FUND 60 MAGNA INCOME TRUST 61 MASSACHUSETTS INVESTORS GROWTH STOCK FUND 62 MASSACHUSETTS INVESTORS TRUST 63 MUTUAL SHARES CORP. 64 MUTUAL TRUST 65 NATIONAL INVESTORS CORP. NATIONAL SECURITIES SERIES - BALANCE SERIES 66 67 68 NATIONAL SECURITIES SERIES -- BOND SERIES NATIONAL SECURITIES SERIES -- DIVIDEND SERIES NATIONAL SECURITIES SERIES -- PREFERRED STOCK SERIES 69 70 71 NATIONAL SECURITIES SERIES -- INCOME SERIES NATIONAL SECURITIES SERIES -- STOCK SERIES 72 73 NATIONAL SECURITIES SERIES -- GROWTH STOCK SERIES 74 ONE WILLIAM STREET FUND INC. 75 OPPENHEIMER FUND INC 76 PENN SQUARE MUTUAL FUND 77 PHILADELPHIA FUND INC. 78 PINE STREET FUND INC. 79 PIONEER FUND INC. PRICE (T. ROWE) GROWTH STOCK FUND PURITAN FUND INC. 80 81 PUTNAM (GEORGE) FUND 82 PUTNAM GROWTH FUND 83 84 SCUDDER STEVENS AND CLARK - BALANCED FUND SCUDDER STEVENS AND CLARK - COMMON STOCK FUND 85 86 SIGMA INVESTMENT SHARES SIGMA TRUST SHARES 87 SOUTHWESTERN INVESTORS INC. 88 89 SOVEREIGN INVESTORS INC. STEIN ROE AND FARNHAM - BALANCED FUND STEIN ROE AND FARHNAME - STOCK FUND 90 91 92 TWENTIETH CENTURY GROWTH INVESTORS VALUE LINE FUND INC. 93 94 VALUE LINE INCOME FUND INC. VALUE LINE SPECIAL SITUATIONS FUND 95 WALL STREET INVESTING CORP. 96 97 WASHINGTON MUTUAL INVESTORS FUND INC. WELLINGTON FUND INC. 98 99 WHITEHALL FUND INC. 100 WISCONSIN FUND INC.

GPDQS

SPDQS is a file of quarterly prices and dividends for the thirty stocks used in 1971 to compute Jow-Jones' Industrial Average. For each quarter, the following information is given:

"opening price"

- this is the price of one share of the stock as of the close of trading on the last trading day of the previous quarter.

"dividends"

- this includes all dividends received during the quarter by a person who held one share at the beginning of the quarter. Any distribution treated as income is also included.

"closing price"

- this is the value of the holdings of an investor who held one share at the beginning of the quarter. The value is calculated as of the close of the last trading day in the quarter.

Each stock is allocated one record on the file. Stock number 1 is on record 1; stock 2 on record 2, etc. Each record contains 40 quarters of information as follows:

opening price	lst	quarter	of	lst	year
dividends	lst	quarter	of	lst	year
closing price	lst	quarter	of	lst	year
opening price	2nd	quarter	of	lst	year
dividends	2nd	quarter	of	lst	year
closing price	2nd	quarter	of	lst	year

etc.

Any missing value is represented by -999.

Following the 120 data values on each record are:

- the first year for which data are given (e.g., 1963)

- the name of the stock (up to 20 characters)

The file uses the same format as GPDQI and GPDQF. The stocks are listed as follows:

ALLIED CHEMICAL 1 ALUMINUM COMPANY OF AMERICA 2 3 AMERICAN BRANDS 4 AMERICAN CAN COMPANY AMERICAN TELEPHONE AND TELEGRAPH 5 6 ANACONDA 7 BETHLEHEM STEEL 8 CHRYSLER CORPORATION 9 DUPONT (E.I.) DE NEMOURS 10 EASTMAN KODAK 11 GENERAL ELECTRIC GENERAL FOODS 12 13 GENERAL MOTORS 14 GOODYEAR TIRE AND RUBBER 15 INTERNATIONAL HARVESTER INTERNATIONAL NICKEL COMPANY OF CANADA 16 INTERNATIONAL PAPER COMPANY 17 18 JOHNS-MANVILLE CORPORATION OWENS-ILLINOIS 19 20 21 22 PROCTER AND GAMBLE SEARS ROEBUCK STANDARD OIL OF CALIFORNIA 23 24 25 STANDARD OIL OF NEW JERSEY SWIFT AND COMPANY TEXACO 26 27 UNION CARBIDE UNITED AIRCRAFT 28 U.S. STEEL WESTINGHOUSE ELECTRIC 29 WOOLWORTH (F.W.) COMPANY 30

GPDQI

GPDQI is a file of quarterly prices and dividends for 98 common stock indices published by Standard and Poor's and returns on 90-day Treasury bills. For each quarter, the following information is given:

- "opening price"
- this is the value of the index as of the end of the previous quarter, as reported by Standard and Poor's.

"dividends"

- this is the value of dividends paid by the stocks in the index during the quarter, as reported by Standard and Poor's.

"closing price"

- this is the value of the index as of the end of the quarter, as reported by Standard and Poor's.

Each index is allocated one record on the file. Index number 1 is on record 1; index 2 on record 2, etc. Each record contains 120 numbers, as follows:

opening price	lst quarter of 1st year
dividends	lst quarter of 1st year
closing price	lst quarter of 1st year
opening price	2nd quarter of 1st year
dividends	2nd quarter of 1st year
closing price	2nd quarter of 1st year

Any missing value is represented by -999.

Following the 120 data values on each record are:

- the first year for which data are given (e.g., 1963)
- the name of the index (up to 20 characters)
- For 90-day Treasury bills, the three values are:

"opening price"

- the average of the bid and ask prices at the end of the previous quarter for the 90-day bill expiring on the date nearest the end of the quarter (e.g., 98.8)

"dividends"

- zero

"closing price"

- 100

The file uses the same format as GPDQF and GPDQS. The indexes are listed as follows:

500 STOCKS 1 2 425 INDUSTRIALS 20 RAILS 3 4 **55 UTILITIES** 5 CAPITAL GOODS 6 CONSUMER PRODUCTS 7 HIGH GRADE LOW PRICED 8 9 AEROSPACE AIR TRANSPORT 10 ALUMINUM 11 12 AUTOMOBILE AUTO PARTS 13 14 AUTO TRUCKS & PARTS 15 BREWERS 16 DISTILLERS 17 SOFT DRINKS 18 CEMENT 19 HEATING & PLUMBING

ROOFING & WALLBOARD 20 HOME FURNISHINGS 21 22 CHEMICALS 23 BITUMINOUS COAL 24 CONFECTIONERY 25 CONTAINERS - METAL & GLASS 26 CONTAINERS - PAPER 27 COPPER 28 DRUGS ELECTRICAL EQUIPMENT 29 30 ELECTRICAL HOUSEHOLD APPLIANCES 31 ELECTRONICS 32 BUILDING MATERIALS COMPOSITE 33 FINANCE COMPANIES 34 SMALL LOAN 35 FOOD - BISCUIT BAKERS FOOD - BREAD & CAKE FOOD - CANNED FOOD - CORN REFINERS 36 37 38 FOOD - DIARY PRODUCTS 39 FOOD - MEAT PACKING FOOD - PACKAGED FOODS 40 41 42 GOLD MINING 43 LEAD & ZINC 44 MACHINE TOOLS 45 46 AGRICULTURAL MACHINERY CONSTRUCTION & MATERIAL HANDLING 47 INDUSTRIAL MACHINERY OIL WELL EQUIPMENT 48 49 SPECIALTY MACHINERY 50 51 STEAM GENERATING EQUIPMENT METAL FABRICATING 52 METAL MISCELLANEOUS 53 MOTION PICTURES 54 OFFICE EQUIPMENT 55 CRUDE OIL PRODUCERS INTEGRATED OILS - DOMESTIC INTEGRATED OILS - INTERNATIONAL 5**6** 57 58 PAPER 59 PUBLISHING RADIO & TV BROADCASTERS RADIO & TV MANUFACTURERS 60 61 RAILROAD EQUIPMENT 62 63 TEXTILES - SYNTHETIC FIBERS DISCOUNT STORES 64 DEPARTMENT STORES 65 66 FOOD STORES 67 MAIL ORDER 68 VARIETY STORES 69 SHIPBUILDING 70 SHIPPING 71 72 SHOES SOAPS 73 STEEL 74 SUGAR-BEET REFINERS 75 FOOD COMPOSITE 76 SUGAR-CAN REFINERS 77 SULPHUR TEXTILES - APPAREL MAHUFACTURERS 78 79 TEXTILE PRODUCTS 80 TIRE & RUBBER TOBACCO - CIGARETTE MANUFACTURERS TOBACCO - CIGAR MANUFACTURERS 81 82 83 VEGETABLE OILS 84 VENDING MACHINES 85 ELECTRIC COMPANIES NATURAL GAS DISTRIBUTORS 86 87 PIPELINES 88 TELEPHONE BANKS - NEW YORK CITY BANKS - OUTSIDE NEW YORK CITY 89 90 91 OIL COMPOSITE INSURANCE - FIRE & CASUALTY INSURANCE - LIFE INVESTMENT COMPANIES 92 93 94 95 COSMETICS ELECTRONIC MAJOR COMPANIES 96 97 HOLDING COMPANIES TRUCKERS 98 90-DAY TREASURY BILLS 99

RUN

1973/2

1973/3

1973/4

N/A

N/A

N/A

N/A

N/A

N/A

RUN GVPDQT ITEM (A-G, '?' FOR INFORMATION)?? A) PRICE: STOCK PRICE/SHARE, INDEX LEVEL, FUND NAV/SHARE B) PRICE RETURN: PERCENTAGE CHANGE IN (A) PER QUARTER C) DIVIDEND D) DIVIDEND YIELD; QUARTERLY DIVIDEND/PRICE AT END OF PREVIOUS QUARTER E) RETURN: (B) + (C)F) CUMULATIVE VALUE WITH DIVIDENDS REINVESTED G) CUMULATIVE VALUE WITH DIVIDENDS IGNORED ITEM (A-G, '?' FOR INFORMATION)?A FUND, INDEX, STOCK OR PORTFOLIO?INDEX NUMBER?1 DO YOU WANT TO PLOT ANYTHING ELSE?YES ITEM (1-3, "?" FOR INFORMATION)?? 1) THE SAME TYPE OF DATA FOR ANOTHER STOCK, INDEX, FUND OR PORTFOLIO 2) A STRAIGHT-LINE TREND FIT TO THE DATA BY LEAST-SQUARES REGRESSION 3) A MOVING AVERAGE OF THE DATA ITEM (1-3, '?' FOR INFORMATION)?3 NUMBER OF QUARTERS FOR MOVING AVERAGE?4 REGULAR SCALE OR LOGARITHMIC?REGULAR PRICE *: 500 STOCKS +: MOVING AVERAGE B: BOTH * AND + MINIMUM VALUE = 63.09 MAXIMUM VALUE = 103.85 * + 1963/1 63.090 N/A 1963/2 66.560 N/A 1963/3 69.360 N/A 1963/4 71.690 67.675 1964/1 75.010 70.655 1964/2 78.970 73.758 1964/3 81.680 76.838 1964/4 84.170 79.958 1965/1 84.750 82.393 1965/2 86.150 84.187 1965/3 84.110 84.795 1965/4 89.950 86.240 1966/1 92.420 88.158 1966/2 89.220 88.925 1966/3 84.730 89.080 1966/4 76.550 85.730 1967/1 80.320 82.705 1967/2 90.190 82.948 1967/3 90.630 84.423 1967/4 96.700 89.460 1968/1 96.460 93.495 1968/2 90.190 93.495 1968/3 99.570 95.730 1968/4 102.660 97.220 1969/1 103.850 99.068 1969/2 101.500 101.895 1969/3 97.700 101.428 1969/4 93.110 99.040 1970/1 92.050 96.090 1970/2 89.620 93.120 1970/3 72.710 86.873 1970/4 84.200 84.645 1971/1 92.140 84.668 1971/2 100.310 87.340 1971/3 99.700 94.088 1971/4 98.340 97.623 1972/1 102.090 100.110 1972/2 N/A N/A 1972/3 N/A N/A 1972/4 N/A N/A 1973/1 N/A N/A

BUSINESS AND MANUFACTURING APPLICATIONS (700)

CONTRIBUTED PROGRAM **BASIC**

TITLE:	CALCULATE AIRFREIGHT RATES	IATA 7 1 36164
DESCRIPTION:	IATA.1 calculates the weight breakpoints for a given commodity betwee any two airports based on: the minimum air waybill charge, the normal rate (under 100 pound rate), and the rates for each weight class with the commodity being rated. The resulting table is generated on the terminal based on data inputted from the keyboard or from the file AIRRAT. The program also provides for file maintenance (additions of deletions).	en 1 hin r
	Open two files: AIRRAT and RATAIR. Each record of the file holds approximately 3.5 sets of data. Therefore, if you open the files for 20 records, you should have room for 70 sets of rate data.	r
	Limit your inputs as follows: Airport codes=3 letters, specific commodity=5 characters, commodity description=34 characters, date=6 characters (use format DDMMMY). This program consists of 3 sections l=data entry from keyboard, 2=data entry from file AIRRAT, 3=addition and/or deletions to file AIRRAT, and 4=terminate program.	: ns
	Preparing a worksheet with all of the data required (as shown) to use program beforehand would be advantageous to the user. The option of printing multiple copies may be equal to or less than other means of duplication.	≘ the
	The program is written so that new additions to the file are added at the last existing record on the file, therefore, if you add new rates first and then delete the existing old rates, the program will only delete the first set of data (based on the deletion parameters) encou- which should be the old rate data.	fter s untered
	If the user attempts to use data which is not on the file, the prograwill advise that the record is not on file.	am
ACKNOWLEDGEMENTS:	Jeff Johnson	
	Hewlett-Packard/Eastern Sales Region	

RUN

CRR OPEN-AIRRAT, 10 CAR OPEN-RATAIR, 10

RUN

IATA+1

INSTRUCTIONS?YES IATA R CALCULATES BREAKPOINT WEIGHTS BASED ON DATA SUPPLIED BY THE USER(EITHER FROM THE KEYBOARD OR FILE AIRRAT) AND THEN PRINTS A TABLE SUITABLE FOR USE IN RATING, PREPARING AND CHECKING AIR WAYBILLS. LIMIT YOUR INPUTS AS FOLLOWS: AIRPORT CODES=3 LETTERS, SPECIFIC COMMODITY=5 CHARACTERS, COMMODITY DESCRIPTION=34 CHARACTERS, DATE=6 CHARACTERS(USE FORMAT DDMMMY). THIS PROGRAM CONSISTS OF 3 SECTIONS: 1=DATA ENTRY FROM KEYBOARD, 2=DATA ENTRY FROM FILE AIRRAT, 3= ADDITIONS AND/OR DELETIONS TO FILE AIRRAT, AND 4= TERMINATE PROGRAM. ENTER THE APPROPRIATE RESPONSE BELOW. SECTION (1,2,3,0R 4)?1 # OF RATE CLASSES IN THIS COMMODITY =?4 ORIGIN AIRPORT?JFK **DESTINATION AIRPORT?VIE** SPECIFIC COMMODITY?4316 COMMODITY DESCRIPTION?DATA PROCESSING SYSTEM EFFECTIVE DATE OF RATES?1AUGØ MINIMUM AIR WAYBIL CHARGE IN \$?22.00 NORMAL RATE IN \$?1.51 ENTER DATA AS REQUIRED RATE 1= \$?.54 WEIGHT 1=?100 RATE 2= \$?.40 WEIGHT 2=?440 RATE 3= \$?.31 WEIGHT 3=?1100 RATE 4= \$?.27 WEIGHT 4=?2200 HOW MANY COPIES?1

```
ORIGINATING AIRPORT.....JFK
DESTINATION AIRPORT....VIE
SPECIFIC COMMODITY.....4316
COMMODITY DESCRIPTION....DATA PROCESSING SYSTEM
```

ACT GF	ROSS	5 WT	CHARGEABLE	WT RATE/LB	CHARGES
1	то	14	DECLARE AS	MINIMUM	\$ 22.00
15	то	35	ACTUAL	\$1.5100	AS EXTENDED
36	то	100	100	\$0.5400	\$ 54.00
101	то	325	ACTUAL	\$0.5400	AS EXTENDED
326	т0	440	440	\$0.4000	\$ 176.00
441	то	852	ACTUAL	\$0 • 4000	AS EXTENDED
853	T 0	1100	1100	\$0.3100	\$ 341.00
1101	то	1916	ACTUAL	\$0.3100	AS EXTENDED
1917	TO	2200	2200	50.2700	\$ 594.00
2201	то		ACTUAL	\$0.2700	AS EXTENDED

EFFECTIVE DATE OF RATES .. IAUGØ

MORE?NO SECTION (1,2,3,0R 4)?3 ADD OR DELETE?ADD ENTER NEW DATA N=?2 A\$=?JFK D\$=?VIE S\$=?710W C\$=?LITERATURE R\$=?1AUG0 M =?22.00 O =?1.51 R1=\$?.37 W 1= ?100 R2=\$?.26 W 2= ?1100 DONE?YES SECTION (1,2,3,0R 4)?4

·

DONE

BUSINESS AND MANUFACTURING APPLICATIONS (700)

CONTRIBUTED PROGRAM **BASIC**

		I ATA L C 36241
TITLE:	CALCULATES BREAKPOINT OF IATA CONTAINERS	
DESCRIPTION:	This program helps any potential user of IATA containers to evaluate his own breakpoint weight and volume for his particular commodity. The breakpoint weights and volume derived under the column headed- Revised- indicate the point at which the shipper will gain no advanta (except better security and lighter packaging) in utilizing a given container, assuming it would cost the user nothing additional to hand load and unload the container. The program is designed as a simple tool to readily show any shipper interested in using an IATA containe what his minimum weight and density of a given commodity must be befo he can even consider utilizing IATA containers. In the sample run sh he must have a minimum of 3267 lbs. with a density of at least 7.78 lbs/ft ³ of Specific Commodity 8550 (Electronic Measuring Instruments) justify using an IATA #3 container from JFK to GLA. This is the brea even point (if no additional costs are involved) at which shipping as specific commodity or in a container are of equal cost.	ge le, r re own, to k- a
INSTRUCTIONS:	Limit the following input as shown:	
	Origin Airport 3 Characters Destination Airport 3 Characters Container # 3 Characters Specific Commodity 5 Characters Reference: Air Cargo Tariff-Worldwide, #47 dated 1 july 72	
	published by Swissair and Scandinavian Airlines System.	
SPECIAL CONSIDERATIONS:		
	None	
ACKNOWLEDGEMENTS:	Jeff Johnson International Commercial Services Eact	

RUN

RUN IATA C

INSTRUCTIONS?NO US OR METRIC?US ORIGIN AIRPORT?JFK DESTINATION AIRPORT?GLA CONTAINER #?3 CONTAINER VOLUME=?420 MINIMUM WEIGHT=?4409 MINIMUM CHARGE=\$?1176 SPECIFIC COMMODITY?8550 SPECIFIC COMMODITY RATE?.36 ANALYSIS OF BREAKEVEN POINT For utilizing containers versus SPECIFIC COMMODITY RATES FROM JFK TO GLA FOR IATA CONTAINER #3 STANDARD

VOLUME(CU.FT.)	420	420
MINIMUM CHARGE	\$1176.00	\$1176.00
MINIMUM WGT(LBS)	4409	3267
S/LB RATE	\$. 27	\$•36 (855Ø)
LBS/CU.FT.	10.50	7.78

REVI SED

)

MORE?YES US OR METRIC?METRIC ORIGIN AIRPORT?JFK DESTINATION AIRPORT? GLA CONTAINER #?7 CONTAINER VOLUME=?5.60 MINIMUM WEIGHT=?945 MINIMUM CHARGE=\$?558 SPECIFIC COMMODITY?8550 SPECIFIC COMMODITY RATE? . 80

ANALYSIS OF BREAKEVEN POINT For utilizing containers versus SPECIFIC COMMODITY RATES FROM JFK TO GLA FOR IATA CONTAINER #7

STANDARD		REVI SED
VOLUME(CU. M)	5.60	5.60
MINIMUM CHARGE	\$ 558.00	\$ 558.00
MINIMUM WGTEKGSJ	945	697
S/KG RATE	\$• 59	\$•8Ø (855Ø
KGS/CU. M	169	125

CONTRIBUTED PROGRAM **BASIC**

TITLE:	IATAT IATATA ANALYSIS OF IATA AND ATA UNITIZATION PROGRAM 3687	A 6
DESCRIPTION:	IATATA is used in the analysis of the IATA and ATA Unitization (Contain Program. IATATA is structured so that a minimum amount of knowledge is required of the IATA and ATA Unitization Programs as established by the two airline groups. IATATA at the time of its completion (December 197 is current in all IATA and ATA rules and regulations, with respect to each unitization program. It includes all container types in both programs.	er) 3)
	Open two files IATAID (4 records long) and CONTNR (4 records long). Then load and run program LOADR. This program initializes the two file and after it is run it need not be saved. Next load and save IATATA.	S
	IATA containers, IATA ID numbers 1 to 9 have several variations as follows:	
	P = Pallet with net only.	
	NSI = <u>N</u> on- <u>S</u> tructural <u>I</u> gloo.	
	SI = <u>S</u> tructural <u>I</u> gloo.	
	Therefore, to access the proper version of each container, indicate the full number such as 3NSI. The author designated IATA 8* so the differe could be shown between LD-1 and LD-3.	nce
	The following sample problems reflect some IATA and ATA container ship- ments. The shipper owned container comparisons do not reflect in the non-IATA or ATA shipments the cost of the equivalent cardboard containe Some IATA problems supplied courtesy of Mike Baumann, Manager Cargo Services Training, Pan American World Airlines and some ATA problems courtesy of Les Milligan, Area Manager Cargo Sales, Trans World Airline	r.
1	SAMPLE PROBLEMS	
	It has been suggested that shipper owned containers may carry little or no cost value because of the fact they have been used many times. The author assumed in all cases the shipment was one direction only and the full cost of the container is included in the analysis.	
	Continued on Next Page.	
SPECIAL CONSIDERATIONS:	REFERENCES	
	IATA Unitization Program a pamphlet issued 15 November 1972 by Inter national Air Transport Association courtesy of Pan American World Airli	nes.
	IATA Unit Load Devices Manual, First Edition issued by authority of Traffic Director, International Air Transport Assn. Geneva, Switzerland	•
	Cargo Air Tariff published by Air Canada, et. al., Amsterdam, The Netherlands.	
	Airline Cargo Tariff published by Scandinavian Airline System and Swissair.	
	CAB Tariff 131 issued by Airline Tariff Publishers Inc., Agent, Washington, D.C. on behalf of the U.S. Airlines.	
ACKNOWLEDGEMENTS:	Jeff Johnson HP International Commercial Services East	

INSTRUCTIONS: Continued

Sample IATA Problems

1. You have 904 pounds of electronic measuring instruments (parts), Specific Commodity Rate 8550 JFK to STR which moves at \$.41/pound (in a 2200 pound consolidation). You wish to use a DSC-225 IATA registered container with actual tare of 96 pounds costing \$16.44 each. Evaluate.

See Sample RUN -- IATA Problem #1.

2. You have 1105 pounds of literature (Specific Commodity 7103W) and 572 pounds of electronic measuring instruments (8550) which will fit in an IATA 8 (LD-1) between JFK and AMS. The rate for literature is \$.31/pound and instruments is \$.48. The container rate is \$501.00 for 1676 pounds pivot with a rate of \$.26/pound over pivot. Actual tare weight of container is 285 pounds. Evaluate.

See Sample RUN -- IATA Problem #2.

3. You have 5926 pounds of machinery moving LAX to BKK which will fit in an IATA 5 container. The specific commodity rate per pound is \$1.13 whereas the container rate is \$3438.00 for the first 3638 pounds and an over pivot rate of \$.88/pound. The actual tare weight of the container is 550 pounds. Evaluate.

See Sample RUN -- IATA Problem #3.

4. You have 300 pounds of electronic parts (Specific Commodity 8550) which fit in a DSC-221 (COS) moving in a consolidation between SFO and SIN at \$.98/pound. The actual tare is 18 pounds. Cost of the container is \$5.44. Evaluate.

See Sample RUN -- IATA Problem #4.

5. You have 660 pounds of electronic parts (Specific Commodity 8550) and 440 pounds of General Cargo (Q) which fit in a CO8 shipper owned container moving in a consolidation between SFO and SIN at \$.98/pound and \$1.55/pound respectively. The actual tare of the container is 93 pounds and costs \$16.66. Evaluate.

See Sample RUN -- IATA Problem #5.

Sample ATA Problems

1. You are shipping between SFO and JFK 100 pounds of printed matter (4915) at .234/pound and 22 pounds of general cargo at \$.52/pound which will fit in an E container costing \$5.44 with an actual tare of 18 pounds. The general cargo rate is .2775.

See Sample RUN -- ATA Problem #1.

2. Same shipment as in Problem #1 except the following changes:

100 pounds of 4915 at .234/pound. 82 pounds of General Cargo at .2854/pound.

See Sample RUN -- ATA Problem #2.

3. The following QD container shipments are SFO to JFK with an actual tare of 13 pounds and the container costs \$4.00 containing the weights shown of cast aluminum wheels (7616).

a.	Net Weight: Rate/Pound: General Cargo Rate:	92 .2853 .2775
b.	Net Weight: Rate/Pound: General Cargo Rate:	187 .2775 .2775

See Sample RUN -- ATA Problem #3.

4. Using a B container SFO to JFK costing \$50.00 with actual tare of 200 pounds containing 2000 pounds of printed matter (4915) at .2035 and 2000 pounds of cast aluminum wheels (7616) at .177.

See Sample RUN -- ATA Problem #4.

5. An A-3 container SFO to JFK containing 10,000 pounds of cast aluminum wheels (7616) at .1635 for which the first 3200 pounds in the container costs \$608.00 and the excess above is rated at .137/pound.

See Sample RUN -- ATA Problem #5.

INSTRUCTIONS: Continued

6. An A-3 container SFO to JFK contains: 5,000 pounds 7616 at .1635/pound, 5,000 pounds of 0001 at .208/pound, and 2,000 pounds of general cargo at .223.

See Sample RUN -- ATA Problem #6.

7. You have 4,000 pounds of floral stock (0625) at .117/pound and 3,500 pounds of grapes (0816) at .1355/pound loaded in an LD-7 moving SFO to JFK for which the base rate is \$595.00 for the first 3100 pounds and the over pivot rate is .137. The actual tare of the container is 550 pounds.

See Sample RUN -- ATA Problem #7.

RUN

GET-IATATA RUN IATATA

WOULD YOU LIKE A CONTAINER SUMMARY?YES

.

SUMMARY OF UNIT LOAD DEVICES

IATA

ATA(US)

	MIN			MAX		MIN		MAX
IATA	CHARG	TARE	EXT	GROSS	ATA	CHRG	TARE	GROSS
I D	WGT		VOLUME	WGT	ΙÐ	WGT		WGT
1	13200	0	1280.0	25000	NONE	0	0	0
2	6297	1000	668•0	15000	NONE	0	ø	0
2A	Ø	Ø	564.0	0	NONE	0	Ø	Ø
2B	Ø	Ø	463.0	0	NONE	Ø	0	ø
3P	Ø	265	465.0	13300	A'S	Ø	Ø	0
3NS I	Ø	550	465.0	13300	A'S	Ø	Ø	Ø
3S I	Ø	550	465.0	13300	A'S	Ø	Ø	Ø
4P	0	230	365.0	10000	A'S	Ø	ø	Ø
4NS I	ø	500	365.0	10000	A'S	Ø	Ø	0
4ANS I	Ø	500	340.0	8000	A'S	Ø	Ø	Ø
5P	0	265	375.0	8300	LD-7	0	Ø	10200
5NS I	0	550	360.0	8300	LD-7	0	550	10200
5S I	Ø	550	350.0	8300	LD-9	0	685	10200
6P	Ø	Ø	265.0	5680	NONE	0	0	Ø
7*P	Ø	265	198.0	5000	NONE	0	0	Ø
7P	0	338	198.0	52 50	NONE	Ø	Ø	0
7NSI	0	Ø	217.0	52 50	NONE	Ø	Ø	Ø
8	ø	280	170.0	3500	LD-1	1300	370	3500
8	ø	280	162.4	3500	LD-P	1100	350	3500
8*	Ø	280	160.0	3500	LD-3	1100	3 40	3500
9P	Ø	280	160.0	2500	NONE	Ø	Ø	Ø
9NS I	Ø	280	167.0	2500	NONE	Ø	Ø	Ø
CO1	a	565	377.0	10000	A'S	ø	Ø	Ø
C02	Â	480	320.0	10000	A'S	Ø	0	0
c03	ñ	293	195.0	6686	B	1800	200	5000
C04	ă	277	184.0	6686	B	1800	200	5000
005	ă	241	160.0	48.41	B	1800	200	5000
C06	ă	225	150.0	48 4 1	B	1800	200	5000
C07	841	1 42	94.5	4050	LD-N	0	100	2400
C08	551	93	61.9	3303	D	500	63	2000
C09	396	45	44.4	2666	NONE	0	0	0
C00	267	30	30.0	2666	NONE	ã	õ	
COJ	565	96	63.4	3383	D	500	63	2000
COS	160	18	18.0	1691	F	130	18	500
VAR .	0	Ø	393.0	Ø	A-1	3000	â	13000
VAR .	ø	ø	457.5	ø	A-2	3100	ő	13000
VAR.	õ	å	476.0	ă	A-3	3200	ă	13000
NONE	õ	õ	98.9	õ	B-2	900	100	2500
NONE	õ	ø	12.0	õ	QD_	100	13	400
NONE	õ	õ	277.8	õ	LD-5	2200	630	5000
NONE	õ	ā	340.0	ā	LD-6	0	, a	7000
NONE	ø	õ	256.6	õ	LD-11	1800	õ	7000

NOTE:0 IN MINIMUM CHARGEABLE WEIGHT COLUMN INDICATES PIVOT WEIGHT VARIES BY TARIFF CONFERENCE(OR ORIGIN-DESTINATION COMBINATIONS). ZEROES IN VARIOUS OTHER FIELDS MEANS DATA NOT AVAILABLE OR NOT APPLICABLE. COJ AND COS CONTAINERS ARE FURTHER BROKEN DOWN INTO IATA REGISTRATION NUMBERS FOR VARIATION OF THESE TWO CATEGORIES. IF YOU ARE GOING TO WORK WITH THESE TYPES, MAKE SURE YOU ENTER THE CORRECT REGISTRATION NUMBER (I.E. DSC-221).

SAMPLE IATA PROBLEM No. 1

IATA OR ATA?IATA CONTAINER OR REGISTRATION NUMBER?DSC-225 ACTUAL TARE WEIGHT OF CONTAINER?96 HOW MANY COMMODITIES?1 WGT 1=?904 CONTAINER COST?16.44 RATE 1=?.41 ORIGIN AIRPORT?JFK DESTINATION AIRPORT?STR

OF EQUAL TARE WEIGHT

ANALYSIS OF SHIPPING IN SHIPPER OWNED IATA CONTAINERS VS. NORMAL PACKAGING FROM JFK TO STR USING DSC-225 CONTAINER

GROSS COST OF SHIPMENT OF 1000 LBS	\$ 410.00
PLUS CONTAINER COST	16.44
LESS CONTAINER REBATE	-16.20
LESS TARE WEIGHT ALLOWANCE	-39.36
NET COST OF SHIPMENT	370.88
COST IF NET CONTENTS ARE SHIPPED LOOSE	370.64
COST IF SHIPPED IN NON-IATA CONTAINER	

410.00

SAMPLE IATA PROBLEM No. 2

MORE?YES IATA OR ATA?IATA CONTAINER OR REGISTRATION NUMBER?8 ELIGIBLE FOR SHIPPER OWNED CONTAINER DISCOUNT?NO MINIMUM CHARGEABLE NET WEIGHT?1676 ACTUAL TARE WEIGHT OF CONTAINER?285 HOW MANY COMMODITIES?2 WGT 1=?1105 WGT 2=?572 RATE 1=?.31 RATE 2=?.48 ORIGIN AIRPORT?JFK DESTINATION AIRPORT?AMS CONTAINER CHARGE?501 RATE/LB FOR EXCESS ABOVE PIVOT?.26

> ANALYSIS OF SHIPPING IN AIRLINE OWNED IATA CONTAINER VS. SPECIFIC COMMODITY RATES FROM JFK TO AMS USING 8 CONTAINER MINIMUM CHARGEABLE WEIGHT OF 1676 LBS \$ 501.00 PLUS EXCESS OF 1 LBS 0.26 TOTAL CONTAINER COST \$ 501.26 COST IF NET CONTENTS ARE SHIPPED LOOSE \$ 617.11 SAVINGS OR LOSS(-) \$ 115.85

SAMPLE IATA PROBLEM No. 3 MORE?YES IATA OR ATA?IATA CONTAINER OR REGISTRATION NUMBER?5NSI ELIGIBLE FOR SHIPPER OWNED CONTAINER DISCOUNT?NO MINIMUM CHARGEABLE NET WEIGHT?3638 ACTUAL TARE WEIGHT OF CONTAINER?550 HOW MANY COMMODITIES?1 WGT 1=?5926 RATE 1=?1.13 ORIGIN AIRPORT?LAX DESTINATION AIRPORT?BKK CONTAINER CHARGE?3438 RATE/LB FOR EXCESS ABOVE PIVOT?.88

> ANALYSIS OF SHIPPING IN AIRLINE OWNED IATA CONTAINER VS. SPECIFIC COMMODITY RATES FROM LAX TO BKK USING 5NSI CONTAINER

MINIMUM CHARGEABLE WEIGHT OF 3638 LBS	\$ 3438.00
PLUS EXCESS OF 2288 LBS	2013.44
TOTAL CONTAINER COST	\$ 5451-44
COST IF NET CONTENTS ARE SHIPPED LOOSE	\$ 6696•38
SAVINGS OR LOSS(-)	\$ 1244•94

SAMPLE IATA PROBLEM No. 4

MORE?Y IATA OR ATA?I CONTAINER OR REGISTRATION NUMBER?DSC-221 ACTUAL TARE WEIGHT OF CONTAINER?18 HOW MANY COMMODITIES?1 WGT 1=?300 CONTAINER COST?5.44 RATE 1=?.98 ORIGIN AIRPORT?SFP+0 DESTINATION AIRPORT?SIN

ANALYSIS OF SHIPPING IN SHIPPER OWNED IATA CONTAINERS VS. NORMAL PACKAGING FROM SFO TO SIN USING DSC-221 CONTAINER

5.44
4.00
7.64
5.44
4.00
1.64

IATATA, Page 6

SAMPLE IATA PROBLEM No. 5

MORE ?Y IATA OR ATA?I CONTAINER OR REGISTRATION NUMBER?008 DATA NOT ON FILE. IATA OR ATA?I CONTAINER OR REGISTRATION NUMBER?008 DATA NOT ON FILE. IATA OR ATA?I CONTAINER OR REGISTRATION NUMBER?CO8 ELIGIBLE FOR SHIPPER OWNED CONTAINER DISCOUNT?YES ACTUAL TARE WEIGHT OF CONTAINER?93 HOW MANY COMMODITIES?2 WGT 1=?660 WGT 2=?440 CONTAINER COST?16.44 RATE 1=?.98 RATE 2=?1.55 ORIGIN AIRPORT?SFO DESTINATION AIRPORT?SIN

> ANALYSIS OF SHIPPING IN SHIPPER OWNED IATA CONTAINERS VS. NORMAL PACKAGING FROM SFO TO SIN USING CO8 CONTAINER

GROSS COST OF SHIPMENT OF 1193 LBS	\$1472.95
PLUS CONTAINER COST	16.44
LESS CONTAINER REBATE	-15.80
LESS TARE WEIGHT ALLOWANCE	-144.15
NET COST OF SHIPMENT	1329•44
COST IF NET CONTENTS ARE SHIPPED LOOSE	1328.80
COST IF SHIPPED IN NON-IATA CONTAINER	

1419.94

SAMPLE ATA PROBLEM No. 1

MORE?Y IATA OR ATA?ATA CONTAINER NUMBER?E ACTUAL TARE WEIGHT OF CONTAINER?18 HOW MANY COMMODITIES?2 WGT 1=?100 WGT 2=?22 CONTAINER COST?5.44 RATE 1=?.234 RATE 2=?.52 ORIGIN AIRPORT?SFO DESTINATION AIRPORT?JFK GENERAL CARGO RATE?.2775

OF EQUAL TARE WEIGHT

ANALYSIS OF SHIPPING IN SHIPPER OWNED ATA CONTAINERS VS. NORMAL PACKAGING FROM SFO TO JFK USING E CONTAINER GROSS COST OF SHIPMENT OF 130 LBS \$ 36.07 PLUS CONTAINER COST 5.44 NET COST OF SHIPMENT 41.51 COST IF NET CONTENTS ARE SHIPPED LOOSE 34.84 COST IF SHIPPED IN NON-ATA CONTAINER OF EQUAL TARE WEIGHT 39.05 SAMPLE ATA PROBLEM No. 2

MORE?Y IATA OR ATA?A CONTAINER NUMBER?E ACTUAL TARE WEIGHT OF CONTAINER?18 HOW MANY COMMODITIES?2 WGT 1=?100 WGT 2=?82 CONTAINER COST?5.44 RATE 1=?.234 RATE 2=?.2854 ORIGIN AIRPORT?SFO DESTINATION AIRPORT?JFK GENERAL CARGO RATE?.2775

ANALYSIS OF SHIPPING IN SHIPPER OWNED ATA CONTAINERS VS. NORMAL PACKAGING FROM SFO TO JFK USING E CONTAINER

GROSS COST OF SHIPME	NT OF 164 LBS	\$ 45.51
PLUS CONTAINER COST		5.44
NET COST OF SHIPMENT		50.95
COST IF NET CONTENTS	ARE SHIPPED LOOSE	46.80

003) i I.C.	WEI CONT			-0.00
COS	TIF	SHIPPED	IN NON-ATA	CONTAINER	
OF	EQUAL	. TARE WE	I GH T		51.01

SAMPLE ATA PROBLEM No. 3

MORE?Y IATA OR ATA?ATA CONTAINER NUMBER?OD DATA NOT ON FILE. IATA OR ATA?ATA CONTAINER.NUMBER?QD ACTUAL TARE WEIGHT OF CONTAINER?13 HOW MANY COMMODITIES?1 WGT 1=?92 CONTAINER COST?4 RATE 1=?.2853 ORIGIN AIRPORT?SFO DESTINATION AIRPORT?JFK GENERAL CARGO RATE?.2775

ANALYSIS OF SHIPPING IN SHIPPER OWNED ATA CONTAINERS VS. NORMAL PACKAGING FROM SFO TO JFK USING QD CONTAINER

GROSS COST OF SHIPMENT OF 100 LBS	S	27.75
PLUS CONTAINER COST		4.00
NET COST OF SHIPMENT		31.75
COST LE NET CONTENTS ARE SHIPPED LOOSE		26.25
COST IF SHIPPED IN NON-ATA CONTAINER		20-20
COST IF SHIFFED IN NON-ATA CONTAINER		~~ ~ /
OF EQUAL TARE WEIGHT		27.96

IATATA, Page 8

MORE?Y IATA OR ATA?A CONTAINER NUMBER?GD ACTUAL TARE WEIGHT OF CONTAINER?13 HOW MANY COMMODITIES?1 WGT 1=?187 CONTAINER COST?4 RATE 1=?.2775 ORIGIN AIRPORT?SFO DESTINATION AIRPORT?JFK GENERAL CARGO RATE?.2775

> ANALYSIS OF SHIPPING IN SHIPPER OWNED ATA CONTAINERS VS. NORMAL PACKAGING FROM SFO TO JFK USING QD CONTAINER GROSS COST OF SHIPMENT OF 169 LBS \$ 46.90 PLUS CONTAINER COST 4.00 NET COST OF SHIPMENT 50.90 COST IF NET CONTENTS ARE SHIPPED LOOSE 51.89 COST IF SHIPPED IN NON-ATA CONTAINER OF EQUAL TARE WEIGHT 55.50

.

SAMPLE ATA PROBLEM No. 4

MORE?Y IATA OR ATA?A CONTAINER NUMBER?B ACTUAL TARE WEIGHT OF CONTAINER?200 HOW MANY COMMODITIES?2 WGT 1=?2000 WGT 2=?2000 CONTAINER COST?50 USING THE MIXED SHIPMENT RULE (RULE 12, C.A.B. 131), YOU MAY INPUT RATES EQUAL TO 4000 LBS FOR EACH COMMODITY IN THE CONTAINER. RATE 1=?,+.2035 RATE 2=?.177 ORIGIN AIRPORT?SFO DESTINATION AIRPORT? JFK DAYLIGHT OR REGULAR?REGULAR CONTAINER CHARGE?312 RATE/LB FOR EXCESS ABOVE PIVOT ?. 137

> ANALYSIS OF SHIPPING IN SHIPPER OWNED ATA CONTAINER VS. SPECIFIC COMMODITY RATES FROM SFO TO JFK USING B CONTAINER MINIMUM CHARGEABLE WEIGHT OF 1800 LBS \$ 312.00 PLUS EXCESS OF 2200 LBS 301.40 PLUS CONTAINER COST 50.00 TOTAL CONTAINER COST \$ 663.40 MIXED SHIPMENT RULE COST \$ 781.00 \$ 117.60 SAVINGS OR LOSS(-)
SAMPLE ATA PROBLEM No. 5

MORE?Y IATA OR ATA?A CONTAINER NUMBER?A-3 ACTUAL TARE WEIGHT OF CONTAINER?550 HOW MANY COMMODITIES?1 WGT 1=?10000 RATE 1=?.1635 ORIGIN AIRPORT?SFO DESTINATION AIRPORT?JFK DAYLIGHT OR REGULAR?REGULAR CONTAINER CHARGE?608 RATE/LB FOR EXCESS ABOVE PIVOT?.137

> ANALYSIS OF SHIPPING IN AIRLINE OWNED ATA CONTAINER VS. SPECIFIC COMMODITY RATES FROM SFO TO JFK USING A-3 CONTAINER

MINIMUM CHARGEABLE WEIGHT OF	3200 LBS	\$ 608.00
PLUS EXCESS OF	6800 LBS	931.60
TOTAL CONTAINER COST		\$ 1539.60
COST IF NET CONTENTS ARE SHI.	PPED LOOSE	\$ 1635.00
SAVINGS OR LOSS(-)		\$ 95.40

SAMPLE ATA PROBLEM NO. 6

MORE?Y IATA OR ATA?A CONTAINER NUMBER?A-3 ACTUAL TARE WEIGHT OF CONTAINER?550 HOW MANY COMMODITIES?3 WGT 1=?5000 WGT 2=?5000 WGT 3=?2000 USING THE MIXED SHIPMENT RULE (RULE 12,C.A.B.131),YOU MAY INPUT RATES EQUAL TO 12000 LBS FOR EACH COMMODITY IN THE CONTAINER. RATE 1=?.1635 RATE 2=?.208 RATE 2=?.208 RATE 3=?.223 ORIGIN AIRPORT?SFO DESTINATION AIRPORT?JFK DAYLIGHT OR REGULAR?REGULAR CONTAINER CHARGE?608 RATE/LB FOR EXCESS ABOVE PIVOT?.137

> ANALYSIS OF SHIPPING IN AIRLINE OWNED ATA CONTAINER VS. SPECIFIC COMMODITY RATES FROM SFO TO JFK USING A-3 CONTAINER

MINIMUM CHARGEABLE WEIGHT OF	3200	LBS	\$	608.00
PLUS EXCESS OF	8800	LBS		1205.60
TOTAL CONTAINER COST			\$	1813.60
MIXED SHIPMENT RULE COST			\$	2183.50
SAVINGS OR LOSS(-)			S	369•90

IATATA, Page 10

SAMPLE ATA PROBLEM NO. 7 MORE?Y IATA OR ATA?A CONTAINER NUMBER?LD-7 MINIMUM CHARGEABLE NET WEIGHT?3100 ACTUAL TARE WEIGHT OF CONTAINER?550 HOW MANY COMMODITIES?2 WGT 1=?4000 WGT 2=?3500 USING THE MIXED SHIPMENT RULE (RULE 12,C.A.B.131),YOU MAY INPUT RATES EQUAL TO 7500 LBS FOR EACH COMMODITY IN THE CONTAINER. RATE 1=?.117 RATE 2=?.1355 ORIGIN AIRPORT?SFO DESTINATION AIRPORT?JFK DAYLIGHT OR REGULAR?REGULAR CONTAINER CHARGE?595 RATE/LB FOR EXCESS ABOVE PIVOT?.137

> ANALYSIS OF SHIPPING IN AIRLINE OWNED ATA CONTAINER VS. SPECIFIC COMMODITY RATES FROM SFO TO JFK USING LD-7 CONTAINER MINIMUM CHARGEABLE WEIGHT OF 3100 LBS \$ 595.00 PLUS EXCESS OF 4400 LBS 602.80 TOTAL CONTAINER COST \$ 1197.80

> MIXED SHIPMENT RULE COST
> \$ 867.25
>
>
> SAVINGS OR LOSS(-)
> \$ -330.55

MORE?N

Documentation Date 3/15 BUSINESS AND MANUFACTURING APPLICATIONS (700)

	INPUT/OUTPUT ANALYSIS ON EC	CONOMIC FLOWS	INZOUT 36088
DESCRIPTION:	A hypothetical economy is and is analyzed as to the a period of time. The ana and can be used to predict consumer demand.	livided into a certain number of indus inter-industry flows of goods and serv lysis is based upon the data for a pas future flows under different conditio	tries, ices over t period, ns of
	In this example, the econor of industries, and their re dim-statements and output the program is general, and industries.	ny is divided into three industries. espective names, can be altered by cha routines. With the exception of these d will accept data for any 'M' number	The number nging the routines, of
	Data is read in the follow	ing order:	
	The flows from: In In In In In In In In In In In	dustry #1 to Industry #1 dustry #1 to Industry #2 dustry #1 to Industry #3, etc. to #M dustry #1 to the Final Consumer dustry #2 to Industry #1 dustry #2 to Industry #2 dustry #2 to Industry #3, etc. to #M dustry #2 to the Final Consumer dustry #3 to Industry #1, etc. to #M dustry #3 to the Final Consumer	
	In	dustry #M to the Final Consumer	
	This is followed by Industry #1, Indust	a revised forecast of consumer demand ry #2, Industry #3,,Industry #M	from
	In this example: In In In	dustry #1 is Agriculture dustry #2 is Industry dustry #3 is Service	
SPECIAL CONSIDERATIONS:	INZOUT is restricted as writt number, change dimensions in must be M x M. T, V, and C mu change the output routine.	en, to 3 industries. To increase this lines 9200, 9205 and 9210. A,B, and X st be M, and D must be 2M + 1. Also	
ACKNOWLEDGEMENTS:			

 9900
 DATA 25,12,8,75

 9901
 DATA 15,75,65,99

 9902
 DATA 10,51,88,34

 9903
 DATA 82,85,40

 9999
 END

RUN INZOUT

* INPUT/OUTPUT ANALYSIS *

-

INITIAL INPUT/OUTPUT TABLE:

FROM SECTOR		TO SECTOR			70 7 41	
FROM SECTOR	AGRI CULTURE	AGRICULTURE INDUSTRY SERVICE		CONSCREAS TOTAL		
AGRI CULTURE	25	12	8	75	120	
INDUSTRY	15	75	65	99	254	
SERVICES	10	51	88	34	183	
SECTOR INCOME	70	116	22	208		
TOTAL	120	254	183		557	

REVISED INPUT/OUTPUT TABLE NUMBER 1 :

		TO SECTOR			
FROM SECTOR	AGRI CULTURE	ÍNDUSTRY	CONS SERVICES	UMERS	TOTAL
AGRI CULTURE	26.7413	11.3027	8 • 31437	82	128.358
INDUSTRY	16.0448	70.642	67•5542	85	239 • 241
SERVICES	10.6965	48.0366	91•458	40	190.191
SECTOR INCOME	74.8757	109-26	22.8645	201	7
TOTAL	128 • 358	239 • 241	190 • 191		557.791

TITLE:	NATIONAL INCOME & PRODUCT ACCOUNTS	I NACNT 36087
DESCRIPTION:	INACNT produces a simple set of income and product accounts, depe upon a number of input gross national product conditions.	ndent
INSTRUCTIONS:	<pre>In order to use INACNT, the user must know six statistics. They be requested by input statements. They are: A = the fraction of GNP saved by business B = the fraction of personal income paid in personal taxes D = the fraction of personal after-tax income spent on consumpti (above 4 values must be entered in decimal notation) I4 = dollars of GNP eventually invested G3 = dollars for GNP spent by government (above 2 values must be entered in exponential form. Ex.: \$50 bi SE + 10.)</pre>	will on 1lion =
ACKNOWLEDGEMENTS:		

RUN GET-SINACNT RUN INACNT * NATIONAL INCOME & PRODUCT ACCOUNTS * THIS PROGRAM PRODUCES A SIMPLE SET OF INCOME AND PRODUCT ACCOUNTS. PLEASE ANSWER THE FOLLOWING QUESTIONS. 1. WHAT FRACTION OF GNP IS SAVED BY BUSINESS? . 11 2. WHAT FRACTION OF GNP IS PAID IN TAX BY BUSINESS? . 32 3. WHAT FRACTION OF PERSONAL INCOME IS PAID AS PERSONAL INCOME TAX?.3+21 4. WHAT FRACTION OF THE DISPOSABLE PERSONAL INCOME (I.E. AFTER-TAXES) IS SPENT ON CONSUMPTION ? . 93 HOW MUCH OF THE GNP IS INVESTED? (IN DOLLARS: EX.: 50 BILLION=5E+10). ?1 · 4E+11 HOW MUCH OF GNP IS SPENT BY THE GOVERNMENT ? (IN DOLLARS AS ABOVE.) ?2 • 7E+11 (DO YOU WISH A SENSITIVITY ANALYSIS ON ANY OF THE FIRST 4 INPUTS?) ?YES WHICH INPUT? (1-4)?1 ENTER THE LOW VALUE, HIGH VALUE, STEP? . 10, . 12, .01 BUSINESS SAVINGS ARE 11 PERCENT OF GNP BUSINESS TAXES ARE 32 PERCENT OF GNP PERSONAL INCOME TAX IS 21 PERCENT OF PERSONAL INCOME PERSONAL CONSUMPTION IS 93 PERCENT OF DISPOSABLE PERSONAL INCOME THE GNP MULTIPLIER IS 1.72052 THE CONSUMPTION MULTIPLIER IS .720516 THE TAX MULTIPLIER IS .756511 ** RUN # 1 BUSINESS SAVING/GNP= •1 ** PRODUCTION SECTOR (ACT . #1) BUSINESS SAVING 7.05411E+10 GOV'T. SPENDING.... 2.70000E+11 GROSS NAT. PRODUCT.. 7.05412E+11 GROSS NAT. PRODUCT.. 7.05412E+11 PERSONAL SECTOR (ACT. #2) PERSONAL TAXES 8.59191E+10 PERSONAL INCOME 4.09139E+11 CONSUMPTION..... 3.00594E+11 PERSONAL SAVING 2.26254E+10 PERSONAL INCOME ••••• 4•09139E+11 PERSONAL INCOME ••••• 4•09139E+11 GOVERNMENT SECTOR (ACT. #3)

	I INCOME STATEMENT	INSTMT 36089
DESCRIPTION:	INSTMT prints a simple income statement, and allows a sensitivity ch on various input.	eck
INSTRUCTIONS:	<pre>Self-explanatory. The following data must be entered before running INSTMT. These are base year (1971) data entries: 9537 DATA amount of sales 9543 DATA cost of goods sold 9549 DATA cost of advertising 9555 DATA administrative expense 9561 DATA tax loss carry forward All other DATA-statements remain undisturbed.</pre>	all
SPECIAL CONSIDERATIONS:	None	

INSTMT, Page 2

RUN

RUN INSTMT

***** INCOME STATEMENT *****

THIS PROGRAM WILL PRINT A SIMPLE INCOME STATEMENT, AND WILL ALLOW A SENSITIVITY ANALYSIS ON VARIOUS INPUT.

DO YOU WISH TO USE AVERAGE OR INDIVIDUAL GROWTH RATES? (ENTER 'AVG' OR 'IND')?AVG

PLEASE ENTER THE FOLLOWING VALUES IN PERCENT: PERCENT GROWTH IN SALES ?10 PERCENT GROWTH IN COST OF GOODS SOLD?6 PERCENT GROWTH IN ADVERTISING ?5 PERCENT GROWTH IN ADMIN & GENERAL EX?8

INCOME STATEMENT \$ IN THOUSANDS					
YEARS	71	72	73	74	75
SALES	1000	1100	1210	1331	1464.1
-CG SOLD	500	530	561.8	595.51	631.24
- ADV	150	157.5	165.38	173.64	182.33
- ADM&GEN	N 100	108	116.64	125.97	136.05
=OPER INC	250	304.5	366 . 19	435.88	514.49
+TAX L.C.F	50	0	0	Ø	0
- TAXES	89.5	139.66	169.27	202.72	240.45
=NET INCOME	E 160.5	164.84	196.92	233.16	274.03

PLEASE ENTER ONE OF THE FOLLOWING FOUR VALUES: 1) 'GROW' TO HAVE THE GROWTH PERCENTAGES LISTED; 2) 'PERCENT' TO HAVE THE PERCENTAGE RELATIONSHIPS OF THE ITEMS TO SALES LISTED; 3) 'YES' TO BE GIVEN THE OPTION TO CHANGE THE ORIGINAL INPUT PERCENTAGES AND RETRY; OR 4) 'NO' TO TERMINATE?PERCENT

PERCENT OF SALES YEARS 74 71 72 73 75 100 SALES 100 100 100 100 -CG SOLD 50 44.74 48.18 46.43 43.11 - ADV 15 14.32 13.67 13.05 12.45 - ADM&GEN 10 9.82 9.64 9.46 9.29 =OPER INC 25 30.26 27.68 32.75 35.14 - TAXES 8.95 12.7 13.99 15.23 16.42 =NET INCOME 16.05 14.99 16.27 17.52 18.72

PLEASE ENTER ONE OF THE FOLLOWING FOUR VALUES: 1) 'GROW' TO HAVE THE GROWTH PERCENTAGES LISTED; 2) 'PERCENT' TO HAVE THE PERCENTAGE RELATIONSHIPS OF THE ITEMS TO SALES LISTED; 3) 'YES' TO BE GIVEN THE OPTION TO CHANGE THE ORIGINAL INPUT PERCENTAGES AND RETRY; OR 4) 'NO' TO TERMINATE?YES

PLEASE ENTER THE FOLLOWING FOUR PARAMETERS A LINE AT A TIME.
1)THE FACTOR YOU WISH TO ALTER: 'SAL' FOR SALES,'ADV' FOR ADVERTIS-ING, 'CGS', OR 'ADM'.
2)ON THE NEXT LINE, THE YEAR YOU WANT THE NEW PERCENTAGE
TO OCCUR: 72,73,74,75. ***NOTE: THE INITIAL PERCENTAGE
WILL APPLY TO ALL OTHER YEARS UNLESS SPECIFICALLY CHANGED
3)THE NEW PERCENTAGE.
4)ON THE FOURTH LINE, 'YES' OR 'NO', INDICATING WHETHER YOU
WISH TO CHANGE ANY OTHER FACTOR NOW.

٠

?CGS ?74 ?8 ?NO

INCOME STATEMENT \$ IN THOUSANDS					
YEARS	71	72	73	74	75
SALES	1000	1100	1210	1331	1464.1
-CG SOLI	D 500	530	561.8	606.74	643.15
- ADV	150	157.5	165.38	173.64	182.33
- ADM&GE	EN 100	108	116.64	125.97	136.05
=OPER INC	250	304.5	366.19	424.64	502.58
*TAX L.C.F	F. 50	0	0	0	0
- TAXES	89.5	139.66	169.27	197.33	234.74
=NET INCO	ME 160.5	164.84	196.92	227.31	267.84

PLEASE ENTER ONE OF THE FOLLOWING FOUR VALUES: 1) 'GROW' TO HAVE THE GROWTH PERCENTAGES LISTED; 2) 'PERCENT' TO HAVE THE PERCENTAGE RELATIONSHIPS OF THE ITEMS TO SALES LISTED; 3) 'YES' TO BE GIVEN THE OPTION TO CHANGE THE ORIGINAL INPUT PERCENTAGES AND RETRY; OR 4) 'NO' TO TERMINATE?NO

		LEASIN
TITLE:	LEASE INCOME	30194
DESCRIPTION:	This program calculates annual lease income from (U) units at sales (S) leased at lease rate (R) for lease period (L). It also sums the income by year over (Y) years of lease operation.	price total
INSTRUCTIONS:	Inputs are defined by program at RUN time.	
SPECIAL CONSIDERATIONS:	Lease period in years + number of years manufacturing product must be <50. Else redimension arrays in #35.	e
ACKNOWLEDGEMENTS:	Richard T. Barck Varian Data Machines	

RUN LEASIN

```
ON AN ANNUAL BASIS OF SHIPMENTS OVER 'Y' YEARS, THIS PROGRAM
WILL CALCULATE LEASE INCOME BASED ON A VARIABLE-LENGTH
PRODUCT LIFE (LEASE PERIOD).
                                   ....R. T. BARCK 5/17/71
LEASE PERIOD IN YEARS IS?5
WE WILL MANUFACTURE PRODUCTS FOR Y YEARS; Y =?6
ANNUAL SHIPMENTS IN UNITS BY YEAR FOR YEARS I TO 6
                                                        ARE
 1
               ?17
               222
 2
               ?25
 3
 4
               ?5+25
 5
               722
 6
               ?14
ENTER AVG SALES PRICE IN $ 000 FOR EACH YEAR SYSTEMS ARE
INSTALLED AND FOR ALL YEARS SYSTEMS REMAIN ON LEASE
YEAR
               SALES PRICE
               732
 1
               ?32
 2
 3
               ?29
               ?29
 4
 5
               ?29
 6
               ?27.5
               ?27.5
 7
 8
               ?27
 9
               ?26.5
 10
               ?26.5
 11
               ?26
ENTER AVG LEASE RATE IN & OF SALES PRICE PER MONTH (W/O SERVICE)
FOR EACH YEAR SYSTEMS ARE INSTALLED AND REMAIN ON LEASE
               LEASE RATE
YEAR
 1
               ?2.6
 2
               ?2.6
               ?2.6
 3
 4
               ?2.55
 5
               ?2.55
               ?2.55
 6
 7
               ?2.5
               ?2.5
 8
 9
               ?2.5
 10
               ?2.5
               ?2.5
 11
ANNUAL INCOME FOR THIS PRODUCT WILL BE:
               INCOME
YEAR
 1
                169.728
 2
                389.376
 3
                579.072
 4
                 789.786
                 985.014
 5
 6
                 908.82
 7
                709.5
                 494-1
 8
 9
                286.2
 10
                111.3
 11
                a
```

TITLE:	SIMPLE LOAN ANALYSIS	LENDER 36090
DESCRIPTION:	LENDER calculates the monthly interest charges and outstanding balance of a loan that must be paid off in one year or less.	
INSTRUCTIONS:	<pre>Self-explanatory. The following input values will be requested: B = amount of loan M = monthly payment R = interest rate</pre>	
SPECIAL CONSIDERATIONS:	Loan must be payable within one year.	
ACKNOWLEDGEMENTS: I		

LENDER, page 2

RUN GET-SLENDER RUN LENDER

* SIMPLE LOAN ANALYSIS *

THIS PROGRAM CALCULATES THE MONTHLY INTEREST CHARGES AND OUTSTANDING BALANCE OF A LOAN THAT MUST BE PAID OFF IN ONE YEAR OR LESS.

WHAT IS THE AMOUNT OF THE LOAN? 1000

WHAT IS THE MONTHLY PAYMENT ?90

WHAT IS THE INTEREST RATE?7.5

	PAYMT	APPLIED TO	BALANCE
MTH.	INT.	LOAN	DUE
1	6.25	83.75	916.25
2	5.73	84.27	831.98
3	5.2	84•8	747.18
4	4•67	85.33	661.85
5	4.14	85.86	575.99
6	3•6	86•4	489•59
7	3.06	86•94	402.65
8	2.52	87•48	315.17
9	1.97	88•03	227.14
10	1 • 42	88•58	138 • 56
11	•87	89.13	49 • 43
12	• 31	49•43	0.00

MONTHS TO PAYOFF LOAN: 12 TOTAL INTEREST CHARGES: 39.74

DO YOU HAVE ANOTHER CASE?YES

WHAT IS THE AMOUNT OF THE LOAN? 12000

WHAT IS THE MONTHLY PAYMENT ?1000

WHAT IS THE INTEREST RATE?8.5

LOAN CANNOT BE PAID OFF IN LESS THAN 1 YEAR. INCREASE YOUR MONTHLY PAYMENT.

DO YOU HAVE ANOTHER CASE?NO

TITLE:	LEASE ANALYSIS AS DETERMINED BY THE LESSEE 3	ESSEE 6091
DESCRIPTION:	LESSEE compares the advantages of leasing vs. purchasing equipment. Investment tax credit is considered and a sensitivity check is availa as is a cashflow diagram.	ble,
INSTRUCTIONS:	Values are required for the following variables, beginning in line 99 P = The purchase price of the equipment T = The lessee's income tax rate R1 = The interest rate on a loan, compounded semi-annually R2 = The opportunity rate that can be earned, after taxes, on new investments, compounded semi-annually M = The monthly rent, payable in advance L = The depreciable life in years S1 = The salvage value for tax purposes S2 = Expected actual salvage value, must be less than P E1 = Expenses of making the lease arrangement E2 = Annual saving in expenses due to the lease Y = The length of the basic rental period Z = Ø if no investment tax credit is taken, otherwise l X = The number of the variable for which a sensitivity analys is to be done; Ø if no analysis; l if on purchase price; 2 if on income tax rate, etc. X1 = The lowest value of the variable specified in 14 X2 = The highest value of the variable specified in 14 X2 = The highest value of the variable specified in 14 	00: is
SPECIAL CONSIDERATIONS:	This program uses the Bower-Williamson Method of Lease Analysis.	

LESSEE, page 2

RUN GET-\$LESSEE 9900 DATA 20000, .5, .055, .15, 500, 10, 1000, 2000, 500, 4000, 10, 10, 1 9901 DATA 3,.12,.045 RUN LESSEE * LEASE/PURCHASE ANALYSIS *

HAS YOUR DATA ALREADY BEEN ENTERED?YES

DO YOU WANT THE SENSITIVITY ANALYSIS ONLY?NO

COMPARISON OF LEASE WITH PURCHASE

PURCHASE PRICE \$ 20000 TAX RATE .5 INTEREST RATE .055 **OPPORTUNITY RATE .15** MONTHLY RENT \$ 500 DEPRECIABLE LIFE 10 YEARS SALVAGE FOR TAX \$ 1000 EXPECTED SALVAGE \$ 2000 EXPENSE OF ARRANGING LEASE \$ 500 ANNUAL EXPENSE SAVING DUE TO LEASE \$ 4000 LEASE LENGTH 10 YEARS BASIC RENTAL PERIOD 10 YEARS SENSITIVITY ANALYSIS ON INTEREST RATE WITH A RANGE OF .12 то .045 INVESTMENT TAX CREDIT TO BE TAKEN \$ 1400.

DO YOU WANT TO SEE THE FLOWS?YES

YEAR	PAYMENT	DEPR	LOAN	OP'G FLO DIFF'CE WITH	BASIC CASH FLO SAVING WITH	BASIC Cash Flow Disc. At
1	6000	3455	1038	3500	1100	1007
2	6000	3109	951	4000	2970	2391
3	6000	2764	860	4000	3188	2021
4	6000	2418	764	4000	3409	2055
5	6000	2073	663	4000	3632	1895
6	6000	1727	555	4000	3859	17/0
7	6000	1382	442	4000	4088	1597
8	6000	1036	323	4000	4321	1460
9	6000	691	196	4000	4556	1222
10	6000	345	63	2000	3296	834
TOTAL	60000.	19000	5855	37500.	· 34423•	16555
	-					
FINANCIAL	ADVANTAGE	OF LEASE:	\$-26411.8	3		
OPERATING	ADVANTAGE	OF LEASE:	\$ 16552.4	4		
NET	ADVANTAGE	OF LEASE:	\$-9859.3 8	3		
INTEDPET	SENSITIVIT	Y ANALYSIS	ON INTERES	ST RATE		
INTEREST	RAIE		NET ADVAN	TAGE OF LE	ASE	
• 1 2			-14/5-72			
• 1 1 2 5			-2219.66			
• 105			-3014.65			
•0975			-3863.75			
• 07			-4/69.57			
• 002 J			- 5136+89			
-013			-0101+32			
• 0015			-1800.06			
• 00 0505			- 7036+63			
• UJZJ			-10284.3			

-11611.7

• 045

TITLE:	LOAN AMORTIZATION	LOAN 36226
DESCRIPTION:	This program amortizes a loan on a monthly basis and prints out a and yearly report. The yearly report shows interest accumulated, to the principal, total paid and remaining balance. When the bala below the maximum allowable monthly payment (set by the user), the payment is computed.	monthly payments nce falls final
INSTRUCTIONS:	Follow the instructions given by the program. After each monthly is entered, the program prints out the amount of the monthly payme attributed to interest, the cumulative interest, amount attributed principal, cumulative principal payments, and principal balance du loan. Computations continue until the end of the year when a year is printed out.	payment nt to the e on the 'ly report
SPECIAL CONSIDERATIONS:	None	
ACKNOWLEDGEMENTS:	Henry H. Brus III	

RUN LOAN

INPUT STARTING MONTH # (FEB=2)?6 MAXIMUM ALLOWABLE PAYMENT/MONTH?300 AFTER THE FIRST ? INPUT PRINCIPAL AND INTEREST RATE AFTER EACH SUCCEEDING ? INPUT THE MONTHLY PAYMENT

INTEREST	CUM INTEREST	PAY TO PRINC	CUM PRINC PAY	BALANCE
?5505 ??•045				
20.6437	20.6437	129.356	129.356	5375.64
20.1587	40.8024	229.841	359.198	5145.8
19.2968	60.0992	5.70324	364.901	5140.1
19.2754 ?19	79.3745	Ø	364.901	5159.37
19.3477 ?300	98.7222	Ø	364.901	5159.72
19.349 ?4000 ?-23 2260	118.071	280.651	645.552	4879.07
18.2965	136.368	281.703	927 • 255	4597.37
YEAR I	TOT PAY MADE 1044	YEAR CUM INT 136.368	YEAR PRINC PAY 927.255	BALANCE 4597.37
?100				
17.2401 ?43	153.608	82.7599	1010.02	4514.61
16.9298 ?99.5	170.538	26.0702	1036.09	4488.54
16•832 ?42	187.37	82•668	1118.75	4405.87
16•522 ?76	203.892	25.478	1144.23	4380.39
16•4265 ?54	220.318	59.5735	1203.81	4320.82
16.2031	236.521	37•7969	1241.6	4283.02
16.0613	252.583	1.93867	1243.54	4281.08
16.0541	268.637	4.94594	1248.49	4276.14
16.0355	284.672	Ø	1248.49	4292.17
16.0956	300.768	283.904	1532.39	4008.27
15.031	315.799	284.869	1817.26	3723.4
13.9627	329.762	162.037	1979.3	3561.36
YEAR 2	TOT PAY MADE 1229.4	YEAR CUM INT 193.394	YEAR PRINC PAY	BALANCE 3561.36

•

343.117	116.645	2095.94	3444.72	
356 •034	16.0823	2112.02	3428.63	
368.892	237.143	2349.17	3191.49	
380.86	210.032	2559.2	2981.46	
392.04	ø	2559.2	2982.64	
403.225	40.8151	2600.01	2941.83	
414.257	55.9682	2655.98	2885.86	
425.079	87.178	2743.16	2798.68	
435.574	289.505	3032.67	2509.17	
444.983	290.591	3323.26	2218.58	
453.303	241.68	3564.94	1976.9	
460.716	267.587	3832.52	1709.32	
TOT PAY MADE 1983	YEAR CUM INT 130.955	YEAR PRINC PA 1853.23	AY BALANCE 1709.32	
467.126	208.59	4041.11	1500.73	
472.754	187.972	4229.08	1312.75	
477.677	295.077	4524.16	1017.68	
481.493	30.1837	4554.35	987 • 494	

196.297

198.193

93.7762

98.1279

169.716

231.384

33.9146

YEAR CUM INT

4750.64

4948.84

5042.61

5140.74

5310.46

5541.84

1709.32

791.197

593.004

499.227

231.384

401.1

ø

ø

YEAR PRINC PAY BALANCE

.

41 PAYMENTS WERE MADE

485.196

488.163

490.387

492.259

493.763

494.631

1743.23

TOT PAY MADE

DONE

?13Ø 13.3551 ?29 12.9177 ?250 12.8574 ?222 11.9681 ?10 11.1805 ?52 11.1849 ?67 11.0318 ?98 10.822 ?300 10.495 ?300 9.4094 ?25Ø 8.31969 ?275 7.41339

YEAR 3

?215 6.40994 ?193.6 5.62772 ?300 4.92283 ?34 3.81629 ?200 3.7031

?201.16

?171.22

1.50412

•867689

?100 1.8721

YEAR

4

2.96699 ?96 2.22376

TITLE:	SECURITIES PORTFOLIO USING MARKOWITZ MODEL	MARKOW 36092
DESCRIPTION:	MARKOW computes the efficient securities portfolios according to the full covariance matrix Markowitz model.	
INSTRUCTIONS:	<pre>Input data should be entered beginning in line 9900, in the following order: 1. the number of securities 2. the lending rate (decimal notation) 3. the borrowing rate (decimal notation) 4. the expected returns for each security 5. the full covariance matrix (this should be listed row by row. Note that it is a square matrix nxn, where n = # of securities).</pre>	
SPECIAL CONSIDERATIONS:	If a storage problem should result, delete lines 9000-9030 and run MARKOW is restricted to 15 securities. To increase this number, change the DIM-statement 9050, and the equivalent values in lines 9051-9054: G9 >2N + 2 E9 >N + 2 A9, R9, H9 >N	n.
ACKNOWLEDGEMENTS:	Francois Carlhian Babson College	

RUN				
GET-SMARKOW LIS-9900 MARKOW				
9900 DATA	9			
9901 DATA	.045.065			
9910 DATA	2.84022E-02.110	0011•4•77284E-0	3,6.33756E-02,6.14846	E-02,3.05807E-02
9920 DATA	-1.1209/E-03+-5	32422E-039.2600	55 (
9930 REM P 9950 DATA	2.88445F=02.9.04	635E-03.1.31010	95+ 9F-02+1-70099F-02	
9951 DATA	1.57015E-02.1.85	585F-02.2.78296	5F-02•3•10865F-02	
9952 DATA	1.14316E-02.9.04	635E-03.6.75625	5F-03,4.64437E-04	
9953 DATA	1.37025E-02.8.90	1057E-03.5.1941E	E-03,4.64437E-04	
9954 DATA	9.64282E-03.4.30	107E-04.2.0541	3E-03,.010148	
9955 DATA	1.55908E=02.9.31	176E-03+4-0376	LE-03+1 · 70099E-02	
9950 DATA 9957 DATA	1.143195-02.1.28	3415E=02+2.95581	F-02+-4-5765F-03	
9958 DATA	1.57015E-02.8.90	057E-03,2.0541	3E-03,1.55314E-02	
9959 DATA	1.88851E-02.4.27	1909E-03,9.07786	5E-03,2.20021E-02	
9960 DATA	1.85585E-02.099	266.5.1941E-03	.010148	
9961 DATA	1.14319E=02+4.2	909E-03+1+63099	7E-02++021356	
9962 DATA 9963 DATA	1.55908E=02.1.28	204E-03+2+18290 8415E+02+9.07781	5E=03+,021356	
9964 DATA	3.04166F-02.2.70	716E-02•2.8313E	-03.3.10865F-02	
9965 DATA	1.49714E-02.9.31	176E-03.2.95581	E-02.2.20021E-02	
9966 DATA	.093458,2.70716E	-02.4.94682E-02	2+8.28133E-03	
9967 DATA	1.14316F-02.9.78	3117E-04+4-0376	LE-03,-4.5765E-03	
9968 DATA	1.99200 <u>1</u> -029-5.0	082845-03920831. 07145-02-0 70113	3E-03+8+28133E-03	
9970 DATA	4.86656E-02	1146-0297010111	C-0491.510196-02	
9999 END				
RUN Markow				
* SECURIT	LES PORTFOLIOS US	SING MARKOW CHA	INS *	
AS INPUT WE	HAVE: 9 SECU	IRITIES		
	4.5	PERCENT AS TI	HE LENDING RATE	
	6•5	PERCENT AS TI	HE BORROWING RATE	
ب بالد بعان بالد بالد بالد بالد بالد بالد بالد بال				
********	******	* * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * *
	POF	RTFOLIO NUMBER	1	
EXP RETURN	SLOPE OF THE E-V	DEV: •217214 CURVE IS: •6403	ASS INT: •113302 382	
STOCK NO	PERCENT	R	н	
9	100	1	Ø	
	POF	RTFOLIO NUMBER 2	2	
EXP RETURN	• 13959 STD SLOPE OF THE E-V	DEV: 7.41758E-0 CURVE IS:-6.98	02 ASS INT: 1.71583 121E-03	
STOCK NO	PERCENT	R	н	
2	80.3653		-1.24143	
9	19.6347	•205013	1 • 24143	
*******	*****	*****	*****	****
0000				
DONE				

TITLE:	COMPARE AND EVALUATE UP TO 1000 MORTGAGE PAYMENT PLANS SIMULTANEOUSLY	MCOST 36709
DESCRIPTION:	Permits the user to easily compare and evaluate up to 1000 mortgag plans simultaneously.	e payment
	The program computes monthly mortgage payments for various princip at different interest rates, over varying periods. Sample input:	al amounts,
	Enter the amounts? 22000,24000 Enter the rates (percent)? 7.5 Enter the years? 20,25	
	From the above input, 4 mortgage payment plans will be calculated printed with supplementary comparison information.	and
INSTRUCTIONS	RUN 9100 for instructions	
ACKNOWLEDGEMENTS:	Babson College Babson Park, Massachusetts	

'\$MCOST' PERMITS THE USER TO EASILY COMPARE AND EVALUATE UP TO 1000 MORTGAGE PAYMENT PLANS SIMULTANEOUSLY. THE PROGRAM COMPUTES MONTHLY MORTGAGE PAYMENTS FOR VARIOUS PRINCIPAL AMOUNTS, AT DIFFERENT INTEREST RATESS OVER VARYING PERIODS. ENTER THE AMOUNTS? 22000,24000 ENTER THE RATES (PERCENT)? 7.5 ENTER THE RATES (PERCENT)? 7.5 ENTER THE YEARS? 20,25 FROM THE ABOVE INPUT,4 MORTGAGE PAYMENT PLANS WILL BE CALCULATED AND PRINTED WITH SUPPLEMENTARY COMPARISON INFORMATION.

```
ENTER THE AMOUNTS?22000,24000
ENTER THE RATES(PERCENT)?7.5
ENTER THE YEARS?20,25
```

INTEREST RATE	NUMBER OF YEARS	MONTHLY Payment	TOTAL INTEREST	DECREASE Monthly Payment	INCREASE TOTAL INTEREST
AMOUNT =	22000				
7.5 7.5	20 25	177.23 162.58	20535.6 26773.7	14.65	6238.07
AMOUNT =	24000				
7.5 7.5	20 25	193.34 177.36	22402•5 29207•7	15.98	6805.16

DONE

RUN

BUSINESS AND MANUFACTURING APPLICATIONS (700) CONTRIBUTED PROGRAM **BASIC**

	MAKE-BUY DECISION ANALYSIS 360	BUY 93
DESCRIPTION:	MKBUY calculates the present value of the cost saving incurred by makir a product as opposed to buying it. It also prints a cash flow summary for each method for each year involved.	ıg ′
INSTRUCTIONS:	The following values are required as input: the cost to buy one item FOB the cost to manufacture one item including direct materials and labor but not overhead the initial investment the life of the investment the salvage value of the investment (supervision and maintenance) corporate tax rate in percent local tax rate on extra investment estimate of yearly demand for the item under consideration. 	
SPECIAL CONSIDERATIONS:	Life of the investment must be less than 25 years.	

ACKNOWLEDGEMENTS:

GET-\$MKBUY RUN MKBUY

* MAKE-BUY ANALYSIS *

THIS PROGRAM CALCULATES THE PRESENT VALUE OF THE COST SAVING INCURRED BY MAKING A PRODUCT AS OPPOSED TO BUYING IT.

FIRST WE WOULD LIKE TO ASK YOU A FEW QUESTIONS ...

WHAT IS THE NAME OF YOUR COMPANY?HEWLETT-PACKARD CO.

WHAT IS THE NAME OF THE COMPONENT YOU ARE CONSIDERING MAKING OR BUYING ?• 2 PENCIL

*** ENTER ALL COSTS IN DOLLARS ***

1. WHAT IS THE COST TO BUY A .2 PENCIL FOB YOUR PLANT?.05

2. WHAT IS THE COST TO MANUFACTURE A .2 PENCIL IN YOUR PLANT INCLUDING DIRECT MATERIALS AND LABOR BUT NOT OVERHEAD?.04

3. WHAT IS THE INITIAL INVESTMENT (COST OF THE EXTRA MACHINERY THAT WOULD BE NEEDED TO MANUFACTURE .2 PENCILS)?L+10000

4. WHAT IS THE LIFE OF THE INVESTMENT IN YEARS?5

5. WHAT IS THE SALVAGE VALUE OF THIS INVESTMENT?0 (NOTE: SUM-OF-THE-YEARS-DIGITS METHOD WILL BE USED TO DEPRECIATE THE INVESTMENT.

6. WHAT ARE THE ANNUAL FIXED COSTS (SUCH AS SUPERVISION AND MAINTENANCE)INVOLVED IN YOUR MAKING .2 PENCILS?2500

7. WHAT IS YOUR CORPORATE TAX RATE IN PERCENT ?? 25

 $\mathbf{8}\,\mathbf{\cdot}$ what is the local tax rate on the extra investment in dollars per thousand?55

9. WHAT IS YOUR COST OF CAPITAL IN PERCENT??12

10. WHAT IS YOUR ESTIMATE OF THE YEARLY DEMAND FOR .2 PENCILS ?10000

THE PRESENT VALUE OF THE COST TO MAKE IS 15208.2 THE PRESENT VALUE OF THE COST TO BUY IS 1206.96

HEWLETT-PACKARD CO. SHOULD BUY .2 PENCILS AT A SAVINGS OF 14001.2 DOLLARS.

**** THE FLOWS ****

IF BUY********		IF MAKE	IF MAKE ********	
EXPENSE	CASH FLOW	EXPENSE	CASH FLOW	CASH FLOW
Ø	0	Ø	9533•33	-9533.33
500	375	6600	1616.67	-1241.67
500	375	5786.67	1673.33	-1298-33
500	375	5010	1757.5	-1382.5
500	375	4270	1869 • 17	-1494.17
500	375	3566•67	2008.33	-1633.33
	IF BUY* EXPENSE 0 500 500 500 500 500	IF BUY********* EXPENSE CASH Ø Ø 500 375 500 375 500 375 500 375 500 375 500 375 500 375 500 375	IF BUY******* IF MAKE EXPENSE CASH FLOW EXPENSE Ø Ø Ø Ø 500 375 6600 500 375 5786.67 500 375 5010 500 375 4270 500 375 3566.67	IF BUY****** IF MAKE****** EXPENSE CASH FLOW EXPENSE CASH FLOW Ø Ø Ø 9533.33 3 500 375 6600 1616.67 500 375 5786.67 1673.33 500 375 5010 1757.5 500 375 4270 1869.17 500 375 3566.67 2008.33

WOULD YOU LIKE TO SEE THE EFFECT OF CHANGING A VARIABLE? (YES OR NO)?YES WHAT IS THE NUMBER OF THE QUESTION TO WHICH YOU WOULD LIKE TO CHANGE YOUR ANSWER?10 WHAT IS THE NEW VALUE ?50000 ****** THE PRESENT VALUE OF THE COST TO MAKE IS 19070.5 THE PRESENT VALUE OF THE COST TO BUY IS 6034.78 HEWLETT-PACKARD CO. SHOULD BUY .2 PENCILS AT A SAVINGS OF 13035.7 DOLLARS. MORE CHANGES?YES SAME QUESTION?NO WHAT IS THE NUMBER OF THE QUESTION TO WHICH YOU WOULD LIKE TO CHANGE YOUR ANSWER?3 WHAT IS THE NEW VALUE?1000 ********* THE PRESENT VALUE OF THE COST TO MAKE IS 20263.4 THE PRESENT VALUE OF THE COST TO BUY IS 6034.78 HEWLETT-PACKARD CO. SHOULD BUY .2 PENCILS AT A SAVINGS OF 14228.6 DOLLARS. MORE CHANGES?NO

TITLE:	MORTGAGE ANALYSIS	MORGAG 36094
DESCRIPTION:	MORGAG will find the missing parameter of the following four, given remaining three: the rate charged on a mortgage, the life, the amou borrowed, and the monthly payment. It will also print a summary, of monthly or yearly, indicating the amount of interest, amount of pay and outstanding balance for each period.	1 the unt either yment,
INSTRUCTIONS:	Provide input from the teletype as requested.	
ACKNOWLEDGEMENTS:	Frank Cada Hewlett-Packard/Loveland Division	

RUN

```
* MORTGAGE ANALYSIS *
IF YOU WANT TO FIND:
    THE RATE, TYPE '1'
    THE LIFE, TYPE '2'
    THE AMOUNT BORROWED, TYPE '3'
    THE MONTHLY PAYMENT, TYPE '4'
WHICH DO YOU WANT?1
MORTGAGE LIFE: YEARS, MONTHS?3,0
AMOUNT TO BE BORROWED?3000
AMOUNT OF ONE MONTHLY PAYMENT?94.01
SETTLEMENT DATE (MO,YEAR)?10,1971
TABLE LENGTH (YEARS)?4
ANNUAL OR MONTHLY SUMMMARY(10R0)?1
```

MORTGAGE TERMS

NOMINAL ANNUAL RATE	E= 8.0005	1	%	
LIFE OF MORTGAGE	= 3	YEARS,	Ø M	ONTHS
AMOUNT BORROWED	= \$ 3000			
MONTHLY PAYMENT	= \$ 94.01			

MORTGAGE TABLE

YEAR	INTEREST	PRINCIPAL REPAYMENT	ENDING PRINCIPAL OUTSTANDING
1971	39•51	148.51	2851•49
1972	194.39	933•73	1917.76
1973	116.89	1011.23	906.531
1974	33.57	906 • 531	0
******	*****	*****	*****

```
DONE
RUN
```

* MORTGAGE ANALYSIS *

```
IF YOU WANT TO FIND:

THE RATE, TYPE '1'

THE LIFE, TYPE '2'

THE AMOUNT BORROWED, TYPE '3'

THE MONTHLY PAYMENT, TYPE '4'

WHICH DO YOU WANT?2
```

NOMINAL ANNUAL RATE IN PERCENT?8

AMOUNT TO BE BORROWED?3000

AMOUNT OF ONE MONTHLY PAYMENT ?94.01

SETTLEMENT DATE (MO, YEAR)?10,1971

TABLE LENGTH (YEARS)?4

ANNUAL OR MONTHLY SUMMMARY(10R0)?1

MORTGAGE TERMS

NOMINAL ANNUAL RATE= 8 % LIFE OF MORTGAGE = 3 YEARS, 1 MONTHS AMOUNT BORROWED = \$ 3000 MONTHLY PAYMENT = \$ 94.01

THE MORTGAGE LIFE HAS BEEN ROUNDED UP TO NEAREST MONTH

MORTGAGE TABLE

			ENDING		
		PRINCIPAL	PRINCIPAL		
YEAR	INTEREST	REPAYMENT	OUTSTANDING		
1971	39•51	148•51	2851•49		
1972	194.39	933•73	1917.76		
1973	116.88	1011.24	906.521		
1974	33.57	906 • 52 1	0		
******	*****	*****	****		

DONE RUN

MORTGAGE TERMS

NOMINAL ANNUAL RATE= 8.00051 % LIFE OF MORTGAGE = 3 YEARS, 0 MONTHS AMOUNT BORROWED = \$ 3000 MONTHLY PAYMENT = \$ 94.01

MORTGAGE TABLE

*******	*****	*******	*****		
1974	33.57	906.531	Ø		
1973	116.89	1011.23	906.531		
1972	194.39	933•73	1917.76		
1971	39•51	148•51	2851•49		
YEAR	INTEREST	PRINCIPAL REPAYMENT	PRINCIPAL OUTSTANDING		
			ENDING		

DONE

```
RUN
```

* MORTGAGE ANALYSIS *
IF YOU WANT TO FIND:
 THE RATE, TYPE '1'
 THE LIFE, TYPE '2'
 THE AMOUNT BORROWED, TYPE '3'
 THE MONTHLY PAYMENT, TYPE '4'
WHICH DO YOU WANT?4
NOMINAL ANNUAL RATE IN PERCENT?8.00051
MORTGAGE LIFE: YEARS, MONTHS?3,0
AMOUNT TO BE BORROWED?3000
SETTLEMENT DATE (MO,YEAR)?10.+,1971
TABLE LENGTH (YEARS)?4
ANNUAL OR MONTHLY SUMMMARY(10R0)?0

MORTGAGE TERMS

NOMINAL ANNUAL RATE=	8.0005	1	7	
LIFE OF MORTGAGE =	3	YEARS,	Ø	MONTHS
AMOUNT BORROWED =	\$ 3000			
MONTHLY PAYMENT =	\$ 94.00	97		

MORTGAGE TABLE

M	олтн	BEGINNI PRINCIP OUTSTAN	NG AL DING	INTERES	ST	PRINCIPAL REPAYMENT
		FOR THE	CALEN	NDAR YEAR	1971	
11		3000		20		74.0097
12		2925•9	9	19•51		74.4998
	PRINCIPLE	REPAID D	URING	1971	148.51	

INTEREST PAID DURING 1971 39.51 PRINCIPLE OUTSTANDING AT YEAR END = 2851.49

.

FOR THE CALENDAR YEAR 1972 19.01 1 2851.49 74.9998 2 2776.49 18.51 75.4998 3 2700.99 18.01 75.9998 4 2624.99 17.5 76.5097 5 16.99 2548 • 48 77.0197 6 2471.46 16.48 77.5298 7 2393.93 78.0498 15.96 8 2315.88 15.44 78.5697 9 2237.31 14.92 79.0898 10 2158.22 14.39 79.6198 11 2078.6 13.86 80.1497 80.6898 1998 • 45 12 13.32 PRINCIPLE REPAID DURING 1972 933.727 INTEREST PAID DURING 1972 194.39 PRINCIPLE OUTSTANDING AT YEAR END = 1917.76 FOR THE CALENDAR YEAR 1973 1917.76 81.2198 1 12.79 1836.54 12.24 81.7697 2 3 1754•78 11.7 82.3098 4 1672.47 11.15 82.8598 83.4097 1589.61 10.6 5 1506.2 10.04 83.9698 6 1422.23 9 • 48 84.5298 7 85.0898 8 1337.7 8•92 9 1252.61 8.35 85.6597 7.78 86.2298 10 1166.95 11 1080.72 7.21 86.7997 12 993.917 6.63 87.3797 PRINCIPLE REPAID DURING 1973 1011.23 INTEREST PAID DURING 1973 116.89 PRINCIPLE OUTSTANDING AT YEAR END = 906.538 FOR THE CALENDAR YEAR 1974 6.04 906.538 87.9698 1 88.5497 2 818.568 5.46 730.018 4.87 89.1398 3 640.878 4.27 89.7397 4 5 551.139 3.67 90.3398 6 460.799 3.07 90.9397 7 369.859 2.47 91.5397 1.86 92.1497 8 278.319 9 186.17 1.24 92.7697 10 93.4 •62 93.3898 1.02081E-02 1.02081E-02 11 Ø PRINCIPLE REPAID DURING 1974 906.538 INTEREST PAID DURING 1974 33.57 PRINCIPLE OUTSTANDING AT YEAR END = Ø *******

DONE

,

TITLE:	DATA CENTER INV	ENTORY REPORT	GENERATOR		REP 36177
DESCRIPTION:	This package in the user to gen sample RUN encl to the Atlanta INput. Each it The maximum num modified to the unlimited on 20 numbers, status uses string sor	icludes two pro merate sorted 1 osed uses a da Data Center. tem in the file mber of items i e limits dictat 100B or 2000C). , location, da ting (pair exc	grams REPort a istings of int ta file of cor The data file occupies one s currently 18 ed by the syst Sorted list te received, a hange).	and INput which toge formation in a data nputer equipment on is created and main record on a fixed h 80 but the program c tem hardware (552 on ings are available f and sales discipline	ther allow file. The consignment tained by ead disc. ould be 2000A, or model . The program
INSTRUCTIONS:	DATA CENTER INV	ENTORY REPORT	GENERATOR (RE	P)	
	DATA CENTER INV	ENTORY MASTER	DATA INPUT (IN	N)	
	DATA FILE (DUMP	ED BY "FILDUM")		
	 Four files If data is and input of If data is 	are involved i not on system lata tape. on system GET	n this packaqu RUN FILREA, an and RUN "REP"	e Cl, C2, CSORTl, an nswer "l" to how man or "IN" (see sample	d CSORT2. y files attached).
SPECIAL CONSIDERATIONS:	Data file consi	sts of the fol	lowing informa	ation in order;	
	NAME	TYPE L	ENGTH	FUNCTION	
	0 M\$ S\$ U\$ L\$ P\$ R\$ H\$ D\$ C\$	NUMERIC STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING	10 9 10 4 5 8 8 3 30	ITEM # (ASSIGNED BY MODEL # SERIAL # STATUS LOCATION CODE LIST PRICE DATE RECEIVED DATE SHIPPED MANUFACTURING DIV C SALES DISCIPLINE COMMENTS	IN) ODE
ACKNOWLEDGEMENTS:	Phil R. Carter Hewlett-Packard	l/Southern Sale	s Region		

GET-REP RUN REP

-----DATA CENTER INVENTORY-----REPORT GENERATOR PROGRAM PLEASE SELECT A REPORT OPTION TO LIST FOR 1 MODEL # TYPE (1)------TO LIST FOR 1 STATUS TYPE(2)------TO LIST FOR 1 OFFICE TYPE (3)-----TO LIST BY DATE RECEIVED TYPE (4)-----TO LIST FOR 1 SALES DISCIPLINE TYPE (5)-----?1 MODEL # (1 TO 10 CHARACTERS)-----?2100A STANDARD LIST IS BY SERIAL #. TO CHANGE THIS TYPE (NO)

OTHERWISE (YES)?YES FOR SHORT FORM PRINTOUT TYPE (1) OTHERWISE (0) -- ?0

ITEM # MODEL # SERIAL # STATUS LOC PRICE RCDT SHDT MFDV 2100A 16 2 SOLD ATL 10750 02/10/71 NA 22 **SALES DISCIPLINE DP NEW 17 2100A 3 FOR SALE DAL 10750 03/10/71 22 NA **SALES DISCIPLINE SYS NEW 18 2100A 4 RENTED NOLA 10750 04/10/71 NA 22 **SALES DISCIPLINE DP U S STEEL FOR SALE ATL 10750 11/10/71 9 NA 22 15 2100A **SALES DISCIPLINE DP NEW

43000

DO YOU WANT ANOTHER MODEL # (YES OR NO)?YES MODEL # (1 TO 10 CHARACTERS)-----?2100A

STANDARD LIST IS BY SERIAL #. TO CHANGE THIS TYPE (NO) OTHERWISE (YES)?YES FOR SHORT FORM PRINTOUT TYPE (1) OTHERWISE (0)--?1

ITEM	# MODEL #	SERIAL #	STATUS	LOC P	RICE	RCDT	SHDT	MFDV
16	2100A	2	SOLD	ATL I	0750	02/10/71	NA	22
17	2100A	3	FOR SALE	DAL 1	0750	03/10/71	NA	22
18	2100A	4	RENTED	NOLA 1	0750	04/10/71	NA	22
15	2100A	9	FOR SALE	ATL 1	0750	11/10/71	NA	22

----43000

DO YOU WANT ANOTHER MODEL # (YES OR NO)?NO DO YOU WANT ANOTHER REPORT (YES OR NO) ---?YES REPORT # (1 TO 5)----?2

STATUS DESIRED (USE ONE OF LIST) FACT. LOAN IN REPAIR RENTED SOLD OBS 1 WK DEMO 2 WK DEMO 3 WK DEMO FOR SALE ----?SOLD STANDARD LIST IS FOR 1 MODEL# FOR ALL MODEL #'S TYPE 'ALL'--FOR 1 MODEL # TYPE (1 TO 10 CHARACTERS)------?AL@+L FOR SHORT FORM PRINTOUT TYPE (1) OTHERWISE (0)--?1

ITEM	# MODEL #	SERIAL #	STATUS	LOC	PRICE	RCDT	SHDT	MFDV
12	12597A-00	2 NSN	SOLD	ATL	600	13/07/70	NA	22
16	2100	A 2	SOLD	ATL	10750	02/10/71	NA	22
						_		
					11750			
					11330			

DO YOU WANT ANOTHER STATUS (YES OR NO)---?YES+++NO

DO YOU WANT ANOTHER REPORT (YES OR NO)---?YES REPORT # (1 TO 5)----?3

ITEM	# MODEL #	SERIAL #	STATUS	LOC	PRICE	RCDT	SHDT	MFDV
14	12597A-ØØ5	NSN	FOR SALE	DAL	600	21/07/71	NA	
17	2100A	3	FOR SALE	DAL	10750	03/10/71	NA	22

11350

DO YOU WANT ANOTHER OFFICE (OFFICE NAME OR NO)---?NO DO YOU WANT ANOTHER REPORT (YES OR NO)---?YEP REPORT # (1 TO 5)-----?4

STANDARD LIST IS FOR 1 MODEL Type Model # (1 to 10 Characters)--?2100A

FOR SHORT FORM PRINTOUT TYPE (1) OTHERWISE (0)--?1

ITEM	# MODEL #	SERIAL #	STATUS	LOC	PRICE	RCDT	SHDT	MFDV
16	2100A	2	SOLD	ATL	10750	02/10/71	NA	22
17	2100A	3	FOR SALE	DAL	10750	03/10/71	NA	22
18	2100A	4	RENTED	NOLA	10750	04/10/71	NA	22
15	2100A	9	FOR SALE	ATL	10750	11/10/71	NA	22

DO YOU WANT ANOTHER MODEL (YES OR NO)---?NO DO YOU WANT ANOTHER REPORT (YES OR NO)---?YES REPORT # (1 TO 5)----?5 ENTER SALES DISCIPLINE (1 TO 8 CHARACTERS)---?SYS STANDARD LIST IS FOR 1 MODEL# FOR ALL MODEL #'S TYPE 'ALL'--FOR 1 MODEL # TYPE (1 TO 10 CHARACTERS)------?ALL FOR SHORT FORM PRINTOUT TYPE (1) OTHERWISE (0)--?1

ITEM	# MODEL #	SERIAL #	STATUS	LOC	PRICE	RCDT	SHDT	MFDV
14	12597A-005	NSN	FOR SALE	DAL	600	21/07/71	NA	22
17	2100A	3	FOR SALE	DAL	10750	03/10/71	NA	22
19	2114B	13	OBS	ORL	10500	03/03/70	NA	22
20	2114B	13	OBS	ORL	10500	03/03/70	NA	22
						-		

```
32350
```

DO YOU WANT ANOTHER SALES DISCIPLINE(YES OR NO)--?NO Do you want another report (YES or No)---?NO

TITLE:	SALES COMMISSION REPORT 36	SALES 5095
DESCRIPTION:	Dependent upon a number of input conditions, SALES will print a monthl planning table for a salesman, with his base salary, incentive dollars and prospective billing totals.	ly ;,
INSTRUCTIONS:	Self-explanatory note only: "INITIAL REVENUE" means the initial sales price of a unit item that this salesman sells.	
	"BILLING" is total amount of sales for the salesman.	
SPECIAL CONSIDERATIONS:	None	
ACKNOWLEDGEMENTS:		

GET**-S**SALES RUN SALES

* SALES COMMISSION PLANNING *

ENTER THE BASE ANNUAL SALARY, COMMISSION **%**, & MONTHLY QUOTA?5000,.20,10 ENTER EXPECTED NUMBER OF NEW ACCOUNTS PER MONTH?1 ENTER EXPECTED INITIAL REVENUE & RATE OF GROWTH?100,.10 WHAT IS THE BEGINNING MONTH OF THE ANALYSIS [1-12]?1 DO YOU WANT AN [ANNUAL] OR [MONTHLY] PRINTOUT?MONY+THLY

BASE SALARY = \$ 5000 MONTHLY QUOTA = 10 BASED ON 1 NEW ACCOUNTS PER MONTH WITH AN INITIAL REVENUE OF \$ 100 AND AN AVERAGE GROWTH OF 10 % PER MONTH, YOU CAN EXPECT:

				MONTHLY	TOTAL
MO NO.	BASE \$	INCENTIVE S	TOTAL S	BILLING	BILLING
1	416.667	18	434.667	100	100
2	416.667	40	456+667	210	310
3	416.667	64.2	480 • 867	331	641
4	416.667	90.82	507•487	464 • 1	1105 • 1
5	416.667	120.102	536.769	610.51	1715.61
6	416.667	152.312	568.979	771.561	2487.17
7	416.667	187.743	604 • 41	948 • 717	3435 • 89
8	416 • 667	226 • 718	643•384	1143.59	4579•48
9	416.667	269.589	686 • 256	1357.95	5937.42
10	416.667	316 • 748	733 • 415	1593.74	7531 • 17
11	416.667	368.623	785.29	1853.12	9384•28
12	416 • 667	425 • 686	842.352	2138+43	11522.7

YEARLY TOTALS: BASE INCENTIVE

PAYROLL =	5000	2280.54	7280.54

MONTHLY REVENUE AT END OF CALENDAR YEAR IS \$ 2138.43

TOTAL BILLINGS \$ 11522.7

TOTAL PAYROLL AS A PERCENT OF SALES: 63.1843

TOTAL
BUSINESS AND MANUFACTURING APPLICATIONS (700)

CONTRIBUTED PROGRAM **BASIC**

TITLE:	COMPOUND INTEREST SAVING 36708
DESCRIPTION:	This program calculates the amount of money that would accumulate after N years at an annual interest rate.
INSTRUCTIONS:	Variable are denoted as follows:
	N = Period of years R = Annual interest rate T = Times compunded per year P = Initial amount D = Amount added at the beginning of each year
	Note: That P and D are given in dollars That N and T must be integers That R is given as a percentage
ACKNOWLEDGEMENTS:	Babson College Babson Park, Massachusetts

RUN

RUN SAVING

THIS PROGRAM CALCULATES THE AMOUNT OF MONEY THAT WOULD ACCUMULATE AFTER N YEARS AT AN ANNUAL INTEREST RATE VARIABLES ARE DENOTED AS FOLLOWS N = PERIOD OF YEARS R = ANNUAL INTEREST RATE T = TIMES COMPOUNDED PER-YEAR P = INITIAL AMOUNT D = AMOUNT ADDED AT THE BEGINNING OF EACH YEAR NOTE* THAT P AND D ARE GIVEN IN DOLLARS That N and T must be integers THAT R IS GIVEN AS A PERCENTAGE WHAT ARE P(\$),D(\$),N(INT),T(INT),R(%) ?1000,150,7,2,8 AFTER 7 YEARS, 1000 DOLLARS INVESTED AT 8 PERCENT COMPOUNDED 2 TIMES PER YEAR, WITH THE ADDITION OF 150 DOLLARS PER YEAR, YIELDS A TOTAL OF 2926.67 DOLLARS. WRITE YES(1) TO CONTINUE OR NO (2) ?2 DONE

BUSINESS AND MANUFACTURING APPLICATIONS (700) CONTRIBUTED PROGRAM **BASIC**

STKINC STOCK MERGER INCENTIVE PROGRAM 36096 TITLE: **DESCRIPTION:** STKINC prints a table for stock incentive estimates, including prospective prices and gains, for the consolidated earnings of two companies considering merging. STKINC requires the use of a data file. This file is used only while the program is running, and it is sufficient to open the file directly before running STKINC, and then to kill it immediately after the program comple-**INSTRUCTIONS:** tion. The OPEN statement should read: eren-STKFLE, 25 Input information required includes internal growth rates and current before-tax earnings for both companies, an estimated external growth rate after merging, a price/earnings ratio, the number of outstanding shares of stock, both common and qualified, after merging, and expected growth rate of the number of shares. The program is presently initialized for a base year of 1969. To update to base year Y, enter: 9445 PRINT TAB(24); Y;TAB(36); Y+1; TAB(48); Y+2; TAB(60); 9446 PRINT Y + 3 9680 PRINT TAB(24); Y + 4; TAB(36); Y + 5; TAB(48); Y + 6 9840 PRINT Y + X; 9910 LET Y9 = Y + 1

ACKNOWLEDGEMENTS:

RUN GET-SSTKINC A PEN-STKFLE, 25 RUN STKINC * STOCK INCENTIVE PROGRAM (MERGER) THIS PROGRAM WILL PRINT A TABLE FOR STOCK INCENTIVE ESTIMATES, INCLUD-ING PROSPECTIVE PRICES AND GAINS, FOR A COMPANY CONSIDERING MERGING. WHAT IS YOUR PRICE/EARNING RATIO? (ANSWER MUST BE > 1)?50 WHAT IS YOUR INTERNAL GROWTH RATE?10 WHAT IS YOUR COMPANY'S PRESENT BEFORE TAX EARNINGS?50000 ---WHAT IS THE INTERNAL GROWTH RATE OF THE COMPANY WITH WHICH YOU ARE CON-SIDERING MERGING?12 WHAT IS THIS COMPANY'S PRESENT BEFORE TAX EARNINGS?65000 ---WHAT DO YOU EXPECT YOUR EXTERNAL GROWTH RATE TO BE AFTER MERGING?15 WHAT DO YOU EXPECT THE TOTAL NUMBER OF OUTSTANDING SHARES TO BE AFTER MERGING?100000 WHAT DO YOU EXPECT THE ANNUAL PERCENTAGE INCREASE IN THE NUMBER OF OUT-STANDING SHARES TO BE?5 ***** 1972 1969 1970 1971 _____ CO. A BT EARNINGS (INT. GROWTH % 10 50000. 55000. 60500. 66550.) CO. B BT EARNINGS (INT. GROWTH % 12 65000. 72800. 81536. 91320.4) CONSOLIDATED EARNINGS 115000. 157870. (NO EXTERNAL GROWTH) 127800. 142036 . EXT. GROWTH % 15 146970. 163341 • 181551. EARNINGS PER SHARE 1 • 46 97 1.55563 1.64672 PRICE OF STOCK 73.485 77.7816 82.336 1973 1974 1975 CO. A BT EARNINGS (INT. GROWTH % 10 73205. 80525.5 88578.) CO. B BT EARNINGS (INT. GROWTH % 12) 102279. 114552. 128299. CONSOLIDATED EARNINGS (NO EXTERNAL GROWTH) 175484. 195078. 216877. EXT. GROWTH % 15 201806 . 224339. 249408. EARNINGS PER SHARE 1.74328 1.84565 1.95418 PRICE OF STOCK 92.2823 97.7089 87.164 -----

NOW PLEASE ENTER AN EARNOUT RATE?20

PLEASE ENTER THE NUMBER OF OUTSTANDING 'QUALIFIED' SHARES YOU EXPECT TO HAVE FOR EACH YEAR, AND THEIR PRICE: 1970 ?1000,100 1971 ?1200,110

1972 1973 1974 1975	?1400,120 ?1500,130 ?1500,130 ?1500,130 ?1500,130				
YEAR	EARNOUT SHARES	QUALIFIED SHARES	PURCHASE PRICE	PROJECTED Price Stock	GAIN
1970	19813•6	1000	100	73 • 485	1•42949E+06
1971	20965•4	1200	110	77.7816	3•13319E+06
1972	22182•4	1400	120	82•336	5•13125E+06
1973	23468•1	1500	130	87•164	7•46928E+06
1974		1500	130	92•2823	1•02104E+07
1975		1500	130	97.7089	1•33882E+07
******	*****	*****	*****	*****	*****

DONE

BUSINESS AND MANUFACTURING APPLICATIONS (700) CONTRIBUTED PROGRAM **BASIC**

	STOCK RETURNS REPORT STK 3609	RTN 98
DESCRIPTION:	STKRTN computes a matrix of returns for an investment in a stock. It then computes an average return for a purchase at the beginning of a year, selling at each of the following years' ends, and computes an average return for all possible holding periods. It also computes an average return, standard deviation, and coefficient of variance for different length holding periods.	
INSTRUCTIONS:	Data can be entered from either the teletype as it becomes necessary, o internally with data-statements. The first question in the program will ask the user to indicate his choice. The following information is necessary if the data-statement option is chosen. Beginning in Line 9900: N = # of years involved Yl = first year for which data will be entered D _k ,P _k = for each year, the dividend per share, followed by the closing stock price for that year If N > 25 change dim statement in line 9205 accordingly.	r 1
ACKNOWLEDGEMENTS:		

RUN

GET-\$STKRTN RUN STKRTN * STOCK RETURNS *

DO YOU WISH TO ENTER YOUR DATA FROM THE TELETYPE, OR INTERNALLY USING DATA-STATEMENTS? ('T' FOR TELETYPE, 'D' OTHERWISE)?T

FOR HOW MANY YEARS DO YOU WISH TO ENTER PRICE AND DIVIDEND DATA, REMEM-BERING THE NEED FOR A BASE YEAR?? (MAX # OF YEARS IS 25)?6

WHAT IS THE FIRST YEAR FOR WHICH YOU WISH TO ENTER DATA?1969

ENTER THE DIVIDEND PER SHARE AND THE CLOSING STOCK PRICE, SEPERATED BY A COMMA, FOR EACH OF THE FOLLOWING YEARS.

DPS, CSP

YEAR	1969	?5•00,	50
YEAR	1970	?5.10,	55
YEAR	1971	?5.25,	60
YEAR	1972	?5.50,	75
YEAR	1973	?6.00,	80
YEAR	1974	?5.75,	85

	RETUR	NS ON I	NVESTMENT	s		
тo	1970		1971	- 1	972	1973
FROM						
196 9	•202		•1945	•	23774	•21693
1970			•18636	•	25847	•22286
1971				•	34166	•24392
1972						•14666
то	1974					
FROM						
1969	•20248	5				
1970	•20263	1				
1971	•20905					
1972	•14072	2				
1973	•13437	1				
AVERAGE	RETURN FROM 19	69 =	•21073			
AVERAGE	RETURN FROM 19	70 =	•21758			
AVEBACE	DETURN FROM 10	- 171	. 96 49 77			
AVERAGE	KETUKN FROM 15		•204077			
AVERAGE	RETURN FROM 19	72 =	•14369			
	DETUDN EDOM 10		10 40 7			
AVERAGE	REIURN FRUM 19	=	•13437			
AVERAGE	RETURN FOR AL	.L				
POSSIBLE	HOLDING PERIC	$DS = \cdot 2$	09357			

		AVERAGE Return	STANDARD DEVIATION	COEFF. VARIATION
FOR ALL 1	YR HOLDING PERIODS:	• 20221	7.40077E-02	•365994
FOR ALL 2	YR HOLDING PERIODS:	•209402	4.62019E-02	•220637
FOR ALL 3 5.24841E-02	YR HOLDING PERIODS:	•223217	1•17153E-02	
FOR ALL 4 3.40831E-02	YR HOLDING PERIODS:	•20978	7•14995E-03	
FOR ALL 5	YR HOLDING PERIODS:	•20248	Ø	0
FOR ALL POSS	IBLE HOLDING PERIODS: ********	•209357 ************	5•16289E-02 *********	•246607 *********

CONTRIBUTED PROGRAM BASIC

TITLE:	EXPONENTIAL SMOOTHING AS A STOCK GUIDE	STKSMO 36099
DESCRIPTION:	STKSMO uses exponential smoothing on past price data to provide a g for the timing of buy and sell orders of a given stock.	uide
INSTRUCTIONS:	STKSMO is designed to keep an internal record of the price history given stock. The first time it is used, the input data is smoothed exponentially to provide a list of price forecasts. At the complet this first run the user is asked whether he will wish to use the re of this run at a future time. If he so chooses, he should copy the that are then provided, and re-save the program, perhaps under a ne for clarity. Then, the next time the program is run, the initial t have already been determined, and any new data can be accepted, and upon more reliably. After this second and all subsequent runs, a m will be provided for each new period describing the buy or sell act which ought to be taken. The data for the first run should simply be the actual price of the stock for any N number of consecutive periods.	of a isults lines w name rends l acted wessage ion
SPECIAL CONSIDERATIONS:	100 periods of data per run is the maximum. Otherwise alter the di statements in lines 9025 and 9030.	m-
ACKNOWLEDGEMENTS:		

RUN GET-\$STKSMO RUN STKSMO

* EXPONENTIAL SMOOTHING AS A STOCK GUIDE *

THIS PROGRAM USES EXPONENTIAL SMOOTHING OF PAST PRICE DATA TO PROVIDE A GUIDE FOR THE TIMING OF BUY AND SELL ORDERS.

TO ENTER THE DATA FOR THE STOCK YOU ARE CONSIDERING, TYPE THE DATA BEGINNING IN LINE 9900. NO MORE THAN 100 PERIODS MAY BE CONSIDERED. THEN TYPE: '9035 LET Q=1' 'RUN' DONE 9900 DATA 100,102,104,105,106,106,107,108,109,110,111,112 9035 LET Q=1

RUN STKSMO

SAVE

* EXPONENTIAL SMOOTHING AS A STOCK GUIDE *

FOR HOW MANY PERIODS DID YOU ENTER DATA?12

ENTER A SMOOTHING COEFFICIENT BETWEEN Ø.1 AND Ø.9?.75

******	*****	******	*****	*****
PERIOD	ACTUAL	ESTIMATED	ESTIMATED	PREDICTED
	PRICE	PRICE	GROWTH	PRICE FOR
				NEXT PERIOD
1	100	100.	1•99997	102.
2	102	102.	1•99997	104.
3	104	104.	1.99997	106.
4	105	105.062	1 • 43747	106.5
5	106	106.031	1.15622	107 • 187
6	106	106.074	• 488251	106.562
7	107	106.973	• 734344	107.707
8	108	107.982	•899139	108 • 88 1
9	109	108 • 993	•966156	109.959
10	110	109•997	•989365	110.987
11	111	110.999	•99678	111.996
12	112	112.	•999069	112.999

DO YOU WISH TO USE THIS PROGRAM AS A CONTINUING AID FOR THE TIMING OF BUY AND SELL DECISIONS ON THIS SAME STOCK AT SOME FUTURE TIME?YES

```
WHAT IS THE NAME OF THIS STOCK?HEWLETT-PACKARD COMMON
WHAT TIME PERIOD HAVE YOU USED THUS FAR ?? (EX: MAY 1, 1969 TO MAY 1, 1970)
?JANUARY, 1968 TO DECEMBER, 1968
THEN ENTER THE FOLLOWING LINES BEFORE SIGNING OFF:
     '9035 LET Q=2'
'9286 LET X(X9) = 111.667
     '9287 LET Y(Y9) = 111.334
                                      .
     '9288 LET A = .75 '
'9280 LET A$ = 'HEWLETT-PACKARD COMMON' '
     '9281 LET B$ ='JANUARY, 1968 TO DECEMBER, 1968' '
     'KILL-STKSMO'
     'SAVE'
DONE
9035 LET Q=2
9286 LET X(X9) = 111.667
9287 LET Y(Y9) = 111.334
9288 LET A = .75
9280 LET AS = "HEWLETT-PACKARD COMMON"
9281 LET B$ = "JANUARY, 1968 TO DECEMBER +, 1968"
KILL-STKSMO
```

RUN STKSMO

* EXPONENTIAL SMOOTHING AS A STOCK GUIDE *

THIS PROGRAM IS BEING USED TO PROVIDE A GUIDE TO THE TIMING OF BUY AND SELL ORDERS ON HEWLETT-PACKARD COMMON.

IT IS BASED UPON DATA FROM THE PERIOD: JANUARY, 1968 TO DECEMBER, 1968.

FOR HOW MANY ADDITIONAL PERIODS FOLLOWING THE LAST MARKET DATA SHOWN DO YOU WISH TO ENTER DATA?12 WHAT IS THE PRICE FOR PERIOD 1 ?112 WHAT IS THE PRICE FOR PERIOD 2 ?113 WHAT IS THE PRICE FOR PERIOD 3 ?114 WHAT IS THE PRICE FOR PERIOD 4 ?113 WHAT IS THE PRICE FOR PERIOD 5 WHAT IS THE PRICE FOR PERIOD 6 ?112 ?113 WHAT IS THE PRICE FOR PERIOD 7 ?112 WHAT IS THE PRICE FOR PERIOD 8 WHAT IS THE PRICE FOR PERIOD 9 ?114 ?115 WHAT IS THE PRICE FOR PERIOD 10 ?116 WHAT IS THE PRICE FOR PERIOD 11 ?117 WHAT IS THE PRICE FOR PERIOD 12 ?118

WHAT PERCENTAGE DIFFERENCE (EXPRESSED AS A DECIMAL) BETWEEN THE PRE-DICTED AND ACTUAL PRICE WOULD YOU LIKE TO USE AS A SCREENING RATE FOR THE BUY AND SELL ORDERS? 02

********	****	****	****	****	***	****	****	****	****	****	****	****	****	***	******
PERIOD		ACTU PRIC	AL E		E F	STIN	1ATE E	D	E	STIM GROW	ATEE TH)	PI PI Ni	RED RIC EXT	ICTED E FOR PERIOD
1 2 3 4 5 6 7 8 9 10		112 113 114 113 112 113 112 114 115 116				112 113 113 112 112 112 112 112 112 113 114	062 969 98 117 06 898 07 854 985	2 , , , ,		• 437(• 718; • 894; • 160 • 698; • 223; • 223; • 407; • 907; 1 • 04 1 • 02;	073 597 47 172 502 251 227 425 169 663			112 113 114 112 111 113 111 114 116 117	• 5 • 68 7 • 8 75 • 9 5 7 • 3 6 1 • 1 2 1 • 6 6 3 • 7 6 1 • 0 2 7 • 0 2 8
11		117				117	002	:	1	1.01	07			118	•012
12		118				118	001			1 • 00:	365			119	•004
******	****	****	****	****	***	***	***1	****	****	****	****	***	****	***	******
IN PERIOD LESS THAN	1 2	THE PERC	PREDI ENT.	CTEL AND	NO NO	ICE BUY	VAR OR	IES SELL	FROM ORDI	THE ER I:	AC1 S IN	IDICAL	PRI	CE •	ВҮ
IN PERIOD LESS THAN	2 2	THE PERC	PREDI ENT,	CTEE AND	NO NO	I CE BUY	VAF OR	IES SELL	FROM ORDI	THE Er I:	AC1 S IN	TUAL IDICA	PRI	CE •	ВҮ
IN PERIOD LESS THAN	3 2	THE PERC	PREDI Ent,	CTEE AND) PR NO	ICE BUY	VAF OR	RIES SELL	FROM ORDI	THE Er I	AC1 S IN	IUAL	PRI	CE •	ВҮ
IN PERIOD LESS THAN	4 2	THE PERC	PREDI ENT,	CTEE AND	NO NO	RICE BUY	VAF OR	IES SELL	FROM ORDI	THE Er I	ACT S IN	TUAL IDIC	PRI	CE •	BY
IN PERIOD LESS THAN	5 2	THE PERC	PREDI ENT,	CTED	NO	EUY	VAF OR	IES SELL	FROM ORDI	THE Er I	AC1 S IN	TUAL IDIC	PRI	CE	BY
IN PERIOD LESS THAN	6 2	THE PERC	PREDI ENT,	CTED AND	NO	I CE BUY	VAF OR	IES SELL	FROM ORDI	THE Er I:	ACI S IN	IUAL IDICI	PRI	CE •	ВҮ
IN PERIOD LESS THAN	7 2	THE PERC	PREDI ENT.	CTED AND) PR NO	ICE BUY	VAF OR	IES SELL	FROM ORDE	THE Er I:	AC1 S IN	TUAL Idica	PRI	CE	BY

IN PERIOD	8	THE PREDICTED PRICE VARIES FROM THE ACTUAL PRICE BY
LESS THAN	2	PERCENT, AND NO BUY OR SELL ORDER IS INDICATED.
IN PERIOD	9	THE PREDICTED PRICE VARIES FROM THE ACTUAL PRICE BY
LESS THAN	2	PERCENT, AND NO BUY OR SELL ORDER IS INDICATED.
IN PERIOD	10	THE PREDICTED PRICE VARIES FROM THE ACTUAL PRICE BY
LESS THAN	2	PERCENT, AND NO BUY OR SELL ORDER IS INDICATED.
IN PERIOD	11	THE PREDICTED PRICE VARIES FROM THE ACTUAL PRICE BY
LESS THAN	2	PERCENT, AND NO BUY OR SELL ORDER IS INDICATED.
IN PERIOD	12	THE PREDICTED PRICE VARIES FROM THE ACTUAL PRICE BY
LESS THAN	2	PERCENT, AND NO BUY OR SELL ORDER IS INDICATED.
DO YOU WIS BUY AND SE	SH TO	USE THIS PROGRAM AS A CONTINUING AID FOR THE TIMING OF CISIONS ON THIS SAME STOCK AT SOME FUTURE TIME?NO

THEN ENTER '9035 LET Q=0', 'KILL-STKSMO', AND 'SAVE' BEFORE SIGNING OFF.

DONE

9035 LET Q=0

KILL-STKSMO SAVE

CONTRIBUTED PROGRAM **BASIC**

	STOCK VALUE AND EVALUATION REPORT	STKVAL 36100
DESCRIPTION:	STKVAL calculates a stock's value as determined by its growth rate of a period of years, and determines whether it is advisable to purchas the stock or not.	over Se
INSTRUCTIONS:	It is assumed that at some point in the stock's life its earning's growth rate will approach 5 percent, a conservative estimate of the currently expected growth rate of our economy. Before this long-term growth rate is reached, there will be a period non-normal growth. This non-normal growth period may contain many shorter periods of differing growth rates. For each of these shorte periods, you will be asked to supply the ending year of the period, the growth rate you expect for the stock during this period. It is important to note that when you have reached the end of what y consider the non-normal period, you must enter .Ø5 as the expected growth rate. Any year greater than the beginning year will suffice. For initialization, note remark at line 9765. The data item in line 9790 is the value of the first period under consideration. It is here initialized to the year 1969. By changing to any year, or, if monthly or semi-annual periods are being considered, to any period ID number.	i of and /ou bn- this
SPECIAL CONSIDERATIONS:	The program is limited to a 50 year life. To increase this life, ch the dimensions in lines 9025 and 9030.	iange
ACKNOWLEDGEMENTS:		

RUN

GET-\$STKVAL RUN STKVAL

* STOCK VALUE & EVALUATION *

THIS PROGRAM DETERMINES WHETHER A CERTAIN STOCK OUGHT TO BE INVESTED IN, DEPENDING ON CERTAIN INPUT CONDITIONS. IT ALSO PROVIDES A LIST OF THE STOCK'S VALUE AND PRICE FOR EACH PERIOD.

WHAT IS THE CURRENT MARKET VALUE OF THE STOCK UNDER CONSIDERATION?100 WHAT IS THE STOCK'S CURRENT EARNINGS PER PERIOD?10 WHAT DO YOU EXPECT THE NORMALIZED EARNINGS FOR THE NEXT PERIOD TO BE?20 WHAT IS THE CURRENT MARKET CAPITALIZATION RATE?•12 AND WHAT IS THE PAYOUT RATIO?•33

NOW PLEASE ENTER THE ENDING YEAR AND THE GROWTH RATE YOU EXPECT FOR EACH OF THE NON-NORMAL GROWTH PERIODS BEFORE THE STOCK SETTLES TO A STEADY 5% RATE.

(REMEMBER THE LAST ENTRY MUST INDICATE THE ATTAINMENT OF THE 5% RATE).

BEGINNING	ENDING	GROWTH
YEAR	YEAR	RATE
1970	?1970,	2.00
1971	?1971,	1.75
1972	?1972,	1.50
1973	?1974,	1 • 25
1975	?1975,	1.00
1976	?1980,	•50
1981	?1985,	•25
1986	?1990,	•10
1991	?1991,	•05

1969 VALUES FOLLOW:

PRICE	:	\$ 100
EARNINGS	:	\$ 10
P/E RATIO	:	10

-				
:	1	INTRINSIC VALU	E = 114146.	T
:				:
:	FROM THE I	NFORMATION YO	U HAVE SUPPLIED,	:
:	AND SINCE	THE INTRINSIC	VALUE IS EXACTLY	:
:	127736 •	PERCENT ABO	IVE THE PRESENT PRIC	CE :
:	I AM SURE	THAT THIS STO	ICK SHOULD BE	:
:	PURCHASED	AT THIS TIME.		•
:				:
-				
DO YOU WANT	A LIST OF VALUE	S IN FUTURE Y	EARSTES	
TEAR	EARNINGS	GROWIN	CAPITALIZER	VALUE
		RAIL		OF VEAD
1070		0	5707.09	114146 -
1970	20	2	5101+28	107826.
1971	60	1 • 75	2130+61	142157
1972	165	1	867+617	143137+
1973	412.5	1+25	388+561	100201.
1974	928+125	1+25	193.27	179379•
1975	2088+28	1	96.0591	200598.
1976	4176.56	• 5	53+6281	223981•
1977	6264•84	•5	39 • 8223	249481 •
1978	9397•27	• 5	29.514	277351.
1979	14095.9	•5	21.8171	307532.
1980	21143.8	•5	16.0701	339784.
1981	31715.8	•25	11.779	373581•

1982	39644•7	•25	10.29	407944.	
1983	49555•9	•25	8•95584	443815•	
1984	61944•9	•25	7.76044	480719.	
1985	77431•1	•25	6•68935	517964.	
1986	96788•9	• 1	5•72966	554567.	
1987	106468.	•1	5.53384	589175.	
1988	117115.	• 1	5.33445	624742•	
1989	128826 •	• 1	5.13144	661063.	
1990	141709.	• 1	4.92474	697878•	
1991	155879.	•05	4.71428	734860•	
	V/E RATIO =	11414•6			
******	*****	*****	****	*****	

DONE

BUSINESS AND MANUFACTURING APPLICATIONS (700) CONTRIBUTED PROGRAM **BASIC**

	CALCULATE TRUCK FREIGHT RATES	TRCK 2 1 36174
DESCRIPTION:	This program calculates for truck movements the break point weights for a given commodity between any two points as published in any tr freight tariff. It then prints a table suitable for use by anyone involved in rating, preparing or checking truck freight shipments.	s ruck
INSTRUCTIONS:	See line 60 to 120 of the program. The user should prepare a works with the required data before using the program. The option of pri multiple copies of the results is provided as terminal cost to prin additional copies may be equal to or less than other means of dupli	heet nting cation.
ACKNOWLEDGEMENTS:	Jeff Johnson Hewlett-Packard/Eastern Sales Region	

```
RUN
```

RUN TRCK 21 DO YOU REQUIRE INSTRUCTIONS?NO FROM?EWR TO?PARAMUS, NEW JERSEY VIA?ACI DESIGNATED TRUCK FOR?PICKUP AND DELIVERY OF ANY COMMODITY ENTER EFFECTIVE DATE OF RATES?30JUL1 ENTER MINIMUM CHARGE IN \$?4.05 HOW MANY RATE CLASSES IN THIS COMMODITY ARE THERE?6 PLEASE ENTER DATA AS REQUIRED: RATE 1= \$?1.80 WEIGHT 1=?100 RATE 2= \$?1.70 WEIGHT 2=?1000 RATE 3= \$?1.60 WEIGHT 3=?2000 RATE 4= \$?1.15 WEIGHT 4=?3000 RATE 5= \$?•95 WEIGHT 5=?5000 RATE 6= \$?.75 WEIGHT 6=?10000 HOW MANY COPIES?1 FROM ... EWR TO PARAMUS, NEW JERSEY VIA ACI DESIGNATED TRUCK FOR PICKUP AND DELIVERY OF ANY COMMODITY ACT CROSS WT CUARCEADLE MT DATE ----

ACI G	RUS:	5 W I	CHARGEABLE WI	RATE/LB	CH	ARGES
1	TO	225	DECLARE AS MI	NIMUM	5	4.05
226	τo	944	ACTUAL	\$0.0180	AS	EXTENDED
945	TO	1000	1000	\$0.0170	\$	17.00
1001	то	1882	ACTUAL	\$0.0170	AS	EXTENDED
1883	TO	2000	2000	\$0.0160	\$	32.00
2001	то	2156	ACTUAL	\$0.0160	AS	EXTENDED
2157	TO	3000	3000	\$0.0115	5	34.50
3001	TO	4130	ACTUAL	\$0.0115	AS	EXTENDED
4131	TO	5000	5000	\$0•0095	\$	47.50
5001	то	7894	ACTUAL	\$0.0095	AS	EXTENDED
7895	TO.	10000	10000	\$0.0075	\$	75.00
10001	TO		ACTUAL	\$0.0075	AS	EXTENDED

EFFECTIVE DATE OF RATES .. 30 JUL1

DO YOU HAVE MORE DATA?NO

DONE

BUSINESS AND MANUFACTURING APPLICATIONS (700)

CONTRIBUTED PROGRAM **BASIC**

TITLE:	TRUE ANNUAL INTEREST RATE ANALYSIS	TRUINT 36101
DESCRIPTION:	TRUINT calculates the true annual interest rate charged on an instalload.	lment
INSTRUCTIONS:	Self-explanatory.	
	Four input values are required:	
	<pre>Four input values are required: A = amount of loan (in dollars) P = amount of each payment (in dollars) N = total number of payments K = number of payments per year </pre>	
ACKNOWLEDGEMENTS:		

RUN

GET-STRUINT RUN TRUINT

* TRUE ANNUAL INTEREST RATE *

THIS PROGRAM CALCULATES THE TRUE ANNUAL INTEREST RATE CHARGED ON AN INSTALLMENT LOAN. IF YOU NEED INSTRUCTIONS TYPE 1, OTHERWISE TYPE 0: ?1 TO USE THIS PROGRAM IT IS NECESSARY FOR YOU TO SUPPLY THE VALUES FOR FOUR VARIABLES: A = AMOUNT OF LOAN (IN \$), P = AMOUNT OF EACH PAYMENT (\$), N = THE TOTAL NUMBER OF PAYMENTS DUE, AND K = THE NUMBER OF PAYMENTS DUE IN ONE YEAR. WHAT ARE A,P,N,K ?10000,10,1500,52 THE TRUE ANNUAL INTEREST RATE = 3.03 ANOTHER CASE?? TYPE 'N' TO QUIT, 'Y' TO TRY AGAIN?Y WHAT ARE A,P,N,K ?1000,100,11,11 THE TRUE ANNUAL INTEREST RATE = 17.85 ANOTHER CASE?? TYPE 'N' TO QUIT, 'Y' TO TRY AGAIN?N

DONE

BUSINESS AND MANUFACTURING APPLICATIONS (700) CONTRIBUTED PROGRAM **BASIC**

	INVESTMENT STRATEGY ANALYSIS	VRRC 36557
DESCRIPTION:	This program uses the Tektronix 4010 display to plot result ten different investment strategies over a period of time user. The time-period can begin in any year between 1931 (inclusive) and can end in any later year in the same range specifies the beginning and ending years. The program the annual returns obtained with each of the ten strategies for within the period. Four graphs are produced. The first se annual returns for the ten strategies. The next shows the the slope of a regression line obtained by regressing to returns on those of the market as a whole. The third grap geometric mean returns for the ten strategies. The final a scatter diagram relating the values of the average annual those of beta for the ten strategies. A regression line the data in the final graph. Strategy 10 involves investment each year in the top 10% of ranked on the basis of market sensitivity during the previ- Strategy 9 uses the next 10%, etc. Thus strategy 10 is	Its for each of selected by the and 1967 ge. The user en determines the or each year shows the average e values of "beta" the strategy's oh shows the graph provides al returns to is also fit to of the stocks ious 60 months. intended to be
	a high-risk return strategy, while strategy I is intended risk-return strategy.	to be a low
INSTRUCTIONS:	INTRODUCTION	
	 Within the last decade economists have investigated rather nature of a "perfect" or "efficient" market for securities model dealing with uncertainty is that developed by Sharpe Mossin (5), and Fama (2), based on the pioneering contribution Markowitz (4) and Tobin (8). Variously known as the "capital market theory," or the "market line theory deals with <u>ex ante</u> or predicted relationships. Breifly, " 1) the appropriate measure of risk for a security on covariance of its rate of return with that of a posed of all risky assets, each held in proportion value, and 2) the expected return of any security or portfolio 	r thoroughly the s. A widely used e (6), Lintner (3), utions of ital asset pricing ry," the approach it suggests that: r portfolio is the portfolio com- on to its total will equal a
	constant plus some other constant times its risk. (Instructions continued)	
SPECIAL CONSIDERATIONS:	For a detailed discussion of the Tektronix 4010 Display Te documentation for the "Subroutine display package for the Terminal", VSUB, #36558. This documentation consists of No. 3) "Risk-Return Classes of New York Stock Exchange Cor 1967" by William F. Sharpe and Guy M. Cooper (September, to reprint has been granted by the authors.	erminal see the Tektronix 4010 (Technical Report nmon Stocks, 1931- 1971). Permission
ACKNOWLEDGEMENTS:	Graduate School of Business	

Standord University

Derivation of these results can be found in Sharpe (7).

While the model provides important insights into the nature of actual capital markets, it is of limited value for the selection of an investment strategy unless additional specifications are made concerning the stability and/or predictability of key measures.

A number of investigators have performed tests of such expanded capital asset pricing models. The original specifications are augmented with assumptions about the stability of key variables through time. The expanded models suggest (1) that measurement of values during some previous period can be used to implement strategies that will in fact differ with respect to both risk and expected return; (2) that high-risk, high-return strategies will return more on the average than low-risk, low-return strategies; and (3) that high-risk, high-return strategies will bring greater losses in bear markets (i.e., have more risk) than will low-risk, low-return strategies.

An extensive study of this type was performed by Black, Jensen and Scholes (1). They were concerned primarily with testing the validity of an expanded capital asset pricing model, and less directly with assessing the performance of alternative investment strategies. In this paper, the general approach of Black, Jensen and Scholes is followed with modifications designed to reduce its expense as a practical investment selection technique. Moreover, we report information particularly relevant to the selection of such a technique. Our focus is primarily on assessing alternative investment strategies; by and large, we bypass issues concerned with the adequacy of various expanded capital asset pricing models. 1/

Performance Measures

For any single period, a relevant measure of performance from the investor's point of view is return:

For securities, return can be calculated on a per-share basis, with appropriate adjustments for stock dividends and stock splits.

A related measure is appreciation:

appreciation = ending value - beginning value

The other component of return is yield:

Obviously:

return = appreciation + yield

The data used in this study were taken from the CRISP (Center for Research in Security Prices) tapes developed at the University of Chicago. Monthly returns and appreciation figures for all New York Stock Exchange stocks over the period from January 1926 through June 1968 were utilized.

Performance over a number of periods can be measure by the average return. Let R_{pt} represent the return on a portfolio of stocks in time period t. The average return from period 1 through period T is:

average return =
$$\frac{1}{T} \sum_{t=1}^{T} R_{pt}$$

(where Σ denotes summation)

An alternative measure of performance is the geometric instead of the arithmetic mean. The result indicates the constant return in each period that would have provided the same terminal value as the actual series of returns.

The value is:

equivalent constant return =
$$\begin{bmatrix} T \\ \pi (1 + R_{pt}) \end{bmatrix} = \begin{bmatrix} 1 \\ T \\ t=1 \end{bmatrix}$$

(where π denotes multiplication)

Risk can be measured in a great many ways. We focus on a measure that highlights the impact of swings in the market on the return from a security or portfolio. If there were no prospects of bear markets, there would be little risk in the common meaning of the term. Stocks are considered risky because they can go down. And typically, the more sensitive a security or portfolio is to swings in the market, the more it goes down in a bear market. To measure this, we use the slope of a regression line relating return on the portfolio to the return on a broadly-based portfolio used to represent "the market." Figure I provides an illustration.

We term the slope of such a line "beta." More formally: 2/

$$\beta_{p} \equiv \frac{Cov (R_{p}, R_{m})}{Var (R_{m})}$$

Where:

Cov
$$(R_p, R_m)$$
 = covariance between R_p and R_m

$$= \frac{1}{T} \begin{bmatrix} T \\ \Sigma \\ t=1 \end{bmatrix} (R_{pt} - \overline{R}_p) (R_{mt} - \overline{R}_m) \end{bmatrix}$$
Var (R_m) = variance of R_m

$$= \frac{1}{T} \begin{bmatrix} T \\ \Sigma \\ t=1 \end{bmatrix} (R_{mt} - \overline{R}_m)^2 \end{bmatrix}$$
 \overline{R}_p = average return on portfolio p
 \overline{R}_m = average return on the market portfolio

For purposes of this study, the Fisher market index included on the CRISP tape was used to measure R_m .

It is important to recognize that beta may not provide an adequate measure of the total risk of a portfolio. However, for well diversified portfolios, the majority of the variation in return is attributable to changes in the return on the market, and beta will thus provide a good measure of risk.

Risk-Return Classes

In an efficient market, one rarely gets something for nothing. If investors prefer high average returns to low average returns and prefer low risk to high risk, prices should adjust so that the best low risk strategy provides lower returns on the average than the best high risk strategy.

The average return of a portfolio is simply the weighted average of the average returns of its component securities, with the proportions of value used as weights. Moreover, the beta of a portfolio is a weighted average of the betas of its component securities, with the proportions of value used as weights. Finally, the beta of a well-diversified portfolio provides a good surrogate for its total risk, since almost all fluctuations in the portfolio's value will follow market swings.

A well-diversified portfolio with a high beta value will be risky. In an efficient market, it will also provide a high average return. A portfolio of this type may be constructed by choosing a large number of stocks with high beta values. Such a strategy should provide high returns on the average, but with substantial risk.

A well-diversified portfolio with a low beta value will have relatively little risk. In an efficient market, it will also provide a relatively low average return. A portfolio of this type may be constructed by choosing a large number of stocks with low beta values. Such a strategy should provide relatively low returns on the average, but with little risk.

In a period in which the market goes up, high-beta stocks will go up more than low-beta stocks. Unless divided yields are strongly inversely related to beta values, average return and beta will thus be positively correlated over periods in which the market goes up. And since both history and expectations of risk-averse investors indicate that the market is more likely to go up than down, over long periods average return should be positively related to beta.

Stocks with high beta values should have high returns on the average; they may be said to be in a high <u>risk-return class</u>. On the other hand, stocks with low beta values should have low returns on the average; they may be said to be in a low <u>risk-return class</u>.

To use this relationship as a basis for an investment strategy, some means must be found to select stocks that will, in fact, have high beta values in the future. An obvious possibility involves the measurement of beta in the past, on the assumption that beta is reasonably stable over time. This procedure was utilized by Black, Jensen and Scholes and will be adopted here, with minor modifications.

Market Sensitivity

To measure performance it is important to use return -- i.e., appreciation plus dividend yield. However, most variation in return is due to changes in appreciation; dividend yield being relatively constant over time. This suggests that the value of beta would not change significantly id dividend yield were excluded. To avoid confusion, we continue to use the term "beta" for the slope of the regression line relating the appreciation on a portfolio or security to that of the market. Figure II provides an illustration.

FIGURE II

To compare the two measures, the monthly returns and appreciation values for 1572 securities during the period from January 1960 through June 1968 were utilized. For each security the value of beta was calculated using returns; then the value of market sensitivity was calculated, using only price changes. The changes were very similar. If each of the 1572 pairs were plotted, the points would lie almost exactly along a 45-degree line through the axis, as illustrated in Figure III. The similarity of the two measures is clear from the results obtained when the values of beta were regressed on the values of market sensitivity. The regression equation was:

Beta = .004 + .997*(Market sensitivity)Coefficient of determination (R^2) = .996

FIGURE III

This suggests that as a practical matter, market sensitivity may be used instead of beta when classifying securities into risk-return classes. Since dividend information may be difficult to collect and verify, this makes it possible to lower the cost of implementing strategies based on risk-return classes.

Portfolio Selection Strategies

We have determined the outcomes obtained from each of ten investment strategies during the 37-year period from 1931 through 1967. For each security listed on the New York Stock Exchange, market sensitivity was calculated, based on the monthly price changes for the 60 months prior to the beginning of the investment claendar year (a security would not be included if a full 60 months of data were not available). The number of securities for which market sensitivity was calculated ranged from 478 (in 1931) to 985 (in 1967).

After the market sensitivity values were calculated, the numerical values were ranked. Based on this ranking, securities were divided into deciles. The securities in the top decile (i.e., those with the highest market sensitivities) were considered to be in risk-return class 10 at the time of classification. The securities in the next decile were considered to be in risk-return class 9, etc. . The number of securities in a given risk-return class ranged from 47 (in 1931) to 99 (in 1967).

This procedure -- calculation of market sensitivities, ranking of securities, and assignment to riskreturn classes -- was repeated for each of the possible investment years from 1931 through 1967.

Strategies are numbered from 10 to 1. Strategy I involves the purchase of equal dollar amounts of all stocks in risk-return class I at the beginning of each year. Every dividend received during the year is reinvested in the stock that pays it (at the beginning of the month following payment). On the first of the next year, stocks are bought and sold until the portfolio contains equal dollar amounts of all stocks in risk-return class I at that time. Rebalancing is thus required both to accomodate changes in the set of stocks in the specified risk-return class and to account for differential price changes.

To reduce the number of computations, the results have not been adjusted to account for transactions costs. However, these are relatively small and differ little among strategies since annual performance measures are being considered and rebalancing is done only once each year.

Performance

Figures IVa through IVd show the results obtained when each of the ten strategies was followed over the entire period studied (from 1931 through 1967). Figure IVa shows the average annual return for each strategy. On the average, strategy 10 provided a return of over 22 per cent per year, while strategy 1 provided less than 12 per cent. Although the values do not decrease uniformly, the general relationship is of the expected type -- portfolios composed of securities in lower risk-return classes tend to provide lower average return.

Figure IVb shows the actual values of beta for the ten strategies. Returns obtained with strategy 10 moved 42 per cent more than the market as a whole; on the other hand, returns obtained with strategy 1 moved only 58 per cent as much as the market as a whole. Again, the values do not decrease uniformly, but the general relationship is of the expected type -- portfolios composed of securities in lower risk-return classes tend to move less with swings in the market. 3/

Figure IVc shows the equivalent constant annual return for each of the ten strategies. Here the picture is far less clear. The investor concerned <u>only</u> with the very long run (in this case, 36 years) must take into account the impact of both risk and average return on his overall position. When returns vary, the geometric mean will always be smaller than the arithmetic mean, and the difference will typically be greater, the greater the variation. High risk-return classes typically offer a higher average return but also bring greater variability. The net effect over the very long term is thus relatively unpredictable. In this case, the best results would have been obtained with strategy 7. An investor who reinvested both capital and dividends every year while following strategy 7 would have accumulated as much wealth at the end of the period as if he had placed his money in a bank paying roughly 10 per cent interest per year, compounded annually.

Figure IVd summarizes the relationship between average return and the actual value of beta for each of the ten strategies during this period. As expected, the relationship is positive and quite significant (during this period the market rose on the average). The intercept is somewhat higher than the return on relatively safe investments during the period -- a result consistant with that of Black, Jensen and Scholes -- and the relationship appears to be approximately linear. 4/

Figures IVa, b, c, and d were produced using the Tektronix T4002 display and the Hewlett-Packard 2000C computer at the Stanford Graduate School of Business. Users of this system can obtain results for any other period between 1931 and 1967 by calling for program \$GRCC and running it. The program will give instructions, request the starting and ending year, and then provide the four graphs. By and large, the results will prove consistent with expectations. When the average market return is large, high risk-return classes tend to provide higher returns on the average than lower risk-return classes. Finally, the shorter the time-period studied, the less the results conform to expectations due to the influence of other factors.

Changes in Risk-Return Classes

The investor who holds a well-diversified portfolio need not be unduly concerned about the possibility that one or more of his stocks may move into a different risk-return class in the future. Some of the securities that were formerly in risk-return class 5 may move to class 6 (or 7, 8, 9 or 10), while some of the others may move to class 4 (or 3, 2, or 1). But the effect on the total portfolio may nonetheless be negligible, as securities moving to higher classes can be offset by those moving to lower classes. Putting it somewhat differently: it is easier to predict an average (i.e., the portfolio's beta) than the value of any single component (i.e., a given security's beta).

But changes in risk-return class membership are not unimportant. They give rise to transactions costs for the strategies described here. They are particularly relevant for those who do not (and perhaps cannot) hold well-diversified portfolios -- e.g., corporate officers. And they are important when risk-return class membership is used to estimate a firm's cost of capital.

To provide some evidence on such changes, the risk-return class of every security was determined for every year between 1931 and 1967 in which price and dividend data were available for the preceding 60 months. The risk-return class in each year was compared with first the class in the succeeding year, then the class five years hence. While the first comparison uses 48 months of common data, the second involves no overlap at all. Over 27,000 combinations were used for the first set of comparisons, and over 24,000 for the second.

Tables I and II summarize the results in transition matrices. For example, Table I shows that 74.2 per cent of the securities in risk-return class 10 in year t were still in risk-return class 10 in year t + 1. Table II shows that only 35.2 per cent remained in risk-return class 10 in year t + 5. 5/ Table III provides another summary, indicating the frequencies with which securities were in the same risk-return class or within one risk-return class one and five years later. As this Table shows, there is substantial stability over time, even at the level of individual securities. For portfolios, of course, the relationship would be considerably more stable.

Figure IVa. Average Annual Returns 1931 through 1967

Figure IVb. Beta Values 1931 through 1967

Figure IVc. Equivalent Constant Annual Returns 1931 through 1967

Figure IVd. Average Return Versus Beta 1931 through 1967

Security Data

Table IV shows the risk-return classes of all New York Stock Exchange stocks that could be assigned to a class on January 1, 1967. Table IVa includes securities in class 10, Table IVb, those in class 9, etc. . Within a risk-return class, securities are arranged alphabetically (with minor exceptions). Beside the anme of each security is a list of symbols indicating its status in each year, beginning with 1931 and ending with 1967. The symbols have the following meanings:

- * insufficient data for the prior 60 months to allow classification
- 9 risk-return class 10
- 8 risk-return class 9
- 7 risk-return class 8
- 6 risk-return class 7
- 5 risk-return class 6
- 4 risk-return class 5
- 3 risk-return class 4
- 2 risk-return class 3
- 1 risk-return class 2
- 0 risk-return class]

Teh performance of simple strategies based on risk-return class memberhsip suggests the usefulness of data of the type shown in Table IV. The classifications can be used to test investment strategies that might have been adopted in 1967 or earlier. Moreover, they provide at least some information concerning current risk-return classes, if the stability shown in Tables II and III is at all applicable at present.

TABLE I

TRANSITION MATRIX

RISK-RETURN CLASS IN YEAR T

VERSUS

RISK-RETURN CLASS IN YEAR T + 1

Risk-Return class in year t			Risk-	-Return c	class in	year t	+ 1			
	10	9	8	7	6	5	4	3	2	1
10	.7417	.1712	.0309	.0111	.0054	.0011	.0018	.0004	.0000	.0004
9	.1732	.4989	.2079	.0587	.0240	.0104	.0025	.0004	.0004	.0004
8	.0368	.2122	.4091	.2094	.0765	.0232	.0111	.0029	.0021	.0007
7	.0121	.0657	.2286	.3564	.1986	.0804	.0271	.0079	.0025	.0007
6	.0043	.0199	.0733	.2246	.3452	.2060	.0744	.0231	.0075	.0018
5	.0047	.0097	.0222	.0764	.2141	.3535	.2123	.0696	.0147	.0047
4	.0007	.0018	.0111	.0314	.0806	.2168	.3807	.2043	.0478	.0093
3	.0000	.0018	.0025	.0096	.0268	.0686	.2082	.4268	.2068	.0321
2	.0000	.0004	.0011	.0036	.0075	. 0196	.0538	.2089	.5091	.1843
1	.0000	.0004	.0004	.0014	.0018	.0011	.0093	.0323	.1869	.7471

TABLE II

TRANSITION MATRIX

-

RISK-RETURN CLASS IN YEAR T

VERSUS

RISK-RETURN CLASS IN YEAR T + 5

Risk-Retu r n class in year t	Risk-Return class in year t + 5									
	10	9	8	7	6	5	4	3	2	1
10	.3517	.1929	.1153	.0568	.0494	.0373	.0203	.0120	.0083	.0079
9	.2051	.1835	.1487	.1272	.0808	.0601	.0414	.0228	.0116	.0128
8	.1324	.1593	.1638	.1303	.1047	.0890	.0612	.0393	.0219	.0149
7	.0794	.1310	.1579	.1327	.1186	.1083	.0 9 30	.0583	.0310	.0149
6	.0523	.0977	.1121	.1343	.1389	.1195	.1137	.0820	.0445	.0293
5	.0423	.0647	.0855	.1041	.1361	.1361	.1448	.1112	.0763	.0336
4	.0326	.0491	.0759	.0994	.1106	.1254	.1320	.1448	.1023	.0611
3	.0203	.0289	.0488	.0715	.0951	.1146	.1286	.1588	.1584	.1084
2	.0087	.0161	.0268	.0384	.0499	.0771	.1139	.1630	.2145	.2314
1	.0042	.0087	.0104	.0203	.0303	.0419	.0722	.1133	.2183	.4047

TABLE III

Risk-Return Class in	Proportion Risk-Retu	in Same rn Class	Proportion Within One Risk-Return Class		
Year T	In Year t + 1	In Year t + 5	In Year t + 1	In Year t + 5	
	2/12	2517	0100	(007	
10	./41/	.3517	.9129	.0927	
9	.4989	.1835	.8800	.5373	
8	.4091	.1638	.8307	.4534	
7	.3564	.1327	.7836	.4092	
6	.3452	.1389	.7758	.3927	
5	.3535	.1361	.7799	.4170	
4	.3807	.1320	.8018	.4022	
3	.4268	.1588	.8418	.4458	
2	.5091	.2145	.9023	.6089	
1	.7471	.4047	.9340	.6230	
				1	

Table IV. Risk-Return Classifications for NYSE Stocks, 1931-1967

(See article by Sharpe and Cooper in this issue)

TABLE IVa. Risk-Return Class 10

	1935	.40	'45	'50	'55	[.] 60	<i>`</i> 65	
AMP Incorporated Admiral Corporation Alleghany Corp. Allied Products Corp. Alside Inc.	9	99999	9 9999	99999	7554 98999	54899 99999	99999 99999 554	99 99 99 99 99 99
American Export Industries Inc. American Research & Development Corp. American Ship Building Co. Canteen Corp. Bell & Howell Co.	001	12233	44452	122 11100	21223 00012 1233 65324	23555 21432 22233 54555	34788 33889 54999 78999	99 9 99 99 99 99
Boston & Maine Corp. Braniff Airways Bullard Co. Calumet & Pecla Inc. J. I. Case Co.	44 8 46788 88755	56689 76777 87767 54233	99999 77762 88874 45557	99999 6 56689 45344 65433	99999 78899 87773 67899 57788	99999 99998 11599 99989 87657	88999 89999 99999 88888 78899	9 99 99 89 99
Lemco Instruments Cerro Corp Certainteed Products Corp. Cessna Aircraft Co. Chicago & Eastern Illinois RR.	43676 78688	66523 88997	44432 77789	22133 98998 9999	46889 89989 98899	99999 97543 99887	99899 4899 9999 88999	99 99 99 99 99
Chicago & Great Western Ry. (Del). Chicago Milwaukee St. Paul & Pacific Chicago Rock Island & Pacific Ry. Chris-Craft Industries, Inc.	6	65764	44427	9999 77799	999999 999999 76 99986 99986	999999 99999 66888 42334	98989 98999 88888 56999	89 99 89 99
Collins Radio Co. C.E. and I. Steel Corp. Colt Industries Inc. Commercial Solvents Corp. Congoleum Naim Inc.	99888 50355 7543 76322	88899 56758 33245 11132	98885 99998 56666 33334	57788 77733 66667 34443	99999 54335 78999 32222	99998 43799 99889 22578	88999 99999 99999 89988	99 99 99 99 99 99
Continental Airlines Inc. Continental Copper & Steel Industries Copper Range Co. Diners Club Inc. Douglas Aircraft Co. Inc. Eastern Airlines Elgin National Watch Erie Lackawanna Raircoad Co. Evans Products Co. Del.	57888 9	4374 87669 98989	43342 3 99956 99998	32211 22122 77777 86899	9 14458 13677 123 88899 99998	8774 99999 88862 88778 58899 97999 88999	44566 98899 9 24999 88899 99999 99999 99988	9 89 99 99 99 99 99 99 99
Eversharp Inc. Fairchild Camera and Instruments Fansteel, Inc. Federal Pacific Electric Co. First Charter Financial Corp.					6642	01233 987	56999 77888 64688	99 9 99 89 99
Fluor Corp. Ltd. Foote Mineral Co. Gar Wood Industries General Instrument Corp. General Refractories Co. General Time Corp.	55789	88878	677 88885 2257	78887 66766 77654	88999 577 77678 53346	99999 78899 75655 77789	999 899 99887 99999 66999 999 9	99 99 89 99 99 99
Hoffman Electronics Corp. 1 T E Circuit Breaker Co. Indiana General Corp. International Rectifier Corp. Interstate Department Stores Inc.	78	88997	88767	66788	78856	52333	78999 788 14799	99 89 99 9 99 99
Joy Manufacturing Co. Missouri Kansas Texas RR. Leesona Corp Lionel Corp Lukens Steel	77977	88689	88999	6665 99999	53446 99999 98998	66755 99999 233 98968	65788 88889 57999 98899	89 99 9 99 99
MCA Incorporated Soo Line R R Monon Railroad National Airlines New York Central RR	21444	55568	89988	8 88877	88789 9999 67889 89999	99998 99997 89998 99998	78999 64999 88877 99989	99 99 99 79 79 99

CLASS 10 (cont'd)	1935	'40	-45	50	55	<i>`</i> 60	'65	
Northwest Airlines Philadelphia and Reading Corp. Northwest Industries Packard Bell Electronics Corp. Pan American World Airways Inc			6	5678 7 65444	76789 44357 99999 46788	99999 78767 98999 88776	99999 89999 99999 8 77999	99 99 99 79 99
Penn Central Piper Aircraft Corp. Pittsburgh Steel Plough Inc. Polarod Corn	11433	44245	66675 997	56545 89999	67788 99999 0001	88898 99998 11212	88989 999 99899 56999 77	99 99 99 99 99
Reading Co. Reynolds Metals Roan Selection Trust, Ltd. Ryder System Inc. SCM Corp.	11655	56336 33424	77786 45668 346	56533 87899 56544	43344 89989 68887	44565 99999 63778	46889 99999 46656 99999	99 89 69 99 99
Seagrave Corp. Sparton Corp. Standard Kollsman Industries Standard Packaging Corp. Standard Pressed Steel Company	14877 9	77533 99998	43363 88888	88853 99999	56477 99999	64589 89999 6689	89999 99999 99999 99999 99	99 99 99 89 89
Rexall Drug and Chemical Co. Worthington Corporation Sunshine Mining Telautograph Corp. Thiokol Chemical	99666 11000	43 65678 00110	44457 88875 127 11125	67788 55478 89987 44568	87755 89988 78778 99985	54256 67777 85787 33699	77999 87778 78557 9999 9	99 89 89 99 99
Trans World Airlines Inc. Transitron Electronic United Air Lines Inc. U.S. Industries Inc. Perfect Film and Chemical Corp. UMC Industries	88999	5 99899	56545 55546 99998	65433 44434 78889	35799 45788 99999 98765	99888 99988 98889 31122	88999 87888 99999 03788 9	99 99 89 99 99 99
Vendo Co. Western Maryland Ry. White Consolidated Industries Inc.	88977 788	77 4 58 78778	99899 88888	99998 88899	99999 87646	99977 88989	87999 89999	99 99 99

TABLE IVb. Risk-Return Class 9

ABC Consolidated Corp.			l	1	1	21	25788	88
Adams Millis	1	11111	11101	01212	10012	33222	64888	88
General Bronze Corp.	7	66667	87767	67876	64353	46667	77766	88
Allis Chaimers Manufacturing Co	66665	55434	33454	45556	77765	56666	65567	78
American Airlines			3	23233	33457	78788	88777	78
Ambac Industries, Inc.	98444	43688	77778	88898	99898	76643	78888	88
American Photocopy Equipment Co.								78
Ampex Corporation							8	78
Amphenol Corp.							998	98
Armour & Co.	70355	47856	11111	77789	98888	78877	76787	88
Arthur G. McKee Co								78
Associated Browing Co			22213	63223	22222	10879	99876	58
Avnet Inc			12210	00220	20002	10073	33070	R
Bausch & Lomb Inc							76	78
Beckman Instruments							9999	98
Beech Aircraft				12	33278	88876	86676	68
Bell Intercontinental Corp.				764	32246	87533	45888	88
Divco Wayne Corp					452	13225	54776	78
Brunswick Corp.	65677	77875	55436	66666	66665	76434	20554	78
Bucyrus Erie	77	77867	76664	66666	65768	77788	89988	88
Durad Cruz								
Burnay Lorp	24222	22422	22246	COLLA	22212	67077	c 1 C 1 7	0
The Margueret Core	34333	33422	22240	00004	33213	0/0//	0/0//	00
Carlisle Corp								88
Carter: Wallace Inc							887	68
Chadhown Gotham Inc	56433	33488	88877	15776	58789	88799	4 99	48
Chemetron Corra	00,00	00.00	2	33434	55454	23544	56688	88
City Investing Co	000	00000	100000	04678	74345	58886	98888	68
	95477	67998	89888	88899	88888	99997	16777	78
Crescent Curu		1.000			654	33100	00233	68
· · · •		•	•	•	•	•	•	•

1935	40	'45	50	-55	60	65	
00011	11223 44546	44455 67899	56768 99999	88899 99987 8888	99998 71232 87666	8 99999 26877 47888	98 99 88 88
3	34378 34211 99999	11125 99999	67787 999999	73456 99999	57777 99999 5656	99 86656 99999 68899	88 58 98 98
00111	11112	22230	01111	10011	21000	11467	88
					998	88999 89778	98 8 88 8 8
99876 7	65568 76788	88885 88888	67788 77889	88889 99998	99999 89966	98767 21456 75677	88 68 78
		3236	56765	76534	35778	77898	8 98
23654	55368	88887	77877	77476	55877	88888	78
77788	77798	99866	68788	86765	4533 67889	66899 87555	8 78 68 98 8
				000	00113	35888	88
66565 98556	55534 66897	34679 54468	99823 99999	22233 99999	34543 99999	22655 99988	68 78
					34466	87877	78 88
23544	44211	10024	56655	366 34565	67688 66599	77777 999999 389	88 98 98 8
01	11121	22212	11354	8857 45434	65899 43453	98 888 88776 67999	88 88 88 88
66544	48221	22213	22221	12215	65765	68888	88
				4565 3354	54543 44435	8 34567 77899	88 78 88 8
		0111 997	10110 77777	00001 88899 242	25422 98887 11223	32787 77656 999 26888	78 78 98 98
				999	87999	99766	78
	22	34456	65 6 77	34446	87566	9 78888 999	88 88 98
1	77887	77777 6677	87777 77799	88999 89976	97888 78857 657	89999 76787 86887	98 78 88
23322 9999 68999	21102 99899 33 99742	21121 99984 33346 22237	10011 36778 75445 66453	13345 99886 45764 34434	65677 12457 57888 44457	78866 87888 88888 77788	78 88 88 98
5 42232 99888 01565	54557 22123 77877 66558	89998 34443 76789 88885	88744 44443 99988 33345	55667 46678 02110 78887	76776 88888 00233 7632 86687	78766 788 78777 68554 45545 45899 88988	78 88 78 78 68 98 88 88 88
	1935 000111 3 11333 3 9 001111 99876 7 23654 77788 665565 98556 23544 01 66544 77 23322 9999 68999 5 5 9999 68999 93888 01565	1935 40 00011 11223 3 44546 11333 34378 3 34211 9 99999 00111 11112 99876 65568 7 76788 77788 77788 66565 55534 98556 66897 23544 44211 01 11121 66564 48221 01 11121 66544 48221 23524 44211 01 11121 66545 55534 98999 93893 68565 55534 98956 66897 23544 44211 01 11121 66545 222 7 7887 2322 2102 99999 933 68999 9342 5 54557 42232 2102 99999 933 68999 9342 42232 2102 93999 933 68999 942 5 54557 42232 2172 98989 942 </td <td>1935 40 45 00011 11223 4455 11333 34378 99999 3 34211 11125 9 99999 99999 00111 1112 22230 99876 65568 88888 7 76788 88888 23654 55368 88887 77788 77788 99866 66555 55534 34679 98556 66897 5468 23544 44211 10024 66544 48221 22212 66544 48221 22212 66547 7788 71797 9999 99999 9994 6699 9111 997 221 24456 77 7777 2322 21121 9999 99989 9984 68999 99742 2237 42232 22123 34456 689999 9944</td> <td>1935 40 45 50 00011 11223 44455 56768 3 44546 67899 99999 11333 34378 99999 98754 3 34211 11125 67787 9 99999 99999 99999 00111 1112 22230 01111 99876 65568 88888 77887 7 76788 88888 7889 3354 55368 88887 7887 77788 77798 99866 68788 665565 55534 34679 99823 98556 66897 54468 99999 99854 4221 2212 11354 66554 48221 22212 12354 4221 22121 12354 65577 7 7687 7777 87777 7 7887 7777 87777 9999 99994 99944 3</td> <td>1935 40 45 50 55 00011 11223 44455 56768 88899 11333 34378 99999 98754 55577 3 34211 11125 67787 73456 9 99999 99999 99999 99999 99999 00111 1112 22230 01111 10011 99876 65568 88885 67788 88889 7 76788 88887 7889 99998 7 76788 88887 7889 99986 7 76788 88887 7889 99988 23544 77798 99866 68788 86765 66565 55534 34679 99823 22233 9856 66897 34678 99893 34565 34565 34565 34565 34565 23544 4221 22212 11354 4565 91111 10024 56655<!--</td--><td>19354045505560000111122344455567688889999981133334378999999875455577756661133334378997999999999999999999999999999976655686886567788888899999998766556868868778899998896677678888868778777747655877236545536888887778777476555737777887779899866687888676567889995566689754468999999999999999999999999999999999993446623544442111002456655345656589966544482212212111354885765896654448221221322221122155575655444521221322221122155575657471777877778899998899889999999999999999999999999999999991112110011100112100011212212110111101101011365544822122121221999989999999999999999999899</td><td>1935 40 45 50 55 60 75 00011 11223 44455 56768 8889 99998 99999 3 44546 67999 99767 7456 88888 7787 74765 5677 2456 66899 7777 8788 86765 56577 74765 58676 66899 97777 7476 55877</td></td>	1935 40 45 00011 11223 4455 11333 34378 99999 3 34211 11125 9 99999 99999 00111 1112 22230 99876 65568 88888 7 76788 88888 23654 55368 88887 77788 77788 99866 66555 55534 34679 98556 66897 5468 23544 44211 10024 66544 48221 22212 66544 48221 22212 66547 7788 71797 9999 99999 9994 6699 9111 997 221 24456 77 7777 2322 21121 9999 99989 9984 68999 99742 2237 42232 22123 34456 689999 9944	1935 40 45 50 00011 11223 44455 56768 3 44546 67899 99999 11333 34378 99999 98754 3 34211 11125 67787 9 99999 99999 99999 00111 1112 22230 01111 99876 65568 88888 77887 7 76788 88888 7889 3354 55368 88887 7887 77788 77798 99866 68788 665565 55534 34679 99823 98556 66897 54468 99999 99854 4221 2212 11354 66554 48221 22212 12354 4221 22121 12354 65577 7 7687 7777 87777 7 7887 7777 87777 9999 99994 99944 3	1935 40 45 50 55 00011 11223 44455 56768 88899 11333 34378 99999 98754 55577 3 34211 11125 67787 73456 9 99999 99999 99999 99999 99999 00111 1112 22230 01111 10011 99876 65568 88885 67788 88889 7 76788 88887 7889 99998 7 76788 88887 7889 99986 7 76788 88887 7889 99988 23544 77798 99866 68788 86765 66565 55534 34679 99823 22233 9856 66897 34678 99893 34565 34565 34565 34565 34565 23544 4221 22212 11354 4565 91111 10024 56655 </td <td>19354045505560000111122344455567688889999981133334378999999875455577756661133334378997999999999999999999999999999976655686886567788888899999998766556868868778899998896677678888868778777747655877236545536888887778777476555737777887779899866687888676567889995566689754468999999999999999999999999999999999993446623544442111002456655345656589966544482212212111354885765896654448221221322221122155575655444521221322221122155575657471777877778899998899889999999999999999999999999999999991112110011100112100011212212110111101101011365544822122121221999989999999999999999999899</td> <td>1935 40 45 50 55 60 75 00011 11223 44455 56768 8889 99998 99999 3 44546 67999 99767 7456 88888 7787 74765 5677 2456 66899 7777 8788 86765 56577 74765 58676 66899 97777 7476 55877</td>	19354045505560000111122344455567688889999981133334378999999875455577756661133334378997999999999999999999999999999976655686886567788888899999998766556868868778899998896677678888868778777747655877236545536888887778777476555737777887779899866687888676567889995566689754468999999999999999999999999999999999993446623544442111002456655345656589966544482212212111354885765896654448221221322221122155575655444521221322221122155575657471777877778899998899889999999999999999999999999999999991112110011100112100011212212110111101101011365544822122121221999989999999999999999999899	1935 40 45 50 55 60 75 00011 11223 44455 56768 8889 99998 99999 3 44546 67999 99767 7456 88888 7787 74765 5677 2456 66899 7777 8788 86765 56577 74765 58676 66899 97777 7476 55877

TABLE IVc. Risk-Return Class 8

Morrell, John and Co., Inc.	0	0112	22230	01000	10013	46678	98887	67
Aeroquip Corporation							35898	87
Alcan Aluminum, Ltd.				l		67876	65567	n

L

CLASS 8 (cont'd)	1935	'40	'45	50	55	60	65	
American Broadcasting Paramount	37998	88775	55535	44544	33335	67788	75666	19
Anaconda Co. Arvin Industries, Inc.	67987	87456	56551	22233 3 4455	35678 65433	99988 33332	86566 34677	6
Baltimore & Ohio RR. Basic, Inc.								8 8
Baxtor Laboratories, Inc.			11700	0,,,,,,	00007	0.000	00000	
Blaw-Knox Co. Fram Corp. Davide - Sa fact las		44556	1//88	8////	89981	65668	99888	B
Bliss, E. W.		000	00004	33450	7745	67999	99388	7
Budd Co. Bulova Watch	8 5	88967 55875	77788	999999 33344	99887 55553	67888 31357	88877	1 6
Carborundum Co.		00066	77760	666.76	76647	54	55456	6
Chemway Corp.		3245	55566	77776	44456	58466	64777	7
Cincinnati Milling Machine					5451	20225	45566	ľ
Cleveland Cliffs from Co. Clevite Corp.			55532	22344	43335	57778	87787	ĥ
Combustion Engineering, Inc. Conner Tire & Bubber Co		33467	77776	66743	33354	57656	75355	5
Corning Glass Works	22455		20075	45.467	23423	36645	63788	7
Delta Air Lines, Inc.	23455	55668	388/5	4546/	89333	2223	768	7
Detroit Steel Corp. Diamond Shamrock Corp.					799	99999 656	99999 76677	8
Diana Stores Corp.					4	43110	01678	8
Oxford Paper Co.						76	66666	6
FMC Corp.		2133	44432	10132	23434	47566	76667	7
Food Giant Markets, Inc. General Dynamics Corp.	87667	76786	24 55565	42344 66655	45678 66666	75333	57989 22556	8
General Tire & Rubber Co.			667	86788	89999	99867	87999	8
Warner Brothers Pictures, Inc.	99	99775	54435	67754	11112	33434	52575	6
Grace, W. R. & Co. Grand Union Co.	66445	56785	44334	53566	66633	43 34322	37793 [.] 34899	8
Great Northern Paper Co.						6	67678	7
Universal American Co.	64700	00007	77700	5455	55567	66689	87734	6
Paul Hardeman, Inc.	04709 5	55667	88888	78888	88778	99863	33577	17
Hat Corporation of America Hewlett Packard Company	8	87955	56665	66767	64353	24568	87866	6
Hotel Corp. of America	57777 77877	88887	77768	86645	37799	999999	89866	7
International Business Machines Co.	22110	11000	00000	00001	11232	35444	42677	7
International Minerals & Chemical Co.	66988	88998	88891	88/11	66654	44433	35565	ľ,
International Silver Co. Rayonier, Inc.	444	43455	97	33466 76578	76667	89999	99777	/ 6
International Telephone & Telegraph Jones & Laughlin Steel Corn	68887	77644	33458	88788 5677	99999 88899	99876 99987	76888 88899	18 18
Kendall Company							8	8
KER Model OII KEM Royal Dutch Airlines							344	8
Mack Trucks, Inc. Magnavox Co.	56333 5	32346	66651	13466	88989 7596	38877 42436	88887 79999	17 9
Mallory, P.R. and Co.							776	17
Mays, J. W., Inc. McDermott (1. Bay) & Co.							99	9
McLean Trucking Co.							23	5
McNeil Lorp. Mohasco Industries, Inc.					4458	99999	99988	8
National Acme National Can Corn	68777 11	77868	78772	44456 67789	77776	77888	87666 46565	16 16
National Steel Corp.		55523	33342	21111	12336	88876	64678	17
reewmont mining Lorp. Olin Mathieson Chemical Corp.	54332	22224	44453	40567 35454	44556	76777 76777	87677 75677	10 7
Outboard Marine Corp.			213	23223	32220	00113	43545	6
Owens Corning Fiberglass Corp. Pan American Sulphur Co.			l			567	85777	17 17
Perkin Elmer Corp.	5333	n,,,,,	02124	6666.2	22222	22111	02677	0
Plizer, Chas. and Co.	3323		22124	6	75544	33233	55777	17
Pittson Co.		µ4998	B/786	1/8883	P8888	19898	h aggg	18

CLASS 8 (cont'd)	1935	'40	'45	50	55	60	- 65	
Publicker Industries					9988	98899	89977	87
Reeves Brothers					4447	65673	48778	87
Reichhold Chemicals							8 8	87
Rheem Mtg		'		67	76664	43468	99999	87
Ritter Plaudler Corp.	3	32243	32222	57767	53443	22722	22567	67
Robertshaw Controls Co					55	65776	77778	87
St. Regis Paper					988	89987	86878	11
Sun Chemical Corp.		54423	34445	66676	46544	65677	67666	67
Sunstrand Corp.							56	11
Superior Oil Company (Nev.)				89	77841	43446	66787	87
Texas Pacific Land Trust Cert	88654	44333	43343	46535	63478	88787	78888	77
National General						333	35677	67
Varian Associates							7	17
Victor Comptometer Corp.					467	76899	99986	77
Wallace and Tiernan, Inc.							8	77
Western Air Lines					7 889 9	99975	66778	77
Westinghouse Electric Corp.	77644	44333	33322	12233	44543	45434	41345	57
Radio Corp. of America	99877	76554	45568	88866	56644	68788	76777	67
Wheeling Steel		7778	88886	66688	99999	98888	88777	87
White Motor		178	88875	56788	88886	33446	88888	77
Zenith Radio Corp.	8	888 98	77757	55656	67542	43346	88999	87

TABLE IVd. Risk-Return Class 7

A J. Industries, Inc. Addressograph-Multigraph Corp. Allegheny Ludium Steel Corp Alpha Portland Cement American Consumer Industries, Inc. American Metal Climax, Inc. Armstrong Cork Co. Atlas Chemical Industries, Inc. Atlas Corp.	72000 4 11023 56999 43343	00000 11121 55646 44653 33742 99843 34433	01247 11112 77763 33213 22148 33324 34446 43321 124	87755 35566 46777 32243 88973 56677 43333 12222 67744	34357 55423 88888 23423 22100 75665 22331 34576 22231	76765 45778 89989 55566 00114 79888 22112 78778 22245	55333 84654 98788 55545 444 31131 77555 31566 77877 67655	46 56 56 56 56 56 56 76 46
Bates Manufacturing Co. (Del.) Callahan Mining Corp. Carpenter Steel Co. Carrier Corp. Central Foundry Central Soya Co., Inc.	97999	99 889	99999 670 988	99999 23345 98999	67 99999 56767 7765 87789	64454 99999 78887 46677 99985	43454 99866 77767 77455 57777	56 66 76 66 86 56
Chock Full O Nuts Corp. Chrysler Corp. Clark Equipment Collins and Aikman Co.	87676 8687	65534 55676 77887	45433 77763 78877	23355 22344 66776	44442 56677 77899	43434 77889 99765	8 32366 98655 41432	76 46 56 36
Columbia Pictures Consolidated Cigar Corp. Cooper Industries	32356	323 67774	44557 54444	77787 44522 8	77735 22233 76644	34576 51122 33579	76898 25777 99754	86 66 56
Coperand Herrigeration Corp. Copperweld Steel Crane Co Cutter Hammer, Inc. Cyclops Corp Dresser Industries, Inc. Del. Elastic Stop Nut Corp. of America	66	66 665 88 87	6676 55655 663 87777	77666 55444 56676 45655 67754 6	78899 45665 76655 45456 66678 75432	98999 66565 57768 78999 99986 02332	99988 75434 85342 99888 66555 56676	76 36 36 86 66 66
Electric & Musical Industries, Ltd. Emerson Electric Co. Emhart Corp. Ferro Corp. Flintkote Co. Food Fair Stores, Inc. Ruberoid Co. New York Air Brake	14555	54222 55468	23559 6657 5532 88876	88755 8 55566 65677 23466 11455 56644	76666 99886 67887 67665 75544 65445 66677	26767 66645 68889 64333 13121 55443 66665	77875 57888 5644 99888 44677 12677 33355 44456	66 86 56 76 66 86 56 66
Stanley Warner Corp. Sheller-Globe Corp.						34	57677 2	76 56
Grant, W.T. South Puerto Rico Sugar Co. Harcourt Brace and World, Inc. Harris Intertype Corp. Hart Schaffrier & Marx	/ 11 35422	21012	11101 33344	33111	12100 13353 64456	00112 21110 67664	10011 12576 98888 53245	56 66 66 46
Hayes Albion, Inc. Hilton Hotels Corp Hoover Ball & Bearing Co. Houda-Ile Industries, Inc. Household Finance	8	88 887	78766 0002	888 66688 20000	87675 332 77774 00000	43311 11345 42312 00000	12466 55523 23356 00566	66 56 66 66

CLASS 7 (cont'd)	1935	'40	'45	'50	- 55	60	65	
Hunt Foods & Industries, Inc					8651	20102	24788	78
Illinois Central Industries, Inc.	01666	77668	88889	999999	98999	88888	88666	66
International Mining Corp. (New)	57999	99998	88877	77787	54435	75554	68878	66
Sheraton Corp. of America	55777	78798	89899	99996	55567	11114	33545	71
Island Creek Coal (Del)	0222	22101	11230	00000	01255	56866	17677	66
Jonathan Logan, Inc. Del								8
Kroehler Mig. Co							2544	5
Lehigh Valley Industries	8	88769	99	999999	99844	20389	79955	80
Manhatten Industries	54544	45453	22223	46554	43334	53343	35676	66
Mesta Machine Co.		344	44541	43333	33346	76876	67767	71
Midland Boss Corp		88766	66667	77544	22232	44435	43343	56
Minnesota Mining & Mfg. Co.					3433	36656	64677	66
Montoomery Ward	88765	55344	44433	32223	34433	22245	66766	56
M S L Industries Inc				2	45576	53343	27899	90
J.J. Newberry Co.		1	11001	23333	21111	11122	22677	76
Pitney Bowes, Inc.						14566	87888	8
Puliman, Inc.	23333	32236	66764	34321	22333	45667	54434	58
Raytheon Co.						996	77888	80
Republic Corp.					8887	76688	78766	76
Revere Copper & Brass, Inc.	9	99999	99887	88899	98886	78788	86433	46
Rex Chambelt Inc			1	24466	63323	33456	75655	56
Bohm & Haas Co					4	65545	43666	5f
Rohr Cara						5	56644	56
Roper Corp.			225	43332	33222	23001	13787	66
Roval Crown Cola				33445	35553	21100	21155	56
Sangamo Electric Co. Del.						5445	55565	56
Schlumberger, Ltd.	12889	99997	11778	88788	87778	88976	65566	56
Scovill Mfg. Co.						43333	36466	66
Screw and Bolt Corp. of America	4	54658	89986	88887	57778	64333	35656	76
Signode Corp							63565	56
Smith Kline & French Laboratories							111	6
Sperry Rand Corp.	89988	87564	44444	44566	67667	99989	88988	8
Stanray Corporation						7766	45576	71
Stauffer Chemical Co.						5	53676	60
Richardson Merrill, Inc.		00	00000	00133	31111	23122	22676	76
Stokely Van Camp, Inc.			687	88898	67766	74666	47688	8
Suburban Gas								80
TRW, Inc.		44455	55553	45577	87777	67878	77667	76
Tandy Corp.	7899	99979	99999	99887	64334	20233	58756	60
Tishman Realty & Construction Co.							88	86
Union Camp Corp.	75343	43447	78887	66666	66776	77655	44456	56
Wilson & Co.	73222	12357	78887	77778	77778	89653	32565	56
Boeing Co. (The)		6	65663	44533	46667	76752	22001	36
U.S. Steel	33333	33346	66662	23345	55667	88887	76778	76
Vulcan Materials Co.	99988	77522	12110	00000	00012	44657	887 8 7	76
Welbilt Corp.					576	89989	66666	76
Wickes Corp								
Youngstown Steel Door			87	/8876	//666	66787	62666	66

TABLE IVe. Risk-Return Class 6

Air Reduction Co., Inc Allen Industries American Home Products American Potash & Chemical Corp. American Seating Co.	33311 1100 799	11013 00010 99985	33341 767 00000 555544	13343 76555 00122 33467	34446 43434 11111 77886	65555 45532 13323 755 66444	64444 11122 42577 56555 36666	45 35 55 65 65
American Smelling & Herining Co. Ametek, Inc. Arizona Public Service ARC Corp.	78556	65688	88885.	23356 67589	99997	69676 54546	77245 78776	5 65 5 45
Austin Nichols	98576	65854	55 456	43688	88879	87563	67856	45
Babbitt, B.T., Inc. Barber Oil Corp Beaunit Corp. Bliss & Laughlin, Inc. Book of the Month Club, Inc. Briggs & Stratton Ceco Corp. Chicago Pneumatic Tool Co City Stores Co. Holt Rinehart & Winston	68566 3 77888 998	65667 33232 88888 88676	77776 4 32212 88762 77768	74544 32334 24567 45578 88888	126 26776 588 12221 666552 88999 41001	88898 85646 87899 50234 0014 45668 99988 11221	77745 65232 87411 47766 37887 86776 75455 00000	55 25 55 65 5 45 35 55
Curtiss Wright Corp. DeSoto, Inc	4	33376	66 65 1	33333	4 5569 9999	98975 9997	5 64 55 69887	55 75
Nopco Chemicał Co. Symington Wayne Corp.	87999	99989	989 98	012 4 5 88988	65677 88888	88776 88877	68887 55455	75 55

TABLE IVf. Risk-Return Class 5	Risk-Return Class 5
--------------------------------	---------------------

CLASS 6 (cont'd)	1935	40	45	.50	55	60	65	
Dunhill International, Inc.	999	99935	56668	88899	84300	00000	05777	65
Easiman Kodak	22111	10000	00000	01111	11223	45544	63444	35
Fawick Corp.	3266	66977	78777	88899	99999	99977	35443	55
Eaton fale and Towne Lo. Edison Bros Stores	89///	00044	45431	34566	32120	00123	46766	40 65
Engethard Minerals and Chemicals				10000		00.20		65
Furnfund Inc								5
Florida Power & Light Co.						34322	33677	55
Fruehauf Corp.				5777	76666	57999	99877	75
Gardner Denver Co.		0.00	22220	4	22223	56654	43223	45
General Fost	PDDDR	0122	99999	99998	78889	99976	54234	45 45
General Steel Industries, Inc.	00000	00000	00000	00000	10000	00070	6576	55
Goodrich, B.F.	78998	88776	77767	73533	35567	88654	54466	55
Gould National Batteries, Inc.			l .	00004	4442	34322	23677	75
Grumman Aircraft Engineering Corp.				000034	000/0	54433	34232	25
Hamilton Watch Co.		34553	32235	65521	11124	46777	77644	55
Hammermill Paper Co. Horean Corp						898	10533	45
Walter E. Heller Co.							4777	75
Honeywell, Inc.	1	11233	33332	11122	33322	37767	86676	65
Ingersoll Rand Co.	34444	44432	33332	10011	23334	45656	43444	55
Interchemical Lorp. International Nickel Company of Canada	33 88654	133444	45445	244505	33455	66766	65566	20 45
International Paper Co., N.Y.	00034	11221		5566	57876	68766	64555	55
Kaiser Aluminum & Chemical Corp.						8999	98555	45
Kelsev Haves Co.	878	88897	88877	77877	64345	66766	76454	45
Kennecott Copper	45765	65334	33320	12123	33556	78766	54222	35
Kern County Land					23	66677	67776	65
King Seeley Thermos Co.	01655	55735	44442	12222	44455	55566	55344	00 45
R.H. Macy and Co., Inc.	55544	44223	33446	65453	34457	75431	22555	55
Martin Marietta			443	54566	58676	51201	22454	45
Masonite Corp.			312	22357	88877	68878	86333	35
Medusa Portiano Cement Merck & Co. Inc					3346	67420	10345	55
Manarah Mashina Tasi Ca				2	22254	21122	34234	45
Natomas Co			00002	33300	00148	99883	49888	75
Neptune Meter Co.							3	35
Norris Industries, Inc.								35
North American Car Corp. Northwastern Steel & Wire Co.							5	55 65
Norwich Pharmacal Co.				11221	23344	65433	20344	45
Pet, Inc.	0	01111	11100	00012	12211	22244	46778	75
Philip Morris, Inc.	31111	00101	11111	01221	10001	22011	11344	45
Phillips van Heusen Lorp.	22000	11354	44467	/0005	53322	20099	88/00	62
Murphy (G.W.) Industries, Inc.					6	74543	25332	55
Remarke Electric Engineering Remublic Steel Coro	89999	98768	88774	35566	17778	88876	77877	55 75
Reynolds Tobacco	10000	00000	00003	32100	00001	11001	11565	65
Rubbermaid, Inc.							3	45
Hyan Aeronautical Co. Scharion Corp			i			65	5 64344	35
Warren Company						03	0-0-4	65
Seaboard Coast Line Railroad					99886	54666	66434	35
Seaboard Finance Co.					22	22111	12455	65
Seilon, Inc.					9999	85557	65200	15
Singer Co.			55.20	01124	40777	11101	00200	65 cr
Square D.Lo. Tootsie Roll Industries	81756	05533	11015	34423	40///	///b/ 20111	00/88	00 75
Swift & Co.	01750	00000	11121	11112	12321	22112	21233	35
United Carr, Inc.			33333	12111	21221	24334	33232	35
Textron, Inc.		1			89	88875	/8665	55
Transamerica Corp.		33122	22234	55555	43433	24354	56777	40 65
Uniroyal Corp.	88999	88755	66668	76655	57778	88887	87565	55
United States Shoe Corp.							1344	45
Universal Oil Products							8	85
Upjohn Company Walayeen Co		, n	11011	12211	10000	00112	23666	45 55
Wallace Murray Corp.	99899	99997	88878	88887	77655	65655	44111	35
Walworth Co	67999	99999	88887	77888	88888	88733	46766	45
West Virginia Pulp and Paper				55553	32214	36564	64656	55
veniripool Corp Youngstown Sheet and Tube Co	24677	17767	77764	34466	77778	999998	88777 98777	65 65
	2.017					55500		

	1935	40	45	50	55	60	65	
Abacus Fund				9999	98754	21111	• : 434	3
Ace Industries, Inc.	15677	77779	99984	46767	88887	11767	68566	54
American Bakeries Co	6565	55642	22213	42322	12110	00000	00021	41
American Uyanamio Uo. American Distillion Co	3	17446	67773	10078	78854	64722	35777	Ê
American Optical Co	Ū			1		211	22365	44
Westinghouse Air Brake	23122	22346	56675	55544	45554	55789	99644	44
American Standard Corp.	45454	44554	45557	76544	34544	55677	67434	
American Tobacco Co. (Com.) Armon Stool Com	00101	97656	66776	66677		22010	100345	10-1
Armed Steel Colp.	0	0/030	00770	00077	0000	33307	, 3000	[]
Armstrong Rubber Co.	12777	70567	77077	66666	77000	70000	00422	2
Attantic Loast Line H.H. Aven Forn	12///	34567	76668	46788	88788	88888	88765	44
Babcock & Wilcox Co.		0,007	10000			866	54334	43
Bendix Corp.	98655	55455	56540	02333	44554	55556	65555	11
Bethlehem Steel Corp.	55655	66556	55551	22234	57889	99985	44445	6
Black & Decker wrg. Bobble Brooks			333	43344	50545	31434	40000	1
Borden, Inc.	11	11111	11010	00011	11100	00011	10455	44
Borman Food Stores, Inc.								64
Burlington Industries, Inc.			544	45666	76668	87787	67443	44
Canada Dry Corp	5233	33432	22225	55565	54433	33222	11223	44
Champion Papers, Inc.	_		5665	66566	77775	45434	32233	44
Checker Motors Corp.	3	33599	99998	18889	988//	67899	22555	34
Continental Baking Co. (Del.)	5467	77996	55546	76632	12223	44344	55645	44
Continental Insurance Co.	45544	44332	22211	00001	11101	14222	22456	44
Continental Steel Corp.			6653	42111	24578	99988	88877	64
Corn Products Co.	23211	10000	00000	00000	00110	100001	22566	54
Crown Cork & Sear Co., Inc.	2	11545	30007	//000	40/00	/03//	00000	04
DWG Corp.			3324	54311	01112	31010	22577	64
Delmarya Power and Light		44	44404	000//	00043	12111	54505 10233	144
Dover Corp.					ľ	12111	555	44
Dow Chemical Co.			100	01122	34555	55444	54444	34
Harbison Walker Refractories Co.	123	33556	77775	55443	54556	55432	24667	74
Eastern Gas & Fuel Associates Ex.Cell.O.Coro			40	22355	45554	45556	404 66544	44
Fenestra, Inc.				22000			2011	14
Fibreboard Corp.			3424	42133	23544	33477	99867	64
Firestone Tire & Rubber Co.		23332	22345	55456	67787	88655	64666	54
Franklin Stores				1	21	10001	12666	74
Freeport Sulphur Co.	23432	22114	45561	11123	35566	75545	65222	34
General Electric Co. Geodyean Tire Rubber	65433 887	33223	23332	75644	56688	40545	52566	124
Granite City Steel	4	44468	88888	88888	98999	999999	98777	64
Greyhound Corp.			34445	54332	21111	11111	00133	44
Halliburton Co.					21	22445	46334	44
Hazeltine Lorp. Hooker Chemical Corn					44	78889	87544	4.1
							00000	
Howe Sound Lo. (Del.)	34554 2566	44344	89887	78899	22379	77776	99805	54 43
Pennsylvania Glass Sand Corp.	2000		2110	21100	00111	12444	44344	34
Johnson & Johnson				5	56764	44233	35455	54
Kansas City Southern Industries, Inc.	56767	77687	78889	99899	88766	66766	54344	24
Koppers Co. Lebiah Pariland Cement Co.	44	44654	44373	32432	12245	6/554	66334 43355	54 54
Leonard Refineries, Inc.		11001	44020	00402	12245	0/004	10100	4
Libby McNeill and Libby			55566	54523	23333	45678	77655	54
MacAndrews & Forbes Co.	011	11100	00001	12101	10000	00144	45543	34
Madison Square Garden Corp. (New)	95555	56787	66679	99999	99998	99999	99854	54
Maremont Corp.								64
Marine Midland Banks, Inc. McCard Core		22122	11125	65521	nnn.	21000	01344	44
McDonnell Douolas Coro						44440	3	34
McGraw Edison Co.			224	44333	21221	24536	55554	54
McGraw Hill, Inc.	1	12256	66676	56543	21111	24536	53344	44
Mead Lorp. NVF Co			8886	00/66	18888	18653	31343 87654	44
National Cash Register Cn		4	34324	43232	33423	45655	56777	54 64
Hudeon Day Missing & Carolina Particip			10	12222	24475	64622	22000	2.4
nuuson bay mining & Smelting Co., Ltd. Northern Natural Gas Co	1		15	43222	344/0 211	54533 11012	12244	34
Northrop Corp.						653	45222	34
Otis Elevator	44322	22244	44445	55555	43211	25545	54544	44

CLASS 5 (cont'd)	1935	40	'45	.50	- 55	60	65	
Penn Fruit Co., Inc Pillsbury Co Pittsburgh Forgings PBC Induction, Inc	110	01100	00013	31101 77667	12222 88886	23234 67534	65765 22112	54 54 34
Procladustries, inc Portec Inc St. Joseph Lead	8 35665	88989 55445	99999 55555	99988 65332	2232 78775 36778	34422 65788 76455	21344 88532 46555	44 34 54
Scott Paper	0	00000	00000	00000	01112	36443	22466	64 44
Sterling Drug, Inc. Bristol Myers Co.	22222	22100 10	00000 00001	00111 00133	11111 45446	22122 78865	43665 64555	54 44
Stevens, J.P. Storer Broadcasting					112	35466	67322 32010	24 24
Tidewater Oil Co. Trane Co Trane Co	444	43343	33333	33334	45553	36889	88534 26777	64 74
Transwestern Pipeline Co. Tri Continental Corp.		55567	77899	99999	99989	98764	54455	44
Unarco Industries, Inc. Union Dil of California Union Tank Car 11TD Com	0 12111 00000	11111 00101	11123 00010	44244 00000	7566 45655 01000	75689 66655 00001	99767 45466 12112 555	44 54 34 54
United Fruit United Merchants & Manufacturers	01332	22101	11110 66	00000 55677	11222 77768	32212 76566	23366 57555	64 54
U.S. Pipe and Foundry Co. U.S. Plywood Champion Papers, Inc.	66444	45663	33215	44444 2256	43333 77856	47767 58788	75555 75210	54 14

TABLE IVg. Risk-Return Class 4

Allied Kid			321	22222	21121	12112	111110	23
Allied Stores Cornoration	8	88677	77767	17776	54434	53354	45323	33
Allied Supermarkets Inc	U	00017		8	99999	64533	23565	53
Aluminum Co. Amorica				Ű	00000	8888	86334	33
American Chain and Cable Company		89977	77763	23344	45656	66656	66322	22
American Chain and Cable Company		00077	11103	20044	43030	00030	1	12
American Continencial Lines Co.	ALCEA	42126	66776	24111	21121	00100	02344	13
American Crystal Sugar Co.	40004	43135	00775	24111	31121	00100	02344	52
American Hospital Supply								33
Amercon Lorp.		00011	10000	00110	00000	495.07	07764	22
American News Lo. Del.		00011	10000	00110	UUUUZ	4330/	87704	33
Conwood Corp.	00000	00000	00001	21100	00000	00000	00121	33
Amsted Industries, Inc.	47777	77668	88874	56667	87775	45566	66544	43
Anderson Clayton					01234	43332	22101	23
Baker Oil Tools, Inc.								3
Bath Industries, Inc.				3356	78977	43444	55322	33
Beatrice Foods Co.	2	33542	22221	11122	22213	43222	22455	43
Beneficial Finance Co.		00	00001	21111	10101	12233	23545	33
Bush Terminal Co.	53433	35599	99999	99986	54453	21112	21100	23
Camphell Soun Co							23677	53
Carey (Philip) Mfg. Co.						56554	45444	33
Church Dashada R. Ca., Jan	12122	22444	22211	11222	****	22244	66622	22
Ciuett, Feadoury & Co., IIIC.	12122	22444	33211	11223	44004	102244	46211	22
Cone Mills Corp.	00	20020	67776		0000	404	240211	133
Lontainer Lorp.	80	70930	0///0	44343	00000	67054	54544	43
Lrown Zelleroach Lorp.	0	//9//	00000	42223	200/0	5/054	24110	22
Uan Hiver Mills, Inc.	00000	22400	00000	21250	00004		34110	23
Uana Lorp.	80232	22400	00052	21250	00804	44550	00344	33
Denver & Hio Grande Western H.H. Lo.		00001			988	00/00	44323	23
Diamond International Lorp.	000	00001	11111	22122	22223	40304	20000	43
Eagle Picher Industries, Lo.	ō			'	10000	//00/	10322	23
Faistatt Brewing Lorp.					10	00000	00222	23
Fedders Corp.					46	76677	77655	53
Federal-Mogul Inc.				42355	55333	24565	65555	43
Florida Power Corp.					0001	13433	32444	33
Link Belt	3	33433	33443	21011	12333	46676	66433	33
Ford Motor Co.							5555	43
General American Transportation Co.	32332	33234	44454	33221	21112	33322	20111	13
General Portland Cement					663	44567	65545	33
General Telephone & Electronics Co.			2	22311	00000	12223	42454	23
Gerber Products							7666	53
Gillette Co.	211	00011	12247	87764	44554	43322	23455	53
Gimbel Brothers, Inc.	88898	88888	88878	88899	65436	86575	65422	23
Harshaw Chemical Co					1		5433	43
Hercules, Inc.	2	23312	22110	mm	12233	34324	54654	33
Hershev Foods	10	00000	00001	00001	10010	00000	02444	43
Holly Sugar Corp.			4563	34344	55435	55342	23444	53
Houston Lighting & Power Co.				00	00111	34443	31334	33
Ideal Basic Industries, Inc.							433	33

CLASS 4 (cont'd)	1935	'40	'45	50	<i>`</i> 55	.60	'65	
International Salt Co.	01111	21110	10000	00001	10000	03434	44445	43
Interco, Inc	•0	00101	10000	00000	00000	00000	00021	23
Jewel Companies, Inc.	43222	21110	10001	11253	22102	23222	21454	43
Kellogg Co							5	53
Kimberly Clark Corp	3	33523	33342	21111	21244	48544	20233	33
Kresge, S.S	31222	23211	11111	00000	00000	00012	21111	23
Lane Bryant		78553	34324	55689	76521	20123	37777	73
Lenman Corp. P. Louillard Co	45222	21110	00002	23344	43322	12000	11666	53
touisville Gas and Electric Co	45222	21110	00002	33211	00000	11000	01345	43
Lykes Corp.							23	33
Madison Fund, Inc							4544	33
Marshall Field and Co.		66666	77656	56676	55544	33355	44312	23
May Department Stores	23233	33432	22212	11223	22222	33322	33322	13
McKesson & Robbins, Inc.				322 I 2	21111	10100	23233	23
Mercantile Stores Co., Inc.					3235	74432	11223	23
Merritt Chapman and Scott Lorp. Mession Development Co.					22 5	67000	5//05	43
National Distillers & Chemical Co.	75133	22421	11113	33333	22346	77543	33222	33
National Gypsum Co.			657	77788	87766	68755	52443	33
Neisner Bros.	7	78954	45545	53455	34322	21233	23111	23
Chesapeake & Ohio Ry	11422	22023	33442	22110	00013	46654	43222	23
Northern Pacific Hy.	13020	00407	19933	33999	93333	99000	8/000	33
Pacific Tin Consolidated Corp.			79	87555	88887	66766	57334	43
Penn Dixie Cement Corp.	799	33388	<u>aaaaa</u>	aaa'\2	56455	76888	8/656	33
Pensaul Chemicals Curp. Pension Inc	33222	22498	99866	32445	46777	87664	54555	33
Petroleum Corp. of America	00222	33344	33333	56544	45677	76656	54444	43
Phelps Dodge	4	44355	55532	44355	44666	78765	54211	13
Phillips Petroleum	26454	43323	33331	11022	34665	67655	54333	33
Pittsburgh & West Virginia Hailway	34///	88833	<u>aaaaa</u>	338\8	1/8/8	18881	/98/8	22
Potomac ciectific Duaker Dats Co					00	00000	00244	33
	2						2422	22
Hanco, Inc. Rad Owl Stores, Inc.	3						3433	33
Simmons Co.	77777	77776	66667	66766	65433	33456	57543	43
Sinclair Oil Corp.	68444	43433	22333	44344	56766	67766	54333	33
Sola Basic Industries					0000	10001	11000	23
Southern Co.	6	66565	55689	99999	84232	22212	21333	23
Southern Pacific Stewart Warper Corp	67777	76566	67777	78877	77788	77655	54323 55454	33
James Talcott	7	/0300	223	32211	11011	01123	33554	43
Toledo Edison Co.						0011	01122	33
Lloion Carbide Coro	5322	21112	22220	00011	22343	34334	22122	43
United-Greenfield Corp.	5522	21112		00011	455	52444	32000	03
United Park City Mines Co.						99	99987	73
Universal Leaf Tobacco	21	21100	01103	00000	00000	00000	02455	43
Virginia Electric and Power					122	33322	21244	33
Von S Grocery Co. Western Pacific BB					87686	33567	65433	3
Winn Dixie Stores, Inc.					0,000	000	00122	23
Woolworth, F.W.	21111	11010	00003	21210	00000	11133	33444	43
	/h ¤:,		-	. Cla		•	•	
INDLE IN	22211	- n	2000	linnii Linnii	33 3 11222	35556	76442	22
Anieu Unemical Lorp. Ahex	22211	34445	55654	34432	32335	54556	66211	12
American & Foreign Power	999999	99887	78899	99999	9988	57434	34111	22
Adams Express	78888	87767	77776	67787	75644	46554	43222	22
American Natural Gas Co.			l			11123	33432	22

Abex	22233	34445	55654	34432	32335	54556	66211	12
American & Foreign Power	99999	99887	78899	99999	9988	57434	34111	22
Adams Express	78888	87767	77776	67787	75644	46554	43222	22
American Natural Gas Co.						11123	33432	22
American Zinc Co.	99998	88889	99998	99999	98887	89888	66100	12
Ashland Oil & Refining Co.						88654	54332	32
Associated Dry Goods Corp.	66787	77777	78778	88878	66666	75555	64322	22
Associated Investment			011	00000	01024	46431	21333	22
Atchison Topeka & Santa Fe Railway	11444	45245	66664	24334	45565	67678	76322	12
Baltimore Gas & Electric Co.						11000	11344	22
Bayuk Cigars	21333	33212	23323	31212	22133	33220	11445	42
Brown Shoe Co., Inc.	00000	00100	00011	23322	10000	12221	11122	32
Buffalo Forge]	445	54331	00001	10001	12
Carriers & General Corp.		56565	56666	67777	53322	44444	32121	12
Caterpillar Tractor Co.		55545	55540	23332	32214	67777	77655	42
Central III. Light Co.		1			1	22122	22322	22
Champion Spark Plug Co.			1				3	22
Chesapeake Corp., Va		1		1	23478	89774	32211	12
Columbia Broadcasting System, Inc.		ļ	214	44334	35552	32346	64544	32

1935	'40	'45	50	'55	60	65	
		1102	12244	54444	33212	21112	2
						3	22
				11	22111	00232	32
				999999	77787	77300	112
	1935	1935 '40	1935 '40 '45 1102	1935 40 45 50 1102 12244	1935 40 45 50 55 1102 12244 54444 11 99999	1935 40 45 50 55 60 1102 12244 54444 33212 1102 12244 54444 33212 11 22111 99999 77787	1935 40 45 50 55 60 65 1102 12244 54444 33212 21112 3 11 22111 00232 99999 77787 77300

TABLE IVI Bick Boturn Class 2

IADEE	1		sturn	Uld.	33 2			
Acme Markets, Inc Allegheny Power System, Inc American Electric Power Co., Inc American International Corp American Motors Corp. American Water Works Co. Anchor Hocking Glass Corp. Archer Daniels Midland Co. Atlantic City Electric Co.	0 77665 89866 34322 43222 3 33122	00022 65556 65467 22234 22114 33343 21222	33323 67889 77888 45568 44565 33312 33322	34333 99998 88777 88877 34421 13444 01121	21100 64212 0 66555 77777 22234 21 20113 22135	10000 23333 00002 65543 64165 33211 10010 56444 67564 11111	11333 33222 21111 43221 55624 11000 00000 33321 44200 10111	11 11 01 21 11 21 01 11
Atlantic Richfield Co. Belding Heminway Co. Beco Industries Corp. Bond Stores Borg Warner Corp. Brooklyn Union Gas Canadian Breweries, Ltd. Canadian Breweries, Ltd. Canadian Pacific Ry Central III. Public Service Co. Central Southwest Corp.	45222 33132 554 6 54100 01223	21222 22331 44332 55444 00023 33335	22232 11100 33325 013 55543 34557 67889	34245 24566 43322 21345 23355 87522 88788	66756 64434 22212 34435 55534 21111 211 79988 1	67766 35455 21121 64332 44555 01110 11122 98887 322 13322	55232 53210 11111 66222 00000 33222 66100 10111 31122	21 01 11 11 11 11 11 11 21 11
Cincinnati Gas & Electric Cleveland Electric Illuminating Co. Coca Cola Colgate Palmolive Co. Columbus & Southern Ohio Electric Commonwealth Edison Co. Consolidated Edison Co. of New York Consolidated Laundries Corp. Dentists Supply Co. DiGiorgio Corp.	11000 54211	00000 34532 11122 2354	00000 22212 01 22224 33437	00000 11133 10000 43211 64222	0001 000 01111 33333 0000 00000 11110 11110	11000 12121 22111 43123 01100 11110 00011 01113	00223 10111 11233 56777 00022 00011 00100 10311	21 01 31 41 11 11 11 11 11 01
Empire District Electric Co. Fairmont Foods Co. Family Finance Corp. Federal Paper Board First National Stores, Inc. Gamble Skogmo, Inc. General Contract Finance Corp. Surveyor Fund, Inc. General Public Utilities	43100 12111 8	00011 00021 88566	11111 11113 67999	11000 32322 999	0000 1 00000 25 23223 88841 1100	00011 12221 00000 44455 21000 10101 01100	22221 11 12344 32101 00111 67533 00112 2 00000 11122	21 21 21 21 21 21 21 11 11 21 11
Giant Portland Cement Co. Gulf States Utilities Co. Iowa Electric Light & Power Co. Kansas City Power & Light Kansas Gas & Electric Co. Kansas Power & Light Peabody Coal Co. Keystone Steel & Wire Co. Libby Owens-Ford Glass Co. Ligget and Meyers, Inc.	7 00111	67944 11000	5550 44433 00001	00123 12234 21100	012 0 9 65565 33323 00000	13211 12111 01100 99997 44444 77654 11000	10011 22 00101 10122 46644 34223 43233 00000	21 11 21 11 11 31 21 21 01
Maytag Co. McCrory Corp. McGregor Doniger, Inc. McQuay Norris Mfg. Co. Mesabi Trust U.B.I.	45888 2034	88753 44864	34569 44444	98865 33443 3	66442 21112 22223	23236 21222 54444	76554 14211 3000 34311	21 31 01 21 1
Gun On Corp Missouri Public Service Co. Moisanto Co. Mountain Fuel Supply Company Fuqua Industries, Inc.	1	10101	11110	01255	54544	56544	42123 00 53233 100	21 01 01 11
National Biscuit National City Lines National Dairy Products National Standard Co. National Stunar Reliming Co.	11211 44222	11111 22221	00102 22224	32211 32221	11111 5423 22211	11000 32243 13110	01122 12000 00112 12222	11 01 21 01
New York State Electric & Gas Corp. Newport News Shipbuilding & Dry Do Pacific Telephone & Telegraph Co	ck 10000	00000	00000	1111	25666 00000	00000 62210 00101	00112 02212 13354	21 11 41

CLASS 2 (contid)	1935	40	'45	[.] 50	'55	60	[.] 65	
J.C. Pennev Co Pennsylvania Power & Light Co	1	1111	11100	00012	21111 0111	12111 10110	20000 01222	01 21
Marquette Cement Mfg Co Procter and Gamble Co Public Service Co of Colorado Public Service Co of Indiana, Inc Parabeters Con and Electron Service	1	11100	11000	00000	12253 0111	2 33100 21012 11100	21100 00234 22222 00112	11 21 21 11 21
Rochester Gas and Electric Corp. Rockwell Standard Corp Royal Dutch Petroleum Co San Diego Gas and Electric Co Sears, Roebuck & Co Skelly Oil	7 76543 57344	77876 44332 32445	66541 22212 66654	13354 11122 34355	66668 22211 66767	88777 5 1 13223 88877	10233 54321 44111 11111 42334 54100	21 11 11 11 21 01
South Carolina Electric & Gas Southern California Edison Co. Southern Indiana Gas & Electric Co Southern Natural Gas Standard Brands Standard Oil Company (Indiana) Beech Nut Life Savers, Inc. Suburban Propane Gas Co. Sucrest Corp	2100 21110 20000	00010 01011 2 00000	00001 11125 22222 00000	11110 1001 54422 11011 00000	221 10111 12221 23323 22434 00010 2212	21123 12110 22111 21345 32222 67666 00111 32333	32432 10012 11011 46211 32322 54233 22012 32000	11 11 11 11 11 11 11 11 01
Sunbeam Corporation Texas Eastern Transmission Corp. Torrington Co. Western Can Corporation United Corp. Consumers Power	5	55355	66899	99999	6 86500 000	44433 11111 00000	32000 66 01111 00011	01 1 21 31 11 11
U.S. Lines Co U.S. Tobacco Van Raalte Co Wayne-Gossard Corp.	55767 00000 31333	77689 00000 34353	99998 00001 34311	78776 31100 12234	43434 00000 32321 4233	34455 00000 12234 12334	34100 00133 22000 42210	01 31 01 01
TABLE	IVj. Ris	k-Re	turn	Clas	is 1	r 4000	00000	10

Abbott Laboratories			111	1111	22244	54222	33232	10
Nabama Gas Corp.							00	00
Amalgamated Sugar Co.						2212	10000	00
Amerada Petroleum Corp.	2011	00222	22233	22255	56643	45867	55355	40
American Bank Note Co.	55766	68445	56678	88 8 77	54322	22000	00000	00
American Can Co.	43221	11001	11112	10000	00122	22111	11000	00
American Investment Co.				21100	00011	12120	00101	10
American & South African Investment							0	00
American Telephone & Telegraph Co.	11100	00000	00000	00000	00000	00001	11222	10
Benquet Consolidated Inc.					9	89884	00000	00
Boston Edison						0	00000	00
C.I.T. Financial	76433	22222	23334	32322	22222	23210	00112	10
California Packing Corp.	12444	44324	56676	54333	44444	44432	23232	10
Campbell Red Lake Mines Ltd.							00000	00
Carolina Power & Light Co.					012	24222	21222	10
Central Aguirre Sugar Co.	0	00001	11233	33000	00000	00000	12121	00
Central Hudson Gas Electric Corp.					0000	00000	00000	00
Cities Service Co.						7866	54000	00
Coca Cola Bottling Co. of New York								10
Columbia Gas System Inc.	57766	65444	45578	88866	63422	11111	21000	00
Allied Mills Inc.			4321	01111	11133	33222	23211	10
Cuneo Press				43433	33344	54367	76300	00
Detroit Edison Co.	21000	01110	00000	00000	00000	00000	00001	00
Domes Mines Ltd.	11010	00100	00016	64200	01146	54342	10000	00
Duquesne Light Co.						11	21100	00
Equitable Gas Co.						20111	11000	00
GAC Corp.							11111	10
General Bancshares Corp.						1	12221	00
General Finance Corp.						1210	11201	00
Genesco Inc			2	35555	41100	01135	43210	00
Great Northern Iron Ore Properties	21233	34534	33330	11100	00010	11214	33111	00
Great Western Sugar Co.	24443	32101	11231	11000	01012	10000	01111	00

CLASS 1 (cont'd)	۱	935	'40	'45	⁻ 50	[.] 55	.60	.65	L
Hackensack Water Co Homestake Mining Co Idaho Power Co. Illinois Power Co Industria Electrica de Mexico S A International Harvester Co.	0	000 00000	00000 00000 44223	00000 00003 34454	00000 31000 0 33232	00000 00013 00000 01 2348 22344	00000 32221 13232 12211 88750 55455	00000 09000 10000 21111 13000 44211	
Interstate Power Co. Iowa Illinois Gas & Electric Co.							00000	00000	l l
Kroger Co. Laclede Gas Co Lilly Tulip Cup Corp. Lockheed Aircraft Lone Star Gas Corp. Long Island Lighting Co.	0	32 100000	22211 12255 0111	11100 56668 11111	00011 86643 24456 65535	11000 31100 43322 47776	00001 10111 66321 54333 23 00000	21121 22222 21000 56432 32000 00010	
Marathon Oil Co. Midwest Oil Corp. Continental Oil Co.	6	7233	22323 43334	43454 33442	55445 43344	67875 33434	55667 444 57877	77110 33101 74221	
Minnesota Enterprises, Inc. Minnesota Power & Light	2	25344	55796	55668	89999	98764	51332 00001	21000	1
Montana Dakota Utilities Co. National Fuel Gas Co. National Lead Co. National Service Industries, Inc.	2	2122	22224	44544	43332 1	22335 10000	78877 00000	11110 65110 01111	
National Tea Co. New England Electric System Norfolk & Western Ry.	55443 3 0	13223 10100	44567 00011	54545 11110	66512 00000	34222 11 01112	34222 22221 33344	11233 11110 43100	
Northern States Power Co. Oklahoma Gas and Electric Co.						0	01000 12223 2	21211	
Outlief Co. Owens Illinois, Inc. Pacific Lighting	1 3	1 00 00 32011 11	00000 00222 11011	00000 22110 00112	00000 00122 20000 2	00000 32212 00000	01010 36444 00000	00000 42433 00000	
Peoples Gas Light & Coke Co. Peoples Gas Light & Coke Co. Puget Sound Power and Light Reliable Stores	4	3322	22242	23212 4332	00000 32212	11121	11123	33332 01000 11000	
Safeway Stores St. Joseph Light and Power Shell Oil Co.	1	16434	43355	33311 55541	01244	45534	01001 00101 54522	00112 00000 22011	
Shell Transport and Trading N.Y.S. Mobil Oil Corp. Southeastern Public Service		222	2 2222	22334	43223	23433	5653 3	000 22011	
Ohio Edison Co. North American Rockwell Corp. Standard Oil Co. of California Standard Oil Company (New Jersey Consolidated Natural Gas Co.	1	12111 22100	66576 11112 00012	66665 21223 22223	65545 32001 21111 11	1101 45667 12344 12333 21111	12212 88766 46655 46644 01000	11011 54321 42000 32000 00011	
Standard Oil of Ohio Starrett L. S. Sterchi Bros. Stores		4	4 4354	44541	0122 33122	34566 24352 3211	76545 00001 00000	43000 10000 00000	
Sun Oil Sunray DX Oil Co. Texaco, Inc. LGI Corp.	2	21000 24222 1	00001 22223 11111	11110 22231 01124	10000 77 10001 54222	01121 64555 13444 21100	11100 78777 56645 00001	00000 54000 44222 22221	
Philadelphia Electric Niagara Mohawk Power U.S. Playing Card Co.				1	00 21211	00000 11010	01011 21111 00000	01011 00001 01112	
Utah Power & Light Washington Gas Light Washington Water Power Co. Waskesha Motor				5555	32000	00000	13223 00011 221 55554	32100 12221 01111 33111	
Wheeling and Lake Erie Ry. Wisconsin Public Service Woodward Corp.	(00000	00001	00110	23333	00000 33366	00000 00 77883	00000 00111 77311	
William Wrigley, Jr. Company	(00000	00000	00001	l 10000	00000	1 00000	1 00000	l
Footnotes

- 1. This paper differs from that of Black, Jensen and Scholes (BJS) in a number of respects. The differences will be summarized here, although a full understanding may require a prior reading of the remainder of this paper. First, BJS require only 24 months of data to estimate a security's risk-return class (although they use up to 60 if available); we require 60 months. Second, BJS use beta to determine risk-return classes, while we use market sensitivity. Third, BJS measure performance in terms of monthly returns; we use annual values (both because an annual holding period seems more consistent with an annual review of risk-return classes and because annual rebalancing involves smaller transactions costs than monthly rebalancing of the portfolios). Finally, we report geometric means as well as arithmetic means for those interested in long-run performance and provide data concerning stability of risk-return classes for those interested in the characteristics of individual securities.
- 2. For a derivation of this relationship, see Sharpe (7).
- 3. In general, the value of beta describes the majority of the fluctuations in returns for these portfolios. The coefficients of determination for the regressions of portfolio return on market return were:

Strategy	Coefficient of Determination
10	
10	.94
9	.94
8	.95
7	.95
6	.98
5	.98
4	.92
3	.94
2	.88
1	.87

- 4. This relationship can be derived from a model in which it is impossible to borrow without limit at the same rate of interest at which one can lend. If the portfolio used as a market surrogate is riskier than the optimal combination of risky securities for one who plans to lend part of his funds, the result follows directly as long as the market surrogate is on the efficient frontier. The true "market portfolio" (which includes all assets -- e.g., corporate bonds, real estate, etc.) may well be less risky than the typical index of New York Stock Exchange common stocks such as that used in this study. It is entirely possible that if a better surrogate for the market portfolio could be obtained, the relationship between average return and beta would intercept the average return axis very near the interest rate of safe investments.
- 5. The sum of the figures in a row in either Table I or Table II will be less than 1; the difference represents cases in which the security could not be classified in the later period due to lack of adequate data.

References

- Black, Fischer, Michael C. Jensen, and Myron Scholes, "The Capital Asset Pricing Model: Some Empirical Tests," in <u>Studies in the Theory of Capital Markets</u>, M. C. Jensen, ed. (Praeger Publishing, forthcoming, 1971).
- Fama, Eugene F., "Risk, Return and Equilibrium: Some Clarifying Comments," <u>Journal of Finance</u>, March 1968 (pp. 29-40).
- Lintner, Joh, "The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets," <u>Review of Economics and Statistics</u>, February 1965, pp. 13-37.
- 4. Markowitz, Harry, "Portfolio Selection," Journal of Finance, March, 1952, pp. 77-91
- 5. Mossin, Jan, "Equilibrium in a Capital Asset Market," Econometrica, October 1966, pp. 768-783.
- Sharpe, William F., "Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk," <u>Journal of Finance</u>, September 1964, pp. 425-442.
- 7. Sharpe, William F., Portfolio Theory and Capital Markets, McGraw-Hill, 1970.
- 8. Tobin, James, "Liquidity Preference as Behavior Towards Risk," <u>Review of Economic Studies</u>, February 1958, pp. 65-86.