HP 2000 SERIES CONTRIBUTED LIBRARY

HEWLETT hp PACKARD

TIME-SHARED BASIC/2000 PROGRAM DOCUMENTATION

VOLUME III

(600) MANAGEMENT SCIENCES AND OPERATIONS RESEARCH (700) BUSINESS AND MANUFACTURING APPLICATIONS

TIME-SHARED BASIC/2000 CONTRIBUTED LIBRARY HANDB00K

VOLUME III

(600) MANAGEMENT SCIENCES AND OPERATIONS RESEARCH (700) BUSINESS AND MANUFACTURING APPLICATIONS

Abstract

The Hewlett-Packard Company makes no warranty, expressed or implied, and assumes no responsibility in connection with the operation of the contributed program material attached hereto.

CLASSIFICATION CODE CATEGORY

（Not all categories have programs．Please refer to the INDEX to HP BASIC Program Library for available programs in HP BASIC）

100

DATA HANDLING（VOLUME I）

```
101 INFORMATION STORAGE AND RETRIEVAL
103 TARLE HANDLING
103 TARLE HANDLING MANIPULATION
104 CHARACTER/SYMBOL MANI
10S CODE/RADIX CO
106 DUPLICATION
108 SORTING AND MERGING
108 DATA HANDLING UTILITIES
109 MEDIA CONVERSION
110 FILE MANAGEMENT
112 SPECIAL FORMAT DATA TRANSFER
1:4 PLOT ROUTINES IN HP BASIC
```

TESTING，DEBUGGING AND PROGRAMMING AIDS（VOLUMEI）
？ดI TRACING
2月2 INSTRUMENT TEST
203 DISC／DRUM EOUIPMENT TEST
2月4 MAGNETIC TAPE EOUIPMENT TEST
2aS GRAPHIC EOUIPMENT TEST
206 MEMORY SEARCH AND DISPLAY
2 297 DUMPINF
PQR CORE STORAGE TEST
PA9 CENTRAL PROCESSING UNIT TEST
210 RREAK POINTS
211 DERUGGING AIDS
212 PROGRAMMING AIDS
213 PAPER TAPE EOUIPMENT TEST
214 PIJNCH CARD EQUIPMENT TEST
？ 15 PRINTER EDUIPMENT TEST
216 AR－D／A EQUIPMENT TEST
？17 TELECOMMUNICATIONS EQUIPMENT TEST
218 SPFCIAL DEVICE EQUIPMENT TEST

300 MATH AND NUMERICAL ANALYSIS（VOLUME II）

```
3al MATHEMATICS, GENERAL
3a2 EXTENDEI-PRECISION ARITHMETIC
3a3 COMPLEX ARITHMETIC
304 RCD/ASCII ARITHMFIIC
305 ROOLEAN ALGERRA
306 FINCCTIONS, COMPUTATION DF
307 INTERPOLATION/EXTRAPOLATION
309 CURVE FITTING
310 NUMERICAL INTEGRATION
311 POLYNOMIALS AND POLYNOMIAL EQUATIONS
31? MATRIX OPERATIONS
313 EIGENVALUES AND EIGENVECTORS
314 SYSTEMS OF LINEAR EQUATIONS
315 SYSTEMS OF NON-LINEAR EQUATIONS
316 INTEGRAL TRANSFORMS
317 NUMERICAL DIFFERENTIATION
31R ORDINARY DIFFERENTIAL. EQUATIONS
319 PARTIAL DIFFFRFNTIAL FQUATIONS
```

PROBABILITY AND STATISTICS（VOLUME II）

```
4a1 UNTVARIATE AND MULTIVARIATE PARAMETRIC STATISTICS
4@2 TIME SERIES ANALYSIS
4M3 DISCRIMINANT ANALYSI
404 REGRESSION ANALYSIS
405 RANDOM NUMBER GENERATORS
4 0 6 ~ P R O R A R I L I T Y ~ D I S T R I R I J T I O N ~ S A M P L I N G ,
407 NON-PARAMETRIC STATISTICS
4a& STATISTICS, GENERAL
409 CORRELATION ANALYSIS
41日 ANALYSIS OF VARIANCE AND COVARIANCE
4 1 1 ~ F A C T O R ~ A N A L Y S I S ~
413 GFNFRAL PRORARILITY
```

```
SAI SOCIAL AND REHAVIORAL SCIENCFS
5a? GFOPPHYSICS
503 fenlogiy
5a4 OCFANOGRAPHY
```


VOLUME III
 CONTENTS

600 MANAGEMENT SCIENCES AND OPERATIONS RESEARCH

NAME TITLE
ORDER NO.

ANNUI T	ANNUITY ANALYSIS	36074
BALSHT	PROFORMA INCOME STATEMENT AND BALANCE SHEET	36075
BNDPRC	BOND PRICE ANALYSIS	36076
BNDS WH	BOND SWI TCH ANALYSIS	36077
BNDYLD	BOND YIELD ANALYSIS	36078
BNKRSV	BANK RESERVE CALCULATIONS	36079
BUDGET	DEPARTMENTAL MANAGER'S BUDGETING PROGRAM	36073
CAPDCF	CAPITAL INVESTMENT ANALYSIS (DISCOUNTED CASH FLOW METHOD)	36825
CAPINV	CAPITAL INVESTMENT ANALYSIS	36080
CSHFL	CASH FLOW ANALYSIS	36142
CTC ${ }^{\text {c }}$	CTC MANUFACTURING PARTS CONTROL	36210
C TC2	CTC INVENTORY CONTROL FOR FINISHED PRODUCTS	36211
CTC3	CTC PROJECTION PROGRAMS	36212
CTC 4	CTC PAYROLL PROGRAMS	36213
CTC5	CTC ACCOUNTS RECEIVABLE	36214
CTC6	CTC ACCOUNTS PAYABLE	36638
DEPCOM	DEPRECIATION METHOD COMPARISON	36082
DROI PB	DISCOUNTED RETURN ON INVESTMENT AND	36179
	PAYBACK	
EQUITY	COST OF EQUI TY CAPITAL	36083
EXDRSK	EXTENDED RISK ANALYSIS	36084
EXPEND	BUDGET EXPENDI TURES VS. TARGETS MONITOR	36111

VOLUME III
 CONTENTS (Continued)

700 BUSINESS AND MANUFACTURING APPLICATIONS (Continued)

NAME
TITLE
ORDER NO.
EXSMOO EXPONENTIAL SMOOTHING ON PRICE DATA 36085
FINFLO CALCULATES PRESENT VALUE - STREAM OF CASH 36711 FLOWS
GCHLIN RATING INVESTMENT FUNDS 36503
GDAPI ABNORMAL PERFORMANCE INDEX 36507
GDPA EFFICIENT 'CORNER• PORTFOLIOS 36508
GFNRAT FINANCIAL RATIOS 36510
GIRRPV INVESTMENT RETURN (CASH FLOW) 36513
GKASSF WARRANT PRICE CALCULATION 36514
GKCOST PRICE/EARNINGS RATIO CALCULATION 36515
GNMRVB SECURITIES PORTFOLIO ANALYSIS AND 36530
DETERMINATION
GNPSUM GROSS NATIONAL PRODUCT SUMMARY 36086
GRISKA RISK ANALYSIS IN CAPITAL INVESTMENT 36543
GSTKVL STOCK VALUATION 36545

GTHOR SECURITIES EPS GROWTH 36553
GVPDET PLOTTING DATA 36554
IATA.1 CALCULATE AIR FREIGHT RATES 36164
IATA.C CALCULATES BREAKPOINT OF IATA CONTAINERS 36241
IATATA ANALYSIS OF IATA AND ATA UNITIZATION 36876
IN/OUT INPUT/OUTPUT ANALYSIS ON ECONOMIC FLOWS 36088
INACNT NATIONAL INCOME \& PRODUCT ACCOUNTS 36087
INSTMT INCOME STATEMENT 36089

LEASIN LEASE INCOME 36194
LENDER SIMPLE LOAN ANALYSIS 36090
LESSEE LEASE ANALYSIS AS DETERMINED BY THE LESSEE 36091
LOAN LOAN AMORTIZATION 36226
MARKOW SECURITIES PORTFOLIO USING MARKOWITZ MODEL 36092
MCOST COMPARE AND EVALUATE UP TO 1000 MORTGAGE 36769
MKBUY MAKE-BUY DECISION ANALYSIS 36093
MORGAG MORTGAGE ANALYSIS 36094
REP DATA CENTER INVENTORY REPORT GENERATOR 36177
SALES SALES COMMISSION REPORT 36095
SAVING COMPOUND INTEREST 36768
STKINC STOCK MERGER INCENTIVE PROGRAM 36096
STKRTN STOCK RETURNS REPORT 36098
STKSMO EXPONENTIAL SMOOTHING AS A STOCK GUIDE 36099
STKVAL STOCK VALUE \& EVALUATION REPORT 36100
TRCK.1 CALCULATE TRUCK FREIGHT RATES 36174
TRUINT TRUE ANNUAL INTEREST RATE. ANALYSIS 36101
VRRC INVESTMENT STRATEGY ANALYSIS 36557

VOLUME III CONTENTS

600 MANAGEMENT SCIENCES AND OPERATIONS RESEARCH	
Name title	Program NUMBER
CPATH : CRitical path evaluation	361718
DECSN : TOP MANAGEMENT DECISION GAME	36065C
DYNPRO:DYNAMIC PROGRAMMING MODEL	36067A
GCPATH:CRITICAL PATH ANALYSIS	36504A
GCPMI :CRITICAL PATH ANALYSIS	36505A
GINTLP:LINEAR PROGRAMMING-VARIABLES restricted to values of one or zero	36512A
GLp :LINEAR PROGRAMMING	36516A
GLPSA1:LINEAR PROGRAMMING TWO-PHASE SIMPLEX METHOD	36517A
GNETFL: NETWORK FLOW	36529A
GSSS : SMALL SYSTEMS SIMULATOR	36552A
gvote : Committee choice analysis	36550A
LINPRO:LINEAR PROGRAMMING MODEL	36068C
LINQUP: SOLVES EITHER A LINEAR OR QUADRATIC PROGRAMMING PROBLEM	36710A
LNTRND:LINEAR TREND FORECASTING	36069A
MZMZl : QUEUEING SYSTEM	36655A
mZMzS : \&UEUEING SYSTEM	36656A
MAXFLO:MAXIMUM FLOW in a Capacitated network	36609A
SHORTR:SHORTEST ROUTE PROBLEM	36610A
timdif:first differences, percent changes, PERCENT DIFFERENCE	36801A
transp : TRANSPORTATION PROBLEM	36230A

700 BUSINESS AND MANUFACTURING APPLICATIONS

ANNUIT: ANNUITY ANALYSIS	36074A
BALSHT:PROFORMA INCOME STATEMENT AND BALANCE SHEET	36075A
BNDPRC: BOND PRICE ANALYSIS	36076B
BNDSWH:BOND SWITCH ANALYSIS	36077A
BNDYLD: BOND YIELD ANALYSIS	36078B
BNKRSV: BANK RESERVE CALCULATIONS	36079A
BUDGET: DEPARTMENTAL MANAGER'S BUDGETING	36073A
CAPDCF: CAPITAL INVESTMENT ANALYSIS (DISCOUNTED CASH FLOW METHOD)	36825A
CAPINV:CAPITAL INVESTMENT ANALYSIS	36080A
CSHFL : CASH FLOW ANALYSIS	36142B
CTCl : CTC MANUFACTURING PARTS CONTROL	36210B
CTC2 : CTC INVENTORY CONTROL FOR FINISHED PRODUCTS	36211B
CTC3 : CTC PROJECTION PROGRAMS	36212B
CTC4 : CTC PAYROLL PROGRAMS	36213B
CTC5 : CTC ACCOUNTS RECEIVABLE	36214B
CTC6 : CTC ACCOUNTS PAYABLE	36638A
DEPCOM: DEPRECIATION METHOD COMPARISON	36082A
DROIPB: DISCOUNTED RETURN ON INVESTMENT AND PAYBACK	36179A
EQUITY:COST OF EQUITY CAPITAL	36083A
EXDRSK:EXTENDED RISK ANALYSIS	36084A
EXPEND: BUDGET EXPENDITURES VS. TARGETS MONITOR	36111B

VOLUME III CONTENTS (Continued)

700 BUSINESS AND MANUFACTURING APPLICATIONS (Continued)

NAME TITLE	PROGRAM Number
EXSMOO: EXPONENTIAL SMOOTHING ON PRICE DATA	36085B
Finflo: CALCULATES PRESENT VALUE - STREAM OF CASH FLOWS	36711A
GDPA : EFFICIENT 'CORNER' PORTFOLIOS	36508B
GFNRAT:FINANCIAL RATIOS	36510A
GIRRPV: INVESTMENT RETURN (CASH FLOW)	36513A
GKASSF: WARRANT PRICE CALCULATION	36514A
GKCOST:PRICE/EARNINGS RATIO CALCULATION	36515A
GNMRVB: SECURITIES PORTFOLIO ANALYSIS AND DETERMINATION	36530A
GNFSUM:GROSS NATIONAL PRODUCT SUMMARY	36086A
GRISKA:RISK ANALYSIS IN CAPITAL INVEStMENT	36543A
GSTKVL: STOCK VALUATION	36545A
GTHOR : SECURITIES EPS GROWTH	36553A
IATAZl: CALCULATE AIR FREIGHT RATES	36164B
IATAZC:CALCULATES BREAKPOINT OF IATA CONTAINERS	36241B
INZOUT: INPUT/OUTPUT ANALYSIS ON ECONOMIC FLOWS	36088B
INACNT: NATIONAL INCOME \& PRODUCT ACCOUNTS	36087A
INSTMT: INCOME STATEMENT	36089B
LEASIN:LEASE INCOME	36194A
LENDER:SIMPLE LOAN ANALYSIS	36090A
LESSEE: LEASE ANALYSIS AS DETERMINED BY THE LESSEE	36091B
LOAN : LOAN AMORTIZATION	36226A
MARKOW: SECURITIES PORTFOLIO USING MARKOWITZ MODEL	36092B
MCOST : COMPARE AND EVALUATE UP TO 1000 MORTGAGE PAYMENT PLANS SIMULTANEOUSLY	36709A
MKBUY : MAKE-BUY DECISION ANALYSIS	36093A
MORGAG:MORTGAGE ANALYSIS	36094C
REP : DATA CENTER INVENTORY REPORT GENERATOR	36177A
SALES : SALES COMMISSION REPORT	36095A
SAVING: COMPOUND INTEREST	36708A
SIMLAT:SIMULLATION OF INVESTMENT RETURNS WITH SENSITIVITY ANALYSIS	36888-18019
STKINC:STOCK MERGER INCENTIVE PROGRAM	36096A
STKRTN:STOCK RETURNS REPORT	36098A
STKVAL: STOCK VALUE AND EVALUATION REPORT	36100A
TRCKZl: CALCULATE TRUCK FREIGHT RATES	36174A
TRUINT:TRUE ANNUAL IN	361

TITLE:
DESCRIPTION:
36171
This program will compute CPATH and print a summary of earliest and latest
event times and actual and maximum activity times, and indicate which are
on the critical path.

SPECIAL CONSIDERATIONS:

The program will handle up to 75 events and 150 activities.
To change bounds, alter dim-statement 9012 and delete input checks for 75 and 150.

At least one activity is necessary.
For each activity, the predecessor event must have a lower ID \# than the successor event.

```
CPATH, page 2
```


RUN

CPATH

* CRITICAL PATH *

```
DO YOU UISH TO ENTER DATA FROM THE TELETYPE AS IT BECOMES NECESSARY,
OR TO ENTER IT INTERNALLY WITH 'DATA'-STATEMENTS? (ENTER 'T' FOR
TELETYPE, 'D' OTHERWISE)?T
HOW MANY EVENTS DO YOU HAVE?6
ENTER THE ID NUMBER OF THE FIRST EVENT?1
THE ID NUMBER OF THE NEXT EVENT?2
NEXT?3
NEXT?4
NEXT?5
NEXT?6
HOW MANY ACTIVITIES DO YOU HAVE?7
FOR THE FIRST ACTIVITY, ENTER THE NUMBER OF THE EVENT PRECEEDING IT,
THE NUMBER OF THE EVENT SUCCEEDING IT, AND THE TIME OF THE ACTIVITY.
?1,2,1
FOR THE NEXT ACTIVITY?2,5,1
NEXT ?5,6,1
NEXT?1,6,5
NEXT ?1,3,1
NEXT?3,4,1
NEXT?4,6,1
```

DO YOU HAVE ANOTHER PROBLEM? ('Y' FOR YES, 'N' FOR NO)?N
DONE
TITLE:
DESCRIPTION:
DECSN
TOP MANAGEMENT DECISION GAME
This program furnishes the simulated business conditions and the mechanics
for operating a business game for any number from lo to 60 participants.
The participants form into teams representing ficticious companies and
make decisions on price, promotion, production, capacity, research, incen-
tives, and training in a one product market. The program provides a set
of interrelated market and internal conditions that approximate real con-
ditions, even including some random perturbation. The team decisions are
converted into results fast enough so the results can be given back to the
teams during the same class period, enabling the teams to make up to three
sets of decisions during a two or three hour period. This quick feedback of
results has been found to have excellent educational reinforcing characteris-
tics. (See "ECONOMIC BACKGROUND" for further discussion.) An income state-
ment for each team is printed out. The program recalculates sales units
when the combination of production cost and beginning inventory are too
low to meet sales units as generated by the first part of the program.
Each income statement is completely formated to 7 significant digits and
each income statement is printed on an ll inch sheet of paper.

This game gives the participant practice in making top level management decisions under time pressure. The decisions to be made call for attention to the inter-dependencies among the various decision areas, in other words, to the need for integrated policy thinking. Through the use of a Hewlett-Packard table top computer (Model 2114A with an 8 K word memory) which can be brought right into the classroom, the results of participant decisions can be made available to them in a very short time after the decisions are made. In fact, during a two hour class period, the participants can play two or three periods of the game, getting their results back each period only minutes after turning in their decisions. Finally, the simulated business situation programmed into the computer is considerably more complicated than would be possible for a paper and pencil game with the same turn-around speed. All the calculations described below are performed as automatic functions of the computer program.

As is the case in the market place, some carry-over exists in this game from period to period. For example, the promotion contracted for in one period will also affect sales in the following periods. The same is true of expenditures for Research and Training.

This game, departing from the practices present in most similar games, makes the participant teams compute their own accounting statements. The computer printout does not supply these figures. The participants are thus forced to consider accounting relationships more than otherwise. Experience has shown that this feature is a valuable part of this game.

The participant should develop a sense of the market as he plays. He should attempt to "psych-out" the demand relationships as functions of his decisions. It is to his interest, therefore, to adopt somewhat more extreme strategies in this game than would be safe under real business conditions. In this way, he can learn without cost, and in a short time, lessons that might cost much more, both in time and money in the real market. It is worth pointing out especially here the role of strategy in business as opposed to decision. The participant will learn little from a policy of changing decision rationale frequently. He will learn much more from the results of having made a series of decisions according to a certain rationale that he wishes to test, i.e., a strategy. This is true in real life and is true in this game.

Market Demand

In general, demand is a function of price and promotion; the higher the promotion or the lower the price, the higher will be the demand.* The participant must be concerned not only with demand relations, however, but also with production costs at various levels of capacity. Inventory costs also must be considered. These factors can be controlled to some degree by attention to investment in training, incentive and research activities, but the final results will be dependent on all these elements acting together. Finally, there are forces acting on demand that are outside the control of the participants, i.e., the general market trends. The game starts off with a growth trend for a few periods to invite attention to necessary increases in capacity. Then there is a market decline for a few periods, inviting attention to inventory costs and overextended production capability. Finally, there is another rise in demand. The result affords an excellent opportunity for the participant to practice forecasting talents.

[^0]The market trend is given to the game by the following relationship:

$$
F 2=1+.2 \mathrm{P}-.036 \mathrm{P}^{2}+.0019 \mathrm{P}^{3}
$$

where P is the number of the period being played.

The relation of demand to price and promotion is given by the following:

$$
F 1=\frac{75}{P} \times \frac{300+S}{1500+S}
$$

where P is the price and S is the promotion expense. In the case of total demand, mean price and promotion figures are used. In the case of team demand, the team's price and promotion figures are used.

For the total demand, the relation is:

$$
D=N \times F 1 \times F 2 \times 60,000
$$

where N is the number of teams. F1 gives the effects of price and promotion, and F2 gives the effect of the general market trend. The base demand is seen to be 60,000 units per team.

In addition to the factors mentioned above, there is a random perturbation of demand figures, so that a team's demand will not conform precisely to the functions noted above. This perturbation produces up to ten percent variation from the defined functions and can be thought of as the result of extraneous market conditions.

The Production Decision

The production cost is constant in any given period up to a production level which is 5000 units less than full capacity. Above this point, there is a per unit increase of 70 percent for production cost. For the participant this will result in gradually increasing average costs as he approaches and exceeds capacity. It might be noted that the participant may assume that he cannot produce above capacity. This is an erroneous assumption. Production in excess of capacity can be justified theoretically on the basis of creating a night shift, or farming some of the work out, etc.

The Capacity Decision

The capacity decision is made three periods in advance of the availability of the facilities contracted for. The facilities are not paid for until they are ready. The payment results in a reduction of the cash, but does not result in a cormensurate reduction of profits in the period in which the facilities become available. The reduction in profits comes about through a steady state increase in administrative or overhead costs, so that, on a period by period basis, the cost is amortized. The amount of return on investment for money put into increased plant capacity will be favorable if this extra capacity is used, but it will just be extra expense if not used.

The Research Decision

Because it has been found advisable in this game for all teams to consider that they are selling the same product, research in product design is not appropriate. Therefore, it is assumed that research input is for the purpose of improving the process and that success in research will result in lower production costs. The research expenditures create a probability of breakthrough, the more expenditure the more
the probability. Only one breakthrough is possible in any one period and it lowers the production costs by 1.5 percent for every period from the point of breakthrough on. New breakthroughs increase the cost saving by the same factor. Obviously, the more production that is scheduled, the larger will be the resulting saving. The assignment of probabilities of breakthrough results from a random number simulation in the program. The characteristics of this probability function are such that a steady $\$ 80,000$ per period investment in inventory yields the best return on investment.

The Incentive Decision

It is assumed that trying to apply a wage incentive to either the skilled or unskilled classifications will result in no improvement at all, due to the practical difficulties involved. However, applying a wage incentive program for the semi-skilled workers will result in some substantial improvement. The improvement will take the form of increase in apparent capacity, so that, when a team is producing at or above stated capacity, the production costs will be less, enough so that a satisfactory return on investment (in the incentive plan) occurs. It is assumed that unit production costs will not be affected, because the form of the incentive is such that labor will get as much per unit of production under incentive as before. Therefore, savings will result from a reduction in the costs of above capacity production, in the manner stated.

The Training Decision

The training decision assumes that there will be a lower production cost associated with increased training expense. The effect of this training input, however, will attenuate over time so that the effect will be far less two or three periods hence than it is directly after instituting the program.

In Summary

The carry over of effects (Research, Training, etc.) occurs thru the continual updating of the last (data statement) matrix in the printout, as mentioned in the Instructions for the Referee. It is important either to carry out this updating thru entering the new data by hand from the last matrix or by entering it by tape in the manner described.

It should be noted that this game was developed for 12 periods of play. If the instructor plays many more periods, it would be advisable to move from [$P=12$] back to $[P=5, P=6$, etc.]. If this is not done, the instructor will find the market tendency rising at a rate without bound.

In general, there is no existing equity relationship in the case, because there is no fixed asset item nor is long term indebtedness or equity mentioned. Some instructors using the game may wish to add these figures, making it possible to develop balance sheet relationships and financial ratios which are not possible under present conditions. This will be easy to accomplish.

INSTRUCTIONS FOR THE REFEREE

The referee should first make sure that the Basic compiler is in the computer (Hewlett-Packard Model 2114A, 8 K memory) and operative. He should then read in the game tape. After initializing the game program according to INSTRUCTIONS FOR INITIALIZING, the game will be ready to play.

The participants in the game should be divided into teams, ideally no fewer than three, nor more than seven participants in each team. It is best when there are at least three teams and the computer program will not handle more than eight teams. Each team should be encouraged to select a chairman (or president), an accountant, and appoint members to represent the marketing, personnel, and production functions.

The referee should then make sure that each team has an official team booklet, with copies of Forms I through IV arranged in a set for three years (four periods each year). The official set should have initial data (as per copy attached to this set of instructions) entered on the forms. This should include data regarding production, capacity, inventory value, administrative cost, and cash balance. Each member of each team should have a set of PLAYERS' INSTRUCTIONS, a copy of Chart I showing the past twenty-four periods of sales experience for his team, and.copies of Forms I through IV that he can use for calculations. It is advisable to make this material available for study sometime before initiating play of the game.

The referee should then explain the philosophy of the game, pointing out that it is up to the teams to find out how the market reacts to their decisions and explaining the decisions to be made in the play for the first period on Form I. It is wise at this point to discuss the basic nature of the game, the fact that the teams are interdependent, the fact that market response will be dependent on the team decisions, to some degree, but that the market response will also be determined by general economic trends and by some random variation. Also, it can be pointed out that one quarter's decisions will affect results not only for that quarter, but for future quarters as well.

Receiving the Decisions

Upon receiving the booklets (with decisions) from the teams, the referee should verify the calculations and the entries, making sure that enough lead time is given for decisions regarding new production and capability. He should check profit calculations and should assure himself that each team has entered the cost of negative cash balance, if the team incurred some.

Entering Data

The referee then types the decisions into the computer program as data. (See INSTRUCTIONS FOR ENTERING DATA.) Decisions as to price, promotiom, production, capacity, research, and incentives are typed into memory locations from 351 to 358 (as needed), team one's decisions being typed into 351 , team two's into 352 , etc. In the event that some team other than team one is the first to turn in its decisions, that team's decisions can be entered as soon as the form arrives. For example, if team four is the first to turn in its decisions, the decisions can be entered into memory location 354 . Decisions as to training are entered into memory locations 361 through 368 (as needed) in the same way that data was entered in the 351-358 block. The referee should check the means for entering training data carefully before proceeding. It should be noted that the data for incentive wages and for training must be coded before entry.

For incentive wages, the questions involve only whether the team has paid the full cost of the incentive plan and whether the plan is for the semi-skilled workers or not. A plan for another group of workers produces no effect at all. A plan, fully paid for, for semi-skilled workers, increases plant capacity, thereby causing less production expense when the plant is working near or above capacity. In coding the plan, the number entered should be 30 or more if the plan is for semi-skilled workers and less than 30 if the plan is for one of the other two classes of employees, or if there is no plan.

As for training, the number entered is a function of the number of periods since a training program was installed. In the first period, whether or not a training program was installed, this number will be (0). This is because the results of the training program are not apparent in the period for which it is installed. In the next period, if a training program was installed in the first period, the number should be (6). One period after the introduction of an additional new training program, six should be added to the number which appears as the last item of data in subject team's line in the last matrix printed out from the previous period (the matrix characterized as data statements). The data for the present period should be corrected by this increase. Note that, in entering such data, the whole data line must be entered, even though most of the data is as it was. For example, if team 4 had initiated a training program last period, and this period's data line had been " 364 DATA $70,1,12,525,80,3.235$ ", it should be reentered as "364 DATA 70,1,12,525,80,9.235".

Running the Program

First, the "ON" button for the tape punch should be pressed and the "HERE IS" button should also be pressed. This will avoid any residual punching on the tape. Now, press the "OFF" button on the tape punch. At this point, after making sure that the program is initialized and all new data is fed in, type "RUN" and press the carriage return button. This should cause three matrices to be printed out along with two pieces of summary information. At the end of the second piece of summary information, "Total Promotion, $\$ X X X$ ", there will be a pause of one second. During this second, press the "ON" button of the tape punch. All the new data for data block 361 through $36 n$ will be typed out and punched onto the tape (n depending on the number of teams). At the end of this series of data statements there will be another pause of one second. At this point press the "OFF" button. This will insure that only the data statements are present on the tape. The computer will then type "READY". After this has happened, press the "ON" button again and press "HERE IS". This will give you some blank tape at the end of the data. Then press the "OFF" button. Immediately then put this piece of tape in the tape reader and read in the new data. The computer is now initialized for the next period of play. The first matrix printed out will simply show the team decisions for the referee's verification.

The referee should then insert the "sales" figures (in units), the "Prod Cost" figures (in dollars), and the "Admin Cost" figures (in dollars) from the second matrix in the appropriate places on the team forms. The last column, "unit cost", will be useful in the final game analysis. He can then hand the official booklets back to the teams. During the second play of the game, the teams will need assistance in completing the forms especially the Income Statement. It is probably appropriate to explain the forms to the participants as a group, going down through the necessary calculations.

Summarizing Results

After each period is decided, the referee should post on the blackboard: 1) the prices charged by each team last period; 2) a combined sales total for all teams; 3) the total amount charged by all teams for promotion. After each four periods post the year's profit for each team. Each period represents three months.

At the end of each four periods (i.e., each year) the referee will calculate a total profit for each team for the year. He will charge the team an income tax payable in the following period of play. This income tax will be 50% of the total profit calculated. This figure will be entered on Form II on line 15, labeled "Tax". The team must treat this as an expense in said period.

Upon completing the game for any one day's play, the referee should retain all official team booklets, allowing the participants to keep their calculation sheets. He should also read out the present stage of the game onto tape. This he does by first typing "PLIST" on the teletype, waiting a second and then pressing the "ON" button for the tape punch. The tape will be furnished with blank leader and follower in the process and can be used to initiate play of the game for the next period. Only the new decision data and the new period number will have to be furnished.

Game Analysis

Upon completion of all the plays of the game, the referee should post records of the performances of all teams. A suitable form for such a presentation is embodied in Chart II with a series of trend lines for each team depicting various criteria useful in analyzing the game experience. The teams should be encouraged to analyze their own experiences for the benefit of the other teams in the analysis session. The referee can comment as he feels appropriate. The data for the presentation can be found in the official team booklets and in the printouts from the computer.

Note: (1) It may be useful at times to experiment with the game in order to determine how the total demand function behaves. For such purpose, the experimenter may wish to print out only a selected portion of the total printout. He can eliminate printing Matrix A for example, simply by one instruction, "9 GO TO 17". Similarly he can eliminate printing the second matrix by typing " 285 GO TO 330". The last (data statement) matrix can be omitted by typing " 379 GO TO 400". When these matrices are again desired, simply type "9" then return, " 285 " then return, and "379" then return.

Note: (2) A copy of the referee's data sheet is included at the conclusion. It is useful to enter team decision data on this sheet before entering the data into the computer. In this way errors in entering data can be avoided. Further, information on this sheet will be useful in the final game analysis.

INSTRUCTIONS FOR INITIALIZING GAME

1. The letter " N " represents the number of teams in the game. In order to set up the program for a given play of the game, this number will have to be inserted in the following manner:

Type "4 LET N = (the number of teams)"
For example, if the number of teams is to be 5 , the instruction is:
"4 LET N = 5"
2. Next, the period of play must be inserted. Assuming that this is the first period, this is done as follows:

Type "5 LET P = 1"
For the third period of play it would be:
" 5 LET P = 3"
This instruction will give a market trend to the demand function throughout the game. As originally set up, this trend will call for rising total demand (all other things being equal) during the initial four periods. The demand will then level off and drop until the ninth period. The demand will then level off and rise again.*
3. The tape is set up initially for eight teams. For this reason, data will have to be omitted for any teams above the actual number playing. This will have to be done in two different data blocks, 351 to 358 and 361 to 368 . The omissions should be from the higher numbers in each case to the lower numbers. For example, if the actual number of teams is 5 , simply type the following numbers, pressing "return" after each number:
$356,357,358,366,367,368$
4. The data representing cumulative effects of past decisions are already entered in the initial tape. These entries won't have to be changed for the first period's play.

The game is now ready for the first period.
*If the instructor contemplates playing many more than twelve periods, it would be wise to move from period 12 to period 5 and then to period 6 , etc. Using period numbers much higher than 12 will introduce demands that will probably be too high for practical purposes.

PLAYER INSTRUCTIONS

(To be given to all players)

You are a member of a closely knit management team that is competing directly with several companies for a share of an industrial market. All of the companies are selling a product that is technically similar. Price and promotional effort are the key elements affecting volume. Profits result from a careful assessment of market demand, competitor's activities, and sound production and expense planning and control.

As in any business, a number of forms must be used to communicate your decisions and to report the company's position. Each period you must determine the: (1) product price, (2) promotion expenditure, (3) amount to be spent on plant expansion, (4) volume of raw material to be placed into production, (5) amount of research investment, (6) amount of expenditure for an incentive program, and (7) amount of investment in a training program. These decisions will be fed into a computer simulation representing a real market situation, and the results will be given back by the referee. Your team's results will be determined by (1) your decisions, (2) your competitors' decisions, and (3) the market conditions (affected by some trend indices). Additionally, there will be some random variation.

Selling Price (Line 1)

All other things being equal, the higher your promotion outlay, the more units of your product the market will absorb and the lower the price the more units of your product the market will absorb. However, the number of units sold by your firm will depend on the price and promotion outlays set by your firm in relationship to competitor's actions. There will be cyclical, seasonal and random influence in total market demand, as well as influence from the average price charged by all competitors and the total amount they spend on promotion. Orders must be filled from currently available merchandise; and inventory deficiency results in lost sales.

Selling prices can only be changed in one dollar increments with a maximum variation of two dollars per unit from one period to the next. Assume that the last price charged was $\$ 30.00$ per unit and your company sold 59,000 units.

Over the past several years each competitor has maintained an equal share of the market. Chart I portrays your company's sales volume over the last twenty-four periods. Your marketing research staff has reported that they expect the upward trend to continue.

Promotion Budget (Line 2)

This is the amount spent for advertising and personal sales effort. The budgeted amount cannot be altered more than $\$ 100,000$ from one period to the next, and changes made in $\$ 50,000$ steps. Your promotion budget last period was $\$ 450,000$. The effect of promotional effort is somewhat cumulative. That is, there will be some effect on sales in later periods due to this period's promotion.

Production (Line 3)

During any period you may begin the ordering and production cycle for any number of raw materials units. The complete cycle requires two periods: one period for the raw materials to arrive after they have been ordered and one period to change the inputs into finished goods. Therefore, if a stock of finished inventory is needed for sale during period five for example, the raw material order must be placed no later than the beginning of the third period. Therefore, the production decision must be made for the third period.

Two periods ago, 60,000 units of raw material were ordered. They can be sold during this first game period. Last period, 65,000 units were ordered and will be saleable during period II. If you wish to have additional inventory available for sale during the third period, enter the desired quantity now on line three, period III.

There is a 10% inventory carrying charge each period. This charge is based on cost value of the ending inventory. Your ending inventory last period was 41,000 units, valued at $\$ 310,000$. Thus the carrying charge would have been $\$ 31,000$ last period.

Your manufacturing cost is about $\$ 10$ per unit when production is near plant capacity. Above capacity production leads to overtime rates and other charges; if your plant operates much under its full potential, the $\$ 700,000$ fixed charges will raise the unit costs. However, this should not be construed as forbidding you to produce above capacity.

Plant Capacity Additions (Lines 4, 5, and 6)

Initially, your plant has a 75,000 unit per period capacity. Every $\$ 60,000$ spent for expansion will increase the plant's capacity 1,000 units. An expansion program initiated during one period is not completed until three periods have passed. Payments are not made for plant additions until the new space is available for use.

Your plant will have a 77,000 unit capacity during Period III. If you believe more capacity will be needed during the fourth period, this expansion program must be started now in the first period. Enter this decision on lines 7,8 , and 9 in the space provided under Period IV.

Research and Development (Line 7)

An investment may be made for research and development during any period. The more money that is put into research, the greater the probability of a breakthrough. For any investment made there is a period of delay due to the time needed for research before any results are realized. If a breakthrough does occur, the advantages will be realized through a reduction in total production cost for each period after the research investment repays itself. Repetitive breakthroughs are possible if research investments are repeated. The same total amount invested over time as a steady state input will give a greater possibility of breakthrough than if it is invested all in one period. That is, crash research programs, while effective, are more expensive than regular research investment. Investments in research must be made in multiples of $\$ 20,000$. There is an investment maximum of $\$ 160,000$ per period.

Incentive Wage Program (Line 8)

An incentive program may be installed for all levels of the production force: unskilled, semi-skilled, and skilled. Any one, all, or a combination of these segments may be put on incentive during any period. The costs of the program include an initial cost for determining each job's productivity measurement, for establishing evaluation methods, and for making accounting adjustments. This cost is $\$ 50,000$ for any or all groups of workers able to be put on incentive. There will also be a steady-state cost of $\$ 10,000$ per period for each skill level on incentive. This is needed to maintain the control, evaluation, and accounting procedures. The advantage of this program's establishment is that it may substitute for additions to the plant capacity. The increased production advantage of the program discontinues if the payments cease. As 60% of the work force is semi-skilled, the benefits of this group being put on incentive would be evidenced soonest -- during the period in which introduced. If this program is introduced, enter the amount of incentive expenditure on Line 4 of Form I. The total unit production, including increments added by incentives, will be taken into account when the computer calculates the production cost.

Training Program (Line 9)

It has been determined that the introduction and use of an extensive training program for production workers will result in lower total production costs whether production is at full capacity or not. If it is decided to begin this program, the expense will be one investment of $\$ 30,000$. This expense will include the cost of instructors and educational material. It will take a period before the details of the program's setup are complete and the instructors are trained. Then there will be a reduction in production costs. The amount of total production cost reduction will exist from time to first effect, in decreasing amount from period to period.

Negative Cash Balance

At the end of every period in which your cash balance is negative, you will be charged an extra 5% of the amount by which it is negative. Make your calculations on scratch paper first to see if you will have a negative cash balance. Then add this cost if so. This is the cost of borrowing money to cover debts.

Income Tax

At the end of each four periods (lyear) the referee will calculate an income tax to be paid in the following period. It will be entered in Form II, line 95 and also in the space provided.

Completing the Income Statement

Step 1: The unit sales will be entered in Form II, line one, by the judge. Multiply the unit sales figure by the price charges by the company this period. Enter the dollar sales volume on line two.

Step 2: Line three, Beginning Inventory, is the same as line six, Ending Inventory, from the previous period.

Step 3: Line four, Production Cost, is entered on Form II by the judge.

Step 4: Line five, Merchandise Available for Sale, is the sum of lines three and four.
Step 5: Multiply the Unit Sales, line one, by the average unit cost (Form IV, line six) and enter the product on line seven as the Cost of Goods Sold. Form IV is provided as a worksheet to aid in calculating the number of units of ending inventory and also the average unit cost.

Step 6: Subtract line 7, Cost of Goods Sold, from line 5, Merchandise Available for Sale, and enter on line 6, Ending Inventory.

Step 7: Subtract line 7, Cost of Goods Sold, from line 2, Sales, and enter the difference on line 8, Gross Margin.

Step 8: Enter the Promotion Expense on line 9, from Form I, line 2.
Step 9: Enter the Research Expense on line 12 from Form I, line 7.
Step 10: Enter the Incentive Cost on line 10, from Form I, line 8.
Step 11: Enter the Training Expense on line 11 from Form I, line 9.
Step 12: Inventory Carrying Charge, 1 ine 13 , is 10% of line 6, Ending Inventory.
Step 13: The Overhead is provided by the judge. It is a function of capacity.
Step 14: Add lines 9 through 15 and subtract the total from line 8. Enter the difference on 1 ine 16.

Negative Cash Balance

Step 1: Complete the Cash Available Statement - Form III. The "cash end this period" is the result of subtracting the sum of 1 ines 4 and 5 from the sum of 1 ines 1,2 , and 3 .

Step 2: If there is a negative cash balance at the end of the period, enter 5% of that figure as a penalty on the Income Statement, Form II, line 15. Reduce the Net Income (or increase the Net Loss) for the company for every period that there is a negative cash balance on Form III.

Average Unit Cost (Form IV, Line 6)

Calculate the average unit cost by dividing the value of total merchandise for sale (Form II, line 5) by the number of units available for sale (Form IV, line 30). This figure should be entered on line 6 of Form IV.

Class Date

Number of Teams \qquad Judge

Location	Designation	Team \#	Price	Prom.	Prod.	Cap.	Research	Incentive
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							

DECSN, page 14

JUDGE'S FORM

Class	Management 460 (B)	Date	2/18/70
Number	Teams__ 5	Judge	Nords trom

Location	Designation	Team \#	Price	Prom.	Prod.	Cap.	Research	Incentive
351	DATA	1	30	500	65	75	100	30
352	DATA	2	30	850	100	80	160	20
353	DATA	3	31	500	55	75	30	10
354	DATA	4	29	650	90	80	10	0
355	DATA	5	26	500	65	75	80	30
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							
	DATA							

\qquad Year \qquad

1. Selling Price
2. Promotion Budget
3. Production, Units
4. Plant Cap. Add'ns, Units
5. Plant Cap. Add'ns, \$
6. Cum. Cap. Add'ns, \$
7. Research Inv't, \$
8. Incentive Prog. Exp., \$
9. Training Prog. Inv't, \$

I II	III	IV	

FORM II INCOME STATEMENT

1. Sales, Units
2. Sales, $\$$
3. Begin, Inv'y, \$
4. Production Cost, \$
5. Mdse. Av. for Sale, \$
6. Ending Inv'y, \$
7. Cost of Goods Sold, $\$$
8. Gross Margin, $\$$
9. Promotion Exp., \$
10. Incentive Cost, $\$$
11. Training Exp., \$
12. Research Exp., \$
13. Inv'y Carrying Charge, \$
14. Overhead, \$
15. Cash Shortage Charge, $\$$
16. Net Income (loss), \$

					Year's
:---					
Profit					
Income					
Tax					

Company \qquad X Year \qquad

1. Selling Price
2. Promotion Budget
3. Production, Units
4. Plant Cap. Add'ns, Units
5. Plant Cap. Add'ns, \$
6. Cum. Cap. Add'ns, \$
7. Research Inv't, \$
8. Incentive Prog. Exp., \$
9. Training Prog. Inv't, \$

I II	III	IV	
60,000	65,000		
		2,000	
		120,000	
75,000	75,000	77,000	

FORM II INCOME STATEMENT

1. Sales, Units
2. Sales, \$
3. Begin. Inv'y, \$
4. Production Cost, \$
5. Mdse. Av. for Sale, $\$$
6. Ending Inv'y, \$
7. Cost of Goods Sold, \$
8. Gross Margin, \$
9. Promotion Exp., \$
10. Incentive Cost, $\$$
11. Training Exp., \$
12. Research Exp., \$
13. Inv'y Carrying Charge, \$
14. Overhead, \$
15. Cash Shortage Charge, \$
16. Net Income (loss), \$

1. Cash, End of Last Per.
2. Inv'y End Last Period
3. Net Income This Period
4. Paid for Add'l Plant Cap.
5. Inv'y End This Period
6. Cash End This Period

FORM IV INVENTORY WORKSHEET

1. Beginning Inv'y
2. Units This Period
3. Total Units for Sale
4. Unit Sales, This Per.
5. Ending Inv'y, Units
6. Av. Unit Cost (II5/IV3)

FORM III CASH AVAILABLE

1. Cash, End of Last Per.
2. Inv'y End Last Period
3. Net Income This Period
4. Paid for Add'l Plant Cap.
5. Inv'y End This Period
6. Cash End This Period

I	II	III	IV
660,000			
310,000			
		120,000	

FORM IV INVENTORY WORKSHEET

1. Beginning Inv'y
2. Units This Period
3. Total Units for Sale
4. Unit Sales, This Per.
5. Ending Inv'y, Units
6. Av. Unit Cost (II5/IV3)

31,000			
60,000			
91,000			

1. Inventory

TITLE:
DESCRIPTION:
INSTRUCTIONS:

DYNAMIC PROGRAMMING MODEL
DYNPRO solves, by a standard algorithm, a somewhat general-purpose
dynamic programming model. The solution is imbedded in the inlet
state.

Before running, be certain that the dimension in line 9398

as are at least
e.g., if there are 20 values in the state variable, 9398 must be at least
as large as: DIM $F(21,4), G(21,4)$.
The user must also supply his own functions for the routines that are
unique to his application. These routines, and their locations are
described within the DYNPRO listing between lines 9012 and 9068.

SPECIAL

 CONSIDERATIONS:DYNPRO is limited to one state variable.

RUN

GET-SDYMPRO

```
9398 DIM F(12,4),G(12,4)
```

RUN
DYNPRO

* DYNAMIC PROGRAMMIMG MODEL *

HOW MANY VALUES ARE THERE IN THE STATE VARIABLETII
IF DIM-STATEMENT HAS NOT BEEN ADJUSTED TO F(LAST INPUT+1,4), ETC., THEN STOP PROGRAM AND DO SO NOW.

HOW MANY STAGES ARE THERET 4
WHAT IS TME SALES PRICET35
AND WHAT IS THE COST?30
AND THE FLOW RATE OF FEEDII. 5

. 37	4.35539E-02	. 87569	. 328432
. 36	4.09548E-62	. 674725	. 32426
. 35	3.29919E-82	. 493731	-321743
. 34	2.91687E-62	. 3366	. 316921
. 33	2.46202E-82	-204355	- 312039
- 32	1.66858E-62	. 101871	-308525
. 31	. 011286	3.20753E-82	. 30294
- 3	1.97483E-63	1.22468E-03	. 298848
STAGE NUMBER: $\cdot 2$	9.87229E-83	-. 226361	. 19867
-19	3.33882E-03	-. 077742	. 189573
. 18	9.75868E-03	-. 229798	. 178799
. 17	3.17376E-03	-7.50537E-82	. 169616
. 16	8.93324E-03	-. 211652	. 158927
. 15	2.83702E-63	-6.72003E-82	. 149659
. 14	7-82094E-03	-. 185064	. 139056
- 13	1.15506E-82	-. 273163	. 128683
- 12	3.61285E-03	-8.55038E-62	. 119564
. 11	9.97365E-03	-. 236801	-108811
-1	3.13576E-03	-7.48497E-82	9.96338E-02

DONE

TITLE:

DESCRIPTION:

Each project has several characteristics that are essential for analysis by the Critical Path Method:
(1) The project consists of a well-defined collection of jobs (or activities) which, when completed, mark the end of the project.
(2) The jobs may be started and stopped independently of each other, within a given sequence. (This requirement eliminates continuousflow process activities, such as oil refining, where "jobs" or operations necessarily follow one after another with essentially no slack.)
(3) The jobs are ordered - that is, they must be performed in technological sequence. (For example, the foundation of a house must be constructed before the walls are erected.)

First of all, each job necessary for the completion of a project is listed with a unique identifying symbol (such as a letter or number), the time required to complete the job, and its immediate prerequisite jobs. For convenience in graphing, and as a check on certain kinds of data errors, the jobs may be arranged in "technological order," which means that no job appears on the list until all of its predecessors have been listed. Technological ordering is impossible if a cycle error exists in the job data (e.g., job a precedes b, b precedes c, and c precedes a).

Then each job is drawn on the graph as a circle, with its identifying symbol and time appearing within the circle. Sequence relationships are indicated by arrows connecting each circle (job) with its immediate successors, with the arrows pointing to the latter. For convenience, all circles with no predecessors are connected to a circle marked "Start"; likewise, all circles with no successors are connected to a circle marked "Finish." (The "Start" and "Finish" circles may be considered pseudo jobs of zero time length.)

Typically, the graph then depicts a number of different "arrow paths" from Start to Finish. The time required to traverse each path is the sum of the times associated with all jobs on the path. The critical path (or paths) is the longest path (in time) from Start to Finish; it indicates the minimum time necessary to complete the entire project.

This critical path analysis is described by Levy, Thompson and Wiest in "The ABC's of the Critical Path Method" (Harvard Business Review, SeptemberOctober, 1963). This documentation contains excerpts from the article; permission to reprint has been granted by the publishers.

ACKNOWLEDGEMENTS:
Graduate School of Business
Stanford University

GCPATH, Page 2

INSTRUCTIONS:

The problem description is entered in a set of data statements beginning with line 1000. A problem consists of a number of jobs. Each job requires a specified amount of time to complete. Some jobs cannot be started until one or more of the other jobs have been completed. If job a must be completed before job \underline{b} is begun, we say that \underline{a} is a predecessor of \underline{b}.

Each job must be assigned an identifying job number. There are no restrictions on these numbers except that no two jobs may be assigned the same number. Each job can be described in a data statement. The required information follows:

Job number
Completion time
Predecessor jobs (if any)
-1
For example:
1002 DATA 10, 30, 1, 15, -1
This describes job number 10 , which requires 30 days to complete and cannot be started until jobs number 1 and 15 have both been completed.

Jobs may be described in any order.
After entering data statements, RUN the program. The job characteristics will be repeated, followed by the earliest completion time for the entire project. Then the program will print the earliest and latest starting and finishing times for each job, consistent with the earliest completion time for the entire project. Jobs on the "critical path" will also be indicated.

RUN

RUN
 GCPATH

```
HAVE YOU ENTERED YOUR DATA ALREADY?NO
ENTER THE PROJECT DESCRIPTION IN DATA STATEMENTS
BEGINNING WITH LINE 10ø\emptyset
FOR EACH JOB, GIVE THE FOLLOWING DATA --
    JOB NUMBER
    TIME REQUIRED TO COMPLETE
    PREDECESSOR JOBS (IF ANY)
    -1
JOBS MAY BE ENTERED IN ANY ORDER
AFTER ENTERING YOUR DATA STATEMENTS, RE-RUN THE PROGRAM
```

DONE

```
1000 DATA 1,10,-1
1001 DATA 10,30,1,15,-1
1002 DATA 8,20,10,30,-1
1003 DT-ATA 30,40,25,-1
1004 DATA 25,20,1,15,-1
1005 DATA 15,26,-1
```

RUN
GCPATH

HAVE	YOU ENTERED YOUR DATA ALREADY?YES			
JOE	TIME	PREDECESSORS		
-0.	$-2-0$	-		
1	10		15	
10	30	1	30	
8	20	10	30	
30	40	25		
25	20	1	15	
15	20			

EARLIEST COMPLETION TIME FOR THE ENTIRE PROJECT $=100$

	EARLIEST		LATEST				
JOE	START	FINISH	START	FINISH			
1	0	10	10	20			
10	26	50	50	80			
15	0	20	0	20	***	CRITICAL	***
8	80	100	80	100	***	CRITICAL	***
30	40	80	40	80	***	CRITICAL	***
25	20	40	20	40	***	CRITICAL	***

DONE

INSTRUCTIONS

It is important that the user understand the diagramming conventions which are assumed by this program. Figure 1 provides an example of a statement of tasks and the corresponding CPM network. The network is an activity-node diagram. That is, each node represents a different job. Job 11 is the dummy terminal node mentioned above. Note that the program permits a succeeding job to start before its predecessor is "finished." For example, job 3 has as successors both jobs 5 and 6 . Job 5 cannot start until six time units of work have been completed on job 3; job 6, however, can begin once five units of work have been completed on job 3. If, for a particular problem, every job must "finish" before a successor starts, all branch times emanating from an individual node will be equal.

Problem information is input on DATA statements starting with line 8000. The network must be drawn and jobs numbered in such a way that for every job, any and all succeeding jobs have a higher job number. The first job in the network should be given the job number of one (1). An error message would be printed if, for example, job number 3 were listed as a successor of job number 4.

Once program execution is commenced by a RUN command, the program will output:

1. The earliest possible time each job can be started;
2. The latest possible time each job can be started and still complete the project (network) in the minimum amount of time;
3. The minimum time in which the project can be completed;
4. A list of all jobs which are on the project's critical path(s); and
5. One critical path through the network.

There is frequently more than a single critical path. When this occurs, all jobs with zero slack are printed but only a single path is traced. The user is left to trace the remaining paths.

Once this information is printed the user is given the opportunity to study the effect of changes in job times (although no jobs may be removed from or added to the original network). If the query

HOW MANY LINKS OF THE NETWORK DO YOU WISH TO CHANGE?
is answered with a zero, ' 0 ', execution will terminate. A response of any other number less than the total number of jobs in the network will produce the reply

FOR EACH LINK TYPE: FIRST JOB, SECOND JOB, TIME INVOLVED.
A response of $\underline{2}, \underline{3}, \underline{5}$ would mean that job 2 must now be worked on for five time units before job 3 can commence. This user input overrides information supplied in the original data statement.

Data Input

Input is through DATA statements starting with line 8000. The first line is
8000 DATA N
where N is the number of jobs, including the dummy terminal job, in the network. The second line of input is (numbering lines by 10)

8010 DATA S1, 1S1, $1 T 1,1 S 2,1 T 2, \ldots$, MS1, MT1
where
S1 = the number of successor jobs to job 1 ;
$151=$ the number of the "first" successor to job 1 ;
$1 T 1=$ the time to be worked on job 1 before the "first" successor, 1S1, can be started;

MS1 = the number of the "last" successor to job 1 ; and
MT1 = the time required to be worked on job 1 before the "last" successor, MSI, can be started.

All following lines should list jobs $2,3, \ldots, N$ and the appropriate successors and branch working times.

$\frac{\text { Job }}{1}$	Immediate Successors	Time Required Before Beginning Successor Job
	3	10
2	3	6
3	4	5
4	5	6
5	6	5
	7	2
6	8	5
7	9	7
8	8	3
9	10	1
10	10	6
11	10	8
	11	5

GCPMI, Page 4

RUN

```
8000 DATA 11
8010 DATA 1,3,10
8020 DATA 2,3,6,4,5
8030 DATA 2,5,6,6,5
8040 DATA 1,7,2
8050 DATA 2,8,5,9,7
8060 DATA 2,8,3,10,1
8070 DATA 1,10,6
8080 DATA 1,10,8
8090 DATA 1,11,5
8100 DATA 1,11,4
RUN
GCPMI
```



```
HOW MANY LINKS OF THE NETWORK DO YOU WISH TO CHANGE?
?!
FOR EACH LINK TYPE:FIRST JOB,SECOND JOB,TIME INVOLVED.
?6,8,1
```



```
HOW MANY LINKS OF THE NETWORK DO YOU WISH TO CHANGE?
?2
FOR EACH LINK TYPE&FIRST JOB,SECOND JOB,TIME INVOLVED.
?1,3,7
?5,8,3
```


HOW MANY LINKS OF THE NETWORK DO YOU WISH TO CHANGE? ? 0

DONE:

TITLE:

DESCRIPTION:

INSTRUCTIONS:

LINEAR PROGRAMMING - VARIABLES RESTRICTED TO VALUES OF ONE OR ZERO
This program will solve linear programming problems in which all variables are restricted to values of either zero or one. An objective function of the form:

$$
c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{N} x_{N}
$$

will be minimized subject to a series of M constraints, each of the form:

$$
a_{i 1} x_{1}+a_{i 2} x_{2}+\ldots+a_{i N} X_{N} \geqq B_{i}(\text { for } i=1, \ldots, M)
$$

And, of course:

$$
x_{j}=0,1(\text { for } j=1,2, \ldots, N)
$$

Input can be via DATA statements or the terminal. If data statements are used, they should be entered beginning at line 9000, in the following order:
number of constraints $(M)<=20$
number of variables $(N)<=40$
for each constraint:
coefficient for variable 1 ($a_{i 1}$) coefficient for variable $2\left(a_{i 2}\right)$

- .
coefficient for last variable (a_{iN})
right-hand side (B_{i})
coefficients for objective function $\left(c_{1}, c_{2}, \ldots, c_{N}\right)$

ACKNOWLEDGEMENTS:
for each constraint:

Graduate School of Business

GINTLP
36512
es

Stanford University

GINTLP, Page 2

RUN
RUN
GINTLP
PLEASE INDICATE INPUT SOURCE --
'T' FOR TERMINAL
'D' FOR DATA STATEMENTS
SOURCE --?T
NUMBER OF CONSTRAINTS --?3
NUMBER OF VARIABLES --?5

CoEfficients	FOR	CONSTRAINT	1
VARIABLE	1	: ? 1	
VARIABLE	2	\% ?-3	
VARIABLE	3	: ? 5	
VARIABLE	4	1 ? 1	
VARIABLE	5	\% $7-4$	
RI GHT-HAND	SIDE	? 32	
COEFFICIENTS	FOR	CONSTRAINT	2
VARIABLE	1	: ?-2	
VARIABLE	2	176	
VARIABLE	3	\% ? -3	
VARIABLE	4	: $3-2$	
VARIABLE	5	1 32	
RI GHT-HAND	SIDE	- 70	
COEFFICIENTS	FOR	CONSTRAINT	3
VARIABLE	1	: 36	
VARIABLE	2	\% ?-1	
VARIABLE	3	: 32	
VARIABLE	4	: ?-1	
VARIABLE	5	\% ?-1	
RIGHT-HAND	SIDE	$8 ? 1$	

COEFFICIENTS FOR OBJECTIVE FUNCTION --
VARIABLE 1 ? ? 5
VARIABLE $2: 37$
VARIABLE 3 ? 10
VARIABLE 4 :?
VARIABLE 5 ? 1

ANSWERS:	
VARIABLE	VALUE
1	0
2	1
3	1
4	0
5	0

MINIMUM VALUE OF THE OBJECTIVE FUNCTION $=17$

DONE
TITLE:
DESCRIPTION:

INSTRUCTIONS:

LINEAR PROGRAMMING
GLP 36516

This program will solve a standard linear programming problem of modest size. Up to 28 constraints may be used, and up to 45 variables. Cases in which the number of variables plus the number of constraints exceeds 40 may, however, prove too large.

The problem description must be entered in data statements beginning with line 2000. For each non-zero coefficient in a constraint, the following information is required:

Constraint number, variable number, coefficient
For each coefficient in the objective function, the following information is required:
"OBJ," variable number, coefficient
For each constraint, the following information is entered:
a) If the value must be less than or equal to the right-hand-side value:

> constraint number, "<=", right-hand-side value
b) If the value must be equal to the right-hand-side value:

$$
\text { constraint number, " }=\text { ", right-hand-side value }
$$

c) If the value must be greater than or equal to the right-hand-side value:

$$
\text { constraint number, " }>=\text { ", right-hand-side value }
$$

Each group of three items must be entered in order (as described), but groups may be entered in any order.

After entering the data statements, RUN the program. It will ask you if you want to MAXIMIZE or MINIMIZE the value of the objective function. Then it will request the number of variables and the number of constraints.

The output includes information on the optimal value of the objective function, the values of the variables in the solution, the constraints that were binding (and their shadow-prices), and the constraints that were slack (and the amounts by which they were slack). Most of the information is self-explanatory. The major exception is the set of shadow-prices. Roughly, a shadow-price indicates the amount by which the objective function would change if the constraint in question were changed by one unit. This provides some information concerning the desirability of changing constraints and shows how sensitive the results are to the particular assumptions employed.

ACKNOWLEDGEMENTS:

Graduate School of Business
Stanford University

```
RUN
2000 DATA 1,1,2
2001 DATA 1,2,3
2062 DATA 2,1,5
2003 DATA 2,2,4
2004 DATA "OBJ",1,300
2065 DATA "OBJ",2,360
2006 DATA 1,"<=",1000
2007 DATA 2,"<=",2000
RUN
GLP
DO YOU WANT TO MAXIMIZE OR MINIMIZE?MAXIMIZE
NUMBER OF VARIABLES?2
NUMBER OF CONSTRAINTS?2
SOLUTION
--------
VALUE OF THE OBJECTIVE = 137143.
    VARIABLES
m================
VARIABLE VALUE
-------------
    2 142.857
    1 285.714
        BINDING CONSTRAINTS
```



```
CONSTRAINT SHADOW-PRICE
---------- -------------
    1 85.7143
    2 25.7143
    SLACK CONSTRAINTS
```



```
CONSTRAINT SLACK
---------------
DONE
```

TITLE:	LINEAR PROGRAMMING TWO-PHASE SIMPLEX METHOD
DESCRIPTION:	This program solves a linear programming problem via the two-phase simplex method and permits the user to perform sensitivity and parametric analyses on the right-hand side and cost coefficients. The program does not provide the opportunity for post-optimality analysis of the technological co- efficients. The data for the problem matrix is provided in a series of DATA statements while user prompts after the program start determine the nature of the problem (maximization or minimization, number of variables and constraints, and the direction of constraint inequalities). The program will solve a problem having 28 or fewer constraints and for which the sum of variables, all constraints and surplus variables (\geq inequalities) is less than or equal to 69.
INSTRUCTIONS:	See Page 2

INSTRUCTIONS:

Input of the Problem Matrix

The program will solve problems organized in either of the following two forms:

$$
\begin{gather*}
\text { minimize } \sum_{j=1}^{N} c_{j} X_{j} \\
\text { subject to } \sum_{j=1}^{N} a_{i j} X_{j} \leq b_{i}, i=1,2, \ldots, L \\
\sum_{j=1}^{N} a_{i j} X_{j}=b_{i}, i=L+1, \ldots, L+E \\
\sum_{j=1}^{N} a_{i j} X_{j} \geq b_{i} \quad, i=L+E+1, \ldots, L+E+G \tag{1}\\
X_{j} \geq 0
\end{gather*} \quad \begin{aligned}
& j=1,2, \ldots, N
\end{aligned}
$$

or

$$
\begin{aligned}
& \operatorname{maximize} \sum_{j=1}^{N} c_{i j} X_{j} \\
& \text { subject to } \sum_{j=1}^{N} a_{i j} X_{j} \leq b_{i}, \quad i=1,2, \ldots, L
\end{aligned}
$$

$$
\begin{array}{ll}
\sum_{j=1}^{N} a_{i j} x_{j}=b_{i}, & i=L+1, \ldots, L+E \tag{2}\\
\sum_{j=1}^{N} a_{i j} x_{j} \geq b_{i}, & i=L+E+1, \ldots, L+E+G \\
X_{j} \geq 0 & j=1,2, \ldots, N
\end{array}
$$

where
$N=$ the number of primal variables in the original problem,
$L=$ the number of constraints with $a \leq i n e q u a l i t y$,
$E=$ the number of contraints which hold with equality, and
$G=$ the number of constraints with $a \geq$ inequality.
Note that regardless of whether the problem requires maximization or minimization, the problem contraint matrix is organized with the Type I (\leq) inequalities first, equalities second, and Type II (\geq) inequalities last. This problem organization also requires that all bi be greater than or equal to zero. In the event a given b_{j} is negative, the corresponding constraint can be multiplied by -1 and the inequality reversed to conform with the program requirements.

INSTRUCTIONS: (continued)
Input of the Problem Matrix (continued)
The DATA statements used to input the problem matrix should be numbered consecutively, starting with statement number 5000. The largest allowable statement number is 9998. The $a_{i j}$ elements should be entered first, constraint row by contraint row. Then the c_{j} coefficients should be entered, followed by the right-hand side or b_{i} elements. The resulting list of data statements should appear as follows:

$$
\begin{array}{lll}
5000 & \text { DATA } & a_{11}, a_{12}, \ldots, a_{1 N} \\
5010 & \text { DATA } & a_{21}, a_{22}, \ldots, a_{2 N} \\
\ldots & \ldots & \ldots \\
\ldots & \text { DATA } & a_{M 1}, a_{M 2}, \ldots, a_{M N} \\
\ldots & \text { DATA } & c_{1}, c_{2}, \ldots, c_{n} \\
\ldots & \text { DATA } & b_{1}, b_{2}, \ldots, b_{m}
\end{array}
$$

Running the Program

After all DATA statements are entered, type the statement
RUN
to commence execution. The program will then respond with
TYPE: 'l' FOR MAXIMIZATION OR '-l' FOR MINIMIZATION.
Enter the appropriate answer and then press the carriage return so that execution can continue.

The next prompt will be
TYPE: THE NUMBER OF CONSTRAINTS, NUMBER OF VARIABLES.
To answer this query enter the total number of constraints ($M=L+E+G$) and the number of problem variables (N); these two numbers should be separated by a comma. Once the carriage has been returned after this entry, a final query will be printed.

TYPE: NUMBER OF LESS THAN, EQUAL, GREATER THAN CONSTRAINTS.
To answer this prompt enter the values of L, E, and G, all separated by commas, and return the carriage.

The program will then respond with a list of original problem variable numbers
(YOUR VARIABLES $=1,2, \ldots, N$), the numbers of all slack or surplus variables added to the inequality constraints, and the numbers of all artificial variables added so that an initial feasible solution can be found. The program then proceeds to solve the problem. If no feasible solution can be found for the original problem, the following message will be printed.

THE PROBLEM HAS NO FEASIBLE SOLUTION;
execution is then terminated. If a feasible solution exists but an optimal solution cannot be found due to the absence of a convex feasible region, the message
the solution is unbounded
will be printed and execution terminated.
If an optimal solution is located, the optimal values of the primal variables, dual variables, and the objective function are printed. The zero values of all non-basic primal and dual variables are not printed.

INSTRUCTIONS: (continued)

Right-Hand Side Ranging

Once the optimal solution is printed, the opportunity to do sensitivity analysis on this solution is announced by the message:

NOW YOU CAN DO SENSITIVITY ANALYSIS ON THE RIGHT HAND SIDE.
For any set, I, of right side $b_{\mathfrak{i}}$ elements, the associated constraints

$$
\sum_{j=1}^{N} a_{i j} x_{j} \leq b_{i}(\text { for } i \text { in } I)
$$

can be changed to
N
$\sum_{j=1} a_{i j} X_{j} \leq 0_{i}+\theta$
(The sconstraint is used for illustration) The program then finds the upper and lower bounds on θ. These bounds indicate the amount by which each of the b_{i} (i in the set I) can be increased or decreased so that the current optimal basis remains feasible. This basis is no longer feasible when one of the basic variables becomes negative. The basic variables which goes to zero when θ reaches its upper and lower bounds are also identified by the program.

To perform the analysis the program asks
HOW MAIY CAPACITIES DO YOU WISH TO CHANGE?
A response of \emptyset sends the program to another section where sensitivity analysis of the cost coefficients is performed. Right-hand side ranging can be performed on from one to M constraints. The next query,

WHICH CAPACITIES DO YOU WISH TO CHANGE?
requires a specification of the index numbers ($i=1,2, \ldots, M$) of the b_{j} to be included in a ranging analysis. If the number of a constraint is entered more than once, the θ added to $b_{\text {a }}$ will be multiplied by the number of times the constraint is entered. For example, if the first constraint is entered twice, the result will be

N
$\sum_{j=1}^{\sum} a_{i j} X_{j} \leq b_{1}+2 \theta$
Thus, in determining a bound on θ, b_{p} will increase twice as fast as the b_{i} of a constraint which is entered only once.

The program repeatedly offers the opportunity to perform righthand side analyses until a zero response is given to the original query.

Cost Coefficient Ranging

The opportunity to perform a ranging analysis on the c_{j} coefficients is announced by
YOU MAY NOW DO SENSITIVITY ANALYSIS ON THE COST FACTORS.
For a selected set of variables, J, in the original objective function
iv
$\sum c_{j} X_{j}$
$j=1$
is changed to

$$
\sum_{j=1}^{N} c_{j} X_{j}+\theta \Sigma X_{j} .
$$

That is, each selected coefficient c_{j} becomes $c_{\dot{j}}+\theta$. The program then determines the upper and lower bounds on θ such that the orignal optimai solution remains optimal. This determines the amount by which each c_{j} in the set J can be increased or decreased without changing anything but the objective function value of the optimal solution.

INSTRUCTIONS: (continued)

The program queries used to perform this analysis are
HOW MANY COSTS DO YOU WISH TO CHANGE?
and
WHICH COSTS DO YOU WISH TO CHANGE?
Entries are provided in the same manner as for right-side ranging. Entry of a variable index number more than a single time has the same effect on the rate of that variable's increase and decrease as is the case in the right side analysis.

A zero response to the initial cost change query sends program control to sections to perform parametrix analysis of right-hand side and cost coefficients.

Parametric Analysis -- Right-Hand Side
The opportunity to perform a complete parametric analysis of one or more right-hand side elements, b_{i}, is announced by

YOU MAY NOW DO PARAMETRIC ANALYSIS ON THE RIGHT HAND SIDE.
Recall that after slack and surplus variables were added, the original problem had constraints of the form

N
$\sum_{j=1}^{a_{i j}} X_{j}=b_{i} \quad i=1, \ldots, M$.
Parametric analysis allows us to select a set, I, of b_{i} elements and change them to $b_{i}+\theta$. Then θ is increased, or decreased (an option not explicitly available or needed in right side ranging), up to the point where a basis change occurs. The new optimal solution is printed at this point, and θ is allowed to continue in its change in value over several optimal bases until the solution is no longer bounded or until the problem becomes infeasible.

The program will ask
HOW MANY CAPACITIES DO YOU WISH TO CHANGE?
A zero response stops execution. As with previous queries, if analysis is to be done, enter the number of constraints to be used. The inquiry

WHICH CAPACITIES DO YOU WISH TO CHANGE?
is answered with the numbers of the constraints being analyzed. If the direction of change desired is a decrease in b_{i}, i.e., $b_{i}-\theta$, precede the constraint number with a minus sign. Entering a constraint's number more than once causes the rate of change for θ to be increased by a multiple of the times a number is entered.

Once the response to the above question is entered, the analysis will be performed and printed. There are then four possible options open to the program user:

1. A parametric analysis can be performed on the same constraints as were considered in the previous analysis but the direction of change in the b^{*} will be reversed. The starting point for this analysis will be the final optimal solution reached in the preceding parametric analysis, not the original optimal basis and original right hand side.
2. A parametric analysis may be performed on a new set of capacities using as a starting point the basis and right hand side reached at the conclusion of the previous parametric analysis.
3. A parametric analysis can be performed on a new set of capacities using the original right side and optimal basis. (This requires a resolving of the problem.)
4. Execution can be terminated.

INSTRUCTIONS: (continued)
To select an option, the following prompt should be answered.
TYPE: A 'l' TO REVERSE THE PREVIOUS PARAMETRIC ANALYSIS, A ' 2 ' TO START ANOTHER PARAMETRIC ANALYSIS FROM THIS POINT, OR A ' 3 ' TO DO ANOTHER PARAMETRIC ANALYSIS ON THE ORIGINAL CAPACITIES. TYPE A ' 0 ' TO QUIT.

A response of zero stops execution. A 1 answer performs the reversed analysis and returns with the above prompt; a 2 or a 3 response will produce the prompts

YOU MAY NOW DO PARAMETRIC ANALYSIS ON THE RIGHT HAND SIDE HOW MANY CAPACITIES DO YOU WISH TO CHANGE?

Respond in the same form as the previous such query and the analysis will be performed. Return will be to the four-option point in the program.

```
RUN
5000 DATA 4,9,7,10
5010 DT-ATA 1,1,3,40
5020 DATA 4000,60日g
5030 DATA 12,20,18,40
RUN
GLPSAI
```

TYPE: '1' FOR MAXIMIZATION, OR •-1' FOR MINIMIZATION. ? 1
TYPE: THE NUMBER OF CONSTRAINTS, NUMBER OF VARIABLES. ?2,4
TYPE: NUMBER OF LESS THAN, EQUAL,GREATER THAN CONSTRAINTS. ?2.↔, $\varnothing, 0$
YOUR VARIABLES 1 THROUGH 4
SLACK VARIABLES 5 THROUGH 6
ANSWERS:
PRIMAL VARIABLES:
VARIABLE VALUE
$\begin{array}{ll}1 & 666.667 \\ 4 & 133.333\end{array}$
DUAL VARIABLES:
variable value
$1 \quad 2.93333$
VALUE OF OBJECTIVE FUNCTION 13333.3
YOU CAN NOW DO SENSITIVITY ANALYSIS ON THE RIGHT HAND SIDE.
HOW MANY CAPACITIES DO YOU WISH TO CHANGE? 1
WHICH CAPACITIES DO YOU WISH TO CHANGE? 1
THE BOUND ON THE DECREASE IS 250ø. AT WHICH POINT VARIABLE 1
GOES TO ZERO.
THE BOUND ON THE INCREASE IS 20000 AT WHICH POINT VARIABLE 4
GOES TO ZERO.
HOW MANY CAPACITIES DO YOU WISH TO CHANGE?g
YOU MAY NOW DO SENSITIVITY ANALYSIS ON THE COST FACTORS.
HOW MANY COSTS DO YOU WISH TO CHANGE?2
WHICH COSTS DO YOU WISH TO CHANGE?2,3
THE BOUND ON THE INCREASE IS 3.33333
AT THIS POINT VARIABLE 3 CAN ENTER THE BASIS.VARIABLE 1
WIll leave the basis.
the decrease is not bounded.
HOW MANY COSTS DO YOU WISH TO CHANGE?
YOU CAN NOW DO PARAMETRIC ANALYSIS ON THE RIGHT HAND SIDE.

```
HOW MANY CAPACITIES DO YOU WISH TO CHANGE?I
WHICH CAPACITIES DO YOU WISH TO CHANGE?\
THE NEXT BOUND ON THE CHANGE IS 2øøg\emptyset - VARIABLE 4
    WILL GO TO ZERO.VARIABLE 2 WILL ENTER THE BASIS.
THE NEW OPTIMAL SOLUTION IS:
ANSWERS:
PRIMAL VARIABLES:
VARIABLE VALUE
    1 6000
    2
DUAL VARIABLES:
VARIABLE VALUE
    1 1.6
    2 5.6
VALUE OF OBJECTIVE FUNCTION 72000.
THE NEXT BOUND ON THE CHANGE IS 3øøø\varnothing. . VARIABLE 1
    WILL, GO TO ZERO.VARIABLE 5 WILL ENTER THE BASIS.
THE NEW OPTIMAL SOLUTION IS:
ANSWERS:
PRIMAL VARIABLES:
VARIABLE VALUE
    2 6000.
    5 0
DUAL UARIABLES:
VARIABLE VALUE
    1 D
    2 20.
VALUE OF OBJECTIVE FUNCTION 120000.
THERE IS NO FURTHER BOUND ON THE CHANGE.
TYPE: A '1" TO REVERSE THE PREVIOUS PARAMETRIC ANALYSIS,
A'2' TO START ANOTHER PARAMETRIC ANALYSIS AT THIS POINT,
    OR A '3' TO DO ANOTHER PARAMETRIC ANALYSIS ON THE
ORIGINAL CAPACITIES. TYPE A 'g' TO QUIT.
?0
DONE
```


CONTRIBUTED PROGRAM BABABC

title:
DESCRIPTION:

INSTRUCTIONS:

This program finds the minimum-cost feasible flow through a network. The network is made up of nodes and arcs. Each arc runs from one node to another, and can handle flows within a specified range. Each unit of flow along a given arc has an associated cost. Finally, the total flow into a node must equal the total flow out of the node. Given the description of such a network, the program will find a set of flows that meets all the requirements at either minimum or maximum total cost.

Each node is assigned an arbitrary number between 1 and 99. The network is described by giving the following information for each arc:

From node number
To node number
Cost per unit of flow
Upper bound (maximum flow)
Lower bound (minimum flow)
For example:
1000 DATA $20,30,3,10,40$
This describes an arc from node 20 to node 30 ; each unit of flow along the arc adds 3 units to total cost; and the flow must be between 10 and 40 units inclusive.

All numbers must be integers (whole numbers).
Data should be entered in data statements, beginning with line 1000.
The program has been modified to allow maximization. If this option is specified, all cost figures are multipled by -1 before processing begins, and the total cost figure is multiplied by -1 prior to output. Node prices (the values of the dual variables) are not altered prior to output.

ACKNOWLEDGEMENTS:
Graduate School of Business
Stanford University

RUN

1000	DATA 2	$20,30,0,20,20$
1001	DATA 2	21,30,0,25,25
1002	DATA 2	22,30,0,30,30
1003	DATA 2	$23,30,10,15,15$
1004	DATA 3	$30,1,0,100,0$
1005	dATA	$1,10,0,15,0$
1006	DATA	1,11,0,30,0
1007	DATA 1	$1,12,0,15,0$
1008	DATA 1	$1,13,0,46,0$
1009	DATA 1	$10,20,4,100,0$
1010	DATA 1	10,21,5,100,0
1011	DATA 1	$10,22,8,100,0$
1012	DT-ATA	A $10,23,20,106$,
1813	DATA	11,20,22,100,0
1614	DATA	11,21,20,100,0
1615	DATA	11,22,14,100,0
1016	DATA	$11,23,4,100,0$
1617	DATA	$12,20,+3,100,0$
1018	DATA	12,21,12,100,0
1619	DATA	12,22,5,100,0
1020	DATA	12,23,17,100,0
1021	DATA	$13,20,8,100,0$
1022	DATA	13,21,14,100,0
1623	DATA	$13,22,6,100,0$
1624	DATA 1	13,23,29,100,0
RUN		
GNET		

ARCS

FROM	TO	COST	UPPER	LOWER
20	30	0	20	20
21	30	0	25	25
22	30	0	36	36
23	30	0	15	15
30	1	\square	100	0
1	10	0	15	0
1	11	6	30	0
1	12	0	15	g
1	13	0	40	0
16	20	4	100	0
10	21	5	100	0
10	22	8	100	0
18	23	20	100	0
11	20	22	100	0
11	21	20	160	0
11	22	14	100	0
11	23	4	100	0
12	20	3	100	0
12	21	12	106	6
12	22	5	100	0
12	23	17	100	0
13	26	8	100	0
13	21	14	100	0
13	22	6	100	b
13	23	29	100	0

DO YOU WANT TO MAXIMIZE OR MINIMIZE?MINIMIZE

FROM	T0	FLOW
-200	30	20
21	30	25
22	30	30
23	30	15
30	1	98
1	10	15
1.	11	20
1.	12	15
1	13	48
10	20	0
10	21	15
10	22	-
10	23	0
11	20	\square
11	21	5
11	22	\square
11	23	15
12	28	15
12	21	¢
12	22	\square
12	23	0
13	26	5
13	21	5
13	22	30
13	23	\varnothing
NON-ZERO NODE PRICES		
NODE	PRICE	
10	15	
12	11	
13	6	
26	14	
21	20	
22	12	
23	4	
MINIMUM TOTAL COST $=$		

DONE

TITLE:	SMALL SYSTEMS SIMULATOR
DESCRIPTION:	GSSS GSSS (Small Systems Simulator) allows the user to simulate the behavior of certain types of systems. Almost anything can move through a simulated system. The term item is used in GSSS to denote such an entity. Each item is created, moved through the system, then destroyed.

INSTRUCTIONS:

INSTRUCTIONS:

The system to be simulated is described by a set of blocks. Each must be given a number between 1 and 49. There are six different kinds of blocks.

The CREATE block creates items at various intervals. Associated with a create block is a mean time and a spread. If the spread is positive, the time between creations is drawn randomly from a rectangular distribution of values between (mean - spread) and (mean + spread). If the spread is negative, the time between creations is drawn randomly from a normal distribution with the specified mean and a standard deviation equal to the absolute value of the spread. In either case, values below zero are considered to equal zero when drawn. After creation, an item is moved to the next block associated with the CREATE block.

The BRANCH block routes an item to one of two next-blocks, depending on the value of a random number drawn from a rectangular distribution between zero and one. Associated with the BRANCH is a probability. If the random number is smaller than this value, the item is routed to next-block-A. Otherwise, it is routed to next-block-B.

The ADVANCE block simulates any activity that requires time. The actual time is drawn randomly, based on the mean and spread associated with the block. If the spread is positive, a rectangular distribution is used, otherwise a normal distribution is used. Procedures are the same as those used for a CREATE block.

Most simulations involve facilities of limited capacity. GSSS allows the use of up to 49 facilities, numbered 1 to 49. Each facility has a capacity (if none is given, the capacity is assumed to equal 1).

The number of items in a facility at any time must be less than or equal to its capacity. If a facility is full, no item will be allowed to enter it until another leaves.

The ENTER block represents the act of entering a facility if it is available (not full), waiting up to some maximum time limit if it is not available, and going elsewhere if the maximum waiting time is exceeded. A facility number is associated with the ENTER block. If it is available, the item will enter it and go to next-block-A. If the facility is not available, the item will remain in the ENTER block. When the facility becomes available, the item will then enter it and go on to next-block-A. However, if the delay exceeds the maximum waiting time associated with the ENTER block, the itern will not enter the facility, and will instead go on to next-block-B.

Once in a facility, an item remains until it passes through a LEAVE block.
When an item has passed through the simulated system it has served its purpose. Since only 100 items can be in the entire system at any one time, it is essential to route them to a DESTROY block when they are no longer needed.

A diagramatic representation of a simple system is shown on the following page. The number of each block is shown immediately above it.

The description of the system to be simulated should be entered in DATA statements beginning with line 9000 . For example:

9000 DATA 1, "CREATE", 5, 2, 2
This describes block number 1 -- a CREATE block with a mean time of 5 and a spread of 2 . The final " 2 " indicates the number of the next block.

The formats are:
block number, "CREATE", mean, spread, next block
block number, "DESTROY"
block number, "BRANCH", probability, Next-block-A, Next-block-B
block number, "ENTER", facility, wait time, Next-block-A, Next-block-B
block number, "LEAVE", facility, next block
block number, "ADVANCE", mean, spread, next block
The capacity of a facility is given in one line. For example:
9014 DATA 1, "FACILITY", 2
This indicates that facility 1 has a capacity of 2 items.

INSTRUCTIONS: (continued)

Only one more piece of information is required: the number of items to be moved through the system during the simulation. This is also given in one line. For example:

$$
9015 \text { DATA 50, "ITEMS" }
$$

This indicates that 50 items are to be moved through the system during the simulation.

9600	DATA 1, "CREATE", 5,2,2				
9861	DATA 2, "BRANCH",.3,3,4				
9062	DATA 3,"ADVANCE",6,3,5				
9063	DATA 4,"ADVANCE", 15,5,6				
9064	DATA 5,"ENTER",1,10,7,13				
9065	DATA 6,"ENTER",1,15,8,14				
9066	DATA 7,"ADVANCE",3,1,9				
9607	DATA 8,"ADVANCE",7,2,10				
9008	DATA 9,"LEAVE", 1,11				
9069	DATA 10,"LEAVE", 1,12				
9816	DATA 11,"DESTROY"				
9011	DATA 12,"DESTROY"				
9012	DATA 13,"DESTROY"				
9013	DATA 14,"DESTROY"				
9814	DATA 1,"FACILITY",2				
915	DATA 50."ITEMS"				
RUN					
GSSS					
SYSTEM DESCRIPTION					
1	Create	5	2	2	
2	BRANCH	. 3		3	4
3	ADVANCE	6	3	5	
4	ADVANCE	15	5	6	
5	ENTER	1	16	7	13
6	ENTER	1	15	8	14
7	ADVANCE	3	1	9	
8	ADVANCE	7	2	10	
9	LEAVE	1	11		
10	Leave	1	12		
11	destroy				
12	DESTROY				
13	DESTROY				
14	DESTROY				
1	FACILITY	2			
50	ITEMS				

SIMULATION RESULTS

BLOCK	- Entered	- Left	- REMAINING
1		54	
2	54	54	σ
3	14	14	σ
4	40	36	4
5	14	14	\varnothing
6	36	36	0
7	14	14	\bigcirc
8	36	36	\square
9	14	14	σ
10	36	36	0
11	14		
12	36		
13	0		
14	0		
FACILITY	CAPACITY	CURRENT OF OCCUPANTS	AVERAGE OF OCCUPANTS
1	2	\emptyset	1.12186
SIMULATED	$=271.843$		

DONE

сомтвв витед program BASIC

TITLE:

DESCRIPTION:

INSTRUCTIONS:

COMMITTEE CHOICE ANALYSIS

This program uses simulation to estimate the probability that a committee of M members will have transitive preferences among N mutually exclusive alternatives when using majority votes in pairwise comparisons. Each member is assumed to have transitive preferences. This is accomplished by drawing random numbers to represent the "score" assigned to each alternative, then assuming that each member always votes for the member of a pair with the largest "score." Each pair is subjected to vote using the set of scores drawn for the trial, then the votes are analyzed to determine whether or not they are transitive.

The procedure used to check transitivity of committee choices is as follows. First, matrix V is filled in with the results of the vote. V (row, column) $=$ the excess of the votes in favor of the row over the column. Values along the diagonal are set to zero; those below the diagonal simply equal -1 times the corresponding element above (i.e., $V_{j i}=-V_{i j}$). Next, the numbers are changed to: (-1) if negative, (+1) if positive and the row sums calculated. The sum for a row is the value of (number of inferior alternatives - number of superior alternatives). Let C_{i} represent the sum for row (alternative) i. Then the alternatives rank (R_{i}) is simply:

$$
R_{i}=\frac{N+1}{2}-\frac{C}{2}
$$

Since the committee is assumed to have an odd number of members, no one of whom is indifferent between any two alternatives, if the committee's preferences are transitive, no two alternatives will have the same rank. Thus no two will have the same value of C_{i}. To check for transitivity then, one merely checks to see if any two values of C_{i} are the same.

The program allows the user to specify the committee size, the number of alternatives to be considered, and the number of trials to be run.

ACKNOWLEDGEMENTS: Graduate School of Business
Stanford University

GVOTE, Page 2

RUN

RUN
gVOTE

```
DO YOU WANT INSTRUCTIONS?YES
THIS PROGRAM SIMULATES THE VOTING OF A COMMITTEE
EACH MEMBER IS ASSUMED TO HAVE TRANSITIVE PREFERENCES
    AMONG A NUMBER OF ALTERNATIUES, ONE OF WHICH
    IS TO BE CHOSEN BY MAJORITY VOTE
the number of COmmittee members Should be odd, so
    THERE ARE NO TIES. tHUS , GIVEN TWO ALTERNATIVES,
    THE COMMITTEE WILL ALWAYS 'PREFER' ONE OVER THE OTHER
YOU MAY CHOOSE THE NUMBER OF ALTERNATIVES AND THE
    NUMBER OF MEMBERS
yOU mAY alSO ChOOSE the number of 'trialS'
    YOU MAY THINK OF EACH TRIAL AS A DIFFERENT COMMITTEE
        VOTING ON THE SAME SET OF ALTERNATIVES.
    ALTERNATIVELY, yOU MAY THINK OF EACh trial as the
        SAmE COmmITTEE VOTING ON A DIffERENT SET Of
        ALTERNATIUES.
FOR EACH TRIAL, THE PROGRAM WILL DETERMINE IF THE
    COMMITTEE'S 'PREFERENCES' ARE TRANSITIVE.
    IF SO -- A 'T' WILL BE PRINTED
    IF NOT -- A '*' WILL BE PRINTED
AT THE END, THE PERCENT OF THE TRIALS IN WHICH THE
COMmITTEE'S PREFERENCES WERE TRANSITIVE WILL BE PRINTED
HOW MANY ALTERNATIVES (<=20)?5
HOW MANY MEMBERS (< =100)?3
HOW MANY TRIALS?ID\varnothing
*TTT*T**T**TTT*TT*T*TTTTT*TTTTTTTTT*TT*TT*T*T*T*TT*TTTTTTTT**TTTTT***TTTT
TTT**TT*T*T*TTTTTTT*TT*TTTT*
PERCENT TRANSITIVE = 70
```

done


```
RUN
RUN
LINPRO
```

```
A PROGRAM TO SOLVE LINEAR PROGRAMS WITH CONSTRAINTS OF THE FORM
```

A PROGRAM TO SOLVE LINEAR PROGRAMS WITH CONSTRAINTS OF THE FORM
A*X<=B, }A*X=B\mathrm{ , AND }A*X>=B WHERE B IS A NONNEGATIVE VECTOR
A*X<=B, }A*X=B\mathrm{ , AND }A*X>=B WHERE B IS A NONNEGATIVE VECTOR
DO YOU WISH TO SEE THE PIVOT STEPS (Y OR N)?Y
DO YOU WISH TO SEE THE PIVOT STEPS (Y OR N)?Y
DO YOU WISH TO SEE THE SIMPLEX TABLEAUX (Y OR N)?N
DO YOU WISH TO SEE THE SIMPLEX TABLEAUX (Y OR N)?N
IF MAX, TYPE '1'; IF MIN, TYPE '-1'?1
IF MAX, TYPE '1'; IF MIN, TYPE '-1'?1
TYPE: NUMBER OF CONSTRAINTS, NUMBER OF VARIABLES?2,2
TYPE: NUMBER OF CONSTRAINTS, NUMBER OF VARIABLES?2,2
TYPE: NO. OF LESS THANS, NO. OF EQUALITIES, NO. OF GREATER THANS?1,0,1
TYPE: NO. OF LESS THANS, NO. OF EQUALITIES, NO. OF GREATER THANS?1,0,1
ENTER THE SIMPLEX TABLEAU IN THE ORDER: <= INEQUALITIES,
ENTER THE SIMPLEX TABLEAU IN THE ORDER: <= INEQUALITIES,
EQUALITIES, >= INEQUALITIES, OBJECTIVE FUNCTION.
EQUALITIES, >= INEQUALITIES, OBJECTIVE FUNCTION.
?1,2,3
?1,2,3
??2,3,4
??2,3,4
??3,4,5
??3,4,5
YOUR VARIABLES 1 THROUGH 2
SURPLUS VARIABLES 3 THROUGH 3
SLACK VARIABLES 4 THROUGH 4
ARTIFICIAL VARIABLES 5 THROUGH 5

```

```

RUN
LINPRO

```
```

A PROGRAM TO SOLVE LINEAR PROGRAMS wITH CONSTRAINTS OF THE FORM

```
A PROGRAM TO SOLVE LINEAR PROGRAMS wITH CONSTRAINTS OF THE FORM
A*X<=B, A*X=B, AND A*X>=B WHERE B IS A NONNEGATIVE VECTOR.
A*X<=B, A*X=B, AND A*X>=B WHERE B IS A NONNEGATIVE VECTOR.
DO YOU WISH TO SEE THE PIVOT STEPS (Y OR N)?N
DO YOU WISH TO SEE THE PIVOT STEPS (Y OR N)?N
DO YOU WISH TO SEE THE SIMPLEX TABLEAUX (Y OR N)?N
DO YOU WISH TO SEE THE SIMPLEX TABLEAUX (Y OR N)?N
IF MAX, TYPE !1*; IF MIN, TYPE •-1'?!
IF MAX, TYPE !1*; IF MIN, TYPE •-1'?!
TYPE: NUMBER OF CONSTRAINTS, NUMBER OF VARIABLES? 4,A
TYPE: NUMBER OF CONSTRAINTS, NUMBER OF VARIABLES? 4,A
TYPE: NO. OF LESS THANS, NO. OF EQUALITIES, NO. OF GREATER THANS?1,1,2
TYPE: NO. OF LESS THANS, NO. OF EQUALITIES, NO. OF GREATER THANS?1,1,2
ENTER THE SIMPLEX TABLEAU IN THE ORDER: <= INEQUALITIES,
ENTER THE SIMPLEX TABLEAU IN THE ORDER: <= INEQUALITIES,
EQUALITIES, >= INEQUALITIES, OBJECTIVE FUNCTION.
EQUALITIES, >= INEQUALITIES, OBJECTIVE FUNCTION.
?1,2,3,4,5
?1,2,3,4,5
??2,3,4,5,6
??2,3,4,5,6
??3,4,5,6,7
??3,4,5,6,7
??4,5,6,7,8
??4,5,6,7,8
??1,1,1,1,0
```

??1,1,1,1,0

```
```

YOUR VARIABLES 1 THROUGH A
SURPLUS VARIABLES 5 THROUGH 6
SLACK VARIABLES 7 THROUGH }
ARTIFICIAL VARIABLES 8 THROUGH

ANSWERS:	
VARI ABLE	VALUE
7	$2 \cdot$
5	2.
6	4.
1	$3 \cdot$
DUAL VARI ABLES:	
COLUMN	VALUE
5	0
6	0
7	0
8	0
OBJECTIVE FUNCTION VALUE $=3$.	
IN 4	ITERATIONS
DONE	

RUN

LINPRO

```
A PROGRAM TO SOLVE LINEAR PROGRAMS WITH CONSTRAINTS OF THE FORM
A*X<=B, A*X=B, AND A*X>=B WHERE B IS A NONNEGATIVE VECTOR.
DO YOU WISH TO SEE THE PIVOT STEPS (Y OR N)?N
DO YOU WISH TO SEE THE SIMPLEX TABLEAUX (Y OR N)?Y
IF MAX, TYPE '1'; IF MIN, TYPE '-1'?1
TYPE: NUMBER OF CONSTRAINTS, NUMBER OF VARIABLES?4,4
TYPE: NO. OF LESS THANS, NO. OF EQUALITIES, NO. OF GREATER THANS?1,1,2
ENTER THE SIMPLEX TABLEAU IN THE ORDER: <= INEQUALITIES,
EQUALITIES, >= INEQUALITIES, OBJECTIVE FUNCTION.
?1,2,3,4,5
??2,3,4,5,6
??3,4,5,6,7
??4,5,6,7,8
??1,1,1,1,0
```

 YOUR VARIABLES 1 THROUGH 4
 SURPLUS VARIABLES 5 THROUGH 6
 SLACK VARIABLES 7 THROUGH 7
 ARTIFICIAL VARIABLES 8 THROUGH 10
 | TAB | J A | R | | ERA | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 0 | 0 | 1 | 0 | 0 | 0 | 5 |
| 2 | 3 | 4 | 5 | 0 | 0 | 0 | 1 | 0 | 0 | 6 |
| 3 | 4 | 5 | 6 | -1 | 0 | 0 | 0 | 1 | 0 | 7 |
| 4 | 5 | 6 | 7 | 0 | -1 | 0 | 0 | 0 | 1 | 8 |
| -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| -9 | -12 | -15 | -18 | 1 | 1 | 0 | 0 | ด | 0 | -21 |

LINPRO, Page 4

done

RUN

LINPRO

```
A PROGRAM TO SOLVE LINEAR PROGRAMS WITH CONSTRAINTS OF THE FORM
A*X<=B, }A*X=B\mathrm{ , AND }A*X>=B WHERE B IS A NONNEGATIVE VECIOR
DO YOU WISH TO SEE THE PIVOT STEPS (Y OR N)?Y
DO YOU WISH TO SEE THE SIMPLEX TABLEAUX (Y OR N)?
??Y
IF MAX, TYPE '1'; IF MIN, TYPE '-1'?I
TYPE: NUMBER OF CONSTRAINTS, NUMBER OF VARIABLES?2,2
TYPE: NO. OF LESS THANS, NO. OF EQUALITIES, NO. OF GREATER THANS?1,0,1
ENTER THE SIMPLEX TABLEAU IN THE ORDER: <= INEQUALITIES,
EQUALITIES, >= INEQUALITIES, OBJECTIVE FUNCTION.
?1,2,3
??2,3,4
??3,4,5
```

YOUR VARIABLES 1 THROUGH 2
SURPLUS VARIABLES 3 THROUGH 3
SLACK VARIABLES 4 THROUGH 4
ARTIFICIAL VARIABLES 5 THROUGH 5

TABLEAU AFTER		0	ITERATIONS		
1	2	0	1	0	3
2	3	-1	0	1	4
-3	-4	0	0	0	5
-2	-3	1	0	0	-4

BASIS BEFORE ITERATION 1 VARIABLE value										
4										
5										
PIVOT COORDINATE IS (2 , 2)										
TABLEAU AFTER 1 ITERATIONS										
-. 3	333	0				1		-. 6		. 333333
	667	1		. 33		0				1.33333
-. 3	333	0		1.		0				10.3333
	0	0			1	0				
BASIS EEFORE ITERATION 2										
VARIABL.E VALUE										
4 -333333										
21.33333										
PIVOT COORDINATE IS 1 , 3										
tABLEAU AFTER 2 ITERATIONS										
-. 5		0		1	1.			-1	- 5	
. 5		1		0	. 5			0	1.	
-1	0	0		2	0	1				
0	0	0		0	1	0				
BASIS EEFORE ITERATION 3										
3 . 3										
21.5										
PIVOT COORDINATE IS 2 , , 1										
TABLEAU AFTER 3 ITERATIONS										
0	1			1	2	-1		2		
1	2	0		1	0	3				
0	2	0		3	0					
0	el	0		0	1	0				
ANSWERS:										
VARIABLE VALUE										
3										
13										
DUAL VARIABLES:										
COLUMN VALUE										
3										
4 4										
OBJECTIVE FUNCTION VALUE $=14$.										
IN 3 ITERATIONS										
DON										

CONTRIBUTED PROGRAM BASC

SPECIAL CONSIDERATIONS:

The program begins at line number 9000.
The following variables are used in the program:
A, F, I, I8, I9, J, K, L, P, Q, R, S, U, W, X, Z5, Z6, Z7, Z8, Z9
$A, B, M, R \$, S \$, T \$, V \$, Y$ are array names

Babson College
Babson Park, Massachusetts

RUN

| 9900 | DATA $" M A X "$ |
| :--- | :--- | :--- |
| 9901 | DATA $5,2,2$ |
| 9902 | DATA $1,1,-1$ |
| 9903 | DATA $2,2,-4$ |
| 9904 | DATA $1,2,4$ |
| 9905 | DATA $1,0,6$ |
| 9906 | DATA $2,0,3$ |
| 9907 | DATA $-1,-1,3$ |
| 9908 | DATA $-4,-1,9$ |

RUN
INQUP
OBJECTIVE IS TO MAXIMIZE THE SUM OF THE FOLLOWING TERMS:

$$
\begin{array}{rlllll}
-1 & * & \times(1 &) & * \times(1 &) \\
-4 & * & \times(12 &) & * \times(1 &) \\
4 & * & \times(1 &) & * \times(2 &) \\
6 & * & \times(1) &) & & \\
3 & * & \times(2 &) & &
\end{array}
$$

THE CONSTRAINTS ARE:

$$
\left.\begin{array}{llll}
\text { H 1 } & =: \\
-1 & * & \times(1 & \\
-1 & * & \times(& 2
\end{array}\right)
$$

```
DO YOU WISH TO SELECT THE PIVOT ELEMENTS MANUALLY,YES OR NO
?NO
DO YOU WISH PRINTOUT OF INTERMEDIATE TABLEAUS,YES OR NO
?NO
ALLOCATION VARIABLES AND ASSOCIATED LAGRANGE MULTIPLIERS
X1 = 2. MU 1 = O
x2 = 1 MU 2 =0
CONSTRAINT RELATIONS AND ASSOCIATED LAGRANGE MULTIPLIERS
```

$\begin{array}{llll}\text { H } 1 & =0 & \text { MU } 3 & =2 \\ \text { H } 2 & =0 & \text { MU } 4 & =1\end{array}$
OBJECTIVE FUNCTION $=15$
DONE
title:
DESCRIPTION:

INSTRUCTIONS:

SPECIAL

CONSIDERATIONS:

LINEAR TREND FORECASTING
LNTRND computes a simple linear trend forecast with seasonal adjustments for monthly data. (A good fit will result only if the trend is linear.)

Data should be entered in the following order, beginning in line 9900:

1. $N=$ no. of years for which data will be entered.
2. $A_{1_{1}} \ldots A_{1_{12}}$ values for year \#1
$A_{2} \ldots A_{2}$ values for year \#2
$\therefore \quad \quad$.
$A_{N_{1}} \ldots A_{N_{12}}$ values for year $\# N$
Output will be of the following form:
first the A\&B values of the linear forecasting equation: $Y=A+B * X$, and then the forecasts and seasonal values for the next 12 month period.
N must be <9, otherwise alter dim-statements in line 9230 to $A[N, 12], B[N, 12], D[N, 12], E[12], F[12]$.

LNTRND, page 2

DONE

contributed progatam BASIC

TITLE:	QUEUEING SYSTEM
DESCRIPTION:	This program calculates all the necessary information for a Queueing system with single server, Poisson input and Exponential service times.
INSTRUCTIONS:	The program asks for λ (the input rate) and μ (the service rate). In the Queueing Theory, $s=\frac{\lambda}{\mu}$ is defined as the traffic intensity. For the existence of the steady state probability distribution, f must be less than one.
SPECIAL	
CONSIDERATIONS:	FOR INSTRUCTIONAL PURPOSES Suitable Courses: Introduction to Operations Research

RUN

RUN
MスMZ!

What are the values of arrival rate, and service rate
?.3., 56

THE TRAFFIC INTENSITY $=.535714$
the steady state queue lengit distribution as follows:

us 0		$=.464286$
US)	$=.248724$
US 2)	. 133245
Us 3)	$7.138145-02$
UR 4)	$=3.82401 \mathrm{E}-82$
Ue)	$=2.04857 \mathrm{E}-02$
US 6)	$=1.09745 \mathrm{E}-02$
U8)	$=5.87920 \mathrm{E}-03$
U 8		$=3.14957 \mathrm{E}-03$
U		$=1.68727 \mathrm{E}-03$
U 10)	$=9.03896 \mathrm{E}-04$
UC 11)	$=4.84230 \mathrm{E}-84$
US 12)	$=2.59409 \mathrm{E}-04$
U 13)	$=1.38969 \mathrm{E}-04$
UC 14		$=7.44478 \mathrm{E}-05$
US 15		$=3.98827 \mathrm{E}-05$
US 16		$=2.13658 \mathrm{E}-05$
U 17)	$=1.14459 \mathrm{E}-05$
U 18)	$=6.13176 \mathrm{E}-06$
US 19)	$=3.28487 \mathrm{E}-06$
U 20)	$=1.75975 \mathrm{E}-06$
21		

THE PROBABILITY OF FINDING MORE THAN N IN THE QUEUE IS P(N):

Pr 0	.535714
Pr	= . 28699
Pr 2	. 153745
P¢ 3	$=8.23632 \mathrm{E}-02$
P	$=4.41232 E-02$
Pr	$=2.36374 \mathrm{E}-02$
Pr	$=1.26629 E-02$
($=6.78370 \mathrm{E}-03$
Pr 8	$=3.63413 \mathrm{E}-03$
Pl	$=1.94685 \mathrm{E}-03$
P(10	$=1.04296 \mathrm{E}-03$
P(11	$=5.58727 \mathrm{E}-04$
P(12	$=2.99318 \mathrm{E}-84$
P¢ 13	$=1.60349 \mathrm{E}-04$
P(14	$=8.59013 \mathrm{E}-05$
P(15	$=4.60186 \mathrm{E}-05$
P(16	$=2.46528 \mathrm{E}-05$
PC 17	$=1.32069 E-05$
P¢ 18	$=7.07511 \mathrm{E}-06$
PC 19	$=3.79024 \mathrm{E}-66$
P¢ 20	$=2.03049 \mathrm{E}-06$
P(21	$=1.08776 \mathrm{E}-06$
P¢ 22	

The expected oueue length $=1.15385$
the variance of queue length $=2.48521$
THE EXPECTED WAITING TIME $=2.06044$
THE VARIANCE OF WAITING TIME $=11.6041$
THE EXPECTED LENGTH OF BUSY PERIOD $=3.84615$
NOTE---
this program forces all probabilities less than
0.000001 TO ZERO. MUST BE PEARRANGED.

DONE

RUN

 MZMZ1
What are the values of arrival rate, and service rate

 ?.5,. 3THE TRAFFIC INTENSITY $=1.66667$
the steady state distribution does not exist
DONE
contrbbuted program BASIC

RUN
RUN
MZMZS

```
WHAT ARE THE VAI_UES OF ARRIVAL RATE, AND SERVICE RATE
?4,2.5
WHAT IS THE NUMBER OF SERVERS
?2
```

THE TRAFFIC INTENSITY $=.8$
THE STEADY STATE QUEUE LENGTH DISTRIBUTION FOR N CUSTOMER IN THE SYSTEM IS U(N), AND THE PROBABILITY OF FINDING MORE THAN N IN THE QUEUE IS P(N):

					$P(0)=.888889$					
U	1)	$=$.177778						
					P	1		,	$=$. 711111
US	2)	$=$. 142222						
					P 1	2)	$=$. 568889
U	3)	$=$. 113778						
					P(3		,	$=$. 455111
U	4)	$=$	9.10222E-82						
					P 1	4		,	$=$. 364089
US	5)	$=$	7.28178E-02						
					P	5)	$=$.291271
US	6)	$=$	5.82542E-02						
					Pl	6)	$=$. 233017
U	7)	$=$	$4.66034 \mathrm{E}-02$						
					P(7)	$=$.186413
Ue	8)	$=$	3.72827E-02						
					P	8)	$=$.149131
UV	9)	$=$	2.98262E-02						
					P	9		,	$=$.119304
U	10)	$=$	$2.38609 E-02$						
					Pl	10		,	$=$	9.54435E-82
US	11)	$=$	1.90887E-02						
					PC	11		,	$=$	7.63547E-02
U	12)	$=$. 015271						
					P(12)	$=$	6.10838E-02
UC	13	,	$=$	1.22168E-02						
					P	13		,	$=$. 048867
U(14)	$=$	$9.77343 E-83$						
					P $($	14		,	$=$	3.90936E-02
Ue	15)	$=$	7.81874E-63						
					P	15)	$=$	3.12749E-02
US	16)	$=$	$6.25499 E-83$						
					P	16		,	$=$	2.50199E-0?
U	17)	$=$	5.00399E-03						
					P	17)	$=$	2.00158E-02
US	18)	$=$	4.00319E-03						
					P	18		,	$=$	1.60127E-02
Us	19)	$=$	3.20255E-03						
					P $($	19		,	$=$	$1.281015-02$
U	20)	$=$	$2.56204 E-03$						
					P $($	20)	$=$	1.02481E-02
U	21)	$=$	$2.04964 E-03$						
					P ${ }^{\text {c }}$	21		,	$=$	8.19838E-03
U	22)	$=$	1.63971E-03						
					P	22		,	$=$	6.55866E-03
US	23)	$=$	1.31177E-03						
					P	23		,	$=$	5.24688E-03
U'	24)	$=$	$1.04941 E-03$						
					P 1	24)	$=$	$4.19748 \mathrm{E}-03$
U	25)	$=$	$8.39530 \varepsilon-04$						
					Pl	25)	$=$	3.35801E-03
U	26)	$=$	6.71624E-04						
					P $($	26		,	$=$	$2.68638 E-03$
U	27)	$=$	5.37299E-04						
					P C	27		,	$=$	2.14911E-03
US	28)	$=$	4.29839E-84						
						28		,	$=$	1.71924E-03
U	29)	$=$	3.43871E-84						
					P	29)	$=$	1.37532E-03

the probability that all Servers will be busy = . 7111111
the probability that at least one customer will be waiting $=.568889$

The expected queue LengTh $=4.44444$
THE EXPECTED NUMBER OF CUSTOMERS ACTUALLY WAITING
$=2.84444$
The expected waiting time = .711111
THE EXPECTED NUMBER OF BUSY SERVERS $=1.6$

NOTE---
this program forces all probabilities less than
0.000001 TO ZERO.

IF HIGHER ACCURACY IS DESIRED, LINE *460, "530, AND *588 MUST BE REARRANGED.
done

RUN
M/M/S

WHAT ARE THE VALUES OF ARRIVAL RATE, AND SERVICE RATE
?3.5.1
WHAT IS THE NUMBER OF SERVERS
? 3

THE TRAFFIC INTENSITY $=1.16667$
THE STEADY STATE DISTRIBUTION DOES NOT EXIST

DONE

contributed program BASIC

RUN

2000	DATA 15
2001	DATA $1,2,20$
2002	DATA $1,3,18$
2003	DATA $1,4,12$
2004	DATA $1,5,16$
2005	DATA $2,1,4$
2006	DATA $2,3,6$
2007	DATA $2,6,18$
2008	DATA $3,1,5$
2009	DATA $3,2,6$
2010	DATA $3,4,8$
2011	DATA $3,7,30$
2012	DATA $3,8,25$
2013	DATA $4,1,7$
2014	DATA $4,3,2$
2015	DATA $4,9,16$
2016	DATA $5,1,8$
2017	DATA $5,7,22$
2018	DATA $5,9,14$
2019	DATA $6,2,8$
2020	DATA $6,3,3$
2021	DATA $6,7,3$
2022	DATA $6,10,4$
2023	DATA $7,3=0$
2024	DATA $7,6,5$
2025	DATA $7,10,8$
2026	DATA $7,11,5$
2027	DATA $8,3,14$
2028	DATA $8,9,3$

$F(1,2)=$	4.00
$F(1,3)=$	15.00
$F(2,6)=$	4.00
$F(3,7)=$	8.00
$F(3,8)=$	7.00
$F(6,10)=$	4.00
$F(7,10)=$	3.00
$F(7,11)=$	5.00
$F(8,11)=$	7.00
$F(10,13)=$	3.00
$F(10,14)=$	4.00
$F(11,15)=$	12.00
$F(13,15)=$	3.00
$F(14,15)=$	4.00

THE MAXIMUM FLOW $=19$

MANAGEMENT SCIENCES AND OPERATIONS RESEARCH (600) contributeo program BASIC
title:
DESCRIPTION:

INSTRUCTIONS:

SPECIAL CONSIDERATIONS:

SHORTEST ROUTE PROBLEM USING THE METHOD OF DYNAMIC
SHORTR PROGRAMMING WITH SUCCESSIVE APPROXIMATION IN FUNCTIONAL SPACE

In an N-node network, where the distance (or cost) from node i to node j is $c_{j j}\left(c_{j j}=0\right)$. The problem is to find a chain from node 1 to node N, such that the total distance (or cost) is minimized.

Label the nodes in such a way that node 1 is the origin and node N is the destination in a N -node network.

Input data start on line 2000 as follows:

The number of nodes
Only the existing arcs

Last line must be $N, N, 0$
In 2), $C(I, J)$ or $C(J, I)$ need only be entered once if it is a two-way traffic network, must be entered separately if it is a one-way traffic network.

FOR INSTRUCTIONAL PURPOSES
Suitable Courses: Introduction to Operations Research Introduction to Dynamic Programming

ACKNOWLEDGEMENTS:
David Y. W. Cheng
Fu Shing Mfg. \& Lumber Co., Ltd.

```
SHORTR, Page 2
```

RUN

2000	DATA 10
2001	DATA $1,2,7$
2002	DATA $1,3,8$
2003	DATA $2,3,7$
2004	DATA $2,4,8$
2005	DATA $2,5,6$
2006	DATA $3,5,6$
2007	DATA $3,6,4$
2008	DATA $4,5,2$
2009	DATA $4,7,3$
2010	DATA $4,8,3$
2011	DATA $5,6,7$
2012	DATA $5,7,2$
2013	DATA $5,8,6$
2014	DATA $6,8,9$
2015	DATA $7,8,5$
2016	DATA $7,10,9$
2017	DATA $6,9,6$
2018	DATA $8,9,8$
2019	DATA $8,10,8$
2020	DATA $9,10,8$
2021	DATA $10,10,0$

RUN
SHORTR

```
TYPE 1-FOR ONE WAY TRAFFIC (C(I,J)#C(J,I))
        2-FOR TWO WAY TRAFFIC (C(I,J)=C(J,I))
?1
AFTER 5 ITERATIONS, WE FOUND THE OPTIMAL SOLUTION AS FOLLOWS:
\begin{tabular}{ccr} 
FROM & TO & DISTANCE \\
1 & 2 & 7.00 \\
2 & 5 & 6.00 \\
5 & 7 & 2.00 \\
7 & 10 & 9.00 \\
TOTAL & DISTANCE \(=24\)
\end{tabular}
DONE
```

RUN
SHORTR

```
TYPE 1-FOR ONE WAY TRAFFIC (C(I,J)#C(J,I))
        2-FOR TWO WAY TRAFFIC (C(I,J)=C(J,I))
?2
AFTER 9 ITERATIONS, WE FOUND THE OPTIMAL SOLUTION AS FOLLOWS:
\begin{tabular}{ccr} 
FROM & TO & DISTANCE \\
1 & 2 & 7.00 \\
2 & 5 & 6.00 \\
5 & 7 & 2.00 \\
7 & 10 & 9.00
\end{tabular}
TOTAL DISTANCE = 24
DONE
```


contrbuted program BASIC

TITLE:
DESCRIPTION:

INSTRUCTIONS:

SPECIAL CONSIDERATIONS:

FIRST DIFFERENCES, PERCENT CHANGES, PERCENT DIFFERENCE
36801

This program calculates first differences, percent changes, or percent differences for up to 1000 time periods. The average change, variance, standard deviation, and Durbin-Watson statistic are also calculated. Data may be entered through DATA statements or a data file.

Enter data in DATA statements beginning at line 5000, or store data on a sequential file. When running, the program will ask the user to select various options.

If file input is used, the data must be stored on a sequential file.

RUN
RUN
timjaf
DJ YOU WANT INSTRUCTIONS ($1=Y E S, \gamma=$ NO)? 1
THIS PROGRAM READS IN A VECTOR OF VALUES (100D ELEMENTS
MAXIMUM) AND CALCULATES EITHER (1)FIRST DIFFERENCES,
(2) PERCENTAGE CHANGES, OR (3) PERCENT DIFFERENCES,

DEPENDING ON THE USER'S OTTION.
enter data in data statements starting on line $5 \partial g 0$
AS FOLLOWS:

5008 DATA N1,N2,N3,N4, ETC.
N1,N2,N3,N4, ETC. ARE THE JALUES. THIS PROGRAM WILL
OPTIONALLY USE DATA FILE INPUT INSTEAD OF DATA STATEMENTS•
DONE

530\%	DATA	$59 \cdot 22,54 \cdot 74,17 \cdot 57,28 \cdot 45,65 \cdot 64,71 \cdot 22,19 \cdot 8.5,50 \cdot 27,38 \cdot 12,75 \cdot 26$
5010	DATA	$38 \cdot 2,63 \cdot 35,18 \cdot 21,13 \cdot 15,78 \cdot 57,93 \cdot 89,97 \cdot 26,95 \cdot 13,56 \cdot 31,26.84$
5820	DATA	22.18,99.34,57.22,92.37,92.38,83.35,31.96,26.88,71.6,95.51
5830	DATA	$32.48,43 \cdot 91,90.45,67 \cdot 93,2 \cdot 1,50 \cdot 39,39 \cdot 33,17 \cdot 2,75 \cdot 23,68 \cdot 93$
5040	DATA	87.59,57.24,97.33,3.89, 72.51,93.25,18.97,97.37,2.87,35.87
5050	DATA	$76 \cdot 11,66.37,15.53,96.85,14.04,21.88,42.28,58.71,46.96,41.06$
5050	DATA	$13 \cdot 72,54 \cdot 76,45 \cdot 82,21 \cdot 13,49.59,58 \cdot 08,55 \cdot 2,11.55,95 \cdot 28,30 \cdot 73$
5278	DATA	$11.99,78.18,15.31,7 \cdot 81,94.55,45 \cdot 6,28.78,84.26,51.72,9.79$
5880	DATA	80.18, 73.12,94.39,59.18,49.1,4.38,29.88,2.81, 88.32,30.93
5990	DATA	$80.4,56.34,65 \cdot 95,16.82,31 \cdot 3,68 \cdot 58,44 \cdot 71,65 \cdot 95,12 \cdot 37,44$
6000	END	

RUN
TIMDIF

```
DO YOU WANT INSTRUUCTIONS(1=YES, D=NO)? NO
??0
l= DATA ON FILE, }|= DATA IN DATA STATEMENTS. WHICH ? g
DO YOU WANT YOUR RAW DATA PRINTED( }1=YES, D=NO) ? I
* OF VALUES?100
```

ENTER THE NUMBER OF YOUR OPTION
1 FOR $1 S T$ DIFF., 2 FOR \% CHANGES, 3 FOR \% DIFF.
? 1
RAW DATA:

59.22	54.74	17.57	28.45	65.64	71.22	19.06	60.27
38.12	75.26	38.20	63.35	10.21	13.18	78.57	93.89
97.26	95.13	66.81	26.84	22.18	99.84	67.22	92.37
92.38	88.35	81.96	26.08	71.60	95.51	30.48	43.91
90.45	67.93	2.10	60.39	39.33	17.20	75.23	68.93
87.59	57.04	97.33	3.89	72.51	93.25	18.97	97.37
2.07	35.07	76.11	66.37	15.03	96.86	14.04	21.08
42.28	58.71	46.96	41.06	13.02	54.76	46.82	21.13
49.69	58.08	55.20	11.55	95.28	30.73	11.99	70.18
16.81	7.81	94.55	45.60	28.78	84.26	61.72	9.79
80.18	73.12	94.39	59.18	49.10	4.08	29.88	2.81
88.32	30.93	80.40	56.34	65.96	15.82	31.30	60.68
44.71	65.95	12.37	44.00				

 MEAN \(=51.9959\)
 VARI ANCE \(=875.174\)
 STANDARD DEUIATION \(=29.5833\)
 DURBIN-WATSON STATISTIC $=2.12907$

TRANSFORMED	DATA:						
-4.48	-37.17	2.88	45.19	5.58	-52.16	41.21	-22.15
37.114	-37.06	25.15	-53.14	2.97	65.39	15.32	3. 37
-2.113	-28.32	-39.97	-4.66	77.66	-32.62	25.15	0.01
-4.03	-6.39	-55.88	45.52	23.91	-65.03	13.43	45.54
-22.52	-65.83	58.29	-21.06	-22.13	58.03	-6.30	18.66
-30.55	48.29	-94.24	69.42	20.74	-74.28	78.40	-95.30
33.050	41.04	-9.74	-51.34	81.83	-82.82	7.84	21.20
16.43	-11.75	-5.90	-28.04	41.74	-7.94	-25.69	28.56
8.39	-2.88	-43.65	83.73	-64.55	-18.74	58.19	-53.37
-9.008	86.84	-49.05	-16.82	55.48	-22.54	-51.93	70.39
-7.86	21.27	-35.21	-10.88	-45.02	25.80	-27.07	85.51
-57.39	49.47	-24.06	9.62	-49.14	14.48	29.38	-15.97
21.24	-53.58	31.63					
VARIANCE $=1882.29$	MEAN $=-.153737$						
STANDAR	D DEVI	ON =	3854				
DURBIN-WATSO	N STAT	IC =	3787				

ANOTHER OPTION ($1=Y E S, ~(=N O)$? 1

```
ENTER THE NUMBER OF YOUR OPTION
1FOR 1ST DIFF., 2 FOR % CHANGES, 3 FOR % DIFF.
?2
```

RAW DATA:

59.22	54.74	17.57	20.45	65.54	71.22	19.05	60.27
38.12	75.26	38.20	63.35	10.21	13.18	78.57	93.89
97.26	95.13	66.81	26.84	22.18	99.84	67.22	92.37
92.38	88.35	81.96	26.08	71.50	95.51	30.48	43.91
98.45	67.93	$2 \cdot 10$	60.39	39.33	17.20	75.23	68.93
87.59	57.04	97.33	3.89	$72 \cdot 51$	93.25	18.97	97.37
$2 \cdot 67$	35.87	76.11	66.37	15.83	96.36	14.84	21.08
42.28	58.71	46.96	41.86	13.02	54.76	45.82	21.13
49.69	58.08	55.20	11.55	95.28	30.73	11.99	70.18
16.31	7.81	94.65	45.60	28.78	84.26	61.72	9.79
80.18	73.12	94.39	59.18	$49 \cdot 10$	4.98	29.88	2.81
88.32	30.93	89.40	56.34	65.96	16.82	$31 \cdot 30$	60.68
44.71	65.95	12.37	44.08				
MEAN $=51.9959$							
STANDARD	DEVI	ON $=$	833				
RBIN-WATSON	STATI	$C=$	907				

TRANSFORMED	D DATA:						
92.43	32.10	116.39	320.98	108.50	26.75	316.21	63.25
197.43	50.76	165.84	16.12	129.09	596.13	119.58	103.59
97.81	78.23	40.17	82.64	450.14	67.33	137.41	100.01
95.64	92.77	31.82	274.54	133.39	31.91	144.06	205.99
75.10	3.09	2875.71	65.13	43.73	437.38	91.63	127.07
65.12	178.63	$3 \cdot 17$	2346.60	128.60	$20 \cdot 34$	513.28	$2 \cdot 13$
1694.20	217.02	87.20	22.65	644.44	14.50	150.14	200.57
133.86	79.99	87.44	31.71	420.58	85.50	45.13	235.16
116.88	95.04	20.92	824.94	32.25	39.02	585.32	23.95
46.46	1211.91	48.18	63.11	292.77	73.25	15.86	819.00
91.19	129.09	62.70	82.97	8.31	732.35	9.40	3143.06
35.02	259.94	70.07	117.87	$25 \cdot 50$	186.09	193.87	73.68
147.51	18.76	355.76					
MEAN $=259.454$							
STANDARD DEVI		TION $=$	520.315				
DURBIN-WATSON STATISTIC $=2.31895$							

TIMDIF, Page 4

```
ENTER THE NUMBER OF YOUR OPTION
1 FOR 1ST DIFF., 2 FOR % CHANGES, 3 FOR % DIFF.
3
```


TRANSFORMED DATA:

-8.18	-211.55	14.08	68.85	7.83	-273.66	68.38	-58.11
49.35	-97.02	39.70	-520.47	22.53	83.23	16.32	3.46
-2.24	-42.39	-148.92	-21.01	77.78	-48.53	27.23	0.01
-4.56	-7.80	-214.26	63.58	25.83	-213.35	30.59	51.45
-33.15	-3134.76	96.52	-53.55	-128.66	77.14	-9.14	21.30
-53.56	41.40	-3049.84	95.74	22.24	-391.57	80.52	-4503.86
94.10	53.92	-14.68	-341.58	84.48	-589.89	33.40	50.14
27.99	-25.02	-14.37	-215.36	76.22	-15.96	-121.58	57.48
14.45	-5.22	-377.92	87.88	-210.06	-156.30	82.92	-317.49
-115.24	91.75	-107.57	-58.44	65.84	-36.52	-530.44	87.79
-9.65	22.53	-59.50	-20.53	-1103.43	86.35	-963.35	96.82
-185.55	51.53	-42.71	14.58	-292.15	46.26	48.42	-35.72
32.21	-433.14	71.89					

 MEAN \(=-174.316\)
 UARI ANCE \(=426472\).
 STANDARD DEVIATION \(=653.048\)
 DURBIN-WATSON STATISTIC $=2.24311$

ANOTHER OPTION ($1=Y E S, ~ \lambda=$ NO) ? θ
DONE

SPECIAL CONSIDERATIONS:

The program is capable of handling either cost or profit matrices up to a maximum size of 20×20.

The rim requirements (sources and destinations) must be represented as integers.

This program is based on a restricted primal-dual algorithm described by Ford and Fulkerson in Management Science, 3, No. 1 (1956), pp. 24-32.

Lynn W. Marples
University of Western Ontario, Canada

```
RUN
9000 DATA 3,3
9001 DATA 1,2,3
9002 DATA 3,2,1
9003 DATA 1,2,3, 6,4,2, 1,4,7
RUN
TRANSP
    THE TRANSPORTATION PROBLEM
TYPE: +1 FOR COST MINIMIZATION
    OR -1 FOR PROFIT MAXIMIZATION. WHICH?+1
OPTIMAL SOLUTION
\begin{tabular}{lll}
0 & 1 & 0 \\
0 & 1 & 1 \\
3 & 0 & 0
\end{tabular}
        OBJECTIVE FUNCTION = 11
DONE
RUN
TRANSP
    THE TRANSPORTATION PROBLEM
TYPE: +1 FOR COST MINIMIZATION
    OR -1 FOR PROFIT MAXIMIZATION. WHICH?-1
OPTIMAL SOLUTION
\begin{tabular}{lll}
1 & 0 & 0 \\
2 & 0 & 0 \\
0 & 2 & 1
\end{tabular}
        OBJECTIVE FUNCTION = 28
DONE
```

TITLE: \quad| ANNUITY ANALYSIS |
| :--- |
| This program performs the calculations necessary for determining both |
| payment and withdrawal annuities. |
| See any standard textbook on annuities for the computational method. |

SPECIAL CONSIDERATIONS:

The answer does not account for any simple interest that might have been paid on deposits prior to the first compounding period.

```
RUN
GET - $ANNU IT
RUN
ANNUIT
* ANNUITY *
THIS PROGRAM COMPUTES PAYMENT AND WITHDRAWAL ANNUITIES.
```

```
DEFINITION OF VARIABLES:
```

DEFINITION OF VARIABLES:
-N = NUMBER OF PERIODS
-N = NUMBER OF PERIODS
--A = AMOUNT LEFT AT END OF N PERIODS
--A = AMOUNT LEFT AT END OF N PERIODS
--I = INTEREST IN PERCENT PER PERIOD
--I = INTEREST IN PERCENT PER PERIOD
-R = AMOUNT OF PAYMENT PER PERIOD
-R = AMOUNT OF PAYMENT PER PERIOD
-P = ORIGINAL PRINCIPAL AMOUNT

```
    -P = ORIGINAL PRINCIPAL AMOUNT
```

WHICH ANNUITY TYPE (1=PAYMENT, 2=WITMDRAWAL)?2

WHICH VARIABLE IS UNKNOWN $(1=N, 2=P, 3=1,4=R) ? 4$
WHAT ARE N(INTEGER),P(\$),I(PCT)?10,1000,10
WITHDRAWAL EACH PERIOD $=R=162.746$

ANOTHER CASE? ENTER ONE OF THE FOLLOWING: 1$)^{\prime \prime} 1^{\circ}$ FOR ANOTHER CASE, SAME TYPE; 2)'2' FOR ANOTHER CASE, DIFFERENT UNKNOWN; 3)'3' FOR ANOTHER CASE, OTHER TYPE OF ANNUITYB 4) ${ }^{\prime} 4^{\circ}$ TO GET TOTAL INTEREST PAID OVER THE N PERIODS; 5) ${ }^{\circ} 5^{\prime}$ FOR A TABLE OF WITHDRAWALS, PRINCIPAL, AND INTERESTB OR 6) '6" TO TERMINATE? 6

DONE

TITLE:	
DESCRIPTION:	
INSTRUCTIONS:	
	PROFORMA INCOME STATEMENT AND BALANCE SHEET
BALSHT provides a listing of a simple proforma income statement and balance	
sheet.	
Data can be entered either from the teletype as it becomes necessary, or	
internally with Data-Statements. Your choice on the above option will	
be asked as the first question. Then enter, (either as data beginning in	
line 9900, or with INPUT Statements) the foilowing values:	
B1 = Base period sales total	

RUN
RUN
BALSHT

* PROFORMA INCOME STATEMENT \& BALANCE SHEET *

THIS PROGRAM WILL PROVIDE A LISTING OF A SIMPLE PROFORMA INCOME STATEMENT AND BALANCE SHEET.

```
DO YOU WISH TO ENTER YOUR DATA FROM THE TELETYPE AS IT BECOMES
NECESSARY, OR INTERNALLY WITH DATA-STATEMENTS? (ENTER 'T' OR 'D')?T
```

PLEASE ENTER THE FOLLOWING VALUES:
WHAT IS THE BASE PERIOD'S TOTAL SALES?50000
WHAT IS THE NET FIXED ASSETS FOR THE BASE PERIOD?4500DO
WHAT IS THE REMAINING LONG-TERM DEBT FOR THE BASE PERIOD?35000
WHAT IS THE TOTAL OWNER'S EQUITY FOR THE BASE PERIOD?800000

WHAT ARE THE RETAINED EARNINGS FOR THE BASE PERIOD?31000

WHAT IS THE FEDERAL CORPORATE TAX RATE?. 48
WHAT IS THE QUARTERLY PROJECTED AMOUNT OF DIVIDENDS?80D0
WHAT AMOUNT OF CASH WOULD YOU LIKE TO RETAIN FOR EACH QUARTER?30000
WHAT IS THE NORMAL ACCOUNTS/RECEIVABLE TURNOVER?2.25
WHAT IS THE NORMAL INVENTORY TURNOVER?1.50

WHAT PERCENTAGE OF SALES ARE THE ACCOUNTS/PAYABLE (I•E•, A/P TRNOVR)?.20

NOW ENTER FOUR VALUES FOR EACH QUESTION. EACH VALUE APPLIES TO THE RES-
PECTIVE OUARTER:
ENTER THE ESTIMATED PERCENTAGE GROWTH IN SALES
?.10
??.10..15,.20
ENTER THE COST OF GOODS SOLD AS AN ESTIMATED PERCENTAGE OF SALES
?.48,.49..50.. 51

ENTER THE GENERAL SELLING \& ADMINISTRATIVE EXPENSE AS A PERCENT OF SALES
?.10..12..12..12
ENTER THE ESTIMATED AMOUNT OF FIXED ASSET PURCHASES PER QUARTER
32000,5000.5000.1000
ENTER THE ESTIMATED AMOUNT OF FIXED ASSET RETIREMENTS PER QUARTER
?1000,1000,1000,1000

ENTER THE PLANNED DEBT PAYMENTS PER QUARTER
?25000.25000.25000.250001
$2500,2500,2500 \cdot 2500$

DO YOU WISH A BALANCE SHEET ONLY (TYPE '1'); AN INCOME STATEMENT ONLY (TYPE ' 2°)' ${ }^{\prime}$ OR BOTH (TYPE 3°)? 3

	*** INCOME STATEMENT ***			
	OTR \#1	QTR \#2	QTR \#3	QTR * 4
SALES	55000.	60500.	69575.	83490.
COST OF GOODS SOLD	26400	29645	34787.5	42579.9
GS AND A EXPENSES	5500	7260	8349	10018.8
PROFIT BEFORE TAX	23100	23595	26438.5	36891.3
FED. INCOME TAX	11088	11325.6	12690.5	14827.8
PROFIT AFTER TAX	12012	12269.4	13748.	16063.5
ANNUAL DIVIDENDS	8006	8000	8000	8000

	*** BALA	SHEET	***	
	OTR 1	QTR 2	QTR * 3	QTR * 4
CASH	377489.	370485.	362829.	357852 .
ACCOUNTS RECEIVABLE	24444.4	26888.9	30922.2	37106.7
INVENTORY	36666.7	40333.3	46383.3	55660 。
TOTAL CURRENT ASSETS	438600 .	437707.	440135.	450619.
NET FIXED ASSETS	451000.	455000.	459000.	459000.
TOTAL ASSETS	889600.	892707.	899135.	909619.
ACCOUNTS PAYABLE	11000	12100	13915	16698
ACCRUED TAXES	11088	11325.6	12690.5	14827.8
TOTAL CURRENT LIAB.	22088	$23425 \cdot 6$	26605.5	31525.8
DEBT FINANCING	32500	30000	27500	25000
EQUITY	800000.	860000.	800000.	800000.
RETAINED EARNINGS .	35012.	39281.4	45029.4	53092.9
TOTAL LIABILITIES	889680	892707.	899135.	909619.

DONE

BUSINESS AND MANUFACTURING APPLICATIONS (700) contributedprogram BASIC

TITLE:	BOND PRICE ANALYSIS DESCRIPTION: 36076
BNDPRC computes the price and accrued interest for a bond, given its coupon, redemption price, yield, and maturity life.	
INSTRUCTIONS:	Self-explanatory

BNDPRC, page 2

RUN

RUN
BNDPRC
BOND PRICE
SETTLEMENT DATE (MO,DAY,YR)?1,1,1970
MATURITY DATE (MO,DAY,YR)?4,1,1987
ANNUAL COUPON(Z)?3.7
DESIRED YIELD(\%)?5.5
TOTAL NUMBER OF BONDS?95

THE PRICE OF THE BOND IS: \$801.027
THE ACCRUED INTEREST IS : $\$ 9.25$
THE TOTAL BOND PRICE IS : \$ 76976.3

DONE
TITLE:
DESCRIPTION:

INSTRUCTIONS:

SPECIAL CONSIDERATIONS:

BOND SWITCH ANALYSIS
 BNDSWH 36077

BNDSWH calculates the effect of a bond switch, and provides a sensitivity analysis on various input.

In all output provided, there are three columns of data. This is for the purpose of comparison. The left-most column is for the results if the old bond is kept until the terminal date, and then sold. The middle column is for the results if the old bond is sold now, and the net revenue on its sale is immediately reinvested in the same bond. The last column is for the results if the old bond is sold now, and the net revenue on its sale is immediately reinvested on the new bond, which is held to the terminal date and then sold.
The following input information is necessary: (This can be entered as data-statements beginning in line 9900, or directly with input-statements. The first question will ask you to indicate your choice of method.)
$\mathrm{Bl}=$ book value of old bond
$\mathrm{Pl}=$ price of old bond
$\mathrm{Cl}=$ coupon on old bond
M1, M3 = maturity on old bond in years, months
$\mathrm{RT}=$ proceeds on redemption of old bond
$\mathrm{Tl}=$ tax rate on old bond interest payments
P2 = price of new bond
$C 2$ = coupon on new bond
M2,M4 = maturity on new bond in years, months
R2 $=$ proceeds on redemption of new bond
$\mathrm{T} 2=$ tax rate on new bond interest payments
S1, S2 = years, months to terminal date
$Y 3=$ predicted yield on old bond to terminal date
Y4 = predicted yield on new bond to terminal date
T3,T4 = capital loss rate now, capital gains rate now
T5,T6 = capital loss rate at terminal date, capital gains rate then
D3 = capital gains rate at maturity of old bond
D4 = capital gains rate at maturity of new bond
Y9 = after-tax reinvestment rate on coupons

There is a storage problem with BNDSWH. If using input-statements, delete lines 9900-9998 and run. If using data-statements, delete lines 9024-9108 and run.
Terminal data must be ≤ 5 years hence. Otherwise change line 9074, and dimension of A in line 9114 to $2 * S 1+S 2 / 6+2$.
Increment on yield spread and yields must be such that no more than 10 partitions are used. To increase, change line 9279 or line 9302 and make dimension of A in line 9114 (Z5-Z4)/Z6.

RUN
GET-\$BNDSH-WH
RUN
BNDSWH

* BOND SWITCH *

THIS PROGRAM CALCULATES THE EFFECT OF A BOND SWITCH.

```
DO YOU WISH TO ENTER YOUR DATA FROM THE TELETYPE AS IT BECOMES NECES-
SARY, OR INTERNALLY WITH DATA-STATEMENTS? (ENTER 'T' OR 'D')?T
WHAT IS THE BOOK VALUE OF THE OLD BOND?90
WHAT IS THE PRICE OF THE OLD BOND?100
COUPON ON OLD BOND?S
MATURITY ON OLD BOND IN YEARS, MONTHS?3,6
PROCEEDS ON REDEMPTION OF OLD BONDII2D
TAX RATE ON OLD BOND INTEREST PAYMENTS?.45
WHAT IS THE PRICE OF THE NEW BOND?80
COUPON ON NEW BOND?7.50
MATURITY ON NEW BOND IN YEARS, MONTHS?S.0
PROCEEDS ON REDEMPTION OF NEW BOND?1:S
TAX RATE ON NEW BOND INTEREST PAYMENTS?.45
HOW MANY YEARS, MONTHS TO TERMINAL DATE?4.0
PREDICTED YIELD ON OLD BOND TO TERMINAL DATE?.25
PREDICTED YIELD ON NEW BOND TO TERMINAL DATE?.30
CAPITAL LOSS RATE NOW, CAPITAL GAINS RATE NOW?.15,.33
CAPITAL LOSS RATE AT TERMINATION DATE, CAPITAL GAINS RATE THEN?.15,.33
CAPITAL GAIN RATE AT MATURITY OF OLD BOND?.33
CAPITAL GAIN RATE AT MATURITY OF NEW BOND?. }3
AFTER TAX REINVESTMENT RATE ON COUPONS?.@S5
```

ENTER THE NUMBER OF THE SENSITIVITY TABLE YOU PREFER:
'0' TO TERMINATE PROGRAM
-1. FOR TERMINAL DATE SENSITIVITY
'2' FOR YIELD SPREAD SENSITIVITY
'3. FOR YIELDS SENSITIVITY
-4•FOR NO TABLES, FINAL VALUES
$? 1$

SENSITIVITY OF YIELD AND TERMINAL VALUE TO TERM. DATE IN YEARS HENCE.
TERM• DATE (IN YEARS)

	OLD BOND	TAX SW.	NEW BOND
.5	-52.39	-54.36	-76.03
1	-20.81	-22.16	-34.65
1.5	-8.7	-9.76	-17.82
2	-2.26	-3.14	-8.65
2.5	1.18	1.03	-2.84
3	3.6	3.44	1.22
3.5	5.41	5.21	4.15
4	6.84	6.61	6.05
4.5	8.02	7.76	7.61
5	9.81	8.74	8.92

TERM. DATE (IN YEARS)

	OLD BOND	TAX SW.	NEW BOND
.5	75.22	74.22	63.84
1	81.91	80.69	76.71
1.5	89.3	87.84	78.28
2	97.42	95.74	86.66
2.5	104.88	104.48	95.96
3	113.11	112.62	106.31
3.5	122.22	121.43	117.57
4	132.3	131.19	128.4
4.5	143.48	142	140.48
5	155.88	154	153.98

```
ENTER THE NUMBER OF THE SENSITIVITY TABLE YOU PREFER&
    '0. TO TERMINATE PROGRAM
    1. FOR TERMINAL DATE SENSITIVITY
    '2' FOR YIELD SPREAD SENSITIVITY
    '3' FOR YIELDS SENSITIVITY
    '4' FOR NO TABLES, FINAL VALUES
?2
```


ENTER THE RANGE OF SPREADS YOU WISH TO CONSIDER. (NEW BOND YIELD
TO OLD BOND YIELD AT TERMINAL DATE).
ENTER THE HIGM SPREAD IN BASIS PTS.. THE LOW SPREAD, \& THE SENSITIVITY
INCREMENT?-200.206,50
SENSITIVITY OF YIELD AND TERMINAL VALUE TO SPREAD AT TERMINAL DATE.
(OLD BOND YIELD HELD CONSTANT).
SPREAD YIELD TO TERMINAL DATE
(IN BASIS PTS.)

	OLD BOND	TAXSW.	NEW BOND
-200	6.84	6.61	7.06
-150	6.84	6.61	6.98
-100	6.84	6.61	6.91
-50	6.84	6.61	6.84
0	6.84	6.61	6.77
50	6.84	6.61	6.69
100	6.84	6.61	6.62
150	6.84	6.61	6.55
200	6.84	6.61	6.48

SPREAD TERMINAL VALUE IN DOLLARS.
(IN BASIS PTS.)

OLN BASIS PTS.			
	OLD.BOND	TAX SW.	NEW BOND
-200	132.3	131.19	132.99
-150	132.3	131.19	132.65
-100	132.3	131.19	132.31
-50	132.3	131.19	131.97
0	132.3	131.19	131.64
50	132.3	131.19	131.3
100	132.3	131.19	130.97
150	132.3	131.19	130.64
200	132.3	131.19	130.32

```
ENTER THE NUMBER OF THE SENSITIVITY TABLE YOU PREFER:
    *' TO TERMINATE PROGRAM
    '1' FOR TERMINAL DATE SENSITIVITY
    '2' FOR YIELD SPREAD SENSITIVITY
        '3' FOR YIELDS SENSITIVITY
        * 4. FOR NO TABLES, FINAL VALUES
3
```


ENTER THE RANGE OF OLD BOND YIELDS AT TERMINAL DATE
INPUT HIGH YIELD, LOW YIELD, AND INCREMENT DESIRED?.35
??.20..025
SENSITIVITY OF YIELD AND TERMINAL VALUES TO YIELD AT TERMINAL DATE.
(SPREAD HELD CONSTANT).

```
YIELD
        YIELD TO TERMINAL DATE
```

(OLD BOND)

	OLD BOND	TAX SW.	NEW BOND
.2	6.43	6.2	6.77
.225	6.64	6.41	6.41
.25	6.84	6.61	6.85
.275	7.65	6.81	5.71
.3	7.26	7.01	5.37
.325	7.46	7.21	5.04
.35	7.66	7.41	4.71

DONE

TITLE:
DESCRIPTION:
BOND YIELD ANALYSIS
BNDYLD computes after-tax yield to maturity of a bond, given its coupon,
redemption price, maturity life, price, and the tax rates applied to
interest and capital gains.

BNDYLD, page 2

RUN

RUN
BNDYLD
BOND YIELD
SETTLEMENT DATE (MO,DAY,YR)?1,1,1970
MATURITY DATE (MO,DAY,YR)?8,1,1993
ANNUAL COUPON($\%$)? 4. 1
BOND PRICE ?81.621946

THE BOND YIELD IS : 5.50025 \%

DONE

TITLE:
DESCRIPTION:
BANK RESERVE CALCULATIONS
BNKRSV calculates the required bank reserve, and the reserve position at the close of a given bank's business day.

Enter all values in dollars.
BNKRSV will require a number of input values. There is no data to enter as data-statements.
For a user familiar with the program, the following changes could be made to expedite the input routine:

9047 READ C, D, E, F, G, H, HT
9048 GOTO 9130
9201 READ J, J1, J2, K8, K1 , K,L,M,N,0, P, P9
9203 GOTO 9340
and at 9900 enter the data for the above values.
The names of the above variables can easily be seen from the listing of BNKRSV from line 9060 to 9125 and 9215 to 9335.

RUN
RUN
BNKRSV

* BANK RESERVE CALCULATIONS *

THIS PROGRAM CALCULATES THE REQUIRED BANK RESERVE, AND THE RESERVE POSITION AT THE CLOSE OF A GIVEN BANK'S BUSINESS DAY.

PLEASE ENTER THE FOLLOWING BALANCES AT THE CLOSE OF BUSINESS YESTERDAY:

DEMAND DEPOSITS OF BANKS? 15006
U.S. GOVERNMENT DEMAND DEPOSITS?102000

OTHER DEMAND DEPOSITS?412000
CASH ITEMS IN PROCESS?11500
DEMAND DEPOSITS DUE FROM BANKS?18500
TIME DEPOSITS?10500
CURRENCY AND COIN? 9500

THE REQUIRED RESERVE IS EQUAL TO \$ 50695.
WOULD YOU LIKE TO CALCULATE THE STATEMENT OF RESERVE POSITION?YES

PLEASE ENTER THE FOLLOWING AMOUNTS:
FEDERAL RESERVE BANK BALANCE YESTERDAY?65000
NUMBER OF DAYS REMAINING IN THE PERIOD?21
CUMULATIVE EXCESS OR DEFICIENCY(-) AS OF YESTERDAY?32000
FEDERAL FUNDS RATE (IN DECIMALS)?.115
COLLECTED FLOAT TO BE CREDITED TODAY?110日0
CASH LETTER?2150
SECURITIES COLLECTED OR PURCHASED (-) BY THE FED?95000
CASH SHIPPED OR ORDERED (-)?30000
TRANSFERS IN OR OUT (-)?-12000
TREASURY TAX \& LOAN CHARGE? 1500000^{-}
OTHER CREDITS OR DEBITS (-)?9000
FUTURE TRANSACTIONS -CREDITS OR DEBITS(-)?-6500

*** STATEMENT OF RESERVE POSITION ***
21 DAYS REMAINING IN RESERVE PERIOD

490500.	46075.	134775.	296930.	94853.
495300.	46651.	134199.	296354.	94669.
500100.	47227.	133623.	295778.	94485.
504900.	47803.	133047 .	295202.	94301.
509700.	48379.	132471 .	294626.	94117.
514500.	48955.	131895.	294050.	93933.
519300.	49531.	131319.	293474.	93749.
524100.	50107.	130743.	292898.	93565.
528900.	50683.	130167.	292322.	93381.
533700.	51259.	129591.	291746.	93197.
538500.	51835.	129015.	291170.	93013.
543300.	52411 -	128439.	290594.	92829.
548100.	52987 .	127863.	290018.	92645.
552900.	53563 .	127287.	289442.	92461.
557700.	54139.	126711.	288866.	92277.
562500.	54715 .	126135.	288290.	92093.
567300.	55291.	125559.	287714.	91969.
572100.	55867 .	124983.	287138.	91725.
576900.	56443 .	124407.	286562.	91541.
581700 -	57019.	123831.	285986.	91357.

DONE
title:

DESCRIPTION:

INSTRUCTIONS:

departmental manager's budgeting program
BUDGET
36073

This program asks for projected controllable expenses for a six month period and produces an itemized budget summary table of all expenses for that period. Uncontrollable costs such as overhead, taxes and depreciation are calculated by the program and automatically included in this summary so that the user need only be concerned with controllable costs. The itemized budget summary is stored in a file as well as being printed so the data is easily available for additional processing as needed.
The projected controllable expenses that BUDGET requests are listed below:
. Salaries

- Travel Expense
- Printing and Reproduction
- Means and Lodging
- Operating Supplies
. Other Expense
- Equipment Costs
. Advertising and Promotion
- Demo and Loan Expense

When all controllable expenses have been typed-in, BUDGET immediately begins printing the itemized budget summary. When this has been done, the program halts. BUDGET simplifies the budgeting task faced at least bi-annually by every department manager. It has two primary benefits:
. It permits the manager to concentrate on controllable costs only; the program takes care of all uncontrollable expenses.
. The manager can use the program to explore an entire series of alternate budgets when faced with cutting the total expense. Since the more laborious calculations are performed by the program, the manager is free to explore alternatives.

Load the Program.
Establish a File.
The BUDGET program uses one file which must be established before the program is run. Set up the file by typing the command below:

OPE-BFILE,6
Opening this file, simply allocates storage. The BUDGET program itself places data on file.
RUN
Information Needed by Budget (General)

- Date . Operating Supplies
- Location Code . Equipment Costs
- Personnel Count . Demo \& Loan Expense
. Salaries . Travel Expense
- Transfers in and out . Meals \& Lodging
. \% Salary increase in July . Other Expense
. Printing \& Reproduction . Advertising and Promotion
Information Calculated by Budget
- Total for each controllable expense item
- Total operating Expense . Freight Out
. Total controllable Expense . Overhead charges
- Payroll Taxes . Training Sold
- Depreciation . Total Location (overall) Expense
. Occupancy Costs
. Total Personnel Count
Information Saved by Budget
Budget places all the information found in the summary printout in a file. Each time the program is run, the old data is erased and replaced with the newly calculated data.
title:

SPECIAL CONSIDERATIONS:

```
DEPARTMENTAL MANAGER'S BUDGETING PROGRAM (cont.)
```

Message
NON-EXISTENT FILE
REQUESTED
MISSING OR PROTECTED
FILE
READ ONLY FILE

END OF FILE/
END OF RECORD

BAD INPUT,
RETYPE FROM ITEM 1
EXTRA INPUT,
WARNING ONLY

Response/Explanation
OPEN FILE
OPEN FILE

Another system user has already gotten BUDGET and has priority access to the file. He must SCRATCH-BUDGET before you can write on the file.
FILE NOT LARGE ENOUGH. Type the commands below; then restart BUDGET from beginning.

KIL-BFILE
OPE-BFILE, 6
Data is of wrong type (letters instead of numbers). Retype correctly.
Non-numeric characters (e.g. '\$', ',') were typed when only numbers were expected. Program does the best it can. Check budget summary to see particular value. May be necessary to re-run entire program.

RUN
GET-BUDGET
RUN
BUDGET

HEWLETT-PACKARD
DEPARTMENTAL BUDGET PROGRAM
TODAY'S DATE?NOVEMBER 12, 1970
LOCATION CODE?6733-89
TYPE PERSONNEL COUNT BY MONTH
? 4
? 4
? 5
? 5
? 7
38
TYPE 4 SALARIES FOR MAY
? 490
? 610
?900
? 950
TYPE 1 SALARIES FOR MONTH 3 'S HIRES (MINUS FOR LOSSES)
? 1000
TYPE 2 SALARIES FOR MONTH 5 -S HIRES (MINUS FOR LOSSES)
? 800
?750
TYPE 1 SALARIES FOR MONTH 6 'S HIRES (MINUS FOR LOSSES)
? 550
WHAT 2 SALARY INCREASE IN JULY (NORMAL IS 5.0)?5
WHAT 2 SALARY INCREASE IN OCTOBER (NORMAL IS 2.0)?2
TRANSFERS IN
? 0
$? 8$
$? 8$
? 0
? 0
? 0
? 0
TRANSFERS OUT
70
70
? 0
? 0
? 0
?
PRINTING \& REPRODUCTION
? 1000
?800
?2300
? 0
3910
? 1196
operating supplies
?250
? 164
? 125
?260
?245
?180
EQUIPMENT COSTS
? 1506
? 1400
? 4500
? 950
? 3300
?2460
demo \& loan expense
? 450
? 300
? 225
? 589
? 125
?350
TRAVEL EXPENSE
? 560
? 400
? 350
? 685

```
?160
?350
MEALS & LODGING
?360
?400
?250
?300
?150
?280
OTHER EXPENSE
?105
?200
?50
?390
?0
?125
ADVERTISING & PROMOTION
?0
?1300
?1090
?1100
?500
?0
```


NOVEMBER 12, 1970

LOCATION TARGET	MAY	JUN	JUL	AUG	SEP	OCT	TOTAL
SALARIES	2956	2950	4097	4097	5647	6256	25997
PLUS TRANSFERS IN	0	0	0	\emptyset	0	0	0
LESS TRANSFERS OUT	0	0	0	0	0	0	0
NET SALARIES	2950	2950	4097	4097	5647	6256	25997
PRINTING \& REPRO	1000	800	2300	0	910	1190	6200
OPERATING SUPPLIES	250	104	125	200	245	180	1104
EQUIPMENT COSTS	1500	1400	4500	950	3300	2400	14050
DEMO \& LOAN COSTS	450	300	225	580	125	350	2030
TRAVEL EXPENSE	560	400	350	605	160	350	2425
MEALS \& LODGING	360	400	250	300	150	280	1740
OTHER EXPENSE	105	200	50	390	0	125	870

ADVERTISING \& PROMOTION	0	1300	1090	1100	500	0	3990
TOTAL CONTROLLABLE EXP	7175	7854	12987	8222	11037	11131	58406
PAYROLL TAXES	333	248	307	254	313	327	1782
DEPRECIATION	0	0	0	0	0	0	0
OCCUPANCY COSTS	320	320	400	400	560	640	2640
FREIGHT OUT	0	0	0	0	0	0	0
OVERHEAD CHARGES	0	0	0	0	0	0	0
TRAINING SOLD	0	0	0	0	0	0	0
TOTAL LOCATION EXPENSE	7828	8422	13694	8876	11910	12098	62828
PERSONNEL COUNT	4	4	5	5	7	8	33
DONE							

contributed program BASTC

Instructions: (Cont'd.)

Normal Expense Data

* Expense Option

XI
Where
1 - Each is entered
2 - Uniform expenses
3 - Straight line decline
4 - Rapid decline in early years
5 - Rapid decline in later years
0 - No normal expenses
If expense option $=1$, expenses for each period are entered. If expense option $=2$ thru 5 enter the following:

Expense Life in Periods	X2
Initial Expense	X3
$\%$ of Initial Expense to be Final	X4

Extra Expense Data

* Extra Expense Option X5

Where
1 - Extra expenses exist
2 - No extra expenses
If option $=1$, the following:
Number of Extra Expenses
$\times 6$
For 1 to X 6
Period, Expense in Period $\quad X 7, Y(X 7)$

Depreciation Data

* Depreciation Option D1

Where
1 - Each is entered
2 - Straight line
3 - Declining balance
4 - Sum of years digits
If depreciation option $=1$, depreciation amounts for each period are entered. If depreciation option $=2$ thru 4, enter the following:

Percent of Investment Not to be Depreciated	D2
Number of Years to be Depreciate	D3

SAMPLE INVESTMENT TO BE ANALYZED

A $\$ 350,000$ numerically controlled machine tool purchase is to be evaluated. The following is assumed:
7\% investment tax credit
50\% income tax rate
12 year depreciation period using the sum of the years digits' method
$\$ 100$ per hour gross income when working
40\% machine utilization
Two shift operation, 6 days a week, 48 weeks a year
$\$ 6$ per hour operator cost including fringe benefits
$\$ 250$ per day for overhead (space maintenance, programming support, and tooling expense)
$\$ 25,000$ major overhaul required every five years
$\$ 35,000$ salvage value
Preliminary Calculations:
Estimated annual machine tool utilization:
16 hrs/day
$\times \quad .4$ utilization
$6.4 \mathrm{hrs} / \mathrm{day}$

$\mathrm{x} \quad 6$
38.4
$\mathrm{hrs} /$ days/week

x 48 weeks/yr
$1843 \mathrm{hrs} /$ year

Instructions: (Cont.)
Estimated annual gross income:

1843	$\mathrm{hrs} / \mathrm{yr}$
$\times \quad \$ 100$	per hour

Estimated annual operating expenses:

$\begin{array}{r} 16 \\ \times \quad 6 \end{array}$	operator hrs/day days/week
96	hrs/week
$\times \quad \$ 6$	operator cost/hour
\$576	per week
- 48	weeks/yr
\$27,648	per year
+72,000	overhead/yr (\$250/day x 6 days x 48 weeks)
\$99,648	normal annual operating expense
Investm	nt tax credit
\$350,000	purchase price
X $\quad .07$	investment credit \%
\$24,500	

Extraordinary Expenses
YR $5 \& 10-\$ 25,000$ (overhaul)
Extraordinary Earnings
YR 12 - \$35,000 (salvage value)
Depreciation
Sum of the years digit method
Included in this documentation are sample RUNs illustrating use of the program both by (1) entering DATA statements, and (2) entering data conversationally.

Change Option: Upon completion of a run, the user may optionally change some of the data from the previous run. This facility simplifies re-runs. A sample RUN illustrating this feature is also included.

Data Statement Format

nnn DATA I1, Cl, S1, L1, T1
nnn DATA E1, E2, E3, E4

```
or
nnn DATA 1, E(1),E(2) ............E(LT)
nnn DATA 1, E6,E7(1),A(E7)(2),A(E7) ...E7(E6),A(E7)
```

or
nnn DATA 0
nnn DATA X1, X2, X3, X4
or
nnn DATA $1, X(1), X(2), \ldots \times(L 1)$
nnn DATA $1, X 6, X 7_{(1)}, Y(X 7), X 7_{(2)}, Y(X 7) \ldots X 7_{(X 6)}, Y(X 7)$
or
nnn DATA 0
nnn DATA 01, D2, D3
or
nnn DATA 1, $D(1), D(2), \ldots . . D(L 1)$

```
Instructions: (Cont'd)
```

Calculations Formulas
$\frac{\text { Earnings }}{F=F i n}$
Inal Earnings $=(.01$ E4) E3
Uniform
$e_{n}=E 3, N=1, \ldots ., L 1$
Straight Line
$e_{n}=E 3-\frac{(n-1)(E 3-F)}{(E 2-1)}, n=1, \ldots E 2$
Rapid Decline in Early Years
$e_{1}=E 3$
$e_{n}=e_{n-1}-\frac{2(E 2-n+1)(E 3-F)}{E 2(E 2-1)}, n=2, \ldots E 2$
Rapid Decline in Later Years
$e_{1}=E 3$

$$
e_{n}=e_{n}-1-\frac{2(N-1)(E 3-F)}{E 2(E 2-1)}, n=2, \ldots, E 2
$$

Expenses
$F=$ Final Expenses $=(.01 \times 4) \times 3$
Uniform
$X_{n}=X 3, N=1, \ldots L 1$
Straight Line

$$
x_{n}=x 3-\frac{(N-1)(X 3-f)}{(X 2-1)}, n=1, \ldots x 2
$$

Rapid Decline in Early Years

$$
x_{1}=x 3
$$

$$
x_{n}=X_{2-1}-\frac{2(X 2-n+1)(X 3-F)}{X_{2}(X 2-1)}, n=2, \ldots, x_{2}
$$

Rapid Decline in Later Years

$$
x_{1}=x 3
$$

$$
x_{n}=x_{n-1}-\frac{2(n-1)(x 3-F)}{x_{2}(x 2-1)}, n=2, \ldots x^{2}
$$

Depreciation

$D=$ Depreciable Investment $=(I 1-C 1)(1-.01 D 2)$

$$
\begin{aligned}
& \text { Straight Line } \\
& d_{n}=\frac{D}{D 3}, n=1, \ldots \ldots . D 3
\end{aligned}
$$

Double Declining Balance
$\left.\begin{array}{l}d_{n}=\frac{2 D}{D 3} \\ D=D-d_{n}\end{array}\right\} \quad n=1, \ldots, D 3$

Sum of the Years Digits

$$
d_{n}=\frac{2 D(D 3-n+1)}{D 3(D 3+1)}, n=1, \ldots \ldots, D 3
$$

NOTES: DATA statements numbers may be any number between 1 and 999 . The time period used in the program must be consistent throughout. The product life length and cash flow inputs must be the same. The program converts to annual for return calculations.

RUN

```
10 DATA 350000,,24500,35000,,12,50
20 DATA 2,0,184320.,0
30 DATA 1,1,12,35000.
40 DT-ATA 2,0,99648.,0
50 DATA 1,2,5,25000,10,25000
60 DATA 4,0,12
RIJN
CAPDCF
```

 GAPITAL INUESTMENT ANALYSIS
 ENTER TIME PERIOD TO BE USED FOR CASH FLOWS AND LIFE:
(1)ANNIJAL, (2)SEMI-ANNUAL, (3) QUARTERLY, (4)MONTHLY? 1
IS INPUT FROM (1)DATA STATEMENTS OR (2)CONUERSATIONALLY?I
RETURN ON INUESTMENT IS 13.9504 PERCENT (ANNUAL)
DO YOU WISH A COMPLETE REPORT?Y

CAPITAL INUESTMENT ANALYSIS

1	184320	0	99648	0	84672
2	184320	0	99648	0	84672
3	184320	0	99648	0	84672
4	184320	0	99648	0	84672
5	184320	0	99648	25000	59672
6	184320	0	99648	0	84672
7	184320	0	99648	0	84672
8	184320	0	99648	0	84672
9	184320	0	99648	0	84672
10	184320	0	99648	25000	59672
11	184320	35000	99648	0	84672
12				0	119672

CAPDCF, Page 6

PERIOD	DEPRECIATION	TAXABLE INC OME	$\begin{aligned} & \text { I NC OME } \\ & \text { TAX } \end{aligned}$	AFTER TAX CASH FLOW	DISCOUNTED CASH FLOW
1	48462	36210	18105	66567	58417
2	44423	40249	20124	64548	49710
3	40385	44287	22144	62528	42260
4	36346	48326	24163	60509	35889
5	32308	27364	13682	45990	23938
6	28269	56403	28201	56471	25795
7	24231	60441	30221	54451	21827
8	20192	64480	32240	52432	18445
9	16154	68518	34259	50413	15563
10	12115	47557	23778	35894	9724
11	8077	76595	38298	46374	11026
12	4038	115634	57817	61855	12906

TOTAL DISCOUNTED CASH FLOW	325500
INITIAL INUESTMENT	325500
NET PRESENT VALUE OF INVESTMENT	0

58417 49710 42260 23938 25795 21827 18445 15463
9724 11026 - 12906

```
WHICHH OPTION??
ENTER UNIFORM EXPENSE AMOUNT?99648
ANY EXTRAORDINARY EXPENSES?YES
ENTER THE NUMBER OF EXTRAORDINARY EXPENSES?Z
FOR EACH EXPENSE, ENTER PERIOD # AND AMOUNT
EXPENSE " 1 ?5,25000
EXPENSE * 2 ?10,25000
DEPRECIATION OPTIONS;
    1-EACH IS ENTERED
    2-STRAIGHT LINE
    3-DECLINING BALANCE
    4-SUM OF YEARS DIGITS
    5-EXIT
WHICH OFTION?4
ENTER % OF INUESTMENT NOT TO BE DEPRECIATED?O
ENTER NUMBER OF YEARS TO DEPRECIATE?12
RETURN ON INUESTMENT IS 13.9504 PERCENT (ANNUAL)
DO YOU WISH A COMPLETE REPORT?NO
DO YOU WISH TO (1)QUIT, (2)ENTER NEW SET OF DATA, OR (3) CHANGE CURRENT
?1
DONE
10 DATA 350000.,24500,35000.,12,50
20 DATA 2,0,184320.,0
30 DATA 1,1,12,35000.
40 DATA 4,12,200000,,10
50 DATA 1,2,5,25000,10,25000
60 DATA 4,0,12
RIJN
CAPDCF
CAPITAL INUESTMENT ANALYSIS
ENTER TIME PERIOD TO BE USED FOR CASH FLOWS AND LIFE:
    (1)ANNUAL, (2)SEMI-ANNUAL, (3)QUARTERLY, (4)MONTHLY?1
IS INPIUT FROM (1)DATA STATEMENTS OR (2)CONUERSATIONALLY?I
RETURN ON INUESTMENT IS 12.2004 PERCENT (ANNUAL)
DO YOU WISH A COMPLETE REPORT?Y
CAPITAL INUESTMENT ANALYSIS
\begin{tabular}{lrlrlr} 
INUESTMENT COST & 350000 & SALVAGE VALUE & 35000 & \\
INUESTMENT TAX CREDIT & 24500 & LIFE OF INVESTMENT & 12 & YEARS \\
NET INVESTMENT COST & 325500 & INCOME TAX RATE & 50.00 PERCENT
\end{tabular}
```

CAPDCF, Page 8

PERIOD	NORMAL EARNINGS	EXTRA EARNINGS	NORMAL EXPENSES	EXTRA EXPENSES	BEFORE TAX CASH FLOW
1	184320	0	200000	0	-15680
2	184320	0	170000	0	14320
3	184320	0	142727	0	41593
4	184320	0	118182	0	66138
5	184320	0	96364	25000	62956
6	184320	0	77273	0	107047
7	184320	0	60909	0	123411
8	184320	0	47273	0	137047
9	184320	0	36364	0	147956
10	184320	0	28182	25000	131138
11	184320	0	22727	0	161593
12	184320	35000	20000	0	199320

PERIOD	DEPRECIATION	TAXABLE INC OME	$\begin{aligned} & \text { INC OME } \\ & \text { TAX } \end{aligned}$	AFTER TAX CASH FLOW	DISCOUNTED CASH FLOW
1	48462	-64142	-32071	16391	14608
2	44423	-30103	-15052	29372	23331
3	40385	1208	604	40989	29019
4	36346	29792	14896	51242	32333
5	32308	30649	15324	47632	26787
6	28269	78778	39389	67658	33912
7	24231	99180	49590	7382.1	32978
8	20192	116855	58427	78620	31302
9	16154	131802	65901	82055	29118
10	12115	119023	59511	71627	22653
11	8077	153516	76758	84835	23913
12	4038	195282	97641	101679	25545

TOTAL DISCOUNTED CASH FLOW	325500
INITIAL INUESTMENT	325500
NET PRESENT UALUE OF INUESTMENT	0

325500
325500

```
DO YOU WISH TO (1)QUIT, (2)ENTER NEW SET OF DATA, OR (3)CHANGE CURRENT
?3
CHANGE OPTIONS:
    I-BASIC DATA
    2-EARNINGS DATA
    3-EXPENSE DATA
    4-DEPRECIATION DATA
    5-EXIT
WHICH CHANGE OPTION?3
CHANGE EXPENSE OPTIONS?Y
EXPENSE OPTIONS:
    1-EXPENSES FOR EACH PERIOD ARE ENTERED
    2-UNIFORM EXPENSES
    3-STRAIGHT LINE DECLINE
    4-RAPID DECLINE IN EARLY YEARS
    5-RAPID DECLINE IN LATER YEARS
    6-EXIT
WHICH OPTION?S
ENTER EXPENSE LIFE IN YEARS?12
INITIAL EXPENSE?200000
ENTER % OF INITIAL EXPENSE TO BE FINAL VALUE?!O
CHANGE EXTRAORDINARY EXPENSES?N
ANY MORE CHANGES?N
```

```
RETURN ON INUESTMENT IS 3.8019 PERCENT (ANNUAL)
```

DO YOU WISH A COMPLETE REPORT?Y

CAPITAL INVESTMENT ANALYSIS

INUESTMENT COST	350000	SALUAGE VALUE	35000	
INUESTMENT TAX CREDIT	24500	LIFE OF INVESTMENT	12	YEARS
NET INVESTMENT COST	325500	INCOME TAX RATE	50.00 PERCENT	

PERIOD	NORMAL EARNINGS	EXTRA EARNINGS	NORMAL EXPENSES	EXTRA EXPENSES	BEFORE TAX CASH FLOW
1	184320	0	200000	0	-15680
2	184320	0	197273	0	-12953
3	184320	0	191818	0	-7498
4	184320	0	183636	0	684
5	184320	0	172727	25000	-13407
6	184320	0	159091	0	25229
7	184320	0	142727	0	41593
8	184320	0	123636	0	60684
9	184320	0	101818	0	82502
10	184320	0	77273	25000	82047
11	184320	0	50000	0	134320
12	184320	35000	20000	0	199320
		TAXABLE	I NC OME	AFTER TAX	DISCOUNTED
PERIOD	DEPRECIATION	INC OME	TAX	CASH FLOW	CASH FLOW
1	48462	-64142	-32071	16391	15790
2	44423	-57376	-28688	15735	14604
3	40385	-47883	-23941	16443	14702
4	36346	-35663	-17831	18515	15948
5	32308	-45715	-22857	9450	7842
6	28269	-3040	-1520	26749	21383
7	24231	17362	8681	32912	25346
8	20192	40491	20246	40438	30002
9	16154	66348	33174	49328	35257
10	12115	69932	34966	47081	32419
11	8077	126243	63122	71198	47229
12	4038	195282	97641	101679	64978

```
TOTAL DISCOUNTED CASH FLOW
INITIAL INUESTMENT
NET PRESENT VALUE OF INUESTMENT O
```

```
325500
```

325500
325500

```
325500
```

DO YOU WISH TO (1)QUIT, (2)ENTER NEW SET OF DATA, OR (3)CHANGE CURRENT ? 1

DONE

RUN

GET-SCAPINV
RUN
CAPINV

* CAPITAL INVESTMENT ANALYSIS *

THIS PROGRAM PRINTS THE GROSS CASH FLOW, ANNUAL DEPRECIATION, ANNUAL TAX, NET CASH FLOW, AND DISCOUNTED CASH FLOW FOR A LONG-TERM CAPITAL INVESTMENT.

WHAT IS THE INITIAL INVESTMENT?25000
HOW MANY CASH FLOWS DO YOU WISH TO ENTER?10

ENTER 10 GROSS CASH FLOWS?2-3500,3000,3000,2750,2750,2500,2500,2000 ??1750,1600

TYPE DEPRECIABLE AMOUNT, LIFE, AND SALVAGE VALUE?15000,12,8000
DEPRECIATION METHODS:

1. STRAIGHT LINE
2. DOUBLE DECLINING TO STRAIGHT LINE
3. SUM-OF-THE-YEARS DIGITS

ENTER NUMBER OF DEPRECIATION METHOD?2

ENTER DISCOUNT RATE AND TAX RATE?.333:.450

YEAR	GROSS CASH FLOW	ANNUAL DEPREC	ANNUAL TAX	$\begin{aligned} & \text { NET CASH } \\ & \text { FLOW } \end{aligned}$	$\begin{aligned} & \text { DISCNTD } \\ & \text { CASH FLOW } \end{aligned}$
1	3500	2500	450	3050	2288.07
2	3000	2083.33	412.5	2587.5	1456.2
3	3000	1736.11	568.75	2431.25	1826.45
4	2750	1446.76	586.458	2163.54	685.243
5	2750	1205.63	694.965	2055.04	488.28
6	2500	1004.69	672.888	1827.11	325.675
7	2500	837.245	748.24	1751.76	234.241
8	2000	697.784	586.033	1413.97	141.84
9	1750	581.42	525.861	1224.14	92.1212
10	1600	484.517	501.967	1098.03	61.9889
TOTAL	25350	12577.4	5747.66	19602.3	6800.11
DO YOU	ISH ANOTHER	UN; $1=Y E S$,	NO? 2		

DONE

TITLE: \quad\begin{tabular}{l}
CASH FLOW ANALYSIS

Program calculates:

1. Present value of up to 4 cash flows for a given cost of capital.

2. | Implicit rate of return which equates the present value of the |
| :--- |
| cash flow to zero. |
| 36142 |

3. Period in which the payback occurs if applicable.
\end{tabular}

You will be asked to type in:

1. Cost of capital in \% per period.
2. Number of periods (less than l2l).
3. Number of cash flows being considered.

SPECIAL
 CONSIDERATIONS:

```
RUN
RUN
CSHFL
WHAT IS THE ESTIMATED COST OF CAPITAL IN PERCENT?15
WHAT IS NUMBER OF* PERIODST5
HOW MANY FLOWS ARE BEING CONSIDERED,1,2,3,OR 4?4
ENTER CASH FLOWS, SEPARATE BY COMMAS,MINUS FOR OUTLAYS
                            FLOW 1,FLOW 2,FLOW 3,FLOW 4
PERIOD D INCOMET-100,-100,-100,-100
PERIOD 1 INCOME?50,40,30,20
PERIOD 2 INCOMET40,30,20,10
PERIOD 3 INCOME? 30,20,10,50
PERIOD 4 INCOME?20,10,50,40
PERIOD 5 INCOME?10,50,40,30
FLOW 1
PAYBACK FOR INITIAL INVESTMENT ON FLOW I IS IN PERIOD 4
PRESENT VALUE OF FLOW 1 IS 9.85631
RATE OF RETURN EQUATING P.V. OF FLON TO ZERO IS 20.272 PERCENT
FLOW 2
PAYBACK FOR INITIAL INUESTMENT ON FLOW 2 IS IN PERIOD 5
PRESENT VALUE OF FLOW & IS 1.19359
RATE OF RETURN EQUATING P.V. OF FLOW TO ZERO IS 15.5199 PERCENT
FLOW 3
PRESENT VALUE OF FLOW 3 1S-3.7403
RATE OF RETURN EQUATING P.V. OF FLOW TO ZERO IS 13.5603 PERCENT
FLOW 4
PRESENT VALUE OF FLOU 4 IS-4.38605
RATE OF RETURN EQUATING P.V. OF FLOW TO ZERO IS 13.3588 PERCENT
DONE
```

TITLE:	
DESCRIPTION:	CTC MANUFACTURING PARTS CONTROL These CTC Manufacturing Parts Control programs are part of a total accounting system written by Computer Terminal Corporation for the HP 2000A. (See A706-36213 CTC Payroll Program, A717-36212 CTC Projection Programs, A7ll-36214 CTC Accounts Receivable, and A708-36211 CTC Inventory Control for Finished Products.) Abstracts of the 23 manufacturing parts control programs are on the following page along with an index to the documentation.
INSTRUCTIONS:	
ACKNOWLEDGEMENTS:	

I. INTRODUCTION
A. Brief Description of Programs
B. File Structure

1. Basic Data Files
2. Sub-Assembly-Component File
3. Multiple Pull File
4. Transaction File
5. Auxiliary File
6. Scratch Files
C. File Set Up Procedures
II. DETAILED INSTRUCTIONS TO PROGRAMS
A. UPDTG Provides direct updating of (1) any entry within a part number, or (2) a particular entry for several part numbers. Under type (1) a display of all the information stored on the part number is given.
B. UPDTQ Provides automatic on order or on hand updates including multiple pulls and returns for subassembly-component groups.
C. MULFIL Creates a file which is used in doing a play multiple pull. 'X' subassemblies are entered with the quantity to be pulled. Each component part involved and the total quantity to be pulled is placed on this file.
D. MULPRT This program uses the file created in program MULFIL to do a play multiple pull. It pretends to pull the quantity listed for each component part. found on the play pull file. The print-out lists the part numbers, the on hand value before and after the pull, and flags the parts which are short. A listing of only those parts which are short can also be made.
E. DELAD1 Provides deletion of a part number, addition of a part number, or the change of a part number on the file to another number not on the file.
F. SUBDIS Provides a quick display of a subassembly with its component parts and the number of times each is used in the subassembly.
G. CSTANL Calculates (1) the total cost of all parts on file: on hand, on order, (2) the total cost of ' A ' items: on hand, on order, (3) the total cost of ' B ' items: on hand, on order, (4) the total cost of ' C ' items: on hand, on order, (5) the total maximum cost on hand, (6) the total minimum cost on hand, and various $\$$ usage values.
H. UPDTSB Provides updating of the subassembly-component file which contains each subassembly and a list of its component parts.
I. IPRT Provides formatted data of the entire inventory file.
J. TPRT Provides formatted data of the whole transaction file or just the last five transactions made.
K. FSUBP Provides formatted data of the subassembly-component file.
L. OBSPRT Provides formatted data of obsolete parts (those having all usages as zero).
M. CATPRT Gives three types of catalogues of the inventory files: (1) part number and description, (2) part number, description and standard cost, or (3) part number, description, standard cost, quantity on hand and cost on hand. The listing is in order of part number.
N. MODGØ

Allows for modification of the auxiliary file.
0. AVE\$T Figures the total average dollar weekly usage for all parts and places this value on the auxiliary file. The value is used to figure the category and maximum and minimum values for each part number.
P. USEPRD Prints all part numbers with their descriptions which are used in the specified product.
Q. USECNT Prints (1) the total number of different parts used in each product and (2) the total usage of each product.
R. COUNT Counts the number of parts in files G1 through G9 and figures the number of parts left available in each file.

INDEX TO MANUFACTURING PARTS CONTROL PROGRAMS

S. CATSRT Prints part numbers belonging to a specified category (A, B, or C) Figures cost on hand for each part printed and totals the cost on hand for each category.
T. PRDCST The program figures (1) the cost to build each product or (2) the cost of a specified subassembly.
U. OHCLER This program allows the user to clear the on order value, the on hand value, or the usage of one of the 21 products for all parts on one of the data files (G7-G9).
V. TRA\$ This program lets the user input part numbers and quantities. This data is saved on a scratch file which has to be opened before the program is run. The data can be updated and a Transfer of $\$$ Amounts report printed.
W. EXTCST With this program, the user can enter a part number and quantity and the program will return with the part description, standard cost, and extended cost (standard cost x quantity).

CONTRIBUTED PROGRAM BASC

| TITLE: |
| :--- | :--- |
| DESCRIPTION: |
| CTC2 |

I. INTRODUCTION
A. Brief Description of Programs
B. File Structure

1. Unit File
2. Transaction File
3. Customer Sort File
II. PROGRAM INSTRUCTIONS
A. UPDTIC This program allows the user to add a new unit to the unit files or modify a unit already on the files. The user can delete a unit through the modification portion of the program. He can also view the information stored on a unit without making any changes.
B. ICPRT This program provides formatted output of the unit files. The user can specify the beginning and ending units. He can also control the type of listing to be made by entering values for these ten variables: vendor \#, transaction type, sales location, vendor \# location, lease status, field service location, terms, salesman, agreement \#, and tax rate.
C. ICTPRT This program provides formatted output of the transaction file which keeps record of any changes made to the unit files.
D. TASOLD This program provides formatted output of those units which are leases sold to Trans-America. The user can specify the customer number interval he wants printed.
E. UPDTAQ This program allows the user to add several new units to the files at once. Their data items are the same except for product number, serial number, and the date.
F. EXLSE This program provides formatted output of leases expiring ' X ' days from the current date. The user specifies the unit interval over which the program is to search and the number of days to expiration. Sales location and lease status are variable also.
G. OWNSUM This program summarizes the ownership of leased and sold units by product.
H. UNTSUM This program is a summary of ownership by individual units (leased). It calculates the remaining life of the lease, the remaining rental billing and the remaining maintenance billing for each unit.
I. STPRT User enters customer number unit locations (up to 50) to be printed for all products. All standard information is printed. User also specifies transaction, lease status and state name. He can determine the beginning and ending units to be searched also.
J. UNTDIS User enters a product type and serial number and the program displays all standard information stored on the specified unit.
K. CTCSUM The program is a summary of CTC individual leased units. A rental credit figure is calculated in addition to the information given in program UNTSUM (except invoice \# and lease status). Totals are given at the end of each product.
L. ISFPRT User specifies a certain number of sales locations or field service locations over which the program should search for units to be printed. It takes one pass over the files for each location entered (limit of 25), user also can specify the transaction of the units to be printed.
M. SALPRT Print out of the unit files keyed on sales location. User enters the sales location he wants printed. A new page is started for each sales location. Customer name, transaction and lease status are in decoded form.
N. SUMALL The program gives a summary count of all units for each product by transaction type.
4. SUMFS The program summarizes the sold and leased units for each product by sales location. Total units and maintenance is given for each location.
P. CUS1 The program prints the product number, serial number and transaction code of each unit on file which belongs to a user specified customer. The program can be used for only one customer per pass over the unit files.

INDEX TO INVENTORY CONTROL FOR FINISHED PRODUCTS

0.	CUSSRT	This program prints the units belonging to each customer on file. For each pass over the unit files, the units for 18 sequential customer numbers are found and printed, however, if a customer has over 352 units on file the program will abort. All information stored is printed for each unit found.
R.	ICCSRT	This program sorts the units by customer number and agreement number. It sorts 20 customers at a time, placing the customer number and product/serial number of each unit belonging to the customer on the customer sort file. Several reports can be generated from this file.
S.	SALEXP	Prints units expiring X days from the current date entered by sales location. The user enters the sales locations (up to 25) to be printed.
T.	ICTANL	This program does an analysis on the transaction file. It finds each product/ serial number on the file and prints the final status of the unit as found on the unit files.
U.	FREUNT	Prints the units (product/serial number) which are provided for in the files but are not yet in use.
v.	AGETRA	This program ages the date found on each unit on file. The user has the following options: unit interval to be searched and transaction type. If the transaction type equals 2, the user needs to specify whether the customer number of the unit should be equal to 9999 or not equal to 9999 .
W.	INSTLS	Prints by product/serial number, the leased units on file whose date falls between a beginning and ending date inclusive specified by the user.
x.	TAPAY	Picks up all TA units which are not leases. Prints product, serial number, date and invoice number for each unit found. Columns for lease period, net amount, tax rate, extended tax and total are given to be filled in by user.
Y.	PRT22	This program searches the unit files to find all customers which have 2200 products which are in transit, sold, or leased. The program then sorts them into customer number order and prints their name/addresses (formatted for labels).
Z.	AALSES	Prints an analysis of annual leases for account 2801-2802. It picks up only annual leases belonging to TA or CTC. Remaining life and revenue of the lease is also calculated and printed.
2-7	CBIPRT	This program prints the cycle billing each month. The program prints invoices for each customer falling in an interval specified by the user. It picks up the leased units only from the customer sort file. Thus, that file must be up to date when the cycle billing is run.
Z-	ICMODQ	This program allows the user to quickly update a particular data item of several units. The user picks the data item he wants to modify and enters the product/ serial number and new value of each unit to be modified.
2-3.	ICCPRT	This program prints units by customer and agreement number as found on the customer sort file. The user can specify the transaction and lease status of the units to be printed.
Z-4.	CBIL	Prints the NAC leased units by customer as found on the customer/unit sort file.
Z-5	EXLSEA	Prints units expiring in X days by customer and agreement number as found on the customer/unit sort file.

III. APPENDIX
A. General Procedures
B. Serial Number Limits
C. Data Entry Boundaries (Code Breakdown)
TITLE:
DESCRIPTION:
INSTRUCTIONS:
ACKNOWLEDGEMENTS:
These CTC Projection Programs are part of a total accounting system written
by Computer Terminal Corporation for the HP 2000A. (See A706-36213 CTC Pay-
roll Program, A708-36210 CTC Manufacturing Parts Control, All-36214 CTC
Accounts Receivable, and A708-36211 CTC Inventory Control for Finished
Projects.) Abstracts of the 10 projection programs are on the following
page along with an index to the documentation.
I. INTRODUCTION
A. Brief Description of Programs
B. File Structure

1. Basic Input File (INT)
2. Intermediate File (IN2)
3. Income Statement File (R1)
4. Cash Flow File (R2)
5. Balance Sheet File (R3)
II. DETAILED INSTRUCTIONS TO PROGRAMS
A. INMAIN This program provides complete maintenance of the input file (IN2). The user can (1) create the input file, (2) modify any item of the input file, (3) obtain a listing of the input file, or (4) destroy the input file (set all values to zero).
B. IN2CAL This program calculates the intermediate file (IN2).
C. INSTI This program sets up the income statement file (RI). The user enters manual inputs needed which he can also modify. The user can indicate the month interval over which the program should calculate (1 to 48).
D. RIPRT This program sets up the income statement. User indicates the projected year to be printed and if he wants the listing by month or quarter.
E. PJPLAC The program shows the projected placement of each product by sale type; i.e., the number of units projected for each product. Totals are given at the end of each product. A separate listing of totals only is given at the end of the program.
F. CSHFLO This program sets up the projected cash flow file (R2). Manual inputs for initial and monthly items are needed which can be modified also. User indicates the month interval to be set up (1 to 48).
G. R2PRT This program prints the cash flow statement. User indicates the projected year to be printed and if he wants the listing by month or quarter.
H. BSHEET This program sets up the balance sheet file (R3). User can enter and modify begining balances. He also specifies the monthly interval (l to 48) over which the file is to be set up.
I. R3PRT This program prints the balance sheet. User indicates projected year to be printed and if he wants the listing by month or quarter.
J. EXPROJ Allows the user to expand the data on the basic data file (INl) and the monthly constants on the income statement file (R1) from a base year and month through year 4 , month 12. This is done on a yearly \% which eliminates the user manually inputting each quantity and constant.
III. APPENDIX
A. Sales Types and Abbreviations Used (Listed in Order Stored)
B. Product Model Numbers (Listed in Order Stored)
C. Description of Intermediate File Calculations
D. Income Statement Format and Calculations
E. Income Statement Constants
F. Cash Flow Format and Calculations
G. Cash Flow Constants
H. Balance Sheet Format and Calculations
I. Balance Sheet Constants
TITLE:
DESCRIPTION:
INSTRUCTIONS:
ACKNO
These CTC Payroll Programs are part of a total accounting system written
by Computer Terminal Corporation for the HP 2000A. (See A717-36212 CTC
Projection Programs, A708-36210 CTC Manufacturing Parts Control,
A7ll-36214 CTC Accounts Receivable, A708-36211 CTC Inventory Control for
Finished Products.) Abstracts of the 34 payrol1 programs are on the
following page along with an index to the documentation.
I. INTRODUCTION
A. Brief Description of Each Program
B. Description of File Structure
6. Employee Data Base Files
7. Employee Pay Records
8. Payroll Transaction File
9. Auxiliary File
10. Commission/Adjustment File
11. State/Department/Employee \# Sort File
12. Alphabetic Sort File
13. Employee Earnings History Files
II. DETAILED DESCRIPTION OF EACH PROGRAM
A. EADD Adds a new employee to the employee data base files. The employee number is assigned sequentially by the program beginning with number 1001.
B. EMOD Modifies any item under the specified employee number in the employee data base files.
C. EFPRT Provides formatted output of the employee data base files.
D. ETPRT Provides formatted output of the payroll transaction file which keeps record of any changes made to the payroll files.
E. ESRTI Sorts the employee names into alphabetical order printing the employee numbers in that order on a separate file.
F. ECAT Prints a cross reference employee catalogue. One listing prints the employee numbers in ascending order with their corresponding names; the other listing prints the employee names in alphabetical order with their corresponding numbers.
G. PAYPER Allows entry of the bi-weekly payroll hours, commissions, or adjustments.
H. PAYPRF Provides formatted output of the regular bi-weekly payroll hours entered with program PAYPER.
I. PAYREC 1. Allows the clearing of all employee accrued vacation or accrued sick hours in the current pay records.
14. Allows the modification of any item of the current pay records (i.e., hours or earnings).
15. Allows the initialization or modification of the accumulated quarter-to-date (QTD) and year-to-date (YTD) totals.
16. Allows the clearing of all QTD, YTD, or both totals.
J. CLRAJ Clears the commission/adjustment file. All information on the file is lost.
K. C/APRF 1. Gives a proof of commissions entered with program PAYPER. The F.I.C.A., Federal, Disability, and Net Pay is figured during this run. User indicates when commissions are to be added to the QTD and YTD totals.
17. Gives a proof of adjustments entered with program PAYPER. User indicates when adjustments are to be made to the QTD and YTD totals.
L. MODAJ Enables user to modify the commission and/or adjustments input with program PAYPER.
M. ST/DPT Sorts all employee numbers on file into states and into departments within each state printing the state, department, and employee numbers on a file in that order.
N. PAYFIG Figures the current earnings, F.I.C.A., and Federal tax for the current bi-weekly payroll. This information is stored in each employee's current pay record.
0 . CKREG Formatted print out of the information to be printed on the checks. Program assigns check numbers and adjustments, commissions and YTD totals are included in the listing. Department, state, and company totals are given for both adjustments and the current pay (regular and commissions). Current pay is not added to QTD and YTD totals with this program!!
P. EMPCNT Counts the number of active employees in each state giving a listing of this count.
Q. ACCPRT Prints the QTD and YTD accumulated totals for all employees on file.
R. QTRLEG Prints the quarterly payroll tax ledger required at the end of each quarter with state and company totals.
S. 941 A Prints the 941 A forms required at the end of each quarter with state and company totals.
T. W2FORM Prints the W-2 Forms required at the end of each year.
U. EMPLAB Prints (1) data base information of specified employee on labels, or (2) time card labels for all active, non-exempt employees.
V. EDIT Prints the payroll calculation edit required after each bi-weekly payroll run.
(continued on next page)
II. DETAILED DESCRIPTION OF EACH PROGRAM (continued)
W. CURADD Adds the payroll for the current period to the QTD and YTD totals. It also places in the employee earings file each check amount, number, and date issued an employee that current pay period (regular check, adjustment check, and commission check). This should be run after the check register and before the checks are printed.
X. EMPDEL Deletes employees from the payroll files. User can also instruct the program to pick up all the deleted employee numbers so they can be re-assigned to new employees with program EADD. This program should be run at the end of each year.
Y. LABDIS Prints the labor distribution report required after each bi-weekly payroll run.
Z. CKPRT Prints checks for either the regular payroll or the commissions.

Z-1. WKCOMP Prints the workman's compensation distribution report required at the end of each bi-weekly payroll.
Z-2. ERNHIS The program provides 3 user options: (1) a complete earnings history for each employee on file, (2) an earnings history for one particular employee only, or (3) to clear the earnings history files for a new quarter.

Z-3. SALREV This is a special report which prints the information stored in the data base files which pertains to each employee's salary. User enters the department numbers of those he wants printed.
Z-4. VACSIC The user has 2 options: (1) to add the monthly accrued vacation and sick hours to each employee's pay records, or (2) to deduct the vacation and sick hours earned during the current pay period from the accrued vacation and sick hours.
Z-5. VSPRT This program gives formatted output by state and department of each employee's accrued vacation and sick hours. State and company totals are given also.
Z-6. INTVS Allows user to quickly initialize the vacation or sick accrued hours of specified employees.
Z-7. CKA/C Prints a check register on commissions and adjustments only.
III. APPENDIX
A. General Procedures
B. Bi-Weekly Payroll Procedures
C. Quarterly Procedures
D. Yearly Procedures
E. List of State Codes and Corresponding Cut-offs
F. Department Codes

| TITLE: |
| :--- | :--- |
| DESCRIPTION: |
| INSTRUCTIONS: |
| CTC ACCOUNTS RECEIVABLE |
| These CTC Accounts Receivable programs are part of a total accounting |
| SAStem written by Computer Terminal Corporation for the HP 2000A. (See |
| syll |
| A7l7-36212 CTC Projection Programs, A706-36213 CTC Payroll Programs, |
| A708-36210 CTC Manufacturing Parts Control, A708-36211 Inventory Control |
| for Finished Products.) Abstracts of the 13 accounts receivable programs |
| are on the following page along with an index to the documentation. |

I. INTRODUCTION

A. Brief Description of Programs
B. File Structure

1. Name File
2. Invoice File
3. Transaction File
4. Alphabetic File
5. Auxiliary File
6. Accounting Distribution File
C. File Set Up Procedures
II. DETAILED INSTRUCTIONS TO PROGRAMS
A. INV Provides (1) entry of new invoices, credit invoices and payments or (2) modification of existing invoices under a specified customer number.
B. CUSADR Allows user to add a new customer to the name/address file or modify the name/address of a customer already on file.
C. NEWAGE Provides three types of formatted listings of the files: (1) an aged listing of CTC owned invoices only, (2) an aged listing of TA owned invoices only, and (3) an aged listing of all invoices on file. The user can obtain a listing of all customers, one customer, or just the grand total of the type of listing specified.
D. CATLOG Provides the formatted output of two catalogues: (1) a customer number-name/ address-i isting and (2) a customer name/address-number alphabetical listing.
E. SORT2 Sorts the name file into alphabetical order printing the customer numbers in that order on a separate file which is used in Program--CATLOG.
F. NEWTRA Provides (1) formatted output of the entire accounting transaction file and (2) formatted output of just the LAST X transactions on file.
G. ACCLEG Provides additional formatted output of the transaction file. It picks up only those transactions which are new invoices, credit invoices, payments or deletions made with Program-INV. Totals are given at the end of the listing to enable the user to check for data entry errors.
H. AGETOP Ages the top X customers who have accounts more than 60 days over due. User specifies the top X he wants aged up to 50 .
I. AGEPG Ages a specified interval or group of customer numbers placing each customer's aging on a separate page with separate headings. No grand totals are given.
J. AGE60 Ages invoices over 60 days old only. The program prints the aging in order of of customer number. Grand totals are given at the end.
K. ARNLAB Prints customer names and addresses on mailing labels. The labels may be in order of customer number or alphabetically.
L. ARINPT Allows the user to (1) input account data groups onto the account distribution file or (2) obtain a formatted listing of the account distribution file.
M. ARSORT Sorts the account data groups on the account distribution file by account number or reference number. Only 350 groups can be sorted at one time.
TITLE:
DESCRIPTION:
ANSTRUCTIONS:
CTC6
36638
I. INTRODICTION
A. Brief Description of Programs
B. File Structure
7. Name/Address File
8. Daily Input File
9. Checks Held File
10. Check History File
11. Auxillary Data and Name Sort File
12. Scratch Files
C. File Set Up Procedures
II. Detailed Program Instructions
A. APNAME This program allows the user to enter new vendors into the name/address file or modify the name/address of a vendor already on file.
B. APNSRT This program sorts the vendor names into alphabetical order printing the vendor numbers in that order on the auxiliary data and sort file.
C. APNCAT With this program, the user can obtain (1) a formatted catalogue of vendor number order or alphabetically; or (2) a list of all vendor numbers not in use.
D. APCHIS This program prints the check history of all vendors who have one. User specifies the vendor number interval to be printed.
E. APCHPT This program allows the user to obtain (1) a quick display of all checks in the checks held file for a particular vendor or (2) a formatted print out of the checks held by vendor type and vendor number or (3) a grand total only of check amounts on the file.
F. APINPT/ This program allows the user to input invoices for vendors on file, modify APIPRT invoices already on the input file, print the input file (in order of entry), or clear all data from the input file. (Chains to APIPRT)
G. APCKRG This program prints the check register. Auto checks (checks printed by the computer) are listed first with a total amount at the end. - Hand written checks follow with a total amount also. A total of both auto and hand checks is given at the end. The check numbers are assigned to each invoice with Program--APCKAS. When that program is finished, it automatically runs APCKRG. However, APCKRG can be run alone if the check numbers have been assigned.
H. APCKPT This program prints the auto checks found on the check register. Proper APCK1 check forms need to be loaded into the printer. The two programs have slightly different formatting.
I. APDIST This program prints an account distribution determined from the account numbers of the invoices on the input file. Totals for each account number and a grand total are also given.
J. APADCH This program adds each check found on the check register to the checks held file. This should be run only after a correct check register has been obtained.
K. APPERG This program allows the user to delete checks from the checks held file. The user indicates if the checks to be deleted are voided or released and then enters the checks he wants purged. The program deletes the checks from the checks held file and adds them to the check history file if there is an appropriate history.
L. APCKAS This program assigns auto check numbers to the invoices on the input file. When all check numbers have been assigned, the program will go on to print the check register (Program--APCKRG).
M. APCH\#P

This program prints the checks held file in check number order.
N. APDTAP/

APDSTP
This program prints an account distribution as in program APDIST. However, at the end of the distribution report, APDTAP chains to APDSTP which prints an 80 character string (general ledger entry) for each account number, grand total, and batch total of the distribution on a cassette tape in the front deck of a 2200 version II machine.
0 . APNLAB This program prints vendor name/addresses on tab labels in vendor number or alphabetical order, or prints a group of user specified vendor numbers.
P. APCHAG This program provides the user with an aging of the checks held file in order of vendor number.
Q. APCHGA This program ages the checks held file as in program APCHAG but prints the grand totals only.
R. APAGV/ A combination of these two programs will provide the user with an aging of APAGVP the checks held file as in APCHAG; however, this aging is sorted by vendor type also.
S. APAGPG Ages the checks held file by vendor placing each vendor on a separate page. The user may specify an interval or group of vendor numbers he wishes to be aged.
T. CTC6 This program may be used to initialize the files. Just GET and RUN CTC6 to perform the initialization.

SPECIAL CONSIDERATIONS:

Depreciable life must be an integer greater than one and less than 76. (To alter high value, change dimension statements for A, B, C, D, H, I, J, K in lines 9112 and 9114, and check in line 9046.)

RUN
GET-SDEPCOM
RUN
DEPCOM
** DEPRECIATION METHOD COMPARISON **
THIS PROGRAM COMPUTES AND PRINTS DEPRECIATION BY MONTHS BY FOUR METHODS: STRAIGHT LINE, DOUBLE DECLINING BALANCE, SUM-OF-THE-YEARS-DIGITS, AND 150 PERCENT DECLINING BALANCE.

IF ONLY A YEARLY SUMMARY IS DESIRED TYPE Y, OTHERWISE N. ?N

What is the amount of your investment??35000
What is the salvage value??15000
WHAT IS THE DEPRECIABLE LIFE (IN YEARS)??S
IN WHICH MONTH, AND IN WHICH YEAR, IS YOUR INVESTMENT MADE? (PLEASE ENTER AS MM,19YY)?7,1969

WHAT IS THE DISCOUNT RATE (IN DECIMAL NOTATION) FOR COMPUTING the present value of the annual depreciation??.15
you have the option to switchover from the double declining BALANCE METHOD TO THE STRAIGHTLINE METHOD AT APPROPRIATE TIMES. TO PREVENT ANY SWITCHOVER PLEASE TYPE O.
tO SPECIFY A SPECIFIC YEAR OF SWITCHOVER, PLEASE TYPE THE YEAR. to obtain an automatic switchover when the annual straightline depreciation becomes greater than the double declining balance VALUE, PLEASE TYPE 1.? 1

THE PRESENT VALUE OF THE DEPRECIATION AT THE BEGINNING OF 1969 AT . 15

DONE

BUSINESS AND MANUFACTURING APPLICATIONS (700) CONTRIBUTED PROGRAM BASAC

TITLE:
 DESCRIPTION:

INSTRUCTIONS:

DISCOUNTED RETURN ON INVESTMENT AND PAYBACK

DROIPB is a BASIC language program for calculating Discounted Return on Investment and PayBack.

1. The program will first ask for INITial INVestment, which you should enter without commas between thousands and hundreds (because commas are input delimiters), followed by carriage return. Then you will be asked to type in LIFE of the investment, which you should also follow by carriage return.
2. After initial investment and life, you will be asked for CAPital COST and DEPReciable LIFE (YRS) in separate queries. The CAP COST query is repeated, allowing you to enter the total investment in smaller parts, each with its own depreciable life. When you've typed in the last CAP COST and DEPR LIFE you wish to enter, type a zero in response to the CAP COST query to continue with the remainder of the program.

NOTE: Do not enter a depreciable life greater than the useful LIFE typed in answer to the second query.
3. The program next lists three choices of depreciation method and 'asks' you which method you want to use in figuring réturn on investment and payback. For straight line depreciation, you would type in a 'l', as in the Program Use Example. For double declining balance to straight line depreciation, you would type a '2', and for sum-of-years digits depreciation, you would type a'3'.
4. The next step is entry of cash flow figures for each year of the investment's useful LIFE. As with all the other queries, your answers must be followed by carriage return.
5. After you type in your answer to the TAX RATE \%? query and carriage return, the program prints out interim calculations of depreciation, taxable income, taxes, and cash flow after tax. If you are using depreciation method 2 or 3 , depreciation may be greater than first or even second year cash flow. When that is true, the DROIPB program lists a negative taxable income for the investment and adds the reduction in taxes to cash flow after taxes. When the investment is recovered, the program types out years to payback and rate or return, as shown in the example. If the investment is not recovered, the program tells you so, along with other information.

ACKNOWLEDGEMENTS:
Ted Proske
Hewlett-Packard/Automatic Measurements Division

DROIPB, page 2

RUN

RUN
DROIPB

* DISCOUNTED RETURN ON INV *

INIT INV S:? 129876.80
LIFE (YRS):?7
CAP COST 5:?120200
DEPR LIFE (YRS):?5
CAP COST S:?9676.7-80
DEPR LIFE (YRS):?1
CAP COST S:? \quad ©
DEPR METHODS: 1. STRT LINE, 2. DBL DECL BAL TO STRT LINE,
3. SUM OF YRS DIGITS. *** USE METHOD NO.:?1

CASH FLOW
YEAR 1 ? 125314.56
YEAR 2 ? 150377.47
YEAR 3 ? 169174.66
YEAR 4 ? 169174.66
YEAR 5 ? 169174.66
YEAR 6 ? 169174.66
YEAR 7 ? 169174.66
TAX RATE R?52

CASH FLOW	DEPR	TAXABLE INCOME	taxes	CASH FLOW AFTER TAX
125315.	33716.8	91597.8	47630.8	77683.7
150377.	24840	126337.	65695.5	84682.
169175.	24048	145135.	75478.	93784.6
169175.	24040	145135.	75478.	93704.6
169175.	24840	145135.	75470.	93704.6
169175.	■	169175.	87978.8	81203.8
169175.	θ	169175.	87978.8	81203.8
YEARS TO PAY BACK $=1.61634$				
RATE OF RETURN $=62.8425$ \%				
done				

TITLE:
DESCRIPTION:

COST OF EQUITY CAPITAL

EQUITY computes the cost of equity capital by computing the dividends and the share price for future periods, and finds the discount rate by equating the present value of the stream to the current share price.

SPECIAL

 CONSIDERATIONS:
INSTRUCTIONS:

1. 20 growth segments, and 100 periods

To increase, change dim-statements in lines 9105 and 9110
2. 100 iterations on the search and compare routine

```
RUN
GET-SEQUITY
RUN
equity
* COST OF EQUITY CAPITAL *
```

THIS PROGRAM WILL COMPUTE THE COST OF EQUITY CAPITAL BY COMPUTING DIVI-
DENDS AND THE SHARE PRICE FOR FUTURE PERIODS, CBASED ON THE GORDON
MODEL), AND THEN FIND THE DISCOUNT RATE BY EQUATING THE PRESENT VALUE
OF THE STREAM TO THE CURRENT SHARE PRICE.
PLEASE ENTER THE CURRENT PRICE/SHARE, AND DIVIDEND/SHARE? 1 - 00,10
HOW MANY GROWTH SEGMENTS ARE THERE? 8
FOR EACH GROWTH SEGMENT, ENTER THE GROWTH RATE IN DECIMAL, \& THE LAST
EFFECTIVE PERIOD FOR
STOP
RUN
EQUITY

* COST OF EQUITY CAPITAL *
THIS PROGRAM WILL COMPUTE THE COST OF EQUITY CAPITAL BY COMPUTING DIVI-
DENDS AND THE SHARE PRICE FOR FUTURE PERIODS, CBASED ON THE GORDON
MODEL, AND THEN FIND THE DISCOUNT RATE BY EQUATING THE PRESENT VALUE
OF THE STREAM TO THE CURRENT SHARE PRICE.
PLEASE ENTER THE CURRENT PRICE/SHARE, AND DIVIDEND/SHARE?100,10
HOW MANY GROWTH SEGMENTS ARE THERE?8
FOR EACH GROWTH SEGMENT, ENTER THE GROWTH RATE IN DECIMAL, \& THE LAST
EFFECTIVE PERIOD FOR EACH SEGMENT.
SEGMENT 1 ?.02.2
SEGMENT 2 ?.03.4
SEGMENT 3 ?.04.6
SEGMENT 4 ?.05.10
SEGMENT 5 ?.06,12
SEGMENT 6 ?.07,15
SEGMENT 7 ?.08.20
SEGMENT 8 ?.10.25

A SHARE PRICE OF $S 100$, DIVIDEND OF $\$ 10$, AND INITIAL GROWTH
RATE OF 2 Z, YIELD A COST OF EQUITY CAPITAL OF 15.74 PERCENT.
DO YOU WISH TO RUN SOME DIFFERENT DATA?
ENTER '0' FOR ALL NEW INFORMATION.
ENTER ' 1 ' FOR SAME SHARE PRICE \& DIVIDEND, NEW GROWTH RATES OR PERIODS.
ENTER '2" FOR SAME GROWTH RATES \& PERIODS, NEW SHARE PRICE OR DIVIDEND.
ENTER '3' TO TERMINATE. ?2

PLEASE ENTER THE CURRENT PRICE/SHARE, AND DIVIDEND/SHARE?100,5

```
A SHARE PRICE OF $ 100, DIVIDEND OF $ 5 , AND INITIAL GROWTH
RATE OF 2 %. YIELD A COST OF EQUITY CAPITAL OF 12.45 PERCENT.
DO YOU WISH TO RUN SOME DIFFERENT DATA?
ENTER 'O: FOR ALL NEW INFORMATION.
ENTER '1' FOR SAME SHARE PRICE & DIVIDEND, NEW GROWTH RATES OR PERIODS.
ENTER '2' FOR SAME GROWTH RATES & PERIODS, NEW SHARE PRICE OR DIVIDEND.
ENTER '3' TO TERMINATE. ?3
```

DONE

сомthbuted prooram BASIC

TITLE: \quad| EXTENDED RISK ANALYSIS. |
| :--- |
| DESCRIPTION: |
| 36084 |

INSTRUCTIONS:

In order to determine the potential risk involved in making a given investment, some estimates of expenditures are needed for future periods. Eight factors are considered:

1. Investment amount
2. Market Size (units)
3. Selling price/unit
4. Share of market
5. Variable costs (\$/unit)
6. Fixed cost (\$/period)
7. Useful life (periods)
8. Residual value

For each factor you will be asked to give 3 estimates. The first is the value which you think the factor has only one chance in ten of falling below -- that is, a low guess. The second estimate should be that which you believe to be the most likely. The third is that which you figure the factor has only one chance in ten of exceeding.
Thus the estimates should be typed: '*FACTOR X: low, most likely, high'.

RUN

```
GET-EXDRSK
RUN
EXDRSK
```

FUMBER	FACTOR
1	INVESTMENT
2	MARKET SI ZE (UNITS)
3	SELLING PRICE PER UNIT
4	SHARE OF MARKET
5	VARIABLE COSTS (S/UNIT)
6	FIXED COST (S/PERIOD)
7	USEFUL LIFE (PERIODS)
8	RESIDUAL VALUE
IF PRICE, SALES AND OPERATING COSTS ARE INTERDEPENDENT	
TYPE 13 OTHERWISE, TYPE D? I	

```
```

* EXTENDED RISK ANALYSIS *

```
* EXTENDED RISK ANALYSIS *
DEFINITION OF FACTORS
```

DEFINITION OF FACTORS

```
DO YOU NEED INPUT INSTRUCTIONS? (Y OR N)?Y
FOR EACH FACTOR YOU WILL BE ASKED TO GIVE 3 ESTIMATES. THE FIRST
IS THE VALUE WHICH YOU THINK THE FACTOR HAS ONLY ONE CHANCE IN TEN OF
FALLING BELOW -- THAT IS, A LOW GUESS. THE SECOND ESTIMATE SHOULD BE
THAT WHICH YOU BELIEVE TO BE THE MOST LIKELY. THE THIRD IS THAT
WHICH YOU FIGURE THE FACTOR HAS ONLY ONE CHANCE IN TEN OF EXECEEDING.
THUS THE ESTIMATES SHOULD BE TYPED: ** FACTOR X: LOW,MOST LIKELY,HIGH*
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{ENTER ESTIMATES} & \multirow[t]{2}{*}{FOR:} \\
\hline * & FACTOR 1 & : & \\
\hline & PERIOD & 1 & ? \(6000.10000,13000\) \\
\hline & PERIOD & 3 & ? 10000,15000,18000 \\
\hline & PERIOD & 5 & ? 1000,3000,5000 \\
\hline & PERIOD & 7 & ?0,1000,3000 \\
\hline * & FACTOR 2 & : & \\
\hline & PERIOD & 1 & ? \(0,0,0\) \\
\hline & PERIOD & 3 & ?0,500,750 \\
\hline & PERIOD & 5 & ?500,3500,4000 \\
\hline & PERIOD & 7 & ?2000.5000,6500 \\
\hline * & FACTOR 3 & : & \\
\hline & PERIOD & 1 & ? \(0,0,0\) \\
\hline & PERIOD & 3 & ?5,75,100 \\
\hline & PERIOD & 5 & ? 50, 50,50 \\
\hline & PERIOD & 7 & ? 50,50,50 \\
\hline * & FACTOR 4 & : & \\
\hline & PERIOD & 1 & \(? 0,0,0\) \\
\hline & PERIOD & 3 & ?.05.0075..10 \\
\hline & PERIOD & 5 & ?.075,.10,.15 \\
\hline & PERIOD & 7 & ?.10..15.. 25 \\
\hline * & FACTOR 5 & : & \\
\hline & PERIOD & 1 & ?50,75,100 \\
\hline & PERIOD & 3 & 740,70,90 \\
\hline & PERIOD & 5 & ? \(30,40,50\) \\
\hline & PERIOD & 7 & ?20,25,30 \\
\hline * & FACTOR 6 & 8 & \\
\hline & PERIOD & 1 & 31000.1500 .2000 \\
\hline & PERIOD & 3 & ?1000,1500,2000 \\
\hline & PERIOD & 5 & ? 500.750 .1000 \\
\hline & PERIOD & 7 & ?450,700.850 \\
\hline * & FACTOR 7 & & 15,20.25 \\
\hline * & FACTOR 8 & & 0.000 \\
\hline
\end{tabular}


EXDRSK, page 4
\begin{tabular}{|c|c|c|}
\hline 2 & 2448.23 & 5 \\
\hline 2 & 3325.08 & 6 \\
\hline 2 & 4856.89 & 7 \\
\hline 2 & 4430.28 & 8 \\
\hline 2 & 4264.9 & 9 \\
\hline 2 & 4411.69 & 10 \\
\hline 2 & 4721.97 & 11 \\
\hline 2 & 5083.49 & 12 \\
\hline 2 & 4412.26 & 13 \\
\hline 2 & 4157.02 & 14 \\
\hline 2 & 4758.68 & 15 \\
\hline 3 & 0 & 1 \\
\hline 3 & 29.5523 & 2 \\
\hline 3 & 59.4255 & 3 \\
\hline 3 & 52.0968 & 4 \\
\hline 3 & 50 & 5 \\
\hline 3 & 50 & 6 \\
\hline 3 & 50 & 7 \\
\hline 3 & 50 & 8 \\
\hline 3 & 50 & 9 \\
\hline 3 & 50 & 10 \\
\hline 3 & 50 & 11 \\
\hline 3 & 50 & 12 \\
\hline 3 & 50 & 13 \\
\hline 3 & 50 & 14 \\
\hline 3 & 50 & 15 \\
\hline 4 & 0 & 1 \\
\hline 4 & 4.75013E-02 & 2 \\
\hline 4 & 9.48336E-02 & 3 \\
\hline 4 & -119901 & 4 \\
\hline 4 & -137695 & 5 \\
\hline 4 & -185985 & 6 \\
\hline 4 & - 229494 & 7 \\
\hline 4 & . 226453 & 8 \\
\hline 4 & -227589 & 9 \\
\hline 4 & - 21975 & 10 \\
\hline 4 & - 229688 & 11 \\
\hline 4 & :231371 & 12 \\
\hline 4 & -222942 & 13 \\
\hline 4 & -211108 & 14 \\
\hline 4 & - 227492 & 15 \\
\hline 5 & 77.7686 & 1 \\
\hline 5 & 70.9821 & 2 \\
\hline 5 & 66.9793 & 3 \\
\hline 5 & 50.8399 & 4 \\
\hline 5 & 40.5705 & 5 \\
\hline 5 & 32.5466 & 6 \\
\hline 5 & 25.3845 & 7 \\
\hline 5 & 24.455 & 8 \\
\hline 5 & 25.2716 & 9 \\
\hline 5 & 25.3307 & 10 \\
\hline 5 & 25.204 & 11 \\
\hline 5 & 23.1036 & 12 \\
\hline 5 & 25.7729 & 13 \\
\hline 5 & 25.0214 & 14 \\
\hline 5 & 25.9379 & 15 \\
\hline 6 & \(1483 \cdot 62\) & 1 \\
\hline 6 & 1525.26 & 2 \\
\hline 6 & 1369.7 & 3 \\
\hline 6 & 1091.37 & 4 \\
\hline 6 & 761.521 & 5 \\
\hline 6 & 761.268 & 6 \\
\hline 6 & 682.592 & 7 \\
\hline 6 & 650.594 & 8 \\
\hline 6 & 616.5 & 9 \\
\hline 6 & 646.957 & 10 \\
\hline 6 & 668.708 & 11 \\
\hline 6 & 685.373 & 12 \\
\hline 6 & 696.134 & 13 \\
\hline 6 & \(648 \cdot 356\) & 14 \\
\hline 6 & 693.68 & 15 \\
\hline
\end{tabular}


EXPEND, paqe 2

RUN
```

OPE-FL1,20
OPE-FL2;20
OPE-FL3;20
OPE-FL4;20
OPE-FL5;20
OPE-FL6,20
OPEE-\
OPE-FL7,20
OPE-FL8,20
OPE-FL9;20
OPE-FL10,20
OPE-FLI1,20
OPE-FL12,20
OPE-FL13,20
OPE-FL14;,-20
OPE-FL15,20
OPE-FL16,48
L LET Z=0
8 PRINT 16,1106;Z
9 ~ S T O P

```
RUN
EXPEND

DONE
7
8
9
```

RUN
EXPEND
DO YOU WISH INSTRUCTIONS?YES
THIS PROGRAM CAN BE USED TO CREATE, UPDATE, OR LIST
BUDGETARY DATA SO AS TO PERMIT CONTINUOUS MONITORING
of expenditures vs targets. note that the program Can
HANDLE UP TO 15 LOCATION CODES WITH 20 ACCOUNTS AND/
OR MAJOR ITEMS PER LOCATION CODE.
THE NAME OF EACH RECORD CAN BE UP TO 32 CHARACTERS
INCLUDING SPACES. EACH RECORD ALSO INCLUDES S
EXPENDED AND S TARGETED (UP TO \& DIGITS)
DO YOU WISH TO 'GENERATE'NEW FILES(S), 'UPDATE'
existing files, or 'list' DAta?
?GENERATE
DO YOU NEED THE FILE NO. LIST?
?YES
FILE NO. NAME

NO.	NAM
1	0
2	0
3	0
4	0
5	0
6	0
7	0
8	0
9	0
10	0
11	0
12	0
13	0
14	0
15	0

THERE ARE 15 FILES AVAILABLE
HOW MANY NEW FILES?I
INPUT THE NUMBER OF AN AVAILABLE FILE?2
INPUT NEW FILE NAME
?FLIP
HOW MANY RECORDS (ONE PER ACCOUNT OR NAME) DO YOU REQUIRE?I
INPUT YOUR BUDETARY DATA
NAME OR ACCOUNT NUMBER

```
```

\$ EXPENDED
\$ TARGETED
ENTER RECORD NO. \
?PRINTING
??1000
??3000
ENTER DATE?7/25/73
7/25/73
FINISHED?NO
DO YOU WISH TO 'GENERATE'NEW FILES(S), 'UPDATE'
EXISTING FILES, OR 'LIST' DATA?
?GENERATE
DO YOU NEED THE FILE NO. LIST?
?YES
FILE NO. NAME
1 FLIP
2 FLIP
O
0
0
9
10
11
12
13
14
THERE ARE 14 FILES AVAILABLE
HOW MANY NEW FILES?!
INPUT THE NUMBER OF AN AVAILABLE FILE?3
INPUT NEW FILE NAME
?FLIPI
HOW MANY RECORDS (ONE PER ACCOUNT OR NAME) DO YOU REQUIRE?10
INPUT YOUR BUDETARY DATA
NAME OR ACCOUNT NUMBER
\$ EXPENDED
\$ TARGETED
ENTER RECORD NO. 1
?LABOR
??500
7?400
ENTER RECORD NO. 2
?SHIPPING
??300
??350
ENTER RECORD NO. 3
?POSTAGE
??250
??300
ENTER RECORD NO. 4
?ORDER PROCESSING
??600
??500
ENTER RECORD NO. 5
? TRAVEL
? ?1245
??500
ENTER RECORD NO. 6
?TRADE SHOWS
??0
??0
ENTER RECORD NO. }
?CLERICAL
??279
??200
ENTER RECORD NO. }
?FACILITIES
??2500
??2500
ENTER RECORD NO. }
?MARKET ING
??2990
??2000

```
```

ENTER RECORD NO. 10
?ADVERTISING
??350
??300
ENTER DATE?7/27/73
7/27/73
FINISHED?NO
DO YOU WISH TO 'GENERATE'NEW FILES(S), 'UPDATE'
EXISTING FILES,OR 'LIST' DATA?
?UPDATE
DO YOU NEED THE FILE NO. LIST?
?NO
INPUT THE NO. OF THE FILE TO BE CHANGED?!
DO YOU WISH TO DELETE THIS FILE?NO
DO YOU WANT DATA LISTED FOR THIS FILE?YES
DATA FOR FLIP TOTAL TARGETED \$ 3000

RECORD	NAME	EXPENDED	
1	PRINTING	1000	3000

TOTAL EXPENDED \$ 1000
DO YOU WISH TO UPDATE EXPENDITURES?N-YES
LNPUT RECORD NO.?1
HOW MANY NEW EXPENDITURES?1
NEXT EXPENDITURE ?1400
MORE EXPENDITURES TO BE UPDATED?NO
DO YOU WISH TO ADD RECORDS?NO
DO YOU WISH TO CHANGE ANY OTHER RECORDS?NO
DO YOU WISH TO CHANGE ANY OTHER FILE?NO
ENTER DATE?7/27/73
7/27/73
DO YOU WANT ANY LISTING?YES
DO YOU WANT ALL FILES LISTED?YES
7/27/73
DATA FOR FLIP TOTAL TARGETED S 3000

RECORD	NAME	EXPENDED TARGETED	
1	PRINTING	2400	3000

TOTAL EXPENDED \$ 2400
DATA FOR FLIP TOTAL TARGETED S
RECORD NAME EXPENDED TARGETED
TOTAL EXPENDED \$ 0
DATA FOR FLIPI TOTAL TARGETED S 7050

RECORD			
1	LABOR	EAME	EXPENDED
2	SHIPPING	500	400
3	POSTAGE	300	350
4	ORDER PROCESSING	250	300
5	TRAVEL	600	500
6	TRADE SHOWS	1245	500
7	CLERICAL	0	0
8	FACILITIES	279	200
9	MARKETING	2500	2500
10	ADVERTISING	2990	2000

TOTAL EXPENDED \$ 9014
DATA FOR O TOTAL TARGETED S 0

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline DATA & FOR & 0 & TOTAL & TARGETED & \$ & \\
\hline DATA & FOR & \(\emptyset\) & TOTAL & TARGETED & \$ & 8 \\
\hline DATA & FOR & 0 & TOTAL & TARGETED & \$ & 0 \\
\hline DATA & FOR & 0 & TOTAL & TARGETED & \$ & 0 \\
\hline DATA & FOR & 0 & TOTAL & TARGETED & \$ & 0 \\
\hline DATA & FOR & \(\square\) & TOTAL & TARGETED & \$ & 0 \\
\hline DATA & FOR & 0 & TOTAL & TARGETED & \$ & 0 \\
\hline DATA & FOR & 0 & TOTAL & TARGETED & \$ & 0 \\
\hline DATA & FOR & 0 & TOTAL & TARGETED & \$ & 0 \\
\hline DATA & FOR & 0 & TOTAL & TARGETED & \$ & 0 \\
\hline DATA & FOR & 0 & TOTAL & TARGETED & \$ & 0 \\
\hline \multicolumn{7}{|l|}{FINISHED?YES} \\
\hline DONE & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline TITLE: & EXPONENTIAL SMOOTHING ON PRICE DATA \(\quad \begin{aligned} & \text { EXSMO0 } \\ & 36085\end{aligned}\) \\
\hline DESCRIPTION: & \begin{tabular}{l}
EXSMOO uses exponential smoothing to forecast data which is thought to have a trend and/or seasonal effect. Output is provided per period as a comparison between different methods of smoothing.
\[
\begin{aligned}
& S_{t}=\text { Actual demand in month } t \\
& \bar{S}_{t}=\text { Moving average of } S_{t} \text { after month } t \\
& a \\
& =\text { Smoothing constant }(0.1-0.2) \\
& S_{t}
\end{aligned}=c_{1}+c_{2} * t+c_{3} * F_{t}+\text { error }
\] \\
\({ }^{C}{ }_{1}\) is the average coefficient \(\mathrm{C}_{2}\) is the trend coefficient \\
\(C_{3}\) is the seasonal coefficient
\end{tabular} \\
\hline INSTRUCTIONS: & \[
\left\{\begin{array}{l}
\left\{\begin{array}{l}
\bar{S}_{t}=\overline{S_{t-1}}+a\left(S_{t}-\overline{S_{t-1}}\right) \\
\text { New estimate }=01 d \text { estimate }+a(\text { Actual-01d estimate })
\end{array}\right\} \text { Straight } \\
\left\{\begin{array}{l}
\bar{S}_{t}=\left(S_{t} /\left(F_{t}-L\right)\right)+(1-a) * \overline{S_{t-1}} \\
\text { where: } F_{t}=\beta\left(S_{t} / \overline{S_{t}}\right)+(1-\beta) *\left(F_{t}-L\right) \text { for next year } \\
L=\text { Number of periods in cycle }
\end{array}\right\} \text { Seasonality }
\end{array}\right.
\] \\
\hline INSTRUCTIONS: & \begin{tabular}{l}
You will be asked to input the following data: \\
\(\mathrm{Nl}=\) The number of months (periods) \\
N2 \(=\) The number of periods to be used for the initialization of the forecasting methods \\
N3 = The number of periods in the periodicity of the seasonal effect \\
Al \(=\) The smoothing constant a \\
Then the actual values for each period are to be entered. This can be done with input or data-statements. \\
To enter data internally, begin at line 9900 and enter the actual amounts for each period to be considered, and enter "D" in answer to the question on how the data is to be entered. \\
Also note that the number of periods in the seasonality must be less than the number of periods provided for the initialization of the forecasting methods.
\end{tabular} \\
\hline
\end{tabular}

\section*{SPECIAL}

CONSIDERATIONS:

As it stands, EXSMOO will handle only up to 8 years (i.e., 72 periods) of forecasting. For enlargement change dim-statement 9116 to bounds of N1 + 2 .

\section*{RUN}

\section*{GET-SEXSMOO}

RUN
EXSMOO
* EXPONENTIAL SMOOTHing *

DO YOU NEED A PROBLEM DESCRIPTION? ('Y' OR 'N') ?N
FOR HOW MANY PERIODS WILL YOU ENTER DATA?30
how many of these periods are to be used to initialize the forcasting METHODS? 12

WHAT IS THE PERIODICITY OF THE SEASONAL EFFECT? E.G. 12 FOR YEARLY. NOTE: THIS VALUE MUST be Less than your answer to the previous question. ? 6

WHAT IS YOUR ALPHA FOR SMOOTHING FORCASTS?.10
WHAT IS THE ALPHA FOR SMOOTHING THE SEASONAL EFFECT?. 20
WHAT IS THE ALPHA FOR THE TREND EFFECT?. 15
```

DO YOU WISH TO ENTER YOUR DATA FROM THE TELETYPE, OR INTERNALLY WITH
DATA-STATEMENTS? ('T' FOR TELETYPE, OTHERWISE 'D')?T
WHAT IS THE VALUE FOR THE FIRST PERIOD?100
SECOND PERIOD?75
NEXT?73
NEXT?72
NEXT?70
NEXT?60
NEXT?100
NEXT?90
NEXT?80
NEXT?70
NEXT?60
NEXT?50
NEXT?110
NEXT?50
NEXT?
DONE
RUN
EXSMOO

* EXPONENTIAL SMOOTHING *
DO YOU NEED A PROBLEM DESCRIPTION? ('Y' OR 'N') ?N
FOR HOW MANY PERIODS WILL YOU ENTER DATA?30
HOW MANY OF THESE PERIODS ARE TO BE USED TO INITIALIZE THE FORCASTING
METHODS?12
WHAT IS THE PERIODICITY OF THE SEASONAL EFFECT? E.G. 12 FOR YEARLY.
NOTE: THIS VALUE MUST BE LESS THAN YOUR ANSWER TO THE PREVIOUS QUESTION.
3
WHAT IS YOUR ALPHA FOR SMOOTHING FORCASTS?.10
WHAT IS THE ALPHA FOR SMOOTHING THE SEASONAL EFFECT?.20
WHAT IS THE ALPHA FOR THE TREND EFFECT?.15
DO YOU WISH TO ENTER YOUR DATA FROM THE TELETYPE, OR INTERNALLY WITH
DATA-STATEMENTS? ('T' FOR TELETYPE, OTHERWISE 'D')?T

```


DONE
\begin{tabular}{l|l} 
TITLE: \\
DESCRIPTION: \\
INSTRUCTIONS: \\
CALCULATES PRESENT VALUE - STREAM OF CASH FLOWS \\
This program calculates the present value of a stream of cash flows. The \\
assumption is made that the flows occur at the end of each of the periods \\
after the initial period when the investment is made. Each period is de- \\
fined as one year unless the cost of capital percentage and number of \\
periods are adjusted accordingly. This program will calculate all rates \\
of return between zero and one hundred percent which equate the P.V. to \\
the initial investment.
\end{tabular}
```

RUN
RUN
FINFLO
DO YOU WANT INSTRUCTIONS?YES
THIS PROGRAM CALCULATES THE PRESENT VALUE OF A STREAM OF CASH
FLOWS. THE ASSUMPTION IS MADE THAT THE FLOWS OCCUR AT THE END
OF EACH OF THE PERIODS AFTER THE INITIAL PERIOD WHEN THE INVESTMENT
IS MADE. EACH PERIOD IS DEFINED AS ONE YEAR UNLESS THE COST OF
CAPITAL PERCENTAGE AND NUMBER OF PERIODS ARE ADJUSTED ACCORDINGLY.
THIS PROGRAM WILL CALCULATE ALL RATES OF RETURN BETWEEN ZERO AND
ONE HUNDRED PERCENT WHICH EQUATE THE P.V. TO THE INITIAL INVESTMENT.
WHAT IS THE INITIAL INVESTMENT IN PERIOD 0?10000
THIS PROGRAM ASSUMES AN INITIAL OUTLAY FOR THE INVESTMENT
THE SIGN HAS BEEN CHANGED TO REFLECT THIS CONDITION
FOR HOW MANY PERIODS DO YOU WISH TO ENTER CASH FLOWS, PERIOD I ON?4
PERIOD CASH FLOW

1 ?200
2 ?4500
3 ?6000
4 ?5700
ENTER COST OF CAPITAL IN PERCENT?11
DO YOU WANT A LISTING OF THE P.V. IN EACH PERIOD?YES
PERIOD \# P.V.
********* *********
1 180.18
2 3652.3
3 4387.15
NET PRESENT VALUE OF ALL FLOWS IS \$ 1974.4
THE CALCULATED RATES OF RETURN BETWEEN 0% AND 100% ARE:
17.9799 ZTHE P.V. AT THIS RATE OF RETURN IS S 9998.12
DONE

```

TITLE:
DESCRIPTION:

\section*{INSTRUCTIONS:}

\section*{SPECIAL} CONSIDERATIONS:

RATING INVESTMENT FLNDS 36503

This program performs an analysis of the type advocated by Treynor in "How to Rate Management of Investment Funds," (Harvard Business Review, January-February 1965). Basically, it fits a least-squares regression line to data on the quarterly rates of return for two entities. Possibilities include: mutual funds, individual stocks, indices of stock returns, and portfolios.

Three data bases can be used with the program. The GPDQI file gives price and dividend data on 98 industrial indices compiled by Standard and Poor's. The GPDQF file contains comparable information on 100 open-end mutual funds. The GPDQS file contains information on the 30 stocks used to compute DowJones' 30 Industrial Stock Average. Any of these files may be invoked by simply responding appropriately when asked. The particular entry desired must be indicated by number. For listings, see the descriptions of the GPDQ files.

If the user chooses a portfolio for analysis, the program will read a file named PDQP in the user's own account. The user-specified number will indicate the record to be read by the program. The record must follow the format used in GPDQF, GPDQI and GPDQS.

The user may opt to have the treasury bill rate subtracted from each return before the remainder of the analysis is performed. This will provide an analysis of excess returns -- i.e., returns over and above the pure interest rate for the quarter in question.

Any period may be requested. The program will utilize only quarters for which the requisite data are available.
(continued on Page 2)

Following a summary of relevant statistics and the information about the regression line, the program provides a scatter diagram of the results. An asterisk represents one point, the digit "2", two points, etc. An approximate regression line may be drawn from the letter "L" through the intersection of the two M's (as illustrated on the sample run).

The program also computes and prints the "differential return" for each quarter. This is the difference between the actual \(y\)-value and the product of the \(x\)-value and the slope of the regression line. A rough graphic plot is also provided. The asterisks may be connected to obtain a time-plot (as illustrated on the sample run).

Graduate School of Business
Stanford University

INSTRUCTIONS: (continued)

\section*{GPDQF}

GPDQF is a file of data on quarterly prices and dividends paid by 100 open-end mutual funds. The funds were chosen randomly from those for which data were readily available for the period 1965-1970. For each quarter, the following information is given:
"opening price"
- net asset value per share as of the close of the market on the last trading day of the previous quarter.
"dividends"
- all dividends received by an investor who held one share at the beginning of the quarter; any other distributions that qualify as income are also included.
"ending price"
- the total value of the holdings of an investor who held one share at the beginning of the quarter. This includes the net asset value of the share (or shares, in the case of splits) at the close of the market on the last trading day of the quarter. It also includes the value of any distributions received during the quarter that qualify as capital gains.

Each fund is allocated one record on the file. Fund number 1 is on record 1 ; fund number 2 on record 2, etc. Each record contains 40 quarters of information, as follows:
\begin{tabular}{ll} 
opening price & lst quarter of 1st year \\
dividends & 1st quarter of 1st year \\
closing price & 1st quarter of 1 st year \\
opening price & 2nd quarter of 1st year \\
dividends & 2nd quarter of 1st year \\
closing price & 2nd quarter of lst year \\
etc. &
\end{tabular}

Any missing value is represented by -999.
Following the 120 data values on each record are:
- the first year for which data are given (e.g. 1963)
- the name of the fund (up to 20 characters)

This file uses the same format as GPDQI and GPDQS. The funds are listed as follows:

Aberdeen fund
AFFILIATED FUND INC.
AMERICAN BUSINESS SHARES INC.
AMERICAN INVESTORS FUND INC.
AMERICAN MUTUAL FUND INC.
ANCHOR - FUNDAMENTAL INVESTORS
ANCHOR - GROWTH FUND
ASSOCIATED FUND TRUST
AXE-HOUGHTON FUND A INC.
AXE-HOUGHTON FUND B INC.
AXE-HOUGHTON STOCK FUND INC.
AXE SCIENCE CORP.
BOSTON FUND INC.
BROAD STREET INVESTING CORP.
BULLOCK FUND LTD.
CENTURY SHARES TRUST
CHASE FUND OF BOSTON
CHASE SHAREHOLDERS TRUST OF BOSTON
CHEMICAL FUND INC.
COLONIAL FUND INC.
AMERICAN EXPRESS INCOME FUND INC.
AMERICAN EXPRESS INVESTMENT FUND INC.
AMERICAN EXPRESS STOCK FUND INC.
COMPOSITE BOND AND STOCK FUND
5 COMPOSITE FUND INC.
```

CONCORD FUND INC.

```
CONCORD FUND INC.
DE VEGH MUTUAL FUND INC.
DE VEGH MUTUAL FUND INC.
DELAWARE FUND INC.
DELAWARE FUND INC.
BULLOCK -- DIVIDEND SHARES INC.
BULLOCK -- DIVIDEND SHARES INC.
DREYFUS FUND INC.
DREYFUS FUND INC.
ENERGY FUND INC.
ENERGY FUND INC.
EQUITY FUND INC.
EQUITY FUND INC.
FIDELITY CAPITAL FUND INC.
FIDELITY CAPITAL FUND INC.
FIDELITY FUND INC.
FIDELITY FUND INC.
FINANCIAL INDUSTRIAL FUND
FINANCIAL INDUSTRIAL FUND
FLORIDA GROWTH FUND INC.
FLORIDA GROWTH FUND INC.
FOUNDERS MUTUAL FUND
FOUNDERS MUTUAL FUND
GROUP SECURITIES INC. -- COMMON STOCK FUND
GROUP SECURITIES INC. -- COMMON STOCK FUND
GROWTH INDUSTRY SHARES INC.
GROWTH INDUSTRY SHARES INC.
GUARDIAN MUTUAL FUND INC.
GUARDIAN MUTUAL FUND INC.
HAMILTON FUNDS INC. -- SERIES HDA
HAMILTON FUNDS INC. -- SERIES HDA
INCOME FUND OF BOSTON INC.
INCOME FUND OF BOSTON INC.
INVESTMENT COMPANY OF AMERICA
INVESTMENT COMPANY OF AMERICA
INVESTMENT TRUST OF BOSTON
INVESTMENT TRUST OF BOSTON
INVESTORS RESEARCH FUND INC.
INVESTORS RESEARCH FUND INC.
ISTEL FUND INC.
ISTEL FUND INC.
JOHNSTON MUTUAL FUND INC.
JOHNSTON MUTUAL FUND INC.
KEYSTONE CUSTODIAN FUND B-1
KEYSTONE CUSTODIAN FUND B-1
KEYSTONE CUSTODIAN FUND B-2
KEYSTONE CUSTODIAN FUND B-2
KEYSTONE CUSTODIAN FUND B-4
KEYSTONE CUSTODIAN FUND B-4
KEYSTONE CUSTODIAN FUND K-1
KEYSTONE CUSTODIAN FUND K-1
KEYSTONE CUSTODIAN FUND K-2
KEYSTONE CUSTODIAN FUND K-2
KEYSTONE CUSTODIAN FUND S-1
KEYSTONE CUSTODIAN FUND S-1
KEYSTONE CUSTODIAN FUND S-2
KEYSTONE CUSTODIAN FUND S-2
KEYSTONE CUSTODIAN FUND S-3
KEYSTONE CUSTODIAN FUND S-3
KEYSTONE CUSTODIAN FUND S-4
KEYSTONE CUSTODIAN FUND S-4
KNICKERBOCKER FUND
KNICKERBOCKER FUND
KNICKERBOCKER GROWTH FUND INC.
KNICKERBOCKER GROWTH FUND INC.
LIFE INSURANCE INVESTORS INC.
LIFE INSURANCE INVESTORS INC.
LOOMIS-SAYLES MUTUAL FUND
LOOMIS-SAYLES MUTUAL FUND
MAGNA INCOME TRUST
MAGNA INCOME TRUST
MASSACHUSETTS INVESTORS GROWTH STOCK FUND
MASSACHUSETTS INVESTORS GROWTH STOCK FUND
MASSACHUSETTS INVESTORS TRUST
MASSACHUSETTS INVESTORS TRUST
MUTUAL SHARES CORP.
MUTUAL SHARES CORP.
MUTUAL TRUST
MUTUAL TRUST
NATIONAL INVESTORS CORP.
NATIONAL INVESTORS CORP.
NATIONAL SECURITIES SERIES - BALANCE SERIES
NATIONAL SECURITIES SERIES - BALANCE SERIES
NATIONAL SECURITIES SERIES -- bOND SERIES
NATIONAL SECURITIES SERIES -- bOND SERIES
NATIONAL SECURITIES SERIES -- DIVIDEND SERIES
NATIONAL SECURITIES SERIES -- DIVIDEND SERIES
NATIONAL SECURITIES SERIES -- PREFERRED STOCK SERIES
NATIONAL SECURITIES SERIES -- PREFERRED STOCK SERIES
NATIONAL SECURITIES SERIES -- INCOME SERIES
NATIONAL SECURITIES SERIES -- INCOME SERIES
NATIONAL SECURITIES SERIES -- STOCK SERIES
NATIONAL SECURITIES SERIES -- STOCK SERIES
NATIONAL SECURITIES SERIES -- GROWTH STOCK SERIES
NATIONAL SECURITIES SERIES -- GROWTH STOCK SERIES
ONE WILLIAM STREET FUND INC.
ONE WILLIAM STREET FUND INC.
OPPENHEIMER FUND INC.
OPPENHEIMER FUND INC.
PENN SQUARE MUTUAL FUND
PENN SQUARE MUTUAL FUND
PHILADELPHIA FUND INC.
PHILADELPHIA FUND INC.
PINE STREET FUND INC.
PINE STREET FUND INC.
PIONEER FUND INC.
PIONEER FUND INC.
PRICE (T. ROWE) GROWTH STOCK FUND
PRICE (T. ROWE) GROWTH STOCK FUND
PURITAN FUND INC.
PURITAN FUND INC.
PUTNAM (GEORGE) FUND
PUTNAM (GEORGE) FUND
PUTNAM GROWTH FUND
PUTNAM GROWTH FUND
SCUDDER STEVENS AND CLARK - BALANCED FUND
SCUDDER STEVENS AND CLARK - BALANCED FUND
SCudDER STEVENS AND CLARK - COMMON STOCK FUND
SCudDER STEVENS AND CLARK - COMMON STOCK FUND
SIGMA INVESTMENT SHARES
SIGMA INVESTMENT SHARES
SIGMA TRUST SHARES
SIGMA TRUST SHARES
SOUTHWESTERN INVESTORS INC.
SOUTHWESTERN INVESTORS INC.
SOVEREIGN INVESTORS INC.
SOVEREIGN INVESTORS INC.
STEIN ROE AND FARNHAM - BALANCED FUND
STEIN ROE AND FARNHAM - BALANCED FUND
STEIN ROE AND FARHNAME - STOCK FUND
STEIN ROE AND FARHNAME - STOCK FUND
TWENTIETH CENTURY GROWTH INVESTORS
TWENTIETH CENTURY GROWTH INVESTORS
VALUE LINE FUND INC.
VALUE LINE FUND INC.
VALUE LINE INCOME FUND INC.
VALUE LINE INCOME FUND INC.
vALUE LINE SPECIAL SITUATIONS FUND
vALUE LINE SPECIAL SITUATIONS FUND
WALL STREET INVESTING CORP.
WALL STREET INVESTING CORP.
WASHINGTON MUTUAL INVESTORS FUND INC.
WASHINGTON MUTUAL INVESTORS FUND INC.
WELLINGTON FUND INC.
WELLINGTON FUND INC.
WHITEHALL FUND INC.
WHITEHALL FUND INC.
WISCONSIN FUND INC.
```

WISCONSIN FUND INC.

```

GPDQS
GPDQS is a file of quarterly prices and dividends for the thirty stocks used in 1971 to compute Dow-Jones' Industrial average. For each quarter, the following information is given:
"opening price"
- this is the price of one share of the stock as of the close of trading on the last trading day of the previous quarter.
"dividends"
- this includes all dividends received during the quarter by a person who held one share at the beginning of the quarter. Any distribution treated as income is also included.
"closing price"
- this is the value of the holdings of an investor who held one share at the beginning of the quarter. The value is calculated as of the close of the last trading day in the quarter.

Each stock is allocated one record on the file. Stock number 1 is on record 1; stock 2 on record 2, etc. Each record contains 40 quarter of information as follows:
\begin{tabular}{ll} 
opening price & 1st quarter of 1st year \\
dividends & 1st quarter of 1st year \\
closing price & 1st quarter of 1st year \\
opening price & 2nd quarter of 1st year \\
dividends & 2nd quarter of 1st year \\
closing price & 2nd quarter of 1st year
\end{tabular}
etc.
Any missing value is represented by -999.
Following the 120 data values on each record are:
- the first year for which data are given (e.g., 1963)
- the name of the stock (up to 20 characters)

The file uses the same format as GPDQI and GPDQF. The stocks are listed as follows:
ALLIED CHEMICAL
ALUMINUM COMPANY OF AMERICA
AMERICAN BRANDS
AMERICAN CAN COMPANY
AMERICAN TELEPHONE AND TELEGRAPH
ANACONDA
BETHLEHEM STEEL
CHRYSLER CORPORATION
DUPONT (E.I.) DE NEMOURS
EASTMAN KODAK
GENERAL ELECTRIC
GENERAL FOODS
GENERAL MOTORS
GOODYEAR TIRE AND RUBBER
INTERNATIONAL HARVESTER
INTERNATIONAL NICKEL COMPANY OF CANADA
INTERNATIONAL PAPER COMPANY
JOHNS-MANVILLE CORPORATION
OWENS-ILLINOIS
PROCTER AND GAMBLE
SEARS ROEBUCK
STANDARD OIL OF CALIFORNIA
STANDARD OIL OF NEW JERSEY
SWIFT AND COMPANY
TEXACO
UNION CARBIDE
UNITED AIRCRAFT
U.S. STEEL

WESTINGHOUSE ELECTRIC
WOOLWORTH (F.W.) COMPANY

GPDQI
GPDQI is a file of quarterly prices and dividends for 98 common stock indices published by Standard and Poor's and returns on 90-day Treasury bills. For each quarter, the following information is given:
"opening price"
- this is the value of the index as of the end of the previous quarter, as reported by Standard and Poor's.
"dividends"
- this is the value of dividends paid by the stocks in the index during the quarter, as reported by Standard and Poor's.
"closing price"
- this is the value of the index as of the end of the quarter, as reported by Standard and Poor's.

Each index is allocated one record on the file. Index number 1 is on record 1 ; index 2 on record 2, etc. Each record contains 120 numbers, as follows:
\begin{tabular}{ll}
\begin{tabular}{l} 
opening price \\
dividends \\
closing price
\end{tabular} & 1st quarter of 1st year \\
opening price & 1st quarter of 1st year \\
dividends & 1st quarter of 1st year \\
closing price & 2nd quarter of 1st year \\
& 2nd quarter of 1st year \\
& 2nd quarter of 1st year
\end{tabular}

Any missing value is represented by -999.
Following the 120 data values on each record are:
- the first year for which data are given (e.g., 1963)
- the name of the index (up to 20 characters)

For 90-day Treasury bills, the three values are:
"opening price"
- the average of the bid and ask prices at the end of the previous quarter for the 90-day bill expiring on the date nearest the end of the quarter (e.g., 98.8)
"dividends"
- zero
"closing price"
- 100

The file uses the same format as GPDQF and GPDQS. The indexes are listed as follows:
```

500 STOCKS
425 INDUSTRIALS
20 RAILS
55 UTILITIES
CAPITAL GOODS
CONSUMER PRODUCTS
HIGH GRADE
LOW PRICED
AEROSPACE
AIR TRANSPORT
ALUMINUM
AUTOMOBILE
AUTO PARTS
AUTO TRUCKS \& PARTS
BREWERS
DISTILLERS
SOFT DRINKS
CEMENT
HEATING \& PLUMBING

```

ROOFING \& WALLBOARD
HOME FURNISHINGS
CHEMICALS
BITUMINOUS COAL
CONFECTIONERY
CONTAINERS - METAL \& GLASS
CONTAINERS - PAPER
COPPER
DRUGS
ELECTRICAL EQUIPMENT
ELECTRICAL HOUSEHOLD APPLIANCES
ELECTRONICS
BUILDING MATERIALS COMPOSITE
FINANCE COMPANIES
SMALL LOAN
FOOD - BISCUIT BAKERS
FOOD - BREAD \& CAKE
FOOD - CANNED
FOOD - CORN REFINERS
FOOD - DIARY PRODUCTS
FOOD - MEAT PACKING
FOOD - PACKAGED FOODS
GOLD MINING
LEAD \& ZINC
MACHINE TOOLS
AGRICULTURAL MACHINERY
CONSTRUCTION \& MATERIAL HANDLING
INDUSTRIAL MACHINERY
OIL WELL EQUIPMENT
SPECIALTY MACHINERY
STEAM GENERATING EQUIPMENT
METAL FABRICATING
METAL MISCELLANEOUS
MOTION PICTURES
OFFICE EQUIPMENT
CRUDE OIL PRODUCERS
INTEGRATED OILS - DOMESTIC
INTEGRATED OILS - INTERNATIONAL
PAPER
PUBLISHING
RADIO \& TV BROADCASTERS
RADIO \& TV MANUFACTURERS
RAILROAD EQUIPMENT
TEXTILES - SYNTHETIC FIBERS
DISCOUNT STORES
DEPARTMENT STORES
FOOD STORES
MAIL ORDER
VARIETY STORES
SHIPBUILDING
SHIPPING
SHOES
SOAPS
STEEL
SUGAR-BEET REFINERS
FOOD COMPOSITE
SUGAR-CAN REFINERS
SULPHUR
TEXTILES - APPAREL MAHUFACTURERS
TEXTILE PRODUCTS
TIRE \& RUBBER
TOBACCO - CIGARETTE MANUFACTURERS
TOBACCO - CIGAR MANUFACTURERS
VEGETABLE OILS
VENDING MACHINES
ELECTRIC COMPANIES
NATURAL GAS DISTRIBUTORS
PIPELINES
TELEPHONE
BANKS - NEW YORK CITY
BANKS - OUTSIDE NEW YORK CITY
OIL COMPOSITE
INSURANCE - FIRE \& CASUALTY
Insurance - LIfe
INVESTMENT COMPANIES
COSMETICS
ELECTRONIC MAJOR COMPANIES
HOLDING COMPANIES
TRUCKERS
90-DAY TREASURY BILL`

RUN
RUN
GChlin
Y-VARIABLE (UERTICAL AXIS)
FUND, INDEX, PORTFOLIO OR STOCK? FUND
NUMBERT2
AFFILIATED
X-VARIABLE (HORIZONTAL AXIS)
FUND, INDEX, PORTFOLIO OR STOCK? INDEX
NUMBER?
5gG STOCKS
DO YOU WANT THE TREASURY BILL RATE SUBTRACTED FROM EACH RETURN?YES
FIRST QUARTER --
YEAR? 1964
    QUARTER?3
LAST QUARTER--
    YEAR?1971
    QUARTER?2
    \(\mathbf{Y} X\)
\begin{tabular}{lrr} 
MAXI MUM & 13.394 & 15.377 \\
MINIMUM & -18.146 & -19.597 \\
AVERAGE & 0.632 & 0.555 \\
STD DEV & 7.020 & 7.116 \\
AVG/STD DEV & 0.090 & 0.078
\end{tabular}
\begin{tabular}{lll} 
REGRESSION LINE \(--\quad\) & \(=0.09507+\) \\
STANDARD ERRORS: & 0.28109 & 0.03942
\end{tabular}
R-SQUARED : . 958573


GCHLIN, Page 8

DIFFERENTIAL RETURNS \((Y-B * X)--\)


DONE

\begin{abstract}
ABNORMAL PERFORMANCE INDEX
GDAPI
TITLE:

DESCRIPTION:

INSTRUCTIONS:
This program allows the user to compute an "abnormal performance index" based on price changes of stocks for which similar events have taken place.

One or more "events" may be analyzed. For each event, the closing price of the relevant stock must be obtained for a specified number of periods prior to the event and for a specified number of periods after the event, as well as the closing price on the day of the event. If the market was closed on the appropriate date of a period, no price should be entered for that period (i.e., it should be skipped entirely). The user must also indicate the "beta" or "market sensitivity" of the stock. A period may be any number of (calendar) days, but every period must be of the same length. The program determines the percentage change in Standard and Poor's 500stock index for each period, multiplies that value by the stock's market sensitivity, and subtracts the result from the percentage price change for the stock during the period. This difference is the "abnormal" percentage price change for the stock for the period.

Abnormal percentage price changes are computed for the specified number of period prior to and subsequent to each event. The values are then averaged to obtain an "average abnormal percentage price change" for every period in the specified range. Finally, an abnormal price index (API) is constructed from the average values. The index is assigned a beginning value of 100 . Each period's value is then obtained by multiplying the previous period's value by one plus the average abnormal percentage price change.
(Instructions continued on page 2)
\end{abstract}

ACKNOWLEDGEMENTS:

INSTRUCTIONS: (continued)
Enter the data to be analyzed in data statements, beginning at line 5000 . For each event, the following information is required:
event description
date of event
market sensitivity (beta) of stock
prices
For example:
5000 DATA "EFFECT OF UAL CRASH ON DOUGLAS STOCK"
5001 DATA "JANUARY 5, 1965"
5002 DATA 1.23
5003 DATA \(38,39,38.625,38.5\), etc.
The data statements should be followed with an END statement. For example:
9999 END
After entering the data statements, it is possible to save the program and data by typing:
SAVE
This will save the material in the user's account under the name GDAPI. To re-use it at some other time, type:

GET-GDAPI
(instead of GET-\$GDAPI)
Once the data have been entered, the program can be RUN. The user will first be asked if he is using FILES or DATA statements. Assume that the appropriate answer is DATA statements. The user will then indicate the total number of events included in the data statements and whether or not he wishes to analyze them all. If the answer to the latter question is NO, he will be asked to specify the numbers of the events to be analyzed. The program will then ask for the number of days per period. Finally, the number of periods prior to each event and subsequent to each event must be specified. (NOTE: If P1 periods prior to each event and P2 periods subsequent to each event are to be analyzed, the user must have included \(P 1+P 2+1\) prices for each event.)

The program will list the events to be analyzed, perform the required computations, and indicate the minimum and maximum values of the abnormal performance index over the period. The user may then select his own scale for the final graph or let the program automatically select a scale running from the minimum to the maximum value. Finally, the program will print a list of the values and an accompanying graph. The program may be re-run to analyze a different set of events.

For convenience, a file capability is also included. If the user indicates that he is using FILES, the program will request the name of the file to be used. For each event, the description, date and beta of the stock must be included in the DATA statements (as before), but the prices will be obtained from the specified file. The prices for the first stock should be included in record 1 , those for the second in record 2, etc. The use of files expands the size of problem that can be analyzed, since only about 2500 numbers can be entered in data statements before the available space will be fully used.

The program uses the values of Standard and Poor's 500-stock index on file GSP5.
GSP5
GSP5 file contains data on the value of Standard and Poor's 500-stock index on a daily basis, beginning with the first day of 1964. Values are in sequence, with one for each day of the year. A day on which the exchange is closed is indicated by an entry of -999. Data for 1964 are on records 1, 2, and 3. Data for 1965 are on records 4, 5, 6, etc. The third record used for every year is filled out with -999 values.
\begin{tabular}{|c|c|c|}
\hline RUN & & \\
\hline 5050 & DATA & 556.75, \(570,575.5,566.5,569,564.5,564,558,562.5,568\) \\
\hline 5060 & DATA & 568,568.5,575.25,585,588.5,584.5,583.5,579.75,577.25,574.5 \\
\hline 5070 & DATA & \(580,582,586.5,588 \cdot 5,589,594.25,595 \cdot 25,598,598 \cdot 5,597\) \\
\hline 5080 & DATA & \(588.25,584.5,585.25,596.75,590.25,586,584,582.25,585.5,582\) \\
\hline 5090 & DATA & \(590,594,584,583,581,583 \cdot 5,576 \cdot 5,570 \cdot 25,579 \cdot 5,584\) \\
\hline 5100 & DATA & 584.75 \\
\hline 5110 & DATA & "IBM 370 ANNOUNCEMENT" \\
\hline 5120 & DATA & "JUNE 30, 1970', .9 \\
\hline 5160 & DATA & 258.5,250.5,245.5,248,241,242, 259, 267,278,287 \\
\hline 5170 & DATA & 283, 283, 271.25,270,266.25, 268.25, 265.5,259.25, 259, 259 \\
\hline 5180 & DATA & \(271,265 \cdot 75,272,270 \cdot 25,268 \cdot 5,257 \cdot 12,255,258,257 \cdot 5,257 \cdot 5\) \\
\hline 5190 & DATA & \(250,254,250.75,244.5,242.5,242.5,254.25,250.25,247.75,251.25\) \\
\hline 5200 & DATA & 252, 254, 259.5,258, 257.75,254, 257,253.75,253.25,252.75 \\
\hline 5210 & DATA & 252.5 \\
\hline 5220 & DATA & "IBM SYSTEM 3 ANNOUNCEMENT" \\
\hline 5230 & DATA & "JULY 30, 1969",.9 \\
\hline 5270 & DATA & \(313.5,314.25,314.25,314,312.25,315.5,325.5,320.5,329.75,331.5\) \\
\hline 5280 & DATA & \(337.75,337 \cdot 5,348,351.25,348,336,333 \cdot 5,327,331.5,321.5\) \\
\hline 5290 & DATA & \(323.5,328.5,327.5,323,318.25,320.25,317,316.5,313.12,313\) \\
\hline 5300 & DATA & \(315.5,324.5,329.5,326.75,334 \cdot 5,336,333.75,333 \cdot 5,329.25,330.5\) \\
\hline 5310 & DATA & 335, \(338.75,339.5,341.25,342,346.87,349,350.25,341,340\) \\
\hline 5320 & DATA & 342.75 \\
\hline 5330 & DATA & "CDC 7600 ANNOUNCEMENT" \\
\hline 5340 & DATA & "DECEMBER 3, 1968", 1.47 \\
\hline 5380 & DATA & \(140.12,139.75,141,143.5,143.75,141.62137 .75,141.75,141.62\) \\
\hline 5385 & DATA & 140.12 \\
\hline 5390 & DATA & \(138,138.75,137.12,137.37,135.25,135.62,135.62,140,147,142.62\) \\
\hline 5400 & DATA & \(141.75,140,141.62,147,154.25,157.12,155.62,156.62,157.87\) \\
\hline 5405 & DATA & \(157 \cdot 12\) \\
\hline 5410 & DATA & \(159,161,161,158,147.62,155,150,148.87,150,150.75\) \\
\hline 5420 & DATA & \(146.75,144.25,147,146.75,146.25,144,144.25,143.75,142.37,139\) \\
\hline 5430 & DATA & 138 \\
\hline 5440 & DATA & "CDC 70 ANNOUNCEMENT" \\
\hline 5450 & DATA ' & "MARCH 18, 1971", 1.47 \\
\hline 5490 & DATA & \(59.75,60.5,60.5,62.62,62.25,61.62,60.75,61.25,58.75,61\) \\
\hline 5500 & DATA & \(60.75,59.5,58.25,58.62,59.62,58,57.5,56.75,56.87,56.37\) \\
\hline 5510 & DATA & \(58 \cdot 5,60 \cdot 5,61,62,65,65,63 \cdot 75,65 \cdot 25,65 \cdot 5,65\) \\
\hline 5520 & DATA 6 & \(64.62,65 \cdot 64,37,63 \cdot 25,62 \cdot 12,62 \cdot 25,62 \cdot 62,62 \cdot 5,63,63.75\) \\
\hline 5530 & DATA 6 & \(63.62,63 \cdot 5,63 \cdot 25,63 \cdot 62,64 \cdot 75,65 \cdot 12,68 \cdot 5,67,67 \cdot 25,66.62\) \\
\hline 5540 & DATA 6 & 65 \\
\hline 5550 & END & \\
\hline
\end{tabular}

RUN
GDAP II

ARE YOU USING 'FILES' OR 'DATA' STATEMENTS ?DATA
HOW MANY EUENTS DO YOU HAVE IN ALL?5
DO YOU WISH TO ANALYZE THEM ALL?YES
HOW MANY DAYS ARE THERE PER PERIOD (E.G. 1 FOR
DAILY DATA, 7 FOR WEEKLY DATA). NUMBER OF DAYS? 1
FOR HOW MANY PERIODS PRIOR TO EACH EVENT DO YOU
HAVE PRICES?30
FOR HOW MANY PERIODS AFTER EACH EVENT DO YOU
HAVE PRICES?20
\begin{tabular}{lll} 
EVENT DATE & EVENT \\
1 & APRIL 7,1964 & IBM 360 ANNOUNCEMENT \\
2 & JUNE 30,1970 & IBM 370 ANNOUNCEMENT \\
3 & JULY 30,1969 & IBM SYSTEM 3 ANNOUNCEMENT \\
4 & DECEMBER 3,1968 & CDC 7600 ANNOUNCEMENT \\
5 & MARCH 18,1971 & CDC 70 ANNOUNCEMENT
\end{tabular}

MINIMUM API \(=95.89482\) MAXIMUM API \(=109.37471\) DO YOU WANT TO CHOOSE THE SCALE?NO



INSTRUCTIONS: (continued)
The section of the program that reads the data is located between 1 ines 1000 and 1050 and may be changed to (1) read the data from a file and/or (2) to set different upper and lower bounds for different securities.

When the program is run, it will first ask:
STARTING, CONTINUING OR FINISHING?
Respond with STARTING (or just S). The program will then determine all the corner portfolios, beginning with the one offering the greatest expected return. For selected corner portfolios, the following information will be printed:
portfolio number: (in sequence, used for later identification)
expected return
standard deviation of return
associated interest rate (that pure rate of interest that would make the portfolio optimal if funds could be freely borrowed or lent at the pure rate of interest)

Information about some corner portfolios will not be printed if they differ insignificantly from those for which information is shown.

After this phase, the program will again ask:
STARTING, CONTINUING OR FINISHING?
This time, respond CONTINUING (or just \(C\) ). The program will then ask for the LOWEST-NUMBERED PORTFOLIO YOU WOULD LIKE TO SEE. Use the numbers from the previous printout. The program will indicate the percent to be invested in each security (except those for which the percent is zero). When you do not wish to see another portfolio, simply respond with a portfolio number larger than any shown on the previous printout. The program will again ask:

STARTING, CONTINUING OR FINISHING?
Respond with FINISHING, (or simply F), and the program will terminate.

\section*{RUN}

RUN
GDPA

STARTING, CONTINUING, OR FINISHING?S


LOWEST-NUMBERED PORTFOLIO YOU WOULD LIKE TO SEE? 1
\begin{tabular}{ll} 
SEC & PERCENT \\
\hdashline 1 & 10 \\
3 & 10 \\
4 & 10 \\
7 & 10 \\
9 & 10 \\
10 & 10 \\
12 & 10 \\
13 & 10 \\
15 & 10 \\
20 & 10
\end{tabular}

NEXT (LOWEST-NUMBERED) PORTFOLIO YOU WOULD LIKE TO SEE?2I

GDPA, Page 4
```

SEC PERCENT

\cdots	$-\ldots$
1	8
2	10
3	8.08
4	5.64
6	10
7	7.05
9	10
10	10
12	10
13	.28
15	3.48
16	4.71
17	10
18	2.77

NEXT (LOWEST-NUMBERED) PORTFOLIO YOU WOULD LIKE TO SEE?44
SEC

```
STARTING, CONTINUING, OR FINISHING?F

DONE
\begin{tabular}{l|l} 
TITLE: & \begin{tabular}{l} 
FINANCIAL RATIOS
\end{tabular} \\
\hline DESCRIPTION: & \begin{tabular}{l} 
This program uses balance sheet and income statement data to compute \\
various financial ratios. The data may be entered either via the \\
terminal or in data statements.
\end{tabular}
\end{tabular}

INSTRUCTIONS:

If data are entered by the user as the program is being run, the order will be indicated as the program proceeds. If the user elects to enter the data in data statements, the same order should be followed, with the statements entered beginning at line 9000.

\section*{RUN}

\section*{RUN} grnkat
```

PLEASE INDICATE INPUT SOURCE --

```
    'T' FOR TERMIMAL
    'D' FOR DATA STATENENTS
SOORCE -- ?T
NET RECEIVABLES -- ? 53985686
NET I MVENTORIES - 1141576993
NET I NUENTORIES -- PREVIOUS YEAR-END -- ? 109814927
CURREMT ASSETS -- 3225925178
TOTAL ASSETS -- ? 323223797
CURRENT LIABILITIES -- ? 107781631
PREFERRED STOCK - ?
COMMON STOCK -- ? 4 - 569128
CAPITAL AND EARNED SURPLUS -- ? 120721744
NET SALES -- ?344740452
COST OF GOODS SOLD -- ? 229779697
SELLING, GENERAL AND ADMINISTRATIVE EXPENSES -- 173472649
NET PROFIT - ? ? 13584388
DIVIDENDS ON PREFERRED STOCK -- ? 0

CURRENT RATIO: 2.09614
ACID TEST RATIO: . 782584
RECEIVABLES TURNOVER: 6.38585 TIMES
AUERAGE INUENTORY TURNOVER: \(1.828 \oplus 6\) TIMES
LT DEBT/TOTAL CAPITALIZATION: . 25135
TOTAL DEBT TO EQUITY: 1.06398
GROSS PROFIT MARGIN: 33.347 PERCENT
SELLING, GENERAL AND ADMIN. EXPENSES TO SALES: 21.3125 PERCENT
NET PROFIT MARGIN: 3.94047 PERCENT
RATE OF RETURN ON COMMON STOCK EQUITY: 8.42229 PERCENT
TURNOVER RATIO: 1.06657 TIMES
EARNING POWER: 4.20278 PERCENT

DONE

\title{

}

TITLE:

DESCRIPTION:

INSTRUCTIONS:

INVESTMENT RETURN (CASH FLOW)
This program calculates internal rates of return and/or present values for sets of cash inflows and outflows over time.

The data may be entered from the terminal or from data statements. The investment is assumed to begin at time period zero. The flow at period 1 is assumed to occur at the end of the first period; that at period 2 at the end of the second period, etc. If all flows except the initial one are the same, the program does not require each to be entered explicitly.

To determine the internal rate of return, respond IRR when asked for the next choice. To determine the present value, respond PV; the program will then request a discount rate. To do a new problem, respond NEW. To stop the program, respond STOP.

Every outflow must be entered as a minus number (including the one in period zero). Inflows must be entered as positive numbers -- the plus sign is optional.

If data statements are used, the following information should be included for each investment:
- the number of periods
- the cash flow for period zero
- the cash flow for period one
- "YES" if all the rest of the flows are the same;
"NO" if the remaining flows differ from the first
- if the remaining flows differ:
- flow for the second period
- flow for the third period, etc.

Data statements should be entered beginning at line 9000. Additional investments may be included by adding more data statements.

ACKNOWLEDGEMENTS: Graduate School of Business
Stanford University

\section*{RUN}
```

PLEASE INDICATE INPUT SOURCE --
T (FOR TERMINAL)
D (FOR DATA STATEMENTS)
SOURCE?T
NUMBER OF PERIODS AFTER PERIOD ZERO?5

+ REPRESENTS A NET INFLOW, - REPRESENTS A NET OUTFLOW
INITIAL CASH FLOW IN PERIOD ZERO?-18000
CASH FLOW IN FIRST PERIOD?5600
ARE ALL THE REST OF THE FLOWS THE SAME?YES
WHAT NEXT (IRR,PV,NEW OR STOP)?IRR
THE INTERNAL RATE OF RETURN IS 16.8 PERCENT
WHAT NEXT (IRR,PV,NEW OR STOP)?PV
DISCOUNT RATE (IN PERCENT)?10
NET PRESENT VALUE IS 3228.41
WHAT NEXT (IRR,PV,NEW OR STOP)?NEW
NUMBER OF PERIODS AFTER PERIOD ZERO?5
+ REPRESENTS A NET INFLOW, - REPRESENTS A NET OUTFLOW
INITIAL CASH FLOW IN PERIOD ZERO?-35G\emptyset
CASH FLOW IN FIRST PERIOD?200
ARE ALL THE REST OF THE FLOWS THE SAME?NO
PERIOD 2 FLOWT2000
PERIOD 3 FLOW?1400
PERIOD 4 FLOW?600
PERIOD 5 FLOWT-100
WHAT NEXT (IRR,PV,NEW OR STOP)?PV
DISCOUNT RATE (IN PERCENT)?1g
NET PRESENT VALUE IS -265.732
WHAT NEXT (IRR,PV,NEW OR STOP)?STOP
DONE

```
TITLE:
DESCRIPTION:
\begin{tabular}{l} 
WARRANT PRICE CALCULATION \\
This program allows the user to calculate the "normal" price of a \\
warrant and the "normal" change in the warrant's price per dollar \\
change in the price of the associated stock.
\end{tabular}
INSTRUCTIONS:
Required inputs are requested by the program, as shown in the sample run.

SPECIAL CONSIDERATIONS:

The formula used is that given on page 204 of Beat the Market by Kassouf and Thorpe.

ACKNOWLEDGEMENTS: Graduate School of Business

GKASSF, Page 2
```

RUN
RUN
GKASSF
COMMON STOCK PRICE?45
NUMBER OF SHARES PER WARRANT?I
EXERCISE PRICET50
PREVIOUS YEAR'S HIGH FOR STOCK?60
PREVIOUS YEAR'S LOW FOR STOCKT4G
MONTHS REMAINING BEFORE EXPIRATION?T2
CURRENT YIELD (E.G. .05)?.93
NUMBER OF OPTIONS OUTSTANDING?5@G日E
NUMBER OF COMMON SHARES OUTSTANDING?150000
*NORMAL" VARRANT PRICE = 15.5262

- NORMAL CHANGE IN UARRANT PRICE PER DOLLAR CHANGE IN STOCK
PRICE = .645292
DONE

```

\section*{BUSINESS AND MANUFACTURING APPLICATIONS (700)}

\section*{CONTRIBUTED PROGRAM BASBC}
TITLE:
DESCRIPTION:
PRICE/EARNINGS RATIO CALCULATION
This program calculates the theoretical P/E ratio for a given firm. It
takes advantage of the fact that most firms financial future may be
thought of as years segmented into periods of similar financial policy.
Within each segment, the firm's growth rate, dividend payout ratio and
discount rate are assumed constant. The common stock P/E ratio is cal-
culated assuming an initial EPS of \(\$ 1.00\) To get the theoretical market
price of the stock, you need only multiply the P/E ratio by the actual
beginning EPS.

SPECIAL CONSIDERATIONS:

ACKNOWLEDGEMENTS:
You may rerun this program using a modified version of your initial data as follows:
"No" change in the existing values
"Individually" change each segment's value
"Percentage" change in all segment values
"One" new value to be applied to all segments

Graduate School of Business
Stanford University

\section*{RUN}

\section*{RUN}

GKCOST
SHARE PRICE (P/E) CALCULATIONS

DO YOU WISH DIRECTIONS ?NO
```

HOW MANY SEGMENTS WILL YOU USE (MAX IS 20) ?4
PLEASE INPUT YOUR DATA IN THE FOLLOWING ORDER, SEPARATED BY COMMAS:
STARTING YEAR, ENDING YEAR, GROWTH RATE, PAYOUT RATIO, DISCOUNT RATE
?1,5,25,6,12
76,10,15,20,12
?11,20,10,30,12
?21,0,4,60,12
'LONG•OR 'SHORT' FORMAT ?LONG

```
SHARE PRICE (P/E) CALCULATIONS

\begin{tabular}{rrr} 
SEGMENT & \multicolumn{1}{l}{ PRICE } & \multicolumn{1}{l}{\begin{tabular}{l} 
TOTAL \\
DIVIDEND
\end{tabular}} \\
VALUE & DISCOUNT & \(=\) VALUE \\
0.00 & & \\
3.31 & 30.13 & 20.13 \\
16.70 & 39.16 & 35.47 \\
124.18 & 0.00 & 56.68 \\
& &
\end{tabular}

DESIRED RERUN OPTION:
'MODIFY', 'START' OVER, 'END' RUN ?MODIFY
MODIFICATION OPTIONS:
' NO' CHANGE, 'INDIVIDUA!LY', 'PERCENTAGE', 'ONE' VALUE
MODIFY GROWTH RATE ?NO
MODIFY PAYOUT RATIO ?INDIVIDUALLY
HOW MANY SEGMENTS ?2
WHICH ONES ?2,4
SEGMENT 2 ?25
SEGMENT 4 ?75

MODIFY DISCOUNT RATE ?PERCENTAGE
WHAT PERCENTAGE CHANGE DO YOU WISH ? 50
DIRECTIONS THIS RERUN ?NO
'LONG' OR 'SHORT' FORMAT ?SHORT

SHARE PRICE (P/E) CALCULATIONS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { SEGMENT } \\
\text { NO. }
\end{gathered}
\]} & \multicolumn{2}{|l|}{YEARS} & GROWTH & DIVIDEND & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { DISCOUNT } \\
& \text { RATE }
\end{aligned}
\]} & \multirow[t]{2}{*}{TOTAL value} \\
\hline & S & E & RATE & PAYOUT & & \\
\hline 1 & 1 & 5 & 0.250 & 0.000 & 0.180 & 7.223 \\
\hline 2 & 6 & 10 & 0.150 & 0.250 & 0.180 & 16.524 \\
\hline 3 & 11 & 26 & 0.100 & 0.300 & 0.180 & 29.720 \\
\hline 4 & 21 & \(\square\) & 0.040 & 0.750 & 0.180 & 88.762 \\
\hline \multicolumn{7}{|l|}{DESIRED RERUN OPTION:} \\
\hline 'MODIFY' & \({ }^{\prime} \mathrm{S}\) & R' \({ }^{\text {P }}\) & ER, 'E & ' RUN ? EN & & \\
\hline
\end{tabular}
TITLE: \(\quad\)\begin{tabular}{l} 
SECURITIES PORTFOLIO ANALYSIS AND DETERMINATION \\
GNMRVB traces out the relationship between minimum non-market risk and \\
market sensitivity (beta) for portfolios composed from set of stocks. \\
GMRGB finds the portfolio which gives the minimum amount of non-market \\
risk for a given level of market sensitivity (beta). Formally, they \\
solve the following problem:
\end{tabular}

The value of \(X_{i}\) is the proportion of the portfolio invested in security \(i\). \(R_{i}\) is a measure of the security \(i\) 's relative non-market risk. \(B_{i}\) is a measure of security \({ }^{i}\) 's market sensitivity (beta). B is the level of beta for the entire portfolio. The relative non-market risk of the portfolio is given by:


GNMRVB is used in conjunction with GMRGB. After the relationship between minimum non-market risk and beta has been traced out, the "best" combination can be chosen. The corresponding value of beta can then be used with program GMRGB to find the composition of that portfolio.

GNMRVB and GMRGB require data statements beginning at line 9000 as follows:
1) the number of securities
2) for each security:
a) the value of beta
b) the security's relative non-market risk

GNMRVB requests a "STEP SIZE". This is the interval for calculation and printing of beta levels. Values are always selected so that 1.00 is included. The smaller the step size, the more detailed the results (and, of course, the longer the time required to obtain them).

SPECIAL CONSIDERATIONS:

ACKNOWLEDGEMENTS:
These programs use a special case of Markowitz' critical line algorithm. In some cases, they may produce errors due to roundoff problems. In such circumstances, the difficulty may be avoided by changing the data slightly.

Graduate School of Business
Stanford University

\section*{RUN}
\begin{tabular}{|c|c|c|}
\hline 9000 & data & \\
\hline 9010 & data & . \(84, .38\) \\
\hline 9612 & data & \(1.06, .374\) \\
\hline 9614 & data & 1.17,.791 \\
\hline 9016 & data & 1.81, \\
\hline & data & 178. \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}
have you entered your data?yes
STEP SIZE?.05


DONE
RUN
GMRGB
HAVE YOU ENTERED YOUR DATA?NO
ENTER DATA BEGINNING AT LINE \(9 \varnothing 00\)
FIRST, THE NUMBER OF SECURITIES
THEN, FOR EVERY SECURITY --
1) THE VALUE OF BETA
2) THE SECURITY'S RELATIVE NON-MARKET RISK

WHEN YOU HAVE ENTERED YOUR DATA STATEMENTS,
RE-RUN THE PROGRAM
\begin{tabular}{|c|c|c|}
\hline DONE & & \\
\hline 9000 & DATA & 5 \\
\hline 9010 & DATA & . \(84, .386\) \\
\hline 9012 & DATA & \(1.06, .374\) \\
\hline 9014 & DATA & 1.17,.791 \\
\hline 9016 & DATA & \(1.01, .540\) \\
\hline 9618 & DATA & 1.70,1.562 \\
\hline RUN & & \\
\hline GMRGB & & \\
\hline
\end{tabular}

HAVE YOU ENTERED YOUR DATA?YES
DESIRED LEVEL OF BETA? 1
\begin{tabular}{rr} 
SEC & PERCENT \\
-0 & \(-2-.-0\). \\
1 & 34.14 \\
2 & 37.32 \\
3 & 8.45 \\
4 & 17.86 \\
5 & 2.30
\end{tabular}
\(B E T A=1.00\)
RELATIUE NON-MARKET RISK \(=0.23\)
DONE
TITLE:
DESCRIPTION:

\section*{INSTRUCTIONS:}

\section*{SPECIAL} CONSIDERATIONS:

GNPSUM
GROSS NATIONAL PRODUCT SUMMARY 36086
GNPSUM produces figures for GNP, consumption, investment, and government spending for a series of years from a model in which consumption is a function of income in the previous period, and investment depends in part on changes in consumption.

The following coefficients are to be input by the user:
(Note: All dollar values should be entered in exponential notation. Example: \(\$ 6\) million \(=6 E+6\).
The first four values refer to a base period:
\(A=\) the fraction consumption was of personal income
\(B \quad=\) the actual value of investment expenditures
\(E \quad=\) the value of government spending in this base period
\(Y(1)=\) the total GNP for this base period
The next five values are general information:
\(N=\) the number of periods the user wishes to analyze
\(G=\) the fraction disposable income is of total GNP
\(C\) = the additional investment added each period
\(F=\) the additional government spending each period
\(D \quad=\) the fraction of the consumption increment that is to be added to investment each period
\(N \$=\) 'Yes' implies \(H=1\), and the business investment does have a random component
'No' implies \(H=\emptyset\), and the business investment does not have a random component
The random component has a rectangular distribution, and ranges from \(+10 \%\) to \(-10 \%\) of the value of \(B+(C * T)\)
For a user familiar with GNPSUM, the following changes can be made to read data-statements instead of the long input routine:

9146 READ A, B, E, Y (1), N, G, C, F, D,N\$
9147 GOTO 9320
Add data-statements for the values in 9146 beginning in line 9900.

Maximum of 29 periods. To increase this dimension alter line 9345.


DONE

TITLE: GRISK ANALYSIS IN CAPITAL INVESTMENT GRIS
RISK ANALYSIS IN CAPITAL INVESTMENT 36543

The evaluation of a capital investment project starts with the principle that the productivity of capital is measured by the rate of return we expect to receive over some future period. A dollar received next year is worth less to us than a dollar in hand today. Expenditures three years hence are less costly than expenditures of equal magnitude two years from now. For this reason we cannot calculate the rate of return realistically unless we take into account (a) when the sums involved in an investment are spent and (b) when the returns are received.

Comparing alternative investments is thus complicated by the fact that they usually differ not only in size but also in the length of time over which expenditures will have to be made and benefits returned.

It is these facts of investment life that long ago made apparent the shortcomings of approaches that simply averaged expenditures and benefits, or lumped them, as in the number-of-years-to-pay-out method. These shortcomings stimulated students of decision making to explore more precise methods for determining whether one investment would leave a company better off in the long run than would another course of action.

It is not surprising, then, that much effort has been applied to the development of ways to improve our ability to discriminate among investment alternatives. The focus of all of these investigations has been to sharpen the definition of the value of capital investments to the company. The controversy and furor that once came out in the business press over the most appropriate way of calculating these values has largely been resolved in favor of the discounted cash flow method as a reasonable means of measuring the rate of return that can be expected in the future from an investment made today.

Thus we have methods which, in general, are more or less elaborate mathematical formulas for comparing the outcomes of various investments and the combinations of the variables that will affect the investments. 1 As these techniques have progressed, the mathematics involved has become more and more precise, so that we can now calculate discounted returns to a fraction of a percent.

Analysis of the sort advocated by Hertz in "Risk Analysis in Capital Investment," (Harvard Business Review, January-February 1964) can be performed using this program. This documentation contains excerpts from the article; permission to reprint has been granted by the publishers.

\footnotetext{
1 See for example, Joel Dean, Capital Budgeting (New York, Columbia University Press, 1951); "Return on Capital as a Guide to Managerial Decisions," National Association of Accounts Research Report No. 35, December 1, 1959; and Bruce F. Young, "Overcoming Obstacles to Use of Discounted Cash Flow for Investment Shares," NAA Bulletin, March 1963, p. 15.
}

ACKNOWLEDGEMENTS:
Graduate School of Business
Stanford University

DESCRIPTION: (continued)

\section*{Summary of New Approach}

After examining present methods of comparing alternative investments, Mr. Hertz reports on his firm's experience in applying a new approach to the problem. Using this approach, management takes the various levels of possible cash flows, return on investment, and other results of a proposed outlay and gets an estimate of the odds for each potential outcome.

Currently, many facilities decisions are based on discounted cash flow calculations. Management is told, for example, that Investment \(X\) has an expected internal rate of return of \(9.2 \%\), while for Investment \(Y\) a \(10.3 \%\) return can be expected.

By contrast, the new approach would put in front of the executive a schedule which gives him the most likely return from \(X\), but also tells him that \(X\) has 1 chance in 20 of being a total loss, 1 in 10 of earning from \(4 \%\) to \(5 \%, 2\) in 10 of paying from \(8 \%\) to \(10 \%\), and 1 chance in 50 of attaining a \(30 \%\) rate of return. From another schedule he learns what the most likely rate of return is from \(Y\), but also that \(Y\) has 1 chance in 10 of resulting in a total loss, 1 in 10 of earning from \(3 \%\) to \(5 \%\) return, 2 in 10 of paying between \(9 \%\) and \(11 \%\), and 1 chance in 100 of \(30 \%\).

In this instance, the estimates of the rates of return provided by the two approaches would not be substantially different. However, to the decision-maker with the added information, Investment \(Y\) no longer looks like the clearly better choice, since with \(X\) the chances of substantial gain are higher and the risks of loss lower.

Two things have made this approach appealing to managers who have used it:
1. Certainly in every case it is a more descriptive statement of the two opportunities. And in some cases it might well reverse the decision, in line with particular corporate objectives.
2. This is not a difficult technique to use, since much of the information needed is already available - or readily accessible - and the validity of the principles involved has, for the most part, already been proved in other applications.

The enthusiasm with which managements exposed to this approach have received it suggests that it may have wide application. It has particular relevance, for example, in such knotty problems as investments relating to acquisitions or new products, and in decisions that might involve excess capacity.

\section*{INSTRUCTIONS:}

The program will first ask how many trials (iterations) you want. Each trial simulates one possible set of outcomes. Since each takes some time, it is a good idea to limit the analysis to forty or fifty trials, at least at first.

The program will ask if you want price, sales, and operating costs to be interdependent. If you say NO, each will be drawn "randomly", without regard to the values drawn for the other two. If you say YES, they will be determined together. One draw will be made: if price and operating costs are especially high, the share of market will be especially low, and vice-versa.

The program will also ask if you want to select the output format. If you say NO, the program will summarize the possible rates of return from \(-15 \%\) to \(+30 \%\), in ranges of \(5 \%\). If you say YES, the program will allow you to select the ranges to be used.

The program will next request three estimates for each of nine factors. These have the following interpretations:
\begin{tabular}{ll} 
"low value: & \begin{tabular}{l} 
there should be roughly 9 chances out of 10 that the \\
actual value will exceed this estimate.
\end{tabular} \\
"most likely" value: & this is the best single estimate of the actual value \\
"high" value: & \begin{tabular}{l} 
there should be roughly 1 chance out of 10 that the \\
actual value will exceed this estimate
\end{tabular}
\end{tabular}

Given this information, the program will perform the desired number of simulations and provide the requested summary information.

Warning: If the number of trials is not large, the results may depend to a considerable extent on the particular "draws" made during the simulation.

\section*{RUN}

RUN
GRISKA

RISK ANALYSIS PROGRAM
HOW MANY ITERATIONS (TRIALS) DO YOU WANT? 40
DO YOU WANT PRICE, SALES AND OPERATING COSTS
TO BE INTERDEPENDENT?YES
DO YOU WANT TO SELECT THE OUTPUT FORMAT?YES
RATE OF RETURN RANGE --
FROM ( 2 )?-16
TO ( \(x\) ) ? +40
INTERVAL WIDTH ( 8 )? 5
FOR EACH FACTOR, ENTER THREE ESTIMATES -LOW, MOST LIKELY, HIGH

INVESTMENT (IN DOLLARS)?900, 1000,1100
MARKET SIZE (IN UNITS)?800,1060,1206
SELLING PRICE (IN DOLLARS)?.96,1.06,1.10
MARKET GROUTH RATE ( \(\%\) PER YEAR) \(1-10,0,10\)
SHARE OF MARKET ( \(\%\) ) 3 40,50,6 6
RESIDUAL VALUE OF INVESTMENT (IN DOLLARS)? \(0,100,200\)
OPERATING COSTS (IN DOLLARS PER UNIT)?.35,.50,.65
FIXED COSTS (IN DOLLARS PER YEAR)?40,50,66
USEFUL LIFE (IN YEARS)?9,10,11

AVERAGE CASH FLOWS
\begin{tabular}{|c|c|c|}
\hline YEAR & 1 & 209.55 \\
\hline YEAR & 2 & 218.60 \\
\hline YEAR & 3 & 227.16 \\
\hline Year & 4 & 237.11 \\
\hline YEAR & 5 & 247.94 \\
\hline YEAR & 6 & 259:73 \\
\hline YEAR & 7 & 272:59 \\
\hline Year & 8 & 286.62 \\
\hline YEAR & 9 & 326:03 \\
\hline YEAR & 10 & 172.21 \\
\hline YeAR & 11 & 37.11 \\
\hline
\end{tabular}

AVERAGE TOTAL INVESTMENT \(=999.433\)
EXPECTED PAYBACK PERIOD: 3 TO 4 YEARS
EXPECTED RATE OF RETURN ( \(\%\) ): 18.4275


GRISKA, Page 4
\begin{tabular}{lr} 
FACTOR & AVERAGE VALUE \\
INUESTMENT (IN DOLLARS) & 999.43 \\
SELLING PRICE (IN DOLLARS) & 1.06 \\
MARKET GROWTE RATE (S PER YEAR) & 2.86 \\
SHARE OF MARKET (R) & 49.55 \\
RESIDUAL VALUE OF INUESTMENT (IN DOLLARS) & 167.86 \\
OPERATING COSTS (IN DOLLARS PER UNIT) & 0.51 \\
FIXED COSTS (IN DOLLARS PER YEAR) & 49.84 \\
USEFUL LIFE (IN YEARS) & 9.87 \\
DONE
\end{tabular}

\section*{TITLE: \\ DESCRIPTION:}

INSTRUCTIONS:

STOCK VALUATION

The program computes the present value of a stock, based on alternative assumptions about the growth rates for dividends and earnings, the terminal price/earnings ratio, and the relevant rate of discount.

The user must include data statements, beginning at line 1000, indicating for each of a number of time segments:
a) the growth rate in dividends per share
b) the payout ratio
c) the final period of the segment

The program will request:
a) the current earnings per share
b) a range of terminal price/earnings ratios to be analyzed
C) a range of returns (discount rates) to be analyzed

The ranges will be divided into equally spaced values and a table of implied present values for the stock printed.

\section*{Example}

Florida Power has averaged about 9\% growth in EPS over the past few years. We assume that eventually this unusually rapid growth will slow. Presumably at that time Florida Power's \(P / E\) ratio will drop to that of a "non-growth" utility (currently 10 to 13 ) and the firm will probably be paying out about \(70 \%\) of earnings in dividends; the current payout ratio is \(55 \%\). Based on this and other information, suppose we make the following projections:
\begin{tabular}{lcc} 
Time Period & EPS Growth Rate & Payout Ratio \\
\hline Next 5 years & \(8 \%\) & .60 \\
Years \(6-10\) & \(6 \%\) & .65
\end{tabular}

Furthermore, we assume that in year 10, Florida Power shares will sell at 10 to 13 times earnings. Latest 12 month EPS are \(\$ 2.94\). High grade bonds are yielding around \(8 \%\). The attached example run shows how to find the prices we could pay for Florida Power stock and earn annual returns of between 8 and 15 percent over the next 10 years, assuming our forecasts are valid.

Graduate School of Business
```

RUN
RUN
GSTKVL
HAVE YOU ENTERED YOUR DATA STATEMENTS?NO
EACH CASE REQUIRES THE FOLLOWING DATA --
THE NUMBER OF SEGMENTS
THEN, FOR EACH SEGMENT --
THE GROWTH RATE IN DIVIDENDS PER SHARE
PAYOUT RATIO
FINAL PERIOD OF THE SEGMENT
ENTER DATA STATEMENTS BEGINNING AT LINE 100ø
FOR MULTIPLE RUNS, SIMPLY PROVIDE ADDITIONAL SETS OF DATA
AFTER DATA STATEMENTS HAVE BEEN ENTERED, RE-RUN THE PROGRAM
DONE
1000 DATA 2,.06, .6, 5,.06, .65, 10
RUN
GSTKVL
HAVE YOU ENTERED YOUR DATA STATEMENTS?YES
CURRENT EARNINGS/SHARE?2.94
GROWTH RATES --
RANGE OF TERMINAL P/E RATIOS --
LOW?1ø
HIGH?13
RANGE OF RETURNS DESIRED (DECIMAL) --
LOW?.08
HIGH?.15

RETURN	10	11	12	13
. 68	40.7778	43.2166	45.6553	48.6941
. 6975	35.5739	37.6506	39.7272	41.8038
.115	31.1527	32.9254	34.6982	36.471
. 1325	27.3835	28.9007	30.4178	31.9349
. 15	24.1597	25.4611	26.7626	28.064

CODES FOR NEXT TASK:
0: ALL NEW DATA
1: SAME CURRENT EPS, NEW PROJECTIONS
2: NEW EPS, SAME PROJECTIONS
3: STOP
NEXT TASK?3
DONE

```
\begin{tabular}{l|l} 
TITLE: \\
DESCRIPTION: \\
GECURITIES EPS GROWTH \\
This program finds the number of years of constant growth in earnings per \\
share required to justify the current price of a stock. It also provides \\
the present values of the dividends and terminal share price for one less \\
year of growth.
\end{tabular}
```

RUN
RUN
GTHOR
DO YOU WANT INSTRUCTIONS?YES
THIS PROGRAM FINDS THE NUMBER OF YEARS OF CONSTANT GROWTH
IN EARNINGS PER SHARE REQUIRED TO JUSTIFY THE CURRENT SHARE
PRICE. YOU MUST SPECIFY THE INITIAL GROWTH RATE IN EPS AND
THE NUMBER OF YEARS dURING WHICH this GROWTH RATE WILL
DECLINE TO 4 PERCENT (OR .04) PER YEAR.
IN ADDITION TO PROUIDING THE NUMBER OF YEARS OF CONSTANT
GROWTH REQUIRED AT THE RATE YOU SPECIFY, THE PROGRAM ALSO
PROVIDES THE PRESENT VALUES OF THE DIVIDENDS AND TERMINAL
SHARE PRICE FOR ONE LESS YEAR OF GROWTH. THIS ENABLES
YOU TO EXAMINE THE SENSITIVITY OF YOUR ASSUMPTIONS.
IN COMPUTING ANNUAL DIVIDENDS THE PROGRAM ASSUMES THAT
the payOut ratio Will remain at itS Current level for five
YEARS AND THEN CHANGE GRADUALLY UNTIL IT REACHES . }
IN THE YEAR UHEN ANNUAL GROWTH IN EPS DROPS TO 4 PERCENT.
IF yOU WANT TO USE A FINAL GROWTH RATE OTHER than . }0
TYPE IT (AS A DECIMAL); OTHERWISE TYPE .04
GROWTH RATE?.g4
WHAT IS THE CURRENT SHARE PRICE?66
EARNINGS PER SHARE?2.87
INITIAL GROWTH RATE IN EPS (AS A DECIMAL)?.16
NUMBER OF YEARS OF DECLINING GROWTH?6
THE DISCOUNT RATE (AS A DECIMAL)?.12
THE CURRENT PAYOUT RATIO (AS A DECIMAL)?.48
YOUR INPUT IMPLIES A FINAL P/E RATIO OF 7.5
IF THIS IS NOT SATISFACTORY YOU MAY CHANGE IT BY TYPING
ANOTHER P/E RATIO; OTHERWISE TYPE G. VALUE?I2
PRICE OF 66 ASSUMES 41 YEARS OF CONSTANT GROWTH IN EPS.
THE PRESENT VALUE(INTRINSIC VALUE) IS 59.1801
INTRINSIC VALUE FOR NI = 40 IS 58.7523
SHARE PRICE IN 46 YEARS= 2337.91
dO YOU WANT TO RUN MORE DATA?NO

```
DONE
TITLE:
DESCRIPTION:
GVPDQT
36554

\section*{SPECIAL}

CONSIDERATIONS:

For detailed instructions for using the Tektronix 4010 display, see "Special Considerations" section of VSUB, HP No. 36558, page 3.

ACKNOWLEDGEMENTS:

Graduate School of Business
Stanford University

INSTRUCTIONS: (continued)
IPDQF
GPDQF is a file of data on quarterly prices and dividends paid by 100 open-end mutual funds. The
funds were chosen randomly from those for which data were readily available for the period 1965-1970. For each quarter, the following information is given:
"opening price"
- net asset value per share as of the close of the market on the last trading day of the previous quarter.
"dividends"
- all dividends received by an investor who held one share at the beginning of the quarter; any other distributions that qualify as income are also included.
"ending price"
- the total value of the holdings of an investor who held one share at the beginning of the quarter. This includes the net asset value of the share (or shares, in the case of splits) at the close of the market on the last trading day of the quarter. It also includes the value of any distributions received during the quarter that qualify as capital gains.

Each fund is allocated one record on the file. Fund number 1 is on record 1 ; fund number 2 on record 2, etc. Each record contains 40 quarters of information, as follows:
\begin{tabular}{ll} 
opening price & 1st quarter of 1 st year \\
dividends & 1st quarter of 1 st year \\
closing price & 1st quarter of 1 st year \\
opening price & 2nd quarter of 1 st year \\
dividends & 2nd quarter of 1 st year \\
closing price & 2nd quarter of 1 st year
\end{tabular}
etc.
Any missing value is represented by -999 .
Following the 120 data values on each record are:
- the first year for which data are given (e.g. 1963)
- the name of the fund (up to 20 characters)

This file uses the same format as GPDQI and GPDQS. The funds are listed as follows:
```

ABERDEEN FUND
AFFILIATED FUND INC.
AMERICAN BUSINESS SHARES INC.
AMERICAN INVESTORS FUND INC.
AMERICAN MUTUAL FUND INC.
ANCHOR - FUNDAMENTAL INVESTORS
ANCHOR - GROWTH FUND
ASSOCIATED FUND TRUST
AXE-HOUGHTON FUND A INC.
AXE-HOUGHTON FUND B INC.
AXE-HOUGHTON STOCK FUND INC.
AXE SCIENCE CORP.
BOSTON FUND INC.
BROAD STREET INVESTING CORP.
BULLOCK FUND LTD.
CENTURY SHARES TRUST
CHASE FUND OF BOSTON
CHASE SHAREHOLDERS TRUST OF BOSTON
CHEMICAL FUND INC.
COLONIAL FUND INC.
AMERICAN EXPRESS INCOME FUND INC.
AMERICAN EXPRESS INVESTMENT FUND INC.
AMERICAN EXPRESS STOCK FUND INC.
COMPOSITE BOND AND STOCK FUND
COMPOSITE FUND INC.

```
CONCORD FUND INC.
DE VEGH MUTUAL FUND INC.
DELAWARE FUND INC.
BULLOCK -- DIVIDEND SHARES INC.
DREYFUS FUND INC.
ENERGY FUND INC.
EQUITY FUND INC.
FIDELITY CAPITAL FUND INC.
FIDELITY FUND INC.
FINANCIAL INDUSTRIAL FUND
FLORIDA GROWTH FUND INC.
FOUNDERS MUTUAL FUND
GROUP SECURITIES INC. -- COMMON STOCK FUND
GROWTH INDUSTRY SHARES INC.
GUARDIAN MUTUAL FUND INC.
HAMILTON FUNDS INC. -- SERIES HDA
INCOME FUND OF BOSTON INC.
INVESTMENT COMPANY OF AMERICA
INVESTMENT TRUST OF BOSTON
INVESTORS RESEARCH FUND INC.
ISTEL FUND INC.
JOHNSTON MUTUAL FUND INC.
KEYSTONE CUSTODIAN FUND B-1
KEYSTONE CUSTODIAN FUND B-2
KEYSTONE CUSTODIAN FUND B-4
KEYSTONE CUSTODIAN FUND K-1
KEYSTONE CUSTODIAN FUND K-2
KEYSTONE CUSTODIAN FUND \(\mathrm{S}-1\)
KEYSTONE CUSTODIAN FUND S-2
KEYSTONE CUSTODIAN FUND S-3
KEYSTONE CUSTODIAN FUND S-4
KNICKERBOCKER FUND
KNICKERBOCKER GROWTH FUND INC.
LIFE INSURANCE INVESTORS INC.
LOOMIS-SAYLES MUTUAL FUND
MAGNA INCOME TRUST
MASSACHUSETTS INVESTORS GROWTH STOCK FUND
MASSACHUSETTS INVESTORS TRUST
MUTUAL SHARES CORP.
MUTUAL TRUST
NAT IONAL INVESTORS CORP.
NATIONAL SECURITIES SERIES - BALANCE SERIES
national securities series -- bond series
NATIONAL SECURITIES SERIES -- DIVIDEND SERIES
NATIONAL SECURITIES SERIES -- PREFERRED STOCK SERIES
NATIONAL SECURITIES SERIES -- INCOME SERIES
NATIONAL SECURITIES SERIES -- STOCK SERIES
NATIONAL SECURITIES SERIES -- GROWTH STOCK SERIES
ONE WILLIAM STREET FUND INC.
OPPENHEIMER FUND INC.
PENN SQUARE MUTUAL FUND
PHILADELPHIA FUND INC.
PINE STREET FUND INC.
PIONEER FUND INC.
PRICE (T. ROWE) GROWTH STOCK FUND
PURITAN FUND INC.
PUTNAM (GEORGE) FUND
PUTNAM GROWTH FUND
SCUDDER STEVENS AND CLARK - BALANCED FUND
sCudder stevens and clark - common stock fund
SIGMA INVESTMENT SHARES
SIGMA TRUST SHARES
SOUTHWESTERN INVESTORS INC.
SOVEREIGN INVESTORS INC.
STEIN ROE AND FARNHAM - BALANCED FUND
STEIN ROE AND FARHNAME - STOCK FUND
TWENTIETH CENTURY GROWTH INVESTORS
VALUE LINE FUND INC.
VALUE LINE INCOME FUND INC.
VALUE LINE SPECIAL SITUATIONS FUND
WALL STREET INVESTING CORP.
WASHINGTON MUTUAL INVESTORS FUND INC.
WELLINGTON FUND INC.
WHITEHALL FUND INC.
WISCONSIN FUND INC.
```


GPDQS

GPDQS is a file of quarterly prices and dividends for the thirty stocks used in 1971 to compute Jow-Jones' Industrial Average. For each quarter, the following information is given:
"opening price"

- this is the price of one share of the stock as of the close of trading on the last trading day of the previous quarter.
"dividends"
- this includes all dividends received during the quarter by a person who held one share at the beginning of the quarter. Any distribution treated as income is also included.
"closing price"
- this is the value of the holdings of an investor who held one share at the beginning of the quarter. The value is calculated as of the close of the last trading day in the quarter.

Each stock is allocated one record on the file. Stock number 1 is on record 1 ; stock 2 on record 2, etc. Each record contains 40 quarters of information as follows:

opening price	
dividends	1st quarter of 1st year
closing price	1st quarter of 1st year

opening price	1st quarter of 1st year
dividends	2nd quarter of 1st year
closing price	2nd quarter of 1st year

etc.
Any missing value is represented by -999 .
Following the 120 data values on each record are:

- the first year for which data are given (e.g., 1963)
- the name of the stock (up to 20 characters)

The file uses the same format as GPDQI and GPDQF. The stocks are listed as follows:

[^1]GPDQI
GPDQI is a file of quarterly prices and dividends for 98 common stock indices published by Standard and Poor's and returns on 90-day Treasury bills. For each quarter, the following information is given:
"opening price"

- this is the value of the index as of the end of the previous quarter, as reported by Standard and Poor's.
"dividends"
- this is the value of dividends paid by the stocks in the index during the quarter, as reported by Standard and Poor's.
"closing price"
- this is the value of the index as of the end of the quarter, as reported by Standard and Poor's.

Each index is allocated one record on the file. Index number 1 is on record 1; index 2 on record 2, etc. Each record contains 120 numbers, as follows:

opening price	1st quarter of 1st year
dividends	1st quarter of 1st year
closing price	1st quarter of 1st year
opening price	2nd quarter of ist year
dividends	2nd quarter of 1st year
closing price	2nd quarter of 1st year

Any missing value is represented by -999 .
Following the 120 data values on each record are:

- the first year for which data are given (e.g., 1963)
- the name of the index (up to 20 characters)

For 90-day Treasury bills, the three values are:
"opening price"

- the average of the bid and ask prices at the end of the previous quarter for the 90 -day bill expiring on the date nearest the end of the quarter (e.g., 98.8)
"dividends"
- zero
"closing price"
- 100

The file uses the same format as GPDQF and GPDQS. The indexes are listed as follows:

1	500 STOCKS
2	425 INDUSTRIALS
3	20 RAILS
4	55 UTLITIES
5	CAPITAL GOODS
6	CONSUMER PRODUCTS
7	HIGH GRADE
8	LOW PRICED
9	AEROSPACE
10	AIR TRANSPORT
11	ALUMINUM
12	AUTOMOBILE
13	AUTO PARTS
14	AUTO TRUCKS \& PARTS
15	BREWERS
16	DISTILLERS
17	SOFT DRINKS
18	CEMENT
19	HEATING \& PLUMBING

ROOFING \& WALLBOARD
HOME FURNISHINGS
CHEMICALS
BITUMINOUS COAL
CONFECTIONERY
CONTAINERS - METAL \& GLASS
CONTAINERS - PAPER
COPPER
DRUGS
ELECTRICAL EQUIPMENT
ELECTRICAL HOUSEHOLD APPLIANCES
ELECTRONICS
BUILDING MATERIALS COMPOSITE
FINANCE COMPANIES
SMALL LOAN
FOOD - BISCUIT BAKERS
FOOD - BREAD \& CAKE
FOOD - CANNED
FOOD - CORN REFINERS
FOOD - DIARY PRODUCTS
FOOD - MEAT PACKING
FOOD - PACKAGED FOODS
GOLD MINING
LEAD \& ZINC
MACHINE TOOLS
AGRICULTURAL MACHINERY
CONSTRUCTION \& MATERIAL HANDLING
INDUSTRIAL MACHINERY
OIL WELL EQUIPMENT
SPECIALTY MACHINERY
STEAM GENERATING EQUIPMENT
METAL FABRICATING
METAL MISCELLANEOUS
MOTION PICTURES
OFFICE EQUIPMENT
CRUDE OIL PRODUCERS
INTEGRATED OILS - DOMESTIC
INTEGRATED OILS - INTERNATIONAL
PAPER
PUBLISHING
RADIO \& TV BROADCASTERS
RADIO \& TV MANUFACTURERS
RAILROAD EQUIPMENT
TEXTILES - SYNTHETIC FIBERS
DISCOUNT STORES
DEPARTMENT STORES
FOOD STORES
MAIL ORDER
VARIETY STORES
SHIPBUILDING
SHIPPING
SHOES
SOAPS
STEEL
SUGAR-BEET REFINERS
FOOD COMPOSITE
SUGAR-CAN REFINERS
SULPHUR
TEXTILES - APPAREL MAHUFACTURERS
TEXTILE PRODUCTS
TIRE \& RUBBER
TOBACCO - CIGARETTE MANUFACTURERS
TOBACCO - CIGAR MANUFACTURERS
VEGETABLE OILS
VENDING MACHINES
ELECTRIC COMPANIES
NATURAL GAS DISTRIBUTORS
PIPELINES
TELEPHONE
BANKS - NEW YORK CITY
BANKS - OUTSIDE NEW YORK CITY
OIL COMPOSITE
INSURANCE - FIRE \& CASUALTY
INSURANCE - LIFE
INVESTMENT COMPANIES
COSMETICS
ELECTRONIC MAJOR COMPANIES
HOLDING COMPANIES
TRUCKERS
90-DAY TREASURY BILLS

RUN
RUN
GUPDQT

```
ITEM (A-G, '?' FOR INFORMATION)??
A) PRICE: STOCK PRICE/SHARE, INDEX LEVEL, FUND NAV/SHARE
B) PRICE RETURN: PERCENTAGE CHANGE IN (A) PER QUARTER
C) DIVIDEND
D) DIUIDEND YIELD; QUARTERLY DIUIDEND/PRICE AT END OF PREVIOUS QUARTER
E) RETURN: (B) + (C)
F) CUMULATIVE VALUE WITH DIVIDENDS REINUESTED
G) CUMULATIVE VALUE WITH DIVIDENDS IGNORED
```

ITEM (A-G, '?' FOR INFORMATION)?A
FUND, INDEX, STOCK OR PORTFOLIO?INDEX
NUMBER? !
DO YOU WANT TO PLOT ANYTHING ELSE?YES
ITEM (1-3, ? ' FOR INFORMATION)??

1) THE SAME TYPE OF DATA FOR ANOTHER STOCK, INDEX, FUND OR PORTFOLIO
2) A STRAIGHT-LINE TREND FIT TO THE DATA BY LEAST-SQUARES REGRESSION
3) A MOVING AVERAGE OF THE DATA
ITEM ($1-3$, ? ' FOR INFORMATION)? 3
NUMBER OF QUARTERS FOR MOVING AVERAGE? 4
REGULAR SCALE OR LOGARITHMIC?REGULAR
PRICE
*: 500 STOCKS
+: MOVING AVERAGE
B: BOTH * AND +
MINIMUM VALUE $=63.09$
MAXIMUM VALUE $=103.85$
(A
title:
DESCRIPTION:

INSTRUCTIONS:

CALCULATE AIRFREIGHT RATES
IATA. 1 calculates the weight breakpoints for a given commodity between any two airports based on: the minimum air waybill charge, the normal rate (under 100 pound rate), and the rates for each weight class within the commodity being rated. The resulting table is generated on the terminal based on data inputted from the keyboard or from the file AIRRAT. The program also provides for file maintenance (additions or deletions).
crant
Open two files: AIRRAT and RATAIR. Each record of the file holds approximately 3.5 sets of data. Therefore, if you open the files for 20 records, you should have room for 70 sets of rate data.

Limit your inputs as follows: Airport codes $=3$ letters, specific commodity=5 characters, commodity description=34 characters, date=6 characters (use format DDMMMY). This program consists of 3 sections: $1=$ data entry from keyboard, $2=$ data entry from file AIRRAT, $3=$ additions and/or deletions to file AIRRAT, and $4=$ terminate program.

Preparing a worksheet with all of the data required (as shown) to use the program beforehand would be advantageous to the user. The option of printing multiple copies may be equal to or less than other means of duplication.

The program is written so that new additions to the file are added after the last existing record on the file, therefore, if you add new rates first and then delete the existing old rates, the program will only delete the first set of data (based on the deletion parameters) encountered which should be the old rate data.

If the user attempts to use data which is not on the file, the program will advise that the record is not on file.

RUN

```
CRR OPEN-AIRRAT,10
CAR OPEN-RATAIR,10
RUN
|ATA. 1
```

INSTRUCTIONS?YES
IATA•R CALCULATES BREAKPOINT WEIGHTS BASED ON DATA
SUPPLIED BY THE USER(EITHER FROM THE KEYBOARD OR FILE
AIRRAT) AND THEN PRINTS A TABLE SUITABLE FOR USE IN RATING,
PREPARING AND CHECKING AIR WAYBILLS• LIMIT YOUR INPUTS AS
FOLLOWS:AIRPORT CODES=3 LETTERS,SPECIFIC COMMODITY=5
CHARACTERS,COMMODITY DESCRIPTION=34 CHARACTERS,DATE=6
CHARACTERS (USE FORMAT DDMMMY). THIS PROGRAM CONSISTS OF 3
SECTIONS: 1 =DATA ENTRY FROM KEYBOARD, $2=$ DATA ENTRY FROM FILE
AIRRAT, 3=ADDITIONS AND/OR DELETIONS TO FILE AIRRAT,AND 4=
TERMINATE PROGRAM. ENTER THE APPROPRIATE RESPONSE BELOW.
SECTION (1,2,3,OR 4)? 1

* OF RATE CLASSES IN THIS COMMODITY =?4
ORIGIN AIRPORT?JFK
DESTINATION AIRPORT?VIE
SPECIFIC COMMODITY?4316
COMMODITY DESCRIPTION?DATA PROCESSING SYSTEM
EFFECTIVE DATE OF RATES?IAUGg
MINIMUM AIR WAYBIL CHARGE IN \$?22.0ロ
NORMAL RATE IN S? 1.51
ENTER DATA AS REQUIRED
RATE $1=\$? .54$
WEIGHT $1=? 100$
RATE 2= \$?.40
WEIGHT $2=? 440$
RATE 3= \$?.31
WEIGHT $3=? 1100$
RATE $4=\$? .27$
WEIGHT 4=?2200
HOW MANY COPIES?1

```
ORIGINATING AIRPORT......JFK
DESTINATION AIRPORT......VIE
SPECIFIC COMMODITY.......4316
COMMODITY DESCRIPTION....DATA PROCESSING SYSTEM
```

ACT GR	OSS	WT	CHARGEABLE	WT RATE/LB	CHARGES
1	T0	14	DECLARE AS	MINIMUM	\$ 22.00
15	TO	35	ACTUAL	\$1.5100	AS EXTENDED
36	TO	100	100	\$0.5400	\$ 54.00
101	TO	325	ACTUAL	\$0.5400	AS EXTENDED
326	TO	440	440	\$0.4000	\$ 176.00
441	TO	852	ACTUAL	50.4000	AS EXTENDED
853	TO	1100	1100	\$0.3100	S 341.00
1101	TO	1916	ACTUAL	\$0.3100	AS EXTENDED
1917	T0	2200	2200	\$0.2700	\$ 594.00
2201	TO		ACTUAL	\$0.2700	AS EXTENDED

EFFECTIVE DATE OF RATES..IAUGD

MORE ?NO
SECTION (1,2,3,OR 4)?3
ADD OR DELETE?ADD
ENTER NEW DATA

```
N=?'2
AS=? ?JFK
DS=?VIE
S$=?710W
CS=?LITERATURE
RS=?1 AUG\emptyset
M =?22.00
0=?1.51
R1=$ ? . 37
W 1= ? 100
R2=$?.26
W 2= ?1100
DONE?YES
SECTION (1,2,3,OR 4)?4
DONE
```


RUN

```
RUN
IATARC
INSTRUCTIONS?NO
US OR METRICPUS
ORIGIN AIRPORT?JFK
DESTINATION AIRPORT?GLA
CONTAINER $3
CONTAINER VOLUME=?42g
MINIMUM WEIGHT=?4409
MINIMUM CHARGE=S?1176
SPECIFIC COMMODITY?8550
SPECIFIC COMMODITY RATE?. }3
                    ANALYSIS OF BREAKEVEN POINT
                    FOR UTILIZING CONTAINERS VERSUS
                    SPECIFIC COMMODITY RATES
                    FROM JFK TO GLA
                FOR IATA CONTAINER 3
                STANDARD
                    REVI SED
VOLUME(CU.FT.:) 420 420
MINIMUM CHARGE $1176.00 $1176.0日
MINIMUM WGT(LBS) 4469 3267
SMB RATE S. 27 S. 36 (8550)
LBS/CU.FT. \(10.50 \quad 7.78\)
```

```
MORETYES
US OR METRICFMETRIC
ORIGIN AIRPORT?JFK
DESTINATION AIRPORT?GLA
CONTAINER ?7
CONTAINER VOLUME=?5.60
MINIMUM UEIGHT=?945
MINIMUM CHARGE=S?558
SPECIFIC COMMODITY?8550
SPECIFIC COMMODITY RATE?.8g
    ANALYSIS OF BREAKEVEN PQINT
    FOR UTILIZING CONTAINERS VERSUS
        SPECIFIC COMMODITY RATES
            FROM JFK TO GLA
        FOR IATA CONTAINER %7
        STANDARD
VOLUME(CU. M)
MINIMUM CHARGE
    s 558.00
MINIMUM WGT[KGS] 945
S/KG RatE
    $.59
    1 6 9
        REVISED
\begin{tabular}{lcc} 
VOLUME(CU. M) & 5.60 & 5.60 \\
MINIMUM CHARGE & 5558.00 & 558.00 \\
MINIMUM WGTIKGS & 945 & 697 \\
S/KG RATE & \(\$ .59\) & \(5.80(8550)\) \\
KGS/CU. M & 169 & 125
\end{tabular}
```

MORETNO
DONE

contributed program BASIC

ACK.NOWLEDGEMENTS:

Sample IATA Problems

1. You have 904 pounds of electronic measuring instruments (parts), Specific Commodity Rate 8550 JFK to STR which moves at $\$.41$ /pound (in a 2200 pound consolidation). You wish to use a DSC-225 IATA registered container with actual tare of 96 pounds costing $\$ 16.44$ each. Evaluate.

See Sample RUN -- IATA Problem \#l.
2. You have 1105 pounds of literature (Specific Commodity $7103 W$) and 572 pounds of electronic measuring instruments (8550) which will fit in an IATA 8 (LD-1) between JFK and AMS. The rate for literature is $\$.31 /$ pound and instruments is $\$.48$. The container rate is $\$ 501.00$ for 1676 pounds pivot with a rate of $\$.26 /$ pound over pivot. Actual tare weight of container is 285 pounds. Evaluate.

See Sample RUN -- IATA Problem \#2.
3. You have 5926 pounds of machinery moving LAX to BKK which will fit in an IATA 5 container. The specific commodity rate per pound is $\$ 1.13$ whereas the container rate is $\$ 3438.00$ for the first 3638 pounds and an over pivot rate of $\$.88 /$ pound. The actual tare weight of the container is 550 pounds. Evaluate.

See Sample RUN -- IATA Problem \#3.
4. You have 300 pounds of electronic parts (Specific Commodity 8550) which fit in a DSC-221 (COS) moving in a consolidation between SFO and SIN at $\$.98 /$ pound. The actual tare is 18 pounds. Cost of the container is $\$ 5.44$. Evaluate.

See Sample RUN -- IATA Problem \#4.
5. You have 660 pounds of electronic parts (Specific Commodity 8550) and 440 pounds of General Cargo (Q) which fit in a c08 shipper owned container moving in a consolidation between SFO and SIN at $\$.98 /$ pound and $\$ 1.55 /$ pound respectively. The actual tare of the container is 93 pounds and costs $\$ 1 \dot{6} .66$. Evaluate.

See Sample RUN -- IATA Problem \#5.

Sample ATA Problems

1. You are shipping between SFO and JFK 100 pounds of printed matter (4915) at . $234 /$ pound and 22 pounds of general cargo at $\$.52$ /pound which will fit in an E container costing $\$ 5.44$ with an actual tare of 18 pounds. The general cargo rate is .2775 .

See Sample RUN -- ATA Problem \#1.
2. Same shipment as in Problem \#1 except the following changes:

100 pounds of 4915 at $.234 /$ pound.
82 pounds of General Cargo at . 2854/pound.
See Sample RUN -- ATA Problem \#2.
3. The following QD container shipments are SFO to JFK with an actual tare of 13 pounds and the container costs $\$ 4.00$ containing the weights shown of cast aluminum wheels (7616).
a. Net Weight:
92
Rate/Pound: . 2853
General Cargo Rate: . 2775
$\begin{array}{ll}\text { b. Net Weight: } & 187 \\ \text { Rate/Pound: } & .2775 \\ \text { General Cargo Rate: } & .2775\end{array}$

See Sample RUN -- ATA Problem \#3.
4. Using a B container SFO to JFK costing $\$ 50.00$ with actual tare of 200 pounds containing 2000 pounds of printed matter (4915) at . 2035 and 2000 pounds of cast aluminum wheels (7616) at . 177 .

See Sample RUN -- ATA Problem \#4.
5. An A-3 container SFO to JFK containing 10,000 pounds of cast aluminum wheels (7616) at . 1635 for which the first 3200 pounds in the container costs $\$ 608.00$ and the excess above is rated at . $137 /$ pound. See Sample RUN -- ATA Problem \#5.
6. An A-3 container SF0 to JFK contains: 5,000 pounds 7616 at . 1635 /pound, 5,000 pounds of 0001 at .208/pound, and 2,000 pounds of general cargo at .223

See Sample RUN -- ATA Problem \#6.
7. You have 4,000 pounds of floral stock (0625) at . 117 /pound and 3,500 pounds of grapes (0816) at . 1355/pound loaded in an LD-7 moving SFO to JFK for which the base rate is $\$ 595.00$ for the first 3100 pounds and the over pivot rate is .137. The actual tare of the container is 550 pounds.

See Sample RUN -- ATA Problem \#7.

RUN
GET-I ATATA
RUN
IATATA
WOULD YOU LIKE A CONTAINER SUMMARY?YES

SUMMARY OF UNIT LOAD DEVICES

I ATA					ATA(US)			
	MIN			MAX		MIN		MAX
IATA	CHARG	TARE	EXT	GROSS	ATA	CHRG	TARE	GROSS
I D	WGT		VOLUME	WGT	I D	WGT		WGT
1	13200	0	1280.0	25000	NONE	0	0	0
2	6297	1000	668.0	15000	NONE	0	0	0
2 A	0	0	564.0	0	NONE	0	0	0
$2 B$	0	0	463.0	0	NONE	0	0	0
3P	0	265	465.0	13300	A^{\prime} 'S	0	0	0
3NS I	0	550	465.0	13300	$A^{\circ} \mathrm{S}$	0	0	0
3SI	0	550	465.0	13300	$A^{\circ} \mathrm{S}$	0	0	0
4P	0	230	365.0	10000	$A^{\circ} \mathrm{S}$	0	0	0
4NS I	0	500	365.0	10000	A^{\prime} 'S	0	0	0
4ANS I	\square	500	340.0	8000	$A^{\circ} \mathrm{S}$	0	0	0
5P	0	265	375.0	8300	LD-7	0	0	10200
SNS I	0	550	360.0	8300	LD-7	0	550	10200
5S I	0	550	350.0	8300	LD-9	0	685	10200
6P	0	0	265.0	5680	NONE	0	0	0
7 * P	0	265	198.0	5000	NONE	0	0	0
7P	0	338	198.0	5250	NONE	0	0	0
7NS I	0	0	217.0	5250	NONE	0	0	0
8	0	280	170.0	3500	LD-1	1300	370	3500
8	0	280	162.4	3500	LD-P	1100	350	3500
8*	0	280	160.0	3500	LD-3	1100	340	3500
9P	0	280	160.0	2500	NONE	0	0	0
9NS I	0	280	167.0	2500	NONE	0	0	0
COI	0	565	377.0	10000	A^{\prime} 'S	0	0	0
CO2	0	480	320.0	10000	A'S	0	0	0
CO3	0	293	195.0	6686	B	1800	200	5000
CO4	0	277	184.0	6686	B	1800	200	5000
COS	0	241	160.0	4841	B	1800	200	5000
C06	0	225	150.0	4841	B	1800	200	5000
C07	841	142	94.5	4050	LD-N	0	100	2400
C08	551	93	61.9	3303	D	500	63	2000
C09	396	45	44.4	2666	NONE	0	0	0
C00	267	30	30.0	2666	NONE	0	0	0
COJ	565	96	63.4	3383	D	500	63	2000
COS	160	18	18.0	1691	E	130	18	500
VAR .	0	0	393.0	0	A-1	3000	0	13000
VAR.	0	0	457.5	0	A-2	3100	0	13000
VAR.	0	0	476.0	0	A-3	3200	0	13000
NONE	0	0	98.9	0	B-2	900	106	2500
NONE	0	0	12.0	0	QD	100	13	400
NONE	0	0	277.8	0	LD-5	2200	630	5000
NONE	0	0	340.0	0	LD-6	0	0	7000
NONE	\square	0	256.6	0	LD-11	1800	0	7000

NOTE: \cap IN MINIMUM CHARGEABLE WEIGHT COLUMN INDICATES PIVOT WEIGHT VARIES BY TARIFF CONFERENCE(OR ORIGIN-DESTINAT.I ON COMBINATIONS). ZEROES IN VARIOUS OTHER FIELDS MEANS DATA NOT AVAILABLE OR NOT APPLICABLE. COJ AND COS CONTAINERS ARE FURTHER BROKEN DOWN INTO IATA REGISTRATION NUMBERS FOR VARIATION OF THESE TWO CATEGORIES. IF YOU ARE GOING TO WORK WITH THESE TYPES, MAKE SURE YOU ENTER THE CORRECT REGISTRATION NUMBER (I.E. DSC-221).

```
SAMPLE IATA PROBLEM No. 1
```

 IATA OR ATA?IATA
 CONTAINER OR REGISTRATION NUMBER?DSC-225
 ACTUAL TARE WEIGHT OF CONTAINER?96
 HOW MANY COMMODITIES? 1
 WGT \(1=? 904\)
 CONTAINER COST?16.44
 RATE \(1=? .41\)
 ORIGIN AIRPORT?JFK
 DESTINATION AIRPORT?STR
 ANALYSIS OF SHIPPING IN SHIPPER OWNED IATA
 CONTAINERS VS. NORMAL PACKAGING
 FROM JFK TO STR
 USING DSC-225 CONTAINER
 | GROSS COST OF SHIPMENT OF 1000 LBS | \$ | 410.00 |
| :--- | :--- | ---: |
| PLUS CONTAINER COST | 16.44 | |
| LESS CONTAINER REBATE | -16.20 | |
| LESS TARE WEIGHT ALLOWANCE | -39.36 | |
| NET COST OF SHIPMENT | 370.88 | |
| | | |
| COST IF NET CONTENTS ARE SHIPPED LOOSE | 370.64 | |
| COST IF SHIPPED IN NON-IATA CONTAINER | | |
| OF EQUAL TARE WEIGHT | | |

SAMPLE IATA PROBLEM No. 2
MORE?YES
IATA OR ATA?IATA
CONTAINER OR REGISTRATION NUMBER?8
ELIGIBLE FOR SHIPPER OWNED CONTAINER DISCOUNT?NO
MINIMUM CHARGEABLE NET WEIGHT? 16.76
ACTUAL TARE WEIGHT OF CONTAINER?285
HOW MANY COMMODITIES??
WGT $1=? 1105$
WGT $2=? 572$
RATE $1=? .31$
RATE $2=? .48$
ORIGIN AIRPORT?JFK
DESTINATION AIRPORT?AMS
CONTAINER CHARGE?501
RATE/LB FOR EXCESS ABOVE PIVOT?.26

ANALYSIS OF SHIPPING IN AIRLINE OWNED IATA CONTAINER VS. SPECIFIC COMMODITY RATES

FROM JFK TO AMS
USING 8 CONTAINER

SAMPLE IATA PROBLEM No. 3
MORE?YES
IATA OR ATA?IATA
CONTAINER OR REGISTRATION NUMBER?SNSI
ELIGIBLE FOR SHIPPER OWNED CONTAINER DISCOUNT?NO
MINIMUM CHARGEABLE NET WEIGHT?3638
ACTUAL TARE WEIGHT OF CONTAINER?550
HOW MANY COMMODITIES?1
WGT $1=? 5926$
RATE $1=? 1.13$
ORIGIN AIRPORT?LAX
DESTINATION AIRPORT?BKK
CONTAINER CHARGE?343B
RATE/LB FOR EXCESS ABOVE PIVOT?. 88

ANALYSIS OF SHIPPING IN AIRLINE OWNED IATA CONTAINER VS. SPECIFIC COMMODITY RATES FROM LAX TO BKK USING 5NSI CONTAINER

SAMPLE IATA PROBLEM No. 4
MORE?Y
IATA OR ATA?I
CONTAINER OR REGISTRATION NUMBER?DSC-221
ACTUAL TARE WEIGHT OF CONTAINER?18
HOW MANY COMMODITIES?!
WGT $1=? 300$
CONTAINER COST?5.44
RATE $1=? .98$
ORIGIN AIRPORT?SFP-O
destination airport?sin

ANALYSIS OF SHIPPING IN SHIPPER OWNED IATA CONTAINERS VS. NORMAL PACKAGING

FROM SFO TO SIN
USING DSC-221 CONTAINER

GROSS COST OF SHIPMENT OF	318 LBS	S
PLUS CONTAINER COST	1.64	
LESS CONTAINER REBATE	5.44	
LESS TARE WEIGHT ALLOWANCE	-4.00	
NET COST OF SHIPMENT	-17.64	
		295.44
COST IF NET CONTENTS ARE SHIPPED LOOSE	294.00	
COST IF SHIPPED IN NON-IATA CONTAINER		
OF EQUAL TARE WEIGHT		

SAMPLE IATA PROBLEM No. 5
MORE?Y
IATA OR ATA?I
CONTAINER OR REGISTRATION NUMBER? Øø8
DATA NOT ON FILE.
IATA OR ATA?I
CONTAINER OR REGISTRATION NUMBER?OO8
DATA NOT ON FILE.
IATA OR ATA?I
CONTAINER OR REGISTRATION NUMBER?CO8
ELIGIBLE FOR SHIPPER OWNED CONTAINER DISCOUNT?YES
ACTUAL TARE WEIGHT OF CONTAINER?93
HOW MANY COMMODITIES?2
WGT $1=? 660$
WGT $2=? 440$
CONTAINER COST? 16.44
RATE $1=? .98$
RATE $2=? 1.55$
ORIGIN AIRPORT?SFO
DESTINATION AIRPORT?SIN

ANALYSIS OF SHIPPING IN SHIPPER OWNED IATA CONTAINERS VS. NORMAL PACKAGING

FROM SFO TO SIN
USING CO8 CONTAINER

| GROSS COST OF SHIPMENT OF 1193 LBS | $\$ 1472.95$ |
| :--- | :--- | ---: |
| PLUS CONTAINER COST | 16.44 |
| LESS CONTAINER REBATE | -15.80 |
| LESS TARE WEIGHT ALLOWANCE | -144.15 |
| NET COST OF SHIPMENT | 1329.44 |
| | |
| COST IF NET CONTENTS ARE SHIPPED LOOSE | 1328.80 |
| COST IF SHIPPED IN NON-IATA CONTAINER | |
| OF EQUAL TARE WEIGHT | |

SAMPLE ATA PROBLEM No. 1

```
MORE?Y
IATA OR ATA?ATA
CONTAINER NUMBER?E
ACTUAL TARE WEIGHT OF CONTAINER?18
HOW MANY COMMODITIES??
WGT 1=?100
WGT 2=?22
CONTAINER COST?5.44
RATE 1=?.234
RATE 2=?.S2
ORIGIN AIRPORT?SFO
DESTINATION AIRPORT?JFK
GENERAL CARGO RATE?.2775
```

 ANALYSIS OF SHIPPING IN SHIPPER OWNED ATA
 CONTAINERS VS• NORMAL PACKAGING
 FROM SFO TO JFK
 USING E CONTAINER
 | GROSS COST OF SHIPMENT OF 130 LBS | S | 36.67 |
| :--- | :--- | ---: |
| PLUS CONTAINER COST | 5.44 | |
| NET COST OF SHIPMENT | | 41.51 |
| | | |
| COST IF NET CONTENTS ARE SHIPPED LOOSE | 34.84 | |
| COST IF SHIPPED IN NON-ATA CONTAINER | | |
| OF EQUAL TARE WEIGHT | | 39.05 |

SAMPLE ATA PROBLEM No. 2

```
MORE?Y
IATA OR ATA?A
CONTAINER NUMBER?E
ACTUAL .TARE WEIGHT OF CONTAINER?18
HOW MANY COMMODITIES??
WGT 1=?100
WGT 2=?82
CONTAINER COST?5.44
RATE 1=?.234
RATE 2=?.2854
ORIGIN AIRPORT?SFO
DESTINATION AIRPORT?JFK
GENERAL CARGO RATE?.2775
```

ANALYSIS OF SHIPPING IN SHIPPER OWNED ATA
CONTAINERS VS. NORMAL PACKAGING
FROM SFO TO JFK
USING E CONTAINER

GROSS COST OF SHIPMENT OF 164 LBS	S	45.51
PLUS CONTAINER COST	5.44	
NET COST OF SHIPMENT		50.95
COST IF NET CONTENTS ARE SHIPPED LOOSE	46.80	
COST IF SHIPPED IN NON-ATA CONTAINER		
OF EQUAL TARE WEIGHT		51.01

SAMPLE ATA PROBLEM No. 3
MORE?Y
IATA OR ATA?ATA
CONTAINER NUMBER?OD
data not on file.
IATA OR ATA?ATA
CONTAINER. NUMBER?日D
ACTUAL. TARE WEIGHT OF CONTAINER?13
HOW MANY COMMODITIES?I
WGT $1=? 92$
CONTAINER COST? 4
RATE $1=? .2853$
ORIGIN AIRPORT?SFO
DESTINATION AIRPORT?JFK
general cargo rate?. 2775
ANALYSIS OF SHIPPING IN SHIPPER OWNED ATA
CONTAINERS VS NORMAL PACKAGING
FROM SFO TO JFK
USING OD
CONTAINER

MORE?Y
IATA OR ATA?A
CONTAINER NUMBER?QD
ACTUAL TARE WEIGHT OF CONTAINER? 13
HOW MANY COMMODITIES? I
WGT $1=? 187$
CONTAINER COST?4
RATE $1=? .2775$
ORIGIN AIRPORT?SFO
DESTINATION AIRPORT?JFK
GENERAL CARGO RATE?. 2775

```
    ANALYSIS OF SHIPPING IN SHIPPER OWNED ATA
                CONTAINERS VS. NORMAL PACKAGING
                    FROM SFO TO JFK
                            USING QD CONTAINER
GROSS COST OF SHIPMENT OF 169 LBS $ 46.90
PLUS CONTAINER COST
NET COST OF SHIPMENT
    4.00
    50.90
COST IF NET CONTENTS ARE SHIPPED LOOSE 51.89
COST IF SHIPPED IN NON-ATA CONTAINER
OF EQUAL TARE WEIGHT
\(55 \cdot 50\)
```

```
SAMPLE ATA PROBLEM No. }
    MORE?Y
    IATA OR ATA?A
    CONTAINER NUMBER?B
    ACTUAL TARE WEIGHT OF CONTAINER?200
    HOW MANY COMMODITIES?Z
    WGT 1=?2000
    WGT 2=?2000
    CONTAINER COST?SO
    USING THE MIXED SHIPMENT RULE (RULE 12,C.A.B.131),YOU MAY INPUT RATES
    EQUAL TO 4000 LBS FOR EACH COMMODITY IN THE CONTAINER.
    RATE 1=?.*.2035
    RATE 2=?.177
    ORIGIN AIRPORT?SFO
    DESTINATION AIRPORT?JFK
    DAYLIGHT OR REGULAR?REGULAR
    CONTAINER CHARGE?312
    RATE/LB FOR EXCESS ABOVE PIVOT?.137
```

 ANALYSIS OF SHIPPING IN SHIPPER OWNED ATA
 CONTAINER VS. SPECIFIC COMMODITY RATES
 FROM SFO TO JFK
 USING B CONTAINER

SAMPLE ATA PROBLEM No. 5

```
MORE?Y
IATA OR ATA?A
CONTAINER NUMBER?A-3
ACTUAL. TARE WEIGHT OF CONTAINER?S50
HOW MANY COMMODITIES?I
WGT 1=?10000
RATE 1=?.1635
ORIGIN AIRPORT?SFO
DESTINATION AIRPORT?JFK
DAYLIGHT OR REGULAR?REGULAR
CONTAINER CHARGE?608
RATE/LB FOR EXCESS ABOVE PIVOT?.137
```


SAMPLE ATA PROBLEM NO. 6

```
MORE?Y
IATA OR ATA?A
CONTAINER NUMBER?A-3
ACTUAL TARE WEIGHT OF CONTAINER?550
HOW MANY COMMODITIES?3
WGT 1=?5000
WGT 2=?5000
WGT 3=?2000
USING THE,MIXED SHIPMENT RULE (RULE 12,C.A.B.131),YOU MAY INPUT RATES
EQUAL TO 1200\emptyset LBS FOR EACH COMMODITY IN THE CONTAINER.
RATE 1=?.1635
RATE 2=?.208
RATE 3=?.223
ORIGIN AIRPORT?SFO
DESTINATION AIRPORT?JFK
DAYLIGHT OR REGULAR?REGULAR
CONTAINER CHARGE?608
RATE/LB FOR EXCESS ABOVE PIVOT?.137
```

ANALYSIS OF SHIPPING IN AIRLINE OWNED ATA
CONTAINER VS. SPECIFIC COMMODITY RATES
FROM SFO TO JFK
USING A-3 CONTAINER

MINIMUM CHARGEABLE WEIGHT OF	3200	LBS	S
PLUS EXCESS OF	8800	LBS	1206.60
TOTAL CONTAINER COST			$\$ 1813.60$
MIXED SHIPMENT RULE COST		$\$ 183.50$	
SAVINGS OR LOSS $(-)$		$\$ 369.90$	

```
SAMPLE ATA PROBLEM NO. }
```

```
MORE?Y
IATA OR ATA?A
CONTAINER NUMBER?LD-7
MINImUM CHARGEABLE NET WEIGHT?3100
ACTUAL TARE WEIGHT OF CONTAINER?550
HOW MANY COMMODITIES??
WGT 1=?4000
WGT 2=?3500
USING THE MIXED SHIPMENT RULE (RULE 12,C.A.B.131),YOU MAY INPUT RATES
EQUAL TO 7500 LBS FOR EACH COMMODITY IN THE CONTAINER.
RATE 1=?.117
RATE 2=?.1355
ORIGIN AIRPORT?SFO
DESTINATION AIRPORT?JFK
DAYLIGHT OR REGULAR?REGULAR
CONTAINER CHARGE?595
RATE/LB FOR EXCESS ABOVE PIVOT?.137
```

ANALYSIS OF SHIPPING IN AIRLINE OWNED ATA
CONTAINER VS. SPECIFIC COMMODITY RATES
FROM SFO TO JFK
USING LD-7 CONTAINER

MORE?N

DONE

сомтнівитео рвоввам BASIC

SPECIAL
 CONSIDERATIONS:

INZOUT is restricted as written, to 3 industries. To increase this number, change dimensions in lines 9200,9205 and 9210. A,B, and X must be $M \times M$. T, V, and C must be M, and D must be $2 M+1$. Also change the output routine.

RUN
9960
DATA $25,12,8,75$
9961
9902
9963 DATA $15,75,65,99$
9999
ENTA $82,85,88,34$
RUN
INZOUT

INZOUT

* INPUT/OUTPUT ANALYSIS *

INITIAL INPUT/OUTPUT TABLE:

FROM SECTOR	TO SECTOR			CONSUMERS TOTAL	
	AGRI CULTURE	INDUSTRY	SERVICES		
AGRI CULTURE	25	12	8	75	120
INDUSTRY	15	75	65	99	254
SERVI CES	10	51	88	34	183
SECTOR INCOME	70	116	22	298	
TOTAL	120	254	183		557

REVISED INPUT/OUTPUT TABLE NUMBER 1 :

FROM SECTOR	TO SECTOR				
			CONSUMERS TOTAL		
	AGRI CULTURE	INDUSTRY	SERVI CES		
AGRI CUL TURE	26.7413	11.3027	8.31437	82	128.358
INDUSTRY	16.0448	70.642	67.5542	85	239.241
SERVI CES	10.6965	48.0366	91.458	40	190.191
SECTOR INCOME	74.8757	109.26	22.8645	207	
TOTAL	128.358	239.241	190.191		557.791

DONE

TITLE:

DESCRIPTION:

INSTRUCTIONS:

NATIONAL INCOME \& PRODUCT ACCOUNTS

INACNT produces a simple set of income and product accounts, dependent upon a number of input gross national product conditions.

In order to use INACNT, the user must know six statistics. They will be requested by input statements. They are:
$A=$ the fraction of GNP saved by business
$B=$ the fraction of GNP paid in tax by business
$C=$ the fraction of personal income paid in personal taxes
$D=$ the fraction of personal after-tax income spent on consumption
(above 4 values must be entered in decimal notation)
I4 = dollars of GNP eventually invested
G3 = dollars for GNP spent by government
(above 2 values must be entered in exponential form. Ex.: $\$ 50$ billion $=$ $5 \mathrm{E}+10$.)

RUN

title:
DESCRIPTION:

INSTRUCTIONS:

SPECIAL
CONSIDERATIONS:

Income statement

INSTMT prints a simple income statement, and allows a sensitivity check on various input.

Self-explanatory.
The following data must be entered before running INSTMT. These are all
base year (1971) data entries:
9537 DATA amount of sales
9543 DATA cost of goods sold
9549 DATA cost of advertising
9555 DATA administrative expense
9561 DATA tax loss carry forward
All other DATA-statements remain undisturbed.

RUN

RUN

INSTMT

* INCOME STATEMENT *

THIS PROGRAM WILL PRINT A SIMPLE INCOME STATEMENT, AND WILL ALLOW A SENSITIVITY ANALYSIS ON VARIOUS INPUT.

```
DO YOU WISH TO USE AVERAGE OR INDIVIDUAL GROWTH RATES? (ENTER 'AVG'
OR 'IND')?AVG
PLEASE ENTER THE FOLLOWING VALUES IN PERCENT:
PERCENT GROWTH IN SALES ?10
PERCENT GROWTH IN COST OF GOODS SOLD?6
PERCENT GROWTH IN ADVERTISING ?5
PERCENT GROWTH IN ADMIN & GENERAL EX?8
```


		INCOME STATEMENT S IN THOUSANDS			
YEARS	71	72	73	74	75
SALES	1000	1100	1210	1331	1464.1
-CG SOLD	500	530	561.8	595.51	631.24
- ADV	150	157.5	165.38	173.64	182.33
- ADM\&GEN	100	108	116.64	125.97	136.05
=OPER INC	250	304.5	366.19	435.88	514.49
*TAX L.C.F.	50	0	0	0	0
- TAXES	89.5	139.66	169.27	202.72	240.45
=NET INCOME	160.5	164.84	196.92	233.16	274.03

PLEASE ENTER ONE OF THE FOLLOWING FOUR VALUES: 1) 'GROW' TO HAVE THE GROWTH PERCENTAGES LISTED; 2) 'PERCENT' TO HAVE THE PERCENTAGE RELATIONSHIPS OF THE ITEMS TO SALES LISTED 3 3) 'YES' TO BE GIVEN THE OPTION TO CHANGE THE ORIGINAL INPUT PERCENTAGES AND RETRY; OR 4) 'NO' TO TERMINATE?PERCENT

PLEASE ENTER ONE OF THE FOLLOWING FOUR VALUES: 1) 'GROW' TO HAVE THE GROWTH PERCENTAGES LISTED; 2) 'PERCENT' TO HAVE THE PERCENTAGE RELATIONSHIPS OF THE ITEMS TO SALES LISTED; 3) 'YES' TO BE GIVEN THE OPTION TO CHANGE THE ORIGINAL INPUT PERCENTAGES AND RETRY: OR 4) 'NO' TO TERMINATE?YES

PLEASE ENTER THE FOLLOWING FOUR PARAMETERS A LINE AT A TIME.
1)THE FACTOR YOU WISH TO ALTER: 'SAL' FOR SALES,'ADV' FOR ADVERTISING, 'CGS', OR 'ADM'.
2)ON THE NEXT LINE, THE YEAR YOU WANT THE NEW PERCENTAGE TO OCCUR: 72,73,74,75. ***NOTE: THE INITIAL PERCENTAGE WILL APPLY TO ALL OTHER YEARS UNLESS SPECIFICALLY CHANGED 3) THE NEW PERCENTAGE.
4) ON THE FOURTH LINE, "YES' OR 'NO', INDICATING WHETHER YOU WISH TO CHANGE ANY OTHER FACTOR NOW.

DONE
TITLE:
DESCRIPTION:
ACKNOWLEDGEMENTS:
This program calculates annual lease income from (U) units at sales pri
(S) leased at lease rate (R) for lease period (L). It also sums the to
income by year over (Y) years of lease operation.
Richard T. Barck
Varian Data Machines
Inputs are defined by program at RUN time.

RUN

TITLE:	SIMPLE LOAN ANALYSIS LENDER calculates the monthly interest charges and outstanding balance of a loan that must be paid off in one year or less.
INSTRUCTIONS:	
Self-explanatory.	
The following input values will be requested:	
$B=$ amount of loan	
$M=$ monthly payment	
$R=$ interest rate	

SPECIAL

 CONSIDERATIONS:Loan must be payable within one year.

RUN

GET-SLENDER
RUN
LENDER

* SIMPLE LOAN ANALYSIS *

THIS PROGRAM CALCULATES THE MONTHLY INTEREST CHARGES AND OUTSTANDING BALANCE OF A LOAN THAT MUST BE PAID OFF IN ONE YEAR OR LESS.

WHAT IS THE AMOUNT OF THE LOAN? $100 \emptyset$

WHAT IS THE MONTHLY PAYMENT?9ø
WHAT IS THE INTEREST RATE?7.5

MONTHS TO PAYOFF LOAN: 12
TOTAL INTEREST CHARGES: 39.74

DO YOU HAVE ANOTHER CASE?YES
WHAT IS THE AMOUNT OF THE LOAN? 12000
WHAT IS THE MONTHLY PAYMENT?100日
WHAT IS THE INTEREST RATE?8.5

LOAN CANNOT BE PAID OFF IN LESS THAN 1 YEAR. INCREASE YOUR MONTHLY PAYMENT.

DO YOU HAVE ANOTHER CASE?NO

DONE
title:
DESCRIPTION:

INSTRUCTIONS:

SPECIAL

 CONSIDERATIONS:LEASE ANALYSIS AS DETERMINED BY THE LESSEE

LESSEE compares the advantages of leasing vs. purchasing equipment. Investment tax credit is considered and a sensitivity check is available, as is a cashflow diagram.

Values are required for the following variables, beginning in line 9900:

1. $P=$ The purchase price of the equipment
2. $T=$ The lessee's income tax rate
3. $\mathrm{R} 1=$ The interest rate on a loan, compounded semi-annually
4. R2 $=$ The opportunity rate that can be earned, after taxes, on new investments, compounded semi-annually
5. $M=$ The monthly rent, payable in advance
6. $L=$ The depreciable life in years
7. $\mathrm{S} 1=$ The salvage value for tax purposes
8. $\mathrm{S} 2=$ Expected actual salvage value, must be less than P
9. $\mathrm{E} 1=$ Expenses of making the lease arrangement
10. E2 = Annual saving in expenses due to the lease
11. $Y=$ The length of the lease in years
12. $J=$ The length of the basic rental period
13. $Z=\emptyset$ if no investment tax credit is taken, otherwise 1
14. $X=$ The number of the variable for which a sensitivity analysis is to be done; \emptyset if no analysis; 1 if on purchase price; 2 if on income tax rate, etc.
15. $X_{1}=$ The lowest value for the variable specified in 14
16. $X_{2}=$ The highest value of the variable specified in 14

Do not remove the string data in lines 9990-9994.

This program uses the Bower-Williamson Method of Lease Analysis.

\qquad
SENSITIVITY ANALYSIS ON INTEREST RATE

INTEREST RATE	NET ADVANTAGE OF LEASE
.12	-1475.72
.1125	-2219.66
.105	-3014.65
.0975	-3863.75
.09	-4769.57
.0825	-5736.89
.075	-6767.32
.0675	-7866.06
.06	-9036.63
.0525	-10284.3
.045	-11611.7

TITLE:	LOAN AMORTIZATION $\quad 3$LOAN 10226
DESCRIPTION:	This program amortizes a loan on a monthly basis and prints out a monthly and yearly report. The yearly report shows interest accumulated, payments to the principal, total paid and remaining balance. When the balance falls below the maximum allowable monthly payment (set by the user), the final payment is computed.
INSTRUCTIONS:	Follow the instructions given by the program. After each monthly payment is entered, the program prints out the amount of the monthly payment attributed to interest, the cumulative interest, amount attributed to the principal, cumulative principal payments, and principal balance due on the loan. Computations continue until the end of the year when a yearly report is printed out.

RUN

RUN

LOAN
INPUT STARTING MONTH (FEB=2)?6
MAXIMUM ALLOWABLE PAYMENT/MONTH? 300
after the first ? input principal and interest rate
AfTER EACH SUCCEEDING ? InPUT THE MONTHLY PAYMENT

Interest	Cum interest	PAY TO PRINC	CUM PRINC PAY	BALANCE
? 5505				
??.845				
? 150				
20.6437	20.6437	129.356	129.356	5375.64
? 250				
20.1587	40.8024	229.841	359.198	5145.8
? 25				
19.2968	60.0992	5.70324	364.901	5140.1
? 0				
19.2754	79.3745	\square	364.981	5159.37
$? 19$				
19.3477	98.7222	\square	364.901	5159.72
? 300				
19.349	118.871	280.651	645.552	4879.07
? 4000				
?-23				
? 360				
18.2965	136.368	281.703	927.255	4597.37
YEAR	TOT PAY MADE 1044	$\begin{aligned} & \text { YEAR CUM INT } \\ & 136.368 \end{aligned}$	YEAR PRINC PAY 927.255	BALANCE 4597.37
? 100				
17.2401	153.608	82.7599	1010.02	4514.61
343				
16.9298	170.538	26.8702	1036.89	4488.54
?99.5				
16.832	187.37	82.668	1118.75	4405.87
? 42				
16.522	203.892	25.478	1144.23	4380.39
? 76				
16.4265	220.318	59.5735	1203.81	4320.82
? 54				
16.2031	236.521	37.7969	1241.6	4283.82
? 18				
16.0613	252.583	1.93867	1243.54	4281.08
? 21				
16.0541	268.637	4.94594	1248.49	4276.14
? 0				
16.0355	284.672	\varnothing	1248.49	4292.17
? 300				
16.0956	306.768	283.964	1532.39	4008.27
? 299.9				
15.031	315.799	284.869	1817.26	3723.4
$? 176$				
13.9627	329.762	162.037	1979.3	3561.36
$\begin{gathered} \text { YEAR } \\ 2 \end{gathered}$	$\begin{aligned} & \text { TOT PAY MADE } \\ & 1229.4 \end{aligned}$	$\begin{aligned} & \text { YEAR CUM INT } \\ & 193.394 \end{aligned}$	YEAR PRINC PAY 1052.04	$\begin{aligned} & \text { BALANCE } \\ & 3561.36 \end{aligned}$

TITLE:	SECURITIES PORTFOLIO USING MARKOWITZ MODEL
DESCRIPTION:	MARKOW computes the efficient securities portfolios according to the full covariance matrix Markowitz model.
INSTRUCTIONS:	Input data should be entered beginning in line 9900, in the following order: 1. the number of securities 2. the lending rate (decimal notation) 3. the borrowing rate (decimal notation) 4. the expected returns for each security 5. the full covariance matrix (this should be listed row by row. Note that it is a square matrix $n \times n$, where $n=\#$ of securities).
SPECIAL CONSIDERATIONS:	If a storage problem should result, delete lines 9000-9030 and run. MARKOW is restricted to 15 securities. To increase this number, change the DIM-statement 9050, and the equivalent values in lines 9051-9054: $\begin{aligned} & G 9>2 N+2 \\ & E 9>N+2 \\ & A 9, R 9, H 9>N \end{aligned}$
ACKNOWLEDGEMENTS:	Francois Carlhian Babson College

RUN

GET－SMARKOW LIS－990		
MARKOW		
9900	DATA	9
9901	DATA	．045．．065
9910	DATA	2．84の22F－02．．110日11．4．77284E－03．6．33756E－02．6．14846E－02．3．05807E－02
9920	OATA	－7．12097E－＠3，－5．32422E－03，．260657
9930	RFM	XAMPLF COVARIANCE MATRIX FOLLOWS：
9950	DATA	$2.88445 \mathrm{~F}-02.9 .04535 E-03.1 .31019 E-02.1 .70099 E-02$
9951	nata	1.57 ¢15E－ด2．1．85585F－02．2．78296F－02．3．10865F－02
9052	DATA	$1.14316 \mathrm{~F}-02.9 .04635 \mathrm{E}-03.6 .75625 \mathrm{~F}-03.4 .64437 \mathrm{E}-04$
9953	DATA	1.37 Q25F－02．8．9日月57E－03．5．1941E－03．4．64437E－（14
9954	DATA	9．64282E－03．4．30107E－04．2．05413E－03．．010148
9055	DATA	$1.55908 \mathrm{E}-02.9 .31176 \mathrm{E}-03.4 .03761 \mathrm{~F}-03.1 .78099 \mathrm{E}-02$
9956	DATA	1．37日25F－02．4．30107E－04．2．86772F－02．1．55314E－02
9957	DATA	$1.14319 \mathrm{E}-02.1 .28415 \mathrm{E}-02.2 .95581 \mathrm{~F}-02,-4.5765 \mathrm{E}-03$
9958	DATA	1.57 日15E－02．8．90057E－83，2．05413F－03．1．55314F－02
9959	DATA	1．88851E－02．4．27989E－03．9．07786E－03．2．20021E－ø2
9960	DATA	1．85585F－02．．999266，5．1941E－03．．010148
9961	DATA	$1.14319 \mathrm{E}-$ ด2．4．27909E－03．1．63099E－02．．021356
9962	DATA	$1.93458 \mathrm{E}-02 .-5.6284 \mathrm{E}-03.2 .78296 \mathrm{~F}-02.6 .43849 \mathrm{E}-03$
9963	DATA	$1.55908 \mathrm{E}-02.1 .28415 \mathrm{E}-02.9 .07786 \mathrm{E}-03 . .021356$
9964	DATA	3．0416大E－の2．2．70716E－02．2．8313E－03．3．10865E－02
9965	DATA	$1.49714 \mathrm{E}-02.9 .31176 \mathrm{E}-03.2 .95581 \mathrm{E}-02.2 .20021 \mathrm{E}-02$
9966	DATA	． $193458,2.70716 \mathrm{~F}-02,4.94682 \mathrm{~F}-82.8 .28133 \mathrm{E}-83$
9967	DATA	1．14316F－02，9．78117F－04，4．03761F－03，－4．5765E－03
9968	ПATA	1．99266E－02，－5．68284F－03．2．8313F－03，8．28133F－03
9969	DATA	6．43849E－03．1．49714E－02．9．78117E－04．1．31019E－a2
9070	nata	4．86656E－02
9999	END	

RUN
MARKOW
＊SECURITIES PORTFOLIOS USING MARKOW CHAINS＊

AS INPUT WE HAVE：	9	SECURITIES	
	4.5	PERCENT AS THE LENDING RATE	
	6.5	PERCENT AS THE BORROWING RATE	

＊＊

PORTFOLIO NUMBER 1

EXP RETURN：． 266657 STD DEV：．217214 ASS INT：． 113302
SLOPE OF THE E－V CURVE IS：．640382

STOCK NO	PERCENT	R	H
9	100	1	0

PORTFOLIO NUMBER 2
EXP RETURN： 13959
SLOPE OF THE E－V CURVE IS：－6．98121E－O3

STOCK NO	PERCENT	R	H
2	80.3653	.794987	-1.24143
9	19.6347	.295013	1.24143

DONE

CONTRIBUTED PROGRAM BASC

TITLE: \quad\begin{tabular}{l}
COMPARE AND EVALUATE UP TO 1000 MORTGAGE PAYMENT

PLANS SIMULTANEOUSLY

Permits the user to easily compare and evaluate up to 1000 mortgage payment
plans simultaneously.
The program computes monthly mortgage payments for various principal amounts,
at different interest rates, over varying periods. Sample input:
Enter the amounts? 22000, 24000
Enter the rates (percent)? 7.5
Enter the years? 20, 25

From the above input, 4 mortgage payment plans will be calculated and
printed with supplementary comparison information.

Babson College
Babson Park, Massachusetts

RUN 9100 for instructions.
\end{tabular}

```
RUN
    'SMCOST' PERMITS THE USER TO EASILY COMPARE AND EVALUATE
UP TO 1000 MORTGAGE PAYMENT PLANS SIMULTANEOUSLY.
    THE PROGRAM COMPUTES MONTHLY MORTGAGE PAYMENTS FOR
VARIOUS PRINCIPAL AMOUNTS, AT DIFFERENT INTEREST RATESS
OVER VARYING PERIODS.
        ENTER THE AMOUNTS? 22000,24000
        ENTER THE RATES (PERCENT)? 7.5
        ENTER THE YEARS? 20,25
FROM THE ABOVE INPUT,4 MORTGAGE PAYMENT PLANS WILL BE
CALCULATED AND PRINTED WITH SUPPLEMENTARY COMPARISON
INFORMATION.
```

ENTER THE AMOUNTS?22000.24000
ENTER THE RATES(PERCENT)?7.5
ENTER THE YEARS?20.25

	NUMBER			DECREASE	INCREASE
INTEREST	OF	MONTHLY	TOTAL	MONTHLY	TOTAL
RATE	YEARS	PAYMENT	INTEREST	PAYMENT	INTEREST

AMOUNT $=22000$

7.5					
7.5	20	177.23	20535.6		
7	25	162.58	26773.7	14.65	6238.07

AMOUNT $=24000$

7.5	20	193.34	22402.5		15.98
7.5	25	177.36	29207.7		

DONE

TITLE:

DESCRIPTION:

SPECIAL CONSIDERATIIONS:

MAKE-BUY DECISION ANALYSIS 36093

MKBUY calculates the present value of the cost saving incurred by making a product as opposed to buying it. It also prints a cash flow summary for each method for each year involved.

The following values are required as input:

1. the cost to buy one item FOB
2. the cost to manufacture one item including direct materials and labor but not overhead
3. the initial investment
4. the life of the investment
5. the salvage value of the investment
6. the annual fixed costs of the investment (supervision and maintenance)
7. corporate tax rate in percent
8. local tax rate on extra investment
9. cost of capital
10. estimate of yearly demand for the item under consideration.

Life of the investment must be less than 25 years.

RUN

```
GET - $MKBUY
RUN
MKBUY
    * MAKE-BUY ANALYSIS *
    THIS PROGRAM CALCULATES THE PRESENT VALIJE OF THE COST
SAVING INCURRED BY MAKING A PRODUCT AS OPPOSED TO BUYING IT.
FIRST WE WOULD LIKE TO ASK YOU A FEW QUESTIONS....
    WHAT IS THE NAME OF YOUR COMPANY?HEWLETT-PACKARD CO.
    WHAT IS THE NAME OF THE COMPONENT YOU ARE CONSIDERING
MAKING OR BUYING?.2 PENCIL
*** ENTER ALL COSTS IN DOLLARS ***
    1. WHAT IS THE COST TO BUY A . 2 PENCIL FOB YOUR
    PLANT?.05
```

 2. WHAT IS THE COST TO MANUFACTURE A •2 PENCIL IN YOUR PLANT
 INCLUDING DIRECT MATERIALS AND LABOR BUT NOT OVERHEAD?・のA
3. WHAT IS THE INITIAL INVESTMENT (COST OF THE EXTRA MACHINERY
THAT WOULD BE NEEDED TO MANUFACTURE •2 PENCILS)?L-10000
4. WHAT IS THE LIFE OF THE INVESTMENT IN YEARS?5
5. WHAT IS THE SALVAGE VALUE OF THIS INVESTMENT? 0
CNOTE: SUM-OF-THE-YEARS-DIGITS METHOD WILL BE USED TO DEPRECIATE
THE INVESTMENT.
6. WHAT ARE THE ANNUAL FIXED COSTS CSUCH AS SUPERVISION AND
MAINTENANCE)INVOLVED IN YOUR MAKING •2 PENCILS?2500
7. WHAT IS YOUR CORPORATE TAX RATE IN PERCENT??25
8. WHAT IS THE LOCAL TAX RATE ON THE EXTRA INVESTMENT IN DOLLARS
PER THOUSAND?55
9. WHAT IS YOUR COST OF CAPITAL IN PERCENT??12
10. WHAT IS YOUR ESTIMATE OF THE YEARLY DEMAND FOR . 2 PENCILS
$? 10000$
**
THE PRESENT VALUE OF THE COST TO MAKE IS 15208.2
THE PRESENT VALUE OF THE COST TO BUY IS 1206.96
HEWLETT-PACKARD CO. SHOULD BUY . 2 PENCILS AT A SAVINGS OF 14001.2
DOLLARS.
**** THE FLOWS ****

	If BUY**********			IF MAKE*********		***NET***
YEAR	EXPENSE	CASH	FLOW	EXPENSE	CASH FLOW	CASH FLOW
1	\emptyset	0		0	9533.33	-9533.33
2	500	375		6600	1616.67	-1241.67
3	500	375		5786.67	1673.33	-1298.33
4	500	375		5010	1757.5	-1382.5
5	500	375		4270	1869.17	-1494.17
6	500	375		3566.67	2008.33	-1633.33

```
WOULD YOU LIKE TO SEE THE EFFECT OF CHANGING A VARIABLE?
(YES OR NO)?YES
WHAT IS THE NUMBER OF THE QUESTION TO WHICH YOU WOULD LIKE
TO CHANGE YOUR ANSWER?1\emptyset
WHAT IS THE NEW VALUE?50000
**********************************************************
THE PRESENT VALUE OF THE COST TO MAKE IS 19070.5
THE PRESENT VALUE OF THE COST TO BUY IS 6034.78
HEWLETT-PACKARD CO. SHOULD BUY .2 PENCILS AT A SAVINGS OF 13035.7
    DOLLARS.
MORE CHANGES?YES
SAME QUESTION?NO
WHAT IS THE NUMBER OF THE QUESTION TO WHICH YOU WOULD LIKE
TO CHANGE YOUR ANSWER?3
WHAT IS THE NEW VALUE?1000
#*********************************************************
THE PRESENT VALUE OF THE COST TO MAKE IS 20263.4
THE PRESENT VALUE OF THE COST TO BUY IS 6034.78
HEWLETT-PACKARD CO. SHOULD BUY •2 PENCILS AT A SAVINGS OF 14228.6
    DOLLARS.
MORE CHANGES?NO
*************************************************************
DONE
```

| TITLE: |
| :--- | :--- |
| DESCRIPTION: |
| INSTRUCTIONS: | | MORTGAGE ANALYSIS |
| :--- |
| MORGAG will find the missing parameter of the following four, given the |
| remaining three: the rate charged on a mortgage, the life, the amount |
| borrowed, and the monthly payment. It will also print a summary, either |
| monthly or yearly, indicating the amount of interest, amount of payment, |
| and outstanding balance for each period. |

MORGAG, page 2

RUN

RUN

* MORTGAGE ANALYSIS *

IF YOU WANT TO FIND:
THE RATE, TYPE * ${ }^{*}$
THE LIFE, TYPE ' 2 * THE AMOUNT BORROWED, TYPE * 3° THE MONTHLY PAYMENT, TYPE * 4^{*}
WHICH DO YOU WANT? 1
MORTGAGE LIFE: YEARS, MONTHS?3,0
AMOUNT TO BE BORROWED?30日G

AMOUNT OF ONE MONTHLY PAYMENT?94.01
SETTLEMENT DATE (MO,YEAR)?10,1971

TABLE LENGTH (YEARS)? 4
ANNUAL OR MONTHLY SUMMMARY(1ORØ)?1
$* *$

MORTGAGE TERMS
NOMINAL ANNUAL RATE $=8.00051 \quad \%$

LIFE OF MORTGAGE	$=3 \quad$ YEARS,
AMOUNT BORROWED	$=\$ 3000$
MONTHLY PAYMENT	$=\$ 94.01$

\qquad

MORTGAGE TABLE

Y EAR	INTEREST	PRINCIPAL REPAYMENT	ENDING PRINCIPAL OUTSTANDING
1971	39.51	148.51	2851.49
1972	194.39	933.73	1917.76
1973	116.89	1011.23	906.531
1974	33.57	906.531	0

DONE
RUN

* MORTGAGE ANALYSIS *

IF YOU WANT TO FIND:
THE RATE, TYPE ${ }^{\circ} 1^{\circ}$
THE LIFE, TYPE * 2 "
THE AMOUNT BORROWED, TYPE ${ }^{\circ} 3^{\circ}$
THE MONTHLY PAYMENT, TYPE * $\mathbf{4}^{*}$
WHICH DO YOU WANT?2
NOMINAL ANNUAL RATE IN PERCENT?8
AMOUNT TO BE BORROWED?3000

AMOUNT OF ONE MONTHLY PAYMENT?94.®1

SETTLEMENT DATE (MO,YEAR)?10,1971

TABLE LENGTH (YEARS)?4
ANNUAL OR MONTHLY SUMMMARY(1OR0)?1

MORTGAGE TERMS
NOMINAL ANNUAL RATE $=8.00051 \quad \%$
LIFE OF MORTGAGE $=3 \quad$ YEARS, $0 \quad$ MONTHS
AMOUNT BORROWED $=\$ 3000$
MONTHLY PAYMENT $=\$ 94.01$

DONE

RUN

```
GET-REP
RUN
REP
---------------DATA CENTER INVENTORY--.-------------------
    REPORT GENERATOR PROGRAM
PLEASE SELECT A REPORT OPTION
    TO LIST FOR 1 MODEL *TYPE (1)----------
    TO LIST FOR 1 STATUS TYPE(2)-------.---
    TO LIST FOR 1 OFFICE TYPE (3)------------
    TO LIST BY DATE RECEIVED TYPE (4)-------
    TO LIST FOR 1 SALES DISCIPLINE TYPE (5)-
-----------------?!
MODEL (1 TO 10 CHARACTERS)----------------.-2210日A
STANDARD LIST IS BY SERIAL * TO CHANGE THIS TYPE (NO)
OTHERWISE (YES)?YES
FOR SHORT FORM PRINTOUT TYPE (1) OTHERWISE (0)--?0
```

ITEM	MODEL	SERIAL	*	STAT	TUS	LOC	PRICE	RCDT	SHDT	MFDV
16	2100 A		2		SOLD	ATL	10750	02/10/71	NA	22
**SALES	DISCIPLINE	DP	NEW							
17	2100 A		3	FOR	SALE	DAL	10750	$03 / 10 / 71$	NA	22
**SALES	DISCIPLINE	SYS	NEW							
18	2100 A		4		ENTED	NOLA	10750	$04 / 10 / 71$	NA	22
**SALES	DISCIPLINE	DP	U S	STEEL						
15	21001		9	FOR	SALE	ATL	10750	$11 / 10 / 71$	NA	22
**SALES	DISCIPLINE	DP	NEW							

DO YOU WANT ANOTHER MODEL (YES OR NO)?YES

STANDARD LIST IS BY SERIAL * TO CHANGE THIS TYPE (NO)
OTHERWISE (YES)?YES
FOR SHORT FORM PRINTOUT TYPE (1) OTHERWISE (®)--? 1

I TEM	*	MODEL	SERIAL	STATUS	LOC	PRICE	RCDT	SHDT	MFDV
16		2100 A	2	SOLD	ATL	10750	02/10/71	NA	22
17		2100 A	3	FOR SALE	DAL	10750	63/10/71	NA	22
18		2100 A	4	RENTED	NOLA	10750	04/10/71	NA	22
15		2100 A	9	FOR SALE	ATL	10750	11/10/71	NA	22

```
DO YOU WANT ANOTHER MODEL (YES OR NO)?NO
    DO YOU WANT ANOTHER REPORT (YES OR NO)---?YES
REPORT (1 TO 5)-------?2
```

```
STATUS DESIRED (USE ONE OF LIST)
FACT. LOAN
IN REPAIR
RENTED
SOLD
OBS
1 WK DEMO
2 WK DEMO
3 WK DEMO
FOR SALE
------------------?SOLD
STANDARD LIST IS FOR I MODEL,
    FOR ALL MODEL 'S TYPE 'ALL'--
    FOR 1 MODEL TY゙PE (1 TO 10 CHARACTERS)--
-------------?ALQ-L
FOR SHORT FORM PRINTOUT TYPE (1) OTHERWISE (0)--?1
```



```
DO YOU WANT ANOTHER STATUS (YES OR NO)---?YES-m-NO
    DO YOU WANT ANOTHER REPORT (YES OR NO)---?YES
REPORT (1 TO 5)-------?3
OFFICE NAME (USE STANDARD OFFICE CODE)---?DAL
STANDARD LIST IS FOR I MODEL*
    FOR ALL MODEL *'S TYPE 'ALL'--
    FOR 1 MODEL *TYPE (1 TO 10
-------------3ALL
FOR SHORT FORM PRINTOUT TYPE (1) OTHERWISE (0)--?!
```

ITEM	* MODEL	SERIAL	STATUS	LOC	PRICE	RCDT	SHDT	MFDV
14	12597A-Ø05	NSN	FOR SALE	DAL	600	21/67/71	NA	22
17	210日A	3	FOR SALE	DAL	10750	03/10/71	NA	22

```
DO YOU WANT ANOTHER OFFICE (OFFICE NAME OR NO)--?NO
    DO YOU WANT ANOTHER REPORT (YES OR NO)---?YEP
REPORT (1 TO 5)-------?4
STANDARD LIST IS FOR 1 MODEL
    TYPE MODEL (1 TO 10 CHARACTERS)--?2100A
FOR SHORT FORM PRINTOUT TYPE (1) OTHERWISE (Ø)--?!
```

| ITEM MODEL | SERIAL | STATUS | LOC PRICE | RCDT | SHDT | MFDV | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 16 | $210 \emptyset A$ | 2 | SOLD | ATL 10750 | $02 / 10 / 71$ | NA | 22 | |
| 17 | $2100 A$ | 3 | FOR SALE DAL | 10750 | $03 / 10 / 71$ | NA | 22 | |
| 18 | $2100 A$ | 4 | RENTED NOLA | 10750 | $04 / 10 / 71$ | NA | 22 | |
| 15 | $2100 A$ | 9 | FOR SALE | ATL | 10750 | $11 / 10 / 71$ | NA | 22 |

DO YOU WANT ANOTHER MODEL (YES OR NO)---?NO DO YOU WANT ANOTHER REPORT (YES OR NO)---?YES
REPORT (1 TO 5)------?
ENTER SALES DISCIPLINE (1 TO 8 CHARACTERS)---?SYS
STANDARD LIST IS FOR 1 MODEL,
FOR ALL MODEL ©'S TYPE 'ALL'--
FOR 1 MODEL TYPE (1 TO 10^{-}CHARACTERS)--

------------?ALL

FOR SHORT FORM PRINTOUT TYPE (1) OTHERWISE ($(0)-$-? 1

ITEM	- MODEL	SERIAL	STAT	US	LOC	PRICE	RCDT	SHDT	MFDV
14	12597A-065	NSN	FOR	Sale	DAL	600	21/87/71	NA	22
17	2100 A	3	FOR	Sale	DAL	10750	03/10/71	NA	22
19	2114 B	13		OBS	ORL	10500	03/63/78	NA	22
20	21148	13		OBS	ORL	10500	93/03/70	NA	22

DO YOU WANT ANOTHER SALES DISCIPLINE(YES OR NO)--TNO
DO YOU WANT ANOTHER REPORT (YES OR NO)---?NO
DONE

TITLE:	
DESCRIPTION:	
INSTRUCTIONS:	SALES COMMISSION REPORT Dependent upon a number of input conditions, SALES will print a monthly planning table for a salesman, wi th his base salary, incentive dollars, and prospective billing totals.
Self-explanatory note only: "INITIAL REVENUE" means the initial sales price of a unit item that this salesman sells. "BILLING" is total amount of sales for the salesman.	
SPECIAL	
CONSIDERATIONS:	
None	

RUN

GET-\$SALES
RUN
SALES

* SALES COMMISSION PLANNING *

ENTER THE BASE ANNUAL SALARY, COMMISSION \%, \& MONTHLY QUOTA?50日0, 20,10
ENTER EXPECTED NUMBER OF NEW ACCOUNTS PER MONTH? 1
ENTER EXPECTED INITIAL REVENUE \& RATE OF GROWTH?100,.10
WHAT IS THE BEGINNING MONTH OF THE ANALYSIS [1-12]?1
DO YOU WANT AN [ANNUAL] OR [MONTHLY] PRINTOUT?MONY-THLY

DONE

| TITLE: |
| :--- | :--- |
| DESCRIPTION: |
| ACSSTRUCTIONS: |
| This program calculates the amount of money that would accumulate after N |
| years at an annual interest rate. |

RUN
RUN
SAVING
this program calculates the amount of money that
WOULD ACCUMULATE AFTER N YEARS AT AN ANNUAL INTEREST RATE
VARIABLES ARE DENOTED AS FOLLOWS
N = PERIOD OF YEARS
R = ANNUAL INTEREST RATE
T = TIMES COMPOUNDED PER-YEAR
$P=$ INITIAL AMOUNT
D = AMOUNT ADDED AT THE BEGINNING OF EACH YEAR
NOTE* THAT P AND D ARE GIVEN IN DOLLARS
THAT N AND T MUST BE INTEGERS
that r is given as a percentage
WHAT ARE $P(\$), D(\$), N(I N T), T(I N T), R(\%)$
?1000,150,7,2,8
AFTER 7 YEARS, 1000 DOLLARS INVESTED AT 8 PERCENT COMPOUNDED 2 TIMES PER YEAR, WITH THE ADDITION OF 150 DOLLARS PER YEAR, YIELDS A TOTAL OF 2926.67 DOLLARS.

WRITE YES(1) TO CONTINUE OR NO (2) ?2

DONE

CONTRIBUTED PROGRAM BDAB

TITLE:

DESCRIPTION:

INSTRUCTIONS:

STOCK MERGER INCENTIVE PROGRAM

STKINC prints a table for stock incentive estimates, including prospective prices and gains, for the consolidated earnings of two companies considering merging.

STKINC requires the use of a data file. This file is used only while the program is running, and it is sufficient to open the file directly before running STKINC, and then to kill it immediately after the program completion. The OPEN statement should read:

$$
c^{2 \pi} \text { OPEN-STKFLE, } 25
$$

Input information required includes internal growth rates and current before-tax earnings for both companies, an estimated external growth rate after merging, a price/earnings ratio, the number of outstanding shares of stock, both common and qualified, after merging, and expected growth rate of the number of shares.

The program is presently initialized for a base year of 1969.
To update to base year γ, enter:

```
9445 PRINT TAB(24); Y;TAB(36); Y+1; TAB(48); Y+2; TAB(60);
9446 PRINT Y + 3
9680 PRINT TAB(24); Y + 4; TAB(36); Y + 5; TAB(48); Y + 6
9840 PRINT Y + X;
9910 LET Y9 = Y + 1
```

STKINC, page 2

RUN

GET-SSTKINC
CMPEN-STKFLE,25
RUN
STKINC

* STOCK INCENTIVE PROGRAM (MERGER) *

THIS PROGRAM WILL PRINT A TABLE FOR STOCK INCENTIVE ESTIMATES, INCLUDing prospective prices and gains, for a company considering merging.

WHAT IS YOUR PRICE/EARNING RATIO? (ANSWER MUST BE > 1)?50
WHAT IS YOUR INTERNAL GROWTH RATE?1』
WHAT IS YOUR COMPANY'S PRESENT BEFORE TAX EARNINGS?50000

WHAT IS THE INTERNAL GROWTH RATE OF THE COMPANY WITH WHICH YOU ARE CONSIDERING MERGING?12

WHAT IS THIS COMPANY'S PRESENT BEFORE TAX EARNINGS?65000

WHAT DO YOU EXPECT YOUR EXTERNAL GROWTH RATE TO BE AFTER MERGING? 15
WHAT DO YOU EXPECT THE TOTAL NUMBER OF OUTSTANDING SHARES TO BE AFTER MERGING?100000

What do you expect the annual percentage increase in the number of outSTANDING SHARES TO BE?S

NOW PLEASE ENTER AN EARNOUT RATE?20
PLEASE ENTER THE NUMBER OF OUTSTANDING 'QUALIFIED' SHARES YOU EXPECT
TO HAVE FOR EACH YEAR, AND THEIR PRICE:
1970 ? 1000.100
1971 ? 1200,110

$\begin{aligned} & 1972 \\ & 1973 \end{aligned}$?1400, 120				
	?1500,130				
1974 ? 1500.130					
1975	? 1500,130				
	EARNOUT	QUALIFIED	PURCHASE	PROJECTED	
YEAR	SHARES	SHARES	PRICE	PRICE STOCK	GAIN
1970	19813.6	1000	100	73.485	$1.42949 E+06$
1971	20965.4	1200	110	77.7816	3.13319E+06
1972	22182.4	1400	120	$82 \cdot 336$	5.13125E+06
1973	$23468 \cdot 1$	1500	130	87-164	7.46928E +06
1974		1500	130	92.2823	$1.02104 E+07$
1975		1500	130	97.7989	$1.33882 E+07$
**					
DONE					

STKRTN, page 2

RUN

GET-SSTKRTN
RUN
STKRTN

* STOCK RETURNS *

						AVERAGE RETURN	STANDARD DEVIATION	$\begin{aligned} & \text { COEFF. } \\ & \text { VARIATION } \end{aligned}$
FOR	ALL	1	YR	HOLDING	PERIODS:	-20221	7.40077E-02	. 365994
FOR	ALL	2	YR	HOLDING	PERIODS:	-209402	4.62019E-82	-220637
$\begin{gathered} \text { FOR } \\ 5.2 \end{gathered}$	$\begin{array}{r} \text { ALL } \\ 2484 \end{array}$	$\begin{aligned} & 3 \\ & E-02 \end{aligned}$	YR	HOLDING	PERIODS:	-223217	1-17153E-82	
$\begin{gathered} \text { FOR } \\ 3.4 \end{gathered}$	$\begin{array}{r} \text { ALL } \\ 4083 \end{array}$	$\frac{4}{1 E-02}$	YR	HOLDING	PERIODS:	-20978	7.14995E-03	
FOR	ALL	5	YR	HOLDING	PERIODS:	- 20248	0	0
FOR	ALL	POSS	18LE	HOLDING	PERIODS:	-209357	5.16289E-02	-246607

DONE

TITLE:	EXPONENTIAL SMOOTHING AS A STOCK GUIDE
DESCRIPTION:	STKSMO uses exponential smoothing on past price data to provide a guide for the timing of buy and sell orders of a given stock.

INSTRUCTIONS:

SPECIAL

 CONSIDERATIONS:STKSMO is designed to keep an internal record of the price history of a given stock. The first time it is used, the input data is smoothed exponentially to provide a list of price forecasts. At the completion of this first run the user is asked whether he will wish to use the results of this run at a future time. If he so chooses, he should copy the lines that are then provided, and re-save the program, perhaps under a new name for clarity. Then, the next time the program is run, the initial trends have already been determined, and any new data can be accepted, and acted upon more reliably. After this second and all subsequent runs, a message will be provided for each new period describing the buy or sell action which ought to be taken.

The data for the first run should simply be the actual price of the given stock for any N number of consecutive periods.

100 periods of data per run is the maximum. Otherwise alter the dimstatements in lines 9025 and 9030.

RUN

GET-SSTKSMO
RUN
STKSMO

* EXPONENTIAL SMOOTHING AS A STOCK GUIDE *

THIS PROGRAM USES EXPONENTIAL SMOOTHING OF PAST PRICE DATA TO PROVIDE A GUIDE FOR THE TIMING OF BUY AND SELL ORDERS.

TO ENTER THE DATA FOR THE STOCK YOU ARE CONSIDERING, TYPE THE DATA beginning in line 9900. NO MORE THAN 100 PERIODS MAY BE CONSIDERED.

THEN TYPE: '9035 LET $Q=1$ '
'RUN'
DONE
9900 DATA $100,102,104,105,106,106,107,108,109,110,111,112$
9035 LET $Q=1$
RUN
STKSMO

* EXPONENTIAL SMOOTHing AS A StOCK GUIDE * FOR HOW MANY PERIODS DID YOU ENTER DATA? 12

ENTER A SMOOTHING COEFFICIENT BETWEEN 0.1 AND 0.9?.75

PERIOD	ACTUAL	ESTIMATED	ESTIMATED

do you wish to use this program as a continuing aid for the timing of buy and sell decisions on this same stock at some future time?yes

```
WHAT IS THE NAME OF THIS STOCK?HEWLETT-PACKARD COMMON
WHAT TIME PERIOD HAVE YOU USED THUS FAR??(EX:MAY 1,1969 TO MAY 1,1970)
?JANUARY, 1968 TO DECEMBER, 1968
then enter the following Lines before signing off:
    -9035 LET Q=2.
    '9286 LET X(X9) = 111.667 *
    .9287 LET Y(Y9) = 1111.334 ,
    -9288 LET A = .75
    -9280 LET AS = 'HEWLETT-PACKARD COMMON. -
    `9281 LET BS ='JANUARY, 1968 TO DECEMBER, 1968' .
    'KILL-STKSMO'
    * save.
dONE
```

```
9035 LET Q=2
```

9035 LET Q=2
9286 LET X(X9) = 111.667
9286 LET X(X9) = 111.667
9287 LET Y(Y9) = 111.334
9287 LET Y(Y9) = 111.334
9288 LET A = . }7
9288 LET A = . }7
9280 LET AS = "HEWLETT-PACKARD COMMON"
9280 LET AS = "HEWLETT-PACKARD COMMON"
9281 LET BS = "JANUARY, 1968 TO DECEMBER ., 1968"
9281 LET BS = "JANUARY, 1968 TO DECEMBER ., 1968"
kILL-STKSMO
kILL-STKSMO
SAVE

```
SAVE
```


RUN

STKSMO

* EXPONENTIAL SMOOTHING AS A STOCK GUIDE *

THIS PROGRAM IS BEING USED TO PROVIDE A GUIDE TO THE TIMING OF BUY AND SELL ORDERS ON HEWLETT-PACKARD COMMON.

IT IS BASED UPON DATA FROM THE PERIOD: JANUARY, 1968 TO DECEMBER, 1968 .
FOR HOW MANY ADDITIONAL PERIODS FOLLOWING THE LAST MARKET DATA
SHOWN DO YOU WISH TO ENTER DATA?12
WHAT IS THE PRICE FOR PERIOD 1 ? 112
WHAT IS THE PRICE FOR PERIOD 2 ? 113
WHAT IS THE PRICE FOR PERIOD 3 ? 114
WHAT IS THE PRICE FOR PERIOD 4 ? 113
WHAT IS THE PRICE FOR PERIOD 5 ? 112
WHAT IS THE PRICE FOR PERIOD 6 ? 113
WHAT IS THE PRICE FOR PERIOD 7 ? 112
WHAT IS THE PRICE FOR PERIOD 8 ? 114
WHAT IS THE PRICE FOR PERIOD 9 ? 115

WHAT IS THE PRICE FOR PERIOD 10 ? 116
WHAT IS THE PRICE FOR PERIOD 11 ? 117

WHAT IS THE PRICE FOR PERIOD 12 ? 118

WHAT PERCENTAGE DIFFERENCE (EXPRESSED AS A DECIMAL) BETWEEN THE PREDICTED AND ACTUAL PRICE WOULD YOU LIKE TO USE AS A SCREENING RATE FOR THE BUY AND SELL ORDERS?.02

PERIOD	ACTUAL PRICE	ESTIMATED PRICE	$\begin{aligned} & \text { ESTIMATED } \\ & \text { GROWTH } \end{aligned}$	PREDICTED PRICE FOR NEXT PERIOD
1	112	112.062	. 437073	112.5
2	113	112.969	. 718597	113.687
3	114	113.98	. 89447	114.875
4	113	113.117	-. 160172	112.957
5	112	112.06	-.698502	111.361
6	113	112.898	- 223251	113.121
7	112	112.07	-. 407227	111.663
8	114	113.854	. 907425	114.761
9	115	114.985	1.04169	116.027
10	116	116.002	1.02663	117.028
11	117	117.002	1.0107	118.012
12	118	118.001	1.00365	119.004

IN PERIOD LESS THAN 2

IN PERIOD LESS THAN

IN PERIOD 3

 LESS THAN 2THE PREDICTED PRICE VARIES FROM THE ACTUAL PRICE BY PERCENT, AND NO BUY OR SELL ORDER IS INDICATED.

THE PREDICTED PRICE VARIES FROM THE ACTUAL PRICE BY PERCENT, AND NO BUY OR SELL ORDER IS INDICATED.

THE PREDICTED PRICE VARIES FROM THE ACTUAL PRICE BY PERCENT, AND NO BUY OR SELL ORDER IS INDICATED.

IN PERIOD 4 THE PREDICTED PRICE VARIES FROM THE ACTUAL PRICE BY LESS THAN 2 PERCENT, AND NO BUY OR SELL ORDER IS INDICATED.

IN PERIOD 5 THE PREDICTED PRICE VARIES FROM THE ACTUAL PRICE BY LESS THAN 2 PERCENT, AND NO BUY OR SELL ORDER IS INDICATED.

IN PERIOD 6 THE PREDICTED PRICE VARIES FROM THE ACTUAL PRICE BY LESS THAN 2 PERCENT, AND NO BUY OR SELL ORDER IS INDICATED.

THE PREDICTED PRICE VARIES FROM THE ACTUAL PRICE BY PERCENT, AND NO BUY OR SELL ORDER IS INDICATED.
IN PERIOD 8 THE PREDICTED PRICE VARIES FROM THE ACTUAL PRICE BY
LESS THAN 2 P PERCENT, AND NO BUY OR SELL ORDER IS INDICATED.
IN PERIOD 9
LESS THAN 2

CONTRIBUTED PROGRAM BASBC

TITLE:
 DESCRIPTION:

INSTRUCTIONS:

SPECIAL CONSIDERATIONS:

STOCK VALUE AND EVALUATION REPORT
STKVAL 36100

STKVAL calculates a stock's value as determined by its growth rate over a period of years, and determines whether it is advisable to purchase the stock or not.

It is assumed that at some point in the stock's life its earning's growth rate will approach 5 percent, a conservative estimate of the currently expected growth rate of our economy.
Before this long-term growth rate is reached, there will be a period of non-normal growth. This non-normal growth period may contain many shorter periods of differing growth rates. For each of these shorter periods, you will be asked to supply the ending year of the period, and the growth rate you expect for the stock during this period.
It is important to note that when you have reached the end of what you consider the non-normal period, you must enter . $\varnothing 5$ as the expected growth rate. Any year greater than the beginning year will suffice.
For initialization, note remark at line 9765.
The data item in line 9790 is the value of the first period under consideration. It is here initialized to the year 1969. By changing this value one can initialize the program to any year, or, if monthly or semi-annual periods are being considered, to any period ID number.

The program is limited to a 50 year life. To increase this life, change the dimensions in lines 9025 and 9030.

RUN

GET-SSTKVAL
RUN
STKVAL

* STOCK VALUE \& EVALUATION *
this program determines whether a certain stock ought to be invested IN, DEPENDING ON CERTAIN INPUT CONDITIONS. IT ALSO PROVIDES A LIST of the stock's value and price for each period.

What is the current market value of the stock under consideration?igø
WHAT IS THE STOCK'S CURRENT EARNINGS PER PERIOD?10
WHAT DO YOU EXPECT THE NORMALIZED EARNINGS FOR THE NEXT PERIOD TO BE?2』
WHAT IS THE CURRENT MARKET CAPITALIZATION RATE?. 12
AND WHAT IS THE PAYOUT RATIO?.33

NOW PLEASE ENTER THE ENDING YEAR AND the GROWTH RATE YOU EXPECT FOR EACH OF THE NON-NORMAL GROWTH PERIODS BEFORE THE STOCK SETTLES TO A STEADY 5\% RATE.
(REMEMBER THE LAST ENTRY MUST INDICATE THE ATTAINMENT OF THE 5\% RATE).

BEG INNING YEAR	$\begin{aligned} & \text { END ING } \\ & \text { YEAR } \end{aligned}$	$\begin{gathered} \text { G GROWTH } \\ \text { RATE } \end{gathered}$
1970	? 1970,	, 2.00
1971	? 1971,	, 1.75
1972	? 1972,	, 1.50
1973	? 1974,	, 1.25
1975	? 1975,	, 1.00
1976	? 1980,	. 50
1981	? 1985,	. 25
1986	? 1990,	. 10
1991	?1991,	. .05
1969	VALUES FOLLOW:	
PRICE	: \$	\$ 100
EARNING	GS : \$	510
P/E RAT	TIO	10

:	INTRINSIC VALUE $=114146$ 。			
:				
:	FROM THE INFORMATION YOU have supplied,			
:	AND Since the intrinsic value is exactuy			
:	127736. PERCENT ABOVE THE PRESENT PRICE			
:	I AM SURE THAT THIS STOCK SHOULD BE			
:	PURCHASED AT THIS TIME.			
:				

DO YOU WANT	A LiSt of values	IN FUTURE	YEARS PYES	
YEAR	EARNINGS	GROWTH	CAPITALIZER	value
		Rate		(BEGINNING
				OF YEAR)
1970	20	2	5707.28	114146.
1971	60	1.75	2130.61	127836.
1972	165	1.5	867.619	143157.
1973	412.5	1.25	388.561	160281.
1974	928.125	1.25	193.27	179379 -
1975	2088.28	1	96.0591	200598.
1976	4176.56	- 5	53.6281	223981.
1977	6264.84	. 5	39.8223	249481 -
1978	9397.27	. 5	29.514	277351.
1979	14095.9	. 5	21.8171	307532.
1980	21143.8	. 5	16.0781	339784.
1981	31715.8	. 25	11.779	373581 -

1982	39644.7	- 25	10.29	407944.
1983	49555.9	. 25	8.95584	443815.
1984	61944.9	- 25	7.76044	480719.
1985	77431.1	-25	6.68935	517964.
1986	96788.9	-1	5.72966	554567.
1987	106468.	-1	5.53384	589175.
1988	117115.	-1	5.33445	624742.
1989	128826.	-1	5.13144	661063.
1990	141789.	-1	4.92474	697878.
1991	155879.	. 85	4.71428	734860.
V/E RATIO $=11414.6$				

TITLE:

DESCRIPTION:

INSTRUCTIONS:

Jeff Johnson

TRCK.1, page 2

RUN

RUN
TRCK 21
DO YOU REQUIRE INSTRUCTIONS?NO
FROM? EWR
TO?PARAMUS, NEW JERSEY
VIA?ACI DESI GNATED TRUCK
FOR?PICKUP AND DELIVERY OF ANY COMMODITY
ENTER EFFECTIVE DATE OF RATES?30JUL 1
ENTER MINIMUM CHARGE IN $\$ 34.65$
how many rate classes in this commodity are there?6
PLEASE ENTER DATA AS REQUIRED:
RATE $1=531.80$
WEIGHT $1=? 100$
RATE $2=531.70$
WEIGHT $2=? 1000$
RATE 3= \$? 1.60
WEIGHT 3=?2060
RATE $4=5$? 1.15
WEIGHT $4=$? 3000
RATE 5= 5?.95
WEIGHT 5=?5000
RATE 6= \$?.75
WEIGHT 6=?10000
HOW MANY COPIES? 1

FROM....EWR
TO.......PARAMUS, NEW JERSEY
VIA.....ACI DESIGNATED TRUCK
FOR.....-PICKUP AND DELIVERY OF ANY COMMODITY

EFFECTIVE DATE OF RATES.. 30 JUL 1

DO YOU HAVE MORE DATA?NO
DONE

TITLE:

DESCRIPTION:

INSTRUCTIONS:

TRUE ANNUAL INTEREST RATE ANALYSIS
TRUINT

TRUINT calculates the true annual interest rate charged on an installment load.

Self-explanatory.
Four input values are required:
$A=$ amount of loan (in dollars)
$\mathrm{P}=$ amount of each payment (in dollars)
$N=$ total number of payments
$K=$ number of payments per year

RUN

GET-STRUINT
RUN
TRU INT

* true annual interest rate *

THIS PROGRAM CALCULATES THE TRUE ANNUAL INTEREST RATE CHARGED ON AN INSTALLMENT LOAN.
IF YOU NEED INSTRUCTIONS TYPE 1, OTHERWISE TYPE D: ? 1
TO USE THIS PROGRAM IT IS NECESSARY FOR YOU TO SUPPLY THE VALUES FOR FOUR VARIABLES: $A=A M O U N T$ OF LOAN (IN S), $P=A M O U N T$ OF EACH PAYMENT ($\$$), $N=$ THE TOTAL NUMBER OF PAYMENTS DUE, AND $K=T H E$ NUMBER OF PAYMENTS DUE IN ONE YEAR.

WHAT ARE A,P,N,K ? $10000,10,1500,52$
THE TRUE ANNUAL INTEREST RATE $=3.03$

ANOTHER CASE?? TYPE 'N' TO QUIT, 'Y' TO TRY AGAIN?Y WHAT ARE A,P,N,K ? $1000,100,11,11$

THE TRUE ANNUAL INTEREST RATE $=17.85$

ANOTHER CASE?? TYPE ' N ' TO QUIT, 'Y' TO TRY AGAIN?N
DONE

title:
 INVESTMENT STRATEGY ANALYSIS 36557

DESCRIPTION:

INSTRUCTIONS:

SPECIAL CONSIDERATIONS:

This program uses the Tektronix 4010 display to plot results for each of ten different investment strategies over a period of time selected by the user. The time-period can begin in any year between 1931 and 1967 (inclusive) and can end in any later year in the same range. The user specifies the beginning and ending years. The program then determines the annual returns obtained with each of the ten strategies for each year within the period. Four graphs are produced. The first shows the average annual returns for the ten strategies. The next shows the values of "beta" -- the slope of a regression line obtained by regressing the strategy's returns on those of the market as a whole. The third graph shows the geometric mean returns for the ten strategies. The final graph provides a scatter diagram relating the values of the average annual returns to those of beta for the ten strategies. A regression line is also fit to the data in the final graph.

Strategy 10 involves investment each year in the top 10% of the stocks ranked on the basis of market sensitivity during the previous 60 months. Strategy 9 uses the next 10%, etc. . Thus strategy 10 is intended to be a high-risk return strategy, while strategy 1 is intended to be a low risk-return strategy.

INTRODUCTION

Within the last decade economists have investigated rather thoroughly the nature of a "perfect" or "efficient" market for securities. A widely used model dealing with uncertainty is that developed by Sharpe (6), Lintner (3): Mossin (5), and Fama (2), based on the pioneering contributions of Markowitz (4) and Tobin (8). Variousiy known as the "capital asset pricing model," "capital market theory," or the "market line theory," the approach deals with ex ante or predicted relationships. Breifly, it suggests that:

1) the appropriate measure of risk for a security or portfolio is the covariance of its rate of return with that of a portfolio composed of all risky assets, each held in proportion to its total value, and
2) the expected return of any security or portfolio will equal a constant plus some other constant times its risk.
(Instructions continued)

For a detailed discussion of the Tektronix 4010 Display Terminal see the documentation for the "Subroutine display package for the Tektronix 4010 Terminal", VSUB, \#36558. This documentation consists of (Technical Report No. 3) "Risk-Return Classes of New York Stock Exchange Common Stocks, 19311967" by William F. Sharpe and Guy M. Cooper (September, 1971). Permission to reprint has been granted by the authors.

ACKNOWLEDGEMENTS:
Graduate School of Business
Standord University

VRRC, page 2

Derivation of these results can be found in Sharpe (7).
While the model provides important insights into the nature of actual capital markets, it is of limited value for the selection of an investment strategy unless additional specifications are made concerning the stability and/or predictability of key measures.

A number of investigators have performed tests of such expanded capital asset pricing models. The original specifications are augmented with assumptions about the stability of key variables through time. The expanded models suggest (1) that measurement of values during some previous period can be used to implement strategies that will in fact differ with respect to both risk and expected return; (2) that high-risk, high-return strategies will return more on the average than low-risk, low-return strategies; and (3) that high-risk, high-return strategies will bring greater losses in bear markets (i.e., have more risk) than will low-risk, low-return strategies.

An extensive study of this type was performed by Black, Jensen and Scholes (1). They were concerned primarily with testing the validity of an expanded capital asset pricing model, and less directly with assessing the performance of alternative investment strategies. In this paper, the general approach of Black, Jensen and Scholes is followed with modifications designed to reduce its expense as a practical investment selection technique. Moreover, we report information particularly relevant to the selection of such a technique. Our focus is primarily on assessing alternative investment strategies; by and large, we bypass issues concerned with the adequacy of various expanded capital asset pricing models. $1 /$

Performance Measures

For any single period, a relevant measure of performance from the investor's point of view is return:
return $: \frac{\text { ending value + dividends - beginning value }}{\text { beginning value }}$
For securities, return can be calculated on a per-share basis, with appropriate adjustments for stock dividends and stock splits.

A related measure is appreciation:
appreciation $\equiv \frac{\text { ending value - beginning value }}{\text { beginning value }}$
The other component of return is yield:

$$
\text { yield }=\frac{\text { dividends }}{\text { beginning value }}
$$

Obviously:
return \equiv appreciation + yield
The data used in this study were taken from the CRISP (Center for Research in Security Prices) tapes developed at the University of Chicago. Monthly returns and appreciation figures for all New York Stock Exchange stocks over the period from January 1926 through June 1968 were utilized.

Performance over a number of periods can be measure by the average return. Let $R_{p t}$ represent the return on a portfolio of stocks in time period t. The average return from period 1 through period T is:

$$
\text { average return }=\frac{1}{T} \sum_{t=1}^{T} R_{p t}
$$

(where Σ denotes summation)
An alternative measure of performance is the geometric instead of the arithmetic mean. The result indicates the constant return in each period that would have provided the same terminal value as the actual series of returns.

The value is:
equivalent constant return $=\left[\begin{array}{ll}T & \left(1+R_{p t}\right) \\ t=1\end{array}\right] \begin{array}{ll}\frac{1}{T} & -1\end{array}$
(where π denotes multiplication)

Risk can be measured in a great many ways. We focus on a measure that highlights the impact of swings in the market on the return from a security or portfolio. If there were no prospects of bear markets, there would be little risk in the common meaning of the term. Stocks are considered risky because they can go down. And typically, the more sensitive a security or portfolio is to swings in the market, the more it goes down in a bear market. To measure this, we use the slope of a regression line relating return on the portfolio to the return on a broadly-based portfolio used to represent "the market." Figure I provides an illustration.

FIGURE I

We term the slope of such a line "beta." More formally: 2/

$$
\beta_{p} \equiv \frac{\operatorname{Cov}\left(R_{p}, R_{m}\right)}{\operatorname{Var}\left(R_{m}\right)}
$$

Where:

$$
\begin{aligned}
& \operatorname{Cov}\left(R_{p}, R_{m}\right)=\text { covariance between } R_{p} \text { and } R_{m} \\
& =\frac{1}{T}\left[\begin{array}{ll}
\sum_{t=1} & \left.\left(R_{p t}-\bar{R}_{p}\right)\left(R_{m t}-\bar{R}_{m}\right)\right]
\end{array}\right. \\
& \operatorname{Var}\left(R_{m}\right)=\text { variance of } R_{m} \\
& =\frac{1}{T}\left[\sum_{t=1}^{T}\left(R_{m t}-\bar{R}_{m}\right)^{2}\right] \\
& \bar{R}_{p}=\text { average return on portfolio } p \\
& \bar{R}_{m}=\text { average return on the market portfolio }
\end{aligned}
$$

For purposes of this study, the Fisher market index included on the CRISP tape was used to measure R_{m}.
It is important to recognize that beta may not provide an adequate measure of the total risk of a portfolio. However, for well diversified portfolios, the majority of the variation in return is attributable to changes in the return on the market, and beta will thus provide a good measure of risk.

Risk-Return Classes

In an efficient market, one rarely gets something for nothing. If investors prefer high average returns to low average returns and prefer low risk to high risk, prices should adjust so that the best low risk strategy provides lower returns on the average than the best high risk strategy.

The average return of a portfolio is simply the weighted average of the average returns of its component securities, with the proportions of value used as weights. Moreover, the beta of a portfolio is a weighted average of the betas of its component securities, with the proportions of value used as weights. Finally, the beta of a well-diversified portfolio provides a good surrogate for its total risk, since almost all fluctuations in the portfolio's value will follow market swings.

A well-diversified portfolio with a high beta value will be risky. In an efficient market, it will also provide a high average return. A portfolio of this type may be constructed by choosing a large number of stocks with high beta values. Such a strategy should provide high returns on the average, but with substantial risk.

A well-diversified portfolio with a low beta value will have relatively little risk. In an efficient market, it will also provide a relatively low average return. A portfolio of this type may be constructed by choosing a large number of stocks with low beta values. Such a strategy should provide relatively low returns on the average, but with little risk.

In a period in which the market goes up, high-beta stocks will go up more than low-beta stocks. Unless divided yields are strongly inversely related to beta values, average return and beta will thus be positively correlated over periods in which the market goes up. And since both history and expectations of risk-averse investors indicate that the market is more likely to go up than down, over long periods average return should be positively related to beta.

Stocks with high beta values should have high returns on the average; they may be said to be in a high risk-return class. On the other hand, stocks with low beta values should have low returns on the average; they may be said to be in a low risk-return class.

To use this relationship as a basis for an investment strategy, some means must be found to select stocks that will, in fact, have high beta values in the future. An obvious possibility involves the measurement of beta in the past, on the assumption that beta is reasonably stable over time. This procedure was utilized by Black, Jensen and Scholes and will be adopted here, with minor modifications.

Market Sensitivity

To measure performance it is important to use return -- i.e., appreciation plus dividend yield. However, most variation in return is due to changes in appreciation; dividend yield being relatively constant over time. This suggests that the value of beta would not change significantly id dividend yield were excluded. To avoid confusion, we continue to use the term "beta" for the slope of the regression line relating the appreciation on a portfolio or security to that of the market. Figure II provides an illustration.

FIGURE II
To compare the two measures, the monthly returns and appreciation values for 1572 securities during the period from January 1960 through June 1968 were utilized. For each security the value of beta was calculated using returns; then the value of market sensitivity was calculated, using only price changes. The changes were very similar. If each of the 1572 pairs were plotted, the points would lie almost exactly along a 45 -degree line through the axis, as illustrated in Figure III. The similarity of the two measures is clear from the results obtained when the values of beta were regressed on the values of market sensitivity. The regression equation was:

```
Beta = . 004 + .997*(Market sensitivity)
Coefficient of determination ( }\mp@subsup{R}{}{2}\mathrm{ ) = .996
```


This suggests that as a practical matter, market sensitivity may be used instead of beta when classifying securities into risk-return classes. Since dividend information may be difficult to collect and verify, this makes it possible to lower the cost of implementing strategies based on risk-return classes.

Portfolio Selection Strategies

We have determined the outcomes obtained from each of ten investment strategies during the 37 -year period from 1931 through 1967. For each security listed on the New York Stock Exchange, market sensitivity was calculated, based on the monthly price changes for the 60 months prior to the beginning of the investment claendar year (a security would not be included if a full 60 months of data were not available). The number of securities for which market sensitivity was calculated ranged from 478 (in 1931) to 985 (in 1967).

After the market sensitivity values were calculated, the numerical values were ranked. Based on this ranking, securities were divided into deciles. The securities in the top decile (i.e., those with the highest market sensitivities) were considered to be in risk-return class 10 at the time of classification. The securities in the next decile were considered to be in risk-return class 9, etc. . The number of securities in a given risk-return class ranged from 47 (in 1931) to 99 (in 1967).

This procedure -- calculation of market sensitivities, ranking of securities, and assignment to riskreturn classes -- was repeated for each of the possible investment years from 1931 through 1967.

Strategies are numbered from 10 to 1. Strategy I involves the purchase of equal dollar amounts of all stocks in risk-return class I at the beginning of each year. Every dividend received during the year is reinvested in the stock that pays it (at the beginning of the month following payment). On the first of the next year, stocks are bought and sold until the portfolio contains equal dollar amounts of all stocks in risk-return class I at that time. Rebalancing is thus required both to accomodate changes in the set of stocks in the specified risk-return class and to account for differential price changes.

To reduce the number of computations, the results have not been adjusted to account for transactions costs. However, these are relatively small and differ little among strategies since annual performance measures are being considered and rebalancing is done only once each year.

Performance

Figures IVa through IVd show the results obtained when each of the ten strategies was followed over the entire period studied (from 1931 through 1967). Figure IVa shows the average annual return for each strategy. On the average, strategy 10 provided a return of over 22 per cent per year, while strategy 1 provided less than 12 per cent. Although the values do not decrease uniformly, the general relationship is of the expected type -- portfolios composed of securities in lower risk-return classes tend to provide lower average return.

Figure IVb shows the actual values of beta for the ten strategies. Returns obtained with strategy 10 moved 42 per cent more than the market as a whole; on the other hand, returns obtained with strategy 1 moved only 58 per cent as much as the market as a whole. Again, the values do not decrease uniformly, but the general relationship is of the expected type -- portfolios composed of securities in lower riskreturn classes tend to move less with swings in the market. 3/

Figure IVc shows the equivalent constant annual return for each of the ten strategies. Here the picture is far less clear. The investor concerned only with the very long run (in this case, 36 years) must take into account the impact of both risk and average return on his overall position. When returns vary, the geometric mean will always be smaller than the arithmetic mean, and the difference will typically be greater, the greater the variation. High risk-return classes typically offer a higher average return but also bring greater variability. The net effect over the very long term is thus relatively unpredictable. In this case, the best results would have been obtained with strategy 7. An investor who reinvested both capital and dividends every year while following strategy 7 would have accumulated as much wealth at the end of the period as if he had placed his money in a bank paying roughly 16 per cent interest per year, compounded annually. On the other hand, an investor following strategy 1 would have accumulated only as much wealth as if he had placed his funds in a bank paying roughly 10 per cent per annum, compounded annually.

Figure IVd summarizes the relationship between average return and the actual value of beta for each of the ten strategies during this period. As expected, the relationship is positive and quite significant (during this period the market rose on the average). The intercept is somewhat higher than the return on relatively safe investments during the period -- a result consistant with that of Black, Jensen and Scholes -- and the relationship appears to be approximately linear. 4/
Figures IVa, b, c, and d were produced using the Tektronix $T 4002$ display and the Hewlett-Packard 2000C computer at the Stanford Graduate School of Business. Users of this system can obtain results for any other period between 1931 and 1967 by calling for program $\$$ GRCC and running it. The program will give instructions, request the starting and ending year, and then provide the four graphs. By and large, the results will prove consistent with expectations. When the average market return is large, high risk-return classes tend to provide higher returns on the average than lower risk-return classes. Finally, the shorter the time-period studied, the less the results conform to expectations due to the influence of other factors.

Changes in Risk-Return Classes

The investor who holds a well-diversified portfolio need not be unduly concerned about the possibility that one or more of his stocks may move into a different risk-return class in the future. Some of the securities that were formerly in risk-return class 5 may move to class 6 (or $7,8,9$ or 10), while some of the others may move to class 4 (or 3, 2, or 1). But the effect on the total portfolio may nonetheless be negligible, as securities moving to higher classes can be offset by those moving to lower classes. Putting it somewhat differently: it is easier to predict an average (i.e., the portfolio's beta) than the value of any single component (i.e., a given security's beta).

But changes in risk-return class membership are not unimportant. They give rise to transactions costs for the strategies described here. They are particularly relevant for those who do not (and perhaps cannot) hold well-diversified portfolios -- e.g., corporate officers. And they are important when riskreturn class membership is used to estimate a firm's cost of capital.

To provide some evidence on such changes, the risk-return class of every security was determined for every year between 1931 and 1967 in which price and dividend data were available for the preceding 60 months. The risk-return class in each year was compared with first the class in the succeeding year, then the class five years hence. While the first comparison uses 48 months of common data, the second involves no overlap at all. Over 27,000 combinations were used for the first set of comparisons, and over 24,000 for the second.

Tables I and II summarize the results in transition matrices. For example, Table I shows that 74.2 per cent of the securities in risk-return class 10 in year t were still in risk-return class 10 in year t + 1. Table II shows that only 35.2 per cent remained in risk-return class 10 in year $t+5$. 5/ Table III provides another summary, indicating the frequencies with which securities were in the same riskreturn class or within one risk-return class one and five years later. As this Table shows, there is substantial stability over time, even at the level of individual securities. For portfolios, of course, the relationship would be considerably more stable.

Figure IVa. Average Annual Returns 1931 through 1967

Figure IVb. Beta Values 1931 through 1967

Figure IVc. Equivalent Constant Annual Returns 1931 through 1967

Figure IVd. Average Return Versus Beta 1931 through 1967

aUG RETURN $=5.53651$ + 12.748550 EETA UALUE DONE

Security Data

Table IV shows the risk-return classes of all New York Stock Exchange stocks that could be assigned to a class on January 1, 1967. Table IVa includes securities in class 10, Table IVb, those in class 9, etc. Within a risk-return class, securities are arranged alphabetically (with minor exceptions). Beside the anme of each security is a list of symbols indicating its status in each year, beginning with 1931 and ending with 1967. The symbols have the following meanings:

```
* insufficient data for the prior 60
    months to allow classification
9 risk-return class }1
8 risk-return class 9
7 risk-return class 8
6 risk-return class 7
5 risk-return class 6
4 risk-return class 5
3 risk-return class 4
2 risk-return class 3
1 risk-return class 2
0 risk-return class 1
```

Teh performance of simple strategies based on risk-return class memberhsip suggests the usefulness of data of the type shown in Table IV. The classifications can be used to test investment strategies that might have been adopted in 1967 or earlier. Moreover, they provide at least some information concerning current risk-return classes, if the stability shown in Tables II and III is at all applicable at present.

TABLE I

TRANSITION MATRIX
RISK-RETURN CLASS IN YEAR T
versus
RISK-RETURN CLASS IN YEAR T + 1

Risk-Return class in	Risk-Return class in year $t+1$									
	10	9	8	7	6	5	4	3	2	1
10	. 7417	. 1712	. 0309	. 0111	. 0054	. 0011	. 0018	. 0004	. 0000	. 0004
9	. 1732	. 4989	. 2079	. 0587	. 0240	. 0104	. 0025	. 0004	. 0004	. 0004
8	. 0368	. 2122	. 4091	. 2094	. 0765	. 0232	. 0111	. 0029	. 0021	. 0007
7	. 0121	. 0657	. 2286	. 3564	. 1986	. 0804	. 0271	. 0079	. 0025	. 0007
6	. 0043	. 0199	. 0733	. 2246	. 3452	. 2060	. 0744	. 0231	. 0075	. 0018
5	. 0047	. 0097	. 0222	. 0764	. 2141	. 3535	. 2123	. 0696	. 0147	. 0047
4	. 0007	. 0018	. 0111	. 0314	. 0806	. 2168	. 3807	. 2043	. 0478	. 0093
3	. 0000	. 0018	. 0025	. 0096	. 0268	. 0686	. 2082	. 4268	. 2068	. 0321
2	. 0000	. 0004	. 0011	. 0036	. 0075	. 0196	. 0538	. 2089	. 5091	. 1843
1	. 0000	. 0004	. 0004	. 0014	. 0018	. 0011	. 0093	. 0323	. 1869	. 7471

TABLE II

TRANSITION MATRIX

RISK-RETURN CLASS IN YEAR T

VERSUS

RISK-RETURN CLASS IN YEAR T + 5

```Risk-Return class in year t```	Risk-Return class in year $t+5$									
	10	9	8	7	6	5	4	3	2	1
10	. 3517	. 1929	. 1153	. 0568	. 0494	. 0373	. 0203	. 0120	. 0083	. 0079
9	. 2051	. 1835	. 1487	. 1272	. 0808	. 0601	. 0414	. 0228	. 0116	. 0128
8	. 1324	. 1593	. 1638	. 1303	. 1047	. 0890	. 0612	. 0393	. 0219	. 0149
7	. 0794	. 1310	. 1579	. 1327	. 1186	.1083	. 0930	. 0583	. 0310	. 0149
6	. 0523	. 0977	. 1121	.1343	. 1389	. 1195	.1137	. 0820	. 0445	. 0293
5	. 0423	. 0647	. 0855	. 1041	. 1361	. 1361	. 1448	. 1112	. 0763	. 0336
4	. 0326	. 0491	. 0759	. 0994	. 1106	. 1254	. 1320	. 1448	. 1023	. 0611
3	. 0203	. 0289	. 0488	. 0715	. 0951	. 1146	. 1286	. 1588	. 1584	. 1084
2	. 0087	. 0161	. 0268	. 0384	. 0499	. 0771	. 1139	. 1630	. 2145	. 2314
1	. 0042	. 0087	. 0104	. 0203	. 0303	. 0419	. 0722	. 1133	. 2183	. 4047

TABLE III

Risk-Return Class in Year $T$	Proportion in Same Risk-Return Class		Proportion Within One Risk-Return Class	
	In Year $t+1$	In Year $\mathrm{t}+5$	In Year $t+1$	In Year $t+5$
10	. 7417	. 3517	. 9129	. 6927
9	. 4989	. 1835	. 8800	. 5373
8	. 4091	.1638	. 8307	. 4534
7	. 3564	. 1327	. 7836	. 4092
6	. 3452	. 1389	. 7758	. 3927
5	. 3535	. 1361	. 7799	.4170
4	. 3807	. 1320	. 8018	. 4022
3	. 4268	. 1588	. 8418	. 4458
2	. 5091	. 2145	. 9023	. 6089
1	. 7471	.4047	. 9340	. 6230

# Table IV. Risk-Return Classifications for NYSE Stocks, 1931-1967 

## (See article by Sharpe and Cooper in this issue)



CLASS 10 (cont'd)	1935	40	45	50	55	60	'65	
Northwest Aurlines				5678	76789	99999	99999	99
Ptuladeiphia and Reading Corp.					44357	18167	89999	99
Northwest Industries					99999	98999	99999	99
Packard Bell Electionics Corp								79
Pan American World Arways inc			6	65444	46788	88776	17999	99
Penn Central	11433	44245	66675	56545	67788	88898	88989	99
Piper Aircratt Corp.							999	99
Pittsburgh Steel			997	89999	99993	99998	99899	99
Plough inc.					0001	11212	56999	99
Polaroid Corp.							71	89
Reading Co.	11655	56336	71786	56533	43344	44565	46889	99
Reynoids Meials		33424	45668	87899	B9989	99399	99999	89
Roan Selection Trust, Lid.							46656	69
Ryder System Inc.								99
SCM Corp.			346	56544	68887	63778	99993	99
Seagrave Corp.	14877	77533	43363	88853	56477	64589	89999	99
Sparton Corp.	9	99998	88888	99999	99999	89999	99999	99
Standard Koilsman Industries						6689	99999	99
Standard Packaging Corp.							99	89
Standard Pressed Steel Company								9
Rexall Drug and Chemical $\mathrm{Co}_{0}$		43	44457	67788	87755	54256	77999	99
Worthington Corporation	99666	65678	88875	55478	89988	67177	87778	89
Sunshine Mining			127	89981	78778	85781	78551	89
Telautograph Corp.	11000	00110	11125	44568	99985	33699	9999	99
Thokol Chemical								99
Trans World Airlines Inc.			56545	65433	35799	99888	88999	99
Iransitron Electronic								99
United Air Lines Inc.			55546	44434	45788	99988	87888	89
U. S. Industries inc	88999	99899	99998	78889	99999	98889	99999	99
Periect Film and Chemical Corp.					98765	31122	03788	99
UMC Industries Vendo Co.								99
Western Maryland Ay.	88977	77458	99899	99998	99999	99977	87999	99
White Consolidated Industries Inc.	788	78778	88888	88899	87646	88989	89999	99

## TABLE IVb. Risk-Return Class 9

ABC Consolidated Corp.
Adams Millis
General Bronze Corp.
Allis Chalmers Manulacturing Co American Aurtines
Ambac Industries inc.
American Pholocopy Equipment Co
Ampex Corporation
Amphenol Corp.
Armour \& Co
Arthur G. Mckee Co.
Associated Brewing Co.
Avnet, Inc.
Bausch \& lomb Inc.
Beckman Instruments
Beech Aucratı
Bell intercontinental Corp.
Divco Wayne Corp
Brunswick Corp.
Bucyus Enie
Burndy Corp
Burroughs Corp
The Marquardt Corp
Carlisle Coro
Carter Wallace Inc
Chadbourn Gotharn. Inc
Chemetion Coro
Cily investing $C_{0}$
Conelco the
Crescent Lort

	11111	11101	01212	10012	21 3322	$\left\lvert\, \begin{aligned} & 25788 \\ & 64888\end{aligned}\right.$	88
	66667	87767	67876	64353	46667	77766	88
66665	55434	33454	45556	77765	56666	65567	78
			23233	33457	78788	88777	78
98444	43688	77778	88898	99898	76643	78888	88
						998	78
70355	47856	71777	77189	98888	78877	76787	88
		22213	53223	23332		99876 5   76 7   9999 9	
					10879		
				33218	88876	86676	68
				32246	87533	45888	88
				452	13225	54776	78
65677	77875	55436	66666	66665	76434	20554	78
77	77867	76664	66666	65768	71788	89988	88
	33422	22245	66554		67877	67677	
34333				33213			
56433	33488	88877	75716	58189	88799	y 99	48
			33434	55454	23544	56688	88
	00000	00000	$1446 / 8$	/434	58886	49888	68
95477	67998	89888	88899	88888	99997	76717	78
				6, 2	3.3u1	-0\%\%33	64



TABLE IVc. Risk-Return Class 8
Morrell. John and $\mathrm{C}_{0}$.. Inc.
Aeroquip Corporation
Alcan Aluminum, Lid.
 3589887

CLASS 8 (cont d)	1935	40	45	50	155	60	52	
American Broadcasting Paramount	37998	88775	55535	44541	32335	67788	7!AES	
American Enka Corp Anaconda Co	67987	87456	56551	22233	35678	¢9988	425	$\stackrel{\square}{\square}$
Aivin Industres, Inc				34455	65433	33332	$346^{\circ}$	
Balumore \& Ohio RR								$8 i$
Basic. Inc.								$i$
Baxior laboratories. Inc.								7
Blaw Knox Co.		44556	71788	87177	89987	65668	99888	87
Fram Corp.								7
Bigelow Santord, Inc.		666	66554	33456	65566	66788	88766	67
Bliss. E W					7745	67999	9Gצ¢8	i
Budd Co.	8	88967	71788	99999	99887	67888	888:	17
Bulova Warch	5	55875	55535	33344	55553	31357	77665	9
Caiborundum Co.						54	554jE	67
Celanese Corp.		99966	77156	66576	75647	67799	995e8	87
Chemway Corp.		3245	55566	17176	44456	58466	64:17	11
Cincinnau Milling Machine					5451	20225	45566	71
Cleveland Clifts Iron Co.								17
Clevie Corp.			55532	22344	43335	57178	87787	17
Combustion Engineering. Inc.		33467	77776	66743	33354	57656	75355	57
Cooper Tire \& Rubber Co .								87
Corning Glass Works					23423	36645	63788	17
Crucible Sieel Corp.	23455	55668	38875	45467	89999	99999	99988	87
Delta Air Lines, Inc.							788	17
Detron Steel Corp.					799	99999	99999	87
Diamond Shamrock Corp.						656	$766 i 7$	67
Diana Stores Corp.					4	43110	01678	87
Oxford Paper Co.							66666	67
Filtrol Corporation						76	43245	67
FMC Corp.		2133	44432	10132	23434	47566	$7660^{7}$	77
Food Grant Markets. Inc.			24	42344	45678	75333	157903	87
General Dynamics Corp.	87667	76786	55565	66655	66666	5531	22556	67
General Ire \& Rubber Co.			667	86788	89989	199867	87993	87
Georgia Pacilic Corp.					9	199998	8477i	17
Warner Brothers Pictures, Inc.	99	99775	54435	67754	11112	33434	525:5	67
Grace. W. R. \& Co.						43	$37798{ }^{\prime}$	187
Grand Union Co.	66445	66785	44334	53566	66633	34322	34899	87
Great Norhern Paper Co.						6	67678	77
Universal American Co.				5455	55567	66689	87734	67
Gull. Mobile \& Ohio R.R. Co.	64789	99997	71788	99999	99898	17899	98545	57
Paul Hardeman, Inc.	5	55667	88888	78888	88778	Э9863	$335 i 1$	77
Hat Corporation of America	8	87955	56665	66767	64353	24568	87866	67
Hewlett Packard Company								7
Hotel Coip. of America	57771	88887	77768	86645	37799	199999	89866	17
Inspiration Consolidated Copper Co.	17871	77478	99876	67666	67899	199989	89863	17
International Business Machines Co.	22110	11000	00000	00001	11232	135444	42677	71
International Minerals \& Chemical Co .	66988	88998	88897	88717	66654	44433	35565	71
International Silver Cu.	444	43455	66655	33466	66545	56775	68677	11
Rayomier, linc.			97	76578	76667	\|89999	99717	67
International Telephone \& Telegraph	68887	77644	33458	88788	99999	199876	76888	87
Jones \& Laughlin Steel Corp.				5677	88899	99987	88899	87
Kendall Company								87
Kerr McGee Oil							9898	87
KLM Royal Outch Airlines							344	87
Mack Trucks. Inc.	56333	32346	66651	13466	88989	38877	88887	71
Magnavox Co.	5				7596	42436	79999	97
Mallory, P.R. and Co .							176	17
Mays. J. W., Inc.								97
McDermorl IJ. Ray \& Co.							99	87
Mclean Trucking $\mathrm{Co}^{\text {a }}$							23	57
McNeil Corp.								7
Mohasco Industries. Inc.					4458	99999	99988	87
National Acme	88777	77868	78772	44456	71776	77888	87666	167
National Can Corp.	11	11125	67786	67789	99999	98753	46565	
National Sieel Corp.		55523	33342	21111	12336	88876	64678	
Newmont Mirung Corp.				46567	77887	78878	87677	
Olin Matheson Chemical Corp.	54332	22224	44453	35454	44556	76777	175671	77
Outboard Marine Corp.			213	23223	32220	00113	43545	67
Owens Corning Fiberglass Corp.						567	85777	17
Pan American Sulphur Co.								71
Perkin Elmer Corp.								7
Shatuck, Frank G.	5323	22232	22124	55653	22223	32111	22671	87
Plizer, Chas. and Co .					75544	33233	55171	17
Piuson Co.		34998	87786	178889	98898	199987	189888	


CIASS 8 Iconid	1935	40	45	'501	55	60	65	
Publicker Industies					9988	98899	89977	87
Haymyind Internationai. Inc								11
Reeves 13:0thers					4447	65673	48778	87
Reichhoid Chemicals							88	87
Rheeni Mig				67	76664	43468	99999	87
Ritte: Plaudler Carp	3	32243	32722	57767	53443	22222	22567	67
Roberistiaw Controis C.0					55	65776	71718	87
St Regis Paper					988	89987	86878	71
Sun Chemical Corp.		54423	34445	66676	46544	65677	67666	67
Sunstand Corp.							56	71
Superior Oill Company (Nev)				89	77841	43446	66787	87
Texas Pacitic Land Trusi Ceri	88654	44333	43343	46535	63478	88787	78888	77
National General						333	35677	67
Varian Associates								77
Vicror Comptometer Corp.					467	76899	99986	17
Wallace and Ieernan. Inc.								77
Western Air lines					78899	99975	66778	77
Westinghouse Electic Corp.	77644	44333	33322	12233	44543	45434	41345	57
Rado Corp of America	99877	76564	45568	88866	56644	68788	76777	67
Wheeling Steel		7778	88886	66688	99999	98888	88717	87
Whice Motor		178	88875	56788	88886	33446	88888	77
Zenut Radio Corp.	8	88898	77757	55656	67542	43346	88999	87

## TABLE IVd. Risk-Return Class 7

A. J. Industries. Inc.

Addressograph Multigraph Corp
Allegheny Ludlum Steel Corp
Alpha Portland Cement
Amerace Corp
American Consumer Industries. Inc.
American Metal Climax, Inc
Armstrong Cork $\mathrm{C}_{0}$.
Atlas Chemical Industries. Inc.
Allas Corp.
Bares Manufacturing $\mathrm{Co}_{\mathrm{o}}$ (Del.)
Callahan Mining Corp.
Carpenter Steel Co
Carrer Corp
Central foundry
Central Soya Co. inc.
Chock Full 0 Nuts Corp.
Chryslet Corp.
Clark Equipment
Collins and Aikman Co.
Columbia Pictures
Consolidated Cigar Corp.
Cooper Industues
Copeiand Refingeration Corp.
Copperweld Sieel
Crane Co
Curter Hammer. Inc
Cyclops Corp.
Dresser Industries, inc. Del
Elasuc Stop Nut Corp. of America
Electric \& Musical Industries. LId.
Emerson Electic Co.
Emhar Corp.
Ferro Corp.
Finikoie Co.
Food Far Stores. Inc.
Ruberod Co
New York All Biake
Stanley Warner Corp.
Sheller Globe Corp
Grant. W I.
South Puerio Rico Sugar Co.
Harcourl Brace and World. Inc.
Haris Intentype Corp.
Harl Senatither \& Marx
Haves Aibion. Inc.
Hisen Hoteis Carp
Hoover Balis Bearing Co
Houdalle Industiles. Inc
Houserod hriance


CLASS 7 (cont'd)	1935	40	45	50	55	60	65	
Huri foods \& Industres, Inc					8631	20102	24788	76
Illinous Central Industres. Inc	016 (	77668	88889	99999	98999	88888	88666	66
International Miring Corp ${ }^{\text {INew }}$	57999	99998	88471	71787	54435	15554	68878	66
Stieraton Corp of America	55:77	78798	89899	94996	$5456 \%$	11174	33545	76
Island Creek Coal IDel )	0222	22101	11230	00000	01255	56866	17677	66
Jonathan Logan. Inc. Del								86
Kroehier Mig Com							2544	56
Lehigh Valley Industries	8	88769	99	99999	99844	20389	79955	86
Manhatten Industues	54544	45453	22123	46554	43334	53343	35676	66
Mesta Machine Co.		344	44541	43333	33346	76876	67767	76
Midand Ross Corp.		88766	66667	77544	22232	44435	43343	56
Minnesora Miring \& Migi Co					3433	36656	64677	66
Montgomery Ward	88765	55344	44433	32223	34433	22245	66766	56
M SL Industiles. Inc					45576	53343	27899	96
JJ. Newberir Co.		1	11001	23333	21111	11122	22677	76
Pitney Bowes. Inc.						14566	87888	85
Puliman. Inc.	23333	32236	66764	34321	22333	45667	54434	56
Raytheon $\mathrm{Co}_{0}$						996	17888	86
Republic Corp.					8887	76688	78766	76
Revere Copper \& Brass. Inc	9	99999	99887	88899	98886	78788	86433	46
Rex Chainbelt. Inc.				24466	63323	33456	75655	56
Rohm \& Hass Co					4	65545	43666	56
Rohr Corp.							56644	56
Roper Corp.			225	43332	33222	23001	13787	66
Royal Crown Cola				33445	35553	21100	21155	56
Sangamo Electric Co Del.						5445	55565	56
Schlumberger, Lid	12889	99997	17718	88788	87778	88976	65566	56
Scovill Mig. Co						43333	36466	66
Screw and Bolt Corp. of America	4	54658	89986	88887	57778	64333	35656	76
Signode Corp							63565	56
Smith Kline \& French Laboratories							777	66
Sperry- Rand Corp.	89988	87564	44444	44566	67667	99989	88988	86
Stanray Corporation						7766	45576	76
Staufter Chemical Co .						5	53676	66
Richardson Merill, Inc.		00	00000	00133	31111	23122	22676	76
Stokely Van Camp. Inc.			687	88898	67766	74666	47688	86
Suburban Gas								86
TRW, Inc.		44455	55553	45577	87777	67878	77667	76
Tandy Corp.	7899	99979	99999	99887	64334	20233	58756	66
Tishman Realty \& Construction Co.							88	86
Union Camp Corp.	75343	43447	78887	66666	66776	77655	44456	56
Wison \& $\mathrm{Co}_{0}$	73222	12357	78887	77778	77718	89653	32565	56
Boeing Co. (The)		6	65663	44533	46667	76752	22001	36
US. Steel	33333	33346	66662	23345	55667	88887	76778	76
Vuican Materials Co.	99988	77522	12110	00000	00012	44657	88787	76
Welbil Corp.					576	89989	66666	76
Wickes Corp								6
Youngstown Steel Door			87	78876	77666	66787	65666	66

TABLE IVe. Risk-Return Class 6
Air Reduction Co.. Inc
Allen industries
American Home Products
American Porash \& Chemical Corp
American Seating $\mathrm{Co}_{0}$
American Smelting \& Refining Co.
Ametek, Inc.
Arizona Public Service
ARC Corp.
Austin Nichols
Babbitt. B. T. Inc.
Barber Oil Corp.
Beaunit Corp.
Bliss \& Laughlin. Inc.
Book of the Month Club. Inc
Briggs \& Stration
Ceco Corp
Chicago Pneumatic Tool Co
Cily Stores Co
Holt Rinehari \& Winston
Curniss Wright Corp
DeSoto. Inc
Nopco Chemical Co
Symingion Wayne Corp

33311	11013	446165555			65555	64444	45
		767	76555	43434	45532	11122	35
1100	00010	00000	00122	11111	13323	42577	55
					755	56555	65
799	99985	55544	33467	77886	66444	36666	65
66876	66345	66642	23356	56778	89876	71245	55
78556	65688	88885	67589	99997	54546	78776	65
							5
98576	65854	55456	43688	88879	87563	67856	45
					88898	71745	55
68566	65667	71776	74544	26716588	685646	65232	
					87899	87411	25
			32334	12221	50234	47766	55
					0014	37887	85
	3323288889	32212	24567	66652	45668	8677665	
71888	88888	88762	45578	88999	99988	75455	45
998	88676	77768	88888	41001	11221	00000	
4	33376	66651	3333301245	45569   9499	989759997	56455	
						69881	75
				65611	88776	68887	75
87999	99989	38998\|	8898	888	888	55	55


CLASS 6 (conid	1935	40	45	50	55	60	65	
Dunhill internationat inc	999	99935	56668	88899	84300	00000	05771	65
Easiman Kodak	22111	10000	00000	01111	11223	45544	63444	35
Fawick Corp.	3266	66977	78777	88899	99999	99977	35443	55
Eaton Yale and Towne Co	89717	66644	45431	12344	55563	34446	76454	45
Edison Bros Siores			2	34566	32120	00123	46766	65
Engethard Minerals and Chemicals								65
Eurotund. Inc								5
Flonida Power \& Light Co.						34322	33677	55
Fruehaul Corp.				5777	76666	57999	99871	75
Gardner Denver Co.				4	22223	56654	43223	45
General Hosi		0122	22236	75410	00000	00001	10123	45
General Cabie Corp	89999	99999	99999	99998	78889	99976	54234	45
General Stee! Industries. Inc.							6576	55
Goodrich, B.F.	78998	88776	77167	73533	35567	88654	54466	55
Gould National Batteries. Inc.					4442	34322	23677	75
Grumman Alrcraft Engineering Corp.				66654	66676	54433	34232	25
Hamiton Watch Co.		34553	32235	65521	11124	46777	77644	55
Hammermill Paper Co.						898	76533	45
Harsco Corp.						5	56455	55
Walter E. Heller Co.							4777	75
Honeywell. Inc.	1	11233	33332	11122	33322	37767	86676	65
Ingersoll Rand $\mathrm{Co}_{0}$.	34444	44432	33332	10011	23334	45656	43444	55
Interchemical Corp.	33	33444	45445	44565	55634	76445	53344	125
International Nickel Company of Canada	88654	44221	11113	24432	33455	66766	65568	45
International Paper Co.. N Y				5566	57876	68766	64555	55
Kaiser Aluminum \& Chemical Corp.						8999	98555	45
Kelsey Hayes Co.	878	88897	88877	77877	64345	66766	76454	45
Kennecoll Copper	45765	65334	33320	12123	33556	78766	54222	35
Kern County Land					23	66677	67776	65
King Seeley Thermos Co.						3312	22365	65
Lousville and Nashuille R.R.	01655	55235	44442	13333	44455	65566	55344	45
R.H. Macy and Co . Inc.	55544	44223	33446	65453	34457	75431	22555	55
Martin-Marietta			443	54566	58676	51201	22454	45
Masonite Corp.			312	22357	88877	68878	86333	35
Medusa Portland Cement								55
Merck \& Co. Inc.					3346	67420	10345	5
Monarch Machine Tool Co.				2	33354	31123	34234	15
Natomas Co.			00002	33300	00148	99883	49888	15
Neptune Meter Co.								35
Notris Industries. Inc.								35
North American Car Corp.								55
Northwestern Steel \& Wire Co.								65
Norwich Pharmacal Co.				11221	23344	65433	20344	45
Pet. Inc.	0	01111	11100	00012	12211	22244	46778	8
Phulip Morris, Inc.	31111	00101	11111	01221	10001	22011	11344	45
Phillips Van Heusen Corp.	22000	11354	44467	76665	53322	56688	88766	65
Murphy (G. W. I Industries, Inc.					6	74543	25332	55
Reliance Electric Engineering'							666	55
Republic Steel Corp.	89999	98768	88774	35566	77778	88876	77877	775
Reynolds Tobacco	10000	00000	00003	32100	00001	11001	11565	65
Rubbermaid, inc.								345
Ayan Aeronautical Co .								35
Schering Corp.						65	64344	45
Warren Company								65
Seaboard Coast Line Railroad					99886	54666	66434	35
Seaboard Finance Co.					22	22111	12455	65
Seilon. Inc.					9999	85557	65200	15
Singer Co.								5
Square D Co.			5530	01134	46771	71767	88788	65
Tootsie Roll industries	81756	66330	11015	34423	44563	20111	03446	75
Swilt \& Co.			11121	11112	12321	22112	21233	35
United Caris. Inc.			33333	12111	21221	24334	33232	2
Texion, Inc.					89	88875	78665	55
United Arisis Corp.							434	45
Transamerica Corp.		33122	22234	55555	43433	24354	56771	65
Uniroyal Corp.	88999	88755	66668	76655	57778	88887	87565	55
Unired States Shoe Corp							1344	45
Universal Oil Products								85
Upiohn Company								45
Walgreen Co.		0	11011	12211	10000	00112	23555	55
Wallace Murray Corp	99899	99997	88878	88887	77655	65655	44111	35
Walworth Co	67999	99999	88881	77888	88888	$88 / 33$	46766	43
West Virginia Puip and Paper				55553	32214	36564	64656	55
Whiripool Corp							88717	65
Youngstown Sheet and Tube Co.	24671	17167	17764	34466	17778	99998	98771	

## TABLE IVf. Risk-Return Class 5



Ace industries. Inc.
American Bakeries Co
American Cyanamid Co .
American Distilling $C_{0}$.
American Oprical Co
Wesiinghouse Aus Brake
American Siandard Corp.
Amencan Tobacco Co. ICom. 1
Armco Steel Corp
Armstrong Rubber Co
Allantic Coast Line R.R
Avco Corp.
Babcock \& Wilcox Co
Bendix Corp.
Bethehem Steel Corp.
Black \& Decker Mig.
Bobbie Brooks
Borden. Inc.
Borman Food Stores. Inc
Buringion industries. Inc
Canada Ory Corp.
Champion Papers. Inc
Checker Motors Corp.
Consolidated Foods Corp
Continental Baking Co (Del.)
Continental Insurance Co
Continental Steel Corp.
Com Products Co
Crown Cork \& Seal Co., Inc.
OWG Corp.
Deere \& Co. Del.
Delmarva Power and Light
Dover Corp.
Dow Chemical Co
Harbison Walker Refractories Co
Eastern Gas \& Fuel Associates
Ex-Cell-0 Corp
Fenestra. Inc.
Fibreboard Corp.
Firestone Tire \& Rubber Co.
Franklin Stores
Freeport Sulphur $\mathrm{C}_{0}$.
General Electric Co
Goodyear Tire Rubber
Granite City Steel
Greyhound Corp.
Hallibution Co
Hazeltine Corp.
Hooker Chemical Corp
Howe Sound Co. (Del.)
Interlake Steel Corp.
Pennsylvania Glass Sand Corp.
Johnson \& Johnson
Kansas City Southern Industries, Inc.
Koppers Co
Lehigh Portiand Cement Co
Leonard Relineries. Inc.
Libby McNeill and Libby
MacAndrews \& Forbes Co.
Madison Square Garden Corp. (New)
Maremont Corp.
Maring Midland Banks. Inc
McCord Corp.
McDonneil Douglas Corp
McGraw Edison Co
McGraw Hill. Inc.
Mead Corp.
NVF Co
National Cash Register Co.
Hudson Bay Mining \& Smelting Co., Lid.
Northern Natural Gas Co
Northrop Corp
Oits Elevator

| 15677 | 71779 | 99984 | 46767 | 88887 | $17 / 61$ | 68700 | 54 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6565 | 55642 | 22213 | 42322 | 12110 | 00000 | 0002 | 44 |

 445 665j2 $3, \therefore 1=4: 4$
 4545444554 45557 7654434544 55617 E:434. $\because \because$ 0010111500000013533110001202010 OC545 E:



| 34567 | 76668 | 46788 | 88788 | 88888 | 88765 | 44 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  | 866 | 54334 | 44 |





5233							
32432	524	45666	76668	87787	67443	44	
22225	55565	54433	33222	11223	44		
	5665	66566	77775	45434	32233	44	

3	33599	99998	78889	98877	67899	99989	54
5467	77996	55546	76632	7654	20002	222555	44344
556645	44						
4							

45544 44332	22211	00001	11101	14222	22456	44
6653	42111	24578	99988	$8887 \%$	64	



2 211545	56667	77606	46766	78577	65665	64	
	3324	54311	01112	31010	2257	64	





4 44468 88888 88888 98999 94999 $98777 \mid 64$

34445 54332	21111	11111	00133	44	
	21	22445	46334	44	



| 2566 | 77889 | 89887 | 78899 | 99988 | 71776 | 77433 | 44 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 2110 | 21100 | 00111 | 12444 | 44344 | 34 |  |
|  |  | 56764 | 44233 | 35455 | 54 |  |  |



$4444654 |$|  | 44323 | 33432 | 12245 | $6 / 554$ | 43455 | 54 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  | 4 |


55566	54523	23333	45678	77655	54
00001	12101	10000	00144	45543	34

95555 56787 6667909999 99998 99999 99854 54

| 22122 | 11125 | 65521 | 11111 | 21000 | 01344 | 44 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  | 4445 | 43211 | 14 |

1							
12256	224	44333	21221	24536	55554	54	
66676	56543	21111	24535	53344	44		
8886	66766	78888	78653	31343	44		

4	54324	43232	5665	55579	87654	34
15	43222	34476	54533	32000	34	

211	11012	12244	44
	653	45222	34
4211	25545	54544	44

$44322|22244| 44445|5555543211| 25545|54544| 44$

CLASS 5 (contid)	1935	40	45	50	55	60	65	
Penn fiull Co inc								54
Pillsbury Co	110	01100	00013	31101	12222	23234	65765	54
Plusburgh Forgings				77667	88886	67534	22112	34
PPG Industries. Inc					2232	34422	21344	44
Portec Inc	8	88989	99999	99988	787/5	65788	88532	34
St Joseph Lead	35665	55445	55555	65332	36778	76455	46555	54
Scout Paper	0	00000	00000	00000	01112	36443	22466	64
Simplicay Pauern							43	44
Sterling Drug. Inc	22222	22100	00000	00111	11111	22122	43665	54
Bristol Myers Co.		10	00001	00133	45446	78865	645.55	44
Stevens. J. P					112	35466	67322	24
Storer Broadcasting							32010	24
Indewater 011 Co .	444	43343	33333	33334	45553	36889	88534	64
Irane Co							26777	74
Transwestern Pipeline Co.								4
In Continental Corp.		55567	77899	99999	99989	98764	54455	44
Inarco Industries. Inc.	0				7566	75689	99767	44
Union Oil ot Calitorna	12111	11111	11123	44244	45655	66655	45466	54
Union Tank Car	00000	00101	00010	00000	01000	00001	12112	34
UTD Corp.							555	54
United Frut	01332	22101	11110	00000	11222	32212	23366	64
United Merchants \& Manutacturers			66	55677	77768	76566	57555	54
U S. Pipe and Foundry Co.	66444	45663	33215	44444	43333	47167	75555	54
U. S. Plywood Champion Papers, Inc.				2256	77856	58788	75210	14

TABLE IVg. Risk-Return Class 4

## Allied Kid

Allied Stores Corporation
Allied Supermarkers, inc.
Alumnum Co America
American Chain and Cable Company
American Commercial Lines $\mathrm{Co}_{0}$.
American Crystal Sugar $\mathrm{C}_{0}$.
American Hospital Supply
Amercon Corp.
American News Co. Del.
Conwood Corp.
Amsted industries, inc.
Anderson Clayton
Baker Oil Tools, Inc.
Bath Industries, Inc.
Beatrice Foods Co .
Benelicial finance Co .
Bush Terminal Co.
Campbell Soup Co
Carey (Philip) Mig. Co.
Cluett Peabody \& Co. Inc
Cone Mills Corp.
Contaner Corp.
Crown Zellerbach Corp.
Dan River Mills, Inc.
Dana Corp.
Denver \& Rio Grande Western R.R. Co.
Diamond International Corp.
Eagle-Picher Industries. Co.
Falstaft Brewing Corp.
Fedders Corp.
Federal-Mogul Inc.
Florida Power Corp.
Link Bett
Ford Motor Co .
General American Iransportation Co.
General Portland Cement
General Teiephone \& Electronics Co.
Gerber Products
Gillette Co .
Gimbel Brothers, Inc.
Harshaw Chemical Co.
Hercules. Inc.
Hershey Foods
Holly Sugar Corp.
Houston Lighting \& Power Co.
ideal Basic Industries, Inc.

00000	00000	00001	21100	00090	00000	00121	33
47777	77668	88874	56667	87775	45566	66544	43

2	33542	22221	11122	22213	43222	22455
00	43					
	00001	21111	10101	12233	23545	33




12122	22444	33211	11223	44554	32244	56533	33							
88	78936	67776	44545	68888	464	46211	33							
8654	34544	43						6 6 77977	66665	42223	56676	57654	54456	33
:---	:---	:---	:---	:---	:---	:---								
34110	23													




CLASS 4 (conid)	1935	40	45	50	55	60	65	
International Sali $\mathrm{C}_{0}$	01211	21110	10000	00001	10000	03434	44445	43
Interco. Inc	-	00101	10000	00000	00000	00000	00021	23
Jewel Companies. Inc.	43222	21110	10001	11253	22102	23222	21454	43
- Kellogg Co								53
Kimberily Clark Corp	3	33523	33342	21111	21244	48544	20233	33
Kresge. S.S	31222	23211	11111	00000	00000	00012	21111	23
Lane Bryant		78553	34324	55689	16521	20123	37777	73
Lehman Corp.		11112	22233	23344	43322	23333	33333	33
$P$ Loullard $C_{0}$	45222	21110	00002	33211	00001	12000	11666	53
Loussville Gas and Electuc $\mathrm{Co}_{0}$					00	11000	01345	43
Lykes Corp.							23	33
Madison Fund. Inc							4544	33
Marshall Field and Co.		66666	77656	56676	55544	33355	44312	23
May Depariment Stores	23233	33432	22212	11223	22222	33322	33322	13
Mckesson \& Robbins, Inc.				32212	21111	10100	23233	23
Mercantile Siores Co. Inc.					3235	74432	11223	23
Merritl Chapman and Scotr Corp.					22	21356	57765	43
Mission Development Co.					5	67999	99532	33
National Distillers \& Chemical Co.	75133	22421	11113	33333	22346	77543	33222	33
National Gypsum Co.			657	71788	87766	68755	52443	33
Neisner Bros.	7	78954	45545	53455	34322	21233	23111	23
Chesapeake \& Ohio Ry.	11422	22023	33442	22110	00013	46654	43222	23
Northern Pacific Ry.	13656	66467	78899	99888	89999	99888	87655	33
Pacilic Tin Consolidated Corp.			79	87555	88887	66766	57334	43
Penn Dixie Cement Corp.	799	99988	99999	99975	56455	76888	87656	33
Pennsaull Chemicals Corp.					21211	34355	65434	33
Pepsico. Inc.	33222	22498	99866	32445	46777	87664	54555	33
Petroleum Corp. of America		33344	33333	56544	45677	76656	54444	43
Phelos Dodge	4	44355	55532	44355	44666	78765	54211	13
Phillips Perroleum	26454	43323	33331	11022	34665	67655	54333	33
Pitisburgh \& West Virginia Ralway	34777	88899	99999	99878	77878	78887	79878	63
Potomac Electric					00	00000	00244	33
Ouaker Oars Co.						0000	00011	33
Ranco. Inc.	3						3433	33
Red Owl Stores, Inc.								3
Simmons Co.	77777	77776	66667	66766	65433	33456	57543	43
Sinclair Oil Corp.	68444	43433	22333	44344	56766	67766	54333	33
Sola Basic Industries					0000	10001	11000	23
Southern Co.	6	66565	55689	99999	84232	22212	21333	23
Southern Paciic	01656	66577	88887	77766	71776	76676	54323	33
Stewart Warner Corp.	67777	76566	67777	78877	71788	77655	55454	43
James Talcott	7		223	32211	11011	01123	33554	43
Toledo Edison Co.						0011	01122	33
Union Carbide Corp.	5322	21112	22220	00011	22343	34334	32133	43
United-Greenfield Corp.					455	52444	32000	03
United Park City Mines Co.						99	99987	73
Universal Leaf Tobacco	21	21100	01103	00000	00000	00000	02455	43
Virginia Electric and Power					122	33322	21244	33
Von's Grocery Co.								3
Western Pacilic RR					87686	33567	65433	33
Winn Dixie Stores, Inc.						000	00122	23
Woolworth, F.W.	21111	11010	00003	21210	00000	11133	33444	43

TABLE IVh. Risk-Return Class 3

```
Allied Chemical Corp
Abex
American & Foreign Power
Adams Express
American Natural Gas Co.
American Zinc Co.
Ashland O||& Refining Co
Associated Dry Goods Corp.
Associated Investment
Atchison Topeka & Santa Fe Railway
Balumore Gas & Electric Co.
Bayuk Cigars
Brown Shoe Co..Inc
Bulfalo Forge
Cartiers & General Corp
Caterpillar Tractor Co.
Central III Light Co.
Champion Spark Plug Co.
Cnesapeake Corp. Va
Coiumbia Broadcasting System, Inc.
```

$33211|11012| 22221|10011| 11223|35556 / 76443| 22$
 9999999887 78899 99999 9988 57434 34111 22 $78888877677777667787 / 756444655443222 \mid 22$
$11123|33432| 22$

 $011000000102446431 \mid 2133322$
 110001134422 21333 33212 23323 31212 $22133333220 \mid 144542$

 $4455433100001|10001|$\begin{tabular}{lll}
12 <br>
\hline

 

56565 \& 56666 \& 67777 <br>
55545 \& 55540 \& 53322 \& 44444 \& 322121 \& 12 <br>
\& 32214 \& 6777 \& 77655 \& 42
\end{tabular}

1 221222232222
123478 89774 $322111_{12}^{32}$
214|44334|35552|32346|64544|32

CLASS 3 (conid)	1935	40	45	50	55	60	65	
Commersal Credra $\mathrm{Co}_{0}$	17344	43432	34423	22372	21111	17721	12222	32
Continental Can Cor Inc	44211	10001	12245	64433	33222	23333	43112	12
Continental Motors Corp	77555	55677	66665	88999	99999	98775	56433	32
Cunningham Diug Siores					42221	24222	21000	02
Dayton Power \& Light Co					1101	11010	01111	22
DeViliss Co					1212	45541	11123	32
Shamrock OH\& Gas					55653	43456	55322	22
Distillers Corp Seagrams. Lid			1102	23566	55444	22223	33223	32
Or Pepper Co					5653	43366	56422	22
Dominick Fund. Inc			122	43233	32211	22323	33554	32
Duke Power Co								2
E. DuPont DeNermours \& Co. Inc.	64332	22211	11110	11111	12223	45544	44333	12
Ebasco industries. linc								2
ESB. Inc	12222	22122	22222	23211	11256	88765	65332	02
Federated Depariment Stores. Inc		33422	33335	44544	42223	35333	31223	22
General American Investors		88676	67767	76666	46545	54444	44432	22
General American Oil Co of Texas							665	52
General foods Corp.	100	00010	00000	00110	00000	11112	21344	22
General Malls	0	00000	00000	00000	00000	11123	33443	22
General Motors	54343	44433	34433	22233	33443	45544	43011	12
Glidden Co.	88666	55555	66756	67676	76777	76455	45433	22
Great Atlantic \& Pacitic Teạ Co. Inc.								52
Great Northern Ry. Co.	12677	78766	67776	55555	56667	88787	75422	12
Green Shoe Manulacturing $\mathrm{Co}^{\text {o }}$								2
Hall, W.F. Printing Co.		34686	66654	55554	11100	10001	13343	32
Hammond Corp.							765	42
Helme Producis. Inc.	00000	00000	00002	42100	00000	00000	01233	32
Udylite Corp.					453	44444	33000	12
Indianapolis Power \& Light				65311	00111	00001	02233	22
Inland Steel Co.	33555	56523	22342	21022	34666	77665	66656	42
International Uitities Corp.					1	12578	77322	22
Johns Manville Corp.	65	55534	44443	11123	44332	14344	43333	32
Earl M Jorgensen Co.								32
Keller Industries. Inc.								32
Lone Star Cement Corp.	35577	77754	44424	33332	22335	66554	33333	42
Mcintyre Porcupine Mines. Lid.	01000	00000	00001	00000	01135	76777	77332	22
Melville Shoe Corp.	22	22221	11100	00011	10011	11122	22100	12
Middle South Uuitries					2	12111	11222	12
Mission Corp.			44544	54355	57767	88988	64111	22
Mississippi River Fuel Corp.						4445	44443	32
Missouri Portland Cement Co.							1	12
Montana Power Co.						22112	11322	22
Munsingwear. Inc.	12767	17565	55545	55777	66424	22110	12343	32
G.C. Murphy and Co .			1110	00000	01101	00121	10000	12
National Aviation		6	66776	77666	56677	63555	65321	12
National Starch and Chemical Corp								2
Niagara Share Corp.							76443	32
North American Sugar Industries, Inc.	37999	98789	99998	77643	33366	52222	33433	12
Orange \& Rockland Utillies. Inc.								32
Pacilic Gas and Electric	43211	11000	00012	21100	01101	12212	11122	22
United Gas Corp.						32234	43111	12
Peoples Drug Stores		00111	11111	22211	00000	00000	01333	42
Quaker Stase Oil Reining Corp.			1133	32111	23432	20001	00000	02
Raybestos Manhatran	6	66422	11123	32322	23333	33211	14344	42
Riegel Paper Corp.							8622	12
Rochester Telephone							3	22
South Jersey Gas Co.							44	42
Southern Ralway	13999	99898	99988	88888	88888	88887	75333	22
Southwestern Public Service Co							00011	02
Stone \& Webster	6	66687	78878	87888	78775	42445	55443	32
El Paso Natural Gas			112	21110	01112	32334	43221	12
Tenneco Corp.							21	22
Texas Gas Iiansmission Corp								12
Texas Utulines $\mathrm{Co}_{0}$						3333	42222	12
Timken Roller Bearing	44333	33244	44432	12222	34555	45678	76212	22
Union Electric Co ot Missouri						11	01333	32
Union Pacitic RR	11433	33122	22221	12111	21233	45456	45222	22
United Alsctati Corp		54233	22231	34422	34644	53433	44111	12
Keebler Co	21	11111	11103	33345	42110	00000	00111	22
United Engineering \& Foundry Co			3321	34434	42333	45567	65311	22
Public Service Electic \& Gas Co					10	11111	11111	12
Unued Shoe Machinery							543	22
US \& Forign Secursies	8	88787	78889	99999	99999	98877	663.33	32
United States Gypsum		3232	22214	3111	1022.2	3644	4111	12

CLASS 3 (cont'd)
Walker Hiram Gooderham \& Worrs Lid Warner Co
Wisconsin Electric Pover
Wyandorie Industries. Inc

## TABLE IVi. Risk-Return Class 2

Acme Markeis inc
Allegheny Power Sysiem, Inc
American Electic Power Co . !nc
American International Corp
Amesican Motors Corp.
American Sugar Co iN J.)
American Warer Works Co
Anchor Hocking Glass Corp
Archer Daniels Midand Co.
Arlantic City Electric Co
Ailantic Richtield $\mathrm{Co}_{0}$.
Belding Heminway Co
Beco Industries Corp.
Bond Stores
Borg Warner Corp.
Brooklyn Union Gas
Canadian Breweries. Lid
Canadian Pacific Ry.
Central ill Public Service Co.
Central Southwest Corp.
Cincinnatı Gas \& Electuc
Cleveland Electric Illuminating $\mathrm{C}_{0}$.
Coca Cola
Colgate Palmolive $\mathrm{C}_{0}$
Columbus \& Southern Ohio Electric
Commonwealih Edison Co
Consolidated Edison Co. of New York
Consolidated Laundries Corp.
Dentisis Supply Co.
DiGiorgio Corp.
Empire District Electric Co
Fairmont Foods Co .
Family Finance Corp.
Federal Paper Board
First National Stores, Inc
Gamble Skogmo. Inc.
General Cigar Co. Inc
General Coniract Finance Corp.
Surveyor Fund. Inc
General Public Utilties
Giant Portland Cement Co
Gulf Stares Utilities Co .
lowa Electric Light \& Power $\mathrm{Co}_{0}$.
Kansas City Power \& Light
Kansas Gas \& Electic Co.
Kansas Power \& Light
Peabody Coal Co
Keystone Steel \& Wie Co
Libby 0 wens Ford Glass Co Liggel and Meyers. Inc.

## Maytag Co.

McCrory Corp.
McGregor Doniger. Inc
McQuay Noris Mig. Co
Mesabi Trusi U.BI.
Guif Oil Corp
Missouri Public Service Co
Monsanto Co
Mountan Fuel Supply Company Fuqua industries. Inc

National Biscuir
National City Lines
National Dary Products
National Standard $\mathrm{C}_{0}$
National Sugar Retiring Co
New York State Flectric \& Gas Corp
Newport News Shipbulding \& Dry Dock
Pacitic Telephone \& Telegraph Co
$0|00022| 33323|34333| 21100|10000| 11333 \mid 11$ 77665 65556 67889 99998 64212 23333 33222 11 0000022111111



$21|10010| 00000 \mid 11$
3 3 3334333312 13444 $201135644433321 \mid 21$ 33122 21222 33322 01121 22135 67564 $44200 \mid 01$


 554 44332 | 33325 | 43322 | 22212 | 21121 | 11111 | 11 |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 013 | 21345 | 34435 | 64332 | 12111 | 11 |

 \begin{tabular}{l|l|l|l|r|r|r|r|}
54100 \& 00023 \& 34557 \& 87522 \& 21111 \& 01110 \& 00000 \& 01 <br>
\& \& \& 011 \& 11122 \& 33222 \& 11

 01223 33335 67889 

\hline 88788 \& 79988 \& 98887 \& 66100 \& 11 <br>
322 \& 10111 \& 21
\end{tabular}

11332231122 11 1100000000000000000000 \begin{tabular}{r|r|r|r|r|r|}
0000 \& 12121 \& 1011 \& 2211 \& 11233 \& 01 <br>
01

 

34532 \& 22212 \& 11133 \& 33333 \& 43123 \& 56777 \& 41 <br>
\& \& \& 0000 \& 01100 \& 00022 \& 21

 011000000000111100001111 54211 

1122 \& 22224 \& 43211 \& 11110 \& 00011 \& 00100 \& 11 <br>
\& 2554 \& 33437 \& 64222 \& 11110 \& 01113 \& 10311 \& 11
\end{tabular} 11


$76794444433 ~ 12234 ~ 33323 ~ 77654 ~ 43233 ~ 21$ 00111 11000 $00001|21100| 00000|11000| 00000 \mid 01$ 45888 88753 34569 98865 66442 23236 76554 21



CLASS 2 (conid)	1935	40	45	50	55	60	65	
J C Penner Co		1111	11100	00012	21111	12111	20000	01
Pennsplvatira Power \& Light Co					0111	10110	01222	21
Marquelte Cement Mig Co						2	21100	11
Procter and Gamble Co	1	11100	11000	00000	12253	33100	00234	21
Public Service Co of Colorado					0111	21012	22222	21
Pudic Service Co of Indiana. Inc.						11100	00112	11
Rochester Gas and Electric Corp.						00000	10233	21
Rockwell Standard Corp	7	17876	66541	13354	66668	88771	54321	11
Royal Dutch Pervoleum Co							44111	11
San Diego Gas and Electric Co.							11111	11
Sears. Roebuck \& Co	76543	44332	22212	11122	22211	13223	42334	21
Skelly Ol	57344	32445	66654	34355	66767	88877	54100	01
South Carolina Electric \& Gas					221	21123	32432	11
Southern Calitorna Edison Co.	2100	00010	00001	11110	10111	12110	10012	11
Southern Indiana Gas \& Eiectuc Co						22111	$110!1$	01
Southern Natural Gas				1001	12221	21345	46211	11
Standard Brands	21110	01011	11125	54422	23323	32222	32322	11
Standard Oll Company (Indiana)			22222	11011	22434	67666	54233	11
Beech Nut Lite Savers, Inc.	20000	00000	00000	00000	00010	00111	22012	11
Suburban Propane Gas Co.								1
Sucrest Corp					2212	32333	32000	-
Sunbeam Corporation						44433	32000	01
Texas Eastern Transmission Corp. Torringion $\mathrm{C}_{0}$.								21
Westren Can Corporation							66	31
Unired Corp	5	55355	66899	99999	86500	1111	01111	11
Consumers Power					000	00000	00011	11
U S Lines Co	55767	77689	99998	78776	43434	34455	34100	01
U.S Tobacco	00000	00000	00001	31100	00000	00000	00133	31
Van Raalte Co	31333	34353	34311	12234	32321	12234	22000	01
Wayne Gossard Corp.					4233	123	422	0

## TABLE IVj. Risk-Return Class 1

Abbort laboratories			111	11111	22244	54222	33232 00	10 00
Nabama Gas Corp   Amalgamared Sugar Co						2212	10000	00
Amerada Petoleum Corp.	2011	00222	22233	22255	56643	45867	55355	40
American Bank Note Co	55766	68445	56678	88877	54322	22000	00000	00
American Can Co .	43221	11001	11112	10000	00122	22111	11000	00
American Investment Co .				21100	00011	12120	00101	10
American \& South African Investment								00
American Telephone \& Telegraph Co.	11100	00000	00000	00000	00000	00001	11222	10
Benquet Consolidated Inc.					9	89884	00000	00
Boston Edison							00000	00
CIT. Financial	76433	22222	23334	32322	22222	23210	00112	10
Catiforna Packing Corp.	12444	44324	56676	54333	44444	44432	23232	10
Campbell Red Lake Mines Lid.							00000	00
Carolina Power \& Light Co.					012	24222	21222	10
Central Agurre Sugar Co .	0	00001	11233	33000	00000	00000	12121	00
Central Hudson Gas flectric Corp.					0000	00000	00000	0
Citres Service Co.						7866	54000	00
Coca Cola Botting Co. of New York								10
Columbia Gas System Inc	57766	65444	45578	88866	63422	11111	21000	00
Allied Mills Inc			4321	01111	11133	33222	23211	10
Cuneo Press				43433	33344	54367	76300	00
Detron Edison Co	21000	01110	00000	00000	00000	00000	00001	00
Domes Mines Lid.	11010	00100	00016	64200	01146	54342	10000	00
Duquesne Light Co.						11	21100	00
Equirable Gas $\mathrm{Co}^{\text {a }}$						20111	11000	00
GAC Corp.							11111	10
General Bancshares Corp.							12221	00
General finance Corp.						1210	11201	00
Genescolnc			2	35555	41100	01135	43210	00
Grear Northern Iron Ore Properties	21233	34534	33330	11100	00010	11214	33111	00
Great Western Sugar Co.	24443	32101	11231	1000	01012	10000	011	00

CLASS 1 (cont'd)
Hackensack Water Co
Homestake Mining Co
Idaho Power Co .
Illinous Power Co
Industria Electrica de Mexico S A
International Harvester $\mathrm{Co}_{0}$
Interstate Power Co. lowa llinois Gas \& Electric Co.
lowa Power \& Light Co
Kroger $\mathrm{C}_{0}$
Laclede Gas $\mathrm{Co}_{0}$
Lilly Tulip Cup Corp.
Lockheed Aircratı
Lone Star Gas Corp.
Long Island Lighting Co .
Marathon Oll $\mathrm{Co}_{0}$
Midwest Dil Corp.
Continental $\mathrm{Ol} \mathrm{C}_{\mathrm{C}}$.
Minnesota Enterprises. Inc.
Minnesota Power \& Light
Montana Dakota Utilities $\mathrm{Co}_{\mathrm{o}}$
National Fuel Gas Co.
National Lead Co
National Service Industries. Inc.
National Tea Co.
New England Electic System
Nortolk \& Western Ry
Northern States Power Co.
Oklahoma Gas and Electuc Co.
Oklahoma Natural Gas Co
Outlei $C_{0}$.
Owens- Illinois, Inc.
Pacific Lighting
Panhandle Eastern Pipe Line Co.
Peoples Gas Light \& Coke Co.
Puget Sound Power and Light
Retiable Stores
Sateway Stores
St. Joseph Light and Power
Shell Oill Co.
Shell Transport and Trading N.Y.S.
Mobil Oil Corp.
Southeastern Public Service
Ohio Edison Co.
North American Rockwell Corp.
Standard Oil Co. of Catitornia
Standard Oil Company (New Jersey)
Consolidated Natural Gas Co.
Standard Oil of Ohio
Startent. S.
Sterchi Bros. Stores
Sun Oil
Sunray DX Oill Co.
Texaco. Inc.
LGI Corp.
Philadelpha Electric
Nizgara Mohawi Powet
U. S. Playing Card $\mathrm{Co}_{0}$.

Utah Power \& Light
Washington Gas Light
Washington Water Power Co.
Waukesha Motor
Wheeling and Lake Erie Ry.
Wisconsin Public Service
Woodward Corp.
William Wrigley. Jr. Company

1935	40	$' 45$	50	55	$' 60$	$' 65$
000	00000	00000	00000	00000	00000	00000 ( C




32011	00222	22110	00122	32212	36444	42433
11	11011	00112	20000	00000	00000	00000
			2	11211	33344	33100




12111	11112	21223	32001	12344	46655	42000


22100	00012	22223	21111	12333	46644	32000
11	21111	01000	00011			

4 4 4435444541 |  | 0122 | 34566 | 76545 | 43000 |
| ---: | ---: | ---: | ---: | ---: |
| 33122 | 24352 | 00001 | 10000 |  |
|  | 3211 | 00000 | 00000 |  |

21000	00001	11110	10000	01121	11100	00000
		77	64555	78777	54000	
24222	22223	2223	10001	13444	56645	44222


24222	22223	22231	10001	13444	56645	44222
1	1111	01124	54222	21100	00001	22221


00	00000	01011	01011
21111	00001		
21211	11010	00000	01112

1	21211	11010	00000	01112
13223	32100			
32000	00000	00011	12221	

	50111					
00000	00001	5555	66633	33356	55554	33111
000110	10000	00000	00000	00000		
0000				00000	00111	
00001	23333	33360	77883	77311		
0000	00000	00000	00000			

## Footnotes

1. This paper differs from that of Black, Jensen and Scholes (BJS) in a number of respects. The differences will be summarized here, although a full understanding may require a prior reading of the remainder of this paper. First, BJS require only 24 months of data to estimate a security's risk-return class (although they use up to 60 if available); we require 60 months. Second, BJS use beta to determine risk-return classes, while we use market sensitivity. Third, BJS measure performance in terms of monthly returns; we use annual values (both because an annual holding period seems more consistent with an annual review of risk-return classes and because annual rebalancing involves smaller transactions costs than monthly rebalancing of the portfolios). Finally, we report geometric means as well as arithmetic means for those interested in long-run performance and provide data concerning stability of risk-return classes for those interested in the characteristics of individual securities.
2. For a derivation of this relationship, see Sharpe (7).
3. In general, the value of beta describes the majority of the fluctuations in returns for these portfolios. The coefficients of determination for the regressions of portfolio return on market return were:

Strategy $\quad$ Coefficient of Determination

10	.94
9	.94
8	.95
7	.95
6	.98
4	.98
3	.92
2	.94
1	.88

4. This relationship can be derived from a model in which it is impossible to borrow without limit at the same rate of interest at which one can lend. If the portfolio used as a market surrogate is riskier than the optimal combination of risky securities for one who plans to lend part of his funds, the result follows directly as long as the market surrogate is on the efficient frontier. The true "market portfolio" (which includes all assets -- e.g., corporate bonds, real estate, etc.) may well be less risky than the typical index of New York Stock Exchange common stocks such as that used in this study. It is entirely possible that if a better surrogate for the market portfolio could be obtained, the relationship between average return and beta would intercept the average return axis very near the interest rate of safe investments.
5. The sum of the figures in a row in either Table I or Table II will be less than 1 ; the difference represents cases in which the security could not be classified in the later period due to lack of adequate data.

## References

1. Black, Fischer, Michael C. Jensen, and Myron Scholes, "The Capital Asset Pricing Model: Some Empirical Tests," in Studies in the Theory of Capital Markets, M. C. Jensen, ed. (Praeger Publishing, forthcoming, 1971).
2. Fama, Eugene F., "Risk, Return and Equilibrium: Some Clarifying Comments," Journal of Finance, March 1968 (pp. 29-40).
3. Lintner, Joh, "The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets," Review of Economics and Statistics, February 1965, pp. 13-37.
4. Markowitz, Harry, "Portfolio Selection," Journal of Finance, March, 1952, pp. 77-91
5. Mossin, Jan, "Equilibrium in a Capital Asset Market," Econometrica, October 1966, pp. 768-783.
6. Sharpe, William F., "Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk," Journal of Finance, September 1964, pp. 425-442.
7. Sharpe, William F., Portfolio Theory and Capital Markets, McGraw-Hill, 1970.
8. Tobin, James, "Liquidity Preference as Behavior Towards Risk," Review of Economic Studies, February 1958, pp. 65-86.

[^0]:    *With price the demand relationship is continuous. With promotion, however, the demand rises with promotion expense up to a maximum of $\$ 1,000,000$ expense per period, whereupon the promotion effect saturates and no further increase in demand results from increased promotional outlay.

[^1]:    ALLIED CHEMICAL
    ALUMINUM COMPANY OF AMERICA
    AMERICAN BRANDS
    AMERICAN CAN COMPANY
    AmERICAN TELEPHONE AND TELEGRAPH
    ANACONDA
    BETHLEHEM STEEL
    CHRYSLER CORPORATION
    DUPONT (E.I.) DE NEMOURS
    EASTMAN KODAK
    GENERAL ELECTRIC
    GENERAL FOODS
    GENERAL MOTORS
    GOODYEAR TIRE AND RUBBER
    INTERNATIONAL HARVESTER
    INTERNATIONAL NICKEL COMPANY OF CANADA
    INTERNATIONAL PAPER COMPANY
    JOHNS-MANVILLE CORPORATION
    OWENS-ILLINOIS
    PROCTER AND GAMBLE
    SEARS ROEBUCK
    STANDARD OIL OF CALIFORNIA
    STANDARD OIL OF NEW JERSEY
    SWIFT AND COMPANY
    TEXACO
    UNION CARBIDE
    UNITED AIRCRAFT
    U.S. STEEL.

    WESTINGHOUSE ELECTRIC
    WOOLWORTH (F.W.) COMPANY

