COMPUTER MAINTENANCE COURSE

HEWLETT'- PACKARD
 COMPUTER MAINTENANCE COURSE

VOLUME

 XVIII
STUDENTS MANUAL

HP 2000A TIME SHARE SYSTEM

(HP STOCK NO. 5951-1346)
-NOTICE-
The information contained in this manual is for training purposes only. Consult the Hewlett-Packard documentation supplied with the computer for current information concerning the specific computer system furnished.

The information contained in this publication may not be reproduced in any form without the expressed consent of the Hewlett-Packard Company.

FORWARD

This manual has been prepared by the Cupertino Division Maintenance Training Group. It is intended to scrve as an introduction to the HP 2000A Time Share System. It is hoped that the manual will serve the needs of system operators and Service Technicians.

This manual was written to help introduce the student to the Time Share Listing, and the Internal Software Reference Specifications. All specific references to the listing are to the 2000A Vcrsion "F". Other versions can also be used, although slight differences in page numbers and memory addresses will be experienced. These previous versions have been corrected and improved. Version F represents the up-to-date system and it should be in use by all installations. This manual is written from the standpoint of the functional system, with hardware emphasis. It does not go into detail on the interpreter or software technique.

It is hoped that this manual will take the hardware strengths of the service technician, and build upon that to provide the technician with an appreciation of the Time Share operating environment. The material is written under the assumption that the computer technician has completed the Basic Maintenance and the Advanced Options Maintenance Training courses. In order to effectively use the listings, it is essential that the reader be familiar with the machine language as well as the Assembler.

A system operator without adequate training on the hardware and programming may find some chapters difficult.

CONTENTS

		PAGE
Chapter 1	COMPUTER TIME SHARE	1-1
1-1	Introduction	1-1
1-2	Small Scientific Systems	1-1
1-3	Other Mini-Computer Applications	13
1-4	Time Sharing	1-3
1-5	Interpreter	1.4
1-6	Basic Language	14
1-7	Response Time	1.5
Chapter 2	EQUIPMENT	21
2-1	Minimum Configuration	2-1
2-2	Switch, Power Fail	$2 \cdots 1$
2-3	Switch, Parity	2-2
2-4	Switch, Disc	2-2
2-5	Optional Hardware	25
Chapter 3	SOFTWARE SYSTEM	3-1
3-1	Multiplexor	3-1
3-2	Multiplexor Software Module	32
3-3	Phones	3.4
3-4	System Console	3.4
3-5	Disc Driver	35
3-6	Library	35
3-7	Basic Interpreter	3. 5
3-8	Power Fail/Auto Restart	36
3-9	Scheduler	$3-6$
3-10	System Functions	36
Chapter 4	MULTIPLEXOR SYSTEM	41
4-1	Teleprinter	4.1
4-2	Signal Quality	4. 1
4-3	TTY Character Print	4.1
4-4	Multiplexor Data	4 - 2
4-5	Phones Control	4-4
4-6	Multiplexor Software	4-4
Chapter 5	SCHEDULER	5-1
5-1	Queue	5-1
5-2	Queue Example	5-1
5-3	Scheduler Loop	5-4
5-4	Clock Interrupt	5-5
5-5	Detailed Scheduler Functions	5-5

CONTENTS (Continued)

Chapter 6	TIME SHARE TABLES	$\begin{gathered} \text { PAGE } \\ 6-1 \end{gathered}$
6-1	Teletype Tables	61
6-2	Directory	6--4
6-3	Equipment Table	6-6
6-4	ID Table	6-7
6-5	AD Table	6-7
6-6	File Table	6-7
Chapter 7	TIME SHARE LOADER	7-1
7-1	Loader	7-1
7-2	Paper Tape Load	7-1
7-3	Awaken from Disc	7-5
7-4	Awaken from Mag Tape	7-5
7-5	System Update	7-6
7-6	Conversion vs Update	7-7
7-7	Loader switch 15 option	7-7
7-8	Non-Sleep Restart	7-8
7-9	Resuscitation	7-8
7-10	Disc Halt	7-8
7-11	Parity Halt	7-9
7-12	Wrap Around	7-9
7-13	Software Loop	7-10
7-14	Operating Halts	$7-10$
7-15	Loader Halts	$7-10$
7-16	Key Core Locations	$7-11$
Chapter 8	TIME SHARE EXAMPLE	8-1
8-1	Introduction	8-1
8-2	Multiplexor Example	8-1
8-3	Scheduler Example	8-4
Appendix A	GLOSSARY	A-1

LIST OF ILLUSTRATIONS

FIGURE	TITLE	PAGE
1	Generalized Computer System	$1-2$
2	2000A Board Location (2116B Computer)	$2-5$
3	2000A Board Location (2116C Computer)	$2-5$
4	2000A Time Share Systen	$3-3$
5	Multiplexor Data and Phones	$4-3$
6	Multiplexor Flow Chart	$4-7$
7	Queue Example	$5-2$
8	Scheduler Loop	$5-7$
9	Clock Interrupt	$5-9$
10	Scheduler (Main Part)	$5-11$
11	Scheduler (SCHED)	$5-12$
12	Scheduler (Swapper)	$5-13$
13	Input/Output Buffering	$6-3$
14	Directory Entries	$6-5$
15	Logical Disc Information	$6-6$
16	ID Table Entry Format	$6-6$
17	Loader Block Diagram	$7-2$
18	Teletype Serial Data	$8-2$
19	Multiplexor Interrupts	$8-2$
20	Multiplexor Example	$8-5$
21	Scheduler Example	$8-15$

LIST OF TABLES

TABLE	TITLE	PAGE
1	2000A Minimum Hardware Configuration	2.2
2	2000A Optional Hardware	2.3
3	Disc/Drum Reference	2.4
4	Equipment Table	$6-8$
5	Important Core Locations	610
6	Contents of Lib (243)	612
7	Teletype Table	$6-13$

SECTION INDEX

computer time share
equipment
software system

multiplexor system

scheduler

time share tables

time share loader

time share example

CHAPTER 1 COMPUTER TIME SHARE

1-1 INTRODUCTION

The computer has become an integral part of our lives. To the uninitiated, it has almost magical qualities. To a child, the computer seems to have an answer to any question. Often to a service technician with no prior computer experience the computer may be an awesome beast. Actually it can do a certain limited repertoire of instructions rapidly and reliably. Let's look at some of the capabilities to gain an appreciation of the computer environment.

The computer is the center of an operating system with two primary interfaces. One interface is to the physical world. This includes transducer inputs measuring voltage, temperature, strain, and other physical quantities. It can then control certain aspects of the environment. It does this by controlling voltage, switch closures, motor velocity, mechanical positions and orher physical quantities. Some of these applications include data acquisition and process control. Figure 1 shows a representation of this generalized computer system.

The other primary interface is with man. Man has vast capabilities for memory, intelligent and rational thought, and decision making. Our communications channels with the computer are somewhat limited however. Visual display and printer output are the primary links used in computer to man output. The man to computer input is chiefly a manual operation via the keyboard or punched cards. What is the nature of common computer applications? These are discussed in following paragraphs. As we review these it will help in understanding the time share environment.

Throughout the book, we use the word system. It refers to an operating module requiring both hardware and software. Thus the Time Share system is not so much the equipment which must be purchased, or the paper tapes and listing as it is the personality of the operating environment. To the user, it is the program solution and error messages and response time. To the operator it may be the sleep tapes, the Log on-Log off messages, and status reports. To the service technician it may be the symptoms used to troubleshoot a fault.

1-2 SMALL SCIENTIFIC SYSTEMS

The small scientific systems are used chicfly to solve mathematical or engineering type problems. The programmer or engineer may set up mathematical models which can represent the physical or theoretical system under study. A language such as Fortran can be used to describe the problem and provide solutions. The computer is used to provide the manipulation, iteration, and data output. As such, it can be considered an extension of tie human capability because of its speed, program, and data storage capabilities.

PHYSICAL
 WORLD

FIGURE 1. GENERALIZED COMPUTER SYSTEM

Inputs for this type of service include manual input on a keyboard, punched cards or tape. These can be on-line or off-line depending on the speed or convenience desired, and the operating system available. If tables or data are required, they may be provided on mag tape, disc or other suitable means.

Since the computer is a binary device with a very limited vocabulary - and is difficult to interface with directly, an operating system is usually provided. This is an optimized software-hardware system. The stored program modifies the apparent interface, making it easier for man to input or interpret information. Many operating systems and/or languages have been developed to facilitate the interaction with man.

Certain problems occur frequently. Operating systems have been designed specifically with these requirements in mind. They include: Disc Operating Systems, Mag Tape Operating Systems, "Batch Mode" systems, and Time Share Systems.

1-3 OTHER MINI-COMPUTER APPLICATIONS

To complete the discussion, we should also consider other applications utilizing mini-computers. Some are used as data concentrators. These computers interface with a data channel by performing some preliminary processing which improve the effectiveness and decrease the cost of the data line. Sometimes the computer is dedicated to a specific task, such as the controller of a test stand. A Fourier Analyser is another example of a dedicated computer. It receives physical input in the form of time and magnitude while performing mathematical operations and provides a frequency and magnitude output. Other applications include Fire Control applications, traffic control, high speed transportation controllers, ticket booking services, etc. The reader can undoubtedly add many other applications from his own experience.

1-4 TIME SHARING

A certain class of computer applications has arisen enough to warrant designing a special operating system and a special language. The language is BASIC. The operating system varies with the manufacturer and his hardware capability. The requirements are characterized by small data base requirements and straight forward computational requirements. In the generalized computer system diagram, figure 1 , the interface is typically a keyboard for both input and output.

Under these circumstances, the computer (Central Processor Unit) has a great deal of spare time when servicing a single uscr. The operating system allows multiple users access to the system in a quasi-simultancous manner; hence, the name Time Share.

Time Sharing systems run the gamut from the small dedicated single language systems like the HP 2000 family right up to the largest multilanguage-multiprocessor systems. The system cost ranges from under $\$ 100,000$ to well above $\$ 10$ million.

1-5 INTERPRETER

Perhaps we should say a word about the Interpreter. A compiler translates symbols meaningful to the programmer into machine language code. Fortran or Cobal are examples of common compiler languages. In both cases, machine language code is generated in absolute or relocatable code, and the program is run. An Interpreter takes the symbolic statements one at a time, executing them in the proper orderbut without generating any machine language program code.

The BASIC on-line interpreter checks for syntactical errors, wrong data type, missing delimiters and other common type errors. It provides error messages immediately. This allows the user to correct the program statements and try again. The on-line error messages and immediate correction feature provides a real benefit for the writing and debugging of a program.

The interpreter converts the program statements to a compiled format. This is a more efficient coding or symbolic representation for the program statements. The system makes use of this as well as syntax stacks, pointers and linkages. But this is not machine code, and the computer does not execute these statements in the normal machine language sense.

1-6 BASIC LANGUAGE

The HP 2000 family makes use of the "BASIC" language. This is a powerful conversational language using English words and common mathematical symbols. Basic stands for Beginners All-purpose Symbolic Instruction Code. It was developed at Dartmouth University in 1964 under the direction of Professors J. G. Kemeny and T. E. Kurtz.

Its simplicity along with the use of common English words and its free form input makes it easy to learn and use. Yet the strings, files, and matrix capability makes it powerful and effective.

The on-line feature provides error diagnostic messages both at program writing time and at Run time. This certainly assists the beginning programmer in learning and using the BASIC language. Although the language is easy to use, it does provide a powerful programming capability. The manual "A Guide to Time Shared Basic", HP Stock Number 02000-90002, is useful both as a reference and for self instruction.

An extensive library of programs is available for the HP 2000 Time Share Systems. These include applications in business and finance, engineering and scientific, mathematics, statistical analysis, educational, utility, and demonstrations and games.

An example of the usefulness and flexibility of the language is the Computer Aided Instruction (CAI) programs. One is the HP mathematics drill and practice program. It provides a six year program for grades one to six. In addition to the actual students drill material, it provides various teachers reports. These include students progress, new concepts in the next lesson block, and unusual circumstances such as low grades, skipping or review lessons. Another significant application is the Accounting package for small businesses.

1-7 RESPONSE TIME

One of the primary limitations of many computer systems is the speed of the I/O devices. In Time Share applications, the most common terminal used is the teleprinter. Its maximum speed is 10 characters per second. This data speed is compatible with a voice quality telephone line. It is not much of a challenge to the CPU, however. The system accepts input data from all teleprinters. At the end of each input line, an individual user is given high priority. The system determines the nature of the input and services it rapidly. This enables the user to continue with his next line and the system appears quite responsive.

In output operation, the system fills an output buffer for the user. It continues to process all outputs through the multiplexor routine. If the system fills an output buffer and cannot continue the user goes into output suspend. The multiplexor routine requires very little additional processor time and keeps a steady output to all users. When the buffer gets low the system again schedules the user and resumes his program. With this technique, the user receives a fairly steady output rate, and still the processor can service other users too.

The system achieves this responsive nature by establishing the priority for tasks. The maximum time slice allowed for any user when others are queued up awaiting service is 1.0 second. A user who had used up his maximum time period and had not completed his program would then be placed at the bottom of the queue.

Every 0.1 second, the system scans all inputs to determine whether some one had completed a line and was awaiting service. Priority is established to optimize reaction time. Highest priority is given to syntax lines, user requeued after I/O suspend, and then continuing programs during the time allowed. Next the core resident programs called by the system (SCRatch, TAPe and KEY) and called by BASIC (RUN, LISt and PUNch). The Disc resident programs including those called by a user and those called by the system operator are assigned the third priority. The lowest priority is assigned for the users who have expended their time allocation without completing their program.

The result of assigning priorities in this manner is a system that responds to a user very rapidly. In most situations, a user will not notice the delays. Typical delays for syntax lines are in the order of one second or less.

The largest delays are experienced when all terminals are being used for CAI exercises. In this case, everyone is executing a program. A significant number of input suspensions occur. These tend to speed up the system since each user does not require his full time allocation at one second. The nature of the exercise has a lot to do with the delays experienced. Delays of two to four seconds are common. Occasionally substantially longer delays may be encountered.

The remainder of this book will deal with the HP 2000A Time Share system. We are particularly interested in the hardware and in those aspects of the software system that affect system operation and maintenance.

equipment

CHAPTER 2 EQUIPMENT

The 2000A Time Share system requires a wide range of equipment and options. Some are required, others are optional. Even in the required list, certain substitutions can be made.

2-1 MINIMUM CONFIGURATION

The minimum hardware configuration for the HP 2000A system is shown in Table 1. The slot for all CPU options is fixed. The I/O slot for these minimum configuration peripherals is also fixed. The slot designators for Table 1 correspond to the 2116B computer. Figure 3 shows the specific locations in the 2116 C computer.

This minimum configuration shows the 2773A Drum. Actually any Disc or Drum from TAble 3 would be satisfactory.

It is expected that the reader is familiar with the equipment used in the HP 2000A. And further, that he has available the instrument manuals. We need not describe their general function and purpose. There is more detailed information on the multiplexor hardware in Chapter 4.

The next three sections deal with the positions of the switches in the HP 2000A. Their positions are important. The instrument manuals describe the individual function but do not indicate the required position for a particular operating system.

2-2 SWITCH, POWER FAIL

The Power Fail board has a switch which defeats the automatic restart feature. This switch must be up to allow restart. If the switch is down and the computer experiences a momentary power failure, a halt \emptyset at $\mathrm{P}=31141$ will be experienced. When power is restored, the computer may come up at some random address. If the switch is raised to the up position, it will restart.

When the switch is up and a momentary power failure is experienced, the interrupt to the power fail routine stores away the necessary information and halts the computer. When power is restored, the switch in up position allows an interrupt to take place. This time the flag indicates power is coming up and the "restart" portion of the routinc is called. This restores the registers, initializes the Time Base Generator, restores the condition of the interrupt, synchronizes the multiplexors, and then returns to the P register location at the time of the initial power fail interrupt.

2-3 SWITCH, PARITY

The Parity check board has a switch that forces an immediate halt when up, or allows an interrupt to the trap cell if down whenever a parity error occurs. The immediate halt is caused by PEH signal clearing the RUN 1 flip flop. The Parity Error light on the front panel will be illuminated indicating the parity error condition. An interrupt mode exists with the switch down. A parity error occurring during a DMA transfer (core to disc) will be ignored. Because of this limitation it is essential that the switch on the Parity board be up in halt mode.

2-4 SWITCH, DISC

The Disc interface has a track protect switch. This allows read only operation from the protected tracks. The switch is located on the Data board. This switch must be down in unprotected position for the Time Share system allowing read/write capability on all tracks.

The protected tracks always include track zero (additional tracks are protected by removing additional diodes). The Time Share system must have access to track zero so the switch must be down.

TABLE 1
2000A MINIMUM HARDWARE CONFIGURATION

HARDWARE GROUP	MODEL NUMBER	NAME	BOARD STK.NO.	COMMENTS	2116B LOCATION
CPU	2116B-05	16K MEMORY			
	12588A	PWR FAIL	12588-6001	(SWITCH UP)	A1
	12591A	PARITY ERROR	12591-6001	(SWITCH UP)	A3
	12579A	EAU	02116-6196	TIMING	A109
			02116-6202	LOGIC	A110
	12578A	DMA	02116-6206	DMA REG.	A116,117
			02116-6205	ADDR ENCODER	A118
			02116-6204	DMA CONTROL	A119
			02116-6203	CHAR. PACKER	A120
PERIPHERALS	12584A-01	MULTIPLEXOR	12584-6001		A203 SC10
	2754B	TELEPRINTER	12531-6001		A204 SC11
	12539A	TIME B.GEN.	02116-6119		A205 SC12
	2748A	READER	12597-6001		A206 SC13
	2773A	DRUM	12610-6001	DATA	A207 SC14
			12610-6002	(SWITCH DOWN) COMMAND	A208 SC15
OTHER	2776A	DRUM POWER SUPPLY			
	2160A	POWER SUPPLY EXTENDER			
	29922	2 BAY CABINET			

TABLE 2

2000A OPTIONAL HARDWARE

DESCRIPTION	MODEL	INTERFACE	
Mag Tape	HP 3030G HP 7970A-200 HP 7970A-202	$\begin{aligned} & \text { 12559A } \\ & \text { 13181A-001 } \\ & \text { 13181A } \end{aligned}$	(60K Char/Sec) (20K Char/Sec) (30K Char/Sec)
Telephone-Auto Disconnect Keyboard-Display Terminal	$\begin{aligned} & 12584 \mathrm{~B}-001 \\ & 2600 \mathrm{~A} \end{aligned}$	None required	
DISC/[)RUM			
Drum (393,216 words)	2773A*	12610B	48 tracks/128 sectors
(786,432 words)	2774A		96 tracks/128 sectors
(1,572,864 words)	2775A		192 tracks/128 sectors
Disc (1,048,576 words)	2776A-004**	12610B	128 tracks/128 sectors
(786,432 words)	2776A-003		96 tracks/128 sectors
(524,288 words)	2776A-002		64 tracks/128 sectors

*HP 2776A Power Supply
**HP 2772A Power Supply

2-5 OPTIONAL HARDWARE

Table 2 shows the optional hardware available for the 2000A System. Three different mag tape units are available. The interface requires two adjacent I/O slots. These can be located in any slots starting at SC16 (A209). The Mag Tape command tells the system which unit is being used (i.e. MAG TAPE-22* indicates the 13181A Controller for 7970 because of the asterisk following the Select Code. Mag Tape-22 indicates the 12559A controller for the 3030.)

The Telephone Auto Disconnect option is required whenever the system contains a telephone Data Set like the 103E series. In the 2000A the board can be plugged into any available I/O slot. The PHOnes command gives the select code information and the number of seconds allowed for \log on (i.e., PHONES-26,240).

A Keyboard Display unit (HP 2600A) is available. It can be used in place of the 2749A Teleprinter. It is usuable either hardwired, or connected through an acoustic coupler. In both cases, it can operate at a higher transmission data rate than the teleprinter.

Various Drum and Disc units are available. These are shown in Table 2. These can be substituted in place of the Drum on the minimum configuration list for larger capacity. Or they can be added as additional Disc or Drum units to increase storage capacity. The Discs and Drums are considered as logical units. Each 64 tracks (or a portion thereof) constitute a logical disc. The system will handle four logical discs. The first physical unit must utilize the I/O slots 14 and 15 for the interface. Succeeding physical units can use any two adjacent I/O slots. The various disc commands are used to modify the equipment status.

TABLE 3
DISC/DRUM
REFERENCE TABLE

DEVICE	TYPE	SECTORS/ TRACK	NO. TRACKS*	STORAGE	POWER SUPPLY	INTERFACE
2770A-01	Disc	90	64	368,640	2772 A	12606 B
2771A	Disc	90	64	(Expandable)	2772 A	12606 B
2771A-01	Disc	90	128	737,280	2772 A	12606 B
2773A	Drum	128	48	393,216	2776 A	12610 A
2774A	Drum	128	96	786,432	2776 A	12610 A
2774A-003	Drum	128	128	$1,048,576$	2776 A	12610 A
2766A	Disc	128	32	262,144	2772 A	12610 B
2766A-002	Disc	128	64	524,288	2772 A	12610 B
2766A-003	Disc	128	96	786,432	2772 A	12610 B
2766A-004	Disc	128	128	$1,048,576$	2772 A	12610 B

*These are logical tracks and sectors. Refer to the instrument manual for data on physical tracks and sectors.

FIGURE 2.

2000A BOARD LOCATIONS

（2116B COMPUTER）

SPARE MEMORY PROTECT DML	＊	A22	CROW BAR ASSSEMBLY				$\begin{aligned} & \text { A222 } \\ & \text { A221 } \\ & \text { A220 } \\ & \text { A219 } \end{aligned}$
		A21					
		A20	DMA CHAR PACKER	A120			
SPARE		A19	DMA CONTROL	A119			
INHIBIT DRIVER	$\times \emptyset$	A18	DMA ADDRESS ENC	A118	I／O BUSS LOADER	SC27	A218
SPARE		A17	DMA WORD COUNT	A117		SC26	A217
INHIBIT DRIVER	$\times 1$	A16	DMA WORD COUNT	A116		SC25	A216
DRIVER SWITCH	X0－1	A15	1			SC24	A215
DRIVER SWITCH	Y0－1	A14	山			SC23	A214
SENSE AMPLIFIER	$\times \emptyset$	A13	$\stackrel{\sim}{\sim}$			SC22	A213
SENSE AMPLIFIER	$\times 1$	A12	号			SC21	A212
SENSE AMPLIFIER	$\times 2$	A11	\dagger			SC20	A211
SENSE AMPLIFIER	$\times 3$	A12	FAN LOGIC	A110		SC17	A210
DRIVER SWITCH	X2－3	A9	EAU TIMING	A109		SC16	A209
DRIVER SWITCH	Y2－3	A8	SHIFT LOGIC	A108	DRUM COMMAND	SC15	A208
SPARE		A7	INSTRUCTION DEC．	A107	DRUM DATA	SC14	A207
INHIBIT DRIVER	X2	A6	SYS．TIMING GEN．	A106	＋8 BIT DUP REG	SC13	A206
SPARE		A5	1.0	A105	TIME BASE GEN	SC12	A205
INHIBIT DRIVER	$\times 3$	A4	＋	A104	BUF＇R＇D TTY REG	SC11	A204
PARITY ERROR		A3		A103	I／O MULTIPLEXOR	SC10	A203
MMD		A2	－	A102	CENTRAL INTERRUP		A202
POWER FAIL		A1	FRONT PANEL COUP	A101	I／O CONTROL		A201

＊Optional，not required．

FIGURE 3.
2000A BOARD LOCATIONS
（2116C COMPUTER）

INHIBIT DRIVER	A22	CROW BAR ASSEMBLY		SPARE SPARE		
X－Y DRIVER	A21	1				
SSA	A20			$1 \bigcirc \stackrel{\stackrel{4}{4}}{\underset{\sim}{x}}$		A220
SSA	A19					A219
X－Y DRIVER	A18				SC27	A218
INHIBIT DRIVER	A17	山			SC26	A217
MEMORY PROTECT＊	A16	$\underset{\sim}{\text { cr }}$			SC25	A216
PARITY ERROR	A15	$\frac{4}{6}$			SC24	A215
MAD	A14				SC23	A214
MDB	A13				SC22	A213
INHIBIT DRIVER	A12				SC21	A212
X－Y DRIVER	A11	\dagger			SC20	A211
SSA	A10	EAU LOGIC	A110		SC17	A210
SSA	A9	EAU TIMING	A109		SC16	A209
X－Y DRIVER	A8	SHIFT LOGIC	A108	DRUM COMMAND	SC15	A208
INHIBIT DRIVER	A7	INSTRUCTION DEC．	A107	DRUM DATA	SC14	A207
POWER FAIL	A6	SYS TIMING GEN	A106	＋8 BIT DUP REG	SC13	A206
DMA CHAR PACKER	A5	4.	A105	TIME BASE GEN	SC12	A205
DMA CONTROL	A4	0．0	A104	BUF＇R＇D TTY REG	SC11	A204
DMA ADDRESS ENC	A3	矿 ${ }^{\circ}$	A103	I／O MULTIPLEXOR	SC10	A203
DMA WORD COUNT	A2	交	A102	CENTRAL INTERRUP		A202
DMA WORD COUNT	A1	FRONT PANE：L COUP．	A101	I／O CONTROL		A201

[^0]
CHAPTER 3

2000A SOFTWARE SYSTEM

The 2000A Time Share System consists of six modules. The modules are in absolute format (not relocatable). They have limited ability to communicate with each other. The scheduler might be considered the master control program. We shall look briefly at each of these modules. Refer to Figure 4 for a representation of these modules. Those six modules consist of the multiplexor, system console, disc driver, library, Basic interpreter, and scheduler.

The understanding of the relationship between these Time Share System modules is essential. We might consider the primary purpose of the HP 2000A to execute the user program or user command (like RENumber). Incidental to this is the process of inputting program statements, providing syntax checking, error messages and these other services. In either case the executing program is a portion of the Basic Interpreter or the Library program. We might consider these as foreground activities.

It is first necessary to swap the users swap track to the user swap area in core. The actual swap is made on a cycle stealing basis with DMA. There may also be required communications through the multiplexor. The scheduler does the checking and scheduling for all pending activities. These activities might be considered background or overhead.

We do not wish to make these definitions more rigorous, and would prefer not to examine them too closely. What we are trying to do is first provide an intuitive feel for the different modules, their purpose, and the manner in which they share the available CPU time.

3-1 MULTIPLEXOR

The teleprinters are input-output devices. The data format is the 8-bit ASCII code embedded within three other start and stop bits. Communications between the teleprinters and the system is handled in bit serial manner.

The multiplexor panel has a sheet metal deck with 16 connectors, one for each possible teleprinter or telephone data channel. The multiplexor data interface board has the flag and interrupt circuitry, an 880 hertz oscillator to generate the interrupts and allow synchronism with the teleprinter data, sixteen data input circuits and sixteen data output circuits. Refer to Figure 5 for the multiplexor Data and Phone hardware diagram.

3-2 MULTIPLEXOR SOFTWARE MODULE

The multiplexor software module makes use of the TTY Tables and buffer areas. Each port has an associated teletype table containing temporary storage for pointers, time counters, status, priority, etc. The buffer areas provide temporary storage for input and output communications with each teleprinter.

The multiplexor system handles the character input bit-by-bit, stacking the characters into the proper buffer area. It processes the special characters as it goes, such as backspace and alt-mode. When the carriage return indicates the end of the line, the multiplexor sets a bit in the status word used by the scheduler. The next time through the scheduler the proper action will be determined and the user will be placed on the queue.

Up until the final character in the line, all of the necessary processing has taken place within the multiplexor module. It operates under interrupt mode using only the necessary time required for the bit-by-bit and character-by-character processing.

Similarly, in output mode, a Library module or the basic module will provide output rapidly filling the buffer area. The multiplexor system then processes the output character-by-character and bit-by-bit. This may be likened to a backgroundforeground mode of operation. All communications are handled essentially in parallel in the background. This requires a certain amount of time and appears as system overhead. In the foreground the Time Share system is working with one individual user at a time.

The multiplexor operates on a statistical basis. There are 8 interrupts per bit, and 11 bits per character. Thus, with 88 interrupts per character, it is highly unlikely that all teleprinters would start a character at the same instant.

Normally, the processing load of the multiplexor is distributed fairly evenly between the various interrupts. The overhead due to processing the multiplexor interrupts (when no user is being serviced) is about 90 microseconds. This represents about 8% of the available CPU time. The module requires about 160 microseconds to service a new character, 80 microseconds to process each bit, 245 microseconds for end of character. Additional time is required for special character (i.e., alt mode, carriage return, backspace, etc.)

The multiplexor board has a flag storage flip flop. This allows the multiplexor system up to two interrupt time periods without losing an interrupt. An occasional loss of an interrupt would not be accumulative. End of line processing places the users on the queue, thus reducing the duty cycle of the multiplexor.

3-3 PHONES

The phones routine handles the control signals for the Bell Telephone Model 103 data set. It provides the proper time for initial \log on. It also handles inadvertant disconnect. Although it is shown as a separate module, it is just a small portion of the scheduler.

3-4 SYSTEM CONSOLE

The system console provides a means of controlling the hardware system. The 2754B Teleprinter is interfaced with an HP 12531B Interface Card. The system console is used for four functions. First it allows control over user ID. This is done by adding new ID's, killing ID's, changing passwords, resetting time clocks, and controlling the allocation of disc space and allowable time. Second it is used for hardware control. This includes the DISc, MAG tape, PHOnes, LOCk and UNLock commands and the ROSter and STAtus requests.

The third function deals with program control. These commands include the DIRectory listing and the REPort listing all ID's with time and disc usage. PURge command allows cleaning up old programs which have not been used recently. SLEep command is used to save a tape copy of the system and all library and directory programs. It also provides a compaction of available disc spaces.

The fourth use of the system console provides log-on log-off messages to support the accounting and billing procedures. Since the logging is such an important function, the teleprinter punches a paper tape back up for all log-on log-off messages. The logging functions are of high priority, because they directly affect the system response time to the user, so these messages interrupt routine functions such as a DIRectory print, STAtus, or REPort.

The system console software module is operated under the interrupt mode. It uses two flags T35F1 and T35F2 to keep track of its current operating mode. T35F2 must be zero to allow input. The 36 word buffer is used for both input and output buffering.

Library routines can use the buffer by setting T35F2 thus inhibiting any input. In addition to the separate console driver significant coding exists within the scheduler. This portion deals primarily with setting up the log buffer, and in setting up the queue entry for the system console.

The function of the system console can be defeated by setting bit \emptyset of the computer switch register. This allows the 2000A cabinet door to be locked, thus preventing unauthorized tampering with the console. The console will continue to print log on and \log off messages.

3-5 DISC DRIVER

The fourth software module is the Disc Driver. The Time Share system makes full use of the fixed head disc or drum. All disc transfers are made under DMA control. The computer memory size limits the systern to only onc user at a time. Each user (port) has one dedicated swap track on the disc. As a user reaches the top of the queue, the scheduler initiates the disc to core transfer. This brings in 85 sectors replacing the previous contents of the core swap area. The disc driver also writes the user core swap area to the disc swap track, or brings in the 4 sectors associated with each library program to the library core area starting at address 37300.

The disc driver is entered with the A and B registers containing the disc and core address. The location WORD contains the number of words to be transferred. A status location ENDSK is set at the beginning of the transfer, and is cleared at the completion of the transfer. Its condition indicates whether a transfer is underway.

3-6 LIBRARY

A 256 word segment of core is used by the various library programs. The origin address is 37300 . There are more than 30 of these programs. They are disc resident, and are brought in whenever needed to this 256 word library area. In certain cases, the program exceeds the 256 word limit. This is handled by breaking the program into segments and executing the program and overlay sequentially. These programs are absolute. They can call other programs as necessary. For example: Save can call Supersave, and Hello program will search the library for $\$$ Hello executing it upon process completion.

It should be apparent that the use of a disc and the availability of these library programs has added a significant amount of power and sophistication to the system capability compared to Single Terminal Basic capabilities.

3-7 BASIC INTERPRETER

The Basic Interpreter is the heart of the software system. It is comprised of many functional subsections. These include syntax checking, compilc and decompile, error routines, generation of symbol tables, formula cvaluation, arithmetical routines, utility routines, and the program execution loop. This entire program uses only slightly more than 6600 words of memory.

One of the most significant problems to be overcome was the multi-entry nature of the compiler. This allows a users program to terminate at any point in the compilcr. When he works up through the queue, the compiler can continue the execution again at the proper place. To accomplish this certain pointers and stacks had to be included in the user swap area.

The actual user program is maintained in the core user swap area. This area consists of 5440 words of memory. The swap area has various sub-routine pointers, value tables, symbol tables, syntax stacks, ctc. All of these are of syntactical nature. They are not computer programs. The computer P register should never be executing in the user swap area. Some of the swap area is on the base page to facilitate access from anywhere in the interpreter.

The program may be in the uncompiled mode. This is the regular English language form as the program is initially entered. When the user types RUN, the program must be complied. This is a translation to a symbolic form required by the interpreter.

3-8 POWER FAIL/AUTO RESTART

The Time Share system requires a software module to service the power fail conditions. It is not considered one of the system software modules because of its specialized nature.

3-9 SCHEDULER

The sixth system module is the scheduler. This is the executive module. It handles the service requests from the other modules. It is responsible for making good use of CPU time.

The scheduler is entered every 100 milliseconds by an interrupt from the Time Base Generator. It is also entered whenever the interpreter module completes its task. Let's look at the various functions performed by the scheduler.

The Time Base Generator interrupt is serviced. The time of day counters are updated and serviced in case of roll over. The timer for a user is updated. The swap out is initiated if the users time slice is exhausted.

The queue is an ordered list of users awaiting service. It is maintained on a priority basis. The scheduler inserts new entries, and removes those who are done. It removes those who have exhausted their time slice and re-inserts them at the proper priority.

As the scheduler works through, it checks the status of the multiplexor through the MPCOM word, the phones input for changes or time outs, the system console through its flag words, and the logger request.

3-10 SYSTEM FUNCTIONS

Let's consider the relationship between these system functions. The multiplexor handled the bit by bit and character by character transfer until the carriage return was detected. Then the user's flag was set in the MPCOM word indicating service required. The input line was placed in the appropriate buffer, and the pointers are available in the TTY tables. There are various reasons for a service request. These include a command or syntax statement, output buffer down to 10 characters on an output wait, input provided following an input wait, or a user abort. The response may require initializing a library program or entering the interpreter, or it may be to continue a program suspended for I/O wait. In any case, it will require placing the user on the queue.

The phones processing is simple. It looks at the ringing and carrier lines from the data set. A change in the status (or voltage level) of these lines requires service. The action required is normally to provide the Data Terminal Ready signal, or to remove it. In the event of unintentional disconnect, the \log off procedure is initiated.

The system console has an associated buffer for input and output. A logger buffer also exists for \log on and \log off messages. A log on/off message will be placed in the logger buffer. If the console is quiet, the log message prints. If the console was actively outputting a print (as in DIRectory or STAtus), the logger message waits until the completion of the current line before gaining control.

The scheduler also provides swapping. The time required to effect a disc transfer is significant. The swapper thus initiates the disc transfer at the earliest possible moment. The scheduler continues to process routine matters while awaiting the transfer completion.

CHAPTER 4 MULTIPLEXOR SYSTEM

The multiplexor system provides a means to link the computer to the teleprinters. The input to the Time Share system may be syntax statements, commands, or data input. The output will be program messages, error messages, command completion, etc. The multiplexor is the communications link. We will consider the characteristic of the elements within this system.

4-1 TELEPRINTER

The teleprinter is an electro-mechanical device. The main shaft is driven by a synchronous motor. This establishes the data rate, and all data to and from the teleprinter must be synchronized at this rate.

The teleprinter uses an eight level ASCII code. ASCII stands for an industry adopted standard code called the American Standard Code for Information Interchange. The code requires 7 bits for data and the eighth is an optional parity bit. These eight ASCII bits are preceeded by a start bit (logic zero level) and followed by two stop bits (logic one level). The data rate is 10 characters per second. The time period for a full character is 100 milliseconds. Each bit requires about 9.09 milliseconds.

4-2 SIGNAL QUALITY

The signal output will seldom be an ideal pulse train. Noise bursts and pulse deterioration due to long transmission lines or telephone circuits will reduce this quality. Time synchronism will not be exact. The best time to sample a bit will be somewhere near the middle of the bit.

4-3 TTY CHARACTER PRINT

In LINE mode pushing a kcy will initiate the generation of the pulse train and will result in a complete rotation of the main shaft. The character will not print automatically however. An electrical signal must be sent back to the teleprinter from the computer in order to print a character. This is referred to as an echo.

Let us digress a moment and see how this works. In LOCAL mode depressing a key moves the code bars under the keyboard setting up switch conditions for the 8 data bits. It also initiates one rotation of the shaft. The switches place voltages on the individual segments of the distributor which are then scanned sequentially during the shaft revolution by the distributor. The start and stop bits are also added. This is the data signal which is available for the computer while in LINE mode. In LOCAL mode the signal actuates the selector soloncid. This in turn allows the cams sequentially to set up code bars for print selection. In the time share application, each bit is sampled in the middle of the bit period. The returned signal is delayed 4 or 5 milliseconds compared with LOCAL mode. There are adjustments to help optimize the unit for this time shift. These adjustments include the mechanical "Range

Finder" adjustment, and the armature spring tension and setting. These adjustments should be attempted only by qualified technicians. If misadjusted occasionally a character may misprint even though the proper data has been received by the computer.

4-4 MULTIPLEXOR DATA

How does the hardwired teletype work from a data flow concept? See figure 5 for the multiplexor data and phones information. Tne interrupt carcuit on the multipluxor assembly generates computer interrupts. These interrupts allow synchronization with the teleprinter data train. We need to locate the center of the bit, thus requiring more than one interrupt per bit. It would be desirable to spread the teleprinter servicing over various interrupts so all 16 units would not likely require simultaneous servicing, An interrupt rate of 880 cycles per second was selected thus giving 8 interrupts per bit.

Figure 5 shows one teleprinter. Its cable can be attached to any one of the 16 connectors ($\mathrm{J} \emptyset$ to J 15). In the event a data phone is used, the teleprinter would plug into an acoustic coupler. It would make an acoustic coupling with the telephone hand set to the telephone network. The telephone network would terminate in a 103 type data set which would then plug into the multiplexor connector (instead of the teleprinter cable).

The physical wiring on the multiplexor should be described. The Data lines are wired on the connector chassis from each port connector to J17. A Data cable (12584-6005) then takes all of these connections from J17 to the multiplexor Data board in I/O slot 10 .

The Ringing and Carrier signals are routed from each of the 16 connectors to the Ring Carrier assembly which is mounted directly behind the connector chassis. The ring or carrier connections are then routed to J16. The cable (12584-6008) then takes these signals to the multiplexor phones board which can be located in any available I/O slot SC16 or above. The Data Terminal Ready signal then returns through the cable and J16 to the individual port.

The incoming data from the teleprinter is routed through the multiplexor panel to the multiplexor data board. The input circuits monitor the voltage levels of each of the 16 lines. The computer uses the LIA/B instruction to input the data levels. Each Port is associated with one of the 16 bits of the computer word. It should be noted that the input circuit inverts the logic level. The start bit for character is a logic zero at the teleprinter. After being inverted on the multiplexor data card, it is a logic one at the I/O slot.

It is up to the multiplexor software to recognize the initial change of state from a zero to a one as the start of a new character. It counts 4 interrupts to the middle of the bit. It then begins to send the output data back to the teleprinter to allow printing. After 8 more interrupts, it determines the logic level of the first data bit and sends it back, etc. This results in a 4.5 millisecond phase difference between the generated and returned data. Mechanical phasing adjustments allow for this mode of operation.

3-3 PHONES

The phones routine handles the control signals for the Bell Telephone Model 103 data set. It provides the proper time for initial log on. It also handles inadvertant disconnect. Although it is shown as a separate module, it is just a small portion of the scheduler.

3-4 SYSTEM CONSOLE

The system console provides a means of controlling the hardware system. The 2754B Teleprinter is interfaced with an HP 12531B Interface Card. The system console is used for four functions. First it allows control over user ID. This is done by adding new ID's, killing ID's, changing passwords, resetting time clocks, and controlling the allocation of disc space and allowable time. Second it is used for hardware control. This includes the DISc, MAG tape, PHOnes, LOCk and UNLock commands and the ROSter and STAtus requests.

The third function deals with program control. These commands include the DIRectory listing and the REPort listing all ID's with time and disc usage. PURge command allows cleaning up old programs which have not been used recently. SLEep command is used to save a tape copy of the system and all library and directory programs. It also provides a compaction of available disc spaces.

The fourth use of the system console provides log-on log-off messages to support the accounting and billing procedures. Since the logging is such an important function, the teleprinter punches a paper tape back up for all \log-on log-off messages. The logging functions are of high priority, because they directly affect the system response time to the user, so these messages interrupt routine functions such as a DIRectory print, STAtus, or REPort.

The system console software module is operated under the interrupt mode. It uses two flags T35F1 and T35F2 to keep track of its current operating mode. T35F2 must be zero to allow input. The 36 word buffer is used for both input and output buffering.

Library routines can use the buffer by setting T35F2 thus inhibiting any input. In addition to the separate console driver significant coding exists within the scheduler. This portion deals primarily with setting up the log buffer, and in setting up the queue entry for the system console.

The function of the system console can be defeated by setting bit \emptyset of the computer switch register. This allows the 2000A cabinet door to be locked, thus preventing unauthorized tampering with the console. The console will continue to print log on and \log off messages.

During output when the bit timer rolls over the new bit must be sent out. When character roll over occurs, the buffer pointers are incremented and the new character is prepared, While in output wait the number of characters are checked. If 10 characters remain the MPCOM bit is set to reschedule the user.

The flow chart is roughly proportional to the time required by the multiplexor driver. The oscillator frequency of 880 hertz was selected to distribute possible end of character processing over the various interrupts. Decreasing the oscillator frequency would slightly reduce multiplexor overhead. But the number of users (per interrupt) requiring service would increase. The multiplexor board has a special flag and interrupt circuit. It has a storage flip flop which retains an interrupt occurring before the completion of the multiplexor routine. It virtually doubles the amount of time available for any one interrupt before resulting in erroneous data.

FIGURE 6. MULTIPLEXOR FLOW CHART
SHEET 2 OF 3
4-8

CHAPTER 5 SCHEDULER

The Scheduler is the Time Share Executive. A review of figure 4 shows the significant relationship between the scheduler and the other modules. The Queue is an ordered listing of all users desiring to be serviced. It is the servicing of the queue, including the status and priority, which constitutes the primary function of the scheduler.

The scheduler calls the Disc to effect a swap from the disc to core or from core to the disc. It controls the transfer to either the Basic intrepreter or to the library. The multiplexor is a self contained driver. It is entered by the interrupt from its oscillator. It handles communication from the teleprinter to the buffer or from the buffer to the teleprinter. The scheduler checks the MPCOM status word to determine when a user requires servicing.

The interaction of these modules depends in great measure on the queue. Before continuing with the operation of the scheduler, it is important to understand the queue.

5-1 QUEUE

The queue is an ordered list of users desiring service. The list is ordered by priority. Within each priority, the queue follows the first-in, first-out concept. The fundamental concept in the queue philosophy is to accomplish the short interactive tasks rapidly at the expense of compute (or run) bound programs. This gives the system a responsiveness and speed which is very desirable.

Priority is assigned in this manner. The highest priority is 0 and it is assigned for users returning following an I/O syspend, and for syntax lines. Priority 1 is assigned to those commands handled by the Basic interpreter - RUN, LISt and PUNch. All other commands are disc resident and are assigned a priority level of 2 . Whenever a command of priority 2 reaches the top of the queue, its priority is reassigned 0 . If the job is not completed within its one second time slice, it is reassigned a priority of 4 and requeued. The commands KEY and TAPe are executed immediately and do not require being placed on the queue.

5-2 QUEUE EXAMPLE

Figure 7 shows an example of a queue. The queue is comprised of one to eighteen entries. Each entry consists of a link address to the next entry and the priority level of the user. The queue consists of the pseudo entry at MLINK +1. It points to itself, (or to the top of the queue), with a priority of 77777 B . This priority insures that this entry will always be the last entry on the queue. The words LINK and PLEV are entries from the users teletype table. They have significance only if the user is on the queue.

MLINK +1 always points to the top of the queue. In this case (figure 7) it is the LINK address of port 1 , with a priority of 0 . Port 1 LINK points to the second entry, Port 3 with a priority of 2 . The other entries are the console with priority 2 , and Port 6 with priority 4 . Port 6 is the last user entry. It points to the pseudo entry MLINK +1 .

To remove an entry from the queue requires merely changing the preceding LINK. For example, if port 1 had completed its task changing MLINK +1 to 33167 would dequeue port 1 . The addition of another user to the queue is similar.

Suppose that port 8 typed GET-SAM. It would be assigned a priority 2 . The scheduler would then search the queue to determine its proper location, The scheduler compares the priority to be inserted with each queue entry until the new priority is less than the next queue entry. MLINK +1 points to the top of the queue.

In this case, the priority is not less than port 1. It is not less than Port 3. It is not less than the console. But it is less than Port 6. Therefore it must be inserted between the console and Port 6. This is done by placing the priority 2 in location 33372. The link value in the console T35LK (33305) is placed in location 33371, and 33371 is placed in 206 . The queue is now expanded to include the new user. See figure 7 sheet $2 / 2$ for the queue after inserting Port 8 .

5-3 SCHEDULER LOOP

We are now ready to look at the overall scheduler loop. Whenever the system has nothing to do the queue is empty, and the scheduler stays in the idle loop. See figure 8. The loop starts at SCH1. It checks to determine whether any phone servicing is necessary, whether the multiplexor has any user teleprinter business ready to handle, whether the system console needs servicing and finally if some one is on the queue and is in core ready to run.

The scheduler remains in this loop. It is interrupted by the multiplexor oscillator but returns on completion. It is also interrupted by the Time Base Generator. When the time clock is updated, the return to the scheduler is through the jump at the CLKIN NOP location.

The loop will finally be broken when a user logs on. At the end of the log on line multiplexor processing will be indicated by the MPCOM bit. The user will be queued up, and the HELlo command will be brought in by the SWAPR. When it is in and ready the Time Share System will exit the loop to initiate the command execution.

5-4 CLOCK INTERRUPT

Each 100 milliseconds the scheduler will be entered again to check for phones, multiplexor, and console servicing requirements. The scheduler will exit to continue the command execution. The library commands are not timed, but continue to completion. The user will be dequeued when a library command is completed. The entry point for this is SCHEQ. The scheduler will stay in the loop until another user is placed on the queue.

When a user is in run mode, he is allowed a one second time slice. Each time the clock interrupt takes place, his timer CLOC is checked against time of day. When his time slice is used up and someone else is on the queue, he is swapped out and requeued at the lower priority.

Input-output operations also provide entry points to the scheduler. In the case of required input, the user is immediately dequeued and placed in input suspend. This is required because the input wait is always extremely long. This entry point is SCHIQ. Another point is provided for output request. The routine \#OUTC is called whenever a character is outputted to the teleprinter. This is accomplished by adding the character to the output buffer which is then serviced by the multiplexor. In the case in which the buffer is completely filled, the user is then removed from the queue. The scheduler services the next user on the queue, or remains in the scheduler loop. When the output buffer decreases to exactly 10 characters remaining the user is requeued by the multiplexor with a priority of 0 , thus ensuring early service.

In general, there are only the four entry points to the scheduler. The only exit is to initiate execution. The TSB entry is the initial entry point called when the system is entered from the loader.

5-5 DETAILED SCHEDULER FUNCTIONS

We can now consider more detailed blocks of the scheduler. Figure 9 shows the action required by a clock interrupt. The software merely updates the 0.1 second counter, and then the hour counter in case of roll over. Then it returns to the scheduler if it was there at interrupt. Otherwise it enters the scheduler at SCHED.

The lisitng at SCHED determines whether the operation is untimed, or timed but not used up, and then goes to the SCHI main part of the scheduler. If the user is timed and the time slice is used up, he is requeued at the lower priority. The program jumps to SWAPR to start early swapping. The scheduler then remains in the loop until the new user is in and ready. Figure 11 shows the processing required by the SCHED coding.

Figure 10 shows the main part of the scheduler. The phones coding is bypassed unless the phones command is used to indicate the hardware exists. The function is rather simple. It must connect the user on call up. It must time for \log on within the allowable time. It must detect and process a disconnect. When this is completed, it goes on to the multiplexor communications.

FIGURE 8. SCHEDULER LOOP

FIGURE 9. CLOCK INTERRUPT

The multiplexor communications is indicated by the word MPCOM. The corresponding user bit is set whenever servicing is required. The scheduler uses the user status to help determine what is required. A status of 2 or 3 is a return from I/O suspend. This establishes a new priority of 0 and the user is placed on the queue. A status of 4 or more indicates that a command is being processed. RUN $=5$, LISt $=6$, PUNch $=7$, etc. Refer to the command table P222/\#18 for the sequence.

A status of -1 is given when the multiplexor determines the user desires an abort. When the scheduler begins to process the abort it gives a status of 1 . A status of 1 thus indicates an abort is underway and no further processing is required.

A status of zero indicates the user is in idle condition. This is the normal condition for receiving a new line of syntax or a command. The status of -2 indicates a special disconnect from the phones coding.

Once all of the multiplexor processing is completed, the scheduler then checks the console. When the console is finished, the scheduler continues with the SWAPR routine.

The SWAPR routine has two exit points. One is to initiate execution. This occurs when the user is in the swap area, or a library program is in 37300 . If these are not ready, then the SWAPR exits to SCH1 again and continues in the scheduler loop. Refer to figure 12 for the swapper clock diagram.

FIGURE 10. SCHEDULER (MAIN PART)

FIGURE 11. SCHEDULER (SCHED)
5-12

time share tables

CHAPTER 6 TIME SHARE TABLES

The Time Share system uses a number of tables. An understanding of these tables is helpful when working with the HP 2000A system. Some are core resident and some are disc resident.

6-1 TELETYPE TABLES

The teletype tables consist of sixteen tables, one per user. Each table consists of twenty-six words (twenty-three entries). Table 7 gives a listing of the teletype table with the core address for each entry. During certain operations, some of the data from the respective teletype table is transferred to the base page, giving easier access to the data.

Some entries are fixed by the operating system. These include:
MASK A "one" in the bit corresponding to the port number and allows AND and EOR type instructions to update pointers.

BGIN Associated with each port is a 50 word buffer. BGIN is the address of the first word.

BEND BEND is the address of the next word following the end of the physical buffer.

LADR The multiplexor contains a ladder sub program. LADR is the address of an instruction corresponding to the user port. This allows this instruction to be changed from an ISZ to a JMP from time to time.

Certain entries are of general interest. These include:
ID Whenever a user successfully logs on his ID code is placed in this location.

NAME The name of the current program is contained in these three words. When the name is less than six characters, blanks are used to fill out the three words.

TIME This two word entry contains the time of day at \log on. It is used to update the accounting information at log off.

DISC This contains the disc address of the first sector of the swap area. To facilitate swapping, it is not required that the first sector of the program coincide with the track origin.

PROG This entry monitors the amount of required core by pointing to the last word used in the swap area.

Associated with the Scheduler are five of the teletype table entries.
LINK This entry contains the address of the next user on the Queue. The contents has significance only if the user is on the queue.

PLEV This word is used in conjunction with LINK and contains the priority of the user when he is entered on the queue.

STAT This contains the status of the user.
RSTR Contains the starting address of the program when initially placed on the queue, or the restart address when suspended.

CLOC This entry has the time of day value when his time slice will run out.
Two entries are used for general timing.
PHON Is used for timing required by the Phones Logic, including log on and disconnect timing.

ABCN This is a counter used by the multiplexor to handle possible abort timing.

A number of the entries are used by the multiplexor for the input/output communications and for buffering.

BTIM Is a counter location to count the multiplexor interrupts corresponding to the individual bits.

CHAR Is a location which contains the current character being processed. The character is input or output a bit at a time and the packing or unpacking is done in this location.

BCNT Counts the number of bits within a character for both input and output mode.

Four entries remain. They are associated with the character buffer for input and output.

CCNT Contains the number of characters to be output including the current one. The number is in minus form.

BPNT Points to the location in which the next input character will be placed. In output it points to the character currently being transmitted.

BSTR Points to the first character of the current linc.
BHED Points to the head of the input or output character sequence.
For keyboard input, BSTR=BHED. In tape mode, however, multiple input lines may exist. BSTR points to the start of the current input line. At the end of a line, it points just beyond the line. BHED points to the beginning of the next line re-quiring service by Basic. When Basic completes the processing of a line, BHED is
advanced to the next line. In this mode of operation the buffer must act as a wrap around buffer. When a character would exceed the physical buffer (i.e., equals BEND) it is placed at the beginning BGIN.

During output the buffer acts as a wrap around buffer. BPND points to the character being transmitted. BSTR points to the location into which the next character will be deposited.

FIGURE 13. INPUT/OUTPUT BUFFERING
Figure 13 shows a diagrammatic representation of the buffer pointers. The Input example shows BSTR=BHED. The input line originates at the start of physical buffer. BPNT points to the location to be used by the next character. After processing by the system or basic BPNT will be reset to BSTR for the next input line.

The Tape input example shows three lines of input data. BHED points to the beginning of the next line remaining to be processed by basic. BPNT indicates the position of the next character input by the multiplexor. In this example, the buffer has wrapped around one or more times.

In the output example, output lines have no significance. BPNT is the position into which the next character will be appended by the system. BSTR points to the current character being output. CCNT maintains a count of the number of characters remaining to be output. In this case, the baffer has wrapped around one or more times.

6-2 DIRECTORY

The Directory is a disc resident table containing information on every program and file. It includes the public library and individual users. The directory contains one disc track for each logical disc (up to 4). When a disc is removed, the directory track is not deleted. Thus, the number of directory tracks represents the maximum number of discs which have been on the system.

Each directory entry contains eight words. Figure 14 shows the format for the directory entry. These entries are sorted by words 0 to 3 . Word 0 allows sort by ID codes. Then within each ID code, words 1 to 3 allow sort by program or file name. Bit 15 of words 1 and 2 are ignored for the sort.

The first and last entries in the directory table are pseudo entries. The date insures these entries will not be lost due to the PURge command. The values of words 0 to 3 insure these will be the first and last entries respectively in the Directory. Figure 14 also shows a specific example of a directory entry.

The maximum number of Directory entries is 680 per track. Routines exist which distribute the entries over all directory tracks whenever a track is filled up. This tends to minimize the time required for adding, deleting and searching for an entry.

The equipment table contains entries with information about the directory. DIREC contains seven words for each of the four possible directory tracks. It is located from address 100 to 133 . The first location is the length of that directory track. The next four words repeat the first four words of the first entry on the track, and provide sort information about the contents of the track. The sixth word is unused. The last word contains the disc address for that track. These entries are repeated for the other three directory tracks if required. A disc address of 0 indicates the directory track is not set up.

a BIT 15=1 IF PROTECFED, - IF UNPROTECTED
b BIT 15=1 IF FILE, 0 IF PROGRAM

	LAST ENTRY
0	
1	177777
2	177777
3	177777
4	177777
5	0
6	177777
7	0

FIGURE 14. DIRECTORY ENTRIES

6-3 EQUIPMENT TABLE

Core locations 100 to 166 contain the Equipment Table. Locations 100 to 137 deal with the Directory, AD and ID tables.

Locations 140 to 157 are used to indicate which disc tracks are available for the system. Each logical disc requires four words. Each track is represented by a bit. A one in the bit indicates the track is locked off. A zero indicates the track is available. For example, address $140=000020$ indicates that track of the first logical disc is locked off. The same contents at 142 would indicate track 37.

The information concerning the disc addresses are contained in address 160 to 163. Figure 15 shows the format for this data.

FIGURE 15. LOGICAL DISC INFORMATION

FIGURE 16. ID TABLE ENTRY FORMAT

The Select Code for the Mag Tape interface is contained in address 164.165 contains the Select Code of the phones board. 166 has the log on time constant associated with the phones option. It is the number of seconds allowed times ten.

6-4 ID TABLE

The AD and ID tables are disc resident. They share the same track.
The ID table is a list of information associated with each assigned ID code. Figure 16 shows the format for each ID table entry. Words 4 to 7 use the full 16 bits for magnitude allowing values from 0 to 65535 .

IDLOC is a word in the equipment table giving the disc address of the ID table. IDLEN provides the current length in words.

The ID table starts at the track origin, using as many sectors as necessary.

6-5 AD TABLE

The AD table is a list of all available space on the disc. The format is a two word entry. The first is the disc address of the first sector available. The second is the length of the area in sectors. This table begins at the first available sector following the ID table.

An entry exists for each of the system and swap tracks, but the length is zero. The last entry is a pseudo entry of the form: address 177777 , length 0 . Since track zero is required by the T.S. system, this insures that every entry is bounded by two AD entries.

Initially each track has an entry equal to the length of the track. As programs are saved and killed, the AD entry for that track expands or contracts keeping the available number of sectors updated.

Whenever a space is exactly used up, the AD entry is deleted. When an interior program is killed, a new AD entry is generated. This eventually leads to a situation where holes exist through out the disc. The sleep command repacks all programs and files on each track so that all available space is at the end of each track. Thus, after sleep, not more than one entry exists per track. Bringing up the system from mag tape sleep is even more efficient in packing. Programs are moved up filling the empty spaces on earlier tracks. Thus the available space occurs on the upper disc tracks.

6-6 FILE TABLE

The 128 word table FUSS resides on the disc. An eight word subtable exists for each of the 16 users. These words contain the disc address of each of the files currently being used by the user. Bit 7 of the word is set for read only access to the file. The first user declaring a file obtains the write capability. All subsequent users get read only access.

TABLE 4
EQUIPMENT TABLE

DIREC		FIRST DIRECTORY TRACK	
	00100		LENGTH OF THIS TRACK
	00101	-	
	00102	-	First 5 words of this
	00103	-	Directory Track
	00104	-	(Pseudo Entry)
	00105	-	
	00106	-	DISC ADDRESS
		SECOND DIRECTORY TRACK	
	00107		LENGTH OF THIS TRACK
	00110	-	
	00111	-	First 5 words of this
	00112	-	Directory Track
	00113	-	Directory Track
	00114	-	
	00115	-	DISC ADDRESS
		THIRD DIRECTORY TRACK	
	00116	-	LENGTH OF THIS TRACK
	00117	-	
	00120	-	First 5 words of this
	00121	-	Directory Track
	00122	-	Directory Track
	00123	\square	
	00124	-	DISC ADDRESS
		FOURTH DIRECTORY TRACK	
	00125	-	LENGTH OF THIS TRACK
	00126	-	
	00127	-	First 5 words of this
	00130	\qquad	Directory Track
	00131	\square	
	00133	\square	DISC ADDRESS
IDLOC	00134	-	DISC ADDRESS OF IDT
IDLEN	00135		NEGATIVE LENGTH OF ID TABLE
ADLOC	00136		DISC ADDRESS OF ADT
ADLEN	00137	-	NEGATIVE LENGTH OF AD TABLE
		LOGICAL DISC ZERO	
TRAX	00140		0-15 Track Lock/Unlock Bits
	00141		16-31 $0=$ Unlocked
	00142	-	32-47 1 = Locked
	00143	-	48-63

TABLE 4 (CONTINUED)
EQUIPMENT TABLE

LOGICAL DISC ONE			
TRAX (Con't)	00144		0-15
	00145	-	16-31
	00146		32-47
	00147	_	48-63
LOGICAJ DISC TWO			
	00150		0-15
	00151	-	16-31
	00152	-	32-47
	00153	-	48-63
LOGICAL DISC THREE			
	00154	-	0-15
	00155	-_-_	16-31
	00156	-_-_-_	32-47
	00157		48-63
?TBL	00160	-	Logical Disc Zero $\quad\left[\begin{array}{l}0-5 \\ \hline\end{array}\right.$
	00161	-	Logical Disc One $\quad 6-7=$ Disc \#
	001.62	-	Logical Disc Two 8-15 = \#Sect
	00163		Logical Disc Three per Track
MAGSC	00164	-	SC for Magtape, 0 if None
PHSC	00165		SC for Phones Board
PHR	00166	-	Log On Time Constant

TABLE 5
IMPORTANT CORE LOCATIONS

MPCOM	00234:	Bits indicate terminals attempting to communicate with scheduler
MAIN	00242:	Address of TTY table for terminal whose swap track is now in core (\emptyset indicates no swap track in core)
LIB	00243:	Address of a word containing the disc address of the program or overlay currently loaded in core at address 37300
ENDSK INPTF	$\begin{aligned} & \text { 00247: } \\ & 00250: \end{aligned}$	If $=0$ then disc transfer not in progress. Bits indicate ports whose input is being deliberately ignored by the system. These bits are set to a 1 when a start bit is sensed and remain set until the system is ready to receive another character from the corresponding terminal.
WORD	00303:	Word count (-words) of last disc transfer
MLINK MLINK+1	00320:	First link of queue - contains address of link word in a TTY table which in turn contains address of next link word - ultimately one link points back to address 320 (could be as many as 18 words in Queue)
AREG	02140:	A-Register at last program suspend
BREG	01241:	B-Register at last program suspend
EREG	01242:	E and OV registers at last prog. suspend
PREG	01243:	P-Register at last program suspend Check for swap track in correct position
DISC	30740:	Return address for last call to disc driver
DINT	30773:	Interrupt return address for disc driver
DFAIL	31062:	Disc retry counter (-10 to \emptyset)
DADDR	31057:	Disc address of last disc transfer
POW	31066:	Power fail interrupt return address
TT35	31342:	Return address for last call to ASR-35 driver
TT2	31361:	Interrupt return address for ASR-35 TTY

TABLE 5 (CONTINUED)
IMPORTANT CORE LOCATIONS

TABLE 6
CONTENTS OF LIB (243)

CONTENTS OF LIB.	ROUTINE LOADED AT ADDR. 37300	PAGE IN LISTING	CONTENTS OF LIB.	ROUTINE LOADED AT ADDR. 37300	PAGE IN LISTING
35662	LIBR. SIZES	232	35706	ECHO	298
35663	FUSS TABLE	233	35707	REPORT	299
35664	FILES	234	35710	RESET	302
35665	SAVE	240	35711	CHANGE ID	304
35666	SUPER SAVE	245	35712	DIRECTORY	307
35667	GET	251	35713	STATUS	311
35670	APPEND	254	35714	SLEEP	317
35671	HELLO	257	35715	SLEEP OVERLAY	322
35672	BYE	263	35716	NEW ID	328
35673	KILL	267	35717	KILL ID	332
35674	RENUMBER	272	35720	KILL ID OVERLAY	336
35675	NAME	278	35721	UNLOCK	342
35676	CATALOG	280	35722	LOCK	346
35677	LIBRARY	284	35723	LOCK OVERLAY	352
35700	DELETE	285	35724	PURGE	356
35701	TIME	287	35725	PURGE OVERLAY	362
35702	PROTECT	289	35726	ROSTER	366
35703	UNPROTECT	291	35727	DISC	368
35704	OPEN	292	35730	MAG TAPE	374
35705	LENGTH	297	35731	PHONES	375

NOTES
$\begin{array}{ll}\text { * } & \text { Note a system command } \\ \text { ** } \quad \text { Not loaded at } 37300\end{array}$

TABLE 7. TELETYPE TABLE

		00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15
	BTIM	33021	33053	33105	33137	33171	33223	33255	33307	33341	33373	33425	33457	33511	33543	33575	33627
	CHAR	33022	33054	33106	33140	33172	33224	33256	33310	33342	33374	33426	33460	33512	33544	33576	33630
	BCNT	33023	33055	33107	33141	33173	33225	33257	33311	33343	33375	33427	33461	33513	33545	33577	33631
	MASK	33024 (1)	33056 (2)	33110 (4)	33142 (10)	33174 (20)	$\begin{gathered} 33226 \\ 140 \text {) } \end{gathered}$	$\begin{gathered} \hline 33260 \\ (100) \end{gathered}$	$\begin{array}{r} 33312 \\ (200) \end{array}$	$\begin{aligned} & 33344 \\ & (400) \end{aligned}$	$\begin{aligned} & \hline 33376 \\ & (1000) \end{aligned}$	$\begin{array}{r} 33430 \\ \text { 2000) } \end{array}$	$\begin{aligned} & 33462 \\ & (4000) \end{aligned}$	$\begin{array}{\|c\|} \hline 33514 \\ (10000) \end{array}$	$\begin{array}{\|l\|} \hline 33546 \\ (20000) \end{array}$	$\begin{array}{\|l\|} \hline 33600 \\ (40000) \end{array}$	33632 (100000)
	CCNT	33025	33057	33111	33143	33175	33227	33261	33313	33345	33377	33431	33463	33515	33547	33601	33633
	BPNT	33026	33060	33112	33144	33176	33230	33262	33314	33346	33400	33432	33464	33516	33550	33602	33634
	BSTR	33027	33061	33113	33145	33177	33231	33263	33315	33347	33401	33433	33466	33520	33552	33604	33636
	BHED	33030	33062	33114	33146	33200	33232	33264	33316	33350	33402	33434	33466	33520	33552	33604	33636
	BGIN	$\begin{array}{c\|} \hline 33031 \\ (67542) \end{array}$	$\begin{gathered} \hline 33063 \\ (67706) \end{gathered}$	$\begin{array}{\|c\|} \hline 33115 \\ (70052) \end{array}$	$\begin{array}{\|c\|} \hline 33147 \\ (74134) \end{array}$	$\begin{gathered} \hline 33201 \\ (74300) \end{gathered}$	$\begin{gathered} 33233 \\ (74444) \end{gathered}$	$\begin{gathered} 33265 \\ (74610) \end{gathered}$	$\begin{gathered} 33317 \\ (74754) \end{gathered}$	$\begin{array}{\|c\|} \hline 33351 \\ (63272) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 33403 \\ \hline(63436) \\ \hline \end{array}$	$\begin{gathered} 33435 \\ (57756) \end{gathered}$	$\begin{gathered} 33467 \\ (47752) \end{gathered}$	$\begin{array}{\|c\|} \hline 33521 \\ (53752) \end{array}$	$\begin{array}{\|c\|} \hline 33553 \\ (63602) \end{array}$	$\begin{array}{\|c\|} \hline 33605 \\ (163746) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 33637 \\ (64112) \end{array}$
	BEND	$\begin{array}{\|c\|} \hline 33032 \\ (67706) \end{array}$	$\begin{gathered} 33064 \\ (70052) \end{gathered}$	$\begin{array}{\|c\|} \hline 33116 \\ 170216) \end{array}$	$\begin{array}{\|c\|} \hline 33150 \\ (74300) \end{array}$	$\begin{array}{\|c\|} \hline 33202 \\ (74444) \end{array}$	$\begin{array}{\|c\|} \hline 33234 \\ (74610) \end{array}$	$\begin{gathered} \hline 33261 \\ (74754) \end{gathered}$	$\begin{array}{\|c\|} \hline 33320 \\ (75120) \\ \hline \end{array}$	$\begin{gathered} \hline 33352 \\ (63436) \end{gathered}$	$\begin{array}{\|l\|} \hline 33404 \\ (63602) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 33436 \\ \text { (60122) } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 33467 \\ (50116) \end{array}$	$\begin{array}{\|l\|} \hline 33521 \\ 154116 \end{array}$	$\begin{array}{\|l\|} \hline 33553 \\ (163746) \end{array}$	$\begin{array}{\|l\|} \hline 33605 \\ (164112) \end{array}$	$\begin{array}{\|l\|} \hline 33637 \\ 164256) \\ \hline \end{array}$
	LADR	$\begin{array}{\|c\|} \hline 33033 \\ (32337) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 33065 \\ (32343) \end{array}$	$\begin{array}{\|c} 33117 \\ (32347) \end{array}$	$\begin{gathered} 33151 \\ (32353) \end{gathered}$	$\begin{gathered} 33203 \\ (32357) \end{gathered}$	$\begin{array}{\|c} 33235 \\ (32363) \end{array}$	$\begin{array}{\|c} 33267 \\ (32367) \end{array}$	$\begin{array}{\|c\|} \hline 33321 \\ (32373) \end{array}$	$\begin{array}{\|c\|} \hline 33353 \\ (32377) \end{array}$	$\begin{aligned} & 33405 \\ & (32403) \end{aligned}$	$\begin{array}{\|c\|} \hline 33437 \\ (32407) \\ \hline \end{array}$	$\begin{array}{\|c} 33471 \\ (32413) \end{array}$	$\begin{array}{\|l\|} \hline 33523 \\ (32417) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 33555 \\ (32423) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 33607 \\ (32427) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 33641 \\ 132433) \end{array}$
	DISC	33034	33066	33120	33152	33204	33236	33270	33322	33354	33406	33440	33472	33524	33556	33610	33642
	PROG	33035	33067	33121	33153	33205	33237	33271	33323	33355	33407	33441	33473	33525	33557	33611	33643
	ID	33036	33070	33122	33154	33206	33240	33272	33324	33356	33410	33442	33474	33526	33560	33612	33644
	NAME (3)	33037-41	33071-73	33123-25	33155-57	33207-11	33241-43	33273-75	3325-27	33357-61	33411-13	33443-45	33475-77	33527-31	33561-63	33613-15	33645-46
	PHON	33042	33074	33126	33160	33212	33244	33276	33330	33362	33414	33446	33500	33532	33564	33616	33650
	TIME (2)	33043-44	33075-76	33127-30	33161-62	33213-14	33245-46	33277-60	33331-32	33363-64	33415-16	33447-50	33501-02	33533-34	33565-66	33617-20	33651-52
	ABCN	33045	33077	33131	33163	33215	33247	33301	33333	33365	33417	33451	33503	33535	33567	33621	33653
	CLOC	33046	33100	33132	33164	33216	33250	33302	33334	33366	33420	33452	33504	33536	33570	33622	33654
	RSTR	33047	33101	33133	33165	33217	33251	33303	33335	33367	33421	33453	33505	33537	33571	33623	33655
$\stackrel{\square}{\sim}$	STAT	33050	33102	33134	33166	33220	33252	33304	33336	33370	33422	33454	33506	33540	33572	33624	33656
-	LINK	33051	33103	33135	33167	33221	33253	33305	33337	33371	33423	33455	33507	33541	33573	33625	33657
$\stackrel{\square}{\sim}$	PLEV	33052	33104	33136	33170	33222	33254	33306	33340	33372	33424	33456	33510	33542	33574	33626	33660

time share loader

CHAPTER 7 TIME SHARE LOADER

7-1 LOADER

The Time Share Loader has the following primary operation modes:

1. A paper tape load of a completely new system. This implies no ID codes, no library, etc.
2. A load from disc following a disc sleep.
3. A load from mag tape following a mag tape sleep.
4. An update to the system which retains the ID's, public and user library but updates or replaces the operating system. This would include updating from 2000A Version E to Version F, or an update from the 2000 A to 2000 B .
5. The final mode is an attempt to resuscitate following operator error or hardware or software failure.

7-2 PAPER TAPE LOAD

This is the initial load of a Time Share system. We can follow the sequential steps by following the loader block diagram. Refer to figure 17. The loading is initiated by first loading the HP 2000A Time Share Loader Tape HP 20872F. This is loaded using the protected binary loader at address 37700 . The Loader starting address is 2000.

The first question is "LIBRARY?" The answer is 'NO cr' This initiates the system generation and sets system generation flag, creates the equipment table, sets number of sectors for disc 0 , and locks discs $1,2, \& 3$. The question "SECTORS/TRACK ON DISC- \emptyset ?' is answered ' 90 cr' for 2770,2771 discs or ' 128 cr' for 2773,2774 and 2775 drums or 2766 disc.

The system must now set up the disc tables. It asks "DISC MODIFICATIONS?" This allows adding logical discs 1 to 3 if available. The system gets the disc number, select code, and number of sectors. It then updates the equipment table entries ?TBL. This is terminated by the carriage return instead of another disc command. The system now builds the available Disc table for all sixty-four tracks of each logical disc.

The system then asks "GIVE LOCK, UNLOCK OR LOAD COMMAND." The system uses the LOCk and UNLock commands to update the equipment table TRAX entries. The sequence is terminated by the LOAD command. At this point the T.S. system tape (part 1 of 2) must be in the photoreader.

FIGURE 17. LOADER BLOCK DIAGRAM
7-2

The 20 system tracks are claimed and the ADT entries for those tracks are set to zero. The T.S. disc loader is written to track \emptyset, sector 1 . The question "DISC MONITOR PRESENT?" allows the DOS system to be resident on the DISC. The DOS bootstrap is on track \emptyset, sector 2 . The bootstrap loader is written to track \varnothing, sector \emptyset.

The loader now reads the paper tape records and begins to fill core. These records are in regular absolute assembly format. The first byte is the number of words in the record. The second byte is \emptyset. The second word is the core address for the first data entry. Following the last data word in the record is the check sum word. As these records are entered, the system checks for valid address and checksum. The first system tape is read in. The break between the two tapes is completely arbitrary. A group of 10 feed holes between records is evaluated as the end of the first tape. The Part 2 of 2 is then placed in the reader and loading continues.

When the first library program is encountered, and for each succeeding one, the status of bit 15 switch is checked. A " 1 " results in a HLT 15B allowing patching to take place. Pushing RUN results in writing to the disc the preceeding program. More about this switch 15 option later.

When all library programs are completed, a record at address \emptyset signifies the end of the paper tape read. The library programs require 2 disc tracks.

The system now initializes the user swap area and the teletype tables for all 16 users. Certain information must be generated, i.e., mask bit, buffer beginning and end, logical buffer head and pointer. This information is placed both in the teletype core table and written to the user swap track for the language processor.

The core resident system is written to disc. Core addresses 0 to 12000 are placed in track \emptyset starting at Sector 3. Core locations 14000 to 26500 are written to the second system track. Core locations 26500 to 37300 are written to the third system track.

The system now requests the "DATE" and "TIME." With this information, it sets up the two time of day counters, one in tenths of seconds, the other in hours of the year. The power fail halt is replaced with the jump to power fail subroutine. The system then jumps to the TSB entry in the scheduler.

At TSB, the time base generator is set for 100 msec interrupts and the multiplexor is started. The system console prints "READY". The system enters the Scheduler loop at SCH1. This completes the Paper tape load.

The system is up and running, but is clean. There are no entries in the ID table. The AD table contains an entry for each disc track. The entries for all system tracks show an available length of 0 sectors, thus preventing subsequent allocation. All other tracks show a length equal to the number of sectors per track for the disc or drum. The final pseudo entry completes the ADT. The Directory has just the 2 pseudo entries.

To make a useful system, the system operator must \log on new ID's for himself and other users. He may want to add public library. He may desire to use equipment commands to add mag tape and phones.

7-3 AWAKEN FROM DISC

Mose of the Loader steps are bypassed when bringing up a time share system from the Disc. The assumption is that an operating system existed and was satisfactorily slept.

The procedure uses the protected disc loader option at address 37760 . This reads the time share bootstrap from track \emptyset, sector \emptyset into Location 2 to 77. This program halts at $\mathrm{P}=10$ so the Loader Protect switch can be set to protected. It also allows the switch option bit $0=" 1$ " for a DOS.

The protected loader at 37760 sets up a DMA transfer from disc address track 0, sector 0 to core address 0 , with transfer length 100B words. It then puts a jump self in address 77 and jumps to 77. The program stays there until the DMA transfer is completed. The final word is a JMP 35 which is placed in location 77 . This allows a jmp to the $2-77$ program when the transfer is done. The disc parity is checked. If satisfactory a halt 77 is executed. This allows protecting the binary loader before proceding.

Pushing RUN again initiates the transfer of the Post-Sleep Disc Loader from disc track 0 , sector 1 to core address 2436 . This loader reads in the entire core resident system from the three system tracks. It then jumps to the Date/Time routine of the loader and continues to the Time Share Scheduler.

A few comments can be made at this time about the limitations of this process. The contents of the disc must be intact. The system can not operate if a disc failure occurs on a system track. A failure on a library track will result in the loss of all program and files resident on that track. If the time share system was not terminated with a sleep command, this awaken from the disc may not be successful.

7-4 AWAKEN FROM MAG TAPE

The process of bring up the system from a mag tape sleep requires that the Time Share Loader paper tape be loaded first. The starting address is 2000. The 'YES' answer to the question"LIBRARY?" indicates that the reload is from mag tape or disc, and is not a new system generation.

The "mag tape select code?" is answered with the select code information if a mag tape is present. The sclect code followed by an "*" indicates the mag tape controller is an HP 13181A Interface (7970A). The absence of the "*" indicates an HP12559A Interface (3030). An answer of select code \emptyset indicates this is a system update and will be covered under that section. If a satisfactory select code is given, the mag tape driver is configured. The EQT table is read from the first tape record to core starting at address 100 . The directory addresses are then set to zero in the equipment table to allow reassigning the system tracks.

The "DISC Modifications?" question allows changes to be made. If no changes are required, the hardware system will be the same as when slept. The ADT table is built up as in the paper tape load example.

The "LOCK, UNLOCK, OR LOAD?" allows changes to be made otherwise the tracks will be the same as at last sleep.

The necessary tracks for the system are allocated. The "Disc Monitor Present?" proceeds as before, and the configured bootstrap is written to the disc.

The IDT, ADT track is read from mag tape and a track is claimed. The proper number of directory tracks are claimed.

The track length table corresponding to the track images for all library is read. One by one the tracks are read in from tape and written to the disc. The old and new address are put in a table so the directory table can be updated. The ADT is updated as the records are written.

The Directory track(s) are read in, updated and written to the disc.
The System Segment table is read from mag tape. This allows the core resident system to be read from mag tape to the correct core location. When the last segment is finished, the Disc resident Library is read from mag tape and written to the disc. This is terminated at the EOT mark.

The user teletype tables and swap area are intitalized and loading continues as in the paper tape load to TSB and the scheduler loop.

7-5 SYSTEM UPDATE

The system update procedure provides a great deal of usefulness and power. It allows retaining the user and public library. In order to do this, it requires the Directory Tracks, IDT/ADT tracks, and Equipment table. The procedure replaces the system with a new system loaded from paper tape.

The normal entry is used. Load the Loader tape and start at address 2000. The "LIBRARY?" is answered 'YES cr' and "MAG TAPE SELECT CODE?" by cr. The lack of a valid select code tells the system it is a paper tape reload and not a mag tape restart. Thus, we will use the Equipment table on the disc. Read the Equipment table from disc track \emptyset, sector 4 to core address 100 . Proceed now to the non-sleep entry point.

Read the ADT for Disc to core. Recover 2 of 3 system tracks for core system (track \emptyset is necessary and cannot be recovered), 2 for library, and 16 user tracks.

Configure and write Bootstrap loader and TS loader to disc. Read core system from paper. Read from paper tape and write to disc all library programs. Initiate swap tracks and teletype tables, dump core system to disc. Get Date/Time. Jump to TSB and to scheduler loop.

This procedure will not work if track \varnothing, or a directory track, or the IDT/ADT track is defective. Disc problems on any other system track will be okay if an unused track exists on the Disc. If disc problems occur on a user or public library track the lock command will cause a loss in the contents of the track.

7-6 CONVERSION VS UPDATE

The preceding discussion involves updating a system. An update utilizes the existing equipment table, Directory Tracks, and IDT/ADT. It provides a vehicle to replace the core resident program and library programs while retaining the user and public library programs and files.

It may be necessary to convert as well as update. Conversion was required in converting from Version I of the 2000A to Version II. This involved substantial changes in ADT due to the disc/drum capability of more sectors per track and disc organization. It is also necessary to convert the 2000A to 2000B. This involves changes in the Directory and equipment table.

In situations where both update and conversion is required it is necessary first to sleep the system. The conversion program is loaded and executed. This makes all necessary changes in the tables. Then the update procedure is followed with the load of the new system from paper tape.

7-7 LOADER SWITCH 15 OPTION

The use of switch 15 in the " 1 " position during load allows changes to be made to the system or library programs prior to writing to the disc.

The first halt 15 occurs when the core system is fully loaded. The correction can be made by toggling through the switch register, or by using the protected binary loader. In either case, the P register contents must be noted prior to the change. The P register must be reset before pushing RUN again. It is important not to push PRESET during these changes. The halt 15 occurs in the SYSLB routine in the loader.

Corrections to Library programs may also involve changes to the Library Sizes program. Library Sizes is the first Library segment loaded and stored. It contains the negative length of all library programs. A change to a library program which involves a length change must also be reflected in this library Size table. Library Sizes and all other Library programs are loaded into Location 37300.

The procedure for a correction would be first to determine the coding change, and then the new length. The first halt is the core resident system. Push RUN. The second halt is the Library Size table. At this time, the length correction can be made. It is helpful to DISPLAY MEMORY at 37300 and a few additional locations to insure the correct program is in core.

After making the length correction and restoring the P register, push RUN. Each halt corresponds to another library program loaded in core. The list in Library Sizes helps keep track of the sequence. It is helpful to DISPLAY MEMORY prior to the actual program requiring correction to insure you haven't passed it by miss counting. After all corrections are made, switch 15 can be lowered to facilitate the rest of the load process.

The contents of the A and B register do not have to be reloaded. It is important that PRESET not be pushed at any time.

7-8 NON-SLEEP RESTART

The non-sleep entry point uses the Equipment table in core. It also requires the contents of the Directory tracks and the IDT/ADT track to be complete and correct. The primary difference between the system update and the non-sleep restart is that in the update the Equipment table is read from the disc whereas in the non-sleep restart the Equipment table must be in core.

Note that this non-sleep restart requires loading the loader paper tape. It is not an attempt to restart the core resident program.

7-9 RESUSCITATION

Resuscitation is the art (not science) of recovering from system difficulties. These difficulties may be hardware failure, or operator error. It is difficult to anticipate the specific action required in resuscitation because of the large number of possible conditions and the subtle nature of the detective work. There are certain types of difficulties that can be covered generally. It is helpful to use the non-sleep entry in the loader. The following halts are possible failures requiring resuscitation. The nonsleep entry point for the Loader is at Location 3000.

7-10 DISC HALT

We shall consider some of the possible crash conditions. Halt 4 is a halt associated with a failure in the disc driver. Refer DISER in the interrupt section. This failure indicates cither parity error or abort flag from the Disc Controller. Before halt 4 the read or write is attempted 10 times. The B register contains the core address. Bit 15 of the B register indicates read if "zero", write if "one". The A register contains the disc address (bits 14-15=logical disc, bits $8-13=$ track, bits $0-6=$ sector, bit 7 is unused). WORD contains the minus number of words to be transferred. The options available include locking the track if it is a user or public library. This will result in a loss of all contents of that track.

A failure of a system track is usually fatal. It may be worth while to try a nonsleep recovery. If this works immediately attempt a sleep. Then use a system update to lock the offending track. In any case, a mag tape rewake is the final solution, but this results in a loss of all activity since the time of the mag tape sleep.

Since track zero is always required, there is no way to get the system up until this track is repaired. It should be obvious that the contents of all remaining tracks should not be disturbed during repair procedures in order to salvage the contents of the system. It is necessary to recover the equipment table in order to salvage the system.

7-11 PARITY HALT

Another general class of failure is a parity halt. This would be caused by equipment malfunction. The halt 5 occurs by execution of the trap cell. A careful analysis of the failure is necessary. A parity error in the core resident system can be corrected by referring to the listings. An error, however, in tables or users swap areas may cause a fatal system crash.

It is important to have the switch on the parity board up in halt mode. This results in an immediate halt. The Parity Error Lamp will be illuminated. This is the indication that a parity error has occurred. In the down position, the board works in the interrupt mode. Phase 5, however, prevents the interrupt and parity errors due to DMA would be ignored.

In the case of a DMA parity error with the switch up, the P register will be the location at the time of the DMA parity error, but of course this will not be related to the actual DMA address causing the error because the DMA transfer continues to completion even though the CPU had halted due to the parity error. With the switch up the Halt 5 will not be executed but the Parity Error Light will be illuminated.

7-12 WRAP AROUND

It is possible, due to hardware difficulties, for the computer to wrap around memory. It may halt at address 2 on the base page. This is probably the most difficult single malfunction to diagnose. It is not apparent how much damage may have been done to the core system prior to the actual halt. It is desirable to shorten any possible loop before starting the resuscitation. Do this by removing the multiplexor cables and time base generator before starting the 3000 non-slecp restart. If successful immediately sleep. Then ascertain the hardware condition by running equipment diagnostics. Restart the system with a system update to insure the core resident system is correct.

In some cases a software loop may be produced. This might be a queue loop in the scheduler, or a skip if flag set wait for the mage tape, or some such loop. The program can be halted and single cycled to determine the nature of the loop. The Preset button must not be pushed. It should be pointed out that the SINGLE CYCLE will not allow an Interrupt phase 4 to take place. By holding the HALT button and pushing RUN, it accomplished the single cycle function but allows interrupts.

In diagnosing such a loop, it may be desirable to shorten the loop. This can sometimes be done by removing the multiplexor cables or disabling the Data Set phone answering, removing the Time Base Generator board, etc.

Certain data is extremely helpful in troubleshooting a crashed system. This includes the equipment table, base page temporaries, teletype tables, and other selected locations such as: MPCOM, MAIN, LIB, ENDSK, WORD, etc.

In general, it is much better to call for immediate help from the Service Technician or System Analyst before playing with a crashed system. Careless technique may obliterate any troubleshooting symptoms, and make a recoverable halt a nonrecoverable crash.

7-14 OPERATING HALTS

The halts which can occur in the normal operating system follow (for 2000 A Version F).

ADDR	HLT	PURPOSE
00002	102002	System protection against wrap around
00004	103004	Power Fail during Loading
00005	102005	Parity Error
31055	103004	Disc Error
31140	102000	Power Fail
10273	10277	Completed sleep (in loader-Mag
		Tape dump)

7-15 LOADER HALTS

There are various halts in the loader. During initial system load a halt during loading is not a problem. Since there is no user or public library, the system can be checked with diagnostics, repaired, and then reloaded.

When the system contains user and public library then halts are much more important. The following list of halts help locate the location in the listing. These halts are listed sequentially as they appear in the listing.

HLT, CODE	P REG	LISTING	PURPOSE
103004	00005	P2/\#1	Power Fail
102077	05102	P17/\#2	End of First System Tape
102066	05145	P20/\#2	Checksum Error
102001	05433	P25/\#2	Mag Tape Error (timing or parity) 102015
	05443	P26/\#3	Halt before writing to disc-allows changes
102055	07144	P41/\#4	Address Outside of Expected Area 102022
	04001	P52/\#5	Halt to Insure Loader Tape is
102077	10274	P52/\#5	Loaded Ref P=10263 Sleep tape done-can repeat
102011	10317	P52/\#5	Tape Bad or too Short
102033	10772	P63/\#6	3030 Mag Tape write ring
102044	11005	P63/\#6	3030 Mag Tape to Auto
102033	11413	P69/\#6	7970 Mag Tape Write Ring
102044	11442	P69/\#6	7970 Mag Tape to Auto
102002	02462	P80/\#7	Disc Error during transfer
103004	00005	P81/\#7	Power Fail
102000	00044	P81/\#7	Disc Error during Bootstrap
102001	00044	P81/\#7	Disc Error Following the Bootstrap
102077	00010	P81/\#7	check
		Completion Loading of Bootstrap	

7-16 KEY CORE LOCATIONS

Certain core locations are helpful for non-sleep restart, troubleshooting and resuscitation. Refer tables 4 to 7 . The equipment table contains information in core which is not updated onto track \emptyset sector 4 . The most obvious changes are in ADLEN and ADLOC, and directory length DIREC. Less frequent changes occur to the IDLEN and IDLOC, TRAX and changes in the directory reference locations. When a system is not slept, there is no record of the up-to-date equipment table except in core itself.

Certain core locations are of tremendous importance; such as, MPCOM, MAIN, LIB, ENDSK. Some of the locations shown are entry points for subroutines.

The LIB location 243 indicates which library program is in core. In the Teletype tables, certain locations are fixed including MASK, BGIN, BEND, and LADR. It should be obvious that if the port to the multiplexor is not in use, the corresponding teletype entry will not have significance. And further, if the ID entry is zero, then no user is currently logged on that port and the corresponding table is of no importance.
time share example

CHAPTER 8
 TIME SHARE EXAMPLE

8-1 INTRODUCTION

The Time Share Listings may be quite formidable the first time a person starts to work with them. An example through the multiplexor and scheduler provides a mechanism to follow the activities of the system. It also provides an opportunity to tie together the functional flow charts.

The examples are complete. It is highly recommended that the reader try to forge ahead of the example by using the listings. Try to determine the course the system will take. Use the example to verify your conclusions.

The purpose of following the system action through this example is threefold. First, it acquaints the reader with many clever programming techniques. These include the use of pointers for access to tables, and the methods for moving the pointer through the table.

A second purpose is to familiarize the reader with some of the commonly used labels. It is helpful to see how the teletype tables are used, and how the base page helps for extensive use of certain teletype table entries. The third purpose if to give a feel for the activity in the multiplexor and scheduler. The skill developed in the example may be helpful in analysing a crashed system.

These examples are based on the current 2000A listings - Version F. It is possible to use previous listings C, D, or E. There will be slight differences. The page references may be off by one or two, and specific core locations may be off in come cases. Specifically, a shift in 2 memory addresses for certain program segments occurred in Version F. With these differences in mind, the example will still be useful.

8-2 MULTIPLEXOR EXAMPLE

The example we will use is a log on command. The user has a teletype hardwired to port 5 . He turns the TTY to line and types: HELLO-H $\emptyset \emptyset$, SALES cr. To simplify the example, we will assume no other user activity. This will allow one new set up, one loader entry, one character to process, etc. We can focus in on all the relevant servicing for this one user without getting mired down with other users.

The first letter typed is the " H " in Hello. This is an eleven bit character requiring 100 milliseconds. Keep in mind this is a very long time period for the computer. For a normal typist, the time interval between the " H " and the " E " will also be quite long. Figure 18 shows a representation of the serial data from the teleprinter.

FIGURE 18. TELETYPE SERIAL DATA
The data requires 11 bits. The first is a start bit in position zero. The next eight are the ASCII representation. For letters they range in octal value from 101 for A to 132 for Z. Bit eight may be used for parity. Depending on the equipment used, it may be even or odd parity, or always zero or always set. In the HP 2749A Teleprinter this bit generates even parity.

In the 2000 A , this bit is masked off. So it has no significance. Then two stop bits are sent, completing the character.

It may be hard at first to get a concept of relative time for the servicing of these TTY bits. There are 88 multiplexor interrupts during the time required for the letter " H ". Of these interrupts, only 10 require specific servicing except to increment the bit counter each interrupt.

FIGURE 19. MULTIPLEXOR INTERRUPTS

The Interrupt designated A is the first "interrupt" occurring since the TTY data transition from the stop to start mode. We must start the new character processing. This requires about 160 microseconds.

The routine interrupts without specific tasks to perform require about 90 microseconds. Interrupt B is the next interrupt doing special servicing for our port. This interrupt represents the middle of bit. At this time, the output signal is sent to the teleprinter. Note that this produces a phase shift between the incoming and outgoing
data of about 4.5 milliseconds. Interrupt B and the other middle of bit interrupts require an additional 80 microseconds to process each new bit.

The interrupt occurring in the middle of bit number 9 is the end of character bit. This corresponds to interrupt number 76 as numbered in Figure 19. It is not necessary to process bit 10 because it must also be a stop bit. This end of character processing requires about 245 microseconds. There will be no further processing until the " A " interrupt for the Letter E at some subsequent time.

Now each 0.1 second the time base generator interrupts. This will occur once during the long elapsed time required for the letter H to come in. The scheduler requires about 150 microseconds for a routine service interrupt. Note, the system will normally be servicing the current user at the top of the queue, or it will be in the scheduler loop if there is no user on the queue.

Let's review the action that will be required by referring to the multiplexor flow chart Figure 6.

The initial multiplexor interrupt will occur at time A. The MPXNT entry point stores the registers, and inputs the new multiplexor data. It is determined that a new character is present. NEWIN routine determines the port number. SETIN puts necessary TTY table entries on the base page. It checks for abort, syntax or command entry. It prepares an ISZ instruction to count the multiplexor bits to determine the time for servicing the bits. It places a -4 in the BTIM. This is the number of interrupts required to get to the middle of the bit. A-10 is placed in the bit counter to determine when the full character is finished. We then continue with the ladder. The initial processing is finished. The program continues at the ladder.

During the fourth interrupt, we ISZ the BTIM and it rolls over. We then must service the character. We place the -8 in the bit timer. We put certain TTY tables entries on the base page. We add the current bit to the MPOUT data word. We add the current bit to the partial character being built up. We rotate the character and increment the bit counter. This completes the bit processing.

During the 76th interrupt, we service the 9th bit. This causes a roll over in the bit counter and we must service the end of character. We place TTY table entries on the base page, position and mask the character, replace the JMP *+4 to the ladder, and reset the input flag to allow more input. We now test it for certain special characters, and process it if necessary. If it is an acceptable character, we add it to the buffer, taking care of packing and buffer wrap around. We then return to the ladder.

The final character in the line is usually a carriage return. When this is typed, we set the input flag to prevent further input until the line is processed. We set the MPCOM flag which tells the scheduler there is a user requiring service.

With this review of the block diagram, it should be possible to follow the step by step example through the multiplexor. Refer to figure 20.

8-3 SCHEDULER EXAMPLE

We will continue the same example through the Scheduler. The HELLO-H0 ϕ, SALES cr command is in the users buffer. His TTY entries point to the actual location of the packed characters. His status is idle, no priority has been established.

Assume that no activity is currently going on, but that we will enter through the Time Base Generator entry point and continue through the Scheduler. This assumption gives us a clean entry point, but also let us queue the new user and go directly to the swapper to start the disc transfer. Refer to the Scheduler Loop simplified block figure 10. We enter CLKIN and update the clock and go to the main part of the shceduler SCHI. There are no phones to answer since we are hard wired. Multiplexor processing is required, however, since the MPCOM bit is set. We go to SCH 5 for this processing.

The main work takes place in SCH5, SCH6, SCOM, SCHAR, and SCH11. The activities include locating the port numbers and clearing the MPCOM bit, checking for syntax or commands, and other special conditions like abort.

In this case, it is a command. The first three valid characters are then checked against the command table to determine which command is requested. The priority of 2 is assigned.

In SCH3 the user is placed on the queue. His entry is established according to his priority. SWAPR is called to effect the queue rotation. The user at the top of the queue is brought in. This is actually accomplished by using the Disc driver with DMA to bring in the HELLO library program to 37300 .

Once the swap is initiated, the scheduler remains in the loop until ENDSK indicates the transfer is completed. This completes the example. Refer to figure 21 for the scheduler example.

Certain processing follows the example before the action requested by the Hello command is completed and the terminal is ready to use.

The HELLO program checks for a current ID. If one exists, then it must be logged off, with appropriate accounting update. It checks the new ID and ID code against the IDT to insure that both are valid, and the allowable time is not expended. It initiates a log on message to the system console. It updates the ID information in the TTY table. It then uses DLOOK to search for the \$HELLO program in the public library. If one exists, it is read in to the users swap area. Status is put to RUN with a jump to the Basic Interpreter executive. When the program is completed, the user is dequeued. The terminal is now ready for business.

FIGURE 20. MULTIPLEXOR EXAMPLE SHEET 1 OF 10

```
PAGE OItO #10 MULTIFLEXOR INTERRUPT DRIVER.
```

B658* SETIN SEIS UP CCATKOL FOH A NEW INPUT CHARACTER. IT FIRST DETER-

0461	S2210		SETIN NOP	- P REG	RETTURN ADDRESS (32164)
Oin 62	32211	074065	STB	NPXTE	SAVE BIT INDICATORS. $\mathrm{B}=000000$
0663	32212	060210	LDB	SETIN	B=NEWIN+2*(TTY*+1) $\mathrm{B}=32164$
19604	52213	094410	ADB	MNEWN	$B=2 * T$ TY* $\quad \mathrm{B}=000012$
0 005	32214	005000	BLS		B=4*TTY\# $\quad \mathrm{B}=000024$
0465	32215	044331	ADB	CLADR	B=DLADR+A*TY*+J $\quad \mathrm{C}=032363$
0 wor	32216	160061	LDA	1.1	$A=T T Y$ TABLE ADDRESS $\quad \begin{aligned} & \text { A } \\ & A=33223\end{aligned}$
UEOO	32217	040520	ADA	- + TSTAT	A=STATUS ADDRESS $\quad \mathrm{A}=33252$
Wef6y	32220	076056	STA	MPXT1	SAVE STATUS ADDRESS.
0070	32221	040466	ADA		TAT A=ABORT COUNTER ADDRESS A=33247
0671	32222	070862	StA	EPAT	SAVE ABORT COUNTER ADDEESS.
c. 0.72	32223	046450	ADA	- + TMASK- ${ }^{\text {a }}$ AE	BCN A=MASK ADDRESS. A=33226
0×73	32224	070061	STA	MASK	SAVE MASK ADDRESS.
Qu74	32225	16 1066	LDA	MPXT1,1	$A=S T A T U S . \quad A=0 \quad$ Initially
8075	S2226	ט4<021	SSA.	FiSS	IGNORE IF Status is aborting.
Qn76	32227	050472	CPPA	Xabun	
0677	32258	020331	JMP	SET1	
0078	32231	002002	92 A		If other than ide
0479	32232	056475	CPA	XSYNT	SYNTAX
0480	32233	026237	JMP	* +4	
0 bst	32234	050473	CPA	XINPT	OR INPUT, WE ABORTHIM.
Ono 2	32235	002001	RSS		
0×83	32236	020272	JMP	SET2+1	
On85*	set ur	LADDER	CCDE ANE I	INITIALIZE	VARIABLES.
0187	32237	186001	LDA	1.1	A=>tELETYPE ENTRY $A=33223$
0088	32248	Q10325	AND	E 1777	$\mathrm{A}=001223$
0089	32241	040463	ADA	1S21P	CREATE ISZ INSTRUCTION, A=037223
$0 \cup 90$	32242	044466	ADB	- -3	$B=D L A U R+4 * T T Y * \quad B=32360$
On91	32243	150001	CPA	1.I	If ISZ ALREADY there this is
0092	32244	020271	JMP	SET2	ABORTING.
0×53	32245	070057	STA	CPTR	SAVE ISZ.
$0 \cdot 94$	52246	060246	LDA	ABTST	IS ARTST SET TO INDICATE AN $A=177777$
0095	52247	136001	IOR	MASK, I	ABOKT ATTEMPT? $A=000040$
6696	32250	05b246	CPA	ABTST	
0097	32251	020254	JMP	* +3	NO--SIART SETTING UP INPUI.
0498	32252	076246	/ STA	ABtSt	YES--FORGET ABORT ATYEMPT AND
0099	32253	020367	JMP	SET3	GO REINSTATE INPTF.
0100	32254	060657	liga	CPTH	GET ISI AGAIN. $\mathrm{A}=037223$
0181	32250	176001	Sta	1.1	SET UP ISZ.
0102	52256	044474	ADb	. +3	HE> TTY TABLE ADDRESS $\quad \mathrm{B}=32363$
0103	S2257	164001	LDB	1.1	B=> TYY TABLE $\quad \mathrm{B}=33223$
0104	32200	060465	LDA	- -4	SET TAME COUNTEA
0185	32261	170001	Sta	1,1	10-4. 4 interrupts to middle of bit
0160	32262	0gobe 4	INB		B=>CHARACTER.
く1w7	32263	002480	CLA		INITIALIzE Chafacter
01 vi8	s2204	176401	STA	1,1	10 ZERO.
U169	52205	0nOeva	INB		$\theta=>$ Hit COUNTER.
0110	szorn	060457	LDA	- -14	SET RIT COUNTER lo bits to complete
C111	32207	170001	STA	1,1	TO-19.
0112	32270	020331	JMP	St11	GO CHECK for any more tirs.
0114*	ASJRT	cude		$\longrightarrow \text { P } 187$	$7 / \# 16$

FIGURE 20. MULTIPLEXOR EXAMPLE (Con't) SHEET 2 OF 10

FIGURE 20. MULTIPLEXOR EXAMPLE (Con't) SHEET 3 OF 10

FIGURE 20. MULTIPLEXOR EXAMPLE (Con't)
SHEET 4 OF 10

0257* 1HE MPXIU KOUIINE IS CALLE FOR IO SERVICE OF A SINGLE TELE-
 CXSG* TU THE TELETYPE I/O REGISTER, OF WHEN II IS NECESSARY TO D<6日* SEUT A BIT OLT. JHIS IS INDICATED BY THE TIME COUAIER O¿O! F fur that teletype rolling cver to zero. 0202*
Cく63* LALGING DEGUENLE: At fourth interrupt we Gáo4* ISZ IIME LCLATEK must service the
0205% Jinp * +3 first bit.
0<05* JSGMP×IO
Q267* UEF IIME LLLATEK
first bit.

FIGURE 20. MULTIPLEXOR EXAMPLE (Con't) SHEET 5 OF 10

```
PAGE UI90 #l6 MULTIPLEXOR INTERRUPT DRIVER.
```


FIGURE 20. MULTIPLEXOR EXAMPLE (Con't) SHEET 6 OF 10

FIGURE 20. MULTIPLEXOR EXAMPLE (Con't) SHEET 7 OF 10

FIGURE 20. MULTIPLEXOR EXAMPLE (Con't)

```
PAOE U193 N10 MULIIPLEXOR INIERRUPI URIVER. NOT USED FOR
```

C445 S2.576 17W062 STA BPNT,I
0446 32677 120444 JMP MPXIO,I

```
0449* THE OUIPI SECTICN IS CALLED FOR OUTPUT SERVICE FOR A SINGLE TELE-
OA58* IYPE. IT IS CALLED MHENEVER A NEW BIT mUST BE SENT TO THE TELE-
CAS1* TYPE. IHIS HAPPENS WMENEVER THE TIME COUNTER fOR THE TELETYPE BE-
Q452* CDOMES LEKO.


FIGURE 20. MULTIPLEXOR EXAMPLE (Con't) SHEET 9 OF 10


FIGURE 20. MULTIPLEXOR EXAMPLE (Con't)
SHEET 10 OF 10
```

O264* THE CLOLK DRIVEF IS THE CENTRAL POINT THROUGH WHICH CONTROL IS
@265* PASSEN IO THE SCHEDULER. ENTKY COMES TO THE DRIVER WHENEVEF THE
0266* LLOCK (KEAL TIME SCALARI INTERRUPTS. THIS EVENT OCCURS EVERY
0267* LDU MS. bESILES GIVING CONTROL TO THE SCHEDULER, THE CLOCK
0268* DRIVEK alSO has the task OF UPEATING the tImE OF DAY ClOCK.
Q209* IHIS CLOLK IS A TWO WORD ENTRY HMOSE VALUE IS AS FOLLOWS:
0270* CAIIM=24*UAY+HULR
0271* DATIM+1=6U甘*NIN+10*SEC-36BDE

```

ENTER EVERY 0.1 SECOND T.B.G. INT'ERRUPT

```

PAGE U2:12 \#17 SCHEDLLER

```


FIGURE 21. SCHEDULER EXAMPLE (Con't)
SHEET 2 OF 18
```

PAGE 0203 *17 SCHEDLLER

```


FIGURE 21. SCHEDULER EXAMPLE (Con't) SHEET 3 OF 18
```

PMGE O294 *17 SCHELLLEK

```


FIGURE 21. SCHEDULER EXAMPLE (Con't) SHEET 4 OF 18


FIGURE 21. SCHEDULER EXAMPLE (Con't) SHEET 5 OF 18

© 124*
c12b*
O12 S45: \(151 / 24 \theta\) SCHLS JSB SWAPK CHECK FOR ANYTHINB TO DO. IF NOT
0127 *
\(0128 *\)

SWAPR WILL GO TO SCHI AGAIN. IT WILL RETURN HERE IF TMERE IS

FIGURE 21. SCHEDULER EXAMPLE (Con't) SHEET 6 OF 18
0.31 ＊
－132＊
0133 ＊
\(0134 *\)
the prugkam to run is at the head of the queuer and swapr mas guakanteeu that it is in core．the following section of code

0136

013834512072120
013934513 260321
014034514602004
014134515 104．540
014234516054473
014334517090400
014434520174 biva
\(0145 \quad 34521046466\)
E146 34322154860
014734523090902
014834524070243
014934525000400
015034526174 日日月
015134527074254
015234534002044
0153 34531 164060
015434532046467
0155 34533 070467
015634534054476
\(0157 \quad 34535034254\)
\(0158 \quad 34536061242\)
015734537103121
016034540000036
016134541102101
01623454206124
\(0163 \quad 34543060241\)
016434544162100
CLF E INHIBIT INTERRUPT
\(\begin{array}{lr}\text { LDA CLC2 } & \text { RESTORE A＜JMP SCHED＞IN THE } \\ \text { STA CLCI } & \text { CLOCK INTERRUPT ROUTINE．}\end{array}\)
LDA MLINK＋I GET PRIORITY OF PROGRAM．
LDB R，I
CPB．+2 IF PRIORITY IS 2，CHANGE IT TO
CLB ZERO SO IT DOESAT GET INTERRUPJE
STB K．I
ADA •＋？RSTR－？PLEV GET RESTART ADDRESS
LDB R，I IF NOT \(G\) ，PUT II IN PREG
SZB TO START UP PROPERLY．
STB PREG
CLB Put a into table in any case
STB R，I
stb timef set to say no timing．
INA GET PROGRAM STATUS．
LDB \(e_{0} 1\)
ADA－＋PCLOC－ISTAT SET TIMER POINTER．
STA TIMER
CPB XSYNT＋1 IF STATUS IS RUN，SET
ISZ TIMEF TIMEFLAG FOR CLOCKING．
LDAEREG RESTOHE E
CLO AND OVERFLOW
SLA，ELA REGISTERS．
STO
lda areg restoke a and
LDB EREG B REG．
STF
ENABLE INTERRUPT AND
\(1165 \quad 34545125243\)
JMP FREG，I TRANSFER TO PROGRAM．
0166＊
0167＊THIS SELTION ACtUALLy phocesSES a tito entry．there are several
0168＊KINDS OF ENTRIES WHICH MAY EE CLASSIFIED AS FOLLOWS：
0169＊
0170 ＊
©171＊
1）abukt－this is indicater by the teletype status being －1．THE ACTION TAKEN IS TC STOP THE PRUGRAM IIF IT IS In the gleuej，and to initiate the aburt message．
0172＊
\(0173 *\)
の174＊
0175＊
0175＊
2）UUTPUT TERMINATE－THIS IS INDICATED BY THE STATUS BEING gUUTW．THE TTQ EATRY REALLY MEANS THAT THE CUTPUT BLFFER IS ALMUST EMPTY．the program lS placed back on the oueve ACECURDINE TO ITS PRIORITY．
6178＊
0179＊
018 U＊
1818＊
3）INPUT－THIS IS INDICATED BY STATUS BEING XINPT．IT INDI－ CATES THAT A USER PROGRAN OR SYSTEM PROGRAM THAT HAS kequester input has gotien it．the program is placed in
O182＊tme quele．
む1ヶコ＊

FIGURE 21．SCHEDULER EXAMPLE（Con＇t） SHEET 7 OF 18
```

NAGE N2GJ HI8 SCHELLLEK

```


FIGURE 21. SCHEDULER EXAMPLE (Con't) SHEET 8 OF 18


FIGURE 21. SCHEDULER EXAMPLE (Con't) SHEET 9 OF 18


FIGURE 21. SCHEDULER EXAMPLE (Con't)
SHEET 10 OF 18


FIGURE 21. SCHEDULER EXAMPLE (Con't) SHEET 11 OF 18


FIGURE 21. SCHEDULER EXAMPLE (Con't)
SHEET 12 OF 18
```

FAGE 0213 \#18 SCHE[LLEH

```



FIGURE 21. SCHEDULER EXAMPLE (Con't) SHEET 13 OF 18


FIGURE 21. SCHEDULER EXAMPLE (Con't) SHEET 14 OF 18


FIGURE 21. SCHEDULER EXAMPLE (Con't) SHEET 15 OF 18


FIGURE 21. SCHEDULER EXAMPLE (Con't)
SHEET 16 OF 18


FIGURE 21. SCHEDULER EXAMPLE (Con't) SHEET 17 OF 18


FIGURE 21. SCHEDULER EXAMPLE (Con't)
SHEET 18 OF 18

\section*{APPEINDIX GLOSSARY OF TERMS}
absolute - Pertaining to an address fully defined by an address word. In the Time Share system listing, an address corresponding to a label once the assembler has assigned a particular location to that label.
accumulator - A register in which data is totaled or manipulated, or temporarily stored for transfers to and from memory or external devices. Specifically the \(A\) and the \(B\) registers.
acoustic coupler - An acoustic coupler is a device which interfaces between the electrical signals of the teleprinter or CRT terminal and the audio soundwaves required by the telephone network. The telephone handset fits into a suitable receptacle and the signals are coupled acoustically. It allows connecting the terminal to the computer with a regular telephone.
address - An identification label or number that specifies a memory location or a disc sector and track.
address modification - a programming technique of changing an address referred to by a Memory Reference instruction so that each time that particular instruction is executed it will affect a different memory location.

ADT - Available Disc Table. A disc resident table that lists each portion of the disc(s) that is not currently being used and is thus available to the system.

ASCII - A standard 8 level code for the symbols, letters, numericals, etc. used in communications. The letters stand for American Standard Code for Information Interchange.

Assembler - A program which converts the symbolic source statements (i.e., using defined symbols, mnemonics, labels, and comments) into binary machine language and generates the program listing.

Autorestart - The hardware-software system that allows the Time Share operating system to save the necessary information on power failure, and then to restore the system and continue its previous activities when power is restored.
background processing - The reversion of a dataprocessing system to the execution of lower priority programs during intervals in which higher priority programs have relinquished system resources. In the Time Share system, it includes the routine multiplexor, scheduler, and console interrupts and system overhead.
base - The quantity of different digits used in a particular numbering system. The base in the binary numbering system is two; thus there are two digits ( 0 and 1). In the octal system (base 8 ), there are 7 digits ( \(0-6\) ). In the decimal system (base 10), there are ten digits (0-9).
base page - The lowest 2000 octal memory locations corresponding to bits 10 to 14 cleared. It can be directly addressed from any other memory page.

Basic - A language designed for time sharing applications. It characterized by simple syntax using English words and common mathematical relations. The letters stand for Beginners Allpurpose Symbolic Instruction Code.
bit - A single digit in a binary number, or in the recorded representation of such a number (by hole punches, magnetic states, etc.). The digit can have one of two values 0 or 1 . Bit can also refer to a specific location in a computer word (i.e., bit 5).
buffer - A register, memory location, or multiple memory locations used for intermediate storage of information used in the Time Share system. Specifically, temporary storage for input output buffering required by the data rate limitations of the terminals.
bus - A major electrical bus connecting one or more electrical circuits. In the CPU the R-bus S-bus, and T-bus are used for data paths within the main frame.
carry - A digit, or equivalent signal, resulting from an arithmetic operation which causes a positional digit to equal or exceed the base of the effective numbering system.
character - the general term to include all symbols such as alphabetic letters, numerials, punctuation marks, mathematical operators, etc. Also, the ASCII coded representation of such symbols.
code - The binary representation of the machine language instructions appearing in core or in the listing.
command - A control word requesting the Time Share system to perform a task. Commands execution is not part of the Basic Interpreter. Some commands are available to users, others are available only to the system console.
communication system - A computer system having facilities for long-distant transfers of information between remote and central stations. Specifically, the multiplexor and telephone networks used for the Time Share system.
compiler - A language translation program, used to transform symbols meaningful to a human operator to codes meaningful to a computer. More restrictively, a program which translates a machine-independent source language into the machine language of a specific computer.
compiled form - The program statements in ASCII form are converted to a symbolic representation more meaningful to the Time Share system. This new symbolic form is referred to as the compiled form.
computation - The processing of information within the computer.
compute bound - A Basic program in run mode which does not suspend due to input/output communications is considered to be compute
bound. All compute bound users share the available CPU on a one second time slice basis.
computer (digital) - An electronic instrument capable of accepting, storing, and arithmetically manipulating information, which includes both data and the controlling program. The information is handled in the form of coded binary digits ( 0 and 1 ) represented by dual voltage levels, magnetic states, punched holes, etc.
configuration - The arrangement of either hardware instruments or software routines when combined to operate as a system. Specifically, the hardware arrangement necessary for the HP 2000A Time Share system.
console - The system console provides an input/ output capability which is used to control the system. It allows the system operator to monitor and change the hardware configuration, print out library and user information, and punch the Log On-Log Off messages.
control flip-flop - The control flip-flop is used on the input/output interface to initiate action by the device, and in conjunction with the flag flip-flop to control the interrupt.
core - The smallest element of a core storage memory module. It is a ring of ferrite material which can be magnetized in clockwise or counterclockwise directions to represent the two binary digits, 0 and 1 . More generally, core refers to the installed memory of the computer system.

CPU - Central Processor Unit. The CPU is that part of the computer system containing the buses, registers, and circuits for implementing the machine language instructions. Main frame is a synonym.
device flag - A signal from an input/output device flag is used to set the flag flip-flops on the interface card.
disc - A device using a rotating circular plate on which digital data can be stored by selective magnetization of the surface matcrial. The reading and writing of data is performed by
precision heads. The device may use fixed heads with one head per track or use variable position heads in which a single head can be moved to service more than one track.

DMA - Direct Memory Access. A computer option which provides an efficient input to core or core to output transfer on a cycle stealing basis without requiring machine language code for each individual transfer.
double-length word - A word, due to its length, which requires two computer words to represent it. Double-length words are normally stored in two adjacent memory locations. Used particularly in multiplication and division of integers and in floating point.
driver - An input/output routine to provide automatic operation of a specific device with the computer. Particularly the multiplex driver, disc driver, and console driver.
dump - To record memory contents on an external medium, especially the mag tape dump during sleep.
executive - The Scheduler routine which controls the primary relationship between the individual program modules. It organizes and controls the transfers between the discs and core, services the queue, and generally maintains the primary control of the operating system.
exit sequence - A series of instructions to conclude operation in one area of a program and to move to another area. This would not include leaving the scheduler loop to service a multiplexor interrupt, but would include leaving the scheduler loop when the user is in core and is ready to execute.
fixed point - A numerical notation in which the fractional point (whether decimal, octal, or binary) appears at a constant, predetermined position. Especially used in single word representation for positive and negative integers, or in double precision representation for integers with larger values.

Flag bit - A signal indicating completion of an I/O operation. This flag bit is used in conjunction with I/O interface cards.
flag word - Computer words are used for flag purposes in which a particular bit corresponds to the user number. For example, MPCOM is a flag word corresponding to those users requiring multiplexor servicing.
flip-flop - an electronic circuit having two stable states, and thus capable of storing a binary digit. Used in the CPU registers, and on I/O interface boards.
floating point - A numerical notation using two computer words in which the variable is expressed in terms of a mantissa and an exponent. In normalized form the decimal point is to the left of the mantissa and the first digit in the mantissa is a 1 , with the exponent varied as necessary. In the Time Share system the range of variable values ranges from \(10-38\) up to \(10^{+38}\) with significant accuracies of 6 or 7 digits.
flowchart - A diagrammatic representation of the operation of a computer program.
foreground processing - The execution of programs which have been assigned the highest priorities for the use of the system. In the Time Share system, those activities which have been scheduled on the queue.
format - A predetermined arrangement of bits or characters.
hardware - Electronic or electro mechanical components, instruments, or systems. Specifically the computer, computer options, and peripherals used in the Time Share system. Refer also to software.

IDT - I.D. TABLE. A Disc Resident Table containing all ID codes, passwords, as well as time authorized and used and disc storage authorized and used.
initialize - The procedure of setting various parts of a stored program to starting values, so that the program will behave the same way each time it is repeated. The procedures are included as part of the program itself.
input - information transferred from a peripheral device into the Computer. Also can apply to the transfer process itself.
input/output - Relating to the equipment or method used for transmitting information into or out of the computer. Including terminals, system console, disc unit, etc.
integer - A whole number thus without a fractional part; (i.e., . . -2, \(-1,0,1,2 \ldots\).
interface - The connecting circuitry which links the central processor of a computer system to its peripheral devices. Specifically those boards which plug into the computer I/O area.
interpreter - A computer program that translates and executes each program statement before proceding to the next and does so without generating machine language code.
interrupt - The process, initiated by an external device, which causes the computer to interrupt a program in progress, generally for the purpose of transferring information between that device and the computer.
interrupt location - A memory location whose contents (always an instruction) are executed upon interrupt by a specific device. Commonly referred to as the trap cell.
label - one or more characters associated with or attached to an item of data for purposes of identification. Used symbolically by the Assembler for addressing.
language - The set of symbols, rules, and conventions used to convey information, either at the human level or at the computer level. Particularly the Basic language implemented on the Time Share system.
A 4
library - An organized collection of Basic programs. Some are provided by the system operator and are available to all users. Other programs belong to an individual user and are available only to the user who saved the program. Library also refers to the absolute machine language programs loaded at 37300 for command execution.
library routine - A program designed to accomplish some commonly used function and kept permanently available on the Time Share system. This includes system library programs, as well as user library programs.
linkage - A sequence of Code that serves to connect a pair of independently coded routines.
loader - A software program to facilitate loading programs into the computer. Specifically a loader program on paper tape to initially load a Time Share system or awaken from mag tape sleep. Also, a bootstrap loader on disc track \(\emptyset\), sector \(\emptyset\); and a post sleep loader on disc rack \(\emptyset\), sector 2 .
loader, basic binary disc - A 64 word program residing in the top 64 locations of core, and capable of being hardware protected. The Disc loader can load track 0 , sector 0 into core locations 0 to 100 B (S.A. 37760). The loader also loads paper tape from the input device (S.A. 37700). The records on the paper tape must conform to a certain absolute format.
loader, protected - A 64 word program residing in the top 64 locations of core, and capable of being hardware protected.
loop - a repeating sequence of instructions. Intentional as in the case of the scheduler loop, or unintentional because of hardware or software difficulties.
machine language -- The binary coded instructions and data used directly by the computer. Appearing either in core or in the assembler listing.
machine timing - The regular cycle of events in the operation of internal computer circuitry. Specifically a machine cycle of 1.6 microseconds broken into 8 equal time periods of 200 nanoseconds each.
magnitude - That portion of a computer data word which indicates the absolute value of a number, thus excluding the sign bit.
mag tape - A digital tape recorder utilizing a mylar based tape with an iron oxide coating. This tape is used by selectively magnetizing portions of the oxide coating to store digital data. The Time Share system uses a 9 track tape recorder to sleep the system and save the core resident system and the public and users library.
memory - That portion of the CPU consisting of ferrite cores and driver circuits into which information, data, and instructions can be stored and from which it can later be retrieved.
memory module - A complete segment of core storage consisting of 4,096 computer words. Bits 12, 13, and 14 of the M register determine the module addressed.
memory protect - A means of preventing inadvertent alteration of a selectable segment of memory. This option is not required for Time Share.
mnemonic - An abbreviation or arrangement of symbols used to assist human memory. Used particularly in machine language instructions.
module - A program unit that is separate and distinctly indentifiable.
multiple-precision - Referring to data in which the computer, for greater accuracy, uses two or more words to represent one number.
multiplexor - A system allowing simultaneous input: and output communications with the Time Share system. Specifically a hardware-software system providing input and output buffering, and conversion from characters into bit serial data for transmission to and from the Time Share terminals.
normalized form - A floating point value is considered in normalized form when the first digit of the mantissa is a " 1 ".
octal code - A six digit notation for representing a machine language instruction or data with the use of octal numbers instead of binary numbers.
off-line - Pertaining to the operation of peripheral equipment not under control of the computer.
on-line - Pertaining to the operation of peripheral equipment under computer control.
output - Information transferred from the computer to a peripheral device. Also can apply to the transfer process itself.

Overflow - A one-bit register in the Computer, which indicates that the result of an addition in the A or B Register has exceeded the maximum possible signed value ( +32767 or -32768 , decimal). The addition result will therefore be missing one or more significant bits.
overhead - The time required by the system for supervision and swapping. It includes the routine activities of the scheduler and multiplexor. Although it is essential to the system it does reduce the time available for actual program execution.
packed word - A computer word containing two or more independent units of information. This is done to conserve storage when information requires relatively few bits of the computer word. Pertains particularly to the packing of two characters within each computer word.
page - An artificial division of memory consisting of 2000 octal locations. The size is dictated by the direct addressing range of memory reference instructions. Each page is represented by a unique combination of M Register bits 10 through 14.
page zero - The memory page which includes the lowest numbered memory addresses, corresponding to M register bits 10 through 14 equals 0 .
parity bit - A supplementary bit added to an information word to make the total of the bits in the " 1 " state odd. This permits checking the accuracy of information transfers. This feature
is used in the computer memory, in the disc, and in the mag tape unit.
peripheral device - An instrument or machine electrically connected to the computer, but which is not part of the computer itself.
phase - One of the specific states of the CPU processor to help implement instructions (Phase 1 fetch, Phase 2 indirect, Phase 3 execute, Phase 4 interrupt, and Phase 5 a special DMA phase).
phones - The Time Share system can operate with the terminals connected to the computer through telephone data networks. Phones may refer to the equipment which provides this capability such as the data terminals and acoustic couplers, or to the software module which services the data terminal control signals.
port - The multiplexor connector and the internal associated hardware for a user; and further, the associated flag words and bits used in the system in servicing that user.
power failure control - A means of sensing primary power failure so that the special routine maybe executed in the finite period of time available before the regulated DC supplies discharge to unusable levels. Upon power resumption, this routine reinitializes the Time Share system and commences execution again.
precision - Numerical quantities represented in computer data format have a maximum number of digits of significant accuracy. The Time Share system uses double precision format. This results in at least 6 digits and sometimes 7 digits of significant accuracy depending on the actual value.
priority - The automatic regulation of events so that chosen actions will take precedence over others in cases of timing conflict. Priority pertains both to hardware relationships of \(1 / \mathrm{O}\) devices, and users sequence on the queue.
processor - The central unit of the computer system consisting of the bus structure arithmetic unit and memory. It also includes the DMA, EAU, power fail, and parity error options.
program - The plan of steps necessary to solve a problem. In this environment it refers to a sequence of statements prepared in Basic Language suitable for solution on the Time Share system.
pseudo-instruction - A symbolic statement, similar to assembly language instructions in general form, but meaningful only to the program containing it rather than to the computer as a machine instruction. Used in the assemblier for generating the Time Share software.
punched tape - A strip of paper tape consisting of feedholes and 8 data levels. Usually containing ASCII or binary information, and used with the photoreader or teleprinter.
queue - An ordered list of users (including the system console) who are awaiting service by the Time Share system. Users are serviced on a first in-first out basis within each priority. Servicing the queue is accomplished by the scheduler.
register - An array of hardware circuits, flip-flops, switches and so on, for temporary storage of data instructions and information. Specifically the A, B, P, M, T, I, E, O, and Switch registers.
rotate - A positional shift of all bits in an accumulator or in two linked accumulators. Those bits lost off one end of the accumulator are "rotated" around to enter vacant positions at the other end.
routine - A program or program segment designed to accomplish a single function.
run - The execution of a basic program is accomplished by the Basic Interpreter. This process is initiated by the command RUN. Thus, the time during which a program is being executed is referred to as 'run time', or 'running'.

Scheduler - The Scheduler is the primary program routine of the Time Share system. It is referred to as the Executive. It supervises the relationship between various software modules, especially servicing the queue, and initiating disc to core swaps.

Sector - The minimum storage space on the disc is referred to as a sector. It provides storage for 64 words of 16 data bits and a parity bit each. The sectors are grouped into tracks, and have individual addresses.

Sector Logical - An address used by the system in communications with the controller to specify the location of a program or data. Refer Sector Physical.

Scctor Physical - The physical location of a disc sector is the narrow arc on the magnetic surface of the disc. The circular track is divided into as many sectors of 64 words each as the instrument design allows. The number of sectors may be too small a size for convenient handling by the system. These physical tracks and sectors are grouped together by the system. A Physical sector thus refers to a particular sector on the disc as it is internally wired and addressed, as opposed to the apparent system address referred to between the computer and controller.

Select Code - A number assigned to input/output channels for purposes of identification in information transfers between the computer and external devices.
shift - A positional shift of bits within a computer word to help implement the multiply or divide instruction or to reposition bits in a flag word.
sign - The algebraic plus or minus indicator for a variable, or the bit position in a computer word corresponding to the sign.
significant digit - A digit so positioned in a numeral as to contribute a definable degree of precision to the numeral. Generally the most significant digit in a numeral is the left most digit, and the least significant digit is the right most digit.
skip - A condition causing the computer to omit the next sequential instruction. A skip is usually arranged to occur only if certain specified conditions are true, thus allowing various decisions to be made.
software - computer programs. Specifically the Time Share system program, or program segments.
starting address - The memory location corresponding to the first instruction of a given program routine.
statement - An instruction in any computer-related language other than machine language. Specifically a line in a basic program.
symbolic address - A label assigned in place of absolute numeric addresses to ease changes in the Time Share system. The symbolic address is converted to an absolute address by the Assembler. Refer to symbol table.
symbol table - Program reference points and data locations are used by the programmer to simplify writing the Time Share software. The list becomes a map to specific memory locations. The list of all such symbols are tabulated, including the initial location as well as all references to this symbol. This composite list comprises the symbol table. It is useful when using the Listing.
syntax - The structure of expressions and the rules governing the structure. These are formal rules describing the allowable statements in the Basic language.
syntax stack - A collection of data required by the Basic Interpreter and associated with an individual user. Incorporation in the user area allows the Interpreter to be re-enterable.
system - An assembly of units both hardware devices and software routines combined to work as an integrated unit. For example, the multiplexor system.
table - A collection of data used by the system. Some are core resident, some are disc resident. Examples include the Equipment table and Teletype table.

Time Base Generator - A computer option providing interrupts at specified time intervals. Counting these interrupts provides time of day information for the Time Share system, as well as a mechanism for allocating computer resources on a timed basis.
time out - Certain Time Share functions are timed. This includes a maximum time for achieving Log on, minimum time before acknowledging an abort, and expending a users time slice. Time out is achieved when the time allocated for the task is completely used up.

Time Share - A system performing several independent activities almost simultaneously by interleaving the tasks on the processor(s). The time available is divided into short non-overlapping segments. The speed of the processor makes it appear that all operations are done simultaneously.
time slice - Each user is allocated a maximum time period of one second when others are on the queue. If the task is not completed when the one second interval is expended, he is requeued at the bottom and given another one second period. These one second intervals are referred to as a users time slice.
track - A physical disc track is a narrow annular ring on the disc surface on which the digital data is magnetically stored. The track is divided into a minimum storage unit called a sector. Each track has a unique track address within the disc unit. In the Time Share system, the storage of a single track is too small so 4 physical tracks are organized into a single logical track. Within the Time Share system, this Logical track has a unique address.
user - A user is an actual or potential terminal with access to the Time Share system. From the system standpoint, it refers to the terminal, communications line, port on the multiplexor, bit in the multiplexor data and flag words, and the corresponding teletype tables and buffers. With respect to the Library, it refers to the programs associated with a specific ID code.
utility routine - A standard routine to assist in the operation of the computer. Usually coded in a convenient location for easy accessability. An example is rounding a number to integer form.
variable - A variable is a numerical value used by the computer. Its instantaneous value may change. It is designated by a label consisting of a single letter, or a letter and one or two subscripts.
waiting loop - A sequence of instructions which are repeated indefinitely until a desired external event occurs, such as the receipt of a Flag signal. These loops are usually transparent to the operator except in cases of operator difficulties or hardware failures.
write - The process of transferring data from the CPU to the memory, or outputting a data record to an external device like the disc or mag tape.```


[^0]:    ＊Optional，not required．

