Distributed Systems Network KA Fickaro

DSN/DS HP 3000 to HP 3000
Reference Manual

HP Distributed Systems Network

- | DSN/DS

HP 3000 to HP 3000

Reference Manual

*(formerly DS/3000)

(ﬁp HEWLETT

PACKARD

INFORMATION NETWORKS DIVISION
19420 Homestead Road, Cupertino, California 95014

Copies of this manual may be ordered through a local
Hewlett-Packard sales office. Refer to the pages at the
W-.,, back of the manual for addresses.

5
Part No. 32190-90001

Product No. 32190A
E0982 Printed in U.S.A. 9/82

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors

contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1982 by HEWLETT-PACKARD COMPANY

ii

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the date of the current edition and of any pages changed in updates to that edition.
Within the manual, any page changed since the last edition is indicated by printing the date the changes were made
on the botfom of the page. Changes are marked with a vertical bar in the margin, If an update is incorporated when an
edition is reprinted, these bars are removed but the dates remain.

Second Edition. September 1982

PRINTING HISTORY

New editions are complete revisions of the manual. Update packages, which are issued between editions, contain
additional and replacement pages to be merged into the manual by the customer. The date on the title page and back
cover of the manual changes only when a new edition is published. When an edition is reprinted, all the prior updates
to the edition are incorporated. No information is incorporated into a reprinting unless it appears as a prior update.
The edition does not change. ' ’ A

The software product part number printed alongside the date indicates the version and update level of the software
product at the time the manual edition or update was issued. Many product updates and fixes do not require manual
changes, and conversely, manual corrections may be done without accompanying product changes. Therefore, do
not expect a one to one correspondence between product updates and manual updates.

FirstEdition.co0vvenn Mar1977ciiievnnnnn 32190A.00.00
UpdateNo.1..............c....... May1977ccvn... 321380A.00.00
UpdateNo.2............... eveee..Mayl1978........... Ceeeeaa 32180A.02.01
Updates 1 and 2 IncorporatedFeb1979 ' 32190A.02.02
UpdateNo.3coiiiivnnnnnn Novl97932190A.02.06
UpdateNo.4ccieuru.n. Apr1980................. .32190A.02.06
Updates 3 and 4 Incorporated Augl980.................. 32190A.02.06
Update No.5........ cereeveeria..Mayl198l........ i 32190A.03.00

Second Edition Sepl1982cccvcn. 82190A.04.01

iv

PREFACE

The Hewlett-Packard Distributed Systems Network (HP-DSN) is a set
of hardware and software data communications products. One of
these data communications products is DSN/Distributed Systems
(DSN/DS) which is an integrated software package that provides
the capability of communication between HP computer systems.

This manual documents DSN/DS as it applies to an HP 3000 network.

- (This HP 3000-to-HP 3000 application of the DSN/DS software sub-

system was identified in the previous edition of this manual as
DS/3000.) The manual explains how an HP 3000 user can communi-
cate with another (or several other) HP 3000 computer systems by
establishing a DSN/DS communications link. (Other manuals in the
DSN/DS series document the other network combinations of computer
types.)

This dual-purpose manual serves as both a reference manual for
experienced users of HP DSN/DS and a tutorial text for new HP
DSN/DS users. A new user should be familiar with the basic oper-
ating principles of the HP 3000 Computer System using the MPE
Operating System and should also be knowledgeable in the subjects
of the following manuals:

e HP 3000 Computer Systems, MPE Commands Reference Manual
(30000-90009).

e HP 3000 Computer Systems, MPE Intrinsics Reference Manual
(30000-90010).

e HP 3000 Computer Systems, System Manager/System Supervisor
Reference Manual (30000-90014).

e HP 3000 Computer Systems, Console Operator's Guide
(32002-90004).

e HP 3000 Computer Systems, Communications Handbook
(30000-90105).

For those users who also become involved in the selection and/or
connection of the various network components, reference should be
made to the appropriate component manuals, including the
following:

e HP 30010A Intelligent Network Processor (INP)
Installation and Service Manual (30010-90001).

e HP 30020A Intelligent Network Processor (INP)
Installation and Service Manual (30020-90001).

e HP 30020B Intelligent Network Processor (INP)
Installation and Service Manual (30020-90005).

PREFACE (continued)

e HP 30010A/30020A/B Intelligent Network Processor (INP)
Diagnostic Procedures Manual (30010-90002).

e HP 30055A Synchronous Single-Line Controller (SSLC)
Installation and Service Manual (30055-90001).

e Hardwired Serial Interface (HSI)
Installation and Service Manual (30360-90001).

NOTE

Within the text of this manual, cross-
references are made to other manuals by
title. To obtain the part number of the
referenced manual, refer to these lists
of manuals in the Preface.

This second edition of the DSN/DS Reference Manual not only
incorporates all of the various updates that were issued since
the first edition was published, but it also includes some new
material. The Network File Transfer (NFT) documentation (that
was appended to Section III in Update No. 5) has now been
reformatted as Section VI. Another new section -- Section VII,
DS Applications -- has been added to expand upon the coverage of
the advanced uses and networking possibilities available with the
enhanced DSN/DS. The new Appendix H documents the X.25 Network
Configurator; and the new Appendix J is a commentary on using
Public Data Networks (PDNs) with the new DS/X.25 capability, as
well as the X.29 Packet Assembler/Disassembler (PAD) that expands
the system-to-system X.25 capability to include a terminal-to-
system capability. Appendix A, Configuration Dialogue, has also
been updated to include the new driver names required for the
utilization of DS/X.25. Additionally, all of the previously
existing sections and appendices have been edited and brought up
to date.

vi

CONTENTS

Section 1 - INTRODUCING DSN/DS0n. ceetsecetasrennanss 1-1

Section 2 - THE COMMUNICATIONS LINK

What is a Communications Link? Ceeereeasann ceerrean 2-1
Opening a Linecovvieereevnencenonnsns ceetseessesess 2-2
Opening a Hardwired Linecovetieevcnsccnnnnsns 2-2
Opening a Telephone Linececeveuee Ceeceereees 2-4
Specifying a Linecvocieviencerrsosessosesassnsnns 2-7
The DSLINE Command Cecesereanenan cheeseress 2-11
Dialing the Remote Computer ceesesssnrseesss 2-15

ID SeqUENCES ovvvrtrrvorrersonsnsonsonscssssnsons .. 2-16
Multiple Users tertecansenssesnsesasaseanss 2-1T7
The REMOTE HELLO Command Ceerecsseesas 2-kh
Opening Multiple Lines Ce bt sesasetatesacasensnan 2-51
Line Opening Failurescoeeceeecosos cerereeees 2-66
Closing a Linecccovvuenuns et eeeeerare e aeeaa 2-67
EXamplescocecvcocnocannas Ceeeeas Ceeeceseacnaaa. 2-68

Section 3 - REMOTE SESSIONS

Issuing Remote Commands Ceetsssesesesssseasss 3-2
Using The Remote Subsystem From a Batch Job 3-5
The BREAK Key ...cveevevveenennnnans Ceesseseseseense 3-5
Prefixing Each Command with REMOTE 3-6
Entering REMOTEcit0tenesnescsncncssssasnss 3-T

The Control Keyscvovvivennnnnnnas cesees ceeessss 3-8
Issuing Local Commandsccvueeeonocencnnsconss oo 3-8
Terminating a Remote Sessioncciiiviinnnennnnens 3-9
From the Local Session ...icieteereetecssocsrensessss 3-9
From the Remote Sessionoe00000 Cerasessannes 3-10

Section 4 - REMOTE FILE ACCESS

Command ACCESS . .vveerrvrroossrsssosanassssnsssnssosonss 4-2
Example #1 C e eectee sttt ee et eaasoenannne 4-5
Example #2c.vvcvenenns Ceeiaeees Ceeenen Cereeeeans 4-8
Example #3 ..cvivincnennnnnnanns P £
Example #Uviviiiiiniennanns Cereeeecaeaes R T !
Example #5 ..cvvevveeennns e e S % N 4
Programmatic Accesscv00 s ressanae cheseseeseses UB-20
Example Cereeriie e ettt eeei e 4-23

vii

CONTENTS (continued)

Section 5 - PROGRAM-TO-PROGRAM COMMUNICATIONS

PTOP Intrinsics ...vviveeverrorersorernoonessssoncanansnos
The ACCEPT Intrinsiccececeee Ceeetesnanne cesennae
The GET InNtrinsic ..ciieesieeiercocccaoresosnonasnns
The PCHECK Intrinsicccvvtevnnecnnnoscsonnnnns
The PCLOSE Intrinsiccceevveeves cererenenee oo
The PCONTROL Intrinsiccccc0ee teeteceevensananns
The POPEN Intrinsiccceveiiencioceroscenconcaces
The PREAD INtrinsicCceeeveceeecccesosvcssonnssens
The PWRITE Intringic ...veeeeersnorcecnosnsoccsonsane
The REJECT Intrinsicicvceeerecccecnnnnns ceeseane

Interfacing with COBOL and BASIC et sesnenes ‘e

PTOP ExXampleeoeesteerrsessnsssnsosossosssssssnnas
Master Program cesesesrensnes ceseeesesresrsens
Slave Programcoeeeeesesncesoscessssosans seesee

Section 6 - NETWORK FILE TRANSFER

Features of NFT S s essesessess et aserttcss s e
The DSCOPY Commandcoosoeseessnesscscsssasssssanssse
Syntax ...ieciiivincnnoann e tesereesesersarte a0
Parameterseeotveencccscenss Creeseesresessrerens
USE viiiviverrransconcasssssnsannnns Crecesessressnnns
Operationviveeersenrveccsesessrevsserssocnsons Ve
Source and Target Files0000esesevvecccnnns
Interactive Mode vcitvieeenerenorsensnncones
Event Recording ..ceeieeervervoresoceorsescssonnes
EXamPles ...veeeeererionatesanersocsastssososecasesses
Local COPY cvovvveereeennensonssnssessasssnans ceeen
Remote-to-Local COPY «iveeveerornoescososcsnssocsoas
Local-to-Remote COPY «iveveevvecsnnsnncsonnsnanes -
Remote COPY .cievvvrervsonnsnrsscnnans cesrsesen vee
Remote-to-Remote Copy ...ccivvevvennnn cesesececns
NFT Intrinsics ..viiviiiiiioiooeocscsossoseaossssnnnsnsse
The DSCOPY Intrinsic ceeaes Ceessetesanas cereesaenas
SPL Procedure Declarationcceoeeevsecncsases oo
COBOL Calling SeqUeNcCeceoesceeoecosssscsacsacsss
FORTRAN Calling Sequence Ceeseeannn ceesanas
BASIC Calling SequUencCeccooevssosssscscsscncas
Programmatic DSCOPY Operation cesesesan
The DSCOPYMSG Intrinsiccccoeveevvecssscccssnccnns
SPL Procedure Declaration Ceestretecesesesanae
COBOL Calling SeQUeNCeeooseseecscsscosssssscasss
FORTRAN Calling SequUencecc.eoeoeseeeoseeceassecs
BASIC Calling SeqUencecoreseossessoossssnncesss
EXamples ..cveeervssnnsnns et esseeseecear s esenesanns
DSCOPY COBOL Example Ceteertsesesrsenaaassas
DSCOPY FORTRAN Example teeesessreersesasannns
DSCOPY BASIC EXampPle ...vceevseeossccccsvosovsacnsones

viii

A AR A A
HOOoOOoOWVWWOVWOONNNNNN~N~NOOAUIUMIZTWWwWwR

O\O\O\CBO\O\O\O\C'J\O\O\O\GO\O\O\

oo

CONTENTS (continued)

Section T - DS APPLICATIONS

Transmissions Between Systemsececeeees cesrsesenas 7-3
Coordinating Master and Slave Programscccoeeenes T-4
Debuggingco00vvvvnn e teereetarne st s eareres s 7-5
Line Buffers/Continuation Buffers Ceeeeeasees T-6
COMPTeSSioN ..v.iviviieierensrarosessnsossasassancancnsss -7
Formats for Inserted Compression Characters 7-8
Performance Chitirereeaaes Ceteeceeaneaeans ... T-8
Computer System Dependent Ceesereeaeraans ces 7-8
Communication Linksco0eveeens Creecrtereeaaaas 7-8
Applicationsc00iiiiiinnn e hetesrserses s e T-9
Remote Listing Ceessecsaassnnes Ceees s e .. T-9
Multiple Remote ACCESSciveneecesnsccannaansoans 7-10
Interprocess Communicationsccceeceeeunns ceen e 7-13
Appendix A - CONFIGURATION DIALOGUE ittt icasanns ee. A-1
Appendix B - ERROR CODES AND MESSAGES
:DSLINE SyntaxX Errorsccceceeeeeeeccsoscsosccnansnse B-1
DSN/DS Functional Errors ettt ece et B-2
:DSCONTROL Informatory Messages Cheeeeceeeeaaaas B-4
:DSCONTROL Error MesSages e eerereneeeaees B-4
:DSCOPY General Error Messagesccceieveecenncnnns B-6
:DSCOPY Intrinsic Error Returns Cesetesesean .. B-T
:DSCOPY Intermal Errors Cevesssesesasesersasesstnas B-T
Appendix C - DSCONTROL CONSOLE COMMAND
Syntaxeiicitiiieienns et aceaesesene Cherseseseaaan c-2
Parameters et eereesaeeartaas et es e esensan s .. C-2
OPEration ..vvviveiereeneononsossronsersenssesons ceeena c-6
EXAMPLES. o oveveentontonsosesnsosssnssassssnssonsssonnss c-8
Appendix D - DSDUMP
DSDUMP Commands ..:ccovereerccssnnooscacan ettt enn D-1
Operationccieeeerieerecennscocosssosoosonss cheean D-3
Preparation C et eeieer et Cereiea D-4
Running the Program Interactivelyciceeeeeens D-4
Streaming the Program P D-4
OUBPUL «vvvveerneneneroosooroontnenonssssasocsncnsnas D-4
Operating Tipsivvveiiinenenenns et et et D-5

ix

CONTENTS (continued)

Appendix E - SYSTEM VERIFICATION

Software Version Reportcvevuv.
Version Report Exampleveevervccocess

Diagnostic Modeievvnivrcnnnncnnnnnns
Normal Modecovvvvvvnnncnncnsnnnsons

Appendix F - DSN/DS COBOL INTERFACE

CPCLOSE e e 00000000 S0 00000 s 0000 s 0000000
CGET e e 00000 0000000

s o0 0 00

L A I I A A A I I BRI A I Y

s e 00000000

0 e 00 s e

e e s 00000

oooooooo e s 00000000 . . LAY .
oooooooooooooo L A A A A Y . LECRC IR S)
oooooo se 00000 Ce 00 0000000000000

ee s es 000 @000 0000000000000 . .o .
e 00000000000 . . * e 0 0 LI I Y
e e s o0 LRI IR SR B N S Y LRI) e v e 000 .

. LR R A A) XY

CACCEPT L R I I I IR A R R A A I B I B BN) D I A L R IR I NN I R S I B B S SRR Y

CREJECTce0vu

00 00000000t Lee0OPLLEOEILOEOEOLEEOETDNTOTDE ¢ e 00

CPCI{ECK 40 00 000 s 0 0E L0 ILELIOLIEOELIEOIOIEOIE OGN

Example € 8 0.5 0 5 0. 0.5 0000000 IELIIEILIOEEOIEOIESIOIEOEE

.o

e v e v 0000 e

Master PTOP Programsceevvooeessassssscassnsnans

Slave PTOP Program ..

Appendix G - DSN/DS BASIC INTERFACE

Conventionscoe00.

Common Parametersceee.. creeresenns
Interface Intrinsics ..
BPOPENccv00eee

BPREAD ...icivirrernnnnrenenssonasesonnns oo
BPwRITE L I B I TN I IR TRE L I BN L B B B I O B A

BPCONTROL
BPCLOSE ® 6 0 00 0 00 0o

BGET sesvas
BACCEPT ..cvvvennvencnnnnen .
BREJECT «.iiievnnnnccnnnsossnncsannnas

s e 00000000 S 060 000 00000000 OL GO

oooooooooo

e o s 0000000

BPCIECK ooooo S 6 0 0 4 0 0000000 0000060000000 000000000es e

Examples ...ccvvvenncne

Master PTOP Program

Slave PTOP Program

"1':]':1':!’71’:1'71""1"1"1"1"1"1"1"!
oo EFErEFwwwNm R R

©00000000000000
wvuvvivineErEesesZwwnoo R R

gﬂR

CONTENTS (continued)

Appendix H - X.25/X.21 NETWORK CONFIGURATOR

Introduction et te it esaeananens teeareanee ceesesesss H-1
Environmentccc0ev0unn teeetreraeanse cheereaeaens H-2
The Data Basevovvvncevsnene ceestsetsesrarenn ... H-2
The NETCONF Utility Chesesaaesesaas ceseess. H-2
Using NETCONFcoicceeeecncncnnnnes N H-3
Data Base Organization ceescesanase cetereaenans H-3
The Commands Ceeeereeaeae Ceereccesreseas . H-4
The A[dd] Command ceenes RN e eeeeeeaeens H-5
Adding to the RN Table et reeeereeeeraaeas H-6
Adding to the LC Table Cheeseas et esasaenanns H-10
The Clheck] Commandeecevucresnsssncnennnnnos R-19
The D[elete] Commandccvvvevvenss e eceeresaenens H-20
Deleting from the RN Table Crvieseassnesvas H-21
Deleting from the LC Tableovooevevssnoeenases. H-24
The E[xit] Commandcc00v0us Cereee e ceeeees.. H-26
The H[elp] Command Cereeeneeaa Ceereeseaeens H-27
The L[ist] Commandcvcvvevenrnnnnn Cetereeeeeaa ... H-28
The P{rint] Command et Ceeeeeeeneas H-30
The U[pdate] Commandcoveevieenenncennccnns eee.. H-31
Updating the RN Table e raesenas et sseaaeane H-32
Updating the LC Tableovvevenenn Ceeirereaceenees H-34
Appendix J - USING X.25/X.29 CAPABILITIES
X.25 System-to-System Communicationco0v0ut J-1
When to Use a PAD .. .vvevvernscnesossacsssosossssosesonso J-2
Establishing a Remote Session via PAD on PDN J-3
PAD Parameters Ceeresesseseans cereeteessnasens J-3
Terminal Restrictions on the Public Data Network ceesees J-5
Which Terminals to Use cesrvenseseaane ceesenseese d-5
Configuring Your Terminalc.. Ceererececeeeaee . J-6
Characteristics of PADco0cvuneen Cherectaeesenenee J-7
Program Compatibility with PADccv000s creserene .. J-7
Appendix K - ASCII CHARACTER SET Ceieestesarassnaana K-1
IndexX ..vevevencnnncnns e eeerateasrescasenen s s enee Index-1

xi

ILLUSTRATIONS

Figure Page Aﬁ%
1-1. HP 3000 to HP 3000 EXamPle .vueecveerencenneenennensss 1-3
1-2. Initiating the Local Sessioneceveeveenveeneese 1-h
1-3. Initiating the Remote SesSioneeveveevevcncenees 1-5
2-1. DSN/DS Communications Link (HP 3000 to HP 3000) 2-1
2-2. DSN/DS Line Buffer EXampleceeeeeeees. cesesees 2-3
2-3. Sample I/O Device Table (Hardwired Line) ceeess 2-8
2-4. Sample I/O Device Table (Telephone Line) 2-9
2-5. Opening a Line with the DSLINE Command 2-11
2-6. Multiple User Example 1coveveeneneveocennnns. 2-18
2-7. Multiple User Example 2 - K|
2-8. Exclusive Option EXample 1ecvveveerecannnnan. 2-20
2-9. Exclusive Option Example 2ccevevsernncnnneess 2-21
2-10. Exclusive Option Example 3cvvvvrenvennennesneses 2-22
2-11. Exclusive Option Example Ucovvevvesnnn ceee. 2-23
2-12. Dial-up Line Multiple User Example 1co0u... .. 2-24
2-13. Dial-up Line Multiple User Example 2covvvuv.. 2-26 ,ﬁﬁ%
2-14, Dial-up Line Multiple User Example 3 2-28
2-15. Dial-up Line Multiple User Example 4 2-30
2-16. Dial-up Line Multiple User Example 5cvvvvvenees. 2-32
2-17. Dial-up Line Multiple User Example 6 2-34
2-18. Dial-up Line Multiple User Example Teovvesee.. 2-36
2-19. Dial-up Line Multiple User Example 8 2-38
2-20. Dial-up Line Multiple User Example 9 2-40
2-21. Dial-up Line Multiple User Example 10ceocuvevs.. 2-42
2-22, The REMOTE HELLO Command Syntax teetesiseeees. 2-U45
2-23. Multiple Line Example (Hardwired Lines) 2-52
2-24. Initiating the Local Session (Hardwired Example) 2-54
2-25. Establishing the Link With System B

(Hardwired Example) 2-56
2-26. Establishing the Link With System C
(Hardwired Example) 2-58
2-27. Multiple Line Example (Telephone Lines) 2-59
2-28. Initiating the Local Session (Dial-up Example) 2-61 ‘W%
. Establishing the Link With System B
(Dial-up Example) 2-63

n
0
n
O

2-30. Establishing the Link With System C
(Dial-up Example) 2-65
2-31. Closing a Line With the DSLINE Command ceeeeeees 2-6T7
4-1. MPE FILE Command (Pertinent Excerpts) U4-3
4-2. Remote Off-Line Listing Example ceeeees b-T
4-3. SORT Remote File Access Exampleooeevvevee... U-10
4-4. FCOPY Remote File Access Example Ceeeeeenes . 4-13
4-5. COBOLGO Remote File Access Exampleoocee.... U4-16
4-6. COBOL Remote File Access EXample ceeesees N4-19
4-7. MPE FOPEN Intrinsic Syntax et ieseeeaeans 4-21
4-8. Pertinent Parameter for MPE FOPEN Intrinsic 4-22
5-1. PCONTROL Activityc...c... Ceesseeressessecenes .. 5-17
5-2. POPEN Activity ..vvveevrnnnneeennnennns cesereseenanae 5-23
5-3. PREAD AcCitiviy ...ciiverirniniiereccocececonnnnnnnnss 5=26 '
5-4. PWRITE Activity ettt ereenreeeeieeieeaenee.. 5-28 “@3

xii

ILLUSTRATIONS (Continued)

Figure Page
7-1. Multiple Remote Accessing Example Y € X0
7-2. Two-node IPC Communicationcceceeeveveseneeees T1-13
7-3. Three-node IPC Communicationcceeeeeeeeenn ceeees T-1h4

TABLES

Table Page
-1, Master Program-to-Program Intrinsicsc0c0eevees
2

5 5-3
5-2. Slave Program-to-Program Intrinsics vee 5-Y4
5-3. Single System/Distributed Systems Comparison 5-5

xiii

CONVENTIONS USED IN THIS MANUAL

NOTATION

[]

{}

italics

underlining

superscript C

return

linefeed

DESCRIPTION

An element inside brackets is optional. Several elements stacked inside a pair of brackets means
the user may select any one or none of these elements.

Example: [g] user may select A or B or neither

When several elements are stacked within braces the user must select one of these elements.

A

Example: {B} user must select A or B or C.
C

Lowercase italics denote a parameter which must be replaced by a user-supplied variable.

Example: CALL rame
name one to 15 alphanumeric characters.

Dialogue: Where it is necessary to distinguish user input from computer output, the input is
underlined.

Examplee NEW NAME? ALPHA1l

Control characters are indicated by a superscript C
Example: Y¢

return in italics indicates a carriage return
linefeed in italics indicates a linefeed

A horizontal ellipsis indicates that a previous bracketed element may be repeated, or that elements
have been omitted.

xiv

INTRODUCING DSN/DS

The Hewlett-Packard Distributed Systems Network (HP-DSN) is a
combination of hardware and software products that make it pos-
sible for Hewlett-Packard computer systems to communicate with
one another, and with IBM mainframes as well. The connections
can be made over hardwired lines, and/or over the public tele-
phone facility, and/or across Public Data Networks (PDNs), in any
mixture. This capability, coupled with our proven remote entry
capability to IBM computer systems, provides a total solution to
large-company electronic data processing (EDP) needs.

Within the realm of HP-DSN is the software subsystem that
accomplishes computer-to-computer communication over these
connecting lines. This software subsystem is called
DSN/Distributed Systems (DSN/DS). Among other features, DSN/DS
includes such capabilities as:

¢ Remote File Access. A user is allowed access to files in
remote HP computer systems. -An important aspect of this
feature is the capability of using Interprocess
Communications (IPC) between systems.

) Remote Data Base Access. A user can directly access data
bases on any remote HP computer under the same security
protection used by local data bases.

¢ Program-to-Program Communication. Permits programs
residing in different HP computer systems to interactively
exchange information with one another in a coordinated
manner.

° Virtual Terminal. Gives the user remote interactive
capabilities, even though the user's terminal is physically
connected to the local HP system.

© Remote Command Execution. Allows the user to issue
commands to a remote HP system as if the local terminal were
connected directly to the remote system.

@ Network File Transfer. A facility that efficiently
transfers disc files between HP computer systems.

° X.25/X.21. Gives communication capability across X.25

packet switching and X.21 circuit switching networks to the
DSN/DS user.

1-1

Introducing DSN/DS

But exactly what does this overall capability mean? It means
that a large multidivisional corporation can have a truly coord-
inated world-wide network of computer systems. They are coordin-
ated in the sense of tying together the various commercial and
industrial functions within each division and factory, and they
are also coordinated in the larger sense of tying together the
various divisions and factories at the corporate level.

For example, imagine a large corporation which has factories in
the United States, Canada, France, and West Germany. Within each
factory there are HP 3000 computer systems performing such func-
tions as inventory control, factory data collection, and opera-
tions management. With a Hewlett-Packard Distributed Systems
Network these manufacturing information systems can be tied into
an HP 3000 system which handles the factory's administrative
functions (such as finance and accounting). The administrative
systems of each factory can, in turn, be connected not only to
one another but also (via remote job entry) to a large computer
facility at corporate headquarters. This overall networking cap-
ability makes it possible to perform financial analysis and
control at a group and corporate level as well as at the indiv-
idual factories.

This manual describes how an HP 3000 user can communicate with
several HP 3000 computers by establishing a DSN/DS communications
link. DSN/DS is that part of the HP Distributed Systems Network
in which several HP 3000 computer systems are connected to one
another. DSN/DS can also be used for intercomputer
communications with other families of computers (such as

HP 3000/HP 1000, HP 3000/HP 250, and HP 3000/HP 98xx desktop
computers), but these other combinations are deseribed in
separate reference manuals.

As a simplified example of a computer network, imagine that you
are in the same room with an HP 3000 (labeled "System A" in
figure 1-1) and that another HP 3000 (labeled “System B") resides
in another part of the building. These two computers are con-
nected to one another by an interconnecting cable and a pair of
communications interfaces. By virtue of DSN/DS you can use the
processing vapability of both of these HP 3000 machines and pass
data back and forth between them by entering commands through a
single terminal.

To see how DSN/DS works in this simple example, follow through
the step-by-step procedure.

Introducing DSN/DS

HP 3000 Communications HP 3000
SYSTEM A Interfaces SYSTEM B

Interconnecting
Cable

Figure 1-1. HP 3000 to HP 3000 Example

Step 1. Sit down at a terminal connected to System A and
initiate a session.

carriage return
:HELLO USER.ACCOUNT

HP3000 / MPE IV C.00.04., WED, MAR 3, 1982, 9:05 AM

WELCOME TO SYSTEM A.

.

Within the context of DSN/DS, such a session is referred to as a
"local" session because it is active within the HP 3000 to which
your terminal is directly connected. This terminology becomes
more meaningful later, since all you have actually done, so far,
is initiate a standard MPE session. At this point, you have
reached the situation illustrated in figure 1-2.

1-3

Introducing DSN/DS

HP 3000 HP 3000
SYSTEM A Communications SYSTEM B
Interfaces

N\

.
U

 N—)

Interconnecting
Cable

Figure 1-2. Initiating the Local Session

Step 2. Now, open a communications line between System A and
System B. Do this by entering a DSLINE command.

:DSLINE HDS2

DS LINE NUMBER = #L3

In this example, HDS2 is the device class name established during
system configuration (in System A) for the particular line you
wish to use. DSN/DS opens the line and then assigns you a line
number (3 in this example). This line number is analagous to the
file number returned to you by the MPE File System when you open
a file programmatically using the FOPEN intrinsic. Within your
local session, it uniquely identifies the particular line that
you have opened. This becomes significant only if you must open
more than one communications line during a session.

1-4

Introducing DSN/DS

Step 3. Now that you have acquired access to a communications
line between System A and System B, initiate a session in System
B (from your local log-on terminal). Do this by entering a
REMOTE command which includes an MPE HELLO command for the remote
system.

:REMOTE HELLO RUSER.RACCOUNT

HP3000 / MPE IV C.00.04. WED, MAR 3, 1982, 9:08 AM

WELCOME TO SYSTEM B.

Within the context of DSN/DS, this type of session is referred to
as a "remote" session because it is active within the remotely
located HP 3000 that is connected indirectly to your log-on term-
inal by way of a communications line and your local HP 3000. You
now have two distinct sessions in progress concurrently: one in
System A (under the user and account names USER.ACCOUNT) and the
other in System B (under the user and account names
RUSER.RACCOUNT). It is important to keep in mind that within
System A your local session is operating under the capabilities
and security restrictions defined (by the accounting structure of
System A) for USER.ACCOUNT, while within System B your remote
session is operating under the capabilities and security
restrictions defined (by the accounting structure of System B)
for RUSER.RACCOUNT. At this point, the situation is as
illustrated in figure 1-3. As will be seen in the next few
steps, you can alternate freely between the two sessions.

HP 3000 HP 3000
SYSTEM A Communications SYSTEM B
Interfaces

—————————— H~— _(Remore
‘ L SESSION

Interconnecting
Cable

Figure 1-3. Initiating the Remote Session

1-5

Introducing DSN/DS

Step 4. Now, see what files reside in the home group of the
ACCOUNT account in System A.

:LISTF
FILENAME

DATA1 DATA3 FILE1l SOURCE2 SOURCES

You can do the same for the home group of the RACCOUNT account
in System B by entering the following command through the same
terminal:

:REMOTE LISTF

FILENAME

DATA1l DATAS DATA6 FILE3 SOURCE1

.

Notice that in both cases the same command was entered, but in
the latter case the prefix REMOTE was used. The presence or
absence of that prefix is what determines whether a command is to
be executed in the local session or in the remote session.

Step 5. As a result of the LISTF and REMOTE LISTF displays,

you can see that a source file, named SOURCE1l, exists in System B
but not in System A. Suppose you wish to modify one of the
statements in that program. To do that, use the text editor in
System B. This time, instead of prefixing your remote commands
with REMOTE, try a different technique. Enter the following:

:REMOTE
#

This construct gets into the remote session in such a way that
all commands can be entered in their normal form (without the
prefix REMOTE). The # is the prompt character issued by DSN/DS
(in place of the usual MPE colon prompt). In all other respects
it will seem as though you are executing a normal MPE interactive
session.

1-6

Introducing DSN/DS

Step 6. Now invoke the text editor, copy the content of
SOURCE1 (which is a file in System B) into the editor's work
file, display the content of the work file, modify the desired
statement, and store the altered source code back in SOURCE1l.

#EDITOR

HP32201A.7.05 EDIT/3000 WED, MAR 5, 1980, 3:u47 PM

(C) HEWLETT-PACKARD CO. 1979

/SET FORMAT=COBOL

/T SOURCE1

JLIST ALL
1 $CONTROL USLINIT,SOURCE

IDENTIFICATION DIVISION.

PROGRAM-ID. COBOL-TEST1.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

77T EDIT-FIELD PIC $$$$$9.99.

7T TOTAL-COST PIC 999V99.

77T COST-OF-SALE PIC 99V99.

77 TAX PIC 99V99.

77 Y-N PIC X.

PROCEDURE DIVISION.

ENTER-ROUTINE.
MOVE ZEROS TO TOTAL-COST.
DISPLAY SPACE.
DISPLAY "ENTER COST OF SALE".
ACCEPT COST-OF-SALE.
COMPUTE TAX = COST-OF-SALE * .06.
ADD COST-OF-SALE, TAX TO TOTAL-COST.
MOVE TOTAL-COST TO EDIT-FIELD.
DISPLAY "TOTAL COST= " EDIT-FIELD.
DISPLAY "ARE YOU FINISHED? (Y OR N)".

.

.

W VoA &EFWND R Vo~V swn P

.

WWwwwprrdDdDDOIODDODDDYRPREPRRPRRPRRERE

ACCEPT Y-N.
. IF Y-N = “N" OR "n" GO TO ENTER-ROUTINE.
3.4 STOP RUN.
/MODIFY 2.5
MODIFY 2.5

DISPLAY "ENTER COST OF SALE".
I (NO DECIMAL POINT)
DISPLAY "ENTER COST OF SALE (NO DECIMAL POINT)".

/KEEP_SOURCE1

SOURCEL ALREADY EXISTS - RESPOND YES TO PURGE OLD AND KEEP NEW
PURGE OLD? YES

JEXIT

END OF SUBSYSTEM
#

1-7

Introducing DSN/DS

Step 7. The work in System B is now completed; so terminate
the remote session and return control to your local session.

J

#BYE

CPU=4. CONNECT=T7. WED, MAR 3, 1982, 9:15 AM
#:

Note that you are now back in the local session in System A
(signified by the colon prompt). The remote session no longer
exists, but the communications line is still open. You could, if
you wanted, initiate another remote session over the line by
issuing another REMOTE HELLO command. To close the

communications line, enter the following variation of the ‘m%
DSLINE command: ‘

+DSLINE HDS2 ;CLOSE
1 DS LINE WAS CLOSED.

Finally, terminate the local session.

: BYE

CPU=1. CONNECT=11. WED, MAR 3, 1982, 9:16 AM

1-8

THE COMMUNICATIONS LINK

WHAT IS A COMMUNICATIONS LINK?

Within the context of DSN/DS, a “communications link" consists
of the following elements:

e A normal interactive session in progress in an HP 3000
computer.

e A physical communications line between that HP 3000 computer
and another HP 3000 computer at a remote location.

e An interactive session in progress in the remote HP 3000
computer (initiated over the physical communications line from
your local session).

Note that your local terminal is the log-on terminal for both the
local session and the remote session. (Refer to figure 2-1.)

HP 3000 HP 3000

Communications Line
—r - ~~./ REMOTE
SESSION

User's Log-On Terminal

Figure 2-1. DSN/DS Communications Link (HP 3000 to HP 3000)

2-1

The Communications Link

OPENING A LINE

A communications link can be established over a hardwired commu-
nications line, over the public telephone network, or over an
X.21 or X.25 Public Data Network (PDN). The procedures for open-
ing hardwired lines and for opening telephone lines differ only
slightly. Therefore, the basic differences will be presented
first, followed by the procedures that are essentially the same.
Generally, once the connection to the remote computer is estab-
lished, you will perceive no difference in the way DSN/DS per-
forms. ‘

Opening a Hardwired Line

What is a hardwired line? In the general field of data communi-
cations there are two types of lines commonly referred to as
"hardwired"”. The first type is a dedicated path on the public
telephone network that is leased from the telephone company for
the private use of a computer-to-computer configuration. Such a
line serves as a permanent connection between the two computers.
The other type of hardwired line is a cable that is connected
directly to the communications I/O interfaces of the two
computers. Within the context of DSN/DS, "hardwired" always
refers to the latter. However, the technique used for opening a
line is the same for either a direct-connect line or a leased
(nonswitched) telephone line.

The hardwired interconnecting cable connects to each HP 3000 by
way of a communications interface. The communications interfaces
that can be used for a hardwired connection include the HP
30010A, HP 30020A, and HP 30020B Intelligent Network Processor
(INP), the HP 30055A Synchronous Single-Line Controller (SSLC),
and the HP 30360A Hardwired Serial Interface (HSI). (Although
the INPs and the SSLC are the interfaces most commonly used for
telephone line connections with modems, they can also be used in
hardwired applications without modems.) The HP 30010A INP is
used with the HP 3000 Series II/III:; the HP 30020A INP is used
with the HP 3000 Series 30/33/40/4Y4; the HP 30020B INP is used
with the HP 3000 Series 30/33/40/4k4/64; the HP 30055A SSLC is
used with the HP 3000 Series II/III; and the HP 30360A HSI is
used with the HP 3000 Series II/III.

It is relatively straightforward to obtain access to a hardwired
communications line. All you are required to do is identify the
particular communications interface you wish to use. You do this
by specifying the device class name or logical device number
associated during system configuration with the desired inter-
face. In the example in Section I, the DSLINE command was used
for this purpose, as follows:

:DSLINE HDS2

2-2

Opening a Line

In the DSLINE command you may also wish to specify the size of
the DSN/DS line buffer to be used in conjunction with the line.
The size of this buffer determines the maximum amount of data
that can be sent or received in a single physical transmission
over the line. Note that a transmission as you normally think of
it (sending or receiving all or part of a file) may actually con-
sist of many physical transmissions. In essence, this buffer
size defines a blocking factor for the line. (Refer to figure
2-2.) A default buffer size is established during system config-
uration, and in most cases (as in the example in Section I), you
will find it satisfactory to let this default value prevail.

Assume that the DSN/DS line buffer size is 512 words and that the user has initiated

the transmission of a block of data 1200 words in length from his HP 3000 to a remote

HP 3000. The block of data would actually be sent in three separate physical transmissions,
as follows. (DSN/DS appends an average of 20 words of overhead on each transmission.)

1200 words of data to be transmitted

! First physical transmission: 512 words

(492 words of data
+ 20 words of DS

1 overhead)

| Second physical transmission: 512 words

| (492 words of data
+ 20 words of DS
overhead)

[Third physical transmission: 236 words

(216 words of data
+ 20 words of DS
overhead)

1200 words of data received at remote
computer.

rmmmmmm—

Figure 2-2. DSN/DS Line Buffer Example

When you execute a DSLINE command, DSN/DS attempts to give you
access to the specified communications line and, if successful,
informs you of the assigned DS line number by displaying the
following message at your terminal:

DS LINE NUMBER = #Lx

where x is the assigned DS line number. In the example in
Section I, the DS line number “3" was assigned. The DS line

2-3

Opening a Line

number is significant only if you open and use more than one
communications line concurrently within a single local session
(see "Opening Multiple Lines" later in this section).

At this point you have acquired a physical communications line
but the communications link does not yet exist. The actual
communications link between the two computers is established by
initiating a remote session over the line. You do this by
executing a REMOTE HELLO command. In the example in Section I,
the REMOTE HELLO command contained the minimum parameters
required (a username and an accountname), as follows:

¢REMOTE HELLO RUSER.RACCOUNT

The communications link between the two HP 3000 computers now
exists.

Opening a Telephone Line

A DSN/DS communications link can also be established over the
public (dial-up) telephone network. In such a case, the informa-
tion passed back and forth between the two computers travels over
the same lines that are used for normal voice traffic. Each
computer is interfaced to the telephone lines by way of a modem.
(The term "modem” is a contraction of MOdulator-DEModulator.) A
modem is a device that translates digital signals (electrical
impulses) generated by a computer into analog signals (tones)
that can be transmitted over telephone lines, and vice versa.

The modem is connected to the HP 3000 Computer System by way of a
communications interface. The communications interfaces used
with modems include the HP 30010A, HP 30020A, and HP 30020B
Intelligent Network Processor (INP), and the HP 30055A
Synchronous Single-Line Controller (SSLC). (The HP 30010A INP is
used with the HP 3000 Series II/III; the HP 30020A INP is used
with the HP 3000 Series 30/33/40/4l; the HP 30020B INP is used
with the HP 3000 Series 30/33/40/L4/6L4; and the HP 30055A SSLC is
used with the HP 3000 Series II/III.) Each INP or SSLC controls
one modem (such as an HP 37210T, 37220T, or 37230A modem, or a
Bell System Type 201, 208, or 209 modem) and is capable of both
initiating and accepting a telephone connection with a remote
computer over the public telephone network or a leased telephone
line.

2-4

Opening a Line

It is a little more complex to obtain access to a telephone line
than to a hardwired line. First, you must identify the particu-
lar communications interface (INP or SSLC) you wish to use. You
do this by specifying the device class name or logical device
number of the communication line that was associated during
system configuration with the desired interface. You can use the
DSLINE command for this purpose, as follows:

:DSLINE SDS1

In the DSLINE command, you may also wish to specify the size of
the DSN/DS line buffer to be used in conjunction with the line.
The size of this buffer determines the maximum sized block that
can be sent or received in a single physical transmission over
the line. Note that a transmission as you normally think of it
(sending or receiving all or part of a file) may actually consist
of many physical transmissions. In essence, this buffer size
defines a blocking factor for the line. (Refer to figure 2-2.)

A default buffer size is established during system configuration,
and in most cases (as in the example in Section I), you will find
it satisfactory to let this default value prevail.

Next, you may wish to supply a set of identification (ID)
sequences to be used in verifying that the desired pair of
computers are connected to one another. This is discussed under
"ID Sequences'" later in this section. Briefly, however, you may
supply an ID sequence that identifies your HP 3000 and one or
more ID sequences that identify those remote computers with which
your HP 3000 may validly be connected. When a telephone
connection is established between your HP 3000 and a remote HP
3000, the two computers exchange ID sequences and their validity
determines whether or not the connection is to remain in effect.
You use the DSLINE command to supply ID sequences, as follows:

:DSLINE SDS1 ;LOCID="SYSTEM A" &
;REMID="SYSTEM X"

where SYSTEM A is the ID sequence identifying your HP 3000 and
SYSTEM X is the ID sequence identifying the remote computer with
which you want to establish a telephone connection.

Again, there are default values that can be established during
system configuration. In most cases, however, you will at least
want to explicitly identify the desired remote HP 3000 to be
certain that the proper connection is being established.

Now you must establish the physical connection between the two
computers by dialing (at the modem) the telephone number of the
remote computer and responding (at the system console) to the
dial request. If you wish to have the console operator of your
HP 3000 dial the number for you, you may supply the desired

2-5

Opening a Line

number in the DSLINE command and it will be displayed as part of
a dial request message at the operator's console. In such a
case, you would supply the telephone number as follows:

:DSLINE SDS1 ;LOCID="SYSTEM A" &
sREMID="SYSTEM X" &
; PHNUM=555-1234

If autodial equipment is installed on the SDS1 line, the
telephone number supplied in the DSLINE command is used instead
of the number configured for the line.

The various possibilities involved in establishing a telephone
connection with a remote computer are discussed under "Dialing
the Remote Computer" later in this section.

When you execute the DSLINE command, DSN/DS attempts to give you
access to the specified communications interface (INP or SSLC)
and, if the telephone connection is successfully established,
informs you of the assigned DS line number by displaying the
following message at your terminal:

DS LINE NUMBER = #Lx

where x is the assigned DS line number. In the example in
Section I, the DS line number "3" was assigned. The DS line
number is significant only if you open and use more than one
communications line concurrently within a single local session
(see "Opening Multiple Lines" later in this section).

At this point, you have acquired a physical communications line,
but the communications link does not yet exist. The actual
communications link between the two computers is established by
initiating a remote session over the line. You do this by

executing a REMOTE HELLO command. In the example in Section I, a

REMOTE HELLO command was used that contained the minimum
parameters required (a username and an accountname), as follows:

:REMOTE HELLO RUSER.RACCOUNT

The communications link between the two HP 3000 computers now
exists.

2-6

O

Opening a Line

Specifying a Line

As you have seen, in order to open either a hardwired communica-
tions line or a dial-up telephone line, you must specify a device
clagss name or logical device number identifying the particular
communication line that is associated with a specific INP, HSI,
or SSLC that you wish to use. But how do you figure out which
name or number to specify? The remainder of this topic may seem,
particularly at first reading, a little complex and tedious. 1In
actual practice, however, once the hardware and software configu-
ration is installed and usable, most DSN/DS sites will post a
notice defining all of the available communications lines and the
proper device class names and logical device numbers for each.

In that case, all of the detective work described in the follow-
ing paragraphs is already done for you.

For each communications interface, there is a pair of associated
drivers. First, there is the actual INP, HSI, or SSLC driver
that directly controls the operation of the interface board. In
addition, there is a DSN/DS communications driver that controls
the operation of the INP, HSI, or SSLC driver. The names of
these drivers are as follows:

IOINPO (INP 4driver)

CSHBSCO (HSI driver)

CSSBSCO (SSLC driver)

I0DSO (DSN/DS communications driver)

IODSX (DSN/DS communications driver, while utilizing

the X.25 capability)

Now look at the appropriate sample I/0 device table produced
during system configuration (figure 2-3 for a hardwired line or
figure 2-4 for a telephone line).

2-7

Opening a Line

In figure 2-3, the shaded items in the column labeled "DRIVER
NAME" shows four HSI lines (CSHBSCO) configured into the system
as logical devices 12 through 15. For each one of these lines,
there is a DSN/DS communications driver (in this case, IODSO0)
also configured into the system. Each IODSO (or IODSX) entry is
related to the proper HSI (or INP) entry by the number specified
in the column labeled "DRT" (the # prefix indicates a back refer-
ence to a previously defined logical device number). Logical
devices 50 through 53 are paired with logical devices 12 through
15, respectively. It is the device class name or logical device
number of the appropriate IODSO entry (or logical node name for
the IODSX entry) that you use to specify the desired line.
(Refer to Appendix A).

LOG DRT U C T SUR TERY REC OUTPUT MODE DRIVER DEVICE
DEV g 2 ; TYPE TYPE SPEED WIDTH DEV NRME CLASSES
]
T NE
1 4 o0 00 6 129 0 I0MDISCY SPOOL
SYSDISK
0o 00 3 128 0 10¥DTSCO DISC
0o 08 0 40 Lp JA S IOCDRDO CARD
0 0322 66 () S TOLPRTO LP
0 0240 128 L? IOTAPFO TAPE
1 0240 128 LP IOTAPEO TAPE
2 0240 128 LP IOTAPEO TAPE
3 020 128 LP JA S IOTAPE0 BATAPE
0 0340 129 0 PTPUNCH
0 0193 0 0 HSIY
; 0 0153 0 0 HSI2
14 0 0193 0 0 y g 4sSI)
1% o 0193 0 n LAUBNCY HSI4
20 7 0 0160 10 ?2? 40 20 J8TD IOTERMO CONSOLE
21 7 1 01160 1 ?2? a0 21 JAID IOTER40 TERM
22 1 2 615 ¢ 11 ?? a0 22 JATD INTERMO TERM
23 7 3. 0160 11?2 4n 23 JAID IOTERMO TEPRM
24 7 4 0160 11 2? 40 24 JAID IOTERMO TERM
2% 7 5 o016 0 11 7? 40 25 JAID TUTERMO TERM
4 E 0 0 41 0 128 0 iobis HDS8Y
o 0410 126) HDS2
0 0310 128 0 HDs3
0 041 0 128 0 HDS4
0 0160 1?7 40 60 J 10 DSTERM
0 016 0 17 7 40 61 J In DSTERM
9 M1k 0 7?7 an 62 J Ip DSTERM
6 0160 7 7 EY) 63 J 10 NPSTERM
0 0160 ” "7 a0 64 J 1D DSTERM
6 9160 7?7 a0 65 J 1D § OSTERM

LDN PM PRT LCL TC PCY 1.CL CON MODE TRANSMIT TM BUFFER D DRIVER
MOD THOUT TMOUT TMOUT SPEER STZE C OPTIONS

12 8 t 1t 20 60 So00 C 250000 1 1024 N O

13 4 g 1 1 20 60 900 C 250000 1 1024 N 0

14 2 1t 1 2 €0 900 C 250000 1 1024 N O

15 1 1 1 1 20 6n 990 C 250090 1 1024 N 0O

Figure 2-3. Sample 1/0 Device Table (Hardwired Line)

2-8

Opening a Line

In figure 2-4, the shaded items in the column labeled "DRIVER
NAME" shows one SSLC (CSSBSCO) configured into the system as
logical device 13. Notice that there is a DSN/DS communications
driver (in this case, IODSO) also configured into the system.

The IODSO (or IODSX) entry is related to the proper SSLC (or INP)
entry by the number specified in the column labeled "DRT" (the #
prefix indicates a back reference to a previously defined logical
device number). Logical device 61 is paired with logical device
13. It is the device class name or logical device number of the
appropriate IODSO entry (or logical node name for the IODSX
entry) that you use to specify the desired line.

2-9

LOG DRT U C T SR TER4 REC UUTPUT WUDE DRIVER DEVICE
DEV @ Mool Y TYPE TYFE SPRED WIDTH DEV NAME CLASSES
1 avp
"
1 4 0 10 . 128 0 #10MDISC1 DISC
SPOOL
A 10 0 0320 60 0 IDLPRTO LP
7 6 9 U 24 0 128 n IOTAPEQO TAPE
Y [} 1 0 24 4y 128 1] 10TAPEO TAPE
9 q ? 0 24 0 128 0 IOTAPEO TAPE
10 6 3 0240 128 Lp JA IOTAPEG JTAPE
11 16 0 6 19 3 0 [\] CSHBSCO HSIt
12 17 0 0 19 3 0 0 HBSCQ HSI2
—13 18 0 0 18 0 0 0 SS1LC
20 7 DO 1 0 n ?? in 20 JATD CONSOLE
21 7 1 0 160 11?2 36 21 JAID IOTERPMO T2644
27 7 2 n 16 O 1 ?? 3o 22 JAID 10TERMO T2644
23 07 3 01k 22 3k 23 JATD IOTFRMO TERM
24 7 4 0 1k 0 n ?2? b 24 JAID I0OTERMO TERM
25 7 S5 016 G 0o 22 36 25 JAID TOTERMO TERM
25 7 b 0160 o 22 16 26 JAID IOTERMo TERH
27 7 7 016 g 0o 2?7 3 27 JAID TOTERMQ TERM
22 1 8 a6 noo22 3 28 JATD IOTERMO TERM
29 7 9 0 16 0 0 ?? 360 29 JATID JIOTERM0 TERM
3007 100 1o o0 o 272 36 30 JATO LOTERMO TERM
ERl 7 11 v 16 D 0 2? 30 31 JATD INTERMO TERM
32 7 12 0 16 0 o 77 36 32 JAID IOTERMO TERM
3307 130160 " 22 3b 33 JAID IOTERMO TERM
33 7 140160 0o 22 3 34 JAID IOTERMO TERM
3% 7 15 0 16 © 0o 2?3 15 JAID 10TERMO TERM
8% 811 N o0 41 0 128 0 10DSO HDS1
56 K12 0 0 41 0 126 0 100S0 HDS?2
57 #11 0 U 16 0 22 722 3b 57 J 10 LODSTHMO DSTERM
58 811] 0 1 0O 2?2 ?? 36 5@ J ID IODSTRMO DSTERM
0 016 0 ?”? 2? 36 59 J OID
no0 410 ?? 128 0
n 0O 16 0 ?? ?? 36 b4 J Ip
1 01k 0 22 22 3 65 J
Figure 2-4. Sample I/0 Device Table (Telephone Line)

Opening a Line

If you have only one communications interface (INP, HSI, or SSLC)
configured into your system, there is no question about which
name or number to specify in a DSLINE command. If there is more
than one communications interface, however, you must know (or ask
someone who knows) which CSHBSCO, CSSBSCO, or IOINPO pertains to
the physical line you want to use.

One or more virtual terminal drivers (IODSTRMO or IODSTRMX)
should also be configured into the system. The IODSTRMO or
IODSTRMX entries allow users on another system to be logged on to
this system and regulate the number of remote Session Main
Processes (SMP) that can be assigned to a given line. Each
IODSTRMO or IODSTRMX entry is related to the proper communica-
tions interface entry by the number specified in the column
labeled "DRT". Figure 2-3 (the hardwired example) shows logical
devices 60 through 65 are paired with logical devices 12 through
15; figure 2-4 (the telephone line example) shows logical devices
64 and 65 are paired with logical device 13.

In figure 2-3, notice that the HSI board entries (logical devices
12 through 15) look the same except for the PORTMASK. The
PORTMASK specifies which port on the board is to be used. There
are also virtual terminals (logical devices 60 through 65)
referencing back to logical device 12.

Since only one port on the HSI board can be opened at a time,
only one block of virtual terminal entries is needed for that
board. As each port is opened individually by specifying the
corresponding DS entry in the :DSCONTROL command (see Appendix
C), the system automatically reallocates the block of virtual
terminal entries to the proper HSI board entry. This realloca-
tion will not, however, show up in the I/O configuration table.

2-10

:DSLINE
The DSLINE Command

The format of the DSLINE command, as used to open a line, is
presented in figure 2-5. In addition to opening a hardwired line
or a telephone line, this command can also be used for closing
one or more communications lines (discussed later in this
section).

:DSLINE- dsdevice [;LINEBUF=buffer-size)
[;LOCID=local-id-sequencel
[;REMID=remote-id-sequence [remote-id-sequence,] .. .]
[PHNUM=telephone-number)
[;EXCLUSIVE]
[;,comP]
[;NOCOMP]
(QUIET]

Figure 2-5. Opening a Line with the DSLINE Command

2-11

:DSLINE

The parameters that pertain to opening either a hardwired
communications line or a telephone line are as follows:

dsdevice

buffer-size

EXCLUSIVE

This is the device class name or logical
device number assigned to the DSN/DS communi-
cations driver (IODSO) during system configu-
ration, or a logical node name. This parame-
ter specifies what physical hardwired line or
what communications interface (and modem) you
wish to use.

(Required parameter.)

NOTE

DS/X.25 users should always use a node
name rather than a line identifier.

A decimal integer specifying the size (in
words) of the DSN/DS line buffer to be used
in conjunction with the communications line.
The integer must be within the range 304 <
buffer-size < 1024 when used with the INP or
within the range 304 < buffer-size < 4095
when used with the SSLC or HSI. The default
value is the buffer size entered in response
to the PREFERRED BUFFER SIZE prompt during
system configuration. This parameter over-
rides the MPE configured value when specified
by the first user to open the given line.

(Optional parameter.)

This parameter, if present, specifies that
you want exclusive use of the communications
line. If the requested line or specified
communications interface is already open and
you have specified the EXCLUSIVE option,
DSN/DS will deny you access to the line (you
cannot open it). (See "Line Opening
Failures" later in this section.) Opening an
EXCLUSIVE line requires the user to have CS
and ND capability.

(Optional parameter.)

2-12

COoMP

NoCcoMP

QUIET

:DSLINE

By using this parameter, you can override the
current system default, which was set at con-
figuration time (see Appendix A) or set by
the system operator (see Appendix C), and
activate data compression. In this way, the
mode of operation is set for your subsequent
DS activity. This parameter does not affect
other users sharing the line.

(Optional parameter.)

This parameter deactivates the data compres-
sion mode.

(Optional parameter.)

When you issue the DSLINE command with this
parameter added, the message identifying the
DS line number is suppressed. The messages
associated with the subsequent REMOTE HELLO
and REMOTE BYE commands will also be sup-
pressed.

(Optional parameter.)

The additional parameters (shown in figure 2-5) that pertain only
to opening a telephone line are as follows:

telephone-number

A telephone number consisting of digits and
dashes. The maximum length permitted
(including both digits and dashes) is 20
characters. Provided that YES was entered in
response to the DIAL FACILITY prompt during
system configuration, this telephone number
will be displayed at the operator's console
of your HP 3000 and the operator will then
establish the telephone connection by dialing
that number at the modem. (When the autodial
feature is present in your system, the number
provided here is dialed automatically.) The
default telephone number is the one entered
in response to the PHONE NUMBER prompt during
system configuration.

(Optional parameter.)

2-13

:DSLINE

local-id-sequence

remote-id-sequence

A string of ASCII characters contained within
quotation marks or a string of octal numbers
separated by commas and contained within
parentheses. If you wish to use a quotation
mark within an ASCII string, use two
successive quotation marks. In the case of
an octal sequence, each octal number
represents one byte and must be within the
range 0-377. The maximum number of ASCII
characters or octal numbers allowed in the
string is 16.

The supplied string of ASCII characters or
octal numbers defines the ID sequence that
will be sent from your HP 3000 to the remote
HP 3000 when you attempt to establish the
telephone connection. If the remote HP 3000
does not recognize the supplied ID sequence
as a valid one, the telephone connection is
terminated. The default value is the ASCII
or octal string entered in response to the
LOCAL ID SEQUENCE prompt during system
configuration.

(Optional parameter.)

Same format as local-id-sequence.

The supplied strings of ASCII characters or
octal numbers define those remote HP 3000 ID
sequences that will be considered valid when
you attempt to establish the telephone
connection. If the remote HP 3000 does not
send a valid ID sequence, the telephone
connection is terminated. The default set of
remote ID sequences consists of the ASCII and
octal strings entered in response to the
REMOTE ID SEQUENCE prompt during system
configuration.

(Optional parameter.)

NOTE

The logical node name (mentioned in the dsdevice
parameter description) appears in the configuration
file for a Public Data Network (PDN). (See Appendix
H.) A Remote Node (RN) table relates the logical

node name (specified in this command) to the logical
device number of the appropriate IODSX driver (the

X.25 driver), and to the PDN address of the destination

node.

2-14

Opening a Line

Dialing the Remote Computer

When you are opening a telephone line, you may supply a telephone
number (as an optional parameter in the DSLINE command, see
figure 2-5) to be dialed at the modem connected to the specified
INP or SSLC. If you supply a telephone number, DSN/DS displays a
message on the system console telling the operator to dial that
number. The operator, after dialing the specified number, enters
YES or NO through the system console =REPLY command to let DSN/DS
know whether or not the telephone connection was successfully
made. If the operator enters YES, DSN/DS proceeds with the
exchanging of ID sequences. If the operator enters NO, your
DSLINE request is denied (you cannot open the line). In either
case, your terminal's keyboard is disabled until the console
operator responds.

If you do not supply a telephone number, the sequence of events
is as described in the above paragraph, except that DSN/DS uses
(by default) the first telephone number in the PHONELIST
established during system configuration.

If you do not supply a telephone number and no PHONELIST was
established during system configuration, an I/0 request message
is displayed at the system console, but it does not include the
number to be dialed. This method might be used when you will
dial the remote HP 3000 yourself. Remember, however, that the
console operator must still know whether you dialed successfully,
since he must respond to the console message before you are
granted access to the line. Because your terminal's keyboard is
disabled until the console operator responds with YES or NO, it
is recommended that you always supply a telephone number in the
DSLINE command.

2-15

Opening a Line

ID Sequences

Once a telephone connection to a remote HP 3000 exists, the two
computers exchange ID sequences with one another. Within the
context of DSN/DS, an ID sequence is a string of up to 16 ASCII
characters or octal numbers that identifies a particular
computer.

During system configuration, each HP 3000 can be assigned a local
ID sequence and a list of remote ID sequences. The local ID
sequence identifies the particular HP 3000 in which it is
established; the remote ID sequences identify those remote
computers with which a communications link can be established
over the public telephone network.

In the DSLINE command, you can supply (as optional parameters) a

local ID sequence and one or more remote ID sequences to be used

instead of those established during system configuration. (Refer
to figure 2-5.)

When a telephone connection is established between your HP 3000
and a remote HP 3000, the local ID sequence supplied in your
DSLINE command is transmitted to the remote system. The remote
system compares that ID against its list of remote ID sequences.
If that ID sequence is found to be valid, the remote system
transmits its local ID sequence over the telephone line to your
HP 3000. The received ID sequence is then compared against the
remote ID sequence(s) supplied in your DSLINE command. If that
ID sequence is found to be valid, the telephone connection is
considered successful and DSN/DS grants you access to the line.
If the ID sequence received at either end of the line is not
considered valid, your DSLINE request is denied (you cannot open
the line).

If you do not supply any ID sequences, DSN/DS uses those
established during system configuration. If no ID sequences were
established during system configuration and you do not supply
any, no local ID sequence is transmitted from your HP 3000 to the
remote system and any remote ID sequence received is considered
valid.

2-16

Opening a Line

Multiple Users

Within a DSN/DS environment, it is possible for several users at
either end of the line to share access to the same physical
communications line or for a single user at one end of the line
to obtain exclusive access to the line.

As previously mentioned in the presentation of the DSLINE com-
mand, the EXCLUSIVE parameter can be used to obtain exclusive
access to the specified physical communications line. If you
specify this parameter (and if access to the line is granted), no
other user in either computer will be permitted to open that line
until you close it. If you ask for exclusive access to a partic-
ular line and that line is already in use, DSN/DS denies your
request (you cannot open the line). (See "Line Opening Failures"
later in this section.)

For hardwired lines and for dial-up lines, multiple users at
either end of the line can specify the same physical line in
DSLINE commands and obtain access to that line as long as none of
them requests exclusive access. In such a case, the users' data
is multiplexed, so that each user's access to the line appears to
be completely independent of all others. The exception for a
telephone line is that all users, other than the one who
originally opened the line, specify (explicitly or by default)
the currently active remote ID sequence. Figures 2-6 through
2-21 present annotated examples, illustrating successful and
unsuccessful attempts by different users to obtain access to the
same line.

2-17

Opening a Line

SYSTEM A SYSTEM B

(e - oo e
- —+—
~—
=~ REMOTE
SESSION

User Y

:HELLO USER.X +HELLO USER.Y
:DSLINE HDS1 :DSLINE HDS1
¢REMOTE HELLO USER.X ¢+REMOTE HELLO USER.Y

In this example, User X initiates a local session in System
A, obtains access to the hardwired communications line that
connects System A to System B, and initiates a remote
session in System B. User Y subsequently initiates a local
session in System A, obtains access to the same communica-
tions line, and initiates a remote session in System B. The
request by User Y for the particular communications line is
granted by DSN/DS because neither user asked for exclusive
access to the line.

Figure 2-6. Multiple User Example 1

2-18

Opening a Line

SYSTEM A SYSTEM B

REMOTE
\\\ :[HDS1 Hoszr __—= "\ sEssION
REMOTE J—{H~~—====———— -
SESSION

User X

:HELLO USER.X :HELLO USER.Y
:DSLINE HDS1 :DSLINE HDS2
¢REMOTE HELLO USER.X :REMOTE HELLO USER.Y

In this example, User X initiates a local session in System
A, obtains access to the hardwired communications line that
connects System A to System B, and initiates a remote
session in System B. User Y subsequently initiates a local
session in System B, obtains access to the same communica-
tions line, and initiates a remote session in System A. The
request by User Y for the particular communications line is
granted by DSN/DS because neither user asked for exclusive
access to the line.

Figure 2-7. Multiple User Example 2

2-19

Opening a Line

SYSTEM A SYSTEM B

REMOTE
7 SESSION

+HELLO USER.X :HELLO USER.Y
+DSLINE HDS1 ;EXCLUSIVE :DSLINE HDS1
:REMOTE HELLO USER.X

In this example, User X initiates a local session in System
A, obtains exclusive access to the hardwired communications
line that connects System A to System B, and initiates a
remote session in System B. User Y subsequently initiates a
local session in System A and requests access to the same
communications line. The request is denied by DSN/DS
because User X already has exclusive access to the specified
line.

Figure 2-8. Exclusive Option Example 1

2-20

Opening a Line

SYSTEM B
REMOTE
| A SESSION

T
|
|
I
I
|
|
|
I

SYSTEM A

User Y
I

R

<

¢HELLO USER.X ¢HELLO USER.Y
:DSLINE HDS1 ;EXCLUSIVE :DSLINE HDS2
:REMOTE HELLO USER.X

In this example, User X initiates a local session in System
A, obtains exclusive access to the hardwired communications
line that connects System A to System B, and initiates a
remote session in System B. User Y subsequently initiates a
local session in System B and requests access to the same
communications line. The request is denied by DSN/DS
because User X already has exclusive access to the specified

line.

Figure 2-9. Exclusive Option Example 2

2-21

Opening a Line

SYSTEM A SYSTEM B

REMOTE
|/ SESSION

¢HELLO USER.X ¢HELLO USER.Y
:DSLINE HDS1 :DSLINE HDS1 ;EXCLUSIVE
:REMOTE HELLO USER.X

In this example, User X initiates a local session in System
A, obtains access to the hardwired communications line that
connects System A to System B, and initiates a remote
session in System B. User Y subsequently initiates a local
session in System A and requests exclusive access to
the same communications line. The request is denied by
DSN/DS because the specified 1line is already in use and
therefore cannot be assigned exclusively to User Y.

Figure 2-10. Exclusive Option Example 3

2-22

J

Opening a Line

SYSTEM A SYSTEM B

@ HDS1 Wosz | LA
_~—— __1 ________ _Ff
1 U LOCAL
: SESSION

|
|
]
1
I
I
I
I
I
|
I
i User Y

User X

T
|
|
I
I
|
|
!

I

|

¢tHELLO USER.X tHELLO USER.Y
:DSLINE HDS1 :DSLINE HDS2 ;EXCLUSIVE
:REMOTE HELLO USER.X

In this example, User X initiates a local session in System
A, obtains access to the hardwired communications line that
connects System A to System B, and initiates a remote
gession in System B. User Y subsequently initiates a local
session in System B and requests exclusive access to
the same°communications 1line. The request is denied by
DSN/DS because the specified line is already in wuse and
therefore cannot be assigned exclusively to User Y.

Figure 2-11. Exclusive Option Example 4

2-23

Opening a Line

Configured Local ID: A Configured Local ID: B
Configured Remote IDs: B,C Configured Remote IDs: A,C
SYSTEM A SYSTEM B

% SDS1 _(REMOTE

== —_——— e} SESSION
= i —__/ /____t \\\

~ (" REMOTE

SESSION

¢

User X

:HELLO USER.X :HELLO USER.Y
:DSLINE SDS1 & :DSLINE SDS1 &
; PHNUM=555-1234 & ; PHNUM=555-123)4 &
;REMID="B" s REMID="B"
:REMOTE HELLO USER.X :REMOTE HELLO USER.Y

In this example User X initiates a local session in System A
and obtains access to the line identified by the device class
name SDS1. The supplied telephone number is displayed at the
system console of System A. The console operator establishes
the telephone connection by dialing the number at the modem
connected to the particular line and then enters "YES" through
the system console to let DSN/DS know that the telephone

(continued)

Figure 2-12. Dial-up Line Multiple User Example 1

2-24

3

Opening a Line

connection was successfully made. The two computers exchange
their configured local ID sequences. System A compares the
received ID sequence (B) against the remote ID sequence
specified by User X (REMID="B") and System B compares the
received ID sequence (A) against its list of configured remote
ID sequences (A,C). Since the received ID sequences are found
to be valid at both ends of the line, the telephone connection
is allowed to remain in effect. User X then initiates a
remote session in System B over the telephone line from his
local log-on terminal.

User Y subsequently initiates a local session in System A and
requests access to the same line (SDS1). Since that line is
already open, DSN/DS ignores the supplied telephone number (no
message is displayed at the system console). Access to the
currently opened line is granted to User Y because neither
user requested exclusive access and User Y specified the
currently active remote ID sequence (REMID="B") in his DSLINE
command.

Figure 2-12. Dial-up Line Multiple User Example 1
(Continued)

2-25

Opening a Line

Configured Local ID: A Configured Local ID: B
Configured Remote IDs: B,C Configured Remote IDs: A,C
SYSTEM A SYSTEM B

REMOTE
\\\ --k SDS1 /. SDS3 A -~ \session
REMOTE \-H ™=~~~ //===== = B
SESSION

\
\

¢:HELLO USER.X :HELLO USER.Y
:DSLINE SDS1 & :DSLINE SDS3 &
s PHNUM=555-123}4 & s PHNUM=TTT-u4321 &
sREMID="B" sREMID="A"
¢:REMOTE HELLO USER.X :REMOTE HELLO USER.Y

In this example User X initiates a local session in System A
and obtains access to the line identified by the device class
name SDS1. The supplied telephone number is displayed at the
system console of System A. The console operator establishes
the telephone connection by dialing the number at the modem
connected to the particular line and then enters "YES" through
the system console to let DSN/DS know that the telephone

(continued)

Figure 2-13. Dial-up Line Multiple User Example 2

2-26

Opening a Line

connection was successfully made. The two computers exchange
their configured local ID sequences. System A compares the
received ID sequence (B) against the remote ID sequence
specified by User X (REMID="B") and System B compares the
received ID sequence (A) against its list of configured remote
ID sequences (A,C). Since the received ID sequences are found
to be valid at both ends of the line, the telephone connection
is allowed to remain in effect. User X then initiates a
remote session in System B over the telephone line from his
local log-on terminal.

User Y subsequently initiates a local session in System B
and requests access to the line identified by the device
class name SDS3. Since that line is already open, DSN/DS
ignores the supplied telephone number (no message is
displayed at the system console). Access to the currently
opened line is granted to User Y because neither user re-
quested exclusive access and User Y specified the currently
active remote ID sequence (REMID="A") in his DSLINE command.

Figure 2-13. Dial-up Line Multiple User Example 2
(Continued)

2-27

Opening a Line

Configured Local ID: A Configured Local ID: B
Configured Remote IDs: B,C Configured Remote IDs: A,C
SYSTEM A SYSTEM B

REMOTE
L/ SESSION

¢HELLO USER.X ‘HELLO USER.Y

:DSLINE SDS1 & +DSLINE SDS1 &
;s PHNUM=555-1234 & ; PHNUM=555-1234 &
sREMID="B" & +REMID="B"
sEXCLUSIVE

+REMOTE HELLO USER.X

In this example User X initiates a local session in System A
and obtains exclusive access to the line identified by the
device class name SDS1 (he is granted access to it because
at the time no one else was using that line). The supplied
telephone number is displayed at the system console of
System A. The console operator establishes the telephone

(continued)

Figure 2-14. Dial-up Line Multiple User Example 3

2-28

Opening a Line

connection by dialing the number at the modem connected
to the particular line and then enters "YES" through the
system console to let DSN/DS know that the telephone con-
nection was successfully made. The two computers exchange
their configured local ID sequences. System A compares the
received ID sequence (B) against the remote ID sequence
specified by User X (REMID="B") and System B compares the
received ID sequence (A) against its list of configured re-
mote ID sequences (A,C). Since the received ID sequences are
found to be valid at both ends of the 1line, the telephone
connection is allowed to remain in effect. User X then ini-
tiates a remote session in System B over the telephone line
from his local log-on terminal.

User Y subsequently initiates a local session in System A
and requests access to the same line (SDS1). The request
is denied by DSN/DS because the specified 1line is already
open and User X has exclusive access to it.

Figure 2-14. Dial-up Line Multiple User Example 3
(Continued)

2-29

Opening a Line

Configured Local ID: A Configured Local ID: B
Configured Remote IDs: B,C Configured Remote IDs: A,C
SYSTEM A SYSTEM B

REMOTE
SDS3 1 _A session

:HELLO USER.X :HELLO USER.Y
:DSLINE SDS1 & :DSLINE SDS3 &
;s PHNUM=555-1234 & ; PHNUM=TT7-14321 &
;REMID="B" & s REMID="A"
;EXCLUSIVE

¢REMOTE HELLO USER.X

In this example User X initiates a local session in System A
and obtains exclusive access to the line identified by the
device class name SDS1 (he is granted access to it because
at the time no one else was using that line). The supplied
telephone number is displayed at the system console of
System A. The console operator establishes the telephone

(continued)

Figure 2-15. Dial-up Line Multiple User Example U

2-30

Opening a Line

connection by dialing the number at the modem connected
to the particular line and then enters "YES" through the
system console to let DSN/DS know that the telephone con-
nection was successfully made. The two computers exchange
their configured local ID sequences. System A compares the
received ID sequence (B) against the remote ID sequence
specified by User X (REMID="B") and System B compares the
received ID sequence (A) against its list of configured re-
mote ID sequences (A,C). Since the received ID sequences are
found to be valid at both ends of the 1line, the telephone
connection is allowed to remain in effect. User X then ini-
tiates a remote session in System B over the telephone line
from his local log-on terminal.

User Y subsequently initiates a local session in System B
and requests access to the line identified by the device
class name SDS3. The request is denied by DSN/DS because
the specified line is already open and User X has exclusive
access to it.

Figure 2-15. Dial-up Line Multiple User Example U4
(Continued)

2-31

Opening a Line

Configured Local ID: A Configured Local ID: B
Configured Remote IDs: B,C Configured Remote IDs: A,C
SYSTEM A SYSTEM B

SDS1 REMOTE

|
|
|
| ~
| N
I N
I N
I N ’
| G ‘%
| NG
I User X \\
¢HELLO USER.X :HELLO USER.Y
:DSLINE SDS1 & :DSLINE SDS1 &
; PHNUM=555-1234 & s PHNUM=555-1234 &
sREMID="B" sREMID="B" &
:REMOTE HELLO USER.X sEXCLUSIVE
In this example User X initiates a local session in System A Aﬂ%

and obtains access to the line identified by the device class
name SDS1. The supplied telephone number is displayed at the
system console of System A. The console operator establishes
the telephone connection by dialing the number at the modem
connected to the particular line and then enters "YES" through
the system console to let DSN/DS know that the telephone

(continued)

Figure 2-16. Dial-up Line Multiple User Example 5

2-32

Opening a Line

connection was successfully made. The two computers exchange
their configured local ID sequences. System A compares the
received ID sequence (B) against the remote ID sequence
specified by User X (REMID="B") and System B compares the
received ID sequence (A) against its list of configured remote
ID sequences (A,C). Since the received ID sequences are found
to be valid at both ends of the line, the telephone connection
is allowed to remain in effect. User X then initiates a
remote session in System B over the telephone line from his
local log-on terminal.

User Y subsequently initiates a local session in System A
and requests exclusive access to the same line (SDS1).

The request is denied by DSN/DS because the specified line
is already open and therefore cannot be assigned exclusively
to User Y.

Figure 2-16. Dial-up Line Multiple User Example 5
(Continued)

2-33

Opening a Line

Configured Local ID: A Configured Local ID: B
Configured Remote IDs: B,C Configured Remote IDs: A,C
SYSTEM A SYSTEM B

REMOTE
~ . Sps1 / snssr _——"_sEssion
~ e [e e ‘ _____ | —

} 7/ L ‘Igaiaiii

\

User X

¢HELLO USER.X :HELLO USER.Y
:DSLINE SDS1 & :DSLINE SDS3 &
; PHNUM=555-1234 & s PHNUM=TTT7-4321 &
sREMID="B" sREMID="A" &
:REMOTE HELLO USER.X s EXCLUSIVE

In this example User X initiates a local session in System A
and obtains access to the line identified by the device class
name SDS1. The supplied telephone number is displayed at the
system console of System A. The console operator establishes
the teléphone connection by dialing the number at the modem
connected to the particular line and then enters "YES" through
the system console to let DSN/DS know that the telephone

(continued)

Figure 2-17. Dial-up Line Multiple User Example 6

2-34

Opening a Line

connection was successfully made. The two computers exchange
their configured local ID sequences. System A compares the
received ID sequence (B) against the remote ID sequence
specified by User X (REMID="B") and System B compares the
received ID sequence {A) against its list of configured remote
ID sequences (A,C). Since the received ID sequences are found
to be valid at both ends of the line, the telephone connection
is allowed to remain in effect. User X then initiates a
remote session in System B over the telephone line from his
local log-on terminal.

User Y subsequently initiates a local session in System B
and requests exclusive access to the line identified by

the device class name SDS3. The request is denied by DSN/DS
because the specified line is already open and therefore
cannot be assigned exclusively to User Y.

Figure 2-17. Dial-up Line Multiple User Example 6
(Continued)

2-35

Opening a Line

Configured Local ID: A Configured Local ID: B
Configured Remote IDs: B,C Configured Remote IDs: A,C
SYSTEM A SYSTEM B

sDs1 REMOTE
S~/ _ _f——"" \SESSION
:\

User X

:HELLO USER.X :HELLO USER.Y

:DSLINE SDS1 & :DSLINE SDS1 &
; PHNUM=555-123}4 & s PHNUM=555-2001 &
sREMID="B" sREMID="C"

¢tREMOTE HELLO USER.X

In this example User X initiates a local session in System A
and obtains access to the line identified by the device class
name SDS1. The supplied telephone number is displayed at the
system console of System A. The console operator establishes
the telephone connection by dialing the number at the modem
connected to the particular line and then enters "YES" through
the system console to let DSN/DS know that the telephone

(continued)

Figure 2-18. Dial-up Line Multiple User Example T

2-36

Opening a Line

connection was successfully made. The two computers exchange
their configured local ID sequences. System A compares the
received ID sequence (B) against the remote ID sequence
specified by User X (REMID="B") and System B compares the
received ID sequence (A) against its list of configured remote
ID sequences (A,C). Since the received ID sequences are found
to be valid at both ends of the line, the telephone connection
is allowed to remain in effect. User X then initiates a
remote session in System B over the telephone line from his
local log-on terminal.

User Y subsequently initiates a local session in System A
and requests access to the same line (SDS1). The request
is denied by DSN/DS because the specified line is already
open and User Y did not specify the currently active remote
ID sequence (B) in his DSLINE command.

Figure 2-18. Dial-up Line Multiple User Example T
(Continued)

2-37

Opening a Line

Configured Local ID: A Configured Local ID: B
Configured Remote IDs: B,C Configured Remote IDs: A,C
SYSTEM A SYSTEM B

REMOTE
_ =~ T\ SESSION

\

:HELLO USER.X tHELLO USER.Y

:DSLINE SDS1 & :DSLINE SDS3 &
s PHNUM=555-1234 & s PHNUM=555-2001 &
sREMID="B" sREMID="¢C"

¢REMOTE HELLO USER.X

In this example User X initiates a local session in System A
and obtains access to the line identified by the device class
name SDS1. The supplied telephone number is displayed at the
system console of System A. The console operator establishes
the telephone connection by dialing the number at the modem
connected to the particular line and then enters "YES" through
the system console to let DSN/DS know that the telephone

(continued)

Figure 2-19. Dial-up Line Multiple User Example 8

2-38

)

Opening a Line

connection was successfully made. The two computers exchange
their configured local ID sequences. System A compares the
received ID sequence (B) against the remote ID sequence
specified by User X (REMID="B") and System B compares the
received ID sequence (A) against its list of configured remote
ID sequences (A,C). Since the received ID sequences are found
to be valid at both ends of the line, the telephone connection
is allowed to remain in effect. User X then initiates a
remote session in System B over the telephone line from his
local log-on terminal.

User Y subsequently initiates a local session in System B
and requests access to the line identified by the device
class name SDS3. The request is denied by DSN/DS because
the specified line is already open and User Y did not
specify the currently active remote ID sequence (A) in his
DSLINE command.

Figure 2-19. Dial-up Line Multiple User Example 8
(Continued)

2-39

Opening a Line

Configured Local ID: (none) Configured Local ID: (none)
Configured Remote IDs: (none) Configured Remote IDs: (none)

SYSTEM A SYSTEM B

_{ REMOTE
Se——g / fo—— FF— SESSION

7 /===

@
i

=~ ./ REMOTE
SESSION

{

:HELLO USER.X :HELLO USER.Y
:DSLINE SDS1 ;PHNUM=555-123k4 :DSLINE SDS1 ;PHNUM=555-1234
:REMOTE HELLO USER.X :REMOTE HELLO USER.Y

In this example User X initiates a local session in System A
and obtains access to the line identified by the device class
name SDS1. The supplied telephone number is displayed at the
system console of System A. The console operator establishes
the telephone connection by dialing the number at the modem
connected to the particular line and then enters "YES" through
the system console to let DSN/DS know that the telephone
connection was successfully made. No ID sequences are
exchanged because none were established (in either HP 3000)

(continued)

Figure 2-20. Dial-up Line Multiple User Example 9

2-40

Opening a Line

during system configuration and User X didn't specify any in
his DSLINE command. User X then initiates a remote session in
System B over the telephone line from his local log-on
terminal.

User Y subsequently initiates a local session in System A and
requests access to the same line (SDS1). Since that line is
already open, DSN/DS ignores the supplied telephone number (no
message is displayed at the system console). Access to the
currently opened line is granted to User Y because neither
user requested exclusive access and User Y specified the
currently active remote ID sequence (in this case none) in his
DSLINE command.

Note that when no ID sequences are configured and the users
don't supply any in their DSLINE commands, both are taking it
on faith that they are connected to the proper remote
computer. The total absence of configured or supplied ID
sequences is safe only under very controlled circumstances.
It is strongly recommended that all computers in a DSN/DS
network that are capable of communicating over telephone lines
have default local and remote ID sequences established during
system configuration and that all line users specify the ID
sequence of the desired remote computer (REMID=x) in their
DSLINE commands.

Figure 2-20. Dial-up Line Multiple User Example 9
(Continued)

2-41

Opening a Line

Configured Local ID: (none) Configured Local ID: (none)
Configured Remote IDs: (none) Configured Remote IDs: (none)

SYSTEM A SYSTEM B

REMOTE
~——_ __828_1__ _f_D_s_l_i_] _—~ T\ sEssioN

REMOTE .- jz‘#/hﬂn
SESSION

\
\

User X

¢HELLO USER.X :HELLO USER.Y
:DSLINE SDS1 ;PHNUM=555-1234 :DSLINE SDS3 ;PHNUM=TTT7-4321

+REMOTE HELLO USER.X ¢REMOTE HELLO USER.Y

In this example User X initiates a local session in System A
and obtains access to the line identified by the device class
name SDS1. The supplied telephone number is displayed at the
system console of System A. The console operator establishes
the telephone connection by dialing the number at the modem
connected to the particular line and then enters "YES" through
the system console to let DSN/DS know that the telephone
connection was successfully made. No ID sequences are
exchanged because none were established (in either HP 3000)

(continued)

Figure 2-21. Dial-up Line Multiple User Example 10

2-42

Opening a Line

during system configuration and User X didn't specify any in
his DSLINE command. User X then initiates a remote session
in System B over the telephone line from his local log-on
terminal.

User Y subsequently initiates a local session in System B
and requests access to the line identified by the device
class name SDS3. Since that line is already open, DSN/DS
ignores the supplied telephone number (no message is
displayed at the system console). Access to the currently
opened line is granted to User Y because neither user re-
quested exclusive access and User Y specified the currently
active remote ID sequence (in this case none) in his DSLINE
command.

Note that when no ID sequences are configured and the users
don't supply any in their DSLINE commands, both are taking
it on faith that they are connected to the proper remote
computer. The total absence of configured or supplied ID
sequences is safe only under very controlled circumstances.
It is strongly recommended that all computers in a DSN/DS
network that are capable of communicating over telephone
lines have default local and remote ID sequences established
during system configuration and that all line users specify
the ID sequence of the desired remote computer (REMID=x) in
their DSLINE commands.

Figure 2-21. Dial-up Line Multiple User Example 10
(Continued)

:REMOTE HELLO

The REMOTE HELLO Command

Once you have obtained access to a physical communications line
using the DSLINE command, you use the REMOTE HELLO command to
actually establish the communications link. The REMOTE HELLO
command initiates a remote session on your behalf in the HP 3000
connected to the other end of the communications line.

The format of the REMOTE HELLO command is presented in figure
2-22. Notice that, except for the three shaded items, it has
exactly the same format as the standard MPE HELLO command.

Because the REMOTE HELLO command is initiating a session for you
in a remote HP 3000, the parameters in that command specify
information which pertains to the operating environment of the
remote HP 3000 (not your local one). More specifically you must
keep the following in mind:

e sessionname (if present) identifies the remote session and
has no relationship to your local session.

e username, accountname, groupname, and their passwords (if
any) must all be valid as defined by the accounting struc-
ture of the remote HP 3000.

o cpusecs (if present) refers to central-processor time in
the remote system.

e BS, CS, DS, ES, inputpriority, and HIPRI (if present) all
specify priorities for the remote session within the remote
system.

e termtype (if present) has no meaning and is ignored
because output from the remote session is directed
to the communications line instead of to a terminal.
The termtype parameter for your local session implicitly
defines your log-on terminal type for any remote sessions
that you initiate.

2-ul

:REMOTE HELLO

[sessionname,) username [/userpass) .acctname [/acctpass]
(groupname [/grouppass]]

[;TIME = cpusecs]

BS

wpri={ S 4y

DS
ES

[;INPRI = {nputpriority]

;HIPRI

Figure 2-22. The REMOTE HELLO Command Syntax

The parameters for the REMOTE HELLO command are as follows:

sessionname Arbitrary name used in conjunction with
username and acctname parameters to form a
session identity. Contains from 1 to 8
alphanumeric characters, beginning with a
letter. Default is that no session name is
assigned.

username A user name, established by the account
manager, that allows you to log on under this
account. Contains from 1 to 8 alphanumeric
characters, beginning with a letter.

(Required parameter.)

2-45

:REMOTE HELLO

userpass

acctname

acctpass

groupname

grouppass

termtype

cpusecs

User password, optionally assigned by the
account manager. Contains from 1 to 8 alpha-
numeric characters, beginning with a letter.

Name of account, as established by the
account manager. Contains from 1 to 8 alpha-
numeric characters, beginning with a letter.
The acctname parameter must be preceded by a
period.

(Required parameter.)

Account password, optionally assigned by the
system manager. Contains from 1 to 8 alpha-
numeric characters, beginning with a letter.

Name of the group to be used for local file
domain and CPU time charges. Established by
the account manager. Contains from 1 to 8
alphanumeric characters, beginning with a
letter. Default is your home group, if you
are assigned one by the account manager.

(Optional if you have a home group; required
if a home group has not been assigned.)

Group password, optionally assigned by the
account manager. Contains from 1 to 8 alpha-
numeric characters, beginning with a letter.

(Required if assigned and you are logging on
under other than your home group; optional if
you are logging on under your home group.)

Ignored. The TERM=termtype parameter of the
HELLO command that initiated the local
session also implicitly defines the log-on
terminal type for any remote sessions
initiated from the local session.

Maximum CPU time that the session can use,
entered in seconds. When the limit is
reached, the session is aborted. Must be a
value from 1 to 32767. To specify no limit,
enter a question mark (?) or UNLIM, or omit
the parameter. Default is no limit.

2-46

BS, Cs, DS, ES

inputpriorty

HIPRI

dsdevice

:REMOTE HELLO

Execution priority class. BS is highest
priority; ES is lowest. If you specify a
priority that exceeds the highest permitted
for your account or user name by the system,
MPE assigns the highest priority possible
below BS. Default is CS.

NOTE

DS and ES are used primarily for
batch jobs. Their use for sessions
is discouraged.

Relative input priority used in checking
against access restrictions imposed by the
jobfence, if one exists. Takes effect at
log-on time. Must be a value from 1 (lowest
priority) to 13 (highest priority). If a
value is specified that is less than or equal
to current jobfence set by the console
operator, the session is denied access.
Default is 8 or 13, depending upon the System
Logging options in effect.

Request for maximum session-selection input
priority, causing the session to be scheduled
regardless of current jobfence or execution
limit for sessions. This parameter can be
specified only by users with System Manager
or System Supervisor capability. (If not,
the system tries to log you on with INPRI=
13.) Default is the current jobfence and
execution limit.

The device class name or logical device
number assigned to the DSN/DS communications
driver (IODSO or IODSX) during system config-
uration. This parameter, if present,
specifies which line you wish to use.

(Optional parameter if a line is already
open; otherwise it is required.)

2-47

Opening a Line

So far, we have been talking entirely about the DSLINE and REMOTE
HELLO commands being used in conjunction with one another: the
DSLINE command obtaining access to a physical line and the REMOTE
HELLO command actually establishing the communications link by
initiating a remote session over the acquired line. As you may
have guessed from the above parameter definitions, the DSLINE
parameter of the REMOTE HELLO command gives you a new, and
simpler, way to obtain a line and establish a communications
link. 1If you are satisfied to use the default DSN/DS line buffer
size and you do not need exclusive use of the line, you can
acquire a line and initiate a remote session over that line by
using a single command: a REMOTE HELLO command with the DSLINE
parameter. If you open a line in this way, however, it remains
open only for the duration of the particular remote session (when
the remote session is terminated the line is automatically
closed). If, on the other hand, you use the DSLINE command to
open a line, the line remains open for the duration of the local
session (or until you explicitly close the line).

To illustrate this, look again at the example in Section I. In
that example, the DSLINE command was used to obtain access to the
hardwired line HDS2 and the REMOTE HELLO command was used to
initiate a remote session over the line:

:DSLINE HDS2

REMOTE HELLO RUSER.RACCOUNT

.HP3000 / MPE IV C.00.0%. WED, MAR 3, 1982, 9:08 aM

WELCOME TO SYSTEM B.
: NOTE

In this case the
acquired line re-
mains open when the
remote session is
terminated.

2-48

Opening a Line

By including the DSLINE parameter in the REMOTE HELLO command,
esgsentially the same operations could be performed while using a
single command, as follows:

:REMOTE HELLO RUSER.RACCOUNT;DSLINE=HDS2

DS LINE NUMBER = #L3
HP3000 / MPE 1V C.00.04. WED, MAR 3, 1982, 9:08 AM

WELCOME TO SYSTEM B.
: NOTE

In this case the
acquired line is
closed when the
remote session is
terminated.

Another example, this time using the DSLINE command to obtain
access to a telephone line (by way of an SSLC whose associated
communications driver's device class name is SDS1) and the REMOTE
HELLO command to initiate a remote session over the line, is as
follows:

:DSLINE SDS1
DS LINE NUMBER = #L3

:REMOTE HELLO RUSER.RACCOUNT

HP3000 / MPE IV C.00.04. WED, MAR 3, 1982, 9:08 aM

WELCOME TO SYSTEM B.

NOTE

In this case the
acquired 1line re-
mains open when the
remote session is
terminated.

2-49

Opening a Line

By including the DSLINE parameter in'the REMOTE HELLO command,
you can perform essentially the same operations using a single
command, as follows:

¢REMOTE HELLO RUSER.RACCOUT;DSLINE=SDS1

DS LINE NUMBER = #L3
HP3000 / MPE IV C.00.04. WED, MAR 3, 1982, 9:08 aM

WELCOME TO SYSTEM B.
: NOTE

In this case the
acquired line is
closed when the
remote session is
terminated.

This telephone line example will work properly for you only under

very limited circumstances:

® You must be satisfied to use the default DSN/DS line buffer
size established during system configuration.

o The default ID sequences established in both computers during

system configuration must properly identify both your local HP

3000 and the desired remote HP 3000 (or no ID sequences were
established during system configuration in either computer).

e You must dial the remote computer yourself at the proper
modem, or the line must be connected to (and configured for)
autodialing. Note that if you cannot successfully make the
telephone connection you cannot abort the REMOTE HELLO com-
mand; the command will be rejected by DSN/DS if no connection
is established within 15 minutes.

The likelihood of all of the above conditions existing for a

particular use of DSN/DS is rather slim. In most DSN/DS environ-

ments you will want to explicitly define the ID sequence of the
desired remote computer to guarantee that the proper connection
is established, and you will want to provide a telephone number
so that you can let DSN/DS know immediately if a telephone con-
nection cannot be made. (It is not acceptable to tie up a com-
munications interface and your log-on terminal for 15 minutes

waiting for an unsuccessful DSLINE or REMOTE HELLO request to be
rejected.)

2-50

Opening a Line

Opening Multiple Lines

Within your local session, you can open more than one physical
communications line and you can have remote sessions active
concurrently over all of the opened lines. However, when
operating without DS/X.25 capability, you are limited to one
remote session per physical line at any given time.

If access to the specified line is obtained, DSN/DS responds to
each DSLINE command by displaying a DS line number at your log-on
terminal. This line number is roughly analagous to the file
number returned by the MPE FOPEN intrinsic, in that it is an
arbitrary number that uniquely identifies (within your local
gession) your current access to a particular communications line.
It has no relationship to the logical device number or any other
configuration parameter associated with the line. DS line
numbers are meaningful only if you have more than one line open
concurrently within a single local session. In that case, you
are assigned a separate DS line number for each line you have
opened, and you subsequently use these numbers to specify which
line you wish to use for a given remote command (or sequence of
remote commands) or to close a particular line without closing
the others.

Figure 2-23 illustrates a situation where a user has established
two hardwired communications links concurrently from within a
single local session. Take a closer look at that situation and
examine the sequehce of commands that was used to create it.

2-51

Opening a Line

SYSTEM A SYSTEMB

HDS1
/ (DS tine number 3)

REMOTE
—_—— e e e e —— =] - SESSION
\

HDS2
(DS Line number 4)

User's Log-On
S Terminal

SYSTEM C

REMOTE
— — — 3 _SESSION

J

Figure 2-23. Multiple Line Example (Hardwired Lines)

2-52

Opening a Line

First the user sat down at a terminal connected to System A and
initiated a local session:

:HELLO USER.ACCOUNT

HP3000 / MPE IV C.00.04. WED, MAR 3, 1982, 1:37 PM

WELCOME TO SYSTEM A.

USER and ACCOUNT are valid user and account names, respectively,
as defined by the accounting structure of System A.

Now, we have the situation illustrated in figure 2-24. Notice
that, at this point, no communications link exists between any of
the three systens.

2-53

Opening a Line

SYSTEM A SYSTEM B

| I |
—

e

SYSTEMC

User's Log-On Terminal

Figure 2-24. Initiating the Local Session
(Hardwired Example)

2-54

Opening a Line

Next, the user acquired access to a line between Systems A and B
and initiated a remote session in System B:

:DSLINE HDS1
DSLINE NUMBER = #L3

+REMOTE HELLO RUSER.RACCOUNT

HP3000 / MPE IV C.00.04. WED, MAR 3, 1982, 1:38 PM

WELCOME TO SYSTEM B.

HDS1 is the device class name (as defined within System A)
associated with the particular line. RUSER and RACCOUNT are
valid user and account names, respectively, as defined by the
accounting structure of System B.

Now we have the situation illustrated in figure 2-25.

Opening a Line

SYSTEM A SYS
HDS1 TEM B

/ (DS line number 3)
LocAL N\ _ _ | | [_ REMOTE.
SESSION il T~ —\ sessioN

SYSTEM C

User's Log-On Terminal

Figure 2-25. Establishing the Link With System B
(Hardwired Example)

2-56

Opening a Line

Finally, the user acquired access to a line between Systems A and
C and initiated a remote session in System C:

:DSLINE HDS2
DS LINE NUMBER = #LL

sREMOTE HELLO RUSER.RACCOUNT

HP3000 / MPE IV C.00.04. WED, MAR 3, 1982, 1:39 PM

WELCOME TO SYSTEM C

HDS2 is the device class name (as defined within System A)
associated with the particular line. RUSER and RACCOUNT are
valid user and account names, respectively, as defined by the
accounting structure of System C.

We end up with the situation illustrated in figure 2-26, which is
identical to figure 2-23 that started this example.

2-57

Opening a Line

SYSTEM A SYSTEM B

HDS1
/ (DS line number 3)

REMOTE
—— e e e —) - SESSION
\

HDS2
(DS Line number 4)

User’s Log-On
aon, Terminal

SYSTEMC

REMOTE
— — — 3 SESSION

Figure 2-26. Establishing the Link With System C
(Hardwired Example)

2-58

Opening a Line

Figure 2-27 illustrates a situation where a user has established
two telephone communications links concurrently from within a
single local session. Take a closer look at that situation and
examine the sequence of commands that was used to create it.

SYSTEM A SYSTEM B
SDS1
/ (DS line number 3)

REMOTE
- ’ - SESSION
\

User's Log-On Terminal

SYSTEMC

REMOTE
— — — 3 _SESSION

Figure 2-27. Multiple Line Example (Telephone Lines)

2-59

Opening a Line

First the user sat down at a terminal connected to System A and
initiated a local session:

+HELLO USER.ACCOUNT

HP3000 / MPE 1V C.00.04. WED, MAR 3, 1982, 1:37 PM

WELCOME TO SYSTEM A.

USER and ACCOUNT are valid user and account names, respectively,
as defined by the accounting structure of System A.

At this point, we have the situation illustrated in figure 2-28.
Notice that, so far, no communications link exists between any of

the three systems.

2-60

Opening a Line

SYSTEM A SYSTEM B

User's Log-On Terminal

SYSTEMC

Figure 2-28. 1Initiating the Local Session
(Dial-up Example)

2-61

Opening a Line

Next, the user acquired access to a telephone connection between
Systems A and B and initiated a remote session in System B:

:DSLINE SDS1 ;LOCID="A" ;REMID="B" ;PHNUM=25T7-8001

DS LINE NUMBER = #L3

:REMOTE HELLO RUSER.RACCOUNT

HP3000 / MPE IV C.00.04., WED, MAR 3, 1982, 1:38 PM

WELCOME TO SYSTEM B.

.

SDS1 is the device class name (as defined within System A)
associated with the particular line, A and B are the ID sequences
identifying Systems A and B, respectively, and 257-8001 is the
telephone number of the modem connected to the communications
interface at System B. RUSER and RACCOUNT are valid user and
account names, respectively, as defined by the accounting
structure of System B.

Now we have the situation illustrated in figure 2-29.

2-62

Opening a Line

SYSTEM A SDS1 SYSTEM B

/ (DS line number 3)
LOCAL N _ | e REMOTE
SESSION - I\ SESSION

~“—— sps2

User’s Log-On Terminal

SYSTEMC

Figure 2-29. Establishing the Link With System B
(Dial-up Example)

2-63

Opening a Line

Finally the user acquired access to a line between Systems A and
C and initiated a remote session in System C:

:DSLINE SDS2 ;LOCID="A" ;REMID="C" ;PHNUM=377-2000

DS LINE NUMBER = #Lk

:REMOTE HELLO RUSER.RACCOUNT

HP3000 / MPE IV C.00.04. WED, MAR 3, 1982, 1:39 PM

WELCOME TO SYSTEM C.

.
.

SDS2 is the device class name (as defined within System A)
associated with the particular line, A and C are the ID sequences
identifying Systems A and C, respectively, and 377-2000 is the
telephone number of the modem connected to the communications
interface at System C. RUSER and RACCOUNT are valid user and
account names, respectively, as defined by the accounting
structure of System C.

We end up with the situation illustrated in figure 2-30, which is
identical to figure 2-27 that started this example.

2-64

Opening a Line

SYSTEM A SYSTEM B
SDS1
/ {DS line number 3)

REMOTE
- - SESSION
\

(W\ User’s Log-On Terminal

SYSTEM C

REMOTE
—— — 4 _SESSION

Figure 2-30. Establishing the Link With System C
(Dial-up Example)

2-65

Opening a Line

Line Opening Failures

There are several reasons why a DSLINE command for opening a
communications line might be rejected by DSN/DS, some of which
have already been illustrated earlier in this section.

The following list summarizes the likely causes of a line opening
failure that are common to hardwired lines, leased lines, and
dial-up telephone lines:

e You made a syntax error in the DSLINE command.

e You gave an erroneous line specification (dsdevice) in the
DSLINE command. (There is no IODSO or IODSX entry in the
system configuration with the specified device class name
or logical device number.)

e The line was not opened by the local console operator.
o The line was not opened by the remote console operator.
e Someone already has exclusive access to the specified line.

e You asked for EXCLUSIVE access to a line which was already in
use.

e DSN/DS detected a hardware problem (the communications
interface board is not responding corre:tly).

The following list summarizes the additional causes of a line
opening failure on a dial-up telephone line:

e The operator was not able to make the requested telephone
connection and entered NO through the system console in %
response to the dial request message.

e The remote computer rejected your local ID sequence.

e The remote computer did not send a valid ID sequence (the
received ID sequence did not match any of the remote ID
sequences that you specified or, if you didn't specify any,
did not match any of the configured remote ID sequences).

e The specified 1line 1is already in use and the remote 1ID
sequence you supplied did not match the one used by the
currently connected remote HP 3000.

The various error numbers and messages that might appear as a
result of line opening failures are included in the summary of ™
error codes and messages in Appendix B.)

2-66

Closing a Line

CLOSING A LINE

Once you have opened one or more communications lines, you can
close any or all of them by using a variation of the DSLINE
command. The line closing format of the DSLINE command is
presented in figure 2-31.

dsdevice
:DSLINE ds-line-number s CLOSE

e

Figure 2-31. Closing a Line with the DSLINE Command

The parameters that pertain to closing one or more communications
lines are as follows:

dsdevice The device class name, logical device number, or
logical node name specified in the DSLINE com-
mand that opened a particular line.

(Optional parameter.)

ds-line-number The DS line number assigned to you by DSN/DS
when the particular line was opened. When this
parameter is used, it must appear in the format
#ln , where n is the line number (see "Examples"
on the following page).

(Optional parameter.)

e This parameter specifies that you wish to close
all of the lines that you currently have open.

(Optional parameter.)

2-67

Closing a Line
;s CLOSE This parameter specifies that you wish to close
the specified line(s).

(Required parameter.)

If no line identifier (dsdevice, ds-line-number, or @) is
specified, DSN/DS closes the line that you most recently opened.

Examples

The following examples illustrate the variations of the DSLINE
command that can be used for closing one or more communications
lines.

:DSLINE HDS1 ;CLOSE

This form closes the line that is identified by the device class
name HDS1.

:DSLINE 55 ;CLOSE

This form closes the line that is identified by the logical
device number 55.

:DSLINE € ;CLOSE

This form closes all the lines that you currently have open.

2-68 '

Closing a Line

:DSLINE #L3 ;CLOSE

This form closes the line that is identified by #L3.

:DSLINE ;CLOSE

This form closes the line that you most recently opened.

If you are sharing one or more physical communications lines with
other users, the above forms of the DSLINE command close the
line(s) for your application only (the other user's applications
are not affected).

2-69

sscn(j N

REMOTE SESSIONS

A communications link exists after you have initiated a session
in the remote HP 3000 under the username, accountname, and
groupname specified in the REMOTE HELLO command. You now have
two distinct sessions in existence simultaneously from the same
log-on terminal: a local session (in the HP 3000 to which you
first logged on) and a remote session (in the HP 3000 at the
other end of the communications line). Now pause for a moment
to see what this implies.

Within the local session, you have access to all I/0 devices and
disc files in your local HP 3000 (subject to the usual MPE file
security, of course). This is a normal MPE interactive session
in every respect. You enter MPE commands and use the various
language and utility subsystems exactly as you would if DSN/DS
were not present. This local session is running under the
username, accountname, and groupname specified in the HELLO
command that you used to first log on. All user capabilities and
file access available to you within the local session are
determined by those log-on parameters.

Within the remote session, you have access to all I/0 devices and
disc files in the remote HP 3000 (again, subject to the usual MPE
file security). With the few minor exceptions described in the
following pages, this is also a normal MPE interactive session.
All MPE commands and subsystems are, however, executed in the
remote HP 3000. The output resulting from the executed commands
and subsystems appears at your local log-on terminal. The remote
session is running under the username, accountname, and groupname
specified in the REMOTE HELLO command that you used in
establishing the communications link. All user capabilities and
file access available to you within the remote session are
determined by those log-on parameters.

For the sake of clarity and as a learning aid, the remainder of
this section will treat local and remote sessions as separate
(and essentially unrelated) entities that use only those
resources available in the particular HP 3000 in which they are
running. Actually, it is possible to access the I/O devices and
disc files of the remote HP 3000 computer from your local
session, and it is also possible to access the I/O devices and
disc files of the local HP 3000 from your remote session. This
more advanced activity will be covered in Section IV, "Remote
File Access".

Remote Sessions
ISSUING REMOTE COMMANDS

Remember that, in the previous sections, the following sequence
of commands was used to establish the communications link:

carriage return
¢:HELLO USER.ACCOUNT

HP3000 / MPE IV C.00.04. WED, MAR 3, 1982, 9:05 AM Il ioe ommend
for local sessjon,

WELCOME TO SYSTEM A.

:DSLINE HDS?2

DS LINE NUMEER = #L3

¢+REMOTE HELLO RUSER.RACCOUNT

HP3000 / MPE IV C.00.04. WED, MAR 3, 1982, 9:06 AM :Eh%g;:mgﬂy

for remote session,

WELCOME TO SYSTEM B.

At this point, the remote session has been initiated, but you are
currently in the local session (as signified by the colon prompt
character). To execute a command in the remote session, use the
following construct:

¢REMOTE [xxx] command

where xxx is the DS line number returned by DSN/DS when the
communications line was opened, and command is the desired MPE
command in its normal format. (The DS line number is necessary
only if you have more than one communications line open
simultaneously; if it is omitted, then the line which you most
recently opened is referenced by default). In the example in
Section I, this construct was used to execute a LISTF command, as
follows:

¢+REMOTE LISTF

FILENAME

DATA1 DATAS DATA6 FILE3 SOURCE1

.
.

Because the prefix REMOTE was included, the LISTF command is
executed in the remote session (the implied account and group
names are those established by the REMOTE HELLO command that

3-2

Remote Sessions

initiated the remote session). Although the LISTF command is
executed in the remote HP 3000, the output generated by the
command is displayed at your local log-on terminal.

Notice, in the above example, that the DS line number associated
with the particular communications line was not specified (3 in
this example). This is because, if no line number is specified,
DSN/DS uses (by default) the line most recently opened. Only one
communications line is open from your local session; so DSN/DS
uses that line by default. If you had opened a second line, you
would need to tell DSN/DS in which remote computer the remote
command is to be executed. To tell DSN/DS, include the appropri-
ate DS line number in the remote command, as follows:

:REMOTE 3 LISTF

FILENAME

DATA1 DATA5 DATA6 FILE3 SOURCE1

The above construct only allows you to execute a single remote
command. After the remote command has been executed, control
returns to your local session (as signified by the colon prompt
character).

But suppose that you want to execute a whole series of remote
commands. It would obviously be a nuisance to have to prefix
each command with the word REMOTE. DSN/DS provides a convenient
solution to this situation. To execute a series of commands in
the remote session, use the following construct:

:REMOTE [xxx]

where xxx is again the DS line number of the desired communica-
tions line (specifying in which remote HP 3000 we want to execute
commands). DSN/DS then prompts you for each command by display-
ing a # in column 1 of your terminal (in place of the standard
MPE colon prompt). In the example in Section I, this construct
was used for entering two remote MPE commands, EDITOR and BYE.

3-3

Remote Sessions

After reviewing the example in Section I, try another example
that uses more than those two remote commands:

+REMOTE

#LISTF

FILENAME

DATAl DATAS DATA6 FILE3 SOURCE1
#PURGE DATAE

#PURGE DATA

#LISTF

FILENAME

DATA1 FILE3 SOURCE1
#RUN FCOPY.PUB.SYS

HP32212A.0.03 FILE COPIER

>FROM=DATA1 ;TO=DATA2 ;NEW
EOF FOUND IN FROMFILE AFTER RECORD 679

680 RECORDS PROCESSED *#* 0 ERRORS
>EXIT

END OF PROGRAM
#LISTF

FILENAME

DATA1 DATA2 FILE3 SOURCE1
#BYE

CPU=4. CONNECT=T. WED, MAR 3, 1982, 9:13 AM
#:

Notice that except for the # prompt (in place of the standard
colon prompt) this looks exactly like a normal MPE interactive
gsession. All of the commands shown in the previous example are
entered through the local log-on terminal, but the MPE and FCOPY
commands are executed in the remote session within the remote HP
3000. After each remote MPE command was executed, however,
control remained in the remote session (as signified by the #
prompt character). When the remote session was terminated and
the user typed a colon (:) in response to the # prompt following
the log-off message, control was then returned to the local
session (as signified by the colon prompt).

3-4

Remote Sessions

Using The Remote Subsystem From a Batch Job

While in a batch job, you can establish a remote session by using
the DSLINE or REMOTE HELLO command.

The job to be streamed may be similar to the following:

:JOB USER.ACCOUNT
:DSLINE HDS2
:REMOTE HELLO RUSER.RACCOUNT
:REMOTE

#FILE OUT;DEV=LP
#BUILD WORK;DISC=50
#RUN USERPROG
#PURGE WORK

#:

:REMOTE BYE
:DSLINE ; CLOSE

:EOJ

NOTE

The remote # prompt is optional.

An important point to remember is that, once established, the
remote session is interacting with the job in the same way as it
would interact with a terminal. If the remote session detects an
error, the error is printed to $STDLIST and the next record in
the job file is read (in the same manner as waiting for a
character or carriage return on a terminal). The record is then
lost to the job.

The BREAK Key

Within a remote session, you can use the BREAK key to temporarily
interrupt remote processing. When doing so, either you may
return control to the MPE Command Interpreter of your local HP
3000, or you may temporarily suspend the remote subsystem that
you are executing without returning control to the local HP 3000.
This is determined by how you execute commands in the remote
session. There are two ways to execute commands in a remote
session:

e By prefixing each command with the word REMOTE.

¢ By entering the word REMOTE, which prompts you for each
command.

3-5

Remote Sessions

Prefixing Each Command With REMOTE When you are conducting a
remote session by prefixing each command with the word REMOTE,
pressing the BREAK key returns control to the local Command
Interpreter and you receive the colon (:) prompt. To continue
remote processing at the point where it was interrupted, you
merely enter REMOTE RESUME in response to the local MPE colon
prompt.

As an example, assume that you are in the midst of using the text
editor in a remote session when you suddenly decide to start a
Job stream executing concurrently in your local HP 3000. The
sequence of commands would be similar to the following:

:REMOTE EDITOR

HP32201A.7.05 EDIT/3000 FRI, MAY 9, 1980, 9:11 AM
(C) HEWLETT-PACKARD CO. 1979

/ADD
1 DOE, JOHN 29 M CHI
2 BLACK, PATRICIA 23 F _SF
3 SIMON, NEIL 43 M NY
4 MACK, SHIRLEY 38 F_DET
5
Local 1 BREAK key pressed here.
session
prompt.
:STREAM COBTEST1 Control is now
#J19 in the local
:REMOTE RESUME session.
READ PENDING
MICHAELS, WILLIAM 32 M CHI Control is
6 O LEARY, TIMOTHY 49 M DET now back in
7 MARTIN, MARY 34 F LA the remote
8 MURIN, JOICE 2 F CHI session.

Notice that when the BREAK key was pressed, the text editor in
the remote HP 3000 was waiting for you to enter the text for line
5. The BREAK key interrupted the remote session and passed
control to the MPE Command Interpreter of the local HP 3000 (as
signified by the colon prompt). The STREAM command was issued
within the local session, which caused the file COBTEST1 to be
executed in the local HP 3000. Then, when the RESUME command was
issued, control was passed back to the remote session at the
point where it was interrupted (that is, the text editor in the

3-6

Remote Sessions

remote HP 3000 is now waiting for you to enter the text for line
5). When the text for line 5 is entered, the remote session
proceeds as though nothing had happened.

Note that by the end of the example, the local job stream, the
local session, and the remote session are all operational
simultaneously.

Entering REMOTE When you are interacting with the remote
Command Interpreter by having entered the word REMOTE and you are
receiving the remote prompt (#), pressing the BREAK key will
temporarily suspend the subsystem you are executing and will
return control to the remote Command Interpreter. To continue
remote processing at the point where it was interrupted, you
merely enter RESUME in response to the remote prompt.

As an example, assume that you are in the midst of using the text
editor in a remote session when you suddenly decide to start a
job stream executing in your remote HP 3000. The sequence of
commands would be similar to the example shown previously, but
with a few minor differences, as follows:

:REMOTE
#EDITOR

HP 32201A.7.05 EDIT/3000 FRI, FEB 13, 1981, 9:20 AM
(C) HEWLETT-PACKARD CO. 1979

/DD

1 LEWIS, LEO 51 M SV

2 LAGERGREN, FRED 25 M SJ

3 DICKINSON, MARY 21 F SC

4 LAGREGREN, LINDA 24 F 8J

5

41 BREAK key pressed here.
#STREAM APLTEST1 Control is still
#J20 in the remote

#RESUME session.
READ PENDING
MELLO, HENRY by M SJ

6 SOARES, JOE 5 M LA

7 LAWRENCE, ALICE 44 F SJ

8 LEWIS, BOB 20 M WASH

3-7

Remote Sessions

Notice that when the BREAK key was pressed, the text editor in
the remote HP 3000 was waiting for you to enter the text for line
5. The BREAK key interrupted the remote session, but control
remained in the remote HP 3000 (as signified by the remote #
prompt). The STREAM command executed the file APLTEST1 within
the remote HP 3000. Then, when the RESUME command was issued,
control was passed back to the point where the text editor was
interrupted (that is, the text editor is waiting for you to enter
the text for line 5). When the text for line 5 is entered, the
remote session proceeds as though nothing had happened.

The Control Keys

Within a remote session Control-H, Control-X, and Control-Y
perform exactly the same functions as they do in a normal MPE
interactive session.

For example, if you are using FCOPY or the text editor in a
remote session, you can use Control-Y to prematurely terminate an
FCOPY or text editor operation. When the operation terminates,
control is still in the particular subsystem within the remote
session.

Similarly, you can use Control-H to delete the last character
entered or Control-X to delete the line of text currently being
entered. In both of these cases, after the deletion occurs,
control remains in the remote session.

ISSUING LOCAL COMMANDS

Whenever the standard MPE colon prompt is displayed at your
terminal, you are in the local session. Within the local
session, you enter MPE commands in their normal format in
response to the colon prompt. If you are in the midst of a
remote session (that is, you used the command :REMOTE, and DSN/DS
is issuing the # prompt character), you can return control to
your local session by entering a colon, as follows:

#:

In response to the remote colon, control returns to the MPE
Command Interpreter of your local HP 3000 which then prompts you
for local commands with the colon prompt character. Note that
the remote colon does not terminate the remote session; you can
resume processing in the remote session by again using either of
the constructs described under "Issuing Remote Commands".

3-8

Remote Sessions

TERMINATING A REMOTE SESSION

You can terminate a remote session either from within the local
session or from within the remote session itself.

From The Local Session

Whenever the standard MPE colon prompt is displayed at your
terminal, you are in the local session. To terminate a remote
session from within your local session, use the following
command :

:REMOTE [xxx] BYE

where xxx is the DS line number associated with the
communications line connecting the particular remote session to
your local session. (The DS line number is necessary only if you
have more than one communications line open simultaneously; if
it is omitted then the line that you most recently opened is
referenced by default.)

For instance, in the example in Section I, either of

the following sequences could have been used to terminate the
remote session:

f:
:REMOTE BYE

CPU=4. CONNECT=7. WED, MAR 3, 1982, 9:13 AM

.

L2122 OR * NN

#:
:REMOTE 3 BYE

CPU=4. CONNECT=7. WED, MAR 3, 1982, 9:13 AM

In both cases, the remote colon was used to return control from
the remote session to the local session. In either case, the
remote session is terminated.

3-9

Remote Sessions

If the communications line was opened using the DSLINE= parameter
of the REMOTE HELLO command, the line is automatically closed
when the remote session terminates. To initiate another remote
session over the same communications line, you must once again
open the line (using either the DSLINE command or the DSLINE=
parameter of the REMOTE HELLO command) and then issue another
REMOTE HELLO command. .

If the communications line was opened using the DSLINE command,
it is still open. To initiate another remote session over the
same communications line, merely issue another REMOTE HELLO
command (you do not need to issue another DSLINE command because
the communications line is still open). To close the communica-
tions line, use the constructs presented in Section II.

From The Remote Session

Whenever the # prompt is displayed at your terminal, you are in
the remote session. To terminate a remote session from within
the remote session itself, use the following command:

#BYE

Note that you do not need to supply a DS line number in this
case, because DSN/DS knows implicitly which remote session you
wish to terminate (that is, the one in which the #BYE command is
executed).

Remember that this command was used to terminate the remote
session in the example at the end of Section I, as follows:

#BYE

CPU=4., CONNECT=T. WED, MAR 3, 1982, 9:15 AM
#

Notice that although the remote session is terminated, DSN/DS is
still issuing the # prompt character. To return control to the
local session, issue a colon (described earlier under "Issuing
Local Commands").

If the communications line was opened using the DSLINE command,
it is still open. To initiate another remote session over the
same communications line, merely issue an appropriate remote MPE
HELLO command. (You do not need to use the prefix REMOTE because

3-10

Remote Sessions

DSN/DS is still waiting for you to enter a remote command; nor do
you need to issue another DSLINE command because the communica-
tions line is still open.) To close the communications line, use
the constructs presented in Section II.

If the communications line was opened using the DSLINE= parameter
of the REMOTE HELLO command, the line is automatically closed
when the remote session terminates. To initiate another remote
session over the same line, you must once again open the line
(using the DSLINE command or the DSLINE= parameter of a REMOTE
HELLO command) and then issue another REMOTE HELLO command.

3-11

REMOTE FILE ACCESS

IV

In the preceding sections, you have seen how you can establish a
communications link between two HP 3000s and thereby use the
computing power of the remote HP 3000. But that is only part of
the story! Through the use of the DSN/DS Remote File Access
(RFA) capability, programs running in your local session can:

e Use any of the devices connected to the remote HP 3000 as
though they were connected directly to your local HP 3000

e Access any of the disc files of the remote HP 3000 (subject to
the normal MPE file security, of course) as though they
resided at your local HP 3000 site.

The RFA capability, in conjunction with the remote session
capability, suddenly puts all of the computing power and all of
the hardware and software resources of a remote HP 3000 at your
fingertips.

Section IV is divided into two main parts. The first part,
“Command Access", describes how you can issue local MPE FILE
commands that define devices and/or files residing at the remote
HP 3000 site. The second part, "‘Programmatic Access", describes
how you can use the standard set of MPE File System intrinsics
within your local programs to access devices and/or files
residing at the remote HP 3000 site.

4-1

Remote File Access

COMMAND ACCESS

After a DSN/DS communications link has been established, you can
issue local MPE FILE commands that define devices and/or files
residing at the remote HP 3000 site. To make this possible, the
DEV= parameter of the MPE FILE command has been expanded to
include a DS line specification in addition to the usual device
specification. To specify a file that resides across a DS line,
the format of the DEV= parameter is as follows:

;DEV=[dsdevice]#[device]

where dsdevice is the device class name, logical device number,
or node name that you used when establishing the particular
communications link (this specifies the physical line connecting
the two computers); and device is the device class name or
logical device number of the desired remote device as established
within the remote HP 3000.

NOTE

When the FILE command is entered on a remote
system to point back across to a file on the
local system, dsdevice is omitted.

Figure 4-1 is an excerpt from the MPE Commands Reference Manual,
showing only the parts of the syntax and parameter specifications
pertinent to and including the dsdevice# parameter. (Refer to
the MPE Commands Reference Manual for the complete syntax and all
parameters.) The dsdevice# parameter (within the DEV= parameter)
is the only parameter unique to DSN/DS. This one small item of
syntax is enormously powerful. It means that from within your
local session you can access any of the devices and/or disc files
of a remote HP 3000 as though they resided at your local HP 3000
site. Access to remote disc files is, of course, subject to the
usual MPE file security. The user, account, and group names that
you specified in the REMOTE HELLO command when establishing the
communications link are the ones used by MPE in the remote HP
3000 for determining your file access capabilities.

Following figure 4-1 are five annotated examples illustrating
remote device and file access from a local session.

y-2

‘FILE

SYNTAX
:FILE namespec [filechar)[disposition][filechar]
PARAMETERS
namespec Consists of the formal name used by the program and may
be equated to another file in the system. (REQUIRED
PARAMETER)
filechar A list of parameter specifying devicespec (the physical

description of the REC, DEV, ENV, DEN, DISC, CODE,
RIO, NORIO, STD, MSG, and CIR options) and access

(the type of access granted to a file).

disposition Specifies what is to be done with the file after it is closed.
This consists of the DEL,SAVE, and TEMP options.

SYNTAX FOR NAMESPEC

formaldesignator = *formaldesignator]

=§NULL

=§NEWPASS

=$OLDPASS

=$STDIN

=$STDINX

=$STDLIST

=filereference] [,JNEW B
[,ow]
,OLDTEMP

SYNTAX FOR FILECHAR

devicespec [access] [filechar)
access [devicespec)

Figure 4-1. MPE FILE Command (Pertinent Excerpts)

:FILE

SYNTAX FOR DEVICESPEC

GREC = [recsize] [, [blockfactor] [,[F] [, BINARY]1]]
[U][,ASCII]
[Vl
[;DEV = [[dsdevice] #][device][,[outpriority] [,numcopies]]]
[;ENV = [environment]]
[;DEN = [density]]
[;DISC = [numrec] [,numextents] [,initalloc]]]
[;CODE = [filecode]]

SYNTAX FOR ACCESS
;NOCCTL | [;NOMULTI |
;CCTL ;MULTI
;GMULTI _
(\
IN [;NOMR
[;ACC= { UPDATE 1] - -
OUTKEEP ‘WAIT
APPEND ;NOWAIT
| INoUT | - =
[;BUF [= [numbuffers]] [;NOLOCK |
| ;NOBUF | ;LOCK
;EXC [.NocopY |
;SHR ;COPY |
;EAR -
| ;SEMI
[;NOLABEL [;FORMS=formsmsg]
|;LABEL [= [volid] [, [type] [, [expdate][, seg]]]]

SYNTAX FOR DISPOSITION

;DEL]
[TEMP]
;SAVE]

Figure 4-1. MPE FILE Command (Pertinent Excerpts) (continued)

4-4

Command Access

Example #1

Assume that you are maintaining an ASCII file containing both
uppercase and lowercase characters using the Text Editor on your
HP 3000 but that you don't have an upper/lowercase line printer.
Assume further that elsewhere in the same building there is
another HP 3000 with an upper/lowercase line printer, that both
HP 3000s have DS capability, and that they are connected to one
another by an interconnecting cable and communications inter-
faces. You can access the remote line printer as follows.

First, the console operators of both computer systems OPEN the
line. Then, you log on to your HP 3000 and establish a communi-
cations link with the remote HP 3000.

:HELLO USER.ACCOUNT
:REMOTE HELLO RUSER.RACCOUNT;DSLINE=LINE2

where USER and ACCOUNT are valid user and account names (respec-
tively) within the accounting structure of your local HP 3000,
RUSER and RACCOUNT are valid user and account names (respective-
ly) within the accounting structure of the remote HP 3000, and
LINE2 is the device class name of the IODSO entry (or the node
name of the IODSX entry) for the local communications interface
to which the interconnecting cable is connected.

Next, issue a local MPE FILE command that defines the desired
line printer as a remote device.

+FILE LIST;DEV=LINE2#SLOWLP

where LIST is the formaldesignator by which you will subsequently
reference the line printer, LINE2 is the device class name you
used when establishing the particular communications link, the #
symbol tells the local file system that the next parameter
references a device on the remote system, and SLOWLP is the
device class name (as established within the remote HP 3000) of
the upper/lowercase line printer.

Command Access

Then, invoke the Text Editor of your local HP 3000, specifying
the remote line printer as the off-line listing device:

:EDITOR *LIST

Thereafter, direct the Text Editor offline output to the remote
upper/lowercase line printer as though it were connected directly
to your local HP 3000. For example, you could print the content
of the file TEXTFILE on the upper/lowercase line printer as
follows:

/TEXT TEXTFILE
/LIST ALL,OFFLINE

The entire command sequence is as follows (refer to Figure 4-2):

:HELLO USER.ACCOUNT
HP3000 / MPE IV C.00.04. TUE, AUG 3, 1982, 12:51 PM

WELCOME TO SYSTEM A.

:REMOTE HELLO RUSER.RACCOUNT;DSLINE=LINE2

DS LINE NUMBER = #L3
HP3000 / MPE IV C.00.04. TUE, AUG 3, 1982, 12:52 PM
WELCOME TO SYSTEM B.

:FILE LIST;DEV=LINE2#SLOWLP
:EDITOR *LIST

HP32201A.7.10 EDIT/3000 TUE, AUG 3, 1982, 12:53 PM
(C) HEWLETT-PACKARD CO. 1981

/TEXT TEXTFILE

/LIST ALL,OFFLINE

##% OFF LINE LISTING BEGUN. ##%

4-6

Command Access

SYSTEM A

DISC

TEXTFILE

SYSTEM B

Line 2

F~— ~ REMOTE
SESSION

Upper/Lower Case
Line Printer (SLOWLP)

Figure 4-2. Remote Off-Line Listing Example

4-7

Command Access

Example #2

Assume that there is a file named SOURCE residing on a disc con-
nected to a remote HP 3000 and that SOURCE contains a list of
clients sorted alphabetically by the clients’' names. Assume
further that the remote HP 3000 and your local HP 3000 both have
DSN/DS configured and that they are interconnected by a hardwired
connection. You wish to access the remote file SOURCE from your
local HP 3000, sort its content alphabetically by the names of
the states in which the clients reside, and store the sorted
version in a newly created disc file named SORTED on your local
HP 3000. You can do that (without disturbing the original con-
tent of SOURCE) as follows.

First, the console operators of both systems open the line to
make it available. Then, log on to your local HP 3000 and estab-
lish a communications link with the remote HP 3000.

+HELLO USER.ACCOUNT
:REMOTE HELLO RUSER.RACCOUNT ;DSLINE=LINE2

where USER and ACCOUNT are valid user and account names (respec-
tively) within the accounting structure of your local HP 3000,
RUSER and RACCOUNT are valid user and account names (respective-
ly) within the accounting structure of the remote HP 3000, and
LINE2 is the device class name of the local DSN/DS Communications
Driver (IODSO or IODSX) that is associated with the line you want
to use.

Next, issue a local MPE BUILD command to create the local disc
file SORTED that will receive the sorted output.

:BUILD SORTED;DISC=250,1,1;REC=-80,16,F,ASCII

Then, issue two local MPE FILE commands: one that defines the
remote disc file SOURCE as the sort input file and one that
defines the local disc file SORTED as the sort output file.

:FILE INPUT=SOURCE ;DEV=LINE2#DISC
:FILE OUTPUT=SORTED

4-8

Command Access

Then, invoke the Sort program, specify the sort key, and
initiate the actual sort.

:RUN SORT.PUB.SYS

>KEY 50,9
>END

Note that the sort is performed in your local HP 3000, using the
remote disc file SOURCE as the sort input file; the output of the
sort is stored in the local disc file SORTED; and the original
content of SOURCE is not altered.

The entire command sequence is as follows (refer to figure 4-3):

¢HELLO USER.ACCOUNT
HP3000 / MPE IV C.00.04. TUE, AUG 3, 1982, 12:51 PM

WELCOME TO SYSTEM A.

:REMOTE HELLO RUSER.RACCOUNT;DSLINE=LINE2

DS LINE NUMBER = #L3

HP3000 / MPE IV C.00.04. TUE, AUG 3, 1982, 12:52 PM
WELCOME TO SYSTEM B.

:BUILD SORTED;DISC=250,1,1;REC=-80,16,F,ASCII

:FILE INPUT=SOURCE ;DEV=LINE2#DISC

:FILE OUTPUT=SORTED
:RUN SORT.PUB.SYS

HP32214C.02.06 SORT/3000 TUE, AUG 3, 1982, 12:53 PM
(C) HEWLETT-PACKARD CO. 1980

>KEY 50,9
>END
STATISTICS

NUMBER OF RECORDS = 221
RECORD SIZE (IN BYTES) = 80
NUMBER OF INTERMEDIATE PASSES = 0
SPACE AVAILABLE (IN WORDS) = 13,346
NUMBER OF COMPARES = 45

4-9

Command Access

NUMBER OF SCRATCHFILE IO'S = 10
CPU TIME (MINUTES) = .01
ELAPSED TIME (MINUTES) = .1k

END OF PROGRAM

.
.

SYSTEM A SYSTEM B
DISC Line 2
- REMOTE
— SESSION
SORTED

DISC

Log-On Terminal SOURCE

Figure 4-3. SORT Remote File Access Example

4-10

Command Access

Example #3

Suppose that you want to copy a disc file from your local HP 3000
to a remote HP 3000. Assume a hardwired connection and DSN/DS is
configured. You can perform the file copy operation as follows.

First, both ends of the line must be opened by the console
operators. Then, you log on to your local HP 3000 and establish
a communications link with the remote HP 3000.

:HELLO USER.ACCOUNT
:REMOTE HELLO RUSER.RACCOUNT;DSLINE=LINE2

where USER and ACCOUNT are valid user and account names (respec-
tively) within the accounting structure of your local HP 3000,
RUSER and RACCOUNT are valid user and account names (respective-
ly) within the accounting structure of the remote HP 3000, and
LINE2 is the node name or the device class name of the local
IODSO that is associated with the line that you want to use.

Next, issue a local MPE FILE command defining the destination
file (REMFILE) as being a remote disc file.

:FILE REMFILE;DEV=LINE2#DISC

Then, invoke the File Copier and specify the file copy
parameters.

:RUN FCOPY.PUB.SYS
>FROM=LOCFILE ; TO=*REMFILE ; NEW

A new disc file named REMFILE is created in the home group of the
RACCOUNT account in the remote HP 3000 and the content of the
local disc file LOCFILE is then copied over the communications
line into REMFILE.

4-11

Command Access

The entire command sequence is as follows (refer to figure 4-U):

¢HELLO USER.ACCOUNT
HP3000 / MPE IV C.00.04. WED, MAR 3, 1982, 12:51 PM

WELCOME TO SYSTEM A.

:REMOTE HELLO RUSER.RACCOUNT;DSLINE=LINE2

DS LINE NUMBER = #L3
HP3000 / MPE IV C.00.04. WED, MAR 3, 1982, 12:52 PM
WELCOME TO SYSTEM B.

:FILE REMFILE ;DEV=LINE2#DISC
:RUN FCOPY.PUB.SYS

HP32212A.3.14 FILE COPIER (C) HEWLETT-PACKARD CO. 1981

>FROM=LOCFILE ; TO=*REMFILE ; NEW
EOF FOUND IN FROMFILE AFTER RECORD 2017

2018 RECORDS PROCESSED *** 0 ERRORS
>EXIT

END OF PROGRAM

h-12

B

Command Access

SYSTEM A
DISC
FCOPY
LOCFILE

Log-On Terminal

Line 2

SYSTEM B

~—_ REMOTE
SESSION

I
[
!
|
|
I
|
|
|
DISC

REMFILE

Figure 4-4. FCOPY Remote File Access Example

4-13

Command Access

Example #4

Assume that there is a COBOL source file named SOURCE1l residing
on a disc connected to a remote HP 3000 and that you want to
compile, prepare, and execute that program on your local HP 3000.
Assume further that the remote HP 3000 and your local HP 3000
both have DSN/DS configured and a hardwired interconnection. You
can locally compile, prepare, and execute the remote source file
as follows.

First, the console operators must open both ends of the DS line.
Then, log on to your HP 3000 and establish a communications link
with the remote HP 3000.

+HELLO USER.ACCOUNT
:REMOTE HELLO RUSER.RACCOUNT;DSLINE=LINE2

where USER and ACCOUNT are valid user and account names
(respectively) within the accounting structure of your local
HP 3000, RUSER and RACCOUNT are valid user and account names
(respectively) within the accounting structure of the remote
HP 3000, and LINE2 is the device class name of the local IODSO
entry associated with the line that you want to use.

Next, issue a local MPE FILE command defining the file SOURCEl as
being a remote disc file.

:FILE SOURCE1 ;DEV=LINE2#DISC

where LINE2 is the node name or the device class name that you

used when establishing the communications link and DISC is the

device class name (as established within the remote HP 3000) of
the disc on which SOURCEl resides.

Then, invoke the COBOL compiler and the Segmenter of your local

HP 3000, specifying the remote disc file SOURCE1l as the
inputfile.

:COBOLGO *SOURCE1l

h-14

Command Access

The content of the remote disc file SOURCEl is compiled, prepared
and executed in your local HP 3000.

The entire command sequence is as follows (refer to figure 4-5):

:HELLO USER.ACCOUNT
HP3000 / MPE IV C.00.04. WED, MAR 3, 1982, 12:51 PM

¢REMOTE HELLO RUSER.RACCOUNT;DSLINE=LINE2

DS LINE NUMBER = #L3
HP3000 / MPE IV C.00.04. WED, MAR 3, 1982, 12:52 PM

:FILE SOURCE1 ;DEV=LINE2#DISC
:COBOLGO *SOURCE1

PAGE 0001 HP322130.01.00 (C) HEWLETT-PACKARD CO. 1976
(SOURCE1 is now being compiled.)
DATA AREA IS %000341 WORDS.
CPU TIME = 0:00:01. WALL TIME == 0:00:07.
END COBOL/3000 COMPILATION. NO ERRORS. NO WARNINGS.
END OF COMPILE

(The compiled version of SOURCEl is now being
prepared by the MPE Segmenter.)

END OF PREPARE

(The compiled and prepared version of SOURCEl is
now being executed.)

END OF PROGRAM

4-15

Command Access

NOTE

Due to the amount of time and system resources required
for COBOL activity, this example (and also Example #5)
does not make efficient use of a DS line. The general
rule is to do the COBOL compile, preparation, and run
on the same system where the data resides. Sometimes
this means copying the data files to another system
before (or after) COBOL activity, rather than copying
across the line during the COBOL activity.

SYSTEM A SYSTEM B
Line 2
SESSION
Segmenter

User Program

DISC

Log-On Terminal SOURCE 1

Figure 4-5. COBOLGO Remote File Access Example

4-16

Command Access

Example #5

Assume that there is a COBOL source program named SOURCEl resid-
ing on a disc connected to a remote HP 3000 and that you want to
incorporate changes into the content of that file from a local
file named CHANGES, compile the updated source code on your local
HP 3000, and store a copy of the updated source code in a new
file named SOURCE1A on the disc connected to the remote HP 3000
Assume further that the remote HP 3000 and your local HP 3000
both have DS capability and a hardwired interconnection. You

can perform the update and compilation as follows:

First, log on to your HP 3000 and establish a communications link

with the remote HP 3000.

¢HELLO USER.ACCOUNT
:REMOTE HELLO RUSER.RACCOUNT;DSLINE=LINE2

where USER and ACCOUNT are valid user and account names
(respectively) within the accounting structure of your local
HP 3000, RUSER and RACCOUNT are valid user and account names
(respectively) within the accounting structure of the remote
HP 3000, and LINE2 is the device class name of the local IODSO
entry associated with the line that you want to use.

Next, issue two local MPE FILE commands: one that defines the
source file SOURCEl1 as being a remote disc file and one that
defines the file SOURCE1lA as a new remote disc file.

+FILE SOURCE1;DEV=LINE2#DISC
:FILE SOURCE1A,NEW;SAVE;DEV=LINE2#DISC

where LINE2 is the node name or the device class name you used
when establishing the particular communications link, DISC is the
device class name (as established within the remote HP 3000) of
the disc on which SOURCEl resides and SOURCE1lA will reside, and
NEW;SAVE specifies that SOURCE1lA is to be a new permanent file.

h-17

Command Access

Then, invoke the local COBOL compiler, specifying the local disc
file CHANGES as the update input file (textfile), the remote disc
file SOURCEl as the source input file (masterfile), and the
remote disc file SOURCE1A as the updated source file (newfile).

:COBOL CHANGES, ,,"SOURCE1, *SOURCE1A

The source code in the remote disc file SOURCEl is updated by the
content of the local disc file CHANGES, a new permanent disc file
named SOURCELA is created in the remote HP 3000, and the
resultant source code is stored in the remote disc file SOURCE1A.
Note that the updating operation is performed by the COBOL
compiler in your local HP 3000.

The entire command sequence is as follows (refer to figure 4-6):

¢HELLO USER.ACCOUNT
HP3000 / MPE IV C.00.04. WED, MAR 3, 1982, 12:51 PM

:REMOTE HELLO RUSER.RACCOUNT;DSLINE=LINE2

DS LINE NUMBER = #L3
HP3000 / MPE IV C.00.04. WED, MAR 3, 1982, 12:52 PM
:FILE SOURCE1;DEV=LINE2#DISC

:FILE SOURCE1A,NEW;SAVE ; DEV=LINE2#DISC
:COBOL CHANGES, , , "SOURCEL, "SOURCE1A

PAGE 0001 HP322130.01.00 (C) HEWLETT-PACKARD CO. 1976
(SOURCE1 is now being updated and compiled.)
DATA AREA IS %000341 WORDS.
CPU TIME = 0:00:01. WALL TIME = 0:00:17.
END COBOL/3000 COMPILATION. NO ERRORS. NO WARNINGS.

END OF COMPILE

4-18

Command Access

SYSTEM A R SYSTEMB
Line 2

T b———|- — = P T~~ REMOTE
| SESSION

|
|
|
|

CHANGES

Log-On Terminal

SOURCE 1A SOURCE 1

Figure 4-6. COBOL Remote File Access Example

NOTE

Many aspects of system resources (for example, memory
size, CPU load, type of CPU load, time quantums, etc.)
affect how COBOL activities (and also remote data base
access activities) are conducted in a DSN/DS environ-
ment. In general, it is more efficient to transfer
data, USL, and SL files before or after (but not during)
COBOL activity.

4-19

Programmatic Access

PROGRAMMATIC ACCESS

Once a DSN/DS communications link has been established between
your HP 3000 and a remote HP 3000, you can use the standard set
of MPE File System intrinsics within your local programs to
access devices and/or files residing at the remote HP 3000 site.
To make this possible, the format of the byte array referenced by
the device parameter of the MPE FOPEN intrinsic has been expanded
to include a DS line specification in addition to the usual
device specification. The format of the device byte array is as
follows:

dsdevice# [device]

where dsdevice is the device class name, logical device number,
or node name that you used when establishing the particular
communications link (this specifies the physical line connecting
the two computers) and device is the device class name or logical
device number of the desired remote device as established within
the remote HP 3000.

The full syntax for the MPE FOPEN intrinsic is presented in
figure 4-7. However, for conciseness, only the "device"
parameter specifications are shown in figure 4-8. (For a
complete presentation of all FOPEN intrinsic parameters, refer to
the MPE Intrinsics Reference Manual.) The addition of
“dsdevice#" to the format of the byte array referenced by the
device parameter has enormously powerful implications. It means
that programs executing in your local HP 3000 can easily access
any of the devices and/or disc files of a remote HP 3000 as
though they resided at your local HP 3000 site. Access to remote
files is, of course, subject to the usual MPE file security. The
user, account, and group names that you specified in the REMOTE
HELLO command when establishing the communications link are the
ones used by MPE in the remote HP 3000 for determining your file
access capabilities.

On the pages following figures 4-T and 4-8, an annotated example
illustrates remote device and file access from a local program
running within a local session.

The Condition Codes for the various MPE File System intrinsics
retain their normal meanings. .Any communications line errors
will return a CCL. In the event of an error, you can call the
MPE FCHECK intrinsic to determine what happened. . When using the
MPE File System intrinsics for remote file access, the Message
Block B (File System) error codes apply to the remote file. You
may also use the MPE PRINTFILEINFO intrinsic to display the
status of a remote file.

4-20

)

FOPEN Intrinsic

I BA Lv Lv Iv

filenum:=FOPEN(formaldesignator,foptions,aoptions,recsize,

BA BA Iv Iv

device,formmsg,userlabels,blockfactor,

Iv DV v v

numbuffers,filesize ,numextents,initalloc,

Iv o-v

filecode);

Figure 4-7. MPE FOPEN Intrinsic Syntax

4-21

FOPEN Intrinsic

device

byte array (optional)

Contains a string of ASCII characters term-
inating with any non-alphanumeric character
except a slash or period, designating a local
or remote device on which the file is to
reside. For a local device the string may
represent a device class name up to eight
alphanumeric characters beginning with a
letter or a logical device number consisting
of a three-byte numeric string. For a remote
device the string may represent a DS line
identifier (the device class name, logical
device number, or node name that you used when
establishing the particular communications
link) followed by a # followed by the device
class name or logical device number of the
desired remote device.

The format of the array referenced by device
is as follows:

dsdevicefdevice

where dsdevice is the device class name,
logical device number, or node name that you
used when establishing the particular
communications link (this specifies the
rhysical line connecting the two computers).
The dsdevice class names and logical device
numbers are defined and assigned to devices
and communications interfaces during system
configuration. Node names are defined in a
Network Configuration data base, where each
name is logically associated with a
communications interface and a remote node
address.

... and where device is the device class name
or logical device number of the desired remote
device as established within the remote HP
3000. If the file is a newly-created disc
file and the device specification is a device
class, then all extents of the file are
restricted to members of the class.

Similarly, if the device specification is a
logical device number, then all extents are
restricted to the specified logical device.

Default: Local DISC and remote DISC.

Figure 4-8.

Pertinent Parameter for MPE FOPEN Intrinsic

4-22

Programmatic Access

Example

The following program illustrates how remote files can be
accessed by using file system intrinsics.

$CONTROL USLINIT,ADR,MAP,CODE
BEGIN
INTEGER

A,

I:=-1,

RDISCNUM,

RLPNUM;

BYTE ARRAY RMTLP'FILNAM(0:3):="RLP ";
BYTE ARRAY RLPDEV(0:11);

BYTE ARRAY RMTDISC'FILNAM(0:5):="RDISC ";
BYTE ARRAY MSG(0:71);

BYTE ARRAY RDISCDEV(0:11);

LOGICAL ARRAY LMSG(*)=MsSG;
INTRINSIC PRINT,READ,FOPEN,FWRITEDIR,FREADDIR,FWRITE ,FCLOSE;
<<BEGIN OUTER BLOCK>>

MOVE MSG:="INPUT REMOTE DISC DEVICE CLASS NAME “;
PRINT (MSG,-35,0);

MOVE MSG:="IN THE FORM .. DSDEVICE#DISCDEV ";
PRINT (MSG,-31,0);

A:=READ(LMSG,-12);

MOVE RDISCDEV:=MSG, (A);

MOVE MSG:="INPUT REMOTE LP DEVICE CLASS NAME ";
PRINT(MSG,-33,0);

MOVE MSG:="IN THE FORM .. DSDEVICE#LPDEV ";
PRINT(MSG,-29,0);

A:=READ(LMSG,-12);

MOVE RLPDEV:=MSG, (4);

MOVE MSG:="OPENING REMOTE DISC FILE ";
PRINT(MSG,-24,0);
RDISCNUM: =FOPEN (RMTDISC 'FILNAM,4,%104,-80,RDISCDEV) ;
<<NEW,ASCII>>
IF <> THEN
BEGIN
MOVE MSG:="COULD NOT OPEN REMOTE DISC FILE ";
PRINT (MSG,-31,0);
GO TO OUT;
END;

4-23

Programmatic Access

MOVE MSG:="WRITING TO REMOTE DISC FILE "; <<INITIALIZE DISC
FILE>>

PRINT(MSG, -27,0)

MOVE MsSG:=" ";

MOVE MSG(1):=MSG(0),(71);

WHILE (I:=I+1) <10 DO
BEGIN
MOVE MSG:="REMOTE FILE ACCESS TEST “;
FWRITEDIR(RDISCNUM,LMSG,36,DOUBLE(I)); <<RECORD TO BE
WRITTEN>>
IF <> THEN
BEGIN
MOVE MSG:="ERROR WHEN WRITING TO REMOTE DISC ";
PRINT (MsSG,-33,0);
GO TO OUT;
END;
END;

MOVE MSG:="OPENING REMOTE LP FILE ";
PRINT(MSG,-22,0);
RLPNUM: =FOPEN (RMTLP 'FILNAM, 4,1, ,RLPDEV) ;
IF <> THEN
BEGIN
MOVE MSG:="COULD NOT OPEN REMOTE LP FILE “;
PRINT (MSG,-29,0);

END;
I:=-1; <<READING REMOTE DISC>>
WHILE (I:= + 1) < 10 DO
BEGIN
FREADDIR (RDISCNUM, LMSG,36 ,DOUBLE(I));
IF <> THEN
BEGIN
MOVE MSG:="COULD NOT READ REMOTE DISC FILE ";
PRINT(MSG,-31,0);
END;
FWRITE (RLPNUM,LMSG,36,0);
IF <> THEN
BEGIN
MOVE MSG:="COULD NOT PRINT TO REMOTE LP FILE ";
PRINT (MSG, -34,0);
END;
END;
OouT;
END.

4-24

)

PROGRAM-TO-PROGRAM
COMMUNICATIONS || v

In the preceding sections, you have seen how you can establish
communications links between several HP 3000 computers to form a
telecommunications network and how you can execute programs in
any of the HP 3000s from a single log-on terminal. Furthermore,
you have seen that programs running within any HP 3000 in the
network can, under the proper circumstances, obtain access to any
of the hardware or software resources available throughout the
network. At this point, you already have a powerful telecommuni-
cations network capability at your disposal. But if you stopped
here, there would be some very important features missing --
features that make DSN/DS a complete teleprocessing tool.

For most teleprocessing applications, it is essential that
separate user programs be able to be run simultaneously in
separate computers within the network and that they be able to
communicate efficiently with one another.

Two capabilities answer that need: DSN/DS Program-to-Program
(PTOP) Communications (described in this section) and Inter-
process Communications (IPC) (described in Section VII).

You might ask, "Why can't the normal process-handling capabili-
ties of MPE be used for this purpose?” As you probably recall,
the process-handling capabilities of MPE permit a user process
(referred to as the "father" process), to create and activate one
or more 'son" processes that then run concurrently with the
father process. Father and son processes can communicate
efficiently with one another through the use of the SENDMAIL
intrinsics, shared extra data segments, or a shared user file.
Unfortunately, however, the process-handling capabilities of MPE
were designed for use within a single processor. They cannot
handle the intervention of a communications line between father
and son processes.

Suppose you were to log on to an HP 3000, gain access to a DS
line, and initiate a remote session. Within the local session,
you use a STREAM command to initiate the execution of a program
named PROGA; and within the remote session, you use a STREAM
command to initiate execution of a program named PROGB. You now
have two programs executing simultaneously: PROGA in your local
HP 3000 and PROGB in the remote HP 3000.

5-1

PTOP Communications

At this point, the two programs are entirely independent of one
another: neither knows the other exists. If you add a
sharedaccess disc file to the situation, PROGA and PROGB can now
read from and write to that file, and thereby communicate
indirectly with one another. This arrangement works well as long
as the data being deposited in the shared file does not have to
be retrieved, processed, and responded to within a finite period
of time,

There are teleprocessing applications where this type of
arrangement is not only adequate but makes a great deal of sense.
For example, consider the case where a branch office is
accumulating information that must be merged once a day into a
data base residing at the main office. In this case, the two
programs can make very effective use of the message file
approach.

As soon as an application tries to be truly interactive, however,
this arrangement falters because the two programs cannot
communicate directly. Each must know whether or not the other
program is trying to transmit data. The more dependent each
program is upon receiving data from the other, the more likely it
is that PTOP should be used for the application. A

With the remote file access method of program-to--program
communication, the two programs had no way of knowing if the
other program was actually executing. With the POPEN intrinsic,
the master program knows that the slave program is executing,
because it created and activated the slave program's process.
Likewise, the slave program knows that the master program is
executing, because without an active corresponding master
program, the slave itself would not be executing.

The DSN/DS program-to-program communications facility provides
nine intrinsics that make it possible for two or more user
programs residing in separate HP 3000s to exchange data and
control information directly (and efficiently) over DSN/DS
communications links.

The nature of any two programs that are communicating with one
another in this manner is not symmetrical. One of them (referred
to as the "master" program) is always in control and is the one
that initiates all activity between the two programs. The other
(referred to as a “slave" program) always responds to requests
received from the master. Those intrinsics used within a master
program are summarized in table 5-1, and those used within a
slave program are summarized in table 5-2.

5-2

PTOP Communications

Table 5-1. Master Program-to-Program Intrinsics
Intrinsic
Name Function

POPEN Initiates and activates a slave process
in a remote HP 3000 and initiates
program-to-program communication with the
slave program.

PREAD Sends a read request to the remote slave
program asking the slave to send a block
of data back to the master.

PWRITE Sends a block of data to the remote slave
program.

PCONTROL Transmits a tag field (containing user-
defined control information) to the
remote slave program and receives a tag
field back from the slave.

PCLOSE Terminates (kills) the remote slave
program's process.

PCHECK Returns an integer code specifying the

completion status of the most recently
executed master program-to-program
intrinsic.

5-3

PTOP Communications

Table 5-2. Slave Program-to-Program Intrinsics

Intrinsic
Name Function

GET Receives the next request from the remote
master program.

ACCEPT Accepts (and completes) the request
received by the preceding GET intrinsic
call.

REJECT Rejects the request received by the
preceding GET intrinsic call.

PCHECK Returns an integer code specifying the
completion status of the most recently
executed slave program-to-program
intrinsic.

Conceptually, the DSN/DS program-to-program intrinsics are very
similar to the MPE process handling and file system intrinsiecs
that are used for process-to-process communication within a
single-system environment. Table 5-3 compares the intrinsics
used for process-to-process communication within a single-system
environment- to those used for program-to-program communication
within a distributed systems environment.

PTOP Communications

Table 5-3. Single System / Distributed Systems Comparison
Function Single System Distributed Systems
(Process Handling) (Program-to-Program)
Initiate CREATE POPEN
another ACTIVATE
process.
Communi- Mail Intrinsics: Master (father) Requests:
cate with
the other SENDMAIL PREAD
process. RECEIVEMAIL PWRITE
PCONTROL
. PCHECK
User Managed Extra Slave (son) Responses:
Data Segment:
GET
GETDSEG ACCEPT
DMOVEIN REJECT
DMOVEOUT PCHECK
Shared User File:
FOPEN
FREAD
FWRITE
FCONTROL
FCLOSE
FCHECK
Terminate Father: Master (father):
the other
process. KILL (a son) PCLOSE (a slave)

TERMINATE (self
and all sons)

TERMINATE (self
and all slaves)

5-5

PTOP Communications

When a DSN/DS communications link exists between two HP 3000s, a
user program (the master program) can create and activate a son
process (a slave program) in the remote HP 3000. The POPEN
intrinsic performs this function, in place of the standard MPE
CREATE and ACTIVATE intrinsics.

After the master and slave programs are both executing, the
master program can:

e Send data (PWRITE) or control information (PCONTROL) directly
to the slave program

e Send a read request (PREAD) or control request (PCONTROL) to
the slave program asking that the slave send data or control
information back to the master

e Check status (PCHECK) and terminate (PCLOSE) a slave program.

Notice the striking similarity between this method of
communication and the use of the MPE File System intrinsics FREAD
and FWRITE. It is as though the master program is reading from
or writing to a file -- a very intelligent file that is capable
of making decisions, controlling input/output devices, and
performing productive processing.

5-6

PTOP Communications

PTOP INTRINSICS

The following pages contain detailed descriptions of the PTOP
intrinsics that were summarized in tables 5-1 and 5-2. For
convenience in locating specific items of information in this
reference section, these detailed descriptions are presented in a
format consistant with that used in the MPE Intrinsics Reference
Manual. Also, since this part of the section will be used for
repeated reference, the intrinsics are arranged in alphabetical
sequence, rather than in the order of normal usage as they were
presented in the summary tables.

To call a DSN/DS PTOP intrinsic from an SPL program, use the
following procedure:

1. Refer to the intrinsic description to determine the
parameter types and their positions in the parameter list.

2. Declare the variables or array names to be passed as
parameters by type at the beginning of the program.

3. Include the name of the PTOP intrinsic in an INTRINSIC
declaration statement.

4. 1Issue the intrinsic call at the appropriate place in your
program.

5-7

ACCEPT

(Slave callable) Accepts (and completes) the

request received by the pre-
ceding GET intrinsic call and
returns an optional tag field
back to the remote master
program.

IA IA Iv o-v

ACCEPT(itag,target,tcount);

PARAMETERS

itag

target

tcount

integer array (optional)

A twenty-word array used for transmitting a tag
field. The format of the tag field is defined by
the user's master and slave programs.

integer array (optional)

An array used for transmitting or receiving blocks
of data.

For PREAD requests, this array contains the block
of data to be transmitted to the master program.

For PWRITE requests, this array receives the block
of data from the DSN/DS buffer.

For POPEN and PCONTROL requests, this parameter
has no meaning and should be omitted.

integer by value (optional)

An integer specifying the number of words (if

positive) or bytes (if negative) to be transmitted
or received.

5-8

ACCEPT Intrinsic

For PREAD requests, this parameter specifies how
much data is to be transmitted from target to the
master program.

For PWRITE requests, this parameter specifies how
much data is to be moved from the DSN/DS buffer to
target.

For POPEN and PCONTROL requests, this parameter
has no meaning and should be omitted.

CONDITION CODES

CCE Request completed successfully.
CCG (Not returned.)
CCL An error occurred. Issue a PCHECK intrinsic call

to determine what happened.

OPERATION

The ACCEPT intrinsic accepts the request received by the most
recent GET intrinsic call, completes the requested operation, and
transmits an optional tag field back to the remote master

program.

In the case of a POPEN request, the ACCEPT call transmits an
optional tag field (itag) to the remote master program.

In the case of a PREAD request, the ACCEPT call transmits the
gspecified number of words or bytes (tcount) from target to the
master program and transmits an optional tag field (itag) to the
master program.

In the case of a PWRITE request, the ACCEPT call moves the
specified number of words or bytes (tcount) from the DSN/DS
buffer to target and transmits an optional tag field (itag) to
the master program.

In the case of a PCONTROL request, the ACCEPT call transmits an
optional tag field (itag) to the remote master program.

5-9

GET

(Slave callable) Receives the next request from

the remote master program.

I IA I I 0-V

ifun:=GET(itag,il,ionumber);

FUNCTIONAL RETURN

When the GET intrinsic executes, it returns to the slave program
a number (ifun) specifying what type of request was received from
the remote master program, as follows:

ifun

0

N

AN L B — VA]

An error occurred. This value is returned only
when the condition code CCL is also returned.
Issue a PCHECK intrinsic call (with a dsnum
parameter of zero) to determine what happened.

POPEN request received.

PREAD request received.

PWRITE request received.

PCONTROL request received.

This value is returned only when the condition
code CCG is also returned. It indicates that a
pending MPE File System I/0 without wait request
was completed (instead of the expected remote

DSN/DS 1I/0 request). ionumber contains the file
number associated with the completed I/0 request.

5-10

'J

GET Intrinsic

PARAMETERS

itag

il

ionumber

integer array (optional)

A twenty-word array used for receiving a tag
field. The format of the tag field is defined by
the master and slave programs.

integer (optional)

A word that has meaning only when a PREAD or
PWRITE request is received from the master
program.

For a PREAD request, il contains an integer
specifying the number of words or bytes requested
by the master program.

For a PWRITE request, il contains an integer
specifying the number of words or bytes
transmitted from the master program to the DSN/DS
buffer on the remote system.

integer (optional)

A word that has meaning only when the condition

code CCG and an ifun of 5 are returned. In that
case ionumber contains the MPE File System file

number associated with the completed I/0 without
wait request.

Default: No file number is returned.

CONDITION CODES

CCE

CCG

CCL

Request received successfully.

The implicit IOWAIT(0) call issued by the GET
intrinsic completed a pending MPE File System 1/0
without wait request instead of a DSN/DS remote
I/0 request. ionumber contains the file number
associated with the completed File System request.

An error occurred. Issue a PCHECK intrinsic call
to determine what happened.

5-11

GET Intrinsic

OPERATION

The GET intrinsic receives the next request from the remote
master program and accepts an optional tag field (available in
itag). The GET intrinsic call implicitly issues an IOWAIT(O)
intrinsic call. An ifun of 0 indicates that an IOWAIT error
occurred. An ifun of 5 will occur only if you are executing MPE
File System intrinsic calls without wait in your program and the
implicit IOWAIT(0) call completes a pending File System I/O
request instead of the expected DSN/DS remote I/O request (in
this case you will have to issue another GET call after
processing the completed File System I/O request in order to
receive the expected DSN/DS remote I/0 request).

NOTE

You must not use IOWAIT(0) calls within a program
containing DSN/DS GET calls. If you were to use an
IOWAIT(0) call and it responded to a DSN/DS remote I/O
request, your program would not be able to make any sense
out of the information returned by the IOWAIT call.

5-12

PCHECK

Returns an integer code speci- (Slave and Master callable)
fying the completion status of

the most recently executed

DSN/DS program-to-program in-

trinsic.

I v

icode:=PCHECK(dsnum);

FUNCTIONAL RETURN

When the PCHECK intrinsic is executed, it returns to the
calling program a number (icode) that specifies the completion
status of the most recently executed DSN/DS program-to-
program intrinsic. The various values of icode are shown in
Appendix B under the heading "DSN/DS Functional Errors"”.

PARAMETERS

dsnum integer by value (required)

MASTER PROGRAM: The 1link identifier returned
by the particular POPEN in-
trinsic that initiated commun-
ication with the remote slave
program.

SLAVE PROGRAM: 0 (zero); no link identifier
is returned to a slave
program.

5-13

PCHECK Intrinsic
CONDITION CODES

CCE PCHECK request successfully completed.

ccaG (Not returned.)

CCL PCHECK request denied because dsnum was invalid.
OPERATION

The PCHECK intrinsic returns an integer value that specifies the
completion status of the most recently executed DSN/DS program-
to-program intrinsic.

5-14

PCLOSE

Terminates program-to-program (Master callable)
communication with a remote
slave program.

Iv

PCLOSE (dsnum) ;

PARAMETERS

dsnum integer by value (required)
The line number returned by the particular POPEN

intrinsic call which initiated communication with
the remote slave program.

CONDITION CODES

CCE Successful completion.
o0/} (Not returned.)
CCL Request denied; an error occurred. Issue a PCHECK

intrinsic call to determine what happened.

OPERATION

The PCLOSE intrinsic terminates the remote slave process
associated with dsnum. The particular communications line
remains open.

5-15

PCONTROL

(Master callable) Exchanges tag fields with the

remote slave program.

Iv IA 0-V

PCONTROL (dsnum, itag) ;

PARAMETERS

dsnum

itag

integer by value (required)

The link identifier returned by the particular
POPEN intrinsic call which initiated communication
with the remote slave program.

integer array (optional)

A twenty-word array used for transmitting and
receiving a tag field. The format of the tag
field is defined by the master and slave programs
and may serve any purpose you desire.

CONDITION CODES

CCE

CCG

CCL

Request accepted by remote slave program.
Request denied by remote slave program.

Request denied; an error occurred. Issue a PCHECK
intrinsic call to determine what happened.

5-16

&

A

PCONTROL Intrinsic

OPERATION

The PCONTROL intrinsic transmits a tag field to the remote slave
program and accepts one in return. The remote slave program must
issue a GET intrinsic call followed by either an ACCEPT or REJECT
call to complete the PCONTROL operation. Both the ACCEPT and
REJECT calls transmit a tag field back to the master program.

Although this intrinsic was designed specifically for the
exchanging of tag fields, you will notice that itag is an
optional parameter (it is also optional for the ACCEPT and REJECT
slave program-to-program calls). If the master program did not
transmit a tag field, the returned tag field (if any) is not
accessible.

The PCONTROL activity is illustrated in figure 5-1.

MASTER SLAVE
Send control request and optional
tag field.

PCONTROL,

GET DSN/DS

BUFFER

Send optional
tag fisld,

ACCEPT

or

REJECT

Figure 5-1. PCONTROL Activity

5-17

POPEN

(Master callable) Initiates program-to-program
communication with a remote
slave program.

I BA BA 1A BA Iv

dsnum:=POPEN(dsdevice,progname, itag,entryname,param,

LV v v Iv Iv o-V.

flags,stacksize,dlsize,maxdata,bufsize);

FUNCTIONAL RETURN

When the POPEN intrinsic executes, it returns to the master
program a number (dsnum) by which DSN/DS uniquely identifies the
particular communications link. This number is analagous to the
file number returned by the MPE FOPEN intrinsic in <that it is
used in all subsequent master program-to-program intrinsic calls
to reference the remote slave program.

PARAMETERS

dsdevice byte array (required)

Contains a string of ASCII characters terminated
by a space. This string must be the device class
name, logical device number, or node name used in
the DSLINE or REMOTE HELLO command that opened the
communications line you will be using.

progname byte array (required)

Contains a string of ASCII characters terminated
by a space. This string is the name (with optional
group and account names) of an MPE program file
(residing on a disc connected to the remote HP
3000) containing the remote slave program.

5-18

itag

entryname

param

flags

POPEN Intrinsic

integer array (optional)

A twenty-word array that is used for transmitting
and receiving tag fields. The format of the tag
field is defined as part of the user's
application.

Default: A tag field of all zeros is sent; the
returned tag field (if any) is not
available to the master program.

byte array (optional)

Contains a string of ASCII characters terminated

by a space. This string is the name of the entry

point (label) at which execution of the remote

slave program is to begin.

Default: Primary entry point.

integer by value (optional)

A word used to transfer control information to the
new (remote) process. Any instruction in the
outer block of code in the new process can access
this information in location Q-U.

Default: Word is filled with zeros.

logical by value (optional)

A word whose bits, if on, specify the loading
options for the slave program:

NOTE

Bit groups are denoted using the standard
SPL notation. Thus bit (15:1) indicates
bit 15, bits (10:3) indicates bits 10,11,
and 12.

Bit(15:1) - (Always set on.)

Bit(1k4:1) - LOADMAP bit. If on, a 1listing of
the allocated (loaded) program is produced on
the job/session list device. This map shows
the Code Segment Table (CST) entries used by
the new process. If off, no map is produced.

Default: Off.

5-19

POPEN Intrinsic

Bit(13:1) - DEBUG bit. Bit must be off (0) --
no breakpoint can be set.

Default: Off.

Bit(12:1) - If on, the slave program is loaded
in non-privileged mode. If this bit is off,
the program is loaded in the mode specified
when the program file was prepared.

Default: Off.

Bits(10:2) - LIBSEARCH bits. These bits denote
the order in which remote libraries are to be
searched for the slave program:

00 - System Library.

01 - Account Public Library, followed by System
Library.

10 - Group Library, followed by Account Public
Library and System Library.

Default: 00.

Bit(9:1) - NOCB bit. If on, file system control
blocks are established in an extra segment. If
off, control blocks may be established in the
Process Control Block Extension (PCBX) area.

Default: Off.

NOTE

This bit should be set on if the slave
program uses a large stack. :

Bits(7:2) - Reserved for MPE. Should be set to
zero.

Bits(5:2) - STACKDUMP bits. Bits must be off
(00).

Default: 00

Bit(4:1) - Reserved for MPE. Should be set to
Zero.

5-20

stacksize

dlsize

maxdata

POPEN Intrinsic

NOTE

The following bits (0:4) are ignored,
because the bit pair (5:2) must be 00.

Bit(3:1) - DL to QI bit. If on, the portion of
the stack from DL to QI is dumped. If off, this
portion of the stack is not dumped.

Default: Off.

Bit(2:1) - QI to S bit. If on, the portion of
the stack from QI to S is dumped. If off, this
portion of the stack is not dumped.

Default: Off.

Bit(1:1) - Q-63 to S bit. If on, the portion of
the stack from Q-63 to S is dumped. If off,
this portion of the stack is not dumped.

Default: Off

integer by value (optional)

An integer (2 - Q) denoting the number of words
assigned to the local stack area bounded by the
initial Q and Z registers.

Default: The same as that specified in the program
file.

integer by value (optional)

An integer (DB - DL) denoting the number of words
in the user-managed stack area bounded by the DL
and DB registers.

Default: The same as that specified in the program
file.

integer by value (optional)

The maximum size allowed for the process' stack

(2-DL) area in words. When specified, this value

overrides the one established at program-
preparation time.

5-21

POPEN Intrinsic

Default: If not specified, and not specified in
program file either, MPE assumes that
the stack will remain the same size.

bufsize integer by value (optional)

The size in words of the communications buffer
(DSN/DS buffer) that is to be established by the
remote DSN/DS software. Note that this parameter
defines the maximum number of words of data that
can be transmitted by a PWRITE or PREAD intrinsic
call.

Default: Same size as the line buffer defined by
the DSLINE command (LINEBUF=) for the
first DSLINE issued to the dsdevice.
Will never be smaller than 304 words.

If no LINEBUF= is specified by the first

DSLINE command, then the default
configuration length is used.

CONDITION CODES

CCE Request accepted by remote slave program.
CCG Request rejected by remote slave program.
CCL Request denied; an error occurred. Issue a PCHECK

intrinsic call to determine what happened.

OPERATION

The POPEN intrinsic creates and activates a process in the remote
HP 3000 for the specified remote slave program (progname) and
optionally transmits a tag field (itag) to that remote slave
program. The remote slave program must issue a GET intrinsic
call followed by either an ACCEPT or REJECT call to complete the
POPEN operation. The remote slave program may transmit a tag
field back to the master program as part of an ACCEPT or REJECT
call. If the master program transmitted a tag field, then the
returned tag field (if any) is available in itag. If the master
program did not transmit a tag field, then the returned tag field
(if any) is not accessible.

5-22

POPEN Intrinsic

The bufsize parameter specifies the length in words of an area to
be established by the remote DSN/DS software as a communications
buffer. This buffer is established implicitly as part of the GET
call that receives the POPEN request.

NOTE

The master program is limited to one
slave program on each line. Thus,
only one POPEN (to a given node) is
permitted. After a POPEN intrinsic
call, the remote slave program
remains activated, and both the
communications link and the DSN/DS

buffer remain intact, even if the
POPEN request is rejected by the re-
mote slave program. The meaning of a
POPEN reject by the remote slave
program must be established as part
of the design of the user's applica-
tion.

The POPEN activity is illustrated in figure 5-2.

1) Create and activate a process for
the remote slave program,

2) Send optlona) tag flsld.
MASTER SLAVE

3} Send DSN/DS buffer size.

POPEN

éET

{establish the DSN/DS DSN/DS
communications buffer) BUFFER

Send optional
ag fisld.

ACCEPT

or

REJECT

Figure 5-2. POPEN Activity

5-23

PREAD

(Master callable) Asks the remote slave program
to send a block of data.

I v IA IV 1IA o-v

1gth:=PREAD(dsnum,target,tcount,itag);

FUNCTIONAL RETURN

The PREAD intrinsic returns a positive integer value showing the
length of the information transferred. If the tcount parameter
in the PREAD call was positive, the positive value returned
represents a word count; if the tcount parameter was negative,
the positive value returned represents a byte count.

PARAMETERS

dsnum integer by value (required)
The link identifier returned by the particular
POPEN intrinsic call which initiated communication
with the remote slave program.

target : integer array (required)
The array into which data received from the remote
slave program will be deposited.

tcount integer by value (required)

The requested number of words (if positive) or
bytes (if negative) of data.

5-2Y

PREAD Intrinsic

itag integer array (optional)

A twenty-word array used for transmitting and
receiving a tag field. The format of the tag
field is defined by the master and slave programs
and may serve any purpose the user desires.

CONDITION CODES

CCE Request accepted by remote slave program.
ccG Request denied by remote slave program.
CCL Request denied; an error occurred. Issue a PCHECK

intrinsic call to determine what happened.

OPERATION

The PREAD intrinsic transmits a read request to the remote slave
program and optionally transmits a tag field from itag to the
remote slave program. The remote slave program must issue a GET
intrinsic call followed by either an ACCEPT or REJECT call to
complete the PREAD operation. The GET call moves the tag field
from the master program into the itag field provided in the
remote slave program. The ACCEPT call moves the requested block
of data from the remote program's data buffer into the target in
the master program, and it also sends the optional itag back to
the master program. The REJECT call transmits no data; it only
returns the optional tag field. If the master program did not
transmit a tag field, the returned field (if any) is not
accessible.

The PREAD activity is illustrated in figure 5-3.

5-25

PREAD Intrinsic

MASTER SLAVE
PREAD u
Send read requsst, optional
tag field, and data. .
TARGET GET
Send
USER’S optional
BUFFER e —— Ltag fietd.
- ACCEPT
S~ (Send data from user's
Dam~ buffer to remote master
Arg, - program)
~ ~J
F~~— USER'S
S~ ——a———|--1 BUFFER
or
REJECT
{no data transmitted)
Figure 5-3. PREAD Activity

5-26

PWRITE

Sends a block of data to the (Master callable)
remote slave program.

v IA IV IA 0-v

PWRITE (dsnum,target,tcount,itag);

PARAMETERS

dsnum

target

tcount

itag

integer by value (required)

The link identifier returned by the particular
POPEN intrinsic call which initiated communication
with the remote slave program.

integer array (required)

The array from which data will be transmitted to a
remote slave program.

integer by value (required)

The requested number of words (if positive) or
bytes (if negative) of data.

integer array (optional)

A twenty-word array used for transmitting and
receiving a tag field. The format of the tag

field is defined by the master and slave programs
and may serve any purpose the user desires.

CONDITION CODES

CCE

CCG

CCL

Request accepted by remote slave program.
Request denied by remote slave program.
Request denied; an error occurred. Issue a PCHECK

intrinsic call to determine what happened.

5-27

PWRITE Intrinsic

OPERATION

The PWRITE intrinsic transmits a block of data (number of words =
tcount) from target to the DSN/DS buffer in the remote HP 3000,
transmits a write request to the remote slave program, and
optionally transmits a tag field from itag to the remote slave
program. The remote slave program must issue a GET intrinsic call
followed by either an ACCEPT or REJECT call to complete the
PWRITE operation. The GET call moves the tag field from the
master program into the itag field provided in the remote slave
program, and it also moves the data across the line into the
DSN/DS data buffer. The ACCEPT call moves the data from the
remote DSN/DS buffer into the remote slave program's buffer, and
it also sends the optional itag back to the master program. The
REJECT call refuses the write request (the data in the DSN/DS
buffer is no longer accessible to the slave program) and returns
the optional tag field to the master program.

The PWRITE activity is illustrated in figure 5-4.

S ———— e ———— e —————— e e ~
{ 1
! PWRITE : L
| Send write request, optional| .
! tag field, and data, . DSN/DS
: GET BUFFER
Cd
USER'S SLAVE . P
BUFFER ,/
. ACCEPT y
TARGET {data moved from DSN/DS' ‘/
MASTER Send optional buffer to user’s buffer)

tag fiold.
N_] user's
=“1 BUFFER

or

REJECT
{data lost to user's program)

Figure 5-4. PWRITE Activity

5-28

J

REJECT

Rejects the request received (Slave callable)
by the preceding GET intrin-

sic call and returns an

optional tag field back to

the remote master program.

IA o-v

REJECT(itag);

PARAMETERS

itag

integer array (optional)

A twenty-word array used for transmitting a tag
field. The format of the tag field is defined by
the user's master and slave programs.

CONDITION CODES

CCE

cCcaG

CCL

OPERATION

Response transmitted successfully to the remote
master program.

(Not returned.)

An error occurred. Issue a PCHECK intrinsic call
to determine what happened.

The REJECT intrinsic rejects the request received by the most
recent GET intrinsic call and transmits an optional tag field
(itag) back to the remote master program.

5-29

PTOP Communications

INTERFACING WITH COBOL AND BASIC

Access to the program-to-program communications capability is
available to ANS COBOL (COBOL/I) and BASIC users only through
interface routines. DSN/DS COBOL Interface is covered in
Appendix F, and DSN/DS BASIC Interface is covered in Appendix G.

It is not necessary to use the DSN/DS COBOL Interface with COBOL
II/3000, however.

PTOP EXAMPLE

This example shows how two programs can communicate with one
another by using the master and slave program-to-program
intrinsics. The comments included within each program tell what
is happening.

Master Program

1 $CONTROL USLINIT,ADR,MAP,CODE

2 BEGIN

3

4 COMMENT

5 NAME OF PROGRAM IS MASTERP(S).

6 THE SOQURCE IS MASTERS.

7 THIS PROGRAM IS TO BE RUN ON THE MASTER CPU. IT
8 WILL START THE “SLAVE" PROGRAM ON THE SLAVE CPU.
9 THE PROGRAM WILL THEN RECEIVE A KNOWN TEST PATTERN
10 FROM THE USER TERMINAL, WRITE IT TO THE REMOTE DISK
11 FILE, READ IT BACK, AND PRINT IT ON THE LOCAL LP.
12 THE TRANSFER OF DATA IS DONE THRU PTOPC.;
13
14
15 INTEGER
16 ERROR,
17 LINE'NUM,
18 I,
19 J,

20 LPDEV'NUM;

21

22 BYTE ARRAY DS'DEVICE(O: 6): "
23 BYTE ARRAY LPDEV(0:2):="LP “;

24 BYTE ARRAY LPFILE(0:6):="LPFILE ";

25 BYTE ARRAY MSG(0:79);

26 BYTE ARRAY PROG'NAME(0:19):="SLAVEP.PUB.SUPPORT “;

we

29 LOGICAL ARRAY IOBUF(0:39);

5-30

30
31
32

3k
35

37
38
39
40
41
42
43
NN
45
46
47

k9
50
51
52
53

55
56
57
58
59
60
61
62
63
6k
65
66
67
68
69
70
71
T2
73
Th
75

17
78
79
80
81
82

84

PTOP Communications

LOGICAL ARRAY ITAG(0:19):=20(%020040);
LOGICAL ARRAY MSGW(*)=MSG;
LOGICAL ARRAY DS'DEVW(*)=DS'DEVICE;

INTRINSIC DEBUG,FCLOSE,FOPEN,FWRITE ,PCONTROL;
INTRINSIC PCLOSE,POPEN,PREAD,PRINT,PWRITE ,READ;

MOVE MSG:=" INPUT NAME OF DSDEVICE";
PRINT(MSGW,-28,0);
READ (DS 'DEVW, -T) ;

MOVE MSG:=" POPEN ISSUED";
PRINT (MSGW,-18,0) ;

LINE 'NUM: =POPEN (DS 'DEVICE,PROG'NAME,ITAG);
IF <> THEN

BEGIN
PRINT (ITAG,20,0);
ERROR := 13
GO TO ERR'PROC;
END
ELSE
PRINT (1ITAG,20,0);

MOVE MSG:=" POPEN COMPLETED SUCCESSFULLY";
PRINT(MSGW,-33,0);

LPDEV'NUM: =FOPEN (LPFILE,}4,1,40,LPDEV) ;
IF <> THEN BEGIN ERROR:=2;GO TO ERR'PROC; END;

MOVE MSG:="IN PUT TEST RECORD MAX. 80 CHAR";
PRINT (MSGW,-30,0);

MOVE IOBUF:=" "; <<CLEAR OUT BUFFER AREA>>
MOVE IOBUF(1):=IOBUF,(39);
READ (IOBUF,-80); <<GET RECORD TO WRITE>>
PWRITE (LINE'NUM,IOBUF,40); <<SEND RECORD TO REMOTE>>
IF <> THEN BEGIN ERROR:=3;GO TO ERR'PROC; END;
MOVE MSG:=" DISK FILES BEING XFERRED FROM REMOTE" ;
PRINT (MSGW,-41,0);
J:=-13 <<START READING FROM REMOTE>>
WHILE (J:=J+1)<5 DO

BEGIN

MOVE MSG:=" PREAD ISSUED";

PRINT (MSGW,-19,0);

MOVE IOBUF:=" ";
MOVE IOBUF(1):=IOBUF, (39);

5-31

PTOP Communications

85
86
87
88
89
90
91
92
93
9l
95
96
97
98
99
100
101
102
103
104
105
106

107

108
109
110
111
112
113

1:=PREAD(LINE'NUM, IOBUF,40,ITAG);

IF = THEN
BEGIN
IF J=4 THEN
BEGIN
MOVE MSG:=" ALL DISK RECORDS XFERRED";
PRINT (MSGW, -29,0) ;
END;
END
ELSE

BEGIN ERROR:=U4;GO TO ERR'PROC; END;
FWRITE (LPDEV'NUM,IOBUF,I,0);
IF <> THEN BEGIN ERROR:=U4;GO TO ERR'PROC;END;
END;

FCLOSE (LPDEV'NUM,0,0) 3

PCLOSE (LINE '‘NUM) ;

IF <> THEN BEGIN ERROR:=5;GO TO ERR'PROC;END;
MOVE MSG:="END OF MASTER PROGRAM";

PRINT (MSGW,-21,0); GO TO END'IT;

ERR' PROC: <<HANDLE ERROR CONDITIONS>>
DEBUG;
FCLOSE (LPDEV 'NUM,0,0) ;
PCLOSE (LINE 'NUM) ;
MOVE MSG:="ERROR, END MASTER PROGRAM";
PRINT(MSGW, -25,0) ;

END'IT: END.

Slave Program

OO-~NAVTIETWND R

$CONTROL USLINIT,ADR,MAP,CODE

BEGIN

COMMENT
THE NAME OF THIS PROGRAM IS SLAVEP(S).
THE NAME OF THE SOURCE IS SLAVES.
THIS PROGRAM IS TO BE COMPILED AND PREP'ED ON THE
SLAVE HP3000 SYSTEM. IT WILL BE INITIATED FOR RUN
BY THE MASTER. THE FUNCTION OF THIS PROGRAM IS TO
LOAD A DISK FILE WITH KNOWN TEST PATTERNS THAT WILL
BE TRANSFERRED TO THE MASTER AND PRINTED ON THE
MASTER'S LINE PRINTER;

INTEGER
ERROR,
DISK'FILENUM,
I,
IL,
IONUMBER,

5-32

21
22
23
24
25
26
27
28
29
30
31
32
33

35
36
37

39
4o
41
42

Ly
L5

47
48
L9
50
51
52
53
54
35
56
o7

29
60

61
62
63
64
65
66
67
68
69

1
T2
73
T
75

PTOP Communications

J;

BYTE ARRAY MSG(0:79);
BYTE ARRAY TEST(O:4):="TEST "“;

LOGICAL ARRAY DISK'BUF(0:39);
LOGICAL ARRAY ITAG(0:19):=T(020040);
LOGICAL ARRAY MSGW(*)=MSG;

INTRINSIC FOPEN,DEBUG,FWRITEDIR,FREADDIR,FCLOSE;
INTRINSIC GET,ACCEPT,PRINT,READ,REJECT;

IL:=40;
MOVE MSG:="ISSUING A GET (REMOTE)";
PRINT (MSGW, -22,0) ;
I:=GET(ITAG); <<GET FOR POPEN>>
IF < THEN
BEGIN
MOVE ITAG:="ERROR ON GET;POPEN";
GO TO ERR'OPEN;
END;

IF I=1 THEN
BEGIN :
MOVE MSG:="POPEN RCVD...ISSUING AN ACCEPT (REMOTE)";
PRINT(MSGW,-39,0);
END;

MOVE ITAG:="POPEN ACCEPT SUCCESSFUL (REMOTE)";
ERR' OPEN;
ACCEPT (ITAG) ; <<ACCEPT FOR POPEN>>

DISK'FILENUM: =FOPEN (TEST, 4,%104,-80,,,,1,1,10D);
IF <> THEN BEGIN ERROR:=1;GO TO ERR'PROC; END;

I:=GET; <<TEST REC FROM MASTER>>

IF <> THEN BEGIN ERROR:=2; GO TO ERR'PROC; END;

IF I=3 THEN <<PWRITE RECEIVED>>
BEGIN

ACCEPT(,DISK'BUF);
IF <> THEN BEGIN ERROR:=3; GO TO ERR'PROC; END;
END;

I:=-1; <<START WRITING TEST FILE>>
WHILE(I:=I+1) < S DO
BEGIN <<WRITE REC TO DISK>>

FWRITEDIR (DISK'FILENUM,DISK'BUF,40,DOUBLE(I));
IF <> THEN BEGIN ERROR:=4; GO TO ERR'PROC; END;

END; <<END WRITING TEST FILE>>
Ji=-13 <<SEND DISK FILE TO MASTER>>
WHILE(J:=J+1)<5 DO

5-33

PTOP Communications

76
17
78
79
80
81
82
83

BEGIN
MOVE MSG:="ISSUING A GET (REMOTE)";
PRINT(MSGW,-22,0);
1:=GET(ITAG,IL,IONUMBER);:

IF < THEN BEGIN ERROR:=5; GO TO ERR'PROC; END;
IF I=2 THEN
BEGIN
MOVE MSG:="PREAD RCVD...ISSUING AN ACCEPT
(REMOTE) "3
PRINT (MSGW, -39,0);
END
ELSE
BEGIN ERROR:=6;G0O TO ERR'PROC; END;
MOVE DISK'BUF:=%020040;
MOVE DISK'BUF(1):=DISK'BUF(0),(39);
FREADDIR (DISK'BUF,40,DOUBLE(J));
IF <> THEN BEGIN ERROR:=T;GO TO ERR'PROC; END;
ACCEPT(ITAG,DISK'BUF,40);
IF <> THEN BEGIN ERROR:=8;GO TO ERR'PROC; END;

END; :

FCLOSE(DISK'FILENUM,0,0); GO TO END'IT;

ERR'PROC: <<HANDLE ERROR CONDITIONS>>
DEBUG; <<WILL PROMPT OT MASTER SIDE TERMINAL>>
REJECT;

I:=GET; <<ALLOW PCLOSE>>

GO TO ERR'PROC;

END'IT: END;

5-3u4

NETWORK FILE TRANSFER

The Network File Transfer (NFT) program runs on an HP 3000
Computer System to provide the ability to efficiently copy disc
files. When initiated over a DSN/DS communication link, the NFT
program can copy & file to or from any other adjacent HP 3000
computer which also provides this service.

FEATURES OF NFT

o You can initiate copy operations from sessions, jobs, or
programs.

® DSCOPY can be used to copy users' files and MPE system files,
as well as data management files, such as KSAM/3000 files.

o There is only one NFT command to learn -- :DSCOPY.

e There are two intrinsics: DSCOPY and DSCOPYMSG. The
intrinsics are callable from programs written in SPL, COBOL,
FORTRAN, and BASIC.

® NFT can be used in Interactive Mode to submit a series of
copy requests. When a DSCOPY command or intrinsic initiates
Interactive Mode, users' requests are placed in a transaction
file whose formal designator is DSCOPYI. The default for this
file is $STDINX.

e NFT can record a history of all copy operations performed by
DSCOPY requests. The history report can be printed to
$STDLIST, as well as to a secondary file.

e You can initiate a copy operation from a system other than
the system(s) where the source and target files are located.

e NFT can efficiently copy disc files within your local HP
3000.

o The files referenced by a DSCOPY command (or intrinsic) may
reside on system or private volumes.

6-1

Network File Transfer

File transfers can involve one or more computers. In all
transfers, there are three distinct roles a system can play:

1. The initiator is always the system where the :DSCOPY
command originates. The initiator functions only in an
outgoing sense. It is similar to PTOP operation, where
the PTOP master program always issues a POPEN out across a
DS line to cause a slave to be created and activated on a
remote system.

2. The producer is the source computer where the file that
is to be copied resides.

3. The consumer is the target computer where the new file
will reside.

You should remember that one system may be performing two or all
three of these roles.

When a DSCOPY request names a remote source, the DS line to that
computer must be open and a remote session must exist. The same
is also true when a remote target is specified.

When DSCOPY is used to transfer files over two or more systems,
the following restrictions apply:

1. DSCOPY must be initiated only from the master side of the
DS line. The slave (remote) side cannot be the initiator
of a DSCOPY command.

2. DSCOPY must not be initiated programmatically from either
a master or a slave PTOP program in any direction.

6-2

:DSCOPY
SYNTAX

x|] [T][]

To submit a series of transfer requests, omit all of the source
and target parameters to initiate Interactive Mode. NFT prompts
you for input and, after the transfer completes, prompts you
again.

-

Terminate Interactive Mode by typing // or Control-Y.

PARAMETERS

sfile (Required Parameter) Identifies the file to be copied.
The name can be written in the following format:

sfile[/lockword] [.groupname] [.accountname]

If the source file is in a group.account different from
the requestor's log-on group.account, the requestor
must have read and lock access to the source file.

sdsdev (Optional Parameter) The device classname, logical
device number, or node name that was used to open the
communications link to the remote computer where the
source file resides.

Default: The local system (that is, the system where
the transfer request is submitted).

sdev (Optional Parameter) The classname or logical device
number of the disc where the source file resides.

Default: DISC.

tfile (Optional Parameter) Specifies the file to receive the
data. The name can be written in the following format:

tfile[/lockword] [.groupname] [.accountname]

Default: The new file has the same filename as the
source file. The default groupname and
accountname are the log-on groupname and
accountname. Security is on for the new
file, even though the source file may have
been released.

6-3

:DSCOPY

tdsdev (Optional Parameter) The device clasname or logical
device number that was used to open the communications
link to the remote computer where the target file will
reside.

Default: DSCOPY copies the sourcefile to the local
computer and assigns the same filename as the
sourcefile name. If the source computer is
the local system, this default causes a file
gystem error (because the file already
exists).

* Means the target dsdevice (the target computer) is the
same as the source dsdevice (the source computer).

tdev (Optional Parameter) The device classname or logical
device number of the disc where the new file should
reside.

Default: DISC

USE
Available in Session? YES
in Job? YES
in Break? NO
Programmatically? No*
Breakable? YES

* Call the DSCOPY intrinsic rather than use the
COMMAND intrinsic.

6-4

:DSCOPY
OPERATION

NEVER BREAK AND ABORT DSCOPY DURING A COPY OPERATION.

Control-Y can be used to show how much of a file has been
transferred and to cancel a currently executing copy request. If
you enter Control-Y during a copy operation, DSCOPY prints the
percentage of the transfer that is complete and prompts whether
to cancel or continue the operation.

Source and Target Files

In a DSCOPY command, source and target files are referenced as
defined by the systems upon which they reside.

There is no default for a sourcefile.

A default for a targetfile is derived from the sourcefile. The
default consists of the first sequence of characters in the
sourcefile name which constitutes a legal HP 3000 file name.
For example:

:DSCOPY SFILE.SGROUP,SNODE

Here the source file is SFILE (in group SGROUP on a remote
system). The targetfile is generated in the users' log-on group
(on the local system) and is assigned the default name SFILE.
The characteristics of the new file are the same as those of the
source file.

If a source file has a negative file code, the user requesting
the transfer must have Account Manager (AM), System Manager (SM),
or Privilege Mode (PM) capability to be allowed to copy the file.
The log-on user on the target node must also have AM, SM, or PM
capability. Remember that the person requesting the transfer
(the initiator) is not necessarily the consumer (the log-on user
at the target). After a successful copy operation, the new file
has the same negative file code as the source file.

When copying KSAM files, both the data file and its key file are
copied. The DSCOPY user can specifically name a data file/key
file pair by enclosing the file names in quotes and separating
them by a comma. For example:

:DSCOPY SFILE TO "DATAFILE,KEYFILE"
When a user specifies a source KSAM data file and the NFT
subsystem must generate a default key file, it uses the data

file name and appends a K. For example:

+DSCOPY SFILE, LINEl TO TFILE, LINE2

6-5

:DSCOPY

In the case where SFILE is a KSAM data file, the new data file on
the computer connected to LINE2 will be named TFILE and the
associated key file will be named TFILEK by default.

Interactive Mode

To execute a series of transactions, enter the :DSCOPY command
without parameters. Now the system prompts you for input with
the word DSCOPY and accepts your response from the file DSCOPYI
(whose default is $STDINX).

The syntax required for your response follows the format already
described for source and target parameters.

Note the following about Interactive Mode:

e To continue your response on the next line, enter an
ampersand (&) as the last non-blank character on the current
line and press RETURN. A continuation prompt is printed so
that you can continue your response.

e To cancel a response while entering a line, use Control-Y.

You can issue MPE comands while in Interactive Mode by
entering a colon (:) before the command. The MPE commands
allowed in Interactive Mode are those allowed by the COMMAND
intrinsic.

e To terminate Intractive Mode, enter // or Control-Y in
response to a DSCOPY prompt.

Event Recording

DSCOPY produces printed output to document user input and copy
results. This output may be sent to a primary file and/or a
secondary file, either of which may be disabled. The primary
file is $STDLIST and the secondary file has the formal designator
DSCOPYL. All user requests and DSCOPY prompts are printed on
$STDLIST and echoed on the secondary file (and on the primary, if
not duplicative). Primary output is enabled by a DSCOPY command,
or by the DSCOPY intrinsic with the OPT parameter set to 4, 5, or
6 (refer to the parameters of the DSCOPY intrinsic). Output for
the secondary file, DSCOPYL, defaults to $NULL so that secondary
output is disabled by default. It can be enabled by using a
:FILE command to equate DSCOPYL to a file or a line printer, or
to $STDLIST.

6-6

:DSCOPY

EXAMPLES

Local Copy

To make a local copy of SFILE and name the new file TFILE, use
either of the following:

:DSCOPY SFILE TO TFILE or :DSCOPY SFILE; TFILE

The following example copies a file named SFILE from another
group on the local system into a file in the log-on group. The
new file is also named SFILE.

:DSCOPY SFILE.SGROUP

Remote-to-Local Copy

To copy a file from the computer connected to DS line SYSA into
your log-on group (on the local system), enter:

:DSCOPY SFILE,SYSA;TFILE

Local-to-Remote Copy

To copy a file named SFILE (on the local system) to the computer
attached to DS line SYSB and name the new file SFILE, enter:

:DSCOPY SFILE TO ,SYSB

Remote Copy

An asterisk (*) means the target system is also the source
system. The following example copies a file named SFILE to a new
file named TFILE. Both files reside on the remote computer
connected to the dsline named SYSA.

:DSCOPY SFILE,SYSA TO TFILE,*

Remote-to-Remote Copy

The next example illustrates a command that copies a file from
one remote system to another. In this case, the communications
lines to both remote computers must be open and a remote session
must exist on each system.

:DSCOPY SFILE,SYSA TO TFILE,SYSB

6-7

Network File Transfer

NFT INTRINSICS

Programs can use the DSCOPY intrinsic to copy disc files.

Programs can also print a message which corresponds to the result

code returned by a DSCOPY intrinsic call. The DSCOPYMSG
intrinsic is used for this purpose.

The rules for using the intrinsics are consistent with those for

using other MPE intrinsics. Specifically, the following rules
apply.

Both intrinsics can be called from programs written in the
SPL/3000, COBOL, FORTRAN, and BASIC languages.

Calling sequences for all of the languages are basically the
same.

All parameters are passed by reference.
The intrinsics are not option variable.

Neither of the intrinsics are typed (returns a parameter as
its value).

Neither returns a condition code (they both return a result).
Split stack calls are not allowed.

For COBOL, data types should be defined as follows:

Data Type Data Description

Numeric PICTURE S9(4) COMPUTATIONAL

Alphanumeric PICTURE X(n) or picture A(n)

Numeric Array PICTURE S9(4) COMPUTATIONAL SYNCHRONIZED

OCCURS n TIMES

6-8

I

DSCOPY Intrinsic

THE DSCOPY INTRINSIC

SPL Procedure Declaration

PROCEDURE DSCOPY (OPT, SPEC, RESULT);
VALUE SPEC, RESULT;
LOGICAL OPT;
LOGICAL POINTER SPEC, RESULT;

OPT OPT controls the primary output (i.e. output to
$STDLIST) and specifies the type of copy operation.

Bits 0 through 12 are reserved for future use and should
be set to zero. The remaining bits can be set to
indicate the following:

Value Meaning
0 Single transaction; primary output disabled.
1 Multiple transactions; return after first
unsuccessful transaction; primary output
disabled.
2 Multiple transactions; return after all

transactions have been attempted or after an
internal error occurs; primary output disabled.

Y Single transaction; primary output enabled.

5 Multiple transactions; return after first
unsuccessful transaction; primary output
enabled.

6 Multiple transactions; return after all

transactions have been attempted or after an
internal error occurs; primary output enabled.

SPEC The logical array should contain ASCII text terminated
by an 8-bit binary zero. In the single transaction case,
the syntax required is the same as for the DSCOPY
command parameters.

In the multiple transaction case, the array should
contain only a zero. Zero causes NFT to read the copy
request from the DSCOPYI file (whose default is
$STDIN).

6-9

DSCOPY Intrinsic

RESULT A two-word array returned to the caller which indicates
the outcome of the intrinsic call.

RESULT(0) Result=0 indicates the copy operation was
successful. Any other value represents an
error as defined in "DSCOPY Error Messages"
listed in Appendix B.

RESULT(1) Shows the number of files that were
successfully copied.

COBOL Calling Sequence

CALL "DSCOPY" USING OPT, SPEC, RESULT.

OPT Numeric data item.
SPEC Alphanumeric data item.
RESULT Numeric array of two or more data items.

FORTRAN Calling Sequence
CALL DSCOPY (OPT, SPEC, RESULT)
OPT INTEGER*2 variable
SPEC CHARACTER array

RESULT An array of two or more INTEGER*2 variables

BASIC Calling Sequence
CALL BDSQQPY (o, s$, R)
0 Numeric variable
s$ A string variable

R An array of two or more numeric variables

6-10

DSCOPY Intrinsic

Programmatic DSCOPY Operation

Simultaneous DSCOPY requests cannot be issued from two
processes in the same session.

The only valid values for the OPT parameter are: 0, 1, 2, 4, 5,
or 6.

The ASCII text passed by the SPEC parameter must be terminated by
a binary zero.

The values passed in the parameters are verified as being in
bounds and valid.

The system creates the NFT process and passes the contents of OPT
and SPEC to it.

The specified files are copied by the NFT process.
The intrinsic returns the result to the user.

After processing, OPT and SPEC remain unchanged except that any
ASCII lower case characters in SPEC may have been shifted to
upper case.

After processing, the first word of the RESULT contains a number
which indicates the outcome of the DSCOPY request. A zero value
indicates a successful transfer operation; the meaning of any

other value is given under "DSCOPY Error Messages" in Appendix B.
The second word contains the number of files successfully copied.

6-11

DSCOPYMSG Intrinsic
THE DSCOPYMSG INTRINSIC

SPL Procedure Declaration

PROCEDURE DSCOPYMSG (RESULT, FNUM, R);

VALUE FNUM;
LOGICAL ARRAY RESULT;
INTEGER FNUM, R;

RESULT

FNUM

DSCOPY was successful.
An error occurred. Refer to the Error Messages in
Appendix B for the meaning.

The two-word result returned by the DSCOPY intrinsic.
0
n

When FNUM=0, the message associated with RESULT is
printed on $STDLIST.

When FNUM contains a file number returned by an FOPEN
call, the message associated with RESULT is written to
the file.

Result returned by this DSCOPYMSG call.

0 = Successful call

n = Unsuccessful call. Refer to the Error Messages in
Appendix B.

COBOL Calling Sequence

CALL "DSCOPYMSG" USING RESULT, FNUM, R.

RESULT

FNUM

R

An array of two or more data items.
A numeric data itenm.

A numeric data item.

6-12

DSCOPYMSG Intrinsic

FORTRAN Calling Sequence

CALL DSCOPYMSG (RESULT, FNUM, R)

RESULT An array of two or more INTEGER*2 variables.
FNUM INTEGER*2 variable

R INTEGER*2 variable

BASIC Calling Sequence

Call BDSCOPYMSG (R, F, RO)
R An array of two or more numeric variables
F An integer variable

RO An integer variable

EXAMPLES

A very simple example of a programmatic DSCOPY request is showm
coded in the COBOL, FORTRAN, and BASIC languages.

The example copies a file (NFTTESTS) to a new file (TEMP1). The

source file resides on the local machine, and the new file will
be created on a remote machine connected to line "HDS".

6-13

Network File Transfer

DSCOPY COBOL Example

.

.

WWWWWRHOPOPRONMNRONOMNONNONNBPRPRPRERRERBRER
VOV VN O oy pWwpn R (Voo R XN NC RN _ZUUR LI)

$CONTROL CODE
$TITLE " DSCOPY INTRINSIC TEST"
IDENTIFICATION DIVISION.

PROGRAM-1ID. DSCOPY00.
AUTHOR. JIM BRANDT.
DATE-WRITTEN. APRIL 1980.
DATE-COMPILED.

REMARKS .

THIS PROGRAM DOES A SIMPLE INTRINSIC CALL TO DSCOPY.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. HP3000
OBJECT-COMPUTER. HP3000
DATA DIVISION.
WORKING-STORAGE SECTION.
01 OPT PIC S9(4) COMP VALUE 0.
01 STRINGI1.
02 ASCIIPART PIC X(24) VALUE "NFTESTS TO TEMP1,HDS".
02 TERMINATOR PIC S9(4) COMP VALUE 0.
01 RESULT1.
02 RESULT2 PIC S9(4) COMP OCCURS 2 TIMES.
PROCEDURE DIVISION.
BEGINLABEL.
CALL "DSCOPY" USING OPT, STRING1l, RESULT1.
STOP RUN.

DSCOPY FORTRAN Example

25
26
27
28
29
30
31
32

$

aaaa

CONTROL MAP,LIST,CODE,CROSSREF,LOCATION,STAT
PROGRAM DSCOPY
CHARACTER*L40 STRING1
INTEGER*2 FNUM
INTEGER*2 OPT
INTEGER ARRAY IRESULT(Y)

DATA STRING1/" NFTTEST TO TEMP1,HDS "/
THIS PROGRAM DOES A SIMPLE DSCOPY INTRINSIC REQUEST

OPT=0

FNUM=0

CALL DSCOPY(OPT, STRING1, IRESULT)

IF (IRESULT .GT. 0) CALL DSCOPYMSG(IRESULT, FNUM)
STOP ' .
END

6-14

Network File Transfer

DSCOPY BASIC Example

10 REM THIS WILL DO A SIMPLE DSCOPY REQUEST
20 DIM A$[30],R[4]

30 0=R2=2=0

4o MAT R=ZER

50 A$=" NFTTESTS TO TEMP1,HDS "

60 PRINT A$

70 CALL BDSCOPY(0,A$,R[*])
80 IF R[1] <>0 THEN PRINT " ERROR IN DSCOPY. ERROR= ",R[1]
90 IF R[1] <>0 THEN CALL BDSCOPYMSG(R[*],Z,R2)

100 STOP

110 END

6-15

,(Q

SECTION |

DS APPLICATIONS =,

DSN/DS is particularly useful in applications that involve trans-
action processing and that are geographically or functionally
dispersed. Any local-system command can be executed remotely
through a simple extension to that command. Many operating
system intrinsics are also extended in a similar fashion. No
knowledge of the communication protocol or physical link being
used is required of the terminal user or application programmer.
Every application-level capability operates transparently across
each connection-level alternative.

DSN/DS on the HP 3000 provides facilities for point-to-point
connection between processors. These connections can be made on
a variety of types of communication lines, including switched
(dial-up), leased, or hardwired, and they can also be mixed
throughout the network. Applications can easily obtain access to
systems more than one "hop" away, through multiple :REMOTE HELLO
log-ons. In addition, HP 3000 computers can connect to X.25
packet-switched and X.21 circuit-switched networks and communi-
cate across those networks with HP 1000 or other HP 3000
computers. In fact, DSN/DS can maintain concurrent connections
to multiple remote systems, and/or multiple connections to the
same remote system, over a single physical link to the X.25 net-
work.

DSN/DS requires users to pass all of the security checks imposed
by MPE (such as passwords) when logging on to a remote system.
DSN/DS also provides additional security features applicable only
to a network environment. For example, the operator can restrict
incoming or outgoing access to the communications link. And in-
coming calls from an X.25 network are accepted only if the remote
host is already in the local system's network data base.

DS Applications

DSN/DS offers the tools to facilitate the sharing of resources
within a network. Examples of such resources are programs, data
structures, or physical hardware elements of the network. You
can access these resources in any of several modes:

e Remote command execution allows you to direct commands to
any CPU in the network.

e Remote File Access (RFA) permits the application of
processing power to files and devices remote from the CPU.
RFA also provides the means for extending Interprocess
Communications (IPC) across a DS link.

e Program-to-program (PTOP) communication permits direct
communications between master and slave programs, each
resident in its own CPU within the network.

o Remote Data Base Access (RDBA) gives the capability for
direct and indirect access of data bases on any HP 3000
computer in the network. Combining the distributed
processing capability of DSN/DS with the use of data
management subsystems such as V/3000, KSAM/3000, and
IMAGE/3000 makes possible the sharing of data.

e Network File Transfer (NFT) is a more efficient mechanism than
FCOPY for transferring disc files across a communications
link.

The chief advantages of Program-to-Program (PTOP) communication
are coprocessing capabilities and control of data transmission
blocking. Coprocessing master-slave programs execute in multiple
systems. Program-to-Program communication allows decisionmaking
to be distributed within the master-slave relationship. The
exchange of data and control information between the executing
programs can be used to alter program flow to adjust to current
conditions in the network. Remote command execution and remote
file/device access allow one program executing in one CPU to
utilize data and/or devices anywhere in the network. All
decisionmaking is embodied in this one program. Coprocessing
capabilities assume importance in networks where synchronization
of modifications to related data structures is important.

Blocking control can be utilized in such a manner as to decrease
the number of transmissions to move a specific amount of data.
Since transmission time on a high-speed link is a negligible
factor in communications performance, the required number of
transmissions is the key to performance. Reducing the number of
transmissions correspondingly reduces the number of line turn-
arounds. This may become a significant performance factor in
half-duplex networks or satellite communication links where prop-
agation delay affects response time.

7-2

DS Applications

TRANSMISSIONS BETWEEN SYSTEMS

Underlying all modes of utilizing DSN/DS is the transmission of
data from one system to another. Now compare the building of
these transmission units for remote file access and for PTOP.

DSN/DS is supported on three controllers: the Intelligent Network
Processor (INP), the Hardwired Serial Interface (HSI), and the
Synchronous Single-Line Controller (SSLC). To configure any of
these devices into the system, you must specify a buffer length.
The buffer length value that you specify represents the maximum
number of words to be transmitted between systems in one
transmission and it is the system's default buffer size. When
you activate DSN/DS with a :DSLINE command, a LINEBUF parameter
may be specified to override the configured buffer size. Only
the first user to activate the line may use LINEBUF to alter the
data communication buffer size. This buffer size may not be
respecified until all concurrent DSN/DS users have closed their
links. In this way, the pertinent buffer limiting factors for
inter-CPU transmissions are set.

How is LINEBUF utilized in accessing remote files and remote
peripheral devices? The basic unit for file system operations is
the record (or block of records). In remote file access and
remote command execution, file system blocking limits the trans-
mission unit to a single record or sequential multiple records.
File system's FREAD is satisfied by moving a logical record from
a file to the user's buffer. An FREAD on a file open with multi-
record access is satisfied by a byte count which can be specified
to be blocksize. Thus, an FREAD on a remote file will pack
LINEBUF with a record or a specified byte count of sequential
records. Contrast this record-orientation to the array-
orientation of PTOP communications. PTOP's PREAD is satisfied by
the transmission between programs of the contents of LINEBUF.

The PTOP programmer must construct the buffer by packing it with
array(s), record(s), or fields of records. The records in one
transmission need not even come from the same file.

In addition to transmitting specified data, DSN/DS attaches a
header of varying lengths. The header always contains eight
words transmitted in a fixed format and can contain additional
words in an appendage area. For remote command execution and
remote file and peripheral device access, the data field is
usually preceded by a header of 14 words. Some intrinsics, such
as FREAD (multirecord), require a longer header to convey all
parameter information. The header for PTOP communications
includes the 20-word tag field in the appendage; thus the typical
PTOP header is 34 words long. The ideal LINEBUF size will allow
the user's data field plus DSN/DS header information to fit into
LINEBUF.

-3

DS Applications

To illustrate: Assume that you want to read six 80-byte records
from a remote file. Specify a LINEBUF of 300 words.

a. If the remote file is thus defined: REC=-80,1,F, then Remote
File Access must retrieve a block of one record from the
disc, FREAD one record, and transmit one record. The com-
plete data transfer requires six disc accesses, six FREADs,
and six data transmissions.

b. If the remote file is thus defined: REC=-80,6,F, then Remote
File Access must access the disc to retrieve a block of six
records, satisfy an FREAD with one record, and transmit one
record. The complete transfer requires one disc access, six
FREADs, and six data transmissions.

c. If the remote file is thus defined: REC=-80,6,F, and opened
with the NOBUF and multirecord aoption, then Remote File
Access must access the disc to retrieve a block of six rec-
ords, satisfy an FREAD of 480 bytes with six records, and
transmit the six records. The complete data transfer re-
quires one disc access, one FREAD, and one data transmission.

d. In PTOP, the master program can issue a PREAD. The slave
program can pack the buffer with all six records, utilizing
any of the above three methods. Note that a LINEBUF of 300
words is ample to permit transmission of 480 bytes (240
words) of data plus 34 words of DSN/DS header information in
one transmission. A LINEBUF of 256 words requires two trans-
missions.

COORDINATING MASTER AND SLAVE PROGRAMS

PTOP communication programming requires synchronizing two
separate programs at specific points in time. For this reason,
it is often helpful to block diagram the transmissions and their
contents on a simulated time line.

Where the PTOP programmer wants to loop on certain PTOP
operations, the loop's terminating condition must, of course,

be defined. The master program has direct control over the
interprogram communications and can terminate a loop under
conditions defined locally. More difficult are the situations
when the slave must communicate to the master that the
terminating condition has been met. To do this, the slave might
send a REJECT response. A REJECT does not allow transmission
of data, and so requires a terminating exchange of transmissions
after all data has been transmitted.

DS Applications

Another method is to utilize the 20-word itag field (the ITAG
parameter) of the PTOP intrinsics. This field is not accessible
by the slave unless designated as a parameter in the correspond-
ing master's PTOP operation. For example:

Master Program Slave Program
Example A. PREAD (dsnum, target,tcount); GET(itag);
Example B. PREAD (dsnum, target,tcount,itag); GET(itag);

In example A, PREAD doesn't utilize the itag field. The slave
program can't access itag on this transaction. The second PREAD
(Example B) might not even initialize the itag array, but the
array has been specified as a parameter. The slave program can
now return control information to the master via this field. The
master program logic can inspect itag and take corresponding
action.

A PCONTROL from the master will also cause an exchange of itag
fields and may be used for passing control information. This
intrinsic will not pass a data field, however.

The control information passed between programs may terminate a
loop, may branch to another part of the program, may transmit an
index to be used in a CASE statement, or may serve any other
purpose the programmer desires.

It is important to bear in mind the accessibility of

transmitted data. Wheh the master program PWRITEs, the slave
program cannot process the received data until the ACCEPT
intrinsic has moved the data into the slave process stack.

The slave program can, however, examine the itag array before
doing the ACCEPT or REJECT. After examining the itag, the slave
can then alter the itag array. The ACCEPT or REJECT will
transmit the slave's itag to the master. Slave local processing
can then proceed.

DEBUGGING

Where the amount of local processing in a PTOP application

is significant, it may be helpful to debug the master and slave
programs as local programs. MOVEs on dummy arrays or FREADs on
dummy files can be substituted for communication operations to

simplify debugging of the local processing.

7-5

DS Applications

When the time arrives to run the programs in master-slave
fashion, a :RUN PROG;DEBUG is sufficient to invoke the Debug
Utility for the master. This will not, however, allow the
programmer to break-point in the slave program or to examine the
slave process stack. To facilitate debugging slave programming,
the first executable statement of the slave program should be the
DEBUG intrinsiec.

LINE BUFFERS/CONTINUATION BUFFERS

DSN/DS is designed to send across the line, in a single transfer
operation, the amount of data configured as the PREFERRED BUFFER
SIZE for the line controller (INP, SSLC, or HSI). The first
person to use a DS line can override the configured line buffer
size by specifying a different value with the LINBUF parameter of
a :DSLINE command.

When a user specifies LINBUF=xxxx, the xxxx value tells the
Communication Software (CS/3000) the maximum amount of data
DSN/DS will ever send across the line in a single request. For
example, if you say LINBUF=10T4, you are saying the largest
buffer DSN/DS can pass to the Communication Software is 1074
words.

The 1074 words will always consist of both user data and DSN/DS
fixed header and variable-length appendage characters. These
additional characters (approximately 20 to 50 words) give to and
from information, intrinsic names, etc., and vary for RFA and
PTOP operations.

For RFA, the DSN/DS header and appendage usually adds about 20
words to the data; for PTOP, the header and appendage also
includes the 20-word tag field, for a total of approximately 40
words. The ideal LINBUF size should be able to accommodate the
user's data plus these DSN/DS overhead characters.

When a DSN/DS user requests the transfer of more data in a single
operation than the line buffer can accomodate, the Communication
Software automatically fills the line buffer, makes the transfer,
refills, and transfers again -- until all of the user's data has
been sent. When a user's single request causes CS/3000 to make
several transfer operations, the additional buffers of data are
known as "continuation buffers”. As stated before, the ideal
line buffer should be large enough to eliminate the need for
continuation buffers.

DS Applications

COMPRESSION

Compression of data on the communications link may be specified
in order to achieve higher throughput.

The COMPRESSION capability can be specified at generation time by
use of SUBTYPE=1 while configuring IODSO or IODSX (refer to
Appendix A). This configured subtype sets the default for the
line.

A compression parameter may be specified while executing the
:DSCONTROL console command. A console operator uses the
parameter to override a line default or to reset to the
configured state.

A compression parameter may also be specified while executing a
:DSLINE command in a session or job. Use of the DSLINE parameter
allows individual users to control whether or not their data will
be compressed.

The compression technique compresses any occurance of three or
more consecutive characters. The compression takes place in the
data only, not in the fixed part or the appendage of the request
or reply header.

Compression generally increases throughput by reducing redundancy
in the data, which results in a reduction in the number of char-
acters being transmitted over the communications link.

In some cases, however, compression could actually result in an
increase in the number of characters to be transmitted. For this
reason, DSN/DS examines each case when compression is specified.
If a situation is found where compression would be detrimental to
performance, DSN/DS sends the data uncompressed.

Compression is most helpful in applications using line speeds up
to 56 K bps. However, compression is generally not helpful nor
desirable in applications that use the HSI at high data rates.

Doing compression and decompression increases the system overhead
at both ends of the link. The decision on whether to use com-
pression depends on the communications link data rate, system
load, and the amount of redundancy in the data being transmitted.
Often, a test of relative throughput with normal system load and
"typical” data will provide an indication of the benefits of
using compression.

The amount of redundancy in data or files may vary significantly.
Source or listing files may compress by as much as T5 percent.
But a more typical random assortment of HP 3000 files may reduce
by an amount closer to 25 percent. Obviously, the actual reduc-
tion will vary from application to application. Comparative
tests with and without compression will indicate the benefits.

DS Applications

The DSN/DS initialization procedures allow compression only if
both systems are capable of performing compression. Compression
is handled on an individual basis, so that on a non-exclusive
line, some users may compress while others use NOCOMP.

Formats for Inserted Compression Characters

Octal Value Meaning
XX nnn nnn XX = compression type
00 = uncompressed character
string
10 = repeated blanks
1l = repeated non-blank

character (next byte is
the character)

nnn nnn = octal character count

1 to T7.
Examples :
036 36 (octal) non-compressed characters
217 17 (octal) blank characters
323.052 23 (octal) compressed * characters
PERFORMANCE

The performance achieved while using the DSN/DS link may vary
widely, and it depends on many factors.

Computer System Dependent

The activity mix on the respective HP 3000 will affect perfor-
mance. It depends upon the character of the simultaneous activi-
ty: such as the number of jobs, number of CPU-bound jobs and
their relative priority, contention for disc, memory size and
amount of swapping, quantum size, etc.

Communication Links

The choice of the communications link will provide an upper limit
to the performance. Generally, a full-duplex line will outper-
form a half-duplex line by reducing line turnaround delays. A

7-8

DS Applications

half-duplex line with a smaller request-to-send/clear-to-send
delay will be faster (such as a 208B at 50 milliseconds versus a
208B at 150 milliseconds).

Line quality can result in wide variations in performance at
times when line errors are high. A leased line is generally
better and more predictable than a dial-up line. Some telephone
offices provide cleaner lines depending on the age and nature of
their switching gear.

Applications

For a given amount of data, the buffer size selected will affect
performance. The smaller the number of requests required to
transmit a given quantity of data, the higher the throughput.
This also includes continuation requests. The data may be packed
into larger buffers while using PTOP applications. The data may
also be blocked into larger records for RFA applications. (RFA
and FCOPY handle one record at a time, even though the file may
use blocking).

As described earlier, use an appropriate line buffer size. Use a
line buffer large enough to contain the full record or buffer,
plus the DSN/DS fixed blocks and appendage header words. (The
“rule-of-thumb" is 50 words larger than the data size.)

For applications to be run on dial-up lines, the line errors
normally suggest a reasonable maximum of 1024 words. Analysis of
:SHOWCOM xx ;ERRORS output and trace listings for error rates
will allow modification of this recommendation for "typical"
conditions. (This suggested maximum value of 1024 could be
either increased or decreased when an SSLC is being used; but the
value could only be decreased when the communications interface
is an INP, since the maximum buffer size for the INP is 1024
words.)

PTOP applications allow both the master and slave programs to do

a larger share of data searching, qualification, and manipulation
at each local computer, thus reducing the quantity of data which

must be sent across the line.

Remote Listing

Where data must be sent to a remote device (such as a line print-
er or a magnetic tape) it may be possible to send the program
which generates the data to the remote computer for execution.
For example, since a compiler listing can be quite large, it
might be more efficient to transmit the source across the line
and do a remote compilation and remote list, rather than doing a
remote list for a local compilation.

-9

DS Applications

MULTIPLE REMOTE ACCESS

While presenting the basic concepts of DSN/DS in the tutorial
sections of this manual, the examples were intentionally limited
to simple networks. From those somewhat simplistic
illustrations, it might appear as though the only way your local
computer can talk to more than one other computer is through
additional parallel communication lines from your local system to
the additional remote systems. Actually, it is possible to
communicate with other remote computers in the network that have
no direct connection with your local computer. This
communication is made possible by going through one remote
computer (to which you do have a direct communication line) to
reach another remote computer to which the first remote computer
is connected. To reach a second remote system through a first
remote system, a multiple REMOTE command is used. The syntax is
as follows:

:REMOTE [xxx] [REMOTE [xxx]] ... [command]

In this way, the local user can initiate a session sequentially
on each remote system. Refer to figure 7-1.

SYSTEM SYSTEM SYSTEM SYSTEM
TEM LA, SYSTEM || SYSTEM A | SYST
T A A
:REMOTE LISTF.... lists these
files to
System A
:REMOTE REMOTELISTF.............. lists these
files to
System A
:REMOTE REMOTEREMOTELISTF ... ciiiiriiiiiiinennnns lists these
files to
System A

Figure T-1. Multiple Remote Accessing Example

7-10

DS Applications

Figure T-1 shows how your local system (System A) can obtain a
list of the files in the first remote system (System B) by
issuing the command:

¢:REMOTE LISTF

To obtain a similar list of files from System C in this kind of
network (where the communications link is through an intermediate
remote computer), use the command:

:REMOTE REMOTE LISTF

Likewise, you can route your request through to System D by
expanding the command to:

:REMOTE REMOTE REMOTE LISTF

Using this compound command accomplishes the same result as if
you had issued the following series of separate commands:

:REMOTE
#REMOTE
#REMOTE
#LISTF

There is an important difference in the way of returning to your
local system, however. When you reach System D (figure T-1) by
entering the compound command

:REMOTE REMOTE REMOTE
#

the # prompt is coming from the Command Interpreter (CI) on
System D. If you now type a colon (:)
#:

you are being switched back to your local CI (System A). But if
you were to use the alternative method of reaching System D with
a series of separate commands

:REMOTE
#REMOTE
#REMOTE
#

T-11

DS Applications

and then you typed a colon as before, you would be switched to
System C. To get back to your local system (System A), you must

return a step at a time (just as you went out to System D a step
at a time) as follows:

:REMOTE
#REMOTE
#REMOTE
#:

£

7-12

DS Applications

INTERPROCESS COMMUNICATIONS

Interprocess Communications (IPC) is a capability of the MPE
operating system that is very beneficial in the DSN/DS environ-
ment. For some applications, IPC may be easier to implement than
Program-to-Program Communications (PTOP) and may provide other
advantages as well. A basic description of the use of IPC and
the changes made to the file system is included in the MPE
Intrinsics Reference Manual.

A simple example of the use of IPC for communication between two
remote sessions is presented in figure T7-2. User Bill
establishes a local session on Node A and a remote session on
Node B. His application, called BILLPROG, opens a local MSGFILE
as a reader and a remote MSGFILE as a writer. Then, user

Jack establishes a local session on Node B and a remote session
on Node A. Jack's application, called JACKPROG, opens a local
MSGFILE as a reader and a remote MSGFILE as a writer. Now these
two unrelated processes can communicate with each other through
the IPC capability.

NODE A NODE B

BILLPROG FWRITE MSGFILE
FREAD
——
/
L FREAD
FWRITE JACKPROG
MSGFILE |«
BILL | JACK

Figure 7-2. Two-node IPC Communication

7-13

DS Applications

If PTOP had been used in the example in figure 7-2, a PTOP master
program would need to be executing in one node and a slave pro-
gram would have been initiated by the master in the other node.
The master-slave programs would also require coordination because
of their relationship.

The advantage of IPC becomes more dramatic when two or more pro-
cesses desire to communicate with each other, or when the network
is more complex than two nodes. Figure T-3 shows a network con-
sisting of three nodes and a solution that seems very useful in
the general DSN/DS applications environment.

NODE B

Figure 7-3. Three-node IPC Communication

7-14

DS Applications

In figure T-3, a general application program called Message
Switching Procedure (MSP) is written and executed on each node.
The MSP performs the following functions:

e Opens a local message file as a reader

e Opens any local applications message files as a writer
e Opens all DS lines to adjacent nodes

e Establishes a remote session on each of these nodes

e Opens a message file on each adjacent node as a writer to be
used for communication with each MSP.

The MSP handles all outgoing requests by forwarding them to the
MSP programs on adjacent nodes. MSP also handles all incoming
requests by routing them to a local application program or by
passing them on to the next node in the network.

If the network is complex and it is desirable to shift the
responsibility for routing from the user to the MSP, a solution
might include addressing within the user's data buffer and the
use of a directory file in conjunction with the MSP. The MSP
would then use the directory file to determine to what node it
should forward the message. A more advanced directory file could
provide alternate routes in case of downed lines. If alternate
routes were not available, the unserviceable requests could be
stored in a disc file and then be rewritten to the MSP's MSGFILE
when the downed lines are restored.

In a simple network, it may not be desirable to design an MSP;
but it is still possible that using IPC may be more advantageous
than using PTOP. In this case, each user application could set
up one or more remote sessions on the appropriate node(s) and
communicate with other processes using the normal file intrinsics
(FOPEN, FREAD, FWRITE, and FCLOSE) and message files. Also, by
using the :FILE command, it can be transparent to the user or to
the application program that the MSGFILE is located on a remote
node.

The advantage of using an MSP is that several users on a system
can communicate with a number of remote processes, but only one
remote session is required per node. Since fewer remote sessions
are necessary, the amount of memory required is decreased.

The major advantage of IPC versus PTOP is that there is no
limitation to the number of local or remote processes with which
a single process can communicate. The processes are fully
bilateral with IPC making it easier to implement and expand the
application for more complex networks. Also, activities such as
development, testing, and debugging can all be done on one node,
and then the resulting application can be distributed.

7-15

CONFIGURATION DIALOGUE

A

DSN/DS operation requires the installation and configuration of
one communications interface for each line to a remote computer;
or, in the case of DS/X.25, one communications interface is
required for each physical link to a Public Data Network (PDN).

This appendix explains how to configure the following:

e Intelligent Network Processor (INP)

e Synchronous Single-Line Controller (SSLC)

e Hardwired Serial Interface (HSI)

e DS Line Monitor (communications driver IODSO or IODSX)

e DS Virtual Terminals (IODSTRMO, IODSTRMX, or IOPADO) -- one
for each session that will be allowed on your system from a
remote system or from a Packet Assembler/Disassembler (PAD).

The same communications interface (INP, SSLC, or HSI) can be used
by another HP 3000 data communications subsystem (such as
DSN/MRJE) when it is not being used by DSN/DS. In such a case,
the communications interface is configured once for each sub-
system (each time with a unique logical device number, but always
with the same DRT number). Keep in mind that the following
dialogue applies only when the interface is used for DSN/DS
activity, and that a response that is optional for DSN/DS may not
be optional for one of the other subsystems. Configuration
guidelines pertaining to the other subsystems are given in the
reference manual for each subsystem. Configuration summary
tables for each of the communications interface types are
included in the Communications Handbook.

For any data communications subsystem to function, CS/3000
modules must be present on the system. It is presumed in this
configuration description that the Account Systems Engineer (SE)
has already installed CS/3000.

If you are making any other changes to the MPE I/0 system,
refer to the System Manager / System Supervisor Reference
Manual.

Configuration Dialogue

Configuration is accomplished through an interactive dialogue
between you and the computer system. As the questions or
prompts appear on your console, enter the appropriate replies
through the console keyboard for your desired system
configuration.

NOTE

In all responses, Y or N can be used for
YES and NO. A carriage return is equivalent
to NO.

Prior to entering the dialogue, log onto the system and input
at least a file reference to a magnetic tape, as follows:

+FILE name;DEV=TAPE
+SYSDUMP*name

The dialogue commences as follows:

Step Dialogue

No.

1 ANY CHANGES? YES

2 SYSTEM ID = BP 32002 v.uu.ff? return
3 MEMORY SIZE= xxx? return

3.1 I/O CONFIGURATION CHANGES? YES
3.2 LIST I/O DEVICES? YES

All I/0 devices currently configured on the system are
listed with the following column headings:

LOG DEV Logical device number.
DRT # Hardware device address (Device
Reference Table number) configured

on the interface board.

UNIT # Hardware unit number of device on
its controller.

CHAN Channel number of device on its
controller.

A-2

I

Configuration Dialogue

Step Dialogue

No.
TYPE Device type.
SUBTYPE Device subtype.
TERM TYPE Terminal type.

TERM SPEED Terminal speed.

REC WIDTH Record width in decimal words.
OUTPUT DEV Device class name or device ldn.
MODE Accept jobs

Accept data
Interactive device

Duplicative device
Spooled device

7, B
wonounan

DRIVER NAME Driver name.

DEVICE CLASSES Class name assigned to the inter-
face.

NOTE

The prompt in Step 3.3, below, appears
only if a communications subsystem (CS)
device was previously configured into
the system.

3.3 LIST CS DEVICES? YES

A list of all CS devices currently assigned to the
system is printed with the following column

headings:
LDN Logical device number.
PM Port Mask. (Not used by INP and
SSLC.)
PRT Protocol.
LCL MOD Local mode.
TC Transmission code.

A-3

Configuration Dialogue

Step
No.

3.4

RCV TMOUT
CON TMOUT

MODE

TRANSMIT
SPEED

™
BUFFER SIZE

DC

Dialogue

Receive timeout (in seconds).

Connect timeout (in seconds).

Transmission speed
second).

Transmission mode.

0 = Dial out.

I = Manual answer.

A = Automatic answer.
D = Dual speed.

H = Half speed.

C =

Speed changeable.

(characters per

Default buffer capacity, in words.

Driver changeable or not changeable.

DRIVER OPTION Driver options.

If you have a switched device, such as those that
are connected through a dial-up telephone line, then
you receive the following additional information:

LDN

CIRL LEN
PHONE NUMBER
LIST

LOCAL ID
SEQUENCE
REMOTE ID
SEQUENCE

HIGHEST DRT=xx?

INP or SSLC logical device number.

Not currently implemented.

A single telephone number -- the
default for the data communications

line.

The default identification of the

local computer.

The default identification of the

remote computer.

In the output, xx is a value denoting <the present
highest DRT entry number that can be assigned to a

device.

To change xx, enter the new value desired. If the
highest-numbered device in the configuration is a
device that uses more than one DRT entry (such as a

Configuration Dialogue

Step Dialogue

terminal controller with one or two data set con-
trollers), be sure to enter the highest of the DRT
numbers.

To maintain the current xx, enter a carriage return.

3.5 LOGICAL DEVICE #?

To specify a device to be added or removed, enter
the logical device number of that device. An HSI
has four ports and thus can be configured up to four
times with a unique logical device number for each
port. In addition, a communications driver (IODSO)
with a unique logical device number must be config-
ured for each HSI port configured.

This prompt is repeated later in the configuration
dialogue, so that you can return to this point to
configure more than one device.

3.6 DRT #?

To add a device, enter its DRT entry number. For a
communications driver and a virtual terminal, you
must assign the logical device number of the asso-
ciated communications interface (INP, SSLC, or the
HSI port), preceded by a number sign (#).

Virtual terminals need to be configured for only one
port of any HSI (back referenced to only one logical
device number for the HSI). The terminals will be
dynamically allocated to the proper port when a user
opens it.

To remove a device and return to Step 3.3, enter
zero.

3.7 UNIT #? O

Enter zero for an INP, an SSLC, an HSI, the DSN/DS
Communications Driver (IODSO or IODSX), or Virtual
Terminals (IODSTRMO, IODSTRMX, or IOPADO).

3.8 SOFTWARE CHANNEL #7 0

A-5

Configuration Dialogue

Step Dialogue
No.
3.9 TYPE?
Enter the device type, where
16 = Virtual Terminal or PAD Terminal
17 = Intelligent Network Processor (INP)
18 = Synchronous Single-Line Controller (SSLC)
19 = Hardwired Serial Interface (HSI)
41 = DSN/DS Communications Driver

NOTE

When configuring Device Type 16, consider
the maximum number of terminals supported
by your system. [Each virtual terminal
configured is added to the total number
of terminals already on the system.

3.10 SUBTYPE?

Communications Interface:
For an INP, enter O, 1, or 3
For an SSLC, enter 0 or 1
For an HSI, enter 3, where

0 = switched line with modem
1 = nonswitched line with modem
3 = hardwired line, synchronous transmission

Communications Driver:
For IODSO or IODSX, enter O or 1, where
0 = no data compression
1 = data compression

Virtual Terminal or PAD Terminal:
For IODSTRMO, IODSTRMX, or IOPADO, always enter O.

NOTE

If you are configuring a terminal (Type
16), +the dialogue continues to Step
3.11. If you are configuring an HSI
(Type 19), the dialogue skips to Step
3.13. If you are configuring an SSLC
(Type 18), the dialogue skips to Step

3.14. If you

(Type 17), the
3.17. For all
dialogue skips

are configuring an INP
dialogue skips to Step
other device types, the
to Step 3.40.

A-6

Configuration Dialogue

Step Dialogue

g““ No.

3.11 TERM TYPE? O

This question is asked only if Type is 16. Term Type
is always zero for DSN/DS Virtual Terminals or PAD
Terminals.

3.12 SPEED IN CHARACTERS PER SECOND? 0

This question is asked only if device Type is 16,
then the dialogue skips to Step 3.40.

3.13 PORTMASK?

g@m\ This question is asked only if device Type 1is 19
(HSI). The values allowable are shown below and must
be entered in decimal. This forms a mask indicating
which HSI channel will be used. Only one of the four
channels may be designated for each unique logical
device number.

Enter 8 for HSI cable connector port O.

Enter 4 for HSI cable comnector port 1.

Enter 2 for HSI cable connector port 2.
Enter 1 for HSI cable connector port 3.

Since only one port on the HSI PCA can be opened at
a time, only one block of virtual terminals (entered
later in this configuration) are needed for that HSI
PCA. This same block is automatically reallocated to
each new port opened. One block of virtual terminals
serves all ports.

3.14 PROTOCOL? 1

This response defines Binary Synchronous Communi-
cations.
3.15 LOCAL MODE?
For an HSI, enter 1.
For an SSLC, enter 1 or 2 where

(@ o 1 = Local is a primary contention station
‘ 2 = Local is a secondary contention station

Configuration Dialogue

Step Dialogue
No.

To resolve the contention problem in point-to-point
operations, each station is assigned a priority
(primary or secondary). Because the secondary sta-
tion can gain control of the line for a transmission
only when the line is left free by the primary sta-
tion, the SSLC is usually configured as a primary
station.

Local mode determines the amount of time a local
station will wait in response to a line bid; primary
station timeout is two seconds and secondary is
three seconds. If a response from the remote system
is not received within the allowed time (two seconds
for primary or three seconds for secondary), the
line bid is re-transmitted until the number of
retries permitted by the communications software is
exhausted.

3.16 TRANSMISSION CODE?
For an HSI, enter 1.

For an SSLC, enter 1, 2, or 3 where

1 = Automatic code sensing of ASCII and EBCDIC if
initially receiving; ASCII if initially send-
ing; or for Hardwired Serial Interface (HSI).
ASCII transmission.
EBCDIC transmission.

2
3

Select the most frequently used method of trans-
mission because your response establishes the
configuration default. In DSN/DS, all transmissions
are ASCII. Only in certain other data communication
subsystems can users optionally transfer EBCDIC
characters.

3.17 RECEIVE TIMEOUT?

Enter the positive number of seconds the CS device
will wait to receive text before terminating the
read mode. Entering a carriage return provides a
20-second timeout. :

Configuration Dialogue

Step Dialogue

NOTE

For all timeout responses: Entering 0
disables the timeout; maximum timeout is
32000 seconds; DS displays an error when
the communications software (CS) dis-
connects because of a timeout.

3.18 LOCAL TIMEOUT?

Enter the positive number of seconds a connected
local station will wait to transmit or receive be-
fore disconnecting. Entering a carriage return pro-
ﬁwm vides a 60-second timeout. (Your response is not
) used for DSN/DS activity.)

3.19 CONNECT TIMEOUT?

Enter the positive number of seconds the local sta-
tion will wait after one attempt to make a connec-
tion to a remote station. Entering a carriage return

provides a 900-second timeout. For an HSI, 100 to
500 is recommended. For an INP or SSLC, 300 is
recommended.
NOTE
¢ Steps 3.20 through 3.22 apply only to CS

devices with switched 1lines connected
through a modem (dial telephones, Sub-
type 0). For CS devices with non-
switched lines connected through a modem
(private lines, Subtype 1) the dialogue
skips to Step 3.23. If the CS device is
either an HSI or a hardwired INP (Sub-
type 3), the dialogue skips to Step 3.25.

3.20 DIAL FACILITY?

Enter YES if manual dial-up is required. Enter INP
LDEV# if the AUTO DIAL feature is used. Enter NO if
g@”\ no dial facility is required.

Configuration Dialogue

Step
No.

3.21

3.22

3.23

3.24

3.25

3.26

Dialogue

ANSWER FACILITY?

Enter YES if the local modem can answer calls,
either manually or automatically. Enter NO if it
cannot. A NO response causes the next step to be
skipped.

AUTOMATIC ANSWER?

Enter YES if the local modem can automatically an-
swer <calls. Enter NO if manual answering is
required.

DUAL SPEED?

Enter YES if the local modem is dual speed (European
models). Enter NO if it is single speed. A NO re-
sponse causes the next step to be skipped.

HALF SPEED?

Enter YES if the local modem is to operate at half
speed. Enter NO if it is to operate at full speed.
The dialogue skips to Step 3.26.

SPEED CHANGEABLE?
For an HSI, enter YES.

For an INP or an SSLC, enter YES if the speed of the
line is changeable. Enter NO if the line speed is
fixed. In general, the speed is changeable when the
communications interface provides the clocking, and
it is not changeable when a single-speed modem or
other external device provides the clocking. You
must respond YES if the console operator will be
using the speed parameter in the :DSCONTROL command
to change the configured transmission speed (see
Step 3.26).

TRANSMISSION SPEED?
For INP (Type 17) or SSLC (Type 18) devices, enter
the transmission speed of the line in characters

per second (Bit Rate/8). For HSI (Type 19) devices,
enter 250 000 for cable lengths up to 1000 feet, or

A-10

I

Step
No.

3.27

Configuration Dialogue

Dialogue

enter 125 000 for cable lengths greater +than 1000
feet.

The transmission speed you specify is ignored@ for
modems that provide internal clocking signals. This
allows modems of different speeds to be used without
reconfiguring the Operating System. The speed spec-
ified is used if the modems are eliminated and the
controllers are hardwired together.

The speed you specify becomes the default. The con-
sole operator can override the default by including
the speed parameter in the :DSCONTROL command.

TRANSMISSION MODE?

Enter the appropriate number for the transmission
mode in use. The mode numbers are:

0 = Full duplex
1 = Half duplex
INP and SSLC:

Configure the communications interface (INP or SSLC)
to operate in Full Duplex (0) if your facility uses
one of the following:

e A leased line with four-wire, point-to-point
installation.

e A dial network with two lines (four-wire
equivalent).

e A dial network with Wide Band Service.

e Any Direct Connect cable between two INPs.

Configure the communications interface to operate in

Half Duplex (1) if your facility uses one of the
following:

e A dial network with a single-line (two-wire)
installation.

e An INP-to-SSLC Direct Connect cable (a "modem
eliminator" cable between an INP and an SSLC).

Your response must agree with the remote system's

A-11

Configuration Dialogue

Step
No.

3.28

3.29

3.30

3.40

3.

Dialogue

configuration and with the characteristics of the

communications line.

HSI:
Always configure an HSI as Full Duplex (0).

PREFERRED BUFFER SIZE?

Enter the desired buffer size in words, up to a max-
imum of 4095 words for an HSI or SSLC, or up to a
maximum of 1024 words for an INP. For a dial-up
line, 1024 is generally recommended; for a leased
line with an SSLC, the size may be larger than 1024
if the line quality is good. Note that although
large buffer sizes increase transmission efficiency,
they also use up memory space. Match buffer sizes
for sender and receiver whenever possible, since the
effective buffer size that can be utilized is the
smaller of the two.

DRIVER CHANGEABLE? NO

DRIVER OPTIONS? O

NOTE

The dialogue skips to Step 3.50.

RECORD WIDTH?

For IODSO, enter 128.

For all Virtual Terminals, enter 40.

OUTPUT DEVICE?

For the communications driver, enter zero.

For a virtual terminal or a Packet Assembler/Disas-
sembler (PAD) terminal, enter the class name or log-
ical device number to be used for the corresponding
job/session listing device.

A-12

Step
No.

3.42

3.3

3.1}

3.46

3.50

Configuration Dialogue

Dialogue

ACCEPT JOBS/SESSIONS?
For the communications driver, enter NO.

For virtual terminals or PAD terminals, enter YES.

ACCEPT DATA? NO

INTERACTIVE?
For the communications drivers, enter NO.

For virtual terminals or PAD terminals, enter YES.

DUPLICATIVE?
For the communications drivers, enter NO.

For virtual terminals or PAD terminals, enter YES.
INITIALLY SPOOLED? NO
DRIVER NAME?

Enter the name of the driver for <this device as
follows:

JIOINPO = INP

CSSBSCO = SSLC

CSHBSCO = HSI

IODSO = Communications driver

IODSX = Communications driver, while utilizing
the X.25 capability

IODSTRMO = Virtual terminals

IODSTRMX = Virtual terminals, while utilizing the
X.25 capability

IOPADO = Packet Assembler/Disassembler (PAD)

terminals, while utilizing the X.29/X.25
capability

A-13

Configuration Dialogue

Step | Dialogue
No.

NOTE

Steps 3.52 through 3.55 apply to CS
devices with switched (dial-up) 1lines
(Types 17 and 18, Subtype 0). The dia-
logue for all other devices skips to
Step 3.T70.

3.52 PHONELIST?
Enter YES or NO.

You can supply one number (usually a frequently
dialed number) which will be the system default.

3.53 PHONE NUMBER?

Enter a string of numbers and hyphens, but not more
than 30 characters. This number will be included in
the I/0 request on the system console when & user
OPENs a dial-up (manual call) line. This number will
be dialed automatically on an autodial line unless the
user overrides with a phone number in the :DSLINE
command.

3.54 LOCAL ID SEQUENCE?

The default local ID sequence can be specified in
terms of code or number system. Enter a carriage
return for a null local ID sequence. Enter one of
the letters below, followed by the ID sequence in
quotes, if code, or parentheses, if number system.

A = ASCII Example: A "JOE"

E = EBCDIC Example: E "STRING"

0 = Octal Example: O (7, 35, 5)
H = Hexadecimal Example: H (A1, 1F, BB)

NOTE

Do not enter more than 16 characters for
the local or remote ID sequence,

A-1Y4

Configuration Dialogue

Step Dialogue
No.

3.55 REMOTE ID SEQUENCE?

Enter the default remote ID sequence in the same
format as the local ID sequence (above). This can be
repeated until a carriage return is entered.

3.70 DEVICE CLASSES?

Enter a list containing a device class name (up to
eight alphanumeric characters, beginning with a
letter). Class names are separated from each other
by commas. These names are left to the discretion
of the System Supervisor. They will be wused in
certain commands and intrinsics when any member of a
group of devices (such as any disc drive) can be
referenced. No name need be entered.

NOTE

For IODSX entries, the destination logical
node name cannot be specified as a device
class name. (Refer to Appendix H.)

The dialogue now prints the LOGICAL DEVICE #? prompt
described in Step 3.5. If all I/0 configuration is
complete, press RETURN and the dialogue continues at

Step 3.80. Otherwise, enter a logical device
number and repeat the configuration procedure from
Step 3.5.

3.80 MAX # OF OPENED SPOOLFILES= xxx? return

3.81 LIST OF I/O DEVICES? YES
To print a listing of the new input/output device
configuration, enter YES. This list appears in the
format described in Step 3.2.

3.82 LIST CS DEVICES? YES

Enter YES to list the characteristics of the new CS
device configuration.

A-15

Configuration Dialogue

Step Dialogue
No.

3.83 CLASS CHANGES? return

3.93 LIST I/0 DEVICES? return

NOTE

The prompt in Step 3.94 appears only if
a CS device is configured or if addi-
tional drivers exist (for the CS driver-
changeable option in Step 3.29). 1If
neither case exists, the dialogue skips
to Step k.

3.94 ADDITIONAL DRIVER CHANGES? NO

4 SYSTEM TABLE CHANGES? NO

5 MISC CONFIGURATION CHANGES? NO
6 LOGGING CHANGES? NO

T DISC ALLOCATION CHANGES? NO

8 SCHEDULING CHANGES? NO

9 SEGMENT LIMIT CHANGES? NO

10 SYSTEM PROGRAM CHANGES? NO

11 SYSTEM SL CHANGES? NO

The NO response assumes CS/3000 modules are already
present on the system.

11.1 LIST LIBRARY? NO

11.2 DELETE SEGMENT? NO

A-16

)

Configuration Dialogue

Step Dialogue
No.

11.3 REPLACE SEGMENT? NO
11.4 ADD SEGMENT? YES

12 ENTER DUMP DATE?

return Copies the modified MPE. When this copy
is used to COLDSTART the system, the
account structure and all files remain
intact.

mm/dd/yy where mm/dd/yy is some date in the
future. Copies the modified MPE and the
current accounting, but no files.

mm/dd/yy where mm/dd/yy is usually the date of the
most recent system backup. Copies the
modified MPE, the current accounting
structure, and any files that were
changed on or since the specified date.

o

Copies the entire system (MPE, the
current accounting structure, and all
files).

12.01 ENTER DUMP FILE SUBSETS?

Enter a carriage return, or enter a filename or
series of filenames. (Example: €.PUB.SYS)

12.1 LIST FILES DUMPED? YES or NO

13 The console operator must now use the =REPLY command
to assign the magnetic tape drive on which you have
arranged for a fresh tape reel to be mounted.

After the SYSDUMP is complete, the tape produced should be
used to COLDSTART the system. During COLDSTART, the old 1I/0
device configuration is replaced with the new one from your
SYSDUMP tape.

A-17

APPENDIX

ERROR CODES AND MESSAGES

The following is a summary of the error code numbers and messages
that may be encountered. The messages, as listed here, have been
grouped into several categories. For example, the first group
contains all messages pertaining to :DSLINE syntax problems,
while the second group contains the messages that report a DSN/DS
functional problem. Each group is identified with an explanatory
heading, and the messages are listed in numerical sequence within
each category for easy reference.

:DSLINE SYNTAX ERRORS

These messages are sent to the terminal user to point out an
error in syntax or to warn of the consequences of a request.

1300 REMOTE JOBS ARE NOT ALLOWED !. (CIERR 1300)

1301 DSLINE CANNOT CONTAIN BOTH OPEN AND CLOSE. (CIERR 1301)

1302 DSLINE REQUIRES AT LEAST ONE PARAMETER. (CIERR 1302)

1303 DSNUMBER SPECIFICATION MUST BE A NUMBER FROM 1 THRU 255.
(CIERR 1303)

1304 DSLINE #1! DOES NOT IDENTIFY AN OPEN DS LINE. (CIERR 130L4)

1305 EXPECTED LINEBUF, PHNUM, IOCID, REMID, OPEN, CLOSE,
QUIET, COMP, NOCOMP, OR EXCLUSIVE. (CIERR 1305)

1306 MULTIPLE USE OF ! IS NOT ALLOWED. (CIERR 1306)

1307 THE SYNTAX FOR ! REQUIRES AN = SIGN FOLLOWED BY DATA.
(CIERR 1307)

1308 PHNUM IS 1 TO 20 DIGITS AND DASHES. (CIERR 1308)

1309 ! LIST CAN CONTAIN ONLY ONE ELEMENT. (CIERR 1309)

1310 THE SPECIFIED LOGICAL DEVICE IS NOT OPEN. (CIERR 1310)

1311 THE FIRST CHARACTER OF AN ID SEQUENCE MUST BE A " OR A (

(CIERR 1311)
1312 THE ID SEQUENCE MUST TERMINATE WITH A). (CIERR 1312)
1313 THE ID SEQUENCE MUST TERMINATE WITH A ". (CIERR 1313)

1314 A NUMERIC ID SEQUENCE ELEMENT MUST BE 1 THRU 255 (OR
%377). (CIERR 131l)

1315 LINEBUF MUST BE A NUMERIC VALUE FROM 304 THRU 4096.
(CIERR 1315)

1316 UNABLE TO COMPLETE THE REMOTE COMMAND. (CIERR 1316)

1317 NOT A CURRENTLY AVAILABLE DSLINE. (CI<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>