HP 2000 SERIES CONTRIBUTED LIBRARY

HEWLETT hp PACKARD

TIME-SHARED BASIC/2000 PROGRAM DOCUMENTATION

VOLUME IV

(800) EDUCATION

TIME-SHARED BASIC/2000 CONTRIBUTED LIBRARY HANDB00K

VOLUME IV
(800) EDUCATION

Abstract

The Hewlett-Packard Company makes no warranty, expressed or implied, and assumes no responsibility in connection with the operation of the contributed program material attached hereto.

CLASSIFICATION CODE CATEGORY

(Not all categories have programs. Please refer to the INDEX
to HP BASIC Program Library for available programs in HP BASIC)

DATA HANOLING (VOLUME I)

```
EDITING
INFORMATION STORAGE AND RETRIEVAL
TAALE HANDLING
CHARACTER/SYMBOL MANIPULATION
CODE/RADIX CONVERSION
DUPLICATION
SORTING ANO MERGING
DATA HANDLING UTILITIES
MEDIA CONVERSION
FILE MANAGEMENT
SPECIAL FORMAT DATA TRANSFER
PLOT ROUTINES IN HP BASIC
```

```
OAI TRACING
2a? INSTRUMENT TFST
Pal DISCIDRUM EQUIPMENT TEST
2G4 MAGNETIC TAPE EOUIPMENT TEST
2AS GRAPMIC FIJUIPMENT TEST
2AG MEMORY SEARCH AND DISPLAY
2a7 DUMPING
?GR CMRE STORAGE TEST
2A9 CENTRAL PROCESSING UNIT TEST
2.1月 RREAK POINTS
211 DERUGGING AIDS
212 PROGRAMMING AIDS
213 PAPER TAPE EDUIPMENT TEST
214 PIJNCH CARD EDIJIPMENT TEST
215 PRINTER EOUIPMENT TEST
216 A/D - D/A EQUIPMENT TFST
?:7 TELECSMMUNICATIONS EOUIPMENT TEST
21R SPFCIAL DEVICEE EQUIPMENT TEST
```

MATH AND NUMERICAL ANALYSIS (VOLUME II)

```
3A1 MATHEMATICS, GENERAL
3A2 EXTENDEN-PRECISION ARITHMETIC
3@3 COMPLEX ARITHMETIC
3a4 BCDIASCII ARITHMETIC
jaS fonlEAN alGERRA
3A6 FINNCTIONS, COMPUTATION DF
3A7 INTERPOLATION/EXTRAPOLATION
3@9 CURVE FITTING
3IA NUMERICAL INTEGRATION
311 POLYNOMIALS AND POLYNOMIAL EOULTIONS
31? MATRIX OPERATIONS
313 EIGENUALIIES AND EIGENVECTORS
314 SYSTEMS OF LINEAR EOUATIONS
315 SYSTEMS OF NON-LINEAR EDUATIONS
316 INTEGRAL TRANSFIRMS
317 NUMERICAL DIFFERENTIATION
3IR ORDINARY DIFFERENTIAL EOUATIONS
319 PARTIAL DIFFERENTIAL EQUATIONS
```

PROBABILITY AND STATISTICS (VOLUME II)

```
4G1 UNIVARIATE ANO MULTIVARIATE PARAMETKIC STATISTICS
4A? TIME SERIES ANALYSIS
AR3 DISCRIMINANT ANALYSIS
AA3 DISCRIMINANT ANALYSIS
4G4 RFGRESSINN ANALYSIS
4AS RANDON NUMAER GENERATORS
4G6 PRORARILITY DISTRIRIJTION SAMPLINC
4Q7 NON-PARAMETRIC STATISTICS
qAE STATISTICS, GENERAL
409 CORRELATION ANALYSIS
AIG ANALYSIS OF VARIANCE AND COVARIANCE
4|I FACTOR ANALYSIS
41? SCALINT,
4IJ GENERAL PRIRARILITY
```

6 A2 PERT
© 13 CRITICAL PATH ANALYSIS
6月4 ORTIMITATINN PROGRAMS
GAS LINEAR PROGRAMMING,
6 66 DISCRETE SYSTEMS SIMULATION
6A7 CONTINUNUS SYSTEMS SIMULATION
GAR FORECASTING TECHNIDUES
619 DYNAMIC PROGRAMMING;

7aI JOR REPMRTING
792 DUAL.ITY ASSURANCE PERFORMANCE ANALYSIS
7ą TUAL.ITY ASSURANCE PERFORMA
793 QUALITY ASSURANCE TFSTING
$\begin{array}{ll}793 & \text { OUALITY ASSURANCE } \\ 794 & \text { NUMERICAL CONTROL. }\end{array}$
794 NUMERICAL CONTROL
ThS RILL OF MATERIALS
766 PAYROLL ACCOUNTING,
707 WORK-IN-PROCESS CONTROL
TaR INVENTORY ANALYSIS
7a9 ACCOUNTS PAYARLE
710 SALES FORECASTING
ACCINUNTS RECEIVARLE
INVESTMENT ANALYSIS
ECONOMIC ANALYSIS
QUDGETING PROGRAM
RUDGETING PRTCRAMS
BUSINESS INFORMATION SYSTEMS
RUSINESS SERVICES

EDUCATION (VOLUME IV)

```
801 MATHEMATICS (EDUCATION
810 PROGRAMMING AND COMPUTER SCIENCE (EDUCATION)
820 ENGINEERING (EDUCATION)
830 ECONOMICS (EDUCATION)
833 SCIENCE (EDUCATION)
8SO FINE ARTS (EDUCATION)
850 FINE ARTS (EDUCATION)
863 HISTORY (EDUCATION)
878 ENGLISH (EDUCATION)
871 FOREIGN LANGUAGES (EDUCATION)
872 READING (EDUCATION)
880 RUSINESS (EDUCATION)
88S EDUCATIONAL ADMINISTRATION
89a VOCATIONAL (EDUIIATION)
UNCLASSIFIED (VOLUME V)
OA3 TIAMFS
```

900

SCientific and engineering applications (volume il)

```
SAD GIFOPHYSICS HEHAVINRAL SCIFNCFSS
SAP GFOPHYSICS
sa3 GFOLOGY
SOA OCEANOGRAPHY
```


GENERAL

Hewlett-Packard is a major designer and manufacturer of electronics for measurement, analysis and computation. HP customers in science, industry, medicine, and education know and appreciate Hewlett-Packard's reputation for technical excellence, quality, and reliability.

Over 170 world-wide offices sell and service the products of 21 manufacturing facilities located in the United States, Europe, and the Far East.

THE HP 2000 CONTRIBUTED LIBRARY

Hewlett-Packard makes available to all users a wide variety of computer programs through the HP 2000 Contributed Library.

Before writing a program for your particular application, scan the list of contributed programs. (A complete Index of contributed programs is available at your local HP sales office). You may be able to use these programs without modification, or as a starting point for developing your own special-purpose software.

The Contributed Library collects, indexes and distributes programs submitted by HP users throughout the world. These programs range from complex data communications packages to educational games, and all are classified according to the functions they perform.

2000 BASIC

Programs written in HP 2000 BASIC are documented in 5 volumes, plus additional user manuals for certain individual programs.

2000 NON-BASIC

Programs written for the HP 2000 series computers in FORTRAN, ALGOL, HP Assembly language, etc. are abstracted in the HP Program Catalog available from your local HP sales office. This catalog contains a number of programs for use with HP Time-Sharing systems, providing conversion capabilities, diagnostics, etc.

NEW ORGANIZATION OF LIBRARY

Because of the rapid growth of library contributions, it has been necessary to place a new emphasis on including only programs of very widespread usefulness. A Program Review Committee screens new submittals to determine this particular feature. Also, a number of programs have been purged from the library, where it was decided that a widespread application did not exist. You may elect to retain the documentation or software for one of these programs; however, HP will not be reprinting or updating them.

The documentation for BASIC Library programs has been completely reprinted and reorganized. There are five volumes available, and programs are arranged alphabetically, by calling NAMe, within each major category.

Volume I	$\begin{aligned} & (100) \\ & (200) \end{aligned}$	DATA HANDLING TESTING, DEBUGGING AND PROGRAMMING AIDS
Volume II	$\begin{aligned} & (300) \\ & (400) \\ & (500) \end{aligned}$	MATH AND NUMERICAL ANALYSIS PROBABILITY AND STATISTICS SCIENTIFIC AND ENGINEERING APPLICATIONS
Volume II	(600) (700)	MANAGEMENT SCIENCES AND OPERATIONS RESEARCH BUSINESS AND MANUFACTURING APPLICATIONS

Volume IV (800) EDUCATION
Volume V (900) MISCELLANEOUS (GAMES) **
** Plotting routines previously classified under 904 are now found in Volume I under DATA HANDLING. This leaves Volume V exclusively for GAMES.

ORDERING INFORMATION

Contact your local HP sales office for ordering information of contributed software. Programs are available individually on paper tape, or collectively, on magnetic tape. Documentation is provided in the 5 volumes of BASIC Handbooks, and in some cases additional user manuals and classroom supplementary materials are available. (See list of Supplementary Documentation).

DOCUMENTATION

Volume I HP 36000-91001 HP BASIC Program Library
$(100,200)$

SOFTWARE (HP 2000C'/F MAG TAPE DUMP)

* HP 36000-10001 HP BASIC Contributed Software $(100,200)$
* HP 36000-10002 HP BASIC Contributed Software (300,400,500)
* HP 36000-10003 HP BASIC Contributed Software $(600,700)$
* HP 36000-10004 HP BASIC Contributed Software (800)
* HP 36000-10005 HP BASIC Contributed Software (900) (GAMES)

[^0]
SUPPLEMENTARY DOCUMENTATION

FINDIT Users Manual	36250, Option D00
CTC1 Documentation	36210, Option D00
CTC2 Documentation	36211, Option D00
CTC3 Documentation	36212, Option D00
CTC4 Documentation	36213, Option D00
CTC5 Documentation	36214, Option D00
CTC6 Documentation	36638, Option D00
PILOT Users Manual	$5951-5660$
COBOL/2000 Primer	$5951-5664$
IDA	$5951-5606$
GRAZE (Student Manual)	$5951-5653$
(Teacher's Guide)	$5951-5654$
(Classroom Set)	$5951-5655$
CASE1	$5951-5661$
CASE2	$5951-5662$

UPDATES

The BASIC Library will be updated every 6 months. An addendum is printed, containing all new and revised programs in loose-leaf, 3 -hole punched format to be easily added to your handbooks. A new Index is also published at this time to announce the release of new addenda and provide a complete updated list of library programs. Additions and revisions are flagged for your reference. Again, contact your local HP sales office to order addenda or a new Index.

SYSTEMS SPECIFICATIONS

Library programs have been collected over a period of years, and some of the earlier programs were written for a "single terminal" BASIC system, or an early version of the HP 2000 series Time-Share systems.
The chart below lists varying system features. In many cases slight modifications in coding will allow a program to RUN on systems other than the one for which it was originally written. The Index listing all Library programs indicates system compatibility for individual programs.

Progem foriver	2000n	20008	2000 C	20006	
man mum nougum s.e	S100 worch	\$100 worth	10000 wo \%s	1180 w.r.s.	10000 main
man.mum Number - 5	8	\bullet	16	,	16
	178	178	12761	4	(26)
Nasimum Numben at Words/由ecerd	0	\cdots	236	1/8	46
$\begin{gathered} \text { Pioveramesebie } \\ \text { functione } \\ \text { TMEE } \end{gathered}$		*	*	\times	*
enter		\times	\times		*
сомmon		\wedge	\times	\times	-
cmain.		Cram Nome	Cherr SName Staterment No \times	Chain sName	Chain sheme Slaternet i No
PAINT USING ITMAC.E			\times		*
bak					\times
Assicn			\times		*
$\begin{aligned} & \text { Restantalle } \\ & \text { and } \end{aligned}$			*	,	*
space			\times		*
une			\times		\times

ERRORS IN CONTRIBUTED SOFTWARE

Every HP BASIC Program included in the Contributed Library is checked by HP personnel and verified for accuracy with the sample RUN submitted. However, it is impractical to test programs under all circumstances, and HP does not assume responsibility for errors in contributed software. If you do encounter errors, please report them to
the HP Contributed Library on the Error Report form supplied with this publication.

RELATED INFORMATION

An active Educational Users' Group at HP invites inquiries. Also, Hewlett-Packard offers a number of supported programs in Education Administration and Instruction. For more information on these activities, contact the Education Marketing Department, Hewlett-Packard Company, 11000 Wolfe Road, Cupertino, California 95014.
-
There are a number of manuals and documents relating to HP 2000 series Time-Sharing Systems that may be useful to you:

LANGUAGE MANUALS:

A Guide to HP Educational Basic (02116-91773)
HP BASIC (02116-9077)
2000F: Time-Shared BASIC Programmers' Guide (02000-900

OPERATING SYSTEM MANUALS:

2000F: Time-Shared BASIC Operator's Guide (02000-90074)

EDUCATIONAL APPLICATIONS MANUALS:

2000C/2000F System Operator Instructions for Educational Application (02000-90046)
2000C/2000F Instructional Management Facility and Instructional Dialogue Facility-Proctors Manual (02000-90047

2000C/2000F Mathematics Drill and Practice ProgramProctors Manual (02000-90051)

2000C/2000F Instructional Dialogue Facility-Authors Manual (02000-90055)
2000C/2000F IDF Author's Pocket Guide (02000-90076)
2000C/2000F Mathematics Drill and Practice ProgramTeachers Handbook (02000-90052)
COPYFL (02000-90032)
EDCALC (02000-90033)
Integer to String (02000-90035)
Date and Time (02000-90036)
2000C/2000F Introduction to Mathematics Drill and Practice (02000-90050)
2000C/2000F Mathematics Drill and Practice Curriculum Guide (02000-90053)

Course Developers' Manual for IDF-1 and IMF-1 (02000-9006
Upshift (02000-90037)
Character Removal (02000-90038)
Key Word Search (02000-90039)
Downshift (02000-90040)
String Match with "Don't Cares" (02000-90041)
String to Number (02000-90042)
Student Response Analysis (02000-90043)
The preceding publications are available at nominal cost through your local HP sales office.

VOLUME IV
 CONTENTS (Continued)

VOLUME IV
 CONTENTS

VOLUME IV
 CONTENTS (Continued)

VOLUME IV
 CONTENTS (Continued)

VOLUME IV
 CONTENTS (Continued)

VOLUME IV CONTENTS (Continued)

860 SOCIAL SCIENCE (EDUCATION)
NAME TITLE

BALANC:TRADE AND PAYMENT BALANCES BANK : SOLVES FINANCIAL PROBLEMS CHARGE:CHARGE ACCOUNT SIMULATION

PROGRAM
NUMBER

CONSMP: DEPRESSION/EQUILIBRIUM
3604

ELECT : CAMPAIGN STRATEGY AND ELECTIONS
INQUIR: SOCIAL SCIENCE INQUIRY PACKAGE

POLICY:STUDENTS FORMULATE NATIONAL POLICY POLSYS: SIMULATION OF CITY COUNCIL
PYRMID: BUILD A PYRAMID
SAP :SURVEY ANALYSIS PROGRAM
STOCK :STOCK MARKET SIMULATION
36888-18001
36649A
36640B
36888-18013
3684 3A
36331A
870 ENGLISH (EDUCATION)

YOCAB : CAI IN WORD USAGE
36880 A
871 FOREIGN LANGUAGES (EDUCATION)

CARLOS: COMPUTER-ASSISTED REVIEW LESSONS ON SYNTAX FOR SPANISH II

880 BUSINESS (EDUCATION)

ATG : COMPUTER ORIENTED ACCOUNTING INTERACTIVE VERSION
BNKSIM:SIMULATES ONE YEAR'S DEPOSIT AND WITHDRAWAL ACTIVITIES OF A SMALL BANK

GSPMG : STANFORD PORTFOLIO MANAGEMENT GAME
LABOR : LABOR/MANAGEMENT BARGAINING

36888-18032

36713A

36502A
36233A

VOLUME IV CONTENTS (Continued)

HEWLETT-PACKARD SOFTWARE CENTER

DOCUMENTATION FORM FOR CONTRIBUTED BASIC PROGRAMS

title
PROGRAM NAME
CLASSIFICATION CODE

SELECT UP TO FOUR CROSS REFERENCE WORDS FROM CROSS REFERENCE INDEX
DESCRIPTION 1) Program 1) Subroutine
(Please include the specific application of your program - i.e., how do you use it, or recommend its application.)

USER INSTRUCTIONS

If possible, please include 'INSTRUCTIONS' as an option in your program. (Define the inputs requested by the program or subroutine. List the files used, and the data format of each. List the maximum file size. If applicable, include algorithms used.)

NOTE ON SUBROUTINES: The following conventions have been adopted for stand-alone subroutines. Variable names should begin with Z. When more than 10 variables are used, Z, . . Z9, list the other variable names under Special Considerations. Subroutine line number should begin at 9000 .

\qquad -

Note: Does this program use the BRK function? 1) Yes 1) No

SPECIAL CONSIDERATIONS

List any special hardware requirements, subroutine variable names not beginning with a ' Z ', accuracy limitations, literature references, etc.

CONTRIBUTOR'S NAME AND ORGANIZATION ADDRESS

TO BE PUBLISHED? () yes () no

DISCLAIMER

To the best of my knowledge this con tributed program is free of any proprietary information and I hereby agree that HP may reproduce, publish, and use it, and authorize others to do so without liability of any kind.
 \qquad

Attach a sample run including input data and resulting TTY output data. Send a paper tape, or whenever possible, please send program on 2000C/F dump tape, ID B500.

Do you use this program for instructional purposes?
What age level are the students?
Please briefly describe the course, and topics within the course.

ERROR REPORT FORM

(HP BASIC CONTRIBUTED)

Comment futly on any software "bugs" in the space provided and enclose any teleprinter output that may be useful in defining the probiem. A copy will be forwarded to the contributor. A reply will be returned to the person who submits this repart. Send completed report to:

Hewlett-Packard Company
HP Basic Users' Library
11000 Wolfe Road
Cupertino, California 95014

Submitted By

Organization Name

Address

City, State, Zip

Phone

Has software been modified by user?
NO
YES
(if YES, explain below)

DITLE: \quad| BASIC ALGEBRA DRILL |
| :--- |
| This program provides drill in elementary algebraic equations. Any one |
| of four different types of equations may be chosen and the user may |
| elect to give himself a limited amount of time which he may specify |
| to respond to each problem. A session lasts until the user gets twenty |
| correct answers. A summary is printed at the end of the run. |

RUN

RUN
ALGIE

```
THIS IS A COMPUTER-ASSISTED DRILL IN BASIC ALGEBRA.
TO STOP PRACTICE BEFORE A SESSION IS COMPLETE, HOLD THE
CTRL KEY DOWN, HIT THE LETTER C, AND RETURN.
A SESSION LASTS UNTIL YOU GET 2O CORRECT ANSWERS.
ALL ANSWERS ARE POSITIVE OR NEGATIVE INTEGERS.
```

WHAT'S YOUR NAME?BILL JAROSZ
TYPE 1 FOR PROBLEMS OF THE FORM: $3 X=15$
2 FOR PROBLEMS OF THE FORM: $3 X+5=20$
3 FOR PROBLEMS OF THE FORM: $2(x+4)=12$
4 FOR PROBLEMS OF THE FORM: $2(X-3)+4(X-7)=-10$
WHICH DO YOU WANTTA
DO YOU WANT TO TIME YOURSELF ($1=Y E S, 0=N O) ? 1$
HOW MANY SECONDS PER ANSWER?30

$2(Y-9)+3(Y-7)=$	-44	$Y=-1$
$1(J-4)+3(J+1)=$	35	$J=9$
$1(Z-6)-4(Z+3)=$	6	$Z=-8$
$1(C+1)-3(C+6)=$	-9	$C=-4$
$3(Z-6)+5(Z-1)=$	9	$Z=4$
$6(X+4)+8(X-9)=$	22	$X=4$
SORRY, TIME S UP. LET S TRY ANOTHER PROBLEM.		
$9(C+4)+8(C+4)=102$	$C=2$	
$3(Z-3)-2(Z-1)=-10$	$Z=-3$	
$1(B-9)+1(B-2)=$	1	$B=6$
$1(J-7)+4(J+1)=-18$	$J=-3$	
$B(K-1)+7(K-1)=-105$	$K=-6$	

YOU'RE MALF WAY THROUGM NOW.

```
3(B-6)+6(B-7)=-33 B=
SORRY, TIME'S UP. LET'S TRY ANOTHER PROBLEM.
5(C-1)-7(C+5)=-28
2(J-7)+7(J-6)= 7 J=
SORRY, TIME'S UP. LET'S TRY ANOTHER PROBLEM.
6(C+8)-9(C-3)= 63 C=
SORRY, TIME'S UP. LET'S TRY ANOTHER PROBLEM.
5(Z+2)-4(Z-6)= 41 Z=7
8(C+2)-7(C+7)= -42 C=75
YOUR ANSWER IS WRONG. TRY IT AGAIN. -75
YOUR ANSWER 1S STILL WRONG. LET'S TRY ANOTHER PROBLEM.
8(C-9)+2(C-3)= -58 C=2
1(B-7)+2(B-3)= -28 B=-5
4(U+2)-2(U+5)= 16 U=9
7(x+5)-6(x+6)= 7 X=8
5(W-3)+9(V-6)=-181 W=-8
2(B+1)-1(B+7)= -4 B=-1
YOUR ANSWER IS URONG. TRY IT AGAIN. I
THAT'S RIGHT.
YOU ONLY NEED ONE MORE CORRECT ANSWER.
```

```
7(z+1)+9(z+9)=232
```

7(z+1)+9(z+9)=232
Z=9
Z=9
BILL JAROSZ
YOU TRIED 25 PROBLEMS.
I9 UERE CORRECT ON THE FIRST TRY.
I UAS CORRECT ON THE SECOND TRY.
I UAS NOT ANSWERED CORRECTLY ON EITMER TRY.
YOU GAVE YOURSELF 3O SECONDS TO ANSWER EACH QUESTION.
YOU RAN OUT OF TIME T TIMES.
YOUR TOTAL TIME VAS 9 MINUTES AND 45 SECONDS.
DONE

```
TITLE:
DESCRIPTION:
INSTRUCTIONS:
ACKNOWLEDGEMENTS: \begin{tabular}{l} 
COMPUTER-AUGMENTED CALCULUS TOPICS (PROJECT SOLO) \\
This program uses Euler's method (rectangles) to approximate the area of \\
any specified polynomial of the form \\
\(Y=A X^{3}+B X^{2}+C X+D\) \\
over any specified interval on the X-axis.
\end{tabular}
University of Pittsburgh

Project Solo
```

AREA, Page ?

```

\section*{RUN}

RUN
AREA
this program computes approximations to the area BOUNDED BY THE X-AXIS AND THE GRAPH OF ANY POLYNOMIAL FUNCTION OF DEGREE THREE OR LESS OUER AN INTERUAL OF the X-aXIS. THE METHOD USED TO APPROXIMATE THE AREA
IS TO BUILD RECTANGLES WHOSE SUM WILL BE AN APPROXIMATION
to the area we are trying to find.
the polynomial function is of the form
```

Y=A*X+3 + B*X+2 + C*X + D.

```
YOU CAN GIVE ANY UALUES (INCLUDING ©) TO A,B,C, AND D.
OK., ASSIGN NUMERICAL VALUES TO A, B, C, AND D.
\(A=? \square\)
\(B=? 1\)
\(C=? 0\)
\(D=? 0\)
SELECT AN INTERVAL (R,S) ON THE X-AXIS
BY ASSIGNING VALUES TO R AND \(S\).
\(R=\) ? 0
\(\mathrm{S}=\) ? 2
HOW MANY RECTANGLES DO YOU WANT TO BUILD ON [R,S]?
\(\mathrm{N}=\) ? 4

THE FUNCTION IS

THE APPROXIMATION TO THE AREA 15 ***** 1.75 *****
PLEASE SELECT OPTION 1, 2, 3, OR 4. YOUR OPTION?1
HOW MANY RECTANGLES DO YOU WANT TO BUILD ON [R,S]?
\(N=? 256\)

THE APPROXIMATION TO THE AREA IS ***** \(2.65106 \quad\) *****
PLEASE SELECT OPTION 1, 2, 3, OR A. YOUR OPTION? 2
SELECT AN INTERUAL \((R, S)\) ON THE X-AXIS
BY ASSIGNING UALUES TO R AND \(S\).
\(R=?-2\)
S=?2
HOW MANY RECTANGLES DO YOU WANT TO BUILD ON \([R, S]\) ?
\(N=\) ? 512
N MUST BE A POSITIUE WHOLE NUMBER
LESS THAN 50J. TRY AGAIN.
HOW MANY RECTANGLES DO YOU WANT TO BUILD ON [R,S]?
\(N=? 256\)
THE INTERUAL IS [-2 , 2 ].
THE NUMBER OF RECTANGLES IS \(256^{\circ}\).
THE FUNCTION IS
\(0 \quad x+3+1 \quad x+2+0 \quad x+0\) -
THE APPROXIMATION TO THE AREA IS ***** 5.3335
```

PLEASE SELECT OPTION 1, 2, 3, OR 4. YOUR OPTIONT3
OK., ASSIGN NUMERICAL UALUES TO A, B, C, AND D.
A=?5
B=7-3.5
C=?8.111
D=?0.01
SELECT AN INTERVAL (R,S) ON THE X-AXIS
BY ASSIGNING VALUES TO R AND S.
R=?-2
S=?2
HOW MANY RECTANGLES DO YOU WANT TO BUILD ON [R,S)?
N=?256
THE INTERVAL IS [-2 , 2].
THE NUMBER OF RECTANGLES IS 256 .
THE FUNCTION IS
5 Xi3 + -3.5 X+2 + 8.1111 X + .0!
THE APPROXIMATION TO THE AREA IS ***** 72.6652 *****
PLEASE SELECT OPTION 1, 2, 3, OR 4. YOUR OPTION?4
DONE

```

```

RUN
RUN
BASE
THIS PROGRAM IS A BASE CONVERTER
IT CONVERTS A NUMBER IN A BASE 10 OR LESS
INTO A GIVEN BASE (IO OR LESS)
ENTER THE NUMBERT256
ENTER ITS BASE?IO
ENTER DESIRED BASE?8
THE NUMBER 256 IN BASE 8 IS 400
ENTER THE NUMBER?64
ENTER ITS BASE?ID
ENTER DESIRED BASE?2
THE NUMBER 64 IN BASE 2 IS 1.00000E+06
ENTER THE NUMBER?400
ENTER ITS BASE?8
ENTER DESIRED BASE?10
THE NUMBER 400 IN BASE 10 IS 256
ENTER THE NUMBER?1.00000E+06
ENTER ITS BASE?2
ENTER DESIRED BASE?I0
THE NUMBER 1.00000E+06 IN BASE 10 IS 64
ENTER THE NUMBER?10,249
EXTRA INPUT - WARNING ONLY
ENTER ITS BASE?10
ENTER DESIRED BASE?6
THE NUMBER 10 IN BASE 6 IS 14
ENTER THE NUMBER?18249
ENTER ITS BASE?IO
ENTER DESIRED RASE?G
THE NUMBER 10249 IN BASE 6 IS 115241.
ENTER THE NUMBER?1:IS241
ENTER 1TS BASE?6
ENTER DESIRED BASE?10
THE NUMBER 1152A1. IN BASE 10 IS 10249
ENTER THE NUMBER?
DONE

```

```

BISQAR, Page 2

```
```

RUN
RUN
BISQAR
SQUARING BINOMIALS
DO YOU WANT DIRECTIONSTYEES--S
YOU ARE GOING TO PRACTICE SQUARING BINOMIALS OF THE FORM
A*X + B. IN EACH CASE YOUR ANSUER UILL. BE A TRI-
NOMIAL OF`THE FORM P\#XP2 + Q*X + R. WHEN I ASK FOR YOUR
ANSWER, YOU SHOULD TYPE IN THE VALUES OF P,Q,AND R SEPAR-
ATED BY COMMAS. AFTER YOU HAVE TYPED IN 'R' YOU SHOULD HIT
THE 'RETURN' KEY. NOTE THAT YOU ARE ONLY TYPING IN THE
COEFFICIENTS OF THE ANSUER. YOU WILL BE ASKED TO DO FIVE
PROBLEMS AND THEN YOU WILL BE TOLD HOW WELL YOU DID.
NO. 1 :
WHAT IS THE SQUARE OF 3 *X + 1
79,6,1
NO. 2 :
WHAT IS THE SQUARE OF -l| *X + l
1100,-20;1
NO. 3 \&
WHAT IS THE SQUARE OF 16 \#X + 2
?100,40.4
NO. 4 %
WHAT IS THE SQUARE OF 5 \#X + 1
?25,5,1
NO. 5 :
WHAT IS THE SQUARE OF -9 *X + -9
?81,162.81
YOU GOT 4 OUT OF 5 CORRECT. YOU MISSED THE FOLLOHING:
NO. 4
IT TOOK YOU 2 MINUTES.
CORRECT YOUR ERRORS ON THYS PAPER AND TURN IT IN FOR
CREDIT. MAYBE NEXT TIME YOU WILL GET IGEZ. BYEI
DONE

```
\begin{tabular}{|c|c|}
\hline TITLE: & COMPUTER ASSISTED ARITHMETIC DRILL CADAII \\
\hline DESCRIPTION: & These programs give students drill problems in the four operations of arithmetic. All problems have integer answers. All problems of one drill session are of the same operation. The program stores the raw score data from a drill session in a record for up to twenty five students. Record management is accomplished by using a special program designed for this purpose. \\
\hline \multirow[t]{9}{*}{INSTRUCTIONS: -} & \begin{tabular}{l}
To use the program for the first time open a file, (CRE-CADAIF, 25). Next RUN CADAII to format the records of the file. Once the file is set, this program never needs to be used again unless the file is to be ob.literated and restarted. When CADAII is run, there will be no output on the teleprinter. \\
To use the arithmetic drill program, get CADAIP and type run. The computer will type some preliminary remarks and then ask for a student ID number. Reply with the correct student number if known, otherwise any number less than twenty five will do except zero.' Student number zero is reserved for students who do not wish to have a permanent record on file.
\end{tabular} \\
\hline & The computer will type OPERATION I=ADDITION, ETC. to which you respond 1, 2, 3, or 4 for addition, subtraction, multiplication, or division respectively. \\
\hline & Next CORRECT PROBLEMS? will be typed. Your response must be a number greater than zero and will determine the number of correct problems your student must get correct on his first attempt to complete his drill. \\
\hline & Finally the computer will ask what is the LARGEST ADDEND? Your answer will determine the largest possible addend in the addition drill. Similar results are obtained for subtraction, multiplication, and division. \\
\hline & Arithmetic drill problems will now appear and answers must be supplied by the student. Commentary will be supplied for incorrect student responses. A student has two chances to answer correctly. Failure to give a correct response after two tries will cause a new problem to be typed. \\
\hline & At the end of the practice a summary of the current practice will be typed and then questions will be asked to which you reply with yes, no, or the student name. When the proper student record has been located and revised, the program will end. \\
\hline & Using a student number of zero will cause the computer to skip the record revising routine of this program. \\
\hline & For management of student records there is a special file management program called CADAIM entitled File Manager for CADAIF. \\
\hline & The management program allows for opening, altering, closing, printing one record, or printing all records. Instructions are conversational. The sample run will show how to open, alter, and close a record. \\
\hline \multirow[t]{3}{*}{SPECIAL CONSIDERATIONS:} & FOR INSTRUCTIONAL PURPOSES \\
\hline & Suitable Courses: Arithmetic from grade one Student Background Required: Knowledge of arithmetic operations. \\
\hline & This program can be used for drill work in the four arithmetic operations. Daily sessions with the computer are best if they are kept fairly short, i.e. ten to twenty problems. \\
\hline ACKNOWLEDGEMENTS: & William H. Jones Chatham Township High School \\
\hline
\end{tabular}
```

RUN
RF-(AMALF,2!
GET-CADAII
RUN
CADAII
DONE
GET-CADAIP
RUN
CADAIP
THIS PROGRAM IS A CAI-DRILL IN INTEGER ARITHMETIC. TO
STOP PRACTICE BEFORE COMPLETE, HOLD CTRL KEY DOWN AND
DEPRESS THE LETTER C, THEN RETURN. A PERMANENT SUMMARY
OF THIS WORK CAN BE OBTAINED THROUGH MR. JONES.
STUDENT 173
OPERATION 1\#ADDITION, ETC.
?2
CORRECT PROBLEMS? 10
LARGEST MINUEND?25
24 - 23 =?14
YOUR ANSWER IS WRONG, TRY IT AGAIN.
?1
THAT IS BETTER. TRY THIS PROBLEM.
$15-10=75$
$17-16=? 1$
-11 =?12
12-7=?5
10 -7 =?3
YOU HAVE ANSWERED HALF OF YOUR PROBLEMS CORRECTLY.
KEEP UP THE GOOD WORK.
22-21 =?1
18 \because14 =?4
24-17=17
8-2 =?6
YOU NEED TO GET ONE MORE PROBLEM CORRECT TO FINISH
YOUR WORK.
25-22=?3
THIS STUDENT HAS ATTEMPTED 1! PROOBLEMS.
10 WERE CORRECT ON THE FIRST TRY.
1 WERE CORRECT ON THE SECOND TRY.
G WERE NOT ANSWERED CORRECTLY ON`EITHER TRY.
NO RECORD LISTED FOR STUDENT * 3
DO YOU WISH TO OPEN A RECORD?YES
STUDENT NAME?JOHN DOE
JOHN DOE IS THE STUDENT NAME, IS THAT CORRECT?YES
WHEN I FINISH TYPING YOU MAY TEAR OFF THE PAGE AND
GIVE IT TO YOUR TEACHER.

```

DONE
```

GET-CADAIM
RUN
CADAIM
1=UPDATE RECORD OF STUDENT, 2=OPEN STUDENT RECORD, 3=ERASE
STUDENT RECORD, 4=PRINT ONE STUDENT RECORD, 5*PRINT ALL
STUDENT RECORDS.
7
STUDENT NUMBER IS \& STUDENT NAME IS?JACK SMITH
DO YOU WISH FURTHER MAINTANENCE?YES
?!
STUDENT * ?4
A
0

```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline OPERATION & Attempted & 1 ST & TRY & 2 & & TRY & INCORRECT \\
\hline ADD. & 0 & 0 & & & 0 & & 0 \\
\hline SUB: & 0 & 0 & & & 8 & & 0 \\
\hline MULT. & 0 & 6 & & & 0 & & 6 \\
\hline DIV. & 0 & 0 & & & 0 & & 0 \\
\hline \multicolumn{8}{|l|}{HOW SHOULD THE FILE READ} \\
\hline \multicolumn{8}{|l|}{\multirow[t]{2}{*}{\(? 16,10,5,1,0,0,0,0,0,0,0,0,5,1,1,3\)
DO YOU WISH FURTHER MAINTANENCE?YES}} \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{34} \\
\hline \multicolumn{8}{|l|}{WHAT IS STIJDENT ?} \\
\hline \multicolumn{8}{|l|}{734} \\
\hline A & 6 & & & & & & \\
\hline OPERATION & ATTEMPTED & 151 & TRY & & ND & TRY & INCORRECT \\
\hline ADD. & 16 & 10 & & & 5 & & 1 \\
\hline SUB: & 8 & 8 & & & 0 & & 0 \\
\hline MULT. & 0 & 0 & & & 0 & & 6 \\
\hline DIV. & 5 & 1 & & & 1 & & 3 \\
\hline \multicolumn{8}{|l|}{DO YOU WISH FURTHER MAINTANENCE?NO} \\
\hline DONE & & & & & & & \\
\hline
\end{tabular}
TITLE:
DESCRIPTION:
CRVLEN
36333 \(|\)\begin{tabular}{l} 
CRVLEN: Computes Length of Any Curve \\
This proaram approximates the length of any curve between two fixed \\
points on the curve, by taking an increasing number of subintervals \\
and computing the sum of the secants involved. \\
OBJECTIVES: \\
A. Time saving factor for computations. \\
B. By typing out successive approximations, the machine displays the \\
manner by which the limit is approached.
\end{tabular}

CRVLEN, page 2

INSTRUCTIONS: continued

DISCUSSION:
The operator inserts any function, sets up his own limits, and the computer proceeds to print out several approximations to the actual length a diagram (such as below) should be displayed, indicating the geometric basis for the computations.


\section*{RUN}

RUN
CRULEN
LENGTH OF A CURVE
THIS PROGRAM APPROXIMATES THE LENGTH OF ANY CURUE BETWEEN TWO POINTS HAVING P AND 0 AS THEIR RESPECTIUE ABSCISSAS. THE PROGRAM DIVIDES THE CURVE INTO INCREASING NUMBERS OF SUBINTERUALS, JOINS THESE WITH SECANTS AND FINDS THE SUM OF THESE SECANTS.

TO INPUT THE FUNCTION UHICH YOUR CURVE REPRESENTS, TYPE AS FOLLOWS AFTER THE PROGRAM STOPS:
(TYPE THE 'RETURN' KEY AFTER EACH LINE INCLUDING 'RUN')
1 GO TO 200
380 DEF FNY \((X)=\ldots(Y O U R\) FUNCTION OF \(X) \ldots\) RUN

FOR EXAMPLE, TO USE THE FUNCTION 2*X:3+3*X:2-2\#X+3
YOU WOULD TYPE:
```

1 GO TO 200
300 DEF FNY (X)=2*X+3+3*X;2-2*x+3
RUN

```

YOU MIGHT TRY THAT AS YOUR FIRST RUN.
DONE
1 GO TO 200
300 DEF FNY \((X)=2 * X+3+3 * X \cdot 2-2 * X+3\)
RUN
CRULEN
WHAT ARE THE ABSCISSAS OF THE END POINTS OF THE INTERVAL WHOSE LENGTH YOU WANT (SMALLER ONE FIRST:P,Q)?-1,6
\begin{tabular}{|c|c|c|}
\hline NUMBER OF & SUM OF & \\
\hline SUBINTERUALS & SECANT LENGTHS & \% Change in lengit \\
\hline & & \\
\hline 1 & 525.047 & no previous value \\
\hline 2 & 525.158 & -02125 \\
\hline 4 & 529.652 & - 855745 \\
\hline 8 & 531.017 & . 257691 \\
\hline 16 & 531.964 & - 178364 \\
\hline 32 & 532.017 & 9.82135E-03 \\
\hline 64 & 532.042 & 4.72664E-03 \\
\hline 128 & 532.049 & 1.28485E-03 \\
\hline 256 & 532.05 & 2.06491E-04 \\
\hline \multicolumn{3}{|l|}{*****} \\
\hline \multicolumn{3}{|l|}{WOULD YOU LIKE TO TRY NEW END POINTS (l-YES, ©-NO)?} \\
\hline \multicolumn{3}{|l|}{to try another function, retype line 300, and 'run'} \\
\hline \multicolumn{3}{|l|}{SEE INSTRUCTIONS FOR MORE DETAILS. IF YOU ARE FINI} \\
\hline \multicolumn{3}{|l|}{TYPE 1- AND 'RETURN' KEY after the program stops.} \\
\hline \multicolumn{3}{|l|}{DONE} \\
\hline
\end{tabular}


Continued on following page.

PKLLIMINAKY PREPARAIIUN: cont imued


DISCUSSION:
This program may be run as an introduction to the problen of finding the area under a curve. In some classes, the consideration of Simpson's Rule may be omitted or briefly hinted at. With the more mathematically talented classes, an explanation of this parabolic approximation should precede the running of the program.

```

RUN
CVAREA
AREA UNDER A CURVE - INTEGRATION
THIS PROGRAM EVALUATES THE DEFINITE INTEGRAL OF F(X)
FROM X=A TO X=B BY FOUR METHODS OF NUMERICAL APPROXIMATION:
I RECTANGLES (INITIAL HEIGHT OF F(X))
II RECTANGLES (INITIAL HEIGHT OF F(X+H))
III TRAPEZOIDS
IV PARABOLAS (SIMPSON'S RULE)
AFTER THE PROGRAM STOPS, YOU MAY ENTER YOUR FUNCTION AS FOLLOWS:
1 GO TO 200
300 DEF FNY(X)=...(YOUR FUNCTION OF X)...
RUN
FOR EXAMPLE, TO FIND THE AREA UNDER THE CURVE Y=X+3 YOU
WOULD TYPE:
1 GO TO 200
308 DEF FNY(X)=X:3
RUN
YOU MIGHT TRY THAT AS YOUR FIRST RUN.
END EACH LINE, INCLUDING 'RUN', WITH THE 'RETURN' KEY.
DONE
1 GOTO 200.
300 DEF FNY(X)=X+3
RUN
CVAREA
WHAT ARE YOUR VALUES FOR A AND B (SMALLER FIRST:A,B)?1,10

NUMBER OF SUBINTERVALS	1. SUM OF RECTANGLES	II. SUM OF RECTANGLES	III. SUM OF TRAPEZOIDS	IV. SUM OF PARAB OLAS
. 2	753.187	5248.69	3000.94	2499.75
4	1561.17	3748.92	2625.05	2499.75
8	1969.14	3093.01	2531.67	2499.75
16	2226.61	2788.55	2507.58	2499.75
32	2361.22	2642.19	2501.71	2499.75
64	2430.	2570.48	2500.24	2499.75

NOTE THAT SIMPSON'S RULE (IV) CONVERGES FASTEST.
WOULD YOU LIKE TO TRY NEW VALUES FOR A AND B (1-YES, 0-NO)?0

TO USE A NEW FUNCTION YOU NEED ONLY RETYPE LINE 30G
AND 'RUN`. SEE INSTRUCTIONS FOR MORE DETAILS.
IF YOU ARE: FINISHED, TYPE 'I' AND THE 'RETURN' KEY.
DONE

```

TITLE:
DESCRIPTION:

INSTRUCTIONS:

SPECIAL CONSIDERATIONS:
```

CXSYSS, Page 2

```
```

RUN
8900 DATA 2,2,2
8901 DATA 1,3,2,5,6,-1,-1,1,-3,2
8992 DATA 1,1,1,-1,3,1,-2,1,2,-2
RUN
CXSYSS
WHAT FREQUENCIES WOULD YOU LIKE THE SYSTEMS SOLVED FOR?
8 ?1
: ?2
84
8 ?999
FREOUENCY = 1
SOLUTIONS
SYSTEM 1

```
\begin{tabular}{rllll}
1.46011 & +-.717163 & \(\# J\) & ARG & \(=5.82663\)
\end{tabular}\(\quad\) MOD \(=1.62673\)
```

-.386785 +.560838 *J ARG = 2.17455 MOD=.68128

```
-.386785 +.560838 *J ARG = 2.17455 MOD=.68128
    .314263 + 4.43191E-02 *J ARG =.140102 MOD=.317372
    .314263 + 4.43191E-02 *J ARG =.140102 MOD=.317372
    SYSTEM 2
    SYSTEM 2
-----
-----
-----
```

```


FREQUENCY = 2
SOLUTIONS
    SYSTEM 1
\begin{tabular}{rllll}
-.117966 & +-.500021 & \(* J\) & \(A R G=4.4807\) & MOD \(=.513748\) \\
1.24792 & +-.298069 & & J & ARG \(=6.04872\)
\end{tabular}
......
    SYSTEM 2
---- -
    \(.222502+.212826\) *J ARG \(=.763175\) MOD \(=.3079\)
\(-.383427 \quad+2.51306 E-82 * J\) ARG \(=3.07614 \quad\) MOD \(=.38425\)
--. -


FREQUENCY = 4

SOLUTIONS
```

-7.55172E-02 +-.211878 %J ARG =.4.37001

SYSTEM* 2

```

```

DONE
8900 DATA 2.2.2
8901 DT*ATA 1,1,0,3,5,0,1,-3,3,9
8902 DATA -1,1,0,-5,3,0,3,1,2,1
RUN
CXSYSS
WHAT FREQUENCIES WOULD YOU LIKE THE SYSTEMS SOLVED FOR?
: ?1
: }799
FREQUENCY = 1
VECTOR 1 OF NULL SPACE.
---.-

```

```

VECTOR 2 OF NULL SPACE.

-.235701	+.942809	$* J$	ARG $=1.81577$
0	+-.235702	$\# J$	ARG $=4.71239$

--.---

```
SOLUTIONS
    SYSTEM 1
--...-
\begin{tabular}{llll}
\(-5.55554 E-02\) & +-.111111 & \(* J \quad A R G=4.24874\) & MOD \(=.124226\) \\
-.333333 & +-.388889 & \(\# J\) & ARG \(=4.86376\)
\end{tabular}\(\quad\) MOD \(=.512197\)
    SYSTEM 2 IS INCONSISTENT.
----
TITLE:
DESCRIPTION:
SPECIAL
CONSIDERATIONS:
This program estimates the value of the derivative of \(\operatorname{SIN}(\mathrm{X})\) for input
value of \(X\).
```

RUN
RUN
DERSIN
PROGRAM TO ESTIMATE TKE DERIUATIUE OF
SIN(X) FOR ANY UALUE OF X.
WHAT IS X?-1
X=-1 SIN(X)= -.841471
H (SIN(X+H)-SIN(X))/H

.11	.581441
-.1	.497364
.81	.544488
-.81	.536896
.821	.542733
-.821	.548818
.0021	.538826
. .8001	.54121

WHAT IS X?0
X=0 SIN(X)=0
H (SIN(X+H)-SIN(X))/H

.1	.998334
-.1	.998334
$.8!$.999983
-.81	.999983
.881	1
-.801	1.
.0881	1.

WHAT IS X?\
x=1 SIN(X) = .841471
H (SIN(X+H)-SIN(X))/H
.1 .497364
..1 .581441
.0! .536884
-.31 .544488
.381 .540018
..321 .548733
.302! .540018
-.2331 . 538826
WHAT IS Y?
DONE

```


DFKTIV, Page?
```

RUN
33日 LET Y=EXP(X)
RUN
DERTIV

```
THIS PROGRAM NILL COMPUTE A SET OF APPROXIMATIONS
TO THE DERIVATIVE OF ANY FUNCTION \(F(x)\) WHICH YOU GIVE
IT FOR ANY VALUE YOU ASSIGN TO THE INDEPENDENT
VARIABLE \(X\), PROVIDED THE FUNCTION MAS A DEFIVATIUE
FOR THAT \(X\).
FOF EACH \(X\) YOU WILL GET AS OUTPUT THE VALUES OF \(x\)
AND \(F(X)\), AS WELL AS A SET OF APPROXIMATIONS TO
\(F \cdot(X)\) FOR \(H=.1,-1, .81,-.81, .081, . . 日 \theta 1\),
.ADD1. AND \(=.8001\).
WHAT IS \(\times ? 0\)

WHAT IS X?I

```

WHAT IS X?

```
DONE

\title{
MATHEMATICS (EDUCATION) contributed progatm BASIC
}
TITLE:
DESCRIPTION:
SPECIAL
CONSIDERATIONS:
COMPUTER-AUGMENTED CALCULUS TOPICS
This program computes a set of approximations to the derivative of a sup-
plied function, for an input value of \(X\), the independent variable.
```

RUN
33日 LET Y=とXP(X)
RUN
DERTIV

```
THIS PROGRAM NILL COMPUTE A SET OF APPFOXIMATIONS
TO THE DERIVATIVE OF ANY FUNCTION F \((X)\) WHICH YOU GIVE
IT FOR ANY VALUE YOU ASSIGN TO THE INDEPENDENT
VARIABLE \(X\), PROVIDED THE FUNCTION HAS A DEKIVATIVE
FOR THAT \(X\).
FOF EACH \(X\) YOU WILL GET AS OUTPUT THE VALUES OF \(X\)
AND \(F(X)\), AS WELL AS A SET OF APPROXIMATIONS TO
\(F^{\prime}(X)\) FOR \(H=.1,-.1, .01,-. ด 1, .001,-. ด 日 1\),
.8001. AND -.8001.

WHAT IS \(\mathrm{X} ? 0\)


WHAT IS X？I

WHAT IS \(x\) ?
DONE

\title{
MATHEMATICS (EDUCATION) (801) contributedprogaam BASIC
}
TITLE:
DESCRIPTION:

\section*{INSTRUCTIONS:}

SPECIAL
CONSIDERATIONS:

DESK CALCULATOR SUBROUTTINE
This routine simulates a desk calculator. It is designed to be appended to an interactive proqram to give the user the ability to calculate needed values in "direct mode", then return to the interactive program and continue. Access to the subroutine is generally performed through a modification of INPUT statements.

The program requests the user to input: one number for unary operations, two numbers for binary operations, and a three-letter mnemonic code for the operation (e.g., SQR for square root). Return to the main program is achieved with the code EXT for Exit.

See REFLEC (HP 36672) as an example of appending DESCAL to an existing program.

DESCAL may be used alone, or added to a program. DESCAL is written as a subroutine beginning at line 9000 and ending at line 9414 . It also includes line 9999 END. Total size is 7000 words.

To run DESCAL as a separate program, type:
GET- DESCAL
1 GOSUB 9000
2 STOP
RUN
To add DESCAL to an existing program, load your program as you would normally, then make these changes:
a) No line number in your program can be 9000 or greater. Renumber if necessary.
b) The END statement in your program should be changed to STOP.
c) Provide access to DESCAL at the appropriate point(s) in your program by inserting GOSUB 9000 instructions (e.g., new lines).
continued on following page

This program was written to be used with some of the Project Solo Computer Topics, a group of units in the Hewlett Packard Curriculum Series.

Uses string variables \(X \$(3)\) and \(Z \$(60)\), dimensioned in the subroutine.

People's Computer Company
Menlo Park, California

INSTRUCTIONS continued
Suppose your program contains an interaction like:
100 PRINT "GIVE ME YOUR ANSWER"
110 INPUT A
120 (program continues here)
You could modify this interaction as follows:
100 PRINT "GIVE ME YOUR ANSWER, OR TYPE 9000 FOR DESCAL."
110 INPUT A
112 IF A 9000 THEN 120
114 GOSUB 9000
116 GO TO 100
120 (program continues here)
NOTE: 9000 is used as the "flag" in line 112. Any number which is unlike the true answer may be used instead.
d) DESCAL uses the following variables:

Numeric: Z0, Z1, Z2
Subscripted: none
String: \(\quad x \$(3), Z \$(60)\) (Dimensions specified in line 9001)
You should avoid using any of these variable names anywhere else in your program.
When these four modifications have been completed, type
APPEND- DESCAL
RUN
Functions available
\begin{tabular}{|c|c|c|}
\hline Function & Abbreviation & Result \\
\hline Exit & EXT & [return] \\
\hline Clear & CLR & \(21=22=0\) \\
\hline Exchange & EXC & \(21-22\) \\
\hline Addition & ADD & Z1 \(=21+22\) \\
\hline Subtraction & SUB & Z1 \(=21-22\) \\
\hline Multiplication & MUL & Z1 \(=21 * 22\) \\
\hline Division & DIV & Z1 \(=21 / 22\) \\
\hline Power & POW & \(21=21+22\) \\
\hline Hypotenuse of a right triangle & HYP & Z1 \(=\operatorname{SQR}(Z 1 * Z 1+Z 2 * Z 2)\) \\
\hline Reciprocal & RCP & \(21=1 / 21\) \\
\hline Negative & NEG & \(21=-21\) \\
\hline Exponentiation & EXP & \(21=e+21\) \\
\hline Logarithm (natural) & LOG & \(21=\operatorname{Ln}(21)\) \\
\hline Square root & SQR & \(21=\operatorname{SQR}(21)\) \\
\hline Sine & SIN & \(21=\operatorname{Sin}(21)\) \\
\hline Cosine & \(\operatorname{COS}\) & \(21=\cos (21)\) \\
\hline Tangent & TAN & \(21=\operatorname{TAN}(21)\) \\
\hline Arctangent & ATN & Z1 \(=\operatorname{ATN}(21)\) \\
\hline Radians to degrees & RTD & Z1 \(=\) Z1*57.2958 \\
\hline Degrees to radians & DTR & \(Z 1=21 / 57.2958\) \\
\hline
\end{tabular}

NOTE:
a) To select a function, type the abbreviation of the function.
b) In the Result column above, "=" means "is replaced by".
c) \(Z 1\) is the "lst number," and also accumulates the answer.

22 is the "2nd number."
```

RUN
PRINT "MAIN PROGRAM BEGINS."
GOSIBB 9zzJ
3 PRINT "MAIN PROGRAM ENDS."
STOD
RUN
DESCAL
MAIN PROGRAM BEGINS.
CALCULATOR MODE.
CLEARED TO ZEZO
15T NUMBER?3
FUNCTION?ADD
2ND NIJMBER?50
ADD = 53
FUNCTION?MUL
2ND NUMBER?2
MTJL= 106
FUNCTION?CLR
Cleared to zero
1ST NUMBER?144
FUNCTION?SQR
SQQ= 12
FUNCTION?DIV
2ND NUMBER?3
DIV=4
FUNCTION?DIV
2ND NUMBER?|
DIUISION BY ZERO IS UNDEFINED.
DIV=4
FUNCTION?SIN
SIN=-.756803
FUNCTION?SQR
SQR OF NEGATIUE NUMBER IS UNDEFINED.
SQR=-.756323
FUNCTION?EXC
2ND NUMBER?IJ
EXC= 1%
FUNCTION?NEG
NEG=-1%
FUNCTION?EXT
EXIT.
MAIN PROGRAM ENDS.
DONE

``` contrbauted progatm BASIC

```

RUN
RUN
DIFFEQ
FOURTH ORDER RUNGE-KUTTA-GILL INTEGRATION ALGORITHM
THE FOLLOWING INFORMATION MUST BE SPECIFIED\&
9900 DATA T1,T2,N,H,NP
WHERE TI=INITIAL TIME
T2=FINAL TIME
N =NUMBER OF DIFFERENTIAL EQUATIONS
H =INTEGRATION STEP SIZE
NP=NUMBER OF CALCULATIONS BETWEEN PRINTINGS
(PRINTING AT\&T1,T1+NP*H,T1+2*NP*H, ...,T2)
9901 DATA <INITIAL CONDITIONS>
(IE. X(TI) FOR IST. EOUATION,
X(T1) FOR THE 2ND. EOUATION,
ETC.)
THE EQUATIONS WILL BE ENTERED AS FOLLOWS:
8900 LET D(1)=FUNCTION OF (X(1),X(2),···,X(N-1),X(N),T)
8901 LET D(2)=FUNCTION OF (X(1),X(2),...,X(N-1),X(N),T)

```

```

89-- LET D(N)=FUNCTION OF (X(1),X(2),···,X(N-1),X(N),T)
WHERE X(1)=SOLUTION TO D(1) AT TIME T,
X(2)=SOLUTION TO D(2) AT TIME T,
ETC.
FOR EXAMPLE TO SOLUE: X'=2/Y
Y'=-1/X
X(1)=Y(1)=1
ON THE INTERVAL [1,3] WITH STEP SIZE .0625
WE NEED ONLY SPECIFY THE FOLLOWING:

1. SPECIFY THE EQUATIONS
8900 LET D(1)=2/X(2)
8901 LET D(2)=-1/X(1)
2. INTERUAL, EQUATIONS, STEP SIZE, AND PRINTING INSTRUCTIONS
9900 DATA 1.3, 2, .0625, 8
3. INITIAL CONDITIONS
9901 DATA 1, 1
DONE
8900 LET D(1)=2/X(2)
8901 LET D(2)=-1/X(1)
9900 DATA 1,3,2,.0625,8
9901 DATA 1,1
RUN
DIFFEQ
FOURTH ORDER RUNGE-KUTTA-GILL INTEGRATION ALGORITHM
```

```

TIME	EQUATION:	EQUATION: 2
1	1	1
1.5	2.25	.666667
2	4	.5
2.5	6.25	.4
3	9.	.333333

DONE

```

\title{
contributedprogram BASIC
}
TITLE: \(\quad\)\begin{tabular}{l} 
X-Y AXIS SEGMENT PROGRAM \\
DESCRIPTION: \\
This program finds the distance, midpoint, and slope of a line on the \\
coordinate X-Y axis. The line is determined by the two endpoints, P1 \\
and P2. The program is useful to users who do not want their answers \\
in decimal form. Fractions are left as fractions but are reduced to \\
lowest terms. Square roots are left as square roots but are rationali \\
as far as possible.
\end{tabular}
INSTRUCTIONS: \(X-Y\) axis. After solving a problem it will ask for another.

SPECIAL
CONSIDERATIONS:

DIMIS, Page 2
```

RUN
RUN
DIMIS
INPUT P1(X1,Y1) AND P2(X2,Y2)?1,0,1,25
THE DISTANCE IS 25
THE MIDPOINT IS P(+1,+2S/2)
THE SLOPE IS UNDEFINED
INPUT PI(X1,Y1) AND P2(X2,Y2)?0,0,3,4
THE DISTANCE IS S
THE MIDPOINT IS P(+3/2,+2)
THE SLOPE IS *4/3
INPUT PI(XI,Y1) AND P2(X2,Y2)?28,4,93,2
THE DISTANCE IS SQR(4229)
THE MIDPOINT IS P(+121/2,+3)
THE SLOPE IS -2/65
INPUT P1(X1,Y1) AND P2(X2,Y2)?6,3,2,1
THE DISTANCE IS 2*SQR(S)
THE MIDPOINT IS P(+4,+2)
THE SLOPE IS +1/2
INPUT PI(X1,Y1) AND P2(X2,Y2)?
DONE

```

```

RUN
RUN
DRILL
DO YOU WANT DRILL IN ADDITION,SUBTRACTION,
MULTIPLICATION, OR DIVISION (TYPE WHAT YOU UANT)TSUBTRACTIN
C11-9=2
C 17-8=9
C 4-3=1
C 17-8=9
C 13-7-6
C 9-4=5
C11-6=5
C 18-9-9
X 12-4=5
C 9-3=6
C 6-1=5
C18-9=9
C 17-8=9
C 3-1=2
C 8-4=4
C 4-3=1
C 6-5=1
C 16-2=8
C 13-5=8
C11-5=6
C 4-1:3
C 10-3=7
C 12-5=7
C 7-5=2
C 8-3=5
C 5-3-2
C 6-1=5
C 15-7=8
YOU GOT 27 CORRECT AND I URONG IN 30 SECONDS OF SUPERDRILL
DO YOU VANT MORE?YES
DO YOU UANT DRILL IN ADDITION,SUBTRACTION,
MULTIPLICATION, OR DIVISION (TYPE WHAT YOU WANT)?DUB
C 24/3=8
C 36/4-9
C18/2=9
54 / 6 = X
C 8/8=1
C 9/9=1
C 3/1=3
C 6/2=3
C10/2=5
49/7=x
C 16/8=2
YOU GOT 9 CORRECT AND 2 WRONG IN 3B SECONDS OF SUPERDRILL
DO YOU WANT MORE?YES
DO YOU WANT DRILL IN ADDITION,SUBTRACTION,
MULTIPLICATION, OR DIVISION (TYPE WHAT YOU WANT)?M
C 3 1 = 3
C 1 X2=2
6 x 2 = 12x
1x6=6
0\times7=0
x 1 X 8}=
7x 9 - 63x
C 3 8 8-24
C 2 < 2 = 4
C 1 X % =7
C 1 X0}=
C 6 < 5=30
C 9 8 = 72
YOU GOT 10 CORRECT AND 3 URONG IN 30 SECONDS OF SUPERDRILL
DO YOU WANT MORE?P

```
DONE
TITLE:
DESCRIPTION:
INSTRUCTIONS:
ACKNOWLEDGEMENTS: \begin{tabular}{l} 
"INFINITE" PRECISION MATH UTILITY PROGRAM \\
This program does division, exponentiation, finds factorials, and finds \\
prime factors with complete accuracy.
\end{tabular}
```

EXTEND, Page 2

```
```

RUN
RUN
EXTEND
THE FOLLOWING INSTRUCTIONS CAN BE USED:
FACTORIAL
DIVIDE
FACTOR
EXPONENTIATE
STOP
WHAT IS YOUR INSTRUCTION?FACTORIAL
INPUT .FROM, TO AND STEP?1,100,25
25 FACTORIAL = 15,511,210,043,330,985,984,000,000
50 FACTORIAL = 30,414,893,201,713,378,043,612,608,166,064,768,844,377
,541,568,960,512,000,000,000,000
75 FACTORIAL = 24,809,140,811, 395,398,091,946,477,116,594,033,660,926
,243,886,570,122,837,795,894,512,655,842,677,572,867,409,443,815,424,800
,800,800,008,000,0000
100 FACTORIAL = 93,326,215,443,944,152,681,699,238,856,266,700,490,715
,968,264,381,621,468,592,963,895,217,599,993,229,915,608,941,463,976,156
,518,286,253,697,920,827,223,758,251,185,210,916,864,800,000,000,080,000
,000,000,000
WHAT IS YOUR INSTRUCTION?DIVIDE
INPUT A/3?11,7
HOW MANY DIGIT ACCURACY (MIN. OF 1)?100
11 / 7 = 1.5714285714285714285714285714285714285714285714285714285
7!42857142857142857142857142857142857142857!
WHAT IS YOUR INSTRUCTION?FACTOR
INPUT NUMBER TO BE FACTORED?1234567890
2 * 3 * 3 * 5 * 3607 * 3803
WHAT IS YOUR INSTRUCTION?EXPONENTIATE
INFUT THE BASE \& EXPONENT?2,24
2 , 24 = 16,777,216
WHAT IS YOUR INSTRIJCTION?STOP
DONE

```

```

FUNDTH, Page 2

```

RUN
320 LET \(Y=5 \operatorname{IN}(X)\)
500 LET \(Z=-\operatorname{COS}(X)\)
RUN
FUNDTH
THIS PROGRAM COMPUTES APPROXIMATIONS TO THE DEFINITE INTEGRAL OF THE FUNCTION Y=F (X) WHICH YOU SUPPLIED ON LINE 380. OVER THE INTERVAL (A,B), AND COMPARES THE AOPROXIMATION TO \(G(B)-G(A)\), WHERE \(Z=G(X)\) IS \(A\) PRIMITIVE OF \(F(X)\) SUPPLIED BY YOU ON LINE 5Z日.

WHAT IS A?-3.14159
WHAT IS B?O
HOW MANY SUBINTERUALS ON [A,B]?64
.NTERVAL \([-3.14159\) J. 64 TRAPEZOIDS.
APPROXIMATION TO INTEGRAL IS *******-1.9996 *******
```

G(B)-G(A)=-1. - 1. =-2.

```
TYPE THE CODE? 1
HOW MANY SUBINTERVALS ON [A,B]?256
INTERVAL [-3.14159 , 6 J. 256 TRAPEZOIDS.
ADPROXIMATION TO INTEGRAL 15 *******-1.99997 *******
\(G(B)-G(A)=-1 . \quad=1 . \quad\).
TYPE THE CODE? 2
WHAT IS A?-3.14159
WHAT IS B?3.14159
HOW MANY SUBINTERVALS ON [A,B]?64
INTERVAL \([-3.14159\), 3.14159 J. 64 TRAPEZOIDS.
APPROXIMATION TO INTEGRAL IS *******-2.57787E-86
\(G(B)-G(A)=1 . \quad-1 . \quad 0 \quad\) -
TYPE THE CODE?3
DONE
\begin{tabular}{l|l} 
TITLE: \\
DESCRIPTION: \\
CLASSIC MATRIX OF GAME THEORY \\
This prograni accepts as input an \(n\) m matrix, and checks for a minimax \\
solution to the gane. If no solution exists it then generates a mixed \\
strategy using linear programming. The game is then played with the \\
computer having columns and paying the value of the chosen matrix element.
\end{tabular}
```

RUN
RUN
GAME
THIS PROGRAM PLAYS THE CLASSIC MATKIX GAME. SEE S. VAJDA
AN INTRODUCTION TO LINEAR PROGKAMMING AND THE THEOKY OF GANES
OR ANY BOOK ON FINITE MATHEMATICS FOK A DESCRIPTION.
INFUT NUMBER OF YOUR STRATEGIES?4
AND THE NUMBEIT OF MINE?4
INPUT THE GAME MATKIX ROW BY NOW, YOU HAVE KOW STRATEGIES,
AND RECEIVE PAYOFFS?-1,6,-6,1
??1,3,-2,1
??7,7,7,-15
??1,3,-5,16
HERE IS A COPY OF THE GAME MATRIX.

-1	6	-6	1
1	3	-2	1
7	7	7	-15
1	3	-5	16

YOU PAY ME . 860466 FOK EACH PLAY.
HOW MANY TIMES WILL WE PLAY THE GAME?6
WHAT ROW DO YOU PLAY?4
I CHOSE COLUMN 3 -
PAY-OFF IS -S UNITS.
YOU HAVE A TOTAL OF -5.86047 POINTS,
I HAVE 5.86047 POINTS.
WHAT KOW DO YOU RLAY?3
I ChOSE COLUMN 3 -
PAY-OFF IS 7 .
YOUR NET GAIN IS 6.13953 UNITS.
YOU HAVE A TOTAL OF . 279068 POINTS,
I HAVE -. 279068 POINTS.
WHAT NOW DO YOU PLAY?A
I ChOSE COLUMN 3 -
PAY-OFF IS -S .
MY NET GAIN IS 5.86047 UNITS.
YOU HAVE A TOTAL OF -5.5814 rOINTS,
I HAVE 5.5814 POINTS.

```
WHAT ROW DO YOU PLAY??
I ChOSE COLUMN 4 .
```

PAY-OFF IS 1
YOUR NET GAIN IS . 139534 UNITS.
YOU HAVE A TOTAL OF -5.44186 POINTS,
I HAVE 5.44186 POINTS.
WHAT ROW DO YOU PLAY?4
I ChOSE COLUMN 3 -
PAY-OFF IS -5 .
MY NET GAIN IS 5.86047 UNITS.
YOU HAVE A TOTAL OF -11.3023 POINTS,
I HAVE 11.3023 POINTS.
WHAT KOW DO YOU PLAY?4
I ChOSE COLUMN 4 .
PAY-OFF IS 16 .
YOUR NET GAIN IS 15.1395 UNITS.
YOU HAVE A TOTAL OF 3.8372 POINTS,
I HAVE -3.8372 POINTS.

```
YOU WIN BY A TOTAL OF 3.8372 TO -3.8372
GOOD GOING..
DONE


RUN

RUN
GRAPHI
```

PLEASE TYPE THE CODE NUMBER (100, 203, 300, 403, 530)
OF THE FUNCTION THAT YOU WANT TO NORK WITH.
FUNCTION?IDO
TYPE A VALUE FOZ X.
?-2
$X=-2 \quad Y=4 \quad$ DI $=-4 \quad$ D2 $=2$
type a value for X.
?-1
$X=-1 \quad Y=1 \quad D 1=-2 \quad D 2=2$
type a value for X.
? 8
$X=0 \quad Y=0 \quad D 1=0 \quad D 2=2$
TYPE A UALUE FOR X.
? 1
$X=1 \quad Y=1 \quad D 1=2 \quad D 2=2$
TYPE A UALUE FOR X.
?2
$X=2 \quad Y=4 \quad D 1=4 \quad D 2=2$
IF YOU KAUE ENOUGH INFORMATION ABOUT THIS FUNCTION,
TYPE I; FOR MORE INFOQMATION, TYPE 2
? 1
TO OBTAIN ANOTHER FUNCTION TYPE ITS CODE NUMBER
($100,200,300,400$, OR 500). TO STOP THE PROGRAM,
PRESS CTRL/C, THEN PRESS RETURN.
FUNCTION?40才
TYPE A VALUE FOR X
?-18
$X=-10 \quad Y=.544022 \quad D 1=-.839072 \quad D 2=-.544022$
TYOE A UALUE FOR X
?-2. 5
$X=-2.5 \quad Y=-.598472 \quad D 1=-.881144 \quad D 2=.598472$
TYPE A VALUE FOR X
? 8
$X=0 \quad Y=a \quad D=11 \quad$ D2 $=a$
TYPE A value for X
22.5
$X=2.5 \quad Y=.598472 \quad D 1=-.821144 \quad D 2=-.598472$
TYPE A VALUE FOR X
?18
$X=10 \quad Y=-.544822 \quad D 1=-.839871 \quad D 2=.544822$
IF YOU MAUE ENOUGH INFORMATION ABOUT THIS FUNCTION,
TYPE. 1; FOR MORE INFORMATION, TYPE 2
? 1
TO OBTAIN ANOTHER FUNCTION TYPE ITS CODE NUMBER
(100, 200, 300, 40日, OR 58日). TO STOP THE PROGRAM,
PRESS CTRL/C, THEN PRESS RETURN.
FUNCTION?
DONE

```


RUN
RUN
GRAPH:

PLEASE TYPE THE CODE NUMBER ( \(100,200,300,400,500\) )
OF THE FUNCTION THAT YOU WANT TO JORK WITH.
FUNCTION?180
TYPE A VALUE FOR \(X\).
?-2
\(X=-2 \quad Y=4 \quad D 1=-4 \quad D 2=2\)
type a value for \(X\).
?-1
\(X=-1 \quad Y=1\)
TYPE A value for \(X\). ? \({ }^{2}\)
\(X=0 \quad Y=0\)

TYPE A VALUE FOR \(X\). ? 1
\(X=1 \quad Y=1\)

TYPE a value for \(X\). \(? 2\)
\(X=2 \quad Y=4 \quad D 1=4 \quad D 2=2\)
IF YOU KAUE ENOUGH INFORMATION ABOUT THIS FUNCTION,
TYPE 1; FOR MORE INFORMATION, TYPE 2
? 1
TO OETAIN ANOTHER FUNCTION TYPE ITS CODE NUMBER
(100, 200, 300, 400, OR 50ठ). TO STOP THE PROGRAM, PRESS CTRL/C, THEN PRESS RETURN.
FUNCTION?400
TYPE A VALUE FOR X
?-18
\(X=-10 \quad Y=.544822 \quad D 1=-.839072 \quad D 2=-.544022\)

TYOE A VALUE FOR \(X\)
?-2.5
\(X=-2.5 \quad Y=-.598472 \quad D 1=-.801144 \quad D 2=.598472\)
TYPE A VALUE FOR \(X\) ? 8
\(X=0 \quad Y=0 \quad D 1=1 . \quad D 2=0\)
TYPE A VALUE FOR \(X\)
72.5
\(X=2.5 \quad \mathrm{Y}=.598472 \quad \mathrm{D}=-.821144 \quad \mathrm{D}=-.598472\)
type a value for \(X\)
?18
\(X=10 \quad Y=-544022 \quad D 1=-.839871 \quad D 2=.544822\)
IF YOU HAVE ENOUGH INFORMATION ABOUT THIS FUNCTION,
TYPE 1; FOR MORE INFORMATION, TYPE 2
? 1
TO OBTAIN ANOTHER FUNCTION TYPE ITS CODE NUMBER
( \(100,200,300,480,0 R 500\) ). TO STOP TKE PROGRAM, PRESS CTRL/C, THEN PRESS RETURN.
FUNCTION?
DONE
\begin{tabular}{|c|c|}
\hline TITLE: & \(\begin{array}{ll} & \text { GRAPH2 } \\ \text { COMPUTER-AUGMENTED CALCULUS TOPICS } & 36666\end{array}\) \\
\hline DESCRIPTION: & This program is designed to provide information to students about functions. For a selected \(f(x)\) and input value of \(x\), the program prints the values of the first and second derivatives of \(f(x)\). The student should graph the values and attempt to discover what \(f(X)\) is. \\
\hline \multirow[t]{5}{*}{INSTRUCTIONS:} & The program contains five different functions, on lines \(220,390,490\), 580 and 680. All functions are in the form \(Y=f(X)\). \\
\hline & The user is asked to select one of the five functions by typing 100, 200, 300, 400, or 500. \\
\hline & Then the program asks for a value for \(X\), and the user has 5 opportunities to input values of \(X\), and obtain the values of the first and second derivative of the unknown \(f(X)\). After five values of \(X\) have been evaluated, the program asks for an input of 1 or 2, representing: \\
\hline & \begin{tabular}{l}
1. Enough information has been obtained. \\
2. Not enough information has been obtained; let me try 5 more values of \(X\).
\end{tabular} \\
\hline & If option 1 is selected, another function may be selected. \\
\hline \multirow[t]{3}{*}{SPECIAL CONSIDERATIONS:} & \\
\hline & This program is one of 7 which accompany the Project Solo Module "ComputerAugmented Calculus Topics" of the Hewlett Packard Curriculum Series. \\
\hline & To change the functions, retype lines \(220,390,490,580\), and/or 680. Functions are in the form LET \(Y=f(X)\). \\
\hline & \begin{tabular}{l}
FOR INSTRUCTIONAL PURPOSES \\
Suitable Courses: Mathematics (Secondary, College); Elem. Computer Science
\end{tabular} \\
\hline & Student Background Required: Calculus (can be concurrent); BASIC \\
\hline & The curriculum material listed below is available for classroom implementation of this program. \\
\hline & \begin{tabular}{l}
HP 5951-5611 Computer-Augmented Calculus Topics \\
HP 5951-5612 Classroom Set ( 30 books)
\end{tabular} \\
\hline & \begin{tabular}{l}
For ordering information of curriculum material, contact: \\
Hewlett-Packard Computer Curriculum Project \\
Scientific Press \\
1629 Channing Ave. \\
Palo Alto, California 94303
\end{tabular} \\
\hline ACKNOWLEDGEMENTS: & \begin{tabular}{l}
Project Solo \\
University of Pittsburgh
\end{tabular} \\
\hline
\end{tabular}
```

GRAPH2, Page 2

```

RUN
RUN
GRAPH2
```

PLEASE TYPE THE CODE NUMBER (100, 200, 300, 400, 500)
OF THE FUNCTION THAT YOU WANT TO WORK WITH.
FUNCTION?2J』
TYPE A VALIE FOR X.
7-1
$X=-1 \quad D 1=-6 \quad D 2=2$
TYPE A VALUE FOR X.
? 8
$X=0 \quad D 1=-4 \quad D 2=2$
TYPE A UALUE FOR X.
? 1
$X=1 \quad D Y=-2 \quad D 2=2$
TYPE A VALUE FOR X.
? 5
$X=5 \quad D I=6 \quad D 2=2$
TYPE A VALUE FOR X.
$? 108$
$X=100 \quad D 1=196 \quad D 2=2$
IF YOU HAVE ENOUGH INFORMATION ABOUT THIS FUNCTION,
TYPE 1; FOR MORE INFORMATION, TYPE 2
? 1
TO OBTAIN ANOTHER FUNCTION TYPE ITS CODE NUMBER
(100, 200, $300,40 \theta, ~ O R ~ 500)$. TO STOP THE PROGRAM,
PRESS CTRL/C, THEN PRESS RETURN.
FUNCTION?300
TYPE A VALUE FOR X.
?-1
$X=-1 \quad D 1=.367879 \quad D 2=.367879$
TYPE A VALUE FOR X.
78
$X=0 \quad D 1=1 \quad D 2=1$
type a value for X.
? 1
$X=1 \quad D 1=2.71828 \quad D 2=2.71828$
TYPE A UALUE FOR X.
?-10
$X=-18 \quad D 1=4.53999 E-85 \quad D 2=4.53999 E-85$
TYPE A UALUE FOR X.
? 10
$X=10 \quad D 1=22026.5 \quad D 2=22826.5$
IF YOU HAVE ENOUGH INFORMATION ABOUT THIS FUNCTION,
TYPE 1: FOR MORE INFORMATION, TYPE 2
71
TO OBTAIN ANOTKER FUNCTION TYPE ITS CODE NUMBER
($180,200,30 \theta, 4 \theta 0$, OR 580). TO STOP THE PROGRAM,
PRESS CTRL/C. THEN PRESS RETURN.
FUNCTION?
DONE

```

```

RUN
250 LET Y=XI2-2*X
RUN
INTEGR
THIS PROGRAM COMPUTES APPROXIMATIONS TO THE
DEFINITE INTEGRAL OF THE FUNCTION WHICH YOU
SUPPLIED ON LINE 250, OUER AN INTERUAL (A,B).
NOW TYPE A UALUE FOR A?I
TYPE A VALUE OF B?3
HOW MANY SUBINTERUALS DO YOU WANT [A,B] DIVIDED INTO?IG
THE INTERVAL IS [1 , 3 J.
THE NUMBER OF APPROXIMATING TRAPEZOIDS IS 16
THE APPROXIMATION IS `******* . 671875 *******
TYPE THE CHANGE CODE?I
HOW MANY SUBINTERVALS DO YOU WANT \A,B〕 DIVIDED INTO?256
THE INTERVAL IS [1 , 3 j.
THE NUMEER OF APPROXIMATING TRAPEZOIDS IS 256
THE APPROXIMATION IS ****** . 660687 ******
TYPE THE CHANGE CODE?2
NOW TYPE A VALUE FOR A?-2
TYPE A VALUE OF B?2
HOW MANY SUBINTERVALS DO YOU NANT [A,B] DIVIDED INTOT32
THE INTERUAL IS [-2 , 2].
THE NUMBER OF APPROXIMATING TRAPEZOIDS IS 32
THE APPROXIMATION IS ****** 5.34375 ******
TYPE THE CHANGE CODE?I
HOW MANY SUBINTERUALS DO YOU WANT [A,B] DIUIDED INTO?64
THE INTERVAL IS [-2 , 2]
THE NUMBER OF APOROXIMATING TRAPEZOIDS IS 64
THE APPROXIMATION IS ****** 5.33594 *******
TYPE THE CHANGE CODE?3
DONE

```
title:
DESCRIPTION:

INSTRUCTIONS:

\section*{LIMIT OF (SIN X)/X}

LIMSIN
This program demonstrates that the limit of \(\frac{\sin x}{x}\), as \(x\) approaches 0 , equals 1 , provided \(x\) is measured in radians. If \(x\) is measured in degrees, the limit equals approximately .017.

OBJECTIVES:
A. To demonstrate the manner by which the limit of \(\frac{\sin x}{x}\) is approached.
B. To show that degree measure does not yield the same solution as radian measure.

PRELIMINARY PREPARATION:
A. Student - Knowledge of degree vs. radian measure
B. Materials - None

DISCUSSION:
Following the computer type-out, the teacher will use the analytic method to evaluate the limit. Prior to this discussion, the student should be reminded of the area formulas for a triangle and for a sector in terms of the central angle measured in radians. A geometric diagram should be presented showing the sector lying between two triangles.


Here, \(\frac{1}{1} r^{2} \sin \theta \leq \frac{1}{2} r^{2} \theta \leq \frac{1}{2} r^{2} \tan \theta\)
Circular Sector with Circumseribed and Inscribed Triangles
The teacher can modify the type-out by inserting: 195 GO TO 300. This decreases the number of lines typed out to the final eleven appearing on the program "run".

Huntington Project
Polytechnic Institute of Brooklyn


DONE
\begin{tabular}{l|l} 
TITLE: & \begin{tabular}{l} 
CONVERSATIONAL COMPUTER GENERATED CALCULUS QUIZ \\
Conversational computer generated calculus quiz. Values are random so \\
the programin can be used several times by a student.
\end{tabular} \\
INSTRUCTIONS: \\
Conversational \\
Babson College \\
Babson Park, Massachusetts
\end{tabular}
```

RUN
RUN
LINES
TYPE ANSWER TO EACH QUESTION,THEN PRESS RETURN KEY.
FRACTIONAL VALUES MUST BE ENTERED IN DECIMAL FORM - ONE
DECIMAL PLACE IS O.K.
GIVEN THE POINTS (-3 , 7),AND (3 , 18),
WHAT IS THE SLOPE OF THE LINE PASSING THROUGH THESE POINTS?.S
CORRECT
WHAT IS THE SLOPE OF THE STRAIGHT LINE WHOSE EQUATION IS
CORRECT
WHAT IS THE SLOPE OF THE LINE WHOSE EOUATION IS
6 X + -8 Y =-1 ?.7
CORRECT
WHAT IS THE Y-INTERCEPT OF THE ABOVE LINE?.I
CORRECT
THE LINE L HAS EQUATION 9 X * -3 Y =-7
WHAT IS THE VALUE OF X AT WHICH L CROSSES THE X-AXIS?-.7
CORRECT
WHAT IS THE VALUE OF Y AT WHICH L CROSSES THE Y-AXIS?2.3
CORRECT
gIVEN THAT THE POINT P IS ON L AND THAT THE X-COORDINATE
OF P IS-3 , WHAT IS THE Y-COORDINATE OF P?-.6
CORRECT ANSWER IS-6.7
CONSIDER THE STRAIGHT LINE WHOSE EQUATION IS
Y=10 X + 2 .
WHAT IS THE SLOPE OF A LINE PASSING THROUGH THE POINT
P (4 , 7) WHICH IS PERPENDICULAR TO THE
GIVEN LINE?10
CORRECT ANSWER IS-.I
YOU HAVE ANSWERED 6 QUESTIONS CORRECTLY OUT OF A TOTAL OF
8 QUESTIONS.
YOU SHOULD PRACTICE A LITTLE MORE. RUN THE PROGRAM AGAIN
EITHER NOW OR AFTER REVIEWING THE MATERIAL.
DONE

```

```

LOGIC, Page 2
RUN
RUN
LOGICI
IF PAUL PLAYS THEN THE TEAM WINS.
O.K.--
NOW ASSUME PAUL DOES NOT PLAY.
CAN WE CONCLUDE THE TEAM DOES NOT WIN?NO
CORRECT.
O.K.--
NOW ASSUME THE TEAM DOES NOT WIN.
CAN WE CONCLUDE PAUL DOES NOT PLAY?YES
CORRECT.
O.K..-
NOW ASSUME THE TEAM WINS.
CAN WE CONCLUDE PAUL PLAYS?YES
WRONG, THE CONCLUSION IS INVALID.
YOU DENIED THE ANTECEDENT.
O.K...
NOW ASSUME PAUL PLAYS.
CAN WE CONCLUDE THE TEAM WINS?YES
CORRECT.
IF ABCD IS A SQUARE THEN IT HAS FOUR RIGHT ANGLES.
O.K.-.
NOW ASSUME ABCD IS A SQUARE.
CAN WE CONCLUDE IT HAS FOUR RIGHT ANGLES?YES
CORRECT.
O.K.--
NOW ASSUME IT HAS FOUR RIGHT ANGLES.
CAN WE CONCLUDE ABCD IS A SQUARE?NO
CORRECT.
O.K..-
NOW ASSUME IT MASN'T FOUR RIGHT ANGLES.
CAN WE CONCLUDE ABCD IS NOT A SQUARE?YES
CORRECT.
O.K.--
NOW ASSUME ABCD IS NOT A SQUARE.
CAN WE CONCLUDE IT HASN'T FOUR RIGHT ANGLES?NO
CORRECT.
If joe Studies then he pasSes the course.
O.K..-
NOW ASSUME HE. PASSES THE COURSE.
CAN WE CONCLUDE JOE STUDIES?YES
WKONG, THE CONCLUSION IS INVALID.
YOU DENIED THF ANTECEDENT.
O.K.--
NOW ASSUME JOE STUDIES.
CAN WF CONClUDE HE PASSES THE COUKSE?YES
CORRECT.
O.K...
NOW ASSUME JOE DOESN'T STUDY.
CAN WE CONClUDE HE FAILS THE COURSE?YES
WKONG, THE CONCLUSION IS INVALID.
yOU AFFIRMED THE CONSEQUENT.

```
```

O.K.--
NOW ASSUME HE FAILS THE COURSF..
CAN WE CONCLUDE JOE DOESN'T STUDY?YES
CORRECT.
IF A MAN IS PRESIDENT THEN HE IS AT LEAST 40.
O.K.--
NOW ASSUME HE IS AT LEAST 40.
CAN WE CONCLUDE A MAN IS PRESIDENT?NO
CORRECT.
O.K.--
NOW ASSUME A MAN IS PRESIDENT.
CAN WE CONCLUDE HE IS AT LEAST 40?YES
CORRECT.
O.K.--
NOW ASSUME A MAN IS NOT PRESIDENT.
CAN WE CONCLUDE HE IS YOUNGER THAN 40?NO
CORRECT.
O.K.--
NOW ASSUME HE IS YOUNGER THAN 40.
CAN WE CONCLUDE A MAN IS NOT PRESIDENT?YES
CORRECT.
IF X AND Y ARE BOTH POSITIVE THEN }X*Y>0
O.K.--
NOW ASSUME X AND Y ARE NOT BOTH POSITIVE.
CAN WE CONCLUDE X*Y<=\varnothing?YES
WRONG, THE CONCLUSION IS INVALID.
YOU AFFIRMED THE CONSEQUENT.
O.K.--
NOW ASSUME X AND Y ARE BOTH POSITIVE.
CAN WE CONCLUDE X*Y>0?YES
CORRECT.
O.K.--
NOW ASSUME X*Y>0.
CAN WE CONCLUDE }X\mathrm{ AND Y ARE BOTH POSITIVE?NO
CORRECT.
O.K.--
NOW ASSUME X*Y < =0.
CAN WE CONCLUDE }X\mathrm{ AND Y ARE NOT BOTH POSITIVE?YES
CORRECT.
IF THE WEATHER IS WINDY THEN THE BOAT SINKS.
O.K.--
NOW ASSUME THE BOAT SINKS.
CAN WE CONCLUDE THE WEATHER IS WINDY?YES
WRONG, THE CONCLUSION IS INVALID.
YOU DENIED THE ANTECEDENT.
O.K.--
NOW ASSUME THE WEATHER IS WINDY.
CAN WE CONCLUDE THE BOAT SINKS?YES
CORRECT.
O.K.--
NOW ASSUME THE WEATHER IS CALM.
CAN WE CONCLUDE THE BOAT FLOATS?NO
CORRECT.

```
```

O.K..-
NOW ASSUME THE BOAT FLOATS.
CAN WE CONCLUDE THE WEATHEK IS CALM?YES
COKRECT
IF YOU RUN THIS PROGRAM THEN YOU LEARN SOMETHING.
O.K.--
NOW ASSUME YOU LEARN SOMETRING
CAN WE CONCLUDE YOU RUN THIS PKOGRAM?NO
CORRECT.
O.K..-
NOW ASSUME YOU RUN THIS PEOGRAM.
CAN WE CONCLUDE YOU LEARN SOMETHING?YES
CORRECT
O.K...
NOW ASSUME YOU LEARN NOTHING.
CAN WE CONCLUDE YOU DON'T RUN THIS PROGRAM?YES
CORRECT.
O.K.-.
NOW ASSUME YOU DON'T RUN THIS PROGRAM.
CAN WE CONCLUDE YOU LEARN NOTHING?NO
CORRECT.
YOU ANSWERED 23 OUT OF 28 QUESTIONS CORRECTLY FOR A
FINAL SCORE OF 82 %.
DONE

```
IF IT IS A WARM NIGHT OR I AM OVER MY COLD.
THEN I AM GOING TO THE GAME:
O.K. .-. NOW ASSUME I AM NOT GOING TO THE GAME.
CAN WE CONCLUDE:
    IT IS NOT. A WARM NIGHT OR I AM NOT OVER MY COLD?Y
CORRECT.
    IT IS NOT A WARM NIGHT AND I AM NOT OVER MY COLD?Y
CORRECT.
IF IT IS A WARM NIGHT AND I AM OVER MY COLD,
THEN I AM GOING TO THE GAME.
O.K. -. NOW ASSUME I AM NOT GOING TO THE GAME.
CAN WE CONCLUDE:
    IT IS A WARM NIGHT AND I AM NOT OVER MY COLDTN
CORRECT.
    IT IS NOT A WARM NIGHT AND I AM OVER MY COLD?N
CORRECT.
IF JOE ATTENDS CLASS OR HE STUDIES DILIGENTLY,
THEN HE PASSES THE COURSE.
O.K. --. NOW ASSUME HE FAILS THE COURSE.
```

CAN WE CONCLUDE:
JOE DOES NOT ATTEND CLASS OR HE DOES NOT STUDY DILIGENTLY?Y
CORRECT.
JOE DOES NOT ATTEND CLASS OR HE STUDIES DILIGENTLY?N
CORRECT.

```
```

If JOE ATTENDS CLASS AND HE STUDIES DILIGENTLY,

```
If JOE ATTENDS CLASS AND HE STUDIES DILIGENTLY,
THEN HE PASSES THE COURSE.
THEN HE PASSES THE COURSE.
O.K. -.- NOW ASSUME HE FAILS THE COURSE.
O.K. -.- NOW ASSUME HE FAILS THE COURSE.
CAN WE CONCLUDE:
CAN WE CONCLUDE:
    JOE ATTENDS CLASS AND HE DOES NOT STUDY DILIGENTLY?N
    JOE ATTENDS CLASS AND HE DOES NOT STUDY DILIGENTLY?N
CORRECT.
CORRECT.
    JOE DOES NOT ATTEND CLASS AND HE STUDIES DILIGENTLY?N
    JOE DOES NOT ATTEND CLASS AND HE STUDIES DILIGENTLY?N
CORRECT.
```

CORRECT.

```
```

IF GLEEBS ARE SEERY OR MODULS ARE TRUNE,

```
IF GLEEBS ARE SEERY OR MODULS ARE TRUNE,
THEN FLORTZ ARE ARTIFERAKE.
THEN FLORTZ ARE ARTIFERAKE.
O.K. --- NOW ASSUME FLORTZ ARE NOT ARTIFERAKE.
O.K. --- NOW ASSUME FLORTZ ARE NOT ARTIFERAKE.
CAN WE CONCLUDE:
CAN WE CONCLUDE:
    GLEEBS ARE NOT SEERY?N
    GLEEBS ARE NOT SEERY?N
WRONG --- GO BACK AND STUDY THE NEGATION OF A DISJUNCTION
WRONG --- GO BACK AND STUDY THE NEGATION OF A DISJUNCTION
    GLEEBS ARE NOT SEERY AND MODULS ARE NOT TRUNE?N
    GLEEBS ARE NOT SEERY AND MODULS ARE NOT TRUNE?N
WRONG --- GO BACK AND STUDY THE NEGATION OF A DISJUNCTION.
```

WRONG --- GO BACK AND STUDY THE NEGATION OF A DISJUNCTION.

```
```

IF GLEEBS ARE SEERY AND MODULS ARE TRUNE,
THEN FLORTZ ARE ARTIFERAKE.
O.K. -.- NOW ASSUME FLORTZ ARE NOT ARTIFERAKE.
CAN WE CONCLUDE:
GLEEBS ARE NOT SEERY AND MODULS ARE NOT TRUNE?N
CORRECT.
GLEEES ARE NOT SEERY AND MODULS ARE TRUNE?N
CORRECT.

```
IF EDGAR INHERRITS MONEY OR HE INVESTS WISELY,
THEN HE BECOMES WEALTHY.
O.K. -.- NOW ASSUME HE DOES NOT BECOME WEALTHY.
CAN WE CONCLUDE:
    HE DOES NOT INVEST WISELY?Y
CORRECT.
    EDGAR DOES NOT INHERIT MONEY OR HE DOES NOT INVEST WISELY?Y
CORRECT.
```

IF EDGAR INHERRITS MONEY AND HE INVESTS WISELY,
THEN HE BECOMES WEALTHY.
O.K. -.- NOW ASSUME HE DOES NOT BECOME WEALTHY.
CAN WE CONCLUDE:
EDGAR DOES NOT INHERIT MONEY?N

```

LOGIC, Paye 6
```

CORRECT.
EDGAR DOES NOT INHERIT MONEY AND HE INVESTS WISELY?N
CORRECT.
YOU ANSWERED 14 OUT OF 16 QUESTIONS CORRECTLY FOR A
FINAL SCORE OF 87 %.
DONE

```

TITLE:
DESCRIPTION:

INSTRUCTIONS:
```

PI, Page 2

```
RUN
RUN
PI
AREA OF A CIRCLE USING INSCRIBED AND CIRCUMSCRIBED REGULAR POLYGONS.

WHAT IS THE RADIUS OF THE CIRCLE? 10
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { I NSCRHBED } \\
& \text { AREA }
\end{aligned}
\] & CIRCUMSCRIBED AREA & \[
\begin{gathered}
\text { NUMBER OF } \\
\text { SIDES }
\end{gathered}
\] & INSCRIBED 2 ERROR & CIRCUMSCRIBED 7 ERROR \\
\hline 129.904 & 519.614 & 3 & -58.65 & 65.4 \\
\hline 259.807 & 346.41 & 6 & -17.3 & 10.27 \\
\hline 360. & 321.339 & 12 & -4.51 & 2.35 \\
\hline
\end{tabular}
HOW MANY SIDES DO YOU THINK ARE NEEDED TO APPROXIMATE
THE AREA OF THIS CIRCLE? 180
\(313.952 \quad 314.262 \quad 106\)-.87 83
WOULD YOU LIKE TO TRY ANOTMER NUMBER OF SIDES (1-YES, O-NO)?I
HOW MANY SIDES DO YOU THINK ARE NEEDED TO APPROXIMATE
THE AREA OF THIS CIRCLE?IEG
THAT MANY SIDES IS VALID, BUT NOT NECESSARY FOR A
GOOD APPROXIMATION. USE 16006 AS THE MAXIMUM NUMBER.
HOW MANY SIDES DO YOU THINK ARE NEEDED TO APPROXIMATE
THE AREA OF TMIS CIRCLE?IG800
\begin{tabular}{lllll}
314.159 & 16060 & 0 & 0
\end{tabular}
WOULD YOU LIKE TO TRY ANOTHER NUMBER OF SIDES (1-YES, 0-NO)?
WOULD YOU LIKE TO TRY ANOTHER RADIUS (I-YES, B-NO)? I

WHAT IS THE RADIUS OF THE GIRCLEPI000000
ANY RADIUS WILL WORK, BUT USE A NUMBER LESS THAN 1800.
WHAT IS THE RADIUS OF THE CIRCLE?999
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { INSCRMBED } \\
& \text { AREA }
\end{aligned}
\] & CIRCUMSCRIBED AREA & \[
\begin{gathered}
\text { NUMBER OF } \\
\text { SIDES }
\end{gathered}
\] & \begin{tabular}{l}
INSCRIBED \\
2 ERROR
\end{tabular} & \begin{tabular}{l}
CIRCUMSCRIBED \\
2 ERROR
\end{tabular} \\
\hline 1.29644E+06 & \(5.18576 E+86\) & 3 & -58.65 & 65.4 \\
\hline 2.59288E+86 & 3.45717E+06 & 6 & -17.3 & 10.27 \\
\hline 2.99460E+06 & 3.20896E+06 & 12 & -4.51 & 2.35 \\
\hline
\end{tabular}

HOW MANY SIDES DO YOU THINK ARE NEEDED TO APPROXIMATE THE AREA OF THIS CIRCLE?I000日
\begin{tabular}{llllll}
\(3.13531 E+06\) & \(3.13531 E+06\) & 10000 & 0 & 0 & 0
\end{tabular}
WOULD YOU LIKE TO TRY ANOTMER NUMBER OF SIDES (1-YES, O-NO)?
WOULD YOU LIKE TO TRY ANOTHER RADIUS (1-YES, O-NO)?B
* * * *

DONE

\title{
contributedprogram \(\mathbf{B A S I C}\)
}
TITLE:
DESCRIPTION:
ACKNOWLEDGEMENTS:
POLYNOMIAL SUBTRACTION
This program presents the student with a list of polynomials of degree one
through four which are to be subtracted in pairs. The student types in the
coefficient of the answer and is then told whether or not he is correct.
At the end of the list he is told what percent he got right.
```

RUN
RUN
POLSUB
DO YOU WANT DIRECTIONSTYES
NOW LET'S SUBTRACT SOME POLYNOMIALS. YHEN YOU ARE ASKED FOR
YOUR ANSWER YOU ARE TO SUBTRACT POLYNOMIAL NO. 2 FROM
POLYNOMIAL NO. 1 - AFTER EACH QUESTION MARK YOU ARE TO TYPE IN
THE COEFFICIENTS OF YOUR ANSWER STARTING UITH THE COEFFICIENT
OF THE HIGHEST DEGREE TERM AND GOING IN DESCENDING ORDER.
IF A COEFFICIENT IS ZERO, YOU MUST TYPE IN A ZERO FOR ITO
AFTER EACH COEFFICIENT BE SURE TO HIT THE 'RETURN' KEY.
HERE WE GO. GOOD LUCK!
HOW MANY PROBLEMS DO YOU UANT TO TRY?3
HERE ARE THE POLYNOMIALS:
-3 *X + 30
41 * X * 0
ANSWER PLEASE.
738
73
SORRY,URONG I
HERE ARE THE POLYNOMIALS:

```


```

ANSWER PLEASE.
?-26
? 0
77
? 23
RIGHT!
HERE ARE THE POLYNOMIALS:

1	$* X+2$	+44	$* X+-9$
1	$* X+2$	+22	$* X+4$

ANSWER PLEASE.
? 0
722
?-14
SORRY,WRONG!
YOU DID 3 SUETRACTIONS AND GOT 1 RIGHT. THIS
IS 33.3333 PER CENT CORRECT.
I THINK YOU'D BETTER RE-STUDY THE RULES FOR SUBTRACTION
AND THEN TRY ME AGAIN. I'LL BE WAITIMG. BYEI
DONE

```


RUN
RUN QUADT

THIS PROGRAM DETERMINES THE NATURE OF THE GRAPH OF: \(A * X+\varepsilon+B * X \neq Y+C * Y: 2+D * X+E * Y+F=0\)
ENTER YOUR CONSTANTS IN THE ORDER LISTED ABOVE.
\(75,8,5,0,0,0\)
THE GRAPH OF YOUR EQUATION IS A SINGLE POINT.
ANOTHER RUN ( \(1=Y E S, \theta=N O)\) : \(75,8-\infty-1\)
ENTER YOUR CONSTANTS IN THE ORDER LISTED ABOUE.
? \(5,8,5,0,0,36\)
THERE IS NO REAL LOCUS FOR YOUR EQUATION.
```

ANOTHER RUN (1=YES, g=NO) \& ?1

```

ENTER YOUR CONSTANTS IN THE ORDER LISTED ABOVE.
30,50-, 0,0,0,9
THE GRAPH OF YOUR EQUATION IS A HYPERBOLA.
ANOTHER RUN (1-YES, \(G=N O): ~ ? 1\)
    ENTER YOUR CONSTANTS IN THE ORDER LISTED ABOVE.
71,0,1,0,-16,-16
THE GRAPH OF YOUR EQUATION IS A CIRCLE.
ANOTHER RUN (i=YES, \(\theta=N O)\) \& \(? 1\)
    ENTER YOUR CONSTANTS IN THE ORDER LISTED ABOVE.
\(30,0,0,5,-10,6\)
THE GRAPH OF YOUR EQUATION IS A SINGLE STRAIGHT LINE.
ANOTHER RUN ( \(1=Y E S, ~ D=N O)\) ? ?
    ENTER YOUR CONSTANTS IN THE ORDER LISTED ABOVE.
\(31,0,0,6,0,-4\)
THE GRAPH OF YOUR EQUATION CONSISTS OF 2 PARALLEL LINES.
ANOTHER RUN ( \(1=Y E S, \theta=N O): 31\)
    ENTER YOUR CONSTANTS IN THE ORDER LISTED ABOUE.
? \(1,0,0,6,1,-4\)
THE GRAPH OF YOUR EQUATION IS A PARABOLA.
ANOTHER RUN ( \(1=\) YES, \(\theta=\) NO) \(: ? 0\)
DONE
TITLE: \(\quad\)\begin{tabular}{l} 
RATIO: Solves Proportions \\
DESCRIPTION: \\
This program solves a proportion of the type \(A / B=C / D . ~\) \\
\(D\) can be unknown. \(B, C, ~ o r ~\) \\
36336 \\
OBJECTIVES:
\end{tabular}
A. To teach the student(s) the relationships in a proportion.
B. To aid in teaching the solution of proportions.

INSTRUCTIONS:
PRELIMINARY PREPARATION:
A. Student - no particular preparation necessary
B. Materials - see discussion

DISCUSSION:
The student is given the opportunity to see any number of solutions to proportions. The program then asks a series of questions designed to allow the student to discover that in a proportion, the product of the means equals the product of the extremes. The program can be used either with individual students or with an entire class depending upon the availability of equipment to display the output. The running time varies, depending upon the number of proportions you wish to solve. In 10 to is minutes, the program can be run with about 100 proportion problems. Included in this time is a built-in variable pause for observation of the tabulated results. Another value of using this program is that the teacher can easily handle numbers in proportions that heretofore were too difficult.

ACKNOWLEDGEMENTS: Huntington Project
Polytechnic Institute of Brooklyn
```

RUN
RUN
RATIO
THIS PROGRAM SOLVES FOR THE UNKNOWN IN THE PROPORTION
A/B AS C/D. USE A ZERO AS A DUMMY VALUE FOR THE UNKNOWN.
HOW MANY PROPORTIONS DO YOU WISH TO SOLVE?A
WHAT ARE THE VALUES FOR A,B,C,D?3,4,6,0
3/4 AS 6 / 8
WHAT ARE THE VALUES FOR A,B,C,D?1,10,5,50
YOU FORGOT TO INPUT A ZERO FOR YOUR
UNKNOWN. TRY AGAIN.?1,10,0,50
1/ / 10 AS S / 50
WHAT ARE THE VALUES FOR A,B,C,D?5,15,72,0
$5 / 15$ AS $72 / 216$
WHAT ARE THE VALUES FOR A,B,C,D?6,8,3,39
$6 / 78$ AS $3 / 39$
TAKE A GOOD LOOK AT THE PROPORTIONS. THE TWO MIDDLE
POSITION NUMBERS ARE CALLED THE 'MEANS', TME TWO
END POSITION NUMBERS ARE CALLED THE 'EXTREMES'.
LOOK AT THE 'MEANS' AND THE 'EXTREMES' - SEE IF
YOU CAN FIND SOME KIND OF RELATIONSHIP BETWEEN THEM.
WHEN YOU THINK YOU HAVE FOUND A RELATIONSHIP BETWEEN
TME 'MEANS` AND THE 'EXTREMES`, TYPE I AND HIT THE RETURN KEY.
7
DID YOU SEE THAT IF YOU MULTIPLY THE 'MEANS'
AND MULTIPLY THE 'EXTREMES'. THE PRODUCTS ARE EQUAL?
IN THE LAST PROPORTION 78 X 3 EQUALS 6 X 39
CHECK THE OTHERS, TOO. WHEN YOU ARE READY TO CONTINUE,
TYPE I AND HIT THE RETURN KEY.
?1
IF YOU WISH TO USE THIS PROGRAM AGAIN TYPE 1, IF NOT TYPE O
?0
DONE

```


ACKNOWLEDGEMENTS:
Huntington Project
Polytechnic Institute of Brooklyn
```

RUN
RUN
ROOTS2
THIS PROGRAM HANDLES ALL THE POSSIBLE CASES OF SOLUTION OFTHE EQUATION :
A*X*2+B*X+C=0
TYPE IN YOUR VALUES FOR A, B, AND C : ?1,2,3
DISCRIMINANT IS LESS THAN ZERO, SO ROOTS ARE IMAGINARY.
THEY ARE OF THE FORM: P+I\#Q, P-I\#Q, WHERE:
P=-1 0= 1.41421
DO YOU WANT ANOTHER RUN (B = NO , 1 Y YS) : ?1
TYPE IN YOUR VALUES FOR A,. B, AND C : ?1,7,3
DISCRIMINANT IS GREATER THAN ZERO, SO ROOTS ARE REAL.
ROOTS ARE XI AND X2 .
X1 =-.458619 X2 =-6.54138

DO YOU WANT ANOTHER RUN (O = NO, 1 = YES) : ?1
TYPE IN YOUR VALUES FOR A, B, AND C : ?1,6,9
DISCRIMINANT IS EUQAL TO ZERO, SO ROOTS ARE EOUAL. X =-3

DO YOU WANT ANOTHER RUN (E = NO, I YES) : ?1
TYPE IN YOUR VALUES FOR A, B, AND C : 22,8,6
DISCRIMINANT IS GREATER THAN ZERO, SO ROOTS ARE REAL.
ROOTS ARE XI AND X2 -
X1 =-1 X2 =-3
DO YOU WANT ANOTHER RUN (O = NO, 1: YES) : ?0
DONE

```

```

RUN
RUN
SAT
THIS PROGRAM WILL SOLVE ANY TRIANGLE GIVEN;
(1)AAS (2)SSA (3)SAS (4)ASA (5)SSS
WhEN ENTERING ANGLES, ENTER THE DEGREES AND MINUTES
SEPERATED BY A COMMA;I.E. 36,5g FOR 36 DEG5GMIN AND 26,gFOR 26 DEGREES.
THE ORDER THE PARTS ARE ENTERED IS IMPORTANT:
pLEASE INPUT THE NUMBER CORRESPONDING TO YOUR PROBLEM.
?
ENTER the two SideS and the includEd angle. in that OrdEr!
27,9,68,0
ThIS IS AN ACUTE TRIANGLE.
ANGLES

MINUTES	SID
47. 82	$A=7$
12.98	$B=9$

```

```

C= 8.18535
PLEASE INPUT THE NUMBER CORRESPONDING TO YOUR PROBLEM.
T4
input the two angles and then the included side.
?48,31,75,11,284.8
THIS IS AN ACUTE TRIANGLE.

ANGLES		
DEGREES	MINUTES	
48	31	$A=256.453$
56	17.99	$B=284.8$

$B 1=$	56	17.99
$C 1=$	75	$C=284.8$

11 C= 336.944
PLEASE INPUT THE NUMBER CORRESPONDING TO YOUR PROBLEM.
72
INPUT THE TWO SIDES AND THEN THE ANGLE OPPOSITE THE SECOND SIDE.
318.25
??26.43,56,16
THERE IS ONLY ONE TRIANGLE FORMED.
THIS IS AN ACUTE TRIANGLE.
ANGLES SIDES

	DEGREES	MINUTES	
A1:	35	2.8	$A=18.25$
B1=	56	16	$B=26.43$
C $1=$	88	41.19	$C=31.7726$

PLEASE INPUT THE NUMBER CORRESPONDING TO YOUR PROBLEM.
?5
ENTER THE THREE SIDESI
32.3.5
DIVIDE BY ZERO - WARNING ONLY IN LINE SOGO
UNDERFLOW - UARNING ONLY IN LINE 5060
THIS IS AN OBTUSE TRIANGLE.
ANGLES SIDES

	DEGREES	MINUTES	
$A 1=$	0	0	$A=2$
$B 1=$	0	0	$B=3$
$C 1=$	180	0	$C=5$

PLEASE INPUT THE NUMBER CORRESPONDING TO YOUR PROBLEM.
?5
ENTER THE THREE SIDES!
?2,3.4
THIS IS AN OBTUSE TRIANGLE.
ANGLES SIDES

	DEGREES	MINUTES	
A1 $=$	28	57.3	$A=2$
B1=	46	34.85	$B=3$
$C 1=$	164	28.65	$C=4$

PLEASE INPUT THE NUMBER CORRESPONDING TO YOUR PROBLEM.
?1
INPUT THE TWO ANGLES AND THEN THE SIDE OPPOSITE THE SECOND SIDE.
739,46,81.54,36.92
THIS IS AN ACUTE TRIANGLE.
ANGLES
SIDES

	ANGLES		SIDES
AI=	DEGREES	MINUTES	
BI=	39	46	A $=23.8543$
Cl=	81	53.99	$B=36.92$
PLEASE	58	19.99	$C=31.7399$

PLEASE INPUT THE NUMBER CORRESPONDING TO YOUR PROBLEM.
?
DONE

```

```

RUN
RUN
SETS
THIS PROGRAM FINDS THE UNION AND INTERSECTION OF ANY TWO
NUMERICAL SETS.
HOW mAMY ELEMENTS IN THE fIRST SET?S
ThESE ARE - (MIT THE RETURN KEY AFTER ENTERING EACH ELEMENT?2
74
?6
7
318
HOW MANY ELEMENTS IN THE SECOND SET?G
THESE ARE:
?1
83
74
75
?

```

```

DO YOU WANT ANOTHDR RUN (I=YES, O=NO): ?O
DONE

```


\section*{SPECIAL} CONSIDERATIONS:

RUN
RUN
SIPRAC
SIGNED NUMBER MANIPULATION PRACTICE ........

DO YOU WANT DIRECTIONS?YES
IN THIS PROGRAM YOU WILL BE PRACTICING ADDITION,SUBTRACTION,
AND MULTIPLICATION OF SIGNED NUMBERS . YOU WILL HAVE
5 SECONDS AFTER THE PROBLEM IS STATED IN WHICH TO TYPE IN YOUR ANSWER. (MULTIPLICATION WILL BE SHOWN BY USING AN 'X'.
WHAT'S YOUR LUCKY NUMBER? 8
YOU'LL BE DOING 10 PROBLEMS. GOOD LUCK!!
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline NO. & 1 & 8 & & -9 & \(\dagger\) & 14 & \(=5\) \\
\hline NO . & 2 & 8 & & 17 & X & -19 & = \\
\hline TOO & LATE! & TRY & THE & NEXT & & - & \\
\hline NO. & 3 & 8 & & 8 & X & 11 & \(=88\) \\
\hline NO. & 4 & 1 & & -8 & - & 16 & \#- \\
\hline T00 & LatEI & TRY & THE & NEXT & & & \\
\hline NO. & 5 & 8 & & 10 & - & 8 & -2 \\
\hline NO. & 6 & 8 & & \(-1.8\) & X & 12 & -6 \\
\hline NO. & 7 & 1 & & 14 & \(\pm\) & -4 & - 16 \\
\hline NO - & 8 & 1 & & -7 & X & 14 & = \\
\hline TOO & LATE! & TRY & THE & NEXT & & - & \\
\hline NO. & 9 & 8 & & 19 & \(X\) & 18 & \(=198\) \\
\hline NO - & 10 & 8 & & 14 & \(\pm\) & 0 & \(=14\) \\
\hline
\end{tabular}

HERE'S HOW YOU DID:
```

YOU GOT 6 RIGHT OUT OF 10
THIS IS 60 PERCENT.
YOU MISSED THE FOLLOWING PROBLEMS:

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{94}{|r|}{\multirow[t]{2}{*}{NO . 2 NO. 4 NO . 6 NO}} \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

DONE
GET-SIPRAC
RUN
SIPRAC
SIGNED NUMBER MANIPULATION PRACTICE ........

DO YOU WANT DIRECTIONS? NO
WHAT'S YOUR LUCKY NUMBER?5
YOU'LL BE DOING 5 PROBLEMS. GOOD LUCKI!
\begin{tabular}{lllclll} 
NO. & 1 & \(:\) & 5 & \(X\) & 8 & \(=40\) \\
NO: & 2 & \(:\) & -1 & - & 19 & \(=\) \\
TOO LATE: & TRY THE NEXT & ONE & \\
NO. & 3 & \(:\) & 19 & + & 7 & \(=26\) \\
NO: & 4 & \(:\) & 16 & - & 18 & \(=-2\) \\
NO. & 5 & \(:\) & -1 & \(X\) & 7 & \(=-7\)
\end{tabular}

HERE'S HOW YOU DID:
```

YOU GOT 4 RIGHT OUT OF 5
THIS IS 80 PERCENT.
YOU MISSED THE FOLLOWING PROBLEMS:

```

NO. 2
CORRECT YOUR ERRORS AND TURN IN YOUR PAPER FOR CREDIT.
DONE
title: •
DESCRIPTION:

INSTRUCTIONS:

FINDS DERIVATIVES 36626

This program considers a function which is differentiable at \(x=a\), and at all points in the interval \([a, a+1]\). The value of the derivative at \(x=a\) is approximated through secant slopes.

OBJECTIVES:
A. The preliminary discussion of the method whereby the machine solves the problem enhances the students' comprehension of the techniques. These techniques are then used in developing the analytic method for finding the slope of the tangent line.
B. The type-out of successive approximations to the tangent slope clarifies and dramatizes the nature of the limiting processes.
C. Time-saving factor through the elimination of lengthy computations. PRELIMINARY PREPARATION:
A. Materials - The diagram below may be shown to the students on a blackboard, or an overhead projector, to explain the computations geometrically.
(continued on following page)

ACKNOWLEDGEMENTS:
Huntington Project
Polytechnic Institute of Brooklyn

Nath
SWPE


\section*{DISCUSSION:}

The use of the computer and the attendant discussion of the program dramatically introduces the idea of differentiation.

RUN
```

RUN

```
SLOPE

SECANT SLOPE OF A CURVE - THE DERIVATIVE
THIS PROGRAM CONSIDERS A FUNCTION OF \(X(Y=F(X))\) WHICH IS DIFFERENTIABLE AT X=A AND AT ALL POINTS IN THE INTERVAL ( \(A, A+1\) ). THE VALUE OF THE DERIVATIVE AT \(X=A\) IS APPROXIMATED THROUGH SECANT SLOPES.

AFTER THE PROGRAM STOPS, TYPE IN THE FOLLOWING: (END EACH LINE, INCLUDING 'RUN', WITH A 'CARRIAGE RETURN')
```

1 GO TO 300
380 DEF FNY(X)=···...(YOUR FUNCTION OF X)....

```
    RUN
FOR EXAMPLE, TO FIND THE SLOPE OF THE EQUATION Y=X:3
YOU WOULD TYPE AS FOLLOWS:
```

I GO TO 300
306 DEF FNY(X)=X!3
RUN

```

YOU MIGHT TRY THAT AS YOUR FIRST RUN. FOR SUBSEQUENT RUNS, YOU NEED ONLY CHANGE LINE 300 FOR A NEW FUNCTION, FOLLOWED BY 'RUN'.

DONE
1 GOTO 300
306 DEF FNY \((X)=X+3\)
RUN
SLOPE

FOR WHAT VALUE OF A IS THE SLOPE TO BE EVALUATEDT?
\({ }^{\circ}\) CHANGE IN X' IS THE DISTANCE FROM 'A', AND \({ }^{\circ}\) CHANGE IN Y'
IS THE DISTANCE FROM 'F(A)' UPON WHICH THE SLOPE IS CALCULATED.
\begin{tabular}{|c|c|c|c|c|}
\hline Change IN X & CHANGE IN Y & SECANT SLOPE & \% CHANGE IN & SLOPE \\
\hline \(1 / 1\) & 19 & 19 & NO PREVIOUS & VALUE \\
\hline \(1 / 2\) & 7.625 & 15.25 & 19.7368 & \\
\hline \(1 / 4\) & 3.39062 & 13.5625 & 11.0656 & \\
\hline \(1 / 8\) & 1.5957 & 12.7656 & 5.87558 & \\
\hline \(1 / 16\) & . 773682 & 12.3789 & 3. 02938 & \\
\hline 1/32 & . 38689 & \(12 \cdot 1885\) & 1.53834 & \\
\hline \(1 / 64\) & . 188969 & 12.894 & . 775178 & \\
\hline 1/128 & 9.41162E-62 & 12.8469 & . 389688 & \\
\hline 1/256 & 4.69666E-62 & 12.0234 & . 194553 & \\
\hline \(1 / 512\) & \(2.34604 \mathrm{E}-82\) & 12.0117 & 9.74659E-82 & \\
\hline \(1 / 1024\) & 1.17245E-82 & 12.8059 & 4.87865E-62 & \\
\hline \(1 / 2048\) & 5.86128E-83 & 12.8039 & 1.62681E-02 & \\
\hline
\end{tabular}
*****

DO YOU WISH TO USE A DIFFERENT VALUE OF X (1-YES, 0-NG)?
TO CHANGE YOUR FUNCTION SEE THE INSTRUCTIONS.
IF YOU ARE FINISHED, TYPE '1', AND THE 'RETURN' KEY
AFTER THE PROGRAM STOPS.
DONE

```

SQRT, Page 2

```

RUN

\section*{RUN}

SORT
PROGRAM FINDS SQUARE ROOT OF ANY POSITIVE NUMBER BY 'PINCHING• IT WITHIN A SMALLER AND SMALLER INTERVAL.

WHAT IS THE NUMBER WHOSE SOUARE ROOT YOU SEEK?SA



TITLE:
DESCRIPTION:

INSTRUCTIONS:

ARITHMETIC MEAN

This program finds the average (arithmetic mean), median, and standard deviation of up to one hundred numbers.

OBJECTIVES:
A. To familiarize the student with the concepts of arithmetic mean (average), median, and standard deviation of a group of numbers.
B. To impress him with the speed and accuracy of the computer as a calculating device.
C. To provide teachers with handy means of computing averages.

PRELIMINARY PREPARATION:
A. Student - "Arithmetic mean", "average", "median", and "standard deviation" must be well-defined.
B. Materials - None

DISCUSSION:
Given \(N\) terms, " \(A(1), A(2), \ldots, A(N-1), A(N)\) ", students will have learned the average of these \(N\) terms is "A(1)+A(2)+..A(N-1)+A(N)\(\underset{N}{ }\) ".

The program prints out the median value of the user's data when there is an odd number of data values. When there is an even number, the median value printed is the average between the \(N / 2\) and the \((N+2) / 2\) terms.

The program serves as an excellent vehicle for drill in division and addition, and helps strengthen the concept of arithmetic mean (average).

This program is useful in demonstrating a simple "loop" routine for students interested in programming.

ACKNOWLEDGEMENTS:

STATAL, Page 2

RUN

RUN
STATAL
MEAN, MEDIAN, AND DEVIATION OF A SET OF NUMBERS.
```

ENTER YOUR NUMBERS IN DATA STATEMENTS ON LINES
1000 - 2000. FOR EXAMPLE, YOU MIGHT TYPE :
1000 DATA 1,2,3,4 ETC. (YOUR DATA GOES HERE)
WHEN YOUR DATA HAS BEEN ENTERED, TYPE, :

```
                    I GO TO 300
RUN

THEN RELAX WHILE THE MACHINE GRINDS OUT THE ANSWERS.

IF A 'SUBSCRIPT ERROR• APPEARS, INCREASE THE SIZE OF THE ARRAY IN LINE 295.

WARNING -- THE NUMBER 9999 IS USED AS AN INTERNAL DATA VALUE. IF THIS VALUE IS ONE OF YOUR DATA VALUES, SIMPLY RE-TYPE LINES 999 AND 2001 WITH A COMMON DATA VALUE WHICH YOU WILL NOT USE.

DONE
```

1000 DATA 244,182,112,2,198,10,314,169,18,38
1 GOTO 300
RUN
STATAL

```

NUMBER OF VALUES IS 10
SUM OF THE VALUES IS 1287
THE MEAN VALUE IS 128.7
THE MEDIAN VALUE IS 140.5
THE STANDARD DEVIATION IS 209.541
FOR ANOTHER RUN, RE-ENTER DATA ON LINES
1000 - 200日, TAKING CARE TO ELIMINATE OLD DATA
BY TYPING THOSE LINE NUMBERS WHICH YOU DO NOT USE AGAIN;
THEN TYPE •RUN*•
done

```

RUN
RUN
SURFAC
AREA OF A SURFACE OF REUOLUTION
THIS PROGRAM APPROXIMATES THE AREA OF A SURFACE OF
REVOLUTION BY COMPUTING LATERAL AREAS OF FRUSTUMS OF CONES
OF REVOLUTION. TYPE IN YOUR FUNCTION OF X (Y=F(X)),
WHOSE GRAPH WILL BE ROTATED ABOUT THE X AXIS, AS FOLLOWS:
1 GO TO 200
300 DEF FNY(X)=...(YOUR FUNCTION OF X)...
RUN
FOR EXAMPLE, TO USE THE FUNCTION Y=X:2 YOU WOULD TYPE\&
1 GO TO 200
300 DEF FNY(X)=X:2
RUN
YOU MIGHT TRY THAT AS YOUR FIRST RUN.
END EACH LINE, INCLUDING 'RUN', WITH THE 'RETURN' KEY.
DONE
1 GO TO 200
300 DEF FNY(X)=X18
RUN
SURFAC
WHAT ARE THE ABSCISSAS OF THE END POINTS OF THE SECTION
TO BE CONSIDERED (SMALLER FIRST: P,Q)?-3,2

NUMBER OF	SUM OF	Z CHANGE
SUBINTERVALS	APPROXIMATING AREAS	IN SUM
-9288.787		NO PREUIOUS UALUE
1	324.623	11.6841
2	317.682	2.16125
4	315.335	.741601
8	314.743	
16	314.593	4.76994
32	314.556	
64	314.546	
128		

WOULD YOU LIKE TO TRY NEW END POINTS (1-YES, O-NO)?日
TO ENTER A NEW FUNCTION YOU NEED ONLY RETYPE LINE
300 AND 'RUN•• SEE INSTRUCTIONS FOR MORE DETAILS•
IF YOU ARE FINISHED, TYPE 'I' AND THE 'RETURN' KEY.
DONE

```

\section*{TITLE:}

DESCRIPTION:

INSTRUCTIONS:

SPECIAL CONSIDERATIONS:

SOLVING SYSTEMS OF. LINEAR EQUATIONS
SYSSOL
36278
This program solves systems of linear equations for up to twenty equations in twenty variables. It will solve even over-or underdetermined systems. It employs Gaussian Elimination, and will automatically round the difference of two numbers to zero if six significant digits of accuracy have been lost. Also, if the system is underdetermined, the solution is in the form \(X+A, X_{1}+A_{2} x_{2} \ldots\), where the \(X_{1}\) and \(X\) are vectors, and \(A_{1}, A_{2} \ldots\) are arbitrary constants. The user has the option of having the \(x_{i}\) orthogonalized or orthonormalized.

The program asks if the user wishes printouts (text) in terms of Linear Transformations or Simultaneous equations (LIN or SIM). Since this program will solve at the same time up to five systems with the same coefficient matrix, like:


The next input is how many of these systems there are (in this case 2). The next input is the elements of the coefficient matrix and the elements of the constant(s) array, in this case 1, 3, 2, 2 (these are the elements to the right of the equals sign). The program gives the user the option of verifying this input, and also seeing a copy of the reduced matrix.

This program is subject to the same accuracy problems as any using the Gaussian Elimination method.

Phillip Short Burnsville Senior High School

SYSSOL, Page 2

RUN

RUN
SYSSOL
DO YOU WANT PRINTOUTS TO EE IN TERMS OF LINEAR TRANSFORMATIONS OR IN TERMS OF SIMULTANEOUS EQUATIONS?SIM
```

DO YOU WISH A DESCRIPTION?YES

```

THIS PROGRAM SOLVES SYSTEMS OF LINEAR EQUATIONS. IT CAN FIND THE SOLUTIONSET OF A GIVEN SET OF COEFFICIENTS WITH UP TO 5 DIFFERENT SETS \(C:\) CONSTANT TERMS. IF THE SOLUTION IS NOT UNIQUE, IT CONSISTS OF A LINEAR COMBINATION OF ORDERED N-TUPLES \(V\),W, ETC, ADDED TO A CONSTANT N-TUPLE, THE LATTER OF WHICH DEPENDS ON THE ABOVE MENTIONED CONSTANT TERMS. THE V,W, ARE GIVEN (OUTPUTTED) FIRST, THEN THE CONSTANT N-TUPLES ONE BY ONE.

HOW MANY EQUATIONS ARE THERE?3
HOW MANY VARIABLES?3

HOW MANY SETS OF CONSTANTS?2

INPUT THE COEFFICIENT MATRIX ROW BY ROW? \(1,2,3,4,4,4,5,6,7\)
INPUT THE ARRAY OF CONSTANTS ROW BY ROW?2,8,8,31,10,40

DO YOU WANT VERIFICATION OF INPUT?YES

HERE IS A COPY OF THE COEFFICIENT MATRIX.
\begin{tabular}{lll}
\(x\) & \(x\) & \(x\) \\
1 & &
\end{tabular}
\begin{tabular}{lll}
1 & 2 & 3 \\
4 & 4 & 4 \\
5 & 6 & 7
\end{tabular}

HERE IS A COPY OF THE MATRIX OF CONSTANTS.
\begin{tabular}{ll}
\(C_{1}\) & \(C_{2}\) \\
2 & 8 \\
8 & 31 \\
10 & 40
\end{tabular}
```

x l x % x m
1 - -
0 1 2
0 0 0
C C
7.5
0.25
0}
DO YOU WISH THE BASIS TO BE ORTHOGONALIZED?NO
THE SOLUTION CONSISTS OF ANY LINEAR COMBINATION OF THE FOLLOWING
N-TUPLES, PLUS THE CONSTANT N-TUPLE, TO BE GIVEN SHORTLY.
[1 1-2 1]
THE CONSTANT N-TUPLE IN SYSTEM 1 IS:
[2 0 0]
SYSTEMM 2 IS INCONSISTENT.
DONE
RUN
SYSSOL
DO YOU WANT PRINTOUTS TO BE IN TERMS OF LINEAR TRANSFORMATIONS OR
IN TERMS OF SIMULTANEOUS EOUATIONSILIN
DO YOU WISH A DESCRIPTION?NO
WHAT IS THE DIMENSION OF THE IMAGE SPACE?3
WHAT IS THE DIMENSION OF THE PRE-IMAGE SPACE?3
HOW MANY IMAGE VECTORS?2
INPUT THE TRANSFORMATION MATRIX ROW BY ROW?1,2,3,0,0,0,0,0,0
INPUT THE IMAGE VECTORS, FIRST ALL THE FIRST COMPONENTS,
THEN ALL THE SECOND COMPONENTS, ETC...OK?1,3,0,0,0,1
DO YOU WANT VERIFICATION OF INPUT?NO

```

SYSSOL, Page 4
```

DO YOU WISH A COPY OF THE REDUCED MATRIX?NO
DO YOU WISH THE BASIS TO BE ORTHOGONALIZED?YES
DO YOU WISH IT ORTHOGONALIZED OR ORTHONORMALIZED?ORTHONORMALIZED
HERE IS A BASIS OF THE NULL SPACE AS SPECIFIED.
[-.894427 .447214 D]
+[-.358569 -.717137 .597614]
THE PRE-IMAGE VECTOR FOR IMAGE VECTOR I IS:
[.794082 -1.18368E-02 7.65306E-02]
IMAGE VECTOR 2 HAS NO CORRESPONDING PRE-IMAGE.
DONE

```
TITLE:
DESCRIPTION:
DRILL IN MULTIPLICATION OF NUMBERS WITH TRAILING ZEROES
TENS drills students in the multiplication of numbers of the form
A 10 , e.g. \(3000 \times 400=\)
By affording the student only a few seconds to answer, it encourages him
to use a short-cut method.
TENS gives 25 problems and scores the student responses. line 100.

TENS, page 2

RUN

RUN
TENS
\begin{tabular}{|c|c|c|c|c|}
\hline C & 60 & X & 5 & 380 \\
\hline X & 9080 & & \(\times \quad 5\) & \(=4500\) \\
\hline C & 3 & X & 4000 & - 12000 \\
\hline & 70 & X & 9000 & - X \\
\hline C & 3 & X & 3 & 9 \\
\hline C & 7 & X & 280 & 1400 \\
\hline X & 7000 & & \(\times 4000\) & - 280000000 \\
\hline C & 5000 & & \(\times \quad 9\) & - 45900 \\
\hline C & 6006 & & X 8888 & - 48000000 \\
\hline C & 78 & X & 500 & 35000 \\
\hline C & 2 & X & 800 & 1600 \\
\hline X & 36 & X & 986 & 21006 \\
\hline C & 4008 & & \(\times 800\) & - 3260000 \\
\hline C & 9000 & & X 4 & - 36000 \\
\hline C & 90 & X & 800 & 72000 \\
\hline C & 900 & X & 60 & 54000 \\
\hline C & 6 & X & 20 & 120 \\
\hline C & 600 & X & 20 & 12000 \\
\hline X & 50 & X & 6 & 3000 \\
\hline C & 8 & X & 4 & 32 \\
\hline C & 700 & X & 400 & 280000 \\
\hline C & 50 & X & 680 & 30000 \\
\hline X & 60 & X & 700 & 43000 \\
\hline C & 400 & X & 600 & 240000 \\
\hline C & 3 & X & 50 & 150 \\
\hline
\end{tabular}

YOU GOT 19 RIGHT AND 6 URONG
DONE
\begin{tabular}{l|l} 
TITLE: \\
DESCRIPTION: \\
INSTRUCTIONS: \\
FACTORING QUADRATIC TRINOMIALS \\
This program asks a student for his "lucky" number. It then presents him. \\
with a random number of factoring problems based on this number (minimum \\
of 6). When the student has his list he returns to his seat to work out \\
the problems. When he has finished the set he prepares a DATA tape with \\
his answers on it, feeds the tape into the program and RUNs it again. He \\
is then informed of his errors and what percent he worked correctly.
\end{tabular}

\section*{RUN}
```

RUN
TRIFAC

```
DO YOU WANT DIRECTIONS?YES
IN THIS PROGRAM YOU'LL BE GIVEN SOME TRINOMIALS
WHICH ARE TO BE FACTORED. IN EACH GASE THE FACTORS
UILL BE TWO BINOMIALS• (WE'LL IGNORE ANY COMMON
FACTORS WHICH MAY APPEAR.) AFTER YOU HAVE YOUR
LIST OF PROBLEMS,RETURN TO YOUR SEAT TO SOLVE THEM
THEN SEE YOUR TEACHER FOR THE WAY TO MAKE A TAPE WITH
YOUR ANSUERS ON IT. UHEN YOU HAVE YOUR TAPE DO
THE FOLLOVING SERIES OF STEPS:
A) AT THE ON-LINE TTY TYPE
GET-TRIFAC
B) TYPE TAPE
C) PUT YOUR TAPE IN THE READER AND TURN IT OH
D) WHEN TAPE IS THROUGH, TYPE KEY
E) TYPE RUN-696
WHAT'S YOUR LUCKY NUMBERTA
YOU WILL BE DOING 6 PROBLEMS
NO. 1
\(25 * x+2+34 \quad * x+-35\)
NO. 2
    *x \(2+26\) * +6
NO. 3
    \(18 * x+2+-39 \quad * x+28\)
NO. 4
    \(* x+2+6 \quad * x+-9\)
NO. 5
    * \(x+2+25 * x+5\)
NO. 6
    \(25 * x+2+0 \quad * x+-1\)
NOY RETURN TO YOUR SEAT TO YORK ON THESE.
DONE
```

606 DATA 21,34,-35,7,-5,3,+7
601 DATA 8,26,6;8,2,1;3
6 6 2 ~ D A T A ~ 1 8 , - 3 9 , 1 - 2 0 , 3 , - 4 , 6 , - 5
603 DATA 25,6.,-9,5,-3,5,3
6:4\
6 0 4 ~ D A T A ~ 2 0 , 2 5 , 5 , 4 , 1 , 5 , 5
605 DATA 25,0,-1,5,-i,5,1
RUN-600
TRIFAC
HOU MANY PROBLEMS DID YOU DO?G
NO. 1
25 *x+2 * 34 * * + -35
7 *x + -5 AND 3 * *X + 7 ARE CORRECT.
NO. 2

```

```

NO. 3
3*x+2 + -39 *x + 20
3 * + -4 AND 6 * + -5 ARE CORRECT.
NO.4
25 *xi2 + 0 * * * -9
5 \# + - AND 5 \# \# X + 3 ARE CORRECT.
NO. 5
28 *x\&2 + 25 *x + 5

```

```

NO. }
25*x+2 + 0 * x + -1
5 * }+-1\mathrm{ AND 5 * *X + 1 ARE CORRECT.
YOU GOT 6 RIGHT OUT OF 6 . THIS IS 180 PERCENT.
YOU SURE KNOW HOW TO FACTOR TRINOMIALS! GOOD YORK!

```
DONE


SPECIAL CONSIDERATIONS: continued
FOR INSTRUCTIONAL PURPOSES
Suitable Courses: Introductory Programming, Elementary Logic, Boolean Algebra
Student Background Required: Elementary concepts of logic or Boolean Algebra
This program was specifically written for a course in introductory programming. One to two lectures are devoted to number systems and the elementary Boolean operators of: NOT, AND, and OR. Applications to circuit analysis and logic problems are illustrated both in the lectures and in the homework assignments. Typically the student would reduce a set of english statements to a Boolean expression and then evaluate the truth table for the result. The text in use is Introduction to Computers and Computer Science, by Richard C. Dorf (Boyd and Fraser Publishing Co., San Francisco, 1972).

In writing the program the operators: XOR, IF, and IFF were added to the above. Thus the program contains the commonly used Boolean operators and is applicable to elementary logic courses.

The program can quickly produce truth tables for very elaborate Boolean expressions, and may be used to reduce the tedious evaluations or as a check on the results. In addition many theorems that two expressions are equal may be easily checked by producing the truth tables for the two expressions and comparing them.

RUN

RUN
TRUTH

TRUTH
'BEAUTY IS TRUTH, TRUTH BEAUTY--THAT IS ALL
YE KNOW ON EARTH, AND ALL YE NEED TO KNOW.
KEATS
INSTRUCTIONS ?YES
THIS PROGRAM PRODUCES TRUTH TABLES FOR BOOLEAN EXPRESSIONS.
ANY SINGLE LETTER MAY BE USED AS A VARIABLE.
THE BOOLEAN OPERATORS ARE:
PRIORITY SYMBOL MNEMONIC DESCRIPTION
\begin{tabular}{lccl}
1 & - & NOT & NEGATION (UNARY OPERATOR) \\
2 & \(\&\) & AND & CONJUNCTION \\
3 & 4 & OR & DISJUNCTION \\
3 & \(*\) & EOR & EXCLUSIVE OR \\
4 & 2 & \(I F\) & CONDITIONAL \\
5 & \(=\) & \(I F F\) & BICONDITIONAL
\end{tabular}

WITHIN A PRIORITY GROUP EVALUATION IS LEFT TO RIGHT.
ALL OPERATORS EXCEPT 'NOT' ARE BINARY AND ARE PLACED BETWEEN VARIABLES. NEGATION IS INDICATED BY AN APOSTROPHE FOLLOWING THE QUANTITY.
PARENTHESIS MAY BE USED AT WILL TO CHANGE THE ORDER OF EVALUATION.
```

EXP=?F\&\&'+(C'+H\&F)

```
\(F \& B^{\circ}+\left(C^{\cdot}+H \& F\right)^{\prime}\)
FBCHEXP
\begin{tabular}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 1
\end{tabular}

\begin{tabular}{l|l} 
TITLE: \\
DESCRIPTION: \\
INSTRUCTIONS: \\
ACKNTHEMATICAL GAME OF TWENTY QUESTIONS \\
TWQUES challenges the student to a game of mathematical twenty questions. \\
The student must try to outwit the machine in finding out what number the \\
machine is "thinking of." He cormunicates his guess by one of three \\
assertions: the number is greater than, less than, or equal to a certain \\
number. \\
The program encourages students to develop a strategy for narrowing the \\
range of possibilities and enhances his understanding of the number-line.
\end{tabular}
```

RUN
RUN
TVQUES
TWENTY QUESTIONS
I'M THINKING OF A NUMBER
BETUEEN 1 AND 190
TRY TO GUESS MY NUMBER!!1!!!!
YOU MAY ASK ME IF MY NUMBER IS
GREATER OR LESS THAN OR EQUAL TO SOME NUMBER
TYPE IN > OR< OR = AND YOUR GUESS
FOR EXAMPLE, IF YOU THINK THAT
MY NUMBER IS GREATER THAN 73, YOU WOULD
TYPE >73 (THEN HIT THE RETURN KEY)
UP, UP, AND AVAY............
YOUR GUESS
>50 NO... YOU NOU HAVE 19 QUESTIONS LEFT
YOUR
>25 NO... YOU NOU HAVE 18 QUESTIONS LEFT
YOUR GUESS
>12 NO... YOU NOU HAUE }17\mathrm{ QUESTIONS LEFT
YOUR GUESS
>6 YES... YOU NOW hAVE 16 QUESTIONS LEFT
YOUR GUESS
>9 NO... YOU NOW HAVE 15 OUESTIONS LEFT
YOUR GUESS
-7 lllllll YOU GOT IT llllll!
DO YOU WANT ANOTHER TRY?NO
SO LONG, AND thankS FOR the game

```
DONE

```

RUN
RUN
VOLSOL
VOLUME OF A SOLID OF REVOLUTION
THIS PROGRAM USES CYLINDRICAL DISCS TO APPROXIMATE
THE VOLUME OF A SOLID OF REVOLUTION. THE SOLID IS GENE-
RATED BY ROTATING AB THE X-AXIS THE AREA BOUNDED BY
Y=F(X), THE LINES X=A AND X=B, AND THE X-AXIS.
TO INPUT YOUR FUNCTION OF X (Y=F(X)) TYPE AS FOLLOWS:
1 GO TO 200
220 DEF FNY(X)\#....(YOUR FUNCTION OF X)....
RUN
FOR EXAMP, TO USE THE FLNCTION Y=X+2 YOU WOULD TYPE:
1 GO TO 200
220 DEF
RUY
RUN
YOU MIGHT TRY THAT AS YOUR FIRST EXAMPLE.
END EACH LINE, INCLUDING 'RUN`, WITH THE 'RETURN` KEY•
DONE
I GO TO 200
220 DEF FNY(X)=X+2
RUN
VOLSOL
WHAT ARE YOUR VALUES FOR A AND B (SMALLER FIRST: A,B)?8,5

```

```

WOULD YOU LIKE TO TRY YOUR OWN 'NUMBER OF CYLINDERS' (1-YES, O-NO)?O

WOULD YOU LIKE TO TRY NEW VALUES OF A AND B (1-YES, 0-NO)?0
TO USE A NEW FUNCTION YOU NEED ONLY RETYPE.LINE 220 AND
'RUN'. SEE INSTRUCTIONS FOR MORE DETAILS.
IF YOU ARE FINISHED, TYPE • 1 ' AND THE 'RETURN• KEY•
DONE

```

\section*{contributedprogram BASIC}
TITLE:
DESCRIPTION:
INSTRUCTIONS: \(\quad\)\begin{tabular}{l} 
GENERATES MATH WORKSHEETS \\
Program generates a worksheet on basic math operations (addition, sub- \\
traction, multiplication, or division) of a specified level of difficulty \\
(determined by the maximum number of digits in each of the two numbers \\
with which the operation is to be performed). Spacing on the worksheet \\
is such that it may be duplicated using ditto masters and run on \\
\(81 / 2^{\prime \prime} \times l l\) paper.
\end{tabular}

RUN

\section*{RUN}

UKSHT
TYPE 1 FOR ADDITION, \(\&\) FOR SUBTRACTION, 3 FOR
MULTIPLICATION AND 4 FOR DIVISION.
34
TYPE A 1,2 , OR 3 FOR THE NUMBER OF DIGITS DESIRED
IN EACH NUMBER.
HOW MANY DIGITS DO YOU WANT PER NUMBER? 1,2, OR 373
HOW MANY PROBLEMS DO YOU WANT ON THIS WORKSHEET?
PLEASE NO MORE THAN 251
716
TYPE A 1 IF YOU UANT THE ANSWERS PRINTED AT THE BOTTOM OF THE WORKSHEET OR A 2 IF ANSWERS ARE TO BE PRINTED SEPARATELY. I OR 87:

MATH PROBLEMS
\begin{tabular}{ll}
1 & \(621 / 215=?\) \\
2 & \(886 / 754=?\) \\
3 & \(433 / 81=?\) \\
4 & \(193 / 739=?\) \\
5 & \(876 / 585=?\) \\
6 & \(446 / 331=?\) \\
7 & \(912 / 283=?\) \\
8 & \(117 / 791=?\) \\
9 & \(266 / 283=?\) \\
10 & \(388 / 378=?\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{ANSWERS} \\
\hline 18.88837 & & & 2 & 1.17587 & & \\
\hline 5.34568 & 4 & . 261164 & & & 5 & 1.73465 \\
\hline \(6 \quad 1.34743\) & & & 7 & 3.22261 & & \\
\hline -147914 & 9 & . 939929 & & & 10 & . 88178 \\
\hline
\end{tabular}

DONE
TITLE:
DESCRIPTION:
INSTRUCTIONS:

SPECIAL CONSIDERATIONS:

CWF SUBPROGRAM

CLEARB is one of a series of user-written subprograms that extend the capabilities of Hewlett-Packard's licensed instructional product: Course Writing Facility (CWF). For more information about CWF, users should consult the Course Writing Facility Reference Manual, part number 2438390001.

Sometimes an author would like to fill a buffer full with one repeated character. Perhaps he wishes to clear a buffer with spaces so that he can check buffer contents without interference from previous contents, or perhaps he is building up a buffer using variable length loads. In the latter case, if the buffer has previously been filled with "end of buffer" characters (EC) there will always be an "eob" at the end of the message in the buffer.

The CWF author can simply invoke this sub-program with a call of the form "fn /clearb".

CALLING FORMAT
fn /clearb/bn,n
\[
\begin{aligned}
& \text { bn - a buffer from bo to b5 (default b0) } \\
& n \text { - any character, as well as } \frac{N^{c}}{(l i n e ~ f e e d), ~} \\
& \frac{E^{c}}{(\text { (default }=\text { spaces). }} \text { (cend buffer), or } \underline{o}^{c} \text { (carriage return) }
\end{aligned}
\]

\section*{SAMPLE CALLS}
fn/clearb
fn /clearb/b2,*
\(\mathrm{fn} / \mathrm{clearb} / \mathrm{b4}\)
\(\mathrm{fn} / \mathrm{clearb} / \mathrm{b5}, \mathrm{E}^{\mathrm{c}}\)
The last statement would cause buffer 5 to be filled with end of buffer characters ( \(E\) ) in positions 0 through 97.

\section*{COURSE FACILITIES AFFECTED}

This sub-program fills positions 0 through 97 of any buffer (bO-b5)
with the specified character, and places a carriage return ( \(O C\) ) and an eob (EC) into positions 98 and 99.

HP 24383A, Course Writing Facility must be present in the system for this subprogram to RUN.

Jutta Kernke
Hewlett Packard

\section*{CONTRIBUTED PROGRAM BASC}


\section*{PROGRAMIING AND COMPUTER SCIENCE (EDUCATION) (810)} conthbuted progbam BASIC


TITLE:

DESCRIPTION:

INSTRUCTIONS:

SPECIAL CONSIDERATIONS:

PILOT JUTORIAL

This is the fourth program in the PILOT tutorial series. It is written in PILOT to teach the syntax and usage of PILOT.

This portion discusses the DEMAND and the COMPUTE statements.

This program is stored on 3 files named P-TUD1, P-TUD2, P-TUD3 for use on the HP 2000E systems and is stored on 1 file named PTUD for the 2000 series system.

The scratch file should be at least three records.
```

on 2000E: P-TUDI,48
P-TUD2,48
P-TUD3,48
on 2000 Series System: PTUD,70

```

ACKNOWLEDGEMENTS:

Lawrence E. Turner
Department of Physics and Computer Science Pacific Union College
```

CRE-SCR,5
GET-MILOTF
RIT]
PILOTF
NAME OF PILOT PROGRAM ?PTUD
NAME OF SCRATCH FILE ?SCR

```
? RUN
PI LOT
HI! I AM READY TO GO AGAIN, HOW ABOUT YOU??
CONSIDER THIS SECTION OF A PROGRAM:
NAME TWO STATES BORDERING ON CALIFORNIA ?OREGON,ARIZONA
VERY GOOD!
THIS PROGRAM TAKES A TOTAL OF 8 STATEMENTS GINCLUDING A NEGATIUE RETORT
WHICH YOU DID NOT GET SINCE YOU ANSWERED CORRECTLY). IT ALSO TAKES
INTO ACCOUNT ANY COMBINATION OF THE THREE POSSIBLE STATES!
WHAT STATEMENT IS NECESSARY FOR THIS ?DEMAND
EXCELLENT, I CAN TELL YOU DID YOUR HOMEWORK:
LET'S LOOK AT A LISTING OF THE PROGRAM.
```

7000 T:NAME TWO STATES BORDERING ON CALIFORNIA +
7010 A:
7020 M:ARIZON,AZ
7030 M:NEVAD,NU
7040 M:OREG,OR
7050 .D:2
7060 Y:UERY GOOD!
7070 N:NOPE.

```

THE HEART OF THIS IS STATEMENT 7ø50, THE DEMAND STATEMENT.
WHAT DO STATEMENTS 7020, 7030, AND 7040 DO ?MATCH
YES, THEY CHECK FOR THE POSSIBLE CORRECT STATES. NOW IF STATEMENT \(705 \emptyset\)
WERE LEFT OUT, THEN WHAT RESPONSE WOULD SET THE MATCH FLAG TO THE 'YES'
STATE ? R-OREGON
EXACTLY! ONLY 'OREGON' WOULD INITIATE •VERY GOOD!'. WHAT THE DEMAND
STATEMENT DOES IS TO CHANGE THE MATCH FLAG TO 'YES' IF TWO OR MORE OF
THE EXECUTED MATCH STATEMENTS SINCE THE LAST EXECUTED ANSWER STATEMENT
HAVE BEEN SUCCESSFIL, OTHERWISE IT IS SET TO 'NO'!
WHAT OTHER PILOT STATEMENTS CAN CHANGE THE MATCH FLAG ?ANSWER
CORRECT, BUT YOU FORGOT ONE. BOTH THE ANSWER AND THE MATCH CAN ALSO
SET THE MATCH FLAG。
IF STATEMENT 7050 WERE TO READ 7050 . D: \(1^{\prime \prime}\), THEN HOW MANY CORRECT
STATES WOULD HAVE TO BE ENTERED IN ORDER TO GET UVERY GOOD!' ? !
EXACTLY! THE INTEGER OBJECT OF THE DEMAND STATEMENT (IN THIS CASE 1)
TELLS HOW MANY EXECUTED MATCH STATEMENTS MUST BE SUCCESSFUL SO THAT THE
'Y' CONDITION STATEMENTS WILL BE EXECUTED.
CONSIDER:
```

7050 T:YOU GOT +
7060 •D:1
7070 Y:ONE+
7080 -D:2
7090 Y:, TWO+
7100.D:3
7110 Y:, THREE+
7120 .D:1
7136 Y: OF THEM!
7140 N:NOT EVEN ONE!

```

TRY IT:
NAME TWO STATES BORDERING ON CALIFORNIA ?OREGON,ARIZONA
YOU GOT ONE, TWO OF THEM!

TRY IT AGAIN!
NAME TWO STATES BORDERING ON CALIFORNIA ?ARIZONA, NEUADA YOU GOT ONE, TWO OF THEM!

TRY IT AGAIN!
NAME TWO STATES BORDERING ON CALIFORNIA ?ARIZONA,NEVADA, OREGON YOU GOT ONE, TWO, THREE OF THEM!

ONE MORE TIME.
NAME TWO STATES BORDERING ON CALIFORNIA ?ARIZONA,NEVADA,OREGON YOU GOT ONE, TWO, THREE OF THEM!

THERE ARE, OF COURSE, MANY VARIATIONS MADE POSSIBLE BY THE DEMAND STATEMENT. CONSIDER:
7050 -D: 3
7060 Y:UERY, UERY GOOD! YOU GOT ALL THREE!
7070 JY:*NEXT
7080 •D:
7090 Y:CORRECT!
\(710 \emptyset\) JY:*NEXT
7110 •D:1
7120 Y:YOU DID GET ONE RIGHT.
7130 N:YOU DIDN'T EUEN GET ONE!
7140 *NEXT R:

WHY DO YOU THINK THE JUMP STATEMENTS ARE NECESSARY?? ?

IF •D: 3 IS SATISFIED, SO IS •D: 2 AND •D: 1!! THUS IF THREE ARE FOUND, THEN YOU MUST BRANCH AROUND THE SECTIONS THAT CHECK FOR TWO AND ONE. NOTE THAT THE DEMAND STATEMENT CHECKS FOR 'AT LEAST'. IT DOES NOT CHECK FOR 'EXACTLY'. OK, WHAT DO YOU THINK •D: \(\varnothing\) SETS THE MATCH FLAG TO ?
??YES
RIGHT ON! SINCE IN ALL CASES AT LEAST ZERO MATCH STATEMENTS HAVE BEEN SATISFIED, •D: \(\emptyset\) ALWAYS'SETS THE MATCH FLAG TO 'YES'. THIS IS A WAY OF FORCING THE MATCH FLAG IRREGARDLESS OF PREVIOUS MATCHES. AN EXAMPLE:
```

3560 T:CAN YOU NAME THE CLOSEST STAR TO THE EARTH +
3570 A:
3580 M:YES,OF COURS,RIGHT, CERTAIN,SURE,Y
3590 Y:OK, WHAT IS IT +
3600 *STAR AY:
3610 M:SUN,SOL
3620 Y:UERY GOODI
3630 JY:*NEXT
3640 T:NO WAY, HERE'S A HINT: YOU ONLY SEE IT DURING THE DAY.
3650 T:NOW TRY IT +
3660 - D:
3670 J:*STAR

```

IF STATEMENT 3660 WERE MISSING, WOULD *STAR AY: BE EXECUTED AFTER THE. JUMP (J:*STAR) ?NO
THAT"S RIGHT! IN FACT, THERE WOULD BE NO WAY TO GET OUT OF THE LOOP!! ACTUALLY THERE ARE PERHAPS OTHER WAYS OF ACHIEVING THIS SAME RESULT
WI THOUT RESORTING TO THE •D: Ø, BUT AT TIMES IT IS CONVENIENT•.
THERE IS ONE FURTHER POINT TO CONSIDER. IF THERE ARE TOO MANY
ALTERNATIUES IN A MATCH OBJECT TO FIT ON ONE LINE, THEN HOW DO YOU
'CONTINUE' A MATCH??
? CONDITION
ACTUALLY, BY THE USE OF AN 'N' CONDITION YOU CAN 'CONTINUE' AS LONG AS
YOU WISH.
THE QUESTION TO BE ANSWERED IS: DOES THIS AFFECT THE FUNCTION OF THE
DEMAND STATEMENT?
WHAT DO YOU THINK ?NO
RIGHT! IT DOES WORK PROPERLY IF YOU THINK OF THE TWO OR MORE
STATEMENTS CONTINUED' TOGETHER AS A SINGLE MATCH STATEMENT. AT THE
MOST THERE WILL BE ONE SUCCESSFUL MATCH AMONG THEM. TO SEE THIS, EXAM:
```

4070 T:NAME A DIGIT AND A COLOR.
4080 A:
4098 M: ZER,ONE,TWO,THRE,FOUR,FIVE
4100 MN:SIX,SEUEN,EIGHT,NINE
4110 M:BLUE,RED,GREEN,ORANGE,GREY
4120 MN:PINK,BLACK,PURPLE,VIOLET
4130 MN:YELLOW,WHITE,BROWN
4140 .D:2
4150 Y:GROOUY!
4160 N:I GIVE UP!

```

IF 'TWO' IS TYPED IN, HOW MANY SUCCESSFUL MATCH STATEMENTS WILL EXECUTED BEFORE 4140 ? 1
CORRECT. ONLY NUMBER 4090 WILL BE SUCCESSFUL, IN FACT 4100 WILL NEUER
BE EXECUTED!
NOW WHAT IF 'NINE AND RED' ? 2
RIGHT. BOTH 4100 AND 4110 ARE SUCCESSFUL. NUMBER 4090 IS EXECUTED BUT
FAILS. \(412 \partial\) AND 4130 ARE NOT EUEN EXECUTED.
IF 'NOTHING' IS TYPED IN ? \(\varnothing\)
OK, THEY ALL WILL BE EXECUTED, BUT NONE SUCCESSFULLY.
NOTICE THAT EACH SET OF CONTINUED' MATCH STATEMENTS ACTS LIKE ONLY ONE
STATEMENT AS FAR AS BOTH THE MATCH FLAG AND THE DEMAND STATEMENT.

WHAT DO YOU THINK IS THE MAXIMUM NUMBER OF SUCCESSFUL MATCHES THAT CAN BE 'DEMANDED' ?99
I GUESS YOU REALLY DID YOUR HOMEWORK! THE LARGEST ALLONED OBJECT OF A DEMAND STATEMENT IS 99. THUS YOU CAN HAVE UP TO 99 MATCHES TO BE 'DEMANDED'! IT IS RARE THAT YOU WILL EUER NEED THIS MANY FOR A UERY SIMPLE REASON.
WHAT IS THE LONGEST RESPONSE ALLOWED BY PILOT ? 72
CLOSE! EXACTLY! UP TO 72 CHARACTERS MAY BE TYPED IN AT ANY TIME. THIS IS THE MOST THAT PILOT CAN CHECK FOR POSSIBLE MATCHES AT ANY ONE TIME.

THAT COMPLETES EVERYTHING THERE IS TO KNOW ABOUT DEMAND! YOU NOW KNOW (OR HAVE BEEN EXPOSED TO) MOST OF THE PILOT LANGUAGE STATEMENTS. YOU CAN CAUSE THE COMPUTER TO PRINT OUR STUFF, ASK QUESTIONS, MATCH THE RESPONSE, MAKE APPROPRIATE COMMENTS, JUMP, AND NOW DEMAND. THERE ARE ONLY THREE MORE THINGS TO KNOW AND YOU WILL BE AN EXPERT! THESE ARE: HOW TO MODIFY THE VALUE OF A NUMERIC VARIABLE, SUBROUTINE JUMPING, AND A MORE POWERFUL MATCH STATEMENT.

LET'S REUIEW WHAT YOU KNOW ABOUT NUMERIC UARIABLES. FIRST HOW MANY DIFFERENT NUMERIC VARIABLES ARE THERE ? 26 PRECISELY!
WHAT PILOT STATEMENT(S) CAN MODIFY THE UALUE STORED IN A NUMERIC UARI ABLE ? DONT KNOW
SO FAR WE HAUE ONLY DISCUSSED HOW THE ANSWER STATEMENT CAN MODIFY THE VALUE OF A VARIABLE.
WHAT PART OF AN ANSWER STATEMENT ALLOWS THIS ?AFTER THE COLON
BEAUTIFUL! AND WHAT SPECIAL SYMBOL SIGNIFIES A NUMERIC VARIABLE ?\# OF COURSE!
NAME TWO WAYS IN WHICH A NUMERIC VARIABLE MAY BE USED.
?MATCH AND TYPE
WELL, YOU GOT ONE. THE FIRST WAY WE STUDIED WAS TO OUTPUT THE UALUE IN A TYPE STATEMENT. THE SECOND WAS IN A CONDITION. HERE IS A PART OF A PROGRAM TO ILLUSTRATE:
```

4 5 2 \varnothing ~ T : W H A T ~ I S ~ Y O U R ~ A G E ~ + ~
4530 *PLEASE A:\#A
4540 TB:GIMME A NUMBER!
4550 JB:*PLEASE
4560 T(A<=\emptyset):WHAT? A NEGATIVE NUMBER!
4570 T(A> 150):A FOSSIL IF I EVER SAW ONE!
4580 T:ARE YOU REALLY A YEARS OLD???

```

WHAT DOES THE CONDITION 'B' DO ?DONT KNOW
I ALMOST FEEL LIKE GIUING UP ON YOU! THE STATEMENTS WITH A 'B'
CONDITION ARE EXECUTED ONLY IF NO VALID NUMBER WERE ENTERED. IT ALLOWS TESTING OR CHECKING FOR A NUMBER IN THE RESPONSE.
SOMETIMES IT IS DESIRED TO MODIFY THE VALUE OF A NUMERIC VARIABLE OTHER
THAN IN AN ANSWER STATEMENT. THERE ARE THREE PILOT STATEMENTS THAT DO
THIS. THE FIRST. AND MOST POWERFUL IS THE COMPUTE STATEMENT. WHAT DO
YOU THINK IS THE INSTRUCTION FOR THE COMPUTE STATEMENT ?.C
AHA, YOU ARE TOO TRICKY! THE INSTRUCTION FOR THE COMPUTE STATEMENT IS
SIMPLY A 'C'.
LET'S LOOK AT A FEW EXAMPLE COMPUTE STATEMENTS:
```

7350 C:A=5
8120 CY:B=A+32*X
8320 C(Z>3):S=T*(2+N)
9040 C:H=K
9450 C:N=N+1

```

THE OBJECT OF THE COMPUTE STATEMENT BEGINS WITH WHAT ?CHARACTER OH MY ACHING HEADS! WILL YOU WAKE UP?? THE FIRST THING IN THE COMPUTE OBJECT IS A NUMERIC VARIABLE. IT IS THE ONE WHOSE VALUE IS TO BE MODIFIED.
WHAT IS THE NUMERIC VARIABLE THAT IS TO BE MODIFIED IN STATEMENT \(832 \emptyset\) ABOVE ? S
ALRIGHT, THE UARIABLE S WILL BE MODIFIED WHEN 8320 IS EXECUTED.
WHAT IS THE NEXT ITEM IN ALL COMPUTE STATEMENT AFTER THE LEADING NUMERIC VARIABLE ? =
GOOD. ALL COMPUTE STATEMENTS MUST HAVE AN EQUALS SIGN ( \(=\) ). THE PART TO THE RIGHT OF THE EQUALS SIGN IS VERY GENERALLY TERMED AN ARITHMETIC EXPRESSION OR SIMPLY EXPRESSION.
\(C:\langle N U M E R I C\) UARI ABLE> \(=<E X P R E S S I O N\rangle\)
THIS IS HOW YOU WOULD DIAGRAM A GENERAL COMPUTE STATEMENT. THE '<>' SURROUND A SINGLE SYNTACTICAL PILOT ENTITY. I HAVE LEFT OFF THE STATEMENT NUMBER AND ANY OPTIONAL LABEL OR CONDITION, THEY ARE MOST CERTAINLY ALLOWED. WHERE DOES THE CONDITION GO??
?

```

CRE-SCR,5
GET-PILOTF
RUN
PILOTF
NAME OF PILOT PROGRAM ?PTUE
NAME OF SCRATCH FILE ?SCR

```
? RUN
PILOT

GREETINGS! THIS IS THE FINAL PROGRAM IN THIS SERIES. YOU ARE ALMOST FINISHED. ACTUALLY, I HOPE THIS IS JUST A BEGINNING OF YOUR USAGE OF PILOT!

LAST TIME WE DISCUSSED THE COMPUTE STATEMENT AND AT LEAST ONE EXAMPLE OF HOW IT COULD BE USED. DO YOU REMEMBER THAT USE ?YES
VERY GOOD, WHAT IS IT ?
? ? FORGOT
WELL, WHAT I HAD IN MIND WAS THE USE AS A COUNTER. AS IN:
```

1730 C:M=M+1
2960 CY:P=P+1
4110 C(X<17):D=D+1

```

BESIDES THE COMPUTE STATEMENT, WHAT PILOT STATEMENT CAN MODIFY THE VALUE OF A NUMERIC UARIABLE ?ANSWER STATEMENT
RIGHT ON! SO FAR WE HAVE ONLY EXAMINED THE ANSWER STATEMENT. THIS ALLOWS A QUESTION WHICH ASKS FOR A NUMERIC RESPONSE.
THE COMPUTE STATEMENT MAY BE USED IN CONJUNCTION WITH THIS TO HELP EXTRACT THE INTENDED RESPONSE MORE ACCURATELY. CONSIDER:
```

6310 T:HOW MANY DAYS IN ONE WEEK +
6320 A:AD
6330 M:SEVEN
6340 CY:D=7
6350 T(D=7):EXACTLY! +
6360 T(D\#7):SORRY, +
6370 T:THERE ARE SEUEN DAYS IN ONE WEEK.

```
WHAT IS THE PURPQSE OF STATEMENTS 6330 AND 6340??
? TO ALLOW FOR NUMERIC 7 AND ALPHABETIC SEVEN
RIGHT, THEY CATCH THE RIGHT RESPONSE IF THE PERSON HAPPENED TO TYPE
'SEUEN' INSTEAD OF '7'. BOTH ARE CORRECT.
LET'S EXECUTE THIS PROGRAM.
    HOW MANY DAYS IN ONE WEEK ? 7
    EXACTLY! THERE ARE SEUEN DAYS IN ONE WEEK.
NOW TRY IT AND ENTER 'SEUEN' SPELLED OUT.
    HOW MANY DAYS IN ONE WEEK ? SEVEN
    EXACTLY! THERE ARE SEVEN DAYS IN ONE WEEK.
OFTEN ONE ONLY WISHES THAT THE RESPONSE BE CLOSE TO THE CORRECT
ANSWER. AGAIN THE COMPUTE STATEMENT TO THE RESCUE!
        84øø T:HOW MANY CENTIMETERS IN ONE INCH +
        8410 A: \# X

THE CORRECT ANSWER IS 2.54; HONEVER, TO. BE CONSIDERED CORRECT YOU MIGHT.
ALLOW ANY NUMBER BETWEEN 2.5 AND 2.58. THIS WOULD ALLOW ANY RESPONSE
THAT IS WITHIN O.D4 OF THE CORRECT ANSWER TO BE COUNTED. A UERY SIMPLE
WAY IS TO COMPUTE THE DIFFERENCE BETWEEN THE CORRECT ANSWER AND THE
RESPONSE.
HOW WOULD YOU DO THIS ?C:D=2.54-X
I BELIEVE THAT IS CORRECT! A COMPUTE STATEMENT THAT LOOKS LIKE THIS
SHOULD DO THE TRICK:
\(8420 \mathrm{C}: \mathrm{D}=2.54-\mathrm{X}\)

IF THE RESPONSE IS: '2.5' WHAT IS STORED IN D ?.04
EXACTLY! D HAS 0.04 STORED IN IT. SINCE 2.5 IS AN ALLCWED 'CORRECT ANSWER', HOW WOULD YOU CAUSE THE APPROPRIATE MESSAGE TO BE TYPED OUT?? ?C: - T ( \(D<=\varnothing .04)\) : CO RRECT!
GOOD. BY USING D IN A CONDITION ON A TYPE STATEMENT YOU CAN PRINT.THE CORRECT RETORT. CONSIDER:
```

8400 T:HOW MANY CENTIMETERS IN ONE INCH +
8410 A: X
8420 C:D=2.54-X
8440 T(D<=\emptyset.04):VERY GOOD!
8450 T(D>0.04):NOT QUITE.

```

THIS IS COOL FOR GUESSES LESS THAN 2.54, BUT WHAT WOULD BE PRINTED IF '57' WERE ENTERED ?VERY GOOD!
EKACTLY! NOW IS '57' A 'CORRECT RESPONSE' ?NO OF COURSE NOT, THUS WE HAVE A BUG TO FIX!! WHAT WE REALLY WANT IS THE ABSOLUTE DIFFERENCE FOR D. SO IF D IS LESS THAN ZERO, WE WANT TO CHANGE ITS SIGN. THIS CAN BE DONE WITH ONE PILOT STATEMENT:
```

8430 C(D<0)

```

WHAT IS THE CORRECT OBJECT ? D=-D
VERY GOOD!
THUS OUR PROGRAM BECOMES:
```

8400 T:HOW MANY CENTIMETERS IN ONE INCH +
8410 A: X
8420 C:D=2.54-X
8430 C(D<\varnothing):D=-D
8440 T(D<=\varnothing.04):VERY GOOD!
8450 T(D>0.04):NOT QUITE.

```

EXCEPT FOR INTEGER RESPONSES IT IS BEST TO GO THROUGH SOMETHING LIKE THIS FOR NUMERIC RESPONSES, EVEN FOR SIMPLE DECIMAL NUMBERS. THE COMPUTER CANNOT REPRESENT MOST DECIMALS EXACTLY, HENCE SOMETHING LIKE: \(7320 \mathrm{~T}(\mathrm{X}=.1)\) : ... MAY NEVER BE EXECUTED EVEN IF .0.1. HAS BEEN PREVIOUSLY STORED IN X. SOMEWHERE, PERHAPS IN THE SEVENTH DECIMAL PLACE, \(X\) MAY DIFFER SLIGHTLY FROM D: 1 , AND THE TEST WILL FAIL.

ANOTHER USEFUL WAY TO MODIFY THE VALUE OF A NUMERIC UARIABLE IS TO REPLACE IT WITH THE GREATEST INTEGER LESS THAN OR EQUAL TO THE ORIGINAL NUMBER.
FOR 4.7, WHAT IS THIS INTEGER ? 4
RIGHT ON!
HOW ABOUT D. 247 ? 0
BEAUTIFUL!
OK, TRY 6.øØ ? 6
GOOD.
AND -2.7 ?-3
EXCELLENT:
FINALLY, -7.0日 ?-7
PERFECT! NOTE THAT FOR POSITIUE NUMBERS THIS GREATEST INTEGER FUNCTION
IS EQUIVALENT TO JUST THROWING AWAY ANY DECIMAL PORTION; HOWEVER, THIS SIMPLE-MINDED DESCRIPTION IS NOT ADEQUATE FOR NEGATIUE NUMBERS. THIS OPERATION IS DIFFICULT, IF NOT IMPOSSIBLE, TO DO WITH THE COMMON ARITHMETIC OPERATORS AS ALLOWED IN THE COMPUTE STATEMENT, YET IT IS SUFFICIENTLY USEFUL TO BE INCLUDED IN THE PILOT LANGUAGE. A NEW INSTRUCTION IS USED, WHAT DO YOU THINK IT IS ?I
THAT IS A GOOD GUESS, BUT THE INTEGER FUNCTION GREALLY THE GREATEST INTEGER THAT IS LESS THAN OR EQUAL TO) IS DESI GNATED BY THE EXTENDED INSTRUCTION '.I'. EXAMPLES ARE:
```

370 -I:X
4290 .I:S
6660.I (X>9):X

```

WHAT ARE THE OBJECTS OF THESE INTEGER FUNCTION STATEMENTS ?NUMERIC VARIE NUMERIC UARIABLES
EXACTLY! THE OBJECT IS A SINGLE NUMERIC VARIABLE. ITS VALUE IMMEDIATELY BEFORE THE EXECUTION OF THE STATEMENT IS REPLACED BY THE GREATEST INTEGER THAT IS LESS THAN OR EQUAL TO IT.
TO SEE A POSSIBLE USE, CONSIDER:
```

3250 T:THREE IS WHAT PERCENT OF 24 +
3260 A: \#P
3270 .I:P
3280 T(P=12):EXCELLENT!
3290 T(P\#12):NOPE.

```
WHAT IS THE SMALLEST NUMBER FOR WHICH 'EXCELLENT' WILL BE PRINTED ? 12
RIGHT ON:
HERE THE CORRECT ANSWER IS 12.5, BUT ANYTHING FROM 12 UP TO (BUT NOT
INCLUDING) 13 IS ACCEPTABLE. THE I I VERY EASILY SETS UP THE RANGE.
A MORE IMPORTANT USE IS FOR ROUNDING. THE INTEGER FUNCTION AS GIVEN
DOES NOT ROUND, IT MERELY TRUNCATES. ROUNDING CAN BE ACHIEVED IN QUITE
A STRAIGHTFORWARD MANNER BY:
```

4560 C: X=X+.5

```
4570 - I: X
WHAT WILL BE STORED IN X IF IT PREUIOUSLY HAD 4.00 ? 4
EXACTLY.
HOW ABOUT 4.6 ? 5
COOL!
OK, TRY -2.1 ?-2
RI GHT !
AND WHAT DOES -5.7 BECOME ?-5
MY, MY, NO. \(-5.7+0.5\) IS -5.2 WHICH BECOMES -6 .
NOTE THAT THE WAY THE INTEGER FUNCTION IS DEFINED MAKES THE ROUNDING
OPERATION WORK FOR BOTH POSITIVE AND NEGATIUE UALUES. IF IT SIMPLY
DI SCARDED THE DECIMAL PART, THEN THERE WOULD HAVE TO BE SPECIAL TESTS
AND HASSELING TO DO THE ROUNDING.
YOU CAN ROUND TO ANY POINT YOU WISH. CONSIDER THE FOLLOWING TO ROUND
TO THE NEAREST HUNDRETH (PENNY??):
    \(7310 \mathrm{C}: Q=Q * 100+.5\)
    7320 -I: 0
    \(7330 \mathrm{C}: Q=Q / 100\)
OK, IF Q ORIGINALLY CONTAINS 3.14159, WHAT IS THE NEW UALUE ?
\(\stackrel{\bullet}{\bullet}\)

\title{
contributed progatm BASIC
}
\begin{tabular}{|c|c|}
\hline TITLE: & CWF SUBPROGRAM \(\begin{array}{r}\text { STDATA } \\ 36888-18027\end{array}\) \\
\hline DESCRIPTION: & \begin{tabular}{l}
STDATA is one of a series of user-written sub-programs that extend the capabilities of Hewlett Packard's licensed instructional product: Course Writing Facility (CWF). For more information about CWF, users should consult the Course Writing Facility Reference Manual, Part no. 24383-90001. \\
When a CWF author invokes this sub-program with a call of the form "fn /stdata", certain data from the student's record are made available in the CWF buffer, b5. The data include the student's name, number, user group, and date of registration, as well as the time he has spent on the course and the time of his last sign-on. These data may be used directly by the author to print out messages to the student, or to affect the logical flow of the course for each individual student.
\end{tabular} \\
\hline & ; \\
\hline \multirow[t]{16}{*}{INSTRUCTIONS:} & CALLING FORMAT \\
\hline & fn/stdata \\
\hline & COURSE FACILITIES AFFECTED \\
\hline & Counter 30 (c30) will contain the student number \\
\hline & Buffer 5 (b5) will contain the following: \\
\hline & Starting positicn length contents \\
\hline & 09 student number \\
\hline & 922 student's last name \\
\hline & 313 user group \\
\hline & 348 data of registration: MM/DD/YY \\
\hline & 42 8 today's date: MM/DD/YY \\
\hline & 508 time of sign on: hh-mm \(\mathrm{x} \times\) ( \(\mathrm{AM}, \mathrm{PM}, \mathrm{N}, \mathrm{M}\) ) \\
\hline & 5813 time on course up to last sign off (hh hrs mm min) \\
\hline & . 7122 student's first name \\
\hline & The student's last name will never exceed a maximum of 20 characters and will be filled with blanks to a total of 22 characters; all 22 characters will be filled with blanks for a demo student. The last character in the name is followed by a control E, e.g., SMITHEC. This causes printing to stop at the end of the student's name, for example, "ld b5,71,22/bl" loads 22 characters into bl, but "ty bl" then prints only up to the EC. \\
\hline & Continued on following page. \\
\hline \multirow[t]{3}{*}{SPECIAL
CONSIDERATIONS:
ACKNOWLEDGEMENTS:} & \\
\hline & HP 24383A, Course Writing Facility must be present in the system for this subprogram to RUN. \\
\hline & \begin{tabular}{l}
Jutta Kernke \\
Hewlett Packard
\end{tabular} \\
\hline
\end{tabular}

\section*{STDATA, Page 2}

INSTRUCTIONS continued
Similar remarks apply to the student's first name

SAMPLE CALL
fn/stdata
1d \(b 5,71,22 / b 1\)
ty How are you today,
ty bl
ty ?

SAMPLE RUN

How are you today, John?


INSTRUCTIONS:
To enter a program in the STOP language:
- After the system prints "BEGIN TYPING IN YOUR PROGRAM AND DATA STATEMENTS.", enter each statement as in the following example:
\[
001,81200 \text { (carriage return) }
\]

The first three digits are the address where the instruction or datum (01200) will be stored.
- After your program and data are entered, type an \(E\) indicating the end of your entries.
- The system will print "TYPE \(\varnothing\) TO RUN, 1 TO EDIT, 2 TO LIST, 3 TO STEP." Typing a 1 at this point allows you to re-enter any statements you wish to correct or to add new statements. You need to terminate your editing by typing an E. (See below for options 2 and 3)
- When you type a to run, you will be asked to enter the starting address of the program. Touching the RETURN button after entering the address will cause the program to be executed.

\section*{Other Options}

LIST: This will give a list of addresses and their contents. You must be prepared to type on request the beginning and ending addresses of the list you wish printed.

STEP: This will allow you to execute your program one step at a time. You will first enter the starting address as in the RUN option. As each step is executed, the teletype will print the address of the instruction executed and the contents of the accumulator after execution. Typing a 3 and carriage return will cause the system to execute the next instruction in the same manner. Typing a and carriage return will cause the rest of the program to be executed from that point on. Typing a 1 will send control back to the original four-option statement.

SPECIAL CONSIDERATIONS:
An introduction to STOP and its language is found in Computers - Theory and Uses, written by Vincent S. Darnowski and published by the National Science Teachers Association, NEA, 1201 Sixteenth Street N.W., Washington, D.C. 20036. The cost is \(\$ 24.00\) for 30 copies. The book was written as a text for introducing junior high school students to computers and their implications. Students studying this text can enhance their understanding of computers by writing and running machine language programs from any TIES Time-Sharing terminal.

Storage addresses must be integers greater than 0 and less than 1000 . Instructions and data words must be integers between -99999 and 99999 inclusive.

Program or data statements can be corrected by retyping the statement. This can be done at any time during the entering of your program, or at other times when a system message gives you the option. New statements can be added at those same times.

STOP will execute instructions in sequence by address, starting with whatever address you specify and ending when a HALT command is reached. Hence, you must not leave any addresses undefined in the range of your program.

Since a datum and an instruction are each represented by a 5 digit integer, they appear the same to the computer. Therefore, programs and data must be stored in separate areas predetermined by you when you assign storage locations.

RUN
```

RUN
STOP
TYPE AN 'E' TO INDICATE YOU HAVE FINISHED INPUTTING.
BEGIN TYPING IN YOUR S T O P PROGRAM.
?001,11100
?002,11100
7003,07100
?004,111100
?005.09000
?100,02345
?E
TYPE g TO RUN, 1 TO EDIT, 2 TO LIST, 3 TO STEP.
7
INPUT THE STARTING AND ENDING ADDRESSES FOR THE LISTING.
7001,005
001,11100
0日2,111100
003,07100
004,11100
065,09000
TYPE D TO RUN, 1 TO EDIT, 2 TO LIST, 3 TO STEP.
78
INPUT THE STARTING ADDRESS.
7001
2345 2345 62345
2345 HALT
TYPE GO RUN, 1 TO EDIT, 2 TO LIST, 3 TO STEP.
?
DONE
RUN
STOP
TYPE AN 'E' TO INDICATE YOU HAVE FINISHED INPUTTING.
BEGIN TYPING IN YOUR S T O P PROGRAM.
?001.01401
3002,02402
?603,17060
?004;09000
7461;08003
?402;08632
?
77E
TYPE Ø TO RUN, 1 TO EDIT, 2 TO LIST, 3 TO STEP.
70
INPUT THE STARTING ADDRESS.
2001
08635
HALT
TYPE \& TO RUN, 1 TO EDIT, 2 TO LIST, 3 TO STEP.
?
??
DONE

```

Title: .
description:

\section*{INSTRUCTIONS:}

ACKNOWLEDGEMENTS:

\section*{Norman Thompson}

TIES
The STOP system begins by requesting "PROGRAM FILE NAME ?". The operator responds with the name of the file to be used to store the program or the file containing the program, if a previously written program is to be reRUN. If the file is not available, STPAL will tell the operator how to open it and halt. It is necessary to type RUN after opening the file and re-enter the file name. The system will then print "TYPE YES IF THIS IS AN ASSEMBLY PROGRAM?". The operator responds with YES or NO. If NO is the response, STPAL types "ENTER MACHINE LANGUAGE STATEMENTS". The operator begins to enter statements according to the SML rules. After the operator enters a statement with a address, execution of the machine language program begins.

After a HALT is encountered, the STPAL system asks "DO YOU WISH TO CORRECT THE MACHINE LANGUAGE PROGRAM?". The operator answers YES or NO. If no corrections are to be made, STPAL returns to the PROGRAM FILE NAME? request. The operator enters a new file name to run another program or //STOP to terminate.
continued on following page

The machine language version can be corrected by typing in the address and the instruction to go at that address. To end corrections, the operator types a 000 address, and the program begins executing as before.

If an assembly language program is indicated, STPAL types:
BEGINNING ASSEMBLY
TYPE \(\emptyset\) FOR NEW PROGRAM, I FOR REASSEMBLE OLD PROGRAM?
If an old program, the program statements will be read from the file requested earlier, then compiled and executed. If a new program, STPAL will request assembly statements, write them to the file, then, after an END statement is encountered, compile and execute the program. After execution of either an old or new assembly program, the system will type:

DO YOU WISH TO CORRECT THE MACHINE LANGUAGE PROGRAM?
and the operator should proceed as above.

\section*{I. SML - A Machine Language}
1. Instruction WORD FORMAT Each SML instruction is 5 decimal digits long. The first two (high order) digits form the operation code while the low order three digits form the operand. The operation code (op-code) specifies the operation to be performed. (See Section III.) The operand varies in function from operation to operation. The various uses are: a. Location of data; b. Location of next instruction to be executed; \(c\). The data itself; \(d\). Additional information necessary in the instruction execution.
2. Statement Format

SML recognizes two basic types of statements, program statements and comment statements. The comment statement must have an asterisk in column 1. Then the rest of the line will be taken as a comment for documentation purposes. Program statements have the following format:
\begin{tabular}{lll} 
Cols. 1-3 & Address of the computer word to be stored. \\
Col. 4 & Blank \\
C01. & 5 & Either blank or \(a+,-, \#\), or \(*\). \\
Col. & \(6-10\) & Computer Word \\
Col. & \(11-72\) & Any comment
\end{tabular}

Blank is the only non-numeric character allowed in Cols. 1-3 and 6-10 inclusive and will be assumed to be zero. A + or - in Col. 5 assumes the computer word is a data word with the associated sign. An * in Col. 5 indicates indirect addressing. A \# in Col. 5 indicates that operand (Col. 8-10) is the data itself. This is generally referred to as a literal operand.
3. Instruction Execution

SML instructions are executed in numerical order by location. A branch instruction (or transfer instruction) may alter the normal order of execution. The last statement written must have location \(\varnothing \varnothing \varnothing\) and contain in the operand portion (Cols. 8-10) the location of the first instruction to be executed.
II. SAL - An Assembly Language

SAL recognizes three basic types of statements: program statements, pseudo-operations, and comment statements.
1. Prograni Statement

Program statements are translated into equivalent SML statements and stored. They have the following format:
\begin{tabular}{lll} 
Col. & 1 & \begin{tabular}{l} 
Any control character but generally \(A^{C}\).
\end{tabular} \begin{tabular}{l} 
(Super script "C" indicates a control \\
Col.
\end{tabular} \\
Character which is done by pressing CTRL and the character simultaneously.)
\end{tabular}

If Col. I has an * (asterisk) the entire line is taken as a comment statement. The label field may contain a unique symbolic label of either 1 or 2 alpha-numeric characters. The first character must be alphabetic (A-L) but the second character may be alphabetic, numeric or blank. The label may not be \(S 0\) or \(T R\) since these are reserved words used in the linkage to the square root and trig subroutines respectively. The operation field must contain a valid SAL mnemonic operation code. (See Section III.) The operand may contain a symbolic label as defined above. Also the operand may contain a literal 1,2 or 3 digit right justified number. If this is so, the value used by the instruction is not the content of the location specified but the number itself. (For example, ADDIDD would add the number 100 to the content of the accumulator, not the content of location 100.)

Indirect addressing is indicated by an asterisk in Column 8 . When indirect addressing is specified, the operand portion (Col. \(9-10\) of the assembled SML instruction) is replaced by the operand portion of the location indicated. If indirect addressing is specified by the new effective instruction, another indirect addressing cycle is taken. Indirect addressing may only be specified 10 levels deep.

It should be noted that the four fields of a SAL statement correspond to the four fields of SML statement even to essentially the same columns.
2. Pseudo-operations

Pseudo-operations, unlike normal operations in program statements, are not assembled into SML instructions, but are used to communicate with the assembler. In general, they have the same format as program statements.
a. \(O R G\)

The pseudo-operation ORG (origin) sets the location counter at the value of the operand. The operand must be right justified 1-3 digit non negative number in Columns 8-10.
b. END

The pseudo-operation END signals the end of the assembly program execution. An unconditional branch to the location specified by the operand is generated in location \(\emptyset \emptyset \emptyset\). The specified location will be the first statement to be executed by the assembled SML program.
c. \(D S\)

The pseudo-operation DS (define storage) is used to reserve the number of storage locations specified by the operand. The format of the operand is the same as that for the ORG pseudo-operation.
d. Define constant + and -.

Either the pseudo-operation + or the pseudo-operation - may be used to reserve one location of storage using the signed word content as the defined constant. The sign must appear in Column 5 and the word must be a 5 digit number right justified in Columns 6-10. The define constant may be used for constants in integer range -99,999 to 99,999.
III. The valid SML operation codes and their SAL equivalents are listed below.
\begin{tabular}{|c|c|c|}
\hline OP-CODE & MNEMONIC & FUNCTIONS \\
\hline 00 & REA & Allows one number to be read into the location specified by the operand. \\
\hline 01 & LOA & Load the accumulator with the word specified by the operand. \\
\hline 02 & ADD & Add to the accumiulator the word specified by the operand. \\
\hline 03 & SUB & Subtract from the accumulator the word specified by the operand. \\
\hline 04 & MUL & Multiply the content of the accumulator by the word specified by the operand. \\
\hline 05 & DVQ & Divide the content of the accumulator by the word specified by the operand and store the quotient in the accumulator. \\
\hline 06 & STO & Store the content of accumulator in the location specified by the operand. (The content of the accumulator is not altered.) \\
\hline 07 & PRT & Print the content of the location specified by the operand.1 \\
\hline 08 & BON & Branch to the location specified by the operand if the content of the accumulator is negative. \\
\hline 09 & HLT & Halt execution. Control returns to a system command. 2 (Operand is ignored.) \\
\hline 10 & UCB & Branch to the location specified by the operand. \\
\hline 11 & PSC & Print the word specified by the operand and suppress the carriage return. \({ }^{1}\) \\
\hline \(1 i\) & DVR & Divide the content of the accumulator by the word specified by the operand and store the remainder in the accumilator. \\
\hline 13 & NOP & No operation executed. (Operand is ignored) \\
\hline 14 & ZAC & Zero the accumulator. (Operand is ignored) \\
\hline 15 & \(B 02\) & Branch to the location specified by the operand if the content of the accumulator is zero. \\
\hline 16 & BOP & Branch to the location specified by the operand if the content of the accumulator is positive. \\
\hline 17 & PAD & Print the content of the accumulator inserting a decimal point the number of places from right specified by the operand. 1,3 \\
\hline 18 & BSA & Store the address of the (current) instruction plus one in the location specified by the operand and branch to the address specified by the operand plus one. 4 (Appendix III) \\
\hline 19 & RTC & Return the carriage. (Skips a line) \\
\hline 20 & SCR & Suppress the carriage.' (Operand ignored) \\
\hline 21 & SNR & Snift the content of the accumulator right the number of decimal places specified by the operand. \\
\hline 22 & SNL & Shift the content of the accumulator left the number of decimal places specified by the operand. \\
\hline 23 & RAL & Allows up to 10 numbers to be read into the 10 consecutive locations beginning with the location specified by the operand. 4 \\
\hline
\end{tabular}
\begin{tabular}{cc} 
OP-CODE & MNEMONIC \\
24 & \(P C L\)
\end{tabular}

FUNCTIONS
Print the number of locations specified by the accumulator beginning with the location specified by the operand. 5

Notes:
1. The print operations simulate a typewriter with an automatic carriage return (unless the carriage return is suppressed). PRT and PAD must be followed by SCR if so desired while PSC will suppress the automatic carriage return.
2. The system will always respond "TYPE YES IF THIS IS AN ASSEMBLY PROGRAM". If the answer is NO the system will expect a SML program, if YES a SAL program.
3. The PAD (17) operation is used to print a number with a decimal point. For example, to print the value of \(\operatorname{PI}(\pi)\) the content of the accumulator must be 31416 and then the operation PADO4 would be written and 3.1416 would be printed.
4. The RAL (23) operation allows up to 70 characters to be read from an input line. The format must be Col. 1 sign, Col. 2-6 numeric, and Col. 7 comma and so on across the line until the number of items desired is included.
5. The PCL (24) operation allows memory to be dumped from 001 by loading the accumulator with the number locations desired and executing PCL00.
IV. Subroutines
1. A subroutine is a sub-ordinate part of a computer program written to do some routine or operation. The linkage to a subroutine requires that the location of the subroutine be known; the location of the return address be known; and the location of the fields operated upon be known. In SAL the BSA (18) instruction is used to link to subroutines whether the subroutine is a library (See 2 and 3 below) or programer created subroutine.
2. Linkage to the library subroutine for the square root is:

Col. 2345678910
BSA SQ
NU DS 601
RT DS 001
NU must be loaded with the number whose square root is to be found. The square root subroutine will place in RT the root of the absolute value of \(N U\) (truncated to two decimal places but multiplied by a factor of 100 ).
3. Linkage to trigonometric subroutine is as follows:

Col. 2345678910
BSA TR
AA DS 801
BB DS 001
\(B B\) must contain a parameter that indicates the values to be found while \(A A\) is the value to be operated upon.
Parameter
1
2
3
4
5
6
7
8
Unit of Input
Degrees
Degrees
Radians
Radians
Degrees

Radians
Degrees
Radians
\begin{tabular}{lc} 
Function & Stored \\
SIN & BB \\
COS & BB \\
SIN & BB \\
COS & BB \\
SIN & \(A A\) \\
COS & BB \\
SIN & \(A A\) \\
ARCTAN & \(B B\) \\
ARCTAN & \(B B\)
\end{tabular}

If \(B B\) is less than or equal to \(6, A A\) is an angle in degrees or radians. If \(A A\) is in degrees, it must be in the range +180.00 and two decimal places are assumed. If \(A A\) is in radians, it must be in the range +3.1416 and 4 decimal places are assumed. For these values of \(B 8\) all results are truncated to 4 decimal places and multiplied by 10,000 . Note that \(B 8\) is always replaced by an answer and for options 5 and 6 both \(A A\) and \(B B\) are replaced by answers. If \(B B\) is 7 or 8 , AA must be a number in the range +99.999 and 3 decimal places are assumed. If the output is in degrees, the results are truncated to two decimal places and multiplied by 100. If the output is in radians, the results are truncated to 4 decimal places and multiplied by 10,000 .
```

RUN
RUN
STPAL
PKOGRAM FILE NAMETROBIN
TYPE CRE-ROBIN,2 (RENURN), THEN TYPE RUN
DONE
RUN
S TPAL
PROGRAM FILE NAMETPROGFL
TYPE YES IF THIS IS AN ASSEMBLY PROGRAM
?NO\
NO
ENTER MACHINE LANGUAGE STATEMENTS
P001 \
001 61001
7062 06020
?003 07820
7004 01020
7065 02020
7006 06820
7007 103513
7008 08003
7009 09000
7000 10001
BEGINNING EXECUTION
1
2
4.
16
32
64
128
256
512
HALT ENCOUNTERED. EXECUTION COMPLETE.
NUMBER OF STATEMENTS EXECUTED 63
DO YOU WISH TO CORRECT THE MACHINE LANGUAGE PROGRAM?NO
PROGRAM FILE NAME?FILEI
TYPE YES IF THIS IS AN ASSEMBLY PROGRAM
?YES
BEGINNING ASSEMBLY
TYPE O FOR NEW FROGRAM, I FOR RE-ASSEMBLE OLD PROGRAM.?I

LOC	OPADD	LAB	OP	OPER
081		R	DS	001
082		H	DS	001
003			DS	008
011	480314	PI	+083	314
012	23601	GO	RAL	R
013	01001		LOA	R
014	15822		BOZ	EX
015	04001		MUL	R
016	04602		MUL	H
017	04811		MUL	PI
618	11001		PSC	R
819	11002		PSC	H
026	17002		PAD	82

```

STPAL, Page 6
```

21 10012 UCB GO
022 09000 EX HLT 00
000 18012 END GO
ASSEMBLY COMPLETE, BEGINNING EXECUTION

```
```

INPUT DATA. FORMAT SXXXXX,ETC.
?+00005,+00002
5 2 157
?+00000
HALT ENCOUNTERED. EXECUTION COMPLETE.
NUMBER OF STATEMENTS EXECUTED IA
DO YOU WISH TO CORRECT THE MACHINE LANGUAGE PROGRAM?YES
START EDITING. }800\mathrm{ ADDRESS STILL LAST STATEMENT.
?011 +00031
?820 17801
?000 10012
BEGINNING EXECUTION

```
INPUT DATA. FORMAT SXXXXX,ETC.
?+00005.+80002
    51515
? + ロ0000
HALT ENCOUNTERED. EXECUTION COMPLETE.
NUMBER OF STATEMENTS EXECUTED 14
DO YOU WISH TO CORRECT THE MACHINE LANGUAGE PROGRAM?NO
PROGRAM FILE NAME?//STOP
DONE


COMMANDS:
```

ERASE - ER
PROMPTS
None
OESCRIPTION
This command causes the quintuples to be erased. Upon completion of the operation, the computer
responds with "QUINTUPLES ERASED".
ERRORS
None
NEWTAPE - NT
PROMPTS
None
DESCRIPTION
This command causes the tape to be erased. Upon completion of the operations, the computer
responds with "TAPE ERASED".
ERRORS
None
TAPE - TA
PROMPTS
"IST CHARACTER POSITION" -- User is to input a number to indicate where the new information is
to begin.
"TMT?" -- (stands for Turing Machine Tape)
User is to input information to be stored on the tape.
DESCRIPTION
This command allows one to enter meaningful information on the tape. When typing-in information,
the user may use as many lines as are necessary. The input is terminated by the character "/".
If the user types J characters, then J positions of the tape will be overlaid beginning with the
position indicated as "IST CHARACTER POSITION".
ERRORS
Due to the nature of the implementation, the tape has a finite length. If the user specifies a
"IST CHARACTER POSITION" outside the boundary of the tape, the computer will reprompt. If at
any time the user inputs more characters than the tape can contain, the computer types "OUT OF
STORAGE -- GOOF". Any time an invalid character is encountered "GOOF" is printed. (Valid char-
acters are 0-9, A-2.) In the case of any error the characters up to the goof are stored on the
tape and control is returned to the main program.
QUINTUPLES - QU
PROMPTS
"TMQ?" -- (stands for Turing Machine Quintuple)
The user is to input a valid quintuple or the character "/".
DESCRIPTION
This command allows one to enter quintuples (program steps) into the system and to modify ex-
isting quintuples. Quintuples may be entered free-field but must contain exactly 3 or 7 non-
blank characters. Character meanings are as follows with allowed values:

1,2	PRESENT STATE	$(00-99)$
3	PRESENT SYMBOL	$(0-9, A-Z, \$)$
4,5	NEW STATE	$(00-99)$
6	NEW SYMBOL	$(0-9, A-Z, \$)$
7	TAPE DIRECTION	(L, C, R)

```

There must be only one quintuple present for each unique pattern of the first three characters. (These three characters are used much like the statement numbers in BASIC.) Typing-in any quintuple will delete any previous quintuple with the same first three characters and enter the new one. Typing only the first three characters will delete the corresponding quintuple if it exists.

In this system, the "halt" command is anything which has the new state equal to the old state and has a tape direction of "center".

Instead of the normal alphanumeric symbols, the "\$" may be used as a "present symbol" or a "new symbol". Its meaning is indicated by the following table:
```

present symbol -- "whatever is on the tape"
new symbol -. "whatever the present symbol was"

```


\section*{None}

DESCRIPTION
This command causes the quintuples to be erased. Upon completion of the operation, the computer responds with "QUINTUPLES ERASED"

ERRORS
None
NEWTAPE - NT
PROMPTS
None
DESCRIPTION
This command causes the tape to be erased. Upon completion of the operations, the computer responds with "TAPE ERASED".

ERRORS
None
TAPE - TA
PROMPTS
"IST CHARACTER POSITION" -- User is to input a number to indicate where the new information is to begin.
"TMT?" -- (stands for Turing Machine Tape)
User is to input information to be stored on the tape.
DESCRIPTION
This command allows one to enter meaningful information on the tape. When typing-in information, the user may use as many lines as are necessary. The input is terminated by the character "/". If the user types \(J\) characters, then J positions of the tape will be overlaid beginning with the position indicated as "IST CHARACTER POSITION".

ERRORS
Oue to the nature of the implementation, the tape has a finite length. If the user specifies a "IST CHARACTER POSITION" outside the boundary of the tape, the computer will reprompt. If at any time the user inputs more characters than the tape can contain, the computer types "OUT OF STORAGE -- GOOF". Any time an invalid character is encountered "GOOF" is printed. (Valid characters are 0-9, A-2.) In the case of any error the characters up to the goof are stored on the tape and control is returned to the main program.

QUINTUPLES - QU
PROMPTS
"TMQ?" -- (stands for Turing Machine Quintuple)
The user is to input a valid quintuple or the character "/".
DESCRIPTION
This command allows one to enter quintuples (program steps) into the system and to modify existing quintuples. Quintuples may be entered free-field but must contain exactly 3 or 7 nonblank characters. Character meanings are as follows with allowed values:
\begin{tabular}{lll}
1,2 & PRESENT STATE & \((00-99)\) \\
3 & PRESENT SYMBOL & \((0-9, A-2, \$)\) \\
4,5 & NEW STATE & \((00-99)\) \\
6 & NEW SYMBOL & \((0-9, A-Z, \$)\) \\
7 & TAPE DIRECTION & \((L, C, R)\)
\end{tabular}

There must be only one quintuple present for each unique pattern of the first three characters. (These three characters are used much like the statement numbers in BASIC.) Typing-in any quintuple will delete any previous quintuple with the same first three characters and enter the new one. Typing only the first three characters will delete the corresponding quintuple if it exists.

In this system, the "halt" command is anything which has the new state equal to the old state and has a tape direction of "center".

Instead of the normal alphanumeric symbols, the "\$" may be used as a "present symbol" or a "new symbol". Its meaning is indicated by the following table:
present symbol -- "whatever is on the tape"
new symbol -. "whatever the present symbol was"

When executing the program, the system tries to satisfy all the specific cases first. The \(\$\) notation is tried only as a last resort.

ERRORS
Goofs are caused by the following conditions: quintuples not 3 or 7 characters long, any parameter out of range, program space full. The last error also causes the computer to type "OUT OF STORAGE".
```

LIST TAPE - LT

```

PROMPTS
"IST CHARACTER POSITION" -- User must respond with a number indicating where listing is to beqin.
"LAST CHARACTER POSITION" -- User must respond with a number indicating where listing is to end.
DESCRIPTION
This command allows the user to look at the contents of the tape. Indicated portion of the tape is printed.

ERRORS
Any number specified which is outside the range of the tape will be ignored and the computer will reprompt.

LIST - LQ
PROMPTS
None
DESCRIPTION
This cormand allows the user to look at the qunituples (program steps). The quintuples are sorted, then printed.

ERRORS
None
PUNCH - PU
PROMPTS
None
DESCRIPTION
This command is the same as the LIST command except that a leader and trailer are punched. A "/" is also punched as the last quintuple to facilitate future read-in.

It is the responsibility of the user to turn the punch on and off at the appropriate times.
ERRORS
None
RUN - RU
PROMPTS
"INITIAL STATE" -- User must type the state number with which he wishes to start.
"INITIAL TAPE POSITION" -- User must type the tape position where processing is to begin.
DESCRIPTION
Ihis command causes the computer to execute the quintuples with a given tape. The quintuples are executed and a trace is supplied by the computer. Each quintuple is printed with a copy of the tape as it appears after the quintuple has acted. The current tape position is also indicated. The whole tape is not printed; just the indicated character and 10 characters of context on either side.
[RROR'S
Control is returned to the main program if a null program or tape is specified. The computer reprompts when invalid numbers are given for "INITIAL STATE" or "INITIAL TAPE POSITION". (Valid range for tape position is from 10 to 10 from the end of the tape.) A goof is generated when a real state-tape configuration finds no counterpart in the list of quintuples or when a tape runs out.

NORUN - NR
PROMPTS
"INITIAL STATE" -- User must type the state number with which he wishes to start.
"INITIAL TAPE POSITION" -- User must type the tape position where processing is to begin.
DE SERIPIION
This command causes the computer to execute the quintuples with a given tape. The quintuples are executed but no trace is given.

ERRORS
Control is returned to the main program if a null program or tape is specified. The computer reprompts when invalid numbers are given for "INITIAL STATE" or "INITIAL TAPE POSITION". (Valid range for tape position is from 10 to 10 from the end of the tape.) A goof is generated when a real state-tape configuration finds no counterpart in the list of quintuples or when a tape runs out.

MODIFICATIONS:
The maximum number of quintuples and the maximum length of the tape may also be changed. Two procedures for doing the indicated modifications follow:
1. CHANGE NUMBER OF QUINTUPLES

Change the common statement in each program. Array \(Q\) is where the quintuples are stored. There must be 3 entries fo: each quintuple. (Thus the standard option allows for 100 quintuples.)

In the mainline, change the variable \(Q\) to be the new maximum number allowed.
File TQUIN will have to be changed. It takes approximately 1 record for each 20 quintuples allowed.
2. CHANGE LENGTH OF TAPE

Change variable \(T\) in the mainline to be one less than the new maximum tape length.
Files TTAPE and TWORM will have to be changed. It takes 1 record for each 64 characters allowed.

\section*{RUN}

RIJN
TM

TMC?ERASE
QUINTUPLES ERASED
TMC?NEWTAPE
TAPE ERASED
TMC?QUINTUPLES
TMQ?JIAס2AL
TMO? 15015 R
TMO? 320331L
TM2?J21020L
TMQ?32A341L
TMO? 33A84AL
TMO? 33S日3sL
TMO?04s34SC
TMO? \(/\)
TMC?LIST
\begin{tabular}{lllll}
101 & \(A\) & 02 & \(A\) & \(L\) \\
31 & \(S\) & 01 & \(S\) & \(R\) \\
02 & \(a\) & 03 & 1 & \(L\) \\
02 & 1 & 02 & \(B\) & \(L\) \\
02 & \(A\) & 04 & 1 & \(L\) \\
03 & \(A\) & 04 & \(A\) & \(L\) \\
33 & \(S\) & 03 & \(S\) & \(L\) \\
34 & \(S\) & 04 & \(S\) & \(C\)
\end{tabular}

TMC?TAPE
\(15 T\) CHARACTER DOSITION?18
TMT?AA101/AA/
TMC?LISTTADE
1ST CHARACTE? POSITION?ID
LAST CHARACTER POSITION?53
.........AAIzIIAA.....................................
TMC?RUN
INITIAL STATE?I
INITIAL TAPE POSITION?2Z

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{start} & ．．．．．．．．AA & 1 & BIIAA．．．． 2 2 \\
\hline 81 & \＄ & 勺1 & S & q & －AAI & 8 & IIAA．．．．．． 21 \\
\hline 01 & 8 & 01 & \＄ & R & －AA1 \({ }^{\text {a }}\) & 1 & IAA．．．．．．． 22 \\
\hline 81 & \＄ & 81 & 5 & R & ．．．AAIOI & 1 & AA．．．．．．．． 23 \\
\hline 81 & \＄ & 81 & S & 8 & ．AAIDII & A & A．．．．．．．．． 24 \\
\hline 21 & A & 32 & A & \(L\) & ．．AAIJI & 1 & AA．．．．．．．． 23 \\
\hline 02 & 1 & \(\lambda 2\) & 8 & \(L\) & －AA18 & 1 & JAA．．．．．．． 22 \\
\hline 02 & 1 & ®2 & 0 & \(L\) & ．AA 1 & 8 & 3JAA．．．．．． 21 \\
\hline 02 & 0 & 33 & 1 & \(L\) & ．．AA & 1 & 1ヵDAA．．．． 23 \\
\hline 23 & \＄ & 03 & S & L & ．．\(A\) & A & 110DAA．．．． 19 \\
\hline 83 & \({ }^{-}\) & 04 & A & \(L\) & & A & Al130AA．．． 18 \\
\hline 04 & \＄ & 34 & S & C & & & J2 \\
\hline
\end{tabular}

TMC？
DONE

\section*{GET－TM}

RUN
TM

TMC？ER
QUINTIPLES ERASED
TMC？NT
TADE ERASED
TMC？DOYZZOXR
\begin{tabular}{l} 
GOOF
\end{tabular}

TMC？ロ＇
TMO？ \(08 Y \partial 0 X R\)
TMO？EXIDIXR
TMQ？gวs．03s．
TMO？JIEA2BL
TM2？ 1 1Kロ11R
TMO？ロ1Yロ1！R
TMO？ISISISR
TMD？J2A日3AR
TMQ？ 225325 L
TMO？ \(33 \times 34\) YR
TM2？ 235835 R TMA？841851R TM2？ 24 BABBL TMO？ 245845 ？ TMO？ \(25126 \times 1\) TMQ？ \(05 \times 87 \times R\)
TMロ？\({ }^{\text {TMSEA9BL }}\)
TMO？J58055？ TMO？85Yス3YR TKO？ \(5 \$ 35 \$\) TMD？ 7 7186 KL
TMマ？87E88BL TMロ？ 7 75075R TMO？B8ADBAR
TMO?38585L
TMO? \(\begin{gathered}\text { TM13YL }\end{gathered}\)
TMコ?39389SL
TMO? 1DA11DC
TMว?1ロY1INC
TMO?1』\$18SL
TMO?11511\$C
TMQ?

TMC?TA
15T CHARACTER POSITION?28
TMT ?A111118/
TMC?FR
INITIAL STATE?Z
INITIAL TAPE POSITION?2D
STOP (OBVIOUSLY ONE OR MORE QUINTUTLES
RUN
\(M * R U N \quad\) START AGAIN
TMC?LT
IST CHARACTER POSITION?IS
LAST CHARACTER POSITION?3g
.....AlllllB....
\(\left.\begin{array}{l}\text { TMC?QU } \\ \text { TMQ?日BADIAR } \\ \text { TMQ?/ }\end{array}\right\}\) CHANGE WNONG Quinturle
\begin{tabular}{|c|c|c|c|c|}
\hline 00 & 1 & 81 & \(x\) & R \\
\hline 00 & \(Y\) & 60 & X & R \\
\hline 06 & 5 & 08 & 5 & R \\
\hline 81 & B & 02 & B & L \\
\hline 01 & X & 61 & 1 & R \\
\hline 01 & \(Y\) & 81 & 1 & R \\
\hline 01 & S & 81 & 5 & R \\
\hline 02 & A & 23 & A & 8 \\
\hline 82 & 5 & 82 & 5 & \(L\) \\
\hline 63 & X & 84 & \(Y\) & R \\
\hline 83 & s & 03 & S & R \\
\hline 84 & 1 & 65 & 1 & R \\
\hline 84 & B & 88 & B & L \\
\hline 84 & 5 & 04 & 5 & R \\
\hline 65 & 1 & 06 & X & L \\
\hline 05 & 8 & 89 & B & L \\
\hline d5 & X & 07 & X & R \\
\hline 05 & \(s\) & 85 & s & \\
\hline
\end{tabular}
```

36
TMC?FR
INITIAL STATE?D
INITIAL TAPE POSITION?20

```

```

TMC ?NT
TAPE ERASED
TMC ?TA
IST CHARACTER POSITION?30
TMT?A1/111B
TMT?/
TMC?FR
INITIAL STATE?%
INITIAL TAPE POSITION?30 ~ % SLCcNOS
............................बАथичв..
TMC ?
DONE

```

\title{
contributed program BASIC
}


```

RUN
RIIN
THTG!
WELCOME TO THE HEWLFTT-PACKARD T/S SYSTEM. WE WILL
TRY TO TEACH YOII ENOUGH ABOITT THF SYSTEM IN THIS SITTING FOR
YOU TO BE ABLF. TO WRITE YOUR OWN COMPUTER PROGRAMS
BFFGRE WE CAN WRITE A PROGRAM WE NEED TO REVIEW THE SYMBOLS
AVAILABLE

(1)		
(2)		
(3)		
(4)		
(5)		
(6)		

AFTER THE ? BELOW TYPE THE NIMBER OF YOUR ANSWER
WHICH OF THF SYMBOLS IS IISED FOR ADDITION?I
GOOD
WHICH SYMROL IS IISED FOR SIBTRACTION??
RIGHT
WHICH SYMBOL IS IISED FOR DIVISION?S
GOOD FOR YOII. NOW, THE NEXT ONE IS TRICKY.
WHICH SYMROL IS ISED FOR MILLTIPLICATION?A
UERY GOOD, IF •X• UERE IISED FOR MIILTIPLY, IT COULD BE
CONFIISED UITH THF VARIABLE 'X'. LETS PRACTICE A LITTLE:
HOW MIICH IS 2*3?6
SURE
HOW MIICH IS 3*4+7?14
SORRY, LOOK AGAIN
HOW MIJCH IS 3*4*7?19
RIGHT YOII ARE
HOW MIHCH IS 3*(1+5)/2?9
GOOD
THAT LEAVES , WHICH IS OUR UAY TO INDICATE SQUARES,CIJBES
ETC., SIICH AS X,Z FOR P X SQUARED' OR X*X, YP3 FOR 'Y CIIBED
OH Y*Y*Y ETC.
YOII CAN EVEN DEFINE YOUR OWN,BIIT THESE WILL BE COUERED
IN ANOTHER LESSON. WE'LL USE SAR(SQUARE ROOT) IN OUR
COMING FXAMPLE TO GIVE YOII THE IDEA. LET'S ASSUME
YOII WANT TO COMPOSE A PROGRAM TO COMPUTE RADIUS VECTORS
(THF. SOIIARE ROOT OF THE SUM OF THE SQUARES OF THE
THREE COMPONENTS). THIS PRORLEM WILL BE A SEQUENCE OF
STATEMENTS TO TELL THE COMPUTER WHAT TO DO.
DO YOII THINK THE STATEMENTS SHOIILD BE NIIMBERED:
(1) CONSECHTIVELY (1,?,3 ETC.)
(2) \NCREMENTALLY (10,2日,30 ETC.)
(3) ANY SFQIIENCE FOR IT DOESN'T MATTER
(TYPE NO. OF ANSWER)
??
RIGHT
LEAUING SPACF RETUFEN NUMRFRS PERMITS INSERTIONS LATER.
FOR OUR SAMPLE PROGRAM, LFTS FIRST CALL FOR OUR KNOWN
VARIARLES. UF SIMPLY TYPE:
IG INPIIT X,Y,Z
I日 IS SIMPLY THE FIRST STATEMENT NUMBER. X, Y, AND Z ARE
OIR 'DATA`. NEXT, WE. WRITE OIIR ERIIATION BY TYPING:
PA LFT R=SQR(XIP+Y+2+2+2)
HERF PA IS THF NEXT STATEMENT NUMBER, 'LET. TELLS THE
COMPIITER THAT AN EQIIATION IS COMING, AND •R' IS OUR
INKNOWN UARIARLF. NOTE:INKNOWNS MUST BE ON THE
LEFT OF THE .\#' AND KNOWNS ARE ON THE RIGHT. SOR IS
THE SQUIARE ROOT FIINCTION MENTIONED EARLIER. THE REST IS
TELETYPE ALGERRA. FROM THIS POINT ON 'R' CAN BE TREATED AS
A KNOWN IN OTHER EQIIATIONS. IN THIS FXAMPLE UEILL TELL THE
COMPIITER TO PRINT.THE VALIE OF 'R' BY TYPING TME STATEMENT
30 PRINT R
WHICH WILL CAUSE THE COMPIITER TO DO JUST THAT. NOW WE ADD
AN 'END' STATEMENT AND THIS IS OIJR COMPLETE PROGRAM

```
\begin{tabular}{l|l} 
TITLE: \\
DESCRIPTION: \\
INSTRUCTIONS: \\
ACKMPUTER AIDED PRACTICE IN EE AC ANALYSIS \\
ACZI offers computer aided practice in the analysis of single frequency \\
sine waves, complex power, power factor, etc.
\end{tabular}
```

RUN
COMPUTER AIDED PRACTICE IN ANALYSIS OF SINGLE-FREQUENCY
SINE WAUES, COMPLEX POWER, POWER FACTOR, ETCS
PREPARED BY C.M. SIEGEL, NOV.24, 1970 (REV. 12/3/70).
LET CURRENT AND P.D. APPEAR AS FOLLOWS\&
P.D. = + + + + + + +
CURRENT = * * * * *
*)
ALL ANGLES ARE MULTIPLES OF + OR - 5 DEGREES;
SHOULD EE EXPRESSED IN THE RANGE, -180<ANGLE<=180.

1. WHAT ARE THE POLAR COMPONENTS OF THE
P.D. REGARDED AS A SINE FUNCTION?
MAGNITUDE P10
CLOSE ENOUGH, (}10\mathrm{)
PHASE (DEGREES) ?-20
TOO FAR URONG:
-------TRY AGAIN.7-15
TOO FAR URONG:
(-25)
2. CURRENT REGARDED AS A SINE FUNCTION?
MAGNITUDE }7
CLOSE ENOUGH, (6)
PHASE (DEGREES) 7170
CLOSE ENOUGH, (170)
3. P.D. REGARDED AS A COSINE FUNCTION?
PHASE (DEGREES) ?-115
CLOSE ENOUGH, (-115)
4. CURRENT REGARDED AS A COSINE FUNCTION?
PHASE (DEGREES) }3
TOO FAR WRONG;
-------TRY AGAIN.?80
CLOSE ENOUGH, (80,)
S. WHAT ARE THE POLAR COMPONENTS OF THE IMPEDANCE (V/I)?
MAGNITUDE ?1.67
CLOSE ENOUGH, (1.66667)
PHASE (DEGREES) 7165
CLOSE ENOUGH, (165)
AND ITS RECTANGULAR COMPONENTS,
R=?.432
TOO FAR URONGB
-------TRY AGAIN.?-1.62
CLOSE ENOUGH, (-1.61)
AND X = ?.432
CLOSE ENOUGH, (.430904)
```
```

6. WHAT ARE THE POLAR COMPONENTS OF THE ADMITTANCE (I/V)?
MAGNITUDE ?.6
CLOSE ENOUGK, (.G
PHASE (DEGREES) ?-165
CLOSE ENOUGH, (-165)
AND ITS RECTANGULAR COMPONENTS,
G = ?-. 58
CLOSE ENOUGH, (-.5796)
AND B = ?-. 155
CLOSE,ENOUGH, (-.155125)
AND WHAT ARE THE
7. POWER FACTOR?.99
YOU ARE NOT FAR OFF;
--------TRY AGAIN.?.97
CLOSE ENOUGH, (.966)
8. VOLT-AMPEREST60
TOO FAR VRONG:
-------TRY AGAIN.730
CLOSE ENOUGH, (}3
9. AVERAGE POUERT29
TOO FAR WRONG;
-------TRY AGAIN.?-29
CLOSE ENOUGH, (-28.98)
10. REACTIVE VOLT-AMPERES (ACCORDING TO V*CONJ I)?7.8
CLOSE ENOUGH, (7.75627)
11. AVERAGE P.D. }2
CLOSE ENOUGH, (6)
12. AVERAGE CURRENTTO
CLOSE ENOUGH, (0
13. RMS P.D.?7.07
CLOSE ENOUGH, (7.07)
14. RMS CURRENT?4.25
CLOSE ENOUGH, (4.242)
15. MAXIMUM INSTANTANEOUS POVER?-55
TOO FAR WRONG:
-------TRY AGAIN.?-50
TOO FAR WRONG;
C 1.02
16. MINIMUM INSTANTANEOUS POWERT-55
TOO FAR WRONG:
-------TRY AGAIN.?-58
CLOSE ENOUGH, (-58.98)
RELATIVE TO THE P.D., WHAT ARE THE
17. IN-PHASE RMS CURRENT?-5.8
TOO FAR WRONG;
-------TRY AGAIN.?-4.1
CLOSE ENOUGH, (-4.09777)
18. THE REACTIVE (I.E. QUADRATURE) RMS CURRENT?1.1
TOO FAR WRONG;
-------TRY AGAIN.?-1.1
CLOSE ENOUGH, (-1.09674)
RELATIVE TO THE CURRENT, WHAT ARE THE
19. IN-PHASE RMS P.D.?-6.85
CLOSE ENOUGH, (-6.82962)
20. REACTIVE (I.E. QUADRATURE) RMS P.D.?-1.83
TOO FAR URONG;
-------TRY AGAIN.?1.83
CLOSE ENOUGH, (1.82789)
DONE
```
\begin{tabular}{l|l} 
TITLE: \\
DESCRIPTION: \\
INSTRUCTIONS: \\
SPECIAL \\
CONSIDERATIONS
\end{tabular}\(\quad\)\begin{tabular}{l} 
BASIC ANALOG SIMULATION PROGRAM \\
BASP utilizes digital techniques to simulate the operation of an analog \\
computer, In essence, it is used to break down descriptions of con- \\
ventional analog block diagrams into sets of simultaneous first order \\
differential equations. These differential equations are then solved by \\
numerical methods.
\end{tabular}
```

BASP, Page 2

```

RUN

RUN
BASP
```

BASIC ANALOG SIMULATION PROGRAM

```
SYSTEM DESCRIPTION:
DEFINE BLOCK FUNCTIONS, BLOCK INTERCONNECTIONS,AND ASSOCIATED PARAMETERS.
HOW MANY BLOCKS IN THE SYSTEM? 6
INPUT BLOCK TYPE, INPUTS (1,2,3), AND BLOCK PARAMETERS (1,2)
BE SURE TO ENCLOSE BLOCK TYPE IN QUOTES.
BLOCK NO. 1 ?'MUL", 2,5, \(0,0, \theta\)
BLOCK NO. 2 ? "INT", \(-1,3,0,5,0\)
BLOCK NO. 3 ?"POT", \(2, \theta, \theta, 2, \theta\)
BLOCK NO. 4. ?"POT", \(1,0, \theta, 2, \theta\)
BLOCK NO. 5 ?"INT",4, \(5,6,0,2,0\)
BLOこK NO. 6 ?"POT", 5, 0, 0,8,0

SEQUENCE TABLE FO.3 BASP RUN


DETERMINE OUTPUT FORMAT:
INPIIT BLOCK NUMBERS OF OUTPUTS TO BE MONITORED. (ENTER ZERO AS LAST INPUT IF LESS THAN THREE.)
? 2
? 5
? 0
```

OJTPUT OPTIONS ARE AS FOLLOWS :
(1) TABULAR
(2) TABULAR PLUS GRAPHICAL
WHICH IS YOUR CHOICE??
DEFINE RUN-TIME PARAMETERS:
INPUT INITIAL AND FINAI, UALUES OF THE INDEPENDENT UARIABLE? }0,
ENTER THE INTEGRATION STEP SIZE?.1

```
\begin{tabular}{|c|c|c|c|}
\hline IND．UAR． & BLOCK NO． 2 & BLOCK NO． 5 & BLOEK NO． 0 \\
\hline 0．00000E＋00 & ＋5．00000 +00 & \(+2.00000 \mathrm{E}+00\) & \(+0.00000 E+00\) \\
\hline \(1.00000 E-01\) & ＋4．90000E +00 & ＋2．44000E +00 & \(+0.00000 E+\varnothing 0\) \\
\hline 2．0000日E－01 & ＋4．58627E＋00 & ＋2．85665E＋00 & ＋ \(0.00000 \mathrm{E}+\square 0\) \\
\hline 3.06006 E － 1 & ＋4．13999E＋ø0 & ＋3．08585E＋øø & \(+0.00000 \mathrm{E}+80\) \\
\hline 4．00000E－01 & ＋3．69891E＋80 & ＋3．03685E＋00 & \(+0.00000 \mathrm{E}+00\) \\
\hline 5．00000E－01 & ＋3．36754E＋00 & ＋2．74523E＋00 & \(+0.00000 E+00\) \\
\hline 6．00000E－81 & ＋3．18004E＋00 & ＋2．35976E＋00 & \(+0.00000 E+00\) \\
\hline \(7.00000 \mathrm{E}-01\) & ＋3．12701E＋00 & ＋1．98194E＋00 & \(+0.00000 \mathrm{E}+00\) \\
\hline \(8.00000 E-01\) & ＋3．18637E＋00 & ＋1．66783E＋00 & \(+\varnothing .0600 \square E+\square \square\) \\
\hline \(9.00000 \mathrm{E}-01\) & ＋3．33938E＋00 & ＋1．43278E＋00 & \(+0.00000 \mathrm{E}+00\) \\
\hline 1．00000E＋00 & ＋3．56757E＋00 & ＋1．27954E＋00 & \(+0.00000 \mathrm{E}+00\) \\
\hline 1．1980日E＋00 & \[
\begin{aligned}
& +3.85502 E+00 \\
& +4.18148 \mathrm{E}+00
\end{aligned}
\] & \[
\begin{aligned}
& +1: 20371 E+00 \\
& +1: 20519 E+80
\end{aligned}
\] &  \\
\hline 1．30000E＋00 & ＋4．51716E＋00 & ＋1．29123E＋00 & \(+8.000005+80\) \\
\hline \(1.40000 E+00\) & ＋4．81637E＋00 & ＋1．47731E＋00 & \(+0.00000 E+00\) \\
\hline \(1.50000 \mathrm{E}+00\) & ＋5．01357E＋00 & \(+1.78147 \mathrm{E}+00\) & \(+0.00000 E+00\) \\
\hline \(1.60000 E+00\) & ＋5．03182E＋00 & ＋2．20268E＋00 & \(+0.00000 E+00\) \\
\hline 1．70000E＋00 & \(+4.81883 E+00\) & ＋2．67704E＋00 & \(+0.00000 E+00\) \\
\hline \(1.80000 E+00\) & ＋4．40514E＋00 & ＋3．04970E＋00 & \(+0.000005+00\) \\
\hline \(1.90000 E+00\) & ＋3．91829E＋ø0 & ＋3．15437E＋ 00 & \(+0.00000 E+00\) \\
\hline 2．00000E＋00 & ＋3．50101E＋00 & ＋2．96290E＋00 & \(+0.00080 E+00\) \\
\hline \(2.10000 E+80\) & ＋3．22691E＋00 & ＋2．59205E＋00 & \(+0.00000 \mathrm{E}+00\) \\
\hline 2．20000E +00 & ＋3．10235E＋00 & ＋2．18039E＋00 & \(+0.00000 E+00\) \\
\hline 2．30000E＋00 & ＋3．10652E＋00 & \(+1.81407 \mathrm{E}+00\) & \(+8.00000 \mathrm{E}+00\) \\
\hline 2．40000E＋00 & ＋3．21610E＋00 & ＋1．52747E＋00 & \(+0.00000 E+00\) \\
\hline 2． \(50000 E+00\) & ＋3．41199E＋00 & \(+1.32634 \mathrm{E}+00\) & \(+0.000005+00\) \\
\hline \(2.60000 E+00\) & \(+3.67799 \mathrm{E}+00\) & \(+1.20643 E+00\) & \(+0.00000 E+00\) \\
\hline 2．70000E＋00 & ＋3．99686E＋00 & \(+1.16418 \mathrm{E}+00\) & \(+0.00000 E+00\) \\
\hline \(2.80000 E+00\) & ＋4．34505E＋00 & ＋1．20232E＋00 & \(+0.00000 E+00\) \\
\hline \(2.90000 E+00\) & \(+4.68600 E+80\) & ＋1．33270E＋00 & \(+0.00000 E+00\) \\
\hline \(3.00000 E+00\) & ＋4．96343E＋00 & \(+1.57548 \mathrm{E}+00\) & ＋0．00000E＋00 \\
\hline \(3.100005+00\) & ＋5．10008E＋00 & ＋1．94790E＋00 & \(+0.00000 \mathrm{E}+00\) \\
\hline \(3.20000 E+00\) & ＋5．01686E＋ 00 & ＋2．42992E＋00 & \(+8.00000 E+00\) \\
\hline \(3.30800 E+00\) & ＋4．68718E＋00 & ＋2．91129E＋00 & \(+8.00000 E+00\) \\
\hline \(3.40060 \mathrm{E}+00\) & ＋4．19428E＋00 & ＋3．19745E＋80 & \(+0.00000 E+00\) \\
\hline \(3.50000 E+00\) & ＋3．69917E＋00 & ＋3．15728E＋00 & \(+0.00000 E+00\) \\
\hline \(3.60000 \mathrm{E}+00\) & ＋3．32691E＋00 & ＋2．84600E＋00 & \(+0.00000 E+00\) \\
\hline \(3.70000 E+00\) & ＋3．11570E＋ 00 & ＋2．41935E＋00 & \(+0.00000 E+00\) \\
\hline \(3.80000 E+00\) & ＋3．05165E＋00 & ＋2．00328E＋00 & \(+0.00000 \mathrm{E}+00\) \\
\hline \(3.90000 E+00\) & ＋3．10860E＋00 & ＋1．65919E＋00 & \(+\varnothing .0000 \square E+\emptyset 0\) \\
\hline \(4.00000 E+00\) & ＋3．2639 \({ }^{\text {c }}\) E \(+\emptyset \emptyset\) & \(+1.40420 E+00\) & \(+0.00000 \mathrm{E}+00\) \\
\hline \(4.10000 E+00\) & ＋3．49990E＋ 0 D & ＋1．23598E＋00 & \(+0.00000 E+00\) \\
\hline \(4.20000 E+00\) & ＋3．80080E＋60 & \(+1.14828 \mathrm{E}+00\) & \(+0.000005+00\) \\
\hline \(4.30000 E+00\) & ＋4．14774E＋80 & ＋1．13914E＋00 & \(+0.00000 E+00\) \\
\hline \(4.40000 \mathrm{E}+00\) & ＋4．51259E＋00 & ＋1．21517E＋00 & \(+0.00000 E+00\) \\
\hline \(4.50000 \mathrm{E}+00\) & ＋4．85034E＋00 & ＋1．39358E＋00 & \(+0.00000 \mathrm{E}+00\) \\
\hline \(4.60000 E+00\) & ＋5．09243E＋00 & ＋1．69870E＋00 & \(+0.00000 \mathrm{E}+00\) \\
\hline \(4.70000 E+00\) & ＋5．15083E＋00 & ＋2．14214E＋00 & \(+0.00000 \mathrm{E}+00\) \\
\hline \(4.80000 E+00\) & ＋4．95296E＋00 & ＋2．67264E＋00 & \(+0.00000 E+00\) \\
\hline \(4.90000 E+00\) & ＋4．51335L＋00 & ＋3．12455E＋0日 & \(+0.00000 E+00\) \\
\hline 5．00000E＋00 & ＋3．970日8E＋00 & ＋3．28695E＋øø & \(+0.00000 E+00\) \\
\hline
\end{tabular}

\footnotetext{
COMPOSITE PLOT OF BLOCK OUTPUTS UERSUS THE INDEPENDENT VARIABLE
}

\section*{LEGEND：}
＋DENOTES THE OUTPUT OF BLOCK NO． 2
＊DENOTES THE OUTPUT OF BLOCK NO． 5
SCALE：ONE DIVISION \(=.171694\) UNITS

```

PROGRAM OPTIONS AT THIS POINT INCLUDE THE FOLLOWING :
(1) CHANGE RUN-TIME PARAMETERS ONLY AND RUN UNDER
THE PREVIOUS OUTPUT OPTION.
(2) CHANGE BLOCK PARAMETERS,RUN-TIME PARAMETERS
AND OUTPUT FORMAT FOR NEXT RUN.
NOTE:BLOCK INTERCONNECTIONS MAY NOT BE ALTERED!
(3) TERMINATE RUN.

```

WHICH IS YOU CHOICE ? 3
DONE

```

RUN
RUN
COMPLX
FOR INSTRUCTIONS TYPE 1, OTHERWISE 0.
?1
COMPUTER AIDED PRACTICE IN ALGEBRA OF COMPLEX NUMBERS
AS USED IN A.C. CIRCUITS; PREPARED BY C.M.SIEGEL
AND E. DIXON, JUNE 30, 1970. (REV. 12/20/70)
SELECT THE KIND OF PROBLEM FROM THIS LIST.
1. INTRODUCTION- SLIDE RULE INSTRUCTION, RECTANGULAR
TO POLAR CONVERSION.
2. CONVERT RECTANGULAR TO POLAR
3. FIND RECIPROCAL
4. CONVERT POLAR TO RECTANGULAR FORM
5. FIND R,X,G,B
6. FIND COMPLEX POWER
99. FINISHED
EXPECTED ANSWERS WILL BE SHOWN IN [].
WHICH KIND?
?1
FOR Z = 85 , 35
WHAT IS ITS POLAR FORM?
FIND IT VIA THE FOLLOWING STEPS.
FIND THE SHORT-SIDE VALUE ON THE SLIDE RULE D-SCALE.
PUT THE HAIR LINE THERE. WHAT IS THAT NUMBER?
?35
O.K.
MOVE THE SLIDE(NOT THE HAIR LINE) SO THAT THE
RIGHT* OR LEFT*END OF THE S,T AND ST SCALES LIES OUER
THE LONG SIDE VALUE ON THE D-SCALE. (* THE WRONG
CHOICE OF END WILL NOT LEAVE THE S,T AND ST SCALES
BENEATH THE HAIR LINE.)
WHAT IS THAT NUMBER?
75
0.к.
OBTAIN THE ANGLE FROM THE READING ON THE T(OR ST) SCALE
BENEATH THE HAIR LINE.
WHAT IS THE ANGLE(DEGREES)?
(SHOW REGARD FOR THE PROPER QUADRANT; CHOSE ANGLE
BETWEEN -180 AND +180)
?24.4
YOU ARE NOT WITHIN 1.11 OR MORE DEGREES
TRY THE ANGLE AGAIN.
?22.4
CORRECT IN 2 TRY(S)
[22.3801]
MOVE THE SLIDE UNTIL THAT SAME READING (ON THE T SCALE)
APPEARS ON THE S-SCALE: BENEATH THE HAIR LINE
(% IF RATIO, SHORT-SIDE/LONG-SIDE, IS < .1 USE THE ST
SCALE: NO SLIDE MOUEMENT NEEDED.)
ONE END OF THE S,T OR ST SCALES SHOULD NOW LIE
OVER THE HYPOTENUSE-VALUE ON THE D-SCALE
THE MAGNITUDE EQUALS?
?92
CORRECT IN 1 TRY(S)
[91.9239]
WHICH KIND?
?2
FOR Z = 313 - J 11
WHAT IS ITS POLAR FORM?
WHAT IS THE ANGLE(DEGREES)?
(SHOW REGARD FOR THE PROPER QUADRANT; CHOSE ANGLE
BETWEEN - 180 AND + 180)
?-19.4
YOU ARE NOT WITHIN -1 OR MORE DEGREES

```
try the angle again.
7-8
CORRECT IN 2 TRY(S)
[-2.0.01276 〕
THE MAGNITUDE EQUALS?
3313
CORRECT IN 1 TRY(S)
t 313.193 ,

WHICH KIND?
399
DONE

```

RUN
RUN
DVDRS
WHAT IS THE TIME OF DAY (HR\&MIN)?
216:42
A PROGRAM FOR COMPUTER AIDED PRACTICE IN ANALYSIS
OF P.D. AND CURRENT DIVIDERS, PREPARED BY
C.M. SIEGEL AND E. DIXON, JULY 2, 1970 (REV. 11/22/76)
UHEN ASKED FOR KIND, YOU SHOULD TYPE
1. FOR RESISTIVE NETHORKS
2. FOR R,L,C NETWORKS
0 TO QUIT
KIND 71

```

```

R2=180
WHAT FRACTION OF THE APPLIED CURRENT PASSES THROUGH R 1 ?.0224
O.K. IN 1 TRY(S)
THE EXPECTED ANSWER WAS 2.24719E-02
WHAT IS THE RESISTANCE OF THE COMBINATION?
7180
YOU ARE UITHIN 5 PER CENTS TRY AGAIN 7179.5
YOU ARE UITHIN 5 PER CENT\& TRY AGAIN ?179
YOU ARE WITHIN 5 PER CENTS TRY AGAIN 2175
O.K. IN 4 TRY(S):%
THE EXPECTED ANSWER UAS 175.955
KIND 72
FOR 2 ADMITTANCES IN PARALLEL WITH UALUES AS FOLLOWS:
(G1.,B1)= 1172 ,-5600 MICROMHOS
(G2,B2)= 1286 ,4440 MICROMHOS
WHAT FRACTION (MAG) OF THE APPLIED CURRENT PASSES THROUGH Y }
31.71
O.K. IN 1 TRY(S)B
THE EXPECTED ANSWER WAS 1.70071
WHAT IS THE ASSOCIATED ANGLE 299.2
O.K. IN 1 TRY(S)B
THE EXPECTED ANSWER WAS 99.1109
KIND ?0
DONE

```

```

RUN
RUN
EXPNTL
COMPUTER AIDED PRACTICE IN IDENTIFICATION OF SIMPLE
EXPONENTIAL FUNCTIONS OF TIME;
PREPARED BY C.M. SIEGEL, DEC. 4, 1970 (REV. 1/3/71).
10-
i

```

```

 !
 5-
 ! +*
    ```

```

 +
 !
 !
 -5-
!
!
!
THE HOR. LINE IS THE FINAL. VALUE ASYMPTOTE.
TEAR THIS OFF FOR MEASURING.
GIVEN THE FUNCTION, B + A EXP(-T/T.C.),
PLOTTED AS ABOVE,
WHAT ARE THE VALUES
1. OF BT7
CLOSE ENOUGH, (7)
2. OF AT-8
CLOSE ENOUGH, (-8)
3. OF T.C.?15
TOO FAR WRONG;
--------TRY AGAIN.?20
YOU ARE NOT FAR OFF;
(24)
DRAW A TANGENT TO THE CURVE AT T=OS
4. AT WHAT VALUE OF T DOES THAT TANGENT INTERSECT
THE FINAL VALUE ASYMPTOTE?RA
CLOSE ENOUGH, (24,
5. WITH THIS MUCH OF THE ASYMPTOTE AS BASE, FORM
A RECTANGLE WITH HEIGHT EXTENDING (UP OR DOWN)
TO THE INITIAL HEIGHT OF THE GIVEN CURUE.
WHAT IS ITS AREATI92
CLOSE ENOUGH, (198)
6. WHAT IS THE AREA ENCLOSED BY THE VERTICAL AXIS,
THE ASYMPTOTE AND CURUE FOR ALL POSITIVE T?19\&
CLOSE ENOUGH, (192,
7. AS A FRACTION OF A, HOW FAR IS THE CURUE FROM ITS
ASYMPTOTE WHEN T HAS THE VALUE GIVEN BY THE ANSWER
TO 4, ABOVE?.5
TOO FAR URONG;
-------TRY AGAIN.2.4
TOO FAR WRONG;
(.368
DRAW A TANGENT TO THE CURUE AT T DIFFERENT FROM ZERO.
8. HOW MUCH MUST T INCREASE BEYOND THIS FOR THIS
TANGENT TO REACH THE ASYMPTOTET1O
TOO FAR WRONG;
-------TRY AGAIN.?12
TOO FAR WRONG\&
(24)
DONE

```
TITLE:
DESCRIPTION:
INSTRUCTIONS: Instructions are included within the program.

\section*{SPECIAL CONSIDERATIONS:}

\section*{FOR INSTRUCTIONAL PURPOSES}

Suitable Courses: Any course in machinery
Student Background Required: Some knowledge of polyphase induction motors.
```

RUN
RUN
INDMTR
INDMTR: BALANCED POLYPHASE INDUCTION MOTOR ANALYSIS
PREPARED BY C.M.SIEGEL, DEC. 31, 1969.
IF YOU WANT BRIEFING REMARKS, TYPE 1, OTHERWISE 0.
T1
GIVES CURRENT, EFFICIENCY, TORQUE, LOSSES, ELECTRICAL
POWER IN, AND MECHANICAL POWER OUT AS FUNCTIONS OF SPEED
WHEN MACHINE PARAMETERS OR NO-LOAD TEST DATA ARE GIVEN.
R1 AND R2 ARE STATOR AND ROTOR WINDING RESISTANCES.
X1 AND XZ ARE STATOR AND ROTOR LEAKAGE REACTANCES.
R3 AND X3 ARE MAGNETIZING LOSS RESISTANCE AND MUTUAL REACTANCE.
WHEN YOU SEE THE WORD, CONTINUE?, TYPE I FOR AFFIRMATIVE.
TYPING O WILL LET YOU RESUBMIT DATA.
BASE SPEED (RPM) MEANS YOUR CHOICE OF 1062 VALUE OF ROTOR SPEED.
START(x) aND STOP(x) are the beginNing and END OF the
SPEED RANGE OF INTEREST (% OF BASE SPEED)
INCREMENT(X) IS THE SIZE OF INCREMENTS BETWEEN START AND STOP
FOR GHICH ANALYSIS IS WANTED (X OF BASE SPEED)
WHEN YOU ARE ASKED FOR:
BASE SPEED (RPM), START(%), STOP(%), INCREMENT(%)?--
ILLUSTRATION: PUTTING IN
1800, 80, 100, 2. GIVES MOTOR PERFORMANCE
FOR THE RANGE 1440 TO 1800 RPM AT 36 RPM INCREMENTS.
all electrical watts, VOLTS, ampS, etc are per phaSE.
all mechanical hp and torque are total.

```

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{CONTINUE?} \\
\hline \multicolumn{5}{|l|}{? 1} \\
\hline \multicolumn{5}{|l|}{OPERATING CONDITIONS:} \\
\hline \multicolumn{5}{|l|}{VOLTS(LINE-TO-NEUTRAL; RMS), F (CPS)?} \\
\hline \multicolumn{5}{|l|}{2254,60} \\
\hline \multicolumn{5}{|l|}{BASE SPEED (RPM), START (\%), STOP (\%), INCREMENT (\%)?} \\
\hline \multicolumn{5}{|l|}{7900, 99, 100, .25} \\
\hline \multicolumn{5}{|l|}{CONTINUE?} \\
\hline \multicolumn{5}{|l|}{31} \\
\hline \multirow[t]{2}{*}{RPM} & tordue & CURRENT & P.F. & VARS IN \\
\hline & WATTS IN & H.P. OUT & WATTS LOSS & EFFICIENCY \\
\hline \multirow[t]{2}{*}{891} & 30.8503 & 15.0489 & . 478118 & 3357.22 \\
\hline & 1827.57 & 5.13184 & 551.45 & . 69826 \\
\hline \multirow[t]{2}{*}{893.25} & 22.7526 & 14.4582 & . 469798 & 3349.85 \\
\hline & 1504.93 & 3.86962 & 542.687 & . 639395 \\
\hline \multirow[t]{2}{*}{895.5} & 15.2107 & 13.9738 & . 332834 & 3346.97 \\
\hline & 1181.34 & 2.59346 & 536.433 & . 545912 \\
\hline \multirow[t]{2}{*}{897.75} & 7.6257 & 13.6083 & - 247892 & 3348.61 \\
\hline & 856.837 & 1.30347 & 532.768 & - 378286 \\
\hline \multirow[t]{2}{*}{900} & 0 & 13.3727 & - 156488 & 3354.81 \\
\hline & 531.536 & \(\sigma\) & 531.536 & c \\
\hline \multicolumn{5}{|l|}{CONTINUE?} \\
\hline \multicolumn{5}{|l|}{76} \\
\hline \multicolumn{5}{|l|}{TYPE 1 IF YOU UANT TO PUT IN MACHINE PARAMETERS,} \\
\hline 2 IF YOU & WANT TO PUT IN & TEST DATA, OR & & \\
\hline \multicolumn{5}{|l|}{99 IF YOU ARE FINI SHED.} \\
\hline \multicolumn{5}{|l|}{72} \\
\hline \multicolumn{5}{|l|}{BLOCKED-ROTOR QUANTITIES:} \\
\hline \multicolumn{5}{|l|}{TORQUE(FT-LBS), WATTS IN, VOLTS IN, CURRENT IN?} \\
\hline \multicolumn{5}{|l|}{2301.586, 20816.5, 254,, - 173.682} \\
\hline \multicolumn{5}{|l|}{FREQ(CPS), NO. OF PHASES, NO. OF POLES?} \\
\hline \multicolumn{5}{|l|}{360, 3, 8 ,} \\
\hline \multicolumn{5}{|l|}{NO-LOAD QUANTITIES:} \\
\hline \multicolumn{5}{|l|}{SLIP(RPM), WATTS IN, VOLTS IN, CURRENT IN?} \\
\hline \multicolumn{5}{|l|}{22.25, 856.837, 254, 13.6883} \\
\hline \multicolumn{5}{|l|}{CONTINUE?} \\
\hline \multicolumn{5}{|l|}{71} \\
\hline \multicolumn{5}{|l|}{RESULT OF SUCCESSIVE ITERATIONS FOLLOWS:} \\
\hline R1 & R2 & R3 & X 1 AND \(\mathrm{X2}\) & X3 \\
\hline Li-M & M & 11 & & \\
\hline . 248617 & . 46332 & 132.035 & .659614 & 19.3943 \\
\hline 1.74809E-03 & 5.14449E-02 & . 853193 & & \\
\hline . 249809 & . 458743 & 131.481 & . 65468 & 18.6166 \\
\hline \(1.73659 \mathrm{E}-03\) & . 849382 & 5.11186E-62 & & \\
\hline . 249961 & -459788 & 131.932 & . 655 & 18.5198 \\
\hline 1.73744E-63 & 4.91252E-02 & 5.08627E-02 & & \\
\hline . 249992 & -459966 & 131.986 & .655003 & 18.5031 \\
\hline 1.73745E-03 & -049881 & 5.08184E-02 & & \\
\hline . 249997 & . 459995 & 131.996 & . 655005 & 18.5005 \\
\hline 1-73745E-03 & . 649074 & 5.08115E-02 & & \\
\hline \multicolumn{5}{|l|}{IF YOU WANT TO CONTINUE THE ITERATION, TYPE 2} \\
\hline \multicolumn{5}{|l|}{IF YOU ARE READY FOR CALCULATION OF BEHAVIOR, TYPE 1} \\
\hline \multicolumn{5}{|l|}{71} \\
\hline \multicolumn{5}{|l|}{OPERATING CONDITIONS:} \\
\hline \multicolumn{5}{|l|}{VOLTS(LINE-TO-NEUTRAL; RMS), F (CPS)?} \\
\hline \multicolumn{5}{|l|}{2854, 60} \\
\hline \multicolumn{5}{|l|}{BASE SPEED (RPM), START (\%), STOP (\%), INCREMENT (\%)?} \\
\hline \multicolumn{5}{|l|}{7900, 80, 180, 5} \\
\hline \multicolumn{5}{|l|}{CONTINUE?} \\
\hline \multicolumn{5}{|l|}{71} \\
\hline \multirow[t]{2}{*}{RPM} & TORQUE & CURRENT & P.F. & VARS IN \\
\hline & WATTS IN & H.P. OUT & WATTS LOSS & EFFICIENCY \\
\hline \multirow[t]{2}{*}{720} & 400.406 & 91.2646 & . 843906 & 12436.5 \\
\hline & 19562.8 & 54.8907 & 5913.27 & . 697728 \\
\hline \multirow[t]{2}{*}{765} & 343.695 & 74.0015 & . 874818 & 9105.93 \\
\hline & 16443.4 & 50.061 & 3994.91 & . 757051 \\
\hline \multirow[t]{2}{*}{810} & 258.621 & 53.7291 & . 892922 & 6144.13 \\
\hline & 12185.9 & 39.8854 & 2267.7 & .813988 \\
\hline 855 & 142.781 & 31.1161 & . 859069 & 4045.49 \\
\hline & 6789.65 & 23.2435 & 1809.77 & . 851278 \\
\hline
\end{tabular}


DONE

RUN
RUN
JACOBI
TYPE 1 IF YOU WANT INSTRUCTIONS, OTHERWISE OTI
THIS PROGRAM USES THE JACOBI ATION METHOD TO CALCULATE
THE EIGENVALUES AND EIGENVECTORS OF A REAL SYMMETRIC
MATRIX. TYPE RUN AND WHEN ASKED, SUPPLY THE FOLLOWING
INFORMATION:
    1. REQUIRED ACCURACY OF THE EI GENVALUES.
    (NORMALLY 1E-6 FOR THE H-P COMPUTER)
    2. THE ORDER OF THE MATRIX.
        (A SINGLE NUMBER SINCE THE MATRIX MUST BE SQUARE)
    3. THE MATRIX ELEMENTS BY ROW.
    (START AT ROW 1, COLUMN 1 AND SEPARATE THE ELEMENTS
        BY COMMAS. WHEN YOU REACH THE END OF A TYPED LINE,
        PUSH THE RETURN KEY. THE COMPUTER WILL ADVANCE THE
        PAPER AND PRINT 17 IF MORE DATA IS NEEDED.)
NOW TYPE RUN AGAIN.
DONE
RUN
JACOBI
TYPE 1 IF YOU WANT INSTRUCTIONS, OTHERWISE 070
WHAT IS REQUIRED RELATIVE ACCURACY OF EIGENVALUESTIE-6
WHAT IS ORDER OF MATRIX?3
WHAT ARE THE MATRIX ELEMENTS? \(1,2,3,2,2,2,3,{ }^{\circ}\)
?75
FINAL THRESHOLD V5=4.08248E-07
EI GENVALUES
\(-.945668\)
    1.0748
    7.87086
EIGENVECTORS
```

.870996
-.379706
-.311752
.163801
.822692
-. 544377
.463179
.423085
.778758

```

DONE


RUN
RUN
POLAR
THIS PROGRAM PLOTS FUNCTIONS IN POLAR FORM.
TO USE IT TYPE:

\section*{8900 DEF FNR(O)=<YOUR FUNCTION> 9990 DATA <INCR>, <RADIUS>, <NUMBER> RUN}

HHERE, \&INCR IS THE DESIRED INCREMENT IA DEGREES BETVEEN THE POINTS, <RADIUS> IS THE LARGEST VALUE OF THE RADIAL DI SPLACEMENT FROM TKE ORIGIN TO BE PLOTTED AMD 《MHHBER> IS THE MUMBER OF • 360 DEGREE' PLOTTIMG SUEEPS DESIRED (POR MOST PROBLEAS 1 IS SUFFICIENT).

A 60OD INITIAL CHOICE FOR <INCR> AND <NUFBERD ARE -10' AND •1' RESPECTIVEYY. FOR \&RADIUS> TRY TO CHOOSE A VALUE SUCH THAT MOST OF THE FUNCTION VILL FIT ON THE PLOTTING FIED. IN OTHER VORDS IF PNR(B)=SIN(O) THEN LET <RADIUS=1.

THE USER MAY HEED TO ADJUST THE VALUES OF <IMCR> <RADIUS> OR <NUMBER> TO OBTAIN THE BEST REPRESENTATION OF THE PUNCTION.
```

DONE
8900 DEF PNR(0)=1-COS(3*0)
9900 DATA 2.5.2.1
RUN
POLAR

```


DONE
TITLE:
DESCRIPTION:
INSTRUCTIONS:
ACKNOWLEDGEMENTS: \begin{tabular}{l} 
SOLVES COMPLEX SIMULTANEOUS EQUATIONS \\
SOLVER solves simultaneous equations having complex coefficients and complex \\
driving functions, where the imaqinary part of the root is frequency \\
dependent. SOVER also plots a qraph for the last variable and steps the \\
frequency in l-2-4-8 decades.
\end{tabular}
```

RUN
RUN
SOLVER
DO YOU UANT INSTRUCTIONS?
TYES
SOLUER SOLUES N SIMULANEOUS EQUATIONS HAUING COMPLEX
COEFFICIENTS AND COMPLEX DRIUING SOURCES, WHERE THE
IMAGINARY PART OF THE ROOT IS FREQUENCY DEPENDANT.
SOLUER ALSO PLOTS A GRAPH FOR THE LAST VARABLE AND
STEPS THE FREQUENCY IN 1-2-4-8 DECADES.
THE FREQUENCY PART MAY CONTAIN A LINEAR PART AND
A INVARSE PART. THE DATA IS FED AS FOLLOUS:
9900 DATA <FIRST COEFFICIENT OF FIRST EQUATION>
9901 DATA <SECOND COEFFICIENT OF FIRST EOUATION>
99-0 ETC.
99-- DATA <COEFFICIENTS OF DRIVING SOURCE>
FOR EXAMPLE TO SOLUE:
(3+(2*-1/4*)J)V1+(-2+(0+1/w)J)V2= 1+2J
(1+(3*)J)V1+(1+(2/W)J)V2=-2+0J
NOTE U STANDS FOR OMEGA
THE DATA STATEMENTS WOULD BE:
9980 DATA 3,2,-4
THE DATA LINES SHOULD BE NUMBERED FROM 9900
THROUGH 9997
IF NO LINEAR OR INUERSE PARTS OF A COEFFICIENT EXIST
THEN ENTER ZERO'S
DONE
9900 DATA 3,2,-4
9901 DATA -2,0,1

```

```

9 9 0 3 ~ D A T A ~ 1 , 0 , . 5 ~
9 9 0 4 ~ D A T A ~ 1 , 2 , - 2 , 8 ~
RUN
SOLVER
WOULD YOU LIKE TO COMPUTE SOME SPECIFIC VALUES OF F?
7NO
UHAT IS YOUR VALUE FOR FI AND FR?
210.40
DO YOU ONLY WANT TO SEE THE GRAPH?
7NO

| $\begin{gathered} \text { FREQ } \\ 10 \end{gathered}$ | VAR NO | REAL | IMAG | MAG | ANGLE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 4.05616E-63 | 6.12632E-03 | 7.34748E-03 | 56.492 |
| | 2 | -.87292 | -. 742909 | 1.14626 | -139.601 |
| 20 | | | | | |
| | 1 | 2.00899E-03 | $3.82378 \mathrm{E}-83$ | 3.63026E-03 | 56.3993 |
| | 2 | -. 873983 | -. 746486 | 1.14939 | -139.499 |
| 40 | | | | | |
| | 1 | 9.99637E-84 | 1.50197E-83 | 1.80421E-03 | 56.3542 |
| | 2 | -. 874497 | -. 748251 | 1.15092 | -139.449 |

```
GRAPH FOLLOWS
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
FREQ \\
CTIMES
\end{tabular} & 180) & VARABLE NO. 2 & & . \\
\hline & 1.146 & 1.147 & 1.149 & 1.15 \\
\hline \(\cdots 1\) & * & & & \\
\hline . 2 & & & * & \\
\hline 4.4 & & & & \\
\hline
\end{tabular}

\section*{contributedprogram BASIC}
TITLE:
DESCRIPTION:
CAI IN INTERPRETATION JF EE UNITS
UNITS offers computer aided practice in choosing new units to avoid large
pOSitive or negative powers of 10.

SPECIAL CONSIDERATIONS:

FOR INSTRUCTIONAL PURPOSES
Suitable Courses: Electrical Engineering at any level.
```

RUN
RUN
UNITS

```
```

 A PROGRAM FOR COMPUTER AIDED PRACTICE IN CHOOSING
 NEW UNITS TO AVOID LARGE - OR + POWERS OF 10;
PREPARED BY C.M. SIEGEL AND E. DIXON, JULY 1,1970
IF AT ANY TIME YOU WANT A NEW SET OF C AND L
UNITS, ANSWER QUESTIONS WITH ANY NEGATIVE NUMBER
(YOU NEED TO KNOW THAT THE SQUARE ROOT OF 10 IS 3.16)

```
```

TO SATISFY THE RELATIONS U=ZI, I=YV,
X=OMEGA TIMES L, B=OMEGA TIMES C,
OMEGA =1/SQR(LC), ETC.
IF WE USE 1.0日gOOE-G7 FARADS AS UNIT OF CAPACITANCE AND
10 HENRIES AS UNIT OF INDUCTANCE, THEN
THE UNIT OF OMEGA WILL BE HOW MANY RAD/SEC ?
?1E3
CORRECT
THE UNIT OF TIME WILL BE HOW MANY SECONDS ?
?1E-3
CORRECT
THE UNIT OF IMPEDANCE WILL BE HOW MANY OHMS ?
TIE3
WRONG,TRY AGAIN
?1E2
WRONG,TRY AGAIN
?1E4
CORRECT
THE UNIT OF ADMITTANCE WILL BE HOW MANY MHOS ?
?1E-4
CORRECT
IF, FURTHERMORE, P.D. IS EXPRESSED IN VOLTS,
THE UNIT OF CURRENT WILL BE HOW MANY AMPERES ?
?1E-4
CORRECT
THE UNIT OF POWER WILL BE HOW MANY WATTS ?
?1E-4
CORRECT
IF, HOWEVER, CURRENT IS EXPRESSED IN AMPERES,
THE UNIT OF P.D. WILL BE HOW MANY VOLTS ?
?1E4
CORRECT
THE UNIT OF POWER WILL BE HOW MANY WATTS ?
?1E4
CORRECT
IF YOU WANT A NEW PROBLEM, TYPE 1, OTHERWISE O
?0

```

DONE

TITLE:
DESCRIPTION:

INSTRUCTIONS:
CIRCULAR FLOW MODEL

Simulation of the circular flow of goods, services, and money, between business and the consumer in a free enterprise economy without government control.

OBJECTIVES:
A. To explore the effect of personal consumption upon business' demand for productive services from the individual, and upon personal income.
B. To demonstrate that widespread uninvested savings can cause a general drop in income.
C. To demonstrate how credit buying can raise personal income, in general.

PRELIMINARY PREPARATION:
A. Student
1. Terms to define:
a. propensity to consume
b. savings
c. credit
d. circular flow of goods, services, and money
2. Concepts for explanation or discussion:


\section*{CIRCULAR FLOW}

Continued on following page.

INSTRUCTIONS: continued
DISCUSSION:
A. Operational Suggestions
1. Student level - average to above average ability
2. Placement in curriculum - Unit: Economic growth and stability
3. Group size - may be used individually, with small groups, or as a teacher demonstration
B. Follow-up

Suggested classroom activities:
1. Use the circular flow chart to illustrate one or more of the program "run-offs".
2. Discuss the lack of aggregate demand as a cause for recession; and the rise in aggregate demand as a cause for growth or inflation.
```

RUN
RUN
CIRFLW
THE fOLLOWING WILL SIMULATE THE EFFECT. ON THE
CIRCULAR FLOW OF GOODS, SERVICES AND MONEY WHEN
ALL THE INDIVIDUALS IN THE ECONOMY SPEND ALL THEIR
INCOME. If The avERAGE INCOME IS \$2,500 AND
EVERY INDIVIDUAL SPENDS 100 PERCENT OFIIT,
EACH INCOME WILL BE IN EQUILIBRIUM--THEY WILL
EARN BACK FROM BUSINESS S2500
THE FOLLOWING WILL BE A COMPUTATION OF THE
values in the circular flow
AVERAGE INCOME- 2500
PROPENSITY TO CONSUME IS
100 PERCENT
INDIVIDUAL'S PAYMENTS FOR
GOODS AND SERVICES- 2500
the value of gOODS
AND SERVICES- 2500
the percent of productive
SERVICES BUSINESS WANTS
IS 100 PERCENT.
the return income
TO INDIVIDUAL-2500.
the above represents the average of all individual
INCOMES IN THE ECONOMY. SINCE ALL INDIVIDUALS CONSUMED
100 PERC:ENT OF THEIR INCOME,THEIR RETURN INCOMEIS
108 PERCENT OF THEIR PREVIOUS INCOME. THIS HAPPENS
because buSiness needs 100 PERCENt of the Previous
productive SERVICES to meet the demand.
THE RETURN INCOME TO THE INDIVIDUAL FROM
BUSINESS DEPENDS TO A LARGE EXTENT ON HOW
MUCH ALL. INDIVIDUALS SPENDCTHEIR PROPENSITY TO
CONSUME). COMMON SENSE TELLS US THAT IF AN IN-
DIVIDUAL. SAVES PART OF HIS INCOME AND INVESTS IT
IN A BANK, HE WILL RAISE HIS INCOME bY MEANS OF
THE INTEREST ON HIS SAVINGS. BUT IF ALL OR MANY
OF THE INDIVIDUAL CONSUMERS IN THE ECONOMY CUT
their consumption, then the overall return income
TO THOSE INDIVIDUALS WILL PROBABLY DROP.
BY CHANGING THE PERCENTAGE OF YOUR PROPENSITY
tO CONSUME yOU CAN CHANGE YOUR INCOME.
A PROPENSITY tO CONSUME OF 100 PERCENT WILL,
IN THIS SIMULATION, GIVE YOU A RETURN INCOME
EQUAL TO YOUR ORIGINAL INCOME. ANY VALUE
MORE OR LESS THAN 100 PERCENT WILL CHANGE
YOUR RETURN INCOME.
tyPE IN A VALUE fOR THE PROPENSITY TO CONSUME,
A PERCENTAGE MORE OR LESS THAN }160\mathrm{ PERCENT.
PUT IT IN IN DECIMAL FORM (E.G. .75=75 PERCENT)
What is the value?.7S
becauSE YOUR PROPENSITY TO CONSUME IS LESS THAN
YOUR INCOME, YOU ARE SAVING MONEY. WE WILL ASSUME
THAT YOU DIDN'T PUT IT IN A BANK BUT
RATHER STUFFED IT UNDER YOUR MATTRESS, SO
YOU WON'T RAISE YOUR .INCOME WITH INTEREST
INDIVIDUAL'S PAYMENTS FOR
GOODS AND SERVICES- 1875
VALUE OF gOODS AND SERVICES
FROM BUSINESS- 1875
percent of productive
SERVICES IN DEMAND- .75

```
```

CIRFLW, Page 4

```
RETURN INCOME TO IN-YOUR RETURN INCOMEHAS DROPPED THE FOLLOWING
PERCENTAGE POINTS FROM
100 PERCENT- 25
IF YOU WISH TO PUT IN ANOTHER PERCENTAGE VALUE
FOR THE PROPENSITY TO CONSUME, TYPE \(D\)
IF YOU WISH TO STOP THE PROGRAM, TYPE 1
31
DONE

TITLE:

\section*{DESCRIPTION:}

INSTRUCTIONS:

FISCAL POLICY GAME

GMCRO1 and GMCRO2 are economic simulation games which allow the student to manage fiscal policy.

GMCRO1 puts the student in the position of managing only fiscal policy for an economy represented by a model in the computer. Each. "year" the student has the opportunity to change the level of government expenditures ( \(G\) ) and the level of tax receipts ( \(T\) ). The computer calculates the effects of the policy decisions and reports the following information: Potential NNP (Q), Actual NNP (Y), Consumption (C), Investment (I), Disposable Income ( \(D\) ), the Level of Government Expenditures (G), tax receipts ( \(T\) ) and "achievement score".

The game continues for twenty years. From time to time the computer asks questions which can be answered correctly only on an understanding of the basic model. The computer will occasionally inform the student of changes in economic or political conditions to which he has to react.

The goal throughout GMCRO1 is to keep actual NNP (Y) at or near potential NNP (Q); as in most economies, \(Q\) grows over time. The student is given a "score" by the computer on the basis of how well he does. The student may wish to consider other policy goals also, e.g., balancing the budget or altering the mix of \(C\) and \(G\).

GMCRO2 differs from GMCRO1 in important respects. It is designed to emphasize the influence of the consumer on the economy as a whole and on the problems of the policy-maker.

Again, the student controls yearly changes in government expenditures and taxes. The effects of yearly policy moves are reported on a quarterly basis so that the economy's reactions can be seen more clearly; that is, after entering changes at the beginning of a year, the computer will print out four quarters of results (at yearly rates) before asking for another set of changes.

See Page 2

Graduate School of Business
Stanford University

\section*{INSTRUCTIONS:}

These programs may require an hour or more to play carefully. If you think that you may possibly wish to play it in more than one sitting, or may wish to stop to think before continuing, you should create a file to store the data generated by your economy.

If you desire to stop the program during execution, you may do so by typing '9999' when the change in \(G\) is requested. Remember to type in the change in \(T\) also. You may then logoff and resume GMCROl in the year that you stop. Instructions for restarting will be given when you stop.

GMCRO1: your objectives in the next twenty years are to keep GNP ( \(Y\) ) as close as possible to potential output ( \(Q\) ) in constant dollars, and to determine from the economy's performance the values of certain multipliers and propensities.

You begin the first year with a score of 1000. Each year you lose the absolute value of the difference between \(Y\) and \(Q\). You can control Government expenditures ( \(G\) ) and Taxes ( \(T\) ) for each year by typing in values for the changes in \(G\) and \(T\) as requested. If there is no change type a zero. You will be given all values including investment (I), consumption (C), and disposable income (D).

GMCRO2 deals with theories of aggregate consumption. The model generates quarterly observations, but you can change \(G\) and \(T\) only once a year. When you are requested to do so type in the values for changes in \(G\) and \(T\). If there is no change type a zero. Note that the changes in \(G\) and \(T\) are to be entered on the same line separated by a comma.

Your objectives in the next 15 years are to keep \(Y\) as close to \(Q\) as possible and to determine from the economy's performance the parameters of the consumption function. You begin the first year with a score of 5000 . Each quarter you lose the absolute value of the difference between \(Y\) and \(Q\).
```

RUN
RUN
GMCROI
MCROI MAY REQUIRE AN HOUR OR MORE TO PLAY CAREFULLY.
IF YOU THINK THAT YOU MAY POSSIBLY WISH TO PLAY IT
IN MORE THAN ONE SITTING, OR MAY WISH TO STOP TO THINK
BEFORE CONTINUING, YOU SHOULD CREATE A FILE TO STORE
THE DATA GENERATED BY YOUR ECONOMY.
DO YOU WANT THE FLEXIBILITY TO STOP THE GAME AND RETURN
LATER ?YES
WHEN.THE PROGRAM STOPS, TYPE

```
```

20日 FILES DATA!

```
20日 FILES DATA!
CRF:-IATAAL,l
CRF:-IATAAL,l
RUN-200
RUN-200
THE PROGRAM WILL NOW STOP TO ALLOW YOU TO' TYPE IN THESE LINES.
THE PROGRAM WILL NOW STOP TO ALLOW YOU TO' TYPE IN THESE LINES.
TYPE IN THE LINES AFTER THE COMPUTER PRINTS 'DONE'.
TYPE IN THE LINES AFTER THE COMPUTER PRINTS 'DONE'.
DONE
DONE
200 FILES DATAI
200 FILES DATAI
CH-1A!B!,1
CH-1A!B!,1
RUN-200
RUN-200
GMCROI
GMCROI
IF YOU DESIRE TO STOP THIS PROGRAM DURING EXECUTION, YOU MAY
IF YOU DESIRE TO STOP THIS PROGRAM DURING EXECUTION, YOU MAY
DO SO BY TYPING '9999' WHEN THE CHANGE IN G IS REQUESTED.
DO SO BY TYPING '9999' WHEN THE CHANGE IN G IS REQUESTED.
REMEMBER TO TYPE IN THE CHANGE IN T ALSO. YOU MAY THEN
REMEMBER TO TYPE IN THE CHANGE IN T ALSO. YOU MAY THEN
LOGOFF AND RESUME MCROI IN THE YEAR THAT YOU STOP.
LOGOFF AND RESUME MCROI IN THE YEAR THAT YOU STOP.
INSTRUCTIONS FOR RESTARTING WILL BE GIVEN WHEN YOU STOP.
INSTRUCTIONS FOR RESTARTING WILL BE GIVEN WHEN YOU STOP.
YOUR OBJECTIVES IN THE NEXT TWENTY YEARS ARE TO KEEP GNP (Y)
YOUR OBJECTIVES IN THE NEXT TWENTY YEARS ARE TO KEEP GNP (Y)
AS CLOSE AS POSSIBLE TO POTENTIAL OUTPUT (Q) IN CONSTANT DOLLARS.
AS CLOSE AS POSSIBLE TO POTENTIAL OUTPUT (Q) IN CONSTANT DOLLARS.
AND TO DETERMINE FROM THE ECONOMY'S PERFORMANCE THE VALUES OF
AND TO DETERMINE FROM THE ECONOMY'S PERFORMANCE THE VALUES OF
CERTAIN MULTIPLIERS AND PROPENSITIES.
CERTAIN MULTIPLIERS AND PROPENSITIES.
YOU BEGIN THE FIRST YEAR WITH A SCORE OF 1000. EACH YEAR YOU
YOU BEGIN THE FIRST YEAR WITH A SCORE OF 1000. EACH YEAR YOU
LOSE THE ABSOLUTE VALUE OF THE DIFFERENCE BETWEEN Y AND Q.
LOSE THE ABSOLUTE VALUE OF THE DIFFERENCE BETWEEN Y AND Q.
YOU CAN CONTROL GOVERNMENT EXPENDITURES (G) AND TAXES (T)
YOU CAN CONTROL GOVERNMENT EXPENDITURES (G) AND TAXES (T)
FOR EACH YEAR BY TYPING IN VALUES FOR THE CHANGES IN G AND T
FOR EACH YEAR BY TYPING IN VALUES FOR THE CHANGES IN G AND T
AS REQUESTED. IF THERE IS NO CHANGE TYPE A ZERO. YOU WILL BE
AS REQUESTED. IF THERE IS NO CHANGE TYPE A ZERO. YOU WILL BE
GIVEN ALL VALUES INCLUDING INVESTMENT (I), CONSUMPTION (C),
GIVEN ALL VALUES INCLUDING INVESTMENT (I), CONSUMPTION (C),
AND DISPOSABLE INCOME (D).
AND DISPOSABLE INCOME (D).
WHEN REQUESTED TO DO SO, TYPE IN THE UALUES OF G AND T
WHEN REQUESTED TO DO SO, TYPE IN THE UALUES OF G AND T
SEPARATED BY A COMMA.
SEPARATED BY A COMMA.
\begin{tabular}{|c|c|c|c|}
\hline TYPE YOUR NAME & - ? ANON & & \\
\hline ANON & GNP ACCOUNTS & YEAR \({ }^{\text {d }}\) & \\
\hline \(0=610\) & \(Y=680\) & \(C=520\) & \(I=55\) \\
\hline \(D=550\) & \(G=25\) & \(T=50\) & SCORE= 1000 \\
\hline \multicolumn{4}{|l|}{CHANGE IN G,T?2,0} \\
\hline CHECK YOUR WORK & - ANY Changes? & ( \(1=Y E S, 0=N O)\) & ? ? ? 0 \\
\hline ANON & GNP ACCOUNTS & YEAR 1 & \\
\hline \(Q=628.3\) & \(Y=620\) & \(C=538\) & \(1=55\) \\
\hline \(D=570\) & \(G=27\) & \(T=50\) & SCORE= 991.7 \\
\hline
\end{tabular}
```

```
CHANGE IN G,T?
```

CHANGE IN G,T?
DONE
DONE
RUN
RUN
GMCRO2
GMCRO2
MCRO2 MAY REQUIRE AN HOUR OR MORE TO PLAY CAREFULLY.
MCRO2 MAY REQUIRE AN HOUR OR MORE TO PLAY CAREFULLY.
IF YOU THINK THAT YOU MAY POSSIBLY WISH TO PLAY IT
IF YOU THINK THAT YOU MAY POSSIBLY WISH TO PLAY IT
IN MORE THAN ONE SITTING, OR MAY WISH TO STOP TO THINK
IN MORE THAN ONE SITTING, OR MAY WISH TO STOP TO THINK
BEFORE CONTINUING, YOU SHOULD CREATE A FILE TO STORE
BEFORE CONTINUING, YOU SHOULD CREATE A FILE TO STORE
THE DATA GENERATED BY YOUR ECONOMY.

```
THE DATA GENERATED BY YOUR ECONOMY.
```

```
DO YOU WANT THE FLEXIBILITY TO STOP THE GAME AND RETURN
LATER ?YES
WHEN THE PROGRAM STOPS, TYPE
200 FILES DATA2
CKE-DATA2,1
RUN-200
THE PROGRAM WILL NOW STOP TO ALLOW YOU TO TYPE IN THESE LINES.
TYPE IN TKE LINES AFTER TKE COMPUTER PRINTS 'DONE'.
DONE
200 FILES DATA2
CRF-DATA2,1
RUN-200
GMCRO2
IF YOU DESIRE TO STOP THIS PROGRAM DURING EXECUTION, YOU MAY
DO SO BY TYPING '9999' WHEN THE CHANGE IN G IS REQUESTED.
REMEMBER TO TYPE IN THE CHANGE IN T ALSO. YOU MAY THEN
LOGOFF AND RESUME MCRO2 IN THE YEAR THAT YOU STOP.
INSTRUCTIONS FOR RESTARTING WILL EE GIUEN UHEN YOU STOP.
MCRO2 DEALS WITH THEORIES OF AGGREGATE CONSUMPTION. THE
MODEL GENERATES QUARTERLY OBSERVATIONS, BUT YOU CAN CHANGE
G AND T ONLY ONGE A YEAR. WHEN YOU ARE REQUESTED TO DO SO
TYPE IN THE VALUES FOR CHANGES IN G AND T. IF THERE IS
NO CHANGE TYPE A ZERO. NOTE THAT THE CHANGES IN G AND T
ARE TO BE ENTERED ON THE SAME LINE SEPARATED BY A COMMA.
YOUR OBJECTIVES IN THE NEXT }15\mathrm{ YEARS ARE TO KEEP Y AS CLOSE
TO Q AS POSSIBLE AND TO DETERMINE FROM THE ECONOMY'S
PERFORMANCE THE PARAMETERS OF THE CONSUMPTION FUNCTION. YOU
BEGIN THE FIRST YEAR WITH A SCORE OF 50|0. EACH QUARTER
YOU LOSE THE ABSOLUTE VALUE OF THE DIFFERENCE EETWEEN Y AND Q.
TYPE YOUR NAME -?ANON
\begin{tabular}{llll} 
ANON & GNP ACCOUNTS & QUARTER \(\sigma\) & \\
\(Q=610\) & \(Y=680\) & \(C=528\) & \(I=55\) \\
\(D=550\) & \(G=25\) & \(T=50\) & SCORE \(=5000\)
\end{tabular}
CONSUMERS BEHAVIOR IS NOW REPRESENTED BY A FUNCTION OF THE
FORM: C(T)=A+B*D(T) WHERE T=NUMBER OF THE QUARTER.
ENTER CHANGES IN G.T -?3.0
CHECK YOUR VALUES. CHANGES ? (1=YES, 0=NO) ???0
\begin{tabular}{|c|c|c|c|c|c|}
\hline ANON & GNP ACCOUNTS & QUARTER & 1 & & \\
\hline \(Q=616.1\) & \(Y=630\) & \(C=547\) & & I= 55 & \\
\hline \(D=580\) & \(G=28\) & \(T=50\) & & SCORE & \(4986 \cdot 1\) \\
\hline ANON & GNP ACCOUNTS & QUARTER & 2 & & \\
\hline \(Q=622.261\) & \(Y=630\) & \(C=547\) & & I= 55 & \\
\hline \(D=580\) & \(G=28\) & \(T=56\) & & SCORE & 4978.36 \\
\hline A NON & GNP ACCOUNTS & QUARTER & 3 & & \\
\hline \(Q=628.484\) & \(Y=638\) & \(C=547\) & & \(1=55\) & \\
\hline \(D=580\) & \(G=28\) & \(T=50\) & & SCORE & 4976.84 \\
\hline ANON & GNP ACCOUNTS & QUARTER & 4 & & \\
\hline \(Q=634.768\) & \(Y=630\) & \(C=547\) & & I= 55 & \\
\hline \(D=580\) & \(G=28\) & \(T=50\) & & SCORE & 4972.88 \\
\hline
\end{tabular}
```

ENTER CHANGES IN G,T -?
DONE

CRIPTION:

「RUCTIONS:
<NOWLEDGEMENTS:

ECONOMIC POLICY GAME

GMCR05 and GMCRO6 simulate the complexities of a dynamic economy and the problems inherent in the use of fiscal and monetary policy to pursue the goals of economic stability and growth.

In GMCRO5 a student will control fiscal policy and monetary policy and will have an eight period history of a hypothetical economy which was generated by a fairly realistic model of the U.S. economy. For succeeding periods the economy will be influenced by past policy decisions. From the ninth period on, each student makes independent policy decisions, thus his economy. will run a separate course.

The emphasis in this game is on combining a number of policy tools (government spending, the marginal tax rate, and the money supply) to reach specified national economic goals. The goals are defined by a "welfare function" which expresses mathematically the relative weight the policy maker gives to various economic indicators of well-being. Scoring well in this game requires giving thought to what the welfare function really means in terms of policy.

The computer reports each year's economic data after policy decisions have been decided upon and implemented. In particular, prices and unemployment are reported; their behavior is important to welfare. Since GNP components are stated in "real" (deflated) terms, actual output (Y) cannot exceed potential output (Q). If aggregate demand is excessively great, it is met not by added output, but by inventory decumulation -- and this information is reported.

A student who has played GMCRO5 will have faced many of the problems economists and government policy makers face. In GMCRO6 the student still faces the un-employment-inflation dilemma. However, he must also be aware that the policy tools used to control the domestic economy have significant effects on exports, imports, and international capital flows, i.e., the balance of payments. Should the student now encounter a severe balance of payments deficit he must either deflate his economy or suffer the international consequences specified at the beginning of GMCRO6.

In this model of the economy, exports are dependent upon the level of GNP and upon the inflation rate, imports depend upon disposable income. Capital inflows vary with the domestic interest rate. Again the student should study the economic history before beginning.

No goals are prescribed for the student in GMCRO6. Rather, as policy maker, he must attempt to achieve the economic goals which he considers important. The game continues for twenty "years". Various changes will occur in international relations during this period. They affect exports and imports and, consequently, policy decisions.

See Page 2

Graduate School of Business
Stanford University

INSTRUCTIONS:
The game is played in three ten-period sessions each having a different welfare function which requires widely differing policies.
For the first ten periods the objective is to maximize a welfare function of the form $W=(C)^{.6}(I)^{.2}$ $(G) \cdot 2^{-U}-(P C)^{3}$. Note that the inflation rate (PC) is weighted much more heavily than unemployment (U).

For the second ten periods the welfare function is $W=(C)^{4}(I)^{\cdot 2}(G)^{.4}-U^{3}$ - PC. Now unemployment is weighted more heavily than inflation.
For the final ten periods the welfare function is $W=Q-U^{2}-(P C)^{2}$. Both unemployment and inflation are weighted equally.

Clues for Good Policy Making

To achieve policy objectives students might find the following guidelines helpful.

1. Interpret the goal. What does it mean to maximize the given welfare function? What variables in the economy should the student be trying to affect by his policy decisions?
2. Formulate ideas about how the economy functions. What factors are likely to be important determinants of the variables that he wants to influence? How will changes in the policy variables influence these target variables?
3. Test ideas against avaflable information contained in the accompanying table. Do these ideas explain most of the economy's behavior in past periods? Do the data suggest alternative explanations as to how the economy functions?

GMCRO5--ECONOMIC DATA FOR PREVIOUS YEARS

| Year | Q | Y | C | 1 | G | T1 | T | D | E | M | R | P | PC | U | IN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -7 | 569.0 | 500.0 | 303.5 | 104.5 | 92.0 | . 30 | 110.0 | 315.0 | 75.0 | 125.6 | 3.9 | 1.0 | 0.0 | 6.5 | 0.0 |
| -6 | 588.4 | 521.0 | 313.9 | 115.1 | 92.0 | . 30 | 116.3 | 326.5 | 78.1 | 135.6 | 3.3 | . 997 | -0.3 | 6.3 | 0.0 |
| -5 | 608.9 | 576.4 | 341.3 | 128.1 | 107.0 | . 30 | 132.9 | 357.0 | 86.5 | 150.6 | 3.1 | . 995 | -0.2 | 4.3 | 0.0 |
| -4 | 630.6 | 583.1 | 292.2 | 124.0 | 167.0 | . 40 | 193.2 | 302.4 | 87.5 | 150.6 | 3.3 | 1.013 | 1.8 | 5.0 | 0.0 |
| -3 | 652.2 | 620.7 | 335.3 | 118.4 | 16.7 .0 | . 35 | 177.2 | 350.3 | 93.1 | 150.6 | 4.0 | 1.021 | 0.7 | 4.1 | 0.0 |
| -2 | 673.6 | 673.6 | 389.4 | 117.2 | 167.0 | . 30 | 162.1 | 410.5 | 101.0 | 170.6 | 4.2 | 1.042 | 2.1 | 2.5 | 15.5 |
| -1 | 695.1 | 692.8 | 398.9 | 126.9 | 167.0 | . 30 | 167.8 | 421.0 | 103.9 | 170.6 | 5.0 | 1.149 | 10.3 | 2.6 | 0.0 |
| 0 | 117.6 | 651.6 | 378.5 | 106.1 | 167.0 | . 30 | 155.5 | 398.4 | 97.7 | 170.6 | 4.7 | 1.214 | 5.7 | 5.5 | 0.0 |

Definitions

| Q | $=$ Potential Net National Product |
| ---: | :--- |
| Y | $=$ Net National Product |
| C | $=$ Consumption Expenditures |
| I | $=$ Net Private Investment |
| G | $=$ Government Purchases of Goods |
| I | and Services |
| I | $=$ Marginal Income Tax Rate |
| D | $=$ Dispoceipts |
| | |

| E | $=$ Corporate Retained Earnings |
| ---: | :--- |
| M | $=$ Money Supply |
| R | $=$ Rate of Interest (percentage) |
| P | $=$ Index of Price Level |
| $P C$ | $=$ Yearly Rate of Price Change (percentage) |
| U | $=$ Unemployment Rate (percentage) |
| IN | $=$ Inventory Disinvestment |
| W | $=$ Welfare for Current Year |
| $W+$ | $=$ Sum of Welfare since Year Zero |

```
INSTRUCTIONS: (continued)
```

GMCRO6 - Economic Data for Previous Years

| Year | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q | 569.0 | 588.4 | 608.9 | 630.6 | 652.2 | 673.6 | 695.1 | 717.6 |
| Y | 500.0 | 521.0 | 576.4 | 583.1 | 620.7 | 673.6 | 692.8 | 651.6 |
| C | 303.5 | 313.9 | 341.3 | 292.2 | 335.3 | 389.4 | 398.9 | 378.5 |
| 1 | 104.5 | 115.1 | 128.1 | 124.0 | 118.4 | 117.2 | 126.9 | 106.1 |
| G | 92.0 | 92.0 | 107.0 | 167.0 | 167.0 | 167.0 | 167.0 | 167.0 |
| TI | . 30 | . 30 | . 30 | . 40 | . 35 | . 30 | . 30 | . 30 |
| T | 110.0 | 116.3 | 132.9 | 193.2 | 177.2 | 162.1 | 167.8 | 155.5 |
| D | 315.0 | 326.5 | 357.0 | 302.4 | 350.3 | 410.5 | 421.0 | 398.4 |
| E | 75.0 | 78.1 | 86.5 | 87.5 | 93.1 | 101.0 | 103.9 | 97.7 |
| M | 125.6 | 135.6 | 150.6 | 150.6 | 150.6 | 170.6 | 170.6 | 170.6 |
| R | 3.9 | 3.3 | 3.1 | 3.3 | 4.0 | 4.2 | 5.0 | 4.7 |
| P | 1.0 | 9.997 | 0.995 | 1.013 | 1.021 | 1.042 | 1.149 | 1.214 |
| PC | 0.0 | -0.3 | -0.2 | 1.8 | 0.7 | 2.1 | 10.3 | 5.7 |
| U | 6.5 | 6.3 | 4.3 | 5.0 | 4.1 | 2.5 | 2.6 | 5.5 |
| IN | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 15.5 | 0.0 | 0.0 |
| EX | 40.0 | 41.3 | 42.1 | 36.3 | 40.3 | 37.2 | 12.9 | 25.9 |
| IM | 28.4 | 29.4 | 32.1 | 27.2 | 31.5 | 36.9 | 37.9 | 35.9 |
| K | -1.2 | -2.9 | -3.6 | -2.9 | -1.0 | -0.6 | 0.0 | -0.1 |
| Bop | 10.4 | 9.0 | 6.4 | 6.2 | 7.8 | -0.3 | -25.0 | -10.1 |
| BoP+ | 10.4 | 19.4 | 25.8 | 32.0 | 39.8 | 39.5 | 14.5 | 4.4 |

Definitions

```
Q = Potential Net National Product
Y = Net National Product
C - Consumption Expenditures
I = Net Private Investment
G = Government Purchases of Goods
        and Services
TI = Marginal Income Tax Rate
T - Tax Receipts
D = Disposable Personal Income
R = Rate of Interest (percentage)
```

$P=$ Index of Price Level
$P C=$ Yearly Rate of Price Change (percentage)
$U=$ Unemployment Rate (percentage)
IN = Inventory Disinvestment
$W=$ Welfare for Current Year
$W^{+}=$Sum of Welfare since Year Zero
EX = Exports
IM = Imports
$K=$ Capital Inflows
BoP = Balance of Payments
BoP+ $=$ Balance of Payments since Year 0

RUN

RUN

GMCROS
MCRO5 MAY REQUIRE AN HOUR OR MORE TO PLAY CAREFULLY. IF YOU THINK THAT YOU MAY POSSIBLY WISH TO PLAY IT IN MORE THAN ONE SITTING, OR MAY WISH TO STOP TO THINK BEFORE CONTINUING, YOU SHOULD CREATE A FILE TO STORE THE DATA GENERATED BY YOUR ECONOMY.

DO YOU WANT THE FLEXIBILITY TO STOP THE GAME AND RETURN LATER ?YES

WHEN THE PROGRAM STOPS, TYPE
200 FILES DATA5

RUN-200

THE PROGRAM WILL NOW STOP TO ALLOW YOU TO TYPE IN THESE LINES. TYPE IN THE LINES AFTER THE COMPUTER PRINTS 'DONE'.

DONE
200 FILES DATAS
(RL:-DATA5, 1
RUN-200
GMCROS
IF YOU DESIRE TO STOP THIS PROGRAM DURING EXECUTION, YOU MAY DO SO BY TYPING 9999° WHEN THE CHANGE IN M IS REQUESTED. YOU MAY THEN LOGOF̈F AND RESUME MCRO5 IN THE YEAR THAT YOU STOP. INSTRUCTIONS FOR RESUMING WILL BE GIVEN WHEN YOU STOP.

```
MCROS DEALS WITH DESIGNING POLICY STRATEGIES TO MEET DIFFERENT
ECONOMIC GOALS. YOU WILL BE GIVEN INFORMATION ON MAJOR ECONOMIC
VARIABLES INCLUDING THE RATE OF UNEMPLOMMENT (U) AND THE RATE OF
INFLATION (PC). YOU SHOULD HAVE STUDIED THE PAST PERFORMANCE OF
THE ECONOMY PRIOR TO THE BEGINNING OF THE GAME. YOU WILL CONTROL
THE MONEY SUPPLY (M). GOVERNMENT EXPENDITURES (G), AND THE
MARGINAL TAX RATE (TI). WHEN YOU ARE REQUESTED TO DO SO TYPE IN
THE CHANGES IN M,G, AND TI. IF THERE IS NO CHANGE A ZERO MUST
BE TYPED.
```

YOUR OBJECTIVE IN MCROS IS TO MAXIMIZE A FUNCTION
WHICH IS DEFINED IN TERMS OF WELFARE (W).
THE NATIONS WELFARE FUNCTION FOR YEARS 1 THROUGH 10 IS
$W=\left(C^{.6}\right)\left(1^{.2}\right)\left(G^{.2}\right)-U-P C^{3}$
NOTICE THAT CONSUMPTION IS VALUED RATHER HIGHLY, AND INFLATION
IS REGARDED MUCH MORE SERIOUSLY THAN UNEMPLOYMENT. YOU ARE TO
MAXIMIZE THE SUM OF WELFARE ($W+$) OVER THE NEXT 10 YEARS.

TYPE YOUR NAME -?ANON

| ANON | GNP ACCOUNTS | YEAR | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $Q=717.645$ | $Y=651.611$ | $C=378.547$ | $I=106.063$ | $G=167$ | |
| $T I=.3$ | $T=155.483$ | $D=398.386$ | $E=97.7416$ | $M=170.6$ | |
| $P=1.21428$ | $R=4.69452$ | $P C=5.67608$ | $U=5.53652$ | $I N=B$ | |
| $W=D$ | $W+=D$ | | | | |

```
ENTER CHANGE IN M - ?O
ENTER CHANGE IN G - ?0
ENTER CHANGE IN TI - ?0
CHECK YOUR WORK. ANY CHANGES ? (1=YES,0=NO).?E
```

| ANON | GNP ACCOUNTS | YEAR 1 | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $Q=738.808$ | $Y=651.083$ | $C=378.286$ | $I=185.797$ | $G=167$ |
| $T 1=.3$ | $T=155.325$ | $D=398.896$ | $E=97.6624$ | $M=178.6$ |
| $P=1.21653$ | $R=4.57859$ | $P C=.185108$ | $U=6.41838$ | $I N=O$ |
| $W=242.536$ | $U+=242.536$ | | | |

```
ENTER CHANGE IN M - ?9999
YOUR DATA HAS BEEN STORED IN A FILE DESIGNATED DATA5.
TO RESTART CALL MCROS AND TYPE
2510 FILES DATA5
RUN-2500
DONE
RUN
GMCRO6
MCRO6 MAY REQUIRE AN HOUR OR MORE TO PLAY CAREFULLY.
IF YOU THINK THAT YOU MAY POSSIBLY WISH TO PLAY IT
IN MORE THAN ONE SITTING, OR MAY WISH TO STOP TO THINK
BEFORE CONTINUING, YOU SHOULD CREATE A FILE TO STORE
THE DATA GENERATED BY YOUR ECONOMY.
DO YOU WANT THE FLEXIBILITY TO STOP THE GAME AND RETURN
LATER ?YES
WHEN THE PROGRAM STOPS, TYPE
20J FILES DATA6
RUN-200
THE PROGRAM WILL NOW STOP TO ALLOW YOU TO TYPE IN THESE LINES.
TYPE IN THE LINES AFTER THE COMPUTER PRINTS 'DONE'.
DONE
200 FILES DATAG
!ト;-1A`ス!, 
RUN-200
GMCRO6
IF YOU DESIRE TO STOP THIS PROGRAM DURING EXECUTION,
YOU MAY DO SO BY TYPING '9999' WHEN THE CHANGE IN M IS
REQUESTED. YOU MAY THEN LOGOFF AND RESUME MCROG IN THE
YEAR THAT YOU STOP. INSTRUCTIONS FOR RESUMING WILL BE
GIVEN WHEN YOU STOP.
MCROG DEALS WITH DESIGNING POLICY STRATEGIES TO MEET
YOUR ECONOMIC GOALS. YOU WILL BE GIUEN INFORMATION
ON MAJOR ECONOMIC VARIABLES INCLUDING CURRENT EXPORTS (EX),
IMPORTS (IM), AND SHORT TERM CAPITAL INFLOWS (K). THE
BALANCE OF PAYMENTS IN THE CURRENT YEAR (BOP) AND THE
TOTAL DOLLAR CLAIMS ON OTHER NATIONS FROM YEAR -7 (BOP +)
ARE ALSO REPORTED.
YOU MAY SET YOUR OWN OBJECTIUES IN MCROG. NOTE THAT YOU
MUST BE CONCERNED WITH THE BALANCE OF PAYMENTS AND FOREIGN.
TRADE IN ADDITION TO UNEMPLOYMENT AND INFLATION. BE CAREFUL
TO MAKE YOUR OBJECTIUES REALISTIC, FOR SHOULD THE BALANCE
OF PAYMENTS FALL BELOW -2G IN ANY YEAR, ALL MEMBERS OF THE
IMF WILL REVALUE THEIR CURRENCIES UPWARDS.
YOU SHOULD HAVE STUDIED THE PAST PERFORMANCE OF THE ECONOMY
PRIOR TO THE BEGINNING OF THE GAME. YOU WILL CONTROL THE
MONEY SUPPLY (M), GOUERNMENT EXPENDITURES (G), AND THE
MARGINAL TAX RATE (TI). WHEN YOU ARE REQUESTED TO DO SO,
TYPE IN THE CHANGES IN M,G, AND TI. IF THERE IS NO CHANGE
A ZERO MUST BE TYPED.
\begin{tabular}{|c|c|c|c|c|c|}
\hline TYPE YOUR NAME & \multicolumn{3}{|c|}{-? ANON} & & \\
\hline ANON & GNP & ACCOUNTS & YEAR 8 & & \\
\hline \(0=717.645\) & \(\boldsymbol{Y}=\) & 651.611 & \(C=378.547\) & \(1=196.063\) & \(G=167\) \\
\hline \(T \mathrm{l}=.3\) & T & 155.483 & \(D=398.386\) & \(E=97.7416\) & \(M=176.6\) \\
\hline \(P=1.21428\) & \(\mathrm{R}=\) & 4.69452 & \(P C=5.67608\) & \(U=5.53652\) & \(I N=0\) \\
\hline \(E X=25.932\) & 1 \(\mathrm{M}=\) & 35.856 & \(K=.809\) & \(B O P=-18.814\) & \\
\hline BOP \(+=4.45499\) & & & & & \\
\hline
\end{tabular}
```

```
ENTER CHANGE IN M - ?%
ENTER CHANGE IN G - ?O
ENTER CHANGE IN TI - ?O
CHECK YOUR YORK. ANY CHLANGES ? (l=YES.g=NO).?O
ANON GNP ACCOUNTS YEAR 1
@ = 738.888
T1=.3
P=1.21653
EX=42.4663
    Y - 651.083
    C=378.286 I = 105.797
    D=398.996 E = 97.6624 M = 178.6
R=4.57859 PC=.185198 U = 6.41838
M=17
BOP=6.45334
ENTER CHANGE IN M - }7999
YOUR DATA HAS BEEN STORED IN A FILE DESIGNATED DATAG.
TO RESTART CALL MCROG AND TYPE
2516 FILES DATA6
RUN-2560
DONE
```


contributed program BASTC

STABIL


```
RUN
RUN
STABIL
```


*****STABIL*****

```
ARE YOU STARTING(1), OR CONTINUING ANOTHER GAME(日)?1 DO YOU WANT INSTRUCTIONS?YES
YOUR GOAL IS TO USE THE ECONOMIC TOOLS AVAILABLE TO ACHIEUE A SITUATION OF CONTROLLED EXPANSION IN THE ECONOMY WITHIN 8 QUARTERS. THIS IDEAL SITUATION WILL BE ACHIEVED WHEN THE ECONOMIC INDICATORS HAVE THE FOLLOWING VALUES:
```

| GNP GROWTH | 10% |
| :--- | ---: |
| UNEMPLOYMENT RATE | 4% |
| INFLATION RATE | 4% |
| WAGE GROWTH | 6% |
| PROFIT RATE | 10% |
| INTEREST RATE | 7% |

(FOR A VALUE TO BE ACCEPTABLE, IT MUST BE WITHIN 1/2 OF A PERCENT OF THE ABOVE FIGURE).

AT THE PRESENT TIME THE ECONOMY IS
IN A STATE OF RAPID INFLATION AS THE ECONOMIC INDI CATORS CLEARLY SHOW.

MONETARY POLICY
5. CHANGE MONEY SUPPLY - 10\% OR +10\%

DI SCRETIONARY POLICIES

6. IMPOSE PRICE CONTROLS FOR THIS QUARTER
7. IMPOSE WAGE CONTROLS FOR THIS QUARTER
8. IMPOSE PRICE, WAGE, AND INTEREST RATE FREEZE FOR THIS QUARTER

THE U.S. ECONOMY: ITS YOUR DECISION!

```
CONSULT YOUR LAB BOOK FOR DIREGTIONS. FOR ALL RESPONSES,
```

YES=1 AND NO= \varnothing.
DO YOU WANT TO INPUT INITIAL VALUES? 1
IN WHAT YEAR ARE YOU STARTING? 1974

| PERSONAL CONSUMPTION | $? 550$ |
| :--- | :--- |
| PRIVATE INVESTMENT | $? 250$ |
| GOUERNMENT SPENDING | $? 2 \emptyset \varnothing$ |
| | |
| ACTUAL GNP | 1000 |
| | |
| POTENTIAL GNP | $? 850$ |

********** INFLATION ALERT! **********
YOU MAY ASSUME A MULTIPLIER OF 2.5
ENTER YOUR POLICY DECISIONS IN BILLIONS OF DOLLARS OR PERCENTS. BE SURE TO INDICATE DIRECTION OF CHANGE.BY A + OR -. (FORMAT FOR PERCENTS: ENTER 2.1\% AS 2.1.)

FI SCAL ACTION
GOVERNMENT SPENDING: ? 0
PERSONAL TAXES COLLECTED: ? θ
BUSINESS TAXES COLLECTED: ? \varnothing
MONETARY ACTION
RESERUE REQUIREMENT (\%): ? 1
DISCOUNT RATE (Z): ? 1
NET OPEN MARKET PURCHASES: ?-3

YEAR: 1975

| PERSONAL CONSUMPTION | 544.8 |
| :--- | :--- |
| PRIVATE INUESTMENT | $2 \emptyset 7.1$ |
| GOUERNMENT SPENDING | $2 \emptyset 0$ |
| | |
| ACTUAL GNP | 952 |
| | |
| POTENTIAL GNP | 884 |

DO YOU WANT TO CONTINUE? \varnothing
DONE

contrautito proocam BASIC

PROPAGATION OF ERROR ALERA

This program computes the resultant precision of a quantity computed from imprecise measured quantities.

INSTRUCTIONS:

SPECIAL CONSIDERATIONS:

ACKNOWLEDGEMENTS:

Instructions are contained in the program.
The program will compute the propagation of error through a series of binary operations. These are the familiar arithmetic operators. The input consists of three possible categories:

1. Commands REStore, clears all variables, LISt, lists all non-empty variables and their values. only the first three characters are needed.
2. Single letter

This allows entering a value and an absolute precision directly into the given variable.
3. Operation

The operation is of the form: VoV, where V is any alphabetic character, the accumulator \#, or a single digit integer. The absolute precision of the integers is zero. The operator, 0 , is one of the following:

+ add
- subtract
* multiply
/ divide
4 exponentiation
$=$ store
In all cases except ${ }^{\prime}=$ ' (store), the result is put into the accumulator, \#. This may be used in subsequent operations. If the variable referenced does not have a previously defined value, the program automatically requests a value and absolute precision.

The formulas for the error propagation are based on a geometric sum as described in Introduction to the Theory of Error by Yardley Beers (Addi-son-Wesley Publishing Co., 1957). Thus the resultant precision is an estimate of the actual precision of the computed quantity assuming that the errors in the measured quantities are irdependent, rather than an upper limit.

Continued on following page.

[^1]
SPECIAL CONSIDERATIONS: continued

FOR INSTRUCTIONAL PURPOSES
Suitable Courses: General Physics Laboratory
Student Background Required: Discussion of precision and propagation of error.
In most laboratory situations the final result is computed from a set of measurements. It is important for the student to be able to estimate or determine the precision of each measurement. From this the precision of the result may be computed. It is also very important for the student to understand how the error in his initial data affects the result. To determine this, one performs a standard propagation of error analysis. However, this can be quite tedious, especially if the expression involves both sums and multiplies. One has to convert from relative to absolute precision and back.

Most students are so discouraged by the arithmetic in an analysis of error that they lose any benefit from the process. They rebel about doinn the proper analysis. It was for this reason that the program was written. The computer is a good tool to do messy arithmetic.

In practice the students are introduced to the concept of error analysis and perform several calculations by hand. Thereafter, it is assumed that they have learned the concept, and the computer is allowed to help do the calculations.

RUN

RUN
ALERA
ALGEBRAIC ERROR ANALYSIS
INSTRUCTIONS, (YES OR NO)?YES
this program computes the resultant precision of a quantity. It is Restricted to a series of binary operations of the form: vov WHERE 'V' IS ANY ALPHABETIC CHARACTER. '", OR A SINGLE DIGIT INTEGER. the absolute precision of the integers is zero.

```
'O' IS ONE OF THE FOLLOWING OPERATORS
```

 - ADD
 - SUBTRACT
 * MULTIPLY
 , DIVIDE
 - EXPONENTIATE
 = STORE
 IN ALL CASES EXCEPT ${ }^{\prime}={ }^{\prime}$, THE RESULT IS RETURNED IN "*'
THIS MAY BE USED IN SUBSEQUENT OPERATIONS.
TYPING A SINGLE VARIABLE ALLOWS ENTERING ITS VALUE DIRECTLY
OTHERWISE, THE 'PROGRAM WILL ASK FOR ALL VALUES NEEDED
THERE ARE TWO COMMANDS:
RESTORE, CLEARS ALL VARIABLES
LIST, LISTS ALL NON-EMPTY VARIABLES
INITIALIZED
? P
ENTER: P, DP ?3.14159.0
?R:2
ENTER: R, DR ?12,1

SCIENCE (EDUCATION) (833) contributed program BASIC

| TITLE: |
| :--- | :--- |
| DESCRIPTION: |
| ACKSTRUCTIONS: |
| DERIVES THE ELECTRONIC CONFIGURATION OF ANY ELEMENT |
| This programi dervies the electronic configuration of any element according |
| to the atomic orbital theory. |

RUN

RUN

THIS PROGRAM DERIVES THE ELECTRONIC CONFIGURATION OF ANY ELEMENT ACCORDING TO THE ATOMIC ORBITAL THEORY.

WHAT IS THE ATOMIC NUMBER OF YOUR ELEMENT?16
THE ELECTRONIC CONFIGURATION IS: 152 2S 2 2P 6 3S 2 3P 4

DO YOU WANT ME TO DO ANOTHER ELEMENT?YES

WHAT IS THE ATOMIC NUMBER OF YOUR ELEMENT?I
THE ELECTRONIC CONFIGURATION IS:
151

DO YOU WANT ME TO DO ANOTHER ELEMENTTYES

```
WHAT IS THE ATOMIC NUMBER OF YOUR ELEMENT?I2
```

THE ELECTRONIC CONFIGURATION IS: $1 S 2$ 2S 2 2P 6 3S 2

DO YOU WANT ME TO DO ANOTHER ELEMENT?NO
DONE

TITLE:
DESCRIPTION.

INSTRUCTIONS:

CALCULATES ATOMIC WEIGHT
This program will calculate the atomic weight (atomic mass) of an element from the $\%$ abundance of each isotope of the element. The \% abundance may be found in the chemistry handbook.

OBJECTIVES:
To show that the atomic weight is an average weight and not the weight of any particular atom.

PRELIMINARY PREPARATION:

A. Student - The student should have an introductory understanding of atomic weight, mass number, and isotopes.
B. Materials - A chemistry handbook from which mass numbers and \% abundances may be obtained is necessary.

DISCUSSION:
It is usually difficult to get the point across that the atomic weight is an average weight and not the weight of any particular atom. This point can be made rather easily if the calculations for atomic weight are examined. This program will enable the teacher, in a few minutes during his discussion, to do a large number of calculations. This is particularly impressive when the teacher uses \% data that is significant to 5-6 figures, and thus produces an atomic weight as accurate as those given in most tables.

If the teacher is interested in discussing programming with his students, this program is a good one to use. It has the advantage of being short, but still containing a number of interesting programming techniques.

Huntington Project
Polytechnic Institute of Brooklyn

```
RUN
RUN
ATWT
    THIS PROGRAM WILL CALCULATE THE ATOMIC WEIGHT (ATOMIC MASS)
    FROM THE PERCENT ABUNDANCE OF EACH ISOTOPE. PERCENT
    ABUNDANCES MAY BE FOUND IN THE CHEMISTRY HANDBOOK.
    HOW MANY ISOTOPES DOES THE ELEMENT HAVE ?7
    INPUT THE MASS NUMBER AND THE PERCENT ABUNDANCE FOR
    EACH OF THE 7 ISOTOPES.
    ISOTOPE NO. 1 ?196..15
    ISOTOPE NO. 2 ?198,10
    ISOTOPE NO. 3 ?199,16.9
    !SOTOPE NO. 4 ?200,1-23.1
    ISOTOPE NO. 5 ?201,13.2
    ISOTOPE NO. }6\mathrm{ ?282,29.8
    ISOTOPE NO. 7 ?204,6.8
    ATOMIC WEIGHT (ATOMIC MASS) IS 206.525
    ANOTHER RUN (I=YES, D=NO) ?0
```

DONE
TITLE:
DESCRIPTION:
AVOGADRO'S NûMBER
A class presentation designed to calculate Avogadro's number, by using
the molecular weight of a compound and dividing by the combined actual
weight of the total numbers of neutrons and protons in a single
molecule.
OBJECTIVES:
To show by calculation, the value of Avogadro's number, and to rein-
force the concept of Avogadro's hypothesis.

```
RUN
RUN
AVOGA
IF INSTRUCTIONS DESIRED, TYPE 1, IF NOT, TYPE 0?I
THIS PROGRAM WILL CALCULATE AVOGADRO'S NUMBER BY USING
ANY PURE GASEOUS ELEMENT OR BINARY COMPOUND.
THIS VALUE WILL BE CALCULATED BY USING THE MASS IN GRAMS
OF THE NEUTRON, WHICH IS : 1.67438E-24
AND THE MASS OF THE PROTON, WHICH IS : 1.67206E-24
YOU MUST SUPPLY THE ATOMIC NUMBER AND THE ATOMIC WEIGHT OF
INPUT EACH ELEMENT USED. CARRY DIGITS UP TO 6 PLACES IF YOU
WISH. WHEN THE MACHINE ASKS (?) INPUT THE ATOMIC NUMBER
AND THE ATOMIIC WEIGHT OF THE FIRST ELEMENT, THEN THE
ATOMIC NUMBER AND THE ATOMIC WEIGHT OF THE SECOND IN THE
FORM A,B,C,D. IF USING SINGLE ELEMENTS, BE SURE TO
PUT IN O FOR VALUES C AND D.
```



```
NOW INPUT THE VALUES FOR YOUR COMPOUND
?6,12.0012.8.15.9994
INPUT THE NUMBER OF ATOMS FOR EACH ELEMENT.
(CO2 WOULD BE 1.2) :?1,2
*** THE NUMBER OF PARTICLES PER MOLE OF THIS GAS IS 5.976S0E+23
WOULD YOU LIKE TO TRY ANOTHER PROBLEM ?
TYPE I IF YES, TYPE O IF NO ?I
    ##*############
NOW INPUT THE VALUES FOR YOUR COMPOUND
78,15.994,0,0
INPUT THE NUMBER OF ATOMS FOR EACH ELEMENT.
(CO2 WOULD BE 1.2) :?2.0
*** THE NUMBER OF PARTICLES PER MOLE OF THIS GAS IS 5.976S0E+23
WOULD YOU LIKE TO TRY ANOTHER PROBLEM ?
TYPE I IF YES, TYPE IF NO ?O
DONE
```

TITLE:
DESCRIPTION:
INSTRUCTIONS:
ACKNOWLEDGEMENTS:
Student may visualize the effects of current on the magnetic field
produced about a single conductor. The student may also explore the
fields produced by the current flow in two parallel wires. The current
in the two wires may be chosen in the same direction or in opposite directions.
OBJECTIVES:
To acquaint student with the magnetic fields produced by current carrying
conductors.
PRELIMINARY PREPARATION:
A. Student - Prior preparation involving currents and fields.
B. Materials - None
Polytechnic Institute of Brooklyn

RUN
RUN
BFIELD
this program will permit you to explore the magnetic field about a Current directed into the page as a function of the current magnitude.

What will be your initial current (select positive values BETWEEN 1 AND 8 AMPERES).
enter your value of current?6
the magnitude of the field decreases from 9 to 0. 9 IS the highest possible field streng th, And (Which means a zero field) the lowest.

SELECT A DIFFERENT CURRENT. Enter your value of current?3

would you like to try two different currents at the same TIME (YES=1; NO=0)?
THE TWO CURRENTS WILL BE SEPARATED BY 1.0 METER. (NOTE: IF the currents are to be oppositely directed, state one of them as a negative value).
ENTER THE TWO CURRENTS?A,-8

METERS

WANT TO TRY AGAIN (YES=1; NO=0)? 0
WELL I GUESS YOU'RE ALL THROUGH. THANKS-- SEE Y'A
DONE

TITLE:
DESCRIPTION:

INSTRUCTIONS:

BOHR: Energy Level Diagram
BOHR

The student may choose to have the Lyman, Balmer, or Paschen Series of the hydrogen emission spectrum displayed. He then must decide which energy level transitions are responsible for the lines of the spectrum that he has chosen. If he is successful, an energy-level diagram is presented and he must determine the energies of the photons emitted by the electron as it falls between randomly-selected energy levels.

OBJECTIVES:

To give an increased understanding of the Bohr atom and of how emission spectra are formed.

PRELIMINARY PREPARATION:
A. Student - The student should have been introduced to the Bohr atom, quantum theory, and ideally, have measured the wavelengths of the bright lines of the hydrogen spectrum.
B. Materials - A piece of paper and a pencil.

DISCUSSION:

After the student selects the series he wishes to see, it is displayed and he tries to discover which quantum level jumps by the electron are responsible for the first two of three lines in the series. If he is successful three times, a statement as to how the lines of that series are formed is printed and he may then elect to try another series or move on to work with the energy-level diagram for hydrogen.

After a brief explanation concerning the energy of a photon emitted during the transition of the electron from a higher to a lower energy level, the student is given a chance to show what he has learned. Energy levels are randomly selected and he must calculate the energy of the emitted photon. If the student is not successful, he gets a further explanation. After six trials the program ends.

RUN

RUN
BOHR

YOU MAY VIEW THE 1. LYMAN 2.BALMER OR 3. PASCHEN SERIES BY TYPING IN THE NUMBER OF THE SERIES YOU WANT DISPLAYED, OR TYPE 4 FOR AN ENERGY LEVEL DIAGRAM.

CHOOSE THE NUMBER OF THE PART YOU WOULD LIKE TO SEE. ? 2

| 7608 | A | |
| :---: | :---: | :---: |
| 6980 | A | |
| 6890 | A | |
| 6786 | A | |
| 6609 | A | |
| 6500 | A---------- 6564.7 | |
| 6400 | A | |
| 6300 | A | |
| 6200 | A | |
| 6180 | A | |
| 6880 | A | |
| 5960 | A | |
| 5806 | A | |
| 5700 | A | |
| 5600 | A | |
| 5506 | A | |
| 5460 | A | |
| 5360 | A | |
| 5260 | A | |
| 5106 | A | |
| 5086 | A | |
| 4960 | A | |
| 4866 | A------0--- 4862.75 | |
| 4786 | A | |
| 4608 | A | |
| 4560 | A | |
| 4466 | A | |
| 4366 | A---------- 4341.74 | |
| 4200 | A | |
| 4180 | A-----------4102.94 | |
| 4006 | A | |
| 3900 | A---------- 3971.24 | |
| 3800 | A---------- 3896.2 | |
| 3700 | A | |
| 3608 | A---------- 3647.06 | -----SERIES LIMIT |
| 3500 | A | |
| 3460 | A | |
| 3300 | A | |
| 3208 | A | |
| 3160 | A | |
| 3006 | A | |

ACCORDING TO THE BOHR THEORY EACH OF THESE LINES RESULTS FROM THE EMISSION OF A PHOTON DURING THE TRANSITION OF THE ORBITAL ELECTRON OF AN EXCITED HYDROGEN ATOM FROM A HIGHER ENERGY STATE (ORBIT) TO A LOWER ONE. IN A PARTICULAR SERIES THE TRANSITION (JUMP) IS ALWAYS INTO THE SAME LOWER LEVEL (ORBIT) FROM ANY HIGHER ONE.

LET'S SEE IF YOU CAN DETERMINE WHICH TUO ORBITS THE ELECTRON
JUPED BETVEEN TO GIVE THE LINES THAT MAVE BEEN DISPLAYED.
THE LOVEST ENERGY LEVEL (GROUND STATE) IS NUMBERED ONE. HIGHER ENERGY LEUELS HAVE HIGHER NUMBERS IN SEQUENCE.

FOR EXAMPLE: FROM 4 TO 1 ENTER AS 4,1?3,2
GOOD START. THAT GIVES A WAVELENGTK OF 6564.71
THE NEXT LINE IS FORMED BY WHICH TRANSITION?4,2
BY GEORGEI! I THINK YOU'VE GOT ITII THE WAVELENGTH IS 4862.75 TRY ONE MORE - THE NEXT ONE. ENTER NOW.?5,2

ANY TRANSITION FROM A HIGHER ENERGY LEVEL INTO THE SECOND ENERGY LEVEL YIELDS A PHOTON OF THE BALMER SERIES.

```
IF YOU WOULD LIKE TO TRY ANOTHER SERIES TYPE IN THE NUMBER
OF THAT SERIES. IF YOU WANT TO GO ON TO A NEW PART OF
THE PROGRAM TYPE 4
WHICH??4
```

YOU WILL NOW GET AN ENERGY LEVEL DIAGRAM FOR HYDROGEN. IT SHOWS THE ENERGY OF THE ELECTRON IN THE VARIOUS ENERGY. LEVELS. THE DIFFERENCE BETWEEN THE ENERGY OF THE ELECTRON IN A HIGHER LEVEL AND THAT IN A LOWER LEVEL IS THE ENERGY OF THE EMITTED PHOTON. E(PHOTON) =E (HIGHER) - E (LONER)

CONT I NUUM

FIND THE ENERGIES OF THE PHOTONS GIVEN OFF FOR THE TRANSITIONS GIVEN BELOW.

FROM LEVEL 3 TO LEUEL 1 THE ENERGY OF THE PHOTON IS??-11.69
THE ENERGY OF LEVEL 3 IS-1.51111
THE ENERGY OF LEVEL 1 IS-13.6
THEIR DIFFERENCE = PHOTON ENERGY = 12.0889
FROM LEVEL 4 TO LEVEL 1 THE ENERGY OF THE PHOTON IS??.-12.75

GOOD. TRY ANOTHER
FROM LEUEL 3 TO LEVEL 1 THE ENERGY OF THE PHOTON IS??12.09
GOOD. TRY ANOTHER
FROM LEVEL 3 TO LEVEL 2 THE ENERGY OF THE PHOTON IS??1.89
GOOD. TRY ANOTHER
FROM LEVEL 4 TO LEVEL 1 THE ENERGY OF THE PHOTON IS??12.75

GOOD. TRY ANOTHER
FROM LEVEL 2 TO LEVEL 1 THE ENERGY OF THE PHOTON IS??10.2
THANK YOU, AND GOODBYE.
DONE


```
BOLA, Page 2
RUN
MUN
BOLA
HOW MANY PLAYERS, D, 1, OR 2
?0
IS THIS A TEST
?NO
Ll 7
WHAT NUCLEAR REACTION
?2
8 10
B 10 IS ONE OF THE MAIN MOBILITY CENTERS OF THIS
GAME. THERE ARE MANY PLACES YOU CAN GO FROM HERE.
IN PART, THIS REFLECTS THE MANY REACTIONSTHAT HAVE
BEEN CARRIED OUT INVOLVING B 10 BOMBARDMENT. BE 9
AND NIA ARE SIMILAR STRATEGIC HUBS.
WHAT NUCLEAR REACTION
?5
B 9
SHORT-LIVED ISOTOPE.
BE 8
BE & LIVES JUST LONG ENOUGH (10 TO THE MINUS 16
SECONDS) TO FORM A REACTION BRIDGE TO C 12.
THE REACTIONS, OCCURRING IN STELLAR INTERIORS,
ARE: HE 4 + ME 4 = BE 8; THEN; BE 8 + HE 4 = C 12.
WITHOUT THIS BRIDGE THERE WOULD BE NO ELEMENTS
HEAVIER THAN HELIUM IN THE UNIVERSE. BERYLLIUM }
WAS THE FLICKERING GATE THAT LED TO SOLID PLANETS
AND CARBON'CHAINS AND LIFE IN THE UNIVERSE.
SHORT-LIVED ISOTOPE.
HE 4
HE 4 IS A VERY STABLE ISOTOPE, AND THEREFORE
THE END POINT OF MANY NUCLEAR REACTIONS, AND
THE END POINT OF THIS GAME.
END OF GAME
DO YOU WANT A FINAL DISPLAY
?NO
DONE
RUN
BOLA
HOW MANY PLAYERS, 0, 1, OR 2
?!
IS THIS A TEST
?YES
WHAT Z
?
WHAT N
?7
B 12
WHAT NUCLEAR REACTION
?O
```

```
C
1 2
SHORT-LIVED ISOTOPE.
BE 8
SHORT-LIVED ISOTOPE.
HE 4
O 17 NOT INCLUDED IN GAME ROUTE.
YOU WENT TO HELIUM & TOO SOON
GAME LOST
END OF GAME
DO YOU WANT A FINAL DISPLAY
?YES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline OXYGEN (0) & & & & 0 & 0 & 0 & 0 & 0 \\
\hline NITROGEN (N) & & & & 0 & 0 & 0 & 0 & 0 \\
\hline CARBON (C) & & & 0 & 0 & 1 & 0 & 0 & \\
\hline BORON (B) & & & 0 & 0 & 0 & 1 & & \\
\hline BERYLLIUM (BE) & 0 & 0 & 1 & 0 & & & & \\
\hline LITHIUM (LI) & 0 & 0 & 0 & & & & & \\
\hline HELIUM (HE) & 1 & 0 & 0 & & & & & \\
\hline
\end{tabular}
DONE
RUN
BOLA
HOW MANY PLAYERS, 0, 1, OR 2
?2
IS THIS A TEST
?NO
LI 7
PLAYER 1
WHAT NUCLEAR REACTION
?2
B 10
PLAYER I
WHAT NUCLEAR REACTION
?1
C 13
PLAYER 2
WHAT NUCLEAR REACTION
?9
C 14
```

PLAYER 2

```
PLAYER 1.S SCORE IN MEV= 1.21
PLAYER 2'S SCORE IN MEV= 8.36
N 14
```

ISOTOPE COUNT= 5
TRANSITIONS MADE=
DO YOU WANT A CHECKLIST DISPLAY
? NO
N 14
PLAYER 1
WHAT NUCLEAR REACTION
?
DONE

RUN
BOLA

```
HOW MANY PLAYERS, 0, 1, OR 2
?l
IS THIS A TEST
?NO
LI 7
WHAT NUCLEAR REACTION
?2
B 10
WHAT NUCLEAR REACTION
?S
B 9
SHORT-LIVED ISOTOPE.
BE 8
SHORT-LIVED ISOTOPE.
HE 4
O 17 NOT INCLUDED IN GAME ROUTE.
YOU WENT TO HELIUM & TOO SOON
GAME LOST
END OF GAME
DO YOU WANT A FINAL DISPLAY
?YES
\begin{tabular}{llllllll} 
OXYGEN (O) & & 0 & 0 & 0 & 0 & 0 \\
NITROGEN (N) & & & 0 & 0 & 0 & 0 & 0 \\
CARBON (C) & & 0 & 0 & 0 & 0 & 0 \\
BORON (B) & & 1 & 1 & 0 & 0 & \\
BERYLLIUM (BE) & 0 & 0 & 1 & 0 & & & \\
LITHIUM (LI) & 0 & 0 & 1 & & & & \\
HELIUM (HE) & 1 & 0 & 0 & & & &
\end{tabular}
```

DONE

RUN
Run
CALORI

HEAT AND CALORIMETRY

* Het en

YOU HAVE TWO. BEAKERS OF WATER -
WHAT IS THE MASS (IN GRAMS) AND THE TEMP (IN DEGREES) OF THE WATER IN THE FIRST BEAKER?80.50

WHAT IS THE MASS (IN GRAMS) AND THE TEMP (IN DEGREES) OF THE WATER IN THE SECOND BEAKER?40,60

THE FINAL TEMPERATURE OF THE MIXTURE IS 53.33 DEGREES.

```
HOW MANY CALORIES WERE INUOLUED IN CHANGING THE TEMP OF
THE FIRST BEAKER FROM 50 TO 53.33 DEGREES?260
YOU'RE CLOSE ENOUGH. THE CORRECT ANSWER IS 266.4 CALORLES.
```

HOW MANY CALORIES VERE INVOLVED IN CHANGING THE TEMP OF
THE SECOND BEAKER FROM 60 TO 53.33 DEGREES?2AO
YOU•RE MORE THAN 3 PERCENT OFF. YOU SHOULD HAVE SAID
266.8 CALORIES.
WANT TO TRY AGAIN ($1=Y E S, 0=N O) ; ?!$
CHOOSE A LIQUID : θ =WATER, 1 =ALCOHOL. WHICH?

```
YOU HAVE TWO BEAKERS OF ALCOHOL.
WHAT IS THE MASS (IN GRAMS) AND THE TEMP (IN DEGREES) OF THE
    ALCOHOL IN THE FIRST BEAKER?|8日,50
WHAT IS THE MASS (IN GRAMS) AND THE TEMP (IN DEGREES) OF THE
    ALCOHOL IN THE SECOND BEAKER?180,70
THE FINAL TEMPERATURE OF THE MIXTURE IS 6G DEGREES.
HOW MANY CALORIES WERE INVOLVED IN CHANGING THE TEMP OF
THE FIRST BEAKER FROM 5% TO 60 DEGREES?6IO
YOI'RE CLOSE ENOIHG. THE CORRECT ANSWER IS 6OO CALORIES.
HOW MANY CALORIES WERE INUOLVED IN CHANGING THE TEMP OF
THE SECOND BEAKER FROM 70 TO 60 DEGREES?700
YOU'RE MORE THAN 3 PERCENT OFF. YOU SHOULD HAUE SAID
    600 CALORIES.
```

WANT TO TRY. AGAIN ($1=Y E S, \theta=N O): ? \theta$
DONE

CALCULATION FOR WHICH DROP?2
CHARGE ON DROP $2156.37 \times 101-19$ COULOMBS.

| $V=161$ | $? 200$ | 8 | 7.3 | -2.3 | -30.3 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $V=200$ | $? 225$ | 12.8 | 12 | 1.2 | -30.3 |

CALCULATION FOR WHICH DROP?8
CHARGE ON DROP $8 \quad 15128.28 \quad \times 18.19$ COULOMBS.
$V=8 \quad 2490$

DONE
title:
DESCRIPTION:

INSTRUCTIONS:

SPECIAL
CONSIDERATIONS:

SELF-CORRECTING CHEMISTRY TEST

This program generates a self-correcting Chemistry test. Ten questions are asked on the ideal gas law, then one mass problem (considered harder than the rest) is asked. This is followed by ten more gas law problems of a different type. The test is scored as follows: full value is given for a correct. answer on the first try; if the first answer is within three of the correct answer, the student is given a second try for half value. Each section is valued at ten points. The sectional mark is given after each section, with the total correct out of thirty given at the end.

This program is almost completely self explanatory, therefore no instructions are needed. If any difficulty should arise, the user should be able to modify the program to suit his own particular needs.

This program will run on any 8 K or larger HP computer, however if the 8 K configuration is used, the matrix package of the BASIC interperter must be deleted. This is because program "CHEM" requires more storage than what is available when the matrix package is retained.

FOR INSTRUCTIONAL PURPOSES
Suitabie Courses: Chemistry.
Student Background Required: Basic High School Chemistry

ACKNOWLEDGEMENTS:

Paul M. Dunphy
Nova Scotia Eastern Institute of Technology


```
8 -IF A 473 ML SAMPLE OF AN IDEAL GAS IS COLLECTED AT S.T.P.
AND SUBJECTED TO 776 MM HG AND 320 DEGREES KELVIN WHAT WILL
ITS FINAL VOLUME BE
?543
CORRECT---.--1 POINT
```



```
    9 - IF A 478 ML SAMPLE OF AN IDEAL GAS IS COLLECTED AT S.T.P.
AND SUBJECTED TO 778 MM HG AND 326 DEGREES KELVIN WHAT WILL
ITS FINAL VOLUME BE
?556
CLOSE, YOU ARE WITHIN 3 MLS, TRY AGAIN.
?557
CORRECT ON YOUR SECOND TRY------1/2 POINT
```



```
    10 .IF A 481 ML SAMPLE OF AN IDEAL GAS IS COLLECTED AT S.T.P.
AND SUBJECTED TO 781 MM HG AND 332 DEGREES KELVIN WHAT WILL
ITS FINAL VOLUME BE
?569
CORRECT-------1 POINT
```



```
                    9 POINTS OUT OF 10
```



```
YOU HAVE NOW COMPLETED PART 1. IF YOU WISH TO TRY IT
AGAIN WITH THE SAME VALUES, TYPE'2'. IF YOU WANT TO
TRY IT AGAIN WITH DIFFERENT VALUES, TYPE'1'. IF YOU
WANT TO PROCEED WITH THE REST OF THE TEST,TYPE'0'.
IF YOU DON'T WANT TO DO ANY MORE,TYPE'3'.
?0
                                    #****END OF PART 1******
                                    PART 2
                                    ********************
IN THE FOLLOWING REACTION:
NAOH+KCL->NACL+H2O(SODIUM HYDROXIDE +HYDROCHLORIC
ACID YIELDS SODIUM CHLORIDE AND WATER), HOW MUCH
SODIUM HYDROXIDE(IN GRAMS) IS NEEDED TO PRODUCE
470 GRAMS OF SODIUM CHLORIDE?
ATOMIC WEIGHTS: 1. SODIUM=22.98
    2. CHLORINE=35.45
    3. HYDROGEN=1.0079
    4. OXYGEN=15.99
```

```
HOW MANY GRAMS
```

HOW MANY GRAMS
?685
?685
YOU ARE WITHIN 10 GRAMS, TRY AGAIN FOR 1/2 VALUE.
YOU ARE WITHIN 10 GRAMS, TRY AGAIN FOR 1/2 VALUE.
?683
?683
SORRY,YOU ARE WRONG AGAIN, CORRECT ANSWER IS 686 GRAMS
SORRY,YOU ARE WRONG AGAIN, CORRECT ANSWER IS 686 GRAMS
*****END OF PART 2*****

```
    *****END OF PART 2*****
```



```
YOU HAVE NOW COMPLETED PART 2. TO CONTINUE,TYPE'R'.
```

YOU HAVE NOW COMPLETED PART 2. TO CONTINUE,TYPE'R'.
TO END HERE.TYPE`1`.
TO END HERE.TYPE`1`.
?0

```
?0
```



```
                                    PART 3
```

 PART 3
 *******************##
 *******************##
 TME FOLLOWING TEST IS THE SAME AS IN PART I
TME FOLLOWING TEST IS THE SAME AS IN PART I
EXCEPT THAT THE GAS IS NOT COLLECTED AT S.T.P

```
EXCEPT THAT THE GAS IS NOT COLLECTED AT S.T.P
```



```
    I .IF A 342 ML SAMPLE OF GAS IS COLLECTED AT 753 MM HG AND
```

 I .IF A 342 ML SAMPLE OF GAS IS COLLECTED AT 753 MM HG AND
 376 DEGREES KELVIN, THEN SUBJECTDD TO 739 MM HG
 376 DEGREES KELVIN, THEN SUBJECTDD TO 739 MM HG
 AND 230 DEGREES KELVIN
AND 230 DEGREES KELVIN
WHAT WILL ITS FINAL VOLUME BE
WHAT WILL ITS FINAL VOLUME BE
3213
3213
CORRECT------1 POINT

```
CORRECT------1 POINT
```



```
2 .IF A 343 ML SAMPLE OF GAS IS COLLECTED AT 760 MM HG AND
383 DEGREES KELVIN, THEN SUBJECTDD TO 746 MM HG
AND 233 DEGREES KELVIN
WHAT WILL ITS FINAL VOLUME BE
?212
CORRECT------1 POINT
```



```
    3 IF A 348 ML SAMPLE OF GAS IS COLLECTED AT 761 MM HG AND
    385 DEGREES KELVIN, THEN SUBJECTDD TO 749 MM HG
AND 233 DEGREES KELVIN
WHAT WILL ITS FINAL VOLUME BE
?213
CORRECT------1 POINT
```



```
    4 -IF A 350 ML SAMPLE OF GAS IS COLLECTED AT 764 MM HG AND
    385 DEGREES KELVIN, THEN SUBJECTDD TO 757 MM HG
AND 236 DEGREES KELVIN
WHAT WILL ITS FINAL VOLUME BE
2219
CLOSE, YOU ARE WITHIN 3 MLS, TRY AGAIN.
?218
SORRY, YOU ARE WRONG AGAIN, THE CORRECT ANSWER IS 216 MLS.
```



```
    5 IF A 350 ML SAMPLE OF GAS IS COLLECTED AT 768 MM HG AND
    393 DEGREES KELVIN, THEN SUBJECTDD TO 765 MM HG
AND 243 DEGREES KELVIN
WHAT WILL ITS FINAL VOLUME BE
?226
WRONG, THE CORRECT ANSWER IS 217 MLS
***********************************************************************
    6 -IF A 359 ML SAMPLE OF GAS IS COLLECTED AT 777 MM HG AND
    402 DEGREES KELVIN, THEN SUBJECTDD TO 774 MM HG
AND 244 DEGREES KELVIN
WHAT WILL ITS FINAL VOLUME BE
?218
CORRECT------1 POINT
```



```
    7 CIF A 362 ML SAMPLE OF GAS IS COLLECTED AT 778 MM HG AND
    404 DEGREES KELVIN, THEN SUBJECTDD TO 778 MM HG
AND 245 DEGREES KELVIN
WHAT WILL ITS FINAL VOLUME BE
2219
CORRECT------I POINT
```



```
    8 -IF A 366 ML SAMPLE OF GAS IS COLLECTED AT 779 MM HG AND
    406 DEGREES KELVIN, THEN SUBJECTDD TO 787 MM HG
AND 2S2 DEGREES KELVIN
WHAT WILL ITS FINAL VOLUME BE
?224
CORRECT------1 POINT
*****#****************************************************************************
    9 -IF A 373 ML SAMPLE OF GAS IS COLLECTED AT }779\mathrm{ MM HG AND
    4 0 7 \text { DEGREES KELVIN, THEN SUBJECTDD TO 791 MM HG}
AND 2SS DEGREES KELVIN
WHAT WILL ITS FINAL VOLUME BE
?2J0
CORRECT------1 POINT
********************************************************************************
    10. IF A 379 ML SAMPLE OF GAS IS COLLECTED AT 781 MM HG AND
    412 DEGREES KELVIN, THEN SUBJECTDD TO 796 MM HG
AND 264 DEGREES KELVIN
WHAT WILL ITS FINAL VOLUME BE
7238
CORRECT------1 POINT
```



```
    8 POINTS OUT OF 19
```



```
                                    YOUR MARK IS 17 OUT OF 30.
**********THE END**********
```

DONE

CONTRIBUTED PROGRAM

TITLE:
DESCRIPTION:
INSTRUCTIONS:
CAI IN CHEMISTRY
This package includes four programs, CHEMI, CHEM2, INPUT and TEACH.
Also included are 3 exercise files, EXI, EX2 and EX3. CHEMI is a general
CAI program which conducts exercises requiring the user to respond with
alphanumeric short answers. CHEM2 is similar to CHEMl except that the
response may contain different parts or terms separated by + . Each
part of the user's response is checked separately. Only one multiple term
answer is correct.

INSTRUCTIONS: Continued.

Any exercise file may contain 128 records which is space for approximately 250 or 300 questions.
Initialization
The initialization routine consists of a series of questions which the computer asks the user. First, the user must give his name and the name of the exercise he wishes to work on. At the beginning of the exercise file, the levels and the order option are specified. If the file is multi-level, the computer requests the level. If the order option is available, it is also asked, Once this information is supplied the exercise is ready to begin.

Main Exercise

If the user fails to respond the correct answer, the computer prints the correct answer and types over the answer until it is illegible. Then the computer selects another question and continues the exercise.

Retest

When all the questions in the main exercise (that level) have been exhausted, the computer automatically begins the retest. The computer searches all the questions to find those that were missed and asks them again. Now the user only has one chance to get the question right.

Finalization
After the retest, the computer calculates the scores on both the main exercise and retest and prints them for the user. It then writes all pertinent information about the user and his performance on a record file for the instructor's use. The program then stops.

The Record File and the Teacher's Program

In the initialization, the user gives information which is stored. The information on the user is listed below:

```
Users Name
The Exercise
Level
Order (if any)
Date
Time (start and finish)
Elapsed Run Time
Number of Questions in Main Exercise and Retest
Scores on Main Exercise and Retest
```

There is a record file called $R E C I$ on which this information is stored. This file must be opened by the user.

To start the program type 'RUN' and then wait for instructions. First will come the 'STUDENT INFORMATION'. When the computer types 'YOUR NAME : ?', type your name in the following way. DO NOT USE ANY COMMAS!

EXAMPLE:
If your name happens to be John D. Smith, type your last name first followed by your first and middle initials.

YOUR NAME : ? SMITHJD
The computer will then ask 'TOPIC : ?' to which you must respond the name of the exercise your wish to work on.

There may be an option available to you in respect to which order you want the questions presented. If it is a French vocabulary exercise, you may have to option of having the question be either the English or the French word to which you will respond the other. If such an option is available, the next thing that will appear is the question 'ORDER'. The options will be printed in brackets. You must then type one or the other option. It might appear like this:

ORDER [FRENCH OR ENGLISH] : ? FRENCH
Some exercises may be multi-level. That is, you have the choice of working on different levels of difficulty or, depending on the arrangement of the exercise, on different aspects of the same topic. If this option is available to you, the next line the computer will type will be 'LEVEL -- (1 to 4) --?'. This means that there are four (4) levels in the exercise. You must now select a level number by typing either $1,2,3$ or 4 . You should not use anything but a whole number. If the levels denote difficulty, the easiest level will be level 1 and the most difficult will be level 4.

EXAMPLE: LEVEL--(1 to 6)--? 6

With the above example, you have selected the most difficult level.
A list of legal commands which you may use will now be printed for you. These commands can be used at any time during the Main Exercise in response to a question. Here is the list of those commands
WRONG, END , STOP , LEVEL , SCORE , TIME , NUMBER , ORDER, RT IME , REPEAT, IDENT

Each command is explained below:

WRONG

For every question in the Main Exercise you have 3 tries at the correct answer. If a question appears to which you don't have the slightest idea what the answer is, just type 'WRONG'. The remainder of your tries will be skipped. The computer will score you incorrect on the question and immediately proceed to the next question. If there is a chance that you might get the answer don't use this command.

END

If you wish to end the main exercise before you have exhausted all the questions, type 'END'. This will tell the computer that you don't wish to continue in the main exercise routine but wish to start finishing up (RETEST).

The computer will then proceed to retest you on all the questions you missed in the Main Exercise. You have only one chance at each question. At the end of the retest, your score on the Main Exercise as well as your score on the retest will be given.

If you exhaust the questions without typing 'END', the computer will automatically go into the retest.
STOP
A time may arise when you must stop the program immediately during the Main Exercise or the Retest. In response to a question, type 'STOP' and the program will finish up as soon as possible. If you stop the program by some other means, the record of your work will not be written.
LEVEL
Perhaps you are working on a multi-level exercise. You find that the level is either too difficult or too easy. You may change the level during the Main Exercise by typing 'LEVEL' in response to a question. The computer will write your present score on your record and then ask you for your 'NEW LEVEL --?". Type the number (integer, please) of the new level and the exercise will begin again. If you have incorrectly asked for a level which does not exist, the computer will tell you so and ask you again. If the exercise is not multi-level, the computer will tell you so and the exercise will resume where you left off.

SCORE

If you are curious about your score while you are working on the Main Exercise, type 'SCORE' in response to a question. The computer will give it to you. It will then resume with the next question.

TIME

By typing 'TIME', the computer will tell you the time at which you started the program and the present time. If you don't have a watch, this is one way to find out if you are late to your next class. The computer will then resume with the next question.

NUMBER

The number of questions in the exercise (all levels), the number of questions in the present level, and the number of questions that have been asked to date can be found by typing 'NUMBER' in response to a question. Like above, the computer will then restate the present question.

ORDER
If the order option is available (Remember the French-to-English example?), you may change it in the middle of the Main Exercise just as you can the level by typing 'ORDER'. Your present score will be recorded on your record and then the computer will request the new order. Then the Main Exercise will begin again. If the order option is not available, the computer will state that and resume the Main Exercise where you left off. If you mistype the new order or give an order not allowed, it will ask you to repeat it.

CHEMI, Page 4

INSTRUCTIONS: Continued.

RTIME
The elapsed running time will be printed for you if you type 'RTIME' in response to a question. This is the amount of time the computer has spend in executing the program. The program takes over a second of run time to get started. The run time required to process your answers will be very small in comparison.

REPEAT
Sometimes the ribbons on these machines get worn. Perhaps you can't read part of the question for one reason or another. You don't have to make a stab in the dark. Type 'REPEAT' and the computer will repeat the question

IDENT

```
The program command 'IDENT' can be used in place of a response. The following information will be given:
EXAMPLE:
NAME: SMITHJD
TOPIC: ELEMENTS
ORDER: SYMBOL
LEVEL: 3
\# OF QUESTIONS ASKED: 12
SCORE: 83\%
BEGAN AT 09:39:27
TIME IS 09:45:25
ELAPSED TIME (RUN): 1.568 (to nearest \(1 / 64\) or a second)
After the IDENT information is given, the program will repeat the present question.
```


RUN


```
GET-INPUT
5 FILES EXI
RIJN
INPITT
THIS PROGRAM WRITES THE FILES FOR USE WITH CHEMI AND CHEMR
MAKE SIIRE A FILE HAS BEEN OPENED AND DECLARED IN STATEMENT
FIUE OF THIS PROGRAM.
IS TMERE ORDER?YES
WHAT IS THE FIRST ITEM?SYMBOL
AND THE SECONDINAME
HOW MANY LEUELS ARE THERE?4
HOW MANY QUESTIONS IN LEUEL I ?25
HOW MANY OUESTIONS IN LEVEL 2 ?25
HOW MANY QUESTIONS IN LEVEL 3 ?25
HOW MANY QUESTIONS IN LEVEL 4 ?26
INPUT TO LEVEL I
FIRST ITEM
PAG
- ANSWERS?!
| ? ?SILUER
FIRST ITEM
?AL
A ANSWERS?I
-1 TALUMINUM
FIRST ITEM
?AR
* ANSWERS?I
-1 ?ARGON
```

```
FIRST ITEM
?AU
ANSWERS?!
- I ?GOLD
FIRST ITEM
?B
* ANSWERS?I
- 1 ?BORON
FIRST ITEM
?BR
* ANSWERS?I
- I ?BROMINE
FIRST ITEM
?C
* ANSWERS?!
* 1 ?CARBON
FIRST ITEM
?CA
* ANSWERS?I
* ? ?CALCIIM
FIRST ITEM
?CL
A ANSWERS?!
* l ?Chlorine
FIRST ITEM
?Cll
ANSWERS?I
- l ?COPPER
FIRST ITEM
?F
* ANSWERS?I
* l ?FLORINE
FIRST ITEM
?FE
ANSWERS?1
- l ?IRON
FIRST ITEM
?H
* ANSWERS?!
* ? ?HYDROGEN
FIRST ITEM
?HE
- ANSWERS?1
* ? ?HELIIM
FIRST ITEM
?HG
* ANSWERS?!
* l ?MERCURY
FIRST ITEM
?I
* ANSWERS?1
l ?IODINE
FIRST ITEM
?K
ANSWERS?I
- I ?POTASSIUM
FIRST ITEM
?N
* ANSWERS?I
| I ?NITROGEN
FIRST ITEM
?NA
* ANSWERS?1
* I ?SODIUM
FIRST ITEM
?N1
- ANSWERS?I
| ? ?NICKEL
```

CRE-RICL, 15, 64
GET-CHEM
RUN
CHEMI

IF YOII WANT INSTRIICTIONS TYPE 'STOP' AFTER THE QUESTION
MARK AND CONSIILT DOCUMENTATION. OTHERWISE, INPUT 'GO'
AFTER THE QUESTION MARK?GO

```
STUDENT INFORMATION
```

YOUR NAME : ?SMITHHD
CHOOSE TOPIC 2 OR 3. WHICH DO YOU WANT?Z
ORDER (SYMBOL OR NAME): ?SYMBOL
LEVEL -- (1 TO 4) --?!
LIST OF COMMANDS:
WRONG--END--STOP--LEVEL--SCORE--TIME--NUMBER--ORDER--RTIME--REPEAT--
IDENT--
MAIN EXERCISE
MAIN EXERCISE
QUEST. 1 :U?CH-OURANIIIM
QUEST. 2 :B?BORIUM
----- MISSPELLED.
TRY AGAIN?BORON
QIIEST. 3 :F?FLURO-INE
----- MISSPELLED.
TRY AGAIN?FLORINE
QUEST. 4 IN?NITROGEN
QUEST. 5 :CA?CADIUM
TRY AGAIN?CADMIUM
-.-.- MISSPELLED.
TRY AGAIN?CALCIUM
OUEST. 6 :I?IODINE
QIJEST. 7 : AG?SILVER
AUEST. 8 :All?GOLD
QUEST - 9 :CL?CLORINE
TRY AGAIN?CHLORINE
QUEST. 10 :K?POTASSIUM
QUEST. II :BR?BROMIDE
----- MISSPELLED.
TRY AGAIN?BROMINE
QUEST. 12 :SI?SILICON
QUEST. 13 :AR?ARGON
OUEST. 14 :HE?HELIUM
QUEST. 15 :C?CARBON
QUEST. 16 :FE?IRON
OIIEST. 17 :H?HYDROGEN
OUEST. IK :AL?ALUMINUM
QUEST. 19 : HG?MERCURY
QUEST. 20 :0?OXYGEN
QUEST. 21 :NA?SODIUM
QUEST. 22 :NI?NICKEL
QUEST. 23 :ZN?ZINC
OUEST. 24 :CU?COPPER
QIIEST. 25 :S?SULPHUR
----- misSpelled.
TRY AGAIN?SIILFUR
YOU MISSED NO QUESTIONS -- PERFECT SCORE
THE DRILL IS OVER
MAIN DRILL 25 CORRECT OUT OF 25 FOR SCORE OF 100 .
REDRILL: 0 CORRECT OUT OF 0 FOR SCORE OF 100 z
GOODEYE
DONE

```
GkE-CHIM,14,64
RUN
CHEM2
GENERAL IDENTIFICATION PROGRAM
IF YOII WANT INSTRIICTIONS TYPE 'STOP' AFTER THE QUESTION
MARK AND CONSULT DOCIIMENTATION. OTHERWISE, INPUT 'GO'
AFTER THE NUESTION MARK?GO
STUDENT INFORMATION
YOUR NAME :?JONES,HD
CHOOSE TOPIC 2 OR 3 OR 4. WHICH DO YOU WANT?4
LEVEL - (1 TO 4, --?!
LIST OF COMMANDS:
WRONG--END--STOP--LEUEL--SCORE--TIME--NIIMEER--ORDER--RTIME--REPEAT--
IDENT--
MAIN EXERCISE
-------------
QUEST. | :H2CO + 02?WRONG
CORRECT ANSWER --gBEAMBGABBBBABBRBABRARBBA
QUEST. 2 :CH4 + 202?REPEAT
QUEST. 2 :CH4 + 202?LEUEL
NEW LEVEL --?4
LEVEL CHANGED -- NEW BALL GAME
MAIN EXERCISE
--------------
QUEST. 1 :2NA(S) + 2H2O?SCORE
    O OUT OF O
OUERFLOW - WARNING ONLY IN LINE I870
OUERFLOW - WARNING ONLY IN LINE I870
    1.70141E+38 2
QHEST. 1 :2NA(S) + 2H2O?TIME
BEGAN AT: 24 MIN. II HRS. 105 DAYS.
TIME NOW IS: 27 MIN. II HRS. 105 DAYS.
QUEST. 1 :2NA(S) + 2H2O?NIMMBER
TOTAL OF QUESTIONS : 47
* OF QUESTIONS IN LEVEL. 4 : 6
* OF QUESTIONS ASKED : 1
QUEST. 1 :2NA(S) + 2H2O?ORDER
ORDER CAN'T BE CHANGED -- SORRY
QUEST. 1 :2NA(S) + 2H2O?RTIME
ELAPSED RUN TIME : 3 MIN.
QUEST. 1 :2NA(S) + 2H2O?IDENT
NAME : JONES,HD
TOPIC: 4
ORDER : NONE
LEVEL : 4
* OF QUESTIONS ASKED : 1
SCORE : 100
BEGAN AT : 24 MIN. 11 HRS. 105 DAYS.
TIME 1S:. 27 MIN. 1! HRS. 105 DAYS.
ELAPSED RUN TIME : 3 MIN.
```

Chim1, Page s

```
NIEST. 1 I?NA(S) + 2H2O?WRONG
```



```
OIEST. % 2 :ZN(S) + 2H+(AQ)?ZN+2(AQ)
    TRY AGAIN?H2(G)
    TRY AGAIN?LN+2(AO) + H2(G)
QUEST. 3:2NH3(G) + HEAT?N2(G) + 3H2(G)
QUEST. 4 :N2(G) + O2(G) + HEAT?2NO
AUEST. 5 : ZN(S) + 2H+(AQ) + 2CL-(AQ)?ZN+2(AQ) + K2(G) + 2CL-(AQ)
AIEST. * : 3C(S) + 2FE2O3(S) + HEAT?4FE(S) + 3C02(G)
RETEST
------
FINISHING IIP -- ONLY ONE TRY ON THE FOLLOWING GUESTIONS
NUEST. 1 : 2NA(S) + 2H2O?2NA+(AQ) + 20-OH-(AQ) + H2(G)
CORRECT
THE DRILL IS OVER
MAIN DRILL 5 CORRECT OITT OF 6 FOR SCORE OF 83 &
REDRILL: 1 CORRECT OUT OF 1 FOR SCORE OF 100 &
GOODBYE
DONE
GET-TEACH
RIIN
TEACH
NAME: JONES,HD
START TIME: 24: 11: 105
END TIME: 26:11: 105
TOPIC: 4
ORDER: NONE
LEVEL:
    I
MAIN DRILL
- OF Q'S:
* SCORE
NAME:
START TIME: 24:11:105
END TIME: 36: 11: 105
TOPIC:
ORDER:
LEUEL:
NONE
    4
MAIN DHILL
0 OF N'S: O
\ SCORE 83
RETEST
0 OF O'S: I
\ SCORF. }10
```

SCORING IS FINISHED.
DONE


```
CLIMAT, Page ?
```

RUN

```
CKB-二(RA,50
G:"-:1%:1
nu%
CLl:i
```

HI, I AM CALLED MISS TELETYPE - WHAT WOULD YOU LIKE ME TO CALL
YOU?PETE
HELLO, PETE! WELCOME TO THE WORLD OF COMPIITER ASSISTED
INSTRUCTION. TOGETHER WE WILL LEARN THE LOGIC OF LOCATING A SET
OF CLIMATE DATA ON THE GLOBE AND ALSO LEARN TO IDENTIFY THE
APPROPIATE KOPPEN SYMBOLS.
IN THE FOLLOWING CLIMATE DATA MONTHLY AUERAGE TEMPERATURES
AND THE MONTHLY AUERAGE RAINFALL FOR A SPECIFIC STATION ARE
GIVEN IN FAHRENHEIT AND INCHES. I WILL ASK A NUMBER OF QUESTIONS
ABOUT THE DATA AND YOU WILL PLEASE ANSWER IN YOUR OWN WORDS.
IF YOIS DON'T UNDERSTAND OR NEED RELP - JUST LET ME KNOW.
YOU ARE LIMITED TO A SINGLE LINE FOR EACH ANSWERI!!!

TEMPERATURE THEN RAINFALL BY MONTHS

| | F., | M., | A | M | J., | \checkmark | A., | S | 0., | N., | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17. | 18, | 28. | 42, | 55. | 63. | 69. | 66, | 59, | 48, | 34 | 2 |
| 2.6 | 2:3, | 2.6, | 2.3. | 3.2, | 3.4. | 3.5, | 3.6 | $3 \cdot 1$ | $3 \cdot 1$ | 2.7, | 2. |

YEARLY AVERAGE TEMP. 43.1 DEGREES F.
YEARLY RAINFALL TOTAL 35.6 INCHES

```
STIJOY UERY CAREFULLY THE TEMPERATURE RANGE - NOTE THE MONTHS
OF MAXIMIJM AND OF MINIMUM READINGS. THIS IS A REAL PLACE.
IN WHICH HEMISPHERE IS THE STATION LOCATED?NORTHERN
GOOD - YOU KNEW BECAUSE JAN. IS COLD WHILE JULY IS QUITE WARM
NOW TELL ME ABOUT THE RELATIUE LATITUDE UITHIN THE N. HEMISPHERE
?60
WHAT I REALLY WANT TO KNOW IS THIS. IS THE STATION IN THE
    POLAR, MID-LATITUDE OR EQUATORIAL REGION
?MID-LAT
UERY GOOD, PETE. YOU KNEW BECAUSE OF THE QUITE LARGE TEMP.
RANGE AND WARM SUMMERS - MARKED SEASONALITY. WITHIN THIS
MID-LATITUDE REGION IS THE STATION CLOSER TO THE POLEWARD OR TO
THE EQUATORIAL INFLUENCE?POLE
```

PETE, YOU ARE DOING WELL. YOU KNEW BECAUSE WINTERS ARE COLD AND
SUMMERS NOT REALLY HOT. BY THE WAY, ARE THE TERMS 'SUMMER'
AND 'WINTER CLEAR IN YOUR MIND? PLEASE WRITE A DEFINITION OF
THE TERM 'SUMMER•
? JUNE, JULY,AIJG
A WORKING DEFINITION FOR OUR IJSE MIGHT BE; 'THAT HALF OF THE
YEAR WHEN THE NOONDAY RAYS OF THE SUN MOST NEARLY APPROACH
THE VERTICAL - OR, MORE ROIJGHLY, THE WARMEST HALF OF THE YEAR.
IN CHICAGO, ROME AND SHANGHAI THE SUMMER HALF OF THE YEAR
EXTENDS FROM APRIL THROUGH SEPTEMBER.

```
IN GUENOS AIRES, JOHANNESBURG AND MELBOIIRNE SUMMER HALF OF
THE YEAR EXTENDS?OCTOBER THRII MARCH
PERFECT, PETE. \ GUESS YOU REALLY DO UNDERSTAND THE TERMS
NOW BACK TO THE ORIGINAL PROBLEM; OUR STATION IS:
    NORTHERN HEMISPHERE
    IJPPER MID-LATITUDES
FROM YOUR KNOWLEDGE OF THE WORLD MAP YOU KNOW THAT A LARGE
CONTINENT IS INUOLUED.
    PLEASE COMMENT ON THE RELATIUE LOCATION ON THIS CONTINENT
    OF OUR STATION
```

?COAST

```
    TOIICHE - MARINE INFLUENCE IS INDICATED BY THE RAINFALL PATTERN
HOWEVER, YOU FORGOT TO TELL ME WHICH COAST
?WEST
AT A WEST COAST LOCATION IN THE MID-LATITUDES THE RAINFALL
ALWAYS SHOWS A MARKED CONCENTRATION IN THE WINTER MONTHS
IS THIS THE CASE AT OIIR STATION? TRY AGAIN
?EAST
EXCELLENT, PETE. I ASSIME YOU CHOSE AN EAST COAST LOCATION
BECAUSE OF THE FAIRLY HIGH RAINFALL AND ITS EUEN DISTRIBUTION
FROM SEASON TO SEASON.
AS YOU STUDY THE MAP YOU WILL REALIZE THAT YOU HAVE LIMITED
THE POSSIBLE LOCATION OF OIJR STATION TO NORTHEASTERN NORTH
AMERICA OR NORTHEASTERN ASIA. WHICH OF THESE IS CORRECT
?NORTH AMERICA
I ASSUME THAT YOU CHOSE NORTH AMERICA BECAUSE OF THE LACK OF
MONSOON RHYTHM IN THE RAINFALL PATTERN. IF I'M RIGHT,PETE
YOU ARE DOING BRILLIANTLY.
NOW LET*S TRY GETTING THE CORRECT KOPPEN CLASSIFICATION
FOR THE STATION THE DATA FOR WHICH APPEARED ABOVE
IS THE STATION HUMID OR ARID
?HUMIS-[)
HIMMID CLIMATES (IN THE KOPPEN SYSTFM) ARE:
    'A' (ALL MONTHS ABOVE 64.4 F.)
    'C' (ALL MONTHS WARMER THAN 26.6 F.)
    'D' (AT LEAST ONE MONTH HELOW 26.6 F.)
    'E' (ALL MONTHS 5O F. OR COLDER)
WHCIH IS THE CORRECT FIRST LETTER IN THIS CASE?D
GOOD - CLLEARLY OUR STATION HAS A SEUERE WINTER WITH TEMPS.
WELL BELOW 26.6 DEGREES BIIT WITH SUMMER TEMPS. ABOVE 5O F.
SECOND LETTER CHOICES REFER TO THE RAINFALL PATTERN:
    'S' (SUMMER DROUGHT)
    'W' (WINTER DROUGHT)
    'F' (HIMMID ALL YEAR WITH NO MARKED DROUGHT)
WHICH OF THESE CHOICES BEST FITS OUR STATION?F
FINE, PETE - yOU CHOSE 'F' beCAUSE OF THE veRY EUEN
DISTRIBUTION OF THE RAINFALL AND THE LACK OF A MARKED DRY SEASON
THIRD LETTER CHOICES REFER TO TEMPERATURE EXTREMES:
THIRD LETTER POSSIBILITIES FOR 'D' CLIMATES ARE:
    'A' (AT LEAST ONE MONTH WARMER THAN 71.6 F.)
    'B' (>3 MONTHS WARMER THAN 5O F. NONE ABOUE 71.6 F.)
    'C' ( <4 MONTHS WARMER THAN 5O F.)
    '[I' (AT LEAST I MONTH COLDER THAN -36.4 F.)
WHICH OF THESE IS MOST APPROPRIATE?B
EXCELLENT,JULY, THE WARMEST MONTH,IS COOLER THAN 71.6 F. AND
THERE ARE MORE THAN THREE MONTHS WARMER THAN 50 F.
NOW, PETE, YOU KNOW THE CLIMATE IS 'DFB'
    YOU ALSO KNOW THAT THE LOCATION IS:
        NORTHERN HEMISPHERE
        UPPER MID-LATITIJDES
        NEAR THE EAS'T COAST AND IN
        NORTH AMERICA
NOW, ALL THAT IS LEFT IS TO NAME THE TOWN(OR CITY) AND THE
STATE (OR PROUINCE)!
?NOVA SCOTIA, CANADA
WELL. MY MAP SAYS THAT YOIRR GIJESS IS NOT BAD - BUT JULY
TEMPS. AT NOUA SCOTIA, CANADA WOULD BE A BIT COOLER
THAN AT OUR STATION. MOVE SOITTH.
?BOSTON, MASS
```

```
BOSTON, MASS IS SOUTH OF OUR STATION BY ARGUT ISO MILES.
FIND A PLACE FIIRTHER TO THE NORTH.
?HANOUER, NEW KAMPSHIRE
PERFECT - THAT WASN'T HARD WAS IT:
SO LONG FOR NOW,PETE, PLEASE GIVE ME A CALL AGAIN - SOON
```

DONE

```
M-(:L5Z1
KUN
1.5%1
HELLO AND WELCOME TO THE STH LESSON ON CLIMATOLOGY
YOII KNOW WHO I AM BITT I DON'T KNOW WHU YOIJ ARE. WHAT MAY
\ CALL YOU?PETE
HELLO, PETE. I WILL GIVE YOI! SOME INFORMATION AND THEN ASK
A QIIESTION OR TWO. YOIJ RESPOND BRIEFLY AND IN YOUR OWN WORDS.
IN THE FOLLOWING CLIMATE DATA MONTHLY AJERAGE TEMPERATURES
AND THE MONTHLY AVERAGE RAINFALL FOR A SPECIFIC STATION ARE
GIUEN IN FAHRENHEIT AND INCHES. YOUS WILL ANSWER A NIJMBER OF
QIIESTIONS AGOIIT THIS STATION AND OTHER PLACES WITH SIMILAR
RAINFALL AND TEMPERATURE PATTERNS. IF YOII ARE STUCK ON THE
ANSWER TO A QUESTION, JUST TELL ME OR ASK FOR MELP.
    J.,F., M., A., M., J., J., A., S., O., N., D:
    74, 74, 70, 64, 58, 54, 52, 54, 57, 61, 67, 71
0.7, 0.8, 1.0, 1.7, 2.7, 3.1, 2.6, 2.4, 2.1, 1.7, 1.1, 0.9
YEARLY AJERAGE TEMP. 60.5 DEGREES F.
YEARLY RAINFALL TOTAL 20.8 INCHES
StIDY UERY CAREFULLY THE TEMPERATURE RANGE - NOTE THE MONTM
OF MINIMIMM TEMP. AND THE PERIOD OF MAXIMIJM TEMP. NOTE
ALSU TKE SEASONAL DISTRIBIJTION OF RAINFALOL. THIS IS A REAL
PLACE, AT AN ELEUATION OF LESS THAN 5OO FEET.
DO YOIJ JUJDGE THIS STATION TO BE NORTH OR SOUTH OF THE EQUATOR
?SOUTH
RIGHT - BIIT THAT WASN'T HARD - NOW GIVE ME THE APPROXIMATE
LATITUDE OF THE STATION. (PLEASE USE DIGITS ONLY)
?40
YOU ARE IN THE BALL PARK - THE STATION IS INDEED BETWEEN 30
AND 4O SOIITH LAT. IN THIS CASE IT IS AT ALMOST EXACTLY
35 DEGREES. PETE, YOU ARE DOING WELL SO FAR.
WHICH OF THE FOLLOWING AMERICAN CITIES IS THE BEST ANALOGUE
TO THE STATION GIUEN ABOVE?
    ATLANTA, EL PASO, OR SANTA BARHARA
?SANTA BARBARA
excellent, pete, this IS ClEARLy a west coast location.
NOW, PETE, IF YOU WERE TO TAKE A SWIM IN TME OCEAN AT OUR
STATION YOU WOHLD DISCOUER THE WATER TEMPERATURE TO BE
RELATIUELY (FILL IN AN APPROFIATE WORD)
?WARM
```

ONE OF THE CMARACTERISTICS OF THIS CLIMATE TYPE IS THAT THE ADJACENT OCEAN CURRENT IS COOL. THIS HELPS TO ACCOIINT FOR THE LOW SIJMMER RAINFALL.

NOW, PETE, DURING THE WINTER SEASON (MAY, JUNE, JULY, AUG.) THE PREVAILING WIND AT OIJR STATION IS FROM WHICH DIRECTION ? WEST

YES, FROM WEST, NORTHWEST OR SOUTHWEST. THIS IS THE QUITE WELL DEFINED BELT OF THE WESTERLIES.

WITHIN THE WESTERLIES LOCAL LOW PRESSIJRE CENTERS MIGRATE FROM WEST TO EAST AND CAUSE PRECIPITATION. THESE ARE KNOWN AS ?DONT KNOW

```
A REGION OF LOW ATMOSPHERIC PRESSURE SOMETIMES CALLED A
```

DEPRESSION IS MORE OFTEN KNOWN AS A ()?
? HELP
A REGION OF LOW ATMOSPHERIC PRESSURE SOMETIMES CALLED A
DEPRESSION IS MORE OFTEN KNOWN AS A ()?
?FRONT

IT IS EASY TO SEE THAT YOU, PETE KNOW YOUR CONTROLS
CYCLONIC STORMS ARE IMPORTANT DURING THE WINTER, BIJT, BY CONTRAST, DURING THE SIJMMER THE WIND IS LIGHT AND UARIABLE WITH A COMPONENT PARALLEL TO THE SHORE. THE PATHS OF CYCLONIC STOZMS ARE THEN WELL POLEWARD OF THIS STATION.

NOW PETE, PLEASE TELL ME THE KOPPEN SYMBOLS FOR THIS
STATION (TYPE 'HELP' IF YOU NEED IT)
? HELP
HINTS - HIMMID CLIMATE, QUITE WARM, MARKED SUMMER DROUGHT
TRY THE FIRST LETTER AT LEAST.
? C

```
'C' IS THE CORRECT FIRST LETTER.
    SECOND LETTER: 'S'(SUMMER DRY), 'W'(WINTER DRY), 'F'(WET)
    THIRD LETTER CHOICES ARE:
            'A' (AT LEAST ONE MONTH ABOVE 71.6 F.)
            'B' (> 3 MONTHS ABOVE 50 F., NONE ABOVE 71.6)
            'C' (< 4 MONTHS ABOVE 50)
        OIIR STATION IS 'CSA' - MEDITERRANEAN.
```

BY FAR THE LARGEST AND MOST SIGNIFICANT AREA OF THIS CLIMATE
IS IN EUROPE WHERE IT EXTENDS FROM LISBON TO BEIRUT AND FROM
CASABLANCA TO MARSEILLE.
PETE, I WOULD LIKE YOIJ TO DESCRIBE THE NATURAL UEGETATION OF
THE MEDITERRANEAN AREA IN YOUR OWN WORDS. (YOU MAY USE UP
TO A FIJLL LINE)
?PALM TREES,DATES,FIGS,BROAD LEAFED TROPICALS
1 THINK THAT YOU HAUE NAMED SOME COMMON PLANTS. I WANT A
MORE GENERAL DESCRIPTION OF THE VEGETATION. TRY AGAIN.
?LOW VEGETATIONS*, SUCCULENTS THAT CAN WITHSTAND DROUGHT
YOU HAVE THE RIGHT IDEA. NATURAL VEGETATION IS DROUGHT
RESISTANT: A MIXTURE OF SHORT, WIDELY SPACED TREES, MANY
SHRUBS AND SOME GRASS. OFTEN CALLED CHAPARRAL.
NOW, WITHOUT NAMING CROPS, PLEASE CHARACTERIZE MEDITERRANEAN
AGRICULTURE. (LIMIT OF 1 LINE)
?AREA IS HILLY, REQUIRES TERRACING, SHORT SEASON
1 AM SORRY BUT 1 DON'T UNDERSTAND YOUR ANSWER. HAVE YOU
MISSPELLED AN IMPT. WORD? PLEAS CHECK AND REPHRASE YOUR
ANSWER.
? WOULD NEED IRRIGATION IN SUMMER

```
NOT BAD - INTENSIVE FARMING WITH WINTER GRAINS,ORCHARDS,
AND VEGETABLES; OFTEN IN TWO STORY COMBINATION, AND WITH
SOME IRRIGATION IS COMMON.
WHAT SPECIFIC CROPS WOHLD YOU EXPECT TO FIND IN SUCH AN AREA
?FIGS, DT-ATES, GRAPES
GRAPES, OLIVES, FIGS, WINTER WHEAT, BARLEY, CITRUS,NUTS,
UEGETABLES AND OAK CORK ARE COMMON.PETE YOU ARE RIGHT.
WHAT ARE SOME IMPORTANT CHARACTERISTICS OF ANIMAL HUSBANDRY
IN THIS CLIMATIC REGION
?SMALL FARMS FOR ANIMALS. NOT MIJCH GRAZING
I AM SORRY BUT I DON'T UNDERSTAND YOIIR ANSWER. HAVE YOU MISSPELLED AN IMPT. WORD? PLEAS CHECK AND REPHRASE YOUR ANSWER.
?A FEW GOATS AND SHEEP
GOOD TRY - MANY SHEEP AND GOATS SHARE THE DRY GRASSES OF OUERGRAZED SLOPES WITH A FEW CATTLE AND DONKEYS.
THE ORIGINAL DATA WAS FOR ADELAIDE, AUSTRALIA.
THE RAINFALL AND TEMPERATURE PATTERNS AT THAT LOCATION ARE TYPICAL OF ANY OF THE FIUE AREAS OF 'MEDITERRANEAN' CLIMATE SCATTERED THROIIGHOUT THE WORLD.
1 HAD FUN - HOPE YOU DID TOO. GOOD BYE,PPETE.
DONE
```

title:

DESCRIPTION:

INSTRUCTIONS:

CLOUDS: Cloud Fornation
This program tests student ability to solve problems related to the formation of cumuliform clouds (i.e. L.C.L., temperature at various altitudes). In Phase I of the program students enter the variables and unknowns of previously assigned problems. The computer checks the students' answers and supplies the correct answers if an error is detected.

When Phase I is completed the computer automatically presents a group of new problems for the student to solve and check at the machine.

OBJECTIVES:

The program attempts to reinforce and apply the following concepts:
A. There is a specific rate at which temperature drops in a rising parcel of unsaturated air.
B. Once air becomes saturated and condensation begins, the lapse rate decreases due to the release of latent heat of vaporization.
C. The base level of a cloud (LCL), and temperatures within it can be calculated from ground level data.

PRELIMINARY PREPARATION:
A. Student - Students should be familiar with the terms and values of the dry and wet adiabatic lapse rates, normal lapse rate, and the formula for calculating the Lifting-Condensation Level.
B. Materials - Printed sets of problems with the following variables and unknowns:

1. Air temperature on the ground.
2. Dew point on the ground.
3. Temperature at the base of the cloud.
4. The elevation, in feet, of the base of the cloud (LCL).

Continued on following page.

ACKNOWLEDGEMENTS: Huntington Project

OISCUSSION：

This program is designed for average students．Individuals should be permitted to go to the computer to check any problem or groups of problems whenever the machine is free．The teacher in the lesson acts solely as a resource person to help those students unable to arrive at correct responses because of conceptual errors－not mechanical errors．

To speed the lesson，Phase II of the program may be omitted entirely，by procedure 1，or from early runs by procedure 2.

Procedure 1

Erase lines 1560－1810，1760－1800， and change line 1520 to read： If $P>1$ then 2060 ．

Procedure 2

Change line 1520 to read： If P＞1 then 2060.
When you are ready to use Phase II merely retype line 1520 as originally listed．

RUN

RUN
Clouds
cloud nine

STRONG CONVECTION CURRENTS ARE CAUSING ADIABATIC COOLING OF AIR WHERE YOU ARE AND ARE RESPONSIBLE FOR THE FORMATION OF A CLOUD．BOTH THE DRY AND THE MOIST ADIABATIC （AS WELL AS THE NORMAL LAPSE RATES）ARE CONSIDERED IN THIS program．

LEGEND

$1=$ THE TEMPERATURE ON THE GROUND
$2=T H E$ DEW POINT TEMPERATURE ON THE GROUND
3－THE TEMPERATURE AT THE BASE OF THE CLOUD $4=T H E$ ELEUATION，IN FEET，OF THE CLOUD BASE

Choose any two of the above variables and select values for
THEM．TYPE THEM IN AS：
VARIABLE CODE，VALUE，VARIABLE CODE，VALUE．．．（E．G．1，50，2，30）

```
?1,50,2,41
```

OKAY, TYPE IN YOUR CALCULATED UALUE FOR
THE TEMPERATURE AT THE BASE OF THE CLOUD
FOLLOWED BY A COMMA, AND THEN TYPE IN YOUR VALUE FOR
The elevation, in feet, of the cloud base
?30-9,2日月の
VERY GOOD. VERY, VERY GOOD.
DO YOU HAUE ANY OTHER PROBLEMS YOU WOULD LIKE TO TRY?
($1=Y E S, ~ B=N O): ? 1$
USING THE SAME LEGEND AS BEFORE...
ChOOSE ANY TWO OF THE ABOUE VARIABLES AND SELECT VALUES FOR
THEM. TYPE THEM IN AS:
VARIABLE CODE, UALUE, UARIABLE CODE, VALUE...(E.G. 1,50,2,30)
$? 1,60,3,25$
OKAY, TYPE IN YOUR CALCULATED VALUE FOR
THE DEW POINT TEMPERATURE ON THE GROUND
FOLLOWED BY A COMMA, AND THEN TYPE IN YOUR VALUE FOR
THE ELEUATION, IN FEET, OF THE CLOUD BASE
? 30,4の日月

```
IT LOOKS LIKE UE GOOFED SOME PLACE.
LET'S SEE WHAT THE CORRECT VALUES ARE.
    60 DEGREES - THE TEMPERATURE ON THE GROUND
    31.3636 DEGREES - THE DEW POINT TEMPERATURE ON THE GROUND
    25 DEGREES - THE TEMPERATURE AT THE BASE OF THE CLOUD
6363.64 FEET - THE ELEVATION, IN FEET, OF THE CLOUD BASE
DO YOU HAUE ANY OTHER PROBLEMS YOU WOULD LIKE TO TRY?
(1 =YES, |=NO) : ?0
WELL, BEFORE YOU LEAVE, I HAUE A FEW I'D LIKE YOU TO TRY...
BASED ON YOUR VALUES, THE HEIGHT OF THE CLOUD
(MEASURED FROM THE CLOUD BASE) IS 25454.5 FT. CAN YOU TELL ME:
WHAT IS THE TEMPERATURE AT EACH OF THESE ALTITUDES&
\begin{tabular}{llll}
1 & 4455 & FT & \\
2 & 44545. & & FT \\
3 & 19091 & FT &
\end{tabular}
THE TEMPERATURE AT 4455 FT. IS .?32.5
SORRY. YOU WERE DOING GREAT THERE FOR A WHILE.
WELL, BACK TO THE BOOKS. THE VALUES YOU SHOULD HAVE ARE:
    THE TEMPERATURE AT 4455
    THE TEMPERATURE AT 44545
    THE TEMPERATURE AT 44545. FEET IS -95.9091 F FEET IS -13.1818 DEGRES
DEGREES
DONE
```


RUN

TEMPERATURE CONUERSION
ENTER TEMPERATURE AND SCALE AS: 37.56 C ISSE 'F', 'C', 'K', OR 'R' FOR THE SCALE.

ENTER TEMP ?
DONE

TITLE: $\quad |$| DRCAYI: Radinactive Decay Game |
| :--- |
| Padioactive decay is treated pseudo-quantitatively, by permittina the |
| student to determine the approximate number of radioactive particles |
| remaining after various times. |
| OBJECTIVES: |
| To induce a "feel" for exponential decay, by repeated exercises. |

RUN
RUN
DECAYI
---THE NEW CLEA CASINO-..
MR. A. TOM MICK, GENERAL MANAGER OF THE NEW CLEA CASINO, HAS, AT TIME T=0, DISCOVERED 100,000 RADIOACTIVE PLAYING CHIPS AT HIS TABLE. TMEIR MALF-LIFE IS 10 MINUTES. EACH CHIP TRANSMUTES SPONTANEOUSLY AND COMPLETELY IN A RANDOM FASHION.

```
AT VARIOUS TIMES T, AFTER TEO, YOU MUST DETERMINE WITHIN A CERTAIN PERCENTAGE, HOW MANY CHIPS ARE LEFT.
TO FURTHER THE INTEREST OF THE GAME, YOU WILL START WITH SI.00日 AND THE HOUSE WITH AN UNSPECIFIED AMOUNT. HALF THE MONEY YOU HAVE WILL RIDE ON EACH GUESS YOU TAKE. LET'S SEE IF YOU CAN BREAK THE HOUSE BEFORE THE CHIPS RUN OUT.
THE HOUSE OFFERS THE FOLLOWING ODDS:
2) 2 TO 1 ODDS FOR GUESSING WITHIN 26 PERCENT
4) 4 TO 1 ODDS FOR GUESSING WITHIN 10 PERCENT
8) 8 TO 1 ODDS FOR GUESSING WITHIN 5 PERCENT.
```

ENTER THE NUMBER 2, A, OR 8 FOR THE ODDS YOU WANT AFTER THE QUESTION MARK IN THE COLUMN LABELLED ODDS.


```
    4218 996782. 90.7 32
HOW MANY CHIPS LEFT ?200
ACTUAL NUMBER LEFT IS 186
YOU WON. TRY AGAIN.
```



```
HOW MANY CHIPS LEFT ?:3
ACTUAL NUMBER LEFT IS IS
YOU WON. TRY AGAIN.
151848 849152. 137.4 ?2
HOW MANY CHIPS LEFT ?7
ACTUAL NUMBER LEFT IS }
YOU CAN BREAK THE HOUSE IF YOU TRY A LONG SHOT.
303696. 697304. 148.3 ?2
HOW MANY CHIPS LEFT ?3
ACTUAL NUMBER LEFT IS 3
YOU CAN BREAK THE HOUSE IF YOU TRY A LONG SHOT.
    607392. 393608. 159.2 ?2
HOW MANY CHIPS LEFT ?!
ACTUAL NUMBER LEFT IS I
YOU BROKE THE HOUSE. YOU NEEDED ONLY 16 GUESSES.
CONGRATULATIONS.
YOU MUST KNOW A LOT ABOUT RADIOACTIVITY AND THINGS.
THANKS FOR PLAYING..
```



```
CHECK NO. 17
DATE: --------------19--
PAY TO THE ORDER OF----.-.--CASH--.----S 1.00100E+06
THE NEW CLEA CASINO A. TOM MICK GENERAL MANAGER
DONT SPEND IT ALL IN ONE PLACE.
DONE
```

| TITLE: | DECAY2: Nuclear Decay $\quad \begin{array}{ll}\text { DECAY2 }\end{array}$ |
| :---: | :---: |
| DESCRIPTION: | This program will do the following: |
| | A. Calculate half-life from 2 readings on a geiger counter, and the time between them. |
| | 8. Calculate mass of a radioactive sample remaining after some given amount of time. |
| | C. Prints out a table showing mass or number of particles of a radioactive sample remaining vs. some range of time. |
| | OBJECTIVES: |
| | A. To provide tables and graphs for a better understanding of the exponential decay of a radioactive substance. |
| | B. To provide a calculator for determining the amount of mass of a radioactive sample remaining after some given amount of time. |
| | C. To provide a calculator for half-life experiments. |
| INSTRUCTIONS: | PRELIMINARY PREPARATION: |
| | A. Student - The student should have a general introduction to halflife before the use of the program. |
| | B. Materials - none |
| | DISCUSSION: |
| | It is difficult to teach about the exponential (logarithmic) manner by which radioactive elements decay without meaningful illustrations and simulations. |
| | Continued on following page. |

ACKNOWLEDGEMENTS: Huntington Project
Polytechnic Institute of Brooklyn

UISCUSSION conthnued
With this prograll, a number of interesting possibilities are available. For example, if the initial mass is 100 g and the time is equal to 10 half-lives with an increment equal to the half-life, the student will see the mass decrease to 0.1 g during that time. More important, the example may be generalized to show that for any radioactive sample:
after 1 half-life 50% of the substance remains after 2 half-life 25% of the substance remains after 3 half-life 12.5% of the substance remains after 10 half-life 0.1% of the substance remains

You may also illustrate nuclear decay by using particles instead of mass. Use Avogadro's number of particles with students who feel comfortable with scientific notation. For the others, you may use a numbel up to $1,000,000$ without having exponential numbers print out in the table.

The fact that the teletype unit takes about 8 seconds to type out a line provides you with cute little gimmicks. Set up a run with 8 seconds (or any multiple of 8) and the print-out of the table will keep time with the decay of the sample substance.

Please note that the half-life calculations are not accurate for a small number of particles, thus it is misleading to make runs go to zero mass or zero particles.

```
RUN
RUN
DECAYZ
DO YOU WANT INSTRUCTIONS (1=YES, \emptyset=NO) : ?1
    THIS PROGRAM WILL DO THE FOLLOWING:
        CHOICE 1 - COLCULATES HALF-LIFE FROM TWO READINGS
                        ON A GEIGER COUNTER.
            CHOICE 2 - CALCULATES HOW MUCH OF A RADIOACTIVE SAMPLE
                    WILL REMAIN AFTER SOME GIVEN AMOUNT OF TIME
            CHOICE 3 - PRINTS OUT A TABLE SHOWING MASS OF SAMPLE
                        US. TIME OR NO. OF PARTICLES US. TIME.
                        (GRAPH OPTIONAL) NOTE: FOR THE TABLE YOU
                    MUST INPUT TOTAL TIME AND TIME INCREMENT.
                        EXAMPLE: IF TOTAL TIME=100 AND TIME
                            INCREMENT=10, THEN TIME IN THE TABLE WILL
                            BE 10,20,30,............100.
            CHOICE 4 - END OF PROGRAM
                        NOTE: IN ANY ONE PROBLEM,TIME MUST
                        ALWAYS BE INPUTED IN THE SAME UNITS
                        OF MEASURE (IE: SECS.,MINS.,ETC.)
```


WHAT IS YOUR CHOICE?I
WHAT IS THE INITIAL READING ON THE GEIGER COUNTER, THE SECOND READING, AND THE TIME BETWEEN READINGS. ?1500,3000,36

INITIAL READING= 1500 SECOND READING 3000 TIME= 36
HALF-LIFE= 35.9976

WHAT IS YOUR CHOICE?2
WHAT IS' THE HALF-LIFE, INITIAL MASS OF SAMPLE, AND TOTAL TIME OF DECAY?18,56,76

HALF-LIFE $=18$ INITIAL MASS $=56$ TOTAL TIME= 76
MASS OF SAMPLE REMAINING= 3.00095

```
***********
```

WHAT IS YOUR CHOICE? 3
DO YOU WANT TO WORK WITH PORTICLES OR MASS? (ANSWER 1 FOR PARTICLES OR 2 FOR MASS) ? 1

What is the half-life, initial number of particles in the SAMPLE, TOTAL ELAPSED TIME FOR DECAY, AND THE INCREMENT OF ELAPSED TIME?10,6.02E23.100.10

MASS (OR PARTICLES) REMAINING

WHAT IS YOUR CHOICE?3
DO YOU WANT TO WORK WITH PORTICLES OR MASS? (ANSWER I FOR PARTICLES OR 2 FOR MASS) 32

WHAT IS THE HALF-LIFE, INITIAL MASS OF SAMPLE,TOTAL
ELAPSED TIME FOR DECAY, AND THE INCREMENT OF
ELAPSED TIME?15,100,150,15

| HALF-LIFE= 15 | INITIAL MASS= | 100 TOTAL | TIME $=150$ INCREMENT $=15$ |
| :---: | :---: | :---: | :---: |
| TIME | MASS | MASS LOSS | TOTAL MASS LOSS |
| 0 | 100 | 0 | 0 |
| 15 | 50.0024 | 49.9976 | 49.9976 |
| 30 | 25.0024 | 25. | 74.9976 |
| 45 | 12.5018 | 12.5006 | 87.4982 |
| 68 | 6.25118 | 6.25059 | 93.7488 |
| 75 | 3.12574 | 3.12544 | 96.8743 |
| 90 | 1.56294 | 1.5628 | 98.4371 |
| 105 | . 781508 | . 781434 | 99.2185 |
| 120 | . 390772 | . 390735 | 99.6092 |
| 135 | . 195395 | . 195377 | 99.8046 |
| 150 | 9.77024E-02 | . 097693 | 99.9023 |

MASS (OR PARTICLES) REMAINING

WHAT IS YOUR CHOICETA

DONE

contrbuted program BASIC

TITLE:
DESCRIPTION:

INSTRUCTIONS:

ACKNOWLEDGEMENTS: Huntington Project
Polytechnic Institute of Brooklyn

INSTRUCTIONS: continued

DISCUSSION:

A. Operational Suggestions

1. Student level - average
2. This program can be used on a classroom basis.
3. Pitfalls to avoid - See that the students run the program several times and keep a record of each run. This is necessary to show the various possible combinations that can occur, and their frequencies.
B. Follow-up

After the pronram has been run:

1. Get as many runs as possible so that percentages can be determined for each phenotype of the offspring.
2. a) Determine the total number of offspring. Each run represents 1 offspring. Count them
b) Determine the total number of offspring which lived.
c) Determine each phenotype and show that a ratio exists between dominant and recessive traits. (This should follow typical Mendelian ratios)
3. Elicit from the students:
a) What was their role in the game? (The students conduct meiosis by randomly selecting the genotype of each gamete.)
b) (When using a small number of runs) Why did the Mendelian ratios not hold true?

RUN
RUN
DROS
this program is designed to give the genetic resultant traits
OF OFFSPRING WHOSE PARENTAGE WAS DISCUSSED IN PROGRAM 'GAMGN•
are you ready? here ve go.

```
FOR THE SPERM CELL, WHAT IS 'A'? (TYPE & OR 2)?2
            WHAT IS 'B'?l
            WHAT IS 'C'?2
            WHAT IS 'D'?2
FOR THE EGG CELL, WHAT IS 'A'? (TYPE 1 OR 2)T2
            WHAT IS 'B'?!
    WHAT IS 'C'?1
    WHAT IS 'D'?1
```

OFFSPRING hAS NORMAL WINGS
AND IS RED EYED.
Let's try this several times and see the results we get
over several trials. keep a record.
Shall we try again? if yes type i, if no type 0.
31
FOR THE SPERM CELL, WHAT IS 'A'? (TYPE 1 OR 2)?1
WHAT IS 'B'?2
WHAT IS © C. 72
WHAT IS 'D'?2
FOR THE EGG CELL, WHAT IS 'A'? (TYPE \downarrow OR 2)?1
WHAT IS 'B'?2
WHAT IS 'C'?1
WHAT IS 'D. 71
OFFSPRING HAS UESTIGIAL UINGS
AND IS WHITE EYED
Shall we try again? if yes type i, if no type 0.
31
FOR THE SPERM CELL, WHAT IS 'A'? (TYPE 1 OR 2)?1
WHAT IS 'B'?2
WHAT IS 'C'?2
WHAT IS 'D'?2
FOR THE EGG CELL, WHAT IS 'A'? (TYPE 1 OR 2) T1
WHAT IS 'B'?2
WHAT IS 'C.?1
WHAT IS 'D'?2
OfFSPRING HAS VESTIGIAL WINGS
AND IS WHITE EYED

```
SHALL WE TRY AGAIN? IF YES TYPE 1, If NO TYPE 0.
l
FOR THE SPERM CELL, WHAT IS 'A'? (TYPE | OR 2)?1
    WHAT IS 'B'?1
    WHAT IS 'C'?2
    WHAT IS 'D'?2
FOR THE EGG CELL, WHAT IS 'A'? (TYPE & OR 2)?1
    WHAT IS 'B'?2
    WHAT IS 'C'?1
    WHAT IS 'D'?2
OFFSPRING HAS VESTIGIAL WINGS
AND IS RED EYED.
Shall we try again? if yes type 1. If no type 0.
?1
FOR THE SPERM CELL, WHAT IS 'A'? (TYPE 1 OR 2)?1
                            WHAT IS 'B'?2
                            WHAT IS 'C'?2
                            WHAT IS 'D'?2
FOR THE EGG CELL, WHAT IS 'A'? (TYPE 1 OR 2)?1
    WHAT IS 'B'?2
    WHAT IS 'C'?2
    WHAT IS 'D'?2
OFFSPRING HAS UESTIGIAL WINGS
AND IS WHITE EYED
Shall WE try again? If yes type 1, if NO tyPE 0.
71
FOR THE SPERM CELL, WHAT IS 'A'? (TYPE 1 OR 2)%&
                        WHAT IS 'B'?1
                    WHAT IS 'C'?I
                            WHAT IS 'D'?I
FOR THE EGG CELL, WHAT IS 'A'? (TYPE 1 OR 2)?1
            WHAT IS 'B'?!
    WHAT IS 'C'?1
    WHAT IS 'D'?1
DEUELOPING EmBRYO HAS DIED DUE TO LETHAL GENE ACTION.
SHALL WE TRY AGAIN} IF YES TYPE 1, IF NO TYPE 0.
30
    I hope that I have been of some help to you,
AND THAT 6 RUNS PROVIDE ENOUGH INFORMATION.
DONE
```


title:
 DESCRIPTION:

INSTRUCTIONS:

ELECTRIC FIELD STRENGTH
EFIELD
36629

The electric-field strength at a point near a fixed charge is calculated and printed. A line of charge is then generated by adding charges to either side of the fixed charge. As each additional charge is added, the new electric-field strength is calculated and selected values are printed.

Similarly, the field strength at a point near a plane of charge is calculated and printed as the plane is generated with the addition of other lines to the previous line of charge.

In both cases, the fields can be seen to approach a limiting value which is then printed for an infinite line and plane.

OBJECTIVES:
A. To show that the electric-field strength approaches limiting values for a line and a plane of charge.
B. To let the student discover how the field strength depends upon the distance from a point to a line of and to a plane of charge. PRELIMINARY PREPARATION:
A. Student - A knowledge of Coulomb's law and the vector addition of electric fields.
B. Materials - None

DISCUSSION:
The operator chooses a distance (y) away from a fixed charge $\left(Q_{2}\right)$ at which he wishes to know the field strength. He also chooses the number of charges (N), and their spacing (C), that he wishes to add to each side of the fixed charge to generate a line of charge. After the line has been generated, the operator enters the number of such lines (M) that he wishes to use in building up the plane of charge.

Continued on following page.

Huntington Project
Polytechnic Institute of Brooklyn

DISCUSSION: continued
Actual values of force are not given, only relative values. When the fixed charge (Q_{2}) is at a distance $Y=1$ from the test charge (Q_{1}), the force is 1 unit. The force may be calcalated in Newtons if all distances are in meters, and the program is slightly changed so that Q_{1} and Q_{2} are in coulombs. If both of these charges were to be taken as single elementary charges, then the following changes should be made:
280 LET Q1 $=1.6 \star E-19$
290 LET Q2 $=1.6 \star E-19$
300 LET K $=9 \star E 9$

If the spacing (C) is taken as .1 and the number of charges (N) as 1000 , then three runs through the program using the distance between the test charge and the fixed charge (y) as 1,2 , and 4 should be sufficient for the relationships to be determined. A casual inspection of the exact values of the field strength for these three distances should yield the following conclusions:

1. The field strength varies inversely with the square of the distance away from a single point charge.
2. The field strength varies inversely with the distance from a line of charge.
3. The field strength remains constant even though the distance from a plane of charge changes.

It should be noted in 2 and 3 above, that the spacing between charges must be small as compared to the distance away from the line or plane of charge, and of course that the line be so long and the plane so broad that any further increase in length or breadth be insignificant.

An interesting bonus to this program is discovered when distances from test charge to plane is decreased to .001, .0001, and .00001. Here it can be seen that the field no longer is constant, but changes as an inverse square law for a single charge because the test charge begins to "see" the fixed charge instead of the whole plane. The "EXACT VALUE" is calculated for charges smeared over the whole plane and not in discrete point charges as we have here; hence, the disagreement with actual field values.

This program may be run by an individual student after proper introductory explanation concerning vector addition of electric fields, contributions of the charges being added in the line or lines to the plane. It may also be used as a class demonstration and discussion. When used with a whole class it is best to have a television camera and monitor available for immediate display of print out. A summary table constructed either by the teacher on the board or by students at their desks is useful in analysis of the data.

RUN


```
NOW ADD ROWS ON EITHER SIDE OF THE LINE OF CHARGE JUST
CALCULATED. THE SPACING BETWEEN ROWS WILL BE THE SAME AS
THE SPACING bETWEEN THE CHARGES.
ENTER THE NUMBER OF EQUALLY SPACED ROWS YOU WANT ON EACH SIDE
7500
```

| NO. OF LINES ON EACH SIDE | FORCE |
| :---: | :---: |
| 0 | 20 |
| 1 | 59.58 |
| 2 | 98.62 |
| 3 | 134.69 |
| 4 | 169.16 |
| 5 | 201.14 |
| 6 | 230.53 |
| 7 | 257.36 |
| 8 | 281.73 |
| 9 | 363.82 |
| 10 | 323.81 |
| 20 | 446.55 |
| 30 | 501.31 |
| 40 | 531.19 |
| 58 | 549.8 |
| 66 | 562.47 |
| 70 | 571.62 |
| 89 | 578.55 |

EfIELD, Page 4

$98 \quad 583.96$
100 588.3

200
287 $608 \cdot 63$

EXCESSIVE COMPUTER TIME WOULD BE REOUIRED TO CALCULATE
THE FORCE FOR ADDITIONAL LINES OF CHARGE.

THE EXACT VALUE FOR AN INFINITE PLANE OF CHARGE IS 628.318

DO YOU WANT ANOTHER RUN ($1=Y E S, \theta=N O):$? θ
DONE


```
EINDIS, Page 2
```


RUN

RUN

EINDIS

```
ENTER YOUR HEIGHT IN INCHES,YOUR WEIGHT IN LBS.,AND
YOUR AGE IN YEARS.
?70,175,37
YOUR IDENTICAL TWIN FLIES PAST IN A ROCKET SHIP. CHOOSE
HIS SPEED AS A % OF THE SPEED OF LIGHT(BETWEEN O AND 100).
?50
```

FOR A SPEED OF 50 \quad O LIGHT,WHICH IS 149.896 MILLION
METERS/SEC AND 329.5 MILLION MPH,
YOU TWIN'S APPEARANCE

YOUR TWIN IS ALSO TILTED BY 26.5206 DEGREES,DUE TO DEPTH-
OF-FIELD ROTATION
FOR EARTK'S GRAUITY FIELD TO PRODUCE AN EQUIVALENT SPACE-
TIME DISTORTION WOULD REQUIRE THE EARTH'S DIAMETER TO BE
180.942 MILLION TIMES SMALLER THAN IT IS,OR THE MASS 180.942
MILLION
TIMES BIGGER THAN ACTUAL.
YOUR ANTI-MATTER TWIN COULD BE CREATED BY THE COLLISION OF
2 GAMMA-RAYS EACH HAVING 7.15909 BILLION BILLION JOULES OF
ENERGY,WHICH EQUALS 1883.97 MILLION TONS OF TNT OR
37.6794 H-BOMBS (PAIR PRODUCTION).
IF YOU FLY OFF IN THE ROCKET'S OPPOSITE DIRECTION AT THE
SAME SPEED. 50 \& OF C.YOU BOTH WILL SEPARATE AT
80 \& OF C (RELATIUISTIC VELOCITY ADDITION).
WHEN THE PURPLE ROCKET IS MOUING AWAY, IT APPEARS
RED (RED SHIFT)
WHEN THE PURPLE ROCKET IS PASSING YOU, IT APPEARS
BLUE (RED SHIFT)
OF COURSE YOU APPEAR THE SAME WAY TO YOUR TWIN: AFTER
ALL, HE IS A RELATIVE II
DONE

```
RUN
EINDIS
ENTER YOUR HEIGHT IN INCHES,YOUR WEIGHT IN LBS.,AND
YOUR AGE IN YEARS.
770,175,37
YOUR IDENTICAL TWIN FLIES PAST IN A ROCKET SHIP. CHOOSE
HIS SPEED AS A & OF THE SPEED OF LIGHT(BETWEEN O AND 100).
?100
YOUR IDENTICAL TWIN FLIES PAST IN A ROCKET SHIP. CHOOSE
HIS SPEED AS A & OF THE SPEED OF LIGHT(BETWEEN O AND 100).
799
FOR A SPEED OF 99 & OF LIGHT,WHICH IS 296.794 MILLION
METERS/SEC AND 652.41 MILLION MPH,
    YOU TWIN'S APPEARANCE
\begin{tabular}{llll}
70 INCHES & 9.87471 & INCHES & - LENGTH CONTRACTION \\
79.5455 & KGMS & 563.883 & KGMS. \\
37 YEARS & 5.21949 & YEARS & - MASS-ENERGY INCREASE
\end{tabular}
YOUR TWIN IS ALSO TILTED BY 44.6373 DEGREES,DUE TO DEPTH-
OF-FIELD ROTATION
```

```
FOR EARTH'S GRAUITY FIELD TO PRODUCE AN EQUIVALENT SPACE-
TIME DISTORTION WOULD REQUIRE THE EARTH'S DIAMETER TO BE
    709.365 MILLION TIMES SMALLER THAN IT IS,OR THE MASS 709.365
MILLION
TIMES BIGGER THAN ACTUAL.
YOUR ANTI-MATTER TWIN COULD BE CREATED BY THE COLLISION OF
2 GAMMA-RAYS EACH HAUING 7.15909 BILLION BILLION JOULES OF
ENERGY,WHICH EQUALS 1883.97 MILLION TONS OF TNT OR
    37.6794 H-BOMBS (PAIR PRODUCTION).
IF yOU FLY OfF IN THE ROCKET'S OPPOSITE DIRECTION AT THE
SAME SPEED, 99 Z OF C,YOU BOTH WILL SEPARATE AT
    99.9949 % OF C (RELATIVISTIC VELOCITY ADDITION).
WHEN THE PURPLE ROCKET IS MOUING AWAY, IT APPEARS
INUISIBLE-INFRARED! (LARGE RED SHIFT)
WHEN THE PURPLE ROCKET IS PASSING YOU, IT APPEARS
INUISIBLE-INFRAREDI (LARGE RED SHIFT)
of COURSE yOU appEaR the Same way to your twin; after
ALL, HE IS A RELATIVE II
DONE
```


contributed program BASIC

| TITLE: |
| :--- | :--- |
| DESCRIPTION: |
| INSTRUCTIONS: |
| DRILL ON SYMBOLS FOR CHEMICAL ELEMENTS |
| This program provides drill and practice in the naming of chemical |
| symbols for a given chemical element. The user is allotted 5 seconds |
| for a correct response to a given element name. The cycle is repeated |
| ten times followed by a summary of his performance. |

```
ELMENT, Page <
```

RUN

```
RUN
ELMENT
```

NAMING ELEMENTS
WHAT IS YOUR NAMETPHILLIP SHORT
WHAT IS THE SYMBOL FOR LITHIUM ?
LN
NO. YOU ARE VRONG
THE ANSEER IS LI •
WHAT IS THE SYMBOL FOR NEON ?
NE
CORRECTII
WHAT IS THE SYMBOL FOR IRIDIUM?
IR
CORRECTII
WHAT IS THE SYMBOL FOR HYDROGEN ?
H
CORRECTII
WHAT IS THE SYMBOL FOR GERMANIUM?
GE
CORRECTII
WHAT IS THE SYMBOL FOR NICKEL ?
NI
CORRECTI!
WHAT IS THE SYMBOL FOR KRYPTON ?
KR
CORRECT 1!
WHAT IS THE SYMBOL FOR TIN ?
T
YOU ARE TOO SLOW.
THE ANSWER IS SN •
WHAT IS THE SYMBOL FOR BORON ?
B
YOU ARE TOO SLOW.
THE ANSWER IS B ${ }^{\circ}$.
WHAT IS THE SYMBOL FOR BROMINE ?
BR
CORRECTII
PHILLIP SHORT
YOU GOT 7 RIGHT.
YOU WERE TOO SLOW 2 TIMES.
YOU WERE WRONG 1 TIMES.

DONE

TITLE:

DESCRIPTION:

INSTRUCTIONS:
CALCULATES EMPIRICAL FORMULAS EMPIR

A classroom demonstration designed to calculate the empirical formulae
from atomic mass (atomic weight) and percent composition.
OBJECTIVES:
A. To distinguish between molecular and empirical formulae.
B. To illustrate the law of multiple proportions.
C. To emphasize the unity of the atom when writing chemical formulae.
D. To demonstrate the importance of accurate calculation with empirical formulae problems.

PRELIMINARY PREPARATION:
A. Student - The student should have some experience in writing chemical formulae and calculating percent composition from chemical formulae. An understanding of significant figures would also add to the value of the lesson.
B. Materials - None

DISCUSSION:
In this program the atomic number is used for identification only and has no part in the actual calculations.

The student generally has difficulty understanding the function of the ratio in calculating empirical formulae. This program is designed to emphasize that function.

The importance of significant figures could also be illustrated. The students' tendency to approximate generally results in numbers of questionable value. In this program, by using a series of calculations for the same compound with figures of progressively greater accuracy, an empirical formulae closer to whole numbers will be obtained.

ACKNOWLEDGEMENTS: Huntington Project
Polytechnic Institute of Brooklyn

RUN

RUN
EMPIR
THIS PROGRAM WILL FIND THE EMPIRICAL FORMULA FOR any compound containing up to five different elements

```
    WHEN INFORMATION IS REQUESTED, TYPE IN THE ATOMIC
    NUMBER, THE ATOMIC WEIGHT, AND THE PCT COMPOSITION BY
    WEIGHT IN THAT ORDER; FOR EXAMPLE, IN THE COMPOUND SOR,
    THE DATA WOULD BE ENTERED AS FOLLOWS: 16,32,50 FOR
SULFUR AND 8,16,50 FOR OXYGEN.
HOW MANY ELEMENTS DOES YOUR UNKNOWN COMPOUND CONTAIN?2
ENTER THE ATOMIC NUMBER, THE ATOMIC WEIGHT, AND THE
PCT COMPOSITION FOR EACH OF THE ELEMENTS IN YOUR COMPOUND.
BE SURE TO ENTER ONE SET OF NUMBERS FOR EACH QUESTION MARK.
```


TO FIND THE EMPIRICAL FORMULA LOCATE THE FIRST RATIO COLUMN IN WHICH ALL OF THE NUMBERS MOST CLOSELY APPROXIMATE A WHOLE NUMBER.
IF YOU WOULD LIKE TO TRY AGAIN TYPE 1, IF NOT TYPE D.? 1
HOW MANY ELEMENTS DOES YOUR UNKNOWN COMPOUND CONTAIN?3 ENTER THE ATOMIC NUMBER, THE ATOMIC WEIGHT, AND THE PCT COMPOSITION FOR EACH OF THE ELEMENTS IN YOUR COMPOUND. BE SURE TO ENTER ONE SET OF NUMBERS FOR EACH QUESTION MARK.

| 1 | \bullet |
| :--- | :--- |
| 2 | $?$ |
| 3 | \bullet |
| 3 | $? 8,16,32,32.7$ |

| ATOMIC | PCT. | INITIAL | RATIO\#2 | RATIO\#3 |
| :--- | :---: | :---: | :---: | :---: |
| NUMBER | COMP. | RATIO | | |
| 1 | 2 | 2 | 3.9 | 5.9 |
| 16 | 32.7 | 1 | 2 | 3 |
| 8 | 65.3 | 4 | 8 | 12 |

IF YOU WOULD LIKE TO TRY AGAIN TYPE I, IF NOT TYPE B.?1
HOW MANY ELEMENTS DOES YOUR UNKNOWN COMPOUND CONTAIN?I
THE EMPIRICAL FORMULA FOR A COMPOUND THAT CONTAINS ONLY
A SINGLE ELEMENT IS STRAIGHTFORWARD.
IF YOU WOULD LIKE TO TRY AGAIN TYPE 1, IF NOT TYPE 0.?0

DONE

TITLE:
DESCRIPTION:

INSTRUCTIONS:

ACKNowledgements: Huntington Project

EQUIL1, Page: 2


```
RUN
RUN
EQUIL2
```

THIS PROGRAM WILL INVESTIGATE THE EQUILIBRIUM SYSTEM

```
    PCL5 = PCL3 + CL2
WHAT IS THE EQUILIBRIUM CONSTANT?.74
WHAT IS THE INITIAL CONCENTRATION OF PCL5?IO
WOULD YOU LIKE THE RESULTS PLOTTED (1), TABULATED (2)
OR BOTH (3) (TYPE THE APPROPRIATE NUMBER)?3
```

| INIT. CL2 | EQUIL. PCL3 | EOUIL. CL2 | | EQUIL. PCLS |
| :---: | :---: | :---: | :---: | :---: |
| INIT. PCLS | INIT. PCLS | INIT. PCLS | | INIT• PCLS |
| 0 | . 237534 | . 237534 | | . 762466 |
| 1 | .064971 | 1.66497 | | . 935029 |
| 2 | 3.50864E-02 | 2.03509 | | . 964914 |
| 3 | 2.38872E-02 | 3.02389 | | . 976113 |
| 4 | 1.80836E-02 | 4.61808 | | . 981916 |
| 5 | 1.45426E-02 | 5.01454 | | . 985457 |
| 6 | 1.21589E-02 | 6.01216 | | . 987841 |
| 7 | 1.04456E-02 | 7.01045 | | . 989554 |
| 8 | 9.15527E-03 | 8.00916 | | . 998845 |
| 9 | 8.14819E-63 | 9.08815 | | . 991852 |
| 10 | 7.34043E-83 | 10.0073 | | . 99266 |
| 11 | 6.67858E-83 | 11.0067 | | . 993321 |
| 12 | 6.12545E-03 | 12.0061 | | . 993875 |
| 13 | 5.65815E-63 | 13.0057 | | . 994342 |
| 14 | 5.25570E-03 | 14.0053 | | . 994744 |
| 15 | 4.90761E-03 | 15.0049 | | - 995092 |
| A: CEQUIL. | ((INIT. PCLS) | MAXIMUM | IS | . 237534 |
| B: CEQUIL. | (INIT - PCL5) | MAXIMUM | IS | 15.8049 |
| C: CEOUIL. | ((INIT• PCLS) | MAXIMUM | IS | -995092 |

* $\boldsymbol{*}$ * $\#$ *

WOULD YOU LIKE ANOTMER RUN (1-YES, 0-NO)?
DONE
TITLE:
DESCRIPTION:
EVOLU
EVOLU: Natural Selection Experiment
A population of dark and light pepper moths are studied over a period of
30 years. The student selects the year and direction of environmental
changes which favors one or the other. The concept of natural selection
in evolution is developed.
OBJECTIVES:
To show the student that:
A. The mutation rate within a population for a specific trait can be
stable for a period of time, or can change. The success of the
progeny exhibiting this variation is dependent upon environmental
conditions.

DISCUSSION:

A. Operational Suggestions

1. Student level - average
2. Group size - Work in small groups of five or less. Remaining students may be engaged in a related activity.
3. Assumptions - Prior to running the program, the students should be told to assume the following:
a) The environment initially favors the light moths.
b) At first, brown moths are produced, but because of environmental pressures they do not reach maturity.
c) The total population in the area cannot exceed the initial number of moths, because this is the maximum number of moths the environment can support.
4. Each group of students should run the program at least two times, varying the environmental pressure; once favoring the dark moths and once favoring the light.
5. You might have the runs of different groups of students reflect different mutation rates.
6. Supervision of the number of program runs per group is necessary since they are not automatically cut off.
B. Suggested Follow-up

These questions may be used to initiate discussion:

1. Why does the mutation rate remain constant? Does it always remain constant under natural conditions? Explain your reasons.
2. Assuming constant environmental conditions, how does changing the mutation rate affect the population? Why?
3. How does changing the mutation rate affect the dark mnth population when environmental pressures favor these moths? Why?
4. What environmental pressures could favor the dark moths? (industrial exnansion, predators which favor the light or dark moths) (The classic case of the pepper moths and the industrial revolution in England could be discussed at this point.)
5. What possible role might pollutants play in altering a mutation rate? What other factors could affect a mutation rate?
6. Is evolution a slow or fast process? Explain your answer.
7. Why do a few white moths always remain in the population, even though the environment favors the dark moths?
8. What is natural selection? What is its role in evolution?
9. Make a list of all factors important to evolution.

EUOLUTION STUDY

```
wITHIN A LARGE POPULATION OF PEPPER MOTHS, there are a few
INDIVIDUALS WHICH SHOW UP DARKER IN COLOR THAN THE NORMAL
lIGHT COLORED mOTHS bECAUSE OF mUTATIONS.
YOU ARE GOING TO STUDY THIS POPULATION OF PEPPER MOTHS FOR 30
YEARS AND SEE what happens to the NUMBER OF DARK mOTHS WhEN
YOU ALTER ENUIRONMENTAL CONDITIONS.
Select a mutation rate value between 1 and 10. the
HIGHER THE NUMBER, THE HIGHER THE MUTATION RATE IS, AND THUS
there are more dark moths in our population.
79
how many light COlored moths are there in the areas
SELECT A NUMBER BETVEEN 1000 AND 1000000 365789
you have the power to change the environment.
AT WHAT POINT IN OUR THIRTY YEAR PERIOD DO YOU WANT
TO IMPLEMENT YOUR POWER? SELECT A yEAR FROM 3 THROUGH 10.
75
IS The ENUIRONMENTAL Change going to favor
LIGHT MOTHS (TYPE 1) OR DARK MOTHS (TYPE 2)?2
HOW DO YOU WISH TO SEE THE RESULTS?
l=TABLE ONLY, 2=GRAPH ONLY, D=BOTH?0
FOR A MUTATION RATE OF 9
```


DISCUSSION:

A. Operational Suggestions

1. Student level - average to above average ability
2. If the student is confused alert him to the fact that chromosomes are letters and the number following the letter represents genes. Similar letters indicate homologous chromosomes. (see program)
3. Read the program ahead of time to make sure your students are familiar with the terms used in the program.
4. If the students are thrown off the machine see that they review with the teacher the concept of gametogenesis before continuing with the program.
5. Ideally, students should work individually. If this is not possible, then work in groups of 5 or less. Allow one group at a time at the computer while the remaining groups are engaged in a related activity.

B. Suggested Follow-up

To maximize the value of this program, it is strongly suggested that the teacher:

1. Elicit from the students:

What are the gene locations for the various genetic traits (eye color, wing normalcy, lethality)? Which is recessive? Which is dominant? Why is there no chance that the offspring will have the exact chromosomal composition of the father?
2. Ask the following questions, based on the information given, as lead-ins to discussion or as a homework assignment.
(a) What is a polar body? How does the formation of polar bodies increase the survival chance of the egg cell?
(b) How is random assortment responsible for genetic trait variations?
(c) Why is it possible for all offspring to have the same traits without variations?

ART ICULATION INTO NEXT AREA TO BE COVERED:

This program can lead directly into the topic of genetics. A second program, DROS A833-36300, appearing in the manual, should follow. It demonstrates, with a game, the random recombinations of the chromosomes in offspring, showing all possible combinations and, if repeated often enough, Mendelian ratios.

```
RUN
RUN
GAMGN
the fOLLOWING dIAGRAMS ARE REPRESENTATIONS OF PRIMARY SEX
CELLS. CHROMOSOMES ARE REPRESENTED BY LETTERS.
```


By typing in a number, what is the diploid number of CHROMOSOMES FOR THIS ORGANISM?A

SO YOU SEE THAT AI + A2, FOR EXAMPLE, ARE PAIRS OF HOMOLOGOUS CHROMOSOMES. IT IS ESSENTIAL THAT AFTER FERTILIZATION, IF THE diploid condition is to be retained that we have some means of placing only one a and one b chromosome in the sperm and only one a and one b chromosome in the egg. this involves meiosis.

LOOK AT THE PRIMARY SPERMATOCYTE ABOVE.
during the first stage of meiosis, the male sex cell SHOULD APPEAR AS IT IS IN ONE OF THE FOLLOWING DIAGRAMS.

| | 1 | | 2 | | | | | 3 | | 4 | | | | 5 | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (| AlAI |) | $($ | A1 | A2 | , | (| A |) | (| AI | A2 |) | (| | | , |
| $($ | A2A2 |) | (| | |) | c | |) | (| | |) | (| | |) |
| (| B181 | , | (| | | , | (| |) | (| | | , | (| | |) |
| (| B2B2 |) | (| B1 | 82 |) | (| B |) | (| | |) | (| B1 | 82 |) |

WHICH DIAGRAM MOST CLOSELY REPRESENTS THIS MEIOTIC STAGE ? 1
O.K.. NOW WE CAN MOVE ALONG. MEIOTIC DIVISION OCCURS AND WE GET TWO SECONDARY SPERMATOCYTES FROM EACH PRIMARY SPERMATOCYTE AND ONE SECONDARY OOCYTE FROM EACH PRIMARY OOCYTE. EACH SPERMATOCYTE CONTAINS THE FOLLOWING CHROMOSOMES: AI A2, B1 B2. EACH OOCYTE HAS A3 A4, B3 B4.

THE REASON WHY ONLY ONE OOCYTE IS PRODUCED IS\&
1)THE OOCYTE DOES NOT UNDERGO DIVISION. 2)THE OOCYTE DIVIDES AFTER FERTILIZATION. 3)A POLAR BODY IS FORMED. 4)THERE IS AN ERROR IN THE COMPUTER.

WHICH NUMBER WOULD REPRESENT THE CORRECT ANSWER?3

```
CORRECT. NOW LET'S MOVE TO THE FINAL STAGE IN WHICH
WE WILL END UP WITH 4 MONOPLOID(HAPLOID) SPERM--1)AIBI
2)A2B2 3)A1B2 4)A2BI AND ONE OVUM--1)A3B3 OR 2)A4B4
OR 3)A3B4 OR 4)A4B3
WHAT IS THE POSSIBILITY THAT THE OFFSPRING WILL HAVE
THE SAME CHROMOSOMAL COMPOSITION AS THE FATHER?
PRINT ONE OF THE FOLLOWING NUMBERS.
    1)50 CHANCE 2)NO CHANCE -3)100 CHANCE
    4)YOU CAN'T TELL FROM THE INFORMATION GIVEN
?2
GOOD THINKING.
I HOPE YOU HAVE A FAIRLY GOOD IDEA OF SEVERAL PRINCIPLES
INVOLVED, PARTICULARLY RANDOM ASSORTMENT.
NOW LET'S SEE IF WE CAN USE THESE IDEAS TO DETERMINE WHAT
OCCURS IN A POPULATION. WE WILL USE AS OUR ORGANISM THE FRUIT
FLY, DROSOPHILA, WHICH HAS 8 AS THE DIPLOID NUMBER OF
CHROMOSOMES. THE FOLLOWING WILL REPRESENT CERTAIN CONDITIONS
IN FRUIT FLIES :
```

NORMAL WING-RED EYE=AIA2, BIB2, CIC2, DID2
NORMAL WING-WHITE EYE=AIA2, B2B2, CIC2, DID2
VESTIGIAL WING=AIAI, BIB2, CIC2, DID2
LETHAL GENE=AIA2, BIB2, CICI, DID2
SUPPOSE WE CROSS THE NORMAL RED EYED WITH THE NORMAL
EYED FRUIT FLY. WHAT COULD THE OFFSPRING LOOK LIKE? LOOK AT
THE GENOTYPES CAREFULLY AND SEE IF YOU CAN PICK OUT THE
DIFFERENT GENE COMBINATIONS. THEN MAKE ALL POSSIBLE CROSSES.
AT A LATER DATE, WE WILL SEE HOW I, THE COMPUTER, CAN
SOLVE THIS PROBLEM FOR YOU.
BUT FIRST, TAKE THIS SHEET. BACK TO YOUR SEATS AND WORK ON IT.
DONE

GENEI, Päge 2

```
RUN
RUN
GENEI
WHAT ARE.THE TWO TRAITS TO BE STUDIED?
DOMINANT TRAIT?BROWN
RECESSIVE TRAIT?BLUE
******
GENOTYPE OF FEMALE PARENT?BROWN
??BLUE
gENOTYPE OF MALE PARENT?BLUE
? ?BLE-UE
HOW MANY OFFSPRING DO YOU WANT TO STUDY?2S
DETAILED REPORT (YES OR NO)?YES
OFFSPRING NO. -----GENOTYPE------ PHENOTYPE
\begin{tabular}{|c|c|c|c|c|}
\hline & GENE & \multicolumn{3}{|l|}{GENE 2} \\
\hline 1 & BROWN & blue & & BROWN \\
\hline 2 & BROWN & blue & & BROWN \\
\hline 3 & BROWN & blue & \(\tau\) & BROWN \\
\hline 4 & BLUE & blue & & blue \\
\hline 5 & BROWN & blue & & BROWN \\
\hline 6 & blue & blue & & BLUE \\
\hline 7 & blue & blue & & BLUE \\
\hline 8 & blue & BLUE & & BLUE \\
\hline 9 & 8ROWN & blue & & BROWN \\
\hline 10 & BROWN & BLUE & & BROWN \\
\hline 11 & BROWN & bLUE & & BROWN \\
\hline 12 & BLUE & blue & & blue \\
\hline 13 & BROWN & blue & & BROWN \\
\hline 14 & BROWN & blue & & BROWN \\
\hline 15 & BROWN & blue & & BROWN \\
\hline 16 & BROWN & blue & & BROWN \\
\hline 17 & BROWN & blue & & BROWN \\
\hline 18 & blue & blue & & BLUE \\
\hline 19 & BROWN & blue & & BROWN \\
\hline 20 & BROWN & blue & & BROWN \\
\hline 21 & BROWN & blue & & BROWN \\
\hline \(2 \cdot 2\) & BLUE & blue & & blue \\
\hline 23 & BROWN & BLUE & & BROWN \\
\hline 24 & BLUE & blue & & BLUE \\
\hline 25 & BROWN & blue & & BROWN \\
\hline
\end{tabular}
*************
GENOTYPE RATIO 0 : 2.125 : 1
PHENOTYPE RATIO 2.125 : 1
```



```
WANT ANOTHER RUN (YES OR NO)?YES
*******
GENOTYPE OF FEMALE PARENT?BROWN
?3BLUE
GENOTYPE OF MALE PARENT?BROWN
??BLUE
HOW MANY OFFSPRING DO YOU WANT TO STUDY?IS
DETAILED REPORT (YES OR NO)?YES
```


TITLE: \quad\begin{tabular}{l}
DESCRIPTION:

ACKNOWLEDGEMENTS:

GRASSLANDS ECOLOGY SIMULATION

This program deals with the ecology of a grasslands region and allows the

student to vary animal population in order to attain an ecological balance.

The populations of cattle, songbirds, hawks, rodents and grasshoppers are

considered. The user is referred to the supplementary materials that

describe detailed operation of the program in the curriculum material

listed below.
\end{tabular}

RUN

WHAT'S YOUR NAME?IRV BRENNER
HOW MANY CATTLE?300 HOW MANY SONGBIRDS?5080 HOW MANY HAWKS?5

YEAR CATTLE SONGBIRDS HAWKS RODENTS/ACRE G*HOPPERS/ACRE

| 0.8 | 380 | 5900 |
| :--- | :--- | :--- |
| 0.5 | 288 | 5273 |
| 1.0 | 276 | 5691 |
| 1.5 | 277 | 5503 |
| 2.0 | 291 | 3998 |

5.0
5.0
5.6
6.0
5.7

| 200 | 10800 |
| ---: | ---: | ---: |
| 386 | 14528 |
| 478 | 9251 |
| 455 | 12134 |
| 419 | 9541 |

YOUR SCORE IS 60.7
COMPLETE SUMMARYTNO

| 15.0 | 295 | 4856 | 12.2 | 195 | 9867 |
| :--- | :--- | :--- | :--- | :--- | :--- |

HOW MANY CATTLE? 0
DONE

RUN
GRAZE
WHAT'S YOUR NAME?IRU BRENNER

HOW MANY CATTLET480
HOW MANY SONGBIRDS?8000
HOW MANY HAWKS? 10
YEAR CATTLE SONGBIRDS HAWKS RODENTS/ACRE G'HOPPERS/ACRE

| 0.0 | 400 | 8000 | 10.0 |
| ---: | ---: | ---: | ---: |
| 0.5 | 440 | 7313 | 9.5 |
| 1.0 | 402 | 6038 | 10.3 |
| 1.5 | 421 | 5370 | 11.0 |
| 2.0 | 435 | 5538 | 12.6 |

| 200 | 10800 |
| :--- | :--- |
| 243 | 11183 |
| 254 | 10786 |
| 252 | 12884 |
| 225 | 10615 |

YOUR SCORE IS 90.8
COMPLETE SUMMARY?YES

| 2.5 | 420 | 5275 | 11.9 | 210 | 13183 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3.8 | 420 | 5495 | 13.4 | 211 | 18247 |
| 3.5 | 431 | 5.796 | 12.5 | 212 | 11959 |
| 4.0 | 392 | 5334 | 13.6 | 184 | 11008 |
| 4.5 | 383 | 5472 | 13.7 | 286 | 11818 |
| 5.0 | 396 | 5788 | 12.7 | 201 | 11164 |
| 5.5 | 386 | 5417 | 12.8 | 184 | 13996 |
| 6.0 | 377 | 5363 | 13.1 | 174 | 10133 |
| 6.5 | 409 | 5263 | 11.8 | 208 | 13472 |
| 7.0 | 377 | 4791 | 12.1 | 218 | 10156 |
| 7.5 | 411 | 4993 | 14.4 | 217 | 13199 |
| 8.8 | 365 | 4888 | 11.8 | 188 | 10685 |
| 8.5 | 398 | 4736 | 11.0 | 239 | 13856 |
| 9.8 | 425 | 5681 | 12.8 | 229 | 9225 |
| 9.5 | 396 | 5698 | 12.4 | 192 | 14888 |
| 10.0 | 366 | 5215 | 12.4 | 204 | 11196 |
| 10.5 | 364 | 5532 | 13.3 | 201 | 13478 |
| 11.8 | 363 | 5193 | 12.1 | 219 | 10396 |
| 11.5 | 377 | 5637 | 14.1 | 199 | 14167 |
| 12.0 | 369 | 4982 | 11.5 | 210 | 9731 |
| 12.5 | 411 | 5265 | 11.7 | 282 | 12752 |
| 13.8 | 381 | 5234 | 12.3 | 219 | 10959 |
| 13.5 | 436 | 4976 | 15.8 | 184 | 14175 |
| 14.8 | 374 | 5361 | 12.2 | 198 | 10268 |
| 14.5 | 366 | 5474 | 12.3 | 233 | 12946 |
| 15.0 | 361 | 5467 | 13.2 | 218 | 9913 |

HOW MANY CATTLE?O
DONE

HZLIFE, page 2

```
RUN
muN
Ha,im!%
DO YOU NEED EXPLANATION?NO
IT YILL TAKE ABOUT 3 MINUTES TO tOSS THE DICE
20 PIMES BEFORE ANY FURTHER PRINTING WILL OCCUR.
\begin{tabular}{lcc} 
NO. OF TOSS & NO OF DECAYS & NO. REMAINING \\
\hdashline 1 & 58 & 950 \\
8 & 49 & 981 \\
3 & 44 & 657 \\
4 & 43 & 814 \\
5 & 37 & 774 \\
6 & 36 & 737 \\
7 & 36 & 761 \\
8 & 33 & 665 \\
9 & 89 & 632 \\
10 & 29 & 603 \\
11 & 28 & 574 \\
12 & 28 & 546 \\
13 & 25 & 518 \\
14 & 23 & 493 \\
15 & 22 & 469 \\
16 & 21 & 446 \\
17 & 28 & 424 \\
18 & 19 & 483 \\
19 & & 364 \\
28 & &
\end{tabular}
```

decays as a function of time (tosses)

NOTE:TIME-® IS TOSS NO. 1, TIME- 1 IS TOSS NO. 2, ETC.

NUMBER REMAINING AS A FUNCTION OF TIME (TOSSES)

NOTEITIME=0 IS TOSS NO. 1, TIME=1 IS TOSS NO. 2, ETC.

LN OF DECAYS AS A FUNCTION OF TIME (TOSSES)
5
4.8
4.6
4.4
4.2
4.
3.8
3.6
3.4
3.8
3.
8.8
2.6
2.4
2.2
2.
1.8
1.6
1.4
1.2

HZLIFE, page 4

```
1.
.800003
.600003
.400663
.200003
2.80142E-06
    0
                                    TIME
```

NOTE:TIME=O IS TOSS NO. 1, TIME=1 IS TOSS NO. 2, ETC.
SLOPE OF THE LINE NUST PLOTTED IS -5.09096E-02
THIS SLOPE IS THE DECAY CONSTANT
accepted value for the decay constant is -0.05000
PER CENT ERROR IN DECAY CON: :ANT IS 1.81913

DONE

Abstract

title:

DESCRIPTION:

INSTRUCTIONS:

SPECIAL CONSIDERATIONS:

ACKNOWLEDGEMENTS:
Phillip Short
Burnsville Senior High School

```
RUN
RUN
IONIC
WHAT IS YOUR NAME?PHILLIP SHORT
IONS AND THEIR CHARGES.
WHAT IS THE FORMULA OF THE NICKEL ION?
NI
RIGHTI!
WHAT IS THE CHARGE ON THE NICKEL ION?
2
CORRECT!!
WHAT IS THE FORMULA OF THE CUPROUS ION?
CU
RIGHT!!
WHAT IS THE CHARGE ON THE CUPROUS ION?
1
CORRECT!!
WHAT IS THE FORMULA OF THE MERCUROUS ION?
HG
RIGHT!!
WHAT IS THE CHARGE ON THE MERCUROUS ION?
I
CORRECT!!
WHAT IS THE FORMULA OF THE BARIUM ION?
BA
RIGHT!!
WHAT IS THE CHARGE ON THE BARIUM ION?
2
CORRECT!!
WHAT IS THE FORMULA OF THE IODIDE ION?
I
RIGHT!!
WHAT IS THE CHARGE ON THE IODIDE ION?
-1
CORRECT!!
WHAT IS THE FORMULA OF THE CHROMATE ION?
TOO SLOW!!
THE ANSWER IS CRO4 !!!!
MAYBE YOU KNOW ITS CHARGE...
WHAT IS THE CHARGE ON THE CHROMATE ION?
-2
CORRECT!!
WHAT IS THE FORMULA OF THE LITHIUM ION?
LI
RIGHT:!
WHAT IS THE CHARGE ON THE LITHIUM ION?
I
CORRECTI!
WHAT IS THE FORMULA OF THE CARBONATE ION?
CO3
RIGHT:!
WHAT IS THE CHARGE ON THE CARBONATE ION?
-2
CORRECTI!
WHAT IS THE FORMULA OF THE.NITRATE ION?
NO
TOO SLOW!:
THE ANSWER IS N03 !!:!
MAYBE YOU-KNOW ITS CHARGE...
WHAT IS THE CHARGE ON THE NITRATE ION?
-1
CORRECTI!
```

```
WHAT IS THE FORMULA OF THE MAGNESIUM ION?
MG
RIGHT!!
WHAT IS THE CHARGE ON THE MAGNESIUM ION?
2
CORRECT!!
```


PHILLIP SHORT
YOU GOT BOTH PARTS RIGHT FOR 8 IONS.
YOU GOT ONE PART RIGHT FOR 2 IONS.
YOU GOT BOTH PARTS WRONG FOR 0 IONS.
DONE
TITLE:
DESCRIPTION:
INSTRUCTIONS:
ACKNOWLEDGEMENTS:
This program randomly selects a positive and negative ion, and asks the
user for the chemical formula of the simplest resulting compound.
IONICl

```
RUN
RUN
IONICI
IONIC BONDS
```

```
WHAT IS THE COMPOUND FORMED FROM SODIUM AND HYDROXIDE .
```

WHAT IS THE COMPOUND FORMED FROM SODIUM AND HYDROXIDE .
NAOH
NAOH
THAT IS CORRECT.... VERY GOOD!!!!!
THAT IS CORRECT.... VERY GOOD!!!!!
YOU HAVE ANSWERED 1 CORRECTLY OUT OF 1 .

```
    YOU HAVE ANSWERED 1 CORRECTLY OUT OF 1 .
```

```
WHAT IS THE COMPOUND FORMED FROM LITHIUM AND PERMANGANATE .
```

WHAT IS THE COMPOUND FORMED FROM LITHIUM AND PERMANGANATE .
TOO SLOW!!! THE ANSWER IS LIMNO4.
TOO SLOW!!! THE ANSWER IS LIMNO4.
YOU HAVE ANSWERED 1 CORRECTLY OUT OF 2 .
YOU HAVE ANSWERED 1 CORRECTLY OUT OF 2 .
WHAT IS THE COMPOUND FORMED FROM MERCURIC AND PHOSPHATE .
WHAT IS THE COMPOUND FORMED FROM MERCURIC AND PHOSPHATE .
HG
HG
TOO SLOW!!! THE ANSWER IS HG3(PO4)2.
TOO SLOW!!! THE ANSWER IS HG3(PO4)2.
YOU HAVE ANSWERED 1 CORRECTLY OUT OF 3 -
YOU HAVE ANSWERED 1 CORRECTLY OUT OF 3 -
WHAT IS THE COMPOUND FORMED FROM CALCIUM AND IODIDE -
CAI4
NO THE ANSWER IS CAI2.
YOU HAVE ANSWERED 1 CORRECTLY OUT (IF 4 .
WHAT IS THE COMPOUND FORMED FROM HYDROUEN AND CHLORIDE .
HOCL
NO THE ANSWER IS HCL.
YOU HAVE ANSWERED 1 CORRECTLY OUT CF S .
WHAT IS THE COMPOUND FORMED FROM STANNOUS AND DICHROMATE .
STCH2
NO THE ANSWER IS SNCR2O7.
YOU HAVE ANSNERED 1 CORRECTLY OUT OF 6 .
WHAT IS THE COMPOUND FORMED FROM CHROMOUS AND FLUORIDE •
CRFL03
NO THE ANSWER IS CRF2.
YOU HAVE ANSWERED 1 CORRECTLY OUT OF 7 •
GHAT IS THE COMPOUND FORMED FROM MERCUROUS AND NITRATE .
HGN03
NO THE ANSWER IS HGNO3.
YOU HAVE ANSWERED 1 CORRECTLY OUT OF 8 . AGCH3COO
THAT IS CORRECT... VERY GOOD!!!!!!
YOU HAVE ANSWERED 2 CORRECTLY OUT O
WHAT IS THE COMPOJND FORMED FROM LEAD AND CARBONATE .
PB(CO2)2
NO THE ANSWER IS FBCO3.
YOU HAVE ANSWERED 1 CORRECTLY OUT OF 9.
YOU WERE WRONG 6 TIMES.
YOU WERE TOO SLOW 2 . TIMES.
DONF
WHAT IS THE COMPOUND FORMED FROM SILVER AND ACETATE . /

```
TITLE:
DESCRIPTION:
DRILL ON NAMING ALKANES
This program generates names of up to ten alkanes randomly, and prints
out representations of them on the teletype, then names them. The
number of alkanes (of lengths up to ten carbons in the main chain) is
controllable (via input), as is the total number of carbons in the
alkyl side chains (by altering a line). In a given run there are no
duplications.

RUN
run
ISOMER
ALKANES WITH SIMPLE ALKYL SIDECHAINS

HOW MANY HYDROCARBONS DO YOU WANT PRINTED?5
( 1 )

(2)

(3)

C C C
- 1

C C C C C
1 1 i
\(C-C-C-C-C-C-C\)
(4)

(1) 2,2-DIMETHYLBUTANE
(2) \(2,2,4,5,6,6,7,7-O C T A M E T H Y L-3,3,4-T R I E T K Y L-5-P R O P Y L O C T A N E ~\)
(3) 2,6-DIMETHYL-3,4,5-TRIETHYLHEPTANE
(4) 2,2,5,6,7,7-HEXAMETHYL-3,3,5-TRIETHYL-4,4-DIPROPYLOCTANE
( 5 ) 2,2,3-TRIMETHYLBUTANE

DONE
TITLE: \(\quad\) DESCRIPTION: \(\quad\)\begin{tabular}{l} 
KINERV: Review of Kinematics \\
Questions are asked concerning the motion of a ball thrown vertically \\
upwards at various velocities. Neqlecting air resistance, the student \\
is to determine such quantities as l) maximum obtainable height; \\
2) time of flight; and 3 ) the height reached at different times. \\
363l5
\end{tabular}

RUN
RUN
KINERU
---REVIEW OF KINEMATICS.-.

A BALL IS THROWN STRAIGHT UP AT UARIOUS VELOCITIES.
AIR FRICTION IS NEGLIGIBLE. THE UPWARD DIRECTION IS TAKEN AS POSITIVE, AND THE DOWNWARD DIRECTION AS NEGATIVE.

THE LOCAL ACCELERATION DUE TO GRAVITY IS - 10 METERS/SECOND/SEC
ALL VALIES ARE IN M.K.S. METRIC UNITS.
FOR UARIOUS THROWING SPEEDS, YOU MUST ANSWER CERTAIN QUESTIONS ABOUT THE BALL IN FLIGHT.
```

1 - THE UPWARD THROWING SPEED IS 15 METERS/SECOND.
WHAT IS THE UELOCITY AFTER 1.9 SECONDS OF FLIGHT?-4
YOU'RE CORRECT WITHIN 5 PERCENT. THE CORRECT ANSWER IS -4
2 - THE UPWARD THROWING SPEEN IS 38 METERS/SECOND.
HOW HIGH ABOUE THE GROUND WILL TI HALL G0?28
YOU'RE OFF MORE THAN 5 PERCENT. THE CORRECT ANSWER 1S 72.2
3 THE UPWARD THROWING SPEED IS 30 METERS/SECOND.
HOW LONG WILL IT TAKE THE BALL TO RETURN TO THE GROUND?6.0
YOU'RE CORREGT WITHIN 5 PERCENT. THE CORRECT ANSWER IS }
4 - THE UPWARD THROWING SPEED IS 22 METERS/SECOND.
WHAT IS THE VELOCITY WHEN IT REACHES A HEIGHT OF 12.2
METERS ABOUE THE GROUND ?16
YOU'RE CORRECT WITHIN 5 PERCENT. THE CORRECT ANSWER IS 15.4919
5 - THE UPWARD THROWING SPEED IS 17 METERS/SECOND.
WHAT IS THE VELOCITY AFTER 2.2 SECONDS OF FLIGHT?-4
YOU'RE OFF MORE THAN 5 PERCENT. THE CORRECT ANSWER IS -5.
OUST OF 5 QUESTIONS, YOU GOT 3 RIGHT.
DON'T YOU KNOW ANYTHING ABOUT THKOWING THINGS UP???
WANT TO TRY ANOTHER 5 PROBLEMS (I=YES, 0=NO) : ?0
DONE

```

```

RUN
RUN.
KINET
FOR THE EQUILIBRIUM PROBLEMS YOU ARE ABOUT TO DO, THE
DATA MAY BE PRESENTED IN THE FOLLOWING MANNER:
(INDICATE YOUR CHOICE BY NUMBER)
CHOICE 1 = TABLE OF DATA
CHOICE 2 = GRAPH OF DATA
CHOICE 3 = TABLE AND GRAPH OF DATA
CHOICE 4 = END PROGRAM
WHAT IS YOUR CHOICE?3
LET F = THE FORWARD RATE CONSTANT
LET K = THE EQUILIBRIUM CONSTANT FOR THE REACTION A =P
TYPE IN THE CONSTANTS F AND K IN THAT ORDER.
35,1
LET AI = ORIGINAL CONCENTRATION : A
LET A = PERCENT CONCENTRATION OF A (A/AI*IDO)
LET P = PERCENT CONCENTRATION OF P (P/AI*100)

| TIME | A | P |
| :---: | :---: | :---: |
| 0 | 100 | 0 |
| . 05 | 80.3265 | 19.6735 |
| -1 | 68.394 | 31.606 |
| . 15 | 61.1565 | 38.8435 |
| - 2 | 56.7668 | 43.2332 |
| . 25 | 54.1043 | 45.8958 |
| - 3 | 52.4893 | 47.5107 |
| . 35 | 51.5099 | 48.4901 |
| - 4 | 50.9158 | 49.0842 |
| . 45 | 50.5555 | 49.4445 |
| . 5 | 50.3369 | 49.6631 |

$$
\text { PERCENT CONCENTRATION OF } A(*) \text { AND } P(+)
$$

```

WHAT IS YOUR CHOICE?Z
```

LET $F=$ THE FORWARD RATE CONSTANT
LET $K=$ THE EQUILIBRIUM CONSTANT FOR THE REACTION A $=P$ TYPE IN THE CONSTANTS F AND K IN THAT ORDER.

WHAT IS YOUR CHOICERO
YOUR CHOICE MUST BE A NUMBER BETWEEN 1 AND 4, TRY AGAIN.
WHAT IS YOUR CHOICE?4
DONE
title:

DESCRIPTION:

INSTRUCTIONS:

SPECIAL
CONSIDERATIONS:

ACKNOWLEDGEMENTS:

COMPUTER-AUGMENTED PHYSICS TOPICS (NEWTON)
LAiNDIN
36670

This program, written by a high school student at Project Solo, calculates the stopping distance for a simulated aircraft landing on an airfield or aircraft carrier. Two types of output are available:

1. A listing of landing distances for progressively large aircraft mass and landing speed.
2. A single calculation for one value each of mass and speed.

The program asks the user to choose the type of output (see above).
If option 1 has been chosen, the user enters:
a. Landing speeds - sinallest value, greatest value, step size
b. Mass - smallest value, greatest value, step size
c. Runway - length and width
continued on following page

This program accompanies the Project Solo Module "Computer-Augmented Physics Topics" of the Hewlett Packard Curriculum Series.

This prograll is a sample answer to a student problem presented in ComputerAugmented Physics Topics, a Physics module from the Project Solo Series.

Information on actual aircraft (lines $500-590$) may need to be updated from time to time, and as desired by the teacher.

FOR INSTRUCTIONAL PURPOSES
Suitable Courses: Physics
Student Background Required: Newtonian laws of motion (concurrent)
This is a sample solution to a problem for the student. It may be desired to provide access to this program only after the student has attacked the problell in his or her own way.

The curriculum material listed below is available for classroom implementation of this progran.

$$
\begin{aligned}
& \text { HP 5951-5648 Computer-Augmented Physics Topics (student text) } \\
& \text { HP 5951-5649 } \\
& \text { HP 5951-5650 } \text { Computer-Augmented Physics Topics (problem solutions) } \\
& \text { Computer-Augmented Physics Topics (classroom set - } 30 \\
& \text { student books and } 1 \text { problem solutions) }
\end{aligned}
$$

For ordering information of curriculum material, contact:
Hewlett-Packard Computer Curriculum Project
Scientific Press
1629 Channing Ave.
Palo Alto, California 94303

Project Solo
University of Pittsburgh

Instructions - continued
d. Braking strength of the retaining barrier
e. A value determining the accuracy (roundoff) of the calculations.

If option 2 has been chosen, the user enters:
a. Mass and landing speed (one value for each)
followed by c., d., and e. as given above.
The program contains information on the range of mass and landing speed in representative civilian aircraft, which the student can request.

RUN
PLEASE USE THE METRIC SYSTEM THROUGHOUT.
WOULD YOU LIKE SOME ACTUAL FIGURES FOR
AIRCRAFT CARRIERS (B=NO, l=YES)?
$\because 1$
ON AN AIRCRAFT CARRIER, THE RUNOUT DISTANCE IS
ABOUT 365 METERS.
THE MASS AND LANDING SPEED OF REAL AIRPLANES RANGE
FROM ABOUT 419 KG AND $72.5 \mathrm{KM} / H R$ FOR THE BOWERS
FLY BABY I-A, TO ABOUT 157,580 KG AND $230 \mathrm{KM} / H R$ FOR
THE LONG-RANGE RUSSIAN AIRLINER, ILYUSHIN II-62.
THE MASS OF THE BOEING 747-21 iS ABOUT $238,815 \mathrm{KG}$.
DO YOU WANT A LISTING WITH PROGRESSIVELY LARGER
MASS AND SPEED ($\theta=N O, 1=Y E S) ?$
$? 1$
INPUT THE SMALLEST AND GREATEST VALUE OF THE LANDING
SPEEDS AND THE STEP SIZE IN KM/KR.
780.240,40

NOW, DO THE SAME FOR THE AIRPLANE'S MASS IN KG.
?406.4400.460
INPUT THE RUNOUT DISTANCE AND THE RUNWAY WIDTK
IN METERS.
21000.208

INPUT THE BRAKING STRENGTH (NEGATIVE) IN NEWTONS.
?-5006
MY CALCULATIONS ARE ACCURATE TO THE NEAREST N METERS.
INPUT A VALUE FOR N.
710
400 KG
80 KM/HR

LANDING DISTANCE $=70 \quad M$ $128 \mathrm{KM} / \mathrm{HR}$

LANDING DISTANCE $=100 \mathrm{M}$ 160 KM/HR

LANDING DISTANCE $=140 \mathrm{M}$ 200 KM/HR

LANDING DISTANCE $=178 \mathrm{M}$ $240 \mathrm{KM} / \mathrm{HR}$

LANDING DISTANCE $=210 \mathrm{M}$
800 KG
88 KM/HR
LANDING DISTANCE $=100 \mathrm{M}$ $120 \mathrm{KM} / \mathrm{HR}$ LANDING DISTANCE $=150 \mathrm{M}$ 160 KM/HR LANDING DISTANCE $=200 \mathrm{M}$ 200 KM/HR

LANDING DISTANCE = 268 M $248 \mathrm{KM} / \mathrm{MR}$

LANDING DISTANCE = 338 M
1208
KG 88 KM/HR

LANDING DISTANCE $=126 \mathrm{M}$ 120 KM/KR LANDING DISTANCE = 188 M 166 KM/HR LANDING DISTANCE 250 M 206 KM/KR LANDING DISTANCE = 330 M 246 KM/HR LANDING DISTANCE $=436 \mathrm{M}$

```
1620 KG
    3% KM/HR
        LANDING DISTANCE = 140 M
    120 KM/HR
        LANDING DISTANCE = 210 M
    160 KM/HR
        LANDING DISTANCE = 300 M
    2J0 KM/HR
        LANDING DISTANCE = 400 M
    240 KM/HP
        LANDING DISTANCE = 52% M
        KG
    80 KM/HR
        LANDING DISTANCE = 150 M
    120 KM/HR
        LANDING DISTANCE = 240 M
    160 KM/HP
        LANDING DISTANCE = 353 M
    20 KM/HR
        LANDING DISTANCE = 478 M
    240 KM/HR
        LANDING DISTANCE = 62% M
2400 KG
    B0 KM/HR
        LANDING DISTANCE = 17% M
    12J KM/IIT
        LANDING DISTANCE = 270 M
    160 KM/HR
        LANDING DISTANCE = 398 M
    20% KM/HR
        LANDING DISTANCE = 540 M
    240 KM/HR
        LANDING DISTANCE = 710 M
2888
    SJ KM/HR
        LANDING DISTANCE = 190 M
    120 KM/HR
        LANDING DISTANCE = 30% M
    163 KM/HR
        LANDING DISTANCE = 440 M
    2ag KM/HR
        LANDING DISTANCE = 620 M
    240 KM/HR
        LANDING DISTANCE =800 M
        KG
    B0 KM/HR
        LANDING DISTANCE = 200 M
    120 KM/HR
        LANDING DISTANCE = 330 M
    160 KM/HR
        LANDING DISTANCE = 480 M
    200 KM/HR
        LANDING DISTANCE =67% M
    248 KM/HR
        LANDING DISTANCE =890 M
3600 KG
    80 KM/HR
        LANDING DISTANCE = 210 M
    120 KM/HR
        LANDING DISTANCE = 350 M
    160. KM/HR
            LANDING DISTANCE = 520 M
    200 KM/HR
        LANDING DISTANCE = 730 M
    240 KM/HR
        LANDING DISTANCE =980 M
4000
            KG
    80 KM/HR
            LANDING DISTANCE = 230 M
    120 KM/HR
        LANDING DISTANCE = 380 M
    168 KM/HR
        LANDING DISTANCE = 570 M
    206 KM/HR
            LANDING DISTANCE = 800 M
    24E KM/HR
THE PLANE COULD NOT BE STOPPED IN 1000 METERS.
4400 KG
```

LANDING DISTANCE $=240 \mathrm{M}$
$123 \mathrm{KM} / \mathrm{HR}$
LANDING DISTANCE $=400 \mathrm{M}$
160 KM/HR
LANDING DISTANCE $=610 \mathrm{M}$ 200 KM/HR

LANDING DISTANCE $=860 \mathrm{M}$ $240 \mathrm{KM} / \mathrm{HR}$
THE PLANE COULD NOT BE STOPPED IN $180 \emptyset$ METERS. WELL, I'M FINALLY FINISHED NOW. GOODBYE !

DONE

```
RUN
LANDIN
PLEASE USE THE METRIC SYSTEM THROUGHOUT.
WOULD YOU LIKE SOME ACTUAL FIGURES FOR
AIRCRAFT CARRIERS ( }|=NO,l=YES)
?0
DO YOU WANT A LISTING WITH PROGRESSIVELY LARGER
MASS AND SPEED ( }\partial=NO,1=YES)
70
INPUT THE MASS IN KG, AND THE LANDING SPEED IN KM/HR.
?157500,236
INPUT THE RUNOUT DISTANCE AND THE RUNWAY WIDTH
IN METERS.
71000.250
INPUT THE BRAKING STRENGTH (NEGATIVE) IN NEWTONS.
?-5008
MY CALCULATIONS ARE ACCURATE TO THE NEAREST N METERS.
INPUT A UALUE FOR N.
710
THE PLANE COULD NOT BE STOPPED IN l0ø\varnothing METERS.
LIKE TO TRY AGAIN, WITH DIFFERENT UALUES ( }|=NO, 1=YES
l!
INPUT THE MASS IN KG, AND THE LANDING SPEED IN KM/HR.
7157500,230
INPUT THE RUNOUT DISTANCE AND THE RUNWAY WIDTH
IN METERS.
77500.250
INPUT THE BRAKING STRENGTH (NEGATIUE) IN NEWTONS.
?-10000
MY CALCULATIONS ARE ACCURATE TO THE NEAREST N METERS.
INPUT A UALUE FOR N.
?5J
THE PLANE COULD NOT BE STOPPED IN 7500 METERS.
LIKE TO TRY AGAIN, WITH DIFFERENT UALUES ( }|=NO, l=YES
l1
INPUT THE MASS IN KG, AND THE LANDING SPEED IN KM/HR.
7150000,230
INPUT THE RUNOUT DISTANCE AND THE RUNWAY WIDTH
IN METERS.
75000,200
INPUT THE BRAKING STRENGTH (NEGATIVE) IN NEWTONS.
?-100080
MY CALCULATIONS ARE ACCURATE TO THE NEAREST N METERS.
INPUT A UALUE FOR N.
7100
THE PLANE WAS SUCCESSFULLY STOPPED.
ITS LANDING DISTANCE WAS 180% M
LIKE TO TRY AGAIN, WITH DIFFERENT VALUES ( }|=NO, l=YES
70
DONE
```


RUN

RUN
LENSES
THIS PROGRAM MAY BE USED TO SOLVE LENS PROBLEMS.
IN THE ORDER GIVEN ENTER THE VALUES FOR THE FOLLOWING:
FOCAL LENGTH, OBJECT DISTANCE, IMAGE DISTANCE, OBJECT
SIZE, IMAGE SIZE. INPUT (ZERO) FOR UNKNOWN VALUES.
EVERY TIME THE COMPUTER ASKS 'READY?'. ENTER I IF YOU HAVE
MORE PROBLEMS TO DO, OR 0 TO END THE PROGRAM.

* * * READY ? 1

WHAT ARE YOUR VALUES FOR F, $P, 0,0,1 ? 1,2,3,4,5$
YOUR Q IS NOT CORRECT FOR THE F AND P YOU HAVE ENTERED NOTE CHANGED Q. THE PERCENT ERROR ON YOUR θ IS: 56 PERCENT.
YOUR I IS NOT CORRECT FOR THE O YOU HAVE ENTERED NOTE CHANGED I. THE PERCENT ERROR ON YOUR I IS: 25 PERCENT.
$F=1 \quad P=2 \quad \theta=2 \quad 1=4$
*** READY ? I
WHAT ARE YOUR VALUES FOR $F, P, 0,0,1 ? 1,2,2.04,4,3.9$
YOUR θ IS CORRECT TO WITHIN 2. 2
NOTE CORRECTED θ.
YOUR I IS CORRECT TO WITHIN 2.5 z
NOTE CORRECTED I.
$F=1 \quad P=2 \quad 0=2 \quad 1=4$
*** READY ? 1
WHAT ARE YOUR VALUES FOR F, $P, 0,0,1 ? 0,5,8,4,4$
YOUR I IS NOT CORRECT FOR THE O YOU HAVE ENTERED NOTE CHANGED I. THE PERCENT ERROR ON YOUR I IS: 37.5 PERCENT.
$F=3.07692 \quad P=5 \quad 0=8 \quad I=6.4$
** * READY ?
WHAT ARE YOUR VALUES FOR $F, P, 0,0, I ? 46,53,0,34,32$
YOUR I IS NOT CORRECT FOR THE O YOU HAVE ENTERED NOTE CHANGED I. THE PERCENT ERROR ON YOUR I IS: 85.6777 PERCENT.
$F=46 \quad P=53 \quad 0=348.286 \quad 0=34 \quad 1=223.429$
*** READY ?
WHAT ARE YOUR VALUES FOR F, P, $0,0,1 ? 4857,2,6,0,0$
YOUR θ IS NOT CORRECT FOR THE F AND P YOU HAVE ENTERED NOTE CHANGED 0 . THE PERCENT ERROR ON YOUR θ IS: 399.876 PERCENT.
$F=4857 \quad P=2 \quad \theta=-2.00082$

DONE

RUN
RUN
bockey
lockey- a competitive inhibition study of the enzyme aCETYLCHOLINESTERASE FEATURING THE LOCK AND KEY HYPOTHESIS

```
DO YOU W!SH INSTRUCTIONS? (I=YES, 0=NO)?!
```

 YOU ARE CONDUCTING AN INUESTIGATION OF THE ENZYME
 ACETYLCHOLINESTERASE. FROM THE NAME YOU CAN TELL
THAT THIS ENZYME WORKS ON THE CHEMICAL ACETYLCHOLINE.
IT BREAKS ACETYLCHOLINE INTO ACETIC ACID AND CHOLINE.
WE WANT TO INUESTIGATE WHICH INHIBITOR IS THE MOST
EFFECTIVE IN SLOWING THE NORMAL ACTION OF THE ENZYME.
THIS WILL GIVE US UALUABLE INFORMATION ON ITS ACTION.
THE CODE FOR THE INHIBITORS IS:

```
l= AMMONIUM
2= DIMETHYLAMINE BE SURE TO CONSULT
3= METHYLAMINE THE IMPORTANT STRUCTURAL
4 = PROSTIGMINE
S = TRIMETHYLAMINE INFOQMATION PACKET
|= NO INHIBITOR
```

IN THIS STUDY YOU CAN CONTROL:
THE AMOUNT OF ACETYLCHOLINE
THE TYPE OF INHIBITOR
AND THE AMOUNT OF INHIBITOR
BY COMPARING THE STRUCTURE OF ACETYLCHOLINE WITH
THE STRUCTURE OF THE FIVE INHIBITORS YOU SHOULD
BE ABLE TO MAKE A HYPOTHESIS AS TO WHICH OF THE
FIVE INHIBITORS WILL BE THE MOST EFFECTIVE
REMEMBER: INCLUDE YOUR KNOWLEDGE OF THE
LOCK AND KEY MODEL OF ENZYME ACTION.
AMOUNT OF ACETYLCHOLINE - FROM \varnothing TO 3 MILLIMOLES?2
TYPE OF INHIBITOR - USE CODE FROM O TO 5?
DATA FORMAT: $1=T A B L E, 2=G R A P H$ TYPE NUMBER OF CHOICE?I

| MINUTES | ACETYLCHOLINE | TOTAL ACETIC |
| :--- | :---: | :---: |
| ELAPSED | REMAINING | ACID PRODUCED |
| .- | 2 | 0 |
| .1 | 1.72 | .28 |
| .2 | 1.43 | .57 |
| .3 | 1.15 | .85 |
| .4 | .88 | 1.12 |
| .5 | .61 | 1.39 |
| .6 | .36 | 1.64 |
| .7 | .14 | 1.86 |
| .8 | .82 | 1.98 |
| .9 | 0 | 2 |
| THE REACTION HAS RUN TO COMPLETION | | |

CONCENTRATION OF INHIBITIOR REMAINING: \quad MILLIMOLES

```
ANOTHER EXPERIMENT? ( }1=YES,|=NO)?
```

AMOUNT OF ACETYLCHOLINE - FROM 0 TO 3 MILLIMOLES?2
TYPE OF INHIBITOR - USE CODE FROM O TO. 5?I
AMOUNT OF INHIBITOR IN MILLIMOLES?I日
DATA FORMAT: $1=T A B L E, 2=G R A P H ? 1$


```
CONCENTRATION OF INHIBITIOR REMAINING: ID日 MILLIMOLES
ANOTHER EXPERIMENT? ( }1=YES,-|=NO)?
**********************************************************
AMOUNT OF ACETYLCHOLINE - FROM D TO 3 MILLIMOLES?2
TYPE OF INHIBITOR - USE CODE FROM O TO 5?4
AMOUNT OF INHIBITOR IN MILLIMOLES?IDO
DATA FORMAT: l=TABLE, 2=GRAPH?2
MIN. MILLIMOLES ACETIC ACID PRODUCED
    I_...I....I....I....I....I....I....I....I....I.....I涪
    I* 0
        I* 0
        I*0
        I* 0
        I* 
        1* .01
        I* .01
        1* .01
        1*.01
            1*.01
    1* .0!
        1* .01
        I* .01
        I* .01
        I* .0!
        I* .00
        I* .02
    I* . }0
    I* .02
    I* .02
    I* . }0
DO YOU WANT TO CONTINUE THE ASSAY? (1=YES, 0=NO)?\emptyset
CONCENTRATION OF INHIBITIOR REMAINING: l|\varnothing MILLIMOLES
ANOTHER EXPERIMENT? ( }1=YES, B=NO)?
AMOUNT OF ACETYLCHOLINE - FROM 8 TO 3 MILLIMOLES?2
TYPE OF INHIBITOR - USE CODE FROM O TO 5?5
AMOUNT OF INHIBITOR IN MILLIMOLES?1D0
DATA FORMAT: 1=TABLE, 2=GRAPH?2
```


DONE

conthbutionprogram BASIC

TITLE: | DESCRIPTION: |
| :--- |
| ACKNOWLAR |

```
RUN
RUN
MALAR
DO YOU REQUIRE INSTRUCTIONS FOR MALAR (1=YES, 0=NO)?1
CURRENT CONDITIONS:
    APPROX. POP. OF AREA:100000
    APPROX. NO. ILL WITH MALARIA:25000
    APPROX. NO. DEATHS/YR DUE TO MALARIA:1000
TO CORRECT THIS SITUATION YOU CAN:
    ISOLATE THOSE ILL IN QUARANTINE HOSPITALS
    ADMINISTER DRUGS TO THOSE ILL
    APPLY PESTICIDES TO KILL MOSQUITOES
    GIVE PREVENTIVE DRUGS TO THOSE STILL HEALTHY
THESE ARE THE APPROX. COSTS:
    FIELD HOSPITAL OF 20 BEDS: $2000 PER YEAR
    DRUG TREATMENT FOR ILL: $2 PER PERSON FOR 1 YR.
    FULL ANTI-MOSQUITO SPRAY:S 75000 FOR 1 YEAR
        WHEN USING DDT, OTHER SPRAYS HIGHER COST
    PREVENTIVE DRUG EFFECTIUE 1 YR.:72 CENTS PER PERSON
CONSULT YO UR STUDENT MANUAL FOR FURTHER INFORMATION
YOU MAY USE MALAR EITHER WITH A BUDGET (UERSION 1)
OR WITHOUT A BUDGET (VERSION 2). VERSION NUMBER?2
YOUR OBJECTIVE IS TO MINIMIZE MALARIA FOR THE NEXT
FIUE YEARS.
```



```
HOW MANY FIELD HOSPITALS DO YOU INTEND TO USE?200
FOR THIS TREATMENT:
1=YES OR O=NO
YEAR 1 ?1
YEAR 2 ?1
YEAR 3 ?1
YEAR 4 ? 1
YEAR 5 ?1
COST OF THIS TREATMENT: $ 2.000DDE+06
TOTAL MONEY ALREADY ALLOCATED FOR 5 YEARS $ 2.00000E+06
-----------------------------------------.---.----- (DRUGS FOR SICK)
HOW MANY FULL TREATMENTS OF DRUGS
FOR THE ILL, SHOULD BE ORDERED PER YEAR?1000
FOR THIS TREATMENT:
YEAR 1 ?l
YEAR 2 ?1
YEAR 3 ?l
YEAR 4 ?l
YEAR 5 ?!
COST OF THIS TREATMENT: S 10000
TOTAL MONEY ALREADY ALLOCATED FOR 5 YEARS $ 2.01000E+\emptyset6
```



```
WHAT PERCENTAGE OF MOSQUITOES DO YOU WANT TO ELIMINATE?O
```


HOW MANY DOSES OF PREVENTIVE DRUGS, FOR THOSE
HEALTHY, DO YOU WANT TO ORDER PER YEAR? 1000
FOR THIS TREATMENT:
YEAR 1 ?
YEAR 2 ?
YEAR 3 31
YEAR 4 ?
YEAR 5 ?1
COST OF THIS TREATMENT: $\$ 3600$
TOTAL MONEY ALREADY ALLOCATED FOR 5 YEARS $\$ 2.01360 E+06$

| WHAT PERCENTAGE OF MOSQUITOES DO YOU WANT TO ELIMINATETGEWHAT PESTICIDE WILL YOU USE | |
| :---: | :---: |
| | |
| $1=\mathrm{DDT} \quad 2=$ MALATHION $\quad 3=\mathrm{PR}$ | 3 = PROPOXUR |
| 71 | |
| FOR THIS TREATMENT: | |
| YEAR 1 ? 1 | |
| YEAR 231 | |
| YEAR 3 ? 1 | |
| YEAR 470 | |
| YEAR 5 20 | |
| COST OF THIS TREATMENT: \$ 135000 | 000. |
| TOTAL MONEY ALREADY ALLOCATED FOR | FOR 5 YEARS $\$ 1.34100 E$ |

HOW MANY DOSES OF PREVENTIUE DRUGS, FOR THOSE
HEALTHY, DO YOU WANT TO ORDER PER YEAR ? 1000
FOR THIS TREATMENT:
YEAR 1 ? 1
YEAR 2 ?
YEAR 3 ?
YEAR 4 ? 0
YEAR 5 ? 0
COST OF THIS TREATMENT: $\$ 2160$
TOTAL MONEY ALREADY ALLOCATED FOR 5 YEARS $51.34316 E+06$

| USING YOUR PLAN: |
| :--- |
| YEAR |
| 0 |

HOW MANY FIELD HOSPITALS DO YOU INTEND TO USE? 0

HOW MANY FULL TREATMENTS OF DRUGS
FOR THE ILL, SHOULD BE ORDERED PER YEAR?7500
FOR THIS TREATMENT:
INDICATE YEARS TO BE USED BY TYPING, AFTER THE YEAR,
$1=Y E S$ OR $0=$ NO
YEAR 1 ? 1
YEAR 2 ?1
YEAR 3 ?1
YEAR 4 ? 1
YEAR 5 ?
COST OF THIS TREATMENT: $\$ 75000$.
THIS LEAVES A BALANCE OF 4250日0. DOLLARS
(MOSQUITOES)
WHAT PERCENTAGE OF MOSQUITOES DO YOU WANT TO ELIMINATE?I日G
WHAT PESTICIDE WILL YOU USE
$1=$ DDT $2=M A L A T H I O N \quad 3=P R O P O X U R$
? 3
FOR THIS TREATMENT:
YEAR 1 ? 1
YEAR 2 ? 1
YEAR 3 ?
YEAR 4 ?1
YEAR 51
COST OF THIS TREATMENT: \$ $3.18750 \mathrm{E}+06$

```
YOUR LAST ITEM OUERSPENT YOUR BUDGET
RESET THIS EXPENDITURE SO IT'S WITHIN THE S.4250Q0. REMAINING
WHAT PERCENTAGE OF MOSQUITOES DO YOU WANT TO ELIMINATE?100
WHAT PESTICIDE WILL YOU USE
1=DDT 2=MALATHION 3=PROPOXUR
?1
FOR THIS TREATMENT:
YEAR 1 ?l
YEAR 2 ?l
YEAR 3 ?1
YEAR 4 ?1
YEAR 5 ?l
COST OF THIS TREATMENT: $ 375000.
THIS LEAVES A BALANCE OF 50000. DOLLARS
```



```
HOW MANY DOSES OF PREVENTIVE DRUGS, FOR THOSE
HEALTHY, DO YOU WANT TO ORDER PER. YEAR?12000
FOR THIS TREATMENT:
YEAR 1 ?l
YEAR 2 ?l
YEAR 3 ?1
YEAR 4 ?l
YEAR 5 ?1
COST OF THIS TREATMENT: $ 43200.
THIS LEAVES A BALANCE OF 6800 DOLLARS
USING YOUR PLAN:
\begin{tabular}{lll} 
YEAR & NO. SICK & NO. DEATHS DUE TO MALARIA \\
\hdashline 0 & 25047 & 1024 \\
1 & 700 & 8 \\
2 & 706 & 9 \\
3 & 694 & 6 \\
4 & 691 & 5 \\
5 & 703 & 8
\end{tabular}
OUER YOUR 5 YEAR TREATMENT PROGRAM
    36 DEATHS DUE TO MALARIA HAVE BEEN RECORDED
DO YOU WISH AN EUALUATION (1=YES, \emptyset=NO)?1
```


TITLE:
DESCRIPTION:
INSTRUCTIONS:

| A classroom presentation that could be used to calculate mass defect, and |
| :--- |
| give the answer in terms of usable energy (kw-hr. of electricity). |
| OBJECTIVES: |

A. To calculate and explain mass defect.
B. To introduce the concept of binding energy.
C. Conversion of mass to energy. (atomic power) the numbers involved.

```
RUN
RUN
MASSD
    THIS PROGRAM IS DESIGNED TO INVESTIGATE MASS DEFECT
    WHICH OF THE ELEMENTS WOULD YOU LIKE TO CONSIDER?
    REMEMBER WE ARE DEALING WITH A SINGLE ATOM. THEREFORE
    IN ADDITION TO THE ATOMIC NUMBER WE ARE GOING TO NEED THE
    ACTUAL MASS (IN AMU) AND THE MASS NUMBER OF THE ISOTOPE
    YOU WANT TO WORK WITH.
    WHEN THE MACHINE TYPES A QUESTION MARK (?) TYPE IN
    YOUR ANSWER THEN HIT RETURN KEY. USE NUMBERS OF UP TO
    SIX SIGNIFICANT FIGURES. ROUND IF NECESSARY TO 6 DIGITS.
IN THE VALUES FOR MASS DEFECT.
    THE ATOMIC NUMBER IS ?R
    THE ACTUAL MASS IS ?15.9949
    THE MASS NUMBER IS ?:6
    THE SUM OF THE MASS OF THE 8 PROTONS ANC THE 8 NEUTRONS
    PLUS THE WEIGHT OF THE 8 ELECTRONS IS THE CALCULLATED
    MASS.
    CALCULATED MASS - ACTUAL MASS = MASS DEFECT
        16.132 - 15.9949 = .1371
    THE MASS DEFECT IN TERMS OF ENERGY IS THE EQUIVALENT OF
    2936 X 10%9 CAL. PER MOLE OF THIS SUBSTANCE,
OR 184 X 10:9 CAL. PER GRAM.
    IF WE DIVIDE THIS BINDING ENERGY BY THE NUMBER OF
    PARTICLES IN THE NUCLEUS, WE GET A RATIO KNOWN AS THE
    BINDING ENERGY PER NUCLEON, WHICH IS A MEASURE OF THE
    STABILITY OF THE NUCLEUS. THE MORE 'BINDING'
    PER NUCLEON, THE MORE STABLE IS THE NUCLEUS.
    THE BINDING ENERGY PER NIJCLEON IS : 1.27674E-gS ERGS. PER NUCLEON, OR
3.04712E-13 CAL. PER NIJC.,
    WHICH IS MORE COMMONLY EXPRESSED AS ROD MEV.
    THE AMOUNT OF ENERGY (BINDING ENERGY) CONTAINED IN ONE
    GRAM OF THIS SIJBSTANCE WOULD BE SUFFICIENT TO SUPPLY ALL
    THE ELECTRICAL NEEDS IN AN AVERAGE ONE FAMILY HOUSE USING
    15 KW-HRS. PER DAY FOR A PERIOD OF 1424S DAYS OR
        YEARS.
    IF YOU WOULD LIKE TO RUN ANOTHER PROBLEM TYPE IN I,
    IF NOT TYPE IN 日.
?ด
```

DONE

DISCUSSION: continued
3. The class is grouped. A maximum of 5 per group is recommended. The groups sequentially run the program until completion, or they are sent away from the machine by an incorrect answer. The other groups may be engaged in performance of the same experiment being "done" by the computer, or in a related activity. Interruption of an actual experiment, as a group goes to the computer, should not affect the results.
4. When the program is to be used with more than one class, it is suggested that the data line in the program (see list) be changed. Since this is a simple change to make, it can be made between groups within a class. This prevents their memorization and/or transmission to other groups and classes. Examples follow:

140 DATA $10,11,12,13,14$ may be changed to:
140 DATA1,2,3,4,5
or 140 DATA4,2,6,9,1
or 140 DATA20, 30, 40,50,60
Any combination of numbers may be inserted. There must be a total of five, however, since the student is asked to respond to five questions.

It has been found that extensive discussion preceeds the answering of each question on the computer, and in the writing of the rationalizations. This is certainly desirable.
B. Suggested Follow-up

Questions which may be used for discussion, or given as a homework assignment:

1. What happens to the concentration of water within the membrane as the glucose diffuses out? Why?
2. What observations indicated that the iodine has moved into the "cell"?
3. Why couldn't the same observations be made outside of the membrane?
4. What changes in observations would you expect if the cellophane had not been permeable?
5. Can materials diffuse through a semipermeable membrane in both directions at the same time?
6. What is meant by equilibrium?
7. Under what conditions is a cell in complete equilibrium with its environment? (When it is dead.)

RUN

RUN
MEMBR

CELL MEMBRANES

```
    AN IMPORTANT FUNCTION OF:CELL MEMBRANES IS TO CONTROL
THE PASSAGE OF MATERIAL INTO AND OUT OF CELLS. THIS PROGRAM
GOES INTO THE MEANS BY WHICH THIS PROCESS TAKES PLACE.
    IN THIS EXPERIMENT A STARCH AND GLUCOSE SOLUTION WAS
PLACED WITHIN A PIECE OF CELLOPHANE TUBING. CELLOPHANE IS
POROUS ENOUGH TO PERMIT THE PASSAGE OF SOME SMALLER MOLECULES
THROUGH IT. THEREFORE, A CLOSED OFF PIECE OF TUBING CAN
REPRESENT A CELL.
    AFTER THE STARCH AND GLUCOSE SOLUTION WAS PLACED INTO THE
TUBING, THE END WAS TIED OFF AND THE 'CELL. PLACED IN A BEAKER
OF WATER TO WHICH A FEW DROPS OF IODINE HAD BEEN ADDED.
LET 10 REPRESENT THE OUTSIDE OF THE MEMBRANE
LET 11 REPRESENT THE INSIDE OF THE MEMBRANE
WHERE IS THE CONCENTRATION OF GLUCOSE THE GREATEST?11
THAT IS CORRECT. WHERE IS THE CONCENTRATION OF STARCH THE GREATEST?11
RIGHT. WHERE IS THE CONCENTRATION OF IODINE THE GREATEST?ID
WOW! WHAT A SUPERIOR MIND YOU HAVE, OR IS IT JUST LUCKY GUESSING? WHERE IS THE CONCENTRATION OF WATER THE GREATEST?ID
YES. IF THE MEMBRANE WERE THE OUTER LIMITS OF A LIVING CELL, WHICH OF THE PROCESSES BELOW WOULD ACCOUNT FOR THE MOVEMENT OF GLUCOSE OUT OF THE CELL?
LET OSMOSIS = 12
LET ACTIVE TRANSPORT = 13
LET DIFFUSION \(=14\)
? 14
CORRECT. THE GLUCOSE DIFFUSED FROM AN AREA OF HIGHER CONCENTRATION TO ONE OF LOWER CONCENTRATION. WHICH PROCESS WOULD ACCOUNT FOR THE MOVEMENT OF THE WATER OUT OF THE CELL? 13
RIGHT. THE CONCENTRATION OF WATER IS GREATER OUTSIDE OF THE CELL THAN INSIDE. ACTIVE TRANSPORT WOULD ACCOUNT FOR MOVEMENT AGAINST DIFFUSION. WHICH PROCESS WOULD EXPLAIN THE TRANSPORT OF WATER INTO THE CELL? I2
YES, OSMOSIS IS DIFFUSION OF WATER THROUGH A SEMIPERMEABLE MEMBRANE. IF THE IODINE OUTSIDE OF THE CELL HAD TURNED BLACK, WHAT PROCESS WOULD HAVE CAUSED IT?13
YES. SINCE STARCH MOLECULES ARE RELATIVELY LARGE, THE CELL WOULD HAVE TO EXPEND ENERGY TO MOVE THEM ACROSS THE MEMBRANE, EVEN WHEN THE STARCH CONCENTRATION IS GREATER INSIDE THE CELL.
CONGRATULATIONS. YOU HAVE SCORED 100. KEEP UP THE GOOD WORK.
** END OF PROGRAM
***
DONE
```



```
RUN
APPEND-DESCAL
MKS
IN THIS LESSON YOU YILL GAIN SOME FAIILLARITY
WITH THE IKS SYSTEM OF 'UNITS.
TO USE THE CALCYLATOR MODE (LATER ON) TYPE 999999.
'HAT IS YOUR WEIGHT IN POINNDS?125
THEREFORE YOUR WEIGHT IS 556.818 NENTONS.
YOUR MASS IS 56.8182 KILOGRAMS.
WHILE I'M STILL EEING PERSONAL,
HO'M LONG DOES IT TAKE YOU TO GET TO SCHOOL?
GIリE YOJR TIME IN MINUTES.
?25
THAT IS 150z SECONDS.
WELL, ! GUESS THAT ISN'T TOO BAD!
NOG LET'S CONSIDER DISTANCES
HOW FAR DO YOU LJVE FROM SCHOOL?
ALLO'N 10 BLOCKS PER MILE AND PRINT YOUR
ANS:ER IN BLOCKSI
?35
THAT IS A DISTANCE OF 5632.7 METERS!
YOUR AUERAGE SPEED ON THE NAY TO SCHOOL IS 3.75514 M/SEC.
HOW DO YOU GET TO SCHOOL?
INDICATE SY ! FOF WALKING, 2 FOR BISS, 3 FOR CAR, 4 FOR BICYCLE
AND 5 FOR OTHER?3
THE SPEED LIMIT IN THE CITY IS 25 MPK.
WHAT IS THIS SPEED EXDTESSED IN METEPS PER SECOND?
?999999
CALCULATOR MODE.
CLEARED TO ZERO
1ST NUMBER?25
FINNCTION?MIJL
2ND NUMBE??5280
MUL= 132330.
FIJNCTION?DIV
2ND NIMMEER?3600
DIV = 36.6667
FUNCTIONTDIV
2ND NUMBER?3.28!
DIV= 11.1755
FINCTION?EXT
EXIT.
?11.1755
YOU KAVE JUST CALCULATED WHAT YOUR MAXIMUM
SPEED SHOULD HAUE BEEN. DO YOU EXCEED
ANY SPEED LIMITS (I=YES, O=NO)?D
RIGHT: HOPE YOIT HAD A GOOD TIME WITH THIS LITTLE
PROGRAM. YOU HAVE COODERATED TO THE FULLEST (I THINK).
TRY THE NEXT LESSON (MKS2).
PEACE AND FAREWELL.
DONE
```

TITLE:
DESCRIPTION:
INSTRUCTIONS:

ACKNOWLEDGEMENTS: \quad| COMPUTER-AUGMENTED PHYSICS IOPICS (MKS UNITS) |
| :--- |
| This proqram follows MKSl in learning sequence, and provides further |
| practice in conversion from English units to MKS units of physical meas- |
| urement, using the Desk Calculator mode if desired. |

August 1976

RUN

APPEND-DESCAL
RUN
MKS2

AND SO WE CONTINUE WITH THE MKS SYSTEM OF UNITS.
REMEMBER-- 999999 FOR CALCULATOR MODE.
IF A CAR HAS A MASS OF 1080 KILOGRAMS, WHAT IS ITS
WEIGHT IN NEWTONS?9880
VERY GOOD.
NOW TRY THIS ONE. WHAT IS THE WEIGHT OF AN OBJECT
WHICH HAS A MASS OF 7085 KILOGRAMS?
?999999
CALCULATOR MODE.
CLEARED TO ZERO
$15 T$ NUMBERT7885
FUNCTION?MUL
2ND NUMBER?9.8
MUL= 69433 .
FUNCTION?EXT
EXIT.
769433.

GOOD. SOON YOU'LL BE AN EXPERT.
WOULD YOU LIKE TO TRY ANOTMER CONVERSION OF MASS
TO WEIGHT? ($1=Y E S, \operatorname{D=NO}$)? 8
OK, THEN, TRY SOME DISTANCES:
HOW MANY METERS ARE THERE IN A MILE?
?999999
CALCULATOR MODE.
CLEARED TO ZERO
1ST NUMBER?5280
FUNCTION?DIV
2ND NUMBER?3.281
DIV= 1689.27
FUNCTION?EXT
EXIT.
HOW MANY METERS ARE THERE IN A MILE?
?1689.27
O.K. YOU ARE GETTING THE IDEA. GO TO THE DESK CALCULATOR MODE AND CALCULATE EACH OF THE FOLLOWING DISTANCES IN METERS
6708 MILES
8030 MILES
4480 MlLES
7200 MILES
CALCULATOR MODE.
CLEARED TO ZERO
15T NUMBERT6780
FUNCTION?MUL
2ND NUMBER?1609.27
$M U L=1.07821 E+37$
FUNCTION?CLR
CLEARED TO ZERO
1ST NUMBER?80JJ
FUNCTION?MUL
2ND NUMBER?1689.27
$M U L=1.28742 E+87$
FUNCTION?CLR
CLEARED TO ZERO
IST NUMBERTAADD
FUNCTION?MUL
2ND NUMBER?1689.27
MUL $=7.88879 E+86$
FUNCTION?CLR
CLEARED TO ZERO
IST NUMBERT7203
FUNCTION?MUL
2ND NUMBER?1609.27
MUL = $1.15867 \mathrm{E}+87$
FUNCTION?EXT
EXIT.

INPUT YOUR FOUR ANSWERS:

CONGRATULATIONS! SEE YOU LATER.
DONE

TITLE:

DESCRIPTION:

INSTRUCTIONS:

ACID-BASE TITRATION • 36616

This program will calculate molarity by using data obtained from an acid-base titration.

OBJECTIVES:
To provide the teacher and the student with a molarity calculator to be used where either finds it applicable:

PRELIMINARY PREPARATION:

A. Student - This program can be used with students who have had no preliminary preparation or those with extensive preparation.
B. Materials -. None

DISCUSSION:
It should be noted that normality is no longer in the New York State syllabus. It thus becones necessary to teach titration calculations in the molarity systems by way of moles of H^{+}reacted vs. moles of OH^{-} reacted, a much preferred method. This program does just that.

This program may be used in lab, as check on homework problems, and for tutorial work.

The teacher may also wish to show the logic of programs in general by using this very elementary program. The teacher need only take the list and explain it line by line to enhance the students" understanding. The equation used to solve the problems is:

$$
\begin{aligned}
& \text { Moles } H^{+}=\text {Moles } O H^{-} \\
&\left(M_{A}\right)\left(V_{A}\right)(n)=(M)\left(V_{B}\right)(n) \quad \begin{array}{l}
V=\text { volume in liters } \\
n=
\end{array} \quad \begin{array}{l}
\text { subscript of the } H^{+} \\
\\
\\
\text {or } \mathrm{OH}^{-}
\end{array}
\end{aligned}
$$

```
HOLAR, Page 2
```

```
RUN
GET-MOLAR
RUN
MOLAR
THIS PROGRAM IS DESIGNED TO CALCULATE THE UNKNOWN MOLARITY
IN AN ACID-BASE TITRATION.
```

```
WHAT IS THE SUBSCRIPT OF THE H+ IN THE ACID FORMULA,
```

WHAT IS THE SUBSCRIPT OF THE H+ IN THE ACID FORMULA,
AND THE SUBSCRIPT OF THE OH- IN THE BASE FORMULA?2,1
AND THE SUBSCRIPT OF THE OH- IN THE BASE FORMULA?2,1
HC MANY ML OF ACID, AND HOW MANY ML OF BASE
HC MANY ML OF ACID, AND HOW MANY ML OF BASE
WERE USED?19.7,10.0
WERE USED?19.7,10.0
IS THE KNOWN MOLARITY FOR THE ACID OR THE BASE?
IS THE KNOWN MOLARITY FOR THE ACID OR THE BASE?
ANSWER I FOR ACID OR 2 FOR BASE?I
ANSWER I FOR ACID OR 2 FOR BASE?I
WHAT IS THE MOLARITY OF THE ACID?S.S
WHAT IS THE MOLARITY OF THE ACID?S.S
ANSWER: THE BASE IS 21.67 M.
ANSWER: THE BASE IS 21.67 M.
DO YOU WANT TO WORK ANOTHER PROBLEM? ANSWER I FOR YES
DO YOU WANT TO WORK ANOTHER PROBLEM? ANSWER I FOR YES
OR FOR NO?I

```
OR FOR NO?I
```


WHAT IS THE SUBSCRIPT OF THE H+ IN THE ACID FORMULA,
AND THE SUBSCRIPT OF THE OH- IN THE BASE FORMULA?3.1
HOW MANY ML OF' ACID, AND HOW MANY ML OF BASE
WERE USED?日.29.3
IS THE KNOWN MOLARITY FOR THE ACID OR THE BASE?
ANSWER 1 FOR ACID OR 2 FOR BASE?I
WHAT IS THE MOLARITY OF THE ACID?2.0
ANSWER: THE BASE IS 0 M.
DO YOU WANT TO WORK ANOTHER PROBLEM? ANSWER 1 FOR YES
OR \quad O FOR NO? 1
WHAT IS THE SUBSCRIPT OF THE H+ IN THE ACID FORMULA.
AND THE SUBSCRIPT OF THE OH- IN THE BASE FORMULA?2,1
HOW MANY ML OF ACID, AND HOW MANY ML OF BASE
WERE USED?15.0.24.7
IS THE KNOWN MOLARITY FOR THE ACID OR TME BASE?
ANSWER 1 FOR ACID OR 2 FOR BASE?2
WHAT IS THE MOLARITY OF THE BASE?I.5
ANSWER: THE ACID IS 1.24 M .
DO YOU WANT TO WORK ANOTHER PROBLEM? ANSWER 1 FOR YES
OR 6 FOR NO?B

DONE

BYE
051 MINUTES OF TERMINAL TIME
TITLE:
DESCRIPTION:
INSTRUCTIONS:

ACKNOWLEDGEMENTS: | NEWTN2: Newtons 2nd Law |
| :--- |
| A problematic situation is presented to the student which requires |
| repeated applications of Newton's 2nd law. By selecting various angles |
| and forces, the operator can observe the resulting motion produced. |
| To successfully complete the program, the student must complete a |
| specified displacement within ten attempts. |
| OBJECTIVES: |
| To aid in the development of skills in applying the equations of motion. |
| Huntington Project |
| Polytechnic Institute of Brooklyn |

RUN
RUN
NEWTNZ
HINT: GRAPH PAPER IS HELPFUL IN RUNNING THIS PROGRAM.

```
F' MA SPEED,...
----------------
```

YOU'RE TRYING TO ESCAPE FROM DEVIL'S ISLAND ON A SMALL BOAT. DEVIL'S ISLAND IS LOCATED AT COORDINATES ($\theta, \theta)$.
TO SUCCEED, YOU MUST REACH A CHANNEL 50 METERS WIDE AND
10000 METERS DUE EAST, AT ABOUT $(10000,0)$.
IN ADDITION, YOU MUST GET THERE IN FIUE MINUTES OR LESS OR SUFFER RECAPTURE --- (HEH,HEH,HEH--)

WHAT DO YOU WEIGH (IN POUNDS)?170
YOUR SITUATHON IS AS FOLLOWS:
THE WIND IS BLOWING FROM THE NORTHEEST (4S DEGREES) EXERTING A FORCE OF 120 NEWTONS ON YOUR BOAT . YOU MAY PADDLE WITH ANY FORCE IN THE EASTWARD DIRECTION (ZERO DEGREES IS EAST) TO ACCELERATE YOUR BOAT ACROSS THE BAY AND THUS REACH THE OPPOSITE SHORE (AND FREEDOM). (NOTE: THE MASS OF THE BOAT WITH YOU ABOARD IS 177 KILOGRAMS).

WITH WHAT FORCE (IN NEWTONS) AND DIRECTION (IN DEGREES) WILL YOU PADDLE?150.25
$T=.5 \quad X=127 \quad Y=-57 \quad U(X)=8 \quad=-4$

UANT TO CHANGE FORCE OR DIRECTION ($1=Y E S, \theta=N O): ? 0$
$T=1 \quad X=507 \quad U=-229 \quad U(X)=17 \quad x=8$

WANT TO CHANGE FORCE OR DIRECTION ($1=Y E S, \theta=N O)$? 1
WITH WHAT FORCE (IN NEWTONS) AND DIRECTION (IN DEGREES) WILL YOU PADDLE?150,15
$T=1.5 \quad X=1163 \quad Y=-577 \quad U(X)=27 \quad Y(Y)$

WANT TO CHANGE FORCE OR DIRECTION ($1=Y E S, \theta=N O): ~ ? 1$

```
WITH WHAT FORCE (IN NEWTONS) AND DIRECTION (IN DEGREES) WILL
```

YOU PADDLE?150,8
$T=2 \quad X=2128 \quad Y=-1211 \quad U(X)=37 \quad Y=-27$

WANT TO CHANGE FORCE OR DIRECTION ($1=Y E S, \theta=N O): ? 0$
$T=2.5 \quad X=3410 \quad Y=-2176 \quad U(X)=48 \quad U(Y)=-38$
WANT TO CHANGE FORCE OR DIRECTION ($1=Y E S$, $\theta=N O)$: ?
$T=3 \quad X=5011 \quad Y=-3472 \quad U(X)=59 \quad U(Y)=-49$

WANT TO CHANGE FORCE OR DIRECTION ($1=Y E S, \theta=N O)$? 1
WITH WHAT FORCE (IN NEWTONS) AND DIRECTION (IN DEGREES) WILL YOU PADDLE? 150,3
$T=3.5 \quad X=6932 \quad V(X)=69 \quad V(Y)=-62$

WANT TO CHANGE FORCE OR DIRECTION ($1=Y E S, \theta=N O):$? 1
WITH WHAT FORCE (IN NEWTONS) AND DIRECTION (IN DEGREES) WILL YOU PADDLET150,30
$T=4 \quad X=9126 \quad V=-7018 \quad U(X)=77 \quad V(Y)=-64$

WANT TO CHANGE FORCE OR DIRECTION ($1=Y E S, \theta=N O)$ \& ? 1
WITH WHAT FORCE (IN NEWTONS) AND DIRECTION (IN DEGREES) WILL YOU PADDLE?150,25
$T=4.5 \quad X=11559 \quad Y=-8990 \quad U(X)=85 \quad U(Y)=-68$

YOU HAVE REACHED THE OPPOSITE SHORE,
BUT ARE-8990 METERS OFF COURSE.
ALL THAT WORK FOR NOTHING!
YOU'RE LOST IN THE SWAMPS FOREVER; GOODBYE.
SEE IF YOU CAN IMPROVE YOUR ABILITY LATER.
DONE

| TITLE: | NZYM2: Enzyme Reaction Rate $\quad 3$ NZYM2 |
| :---: | :---: |
| DESCRIPTION: | An extension of NZYMC A833-36303 which permits the student to examine the effect on reaction rate with continuous changes in environnartal factors. |
| | OBJECTIVES: |
| | In addition to reinforcing the concept that reaction rate is governed by pH , temperature, and enzyme concentration; the program can be used to: |
| | A. Introduce the idea of controlled experimentation where two factors are kept constant and a third is permitted to vary. |
| | B. Develop the idea of plotting experimental data to generate a family of curves as fllustrated below. |
| | $4: \text { Concentration }=5084$ |
| | Reaction |
| | Temp (${ }^{\circ} \mathrm{C}$) ${ }^{\text {concentration }}$ |
| INSTRUCTIONS: | See following page. |
| | . |
| | . |
| ACKNOWLEDGEMENTS: | Huntington Project
 Polytechnic Institute of Brooklyn |

INSTRUCTIONS:

PRELIMINARY PREPARATION:

A. Student - Same as NZYMC. It might also be helpful if the student has been exposed previously to an actual experimental demonstration in which the change of reaction rate with one or more factors is visually displayed. The rate of bubble formation when one of the reactant products is a gas for example, might serve as one practical illustration of variation of reaction rate with temperature.
B. Materials - none

DISCUSSION:

A. Operational Suggestions

1. Average students should work as part of a group; above-average students could be permitted to work alone.
2. For group effort activity, it would be instructive to use three different groups, each of which holds a different factor constant while the other two factors are allowed to vary.
B. Suggested Follow-up
3. Each group should be required to plot their data, on a board, if possible, so the whole class can see the results. Families of curves should be discussed.
4. Equivalent points on each data set should be compared; e.g. is reaction rate the same when pH is 4 , temperature is $25^{\circ} \mathrm{C}$ and concentration is 50%, regardless of which factor is held constant and the others allowed to vary?
5. Introduce the concepts of interpolation between curves and again check comparable points on each set.
6. Indicate that the maximum reaction rate obtained is the same regardless of the technique used to reach maximum.
```
RUN
RUN
NZYM2
THIS PROGRAM WILL ENABLE YOU TO SEE THE EFFECTS ON THE RATE OF
REACTION WITHIN A SYSTEM CONTROLLED BY ENZYMES. THE
reaction rate will vary as the environmental conditions
VARY. THESE CONDITIONS, PH, CONGENTRATION OF ENZYMES,
AND TEMPERATURE, IN A NATURAL SITUATION ARE NEVER CONSTANT.
LET'S SEE WHAT CONTROLS THIS RATE IN THESE SYSTEmS.
THE FOLLOWING ARE THE LIMITS WITHIN WHICH EACH OF OUR
ENUIRONMENTAL CONDITIONS CAN VARY.
    1)PH----------BETWEEN 4 AND 10
    2)ENZ. CONC.--BETWEEN 10 AND 100 PERCENT
    3)TEMP.--.---BETWEEN 5 AND 47 DEGREES C.
I AM GOING TO PRINT A '?'. YOU MUST THEN TYPE A NUMBER FOR PH,
CONC., AND TEMP. (IN THAT ORDER), WHICH FALLS WITHIN EACH
LIMIT STATED (SEE ABOVE.)
?4,16,5
PH CONC. TEMP. REACTION RATE
    4
    1 0
        ---
    .05
NOTE THE REACTION RATE WITH THE THREE VALUES WHICH YOU
SELECTED TO PROVIDE A BASIS FOR JUDGEMENT OF REACTION
RATE, CHOOSE ANOTHER SET OF VALUES FOR PH, CONC., AND
TEMP. (SEE LIMITS ABOVE).
?7,10,5
\begin{tabular}{cccc} 
PH & CONC & TEMP. & REACTION RATE \\
\hdashline 7 & 10 & 5 & 4.5
\end{tabular}
IS THE RESULT A HIGHER OR LOWER REACTION RATE? IS THE HIGHEST
VALUE OBTAINED A MAXIMUM VALUE? DO YOU WANT TO TRY ANOTHER
SET OF VALUES (TYPE '1') OR WOULD YOU PREFER A MORE ORGANIZED
APPROACM TO DETERMINE MAXIMUM REACTION RATE (TYPE '2')
?2
```

```
WE ARE NOW GOING TO PERFORM AN EXPERIMENT IN WHICH YOU ARE
TO TYPE IN THE UALUES FOR PH, CONC. AND TEMP. AS YOU DID
BEFORE. HOWEUER,NOW YOU ARE GOING TO BE ABLE TO CHOOSE THE
FACTOR WHICH WILL VARY. THE OTHER TWO FACTORS WILL REMAIN
CONSTANT. (USE DIFFERENT NUMERICAL UALUES FOR EACH FACTOR.)
TO OBTAIN THE MOST SIGNIFICANT. DATA, START THE EXPERIMENT
USING LOW NUMERICAL VALUES FOR EACH FACTOR.
I AM GOING TO PRINT A '?'. YOU MUST THEN TYPE A NUMBER FOR PH,
CONC., AND TEMP. (IN THAT ORDER), WHICH FALLS WITHIN EACH
LIMIT STATED (SEE ABOVE.)
??
??20,5
AT LEAST ONE OF THE VARIABLES DOES NOT LIE WITHIN THE
PRESCRIBED LIMITS. SEE LIMITS ABOVE AND TRY AGAIN.
?4,20,5
TYPE THE NUMBER WHICH IS TO BE VARIED.
?2g
\begin{tabular}{llll} 
PH & CONC. & TEMP. \\
-- & \(-\infty\)
\end{tabular}
    4 20
    4
    30
        .1
    30
    40
        60
        80
        100 
        5
    4
```

TITLE:
DESCRIPTION:

ACKNOWLEDGEMENTS: $|$| NZYMC: Enzymatic Reaction Rates |
| :--- |
| This program covers enzymatic reaction rates, and conveys the idea that |
| enzyme reactions are dependent upon environmental factors such as pH, |
| temperature, and the concentration of the enzymes. A simulated |
| experimental situation is created, whereby the student works with one |
| parameter at a time and can vary the degree of the enzyme reactivity. |
| OBJECTIVES: |

RATES OF ACTIVITY WHEN VARYING

DISCUSSION:

A. Operational Suggestions

1. Student level - Average to above average ability
2. The student should use all three limiting factors presented in the computer program.
3. Students' graphs should be checked before proceeding with the follow-up question.
4. Students work in groups of 5 or less. Allow one group at a time at the computer while the remaining groups are engaged in a related activity. For Example: Food testing with hydrogen peroxide for catalase activity.
B. Suggested Follow-up

To maximize the value of this program, it is strongly suggested that the teacher:

1. Elicit from the students:

What represents maximum and minimum reaction rate for pH , temperature, and enzyme concentration? (Use appropriate transparencies or chalkboard)
2. Ask the following questions, based on the plotted graphs, as lead-ins to discussion or as a homework assignment.
(a) At what point do most reactions take place with regard to pH , enzyme concentration, and temperature? (This and subsequent questions are intended to bring up the ideas of optimal pH, temperature, and enzyme concentration.)
(b) Why is death caused when pH rises or falls beyond a certain point in a system?
(c) Why does the concentration of enzymes reach a point and then no increase in reactions take place?
(d) What is normal body temperature? What relationship is there between reaction rate and body temperature? High fever? Freezing temperature? (Note: 40 deg. C. is 104 deg. F., which is higher than normal.)
(e) Suppose the pH of a system is 7 , enzyme concentration is 90 , and temperature is 0 degrees. What is the reaction rate? Why? *
(f) Suppose the temperature is 37 deg. C., enzyme concentration is 30 , and pH is 14. What is the reaction rate? Why? *
(g) What is meant by limiting factors?

* Student must examine all three graphs before reaching a conclusion.
RUN NZYMC
THIS PROGRAM IS DESIGNED TO SHOW THAT ENZYME ACTION IS RELATED TO CERTAIN LIMITING FACTORS. THESE FACTORS INCLUDE PH, the concentration of enzymes, and temperature. in this program we assume that two of the three factors are constants and WILL CHANGE ONLY ONE AT A TIME. WE ALSO ASSUME THAT EACH FACTOR WORKS INDEPENDENTLY, ALTHOUGH THIS IS NOT TRUE IN NATURE.
YOU have a choice of the following limiting factors:
1)PH 2)CONCENTRATION OF ENZYMES 3)TEMPERATURE
WHICH NUMBER DO YOU WISH ?I

NZYMC, page 4
*** TEMPERATURE ***
HOW REACTIVE AN ENZYME ARE YOU WORKING WITH? USE A VALUE OF
FROM 1 (NOT VERY REACTIVE) TO 10 (VERY REACTIVE). ?7.S

| RUN | | |
| :---: | :---: | :---: |
| RUN | | |
| ORBIT | | |
| 1 | 0 | 1 |
| . 995084 | 9.98334E-02 | 1 |
| .980067 | . 198669 | 1 |
| .955336 | . 29552 | 1 |
| . 921061 | . 389418 | 1. |
| . 877583 | . 479425 | 1. |
| . 825336 | . 564642 | 1. |
| . 764842 | . 644217 | 1. |
| . 696707 | - 717356 | 1. |
| . 62161 | . 783326 | 1. |
| . 540302 | . 84147 | 1. |
| . 453596 | -891207 | .999999 |
| - 362358 | . 932038 | . 999999 |
| . 267499 | .963557 | .999999 |
| . 169967 | . 985449 | . 999999 |
| . 076737 | . 997494 | . 999999 |
| -2.91997E-02 | . 999572 | . 999999 |
| -. 128845 | . 991663 | . 999999 |
| -. 227262 | . 973846 | . 999998 |
| -. 32329 | .946298 | . 999998 |
| ..416147 | . 909295 | . 999998 |
| -. 504846 | . 863207 | .999998 |
| -. 588501 | . 808494 | . 999998 |
| -. 666276 | . 745702 | . 999998 |
| -. 737394 | . 67546 | .999998 |
| -. 801143 | - 598468 | . 999997 |
| -. 856888 | . 515497 | . 999997 |
| -. 904071 | -427375 | -999997 |
| -.942221 | - 334983 | . 999997 |
| -. 976956 | . 239244 | . 999997 |
| -. 98999 | -141114 | . 999997 |
| -. 999132 | 4.15747E-82 | . 999997 |
| -.998291 | -5.83803E-02 | . 999997 |
| -. 987476 | -. 157752 | . 999997 |
| -. 966793 | -. 255547 | . 999997 |
| -. 936451 | -. 35679 | . 999997 |
| -.896752 | -. 442527 | .999997 |
| -.848093 | -. 529842 | . 999997 |
| -. 790959 | -. 611863 | . 999997 |
| -. 725923 | -. 687771 | . 999997 |
| -. 653634 | -. 756807 | . 999997 |
| DONE | | |

RUN

RUN

ORGI

THIS IS A PROGRAM FOR TEACHING YOU HOW TO NAME ORGANIC
CHEMICALS OF UARIOUS TYPES. NOW SINCE I'VE TOLD YOU
WHAT THIS PROGRAM IS ABOUT, WHAT IS YOUR NAME?
PRICHARD
hello, RICHARD. LET'S GET STARTED THEN.
CARBON COMPOUNDS MAKE UP QUITE A LARGE PART OF OUR WORLD. I (A COMPUTER) AM NOT MADE OF CARBON BUT YOU ARE, RICHARD.
THE CHEMISTRY OF CARBON COMPOUNDS IS CALLED 'ORGANIC CHEMISTRY'.
ONE FACET OF THIS LARGE AREA OF STUDY IS 'HYDROCARBONS."
HYDROCARBONS ARE CHEMICAL COMPOUNDS WHICH CONTAIN CARBON
AND HYDROGEN ATOMS ONLY.
WHICH OF THE COMPOUNDS BELOW DO YOU THINK IS A HYDROCARBON?
(USE THE NUMBER OF YOUR CHOICE)
1. 2. 3 •

| H H H | H H H H | H H | H |
| :---: | :---: | :---: | :---: |
| $\mathrm{HC}-\mathrm{C}-\mathrm{C}-\mathrm{OH}$ | $\mathrm{HC}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{H}$ | $\mathrm{HC}-\mathrm{C}-\mathrm{O}-\mathrm{CH}$ | |
| H H H | H H H H | H H | |

21
NO THAT'S NOT CORRECT. TRY AGAIN. REMEMBER,
HYDROCARBONS ARE CHEMICAL COMPOUNDS WHICH CONTAIN CARBON
AND HYDROGEN ATOMS ONLY.
WHICH OF THE COMPOUNDS BELOW DO YOU THINK IS A HYDROCARBON?
(USE THE NUMBER OF YOUR CHOICE)
$? 2$
THAT'S THE ONE. YOU SAW THE OTHER TWO HAD OXYGEN IN THEM.
HOW MANY CARBONS ARE THERE IN I, 2, 3 ? $4,4.4$
NO, THAT'S NOT RIGHT. YOU MISSED 13 COUNT AGAINI
HOW MANY CARBONS ARE THERE IN $1,2,2,374,4,3$
NO, THAT'S NOT RIGHT. YOU MISSED I COUNT AGAIN!
HOW MANY CARBONS ARE THERE IN 1. 2, 3?3.4.3
THAT'S RIGHT. GOOD FOR YOU, RICHARD!
A CERTAIN CLASS OF HYDROCARBONS IS CALLED
'THE ALKANE FAMILY.' THEY ALL HAVE A CERTAIN RATIO OF
CARBON TO HYDROGEN SUCH THAT IF THERE ARE 'N' CARBONS,
THERE WILL BE $2 N+2$ HYDROGENS.
HOW MANY HYDROGENS UOULD AN ALKANE OF 1 CARBONS HAVE?6
NO, THAT'S NOT RIGHT. TRY AGAIN. REMEMBER: HYDROGENS $=2 N+2$
HOW MANY HYDROGENS WOULD AN ALKANE OF 1 CARBONS HAVETA
THAT'S THE ANSWER. LET'S DO ANOTHER ONE. NOW
HOW MANY HYDROGENS WOULD AN ALKANE OF 3 CARBONS HAVE? 8
THAT'S THE ANSWER. LET'S DO ANOTHER ONE. NOW
HOW MANY HYDROGENS WOULD AN ALKANE OF 4 CARBONS HAVE? 10
THAT'S THE ANSWER. LET'S DO ANOTHER ONE. NOW
HOW MANY HYDROGENS WOULD AN ALKANE OF 4 CARBONS HAVE?IO
THAT'S THE ANSWER.
NOU YOU SHOULD LEARN HOW TO NAME HYDROCARBONS.
ALL THE ALKANES END IN '-ANE." THE PREFIXES ARE AS FOLLOWS:
FOR ONE CARBON THE PREFIX IS'
TWO
THREE
FOUR
FIVE
SIX
FOR EXAMPLE
H
HCH IS METHANE AND HC-CH
H
15 ETHANE.

```
WHAT DO YOU THINK THIS COMPOUND 1S:
H H H H
    HC-C-C-CH
        HHHH
    1. PROPANET 2. BUTANE? 3. PENTANE?
(TYPE NUMBER OF YOUR ANSWER)?3
PENTANE HAS FIVE CARBONS. TRY AGAIN.
(TYPE NUMBER OF YOUR ANSWER)?I
PROPANE HAS THREE CARBONS. COUNT AGAIN.
(TYPE NUMBER OF YOUR ANSWER)?R
RIGHTI BUTANE HAS FOUR CARBONS.
MERE ARE SOME MORE NAMES FOR NUMBERS OF CARBONS.
MOST OF THEM ARE GREEK SO THEY'RE A LITTLE WEIRD.
```



```
HOU MANY CARBONS DO YOU THINK THERE ARE IN
HEPTADECANE, OCTADECANE, AND NONADECANE? (USE COMMAS)?16,17,18
THAT'S NOT RIGHT. BUT HERE'S A CLUE* 'OCTADECANE'
HAS 18 CARBONS. TRY AGAIN.
HOW MANY CARBONS DO YOU THINK THERE ARE IN
HEPTADECANE, OCTADECANE, AND NONADECANE? (USE COMMAS)?17,18,19
THAT'S RIGHT, RICHARD.
```

UHEN YOU'RE READY FOR THE
NEXT LESSON, TYPE 'GET-ORG2•.
DONE
GET-ORG2
RUN
ORG8
KELLOI OTIS HERE AGAIN. THIS IS THE SECOND PROGRAM IN
THE SERIES ON ORGANIC CHEMISTRY. IF YOU HAUEN'T DONE SO
ALREADY, GET-ORGI. BY THE WAY, WHO IS THIS?RICHARD
OH, IT'S YOU AGAIN, RICHARD. HAVEN'T GIVEN UP YET, I SEE.
ONE THING I DIDN'T TALK ABOUT LAST TIME IS ' WHAT IF ALL THE
CARBONS AREN'T IN A STRAIGHT LINE?' (I COULD TELL THAT
QUESTION WAS BOTHERING YOU, RICHARD).
COMPOUNDS UHICH HAVE THE SAME NUMBERS OF ELEMENTS
BUT IN A DIFFERENT ARRANGEMENT ARE CALLED 'ISOMERS'. FOR
EXAMPLE, MERE ARE THREE ISOMERS OF PENTANE:

| $\underset{H C H}{H}$ | $\underset{H}{\mathrm{HCH}}$ | |
| :---: | :---: | :---: |
| H H 1 H | H 1 H | H H H H H |
| $\mathrm{HC-C-C-CH}$ | $\mathrm{HC-C-CH}$ | $\mathrm{HC-C-C-C-CH}$ |
| $\mathbf{H} \mathbf{H} \mathbf{H}$ | H 1 H | H H H H H |
| | $\underset{\underset{H}{H C H}}{ }$ | |

```
HOW MANY CARBONS DOES EACH ONE HAVE (ONE ANSWER)?3
COUNT AGAIN, RICHARD.
HOW MANY CARBONS DOES EACH ONE HAVE (ONE ANSWER)?
376
COUNT AGAIN, RICHARD.
HOW MANY CARBONS DOES EACH ONE HAVE (ONE ANSWER)?I
COUNT AGAIN, RICHARD.
NELL, YOU'VE HAD 3 TRIES. THERE ARE 5 IN EACH ONE.
NOY, HOW MANY HYDROGENS? 13
COUNT AGAIN.
NOY, KOU MANY HYDROGENS?IS
COUNT AGAIN.
NOY. HOW MANY HYDROGENSTII
COUNT ABAIN.
GEE, RICHARD, THAT'S THE SECOND ONE IN A ROW YOU'VE MISSED.
THERE ARE 12 HYDROGENS IN EACH AND EVERY ONE.
```

```
NOW, HOW DO WE NAME SUCH THINGS? FIRST OFF, H
A GROUP CONTAINING ONE CARBON IS CALLED A HC-
'METHYL' GROUP. ONE WITH TWO CARBONS IS
HC
H H
HC-C- CALLED AN 'ETHYL. GROUP. ONE WITH
    H H THREE IS CALLED 'PROPYL' AND SO ON, USING THOSE
        GREEK NAMES I SHOWED YOU IN 'ORGI'.
        WHAT WOULD YOU CALL THIS GROUP?
        HH H H H
        HC-C-C-C-C-
        HHHHH
TPENTANE
THAT'S CLOSE BUT SIDE GROUPS END IN '-YL'. TRY AGAIN.
        WHAT WOULD YOU CALL THIS GROUP?
PPENTYL
RIGHT YOU ARE, RICHARDI
```

IN ORGANIC CHEMISTRY YOU HAVE TO NUMBER YOUR CARBONS IN
THE LONGEST, CONTINUOUS CHAIN AND THEN USE THOSE NUMBERS TO
TELL HHERE A SIDE GROUP IS. I'LL GIVE YOU AN EXAMPLE IN A
MOMENT BUT I'M GETTING TIRED OF TYPING ALL THOSE HYDROGENS
SO I'M GOING TO LEAUE THEM OFF FROM NOU ON. THE STRUCTURES
WILL BE EASIER TO SEE ANYWAY. FOR EXAMPLE:
$\stackrel{C}{\frac{C}{C}} \mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}$
IS CALLED 2-MÉTHYL HEPTANE BECAUSE THERE ARE SEVEN
CARBONS ("HEPTANE') IN THE MAIN CHAIN AND THEN ON THE SECOND
CARBON ('2-') THERE IS A 'METHYL GROUP. .OK. WHICH
END DO YOU NUMBER FROM?---THE ONE WHICH GIVES YOU THE LOWEST
MUMBER FOR THE MOST COMPLICATED GROUP. CAUTION****>>>

| C | (THIS IS ALSO |
| :---: | :---: |
| 1 | CALLED |
| $C-C-C-C-C-C H E T H Y L ~ H E P T A N E) ~$ | |

(IT'S JUST THE SAME MOLECULE FROM THE OTHER SIDE)

$$
\stackrel{C}{\mathrm{I}} \mathrm{C-C-C-C-C} \text { NOW WHAT WOULD YOU CALL THIS? }
$$

?4-METHYL HEXANE
YOU NUMBERED FROM THE WRONG END. COUNT AGAIN.
?3-METHYLHEXANE
NO, THAT'S NOT IT. COUNT THE CARBONS IN THE MAIN CHAIN
AND THEN WHERE THE METHYL GROUP IS. NOW WHAT'S THAT
NAME AGAIN? ? 3-METHYL HEXANE
THAT'S THE ANSWER. SAY, RICHARD, YOU'VE BEEN WATCHINGI

SOMETIMES YOU CAN HAVE MORE THAN ONE OF A CERTAIN GROUP. IF THAT HAPPENS, YOU HAUE TO TELL HOW MANY THERE ARE USING SLIGHTLY DIFFERENT NOTATION:

```
2 = DI- 4 = TETRA- CSIX AND THE OTHERS
```

3 = TRI- $5=$ PENTA- ARE JUST LIKE YOUR
OTHER GREEK PREFIXES.)
FOR EXAMPLE:

| C | C | C |
| :---: | :---: | :---: |
| C | l | I |
| $\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ | | |
| I | | |
| C | | |

YOU MADE SOME SORT OF ERROR. COUNT AGAIN. UHAT'S THE NAME?
12,3,5,7-METHYL OCTANE
YOU FORGOT TO TELL HOW MANY METHYLS. TRY AGAINI
12,4,6,7-TETRAMETHYL OCTANE
YOU COUNTED FROM THE WRONG END. TRY AGAINI
72,3,5,7-TETRAMETHYL OCTANE
YOU GOT IT RIGHTIIIIIII GOOD FOR YOU.
OF COURSE, YOU CAN HAVE OTKER GROUPS THAN 'METHYL'. IN NUMBERING. CARBON POSITIONS, YOU GIVE THE MOST COMPLICATED GROUP THE END
WITH THE LONEST NUMBER. IN NAMING, HOWEVER, YOU NAME THE
SIMPLEST GROUP FIRST• FOR EXAMPLE:

HEY: YOU'VE BEEN AT THIS FOR 11 MINUTES, RICHARD. THAT'S LONG ENOUGH FOR ANYONE.

```
GOOD-BYE, RICHARD
    OTIS
```

DONE
title:
DESCRIPTION:

INSTRUCTIONS:

HYDROCARBON CLASSES OF ALKENES AND ALKYNES

There are two programs in this package: ORG3 and ORG4. They continue a series of nomenclature programs for chemistry instruction.

This program is inter-active. Just Get and RUN program.

```
RU.V
RUN
ORG3
    HELLO AGAIN, OTIS HERE. HAJE YOU DONE 'ORGI'
AND 'ORG2' SUCCESSFULLY?YES
GOOD, THEN WE CAN GET STARTED ON THIS ONE THEN.
SAY, IS THIS ROY?NO
SORRY, I THOUGHT IT WAS. YOU TYPE AN AWFUL LOT
LIKE HIM. WHO ARE YOU??RICHARD
OH, RICHARD! HOW DID I THINK THAT IT WAS ROY? OH WELL,
RICHARD, THIS PROGRAM WILL TEACH YOU HOW TO NAME A SECOND
GROUP OF HYDROCARBONS CALLED 'ALKENES'
ALKENES HAJE A DOUBLE BOND (-C=C-) IN THEM AS WELL AS
SINGLE BONDS (-C-C-).
WHICH ONE OF THESE DO YOU THINK IS AN ALKENE?
\begin{tabular}{|c|c|c|}
\hline & & \[
\begin{gathered}
\mathrm{H} \\
\mathrm{HCH}
\end{gathered}
\] \\
\hline H H H H & \(\mathrm{H} \quad \mathrm{H}\) & H I H \\
\hline \(\mathrm{HC}-\mathrm{C}-\mathrm{C}-\mathrm{CH}\) & \(\mathrm{HC}-\mathrm{C}=\mathrm{C}-\mathrm{CH}\) & \(\mathrm{HC}-\mathrm{C}-\mathrm{CH}\) \\
\hline HHH & HHH H & H I H \\
\hline & & HCH
H \\
\hline 1. & \(2 \cdot\) & 3. \\
\hline
\end{tabular}
? 3
NO, IT IS WIERD BUT DOESN'T HAVE A DOUBLE BOND.
WHICH ONE IS THE ALKENE? ?
THAT'S RIGHT, RICHARD. 2 IS THE ONE:
NOTICE THAT BOTH CARBONS ON EITHER SIDE OF THE DOUBLE BOND HAD TO GIUE UP A HYDROGEN. A CARBON ATOM HAS FOUR 'HANDS' WITH WHICH TO HOLD ONTO THINGS AND IF IT USES TNO OF THESE TO HOLD ONTO ANOTHER CARBON ATOM, IT JUST HAS TO GIVE UP HOLDING ONTO A HYDROGEN. THIS MAKES THE GROUP FORMULA SUCH THAT IF THERE ARE 'N' CARBONS, THERE WILL BE ' \(2 N\) ' HYDROGENS. NOW THAT YOU KNOW ABOUT THE HYDROGENS, I'M GOING TO STOP PRINTING THEM BECAUSE THAT WASTES SPACE.
NAMING ALKENES IS NOT VERY MUCH DIFFERENT FROM NAMING ALKANES. THE DIFFERENCE IS THEY END IN '-ENE' INSTEAD OF '-ANE'. THUS:
\(C=C\)
IS 'ETHENE' AND \(C-C=C\) IS 'PROPENE'
WHAT WOULD YOU CALL THIS ? - \(\quad \mathrm{C}-\mathrm{C}-\mathrm{C}=\mathrm{C}\) ?
? PENTANE
SOMETHING'S NOT RIGHT. TRY AGAIN.
WHAT'S THAT NAME AGAIN? BUTANE
NO, ALKENES END IN •-ENE'. TRY IT AGAIN.
WHAT'S THAT NAME AGAIN? BUTENE
RIGHT ON, RICHARD!
HOWEVER, NOTICE THAT WITH BUTENE WE RUN INTO A NAMING
PROBLEM. I'LL ILLUSTRATE WITH HEXENE:
```

```
C=C-C-C-C-C C-C=C-C-C-C C-C-C=C-C-C
```

```
THESE A.RE DIfFERENT COMPOUNDS WHICH REACT DIFFERENTLY
aND so have to be Named differently. the Left one is
'l-hexene' because the dOuble bond COmes after the first
('1-') CARBON. THE ONE ON THE FAR RIGHT IS '3-HEXENE'
            WHAT WOULD YOU CALL THE MIDDLE ONE?4-hexaNE
YOU MADE SOME MISTAKE, RICHARD. TRY IT AGAIN.
WHAT'S THE NAME?4-HEXENE
YOU COUNTED FROM THE WRONG END. ONE MORE TIME - - -
WHAT'S THE NAME?2-HEXANE
alkenes end in '-ENE', NOT '-ANE'. try IT AGAIN.
WHAT'S THE NAME?2-HEXENE
HEY, RICHARD, YOU GOT THAT ONE RIGHT!
```

O.K. YOU CAN SEE IT'S NOT SO DIFFICULT. THE NUMBER SPOT FOR the double bond is the last thing you have in more COMPLICATED COMPOUNDS.
 5,5-DIMETHYL-3-ETHYL-3-HEPTENE

YOU NUMBER FROM THE END WHICH GI'JES YOU THE LOWEST NUMBER FOR THE DOUBLE BOND.

NO'N YOU TRY THIS ONE. WHAT IS THE NAME OF:


```
?4,6,8-METHYL-5,7-ETHYL-2-NONENE
YOU FORGOT TO TELL HON MANY METHYLS ETC. REMEMBER THE
-DI-, TRI-, TETRA- ETC." STUFF? TRY AGAIN.
WHAT IS THE NAME AGAIN?
?4,6,8-TRIMETHYL-5,7-ETHYL-2-NONENE
YOU MADE SOME SORT OF ERROR, RICHARD. TRY AGAIN
WHAT IS THE NAME AGAIN?
?2,4,6-TRIMETHYL-3,5-ETHYL-7-NONENE
YOU MADE SOME SORT OF ERROR, RICHARD. TRY AGAIN
WHAT IS THE NAME AGAIN?
?2,4,6-TRIMETHYL-3,5-DI ETHYL-7-NONEE-NE
YOU NUMBERED FROM THE WRONG END. TRY AGAIN.
WHAT IS THE NAME AGAIN?
WELL, I KNOW I. WAS COMPLICATED, RICHARD. THE ANSWER IS
'4,6,8-TRIMETHYL-5,7-DIETHYL-2-NONENE' BECAUSE THERE
ARE THREE ('TRI-') METHYLS ON CARBONS #4,6,8. THEN
THERE ARE TWO('DI-') ETHYLS ON CARBONS #5 & 7, AND
THE DOUBLE BOND ('-ENE') IS ON CARBON UL OF A STRING
OF CARBONS NINE MEMBERS LONG ('NONA').
```

WELL, THAT'S THE END OF THIS LESSON, RICHARD.
WHEN YOU'RE READY FOR ORG4, MAKE SURE YOU REJIE'N JRGI,
ORG2, AND ORG3 AND HAVE THEM WITH YOU WHILE YOU DO THE
NEXT PROGRAM. GOOD-BYE FOR NO'N!!!!!!

ORG3, Page 4

RUN

ORG4
THIS PROGRAM IS THE FOURTH IN THE ORGANIC NOMENCLATURE SERIES. HAVE YOU ALREADY DONE ORG1,ORG2, AND ORG3?YES GOOD! THIS PROGRAM WILL BE A LITTLE SHORTER SINCE YOU ALREADY KNOW QUITE A BIT ABOUT NAMING. JUST SO WE CAN CONTINUE ON A FIRST NAME BASIS, COULD YOU TELL ME YOUR NAME PLEASE?RICHARD
THANKS, RICHARD. I M SORRY I HAVE TO ASK EACH TIME BUT DO
YOU THINK I LIKE IT HERE, WORKING ALL DAY LONG, NEVER GETTING OUT TO SEE PEOPLE. I EUEN HAUE TO ASK THEM WHO THEY ARE, SINCE I CAN'T SEE OR HEAR ON THIS CRUMMY MACHINE. HOW WOULD YOU LIKE TO HAUE TO EXPRESS ALL YOUR FEELINGS AND EMOTIONS THROUGH A LOUSY TYPEWRITER? HAUE SOME SYMPATHY, PLEASE!!

WELL, I GUESS IT'S TIME I STOP INDULGING IN SELF-PITY AND GET STARTED WITH YOUR LESSON. ACTUALLY, RICHARD, YOU'RE
NOT TOO BAD. YOU SHOULD SEE SOME OF THE STUPID IDIOTS I GET AT THIS TELETYPE. YOU WOULDN'T BELIEJE HOW MANY TIMES I HAUE TO TELL THEM THE ANSWER!

HERE GOES! THIS LESS IS ABOUT THE THIRD MAJOR GROUP OF HYDROCARBONS, THE ALKYNES. ALKYNES HAUE A TRIPLE BOND.

HEY!!!!! I JUST LOOKED AND I DON'T HAVE A TRIPLE BOND SIGN ON MY KEYBOARD. I VUE GOT SINGLE BOUDS (-C-C-) AND DOUBLE BONDS (-C=C-) BUT NO TRIPLE. I GUESS I'LL USE AN 'E' - - IT'S GOT THREE HORIZONTAL LINES AT LEAST. IT'LL LOOK LIKE THIS - (-C-CEC-C-) O.K.?
the naming is quite regular, much like the alkenes except THAT ALKYNES' NAMES ALL END IN '-YNE' INSTEAD OF '-ENE' OR '-ANE'. FOR INSTANCE:

| HCECH | Is ETHYNE | | | |
| :---: | :---: | :---: | :---: | :---: |
| | H | | | |
| AND | $\mathrm{HC-CECH}$ | 15 | PROPYNE | |
| | H | | H H | IS BUTYNE |
| | | AND | HC-C-CECH | |
| | | | H H | |

I'M GOING TO LEAVE OFF TAE HYDROGENS NOW BUT WHAT'S THIS/

```
C-C-C-CEC-C
```

? 4 HEXENE
YOI'RE DOING SOMETHING WRONG. TRY AGAIN, RICHARD. WHAT'S THAT NAME NOW? 4 HEXYNE
YOU MADE TWO ERRORS, RICHARD. YOU FORGOT THE HYPHEN
AND NUMBERED FROM THE WRONG END. TRY IT AGAIN.
WHAT'S THAT NAME NOW? 2-HEXYNE
THAT'S RIGHT, RICHARD! SIX CARBONS IT IS!

YOU CAN ALSO HAUE MIXTURES OF DOUBLE AND TRIPLE BONDS. HERE, I'LL SHOW YOU AN EXAMPLE OF SUCH.

NOTICE THAT THE NUMBERING IS FROM THE END WHICH 'JILL GIVE THE TRIPLE BOND THE LOWEST NUMBER. WHEN YOU HAJE A DOUBLE BOND IITH A TRIPLE, THE DOUBLE BOND IS NUMBERED, AND CALEED '-ENE-'. WHEN YOU HAJE MORE THAN ONE, IT'S '-DIENE-' OR '-TRIENE-' OQ '-TETRAENE-•, ETC.

```
WHEN YOU'UE HAD TIME TO EXAMINE THAT NAME, TYPE 'GO' AND
CONTINIE WITH THE LESSON. ?GO
GEE, RICHARD, YOU ONLY TOOK I MINUTES TO LOOK AT THAT.
PRETTY CONDIFENT, AREN'T YOU?
WELL, IF YOU'RE SO GOOD, TRY THIS ONE WHY DONT YOU. WHAT'S
THIS?
```


?2,5,8-METHYL-Э-ETHYL-4-PROPYL-1, 3,3-TRI ENE-6-UNE-DECYNE I KNO'N IT'S EASY TO $H A K E$ A MISTAKE. TRY IT AGAIN, RICHAQD. WHAT WAS THAT HORRENDOUS NAME AGAIN?
?2,5,8-TRIMETHYL-7-ETHYL-4-PROPYL-1,3,8-TRIENE-6-UNDECYNミ
YOU COUNTED FROM THE LRONG END. THE TRIPLE BOND GETS THE THE LONEST NUMBER. TRY AGAIN. WHAT WAS THAT HORRENDOUS NAME AGAIN?
? 4, 7, 10-METHYL-3-ETHYL-8-PROPYL-3,8,10-TRI ENE-5-UNDECYNE
YOU COJNTED THE - EENE'S BUT FORGOT TO TELL ME HO \# MANY METHYLS. DO IT NOW. WHAT WAS THAT HORRENDOJS NAME AGAIN? ? 4, 7, 10-TRIMETHYL-3-ETHYL-8-PROPYL-3,8,10-TRIENE-5-UNDECYNE HEY, RICHARD, YOU GOT THAT RIGHT -... AND ON ONLY TRY NUMBER 4 AT THAT!!!!!!!

WELL, RICHAQD, THAT'S THE END OF THE HYDROCARBONS. LATER LESSONS WILL BE CONCERNED WITH NAMING ALKYL HALIDES, ALCOHOLS, ALDEHYDES AND KETONES, ETHERS, ACIDS, AND ESTERS. THE OTHERS ARE MUCH EASIER, ONCE YOU'VE BEEN THROUGH THE HYDROCARBONS.

SAY, RICHARD, IF YOU'RE HAUING TROUBLE, ASK THE CHEMISTRY TEACHER. IF YOU'RE DJING FINE SO FAR, YOU CAN TRY THE LATER PROGRAMS AS YOU NEED THEM. THE NEXT ONE, 'ORG5' IS ON ALKYL HALIDES AND IS A SHORT ONE.
*******COINGRATULATIONS ON COMING THIS FAR****

DONE

| TITLE: |
| :--- | :--- |
| DESCRIPTION: |
| INSTRUCTIONS: |
| SPECIAL |
| CONSIDERATIONS: |\quad| TEACHES NOMENCLATURE OF ALKYL HALIDES AND ALCHOLS |
| :--- |
| There are 2 programs in this package: ORG5 and ORG6. These are the |
| fifth and sixth programs in the organic nomenclature tutorial series, |
| teaching naming of alkyl halides and alconols. The program should be |
| proceded by ORGl, ORG2, RG3, ORG4. Should be followed by ORGCHE |
| (HP 36646) for practice drill. |

RUN

RUN
ORGS
HI THERE! THIS IS THE FIFTH. PROGRAM ON NAMING ORGANIC
MOLECIJLES. HAUE YOU DONE ORG1, 2,3 , AND 4?NO
NO? COME BACK WHEN YOU HAUE !!!!
DONE
RUN
ORG5

```
HI THERE! THIS IS THE FIFTH PROGRAM ON NAMING ORGANIC
MOLECULES. HAVE YOU DONE ORG1,2,3, AND 4?YES
GOOD! NON, I'M OTIS, AS YOU REMEMBER. BUT I DON'T KNON
WHO YOU ARE. WHO IS THIS?RICHARD
GLAD TO HAVE YOU BACK, RICHARD. THIS LESSON WILL
TEACH YOU HOW TO NAME COMPOUNDS WITH 'HALOGENS' (F,CL,BR,I)
IN THEM.
    THE NAMES ARE PRETTY EASY. WHEN YOU SEE AN F, FLUORINE,
IN A COMPOUND, IT'S CALLED 'FLUORO'. CHLORINE BECOMES 'CHLORO'
SAY, RICHARD, WHAT DO YOU THINK BROMINE'S CALLED?BROMINE
NO, WHEN BROMINE IS IN A COMPOUND, IT HAS TO END IN 'O'.
NOW, WHAT'S THAT NAME AGAIN?BROMINO
NO, RICHARD, YOU GET RID OF THE '-INE' IND PUT ON AN 'O'.
NOW, WHAT'S THAT NAME AGAIN?BROMO
RIGHT YOU ARE, RICHARD
NOW WHAT WOULD YOU CALL 'IODINE' IN A COMPOUND?IODO
THAT'S CORRECT, RICHARD!
NOW LET'S SEE HOW YOU USE THESE HALOGENS TO MAKE 'ALKYL HALIDES.'
    YOU USE THEM SUST LIKE METHYLS OR ETHYLS. THEY HAVE A
LOWER PRIORITY IN NUMBERING THAN ANY OF THOSE OTHER GROUPS
AND SO ARE NAMED FIRST, IN THE ORDER F,CL,BR,I M HERE, I'LL
SHOW YOU A SIMPLE EXAMPLE AND THEN A COMPLEX ONE:
```


IS 8-FLUORO-4-CHLORO-6-BROMO-9,9-DIIODO-2,4-DIMETHYL -3-ETHYL-1,5,7-NONATRIENE

[^2]NOW. YOUS TRY ONE!

? 1, 3-FLUORO-5-CHLORO
WELL, YOU DIDN'T GET IT ALL RIGHT BUT YOU AT LEAST GOT
TRY AGAIN, RICHARD.
? 1, 1, 3-FLUORO-5-CHLORO-2-METHYL-4-ETHYL-6-HEPTENE
HOLD IT!! YOU'RE NUMBERING FROM THE WRONG END!
TRY AGAIN, RICHARD.
?5,7,7-FLUORO-3-CHLORO-6-METHYL-4-ETHYL-1-OCTENE
WELL, YOU DIDN'T GET IT ALL RIGHT BUT YOU AT LEAST GOT -3-CHLORO-6-METHYL-4-ETHYL TRY AGAIN, RICHARD.
? 5, 7, 7-TRIFLUORO-3-CHLORO-6-METHYL-4-ETHYL-1-HEPTENE GOSH! THAT'S RIGHT, RICHARD! GOOD FOR YOU!

WELL, RICHARD, THAT'S THE ALKYL HALIDES. NEXT, IN ORG6, WE TAKE UP AN INTOXICATING SUBJECT

```
******************** A L C O H O L S ************************
```

CHEERS!

```
OTIS
```

DONE

RUN
ORG6
HEY KIDDIES!!!! IT'S THAT HAPPY TIME AGAIN !!!!!
THAT'S RIGHT - - IT'S ** UNCLE OTIS TIME ** !
SO SIT RIGHT DOWN IN FRONT OF YOUR TELETYPE RIGHT IN YOUR LIVING ROOM IN YOUR ROMPERS AND SEE WHAT GOOD OLD UNCLE OTIS HAS IN HIS BAG OF TRICKS FOR GOOD LITTLE GIRLS AND BOYS.

HEY - - YOU ARE A MEMBER OF THE UNCLE OTIS ORG FAN CLUB AREN'T YOU? I MEAN, YOU HAVE DONE ORG $1,2,3,4$, AND 5 ALREADY? HAVE YOU?YES

PROVE IT! WHAT'S YOUR NAME (NO NEED FOR THE SECRET DECODER RING PASSWORD THIS TIME!)?RICHARD AH, RICHARD. HEY, YOU MADE 'STH DEGREE ORGANIST' RECENLY DIDN'T YOU?

AS YOU REMEMBER LAST TIME, GOOD OLD UNCLE OTIS HAD JUST FINISHED TELLING YOU ALL ABOUT ALKYL HALIDES AND PROMISED TO GO ON TO ALCOHOLS. YOU KNOW WHAT ALCOHOL IS, DON'T YOU, RI CHARD? THAT'S THE BAD SMELLING LI QUID THAT MAKES DADDY SAY NASTY THINGS ABOUT YOUR UNCLE OTTO AT FAMILY REUNIONS.

WELL YOU'LL SURE HAVE A SURPRISE FOR HIM! THAT'S JUST ONE ALCOHOL OUT OF THOUSANDS. BUT THE REST ARE EUEN MORE POISONOUS, SO DON'T GET YOUR HOPES OF BEING A 'SECRET TIPPLER' UP TOO HIGH.

ALCOHOLS REMIND YOU KIND OF HYDROXIDES IN INORGANIC CHEMISTRY. THEY ALL HAVE AN '-OH' GROUP, CALLED 'THE ALCOHOLIC GROUP' (NO, THAT ISN'T A BUNCH OF PEOPLE AT A HOLLYWOOD PARTY!)

WHICH ONE OF THESE DO YOU THINK IS AN ALCOHOL? !
NO, THAT'S AN ETHER. WE'LL TALK ABOUT THAT ONE LATER. NOW, LOOK FOR THAT •-OH' GROUP.
WHICH ONE OF THESE DO YOU THINK IS AN ALCOHOL? 2
THAT'S NOT IT! THAT'S AN ALDEHYDE. LOOK FOR THE '-OH'. WHICH ONE OF THESE DO YOU THINK IS AN ALCOHOL? 3 THAT'S RIGHT, RICHARD, AND THAT ALCOHOL IS THE DRINKING KIND TOO!

NOW, HOW DO WE NAME THEM? FIRST, THE WORD 'ALCOKOL', ITSELF, LIKE SO MANY THAT BEGIN WITH 'AL-', COMES FROM THE ARABIC. THE ARABS CALLED THESE THINGS 'AL KHOL' WHICH MEANS 'THE DUST', BECAUSE THEY SEEMED TO EVAPORATE AND BLOW AWAY LIKE DUST. EUROPEANS FIND A 'KH' HARD TO PRONOUNCE WITHOUT SOUNDING AS IF THEY'RE ABOUT TO SPIT, SO IT WAS SOFTENED TO 'ALCOHOL'. IN MEMORY OF THAT ORIGINAL WORD, ALL ALCOHOL NAMES END IN '-OL.' HERE, I'LL SHON YOU:

```
C-C-OH IS ETHANOL
    C-C-C-OH IS PROPANOL
    AND C-C-C-C-OH IS BUTANOL
NOTICE YOU TAKE THE WORD (ETHAN, PROPAN, BUTAN) THAT CORRESPONDS
TO THE NUMBER OF CARBONS AND THEN ADD '-OL' ON THE END.
        NOW YOU TRY ONE.
        C-C-C-C-C-C-C-OH
```

WHAT'S THAT ALCOHOL'S NAME?HEPTANE
YOU GOT THE RIGHT NUMBER OF CARBONS, BUT ALCOHOLS END IN '-OL'
WHAT'S THAT ALCOHOL'S NAME?HEPTANOL
THAT'S RIGHT, RICHARD! GOOD FOR YOU.

NOW HERE'S A PROBLEM. WE RUN INTO ISOMERS AGAIN. THAT '-OH' GROUP CAN BE PUT IN QUITE A LOT OF PLACES. I'LL GIVE YOU AN EXAMPLE OR TWO

1.

2.

3.
$\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{OH}$
4.

NOW, HOW TO NAME THEM. NUMBERS 2 AND 4 ARE BOTH
CALLED '1-HEXANOL' BECAUSE THEY HAVE SIX CARBONS ('HEXAN') AND THE ALCOHOLIC GROUP (OH) IS ON THE FIRST CARBON. 3 IS CALLED '3-HEXANOL' BECAUSE THE GROUP IS ON THE THIRD CARBON.
WHAT WOULD YOU CALL ALCOHOL I?5-HEXANOL
YOU COUNTED FROM THE WRONG END, RICHARD.
WHAT WOULD YOS CALL ALCOHOL \#1?2-HEPTANOL
TRY LOOKING AT THE EXAMPLES AND COUNTING AGAIN.
WHAT WOULD YOU CALL ALCOHOL $1 ? 2-H E X A N O L$
YOU GOT THAT RIGHT, RICHARD!

WELL, THAT'S ABOUT IT FOR THIS LESSON. OH, BY THE WAY, ALCOHOLS CAN HAVE SUBSTITUTED SIDE GROUPS AND DOUBLE BONDS AND THE WHOLE MESS. LIKE THIS ONE:

$C-C-C-C=C-C-C-C-O H$
$1!1!$
C C I BR IS 3-FLUORO-1-BROMO-1,2-DIIODO-4,6-DIMETHYL-
-5-ETHYL-4-ENE-1-OCTANOL
(GRUESOME, ISN'T IT?)

COME BACK WHEN YOJ'RE FULLY RECOVERED AND WE'LL TALK ABOUT 'ALDEHYDES' AND 'KETONES' IN ORG7. SAME TIME. SAME CHANNEL. SAME BAD JOKES.

0 T I S, YOUR LOUING UNCLE

DONE

CONTRIBUTEDPROGRAM.BABC

TITLE: \quad\begin{tabular}{l}
DRILL ON ORGANIC COMPOUND NOMENCLATURE

This program generates organic compounds of lo different types, prints out

representations of them, and names them.

The user may select one of the following options:

1. Drill on any of the following in random order.

2.

\end{tabular}

He then chooses how many representation :o be printed (maximum of 10).
The symbols t, - are used to repl:- itit single bonds, $=$, to represent double bonds, * to represent tripit bonds. All hydrogen atoms have been omitted, except in hydroxyl radicals.

SPECIAL
CONSIDERATIONS:

RUN

RUN
ORGCHE

DRILL ON ORGANIC NOMENCLATURE

THE CODES ARE:

1) ALKANES
2) ALKENES
3) ALKYNES
4) HALOGEN SUBSTITUTIONS
5) ALCOHOLS
6) ETHERS
7) ORGANIC ACIDS
8) AMINES
9) KETONES
10) ALDEHYDES
() ANY COMBINATION OF THE ABOVE

WHAT CODE : ? 0
HOW MANY: ? 10
, - - BOTH REPRESENT SINGLE BONDS, , = BOTH REPRESENT DOUBLE BONDS, AND * IS USED TO REPRESENT A TRIPLE BOND.
(1)

(2)
$C-0-C-C-C$
(3)
$c-c-c-c-c-0-c-c-c-c-c-c-c$
(4)

(5)

(7)

(9)

(10)

*************************FOLD UNDER*******************************

(1) 1,4-PENTANEDIOL
(2) METHYLPROPYL ETHER
(3) PENTYLHEPTYL ETHER
(4) 3-METHYL-3-ETHYL-2-PENTANONE
(5) 6-CHLORO-1-FLUORO-2,6-DIMETHYLHEPTANE
(6) 1.2,4-TRIBROMO-5-FLUORO-2-10DO-4-METHYLHEXANE

```
(7) 2,4,6,8,8-PENTAMETHYL-1,1,9-DECANETRIOL
(8) 2,4-DIMETHYL-1,1-PENTANEDIOL
(9 ) 2,9-DIMETHYL-7-ETHYL-S-BUTYLDECANOIC ACID
(10 ) 4-METHYL-4,5,5,8-TETRAETHYL-3-DECANONE
```

DONE
RUN
ORGCHE

DRILL ON ORGANIC NOMENCLATURE

THE CODES ARE:

1) ALKANES
2) ALKENES
3) ALKYNES
4) HALOGEN SUBSTITUTIONS
5) ALCOHOLS
6) ETHERS
7) ORGANIC ACIDS
8) AMINES
9) KETONES
10) ALDEHYDES
b) ANY COMBINATION OF THE ABOVE

WHAT CODE : ?7
HOW MANY : ? 10
-,- BOTH REPRESENT SINGLE BONDS, *, = BOTH REPRESENT DOUBLE BONDS, AND * IS USED TO REPRESENT A TRIPLE BOND.
(1)

(2)

(4)

(5)

(6)

(7)
$\mathrm{c}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{c}-\stackrel{\mathrm{C}}{\mathrm{C}}-\underset{\mathrm{C}}{\mathrm{O}}=\mathrm{O}$
(8)

ORGCHE, Page 6
(9)

(10)

(1) 2,2-DIMETHYLBUTANOIC ACID
(2) 8-METHYL-4-PROPYLNONANOIC ACID
(3) 4,9-DIMETHYL-5,8-DIETHYL-S-8UTYLDECANOIC ACID
(4) 6-ETHYLDECANOIC ACID
(5) 2,7,8-TRIMETHYL-4,6-DIPROPYL-5-BUTYLNONANOIC ACID
(6) 3-METHYLBUTANOIC ACID
(7) 2-METHYLNONANOIC ACID
(8) 6-METHYLNONANOIC ACID
(9) 3-METHYLPENTANOIC ACID
(10) 5,8-DIMETHYLNONANOIC ACIU

DONE

LISTING

```
l Files PZHYP1,IZHYP2,SCR
RUN
BILOT
NMMBER P?OGTAM FILES ?2
```

PILOT
HI THERE! THIS IS A TUTOQIAL LESSON TO TEACH YOU SOMETHING ABOUT
SCIENTIFIC METHOD.
WHAT IS YOIP NAME ?PETE
VERY NICE! AND WHAT IS YO'JR MAJOR ?SDANISH
WELL, I DON'T RECOGNIZE THAT AS A SCIENCE MAJOR, BUT I HOPE THAT THIS
SESSION UILL 日E INTERESTING AND EDUCATIONAL.
AS WE PROCEED THROUGH THIS MATERIAL, I MILL ASK YOU ZUESTIONS, PLEASE
RESPOND NATURALLY AND DON'T WORRY IF YOU DON'T KNOW THE ANSWER OR EUEN
IJNDERSTAND THE OUESTION. YO'J WILL NOT BE GRADED BUT RATHER WILL BE LED
THRO:SGH THE MATERIAL IN A PLEASANT (HOPEFIJLLY) MANNER SUCH THAT YOU
WILL HAUE LEARNED SOMETHING BY TIME WE ARE FINISHED.
FIRST PETE, WHAT IS THE MOST GASIC AND IMPORTANT PGOCESS IN SCIENTIFIC
INQUIRY ?A PREMISE
NOT PUITE, ALL SCIENTIFIC INOIIPY AND LEARNING BEGINS 'NITH OBSERUING
THE NATURAL NORLD. OBSERYATION AND EXPERIMENTATION ARE ABSOLUTELY
FUNDAMENTAL.
ONCE A CERTAIN SET OF OGSERUATIONS ARE MADE, JHAT IS THE NEXT STEP IN
THE PROCESS ?INTEROQET THEM
NELL, ONE TRIES TO FORM A HYPOTHESIS OR MODEL FOR THE PKENOMENON.
USUSALLY THIS IS IN TEQMS IITH NHICH ONE IS FAMILIAR (ANALOGY) OR IT
MAY BE A MATHEMATICAL EXPRESSION OR ONE OF SEUERAL DIFFERENT FORMS
RANGING IN COMPLEXITY FROM EXTREMEMLY SIMPLE TO DUITE INUOLUED. IN ANY
CASE THE KYOOTHESIS MJST EXPLAIN THE OBSERUATIONS. IT IS AN EDUCATED
GIJESS.

```
IN ADDITION, A GOOD RYDOTRESIS MUST PROVIDE SOMETHING ELSE. WHAT IS
THIS ?BE CONSISTENT
NO, A GOOD HYPOTHESIS DOES PROVIDE FOR FURTHER DREDICTION. ONE THEN
ATTEMPTS TO OBSERVE THIS TO TEST THE HYPOTHESIS. IF THE HYPOTHESIS IS
INCORRECT IT MUST BE MODIFIED TO SATISTFACTORY EXPLAIN THE NEW DATA.
```

LET ME PUT IT GRAPHICALLY:

OK, WHAT PURPOSE DOES 'MODIFY' SERVE ?CHANGE THE HYPOTHESIS RIGHT, THE HYPOTHESIS MUST ACCURATELY ACCOUNT FOR ALL THE OBSERUATIONS (INCLUDING THE NEW ONESI), SO IT MUST BE CORRECTED. IF IT IS SO INCOMPLETE THAT IT MUST GE DISCARDED AND A NEW ONE TRIED, THEN SO SE

```
ITI ONE SHOULD NOT HANG ONTO OBSOLETE CONCEPTS JUST BECAUSE THEY ARE
THEREI
IF AFTER REPEATED TESTING, THE HYPOTHESIS CORRECTLY PREDICTS ALL NEW
OBSERVATIONS, IT BECOMES A THEORY. AND IF A THEORY IS OF SUFFICIENT
GENERALITY AND DESCRIBES THE NATURAL PHENOMENA ACCURATELY, IT MAY BE
ELEUATED TO WHAT STATUS ?I DON'T KNOW
WELL, IT MAY BECOME A SCIENTIFIC LAWI BOTH SCIENTIFIC THEORIES AND
LAWS MUST HAUE OTHER QUALITIES SUCH AS: GENERALITY, SIMPLICITY, AND
BEAUTY. THESE QUALITIES ARE SOMETIMES DIFFICULT TO DEFINE PRECISELY.
WE ARE MORE CONCERNED HERE WITH THE INTERACTION BETWEEN OBSERUATION AND
HYPOTHESIS, SO SUCH CONSIDERATIONS NEED NOT WORRY YOU!
AS A SIMPLE EXAMPLE, LET US CONSIDER A SEQUENCE OF LETTERS AS OUR
INITIAL OBSERVATION. NAMELY:
TTFFSSE
WE SUSPECT THAT THESE ARE PART OF A MORE GENERAL PATTERN. THE FIRST
STEP \S TO DESCRIBE THE OBSERUATIONS. HOW WOULD YOU DESCRIBE THEM??
72,2,2,1 PATTERN
OK, A UERY SIMPLE WAY (AT LEAST FOR A SMALL SET OF DATAI) IS TO DUT IT
IN A TABLE.
```

| NUMBER | DATUM | |
| :---: | :---: | :---: |
| 1 | 1 | T |
| 2 | $!$ | T |
| 3 | $!$ | F |
| 4 | 1 | F |
| 5 | $!$ | S |
| 6 | $!$ | S |
| 7 | $!$ | E |

THIS IS A TYPE OF HYPOTHESIS. ANOTHER SIMILIAR WAY OF DESCRIBING THE OBSERUATIONS THAT IS ALSO A HYPOTHESIS IS:

```
THE SEQUENCE IS FORMED FROM PAIRS OF LETTERS MADE UP OF
```

 'T'. 'F', 'S' IN ORDER, AND IS ENDED WITH A SINGLE 'E'.
 WHAT BAD FEATURE DO THESE TWO HYPOTHESES HAVE??
?NO EXPLANATION OR DREDICTION
VERY GOOD PETE! THEY DESCRIBE THE OBSERUATIONS VERY WELL, BUT THERE IS
NO PROUISION FOR PREDICTING ANY NEW OBSERVATIONS. SUCH A HYPOTHESIS IS
TERMED 'AD HOC'. THIS IS A LATIN TERM MEANING 'FFOR THIS CASE ONLY'..
THERE IS NO WAY TO TEST THIS TYFE OF HYPOTHESIS.
LET'S TRY AND PREDICT THE NEXT LETTER IN THE SEQUENCE!
TTFFSSE.
WHAT LETTER DO YOU THINK REPLACES THE PERIOD ?E
THAT IS MOST LOGICAL. THE SEQUENCE WOULD THEN LOOK:
TTFFSSE'E'
CAREFULLY STATE IN WORDS THE HYPOTHESIS THAT LEADS TO THIS PREDICTION.
(KEEP IT TO ONE LINE OR LESS, SORRY!)
?SEQUENCE 15 DOJBLE LETTERS BEGIN WITH T AND F, GO FORWARD IN ALPHABET
REMEMBER THAT THE FINAL 'E' IS ONLY A PREDICTION, IT HAS NOT YET BEEN
OBSERUED. NOW PETE, WHAT IS THE NEXT STEP IN THE INQIIRY PROCESS??
?TEST IT
OK, LET'S GO AND TRY TO OBSERUE THE NEXT LETTER! AFTER MUCH
EXPERIMENTATION WE FIND:
TTFFSSEN
WHOOPS, NATURE IS NOT ALWAYS EASY TO PIN DOWN! THE NEW DATUM DOES NOT
AGREE WITH YOUR PREDICTION. THUS WE MUST MODIFY THE HYPOTHESIS.

```
> I MUST ASSIJRE YOU THAT THE SEQUENCE OF LETTERS DOES <<
> FOLLOW A DEFINITE PATTERN. THEY ARE NOT JUST ANY <<
> RANDOM CHOICES!! I BELIEVE IN BEING ORDERLY! <<
```

```
WE COULD STILL SIMPLY FORM AN AD hoc hypothesis, but we are interested
in determining the big picture. we want to be able to predict the next
LETTER(S)!
FROM THIS POINT IT GETS MUCH MORE DIFFICULT. MANY PEOPLE ARE STUMPED
HERE. HOWEVER, PETE SINCE YOU ARE A SPANISH MAJOR, I AM CONFIDENT THAT
YOU WILL PERCEIVE thE PATtERN AND DEDUCE thE NEXT LETTER!
    TTFFSSEN.
```

WELL, WHAT IS THE NEXT LETTER ?DON'T KM-NOW
OK, WHAT IS YOUR HYOOTHESIS??
? LOST IT
: DON'T QUITE BUY YOUR HYPOTHESIS: HOWEUER, A MOST LOGICAL DEDUCTION
WOULD BE A 'T'. TKE HYPOTHESIS IS THEN:
THE SEQUENCE OF LETTERS IS FORMED BY THE FIRST LETTER OF THE
NAME OF THE INTEGERS (IN ENGLISHI), STARTING WITH TWO.
THUS THE SEQUENCE WOULD BE:
TTFFSSENTT'
WITH THE 'T' COMING FYOM 'TEN'. AGAIN, WHAT MUST WE DO NEXT??
?TEST IT
THAT'S RIGHT PETE! LET'S TRY AND OBSERVE THE NEXT LETTER, AND IT $1 S:$
'Z'I!! THUS WE HAVE:
TTFFSSENZ。
DON'T BE TOO DISCOURAGED. ACTUALLY, YOU NEED ONLY TO MODIFY YOUR
HYPOTHESIS A SMALL AMOUNT. IT IS BASICALLY CORRECT!
LET ME ENCOURAGE YOUR BASIC HYPOTHESIS. IF ThE SEQUENCE IS RELATED TO
THE INTEGERS, THEN IT SHOULD ALSO PREDICT A CHARACTER PRECEEDING THE
FIRST 'T'. WHAT SHOULD IT BE ?O
THAT IS UERY GOOD PETE! 'WE SHOULD FIND AN $\cdot O$ ' WHICH COMES FROM - ONE'
PRECEEDING THE 'T' FROM 'T'NO'. INDEED, IF YOU LOOK IN THE RIGHT PLACE,
YOU DO OBSERVE:
OTTFFSSENZ.
THUS, YOUR BASIC HYPOTHESIS THAT THESE LETTERS ARE RELATED TO THE
ENGLISH NAMES OF THE INTEGERS 15 STRENGTHENED, AT LEAST YOR THE FIRST
NINE! HONEVER, IT MUST ALSO EXPLAIN WHY TEN' BECOMES A $2 \cdot$ NOW, HOW
IS THE NUMBER TEN DIFFERENT FROM: ONE, TNO, THREE, . . . AND NINE??
? D DGITS
OF COURSEI 'TEN' HAS TWO DIGITS INSTEAD OF JUST ONE:
$1 z-\infty$ ONE ZERO
NOW, PETE, DO YOIS SEE WHERE THE Z^{\prime} COMES FROM? WHAT HYOOTHESIS
EXPLAINS THIS??
?FIRST 2 INDICATES FIRST $2-D I G I T$ NUMBER $\operatorname{SITH} 1$ ZERO
AND 'WHAT LETTER IS NEKT (RE?LACING THE PERIOD) ?E
I DON'T THINK THAT FOLLONS FROM THE HYPOTHESIS. 'ELEVEN' IS THE NEXT
NJMBER IN THE SEOJENCE:
11 --> ONE ONE! 50 ' SE SHOULD GET AN •O'!!
OTTFFSSENZ O O O $^{\circ}$
AND SURE ENOIGG, 'O' IS THE NEXT LETTER, AND NATURE IN A RARE MOMENT OF
GENEROSITY EASILY REVEALS THAT THE ONE AFTER THAT IS A •T•! SO:
-• OTTFFSSENZOT....

THUS OUR HYPOTHESIS IS CONFIRMED WITH NO FURTHER MODIFICATION.

```
THE SEOUENCE IS FORMED FYOM THE ENGLISH NAMES OF THE
INTEGERS. IN EACH CASE THE CHARACTER IS THE FIRST LETTER
OF THE DIGIT IN THE 'JNIT'S PLACE.
```

COULD YOU NOW STATE THAT- THE HYPOTHESIS IS A THEORY PYES
NO, NO, NOII IT IS STILL A LONG WAY FROM BECOMING A THEORY. IT MAY
FAIL ON THE 13-TH CHARACTER (MAYBE TKE CHARACTER IS REALLY A 'L' FOR 'BAD LUCK'I). WE WOULD HOPE THAT NATURE ISN'T THAT CAPRICIOUS AND IS REALLY SIMPLE AND LOGICAL WITH UERY FEW EXCEPTIONS!
by the way, we have developed several different hypotheses. on our ORIGINAL SET OF DATA.

TTFFSSE
ARE ANY OF THESE HYPOTHESES INCORRECT (CONSIDERING ONLY THIS SMALL SET OF DATA) ?NO
OF COURSE, THEY ARE ALL CORRECT. THEY ALL EXPLAIN THIS ORIGINAL SET OF OBSERVATIONS PRECISELYI HOWEVER, SOME ARE 'BAD', AND NOT BECAUSE THEY ARE INCORRECT ABOUT THE SUBSEQUENT DATA, BUT BECAUSE THEY LACK WKAT OUALITY??
?CORRECT PREDICTIONS
RIGHTI AT LEAST TWO OF OUR HYPOTHESES GTHE TABLE AND THE ORIGINAL VERBAL DESCRIPTION) FAILED TO MAKE ANY PREDICTION ABOUT ANY POSSIBLE NEW OBSERVATIONS. THE OTHERS MAY BE INCOMPLETE, BUT THEY WERE NOT 'BAD' IN THIS SENSEI THEY AT LEAST PREDICTED SOMETHING SO THEY COULD BE TESTED. THEY MAY HAVE BEEN WRONG, BUT THEY WERE GOOD IN THAT THEY LED TO SOME FURTHER THOUGMT AND INVESTIGATION. WHAT DO WE CALL A HYPOTHESIS THAT FAILS TO PREDICT ANYTHING NEW ?DON'T KNOW SORRY, THE TERM IS 'AD HOC'. SUCH HYPOTHESES CANNOT BE TESTED AGAINST FURTHER OBSERVATIONS. THEY ARE A DEAD END'I!

I WISH TO MAKE ONE LAST POINT: NOTE THAT FOR A LIMITED SET OF DATA THERE WERE SEUERAL DIFFERENT (AND PERHAPS PHILOSOPKICALLY CONFLICTING HYPOTHESES) THAT PERFECTLY EXPLAINED THE KNOWN OBSERUATIONS. THIS IS NOT A UNIQUE SITUATIONI IN THIS CASE ONE USUALLY SELECTS THE ONE THAT BEST AGREES WITH HIS PHILOSOPHICAL OUTLOOK UNTIL FURTKER OBSERUATIONS SELECTS THE PROPER ONE.
DO YOU THINK THIS IS INTELLECTUALLY HONEST ?YES
I HOPE THAT YOU ENJOYED THIS EXERCISE, PETE! AND I WISH YOU SUCCESS IN PURSUING YOUR SPANISH MAJOR.

END
TRY AGAIN ?NO

DONE


```
NET-PILOTF
RUN
pilotf
NAME OF PILOT PROGPAM TP-KEPL
NAME OF SCRATCH FILE ?SCR
```

? RUN

PILOT

KEDLED'S THRE LAL'S ARE VERY IMPORTANT IN UNDERSTANDING THE ORBITS OF the planets, comets, or any satellite. they may be derived from NEVTON'S LANS AND HIS FORM OF THE GRAVITATIONAL FORCES HOKEVER, THEY ape a nice summary of the motion of the planets.
have you studied kepler's lavs befope ?no
!ell, then it is a good idea to start with the first two, since we will need the concepts developed with tho se.
befope we go to far, I would like your name ppete
thank you: I think a name is much more friendiy than a rather IMPERSONAL PPONOUN!
first pete, kepleris first lav descpibes the shape of the orbit of a planet or satellite. hhat is the shape of an orbit ?elliptical THAT IS, OF COURSE, ABSOLUTELY CORRECT PETE! BEFORE WE STATE KEPLER'S first lay in all of its glory let's consider an ellipse and define some TERMS.

OK, PETE, WHAT IS TKE DISTANCE 'A' CALLED ? PADIUS
VELL, I "ILL TELL YOU. THAT IS THE SEMIMAJOR AXIS OF THE ELLIPSE. AND :HAT IS TVICE THE SEMIMAJOP. ANIS CALLED (THE DISTANCE FPOM ONE END OF THE ELLIPSE TO THE OTHE?) ?HAJOR AXIS GOOD:
WHAT ARE THE POINTS 'FI' AND 'F2' CALLED ?FOCUS
UETY GOOD. THEY ADE TKE FOCI OF THE ELLIPSE (SINGULAR IS 'FOCUS').
NERLER'S FIRST LAU' STATES:

- 'each planet moves adout the sun in an orbit that is an ELLIPSE, WITH THE SUN AT THE FOCUS OF THE ELLIPSE...

NOV IF WE REPLACE THE FOCUS FI I' UITH THE SUN, WHAT IS THE DISTANCE 'H• CALLED ?K
NOT EXACTLY, THAT IS THE PERIHELION DI STANCE, OP THE DISTANCE OF CLOSEST APPROACH OF THE PLANET TO THE SUN.
NE WILL NOT EXPLICITLY NEED KEPLER'S SECOND LAV FOR THIS EXEPCISE;
HOWEVER, FOR THE SAKE OF COMPLETENESS, LET US STATE IT:
' 'the straight line joining a planet aind the sun sweeps out E勺UAL APEAS IN SPACE IN EQUAL INTERUALS OF TIME."

THIS BASICALLY TELLS HOW THE PLANET MOVES AROUND ITS OREIT. WHEN IT IS CLOSE TO THE SUN IT MOVES FASTER THEN WHEN IT IS FURTHER ANAY.

```
WE ARE NON READY TO DISCUSS KEPLER'S THIRD LAW. IT GIUES A SIMPLE
RELATIONSHIP BETVEEN THE SEMIMAJOR AXIS AND THE DENIOD OF THE PLANETAFY
OREIT.
WHAT IS THE PERIOD OF AN ORBIT ?CYCLE
NOT EXACTLY, IT IS UUST THE TIME IT TAKES FOR THE PLANET TO COMPLETE
ONE REVOLUTION AROIND THE SUN.
IN "ORDS UE CAN STATE KEPLER'S THITD LAW:
    -'THE SQUARES OF THE DERIODS OF THE PLANETS ARE IN DIRECT
    PROPORTION TO THE CUBES OF THE SEMIMAJOR AXES OF THEIP.
    OREITS.'.
IN AN ALGEBRAIC EQUATION THIS BECOMES:
    P&2= K*A!3
KHERE '"' MEANS 'RAISE TO A PONER' AND '#' MEANS MULTIPLY. 'P' IS TH゙E
PERIOD, 'A' IS THE SEMIMAJOR AXIS, AND 'K' IS A CONSTANT AND DEPENDS ON
THE UNITS USED.
VE CAN SOLVE THIS EQUATION FOR EITHER 'P' OR 'A' IN TENMS OF THE
OTHER. BUT FIRST WE NEED TO KNOW 'K'. TO DETERIMINE THIS, LET US USE
QUANTITIES THAT WE KNOW ABOUT THE EARTH'S OREIT.
WHAT IS THE PERIOD OF THE EARTH'S OREIT ?365 DAYS
UERY FINE PETE! THE PERIDD OF THE EARTH'S ORBIT IS 365 DAYS CACTUALLY
365.2564 DAYS) OR ONE YEAR!
THE SEMIMAJOR AXIS OF THE EARTH'S ORBIT IS THE SAME AS THE MEAN
DI STANCE FROM THE EARTH TO THE SUN WHICH IN TURN IS APPROXIMATELY THE
RADIUS OF THE ORBIT.
OK, WHAT IS THE MEAN DISTANCE FROM THE EARTH TO THE SUN??
?100 MILLION MILES
YOU ARE WITH IT TODAY PETEI THE MEAN DISTANCE (OR THE SEMIMAJOR AXIS)
OF THE EARTH TO THE SUN IS 93 MILLION MILES, }150\mathrm{ MILLION KILOMETERS,
1.SEII METEPS, 1.5EI3 CENTIMETERS, OR SIMPLY I AU (ASTRONOMICAL UNIT):
    (THE 'E' IN NUMBERS INDICATE A POWER OF TEN.)
IN TERMS OF THE UNITS 'YEARS' AND 'ASTRONOMICAL UNITS', THE VALUE OF
'K' IS ESPECIALLY SIMPLE. UHAT DO YOU SUPPOSE IT IS ?
```



```
PMAG, Page 2
RUN
CRE-SCR,5
GET-PILOTF
RUN
filotF
NAME OF PILOT PROGRAM ?PMAG
NAME OF SCRATCH FILE ?SCR
```

? RUN

pilot

AND BEHOLD THE HEIGHT OF THE STARS, HOW HIGH THEY ARE!

AS THE SUN SETS SOME EVENING AND THE STARS BEGIN TO APPEAR AGAINST THE DARKENING SKY, YOU CAN SEE THAT THERE ARE DIFFERENCES IN THE STARS. WHAT IS THE OBUIOUS DIFFERENCE ?BRIGHTNESS
EXCELLENT! SOME STARS ARE BRIGHT AND OTHERS ARE DIM.
NON, TQAT WASN'T HARD WAS IT?? THIS PROGRAM IS WRITTEN TO HELP YOU UNDERSTAND SOMETHING ABOUT THE DISTANCES TO THE STARS AND THEIR BRI GHTNESS.
the ancients saw majestic figures in the patterns produced by the STARS. TO THEM THE STARS WERE FAMILIAR OBJECTS AS THEY PASSED OUERHEAD EACH NIGHT. THEY NAMED THE BRIGHTER MORE CONSPICUOUS ONES. I WOULD LIKE TO KNOW YOUR NAME. WHAT IS IT ?VALERIE

VALERIE, AH VALERIE! THANK YOU. WHAT A LOVELY NAME. DID YOU KNOW THAT YOU ARE A BIT OF STARDUST!

WHAT DO YOU THINK CAUSES THE STARS TO APPEAR WITH DIFFERENT BRI GHTNESSES? ?
?DI STANCE FROM THE EARTH
THERE APE TWO POSSIBLE REASONS WHY SOME STARS APPEAR BRIGHTER TO US THAN OTHERS. YOU DID GET THE ONE ABOUT THE EFFECT DUE TO DISTANCE. THE TWO REASONS ARE:

1. DIFFERENT STARS MAY HAUE DIFFERENT INTRINSIC BRIGHTNESSES OR LUMINOSITIES.
2. THE STARS MAY BE AT DIFFERENT DISTANCES FROM THE EARTH.

LET US CONSIDER THE INTRINSIC BRIGHTNESS OF THE STARS FURTHER. THIS IS A MEASURE OF HOW MUCH LIGHT ENERGY THE STAR ACTUALLY PRODUCES. WHAT FACTORS ABOUT A STAR MIGHT AFFECT THIS??
?SIZE
THERE ARE TWO SPECIFIC QUANTITIES. YOU DID SUGGEST ONE OF THEM. THE LUMINOSITY OF A STAR (OR INTRINSIC BRIGHTNESS) DIRECTLY DEPENDS UPON THE RADIUS AND THE SURFACE TEMPERATURE OF THE STAR. THESE IN TURN ARE DETERMINED BY THE MASS OF THE STAR. THE MORE MASSIVE A STAR IS, THE GREATER IS ITS LUMINOSITY. TYPICAL LUMINOSITIES MAY RANGE FROM $1 / 10, \varnothing \varnothing \varnothing$ OF OUR SUN'S LUMINOSITY TO OVER $10 \varnothing$, D日ø TIMES THAT OF THE GOOD OL' SUN!

TELL ME VALERIE, WHAT IS YOUR MAJOR ?EDUCATION
WELL, I JO NOT RECOGNIZE THAT AS A SCIENCE MAJOR, BUT I AM GLAD YOU ARE INTERESTED IN LEARNING SOMETHING ABOUT STARS.

ASTRONOMERS TODAY ARE PERHAPS NOT QUITE SO ROMANTIC AS THE ANCIENTS. INSTEAD OF BEING CONTENT TO MERELY DESCRIBE THE MAGICAL QUALITIES OF THE STARS, THEY LIKE TO WRITE DOWN NUMBERS.
OK VALERIE, WHAT IS A CATEGORY OF STELLAR BRIGHTNESS CALLED??
? LUMENS

```
HMMM, IT IS THE MAGNITUDE SYSTEM. ACTUALLY THIS WAS DEUELOPED NOT BY A
MODERN ASTRONOMER BUT BY HIPPARCHUS IN THE SECOND CENTURY B.C.! HE
GROUPED THE STARS INTO SIX CATEGORIES.
WHAT DO YOU THINK IS THE MAGNITUDE OF THE BRIGHTEST STARS ?DONT KNOW
THE BRIGHTEST STARS ARE ABOUT FIRST MAGNITUDE.
WHAT ABOUT THE DIMMEST STARS VISIBLE WITH THE UNAIDED EYE ? TENTH
ON A CLEAR NIGHT SIXTH MAGNITUDE IS ABOUT THE DIMMEST THAT YOU CAN SEE
WITH YOUR NAKED EYE.
THE MAGNITUDE SYSTEM IS RATHER STRANGE IN ONE RESPECT IN THAT IT IS
BACKWARDS! THE BRIGHTER THE STAR, THE SMALLER THE MAGNI TUDE.
IT IS ALSO STRANGE IN ANOTHER RESPECT. WHAT DO YOU THINK THIS IS??
?GIVE: UP
THIS IS A HARD QUESTION, AND YOU SHOULD NOT FEEL BADLY FOR NOT GETTING
IT RIGHT.
THE MAGNITUDE SCALE IS A MULTIPLICATIVE OR LOGARITHMIC SCALE. (NOW
DON'T LET THE BIG WORDS SCARE YOU!) THAT IS, A STAR BRIGHTER THAN
ANOTHER BY ONE MAGNITUDE IS REALLY ABOUT 2.5 TIMES AS BRIGHT. TWO
MAGNITUDES DIFFERENCE CORRESPONDS TO 2.5*2.5 = 6.25 TIMES IN BRIGHTNESS.
ACTUALLY, 5 MAGNITUDES DIFFERENCE IS EXACTLY A FACTOR OF 100. SO THE
RATIO FOR I MAGNITUDE IS THE FIFTH ROOT OF 10\emptyset, WHICH IS APPROXIMATELY:
```

 1 MAGNITUDE DIFFERENCE IS 2.511886431 TIMES IN BRIGHTNESS
 IF YOU MULTIPLY THIS NUMBER BY ITSELF 5 TIMES, YOU OBTAIN 1øø. TRY IT!!
WELL VALERIE, HOW MANY TIMES BRIGHTER IS THE BRIGHTEST STAR THAT YOU
CAN SEE WITH YOUR NAKED EYE TO THE DIMMEST ONE ? 100
EXCELLENT VALERIE!
LET ME DISPLAY THIS IN A TABLE FORM:
DIFFERENCE IN MAGNITUDE \quad RATIO OF BRIGHTNESS

WHICH IS BRIGHTER, A 4 MAGNITUDE STAR OR A 1.5 MAGNITUDE STAR ? 1.5 BY WHAT FACTOR IS IT BRIGHTER ? 10 VERY GOOD VALERIE!

```
WITH TELESCOPES THE RANGE OF OBSERUED MAGNITUDES IS INCREASED. MUCH
DIMMER STARS MAY BE SEEN.
DO THESE STARS HAUE A SMALLER OR LARGER MAGNITUDE ?LARGER
OF COURSE! THE TELESCOPES CAN SEE STARS WITH MUCH LARGER MAGNITUDES.
WITH THE 200 INCH HALE TELESCOPE ON MT. PALOMAR ASTRONOMERS CAN DETECT
PHOTOGRAPHICALLY STARS WITH A MAGNITUDE OF ABOUT +23.
HOW MANY TIMES DIMMER IS A STAR OF THIS MAGNITUDE THAN A TYPICAL VISUAL
STAR OF MAGNITUDE, SAY, +3 ?DONT KNOW
THIS IS A BIT DIFFICULT. SO LET'S CONSIDER IT IN STEPS.
FIRST, WHAT IS.THE DIFFERENCE IN MAGNITUDES ?20
FINE. HOW MANY MULTIPLES OF 5 IS THIS ?4
EXACTLY! NOW, EACH MAGNITUDE DIFFERENCE OF 5 CORRESPONDS TO WHAT
FACTOR IN BRIGHTNESS ?10\emptyset
GOOD! EACH 5 MAGNITUDES MEANS EXACTLY A FACTOR OF 1\emptyset\emptyset IN BRIGHTNESS.
SO WHAT IS THE BRIGHTNESS FACTOR FOR 20 MAGNITUDES (OR 4 OF THE
'FIVES')??
?20--400
WELL, IT IS NOT SIMPLY 4*10D! BUT I SUPPOSE THAT IS NOT TOO
ILLOGICAL. THE CORRECT ANSWER IS 100 MILLION OR 100,000,000 WHICH
COMES FROM MULTIPLYING 10\varnothing BY ITSELF 4 TIMES, THAT IS, 100*100*100*100
= 100,000,000.
```

LET'S CONTINUE OUR TABLE.

| MAGNITUDE DIFFERENCE | BRIGHTNESS RATIO |
| :---: | ---: |
| 15.0 | $1,000,000: 1$ |
| 20.0 | $100,000,000: 1$ |
| 25.0 | $10,000,000,000:$ |

NOTE THE MULTIPLICATIVE EFFECT IN THE BRIGHTNESS RATIO.
MAGNITUDES ADD BRIGHTNESSES MULTIPLY

```
SO FAR WE HAVE BEEN DISCUSSING STARS AS THEY APPEAR TO US AND THEIR
MAGNITUDES. THIS MAGNITUDE IS KNOWN AS THE APPARENT MAGNITUDE OF THE
STAR.
IF A STAR WERE 10\varnothing TIMES BRIGHTER THAN A FIRST MAGNITUDE STAR, THEN
WHAT WOULD BE ITS MAGNITUDE ?1
I DON'T GET THAT ANSWER. THE BRIGHTER STARS HAVE SMALLER MAGNITUDES,
EVEN POSSIBLY NEGATIVE. THUS SUCH A STAR WOULD HAVE AN APPARENT
MAGNITUDE OF 1 - 5 = -4.
THE SUN IS THE BRIGHTEST OF ALL! IT HAS AN APPARENT MAGNITUDE OF - 25 .5!
WHY DOES THE SUN APPEAR SO BRIGHT ?BECUASE IT IS CLOSE
OF COURSE, YOU'RE NOBODY'S FOOL VALERIE! IT IS ONLY BECAUSE WE ARE SO
CLOSE TO THE SUN THAT ITS APPARENT MAGNITUDE IS SO NEGATIVE.
CONSIDER A DISPLAY OF APPARENT MAGNITUDE AND COMMON OBJECTS:
```

| | + | 200.' PHOTOGRAPHIC LIMIT |
| :---: | :---: | :---: |
| $+20$ | + | 200', VI SUAL LIMIT |
| | | |
| +15 | + | |
| | + | 6.' TELESCOPE LIMIT |
| $+10$ | + | BINOCULAR LIMIT |
| | + | |
| $+5$ | + | NAKED-EYE LIMIT |
| | + | |
| \emptyset | + | BRIGHTEST STAR |
| | + | JUPITER (AT BRIGHTEST) |
| - 5 | + | VENUS (AT BRIGHTEST) |
| | + | |
| -10 | + | |
| | + | FULL MOON |
| -15 | + | |
| | + | |
| -20 | + | |
| | + | |
| -25 | + | |
| | + | SUN |

WHY IS THE PHOTOGRAPHIC LIMIT GREATER THAN THE VISUAL LIMIT??
? DONT KNOW
PHOTOGRAPHIC PLATES CAN COLLECT LIGHT FOR MANY MINUTES OR EUEN HOURS LONGER THAN THE EYE, HENCE ONE CAN DETECT PHOTOGRAPHICALLY MUCH DIMMER STARS.

THE DI STANCE AN OBJECT IS FROM THE EARTH HAS A LARGE EFFECT ON THE APDARENT MAGNI TUDE.
OK VALERIE, THEN LET US CONSIDER DISTANCES FOR A TIME.
WHAT UNIT DO YOU THINK WOULD BE USEFUL IN MEASURING AND EXPRESSING STELLAR DISTANCES ?LIGHTYEARS
THAT IS A GOOD UNIT, BUT THE ONE ASTRONOMERS USE MOST OFTEN IS THE
PARSEC, WHICH IS ABOUT 3.26 LIGHT YEARS. THE TERM COMES FROM PPARALLAX
SECOND' WHICH IS USED IN DETERMINING DISTANCES TO STARS BY
TRIGONOMETRIC PARALLAX. (BUT THAT IS ANOTHER STORY!)
WHAT IS THE DI STANCE (IN PARSEGS) TO THE NEAREST STAR TO OUR OWN GOOD OL' SUN ?
$\stackrel{+}{\bullet}$

A. Operational Suggestions

1. Student level - average
2. Pitfalls to avoid -
a. If the student is not familiar with decimals, allow him to use integers for graphing
b. The computer levels off at a light intensity of 12 . If a student selects all of his light intensity values above 11, a straight line of asterisks will appear on the graph.
c. Remind students that the computer plotted graph is to be viewed sideways. (see run)
3. Students work in groups of 5 or less. Allow one group at a time at the computer while the remaining groups are engaged in a related activity.

Continued on following page.

ACKNOWLEDGEMENTS: Huntington Project
Polytechnic Institute of Brooklyn

DISCUSSION continued
B. Suggested Follow-up

The students, after running the program, are expected to graph the results obtained from varying the carbon dioxide concentration.

Elicit from the student:

1. What happens to the rate of photosynthesis as:
a. The carbon dioxide concentration increases?
b. The intensity of the light increases?
2. How might you increase the size of tomatoes grown in a greenhouse? What, if any, limitations are there to this type of increase?
3. What is apt to happen to the world's food supply if the anount of carbon dioxide or the light intensity was reduced by one-half?
4. Compare your graph with the graph made on the computer. Point out similarities and differences. Explain them.
```
RUN
RUN
PHOSYN
HELLO. BY NOW YOU SHOULD KNOW FROM YOUR LECTURES WHAT
PHOTOSYNTHESIS IS. THIS LABORATORY WILL ENABLE YOU TO
CONDUCT EXPERIMENTS ON THE COMPUTER WHICH WOULD NOT BE
PRACTICAL DURING CLASS TIME.
SINCE ALL OF OUR FOOD COMES FROM PLANTS, LET'S FIND OUT
HOW CHANGING THE AMOUNT OF CARBON DIOXIDE OR THE INTENSITY
OF LIGHT WILL AFFECT THE PLANT'S RATE OF PHOTOSYNTHESIS.
MEASURED IN MICROGRAMS OF GLUCOSE PRODUCED PER DAY.
LET'S BEGIN WITH CHANGING THE LIGHT INTENSITY. YOU WILL
VARY THIS BY SELECTING INTEGER VALUES IN THE RANGE OF
0 TO 30 (THE UNITS FOR LIGHT INTENSITY ARE IN ERGS/SEC/SQ.CM)
BY VARYING ONLY ONE FACTOR AT A TIME, WE ARE CONDUCTING
A CONTROLLED EXPERIMENT. WE WILL ASSUME THAT OUR PLANT
HAS ALL OF THE CARBON DIOXIDE, WATER AND CHLOROPHYLL
THAT IT NEEDS.
YOU SHOULD CHOOSE BETWEEN FIVE AND TEN LIGHT INTENSITY
VALUES. TYPE IN ONLY ONE VALUE AFTER EACH QUESTION MARK.
BY TYPING IN IDO, NO MORE QUESTION MARKS WILL APPEAR AND
THE PROGRAM WILL CONTINUE.
(NOTE: 'RP' MEANS RATE OF PHOTHSYNTHESIS)
```

LIGHT INTENSITY(LI)??
$R P=45$
(LI)?15
$R P=121$
(LI)? 7
$R P=99$
(LI)?29
$R P=125$
(LI)?20
$R P=124$
(LI)?4-5
$R P=84$
(LI)? 6
$R P=92$
(LI)?!1
$R P=114$
(LI)? 12
$R P=116$
(LI)?:10
$R P=111$

```
1 = TABLE ONLY, 2 = PLOT ONLY, 3 = BOTH?3
    LIGHT RATE OF
INTENSITY. PHOTOSYNTHESIS
-0---------------------
    2
    5 63
    7 98.57
    10 111.42
    11 114.12
    12 116.29
    15 120.52
20 123.52
29 124.8
```

 LIGHT
 INTENSIT
INTENSITY

[^3]```
CARBON DIOXIDE CONC.(CO2)?•10
\(R P=118\)
(CO2)?.20
\(R P=125\)
(CO2)?.30
\(R P=125\)
(CO2)?.15
\(R P=124\)
(C02)?.05
\(R P=94\)
(CO2)?.25
\(R P=125\)
(CO2)?.02
\(R P=54\)
(CO2)?
\(R P=0\)
(CO2)?.11
\(R P=119\)
(CO2)?.20
\(R P=125\)
\(1=\) TABLE ONLY, \(2=\) PLOT ONLY, \(3=\) BOTH?3
CO2 CONC. RATE OF PHOTOSYNTHESIS
--- ---
 0
 .02
 .05
 -1
 .11
 .15
 - 2
 .25
 - 3
CO2 CONC.
```


DONE

TITLE: $\quad$ DESCRIPTION: $\quad$| PHOTEL: Photoelectric Effect |
| :--- |
| An experiment involving the photoelectric effect is simulated by the |
| computer, to enable students to develop a qualitative understanding of |
| the phenomenon. |
| OBJECTIVES: |
| To demonstrate a "critical wavelength" for photo-electronic emission, |
| PRELIMINARY pREPARATION: |

RUN
RUN
Photel
THE PHOTOELECTRIC EFFECT

WHEN LIGHT OF SHORT WAVELENGTH FALLS ON A METAL SURFACE, ELECTRONS ARE EJECTED FROM THE METAL. ACCORDING TO THE DESCRIPTION OF THIS PHENOMENA BY EINSTEIN, THERE IS A MAXIMUM WAVELENGTH FOR EACH METAL ABOVE WHICH NO ELECTRONS ARE EMITTED. IN THIS EXPERIMENT WE WILL DETERMINE THE CRITICAL WAVELENGTH AT WHICH THIS OCCURS.

THE METAL SELECTED WILL BE PLACED IN A UACUUM WHERE IT WILL BE BOMBARDED BY SOFT X-RAYS. THE NUMBER OF ELECTRONS EJECTED WILL BE COLLECTED AND COUNTED WITH AN AMMETER. (NOTE:THE CURRENT IS RELATED TO THE NUMBER OF ELECTRONS EMITTED BY THE METAL).

SELECT ONE OF THE METALS LISTED BY TYPING ITS NUMBER.

1) SILUER
2) BISMUTH
3) CADMIUM
4) LEAD
5) PLAT INUM
$? 3$

|  | MEASURED CURRENT (MICROAMPERES) |  |  |
| :--- | ---: | :---: | :---: | :---: |
| WAVELENGTH | TRIAL | TRIAL 2 | TRIAL 3 |
| 2380 | 20.5 | 20.8 | 20 |
| 2500 | 20.5 | 20.1 | 20.6 |
| 2631 | 20.1 | 20.4 | 20.8 |
| 2777 | 20.3 | 20.2 | 20.4 |
| 2941 | 20.3 | 20.1 | 20 |
| 3124 | 20.6 | 20 | 20.2 |
| 3333 | 2.2 | 4.4 | 1.4 |
| 3571 | 1.4 | 2.4 | 3.7 |
| 3846 | 2.4 | 0 | 4.9 |



1) SILUER
2) BISMUTH
3) CADMIUM
4) LEAD.
5) PLATINUM

title:
DESCRIPTION:

INSTRUCTIONS:
PHOTON

The student fires 15 shots, from a photon gun, at a mythical gaseous element with 4 randomly-selected energy levels. After each shot, the computer prints out the energies of photons, if any, emitted by the gas. The student is to construct an energy level diagram for the element from a knowledge of the energies of the photons emitted.

## OBJECTIVES:

To promote a better understanding of how energy levels are determined from a knowledge of the emissions of excited atoms.

PRELIMINARY PREPARATION:
A. Student - It is desirable that he have run BOHR, A833-36313, in Volume IV but it is not a necessity.
B. Materials - none

DISCUSSION:
The computer randomly selects 4 energy levels for the element. The energies range between $1 \times 10^{-19}$ and $15 \times 10^{-19}$ joules.

The energies of the students' 15 shots are picked at random, but cover the range from 1 to 15 . Whenever one of the photons shot by the student is capable of exciting the atom all of the possible photon emissions from that excited state are printed.

By examining the photons emitted as a result of the 15 shots the student can construct an energy-level diagram of the element and account for each photon.

## RUN

RUN
PHOTON


TITLE:
DESCRIPTION:

INSTRUCTIONS:

PHPOH, Page 2

```
RUN
RUN
PHPOH
THIS PROGRAM WILL FIND THE PH, POH, AND PCT DISSOCIATION
FOR ANY WEAK MONOPROTIC ACID.
KA OF ACIO =? IE-5
 MOLAR CONCENTRATION OF ACID =?!
PH=2.5 POH=11.5 PCT. DISSOCIATION=.315728
 ANY MORE PROBLEMS (}1=YES, 0=NO)?
KA OF ACID=?IE-3
 MOLAR CONCENTRATION OF ACID =??
PH=1.35 POH=12.65 PCT. DISSOCIATION= 2.21121
 ANY MORE PROBLEMS (}1=YES, (J=NO)?
KA OF ACID =?1E-10
 MOLAR CONCENTRATION OF ACID =?1
PH=5 POH=9 PCT. DISSOCIATION= 9.99895E-04
 ANY MORE PROBLEMS (1=YES, |=NO)?1
KA OF ACID =?1E-15
 MOLAR CONCENTRATION OF ACID =??
\(P H=6.96 \quad P O H=7.04 \quad\) PCT. DISSOCIATION=9.12871E-07
 ANY MORE PROBLEMS (}1=YES,0=NO)?
DONE
```



## PHYTOP - Page 2

DESCRIPTION continued
17. PRINC More sample space experiments.
18. PROBAB Probability experiments.
19. UNION Investigate formulas useful in solving probability problems.
20. CONDI Explores definition for conditional probability.
21. PASCL Investigates PASCAL's triangles.
22. BINOM Investigates Binomial Experiments and binomial probability distribution.
23. QUIZ
24. UNIVRS

Post-test on the probability programs.
25. KEPI
26. ORBECC
27. MASGO

Assists in finding a mathematical relationship between the orbital speed and the radius of a circular orbit for a unit mass orbiting a central mass.
28. CIRMO

Investigates circular motion.
29. BLOWS

A series of activities which demonstrate the effect of a central force acting on a mass moving with uniform speed.
30. KEP2 Simulates a mass moving in an elliptical orbit.

INSTRUCTIONS
Order "Interactive Methods for Selected Topics in Physics and Mathematics" from:

> Computer Curriculum Project
> Hewlett-Packard Company
> 1100 Wolfe Road
> Cupertino, California 95014

Price is $\$ 3.95$ per copy ( $\$ 3.00$ per book for 10 or more).

TITLE: $\quad$ INSCRIPTION: $\quad$| PLANK: A Photoelectric Simulation |
| :--- |
| This program simulates an experiment to determine Plank's constant, |
| threshold frequency, and work function of a metal. |
| OBJECTIVES: |
| A. To enable the student to do an experiment on the computer that he is |
| not likely to be able to do in a hiah-school laboratory. |
| B. A better understandina of the photoelectric effect. |
| PRELIMINARY PREPARATION: |

```
RUN
RUN
PLANK
 IN THIS EXPERIMENT YOU WILL BE GIVEN THE FREQUENCY OF THE
X-RAYS BEING USED AND YOU ARE TO DETERMINE THE VOLTAGE SET-
TING (RETARDING POTENTIAL) NECESSARY TO CAUSE THE COLLECTOR
CURRENT TO DECREASE TO ZERO.
 FIRST CHOOSE THE METAL YOU WISH TO USE FOR YOUR PHOTO-
SENSITIVE SURFACE.
 I SILVER, }2\mathrm{ BISMUTH, }3\mathrm{ CADMIUM, 4 LEAD, 5 PLATINUM
WHICH METAL DO YOU CMOOSE?A
WHAT INTENSITY OF X-RAYS WILL YOU USE (FROM I TO 5)?3
HOW MANY DIFFERENT X-RAY FREQUENCIES WOULD YOU LIKE TO
USE TO RADIATE YOUR SAMPLE (FROM 5 TO 8)?7
THE X-RAY FREQUENCY IS 9.45 EIS
VOLTAGES HIGHER THAN CUT OFF WILL GIVE CURRENT READINGS OF
ZERO SO TRY LOWER ONES. I'LL NOTIFY YOU OF CUT OFF.
 FIND THE CUT OFF (STOPPING) VOLTAGE.
V=?24
\begin{tabular}{ll}
\(V=? 30\) & \(I \pm 0\) \\
\(V=? 26\) & \(I=0\)
\end{tabular}
\(V=? 26 \quad I=0\)
V=?25
 I=0
V=?24.5
 I=g
V=?6
 1=0
\begin{tabular}{ll}
\(V=? 16\) & \(I=0\) \\
\(V=? 39\) & \(I=0\)
\end{tabular}
V=?39
 1=0
V=?12
 1=0
V=?56
V=?23
 1=0
V= \(1=0\)
\begin{tabular}{ll}
\(V=70-26\) \\
\(V=? 34\) & \(I=0\)
\end{tabular}
V=?34
 1=0
V=?47
 I=0
V=?64
 I=0
V=?24.55
V=?6 I=0
I=0
v=?9
 1=8
v=?100
v=?0
v=?3
 I=0
V=?-10
V=?-100 }\begin{array}{lll}{V=60.0095 }&{I=6}\\{V=?-12 E-6}
V=?-12
 I=60.8856 E-6
```

```
v=?1
\begin{tabular}{lll}
\(V=? 2\) & \(I=37.0269\) & \(E-6\) \\
\(V=? 3\) & \(I=13.9936\) & \(E-6\)
\end{tabular}
V=?3
 1=0
V=?2.2
 I= 9.41514 E-6
V=?2.4
V=?2.6
 I=4.79061 E-6
 CUT OFF I=0
the x-RAY frequency IS 9.89
E:5
FIND THE CUT OFF (STOPPING) VOLTAGE.
\(V=? 5\)
\begin{tabular}{lll}
\(V=75\) & \(I=0\) & \\
\(V=32\) & \(I=32.9376\) & \(E-6\) \\
\(V=31\) & \(I=46.496\) & \(E-6\) \\
\(V=33\) & \(I=19.3768\) & \(E-6\) \\
\(V=34\) & \(I=5.84878\) & \(E-6\) \\
\(V=34.3\) & \(I=1.79848\) & \(E-6\) \\
\(V=34.5\) & CUT OFF \(\quad I=0\) &
\end{tabular}
THE X-RAY FREQUENCY IS 17.65
FIND THE CUT OFF (STOPPING) VOLTAGE.
\(V=? 17\)
\begin{tabular}{lll}
\(V=? 17\) & \(I=32.1368\) & \(E-6\) \\
\(V=? 18\) & \(I=30.478\) & \(E-6\) \\
\(V=? 21\) & \(I=25.5547\) & \(E-6\) \\
\(V=? 26\) & \(I=17.3469\) & \(E-6\) \\
\(V=? 45\) & \(I=0\) & \\
\(V=? 40\) & \(I=0\) & \(E-6\) \\
\(V=? 35\) & \(I=2.56914\) & \(E-6\) \\
\(V=? 35.4\) & \(I=1.93469\) & \(E-6\) \\
\(V=? 35.7\) & \(I=1.41014\) & \(E-6\) \\
\(V=? 36\) & \(I=.956199\) & \\
\(V=? 36.9\) & \(I=0\) & \\
\(V=? 36.5\) & CUT OFF & \(I=0\)
\end{tabular}
FIND THE CUT OFF (STOPPING) VOLTAGE.
\(V=? 36\)
\(v=? 30\)
\(V=? 31\)
\(1=6.85579\)
\(I=5.0843\)
E-6
\(V=? 34\)
\(\mathrm{I}=\varnothing\)
\(V=? 33\)
\(I=1.56898 \quad E-6\)
```

| $V=333.0 .5$ |  |  |
| :--- | :--- | :--- | :--- |
| $V=? 33.7$ | $I=.689666$ | $E-6$ |
| $V=? 33.9$ | $I=.381843$ | $E-6$ |
|  | CUT OFF $\quad I=B$ |  |

THE X-RAY FREQUENCY IS 12.84 E15
FIND THE CUT OFF (STOPPING) VOLTAGE.

$V=? 20$		
	$1=0$	
$V=? 25$		
	$\mathrm{I}=0$	
$V=329$		
	$1=0$	
$V=331$		
	$\boldsymbol{1} \times 0$	
$V=315$		
	$1=0$	
$V=? 18$		
	$1=0$	
$V=? 35$		
	$1=0$	
$V=? 40$		
	$\mathrm{I}=0$	
$V=? 33$		
	$\mathrm{I}=0$	
$V=$ ? 37		
	$1=0$	
$V=322$		
	$1=0$	
$V=? 24$		
	$\mathrm{I}=0$	
$V=326$		
	$1=0$	
$V=$ ? 28		
	$1=0$	
$V=? 12$		
	$1=6.02932$	E-6
$V=? 13$		
	$1=1.53507$	E-6
$V=? 13.6$		
	$1=0$	
$V=? 13.4$		
	CUT OFF	

THE X-RAY FREQUENCY IS 10.68
E15
FIND THE CUT OFF (STOPPING) VOLTAGE.

	$1=0$	
$V=312$		
	$1=0$	
$V=? 14$		
	$1=0$	
	$1=13.2536$	E-6
$V=88.9$		
	$1=0$	
$V=$ ? 7-9		
	$1=0$	
$V=? 7$		
	$1=5.475$	E-6
$V=? 7.2$		
	$I=3.94767 \quad E-6$	
$V=? 7.5$		
	$I=1.56603 \quad E-6$	
$V=? 7 \cdot 7$		
CUT OFF $\mathrm{I}=0$		

THE $X$-RAY FREQUENCY IS 15.25

FIND THE CUT OFF (STOPPING) VOLTAGE.


WHAT IS THE MEANING OF THE POINT AT WHICH THE EXTRAPOLATED GRAPH INTERCEPTS THE VOLTAGE AXIS?

WHAT IS THE LOWEST FREQUENCY THAT WILL CAUSE EMISSION OF PHOTOELECTRONS FROM THIS METAL?

REMEMBER THAT THE RETARDING POTENTIAL APPLIED BETWEEN THE EMITTER AND THE COLLECTOR AT CUT OFF, EXPRESSED IN ELECTRON VOLTS, IS EQUAL TO THE KINETIC ENERGY OF THE FASTEST ELECTRONS ESCAPING FROM THE EMITTER. FIND THE SLOPE OF THE GRAPH BUT EXPRESS THE STOPPING POTENTIAL IN JOULES.

WHAT IS THE VALUE OF THE SLOPE OF THE GRAPH AND WHAT SPECIAL NAME IS GIVEN TO THIS CONSTANT?

THE SAME METAL WITH A DIFFERENT INTENSITY IS WORTH INVESTIGATING. WHEN YOU DO THIS EXPLAIN THE MEANING OF ITS GRAPH WHEN COMPARED TO THE PREVIOUS ONE.

YOU MAY ALSO WISH TO TRY A DIFFERENT METAL AND EXPLAIN THE MEANING OF ITS GRAPH WHEN COMPARED TO YOUR OTHER ONES, OR COMPARED WITH THOSE OF ANOTHER STUDENT.

DO YOU WISH TO TRY A DIFFERENT INTENSITY OR A
DIFFERENT $N$ :TAL ( $1=Y E S, ~ \theta=$ NO) : ? $\theta$
DONE

# conthbuted program BASIC 



RUN

RUN
POLUT

```
 WATER POLLUTION STUDY
INSTRUCTIONS (I=YES, B=NO)?1
```

IN THIS STUDY YOU CAN SPECIFY THE FOLLOWING CHARACTERISTICS:
A. THE KIND OF BODY OF WATER:
1. LARGE POND
2. LARGE LAKE
3. LOW-MOVING RIVER
4. FAST-MOVING RIVER
B. THE WATER TEMPERATURE IN DEGREES FAHRENHEIT:
C. THE KIND OF WASTE DUMPED INTO THE WATER:
1. INDUS TRIAL
2. SEWAGE
D. THE RATE OF DUMPING OF WASTE, IN PARTS PER MILLION (PPM)/DAY.
e. the type of treatment of the waste:
0. NONE
1. PRIMARY (SEDIMENTATION OR PASSAGE THROUGH FINE
SCREENS TO REMOVE GROSS SOLIDS)
2. SECONDARY (SAND FILTERS OR THE ACTIVATED SLUDGE
METHOD TO REMOVE DISSOLVED AND COLLOIDAL
ORGANIC MATTER)
BODY OF WATER?A
WATER TEMPERATURE?60
KIND OF WASTE?I
DUMPING RATE?10
TYPE OF TREATMENT?O

DO YOU WANT: A GRAPH(1), A TABLE(2), OR BOTH(3)?1


THE WASTE CONTENT AND OXYGEN CONTENT WILL KEMAIN AT
these levels until one of the variables changes.

ANOTHER RUN ( $1=Y E S, \beta=N O)$ ? 1

```
BODY OF WATER?3
WATER TEMPERATURE?60
KIND OF WASTE?I
DUMPING RATE?IO
TYPE OF TREATMENT?O
DO YOU WANT: A GRAPH(1), A TABLE(2), OR BOTH(3)?1
AFTER DAY 3 THE FISH BEGIN TO DIE, BECAUSE
THE OXYGEN CONTENT OF THE WATER DROPPED BELOW 5 PPM.
```



```
THE WASTE CONTENT AND OXYGEN CONTENT WILL REMAIN AT
these levels until ONE Of the variableS ChaNgeS.
ANOTHER RUN (I=YES, 0=NO)?@
DONE
```



## POP, Page 2

RUN
RUN
POP

## POPULATION GROWTH SIMULATION

WHICH POPULATION MODEL? (1, 2, OR 3). TYPE IN NUMBER?1
$P(\theta)=? 2$
REPRO RATE=?7.5
TIME UNIT PER GENERATION?1
NO. OF GENERATIONS?10
OUTPUT DESIRED: $1=$ TABLE, $2=$ GRAPH, $3=$ ROTH 33

GFN	TIME	POP.
0	0	2
1	1	15
2	2	113
3	3	844
4	4	6328
5	5	41461.
6	6	355957.
7	7	$2.66968 E+06$
8	8	$2.20276 E+07$
9	9	$1.50169 \mathrm{E}+08$
10	10	$1.12627 F+09$



ANOTHER RUN? (YES=1, NO=0)? !
WHICH POPILATION MODEL? (1, 2, OR 3). TYPE IN NUMRER?2
$P(\varnothing)=? 2$
REPRO RATE=?7.5
TIME UNIT PER GENERATION?I
CARRYING CAPACITY?500000
NO. OF GENERATIONS? 20
OUTPUT DESIRED: $1=T A B L E, 2=G R A P H, 3=R O T H ? 2$


ANOTHER RUN? (YES=1, $N O=\varnothing$ )? 1
WHICH POPULATION MODEL? (1, 2, OR 3). TYPE IN. NUMBER?3
$P(\theta)=? 2$
REPRO RATE=?7.5
TIME UNIT PER GENERATION?I
CARRYING CAPACITY?500000
AT WHAT PO P. DO LOW DENSITY EFFECTS FIRST BEGIN? 100
NO. OF GENERATIONS? 10
OUTPUT DESIRED: $1=T A B L E, 2=G R A P H, 3=B O T H ? 3$


ANOTHER RUN? (YES=1, NO= ( ) ? 1
WHICH POPULATION MODEL? (1, 2, OR 3). TYPE IN NUMBER?3

```
P(0)=?5
REPRO RATE=?7.5
TIME UNIT PER GENERATION?I
CARRYING CAPACITY?500000
AT WHAT PO P. DO LOW DENSITY EFFECTS FIRST BEGIN?IDO
NO. OF GENERATIONS?I\emptyset
OUTPUT DESIRED: 1=TABLE, 2xGRAPH, 3xBOTH?1
\begin{tabular}{lll}
GEN. & TIME & POP \\
\hdashline 0 & 0 & 5 \\
1 & 1 & 5 \\
2 & 2 & 5 \\
3 & 3 & 5 \\
4 & 4 & 5 \\
5 & 5 & 5 \\
6 & 6 & 5 \\
7 & 7 & 5 \\
8 & 8 & 5 \\
9 & 9 & 5 \\
10 & 10 & 5
\end{tabular}
```

ANOTHER RUN? (YES=1, NO=0)?1

```
WHICH POPULATION MODEL? (1, 2, OR 3). TYPE IN NUMBER?3
```

$P(\emptyset)=? 6$
REPRO RATE=?7.5
TIME UNIT PER GENERATION? 1
CARRYING CAPACITY?500000
AT WHAT PO P. DO LOW DENSITY EFFECTS FIRST BEGIN?10日
NO. OF GENERATIONS?10
OUTPUT DESIRED: $1=$ TABLE, $2=G R A P H, 3=B O T H ? 1$

GEN.	TIME	POP.
0	0	6
1	1	7
2	2	10
3	3	19
4	4	62
5	5	393
6	6	2943
7	7	21812
8	8	149825.
9	9	614375.
10	10	387493.

ANOTHER RUN? (YES=1, $N O=0$ )? 0

DONE
TITLE:
DESCRIPTION:
PRCNT

```
RUN
RUN
PRCNT
 THIS PROGRAM IS DESIGNED TO CALCULATE THE PERCENT
COMPOSITION BY WEIGHT OF A COMPOUND THAT MAY CONTAIN
FROM 2 TO 5 ELEMENTS.
 DO YOU WANT TO SEE A SAMPLE CALCULATION?
ANSWER I FOR YES OR O (ZERO) FOR NO?1
EXAMPLE : THE PERCENT COMPOSITION OF SULFURIC ACID
LET WI = ATOMIC WEIGHT OF HYDROGEN
 LET AI = THE NO. OF HYDROGEN ATOMS IN THE FORMULA
LET W2 = THE ATOMIC WEIGHT OF SULFUR
 LET AZ = THE NO. OF SULFIJR ATOMS IN THE FORMULA
LET W3 = THE ATOMIC WEIGHT OF OXYGEN
 LET AJ = THE NO. OF OXYGEN ATOMS IN THE. FORMULA
 Y= FORMULA WEIGHT OF SULFURIC ACID
 Y=(W1*AI) + (W2*A2) + (W3*A3)
 Y=(1.008*2) + (32.064*1) + (15.999*4)
 Y=98.076
PERCENT H = (W1*A1/Y)*100
PERCENT H = (1.008*2/98.076)*100
PERCENT H = 2.005
PERCENT S = (W2*A2/Y)*100
PERCENT S = (32.064*1/98.076)*100
PERCENT S = 32.693
PERCENT O = (W3*A3/Y)*100
PERCENT O = (15.999*4/98.076)*100
PERCENT O = 65.2514
 DO YOU WANT TO DO A PROBLEM ?
ANSWER I FOR YES OR 0 (ZERO) FOR NO?I
 WHAT IS THE NIJMBER OF ELEMENTS IN THE FORMULA?3
 TYPE (THE ATOMIC WEIGHT,NO. OF ATOMS) FOR EACH ELEMENT,
 ONE ELEMENT TO A LINE.
?12.011.12
?1.008.22
?15.999.11
FORMULA WEIGHT = 342.297
ATOMIC WEIGHT NO. OF ATOMS PERCENT COMPOSITION
 12.011 12 42.1073
 1.008 22 6.47858
 15.999 11 51.4141

 DO YOU WANT TO DO ANOTHER PROBLEM?
ANSWER 1 FOR YES OR O (ZERO) FOR NO?O
DONE
```



PRJTL, Page 2

```
RUN
RUN
PRJTL
SUPPOSE YOU ARE GOING TO FIRE A PROJECTILE INTO THE AIR.
IF YOU ENTER A VALUE FOR ANGLE OF ELEVATION AND INITIAL
VELOCITY, THE RANGE AND HEIGHT WILL BE EVALUATED. ENTER
YOUR INFORMATION IN THE FORM A,V AFTER THE QUESTION MARK.
(REMEMBER, THE ANGLE IS IN DEGREES AND THE INITIAL
VELOCITY IS IN METERS/SECOND.)
WHAT ARE YOUR VALUES?30,200
THE TOTAL FLIGHT TIME WAS 20.3943 SECONDS
THE RANGE WAS 3532.4 METERS
THE MAXIMUM HEIGHT WAS 509.858 METERS
BECAUSE THERE IS NO FRICTION, THE HORIZONTAL VELOCITY IS
CONSTANT. HORIZONTAL VELOCITY = 173.20S
 THE FOLLOWING ARE POINTS ON THE CURVE AT VARIOUS TIME INTERVALS:
\begin{tabular}{|c|c|c|c|c|}
\hline TIME & X-COORD & Y-COORD & VERTICAL VELOCITY & SPEED \\
\hline 0 & 0 & 0 & 100. & 200 \\
\hline 1.85403 & 321.127 & 168.548 & 81.8181 & 191.557 \\
\hline 3.70806 & 642.254 & 303.386 & 63.6363 & 184.525 \\
\hline 5.56209 & 963.382 & 404.515 & 45.4545 & 179.07 \\
\hline 7.41611 & 1284.51 & 471.934 & 27.2727 & 175.339 \\
\hline 9.27014 & 1605.64 & 505.644 & 9.09091 & 173.444 \\
\hline 11.1242 & 1926.76 & 505.643 & -9.0909 & 173.444 \\
\hline 12.9782 & 2247.89 & 471.934 & -27.2727 & 175.339 \\
\hline 14.8322 & 2569.82 & 464.514 & -45.4545 & 179.67 \\
\hline 16.6863 & 2890.14 & 363.385 & -63.6363 & 184.525 \\
\hline 18.5403 & 3211.27 & 168.547 & -81.8181 & 191.557 \\
\hline 20.3943 & 3532.4 & 6 & -99.9999 & 200 \\
\hline
\end{tabular}
THE ANGLE AT WHICH YOU FIRED THE PROJECTILE DOES NOT YIELD THE MAXIMUM RANGE. WHAT ANGLE DOES?4S
4S DEGREES GIVES THE MAXIMUM RANGE OF 4877.65
WOULD YOU LIKE ANOTHER RUN WITH DIFFERENT A AND V?
(I=YES, B=NO) : ?O
DONE
```


# conthibutedphogram BASIC 

TITLE:	\|REFLCT: Least Time Principle and Light . ${ }^{\text {REFLCT }}$
DESCRIPTION:	An analogy is given for a light-ray reflected from a plane surface to demonstrate the "least-time" principle and its relationship to the reflection laws of light.   OBJECTIVES:
	To demonstrate the consequences of the "least-time" principle. PRELIMINARY PREPARATION:
INSTRUCTIONS:	A. Student - Should be familiar with the reflection laws of light.   B. Materials - graph paper.   DISCUSSION:
	Given points $P_{1}$ and $P_{2}$ and the line 1, the student can vary the point $P_{3}$ to note the effects on angles $P$ and $Q$ and their relationship to the time required to traverse the path $P_{1} P_{3} P_{2}$.   The program is presented as a game in which a horse (lightray) must complete a journey within a specified time. The student is limited to seven choices of $P_{3}$ to complete the task. After a successful journey, the student may vary the point $\mathrm{P}_{2}$ to further establish the principle of least time.
	This program has been extremely helpful in developing the least-time concept and its relationship to the laws of reflection.   It is applicable to a classroom situation as well as small study groups.

ACKNOWLEDGEMENTS: Huntington Project
Polytechnic Institute of Brooklyn

```
RUN
RUN
REFLCT
YOU ARE CAMPING OUT WEST IN COORDINATE NATIONAL PARK ON
ORDINATE MOUNTAIN, LOCATED 10 MILES NORTH OF THE
DESERTED TOWN OF ORIGIN, WHICH IS CONVENIENTLY LOCATED
AT (0,0) ON THE LOCAL MAP.
A CALAMITY STRIKES! THE NEAREST HELP IS AT THE
BAR 30:30 RANCH, LOCATED AT COORDINATES (30,30).
TO GET TMERE, YOU MUST RIDE AN OLD HORSE
(NAMED LIGHTRAY) WHO :
 A) WILL ONLY WALK 5 MILES PER HOUR
 B) WILL CEASE TO WALK (AND EXIST) AFTER 10 HOURS
 C) MUST HAVE A DRINK OF WATER SOMEWHERE ALONG THE
 ABSCISSA RIVER, WHICH (IF YOU HAVEN'T GUESSED) RUNS
 ALONG THE ABSCISSA IN COORDINATE PARK
HERE IS YOUR PROBLEM: YOU MUST PICK A SPOT
(FROM TO 38) ALONG THE ABSCISSA RIVER DURING THE
TRIP TO GIVE LIGHTRAY A DRINK, AND STILL MAKE IT TO
TME BAR 30:38 WITHIN THE TIME ALLOWED. LIGHTRAY, USING
HORSE SENSE, KNOWS ALL THE ANGLES, SO WE WILL GIVE
THEM TO YOU, TOO.
WHERE WILL LIGHTRAY STOP FOR A DRINK?7
ANGLE APPROACHING RIVER IS S5 DEGREES.
ANGLE LEAVING RIVER IS 53 DEGREES.
WHERE WILL LIGHTRAY STOP FOR A DRINK?. 25
ANGE APPROACHING RIVER IS 89 DEGREES.
ANGLE LEAVING RIVER IS 45 DEGREES.
HEY - THIS TRIP TAKES LONGER!
YOU HAVE A DEAD MORSE ON YOUR HANDS. TRY AGAIN.
WHERE WILL LIGHTRAY STOP FOR A DRINK?6
ANGLE APPROACHING RIVER IS 59 DEGREES.
ANGLE LEAVING RIVER IS 5! DEGREES.
WELL, YOU ARE CLOSER TMAN LAST TIME.
KEEP AN EYE ON THOSE ANGLES, THOUGH.
LET'S GO BACK FOR ANOTHER HORSE.
WHERE WILL LIGHTRAY STOP FOR A DRINK?8
ANGLE APPROACHING RIVER IS 5I DEGREES.
ANGLE LEAVING RIVER IS 54 DEGREES.
WELL, YOU ARE CLOSER THAN LAST TIME.
KEEP AN EYE ON THOSE ANGLES, THOUGH.
LET'S GO BACK FOR ANOTHER HORSE.
WHERE WILL LIGHTRAY STOP FOR A DRINK?7.4
ANGLE APPROACHING RIVER IS 53 DEGREES.
ANGLE LEAVING RIVER IS 53 DEGREES.
NICE WORK. YOU MADE IT.
THE TRIP TOOK ABOUT 10.0日OI HOURS.
YOU CAN SEE THAT USING HORSE SENSE, LIGHTRAY KNOWS THAT
THE ANGLES HAVE TO BE EQUAL OF REFLECTION FOR A
MINIMUM TIME TRIP.
IF YOU WANT TO MOVE THE RANCH, TYPE I
IF YOU WANT TO SEE SOMETHING ELSE, TYPE }
IF YOU WANT TO QUIT, TYPE 3
72
TIME FOR AN ACTUAL LIGHTRAY TO COMPLETE THE TRIP IS:
 2.75455E-04 SECONDS.
 TMANK YOU FOR PLAYING.
DONE
```



RUN

```
APPEND-DESCAL
REFLEC
RUN
```

```
THIS PROGRAM WILL DEAL WITH THE PHYSICS OF CURUED MIRRORS.
```

THIS PROGRAM WILL DEAL WITH THE PHYSICS OF CURUED MIRRORS.
THE FORMULAS WHICH YOU WILL NEED MAY BE FOUND IN THE MODULE.
THE FORMULAS WHICH YOU WILL NEED MAY BE FOUND IN THE MODULE.
REMEMBER -- TYPE 999999 FOR CALCULATOR MODE.

```
REMEMBER -- TYPE 999999 FOR CALCULATOR MODE.
```

```
THE FOCAL LENGTH OF A CURVED MIRROR IS FOUND TO BE 6.6 CM.
```

THE FOCAL LENGTH OF A CURVED MIRROR IS FOUND TO BE 6.6 CM.
AN OBUECT 1.4 CM HIGH IS PLACED 5.3 CM AWAY FROM
AN OBUECT 1.4 CM HIGH IS PLACED 5.3 CM AWAY FROM
THE MIRROR. TYPE IN THE IMAGE DISTANCE FROM THE MIRROR IN CM.
THE MIRROR. TYPE IN THE IMAGE DISTANCE FROM THE MIRROR IN CM.
DISTANCE=?999999
DISTANCE=?999999
CALCULATOR MODE.
CALCULATOR MODE.
CLEARED TO ZERO
CLEARED TO ZERO
1ST NUMBER?S.3
1ST NUMBER?S.3
FUNCTION?RCP
FUNCTION?RCP
RCP=.188679
RCP=.188679
FUNCTIONTCLR
FUNCTIONTCLR
CLEARED TO 2ERO
CLEARED TO 2ERO
1ST. NUMBER?6.6
1ST. NUMBER?6.6
FUNCTION?RCP
FUNCTION?RCP
RCP=..151515
RCP=..151515
FUNCTION?SUB
FUNCTION?SUB
2ND NUMBER?.188679
2ND NUMBER?.188679
SUB=-3.71639E-02
SUB=-3.71639E-02
FUNCTION?RCP
FUNCTION?RCP
RCP=-26.9079
RCP=-26.9079
FUNCTION?EXT
FUNCTION?EXT
EXIT.
EXIT.
DISTANCE=?-26.91
DISTANCE=?-26.91
GOOD FOR YOU.
GOOD FOR YOU.
NOW TYPE IN THE HEIGHT OF THE IMAGE (HI) IN CM.
NOW TYPE IN THE HEIGHT OF THE IMAGE (HI) IN CM.
HEIGHT =?999999
HEIGHT =?999999
CALCULATOR MODE.
CALCULATOR MODE.
CLEARED TO ZERO
CLEARED TO ZERO
1ST NUMBER?1.4
1ST NUMBER?1.4
FUNCTION?MUL
FUNCTION?MUL
2ND NUMBER?-26.9079
2ND NUMBER?-26.9079
MUL=-37.6711

```
MUL=-37.6711
```

FUNCTION?DIU
2ND NUMBER?5.3
DIV=-7.18775
FUNCTION?EXT
EXIT.
HEIGHT = ?-7.19775
GOOD. YOU'RE RIGHT.
IS THE IMAGE REAL OR UIRTUAL (I=REAL, $\theta=U I R T U A L) ? \theta$
RIGHT ONI
DO YOU WANT TO TRY ANOTHER PROBLEM LIKE THIS ONE
( $\quad=\mathrm{NO}, 1=Y E S$ )? 0
OK, THEN, HOW ABOUT THIS ONE?


```
FUNCTIONTCLR
Cleared to zero
1ST NUMBER?4.7.4
FUNCTION?MUL
2ND NUMBER?6.17
MUL = 29.2458
FUNCTION?DIV
2ND NUMBER?10.91
DIV= 2.68064
FUNCTION?EXT
EXIT.
FOCAL LENGTH = ?2.681
RIGHT.. GOOD
```



```
RIGHT ONI
DO yOU WANT tO try anOthER problem like this one
(0=NO, l=YES)?0
SO LONG, thEN. try the next program, refrac.
AU REVOIR
DONE
```

TITLE:
DESCRIPTION:

ACKNOWLEEGEMENTS $\quad$| COMPUTER-AUGMENTED PHYSICS TOPICS (OPTICS) |
| :--- |
| This program provides practice in using the formulas for refraction through |
| plane. surfaces and thin lenses given in the module, Computer-Augmented |
| Physics Topics of the Hewlett Packard Curriculum Series. |
| The program uses Calculator Mode as a student option in answering questions. |

RETRAC, Page 2

RUN

APPEND-DESCAL
RUN
REFRAC

THIS PROGRAM WILL DEAL WITH REFRACTION AND THE PHYSICS OF THIN LENSES.
THE FORMULAS THAT YOU WILL NEED MAY BE FOUND IN THE MODULE. REMEMBER--999999 FOR CALCULATOR MODE.

LIGHT TRAVELING THROUGH A UACUUM (NI=1) IS INCIDENT
ON AN OBJECT AT AN ANGLE OF 23.88 DEGREES, AND IS
REFRACTED TO AN ANGLE OF 11.11 DEGREES. WHAT IS THE INDEX OF REFRACTION (N2) OF THE MATERIAL? N2 $=$ ? 999999
CALCULATOR MODE.
CLEARED TO ZERO
1ST NUMBERT11.11
FUNCTION?DTR
$D T R=.193986$
FUNCTIONTSIN
SIN=. 192693
FUNCTION?CLR
CLEARED TO ZERO
1ST NUMEER?23.88
FUNCTION?DTR
DTR= .416785
FUNCTIONTSIN
SIN= .404822
FINCTIIONTDIV
2ND NIJMBER?. 192693
DIV=2.10887
FUNCTION?EXT
EXIT.
N2 : ?2.18
EXCELLENT- YOU'RE RIGHT
REFER TO THE MODULE. TYPE IN THE NUMBER OF THE MATERIAL.
?1J
RIGHT YOU ARE.
UOULD YOU LIKE TO TRY ANOTHER LIKE THIS (I=YES, O-NO)TO
USING THE 'LENSMAKER'S TORMULA,' CALCULATE THE FOCAL
LENGTH OF A THIN LENS MADE FROM GLASS. (N=1.5), IF THE
RADII OF THE OPPOSING SURFACES ARE 2 AND 3.S CM.
FOCAL LENGTH (CM) $=7999999$
CALCULATOR MODE.
CLEARED TO ZERO
1 ST NUMBER73.5
FUNCTIONPRCP
$R C P=.285714$
FUNCTION?ADD
2 ND NUMAER?.S
ADD=.785714
FUNCTION?MUL
2 ND NUMBER?.S
MUL =.392857
FUNCTIONTRCP
RCP= 2.54545
PUNCTIONTEXT
EXIT.
FOCAL LENGTH (CM) = 22.55
0000 YOU ARE CORRECT

HOW ABOUT ANOTHER ONE LIKE THIS ( $\theta=$ NO, $1=Y E S$ ) 30
OK, NOW TRY YOUR hand at Writing a program to complete the table in part 3 of the module.

DONE
title:

DESCRIPTION:

INSTRUCTIONS:

SLITS: Youngs Double Slit Experiment

Young's Double Slit Experiment is simulated by the commuter to nermit greater exploration of the influence of wavelength and slit-separation on the interference pattern. (This is a nlotting program.)

OBJECTIVES:
To determine, qualitatively, the effects of slip-separation, inter-screen spacing distance (d) and wavelenath (w), in altering the location of the maxima and minima of the intensity bands of light.

PRELIMINARY PREPARATION:
A. Student - An instruction sheet is helnful in leading the student through a loqical approach. It $1 s$ also recommended that students understand the superposition of waves before executing this proaram.
B. Materials - none.

## DISCUSSION:

A. Operational Suggestions

1. The objectives of this program are best accomplished with small grouns ( 3 to 4 students) to nermit discussion and development of ideas concerning the relationships involved.
2. The program has worked well with highly-motivated students and has often led into detailed discussions of rolated topics. However, it has been found to be relatively ineffectual with poorly-mntivated students.
B. Suggested Follow-up

This program permits the explnration of the parameters involved in double-slit interference patterns without the requirement of extensive equipment and/or set-ups. It is recommended that this simulated experiment be employed after the student has familiarized himself with the normal lab experiment.

To enhance the operation of this pronram, it is further recommended that an instruction sheet (see attachment) be constructed to enable efficient exploration of this mhenomenon. By varying the slit-senaration (d), the student can observe the effects by noting the relative separations between adjacent maxima. In a similar manner, changes effectuated by the various wavelenoths can also be noted.

RUN
RUN
SLITS
YOUNG•S DOUBLE SLIT EXPERIMENT


ABOVE IS AN ILLUSTRATIVE RUN WITH PRE-DETERMINED VALUES FOR WAVELENGTH (W), DISTANCE BETWEEN SLITS AND SCREEN (L), AND SLIT SEPARATION - CENTER TO CENTER (D). NOW YOU MAY VARY THESE PARAMETERS, ONE AT A TIME.

* $\boldsymbol{*}$ * *

WHAT IS THE NEW SLIT SEPARATION (D) IN MILLIMETERS?I
$L$ METERS $W=6000$ ANGSTROMS $D=1$ MILLIMETERS


WOULD YOU LIKE TO TRY ANOTHER VALUE OF D (I-YES, O-NO)? I
WHAT IS THE NEW SLIT SEPARATION (D) IN MILLIMETERS?.2S
$L=2$
METERS $W=6000$
ANGSTROMS
$D=.25$
MILLIMETERS


WOULD YOU LIKE TO TRY ANOTHER VALUE OF D (I-YES, B-NO)?日

*     *         *             *                 *                     * 

WHAT IS THE NEW WAVELENGTH (W) IN ANGSTROMS?3000


SLITS, Page 4

WHAT IS THE NEW WAVELENGTH (W) IN ANGSTROMS?6900


WOULD YOU LIKE TO TRY ANOTHER VALUE OF $W$ (1-YES, 0-NO)?0
*****
WHAT IS THE NEW DISTANCE FROM SLITS TO SCREEN (L) IN METERS?S
$L=5$ METERS $W=6000$ ANGSTROMS $\quad D=.5$ MLLIMETERS


WOULD YOU LIKE TO TRY ANOTHER VALUE OF L (1-YES, 0-NO)?0

YOU WILL NOW BE GIVEN A LIGHT SOURCE OF UNKNOWN
WAVELENGTH. YOU WILL SPECIFY THE SLIT SEPARATION (D),
AND THE DISTANCE FROM SLITS TO SCREEN (L).
WHAT IS THE NEW SLIT SEPARATION (D) IN MILLIMETERS?. 5
WHAT $1 S$ THE NEW DISTANCE FROM SLITS TO SCREEN (L) IN METERS? 4
$L=4$ METERS $W=$ ? ANGSTROMS $D=.5$ MILLIMETERS


WOULD YOU LIKE A PLOT FOR OTHER VALUES OF D AND L (I-YES, B-NO)?0 WHAT DO YOU THINK THE UNKNOWN WAVELENGTH (W) IS?6000 PRETTY GOOD! THE WAVELENGTH WAS 6000 ANGSTROMS. WOULD YOU LIKE TO TRY ANOTHER UNKNOWN WAVELENGTH(I-YES, B-NO)? $\emptyset$

WOULD YOU LIKE A PLOT WITH YOUR OWN VALUES FOR WAVELENGTH
(W), SLII SEPARATION (D). AND DISTANCE FROM SLITS TO

SCREEN (L) (1-YES, D-NO)?I
WHAT IS THE NEW WAVELENGTH (W) IN ANGSTROMS?5500
WHAT IS THE NEW SLIT SEPARATION (D) IN MILLIMETERS?. 75
WHAT IS THE NEW DISTANCE FROM SLITS TO SCREEN (L) IN METERS?3
$L=3$ METERS $W=5500$ ANGSTROMS $D=.75$ MILLIMETERS

## SLITS, Page 6



ANOTHER ONE (1-YES, 0-NO)
? 0
*********
hope you had fun!
DONE
TITLE:
DESCRIPTION:

INSTRUCTIONS: $\quad$| SNELL: Snell's Law |
| :--- |
| Snell's law is presented pictorially by plotting the path of a light |
| ray as it crosses a boundary separating two different media. |
| OBJECTIVES: |
| To permit students to "see" the refraction of light, including the case |
| when the critical angle is exceeded and reflection occurs. |
| PRELIMINARY pREPARATION: |

## RUN

RUN
SNELL
---REFRACTION OF LIGHT--.
THIS PROGRAM WILL HELP YOU VISUALIZE THE REFRACTION OF LIGHT ES IT CROSSES A BOUNDARY SEPARATING TWO DIFFERENT MEDIA.

THE DIAGRAM BELOW SHOWS LIGHT INCIDENT TO THE BOUNDARY AT 45 DEGREES. THE INDICES OF REFRACTION ARE NI=1.0 AND N2=1.5 RESPECTIVELY.


WHAT DO YOU THINK THE ANGLE OF REFRACTION IS? 30
YOU ARE WITHIN ID PERCENT.
THE ANGLE OF REFRACTION, A2 $=28.126$
DO YOU WANT TO CONTINUE ( $1=Y E S, \theta=$ NO) : ? 1
NOW YOU CAN CHANGE THE INCIDENT ANGLE. THE REFRACTIVE INDICDS WILL REMAIN AS $N 1=1.0$ AND N2=1.5.

REMEMBER, ONLY POSITIVE ANGLES BETWEEN 0 AND 90 DEGREES ARE PERMISSIBLE ENTRIES.
SO, WHAT ANGLE DO YOU WANT?60


WHAT DO YOU THINK THE ANGLE OF REFRACTION IS?35
YOU ARE WITHIN 10 PERCENT.
THE ANGLE OF REFRACTION. A2= 35.264
DO YOU WANT TO CONTINUE ( $1=$ YES, $\theta=N O$ ): ? 1

NOW SPECIfy NEW VALUES FOR NI, N2, AND ANGLE 1. SEPARATE WITH COMMAS. OKAY, WHAT VALUES?1.5.2.5.15


WHAT DO YOU THINK THE ANGLE OF REFRACTION IS?9 YOU ARE WITHIN 16 PERCENT.
THE ANGLE OF REFRACTION, A2 $=8.934$
DO YOU WANT TO CONTINUE ( $1=Y E S, 0=N O): 30$
DONE

TITLE: $\quad$ DESCRIPTION: $\quad$| SPACE: Spacecraft Orbits |
| :--- |
| The effects of speed on orbital motion can be demonstrated by incrementally |
| altering the tangential velocity of an orbitting spaceraft. Limitinq |
| cases are included, i.e. exceedina the escane velocity and/or, crashing |
| into the earth. |
| OBJECTIVES: |
| To demonstrate the effects of speed on orbital motion. |
| PRELIMINARY PREPARATION: |

```
RUN
RUN
SPACE
SPACECRAFT ORBITS
WHAT IS THE MINIMUM AND MAXIMUM ALTITUDE OF THE SPACECRAFT
ABOUE THE SURFACE OF THE EARTH IN MILES?150,230
THE ECCENTRICITY OF THE ORBIT IS 9.64088E-03
THE VELOCITY AT THE PERIGEE IS 25593.4 FEET/SECOND.
THE VELOCITY AT THE APOGEE IS 25104.6 FEET/SECOND.
THE PERIOD OF THE ORBIT IS 90.5043 MINUTES.
ADDING A UELOCITY INCREMENT TO THE PERIGEE
OF 10427.9 FT/SEC WOULD RESULT IN A
PARABOLIC ORBIT-- CAUSING THE SPACECRAFT TO FLY OFF INTO SPACE.
A CHANGE OF - 122.488 FT/SEC WOULD PRODUCE A
CIRCULAR ORBIT. HOWEVER, A VELOCITY INCREMENT
OF -360.375 FT/SEC WOULD PRODUCE AN ORBIT
THAT WOULD BE TANGENT TO THE EARTH'S SURFACE.
ADDING A VELOCITY INCREMENT TO THE APOGEE
OF 10571. FT/SEC WOULD RESULT IN A
PARABOLIC ORBIT-- CAUSING THE SPACECRAFT TO FLY OFF INTO SPACE.
A CHANGE OF 121.895 FT/SEC WOULD PRODUCE A
CIRCULAR ORBIT. HOWEVER, A VELOCITY INCREMENT
OF -236.695 FT/SEC WOULD PRODUCE AN ORBIT
THAT WOULD BE TANGENT TO THE EARTH'S SURFACE.
DO YOU WANT TO ADD A VELOCITY INCREMENT AT THE
PERIGEE(TYPE 1) OR AT THE APOGEE(TYPE 2) ?1
WHAT UELOCITY INCREMENT IS TO BE ADDED?-250
THE NEW ORBIT IS ELLIPTICAL
 WITH AN EBCENTRICITY OF 9.98735E-03
THE POINT WHERE THE VELOCITY INCREMENT WAS ADDED
CORRESPONDS TO THE APOGEE OF THE NEW OREIT
THE PERIGEE OF THE NEW ORBIT IN MILES IS 68.7358
 THE VELOCITY AT THE PERIGEE IS 25854.7 FT/SEC.
THE PERIOD OF THE NEW ORBIT IS 87.8788 MINUTES.

BASED ON YOUR ORIGINAL ALTITUDES OF 150 AND 230 MILES
WOULD YOU LIKE TO TRY DIFFERENT VELOCITY INCREMENTS
(1-YES, O-NO)?O
WOULD YOU LIKE TO RUN THE PROGRAM AGAIN (1-YES, 0-NO)?0

```

DONE



DOwE

# contributedprogram BASIC 



```
RUN
RUN
STERL
 CONTROL OF SCREW-WORM FLY POPULATION
INSTRUCTIONS (1=YES, 0=NO)?I
YOUR GOAL WILL BE TO ELIMINATE THE ONE MILLION MALE
FLIES NOW IN YOUR I0000 SQUARE MILE AREA, THUS DESTROYING
THE TOTAL FLY POPULATION. YOU MAY USE A PESTICIDE,
RELEASE STERILE MALE FLIES, OR BOTH. INDICATE THE TYPE
OF CONTROL PROGRAM YOU WANT BY TYPING IN THE APPROPRIATE
RESPONSES TO THE FOLLOWING QUESTIONS:
'PESTICIDE?'
 0= NO PESTICIDES.
 I= PESTICIDES ON SPECIFIED DAYS. INDICATE
 THESE DAYS BY TYPING A DAY NUMBER (BETWEEN I AND 75)
 NEXT TO EACH ??. THAT APPEARS; TYPE O WHEN FINISHED.
'STERILE FLIES?'
 |= NO STERILE FLIES.
 I= STERILE FLIES WILL BE RELEASED. COMPUTER WILL
 ASK 'HOW OFTEN?' TYPE I=DAILY OR 2=CERTAIN DAYS
 IF 1, SPECIFY NUMBER OF FLIES EACH DAY (UP TO 1000000),
 THE FIRST DAY OF THE PERIOD, AND THE LAST DAY
 (BETWEEN I AND 7S DAYS).
 IF 2, FOR EACH DAY SELECTED, SPECIFY THE DAY NUMBER
 (BETWEEN I AND 75) AND THE NUMBER OF STERILE FLIES
 (UP TO 10000DO). USE A NEW LINE FOK EACH DAY.
 TYPE 0,0 WHEN FINISHED.

PESTICIDE (1=YES, }0=NO)?
WHICH DAYS
?!
?11
?21
?31
?41
?51
?61
?71
?8
STERILE FLIES (I=YES, 0=NO)?1
HOW OFTEN (1=DAILY, 2=SELECTED DAYS)?2
DAY, NUMBER OF FLIES
?2,1000000
?3,1000000
?4,1000000
?12.1000000
?13,1000060
?14.1000000
?22,1000000
?23.1000000
?24,1000000
?0,0
```

STERL, Page 4


COST OF FLY CONTROL: \$ 890000.
ANOTHER RUN ( $1=Y E S, \theta=N O) ? \theta$
DONE

# SCIENCE (EDUCATION) (833) contributed program BASTC 

TITLE:	MASS VOLUME . $\quad$ STOICH
DESCRIPTION:	This program solves mass-mass, mass-volume, and volume-volume problems. The input may be in grams and/or moles and the output will be in grams, moles and/or liters.   OBJECTIVES.
	To provide the teacher and the student with a stoichiometry calculator to be used where either finds it applicable.
INSTRUCTIONS:	PRELIMINARY PREPARATION:
	A. Student - The student must have an introduction to stoichiometry.   B. Materials - None
	DISCUSSION:
	Some of the situations where this program is useful:
	A. In Class   1. Enables teacher to cover a large number of problems without using time to do calculations.   2. Can be used in conjunction with a problem exercise in class so teacher can go around and give individual help.
	B. Outside of Class   1. Tutorial Work.   2. Students can check homework problems during study periods or after school.

```
RUN
RUN
STOICH
 DO YOU WISH TO SKIP THE INSTRUCTIONS? 1 FOR YES ,0 FOR NO?0
THIS PROGRAM IS DESIGNED TO SOLVE:
 1. MASS-MASS PROBLEMS
 2. MASS-VOLUME PROBLEMS
 3. VOLUME-VOLUME PROBLEMS
SOME GENERAL INSTRUCTIONS FOR USING THE PROGRAM WILL
BE HELPFUL AT THIS TIME.
 1. IF TWO PIECES OF DATA ARE REQUESTED, BE SURE TO
 GIVE THEM IN THE ORDER REQUESTED AND SEPARATE
 THEM WITH A COMMA.
 2. THE BALANCED EQUATION IS THE FIRST THING
 NEEDED WITH EACH TYPE OF PROBLEM SO HAVE IT PREPARED.
 3. THE FORMULA WEIGHTS ARE NEEDED NEXT SO HAVE THEM
 PREPARED.
PICK THE TYPE OF CALCULATION YOU DESIRE BY ANSWERING THE
FOLLOWING QUESTION WITH A 1,2, OR 3:
 1 FOR MASS-MASS CALCULATIONS
 2 FOR MASS-VOLUME CALCULATIONS
 3 FOR VOLUME-VOLUME CALCULATIONS
WHAT IS THE NUMBER OF YOUR CHOICE?I
```



```
 PROVIDE THE FOLLOWING DATA FOR THIS MASS-MASS PROBLEM:
HOW MANY MOLES OF KNOWN COMPOUND AND UNKNOWN COMPOUND
ARE SHOWN IN THE BALANCED CHEMICAL EQUATION?I,I
WHAT IS THE FORMULA WEIGHT OF THE KNOWN COMPOUND
 AND THE UNKNOWN COMPOUND ?100,56
 WHAT MASS, IN GRAMS, OF THE KNOWN COMPOUND IS INVOLVED
 IN THE CHEMICAL REACTION? IF THIS INFORMATION IS AVAILABLE
 IN MOLES ANSWER ZERO (0) AND WAIT FOR THE NEXT QUESTION?50.0
```



```
 28 GRAMS OF UNKN. CPD.
```



```
DO YOU WISH TO SOLVE ANOTHER PROBLEM? ANSWER 1 FOR M-M,
 2 FOR M-V, 3 FOR V-V, AND ZERO (0) TO END THE PROGRAM.?2
 ###############**
 PROVIDE THE FOLLOWING DATA FOR THIS MASS-VOLUME PROBLEM:
 HOW MANY MOLES OF KNOWN COMPOUND AND UNKNOWN COMPOUND
 ARE SHOWN IN THE BALANCED EQUATION?2,2
WHAT IS THE FORMULA WEIGHT OF THE KNOWN COMPOUND AND THE
 UNKNOWN COMPOUND?18,2
 WHAT MASS, IN GRAMS, OF THE KNOWN COMPOUND IS INVOLVED
 IN THE CHEMICAL REACTION? IF ONLY VOLUME IS KNOWN
 ANSWER ZERO (B) AND WAIT FOR THE NEXT QUESTIONT2G.b
ANSWERS: ..11111 MOLES OF UNKN. GAS
 24.8889 LITERS OF UNKN. GAS

DO YOU WISH TO SOLVE ANOTHER PROBLEM? ANSWER I FOR M-M,
 2 FOR M-V, 3 FOR V-V, AND ZERO (G) TO END THE PROGRAM.?3

PROVIDE THE FOLLOWING DATA FOR THIS VOLUME-VOLUME PROBLEM:
HOW MANY MOLES KNOWN GAS AND UNKNOWN GAS ARE SHOWN
 IN THE BALANCED EQUATION?1.3,3
 WHAT IS THE VOLUME IN LITERS OF THE KNOWN GAS INVOLVED
 IN THE CHEMICAL REACTION? (VOLUME MUST BE AT STP.)?146
```



```
DO YOU WISH TO SOLVE ANOTHER PROBLEM? ANSWER I FOR M-M,
 2 FOR M-V, 3 FOR V-V, AND ZERO (0) TO END THE PROGRAM.?1

 PROVIDE. THE FOLLOWING DATA FOR THIS MASS-MASS PROBLEM:
HOW MANY MOLES OF KNOWN COMPOUND AND UNKNOWN COMPOUND
ARE SHOWN IN THE BALANCED CHEMICAL EQUATION?1,I
WHAT IS THE FORMULA WEIGHT OF. THE KNOWN COMPOUND
 AND THE UNKNOWN COMPOUND ?56,74
 WHAT MASS, IN GRAMS, OF THE KNOWN COMPOUND IS INVOLVED
 IN THE CHEMICAL REACTION? IF THIS INFORMATION IS AVAILABLE
 IN MOLES ANSWER ZERO (O) AND WAIT FOR THE NEXT QUESTION?O
 HOW MANY MOLES OF KNOWN COMPOUND WERE INVOLVED IN
 THE CHEMICAL REACTION?2.9
 ANSWERS: 2.9 MOLES OF UNKN. CPD.
 214.6 GRAMS OF UNKN. CPD.
DO YOU WISH TO SOLVE ANOTHER PROBLEM? ANSWER I FOR M-M,
 2 FOR M-V, 3 FOR V-V, AND ZERO (G) TO END THE PROGRAM.?2

 PROVIDE THE FOLLOWING DATA FOR THIS MASS-VOLLME PROBLEM:
 HOW MANY MOLES OF KNOWN COMPOUND AND UNKNOWN COMPOUND
 ARE SHOWN IN THE BALANCED EQUATION?I,2
WHAT IS THE FORMULA WEIGHT OF THE KNOWN COMPOUND AND THE
 UNKNOWN COMPOUND?2,23
 WHAT MASS, IN GRAMS, OF THE KNOWN COMPOUND IS INVOLVED
 IN THE CHEMICAL REACTION? IF ONLY VOLUME IS KNOWN
 ANSWER ZERO (O) AND WAIT FOR THE NEXT QUESTION?D
 WHAT IS THE VOLUME, IN LITERS, OF THE KNOWN GAS
INVOLVED IN THE CHEMICAL REACTION? (VOLUME MUST BE AT STP)?212
```



```
 435.357 GRAMS OF UNKN. CPD.

DO YOU WISH TO SOLVE ANOTHER PROBLEM? ANSWER I FOR M-M,
 2 FOR M-V, 3 FOR V-V, AND ZERO (D) TO END THE PROGRAM.?0
```


DONE

Documentation Date 3/75

well, here you are - the one who didn't get to titrate
the base with the acid. you missed ojt on all the fun
of Spilling acid on yourself and greaking a burette (s12.95) 0R
MAYBE JUST A PIPETTE ( 54.95 ). ANYWAY, YOU'RE GOING TO GET
to have some of that fun and do an electronic titration.
yo'j just have to tell me what strength acid yo' want to use
(SOMEWHERE LESS THAN 1 mOLAR IS NiCE) AND HOW MUCH BASE
YOU WANT TO TITRATE. WE'LL be USing a red indicator.
phenolphthalein (fee no thay lee in) which is a pretty reddish-
magenta color in base, so you'll be shooting for a clear
SOLUTION AT NEUTRALITY. LET'S GET STARTED!
WHAT MOLARITY OF ACID DO YOU WANT TO USE??. 2
FINE. NOW, HOW MANY MILLILITERS OF BASE DO YOU WANT TO USE? 5
O.K. START OFF WITH A VOLUME OF ACID (IN MILLILITERS) AND

I'LL TRY TO TELL YOU HOW THE COLOR'S COMING ALONG.
ML? 1
YOU'VE HAPDLY ADDED ANY AT ALL! DO MORE NEXT TIME.
YOU'VE ADDED 1 ML OF ACID SO FAR.
ML? 3
BOY! THAT'S NOT UERY MUCH EUEN YET. I DI DN'T SEE ANY COLOR
CHANGE. TRY MORE NEXT TIME. REALLY!
YOU'VE ADDED 4 ML OF ACID SO FAR.
ML? 3
THAT'S STILL NOT UERY GOOD.
YOU'VE ADDED 7 ML OF ACID SO FAR.
ML? 2
HEY! IT CLEARED IN ONE SPOT JUST FOR A SECOND!
YOU'VE ADDED 9 ML OF ACID SO FAR.
行? 3
HEY! IT CLEARED IN ONE SPOT JUST FOR A SECOND!
YOU'UE ADDED 12 ML OF ACID SO FAR.
ML? 3
THE CLEARING LASTED A LITTLE LONGER THIS TIME!
YOU'VE ADDED 15 ML OF ACID SO FAR.
ML? 2
THE CLEAR AREA KEEPS GETTING A LITTLE LARGER BEFORE IT TURNS
BACK TO ALL RED. KEEP GOING!
YOU'VE ADDED 17 ML OF ACID SO FAR.
ML? I
YOU'RE GAINING ON IT. YOU'D BETTER NOT ADD TOO MUCH AT A
TIME - - YOU'RE 85\% THERE NOW!
YOU'VE ADDED 18 ML OF ACID SO FAR.
ML? !
THE COLOR'S BEGINNING TO FADE NOW!
YOJUVE ADDED 19 ML OF ACID SO FAR.
ML? 1
THAT'S IT IT'S CLEAR!!! CONGRATULATIONS:!!!
$0 . K ., Y O U$ HAD 5 ML OF BASE AND YOJ ADDED 20
ML OF YOUR ACID, WHICH WAS . 2 MOLAR. SO 20
TIMES; • 2 HAS TO EQUAL 5 TIMES THE BASE'S MOLARITY.
$I$ GET . 8 FOR THE MOLARITY OF THE BASE.
THANKS FOR TITRATING WITH ME - HE SAID ACIDLY
DONE

TITLE:
DESCRIPTION:

INSTRUCTIONS:

SPECIAL CONSIDERATIONS:

TRIVIAL OR COMMON NAME QUIZ FOR CHEMISTRY STUDENTS
This program is a simple drill on the common names of selected familiar substances. It includes the formula and chemical names as well. The student is asked between 10 and 16 questions at a time after which his wrong responses are reviewed and the correct answers are given. There are six types of questions that are asked - each of which is asked once in a random order for the first six questions presented. From the seventh question on they are chosen at random, being slightly biased toward the two types involving the common name and the chemical name (\#2 \& \#5).

The six types of questions are:

1. Give common name ask formula
2. Give common name ask chemical name
3. Give formula ask common name
4. Give formula ask chemical name
5. Give chemical name ask common name
6. Give chemical name ask formula

For any questions that are answered incorrectly, the correct answers are written onto a file and read back as a study list at the end of the session. The option to go through the drill again is then offered (with different questions and order).

The program requires string inputs depending upon the question asked. If the correct answer is not known to a question the user may type $A$ ? or simply return (or anything else for that matter), and the program will continue with the next question. All responses are timed input.

There is one file used by this program called TRIVIF. It is a one record file, or the first record of a file. The information is written onto it three strings at a time.

The Data Base is easily changed. Simply add Data Statements and increase the value of N accordingly (line \#900). If it is desired to use two records of the file or to increase the number of questions asked before the review is given, change the test of $W \varnothing$ in line \# 1070 to - 1070 if $W \mathrm{C} / 510$ then 1170 -. The program was designed to use only the first record of a semipermanent student record file as a scratch pad, and so will not overflow into the second record, thereby protecting the contents of the file beginning with record two. This feature is transparent whether used or not.

FOR INSTRUCTIONAL PUBPOSES
Suitable Courses: Basic Chemistry

John R. Wilson
Contra Costa Community College

## RUN

```
OPE-TRIUIF,I
RUN
TRIUIA
```

INSTRIJCTIONS FOR THIS TRIVIAL NAME DUIZ:
ALWAYS PUT PARENTHESIS () AROUND THE FOLLOWING -
THIS IS IMPORTANT IN ORDER FOR ME TO UNDERSTAND YOUR FORMULAS.
IF YOU DON'T KNOW THE ANSWER, TYPE ? OR PRESS RETURN •
1 WHAT IS THE COMMON NAME OF
CALCIUM CARBONATE?:CA;COT
CALCITE
YES! ALSO THE FORMULA IS CACO3.
2 WHAT IS THE COMMON NAME OF
NA (OH)?: SALT
NO, IT IS CALLED LYE.
3 SHAT IS THE FORMULA OF
MAGNESIUM SULFATE HEPTAHYDRATE?:MG(SO4)2(H20)
NO, THE CORRECT ANSWER IS MG(SO4)7(H2O).
4 WHAT IS THE CHEMICAL NAME OF
NAHCO 3?: SODIUM BICARBONATE
YES! ALSO THE COMMON NAME IS BAKING SODA.
5 WHAT IS THE FORMULA OF
UINEGAR?: HC2H302
NO, THE CORRECT ANSWER IS HC2H3O2.
6 WHAT IS THE CHEMI CAL NAME OF
QUICKSILJER?: MERCURY
YES! ALSO THE FORMULA IS HG.
7 WHAT IS THE COMMON NAME OF
NA2 (B407) ! $\theta(\mathrm{H} 20)$ ?: BO RAX
YES! ALSO THE CHEMICAL NAME IS SODIUI TETRABORATE DECAHYDRATE.
8 WHAT IS THE CHEMICAL NAME OF
AL203?:ALUMINUM OXIDE
YES! ALSO THE COMMON NAME IS ALUMINA.
9 WHAT IS THE CHEMICAL NAME OF
PBO?:LEAD OXIDE
YES, BUT IT IS MORE CORRECT TO SAY LEAD(II) OXIDE.
10 WHAT IS THE CO:MMON NAME OF
POTASSIUM HYDROGEN TARTRATE?:CREAM OF TARTAR
YES! ALSO THE FORMULA IS KHC4H406.

YOU GOT RIGHT.
3 WRONG -
O TO SLOW.
ST'JDY LIST:
LYE $=$ NA $(O H)=$ SODIUM HYDROXIDE
EPSOM SALTS $=$ MG(SO4)7(H2O) = MAGNESIUM SULFATE HEPTAHYDRATE
HINEGAR $=$ HC2H302 = ACETIC ACID

I WILL WAIT 24 SECONDS FOR YOU TO STUDY THIS LIST...
PRESS CR IF YOU DON'T WANT TO WAIT.
DO YOU WANT TO CONTINUE THIS DRILL ?NO
DONE
TITLE:

DESCRIPTION: $\quad$| HUMAN POPULATION PROJECTION |
| :--- |
| USPOP is a highly flexible human population mindel. The student can |
| investigate the effects of fertility, age of mother at birth of child, |
| sex ratio of the offspring and age-dependent mortality on population |
| size and structure. Through use of l970 census data, held in DATA |
| statements, the student need enter only a few of the required inputs. |
| If the student or teacher wishes to model situations other than that |
| collected in the DATA statements, all or some of the required inputs |
| may have to be changed. |

```
USPOP, Page 2
RUN
RUN
USPOP
DO YOU WANT KEPORTS 1) EUERY 5 YEAR INTERUAL
OR 2) SELECTED YEARSTI
YEAR AT SIARI OF PROJECTION? 1970
DO YOU ASSUME STANDAHD FERTILITY (1=YES,0=NO)?1
WILL FERTILIJY (1) STAY AT 2.45 OK (2) CHANGE SLOWLY
TO A NEW LEVEL?I
DO YOU ASSUME STANDAKD BIRTH DISTRIBUIION (I=YES,O=NO)?0
PCT. FERTILITY OCCUAING IN FEMALES AGES:
 10 - 14 730
 15-19 340
 20 - 24 ?30
30 - 34 70
35 - 39 30
40 AND 44 OLDER?O
DO YOU ASSUME STANDARD SEX RATIO (1=YES,0=NO)?1
DO YOU ASSUME STANDARD MORTALITY (1=YES,0=NO)?1
DO YOU ASSUME STANDARD POPULATION (}1=YES,0=NO)?
REPORT:1)SHORT 2)LONG 3)GHAPH 4)CHANGE ASSUMPTIONS 5)END?1
YEAR 1970 MOP \(=204.8\) FERTILITY 2.45
REPORT:?1
YEAR 1975 POP \(=218.8\) FILLION FETILITY 2.45
REPOKT:?1
YEAR 1980 POP= 233.6 MILLION FERTILITY 2.45
REPORT:?1
YEAR 1985 POP= 247 MILLION FERTILITY 2.45
REPORT:?1
YEAR 1990 POP= 260.3 FILLION FERTILITY 2.45
REPORT: ?1
YEAR 1995 POP = 274.9 MILLION FERTILITY 2.45
REPORT:T1
YEAR 2000 POP= 291 MILLION FERTILITY 2.45
REPORT:75
ANOTHER PROJECTION (}1=YES,|=NO)?
DONE
RUN
USPOP
DO YOU WANT REPORTS 1) EUERY 5 YEAR INTERVAL
OR 2) SELECTED YEARS?Z
YEAR AT START OF PROJECTION?1975
DO YOU ASSUME STANDARD FERTILITY (}1=YES,|=N0)?
FERTILITY IN I975 ?2.06
WILL FERTILITY (1) STAY AT 2.06 OR (2) CHANGE SLOWLY
TO A NEW LEUEL??
UHAT FERTILITY UILL BE STABLE?1
HOUT FANY DECADES UNTIL FERTILITY REACHES 1 13.5
```



REPORT: 1)SHORT 2)LONG 3)GRAPH 4)CHANGE ASSUMPTIONS 5)END?2


REPORT:T1
YEAR 1985 POPz 206.5 MILLION. FERTILITY 1.75714
YEAR FOR NEXT REPORT?1995

REPORT: ? 1
YEAR 1995 POPE 217.4 MILLION FERTILITY 1.45429

YEAR FOR NEXT REPORTT2005
REPORT:?1
YEAR 2005 POP= 215.8 MILLION FERTILITY 1.15143

YEAR FOR NEXT REPORTT2015

USPOP, Page 4



RUN
RUN
UFIELD
this program plots a picture of the relative electrical potential field strengits in the region surrounding two point charges. the charges are in a coordinate plane 30 by 30. the charges may have any value whose
MAGNITUDE IS LESS THAN 10. AND MAY BE ANYWHERE BETWEEN - and 30 on the $X$ and y axes.

The magnitude of the field decreases from 9 to 1,0 , a to J that is, 9 TO 1 IS A POSITIVE POTENTIAL, 0 IS ROUGHLY 0 , AND $A=-1, B=-2, \ldots J=-9$. (THERE IS NO $\cdot 1 \cdot$. )

What values of charges do you wish to study?
to study only one charge, make the second charge 0 . ENTER TWO VALUES OF CHARGE: $310,-3.5$
Where shall the first charge be located? 15,15
Where shall the second charge be locatedilis.25


DO YOU WISH TO UIEW ANOTHER PLOT ( $1=Y E S, \theta=N O): 30$

DONE
TITLE:
DESCRIPTION:

INSTRUCTIONS: $\quad$| VLOCTY |
| :--- |
| 36323 |

RUN
RUN
VLOCTY
average and instantaneous velocity
THIS PROGRAM CONSIDERS DISTANCE AS A FUNCTION OF TIME， D＝F（T）．IT WILL CALCULATE THE AVERAGE VELOCITY DURING THE TIME INTERVAL TI，T2 BY EVALUATING D AT THOSE TIMES GIVING DI AND D2．THE RESULT OF（D2－D1）／（T2－T1）YIELDS THE AVERAGE VELOCITY．AS T2 IS BROUGHT CLOSER AND CLOSER TO TI THE RESULTANT AVERAGE VELOCITY WILL APROACH THE INSTANTANEOUS VELOCITY AT T1．

AFTER THE PROGRAM STOPS，TYPE IN THE FOLLOWING： （END EACH LINE，INCLUDING＇RUN＇，WITH THE＇RETURN＇KEY）

```
I GO TO 300
300 DEF FND(T)=....(YOUR FUNCTION OF TIME)....
RUN
```

FOR EXAMPLE，TO USE THE EQUATION D＝A\＃T＊T WITH $A=1$
YOU WOULD TYPE AS FOLLOWS：
1 GO TO 380
300 DEF FND $(T)=1 \# T * T$
RUN

YOU MIGHT TRY THAT AS YOUR FIRST RUN．
FOR SUBSEQUENT RUNS，YOU NEED ONLY CHANGE LINE 300 FOR A NEW FUNCTION，FOLLOWED BY＇RUN＇．

DONE

```
1 GO TO 300
30日 DEF FND(T)=1*T*T
RUN
VLOCTY
```

事事丰事
WHAT ARE YOUR VALUES OF TI AND T2 (SMALLER FIRST: T1,T2)?5:50
TKE DISTANCE TRAVELED DURING THE INTERVAL IS 2475
THE AVERAGE VELOCITY IS 55
WOULD YOU LIKE TO CHANGE T2 (1-YES, $0-N O) ? 1$
WHAT IS YOU NEW VALUE FOR T2 (T2 MUST BE GREATER THAN TI)?10S
THE DISTANCE TRAVELED DURING THE INTERVAL IS 11000
THE AVERAGE VELOCITY IS 110
WOULD YOU LIKE TO CHANGE T2 (1-YES. O-NO)?D
NOW WATCH THE AVERAGE VELOCITY AS T2 APPROACHES TI.

T1＝ 5		D1 $=25$		
T2	T2－T1	D2	D2－D 1	
（D2－D1）／（T2－T1）				
－－	－－－	－－	－－－．－	
105	100	11025	11000	110
55	50	3025	3000	60
36	25	900	875	35
17.5	12.5	366.25	281．25	22.5
11.25	6.25	126．562	101.562	16.25
$8 \cdot 125$	3.125	66.0156	41.0156	13.125
6.5625	1.5625	43.0664	18.0664	11.5625
5.78125	． 78125	33.4229	8.42285	10.7812
5.39062	． 398625	29.0588	4.05884	10.3906
5．19531	． 195312	26.9913	1.99127	10.1953
5.09766	9．76562E－02	25.9861	． 986099	10.8977
5.04883	4．88281E－02	25.4907	． 490665	10.0488


T2	T2-T1	D2	D2-DI	
(D2-D1)/(T2-T1)				
--	-----	--		
5.02441	2.44141E-02	25.2447	- 244736	10.0244
5.01221	.012267	25.1222	-122219	10.0122
5.0061	6.10352E-03	25.8611	6.10733E-02	10.8063
5.00305	3.05176E-03	25.0305	3.05252E-02	10.0025
5.00153	1.52588E-63	25.0153	1.52626E-02	10.0025
5.80076	7.62939E-64	25.8076	7-62939E-03	10

```
NOTE THAT THE AVERAGE VELOCITY CHANGES VERY LITTLE AS T2 APPROACHES T1. T2 CAN NEVER EQUAL TI SINCE (D2-DI)/(T2-T1) WOULD THEN RESULT IN A DIVISION BY ZERO.
WOULD YOU LIKE TO TRY DIFFERENT VALUES OF TI AND TZ (1-YES, D-NO)?日
TO CHANGE YOUR FUNCTION SEE THE INSTRUCTIONS.
IF YOU ARE FINISHED, TYPE '1', AND THE 'RETURN' KEY AFTER THE PROGRAM STOPS.
DONE
```



WATER BUDGET
fur: $\qquad$


A set of water budget graphs should also be available if the teacher wishes to have his classes complete the graph in addition to the water budget. See: Investigating the Earth, Teacher's Guide, Part I. P. 402 of the Earth Science Curriculum Project.

## DISCUSSION:

This program is applicable to individual or small group (5 or less) instruction, and is designed for average students.

The progress code number assigned to the student indicates to the program the extent to which the student has progressed through the program. These numbers should be chosen according to the following table:

Progress   Code \#	Stage of Calculation of Water Budget
$0-10$	Introductory information
$11-20$	Student is ready for "P-PE" section of program
$21-30$	ready for "ST" section of program
$31-40$	ready for "-ST" section of program
$41-50$	ready for "A.E." section of program
$51-60$	ready for "D" section of program
$61-70$	ready for "S" section of program

Each student may work on a different water budget by entering a unique set of data in lines 43 and 44. Line 42 also may be changed to indicate the region whose water budget is under study.

This program should be used in conjunction with progran WATER2 A833-36327.

```
RUN
WATERI
WHAT IS YOUR PROGRESS CODE NUMBER?5
WATER BUIDGET FOR RUITLAND,UT.:
```




```
\begin{tabular}{llllllllll}
57 & 48 & 63 & 74 & 80 & 90 & 86 & 86 & 92 & 94
\end{tabular}
 88 5
PE:
NOW, RETURN TO YOIIR SEATS AND SEPARATELY WORK OUT YOUR UALUES
 FOR: 'P-PE' AND 'STORAGE'.
RETURN ONLY AFTER YOUR TEACHER HAS CHECKED YOUR WORK AND GIVEN
 YOU A NEW PROGRESS CODE NUMBER!
DONE
```

TITLE:
DESCRIPTION:

INSTRUCTIONS:


Continued on following page.

ACKNOWLEDGEMENTS: Huntington Project
Polytechnic Institute of Brooklyn

WATER2, page 2

DISCUSSION:
To place a particular water budget in the program:

1. Call up the program by name.
2. Type the precipitation data on line 120 , the P.E. data on line 130 and the title of the budget on line 110.
example:
110 PRINT "Water Budqet for N.Y., N.Y.:"
120 DATA 89, 86, 98, 86, 84, 85, 113, 38, 88, 82, 85
130 DATA 12, $40,86,125,149,132,94,55,22,2$
3. Type "RUN"

The complete water budget will print out. (Check the value for $P$ and $P E$ to make sure you have typed them in correctly.)

To add other budgets repeat steps 2 and 3 until all budgets have been completed.
Additional $P$ and $P E$ data for other regions can be found in Investigating the Earth, Teacher's Guide, Part I, pages 392-397.

This program may be used in conjunction with WATER1 A833-36326.
RUN



WAVES, paqe 2

RUN
RUN
waves
WAVES AND THEIR SUPERPOSITION
DO YOU NEED INSTRUCTIONS ( $1=Y E S, \theta=N O$ ): ? 1
IN THIS PROGRAM YOU MAY OBSERVE THE EFFECTS OF
CHANGING WAVELENGTH, AMPLITUDE, AND PHASE ON TWO WAVES AND ON THEIR SUM (OR SUPERPOSITION).

WAVE 'A• IS FIXED. ITS WAVELENGTH IS A, ITS AMPLITUDE IS 10, AND ITS PHASE IS B.

```
WAVE 'B' MAY BE CHANGED BY YOU. FOR BEST RESULTS :
 WAVELENGTH (L) BETWEEN 2 AND 4
 AMPLITUDE (A) BETWEEN 5 AND 10
 PHASE (P) BETWEEN O AND 1
 (FOR EXAMPLE, . }5\mathrm{ PHASE = 1/2 WAVELENGTH
```

it is easiest to see the effects of changes in each PARAMETER IF YOU HOLD TWO CONSTANT AND VARY THE OTHER, although all three may be varied at once.

What is your choice of wavelength, amplitude, and phaserz,10, $\emptyset^{\circ}$

NOTATION: $\quad$| $A$ | $={ }^{\prime} A^{\prime}$ ' WAVE |
| ---: | :--- |
| $B$ | $=B^{\prime} \cdot$ WAVE |
| $S$ | $=$ SUPERPOSITION WAVE |



WANT tO TRY ANOTHER SET OF VALUES ( $1=Y E S, ~ \beta=N O):$ ? $\varnothing$
done

# CONTRIBUTED PROGRAM TASBC 

TITLE:

## DESCRIPTION:

CARDIOVASCULAR SIMULATION . 36888-18002

MCMAN is an interactive model used in teaching basic principles of hemodynamics. It was developed by the Department of Clinical Epidemiology and Biostatistics of McMaster University, Hamilton, Ontario, Canada and is employed in the instruction of first year medical students in the problemoriented curriculum of that instruction. MCMAN is a 2000 Series BASIC language version of the HP 3000 FORTRAN program MCMAN.

The model is a synthetic person who has a heart inside a chest, systemic arteries and arterioles, a capillary bed, and veins collecting blood from the capillary bed and returning it to the heart. "MCMAN" thus has a complete systemic circulatory system, and when the heart is working it will circulate blood. To speed up computation, the heart is treated as a single chamber filling the right atrium and pumping blood out into the aorta. The pulmonary circulation is regarded as simply a parallel path, and not (as in life) in series with the systemic circulation. However, this makes the model unrealistic only when one side of the heart is able to pump much les's than the other (e.g. because of valve disease). "MCMAN" cannot therefore simulate the effects of valve lesions but it can simulate most types of generalized heart disease. "MCMAN" also possesses synthetic baroreceptors similar in operation to those which are normally situated at the bifurcation of the common carotid artery and at the aortic arch. These act in such a way as to stabilize blood pressure.
The performance of the heart can be described by a starling curve relating effective cardiac input pressure to cardiac output. The pressure drop between the systemic arteries and the systemic capillary bed can be derived from the cardiac output and the mean value of arterial resistance; and the right atrial pressure (input pressure of the heart) can be derived from the capillary pressure, the mean venous resistance, and the cardiac output. About $80 \%$ of the blood is contained on the low-pressure side of the circulation, and the mean systemic pressure at which it is contained depends on the blood volume and on the capacitance of the low pressure circulation.

All these relationships can be expressed as a series of simultaneous equations, and for a given blood volume, systemic arterial resistance, venous resistance, circulatory capacitance, and cardiac performance characteristics, there is only one solution which satisfies all the equations. The computer is programmed to find this solution in an interactive manner. In addition, the performance of the simulated circulation in the course of time can be determined by solving the appropriate equations at suitably short simulated time intervals, and then allowing a simulated arterial baroreceptor feed-back loop to operate with a realistic time constant, appropriately modifying the values of arterial resistance, circulatory capacitance, and cardiac function.

This mathematical model is presented in the form of a teaching display which puts out on a teleprinter or CRT a 1 min record of systemic arterial pressure and pulse rate appropriate to a normal human subject. At the end of each simulated minute of recording, the current values for cardiac output, mean capillary pressure, and right atrial pressure, together with other values, are put out in numerical form. Operation of the model then ceases and the terminal user is invited to make changes in fixed arterial and/or venous resistance (simulating the effects of vasoconstrictor or vasodilator drugs), in cardiac contractility

Continued on following page.

Dept. of Clinical Epidemiology and Biostatistics McMaster University Medical School

## DESCRIPTION continued

(simulating the effects of myocardial infarction, or digitalis), in intrathoracic pressure (which can be raised to simulate positive pressure ventilation), in pericardial restriction of cardiac filling (to simulate pericardial tamponade) or in blood volume (to simulate haemorrhage or transfusion). In addition, the setting of the arterial baroreceptor feed-back loop can be altered to that appropriate to a hypertensive subject, or the baroreceptor loop can be permanently interrupted to simulate the effect of cutting the buffer nerves. Combinations of any of these changes can be made and studied, and graphs of blood pressure and other variables made over successive simulated minutes of observation.

The example shown is of an actual run. After the preamble the program produces a vertical graph of arterial blood pressure from its simulated subject (in the span of $X$ 's the right-most $X$ represents systolic and the left-most $X$ represents diastolic pressure, approximately). At the end of the initialization period the operating values for BP, right atrial pressure, mean capillary pressure, cardiac output, stroke volume, heart rate, arterial resistance, venous resistance (in each case the total resistance in the systemic circuit), and finally cardiac contractility (the slope of the Starling function curve relating cardiac output to filling pressure) are given. Note, incidentally, that the vertical line of dots on the graph represent heart rate approximately, but the heart rate at the end of each run is accurately given as a number.

Then follows a list of the working values of variable which you can change: the basic mean values of arterial and venous resistance as percentages of normal (you could simulate a pressor drug by increasing 1 and a depressor drug by decreasing 1 , and an arterial and venous vasodilator drug, e.g. nitroglycerine, by decreasing both 1 and 2 in proportion); the basic contractile function of the heart (remember that this is modified continuously by vagal and sympathetic influences and circulating adrealine, so even if you reduced this to, say, a nominal $30 \%$ of normal, to simulate a patient with a very bad heart, the actual contractility would be kept partly restored by sympathetic action); the intra-thoracic pressure (normally averaged at -2 mm Hg , but you can change this and see how very sensitive the circulation is to small changes, which greatly influence venous return); 'limiting cardiac input pressure' (factor 5) - this is the effective filling pressure above which no further increase in output can be obtained: pericardiacal tamponade may be simulated by making this some small figure, e.g. 3 mm Hg , indicating that up to 3 mm filling pressure the heart will pump normally, but at filling pressures above this no further output can be obtained); blood volume, in ml (you can simulate a 1000 cc haemorrhage by making this 4000 ). In the example shown factors 1 and 2 were greatly reduced, simulating the effects of nitroglycerine.

## INSTRUCTIONS

To interact with the model respond to the questions as follows:

1. When asked "DO YOU WANT TO CONTINUE?",
type YES if you wish to proceed with another 60 second simulation period; type NO if you wish to discontinue using the model.
2. When asked "DO YOU WANT A PLOT?",
type YES if you want a graphical display of heart rate and blood pressure over time; type $\bar{N}$ O if you wish to proceed directly to the calculated values of the simulation.
3. When asked "DO YOU WANT TO CHANGE ANY OF THESE FACTORS?"
you are being given the opportunity to alter the 6 basic variables of the systemic circulation; type YES if you wish to make changes before the next simulation, type NO If you wish to proceed "as is" or move to altering the blood pressure stabilizing system.
4. When asked "CHANGE FACTOR (1...6 OR $\varnothing$ TO QUIT)?"
type any of the digits $\underline{\emptyset}, \underline{1}, \underline{2}, \underline{3}, \underline{4}, \underline{6}$, where $\emptyset$ means "no more changes to be made", 2 means "a change is to be made to venous resistance", etc.
5. When asked: "FACTOR X?", (where $X$ is any digit 1 thru 6),
type the new value for that factor. For example, each of factors 1,2 , and 3 are stated in percent of normal; your response of 50 would mean "reset the variable to behave at $50 \%$ of normal functioning." Likewise, 150 would mean " $50 \%$ greater than normal", etc. Do not use the character "\%"; do not enter whole percents as decimal fractions. Factors 4 and 5 are pressures stated in millimeters of mercury ( $H G$ ), Factor 6 is volume stated in milliliters. Do not input these units of measure (i.e. the letters "MM HG" or "ML") as part of the numeric value you give the model.

Continued on following page.

## INSTRUCTIONS continued

j. when asked "DO YOU WANT TO CUT THE BUFFER NERVES $\qquad$
type YES if you wish to put the blood pressure stabilizing system completely out of action; type NO if you wish to reset baraceptor sensitivity.
7. When asked "DO YOU WANT TO RESET BAROCEPTER SENSITIVITY......?",
type YES if you wish to simulate the barocepter sensitivity of a hypertensive patient, type NO if you do not.

RUN

```
RUN
MCMAN
MCMAN WAS DEVELOPED AND IS CURRENTLY USED IN THE MEDICAL
CURRICULUM AT MCMASTER UNIUERSITY, HEALTH SCIENCES CENTRE,
HAMILTON, ONTARIO, CANADA.
```

NEITHER HEWLETT-PACKARD NOR MCMASTER UNIVERSITY ASSUME
ANY RESPONSIBILITY FOR THE OPERATION AND CORRECTNESS OF THIS MODEL
DO YOU WANT TO CONTINUE?YES
DO YOU WANT A PLOT?YES



FINAL VALUES FOR THIS RUN WERE:

1. ARTERIAL RESISTANCE= 100 O OF NORMAL
2. VENOUS RESI STANCE $=100$ I OF NORMAL
3. CARDIAC CONTRACTILITY=100 $20 F$ NORMAL
4. MEAN INTRATHORACIC PRESSURE= -2.ø MM HG
5. LIMITING CARDIAC INPUT PRESSURE= 8.0 MM HG
6. BLOOD VOLUME= 5080 ML

DO YOU WANT TO CHANGE ANY OF THESE FACTORS?YES
CHANGE FACTOR ( $1 . .6$ OR 0 TO QUIT)? !
FACTOR 1?48
CHANGE FACTOR (1..6 OR 0 TO QUIT)? 2
FACTOR 2?48
CHANGE FACTOR (1..6 OR © TO QUIT)? $\varnothing$

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline XX) & \multicolumn{13}{|l|}{SYSTOLIC/DIASTOLIC PRESSURES - MM HG (.) HEART RATE - BEATS/MIN} \\
\hline TIME \({ }^{\text {P }}\) & 20 & 40 & 68 & 80 & 106 & 120 & 140 & 160 & 180 & 200 & 220 & 240 & 250 \\
\hline SECS & - & - & - & - & - & - & - & - & - & - & - & - & \\
\hline 2 & & & & & & & XX & XX & XXX & & & & \\
\hline
\end{tabular}
 4 XXXXXXXXXX.'XXX
 XXXXXXXXX.XXX
 XXXXXXXX. XXXX
 XXXXXXXXXX. XX
 XXXXXXXXXX. XXX
 XXXXXXXXXX, XX
 XXXXXXXXXXX, X
 XXXXXXXXXXXX.
 XXXXXXXXXXX.
 XXXXXXXXXXXXX .
 XXXXXXXXXXXXX.
 XXXXXXXXXXXXX .
 XXXXXXXXXXXX
 XXXXXXXXXXXXXX .
 XXXXXXXXXXXXX .
 XXXXXXXXXXXX
 XXXXXXXXXXXXXXX
 XXXXXXXXXXXXXX .
 XXXXXXXXXXXXXX .
 XXXXXXXXXXXXX .
 XXXXXXXXXXXXXX .
 XXXXXXXXXXXXXXXX .
 XXXXXXXXXXXXXXX .
 XXXXXXXXXXXXX .
 XXXXXXXXXXXXX.
 XXXXXXXXXXXXX .
 XXXXXXXXXXXXX .
 XXXXXXXXXXXXX .
 XXXXXXXXXXXXX .
>> MY HEART IS POUNDING
ARTERIAL (AORTIC) PRESSURE
SYSTOLIC=115.6 DIASTOLIC= 68.9 MEAN= 84.5 MM HG
CENTRAL VENOUS (RIGHT ATRIAL) PRESSURE= 3.2 MM HG
MEAN CAPILLARY PRESSURE= 12.2 MM HG
CARDIAC OUTPUT= 10.2 L/MIN
STROKE VOLUME= 81.9 ML/BEAT HEART RATE=124.4 BEATS/MIN
ARTERIAL RESISTANCE= 7.4 UENOUS RESISTANCE= 0.9 MM HG/L/MIN
CARDIAC CONTRACTILITY= 2.0 L/MIN/MM HG
FINAL UALUES FOR THIS RUN WERE:
1. ARTERIAL RESISTANCE= 40 % OF NORMAL
2. VENOUS RESISTANCE= 40 % OF NORMAL
3. CARDIAC CONTRACTILITY= 100 % OF NORMAL
4. MEAN INTRATHORACIC PRESSURE= -2.ø MM HG
5. LIMITING CARDIAC INPUT PRESSURE= 8.0 MM HG
6. BLOOD VOLUME= 5000 ML
DO YOU WANT TO CHANGE ANY OF THESE FACTORS?NO
DO YOU WANT TO CHANGE THE OPERATION OF THE SYSTEMIC
ARTERIAL BAROCEPTORS?YES
DO YOU WANT TO CUT THE BUFFER NERUES AND PUT THE B.P.
STABILIZING SYSTEM PERMANENTLY OUT OF ACTION?YES
YOU HAVE CUT THE BUFFER NERVES
DO YOU WANT A PLOT?YES
```



```
>>> MY HEART IS POUNDING
ARTERIAL (AORTIC) PRESSURE
SYSTOLIC=135.1 DIASTOLIC= 86.9 MEAN= 103.0 MM HG
CENTRAL UENOUS (RIGHT ATRIAL) PRESSURE= 2.8 MM HG
MEAN CAPILLARY PRESSURE= 13.0 MM HG
CARDIAC OUTPUT= 11.6 L/MIN
STROKE VOLUME= 68.7 ML/BEAT HEART RATE=168.8 BEATS/MIN
ARTERIAL RESISTANCE= 8.0 UENOUS RESISTANCE= 0.9 MM HG/L/MIN
CARDIAC CONTRACTILITY= 2.4 L/MIN/MM HG
FINAL VALUES FOR THIS RUN WERE:
1. ARTERIAL RESISTANCE= 40 % OF NORMAL
2. UENOUS RESISTANCE= 40 % OF NORMAL
3. CARDIAC CONTRACTILITY= 100 % OF NORMAL
4. MEAN INTRATHORACIC PRESSURE= -2.0 MM HG
5. LIMITING CARDIAC INPUT PRESSURE= 8.0 MM HG
6. BLOOD VOLUME= 5000 ML
DO YOU WANT TO CHANGE ANY OF THESE FACTORS?NO
DO YOU WANT TO CONTINUE?NO
DONE
```

TITLE:
DESCRIPTION:
INSTRUCTIONS:

GIVES MAJOR SCALES
This program prints out the major scale of any musical key that is requested
or all of them at once. They are printed on a staff with keysignature, and
at the bottom of each measure abbreviation of the key is printed.

ACKNOWLIG

KEYSIG, Paqe 2

RUN

RUN
KEYSIG
?CNCFBFAF


FINE ARTS (EDUCATIOiN) (850) contributedprogram BASIC

| TITLE: |
| :--- | :--- |
| DESCRIPTION: |
| SPECIAL |
| CONSIDERATIONS: |$\quad$| TWELVE TONE COMPOSITION PROGRAM |
| :--- |
| The program produces simple l2 tone compositions. Values given to various |
| elements of the composition (pitch, time value, etc.) are determined by |
| random processes. The user interacts with the program by assigning |
| probabilities to the random elements. MUSIC is designed primarily to |
| illustrate how random elements and probabilities may be used in composition |
| and how a computer may be used to aid in the selection of random elements. |
| Order 36888-90028, $\$ 5.00$ for complete documentation. |

RUN

```
RUN
MUSSIC
TWELVE - TONE COMPOSITION PROGRAM 11/28/72 UERSION
```

NO. OF MEASURES ( 16 MAX.)? 6
TIME SIGNATURE $=X / 4,(X=9$ MAX. $) ? 3$
NO. OF VOICES ( 4 MAX.)? 2
CHOOSE PROBABILITIES FOR OCTAUES ( $1=Y E S, \varnothing=N \varnothing) ? \emptyset$
CHOOSE PROBABILITIES FOR TIME VALUES ( $1=Y E S, \emptyset=N O) ? \varnothing$
CHOOSE PROBABILITIES FROM $O$ TO 1 FOR REST IN VOICE(S)
$\begin{array}{ccc}\text { VOICE } 1 & ? 0 \\ \text { VOICE } 2 & ? 0\end{array}$
INPUT YOUR OWN $12-$ TONE ROW ( $1=Y E S, \varnothing=N O)$ ? $\varnothing$
12 TONE ROW

C	C	B	D
F	G	A	D
A	G	E	F

EACH NOTE PRINTOUT SHOWS NOTES, OCTAUES, NO. OF BEATS

VOICE 1


DONE

32 FILES HIGH,MID10,MIDI2,LOW
OPE-HIGH, 2
OPE-MIDID,2
OPE-MIDI2.2
OPE-LOW, 2
5000 DATA $0,0,1,0,0,1,0,8,1$
5010 DATA $\varnothing, 1,0,0, .9,1,0, .9, \ldots 1$
5020 DATA $1,1,9,0, .1, \cdot 9,0,8,1,0$
5030 DATA $1,0,0,1,0,0,1,0,0$
RUN
MUSIC
TWELUE - TONE COMPOSITION PROGRAM 11/28/72 UERSION

$\begin{array}{llll}\text { VOI CE } & 1 \\ \text { D } & 3 & 1.5 \\ \text { C } & 3 & \bullet 5 \\ \text { C } & 3 & 1.5 \\ \text { B } & 3 & 2 \\ \text { F } & 3 & 4\end{array}$

VOICE 2
A 23.5
R 1.5
Di2 1.5
D 22.5

VOICE 3

A	2	$3 \cdot 5$
$C$	2	4
G	2	1

R 2

VOICE 4
E 11.5
F\&1 3
CFI 1
R $\quad 1.5$

$D$	3	1
$D$	3	2.
G	3	1
$F$	3	$\bullet 5$
$R$	2	

F13 2.5
B 31.5
A) 31

C 32.5
B 32

C\&3.5
$\begin{array}{lll}\mathrm{F} & 3 & -5\end{array}$
D 31
A13 3.5
F 3.5

DONE
TITLE:
DESCRIPTION:
TRIAD SOLVING PROGRAM
This program prints major, minor, diminished, or augmented triads on a
staff.
36276

SPECIAL. CONSIDERATIONS:

The instructions are self-explanatory. However, concerning the output "6" is the symbol for a flat, and "\#" is the symbol for a sharp.

The Aardvark and Company Writing Team has designed programs to take up an absolute minimum of computer storage and perform a maximum purpose. The team encourages people to send good programs to Aardvark. As a slight encouragement, the team will give anyone who sends a program which is accepted a free "subscription" to the program handbook, and include the contributor as a member of the writing team.

MUSIC 2, Page 2

RUN

## RUN <br> MUSIC2

THIS PROGRAM PRINTS TRIADS ON A STAFF. M=MAJOR N=MINOR A=AUGMENTED $D=D I M I N I S H E D$ N=NATURAL FEFLAT $S * S H A R P$ EACH TRIAD HAS 3 LETTERS EXAMPLE\&
AFA =A FLAT AUGMENTED
THE NUMBER OF TRIADS MUST BE BETWEEN 1 AND 30
EXAMPLE: AFNDNMGSD
WHAT TRIADS DO YOU WANT?AFAAFNDNMGSD

```

 O}6
--------.---------0-----
 0}6
------------------0-----
 60 60 0
--.------------------
 10
O
```

DONE

# FINE ARTS (EDUCATION) <br> contriguted program BASIC 

TITLE:
DESCRIPTION:

INSTRUCTIONS:

SPECIAL
CONSIDERATIONS:

FINDS DOMINANT SEVENTHS

This program finds the dominant sevenths of any key.

Run the proqram. Input the kevs you want (without commas) and it will print out the sevenths

The Aardvark and Company Writing Team has designed programs to take up an absolute minimum of computer storage and perform a maximum purpose. The team encourages people to send good programs to Aardvark. As a slight encouragement, the team will give anyone who sends a program which is accepted a free "subscription" to the program handbook, and include the contributor as a member of the writing team.

```
MUSIC`, Page 2
```

```
RUN
RUN
MUSICS
```

FINDS DOMINATE SEVENTHS.
' $X^{\prime}=$ DOUBLE $S H A R P, ~ ' S '=S H A R P, ~ ' N '=N A T U K A L$,
$'^{\prime} F^{\prime}=F L A T$, AND ' $D^{\prime}=D O U B L E F L A T$.
' $M^{\prime}=M A J O R, ~ ' A '=A E O L I A N$ MINOR, AND ${ }^{\prime} H$ ' = HARMONIC MINOK.

INPUT KEY?CSMANAAFH

CSM								
THE	V7	OF	I	15	GS	BS	DS	FS
THE	V7	OF	11	15	AS	CX	ES	GS
THE	V7	OF	III	15	BS	DX	FX	AS
THE	V7	OF	IV	IS	CS	ES	GS	BN
THE	V7	OF	$v$	IS	DS	FX	AS	CS
THE	V7	OF	VI	15	ES	GX	BS	DS
THE	V7	OF	VII	IS	FS	AS	CS	EN
ANA								
THE	V7	OF	I	15	EN	GS	BN	DN
THE	V7	OF	11	15	FN	AN	CN	$E F$
THE	V7	OF	III	15	GN	BN	DN	FN
THE	V7	OF	IV	15	AN	CS	EN	GN
THE	V7	OF	V	15	BN	DS	FS	AN
THE	V7	OF	VI	15	CN	EN	GN	BF
THE	V7	OF	VII	15	DN	FS	AN	CN
AFH								
THE	V7	OF	1	15	EF	GN	BN	DF
THE	v7	OF	11	15	FF	AF	CF	ED
THE	V.7	OF	III	15	GN	BS	DN	FN
THE	$\checkmark 7$	OF	IV	15	AF	CN	EF	GF
THE	V7	OF	$v$	15	BN	DN	FN	AF
THE	V7	OF	VI	15	CF	EF	GF	BF
THE	V7	OF	VII	15	DF	FN	AF	CF
DONE								



```
RUN
RUN
BALANC
THERE'S A DISTINCTION BETWEEN TRADE BALANCE AND
BALANCE OF PAYMENTS.
TRADE BALANCE = EXPORTS-IMPORTS.
BALANCE OF PAYMENTS= ALL OVERSEAS EXCHANGES +
ALL OUERSEAS EXPENDITURES.
WHEN INFORMATION IS REQUESTED, INPUT UALUES IN
MILLIONS OF DOLLARS (E.G. 6=6 MILLION DOLLARS)
A.
INPUT A FIGURE FIRST FOR ALL MILITARY AID, THEN
FOR ALL OTHER AID TO OTHER NATIONS.
?12.13
B.
INPUT A FIGURE FIRST FOR EXPORTS, THEN FOR IMPORTS.
1256.23
C.
INPUT A FIGURE FIRST FOR FOREIGNERS TRAUELING IN
YOUR COUNTRY, THEN FOR YOUR COUNTRYMEN TRAVELING
ABROAD.
?254,56
D.
INPUT A FIGURE FIRST FOR INCOME FROM FOREIGN INUEST-
MENTS, THEN FOR FOREIGN INUESTMENT ITSELF.
?259,21
A. FOREIGNAID= 25
B. BALANCE OF TRADE = 233
C. TRAUEL BALANCE = 198
D. INUESTMENT BALANCE = 238

BALANCE OF PAYMENTS =
6 4 4
(REMEMBER, IF A MINUS FIGURE APPEARS ABOUE,YOUR
COUNTRY HAS A DEFICIT IN ITS BALANCE OF PAYMENTS)
HOPE YOU UNDERSTAND THE DISTINCTION BETWEEN THE
BALANCE OF TRADE AND THE BALANCE OF PAYMENTS
BETTER NOW.
DONE
```



```
RUN
RUN
BANK
FINANCIAL PROBLEMS
THIS PROGRAM SOLVES THREE TYPES OF PROBLEMS:
(I) INTEREST ON INSTALLMENT BUYING
(2) PAYMENTS ON LONG TERM LOAN
(3) BALANCE OF A SAVINGS ACCOUNT
WHICH PROBLEM WOULD YOU LIKE TO WORK WITH (TYPE 1, 2 OR 3)?
丮 \(\boldsymbol{*}\) *
THIS SECTION WILL DETERMINE THE ACTUAL INTEREST YOU PAY WHEN YOU PURCHASE SOMETHING ON CREDIT.
WHAT IS THE CASH PRICE OF THE ARTICLE (\$)?88.99
DOWN PAYMENT (\$)?10
NUMBER OF PAYMENTS EXCLUDING THE DOWN PAYMENT?18
NUMBER OF PAYMENTS PER MONTH? I
AMOUNT PER PAYMENT (\$)?4.85
```

THE RATE OF INTEREST CHARGED WAS 5.69 PERCENT.


```

WOULD YOU LIKE TO RUN THE PROGRAM AGAIN (1-YES, D-NO)?!
WHICH PROBLEM WOULD YOU LIKE TO WORK WITH (TYPE 1, 2 OR 3)?3

THIS SECTION CALCULATES THE BALANCE OF A SAVINGS ACCOUNT
IN WHICH DEPOSITS ARE MADE REGULARLY.
WHAT IS THE AMOUNT DEPOSITED PER INTEREST PERIOD ($)?10000
HOW OFTEN IS THE INTEREST COMPOUNDED (MONTHS)?3
WHAT IS THE RATE OF INTEREST PAID (Z)?S
FOR HOW LONG WILL YOU DEPOSIT MONEY (YEARS)?S
THE BALANCE OF YOUR ACCOUNT AFTER 5 YEARS WILL BE $ 238450.

WOULD YOU LIKE TO RUN THE PROGRAM AGAIN (I-YES, 0-NO)?0
DONE
```

TITLE:
DESCRIPTION:
INSTRUCTIONS:
SPECIAL
CONSIDERATIONS:

CHARGE ACCOUNT SIMULATION

CHARGE is a simulation game based on the external reality of using charge accounts.

With built-in roles stating set financial conditions, CHARGE provides opportunity to purchase goods and services during a simulated twelve-month period and to add to or begin a Savings Account. The computer assigns positive and negative unexpected events. The program gives experience in fitting income to life style by requiring wise use of credit, adjustments between savings and expenditures, figuring monthly finance charges, and absorbing penalties for unwise use of money.

Before beginning the game each student should be provided with:

1. Set of rules
2. Role Sheet
3. Item Selection Sheets (4)

The game can be played most effectively with groups of ten or fewer. After the instructional session a group of ten students will be able to complete a one-yedr run in less than two hours.

Copyright to the instructional materials is held by Paul S. Amidon \& Associates, Inc. Complete documentation, including Teacher Guide and Student Worksheets may be obtained for $\$ 15.00$ from: Paul S. Amidon \& Associates, Inc., 5408 Chicago Avenue South, Minneapolis, Minnesota.

FOR INSTRUCTIONAL PURPOSES
Because of the various skills and judgments inherent in the game, it easily fits into such disciplines from Grades 9 through 12 as Business Mathematics, General Mathematics, General Business, Home and Family Living, and Social Studies sections dealing with management of personal income.

Paul S. Amidon and Associates
Minneapolis, Minnesota

## RUN

```
RUN
Charge
PLEASE ENTER ROLE NUMBER,COMMA, AND MONTH.?1,1
FIRST OF ALL, HOW MANY ITEMS(INCLUDING SAVINGS) THIS MONTH?4
CHOICE 1 --?9.10.20
CHOICE 2 --?26.15.00
CHOICE 3 --?42.22.41
CHOICE 4 --?40.47.39
----UNEXPECTED EVENTS-.--
YOU DAMAGED EQUIPMENT AT WORK WHICH YOU HAD TO REPLACE
AT A COST OF $19.
THANK YOU FOR SHOPPING COMPU.
YOUR TOTAL POINTS THIS MONTH WERE 10
PLEASE ENTER ROLE NUMBER,COMMA, AND MONTH.?1,2
FIRST OF ALL, HOW MANY ITEMS(INCLUDING SAVINGS) THIS MONTH?A
CHOICE 1 --?9.10.20
CHOICE 2 --?12.22.50
CHOICE 3 --?42.22.41
CHOICE 4 --?40.39.89
-.--UNEXPECTED EVENTS...-
NO GOODIES OR BADDIES THIS MONTH.
THANK YOU FOR SHOPPING COMPU.
YOUR TOTAL POINTS THIS MONTH WERE II
PLEASE ENTER ROLE NUMBER,COMMA, AND MONTH.?1,3
FIRST OF ALL, HOW MANY ITEMS(INCLUDING SAVINGS) THIS MONTH?S
CHOICE 1 --?9,10.20
CHOICE 2 --?32.9.86
CHOICE 3 --?37,32.50
CHOICE 4 --?42.22.41
CHOICE 5 --?40.20.03
----UNEXPECTED EVENTS-..-
YOUR SHARE OF YOUR MOTHER'S BIRTHDAY PRESENT WAS S10.
THANK YOU FOR SHOPPING COMPU.
YOUR TOTAL POINTS THIS MONTH WERE }
```

PLEASE ENTER ROLE NUMBER,COMMA, AND MONTH.? 1,4
FIRST OF ALL, HOW MANY ITEMS(INCLUDING SAVINGS) THIS MONTH?S
CHOICE 1 --? 15.22 .95
CHOICE 2 --?32.9.86
CHOICE 3 --? 33.25 .88
CHOICE 4 --? 42.22 .41
CHOICE 5 --?40.13.90
----UNEXPECTED EVENTS…-
THINGS DULL THIS MONTH. NO UNEXPECTED EVENTS.
THANK YOU FOR SHOPPING COMPU.
YOUR TOTAL POINTS THIS MONTH WERE 9
PLEASE ENTER ROLE NUMBER,COMMA, AND MONTH.?1,5
FIRST OF ALL, HOW MANY ITEMS(INCLUDING SAVINGS) THIS MONTH?4
CHOICE 1 --? $32,9.86$
CHOICE 2 --?33.25.88
CHOICE 3 --? 42.22 .41
CHOICE 4 --? 40.36 .85
----UNEXPECTED EVENTS-..-
YOU LOST YOUR WALLET. IT HAD S23 IN IT.
THANK YOU FOR SHOPPING COMPU.
YOUR TOTAL POINTS THIS MONTH WERE 9

```
PLEASE ENTER ROLE NUMBER,COMMA, AND MONTH.31,6
FIRST OF ALL, HOW MANY ITEMS(INCLUDING SAVINGS) THIS MONTH?3
CHOICE 1 --P33.25.88
CHOICE 2 --?42,22.41
CHOICE 3 --P40.46.71
----UNEXPECTED EVENTS--.-
NO GOODIES OR BADDIES THIS MONTH.
THANK YOU FOR SHOPPING COMPU.
YOUR TOTAL POINTS THIS MONTH WERE 9
PLEASE ENTER ROLE NUMBER,COMMA, AND MONTH.?1.7
FIRST OF ALL, HOW MANY ITEMS(INCLUDING SAVINGS) THIS MONTH?2
CHOICE 1 --P33.25.88
CHOICE 2 --?40.69.12
----UNEXPECTED EVENTS--.-
NO GOODIES OR BADDIES THIS MONTH.
THANK YOU FOR SHOPPING COMPU.
YOUR TOTAL POINTS THIS MONTH WERE II
PLEASE ENTER ROLE NUMBER,COMMA, AND MONTH.70,8-.-1,8
FIRST OF ALL. HOW MANY ITEMS(INCLUDING SAVINGS) THIS MONTH?A
CHOICE 1 --?22.5.56
CHOICE 2 --?23.19.96
CHOICE 3 --733.25.88
CHOICE 4 --?40.43.60
----UNEXPECTED EVENTS----
YOU LOST YOUR CREDIT CARD AND DIDN'T KNOW ABOUT THE LOSS
UNTIL YOU WANTED TO USE IT. YOU DON'T HAVE INSURANCE
AGAINST LOSS OF CREDIT CARDS. YOUR CARD HAS BEEN USED BY
SOmEONE TO MAKE PURCHASES OF sig and SI5. YOU mUST PAY s25.
THANK YOU FOR SHOPPING COMPU.
YOUR TOTAL POINTS THIS MONTH WERE 9
PLEASE ENTER ROLE NUMBER,COMMA, AND MONTH.P1,9
FIRST OF ALL, HOW MANY ITEMS(INCLUDING SAVINGS) THIS MONTH?2
CHOICE 1 --?33.25.88
CHOICE 2 --?48.69.12
----UNEXPECTED EVENTS----
BUSINESS GOOD THIS MONTH. YOUR BOSS GAVE YOU A S3S BONUS.
tMANK YOU FOR SHOPPING COMPU.
YOUR TOTAL POINTS THIS MONTH WERE II
```



```
RUN
RUN
CONSMP
THIS PROGRAM SIMULATES THE EFFECTS OF CONSUMPTION ON THE
GNP. IT PRINTS OUT THE UALUES FOR THE COMPONENTS OF THE
CIRCULAR FLOW MODEL OF GOODS, SERUICES AND MONEY.
ASSUME GNP IS 100 BILLION.
TYPE IN A VALUE FOR PROPENSITY TO CONSUME.
MAKE THE VALUE BETWEEN g AND . }7
?.69
IF STARTING ,TYPE 100(GNP); IF NOT
STARTING,TYPE VALUE OF RETURN GNP.
?100
```

ORIGINAL GNP- 100
PROPENSITY TO
CONSUME- .69
CONSUMPTION- 69
VALUE- 69
SAVINGS-31
INUESTMENT BY PERIODS:
1-3MONTHS 5
4-6MONTHS 4.925
7-9MONTHS 4.85
10-12MONTHS 4.775
END OF 12 TM MONTH 4.7
TOTAL FOR YEAR 24.25
OUER-I NVESTMENT
LABOR:
1-3MONTHS-. 15
4-6MONTHS - . 147
7-9MONTHS - . 144
10-12MONTHS - . 141
END OF 12MONTH- . 138
TOTAL FOR YEAR - . 72
G NP $:$
1-3MONTHS- 14.8
4-6MONTHS - 14.785
7-9MONTHS-14.77
18-12MONTHS-14.755
END OF 12 MONTH- 14.74
TOTAL FOR YEAR - 93.25
RECESSION
INVENTORY OUERPRODUCED-22.75
TYPE DECIMAL VALUE FOR PROPENSITY TO
CONSUME
?.58
IF STARTING, TYPE $100(G N P)$; IF NOT
STARTING,TYPE UALUE OF RETURN GNP.
770
ORIGINAL GNP- 100
PROPENSITY TO
CONSUME-. 5
CONSUMPTION- 35
VALUE- 35

GNP - 37.25
TYPE DECIMAL VALUE FOR PROPENSITY TO
CONSUME
DONE

title:	CAMPAIGN STRATEGY AND ELECTIONS $\quad 3$ ELECT
DESCRIPTION:	The ELECT package contains three separate simulation programs, focusing on campaign decision making and electoral politics. ELECT1 and ELECT2 focus on the study of campaign strategy in 14 American presidential elections of the past. ELECT3 is a role-playing game which can be used in the classroom to simulate a campaign and election. In the case of all simulations, the computer simulates the behavior of the electorate as it decides which candidate to support.
INSTRUCTIONS:	ELECT1 and ELECT?
	The computer programs ELECTI and ELECT2 contain simulated voter attitudes for each of 14 past presidential elections. (The elections of 1828 , 1840, 1844, 1868, 1876, 1884, 1896, 1920, 1928, 1932, 1948, 1952, 1960, and 1968 have been included.) Information about voter attitudes toward the candidates, the parties, and the issues is stored for each of these elections. The basic question facing the students using ELECTI-2 is how each candidate should allocate his political resources among the three areas of voter attitudes. In other words, how much emphasis should the candidate place on his image, on the party, and on the issues. Once these strategies have been determined, they are entered and the computer then indicates how the election would have turned out if these studentdeveloped strategies had, in fact, been adopted by the candidates. It then gives the actual election results so that students can compare the two and attempt to explain the differences. For each election, a brief description of the political climate of the country prior to the election has been included to help students make their strategy decision. Also included is a brief explanation of how the election actually turned out and why.
	ELECT3
	ELECT3 is based on the same model as is ELECTI and ELECT2. That is, the program simulates voter-attitudes toward candidates, parties and issues. ELECT3 has been designed as a role-playing game which can be used in the classrooll to simulate a campaign and election. Students playing the roles of campaign managers, media specialists, candidates, speechwriters, etc. make decisions which change the attitudes of the electorate. The class may be divided into two camps, each representing a candidate and his campaign staff. The basic objective of the campaign is to use resources in such a way as to increase the candidate's chances of winning on election day. The campaign is conceived of as a series of actions taking place along a time continuum that begins several months before the election and culminates in the aggregate decision of the voters on the day of the election. Each group is given periodic poll results and information regarding the success of their campaign strategies to aid them in planning future campaign strategy.
	Continued on the next page.
SPECIAL CONSIDERATIONS:	
	The Huntington II Project recommends that for use of this program in the classroom it is necessary to obtain the following publications from Program Library, Digital Equipment Corporation, Maynard, Massachusetts 01754.
	Student Workbook $\$ .30$ Resource Handbook $\$ .50$   Teachers Guide $\$ .30$
ACKNOWLEDGEMENTS:	Huntington II Project State University of New York

```
HLECT, Page '%
```

INSTRUCTIONS: Continued

Attempts to reach and change the attitudes of voters within the electorate is hampered by message and media distortion. Finally, a turnout rate, which can be influenced by the candidates, helps to determine the final outcome of the election.

RUN
RIIN
ELECTI
ELECT1
HISTORICAL ELECTIONS - 19 TH CENTURY
NEED INSTRUCTIONS?YES

YOUR GOAL WILL BE TO CHOOSE THE OPTIMUM STRATEGY FOR
CANDIDATES IN AN HISTORICAL ELECTION. EACH CANDIDATE'S
STRATEGY VECTOR CONSISTS OF 3 NUMBERS. THE FIRST REPRESENTS
THE AMOUNT OF EMPHASIS TO EE PLACED ON THE CANDIDATE'S
IMAGE, THE SECOND REPRESENTS THE AMOUNT OF EMPHASIS ON PARTY
AFFILIATION, AND THE THIRD IS THE AMOUNT OF EMPHASIS ON
CAMPAIGN ISSUES. EACH OF THESE NUMBERS IS BETWEEN 10 AND 80 , WITH A HIGHER NUMBER REPRESENTING MORE EMPHASIS. THE TOTAL OF EACH STRATEGY UECTOR MUST ERUAL 100 !

```
THE COMPUTER WILL FIRST ASK 'ELECTION YEAR?'
```

CHOOSE THE YEAR FROM THE FOLLOWING LIST:

1828	1840	1844	1868	1876	1884	1896

ELECTION YEAR?1868

	ELECTION OF 1868
CANDIDATE	
SEYMOUR PARTY	
GRANT	DEMOCRAT
	REPIBLICAN

SEYMOUR - STRATEGY (3 NUMBERS, $10<=1<=80$, TOTAL = 100)?50,20,30
GRANT - STRATEGY (3 NUMBERS, $10<=1<=80$, TOTAL $=100$ ) ?20,50,30
THE RESULT OF YOUR STRATEGY IS: ,

SEYMOUR	47.5	2
GRANT	52.5	2

THE VOTE FOR THE TWO MAJOR CANDIDATES IN THE ACTUAL ELECTION WAS:

SEYMOUR	47.3	
GRANT	52.7	$\$$

ANOTHER RUN?NO
DONE

```
GET-ELECT2
RUN
ELECT?
```

                                    ELECT?
    HISTORICAL ELECTIONS - 20TH CENTURY

NEED INSTRUCTIONS?YES

```
YOUR GOAL WILL BE TO CHOOSE THE OPTIMUM STRATEGY FOR
CANDIDATES IN AN HISTORICAL ELECTION. EACH CANDIDATE'S
STRATEGY UECTOR CONSISTS OF 3 NUMBERS. THE FIRST REPRESENYS
THE AMOUNT OF EMPMASIS TO BE PLACED ON THE CANDIDATE'S
IMAGE, THE SECOND REPRESENTS THE AMOUNT OF EMPHASIS ON PARTY
AFFILIATION. AND THE THIRD IS THE AMOUNT OF EMPHASIS ON
CAMPAIGN ISSUES. EACH OF THESE NUMBERS IS BETUEEN 10 AND 80,
WITH A MIGHER NIMMBER REPRESENTING MORE EMPHASIS. THE TOTAL
OF EACH STRATEGY VECTOR MIJST EQUAL 100I
THE COMPUTER WILL FIRST ASK 'ELECTION YEART'
CHOOSE THE YEAR FROM THE FOLLOWING LIST:
 1920
ELECTION YEAR?1948
ELECTION OF 1948
CANDIDATE PARTY
TRUMAN DEMOCRAT
DEWEY REPIIBLICAN
TRUMAN - STRATEGY (3 NUMBERS, 10 <= 1 < < 60, TOTAL = 100)?20,50,30
DEWEY - STRATEGY (3 NIIMBERS, 10<= 1 < & , TOTAL = 100)?30,40,30
THE RESIILT OF YOUR STRATEGY IS:
TRIMMAN 55 %
DEWEY 45 2
THE vOTE FOR THE TWO MAJOR CANDIDATES IN THE AOTIIAL ELECTION WAS:
TRUMAN 52.4 I
DEWEY 47.6 &
```

ANOTHER RUN?NO
DONE
GET-ELECT3
RUN
ELEC T 3
PER? 1
RES UNITS R,D 300,300
INPUT FACTORS ( $1=Y E S, ~ b=N O) ? 0$
INPUT MATRIX ( $1=Y E S, ~ \theta=N O) ? \theta$
MEDIA DISTORTION: $R-6$ PC $D-4$ PC
ALLOC RESOURCES - MIN. 20 PC FOR EACH AREA - TO
IMAGE, PARTY, AND ISSUES

TO HELP IMAGE -
STRESS EXP, ABIL, OR PERS
R - HAS 140 UNITS - ALLOC. $740,50,50$
NO EQUAL ALLOCATIONS! ALLOC.? $40,49,51$
D - HAS 60 UNITS - ALLOC. $710,30,20$
NO ALLOC < 20 PCI ALLOC. $312.30,18$
TO PUBLICIZE ISSUES -
STRESS ECO, DOMEST, OR FOR POL
R - HAS 100 UNITS - ALLOC. $730,31,39$
D - HAS 100 UNITS - ALLOC. $339,30,31$
UPDATE -
TURNOUT 47 PC
IMPROVING IMAGE:
$R$ IS NOT AND D IS
STRESSING RIGHT ISSUE:
R IS NOT AND D IS

```
D HAS A DECIDED ADVANTAGE' IN IMAGE
D HAS A SLIGHT ADUANTAGE WITH ISSUES
 D HAS CHOSEN COHRECT ISSUE AND IMAGE
 AND THIS SHOULD HELP HIM
TURNOUT HINDERS R
THE LATEST POLL SHOWS D LEADING WITH 52.
AND HIS OPPONENT WITH 47.6 PC
```



```
RUN
ELECT3
PER?2
RES UNITS R,D?350,316
INPUT FACTORS (}1=YES,0=NO)?
FAC 21.22,3.23,1,2,1,1,3.15,4.22,.475,.06,.04
CTRS30,1,0,1
INPUT MATRIX (}1=YES, |=NO)?
CELL, 1 --- ?1
CELL 2 --- ?3
CELL 3 --- ?2
CELL 4 --- ?3
CELL 5 --- ?3
CELL 6 --- 34
CELL 7 --- ?3
CELL 8 --- ?4
MEDIA DISTORTION: R - 6 PC D - 4 PC
ALLOC RESOURCES - MIN. 20 PC FOR EACH AREA - TO
IMAGE, PARTY, AND ISSUES
ALLOC. R (MAX = 350)?150,100,100
ALLOC. D (MAX = 310)770,130.110
TO HELP IMAGE -
STRESS EXP, ABIL, OR PERS
 R - HAS 150 UNITS - ALLOC. 230,40,80
 D - HAS 70 UNITS - ALLOC.330,25,15
TO PUBLICIZE ISSUES -
STRESS ECO, DOMEST, OR FOR POL
 R - HAS 100 UNITS - ALLOC.?50,30,20
 D - HAS 110 UNITS - ALLOC.?29,50,31
UPDATE -
TURNOUT: 50 PC
IMPROVING IMAGE:
R IS NOT AND D IS NOT
STRESSING RIGHT ISSUE:
 R IS AND D IS NOT
D HAS A DECIDED ADUANTAGE IN IMAGE
NO ONE HAS ADUANTAGE WITH ISSUES
TUHNOUT HAS NO EFFECT
```



## contributedprogram BASIC

| TITLE: |
| :--- | :--- |
| DESCRIPTION: |
| INSTRUCTIONS: |$|$| SOCIAL.SCIENCE INQUIRY PACKAGE |
| :--- |
| There are 2 programs in this package: INQUIR and INQUIRH. INQUIR is a |
| social science data analysis package which allows the user to create and |
| modify data files and perform a number of statistics on that data |
| including frequencies, both means and standard deviations, crosstabs with |
| chi square, degrees of freedom and gamma, Data can be recoded and |
| statistics done on subpopulations as well. |



```
RUN
RUN
POLICY
HOW MANY PERIODS?3
INITIAL AMOUNTS:
\begin{tabular}{lll}
INDICATOR & CURRENTLY & INCREASE \\
161 & 976.5 & \\
102 & 197 & \\
103 & 80 & \\
104 & 18.2 & \\
105 & 3 & \\
106 & 82 & \\
107 & 54 & \\
108 & 140 & \\
109 & 4.5 & \\
118 & 25 & \\
111 & 8.2 & \\
112 & 30 & \\
113 & 116.3 & \\
114 & 142 & \\
115 & 5568 & \\
116 & 20 & \\
117 & 0 &
\end{tabular}
```

TAPE? $(1=Y E S, \nabla=N O) ? Z$
BUSINESS
TOTAL POINTS REMAINING: ..... 102
MAXIMIJM MINUS POINTS ..... 50
INPUT POLICY NO.,PPOINTS
?4,40
?3,20
? 15.0
TOTAL POINTS REMAINING : ..... 40
MAXIMUM MINUS POINTS ..... 40
INPUT POLICY NO.,POINTS
?6, -20
? 14,6
?15, 0
TOTAL POINTS REMAINING : 14
MAXIMUM MINIS POINTS ..... 14
INPUT POLICY NO.,POINTS
?7,10
?8, -20
TOTAL POINTS REMAINING : ..... 4
MAXIMUM MINUS POINTS ..... 4
INDUT POLICY NO., POINTS
$? \varnothing, 8$
LABOR
TOTAL POINTS REMAINING: 100
MAXIMUM MINUS POINTS ..... 50
INPUT POLICY NO.,POINTS
?4, 60
?4, 1
?15,0
TOTAL POINTS REMAINING ..... 39
MAXIMUM MINUS POINTS ..... 39
INPUT POLICY NO.,POINTS
?7,39

```
CIVIL RIGhtS
TOTAL POINTS REMAINING : 1g|
MAXIMUM MINUS POINTS: 50
INPUT POLICY NO.,POINTS.
?9,100
military
TOTAL POINTS REMAINING : 100
maxImum minUS pOINTS: 50
INPUT POLICY NO.,POINTS
314.-510
712,-3
TOTAL POINTS REMAINING : 50
mAXIMUM MINUS POINTS: 0
INPUT POLICY NO.,POINTS
?12,50
NATIONALISTS
TOTAL POINTS REMAINING : }18
MAXIMUM MINUS POINTS : 50
INPUT POLICY NO.,POINTS
?14.108
INTERNATIONALISTS
total points remaining : 100
MAXIMUM MINUS POINTS : 50
INPUT POLICY NO.,POINTS
?11,94
?15,0
TOTAL pOINTS REMAINING : 6
MAXIMIMM MINUS POINTS: }
INPUT POLICY NO..POINTS
70.0
PASSED : 4
```

END OF PERIOD 1

INDICATOR	CURRENTLY	INCREASE	PCT. INC.
101	1015.56	39.05	3.99
102	201	4	2.83
103	81	1	1.25
104	18.61	-. 19	-1.05
185	2.7	-. 31	-10.34
186	82	8	0
187	54	0	0
188	3.03	.03	1
109	140	0	0
110	4.5	6	0
111	24.75	-. 25	-1
112	10.2	2	24.39
113	33	3	10
114	120.95	4.65	3.99
115	156.19	14.19	9.99
116	6578.24	1002.24	18
117	28	0	0
118	8	0	0

TAPE? ( $1=Y E S, \sigma=N O) ? \sigma$
business

```
TOTAL POINTS REMAINING: 100
MAXIMUM MINUS DOINTS : 50
INPUT POLICY NO.,POINTS
?13,180
LABOR
TOTAL POINTS REMAINING : 100
MAXIMUM MINUS POINTS: 50
INPUT POLICY NO.,POINTS
?13,20
?0,0
CIVIL RIGHTS
TOTAL POINTS REMAINING : 100
MAXIMUM MINUS POINTS: 50
INPUT POLICY NO.,POINTS
?5,100
MILITARY
TOTAL POINTS REMAINING : 100
MAXIMUM MINUS POINTS: 50
INPUT POLICY NO..POINTS
?5,100
NATIONALISTS
TOTAL POINTS REMAINING : 100
MAXIMUM MINUS POINTS: 50
INPUT POLICY NO.,POINTS
?5,-40
?15,0
TOTAL POINTS REMAINING: 60
MAXIMUM MINUS POINTS : 10
INPUT POLICY NO.,POINTS
?0,0
INTERNATIONALISTS
TOTAL POINTS REMAINING: }10
MAXIMUM MINUS POINTS : 50
INPUT POLICY NO.,POINTS
?0,0
PASSED : 5 13
END OF PERIOD 2
\begin{tabular}{llll}
INDICATOR & CURRENTLY & INCREASE & PCT. INC \\
101 & 1037.56 & 22 & 2.16 \\
102 & 284 & 3 & 1.49 \\
103 & 80.19 & -.81 & -1 \\
104 & 17.83 & -.19 & -1.06 \\
105 & 2.42 & -.27 & -10 \\
106 & 88 & 6 & 7.31 \\
167 & 58 & 4 & 7.4 \\
108 & 3.06 & -83 & -99 \\
109 & 140 & -.11 & 0 \\
118 & 4.39 & -.05 & -2.45 \\
111 & 24.7 & -1 & -.21 \\
112 & 9.2 & -3 & -9.81 \\
113 & 30 & -4 & -9.1 \\
114 & 116.95 & -35.61 & 9.91 \\
115 & 171.81 & -58 & -.77 \\
116 & 6528.24 & 0 & 0 \\
117 & 20 & 0 & 0
\end{tabular}
```


## TAPE? ( $1=$ YES, $0=$ NO $) ? 1$

```
310DATA.1837.56 , 264 , 80.19 , 17.8378 , 2.43 , 88
315DATA 58, 3.0603 , 140 , 4.4 , 24.7 , 2
320DATA 30 , 116.952 , 171.82 , 6520.24, , 00, 0
```

DONE
title:
DESCRIPTION:

INSTRUCTIONS:

SPECIAL
CONSIDERATIONS:

SIMULATION OF GITY COUNCIL
POLSYS
36640

This program is a simulation atterpting to duplicate the processes which individuals and groups undergo when they attempt to influence "City Hall".

POLSYS was developed by the Huntington II Project at the Polytechnic Institute of Brooklyn under the direction of L . Braun. This work was partially supported by the National Science Foundation, Grant GW-5883.

The users assume the role of citizens engaged in political activity. An issue is presented, and the teams enter values for publicity (PBU), knowledge (KU), and support (SU) according to the roles played. The strategy used by the teams is evaluated and decisions made.

The Huntington II Project recommends that for use of this program in the classroom it is necessary to obtain the following publications from Program Library, Digital Equipment Corporation, Maynard, Massachusetts 01754.

Student Workbook	$\$ .30$
Teachers Guide	.30
Resource Handbook	.50

Huntington II Project

## POLSYS, Page 2

```
RUN
RUN
POLSYS
ENTER ISSUE NUMBER ?I
ENTER ROUND?I
TEAM 1 (PRO)
TOTAL RES.3PUBLICITY(PBU),SUPPORT(SU), KNOWLEDGE(KU)?820,310,57
TEAM 2 (CON)
TOTAL RES.BPUBLICITY(PQU),SUPPORT(SU),KNOWLEDGE(KU)?680,400,53
TEAM 1 (PRO)
REMAINING RESOURCES (PBU,SU,KU)
 820 310 57
 PBU RES. TO BE USED?220
 PBU X PBU ?S0
 PBU }X\mathrm{ SU ?14
 PBU X KU ?10
 SU RES. TO BE USED?150
 SU x. PBU ?250
 SU X SU ?50
 su x KU ?25
 KU RES. TO BE USED?30
 KU X PBU ?100
 kU }x\mathrm{ SU ?20
 KU X KU ?10
TEAM 2 (CON)
REMAINING RESOURCES (PBU,SU,KU)
 680 400 53
PBU RES. TO BE USED?250
PBU }x\mathrm{ PBU ?100
PBU }X\mathrm{ SU ?20
PBU }X\mathrm{ KU ?S
SU RES. TO BE USED?170
SU }x\mathrm{ PBU ?250
su x su ?20
SU }x\mathrm{ KU ?S0
KU RES. TO BE USED??3
KU X PBU ?130
KU x SU ?10
KU X KU ?5
CITY COUNCIL WILL CONSIDER DEMAND.
PROCEED TO ROUND 2
STRATEGY QUALITY POINTS = - 60
ANOTHER RUN(YES=1,NO=0)?0
RES. GROUP 1 RES. GROUP 2
 600 160 27 ROS 430 230 30
END OF ROUND 1
DONE
```

TITLE:	
DESCRIPTION:	The purpose of this game is to build as high a pyramid as possibie with the available amount of money. The pyramid should be completed in 8 years.
INSTRUCTIONS:	The following conventions should be observed:   - The height of a pyramid should nefther be smaller than 15 metres nor exceed 200 metres   - The number of slaves should not be smaller than 1000   - The work time of slaves shouldn't exceed 20 hours/day   - The maximum of 9 pyramids can be bullt within one run

## RUN

## quN

PYRMID

PYRAMID-- HANNU KURKI-SJONIO, HELSINKI, FINLAND

IT.IS YEAR 2710 B.C. YOU ARE RULING THE ANCIENT EGYPT AFTER THE DEATH OF YOUR PREDECESSOR THE LATE PHARAOH KHAFRA. AN ORACLE HAS PREDICTED THAT YOU WILL DEPART THIS LIFE IN EIGHT YEARS AND THEREFORE YOU ARE BOUND TO START BUILDING YOUR PYRAMID DIRECTLY.

```
YOIJVE GOT 46000. GOLD RINGS
HOW MANY METRES HIGM DO YOU WISH TO B'JILD YOUR PYRAMID ?40
HO'N MANY SLAVES DO YOU ACOUIRE ?20000
HOW MANY OF THEM DO YOU APPOINT TO FOREMEN ?700
HOW MANY SLAVES TO THE QUARRY ?3500
HON MANY TO.CARRY STONES ?4000
THERE ARE 11800 SLAUES LEFT AS BUILDING LABOUR
YOU'VE STILL GOT 15977 GOLD RINGS
HOW MUCH FOR TOOLS ETC.?SBDO
HOW MANY HOURS MUST THE SLAVES WORK DAILY ?12
HOW MUCK WILL YOU SPEND ON FOOD NEXT YEAR ?10000
YOUR PYQAMID BECAME COMPLETED IN 1 YEARS
YOUR PYRAMID HAS NOW 40516. STONES AND 40 METRES OF HEIGHT
YOUR SUCCESSOR WILL INHERIT THE REMAINING 977 GOLD RINGS
PYRAMID OF PHARAOH MENKAURA 1 40 METRES
```



DOES YOUR SUCCESSOR 'WANT TO BUILD A PYRAMID (1 OR (A) ? 1
********

```
YOU'JE GOT 40977. GOLD RINGS
HO'N MANY METRES HIGH DO YOU WISH TO BUILD YO!R PYRAMID ?89
HO'N MANY SLAUES DO YOU ACQUIRE ?19000
HOW MANY OF THEM DO YOU APPOINT TO FOREMEN ?1000
HOW MANY SLAUES TO THE QJARRY ?5200
HOW MANY TO CAROY STONES ?5400
THERE ARE 7400 SLAJES LEFT AS BUILDING LABOUR
YOI'VE STILL GOT 17682 GOLD RINGS
HOW MUCH FOR TOOLS ETC.?40DD
HOW MANY HOURS MUST THE SLAVES NORK DAILY ?12
HON MUCH WILL YOIS SPEND ON FOOD NEXT YEAR ?5פ00
```

1 YEAR
102251. STONES 9 METRES
SLAVES STARUED 321a
SLA'JES DIED OF O'JERWORK 585
SLATES ESCAPED O
YOU HAVE NO'N 14205 WORKERS AND 9592 GOLD RINGS
ANY CHANGES TO WURKING CONDITIONS (1 OR D) ? 刀

```
2 YEAR
164741. STONES 17 METRES
```

SLAUES STARUED $2 \not 25$
SLAJES DIED OF OUミRWURK 554
SLAVES ESCAPED $\quad 0$

```
YOU HAUE NOW 13445 WORKERS AND 3682 GOLD RINGS
ANY CHANGES TO WORKING CONDITIONS (1 OR Q) ?
HOW MUCH DO YOU WANT TO INCREASE THE NUMBER OF FOREMEN ?\emptyset
HOW MANY HOURS MUST THE SLAVES WURK DAILY ?8
HOW MUCH WILL YOU SPEND ON FOOD NEXT YEAR ?2800
3 YEAR
190875. STONES 20 METRES
SLAVES STARUED OVERWORK O
YOJ HAVE NOW 10200 JORKERS AND 882 GOLD RINGS
ANY CHANGES TO WORKING CONDITIONS (1 0. (0) ? 1
HOW MUCH DO YOU WANT TO INCREASE THE NUMBER OF FOREMEN ?O
HOW MANY HOURS MUST THE SLAJES NORK DAILY ??
HOW MUCH WILL YOU SPEND ON FOOD NEXT YEAR ?88D
4 YEAR
201148. STONES 22 METRES
SLAVES STARUED 8457
SLAVES DIED OF O:JERWORK O
SLAUES ESCADED O
YOU HAJE NOW 1743 WORKERS AND 82 GOLD RINGS
ANY CHANGES TO WORKING CONDITIONS (1 OR G) ?l
HOW MIJCH DO YOU WANT TO INCREASE THE NUMBER OF FOREI{EN ?O
HOW MANY HOURS MUST THE SLAVES WORK DAILY ?10
HOW MUCH WILL YOU SPEND ON FOJD NEXT YEAR ?8D
ALL WORKERS DIED OF STARTATION
YOUR PYRAMID HAS NON 2Oll48. STONES AND 22 METRES OF HEIGHT
YOUR SUCCESSOR WILL INHERIT THE REMAINING 2 GOLD RINGS
DOES YOUR SUCCESSOR WANT TO BUILD A PYRAMID (1 OR O) ?D
#*"####*
THERE ARE 2 PYRAMIDS ON THE SEPULCHEP AREA
PYRAMID OF MENKAURA 1 , 48 M
PYRAMID OF MENKAJRA 2, 22 :1
DONE
```



RUN
RUN SAP

## SURUEY ANALYSIS PROGRAM

HOW MANY VARIABLES?3
OPTION 31
VARIABLE?1
NUMBER OF VALUES TO BE RECODED FOR UARIABLE $1 \quad 70$
RANGE OF UAR. $1 \quad 31.4$
value NO.
24
24
24
24
TOTAL 96
MEAN = 2.5
S.D. $=1.1$

OPTION 32
VARIABLES 71.2
NUMBER OF VALUES TO BE RECODED FOR VARIABLE 1 ?0
NUMBER OF UALUES TO BE RECODED FOR UARIABLE 2 ?0
RANGE OF UAR- $1 \quad 31,4$
RANGE OF VAR. 2 71,2

OBSERUED FREQUENCIES
(ROW: UAR. 1 , COLUMN: UAR. 2 )

12 TOTALS

1	11	13	24
2	13	11	24
3	14	10	24
4	10	14	24

TOTALS
$48 \quad 48 \quad 96$
CHI SQUARE $1.7 \quad$ DF $=3$
CALCULATE GAMMA(1=YES, $\theta=N O)$ ? 1
GAMMA $=.03$
OPTION 31
VARIABLE?2
NUMBER OF VALUES TO BE RECODED FOR VARIABLE 2 ?0
RANGE OF VAR. 2 ? 1.2
VALUE NO.
148
TOTAL 96
MEAN $=1.5$
S.D. $=.5$

```
OPTION 31
VARIABLET3
NUMBER OF VALUES TO BE RECODED FOR VARIABLE 3 ?0
RANGE OF VAR. 3 ?1,2
value No.
 l
TOTAL }9
MEAN = 1.5
S.D. = .5
OPTION 32
VARIABLES 11,3
NUMBER OF UALUES TO BE RECODED FOR VARIABLE 1 }3
NUMBER OF VALUES TO BE RECODED FOR VARIABLE 3 }3
RANGE OF UAR. 1, 31,4
OBSERUED FREQUENCIES
(ROW: UAR. 1 , COLUMN: UAR. 3,
 1 2 TOTALS
\begin{tabular}{llll}
1 & 11 & 13 & 24 \\
2 & 13 & 11 & 24 \\
3 & 13 & 11 & 24 \\
4 & 14 & 10 & 24 \\
TOTALS & & &
\end{tabular}
 51 45 96
CHI SQUARE= . 8 DF= 3
CALCULATE GAMMA(1=YES, D=NO)?1
GAMMA = -. 13
OPTION ?3
VARIABLES $2,3
NUMBER OF VALUES TO BE RECODED FOR VARIABLE 2 }2
NUMBER OF UALUES TO BE RECODED FOR VARIABLE 3 30
RANGE OF VAR. 2 ?1,2
OBSERUED FREQUENCIES BY ROW PERCENTAGES
(ROW: VAR. 2 , COLUMN: UAR. 3,
 1 2 TOTALS
\begin{tabular}{llll}
1 & 72.9 & 27.1 & 100 \\
8 & 33.3 & 66.7 & 100
\end{tabular}
```

SAP, Pagf 4

```
```

VARIABLES ?2.3
NUMBER OF UALUES TO BE RECODED FOR VARIABLE 2 ?0
NUMBER OF VALUES TO BE RECODED FOR VARIABLE 3 ?0
RANGE OF VAR. 2 ?1,2
RANGE OF UAR. 3 ?!.2
OBSERUED FREQUENCIES BY COLUMN PERCENTAGES
(ROW: UAR. 2 , COLUMN: UAR. 3 )
12

1	68.6	28.9
2	31.4	71.1

TOTALS
100 100
OPTION ?5
VARIABLES ?2,3
NUMBER OF VALUES TO BE RECODED FOR VARIABLE 2 20
NUMBER OF VALUES TO BE RECODED FOR VARIABLE 3 ?0
RANGE OF VAR. 2 ?1.2
RANGE OF UAR. 3 ?12
EXPECTED FREQUENCIES
(ROW: UAR. 2 , COLUMN\& UAR. 3 )
1 2 TOTALS

1	25.5	22.5	48
2	25.5	22.5	48

TOTALS
51 45 96
OPTION ?1
UARIABLE?1
NUMBER OF VALUES TO BE RECODED FOR UARIABLE I
RECODED NEW VALUE?1
OLD VALUE?
OLD VALUE?2
NUMBER OF VALUES TO BE RECODED FOR VARIABLE 1 ?1-2
RECODED NEW VALUE?2
OLD VALUE?3
OLD VALUE?4
NUMBER OF UALUES TO BE RECODED FOR VARIABLE 1
70
RANGE OF VAR. 1 ?1,2

VALUE	NO•
1	48
2	48

TOTAL }9
MEAN = 1.5
S.D. = . 5

```
```

OPTION ?
VARIABLE?1
NUMBER OF VALUES TO BE RECODED FOR VARIABLE 1 33
RECODED NEW UALUE?!
OLD VALUE?!
OLD VALUE?2
OLD VALUE?3
NUMBER OF VALUES TO BE RECODED FOR UARIABLE 1 ?1
RECODED NEW VALUE?2
OLD VALUE?4
NUMBER OF VALUES TO BE RECODED FOR VARIABLE 1 ?0
RANGE OF VAR. 1 ?1,2
VALUE NO.
1 72
TOTAL }9
NEAN = 1.3
S.D. = .4
OPTION 76
DONE

```
title:

\section*{DESCRIPTION:}

INSTRUCTIONS:

STOCK: Stock Market Simulation
STOCK
36331

This program simulates the stock market. Each student is given \(\$ 10,000\) with which he may buy and/or sell shares in five fictitious issues.

OBJECTIVES:
A. To give the student a simple understanding of the operations of the stock market.
B. To motivate the student to reinforce his basic arithmetic skills.
C. To give an example of the use of everyday mathematics and economics in everyday life.

PRELIMINARY PREPARATION:
A. Student - no special preparation
B. Materials - possibly graph paper

\section*{DISCUSSION:}

This program can be used as a good motivation device in the teaching of basic stock-market concepts, and the basic mathematical skills involved. The computer starts each student with \(\$ 10,000\), and allows him to buy and/or sell shares. Precautionary tests are included for the student who tries to purchase more shares than he has money for, or to sell more shares than he actually owns. The program continues for as many trading days as the student desires.

The stock values rise and fall on a semi-random basis. On each trading day all stocks undergo a small random price change, a trend change (based on a random trend), and the possibility--on a random basis--of a large price change. The structure of the formula is:
new price=old price + (trend \(x\) old price) + (small random price change) + (poss-
ible large price change)
The trend is a random number between -.1 and +.1 . It remains constant for a random number of days, at which time the trend is changed randomly. The trend affects all stocks equally, and attempts to simulate general market trends. The small random change ranges between -3 and +3 points. It occurs every day to every stock. The possible large price change is either +10 or -10 points. The + and - changes each occur at random day intervals, and to random stocks. That is, there may be no large change on some trading days, only a +10 change on others, a -10 change on still others, and both large and small changes on others. In all large-change cases, the change affects only one random stock when it occurs.

Because of the random generation of stock values and their fluctuations, the program does not exactly simulate the real market. It does, however, provide a simplified view of what does happen, and familiarizes the student with the basic functions involved. This should be explained to the students, along with some real causes of stock-market fluctuations.

Graph paper might be used to plot the daily stock values and the exchange average. In this way, the trend will become evident.

RUN
RUN
STOCK
THE STOCK MARKET
DO YOU WANT THE INSTRUCTIONS (YES-TYPE 1, NO-TYPE ©)?!

THIS PROGRAM PLAYS THE STOCK MARKET. YOU WILL BE GIVEN \(\$ 10,000\) AND MAY BUY.OR SELL STOCKS. THE STOCK PRICES WILL BE GENERATED RANDOMLY AND THEREFORE THIS MODEL DOES NOT REPRESENT EXACTLY WHAT HAPPENS ON THE EXCHANGE. A TABLE OF AVAILABLE STOCKS, THEIR PRICES, AND THE NUMBER OF SHARES IN YOUR PORTFOLIO WILL BE PRINTED. FOLLOWING THIS, THE INITIALS OF EACH STOCK WILL BE PRINTED WITH A QUESTION MARK. HERE YOU INDICATE A TRANSACTION. TO BUY A STOCK TYPE + NNN, TO SELL A STOCK TYPE -NNN, WHERE NNN IS THE NUMBER OF SHARES. A BROKERAGE FEE OF 1\% WILL BE CHARGED ON ALL TRANSACTIONS - NOTE THAT IF A STOCK'S VALUE DROPS TO ZERO IT MAY REBOUND TO A POSITIUE VALUE AGAIN. YOU HAVE \(\$ 10,000\) TO INVEST. USE INTEGERS FOR ALL YOUR INPUTS. (NOTE: TO GET A 'FEEL' FOR THE MARKET RUN FOR AT LEAST 10 DAYS)
-----GOOD LUCK!-----


```

TOTAL STOCK ASSETS ARE \$ 4805
TOTAL CASH ASSETS ARE S 5386.82
TOTAL ASSETS ARE S 10191.8
DO YOU WISH TO CONTINUE (YES-TYPE 1, NO-TYPE G)?!
WHAT IS YOUR TRANSACTION IN
IBM?-10
RCA? +5
LBJ?-5
ABC ?0
CBS?0

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline STOCK & & PRICE/SHARE & HOLDINGS & VALUE & & NET CHANGE \\
\hline IBM & & 106.25 & 0 & 0 & & 6.25 \\
\hline RCA & & 91 & 20 & 1820 & & 5.75 \\
\hline LBJ & & 162.5 & 0 & 0 & & 5.25 \\
\hline ABC & & 145.25 & 5 & 726.25 & & 4.25 \\
\hline CBS & & 105.75 & 10 & 1057.5 & & 2.25 \\
\hline NEW YORK & STOCK & EXChange ave & E: 122. & NET & CHANGE: & 4.75 \\
\hline
\end{tabular}
```

TOTAL STOCK ASSETS ARE
s 3603.75
TOTAL CASH ASSETS ARE
S 6724.69
TOTAL ASSETS ARE \$ 10.328.4
DO YOU WISH TO CONTINUE (YES-TYPE 1. NO-TYPE 0)?I
WHAT IS YOUR TRANSACTION IN
IBM?G
RCA ? +5
LBJ? +16
ABC?B
CBS?+10
*********** END OF DAY'S TRADING

```


\begin{tabular}{lll}
TOTAL STOCK ASSETS ARE & \(\$ 7336.25\) \\
TOTAL CASH ASSETS ARE & \(\$ 3555.81\) \\
TOTAL ASSETS ARE & \(\$ 18892.1\)
\end{tabular}
DO YOU WISH TO CONTINUE (YES-TYPE 1, NO-TYPE G)?1
WHAT IS YOUR TRANSACTION IN
IBM? 0
RCA? +5
LBJ? 0
\(A B C\) ? +5
CBS? 0
\begin{tabular}{lcccc}
STOCK & PRICE/SHARE & HOLDINGS & VALUE & NET CHANGE \\
IBM & 111.25 & 0 & 0 & 2 \\
RCA & 99 & 30 & 2970 & 2 \\
LBJ & 184.75 & 10 & 1847.5 & 6.5 \\
ABC & 170.75 & 16 & 1767.5 & 3 \\
CBS & 106.75 & 20 & 2135 & -7.75
\end{tabular}
```

NEW YORK STOCK EXCHANGE AVERAGE: 134.5 NET CHANGE: 1.15

```
```

TOTAL STOCK ASSETS ARE S 8660
TOTAL CASH ASSE-5 ARE S 2218.82
TOTAL ASSETS ARE S 10878.8
DO YOU WISH TO CONTINUE (YES-TYPE 1, NO-TYPE 0)?!
WHAT IS YOUR TRANSACTION IN
IBM?O
RCA?0
LBJ?%
ABC ?O
CBS?-20

```
********** END OF DAY'S TRADING
\begin{tabular}{llllc}
STOCK & PRICE/SHARE & HOLDINGS & VALUE & NET CHANGE \\
IBM & 118.75 & 0 & 0 & 7.5 \\
RCA & 101.75 & 30 & 3052.5 & 2.75 \\
LBJ & 195 & 10 & 1950 & 10.25 \\
ABC & 166.25 & 10 & 1662.5 & -4.5 \\
CBS & 113.5 & 0 & 0 & 6.75 \\
& & & & \\
NEW YORK STOCK EXCHANGE AUERAGE: & 139.05 & NET CHANGE: & 4.55
\end{tabular}
\begin{tabular}{ll}
TOTAL STOCK ASSETS ARE & \(\$ 6665\) \\
TOTAL CASH ASSETS ARE & \(\$ 4332.47\) \\
TOTAL ASSETS ARE & \(\$ 10997.5\)
\end{tabular}
DO YOU WISH TO CONTINUE (YES-TYPE 1, NO-TYPE ©)? 1
WHAT IS YOUR TRANSACTION IN
1BM? + 5
RCA? 0
LBJ? 0
ABC? 0
CBS?O
\(* * * * * * * * * *\) END OF DAY'S TRADING
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline STOCK & & PRICE/SHARE & HOLDINGS & UALUE & & NET CHANGE \\
\hline IBM & & 122.25 & 5 & 611.25 & & 3.5 \\
\hline RCA & & 117 & 30 & 3510 & & 15.25 \\
\hline LBJ & & 206.25 & 10 & 2062.5 & & 11.25 \\
\hline ABC & & 172.25 & 10 & 1722.5 & & 6 \\
\hline CBS & & 121.25 & 0 & 0 & & 7.75 \\
\hline NEW YORK & STOCK & EXCHANGE AUER & GE: 147.8 & NET & Change: & 8.75 \\
\hline
\end{tabular}
```

TOTAL STOCK ASSETS ARE \$ 7906.25
TOTAL CASH ASSETS ARE \$ 3732.78
TOTAL ASSETS ARE S 11639.
DO YOU WISH TO CONTINUE (YES-TYPE 1, NO-TYPE 0)?!
WHAT IS YOUR TRANSACTION IN
IBM?0
RCA?-20
LBJ?\emptyset
ABC?0
CBS?+10

```
\begin{tabular}{llllc}
STOCK & PRICE/SHARE & HOLDINGS & VALUE & NET CMANGE \\
IBM & 130.75 & 5 & 653.75 & 8.5 \\
RCA & 120.5 & 10 & 1205 & 3.5 \\
LBJ & 215.75 & 10 & 2157.5 & 9.5 \\
ABC & 184 & 10 & 1840 & 11.75 \\
CBS & 128.75 & 10 & 1287.5 & 7.5
\end{tabular}

NEW YORK STOCK EXCHANGE AVERAGE: 164.95 NET CHANGE: 9
```

TOTAL STOCK ASSETS ARE \$ 7555
TOTAL CASH ASSETS ARE \$ 4824.75
TOTAL ASSETS ARE S 12379.7
DO YOU WISH TO CONTINUE (YES-TYPE 1, NO-TYPE O)?I
WHAT IS YOUR TRANSACTION IN
IBM?O
RCA ?0
LBJ?G
ABC76
CBS?0
*********** END OF DAY'S TRADING

```

\begin{tabular}{ll}
TOTAL STOCK ASSETS ARE & \(\$ 8111.25\) \\
TOTAL CASH.ASSETS ARE & \(\$ 4824.75\) \\
TOTAL ASSETS ARE & \(\$ 12936\)
\end{tabular}
DO YOU WISH TO CONTINUE (YES-TYPE 1, NO-TYPE O)?1
WHAT IS YOUR TRANSACTION IN
IBM? 0
RCA? 6
LBJ? \({ }^{\circ}\)
ABC? \({ }^{\circ}\)
CBS? \({ }^{\circ}\)
\begin{tabular}{llllc}
STOCK & PRICE/SHARE & HOLDINGS & VALUE & NET CHANGE \\
IBM & 150.75 & 5 & 753.75 & 5 \\
RCA & 149 & 10 & 1490 & 4 \\
LBJ & 241.75 & 10 & 2417.5 & 0 \\
ABC & 212.75 & 10 & 2127.5 & 7.5 \\
CBS & 150.25 & 10 & 1502.5 & 4
\end{tabular}

NEW YORK STOCK EXCHANGE AVERAGE: 180.9 NET CHANGE: 4.1

TOTAL STOCK ASSETS ARE \(\$ 6035\)
TOTAL CASH ASSETS ARE \$ 7218.07
TOTAL ASSETS ARE S 13253.1
DO YOU WISH TO CONTINUE (YES-TYPE 1, NO-TYPE 6)?
WHAT IS YOUR TRANSACTION IN
IBM? 0
RCA? 0
LBJ?日
ABC? 0
CBS?-10

STOCK, page 8
\begin{tabular}{lllll}
STOCK & PRICE/SHARE & HOLDINGS & VALUE & NET CHANGE \\
IBM & 173.75 & 5 & 868.75 & 4 \\
RCA & 185 & 10 & 1859 & 13 \\
LBJ & 283.25 & 10 & 2832.5 & 8.5 \\
ABC & 252.5 & 6 & 6 & 6.25 \\
CBS & 173.5 & 0 & 0 & 3.25
\end{tabular}

NEW YORK STOCK EXCHANGE AUERAGE: 213.6 NET CHANGE: 7

\begin{tabular}{ll}
TOTAL STOCK ASSETS ARE & \(\$ 5462.5\) \\
TOTAL CASH ASSETS ARE & \(\$ 7488.61\) \\
TOTAL ASSETS ARE & \(\$ 12950.5\)
\end{tabular}
DO YOU WISH TO CONTINUE (YES-TYPE 1, NO-TYPE ©)?I
WHAT IS YOUR TRANSACTION IN
1BMP-5
RCA?-15
LBJ?-10
ABC? \({ }^{\circ}\)
CBS? 8
\begin{tabular}{lllll}
STOCK & PRICE/SHARE & HOLDINGS & VALUE & NET CHANGE \\
IBM & 143 & 6 & 6 & -10.75 \\
RCA & 139.25 & 0 & 0 & -17.5 \\
LBJ & 215.25 & 0 & 6 & -19 \\
ABC & 260 & 0 & 0 & -17.75 \\
CBS & 121.5 & 0 & 0 & -11.5
\end{tabular}
NEU YORK STOCK EXCHANGE AVERAGE: 163.8 NET CHANGE: -15.3
```

TOTAL STOCK ASSETS ARE S g
TOTAL CASH ASSETS ARE s 12895.9
TOTAL ASSETS ARE S 12895.9
DO YOU WISK TO CONTINUE (YES-TYPE 1, NO-TYPE E)?I
WHAT IS YOUR TRANSACTION IN
IBMP0
RCA!g
L8J?8
ABC7%
CBS?g

```

\begin{tabular}{lcccc}
STOCK & PRICE/SHARE & HOLDINGS & VALUE & NET CHANGE \\
IBM & 127.75 & 0 & 6 & -15.25 \\
RCA & 123.75 & 6 & 0 & -15.5 \\
LBJ & 195.75 & 6 & 0 & -19.5 \\
ABC & 182.75 & 0 & -17.25 \\
CBS & 116.25 & 0 & -11.25
\end{tabular}
NEU YORK STOCK EXCHANBE AVERAGE: 148.05 NET CHANGE; -15.75
```

TOTAL STOCK ASSETS ARE S G
TOTAL CASH ASSETS ARE \$ 12895.9
TOTAL ASSETS ARE s 12895.9
DO YOU WISH TO CONTINUE (YES-TYPE 1, NO-TYPE 0)?1
WHAT IS YOUR TRANSACTION IN
IBMTG
RCA?G
LBJ?O
ABC?0
CBS?0
*********** END OF DAY'S TRADING

```


\begin{tabular}{llccc}
STOCK & PRICE/SHARE & HOLDINGS & VALUE & NET CHANGE \\
IBM & 87 & 0 & 0 & -6.25 \\
RCA & 97 & 0 & 0 & -7.75 \\
LBJ & 147 & 0 & 0 & -16 \\
ABC & 156.25 & 0 & 0 & -4.25 \\
CBS & 87.75 & 0 & 0 & -5.75 \\
\hline
\end{tabular}

NEW YORK STOCK EXCHANGE AVERAGE: 115 NET CHANGE: -8

\begin{tabular}{llccc}
STOCK & PRICE/SHARE & HOLDINGS & VALUE & NET CHANGE \\
IBM & 84.25 & 0 & 6 & -2.75 \\
RCA & 94.25 & 0 & 0 & -2.75 \\
LBJ & 148.75 & 0 & 0 & 1.75 \\
ABC & 157.25 & 0 & 0 & 1 \\
CBS & 84.75 & 0 & 0 & -3
\end{tabular}
NEW YORK STOCK EXCHANGE AVERAGE: 113.85 NET CHANGE: - 1.15
```

TOTAL STOCK ASSETS ARE \$ Ø
TOTAL CASH ASSETS ARE \$ 12895.9
TOTAL ASSETS ARE \$ 12895.9
DO YOU WISH TO CONTINUE (YES-TYPE 1, NO-TYPE ©)?1
WHAT IS YOUR TRANSACTION IN
1BM?16
RCA?10
LBJ?10
ABC ? 10
CBS?10

```
\begin{tabular}{lllll}
STOCK & PRICE/SHARE & HOLDINGS & VALUE & NET CHANGE \\
IBM & 84.75 & 10 & 847.5 & -5 \\
RCA & & 93 & 10 & 938 \\
LBJ & 149.5 & 16 & 1495 & -1.25 \\
ABC & & 155.75 & 16 & .75 \\
CBS & & 86.25 & 16 & 1557.5 \\
\hline
\end{tabular}

NEW YORK STOCK EXCHANGE AVERAGE: 113.85 NET CHANGE:
\begin{tabular}{lll}
TOTAL STOCK ASSETS ARE & \(\$ 5692.5\) \\
TOTAL CASH ASSETS ARE & \(\$ 7146.45\) \\
TOTAL ASSETS ARE & \(\$ 12838.9\)
\end{tabular}

DO YOU WISH TO CONTINUE (YES-TYPE 1, NO-TYPE G)?I WHAT IS YOUR TRANSACTION IN
IBM? 0
RCA? \({ }^{0}\)
LBJ? 0
ABC? 0
CBST0
********** END OF DAY'S TRADING
\begin{tabular}{|c|c|c|c|c|}
\hline STOCK & PRICE/SHARE & HOLDINGS & VALUE & NET CHANGE \\
\hline IBM & 84.75 & 10 & 847.5 & 6 \\
\hline RCA & 89 & 10 & 896 & -4 \\
\hline LBJ & 137.5 & 10 & 1375 & -12 \\
\hline ABC & 151.25 & 10 & 1512.5 & -4.5 \\
\hline CBS & 86 & 10 & 860 & -. 25 \\
\hline NEW YORK STOCK & EXCHANGE AVE & E: 109.7 & NET CHANGE: & -4.15 \\
\hline \multicolumn{5}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{lll}
TOTAL STOCK ASSETS ARE & \(\$ 5485\) \\
TOTAL CASH ASSETS ARE & \(\$ 7146.45\) \\
TOTAL ASSETS ARE & \(\$ 12631.4\)
\end{tabular}}} \\
\hline & & & & \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{DO YOU WISH TO CONTINUE (YES-TYPE 1, NO-TYPE G)?
? 1 I} \\
\hline \multicolumn{5}{|l|}{WHAT IS YOUR TRANSACTION IN
IBM?} \\
\hline \multicolumn{5}{|l|}{RCA? \({ }^{\text {d }}\)} \\
\hline \multicolumn{5}{|l|}{LBJ?0} \\
\hline \multicolumn{5}{|l|}{ABC? 0} \\
\hline \multicolumn{5}{|l|}{CBS? 0} \\
\hline \multicolumn{5}{|l|}{********** END OF DAY'S TRADING} \\
\hline STOCK & PRICE/SHARE & HOLDINGS & VALUE & NET CHANGE \\
\hline IBM & 84.75 & 10 & 847.5 & 6 \\
\hline RCA & 88.25 & 10 & 882.5 & -. 75 \\
\hline LBJ & 135.5 & 10 & 1355 & -2 \\
\hline ABC & 148.5 & 10 & 1485 & -2.75 \\
\hline CBS & 84 & 10 & 846 & -2 \\
\hline NEW YORK STOCK & exchange aver & E: 108.2 & NET CHANGE: & -1.5 \\
\hline
\end{tabular}
\begin{tabular}{ll}
TOTAL STOCK ASSETS ARE & \(\$ 5410\) \\
TOTAL CASH ASSETS ARE & \(\$ 7146.45\) \\
TOTAL ASSETS ARE & \(\$ 12556.4\)
\end{tabular}

DO YOU WISH TO CONTINUE (YES-TYPE 1, NO-TYPE 6)?1
WHAT IS YOUR TRANSACTION IN
IBM? 6
RCA? 0
LBJ? 0
ABC? 0
CBS? 0

\begin{tabular}{llccc}
STOCK & PRICE/SHARE & HOLDINGS & VALUE & NET CHANGE \\
IBM & 86.75 & 10 & 867.5 & 1.25 \\
RCA & 89 & 10 & 890 & 0 \\
LBJ & 159.25 & 10 & 1292.5 & -5 \\
ABC & 84.5 & 10 & 1565 & -.75 \\
CBS & & 10 & 845 & -2 \\
& & & & \\
NEW YORK STOCK EXCHANGE AVERAGE: & 109.2 & NET CHANGE: & -1.3
\end{tabular}
```

TOTAL STOCK ASSETS ARE \& 5460
TOTAL CASH ASSETS ARE \$ 7146.45
TOTAL ASSETS ARE \$ 12606.4
DO YOU WISH TO CONTINUE (YES-TYPE 1, NO-TYPE 0)?1
WHAT IS YOUR TRANSACTION IN
IBM?g
RCA10
LBJ?8
ABC ? }
CBS?0

```
*********** END OF DAY'S TRADING
\begin{tabular}{llllc}
STOCK & PRICE/SHARE & HOLDINGS & UALUE & NET CHANGE \\
IBM & 87.5 & 10 & 875 & -75 \\
RCA & 79.5 & 10 & 795 & -9.5 \\
LBS & 129 & 10 & 1290 & -.25 \\
ABC & 157.75 & 10 & 1577.5 & 1.25 \\
CBS & 81.75 & 10 & 817.5 & -2.75
\end{tabular}

NEW YORK STOCK EXCHANGE AVERAGE: 107.1 NET CHANGE: -2.1
```

TOTAL STOCK ASSETS ARE \$ 5355
TOTAL CASH ASSETS ARE \& 7146.45
TOTAL ASSETS ARE \$ 12501.4
DO YOU WISH TO CONTINUE (YES-TYPE 1, NO-TYPE G)?1
WHAT IS YOUR TRANSACTION IN
IBM?O
RCA?O
LBJ?0
ABC?%
CBS?8

```

\begin{tabular}{llccc}
STOCK & PRICE/SHARE & HOLDINGS & UALUE & NET CHANGE \\
IBM & 79.5 & 10 & 795 & -3.25 \\
RCA & 78.75 & 10 & 787.5 & -.5 \\
LBJ & 127.5 & 10 & 1275 & -6.75 \\
ABC & 138.25 & 10 & 1382.5 & -6 \\
CBS & 78 & 10 & 780 & -1.75 \\
& & & & \\
& & & & \\
NEW YORK STOCK EXCHANGE AUERAGE: & 180.4 & NET CHANGE: & -3.65
\end{tabular}
\begin{tabular}{ll}
TOTAL STOCK ASSETS ARE & \(\$ 5020\) \\
TOTAL CASH ASSETS ARE & \(\$ 7146.45\) \\
TOTAL ASSETS ARE & \(\$ 12166.4\)
\end{tabular}
AL ASSETS ARE
DO YOU UISH TO CONTINUE (YES-TYPE 1, NO-TYPE O)?1
WHAT IS YOUR TRANSACTION IN
IBMP日
RCA? 8
LBJ?0
ABC? 0
CB570
********** END OF DAY'S TRADING

\begin{tabular}{l|l}
TITLE: \\
DESCRIPTION: \\
INSTRUCTIONS: \\
AUTO PURCHASE AND MAINTENANCE SIMULATION \\
WHEELS simulation model is designed to provide students with a simulated \\
experience in purchasing and maintaining a car successfully for one year. \\
It may be used with an entire class, as an individual student assignment, \\
or an out-of-class activity. Experiences include the purchase of a car, \\
the selection of a method of financing, the choice of insurance, and a \\
provision for tracking expenses. The computer randomly assigns accidents, \\
major repairs, unexpected events and calculates expenses.
\end{tabular}
```

RUN
RUN
WHEELS
CODE? A
TYPE MONTH NUMBER i-12?1
WELCOME TO THE QUICKIE COMPUTEK CAR CHOOSING PARLOR
*****************************************************
SO YOU WANT TO BUY A CAR. WELL, MAYBE I CAN HELP YOU TO
MAKE A GOOD CHOICE.
DO YOU NEED INSTRUCTIONS? TYPE 1 FOR YES, G FOR NO.TI
YOU SHOULD HAVE BEEN GIVEN A ROLE NUMBER
FROM 1 TO 15 AND ALSO A CAR. DESCRIPTION
SHEET. WHEN I ASK YOU, ENTER YOUR ROLE
NUMBER FOLLOWED BY A COMMA AND THEN THE
CAR NUMBER OF YOUR CHOICE.
ENTER ROLE NUMBER, COMMA AND CAR CHOICE NOW. ?8,21
ROLE NUMBER 8 CAR NUMBER 21
REPORT FOR MONTH NUMBER I
YOU DROVE 997 MILES THIS MONTH.
RUNNING EXPENSES (GAS, OIL, WEAR, ETC.) AMOUNT TO S 72
MAJOR REPAIRS REPORT
***** ****************
NO MAJOR REPAIRS THIS MONTH.
ACCIDENT REPORT
********* *******
NO ACCIDENTS.THANK GOODNESS.
UNEXPECTED EVENTS
*********** *******
YOU HAVE ENCOUNTERED EVENT NUMBER..................... }2
CHECK TO SEE WHAT HAPPENED.
TRY HARDER NEXT MONTH. GOOD-BYE FOR NOW.
TYPE MONTH NUMBER 1-12?2
ENTER ROLE NUMBER, COMMA AND CAR CHOICE NOW. ?8,21
ROLE NUMBER 8 CAR NUMBER 21
REPORT FOR MONTH NUMBER 2
YOU DROVE 978 MILES THIS MONTH.
RUNNING EXPENSES (GAS, OIL, WEAR, ETC.) AMOUNT TO S 70
MAJOR REPAIRS REPORT
***** **************
NOTHING NEEDS FIXING. THINGS O.K. THIS MONTH.
ACCIDENT REPORT
******** *******
NO ACCIDENTS.THANK GOODNESS.
UNEXPECTED EVENTS
*********** *******
YOU HAVE ENCOUNTERED EVENT NUMBER.....................................
CHECK TO SEE WHAT HAPPENED.
TRY HARDER NEXT MONTH. GOOD-BYE FOR NOW.

```
```

TYPE MONTH NUMBER 1-1273
EMTER ROLE NUMBER, COMMA AND CAR CHOICE NOW. ?8,21
ROLE NUMBER 8 CAR NUMBER 2I
REPORT FOR MONTH NUMBER 3
YOU DROVE 830 MILES THIS MONTH.
RUNNING EXPENSES (GAS, OIL, WEAR, ETC.) AMOUNT TO S 60
MAJOR REPAIRS REPORT
***** ******* *******
TRANSMISSION ON BUM. BILL AMOUNTS TO S 182
ACCIDENT REPORT
******** ******
IT MUST BE YOUR CAREFUL DRIVING OR LUCK. NO ACCIDENTS.
UNEXPECTED EUENTS
***中******* \&******
NONE THIS MONTH
TRY HARDER NEXT MONTH. GOOD-BYE FOR NOW.

```
```

TYPE MONTH NUMBER 1-1274
ENTER ROLE NUMBER, COMMA AND CAR CHOICE NOW. ?8,21
ROLE NUMBER 8 CAR NUMBER 21
REPORT FOR MONTH NUMBER 4
YOU DROUE 835 MILES THIS MONTH.
RUNNING EXPENSES (GAS, OIL, WEAR, ETC.) AMOUNT TO S 60
MAJOR REPAIRS REPORT
***** ***************
NO MAJOR REPAIRS THIS MONTH.
ACCIDENT REPORT
********* *******
YOU HAD AN ACCIDENT WITH DAMAGE S 126
YOUR INSURANCE RATE GOES UP 25 PER CENT
UNEXPECTED EVENTS
********** *******
YOU HAVE ENCOUNTERED EVENT NUMBER.......................................
CHECK TO SEE WHAT HAPPENED.
TRY HARDER NEXT MONTH. GOOD-BYE FOR NOW.

```
TYPE MONTH NUMBER 1-12?
DONE
TITLE:
DESCRIPTION:
SNSTRUCTIONS:
There are 4 programs and 1 file in this package: TSAP, TSAPI, TSAP2,
TSAP3 and TSAPF.
These programs, all accessed through TSAP, allow students to do time series
analysis of a data base (TSAPF) which contains information on all the states
of the U.S.
```

RUN
RUN
TSAP
time SERIES aNALYSIS PaCkage
DO YOU NEED INSTRUCTIONS?YES
THIS PROGRAM ALLOWS YOU TO RETRIEVE AND/OR
aNALIZE DATA CONCERNING tHE U.S. FOR the period
1790 thRU 1860. THE DATA IS STORED INTERNALLY IN THE
COMPUTER.
let's imagine the file looks like the following outline:

1. US DATA
A. STATE (STATE)
1. GEORGIA
B. YEARS (YEARS)
1. 1790
C. total population (totpop)
1. 55 (IN 10\varnothing THOUSANDS)
D. NUMBER OF SLAVES (SLAVES)
1. 550 (IN 10 THOUSANDS)
E. NUMBER OF FREE BLACKS (BLACKS)
1. }66\mathrm{ (IN THOUSANDS)
F. PERCENTAGE OF POPULATION FOREIGN BORN (FORBOR)
1. © (1850-1860 ONLY)
G. percentage population living in Urban areas (UrbaN)
1. 10
H. AUERAGE ACRES PER FARM (FARMS)
1. ( (1850-1860 ONLY)

2. LAND SALES-PREUIOUS DECADE (LAND)

3. (1820-1860 ONLY)
J. MILES of RailROad (rails)
4. (1850-1860 ONLY)
K. value of MaNUFACTURING (MANFT)
5. (1810,1840,1850,1860)
L. VALUE OF IMPORTS (IMPORT)
M. VALUE OF EXPORTS (EXPORT)
N. PERCENT OF US TOBACCO PRODUCTION (TOBAC)
O. PERCENT OF US COTTON PRODUCTION (COTTON)
P. PERCENT OF US CORN PRODUCTION (CORN)
Q. SECTION OF COUNTRY (SECTN)
6. NORTH
7. SOUTH
```
THIS PARTICULAR OUTLINE REPRESENTS ONE RECORD - GEORGIA
IN THE YEAR 1790. THERE ARE RECORDS FOR GEORGIA FOR THE
YEARS 1790 THRU 1860, AS WELL AS RECORDS ON OTHER STATES
FOR THE SAME YEARS. THIS COLLECTION OF RECORDS MAKES UP
A FILE.
STATE, YEAR, SLAVES ARE WHAT IS KNOWN AS VARIABLES.
INSTEAD OF ALWAYS HAUING TO SPELL THEM OUT SUCH AS
'TOTAL POPULATION', I'LL MAKE IT EASY FOR YOU. YOU
CAN REFERENCE A VARIABLE BY USING 'TOTPOP' OR 'MANFT'.
THESE VARIABLE NAMES ARE INCLUDED IN THE PARENTHSES IN THE
ABOVE LIST. SO, WHENEVER YOU ARE ASKED FOR THE NAME
OF A UARIABLE, BE SURE TO RESPOND WITH ONE OF THOSE
LISTED ABOVE.
'DATA SELECTION CRITERION' ALLOWS YOU TO 'PINPOINT' THE
DATA YOU WISH TO ANALYZE. YOU HAVE THE CHOICE OF
SELECTING A PARTICULAR STATE, YEAR, OR SECTION OF THE
COUNTRY.
STATE=NEWJERSEY, YEARS=1820, SECTN=1ARE EXAMPLES OF HOW TO
ENTER YOUR DATA SELECTIONS. IF YOU WISH TO ANALYZE THE
ENTIRE FILE, SIMPLY TYPE IN NONE AS THE DATA SELECTION
CRITERION..
WE CAN ALSO PERFORM ONE 'MULTIPLE CRITERION' SELECTION.
YOU CAN SELECT ON SECTN AND YEARS IN ONE STATEMENT.
BUT IT MUST READ SECTN=? AND YEARS=???? IN PRECISELY
THAT ORDER AND FORMAT.

RETRIEVE PLOT CORRELATE MEAN AND QUIT TO STOP

COMMAND? QUIT
DONE
DONE
NOW I'LL LIST THE AVAILABLE COMMANDS.
THEY ARE:
TITLE:
DESCRIPTION:
INSTRUCTIONS:
CAI IN WORD USAGE
This package contains 4 CAI programs in English word usage. FLASH assists
in word recollection and splling; GROOT is a drill in the use of greek
roots; PREFIX is a drill in the use of prefixes; and VOCAB assists in
the learning of synonyms.

University of Lethbridge Alberta, Canada
```

VOCAB, Page 2

```

INSTRUCTIONS: Continued.

The program is ready to run with 18 prefixes. Present DATA statements run from statement 480 through to 550 in steps of 10 . More prefixes may be added between statements 550 and 9000 . Each prefix consists of two strings in DATA statements. The first string is the prefix and the second is the word or phrase which corresponds to or defines that prefix. For example,

480 DATA"PRE-","BEFORE"

\section*{VOCAB}

The sentence is given with one word marked. Then a list of words follows from which the user is required to pick a synonym to the marked word. The program is ready to run with 15 sentences. Present DATA statements run from statement 350 through to statement 790 in steps of 10 . More sentences may be added between statements 790 and 9000 . Each question consists of 3 strings and a number in DATA statements. The first two strings are the sentence (there must be two), the third string is the list of answers and the number is the number of the correct answer. For example,

350 DATA"WHEN THE NEWS CAME/RADIANT/"
360 DATA"FACES REPLACED GLOOMY ONES"
370 DATA"1 FROWNING 2 OVERHEATED 3 LONG 4 SHINING", 4

\section*{RUN}

RIIN
FLASH
```

WELCOME TO THE PROGRAM CALLED 'FLASH'. THIS PROGRAM IS DESIGNED
TO HELP WITH THE RECALL OF WORDS. A WORD WILL BE TYPED AND YOU
WILL BE CALLED IIPON TO TYPE BACK THAT WORD.
READY....
GEEMEETEBEEXEEX
WHAT WAS THE WORD?PRINCIPAL
CORRECT
ETBEESEEBEBEEBE
WHAT WAS THE WORD?IRRITATING
CORRECT
HEBEEEEEEEEEBE
WHAT WAS THE WORD?AFFECT
CORRECT
EEEEEEEEBEEEEEE
WHAT WAS THE WORD?ELICIT
CORRECT
GEmEEMEEGEEEESE
WHAT WAS THE WORD?CONTEMPTIBLE
CORRECT
ETHEESNBEEEEEES
WHAT WAS THE WORD?IMMIGRANT
CORRECT

```

```

WHAT WAS THE WORD?IMPLIED
CORRECT

```

```

WHAT WAS THE WORD?COMPLIMENTS
INCORRECT ... THE CORRECT ANSWER IS: COMPLEMENTS
EEMEEEEEEEEEEEE
WHAT WAS THE WORD?FEASIBLE
CORRECT

```
```

TESEETHESEESESE
WHAT WAS THE WORD?STATIONERY
CORRECT
EYEEEEKBEEEEEEE
WHAT WAS THE WORDTUENAL
CORRECT
G|EEEEEEEEEEESE
WHAT WAS THE WORD?VOCATION
CORRECT

```

```

WHAT WAS THE WORD?CREDIBLE
CORRECT
CHEEESEEEEEE5EB
WHAT WAS THE WORD?ADUISED
CORRECT
CTEEEEEEEEEEEEE
WHAT WAS THE WORD?INGENIOUS
CORRECT
BEEEEFEINEEEEEEE
WHAT WAS THE WORD?EXCEEDINGLY
CORRECT
GBEEEEEEEEXEEE
WHAT WAS THE WORD?ORDNANCE
INCORRECT ... THE CORRECT ANSWER IS: ORDINANCE
GEEMEESEEEEEEEE
WHAT WAS THE WORD?IININTERESTED
CORRECT
GETHEEEKEEKEEEE
WHAT WAS THE WORD?COIINSEL
CORRECT
\#BEEEEEKEEEEEEX
WHAT WAS THE WORD?PRACTICABLE
CORRECT
OIIT OF 20 YOU GOT 18 CORRECT.
THAT IS 90 PERCENT.
YOII GOT COMPLEMENTS INCORRECT.
YOII GOT ORDINANCE INCORRECT.
DONE

```
GET-GROOT
RIIN
GROOT
HI, I'M GLAD YOU LIKE THIS WAY OF LEARNING, TOO
WHAT \(1 S\) YOUR NAME ??SAM
THESE GREEK ROOTS ARE FOIIND IN MANY SCIENTIFIC TERMS.
YOU WILL BE ASKED TO GIVE A ONE WORD MEANING FOR EACH
ROOT. 10 POINTS FOR EACH CORRECT ANSWER. THE COMPITER
WILL KEEP SCORE. GOOD LUCK, SAM
ASTRON
AIJTOS
BIOS
CHRONOS
DECA
DEMOS
GE
GRAPHO
LITHOS
METRON
MONOS
ORTHOS
PHILOS
PHONE
POLYS
SCOPOS
TELE
THERMA
ZOON
ANTHROPOS
```

VOCAB, Page 4
WHICH PREFIX MEANS HEAT
?THERMA
VERY GOOD, YOITR ANSWER IS CORRECT, SAM
WHICH PREFIX MEANS WRITE
?PHILOS
SORRY, YOII MISSED THAT ONE, SAM, THE RIGHT ANSWER IS, GRAPHO
WHICH PREFIX MEANS TIME
?CHRONOS
UERY GOOD, YOIIR ANSWER IS CORRECT, SAM
WHICH PREFIX MEANS MEASURE
?METRON
VERY GOOD, YOIIR ANSWER IS CORRECT, SAM
WHICH PREFIX MEANS LIFE
?BIOS.
UERY GOOD, YOIIR ANSWER IS CORRECT, SAM
WHICH PREFIX MEANS ANIMAL
?ZOON
UERY GOOD, YOIIR ANSWER IS CORRECT, SAM
WHICH PREFIX MEANS SELF
?AUTOS
UERY GOOD, YOUR ANSWER IS CORRECT, SAM
WHICH PREFIX MEANS MANY
PPOLYS
UERY GOOD, YOUR ANSWER IS CORRECT, SAM
WHICH PREFIX MEANS STAR
?ASTRON
UERY GOOD, YOIIR ANSWER IS CORRECT, SAM
WHICH PREFIX MEANS PEOPLE
?ANTHROPOS
SORRY, YOH MISSED THAT ONE, SAM, THE RIGHT ANSWER IS, DEMOS
WHICH PREFIX MEANS TEN
PDECA
UERY GOOD, YOUR ANSWER IS CORRECT, SAM
WHICH PREFIX MEANS STGNE
?GE
SORRY, YOII MISSED THAT ONE, SAM, THE RIGHT ANSWER IS, LITHOS
WHICH PREFIX MEANS ONE
?MONOS
VERY GOOD, YOIJR ANSWER IS CORRECT, SAM
WHICH PREFIX MEANS SOUND
?PHONE
VERY GOOD, YOHR ANSWER IS CORRECT, SAM
WHICH PREFIX MEANS EARTH
?GE
UERY GOOD, YOUR ANSWER IS CORRECT, SAM
WHICH PREFIX MEANS FAR
?TELE
VERY GOOD, YOUR ANSWER IS CORRECT, SAM
WHICH PREFIX MEANS MAN
?PHILOS
WHICH PREFIX MEANS WATCHER
?SCOPOS
UERY GOOD, YOIJR ANSWER IS CORRECT, SAM
WHICH PREFIX MEANS RIGHT
?ORTHOS
UERY GOOD, YOUR ANSWER IS CORRECT, SAM
WHICH PREFIX MEANS LOUING
?PHILOS
VERY GOOD, YOUR ANSWER IS CORRECT, SAM
YOIJR SCORE IS 16 OIIT OF 20 CORRECT OR 80 %.
DONE

```
```

GET-PREFIX
RIIN
PREFIX
HI,I'M GLAD YOII LIKE THIS WAY OF LEARNING,TOO.
DID YOU KNOW THAT THE PREFIXES THAT YOU WILL LEARN IN
THIS PROGRAM WILL GIUE YOII KEYS TO UNLOCK THE MEANINGS
OF OVER 14,OOO COMMONLY IISED WORDS?
WHAT IS YOIIR FIRST NAME?
PKIMBERLY
IN THIS PROGRAM YOII WILL BE ASKED TO GIVE A ONE WORD
MEANING FOR EACH PREFIX THAT YOII ARE ASKED TO
DEFINE. YOI' WILL RECEIUE IO POINTS FOR EACH
CORRECT ANSWER. THE COMPIITER WILL KEEP SCORE.
GOOD LIICK,KIMHERLY
PRE -
DE-
MONO-
INTER-
UN-
RE-
TRANS -
PRO-
NON-
EPI-
MIS -
OB-
EX-
DIS-
IN-
COM-
SllB-
AD -
WHICH PREFIX MEANS AGAIN OR BACK
?RE
SOMRY, YOII MISSED THAT ONE, KIMBERLY, THE RIGHT ANSWER IS, RE-
WHICH PREFIX MEANS IIPON OR OUER
?COM-
SORRY, YOIJ MISSED THAT ONE, KIMBERLY, THE RIGHT ANSWER IS, EPI-
WHICH PREFIX MEANS DOWN
?DE-
VERY GOOD, YOUR ANSWER IS CORRECT, KIMBERLY
WHICH PREFIX MEANS TOGETHER OR WITH
TCOM-
UERY GOOD, YOUR ANSWER IS CORRECT, KIMBERLY
WHICH PREFIX MEANS BETWEEN
?INTER-
UERY GOOD, YOIIR ANSWER IS CORRECT, KIMBERLY
WHICH PREFIX MEANS APART OR NOT
?NON-
SORRY, YOIJ MISSED THAT ONE, KIMBERLY, THE RIGHT ANSWER IS, DIS-
WHICH PREFIX MEANS NOT OR ABSENSE OF SOMETHING
?NON-
UERY GOOD, YOUR ANSWER IS CORRECT, KIMBERLY
WHICH PREFIX MEANS ACROSS OR BEHIND
?TRANS-
VERY GOOD, YOUR ANSWER IS CORRECT, KIMBERLY
WHICH PREFIX MEANS BEHING OR AGAINST
?OB-
UERY GOOD, YOUR ANSWER IS CORRECT, KIMBERLY
WHICH PREFIX MEANS NOT OR INTENSIFIES A UERB
?UN-
UERY GOOD, YOUR ANSWER IS CORRECT, KIMBERLY
WHICH PREFIX MEANS BEFORE
?PRE-
VERY GOOD, YOUR ANSWER IS CORRECT, KIMBERLY
WHICH PREFIX MEANS OUT
?EX-
UERY GOOD, YOUR ANSWER IS CORRECT, KIMBERLY
WHICH PREFIX MEANS ONE
?MONO-
UERY GOOD, YOUR ANSWER IS CORRECT, KIMBERLY
WHICH PREFIX MEANS WRONG
?MIS-
UERY GOOD, YOIJR ANSWER IS CORRECT, KIMBERLY

```

Volab, Page 6
```

WHICH PREFIX MEANS IINDEH
?SUB-
UERY GOOD, YOUR ANSWER IS CORRECT, KIMBERLY
WHICH PREFIX MEANS INTO OR NOT
?IN-
UERY GOOD, YOUR ANSWER IS CORRECT, KIMBERLY
WHICH PREFIX MEANS IN FAVOR OF OR FORWARD
?PRO-
UERY GOOD, YOUR ANSWER IS CORRECT, KIMBERLY
WHICH PREFIX MEANS TO OR TOWARD
?AD-
VERY GOOD, YOUR ANSWER IS CORRECT, KIMBERLY
YOUR SCORE IS 15 OUT OF I8 WHICH IS 83.3333
YOU COULD PRACTICE A LITTLE MORE KIMBERLY
DONE

```
GET-VOCAB
RIIN
VOCAB
IN THIS EXCERCISE YOUI WILL FIRST BE GIVEN A SENTENCE WITH
ONE OF THE WORDS SEPARATED FROM THE REST BY / MARKS. AFTER
THAT YOU WILL BE GIUEN FOIIR WORDS. YOU ARE TO TYPE IN THE
NIMBER OF THE WORD THAT IS NEAREST IN MEANING TO THE WORD
IN THE SENTENCE.
A NEW SET OF SENTENCES WAS ENTERED INTO THE COMPIITER ON
TIUESDAY JIlLY 22, 1969
```

WHEN THE NEWS CAME / RADIANT /
FACES REPLACED GLOOMY ONES.
l FROWNING 2 OUERHEATED 3 LONG 4 SHINING
?4
CORRECT
/ COMPASSION / FOR THE LESS FORTIINATE IS
ONE MARK OF A GENTLEMAN.
1 ENUY 2 DISLIKE 3 SYMPATHY 4 SCORN
?3
CORRECT

```
SINCE THEY ALREADY OWNED TWO TELEVISION SETS, THE
SET THEY WON WAS / SIJPERFLIJOIIS /.
1 WELCOME 2 MORE THAN NEEDED 3 SUPERIOR 4 ESPECIALLY NEEDED
? 2
CORRECT
SHE POSSESSED MANY QUALITIES / RERUISITE /
FOR LEADERSHIP.
1 USELESS 2 HARMFUL 3 NOT IMPORTANT 4 NECESSARY
? 4
CORRECT
 THE / PLAINTIUE / BARKING OF A HOMELESS
DOG MADE THE CHILDREN UNHAPPY/
1 STACCATO 2 LOUD 3 HIGH-PITCHED 4 MOURNFIL
14
CORRECT
he was So / VOLUBLE / THAT HIS SPEECH
RAN BEYOND THE ALLOTTED TIME.
1 TALKATIUE 2 BRIEF 3 INTERESTING 4 UPSET
? 1
CORRECT
```

IN THE WINTER SHE WAS ENERGETIC, BUT IN
AIIGISST SHE WAS / INDOLENT/ .
I OUERHEATED }2\mathrm{ LAZY }3\mathrm{ EAGER 4 DEPRESSED
?2
CORRECT
WHEN THE SENATOR MISPLACED HIS SPEECH, HE
HAD TO / IMPROUISE / HIS TALK.
1 CANCEL 2 CUT SHORT 3 MAKE UP ON SPIJR OF THE MOMENT
?3
CORRECT
HIS REASONING WAS SO / FALLACIOIIS /
THAT HIS CONCLIISIONS WERE ALWAYS WRONG.
1 UNSOUND 2 UNINTERESTING 3 ACIITE 4 SKILLFUL
?1
CORRECT
THE ECONOMIC INDEPENDENCE THEY NOW ENJOY IS
THE RESULT OF A LIFE OF / FRUGALITY /.
1 WASTE 2 THRIFT }3\mathrm{ ENJOYMENT 4 PURPOSE
?2
CORRECT
DRIUING SIJCH A BIG CAR GIVES HIM A CHANCE
TO BE / PRETENTIOUS /.
1 SHOWY 2 SPEEDY }3\mathrm{ HIIMBLE }4\mathrm{ PRACTICAL
?1
CORRECT
BEING HIIMAN, WE MAY
BE / FALLIBLE / IN OUR JIIDGMENTS.
1 CORRECT 2 SUPERNATURAL 3 LIKELY TO ERR 4 FAIR
?3
CORRECT
HE HAD BECOME SO / OBESE / THAT HE COULD NOT
BEND DOWN TO TIE HIS SHOES.
l LAZY 2 STIFF 3 FAT 4 TALL
?3
CORRECT
MEMBERS OF THE BASEBALL TEAM CARRIED SO MUCH/IMPEDIMENTA /WITH
THEM THAT WE THOUGHT THEY WERE GOING FOR A MONTH TOUR.
1 MONEY 2 CORRESPONDENCE }3\mathrm{ FOOD 4 BAGGAGE
?4
CORRECT
EVEN BEFORE HE RECEIVED NEWS OF THE ACCIDENT, HE HAD A
/PREMONITION/THAT SOMETHING WOULD HAPPEN.
1 PROMISE 2 HOPE 3 FOREWARNING 4 LETTER
P
CORRECT
YOU GOT 15 OUT OF 15 FOR 100 %.
CONGRATULATIONS, YOU GOT THEM ALL CORRECT.
DONE

```
\begin{tabular}{|c|c|}
\hline TITLE: & COMPUTER-ASSISTED REVIEW LESSONS ON SYNTAX FOR SPANISH II CARLOS \\
\hline DESCRIPTION: & CARLOS (Computer-Assisted Review Lessons On Syntax) was conceived and developed at Dartmouth ColTege by Dr. Robērt C. Turner under an NSF grant during the school year 1967-1968, and was updated during the spring of 1970 at Dartmouth College. The data base was implemented on the HP 2000C in March 1971. These are written grammar drill lessons for Spanish II. Ideally a student may use CARLOS any time in the school year for the preparation of an assignment, for extra curricular review, for final examination, or for review during higher-level Spanish Courses where he is expected to have already mastered the material. The student may repeatedly write the same drills until he has mastered the materials without needing to feel that he is bothering his instructor with "stupid mistakes", which may occur because of a shallow or too distant background. Any mistakes the student makes are entirely private and, of course, are instantly corrected for him. \\
\hline INSTRUCTIONS: & \begin{tabular}{l}
1. GET-\$CARLOS \\
2. RUN \\
3. The user will answer the questions which are presented to him on the terminal.
\end{tabular} \\
\hline
\end{tabular}

\section*{SPECIAL} CONSIDERATIONS:

Turner, Ronald C., CARLOS: CAI in Spanish at Dartmouth College, Dartmouth College, Hanover, N.H., 1968

The data base is contained in the file, CAR1, on the system library. It contains a directory and 15 lessons.
TITLE:
DESCRIPTION:
INSTRUCTIONS:
To be used in high school accounting I or bookkeeping courses.
Topics: Complete Accounting Cycle
Payroll
Bank Reconcilliation
Declining Balance \(\quad\)\begin{tabular}{l}
COMPUTER ORIENTED ACCOUNTING - INTERACTIVE VERSION
\end{tabular}
in journal form. If there are adjusting or closing entries, the student is asked to enter them and they, in turn, are checked and listed. Totals of the debit and credit sides of the journal are checked for balance, and in problems 1-3 of Chapters 4-9 and all problems in Chapter 13, the exact values required are checked. Since problem 4 in each of Chapters 4-9 uses student designed data, a check is only made to see if the totals balance.

Usually the computer then asks if the student is ready for the \(T\) accounts to \(t \in\) listed. The student types 'GC". Finally, the same "GO" response is requested for either a worksheet, balance sheet, trial balance, income statement, or post closing trial balance, depending upon the problem and chapter. As before, the totals are checked for balance and exactness. Should they not balance, or the totals not agree with those listed in the computer's memory for that problem, the computer asks the student if he would like to correct them. This is a painless procedure because the computer simply relists the original transaction data, one entry at a time, and asks if it is correct. When all necessary corrections have been made, the Computer re-runs the data.

When the problem is complete, the student can either stop, reuse his data in another problem, or do a completely new problem.

Problems in Chapter 3 are checked for balance only. Chapters 10-12 have extensive error checking for problems ? and 2 and only limited checking for problem 3.
```

RUN
RUN
ATG
ATG ? SELECTION PROGRAM
PLEASE TELL ME WHICH PROGRAM NUMBER (3-13) YOU WISH TO USE ?3
THANKYOU, YOU WILL BE USING PROGRAM ATG 3
IS THIS A SECOND RUN FOR YOUR TRANSACTION DATA (Y/N) ?N

```

COMPUTER ORIENTED ACCOUNTING
```

STUDENT NAME PLEASE ?LARRY PAGE
DATE PLEASE ?OCTOBER 12,1974
EXERCISE X-X PLEASE ?3-1
TRANSACTION DATA
COMPANY NAME ?HARRI SON RADIO AND TV SALES
DATE OF ACCOUNTING PERIOD ?AUGUST 31, 1974
CASH ?4050
SUPPLIES ?810
TELEUISIONS ?4400
RADIOS ?2740
BOWMAN RADIO CO. ?3560
CAPITAL ?8440
STUDENT NAME - LARRY PAGE
EXERCISE - 3-1
DATE - OCTOBER 12,1974

```
HARRI SON RADIO AND TU SALES

BALANCE SHEET
AUGUST 31, 1974

```

ATG ? SELECTION PROGRAM
PLEASE TELL ME WHICH PROGRAM NUMBER (3-13) YOU WISH TO USE ?4
THANKYOU, YOU WILL BE USING PROGRAM ATG 4
IS THIS A SECOND RUN FOR YOUR TRANSACTION DATA (Y/N) ?N
COMPUTER ORIENTED ACCOUNTING
STUDENT NAME PLEASE ?LARRY PAGE
DATE PLEASE ?OCTOBER 12, 1974
EXERCISE X-X PLEASE ?4-1
TRANSACTION DATA
COMPANY NAME ?ALLI SON'S BICYCLE REPAIR
DATE OF ACCOUNTING PERIOD ?SEPTEMBER 30, 1974
WHICH PROBLEM IS THIS ?I
HOW MANY TRANSACTION ENTRIES DO YOU HAVE ?10.
DEBIT ENTRY %
ACCOUNT NUMBER ?!
AMOUNT ?5600
ACCOUNT NAME - CASH AMOUNT = 5600
ARE THEY CORRECT (Y/N) ?Y
CREDIT ENTRY !
ACCOUNT NUMBER ? 34
AMOUNT ?5600
ACCOUNT N4 NAME - CAPITAL AMOUNT = 5600
ARE THEY CORRECT (Y/N) ?Y
DEBIT ENTRY 2
ACCOUNT NUMBER ?325
***** ERROR - ACCOUNT NUMBER IS GREATER THAN 80 *****
ACCOUNT NUMBER ?9
AMOUNT ?325
ACCOUNT N NAME - SUPPLIES AMOUNT = 325
ARE THEY CORRECT (Y/N) ?Y
CREDIT ENTRY %
ACCOUNT NUMBER ?2
AMOUNT ?326
ACCOUNT NAME - CASH AMOUNT = 326
ARE THEY CORRECT (Y/N) ?Y
***** ERROR - DEBIT AND CREDIT AMOUNTS ARE NOT E|UAL TO EACH OTHER *****
DEBIT ENTRY 2
ACCOUNT NUMBER ?9
AMOUNT ?325
ACCOUNT % NAME - SUPPLIES AMOUNT = 325
ARE THEY CORRECT (Y/N) ?Y
CREDIT ENTRY * 2
ACCOUNT NUMBER ?2.
AMOUNT ?325
ACCOUNT NAME - CASH AMOUNT = 325
ARE THEY CORRECT (Y/N) ?Y
DEBIT ENTRY * 3
ACCOUNT NUMBER ? 15
AMOUNT ?100
ACCOUNT 15 NAME - EAUIPMENT AMOUNT = 100
ARE THEY CORRECT (Y/N) ?N
LET'S TRY AGAIN !
ACCOUNT NUMBER ?15
AMOUNT ?|0øø

```
```

ACCOUNT N 15 NAME - EQUIPMENT AMOUNT = 1000
ARE THEY CORRECT (Y/N) ?Y
CREDIT ENTRY \# 3
ACCOUNT NUMBER ?28
AMOUNT ?1000
ACCOUNT * 28 NAME - ACCOUNTS PAYABLE AMOUNT = 1000
ARE THEY CORRECT (Y/N) ?Y
DEBIT ENTRY 4
ACCOUNT NUMBER ?!
AMOUNT ?:100
ACCOUNT NAME - CASH AMOUNT = 100
ARE THEY CORRECT (Y/N) ?Y
CREDIT ENTRY * 4
ACCOUNT NUMBER ?16
AMOUNT ?100
ACCOUNT * 16 NAME - EQUIPMENT AMOUNT = 100
ARE THEY CORRECT (Y/N) ?Y
DEBIT ENTRY * 5
ACCOUNT NUMBER ?15
AMOUNT ? 1200
ACCOUNT N 15 NAME - EQUIPMENT AMOUNT = 1200
ARE THEY CORRECT (Y/N) ?Y
CREDIT ENTRY 5
ACCOUNT NUMBER ?2
AMOUNT ? 120日
ACCOUNT N NAME - CASH AMOUNT = 1200
ARE THEY CORRECT (Y/N) ?Y
STUDENT NAME - LARRY PAGE
EXERCISE - 4-1
DATE - OCTOBER 12, 1974

```
 ALLISON'S BICYCLE REPAIR
 JOURNAL OF FINANCIAL TRANSACTIONS
 SEPTEMBER 30, 1974
\begin{tabular}{|c|c|c|}
\hline NAME OF ACCOUNT & DEBIT & CREDI T \\
\hline CASH & 5600 & \\
\hline CAPITAL & & 5600 \\
\hline SUPPLIES & 325 & \\
\hline CASH & & 325 \\
\hline EQUI PMENT & 1000 & \\
\hline ACCOUNTS PAYABLE & & 1000 \\
\hline CASH & 100 & \\
\hline EQUI PMENT & & 100 \\
\hline EQUIPMENT & 1280 & \\
\hline CASH & & 1200 \\
\hline TOTALS FOR THIS DATE & 8225 & 8225 \\
\hline
\end{tabular}
HA! YOUR JOURNAL BALANCES ****
WHEN YOU ARE READY FOR THE 'T ACCOUNTS', TYPE GO ?GO
```

            ALLISON'S BICYCLE REPAIR
    DEBITS AND CREDITS BY ACCOUNT
    SEPTEMBER 30, 1974
    CASH
        5600 I
        100
        325
        1200
    SUPPPLIES
        325
        I
    EQUIPMENT
    -----.------------------------------------
1000 I
1200 I
ACCOUNTS PAYABLE
---------------------------------------
I 1000
CAPI TAL
--------------------------------------
I 5600
WHEN YOU ARE READY FOR THE BALANCE SHEET, TYPE GO ?GO
ALLISON'S BICYCLE REPAIR
BALANCE SHEET
SEPTEMBER 30, 1974
ASSETS
CASH 4175
SUPPLIES 325
EQUIPMENT 2100
TOTAL 6600

```

\section*{LIABILITIES}
```

ACCOUNTS PAYABLE	1000
TOTAL	1000
CAPI TAL	
CAPITAL	5600
TOTAL	5600
TOTAL LIABILITIES AND CAPITAL	6600

```
```

*** CONGRATLATIONS - PROBLEM * 1 IS TOTALLY CORRECT *\#\#\#

```
```

DO YOU WISH TO PROCESS ANOTHER SET OF DATA (Y/N) ?Y
ATG ? SELECTION PROGRAM
PLEASE TELL ME WHICH PROGRAM NUMBER (3-13) YOU WISH TO USE ?11
THANKYOU, YOU WILL BE USING PROGRAM PAYII

```
COMPUTER ORIENTED ACCOUNTING
STUDENT NAME PLEASE ?LARRY PAGE
DATE PLEASE ?OCTOBER 12, 1974
EXERCISE X-X PLEASE ?6-1
TRANSACTION DATA
COMPANY NAME ?MOORE'S HARDWARE STORE
DATE OF ACCOUNTING PERIOD ?MARCH 7, 1974
WHICH PROBLEM IS THIS ? 1
HOW MANY EMPLOYEES DO YOU HAVE ? 8
EMPLOYEE ? 1
- EXEMPTIONS ?
- HOURS ? 38
RATE ?2. 15
INSURANCE ? 1.18
- BONDS ? 0
EMPLOYEE ? 2
- EXEMPTIONS ? 1
- hours 341
RATE 32.40
INSURANCE ?.9
- BONDS ? 1
EMPLOYEE ? 3
- EXEMPTIONS ? 1
- hours ? 4g
RATE ? 1.95
INSURANCE ?1.15
- BONDS ? 0
EMPLOYEE ? 4
- EXEMPTIONS ? 2
- hoURS ? 35
RATE ? 3
INSURANCE ?. 8
- BONDS ? 2
EMPLOYEE ? 5
- EXEMPTIONS ? 0
- HOURS ? 40
RATE ? 2.6
INSURANCE ?. 65
- BONDS ? \({ }^{\circ}\)
EMPLOYEE ? ?
- EXEMPTIONS ? 3
- hours ? 44
RATE ? 2. 75
INSURANCE ? 1
- BONDS ? 1
EMPLOYEE ? 7
- EXEMPTIONS 71.
- hoURS ?40
RATE ? 3.25
INSURANCE ?.70
- BONDS ? 1
EMPLOYEE ? 8
- EXEMPTIONS ? 2
- hours 340
RATE 74.5
INSURANCE ? 1.2
- BONDS 32

STUDENT NAME - LARRY PAGE
EXERCISE - 6-1
DATE - OCTOBER 12, 1974

MOORE'S HARDWARE STORE
PAYROLL REGISTER
FOR WEEK ENDING MARCH 7, 1974
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline EMP. & NO. OF & NO. OF & PAY & TOTAL & TOTAL & NET \\
\hline NO. & EXEM. & HOURS & RATE & EARNINGS & DED. & PAY \\
\hline 1 & 0 & 38 & 2. 15 & 81.7 & 17.28 & 64.42 \\
\hline 2 & 1 & 41 & 2.4 & 99.6 & 22.36 & 77.24 \\
\hline 3 & 1 & 40 & 1.95 & 73 & 14.57 & 63.43 \\
\hline 4 & 2 & 35 & 3 & 105 & 25.06 & 79.94 \\
\hline 5 & \(\emptyset\) & 48 & \(2 \cdot 6\) & 104 & 21.24 & 82.76 \\
\hline 6 & 3 & 44 & 2.75 & 126.5 & 23.75 & 102.75 \\
\hline 7 & 1 & 40 & 3.25 & 130 & 28.17 & 161.83 \\
\hline 8 & 2 & 40 & \(4 \cdot 5\) & 180 & 48.31 & 139.69 \\
\hline & TOTALS & & & 964.8 & 192.74 & 712.86 \\
\hline
\end{tabular}

TYPE GO FOR DEDUCTION REGISTER ?GO
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|c|}{DEDUCTIONS} \\
\hline EMP. & INCOME & FICA & INSUR. & BONDS & TOTAL \\
\hline NO. & TAX & TAX & & & \\
\hline 1 & 11.44 & 4.74 & 1.1 & 0 & 17.28 \\
\hline 2 & 11.93 & 5.78 & - 9 & 3.75 & \(22 \cdot 36\) \\
\hline 3 & 8.9 & 4.52 & 1.15 & ¢ & 14.57 \\
\hline 4 & 10.67 & 6.09 & . 8 & \(7 \cdot 5\) & 25.06 \\
\hline 5 & 14.56 & 6.83 & . 65 & 6 & 21.24 \\
\hline 6 & 11.66 & 7.34 & 1 & 3.75 & 23.75 \\
\hline 7 & 16.18 & 7.54 & - 7 & 3.75 & \(28 \cdot 17\) \\
\hline 8 & 21.17 & 10.44 & 1.2 & \(7 \cdot 5\) & \(40 \cdot 31\) \\
\hline TOTALS & 106.51 & 52.48 & 7.5 & 26.25 & 192.74 \\
\hline \multicolumn{6}{|l|}{***** VERY GOOD - YOUR TOTALS MATCH MINE *****} \\
\hline
\end{tabular}

DO YOU WISH TO
1 - DO ANOTHER PROBLEM FROM THIS CHAPTER
2 - DO A PROBLEM FROM ANOTHER CHAPTER
3 - STOD NOW
? 3
DONE

TITLE:
DESCRIPTION:

\section*{INSTRUCTIONS:}

SIMULATES ONE YEAR'S DEPOSIT AND WITHDRAWAL ACTIVITIES OF A SMALL BANK

This program simulates one year!s deposit and withdrawal activities of a small bank. It is assumed that the probability for deposits and withdrawals are normally distributed.

In this program you have a choice of the type of simulation to be run. By entering a 1 all balances will be started at \(\$ 100\). In this manner the user can easily see the effects on the account balances from month to month. By entering a 2 larger random numbers are set for beginning balances.
In addition, the user must also select values for the following:
- the number of customers used in the simulation
- the yearly interest rate (in decimal form)
- the probability of a customer entering the bank during one month. The bank is open 20 days per month, thus 2 days of of 20 would be a probability of .10 .
- the standard deviation of the transactions in dollars
- the probability that a withdrawal is made when a customer enters the bank.

These questions are all asked at the beginning of the program's execution.
A maximum of 50 customers may be used in the simulation.

\begin{tabular}{llc}
CUSTOMER & BALANCE & \begin{tabular}{c}
QUARTER \\
INTEREST
\end{tabular} \\
1 & 1289.93 & 7.8679 \\
2 & 0 & 0 \\
3 & 645.31 & 4.95567 \\
1 & 303.43 & 3.74684 \\
5 & 679.93 & 7.14532 \\
6 & 647.71 & 6.55871 \\
7 & 878.69 & 10.848 \\
8 & 380.46 & 2.36836 \\
9 & 385.81 & 2.46117 \\
18 & 642.53 & 7.93248
\end{tabular}

TOTAL IN BANK 5773.81
TOTAL CUMULATIVE INTEREST 53.8836
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & MONTH & 4 & & \\
\hline CUSTOMER & BALANCE & & & CUSTOMER & BALANCE \\
\hline 1 & 1289.93 & & & 6 & 960.08 \\
\hline 2 & 0 & & & 7 & 787.13 \\
\hline 3 & 413.24 & & & 8 & 380.46 \\
\hline 4 & 284.12 & & & 9 & 486.65 \\
\hline 5 & 679.93 & & & 10 & 539.63 \\
\hline \multicolumn{6}{|l|}{TOTAL 5741.17} \\
\hline & & MONTH & 5 & & \\
\hline CUSTOMER & BALANCE & & & CUSTOMER & BALANCE \\
\hline 1 & 1192.65 & & & 6 & 752.53 \\
\hline 2 & 91.53 & & & 7 & 699.73 \\
\hline 3 & 610.31 & & & 8 & 380.46 \\
\hline 4 & 96.57 & & & 9 & 783.44 \\
\hline 5 & 755.72 & & & 10 & 736.84 \\
\hline
\end{tabular}
\begin{tabular}{llc}
CUSTOMER & BALANCE & \begin{tabular}{c}
QUARTER 2 \\
INTEREST
\end{tabular} \\
1 & 1321.59 & 14.9081 \\
2 & 78.7 & 0 \\
3 & 512.37 & 5.16553 \\
4 & 126.71 & 1.13211 \\
5 & 864.88 & 8.49914 \\
6 & 664.01 & 7.04137 \\
7 & 683.9 & 7.4556 \\
8 & 282.29 & 3.48507 \\
9 & 761.07 & 3.82261 \\
18 & 707.87 & 6.74539
\end{tabular}

TOTAL IN BANK 5923.39
TOTAL CUMULATIVE INTEREST 112.139
\begin{tabular}{|c|c|c|c|c|}
\hline & & MONTH & & \\
\hline CUSTOMER & BALANCE & & - CUSTOMER & BALANCE \\
\hline 1 & 1022 & & 6 & 953.9 \\
\hline 2 & 78.7 & . & 7 & 369.5 \\
\hline 3 & 485.49 & & 8 & 269.66 \\
\hline 4 & 398.83 & & 9 & 856.74 \\
\hline 5 & 901.81 & & 10 & 510.66 \\
\hline \multicolumn{5}{|l|}{TOTAL 5767.3} \\
\hline & & MONTH & & . \\
\hline CUSTOMER & BALANCE & & CUSTOMER & BALANCE \\
\hline 1 & 925.63 & & 6 & 1026.08 \\
\hline 2 & 388.39 & & 7 & 369.5 \\
\hline 3 & 368.57 & & 8 & 359.22 \\
\hline 4 & 596.51 & & 9 & 976.52 \\
\hline 5 & 940.46 & & 10 & 510.66 \\
\hline
\end{tabular}

BNKSIM, Page 4
\begin{tabular}{llc}
CUSTOMER & BALANCE & \begin{tabular}{c}
QUARTER \\
INTEREST
\end{tabular} \\
1 & 937.04 & 11.4125 \\
2 & 279.59 & 0 \\
3 & 502.71 & 3.39219 \\
4 & 483.6 & 1.58393 \\
5 & 949.36 & 8.89901 \\
6 & 828.82 & 8.3001 \\
7 & 694.61 & 4.6188 \\
8 & 559.76 & 3.37072 \\
9 & 890.04 & 9.51334 \\
10 & 619.98 & 6.3833
\end{tabular}

TOTAL IN BANK 6744.7 .1
TOTAL CUMULATIVE INTEREST 169.612
\begin{tabular}{|c|c|c|c|c|}
\hline & & MONTH 10 & & \\
\hline CUSTOMER & BALANCE & & CUSTOMER & BALANCE \\
\hline 1 & 1149.56 & & 6 & 848.38 \\
\hline 2 & 363.85 & & 7 & 686.82 \\
\hline 3 & 617.42 & & 8 & 683.33 \\
\hline 4 & 483.6 & & 9 & 890.04 \\
\hline 5 & 772.15 & & 10 & 715.23 \\
\hline \multicolumn{5}{|l|}{TOTAL 7210.1} \\
\hline & & MONTH 11 & & \\
\hline CUSTOMER & BALANCE & & CUSTOMER & BALANCE \\
\hline 1 & 1264.51 & & 6 & 1321.69 \\
\hline 2 & 556.98 & & 7 & 584.64 \\
\hline 3 & 650.09 & & 8 & 678.07 \\
\hline 4 & 483.6 & & 9 & 889.63 \\
\hline 5 & 877.34 & & 10 & 690.63 \\
\hline
\end{tabular}

TOTAL 7997.18
\begin{tabular}{llr}
CUSTOMER & BALANCE & \begin{tabular}{c}
QUARTER \\
INTEREST
\end{tabular} \\
1 & 1441.84 & 11.713 \\
2 & 555.34 & 3.49487 \\
3 & 626.3 & 6.28392 \\
4 & 543.37 & 5.19864 \\
5 & 886.33 & 9.49642 \\
6 & 1453.22 & 10.3502 \\
7 & 607.74 & 6.19956 \\
8 & 775.65 & 6.99701 \\
9 & 791.48 & 8.70058 \\
10 & 798.11 & 7.74975
\end{tabular}.

TOTAL IN BANK 8479.37
TOTAL CUMULATIVE INTEREST 245.796

THE FINAL ACCOUNT BALANCES FOR THE YEAR ARE
\begin{tabular}{llcc}
CUSTOMER & BALANCE & CUSTOMER & BALANCE \\
1 & 1441.84 & 6 & 1453.22 \\
2 & 555.34 & 7 & 607.74 \\
3 & 626.3 & 8 & 775.65 \\
4 & 543.37 & 9 & 791.48 \\
5 & 886.33 & 10 & 798.11 \\
& & & \\
TOTAL 8479.37 & & &
\end{tabular}

DONE

\section*{OESCRIPTION continued}

NIKl Nikoll Electronics, a multi-divisional producer of electronic equipment, has developed a relatively simple competitive bidding model which provides their management with a tool to examine the likelihond of winning and the expected payoffs from alternative bids in bidding situations. The model allows for intangibles as well as competitive advantage (disadvantage).

An opportunity to use the model in a concrete bidding situation occurs when Nikoll has the opportunity to bid on several options on a large oscillator contract. The contract is quite important to Nikoll since it represents a substantial amount of business and the opportunity to gain and hold leadership for this type of product.

NIK2 In this case the Nikoll Electronics Company modifies its bidding model to better reflect the oscillator bidding situation. The revised model considers the fact that competitor's bids on various options might be related. The model also considers the impact of winning various options on overhead billing arrangements on government contracts.

The case presents a situation in which a computer based macro planning model was proposed as a way of doing strategic planning for two lines of grocery products. From a product point of view the case can be considered a life cycle problem where one product has matured while the other still has growth potential: The implications of this become clear as the model is used to "optimize" sales and profits. From a technical point of view the case raises issues concerning appropriate factors to consider in the planning process and how to represent these in a quantitative way. The model uses "response coefficients" to deal with the "best" strategy question. This raises the issue of sources of information (i.e., experiments, use of historical data, marketing information systems, etc.).

\section*{Maxim Case}

General Foods must develop a marketing plan for a new product - freeze dried coffee. Based on an extensive set of data on consumer and product research, decisions on product positioning, advertising, price, promotion, etc. must be made. Alternatively, General Foods can decide to stop development of the project if it does not appear to be sufficiently profitable.

MAXIMA is a computer program designed to help the marketing decision maker analyze the profit potential of a number of alternative new product marketing programs. It is a decision-making aid that compares alternatives based on net present value. The program is in two parts. The first section uses a simple 3 -equation model (the Ayer model, discussed in H.J. Claycamp and L.E. Liddy, "Prediction of New Product Performance: An Analytical Approach", Journal of Marketing Research, November 1969) to predict the first year market share as a function of the marketing mix. The second section uses this, plus cost data, to prepare profit-and-loss and cash-flow statements. Sub models help to perform sensitivity analysis on the marketing programs.

In the Part II case the actual solution used is presented. It involves many simplifying assumptions and is only a partial solution. This leads to discussion of the role of simplifying assumptions and partial solution and the usefulness of complex models. With the computer program many of the key assumptions can be tested for sensitivity.

NEWB Outcomes of a controlled store audit experiment involving a factorial arrangement of price (3 levels), advertising (2 levels) and location within store (2 levels) are given and a number of regression runs on the data is provided to aid in interpretation. A computer program to perform further reqression analysis is provided.

The case provides an opportunity to use correlation and regression to help understand data as opposed to the more usual forecasting use. Using these techniques it is possible to see to what extent the experiment is out of control, ways of adjusting for this and the magnitude of various experimental effects.

The case raises many other issues such as:
- appropriate measures of advertising inputs
- treatment of experimental effects over time'
- role of interactions
- the use of dummy variables
- specification errors in regression models.

NEWCl Part I presents various summary measures that come out of consumer panel data and sets up the problem of forecasting new product sales for products that may have a short life cycle.

NEWC2 Part II presents several forecasting techniques, resulting forecasts, and computer programs for this purpose. One model is a simulation model to assess uncertainty in a sales forecast based on component uncertainty in variables such as Trial and Repeat. The second model is a dynamic micro forecasting model.based on time between purchase and repurchase rate data.

NEWD Here a translation must be made from the various test situations to a national introduction. All previously developed knowledge about the product must be integrated into a general plan. A planning model is presented and the student is encouraged to reuse previously introduced programs to reevaluate the situation based on new environmental information.

HINBI The \((A)\) case describes a situation in which a cake manufacturer who has just introduced a new product some 6 months ago is faced with new competitive entries that are similar but not the same as his product. The firm must decide if it should compete directly by introducing a product like the competitive one and/or dropping its previous entry which is doing only moderately well. These decisions must be made before share data are available on the market performance of the competitive products. The only available market research data involve protocols obtained from group interviews covering consumer needs in the cake mix area.

HINB2 The case provides an opportunity for students to construct flow charts of probable consumer behavinur as a first step in understanding need segments in this market. The (B) case discusses the forecasting technique used to estimate the size of these segments. It involves the use of d micro hehavioral simulation model. A flow chart, trace runs, computer program, forecasts and some validation data are included.

Students in the course generally enter transactions, get reports, etc., using the instructor's course account. This will be an account with a number between C101 and C199 assigned to the instructor for such use. Students are expected to use the account only for this purpose. The composition of each team's portfolio is maintained on a file named ACCTS in this account.
Students access this file and alter it with program \$GBRKR. The instructor's assistant may also access the file using programs of his own or those maintained in the public library to prepare summary reports, etc.

\section*{FILE ACCTS}

The composition of each team's portfolio is maintained on this file. Team l's portfolio is on records 1 and 2, team 2 's portfolio on records 3 and 4, etc. For each team, the following information is stored (in the order shown):
```

password
time of last update
- year
- day
- hour
- minute
amount of cash
for each security covered
- number of shares held (positive if long, negative if short)

```

Before students may use the system, the instructor's assistant must OPEN this file, then inftialize the information with program \$GPMS2. The initialization process includes the assignment of a password for each team. Subsequently, no student can access or alter a team's portfolio unless he gives the precise password entered earlier by the instructor's assistant.

File ACCTS is read and written through a mask, so every piece of information must be encoded and decoded. The mask is entered via the initialization of variable M\$ in programs \$GBRKR and \$GPMS2, both of which are protected and hence cannot be listed by the user. The mask must also be entered by the user of program \$GPMS5.

\section*{FILE SPRDIV}

This file, usually maintained on account ClOO , includes current data on all securities considered "eligible" for the portfolio managenent system. For each eligible security, the file contains:
- the ticker symbol (in a coded format)
- the price per share
- the most recent dividend paid per share
- the time at which the most recent dividend was posted to the file

In addition, the file includes:
- the number of eligible securities
- the time the information on the file was last updated

Each security's ticker symbol is coded into a numeric equivalent. The symbol is first converted to a four-character symbol (with trailing blanks to the right, as needed). Each character is converted to a numeric equivalent with " \(A\) " \(=1\), " \(B "=2 \ldots\) " \(Z=26\), and blank \(=27\). Let \(S_{1}\) represent the numeric equivalent of the first (left-most) character, \(S_{2}\) the equivalent of the second, etc. Then the code for the entire ticker symbol is:
\[
S_{1} \star 30^{3}+S_{2} \star 30^{2}+S_{3} \star 30+S_{4}
\]

This coding procedure (and/or an inverse decoding procedure) is used in other programs in the Portfolio Management System.

The time at which a dividend was posted to the file is also entered in coded form. Letting \(T_{3}=\) the year \((71=1971), T_{2}=\) the day of the year, \(T_{1}=\) the hour of the day, and \(T_{0}=\) the minute of the hour, the code is:
\[
\left[\left(T_{3}-71\right) * 365\right]+\left[T_{1} / 24\right]+\left[T_{0} /(24 * 60)\right]
\]

This expresses time as the number of days since the beginning of 1971. A similar procedure is used in other programs in the system.

The format of the file is as follows:
- year of last update
- day of last update
- hour of last update
- minute of last update
- number of securities on eligible list

For each security:
- code for ticker symbol
- price per share
- most recent dividend per share
- code for time when last dividend posted

Before any other programs are used, this file must be CREATED, then initialized using program GPMSI.

PROGRAM GBRKR
This program is used to enter transactions for a team's account and to obtain reports on its status. The account is maintained in file ACCTS in the instructor's course account. Security prices and dividends are obtained by the program from file SPRDIV in the course library (account. C100). Program \(\$ G B R K R\) is protected so the user is unable to alter the contents of file ACCTS except via this program.

The program begins by asking:
TEAM NUMBER?
The user responds with the appropriate number.
The program then asks:
PASSWORD?
The user must give the exact password entered previously by the instructor for his team. If there is any discrepancy, the program terminates. Otherwise, the program continues by asking:

DO YOU WANT TO ENTER A TRANSACTION, GET A REPORT, OR QUIT?
The user responds with:
I (or TRANSACTION)
R (or REPORT)
Q (or QUIT)
The REPORT option provides a portfolio status report as of the moment of inquiry. After a summary of the cash position, etc., the program asks:

HOLDINGS?
If a list of holdings is desired, the user responds YES (or simply \(\underline{Y}\)). If not, he responds NO (or simply N).

If the TRANSACTION option is selected, the program asks:
STOCK?
The user responds with the ticker symbol of the security in question. The program next asks:

BUY OR SELL?
The user responds with \(\underline{B}\) (or BUY) or \(\underline{S}\) (or SELL), depending on the desired action. The program then asks:

NUMBER OF SHARES?
And the user responds with the number desired.

If the transaction is allowed, the program will indicate the brokerage fee in dollars, then ask:
O.K.?

If the transaction is acceptable, the user responds \(Y\) (or YES), the the frogram will indicate:

\section*{CONFIRMED}

If the transaction is not acceptable, the user responds \(\underline{N}\) (or \(N \mathbf{N}\)), and the program will indicate:

\section*{REQUEST CANCELLED}

If the QUIT option is selected, the program will terminate after updating the ACCTS file. PROCEDURES

The program maintains an up-to-the-minute valuation of the user's account. All long positions (positive holdings) are valued at the current market prices on file SPRDIV; the total is reported as LONG POSITION AT MARKET. Similarly, all short positions (negative holdings) are valued at current market prices and the total reported as SHORT POSITION AT MARKET. The figure reported for CASH ON HAND indicates liquid interest-earning assets if the value is positive; if the value is negative, it indicates debt owed to the broker. NET WORTH is calculated as follows:

NET WORTH = CASH ON HAND + LONG POSITION AT MARKET - SHORT POSITION AT MARKET
The status of the account depends on its current margin, calculated as follows:
CURRENT MARGIN \(=\frac{\text { NET WORTH }}{\text { LONG POSITION AT MARKET }+ \text { SHORT POSITION AT MARKET }}\)
Whenever the current margin for the account exceeds .70 , any type of transaction is allowed unless it will reduce the current margin to a value below. 70 . In the latter case, a message will be printed and the transaction request will be denied by the program.

Whenever the current margin for the account falls below. 70 , the account is restricted. Only transactions that will increase the current margin are allowed. Any transaction not meeting this requirement is rejected by the program.

The program adds interest to the amount of cash on hand at an annual rate of \(6 \%\), compounded continuously. If the cash on hand is positive, it will be increased. If the cash on hand is negative, its absolute value will be increased (i.e., the amount of debt will be increased). For purpose of interest calculations, the cash on hand is reduced by the value of the short positions (e.g., no interest is paid on the proceeds from a short sale). The program automatically adds interest any time the user requests a report -- (i.e., the appropriate amount to cover the time period since the last report is added).

Dividends are also added to or subtracted from the account. When the user requests the first report since a dividend was posted to the SPRDIV file, the program automatically (1) adds dividends to his cash position for long positions and (2) subtracts them for short positions.

Brokerage charges are those charged by the New York Stock Exchange in April, 1972. A sample run follows.
GET-GBRKR
RUN
GBRKR
TEAM NUMBER?
PASSWORDTBUY LOW, SELL HIGH
DO YOU WANT TO ENTER A TRANSACTION, GET A REPORT, OR QUITTT
STOCK?IBM
BUY OR SELL?BUY
NUMEER OF SHAREST2OQ
BROKERAGE FEE IS 130
ORO?Y
CONFIRMED.
```

PORTFOLIO STATUS REPORT
AUG 211972 12: 1 A.M.

```
\begin{tabular}{lr}
CASH ON HAND: & 31160.02 \\
LONG POSITION AT MARKET: & 69000.00 \\
SHORT POSITION AT MARKET: & 0.00 \\
NET WORTH: & 100.60 .03 \\
CURRENT MARGIN: & 1.452
\end{tabular}

HOLDINGS?Y
\begin{tabular}{|c|c|c|c|c|c|}
\hline STOCK & SHARES & L/S & PRICE & TOTAL & L VALUE \\
\hline IBM & 200 & LONG & 345.000 & & 69000.00 \\
\hline DO YOU & NT TO & RANSAC & GET A RE & T, 0 & OR QUIT?Q \\
\hline
\end{tabular}

\section*{PROGRAM GQUOTE}

This program may be used to obtain a quotation from the list of security prices maintained on file SPRDIV on account Cl00.

The user may type the ticker symbol for the stock in which he is interested. The program then prints its current price as listed on file SPRDIV. If the symbol is not on the eligible list, an appropriate message is printed. In either event, the user is then asked for another symbol.

At any time, the user may respond to the request SYMBOL? with DONE. This will cause termination of the program.

At any time, the user may respond to the request SYMBOL? with ALL. The program will list the ticker symbol and current price of every security on the eligible list, then terminate.

A sample run follows.
```

RUN
g quOte
WHEN ASKED, TYPE TICKER SYMBOL, 'ALL' OR 'DONE'.
SYMBOL?WFG
PRICE: 45.750
SYMBOL?ALL

T	46.250
GM	37.000
HWP	77.000
IBM	345.000
WFG	45.750

DONE

```

PROGRAM SGPMSI
This program is used to set up file SPRDIV in account ClOO for use in the Stanford Portfolio Management System. The user first indicates the number of securities on the "eligible" list, then their ticker symbols (preferably, but not necessarily, in alphabetic order). After each symbol is input, the program reprints the information and then asks "OX?". If the reply is \(Y\), the program will continue. If the reply is \(N\), the program will ask for the symbol agaîn.

When all symbols have been input and verified, the program will set up file SPRDIV in the format described above. For each security, price, dividend and time of entry of the last dividend will be set to zero. Any previous contents of the file will be lost.

Before this program is run, file SPRDIV must be opened. The number of records must be at least:
\[
\frac{5+4 N}{128}
\]
where \(N=\) the number of eligible securities, and the formula is assumed to be rounded up to the nearest integer.

Limitations imposed by file ACCTS require:
\[
N<251+\frac{P}{4}
\]

Where \(P=\) length of the longest team password.
A sample run follows.

\section*{RUN}

GPMS 1
NUMBER OF SECURITIES ON THE ELIGIBLE LISTTS
TICKER SYMBOLS --
\(T\)
OK? Y
2 ?GN
GN
OK?N
2 ?GM
GM
OK? Y
3 ? 3 WP
HWP
OK?Y
4 ?IBM
1 BM
OK?Y
5 ?WFG
WFG
OK?Y
DONE

This program is used by the instructor's assistant to open the accounts of the teams. Before the program is run, a file named ACCTS should be opened with twice as many records as there are teams. The program will request the password for each team, terminating when the user responds YES to the inquiry "DONE?". This program cannot be run before GPMSI.

A sample run follows.
```

GET-GPMS2
RUN
GPMS2
DONE?N
TEAM 1 -- PASSWORD?BUY LOW, SELL HIGH
LONE?N 2 -- PASSWORD?EFFICIENT MARKET
DONE?Y

```

DONE

\section*{PROGRAM GPMS 3}

This program is used to update the dividends in file SPRDIV. It can only be used in the account in which file SPRDIV is maintained (usually account Cl00). Dividends are normally posted within a day of the time at which the stock goes ex-dividend. In general, the dividend should be entered at the same time as the last price prior to the \(2 \times-\)-dividend price is entered.

The program asks for the ticker symbol(s) of securities for which dividends are to be entered. The Portfolio Management System does not provide for stock dividends or splits. The recommended procedure is to assume that any stock dividend or split is converted into cash. In other words, the market value is simply entered as a cash dividend.

When all changes have been entered, the data are entered into file SPRDIV. Both the dividend and the time at which it was entered into the file are recorded. This latter information is used when portfolios are updated to be certain that dividends are credited only unce to an account.
```

GET-GPMS3
RUN
GPMS3
SYMBOL OR 'DONE'?IBM
DIVIDEND?1.45
SYMBOL OR 'DONE'?DONE
DONE

```
PROGRAM GPMS4

This progran, used to update file SPRDIV, must be used on the account on which SPRDIV is stored (usually account Cl00). The file is normally updated daily, using closing prices posted as soon as possible after the market has closed.

The user may enter prices for selected securities by indicating the ticker symbol of each. If this option is chosen, the program prints the old price and requests the new one. At any time, the user may respond to the request for a ticker symbol with ALL. The program will then proceed through the eligible list in order, giving each ticker symbot and the old price, and requesting the new one.

When the user is finished, he should respond DONE when the program requests a ticker symbol. The revised information will then be entered on file SPRDIV and the program will terminate.

A sample run follows.
```

RUN
GPMS4
TICKER SYMBOL (OR 'ALL' OR 'LONE')?WFG
OLD PRICE O
NEW PRICE?45.5
TICKER SYMBOL (OR 'ALL' OR 'DONE')?ALL
T B
PRICE?46.25
GM Q
PRICE?37
HWP ©
PRICE?77
I BM
PRICE?345
WFG 45.5
PRICE?45.75
TICKER SYMBOL (OR 'ALL' OR 'DQNE')?DONE
DONE

```

PROGRAM GPMS5

This program is used by the instructor to obtain a summary of the teams' current holdings. The program must be run in the account containing file ACCTS (usually the instructor's course account).

The program begins by asking:
CODE FOR FILE?
The user must respond with the code used to read and write file ACCTS. This is the code used in protected programs \$GBRKR and \$GPMS?. If the correct code is not given, the program will not operate correctly.

The program will then ask for the number of teams for which accounts exist on file ACCTS. It will then summarize and print the number of shares long and short for each stock. Only those stocks with non-zero positions will be shown.

A sample run follows.
```

GET-GPMSS
RUN
GPMS5
CODE FOR FILE?X3MLB/
NUMBER OF TEAMS?2

SECURITY	LONG	SHORT
IBM	$2 \emptyset g$	0

```

\section*{DONE}
IITLE: \(\quad\)\begin{tabular}{l}
LABOR/MANAGEMENT BARGAINING \\
This interactive collective bargaining simulation can be played by one or \\
more groups for several periods. Each group of students will consist of \\
two teams; one team will play the role of management and the other the \\
role of labor. Each team will make decisions on a set of issues and will \\
try to reach angreement. If no agreement is reached, new decisions are \\
inputted the following week. The computer has the following roles:
\end{tabular}

SPECIAL CONSIDERATIONS:

\section*{DESCRIPTION OF THE ENVIRONMENT}

In a hypothetical firm, the labor-management contract is expiring. Labor is dissatisfied with its terms and all efforts made towards Management to improve it have failed. Management claims that the contract is fair and does not want to modify it. Because of the stubborn position of Management, Labor has decided to go on strike.

Management and Labor are provided information concerning:
- the firm
- the last Labor-Management contract
- the economic environment
1. Information Concerning the Firm:
- profit increase: This is the percentage representing profit increase in the firm since the establishment of the last contract. Profit means net profit after taxes.
- productivity increase: Expressed in percent, this figure represents the increase of output per manhour. This productivity is mainly due to new equipment and machinery.
- last wage increase:

Amount of hourly wage increase when the last contract was established.
- employment level: The firm's employment when the strike starts. A certain proportion of workers will quit during the strike.
- inventory level: Expressed in dollars, it is the amount of finished goods inventory ready for shipment and stored in warehouses which are not affected by the strike.
- strike fund: Labor has cash reserves which will be utilized to help the workers. It has been decided that every worker on strike will receive \(\$ 8\) a week.
- last year's sales: Value of last year's gross sales expressed in millions of dollars.
- last year's profit: Net profit made after taxes in previous year.
- profit per worker:

Dollar value of the net profit divided by the number of workers.

\section*{II. Information Concerning the Last Contract:}

The Labor-Management contract consists of 9 issues:
- duration:
- wage rate:
- guaranteed overtime:
- vacation days per year:
- regular hours a week:
- days of sick leave:
- bonus and insurance:
- number of paid holidays:
- overtime wage rate:
in months
hourly wage rate in dollars
number of hours a week that a worker can work with an overtime wage rate
number of paid vacation days a year
number of hours a week worked at regular pay. It is used to compute the week's pay.
number of days that a worker is allowed to take (with pay) for sick leave
the firm is paying \(\$ 250\) per year for medical insurance for each worker, and gives a cash bonus every year at Christmas
number of legal holidays: Christmas, Labor Day, Thanksgiving, etc. which are paid
hourly wage rate for overtime
III. General Information on the Economic Environment
- Consumer Price Index Increase (in percent)
- Average Wage Increase in Industry (in percent)
- Rate of Unemployment in Industry (in percent)
- Productivity Increase in Industry (in percent)

In addition to creating an environment, the computer will compute and print out the dollar amount representing the fringe benefits. The two teams are also informed that in view of the coming strike, it has been decided at the last meeting of the board of directors that the company would support an increase of the workers' payroll. The dollar amount indicated is the maximum amount of gross payroll and fringe benefits increase that Management will accept without bargaining at any point of time during the strike. This decision has been made at the top echelon by the board of directors and Management has to enforce it.

\section*{DECISIONS AND RESULTS}

Once the environment has been described, Management and Labor must reach decisions on the 9 issues involved in the contract. Then the two teams' decisions are typed in and the result of the contract proposal is printed out.

First provided is the cost of the proposed contract due to Labor's conditions and the cost of the proposed contract due to Management's offer. This cost is stated per worker. Therefore, the computer prints out the gross payroll increase, the fringe benefits' increase, and the total increase.

With the help of these figures, the two teams can see how far apart they are, and in which area they should concentrate their efforts in order to reach an agreement.

Then the two teams are given information on the current situation:
- current union membership:
union members are sometimes not willing to go along with the strike or are not willing to take a loss of income, and quit both their job and the union. Therefore, there is a slow erosion of the union membership that the union leaders must be aware of. If the erosion is too high the Labor will be obliged to give up the strike.
- current strike fund:
- inventory level:
- unfilled orders:
- Management expected cost of one more week of strike:

Labor's strike fund is utilized to distribute \(\$ 8\) a week to each striking worker. This is not a great deal of money, but it helps and has an important psychological effect.

The per worker dollar figure of the current level of inventory is provided. This gives an indication of how long Management can go without any losses in sales.

Per dollar figures of losses in sales due to unfilled orders. This dollar figure can go quite high very quickly.

This is the per worker basic cost of the strike for Management. This figure includes all fixed costs, expected cost of rehiring, wasted material, etc.

The overall goal for Labor and Management is to obtain the best deal at the least cost. This is difficult and competition between different groups or "firms" can show large differences. Starting at the second week, the computer will ask if one of the two teams desires arbitration. If this is the case, the computer will act as arbitrator and will decide the final contract. The use of an arbitrator will allow the negotiators to get out of a deadlock or to stop simulation. It is important to note that most of the parameters provided will influence the results of a set of decisions and they should be weighted carefully before a new contract is proposed.

The simulation is designed in such a way that the role of the computer is minimized. Its main function, besides providing an economic environment, is to compute the dollar value of the cost of proposed new contracts. Hence, the user can visualize the dollar impact of his decisions.

If no agreement is reached in a short period of time, pressure to end the strike is put on both Management and Labor. Losses due to unfilled orders and direct cost of the strike will force management to seek a settlement after a few weeks. On the other hand, union membership losses and an empty strike fund will force Labor to a settlement. Of course, the best way to end the strike is through a direct agreement between the two parties involved. The two teams are given the maximum opportunity to settle the strike without the computer's interference. But, if a deadlock develops during the negotiations, or if the strike goes on for too long, the computer will take over and play the role of outside pressure: Board of Directors, strike fund, treasurer, etc. In addition, starting in week 2, there will be an option for either of the two teams to call for arbitration. The rule is that if either Labor or Management wants arbitration, the other party has to submit and accept arbitration. If this is the case the computer
will play the role of arbitrator and will issue the final contract. Because the arbitrator's decision is final, both parties have to accept it, ani the simulation is ended.

INSTRUCTIONS FOR USING LABOR
Teacher's Instructions:
Prior to running the simulation, the instructor has to choose a few parameters.
There are two options on how to use the simulation. The first one is to have the simulation go on continuously up to the time an agreement is reached. The second option allows users to play 1 period at a time. The computer retains the necessary data and players can input their decisions for the current period at a later time.

The second parameter to be decided is the number of printout copies desired. There is no limit on that number.

The last thing is to choose the economic environment. It is based on two numbers between 0 and 9. If the values of those numbers are high (e.g., 8 and 9) there will be a good economic environment. On the other hand, if those values are low, they will generate a bad environment -- high inflation, poor profit, low wages, etc.

Those values are to be inserted in line 30 of the program by typing:

30 DATA 5,1,5,7
Then type:
RUN
to start the simulation.
5 means that the option chosen is to have the computer stop at the end of each period, saving the data. The user will come back later to play a subsequent period. In order to get the other option of having the simulation go on continuously, the value should be a zero.

1 , the second piece of data, indicates that the user wants only 1 copy of the printout.
5 and 7, the third and fourth pieces of data, are the two values that will generate the economic environment.

\section*{Student's Instructions:}

During the course of the simulation, the computer will ask:
ENTER FIRM NUMBER?
The firm number identifying the team must be entered.
Then the computer will require the entering of Labor's 9 decisions and Management's 9 decisions on the contract's 9 issues. The first 9 pieces of data (concerning Labor) should be entered separated by commas (see example). The second set of 9 pieces of data must also be entered separated by commas.

If the operator types the wrong information, and if the error is caught before the computer is through typing the results for the period, the simulation can be stopped by pressing the BREAK key. By typing RUN again, the simulation will start at the current period and will give the operator a chance to enter the right data.

\section*{HOW TO SET UP THE GAME}

The LABOR simulation, written in BASIC consists of one paper tape 4700 words long. After the tape is loaded on the computer a file called STRIKE must be opened by typing:

OPEN-STRIKE,20
20 is the number of sectors in the file. Each firm needs 2 sectors; therefore., in the above example, up to 10 teams can use the simulation simultaneously.
```

RUN
RUN
LABOR
ENTER FIRM NUMBER?I

```


GENERAL I NFORMATION
```

* 

```

CONSUMER PRICE INDEX INCREASE
aUERAGE WAGE INCREASE IN INDUSTRY RATE OF UNEMPLOYEMENT IN INDUSTRY
PRODUCTIVITY INCREASE IN INDUSTRY
\(\$ 3.75\)
\(\times 4.2\)
\% 4.25
\(\times 4.8\)
COST OF THE OLD CONTRACT -PER WORKER- :

\begin{tabular}{ll}
GROSS PAYROLL & s 9258 \\
FRINGE BENEFITS & s 1078
\end{tabular}
```

IN VIEW OF THE COMING STRIKE, IT WAS DECIDED AT THE LAST
MEETING OF THE BOARD OF DIRECTORS THAT THE COMPANY COULD SUPPORT
AN INCREASE IN THE VORKERS* PAYROLL.
DUE TO THE RELATIVELY IMPORTANT INFLATION RATE,
THE MAXIMUN DOLLAR AMOUNT PROPOSED -PER WORKER-PER YEAR- IS\& S 388

```

\section*{RUN}

LABOR
ENTER FIRM NUMBER? I
```

***CONTRACT PROPOSAL: WEEK 1

```

```

INPUT LABOR 'S 9 DECISIONS?12,2,4,5,14,40,6,500,7,3.6
INPUT MANAGEMENT 9 DECISIONS?12,2.3,4,10,42,6,450,3,3.45

```
\#\#\#\#\#FIRM1 COPY 1 WEEK 1
*****BARGINING:CONTRACT PROPOSAL
COST OF THE NEW CONTRACT DUE TO LABOR'S CONDITIONS -PER WORKER- :
\begin{tabular}{ll}
GROSS PAYROLL INCREASE & s 560 \\
FRINGE BENEFITS INCREASE & s 587 \\
TOTAL............. & s 1147
\end{tabular}
COST OF THE NEW CONTRACT DUE TO MANAGEMENT'S OFFER -PER WORKER- :
\begin{tabular}{ll}
GROSS PAYROLL INCREASE & s 145 \\
FRINGE BENEFITS INCREASE & s 228 \\
TOTAL............. & \(\$ 373\)
\end{tabular}
***INFORMATION ON THE CURRENT SITUATION:

```

RUN
LABOR
ENTER FIRM NUMBERTI

```
*\#\#CONTRACT PROPOSAL: WEEK 2
-•••
 ARBITRATION ANYONE... ? NO
INPUT LABOR • 59 DECISIONS? \(12,2.38,4,12,46,6,480,7,3.6\)
INPUT MANAGEMENT 9 DECISIONS? \(12,2.33,5,10,42,6,460,4,3.45\)
*****FIRM1 COPY
WEEK 2
*****BARGINING: CONTRACT PROPOSAL
COST OF THE NEW CONTRACT DUE TO LABOR'S CONDITIONS -PER WORKER - :
\begin{tabular}{ll}
GROSS PAYROLL INCREASE & s 522 \\
FRINGE BENEFITS INCREASE & s 366 \\
& \\
TOTAL............... & s 888
\end{tabular}
COST OF THE NEW CONTRACT DUE TO MANAGEMENT'S OFFER -PER WORKER- :
\begin{tabular}{ll}
GROSS PAYROLL INCREASE & \$ 206 \\
FRINGE BENEFITS INCREASE & \$ 422 \\
IOTAL.............. & s 628
\end{tabular}

DONE

\section*{RUN}

\section*{LABOR}

ENTER FIRM NUMBER? I
```

***CONTRACT PROPOSAL: UEEK 3

```

```

    .. . .ARBITRATION ANYONE . . . ? NO
    INPUT LABOR! S 9 DECISIONS? 12,2.38,5,12,40,6,480,7,3.57
INPUT MANAGEMENT 9 DECISIONS?12,2.33,5,10,42,6,460,4,3.50

```
*****FIRM 1 COPY WEEK 1
*****BARGINING:CONTRACT PROPOSAL
COST OF THE NEW CONTRACT DUE TO LABOR'S CONDITIONS -PER WORKER - :
GROSS PAYROLL INCREASE S 522
FRINGE BENEFITS INCREASE \$ 533
TOTAL............. S 1055
COST OF THE NEW CONTRACT DUE TO MANAGEMENT'S OFFER -PER WORKER- :
\begin{tabular}{ll}
GROSS PAYROLL INCREASE & s 206 \\
FRINGE BENEFITS INCREASE & s 434 \\
TOTAL............... & s 640
\end{tabular}

```

RUN
LABOR
ENTER FIRM NUMBER?\

```
```

***CONTRACT PROPOSAL: WEEK 4

```

 \(\ldots\).. ARBITRATION ANYONE...?YES
ARBITRATION IS REQUIRED BY ONE PARTY.......
THE ARBITRATOR
DECISIONS ARE FINAL AND MUST BE ACCEPTED BY BOTH PARTIES...
 THE NEW CONTRACT IS

\begin{tabular}{ll}
DURATION (MONTHS) & 12 \\
WAGE RATE & 2.35 \\
GUARANTEED OUERTIME & 5 \\
VACATION DAYS/YEAR & 10 \\
REGULAR HOURS/WEEK & 42 \\
DAYS OF RELIEF/YEAR & 6 \\
YEARLY BONUS & 464 \\
PAID HOLIDAYS & 4 \\
OVERTIME RATE & 3.53 \\
GROSS PAYROLL INCREASE & \(\$ 248\) \\
FRINGE BENEFITS INCREASE & 5446 \\
TOTAL............. & \\
\hline
\end{tabular}
THE STRIKE IS ENDED AFTER 4 WEEKS. CONGRATULATIONS !!!
THE STRIKE HAS BEEN EXPEMSIVEI
IT HAS COST MANAGEMENT \(S\) 43011.. AND 5 330622. IN UNFILLEDORDERS
LABOR HAS PAID S 6336 AND HAS SUFFERED
 29 I OF MEMBERSHIP LOSSES....
DONE

```

MARKET, Page 2

```

INSTRUCTIONS continued
It is possible for a company to have a negative value for cash on hand. This means that the company must go into debt for this amount, and an additional 5 \% charge will be made on the debt.

From time to time throughout the game, events will occur which will necessitate a change in strategy. In such cases, try to consider all consequences of the occurrence before deciding on a new strategy.

The game ends when one company goes bankrupt or accumulates 12 million dollars in total assets.
RUN
RUN
MARKET
DO YOU WANT INSTRUCTIONS(TYPE 1 FOR YES, G FOR NO)?
ARE YOU BEGINNING THE GAME OR CONTINUING
(TYPE I FOR BEGINNING, 2 FOR CONTINUING)? I

FIXED PRODUCTION COST = \$ 250080. , QUARTER
VARIABLE PRODUCTION COST \(=\$ 20\) /UNIT
WITH NO ADVERTISING AND A SELLING PRICE OF s50/UNIT
A COMPANY WILL SELL 25000 UNITS (PRINTED AS 25)
WAREHOUSE CHARGE FOR INVENTORY = 5 PER CENT
INTEREST CHARGE ON BORROWED MONEY = 5 PER CENT

UNITS AND DOLLARS BELOW ARE IN THOUSANDS
\begin{tabular}{lllccccc}
QUARTER & 0 & & & & \\
PROFIT & MARKET SHARE & CASH ON HAND & NUMBER SOLD & INVENTORY ASSETS \\
0 & 0 & 5000 & 0 & 100 & 7000 \\
0 & 0 & 5000 & 0 & 100 & 7000
\end{tabular}
```

COMPANY 1
PRODUCTION LEVEL?25
ADVERTISING BUDGET?Q
UNIT PRICE?SO

```
COMPANY 2
PRODUCTION LEVEL?25
ADVERTISING BUDGET?
UNIT PRICE?50

QUARTER I
\begin{tabular}{ccccccr}
PROFIT MARKET SHARE & CASH ON HAND & NUMBER SOLD & INVENTORY ASSETS \\
400 & 50 & \(5 A 80\) & 25 & 100 & 7400 \\
400 & 50 & 5400 & 25 & 100 & 7400
\end{tabular}
COMPANY 1
PRODUCTION LEVEL?
ADVERTISING BUDGET?B
UNIT PRICE?SO
COMPANY 2
PRODUCTION LEVEL? 0
ADVERTISING BUDGET? \(\theta\)
UNIT PRICE?SE
\begin{tabular}{lcccccc}
PROFIT & MARKET & SHARE & CASH ON HAND & NUMBER SOLD & INVENTORY & ASSETS \\
425 & 50 & 6325 & 25 & 75 & 7825 \\
425 & 50 & 6325 & 25 & 75 & 7825
\end{tabular}

\section*{COMPANY}

PRODUCTION LEVEL? 10
ADVERTISING BUDGET?S00
UNIT PRICE?SS
```

COMPANY 2
PRODUCTION LEVEL?IO
ADVERTISING BUDGET?O
UNIT PRICE?SO

```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline QUARTER & \multicolumn{7}{|l|}{3} \\
\hline PROFIT & MARKET SHARE & CASH ON & HAND & NUMBER & SOLD & INVENTORY & ASSETS \\
\hline 785 & 64.28 & 7810 & & 45 & & 48 & 8610 \\
\hline 440 & 35.71 & 7065 & & 25 & & 60 & 8265 \\
\hline
\end{tabular}
COMPANY
PRODUCTION LEVEL? AS
ADVERTISING BUDGET?5BE
UNIT PRICE?SS
COMPANY 2
PRODUCTION LEVEL?25
ADVERTISING BUDGET?300
UNIT PRICE? 50

QUARTER 4
\begin{tabular}{ccccccc}
PROFIT MARKET SHARE & CASH ON HAND & NUMBER SOLD & INVENTORY & ASSETS \\
641 & 50.61 & 8371 & 41 & 44 & 9251 \\
605 & 49.38 & 7970 & 40 & 45 & 8870 \\
& & & & & \\
NEW LABOR CONTRACT - VARIABLE PRODUCTION COST NOW=
\end{tabular}
COMPANY I
PRODUCTION LEVEL? 40
ADVERTISING BUDGET? 400
UNIT PRICE?53
COMPANY 2
PRODUCTION LEVEL? 40
ADVERTISING BUDGET?350
UNIT PRICE?50
QUARTER 5
\begin{tabular}{ccccccc}
PROFIT & MARKET SHARE & CASH ON HAND & NUMBER SOLD & INVENTORY & ASSETS \\
660 & 48.8 & 9008 & 41 & 43 & 9911 \\
647 & 51.19 & 8635 & 43 & 42 & 9517
\end{tabular}
```

COMPANY }
PRODUCTION LEVEL?SO
ADVERTISING BUDGET?32S
UNIT PRICE?5G

```

QUARTER 6
\begin{tabular}{ccccccc}
PROFIT & MARKET SHARE & CASH ON HAND & NUMBER SOLD & INVENTORY & ASSETS \\
505 & 44.15 & 8757 & 34 & 79 & 10416 \\
620 & 55.84 & 9108 & 43 & 49 & 10137
\end{tabular}
COMPANY 1
PRODUCTION LEVEL? 4D
ADVERTISING BUDGET?300
UNIT PRICE?53
COMPANY 2
PRODUCTION LEVEL? 45
ADVERTISING BUDGET? 460
UNIT PRICE?SI
QUARTER 7
\begin{tabular}{cccccccc}
PROFIT MARKET SHARE & CASH ON HAND & NUMBER SOLD & INVENTORY & ASSETS \\
514 & 45 & 9187 & 36 & 83 & 10930 \\
617 & 55 & 9704 & 44 & 50 & 18754
\end{tabular}

A TRANSPORTATION STRIKE HAS OCCURED, AND YOU ARE UNABLE TO MOVE YOUR GOODS TO THE DISTRIBUTORS. NEGOTIATIONS HAVE BEGUN, BUT HOPE OF A SETTLEMENT LOOKS DIM.

COMPANY 1
PRODUCTION LEVEL? 40
ADVERTISING BUDGET?300
UNIT PRICE?SS

COMPANY 2
PRODUCTION LEVEL? 45
ADVERTISING BUOGET?370 UNIT PRICE?S3

QUARTER 8

COMPANY 1
PRODUCTION LEVEL?70
ADVERTISING BUDGET?300
UNIT PRICE?60

COMPANY 2
PRODUCTION LEVEL?70
ADVERTISING BUDGET?300
UNIT PRICE?SB
```

QUARTER 9

```
\begin{tabular}{ccccccc}
PROFIT MARKET SHARE & CASH ON HAND & NUMBER SOLD & INVENTORY & ASSETS \\
580 & 48.33 & 7858 & 29 & 164 & 10830 \\
370 & 51.66 & 7322 & & 31 & 134 & 10404
\end{tabular}

THE PRESIDENT HAS JUST IMPOSED A WAGE-PRICE FREEZE ON THE ECONOMY, AND YOU MAY NOT RAISE THE PRICE OF YOUR PRODUCT OVER THE NEXT 2 QUARTERS.
```

COMPANY 1
PRODUCTION LEVEL?70
ADVERTISING BUDGET?300

```
UNIT PRICE?60
COMPANY 2
PRODUCTION LEVEL? 68
ADVERTISING BUDGET?350
UNIT PRICE?S8
\begin{tabular}{llccccc}
QUARTER & 16 & & & & \\
PROFITT MARKET SHARE & CASH ON HAND & NUMBER SOLD & INVENTORY & ASSETS \\
249 & 46.66 & 6341 & 28 & 286 & 11079 \\
333 & 53.33 & 7011 & 32 & 162 & 10737
\end{tabular}
COMPANY 1
PRODUCTION LEVEL?80
ADVERTISING BUDGET?300
UNIT PRICE?60
COMPANY 2
PRODUCTION LEVEL?60
ADVERTISING BUDGET?300
UNIT PRICE? 58
QUARTER II
\begin{tabular}{ccccccc}
PROFIT & MARKET SHARE & CASH ON HAND & NUMBER SOLD & INVENTORY & ASSETS \\
227 & 48.33 & 5395 & 29 & 257 & 11306 \\
315 & 51.66 & 6659 & 31 & 191 & 11052
\end{tabular}

THE WAGE-PRICE FREEZE HAS ENDED
```

COMPANY I
PRODUCTION LEVEL?8G
ADVERTISING BUDGET?300
UNIT PRICE?62
COMPANY 2
PRODUCTION LEVEL?65
ADVERTISING BUDGET?300
UNIT FRICE?60
QUARTER 12

| PROFIT MARKET SHARE | CASH ON HAND | NUMBER SOLD | INVENTORY | ASSETS |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 146 | 48.21 | 4322 | 27 | 310 | 11452 |
| 261 | 51.78 | 6092 | 29. | 227 | 11313 |
|  |  |  |  |  |  |
| NEW LABOR CONTRACT - VARIABLE PRODUCTION COST NOW= |  |  |  |  |  |

```
```

COMPANY 1
PRODUCTION LEVEL?80
ADVERTISING BUDGET?300
UNIT PRICE?6S
COMPANY 2
PRODUCTION LEVEL?O
ADVERTISING BUDGET?300
UNIT PRICE?60

```

```

DO YOU WANT TO PLAY AGAIN(TYPE 1 FOR YES, $G$ FOR NO)? 0 DONE

```


The following are excerpts from the book, MARKSIM, A Marketing Decision Simulation by Greenlaw and Kniffin, International Textbook.

An exciting new educational technique designed to provide business students with greater insight into and skills in dealing with managerial problems is business simulation, or business gaming, as it is often called. A business simulation is a sequential decision-making problem structured around a model of a business operation in which participants assume the role of managing a simulated firm. One purpose of this text is to prepare the reader for assuming such a managerial role in MARKSIM--a computerized marketing management simulation.

\section*{THE MARKSIM LEARNING EXPERIENCE}

MARKSIM was created to provide the student with a planned learning experience in dealing with marketing management problems. Aiding him in gaining such experience are:
1. His instructor, who will be available for guidance when necessary,
2. This text, which will focus attention on numerous concepts, ideas, and analytical tools relative to marketing management, and their application to the simulation.
3. The MARKSIM model which is programmed on an electronic computer. This computer program provides a dynamic simulated marketing decision-making environment, from which operating data are fed back to participants periodically.

More specifically, the procedure followed in assuming the role of marketing manager in the simulation is as follows:
1. Participants familiarize themselves with the simulated environment in which they are to manage by studying the materials presented later in this text and perhaps also by discussing these materials in class.
2. They are next given an opportunity to analyze available data on their past operations and to make a set of decisions for the first period in which they will manage their firms.
3. When firm decisions are due for this period, they are handed in to the instructor or someone designated by him as a simulation administrator.
4. Then each firm's operating results for the period are calculated and printed out by the computer system, and this information is returned to its management.
5. This cycle of decision making, calculation, and feedback of results is repeated for a number of periods of play.
```

OPEN-MPRIINT,8
OPEN-DECIS,10
OPEN-INDY\#1,4
OPEN-INDY\#2,4
OPEN-INDY\#3.4
OPEN-USER,4
GET-MARK
RUN
MARK

```

```

ENTER USER NUMBER
7
ENTER INDUSTRY AND PERIOD :
?2.1
ENTER DECISIONS FOR FIRM 1 (I2 DATA)
7500000,300000,55,145,50000,30000,0,1,1,1,1,1
ENTER DECISIONS FOR FIRM 2 (12 DATA)
?500000,300000,55,145,50000,30000,0,1,1,1,1,1
ENTER DECISIONS FOR FIRM 3 (12 DATA)
?500000,300000,55,145,50000,30000,0,1,1,1,1,1
ENTER THE NAMES OF THE THREE FIRMS.ONE ON EACH LINE
?THE BES ONES INC.
TTHE ASSOCIATES
?THE BULLIES

```

```

DONE

```

RUN

\section*{RUN}

BARKSI
COMPUTATIONS COMPLETED : GET AND RUN BARKPI
DONE

\section*{RUN}
```

GET-BARKP I

```
RUN
BARKP I
事車
MARKSIM
THE BES ONES INC.
INDUSTRY 2 FIRM 1 PERIOD 1
- - -
\$ \(5.75443 E+66\)
```

2.75000E +06
385866.
-3.13587E+86
----------

```
131275.
150000.
153804.
50815.
213098.
300000.
500000.
50000 .
0
500000
 \(-2.04899 E+06\)

 s 569574 .
\$ \(5.95544 E+86\)
 \(2.63913 E+86\)
 --...-
s \(8.59458 E+86\)
 0
 ------...-
s \(8.59458 \mathrm{E}+06\)

 \(1.50000 E+06\)
 900000
MARKET 1*MARKET 2*MARKET 3
 30511
 145000 . 41000 . 34000 .
 33
 \(3^{41000 \cdot 3}\)
 145
 145
 145

 3051186285
 44323
 45000. AT \$ 55
 53187.2 AT \& 55
 262.55
 26255
S 108.75
s \(2.85522 E+06\)
 27008 AT S 55
 31505.9 AT S 55
 26255
 26255
\$ 108.75
\$ 2.85522E+06
 35000. AT S 55
 30761
 30761
s 94.25
s \(2.89921 E+06\)
 30000
 50000.
 20000 AT \$ 55
 9239.17 AT S 55
*** TEAR HERE***
```

* **
MARKSIIM
THE ASSOCIATES
INDUSTRY* 2. FIRM* 2 PERIOD | 1
-----------------------------------
s 5.75443E+06
2.75000E +06

385866. (ADD INCREASE IN INV:)
-3.13587E+86
----------
131275.
150000.
153804.
50815.
213098.
300000.
500000.
50000.
5
500000.
-2.04899E+06
5 569574.
\$ 5.95544E+06
2.63913E+06
----------
s 8.59458E+06
0
----------
S. 8.59458E +06
-----------------------------------
1.50000E+06
900000.
MARKET 1*MARKET 2*MARKET 3
30511 8628 5184
145000. 41000. 34000.
33 33
33 41000.
145
145
145
```

```

    30511 8628 5184
    44323.
    45000. AT $ 55
    53187.2 AT S 55
    26255
    26255
s 108.75
\$ 2.85522E+06
27000 AT \$ 55
31505.9 AT S 55
26255
26255
\$ 108.75
S 2.85522E+06
35000. AT \$ 55
30761
30761
\$ 94.25
\$ 2.89921E+06
30000
50000.

```

MRKSIM, Page 6
```

AT S 5S
9239.17 AT S 55

```
*** TEAR HERE***
```

***
MARKSIIM
THE BULLIES
INDUSTRY * 2 FIRM * 3 PERIOD * 1
\$ 5.75443E+06
2.75000E+06
385866. (ADD INCREASE IN INV.)
-3.13587E+06

```
 131275.
 150000 .
 153804.
 50815.
 213098.
 300000.
 500000.
 50000 .
 0
 500000.
 \(-2.04899 E+06\)

 s 569574 .

\$ \(5.95544 \mathrm{E}+06\)
 \(2.63913 E+06\)
 --------- -
 \(8.59458 E+06\)
 0
 ------.--
 \(8.59458 E+06\)

 \(1.50000 E+06\)
 900000 .
MARKET 1*MARKET 2*MARKET 3
 \(305118628 \quad 5184\)
 \(\begin{array}{lll}145000 . & 41000 . & \\ 33^{4} & 33^{4}\end{array}\)
 145
 145
 145

 \(30511 \quad 8628 \quad 5184\)
 44323.
45000. \(\quad A T\) S 55
 53187.2 AT \$ 55
 26255
 26255
\$ 108.75
S \(2.85522 E+06\)
 27000 AT \$ 55
 31505.9 AT S 55
 26255
 26255
s 108.75
\$ \(2.85522 E+06\)
```

35000. AT \$ 55
30761
30761
s 94.25
S 2.89921E+06
30000
50000.
20000 AT S 55
9239.17 AT S 55
```

*** TEAR HERE***
DONE
RUN
GET -ANNLIAL
RUN
ANNUAL
 TYPE IN USER NUMBER
? 1
ENTER INDUSTRY AND LATEST PERIOD *
?2,1
-
 ANNUAL REPORT FOR INDUSTRY 2
 AS OF PERIOD 1
FIRMS: THE BES ONES INC. THE ASSOCIATES THE BULLIES
CUMULATIVE RETAIL SALES
 SINCE PERIOD 0 44 44323. 44323.
 SINCE START
 44323.
 44323 .
CUMULATIVE NET PROFIT
 SINCE PERIOD 0 569574. 569574. 569.
 SINCE START
 OF GAME
 569574 .
569574.
569574 .
COMPARATIVE BALANCE SHEETS
ASSETS
 CASH
 INVENTORY
 TOTAL ASSETS
\(5.95544 E+06\)
\(2.63913 E+86\)
\(=========\)
\(8.59458 E+06\)
S. \(95544 \mathrm{E}+06\)
\(2.63913 \mathrm{E}+06\)
\(===========\)
\(8.59458 \mathrm{E}+86\)
\(5.95544 \mathrm{E}+86\)
\(2.63913 E+86\)
\(=========\)
8.59458E + 06
```

MRKSIM, Page 8

```

LIABILITIES DEBTS

CAP ITAL OWNER'S INVESTMENT

DONE

\section*{RUN}

GET -MASK
RUN
MASK

\section*{MARKS IM}

A MARKETING SIMULATION

COMPANY SALES.
COST OF PRODUCTION................... CHANGE IN INVENTORY VALUE........... COST OF GOODS SOLD....................
\(\qquad\)

OPERATING AND ADMINISTRATIVE EXPENSES..: TRANSPORTATION TO RETAILERS......... TRANSPORTATION TO DISTR CENTERS.... TRANSPORTATION TO WHOLESALERS...... INVENTORY COSTS AT FACTORY.......... INVENTORY COSTS AT DISTR CENTERS... ADVERTISING ALLOWANCES TO RETAILERS NATIONAL ADVERTISING EXPENDITURES.. MARKETING RESEARCH...................
```

INTEREST CHARGES
FIXED EXPENSES..........................
LESS TOTAL O+A EXPENSES

```
NET PROFIT
Financial
ENDING CASH BALANCE..
ENDING INVENTORY VALUE.......................
TOTAL ASSETS
LESS DEBTS..
OWNER'S INVESTMENT...............................

TOTAL INDUSTRY NATIONAL ADVERTISING.....
TOTAL INDUSTRY ALLOWANCES TO RETAIL.....
POTENTIALS:
 FOR COMPANY DURING THIS PERIOD....
 FOR INDUSTRY TWO PER\&ODS HENCE.....
SHARE OF MARKET (IN PERCENT)...............
PRICES OF COMPETITORS:
 FIRM \|1.......................................
 FIRM 2..
 FIRM 3..

RETAILERS:
 RETAIL SALES IN UNITS...................
 total retail sales in units.........
 BEGINNING INVENTORY.....................
 ENDING INVENTORY...........................
WHOLESALERS:
 ORDERS FROM RETAILERS IN UNITS.....
 DELIVERIES TO RETAILERS..............
 SELLING PRICE TO RETAILERS...........
 RECEIPTS FROM RETAILERS..............
 BEGINNING INVENTORY......................
 ENDING INVENTORY...........................
DISTRIBUTION CENTERS:
 ORDERS FROM RETAILERS IN UNITS.....
 DELIVERIES TO RETAILERS..............
 SELLING PRICE TO RETAILERS..........
 COMPANY SALES TO RETAILERS.........
 BEGINNING INVENTORY.....................
 ENDING INVENTORY...........................
FACTORY WAREHOUSE:
 ORDERS FROM WHOLESALERS IN UNITS...
 DELIVERIES TO WHOLESALERS............
 SELLING PRICE TO WHOLESALERS.
 COMPANY SALES TO WHOLESALERS........
 SHIPMENTS TO DISTR CENTERS...........
 PRODUCTION THIS PERIOD...............
 BEGINNING INVENTORY.....................
 ENDING INVENTORY.........................
DONE
title:
DESCRIPTION:
\[\)\begin{tabular}{l}
\text { This program allows three teams to act as business executives making } \\
\text { periodic high level decisions for their firms. } \\
\text { A realistic business practice operating over a period of several years } \\
\text { can be simulated in one day. Each team alternately makes decisions about } \\
\text { their company and allows the computer to carry out interactions among the } \\
\text { teams and to produce quarterly reports based on the strategies of all three } \\
\text { teams. } \\
\text { The product is not specifically defined, therefore, the decisions made by } \\
\text { the management teams must be based on general business principles and not } \\
\text { on knowledge concenning a particular product. Naturally, some simplifica- } \\
\text { tions have been made to reduce a real-life business situation to one which } \\
\text { is workable on a time-share system with young students. One of these is } \\
\text { the requirement that each quarterly operation be financed from cash on hand. } \\
\text { Each team of participants may assume that it has been called in to take over } \\
\text { the management of a company which has strong possibilities but which is not } \\
\text { in very good financial position at the present time. As play progresses the } \\
\text { participants should acquire a feel for the market and an understanding of } \\
\text { their competitors which should furthe: aid in their derision making. Each } \\
\text { team may want to keep brief notes of the reasoning behind their decisions so } \\
\text { these different strategies may be discussed later. }
\end{tabular}
\]
See Page 2

CONSIDERATIONS:

\section*{ACKNOWLEDGEMENTS}

There are two tapes to this package -- SETUPC, and MANAGC.

TIES
St. Paul, Minnesota

Management Simulation allows a group to be divided into three subgroups acting as teams of business executives making periodic high level decisions for their firms.

A realistic business practice operating over a period of several years can be simulated in one day. Each team alternately makes decisions about their company and allows the computer to carry out interactions among the teams and to produce quarterly reports based on the strategies of all three teams.

The product is not specifically defined, therefore, the decisions made by the management teams must be based on general business principles and not on knowledge concerning a particular product. Naturally, some simplifications have been made to reduce a reallife business situation to one which is workable on a time-share system with young students. One of these is the requirement that each quarterly operation be financed from cash on hand.

Each team of participants may assume that it has been called in to take over the management of a company which has strong possibilities but which is not in very good financial position at the present time. As play progresses, the participants should acquire a feel for the market and an understanding of their competitors which should further aid in their decision making. Each team may want to keep brief notes of the reasoning behind their decisions so these different strategies may be discussed later.

\section*{GEOGRAPHICAL BREAKDOWN OF THE MARKET}

The market is divided geographically into four areas. Any firm may sell its product in any area. Area 1 is the home area of firm 1, area 2 is the home area of firm 2, and area 3 is the home area of firm 3. Area 4 is an open market. Each firm has an advantage in its own area, in that there is no transportation charge applied to the units it sells there. Transportation charges are applied to units sold in competitors' areas, but a smaller transportation charge is applied to units sold in area 4 . These charges are included in the unit delivered cost shown on each firm's confidential report.

\section*{INITIAL REPORT}

At the start of play each team will be given a report showing the economic condition of their company.

\section*{AREA DECISIONS}

After studying the initial report, each team makes a set of decisions. For each marketing area, it must decide the unit selling price and the amount of money to be spent on advertising. These have a direct and immediate effect on the amount of business each firm will get in each area.

The potential market in each area will vary as a function of selling price, amount spent on research, and the total marketing expenditure. There are no seasonal cycles built into this model.

\section*{PLANT DECISIONS}

In addition to the area decisions, a set of plant decisions must be made. Each management team must decide how much money to spend on production, research, and plant improvement.

Plant manufacturing capacity may be increased at a cost of \(\$ 20,000\) for each 1,000 units. The new unit capacity can be calculated by dividing the plant value by \(\$ 20\). If a plant is operated at less than full capacity, a penalty of higher unit cost is automatically assessed.

Research and development funds are applied over many periods. In this model they will yield a return greater than their cost in the long run. This is true of these funds only up to a reasonable percentage of sales income. \(R \& D\) will help increase the potential market and decrease production costs.

\section*{CONFIDENTIAL REPORT}

Sales Analysts
\(\left.\begin{array}{l}\text { Orders - } \\
\text { Shipments - } \begin{array}{l}\text { The total number of orders received by your firm in the areas } \\
\text { indicated during the period covered by the report. }\end{array} \\
\text { The total number of units sold by your firm in the areas indi- } \\
\text { cated for the period covered. If this figure is less than } \\
\text { orders, your firm may be underproducing. }\end{array}\right\}\)\begin{tabular}{l}
The total amount your firm decided to spend on marketing in \\
each area during the previous period.
\end{tabular}

Cash Flow-Financial Analysis
\begin{tabular}{ll}
Receipts - & \begin{tabular}{l}
The total amount of cash taken in from the sale of units during \\
the report period.
\end{tabular} \\
Disbursements - & \begin{tabular}{l}
The total amount of cash spent by your firm during the report \\
period.
\end{tabular} \\
Net Flow - & \begin{tabular}{l}
Receipts less disbursements.
\end{tabular} \\
New Balance - & \begin{tabular}{l}
The amount of cash your firm now has with which to conduct \\
business during the next period.
\end{tabular} \\
Cash - & \begin{tabular}{l}
The new cash balance.
\end{tabular} \\
Inventory - & \begin{tabular}{l}
The production costs of the units remaining unsold from the \\
previous periods.
\end{tabular} \\
Total Assets - & \begin{tabular}{l}
The current value of your plant. To determine plant capacity \\
for the coming period, divide this value by \(\$ 20.00\).
\end{tabular} \\
\hline
\end{tabular}

\section*{COMPANY STATUS}

All companies begin with the same production capacities, assets, and cash balance. These amounts are:
\begin{tabular}{lrr}
CASH & \(\$ 7,602\) & \\
INVENTORY VALUE & \(\$ 2,509\) & 71 @ \(\$ 34.34\) \\
PLANT VALUE & \(\$ 5,200\) \\
TOTAL ASSETS & \(\$ 15,311\) \\
PROOUCTION CAPACITY & 260 units
\end{tabular}

\section*{GENERAL OPERATING INSTRUCTIONS FOR THE MANAG GAME ON HP 2000 C}

The MANAG simulation is divided into two routines which are described below:
SETUPC - This routine is called and executed at the beginning of the game to initialize the program values for all the groups running the simulation.

MANAGC - This routine allows the three teams of a group to input their values for the unit selling price and advertising in each area and the amounts for production allocation, research and development and plant improvement. After these values are inputted, MANAG will perform the simulation, print out the confidential quarterly report and save the results.

\section*{SPECIFIC INSTRUCTIONS FOR RUNNING THE MANAGC GAME}

Commands.printed below entirely in uppercase are entered by the system user on the remote terminal. Lowercase statements are responses by the computer.
A. To initialize the program values for each group of three teams playing the simulation, it is necessary to use the system command OPEN-GAMEi, 1 where \(i\) is the game number, an integer 1-10. There must be one such OPEN command for each group of three teams playing the simulation (limit 10).
1. GET-SETUPC
2. OPEN-GAMEi, \(1 \quad i=1,2,3, \ldots 10\)
(If you get the message DUPLICATE ENTRY, use the next sequential integer unless you are starting the game over and want to reinitialize that game. In that case, proceed to STEP 3 below.)
3. RUN
4. setupc
5. game number?
(You should enter the integer used for \(\mathfrak{i}\) in the OPEN command given in STEP 2.)
6. done

Repeat Steps 1-6 for each game (set of three teams) to be initialized.
B. To run MANAGC for the first and all succeeding quarters:
1. GET-MANAGC
2. RUN
3. managc
4. game number? (Enter the game number for the group of three teams.)
5. for firm 1 enter area selling prices. \(360,60,60,60\)
6. enter area advertising expenditures.?150,100,100,100
7. enter production, \(r\) and \(d\), and plant improvement.?5000,500,500
8. enter firm 2 data using three lines as above.
9. \(36 \varnothing, 60,60,60\)
10. ? 100,150,100,100
11. ?5100,400,600
12. enter firm 3 data using three lines as above.
13. ? \(60,60,60,60\)
14. ?100,100,150,100
15. ?5200,500,300
16. do you want quarterly report printed?

If yes, the computer then prints the Confidential Report for all three firms.
(4-16 The question mark is a response from the computer. The data typed following the question mark is entered from WORK SHEETS.)
17. done

Typical Work Sheets for One Firm

\begin{tabular}{|c|c|c|}
\hline PART A & WORK SHEET & THIRD-QUARTER TEAM \# 1 \\
\hline CASH & \$11,547 & \\
\hline PRODUCTION ALLOCATION & 6,000 & \\
\hline SUB TOTAL & 5,547 & \\
\hline RESEARCH \& DEVELOPMENT & 2,000 & \\
\hline SUB TOTAL & 3,547 & \\
\hline PLANT IMPROVEMENT & 450 & \\
\hline SUB total & 3,097 & \\
\hline ADVERTISING EXPENDITURE & 513 & \\
\hline CASH ON HAND & 2,584 & \\
\hline
\end{tabular}

PART B
\begin{tabular}{lcccc}
& \multicolumn{4}{c}{4 REGIONS } \\
\cline { 2 - 5 } & \(\underline{1}\) & \(\underline{2}\) & \(\underline{3}\) & \(\underline{4}\) \\
UNIT SELLING PRICE & \(\underline{\$ 55}\) & \(\underline{54}\) & \(\underline{\$ 56}\) & \(\underline{\$ 54}\) \\
ADVERTISING DISTRIBUTED BY AREA & \(\underline{\$ 150}\) & \(\$ 111\) & \(\$ 127\) & \(\$ 137\)
\end{tabular}

PART C - REPEAT FIGURES FROM PART A
PRODUCTION ALLOCATION
\(\$ 6,000\)
RESEARCH \& DEVELOPMENT 2,000
PLANT IMPROVEMENT 450

RUN
OPEN-GAM1.1
RUN
setupc
GAME NUMBER? i
DONE

GET-MANAGC
RUN
MANAGC
GAME NUMBER?I
FOR FIRM 1 ENTER AREA SELLING PRICES.?60,60,60,60
ENTER AREA ADUERTISING EXPENDITURES.?150,100,100.106
ENTER PRODUCTION, R AND D, AND PLANT IMPROUEMENT.?5000,500,500
ENTER FIRM 2 DATA USING THREE LINES AS ABOVE.
? \(60,60,60.60\)
? 100.150 .100 .100
25100.406.600

ENTER FIRM 3 data using three lines as above. 260.60,60,60
? 100.100 .150 .100
?5200.500.300
dO YOU WANT QUARTERLY REPORT PRINTEDTYES

FIRM 1 PERIOD 1

SALES ANALYSIS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline AREA & 1 & 2 & & 3 & & 4 & TOTAL \\
\hline ORDERS & 41 & 30 & & 30 & & 73 & 174 \\
\hline SHIPMENTS & 41 & 30 & & 30 & & 73 & 174 \\
\hline MARKETING & 150 & 100 & & 100 & & 100 & 458 \\
\hline REUENUE & 2460 & 1800 & & 1806 & & 4388 & 10440 \\
\hline DLURD UNIT COST(S) & 36.67 & 38.67 & & 38.67 & & 37.67 & \\
\hline PROFIT AND LOSS & & & CASH & FLOW & \multicolumn{3}{|l|}{FINANCIAL ANALYSIS} \\
\hline CURRENT I NCOME & 16440 & & \multicolumn{2}{|l|}{RECEIPTS} & & & 10440 \\
\hline COST OF GDS SLD & 6381 & & \multicolumn{4}{|l|}{DISBURSEMENTS} & 8049 \\
\hline TRANSPORTATION & 193 & & \multicolumn{4}{|l|}{NET FLOW} & 2391 \\
\hline MARKETING & 458 & & \multicolumn{4}{|l|}{NEW BALANCE} & 9993 \\
\hline RESEARCH & 580 & & & & & & \\
\hline DEPRECIATION & 104 & & \multicolumn{4}{|l|}{CASH} & 9993 \\
\hline NET PROFIT & 2812 & & \multicolumn{4}{|l|}{INVENTORY VALUE} & 1128 \\
\hline TAXES & 1406 & & \multicolumn{4}{|l|}{PLANT VALUE} & 5596 \\
\hline PROFIT AFTER, TAXES & 1486 & & \multicolumn{4}{|l|}{TOTAL ASSETS} & 16717 \\
\hline \multicolumn{3}{|l|}{DISBURSEMENT ALLOCATION(SUALUE)} & \multicolumn{5}{|l|}{INVENTORY ALLOCATION(NO. ITEMS)} \\
\hline TRANSPORTATION & 193 & & \multicolumn{4}{|l|}{BEGINNING} & 71 \\
\hline MARKETING & 450 & & \multicolumn{4}{|l|}{PRODUCED} & 133 \\
\hline RESEARCH & 500 & & \multicolumn{4}{|l|}{SHIPPED} & 174 \\
\hline PLANT IMPROVEMENT & 508 & & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{BALANCE}} & \multirow[t]{2}{*}{30} \\
\hline PRODUCTION COST & 5006 & & & & & & \\
\hline TAXES & 1406 & & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{UNIT COST(S)}} & \multirow[t]{2}{*}{37.59} \\
\hline TOTAL & 8649 & & & & & & \\
\hline
\end{tabular}

FIRM 2 PERIOD 1

SALES ANALYSIS

FIRM 3 PERIOD 1

SALES ANALYSIS


```

RUN
RUN
STAT
THIS PROGRAM WILL DO THE FOLLOWING:
1. PRINT OUT A TABLE OF EXPERIMENTAL VALUES, ERRORS,
AND PERCENT ERRORS INCLUDING AUERAGES FOR ALL.
2. GIVE YOU A CHOICE OF ALL OF THE FOLLOWING:
CHOICE 1 - EXPERIMENTAL VALUE DISTRIBUTION
INCLUDING A BAR GRAPH
CHOICE 2 - RANKING BY PERCENT ERROR
CHOICE 3 - RANKING BY EXPERIMENTAL VALUE
CHOICE 4 - OTHER INFORMATION
CHOICE 5 - ALL OF THE ABOVE CHOICES
CHOICE 6 - ENDS PROGRAM
INSTRUCTIONS
- LINES 100 TO 159 HAVE BEEN RESERUED FOR DATA.
2. NOTE: THE FIRST DATA LINE MUST ALWAYS BE N0. 100
AND LINE 101 MUST ALWAYS BE USED.
3. THERE IS ROOM FOR DATA FOR A MAXIMUM OF 50 STUDENTS.
4. INPUT SHOULD BE IN THE FORM:
100 DATA STUDENT NO., VALUE, STUDENT NO., UALUE, ETC.,
5. STUDENT NUMBERS MUST RANGE FROM 1-50.
6. OLD DATA IS ERASED BY INPUTING NEW DATA WITH THE SAME
LINE NUMBERS DURING SUBSEQUENT RUNS
7. IF THE FIRST RUN REQUIRES DATA LINES 100-110 AND THE
SECOND RUN REQUIRES LINES 100-109, LINE 110 IS TYPED
IN TO ERASE OLD DATA IN THAT LINE.
8. NEUER TYPE SAVE DURING THE RUN OF ANY PART OF THIS
PROGRAM.

```
```

DONE

```
DONE
100 DATA 1,37,..8,2,38.6,3,39.7,4,37.9,5,38,6,40.6,7,41,.,8,8,37.5,9
100 DATA 1,37,..8,2,38.6,3,39.7,4,37.9,5,38,6,40.6,7,41,.,8,8,37.5,9
101 DATA 39.5,10,40.1,11,39.8,12,39.4,13,35.4,14,33.9,15,42,16,39.6
101 DATA 39.5,10,40.1,11,39.8,12,39.4,13,35.4,14,33.9,15,42,16,39.6
102 DATA 17,38.7,18,37,..6,19,38.5,20,40.1
102 DATA 17,38.7,18,37,..6,19,38.5,20,40.1
RUN
RUN
STAT
STAT
WHAT IS THE TOTAL NO. OF STUDENTS AND THE CALC. UALUE?20,39
```



```
DO YOU DESIRE ADDITIONAL INFORMATION ? IF SO, TYPE
IN THE NUMBER OF YOUR CHOICE.?5
FOR THE DISTRIBUTION, WHAT LOWER LIMIT, UPPER LIMIT,
AND STEP DO YOU DESIRE ?35,42.5,.5
```

FROM	to Less than	NO.		BAR GRAPH
$\bigcirc$	35	,		*
35	35.5	1		*
35.5	36	0		
36	36.5	0		
36.5	37	0		
37	37.5	0		
37.5	38	4		****
38	38.5	1		*
38.5	39	3		***
39	39.5	1		*
39.5	40	4		****
40	40.5	2		**
40.5	41	1		*
41	41.5	$\bigcirc$		
41.5	42	1	;	*
42	42.5	1		*
42.5	INFINITY	0		



RANKING BY EXPERIMENTAL VALUE

## 

RANK STUDENT NO. EXPER. VALUE

1		
2	14	33.9
3	13	35.4
4	8	37.6
5	18	37.6
6	1	37.8
7	4	37.9
8	19	38
9	2	38.5
10	17	38.6
11	12	38.7
12	9	39.4
13	16	39.6
14	3	39.7
15	11	39.8
16	28	40.1
17	6	40.6
18	75	41.8

STAT, page 4

OTHER INFORMATION
OTHER INFORMATION

THE MEDIAN VALUE IS 38.7
THE LOWEST VALUE IS 33.9
THE HIGHEST VALUE IS 42
THE MEAN DEVIATION (AUERAGE DEVIATION) IS . 130003
THE STANDARD DEVIATION IS 1.87776
THIS CONCLUDES THE RUN.
DONE


#### Abstract

ABSENTEE LISTINGS

This program provides a listing of absentees in alphabetical order, according to the first three letters of the last name (most efficient method). The list is divided into three groups, according to each student's class (10, 11, or 12). Calculations are also made to determine total absentees and percent attendance. The completed output is then suitable for use as a daily bulletin of high school attendance. Asterisks designate change of alphabetical character in last name.

See page 2.


TITLE:

## DESCRIPTION:

INSTRUCTIONS:

## SPECIAL

 CONSIDERATIONS:Care must be exercised to insure sufficient storage for each record, as a file overflow will result in program termination. In all cases, the specific file in which the deficiency has occurred will be indicated by the program. That file should be killed and opened again.

## INSTRUCTIONS

Files "ATTEN1," "ATTEN2," "ATTEN3," and "ATTEN4," must be opened before each run and killed afterwards. "ATTEN1" - "ATTEN3" accomodates the number of absentees in classes 10, 11 and 12, respectively ( 5 names per record). For example, if there are 90 absentees in a class, there must be at least 19 records for that corresponding file [1+INT(N/5)].

Since the files will be killed immediately after the run of the program, the number of records opened is of no consequence as far as cost is concerned. Therefore, files should always be opened larger than necessary.

File "ATTEN4" is used as a buffer file. It must be opened (1 record per entry) to the number of students in the largest class.

Absentees should be entered on paper tape (to conserve terminal time) and should be punched as follows:

LAST NAME, FIRST NAME, GRADE [x-off, return, linefeed]

## where:

the name of the student is entered as indicated and may occupy 20 positions, grade is the class of the student being entered. If omitted, an appropriate error message will be issued.

Name and grade need not be separated; however, any character other than a blank will be accepted as part of the name. If data is not entered on tape, a return is the only needed character to end each line.

## Example:

SMITH, JOHN 12 [return]
After the last absentee has been entered, type "END" at the next input (to signify end of data). Each class will then be alphabetized and recorded. Respond with "YES" or "NO" upon request of "CORRECTIONS?". If "YES" the entry numbers of absentees to be omitted will be requested (entry numbers are assigned sequentially during input). If "NO" is typed, the program will continue.

At the input for "TOTAL ATTENDANCE?", enter the number of students in attendance (the number of students present when there are no absentees). At the next input ("NUMBER OF LINES PER PAGE?"), enter the number of lines to be printed on a single page ( 57 for a standard sheet).

Execution of the program will not continue until the return key is depressed (allowing time for the placement of a stencil or other duplicating forms, in the teletype).

The return key must again be depressed after the printing of the given number of lines. If the printing form is not changed, printing will be continued at the point at which it was previously halted. For additional executions, RUN-930.

```
RUN
RUN
ATTEND
ENTER ABSENTEES AS FOLLOWS:
LAST NAME, FIRST - GRADE
TYPE 'END' AT FINAL DATA REQUEST
```



```
ENTRY 17KRIESS,DONNA 10
ENTRY 2%
 MIZERAK,PATRICE 12
ENTRY 3?
KELLANDER,LORETTA II
ENTRY 4?
FREELING,DONNA 11
ENTRY 5?
KALP,DEB 12
ENTRY 6?
JAFFE,JOEL 12
ENTRY 7?
LEYLAND,MIKE 12
ENTRY 87
KENNEDY, PAULA 12
ENTRY 9?
SCOTT,VALENTINA 12
ENTRY 10?
BOSHO,PAM 12
ENTRY 117
 NANNI,DEB 10
ENTRY 12?
 FREDERICK,AMY 12
ENTRY 13?
 TOMASOVICH,RICK 11
ENTRY 14?
 O}\mathrm{ 'BRIEN,CINDY 11
ENTRY 15?
BARBER,JACK 12
ENTRY 16?
 ENGLISH,JOHN 12
ENTRY 17%
 GREEN,A-MARTIN 11
ENTRY 18?
 MORRISON,ALBY 11
ENTRY 19?
 SWIDZINSKI,ROD I
ENTRY 20?
 BOUCH, MARY II
ENTRY 21]
 LANCASTER, JANE ||
ENTRY 227
 SCHEDLER,LINDA 12
ENTRY 23?
 STEFFANAUER, KAREN II
ENTRY 24?
 BUREAU,CHUCK 11
ENTRY 25?
 BLOOM,LARRY }1
ENTRY 26?
 HENDERSHOT,CHUCK 2
INPUT ERROR
RE-TYPE ENTRY
ENTRY 26?
ENTHENDERSHOT,CHUCK }1
ENTRY 27?
 GIBBS,CATHY 12
ENTRY 28?
 SMALLWOOD,BEV 12
ENTRY 29?
 MCKAIN,LARRY 10
ENTRY 30?
 ORTH,RON 10
```

```
ENTRY 3!?
 COGLEY,BOB 12
ENTRY 32?
GAmble, RAY 12
ENTRY 33?
HEITZER,KEN !1
ENTRY
34?
 OLEXSAK,DAVE |
ENTRY 35?
 LEUTHARDT,VICKI . }1
ENTRY
36?
ZALIPONI,ROD 12
ENTRY 37%
BIEDENBACH,PAUL 10
ENTF: 38?
TURNER,TOM 10
ENTRY
39?
 PATTEN,PAT 10
ENTRY
40?
 SCOTT, HAROLD II
ENTRY
 41?
 BITTNER,WM. 10
ENTRY 42?
HOCKENBERRY,ROBT 10
ENTRY
 43?
 ZITZMAN,AL 12
ENTRY
 44?
 PROTZMAN,S-DWIGHT 10
ENTRY
 45?
 SWIDZINSKI,DALE 11
ENTRY
 46?
 ZARNICK,DAVE 12
ENTRY 477
OTT,LUTHER 1
ENTRY 48?
 PALACE,CHUCK 11
ENTRY 49?
 SHEPPECK,JERRY 11
ENTRY
 50?
 GREEN,JULIE 12
ENTRY
 517
 LESLIE,SALLY 12
ENTRY 52?
 BAUMGART,CAROL 10
ENTRY 53?
 DALLAS,KAREN 10
ENTRY
 54?
 CRILEY,RON 12
ENTRY 55?
 GALL,DIANNA 12
ENTRY 56?
 DUNKLE,LISS -A !1
ENTRY 57?
 WEIGLE,PAT II
ENTRY 58?
 LAMBERT, KAREN 10
ENTRY 59?
 URAM,GARY 12
ENTRY
 6 0 ?
 MCCOMMON,DAVE 10
ENTRY
 61?
 FALLECKER,ROSE 10
ENTRY 62?
 GRAHAM,DEB }1
ENTRY
 6 3 7
 gaudino, SABRINA 10
ENTRY
 64?
 BIEDENBACH,ROGER 11
ENTRY
 65?
 CINGOLANI,ROBT 12
ENTRY
 6 6 ?
 YURKOVICH,GEO. 11
ENTRY
 6 7 \%
 K-MAUST,KEITH 12
ENTRY
 68
 GRAY,PATTY 11
ENTRY
 6?
 KENNEDY,L-TOM 11
```

```
ENTRY 70?
MILLER,GEO• I
ENTRY
 71?
CRAIG, RANDY 11
ENTRY 72%
HUTCHISON,KEITH 1/
ENTRY 737
 MATSON,JIM 11
ENTRY 74?
 HAINER,FRANK 12
ENTRY
 75?
 BARBE,
INPUT ERROR
RE-TYPE ENTRY
ENTRY 75?
ENTRY 76?
BARBER,JEFF 10
REOTT,ROD 10
ENTRY 77?
SMITH, RANDY 16
ENTRY
 78
 WAHLER,RONNIE 10
ENTRY
 79?
 BAYER,SCOTT 10
ENTRY BG?END
```

CLASS 16 RECORDED
CLASS 11 RECORDED
CLASS 12 RECORDED
DATA RECORDED
CORRECTIONS?YES
ENTER NUMBER OF ABSENTEE TO BE OMITTED
TYPE ZERO AT FINAL DATA REQUEST
ENTRY NUMBER?35
ENTRY NUMBER254
ENTRY NUMBER? ZERO
778

TOTAL ATTENDANCET2406
NUMBER OF LINES PER PAGE? IGG
RETURN KEY MUST BE DEPRESSED TO CONTINUE EXCECUTION

	attendance bulletin 7/19/72	
GRade 16:	GRADE 11:	GRADE 12:
* BARBER, JEFF	*BIEDENBACH, ROGER	*BARBER, JACK
BAUMGART, CAROL	BOUCH, MARY	BLOOM, LARRY
BAYER, SCOTT	BUREAU, CHUCK	BOSH0, PAM
BIEDENBACK, PAUL	*CRAIG, RANDY	*CINGOLAN, ROBT
BITTNER, WM.	*DUNKLE, LISSA	COGLEY, BOB
* DALLAS, KAREN	*FREELING, DONNA	*ENGLISH,JOHN
* FALLECKER, ROSE	*GRAY, PATTY	*FREDERICK, AMY
* GAUDINO, SABRINA	GREEN, MARTIN	*GALL, DIANNA
GRAHAM, DEB	*HEITZER, KEN	GAMBLE, RAY
* HOCKENBERRY, ROBT	HUTCHISON, KEITH	GIBBS, CATHY
*KRIESS, DONNA	*KELLANDERjLORETTA	GREEN; JULIE
* Lambert , Karen	KENNEDY, TOM	* HA INER, FRANK
* MCCOMMON, DAVE	*LANCASTER, JANE	HENDERSHOT, CHUCK
MCKA IN, LARRY	* MATSON, JIM	*JAFFE,JOEL
*NANNI, DEB	MILLER,GEO.	*KALP, DEB
*ORTH, RON	MORRISON, ALBY	KENNEDY, PAULA
* PATTEN, PAT	*OLEXSAK, dave	*LESLIE,SALLY
PROTZMAN, DWIGHT	OTT,LUTHER	LEYLAND,MIKE
*REOTT,ROD	O'BRIEN, CINDY	*MAUST,KEITH
*SMITH, RANDY	*PALACE, CHUCK	MIZERAK, PATRICE
*TURNER,TOM	*SCOTT, HAROLD	*SCHEDLER,LINDA
* WAHLER, RONNIE	SHEPPECK, JERRY	SCOTT, VALENT INA
	STEFFANAUER, KAREN	SMALLWOOD, BEV
	SWIDZINSK1. DALE	* URAM, GARY
	SWIDZINSKI,ROD	*ZALIPONI, ROD
	*TOMASOUICH, RICK	ZARNICK, DAVE
	* Weigle, Pat	ZITEMAN,AL
	* YURKOUICH, GEO.	
total absentees	77	
PERCENT ATtENDANCE	96.797	

title:
DESCRIPTION:

INSTRUCTIONS:

AVERGI: Averages and Curves Grades
This program will average any number of grades. A passing grade must be inputted by the teacher, and the computer will list the numerical value of the curve and the respected adjusted grades based on the computed averages and the passing grade.

Enter grades as DATA in lines 600-700.

SPECIAL CONSIDERATIONS:


TITLE:	$\begin{array}{ll} \\ \text { BASKETBALL STATISTICS } & \text { BASKET } \\ 36605\end{array}$
DESCRIPTION:	This program maintains individual and team statistics for varsity and junior varsity basketball teams. Data items input are offensive rebounds, defensive rebounds, losses (losses of the ball by bad passes, fumbles, allowing the ball to be stolen or being tied up and losing the jump), violations (rule violations other than fouls which result in the loss of the ball), gains (individually forcing losses or violations on opponents), assists, fouls, field goals attempted, field goals made, free throws attempted and free throws made. Output consists of a chart divided into Floor Play and Shooting categories which contains individual totals, games played and shooting and scoring averages. Team information consists of totals and averages on all items input.
INSTRUCTIONS:	Open files VARS and JRVAR with one record each and file NAMES with two records. Enter a zero matrix ( $21 \times 6$ ) in VARS and JRVAR. A program named PROG is provided to enter the zero matrix. Just GET-PROG and RUN to initialize the files. Enter the names of up to 21 varsity players in numerical order in the first record of NAMES and the same information for the junior varsity in the second record. Maximum name length is nine characters.   Two statements must be altered as follows: $80 \mathrm{R}=$ number of varsity players $\quad \cdots 110 R=$ number if junior varsity players.   The arqument of the $T A B$ function and the school name in statement 890 should be changed. The formula for the argument is:   If the number of characters in the name string is odd, then the argument is - $36 \frac{\text { number of characters }+1}{2}$   If the number of characters in the name string is even, then the argument is - $36 \frac{\text { number of characters }}{2}$   continued on following page
SPECIAL CONSIDERATIONS:	In order that all data for one team may be stored in a file of one record, the data which is output from a matrix as large as $21 \times 13$ is compressed into a $21 \times 6$ matrix. Of the thirteen items for each player, the rebounding and shooting may each total up to 999 (three digits) and other items up to 99 for a total of 32 digits. These are stored in five six-digit numbers and one two-digit number.
ACKNOWLEDGEMENTS:	Richard Bach North Eugene High School

INSTRUCTIONS continued


#### Abstract

On execution, first input required is the number of players for whom data is to be entered, number of games played to date and team identification (varsity or junior varsity).

Next input is player data consisting of the uniform number followed by the eleven items listed above (in the description of the program) in the order given. Players are entered separately and in order of uni-


 form number.On the season's first execution, enter data for all players, including those who have not yet played. For them, enter the negative of the uniform number (to avoid counting a game played) and eleven zeroes. The question GAMES? will be typed when a negative uniform number is entered. Enter a zero on first execution.

Errors in data can be corrected after the error appears in a complete printout. To correct for any number or players, execute the program, indicating the number of players for whom corrections are needeu. Then enter the negative of the player number followed by zeroes or positive or negative numbers as needed to correct. When GAMES? is typed enter the number required to correct the number of games played.

To get a printout without entering player data, enter zero for the number of players.
RUN
files names
20 PRINT $1,1:$ "WOODRUFF","LEWMAN","AINGE DAV","HATFIELD", "JACKSON"
30 PRINT " ${ }^{\prime}$ "COOLEY","SCHNEIDER","GOHL","MCCONNELL","ROSHAU","HANEKE"
40 PRINT *13"NEEDS","AINGE DOU","BURGE"
50 END
RUN
MISSING OR PROTECTED FILE
OPE-NAMES. 2
RUN

DONE

```
OPE-VARS,I
OPE-JRVAR,1
GET-PROG
RUN
PROG
DONE
GET-bASKET
RUN
BASKET
```

```
ENTER | OF mEN PLAYING. game ". TEAM (VARSITY OR JV)
```

ENTER | OF mEN PLAYING. game ". TEAM (VARSITY OR JV)
?14,I,V
?14,I,V
ENTER ", OFF RB, DEF RB, LOSS, VIOL, GAIN, ASST, FOULS, FGA, FG, FTA, FT
ENTER ", OFF RB, DEF RB, LOSS, VIOL, GAIN, ASST, FOULS, FGA, FG, FTA, FT
?12,1,1,0,0,0,2,2,2,1,2,0
?12,1,1,0,0,0,2,2,2,1,2,0
?-13,0,0,0,0,0,0,0,0,0,0,0
?-13,0,0,0,0,0,0,0,0,0,0,0
GAMES?|
GAMES?|
?14,0,1,1,1,1,2,3,6,2,2,2
?14,0,1,1,1,1,2,3,6,2,2,2
720,0,0,0,0,0,0,2,2,0,0,0
720,0,0,0,0,0,0,2,2,0,0,0
322,0,1,1,1,1,3,3,5,3,4,4
322,0,1,1,1,1,3,3,5,3,4,4
724,1,1,0,0,0,1,1,2,0,0,0
724,1,1,0,0,0,1,1,2,0,0,0
?-26,0,0,0,0,0,0,0,0,0,0,0
?-26,0,0,0,0,0,0,0,0,0,0,0
GAMES?g
GAMES?g
?-2,8,0,0,0,0,0,0,0,0,0,0,0
?-2,8,0,0,0,0,0,0,0,0,0,0,0
GAMES?日
GAMES?日
?-30,0,0,8,0,0,0,0,0,0,0,0
?-30,0,0,8,0,0,0,0,0,0,0,0
GAMES ?0
GAMES ?0
?32,3,4,2,1,1,4,2,12,9,0,0
?32,3,4,2,1,1,4,2,12,9,0,0
73--36,0,0,0,0,0,0,0,0,0,0,0
73--36,0,0,0,0,0,0,0,0,0,0,0
GAMESTE
GAMESTE
7-4,0,0,0,0,0,0,0,0,0,0,0
7-4,0,0,0,0,0,0,0,0,0,0,0
GAMES ?\&
GAMES ?\&
750,4,6,1,0,1,2,0,12,8,1,1
750,4,6,1,0,1,2,0,12,8,1,1
?52,3,5,2,1,1,2,2,12,4,5,4

```
?52,3,5,2,1,1,2,2,12,4,5,4
```

```
NORTH EUGENE HIGH SCHOOL
VARSITY BASKETBALL STATISTICS
THROUGH 1 games
```

FLOOR PLAY									
PLAYER		$O F F$	DEF						GAMES
	NO.			Loss	VIOL	GAIN	ASS $T$	FOULS	
WOODRUFF	12	1	1	0	0	0	2	2	1
LEWMAN	13	0	0	0	0	0	0	0	0
AINGE DAV	14	0	1	1	1	1	2	3	1
HATFIELD	20	0	0	0	0	0	0	2	1
JACKS ON	22	0	1	1	1	1	3	3	1
COOLEY	24	1	1	0	0	0	1	1	1
SCHNEIDER	26	0	0	0	0	0	0	0	0
GOHL	28	0	0	0	0	0	0	0	0
MCCONNELL	30	0	0	0	0	0	0	0	0
ROSHAU	32	3	4	2	1	1	4	2	1
HANEKE	36	0	0	0	0	0	0	0	0
NEEDS	40	0	0	0	0	0	0	0	0
AINGE DOU	50	4	6	1	0	1	2	0	1
B URGE	52	3	5	2	1	1	2	2	1
TEAM TOTALS		12	19	7	4	5	16	15	
TEAM AVERAGES		$12 \cdot 0$	19.0	7.0	4.8	5.0	16.0	15.0	

SHOOTING

PLAYER	NO.	F G	FLD	FLD GL	$F T$	$F R$	FR THR	POINT TOTAL	POINT   AVERAGE
	NO.								
WOODR UFF	12	2	1	0.500	2	0	0.000	2	$2 \cdot 0$
LEWMAN	13	6	0	0.000	0	0	0.800	0	0.0
AINGE DAV	14	6	2	0.333	2	2	1.800	6	6.0
HATFIELD	20	2	0	0.000	0	0	0.000	0	$0 \cdot 8$
JACKSON	22	5	3	0.600	4	4	1.000	10	10.0
COOLEY	24	2	0	0.000	0	0	0.000	0	0.0
SCHNEIDER	26	0	0	0.000	0	0	0.080	0	0.0
GOHL	28	0	0	0.000	0	0	0.000	0	0.0
MCCONNELL	30	0	0	0.000	0	0	0.000	0	6.0
ROSHAU	32	12	9	0.750	0	8	0.080	18	18.0
HANEKE	36	0	0	0.008	0	0	0.000	0	0.0
NEEDS	48	0	0	0.000	8	0	0.000	0	0.0
AINGE DOU	50	12	8	0.667	1	1	1.000	17	17.0
BURGE	52	12	4	0.333	5	4	0.800	12	$12 \cdot 0$
TEAM TOTALS   team averages		53	27		14	11		65	
		53.0	27.0	0.509	14.8	11.0	0.786		65.0

DONE

```
RUN
BASKET
ENTER OF MEN PLAYING. GAME *, TEAM (VARSITY OR JV)
?8,2,V
ENTER , OFF RB, DEF RB, LOSS, VIOL, GAIN, ASST, FOULS, FGA, FG, FTA, FT
?13,1,1,0,0,0,2,2,2,1,2,0
?14,0,0,1,1,1,2,3,5,2,2,1
?20,0,0,8,0,0,2,2,0,0,0,0
?30,1,1,0,0,0,1,1,2,B,0,0
?36,3,4,2,1,1,4,2,12,8,8,0
?40,4,6,1,0,1,2,0,12,8,1,1
?50,3,5,2,1,1,2,2,12,4,5,4
?52,4,6,1,0,1,2,0,12,8,2,1
```

NORTH EUGENE HI GH SCHOOL
VARSITY BASKETBALL STATISTICS
through 2 games

PLAYER NAME	NO.	$\begin{aligned} & \text { OFF } \\ & \text { REB } \end{aligned}$	$\begin{aligned} & \text { DEF } \\ & \text { REB } \end{aligned}$	LOSS	VIOL	GAIN	ASS T	FOULS	GAMES PLAYED
WOODR UFF	12	1	1	0	0	0	2	2	1
LEWMAN	13	1	1	0	0	0	2	2	1
AINGE DAV	14	6	1	2	2	2	4	6	2
HATFIELD	28	0	0	0	0	6	2	4	2
JACKSON	22	0	1	1	1	1	3	3	1
COOLEY	24	1	1	0	0	0	1		1
SCHNEIDER	26	0	0	0	0	0	0	0	0
GOHL	28	0	0	0	0	0	0	0	0
MCCONNELL	30	1	1	0	0	0	1	1	,
ROSHAU	32	3	4	2	1	1	4	2	1
HANEKE	36	3	4	2	1	1	4	2	1
NEEDS	40	4	6	1	0	1	2	0	1
AINGE DOU	50	7	11	3	1	2	4	2	2
B URGE	52	7	11	3	1	2	4	2	2
TEAM TOTAL		28	42	14	7	10	33	27	
TEAM AVER		14.0	21.0	7.0	3.5	5.0	16.5	13.5	

SHOOTING

PLAYER NAME	NO.	$\begin{aligned} & \text { F G } \\ & \text { ATT } \end{aligned}$	$\begin{aligned} & \text { FLD } \\ & \text { GLS } \end{aligned}$	FLD GL AVERAGE	$\begin{aligned} & \text { F T } \\ & \text { ATT } \end{aligned}$	$\begin{aligned} & \text { FR } \\ & \text { THR } \end{aligned}$	FR THR AVERAGE	$\begin{aligned} & \text { POINT } \\ & \text { TOTAL } \end{aligned}$	POINT   AVERAGE
WOODR UFF	12	2	1	0.500	2	0	0.000	2	$2 \cdot 0$
LEWMAN	13	2	1	0.500	2	0	0.000	2	2.0
AINGE DAV	14	11	4	0.364	4	3	0.750	11	5.5
HATFIELD	20	2	0	0.080	0	0	0.080	0	0.0
JACKSON	22	5	3	0.600	4	4	1.000	10	10.0
COOLEY	24	2	0	0.000	0	0	0.000	0	0.0
SCHNEIDER	26	0	0	0.000	0	0	0.000	0	0.0
GOHL	28	0	0	0.000	0	0	0.000	0	0.0
MCCONNELL	30	2	0	0.000	0	0	0.000	0	0.0
ROSHAU	32	12	9	0.750	0	0	0.008	18	18.0
haneke	36	12	8	0.667	0	0	0.000	16	16.0
NEEDS	40	12	8	0.667	1	1	1.000	17	17.0
AINGE DOU	50	24	12	0.500	6	5	0.833	29	14.5
B URGE	52	24	12	0.500	7	5	0.714	29	14.5
TEAM TOTAL		110	58		26	18		134	
TEAM AVERA	GES	55.0	29.8	0.527	13.0	$9 \cdot 0$	0.692		67.0

DONE

| TITLE: |
| :--- | :--- |
| DESCRIPTION: |
| INSTRUCTIONS: |$\quad$| COLLEGE REGISTRATION DEMO |
| :--- |
| COLREG is a comprehensive demo package that illustrates the feasibility of |
| an on-line, multi-terminal college registration. The package consists of |
| lo programs: CLEAR, FILE, PREREG, REPS, AVAIL, REG, SOFAR, GRAD, CLASS, |
| and COPY. |
| It is estimated that 1 million characters are needed for each 1,000 students. |
| This estimate is for student and course information only and does not account |
| for program storage. |
| The operation here assumes that the college registrar will manually plan a |
| list of available courses and associated instructors. This list is entered |
| into the system as well as sent to all students. The students then plan |
| their individual programs at home and then at registration day they enter |
| their programs into the system on one of 32 terminals. This system then |
| checks for validity, class conflict, etc. as students enter their courses. |
| Upon successful completion, the student is given an on-the-spot report of |
| his program. In addition, class reports for the instructors can be obtained |
| at the end of registration. |
| During the year the individual instructors may enter grades for his students |
| and provide reports for all student grades. |

INSTRUCTIONS: continued

NAME OF PROGRAM
CLEAR
FILE
PREREG

REPS
AVAIL
REG

SOFAR
GRAD
CLASS
COPY

1. OPEN-STUDNT, 128

OPEN-COURSE, 128
OPEN-WORK, 3
OPEN-WORKI, 10
OPEN-WORK2, 10

FUNCTION
Clears student and course files
To enter available courses and sections
To enter student names and addresses. Prior to registration (if required)

Lists students' name and addresses
Lists courses and sections available
To register students (can be used to list any students programs)

To list courses, sections and students registered SOFAR
To enter midterm or final grades
To provide a class report for each instructor
Restores (copies) two back-up files to student and course
2. RUN "CLEAR" to clean student and course file
3. RUN "FILE" to enter an available curriculum
4. RUN "AVAIL" to get a report of all courses and sections entered with "FILE"
5. May RUN "PREREG" to enter names and addresses of students. This saves time at actual registration ("REG") in that names, etc. are already entered.
6. RUN "REG" to enter courses for students. This student should use this program with a copy of the report from "AVAIL" in his hand.
7. May RUN "SOFAR" at any time to see the number of students enrolled SOFAR
8. May RUN "CLASS" at any time to see the actual students enrolled in each class. This program thus provides class reports for all courses to be given to each instructor
9. At midterm and final time, each instructor would run "GRAD" to enter the grades for his students
10. After all midterm or final grades are entered, run "CLASS" again to see entered grades
11. RUN "REPS" at any time to see students in file

The following list of programs may be run at any time with out altering any files since they read only:
REPS, AVAIL, SOFAR, CLASS or REG (with just typing "END" in response to "COURSE-SEC")
For demo purposes, the following procedures are useful:
A. RUN "CLEAR"
B. RUN "FILE" for 7 courses and 3 to 4 sections per course
C. RUN "PREREG" for about 10 students
D. Using a file copy program, ("COPY") save both student and course files. In this way this state can easily be recreated from back-up files (CSAVE and SSAVE).

The file copy program, COPY, included in this program package has been set up to perform these steps. user may just RUN COPY to restore the state. The sample RUNs which follow illustrate the building of the files rather than using COPY which has already set up the files.

```
RUN
```



```
\(\left.\begin{array}{l}\text { GET-REPS } \\ \text { RUN } \\ \text { REPS } \\ \text { ALL OR STUDENT ? } \\ \text { PALL }\end{array}\right\}\) FILES ARE EMPTY
NOT IN FILES
DONE
GET-PREREG
RUN
prereg
RESPOND WITH ANSWER OR END
STUDENT "??229-56-5036
LAST NAME??BANISCH
FIRST NAME??JIM
MIDDLE INITIAL??Z
PHONE??265-7000
SEX??M
CITY??C-KING OF PRUSSIA
STATE??PENNSYLVANIA
BAD INPUT, RETYPE FROM ITEM I
? ?PENN.
STREET ADDRESS??!021 EIGHTH ST.
STUDENT "??149-24:686
LAST NAME??FRANK
FIRST NAME??LEE
MIDDLE INITIAL??Z
PHONE?7667-4000
SEX??M
CITY??CHERRY HILL
STATE??NEW JERSEY
BAD INPUT, RETYPE FROM ITEM I
??N.J.
STREET ADDRESS??1060 N. KINGS HIGKWAY
STUDENT :??136-26-1841
LAST NAME??BOLCIK
FIRST NAME??BOB
MIDDLE INITIAL??Z
PHONE??948-6370
SEX??M
CITY??ROCKVILLE
STATE??MD.
STREET ADDRESS??2 CHOKE CHERRY LANE
STUDENT "?065-32:2709
LAST NAME??TIBALDI
FIRST NAME??GEORGE
MIDDLE' INITIAL??A
PHONE??265-5000
SEX??M
CITY??PARAMUS
STATE??N.J.
STREET ADDRESS??120 W. CENTURY RD.
STUDENT *??012-28-2705
LAST NAME??KELLEY
FIRST NAME??KEN
```

```
MIDDLE INITIAL??Z
PHONE??948-6370
SEX??M
CITY??ROCKVILLE
STATE??MD.
STREET ADDRESS??2 CHOKE CHERRY LANE
STUDENT ??END
DONE
```

GET-REPS
RUN
REPS
ALL OR STUDENT ?
?ALL
229-56-5036 BANISCH JIM Z
1021 EIGHTH ST. KING OF PRUSSIA,PENN.
265-7060 SEX M

```
149-24:686 FRANK LEE Z
1060 N. KINGS HIGHWAY CHERRY HILL,N.J.
667-4080 SEX M
```

136-26-1841 BOLCIK BOB $Z$
2 CHOKE CHERRY LANE ROCKVILLE,MD.
948-6370 SEX M
665-32:2769 TIBALDI GEORGE A
120 W. CENTURY RD. PARAMUS,N.J.
265-500日 SEX M
012-28-2705 KELLEY KEN Z
2 CHOKE CHERRY LANE ROCKVILLE,MD.
948-6370 SEX M
END OF FILE
DONE
GET-FILE
RUN
FILE
TITLE ?ENGI
CREDITS ? 3
SECTIONS ?3
SECTION ?2
START TIME 110
LENGTH ? I
TIMES/WEEK ? 3
DAY 1 ?
DAY 2 ?3
DAY 3 ?
INSTRUCTOR ?SMITH
QUOTA ?S

```
SECTION ?!
START TIME ?9
LENGTH ?!
TIMES/WEEK ?3
DAY 1 ?!
DAY 2 ?4
DAY 3 ?5
INSTRUCTOR PDRAPER
QUOTA?"
```

SECTION ? ? 3
START TIME ?3
LENGTH ?
TIMES/WEEK ?3
DAY 1 ? 1
DAY 2 ?3
DAY 3 ?5
INSTRUCTOR PBROWN
QUOTA ?4
DONE? ?NO
TITLE PHISTI
CREDITS ?3
SECTIONS 34

```
SECTION ?1
START TIME ?9
LENGTH ?!
TIMES/WEEK ?3
DAY 1 ?l
DAY 2 ?3
DAY 3 ?5
INSTRUCTOR ?WATTS
OUOTA ?4
```

SECTION ?2
START TIME ? 11
LENGTH ?
TIMES/WEEK ?3
DAY 1 ?
DAY 273
DAY 3 ?
INSTRUCTOR ?WATTS
QUOTA ?A
SECTION ? 3
START TIME ?
LENGTH ?1
TIMES/WEEK 33
DAY 1 ? 1
DAY $2 \quad 74$
DAY 3 ?
INSTRUCTOR ?DRAPER
QUOTA ? 3

```
SECTION ?4
START TIME ?A
LENGTH ?!
TIMES/WEEK ?3
DAY 1 ?1
DAY 2 ?3
DAY 3 ?5
INSTRUCTOR ?MARK
QUOTA ?3
DONE? ?NO
TITLE PECOI
CREDITS ?3
SECTIONS ?4
```

```
SECTION ?I
START TIME ?IO
LENGTH ?!
TIMES/WEEK ?3
DAY 1 ?l
DAY 2 ?3
DAY 3 ?5
INSTRUCTOR ?I-HARRIS
QUOTA ?3
```

```
SECTION ?2
START TIME ?1I
LENGTH ?I
TIMES/WEEK ?3
DAY 1 ?1
DAY 2 ?2
DAY 3 ?5
INSTRUCTOR ?MARTIN
QUOTA ?4
```

SECTION ? 3
START TIME 33
LENGTH ?
TIMES/WEEK ?3
DAY 1 ? 1
DAY 2 ?3
DAY 3 ? 5
INSTRUCTOR ?HARRIS
QUOTA ?3
SECTION ? 4
START TIME ? 4
LENGTH ? 1
TIMES/WEEK ? 3
DAY 112
DAY 2 ?3
DAY $3 ? 5$
INSTRUCTOR ?BONNER
QUOTA ?4
DONE ? PNO
TITLE ?BIOI
CREDITS ?A
SECTIONS 34

```
SECTION ?l
START TIME ?9
LENGTH ?4
TIMES/WEEK ?I
DAY 1 ?2
INSTRUGTOR IMC CLEAN
QUOTA ?4
```

SECTION ?2
START TIME 39
LENGTH ?A
TIMES/WEEK ? 1
DAY 1 ?
INSTRUCTOR TMARIN
QUOTA 33
SECTION ? 3
START TIME ?
LENGTH ?A
TIMES/WEEK ?
DAY 1 ? 4
INSTRUCTOR ?KNOPP
QUOTA ?4
SECTION ? 4
START TIME ?
LENGTH ? 4
TIMES/WEEK ?
DAY $1 \quad ? 5$
INSTRUCTOR ?MC CLEAN
OUOTA 34
DONE? ?NO
TITLE ?CHEMI
CREDITS 34
SECTIONS ?3

SECTION ? ?
START TIME 39
LENGTH 34
TIMES/WEEK ? 1
DAY 1 ?2
INSTRUCTOR ?TOTIE
QUOTA ?A

SECTION ?2
START TIME ?9
LENGTH ?A
TIMES/WEEK ? 1
DAY $1 \quad 34$
INSTRUCTOR ?MATHEWS
QUOTA 33

```
SECTION ?3
START TIME ?!
LENGTH ?4
TIMES/WEEK ?!
DAY 1 ?3
INSTRUCTOR ?TOTIE
QUOTA ?4
DONE??NO
TITLE ?CHEMI
DUPLICATE COURSE NAME
SECTION ADDITION (Y OR N) ?N
TITLE ?PHYI
CREDITS ?4
SECTIONS ?A
```

```
SECTION ?!
START TIME ?9
LENGTH ?A
TIMES/WEEK ?1
DAY 1 ?!
INSTRUCTOR ?KING
QUOTA ?4
```

```
SECTION ?2
START TIME ?9
LENGTH ?4
TIMES/WEEK ?!
DAY 1 ?2
INSTRUCTOR ?FULLER
QUOTA ?3
```

SECTION ? 3
START TIME ?9
LENGTH ? 4
TIMES/WEEK ? I
DAY 1 ? 4
INSTRUCTOR ?KING
QUOTA ?A
SECTION ?
START TIME ? 1
LENGTH ?A
TIMES/WEEK ? I
DAY 1 ? 4
INSTRUCTOR ?FOSTER
QUOTA ? 4
DONE? ?NO
TITLE ?PHYEDI
CREDITS ?3
SECTIONS ? 4

```
SECTION ?l
START TIME ?9
LENGTH ?2
TIMES/WEEK ?2
DAY 1 ?2
DAY 2 ?4
INSTRUCTOR ?PARRISH
QUOTA ?5
```

```
SECTION ?2
START TIME ?9
LENGTH ?&
TIMES/WEEK ?2
DAY 1 ?!
DAY 2 ?3
INSTRUCTOR ?PEREIRA
QUOTA }7
```

SECTION ? 3
START TIME 12
LENGTH 12
TIMES/WEEK 72
DAY 1 74
DAY 2 ?5
INSTRUCTOR TMEYER
OUOTA 75

```
SECTION ?A
START TIME ?I
LENGTH ?2
TIMES/WEEK ?2
DAY 1 1 ?
INSTRUCTOR PMACKENZIE
OUOTA ?S
DONE? TYES
DONE
```

GET-AVAIL
RUN
AVAIL
PRINTS OUT LIST OF ENTERED COURSES

COURSE	SEC	CRDS	INSTRUCTOR	TIME
ENGI	2	3	SMITH	10-11MOWDFR
ENGI	1	3	DRAPER	9-1 日MOTHFR
ENGI	3	3	BROWN	3-4MOWDFR
HISTI	1	3	WATTS	9-16MOWDFR
HISTI	2	3	WATTS	11-12MOWDFR
HISTI	3	3	DRAPER	1-2MOTHFR
HISTI	4	3	MARK	4-5MOWDFR
ECEI	1	3	HARRIS	10-1 1 MOWDFR
ECEI	2	3	MARTIN	11-12MOTUFR
ECO:	3	3	HARRIS	3-4MOWDFR
ECEI	4	3	BONNER	4-5TUWDFR
B101	1	4	MC CLEAN	9-1TU
BI81	2	4	MAR IN	9-1TH
B101	3	4	KNOPP	1-5TH
BIEI	4	4	MC CLEAN	1-5FR
CHEM 1	1	4	TOTIE	9-1 TU
CHEMI	2	4	MATHEWS	9-1TH
CHEMI	3	. 4	TOTIE	1-5WD
PHYI	1	4	KING	9-1MO
PHYI	2	4	FULLER	9-1TU
PHY1	3	4	KING	9-1 TH
PHY:	4	4	FOSTER	1-5TH


PHYED 1	1	3	PARRISH	$9-11$ TUTH
PHYED	2	3	PEREIRA	$9-11$ MOWD
PHYED	3	3	MEYER	$2-4 T H F R$
PHYED	4	3	MACKENZIE	$1-3 M O T U$

DONE

```
GET-REG
RUN
REG
RESPOND WITH ANSWER OR END
STUDENT *?229-56-5036
COURSE-SECTION
?HISTI-3
CREDITS ENTERED SOFAR= 3
COURSE-SECTION
?ENGI-1
CREDITS ENTERED SOFAR= 6
COURSE-SECTION
?HIST-1
COURSE OR SECTION NON EXISTENT
COURSE-SECTION
?HIST:-1
ALREADY HAVE HISTI
COURSE-SECTION
?ECOI-1
COURSE OR SECTION NON EXISTENT
COURSE-SECTION
?ECO1-1
CREDITS ENTERED SOFAR= 9
COURSE-SECTION
?CHEMI-3
CREDITS ENTERED SOFAR= 13
COURSE-SECTION
?PHYEDI-2
TIME CONFLICT WITH ENGI
COURSE-SECTION
?PHYEDI-1
TIME CONFLICT WITH ENGI
COURSE-SECTION
?PHYEDI-4
tIME CONFLICT WITH HISTI
COURSE-SECTION
?PHYEDI-3
CREDITS ENTERED SOFAR= 16
COURSE-SECTION
?END
```



## STUDENT PTEND

DONE

GET-FILE
RUN
FILE
TITLE ?PHYEDI
DUPLICATE COURSE NAME
SECTION ADDITION (Y OR N) ?Y
SECTION ? 8
START TIME 71
LENGTH 32
TIMES/WEEK 32
$\begin{array}{lll}\text { DAY } 1 & 33 \\ \text { DAY } 2 & ? 4\end{array}$
INSTRUCTOR ?PIXLER
OUOTA ?2
DONE? TYES
DONE

GET-FILE
RUN
FILE
TITLE PMATHI
CREDITS 33
SECTIONS 12

ADDS A NEW SECTION OF PHYS.ED. BECAUSE OF NEED EVIDENT ON REGISTRATION DAY

ENTERS A NEW COURSE WITH 2 SECTIONS

```
SECTION ?l
START TIME }7
LENGTH ?!
TIMES/WEEK 33
DAY 1 ?1
DAY 2 }2
DAY 3 P4
INSTRUCTOR ?GOODMAN
QUOTA ?5
```

SECTION ?2
START TIME ?l
LENGTH $? 1$
TIMES/WEEK 33
DAY 1 ?
DAY $2 \quad 73$
DAY $3 \quad 35$
INSTRUCTOR ?BLAIR
QUOTA 75
DONE??YES

```
GET-SOFAR
SOFAR
\begin{tabular}{|c|c|c|c|c|c|}
\hline COURSE & SEC & CRDS & INS TRUCTOR & Quo & SOFAR \\
\hline ENGI & 2 & 3 & SMITH & 5 & 0 \\
\hline ENGI & 1 & 3 & DRAPER & 4 & 1 \\
\hline ENG1 & 3 & 3 & BROWN & 4 & 0 \\
\hline HISTI & 1 & 3 & WATTS & 4 & 0 \\
\hline HISTI & - 2 & 3 & WATTS & 4 & 0 \\
\hline HIST1 & 3 & 3 & DRAPER & 3 & 1 \\
\hline HIST1 & 4 & 3 & MARK & 3 & 0 \\
\hline EC81 & 1 & 3 & HARRIS & 3 & 1 \\
\hline ECOI & 2 & 3 & MARTIN & 4 & 0 \\
\hline ECOI & 3 & 3 & HARRIS & 3 & 0 \\
\hline ECOI & 4 & 3 & BONNER & 4 & 0 \\
\hline B101 & 1 & 4 & MC CLEAN & 4 & 0 \\
\hline B101 & 2 & 4 & MARIN & 3 & 0 \\
\hline B101 & 3 & 4 & KNOPP & 4 & 0 \\
\hline B101 & 4 & 4 & MC CLEAN & 4 & 0 \\
\hline
\end{tabular}
\begin{tabular}{llllll}
CHEMI & 1 & 4 & TOTIE & 4 & 0 \\
CHEMI & 2 & 4 & MATHEWS & 3 & 0 \\
CHEMI & 3 & 4 & TOTIE & 4 & 1 \\
PHYI & 1 & 4 & KING & 0 & 0 \\
PHYI & 2 & 4 & FULLER & 4 & 0 \\
PHYI & 3 & 4 & KING & 4 & 0 \\
PHYI & 4 & 4 & FOSTER & 4 & 0 \\
& & & & \\
PHYEDI & 1 & 3 & PARRISH & 5 & 0 \\
PHYEDI & 2 & 3 & PEREIRA & 5 & 0 \\
PHYEDI & 3 & 3 & MEYER & 5 & 1 \\
PHYEDI & 4 & 3 & MACKENZIE & 5 & 0 \\
PHYEDI & 8 & 3 & PIXLER & 2 & 0 \\
& & & & 5 & 0 \\
MATHI & 1 & 3 & GOODMAN & 5 & 0 \\
MATHI & 2 & 3 & BLAIR & &
\end{tabular}
TOTAL REGISTERED SOFAR \(=5\) NOTE NEW COURSES WE ADDED
DONE NUMBER OF SLATS, NOT STUDENTS
GET-REG
RUN
REG
RESPOND WITH ANSWER OR END
```

```
STUDENT ??111-22-3333
```

STUDENT ??111-22-3333
LAST NAME??STAUBER
LAST NAME??STAUBER
FIRST NAME??LEE
FIRST NAME??LEE
M!DDLE INITIAL??Z
M!DDLE INITIAL??Z
PHONE??345-6980
PHONE??345-6980
SEX??M
SEX??M
CITY??CA.
CITY??CA.
STATE??CA.
STATE??CA.
STREET ADDRESS??I23 FORBES ST.
STREET ADDRESS??I23 FORBES ST.
COURSE-SECTION
COURSE-SECTION
?MATH1-2
?MATH1-2
CREDITS ENTERED SOFAR= 3
CREDITS ENTERED SOFAR= 3
COURSE-SECTION
COURSE-SECTION
?PHYEDI-8
?PHYEDI-8
CREDITS ENTERED SOFAR= 6

```
CREDITS ENTERED SOFAR= 6
```

```
COURSE-SECTION
?HISTI-3
tIme CONFLICT WITH PHYEDI
COURSE-SECTION
?ENGI-I
CREDITS ENTERED SOFAR= 9
COURSE-SECTION
PEND
```



STUDENT " ?PEND
DONE

```
GET-CLASS AFTER REGISTRATION, 'CLASS' PROVIDES TEACHER WITH
RUN
ALL,COURSE, OR COURSE-SECTION ?
?ENGI-|
```

ENG1-1 CR= 3 9-1 GMOTHFR DRAPER COUNT $=2$

STUDENT	NAME		
$229-56-5636$	BANISCH JIM	2	
$111-22-3333$	STAUBER LEE	2	

DONE

```
GET-GRADE
RUN
GRADE
ENTER COURSE TITLE?ENGI
ENTER SECTION#?I
MID-TERM OR FINAL (M OR F)?M
ENTER MARK FOR JIM BANISCH?F
ENTER MARK FOR LEE STAUBERTA
DONE
```

```
GET-CA-LASS
RUN
CLASS
ALL,COURSE, OR COURSE-SECTION ?
?ENG1-1
```

RUN 'CLASS' AGAIN TO SHOW ENROLLMENT AND GRADES
ENG1-1 CR= 3 -19MOTHFR DRAPER COUNT= 2
STUDENT NAME ..... MT F
229-56-5936 BANISCH JIM Z ..... $F$
111-22-3333 STAUBER LEE $Z$ ..... A



## TITLE:

## DESCRIPTION:

## INSTRUCTIONS:

GSB GRADING AND EDITING PROGRAM
36518

GMARKS is a grading program which allows the user to enter up to 20 grades per student for a quarter, weight these grades, and compute the final quarter grade. The program conforms to the $H+, P+, P, P-$ and $U$ grading system adopted by the faculty of Stanford University in the Spring of 1971. At the completion of the program a table of the frequencies for each grade is printed and the user is given the option of scaling his grades by one of two methods. The program can be used iteratively until the distribution of grades is satisfactory, and the final grades and distribution can be printed.

Because it is possible that typing errors will occur while grades are entered into the grading program GMARKS, the companion program GMEDIT can be used to edit the file containing all of the grades for a class.

In order to use this program, each user must open a file called GRADES. The format should be as follows:

OPEN-GRADES, $n \quad$ where $n$ is the size of the file.
To determine the file size use the following formula:
Integer (number of grades $X$ number of students) +1 128

The program first requests the user to enter the number of grades per student. This number must be less than or equal to 20 . Next, the user is asked to enter the raw weights for each grade. For example, if there are four grades and the user enters weights of 2, 4, 1 and 1, the program will calculate percentage weights of $.25, .50, .125$ and .125 respectively as the factor to be multiplied by each grade to arrive at a weighted average for each student.
(continued on Page 2)

ACKNOWLEDGEMENTS:
Graduate School of Business
Stanford University

## INSTRUCTIONS: (continued)

The user is offered the option to read a set of grades stored on the disk during an earlier session with the program. This allows grades to be saved, modified and recalculated if desired. (Even though the program offers the option to enter either letter or numeric grades, letter grades are converted to their numeric equivalents and only numeric grades are stored on the disk.)

Next the user is asked whether he is entering letter grades or numeric equivalents. If letter grades are entered the various grades correspond to points as follows:

H	1.0
$\mathrm{P}+$	.5
P	0
P	-.3
U	-1.0

The user is offered the option to see each calculated average as it is computed. This should probably be done for the original entry of the grades. If the user is computing grades which have already been entered on the disk, the program will proceed with execution. If the user is entering the grades for the first time, then he will be requested to enter each student number followed by a carriage return. A student number 999 indicates that all grades have been entered. After the student number has been checked and accepted by the program, the grades are entered on the next line separated by commas. The student numbers must be in sequence beginning with 1. To have a missing grade dropped from the computation and the weights rescaled, a 9 should be entered for numeric grades or a $Z$ for letter grades.

There are several possible errors which may occur during the entry of grades. If an error is noted while the line is being typed, the use of the escape key will enable the user to reenter that line. If errors in grades are noted after all of the grades have been entered, another program, GMEDIT, can be used to update or correct the grades which have been saved on the disk. If the program detects an error in student numbers it will not continue until the correct student number has been entered. It is also possible, particularly with letter grades, that an incorrect grade will be entered. This will most likely result from an error in typing or from the omission of a comma. If such a condition is detected the program will ask for the line to be reentered. The same is true if an insufficient number of grades is entered.

At the completion of computing all of the grades the program will print out a table showing for each grade the absolute number in the class who received it, the percentage who received it, the cumulative percentage receiving that high a grade or higher and the percentage of students receiving each letter grade $H, P$ and $U$.

At this point the user is given the option to scale the grades using two methods. First, he may add a positive or negative constant to each grade. Second, he may enter new break points from which the averages are calculated. The original break points are shown in the following table.

	Average Between	Grade
	.75	H
.749	.25	$\mathrm{P}+$
.249	-.15	P
-.151	-.65	P
-.651	-1.0	U

The numbers in the second column of the table above are used as the original break points for grades. For example, if a student has an average of .75 or above he receives an $H$. If he has a .25 or above, but less than .75 he receives a $P+$ and so on. Thus, by manipulating the break points it is possible to radically change the distribution of grades.

An easy method to experimentally alter the distribution is to enter new break points and run the program again without exercising the option to list each student. This will result in all of the grades being calculated and only a new table of grade distributions being printed. This new table can be examined and the process continued iteratively. When the user is satisfied with the distribution, he should enter a scaling factor of 0 and have each student's grade listed. On this final grading run all students and their grades, the frequency table and the break points are printed.

Finally to terminate the program a scaling factor of 99 is entered.

INSTRUCTIONS: (continued)
If errors in grades have been entered, GMEDIT may be used to update or correct the grades as follows.

The program first asks the user to enter the number of grades for each student. This number should be the same as that originally used to place the grades on the file. Next, the student numbers to be modified should be entered in sequence from low to high. That is, if student numbers 2, 4 and 8 require changes in their grades, they should be entered in that order. To complete this stage of the program a student number of 999 should be entered.

After each student number is entered, his old grades will be printed and the user will be requested to enter a grade number and a change. For example, if a student had grades of $-.2,1.0, .3$ and -.5 and it was desired to change the 1 to a .5 the user should type

2,. 5
When all of the modifications for this student have been completed, the user should enter a 99,0 to signify the completion of the changes.

It is possible in this process that a student number will be entered in the wrong order. The program will indicate the offending student number and print the present place in the file. If a correction is inadvertently omitted, the editing run should continue and a separate run ran be made later to cnrrect the omission.

At the end of correcting existing grades, that is, when a student number of 999 has been entered, new students may be added. At the completion of entering grades for each new student, the user is asked if another student is to be added to the file. If the answer is yes, the program prints the student number which has been assigned to the new student and requests that the grades be entered. All of the grades are entered on one line. If no further students are to be added, then the program is finished.

In order to run the program, type the following:

$$
\begin{aligned}
& \text { CRE-SCRTCH, } n \quad \begin{array}{l}
\text { where } n \text { is the same number used in creating the file GRADES } \\
\text { (or larger to compensate for new students) }
\end{array}
\end{aligned}
$$

At the end of the program

## RUN

RUN
GMARKS
GSB GRADING PROGRAM. PLEASE ANSWER ALL QUESTIONS Y FOR
YES, N FOR NO. ALWAYS USE A CARRIAGE RETURN AFTER
ENTERING DATA. USE ESC KEY FOR ERROR. DO YOU WANT INSTRUCTIONS?
? $Y$
THE PROGRAM ACCEPTS THE NUMBER OF GRADES FOR THE STUDENTS
AND WEIGHTS TO BE MULTIPLIED BY EACH GRADE. THEN EACH
STUDENT NUMBER IS ENTERED IN ORDER FOLLOWED BY HIS GRADES
ON EACH ASSIGNMENT (EITHER NUMERICAL OR LETTER GRADES).
IF LETTER GRADES ARE USED, $H$ IS $A+1$ AND $U$ A -1. A STUDENT
NUMBER OF 999 ENDS THE INPUT. THE GRADES ARE SAVED
AND THE PROGRAM CAN READ THEM FROM A PRIOR ENTRY RUN.
A DISTRIBUTION IS PRINTED AND GRADES MAY BE SCALED BY
ADDING A CONSTANT OR ENTERING NEW BREAKPOINTS.

```
HOW MANY GRADES ARE THERE (20 MAX).?
```

? 4
WHAT ARE THE RAW WEIGHTS FOR EACH GRADE?
?2,2,4,2
NORMALIZED WEIGHTS ARE:
DO $\dot{0}^{2}$ YOU WANT TO READ OLD GRADES FROM DI'SK?
? N
ARE YOU ENTERING LETTER GRADES?
? N
DO YOU WANT TO SEE EACK GRADE?
? $Y$
ENTER EACH STUDENT NO. FOLLOWED BY CR. NO $=999$ FOR LAST STUDENT. ENTER GRADES ON NEXT LINE SEPARATED BY COMMAS, FOLLOWED BY CR FOR MISSING GRADE, ENTER 9,GRADE IGNORED \& WEIGHTS RECALCULATED ? 1
? $0, .5,1 ., .2$
STN 1 .545 P+
? 2
?-1., 0, -. 2, -. 3
STN $2-.335$ P-
? 3
? 1, 1, 1, 1
STN 3 1.005 H
? 4
? $-1,-1,-1,-1$
STN4 -.995 U
? 5
$? 0,0,8,0$
STN 5 .005 P
? 6
?.1,.1,.1,1
STN 6 . 285 +
? 7
?.4,-.5,9,-1
STN $7 \quad-361667$ P-
? 8
70,-.2,-.1,. 3
STN 8 -.015 P
? 9
? $-1, .3,6,9$
STN 9 -.17 P-
? 10
?.2,.2,-.1,-. 3
STN 10 -.015 P
?9999
ERROR IN STUDENT NUMBERS: 119999
?999

GRADE	NO	2	CUMZ	2LETTER
H	1	10	10	10
P+	2	20	30	
P	3	30	60	
P-	3	30	90	80
U	1	10	100	10

```
IF YOU WANT TO SCALE GRADES, ENTER SCALING FACTOR. FOR
NEW BREAKPOINTS ENTER 9, TO STOP ENTER 99. SCALING BEGINS
AT ORIGINAL GRADES EACH TIME.
?
ENTER NEW BREAKPOINTS.
H
7.56
P+
?. }3
P
P-.1
P-
?-.4
U
?-.2
DO YOU WANT TO SEE EACH GRADE?
?N
GRADE NO % CUM% FLETTER
H
H+ Pr lll
P- 100 10 100 60
IF YOU WANT TO SCALE GRADES, ENTER SCALING FACTOR. FOR
NEW BREAKPOINTS ENTER 9, TO STOP ENTER 99. SCALING BEGINS
AT ORIGINAL GRADES EACH TIME.
?0
DO YOU WANT TO SEE EACH GRADE?
?Y
STN 1 .545 P+
STN 2 -.335 H
STN 3 1.005 H
STN 4 -.995 H
STN 5 % .005 %
STN 7 -.361667 H
STN 8 -.015
STN10-.015 P
GRADE NO % CUM% %LETTER
H
P+
P+
P- lllll
IF YOU WANT TO SCALE GRADES, ENTER SCALING FACTOR. FOR
NEW BREAKPOINTS ENTER 9, TO STOP ENTER 99. SCALING BEGINS
AT ORIGINAL GRADES EACH TIME.
?99
BREAKPOINTS USED FOR GRADING:
H . 56
P+..33
P -. 1
P--.4
U -. 2
DONE
```

GMARKS, Page 6

RUN
GMEDIT

```
GSB EDIT PROGRAM FOR GRADING DATA.OPEN FILE SCRTCH AND KILL AT END.
EACH STUDENT NO. MUST BE ENTERED IN SEQUENCE FROM LOWEST TO HIGHEST.
SPECIFY EACH STUDENT NO. TO BE CHANGED AS REQUESTED. THEN ENTER
GRADE NO AND CORRECT GRADE. WHEN DONE FOR THIS STUDENT ENTER
GRADE NO OF 99 AND GRADE OF O. ENTER STN NO OF 999 WHEN DONE
MODIFYING - YOU CAN THEN ADD NEW STUDENTS AT THE END.
ENTER NUMBER OF GRADES
?4
ENTER FIRST STUDENT NO TO BE CHANGED. ENTER 999 WHEN NO MORE CHANGES.
?
OLD GRADES:
ENTER EACH GRADE NO ! & CHANGE SEPARATED BY , (ONE PAIR/LINE).
?2,0
?4,-1
?99,0
NEXT STN NO.
?6
OLD GRADES:
 1 -1 1 1
GRADE, CHANGE
?2,-.5
?4,--3
?99,0
NEXT STN NO.
?999
DO YOU WANT TO ADD ANY STUDENTS?
?Y
ENTER 4 GRADES FOR STUDENT 11
?.5,.6,-.1,9
ANOTHER STUDENT (Y OR N)?
?Y
ENTER 4 GRADES FOR STUDENT 12
?-1,.3,.6,0
ANOTHER STUDENT (Y OR N)?
?N
GRADES UPDATED. KILL FILE SCRTCH.
```

DONE

title:	GRADE PACKAGE. ${ }_{36636}{ }^{\text {GPAC }}$
DESCRIPTION:	GPAC is a system of 12 programs writteri for an HP 2000E system to store - and handle accumulative records of points given throughout a normal term's work. In addition, several options are available to combine, manipulate, and display the data in one of several convenient formats. To the user GPAC appears to be one large program with two entry points, one for initialization and the other for subsequent use of the package.
INSTRUCTIONS:	The user has the option of selecting the number of bins to be used, their headings, the method by which the raw totals are combined to produce a "score" for the student, and the various weights to be used in combining the raw totals. These parameters may be modified at will by the user.   The possible options that are available to the user, besides the modification options, are those that allow: entering new information into the accumulative arrays, listing by class student number, sorting on any bin or the combined score and listing in descending order, producing a teletype histogram of any bin or the combined score, computing the z-score or $t$-score of any bin or the score, or producing a short summary for each student so that each can know his precise standing in the class at any time.   GENERAL CONSIDERATIONS   GPAC is adaptable for a class with up to 140 students. These may be assigned any arbitrary positive integers as class student numbers. A further constraint is that there is a maximum range of 140 in the student numbers. If a student drops, his student number may be deleted and thereafter that student number is ignored. Thus it is possible to generate a range greater than the maximum even with a class of considerably less. It is suggested that this range be chosen in the interval 1 to 999.   continued on following paye.
SPECIAL CONSIDERATIONS:	The following general constraints hold for GPAC: up to six separate "bins" for storing the accumulative raw totals and a maximum of 140 students in the class. GPAC has been used to help grading procedures for several different classes in at least five different departments at Pacific Union College. Not only is the teacher's time reduced at the end of the term, but the students are able to see their progress on a regular basis throughout the term. While it is possible for a teacher to prepare listings and histograms at regular intervals, the process is time consuming. GPAC was written to make it possible for such displays to be prepared without increasing the teacher's time.   In addition to regular class grades, GPAC has also been used to accumulate the user's time usage of the terminals. This information is accumulated at the end of each month, listed, sorted, and histograms made.
ACKNOWLEDGEMENTS:	Lawrence E. Turner, Jr. Pacific Union College

## INSTRUCTIONS continued

It should be noted that for listings and sorts, close to the entire line of 72 characters is printed. This takes about seven seconds to print on a teletype terminal, hence a class of 100 would take about twelve minutes to produce a listing on the teletype.

Up to six bins are allowed to accumulated separate totals. These may be entitled by any heading of less than six characters. The user is cautioned that these may be any combination except: HELP, SCORE, RETURN, DUMP. These four are used for special system keys.

Once the user has decided upon what quantities are to be accumulated, the next consideration is how these are to be combined to produce the student's "score". There are two possible methods. In both methods the score is essentially a weighted percentage of the total possible.

The first method (mode $=1$ ) is called constant weights and $S_{n}$, the score for the nth student, is given by:

$$
\begin{gathered}
S_{n}=\left[\frac{T_{1 n} W_{1}+T_{2 n} W_{2}+\cdots \cdot}{T_{1 N} H_{1}+T_{2 N} H_{2}+\cdots \cdot}\right] \times 100 \\
=F \sum_{k=1}^{b} T_{k n} W_{k}
\end{gathered}
$$

where $T_{k n}$ is the accumulated raw score of the $k$ th bin for studt $n$ number $n, T_{k n}$ is the total possible for kth bin, $W_{k}$ is a constant weight set by the user, $b$ is the number of bins, and $F$ is a normalizing factor which is the same for all students and is such that if a student did perfectly, that is, earned the maximum possible points, his score $S_{n}$ would be 100.0 .

The second method (mode $=2$ ) is termed constant proportionality factors. Here $S_{n}$ is given by:

$$
\begin{gathered}
S_{n}=\left[\frac{T_{1 n}}{T_{1 N}} P_{1}+\frac{T_{2 n}}{T_{2 N}} P_{2}+\cdots \cdot\right] \times \frac{100}{P_{1}+P_{2}+\ldots \cdot} \\
=F \sum_{k=1}^{b} T_{k n} P_{k} T_{k N i}^{-1} ; \text { all } k, T_{k N} \neq 0
\end{gathered}
$$

where $P_{k}$ is the constant proportionality factor set by the user. The sum is only over those bins with a non-zero $T_{k N}$. Note that $F$ has same function as used for constant weights but in general will have a different numerical value. In both cases

$$
0.0 \leq S_{n} \leq 100.00
$$

The choice of these two modes of operation depends on how the user usually computes grades.
The first method, constant weights, is useful when the user has decided previously on the total possible points available for each item. Consider the example of two exams where the first is to count equally with the second. This can easily be achieved by making the same total possible on each test and the weights equal, or alternately by deciding beforehand what the total possible will be and then adjusting the weights so that the product $T_{k n} W_{k}$ is the same for both.

The second method, constant proportionality factors, may be used if the total possible is unknown a priori. Here each bin is weighted relative to the total possible for that bin. Thus, in the example above, merely by selecting the $P_{k}$ 's to be equal, each test would count equally regardless of the total possible on the individual tests.

The constant proportionality factors will give the same result at the end of the term as does the constants weights in the case where the user has previously determined the total possible. They may differ at intermediate times since points are not accumulated continuously at the same rate but in rather large discreet amounts.

## INSTRUCTIONS continued

Thus in the case where the user has carefully planned the course and krows the total possible for each category at the beginning, he has the option of either method. At the end of the term the results will be identical. However, for the teacher who does not know just how mim points will hir possible, it is best to use the second method of constant proportionality factors.

For both these cases the actual values of $W_{k}$ or $P_{k}$ are unimportant. Mnly the relative values are involved. It should be possible to find a set of integers that have the proper iflative values. Thus, these are to be selected from the set of positive integers.

For simplification the accumulative points are also carried as integers. If the user is accustomed to using fractional points, it is quite easy to multiply each point by a simple factor, and correspondingly reduce the weight or proportionality factor by the same amount.

## INITIALIZATION

The user must have access to a terminal and a user ID and password. He nimst also have disc storage of 14 sectors. For each different class there must be a different user library, that is, a different ID and password. Alternately the user must declare auxilary files and transter information from them before using GPAC and transfer the information back at the end of a session.

GPAC should be made available from the system library. Assuming the user has previously determined what raw points to store, how he wants to combine then assigned student mumbers, and has completed other advanced planning, the procedure to initialize GPAC is as follows.

1. Open the disc sturage file.

OPEN-CLSI IL, 14
2. GET and RUN GPACI
i,PACI, initialization portion of GPAC, will execute and will ask for various items:
CLASS TITLE: This can be any alphanumeric string up to 30 chasacters long, and will be used as a label for all subsequent output.

NUMBER OF BINS: Up to six bins are allowed.
HEADING: One for each bin, up to 6 characters each. These will be used to identify the bins from this point on. Embedded blanks are significant, trailing blanks are not. The headings must obviously be unique, and they must not be one of the following: HELP, SCORE, RETURN, or DUMP.

MODE: $M=1$, constant weights.
$M=2$, constant proportionality factors.
FACTORS: One for each bin, either constant weights or constant proportionality factors depending on mode selected previously. They must be integers.

MINIMUM S.N.: This is an integer greater than zero, and allows numbering the students in a class consecutively from a number other than 1 ; as an example, lumbering a class with integers 101 thru 190.

LARGEST S.N.: Again this is an integer which corresponds to the largest S.N. used. Note that it is possible to add students with higher S.N. than this. This may be done later in the MODIFICATION section. For all student numbers within this range from minimum to largest and all useable bins, a zero will be placed. If there are gaps in the student number range, i.e., students which have dropped, these can be deleted in the MODIFICATION section.

A GPAC STATUS CHECK follows, giving the class parameters. The prograni automatically chains to the COMMAND section. It is at this point that any further modifications may be made

GPAC MAIN PROGRAM
The initialization sequence is to be used only once. Thereafter, the user accesses and RUNS the main program, GPAC, which will retrieve the necessary data from the disc and chain to the COMMAND section.

## COMMAND SECTION

All branches are determined here and eventually return to this section.
Upon printing COMMAND? the computer requests an alphanumeric reponse, tr determine what action to take. Typing HELP will obtain a listing and a brief explanation of the possible choices available. STOP results in a controlled exit from GPAC. For any COMMAND, typing the first three characters will result in the correct branch.

INSTRUCTIONS continued

The list of possible commands is:
CHEck
HELp
HISto
LISt
MODify
OUT
SORt
STAt
STOp
UPDate

STATUS CHECK SECTION
Entry command: CHEck
This section gives a display of the class parameters. It is accessed automatically after INITIALIZATION or upon return from the MODIFICATION section. It may be directly accessed from COMMAND by the above response. After execution it returns automatically to the COMMAND section.
histogram section
Entry command: HISto
This section produces a teletype histogram of any of the used bins or the SCORE. The request KEY ? selects the appropriate bin or the score. The entire heading must be used. The response of HELP will produce a listing of acceptable keys. The response RETURN causes the program to return to the COMMAND section.

The limits of the histogram are entered as three numbers separated by commas for the lower limit, the upper limit, and the interval size respectively.

The histogram produced gives the class title, the date that the disc file was last changed, and the heading of the bin being produced. The TOTAL number is the actual number plotted in the histogram. Hyphens are printed at the top and bottom for those histograms less than one page in length. These are located 11 inches apart for convenient separation into page size.

If a particular datum is equal to the limit of an interval, it is included in the lower interval, that is the interval contains all those points that are described by:

$$
L \cdot T_{k n-U}
$$

where $L$ and $U$ are the lower and upper limits of the interval respectively.

## LIST SECTION

Entry command: LISt
This section produces a teletype listing of the accumulated raw points and the SCORE for each student. The listing is in order of increasing student numbers. Any inactive student numbers, that is, student numbers that have been previously deleted in the MODIFICATION section, are ignored.

The total possible for each bin is given, along with the mean and the standard deviation for each bin and the SCORE.

Hyphens separate the output into page size sheets. The class title and the date the files were last changed are also given.

The program automatically returns to the COMMAND section.
MODIFICAJION SECTION
Entry command: MODify
There are times when one wishes to change certain class parameters or add or delete a student. This is done in the MODIFICATION section.

The process is controlled by the MOD OPTION. A response of HELP produces a listing of the options. The possible options are:

ADD
DELete
HELp.
PARam
RETurn

## INSTRUCTIONS continued

ADD and DELETE add and drop a student respectively. In the case of a drop, that student number is ignored in all subsequent output. Checks are made to insure that only allowed drops and adds are processed.

The PARAM option allows modification of the class parameters originally entered in the INITIALIZATION program. The choice of which class parameter to be modified is selected by the ITEM ? request. The ITEMS that may be modified are:
FACtor
HELP
KILI
MODe
NAMe
NEW
RETurn
SWItch
TITle

HELP obtains a listing of items. RETURN, both for the MOD OPTION and the ITEM requests, produces a branch to the COMMAND section.

FACTOR, MIDE, NAME, and TITLE provide changing the proportionality or weights (depending on the mode), the mode, the headings of the bins, or the class title respectively.

NEW allows adding a bin, if less than 6 are presently in use. SWITCH allows two bins to be interchanged so that the left to right order as printed in lists or sorts is altered. The contents of the bins are left unchanged.

KILL provides for removal of unwanted bins. If the bin is empty, that is, if the total possible for that bin is zero, the bin is removed without further consideration. If the total possible is non-zero, the disposition of the contents is requested. This may be any other bin. In this case, the contents of the bin to be removed is simply added to the other bin directly, then the first bin is removed. Or if the contents are unwanted a disposition of DUMP results in the bin immediately being deleted. A disposition to the same bin will result in no action and return to the ITEM request.

Note that to obtain histograms, z-scores, etc. for a given set of points in the case that nomally they are carried as a total, for example, if all exams are added together in one bin, but it is desired to obtain a histogram separately for the one just entered, a possible procedure is to add a temporary bin, enter the information into it, display it at will, then KILL that bin with a destination of the bin holding the totals.

The disc is automatically updated upon exit from this section.
OUT SECTION
Entry command: OUT
In order to allow the individual student to know his total points and class standing, a short summary may be provided by the OUT section. These are printed with hyphens between so that they may be separated conveniently and given to the students.

The program requests the minimum and maximum student numbers for which a summary is desired. Inactive student numbers are ignored, and return to COMMAND is automatic.

The user should note that it takes of the order of 45 seconds to produce each student's summary, hence for a class of 100 it would take approximately 1 hour.

In combination with a posted histogram of the SCORE, the student could very nicely determine his class standing. This way a student would only know what his particular totals and SCORE was.

Another method would be to post a listing of the totals and the SCORE. Here, of course, a student could know how another specific student was doing by knowing his student number.

## SORT SECTIDN

Entry command: SORt
This section produces a listing of the accumulated points and the SCORE for each student. The listing is in order of descending values for any KEY. These are any bin or the SCORE. The response HELP produces a listing of possible keys. The response RETURN causes the program to return to COMMAND.

The bin that is being sorted on is underlined. The total possible, the mean, and the standard deviation for each bin and the score are also printed. Inactivated student numbers are ignored.

Hyphens separate the output into page size sheets.

INSTRUCTIONS continued

## STAT SORT SECTION

Entry command: STAt
This section sorts and produces a sorted listing of any bin or the SCORE. The possible options are:

$$
\begin{aligned}
& \text { HELp } \\
& \text { RETurn } \\
& \text { SCAle } \\
& \text { STAndard }
\end{aligned}
$$

HELP and RETURN produce a listing of the options, and return to the COMMAND section respectively.
The response of STANDARD prints an ordinary z-score. For $t$-scores one may use the option: SCALE. The base (i.e., the value which the mean will take) and the scaling factor are requested. The program also requests if letter grades are desired. If so, the $t$-score criteria for grade assignments are also requested.

Note that the $z$-scores numerically are $t$-scores with a base of zero and a scaling factor of one.
The total possible, mean, and standard deviation for the bin are also printed. Inactivated student numbers are ignored.

Hyphens separate the output into page size sheets.
UPDATE SECTION
Entry command: UPDate
The UPDATE section allows the user to enter new information. Control within this section is determined by OPTIONS. A list is as follows:
HELp
INCre
RETurn
SINgle

As previously used, HELP produces a listing of options and RETURN chains back to the COMMAND section. Only the first three characters of the options need to be entered.

The INCREMENT option allows automatic incrementing through the range of active student numbers, hence the user need only enter the individual item after each request. The TOTAL is the total possible and is entered as the last datum. The bin is selected by the KEY request. Both keys of SCORE and RETURN result in branching to the OPTION request.

The SINGLE option allows entering a certain datum into a given student array. A student number of -1 will return to the OPTION request. The total possible, TKN, is defined to be student number zero. Note that the entry is added directly to the student's raw total. Hence, if points need to be subtracted, enter a negative number. The bin is selected by the KEY request and the raw totals are printed before and after the datum is entered. Thus the SINGLE option may be used to correct an error made in previous updates.

It is important to note that during execution of the UPDATE section the new information is only entered into the arrays in core. It is not until the return to the COMMAND section that the disc is updated. Hence stopping the program during execution of this section before a RETURN, may result in the loss of the new information. It may be possible to recover just by typing RUN (return) but any other teletype entry may destroy the information in the arrays. If in doubt, restart the package from GPAC MAIN PROGRAM and reenter the new data.

INSTRUCTIONS continued
SUMMARY OF GPAC CONTROL.


DELete
HELP


OUT


Return


```
RUN
RUN
GPAC I
 GPAC-INITIALIZATION
ENTER CLASS TITLE ?ELEMENTARY GPAC
ENTER NUMBER OF BINS DESIRED, (MAX OF 6) ?2
FOR EACH BIN ENTER HEADING, (MAX OF 6 CHAR).
BIN ! ?HW
BIN 2 ?TESTI
MODE OPTIONS: CONSTANT WEIGHTS (M = 1),
 CONSTANT PROP. FACTORS (M = 2).
ENTER MODE: M = ?2
ENTER PROPORTIONALITY FACTORS
\begin{tabular}{ll}
HW & \(? 26\) \\
TESTI & \(? 15\)
\end{tabular}
ENTER: MINIMUM STUDENT NUMBER ?1gI
ENTER: LARGEST STUDENT NUMBER ?124
GPAC STATUS CHECK
 27 MAY 73
TITLE: ELEMENTARY GPAC
NUMBER OF BINS IN USE: 2
\begin{tabular}{lrc}
HEADINGS: & HW & TEST! \\
PFACTORS: & 20 & 15 \\
POSSIBLE: & 0 & 0
\end{tabular}
STUDENT NUMBER BASE: 100
LARGEST STUDENT NUMBER: 124
NUMBER OF STUDENTS IN CLASS: 24
DATE FILES LAST UPDATED: }27\mathrm{ MAY 73
```

COMMAND ?HELP
GPAC CONTROL COMMANDS
CHECK: PRINT OUT CLASS PARAMETERS AND OTHER CLASS INFORMATION.
HELP: OBTAIN A LISTING OF ALL COMMANDS.
HISTO: MAKE A TTY HISTOGRAM OF ANY USEABLE BIN OR THE SCORE.
LIST: LIST THE STUDENT'S RAW TOTAL BY S.N.
MODIFY: CHANGE THE USEABLE BINS AND OTHER CLASS PARAMETERS.
DUT: OBTAIN A SMORT INDIVIDUAL SUMMARY GIVING THE RAW TOTALS
AND THE TOTAL POSSIBLE FOR EACH STUDENT.
SORT: SORT AND LIST IN DECREASING ORDER ALL RAW TOTALS AND
THE SCORE, THE KEY FOR THE SORT MAY BE ANY USEABLE BIN.
STAT: COMPUTES THE Z-SCORE AND SORTS FOR ANY USEABLE BIN OR THE
COMPUTES THE Z-SCORE AND SORTS FO
SCORE.
PERFORMS A NORMAL EXIT FROM GPAC.
STOP: PERFORMS A NORMAL EXIT FROM GPAC.
UPDATE: ALLOWS ENTERING OF NEW DATA INTO THE ARRAYS.

```
COMMAND 7MOD
 MODIFICATION SECTION
 MOD OPTION ?DEL
ENTER S.N. TO BE DELETED P108
STUDENT NUMBER 108 IS DELETED
 MOD OPTION ?DEL
ENTER S.N. TO BE DELETED ?82
OUT OF RANGE, MIN = 101 MAX = 124 1=82
 MOD OPTION TDEL
ENTER S.N. TO be DELETED ?1g9
STUDENT NUMBER 109 IS DELETED
 MOD OPTION TDEL
ENTER S.N. TO BE DELETED ?117
STUDENT NUMBER 117 IS DELETED
 MOD OPTION ?122
INVALID OPTION
ADD: ACTIVATE A STUDENT
dELETE: INACTIVATE A STUDENT
HELP: OBTAIN A LISTING OF OPTIONS
PARAM: MODIFY THE CLASS PARAMETERS
RETURN: RETURN TO COMMAND
 MOD OPTION ?DEL
ENTER S.N. TO BE DELETED ?122
STUDENT NUMBER 122 IS DELETED
 MOD OPTION ?DEL
ENTER S.N. TO be DELETED ?107
STUDENT NUMBER 107 IS DELETED
 MOD OPTION ?RET
COMMAND ?UPD
 UPD OPTION ?INC
 KEY ?HW
 S.N. HW
 101 ?37
 102 ?21
 163 ?28
 104 ?38
 105 ?43
 106 ?49
116 ? 41
111 ?25
112 ?33
113 ?31
14 ?41
115 ?0
116 ?29
118 ?38
119 ?46
120 ?42
121 ?37
123 ?45
124 ?40
TOTAL ?50
```


## GPAC, Paqe 10



```
COMMAND ?SORT
 SORT SECTION
 KEY ?HW
```

ELEMENTARY GPAC				27 MAY 73SCORE	
	S.N.	HW	TEST1		
1	166	49	100	95.0	
2	119	46	93	88.8	
3	123	45	78	81.8	
4	105	43	87	83.8	
5	120	42	86	81.5	
6	110	41	3.98	85.8	
7	114	41	85	80.0	
8	124	48	83	78.1	
9	164	38	73	71.9	
10	118	38	101	82.8	
11	101	37	86	75.8	
12	121	37	79	73.1	
13	112	33	75	66.9	
14	113	31	49	54.5	
15	116	29	91	68.6	
16	183	28	103	72.1	
17	111	25	85	61.7	
18	102	21	96	61.4	
19	115	0	62	24.2	
POSS		50	110		
AUEP		34.9	84.7	73.8	
DEV	ON	11.3	13.7	15.6	

            ELEMENTARY GPAC 27 MAY 73
    


```
POSSIBLE
AVERAGE
DEVIATION
```

KEY ?RETURN

COMMAND ?HIS
HISTOGRAM SECTION
KEY ? SCORE
ENTER: MIN, MAX, INC ? $0,100,2$


## KEY PRETURN

COMMAND ?OUT
out section
ENTER SMALLEST AND LARGEST S.N. DESIRED ?106.111

ELEMENTARY GPAC		
	HW	
	TESTI	
P FACTORS	20	15
STUDENT TOTALS	49	100
POSSIBLE	50	110

27 MAY 73 STUDENT 186
SCORE
95.6

## 27 may 73 StUdent 110

score
P facturs
STUDENT TOTALS
POSSIBLE
testi
20
15
98
110

## ELEMENTARY GPAC

HW
TESTI

```
p factars
STUDENT TOTALS STUDENT TOTALS POSSIBLE
```

20
25 50

15
85
85
116
27 MAY 73 STUDENT 111
score
61.7

END OUT SECTION
COMMAND ?STAT
STAT SORT SECTION
STAT OPTION ?SCALE

KEY ?SCORE

```
BASE AND SCALE FACTOR ?0,1
DO YOU WISH GRADES ?YES
LOWER LIMITS FOR D,C,B,A ?-1.5,-.5,+.5.1.5
```



```
-
 STAT OPTION ?RETURN
COMMAND ?CHE
-
 GPAC STATUS CHECK
 27 MAY 73
TITLE: ELEMENTARY GPAC
NUMBER OF BINS IN USE: 2
\begin{tabular}{ccc}
HEADINGS: & HW & TESTI \\
PFACTORS: & & \\
POSSIBLE: & 20 & 15 \\
& 50 & 110
\end{tabular}
STUDENT NUMBER BASE: 100
LARGEST STUDENT NUMBER: 124
NUMBER OF STUDENTS IN CLASS: 19
INACTIVES.N.: 107 108 109 117 122
DATE FILES LAST UPDATED: }27\mathrm{ MAY 73
```

UPD OPTION ?SIN

ENTER: S.N. ?115
KEY ? HW


MOD OPTION ?PAR

ITEM ? HELP
FACTOR: WEIGHTS OR P. FACTORS
HELP: LIST OF ITEMS
KILL: REMOVE A BIN
MODE: CHANGE MODE
NAME: CHANGE BIN NAMES
NEH: ADD A NEW BIN
RETURN: RETURN TO COMMAND
SWITCH: EXCHANGE TWO BINS
TITLE: CHANGE TITLE

ITEM ?NEW
BIN TITLE: TTEST 2
P. FACTOR: ? 15

ITEM ?RETURN
-

```
 GPAC STATUS CHECK
```

27 MAY 73
TITLE: ELEMENTARY GPAC
NUMBER OF BINS IN USE: 3

HEADINGS:	HW	TEST1	TEST 2
PFACTORS:	20		
POSSIBLE:	50	15	15
			10

STUDENT NUMBER BASE: 106
LARGEST STUDENT NUMBER: 124
NUMBER OF STUDENTS IN CLASS: 19
INACTIVES.N.: 107 108 109 117 122


COMMAND ?STA
STAT SORT SECTION
STAT OPTION ?SCA

KEY ?SCORE
BASE AND SCALE FACTOR ? 0,1
DO YOU WISH GRADES ?YES
LOWER LIMITS FOR D,C,B,A ?-1.5,-.5,.5,1.5

	ELEMENTARY GPAC					MAY 73
	S. $\dot{N}$.	SCORE	T-SCORE	GRADE	B, S:	01
1	106	95.8	1.9	A		
2	119	88.8	1.3	B		
3	110	85.0	1.0	B		
4	165	83.0	0.8	B		
5	118	82.8	0.7	B		
6	123	81.8	0.6	B		
7	120	81.5	0.6	B		
8	114	80.8	0.5	C		
9	124	78.1	0.3	c		
16	161	75.8	0.1	C		
11	121	73.1	-0.2	C		
12	103	72.1	-0. 3	C		
13	104	71.9	-0. 3	C		
14	116	68.6	-8.6	D		
15	115	67.6	-0.7	D		
16	112	66.9	-0. 8	D		
17	111	61.7	-1.3	D		
18	102	61.4	-1.3	D		
19	113	54.5	$-2.8$	F		


| POSSIBLE | 100.0 |
| :--- | ---: | ---: |
| AUERAGE | 75.2 |
| DEUIATION | 10.3 |

STAT OPTION ?RETURN

COMMAND ?STOP GPAC EXIT

DONE
TITLE:
DESCRIPTION:
INSTRUCTIONS:
ACKNOWLEDGEMENTS: Test Grade for Number of Questions Missed
This program is useful in determining the grade of an examination consisting
of any number of questions. The user inputs the number of questions on the
test and the output consists of a general table giving the number of
questions missed with the corresponding percentage grade based on 100\%
and the number of questions correct.

## GRADE, page 2

RUN
RUN
GRADE


TITLE:	ITEM: SCORES MULTIPLE CHOICE TESTS $\begin{array}{r}\text { ITEM } \\ \end{array}$
DESCRIPTION:	This program scores multiple choice tests with a maximum of 50 items in the test. Simultaneously an analysis of each item takes place and in the ITEM ANALYSIS section the response frequencies for responses $A, B, C, D, E$ and $O$ (omit) are.printed for each item, together with an analysis of the candidates who answered correctly into four groups (upper, middle upper, middle lower and lower) depending on scores for the test as a whole. For example, from item No. 1, of the 18 candidates answering correctly, 6 were in the upper $27 \%$ of candidates, 4 lay between the 50 th and $72 n \mathrm{nd}$ percentile inclusive, 5 lay between the 28 th and 50 th percentiles and 3 were in the lower $27 \%$. The groups are of unequal size so as to conform to the demands of the Kuder-Richardson formula 20 which is used to give a measure of the reliability of the list as a whole.
	The facility of each item is printed together with the INDEX of discrimination. The analysis for each item is sufficient for an experienced user to establish the validity of each item, the effectiveness of distractions, etc.
	The user is given the opportunity to have the scores standardized onto any mean and standard deviation of his choice. The mean, variance and standard deviation of the number of items correct is printed before the user is given the chance to standardize marks. Standardized scores are printed in ascending order. The identification of students is numerical on order of entry of raw responses.
	Specification of statistical techniques used:
	$N=$ Number of candidates
	$K=$ Number of items in the test
	$N_{H}=$ Number of candidates from upper group who answered the item correctly
	$N_{L}=$ Number of candidates from lower group who answered the item correctly.
	$J=$ Number of candidates in the upper $27 \%$ group.
	Reliability for whole test
	$R=\frac{K}{K-1}\left\{1-\frac{2 J \sum\left(\dot{N}_{H}+N_{L}\right)-\sum\left(N_{H}+N_{L}\right)^{2}}{0.667\left[\sum\left(N_{H}-N_{L}\right)\right]^{2}}\right.$
	Facility for an item $F=\frac{\text { No of correct responses }}{N}$
	Discrimination $D=\frac{N_{H}-N_{L}}{J}$
INSTRUCTIONS:	See following page.
SPECIAL CONSIDERATIONS:	See following page.
ACKNOWLEDGEMENTS:	John R. Tilbury Arnold \& Carlton College

## INSTRUCTIONS:

Prepare data statements or data tape.
This should contain strings of candidate responses. Each string must contain the number of letter characters - ( $A, B, C, D, E$ or 0 ). The first string must be the string of correct responses.

If using DATA statements, each candidate's responses string may utilize an individual DATA statement, or may be packed several response strings to a single data statement. No sentinel string or indicator is necessary.

Data statements should be numbered starting with a sequence number greater than 1580.
If using DATA statements, this must be terminated with an END statement.

CRE-STDT, 48:	STDT may be opened to more than 48 records if more than 48 students
CRE-STDT	(candidates) are involved.

RUN
Program requests number of candidates and number of $i$ tems.
The rest of the running procedure is straightforward.
If analysis of individual items is not required at some times but is required at others, the user may care to insert the following statements:

1001	PRINT "IS ITEM ANALYSIS REQUIRED";
1002	INPUT C\$
1003	IF C\$ $=$ "NO" THEN 1580

Storing the program in a user's private library will thus give, the user the choice of using the program to mark lists and standardize scores but not to have items analyzed for validity. This is, however, not the way the program is intended to be used.

## SPECIAL CONSIDERATIONS:

This program is only of use to persons experienced in the construction and validation of objective tests. The analysis provided by this program must be interpreted in the context of the uses to which the test is being put and should not be taken as absolute evidence that the test is valid \& reliable under all conditions, etc.

RUN

```
CRE-STDT, }4
GET-ITEM
```

1590 DATA "ABAEDCEACB"
1690 DATA "ABADDCEABA"
1610 DATA "ABAEDCEACB"
1620 DATA "ABBCDBEBAA"
1530 DATA "ABABDCEACO"
1640 DATA "ABEDDAEBCA"
1650 DATA "OBAADCEACC"
1660 DATA "ABDBDEEBAB"
1578 DATA "ABACDOACDA"
1680 DATA "AOCDDCEACC"
1690 DATA "CAAADAEBCD"
1700 DATA "ABOBDBEAAE"
1710 DATA "ABABDCEACB"
1720 DATA "ABBDDEEBBD"
1730 DATA "OEAAOOBBOC"
1740 DATA "ABCBDCEAEA"
1750 DATA "EBACDAEACB"
1760 DATA "ABDDDEEBCA"
1770 DATA "CBAADOBBBA"
1780 DATA."ABEBDCEACB"
1790 DATA "ADACDAEBAB"
1800 DATA "EBODDBEBCA"
1810 DATA "ABAEDCEACO"
1820 DATA "CBBBDAEBOB"
1830 DATA "ABACDBEACB"
1840 DATA "ABCDDOEBCB"

RUN
ITEM


LOWER GROUP OF 7 WI TH NUMBER OF ITEMS CORRECT				
14	1			
18	3			
3	4			
8	4			
10	4			
13	4			
21	4			



DO YOU WANT STANDARDISED SCORES?YES
ENTER MEAN AND STANDARD DEUIATION ONTO WHICH YOU
WI SH THE RESULTS TO BE STANDARDISED?50,15

ITEM, Page 4

NO.	SCORE
14	16
18	30
3	37
8	37
10	37
13	37
21	37
23	37
5	44
7	44
11	44
17	44
20	44
9	51
15	51
25	51
1	58
6	58
16	53
4	65
19	65
24	65
12	73
22	73
2	88

ITEM ANALYSIS
QUESTION NO• 1 ANSWER A
RESPONSE FREQUENCIES $18 \quad 0 \quad 3 \quad 0 \quad 2$
UPPER= 6 MIDDLE UPPER= 4 MIDDLE LOWER= 5 LOWER= 3
FACILITY $=.72$ DISCRIMINATION $=.428571$

QUESTION NO. 2 ANSWER B
RESPONSE FREQUENCIES $1 \quad 21 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1$
UPPER= 7 MIDDLE UPPER= 4 MIDDLE LOWER= 5 LOWER= 5
FACILITY $=.84$ DISCRIMINATION $=.285714$

```
QUESTION NO. 3 ANSWER A
```



```
UPPER= 6 MIDDLE UPPER= 2 MIDDLE LOWER=
LOWER=4
FACILITY=.52 DISCRIMINATION= .285714
QUESTION NO. 4 ANSWER E
RESPONSE FREQUENCIES 4 % 7 . 5 5 % 7 0
UPPER=2 MIDDLE UPPER= 0 MIDDLE LOWER= 0 LOWER= 0
FACILITY=.08 DISCRIMINATION=.285714
```

QUESTION NO. 5 ANSWER D
RESPONSE FREQUENCIES $0 \quad 0 \quad 0 \quad 24 \quad 0 \quad 1$
UPPER=7 MIDDLE UPPER=5 MIDDLE LOWER=6 LOWER=6
FACILITY = .96 DISCRIMINATION=.142857

```
RESPONSE FREQUENCIES 5 % 5 % 9 0
UPPER= 5 MIDDLE UPPER= 4 MIDDLE LOWER= 0 LOWER=0
FACILITY= .36 DISCRIMINATION= . 714286
```

QUESTION NO• 7 ANSNER E
RESPONSE FREQUENCIES 1 2001220
UPPER= 7 MIDDLE UPPER= 5 MIDDLE LOWER= 6 LOWER= 4
FACILITY=.88 DISCRIMINATION= .428571
QUESTION NO. 8 ANSWER A
RESPONSE FREQUENCIES $1212 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0$
UPPER= 7 MIDDLE UPPER= 4 MIDDLE LOWER= 1 LOWER= 0
FACILITY $=.48 \quad$ DISCRIMINATION $=1$

QUESTION NO. 9 ANSWER C
RESPONSE FREQUENCIES $4 \quad 3 \quad 14 \quad 1 \quad 1 \quad 2$
UPPER= 7 MIDDLE UPPER= 3 MIDDLE LOWER= 2 LOWER= 2 FACILITY $=.56$ DISCRIMINATION $=.714286$

QUESTION NO. 10 ANSWER B
RESPONSE FREQUENCIES $8 \quad 9 \quad 3 \quad 2$ UPPER = 5 MIDDLE UPPER= 1 MIDDLE LOWER= 3 LOWER $=0$ FACILITY = . 36 DISCRIMINATION= .714286

RELIABILITY KR(20) $=.505211$
DONE


ITEM1, page 2

RUN
600 DATA $1,2,3,4,5,2,3,5,6,7,8,9,16,7,8,9,11,13,14,15,10,13,15,10$ RUN ITEMI

ITEM ANALYSIS
-------------
NUMBER OF QUESTIONS IN THE TEST IS? 15
QUESTION NUMBER OF TIMES MISSED

$2 \quad 2$
2
1
2
1
2
2
9

10
3
11
12
14
15
DONE

# CONTRIBUTED PROGRAM BASTC 

## TITLE: <br> DESCRIPTION:

## INSTRUCTIONS:

## SPECIAL CONSIDERATIONS:

SALARY SCHEDULE COST SIMULATOR
This program computes the total cost, average salary per teacher, cost of training and experience increments, and various other related costs for a proposed salary schedule. Output also includes optional reproduction of personnel matrix with marginal totals and average number of years teaching experience.

This program requires two files to be opened (MLø0日5 and MLø017).
In preparing the data tapes type all figures for step 1 in the first data statement, type all figures for step 2 in the next data statement, etc. (Steps and lanes are defined as follows:)

STEP | LANE |
| :--- |
| $7000=7200 \quad 7400 \ldots$. |
| 7400 |
| 7800 |
| $\vdots$ |

The question "what number do you want to multiply your schedule by?" allows two options.
Option. $1 \quad$ To multiply the entire schedule by $a^{*}$ percentage increase. (Example: Type in 1.03 to multiply the entire schedule. by $3 \%, 1.05$ to multiply by $5 \%$, etc.)
Option 2 To use an index instead of a proposed schedule. If you want to use an index in place of the proposed schedule just follow the same format for preparing the data tape substituting indices for actual salaries.

Because two sets of data are appended to the program it is important that they are numbered correctly.
The "PERMAT" tape (personnel matrix) must be numbered from 4000 to 6900.
The "PROSCH" tape (proposed schedule) must be numbered from 7000 to 9900.
Because these two tapes are appended you must also include an "end"statement (9999 end) either on the end of the "PROSCH" tape or by itself after the two tapes have been appended.
Both the proposed schedule and the personnel matrix may not exceed 15 steps and 14 lanes. Both the proposed schedule and the personnel matrix must have the same Number of steps and lanes.

See attached copy for additional information.

TIES
St. Paul, Minnesota 55113
(SALary schedule cost SIMulator)

## Purpose

To compute the total and related cost for a proposed salary schedule.

## Input

1. A copy of the proposed salary schedule.
2. A personnel matrix for your district (number of teachers in each salary category).

## Output

1. Optional -- A step-by-lane reproduction of the personnel matrix with marginal totals and the average number of years teaching experience.
2. A cost matrix showing the cost in each category with step and lane marginal totals.
3. The total cost of the proposed schedule.
4. The cost if all teachers were placed on step one.
5. The cost of experience increments.
6. The cost if all teachers were placed in lane one.
7. The cost of training increments.
8. The ratio of cost of experience increments to the cost of training increments. (A number greater than 1 means that more money is being spent on experience than on training. A number equal to 1 means that money being spent on experience is equal to money being spent on training. A number less than 1 means that more money is being spent on training than on experience).
9. The average salary for teachers .

## Options

There is now a question within the program that asks WHAT NUMBER DO YOU WANT TO MULTIPLY YOUR SCHEDULE BY? This question gives you two options.

1. To multiply your whole schedule by a percentage increase. (Example: Type in 1.03, when the question is asked, to multiply your whole schedule by $3 \%$, 1.05 to multiply by $5 \%$, etc.)
2. To use an index instead of a proposed schedule. When using an index in place of the proposed schedule follow FORMAT B IN SECTION I UNDER OFF-LINE PROCEDURE. When the above question is asked type in the BA base figure you want to multiply your index by. (Type in 7500 to multiply the entire schedule by $\$ 7500,8000$ to multiply by $\$ 8000$, etc.)
3. Type in a 1 if you do not want to multiply your proposed schedule (i.e. if you do not want to take advantage of these options.)

## Restrictions

Both the proposed schedule and the personnel matrix may not exceed 15 steps and 14 lanes. Both the proposed schedule and the personnel matrix must have the same number of steps and the same number of lanes.

PRELIMINARY OFF-LINE PROCEDURE FOR RUNNING ALL SALARY PROGRAMS

The following two sections I and II, are instructions for preparing tapes off-line.

To run SALSIM follow sections I and II.
I. Proposed Schedule - PROPSI

You must type a tape of your proposed schedule using the following format.
Type each step of your proposed schedule in one data statement.

NOTE: DATA STATEMENTS FOR THIS FILE MUST BEGIN AT STATEMENT NUMBER 7000 AND CONTINUE AT ANY INTERVAL TO 9000. THE LAST STATEMENT MUST BE A 9999 END.

Format A

```
7000 DATA 7500, 7700, 7900, 8100, 8400, 8600, 8800
7100 DATA 7900, 8100, 8300, 8500, 8900, 9100, 9300
7200 DATA 8300, 8500, 8700, 8900, 9400, 9600, 9800
 . .
8700 DATA 10900, 11300, 11700, 12100, 13500, 14500, 15800
9999 END
```

If you want to use an index in place of the proposed schedule you must follow the format below.
Format B
7000 DATA $1,1.05,1.1,1.15,1.2,1.25,1.3$
7100 DATA $1.06,1.12,1.18,1.24,1.3,1.36,1.42$
7200 DATA $1.12,1.19,1.26,1.33,1.4,1.47,1.54$

8700 DATA $1.87,1.98,2.09,2.2,2.31,2.42,2.53$
9999 END
II. Personnel Matrix - PERMAT

You must type a tape of your personnel matrix using the following format.
Type each step of your personnel matrix in one data statement.
NOTE: DATA STATEMENTS FOR THIS FILE MUST BEGIN AT STATEMENT NUMBER 5000
and continue at any interval to 6900.
5000 DATA $10,4,2,0,3,0,0$
5100 DATA $5,6,3,1,2,0,0$
5200 DATA 6, 3, 6, 4, 7, 1, 0
$\cdot$ •
6700 DATA $4,7,12,16,8,5,3$

PRELIMINARY ON-LINE PROCEDURE FOR RUNNING SALARY PROGRAMS

1. Call the H/P Time Sharing System.
2. When you hear a high-pitched tone, place phone in coupler.
3. Type in any number ( $0-9$ ) and hit carriage return.
4. When computer asks you to $\log$ in, type in your appropriate district user ID, hit carriage return, and wait for READY message.
5. The first time you run SALSIM you must type in the following two statement.

OPE-ML0005,5
OPE-MLPQ17,7
You need never type in these statements again. (In fact it would be best if you took a pen and crossed out this step after you have done it.)
6. If you have never run SALSIM, proceed to step 7, otherwise type in KIL-PROPSI and hit carriage return.
7. Type in TAPE, hit carriage return and begin reading in the proposed schedule tape.
8. When the tape has been read in, type in NAM-PROPS1 and hit carriage return.
9. Type in SAV and hit carriage return.
10. Type in SCR and hit carriage return.
11. If you have never run SALSIM, proceed to step 12, otherwise type in KIL-PERMAT and hit carriage return.
12. Type in TAPE, hit carriage return, and begin reading in personnel matrix tape.
13. When tape has been read in, týpe in NAM-PERMAT and hit carriage return.
14. Type in SAV and hit carriage return.
15. Type in SCR and hit carriage return.

PROCEDURE FOR RUNNING - SALSIM

1. Type in GET-PERMAT and hit carriage return.
2. Type in APP-PROPSI and hit carriage return.
3. Type in RUN and hit carriage return.

The computer will ask you to PLEASE TYPE IN THE NUMBER OF STEPS THEN THE NUMBER OF LANES SEPARATED BY A COMMA. When you have responded the computer will print DONE.
4. Type in GET-SALSIM and hit carriage return.
5. Type in RUN and hit carriage return.

The computer will now ask the following questions:
please type in the number of steps then the number of lanes separated by a comma.
WHAT NUMBER DO YOU WANT TO MULTIPLY YOUR SCHEDULE BY? IF YOU DO NOT WANT TO MULTIPLY your schedule type in al.

PLEASE ENTER YOUR LANE HEADINGS. MAXImUM HEADING LENGTH IS 7 CHARACTERS. PLEASE TYPE ONLY one lane heading after each question mark that follows.
EXAMPLE:
? BA
? $B A+30$
? MA
? MA + 30
? PH.D.
DO YOU WIŞ TO ADVANCE ALL TEACHERS ONE STEP FOR PROJECTED COST COMPUTATIONS? (TYPE 1 FOR NO, 2 FOR YES).
DO YOU WANT A PRINTOUT OF THE PERSONNEL MATRIX? (TYPE 1 FOR YES, 2 FOR NO).
When the program has finished running it will print DONE. If you want to run the program again type in RUN and hit carriage return. If you want to run one of the other programs go to the respective PROCEDURE FOR RUNNING section for that program. If you are done running programs type in BYE and hit carriage return.

## RUN

SAMPLE OUTPUT - SALSIM

## DO YOU WISH TO ADVANCE ALL TEACHERS ONE STEP FOR PROJECTED COST COMPUTATIONS? (TYPE i FOR YES, 2 FOR NO) <br> ? 1

LANE 1 LANE b	LANE 2 LANE 7	LANE 3   LANE 8	Lane 4 LANE 9	LANE 5
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 60 \\ & 0 \end{aligned}$	$\begin{aligned} & A \\ & 0 \end{aligned}$	$\begin{aligned} & 5 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 73 \end{aligned}$
$0$	$\begin{aligned} & 5 ? \\ & 1^{n \prime} \end{aligned}$	$\begin{aligned} & 12 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 74 \end{aligned}$
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 29 \\ & 0 \end{aligned}$	$\begin{aligned} & 7 \\ & 0 \end{aligned}$	$0$	$\begin{aligned} & 0 \\ & 38 \end{aligned}$
$0$	$\begin{aligned} & 17 \\ & 1 \end{aligned}$	$\begin{aligned} & b \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{J} \\ & 0 \end{aligned}$	$\frac{1}{2}$
$\begin{aligned} & 0 \\ & 3 \end{aligned}$	$\underset{1}{2}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 19 \end{aligned}$
$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1,5 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { J } \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\frac{1}{23}$
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & b \\ & 0 \end{aligned}$	$\begin{aligned} & 4 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \text { ل } \end{aligned}$
$\frac{1}{2}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 9 \\ & 0 \end{aligned}$	$\begin{aligned} & 6 \\ & 3 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$
$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \end{aligned}$	$\begin{aligned} & 7 \\ & 0 \end{aligned}$	$0$
$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$0$	$\begin{aligned} & 1 \\ & 7 \end{aligned}$
$\begin{aligned} & 1 \\ & 5 \end{aligned}$	7	$\begin{aligned} & 6 \\ & 7 \end{aligned}$	$\begin{aligned} & 9 \\ & 4 \end{aligned}$	$\begin{aligned} & 0 \\ & 50 \end{aligned}$
$\begin{aligned} & 5 \\ & 25 \end{aligned}$	$\begin{aligned} & 210 \\ & 2,2 \end{aligned}$	$\begin{gathered} 66 \\ 9 \end{gathered}$	$\begin{aligned} & 34 \\ & b \end{aligned}$	${ }_{36}$

THE AVERAGE STEP (ROW) ATTAINED BY YOUR CURRENT STAFF IS 4.73

SAMPLE OUTPUT - SALSIM


LESS	BA	$8 \mathrm{~A}+15$	$8 A+30$	BA+45
\$ 0	\$ 0	\$0	\$ 0	\$ 0
\$ 0	\$ 498000	\$ 69600	\$ 45500	\$ $\square$
\$0	\$ 501600	\$ 110400	\$ 28800	\$ 10000
\$ 0	\$ 269700	\$ 87300	\$ 0	\$ 0
\$0	\$ 1b6bul	\$ 61200	\$ 10600	\$ 112000
\$ 0	\$ 123600	\$ 21.400	\$ 0	\$ 0
\$ 0	\$ 163500	\$ 22600	\$ 23400	\$ 22100
\$ 0	\$ 69000	\$ 47600	\$ 22300	\$ $\square$
\$ 9900	\$ 0	\$ 212500	\$ 77400	\$ 13300
\$ 21000	\$ 0	\$ 105600	\$ 95200	\$ 0
\$ 22400	\$ 189000	\$ 83400	\$ 228700	\$ 147700
\$ 53300	\$ 1981000	\$ 721600	\$ 421900	\$ blluo


MA	MA +15	$M A+30$	MA +45	TOTAL
\$0	\$ 0	\$0	\$ 0	¢ 0
\$0	\$ 0	+0	\$0	\$ 613100
\$0	¢ 10800	\$ 0	\$ 0	\$
\$0	\$0	\$ 0	\$0	\$ 357000
\$ 21400	\$ 11.800	\$0	\$ 0	\$ 272600
\$ 35700	\$ 12300	\$0	\$ 23700	\$206100
- 22500	\$ 22900	\$ 23300	\$ 0	\$ 260300
¢ 0	\$0	\$0	\$0	\$ 128900
\$ 27600	\$ 14200	\$0	\$ 15000	\$ 269908
\$ 29000	\$ 0	\$0	\$0	\$ 250800
\$ 91200	\$ 109200	\$ 128000	\$65600	\$832200
\$ 207400	-	\$ 1,41,300	\$ 93700	- 3852500

THE TOTAL COST FOR THE PROPOSED SALARY SCHEDULE IS $\$ 3852500$

THE TOTAL COST FOR THIS SALARY SCHEDULE WOULD BE $\$ 2958600$ if all teachers were placed on step 1

THE COST OF THE EXPERIENCE INCREMENTS FOR THIS SCHEDULE IS $\$ 893900$

THE TOTAL COST FOR THIS SALARY SCHEDULE WOULD BE $\$ 2746000$
If all teachers were placed in lane 1

THE COST OF TRAINING INCREMENTS FOR THIS SCHEDULE IS $\$ 1106500$

THE RATIO OF THE COST OF EXPERIENCE INCREMENTS TO THE COST OF TRAINING INCREMENTS IS .81
the average salary per teacher for the proposed salary schedule is \$ 10642.3


The Ohio State University College of Pharmacy

INSTRUCTIONS: Continued.
9. Invoke the CRI. command and enter the criteria onto the system.

The system is now ready for use.
The objectives of the SGFMS are:

1. Allow an instructor to store and retrieve a student's name and grades on a teletypewriter or CRT.
2. Three grade types are to be accepted:

Exam, Quiz and Criteria-based grades (daily grades).
3. The daily grades must be criteria-based. The criteria on which the daily grades are based should be placed within the record.
4. The mode of grade input must be efficient, and contain appropriate checks to insure that input errors are not made.
5. The instructor should have the ability to extract reports of:
a. An individual student's record.
b. The records of the entire class.

A report which summarizes a student's work.
Any particular test or quiz for the entire class.
A list of names of students currently registered on the system.
6. The system must store a list of criteria on direct access device on which a student's daily grades must be based.
7. The criteria files should be completely flexible in terms of status reports and input of criteria into the files, and addition of the criteria into a student's record.
8. System security provisions must be established.
9. The system must be easy to set up and maintain.

The SGFMS is designed to allow flexibility in maintaining student records and criteria records. Once the user has accessed and started the SGFMS running, he is prompted for a command. The instructor types a command which directs the system to perform certain operations. The commands presently on the system are:

ALT (ALTer) Changes a student name or password.
CLE (CLEar) Clears the student record file.
CRI (CRIterion) Initiates the criteria file maintenance commands.
DRO (DROp) Drops a student record from the system.
END (END) Terminates a system or subsystem.
HEL (HELP) Prints a list of system commands and their actions.
INP (INPut) Allows user to input grade into student's records.
REG (RLGistration) Registers students on the system.
STA (STAtus) Prints reports on file contents.
SYS (SYStem) Sets system's parameter previous to registration.
UPD (UPDate) Corrects an erroneous student record
NOTICE that the commands use the first three letters of a base word.
Description of SGFMS Conmands
Al T
The purpose of the ALTER command is to change the student name or password.

INSTRUCTIONS: Continued.

## CRI

The purpose of the CRI command is to initiate the CRITERIA MAINTENANCE control section.
(The following commands are not to be confused with the main control section commands.)
There are four CRITERIA MAINTENANCE COMMANDS:

CLE	(CLEar)
END	(END)
INP	(INPut)
PRI	(PRInt)

CLE - The purpose of the CLE command is to clear the contents of the criterion files.
END - The END command terminates the CRITERION MAINTENANCE MODE.
INP - The purpose of the INP command is to place or update criteria in the criterion files.
PRI - The purpose of PRI is to print selected criteria stored on the system.
CLE
The purpose of the CLE command is to clear the student record file. The user responds to the TYPE COMMAND prompt with the command "CLE".

The CLE command is protected by a password. The password of the sample RUN program is $R_{C} U_{C} N_{C}$. The system will then type: TYPE C TO CLEAR OR X TO ABORT.

The user may type the letter "C" to clear the student files, or he may type the letter $X$ to prevent a clear from being performed. Once the file is cleared, the system will type: CLEAR COMPLETED

TYPE COMMAND?

## DROP

Sometimes it is desirable to eliminate a student record from the system; this task is accomplished through use of the DROP command. Once a student record has been dropped, no more grades may be placed in the record.

END
This comunand terminates the SGFMS program.
HELP
A list of system commands and their actions may be obtained by responding to the TYPE COMMAND? prompt with HELP.

HELP may be used in response to the SELECT REPORT TYPE? of the STATUS command. If HELP is typed, the system will respond with a list of status reports and their contents.

INP
The purpose of this command is to input student grades. The input routine has three modes: CBG (Criteria Based Grade), Q, E.

The CBG mods allows the instructor to enter criteria-based grades (CBG) on student records, e.g.,
Once the INP command is invoked the user must specify the number of the exercise for which he wishes to place CBG's. Once he specifies the exercise number all of the following inputs will be entered for that particular exercise. Until the user respecifies a new exercise number, the dialogue is as follows:


SGFMS, Page 4

INSTRUCTIONS: Continued.

The first system prompt "STUDENT NUMBER?" calls for the student number.
If a valid student number is entered, the system will immediately respond with the student's name and then prompt for the grade and first criterion \#, e.g.,
STUDENT NUMBER? 10
JOHN SMITH
GRD,CRI? 9,4

In the previous example, the user typed in "Student Number 10". The system replied with the name "JOHN SMITH". Then the system prompted for the grade and a first criteria number, separated by a comma. The " 9 " in the previous example is the grade and " 4 " is the number of a criterion which will be inserted into JOHN SMITH's record.

The system will then prompt for two more criteria numbers, e.g.,

$$
\begin{array}{lr}
\text { CR2? } & 5 \\
\text { CR3? } & 10
\end{array}
$$

The system will accept a maximum of three criteria numbers and a minimum of one. If the instructor does not wish to add the 2 nd and 3 rd criteria to the student record, e.g.,

```
STUDENT NUMBER? 10
JOHN SMITH
GRAD, CRI? 8,4
CR2? 0 - a zero prevents any additional criteria being placed into the record.
```

In the previous example, only one criterion, \#4, was added to JOHN SMITH's record.
If the instructor should wish to specify a new exercise number, he should enter a STUDENT NUMBER of zero. This will cause the EXERCISE \#? prompt to be printed. (See example below.)

To terminate the INP of CBG's a zero must be entered to the STUDENT NUMBER? and the EXERCISE \#? prompt. (See below.)

```
TYPE COMMAND? INP
SELECT INPUT MODE: CBG, Q, OR E? CBG
EXERCISE #? 5
ALL INPUTS WILL BE PLACED IN EXERCISE }5
```

STUDENT NUMBER? 11
JACK HAMILTON
GRD, CRI? 8,2
CR2? 3
CR3? 0
STUDENT NUMBER? 0
EXERCISE \#? 6
ALL INPUTS WILL BE PLACED IN EXERCISE 6
STUDENT NUMBER? 27
TONI JAMES
GRD, CRI? 10,1
CR2? 0
STUDENT NUMBER? 0
EXERCISE \#? 0
TYPE COMMAND?

The $Q$ or $E$ inputs allow the instructor to enter quiz or exam grades. Both the input modes are identical. The quizzes and exam grades should be entered into the system in the same order that the quizzes or exams are taken. That is, the grades of the third quiz should not be entered into the system before the grades of the fourth quiz.
To terminate the input of quiz or exam grade, a zero should be entered to the STUDENT NUMBER? prompt.

```
STUDENT NUMBER? 10
JOHN SMITH
QUIZ? }9
STUDENT NUMBER? O
TYPE COMMAND?
```

In the previous example, a quiz grade of 90 was added to JOHN SMITH's record.

INSTRUCTIONS: Continued.

## UPD

The UPD command allows the instructor to correct an erroneous student record, e.g.,
STUDENT NUMBER? 10
JOHN SMITH
DISPLAY CBG, $Q, E$, OR Y? E
EXAM GRADES
G1 - 10 G2 - 0 G3 - 0 G4-0
UPDATE: CBG, Q, E, OR X? E
EXAM \#,GRD?
? 1,95
TYPE COMMAND?
The previous sequence changed JOHN SMITH's first exam grade from a 10 to a 95 . If an "X" is typed for the prompt:

DISPLAY; CBG, Q, E, OR X?
The "X" will prevent the student's record from being displayed.
UPDATE; CBG, $Q, E, O R X$ ?
The reply of an "X" to this prompt will result in no update being made.
REG
The REG command places the student's name into the student record file; routine also generates the student password which is used in SSRP, e.g.,

TYPE COMMAND? REG
REGISTRATION
TYPE END TO TERMINATE REGISTRATION
TYPE NAME 1
? JOHN SMITH
TYPE NAME 2
? BETTY WILLIS
TYPE NAME 3
? END
TYPE COMMAND?
The previous example set up records on the system for John Smith and Betty Willis.
STA
The STA command permits reports to be obtained fron the system. There are five types of records which may be obtained.

GRD - This report summarizes student grades. The following information is printed for each student registered:

Student name and \# of CBG's stored.
CBG average.
\# of quiz grades stored.
Quiz grade average.
\# of exam grades stored.
Exam grade average.
DMP - This report dumps any quiz or exam onto the printer. The report includes the student name and number.

NAM - NAM reports the student \#, student name and password. All students registered on the system are printed. This report may be single or triple-spaced. The triple spaced form may be cut apart and distributed to the respective students at the beginning of the quarter.

RAN - The RAN report dumps the entire contents of the student's records. All the records may be printed over a range of student numbers.

STU - The STU report displays a particular student's record.

INSTRUCTIONS: Continued.

## SYS

The SYS command is used to set up the SGFMS system. It is used to inform the SGFMS system of the size of the student record and criteria files.

SGFMS FOR THE PROGRAMMER

## Expanding SGFMS Files

A. Student Grade File (FILEA)

The student grade file cannot be enlarged unless the SGFMS program is programmed to do so. One way of avoiding this difficulty is to allow enough blocks of disc storage space to allow for additional records. (Each student record requires one block of space.)
B. Criteria File (FILEB)

The criteria may be expanded if it is found after the initial system setup that additional criteria are needed. Use the following procedure to expand the criteria file:

1. Open a temporary file equal to the size of the old file.
2. GET and RUN the HP utility progran \$COPYFL; copy FILEB into the temporary file.
3. KIL-FILEB, reopen it to the appropriate size.
4. Run \$COPYFL copy the temporary file into the new FILEB.
5. GET and RUN the SGFMS.
6. Invoke the SYS command and RESET the space parameters.
7. Invoke the CRI command and INPUT the additional criteria.

## System Grade Capacity

VERSION B of SGFMS can store for each student a maximum of:
40 criteria-based grades
120 criteria numbers, ( 3 per criteria based grade)
10 quiz grades
10 exam grades

## System Record Capacity

STUDENT RECORD FILE -- within disc space limitations. CRITERIA FILE -- 1 to 99 records.

Criteria Number Storage
The INP command allows that user to store up to three criteria numbers to describe each daily grade. These criteria are stored in array C (see SGFMS file structure). To conserve space all three criteria numbers are placed in one numeric word of storage. For example, if the criteria describing a particular grade were 5, 7, and 16 these criteria would be stored as: 160705.

A special program must be written to decode this number so the criteria number can be extracted. (The criteria number is a disc address used to retrieve the criteria from the criteria file.)

SGFMS program statements $7840-8060$ will decode the criteria code; read and print the appropriate criteria from the criteria file.

SGFMS File Structure
It is often desirable to read the SGFMS files for the purpose of extracting information not contained in the SGFMS or CORP reports. For example, an instructor may find it desirable to run a statistical analysis on data stored in SGFMS files.

INSTRUCTIONS: Continued.

SGFMS File Structure

BLOCK 1

$N 4$	L8	C9	$Y \$(25)$	

WHERE:

```
N4 = number of registered students
L8 = size of student grade file (FILEA) in blocks
C9 = size of criteria file (FILEB) in blocks
Y$ = course name
```

BLOCK 2 AND ALL SUBSEQUENT BLOCKS

$D \$(25)$	$2 \$(4)$	$B(40)$	$C(40)$	$Q(10)$	$P(10)$	

WHERE:
$D \$=$ student name
Z\$ = password
$B=\mathrm{CBG}$
$C=$ criteria numbers
$Q=$ quiz grades
$P=$ exam grades

SGFMS, Page 8

INSTRUCTIONS: Continued.

STUDENT STATUS REPORT PROGRAM (SSRP)
The purpose of SSRP is to provide the student with the ability to recall his own grade record, that has been set up the STUDENT GRADE FILE MANAGEMENT SYSTEM (SGFMS).

When the students are registered using SGFMS, a student number and four-letter password is inserted into the student's record. This number and four-letter password is required for a student to print his grade record using SSRP. (To obtain a list of registered students and passwords, use the NAM print of the STA command.)

Use of SSRP
The user types the underlined commands:

$\begin{aligned} & \text { GET- \$SSRP } \\ & \text { RUN } \end{aligned}$	
SSRP	
Student status report program	
TYPE YOUR NUMBER? ${ }^{\text {I }}$	
PASSWORD? ZAKL	
ANN ALBERS	
SELECT PRINT: RX, PE, TS, ALL OR STOP?	
COMMAND	RESULTING ACTION
RX	Prescription grades are printed (Criteria based grade).
PE	Practical exam grades are printed (Quiz grades).
TS	Test grades are printed (exall grades).
$\overline{\text { ALL }}$	All of the above.
STOP	Terminates the SSRP

Once the print command is typed, the systell will respond with the appropriate information.
In addition, the SSRP computes the criteria based grade and quiz average for the entire class and for the individual student.

Each individual exam is averaged for the individual student as well as for the class. This capability gives the student a means of judging his standing in relation to the rest of the class.

If the student selects the RX, PE, or $T S$ print, the SSRP program must be terminated manually. This is done by typing the word "STOP"

## CRITERIA OCCURRENCE REPORT PROGRAM (CORP)

The purpose of CORP is to provide an analysis of criteria occurrence. CORP analyzes the daily grade criteria that are stored by the STUDENT GRADE FILE MANAGEMENT SYSTEM (SGFMS).

CORP enables the instructor to obtain three types of reports:

1. A report which counts the criteria of each student for a specified exercise.
(E.g., criteria counts for exercise \#5.)
2. A report which summarizes the criteria occurrence within a particular student's record.
(E.g., criteria counts for John Doe.)
3. A report which counts the criteria in all student's records.
(E.g., total criteria count for all exercises.)

The benefits of such an analysis are of extreme importance to the instructor. By counting the criteria which have occurred for a particular exercise (Report l), the instructor can immediately determine which criteria are being missed most frequently. This should allow adjustments to be made in the instructional emphasis of the course.

By counting criteria occurrence within a particular student's record (Report 2), the instructor can determine if a student is not grasping concepts which have resulted in excessive occurrence of a particular criteria within the student's record.

INSTRUCTIONS: Continued.

Use of Corp
The user types the underlined commands:
GET-CORP
RUN
PASSWORD? Gc Oc
CRITERIA OCCURRENCE REPORT PROGRAM
PRINT REPORT BY PUPIL, BY EXERCISE, OR SUMMARY?
If the criteria count is obtained according to EXERCISE, there are 2 options available:

1. The print may be obtained for one individual exercise.
2. The print may be started on a particular exercise and stopped at a particular exercise; that is, a range of individual exercises may be printed.

RUN

```
CRE-FILEA,100
CRE-FTILEB,20
```

GET-SGFMS
RUN
SGFMS
STUDENT GRADE FILE MANAGEMENT SYSTEM
PASS VORD? $G^{C} O^{C}$
HELP AVAILABLE
TYPE COMMANDTSYS
SYSTEMS CONFIGURATION
DISPLAY OR RESET PARAMETERS?
PRESET
COURSE NAME?PHARMACEUTICS 887
NUMBER OF BLOCKS ALLOCATED FOR FILEA (GRADE FILE)?83
NUMBER OF BLOCKS ALLOCATED FOR FILEB (CRITERIA FILE)?15
TYPE COMMANDTCLE
STUDENT RECORD FILE CLEAR
AIITHORIZATION?
TYPE $C$ TO CLEAR OR A TO ABORT
?C
CLEAR COMPLETED
TYPE COMMANDPREG
REGISTRATION
IF YOU MAKE AN ERROR IN TYPING A STUDENT NAME,
YOU MAY CORRECT IT BY USE OF TKE ALT (ALTER) COMMAND.
TYPE END TO TERMINATE REGISTRATION
RECORD LENGTH -- 101 WORDS
TYPE NAME I
TSUSAN ALDERN-MAN
TYPE NAME 2
TARKVRIGHT G. AMBERG
TYPE NAME 3
TROBERT BAREER
TYPE NAME 4
TLISA BLOCHER
TYPE NAME 5
?GEORGE CLARK
TYPE NAME 6
?ALBERT CROFT
TYPE NAME 7
TJOHN EPPICH
TYPE NAME 8
? JON FAUST
TYPE NAME 9
TPATRICIA HOBBS
TYPE NAME 10
?END
TYPE COMMAND?STA
STATUS REPORTS
help available
SELECT REPORT: DMP, GRD, NAM, RAN, STU?NAM
SINGLE OR TRIPLE SPACE REPORT?SINGLE

REGISTERED STUDENTS PHARMACEUTICS 887		
1	SUSAN ALDERMAN	
2	ARKWRIGHT G AMBERG	BIAI
3	ROBERT BARBER	DOPR
4	LISA BLOCHER	ICYY
5	GEORGE CLARK	TDYY
6	ALBERT CROFT	GDTB
7	JOHN EPPICH	UREF
8	JON FAUST	NDJT
9	PATRICIA HOBBS	TOEX
		RSFH

TYPE COMMAND?ALT
STUDENT NUMBERTA
LISA BLOCMER TDYY
ALTER NAME OR PASSWORDTPASSWORD
PASS YORD? TDSY
TYPE COMMANDPDRO
STUDENT NUMBERT8
DROP JON FAUSTTYES
STUDENT DROPPED

```
TYPE COMMANDPCRI
CRITERIA MAINTANCE
SELECT: CLE, END, INP, PRI
TYPE CRITERIA COMMANDICLE
CLEAR CRITERIA FILES
TYPE C TO CLEAR FILES OR X TO ABORT
?C
CLEAR COMPLETED
TYPE CRITERIA COMMAND?INP
INPUT (SET C%=O TO TERMINATE ROUTINE)
SYSTEM WILL ACCEPT 15 CRITERIA
C&1
CRITERION:
TCONGRATULATIONS:I YOU MADE NO ERRORS
C%32
CRITERION:
TPACKAGING OR LABELING ERROR
C073
CRITERION:
TTYPING OR SPELLING L-ERROR ON LABEL
C*?O
TYPE CRITERIA COMMAND?PRI
SELECT PRINT: RANGE OR SELECT
?RANGE
LOVER LIMIT?I
UPPER LIMIT (MAX IS 15 ?3
```

1 CONGRATULATIONSII YOU MADE NO ERRORS
2 PACKAGING OR LABELING ERROR
3 TYPING OR SPELLING ERROR ON LABEL

HELP COMMAND

TYPE CRITERIA COMMAND?END
TYPE COMMANDTHELP

```
ALT -.- ALTER& ALTERS STUDENT NAME OR PASSWORD
CLE --- CLEAR: ERASES STUDENT NAMES AND THEIR GRADE RECORDS
CRI -.- CRITERIA: INUOLKES THE CRITERIA FILE
 MAINTAINANCE SUBSYSTEM
DRO -..- DROP: DROPS A REGISTERED STUDENT
END -.. TERMINATES A SYSTEM OR SUBSYSTEM
INP --- INPUT: USED TO INPUT STUDENT'S GRADES
REG -..- REGISTRATION: PLACES THE STUDENT NAMES AND
 PASSWORDS ON THE SYSTEM
STA -.- STATUS: PRINTS STATUS REPORTS
SYS --- SYSTEM: USED IN INITIALIZING THE SYSTEM
UPD -..- UPDATE: PERMITS THE CORRECTION OF A STUDENT RECORD
```

TYPE COMMAND? INP
SELECT INPUT MODE: CBG, $Q$, OR E?CBG INPUT OF CBG'S
EXERCISE 15
ALL INPUTS UILL BE PLACED IN EXERCISE 5
STUDENT NUMBERT090...-9
PATRICIA HOBBS
GRD,CR1?
19.4
CR2TO

```
SrgFMS, Page 12
```

STUDENT NUMBERT3
ROBERT BARBER
GRD,CRI?
78.2
CR273
CR370
STUDENT NUMBERTO
EXERCISE 196
ALL INPUTS UILL BE PLACED IN EXERCISE 6
STUDENT NUMBERTS
GEORGE CLARK
GRD, CRI?
P10.1
CR2?O
STUDENT NUMBER?O
EXERCISE ? O
TYPE COMMAND?UPD
RECORD UPDATE
AUTHORIZATIONT
SET STUDENT NUMBER $=0$ TO TERMINATE UPD
TYPE $X$ TO BYPASS
STUDENT NUMBER? I
SUSAN ALDERMAN
DISPLAY: CBG, $Q, E, O R$ XPCBG
NO CBG'S STORED
UPDATE: CBG, Q, E, OR XPCBG
EX, CBG,CR1?5,8.3
CR2?4
CR3? 0
STUDENT NIMBER?9
PATRICIA HOBBS
DISPLAY: CBG, $Q, E, O R$ XPCBG
CBG ${ }^{\circ}$ S
EX 5 - 9
UPDATE: CBG, $Q, E, O R$ XPE
EXAMA, GRD?
32,88
STUDENT NUMBERTO
TYPE COMMAND?END

DONE

## CONTRIBUTED PROGRAM

TITLE:
DESCRIPTION:

## INSTRUCTIONS:

The Student Response Print (SRP) is a program designed to read response files which are written by the Hewlett-Packard IDF program IDSF (Instructional Dialogue Student Facility), and print the responses in two formats:
A. Standard Response Print

The standard response print lists the responses for each student by section number.
B. Response Frequency Count

The Response Frequency Count print eliminates all duplicate responses and prints only unique responses and their associated frequency of occurrence by section number.

The SRP uses one disc file (SKR2) as a scratch file. The SKR2 file is routinely created as part of the IDF system. If the SKR2 file has not been created it should be opened in the following manner:

CRE-SKR2, 32
SRP contains a variety of features which are designed to increase the program's flexibility and usefulness.
A. "Batch" Processing Feature

The user of ten must dump a number of response files. This can be a time consuming task if the number of sections are small, and if there are many files to dump, since the user must "baby sit" the computer terminal, dumping one file, then the next, etc. The SRP allows the user to enter from one to twelve filenames to be dumped, the SRP will dump the files in a continuous fashion.
B. Remove Blanks Option

IDSF answer checking is often performed after removal of embedded blanks from student answers, but the student answers are written into the response file without blanks removed. With the REMOVE BLANKS option, the user can print the responses without blanks, thus making the responses appear as they appear to the answer checking section of IDSF. If blanks are removed, the user can readily determine if this answer checking is working properly by comparing the print to the appropriate section.
C. Frequency Counts of //CALC, //HINT, and //STOP

Since it is often useful to determine the student use of CAI facilities, such as the calculator, the SRP does frequency counts of the 3 major IDF aids: //CALC, //HINT, and //STOP.

Continued on following page.

SRP, Page 2

INSTRUCTIONS continued.
D. Selective Section Dumps

If only one response filename is entered into the SRP, the program allows the user to selectively dump responses of any given section or sections.
E. Response File Protection

The user must enter the code $R_{C} U_{C} N_{c}$ before the program will permit a user to dump a response file/s.

RUN

RUN
SRP

IDF STUDENT RESPONSE PRINT *** OED VERSION B
CODE? $K^{6} \mathcal{J} N^{c}$
ENTER RESPONSE FILE LIST, ONE PER LINE, TERMINATE WITH 'END'
FILE \# 1 ?FRANCR
FILE * 2 ? END
CORRECTIONS?N

REMOUE BLANKS?Y
SELECT: A. STD RESPONSE PRINT B. RESPONSE FREQ COUNT?A
THERE ARE 6 SECTIONS IN FRANCR
START SRP AT SECTION *? I
STOP SRP AT SECTION \#?6
-----

FEB 5,1975	RESP FILE ASSOCIATED WITH LESSONFILE: FRANC
SECTION * $1 \quad$ FRANCR STUDENT RESPONSE PRINT	



```
FEB 5, 1975 RESP FILE ASSOCIATED WITH LESSONFILE: FRANC
```

SECTION ? FRANCR STIIDENT RESPONSE PRINT

------

| FEB 5,1975 | RESP FILE. ASSOCIATED NITH LESSONFILE: FPANC |
| :--- | :--- | :--- |
| SECTION \# 3 | FRANCR STUDENT RESPONSE PDINT |


SECTION \# 4 FPANCR STUDENT RESPONSE TTINT


```
FEB 5, 1975 RESP FILE ASSOCIATED WITH LESSONFILE: FRANC
SECTION * 5 FRANCR STUDENT RESPONSE PRINT
 S# RESPONSE
```



```
\begin{tabular}{ll}
1010 & SEINE \\
1011 & GARONNE \\
1012 & THESEINE \\
1013 & LOIRE \\
1014 & RHONE \\
1015 & SEINE \\
1016 & GARONNE \\
1817 & \(1 / R H O N E\) \\
1217 & RHONE \\
1018 & RHONE \\
1819 & GARDEN
\end{tabular}
NUMBER OF STUDENTS STOPPING IN THIS SECTION -- \emptyset
NUMBER OF //HINTS REQUSESTED -- 2
NTMBER OF //CALCS USED -- a

FEB 5, 1975 RESP FILE ASSOCIATED WITH LESSONFILE: FRANC
SECTION * 6 FRANCR STIDENT RESPONSE PRINT
 S* . RESPONSE
```



```
 1010 NO
 101I NO
 1%1? NO
 1013 NO
 1714 NO
 1715 NO
 1916 NO
 1\17 NO
 1018 NO
 1019 NEUER
 1019 NO
NUMBER OF STUDENTS STOPPING IN THIS SECTION -- a
N\MMRER OF //HINTS REQUESTED -- a
NUMBER OF //CALCS IJSED -- a
```

GET-\$SRP
RIJN
SRO
IDF STITDENT RESPONSE PRINT *** OED UEQGION B
CODE? RC'N'
ENTER RESPONSE FILE LIST, ONE PER LINE, TERMINATE MITA •END'
FILE \# 1 ?FRANCR
FILE \# ? ? END
CORRECTIONS?N
REMOVE BLANISS?Y
SELECT: A. STD RESPONSE DQINT R• QESPONSE FREQ COIMT?
THERE ARE 6 SECTIONS IN FRANCQ
START SRD AT SECTION \#? 5
STOP SRD AT SECTION \#? 5
------

```
FEB 5, 1975 RESP FILE ASSOCIATED WITH LESSONFILE: FRANC
SECTION # 5 FRANCR RESPONSE FREQUENCY COUNT.
FREQ RESPONSE
```



```
 SEINE
 GARONNE
 THESEINE
 LOIRE
 RHONE
 //RHONE
 GARDEN
\begin{tabular}{llll}
NUMBER & OF //STOPS & -- & \(a\) \\
NUMBER & \(0 F / / H I N T S\) & -- & 2 \\
NUMBER & OF //CALCS & -- & \(a\)
\end{tabular}

FEB 5,1975 RESP FILE ASSOCIATED WITH LESSONFILE: FRANC.
 REQ RESPONSE
```



```
 10 NO
 1 NEVEQ
NIMBER OF //STOPS -- a
NIMMBER OF //HINTS -- a
NIMMBER OF //CALCS -- a
```

mone
TITLE:
DESCRIPTION:
INSTRUCTIONS:
MULTIPLE-CHOICE TEST GRADER
This program is used to score multiple choice tests of up to 40
questions in length. Output includes an alphabetical list of the
students with a listing of the answers they had incorrect. Correct
responses are listed as "." except every fifth is a ", double marked
answers are listed as ":" and blanks are " On the next line is the
number of correct answers, the number of incorrect, and the percentage
of the maximum. An item analysis of answers completes the report.


[^0]:    * 800 BPI. (1600 BPI mag tapes are also available under separate order number)

[^1]:    Lawrence E. Turner, Jr.
    Pacific Union College

[^2]:    AS YOU CAN SEE, IF YOU HAVE MORE THAN ONE OF A
    HALOGEN, YOU SAY SO WITH THE 'DI, TRI, TETRA, ETC.' YOU LEARNED FOR METHYLS AND THE OTHER GROUPS IN PREUIOUS LESSONS.

    NOTICE ALSO THAT HALOGENS COME BEFORE METHYLS IN THE ORDER OF FLUORO, CHLORO, BROMO, AND IODO.

[^3]:    O.K. LET'S NOW VARY THE AMOUNT OF CARBON DIOXIDE IN THE ATMOSPHERE SURROUNDING OUR PLANT.

    THIS TIME ASSUME OUR PLANT HAS ALL THE LIGHT, WATER AND CHLOROPHYLL THAT IT NEEDS.

    LET THE VALUES YOU SELECT FOR THE CARBON DIOXIDE CONCENTRATION BE FOR TWO DECIMAL PLACES ONLY, AND IN THE RANGE OF 0 TO 30 UNITS FOR CO2 CONC. ARE CUBIC CENTIMETERS PER LITER OF AIR.

    AS BEFORE, I WILL TYPE IN A ? ' AND THEN YOU TYPE IN THE CARBON DIOXIDE CONC. AVAILABLE TO THE PLANT. THIS TIME YOU MUST CHOOSE TEN DIFFERENT VALUES. REMEMBER RP $=$ RATE OF PHOTOSYNTHESIS.

