S RO re

HP 3000 Computer Systems

A P s S

() et

€

APPLICATION DESIGN
Student Workbook

Course No. 22808A
Part No. 22808-93001 -

HP 3000 Computer Systems
Training Course

Application Design
Student Workbook

(D e

19447 PRUNERIDGE AVE., CUPERTINO, CALIFORNIA 95014

Part No. 22808-93001 Printed in U.S.A. 11/80

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors

contained herein or for incidental or consequential damages in connection with the furnishing. perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.

No part of this document may be photocopied, reproduced or translated to another program language

without the prior written consent of Hewlett-Packard Company.

Copyright © 1980 by HEWLETT-PACKARD COMPANY

ii

PREFACE

This student workbook was written to assist the student in taking notes while attending the HP 3000 Application Design
Training Course. Each of the pages is a copy of an overhead projection slide that the instructor will use in presenting the
course material. You will find that by making generous notes on these pages, this workbook will be more useful as a reference
after leaving the classroom.

The course material recommended for each student is given below:

Student Workbook 22808-93001
General Information Manual 30000-90008
V/3000 Reference Manual 32209-90001
KSAM Reference Manual 30000-90079
IMAGE Reference Manual 32215-90003
QUERY Reference Manual 30000-90042
Reference Training Manual 30000-90143

iii

CONTENTS

Introduction e Module 1
MPE .. e e Module 2
Transaction Processing Module 3
Data Base Management Module 4
Summaryiiiiii e Module 5
SourceListingso, Appendix A
Answers to Worksessions.oeeunn Appendix B

iv

INTRODUCTION TO APPLICATION
DESIGN ON THE HP 3000 ||

HP3000:

APPLICATION
DESIGN

notes:

references:

application design

MODULES:

| INTRODUCTION

I MPE OPERATING ENVIRONMENT

Il TRANSACTION PROCESSING OPTIONS
IV DATA MANAGEMENT OPTIONS

V SUMMARY

A cackan

notes:

references:

application design

FOUR VIEWPOINTS

| END USER | DESIGNER PROGRAMMER
structure diagram A1-start.
: read fila...
ship to: T perform proc1
Lamene 4 | NS 1]| ¢===>] until proc10

I

COMPUTER SYSTEM

oo

HEWLETT
[() Jyvatrdd

notes:

references:

application design

the END USER wants:

B conversational interface to application
B fast response to interactive requests

B ability to generate 1-time reports without
programming

B separation from specific details of computer
software

anything else?

[ép HEWLETT

PACKARD

notes:

references:

application design

the

APPLICATION DESIGNER

wants:

B to understand and satisfy end user needs

B to understand the capabilities of the computer

‘H to provide a design that insures
- fast response
- rapid access to information
- high rate of transactions

what else?

system in order to satisfy these
needs

[padicano

notes:

references:

application design

the APPLICATION PROGRAMMER wants:

B to be able to translate the designer’s
specifications into a working program

B to understand how to use
the computer system’s software

B programming tools to help code, debug,
and optimize application programs

anything else?

() Prestradd

notes:

references:

application design

the | COMPUTER SYSTEM should provide:

B hardware and software that are capable
of supporting the given application

B support and training for both the

designer and programmer to help
implement a successful application

[() JArostr M

references:

application design

terminal
interface
QUERY

SOME HP3000 RESOURCES

COBOL

BASIC ‘
RPG I8 \:,:."
SPL |/ \3'\?

languages .

FORTRAN

N \

Data
Management

IMAGE
KSAM

file system

Operating System
MPE -
CPU
memory
security

~

S

disc
storage

files
data bases
virtual memory

SUPPORT, TRAINING, & DOCUMENTATION

(D

notes:

references:

application design

End Users

Designers

Programmers

System
‘Administrators

A Guided Tour

o P

TRAINING for different users

<4 we are here

Programmer’s Intro

Console Operator

y

IMAGE
KSAM
V/3000

Programming

System Manager

(ﬁ’ HEWLETT

PACKARD

notes:

references:

application design

TIONS

S
A Y o
N 19
|9

" STRUCTURE)\\N |
— how it does it

DESIGN CONSIDERA

B IMPLEMENTATION
- who uses it and how

- what restrictions are needed _ | s

JK/’

1-10

notes:

references:

[(D

HEWLETT
PACKARD

application design

TYPICAL TERMINAL APPLICATION

menu

transactions

How does this structure work on an HP3000?

A 2idans

-11

notes:

- Think of task in terms of "functions".

- Chart these functions into a set of menu-driven
transactions.

references:

application design

® outlines HOW application does it

Structure Chart

. ood data
example: g CALL.
MAIN00O1 FUNCTION
VALIDATE- OPEN-
SCREEN SCREEN ALL-FILES
’ @ ®
'3 X 9
e
L ~///® 2
GET- DISPLAY- ACCEPT- CHECK-
SCREEN SCREEN DATA SECURITY
O
1-12
notes:
- "Decompose" data as well as the code.

references:

application design

DATA DICTIONARY

B based on data flow in structure chart

- list of each piece of data for each function
(use structure chart as checklist)

— note characteristics of data items
- duplicated?
- sorted?
— used by more than one function?

| () Prestredd

1-13

notes:

- Prepare for data management decisions from the start.

references:

application design

Design for Maintenance

B who will maintain your programs?

usually someone else, so make it easy to read
and simple to follow

B a program that is easy to maintain is usually easy
to use

HEWLETT

("B PACKARD
-14

notes:

references:

application design

understanding the END USER

questions to ask:

who are they?

what do they want?

i

where do they want it? =
in what form?

when?

and how fast?

HEWLETT

(»f ‘PACKARD

I-15

notes:

- If you can explain your design to the end-user in terms
he/she understands, the design has a good change of working,
and of being easy to maintain,

references:

application design

WORKSESSION I-1

() Jrestral

1-16

notes:

references:

Worksession I-1

The purpose of this worksession is to characterize your application. There is no correct answer, but
the more thorough you can be at this stage, the more useful the course will be.

1. Have you settled on a programming language or languages in which to code your application?

If yes, which? Ol

2. Characterize the structure of the application:

A, Summanze, in one sentence if possible, the purpose of your application. , .
‘t\:‘:;\ Tt :' T :/.
—
Kot

B. Briefly list the main functions of your application—for example: maintain bill of
materials, maintain vendor file, etc.

, matam , .

oM raane Np ii //) 0 ¢ i A%c“*«»e
\ : P 0o A

aaYs).h_j\#./‘:f ~»f“\~‘,}’f"({ A p D AW ATaNy N i\ S KQ} A

.
LN e "‘:é\l [

N

A ST

C. Connect the functions you listed above into a menu tree (as in slide I-10).
D. Take one of the functions from the menu tree (or choose a subfunction) and determine the
flow of data within this function. Show this in any format—very roughly with circles and

arrows or, more formally, as a structure chart.

3. Characterize your end-user:

. s A\ p
A. Who will enter data? Crd ke
Where? e N . S
When? __| . SaRIica :
[y o’ :
How fast must response time be? SR Al
Isthefloweven? L = Ifnot, what are the peak times?
V\/A‘"\ D A xswj JARRR v b ; 5 SAR T) alet A
‘ [= * -

I-16a

Worksession I-1 (cont.)

-~

/
B. Who will modify data? (O e

Where? __ (oo o o " e Y
N

A

When? \ o e i

How ﬁnequently? A, el \ Q.. “.‘-';:’L

-
How up-to-date must modifications be? within minutes? hourly? daily? weekly?

~

oA RIS

C. Who will retrieve the data?

In what form? - :
How often? NN '#
What kinds of reports are needed?

Do they want unscheduled reports?

4. List your security, accounting, and recovery needs:

A. What functions are restricted?

To whom?

B. List any sensitive items:

Who can see them?

Who can modify them?

C. Do you need audits?

On what transactions?

I-16b

Worksession I-1 (cont.)

D. How important is recovery?

What transactions must be recovered in case of a crash?

Paw =iy =
¢ 4 «
| g
i F ooy g : B [< E
/| o L s (iR WA s
VAR R . T e P
Tl bt 7 S Iy
. i

I-16c¢

application design

DESIGN TRADEOFFS

/

| / high-level tools \ / response time \
| easy program development / system performance \
{ “maximum capability N Y transaction throughput |
v 7 \ 4

HEWLETT
PACKARD

17

notes:

- Generally, the easier to use, the harder to implement.

references:

APPLICATION DESIGN
ART

not

SCIENCE

(éﬂ HEWLETT

PACKARD

1-18

notes:

- If designing applications were a science, we could write
a program to do it.

references:

MPE OPERATING ENVIRONMENT

 SECTION

MPE OPERATING ENVIRONMENT

B Architecture Overview

B The Process
- code segments
- data segments

B Process Generation

B Multiprogramming

H-1

notes:

references:

General Information Manual
System Reference Manual

MPE Commands Reference Manual
MPE Intrinsics Reference Manual
MPE Pocket Guide

(D Jartr N

ARCHITECTURE OVERVIEW

HARDWARE | SOFTWARE
B Stack Architecture
u Separatnon Of Code & Data A
| Vlrtual Memory |
| The Process

A .’:‘E&f&é

-2

notes:

= HP3000 arChlteCture comblnes hardware and software.,¢(;,,;§u N
» R W gt
- Hardware controls the transfers between data stack and central

processor.

- Micro-coded instructions in the central processor (firmware),
reduce software needs, are super fast.

references:

architecture overview

¥ 3 LR
Yo -0 o

HP3000 STACK ARCHITECTURE

.

special registers general registers

special registers

data

code code and

data

work
area

STACK

Smm——

STACK MACHINE REGISTER MACHINE

e processing in stack e processing in general registers

e code and data always separate ¢ may combine code with data

() AR
G

B £
H-3 : T . - e \
k . ey W

\ +
i o pey N
:* ! o R Yo \
. g 5
notes: 8 '
&

(e

- No general registers are needed in an HP3000. <3fi§ {ﬂ>Mw

- - .Code and data are separate. IS

:;éoth are features that save memory space.

e O
I
) S
— N - [
(1) ‘
. N Y
i AN /
o - “5 - RS, S Q
N T g
'fv &
e T .

/f” -

architecture overview

SHARED CODE SAVES MEMORY SPACE

| data data
user data user
1 user 3
2

code/data separate

data
user
1

-

VS

data
user

data
user

code/data together

notes:

- When code and data are inseparable, copies of code waste s

references:

architecture overview

VIRTUAL (DISC) MEMORY FOR STORAGE

- [S e e ome e o e o — ————-——-—;
(secondary :
code code virtual) |
l l
' [
' |
' (configurable |
— ' data Vil’tua) o “' = < b o
= | S P (Mw“"‘ P B
MAIN (semlconductor) | A '
tr’:.f'

MEMORY

[() Joara

-5

- To the user, there is no difference between main and virtual
memory .

- To the system, disc I/0 is needed to transfer code from virtual
to main memory, and transfer data to and from main memory.

- Note: only the virtual memory used for data is "configured"

into the system. The virtual memory for code is simply the
program file that results from preparing code for execution.

references:

architecture overview

MAIN MEMORY FOR EXECUTION

MAIN MEMORY ~— —
VIRTUAL MEMORY

O Jresred

6 L L R A
notes: ,
/ o »,, 3;4./&”4«”@_?@ :
o B N Ayt ’
{ p)

- In order to execute, a program's code and data must both be
in main memory. This is managed by MPE.

- Note: only the code and data actually required for immediate
execution must be in main memory; some code segments may
remain on disc.

architecture overview

WORKSESSION II-1

A cadkans

1-7

notes:

references:

Worksession lI-1 (architecture)

———..

The HP 3000 is a stack machine. True or false? ‘

One characteristic of a stack machine is that code and data are separate.
True or false?

Describe one advantage of separate code and data?

e i

<

&

Give at least one difference between main memory and virtual memory.

T U e N
i

e

N S e S

In order for a program to execute, all of its code and data must be in main memory.

True or false? ‘E’

II-7a

THE PROCESS

B General Characteristics
B Components

B Code Segments — Overview

[/ ickano

11-8

notes:

references:

architecture overview

PROCESS DEFINITION

“A process is
the unique execution of a program
by a paﬁicular user

at a particular time.”

() Josizity

notes:

references:

the process

PROCESS CHARACTERISTICS

code data
pro?(ram stack

process A

code data
prongam stack
process B process C
code: non-modifiable data: absolutely private
shared ~ separate from code
re-entrant modifiable

[() et

11-10

notes:

- Code cannot change during process execution (non-modifiable),

is returned intact after interruption (re-entrant), and can be
shared by many users.

Data cannot be seen or changed by other users executing the
same code (absolutely private), is stored separately from

code, and ca@&be modified by any users sharing the code.
A

references:

the process

PROCESS COMPONENTS

An executing process consists of:

e 1 or more code segments
e 1 data segment (the “stack”)

data

/

co’de

stack » segments

PROCESS

-1

notes:

- Note: in addition to code segments and data stack, the
executing process may also need "extra data segments".

these will be in main memory too.
discussed later in this module.)

references:

(Ext;a data segments are

.

(D e
If so,
\<;;>/

the process

WORKSESSION 1I-2

(», HEWLETY

PACKARD

references:

Worksession II-2 (the process) .

RN

If you execute the same program twice, does this result in one process or two processes?

4"‘\»&;}

If you and another user each execute the same program, does this result in one or two
processes?)
. \ L B2

Shared code can be modified. True or false? %, -~
Explain your answer. : '

/)

o {4

(L,»’ e (AL e 'i" .
{"\
e

vl

Z

Private data can be modified. True or false? ~ % .=
Explain your answer.

C‘(’/‘

II-12a

the process

CHARACTERISTICS OF CODE SEGMENTS

. B variable lengths
B managed by system
B naturally relocatable
B defined by user
113 A X N Op (‘ﬂ:ﬁé";ﬂ.}ﬁb
notes: (1o b »,\‘* grre m‘\ ”‘“““(i L: .

- Code segment definition: Any group of instructions that the
programmer decides should be kept together as a unit.

references:

the process

Code segments are variable length

A)
1 | ® optimal length depends on:
/= amount of memory
2 - frequency of use
program , 5 code
segments - number of segments
3
4
4 5)
[(D e
1-14
notes:
- Maximum length = 16K words, s AT N
- Most MPE segments are 5K or 1e§§3;,_4 try for user code segmén'gs{j;mxv
in the same size range. o - &/ e O
{ e
< in
. L"j\j
references: .

the process

Code segments are managed by the system

A5
perform B2 . . .+

—.)

B2 <
read . ..
N L 1

virtual memory

G Wi -

main memory

("’ HEWLETT

PACKARD

H-15

notes:

- In this example, code segment 1, which is currently executing,
references code in segment 4 (not in memory). At that point,
code segment 4 is copied into main memory so execution can
continue. This is done automatically by MPE. .- ‘

£
. ’e(/
Y A P
3 ;o
[T A
V7

e

Nm—

the process

Code segments are naturally relocatable

beginning of code —*
PB-register X
1 A / 1
current instruction — < 5
P-register 3 > code
: 4
limit of code - -
PL-register)
MAIN MEMORY PROGRAM FILE

() ool

1-16

notes:

- Program registers in the CPU keep track of the location of any
executing code segment. (These registers are PB, P and PL.)

- Code can be placed anywhere in memory simply by updating
registers.

- All addresses in code are PB-relative.

references:

the process

Code segments are defined by user

program-iD Code defines segment boundaries™
sample-program therefore, programmer controls:
segment:
@ - the number of code segments
- the size of each segment
@ | start section 10 - which code goes into which
init section 20 segment
term section 20
main section 30
@
() | err-proc section 40 ‘
% except RPG and APL
=T PACKARD
notes:

- Maximum number of code segments per program is 63.

- Note: code segments defined in program can be changed using
a "segmenter" program.

References:

Check language reference manuals (COBOL, COBOL II, RPG, SPL,
BASIC Compiler) for details on segmenting code.
£ (:j , \z?;;f‘ﬁ

{-} i: Ry ?;

¢

references: I o

code segments

WORKSESSION II-3

(D Josaral

1-18

notes:

references:

Worksession lI-3 (code segments)

What is one advantage of variable-length code segments?
/)//“f"x A4S (, ::\‘ “‘2«‘0

g

J

A. Isthere a maximum code segment size? / <& If so, what is it? 47 (7

/

B. Istherea maxlmum r of code segments per program? __ .o~
If so, what is it?

Suppose code in one segment causes a transfer to code in another segment; what must your
program do to manage this transfer? : ,

o,

Does your program need to know the address in main memory of the currently executing code
segment? Explain your answer. 4 [

II-18a

"CODE SEGMENT DESIGN

How should code be segmented?
B Concept of Working Set
B Concept of Locality

B Size Considerations

(}, HEWLETT

PACKARD

119

notes:

i < A

S .
Fooonll Ber | 0
e : \ l\\:”,,,, S “'k'*"/‘;q} I}”/

references:

segment design

WORKING SET —

® The smallest set of segments that must be in main
memory for a program to work efficiently.

Start of program > End of program
% Z
Z) Z
computation/
initialization data analysis report generation
segments segments segments

(D Jarirt

11-20

notes:

- The working set for any executing program is "dynamic".
It changes continually throughout the life of the program.

references:

segment design
WORKING SET (2)

o The entire working set should fit in main memory for
efficient processing

MAIN ~ VIRTUAL MEMORY MAIN
MEMORY Q MEMORY
" _ 1 |m»m e

% % 7
/ 22 %, 7 data

% data W, // stack
7777 | Stack 77

7
—
go;d poor

working set fits in memory working set does not fit

HEWLETY
E PACKARD

11-21

notes:

- Note: the data stack is NOT part of the working set; the
stack must always be in memory when a program executes.

- In this example, the three code segments currently in the

working set (shaded boxes) all fit in main memory on the
left - only two segments fit on the right.

references:

segment design
WORKING SET (3)

How can you make sure the working set fits in main
memory?

A) You can add more memory
OR

B) You can run fewer.programs at a time
OR

C) You can structure your program to achieve
better code locality — and a smaller working set

HEWLETT
; (ﬁﬂj PACKARD

1-22 4 I J

S R ey BBt RV e
ot o e [b "
notes: e DAy, o : PAN e ol
T, P S 1R ~
Fo Yo o WL %

- Which of these solutions makes sense for your application?
A can be expensive
B limits the application
C should be attempted

references:

segment design

CODE LOCALITY

B Good locality on an HP3000 means:

Control stays in one segment for as long as possible —
when it leaves a segment, it stays out as long as

possible.

B Poor locality means:

Control branches between code segments frequently —
puts more code in working set.

segment
A

segment
B

B If transfers between A and B are frequenf, put that code in
the same segment.

11-23

notes:

S

references:

segment design

Good locality VS Poor locality

oleole

more INTERNAL calls more EXTERNAL calls
than external calls than internal calls

(43 cackano

11-24

notes:

- This is simply another way of looking at locality.

references:

segment design

EXAMPLE: suppose a program generates displays using 3 display formats

@ Main procedure
e opens file
,_,,@o,..,....x,seleetsxgisplay format

d B,CD
© |

@ rocedures E, F, G
' ormat display screen

- — = |

S - T

How would you segmentv“t'hés”e'bfﬁéram blocks?

() PotrAf)

11-26

notes:

references:

segment design

SOLUTION:
A seg 1
—H —=H
E F G
seg 2 seg 3 seg 4

|) Pyrstad

11-26

notes:

- This solution keeps code from crossing segment boundaries
each time a record is read and formatted.

- Segments are not too large; there is no redundant code.

references:

segment design

FIRST rule for segmenting code:

1. Stay in segment as long as possible, and stay out as long as possible

data user
segment code !
(stack) segments o
] -i ™ /
S [
\ _/
VIRTUAL MEMORY
MAIN MEMORY

(ﬁ, HEWLETTY

PACKARD

1-27

notes:

- Every time a program crosses a segment boundary, it increases
the chance that code must be transferred from disc.

- When a referenced segment must be transferred from disc, the
program suspends.

references:

segment design

SECOND rule for segmenting code:

2. Make segments the same size - easier for MPE to find space

example:
A N~
___/
MAIN MEMORY VIRTUAL MEMORY

e segment C can overlay segment B

[() Jarestr it

11-28

notes:

references:

segment design

THIRD rule for segmenting code:

3. Keep segments small, but not too small
- remember the first rule

many small segments vs fewer large segments
with good locality

working set working set
e small segments MAY cause e larger segments MAY reduce
excessive inter-segment transfers inter-segment transfers

Q) Pyestrad

11-29

notes:

- Remember: the maximum number of segments per program is 63.

- To help find space in memory, segments should be 5k words
or less.,

references:

segment design

FOURTH rule for segmenting code:

4. Separate infrequently used code from code that is executed

most often
|
initialization main error
processing routines
routines
(A)
- - — —]
termination
working set main
{start/end) processing (may never
routines be used)
(B)
working set

(main processing)

{) Jrets

11-30

notes:

- A routine can be large if it is seldom (or never) executed.

- Such code should always be separated from code that is
executed frequently.

references:

segment design

FINAL rule for segmenting
5. Code in segmentable program units

A A
» segment 1
B
B J
)
C C
| ;segment 2
D
D

D Preatra

1-31

notes:

- Code is prepared into segmentable blocks, called RBMs
(Relocatable Binary Modules).

- Programmer controls which code is placed into which RBM.

references:

segment design

COMPILERS AND SEGMENTATION

compiler defaults

COBOL '68 — 2 segments (1 for Initialization)
(1 for Main Program)

COBOL I — 1 segment (Initialization + Main Program)

FORTRAN — 1 segment (Main Program)

BASIC — 1 segment (Program is smallest unit)

RPG — compiler divides program into 4K segments (user can
specify 1K, 2K, or 3K)

SPL — 1 segment (Main Program)

APL — no segmentation (compilation generates data only)

user cbntrol:
COBOL — section-name priority-number

- FORTRAN
SPL — $CONTROL SEGMENT = segment-name
BASIC

[Q) Prratral

11-32

notes:

- Note differences between compilers.

- Check manuals for specific details.

references:

segment design

How COBOL Il determines RBMs and Segments

Compiler ~ Segmenter
INITIALIZATION] ERRORSUB
A100-START 10
C100-INIT 15 ~ Je100MAIN20
E100-MAIN 20

C100INIT1S
F100GET15
F100-GET 15 : INITIALIZATION
ERRORSUB A100START10
6 RBMs 4 Segments

| () Pt

11-33

notes:

references:

segment design

WORKSESSION II-4

[Cackars

11-34

notes:

references:

Worksession lI-4 (segment design)

Define a working set.

How does code locality affect performance on an HP 3000?

" Give at least three rules for effective segmentation.

Segment the following sample program by marking the program units that you would put in
the same segments. (Each box represents a program unit; you can mark them any way you
want just so long as it is clear which units go together.)

o T

e it |, [proc | [TERM | [ERROR |

{ 1= kN AN -

-] INTTA w8 | fprocA] 0 e 7 o~

s

MAIN callsx'I‘NriT, PROC, TERM”onceA each.
INIT calls INITA, INITB once each; each is small and executes quickly.
PROC and PROCA work together to do most of the processing.

TERM performs termination procedures; it is small and executes quickly.

ERROR may be called by any other procedure in case of error.

I1-34a

DATA SEGMENTS

Stack
e Layout
¢ Management

Extra Data Segments

11-35

notes:

references:

HEWLETT
PACKARD

data segments

WHAT IS A STACK?

m 1 word of data stacked on top of another

B LIFO - last item added to top is the first item removed

- bottom of stack

expandable ‘
down
———f————— base

expandable
up

v <« top of stack
stack

() it

11-36

notes:

- Note: HP3000 data stack is always shown "top down".

references:

data stack

HP3000 DATA STACK

B 1 per process e)
.. W variable length | T e
user e user managed data area
DB data DB-relative (negative)
global e global data
data DB-relative (positive)
total stack ! q AROBS o oo Lim = T
size =DLthruz | I y
i local e local data for subroutine
Q-relative (positive/negative)
L
. e top-of-stack (TOS)
rocessing area
S P ing }TOS S-relative (negative)
4
G Pt L
- A ' / f
O O - ""

data limit,

the lowest address avallable to programmer.

- DL =
- DB = data base, the base for all stack expansion whether up yfu
or down. O
A
- Q = dynamic base for the current subroutine(s).) ’ﬁ'
- S = stack top (top of stack), the area where code is executed:
as new values are moved onto stack, S moves toward Z
- Z = stack limit, the very top of the stack (except for a small
overflow area managed by system). .
f\ F N
/\)._..:7 //Z kah’fx f\f\’“:[“’%ﬁ ’ ; o *l »
L , f .
c >4
references: _
y L =

data stack
DATA STACK - ANOTHER VIEW
DL p=—
DB)
lobal |
9 ot INITIAL stack
(fixed size)
Q’s] -—4)"';?':' [’ Ao },:?

z (F\,Qﬁw{\ i

B the INITIAL stack must be as large as your global data
(D st
11-38
notes:
- Before any execution, Q and S are at the same location.
- As code is executed, the stack expands dynamically up to the
limit set by user.
x;%kfwn s ;
) | i
5 * -
: }_ﬁ iE%MWWWWWWWW | o <
) NG b \) S G
oot ¥ | [!
»
: 4 mew’wﬂj

references:

data stack

STACK MANAGEMENT

What can a program do to manage stack size?

Increase stack limits (MAXDATA or STACK)

Shrink the stack dynamically (ZSIZE or DLSIZE)

Design to keep global area small 1 ,_

Segment code to reduce stack size /
— / Lo e e

/ & o
v s > w g - N
- Y NP A - o

S

t A

" references:

P Q.

data stack

STACK LIMITS

B stack size (DL-Z) estimated by system

B user can increase this estimated size:

e STACK = increase stack size all at once
e MAXDATA = increases stack size in 1K
increments

[ﬁﬁ HEWLETT

PACKARD

140

notes:

references:

data stack

example: N

STACK = 10000 -

DL DL R
10,000 1;3;0
Z Y 4
MAIN VIRTUAL

e DB to Z allocated at once in both MAIN and VIRTUAL MEMORY

043 cackaro

1-41

notes:

- Note: the STACK command does not expand DL-DB area.

- Can be wasteful of memory since main memory space allocated
from start.

references:

data stack

example:
MAXDATA = 10000
A
DL ___/
] T DL
10,000 V%z 10,000
7

y4
v

MAIN VIRTUAL

e maximum stack (DL to Z) allocated in VIRTUAL MEMORY

e expanded in MAIN MEMORY as needed (1K increments)

| () Jro

1142

notes:

- MAXDATA saves main memory.

- Costs in disc I/O needed for incremental expansion.

references:

data stack

Use MAXDATA -

o if you need to expand DL — DB area

e if you run out of stack space during execution

NOTE: Neither MAXDATA nor STACK will shrink stack automatically

0 cadcaro

1143

notes:

- Use MAXDATA if you get a "stack overflow" message whén you
execute program.

references:

data stack

USE STACK = if you need a large stack immediately

example:
e [NIT segment requires 20,000 words
e rest of program requires only 10,000 words

STACK = 20,000

& _______ shrink\ | _____ -
INIT stack
used exits rest of 10,000
20,000 by program sl 1 4
INIT 7
S—-———- 4
y 4 | SN
[(D [veirt
11-44
notes:

- STACK saves disc I/0 required to expand stack with MAXDATA -
use it if you know you will need the extra stack space
immediately.

- You can shrink stack when space no longer needed.

references:

data stack

EXAMPLE OF STACK GROWTH (1)

assume:
program modules shown below:

MAIN

e

PROC A PROC C

PROC B

[B HEWLETT
PACKARD

11-45

notes:

- In this example, assume MAXDATA is specified to allow stack
to expand past size estimated by system.

- Each increase means swap to and from disc.

references:

data stack

DL
DB

program)
data

Q,S

Z

initially, stack
contains only
global data

call

- EXAMPLE OF STACK GROWTH (2)

DL DL
DBf-———--- DB
global
data
Q call qitk

4
local data is

added as each
procedure is

called S

stack expands
past defauit estimate

11-46

notes:

(D JarstyaM

- The first location of Z is the system-determined stack limit.

- After procedure B is called, Z is moved past this limit in

1K increments.

no further.

references:

2 can expand up to the MAXDATA limit, but

data stack

EXAMPLE OF STACK GROWTH (3)

DL DL oL p———y
DBfF——-———1 DBEL - — — —— | DB - ———-—
global global global
data data data
Q=g Qs S Ohaiaiocal
data \ da

:>s Ioco > ‘ :> .
®

exits exits is called

A 2adians

11-47.

notes:

- Shaded areas of stack are unused except when A calls B
(previous slide).

- Stack does not shrink automatically.

references:

data stack

USE ZSIZE TO SHRINK STACK

example:
DL DL DL
DB , DB DB
| save z | shrink
Q,s Qj stack L Q,s
7/ @size) U/
z al-—————4 4z
usual stack back to
size - usual size
8,2
maximum
expansion
() Pyearaid
1148
notes:

- It is good practice to shrink the stack after the program
has finished with procedures that expand the stack past
its normal size.

- See appendix A for sample procedures to determine relative
location of Z (usual stack size) and then shrink the stack
back to this size.

- These procedures can also be used to expand stack
programmatically. Similar procedures can manage DL-DB area.

references:

data stack

DESIGN TO KEEP GLOBAL AREA SMALL

DL |
dynamic area
DB
global . fixed - no direct user control
Q

» dynamic area

N®

(D] E‘E‘:”.%EJS

1149

notes:

- Use global area for: .
main program data
data common to more than one procedure
data maintained by a procedure between calls

- Place constant data (such as error messages, screen displays)
in code segment.

- For COBOL programs, global area contains Working Storage for
main program plus some other general purpose data. It also
contains data for subprograms unless they are compiled with
DYNAMIC option (more on dynamic subprograms in the language
unit of Module III).

references:

data stack

SEGMENT CODE TO REDUCE STACK SIZE

problem: restructure this program to reduce stack size

c
(1200)

D
(400)

B largest stack requirement when @ calls @

11-50

notes:

- Numbers in parentheses are stack requirements in words.

- When MAIN calls A and A calls C, the total words needed=1700.

references:

data stack

solution: break largest procedure into subprocedures
that are not in direct line

Q) Jrraratd

11-61

notes:

- In this solution, the largest stack requirement is 1100 words.

- But, keep the other factors in mind when segmenting - don't
reduce the stack size only to cause more transfers between

code segments.

references:

data segments

WORKSESSION II-5

4 cackaro

11-62

notes:

references:

@

Worksession lI-5 (data stack)

o)
The data stack can be shared by more than one process. True or false? FQJM

Assume a program with one called procedure that is currently executing. Label the stack

diagram to show:

- . ___},__.—-—““"""‘*
bottom limit—— Vs
top limit-C f‘&
top-of-stack— "> e

start of local data—"" "< —.__
start of global data”” I

Using your stack drawing, shade (or otherwise mark) the areas whose size can be managed by

the user.

Describe briefly three methods for the programmer to manage stack size.

Yo o

A, Suppose your application calls procedure “X” that doubles the usual size of the stack, "X”
is called once only, and the call is neither at the beginning nor end of execution. Is this a

situation where you could use ZSIZE effectively? Explain your answer.

B. Suppose this single very large procedure “X” is the first procedure called by your program,

and the default stuck size is not sufficient. Would you use STACK or MAXDATA to
expand your stack limit? Are there any drawl?acksﬂo your, choice?
H ¥ / ;’; ; ;

A <
s f""/'a'«i i YO A

II-52a

Worksession lI-5 (cont.)

C. Suppose “X” uses the DL-DB area of the stack; would you use STACK or MAXDATA to
expand your stack size? Are there any drawbatﬁto this choice?

\//\\/ ()f/ g*\, M

6. How does putting error messages in a code segment help keep your stack small?

-

o AR VL o (T a2
\ -

2 N N

v Y :

II-52b

EXTRA DATA SEGMENTS

o What are they?
e Why use them?

e Limitations

11-53

notes:

references:

3

HEWLETTY
PACKARD

extra data segments

WHAT IS AN EXTRA DATA SEGMENT?

W a block of unstructured, uninitialized memory

o
2
{} |
data stack extra data segment
- structured v - linear
- private S - private or sharable
- 1 per process - up to 255 per process

| () Poshal

11-64

notes:

- Extra data segments must be managed by the application.

0 (I

references:

extra data segments

WHY USE THEM?

B toprovide LINEAR = F——-1
unstructured storage

- large arrays | / I

- table look-up ,
XDS XDS XDS
B to provide GLOBAL
storage for procedures global

local je—>] XDS

- saves data after
procedure exits

- available for other
procedures

stack
= (‘, HEWLETT

PACKARD

11-565

notes:

- Some other uses:
to decrease stack size

to share data between related processes (processes in same
family)

- Note: the file system uses extra data segments extensively
for data buffers.

references:

extra data segments

WHAT ARE THEIR LIMITATIONS?

B require special capability and user management

B user program must: o
- create and delete any extra data segments
- move data from XDS to stack, and from stack to XDS

B XDS must be in main memory when accessed
(together with code and user stack)

B use resources — disc I/0, memory, CPU time

m HEWLETT
PACKARD

11-56

notes:

references:

extra data segments

WORKSESSION 1I-6

() Jarestrif

11-57

notes:

references:

Worksession II-6 (extra data segments)

1. Give at least 2 differences between the data stack and an extra data segment:

2. Which of the following data storage needs can be solved by using extra data segments?

/

- A)’A program needs storage for an array that is too large for the data stack.

B. A program needs an area to hold local data from a procedure after the procedure has
exited.

/C / A program needs a storage area for data to be passed to another program in the same
~ process tree.

II-57a

PROCESS GENERATION

B Life Cycle of Process

Bl Code Libraries

L (D it
1158 |

notes:

references:

process generation

“COMPILE-LOAD-GO”

What does HP3000 do?

standard terms: compile load go

HP3000 terms: compile prep run

(6’ HEWLETT
PACKARD

1-59

notes:

- Compile stage common to most systems; it produces object
code from source code.

- Loading in HP3000 has two stages:
PREP resolves some externals, links code segments

RUN (in first phase) resolves remaining externals, sets
up stack

- RUN (in second phase) executes program.

references:

process generation
'COMPILE

-

source
code

v

compiler

2

: :stackl
— info
Text file | N———
User Subprogram
Library file

‘B segments planned - but not final

() Jrrarasd

11-60

notes:

- This stage uses a compiler program (different compilers for
each language).

- Source code in text file compiled into "Relocatable Binary
Modules" in USL file.

- Stack information kept in USL file with RBMs.
- RBM is basic building block; one or more may be combined

into code segment, but RBM cannot be split into two or more
segments. .

references:

process generation

PREPARE
uUSL
RBM nsfa '—_':‘/\! segmenter
o) (] 7S

User Subprogram \iA RL >
Library file Program file
RBM| |RBM
RBM| |RBM
—

Relocatable Library file

B initial stack, code segments linked in Program file

'Zp HEWLETT

PACKARD

1181

notes:

- This stage uses the Segmenter program.

- Sets up final code segments in program file. The segments
are linked through an STT (Segment Transfer Table) associated
with each code segment in program file.

- Sets up initial stack (global stack data) in program file.

- Resolves externals from "Relocatable Library" and builds an
RL segment in program file.

references:

process generation

RUN (1)

loader program
program :> I |:> flle :;/I\
file

system dlsc
M

VIRTUAL MEMORY

o first phase links program units
e not yet a process

() Prestrafd

11-62

notes:

- RUN, in this stage, uses the Loader program.
- Allocates space for stack on system disc.

- Completes linkage for code segments in system tables.

references:

process generation

code data
process

MAIN MEMORY

VIRTUAL MEMORY

B creates and executes process

| (D Jatrad

1163

notes:

- Finally, RUN creates the process, making an entry for the
process in system tables.

- Finds space in main memory for code and data.

- Executes the process.

references:

process generation

STREAM capability
B control batch job execution from terminal

r:stregm xyz ‘\‘\\ : batch iOb “XyYz”
(tjob xyz
frun abc b run ABC
!ru; def
!eoi 1 data
- l@ run DEF
interactive terminal
e continues with other functions data

e execution sequence set
in stream file

e no operator intervention

() Jretra

11-64

notes:

- Compiling can take time - so use STREAM for long compilations.
-~ Also, use STREAM to run sequences of programs.

- Allows you to perform other functions while long jobs
execute in batch.

- Resolves externals from Segmented Library.

references:

process generation

ALLOCATE PROGRAM

B when one program used frequently

e all externals resolved
program
file \ e ready to run

S e only needs:
m memory space
disc space for stack

allocated program

() et

11-65

notes:

-~ Allocate uses resources, so don't allocate many programs.

- This is particularly useful, to save some RUN overhead, when
one program is run frequently.

references:

SAMPLE PROGRAM

problem: program to retrieve order information by order

number
error
START subprogram
v v
initialize terminate
main
process

4 eackaro

1166

notes:

- See appendix A for source code listing of this sample program.

references:

sample program

Flow of MAIN process (simplified)

READ
SCREEN

1

FIND
ORDER

A

order # (/>te\rmjnal

GET
ORDER-INFO

A

|

PRINT
ORDER-INFO

»order #
data
base
order data
—

»order data mi"jnm

[ﬁ/, HEWLETT

11-67

notes:

references:

PACKARD

sample program

How Program is Segmented

A100-START | initialize)
- perform MAIN until done; 1st segment
terminate

C100-INIT ~ open data base ‘
forms file
terminal

D100-TERM close data base * 2nd segment
forms file
terminal

B10C-EXIT exit J

- E100-MAIN read screen (order #)
find order in data base
get order information
print information)

r 3rd segment

error subprogram error messages 4th segment

A 5idane

11-68

notes:

- Look for RBM boundaries in code.
- Are these the same as the segment boundaries?

- Look at PMAP produced by segmenter (PREP stage) for final
segment boundaries.

references:

sample program

DYNAMIC ERROR SUBPROGRAM

B puts error messages in local area of stack

B reduces global stack size

() Jrestrits

11-69

notes:

- A separate, dynamic code segment contains all error messages.
This saves permanent (global) stack space.

references:

sample program

STREAM FILE

m allows concurrent processing during compile and

prep

1JO0B MGR. DESIGN
!PURGE PDEMO1P
'PURGE UDEMO1U

IFILE COBTEXT= - source file
'FILE COBUSLSUDEMO1U | USL file

'FILE COBLIST=$NULL

IRUN COBOLII.PUB.SYS;PARM=5
'FILE COBTEXT=ERRORSUB

IRUN COBOLII.PUB.SYS;PARM=S

'PREP UDEMO1U, PDEMO1P;MAXDATA=11000;PMAP

| SAVE [PDEMOTP_}~

1EQJ —— program file

170

notes:

- Identify the source file, USL file, program file.

references: MPE Commands Reference Manual

. "‘/’ HEWLETT

PACKARD

process generation

DEMONSTRATION

[packaro
1H-71 :

notes:

1. Log on
2, Run "PDEMOl1lP" (the program file)

3. Enter one of the following 8-digit order numbers:

12340010
12340015
12340020
12340025
12340030
12340035
12340040
12340045
12340050
12340055

references:

LIBRARIES

B using code libraries
RL — Relocatable Library
SL — Segmented Library

B all libraries are created and managed by the

segmenter

1-72

notes:

references:

[(D Jartoit

using libraries

AN OVERVIEW

Compile Prepare
_> USL file _) @3
code file
Q Q process
RL file m _

(W NeNq]
N -0 Q

B RLs part of program file

B SLs part of process

HEWLETT
[() et

11-73

notes:

- Each RL is physically part of the program file that
references it.

- An SL is simply "linked" to the executing process that

references it; that is, it is brought into memory and
linkages established to it.

references:

using libraries

RELOCATABLE LIBRARY

B linked at PREP time

00
00 >

N _ A
USL file - code segments
(compiled program) segmenter S _ A
N — _
- - } RL segment

] _

D program file

RL file
{contains ail RL modules)

[cackaro

11-74

notes:

- A Relocatable Library file is made up of compiled units (RBMs)
just like the USL file. These units are not yet segmented.

- The PREP command calls the segmenter to join RL units to
program file.

- Only the RL units referenced by the program are copied to the
program file. All the RL units are placed in 1 segment.

references:

using libraries
use RLs

B for routines private to different programs
W for small routines

W for routines that seldom change

prog A
RLs
=’ D)) total
63
segments
including
. J) R

[/ packano

11-75

notes:

- There is a copy of the RL in every program that references
that RL.

- When an RL is changed, the program file must be re-prepared.

- RLs are very useful during program development to keep
different versions of code. PREP whichever RL yocu want
into the program file for testing.

references:

using libraries

SEGMENTED LIBRARY

B linked at RUN time "

-‘\\

SL file

>-<>»0

| =
Code process

— — e ——

L initial stack) \)

Program file System disc___/

(ﬁp HEWLETT

PACKARD

11-76

notes: o1

- SLs, unlike RLs, are already segments.

- There are three parts to the file of Segmented Library
routines. The system SL is checked automatically for any
referenced routines at run time; you must specifically
request RUN to look for account and group SL's. (A lot
of system code used by applications is kept in the
system SL.)

- SLs cannot modify data in the initial global stack

because that part of the stack is already established in
each program file when the SLs are linked to the program.

references:

using libraries
~use SLs
W for routines common to many programs
B for routines that may change

- m for large routines

ﬂ

max R
191 SLs
segments r> pr:g
prog
B

[cackanc

1W-77

notes:

- SLs can be modified without affecting the program file.

- Only one copy of each SL is needed, however many programs
reference it.

- Bach SL requires an entry in the CST (code segment table)
which can have a maximum of 191 entries.

references:

using libraries

WORKSESSION II-7

w HEWLETT
/8 PACKARD

i1-78

notes:

references:

Worksession lI-7 (using libraries)

Given the following routines, decide whether you would put them in an RL or an SL.

A. A routine to perform a large, complex mathematical function, such as random number
generation, that is used by several programs in your application.
RL or SL
Why? / (/)‘w"’ /~" L:.J*/’) s 1;.” ’:i:;{; -‘F)

B. Two small routines that determine the current location of the stack limit (Z) and then
shrink (or expand) the stack to that limit.

RL X or SL
Why?

C. A routine to reformat some data used by your main program (not by a procedure or

dynamic subprogram).
(-

RL X or SL
Why?

If your program has 62 code segments, would you add an RL?

L
\

Yes or No :

[

Explain: Y N B S 6

If the segmented library contains 190 SL segments, would you put any code into a new SL
segment?

Yes y or No._
Explain: NS

II-78a

Worksession lI-7 (cont.)

BN
If your program already has a large number of b egments, would you add more?
Yes or No } /)
Explain: ’ iy § / m

¥

If many programs will share a library routine, would you put the routine in an RL or SL?

RL or $L X

Explain:

If the routine is subject to frequent modification, would you put it in an RL or SL?
RL sL__\/
or X

Explain:

I1I-78b

MULTIPROGRAMMING |

B General Considerations

B MPE Process Management

[Badicaro

11-79

notes:

references:

multiprogramming

B multiple programs executing at the same time

B muitiple processes (same program) executing at
the same time

:RUN ABC
session #S24

:RUN DEF
session #S36

MULTIPROGRAMMING

“ABC"

code

process 3

data

“DEF!’
code

M how are they all managed?

:RUN ABC
job #J05

[2ickara

11-80

notes:

references:

multiprogramming

PROCESS EXECUTION

suppose 3 processes all start at the same time:

1. :RUN ABC...
execution SEEMS simultaneous
2. :RUN ABC..

v

execution ACTUALLY sequential

3. :RUN XYZ... |

on the HP3000, only 1 process executes at a time

O ERdkaro

11-81

notes:

- While one process executes, other processes that seem to
be executing are actually waiting.

references:

multiprogramming

EXAMPLE: EXECUTING PROCESS

m while process A executes, other processes WAIT

m process waits for I/O or for time-out, etc.

o] time up

\ \

RUN

WAIT

t {
/O complete A’s turn
again

(D Jrere

11-82

notes:

- Processes wait in suspended state either because they are
waiting for I/O to complete or because their allocated
"time slice" is up.

references:

multiprogrammving

EXAMPLE: MULTIPLE PROCESSES
{ | | | I | |
RUN @imi@imi@m@
|

Co—)
' ®

WAIT j};
E—

|
|
[
=
|

TIME D

B what determines which process executes?

[() Jarpstyail

11-83

notes:

references:

multiprogramming

Scheduling and Memory Management

W parallel functions to determine which process
executes next

dispatcher
process A |
system
resources
process B ﬁ
process C

[55dkans

11-84

notes:

- The Dispatcher is a program permanently in main memory.

references:

multiprogramming

the Next Process

selected for execution has:

B highest priority - in dynamic queue where priority
changes as processes execute

and
B is ready - has all resources (except memory)

- is not waiting for /O

[»p HEWLETT

PACKARD

11-85

notes:

references:

multiprogramming

Dynamic Scheduling Queues

3 Queues: high priority

C-Queue -
for terminal transactions 4

D-Queue
for batch transactions 1

E-Queue | ’
for overnight transactions |

\
onlivn

low priority

| () Pt

11-86

notes:

- In the C subqueue, the system constantly recalculates the
average time to execute a process, then raises or lowers
the process' priority accordingly.

- In the D or E subqueues, average can be specified by
system manager.

- The aim of priority management is to favor short
transactions.

references:

multiprogramming
Finding Memory for Next Process

MPE:

m looks for existing free space in memory
(including segments marked for overiay)

B if not enough, begins marking segments for overlay

—>e mark segment
for overlay

e rearrange free
space

e is there enough —
space now?

e ifnot—|

>

(»’ HEWLETT

PACKARD

11-87

notes:

- Data stacks are selected for overlay before code segments
because they are usually larger; data must be written
back to virtual memory before it can be overlayed in main
memory .

- System code, as well as user code, may be overlayed;
everything (except the Dispatcher) is fair game.

- What happens if there are no more segments that can be

overlayed, and the current code and data still won't fit?
The process can't execute!

references:

muitiprogramming

Finding Memory for Next Segment

e code in SEG A calls procedure
in SEG B

code
SEG A

o if SEG B is in memory,
all is fine

code e if not, find space for
Seq SEG B

e same procedure as finding
initial space for process

[(D vl
Y3 packarD

1188

notes:

- When an executing process needs MORE memory, MPE goes

through the same procedure it used to find the initial
memory for the process.

- In this example, if segment "SEG A" must be overlayed to
find room for "SEG B", and "SEG B" returns quickly to
"SEG A", the resulting disc transfers can significantly
affect performance.

references:

multiprogramming

WORKSESSION I1I-8

HEWLETT

) cidkano

11-89

notes:

references:

Worksession lI-8 (multiprogramming)

A. When two users run the same program at the same time, is program execution
simultaneous? Explain.

B. If the two users run different programs, do the two programs execute simultaneously?
Explain.

Consider the following list of program functions, and decide which-queue (C, D, or E) to put
them in: -

A. A program run weekly at night to print paychecks on the line printer.

B. A program to process user requests at a terminal for confirmation of airline reservations.

C. A program run as a batch job to update a data base from a transaction file.

D. A program that accepts data from a terminal and writes it to a file.

Is there anything you can do as a program designer to help the memory manager find space in
main memory for your program?

II-89a

operating environment

SUMMARY

B the process is the basic operating unit
B for efficient processing:

e segment code efficiently
e keep data stack small
e consider the other processes

) Jrestald

11-90

notes:

references:

TRANSACTION PROCESSING

TRANSACTION PROCESSING

B Definition
B Accounting and Security

B Transaction Processing Options
— Process Handling

B Language Considerations

B Data Entry Techniques
— user control
— V/3000 control/design

0 cackaro

11

notes:

references: System Manager's Reference Manual
MPE Intrinsics Refernce Manual
V/3000 Reference Manual
Individual language reference manuals

transaction processing

DEFINITIONS

m TRANSACTION PROCESSING - any interaction
between a computer system and its users

B TRANSACTION - the smallest useful unit of work,
performed by the computer, and defined by the user

(D el

-2

notes:

references:

transaction processing

Interactive Transaction Processing System

m provides terminal users, connected directly with computer
system, with access to information stored in computer’s
data base and files.

e s |
appli-
terminal | cation | L — | <:> data
\ - [|program
response/results sub-
systems
end user
—-———*—
computer system
— ' | Jesan

notes:

- The end user is directly responsible for the transaction;
he/she is not a data processing professional.

- The terminal provides the interface between this user
and the computer.

references:

transaction processing

An Interactive Transaction Processing system should provide:

B communication through terminals with computer system by
relatively large number of users '

m ability to handle uneven processing load with heavy terminal
and disc /O demands

m sharable code and separate data for all users of a particular
application

data base
(files)

shared by
all users

application code

shared by all ue?.ersjﬂ\l
private private private
data

private
data

data data

terminal user terminal user terminal user terminal user
| () Joehaia
-4
notes:

references:

transaction processing

Interactive Transaction Processing System

Advantages include:

B interaction where decisions are made — people most
familiar with data, enter it, interact with it, receive reports
on it

B speeds up business cycle — data is entered, corrected,
and retrieved where it is used — no more waiting for the
computer center ‘

@ users see it as their system — more chance for success

- () Pyt
- .

notes:

references:

transaction processing

WORKSESSION IiI-1

ﬁﬁ HEWLETT

PACKARD

notes:

references:

Worksession llI-1 (transaction processing)

1. Define a “transaction”.

2. Describe at least one advantage of an interactive transaction processing system.

OR describe one disadvantage of a batch system.

I[II-6a

ACCOUNTING and SECURITY

B Accounting Structure

'm File Security

Hi-7

notes:

references:

0 cadkano

accounting structure

MPE
Account Structure
sys account other account
e accountsL
Manager «—_| mgr
sam <«— \users/”: sam
/ \.
mary < | ™ sue
pub other pub other
@Kgmups

[() Jestrif

-8

notes:

- One system-wide account available to all (SY¥S)

- One public group in each account for all account users (PUB)

references:

accounting structure

PURPOSE

W protect application and data from unauthorized
access |

B allow user to do only what he or she needs to do

(&F HEWLETT

PACKARD

-9

notes:

references:

accounting structure

EXAMPLE: ACME CORPORATION

warehouse

/

accounting

l\ data processing

sales

.

operations manager

acme corporation

R .

110

notes:

references:

a

HEWLETT
PACKARD

accounting structure

example:

ACCOUNTS

B should reflect corporate structure

/
HP3000

. SYS
operations manager

[SALES
[_ACCTG

accounting

[_DP |

data processing

 WHOUSE

warehouse

sales

-1

notes:

references:

|

HEWLETT
PACKARD

accounting structure

USERS and GROUPS

B consider organization of department

example: Acme Corp.
Accounting Dept.
BILL
manager
LINDA MARY TOM
payroll adm. receivables supv. payables supv.
| |
SUE HELEN
order entry clerk clerk

JOHN
collections clerk

12

notes:

references:

3

HEWLETT
PPN ARD

accounting structure

USERS/GROUPS

B users and groups reflect organization/needs

example:

HP3000 system

.

payroll ' apay
group

™
8
s

(MARY)

[(D Jrestrad

n-13

notes:

references:

accounting structure

CAPABILITIES and RESOURCES

B capabilities associated with USERS

B resources associated with GROUPS

G =T

Capabilities Resources
e apply security | o files
¢ manage files ' o disc usage
e process handling e cpu time
e privileged mode

(& Preton

Hi-14

notes:

references:

security

SECURITY
level 1 account — password
user — password
group — password
file — lockword
level 2 account — capability limits
user — capability limits
group — resource limits
file — access protection

| () Jyirad

1115

notes:

- First level provides absolute privacy; it is applied to
each level of accounting structure, plus files.

- Second level controls and monitors system use.

references:

security

FIRST LEVEL OF SECURITY

:hello mary.acctg,collect irun myfile.collect.acctg
account password? file lockword?
user password?

| group password? I

V,

MPE command interpreter
V

account = acctg

group = collect
user = mary

file

myfile

| (D bt

11-16

notes:

- Command interpreter tests for both log-on security and
file security. It prevents unauthorized users from logging
on, using files.

references:

security

SECOND LEVEL OF SECURITY

ACCOUNT = ACCTG

GROUP = COLLECT

FILE = CUSTOMER
lockword = secret

creator = Bill
ACCESS;
read - any user
write — creator only (Bill)

FILE = INVOICES
lockword = stayout

creator = John
ACCESS;

read - group user :
write — creator, group librarian

USER = MARY
CAPABILITIES:
group librarian
interactive

-17

notes:

(D

- After passing first level tests, access to files and types

of system use is controlled at second level of security.

references:

HEWLETT
PACKARD

security

TIPS

B avoid too much during development mode
- can be a nuisance

B add passwords, lockwords after program developed
and tested

B use full security during production to protect data,
control access

[(D Pzl

111-18

notes:

references:

accounting and security

WORKSESSION I1I-2

HEWLETT

[() vt

1i-19

notes:

references:

Worksession llI-2 (accounting structure)

Given the ACCTG account structure shown in the preceding slides, answer the following questions:

1. A. What must the user MARY do in order to read the file INVOICES in the group COLLECT
of account ACCTG? Explain.

B. Does MARY need to do anything more in order to modify the file INVOICES? Explain.

2. A. Can a user in the account SALES read the CUSTOMER file in the COLLECT group of
ACCTG? Explain your answer.

B. Can this same user in account SALES modify the file CUSTOMER? Explain your answer.

III-19a

Worksession llI-2 (cont.)

" Can the user in account SALES read the file INVOICES in the COLLECT group of account
ACCTG? Explain.

Given: a program file CUSTINV in group COLLECT of ACCTG that allows execution access to
group users. Can a user in group OENTRY of ACCTG run this program? Explain your answer.

III-19b

TRANSACTION PROCESSING
OPTIONS

m SESSION MODE
B PROCESS HANDLING
m OTHER OPTIONS

111-20

notes:

references:

options

PROCESS TREE

“parent” of all
| PROGEN other processes
/ \ sy3tem
UcorP processes
L4 LJ ‘\
/] N
b N
//’ AN
Z ' N Command
_cu C.l. Cl Interpreters
FORTRAN] [mYPROG EDITOR | user processes

(4 packaro

1n-21

notes:

- Each user process is part of a process tree originating
with the first process "PROGEN", and with a separate

- command interpreter as its parent.

- User processes can themselves be parents of other user
processes. (More on this soon.)

references:

options

1 PROCESS PER TERMINAL — Session Mode

| | MPE I

command command command
interpreter interpreter interpreter
I | I |
process 1 process 2 process n
: HELLO... : HELLO... : HELLO...
:RUN... :RUN... :RUN...

R) Jitral

H1-22

notes:

- This is the mode of operation for which MPE is designed.
As a result, it is the simplest mode to develop and test.

references:

options

Single Process Control

B with logon UDCs, end users don’t run programs

thello...
[udc]
logon...
nolist...
- nobreak... data
[entry
.

e NOLIST - hides commands from users
e NOBREAK - exit only under program control

() el

11-23

notes:

- Such a UDC (User Defined Command) can be used to separate
the end user from most contact with the operating system.

- Note the user still has to log on; but logging off can be
included in the UDC. '

references:

options

SESSION MODE

ADVANTAGES

e simple development and testing
e no special capabilities needed
e simple local terminal logic

DISADVANTAGES
e extra overhead — each log-on, log-off requires 1/O

e limited global terminal logic
e extra responsibility for end user

[Sadkano

1n-24

notes:

references:

options

1 PROCESS PER TERMINAL (Process Handling)

I MPE I

| command

interpreter
log-on '
control / process

terminal : HELLO...

:RUN...
process 1 process 2 process n

no log-on

at these

terminals

. [() pirestrad
111-25
notes:

- With process handling, the end user can be completely
separated from contact with the operating system.

- Note: There is still only one process associated with
each terminal.

references:

options

PROCESS HANDLING

ADVANTAGES

e END-USER is isolated from MPE commands
e stack sizes are smaller; code units smaller
e session overhead reduced

DISADVANTAGES

e program testing more complex

e extra overhead for process creation

e BASIC and COBOL ’68 must use SPL routines
e requires special capability, careful management

[5,, HEWLETT

PACKARD

111-26

notes:

references:

options
SOME Other Options

B Specialized Single Program
multiple applications

B Central Terminal Control
multiple applications

U tadaro

m-27

notes:

- These other options allow multiple terminals to be controlled
by a single process.

references:

options

SPECIALIZED SINGLE PROGRAM
Multiple Applications

app.
A N .\‘\\ |
\\‘s\~ Select: I
shared | |app. ~~O add item NOWAIT
stack B | -] display cost I o)
o {1 modify item
a . "’,4—
%p “1 menu
selection
S

single process

e s s

multiple terminals

| () Jarshrad

111-28

notes:

- Most interactive processes are menu-driven. The difference
here is that multiple terminals select different functions
"simultaneously".

- The multiple terminals are the reason NOWAIT I/O is used,
but only to control the terminal I/O.

references:

options

ADVANTAGES

e simple inter-task communication
e shared stack

o fast transfers with NOWAIT I/O

DISADVANTAGES

e complex task handling

e stack can be very large

® program can be very large

e NOWAIT I/O requires privileged mode

| () bt

11-29

notes:

references:

options

CENTRAL TERMINAL CONTROL
Child Applications

NOWAIT
/0 o] control
/ {
4 process
log-on
A
Q

applic. 1 applic. 2 applic. n |

- & B
111-30 .

notes:

- The control process communicates with the "chilg"
applications through "Queuing"” files that allow the

processes to pass messages and be sure the messages are
received.

- Again, multiple terminals connected to the control process
require NOWAIT I/0.

references:

options

ADVANTAGES

e fast multi-terminal handling (NOWAIT 1/0)

e central control over transactions

e individual processes allow small stacks, small
segments

DISADVANTAGES

e privileged mode required for NOWAIT 1/O
e more complicated programming required

(ﬁ’ HEWLETT

PACKARDO

1-31

notes:

references:

options

NOWAIT 1/O

‘process continues execution

disc terminal

(ﬁﬁ HEWLETT

PACKARD

H1-32

notes:

- Requires Privileged Mode to use. Because MPE also operates
in Privileged Mode, using this mode allows a user to
damage the system itself. So it must be used with great
care, if used at all.

- NOTE: HP does not support applications that use Priviliged
Mode.

references:

options

QUEUING
MSG
: file record deleted
process Rec 1 by READ
2
wrlter reader 3
4
- 5
msg 2
file ;
9
10
reader I writer 11
12
process B I
new record

added by WRITE

| (D Jaretr it

111-33

notes:

- Only available with MPE IV Inter Process Communication
subsystem.

- Deletion of record after it is read allows writer to be sure
message has been received.

references:

options

WORKSESSION IiI-3

() Jaesiz il

11-34

notes:

references:

Worksession lli-3 (options)

1. The “standard” MPE processing option runs one process per terminal in session mode. Give at
least one advantage and one disadvantage of this option.

Advantage(s):

Disadvantage(s):

2. A. Describe one of the other options we discussed.

B. Give one advantage, one disadvantage, of the option you described.

I1I-34a

PROCESS HANDLING

How to do it
CREATE
ACTIVE/SUSPEND
TERMINATE

Example

HEWLETT
[} packano

1135

notes:

references:

process handling
CREATE
* $STDIN
I parent |:$srousr

L |

child I

B loads program file (child) and links child to parent

(D bt

111-36

notes:

- The parent process must have Process Handling capability;
the child process only needs this capability if it uses
process handling procedures.

- Parent can request at create time to be reactivated when
child terminates.

references:

process handling

ACTIVATE
parent
parent must child may
activate child activate parent
child

B makes process ready to execute — process either newly
created or suspended :

R & bt

11-37

notes:

- Either parent or child can activate related process.

-~ Calling process may choose to suspend when activated process
starts up. If it does this, the calling process must specify
who will reactivate the suspended process.

- Always use checks to determine whether process is suspended
or already active before activating.

references:

process handling

ACTIVATE/SUSPEND

B PARALLEL PROCESSING — parent and child process
both run

B SYNCHRONIZED PROCESSING — parent suspends when
‘child active, and vice versa

ozm

2

N

ozZ2Zmonce

oZmuonce

parent %

M=>DMmDO

MeAP <=0 >
MmMeEp»C==-0 >

MADP <=0 >

N

child

Meup2=Tom-

(ﬁ’] HEWLETT

PACKARD

11-38

notes:

- Parallel processing is partlcularly dangerous since an
active process cannot recognize that it is being activated.
So make checks before activation.

- When child terminates, the termination reactivates the
parent (now suspended).

references:

process handling

TERMINATE/KILL

B if A terminates, B, C, & D
A are terminated

m if B terminates, D is also
terminated

m if C, or D terminates, other
B C processes remain

W AmaykillBor C

H B may kill D

| () Pryairadd

111-39

notes:

- A process is said to terminate however it stops; normal
program termination, abnormal termination (abort), or
because it is the child of a terminated process.

references:

process handling

DEADLOCKS —

MUTUAL SUSPENDS - parent and child each suspend, wait to
be reactivated by other

MISSING ACTIVATION - parent activates child and suspends,
child terminates without activating parent

UNSEEN TERMINATION - parent does not see child’s
termination since parent was active

TO AVOID —

e check before activating
o check before terminating
e check before suspending

[(D Jasstoal

11140

notes:

references:

process handling

SAMPLE PROGRAM

CONTROL PROGRAM (parent):
e creates and activates child processes

ORDER RETRIEVAL PROGRAM (child):
e prompts user at terminal for order
e finds order in data base
e displays order at terminal
e prompts for next order

() et

11141

notes:

- The child program is the same program used as a demon-
stration in Module II, with minor changes that allow it

to reactivate parent and suspend.

references:

sample program

: HELLO . ..
: RUN.... parent , O
process | = gota

- base
control P
terminal -1 - -
*’ - ~ *” ‘,
child 1 child 2 child n

B T B T B

[ﬁ] H§WLEYT
PACKARD
n-42. _ :

notes:

- Only the parent process must log on, run the program.

- The parent process, controlled from the control terminal,
controls each child process.

=~ User terminals see only screens from executlng Chlld
processes.

references:

sample program

PARENT PROCESS

start

create
each child

~ >
\—

synchronized
processing

A 4

activate

each child

—

mp—

parallel
processing

(éﬁ HEWLETY

PACKARD

11143

notes:

- The sample program uses both synchronized and parallel pro-
cessing in order to illustrate both methods.

references:

sample program

until
all children

up

until
all children
done

—>

PROCESS FLOW

create child
pass it LDEV #

!

activate child

suspend

—————————

activate
each child

y

check for
termination

terminal #

‘‘all children

P

1

for

child process

up”

“done
yet?”

logon
terminal

/&terminal /

() R

1144

notes:

- This is the flow of the parent process.

- Note the two stages: the first stage creates each child
in turn and suspends.
reactivates its parent and suspends.

Parent and child processes execute in
child processes complete.

references:

The child then opens a user terminal,
In the second stage,

parallel until the

sample program

CHILD PROCESS

start error
subprogram
v
e asns main .
initialize process terminate
start end new cod
setup setup ew code
[() Jyprird
111-45
notes:

- This is the flow of the child processes.

Note that it is identical to the sample program in Module
I1 except for the "Start Setup" and "End Setup" procedures.

Look at the source code, PMAP, for this sample program
in appendix A.

references:

process handling

[DEMONSTRATION]

0 cacano

111-46

notes:

- Log on

-~ Run the parent process, PDADP

references:

| LANGUAGE CHARACTERISTICS

COBOL
FORTRAN
BASIC
RPG

SPL

APL

1n-47

notes:

references:

HEWLETT
P,

languages

| cosoL |

good for business data processing — better for I/O than
for computation

Advantages

¢ widely known and used

e simple record structuring

¢ good data editing and formatting

¢ interface to system intrinsics (COBOL II)

DISADVANTAGES

e long-winded
o inefficient computation

HEWLETT
- [() Presrd

111-48

notes:

references:

languages

COBOL - tips on using

B compare and move equal length fields
use signed numeric items rather than unsigned

use COMP or COMP-3 to avoid conversion
1-9 digits — use COMP (PIC S9(9) COMP) |
10 or more digits — use COMP-3 PIC S9(16) COMP-3)
begin COMP items on a word boundary
use indexing rather than subscripting
avoid the COMPUTE statement
keep structure out of the LINKAGE SECTION

[) Jostrits

11149

notes:

- The HP3000 is a word-oriented system. Byte (character)

boundaries are not supported by the hardware and require
special handling. :

- In general, these hints are all due to special ways the

system works. For instance, COMP items of 9 digits or less
use a fast hardware-support binary arithmetic.

references:

languages

more COBOL tips — Dynamic vs. Static Subprograms

Dynamic —
o data is placed in local (shared) area of the stack; keeps
stack small |

e extra overhead because data must be re-initialized on
each call

¢ since global area of stack is not used, can be put into SL

Static —
e data is placed in global area of stack — increases
minimum stack size

e data only initialized once, on first call — less overhead

e any MPE files opened by static subprogram are available
to entire program

e cannot be placed in an SL

[Bickane

notes:

references:

languages

| FORTRAN I

good for computational applications

Advantages

e widely known and used

o efficient computations

e modular — easy to segment

e easy interface to MPE intrinsics

DISADVANTAGES

e no data structuring
e limited control structures

111-51

notes:

references:

(O]

HEWLETT
PACKARD

languages

'FORTRAN TIPS

W Avoid formatted reads and writes — causes external
calls

Assign equal length fields for character manipulation
Avoid multiple entry points to subroutine
Don’t mix data types within expression

Avoid double integers as loop variables

Avoid exponentiation of double precision and
complex data — causes external calls

B Use EQUIVALENCE statements to redefine character
data

A packano

111-52

notes:

- Again, these tips are due to the way the HP3000 works.
Whenever there is hardware support in the form of firmware,
execution is faster than if a compiler must make external
calls to special software procedures.

references:

languages

good for engineering and scientific applications,
and for applications that manage character strings

ADVANTAGES

e fast development through interpreter
e good string handling

e good matrix manipulation »

e compile after developing and testing

DISADVANTAGES

e variable names limited to 2 characters
e awkward segmentation
e computation less efficient than SPL or FORTRAN

(D PR

11683

notes:

references:

languages

good for business data processing in batch mode,
and for report generation

ADVANTAGES

e easy conversion from other machines
e quick development

DISADVANTAGES

e inflexible program control
e inflexible file management

~ o minimum control over segmentation
e no subroutine capability

[/ cackaro

111-54

notes:

references:

languages

SPL

good for computational applications, and systems

programming

ADVANTAGES

e designed for use on HP3000 —
e most efficient execution
e flexible and highly modular

DISADVANTAGES

e limited data editing and formatting

e n~ data structuring capability

111-55

notes:

references:

Q)

HEWLETT
PACKARD

languages

SPL — Tips on using
B move words rather than bytes, whenever possible

B pass word address, not byte address, if word is
called for

B when array size varies, create array dynamically

() Prrtrad

111-56

notes:

- The first two tips are another example of how to use a
word-oriented machine.

- The last tip can reduce stack size - you don't want the

compller to allocate a stack based on the largest p0551ble
array size when the size is variable.

references:

languages

APL

good for engineering and scientific applications

ADVANTAGES
e excellent array handling

e powerful operators
e quick development
e modular

DISADVANTAGES

e heavy use of system resources

® no segmentation
e cryptic

i1-67

notes:

references:

HEWLETT
PACKARD

languages |

WORKSESSION IiI-4

() Pttt

11-58

notes:

references:

Worksession llI-4 (languages)

In all languages, it is important to keep word boundaries in mind when programming for the
HP 3000. True or False?

All languages give you the capability to segment code into variable length segments.
True or False?

Consider the following application needs:

a) - Generate a formatted report.
b) Execute machine instructions on the HP 3000.
¢) Manipulate character strings.

Indicate which language (or languages) you would select to perform each of these tasks. Choose
from one of the following:
COBOL FORTRAN BASIC RPG SPL APL

a. why?
b. why?
¢ —0 why?

TTIT—oR9QA

[DATA ENTRY TECHNIQUES |

B User Controlied

B V/3000 Controlled

./ﬁ —

terminal

1-59

notes:

references:

data entry

USER CONTROL

Program manages terminal interface directly
e good for simple interactions
e forms control is complex

() Jrerits

111-60

notes:

- If most terminal interaction is “"conversational", user-
control should be adequate.

- If large complex forms are needed in a data entry type

application, control of these forms may be very difficult
to manage.

rafaranrac

data entry

CHARACTER MODE TRANSFERS

terminal : | computer
~ -~ o —————e |
Type name and press
RETURN:
. \ J
operator presses RETURN

B simple to use
B no special coding — just read or write

(" HEWLETT

PACKARD

1161

notes:

- This is the method for which the terminal I/O system was
de51gned.

- It is simple to use and works very well for short
conversational transfers,

references:

data entry

BLOCK MODE TRANSFERS

terminal computer
(~ ™)
ship to:
JOHN DOE
500 ARMITAGE AVE .
CHICAGO ILLINOIS
60614
_ AN _
operator

presses ENTER

B requires special coding
complex forms can create large stack

() Al

11-62

notes:

- This type of transfer is best for complex data entry
applications.

- But, it is not at all simple to code; can get all but the
most experienced user into trouble.

references:

data entry

BLOCK MODE — Programmatic control of:

cursor positioning

scroll display

video enhancements

alternate character sets

ask for and acknowledge data transfers

uses “ESC” sequences:

display “shipto:”

display

“ESC&a10r5¢ ESC[ESC&dJ ESC&a25C ESC] ESC&d@ ESCW”

—

Sets up 1 unprotected field, with half-bright inverse video, and turns
on format mode

() Pt

11163

notes:

- Note that you only need to code the ESC sequences once, and
they can even be saved in a file to conserve stack space.

references:

data entry

SUMMARY

Character Mode VS

e easy to code

e each character echoed
from computer

e use for interactive
applications

Block Mode

hard to code'

characters echoed
within terminal

use for data entry
applications - -

W Both interrupt CPU for each character transferred from terminal

B) Prvata

1164

notes:

references:

data entry

TERMINAL CAPABILITIES

B 262X — Interactlve Terminals
2621
2622 asynchronous only
2624 V/3000 (no multipoint)
2626

B 264X — Display Statlons
2640A
2640B)
2641 | synchronous or asynchronous
2644 Vv/3000 (multipoint on some)

2645
2647
2648)

v

B 307X — Data Capture Terminals

gg;g } V/3000 asynchronous only
3077 (hard-wired multipoint)

nEvwLE f

(D PACKARD

11165

notes:

- Note those terminals that allow V/3000, those that do not.

- Standard transfers are asynchronous - depend on a start-bit
and a stop bit to delineate characters.

- Synchronous transfers (where allowed) are- non-standard, use

lots of memory and special multipoint software, but are
fast and accurate.

references:

data entry

- WORKSESSION llI-5

[/ Fackaro

- 11166

notes:

references:

Worksession llI-5 (data entry)

Given the following application tasks, indicate whether you would use character mode or
block mode:

A. The program prompts the user for a “YES” or “NO” response; if YES, it displays
information on the screen; if NO, it issues another prompt.

Character or Block mode?

Explain:

B. The program displays a form into which the user enters a éomplete set of order
information.

Character or Block mode?

Explain:

Suppose you decide you want to use block mode transfers or V/3000. Are these capabilities
available on any HP 3000 terminal? Explain your answer.

II1I-66a

V/3000

B FORMS DESIGN with intelligent edits
B STAND-ALONE data entry system

OR

B FRONT-END to transaction processing system

———
V/3000 data

terminal

8 O Jorirafd

111-67

notes:

- Consider V/3000 for applications that need block mode
terminal transfers.

- Does not require any programming effort to design forms;
has special procedures that make forms control, data
transfers, etc. very simple.

references:

FORMS DESIGN

C
e Screen Design

e Forms Control
¢ Data Edits

: RUN FORMSPEC ¢ Conditional
: _ Processing

N—

forms file

forms designer

- LWL ETT
728 packarD

111-68

notes:

- No programming is needed to create the forms file which may
include edits and processing specifications.

references:

V/3000 design

SCREEN DESIGN

special
enhancements - acme corporation \/ fields
. — for data
ship to: | |
address: | I
city: | |
state: [] zp:[]
=
' L AN |
custom err6r messages value checks
[Sackano
111-69
notes:

- Screen design is so simple that it is easy to develop very
elaborate screens.

-~ The more elaborate the screen, the more stack space is
needed. EVERY character and special enhancement adds to size
of form, hence to stack. Everything on the screen (including
such cosmetic features as lines of asterisks) adds to the
stack size.

references:

V/3000 design

FORMS CONTROL

acme corporation
e current form may be FROZEN - header information

order # [

customer name |]

e next form may be APPENDED ;

e either may be REPEATED

o forms family allows field edits to vary, while screen remains
the same

A Padkano

Hi-70

notes:

- Forms control is as easy as screen design and is generally
a good way to save stack space and disc I/0

- Appended and frozen forms help keep forms a uniform size
(saves stack).

- Repeating forms and forms in same family need not be
reprinted on screen (saves disc 1/0).

references:

V/3000 design
FIELD EDITS

~ —
display

date [|‘/todays date

ship to: | I~
address: |] [~ must have

. value
city: | - |
state: [zip: [

\ // \\ w

is this legitimate must be a 9-digit number
state code

L& Es

-7

notes:

- Edits provide simple way to check on entered data. But,
keep edits simple to save stack space.

references:

V/3000 design |
CALCULATIONS

j
part no. [7934625 | clerk enters
qty unit price ’ ’ values
-)
totai ' 70.00
[| these
tax [4.20 | » values
calculated
final total | 74.20 | y
. y

e any field can have calculated value

D cacianc

- 1172

notes:

- This provides a good way to help prevent operator error,
speed up entry, and keep data accurate. But, the operator
has less control over entered data.

references:

V/3060 design _
CONDITIONAL PROCESSING

select function

order entry m
inventory control D

customer file D

app2nded screen

displayed when enter order # | |
ORDER ENTRY selected ,

e next function depends on value entered

(’5’ HEWLETT

PACKARD

1n-73

notes:

- This type of processing lets you avoid a lot of programming
effort. But, it also adds a lot of data to the stack.

references:

V/3000 design

Tips on Field Edits

use most concise edit
- EQ, IN, GQ use less code than IF ... ELSE
- avoid long tables
- omit field name if possible

use system constants - SEMPTY, $TODAY, etc.
rather than literal values

keep custom messages short

IN SHORT - KEEP ALL EDITS SHORT

(D pvstyal

in-74

notes:

references:

V/3000 design

WORKSESSION IiI-6

| O Jaeabal

11175

notes:

references:

- Worksession III-G

Suppose you have a form with 10 lines of header information, including 2 data fields, followed
by 8 detail lines with 9 fields into which data can be entered. Thus, the entire form has 18 lines
and 11 data fields. The other forms in the file each have between 8 and 10 lines, each with
between 7 and 10 fields for data.

Why is this poor forms design?

What can you do to improve it?

Assume an application that accepts data through V/3000 forms. The accuracy of the data can be
checked through edits stored in the forms file, but these edits tend to be quite long and must be
applied to each field. Under what circumstances would you choose to put these edits in your
application program rather than in the forms file? Explain.

Suppose you decide to perform all your edits through FORMSPEC rather than coded into your
application. What can you do to make the edits more efficient?

III-75a

Worksession llI-6 (cont.)

You have an order entry appiication in which totals must be calculated from quantity, unit
price, tax, shipping weight. What are the advantages of letting FORMSPEC perform the
calculations instead of the data entry operator?

What are the disadvantages?

IIT-75b

V/3000 FORMS FILE

B Code Records

B Managing Forms Files

in-76

notes:

references:

) Jaetrad

V/3000 forms file
CODE RECORDS

B variable length depends on form and field data
contain everything to display, edit, use form

many types:
K - global records
L - form records
O - custom messages
plus others

B & Eon

1-77

notes:

- Code records and the V/3000 data buffers are what a V/3000
formsfile consists of.

references:

V/3000 forms file

FORM RECORDS

B 1 for every form in file

keyed access by /

form name a) screen design — includes ALL text
b) field info — all about EVERY field
c¢) form info — general form description

[() P53l

- 11-78

notes:

- All the information associated with a form is kept in the
form record for that form.

- A form with complex edits, many special enhancements, etc.,
can generate a VERY big form record.

references:

V/3000 forms file

MESSAGE RECORDS

B 1 for every message for every field

Vv

text of message

keyed access
by
field name/message number

() Pt

1-79

notes:

- Custom error messages are invaluable for helping operators,
since they make error correction much simpler. But, take
care in their design. Each message adds to the stack.

references:

V/3000 forms file

FORMS FILES AND THE STACK

DL \
largest
form comarea
in extension
file
DB

comarea

B MAXDATA always required (6K minimum)

B Stack must hold LARGEST form in EACH open forms
file |

(A 2adans

111-80

notes:

- The Comarea extension must hold not only the largest form in
the file, but also all message records, two sets. of data
buffers (one for data to be edited, the other for data as it
appears on the screen), plus a global record for all
information that applies to the entire form.

references:

V/3000 forms file
FORMS FILE SIZE

forms file VS. fast forms file
directory 1300 words directory 500 words
) ,
code
code compiled records
records ' forms
J
]
source | uncompiled
records forms
/
. di used while
intermediate source being
records modified

(& TN

11-81

notes:

- The directory for either type is kept in the stack, the other
records are brought in as needed.

references:

V/3000 forms file

FORMS and DISC 1/O

DL
96t ne
DB X orm ()
fast
forms
file
\—/

e each new form means disc access to bring code
- record into stack

¢ only repeated forms do NOT require disc I/O

04 eadcano

11-82

notes:

- Forms in the same family also can save on response time; they
do not need to be repainted on the screen.

- The sample program (see appendix A) uses a single form. This
form is never repainted on screen, nor brought from disc.
The procedure that "gets the next form" is smart enough to
realize the "next" form is the same form.

references:

V/3000 forms file

Tips on Form Design

B avoid one long form, many short forms
- stack size based on longest form

B use repeating forms where possible
- not “re-painted”
- saves disc 1/0
- faster response for new form

B avoid fancy touches in protected areas
of screen: ’

- alternate character sets
- display enhancements
- lines of dashes, asterisks, etc.

() Pyarod

111-83

notes:

- references:

V/3000 forms file

WORKSESSION liI-7

(D Jrestral

111-84

notes:

references:

Worksession llI-7 (V/3000 structure)

1. V/3000 rﬁust run with MAXDATA set to at least 6K. Explain why you think this is necessary.

Would the STACK = parameter be an acceptable substitute for MAXDATA?
Explain your answer.

Indicate by a YES or NO after each of the following statements whether it increases the size of

the code record associated with each form.

A.

Text that is displayed on the form but is not transferred as data.

Yes — ____orNo

Special enhancements that are part of the text but do not enhance the data fields.

Yes — ____orNo

The size of the unprotected fields into which data is entered.

Yes —— ___orNo

The number of unprotected fields into which data is entered.
Yes— __ _ orNo

The length of the field edits associated with each field.
Yes_—_ _~ orNo

The number of fields for which edits are specified.

Yes———___ _orNo

The total number of fields in the form.

Yes . _orNo

III-84a

Worksession lll-7 (cont.)

3. Explain why repeating forms are faster than other forms.

III-84b

V/3000 data entry

STAND-ALONE

:RUN ENTRY forms file

edited

formatted
data

batch file
B ENTRY — a general-purpose data entry program

B REFORMAT — a general-purpose reformatting
facility

A adkano

111-85

notes:

- These applications, provided with V/3000, allow
immediate data entry without programming.

- ENTRY is useful during forms design in order to test the
forms, but is too general purpose to be a highly efficient
data entry application, and it does not transfer data to
or from IMAGE data bases or KSAM files.

references:

V/3000 data entry

ENTRY PROGRAM

available in all languages (except APL)
browse and modify entered data |
no direct transfer to data base
excellent tool to test forms design

easy to modify to suit application needs

() Pyl

11-86

notes:

references:

V/3000 data entry

REFORMAT CAPABILITY

B use to specify new combinations of entered data

3
e combine
:RUN REFSPEC data

e separate
data

e format
data

-

reformat file

forms designer

f) Py e

111-87

- REFSPEC allows you to combine records generated by ENTRY into a
single redord, or to break ENTRY records into multiple records.

- Also, provides means to reformat individual data fields, omit
fields, or add literal data.

- It cannot repeat a record as part of other records. Once an

ENTRY record is reformatted, it cannot be reformatted again in
the same file.

references:

V/3000 data entry

entry clerk

REFORMAT

:RUN REFORMAT

data
(1 record
per form)

MN—

reformat
specs

_,./
batch file

—
reformat file

—-—

reformatted
data

—
output file(s)

111-88

notes:

- This capability is most useful during conversions.

¥ HEWLETT
LB pacxarD

The data

entered in new V/3000 forms can be reformatted to suit an

existing application's needs.

Thus,

the data is made

available before the application is rewritten.

references:

V/3000 data entry

REFORMAT TIPS

B Use REFORMAT to separate or combine data records

B REFORMAT cannot repeat the same header record
: preceding multiple details

- I Use as interim method until existing application
changed to process V/3000 data

() Foahad
VB PACKARD

111-89

notes:

references:

V/3000 data entry

WORKSESSION IiI-8

111-90

notes:

references:

o BN U

Worksession llI-8 (V/3000 data entry)

The data entered into a set of V/3000 forms must be written to an IMAGE data base. Can this
be done using ENTRY? Or must you write a special program to transfer the data?

Explain your answer.

Suppose you have an application that expects a separate record for each part number entered on
an order form. You plan to use a new V/3000 form to enter orders in which you allow up to 10
part numbers to be entered on one form. Is there any way you can use your new form with your
existing application?

YesorNo? ______~ Explain your answer.

III-90a

V/3000 programming

FRONT-END

B V/3000 procedures to manage forms files, field edlts,
data entry and reporting

user

application
entry clerk / \
>

:RUN MYPROG

data
base
<>
forms
file

WM HEWLETT
L8 packaro
11H-91

notes:

- The application uses V/3000 prodecures to handle the inter-
face with the terminal, the forms file, the program buffers,
or an MPE batch file., It can use other procedures to
transfer data between the program buffers and a data base.

references:

V/3000 programming

IN APPLICATION PROGRAM

B application uses existing Forms File
- all edits can be in forms
- much processing in forms

V/3000 provides form and data control procedures
can direct entered data to IMAGE or KSAM

can retrieve and display data from IMAGE or KSAM

unlike ENTRY, tailored to user needs

[/ cackane

111-92

notes:

- Consider V/3000 for other uses besides data entry.

- Good for anything that requires form-handling, or block
mode terminal I/O.

references:

V/3000 programming
FORM AND DATA CONTROL

screen keys
VGETNEXTFORM . oooo
VSHOWFORM < P | EI__": alalale
L

VREADFIELDS m [|
VFIELDEDITS control
VGETFIELD Idata [messages L
VSETERROR data
VPUTWINDOW data file/

data base| g program
VPUTFIELD

| () Jaratras
111-:93
notes:

- Additional procedures transfer data between the program and
files or a data base.

- Look at the sample program in the appendix; it uses these

Procedures (and some others) to manage the terminal
interface.

references:

V/3000 programming
Form Control

B display and initialize form

w terminal

(1) VGETNEXTFORM (3 VSHOWFORM
-
| | image buffers | |
| ® |
! |
I window |
L e e e —_—— —

V/3000 Memory

A Sickars

111-94

notes.

references:

V/3000 programming

Collect and Edit Data

VGETBUFFER or
VGETFIELD

terminal user
program
VREADFIELDS
- N "i
: screen VFIELDEDITS data l
i ffer
l image I @ ' bu |
| |
I I
| window |
e -

V/3000 Memory

111-95

notes:

&

- In step 3, VGETFIELD provides greater independence from the
form. Each field is referenced independently which means
the form can change without causing the program to be re-

written.

references:

HEWLETT

PACKARD

V/3000 programming

Process Errors

user
program
1 VSETERROR
VSHOWFORM or
4 . VPUTWINDOW
form data
image buffer
window
V/3000 Memory
, PACKARD
111-96 .

notes:

- Error processing differs depending on whether edits are done
in the program or by V/3000.

- In either case, messages are passed through the "window" area
of the V/3000 memory to a "window" line on the screen.

references:

V/3000 programming
ERROR HANDLING

W all errors require disc I/O to retrieve error message

custom
message forms
file
application /
(or ENTRY)
V/3000
message

() Jvatr ity

Hi-97

notes:

references:

V/3000 programming
Tips for Programming with V/3000

B put all forms into 1 forms file
B open only 1 forms file at a time

B always use fast forms file for production

[cadane

111-98

notes:

- Consider making provisions in your code to "time-out" when
doing terminal I/O. This is a safequard against operators
leaving the terminal hanging.

references:

V/3000 programming

Should You Use V/3000?

B does V/3000 do everything you want? YES

B can you afford the extra stack space? YES

B do you need intelligent front-end edits? YES
THEN

V/3000 should work well for you

[/ cackaro

111-99

notes:

references:

V/3000 programming

BUT

B if you need a keypunch replacement

B if you are short of stack space

B if you have SIMPLE forms you can code easily
THEN

V/3000 may be more than you need.

|) preshrodd

1-100 -

notes:

references:

V/3000 programming

WORKSESSION IiI-9

) Jrtatral

11-101

notes:

references:

Worksession IlI-9 (V/3000 programming)

Suppose you have an application that needs to display small amounts of constant data on the
terminal screen in a format that uses an elaborate format with field enhancements. This can be
done a) with ENTRY or b) in your program with V/3000 procedures. Which would you choose?

Explain your answer.

Suppose you have two independent functions in your application, one of which must be selected
by user input at the terminal. You can ask the user to make the selection on a V/3000 menu
form, or you can issue a prompt to be answered by Yes or No.

Would you use V/3000 here? Explain your answer, including any factors that might affect
your choice.

Would you change your answer if there were 3 or more functions to select? Explain.

I1I-101la

transaction processing

Select:

SUMMARY

a processing method

an accounting structure - - "
a programming language ..

a data entry method

xxxxx

ST

that suits your apphcatlon and helps your end user

1n-102

notes:

references:

D)

HEWLETT
PACKARD

DATA MANAGEMENT

DATA MANAGEMENT

B Options

B MPE files
% KSAM files
W IMAGE/QUERY . - J

\f'

B Choosing the rlght method

references:

[(D st

T e
[RN A At
I A oo L (\)
s i 7 . N
P Lo
'
' of
S
A
iy
H

MPE Intrinsics Reference Manual

KSAM Reference Manual
IMAGE Reference Manual
QUERY Reference Manual

OPTIONS

R
MPE files |
KSAM files
IMAGE
data base

Q) Jreatrafd
1v-2

notes:

references:

options

MPE FILES

.) Disc files

)
tape C——

m > Device files . =~ SR

terminal band (o
card ——
reader
etc. J
[() Jarpairaifs
v-3
notes:

- Disc files provide both sequential access and random access by
record number.

- Device files allow sequential access only.

- Because device files are slower than disc, "spooling®” provides
a buffer between devices and a program. Spooling is managed by
the system.

- All files are managed alike by the MPE file system whether they
are disc or device files.

references:

options

KSAM files

data keys e keyed sequential access
(like ISAM)
e keys and data maintained on
X separate disc files
® many access options
Y\, x - sequential
. o . .
\\) N T - chronological
o™ L et - keyed
Ed (:\gfy v § 3 s

| Q) ol

Iv4

notes:

- Keyed access has many options:
multiple keys, duplicate keys, partial keys, approximate keys.

o 4
\ A ‘
\j‘\&\ L it
Y .
\J;\\
oA\ f
J

references:

options

IMAGE data base

2-level network structure

data structure independent from
program

A QAN R A 5

s data redundancy

access at data item level

épeciai security and locking

"QUERY for rapid data retrieval

HEWLETT
PACKARD

Iv-§

notes:

-IMAGE has many access methods:

serial access,

directed access (by record number)

chained access (items with same value),
calculated access (find item by its value).

IMAGE has a special security system that goes beyond the
standard file system security. It also provides simple
logging and recovery procedures.

references:

options

File System underlies both IMAGE & KSAM

Vs

[

@

b

A

IMAGE

key

KSAM

file system
(MPE files)

(" HEWLETT

PACKARD

iv-6

notes:

- KSAM is built directly on the file system; the user has the
same controls.

- IMAGE only indirectly uses the file system; the user has no
direct control over IMAGE files.

references:

options

UNSTRUCTURED VS. STRUCTURED
MPE files IMAGE or KSAM
® no - keys e maintains - keys
- chains o ~ chains
- pointers 7L pointers
e limited access methods o excellent access
¢ low - cost modification e costly to modify
r c— - B |
HEWLETT .
R 48 PACKARD
Iv-7
notes:
V-7

- It requires less overhead to modify an unstructured file,
but it is not necessarily easier. Your application must
locate the record to be modified. This is done for you
in the structured systems.

references:

4 options

WORKSESSION IV - 1

() prisa

Iv-8

notes:

references:

1.

2.

Worksession V-1 (structure)

Suppose your application has many on-line inquiries, but all updates are batch. In this case,
would you store your data in structured or unstructured forms? Expl:ﬁn your answer. ;

/ e .
L Fon RN

Sl B e < \‘Sr (WP /:Jf ' I ot

Suppose a lot of new data must be added on-line, and inquiries are infrequent. Would you store
the data in structured IMAGE or KSAM files or in unstructured MPE files?

Explain your answer. [\

bvw,i;kyﬂJuﬁ%mAAQkyw

IV-8a

MPE FILES

B Using MPE Files

B Sharing Files

Wial] HEWLETT
PACKARD

N /
/ \
/
3 ‘
y; N
,'/
e \
\
i
; ¢
\ * M
3, X
A\
% % #
» \1\ . 25
A / \ '
Ll A\ %

N,
e
,\\.

-

. 'i:/‘ ’ ; - S ¥ L
v - /S ‘ {

references: . (N
i > ‘ i
L \o N W RS TaPt

using MPE files &//@ -

/o | buffer

extent . logical
2 | gisc! ! 7 record | | |
N g 1 I R 7/ |

vV-10

notes:

references:

S

(‘f] PACKARD

4
o Taee K

I
el LA S e
T . vt s A
VARV ¥

£
{/
. ¢ -
PN 2 U
/

] j’v
- oy > ¢ 1 o § 4 B .,i,«*” -

A block is a physical record, the smallest unit transferred
to/from disc.

A buffer holds 1 block of data in memory, is the buffer between
the disc and the program.

A logical record is the smallest unit of data processed by
a program.

An extent is a contiguous piece of a file on disc; most files
are broken into extents.

A sector (not shown on slide) is the smallest addressable unit
on a file (only the file system knows sector addresses); every
block, every extent, must start on a sector boundary. Eachﬂ

sector=128 words or %56 characters. f

) I oy | LA
ﬁg)\ j{M@JA o AP i_(»

&’\ . Ls:/* / :v”i‘f‘ﬁ"wﬂw,c'«,.u;,g A S pp

\}:>,.

} o

using MPE files
'Extent Management (1)

H allocation and initialization of extents is automatic

example:

- initial allocation = 1 (default)
- access is random

record is written

to 2nd extent __l

tesese / 3 /
t records | L— EOF
in 1st extent /N (in file label) y
[© o
v-11
notes:

- When system allocates a new extent, it only initializes extents
up to the EOF; extent past EOF may contain garbage.

e

- Allocation and initialization take time.

A
oo R
Y o
X, C {
) .
e L
&/&/L/ : 2
. | h
. \ﬁ SN
\ (!
\ .
\(«’ e
2 i 7
ais e v
/o o
H 5 I
A
o

references:

using MPE files

Extent Management (2)

B user can decide:

= how many extents - file in small or large ‘“pieces”
= how many to allocate initially - contiguous or discrete
“pieces”

B user can force initialization of all extents

[) Pristra

v-12

notes:

- By default, all files are broken into 8 extents; user can
specify as few as 1 extent, as many as 32.

- 1 extent allocated initially - this can be changed easily.

references:

using MPE files
Initial Allocation of Extents

B initial allocation can reduce

- on-line allocation time
- seek time

¢ contiguous extents
' reduce head movement

extents allocated
at random may
cause extra
head movement

B disc seek time depends on placement of file
on the disc

(D Jreairii)

IV-13

notes:

- Generally, initial allocation of extents not necessary.

- Note that system attempts to make all initially allocated
extents contiguous. This MAY reduce seek time.

- Allocate more than one extent if you know allocation will

occur during peak hours of on-line processing and slow response
time.

references:

using MPE files
Choosing the Number of Buffers

B 2 buffers - default assigned by MPE

B allows pre-reading of sequential files

1st buffer

—
g

Jisc 2nd buffer stack

HEWLETT
PACKARD

Iv-14

notes:

- Pre-reading means that while records in one buffer are being
processed other records are being read into the second buffer.
This only works for reading sequential files, since the
next block to be read is predictable.

references:

using MPE files

Use 1 Buffer for Random Access

Q\ 1 buffer
—E N

T ‘”‘"__/ record
N1 |

stack

next record
~ usually not

- next in

' sequence on
file

[() Jrstrat

v-16

notes:

- No pre-reading advantage for random files, so no advantage
from having more than 1 buffer.

- The single buffer saves memory space.

references:

using MPE files

Use more than 2 buffers, only
B when loading data into sequential files

B when no other users on system

disc buffers stack
__/
~————record
—1
v

HEWLETT
PACKARD

Iv-16

notes:

- Many buffers use lots of memory and offer NO advantage except
in the exceptional situation shown above.

- Particularly, avoid more than two buffers in a multiprogramming
environment.

- The number of buffers can be changed each time the file is
opened, so you can experiment.

references:

using MPE files

Consider NOBUF - (0 buffers)
W transfers block directly to user stack

block \ y o fast

¢ allows muliti-rec

disc stack

() preatratd

iv-17

notes:

- Program must "deblock" logical records from the block
transferred to/from the program.

- Stack must be large enough to hold the entire block.
- Stack must be "frozen" in memory making it hard for MPE to

find memory space for executing processes in a multiprogramming
environment.

references:

using MPE files

Choosing a Blocksize

B Blocksize - a function of record size and the blocking
factor (number of records in a block) |

example:

® Recordsize = 80 characters (40 words)
e Blockfactor = 6

1 block = 480 characters
(240 words)
HEWLETY
PACKARD
iv-18 . s
: o2& o, | e
S v e B o ' N R
nOtes: (};;/ T ﬂt{ ﬂiwﬂmwﬂ,,,,,h.,,.mﬂfgv\f?w ,':,"’,N,m_.’m”m_y U e
«,’;W/ Y;“'; ;/] / td e,

S

- Blocksize is a permanent file characteristic; it is not easy to
change.

- Note: The slide only illustrates fixed length records.
Undefined records are always 1 record per block;
Variable-length records need extra space in each
record and each block for a record count.

references:

od

using MPE files

Blocksize and Disc Space

B Blocks always start on sector boundaries

example: ,
e assume block = 160 words

block 160 words ——— wasted space = 96 words/block

I B

o an a ey

2
e — - v
sector 2 sectors
(256 words)
sector
boundary

[O Jortarald

iv-19

notes:

- In this example, over half of every other sector is wasted.

- Blocksize should always equal, or be slightly less than, a
multiple of sector size (128 words).

- The first block of every file is set aside for the 128-word
file label; if the block is much bigger than the label, this
too wastes space.

references:

using MPE files
Blocksize and Access Mode

small block vS. _LARGE BLOCK

B means small buffer -
less memory space

needed
B good for RANDOM B transfers more data at
ACCESS a time - uses more
memory |
B good for SEQUENTIAL
ACCESS

) prvshald

v-20

notes:

- Because blocksize is not easy to change, plan for the most
used case.

references:

using MPE files

OPENING and CLOSING FILES

Use system resources heavily —

To minimize impact:
B open file once at start of program
W leave file open
u close flle once at end of program

Consuder puttlng all OPENS and CLOSES in separate
code segment |

— ' | () Prisirits
w21 |

notes:

- When opening a new file, open the file, close it at once to
save it as a permanent file, then open it again. This
insures file is not lost. (New files are session temporary
until closed). Or, build the file with a command and then
save it as a permanent file.

- Opening a file is a major operation; it involves writing
from the file label to a control block, setting up the
EOF, setting up record pointers, and establishing the
access path to the file. Closing a file reverses these

steps.
X /7 ”

Ve ﬁ‘ - / - ,ﬁ - é
P o T A < i 1, Ao “

\ I, A " S . e BN J"”’ww/ﬂ/’j ()

RS - P) e — .

- R

3

references:

MPE files

WORKSESSION IV - 2

(‘F HEWLETT

PACKARD

1v-22 _ N

notes:

references:

Worksession IV-2 (using MPE files)

Suppose you plan to read an entire file from beginning to end in sequential order, and you are
one of many system users:

A.

Would you specify 0, 1, 2, or more buffers" Explam
,_Qé o \ Fop

P A E— p R ~ .

Would you specify a block factor that gives many records per block or few records per block
(records are fixed-length). Explam your choice.

[T

Suppose you plan to add new records in random order, and you do not want to “deblock”
each record. .

A. Would yoﬁ use 0, 1, 2, or more buffers? Explain. -

1

B. Would you specify a large or small block size? Explain.

Bw\ij‘\. ‘A [;;;/j

IV-22a

SHARING FILES

m Locking Strategies

B Multi-Access

[i7] HEWLETT
P8 packarD

Iv-23

notes:

- rofarancae’

locking

A Gentleman’s Agreement

process
A

A “locks” file
A modifies record 5
A ‘“‘unlocks’ file

—-—

process
B

B attempts to “lock” file

B waits until A ‘“unlocks’ file
B “locks” file

B reads record 5

B “unlocks” file

HEWLETT
PACKARD

v-24

notes:

- The locking mechanism depends on all sharing processes testing

and respecting locking signals.

references:

«

locking

File is shared—Buffers are not

process
A

progess ——-| buffers

process
C

e buffers contain data, current record pointer

[() prosted

1v-25

notes:

- Each buffer can contain different versions of the same record.

- Each buffer can have a different record pointer to the current
record. » Co

x/c e Lf_ﬂ 1.

references:

locking

LOCK/UNLOCK

makes sure data is in only ONE program’s buffers
at a time

empty fill empty |

/)
| lock read/ I | unlock
program I file I "‘;{l';e file

time

- LOCK: starts with empty buffers
UNLOCK: ends with empty buffers

() Pttt

iv-26

notes:

- Locks ensure that data and pointers are only in one set of
buffers at a time. This keeps the file orderly with only
the latest data, however many processes are concurrently
accessing the file.

references:

locking

When to Lock

B when a file is shared, locking insures data “integrity”

example:
process "
N Sa
A d/""ite
read only | process read only file
v B
I'ea
doha'

3 Y
\
ae <
process’ ~
C

e which processes need to lock file X?

e which processes need to lock file Y?

[" HEWLETT
PACKARD

v-27

notes:

- No processes need to lock file X; it is not being modified.

- All processes need to lock file Y, even process B, that only
reads the file, if it wants to read the latest data.

references:

locking

e what if sharing programs DO NOT LOCK/UNLOCK?

reads, —buffer for “A”
pro%ram b—=modifies=— 5 & contains new value
record
buffer “A”
old value
3T stillin file
reads

program |__ came = 3 file
B record \buﬁer for “B”
contains old value

buffer “B”’

B HEWLETT
PACKARD

1v-28

notes:

references:

locking

B lock around logical transactions

good:

poor:

LOCK
READ
UPDATE

UNLOCK

READ
LOCK
UPDATE

UNLOCK

no changes can
occur between
READ and UPDATE

another user can

change data

(or move pointer)
between READ and LOCK

. HEWLETT
’ PACKARD

Iv-28

notes:

references:

_locking

B beware of locking around a terminal read
example:

process
A

B all processes wait for operator to wake up!

HEWLET!
PACKARL

v-30

notes:

- Devices as well as disc files can be locked.

- A time-out procedure can be used to make sure terminal is not
left hanging.

references:

locking

'LOCKING Uses Resources

B use locks with care
B consider designs that avoid locking

example:

process

" adds/updates

process
B

HEWLETT
PACKARD

V31

notes:

- Locking overhead is caused mainly by the number of disc
transfers needed to post the buffers at each lock and unlock.

references:

shared files

7

B shares access path (buffers, pointers)

B restricted to father/son processes

_ MULTI-ACCESS

o

B no LOCK/UNLOCK - (= R

| process
A _ ‘
i L []
same process | |29
tree | e ___|’ 590 file
tree 350
[
[]
process o
\ c buffers
iv-32
notes:

references:

0o’

HEWLETT
PACKARD

shared files — multi

MULTI-ACCESS - Advantages

B saves memory - single rather than multiple buffers

B reduces number of locks

B reduces number of opens/closes

| O Pl

v-33

notes:

- Multi access provides a way to pass the file number of the

shared file between processes - this cuts down on the number
of opens and closes.

- Also, it allows chronological writes by many users without
locking around each write,

references:

shared files — multi

MULTI-ACCESS - Disadvantages

B only useful for process-handling applications
H requires cooperation between sharing processes)
B may require locking of global resources | i

B buffers are required

U ordiane
Iv-34 .

notes:

- Only one file close takes effect, so users must cooperate

to insure correct disposition of file as determined by
close.

- Global resources need to be locked only if the file label
is directly modified.

- NOBUF transfers are not a;lowed with multi-access.

references:

sharing files

WORKSESSION IV - 3

1v-35

notes:

references:

‘Worksession IV-3

1. Assume two programs share a file; program “A” updates employee records, program “B”
retrieves current employee data.

A. Which program must lock the file? Explain.

B. If program “B” can use data that is one day old, write a scenario that avoids locking
altogether. ‘ ‘

) N %
i = (3

e

. o ' R : "
[oo) / ; i K 1
N Lo o 5 . B A ; \Q RS

IV=35a

Worksession IV-3 (cont.)

Assume two programs that share an inventory control file; program “A” adds new parts to the
file; program “B” checks the latest on-hand quantity of any part in the file. If locking is used,
both programs must lock the file.

For program “A”, which locking strategy would you choose? Give your reasons.

A. LOCK file
READ record
UPDATE on-hand quantity \
loop back to READ next record
UNLOCK file -

B. LOCKfile
READ record
UPDATE on-hand quantity
UNLOCK file
loop back to LOCK file

Assuming the programs in question 2 are child processes in the same process tree, describe how
they can both access the file at the same time, and allow “B” to get the latest data without
locking the file. ,

i . B
C r tA ,fi«, DR e e R

0

IV-35b

KSAM

‘B Overview
B Key Selection

B Using KSAM Files

HEWLETT
PACKARD

1v-38

notes:

references:

OVERVIEW |

fé wj;’f‘f ’w«:@{ /
B What is a KSAM file? &/

B Guidelines for selecting keys
Lo/ T C

) H ,:a
{

= [£
f Ny o SRTR ::j'”‘ _
(i o :

() Jiyats

PACKARD

Iv-37

notes:

KSAM file

B a KSAM file = 2 MPE files

a data file plus a key file
data block ' 2 control
data block blocks
block key block
data bloc .. | | key block
* key block

—

N

4

i (‘f PACKARD

1V-38

notes:

- KSAM files are accessible in all languages except APL.

- KSAM interface built into RPG and COBOL II, must make
procedure calls from FORTRAN, SPL, BASIC, or COBOL '68,

references:

KSAM file

SEQUENTIAL ACCESS

data file - key file | data file

JONES « QD JONES @

ADAMS < r —2 abams | @

KELLOG < \[—@ KELLOG | (®

CARTER < —@\ CARTER | @
/—\

B by key value B in chronological order

[() Prestred

1v-39

notes:

- Key access may use primary or alternate key; keys determined
when file is created. Sequence in ascending order by key
value.

- Data may be written to file in primary key order, or it may
be written in chronological order.

- Access in chronological order is not available in BASIC or

COBOL '68. Chronological access is like sequential MPE access;
key file is not used.

references:

KSAM file

data file

RANDOM ACCESS

key file

JONES
ADAMS

CARTER

N

KELLOG K

Z

B access particular record by key value

° exact'key - e.g. key = “KELLOG”
® partial key - e.g. key = “KE”

e approximate key - e.g. key = “K”

[b, HEWLETT

PACKARD

V40

notes:

- Direct access by data record number is possible in any language
except BASIC and COBOL '68; as with chronological access, the
key file is not used.

references:

KSAM file
DELETING DATA RECORDS

old new
data file data file

X)
i
X Wi
/ /////// / reload ,////////////////

.// 7 T e “deleted” record in data file
| ///////////4 marked in 1st word

X

e reload removes records marked
for deletion from data file

N

e record not physically deleted

N

7

/
B reload frequently if file has many deletions/
\h j,,/ G P
V41 - Lt
» L ZeelbN G MOFT S e deen
notes: g e o ’) ek “ “

| B TR U O
S P R X O

- "Deleted" data record remains in data file with a delete flag
in first word.

- Key entries for "deleted" records are physically removed from
the key file; key file pointers are updated.

- Leave first word (2 characters) of each data record blank,
so delete flag does not overwrite data.

references:

KSAM file

KSAM Utilities

use FCOPY
o for fast, unprogrammed inquiry
o for loading data into KSAM file
o for re-loading data to compress file

use KSAMUTIL ol
® to create file <+ -
o to clear data from file _’
e for recovery from system failure

e to retrieve file statistics), -V

ks C:;[

)]

R

A

/

H
i

o
-
}

Iv-42

notes:

»
T
i

f

Lo T

04 cackaro

- It is possible to create a KSAM file programmatically in an
SPL, FORTRAN, or COBOL II program, but not in BASIC or COBOL

'68.

- There is no built-in KSAM logging capability and no built-in

back up capability; but can use MPE facilities.

references:

KSAM file

KSAM Tips

e OPEN file using data file name - not key file name
e LOAD file in sequential order by primary key

e PLACE data file and key file on separate discs

(," HEWLETT

PACKARD

1v-43

notes:

- Separate discs save seek time.

- If you open the file using the key file name, the key file

is opened, the data file name retrieved, and the key file
closed, then the data file is opened, the key file name
retrieved and the key file opened. The first open and
close of the key file is not done when you open the file
using the data file name.

Loading data in primary key sequence takes a little longer
than loading in chronological order (and makes a larger
key file), but significantly speeds up access by primary
key. It produces a tidy data and key file.

references:

KSAM files

WORKSESSION IV - 4

Iv-44

notes:

references:

() ety

Wi

Worksession V-4 (KSAM files)

Suppose your application keeps its employee records in a KSAM file. Once a week, it retrieves
all the records ir: the file in sequence by employee last name; once a month, it accesses all
records by department code. Also, it must occasionally locate all employees whose names start
with a particular letter.

A.

Which item would you choose as the primary key, employee name or department code?
Why? -

! — N o ;
iy o o . I .
/ T WA - /’\f)& - SN e, A e T
i &
A ot

.
#

U

p; o~
- /
: e

§,,, f:? A”‘“‘fﬁiﬁ

Taking into consideration the item you chose as the primary key, is there any advantage
to forcing new records to be added in primary key sequence? Any disadvantage? Explain.

g
ey

Do you need to know the record in order to find the first employee whose name begins

- with “K”? Explain your answer. . ~

7 ™~
/

Over a period of time, many records are deleted from the employee file, and you notice that
accessing the file is slower.

A. Explain why this happens.

B. What can you do to improve the access time in this situation?

(C/@ﬁfié e

1V-44a

GUIDELINES for KEY SELECTION

B Multiple Keys
B Changing Key Values

B Duplicate Keys

1vV-45

notes:

references:

79 HEWLETT

selecting keys

Avoid Multiple Keys

m use as few keys as possible
m each key increases size of key file

key file

2 control blocks

blocks for
primary key

blocks for 1st
alternate key

HEWLETT
(‘/ PACKARD

1V-46

notes:

- Up to 16 different keys are allowed! But, use that many only
if response time is not a consideration.

references:

selecting keys

Select Static Values for Keys

delete flag

JONES
408 426-6974

B update of key value forces record to be:
— deleted from data file
— added as new value

B adds unnecessary data to data file

JONES
408 427-1234

B key file must be restructured

O B

\v-47

notes:

- In this example, assume the phone number is defined as a key.
When the phone number changes, the entire data record is marked
for deletion, the old key entry is deleted and the new key

~entry added to the key file.

references:

selecting keys

Key File uses B-tree Structure

B each key uses separate “tree’” of key blocks
B key blocks linked through pointers

B key block structure changed when:

e new value added
e old value deleted
e key value modified

(D [

v-48

notes:

- To understand how keys are located (and managed), it helps
to know something about the key file structure.

references:

~ selecting keys

Example of B-tree Structure

2-level tree:

1| 3 [\ 4V 4/] “root’ block

pointers

[11020 o%o 04.50%07/

‘leaf”’ blocks

B binary search fast for unique keys

B adding new values expensive

[() Pyrtrad

Iv49

notes:

-~ Key values are in sequence within blocks.

- The root block always has central values - so that values
are balanced, as many greater as there are lower values
than the root values.

- Each block is at least 50% full, but empty entries are kept
for expansion, to minimize chance of block splits.

references:

selecting keys

Number of Levels and Disc 1/O

B binary search efficient for unique keys

example: find key = “15”

r ' 7
| «|50(¢| 75]|¢|90[e [/ e| < Q) root
® L } %- ®level
T |
Taslela11: 73| [\salls7-V 4.7, 2
18|y[35|¢[41][541|571 level

®
\
7

12[+[15{-/ ¢ I-l REURZR78 ?Jf,’e.

@ three levels in tree - up to three disc accesses

[(D Jarestzld

1V-50

notes:

~ Because of binary search, only one disc access is needed for
each level. The root level block may already be in the buffer
from previous accesses, so the disc I/0 to bring in the root
block is often unnecessary.

references:

selecting keys

data file

JONES

ADAMS

KELLOGG

CARTER

JONES

WILSON
JONES

N

key file built with- DUP

“key file

1
2

3

(key order chronological)

Creating Duplicate Keys

B order of keys depends on how
file created

DUP e chronological order
e updates show

RDUP ¢ keys ih random order

¢ updates as fast as any
other key

lzp HEWLETT

IV-561

notes:

PACKARD

- Adding new keys is always time consuming; adding duplicate keys

is even more so.

- Trying to maintain chronological order adds to the overhead of

adding new duplicate keys.
order is essential.

references:

So, use RDUP unless chronological

selecting keys

Accessing Duplicate Keys

B KSAM maintains “chain’ of duplicate keys in key file
B read by key gets first key in chain
B long duplicate keys slow to access

e lose advantage of B-tree structure
e binary search inefficient for duplicate chains

(ﬁ/’ HEWLETT

PACKARD
IV-52

notes:

- The binary search technique is designed for unique keys. It
is extremely inefficient for accessing duplicate keys and can
double the disc I/0O needed to find the start of a long

duplicate key chain. So, keep duplicate chains short! Don't
choose "male/female" as a key.

references:

selecting keys

WORKSESSION IV - 5

() porsrals

1IV-563

notes:

references:

Worksession IV-5 (selecting keys)

Assume a file with the following items in each record:

Customer Name (in format: First Last Initial)
Street Address

City

State

Zip Code

Phone Number

Purchase Order Number

Suppose the application needs to

a)
b)
9]
d)
e)

1.

4.

Update customer information given only the customer name
Add new customers

Mail literature by zip code

Retrieve the purchase order number for a particular customer
List in alphabetical order all customers with the same last name

How many keys do you need?

Which items did you select as keys?

Does any key item need to be modified? If so, which?

Are any keys duplicates? If so, which?

If you need a duplicate key. would you make it a key added in chronological order (DUP) or in
random order (RDUP)? Why?

IV-53a

Worksession IV-5 (cont.)

Which function (a, b, ¢, d, or e) do you think produces the most overhead? (Assume the customer
name does not change.) Explain.

Which function (a, b, c, d, or e) produces the least overhead? Explain your answer.

Can you think of any ways to reduce the number of keys or to make your keys more effective?

IV-53b

USING KSAM FILES

B Key Blocks and Buffers

B Shared Files

(6, HEWLETT

PACKARD

iv-54

notes: .

references:

key blocks and buffers
Key Blocksize and B-tree Levels

B KSAM defauit good for most files, but you can
change key blocksize

B in general - large blocks tend to reduce number
of levels - . ..~

B experiment to determine best blocksize that does
not increase number of levels

B remember, the more levels, the more disc I/O
for access

omescman b amrasss mmeme

28 rackarc

IV-55

notes:

references:

key blocks and buffers

Choosing a Key Blocksize

B consider method of access
- larger blocks for sequential access
- smaller blocks for random access

B consider number of levels in B-tree
problem: ,
A) blocksize is large, levels in B-tree = 2
B) blocksize is smaller, levels in B-tree = 2
C) blocksize is very small, levels in B-tree = 3

which blocksize (A, B, or C) would you choose

- for random access?
- for sequential access?

U eackano

IV-56

notes: Lo iRl

~ Choose B) for random access because you want the smallest
block size that does not increase the number of levels.

- Choose A) for sequential access since it gives you both
a large block and few levels.

- There is no good reason to choose C) since it increases
the number of levels with consequent increase in disc I/O.

references:

key blocks and buffers

Default Number of Key Buffers

assume: file has 2 keys; primary key has 2 levels, and

alternate key has 3 levels:

READ/WRITE or.

READ only WRITE only UPDATE
control control control
data data data
buffers buffers buffers
. 3 \ |
key ,
buffers 9 8
‘1 per level L key L key
(for key with buffers buffers
most levels)
: J
) 1 per level per key + 3
3 per key + 3
&8 Packanc
IV-67
notes:

- The data file uses a single buffer - this cannot be changed.

- The number of key file buffers can be increased or reduced
if the default is not working well.

- The default is based on a combination of access mode,
number of keys, and number of levels 5in the B-tree.
N B o de

e
;

references:

key blocks and buffers

'EXPERIMENT with Number of Buffers

If default not satisfactory —

e you can change number of buffers any time file is
opened

e consider more buffers
- for loading data into file
- when there are few other users on system

HEWLETT
PACKARD
1v-58

notes:

- Generally, the default works well. Still, there are
situations when the default can be improved on.

- Each additional buffer increases the size of the extra
data segment that holds the buffers, (an extra data
segment is maintained for each open KSAM file).

references:

shared KSAM files
Extra Data Segments

W 1 per open KSAM file

B contain data buffers, key buffers, control blocks

i

\ (]

KSAM ﬂle\
XDS XDS XDS
| l |
process 1 process 2 process n
() PR
iv-59

notes:

- The separate extra data segments and private control blocks
add to the overhead of using KSAM files.

- Private control blocks mean the record pointers and the current
EOFs are not shared.

references:

shared KSAM files

USE LOCKING!

LOCK - writes CONTROL BLOCKS from file to XDS
UNLOCK - writes CONTROL BLOCKS back from XDS to file

I LOCK } control

blocks

UNLOCK -
buffers

key

KSAM files XDS

e causes extra disc 1/0

2) Prostrits

1V-60

notes:

- Locking insures that the latest record pointers, and the EOFs
for both the key and data files, are posted to the file before
the file is accessed by any other process.

references:

shared KSAM files

Lock around Transactions

B lock before moving pointer when access is
pointer dependent

B example:

LOCK

READBYKEY <« positions pointer -
REWRITE <« uses pointer

UNLOCK

| () Pzt

Iv-61

“notes:

- Some procdures (such as rewrite or delete) depend on the
current pointer being positioned correctly.

- Others (such as a key read) position the pointer at a
particular record.

- Still others (such as sequential read) advance the pointer or

leave it where it is depending on the preceding
procedure. ~

references:

shared KSAM fiies

Structure Transactions (1)

to reduce overhead when files are shared:

B separate reads from updates

—use-different-terminals
- if possible, at different times

4:3’2@

read only update only

[() Qi

1vV-62

notes:

references:

shared KSAM files

Structure Transactions (2)

B add or delete records in “batch”
1. Enter new records, deletes on-line to MPE transaction file

2. Update KSAM file from transaction file as batch job

O[5

adds/deletes batch
on-line update
to (after hours)
MPE file

s L iEriAr e

%2 pacxaro

Iv-63

notes:

references:

using KSAM files

WORKSESSION IV - 6

HEWLETT

[() vt

1v-64 -

notes:

references:

Worksession (IV-6) (using KSAM files)

Suppose you specify a small key block size in an attempt to reduce your key buffer size for a
random access operation. You find that access to the file is slower than it was before you
reduced the key block size. You then run KSAMUTIL and find that there is a 4-level key in the
file whereas there used to be at most 3 levels.

A. Explain why reducing the block size made access slower.

AS
i

A I - /
AN e S T

PR

B. What would youdo in this case to make the disc access faster?

Which is easier to do: change key block size or the number of key buffers? Explain.

Two programs both access the same KSAM file. One makes on-line updates to the file; the other
produces daily reports based on a sequential retrieval of all the records in the file.

A. Explain why these programs must both lock the file when accessing it simultaneously.
- | Lol “27?* ; J e / ' /

£
A

[N gt E i
S Y T LA i

¢ 5

~

B. Isthere any way both these programs can execute without locking the KSAM file?
Explain. ' '

1vV-64a

IMAGE/QUERY

B Data Base Definition

W using IMAGE

B IMAGE Structure

B QUERY

1v-65

notes:

references:

DATA BASE DEFINITION

An Overview of

e IMAGE concepts '/ -
e Passwords and Security

e Multiple Data Bases

\'\‘ e

1V-66

notes:

references:

EEEEEEE

data base definition

What is IMAGE?

B a structured collection of data sets

master

detail

least structure maximum structure

[A’ HEWLETT

PACKARD

Iv-67

notes:

- Each data set is an MPE file. Data sets can be stand-alone
(not connected to another data set) or many data sets can
be connected through multiple "paths".

- This wide range of structure allow data bases to be tailored
to the application.

references:

data base definition

IMAGE Structure

B each data set is a file

W linked through “root file” containing data base definition

- -
T - -

<
gl

Cmmmme™ L YRR g

4

....... - | root file — contains “IMAGE”
of data base

L ST I
’---
h---

data base files

() et

Iv-68

notes:

- The root file contains a full description of the data base,
including all paths, chains, item definitions, passwords,
etc.

- The root file is shared by all users of the same data base.

references:

data base definition

Paths and Chains

Paths link master to detail data sets
DY i — e use as few as possible

e select search items that change
infrequently

path e choose the most-used search item as
the head of a primary path

: Chains link items in detail with the same
\ search item values

chain (e length of chain not significant

\ @ access in either direction
e search items must not be sort items

() Jaatrad

IvV-69

notes: T e e

references:

data base definition

Entries and Items
B an IMAGE entry corresponds to a record

B an IMAGE item corresponds to a field within a record

acct name date code
~ item ont
within —> 12345 | JONES JOHN H 051180 | 25 } ry
entry 98765 | MARTIN MARY X 061180 | 03

HEWLETT
PACKARD

IV-70

notes:

- Special item types are search items and sort items.

- Search items define the "paths"; the same search time must be
in a master and its associated detail. They also define the
"chains" which are simply search itmes with the same value
in a detail data set.

- Sort items {(which must not be search items) are items on
which a chain can be sorted.

references:

data base definition

Master Data Sets

e MANUAL - search item (key) PLUS data
-~ may be stand-alone
- values must be added by program
- provide direct control over data

® AUTOMATIC - search items only
- values added automatically
- must be linked to a detail

- good when search items are
numerous or have many unique
values

- saves coding effort

[caciano

v-71

notes:

- Use master data sets for search items (keys), and for
one-of-a-kind data.

- Basically, masters provide the key to the bulk of the data,
which is stored in details and often has duplicate key

values.

references:

data base definition

Detail Data Sets

details data sets - linked to mas;ters by paths

A 1 -4

M iea §
- u H

- duplicate items are linked in
“chains”

B use for values linked to more than one
master

B use for any-items that must be sorted

[() Jorhral

Iv-72

notes:

- Good for such items as: sales records, purchase orders,
shipments, that can be associated with several masters and
that are repeated items linked through duplicate search items
(key) values.

-~ Sort items can only be in detail sets.

references:

data base definition

Choosing a Structure

B multiple paths
- for stable data that seldom changes
- for inquiry-type applications
- to avoid redundant data

B stand-alone data sets
- to provide IMAGE security and logging
- for shared buffers in shared environment
- for QUERY access

the structure of the data base should reflect the structure
of the organization

[cackano

v-73

notes:

- Only define paths that are absolutely necessary.
- Each additional path increases the complexity of the data

base; this, in turn, adds to the overhead particularly for
modifying the data.

references:

data base definition

Passwords and User Classes

M provides access on “need-to-know’’ basis

credit
clerk

supervisor

C

o

ﬂﬁsikau)

these items

customer name I'_

&Can UPDATE

—

credit rating

—~—

balance due

—

can READ but
not UPDATE
all items

i

can UPDATE this
item (read and write)

HEWLETY
PACKARD

)

Iv-74

notes:

specific items.

There can be up to 63 different user classes.

Passwords are associated with classes of users.

Each user class is allowed to perform specific tasks on

Thus, the

access restrictions can be extremely precise.

references:

data base definition
Muitiple Data Bases

W consider more than one data base .
- for complex applications with many items

application >

programs

parts description inventory control

ﬂp HEWLETT

PACKARD

Iv-75

notes:

- Multiple data bases may be a good way to reflect application
needs.

They are also a solution if there are too many items for a
single data base (more than 255), But, this is not the only

solution. There are usually other ways to reduce the number of
items; for example by combining several into one item.

references:

data base definition

Multiple Data Bases

ADVANTAGES -backup and recovery faster per
data base

-simplify individual data base
structure

-more appropriate for some
applications

DISADVANTAGES -more overhead
-some redundant data
~-logging more complex

[() Pt

IV-76

netes:

- If you use multiple data bases, try to open only one at a
time,