
BASIC 5.0/5.1
Program.m.ing Techniques

Vol. 1: General Topics

HP 9000 Series 200/300 Computers

HP Part Number 98613-90012

rli~ HEWLETT
.:~ PACKARD

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

NOTICE
The information contained in this document is subject to change without notice

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAl. INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable

for errors contained herein or direct, Indirect. special, Incidental or consequential damages In connection With the furnishing. performance,

or use of this material

WARRANTY
A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from your local

Sales and Service Office.

Copyright © Hewlett-Packard Company 1987

This document contains information which is protected by copyright All rights are reserved Reproduction. adaptation, or translation Without

prior written premission IS prohibited, except as allowed under the copyright laws

Restricted Rights Legend

Use, duplication or disclosure by the US Government Department of Defense is subject to restrictions as set forth In paragraph (b)(3)(ii) of the
Rights in Technical Data and Software clause In FAR 52.227-7013

Use of this manual and fleXible disc(s) or tape cartridge(s) supplied for this pack IS restricted to thiS product only AdditIOnal copies of the programs
can be made for security and back-up purposes only. Resale of the programs in their present form or with alterations, is expressly prohibited

Copyright © AT&T. Inc. 1980. 1984

COPYright ~s The Regents of the University of California 1979, 1980, 1983

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from the Regents of the University

of California

ii

Printing History

New editions of this manual will incorporate all material updated since the previous
edition. Update packages may be issued between editions and contain replacement and
additional pages to be merged into the manual by the user. Each updated page will be
indicated by a revision date at the bottom of the page. A vertical bar in the margin
indicates the changes on each page. Note that pages which are rearranged due to changes
on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing
date changes when a new edition is printed. (Minor corrections and updates which are
incorporated at reprint do not cause the date to change.) The manual part number
changes when extensive technical changes are incorporated.

January 1987 ... Edition 1

November 1987 ... Edition 2. This edition reflects 5.0 corrections and 5.1 additions.

98613~90012, rev: 11/87 Printing History iii

iv Printing History

Table of Contents
Chapter 1: Manual Organization

Welcome ... 1-1
\Vhat's In This rv1anual? .. . 1-2

Programming Techniques Volume 1 1-2
Programming Techniques Volume 2 1-5
What's Not in this Manual ... 1-5

Chapter 2: Program Structure and Flow
The Program Counter ... 2-2
Sequence. .. 2-3

Linear Flow .. 2-3
Halting Program Execution .. 2-3
Simple Branching .. 2-6
Using GOSUB .. 2-7

Selection. .. 2-10
Conditional Execution of One Segment 2-11
Choosing One of Two Segments 2-15
Choosing One of Many Segments 2-17

Repetition .. 2-22
Fixed Number of Iterations 2-22
Conditional Number of Iterations 2-25
Arbitrary Exit Points ... 2-27

Event-Initiated Branching ... 2-30
Types of Events ... 2-31
Example of Event-Initiated Branching. .. 2-32
Example of Using the Knob .. 2-34
Deactivating Events .. 2-36
Disabling Events. .. 2-38

Chaining Programs. .. 2-39
U sing LOAD 2-39
Using GET .. 2-40
Program-to-Program Communications 2-41

Table of Contents v

Chapter 3: Numeric Computation
Numeric Data Types .. 3-1

REAL Data Type ... 3-1
INTEGER Data Type. .. 3-2
COMPLEX Data Type. .. 3-2

Declaring Variables ... 3-3
Assigning Variables ... 3-4

Implicit Type Conversions ... 3-4
Precision and Accuracy: The Machine Limits 3-7
Internal Numeric Formats. .. 3-8

Evaluating Scalar Expressions .. 3-9
The Hierarchy .. 3-9
The Delayed Assignment Surprise 3-12
Operators ... 3-12

Numerical Functions ... 3-15
Arithmetic Functions ... 3-15
Array Functions ... 3-16
Exponential Functions .. 3-17
'frigonometric Functions .. 3-17
Hyperbolic Functions. .. 3-18
Binary Functions .. 3-18
Limit Functions .. 3-19
Rounding Functions. .. 3-19
Random Number Function .. 3-22
Complex Functions. .. 3-22
Time and Date Functions ... 3-29
Base Conversion Functions .. 3-30
General Functions .. 3-31

Chapter 4: Numeric Arrays
Dimensioning an Array .. 4-2

Some Examples of Arrays .. 4-3
Problems with Implicit Dimensioning 4-8

Finding Out the Dimensions of an Array 4-9
Using Individual Array Elements 4-10

Assigning an Individual Array Element .. 4-10
Extracting Single Values From Arrays .. 4-10

Filling Arrays ... 4-11
Assigning Every Element in an Array the Same Value 4-11
U sing the READ Statement to Fill an Entire Array 4-11
Copying Entire Arrays into Other Arrays 4-12

vi Table of Contents

Printing Arrays .. 4-14
Printing an Entire Array. .. 4-14
Examples of Formatting Arrays for Display. .. 4-14

Passing Entire Arrays .. 4-16
Copying Subarrays ... 4-16
Redimensioning Arrays .. 4-24
Arrays and Arithmetic Operators 4-26

Using the MAT Statement .. 4-26
Performing Arithmetic Operations with Complex Arrays 4-28
Summing the Elements in an Array 4-29

Boolean Arrays .. 4-30
Reordering Arrays ... 4-32
Sorting Arrays. .. 4-34

Sorting with Automatic REORDER 4-34
Sorting to a Vector. .. 4-36

Searching Numeric Arrays .. 4-38
Numeric Comparisons in MAT SEARCH 4-42

Matrices and Vectors ... 4-47
Matrix Multiplication .. 4-47
Multiplication With Vectors 4-48
Identity Matrix. .. 4-52
Inverse Matrix. 4-53

Solving Simultaneous Equations 4-55
Singular Matrices .. 4-57
The Determinant of a Matrix. .. 4-59
Ill-Conditioned Matrices .. 4-60

Detecting Ill-conditioned Matrices. .. 4-61
Miscellaneous Matrix Functions. .. 4-63

Transpose Function .. 4-63
Summing Rows and Columns of a Matrix .. 4-65
Examples of Complex Array Operations 4-67

U sing Arrays for Code Conversion 4-70

Chapter 5: String Manipulation
String Storage. .. 5-2
String Arrays. .. 5-3
Evaluating Expressions Containing Strings .. 5-4

Evaluation Hierarchy .. 5-4
String Concatenation. .. 5-4
Relational Operations ... 5-5

Table of Contents vii

Substrings ... 5-6
Single-Subscript Substrings. .. 5-6
Double-Subscript Substrings. .. 5-7
Special Considerations. .. 5-8

String-Related Functions. .. 5-10
Current String Length. .. 5-10
Maximum String Length .. 5-10
Substring Position ... 5-11
String-to-Numeric Conversion 5-13
Numeric-to-String Conversion 5-15
CRT Character Set. .. 5-16

String Functions .. 5-17
String Reverse. .. 5-17
String Repeat ... 5-18
Trimming a String ... 5-19
Case Conversion .. 5-19

Copying String Arrays and Subarrays 5-21
Searching and Sorting .. 5-22

Reordering an Array ... 5-28
Searching for Strings ... 5-30
Searching String Arrays. .. 5-32

N umber-Base Conversion ... 5-34
Introduction to Lexical Order ... 5-36

Why Lexical Order? .. 5-36
How It Works ... 5-36
The ASCII Character Set ... 5-37
The Extended Character Set 5-41

Predefined Lexical Order ... , 5-43
Lexical Tables .. 5-45

Notation .. 5-45
ASCII Lexical Order ... 5-46
Case Conversions .. 5-46
FREN CH Lexical Order .. 5-48
Case Conversions .. 5-48
G ERMAN Lexical Order. .. 5-50
Case Conversions .. 5-50
SPANISH Lexical Order ... , 5-52
Case Conversions .. 5-52
SWEDISH Lexical Order ... 5-54
Case Conversions .. 5-54
User-defined LEXICAL ORDER 5-56

viii Table of Contents

U ser-Defined Lexical Orders. .. 5-58
Sequence Numbers .. 5-60
Mode Entries. .. 5-60
Bits, Bytes, and Mode Types. .. 5-61

Chapter 6: Subprograms and User-Defined Functions
Some Examples. .. 6-1
Benefits of Subprograms .. 6-3
A Closer Look at Subprograms ... 6-4

Calling and Executing a Subprogram 6-4
Differences Between Subprograms and Subroutines 6-5
Subprogram Location. .. 6-5
Subprogram and User-Defined Function Names 6-5
Difference Between a User-Defined Function and a Subprogram 6-6
Numeric Functions and String Functions .. 6-6

Program/Subprogram Communication. .. 6-8
Parameter Lists. .. 6-8
Passing By Value vs. Passing By Reference 6-9
OPTIONAL Parameters .. 6-12
COM Blocks .. 6-14

Context Switching ... ' 6-18
Variable Initialization .. 6-19
Subprograms and Softkeys .. 6-19
Subprograms and the RECOVER Statement 6-20

Calling Subprograms from the Keyboard. .. 6-21
Speed Considerations ... 6-21
Using Subprogram Libraries ... 6-23

Why Use Subprogram Libraries? 6-23
Listing the Subprograms in a PROG File 6-23
Loading Subprograms .. 6-23
Deleting Subprograms .. 6-26
Editing Subprograms ... 6-27
SUBEND and FNEND ... 6-29

Recursion .. 6-30
Top-Down Design .. 6-32

The Problem .. 6-32
A Data Structure .. 6-33

Table of Contents ix

Chapter 7: Data Storage and Retrieval
Storing Data in Programs. .. 7-2

Storing Data in Variables .. 7-2
Data Input by the User. .. 7-2
Using DATA and READ Statements 7-3

File Input and Output (I/O) ... 7-7
Brief Comparison of Available File Types 7-7
Overview of File I/O .. 7-9
A Closer Look at General File Access. .. 7 -11

A Closer Look at Using ASCII Files. .. 7-16
Example of ASCII File I/O .. 7-16
Data Representations in ASCII Files 7-17
Formatted OUTPUT with ASCII Files 7-19
Formatted ENTER with ASCII Files. .. 7-24

A Closer Look at BDAT and HP-UX Files 7-26
Data Representations Available 7-26
Random vs. Serial Access ... 7-26
Data Representations Used in BDAT Files 7-27
Data Representations with HP-UX Files 7-30
BDAT File System Sector ... 7-31
Defined Records ... 7-31
EOF Pointers ... 7-35
Writing Data. .. 7-37
Serial OUTPUT ... 7-37
Random OUTPUT. .. 7-42
Reading Data From BDAT and HP-UX Files 7-46
Accessing Files with Single-Byte Records 7-49

Trapping EOF and EOR Conditions 7-50
Extended Access of Directories .. 7-53

Cataloging Individual PROG Files 7 -53
Cataloging to a String Array .. 7-55
Getting an HExtended" Catalog of a LIF or HFS Disc 7 -57
Getting a Count of Files Cataloged. .. 7-57
Suppressing the Catalog Header 7 -58
Cataloging Selected Files. .. 7-58
Getting a Count of Selected Files 7 -60
Skipping Selected Files ... 7-61

Chapter 8: Using a Printer
Printers Supported .. 8-1
Installing 1 Configuring 1 and Verifying Your Printer. .. 8-2
The System Printer 8-2

x Table of Contents

Device Selectors .. 8-3
Primary Addresses .. 8-4

U sing Device Selectors .. 8-6
U sing the External Printer .. 8-7

Control Characters .. 8-7
Escape-Code Sequences .. 8-8

Formatted Printing ... 8-9
U sing Images .. 8- i i

Special Considerations. .. 8-16
Using SRM Printers through the Spooler. .. 8-17

Using a Spooler. .. 8-17

Chapter 9: The Real-Time Clock
Initial Clock Value .. 9-1

Do You Have a Non-Volatile Clock? .. 9-2
Clock Range and Accuracy ... 9-2
Reading the Clock .. 9-3

Determining the Date and Time of Day. .. 9-3
Setting the Clock 9-4

Clock Time Format ... 9-4
Setting Only the Time. .. 9-6
Setting Only the Date .. 9-8

Using Clock Functions and Example Programs 9-11
Day of the Week ... 9-13
Days Between Two Dates .. 9-13
Interval Timing .. 9-13

Branching on Clock Events. .. 9-14
Cycles and Delays .. 9-15
Time of Day .. 9-16
Priority Restrictions. .. 9-17
Branching Restrictions. .. 9-18

Chapter 10: Communicating with the Operator
Overview of Human I/O Mechanisms. .. 10-2

Other Factors ... 10-2
Displaying and Prompting .. 10-3

Displaying Messages: A Two-Step Process 10-3
Turning Off Unwanted Modes 10-3
Clearing the Screen .. 10-5
Determining Screen Width and Height. .. 10-7
Changing Alpha Height. .. 10-8
Displaying Characters on the Screen. .. 10-8

Table of Contents xi

Custom Character Fonts. .. 10-9
Character Cells. .. 10-9
Example of Changing One Character 10-13
Editing Supplied Fonts .. 10-14
Generating Sound. .. 10-16

Operator Input. .. 10-24
Softkey Inputs. .. 10-24
U sing Knobs ... 10-32
U sing Control Dials .. 10-33
Accepting Alphanumeric Input 10-36
Get Past the First Trap. .. 10-36
Entering a Single Item. .. 10-38
LINPUT with Multiple Fields 10-41
Yes and No Questions. .. 10-43

Example Human Interfaces. .. 10-45
An Expanded Softkey Menu. .. 10-45
Moving a Pointer ... 10-51
An Example Custom Keyboard Interface 10-54

Chapter 11: Handling Errors
Overview of Error Responses .. 11-1
Anticipating Operator Errors. .. 11-2

Boundary Conditions ... 11-2
REAL and COMPLEX Numbers and Comparisons 11-3

Trapping Errors with BASIC Programs 11-5
Setting Up Error Service Routines (ON/OFF ERROR) 11-5
Disabling Error Trapping (OFF ERROR) 11-6
Determining Error Number and Location

(ERRN. ERRLN. ERRL, ERRDS, ERRM$) 11-7
A Closer Look at ON ERROR GOSUB " , .,. 11-8
A Closer Look At ON ERROR GOTO 11-9
A Closer Look At ON ERROR CALL , 11-11
A Closer Look At ON ERROR RECOVER 11-13
Simulating Errors (CAlTSE ERROR) , 11-14
Clearing Error Conditions (CLEAR ERROR) 11-16

Chapter 12: Debugging Programs
Using Live Keyboard. .. 12-2

Executing Commands While a Program Is Running , 12-2
Using Program Variables. .. 12-2
Calling Subprograms .. , 12-4

xii Table of Contents

Pausing and Continuing a Program 12-5
Keyboard Commands Disallowed During Program Execution 12-5

Cross References .. 12-6
Generating a Cross-Reference Listing. .. 12-6

Single-Stepping a Program. .. 12-10
Thacing .. 12-12

TRACE ALL ... 12-12
PRINTALL IS. .. 12-14
TRACE PAUSE. .. 12-15
TRACE OFF. .. 12-16
The CLR I/O (Break) Key. .. 12-16

Chapter 13: Efficient Use of the Computer's Resources
Data Storage .. 13-1

Data Storage in Read/Write Memory. .. 13-1
Data Storage on Mass Memory Devices .. 13-3
Comments and Multi-character Identifiers. .. 13-4
Variable and Array Initialization. .. 13-4

Mass Memory Performance. .. 13-5
Program Files .. 13-5
Data Files .. 13-6

Benchmarking Techniques. .. 13-7
INTEGER Variables ... 13-9

Minimum and Maximum Values 13-9
Mathematical Operations .. 13-9
Loops ... 13-11
Array Indexing. .. 13-12

REAL and COMPLEX Numbers 13-13
Minimum and Maximum Values 13-13
Type Conversions .. 13-13
Constants. .. 13-14
Polynomial Evaluations. .. 13-14
Logical Comparisons for Equality on REAL Numbers 13-17

Saving Time. .. 13-18
Multiply vs. Add ... 13-18
Exponentiation vs. Multiply and SQRT 13-18
Array Fetches vs. Simple Variables. .. 13-19
Concatenation vs. Substring Placement. .. 13-19
HP 98635 Floating-Point Math Card. .. 13-21
MC68881 Floating-Point Math Co-Processor 13-21
Enabling and Disabling Floating-Point Math Hardware. 13-21
MC68020 Internal Cache Memory 13-22

Table of Contents xiii

Saving Memory. .. 13-23
Releasing Memory Volumes .. 13-25

Chapter 14: Porting to 3.0
Porting Topics Covered. .. 14-2
Compatibility with Preceding Versions , 14-3
Configuring BASIC .. 14-3

Helpful Documentation .. 14-3
Missing Language Extensions BIN Files. .. 14-4
Missing Driver BIN Files. .. 14-5

Statement Changes. .. 14-6
CSUBs ... 14-6
PHYREC .. 14-7
Knob ... 14-9

The KNOBX Function .. 14-9
Keyboards with Built-in Knob. .. 14-10
HP-HIL Keyboards with Mouse. .. 14-11
Programming for Both Versions and Keyboards 14-12
KNB2_0 .. , 14-13

Graphics. .. 14-14
Default Plotter. .. 14-14
Implicit GCLEAR .. 14-14
Input Device Viewport .. 14-14
Graphics Tablet DIGITIZE 14-15
The VIEWPORT Statement 14-15
The PIVOT Statement .. 14-19

Display Functions. .. 14-25
Prerun On LOADSUB .. , 14-26
Special Case of I/O Transfers. .. 14-26

Chapter 15: Porting to Series 300 and 4.0
Methods of Porting .. 15-2
Chapter Organization .. 15-2

Description of Srries 300 Hardwarr .. 15-3
Displays ... , 15-4
Processor Boards .. 15-6
Battery-Backed Real-Time Clock 15-6
Built-In Interfaces. .. 15-7
ID PROM ... 15-10

Just Loading and Running Programs 15-11
Should Problems Arise .. 15-11

xiv Table of Contents

Using a Configuration Program. .. 15-12
HP 98644 Serial Interface Configuration 15-12
HP 98203 Keyboard Compatibility Mode 15-13
Configuring Separate Alpha and Graphics Planes 15-27

Using the Display Compatibility Interface. .. 15-28
Hardware Description ... 15-29
Steps in Using this Card Set. .. 15-31
Switching Back to the Series 300 Display. .. 15-32
Automatic Display Selection at System Boot 15-33
Removing Display Drivers. .. 15-33
If Your Screen Is Blank. .. 15-33

Modifying the Source Program (Porting to 4.0) .. 15-35
Incompatible CSUBs 15-35
HP 98203 Specific Key Codes. .. 15-35
Additional Porting Considerations 15-36

BASIC 4.0 Enhancements for Series 200 Computers 15-40

Chapter 16: Porting to 5.0
Compatibility with Previous Versions. .. 16-1
Categories of New Features. .. 16-2
New Hardware Supported. .. 16-2
New Utilities. .. 16-3
HFS Disc Support ... 16-4
Human Interface Enhancements .. 16-5
New Keywords that Duplicate Register Operations. .. 16-6
General Programming Additions. .. 16-7
New STATUS/CONTROL Registers 16-8
Additional HP-HIL Support ... 16-9
Additional Graphics Features. .. 16-10
Additional CSUB Capabilities .. 16-11

Chapter 17: Porting and Sharing Files
Sharing HFS Discs and Data Files 17-2

General Compatibility Requirements 17-2
Common File Types. .. 17-3
Common Data Types. .. 17-4
HP-UX Text and Binary Files. .. 17-5
Examples of HP-UX File Access: Textual Numeric Data 17-6

Porting LIF Files to SRM .. 17-24
SRM File Specifiers ... 17-24
SRM Mass Storage Volume Specification 17-25
Allowing for SRM Directory Paths. .. 17-26

Table of Contents xv

SRM Passwords vs. LIF Protect Codes. .. 17-27
Copying Item-by-Item Using ENTER and OUTPUT 17-28
Accessing Files Created on Non-Series-200/300 SRM Workstations. . .. 17-29

Chapter 18: 5.1 Enhancements
Functionality Additions .. , 18-1
Manual Changes ... 18-1

Index

xvi Table of Contents

Manual Organization 1
Welcome ... 1-1
What's In This Manual? ... 1-2

Programming Techniques Volume 1 1-2
Programming Techniques Volume 2 1-5
What's Not in this Manual. .. 1-5

Manual Organization 1
Welcome
This manual is intended to introduce you to the Series 200/300 BASIC programming
language and to provide some helpful hints on getting the most utility from it. Although
this manual assumes that you have had some previous programming experience, you need
not have a high skill level, nor does your previous experience need to be in BASIC. If you
have never programmed a computer before, it will probably be more comfortable for you
to start with one of the many beginner's text books available from various publishing
companies. However, some beginners may find that they are able to start in this manual
by concentrating on the fundamentals presented in the first few chapters. If you are
a programming expert or are already familiar with the BASIC language of other HP
computers, you may start faster by going directly to the BASIC Language Reference
and checking the keywords you normally use. You can always come back to this manual
when you have extra time to explore the computer's capabilities, or if you bump into an
unfamiliar concept.

After reading each section and trying the examples shown, try your own examples.
Experiment. You cannot damage the computer by pressing the wrong keys. The worst
thing that can happen is that an error message will appear. All errors are listed in the
"Error Messages" appendix of the BASIC Language Reference.

Manual Organization 1-1

What's In This Manual?
No matter what your skill level, it is helpful to understand the contents and organization
of this manual. First of all, there are some things that it is not. Because it is organized
by topics and concepts, it is not a good place to find an individual keyword in a hurry.
Keywords can be found using the index 1 but even so, they are often imbedded in
discussions, contained in more than one place, or only partially explained. Also, this
is not a good place to find complete syntactical details. Program statements are often
presented only in the form that applies to the specific concept being discussed, even
though there may be other forms of the statement that accomplish different purposes.
If you want to quickly find the complete formal syntax of a keyword, use the BASIC
Language Reference. It is specifically intended for that purpose.

This manual contains explanations and programming hints organized topically. A
program performs various sub-tasks as it completes its overall job. Many of these tasks
should be viewed separately to be understood more easily and used more effectively. For
example, perhaps you have experience in another programming language. You know
exactly what a "loop" does, but you didn't find the statement you were looking for in
the BASIC Language Reference. In the chapter on "Program Structure and Flow," there
is a section called "Repetition" which explains the kinds of loops available and all the
statements needed to create them. The following is an overview of the chapters in this
manual.

Programming Techniques Volume 1
Chapter 1: Manual Organization

Chapter 2: Program Structure and Flow

This chapter tells how the computer finds its way around your program and offers
ideas on getting it to follow the proper path efficiently.

Chapter 3: Numeric Computation

This chapter covers mathematical operations and the use of numeric variables.
It includes discussions on types of variables, expression evaluation 1 arrays, and
methods of managing data memory.

1-2 Manual Organization

Chapter 4: Numeric Arrays

This chapter covers numeric array operations.

Chapter 5: String Manipulation

Although string data can be used for any purpose the programmer desires, it is
most often used for the processing of characters, words, and text. Since words are
more pleasant than numbers to humans, skillful use of strings can make the input
and output of programs much more natural to those using the programs. This
chapter explains the programming tools available for processing string data.

Chapter 6: Subprograms and User-Defined Functions

An outstanding feature of this language is its ability to change program contexts
and the speed with which it can do so. Alternate contexts (or environments) are
available as user-defined functions or subprograms. These are discussed in this
chapter.

Chapter 7: Data Storage and Retrieval

This chapter shows many of the alternatives available for storing the data that
is intended as program input or created as program output. Topics range from
convenient ways to define constants within a program to a discussion of file I/O
and the computer's unified mass storage system.

Chapter 8: Using a Printer

This chapter tells how to use an external printer. Also covered are the formatting
techniques (useful on both printer and CRT) to create organized, highly-readable
printouts.

Chapter 9: Using the Real-Time Clock

An accurate real-time clock is available with timing resolution to the hundredth of
a second and a range of years. Its capabilities are covered in this chapter.

Chapter 10: Communicating with the Operator

It is very frustrating for operator and programmer alike when the operator cannot
figure out what is expected next, or when the program crashes every time a wrong
key is pressed. This chapter presents some programming techniques that help ease
the interaction between the computer and a human operator.

Manual Organization 1-3

Chapter 11: Handling Errors

This chapter discusses techniques for intercepting (or trapping) errors that might
occur while a program is running. Many errors can be dealt with easily by a
programmer. Error trapping keeps the program running and provides valuable
assistance to the computer operator.

Chapter 12: Debugging Programs

We all wish that every program would run perfectly the first time and every time.
Unfortunately, there is little evidence in real life to support that fantasy. The
next best thing is to have debugging tools. This chapter explains the powerful and
convenient debugging features available on the computer.

Chapter 13: Efficient Use of the Computer's Resources

Which takes longerl calculating a square root or raising a number to the .5 power?
Does a program run faster if the variable names are shorter? If you have a time
critical or memory-critical application 1 you will be interested in these answers and
others provided in this chapter.

1-4 Manual Organization

Programming Techniques Volume 2
Chapter 14: Porting to 3.0

This chapter helps the user who is porting programs from previous versions of
BASIC to the 3.0 system. It discusses changes and enhancements.

Chapter 15: Porting to Series 300 and 4.0

This chapter describes Series 300 computer hardware from the standpoint of how
it is different from Series 200 hardware. Then, it presents the methods of porting
existing Series 200 software to Series 300 computers. It also describes the new
software features of the BASIC 4.0 system (which are few, except that it supports
the Series 300 computers).

Chapter 16: Porting to 5.0

This chapter lists the new features available with the 5.0 revision of the BASIC
system. It also describes considerations you may need to make in porting 4.0
programs to the 5.0 system.

Chapter 17: Porting and Sharing Files

This chapter describes the file types available with BASIC systems. It discusses
how to transport files to and from, and share files with, the Series 200/300 Pascal
and HP-UX systems. It will be especially useful if you are sharing files between
BASIC, Pascal, and HP-UX via the Hierarchical File System (HFS) disc format.

Chapter 18: 5.1 Enhancements

This chapter consist of BASIC 5.1 functionality additions and manual enhance
ments.

What's Not in this Manual
This is a manual of programming techniques, helpful hints, and explanations of capabili
ties. It is not a rigorous derivation of the BASIC language. Any statements appropriate
to the topic being discussed are included in each chapter, whether they have been previ
ously introduced or not. Since most users will not read this manual from cover to cover
anyway, the approach chosen should not present any significant problems. In those cases
when you have difficulty getting the meaning of certain items from context, consult the
Index to find additional information.

ManualOrganization 1-5

1-6 Manual Organization

Program Structure and Flow 2
The Program Counter ... 2-2
Sequence. .. 2-3

Linear Flow .. 2-3
Halting Program Execution .. 2-3
Simple Branching .. 2-6
Using GOSUB .. 2-7

Selection. .. 2-10
Conditional Execution of One Segment 2-11
Choosing One of Two Segments 2-15
Choosing One of Many Segments 2-17

Repetition .. 2-22
Fixed Number of Iterations 2-22
Conditional Number of Iterations 2-25
Arbitrary Exit Points. .. 2-27

Event-Initiated Branching. .. 2-30
Types of Events ... 2-31
Example of Event-Initiated Branching 2-32
Example of Using the Knob. .. 2-34
Deactivating Events .. 2-36
Disabling Events. .. 2-38

Chaining Programs. .. 2-39
U sing LOAD .. 2-39
Using GET .. 2-40
Program-to-Program Communications 2-41

Program Structure and Flow 2
Two of the most significant characteristics of a computer are its ability to perform
computations and its ability to make decisions. If the execution sequence could never be
changed within a program, the computer could do little more than plug numbers into a
formula. Computers have powerful computational features, but the heart of a computer's
intelligence is its ability to make decisions.

The computational power of your computer is exercised as it evaluates the expressions
contained in the program lines. The "Numeric Computation" and "String Manipulation"
chapters present the various data manipulation tools available. This decision-making
power is used to determine the order in which program lines will be executed. This
chapter discusses the ways that decisions are used in controlling the "flow" of program
execution.

Program Structure and Flow 2-1

The Program Counter
The key to the concept of decision making in a computer is an understanding of the
program counter. The program counter is the part of the computer's internal system
that tells it which line to execute. Unless otherwise specified, the program counter
automatically updates at the end of each line so that it points to the next program line.
This is illustrated in the following drawing.

Program Lines

1
120 R=R+2
130 Area=PH-R 2
131 PRINT R
iLl 0 PRINT "Area
150 STOP

Value in Program Counter
at End of Line

_1_30_

131

140

= " ; Are a 150

don~t care

Figure 2-1. Program Counter Changes with Linear Program Flow

This fundamental type of program flow is called "linear flow." As shown by the arrow,
you can visualize the flow of statement execution as being a straight line through the
program listing. Although linear flow seems very elementary, always remember that
this is the computer's normal mode of operation. Even experienced programmers arr
sometimes embarrassed to discover that a "bug" in their program was caused by the
simple incrementing of the program counter into the wrong portion of the program.

As stated in the introduction of this chapter, a computer would be little more than
a glorified adding machine if it were limited to linear flow. There are three general
categories of program flow. These are:

• Sequence

• Selection (conditional execution)

• Repetition

In addition to capabilities in all three of these categories, your computer also has a
powerful special case of selection, called event-initiated branching. The rest of this
chapter shows how to use all of these types of program flow and gives suggestions for
choosing the type of flow that is best for your application.

2-2 Program Structure and Flow

Sequence
This section describes the types of sequences of program execution:

• Linear flow-the BASIC system executes lines in sequential fashion.

• Halting program execution-stopping the flow of a program.

• Branching-the BASIC program redirects the normally sequential flow.

Linear Flow
The simplest form of sequence is linear flow. The preceding section showed an example
of this type of flow. Although linear flow is not at all glamorous, it has a very important
purpose. Most operations required of the computer are too complex to perform using
one line of BASIC. Linear flow allows many program lines to be grouped together to
perform a specific task in a predictable manner. Although this form of flow requires
little explanation, keep these characteristics in mind:

• Linear flow involves no decision making. Unless there is an error condition, the
program lines involved in this type of flow will always be executed in exactly the
same order, regardless of the results of, or arguments to, any expression.

• Linear flow is the default mode of program execution. Unless your include a
statement that stops or alters program flow, the computer will always "fall through"
to the next higher-numbered line after finishing the line it is on.

Halting Program Execution
One of the obvious alternatives to executing the next line in sequence is not to execute
anything. There are three statements that can be used to block the execution of the next
line and halt program flow. Each of these statements has a specific purpose, as explained
in the following paragraphs.

A main program is a list of program lines with an END statement on the last line.
Marking the end of the main program is the primary purpose of the END statement.
Therefore, a program can contain only one END statement. The secondary purpose of
the END statement is stopping program execution. When an END statement is executed,
program flow stops and the program moves into the stopped (non-continuable) state.

Program Structure and Flow 2-3

It is often necessary to stop the program flow at some point other than the end of the
main program. This is the purpose of the STOP statement. A program can contain
any number of STOP statements in any program context. When a STOP statement is
executed, program flow stops and the program moves into the stopped (non-continuable)
state. Also, if the STOP statement is executed in a subprogram context, the main
program context is restored. (Subprograms and context switching are explained in the
"U ser-Defined Functions and Subprograms" chapter.)

As an example of the use of STOP and END, consider the following program.

100 Radius=5
110 Circum=PI*2*Radius
120 PRINT INT(Circum)
130 STOP
140 Area=PI*Radius-2
150 PRINT INT(Area)
160 END

When the I RUN I key (@] in the System menu of ITF keyboards) is pressed, the computer
prints 31 on the CRT and the Run Indicator (lower right corner of CRT) goes off. This
first press of the I RUN I key caused linear execution of lines 100 thru 130, with line 130
stopping that execution. If the I RUN I key is pressed again, the same thing will happen;
the program does not resume execution from its stopping point in response to a RUN
command. However, RUN can specify a starting point. So, execute RUN 140. The
computer prints 0 and stops. This command caused linear execution of lines 140 thru
160, with line 160 stopping that execution. However, a RUN command also causes a
prerun initialization which zeroed the value of the variable Radius.

You could try pressing I CONTINUE lor I CONT I ([][] in the System menu of ITF keyboards) in
the preceding example, but you will get an error. A stopped program is not continuable.
This leads up to the third statement for halting program flow. Replace the STOP
statement on line 130 with a PAUSE statement, yielding the following program.

100 Radius=5
110 Circum=PI*2*Radius
120 PRINT INT(Circum)
130 PAUSE
140 Area=PI*Radius-2
150 PRINT INT(Area)
160 END

2-4 Program Structure and Flow

Now when the program is run, and the computer prints 31 on the CRT. Then when
I CONTINUE 1 is pressed, the computer prints 78 on the CRT. The purpose of the PAUSE
statement is to temporarily halt program execution, leaving the program counter intact
and the program in a continuable state. One common use for the PAUSE statement is in
program troubleshooting and debugging. This is covered in the "Program Debugging"
chapter. Another use for PAUSE is to allow time for the computer user to read messages
or foHmV' instructions. Interfacing with a human is covered in greater depth in the
"Communicating with the Operator" chapter, but here is one example of using the
PAUSE statement in this way.

100
110
120
130
140
150
160
170
180

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PAUSE

"This program generates a cross-reference II
"printout. The file to be cross-referenced"
"must be an ASCII file containing a BASIC"
"program."

"Insert the disc with your files on it and"
"press CONTINUE."

Program execution resumes here after CONTINUE

Lines 100 thru 160 are instructions to the program user. Since a user will often just
load a program and run it, the programmer cannot assume that the user's disc is in
place at the start of the program. The instructions on the CRT remind the user of the
program's purpose and review the initial actions needed. ·The PAUSE statement on line
170 gives the user all the time he needs to read the instructions, remove the program
disc, and insert the "data disc." It would be ridiculous to use a WAIT statement to try
to anticipate the number of seconds required for these actions. The PAUSE statement
gives freedom to the user to take as little or as much time as necessary.

When I CONTINUE 1 ([][]) is pressed, the program resumes with any necessary input of file
names and assignments. Questions such as "Have you inserted the proper disc?" are
unnecessary now. The user has already indicated compliance with the instructions by
pressing I CONTINUE I. "

Program Structure and Flow 2-5

Simple Branching
An alternative to linear flow is branching. Although conditional branching is one of the
building blocks for selection structures, the unconditional branch is simply a redirection
of sequential flow. The keywords which provide unconditional branching are GOTO,
GOSUB, CALL, and FN. The CALL and FN keywords invoke new contexts, in addition
to their branching action. This is a complex action that is the topic of the "Subprograms
and U ser-Defined Functions" chapter. This section discusses the use of GOSUB and
GOTO.

Using GOTO
First, you should be aware that the structuring capabilities available in BASIC make it
possible to avoid the use of the unconditional GOTO in most applications. You should
also be aware that this is a highly-desirable goal. The problem is not anything inherent in
the GOTO statement. The problem lies in the programmer's tendency to "glue together"
pieces of an algorithm, using more and more GOTOs with each revision. Then comes
that inevitable day when a fatal bug reveals that it is impossible to "GET BACK FROM"
the last "GO TO." The excessive use of GOTO has been appropriately named spaghetti
coding. Keep this very descriptive term in mind when you are deciding whether to "just
throw something together" or "do it right the. first time." (See the section on "Top-Down
Design" in the "User-Defined Functions and Subprograms" chapter.)

The only difference between linear flow and a GOTO is that the GOTO loads the program
counter with a value that is (usually) different from the next-higher line number. The
GOTO statement can specify either the line number or the line label of the destination.
The following drawing shows the program flow and contents of the program counter in
a program segment containing a GOTO.

Program Lines
Value in Program Counter

at End of Line

~
180
190 nm
240

L......J 250

R = R+2 190

Are a = P I * R . ~ 200
GOTO 240 240

\AI i d t h = \AI i d t h + 1 220
Length=Length+l i~
Are a = \AI 1 d t h * Len g t h 240

PRINT "Area =" jArea 250-

GOTO 210 210

Figure 2-2. Program Counter Changes with GOTO Statements

2-6 Program Structure and Flow

As you can see, the execution is still sequential and no decision-making is involved.
The first GOTO (line 200) produces a forward jump, and the second GOTO (line 250)
produces a backward jump. A forward jump is used to skip over a section of the program.
An unconditional backward jump can produce an infinite loop. This is the endless
repetition of a section of the program. In this example, the infinite loop is line 210
thru 250.

An infinite loop by itself is not usually a desirable program structure. However, it
does have its place when mixed with conditional branching or event-initiated branching.
Examples of these structures are given later in this chapter.

Using GOSUB
The GOSUB statement is used to transfer program execution to a subroutine. Note that
a subroutine and a subprogram are very different in HP BASIC. Calling a subprogram
invokes a new context. Subprograms can declare formal parameters and local variables.
A subroutine is simply a segment of a program that is entered with a GOSUB and exited
with a RETURN. Subroutines are always in the same context as the program line that
invokes them. There are no parameters passed and no local variables. If you are a
newcomer to HP's BASIC, be careful to distinguish between these two terms. They have
been used differently in some other programming languages.

The GOSUB is very useful in structuring and controlling programs. The similarity it
has to a procedure call is that program flow can automatically return to the proper line
when the subroutine is finished. The GOSUB statement can specify either the line label
or the line number of the desired subroutine entry point. The following drawing shows
the program flow and contents of the program counter in a program segment containing
a GOSUB.

Value in Program Counter
Subroutine Program Lines at End of Line Program Lines

Value in Program Counter
at End of Line

PRINT Areai"s'1uare In," o::<IT.Q] ~ 300
C e n t = Are a * G , 45 1 G I 1020 , ~ 3 1 0
PRINT Centi"s'1uare Cfll" 'i036- 320
P R I N T I 1 040 I 3 3 0
RETURN ~ 'I 340

.... 350

R=R+2 ~
Area=PI*R ~ ~

GOSUB 1 000 1006~
W i oj t h = W i oj t h + 1 ! 3401
Len gt h = Len gt h + 1 i 35()]
I PrograM continues

Figure 2-3. Program Counter Changes with GOSUB Statement

Program Structure and Flow 2-7

Program execution is sequential and no decision-making is involved. The main reason
that a GOSUB is a more desirable action than a GOTO is the effect of the RETURN
statement. The RETURN statement always returns program execution to the line that
would have been executed if the GOSUB had not occurred. This is especially useful when
using an event-initiated GOSUB. Since it is usually impossible to predict when a user
might press a soft key (for example), it is usually impossible to predict which program line
should be returned to at the end of a service routine. By using GOSUB and RETURN,
the computer does the work for you.

Another common advantage gained from the use of GOSUB is program economy resulting
from the consolidation of common tasks. For example, assume that you are writing a
page formatter program to neatly print letters, reports, etc. The actions taken at thr
end of each page might be such things as:

l. Skip two blank linrs

2. Print the page number

3. Update the page counter

4. Print a form-feed

5. Zero the line counter

These end-of-page actions might be necessary at many places in the program. For
example: in the new-page segment, in the conditional-page algorithm, in the normal
line-printing segment, and in the end-of-file process. It would be wasteful duplication to
repeat all those end-of-page steps every place they are needed.

That kind of duplication also opens the door to updating problems. Suppose that you
wanted to modify the end-of-page action to make it print line-feeds instead of a form
feed for the benefit of a printer that doesn't use form-feeds. If you had duplicated the
end-of-page routine in five different places in the program (or was that six?), you will be
doing five times as much typing to make the change, and you will probably miss a spot.

The solution is a subroutine. For the sake of completeness in this example. the
hypothetical end-of-page subroutine is shown below.

540 End_page:
550 PRINT USING "2/.K";Pagenumber
560 Pagenumber=Pagenumber+l
570 PRINT CHR$(12) ;
580 Lines=O
590 RETURN

2-8 Program Structure and Flow

There are no "rules" to say when a program action should be made into a subroutine
and when it should be left in linear flow. The following suggestions may help you decide.

• There is no significant speed penalty for using a subroutine. The time required to
process the GOSUB and RETURN is extremely small. If you are having trouble
getting your application to run fast enough, it is doubtful that your problems will be
solved by removing a couple of GOSUBs. In fact, the resulting loss of "readability"
may actually make it more difficult to identify and correct the real problem in
timing.

• The "cross-over point" in line overhead is a subroutine that is only three lines
long and is called from only two places in the program. In other words, it takes
the same number of program lines to duplicate three lines as it does to stick a
RETURN on the end of them and add two GOSUB statements. However, there
is nothing "magical" about this observation. It does not mean that you shouldn't
have a subroutine shorter than three lines, or that you should go around making
a subroutine out of every three-line sequence you see repeated. It should simply
make you aware of possible improvements that could be made if you see the same
sequence repeated in several places in your program.

• Decisions about subroutines are best made on a conceptual level. Although there is
nothing wrong with accidentally discovering that you repeated ten lines which would
make a good subroutine, it is better to identify the appropriateness of subroutines
during planning. One question to ask yourself is, ~~Does it make sense to handle
this task in a subroutine?" If it takes a dozen flags and status variables to select all
the variations that are needed from one call to the next, a subprogram is probably
a cleaner solution. Lines of code that "just happen" to be repeated in several
places are not good candidates for a subroutine. A subroutine should have some
identifiable task, like opening a file, normalizing a variable, processing an end-of
page, decoding a key press, parsing a string, and so forth.

Program Structure and Flow 2-9

Selection
The heart of a computer's decision-making power is the category of program flow called
selection, or conditional execution. As the name implies, a certain segment of the program
either is or is not executed according to the results of a test or condition. This is the basic
action which gives the computer an appearance of possessing intelligence. Actually, it is
the intelligence of the programmer which is remembered by the program and reflected
in the pattern of conditional execution.

Consider a chemistry lab application as an example. There would be little use for a
computer whose only function was to turn on a valve when a technician pressed the
"START" button. The technician might just as well turn the valve himself. However, if
the computer turned on a valve when the "START" was pressed and turned off the valve
when a specified pH level occurred, then it is performing a much more useful task. If
the example is extended to include state-of-the-art remote-control valves and electronic
pH measuring devices, the computer is now significantly out-performing the technician.
In this example, (in spite of any fancy instrumentation) the quality that moved the
computer from "useless" to "useful" was its ability to decide when to turn off the valve.
It was the programmer (you) who actually specified the criteria for the decision. Those
criteria were then communicated to the computer using conditional-execution program
structures. As a result, the computer was able to repeat the programmer's intention with
much greater speed and accuracy than a human.

This section presents the conditional-execution statements according to various applica
tions. The following is a summary of these groupings.

1. Conditional execution of one segment.

2. Conditionally choosing one of two segments.

3. Conditionally choosing one of many segments.

2-10 Program Structure and Flow

Conditional Execution of One Segment
The basic decision to execute or not execute a program segment is made by the IF ... THEN
statement. This statement includes a numeric expression that is evaluated as being either
true or false. If true (non-zero), the conditional segment is executed. If false (zero), the
conditional segment is bypassed. Although the expression contained in an IF ... THEN
is treated as a Boolean expression, note that there is no "BOOLEAN" data type. Any
valid numeric expn~ssion is allowed.

The conditional segment can be either a single BASIC statement or a program segment
containing any number of statements. The first example shows conditional execution of
a single BASIC statement.

100 IF Ph>7.7 THEN OUTPUT Valve USING "#,B";O

Notice the test (Ph>7. 7) and the conditional statement (OUTPUT Valve ...) which appear
on either side of the keyword THEN. When the computer executes this program line, it
evaluates the expression Ph>7. 7. If the value contained in the variable Ph is 7.7 or less,
the expression evaluates to 0 (false), and the line is exited. If the value contained in the
variable Ph is greater than 7.7, the expression evaluates as 1 (true), and the OUTPUT
statement is executed. If you don't already understand logical and relational operators,
refer to the "Numeric Computation" and "String Manipulation" chapters.

By the way, the image specifier #, B causes the output of a single byte. In the example,
the value for that byte is specified as zero (all bits cleared). Presumably, this turns off all
devices connected to a GPIO interface. That interface is specified by the value contained
in the device selector Valve. It is beyond the scope of this manual to explain the details
of controlling valves and instruments. If you want to do this kind of control, refer to
the BASIC Interfacing Techniques manual and study the manual that came with the
interface.

The same variable is allowed on both sides of an IF ... THEN statement. For example,
the following statement could be used to keep a user-supplied value within bounds.

IF Number>9 THEN Number=9

When the computer executes this statement, it checks the initial value of Number. If
the variable contains a value less than or equal to nine, that value is left unchanged,
and the statement is exited. If the value of Number is greater than nine, the conditional
assignment is performed, replacing the original value in Number with the value nine.

Program Structure and Flow 2-11

Prohibited Statements
Certain statements are not allowed as the conditional statement in a single-line
IF ... THEN. The disallowed statements are used for various purposes, but the "com
mon denominator" is that the computer needs to find them during pre run as the first
keyword on a line. (A possible exception to this reasoning is REM, which is not allowed
because it makes no sense to allow it. Comments certainly aren't executed conditionally.
If comments are necessary on an IF ... THEN line, the exclamation point can be used.)
The following statements are not allowed in a single-line IF ... THEN.

Keywords used in the declaration of variables:

COM

DIM

INTEGER

OPTION BASE

REAL

Keywords that define context boundaries:

DEF FN

SUB

END

FNEND

SUB END

Keywords that define program structures:

CASE FOR

CASE ELSE IF

ELSE LOOP

END IF NEXT

END LOOP REPEAT

END SELECT SELECT

END WHILE UNTIL

EXIT IF WHILE

Keywords used to identify lines that are literals:

DATA REM

2-12 Program Structure and Flow

Conditional Branching
Powerful control structures can be developed by using branching statements III an
IF ... THEN. Here are some examples.

110 IF Free_space<100 THEN GOSUB Expand_file
120 The line after is always executed

This statement checks the value of a variable called Free_space, and executes a file
expansion subroutine if the value tested is not large enough. The same technique can
be used with a CALL statement to invoke a subprogram conditionally. One important
feature of this structure is that the program flow is essentially linear, except for the
conditional "side trip" to a subroutine and back. This is illustrated in the following
drawing.

1000
1010
10Z0
1030
1040

PRINT Areaj"square
Cent=Area*G.451G
PRINT Centj"square
PRINT
RETURN

in + II

CfTI"

R=R+Z
Area=PI*R""Z
IF P_fla! THEN GOSUB 1000
Width=Width+1
Len!th=Len!th+1

Figure 2-4. Program Flow with Conditional Subroutine

The conditional GOTO is such a commonly used technique that the computer allows a
special case of syntax to specify it. Assuming that line number 200 is labeled "Start",
the following statements will all cause a branch to line 200 if X is equal to 3.

IF X=3 THEN GOTO 200
IF X=3 THEN GOTO Start
IF X=3 THEN 200
IF X=3 THEN Start

When a line number or line label is specified immediately after THEN, the computer
assumes a GOTO statement for that line. (This improves the readability of programs,
because phrases like "then start" sound more like English and less like computer jargon.)
If execution is redirected by a conditional GOTO (implied or expressed), the program flow
does not automatically return to the line following the IF ... THEN. Thus, a conditional
GOTO acts like a switch on a railroad track. This is illustrated in the following drawing.

Program Structure and Flow 2-13

11
11
11
11
1 1

Record: I File~ 55
I Test for opei", file = 1 5G
I Do any CREATE. ASSIGN. etc. File 57
OUTPUT @FileiText$ _ 0 58
I Continue with file operation 59

Send_text: I

IF File THEN Record
PRINT Text$
Lines=Lines+1
I Continue with printing

Figure 2-5. Program Flow with Conditional GOTO

Multiple-Line Conditional Segments
If the conditional program segment requires more than one statement, a slightly different
structure is used. Let's expand the valve-control example.

100 IF Ph>7.7 THEN
110 OUTPUT Valve USING "#,B";O
120 PRINT "Final Ph =";Ph
130 GOSUB Next_tube
140 END IF
150 Program continues here

Any number of program lines can be placed between a THEN and an END IF statement.
In executing this example, the computer evaluates the expression Ph>7. 7 in the IF ... THEN
statement. If the result is false, the program counter is set to 150, and execution resumes
with the line following the END IF statement. If the condition is true, the program
counter is set to 110, and the three conditional statements (lines 110, 120, 130) are
executed. Program flow then picks up at line 150, because the END IF is only used
during prerun.

When using multiple-line IF ... THEN structures, remember to mark the end of the
structure with an END IF statement and don't put any of the statements on the same
line as the IF ... THEN. If the beginning and end of the structure are not properly marked,
the computer reports error 347 during prerun.

The conditional segment can contain any statement except one that is used to set context
boundaries (such as END or DEF FN). In the previous example, the GOSUB Next_tube
could have been a GOTO Next_tube. In that case, program execution does not pass through
150 when the condition is true. A false condition would cause a branch to line 150, while
a true condition would s('nd ('x('('ution from line 100. to 110. to 120. to 130. and th('n to
the line labeled "NexLtube."

2-14 Program Structure and Flow

If structuring statements are used within a multiple-line IF ... THEN, the entire structure
must be contained in one conditional segment. This is called nested constructs. The
following example shows some properly nested constructs. Notice that the use of
indenting improves the readability of the code.

1000 IF Flag THEN
1010 IF End_of_page THEN
1020 FOR 1=1 TO Skip_length
1030 PRINT
1040 Lines=Lines+l
1050 NEXT I
1060 END IF
1070 END IF

Choosing One of Two Segments
Often you want a program flow that passes through only one of two paths depending upon
a condition. This type of decision is represented pictorially by the following diagram. If
you have ever been forced to program this type of structure using only the conditional
eOTO, you know that the result is much more confusing than it needs to be.

Flag = 1

400
410
420
430
440
450
460
470
480
490

Flag = (!)

IF Flag THEN J
R=R+:2
Area=PI*R :2

ELSE

Wldth=Wldth+1 I
Length=Length+l
Area=Wldth*Length

END IF
PRINT "Area =" iArea
I Program contInues

Figure 2-6. Choosing One of Two Segments

Program Structure and Flow 2-15

This language has an IF ... THEN ... ELSE structurE' which makE's thE' OIlE'-of-two choicE'
E'asy and readable. The following E'xamplE' looks at a device sdE'ctor which mayor may
not contain a primary address. The variable Isc is needed later in the program and
must be only an interface select code. If the operator-supplied device selector is greater
than 31, the interface select code is extracted from it. If it is equal to or less than 31, it
already is an interface select code. (This example assumes that no secondary addressing
is used.)

500 IF Select>31 THEN
510 Isc=Select DIV 100
520 ELSE
530 Isc=Select
540 END IF

Notice that this structure is similar to the multiple-line IF ... THEN shown previously.
The only differE'ncE' is thE' addition of thE' keyword ELSE. LikE' the previous example,
the structure is terminated by END IF, and the proper nesting of other structures is
allowed. The next example shows a program segment that removes certain "escape
sequences" from a string. The number of bytes in the escape sequence varies, but can be
determined by inspecting the characters following the escape code. Notice the nesting of
structures and the conditional branch. When no more escape sequences remain in the
string, program execution continues at Next_seq.

3800 Escape:
3810 POint=POS(A$.Esc$)
3820 IF NOT Point THEN Next_seq
3830 IF A$[Point+l;l]<>lck" THEN
3840 A$ [Point] =A$ [Point+2] 2-byte sequence
3850 ELSE
3860 IF A$[Point+2;1]=ld" THEN
3870 A$ [Point]=A$ [Point+4] 4-byte sequence
3880 ELSE
3890 A$[Point]=A$[Point+5] 5-byte sequence
3900 END IF
3910 END IF
3920 GOTO Escape ! Look for more
3930
3940 Next_seq: Program continues here

2-16 Program Structure and Flow

Choosing One of Many Segments
Using SELECT Constructs
Consider as an example the processing of readings from a voltmeter. In this example,
we assume that the reading has already been entered, and it contained a function code.
These hypothetical function codes identify the type of reading and are shown in the
following table.

Table 2-1. Function Codes

Function Code Type of Reading

DV DC Volts

AV AC Volts

DI DC Current

AI AC Current

OM Ohms

The first example shows the use of the SELECT construct. The function code is contained
in the variable Funct$. For the sake of simplicity, the example does not show any actual
processing. Comments are used to identify the location of the processing segments.
The rules about illegal statements and proper nesting are the same as those discussed
previously in the IF ... THEN section.

Program Structure and Flow 2-17

2000 SELECT Funct$
2010 CASE "DV"
2020
2030 ! Processing for DC Volts
2040 !
2050 CASE "AV"
2060
2070 ! Processing for AC Volts
2080 !
2090 CASE "01"
2100
2110 ! Processing for DC Amps
2120 !
2130 CASE "AI"
2140
2150 ! Processing for AC Amps
2160 !
2170 CASE "OM"
2180
2190 ! Processing for Ohms
2200 !
2210 CASE ELSE
2220 BEEP
2230 PRINT "INVALID READING"
2240 END SELECT
2250 ! Program execution continues here

Notice that the SELECT construct starts with a SELECT statement specifying the
variable to be tested and ends with an END SELECT statement. The anticipated
values are placed in CASE statements. Although this example shows a string tested
against simple literals, the SELECT statement works for numeric or string variables
or expressions. ThE' CASE statements can contain constants. variables. expressions.
comparison operators, or a range specification. The anticipated values, or match items,
must be of the same type (numeric or string) as the tested variable.

The CASE ELSE statement is optional. It defines a program segment that is executed
if the tested variable does not match any of the cases. If CASE ELSE is not included
and no match is found, program execution simply continues with the line following END
SELECT.

2-18 Program Structure and Flow

The following example shows a numeric variable tested with comparison operators and
a range specifier.

1500 SELECT Ds
1510 CASE <1
1520 ! Processing for invalid device selector
1530 CASE 1 TO 31
1540 ! Processing for interface select code
1550 CASE >31
1560 Contains primary address
1570 END SELECT

A CASE statement can also specify multiple matches by separating them with commas,
as shown below.

CASE -1.1.3 TO 7.>15

The following CASE statement shows the use of a string expression, rather than a simple
constant.

CASE CHR$(27)&II)<OII&Eol$

You should be aware that if an error occurs when the computer tries to evaluate an
expression in a CASE statement, the error is reported for the line containing the SELECT
statement. This is a result of the nature of SELECT constructs and is not a bug.
However, it can make things a bit confusing if you aren't aware of it. An error message
pointing to a SELECT statement actually means that there was an error in that line or
in one of the CASE statements. It requires more "detective work" on your part to locate
the line which actually contains the erroneous expression.

Program Structure and Flow 2-19

Using the ON Statement
This type of program flow can also be generated with the ON statement and some
additional processing. Let's do a string example first, using the previous voltmeter
example. All the anticipated values are placed in a simple string. This string is then
searched using the POS function. The results of the POS function are adjusted to
become consecutive integers beginning with one. This result can then be used in the ON
statement.

100 Match$="DVAVDIAIOM"

500 Pointer=POS(Match$,Funct$)
510 Pointer=INT((Pointer-l)/2+1)
520 ON Pointer+l GOSUB Case_else,Case_dv,Case_av,

Notice that a match can only cause values of I, 3, 5, 7, or 9 from the POS function. A
"match not found" gives a value of o. Line 510 converts these to consecutive integers
from 0 thru 5. The Pointer+l expression in line 520 shifts the values to a range 1 thru
6, which is acceptable to the ON statement.

The values of the match characters will determine the "pre-processing" necessary. If you
are trying to match single bytes, simply adding one to the results of the POS is all that
is necessary. Finding 3-letter sequences requires a line like 510, only with a division by 3.
Note also that, except for single bytes, this method may not always work. For example,
if the current ranges had been indicated by DA and AA (instead of DI and AI), Match$
would be "DVAVDAAAOM." A subsequent search for "AA" would return 6 instead of
7-not good. In a case like that, there are two choices. One approach is to rearrange the
string being searched; ~~DVAVDAOMAA" would work. Perhaps the items in the string
could be separated with a "pad" character and the calculation adjusted accordingly. The
other approach is to make each match value a separate element of a string array. The
array could then be searched with a FOR ... NEXT loop. This approach works well to
resolve conflicts. especially with long match strings. However. the extra code lines and
array accesses slow the process down significantly.

2-20 Program Structure and Flow

The ON statement can also be used for numeric values. If the numeric values you are
trying to match just happen to be consecutive integers starting with one, the variable
to be tested can be used in the ON statement. However, programmers don't usually get
that lucky. To match arbitrary values, the following trick can be used. This example
tests the three cases: <0, 1, and> 1.

700 Pointer=1*(X<0)+2*(X=1)+3*(X>1)
710 ON Pointer GOSUB Negative.One.Greater

Assuming that you use non-overlapping comparison tests, only one of the values in
parentheses will be true. The system returns a value of "I" for true. This is multiplied
times the corresponding factor to give the final value to Pointer. All the other factors
drop out because their comparison result is zero. Programmers who like strong type
checking may raise an eyebrow at this technique, but it works.

Another way of testing for numbers that are integers between 0 and 255 is to use the
CHR$ function to create string bytes and apply the pas function as explained previously.

Program Structure and Flow 2-21

Repetition
Humans usually prefer tasks with variety that avoid tedious repetition. A computer does
not have this shortcoming. You have four structures available for creating repetition.
The FOR ... NEXT structure is used for repeating a program segment a predetermined
number of times. Two other structures (REPEAT ... UNTIL and WHILE ... END WHILE)
are used for repeating a program segment indefinitely, waiting for a specified condition
to occur. The LOOP ... EXIT IF structure is used to create an iterative structure that
allows multiple exit points at arbitrary locations.

Fixed Number of Iterations
The general concept of repetitive program flow can be shown with the FOR ... NEXT
structure. With this structure, a program segment is executed a predetermined number of
times. The FOR statement marks the beginning of the repeated segment and establishes
the number of repetitions. The NEXT statement marks the end of the repeated segment.
This structure uses a numeric variable as a loop counter. This variable is available for
use within the loop, if desired. The following drawing shows the basic elements of a
FOR ... NEXT loop.

200

{

210
REPEATED 220
SEGMENT 230

2ao

STARTING
VALUE

LOOP 1 FINAL STEP
COUNTER VALUE SIZE
~ ~ ~

FOR Count=10 TO 0 STEP -1
BEEP
PRINT Count
WAIT 1

NE)<T Count

Figure 2-7. FOR ... NEXT Loop Structure

The number of loop iterations is determined by the FOR statement. This statement
identifies the loop counter, assigns a starting value to it, specifies the desired final valuc,
and determines the step size that will be used to take the loop counter from the starting
value to the final value. Whcn the loop counter is an INTEGER, the number of iterations
can be predicted using the following formula:

INT (
Step Size + Final Value - Starting Value

Step Size)

2-22 Program Structure and Flow

Note that the formula applies to the values in the variables, not necessarily the numbers
in the program source. For example, if you use an INTEGER loop counter and specify
a step size of 0.7, the value will be rounded to one. Therefore, 1 should be used in the
formula, not 0.7.

The loop counter can be a REAL number, with REAL quantities for the step size,
starting, or final values. In some cases, using REAL numbers will cause the number
of iterations to be off by one from the preceding formula. This is because the NEXT
statement performs an "increment and compare," and there is a slight inaccuracy in the
comparison of REAL numbers. If you are interested, this is discussed in the next chapter.
However, there is no clean way around it with FOR ... NEXT loops. Here is an example:

200 Count=O
210 FOR X=10 TO 20
220 Count=Count+1
230 PRINT Count
240 NEXT X

According to the formula, this loop should execute 11 times: INT((1+20-10)jl=II).
The result on the CRT confirms this when the loop is executed. If line 210 is changed
to:

210 FOR X=l TO 2 STEP .1

the formula still yields 11 as the number of iterations. However, executing the loop
produces only 10 repetitions. This is because of a very, very small accumulated error
that results from the successive addition of one-tenth. The error is less significant than the
15th digit, but discernable to the computer. In this case, rounding cannot be performed
at a time that would help. When you find yourself in this situation, one way out is to
add a slight adjustment factor to the final value. The following line does give the 11
iterations predicted by the formula.

210 FOR X=l TO 2.05 STEP .1

Program Structure and Flow 2-23

Remembering the "increment and compare" operation at the bottom of the loop is
helpful. After the loop counter is updated, it is compared to the final value established
by the FOR statement. If the loop counter has passed the specified final value, the loop
is exited. If it has not passed the specified final value, the loop is repeated. The loop
counter retains its exit value after the loop is finished. This is not necessarily one full
step past the final value. For example:

FOR 1=1 TO 9.9

This statement establishes a loop that executes nine times (the default step size is on(').
The variable I has the value 10 when the loop is exited.

FOR Count=12 TO 1 STEP -0.3

This statement establishes a loop that executes 37 times. The variable Count has the
value .9 when the loop is exited. Notice that negative step sizes are allowed using the
same keywords as positive step sizes.

The final points to mention concern the execution of the FOR statement. If any variables
are present to the right of the equal sign, the value used is the value they have when the
FOR statement is executed. Remember that the FOR statement is only executed once
before the loop begins. Also, if the number of iterations evaluates to zero or less, the
loop is not executed and program execution goes immediately to the line following the
NEXT statement. Here are some examples.

400 FOR Item=First TO Last
410 GOSUB Process
420 Last=Last+1
430 NEXT Item
440 ! Execution continues here

This loop would not be executed if Last were less than First. This is almost always
desirable, since it prevents the subroutine Process from being invoked with a null item.
Also notice that the number of iterations is fixed at loop entry when line 400 is executed.
That number of iterations does not change when the value of Last is changed.

FOR Item=Item+1 TO Last

The variable Item is used as the loop counter. It receives a starting value that IS one
greater than the value it had when this line is executed.

2-24 Program Structure and Flow

Conditional Number of Iterations
The FOR ... NEXT loop produces a fixed number of iterations, established by the FOR
statement before the loop is executed. Some applications need a loop that is executed
until a certain condition is true, without specifically stating the number of iterations
involved. Consider a very simple example. The following segment asks the operator to
input a positive number. Presumably, negative numbers are not acceptable. A looping
structure is used to repeat the cntrj operation if an improper value is given. 1'-Ioticc that
it is not important how many times the loop is executed. If it only takes once, that is just
fine. If the poor operator takes ten tries before he realizes what the computer is asking
for, so be it. What is important is that a specific condition is met. In this example, the
condition is that a value be non-negative. As soon as that condition has been satisfied,
the loop is exited.

800 REPEAT
810 INPUT "Enter a positive number",Number
820 UNTIL Number>=O

A typical use of this is an iterative problem involving non-linear increments. One example
is musical notes. Performing the same operation on all the notes in a 3-octave band is a
repetitive process, but not a linear one. Musical notes are related geometrically by the
12th root of two. The following example simply prints the frequencies involved, but your
application could involve any number of operations.

1200 Note=110 ! Start at low A
1210 REPEAT
1220 PRINT Note;
1230 Note=Note*2-(1/12)
1240 UNTIL Note>880 ! End at high A

For this example, a FOR ... NEXT loop might have been used, with the loop counter ap
pearing in an exponent. That would work because it is relatively easy to know how many
notes there are in three octaves of the musical scale. However, the REPEAT ... UNTIL
structure is more flexible than FOR ... NEXT when working with exponential data in gen
eral. Examples often occur in the area of graphics. The following segment could be used
to plot audio frequency data, where the x-axis is logarithmic.

1500 Freq=20
1510 MOVE LOG(Freq),FNFunction(Freq)
1520 REPEAT
1530 DRAW LOG(Freq),FNFunction(Freq)
1540 Freq=Freq*1.2
1550 UNTIL Freq>20000

Program Structure and Flow 2-25

The flexibility of this structure is in line 1540. By increasing the frequency with a
factor of 1.2~ a very fast but rough graph is generated. This lets you place axes, labels.
markers, etc. where you want them without waiting for a time-consuming plot for each
cosmetic change. Once you have the desired appearance, you could change line 1540 to
Freq=Freq*1. 01. This would greatly increase the resolution of the plot (and reduce its
speed). To take it one step further, you could make the "resolution factor" a variable
and input its value at the start of the program. That would make it easy to try many
different increments to achieve the best compromise between resolution and smoothness.
Attempting a similar technique with FOR ... NEXT loops would involve many extra (and
unnecessary) calculations.

The WHILE loop is used for the same purpose as the REPEAT loop. The only difference
between the two is the location of the test for exiting the loop. The REPEAT loop has its
test at the bottom. This means that the loop is always executed at least once, regardless
of the value of the condition. The WHILE loop has its test at the top. Therefore, it is
possible for the loop to be skipped entirely (if the conditions so dictate). The following
segment shows the same plotting example using a WHILE loop.

1500 Freq=20
1510 MOVE LOG(Freq) ,FNFunction(Freq)
1520 WHILE Freq<=20000
1530 DRAW LOG(Freq) ,FNFunction(Freq)
1540 Freq=Freq*1.2
1550 END WHILE

The next segment shows the use of conditional branching to simulate a REPEAT ... UNTIL
structure.

1500 Freq=20
1510 MOVE LOG(Freq),FNFunction(Freq)
1520 Loop_top:
1530 DRAW LOG(Freq),FNFunction(Freq)
1540 Freq=Freq*1.2
1550 IF Freq<=20000 THEN Loop_top

2-26 Program Structure and Flow

The WHILE structure can also be simulated using GOTO statements. The following
segment shows this technique.

1500 Freq=20
1510 MOVE LOG(Freq),FNFunction(Freq)
1520 Loop_top: !
1530 IF Freq>20000 THEN Loop_exit
1540 DRAW LOG(Freq),FNFunction(Freq)
1550 Freq=Freq*1.2
1560 GOTO Loop_top
1570 Loop_exit:

The REPEAT ... UNTIL and WHILE structures are especially useful for tasks that are
impossible with a FOR ... NEXT loop. One such situation is a loop where both the loop
counter and the final value are changing. Consider the example of stripping all control
characters from a string. This can't be done in a loop that starts FOR 1=1 TO LEN (A$),
because the length of A$ changes each time a character is deleted. Therefore, the loop
counter used as a subscript will eventually exceed the length of tne string by more than
one, generating an error. The WHILE loop does not have this problem. Note that the
test at the top of the loop prevents the subscripting from being attempted on a null
string. This is necessary to avoid an error.

600 1=1
610 WHILE I<=LEN(A$)
620 IF A$[I;1]<CHR$(32) THEN
630 A$[I]=A$[I+1]
640 ELSE
650 1=1+1
660 END IF
670 END WHILE

Arbitrary Exit Points
A pass through any of the loop structures discussed so far included the entire program
segment between the top and the bottom of the loop. There are times when this is not
the desired program flow. The LOOP structure defines the repeated program segment
and allows any number of conditional exits points in that segment.

For the first example, consider a search-and-replace operation on string data. In this
example, the "shift out" control character is being used to initiate underlining on a
printer that understands standard escape sequences. The "shift in" control character is
used to turn off the underline mode. (There is nothing significant about this choice of
characters. any combination of characters could serve the same purpose.)

Program Structure and Flow 2-27

One approach is to use a loop to search every character in every string to see if it is one
of the special characters. There are two problems with this method. First, it is a little
cumbersome when the replacement string is a different length than the target string.
Second, it is slow. Admittedly, speed it not a significant consideration when driving
common mechanical printers. But the destination might eventually be a laser printer or
mass storage file, making the program's speed more visible.

A better approach is to use the POS function to locate the target string. Since this
function locates only the first occurrence of a pattern, it must be placed in a loop to
insure that multiple occurrences will be found. The LOOP structure is well suited to
this task, as shown in the following example.

2000 LOOP
2010 Position=POS(A$,CHR$(14»
2020 EXIT IF NOT Position
2030 A$ [Position] =CHR$(27)&"&dD"&A$ [Position+1]
2040 END LOOP
2050
2060 LOOP
2070 Position=POS(A$,CHR$(15»
2080 EXIT IF NOT Position
2090 A$[Position]=CHR$(27)&"&dlC"&A$[Position+1]
2100 END LGOP
2110 ! Last EXIT goes to here

In this segment, all occurrences of "shift out" are replaced by "escape &dD" to enable
underline mode. All occurrences of "shift in" are replaced by "escape &d@" to disable
underlining. Notice that there is no problem replacing one character with four (assuming
that A$ is large enough). Lines containing no special characters are processed by only
two POS functions, which is much faster and cleaner than performing two comparisons
for every character in every line.

Another common use for this structure is the processing of operator input. Recall the
REPEAT ... UNTIL example that tested for the input of a positive number. Although this
structure kept the computer happy, it left the operator in the dark. The LOOP structure
provides for the additional processing needed, as shown in the following example.

2-28 Program Structure and Flow

200 LOOP
210 INPUT "Enter a positive number. ",Number
220 EXIT IF Number>=O
230 BEEP
240 PRINT
260 PRINT "Negative numbers are not allowed."
260 PRINT "Repeat entry with a positive number.
270 END LOOP

Another point to remember is that the LOOP structure permits more than one exit point.
This allows loops that are exited on a "whichever comes first" basis. Also, the EXIT IF
statement can be at the top or bottom of the loop. This means that the LOOP structure
can serve the same purposes as REPEAT ... UNTIL and WHILE ... END WHILE, if that
suits your programming style.

The EXIT IF statement must appear at the same nesting level as the LOOP statement
for a given loop. This requirement is best shown with an example. In the "WRONG"
example, the EXIT IF statement has been nested one level deeper than the LOOP
statement because it was placed in an IF ... THEN structure.

WRONG:
600 LOOP
610 Test=RND-.6
620 IF Test<O THEN
630 GOSUB Negative
640 ELSE
660 EXIT IF Test>.4
660 GOSUB Positive
670 END IF
680 END LOOP

RIGHT:
600 LOOP
610 Test=RND-.6
620 EXIT IF Test>.4
630 IF Test<O THEN
640 GOSUB Negative
650 ELSE
660 GOSUB Positive
670 END IF
680 END LOOP

Program Structure and Flow 2-29

Event-Initiated Branching
Your computer has a special kind of program flow that provides some very powerful
tools. This tool, called event-initiated branching, uses interrupts to redirect program
How. The process can be visualized as a special case of selection. Every time program
flow leaves a line, the computer executes an "event-checking" routine. This is a set of
machine-language ;'if ... then" statements concerning interrupts. If an event is:

• Enabled to initiate a branch (with an ON-event statement)

• The event occurs

Then this "event-checking" routine causes the program to branch (as specified in the
ON-event statement).

The process of "event checking" is represented in the following lines. Notice that it is
possible for event-initiated branching to occur at the end of any program line, which
includes the lines of a subprogram. This can give the appearance of "middle-of-line"
branching when it occurs during a user-defined function.

100 X=Radius*FNMy_function/COS(Angle)--Exponent

Branch may occur while FNMy_function
is being executed.

In the following example illustration, these potential branching points are marked by
the words gosub evenLcheck. This does not refer to a BASIC subroutine, but is just a
symbolic reminder of where event-initiated branching can occur. If the operating system
finds an event has occurred (and the corresponding branch is currently enabled), then a
branch is initiated. If not, program execution resumes with the "normal" program flow.

10 PRINT X (gosub evenLcheck)
20 X=X+1 (gosub evenLcheck)
30 GOTO 10 (gosub evenLcheck)

2-30 Program Structure and Flow

Types of Events
Event-initiated branching is established by the ON .. event statements. Here is a list of
the statements that fall in this category, along with the corresponding event that causes
a branch:

ON CDIAL an interrupt generated by turning a knob-a rotary pulse generator
on a Control Dial box (see the "Communicating with the Operator"
chapter of this manual)

ON CYCLE cyclical (periodic, repetitive) interrupts from the clock (see the "Clock
and Timers" chapter of this manual)

ON DELAY a one-time interrupt from the clock (see the "Clock and Timers" chapter
of this manual)

ON END an interrupt upon reaching an end-of-file (EOF) condition (see the
"Data Storage and Retrieval" chapter of this manual)

ON ERROR an interrupt when a run-time error is encountered (see the "Handling
Errors" chapter of this manual)

ON EOR an interrupt when an end-of-record is encountered during a TRANS
FER statement (see the "Data Storage and Retrieval" chapter of this
manual)

ON EOT an interrupt when an end-of-TRANSFER condition is encountered (see
the "Advanced Transfer Techniques" chapter of BASIC Interfacing
Techniques)

ON HIL EXT an interrupt generated by an HP HIL (Human Interface Link) device
(see the "HIL Interface" chapter of BASIC Interfacing Techniques)

ON INTR an interrupt generated by an an interface (see the "Interrupts" chapter
of BASIC Interfacing Techniques)

ON KBD an interrupt generated by pressing a key (see the "Communicating with
the Operator" chapter of this manual)

ON KEY an interrupt generated by pressing a softkey: []] thru [][] on ITF key
boards, or CEQ] through [ill on 98203 keyboards (see the "Communicat
ing with the Operator" chapter of this manual)

ON KNOB an interrupt generated by turning a knob-a rotary pulse generator: the
built-in knob of a 98203 keyboard, an HIL knob, or one of the knobs
on a Control Dial box (see the "Communicating with the Operator"
chapter of this manual)

Program Structure and Flow 2-31

ON SIGNAL

ON TIME

an interrupt generated by a SIGNAL statement (see the BASIC Lan
guage Reference)

an interrupt from the clock when the clock reaches a specified time (see
the "Clock and Timers" chapter of this manual)

ON TIMEOUT an interrupt generated when an interface or device has taken longer
than a specified time to respond to a data-transfer handshake (see the
"Interrupts" chapter of BASIC Interfacing Techniques)

Example of Event-Initiated Branching
The best way to understand how event-initiated branches operate in a program is to sit
down at the computer and try a few examples. Start by entering the following short
program, which sets up and enables branches when one of the softkeys is pressed.

110 ON KEY 1 LABEL "Inc" GOSUB Plus
120 ON KEY 5 LABEL "Dec" GOSUB Minus
130
140 Spin: DISP X
150 GOTO Spin
160
170 Plus: X=X+l
180 RETURN
190
200 Minus: X=X-l
210 RETURN
220 END

Notice the various structures in this sample program. The ON KEY statements are
executed only once at the start of the program. Once defined, these event-initiated
branches remain in effect for the rest of the program. (Disabling and deactivating are
discussed later.)

The program segment labeled Spin is an infinite loop. If it weren't for interrupts, this
program couldn't do anything except display a zero. However, there is an implied
"if... then" at the end of each BASIC program line due to the ON KEY action. This
allows a selection process to occur. Either the Plus or the Minus subroutine can be
selected as a result of softkey presses. These are normal subroutines terminated with a
RETURN statement. (In the context of interrupt programming, these subroutines are
called service routines.) The following section of ~~pseudo-code" shows what the program
flow of the Spin segment actually looks like to the computer.

2-32 Program Structure and Flow

Spin: display X
if K eyO then gosub Plus
if KeyS then gosub Minus

goto Spin

This pseudo-code is an over-simplification of what is actually happening, but it shows
that the Spin segment is not reall)' an infinite loop \A/ith no decision-making structure.
Actually, most programs that use event-initiated branching to control program flow will
contain what appears to be an infinite loop. That is the easiest way to "keep the computer
waiting" while it is waiting for an interrupt.

Now run the sample program you just entered. Notice that the bottom two lines of
the screen display an inverse-video label area (this one is shown when using an ITF
keyboard).

llac Dec j
These labels are arranged to correspond to the layout of the softkeys. The labels are
displayed when the softkeys are active and are not displayed when the softkeys are not
active. 1 Any label which your program has not defined is blank unless the system defines
it. The label areas are defined in the ON KEY statement by using the keyword "LABEL"
followed by a string.

The starting value in the display line is zero, since numeric variables are initialized to
zero at prerun. Each time you press lliJ or IJI), the displayed value of X is incremented.
Each time you press [E[] or [][], the displayed value of X is decremented. This simple
demonstration should acquaint you with the basic action of the softkeys.

1 See the "Communicating with the Operator" chapter for additional examples of softkeys and labels.

Program Structure and Flow 2-33

It is possible to make structures that are much more elaborate~ with assignablf' prioritif's
for each key, and keys that interrupt the service routines of other keys. Therf' are many
applications where priorities are not of any real significance, such as the example program
running now. However, priorities will sometimes cause unexpected flow problems. One
type of priority problem can be shown with a simple modification to our example
program. Insert the following line right after line 170.

171 GOTO 171

Now run the program and press [Ii] or []]. Notice that the program "locks up" and
all subsequent presses of eithf'r soft key do nothing. This is not simply because line
171 creates an infinite loop. The program segment at Spin was a infinite loop and
that didn't bother the soft keys at all. The problem is that the priority for the Plus

service routine is higher than the main program priority. None of the softkeys have been
assigned a high enough priority to interrupt another service routine. A full discussion
on interrupt priority can be found in the "Interface Events" chapter of the BASIC
Interfacing Techniques manual. If you think you have an application that is "priority
sensitive," read that section carefully.

Example of Using the Knob
One characteristic of interrupt-driven progl'am flow is that the computer's decisions can
be more easily synchronized with the actions of devices connected to it. This type of
application is often called real-time programming. An important example of real-time
programming is machine control. A computer running an automatic packing machine
must turn off the flow immediately when the jar is full. It is not acceptable for the
computer to wait until the inventory printout is done and peanut butter is dumped all
over the conveyor belt. Although machine control applications are very important, their
extensive interfacing makes them inconvenient or impossible to use as demonstration
programs in a manual such as this.

Another common example of real-time programming is computer games. The computer
is expected to respond "instantly" to button presses, lever movement, etc. The operator
expects immediate correlation between their input and the computer's output or display.
Your BASIC Utilities Disc has a couple of simple games on it that demonstrate interaction
between the CRT, softkeys, and knob. Feel free to list any of the programs on that disc
if you want further examples of various techniques.

2-34 Program Structure and Flow

The following program is a very short example that demonstrates a real-time interaction
between the knob and the CRT. If you run this example program and turn the knob,
you will see the kind of interaction that might be used for cursor control in a text editor.
Obviously, a real cursor-control routine would be much more sophisticated, but this
demonstrates the basic idea. (The "Communicating with the Operator" chapter also
describes using the knob.)

10 ON KNOB .1 GOSUB Move_blip
20 Spin: GOTO Spin
30 !
40 Move_blip:
50 PRINT TABXY(Spotx,Spoty);" II.

60 Spotx=Spotx+KNOBX/5
70 Spoty=Spoty+KNOBY/5
80 IF Spoty<1 THEN Spoty=1
90 IF Spoty>18 THEN Spoty=18
100 IF Spotx<1 THEN Spotx=1
110 IF Spotx>50 THEN Spotx=50
120 PRINT TABXY(Spotx,Spoty);CHR$(127);
130 RETURN
140 END

This example uses a short infinite loop to wait for pulses from the knob (line 20).
Interrupts from the knob are enabled by the ON KNOB statement in line 10. The
service routine erases the old "blip", performs some scaling and range checki,ng on the
knob input, and prints the new "blip".

The scaling and range checking are very important in this kind of interactive routine.
Humans expect their interface to have a certain "feel." Displays should not change too
quickly or too slowly. Certain kinds of displays are expected to change logarithmically,
others are expected to change linearly. The boundary values of variables are expected to
conform to the boundaries of the display. To initiate yourself to some of these concepts,
try modifying this simple example. Remove one or more of the range checking lines.
(An easy way to do this kind of editing is to place an exclamation point in front of the
statement. This turns it into a comment, removing it from the flow of execution. But
it can be easily returned to the program by deleting the exclamation point.) Also try
changing the scaling factor in lines 60 and 70. Notice the "feel" that results from larger
and smaller increments, or even logarithmic scaling.

Program Structure and Flow 2-35

Deactivating Events
Knowing how to "turn off" the interrupt mechanism is just as important as knowing how
to enable it. Often, an event is a desired input during one part of the program, but not
during another. You might use softkeys to set certain process parameters at the start
of a program, but you don't want interrupts from those keys once the process starts.
For example, a report generating program could use a softkey to select single or double
spacing. This key should be disabled once the printout starts so that an accidental key
press does not cause the computer to abort the printout and return to the questions at
the beginning of the program. On the other hand, you might want an "Abort" key that
does precisely that. The important thing is that you decide on the desired action and
make the computer obey your wishes.

Before going any further, let's explain some important terminology. There are two general
methods for "turning off" an interrupt. If an interrupt source is deactivated, it no longer
has any influence on program flow. You can press a deactivated key all day long and
nothing will happen. However, if an event is disabled, its action has only been temporarily
postponed. The computer remembers that a key was pressed while it was disabled, and
the action for that key will occur at the earliest opportunity once the disabled state is
removed. There are examples in this section to demonstrate the difference between these
two conditions.

All the "ON-event" statements have a corresponding "OFF-event" statement. This is
one way to deactivate an interrupt source.

• OFF KEY deactivates interrupts from the softkeys. If a softkey is pressed while
deactivated, it does nothing .

• OFF KNOB deactivates the ON KNOB interrupts. Thrning the knob while ON
KNOB is deactivated causes normal scrolling on the CRT.

The following example shows one use of OFF KEY to disable the softkeys. (Note that [IT]
is used in the description. If you have an ITF keyboard, just substitute QI].) A softkey
is used to select a parameter for a small printing routine. Each press of [IT] increments
aud displays the step size that will be used as an interval between the printed numbers.
When the desired step size has been selected. CEiJ is pressed to start the printout. Enter
and run this example. Notice that with line 240 and 250 commented out, the soft key
menu, or label area, never changes.

2-36 Program Structure and Flow

100 Begin:
110 ON KEY 1 LABEL " DELTA" GOSUB Step_size
120 ON KEY 4 LABEL " START" GOTO Process
130 Inc=l
140 DISP "Step Size = 1"
150 !
160 Spin: GOTO Spin
170

Wait for key press

180 Step_size:
190 Inc=Inc+l
200 DISP "Step Size =";Inc
210 RETURN
220
230 Process:
240 OFF KEY

Change increment

250 ON KEY 8 LABEL " ABORT" GOTO Leave
260 Number=O
270 FOR 1=1 TO 10
280
290
300

Number=Number+lnc
PRINT Number;
WAIT .6

310 NEXT I
320 Leave:
330 OFF KEY 8
340 PRINT
350 GOTO Begin
360 END

Deactivate ABORT
End line
Start over

Now run the example again and press [ill or [IT] while the printout is in progress. Notice
that the keys are still active and produce undesired effects on the printing process. To "fix
this bug," remove the exclamation point from line 240. This disables all the softkeys when
the printing process starts. Notice that the soft key menu goes away when no softkeys
are active. This is a very handy feature while you are experimenting with interrupts. It
provides immediate feedback to indicate when interrupts are active and when they are
not.

Finally, remove the exclamation point from line 250. Now, the softkey menu appears
during the printing process. However, the choices are different than at the start of the
program. The keys used to select the parameter and start the process are not active,
because they are not needed at this point in the program. Instead, [E[] can be used to
"gracefully" abort the process and return to the start of the program.

The OFF KEY statement can include a key number to deactivate a selected key. This
was done in line 330.

Program Structure and Flow 2-37

Disabling Events
All the previous examples have shown complete deactivation of the softkeys. It is also
possible to temporarily disable an event-initiated branch. This is done when an active
event is desired in a process, but there is a special section of the program that you don't
want to be interrupted. Since it is impossible to predict when an external event will
occur, the special section of code can be "protected" with a DISABLE statement. This
is sometimes necessary to prevent a certain variable from being changed in the middle
of a calculation or to insure that an interface polling sequence runs to completion. It is
difficult in a short, simple example to show why you would need to do this. But it is not
difficult to show how to do it.

100 ON KEY 9 LABEL " ABORT" GOTO Leave
110
120 Print_line:
130 DISABLE
140 FOR I=l TO 10
150 PRINT I;
160 WAIT .3
170 NEXT I
180 PRINT
190 ENABLE
200 GOTO Print line
210
220 Leave: END

This example shows a DISABLE and ENABLE statement used to "frame" the Print_line
segment of the program. The "ABORT" key is active during the entire program, but the
branch to exit the routine will not be taken until an entire line is printed. The operator
can press the "ABORT" key at any time. The key press will be logged, or remembered,
by the computer. Then when the ENABLE statement is executed, the event-initiated
branch is taken. Enter and run the example to observe this method of delaying interrupt
servicing.

2-38 Program Structure and Flow

Chaining Programs
With this BASIC system, it is also possible to "chain" programs together; that is, one
program may be executed, which in turn loads and runs another, which in turn loads
and runs yet another, and so forth. This method is often used when you have several
large program segments that will not all fit into memory at the same time!. This section
describes the available methods.

Using LOAD
The LOAD statement clears the current program, brings in a program from a PROG file,
with the option of beginning program execution at a specified line. This type of LOAD
is performed by adding a line identifier. For example, the following command tells the
computer to load the program in file "STONE" and begin execution at line 10:

100 LOAD "STONE".10

The line identifier may be a label or a line number, but it must identify a line in the
main program segment (not in a subprogram or user-defined function).

If you want to communicate any information to the program that is being loaded, you
have the following two methods:

• Store the information in a file which both programs can access. (File access is fully
explained in the "Data Storage and Retrieval" chapter.)

• Store the information in "common" (COM) variables which both programs can
access. (Note that the programs must have identical COM declarations. COM is
fully discussed in the "Subprograms and User-Defined Functions" chapter; a simple
example is provided in the subsequent section describing how to use GET to chain
programs.)

The LOAD command cannot be used to bring in arbitrary program segments or append
to a main program like GET can.

1 This technique is similar to loading and running subprograms, but not nearly as powerful and flexible.
See the "Subprograms and User-Defined Functions" chapter of this manual for details.

Program Structure and Flow 2-39

Using GET
The GET command is used to bring in programs or program segments from an ASCII file.
with the options of appending them to an existing program and/or beginning program
execution at a specified line.

The following statement:

GET "George".100

first deletes all program lines from 100 to the end of the program, and then and appends
the lines in the file named "George" to the lines that remained at the beginning of the
program. The program lines in file "George" would be renumbered to start with line
100.

GET can also specify that program execution is to begin. This is done by specifying two
line identifiers. For example:

100 GET "RATES".Append_line.Run_line

specifies that:

1. Existing program lines from the line label "Append_line" to the end of the program
are to be deleted.

2. Program lines in the file named ~~RATES" are to be appended to the current
program, beginning at the line labeled "AppendJine"; lines of "RATES" are
renumbered if necessary.

3. Program execution is to resume at the line labeled "Run_line".

Although any combination of line identifiers is allowed, the line specified as the start of
execution must be in the main program segment (not in a SUB or user-defined function).
Execution will not begin if there was an error during the GET operation.

Example of Chaining with GET
A large program can be divided into smaller segments that are run separately by using
GET (or LOAD). The following example shows a technique for implementing this method.

First Program Segment:

10 COM Ohms.Amps.Volts
20 Ohms=120
30 Volts=240
40 Amps=Volts/Ohms
50 GET "Wattage"
60 END

2-40 Program Structure and Flow

Program Segment in File Named "Wattage":

10 COM Ohms.Amps.Volts
20 Watts=Amps*Volts
30 PRINT "Resistance (in ohms)
40 PRINT "Power usage (in watts)
50 END

";Ohms
";Watts

Lines 10 through 40 of the first program are executed in normal, serial fashion. Upon
reaching line 50, the system deletes all program lines of the program and then GETs the
lines of the "Wattage" program. Note that since they have similar COM declarations,
the COM variables are preserved (and used by the second program). This feature is very
handy to have while chaining programs.

Program-to-Program Communications
As shown in the preceding example, if chained programs are to communicate with one
another, you can place values to be communicated in COM variables. The only restriction
is that these COM declarations must match exactly, or the existing COM will be cleared
when the chained program is loaded. For a description of using COM declarations, see
the "Subprograms" chapter of this manual.

One important point to note is the use of the COM statement. The COM statement
places variables in a section of memory that is preserved during the GET operation. Since
the program saved in the file named "Wattage" also has a COM statement that contains
three scalar REAL variables, the COM is preserved (it matches the COM declaration of
the "Wattage" program being appended with GET).

If the program segments did not contain matching COM declarations, all variables in the
mis-matched COM statements would be destroyed by the "pre-run" 1 that the system
performs after appending the new lines but before running the first program line.

1 For a definition of pre-run, see the "Loading and Running Programs" chapter of Using the BASIC System;
or see the "Subprograms and User-Defined Functions" chapter of this manual.

Program Structure and Flow 2-41

Here is another example of chaining. It is a "file executive" program that gets and rUllS
other programs. This example further demonstrates how several chained programs can
use COM.

100 This program manages the utility files for
110 some hypothetical data.
115
120 Data items were stored in REAL array "Weights".
125
130 The printer is selected in line xxx.
135
140 Each utility sends control back to the line "Start"
150 when it finishes.
155
160 (Note that the disc containing these programs must
170 be on-line while the "executive" program is running.)
180
185 OPTION BASE 1
190 COM Weights(5000).Samples.Printer
200 Printer=701
210 Samples=5000
220
230 Start:
240 PRINTER IS CRT
250 PRINT

Main "entry pOint".
PRINT on screen.

260 PRINT "Enter P to print weights."
270 PRINT "Enter A for an analysis."
280
290 Ask: INPUT "Enter Command Letter.".In$
300 IF UPC$ (In$ [1.1]) ="P" THEN GET "Printout". 330.330
300 IF UPC$(In$[1.1])="A" THEN GET "Analysis".330.330
320 GOTO Ask
330
340 END

2-42 Program Structure and Flow

Here is the "Printout" program.

100 This segment prints the data in the array "Weights"
110 on a printer.
120 Necessary variables are initialized in the
130 main "executive" program.
140
150 PRINTER IS Printer ! Print on an external printer.
160 FOR I=l to Samples
170 PRINT "Sample #";1;" weighs ";Weights(I)
180 NEXT I
190 PRINT CHR$(12)
200 GOTO Start Return to "main executive".
210
220 END

Here is the "Analysis" program.

100 This segment calculates the mean and standard deviation
110 of the data in "Weights".
120 Necessary variables are also initialized in the
130 main "executive" program.
140
150 Sumx=O
160 Sumx2=0
170 FOR 1=1 to Samples
180 Sumx=Sumx+Weights(I) Sum values.
190 Sumx2=Sumx2+Weights(I)-2 Sum squares of values.
200 NEXT I
210 Mean=Sumx/Samples
220 Std_dev=SQRT(Sumx2-Sumx-2/Samples)
230 PRINT
240 PRINT "Number of samples =";Samples
250 PRINT "Mean weight =";Mean
260 PRINT "Std. deviation =";Std_dev
270 GOTO Start Return to "main executive".
280
290 END

Notice that any information shared by all routines is placed in COM. The individual task
files do not contain COM statements, because the COM in the executive program is never
deleted. In that manner, a standard characteristic can be changed in the executive, with
no alterations required in any of the other files. The "shared" variables in this example
are the number of weights (Weights array), the number of weight values (Samples), and
the device selector of the external printer (Printer).

Program Structure and Flow 2-43

2-44 Program Structure and Flow

Numeric Computation 3
Numeric Data Types .. 3-1

REAL Data Type ... 3-1
INTEGER Data Type. .. 3-2
COMPLEX Data Type. .. 3-2

Declaring Variables ... 3-3
Assigning Variables ... 3-4

Implicit Type Conversions ... 3-4
Precision and Accuracy: The Machine Limits. .. 3-7
Internal Numeric Formats. .. 3-8

Evaluating Scalar Expressions .. 3-9
The Hierarchy .. 3-9
The Delayed Assignment Surprise .. 3-12
Operators .. 3-12

Numerical Functions ... 3-15
Arithmetic Functions ... 3-15
Array Functions ... -: ... 3-16
Exponential Functions .. 3-17
Trigonometric Functions .. 3-17
Hyperbolic Functions. .. 3-18
Binary Functions .. 3-18
Limit Functions. .. 3-19
Rounding Functions .. 3-19
Random Number Function .. 3-22
Complex Functions ... 3-22
Time and Date Functions ... 3-29
Base Conversion Functions .. 3-30
General Functions. .. 3-31

Numeric Computation 3
When most people think about computers 1 the first thing that they think of is number
crunching1 the giant calculator with a brain. Whether this is an accurate impression or
not 1 numeric computations are an important part of computer programming.

Numeric computations deal exclusively with numeric values. Thus 1 adding two numbers
and finding a sine or a logarithm are all numeric operations; while converting bases and
converting a number to a string or a string to a number are not. (Converting bases
and converting numbers to strings and strings to numbers are covered in the chapter on
"String Manipulation. 11

)

Numeric Data Types
There are three numeric data types available in BASIC: INTEGER 1 REAL and COM
PLEX. This section covers these data types.

REAL Data Type
Any numeric variable that is not declared an INTEGER or COMPLEX variable is a
REAL variable. The valid range for REAL numbers is approximately:

-1. 797693 134862315 x 10308 thru 1.797693 134862315 x 10308

or

-MAXREAL thru +MAXREAL

which are the functions used to obtain the above range values.

The smallest non-zero REAL value allowed is approximately:

± 2.225073858507202 x 10- 308 or ±MINREAL

A REAL can also have the value of zero.

Numeric Computation 3-1

INTEGER Data Type
An INTEGER can have any whole-number value from:

-32768 thru +32767

COMPLEX Data Type
A complex number is an ordered pair (x,y) denoted by Mathematicians as:

x + iy

where:

x is the real part of the complex number.

y is the imaginary part of the complex numb('r. Th(' i in front of th(' y forms th('
imaginary number iyand is the same as multiplying y by the J-I. For example,
the J-9 could be written as: J-I x J9 or 3i.

BASIC complex numbers are stored as two REAL numbers. This means that a complex
number requires 16 bytes of memory (each REAL component takes 8 bytes).

REAL, INTEGER, and COMPLEX variables may be declared as arrays.

3-2 Numeric Computation

Declaring Variables
It is good programming practice to declare the data type of all variables used in a
program. The INTEGER, REAL, and COMPLEX statements have been provided to
accomplish this task. However, BASIC is forgiving and implicitly assumes a variable is
REAL if its type is not explicitly declared. Here are some examples of explicitly declaring
variables:

INTEGER I, J, Days(5) , Weeks(5:17)
REAL X, Y, Voltage (4) , Hours(5,8:13)
COMPLEX S, T, Phasor_l(10) , Phasor_2(10)

Each of the above statements declares two scalar and two array variables. A scalar is a
variable which can, at any given time, represent a single value. An array is a subscripted
variable that may contain multiple values accessed by subscripts. It is possible to specify
both the lower and upper bounds of an array or to specify the upper bound only, and
use the existing OPTION BASE as the lower bound. Details on declarations of arrays
and how to use them are provided later in this chapter when arrays are dealt with in
detail. The DIM statement may also be used to declare a REAL array.

DIM R(4,5)

An ALLOCATE statement can be used to declare REAL, INTEGER, and COMPLEX
arrays. The ALLOCATE statement allows you to dynamically allocate memory in
programs which need tight control over memory usage.

ALLOCATE REAL Co_ords(2,l:Points), INTEGER Status(l:Points)
ALLOCATE COMPLEX Poles(2,l:Points), REAL Location(2,l:Points)

Dynamic memory can be deallocated with the DEALLOCATE statement. Some exam
ples are:

DEALLOCATE Co_ords(*), Status(*)
DEALLOCATE Poles(*), Location(*)

Numeric Computation 3-3

Assigning Variables
The most fundamental numeric operation is the assignment operation. achieved with the
LET statement. The LET statement originally required the keyword LET for BASIC
interpreters, but your computer makes it optional. Thus the following statements are
equivalent:

LET A A + 1
A = A + 1

To assign values to COMPLEX variables, the variables must first be declared as COM
PLEX. The following program lines show examples of assigning REA L and COMPLEX
values to COMPLEX variables B, C, and D.

10 COMPLEX B,C,D
20 B=3.0 ! Real part = 3.0; imaginary part = 0.0.
30 C=CMPLX(3,4) ! Creates a COMPLEX value and assigns it to C.
40 D=CMPLX(Real_part,Imaginary_part)
50 B=D ! Assigns both the real and imaginary parts of D to B.
60
70

Implicit Type Conversions
The computer will automatically convert between REAL, INTEGER, and COMPLEX
values in assignment statements and when parameters are passed by value in function
and subprogram calls. The type conversion rules are:

• When a value is assigned to a variable, the value is converted to the data type of
that variable.

For example, the following program shows a REAL value being converted to an
INTEGER:

100 REAL Real_var
110 INTEGER Integer_var
120 Real_var = 2.34
130 Integer_var = Real_var ! Type conversion occurs here.
140 DISP Real_var, Integer_var
150 END

Executing this program returns the following result:

2.34 2

3-4 Numeric Computation

INTEGER and REAL data types are converted to COMPLEX data types by adding
an imaginary part of o.

100 COMPLEX Complex_varl, Complex_var2
110 REAL Real_var
120 INTEGER Integer_var
130 Real_var=1.22
140 Integer_var=4
150 Complex_varl=Real_var
160 Complex_var2=Integer_var
170 DISP Complex_varl, Complex_var2
180 END

Executing this program produces the following results:

1.22 0 4 0

COMPLEX data types are converted to INTEGER and REAL data types by
dropping the imaginary part.

100 COMPLEX Complex_var
110 REAL Real_var
120 INTEGER Integer_var
130 Complex_var=CMPLX(1.22,4.11)
140 Real_var=Complex_var
150 Integer_var=Complex_var
160 DISP Real_var, Integer_var
170 END

Executing this program produces the following results:

1.22 1

• Conversions that occur within expression convert to the "highest" or most compli
cated data type before the operation occurs. For example:

CMPLX(3,-1) + 4.56

converts the REAL data type 4.56 to a COMPLEX value before the addition
operation is performed.

When parameters are passed by value, the type conversion is from the data type of the
calling statement's parameter to the data type of the subprogram's parameter. This
type conversion occurs automatically. When parameters are passed by reference, the
type conversion is not made and a type mismatch error will be reported if the calling
parameter and the subprogram parameters are of different types.

Numeric Computation 3-5

Whenever numbers are converted from REAL to INTEGER representations, information
can be lost. There are two potential problem areas in this conversion: rounding errors
and range errors.

BASIC will automatically convert between types when an assignment is made. This
presents no problem when an INTEGER is converted to a REAL. However, when a
REAL is converted to an INTEGER, the REAL is rounded to the closest INTEGER
value. When this is done, all information about the number to the right of the radix
(decimal point) is lost. If the fractional information is truly not needed, there is no
problem, but converting back to a REAL will not reconstruct the lost information it
stays lost.

Another potential problem with REAL to INTEGER conversions is the difference in
ranges. While REAL values range from approximately _10308 to +10308 , the INTEGER
range is only from -32 768 to +32 767 (approximately -104 thru + 104). Obviously, not
all REAL values can be rounded into an equivalent INTEGER value. This problem can
generate INTEGER Overflow errors.

While the rounding problem is important, it does not generate an execution error. The
range problem can generate an execution error, and you should protect yourself from
crashing the program by either testing values before assignments are made, or by using
ON ERROR to trap the error, and making corrections after the fact.

The following program segment shows a method to protect against INTEGER overflow
errors (note that the variable X is REAL):

200 IF X > 32767 THEN X= 32767
210 IF X < -32768 THEN X = -32768
220 Intx = X

It is possible to achieve the same effect using MAX and MIN functions:

200 Y = MAX(MIN(X, 32767), -32768)

Both these methods avoid the overflow errors. but lose the fact that th(' values w('r('
originally out of range. If out-of-range is a meaningful condition, an error handling trap
is more appropriate.

200 IF (-32768<=X) AND (X<=32767) THEN
210 Y = X
220 ELSE
230 GOSUB Out_of_range
240 END IF

3-6 Numeric Computation

Precision and Accuracy: The Machine Limits
Your computer stores all REAL variables with a sign, approximately 15 significant digits,
and the exponent value. For most engineering and other applications, rounding errors are
not a problem because the resolution of the computer is well beyond the limitations of
most scientific measuring devices. However, when high-resolution numerical analysis
requires accuracy approaching the limits of the computer, round-off errors must be
considered.

Rounding errors should be considered when conversions are made between decimal digits
and binary form (the form used by the computer internally to store the values). Input
and output operations are occasions when this can occur. Given the format used for
REALs, the conversion REAL -+ decimal -+ REAL will yield an identity only if the
REAL -+ decimal conversion produces a 17-decimal-digit mantissa and the calculations
for the conversions are done in extra precision. This is not the case on Series 200/300
BASIC. Therefore, several things can be said about these conversions on Series 200/300
BASIC:

• Up to and including 16 decimal digits are allowed when storing a number in internal
form. If there are more digits, they are ignored.

• Up to and including 15 decimal digits may be output when converting a REAL for
printing, display, etc .. A full 16-digit conversion is not allowed because there are
not 16 full digits of precision.

• It is possible for two distinct decimal numbers to map onto the same REAL number
because the binary mantissa does not have enough bits to represent all 16 decimal
digits. This can happen only if the decimal numbers are specified to 16-digits.

• It is possible for two distinct REAL numbers to convert to the same decimal number
even if the conversion is done to 15-decimal-digit accuracy. Therefore, you cannot
use a comparison of the digits in printed or displayed numbers to check for equality.

• All distinct 15 digit decimal strings have a correct distinct REAL representation,
but it is not always possible to map them onto their correct representation because
REAL multiplies are not done in extra precision, and the table entries are only 64
bits. In other words, the decimal -+ REAL conversion may produce a REAL that
differs from the true representation by a maximum of two bits.

There are references at the end of this chapter to documents that contain further
information on the subject of representing real numbers.

Numeric Computation 3-7

Internal Numeric Formats
The storage format for REAL and INTEGER numbers in memory are as follows:

WORD A WORD A+1 WORD A+2 WORD A+3

15 4[1 0 15 {} 15 0 15

~ nr: j i I : ~ [Ii : : I : i :!: I i [[[i [[[[[[[[[[[[[[i : [[[[[: I [I "'--11 [--r-r-T[[[-'--'---[[1"'-1 II~IL!

L
EXPONENT I l '

(BIASED + 1023)
11 BITS

MANTISSA SIGN BINARY POINT

MANTISSA
52 BITS

X 1.",d,,,,,,,,

Figure 4-1. Storage Format for REAL Variables

INTEGER
12·s COMPLEMENT)

,
15 {}

[[[11[1[11[[11[[[
t

SIGN

Figure 4-2. Storage Format for INTEGER Variables

Note that COMPLEX values are stored as 2 REAL numbers with the real part first and
the imaginary part following.

3-8 Numeric Computation

Evaluating Scalar Expressions
This section covers the following topics as they relate to evaluating scalar expressions.

• Hierarchy of expression evaluation

• Delayed assignment surprise

• BASIC operators: monadic, dyadic, and relational

The Hierarchy
If you look at the expression 2+4/2+6, it can be interpreted several ways:

• 2+(4/2)+6 = 10

• (2+4)/2+6 = 9

• 2+4/(2+6) = 2.5

• (2+4)/(2+6) = .75

Computers do not deal well with ambiguity, so a hierarchy is used for evaluating
expressions to eliminate any questions about the meaning of an expression. When the
computer encounters a mathematical expression, an expression evaluator is called. If
you do not understand the expression evaluator, you can easily be surprised by the value
returned for a given expression. In order .to understand the expression evaluator, it is
necessary to understand the valid elements in an expression and the evaluation hierarchy
(the order of evaluation of the elements).

Six items can appear in a numeric expression:

• Operators (+, -, etc.)-modify other elements of the expression.

• Constants (7.5, 10, etc.)-represent literal, non-changing numeric values.

• Variables (Amount, X_coord, etc.)- represent changeable numeric values.

• Intrinsic functions (SQRT, DIV, etc.)-return a value which replaces them in the
evaluation of the expression.

• User-defined functions (FNMy _func, FNReturn_ val, etc.)-also return a value
which replaces them in the evaluation of the expression.

• Parentheses-are used to modify the evaluation hierarchy.

Numeric Computation 3-9

The following table defiIH'S the hierarchy us('d by the computer in evaluating numeric
('xpressions.

Table 3-1. Math Hierarchy

Precedence Operator

Highest Parentheses; they may be used to force any order of operation

Functions, both user-defined and intrinsic

Lowest

Exponentiation:

Multiplication and division: * / MOD DIV MODULO

Addition, subtraction, monadic plus and minus: + -

Relational Operators: = <> < > <== >=

NOT

AND

OR, EXOR

When an expression is being evaluated it is read from left to right and operations are
performed as encountered, unless a higher precedence operation is found immediately to
the right of the operation encountered, or unless the hierarchy is modified by parentheses.
If BASIC cannot deal immediately with the operation, it is stacked, and the evaluator
continues to read until it encounters an operation it can perform. It is easier to
understand if you see an example of how an expression is actually evaluated.

3-10 Numeric Computation

The following expression is complex enough to demonstrate most of what goes on in
expression evaluation.

A = 5+3*(4+2)/SIN(X)+X*(1>X)+FNNegl*(X<5 AND X>O)

In order to evaluate this expression, it is necessary to have some historical data. We will
assume that DEG has been executed, that X= 90, and that FNNegl returns -1. Evaluation
proceeds as follows:

5+3*(a+2)/SIN(X)+X*(1>X)+FNNe~1*(X<5 AND X>O)

T
5+3*G/SIN(X)+X*(1>X)+FNNe~1*(X<5 AND X>O)

T
5+18/SIN(X)+X*(1>X)+FNNe~1*(X<5 AND X>O)

I
5+18/1+X*(1)X)+FNNe~1*(X<5 AND X>O)

T
5+18+X*(1)X)+FNNe~1*(X<5 AND X>O)

T
23+X*(1)X)+FNNe~1*(X<5 AND X>O)

T
23+X*0+FNNe~1*(X<5 AND X)O)

T
23+0+FNNe~1*(X<5 AND X)O)

T
23+FNNe~1*(X<5 AND X)O)

I
23+-1*(X<5 AND X>O)

T
23+-1*(0 AND X)O)

T
23+-1*(0 AND 1)

23+-1*0
7

T
23+0

T
23

Numeric Computation 3-11

The Delayed Assignment Surprise
BASIC delays assigning a value to a variable as long as possible. In the actual evaluation
a pointer to the location of a variable is what is stacked. This means that when a variable
is in an area of COM accessible to both the main program and a user-defined function
is used in an expression that also calls the user-defined function-and is modified in the
function-the value of the expression can be surprising, although not unpredictable. For
example, if we define a function FNNeg1 that returns a minus 1, we would expect the
following lines to print 2.

10 COM X
20 X = 3
30 Y = X + FNNeg1
40 PRINT Y

However. if the user-defined function looks likf' this:

1000 DEF FNNeg1
2000 COM X
1020 X = 500
1030 RETURN -1
1040 FNEND

The actual result will be 499. Surprising, but not unpredictable. The same thing will
happen if the variable is passed by reference and modified in the user-defined function.
Therefore, don't use a user-defined function to modify values of variables. They are
designed for returning a single value, and are best reserved for that.

Operators
There are three types of operators in BASIC: monadic, dyadic, and relational.

• A monadic operator performs its operation on the expression immediately to its
right. + - NOT

• A dyadic operator performs its operation on the two values it is between. The opera-
tors are as follows: -. *. /. MOD. DIV. +. - <>. <. >. <=. >=. AND. OR. and
EXOR.

• A relational operator returns a 1 (true) or a 0 (false) based on the result of a
relational test of the operands it separates. The relational operators are a subset of
the dyadic operators that are considered to produce boolean results. These operators
are as follows: <. >. <=. >=. =. and <>.

3-12 Numeric Computation

NOTE

The only relational operators allowed with COMPLEX values are:
= and <>. The only dyadic operators allowed with COMPLEX
values are: A 1 +1 -1 \ /1 <>1 and =. The only monadic operators
allowed with COMPLEX values are: + and -.

While the use of most operators is obvious from the descriptions in the language reference1
some of the operators have uses and side-effects that are not always apparent.

Expressions as Pass Parameters
All numeric expressions are passed by value to subprograms. Thus 5+ X is obviously
passed by value. Not quite so obviouslY1 +X is also passed by value. The monadic
operator makes it an expression.

For more information on pass parameters 1 read the chapter entitled "Subprograms and
U ser-Defined Functions .11

Strings in Numeric Expressions
String expressions can be directly included in numeric expressions if they are sep~rated by
relational operators. The relational operators always yield boolean results1 and boolean
results are numeric values in BASIC. For example:

110 Day_number=l* (Day$=ISun") +2* (Day$=IMon")

Executing the program line above would result in Day _number being equal to 1 if Day$

equals "Sun11 and 2 if Day$ equals "Mon" (or 0 otherwise).

Step Functions
The relational operators are obviously useful for conditional branching (IF ... THEN
statements) 1 but are also valuable for creating numeric expressions representing step
functions. For example1 lets try to represent the function:

• If Select < 0

Then Result = 0

• If 0 <= Select < 1

Then Result equals the square root of A 2 + B2.

Numeric Computation 3-13

• If Select >= 1 (any other value)

Then Result = 15

It is possible to generate the required response through a series of IF ... THEN statements,
but it can also be done with the following expression:

1210 Result=(Select<O)*O+(Select>=O AND Select<1)*SQR(A-2+B-2)+(Select>1)*15

While the technique may not please the puristl it actually represf'nts the step function
very well. The boolean expressions each return a 1 or 0 which is then multiplied by thr
accompanying expression. Expressions not matching the selection return 0, and are not
included in the result. The value assigned to Select before the expression is evaluated
determines the computation placed in the result. This technique can be used to represent
other functions 1 but the program statement cannot exceed the maximum allowable line
length.

Comparisons Between Two REAL or COMPLEX Values
If you are comparing INTEGER numbers, no special precautions are necessary since
these values are represented exactly. However, if you are comparing REAL or COMPLEX
values, especially those which are the results of calculations and functions, it is possible to
run into problems due to rounding and other limits inherent in the system. For example 1

consider the use of relational operators in IF .. THEN statements to check for equality in
any situation resembling the following:

1220 DEG
1230 A=25.3765477
1240 IF SIN(A)-2+COS(A)-2=1 THEN
1250 PRINT "Equal"
1260 ELSE
1270 PRINT "Not Equal"
1280 END IF

You may find that the equality test fails due to rounding errors or other errors caused
by the illherelli lil1liiatiolls of finite lllachines. A repeating decilllal or irrational number
cannot bf' represented exactly in any finite machine.

For additional information on rounding errors read the subsequent section entitled
"Rounding Functions.'l

3-14 Numeric Computation

Numerical Functions
Intrinsic functions are the built-in functions that are part of the BASIC language.
Numerous functions are included in the BASIC you are using to make mathematical
modeling easier. This section covers these functions by placing them in the categories
given below. For a list of all the Numerical Functions, see the "Keyword Summary" m
the BASIC Language Reference ano RAHIC Condensed Reference.

• Arithmetic Functions

• Array Functions

• Exponential Functions

• Trigonometric Functions

• Hyperbolic Functions

• Binary Functions

• Limit Functions

• Rounding Functions

• Random Number Function

• Complex Functions

• Time and Date Functions

• Base Conversion Functions

• General Functions

Arithmetic Functions
Numeric computations at times require you to:

• determine the square root of an expression,

• find the absolute value of an expression,

• return the sign of an expression,

• return the fractional part of an expression,

• return the greatest integer that is less than or equal to an expression.

Numeric Computation 3-15

It is not always convenient to write a program segment or subprogram to perform tlwsp
numeric operations. To eliminate this inconvenipnces, BASIC provides you with thp
following functions:

ABS

FRACT

INT

MAXREAL

MINREAL

SQRT or
SQR

SGN

Returns the absolute value of an expression. Takes a REAL. INTE
GER. or COMPLEX number as its argument.

Returns the "fractional" part of the argument.

Returns the greatest integer that is less than or equal to an expression.
The result is of the same type (INTEGER or REAL) as the original
number.

Returns the largest positive REAL number available in BASIC. Its
value is approximately 1.797693134862 32E+308.

Returns the small pst positivp REAL number available in BASIC'. Its
value is approximately 2.225073858507 24E-308.

Return the square root of an expression. Takes a REAL, INTEGER.
or COMPLEX number as their argument.

Returns the sign of an expression: 1 if positive, 0 if 0, -1 if negative.

Array Functions
These functions are available when the MAT binary is loaded. They return specific
information about numeric arrays (e.g., how many dimensions does the array have, the
determinant of an array, etc.). For more information on the numeric array functions
listed below, read the "Numeric Arrays" chapter.

BASE

DET

DOT

RANK

SIZE

SUM

Returns the lower subscript bound of a dimension of an array.

Returns the determinant of a matrix.

Returns the inner (dot) product of two numeric vectors.

Returns the number of dimensions in an array.

R(,turns the number of elements in a dimellsioll of an array.

Returns the sum of all the elements in a numeric array.

3-16 Numeric Computation

Exponential Functions
These functions are used for determining the natural and common logarithm of an
expression, as well as the Napierian e raised to the power of an expression. Note that all
exponential functions take REAL, INTEGER, or COMPLEX numbers as their argument.

EXP Raise the Napierian e to an power. e ~ 2.71828182845905.

LGT Returns the base 10 logarithm of an expression.

LOG Returns the natural logarithm (Napierian base e) of an expression.

Trigonometric Functions
Six trigonometric functions and the constant 7r are provided for dealing with angles
and angular measure. Note that all trigonometric functions take REAL, INTEGER, or
COMPLEX numbers as their argument.

ACS Returns the arccosine of an expression.

ASN Returns the arcsine of an expression.

ATN Returns the arctangent of an expression.

COS Returns the cosine of the angle represented by the expression.

SIN Returns the sine of the angle represented by an expression.

TAN Returns the tangent of the angle represented by an expression.

PI Returns the constant 3.14159265358979, an approximate value for 7r.

Trigonometric Modes: Degrees and Radians
The default mode for all angular measure is radians. Degrees can be selected with the
DEG statement. Radians may be re-selected by the RAD statement. It is a good idea
to explicitly set a mode for any angular calculations, even if you are using the default
(radian) mode. This is especially important in writing subprograms, as the subprogram
inherits the angular mode from the context that calls it. The angle mode is part of the
calling context. If it is changed in a subprogram, it is restored when the calling context
is restored.

Numeric Computation 3-17

Hyperbolic Functions
Six hyperbolic functions are available with the BASIC system when the COMPLEX
binary is loaded:

SINH returns the hyperbolic sine of a number.

COSH returns the hyperbolic cosine of a number.

TANH returns the hyperbolic tangent of a number.

ASNH rf'turns tll{' hyperbolic arcsine of a number.

ACSH returns the hyperbolic arccosine of a number.

ATNH returns the hyperbolic arctangent of a number.

Binary Functions
We humans usually think of numbers being represented as decimal numbers, so this is the
default representation for most input and output operations (such as INPUT and DISP).
However, all operations that BASIC performs use a binary number representation. You
usually don't see this, because BASIC changes decimal numbers you input into its own
binary representation, performs operations using these binary numbers, and then changes
theIll back to their decimal represf'ntation before displaying or printing them.

Here are the functions in BASIC which deal with binary numbers:

BINAND

BINCMP

BINEOR

BINIOR

BIT

ROTATE

SHIFT

Returns the bit-by-bit "logical and" of two arguments.

Rf'turns the bit-by-bit "complement" of its argument.

Returns the bit-by-bit "exclusive or" of two arguments.

Returns the bit-by-bit "inclusive or" of two arguments.

Returns the state of a specified bit of the argument.

Returns a value obtained by shifting an INTEGER representation of an
argument a specific number of bit positions, with wraparound.

Returns a value obtained by shifting an INTEGER representation of an
argument a specific number of bit positions, without wraparound.

3-18 Numeric Computation

When any of these functions are used, the arguments are first converted to INTEGER (if
they are not already in the correct form) and then the specified operation is performed. It
is best to restrict bit-oriented binary operations to declared INTEGERs. If it is necessary
to operate on a REAL, make sure the precautions described under "Conversions," at
the beginning of this chapter, are employed to avoid INTEGER overflow. Given a
COMPLEX argument, the above functions give error 620 (COMPLEX value not allowed).

Limit Functions
It is sometimes necessary to limit the range of values of a variable (as in the discussion of
REAL to INTEGER conversions mentioned in the introduction to this chapter). While
it is possible to do this with the IF ... THEN statements:

200 IF X>Maxx THEN X = Maxx
210 IF X<Minx THEN X = Minx

it is more convenient to use the MAX and MIN functions (these functions require the
MAT binary).

200 X = MIN(MAX(X,Minx),Maxx)

where:

MAX

MIN

Returns a value equal to the greatest value in the list of arguments.

Returns a value equal to the least value in the list of arguments.

These functions work with INTEGER and REAL values.

Rounding Functions
Rounding occurs frequently in computer operations. The most common rounding occurs
in printouts and displays, where it can be handled effectively with a USING clause in
the output operation. For details see the section on Formatted Output in the ~~Using
a Printer" chapter. This works in statements such as PRINT, LABEL, OUTPUT, and
DISP.

Sometimes it is necessary to round a number in a calculation to eliminate unwanted
resolution. There are two basic types of rounding, rounding to a total number of decimal
digits and rounding to a number of decimal places (limiting fractional information). Both
types of rounding have their own application in programming.

Numeric Computation 3-19

The functions which perform the types of rounding mention<>d above are as follows:

DROUND

PROUND

Rounds a numeric expression to the specified number of digits. If
the specified number of digits is greater than 15, no rounding takes
place. If the number of digits specified is less than 1, zero is returned.

Returns the value of the argument rounded to a specified power of
ten.

There is a tendency for the number of decimal places to grow as calculations are
p<>rformed on the results of other calculations. One of the first things covered in training
for engineering and the sciences is how to handle the growth of the number of decimal
places in a calculation. If the initial measurements from an experiment produced three
digits of information per reading, it is very misleading to produce a seven-digit number as
the result of a long series of calculations. The DROUND function allows you to eliminate
the unwanted digits, to produce more realistic calculations and answers.

It is also possible to round to a number of decimal places. The idea is to eliminate
decimal representation beyond a specific power of ten. The PROUND function allows
you to perform a round to any specified power of ten.

200 X = PROUND (Xl, Places)

Rounding Errors Resulting from Comparisons
Equality errors occur when multiplying or dividing data values and comparing their result
to another non-integer data value. This happens because the product of two non-integer
values nearly always results in more digits beyond the decimal point than exists in either
of the two numbers being multiplied. Any tests for equality must consider the exact
variable value to its greatest resolution. If you cannot guarantee that all digits beyond
the required resolution are zero, here are three methods that can be used to eliminate
equality errors which could occur as a result of this:

• 'ese the DROUND function to eliminate unwanted resolution before comparing results.

• Use the absolute value of the difference between the two values, and test for the
difference less than a specified limit.

• Use the absolute value of the relative difference between two values, and test for
the difference less than a specified limit:

IF ABS«C-F)/C) < 10-(-Delta_power) THEN PRINT "C is equal to F"

3-20 Numeric Computation

The following example shows the DROUND technique:

1050 A=32.5087
1060 B=31. 625
1070 C=A*B Product is 1028.08763750
1080 D=32.5122
1090 E=31.621595509
1100 F=D*E Product is 1028.08763751
1110 IF C=F THEN 1130
1120 PRINT "C is not equal to F"
1130 C=DROUND(C.7)
1140 F=DROUND(F.7)
1150 IF C=F THEN
1160 PRINT "C equals F after DROUND"
1170 ELSE
1180 PRINT "C not equal to F after DROUND"
1190 END IF
1200 END

You can experiment with the concept by substituting other values for variables A. B. D.

and E, and by changing the number of digits specified in the DROUND function.

Here is an example of the absolute value method of testing equality. In this case, a
difference of less than 0.001 is assumed to be evidence of adequate equality. Using the
previous example, we change methods starting at line 1130.

1130 IF ABS(C-F)<.OOl THEN
1140 PRINT "C is equal to F within 0.001"
1150 ELSE
1160 PRINT "C is not equal to F within 0.001"
1170 END IF
1180 END

This technique has the advantage that no additional statements are invested in overhead
while preparing the data for evaluation. It also enables you to easily establish tolerance
limits in making value comparisons, a capability that is useful in production and testing
applications.

Finally, here is an example of the relative difference method. Once again, we change
methods starting at line 1130.

1130 IF ABS«C-F)/C)< 10-(-3) THEN
1140 PRINT "Relative difference between C and F less than 10--3"
1150 ELSE
1160 PRINT "Relative difference between C and F greater than 10--3"
1170 END IF
1180 END

Numeric Computation 3-21

Random Number Function
Since many modeling systems require random numbers with arbitrary ranges, it 1S

necessary to scale the numbers.

200 R= INT(RND*Range)+Offset

where:

RND Returns a pseudo-random number greater than 0 and less than 1.

Note that the above statement will return an integer between Offset and Offset + Range.

The random number generator is seeded with the value 37480660 at power-on,
SCRATCH, SCRATCH A, and prerun. The pattern period is 231 - 2. You can change
the seed with the RANDOMIZE statement, which will give a new pattern of numbers.

Complex Functions
These functions are available when the COMPLEX binary is loaded. Topics which are
covered in this section are:

• Creating COMPLEX Values

• Evaluating COMPLEX Numbers

• COMPLEX Arguments and the Trigonometric Mode

• Determining the Parts of COMPLEX Numbers

• Converting from Rectangular to Polar Coordinates

• An Application for COMPLEX Numbers

3-22 Numeric Computation

Creating COMPLEX Values
The CMPLX function creates a COMPLEX value by using its first argument as the real
part and the second argument as the imaginary part of the COMPLEX value. Note
that there are no COMPLEX constants in BASIC, but this function provides the same
functionality. For example, the following program creates a COMPLEX value and assigns
it to the COMPLEX variables C and B. It then displays the results.

iO COMPLEX B,C
20 C=CMPLX(3.5, .5)
30 B=C
40 PRINT C,B
50 END

Executing the above program produces these results:

3.5 .5 3.5 .5

Evaluating COMPLEX Numbers
The BASIC expression evaluation uses two separate routines for dealing with REAL,
INTEGER, and COMPLEX data types. There is a routine for dealing with REAL and
INTEGER numbers and one for COMPLEX numbers. For example, taking the square
root of a negative INTEGER or REAL number will produce an error. For instance;
executing this statement:

SQRT(-l)

results in this error:

ERROR 30

The square root of a COMPLEX value whose real part is negative is defined so the
operation is allowed. For example, executing this statement:

SQRT(CMPLX(-l,O»

returns the value:

o 1

where 0 is the real part and 1 is the imaginary part of the complex number.

Numeric Computation 3-23

COMPLEX Arguments and the Trigonometric Mode
When a trigonometric function call is made using a COMPLEX value as its parameter,
BASIC will evaluate that call using the radian mode regardless of the current trigonomet
ric mode setting (DEG or RAD). After the function call has been evaluated, the system
returns to the current trigonometric mode. For example, enter and run this program:

10 DEG
20 PRINT SIN(30)
30 PRINT
40 PRINT SIN(CMPLX(30.0))
50 PRINT

Always evaluated in the RAD mode.

60 PRINT SIN(30)
70 END

The results from executing this program are as follows:

.5 (degree mode)

-.988031624093 0 (radian mode)

.5 (degree mode)

NOTE

Any complex function whose definition includes a sine or cosine
function will be evaluated in the radian mode (RAD) regardless of
the current angle mode (RAD or DEG).

Determining the Parts of COMPLEX Numbers
In many cases, such as network design. it is useful to be able to det('rmin(' the real and
imaginary parts of complex numbers, and the conjugate of a complex number.

REAL (C)

IMAG(C)

CONJG(C)

returns the real part of a complex number.

returns the imaginary part of a complex number.

returns the complex conjugate of a complex number. That is:

CONJG(CMPLX(3.4))

is the same as

CMPLX(3.-4)

3-24 Numeric Computation

For example, executing the following statement:

DISP REAL(CMPLX(10,-3))

produces this result:

10

This next statement:

DISP IMAG(CMPLX(10,-3))

produces:

-3

This last example:

DISP CONJG(CMPLX(10,-3))

produces:

10 3

Converting from Rectangular to Polar Coordinates
BASIC stores and uses complex numbers in a representation called rectangular coordi
nates. The rectangular coordinate representation of the complex plane is a Cartesian
coordinate system where the X axis represents the real part of the complex number and
the Y axis represents the imaginary part of the complex number. An alternate represen
tation is polar coordinates. Polar coordinates consist of a magnitude and an argument
(angle). The representation for polar coordinates is given as follows:

M~
where M is the magnitude and () is the argument. The BASIC function used to obtain
the magnitude is ABS, and the function used to obtain the argument is ARG.

Numeric Computation 3-25

The following program converts the rectangular coordinates 5 and 6 of the complex
number 5 + i6 to polar coordinates.

140 RAD
150 DISP "The magnitude of 5 + i6 is: ";ABS(CMPLX(5.6»
160 DISP "The argument of 5 + i6 is: ";ARG(CMPLX(5.6»
170 END

Executing this program produces the following:

The magnitude of 5 + i6 is: 7.81024967591
The argument of 5 + i6 is: .876058050598

An Application for COMPLEX Numbers

(in RAD mode)

An example for the use of COMPLEX numbers is phasors. Phasors are COMPLEX
numbers that represent sinusoidal waves. A phasor has both amplitude and phase and
can be represented in the following forms:

Rectangular

Exponential

Polar

M(cosO + iSinO)

iO
Me

M~

3-26 Numeric Computation

The figure below shows the phasor C in the complex plane where () is the phase angle, C
is the magnitude, y is the imaginary part of the complex number, and x is the real part
of the complex number.

Imaginary i
y

Real
x

Figure 4-3. A Phasor in the Complex Plane

Given two phasors Phasor_l and Phasor_2, determine their sum using rectangular
coordinates and call this sum Phasor. The values of the phasors are:

10~

Phasor_2

Numeric Computation 3-27

III the' program. we will need to covert these polar coordinates to rectangular coordinates
and add them. The program provided below will do this. Note that the magnitude for
Phasor_l is 10 and its phase angle is 30°, and the magnitude for Phasor_2 is 5 and its
phase angle is 30°. You will need to enter these values as the program requests them.

100 COMPLEX Phasor,Phasor_l,Phasor_2
110 REAL Mag_l,Mag_2,Phase_l,Phase_2
120
130 DEG! Select degrees as the unit of measure for angles.
140
150 INPUT "Enter the magnitude and phase angle for Phasor_l.",Mag_l,Phase_l
160 INPUT "Enter the magnitude and phase angle for Phasor_2.",Mag_2,Phase_2
170
180 Phasor_l=CMPLX(Mag_l*COS(Phase_l),Mag_l*SIN(Phase_l))
190 Phasor_2=CMPLX(Mag_2*COS(Phase_2),Mag_2*SIN(Phase_2))
200
210 Phasor=Phasor_l+Phasor_2! Add both phasors.
220 !

Create Phasor_l.
Create Phasor_2.

230 DISP "The sum of Phasor_l and Phasor_2 = ";ABS(Phasor);ARG(Phasor)
240 END

The result of executing the above program is:

The sum of Phasor 1 and Phasor 2 15 30

3-28 Numeric Computation

Time and Date Functions
The following functions return the time and date in seconds:

TIMEDATE Returns the current clock value (in Julian seconds).

(If there is no battery-backed clock, the clock value set at power-on is 2.086629 12E+ 11,
which represents midnight March 1, 1900. If the computer is connected to an SRM
system, the SRM clock's value is read from the SRM System's clock when the SR:t-v1
binary is loaded.)

The time value accumulates from its initial value unless it is changed by SET TIME or
SET TIMEDATE. For example, executing this function

TIMEDATE

returns a value in seconds similar to the following:

2. 11404868285E+11

TIME converts a formatted time-of-day string into a numeric value of seconds
passed midnight. For example, executing this statement:

TIME(18:37:30")

returns the following numeric value in seconds:

31050

DATE converts a formatted date string into a numeric value in seconds. For
example, executing this statement:

DATE(1I26 OCT 1986")

returns the following numeric value in seconds:

2. 11397472E+11

For more information on this subject read the chapter in this manual entitled ~~The Real
Time Clock." Also included in this chapter are the DATE$ and TIME$ string functions.

Numeric Computation 3-29

Base Conversion Functions
The two functions IVAL and DVAL convert a binary, octaL decimaL or hexadecimal
string value into a decimal number.

IVAL returns the INTEGER value of a binary, octal, decimal, or hexadecimal16-bit
integer. The first argument is a string and the second argument is the radix
or base to convert from. For example, executing this statement

IVAL(1I12740 1l .8)

returns the following numeric value:

5600

DVAL returns the decimal whole number value of a binary, octal, decimal, or
hexadecimal 32-bit integer. The first argument is a string and the second
argument is the radix or base to convert from. For example, executing this
statement

DVAL(lIllllllllllllllllllllllllllllll001l .2)

returns the following numeric value:

-4

For more information and examples of these functions, read the section "N umber-Base
Conversion" found in the "String Manipulation" chapter.

3-30 Numeric Computation

General Functions
When you are specifying select code and device selector numbers, it is more descriptiv('
to use a function, such as KBD (returns the select code of the keyboard), to represent
that device as opposed to a numeric value. For example, the following command allows
you to enter a numeric value from the keyboard.

ENTER 2;Numeric_value

The above statement used in a program is not as easy to read as this one is:

ENTER KBD;Numeric_value

where you know the function KBD must stand for keyboard. Therefore, you know the
statement is asking you to enter a numeric value from the keyboard.

Functions which return a select code or device selector are listed below:

CRT Returns the INTEGER 1. This is the select code of the internal CRT.

KBD Returns the INTEGER 2. This is the select code of the keyboard.

PRT Returns the INTEGER 701. This is the default (factory set) device
selector for an external printer (connected through the built-in HP-IB
interface at select code 7).

SC Returns the interface select code associated with an I/O path name.

Another function which fits in the general function category is the RES function. This
function returns the last live keyboard numeric result (same as I RECALL I key).

Numeric Computation 3-31

3-32 Numeric Computation

Numeric Arrays 4
Dimensioning an Array .. 4-2

Some Examples of Arrays .. 4-3
Problems with Implicit Dimensioning 4-8

Finding Out the Dimensions of an Array 4-9
Using Individual Array Elements 4-10

Assigning an Individual Array Element .. 4-10
Extracting Single Values From Arrays 4-10

Filling Arrays ... 4-11
Assigning Every Element in an Array the Same Value 4-11
U sing the READ Statement to Fill an Entire Array 4-11
Copying Entire Arrays into Other Arrays 4-12

Printing Arrays .. 4-14
Printing an Entire Array. .. 4-14
Examples of Formatting Arrays for Display 4-14

Passing Entire Arrays .. 4-16
Copying Subarrays ... 4-16
Redimensioning Arrays ... 4-24
Arrays and Arithmetic Operators 4-26

Using the MAT Statement .. 4-26
Performing Arithmetic Operations with Complex Arrays 4-28
Summing the Elements in an Array 4-29

Boolean Arrays .. 4-30
Reordering Arrays ... 4-32
Sorting Arrays. .. 4-34

Sorting with Automatic REORDER 4-34
Sorting to a Vector. .. 4-36

Searching Numeric Arrays .. 4-38
Numeric Comparisons in MAT SEARCH 4-42

Matrices and Vectors ... 4-47
Matrix Multiplication .. 4-47
Multiplication With Vectors 4-48
Identity Matrix. .. 4-52
Inverse Matrix. .. 4-53

Solving Simultaneous Equations 4-55
Singular Matrices. .. 4-57

The Determinant of a Matrix. .. 4-59
Ill-Conditioned Matrices .. 4-60

Detecting Ill-conditioned Matrices 4-61
Miscellaneous Matrix Functions. .. 4-63

Transpose Function .. 4-63
Summing Rows and Columns of a Matrix .. 4-65
Examples of Complex Array Operations 4-67

U sing Arrays for Code Conversion 4-70

Numeric Arrays 4
An array is a multi-dimensioned structure of variables that are given a common name.
The array can have one through six dimensions. Each location in an array can contain one
variable value, and each value has the characteristics of a single variable; depending on
whether the array consists of REAL, INTEGER or COMPLEX values (string arrays are discussed
in the chapter, "String Manipulation.") Note that many of the statements that deal with
arrays (such as MAT) require the MAT binary.

A one-dimensional array consists of n elements, each identified by a single sUbscript. A
two-dimensional array consists of m times n elements where m and n are the maximum
number of elements in the two respective dimensions. Arrays require a subscript in each
dimension, in order to locate a given element of the array. Up to six dimensions can be
specified for any array in a program. REAL arrays require eight bytes of memory for each
element, plus overhead, and COMPLEX arrays require 16 bytes of memory for each element,
plus overhead. It is easy to see that large arrays can demand massive memory resources.

An undeclared array is given as many dimensions as it has subscripts in its lowest
numbered occurrence. Each dimension of an undeclared array has an upper bound of
ten. Space for these elements is reserved whether you use them or not.

Numeric Arrays 4-1

Dimensioning an Array
Before you use an array, you should tell the system how much memory to reserve for
it. This is called "dimensioning" an array. You can dimension arrays with the DIM, COM,
ALLOCATE, INTEGER, REAL or COMPLEX statements. For example:

COMPLEX Array_complex(2.4)

An array is a type of variable and as such follows all rules for variable names. Unless you
explicitly specify INTEGER or COMPLEX type in the dimensioning statement, arrays default
to REAL type. The same array can only be dimensioned once in a context l . However, as
we explain later in this section, arrays can be REDIMensioned.

When you dimension an array, the system reserves space in internal memory for it. The
system also sets up a table which it uses to locate each element in the array. The location
of each element is designated by a unique combination of subscripts, one subscript for
each dimension. For a two-dimensional array, for instance, each element is identified by
two subscript values. An example of dimensioning a two-dimensional array is as follows:

DIM Array(3.5)

Each unique set of subscript values points to one, and only one, array element. For
example. assuming an OPTION BASE of L to indicate the location of the 3rd element
in the 2nd row of the above array, you would use the following subscript values:

Array(2.3)

The actual size of an array is governed by the numbrr of dimensions and the subscript
range of each dimension. If A is a three-dimensional array with a subscript range of 1
thru 4 for each dimension,

DIM A(1:4.1:4.1:4)

then its size is 4x4x4, 64 elements. Note that 1 on the left side of the colon in the
dimension statement above is the lower bound and 4 on the right is the upper bound.

1 There is one exception to this rule: If you ALLOCATE an array, and then DEALLOCATE it, you can dimension
the array again.

4-2 Numeric Arrays

When you dimension an array, therefore, you must give not only the number of
dimensions but also the subscript range of each dimension. Subscript ranges can be
specified by giving the lower and upper bounds, as shown above, or by giving just the
upper bound. If you give only the upper bound, the lower bound defaults to the current
option base setting.

Each context initializes to an option base of 0 (but arrays appearing in COM statements
with au (*) will keep the ba::;e with which they were originally dimensioned). However,
you can set the option base to 1 using the OPTION BASE statement. You can have only one
OPTION BASE statement in a context, and it must precede all explicit variable declarations.

Some Examples of Arrays
The following examples illustrate some of the flexibility you have in dimensioning arrays.

z
0
ii5
z
w
~
(5
"0
c
C\I

10 OPTION BASE 1
20 DIM A(3.4.0:2)

(1,1,0)

(1,1,1)

(1,2,0)

(1,2,1)

(1,3,0)

(1,3,1)

151 DIMENSION

Figure 5-1. Planes of a Three-Dimensional REAL Array

Dimension

1st

2nd

3rd

Size Lower Bound Upper Bound

3

4

3 a

3

4

2

Numeric Arrays 4-3

In this example we portray the first dimension as plam's. the second dimension as rows.
and the third dimension as columns. In generaL the last two dimensions of any array
always refer to rows and columns, respectively. When we discuss two-dimensional arrays,
the first dimension will always represent rows, and the second dimension will always
represent columns. Note also in the above example that the first two dimensions use the
default setting of 1 for the lower bound, while the third dimension explicitly defines 0 as
the lower bound. The numbers in parentheses are the subscript values for the particular
elements. These are the numbers you use to identify each array element.

10 OPTION BASE 1
20 COM B(1:5.2:6)

(1,2)

(2,2)

(3,2)

(4,2)

(5,2)

(1,3)

(2,3)

(3,3)

(4,3)

(5,3)

(1,4) (1,5) (1,6)

(2,4) (2,5) (2,6)

(3,4) (3,5) (3,6)

(4,4) (4,5) (4,6)

(5,4) (5,5) (5,6)

Figure 5-2. Two-Dimensional REAL Array

Dimension

1st

2nd

4-4 Numeric Arrays

Size Lower Bound Upper Bound

5 1 5

526

10 OPTION BASE 1
20 ALLOCATE INTEGER C(2:4,-2:2)

(2,-2) (2,-1) (2,0) (2,1) (2,2)

(3,-2) (3,-1) (3,0) (3,1) (3,2)

(4,-2) (4,-1) (4,0) (4,1) (4,2)

Figure 5-3. A Dynamically Allocated, Two-Dimensional INTEGER Array

Dimension

1st

2nd
10 OPTION BASE 0
20 COMPLEX 0(1,0)

Size Lower Bound Upper Bound

324

5 -2 2

(0,0) (0,1)

(1,0) (1,1)

Figure 5-4. A Two-Dimensional COMPLEX Array

Dimension

1st

2nd

Size Lower Bound Upper Bound

201

201

Numeric Arrays 4-5

10 COM COMPLEX E(-3:0)

(-3)

(-2)

(-1)

(0)

Figure 5-5. A One-Dimensional COMPLEX Array in Common

Dimension Size Lower Bound Upper Bound

1st 4 -3 0
10 OPTION BASE 0
20 INTEGER F(i,4,-1:2)

(0.0. - 1) 11.0. -11

(0.0.0) (1.0.0)

(0.1. -1) (0.0.1) (1.1.-1) (1.0,1)

101 01 10021 (1 '.0' (1.0.2)

(0.2 -11 (01 11 1'.2. _1' (1.1.11

(0.2.0) 10.1.2) (1.2.0) (1.1.2)

(0.3. -1) (021) (13.-1) (1.2.1)

(0.3.0) (0.22) (1.3.0) (1.2.2)

(04.-1) (0.3.1) (14.-1) 11.3.1)

(04.0) (0.32) (140) (13.2)

(OA.1 J (1.4.1)

10.4.21 (1.4.2)

Figure 5-6. A Three-Dimensional INTEGER Array

Dimension Size Lower Bound Upper Bound

1st 2 0

2nd 5 0 4

3rd 4 -1 2

4-6 Numeric Arrays

Arrays are limited to six dimensions, and the subscript range for each dimension must
lie between -32767 and 32767. (REDIM and ALLOCATE allow the subscript range to go down
to -32768, but the total size of each dimension must be less than 32768 elements.) For
the most part, we use only two-dimensional examples since they are easier to illustrate.
However, the same principles apply to arrays of more than two dimensions as well.

Note

Throughout this chapter we will be using DIM statements without
specifying what the current option base setting is. Unless explicitly
specified otherwise, all examples in this chapter use option base 1.

As an example of a four-dimensional array, consider a five-story library. On each floor
there are 20 stacks, each stack contains 10 shelves, and each shelf holds 100 books. To
specify the location of a particular book you would give the number of the floor, the
stack, the shelf, and the particular book on that shelf. We could dimension an array for
the library with the statement:

DIM Library(5,20, 10,100)

This means that there are 100,000 book locations. To identify a particular book you
would specify its subscripts. For instance, Library(2,12,3,35) would identify the 35th
book on the 3rd shelf of the 12th stack on the 2nd floor.

We can imagine accessing a particular page of a book by using a 5-dimensional array.
For instance, if we dimension an array,

DIM Page(5,20, 10, 100,200)

then Page(1,7,2,19,130) would designate page 130 of the 19th book on the 2nd shelf of
the 7th stack on the 1st floor.

We could specify words on pages by using a 6-dimensional array. Six dimensions is the
maximum, though, so we could not specify letters of words.

Also, you can dimension more than one array in a single statement by separating the
declarations with a comma. For instance,

10 DIM A(l,3,4),B(-2:0,2:5),C(5)

would dimension all three arrays: A, B, and C.

Numeric Arrays 4-7

Problems with Implicit Dimensioning
In any environment. an array must have a dimensioned size. This size can be passed into
an environment through a passed parameter list or a COM statement. It may be explicitly
dimensioned through COM. INTEGER. REAL. COMPLEX or ALLOCATE. It can also be implicitly
dimensioned through a subscripted reference to it in a program statement other than a
MAT or a REDIM statement. An attempt to use an array that does not have a dimensioned
size in the current environment in a MAT or REDIM statement will result in an error. In
other words 1 MAT and REDIM statements cannot be used to implicitly dimension an array.

4-8 Numeric Arrays

Finding Out the Dimensions of an Array
There are a number of statements that allow you to determine the size and shape of an
array. To find out how many dimensions are in an array, use the RANK function. For
instanced:

DIM F(l,4,-1:2)
PRINT RANK (F)

would print 3.

The SIZE function returns the size (number of elements) of a particular dimension. For
instance,

SIZE (F,2)

would return 5, the number of elements in F's second dimension.

To find out what the lower bound of a dimension is, use the BASE function. Referring
again to array F,

BASE (F ,1)

would return a 0, while,

BASE (F,3)

would return a-I.

By using the SIZE and BASE functions together, you can determine the upper bounds of
any dimension (e.g., SIZE+BASE-l=Upper Bound).

It may seem pointless to have all these functions that return the dimension specifications
which you yourself assigned. After all, if you assigned the dimensions, you should know
what they are; and if you forget, you can always look at the appropriate dimensioning
statement. However, these functions are powerful tools for writing programs that perform
functions on an array regardless of the array's size or shape. In addition, the system
automatically redimensions arrays during certain operations. The functions discussed
above provide you with a means for determining the new dimensions. The section in
this chapter entitled "Examples of Formatting Arrays for Display" provides examples of
some general purpose subprograms utilizing the statements covered in this section.

Numeric Arrays 4-9

Using Individual Array Elements
This section deals with assigning and extracting individual elements from arrays.

Assigning an Individual Array Element
Once an array has been dimensioned. the next step is to fill it with useful values. Initially,
every element in an array equals zero. There are a number of different ways to change
these values. The most obvious is to assign a particular value to each element. This is
done by specifying the element's subscripts. For instance. the statement.

A(3.4)=13

would assign the value 13 to the element in the third row and fourth column of A.
You must give enough subscripts for the system to identify a single clement. For a
three-dimensional array, for instance, you would provide three subscripts. All subscripts,
moreoveL must lie within the dimensioned range. If you use out-of-range subscripts. the
system returns an error.

Extracting Single Values From Arrays
As with entering values into arrays, there are a number of ways to extract values as well.
To extract the value of a particular element, simply specify the element's subscripts. For
instance. the statement.

X=A(3.4.2)

would assign the value of the element occupying the given location in A to the variablf'
X. The system will automatically convert variable types. For example. if you assign an
element from a COMPLEX array to an INTEGER variable, the system will perform the
necessary rounding and ignore the imaginary part of the COMPLEX number.

4-10 Numeric Arrays

Filling Arrays
This section will provide you with three methods for filling an entire array. The topics
covered are as follows:

• Assigning Every Element in an Array the Same Value

• Using the READ Statement to Fill an Entire Array

• Copying Arrays into Other Arrays

Assigning Every Element in an Array the Same Value
For some applications, you may want to initialize every element in an array to some
particular value. You can do this by assigning a value to the array name. However, you
must precede the assignment with the MAT keyword. For example,

MAT A= (10)

will assign the value 10 to every element in array A, regardless of A's size. Note that
the numeric expression on the right-hand side of the assignment must be enclosed in
parentheses and that this expression may be INTEGER, REAL or COMPLEX. Let's look at an
example of assigning a COMPLEX value to every element of a COMPLEX array,

MAT C= (CMPLX(l,2))

This statements assigns the complex number 1 + if to every element of the complex
array C.

Using the READ Statement to Fill an Entire Array
You can assign values to an array by using the READ and DATA statements. The DATA
statement allows you to create a stream of data items, and the READ statement enables
you to enter the data stream into an array. For example:

100 OPTION BASE 1
110 DIM A(3, 3)
120 DATA -4,36,2.3,5,89,17,-6,-12,42
130 READ A(*)
140 PRINT USING "3(3DD.DD,3DD.DD,3DD.DD,/)";A(*)
150 END

Numeric Arrays 4-11

The asterisk in lill() 140 is used to (ksignate tlH' ('IltiI'(' array ratlH'r than a single elemellt.
Note also that the right-most subscript varies fastest. In this case, it lIleans that the
system fills an entin' row before going to the next one. The READ/DATA statements are
discussed further in the chapter "Data Storage and Retrieval" .

Executing the above program, produces the following results:

-4.00 36.00
5.00 89.00

-6.00 -12.00

2.30
17.00
42.00

Copying Entire Arrays into Other Arrays
Another way to fill an array is to copy all elements from one array into another!. Suppose,
for example, that you have the two arrays A and B shown below.

A

(~ ~ ~)
Note that A is a 3x3 array which is filled entirely with O's, while B is a 3x2 array filled
with non-zero values. To copy B to A, we would execute:

MAT A= B

Again, you must precede the assignment with MAT. The system will automatically
redimension the "result array" (the one on the left-hand side of the assignment) so that
it is the same size as the "operand array" (the one on the right side of the equation.)
There are two restrictions on redimensioning an array .

• The two arrays must have the same rank (e.g., the same number of dimensions.)

• The dimensioned size of the result array must be at least as large as the current
size of the operand array.

If the system cannot redimension the result array to the proper size, it returns an error.

1 Copying sub-sets of arrays is discussed in the subsequent section called "Copying Subarrays".

4-12 Numeric Arrays

Automatic redimensioning of an array will not affect the lower bounds, only the upper
bounds. So the BASE values of each dimension of the result array will remain the same.
Also keep in mind that the size restriction applies to the dimensioned size of the result
array and the current size of the operand array. Suppose we dimension arrays A, Band
C to the following sizes:

10 OPTION BASE 1
20 DIM A(3,3) ,B(2,2),C(2,4)

We can execute,

MAT A= B

since A is dimensioned to 9 elements and B is only 4 elements. The copy automatically
redimensions A to a 2x2 array. Nevertheless, we can still execute:

MAT A= C

This works because the nine elements originally reserved for A remain available until
the program is scratched. A now becomes a 2x4 matrix. After MAT A= C, we could not
execute:

MAT B= A

or

MAT B= C

since in each of these cases, we are trying to copy a larger array into a smaller one. But
we could execute

MAT C= A

after the original MAT A= B assignment, since C's dimensioned size (8) is larger than A's
current size (4).

Numeric Arrays 4-13

Printing Arrays
Once an array has been filled with values, it is nice to know what those values are. The
best way to do this is to display them on the screen or printer. This section provides
information on how to perform this task for REAL, INTEGER and COMPLEX values.

Printing an Entire Array
Certain operations (e.g., PRINT, OUTPUT, ENTER and READ) allow you to access all clements
of an array merely by using an asterisk in place of the subscript list. The statement,

PRINT A(*) ;

would display every element of A on the current PRINTER IS device. The elements are
displayed in order, with the rightmost subscripts varying fastest. The semi-colon at the
end of the statement is equivalent to putting a s('mi-colon betw('cn each element. When
they are displayed, therefore, they will be separated by a space. (The default is to place
elements in successive columns.)

Examples of Formatting Arrays for Display
This section provides two subprograms which have both been given the name Printmat.
The first subprograin is used to display a two-dimensional INTEGER array and the
second subprogram is used to display a three-dimensional INTEGER array.

To display a two dimensional array, you can use the following subprogram:

240 SUB Printmat(INTEGER Array(*))
250 OPTION BASE 1
260 FOR Row=BASE(Array,1) TO SIZE(Array, 1) +BASE(Array , 1)-1
270 FOR Column=BASE(Array,2) TO SIZE(Array,2)+BASE(Array,2)-1
280 PRINT USING "DDDD,XX,#";Array(Row,Column)
290 NEXT Column
300 PRINT
310 NEXT Row
320 SUBEND

A~~mlllillg that thc array you intended to di~play is a 5 x 5 array. your results should look
similar to this:

11
21
31
41
51

12
22
32
42
52

13
23
33
43
53

14
24
34
44
54

4-14 Numeric Arrays

15
25
35
45
55

If you were to expand the above subprogram to print three-dimensional INTEGER
arrays, your subprogram would be similar to the following:

250 SUB Printmat(INTEGER Array(*))
260 OPTION BASE 1
270 FOR Zplane=BASE(Array,3) TO SIZE(Array,3)+BASE(Array,3)-1
280 PRINT TAB(6),"Plane ";Zplane
290 PRINT
300 FOR Yplane=BASE(Array,2) TO SIZE(Array,2)+BASE(Array,2)-1
310 FOR Xplane=BASE(Array,1) TO SIZE(Array,1)+BASE(Array,1)-1
320 PRINT USING "DDDD,XX,#";Array(Zplane,Yplane,Xplane)
330 NEXT Xplane
340 PRINT
350 NEXT Yplane
360 PRINT
370 NEXT Zplane
380 SUB END

This subprogram displays a three-dimensional array as three subarrays called "planes".
As the subarrays are being displayed by the subprogram, each subarray is given a "plane"
number which represents a "plane" in the first dimension.

If you had a three dimensional array with the following dimensions:

DIM Array1(3,3,3)

filled with all 3's, the results from executing the above subprogram would be as follows:

Plane

3 3
3 3
3 3

Plane

3 3
3 3
3 3

Plane

3 3
3 3
3 3

1

2

3

3
3
3

3
3
3

3
3
3

Numeric Arrays 4-15

Passing Entire Arrays
The asterisk is also used to pass an array as a parameter to a function or subprogram.
For instance1 to pass an array A to the Printmat subprogram listed earlier. we would
write:

Printmat (A(*))

Copying Subarrays
An earlier section discussed copying the contents of an entire array into another entire
array.

MAT Array55= Array33

Each element of Array33 is copied into the corresponding element of Array55 which is
redimensioned if necessary.

Now suppose you would like to copy a portion of one array and place it in a special
location within another array. This process is called copying subarrays.

[

11
21
31
41

Array4x4
12 13

~!] (45
/91 :++$< 34 ~ -

4

44 99 42 43

Array3x4

Figure 5-7. Copying a Subarray into Another Subarray

4-16 Numeric Arrays

Topics discussed in this section are:

• Subarray Specifier

• Copying a Subarray into an Array

• Copying an Array into a Subarray

• Copying a Subarray into a Subarray

• Copying a Portion of an Array into Itself

• Rules for Copying Subarrays

Dimensions for the arrays covered in the above topics will assume an option base of 1
(OPTION BASE 1) unless stated differently.

Subarray Specifier
A subarray is a subset of an array (an array within an array). A subarray is indicated
after the array name as follows:

Array_name (subarray_specifier)

String_array$(subarray_specifier)

The above subarray could take on many "sizes" and "shapes" depending on what you
used as dimensions for the array and the values used in the subarray_specifier. Note that
"size" refers to the number of elements in the subarray and "shape" refers to the number
of dimensions and elements in each dimension, respectively [e.g. both of these subscript
specifiers have the same shape: (-2: 1, -1: 10) and (1:4,9: 20)]. Before looking at ways
you can express a subarray lets learn a few terms related to the sub array specifier.

subscript range

subscript expression

is used to specify a set of elements starting with a beginning
element position and ending with a final element position.
For example, 5: 8 represents a range of four elements starting
with element 5 and ending at element 8.

is an expression which reduces the RANK of the subarray. For
example if you wanted to select a one-element sub array from
a two-dimensional array which is located in the 2nd row and
3rd column, you would use the following subarray specifier:
(2,3:3). The subscript expression in this subarray specifier
is 2 which restricts the subarray to row 2 of the array.

Numeric Arrays 4-17

default range is denoted by an asterisk (i.e. 0, *)) and represents all
of the elements in a dimension from the dimension's lower
bound to its upper bound. For example, suppose you
wanted to copy the entire first column of a two dimensional
arraYl you would use the following subarray specifier: (* ,1),

where * represents all the rows in the array and 1 represents
only the first column.

Some examples of subarray specifiers are as follows:

0, *) a subscript expression and a default range which designate the first row
of a two-dimensional array.

0: 2) a given subscript range which represents the first two elements of a one
dimensional array.

(*, -1: 2) a default range and subscript range which represents all of the elements
in the first four columns of a two-dimensional array (base of 2nd
dimension assumed to be -1).

(3,1: 2) a subscript expression and subscript range which represent the first two
elements in the third row of a two-dimensional array.

0, *, *) a subscript expression and two default ranges which represent a plane
consisting of all the rows and columns of the first plane in the first
dimension.

(1,1: 2, *) a subscript expression, subscript range and default range which represent
the first two rows in the first plane of the first-dimension.

0,2, *) two subscript expressions and a default range which represent the entire
second row in the first plane of the first-dimension.

(1: 2,3: 4) two subscript ranges which represent elements located in the third and
fourth columns of the first and second rows of a two-dimensional array.

For more information on string arrays, see the "String Manipulation" chapter found in
this manual.

4-18 Numeric Arrays

Copying an Array into a Subarray
In order to copy a source array into a subarray of a destination array, the destination
array's subarray must have the same size and shape as the source array.

A destination and source array are dimensioned as follows:

100 OPTION BASE 1
110 DIM Des_array(-3:1,5),Sor_array(2,3)

Suppose these arrays contain the following INTEGER values:

[

11
21
31
41
51

Des_array
12 13 14
22 23 24
32 33 34
42 43 44
52 53 54

15] 25
35
45
55

Sor_array

you would copy the source array (Sor_array) into a subarray of the destination array
(Des_array) by using program line 190 given below:

190 MAT Des_array(-1:0,2:4)= Sor_array

Des_array would have the following values in it as the result of executing the above
statement.

[

11
21
31
41
51

Des_array
12 13 14
22 23 24

52 53 54

15] 25
35
45
55

Numeric Arrays 4-19

Copying a Subarray into an Array
A subarray can be copied into an array as long as the array can be re-dimensionrd to b('
the size and shape of the subarray specifier.

A destination and source array are dimensioned as follows:

100 OPTION BASE 1
110 DIM Des_array(8) ,Sor_array(-5:4)

Suppose both of these one-dimensional arrays contain the following values:

Sor_array

(-1 14 8 4 98 43 90 -3) (-11 100 8 18)

you would copy a subarray of the source array (Sor _array) illto a destination array
(Des_array) by using program line 190 given below:

190 MAT Des_array= Sor_array(-4:1)

Des_array will be re-dimensioned to have 6 elements with the following values in it as a
result of executing the above statement.

4-20 Numeric Arrays

Copying a Subarray into another Subarray
Subarray specifiers must have the same size and shape when you are copying one subarray
into another.

A destination and source array are dimensioned as follows:

100 OPTION BASE 1
110 DIM Des_array(3.2.2),Sor_array(2.3,2)
120
130

Suppose these three dimensional arrays contain the following values:

Des_array

tffij
tffij

2 2

tHE
2 2

1 1

1 1

Sor_array

211 212

221 222

1.-1/1 112
231 m

121 122

131 132

in order to properly copy a source subarray (Sor _array (* .2. *») into a destination
sub array using asterisks to represent the ranges of dimensions, you would use line 190
given below:

190 MAT Des_array(3.*.*)= Sor_array(*.2.*)

A three dimensional array with the following values in it would be the result of executing
the above statement.

[1l1l1~1~1
[ili]

Numeric Arrays 4-21

Copying a Portion of an Array into Itself
If you are going to copy a subarray of an array into another portion of the same array,
the two subarray locations should not overlap (e.g., MAT Array (2: 4 . 1 : 3) = Array (1 : 3 . 2: 4)
is an improper assignment). No error message will result from this misuse, but the result
is undefined.

A d('stination and source array are dimensioned as follows:

100 OPTION BASE 1
110 DIM Array(4.4)

Suppose this two dimensional array contains the following valucs:

Array

[

11
21
31
41

~~ ~ \~;]
to copy a slice of this array into another portion of the samc array, you would use program
line 190 given below:

190 MAT Array(3:4.1:2)= Array(1:2.3:4)

Array will have the following values in it as a result of executing the above statement.

Array

[

11 12 13
21 22 23
lS<>Pk 33
~3::24< 43

14] 24
34
44

Note that you cannot copy a subarray into the array it is part of with an implied re
dimensioning of the array. A statement of the form:

Array= Array(subarray_specifier)

will always generate a run-time ('rror.

4-22 Numeric Arrays

Rules for Copying Subarrays
This section should help limit the number of syntax and runtime errors you could make
when copying subarrays. A previous section entitled "Subarray Specifier" provided you
with examples of the correct way of writing sllbarray sperifiers for copying subarrays. In
this section, you will be given rules to things you should not do when copying subarrays.
The rules are as follows:

• Subarray specifiers must not contain all subscript expressions (i.e. (1,2,3) is not
allowed, it will produce a syntax error). This rule applies to all subscript specifiers.

• Subarray specifiers must not contain all asterisks (*) or default ranges (i.e. (*, *, *)

is not allowed, it will produce a syntax error). This rule applies to all subscript
specifiers.

• If two subarrays are given in a MAT statement, there must be the same number of
ranges in each subarray specifier. For example:

MAT Des_arrayl(1:10,2:3)= Sor_array(5:14,*,3)

is the correct way of copying a subarray into another subarray provided the default
range given in the source array (Sor_array) has only two elements in it. Note that
the source array is a three-dimensional array. However, it still meets the criteria
of having the same number of ranges as the destination array because two of its
entries are ranges and one is an expression.

• If two subarrays are given in a MAT statement, the subscript ranges in the source
array must be the same shape as the subscript ranges in the destination array. For
example, the following example is legal:

MAT Des_array(1:5,O:1)= Sor_array(3,1:5,6:7)

however, the following example is not legal:

MAT Des_array(O:1,1:5)= Sor_array(1:5,O:1)

because both of its subarray specifiers do not have the same shape (i.e. the rows
and columns in the destination array do not match the rows and columns in the
source array).

Numeric Arrays 4-23

Redimensioning Arrays
In our discussion of copying arrays we saw that the system automatically redimensions
an array if necessary. BASIC also allows you to explicitly redimension an array with the
REDIM statement. As with automatic redimensioning, the following two rules apply to all
REDIM statements:

• A REDIMed array must maintain the same number of dimensions .

• You cannot REDIM an array so that it contains more elements than it was originally
dimensioned to hold.

Suppose A is the 3 x 3 array shown below.

A

U ~ ~l
To redimension it to a 2 x 4 array, you would execute:

REDIM A(2.4)

The new array now looks like the figure below:

2
6

A

Note that it retains the values of the elements, though not necessarily in the same
locations. For instance, A(2,1) in the original array was 4, whereas in the redimensioned
array it equals 5. For example, if we REDIMed A again, this time to a 2 x 2 array, we would
get:

REDIM A(0:1.0:1)

A

(~ ~)
We could then initialize all elements to 0:

MAT A= (0)

A

(~ ~)

4-24 Numeric Arrays

It is also important to realize that elements that are out of range in the REDIMed array
still retain their values. The fifth thru ninth elements in A still equal 5 thru 9 even
though they are now inaccessible. If we REDIM A back to a 3x3 array, these values will
reappear. For example:

REDIM A(3,3)

results in:

A

(~ ~ ~)
One of the major strengths of the REDIM statement is that it allows you to use variables
for the subscript ranges: this is not allowed when you originally dimension an array. In
effect, this enables you to dynamically dimension arrays. This should not be confused
with the ALLOCATE statement which allows you to dynamically reserve memory for arrays.
In the example below, for instance, we enter the dimensions from the keyboard.

10 OPTION BASE 1
20 COMPLEX A(100,100)
30 INPUT "Enter lower and upper bounds of dimensions",

Low1,Up1,Low2,Up2
40 IF (Up1-Low1+1)*(Up2-Low2+1»10000 THEN Too_big
50 REDIM A(Low1:Up1,Low2:Up2)

Line 40 tests to see whether the new dimensions are too big. If so, program control is
passed to a line labelled "Too_big". If line 40 were not present, the REDIM statement
would return an error if the dimensions were too large.

Numeric Arrays 4-25

Arrays and Arithmetic Operators
BASIC allows you to multiply, divide, add, and subtract scalars to an array, as well as
to add, subtract, multiply, and divide one array to another. It is also possible for you to
add all the elements in an array to produce a single result. This section covers a function
and operations which allow you to perform these tasks with INTEGER, REAL, and COMPLEX
data types.

Using the MAT Statement
All arithmetic functions involving arrays must be preceded by the MAT keyword. The
specified operation is performed on each individual element in the operand array(s) and
the results are placed in the result array. The result array must be dimensioned to be at
least as large as the current size of the operand array (s). If it is of a different shape than
the operand array(s), the system will redimension it. Given the array A below, note how
these arithmetic functions are performed.

To add 3 to each element of array A, you would use the following statement:

MAT B= A+(3)

The result of the above addition is array B below:

B
5
8
11

To divide each element of array B above by 2, you would use the following statement:

MAT C= B/(2)

The result of the above division is array C given below:

4-26 Numeric Arrays

To multiply each element in array C by a scalar expression, you would use a statement
similar to the following:

MAT C= C*(l+l+l)

The above statement multiplied each element in array C by 3 and placed that result in
array C as shown below:

C
7.5
12

16.5

Note that the result array can be the same as the operand array. Also, the scalar must
be enclosed in parentheses.

In addition to performing arithmetic operations with scalars, you can also add, subtract,
divide and multiply two arrays together. Except for multiplication with an asterisk,
which is described later, these functions proceed as follows: Corresponding elements of
each operand array are processed according to the specified operation, and the result is
placed in the result array. The two operand arrays must be exactly the sp'me size though
their particular subscript ranges can be different. For multiplication, use a period rather
than an asterisk. Using arrays A and B above, the statement,

MAT 0= A+B

would give the array:

D

(1

5

1

7
195) 13

17 19 21

The statement,

MAT B= A.B

would give:

B

(2~
10

18) 40 54
70 88 108

Numeric Arrays 4-27

Again. the dimensioned size of the result array must be as large as the current size of
each operand array. The two operand arrays must be identical in shape and size, but
not necessarily in subscript ranges. For instance, A and B could have been dimensioned:

10 DIM A(1:3,2:4) ,B(-1:1,O:2)

Performing Arithmetic Operations with Complex Arrays
Remember that each of the operations mentioned in the previous section can be
performed with complex arrays. The resulting array. if it is of type COMPLEX, will have
both a real and an imaginary part in each clement location. For example, you may have
a two-dimensional complex array that looks like this:

Op_array

(
2 4 -1 35)

-6 1 9

where the dimension statement is given as follows:

COMPLEX Op_array(-1:0,1:2)

The element Op_array (-1,1) contains the value:

2 4

where 2 is the real part of the complex number and 4 is the imaginary part.

If you were to multiply each of the complex values in the above matrix by a scalar value
of 2, you would use the following statement:

MAT Complex_result= Op_array*(2)

The above statement would produce the following complex array:

Complex_result

(

4 8 -2 10)

-12 2 18 6

Note that if the resulting array (Complex_result) had been of type REAL or INTEGER, the
results in array Complex_result would look like this:

-2)
18

This is due to the automatic type conversion made from COMPLEX to REAL or INTEGER.

Notice that the imaginary part of the complex numbers in the array were dropped.

4-28 Numeric Arrays

Summing the Elements in an Array
SUM is a function that returns the sum of all elements in an array. It works for arrays
of any dimension. Given the array A below:

r ~_
~ -;)

The following use of the SUM function:

SUM (A)

would return 29.

A
2
8
2

-11 16
o)

There are also functions that compute the sum of an entire row or column of an array.
However, these functions are limited to two-dimensional arrays and are discussed in the
subsequent section of this chapter entitled "Summing Rows and Columns of a Matrix."

Numeric Arrays 4-29

Boolean Arrays
In addition to the arithmetic operators, you can also use relational operators with arrays.
The result is a boolean! array (e.g., an array composed entirely of l's and O's). Given
array B. suppose you wanted to know how many elements were greater than 50. First
you execute the statement,

MAT F= B>(50)

which results in the array:

(~
F
o
o

assuming array B has 4 elements in it greater than 50. Then you execute the statement,

PRINT SUM(F)

which causes the computer to display "4" on the current PRINTER IS device.

NOTE

The only comparison operators allowed with COMPLEX arrays are =
and <>.

1 Strictly speaking, these are not really boolean arrays since the values of the elements are not TRUE and
FALSE.

4-30 Numeric Arrays

You can also compare two arrays to each other. If, for example, you wanted to compare
the two arrays below,

you could execute the statement:

MAT C= A=B

By looking at C, you can tell which elements are the same for both A and B.

C

(~ ~ ~]

Numeric Arrays 4-31

Reordering Arrays
The MAT REORDER statement allows you to re-arrange an array so that one dimension is in
a particular order. The new order is specified in a vector (a vector is a one-dimensional
array). The vector contains the subscripts of the reordered dimension in their new order.
The subscripts must correspond to the array's current dimensions and subscript ranges.
Note that MAT REORDER works with REAL, INTEGER, COMPLEX and string arrays. However, as
you might suspect, the reordering vector cannot be a COMPLEX vector.

Suppose A is the array below. Let us also assume that A has been dimensioned in OPTION
BASE 1, and that the upper bound to both dimensions is 3.

A
3
5
8 ~]

To reverse the order of the rows, we would first dimension a vector,

10 DIM Reverse(3)

and then assign its clements the following values:

Reverse(1)=3
Reverse(2)=2
Reverse(3)=1

The vector Reverse now contains:

If we execute the statement,

MAT REORDER A BY Reverse

t he result array will be:

4-32 Numeric Arrays

Reverse

A
8
5
3

Note that the rows are exchanged, rather than the columns. This is because the default
is to re-order the 1st dimension. However, you can override the default by specifying
a particular dimension to be re-ordered. For example, if we wanted to reverse columns
rather than rows, we could use the same vector, but this time specify dimension 2:

MAT REORDER A BY Reverse.2

The transformation would be:

A A

(~
8 n U

8 n 5 * 5
3 3

Remember that although our examples are confined to two dimensions for illustrative
purposes, the same principles apply to arrays of three and more dimensions. In a three
dimensional array, for instance, reordering the 1st dimension would reorder planes rather
than rows or columns.

In most cases, rather than creating a reorder vector and assigning values to it, you will
already have a vector as the result of a sort operation. This is true execept in the case
of COMPLEX arrays which can not be sorted because the < and> operators are not
defined for them.

Numeric Arrays 4-33

Sorting Arrays
A frequent operation performed on arrays is a sort. Sorting an array rearranges the array
so that one dimension (which you specify) is in numerical order. This section covers:

• Sorting with Automatic REORDER

• Sorting to a Vector

NOTE

You cannot sort COMPLEX arrays because < and > operations are
not defined for them.

Sorting with Automatic REORDER
Given the array A below, watch how the MAT SORT changes it.

A

(
5 6 8)
351
248

MAT SORT A(*,l)

The asterisk specifies the dimension to be sorted, and the subscript(s) tells which elements
in that dimension to use as the sorting values. In the example above, we told the system
to sort rows (asterisk is located in the first subscript position), and to use the first element
in each row as the sorting value. With the new array A (from the sort performed above).
the following statement will sort columns using the second element in each column as
the sorting value.

MAT SORT A(2,*)

4-34 Numeric Arrays

The key values in this sort are 1, 3 and 5, the second elements in each column. Sorting
by placing the lowest values first is know as sorting by "ascending" order. This is the
default. You can also sort by "descending" order by specifying the secondary keyword
DES. For instance, the statement,

MAT SORT A(*.2) DES

would produce the following transformation:

A

[
8 2 4)
135
856

Sometimes the values of two or more sorting elements are the same. For instance, if we
sorted A by rows using the first element,

MAT SORT A(*.1)

we get:

A A

[
8 5 6

) ["I? 3 5

) 1 3 5 => .8 5 6
8 2 4 Ati 2 4

The first elements in the last two rows are the same, so the system leaves them in the
order they held before the sort. However, you can specify a second sort element to be
used in the case of ties. We could execute:

MAT SORT A(*.1). (*.2)

This tells the system to sort by rows using the first element as the sorting value; and in
the case of ties, to use the second element. The result array would be:

A A

3 5)
5 6
2 4

If a key is specified that is recognized by the system as rendering all other keys redundant
(such as a non-substringed key for a one dimensional string array) no other keys can be
specified. However, if the computer cannot tell that keys are redundant (such as MAT
SORT A(*.X) .A(*.V) with X equal to v) it will permit redundant keys. Redundant keys
will slow down execution of the MAT SORT statement. If you include the DES secondary
word, it refers only to the sort element which immediately precedes it.

Numeric Arrays 4-35

Sorting to a Vector
So far, all of our sort examples have actually re-arranged the array in question.
Alternatively, you can record the new order in a vector and leave the array intact. The
vector must have been dimensioned to have at least as many elements as the current size
of the array being sorted. If necessary, the system will redimension the vector. Thus,
executing the statement:

MAT SORT A(3.*) TO Vect

with the array A:

(~
A
3
2
5

The array A remains unchanged, but the vector Vect now contains the values:

This assumes that the array A has been dimensioned so that the subscript range is 1
thru 3. If A had been dimensioned:

10 DIM A(1:3.-1:1)

then Vect would contain the values:

Vect

(0 1 -1)
This vector should look very reminiscent of the vectors used to reorder arrays. And. in
fact, you can use these vectors in a MAT REORDER statement to rearrange the array. That
is, we could now execute:

MAT REORDER A BY Vect.2

and the new array would be:

4-36 Numeric Arrays

Note that the dimension number in the MAT REORDER statement corresponds to the position
of the asterisk in the MAT SORT statement.

Sorting to a vector is particularly useful if you want to sort the same array along different
dimensions or using different sort elements. Each sort can be stored in a vector to be
used later. Meanwhile, the original array remains unchanged.

In addition, sorting to a vector allows you to use the same sorting order with parallei
arrays. That is, if you have several arrays that contain data about the same elements,
you can sort one of them, and then use that same sorting order to reorder the others.

Finally, sorting to a vector enables you to manipulate an unsorted array as if it were
sorted. For instance, suppose you have the array shown below.

A
7
1
3

Let us also assume that the subscript range for each dimension in A is 1 thru 3. If we
sort A to a vector B,

MAT SORT A(*,l) TO B

we can then use B to define elements in A. For instance to get the value of A(l,l) in its
sorted form, we could write:

X=A(B(l),l)

In this case, X would equal o. By incrementing the subscript value of B, we can simulate
a sorted A

We should point out again that although these examples are two-dimensional, the same
principles apply to arrays of any rank. You must have one, and only one, asterisk in the
subscript list of a sort. The other subscripts specify the particular elements to be used
as the sorting keys.

Numeric Arrays 4-37

Searching Numeric Arrays
The purpose of the MAT SEARCH statement is to search for user-defined conditions within
an array. This information is returned to a variable for recall and examination. Topics
covered in this section are:

• Searching a Vector

• Numeric Comparisons in MAT SEARCH

• Searching a Three-dimensional Array

• Searching for Multiple Occurrences

For information on searching string arrays, read the chapter 1Il this manual entitled
"String Manipulation."

Searching a Vector
The following program called Mat_search (on the "Manual Examples Disc1

') demonstrates
a search for maximum and minimum values and their locations and the number of
occurrences of the maximum and minimum values. It also includes a search for the
location of a val~e less than a given expression. Note that within this program is a
sample of some of the possible types of searches you can make using the MAT SEARCH
statemf'nt. Lines 170 to 230 contain thf'sf' samplf' sf'archf's.

100 OPTION BASE 1
110 DIM Numbers(11)
120
130 DATA 6,1,9,2,8,3,8,9,1,7,5
140
150
160
170
180
190
200
210
220
230
240
250
260

READ Numbers(*)

MAT SEARCH Numbers,MAX;Max
MAT SEARCH Numbers,LOC MAX;Loc_max
MAT SEARCH Numbers,MIN;Min
MAT SEARCH Numbers,LOC MIN;Loc_min
MAT SEARCH Numbers,#LOC(Max);Num_max
MAT SEARCH Numbers,#LOC(Min) ; Num_min
MAT SEARCH Numbers,LOC«2) ;Loc_num,4

4-38 Numeric Arrays

Select option base.
Dimension source array.

Random data.

Input data to source array.

Search for maximum value.
Find location of maximum value.
Search for minimum value.
Find location of minimum value.

Search for # of maximums.
Search for # of minimums.
Starting with element 4,
return the first location of
a number less than 2.

270 ! Print the results.
280
290 PRINT liThe maximum value isll;Max;II.II;
300 PRINT II Its first occurrence is in array elementll;Loc_max;II.1I
310 PRINT
320 PRINT liThe minimum value isll;Min;II.II; ! Print results.
330 PRINT II Its first occurrence is in array elementll;Loc_min;II.1I
340 PRINT
350 PRINT liThe number of maximum value occurrences isll;Num_max;II.1I
360 PRINT
370 PRINT liThe number of minimum value occurrences isll;Num_min;II.1I
380 PRINT
390 PRINT IIStarting at array element 4. the first occurrence II.
400 PRINT lIof a numberll
410 PRINT IIless than 2 is in array elementll;Loc_num;II.1I
420 END

If this program is run, the following results are obtained.

The maximum value is 9 Its first occurrence is in array

The minimum value is 1 Its first occurrence is in array

The number of maximum value occurrences is 2

The number of minimum value occurrences is 2

element

element

Starting at array element 4. the first occurrence of a number
less than 2 is in array element 9

3

2

The following is an explanation of the program Mat_search. All searches in this program
start with the lower bound and work their way to the upper bound except where stated
otherwise.

Line 170 of Mat_search uses the condition field MAX to search for the first occurrence of
the maximum value in the array called Numbers. Max is the variable which receives the
result of the search.

Line 180 of Mat_search uses the condition field LOC MAX to search for the location of the
first occurrence of the maximum value in the array called Numbers. Loc_max is the variable
which receives the result of the search.

Numeric Arrays 4-39

Line 190 of Mat_search us<:'s the condition field MIN to search for the first occurrence of
th<:' minimum value in th<:' array called Numbers. Min is the variable which receives th<:'
result of the search.

Line 200 of Mat_search uses the condition field LaC MIN to search for the location of the
first occurrence of the minimum value in the array called Numbers. Loc_min is the variable
which receives the result of the search.

Line 210 of Mat_search uses the condition field #LOC (Max) to search for the total number
of occurrences of the value of the variable Max in the array Numbers. Max was determined
as the maximum value ill the array 011 line 170 and the new variable Num_max receives the
result of executing program line 210.

Line 220 of Mat_search uses the condition field #LOC (Min) to search for the total number
of occurrences of t he value of t he variable Min in the array Numbers. Min was determined
as the minimum value in the array on line 190 and the new variable Num_min receives the
result of executing program line 220.

Line 230 of Mat_search uses the condition field LaC «2) to search for the location in the
array Numbers of the first occurrence of a number less than 2. There is another field
added to the MAT SEARCH statement called the "starting subscript." This field allows you
to begin a search from a location other than the lower bound. In the case of program
line 230, the starting subscript is 4 which says the search will begin at array element 4
and continue toward the upper bound of the array.

Searching an Array by Descending Subscripts
If for some rf'ason you need to search an array by descending subscript values, use the
MAT SEARCH statement's DES option after the array's key specifier (i.e. Array 0, *) DES).

This option causes a search to begin at the upper bound of a dimension in an array
and proceed toward the lower bound of that same dimension. If a starting subscript is
specified in the MAT SEARCH statement, then the search will begin at that specified location
in the dimension being searched and proceeds toward the lower bound of that dimension.
For example,

MAT SEARCH Array(1,*) DES,MAX;Max_value,6

searches the first row of a two-dimensional array called Array starting from the 6th
element of that row and going toward the first element.

4-40 Numeric Arrays

Before continuing with our discussion of searching an array by descending subscripts, let's
look at the following table to clarify the difference between a search done by ascending
subscripts and one done by descending subscripts.

Starting Subscript No Starting Subscript
Search Order Given Given

... "rocmr!;nrr (r!of<>111t\
UiClvv~~'-..I..J.~..I.O ''-..I.'-'..I.UoI\A..I.1lJ I starting subscript ----> upper bound lower hound ----> upper bound

descending starting subscript ----> lower bound upper bound ----> lower bound

If you substitute program lines 170 to 230 given below for the same program lines in
the program called Mat_search explained in the previous section, you will find that the
results produced are different.

170 MAT SEARCH Numbers DES,MAX;Max ! Search for maximum value.
180 MAT SEARCH Numbers DES,LOC MAX;Loc_max !Find location of maximum value.
190 MAT SEARCH Numbers DES,MIN;Min ! Search for minimum value.
200 MAT SEARCH Numbers DES,LOC MIN;Loc_min !Find location of minimum value.
210 MAT SEARCH Numbers DES,#LOC(Max);Num_max Search for # of maximums.
220 MAT SEARCH Numbers DES,#LOC(Min) ; Num_min Search for # of minimums.
230 MAT SEARCH Numbers DES,LOC«2);Loc_num,4 Starting with element 4,
240 return the first location of
250 a number less than 2.

Executing the above program lines within the program called Mat_search, will result in
the following output:

The maximum value is 9 Its first occurrence is in array element 8

The minimum value is 1 Its first occurrence is in array element 9

The number of maximum value occurrences is 2

The number of minimum value occurrences is 2

Starting at array element 4, the first occurrence of a number
less than 2 is in array element 2

Notice that the results given for the maximum and minimum values did not change and
neither did the number of times they occurred within the output on the display. However,
the locations of the data values did change. The reason for the change in data location
is you began the search from the upper bound of the dimension being searched. Since
there were two 9's in the dimension being searched the first one encountered was in a
different location than the first time this program was run. The same thing is true for
the search for the location of a minimum value and the value less than 2.

Numeric Arrays 4-41

Numeric Comparisons in MAT SEARCH
Numeric comparisons are made when using the MAT SEARCH statement. Th(' type of
comparison made is determined by the condition option (e.g. MAX, LOC, MIN, etc.) of
this statement. The MAX, MIN, LOC MAX, and LOC MIN conditions imply the use of
the > and < relational operators (for MAX and MIN, respectively).

The condition options LOC and #LOC of a MAT SEARCH statement have as their arguments
a relational operator along with an expression. There are six relational operators which
can be used with this argument, they are: <, <= , =, <>, >=, >. If none of these
operators are used, the default operator = is assumed. Some examples of these options
being used to search a one-dimensional array are as follows:

MAT SEARCH Array. LOC «>4) ; Location assigns the location of the first element found
not equal to 4 to th(' variable Location.

MAT SEARCH Array. #LOC (>=7) ; Nwn_ value assigns the total number of occurrences of
values greater than or equal to 7 in the array
called Array to the variable Nwn_value.

The expression is converted to the same data type as the array before the comparisons
are done. For example, if Array is an INTEGER array, then the following statement:

MAT SEARCH Array.LOC(2.7) ;Location

assigns the location of the first occurrence of the value 3 (in Array) to the variable
Location.

NOTE

COMPLEX arrays can only be searched using the = and <> relational
operators.

For a complete discussion of the cond£tion option in the MAT SEARCH statement read the
BASIC Language Reference.

4-42 Numeric Arrays

Searching a Three-Dimensional Array
It is important to know that the MAT SEARCH statement works on only one dimension
of an array. If you are searching a one-dimensional array there is no problem with
searching the whole array. However, if you are searching a multi-dimensional array you
need to specify only one dimension of that array in the key specifier of the MAT SEARCH

statement. For example, assume that array SearCh_array is a three dimensional numeric
array dimensioned using the following dimension statement:

100 DIM Search_arrayC4.2.3)

and that this array contains the following random numbers:

c
.2

(J)

c

~~
c

N

Search_array

[ililiJ
[2Iili]

tffiE2 3

ffillij
6 3 1

497

e 135
813

9 1 a s\o'0
'.rl"\e'0 \)\\' .

3rd Dimension

Assume that the shaded locations are to be searched until one is found which contains a
value greater than 5. Let Value_loc represent the variable to which the location of the
specified condition is returned.

The shaded memory locations must be described by a key specifier. Since they lie along
the first dimension, the planes in which they lie are defined accordingly. The correct key
specifier is:

Note that the key specifier is written in the same format as that used for a MAT SORT key
specifier. The subscripts are written in the same order as the array dimensions (see the
numbered arrows). The first subscript is an asterisk which indicates that the subscript is
varied over its range of values, and the remaining subscripts define the fixed "row" and
"column" locations.

Numeric Arrays 4-43

The correct search statement for this example is

MAT SEARCH Search_array(*,l,3),LOC(>5);Value_loc

where:

Search_array is the array being searched.

(* , 1 ,3) defines the locations to be searched.

LOC (>5) specifies the condition to be satisfied.

Value_loc is the variablr to which thr location vahIf' is rrturnrd.

After execution of the search statement, the number 3 is returned to the variable
Value_loco This is the first plane where the value of the specified location satisfies the
condition option (i.e .. it contains a vahIf' greater that 5). Searching begins at the lower
bound of the key specifier's dimension which contains the asterisk, and proceeds toward
the upper bound of the same dimension until a value satisfying the condition option is
located.

If a condition is not satisfied upon completion of the searching process, a value one
greater than the upper limit of the varied subscript is returned to the numeric variable.
For example, if the specified locations in the previous example are searched for a value
greater than 8, none is found. Therefore. a value of 5 representing a number onr grrater
than the plane containing the last searched location is returned to Value_loco Note that
if the upper limit of the varied subscript is 32767, the value returned by an unsuccessful
search is -32768.

The key specifier initially defines the range of locations to be searched. If you do not
wish to search the entire range. a starting subscript specifier can be used to designate
where the search is to begin. Using the previous example, assume that the search process
is to scan only the last three planes for the location of a value less than 5. The correct
search statement to be used is

MAT SEARCH Search_array(*,l,3),LOC«5);Value_loc,2

w here the number 2 directs the search to begin at the specified location in the second
plane and proceed to the last plane. Upon execution, the number 2 indicating the second
plane is returned to the variable Value_loc because the content of its specified location
is the first to satisfy the cond£tion.

4-44 Numeric Arrays

Searching for Multiple Occurrences
Normally, a LOC search ends at the first location which satisfies the specified condition.
However, additional satisfactory values may exist beyond that location. By setting the
starting address to be one greater than the content of the Value_loc variable, a search can
be continued past the first location which satisfied the LOC condition. This automatically
continues a search from where a previous search left off. All values which satisfy the given
condition can be obtained in this way. As an example, assume that array Search_array
is a three dimensional numeric array containing random numbers as shown.

tffij ffiE 7 2
2 9

tffij
tilij

1 5

tffij
7 7

o 4

8 3

Assume that the shaded memory locations are to searched for values greater than 2. A
single MAT SEARCH scan would stop at the second plane since it is the first one encountered
w hose content satisfies the condition.

Numeric Arrays 4-45

However, by constructing a loop and using the proper 8tarting 8ub8cript spE'cifier. th('
search can be made to continue through the range of spE'cifi('d locations. The following
program demonstrates this feature.

100 OPTION BASE 1
110 DIM Array(5,2,2)
120

Select the option base.
Dimension Array.

130 DATA 7,2,2,9,4,3,1,6,0,4,8,3,1,5,7,7,6,6,0,4 Random data.
140
150 READ Array(*)
160
170 Subscript=O
180
190
200 LOOP

Read data into Array.

Initialize Subscript so first
search is in plane 1 of Array.

210 MAT SEARCH Array(*,1,2),LOC(>2);Subscript,Subscript+1 ! Search
220 for locations containing numbers greater than 2.
230 EXIT IF Subscript=6 Test: Have all locations been searched?
240 DISP Subscript; Display most recent search results.
250 EXIT IF Subscript=5 Test: Has search reached last location?
260 If not, continue.
270 END LOOP
280 END

The variable Subscript is initially set to zero. Lines 200 through 270 form a search loop.
Line 210 begins the search routine. SincE' Subscript was SE't to zero. thE' starting subscript
specifier (Subscript + 1) directs the search to begin at plane one. Line 230 tests to see
if the specified locations have all been searched. (Remember, if all locations have been
searched, a number one greater than the last plane searched is r('turnE'd to the variabl('.
In this case, that number is six.) If all locations havE' not YE't been searched. line 240
displays the contents of Subscript (it now contains a satisfactory value). If Subscript
contains a value less than 5, the search is not finished and line 270 directs the program
to search again until a loop exit is made. Due to the nature of the starting subscript
specifier, the search begins this time at the next memory location beyond that which
satisfied the condition previously. In other words, the search resumes where it left off. If
you run this program. the follO\ving should be displayed:

234 5

4-46 Numeric Arrays

Matrices and Vectors
A two-dimensional numeric array is called a "matrix" and a one-dimensional numeric
array is called a "vector". An entire branch of mathematics is devoted to matrices and
vectors, and their applications are surprisingly broad. Keep in mind that the functions
described in this section apply only to two-dimensional, and occasionally one-dimensional
arrays, but never to arrays of more than two dimensions. Also, all functions described
in this section apply to REAL, INTEGER and COMPLEX data types.

Matrix Multiplication
You may recall from our discussion of arrays and arithmetic operations that the asterisk
(*) is reserved for matrix multiplication. If A is an i-by-k matrix and B is a k-by-j matrix.
then C=A *B is defined by the following equation:

Translated into english, this equation means that the element in the ith row and jth
column of the product (C) is the sum of the products by pairs of the elements in the ith
row of A and the jth column of B. A couple of examples will help make this clear.

Suppose A and B are the matrices shown below.

A B

[! 8

~) [~6
-2 n 6 4

2 8

If C=A*B, then:

C(1.1)=A(1.1)*B(1.1)+A(1.2)*B(2.1)+A(1.3)*B(3.1)=(3*1)+(8*-6)+(2*0)=-45
C(2.1)=A(2.1)*B(1.1)+A(2.2)*B(2.1)+A(2.3)*B(3.1)=(1*1)+(6*-6)+(5*0)=-35
C(3.2)=A(3.1)*B(1.2)+A(3.2)*B(2.2)+A(3.3)*B(3.2)=(4*-2)+(2*4)+(0*8)=0

Following this procedure for each element in C, we get the matrix shown below.

MAT C= A*B

C

[=~~ :~ ~~)
-8 0 26

Numeric Arrays 4-47

Note that the product is a 3x3 matrix. There are three gClleral rules to matrix
mult iplic at ion:

• Multiplication between two matrices is legal only if the second dimension of the
first array is the same size as the first dimension of the second array. That is, the
two inner dimensions must be the same.

• The result matrix will have the same number of rows as the first operand matrix
and the same number of columns as the second operand matrix. That is, the
dimensions of the result matrix will be the same as the outer dimensions of the
operand matrices.

• The result array cannot be the same as either of the operand arrays. For example,

MAT A= A*B

is an illegal st atement.

If A is a 2x3 matrix and B is a 3x2 matrix, A *B will result in a 2x2 matrix. B* A, on
the other hand, produces a 3x3 matrix. Given the two matrices below, you can see how
their position in the equation affects the product.

A B

(~ 8 ~1) (-Ill
-3

2 -2
3 4

A*B B*A

(~ -14) (~4 -11

-~o 1 24
22

26 12 13

Multiplication With Vectors
We described a vector as a one-dimensional array. For instance,

10 DIM A(3)

would create a vector with three elements and a rank of 1. Suppose we give A the values
shown below.

4-48 Numeric Arrays

Notice that we have portrayed A as a row vector. We could have just as easily portrayed
A as a column vector:

A

So which is it? A row vector or a column vector? Actually, a vector can behave like
either depending on its position in an equation. If a vector is the first operand in a
multiplication, then it acts like an lxn array (row vector); if it's the second operand,
it behaves like a nxl array (column vector); and if it's the result array, it can act like
either. A few examples will help illustrate these principles. Let A be the vector shown
above, and B, C, and D be the arrays shown below.

B C D

(
l 2 3)
456
789 (

0 0 0) 000
000

Let us suppose that D has been explicitly defined as a two-dimensional array:

10 DIM 0(3,1)

If we execute:

MAT C= A*D

we get:

Since A is the first operand, it behaves like a 1 x3 matrix. The equation, therefore, is:

Numeric Arrays 4-49

Thp result is a 1 x 1 matrix. If we try to reverse the order:

MAT C= D*A

the system returns:

ERROR 16 Improper dimensions

This is because we tried to multiply a 3 x 1 matrix by a 3 x 1 matrix:

c=U)*[~)
Since the inner dimensions are not the same, the system returns an error. Suppose we
try:

MAT C= B*A

In this case, we are multiplying a 3x3 array to a column vector.

The result is a 3x 1 matrix:

4-50 Numeric Arrays

2
5
8

c

[H)

If the result array is a vector, it will behave like either a row vector or a column vector
depending on which is called for. The only other possibility is if both operand arrays
are vectors. In this case, the result is always a 1 x 1 array. For instance, if A and Bare
vectors which are dimensioned as follows:

COMPLEX A(3).B(3)

and they contain the following complex values:

A B

-3) -6
5

then multiplying A by B results in a 1 x 1 array when the following equation is used:

MAT C= A*B

c = (2 1 4 -1 6 -2) * [~
-1

-3) -6
5

C equals 5 1. Reversing the operand arrays, we get:

MAT C= B*A

c = (0 -3 1 -6 -1

Again, C equals 5 1. Because the product of two vectors is always a single element,
BASIC has a DOT function that multiplies two vectors and comes up with a REAL, INTEGER

or COMPLEX numeric. For example,

X=DOT(A,B)

would assign the value 5 1 to X. If both vectors are INTEGER, then the product is INTEGER.

If one is COMPLEX, the product is COMPLEX. Otherwise, the product is REAL. The two vectors
must be the same size or the system will return an error.

Numeric Arrays 4-51

Identity Matrix
An "identity matrix" is defined as a matrix which, when multiplied to another matrix A,
produces the same matrix A. It is analogous to a 1 in normal arithmetic. For example,
if 1 stands for an identity matrix, then A=I* A and also A=A *1. In order for an identity
matrix to exist at all, A must be a square matrix (e.g., it must have the same number of
columns as rows).

As it turns out, all identity matrices have the same form. They are square and consist of
l's along the main diagonal, and O's everywhere else. For example, if A is a 3x3 matrix,
then the identity matrix for A is:

For a 4 x 4 matrix, 1 would be:

Since identity matrices are used frequently in matrix arithmetic, BASIC has a special
function (IDN) that turns a square matrix into an identity matrix. For instance:

10 OPTION BASE 1
20 COMPLEX 1(2,2)
30 MAT 1= IDN

The COMPLEX matrix 1 now contains the elements:

1

(
1 0
o 0

o 0)
1 0

If 1 was not a square matrix, line 20 would have returned an error.

4-52 Numeric Arrays

Inverse Matrix
Although division is not defined for matrices, there is a similar operation which involves
finding the inverse of a matrix. As with identity matrices, a matrix must be square in
order to have an inverse. Inverse matrices are notated by a superscript -1. If A is a
square matrix, then A-I denotes its inverse. The inverse is defined by the equation:

A*A- 1=I

where I is the identity matrix. You can see how similar this is to division since, if A were
a real number, then:

A* (i/A)=1

NOTE

When using the inverse function (INV) if the source is INTEGER or
REAL, then the destination must be REAL. If the source is COMPLEX,

then the destination must be COMPLEX.

The inverse of a matrix is found by using the INV function. For instance, the inverse of:

is found by executing:

MAT A_inv= INV(A)

The system computes the values of the inverse and places them in the matrix A_inv:

(.~ -1

A_inv
-1
o
1 .~)

Numeric Arrays 4-53

To check that this is really the inverse, you could execute the statement:

As expected, B turns out to be an identity matrix:

B
o
1
o ~ 1

Unfortunately, these expectations are not always fulfilled. Some matrices do not have an
inverse. In other words, for a certain matrix called A, there exists no other matrix that,
that when multiplied with (or by) A produces an identity matrix. Matrices that don't
have an inverse are called "singular". Singular matrices are easily detected and therefore
aren't too dangerous. A more troublesome type of matrix is one that is "ill-conditioned".
Ill-conditioned matrices are ones whose inverse can't be found by the computer because of
round-off errors. These are difficult to detect and almost impossible to correct. We'll talk
more about singular and ill-conditioned matrices, but before we do, we should discuss
why you'd use an inverse in the first place.

4-54 Numeric Arrays

Solving Simultaneous Equations
One of the most common applications of matrices is in the solution of simultaneous
equations. Simultaneous equations can be solved for REAL, INTEGER or COMPLEX data types.

Suppose we have the three equations shown below:

4X+ 2Y -Z =5
2X-3Y +3Z=5
X+ Y -2Z=-3

Note that there are three unknowns (X,Y, and Z) and three equations. This is a necessity
for solving by matrix arithmetic: you must have the same number of equations as
unknowns. We can re-write these equations in matrix format as the product of two
arrays:

2
-3
1

For the sake of simplicity, let's name these three arrays A, B, and C. The equation,
therefore, is:

A*B=C

If we multiply both sides of the equation by the inverse of A, we get:

A -1* A *B=A -1*C

Since A - U A is simply a 3x3 identity matrix, the equation simplifies to:

I*B=A-1*C

which further simplifies to:

B=A- 1*C

Numeric Arrays 4-55

Remembec B is the matrix that contains the three variables X, Y and Z. To solve for
these variables, therefore, all we have to do is multiply the matrix C by A -1. This is
accomplished in the program lines listed below.

200 DIM SOlution(3),A_inv(3,3)
220 MAT A_inv= INV(A)
230 MAT Solution= A_inv*C
240 PRINT "X=";Solution(l)
250 PRINT "Y=";Solution(2)
260 PRINT "Z=";Solution(3)

When we run this program, it will print the values of X, Y, and Z. The values are:

X=l
Y=2
Z=3

For any set of simultaneous equations where there are the same number of unknown
variables as there are equations, there are three possible classes of solution.

• There is no solution (e.g., there exist no values for the variables such that all of the
equations are true).

• There are an infinite number of solutions.

• There is one, and only one, solution.

The first two cases are called "singular" sets of equations. You may recall that a singular
matrix is one that has no inverse. It should not be surprising, therefore, that singular
sets of equations always result in singular matrices when they are translated to matrix
form. This is explained in the next section.

4-56 Numeric Arrays

Singular Matrices
Any set of equations that has no solution or an infinite number of solutions is singular.
Likewise, the matrix formed from these equations is also singular. More specifically, we
mean the matrix on the left-hand side of the equation, what we've been calling matrix
A. Consider the two equations listed below:

4X+6Y=5
4X+6Y=6

Obviously, there is no solution to this set of equations because any values assigned to
X and Y will make only one of the equations true, not both. It is important to realize,
however, that the singularity of these equations has nothing to do with the values on the
right hand side of the equation. If, for example, we made the two equations the same,

4X+6Y=6
4X+6Y=6

then there would be an infinite number of solutions. For instance, X could equal 0 and
Y equal 1, or X could equal 1.5 and Y could equal O. In fact, so long as X=1.5(1-Y), the
two equations will always be true. What is important here is that the two equations,

4X+6Y=
4X+6Y=

will be singular regardless of what we put on the right-hand side of the equal sign. If we
translate these equations into matrix form, we get:

The matrix,

(! ~)
is singular: it has no inverse. If, however, we call this matrix A and do an INV on it,
the system will not report an error. On the contrary, it will go ahead and find what it
thinks is an inverse. However, whatever matrix it comes up with will not be the inverse.
Let's see what happens with our singular matrix A.

MAT A_inv= INV(A)
PRINT A_inv(*)

Numeric Arrays 4-57

When we execute these statements, the system will display the following:

.666666666667 .166666666667 0 -1

Arranging these values in the proper rows and columns, we get:

A_inv

(
.66666666667 0)
.16666666667 -1

To see whether this is a real inverse, we can multiply it by A. If it is the inverse, the
product should be an identity matrix.

I

(
3.33333333333 5)

-4 -6

Obviously, the system has made a mistake - A_inv is not the inverse of A. So how do we
know if an inverse is valid? Or, to put it another way, how do we detect a singular matrix?
We have just seen one method: multiply the matrix by its inverse and see whether you
get an identity matrix. There is, however, a much easier method. You simply look at
the "determinant" of the matrix.

4-58 Numeric Arrays

The Determinant of a Matrix
The determinant of a matrix is defined somewhat mysteriously as the sum of all possible
products formed by taking one element from each row in order starting from the top
and one element from each column, where the sign of each product depends on the
permutation of the column indices.

It's not really important that you understand how to calculate a determinant since the
computer does it for you whenever you use the DET function. The DET function can be
used with REAL, INTEGER and COMPLEX data types. For instance, to print the determinant
of matrix A, you would write:

PRINT DET(A)

Also the determinant is a byproduct of inversions. Thus, whenever you invert a matrix,
the system computes the determinant and stores it. If you use DET without specifying
a matrix, the system will return the determinant of the matrix most recently inverted.
For example,

MAT A_inv= INV(A)
PRINT DET

would print the determinant of A.

Although the computation of the determinant is quite complex, its significance is very
simple. If the determinant of a matrix equals 0, either a REAL underflow occurred during
the inversion or the matrix is singular. To find out if an inversion is invalid, therefore,
you merely test the matrix's determinant. If the determinant is zero, then the inverse is
invalid. For example if A is a square matrix, we could execute:

100 MAT A inv= INV(A)
110 IF DET=O THEN Singular

If A is singular, program control is passed to a line named Singular. Note that we did
not have to specify a matrix in line 110 since A was the last matrix inverted.

Unless you know for certain that a matrix is not singular, we recommend that you use
the determinant test after each inversion. Otherwise, you may perform calculations using
an invalid inverse.

Numeric Arrays 4-59

III-Conditioned Matrices
In a few unusual cases, the inverse of a matrix will be invalid even though the determinant
of the matrix is non-zero. These situations occur due to round-off errors internal to the
computer. They are difficult to detect and even more difficult to correct. Fortunately_
they occur very rarely. Unless you are having problems with a program involving matrix
operations producing unexpected results, you can skip over to "Miscellaneous Matrix
Functions." If you are having problems, listed below is an example of an ill-conditioned
set of equations.

X(l) + OX(2) + 3X(3) + 8X(4) = 12
2X(1) + X(2) + 6X(3) + 15.9X(4) = 24.9
3X(1) + X(2) + 8.9X(3) + 24X(4) = 36.9
4X(1) + X(2) + 11.9X(3) + 32X(4) = 48.9

We have selected the numbers on the right-hand side of the equation so that all of the
X's equal 1. Watch what happens though when we try to solve these equations through
matrix inversion. First, we set up the equations in matrix format.

A ar

[~
0 3

1:.9] [~~] 1 6
1 8.9 24 *
1 11.9 32

Then we execute the program statements below.

100 MAT A_inv= INV(A)
110 MAT Var= A_inv*Ans
120 FOR Y=l TO 4
130 PRINT Using """X("".D."")="".K";Y.Var(Y)
140 NEXT Y

The computer displays:

X(i) =256
X(2)=0
X(3)=-32
X(4)=-16

Ans

[
2~~9]
36.9
48.9

Obviously something has gone wrong. The problem is that the inverse found by the
computer is far off the mark from the actual inverse. The system of equations, though,
is not singular. The determinant, though small, does not equal zero.

4-60 Numeric Arrays

Detecting III-conditioned Matrices
Now that you've seen how ill-conditioning can affect the solutions to a set of simultaneous
equations, you're probably wondering how you can tell an ill-conditioned matrix when
you see one. There are a number of different techniques, none of which is entirely fail
proof. Used together, however, they are quite dependable.

In general, the determinant of an ill-conditioned matrix is very small compared with the
elements of the matrix. So one of the first steps you can take is to look at the determinant.
The term "very small" is, of course, relative. If a matrix contained elements all greater
than 1000, then a determinant that equaled 10 would be very small. On the other hand,
if all the elements in an array were less than 20 then a determinant of 10 would be quite
reasonable. One equation for determining whether the determinant is ~~too small" is
given below:

DET(A) -------'--- < < 1

VII A~
i= 1 j = 1

We can execute this equation in a program as follows.

100 FOR X=(BASE A,l) TO (SIZE A,l)+(BASE A,l)-l
120 FOR Y=(BASE A,2) TO (SIZE A,2)+(BASE A,2)-1
130 Total=Total+A(X,Y)-2
140 NEXT Y
150 NEXT X
160 Test=DET(A)/SQR(Total)
170 IF Test<.OOl THEN Ill_con

Note that line 170 can be changed depending on how much accuracy you require for
your particular application. If we execute this program for the ill-conditioned matrix
discussed earlier, the value of "Test" comes out to 9.527E-19. Since this value is much
smaller than .001, this test would have correctly identified A as an ill-conditioned matrix.

Another technique for detecting ill-conditioned matrices is to multiply the matrix by its
inverse and compare the product with the identity matrix. Again, you can demand as
much accuracy as necessary. In the program below, we look for any elements in the
product that differ by more than .001 from the identity matrix.

100 MAT 1= IDN
110 MAT A_inv= INV(A)
120 MAT Product= A_inv*A
130 MAT Differ= Product-I
140 MAT Compare= Differ>(.OOl)
150 MAT Comparel= Differ«-.OOl)
160 IF SUM(Compare)+SUM(Comparel»O THEN Ill_con

Numeric Arrays 4-61

Applying this algorithm to our ill-conditioned matrix, we get:

A*A_inv

[~2
a a

-t] 1 -.5
-.5 -4

-2 -.5 -8 -16

As you can ser, 12 of the 16 elements differ from the identity matrix by more than 1. so
this test also would have worked.

One drawback of this method is that it requires several additional matrices. If you are
strapped for memory, this method could be unsatisfactory.

A third technique is to take the inverse of the inverse and compare it to the original
matrix. The program below utilizes this method. Again, we are looking for differences
greater than 0.001.

100 MAT A_inv= INV(A)
120 MAT A_inv_inv= INV(Ainv)
130 MAT Differ= A_inv_inv-A
140 MAT Compare= Differ>(.OOl)
150 MAT Comparel= Differ«-.OOl)
160 IF SUM (Compare) + SUM (Comparel) >0 THEN Ill_con

Applying this technique to our ill-conditioned matrix, we find that all 16 elements of
A_inv _inv differ from A by more than .001.

This technique will in grneral find morr ill-conditioned matrices than thr prrvious OIH'.

This is because any round-off errors are exaggerated by the second inverse. By the same
token. it will occasionally detect an ill-conditioned matrix which might actually havr
been alright before the second inverse.

As stated before. none of these methods alone is decisive. What it all comes down to
is that the precision of MAT INV falls off as a matrix approaches singularity. By using
combinations of the tests described above. it is possiblr to determine how much precision
has been lost, and then compare it to the precision actually required by your application.

4-62 Numeric Arrays

Miscellaneous Matrix Functions
These functions are useful for obtaining the transpose of a matrix, summing the rows
and columns of a matrix, and performing complex array operations. The topics covered
are as follows:

• Transpose Function

• Summing Rows and Columns of a Matrix

• Examples of Complex Array Operations

Transpose Function
There are a few matrix functions that we haven't discussed yet. One of these is the
transpose function (TRN). The transpose of a matrix is derived by exchanging rows for
columns and columns for rows. If A is the matrix below,

A

[
1 2 3)
456
789

then,

MAT B= TRN(A)

would result in:

Numeric Arrays 4-63

A matrix does not have to be squarE) to have a transpos(). If A is,

(~
then,

MAT B= TRN(A)

would result in:

1
9

A
8
7

B

The result array cannot be the same as the array being transposed. For example,

MAT A= TRN(A)

is an illegal statement and will cause an error.

The transpose of a COMPLEX array is done in the same manner as for REAL and INTEGER

values. Suppose you have a COMPLEX array called Complex_array and an array to receive
the results of a MAT operation called Result_array dimensioned as follows:

COMPLEX Complex_array(2,4),Result_array(4,2)

If the values read into the array called Complex_array ar(' as giV(,1l lwlow,

(~

4-64 Numeric Arrays

-1
o

Complex_array
1 3 8-11
9 -34 7 8 -2

(j)
16

then executing the statement

MAT Result_array= TRN(Complex_array)

would produce the following:

ResulCarray
-1 2
3 9

-11 7
6 -2

0)

-t J
16

The transpose function is useful for manipulating tables of data. It also has special
significance for a small set of matrices called "orthogonal" matrices. An orthogonal
matrix is defined as one whose transpose and inverse are the same.

Summing Rows and Columns of a Matrix
BASIC has a function called RSUM which returns the sum of all rows in an array and a
function called CSUM which returns the sum of all columns in an array. The totals are
stored in a vector which RSUM and CSUM will re-dimension if necessary. Note that the
DIM statement is needed in the following program because all other references to the
arrays use (*) to specify the whole array. Let A be the matrix shown below.

A
6 18
o 41
3 12

If we execute:

10 OPTION BASE 1
20 DIM A(3.4).Row_sum(3).Col_sum(4)
30 DATA 3.6.18.7.1.0.41.2.4.3.12.11
40 READ A(*)
50 MAT Row_sum= RSUM(A)
60 MAT Col_sum= CSUM(A)
70 PRINT "The sum of rows is: ";Row_sum(*)
80 PRINT "The sum of columns is: ";Col_sum(*)
90 END

The system will display:

The sum of rows is: 34 44 30
The sum of columns is: 8 9 71 20

Numeric Arrays 4-65

The following program adds the rows and columns of a 2x3 two-dimensional complex
array with the following values in it:

Complex_array
3 -6 9 -1

-4 1 0 2 ~)
If you execute:

100 OPTION BASE 1
110 COMPLEX Complex_array (2 ,3) ,Sum_rows (2) ,Sum_columns(3)
120
130 DATA 2,3,-6,9,-1,1,-3,-4,1,0,2,8
140
150 READ Complex_array(*)
160
170 MAT Sum_rows= RSUM(Complex_array)
180 MAT Sum_columns= CSUM(Complex_array)
190
200 PRINT "The sum of rows is: ";Sum_rows(*)
210 PRINT "The sum of columns is: ";Sum_columns(*)
220
230 END

The following will be displayed:

The sum of rows is: -5 13 0 4
The sum of columns is: -1 -1 -5 9 1 9

4-66 Numeric Arrays

Examples of Complex Array Operations
I t is sometimes useful to be able to create a REAL array from the real or imaginary parts
of a COMPLEX array, as well as from the arguments or absolute values of each element of a
COMPLEX array. It is also useful to be able to create a COMPLEX array from two REAL arrays.
This section describes functions which allow you to perform these tasks. The COMPLEX

array used in the examples is given below:

Compiex_array
-2 3 5 -9
o 2 -7 16

To place the real part of each element in a COMPLEX array called Complex_array into a REAL

array called Array, you would use the following statement:

MAT Array= REAL(Complex_array)

which would result in the following array:

Array

(
-1 3 -9)
1 2 16

To place the imaginary part of each element in a COMPLEX array called Complex_array into
a REAL array called Array, you would use the following statement:

MAT Array= IMAG(Complex_array)

which would result in the following array:

Array

(
-2 5 8)
o -7 -1

Numeric Arrays 4-67

To place the argument of each element in a COMPLEX array called Complex_array into a
REAL array called Array, you would use the following statement:

MAT Array= ARG(Complex_array)

which would result in the following array:

(
-2.0344
0.0000

Array
1.0304

-1.2925
2.4150)
-.0624

Keep in mind that taking the ARG of an array returns values for the array elements which
fall in the range of -7r to +7r for the radian mode and -180° to + 180° for the degree
mode.

To place the absolute value (or magnitude) of each element in a COMPLEX array called
Complex_array into a REAL array called Array, you would use the following statement:

MAT Array= ABS(Complex_array)

which would result in the following array:

4-68 Numeric Arrays

Array

(
2.23617 5.8310
1.0000 7.2801

12.0416)
16.0312

To create a conjugate array out of the COMPLEX array called Complex_array and place that
conjugate array into the COMPLEX array called Conjugate, you would use the following
statement:

MAT Conjugate= CONJG(Complex_array)

which would result in the following array:

Conjugate
2
o

3
2

-5
7

-9
16

To create a COMPLEX array called New_comp_array from two REAL arrays called Real_array1

and Real_array2,

ReaL array 1 ReaLarray2

(4 6 7)
591 (

-4 -8 -1)
-3 -2 -9

you would use the following statement:

MAT New_comp_array= CMPLX(Real_array1,Real_array2)

which would result in the following array:

New _comp_array
-4 6 -8 7
-3 9 -2 1

-1)
-9

Numeric Arrays 4-69

Using Arrays for Code Conversion
Suppose you have an input device that provides information in 8-bit ASCII code. On
the other hand, an output device in the same system uses a non-ASCII specialized 8-bit
code. Examples might include specialized instrumentation, typesetting equipment, or a
multitude of other devices. For each ASCII character, there is a corresponding code for
the output device. There may be some ASCII characters (such as control characters)
that are not to be converted. Let us assume that a null character (all bits set to zero) is
used for those special characters. Here is how a conversion array is set up:

1. First, an array is created with 256 elements (0 thru 255). Each element address cor
responds to the 8-bit INTEGER numeric equivalent of the ASCII character code. The
contents of a given array element contains the output code for the corresponding
ASCII input code. The array can be REAL or INTEGER. Usually, it is more efficient to
use INTEGER arrays for converting IG-bit or shorter codes. The array must be filled
by individual program statements (assignments or DATA and READ statements), or it
can be filled from a mass storage file. If a file is used, the data must be created
by some prior means. Fixed conversion codes can sometimes be generated by an
algorithm in the introductory part of the program that performs the conversions.

2. Input data is placed in a string variable (see the "String Manipulation" chapter
for string variables techniques). Characters are then picked off, one character at a
time, for conversion. Refer to BASIC Interfacing Techniques for more information
about output operations.

4-10 Numeric Arrays

Here is an example of how such an operation could be implemented:

1000
1010
1020
1030

INTEGER Convert(0:255)
DIM In$[80]
Source=18
Dest=22

Source device selector
Destination device selector

Initialize the conversion array here.

2470 ENTER Source;Input$! Input line of ASCII
2480 FOR 1=1 TO LEN(In$) ! Send converted bytes
2490 OUTPUT Dest;CHR$(Convert(NUM(In$[I,I]»);
2500 NEXT I

Note that the semicolon in line 2490 prevents sending a carriage-return and line-feed
character pair at the end of each output line. This is usually necessary to prevent
unwanted behavior when using ASCII strings to output non-ASCII data. This technique
can be applied to arbitrary data conversions with virtually no limitations.

It is also possible to handle code conversions automatically in OUTPUT statements with the
CONVERT options of the ASSIGN statement. See the ASSIGN Attributes discussion in BASIC
Interfacing Techniques.

Numeric Arrays 4-71

4-72 Numeric Arrays

String Manipulation 5
String Storage. .. 5-2
String Arrays. .. 5-3
Evaluating Expressions Containing Strings .. 5-4

Evaluation Hierarchy .. 5-4
String Concatenation. .. 5-4
Relational Operations ... 5-5

Substrings ... 5-6
Single-Subscript Substrings. .. 5-6
Double-Subscript Substrings .. 5-7
Special Considerations. .. 5-8

String-Related Functions .. 5-10
Current String Length .. 5-10
Maximum String Length. .. 5-10
Substring Position ... 5-11
String-to-Numeric Conversion 5-13
Numeric-to-String Conversion 5-15
CRT Character Set ... 5-16

String Functions .. 5-17
String Reverse. 5-17
String Repeat ... 5-18
Trimming a String ... 5-19
Case Conversion. .. 5-19

Copying String Arrays and Subarrays 5-21
Searching and Sorting .. 5-22

Reordering an Array ... 5-28
Searching for Strings ... 5-30
Searching String Arrays. .. 5-32

N umber-Base Conversion ... 5-34
Introduction to Lexical Order ... 5-36

Why Lexical Order? .. 5-36
How It Works ... 5-36
The ASCII Character Set ... 5-37
The Extended Character Set 5-41

Predefined Lexical Order. .. 5-43

Lexical Tables .. 5-45
Notation. .. 5-45
ASCII Lexical Order ... 5-46
Case Conversions .. 5-46
FREN CH Lexical Order 5-48
Case Conversions .. 5-48
GERMAN Lexical Order .. 5-50
Case Conversions .. 5-50
SPANISH Lexical Order .. 5-52
Case Conversions .. 5-52
SWEDISH Lexical Order ... 5-54
Case Conversions .. 5-54
User-defined LEXICAL ORDER 5-56

U ser-Defined Lexie al Orders. .. 5-58
Sequence Numbers .. 5-60
Mode Entries. .. 5-60
Bits, Bytes, and Mode Types 5-61

String Manipulation 5
It is often desirable to store non-numerical information in the computer. A word, a name
or a message can be stored in the computer as a string. Any sequence of characters may
be used in a string. Quotation marks are used to delimit the beginning and ending of
the string. The following are valid string assignments.

LET A$="COMPUTER"
Fail$="The test has failed."
File_name$="INVENTORY"
Test$=Fail$[5,8]

The left-hand side of the assignment (the variable name) is equated to the right-hand
sine of the assignment (the literal).

String variable names are identical to numeric variable names with the exception of a
dollar sign ($) appended to the end of the name.

The length of a string is the number of characters in the string. In the previous example,
the length of A$ is 8 since there are eight characters in the lite~al "COMPUTER". A
string with length 0 (i.e., that contains no characters) is known as a "null" string.

BASIC allows the dimensioned length of a string to range from 1 to 32767 characters
and the current length (number of characters in the string) to range from zero to the
dimensioned length. A string of zero characters is often called a null string or an empty
string.

The default dimensioned length of a string is 18 characters. The DIM, COM, and ALLOCATE
statements are used to define string lengths up to the maximum length of 32 767
characters. An error results whenever a string variable is assigned more characters than
its dimensioned length.

A string may contain any character. The only special case is when a quotation mark
needs to be in a string. Two quotes, in succession, will embed a quote within a string.

10 Quote$="The time is ""NOW""."
20 PRINT Quote$
30 END

Produces: The time is "NOW".

String Manipulation 5-1

String Storage
Strings whose length exceeds the default length of 18 characters must have space reserved
before assignment. The following statements may be used.

• DIM Long$ [400] Reserve space for a 400 character string.

• COM Line$ [80] Reserve an 80 character common variable.

• ALLOCATE Search$ [Length] Dynamic length allocation.

The maximum length of any string must not exceed 32 767 characters. A string may also
be dimensioned to a length less than the default length of 18 characters.

The DIM statement reserves storage for strings.

DIM Part_number$[10] ,Description$[64] ,Cost$[5]

The COM statement defines common variables that can be used by subprograms.

COM Name$[40] ,Phone$[14]

The ALLOCATE statement allows dynamic allocation of string storage. When the maximum
length of a string cannot be determined ahead of time, the ALLOCATE statement can be
used to reserve enough memory space for the string without wasting space.

ALLOCATE Line$[Length]

Strings that have been dimensioned but not assigned return the null string.

5-2 String Manipulation

String Arrays
Large amounts of text are easily handled in arrays. For example:

DIM File$(1000) [80]

This statement reserves storage for 1000 lines of 80 characters per line. Do not confuse
the brackets, which define the length of the string, with the parentheses which define the
number of strings in the array. Each string in the array can be accessed by an index.
For example:

PRINT File$(27)

Prints the 27th element in the array. Since each character in a string uses one byte of
memory and each string in the array requires as many bytes as the length of the string,
string arrays can quickly use a lot of memory.

A program saved on a disc as an ASCII type file can be entered into a string array,
manipulated, and written back out to disc.

String Manipulation 5-3

Evaluating Expressions Containing Strings
This section covers the following topics:

• Evaluation Hierarchy

• String Concatenation

• Relational Operations

Evaluation Hierarchy
Evaluation of string expressions is simpler than evaluation of numerical expressions. The
three allowed operations are extracting a substring, concatenation, and parenthesization.
The evaluation hierarchy is presented in the following table.

Order Operation

High Parentheses

Substrings and Functions

Low Concatenation

String Concatenation
Two separate strings are joined together by using the oncatenation operator "It". The
following program combines two strings into one.

10 One$="WRIST"
20 Two$="WATCH"
30 Concat$=One$ltTwo$
40 PRINT One$.Two$.Concat$
50 END

Prints:

WRIST WATCH WRISTWATCH

The concatenation operation, in line 30, appends the second string to the end of the
first string. The result is assigned to a third string. An error results if the concatenation
operation produces a string that is longer than the dimensioned length of the string being
assigned.

5-4 String Manipulation

Relational Operations
Most of the relational operators used for numeric expression evaluation can also be used
for the evaluation of strings.

The following examples show some of the possible tests.

"ABC" "ABC" True
"ABC" " ABC" False

"ABC" < "AbC" True
"6" > "7" False
"2" < "12" False

"long" <= "longer" True
"RE-SAVE" >= "RESAVE" False

Any of these relational operators may be used: <, >, <=, >=, =, <>.

Testing begins with the first character in the string and proceeds, character by character,
until the relationship has been determined.

The outcome of a relational test is based on the characters in the strings not on the
length of the strings. For example:

"BRONTOSAURUS" < "CAT"

This relationship is true since the letter "C" is higher in ASCII value than the letter
"B".

NOTE

When the LEX binary is loaded, the outcome of a string comparison
is based on the character's lexical value rather than the character's
ASCII value. See the LEXICAL ORDER IS statement later in this
chapter for more details.

String Manipulation 5-5

Substrings
A subscript can be appended to a string variable name to define a substring. A substring
may comprise all or just part of the original string. Brackets enclose the subscript which
can be a constant, variable, or numeric expression. For instance:

StringS [4] Specifies a substring starting with the fourth character of the original
string.

The subscript must be in the range: 1 to the current length of the string plus 1. Note
that the brackets now indicate the substring's starting position instead of the total length
of the string as when reserving storage for a string.

Subscripted strings may appear on either side of the assignment.

Single-Subscript Substrings
When a substring is specified with only one numerical expression, enclosed with brackets,
the expression is evaluated and rounded to an integer indicating the position of the first
character of the substring within the string.

The following examples use the variable A$ which has been assigned the literal "DIC
TIONARY".

Statement Output

PRINT A$ DICTIONARY

PRINT A$[O] (error)

PRINT A$ [1] DICTIONARY

PRINT A$[5] IONARY

PRINT A$[10] Y

PRINT A$ [11] (null string)

PRINT A$[12] (error)

When a single subscript is used it specifies the starting character position, within the
string, of the substring. An error results when the subscript evaluates to zero or greater
than the current length of the string plus 1. A subscript that evaluates to 1 plus the
length of the string returns the null string ("") but does not produce an error.

5-6 String Manipulation

Double-Subscript Substrings
A substring may have two subscripts, within brackets, to specify a range of characters.
When a comma is used to separate the items within brackets, the first subscript marks
the beginning position of the substring, while the second subscript is the ending position
of the substring. The form is: A$[Start,End]. For example, if A$ = "JABBERWOCKY",
then

A$[4,6] Specifies the substring: BER

When a semicolon is used in place of a comma, the first subscript again marks the
beginning position of the substring, while the second subscript is now the length of the
substring. The form is: A$[Start;Length].

A$[4;6] Specifies the substring: BERWOC

In the following examples the variable B$ has been assigned the literal "ENLIGHTEN
MENT":

Statement Output

PRINT B$ ENLIGHTENMENT

PRINT B$ [1,13] ENLIGHTENMENT

PRINT B$ [1; 13] ENLIGHTENMENT

PRINT B$[1,9] ENLIGHTEN

PRINT B$[1;9] ENLIGHTEN

PRINT B$[3,7] LIGHT

PRINT B$[3;7] LIGHTEN

PRINT B$[13,13] N

PRINT B$[13;1] N

PRINT B$[13,26] (error)

PRINT B$[13;13] (error)

PRINT B$[14;1] (null string)

An error results if the second subscript in a comma separated pair is greater than the
current string length plus 1 or if the sum of the subscripts in a semicolon separated pair
is greater than the current string length plus 1.

Specifying the position just past the end of a string returns the null string.

String Manipulation 5-7

Special Considerations
All substring operations allow a subscript to specify the first position past the end of a
string. This allows strings to be concatenated without the concatenation operator. For
instance:

10 A$="CONCAT"
20 A$[7]="ENATION"
30 PRINT A$
40 END

Produces: CONCATENATION

The substring assignment is only valid if the substring already has charaders up to the
specified position. Access beyond the first position past the end of a string results in the
error:

ERROR 18 String ovfl. or substring err

A good practice is to dimension all strings including those shorter than the default length
of eighteen characters.

Some very interesting assignments can be attempted. For example, a 14-character string
can be assigned to a 3-character substring.

10 Big$="Too big to fit"
20 Small$="Little string"
30 !
40 Small$[l,3]=Big$
50
60 PRINT SmallS
70 END

Prints: Tootle string

When a substring assignment specifies fewer charaders than are available, any extra
trailing characters are truncated.

5-8 String Manipulation

The alternate assignment is shown in the next example. Here a 4-character string is
assigned to a 8-character substring.

10 Big$="A large string"
20 Small$="tiny"
30 !
40 Big$[3.10]=Small$
50
60 DISP Big$
70 END

Prints: A tiny ring

Since the subscripted length of the substring is greater than the length of the replacement
string, enough blanks (ASCII spaces) are added to the end of the replacement string to
fill the entire specified substring.

String Manipulation 5-9

String-Related Functions
Several intrinsic functions are available in BASIC for the manipulation of strings. These
functions include conversions between string and numeric values.

Current String Length
The "length" of a string is the number of characters in the string. The LEN function
returns an integer whose value is equal to the string length. The range is from 0 (null
string) thru 32767. For example:

PRINT LEN("HELP ME")

Prints: 7

The following example program prints the length of a string that is typed on the keyboard.

10 DIM In$[160]
20 INPUT In$
30 Length=LEN(In$)
40 DISP Length; "characters in """;In$;""""
50 END

Try finding the length of a string containing only spaces. When the INPUT statement
is used, any leading or trailing spaces are removed from items typed on the keyboard.
Change INPUT to LINPUT in line 20 to allow leading and trailing spaces to be entered.

Maximum String Length
The MAXLEN function returns an integer whose value is equal to the dimensioned length
of a string variable. For example,

100 DIM First_string$[37] ,Second_string$(2) [15]
110 PRINT "Maximum length of the first string is";
120 PRINT MAXLEN(First_string$)
130 PRINT
140 PRINT "Maximum length of the second string is";
150 PRINT MAXLEN(Second_string$(1»
160 Test("A TEST STRING")
170 END
180 SUB Test(A$)
190 PRINT
200 PRINT "Maximum length of the test string is";
210 PRINT MAXLEN(A$)
220 SUBEND

5-10 String Manipulation

The above program produces the following results:

Maximum length of the first string is 37

Maximum length of the second string is 15

Maximum length of the test string is 13

Substiing Position
The "position" of a substring within a string is determined by the POS function. The
function returns the value of the starting position of the substring or zero if the entire
substring was not found. For instance:

PRINT POS("DISAPPEARANCE"."APPEAR")

Prints: 4

The following example prints the positions of substrings found within a string.

10 DIM Sentence$[40] .Word$(1:6) [8]
20 DATA CAT.ON.A.HOT.TIN.NATION
30 READ Word$(*)
40 Sentence$="WHERE IS THE CAT IN CONCATENATION II
50

60 FOR 1=1 TO 6
70 Position=POS(Sentence$.Word$(I» <- POS function
80 IF Position THEN
90 PRINT SentenceS
100 PRINT TAB(Position);Word$(I);TiB(35);"is at ";Position
110 PRINT
120 ELSE
130 PRINT IJI;Word$(I);"J was not found"
140 PRINT
150 END IF
160 NEXT I
170 END

String Manipulation 5-11

If POS returns a non-zero value~ the entire substring occurs in the first string and the
value specifies the starting position of the substring.

Note that pos returns the first occurrence of a substring within a string. By adding
a subscript, and indexing through the string, the pos function can be used to find all
occurrences of a substring. The following program uses this technique to extract each
word from a sentence.

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150

DIM A$[80]
A$="I know you think you understand what I said, but you don't."
INTEGER Scan,Found
Scan=l
PRINT A$
REPEAT

Found=POS(A$[Scan]." ")
IF Found THEN

PRINT A$[Scan,Scan+Found-l]
Scan=Scan+Found

ELSE
PRINT A$ [Scan]

END IF
UNTIL NOT Found
END

! Current substring position

Find the next ASCII space

Print the word
Adjust "Scan" past last match

Print last word in string

As each occurrence is found, the new subscript specifies the remaining portion of the
string to be searched.

5-12 String Manipulation

String-to-Numeric Conversion
The VAL function converts a string expression into a numeric value. The string must
evaluate to a valid number or error 32 will result.

ERROR 32 String is not a valid number

The number returned by the VAL function will be converted to and from scientific notation
when necessary. For example:

PRINT VAL("123.4E3")

Prints: 123400

The following program converts a fraction into its equivalent decimal value.

10
20
30
40
50
60
70
80
90
100
110
120
130

INPUT "Enter a fraction (i.e. 3/4)",Fraction$

ON ERROR GOTO Err
Numerator=VAL(Fraction$)

IF POS(Fraction$, "/") THEN
Delimiter=POS(Fraction$,"/")
Denominator=VAL(Fraction$[Delimiter+l])

ELSE
PRINT "Invalid fraction"
GOTO Quit

END IF

140 PRINT Fraction$;" = II; Numerator /Denominator
150 GOTO Quit
160 Err: PRINT "ERROR Invalid fraction"
170 OFF ERROR
180 Quit: END

Similar techniques can be used for converting: feet and inches to decimal feet or hours
and minutes to decimal hours.

String Manipulation 5-13

The NUM function converts a single character into its equivalent numeric value. The
number returned is in the range: 0 to 255. For example:

PRINT NUM (" A")

Prints: 65

The next program prints the value of each character in a name.

10
20
30
40
50
60
70
80
90

INPUT "Enter your first name".Name$

PRINT Name$
PRINT
FOR 1=1 TO LEN(Name$)

PRINT NUM(Name$[I]);
NEXT I
PRINT
END

Print value of each character

Entering the name: JOHN will produce the following.

74 79 72 78

5-14 String Manipulation

Numeric-to-String Conversion
The VAL$ function converts the value of a numeric expression into a character string.
The string contains the same characters (digits) that appear when the numeric variable
is printed. For example:

PRINT 1000000,VAL$(1000000)

Prints: 1. E+6 1.E+6

The next program converts a number into a string so the pos function can be used to
separate the mantissa from the exponent.

10 CONTROL 2,0;1 ! CAPS LOCK ON
20 INPUT "Enter a number with an exponent", Number
30
40 Number$=VAL$(Number)
50
60 PRINT Number$
70 E=POS(Number$, "E")
ao IF E THEN
90 PRINT "Mantissa is",Number$[1;E-1]
100 PRINT "Exponent is",Number$[E+1]
110 ELSE
120 PRINT "No exponent"
130 END IF
140 END

The CHR$ function converts a number into an ASCII character. The number can be of
type INTEGER or REAL since the value is rounded, and a modulo 255 is performed. For
example:

PRINT CHR$(97);CHR$(9a);CHR$(99)

Prints: abc

The next program prints the values in the data statement as characters.

10 PRINT CHR$(12) CLEAR SCREEN
20 PRINT CHR$(7) ! RING THE BELL
30

String Manipulation 5-15

40 DATA 34,130,89,111,117,32,103,111,116,32,105,116,33,128,34
50 INTEGER N(1:15)
60 READ N(*)
70 FOR 1=1 TO 15
80 PRINT CHR$(N(I));
90 NEXT I
100 PRINT CHR$(7)
110 END

CRT Character Set
The following program prints the character set on the screen of the CRT to show the
order that strings will be sorted.

10 ! Program: CRT Character Set.
20
30 PRINT CHR$(12);"CRT Character Set"
40 STATUS l,9;Line_length ! 50, 80, or 128 Columns
50 Left=Line_length/2-16
60 !
70 FOR 1=0 TO 255
80 Col=I MOD 16*2+Left
90 Row=I DIV 16+3
100 IF Col=Left THEN
110 PRINT TABXY(Left-5,Row);
120 PRINT USING 13D";I
130 END IF
140 PRINT TABXY(Col,Row);
150 CONTROL 1,4;1 Display Functions on
160 PRINT USING IB,B,#";128,I ! Print the Character
170 CONTROL 1,4;0 ! Display Functions off
180 NEXT I
190 PRINT
200 1=127
210 ON KNOB .08 GOSUB Change
220 DISP USING 15A,5D,X,2A,B,BI;IASCIII,I,I=",128,I
230 GOTO 220
240 Change: I=I-KNOBX/l0
250 IF 1<0 THEN 1=0
260 IF 1>255 THEN 1=255
270 RETURN
280 END

ASCII character values from 128 to 159 are treated differently by different systems. Refer
to the section "The Extended Character Set" found this chapter.

5-16 String Manipulation

String Functions
This section covers string functions which perform the following tasks:

• Reversing the characters in a string,

• Repeating a string a given number of times,

• Trimming the leading and trailing blanks in a string,

• Converting string characters to the desired case.

String Reverse
The REV$ function returns a string created by reversing the sequence of characters in the
given string.

PRINT REV$("Snack cans")

Prints: snac kcanS

A common use for the REV$ function is to find the last occurrence of an item in a string.

10 DIM List$[30]
20 List$="3.22 4.33 1.10 8.55 12.20 1.77"
30 Length=LEN(List$)
40 Last_space=POS(REV$(List$)," II) ! "SPACE" is delimiter
50 DISP "The last item is:";List$[l+Length-Last_space]
60 END

Displays: The last item is: 1.77

String Manipulation 5-17

String Repeat
The RPT$ function returns a string created by repeating the specified string, a given
number of times.

PRINT RPT$("* *",10)

Prints: * ** ** ** ** ** ** ** ** ** *

Here is a short program that uses RPT$ to create an image for a formatted print statement.

10 Items=7
20 DATA 50,900,2,444,37,2001,32768
30 ALLOCATE Array(l:Items)
40 READ Array(*)
50 FOR 1=1 TO Items
60 Digits=INT(l+LGT(Array(I»)
70 IF Digits>Maxdigits THEN Maxdigits=Digits
80 NEXT I
90 Form$="XX,"&RPT$("D",Maxdigits)&".DD"
100 PRINT "Using the image: ";Form$
110 PRINT USING Form$;Array(*)
120 END

5-18 String Manipulation

Trimming a String
The TRIM$ function returns a string with all leading and trailing blanks (ASCII spaces)
removed.

PRINT "*";TRIM(" 1.23 II) ; "*"

Prints: *1.23*

TRIM$ is often used to extract fields from data statements or keyboard input.

10 INPUT "Enter your full name",Name$
20 First$=TRIM$ (Name$ [1, POS (Name$," ,,)])
30 Last$=TRIM$(Name$[l+LEN(Name$)-POS(REV$(Name$)," II)])
40 PRINT Name$,LEN(Name$)
50 PRINT Last$,LEN(Last$)
60 PRINT First$,LEN(First$)
70 END

Note that the INPUT statement trims leading and trailing blanks from whatever is typed.
If you need to enter leading or trailing spaces, use the LINPUT statement.

Case Conversion
The case conversion functions, UPC$ and LWC$, return strings with all characters converted
to the proper case. UPC$ converts all lowercase characters to their corresponding
uppercase characters and LWC$ converts any uppercase characters to their corresponding
lowercase characters. Roman Extension characters will be converted according to the
current lexical order. See the LEXICAL ORDER IS statement later in this chapter for the
case conversion listings.

10 DIM Word$[160]
20 LINPUT "Enter a few characters",Word$
30 PRINT
40 PRINT "You typed: ";Word$
50 PRINT "Uppercase: ";UPC$(Word$)
60 PRINT "Lowercase: ";LWC$(Word$)
70 END

String Manipulation 5-19

A more general character replacement method is obtained by using a buffer that was
assigned an indexed conversion. Indexed conversion uses the incoming character's
ASCII value as an index into a string of characters and returns the character in that
position. In the following program, the conversion string is created in line 40 and
60. The conversion string specifies all lowercase characters are to be replaced by their
corresponding uppercase character.

10 DIM Cipher$[256] ,A$[80]
20 FOR 1=1 TO 255 ! Create conversion string
30 Cipher$=Cipher$&UPC$(CHR$(I»
40 NEXT I
50 Cipher$=Cipher$&UPC$(CHR$(O»
60 ASSIGN ~F TO BUFFER [160] ; CONVERT OUT BY INDEX CipherS
70 LOOP
80 INPUT A$
90 OUTPUT ~F;A$ Conversion occurs
100 ENTER ~F;A$
110 PRINT A$
120 END LOOP
130 END

5-20 String Manipulation

Copying String Arrays and Subarrays
MAT functions (available with the MAT binary) are commonly used to manipulate data in
numeric arrays. However, several of these functions can be used with string arrays. For
example, a string array is copied into another string array by the following.

MAT CopyS = OriginalS

Note that only the variable name is necessary. The array specifier "(*)" is not included
when using the MAT statement.

Every element in a string array will be initialized to a constant value by the following
statement.

MAT ArrayS = (NullS)

The constant value can be a literal or a string expression and is enclosed in parentheses
to distinguish it from an array name.

A subarray can be copied into another subarray of the same size and shape. For example,
suppose you want to copy the string elements in a two-dimensional string array found
in rows 1 through 3 and columns 5 and 6 of the string array called Sub_arrayS into the
array called NewS, you would execute the following statement:

MAT NewS= Sub_arrayS(1:3,5:6)

where the above statement assumes an OPTION BASE of 1 and that NewS is dimensioned
to be a 3 x 2 string array.

For more information on copying numeric and string arrays see the MAT statement in
the BASIC Language Reference.

String Manipulation 5-21

Searching and Sorting
Information stored in a string array often requires sorting. There are over a dozen
common algorithms that may be used. Each algorithm has certain advantages depending
on the number of items to be sorted, the current order of the items, the time allowed
to sort the items, and the complexity of the algorithm. One of the simplest (and most
inefficient) sorts to implement is the "bubble" sort. The following program is a slight
variation of the bubble sort.

10 ! Program: SORT
20 !
30 READ N
40 DATA 10 ! NUMBER OF ITEMS TO SORT
50 ALLOCATE Word$(N) [5] ,Temp$[5]
60 READ Word$(*) ! READ ENTIRE ARRAY
70 DATA zero,one,two,three,four,five,six,seven,eight,nine,ten
80 PRINT Word$(*)
90 PRINT
100 Sort:FOR 1=0 TO N-1
110 IF Word$(I»Word$(I+1) THEN
120 Temp$=Word$(I)
130 Word$(I)=Word$(I+1)
140 Word$(I+1)=Temp$
150 GO TO Sort
160 END IF
170 NEXT I
180 PRINT Word$(*)
190 END

This example prints the contents of the array before and after sorting.

Before sorting:

zero one two three four five
six seven eight nine ten

After sorting:

eight five four nine one seven
six ten three two zero

The strings are sorted in ascending order. If the relational operator in line 110 is changed
from the greater than sign ">" to the less than sign "<", the strings will be sorted in
descending order.

5-22 String Manipulation

A list of items can be sorted very quickly by the MAT SORT statement.

10 ! Program: SORT_LIST
20 DIM List$(1:5) [6]
30 DATA Bread.Milk.Eggs.Bacon.Coffee
40 READ List$(*)
50
60 PRINT "original order"
70 PRINT List$(*)
80
90 PRINT "ascending order"
100 MAT SORT List$
110 PRINT List$(*)
120
130 PRINT "descending order"
140 MAT SORT List$ DES
150 PRINT List$(*)
160 END

Running this program produces:

original order
Bread Milk Eggs Bacon

ascending order
Bacon Bread Coffee Eggs

descending order
Milk Eggs Coffee Bread

Coffee

Milk

Bacon

String Manipulation 5-23

Sorting by Substrings
A substring range can be appended to the end of a MAT SORT key specifier. For example1

to sort the entire first column of a two-dimensional string array called Str _ary$ using the
3rd and 4th characters of each string1 you would use this key specifier: (*,1) [3,4]. The
MAT SORT statement would be as follows:

MAT SORT Str_ary$(*,l) [3,4]

Items will then be sorted by the characters within the substring specified. No error
results from specifying a substring position beyond the current length of the string.

10 PRINT CHR$(12) ! Program: SUBSORT
20 DATA 1 OLD ORANGE,2 TINY TOADS,3 TALL TREES,4 FAT FOWLS,5 FRIED FISH
30 DATA 6 SLOW SNAILS,7 SLIMY SLUGS,8 AWFUL HOURS,9 NASTY KNIVES
40 DIM Things$(1:9) [38]
50 READ Things$(*)
60 First=l
70 Length=l
80 DISP "Use KNOB and SHIFT-KNOB to change sort field."
90 ON KNOB .2 GOTO Slide
100 Go:MAT SORT Things$(*) [First;Length]
110 FOR 1=1 TO 9
120 PRINT TABXY(10,I) ;Things$(I) ;RPT$(" ",3)
130 NEXT I
140 W:GOTO W
150
160 Slide:STATUS 2,10;Shift Check for SHIFT OR CTRL
170 S=SGN(KNOBX)
180 IF Shift THEN
190 Length=Length+S*(S>O AND Length<16)+S*(S<0 AND Length>l)
200 ELSE
210 First=First+S*(S>O AND First<18)+S*(S<0 AND First>l)
220 END IF
230 DISP "MAT SORT Things$(*) [";First;";";Length;"]"
240 PRINT TABXY(9,10);RPT$(" ",First);RPT$("-",Length);RPT$(" ",10)
250 GOTO Go
260 END

5-24 String Manipulation

Adding Items to a Sorted List
Lists of strings can be maintained in sorted order. Every time a new item is added to the
list, the list is sorted by the MAT SORT statement. To prevent overwriting any of the items
already in the list, items should be added to the top (first array element) of a list sorted
in ascending order and to the bottom (last array element) of a list sorted in descending
order.

10 PRINT CHR$(12)
20 ! Since arrays are in COM, they "remember" old values.
30 ! After running, execute SCRATCH C to clear the arrays.
40 !
50 COM Ascend$(1:18) [18] ,Descend$(1:18) [18]
60 Again:I=I+l
70 INPUT "Enter a word",Word$
80 Ascend$(l)=Word$
90 Descend$(18)=Word$
100 CALL See
110 IF 1<18 THEN Again
120 BEEP
130 END

Fill array at top
Fill array at bottom

140 !---
150 SUB See DISPLAY THE ARRAYS
160 COM Ascend$(*),Descend$(*)
170 MAT SORT Ascend$ <- ascending sort
180 MAT SORT Descend$ DES <- descending sort
190 FOR J=l TO 18
200 PRINT TABXY (1, J) ; RPT$ (" ",49)
210 PRINT TABXY(l,J);J;TABXY(ll,J) ;Ascend$(J);TABXY(31,J);Descend$(J)
220 NEXT J
230 SUBEND

String Manipulation 5-25

Sorting by Multiple Keys
When sorting a multi-dimensional numeric or string array, it is possible to specify more
than one key. The array will be sorted by the first key then the second key and so on
until the key specifiers are exhausted. Once the first key sorts items into similar groups,
the items within a group can be arranged in any order you choose.

10 COM Tool$(1:8,l:3)[10]
20 DATA PENCIL,RED,35,PENCIL,BLUE,12,PENCIL,GREEN,O,PENCIL,BLACK,17
30 DATA PEN,BLACK,17,PEN,BLUE,127,PEN,RED,55,PEN,GREEN,43
40 READ Tool$(*)
50 PRINT
60 PRINT "*** UNSORTED LIST ***"
70 Display
80 PRINT "*** SORT BY COLOR ***"
90 MAT SORT Tool$(*,2) [1,3] ! Sort color by first three letters.
100 Display
110 PRINT "*** SORT BY COLOR THEN BY NAME ***"
120 MAT SORT Tool$(*,2) ,(*,1) ! Two key sort.
130 Display
140 PRINT "*** SORT BY NAME THEN BY COLOR ***"
150 MAT SORT Tool$(*,l) ,(*,2)[1;3] DES
160 Display
170 END
180 !----------------------
190 SUB Display
200 COM Tool$(*)
210 K=K+l
220 FOR 1=1 TO 8
230 FOR J=l TO 3
240 PRINT Tool$(I,J),
250 NEXT J
260 PRINT
270 NEXT I
280 SUBEND

5-26 String Manipulation

Sorting to a Vector
It is possible to determine the sorting order of items in an array without disturbing the
array. This is accomplished by "sorting" to a single-dimensioned numeric array (vector).
The vector will then contain the subscripts of the items in the order that the items would
have been arranged.

10 DIM Month$(1:12) [3] ,Fix(1:12)
20 DATA JAN,FEB,MAR,APR,MAY,Jlm,Jl~,AUG,SEP.OCT.NOV.DEC
30 READ Month$(*)
40 MAT SORT Month$ TO Fix ! Sort to vector
50 PRINT Month$(*)
60 PRINT Fix(*)
70 FOR 1=1 TO 12
80 PRINT Month$(Fix(I)), Print months alphabetically
90 NEXT I
100 END

Running this program produces:

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

4 8 12 2 1 7 6 3 5 11 10 9

APR AUG DEC FEB JAN JUL JUN MAR MAY NOV OCT SEP

The first element of the vector contains a four (4), indicating the fourth element in the
array would be the first element if the array were actually sorted.

String Manipulation 5-27

Reordering an Array
The rows and columns of multiple dimension arrays can be reordered. Reordering is
made according to a reorder vector (single dimension array). The vector contains the
values of the subscripts of the array. When the array is reordered, the columns (or rows)
are arranged according to the the order of the subscripts in the reorder vector. See the
following program for an example of reordering.

10 PRINT CHR$(12); ! SORT_DEMO
20 DIM Size$(0:1) [5] .Color$(0:2) [5] .Shape$(0:1) [5]
30 COM Ident$(0:3) [5] .Array$(0:3.0:11) [6] .Order(0:3).Field.Down
40 DATA COUNT.SIZE.COLOR.SHAPE
50 DATA small.large.blue.red.green.cube.ball.1.2.3.0
60 READ Ident$(*).Size$(*).Color$(*) .Shape$(*) .Order(*)
70 FOR 1=0 TO 11
80 Array$(O.I)=RPT$(" ".I<9)&VAL$(I+1)
90 Array$(1.I)=Size$(I DIV 6)
100 Array$(2.I)=Color$(I DIV 2 MOD 3)
110 Array$(3.I)=Shape$(I MOD 2)
120 NEXT I
130 ON KBD CALL Do_key
140 Again:D$=" Ascending"
150 IF Down THEN D$="Descending"
160 DISP D$;" sort on field #";Field+1
170 Sort
180 Display
190 GOTO Again
200 END
210 !---

5-28 String Manipulation

220 SUB Display
230 COM Ident$(*) ,Array$(*) ,Order(*) ,Field,Down
240 PRINT TABXY(1,1);
250 PRINT "Press: A for ascending sort"
260 PRINT " D for descending sort"
270 PRINT " R to reorder array"
280 PRINT" 1-4 for sort field";TABXY(1,5)
290 PRINT USING "#,3X,5A";Ident$(*)
300 FOR 1=0 TO 11
310 PRINT TABXY(1,I+7);
320 FOR J=O TO 3
330 PRINT USING "#,3X,5A";Array$(J,I)
340 NEXT J
350 NEXT I
360 SUBEND
370 !---
380 SUB Sort
390 COM Ident$(*) ,Array$(*) ,Order(*) ,Field,Down
400 IF Down THEN
410 MAT SORT Array$(Field,*) DES
420 ELSE
430 MAT SORT Array$(Field,*)
440 END IF
450 SUBEND
460 !---
470 SUB DO_key
480 COM Ident$(*) ,Array$(*),Order(*) ,Field,Down
490 Key$=KBD$
500 SELECT Key$
510 CASE "1" TO "4"
520 Field=VAL(Key$)-1
530 CASE "A","a"
540 Down=O
550 CASE "D","d"
560 Down=1
570 CASE "R","r"
580 MAT REORDER Array$ BY Order
590 MAT REORDER Ident$ BY Order
600 CASE ELSE
610 BEEP
620 END SELECT
630 SUBEND

String Manipulation 5-29

Searching for Strings
The following program outlines a method for replacing a word in a string.

100 ! Program: Word_Replace
110 !
120 DIM Text$[80]
130 !
140 Search$=lIbad ll

150 Replace$=lIgood ll

160 Text$=111 am a bad string. II
170
180 PRINT Text$
190 S_length=LEN(Search$)
200 Position=POS(Text$.Search$)
210 IF NOT Position THEN Quit
220
230 Text$=Text$[l.Position-l]&Replace$&Text$[Position+S_length]
240
250 PRINT Text$
260 Quit: END

Print: I am a bad string.
I am a good string.

Large groups of strings are usually maintained in arrays. Searching an array for a
particular value is shown in the following example.

100 OPTION BASE 1
110 DIM List$(4) [20]
120 INTEGER I
130 DATA BLACK BILL $100.00
140 DATA BROWN JEFF $150.00
150 DATA GREEN JIM $200.00
160 DATA WHITE WILL $125.00
170 READ List$(*)
180 PRINT USING 1120A./II;List$(*)
190 1=1
200 LOOP
210 EXIT IF 1>4
220 EXIT IF List$(I) [1.5]=IIBROWNII
230 1=1+1
240 END LOOP
250
260 IF 1<=4 THEN PRINT List$(I) [1.5] ;11: II;List$(I)[14.17]
270 END

5-30 String Manipulation

Results:

BLACK BILL $100.00
BROWN JEFF $150.00
GREEN JIM $200.00
WHITE WILL $125.00

BROWN: $150

It is often necessary to find the minimum and maximum values in a string array. The
following program illustrates one method.

100 OPTION BASE 1
110 INTEGER I,Items
120 Items=5
130 ALLOCATE String_search$(Items) [3]
140 DATA ABC,BCD,CDE,DEF,EFG
150 READ String_search$(*)
160 !
170 Max$=String_search$(l) Start with first item for max.
180 Min$=Max$ Assume same item is min.
190 FOR 1=2 TO Items
200 IF Max$<String_search$(I) THEN Max$=String_search$(I)
210 IF Min$>String_search$(I) THEN Min$=String_search$(I)
220 NEXT I
230 PRINT liThe maximum array value is ";Max$;". II.

240 PRINT liThe minimum array value is ";Min$;"."
250 END

Results:

The maximum array value is EFG. The minimum array value is ABC.

String Manipulation 5-31

Searching String Arrays
Searching string arrays is similar to searching numeric arrays. For example, assume array
List$ contains a list of names and dollar amounts. The program shown next puts the
data into the source array (List$). It then searches for a particular name and outputs
the corresponding dollar amount.

100 OPTION BASE 1 ! Select option base.
110 DIM List$(4) [20] ! Dimension source array.
120 DATA BLACK BILL $100.00,BROWN JEFF $150.00
130 DATA GREEN JIM $200.00,WHITE WILL $125.00
140 READ List$(*) ! Read data into List$.
150 PRINT USING "20A,/";List$(*) ! Output the original list.
160 MAT SEARCH List$(*) [1,5] ,LOC("BROWN");Person ! Search proper
170 portion of each string in List$ for a
180 particular person.
190 PRINT
200 IF Person<=4 THEN
210 PRINT List$ (Person) [1,5] ; ": "; List$ (Person) [13,20] ! Output
220 specified name and dollar amount.
230 END IF
240 END

In this program a MAT SEARCH is used to find the string which contains the required name.
Once that string is found, the portion of it containing the dollar amount is displayed.
Note that the substring specifier is used in the search and display statements. If you run
this program, the following results are obtained.

BLACK BILL $100.00
BROWN JEFF $150.00
GREEN JIM $200.00
WHITE WILL $125.00

BROWN: $150

5-32 String Manipulation

MAX and MIN values can also be obtained from a string search as demonstrated by the
program shown next.

100 OPTION BASE 1 Select option base.
110 DIM String_search$(5) [3] ! Dimension the strings array.
120 DATA "DEF", "BCD" , "ABC" , "CDE" ,"EFG"
140 READ String_search$(*) Read data into the array.
150 MAT SEARCH String_search$,MAX;Max_value$! Search the strings
160 array for the maximum string value.
170 MAT SEARCH String_search$,MIN;Min_value$! Search the strings
180 array for the minimum string value.
190 ! The following statements output the results of the search.
200 PRINT "The maximum array value is ";Max_value$;". II.

210 PRINT "The minimum array value is ";Min_value$;"."
220 END

The array String_search$ is filled with string data. MAT SEARCH statements are then used
to find the maximum and minimum values of the data. If this program is run, the
following results are obtained.

The maximum array value is EFG. The minimum array value is ABC.

String Manipulation 5-33

Number-Base Conversion
Utility functions are available to simplify the calculations between different number bases.
The two functions IVAL and DVAL convert a binary, octaL decimaL or hexadecimal string
value into a decimal number. The IVAL$ and DVAL$ functions convert a decimal number
into a binary, octal, decimal, or hexadecimal string value. The IVAL and IVAL$ functions
are restricted to the range of INTEGER variables (-32768 thru 32767). The DVAL and DVAL$
functions allow "double length" integers and thus allow larger numbers to be converted
(-2 147483648 thru 2 147483647).

If you are familiar with binary notation, you will probably recognize the fact that IVAL
and IVAL$ operate on 16-bit values while DVAL and DVAL$ operate on 32-bit values.

10 PRINT CHR$(12)
20 DIM Radix$(1:4) [7] ,Radix(1:4),V$[33]
30 DATA Binary,Octal,Decimal,Hex,2,8,10,16
40 READ Radix$(*),Radix(*)
50 R=3 ! Default to decimal mode
60 ON KEY 5 LABEL "NEW RADIX" GO TO Radix
70 ON KBD GO TO Key
80 Erase:V$=""
90 V=O
100 See:FOR 1=1 TO 4
110 PRINT TABXY(1.10+I) ;Radix$(I) ,DVAL$(V,Radix(I));TABXY(49.10+I)
120 NEXT I
130 DISP "Enter a ";Radix$(R);" number";TAB(28);"(press SPACE to clear)"
140 W:GOTO W

5-34 String Manipulation

150 Key:ON ERROR GO TO Bad
160 Key$=UPC$(KBD$)
170 Test=POS("0123456789ABCDEF",Key$)
180 IF Test AND Test<=Radix(R) THEN
190 V$=V$&Key$
200 V=DVAL(V$,Radix(R»
210 ELSE
220 IF Key$="-" THEN Toggle
230 BEEP 900, .02
240 END IF
250 IF Key$=" " THEN Erase
260 GOTO See
270 Bad:DISP ERRM$
280 BEEP
290 WAIT 1.5
300 GOTO Erase
310 Radix:R=l+R MOD 4
320 GOTO Erase
330 Toggle:IF V$[l;l]="-" THEN
340 V$[l,l]="O"
350 ELSE
360 V$="_"&V$
370 END IF
380 V=DVAL(V$,Radix(R»
390 GO TO See
400 END

Trap overrange

Not a digit key

The program starts by prompting for a decimal number to be entered. As the digits are
typed, the number is displayed in each of the possible number bases. The softkey @]
or [][) lets you select the different number bases. Pressing the spacebar will clear the
display.

String Manipulation 5-35

Introduction to Lexical Order
The LEXICAL ORDER IS statement 1 lets you change the collating sequence (sorting order) of
the character set. Changing the lexical order will affect the results of all string relational
operators and operations, including the MAT SORT, MAT SEARCH, and CASE statements. In
addition to redefining the collating sequence, the case conversion functions, UPC$ and
LWC$, are adjusted to reflect the current lexical order.

Predefined lexical orders include: ASCII, FRENCH, GERMAN, SPANISH, SWEDISH,
and STANDARD. You can create lexical orders for special applications. The STAN
DARD lexical order is determined by an internal keyboard jumper, set at the factory to
correspond to the keyboard supplied with the computer. The setting can be determined
by examining the proper keyboard status register (STATUS 2,8; Language). Thus, tll('
STANDARD lexical order on a computer equipped with a French kryhoard will actually
invoke the FREN CH lexical order.

Why Lexical Order?
A common task for computers is to arrange (sort) a group of items in alphabetical
order. However, "alphabetical order" for a computer is normally based on the character
sequence of the ASCII2 character set. While the ASCII character sequence is adequate for
many English Language applications, most foreign language alphabets include accented
characters which are not part of the standard ASCII character set but must be included
in the sequence to correctly sort the characters used in the language.

Since special character combinations often appear in some languages, these combinations
and other special cases can be included in the lexical table to simplify working in other
languages.

How It Works
The LEXICAL ORDER IS statement modifies the collating sequence by assigning a new value
to each character. The new VahIf' , callf'd a Sf'qUf'nce nnmtwr, if' nSf'd in place of thr
character's ASCII value whenever characters are compared. Internally the characters
retain their ASCII value, however the outcome of a comparison will be based on tht,
sequence number assigned to the character instead of the character's ASCII value. In
the process of comparing two strings, each of the strings is converted to a series of
sequence numbers and the test is determined by the greater sequence numbers rather
than the greater ASCII values.

Available with LEX.
ASCII stands for --American Standard Codp for Information Intprchangp"

5-36 String Manipulation

The ASCII Character Set
The ASCII set consists of 128 distinct characters including uppercase and lowercase
alpha, numeric, punctuation, and control characters.

The table to the right shows the complete ASCII character set, as displayed on the CRT.
Each character is preceded by its ASCII value. The character's value is actually the
decimal representation of the binary value (bit pattern) used internally, by the computer,
to represent the character.

The characters are arranged in ascending value, which is to say, in ascending lexical
order. A character is "less than" another character if its ASCII value is smaller. From
the table it can be seen that "A" is less than "B" since the value of the letter "A" (65)
is less than the value of the letter "B" (66).

If you have experimented with string comparisons based on the ASCII collating sequence,
you may have noticed a few shortcomings. Consider the following words.

RESTORE, RE-STORE, and RE_STORE

Sorting these items according to the ASCII collating sequence will arrange them in the
following order.

RE-STORE < RESTORE < RE_STORE

This points out a limitation of string comparisons based on ASCII sequence. Since the
hyphen's value (45) is less than any alpha-numeric character, and the underbar's value
(95) is greater than all uppercase alpha characters, a word containing a hyphen will be
less than the same word without the hyphen, and a word containing an underbar will be
greater than the same word without the underbar. The LEXICAL ORDER IS statement lets
you overcome these limitations by changing the sorting order of the character set.

String Manipulation 5-37

Displaying Control Characters
Several special display features are available through the use of STATUS and CONTROL

registers. Normally, ASCII characters a through 31 (control characters) are not displayed
on the CRT. To enable the display of control characters, execute the following statement.

CONTROL 1,4; 1 or DISPLAY FUNCTIONS ON

Printing a line of text to the CRT will now show the trailing carriage-return and linefeed.
Although this mode is useful for some applications. control characters are usually not
displayed on the CRT.

CONTROL 1,4;0 or DISPLAY FUNCTIONS OFF

Turns off the special display functions mode.

5-38 String Manipulation

ASCII Character Set for CRT

Num Chr Num Chr. Num. Chr. Num. Chr.

0 N 32 64 @ 96 u
1 s 33 65 A 97 a H

2 ~ 34 66 B 98 b
3 E 35 # 67 C 99 c x
4 \ 36 $ 68 D 100 d
5 E 37 " 69 E 101 e Q

6 A 38 & 70 F 102 f 10(

7 0 39 71 G 103 9
8 e 40 72 H 104 h !ii

9 H 41 73 I 105 i T

10 L 42 * 74 J 106 j F

11 v 43 + 75 K 107 k T

12 ff 44 76 L 108 1
13 c 45 77 M 109 m R

14 ~ 46 78 N 110 n
15 s 47 / 79 0 111 0 I

16 0 48 0 80 P 112 P L

17 0, 49 1 81 Q 113 q
18 ~ 50 2 82 R 114 r
19 ~ 51 3 83 S 115 s
20 9& 52 4 84 T 116 t
21 N 53 5 85 U 117 u 10(

22 !ii 54 6 86 V 118 v y

23 \ 55 7 87 W 119 w
24 c 56 8 88 X 120 x N

25 E 57 9 89 Y 121 Y M

26 \ 58 90 Z 122 z
27 ~ 59 ; 91 [123 {

28 ~ 60 < 92 \. 124 I
29 Go 61 93] 125 } 5

30 fit 62 > 94 126 5

31 u 63 ? 95 127 .. 5

String Manipulation 5-39

Extended Character Set for CRT

NUITI Chr. ~~um , Chr. Num. Chr. ~jum . Chr.

128 c 160 192 a 224 A L

129 I 161 A 193 ~ 225 A I.'

130 5 162 A 194 0 226 ~ G

131 I 163 E 195 Q 227 D 5

132 u 164 ~ 196 a 228 d .L.

133 I 165 E 197 e 229 f .!.!

134 5 166 i 198 6 230 ± ..I:i

135 I 167 :t 199 U 231 6 .!.!

136 w 168 200 a 232 0 H

137 R 169 201 e 233 0 D

138 y 170 202 0 234 0 E

139 G 171 203 U 235 Sf;
R

140 c 172 204 a 236 s y

141 5 173 U 205 e 237 u u

142 M 174 0 206 6 238 y
G

143 5 175 £ 207 U 239 Y K

144 9 176 208 A 240 P 0

145 9 177 Y 209 i 241 P 1

146 9~ 178 y 210 0 242
147 9 179 211 A 243 p 3

148 9 180 <; 212 a 244 ~ 1I

149 9 181 9 213 1 245 I
5 0

150 9 182 ~ 214 (;1 246 G

151 9 183 rl 215 CE 247 * 7

152 9 184 216 A 248 i-8

153 9 185 (, 217 1 249 .I.
9

154 9 186 ~ 218 b 250 .2
A

155 9 187 £ 219 0 251 « 5

156 9 188 ¥ 220 E 252 • c
157 9 189 § 221 i 253 » D

158 9 190 f 222 a 254 ± E

159 9 191 ¢ 223 0 255 ~ F

5-40 String Manipulation

The Extended Character Set
Only 128 characters are defined in the ASCII character set. An additional 128 characters
are available in the extended character set. The extended set includes CRT highlighting
characters, special symbols, and Roman Extension characters (accented vowels and other
characters used in many foreign languages).

Note

Some printers produce different extended characters than those
displayed on the CRT. Check the printer manual for details on
alternate character sets.

Highlight Characters
The first 32 characters in the extended character set are reserved for controlling various
aspects of the CRT. The definition of these characters has been evolving with upgrades
to both hardware and system software. Therefore, the action of these characters depends
upon your model of computer and the level of BASIC (and Extensions) you have loaded.

With the BASIC system and Series 200/300 hardware, there is a possibility of having
CRT highlights such as inverse video and blinking. The first eight characters (ASCII
values 128 thru 135) are used to control these highlights, while the Model 226 is an
example of a display without highlights. See the "Highlight Characters" tables in the
appendix of the BASIC Language Reference.

The SYSTEMS function is available and can be used to determine what CRT highlights are
present. The expression

SYSTEM$("CRT lO")

returns a string containing information such as the CRT width and available highlights.
The string returned by this expression is for Series 300 medium resolution monochrome
monitors is:

6: 80H GBl

The 80 is the width of the CRT in characters and the H indicates that monochrome
highlights are available. If there were a space instead of the H, then the CRT does not
have highlights.

String Manipulation 5-41

You can also df'tf'rmine if you havf' CRT highlights by sf'nding a highlight control to the
CRT and seeing if anything happens.

For example:

PRINT CRR$ (132) ; "This is important."; CRR$ (128)

On a display with highlights, this produces:

This is important.

On a display without highlights, the control characters are ignored and the liu(' is
displayed as normal text. Note that these control characters produce an action only
in PRINT and DISP statements. When viewed in EDIT mode or on the system message
line, these control characters appear as "hp" or as shown in the previous table "Extended
Character Set for CRT."

Alternate CRT Characters
There is a keyboard control register for the CRT mapping of character codes, changing
the contents of the register may cause different characters to be displayed.

Try the following.

PRINT CHR$(247)
CONTROL 1. 11 ; 1
PRINT CHR$(247)
CONTROL 1. 11 ; 0

The first print statenH'ut will producE' tllE' character ('xpect('d from th(' character tables.
The second print statement may show a character (double arrow) from an alternate
character set. Note that th(' alternate character sPt. is only availablf' on some displays
(such as the Model 236).

Finding "Missing" Characters
By now, you may have noticed that there are more possiblE' CRT charactE'rs than keys
on thE' kE'yhoard. If your particular keyhoard doE'S not havE' a kE'Y for th(' charactE'r you
need, locate the I ANY CHAR I key (every keyboard has this key).

When you press the I ANY CHAR I key, the message, "Enter 3 digits, 000 to 255" appears
in the lower left corner of the CRT. Enter the three digits: 065 and the character whose
value is 65 (the letter "A") will be placed on the screen. Any character can be input by
this method. Pressing a non-digit key or entering a value outside the range will cancel
the function.

5-42 String Manipulation

Predefined Lexical Order
When the LEX Binary is first loaded or after a SCRATCH A, the computer executes a
LEXICAL ORDER IS STANDARD statement. This will be the correct lexical order for the
language on the keyboard. This can be checked by examining the keyboard status register
(STATUS 2.8; Language) or by either of the following statements.

SYSTEM$("LEXICAL ORDER IS")
SYSTEM$("KEYBOARD LANGUAGE")

The table below shows the language indicated by the value returned by the STATUS

statement. Thus, if the value returned indicates a French keyboard, the STANDARD lexical
order will be the same as the FRENCH lexical order. The STANDARD lexical order for the
Katakana keyboard is ASCII.

String Manipulation 5-43

Value Keyboard Language Lexical Order

0 ASCII ASCII

1 FRENCH FRENCH

2 GERMAN GERMAN

3 SWEDISH SWEDISH

4 SPANISH! SPANISH

5 KATAKANA KATAKANA

6 CANADIAN ENGLISH ASCII

7 UNITED KINGDOM ASCII

8 CANADIAN FRENCH FRENCH

9 SWISS FRENCH FRENCH

10 ITALIAN FRENCH

11 BELGIAN GERMAN

12 DUTCH GERMAN

13 SWISS GERMAN GERMAN

14 LATIN2 SPANISH

15 DANISH SWEDISH

16 FINNISH SWEDISH

17 NORWEGIAN SWEDISH

18 SWISS FRENCH* FRENCH

19 SWISS GERMAN* GERMAN

Either the CHR$ function or I ANY CHAR I may be used to produce characters not readily
available on the keyboard.

1 This is the European Spanish keyboard.
2 This is the Latin Spanish keyboard.

5-44 String Manipulation

Lexical Tables
The following tables show the five predefined lexical orders available with the LEXICAL
ORDER IS statement.

Notation
All of the lexical tables use the following notation.

sequence number ~ 113
character displayed ~ a

ASCII value ~ (97)

Characters not available on the keyboard can be entered by pressing the I ANY CHAR I
key and typing the value enclosed in parenthesis (with leading zeros, if needed). The
character will be collated according to the sequence number shown above the character.

String Manipulation 5-45

ASCII Lexical Order
The ASCII lexical order uses the character's ASCII value as the> sequence number. There
are> no special cases (mode table entries) used in the ASCII lexical order.

Case Conversions
The following lists show the UPC$ and LWC$ transformations for the ASCII lexical order.

UPC$

abcdefghijklmnopqr~tuvwxyz~g~A&bD~~6~.~6~~~bai~(_m)i~d5~9b
ABCDEFGHIJKLHNOPQRSTUUWXYZY~NA~ouA~6uA~6uA~ootAf8~iiAoo~yp

LWC$

ABCDEFGHIJKLHNOPQRSTUUWXYZAA~~~tiuuY~NA8~AOO~6AADfi66o~UYP
abcdefghijklmnopqr~tuvwxyz.a~&eii~D~gn~_m60u~ba~d(1605s~9b

Note

There are slight variations in the operation of the UPC$ and LWC$

functions depending on the lexical order in effect. In other words,
the lexical order determines which character will be returned by
the UPC$ and LWC$ functions. The case conversion lists show which
characters should be expected for each lexical order. To simplify
the lists, characters not affected have been excluded.

5-46 String Manipulation

LEXICAL ORDER IS ASCII

Seq. Chr. Num, Seq. Chr. HuIII. Seq. Chr. Hum. Seq. Chr. Hum. Seq. Chr. Hum.

0 H (0) 52 4 (52) 104 h (104) 156 9 (156) 208 ;.. (208) u c

1 5 (1) 53 5 (53) 105 (105) 157 9 (157) 209 i (209) H 0

2 5 (2) 54 6 (54) 106 j (106) 158 9 (158) 210 0 (210) \(E

3 E (3) 55 7 (55) 107 k (107) 159 9 (159) 211 .4 (211) '>(F

4 E (4) 56 8 (56) 108 1 (108) 160 (160) 212 a (212) T

5 E (5) 57 9 (57) 109 m (109) 161 A (161) 213 f (213) 0

6 A (6) 58 (58) 110 n (110) 162 fA. (162) 214 QI (214) 1<:

7 f) (7) 59 (59) 111 o (111) 163 E (163) 215 a: (215)
8 B (8) 60 (60) 112 P (112) 164 ! (164) 216 A (216) 5

9 H (9) 61 . (61) 113 q (113) 165 E (165) 217 1 (217) T

10 L (10) 62 > (62) 114 r (114) 166 t (166) 218 b (218) F

11 v (11) 63 ? (63) 115 s (115) 167 1: (167) 219 0 (219) T

12 ff (12) 64 @ (64) 116 t (116) 168 ' (168) 220 it (220)
13 c (13) 65 A (65) 117 u (117) 169 (169) 221 1 (221) R

14 5 (14) 66 B (66) 118 v (118) 170 A (170) 222 /3 (222) 0

15 5 (15) 67 c (67) 119 w (119) 171 (171) 223 0 (223) I

16 0 (16) 68 D (68) 120 x (120) 172 - (172) 224 A (224) L

17 0, (17) 69 E (69) 121 Y (121) 173 U (173) 225 X (225)
18 ~ (18) 70 F (70) 122 z (122) 174 0 (174) 226 ~ (226)
19 ~ (19) 71 G (71) 123 { (123) 175 £ (175) 227 l) (227)
20 ~ (20) 72 H (72) 124 I (124) 176 - (176) 228 d (228)
21 N (21) 73 I (73) 125 } (125) 177 B (177) 229 t. (229) K 1

22 5 (22) 74 J (74) 126 - (126) 178 B (178) 230 ± (230) y 2

23 E (23) 75 K (75) 127 .. (127) 179 (179) 231 0 (231) B

24 c (24) 76 L (76) 128 c (128) 180 <; (180) 232 0 (232) N L

25 E (25) 77 M (77) 129 I (129) 181 ~ (181) 233 0 (233) H v
26 5 (26) 78 N (78) 130 B (130) 182 ~ (182) 234 es (234) B G

27 E (27) 79 0 (79) 131 I (131) 183 1'\ (183) 235 S (235) c B

28 ~ (28) 80 P (80) 132 u (132) 184 (184) 236 ~ (236) .I.

29 G (29) 81 Q (81) 133 I (133) 185 (, (185) 237 0 (237) 5 .!.!

30 R (30) 82 R (82) 134 B (134) 186 ~ (186) 238 Y (238) 5 .Ii

31 u (31) 83 5 (83) 135 I (135) 187 £ (187) 239 Y (239) 5 ~

32 (32) 84 T (84) 136 w (136) 188 ¥ (188) 240 P (240) H

33 (33) 85 u (85) 137 R (137) 189 § (189) 241 I:> (241) 0

34 II (34) 86 V (86) 138 y (138) 190 j (190) 242 F (242) E 2

35 # (35) 87 w (87) 139 G (139) 191 ¢ (191) 243 F (243) R 3

36 $ (36) 88 X (88) 140 c (140) 192 A (192) 244 F (244) y 1I

37 \ (37) 89 Y (89) 141 B (141) 193 ~ (193) 245 I (245) u 0

38 & (38) 90 Z (90) 142 M
G (142) 194 6 (194) 246 - (246)

39 (39) 91 [(91) 143 B (143) 195 0. (195) 247 * (247) K

40 (40) 92 \. (92) 144 9 (144) 196 a (196) 248 t (248) _0

41 (41) 93] (93) 145 9 (145) 197 e (197) 249 ~ (249) 1

42 * (42) 94 ... (94) 146 9 (146) 198 6 (198) 250 ~ (250) 2

43 + (43) 95 (95) 147 9 (147) 199 U (199) 251 « (251) - 3

44 (44) 96 (96) 148 9 (148) 200 a (200) 252 • (252) 1I

45 - (45) 97 a (97) 149 9 (149) 201 e (201) 253 » (253) 5

46 (46) 98 b (98) 150 9 (150) 202 0 (202) 254 ± (254) 6

47 I (47) 99 c (99) 151 9 (151) 203 U (203) 255 13 (255) 7

48 0 (48) 100 d (100) 152 9 (152) 204 a (204) 8

49 1 (49) 101 e (101) 153 9 (153) 205 e (205) 9

50 2 (50) 102 f (102) 154 9 (154) 206 b (206) A

51 3 (51) 103 g (103) 155 9 (155) 207 U (207) B

String Manipulation 5-47

FRENCH Lexical Order
The FRENCH lexical order table contains two special entries. The hyphen character (-)
is assigned as a "don't care" character and a "2 for 1" character replacement is made for
the "13" character.

13 = ss

A string containing the hyphen will match the same string without the hyphen and a
string containing only a hyphen will match the null string. For example:

LEXICAL ORDER IS FRENCH
IF "RE-STORE"="RESTORE" THEN PRINT "TRUE"

Prints: TRUE

Case Conversions
The following lists show the UPC$ and LWC$ transformations for the FRENCH lexical
order.

UPC$

a&aaAa.abcqddeeee~fghii(iijklmn~o666o_apqrs&tuuuuuvwxyyzpy
AAAAAA~ABCCDDEEEEEFGHIIIIIJKLHNN0000085PQRSsTUUUUUVWXYYZ~y

LWC$

AAAA~AAABC~DDE~!!~FGHlttfiJKLHNN0806665PQRSsTUuuOuVWXYYZ~V
aa&a.Aaabcqddee6eefghiii(ijklmn~o_066oapqrs~tuuuuuvwxyyzpy

5-48 String Manipulation

LEXICAL ORDER IS FRENCH

Seq. Chr. Hum. Seq. Chr. Hum. Seq. Chr. Hum. Seq. Chr. Hum. Seq. Chr. Hum.

0 - (45) 51 4 (52) 81 p (80) 113 1 (108) 153 t (248)
0 N (0) 52 5 (53) 82 Q (81) 114 m (109) 154 A. (249) u
1 ~ (1) 53 6 (54) 83 R (82) 115 n (110) 155 Q (250)
2 5 (2) 54 7 (55) 84 s (83) 116 Pi (183) 156 « (251) x
3 E (3) 55 8 (56) 85 S (235) 117 0 (111) 157 • (252)

)(

4 E (4) 56 9 (57) 86 T (84) 117 6 (194) 158 » (253) ,.
5 E (5) 57 (58) 87 U (85) 117 6 (198) 159 :!: (254) Q

6 fI (6) 58 (59) 87 U (173) 117 0 (202) 160 I (127)
)(

7 0 (7) 59 < (60) 87 0 (174) 117 b (206) 161 (160)
8 • (8) 60 1& (61) 87 o (219) 117 (1J (214) 162 B (177)

5 1

9 H (9) 61 > (62) 87 U (237) 117 c3 (234) 163 B (178) ,. 2

10 L (10) 62 ? (63) 88 V (86) 118 P (112) 164 F (242)
F" 2

11 v (11) 63 @ (64) 89 w (87) 119 q (113) 165 F (243) ,. 3

12 ff (12) 64 A (65) 90 X (88) 120 r (114) 166 F (244) 1I

13 c (13) 64).. (161) 91 y (89) 121 s (115) 167 I (245)
R 0

14 " (14) 64 " (162) 91 y (238) 121 f3 (222) 168 c (128) L

15 5 (15) 64 A (208) 92 z (90) 122 ~ (236) 169 I (129)
I v

16 0 (16) 64 A (211) 93 P (240) 123 t (116) 170 B (130)
L G

17 0, (17) 64 A (216) 94 [(91) 124 u (117) 171 I (131) B

18 ~ (18) 64 A (224) 95 \. (92) 124 Q (195) 172 u (132) .I.

19 ~ (19) 64 X (225) 96] (93) 124 U (199) 173 I (133) .!.I.

20 '1 (20) 65 B (66) 97
,., (94) 124 U (203) 174 B (134) .l<

21 N (21) 66 c (67) 98 (95) 124 u (207) 175 I (135)
)(- .ll

22 5 (22) 66 C; (180) 99 (96) 125 V (118) 176 !oj (136) y H

23 \ (23) 67 D (68) 100 a (97) 126 w (119) 177 R (137) 0

24 X (24) 68 D (227) 100 a (192) 127 x (120) 178 y (138) E

25 E (25) 69 E (69) 100 a (196) 128 Y (121) 179 G (139)
H R

26 !i (26) 69 E (163) 100 a (200) 128 Y (239) 180 c (140) B y

27 E (27) 69 !: (164) 100 a (204) 129 z (122) 181 B (141) c u

28 's (28) 69 it (165) 100 a (212) 130 P (241) 182 H (142) G

29 \ (29) 69 E (220) 100 CE (215) 131 { (123) 183 B (143) K

30 R (30) 70 F (70) 100 3 (226) 132 I (124) 184 9 (144) 5 0

31 ~ (31) 71 G (71) 101 b (98) 133 } (125) 185 9 (145) 1

32 (32) 72 H (72) 102 c (99) 134 - (126) 186 9 (146) 2

33 (33) 73 I (73) 103 <; (181) 135 (168) 187 9 (147) 3

34 " (34) 73 t (166) 104 d (100) 136 ' (169) 188 9 (148) 1I

35 # (35) 73 :t (167) 105 d (228) 137 ~ (170) 189 9 (149) 5

36 $ (36) 73 f (229) 106 e (101) 138 (171) 190 9 (150) 6

37 \ (37) 73 t (230) 106 ~ (193) 139 - (172) 191 9 (151) 7

38 & (38) 74 J (74) 106 e (197) 140 ((175) 192 9 (152) 8

39 (39) 75 K (75) 106 e (201) 141 - (176) 193 9 (153) 9

40 (40) 76 L (76) 106 e (205) 142 (179) 194 9 (154) A

41 (41) 77 M (77) 107 f (102) 143 (184) 195 9 (155) B

42 * (42) 78 N (78) 108 g (103) 144 l (185) 196 9 (156) c

43 + (43) 79 ~ (182) 109 h (104) 145 f:1 (186) 197 9 (157) 0

44 (44) 80 0 (79) 110 i (105) 146 £ (187) 198 9 (158) E

45 (46) 80 0 (210) 110 i (209) 147 ¥ (188) 199 9 (159) F

46 / (47) 80 b (218) 110 :((213) 148 § (189) 200 C3 (255)
47 0 (48) 80 0 (223) 110 1 (217) 149 f (190)
48 1 (49) 80 6 (231) 110 1 (221) 150 ¢ (191)
49 2 (50) 80 o (232) 111 j (106) 151 - (246)
50 3 (51) 80 o (233) 112 k (107) 152 * (247)

String Manipulation 5-49

GERMAN Lexical Order
The GERMAN lexical order table contains seven "2 for 1" character replacements. When
the following individual characters are found in a string, two sequence numbers are
generated, as if two characters were found in the string.

a ae

0 oe

u = ue

A = AE or Ae

0 = DE or De

0 = UE or Ue

B = ss

Case Conversions
The following lists show the UPC$ and LWC$ transformations for the GERMAN lexical
order.

UPC$

aA.aaaAabc~ddeee~6fghi(liijklmn~oo660o.pqr~&tuuuuuvwxyyzby
AA~AAAAABCCDoEtet~FGHlfttiJKLHNN00600o8PQRSsTUOuuuUWXYvZPY

LWC$

AA~AAAAABC~DoEtet~FGHlfittJKLHNN00600o8PQRSsTUOuuuUWXYvZpY
aA.aaaAabc~ddeee66fghi(liijklmn~o06ooo.pqr~&tuuuuuvwxyyzby

5-50 String Manipulation

LEXICAL ORDER IS GERMAN

Seq. Chr. Hull. Seq. Chr. Hull. Seq. Chr. HUIII. Seq. Chr. Hum. Seq. Chr. Hum.

0 N (0) 52 4 (52) 102 P (80) 152 1 (108) 201 t (248) u

1 s (1) 53 5 (53) 103 Q (81) 153 m (109) 202 A. (249) H

2 II (2) 54 6 (54) 104 R (82) 154 n (110) 203 ~ (250) x
3 E (3) 55 7 (55) 105 S (83) 155 f'\ (183) 204 « (251) x
4 \ (4) 56 8 (56) 106 S (235) 156 0 (111) 205 • (252)
5 E (5) 57 9 (57) 107 T (84) 156 0 (206) 206 » (253) Q

6 A (6) 58 (58) 108 u (85) 157 6 (198) 207 ± (254) K

7 £) (7) 59 (59) 108 o (219) 158 0 (202) 208 • (127)
8 • (8) 60 < (60) 109 U (237) 159 0 (194) 209 (160) 5

9 H (9) 61 .. (61) 110 u (173) 160 0 (234) 210 B (177) T 1

10 L (10) 62 > (62) 111 0 (174) 161 (i (214) 211 B (178) F z
11 v (11) 63 ? (63) 112 V (86) 162 P (112) 212 F (242) T z
12 ff (12) 64 @ (64) 113 \of (87) 163 q (113) 213 F (243) 3

13 c (13) 65 A (65) 114 X (88) 164 r (114) 214 F (244) R 4

14 s (14) 65 A (216) 115 Y (89) 165 s (115) 215 I (245) 0 0

15 s (15) 66 A (211) 116 Y (238) 165 a (222) 216 c (128) I L

16 0 (16) 67 A (208) 117 Z (90) 166 S (236) 217 I (129) L v

17 0, (17) 68 A (224) 118 P (240) 167 t (116) 218 B (130) G

18 ~ (18) 69 A (161) 119 [(91) 168 u (117) 219 I (131) B

19 ~ (19) 70 " (162) 120 \. (92) 168 u (207) 220 u (132) .I.

20 ~ (20) 71 A (225) 121] (93) 169 U (199) 221 I (133) .!.!

21 N (21) 72 B (66) 122 '" (94) 170 U. (203) 222 B (134) K ..\i

22 Ii (22) 73 C (67) 123 (95) 171 Q (195) 223 I (135) y - ~

23 E (23) 74 C; (180) 124
, (96) 172 v (118) 224 w (136) B H

24 c (24) 75 D (68) 125 a (97) 173 w (119) 225 R (137) N 0

25 E (25) 76 D (227) 125 a (204) 174 x (120) 226 y (138) M E

26 Ii (26) 77 E (69) 126 a: (215) 175 Y (121) 227 G (139) e R

27 E (27) 78 E (220) 127 a (212) 176 Y (239) 228 c (140) c y

28 ~ (28) 79 E (163) 128 a (196) 177 z (122) 229 B (141) u

29 \ (29) 80 1!: (164) 129 a (200) 178 P (241) 230 M (142) G

30 R (30) 81 it (165) 130 A (192) 179 { (123) 231 B (143) Ii I(

31 ~ (31) 82 F (70) 131 ! (226) 180 I (124) 232 9 (144) 0

32 (32) 83 G (71) 132 b (98) 181 } (125) 233 9 (145) 1

33 (33) 84 H (72) 133 c (99) 182 - (126) 234 9 (146) z
34 " (34) 85 I (73) 134 C; (181) 183 (168) 235 9 (147) 3

35 # (35) 86 t (229) 135 d (100) 184 (169) 236 9 (148) 4

36 $ (36) 87 t (230) 136 d (228) 185 A (170) 237 9 (149) 5

37 \ (37) 88 i: (166) 137 e (101) 186 (171) 238 9 (150) 6

38 & (38) 89 :t (167) 138 e (197) 187 - (172) 239 9 (151) 7

39 (39) 90 J (74) 139 e (201) 188 £ (175) 240 9 (152) 8

40 (40) 91 K (75) 140 ~ (193) 189 - (176) 241 9 (153) 9

41 (41) 92 L (76) 141 e (205) 190 (179) 242 9 (154) A

42 * (42) 93 M (77) 142 f (102) 191 (184) 243 9 (155) B

43 + (43) 94 N (78) 143 9 (103) 192 l (185) 244 9 (156) c
44 (44) 95 ~ (182) 144 h (104) 193 t:l (186) 245 9 (157) 0

45 - (45) 96 0 (79) 145 i (105) 194 £ (187) 246 9 (158) E

46 (46) 96 o (218) 146 f (213) 195 ¥ (188) 247 9 (159) F

47 / (47) 97 6 (231) 147 1 (217) 196 § (189) 248 &i (255)
48 0 (48) 98 o (232) 148 i (209) 197 f (190)
49 1 (49) 99 o (223) 149 i (221) 198 ¢ (191)
50 2 (50) 100 o (233) 150 j (106) 199 - (246)
51 3 (51) 101 o (210) 151 k (107) 200 * (247)

String Manipulation 5-51

SPANISH Lexical Order
The SPANISH lexical order table contains five special entries. Four of these entries arp
'·1 for 2~' character replacements. When the following character pairs ar(' found in a
string, a single sequence number is used to represent the pair.

CH

Ch

LL

Ll

G8

G8

79

79

cH

ch

lL

1 1

lOG

lOG

11 7

11 7

The remaining special case is a "2 for I" entry for the "B" character.

f3 = 88

Case Conversions
The following lists show the UPC$ and LWC$ transformations for the SPANISH lexical
order.

UPC$

aaaaaamabc~ddeeeeefghiillijklmnnoo660.opqrs5tuuuuuvwxyyzpy
AAAAAA~ABCCDDEEEEEFGHIIIIIJKLHNNOOOOo8oPQRSsTUUUUOUWXYvZpY

LWC$

AAAA~AAABC~DoE~~~~FGHltifiJKLHNN086666oPQRSsTUuuOuUWXYvZpY
aaaamaaabc~ddeeeeefghiiilljklmnno.oo6oopqrsstuuuuuvwxyyzpy

5-52 String Manipulation

LEXICAL ORDER IS SPANISH

Seq. Chr. Num. Seq. Chr. Num. Seq. Chr. Num. Seq. Chr. Num. Seq. Chr. Num.

0 N (0) 52 4 (52) 84 P (80) 116 1 (108) 157 t (248) u
1 5 (1) 53 5 (53) 85 Q (81) 118 m (109) 158 ~ (249) H

2 5 (2) 54 6 (54) 86 R (82) 119 n (110) 159 .2 (250) x
3 E (3) 55 7 (55) 87 S (83) 120 f\ (183) 160 « (251) '>(

4 E 'A' 56 8 (56) 88 S (235) 121 0 (111) 161 • (252) T \'*)

5 E (5) 57 9 (57) 89 T (84) 121 0 (194) 162 » (253) 0

6 F\ (6) 58 (58) 90 u (85) 121 6 (198) 163 ± (254) K

7 (I (7) 59 (59) 90 U (173) 121 b (202) 164 • (127)
8 8 (8) 60 < (60) 90 0 (174) 121 b (206) 165 (160) 5

9 H (9) 61 .. (61) 90 u (219) 121 " (214) 166 B (177) T 1

10 L (10) 62 > (62) 90 U (237) 121 13 (234) 167 B (178) F 2

11 v (11) 63 ? (63) 91 V (86) 122 P (112) 168 F (242) T 2

12 f, (12) 64 @ (64) 92 w (87) 123 q (113) 169 F (243) 3

13 c (13) 65 A (65) 93 X (88) 124 r (114) 170 F (244) R a
14 5 (14) 65 A (161) 94 Y (89) 125 s (115) 171 I (245) 0 0

15 5 (15) 65 A (162) 94 y (238) 125 ~ (222) 172 c (128) t L

16 0 (16) 65 A (208) 95 Z (90) 126 5 (236) 173 I (129) L t)

17 0, (17) 65 A (211) 96 P (240) 127 t (116) 174 B (130) G

18 ~ (18) 65 A (216) 97 [(91) 128 u (117) 175 I (131) B

19 ~ (19) 65 A (224) 98 " (92) 128 Q (195) 176 u (132) .L

20 ~ (20) 65 ~ (225) 99] (93) 128 U. q99) 177 I (133) .lJ

21 N (21) 66 B (66) 100 '" (94) 128 u (203) 178 B (134) I< ,l;

22 Ii (22) 67 c (67) 101 (95) 128 u (207) 179 I (135) y - .Il

23 " (23) 67 <; (180) 102
,

(96) 129 V (118) 180 w (136) H

24 c (24) 69 D (68) 103 a (97) 130 w (119) 181 R (137) N 0

25 E (25) 70 D (227) 103 a (192) 131 x (120) 182 y (138) t1 E

26 5 (26) 71 E (69) 103 a (196) 132 Y (121) 183 G (139) 8 R

27 E (27) 71 E (163) 103 a (200) 132 Y (239) 184 c (140) c y

28 ~ (28) 71 ! (164) 103 a (204) 133 z (122) 185 B (141) u
29 ~ (29) 71 :it (165) 103 a (212) 134 P (241) 186 M (142) G

30 FI (30) 71 E (220) 103 ~ (215) 135 { (123) 187 B (143) 5 K

31 u (31) 72 F (70) 103 ! (226) 136 I (124) 188 9 (144) 5 0

32 (32) 73 G (71) 104 b (98) 137 } (125) 189 9 (145) 1

33 (33) 74 H (72) 105 c (99) 138 - (126) 190 9 (146) 2

34 " (34) 75 I (73) 105 <; (181) 139 (168) 191 9 (147) 3

35 # (35) 75 :t (166) 107 d (100) 140 (169) 192 9 (148) a
36 $ (36) 75 1: (167) 108 d (228) 141 ~ (170) 193 9 (149) 5

37 \ (37) 75 f (229) 109 e (101) 142 (171) 194 9 (150) 6

38 & (38) 75 :t (230) 109 ~ (193) 143 - (172) 195 9 (151) 7

39 (39) 76 J (74) 109 e (197) 144 { (175) 196 9 (152) 8

40 (40) 77 K (75) 109 e (201) 145 - (176) 197 9 (153) 9

41 (41) 78 L (76) 109 e (205) 146 (179) 198 9 (154) A

42 * (42) 80 M (77) 110 f (102) 147 (184) 199 9 (155) B

43 + (43) 81 N (78) 111 g (103) 148 (. (185) 200 9 (156) c
44 (44) 82 ~ (182) 112 h (104) 149 0 (186) 201 9 (157) 0

45 - (45) 83 0 (79) 113 i (105) 150 £ (187) 202 9 (158) E

46 (46) 83 0 (210) 113 i (209) 151 ¥ (188) 203 9 (159) F

47 / (47) 83 0 (218) 113 i (213) 152 § (189) 204 13 (255)
48 0 (48) 83 0 (223) 113 1 (217) 153 f (190)
49 1 (49) 83 d (231) 113 1 (221) 154 ¢ (191)
50 2 (50) 83 0 (232) 114 j (106) 155 (246)
51 3 (51) 83 0 (233) 115 k (107) 156 * (247)

String Manipulation 5-53

SWEDISH Lexical Order
The SWEDISH lexical order table includes one "2 for l'~ character replacement entry.
When the "'6~' character is found in a string, two sequence numbers are generated, as if
two characters were found in the string.

"6 = ss

Case Conversions
Thf' following lists show the UPC$ and LWC$ transformations for the SWEDISH lexical
order.

UPC$

abcdeefghijklmnopqr~tuvwxyzmaaaaaa~deee(liin66ooo.suuuuy~y
ABCDE~FGHIJKLHNOPQRSTUUWXYZ~AAAAAACDE~~fiizN606ooB5uuuOvpY

LWC$

ABCDEFGHIJKLHNOPQRSTUUWXYZ~AAAAAA~D~~~~fiiiN606ooB5uuuOvpY
abcdefghijklmnopqr~tuvwxyzmaaaaaa~deeee(liin666oo.suuuuy~y

5-54 String Manipulation

LEXICAL ORDER IS SWEDISH

Seq, Cor, Hum, Seq, COr. Hum. Seq. Cor, Hum. Seq. Cor. Hum. Seq. Chr. Hum.

0 N (0) 52 4 (52) 104 :t (229) 154 a; (215) 206 i (248) u

1 5 (1) 53 5 (53) 105 ± (230) 155 a (212) 207 A (249) H

2 5 (2) 54 6 (54) 106 1: (166) 156 a (196) 208 2 (250) x
3 E (3) 55 7 (55) 107 :t (167) 157 a (200) 209 « (251) x
4 E (4) 56 8 (56) 108 ~ (182) 158 a (192) 210 • (252) T

5 E (5) 57 9 (57) 109 6 (231) 159 a (204) 211 » (253) Q

6 A (6) 58 (58) 110 0 (232) 160 a (226) 212 :!: (254) ~

7 [,I (7) 59 (59) 111 0 (223) 161 <; (181) 213 • (127)
8 .. (8) 60 < (60) 112 b (218) 162 d (228) 214 (160) 5

9 H (9) 61 (61) 113 (3 (233) 163 e (201) 215 6 (177) T 1

10 L (10) 62 > (62) 114 0 (210) 164 ~ (193) 216 6 (178) F 2

11 v (11) 63 ? (63) 115 53 (235) 165 e (205) 217 F (242) T 2

12 ff (12) 64 @ (64) 116 U (237) 166 f (213) 218 F (243) 3

13 c (13) 65 A (65) 117 U (173) 167 1 (217) 219 F (244) R 11

14 5 (14) 66 B (66) 118 0 (174) 168 i (209) 220 I (245) 0 0

15 5 (15) 67 c (67) 119 0 (219) 169 i (221) 221 c (128) I b
16 0 (16) 68 D (68) 120 Y (238) 170 P\ (183) 222 I (129) L v
17 0" (17) 69 E (69) 121 I> (240) 171 6 (198) 223 6 (130) G

18 ~ (18) 70 F (70) 122 [(91) 172 0 (202) 224 I (131) 6

19 ~ (19) 71 G (71) 123 \ (92) 173 0 (194) 225 u (132) ...
20 ~ (20) 72 H (72) 124] (93) 174 b (206) 226 I (133) .!.!

21 N (21) 73 I (73) 125 A (94) 175 ~ (234) 227 6 (134) ~ Ji
22 5 (22) 74 J (74) 126 (95) 176 f6 (214) 228 I (135) y - .ll
23 E (23) 75 K (75) 127 (96) 177 S (236) 229 w (136) .. H

24 c (24) 76 L (76) 128 a (97) 178 u (199) 230 R (137) N 0

25 ~ (25) 77 M (77) 129 b (98) 179 U (203) 231 y (138) E

26 " (26) 78 N (78) 130 c (99) 180 0 (195) 232 G (139) R

27 E (27) 79 0 (79) 131 d (100) 181 i.i (207) 233 c (140) c y

28 ~ (28) 80 P (80) 132 e (101) 182 Y (239) 234 6 (141) u

29 Ci (29) 81 Q (81) 132 e (197) 183 P (241) 235 M (142) !I G

30 R (30) 82 R (82) 133 f (102) 184 { (123) 236 6 (143) 5 K

31 u (31) 83 5 (83) 134 g (103) 185 I (124) 237 9 (144) 5 0

32 (32) 84 T (84) 135 h (104) 186 } (125) 238 9 (145) 1

33 (33) 85 u (85) 136 (105) 187 (126) 239 9 (146) 2

34 " (34) 86 V (86) 137 j (106) 188 (168) 240 9 (147) 3

35 # (35) 87 \If (87) 138 k (107) 189 (169) 241 9 (148) 11

36 $ (36) 88 X (88) 139 1 (108) 190 ~ (170) 242 9 (149) s
37 \ (37) 89 Y (89) 140 m (109) 191 (171) 243 9 (150) 6

38 & (38) 90 z (90) 141 n (110) 192 - (172) 244 9 (151) 7

39 (39) 91 Ai (211) 142 o (111) 193 (: (175) 245 9 (152) B

40 (40) 92 A (208) 143 P (112) 194 - (176) 246 9 (153) 9

41 (41) 93 A (224) 144 q (113) 195 (179) 247 9 (154) A

42 * (42) 94 A (161) 145 r (114) 196 (184) 248 9 (155) 6

43 + (43) 95 " (162) 146 s (115) 197 l (185) 249 9 (156) c
44 (44) 96 A (216) 146 f3 (222) 198 0 (186) 250 9 (157) 0

45 - (45) 97 .I. (225) 147 t (116) 199 £ (187) 251 9 (158) E

46 (46) 98 C; (180) 148 u (117) 200 ¥ (188) 252 ~ (159)
47 I (47) 99 D (227) 149 v (118) 201 § (189) 253 13 (255)
48 0 (48) 100 It (220) 150 w (119) 202 f (190)
49 1 (49) 101 E (163) 151 x (120) 203 ¢ (191)
50 2 (50) 102 t (164) 152 Y (121) 204 - (246)
51 3 (51) 103 it (165) 153 z (122) 205 t (247)

String Manipulation 5-55

User-defined LEXICAL ORDER
The following program will generate the worksheet on the next page. The worksheet is
handy when creating a user-defined lexical order.

10 DIM Lb$[l] ,Fl$[23] ,F2$[23] ,F3$[14] ,F4$[20] ,Falt$[96] ,Flp$[22] ,F2p$[22]
20 INTEGER I
30 OUTPUT PRT;"LEXICAL ORDER TABLE WORKSHEET Iseq-num:mode-type.mode
-entryl"
40 OUTPUT PRT
50 Lb$="#"
60 Flp$=" ,DD,X,""I 11"""
70 Fl$=" ,DDD,X,"11 11"""
80 F2p$=I,X,A,X,"11 11"""
90 F2$=I,XX,A,X,"11 11"""
100 F4$=" ,DD,X,""I 11"""
110 F3$=I,"IMode Length"""
120 Falt$=Flp$&F2$&Fl$&F2$
130 FOR 1=0 TO 63
140 SELECT I
150 CASE 0
160 OUTPUT PRT USING Lb$&Falt$&F3$;I,CHR$(I+64),I+128,CHR$(I+192)
170 CASE <32
180 OUTPUT PRT USING Lb$&Falt$&F4$;I,CHR$(I+64) ,I+128,CHR$(I+192) ,1-1
190 CASE ELSE
200 OUTPUT PRT USING Lb$&F2p$&RPT$(F2$,3)&F4$;CHR$(I) ,CHR$(I+64) ,
CHR$(I+128) ,CHR$(I+192) ,1-1
210 END SELECT
220 OUTPUT PRT
230 NEXT I
240 END

5-56 String Manipulation

LEXICAL ORDER TABLE WORKSHEET 15eq-num:mode-type.mode-entryl

o
1
2
3
4
5
6
7
8
9

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

" I
t
s

" & I
I I

* I
+ I

/

o
1
2

4 I

6

7
8
9

(I

I

? i

II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

~
A
8
C
o
E
F
G
H
I
J
k
L
M
N
o
P
Q

R
5
T
U
V
W

><
Y

I I Z
II
I I ,I
II I
II ", I

II I
II
I I a I
II b I
II I
II
I lei
II
I I q

II h
II
II
II

m
n I

o I
D i
q
r ,
5 ,

t I
u I
V

v)

I! x I

II Y
II
II
i I
II
i I -,

II I

i 1128
11129
I 1130
11131
11132
11133
11134
11135
11136
11137
1 1138
I 139
I 140
I 141
I 142
I 143

144
14'3
146
147
148
149

I 150
I 1151
11152
I 1153
11154
11155
I 1156
11157
11158
,1159

II I
II A I
11 A I
I I E I
I I e
I I E I
II :t I
I I I I
II
II
II
II
II I
II u I
Ii U I

II t:
i I
II
II
II
II C;
II
I I i~

II fi
Ii
II
,I

II
i I

II
I,

II

i,

§ I

f i

, I
II
II
II
II
II
II
II
i I
II
II
II
II
II
II
II
II
II
II
II
II
II
II
I

a ,
e i

b I

U i
a I

e I
6
U
a I
e I
6 i
U
a I
e I
o I
u I
A i

i I
g ,

1£
a I

I
if I

i!! 1
A I
" 1

Q I

U I
I! i
I I

A I

A
a i
{)

I I d I
I I i I
i I I I

II Q I
I! Q i

II 5
II i5
I I 5 I
II
II
II
II
II
II
II
II
i i

II
I!

II

1.1
y I

'~ 1

P
b

Ii';; i

II A

i' 9. I

II «I
I I •

II J> I
I I ~

II ,

I I Mode
I I 0 I
I I 1
11 2
I I 3
II 4
Ii '5
11 6
II 7
I I 8
II '1
I 110
i 111
1112
Ii 13
1114
1 115
I 116

1117
I 118
I 119
I 120
I 121
1122
1123
1124
112'5
1126
1127
1128
1129
I 130
I 131 I

I 132
i i 33
1134
1135
1136
1137
1138
1139
1140
I I <i1
1142
1143
1144
1145
1146

1147
1148
1149
I 150
I 151
I 1'32
I 1'53
1154
li?'5 '
I 1'56

i 177

I' '58
I 15 9

I i 6 0 i

I i 61
1162 I

Lenqth
II
II
II
II
II
II
II
i I
II
II
II
II
II
II
11
II
II
II
II
II
II
II
II
II
11
II
II
II
II
II
II
II
II
II
II

II
II
II
II
II
II
i I
II
II
11
II
II
i 1
, I

11
II
II
II
II
11
II
II

II
II
i I

II

Ii

II

String Manipulation 5-57

User-Defined Lexical Orders
A lexical order can be created for applications that require special collating sequences. If
you can use one of the predefined lexical orders, you may wish to only skim this section.

A program called LEX_AID has been supplied (on the BASIC Utilities Library disc) to
simplify the creation of user-defined lexical orders. Before running the program it will
be necessary to have an understanding of the terms used in this section. Using the
LEX_AID program is described in the "BASIC Utilities Library" chapter of the Installing
and Maintaining the BASIC System manual.

Basically, a 321 element (0 thru 320) INTEGER array is dimensioned, filled with sequence
numbers and mode entries, and the new lexical order is established by the following
statement.

LEXICAL ORDER IS Table(*)

Where Table(*) is any valid INTEGER array name.

5-58 String Manipulation

The following illustration shows the general construction of a user-defined lexical table
created in an INTEGER array.

255

256

257

320

COLLATING
SECTION

OF MODE ENTRIES

MODE TABLE
SECTION

The first 256 elements (0 through 255) contain the sequence number to be used in place
of the character's ASCII value. For special characters, a mode type and mode table
pointer are also stored in these elements.

The next element (256) contains the number of entries in the mode table. This value can
range from 0 (no mode table) thru 64 (a full mode table).

The remaining 64 elements (257 thru 320) contain the optional mode table entries
assigned to special characters.

String Manipulation 5-59

Sequence Numbers
Normally, comparing two strings results in the computer comparing the ASCII values of
the characters. When the computer makes the string comparison "A" <" If' , the ASCII
value of "A" (65) is compared to the ASCII value of the letter "B" (66) resulting in the
comparison: 65<66, which is true.

N ow suppose that a new value (sequence number) could be assigned to each of the
ASCII characters. We might wish to assign the letter "A" a sequence number greater
than the sequence number assigned to the letter lOB". If such an assignment were made,
the comparison "A" <"B". would now be false.

Once a lexical order is invoked, if two strings are compared, the strings are first converted
into two series of sequence numbers and the comparison is then based on the sequence
numbers.

The LEXICAL ORDER IS statement's primary purpose is to assign a sequence number
to each character. However, this is not always enough to handle certain character
combinations and special cases encountered in other languages. Special characters have
a mode entry included with the sequence number.

Mode Entries
Each of the first 256 array elements (0 thru 255) contains the sequence number to be
used in place of the character's ASCII value. Optionally, a mode entry can be included.

Internally, an integer array element uses two bytes (16 bits) of memory. In the following
diagram. the array element is divided into its upper. and lower bytes. The upppr byte
contains the sequence number and the lower byte is used if the character has a mode
entry.

upper byte lower byte

array element sequence number optional mode entry

The lower byte is further divided into two parts. The upper-most 2-bits are used to
represent one of the four mode types. The remaining G-bits store an index (pointer) to
the actual mode table entries. This method allows all the necessary information. for each
character, to be stored as a single element in the INTEGER array.

lower byte

Imode type I mode table index

5-60 String Manipulation

Mode Type
Anyone of the following mode types can be assigned to a character.

• Don't Care Characters (Mode type: 0)

• "1 for 2" Character Replacements (Mode type: 1)

• "2 for I" Character Replacements (Mode type: 2)

• Accent Priority (Mode type: 3)

Mode Index
The mode index points to the actual mode table entry associated with the particular
character. Up to 64 indexes are allowed (0 thrll 63); however, some mode types use more
than one table entry.

Bits, Bytes, and Mode Types
Each INTEGER array element stores a signed-integer in the range: -32768 thru 32767.
Internally, the number is stored as a 16-bit 2's complement value.

Bits are usually numbered in descending order and include bit 0, so 16 bits are numbered
as follows.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

16-bit 2'5 complement value

String Manipulation 5-61

However. we want to store one of 256 possible sequence numbers and optionally. a mode
type and mode table index. Since there are 256 characters used with the LEXICAL ORDER
IS statement, and 8 bits are needed to store one of 256 possible values (2

A
8 = 256), it is

convenient to think of the bits arranged as two bytes (a byte contains 8 bits).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
upper byte lower byte

The upper byte is used to hold the sequence number and the lower byte contains the
mode entry information. The algorithm below will produce a signed 16-bit integer from
two unsigned 8-bit bytes.

Integer = (256*Upper+Lower)-(Upper>127)*65536

The process can be reversed.

IF Integer<O THEN Integer=Integer+65536
Upper Integer DIV 256
Lower = Integer MOD 256

The lower byte is further divided into two groups. Two bits hold one of four mode types
(2A2=4) and the remaining six bits are for one of 64 mode indexes (2

A
6=64).

7 6 5 4 3 2 o
sequence number type index

A "1 for 2" entry is signified by bit-6 being set. Therefore the value of the lower byte
can range from 64 thru 126. (a "1 for 2" requires at least 2 entries.)

A "2 for l" entry has bit-7 set. The value of the lower byte can range from 128 thru 191.

An "Accent priority" entry has both bit-6 and bit-7 set. The value of the lower byte
ranges from 192 thru 255.

5-62 String Manipulation

"Don't Care" Characters
A character can be removed from the collation sequence. To mark a character as a "don't
care", the mode type is 0 (the same as a regular character) but the mode table index is
set to 1.

sequence number type index
any value o

The mode index need not point to a valid table entry, but must be a "1" to indicate a
"don't care" character.

For example, the FRENCH lexical table lists the hyphen (-) as a "don't care" character.
Thus, the hyphen is ignored when a string comparison is being made. The entry appears:

sequence number type index
(45) LL ______ 45 ______ -L--_O_--'---________ ----'

You may wish to include "don't care" characters in your own lexical tables. A string
containing only "don't care" characters will match the null string.

The following short program illustrates the operation of a "don't care" character.

10 Return$="RESTORE"
20 Again$="RE-STORE"
30
40 LEXICAL ORDER IS ASCII
50 IF Restore$=Again$ THEN PRINT "True for ASCII"
60 LEXICAL ORDER IS FRENCH
70 IF Restore$=Again$ THEN PRINT "True for FRENCH"
80 END

Results:

True for FRENCH

String Manipulation 5-63

"1 for 2" Character Replacement
This type of modr table rntry indicates that one sequence number is to be used for
two consecutive characters. It should be remembered that no characters are actually
replaced by this operation, only that a single sequence number is to be used when the
two characters are found adjacent to each other.

The following entry is placed in the collating section of the lexical table.

sequence number type mode index

normal sequence number index

If a character marked as a "1 for 2" is found in a string, the next character is accessed
and compared to the list of possible secondary characters in the mode table section.

(257 -t- index) number of entries to check

second character I sequence number for this pair

second character I sequence number for this pair

If the character does not match any of the secondary characters in the mode table,
the original character's sequence number is used and processing continues. If a match
is found, the sequence number for the pair is used and processing continues with the
character following the secondary character.

For example, the SPANISH collating sequence has a "1 for 2" replacement for the letters
"CH" or "Ch". The letter "c" is marked as a ~~1 for 2" character. When the letter
is encountered in a string, the next character is accessed and compared to the list of
possible secondary characters (uppercase H and lowercase h). The appropriate sequence
number is then used for the pair. If the character following the letter "c" is not found
in the list of possible secondary characters, the sequence number for "c" is used and
processing continues with the next character.

You can override a "1 for 2" character replacement by inserting a "Don't Care" character
between the two characters that would otherwise be replaced by a single sequence number.

5-64 String Manipulation

The SPANISH table entry for the character sequence "CH" is below. In the collating
section, the first letter of the sequence has the following entry:

(67)

(68)

sequence number

67 (C)

69 (0)

type mode index

a a

(257 + 1)

(257 + 2)

(257 + 3)

number of entries to check (2)

second character (H) I sequence number for pair (68)

second character (h) I sequence number for pair (68)

The sequence number assigned to the two-character combination is greater than the
sequence number for the letter "C" and less than the sequence number for the letter
"D". Therefore, a word beginning with the characters "CH" will collate after all words
starting with the letter "C" followed by any other character.

The following program shows the sorting order for the letters "CH" in the SPANISH
lexical order.

5 DIM A$(3) [3]
10 A$ (1) ="CGA"
20 A$(2)=ICHA"
30 A$(3)=ICIA"
40 LEXICAL ORDER IS SPANISH
50 MAT SORT A$(*)
60 PRINT A$(*)
70 END

Produces:

CGA CIA CHA

It should be noted that a character may have more than one secondary character
combination. This is demonstrated by having both upper and lower case entries. Other
secondary characters could have been included in the same manner. The first mode table
entry contains the number of secondary characters to check and must be in the range: 0
thru 63.

String Manipulation 5-65

"2 for 1" Character Replacement
When a "2 for I" mode entry is specified, it indicates that thp character should be
represented by two sequence numbers (as if there were two characters in the string).
The first sequence number is stored with the character as usual. The mode index points
to the mode table entry that contains the second sequence number to be used for that
character.

sequence number type mode index

1 st sequence number 2 index

Thp mode table entry actually contains two spquence numbprs. If the original character
was upper case, the next character in the string will determine whether the upper or
the lower sequence number is used. If the next character in the string is uppercase, the
upper sequence number is used as the second sequence number. Conversely, if the next
character in the string is lowercase. the lower sequence number is used. If the original
character was a lower case letter, the lower sequence number is always used.

upper lower

(257 + index) 2nd sequence number (UPC) 2nd sequence number (LWC)

Several "2 for 1" characters are in the GERMAN lexical order. For instance, the character
"A" is equivalent to "AE" and has the following entry in the collating section.

sequence number type mode index

(216) 65 (A) 2 index

The index points to the following entry in the mode table.

upper lower

(257 + index) 75 (E) 124 (e)

In some cases, such as the character "fi" , both upper and lower bytes contain the sequence
number for the same character (s). This results in the same sequence numbers being
generated regardless of the case of the next character.

5-66 String Manipulation

Accent Priority
Accent Priority can be used as the final arbitrator of string comparisons. If you examine
the lexical tables you will often find the same sequence number assigned to more than one
character. Therefore, it is possible for two different strings to produce identical series of
sequence numbers. The two strings will be considered equal unless at least one character,
in each string, has been assigned different accent priorities.

Accent priority is established by assigning a value, in the range: 0 thru 63, to the
character. Any character not already assigned a mode type may be assigned a priority.
A priority of zero is assumed for all characters that haven't been assigned a priority.

sequence number type mode index

normal sequence number 3 priority

In the FRENCH lexical order, the characters: A, A, and A have been assigned the same
sequence number (64). Assume the characters were assigned the following priorities.

Character Priority

A o (default priority)

A 1

A 2

The characters can now be distinguished from one another and will collate in the following
order.

When two strings are compared, each string is first converted into a series of sequence
numbers. The comparison is then determined (in most cases) by the greater sequence
numbers or the longer series of sequence numbers.

In the event both strings produce identical series of sequence numbers, the series of
priorities are checked. The string containing the characters with the higher priority is
the greater string.

String Manipulation 5-67

5-68 String Manipulation

Subprograms and
User-Defined Functions 6

Some Examples ... 6-1
Benefits of Subprograms ... 6-3
A Closer Look at Subprograms ... 6-4

Calling and Executing a Subprogram. .. 6-4
Differences Between Subprograms and Subroutines 6-5
Subprogram Location. .. 6-5
Subprogram and User-Defined Function Names 6-5
Difference Between a User-Defined Function and a Subprogram 6-6
Numeric Functions and String Functions .. 6-6

Program/Subprogram Communication. .. 6-8
Parameter Lists. .. 6-8
Passing By Value vs. Passing By Reference. .. 6-9
OPTIONAL Parameters .. 6-12
COM Blocks .. 6-14

Context Switching ... 6-18
Variable Initialization .. 6-19
Subprograms and Softkeys .. 6-19
Subprograms and the RECOVER Statement 6-20

Calling Subprograms from the Keyboard 6-21
Speed Considerations : 6-21
Using Subprogram Libraries ... 6-23

Why Use Subprogram Libraries? 6-23
Listing the Subprograms in a PROG File 6-23
Loading Subprograms .. 6-23
Deleting Subprograms .. 6-26
Editing Subprograms ... 6-27
SUBEND and FNEND ... 6-29

Recursion .. 6-30
Top-Down Design .. 6-32

The Problem .. 6-32
A Data Structure .. 6-33

Subprograms and
User-Defined Functions 6
One of the most powerful constructs available in any language is the subprogram!. A
subprogram can 00 everything a main program can do except that it must be invoked or
"called" before it is executed, whereas a main program is executed by pressing the I RUN I
key or executing the RUN command. In a sense, pressing the I RUN I key is how you "call"
a main program. This chapter describes the benefits of using subprograms, and shows
many of the details of using them.

Some Examples
The following program contains two subprograms and one user-defined function:

10
20
30
40
50
60
65
70
80
90
100
110
120
130
140
150
155
160
170
180
190
200
210
220
230
240
250

OPTION BASE 1
DIM Numbers(20)
CALL Build_array(Numbers(*) ,20)
CALL Sort_array(Numbers(*) ,20)
PRINT FNSum_array(Numbers(*) ,20)
END

Subprogram call.
Subprogram call.
User function call.

SUB Build_array(X(*),N) ! Subprogram "Build_array".
X(*) is the array to be defined
N tells how many elements are in the array
(1 is assumed to be the lower index)

FOR 1=1 TO N
DISP "ELEMENT #";1;
INPUT "?" ,XCI)

NEXT I
SUBEND

SUB Sort_array(A(*),N) ! Subprogram "Sort_array".
A(*) is array to be sorted
N tells how many elements are in the array (1 is assumed
to be the lower bound)

Sort the array (elements 1-N) in increasing order
Algorithm used: Shell sort or Diminishing increment sort
Ref: Knuth, Donald E., The Art of Computer Programming,

Vol. 3 (Sorting and Searching), (Addison-Wesley 1973)
pp. 84-85

INTEGER T,S,H,I,J

1 A user-defined function is a special form of subprogram.

Subprograms and User-Defined Functions 6-1

260 REAL Temp
270 T=INT(LOG(N)/LOG(2)) # of diminishing increments
280 FOR S=T TO 1 STEP -1
290 H=2-(S-1) ... 16,8,4,2,1
300 FOR J=H+1 TO N
310 I=J-H
320 Temp=A(J)
330 Decide: IF Temp>=A(I) THEN Insert
340 Switch: A(I+H)=A(I)
350 I=I-H
360 IF 1>=1 THEN Decide
370 Insert: A(I+H)=Temp
380 NEXT J
390 NEXT S
400 SUBEND
405
410 DEF FNSum_array(A(*),N) User-defined function "Sum_array".
420 ! Add A(1) ... A(N)
430 INTEGER I
440 REAL Array_total
450 FOR 1=1 TO N
460 Array_total=Array_total+A(I)
470 NEXT I
480 RETURN Array_total
490 FNEND

Lines 10 through 60 are the main program. As you can see, it does nothing but call
subprograms, which in turn do all the work. Line 70 is the header for the subprogram
which asks the user to enter the values stored in his array. Notice that the main program
has declared the array's name to be Numbers(*), but the subprogram uses the name
X(*) to deal with the same array. The subprogram can name its variables whatever it
wants without interfering with variables used outside the subprogram's context. The
only variables that can be affected outside the subprogram's context are those passed
through the parameter list (as shown here) or through COM (discussed later). In both
('a~('s. the matching between the subprogram and the outside world is done through the
position of the variable(s) in the parameter list or COM block, not the actual name of
the variable(s).

Starting at line 160 is the next subprogram which sorts the array into ascending order.
The comments at the front of the subprogram serve to discuss the definition of the
parameters used, and what effect the subprogram has on them. Also, the algorithm used
is given, along with the proper reference material. It is an excellent idea to give a list of
such pertinent details at the front of all subprograms. This makes debugging, modifying,
optimizing, and re-using the subprogram much easier.

6-2 Subprograms and User-Defined Functions

Starting at line 410 we see an example of a function subprogram. Functions are similar
to SUB subprograms in concept. This particular example just adds the elements of the
array together and returns the final value to the main program, which prints it.

Benefits of Subprograms
A subprogram has its own "context" or state that is distinct from a main program and
all other subprograms. This means that every subprogram has its own set of variables,
its own softkey definitions, its own DATA blocks, and its own line labels. There are
several benefits to be realized by taking advantage of subprograms:

• The subprogram allows the programmer to take advantage of the "top-down design"
method of programming. In this technique, the problem to be solved is broken up
into a set of smaller and more easily solvable problems. These smaller problems
can in turn be broken up into smaller problems yet, and so on. This technique has
been shown to greatly improve the design, coding, and testing of programs, and
will be discussed further at the end of the chapter.

• By removing all the details of subtasks from the overall logic flow of the main
program, the program is much easier to read from the subprogram calls. The
programmer can see at a high level what he's trying to accomplish, rather than
immediately getting lost in the details of each little subtask.

• One of the most time-consuming parts of writing a program is debugging it, or
forcing it to run correctly. The time consuming part of fixing bugs in a program is
finding where the bug is in the first place. By using subprograms and testing each
one independently of the others, it is easier to locate problems, and hence to fix
them.

• Often, a programmer may want to perform the same task from several different
areas of his program. For example, a set of readings may need to be taken from a
voltmeter after each of four different input signals are fed through a circuit being
tested. The same subprogram may be used to set up the voltmeter and take the
readings, while different pieces of code would have to be used to set up the differing
input conditions. Thus, subprograms can be used to economize on the overall size
of the program.

• Finally, libraries of commonly used subprograms can be assembled for widespread
use. Many different users doing diverse types of problems still may require some
identical subprograms. For instance, an engineer may be using a subprogram to plot
an array of data that he gathered from a spectrum analyzer, while the marketing
person down the hall may be using the same subprogram to plot an array of data
representing next year's sales forecast.

Subprograms and U ser-Defined Functions 6-3

A Closer Look at Subprograms
The preceding examples only showed some of the general features of subprograms. This
section shows a few of the details of using subprograms.

Calling and Executing a Subprogram
We have seen in the above examples how the two types of subprograms are called
SUBs are invoked explicitly using the CALL statement 1 while functions are invoked
implicitly just by using the name in an expression 1 an output list 1 etc. A nuance of SUB
subprograms is that the CALL keyword is optional when invoking a SUB subprogram.
Thus our example of the main program which causes an array of numbers to be sorted
could look like this:

10 OPTION BASE 1
20 DIM Numbers(20)
30 Build_array(Numbers(*).20)
40 Sort_array(Numbers(*).20)
50 PRINT FNSum_array(Numbers(*).20)
60 END

The omission of the CALL keyword when invoking a SUB subprogram is left solely to
the discretion of the programmer; some will find it more aesthetic to omit CALL 1 others
will prefer its inclusion. There are 1 however, three instances which require the use of
CALL when invoking a subprogram:

CALL is required:

1. If the subprogram is called from the keyboard 1

2. If the subprogram is called after the THEN keyword in an IF statement 1 or

3. In an ON .. event .. CALL statement.

6-4 Subprograms and User-Defined Functions

Differences Between Subprograms and Subroutines
A subroutine and a subprogram are very different in HP Series 200/300 BASIC .

• The GOSUB statement transfers program execution to a subroutine. A subroutine
is a segment of program lines within the current context. No parameters need to be
passed, since it has access to all variables in the context (which is also the context
in which the "calling" segment exists) .

• The CALL statement transfers program execution to a subprogram, which is in a
separate context. Subprograms can have pass parameters, and they can have their
own set of local variables which are separate from all variables in all other contexts.

If you are a newcomer to HP's BASIC, be careful to distinguish between these two terms.
They have been used differently in some other programming languages.

Subprogram Location
A subprogram is located after the body of the main program, following the main
program's END statement. (The END statement must be the last statement in the
main program except for comments.) Subprograms may not be nested within other
subprograms, but are physically delimited from each other with their heading statements
(SUB or DEF) and ending statements (SUBEND or FNEND).

Subprogram and User-Defined Function Names
A subprogram has a name which may be up to 15 characters long, just as with line labels
and variable names. Here are some legal subprogram names:

Initialize
Read_dvm
Sort_2_d_array
Plot_data

Because up to 15 characters are allowed for naming subprograms, it is easy and convenient
to name subprograms in such a way as to reflect the purpose for which the subprogram
was written.

Subprograms and User-Defined Functions 6-5

Difference Between a User-Defined Function and a Subprogram
A SUB subprogram (as opposed to a function subprogram) is invoked explicitly using
the CALL statement. A function subprogram is called implicitly by using the function
name in an expression. It can be used in a numeric or string expression the same way a
constant would be used, or it can be invoked from the keyboard. A function's purpose
is to return a single value (either a REAL number, a COMPLEX number or a string).

There are several functions that are built into the BASIC language which can be used
to return values, such as SIN, SQR, EXP, etc.

Y=SIN(X)+Phase
Root1=(-B+SQR(B*B-4*A*C))/(2*A)

Using the capability of defining your own function subprograms, you can essentially
extenrl. the language if you neerl. a feature not provided in BASIC.

X=FNFactorial(N)
Angle=FNAtn2(Y.X)

A general rule of thumb for using subprograms is that if you want to take a set of data
and analyze it to generate a single value, then you probably want to implement the
subprogram as a function. On the other hand, if you want to actually change the data
itself, generate more than one value as a result of the subprogram, or perform any sort
of I/O activity, it is better to use a SUB subprogram.

Numeric Functions and String Functions
A function is allowed to return either a REAL or COMPLEX value or a string value.
Above, we saw some examples of functions returning real numbers. Let's examine one
which returns a string. There are two prilllary differellces: the first is that a $ must be
added to the name of a function which is to return a string. This is used both in the
definition of the function (the DEF statement) and when the function is invoked. The
second difference is that the RETURN statement in the function returns a string instead
of a nnmher.

200 PRINT FNAscii_to_hex$(A$)

1550 DEF FNAscii_to_hex$(A$)
1560 Each ASCII byte consists of two hex
1570 digits; pretty formatting dictates that
1580 a space be inserted between every pair

6-6 Subprograms and User-Defined Functions

1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950

of hex digits. Thus. the output string
will be three times as long as the input
string.

upper four bits
UUUU LLLL
shift 4 bits

! 0000 lRJUU

lower four bits
UUUU LLLL
0000 1111 mask (15)
0000 LLLL final

INTEGER I.Length.Hexupper.Hexlower
Length=LEN(A$)
ALLOCATE Temp$[3*Length]
FOR 1=1 TO Length

Hexupper=SHIFT(NUM(A$[I]).4)
Hexlower=BINAND(NUM(A$[I] .15)
Temp$[3*I-2;1]=FNHex$(Hexupper)
Temp$[3*I-l;1]=FNHex$(Hexlower)
Temp$[3*I;1]=" "

NEXT I
RETURN Temp$
FNEND
DEF FNHex$(INTEGER X)

Assume 0<=X<=15)
Return ASCII representation of the

hex digit represented by the four
bits of X.

If X is between 0 and 9. return
"0" ... "9"

If X > 9. return "A" ... "F"
IF X<=9 THEN

RETURN CHR$(48+X) ASCII 48 through 57
represent "0" - "9"

ELSE
RETURN CHR$(55+X) ASCII 65 through 70

END IF
FNEND

represent "A" - "F"

Lines 200, 1740, and 1750 show examples of how to call a string function. Lines 1550 and
1800 show where the two string function subprograms begin. Notice that the program
could be optimized slightly by deleting lines 1720 and 1730 and modifying lines 1740 and
1750:

1740 Temp$[3*I-2;1]=FNHex$(SHIFT(NUM(A$[I]).4»
1750 Temp$[3*I-l;1]=FNHex$(BINAND(NUM(A$[I] .15»

Thus it is perfectly legal to use expressions in the pass parameter list of a subprogram.
(By the way, such expressions may also invoke function subprograms.)

Subprograms and User-Defined Functions 6-7

Program/Subprogram Communication
As mentioned earlier, there are two ways for a subprogram to communicate with the
main program or with other subprograms:

• By passing parameters

• By sharing blocks of common (COM) variables.

Parameter Lists
There are two places where parameter lists occur:

• The pass parameter list is in the CALL statement or FN call:

30 CALL Build_array(Numbers(*) ,20) Subprogram call.

50 PRINT FNSum_array(Numbers(*) ,20) User-defined function call.

It is known as the pass parameter list because it specifies what information is to
be passed to the subprogram.

• The formal parameter list is in the SUB or DEF FN statement that begins the
subprogram's definition:

Subprogram IIBuild arrayll.

410 DEF FNSum_array(A(*) ,N) User-defined function IISum_arrayll.

This is known as the formal parameter list because it specifies the form of the
information that can be passed to the subprogram.

Formal Parameter Lists
The formal parameter list is part of the subprogram's definition, just like the subpro
gram's name. The formal parameter list defines:

• The number of values that may be passed to a subprogram

• The types of those values (string, INTEGER, REAL or COMPLEX, and whether
they are simple or array variables: or I/O path names)

• The variable names the subprogram will use to refer to those values. (This allows
the name in the subprogram to be different from the name used in the calling
context.)

The subprogram has the power to demand that the calling context match the types
declared in the formal parameter list --otherwise, an error results.

6-8 Subprograms and User-Defined Functions

Pass Parameter Lists
The calling context provides a pass parameter list which corresponds with the formal
parameter list provided by the subprogram. The pass parameter list provides:

• The actual values for those inputs required by the subprogram.

• Storage for any values to be returned by the subprogram (pass by reference
parameters on ly) .

It is perfectly legal for both the formal and pass parameter lists to be null (non-existent).

Passing By Value vs. Passing By Reference
There are two ways for the calling context to pass values to a subprogram:

• Pass by value-the calling context supplies a value and nothing more.

• Pass by reference-the calling context actually gives the subprogram access to
the calling context's value area (which is essentially access to the calling context's
variable).

The distinction between these two methods is that a subprogram cannot alter the value
of data in the calling context if the data is passed by value, while the subprogram can
alter the value of data in the calling context if the data is passed by reference.

The subprogram has no control over whether its parameters are passed by value or
passed by reference. That is determined by the calling context's pass parameter list. For
instance, in the example below, the array Numbers(*) is passed by reference, while the
quantity 20 is passed by value.

30 CALL Build_array(Numbers(*) ,20) ! Subprogram call.

The general rules for passing parameters are as follows:

• In order for a parameter to be passed by reference, the pass parameter list (in the
calling context) must use a variable for that parameter.

• In order for a parameter to be passed by value, the pass parameter list must use
an expression for that parameter.

Note that enclosing a variable in parentheses is sufficient to create an expression and
that literals are expressions. Using pass by value, it is possible to pass an INTEGER
expression to a REAL formal parameter (the INTEGER is converted to its REAL
representation) without causing a type mismatch error. Likewise, it is possible to pass
a REAL expression to an INTEGER formal parameter (the value of the expression is
rounded to the nearest INTEGER) without causing a type mismatch error (an integer
overflow error is generated if the expression is out of range for an INTEGER).

Subprograms and User-Defined Functions 6-9

Example Pass and Corresponding Formal Parameter Lists
Here is a sample formal paramet()r list showing which types cach parameter dcmCluds:

SUB Read_dvm(~Dvm,A(*) ,INTEGER Lower,Upper,Status$.Errflag)

~Dvm

Lower
Upper

Status$

Errflag

This is an I/O path name which may refer to either an I/O devic(' or Cl
mass storage file. Its name here implies that it is a voltnl<'ter, but it is
perfectly legal to redirect I/O to a fll(' just by using a differ('nt ASSIGN
with ~Dvm.

This is a REAL array. Its sih(' is declared by the calling context. Without
MAT~ there is no way to find the size of the array except through
information supplied ('xplicitly by the calling context; hence the paramet('rs
Lower and Upper.

These are declared here to be INTEGERs. Thus. when the calling program
invokes this subprogram, it must supply either INTEGER variables or
INTEGER expressions, or an error will occur.

This is a simple string which presumably could be us('d to return the status
of the voltmeter to the main program. The length of the string is defined
by the calling context.

This is a REAL number. The declaration of the string Status$ has limit('d
the scope of the INTEGER keyword which caused Lower and Upper to
require INTEGER pass parameters.

6-10 Subprograms and User-Defined Functions

Let's look at our previous example from the calling side (which shows the pass parameter
list) :

CALL Read_dvm(~Voltmeter,Readings(*),1,400,Status$,Errflag)

~Voltmeter

Readings(*)

1, 400

Status$

Errflag

This is the pass parameter which matches the formal parameter ~Dvm in
the subprogram. I/O path names are always passed by reference, which
means the subprogram can close the I/O path or assign it to a different
file or device.

This matches the array A(*) in the subprogram's formal parameter list.
Arrays, too, are always passed by reference.

These are the values passed to the formal parameters Lower and Upper.
Since constants are classified as expressions rather than variables, these
parameters have been passed by value. Thus, if the subprogram used
either Lower or Upper on the left-hand side of an assignment operator,
no change would take place in the calling context's value area.

This is passed by reference here. If it were enclosed in parentheses, it
would be passed by value. Notice that if it were passed by value, it would
be totally useless as a method for returning the status of the voltmeter
to the calling context.

This is passed by reference.

Subprograms and User-Defined Functions 6-11

OPTIONAL Parameters
Another important feature of formal parameter lists is the OPTIONAL keyword. Any
formal parameter list (the one defining the subprogram) may contain the keyword
OPTIONAL somewhere~ although it isn 1t required to. The OPTIONAL keyword
indicates that any parameters that follow it are not required in the pass parameter
list of a calling context they are optional. On the other hanet all parameters preceding
the OPTIONAL keyword are required. If no OPTIONAL appears in the subprogram's
parameter list, then all the parameters must be specified. or an error will be generated.
The rules requiring matching of parameter types apply to OPTIONAL parameters as well
as to ordinary parameters. There is a standard function call('d NPAR which can b(' us('d
inside the subprogram to find out how many pass parameters the calling context actually
did use. (NPAR will return a if used inside the main program, or if no parameters were
passed to a subprogram.)

The OPTIONAL/NPAR combination is very effectively used in situations reqmrmg
external instrument setups. Most instruments have several different ranges. modes,
settings, etc., which can be used depending upon the requirements of the user. Often, the
user doesn't require the entire flexibility the instrument has to offer, and would rather
use some reasonable defaults.

Consider the HP 3437 A Digital Voltmeter. Among other things, this device has two data
formats (packed and ASCII). three trigger modes (internal. external. and hold/manual).
three voltage ranges (O.IV, IV, and IOV). and also has programmable values for delay
between readings and number of readings taken. Naturally, the values used for the various
settings will depend entirely upon the application for which the voltmeter is being used.
but let's make some assumptions:

• The values for delay and number of readings are going to be changed frequent ly. so
they will not be OPTIONAL parameters .

• Of the remaining OPTIONAL parameters, the range is most likely to be altered.

6-12 Subprograms and User-Defined Functions

A reasonable setup routine for the voltmeter might look like this:

2010 SUB Setup_dvm(~Dvm.INTEGER Readings.REAL Delay. OPTIONAL INTEGER Prange.
Ptrigger.Pformat)
2020 SELECT NPAR
2030 CASE 3
2040 Format=1
2050 Trigger=1
2060 Range=2
2070 CASE 4
2080 Format=1
2090 Trigger=1
2100 Range=Prange
2110 CASE 5
2120 Format=1
2130 Trigger=Ptrigger
2140 Range=Prange
2150 CASE 6
2160 Format=Pformat
2170 Trigger=Ptrigger
2180 Range=Prange
2190 END SELECT

Default ASCII format
Default internal trigger
Default 1 volt range

2200 OUTPUT ~Dvm;"N"&VAL$(Readings)&"SD"&VAL$(Delay)&"SR"&VAL$(Range)&"T"&
VAL$ (Trigger)&"F"&VAL$ (Format)
2210 SUBEND

Legal invocations of the Setup_dvm subprogram are:

570 Setup_dvm(~Dvm.100 .. 001)
630 Setup_dvm(~Dvm.500 .. 05.3)
850 Setup_dvm(~Dvm.50 .. 005.1.2)
1010 Setup_dvm(~Dvm.70 .. 075.2.1.2)

Default Range.Trigger.Format
Default Trigger.Format
Default Format
Explicitly declare all values

Notice in the example above that local variables are used instead of the formal parame
ters. This is because it is illegal to use an OPTIONAL parameter variable if that variable
was not passed from the calling context.

Subprograms and User-Defined Functions 6-13

Other applications of thE' OPTIONAL/NPAR featurE' arE' limited only by thE' imagination,
but here arE' a few idE'as:

• Write a subprogram which sorts an array in ascending order unless an OPTIONAL
parameter tells it to sort in descending order.

• Write a root finder routine which has an accE'ptancE' tolE'rance of ±10- 6 unless
overridden with an OPTIONAL parameter.

• Write a program which keeps track of departmental expenses, including the account
billed, the item or service purchased, the person incurring the expense, and
optionally. thE' p('fson authorizing the expensE'.

COM Blocks
SincE' we've discussed paramE'ter lists in dE'tail, let's turn now to the other method a
subprogram has of communicating with the main program or with othE'r subprograms.
the COM block.

There are two types of COM (or common) blocks: blank and labeled. Blank COM
is simply a special case of labeled COM (it is the COM whose name is nothing) with
the exception that blank COM must be declared in the main program, while labeled
COM blocks don't have to be declared in the main program. Both types of COM blocks
simply declare blocks of data which are accessible to any context having matching COM
dec larations.

A blank COM block might look like this:

10 OPTION BASE 1
20 COM Conditions(15) .INTEGER.Cmin.Cmax.~Nuclear_pile.Pile_status$[20].
Tolerance

A labeled COM might look like this:

30 COM /Valve/ Main(10).Subvalves(10.15) .~Valve_ctrl

A CONI block's name. if it has one. will immediately follow the COM keyword. and will
bE' SE't off with slashE's. as shown above. The same rules used for naming variables and
subprograms arE' used for naming COM blocks.

Any context nE'ed only declarE' thosE' C~OM blocks which it needs to have access to. If
there are 150 variables declared in 10 COM blocks. it isn't necessary for eVE'ry context
to declare the entire set-only those blocks that are necessary to each context need to
be declarE'd. COM blocks with matching namE'S must have matching definitions. As in
parameter lists. matching COM block:- is done by position and type, not by name.

6-14 Subprograms and User-Defined Functions

COM vs. Pass Parameters
There are several characteristics of COM blocks which distinguish them from parameter
lists as a means of communications between contexts:

• COM survives pre-run. In general, any numeric variable is set to 0, strings are set
to the null string, and I/O path names are set to undefined after pushing the I RUN I
key, or upon entering a subprogram. This is true of COM the first time the I RUN I
key is pressed, but after COM block variables are defined, they retain their values
until:

• SCRATCH A or SCRATCH C is executed,

• A statement declaring a COM block is modified by the user, or

• A new program is brought into memory using the GET or LOAD commands
which doesn't match the declaration of a given COM block, or which doesn't
declare a given COM block at all.

• COM blocks can be arbitrarily large. One limitation on parameter lists (both pass
and formal parameter lists) is that they must fit into a single program line along
with the line's number, possibly a label, the invocation or subprogram header, and
possibly (in the case of a function) a string or numeric expression. Depending upon
the situation, this can impose a restriction on the size of your parameter lists.

COM blocks can take as many statements as necessary .. COM statements can be
interwoven with other statements (though this is considered a poor practice). All
COM statements within a context which have the same name will be part of the
definition of that COM block.

• COM blocks can be used for communicating between contexts that do not invoke
each other. Information such as modes and states can be an integral part of
communicating between contexts, even though those contexts don't explicitly call
each other. For instance, one routine might be responsible for setting the voltage
range on a voltmeter, while another routine may need to know what the current
voltage range is in order to set up the scale on a graph properly.

• COM blocks can be used to communicate between subprograms that are not
in memory simultaneously. Similar to the case above, subprograms can com
municate with each other through COM blocks even though combinations of
LOADSUB/DELSUB may preclude their simultaneous presence in memory.

• COM blocks can be used to retain the value of "local" variables between subprogram
calls. In general, the variables used by a subprogram are discarded when the
subprogram is exited. However, there are situations where it might be useful for
a subprogram to "remember" a value. A machine which tests capacitors in an
incoming inspection department may require calibration after every 100 tests are

Subprograms and User-Defined Functions 6-15

performed. If the subprogram which does the tf'stillg has a way to count how lllany
tests it has alrf'ady performed (using a labrlf'd COM block). tlH'n this task can 1)('
left to the testing routine, simplifying the rest of the system .

• COM blocks allow subprograms to share data without the intervention of the
main program. Subprogram libraries may consist of elaborate relationships of both
programs and data structures. In many cases, a major portion of the data structurf'S
are only used for support of the task being performed. rather than bf'ing integral
to the task itself. Thus the main program does not need to declare the supportive
data structures.

Examples of this situation might include data base management libraries (hashing
tables may need to be maintained for accessing data quickly) or three-dimensional
graphics libraries (window, viewport. and clip information need to be kept. as well
as object definitions and related transformations).

Hints for Using COM Blocks
Any COM blocks needed by your program must be resident in memory at prerun time
(prerun is caused by pressing I RUN I, executing a RUN command, executing LOAD or GET
from the program, or executing a LOAD or GET from the keyboard and specifying a run
line.) Thus if you want to create libraries of subprograms which share their own labeled
COM blocks, it is wise to collect all the COM declarations together in one subprogram
to make it easy to append them to the rest of the program for inclusion at pre run time.
(The subprogram need not contain anything but the COM declarations.)

COM can be used to communicate between programs which overlay each other using
LOAD or GET statements, if you remember a few rules:

1. COM blocks which match each other exactly between the two programs will be
preserved intact. "Matching" requires that the COM blocks are named identically
(except blank COM), and that corresponding blocks have exactly the same number
of variables declared, and that the types and sizes of these variables match.

2. Any COM blocks existing in the old program which are not declared in the new
program (the one being brought in with the LOAD or GET) are destroyed.

3. Any COM blocks which are named identically, but which do not match variables
and types identically, are defined to match the definition of the new program. All
values stored in that COM block under the old program are destroyed.

4. Any new COM blocks declared by the new program (including those mrntioned
above in #3) are initialized implicitly. Numeric variables and arrays are set to
zero, strings are set to the null string, and I/O path names are srt to undefined.

6-16 Subprograms and User-Defined Functions

The first occurrence in memory of a COM block is used to define or set up the block.
Subsequent occurrences of the COM block must match the defining block, both in the
number of items, and the types of the items. In the case of strings and arrays, the actual
sizes need be specified only in the defining COM blocks. Subsequent occurrences of the
COM blocks may either explicitly match the size specifications by re-declaring the same
size, or they may implicitly match the size specifications. In the case of strings, this is
done by not declaring any size, just declaring the string name. In the case of arrays, this
is done by using the (*) specifier for the dimensions of the array instead of explicitly
re-declaring the dimensions.

Consider the following COM block definition:

10 COM /Dvm_state/ INTEGER Range.Format.N.REAL Delay.Lastdata(1:40).Status$[20]

The following occurrence of the same COM block within a subprogram matches the COM
block explicitly and is legal:

2000 COM /Dvm_state/ INTEGER Range.Format.N.REAL Delay.Lastdata(1:40).Status$[20]

The following block within a different subprogram uses implicit matching and is also
legal:

4010 COM /Dvm_state/ INTEGER Range.Format.N.REAL Delay.Lastdata(*).Status$

The following declaration is illegal, since it uses explicit size specifications for the array
and string which do not match the original definition from line 10.

5020 COM /Dvm_state/ INTEGER Range.Format.N.REAL Delay.Lastdata(1:30).Status$[15]

The following declaration is also illegal, since it violates the types set forth by the defining
block.

6010 COM /Dvm_state/ Range.Format.N.REAL Delay.Lastdata(*).Status$

In general, the implicit size matching on arrays and strings is preferable to the explicit
matching because it makes programs easier to modify. If it becomes necessary to change
the size of an array or string in a COM block, it only needs to be changed in one
statement, the one which defines the COM block. If all other occurrences of the COM
block use the (*) specifier for arrays, and omit the length field in strings, none of those
statements will have to be changed as a result of changing an array or string size.

Subprograms and U ser-Defined Functions 6-17

Context Switching
As mentioned in the introduction to this chapter, a subprogram has its own context or
state which is distinct from a main program and all other subprograms. In between thc
time that a CALL statement is executed (or an FN namc is used) and the time that
the first statement in the subprogram gets executed, the computer performs a "pre run"
on the subprogram. This "entry" phase is what defines the context of the subprogram.
Thc actions performed at subprogram entry are similar. but not identical, to thc actual
prerun performed at the beginning of a program. Herc is a summary:

• The calling context has a DATA pointer which points to the next item in the current
DATA block which will be used the ncxt time a READ is cxccutcd (assuming of
course that a DATA block even exists in the calling program). This pointcr is saved
away whenever a subprogram is called. and then the DATA pointer is reset to thc
first DATA statement in the new subprogram context.

• The RETURN stack for any GOSUBs in the current contcxt is saved and set to
the empty stack in the new context.

• The system priority of the current context is saved, and the called subprogram
inherits this value. Any change to the system priority which takes place within the
subprogram (or any of the subprograms which it calls in turn) is purely local, sincc
the system priority is restored to its original valuc upon subprogram exit. This is an
important consideration: if the subprogram is called as a result of an event-initiated
GOSUB/CALL statement, any ON <event> GOTO/GOSUB/CALL/RECOVER
condition set up in th.e called subprogram must have a higher priority assigned to
it than the event responsible for the subprogram's invocation. Otherwise. the event
is guaranteed not to cause an end of line branch. See the "EVENTS" chapter of
BASIC Interfacing Techniques for a description of system priority.

• Any event-initiated GOTO/GOSUB statements are disabled for the duration of
the subprogram. If any of the specified events occur, this will be logged, but no
action will be taken. (The fact that an event did occur will be logged. but only
once-multiple occurrences of the same event will not be serviced.) Upon exiting
the subprogram. these event-initiated conditions will be restored to active status.
and if any of these events occurred while the subprogram was being executed. the
proper branches will be taken.

• Any event-initiated CALL/RECOVER statements are saved away upon enter
ing a subprogram, but the subprogram still inherits these ON conditions since
CALL/RECOVER are global in scope. However. it is legal for the subprogram to
redefine these conditions, in which case the original definitions arc restored upon
subprogram exit.

6-18 Subprograms and User-Defined Functions

• The current value of OPTION BASE is saved, and the value for the subprogram
(0 or 1, explicitly declared or defaulted) is used .

• The current DEG or RAD mode for trigonometric operations and graphics rotations
is stored away. The subprogram will inherit the current DEG or RAD setting, but
if it gets changed within the subprogram, the original setting will be restored when
the subprogram is exited.

Variable Initialization
Space for all arrays and variables declared is set aside, whether they are declared explicitly
with DIM, REAL, INTEGER, or COMPLEX, or implicitly just by using the variable.
The entire value area is initialized as part of the subprogram's prerun. All numeric values
are set to zero, all strings are set to the null string, and all I/O path names are set to
undefined.

Subprograms and Softkeys
ON KEYs are a special case of the event-initiated conditions that are part of context
switching. They are special because they are the only event conditions which give visible
evidence of their existence to the user through the softkey labels at the bottom of the
CRT. These key labels are saved away just as the event conditions are, and the labels
get restored to their original state when the subprogram is exited, regardless of any
changes the subprogram made in the softkey definitions. This means the programmer
doesn't have to make any special allowances for re-enabling his keys and their associated
labels after calling a subprogram which changes them-the language system handles this
automatically.

It is important to remember that the called subprogram inherits the softkey labels. All
the keys are still active in some sense; ON KEY ... CALL/RECOVER will cause their
original program branches to take place immediately if the proper key is pressed, and
ON KEY ... GOTO/GOSUB will log the fact that a key is pressed until the subprogram
is exited, at which time the proper branch will occur. This latter case may cause some
consternation on the part of the user if he presses a soft key expecting immediate action
and nothing happens since the key was temporarily disabled due to a called subprogram.
If the called subprogram is expected to take a noticeably long time to execute, it might
be a good idea to explicitly remove the labels from the disabled softkeys using the OFF
KEY statement. Thus, the user won't expect anything to happen as a result of pressing
a softkey. This technique is also useful for guaranteeing that a given subprogram is not
interrupted prematurely. (The DISABLE statement is useful for preventing program
branches as a result of an event-initiated happening, although it will not turn off the
softkey labels.)

Subprograms and User-Defined Functions 6-19

Subprograms and the RECOVER Statement
The event-initiated RECOVER statement allows the programmer to cause the program
to resume execution at any given place in the context defining the ON ... RECOVER as
a result of a specified event occurring, regardless of subprogram nesting.

Thus, if a main program executes an ON ... RECOVER statement (for example a softkey
or an external interrupt from the SRQ line on an HP-IB), and then calls a subprogram,
which calls a subprogram, which calls a subprogram, etc., program execution can be
caused to immediately resume within the main program as a result of the specified event
happening.

By way of illustration, consider the following example. Suppose you are performing an
exhaustive component test on a circuit board. The program may be designed like so:

INSTALL
PROBES

SUB ASSEMBLY
B1

CAPACITOR A

SUB ASSEMBLY
A

SUB ASSEMBLY
B2

CAPACITOR B

MAIN

SUB ASSEMBLY
B

SUB ASSEMBLY
B3

RESISTOR A

SUB ASSEMBLY
C

SUB ASSEMBLY
B4

RESISTOR C

Figure 6-1. Program Design

SUB ASSEMBLY
o

SUB ASSEMBLY
B5

When lunch break comes around, you may want to halt the current test so you can use
the computer to play chess, or your boss might wander by and want to see the results of
thf' rf'st of thf' tf'sts pf'rforrnf'o this Wf'f'k. In f'ithf'r C'asf', if thf' test program is nested three
or four levels deep in subprograms, it might take a while for the test to complete. By
defining a soft key to RECOVER to the main program, you can instantly terminate the
test at any time. and make the computer available for something else. The RECOVER
will discard anything being done in any of the subprograms between the context declaring
the event-initiated RECOVER, and the subprogram being executed when the specified
event occurs.

Again. the DISABLE statement can be used within any subprograms in which it is critical
not to allow interruptions.

6-20 Subprograms and User-Defined Functions

Calling Subprograms from the Keyboard
Functions and subprograms can be called by using CALL and FN at the keyboard. There
are some restrictions:

• Since variables cannot be created by the user from the keyboard (variables can only
be defined by the program), it is legal to use only parameters that already exist in
the current context.

• Constants may be used in the pass parameter list.

• When calling a SUB subprogram from the keyboard, the CALL keyword must be
used.

The "MEM_ UTILS" utility on the BASIC Utilities disc has examples of calling sub
programs from the keyboard. The program is explained in the "Utilities" chapter of
Installing and Maintaining the BASIC System.

Speed Considerations
In some programs, speed is of the essence. In these cases, programmers will be reluctant
to incur any unnecessary overhead in executing their task. There is a certain amount
of overhead incurred in calling subprograms, although the overhead is fairly small, and
shouldn't be an impediment to the use of subprograms. ("Overhead" is loosely defined
to be the time it takes to perform those activities which aren't explicitly asked for by
the user's program, but which are still necessary to keep the user's program running in
a correct manner. The tasks discussed earlier under context switching are an excellent
example of such overhead.)

Let's look at how much time it takes just to get in and out of the subprogram regardless
of the task being performed by the subprogram. (The times in this discussion are
approximate and apply to Series 200 computers with an 8 MHz MC68000 processor,
without an HP 98635A floating-point math card or MC68881 co-processor.)

Subprograms and User-Defined Functions 6-21

Thp time it takes to entpr a subprogram depends upon tIl(' Illullber of parametprs being
passecL the types of parameters being pass('cL and th(' Il1lIllbpr of variabl('s declared local
to the subprogram itself. To get in and out of a subprogram which has no parameters
and which does nothing (in other words 1 a SUB followed by a SljBEND) takes 572
microseconds 1 meaning if you call it 1748 times 1 you'll use up about 1 second. (By way
of comparison 1 572 microseconds is about what it takes to perform four floating-point
additions. To perform four floating-point additions and store the result from each one in
a variable will take about 1080 microseconds 1 or just over a millisecond.)

Table 6-1. Subprogram Entry Execution Speed

Entry Conditions Approximate Execution Speed 1

No parameters 572 J-lsec.

1 simple numeric + 105 J-ls('('.

1 simple string + 128 J-lsec.

1 numeric array + 141 J-lsec.

1 string array + 141 J-lsec.

1 I/O path name + 123 J-lsec.

OPTION BASE in sub + 31 J-lsec.

REAL or INTEGER in sub + 32 J-lsec.

1st numeric array declaration + 18 J-lsec.

other numeric array declarations + 11 J-lsec.

1st string array declaration + 21 J-lsec.

other string array declarations + 12 J-lsec.

As you can see from the table, subprograms are a bargain in terms of speed. The
relatively small amount of overhead required for invoking a subprogram IS more than
made up for by the benefits to be derived.

1 The times in this table are approximate and apply to Series 200 computers with an 8 MHz MC68000
procpssor. without all HP 98635A floating-point math card or MC68881 c()-pr()(('ssor.

6-22 Subprograms and User-Defined Functions

Using Subprogram Libraries
This section shows some of the tasks involved III using and managing subprogram
libraries.

Why Use Subprogram Libraries?
As mentioned earlier, subprograms are also convenient for use in creating and distributing
libraries of commonly used feature sets. They are also handy when you have a large
program, along with sizable data arrays, which could potentially require more memory
than is currently installed in your computer. You can break the program up into
subprograms, each of which may be programmatically loaded, called, and then deleted in
order to conserve memory. This section outlines some of the operations you will need to
perform in creating, using, and maintaining subprogram libraries.

Listing the Subprograms in a PROG File
You can determine which subprograms are in a PROG file by performing a CAT on the
file:

CAT "ProgFile"

The system returns a list of the subprograms and user-defined functions in the file, along
with other information, such as the amount of memory required for each subprogram.
(See the BASIC Language Reference description of CAT for details.)

Loading Subprograms
If you already have subprograms stored in PROG file(s), there are several options to
choose from in loading them into memory:

• If you want to load a specific subprogram from a PROG file, you would use
something like this:

LOADSUB Sub_name FROM "File"

• If you want to load all the subprograms from a specific PROG file, you would use
the LOADSUB ALL FROM statement.

LOADSUB ALL FROM "File"

Subprograms and User-Defined Functions 6-23

• And: if you wanted to see which subprograms are still missing or load all those still
needed, you would use something like this:

LOADSUB FROM "File"

(Note that this is statement is not programmable; that is, it cannot appear in a
program line.)

Loading Subprograms One at a Time
Suppose your program has several options to select from, and each one needs many
subprograms and much data. All the options. however. are mutually exclusive: that is,
whichever option you choose, it does not need anything that the other options use. This
means that you can clean up everything you've used when you are finished with that
option.

If all of your subprograms can be put into one file, you can selectively retrieve them as
needed with this sort of statement:

LOADSUB Subprog_1 FROM "SUBFILE"
LOADSUB Subprog_2 FROM "SUBFILE"
LOADSUB FNNwneric_fn FROM "SUBFILE"
LOADSUB FNString_function$ FROM "SUBFILE"

Note that only one subprogram per line can be loaded with this form of LOADSUB.
If. for any program option, you need so many subprograms that this method w(mld be
cumbersome, you could use the following form of the command.

Loading Several Subprograms at Once
For this method, you store all the subprograms needed for each option in its own file.
Then, when the program's user selects Program Option 1, you could have this line of
code execute:

LOADSUB ALL FROM "OPT1SUBFL"

and if the user selects Option 2,

LOADSUB ALL FROM "OP2SUBFL"

and so forth.

There is one other form of LOADSUB, but it cannot be used programmatically. This is
covered next.

6-24 Subprograms and User-Defined Functions

Loading Subprograms Prior to Execution
In the LOADSUB FROM form, for which you need PDEV, neither ALL nor a subprogram
name is specified in the command. This is used prior to program execution. It looks
through the program in memory, notes which subprograms are needed (referenced) but
not loaded, goes to the specified file and attempts to load all such subprograms. If the
subprograms are found in the file, they are loaded into memory; if they are not, an error
message is displayed and a list of the subprograms still needed but not found in the file
is printed.

This can be handy in two ways. The first and obvious way is that subprograms can
be loaded quickly. The other way is this: suppose that you are developing a program
and as you are coding, you realize you need a subprogram that does such-and-such. But
your train of thought is chugging along so smoothly, you do not want to interrupt your
coding of the routine you are working on to do the other little subprogram. But when
the big one is done, you have forgotten all about coding the little one. If you suspect
you've done this, the LOADSUB FROM command is very useful. Type a LOADSUB
FROM command where the file name is a file in which you know there are none of the
subprograms you need (perhaps a null PROG file). Of course, no subprograms will be
loaded, but a list of those yet undefined will be printed. These are the ones you still need
to code. Naturally, if you have already coded them and stored them somewhere, go get
them. But if you haven't, this is a simple way of listing those still to be entered.

Any COM blocks declared in subprograms brought into memory with a LOADSUB by a
running program must already have been declared. LOADSUB does not allow new COM
blocks to be added to the ones already in memory. Furthermore, any COM blocks in the
subprograms brought in must match a COM block in memory in both the number and
type of the variables. Otherwise, an error occurs.

Note

If a main program is in a file referenced by a LOADSUB, it will
not be loaded; only subprograms can be loaded with LOADSUB.
Main programs are loaded with the LOAD command.

Subprograms and User-Defined Functions 6-25

With all this talk of loading subprograms from files, one question arises: How do you
get the subprograms in the file? Easily: type in the subprograms you want to be in
one file, and then STORE them with the desired file name. You must use STORE and
not SAVE, because the LOADSUB looks for a PROG-type file. If you can't type in
your subprograms error-free the first time (and who can?L what you can do is this:
type in your program with all the subprograms it needs and debug them. After storing
everything in a file for safekeeping, delete what you do not want in the file, and STORE
everything else in the subprogram file from which you will later do a LOADSUB. In this
way, you know the subprograms will work when you load them.

Deleting Subprograms
The utility of the LOAD SUB commands would be greatly reduced if one could not del('te
subprograms from memory at will. So, there is a way to delete subprograms during
execution of a program: DELSUB. If you want to delet(' only s('lf'ctf'd O11('S. you could
type something like this (you can also execute these statements in programs):

DELSUB Sort_data.Print_report.FNPoly_solve

If you are sure of the positioning of the subprograms in memory, here is a method of
deleting whole groups of subprograms:

DELSUB Print_report TO END

You can combine these methods:

DELSUB Sort_data.Print_report.FNGet_name$ TO END

The subprograms to be deleted do not have to b(' contiguous in memory. nor does tIl('
order in which you specify the subprograms in a DEL SUB statement have to be the order
in which they occur in memory. Th(' comput('r d('i<'t('s f'ach subprogram beforf' moving
on to the next name.

If there are any comments after an FNEND or SUBEND, but before the next SUB or
DEF FN, these will be deleted as well as the rest of the subprogram body.

If the computer attempts to delete a non-existent subprogram, an error occurs. and the
DELSUB statement is terminated. This means that subprograms whose names are listed
after the error-causing name will not be deleted.

6-26 Subprograms and User-Defined Functions

A subprogram can be deleted only if it is not currently active and if it is not referenced
by a currently active ON RECOVER/CALL statement. This means:

1. A subprogram cannot delete itself.

2. A subprogram can not delete the subprogram that called it, either directly or
indirectly. (Otherwise it wouldn't have anywhere to return to when finished!)

Between the time that a subprogram is entered and the time it is exited, the computer
keeps track of an activation record for that subprogram. Thus, if a subprogram calls a
subprogram that calls a subprogram, etc., none of the subsequently-called subprograms
can delete the original one or any of the ones in between because the system knows
from the activation record that control will eventually need to return to the original
calling context. A similar situation exists with active event-initiated CALL/RECOVER
statements. As long as the possibility of the specified event occurring exists, the system
will not let the subprogram be deleted. In essence, the system will not let you execute
two mutually-exclusive, contradictory commands simultaneously.

Editing Subprograms
Inserting Subprograms
There are some rules to remember when inserting SUB and DEF FN statement in the
middle of the program. All DEF FN and SUB statements must be appended to the end of
the program. If you want to insert a subprogram in the middle of your program because
your prefer to see it listed in a given order, you must perform the following sequence:

1. STORE the program.

2. Delete all lines above the point where you want to insert your subprogram (refer
to the DEL statement).

3. STORE the remaining segment of the program in a new file.

4. LOAD the original program stored in step 1.

5. Delete all lines below the point where you want to insert your subprogram.

6. Type in the new subprogram.

7. Do a LOADSUB ALL from the new file created in step 3.

Subprograms and User-Defined Functions 6-27

vVith the PDEV binary, the job is much easier:

1. Write your new subprogram at the end of the program.

2. Perform a MOVELINES command where:

a. The Starting Line in the MOVELINES command is the line which you want
to immediately follow your new subprogram,

b. The Ending Line in the MOVELINES command is the line immediately prior
to the SUB or DEF FN of the new subprogram, and

c. The Destination Line is any line number greater than the highest line number
currently in memory.

In either case there is an optional final step. It is not required that you do a REN to
renumber the program at this point. but often it is desirable to close up the void left in
the program line numbering which resulted from the block of subprograms being moved
to the end of memory.

Deleting Subprograms
It is not possible to delete either DEF FN or SUB statements with the I DEL LN I or
I Delete line I key unless you first delete all the other lines in the subprogram. This includes
any comments after the SUBEND or FNEND. Another way to delete DEF FN and SUB
statements is to delete the entire subprogram, up to, but not including, the next SUB
or DEF FN line (if any). This can be done either with the DEL command, or with the
DELSUB command.

Merging Subprograms
If you want to merge two subprograms together, first examine the two subprograms
carefully to insure that you don't introduce conflicts with variable usage and logic flow.
If you 've convinced yourself that merging the two subprograms is really necessary, here's
how you go about it:

1. SAVE everything in your program after the SUB or DEF FN statement you want
to delete.

2. Delete everything in your program from the unwanted SOB statement to the end.

3. GET the program segment you saved in step 1 back into memory, taking care to
number the segment in such a way as not to overlay the part of the program already
in memory.

6-28 Subprograms and User-Defined Functions

Once again, with PDEV, your job is greatly simplified:

Execute a MOVELINES command in which you move everything from one subprogram
excluding the SUB/DEF FN and SUBEND/FNEND statements-into the desired posi
tion in the other subprogram. If there are any declarative statements in the moved code,
you will probably want to move those up next to the declarative statements in the re
ceiving code. Don't forget to go back to the place where the code came from and delete
the SUB/DEF FN statement and the SUBEND/FNEND statements.

SUBEND and FNEND
The SUBEND and FNEND statements must be the last statements in a SUB or function
subprogram, respectively. These statements don't ever have to be executed; SUBEXIT
and RETURN are sufficient for exiting the subprogram. (If SUBEND is executed, it
will behave like a SUBEXIT. If FNEND is executed, it will cause an error.) Rather,
SUBEND and FNEND are delimiter statements that indicate to the language system
the boundaries between subprograms. The only exception to this rule is the comment
statements (either REM or !), which are allowed after SUBEND and FNEND.

Subprograms and User-Defined Functions 6-29

Recursion
Both function subprograms and SUB subprograms are allowed to call themselves. This
is known as recursion. Recursion is a useful technique in several applications.

The simplest example of recursion is the computation of the factorial function. The
factorial of a number N is denoted by N! and is defined to be N x (N-1)! where 0!=1
by definition. Thus N! is simply the product of all the whole numbers from 1 through N
inclusive. A recursive function which computes N factorial is:

DEF FNFactorial(INTEGER N)
IF N=O THEN RETURN 1
RETURN N*FNFactorial(N-l)
FNEND

Consider also the example of nested multiplication when evaluating a polynomial. A
polynomial has the form:

One way to evaluate a polynomial is to use the technique of nested multiplication:

Ao + Xx (AI + Xx (A2 + Xx (..... (AN~ 1 + Xx (AN)) ...)))

If the polynomial is evaluated the way it is written, there are N multiplications,
N additions, and N-1 exponentiations performed. Using the nested IIlultiplication
technique, there are still N multiplications and N additions. but no f'xponentiations.

6-30 Subprograms and User-Defined Functions

The following function implements the nested multiplication recursively:

1000 DEF FNPoly_evaluate(A(*),N,X)
1010 A(*) is the coefficient array,
1020 with N the order of the polynomial.
1030 X is the value at which the polynomial
1040 is being evaluated.
1050 RETURN FNPoly(A(*),O,N,X)
1060 FNEND

1120 DEF FNPoly(A(*) ,M,N,X)
1130 A(*) is the coefficient array of order N
1140 M is the outside coefficient
1150 X is the value at which the polynomial
1160 is being evaluated.
1170 IF M=N THEN RETURN X*A(N)
1180 RETURN A(M)+X*FNPoly(A(*),M+l,N,X)
1190 FNEND

The above examples are cited because they are easily understood, not because they are
elegant ways to compute factorials or evaluate polynomials (both are performed much
faster in a FOR/NEXT loop). We'll consider a more useful application of recursion in
the following section on Top-Down Design.

Subprograms and User-Defined Functions 6-31

Top-Down Design
A major problem that every programmer faces is designing programs that can be easily
implemented and tested. A lot has been written on this subject over the past 15 years
or so, and several references are cited at the end of the chapter. A method of program
design that has become widely recommended is Top-Down Design, also known as Stepwise
Refinement.

The general approach is to consider a problem at its highest level, and break it down
into a small number of identifiable subtasks. Each subtask is in turn considered as a
large problem which is to be broken down into smaller problems, and so on until the
"smaller problems" which have to be solved turn out to be lines of code, which the
computer knows how to solve! At the higher levels of this process, the various subtasks
are implemented as subprogram calls. It is best to define exactly what each subprogram is
supposed to do long before the subprogram is actually written. Furthermore, this should
be done at each level of refinement. By considering what each subprogram requires as
input and what it returns as output from the topmost levels, the most serious problems
of programming (namely defining your data structures and the communications paths
between subprograms) are attacked at the beginning of the problem solving process,
rather than at the end when all the small pieces are trying to jumble together. It is best
to tackle these questions at the beginning because then you have the most flexibility
no code has been written and it's not necessary to try and save any investment in
programming time.

Let's look at a simple example and apply these techniques.

The Problem
In a certain production department in a large manufacturing facility, there are eighty
people who build and test widgets. The manager of this department has asked you to
write a program to keep track of the total number of widgets each person builds each
week. Furthermore, it is necessary to track failure rates during the production process for
each person. The manager wants to be able to ask for reports sorted either by employee
name. number of units huilt. or failure rate.

6-32 Subprograms and User-Defined Functions

A Data Structure
Before proceeding any further, we need to come up with a data structure which will
support the stated requirements.

EMPLOYEE NAME UNITS BUILT FAILURE RATE

: lao CHARACTERS I I INTEGER I I REAL I

:~~~ · . . · . . • • •

:~ I I I I I I
Figure 6-2. Widget Example Data Structure

This above structure is simple and holds all the necessary information. The Jth entry
in the Units Built array tells how many units were built by the employee whose name
is given by the Jth entry in the Employee Name array, and the Jth entry in the Failure
Rate array gives the failure rate that the Jth employee experienced in building the given
number of units.

The only problem unsolved by the given data structure is that of ordering. The manager
wants to be able to see a report sorted by anyone of the three arrays. One way to solve
this problem is to provide a sort subprogram as part of the package, but you would have
to remember to carry along the other two fields associated with the one on which you
are sorting whenever you switch the elements in the array. An alternate way is simply
to leave all the data in place and construct a pointer array associated with whichever
array you elect to do the report with. A very handy way to construct this pointer array
in such a way as to be conducive to printing sorted results is to construct a binary tree.

Subprograms and U ser-Defined Functions 6-33

The binary tree is a simple data structure used for a variety of applications froIll data
management to parsing computer languages. Knuth4 defines a binary tree as "a finite set
of nodes which either is empty, or consists of a root and two disjoint binary trees called
the left and right subtrees of the root." Note that this definition is recursive it uses the
term being defined (binary tree) in its own definition. Thus, a binary tree either consists
of two subtrees (which in turn can have two subtrees, etc.), or it is empty. Consider the
following illustration of a binary tree:

Figure 6-3. Binary Tree

Every node (represented here by a letter) has at most two subtrees. The subtrees
are ordered 011 a lexical basis. Every letter belonging to any node's left subtree will
be lexically "less" than the node itself, which in turn will be lexically "less" than the
letters in that node's right subtree. Because the binary tree is defined recursively, this
relationship will hold true at all levels of the tree. Furthermore, there are extremely
simple recursive algorithms for traversing (or in our case printing) a binary tree which is
organized lexically in sorted ordf'r.

Graphically, the tree is easy to understand. You have a piece of data (or a "node") and
you have a couple of little arrows which point to the next nodes. Inside a computer, these
little arrows are called "pointers" because they point to a location in memory where the
next node is to be found.

6-34 Subprograms and User-Defined Functions

Our binary tree is going to be implemented as an 80 by 2 integer array. Any element of
this array A(I,l) will be a pointer to the left subtree, while A(I,2) will be a pointer to
the right subtree. I is simply the location within the other three arrays of the pertinent
data. The first item in each array is defined to be the root of the tree.

ROOT

TREE EMPLOYEE NAME UNITS BUILT FAILURE RATE

L R 50 CHARACTERS INTEGER REAL

2 2

3 3

4 4

• • • · · • · · • · • · 79tij
80 :~ I I I I I

Figure 6-4. Revised Data Structure

The manager can choose which field to sort on when the report is printed, and the
Pointers (*) array will be constructed accordingly.

The amount of detail we've spent studying and understanding the data structure
emphasizes the importance of this phase of the design.

Let's proceed now with designing our program. At the highest level, what we would
really like to have is a command which does everything at one fell swoop:

Top-Down design calls for breaking this massive task down into a set of smaller problems.
First we'll declare the data structure and define what actions we want to take on the
data. Note that in an actual application, there would be some sort of menu to let the
user choose the action he desired. The human interface has been left off this example for
the sake of simplicity.

Subprograms and User-Defined Functions 6-35

10 OPTION BASE 1
20 DIM Name$(80) [80] ,Failure_rate (80)
30 INTEGER Units_built (80) ,Max,Howmany
40 Max=80
50 Input_data(Name$(*) ,Units_built(*) ,Failure_rate(*),Max,Howmany)
60 Store_data(Name$(*) ,Units_built(*) ,Failure_rate(*) ,Max,Howmany)
70 Report (Name$(*) ,Units_built(*) ,Failure_rate(*) ,Max,Howmany)
80 END
90 SUB Input_data(Name$(*) ,INTEGER Units(*) ,REAL Failures(*) ,INTEGER
Max,Howmany)
100 SUBEND
110 SUB Store_data(Name$(*) ,INTEGER Units(*) ,REAL Failures(*) ,INTEGER
Max,Howmany)
120 SUBEND
130 SUB Report (Name$(*) ,INTEGER Units(*) ,REAL Failures(*) ,INTEGER Max,
Howmany)
140 SUBEND

Notice that we haven't worried about the tree structure yet. This is because the tree is
only used to provide ordering information to be used in printing out the report. Since
the tree is not necessary except for the report. we'll let the report subprogram worry
about it. The variables Max and Howmany are introduced for the sake of flexibility. It is
possible that the department may have to hire more people at some time in the future,
or that some people may leave the company or accept jobs in other departments. In
this case, the program will have to be changed to allow for a different number of people.
By making the maximmn number of people, and the actual number of people, variables
instead of constants, modifying the program becomes very easy.

Also, notice that each of the subprograms has b('en "stubbed in." The' re'ason for doing
this is that you can immediately run the program to tf'st the communications between
modules. So far. tIl(' program will not do anything. but it does allow you to make' sure'
that your pass parameter lists match the formal parameter lists in the number and types
of parameters. Furthermore, this process can be repeated every step of the way. As
each subprogram is designed. the modules called by it can be "stubbed in" in a similar
fashion~ insuring that the parameter lists and communications paths are well defined and
propf'rly implementf'd at every If'vf'l of your design. The most difficult part of testing;
your program is done as the program is being designed.

6-36 Subprograms and User-Defined Functions

Let's step down to the next level of the design and consider each of the subprograms
mentioned above:

90 SUB Input_data(Name$(*) ,INTEGER Units(*),REAL Failures(*),INTEGER
Max,Howmany)
91 DIM Which$[3]
92 INPUT "New Data or Old?",Which$
93 IF Which$=INew" THEN
94 Enter_new(Name$(*),Units(*) ,Failures(*) , Max, Howmany)
95 ELSE
96 Edit_old(Name$(*),Units(*),Failures(*),Max Howmany)
97 END IF
100 SUBEND
101
110 SUB Store_data(Name$(*),INTEGER Units(*),REAL Failures(*) ,INTEGER
Max, Howmany)
111 Setup_file(~File)

112 OUTPUT ~File;Name$(*),Units(*) ,Failures(*)
113 ASSIGN ~File TO *
120 SUBEND
121
130 SUB Report(Name$(*),INTEGER Units(*),REAL Failures(*) ,INTEGER
Max,Howmany)
132 OPTION BASE 1
133 INTEGER Root,I,Whichfield
134 ALLOCATE INTEGER Tree(Howmany,2)
135 Init_tree(Root,Tree(*))
136 Ask: INPUT "Which field (1=Name,2=Units,3=Failures)?",Whichfield
137 IF Whichfield<l OR Whichfield>3 THEN Ask
138 FOR 1=2 TO Howmany
139 SELECT Which_field
140 CASE 1
141 Buildstring(Root,Tree(*) ,I,Name$(*))
142 CASE 2
143 Buildnum(Root,Tree(*),I,Units(*))
144 CASE 3
145 Buildnum(Root,Tree(*),I,Failures(*))
146 END SELECT
148 NEXT I
149 Inorder(Root,Tree(*),Name$(*),Units(*),Failures(*))
150 SUBEND

Subprograms and User-Defined Functions 6-37

Here we haven't gone through the exercise of providing the dummy subprograms. though
in actual practice we would. In lines 94 and 96 of the data entry program, we see two
more subprograms that need to be designed. The module for entering new data from
the keyboard will be straightforward and need not be considered in further detail for
this example. The module for editing old data will involve loading a set of data from
the diskette and then allowing the user to modify those values. This will involve a little
more detail and perhaps another level of subprograms, but the techniques to be used are
still straightforward enough not to demand further attention here.

Line III calls for a module to setup a data file to store the data on, and passes an I/O
path name back out that's ready for use. This means that the subprogram must:

1. Ask the user for a file

2. Create the file if necessary

3. ASSIGN it for use

The Report subprogram is by far the most interesting one in this example, since it deals
with the initialization, construction, and traversal of a binary tree, as discussed above.
The Init_tree subprogram called in line 135 simply initializes the root node's (first
element, remember) subtrees to be empty. Subsequently, the Buildstring subprogram
called in line 140 simply enters the Ith string in the Name$(*) array into the structure of
Tree(*). assuming that the user asked for the report to be sorted by Name$(*). Similarly.
if the user wanted either Units (*) or Failures (*) to be the sort key, then the Buildnum

subprogram (called in lines 143 and 145) would be used to construct the tree.

Finally. the Inorder subprogram traverses the structure in "inorder" once the tree has
been built. "Inorder" simply means that every node is printed in between that node's
subtrees. This traversal mechanism. as you will see, is quite short, and is a truly elegant
expression of the task being performed.

6-38 Subprograms and User-Defined Functions

Here are the Init_tree1 Buildstring1 and Inorder subprograms (Buildnum is so similar to
Buildstring that it isn1t necessary to list it too):

200 SUB Init_tree(INTEGER Root,Tree(*»
210 COM /Tree/INTEGER Nil,Left,Right
220 Nil=O
230 Left=1
240 Right=2
250 Root=1
260 Tree(Root,Left)=Nil
270 Tree(Root,Right)=Nil
280 SUBEND
281
290 SUB Buildstring(INTEGER Root,Tree(*),Index,A$(*»
300 COM /Tree/INTEGER Nil,Left,Right
310 IF A$(Index)<=A$(Root) THEN Search the left subtree
320 IF Tree(Root,Left)=Nil THEN Once a leaf is found (link is
330 Tree(Root,Left)=Index nil) point to the new node
340 Tree(Index,Left)=Nil (Index) with the leaf's left
350 Tree(Index,Right)=Nil pOinter and set up the new
351 node as a leaf.
360 ELSE
370 Buildstring(A(Root,Left) ,Tree(*) ,Index,A$(*»
380 END IF
390 ELSE Search the right subtree
400 IF Tree(Root,Right)=Nil THEN Once a leaf is found (link is
410 Tree(Root,Right)=Index nil) pOint to the new node
420 Tree(Index,Left)=Nil from the right pOinter instead
430 Tree (Index, Right) =Nil of the left.
440 ELSE
450 Buildstring(A(Root,Right),Tree(*),Index,A$(*»
460 END IF
470 END IF
480 SUBEND
481
490 SUB Inorder(INTEGER Root,Tree(*) ,Name$(*) ,INTEGER Units(*) ,REAL
Failures(*»
500 COM /Tree/INTEGER Nil,Left,Right
510 IF Root<>Nil THEN
520 Inorder(A(Root,Left) ,Tree(*) ,Name$(*),Units(*) ,Failures (*»
530 PRINT Name$(Root),Units(Root),Failures(Root)
540 Inorder(A(Root,Right) ,Tree(*) ,Name$(*) ,Units(*) ,Failure s(*»
550 END IF
560 SUBEND

Subprograms and U ser-Defined Functions 6-39

Let's step through a sample input stream and see how the tree is constructed using the
Buildstring subprogram:

Contents of the Name$(*) array:

1. Perriwinkle
2. Jones
3. Smith
4. Snodgrass
5. Figby
6. Brown
7. Thompson
8. Richards
9. Hughes
10. Davenport

Tree structure after Ini t_ tree is executed:

(1) perriWinklel Nil I Nil I

Figure 6-5. Tree Structure After Init_tree Execution

6-40 Subprograms and User-Defined Functions

Tree structure after subsequent insertions into the tree by the Buildstring subprogram:

(1) Periwinkle 1 2 1 Nil 1

I
(2) Jonesl-I-N-il-It--N-il-f

(1) perriwinklel 2 1 3 1

I ~
(2) Jonesl Nil 1 Nil 1 (3) Smithl Nil 1 Nil 1

(1) pernwinklel 2 1 3 1

~\
(2) / 5 I Nil I (3) sm"hlt--Nil-+-I ----:-t

4
\

(5) Fi9byl 6 1 9 1 (4) Snodgrass 1 8 1

I ~ /
(6) Brownl Nil 110 1 (9) HUghesl Nil 1 Nil 1 (8) RiChardslt--N_il-+-_-f

\
(10) Davenportl Nil 1 Nil

Figure 6-6. Tree Structure After Buildstring Execution

Subprograms and U ser-Defined Functions 6-41

These three subprograms illustrate several points that were discussed in this chapter:

• They share a labelled COM block which is not declared in the main program, nor
in the Report program. The information in the COM block was only relevant to
the the three subprograms. yet the programs never called each other-they were
all called from Report.

• Both the Inorder and Buildstring subprograms are recursive-they call themselves.
This technique was an appealing way to solve the problem because of the recursive
nature of the data structure. (Many types of data structures are recursively
defined.)

• The use of subprograms to build and traverse the data structure turned out to
execute faster than a sort subprogram which physically moved the items in the
three fields into a given order based on sorting one of the arrays. (The difference
was about 40% using Donald Shell's algorithm5 .)

• The method of Top-Down Design led to the orderly design, creation, and testing
of each subprogram, module by module, layer by layer. Communication paths and
data structures/types were forced to be clearly defined at each step of the way.

1 Wirth, Niklaus, "Program Development by Stepwise Refinement", Communications of the ACM, April
1971, Vol. 14, No.4, pp. 221-227

2 Yourdan, Edward, Techniques of Program Structure and Design, (Prentice-Hall, Englewood Cliffs, NJ,

1975)
3 DahL Dijkstra, & Hoare, Structured Programming (Academic Press, New York, 1972)
4 Knuth, Donald E., The Art of Computer Programming, Vol. 1, Fundamental Algorithms (Addison-Wesley,

Reading, Mass, 1973), pp. 308-309,316-317
5 Knuth, Donald E., The Art of Computer Programming, Vol. 3, Sorting and Searching (Addison-Wesley,

Reading, Mass, 1973), pp. 84-85

6-42 Subprograms and User-Defined Functions

Data Storage and Retrieval 7
Storing Data in Programs .. 7-2

Storing Data in Variables .. 7-2
Data Input by the User .. 7-2
Using DATA and READ Statements 7-3

File Input and Output (I/O) ... 7-7
Brief Comparison of Available File Types .. 7-7
Overview of File I/O .. 7-9
A Closer Look at General File Access. .. 7-11

A Closer Look at Using ASCII Files. .. 7-16
Example of ASCII File I/O. .. 7-16
Data Representations in ASCII Files 7-17
Formatted OUTPUT with ASCII Files 7-19
Formatted ENTER with ASCII Files 7-24

A Closer Look at BDAT and HP-UX Files 7-26
Data Representations Available 7-26
Random vs. Serial Access ... 7-26
Data Representations Used in BDAT Files 7-27
Data Representations with HP-UX Files 7-30

• BDAT File System Sector : 7-31
Defined Records. .. 7-31
EOF Pointers ... 7-35
Writing Data. .. 7-37
Serial OUTPUT. .. 7-37
Random OUTPUT ... 7-42
Reading Data From BDAT and HP-UX Files 7-46
Accessing Files with Single-Byte Records 7-49

Trapping EOF and EOR Conditions 7-50
Extended Access of Directories .. 7-53

Cataloging Individual PROG Files .. 7-53
Cataloging to a String Array 7-55
Getting an "Extended" Catalog of a LIF or HFS Disc 7-57
Getting a Count of Files Cataloged 7-57
Suppressing the Catalog Header 7-58
Cataloging Selected Files. .. 7-58
Getting a Count of Selected Files 7-60
Skipping Selected Files ... 7-61

Data Storage and Retrieval 7
This chapter describes some useful techniques for storing and retrieving data .

• First we describe how to store and retrieve data that is part of the BASIC program.
With this method, DATA statements specify data to be stored in the memory
area used by BASIC programs; thus, the data is always kept with the program,
even when the program is stored in a mass storage file. The data items can be
retrieved by using READ statements to assign the values to variables. This is a
particularly effective technique for small amounts of data that you want to maintain
in a program file.

• For larger amounts of data, and for data that will be generated or modified by a
program, mass storage files are more appropriate. Files provide means of storing
data on mass storage devices. The three types of data files available with Series
200/300 BASIC system computers are described in this chapter.

• ASCII~used for general text and numeric data storage. (These are the
interchange method with many other HP systems.)

• BDAT ~provide the most compact and flexible data storage mechanism.

• HP-UX~similar to BDAT files in format and flexibility, but can also be
interchanged with other systems like ASCII files.

More details about these files, including how to choose a file type and how to access each,
are described in this chapter.

Data Storage and Retrieval 7-1

Storing Data in Programs
This section describes a number of ways to store values in memory. In general, these
techniques involve using program variables to store data. The data are kept with
the program when it is stored on a mass storage device (with STORE and SAVE).
These techniques allow extremely fast access of the data. They provide good use of the
computer's memory for storing relatively small amounts of data.

Storing Data in Variables
Probably the simplrst method of storing data is to us(' a simpl(' assignment. such as thr
following LET statements:

100 LET Cm_per_inch=2.54
110 Inch_per_cm=1/Crn_per_inch

The data stored in each variable can then be retrieved simply by specifying the variable's
name. This technique works well when there are only a relatively few items to be stored or
when several data values are to be computed from the value of a few items. The program
will execute faster when variables are used than when expressions containing constants
are used; for instance~ using the variable Inch_per_crn in th(' preceding example would 1)('
faster than using the constant expression 1/2.54. In addition, it is easier to modify the
value of an item when it appears in only one place (i.e., in the LET statement).

Data Input by the User
You also can assign values to variables at run-time with the INPUT and LINPUT
statements as shown in the following examples.

100 INPUT "Type in the value of X. please.".Id

200 DISP "Enter the value of X. Y. and Z.";
210 LINPUT "".Response$

Not(' that with this type of storage. the values assigned to the corresponding variabl('s
are not kept with the program when it i:::; :::;tored; they must be entered each time the
program is run. This type of data storage can be used when the data are to be checked
or modified by the user each time the program is run. As with the preceding example.
the data stored in each variable can then be retrieved simply by specifying the variable's
name.

7-2 Data Storage and Retrieval

Using DATA and READ Statements
The DATA and READ statements provide another technique for storing and retrieving
data from the computer's read/write (R/W) memory. The DATA statement allows you
to store a stream of data items in memory, and the READ statement allows you retrieve
data items from the stream.

You can have any number of READ and DATA statements in a program in any order
you want. When you RUN a program, the system concatenates all DATA statements in
the same context into a single "data stream." Each subprogram has its own data stream.
The following DATA statements distributed in a program would produce the following
data stream.

100 DATA l,A,50

200 DATA IBB",20,45

300 DATA X,Y,77

As you can see from the example above, a data stream can contain both numeric and
string data items; however, each item is stored as if it were a string.

Each data item must be separated by a comma and can be enclosed in optional quotes.
Strings that contain a comma, exclamation mark, or quote mark must be enclosed in
quotes. In addition, you must enter two quote marks for every one you want in the string.
For example, to enter the string QUOTE" QUO"TE into a data stream, you would write:

100 DATA "QUOTE""QUO""TE"

To retrieve a data item, assign it to a variable with the READ statement. Syntactically,
READ is analogous to DATA; but instead of a data list, you use a variable list. For
instance, the statement:

100 READ X,Y,Z$

would read three data items from the data stream into the three variables. Note that
the first two items are numeric and the third is a string variable.

Data Storage and Retrieval 7-3

Numeric data items can be READ into either Ilumeric or string variables. If the numeric
data item is of a different type than the numeric variable, the item is converted (i.e.,
REALs are converted to INTEGERs, and INTEGERs to REALs). If the conversion
cannot be made, an error is returned. A READ into a COMPLEX variable is satisfied
with two REAL DATA values. Strings that contain non-numeric characters must be
READ into string variables. If the string variable has not been dimensioned to a size
large enough to hold the entire data item, the data item is truncated.

The system keeps track of which data item to READ next by using a ;·data pointer."
Every data stream has its own data pointer which points to the next data item to be
assigned to the next variable in a READ statement. When you run a program segment,
the data pointer is placed initially at the first item of the data stream. Every time
you READ an item from the stream, the pointer is moved to the next data item. If a
subprogram is called by a context. the position of the data pointer is recorded and then
restored when you return to the calling context.

Starting from the position of the data pointer, data items are assigned to variables one
by one until all variables in a READ statement have been given values. The exception
is when a COMPLEX variable is read two numeric data items are consumed. If there
are more variables than data items, the system returns an error, and the data pointer is
moved back to the position it occupied before the READ statement was executed . .index
READ statement

Examples
The following example shows how data is stored in a data stream and then retrieved.
Note that DATA statements can come after READ statements even though they contain
the data being READ. This is because DATA statements are linked during program
pre-run, whereas READ statements aren~t executed until the program actually runs.

10 DATA November,26
20 READ Month$,Day,Year$
30 DATA 1981,nThe date isn
40 READ Str$
50 Print Str$;Month$,Day,Year$
60 END

The date is November 26 1981

7 -4 Data Storage and Retrieval

Storage and Retrieval of Arrays
In addition to using READ to assign values to string and numeric variables, you can also
READ data into arrays. The system will match data items with variables one at a time
until it has filled a row. The next data item then becomes the first element in the next
row. You must have enough data items to fill the array or you will get an error. In the
examples below, we show how REAL and COMPLEX DATA values can be assigned to
~l~m~nts of a 3-by-3 numeric array. Note that two COMPLEX DATA values have to be
assigned to each element of the 3-by-3 numeric array. The first COMPLEX DATA value
is the real part of the complex number and the second COMPLEX DATA value is the
imaginary part.

10
20
30
40
50
60

1 2 3
456
789

10
20
30
40
50
60

23 -2
4 5

34 2

OPTION BASE 1
DIM Example1(3,3)
DATA 1,2,3,4,5,6,7,8,9,10,11
READ Example1(*)
PRINT USING "3(K,X)./" ; Example1(*)
END

OPTION BASE 1
COMPLEX Example2(3,3)
DATA 23,-2,-1,10,-6,-7,4,5,-8,10,1,1,34,2,9,17,-12,-14
READ Example2(*)
PRINT USING "3(3D,X,3D,3X)./" ;Example2(*)
END

-1 10 -6-7
-8 10 1 1
9 17 -12 -14

In the first example, the data pointer is left at item 10; thus, items 10 and 11 are saved
for the next READ statement. In the second example, there are just enough items to fill
each element of the complex array.

Data Storage and Retrieval 7-5

Moving the Data Pointer
In some programs, you will want to assign the same data items to different variables.
To do this, you have to move the data pointer so that it is pointing at the desired data
item. You can accomplish this with the RESTORE statement. If you don't specify a line
number or label, RESTORE returns the data pointer to the first data item in the data
stream. If you do include a line identifier in the RESTORE statement, the data pointer
is moved to the first data item in the first DATA statement at or after the identified line.
The example below illustrates how to use the RESTORE statement.

100 DIM Arrayl(1:3)
110 DIM Array2(0:4)
120 DATA 1,2,3,4
130 DATA 5,6,7
140 READ A,B,C
150 READ Array2(*)
160 DATA 8,9
170
180 RESTORE
190 READ Arrayl(*)
200 RESTORE 140
210 READ D
220 !

Dimensions a 3-element array.
Dimensions a 5-element array.
Places 4 items in stream.
Places 3 items in stream.
Reads first 3 items in stream.
Reads next 5 items in stream.
Places 2 items in stream.

Re-positions pointer to 1st item.
Reads first 3 items in stream.
Moves data pointer to item "8".
Reads "8".

230 PRINT "Arrayl contains:";Arrayl(*);" "
240 PRINT "Array2 contains: ";Array2(*) ;" "
250 PRINT "A,B,C,D equal:";A;B;C;D
260 END

Arrayl contains: 1 2 3
Array2 contains: 4 5 6 7 8
A,B,C,D equal: 1 2 3 8

7 -6 Data Storage and Retrieval

File Input and Output (I/O)
The rest of this chapter describes the second general class of data storage and retrieval
that of using mass storage files. It presents BASIC programming techniques used for
accessing files.

• The first section gives a brief introduction to the general steps you might take to:

• Choose a file type.

• Store data in any file.

• Subsequent sections describe details of these steps with ASCII, BDAT, and HP-UX
files.

If you feel that you need additional background information about files or mass storage
organization while reading this material, refer to the "Mass Storage Concepts" chapter
of Installing and Maintaining the BASIC System.

Brief Comparison of Available File Types
With the Series 200/300 BASIC system, there are three different types of files in which
you can store and retrieve data. Understanding the characteristics of each file type will
help you choose the one best suited for your specific application.

• ASCII-used for general text and numeric data storage. Here are the advantages
of this type of file:

• There is less chance of reading the contents into the wrong data type (which
is possible with BDAT and HP-UX files). Thus, it is the easiest file to read
when you don't know how it was written.

• The file format provides fairly compact storage for string data.

• ASCII files are compatible with other HP computers that support this file
type!.

• ASCII files containing BASIC program lines can be read with GET and
written with SAVE.

1 The full name of ASCII files is "LIF ASCI!." LIF stands for Logical Interchange Format, a directory and
data storage format that is used by many HP computer divisions.

Data Storage and Retrieval 7-7

The main disadvantages of ASCII files are that:

• They can be accessed serially but not randomly.

• They can be written in only default ASCII format (no formatting is possible!,
and the data cannot be stored in internal representation) .

• BDAT-provide the most compact and flexible data storage mechanism. These
files have several advantages:

• They can be randomly or serially accessed.

• More flexibility in data formats and access methods.

• Faster transfer rates.

• Generally more space-efficient than ASCII files (except for string data items).

• They allow data to be stored in ASCII format, internal format, or in a
"custom" format (which you can define with IMAGE specifiers).

The disadvantages are that:

• You must know how the data items were written (as INTEGERs, REALs,
COMPLEX values, strings, etc.) in order to correctly read the data back.

• These data files cannot be interchanged with as many other systems as can
ASCII files (for instance, the Series 200/300 Pascal Workstation system cannot
read BDAT files).

1 It is possible, however, to format data to be sent to an ASCII file by first sending it to a string variable
(with OUTPUT .. USING), and then OUTPUT this string's contents to the file. See the subsequent
spction callpd "Formatted OlTTPUT with ASCII Filps" for pxamplps.

7 -8 Data Storage and Retrieval

• HP-UX-similar to BDAT files in structure, but also have some of the advantages
of ASCII files:

• Like BDAT files, they can also be accessed randomly or serially, and they can
use ASCII, internal, or custom data representations.

• Like ASCII files, they are useful for data-file interchange; however, the set
of computers with which they can be interchanged is slightly different than
LIF ASCII files. HP-UX files can be interchanged with any other system that
uses the Hierarchical File System (HFS) format for mass storage volumes
(such as HP-UX systems, and HP Series 200/300 Pascal systems beginning
with version 3.2). See the "Porting and Sharing Files" chapter for a list of
operating systems and languages that support HP-UX file access.

• HP-UX files containing BASIC program lines can be read with GET and
written with RE-SAVE.

If in doubt about the type of file to use, choose a BDAT file because of its speed and
compact data storage.

Overview of File I/O
Storing data in files requires a few simple steps. The following program segment shows
a simplistic example of placing several items in a data file.

100 REAL Real_arrayl(1:50,l:25),Real_array2(1:50,l:25)
110 INTEGER Integer_var
120 DIM String$[100]

390 Specify default mass storage.
400 MASS STORAGE IS ": ,700,1"
410
420 ! Create BOAT data file with ten (256-byte) records
430 ! on the specified mass storage device (: ,700,1).
440 CREATE BOAT "File_l",10
450
460 ! Assign (open) an I/O path name to the file.
470 ASSIGN ~Path_l TO "File_l"
480
490 ! Write various data items into the file.
500 OUTPUT ~Path_l; "Literal" String literal.
510 OUTPUT ~Path_l;Real_arrayl(*) REAL array.
520 OUTPUT ~Path_l;255 Single INTEGER.
530
540 ! Close the I/O path.
550 ASSIGN ~Path_l TO *

Data Storage and Retrieval 7-9

790
800
810
820
830
840
850
860
870
880

! Open another I/O path to the file (assume same default drive).
ASSIGN ~F_l TO "File_l"

! Read data into another
ENTER ~F_l;String_var$
ENTER ~F_l;Real_array2(*)
ENTER ~F_l;Integer_var
!
! Close I/O path.
ASSIGN ~F_l TO *

array (same size and type) .
Must be same data types
used to write the file.
"Read it like you wrote it."

Line 400 specifies the default mass storage device, which is to be used whenever a
mass storage device is not explicitly specified during subsequent mass storage operations.
The term mass storage volume specifier (msvs) describes the string expression used to
uniquely identify which device is to be the mass storage. In this case. ":,700J" is the'
msvs. (For a complete discussion of mass storage volume specifiers, see the "Mass Storage
Concepts" chapter of Installing and Maintaining the BASIC System manual.)

In order to store data in mass storage, a data file must be created (or already exist) on the
mass storage media. In this case, line 440 creates a BDAT file!; the file created contains
10 defined records of 256 bytes each. (Defined records and record size are discussed later
in this chapter.)

The term file specifier describes the string expression used to uniquely identify the file.
In this example, the file specifier is simply File_l, which is the file's name. If the file is
to be created (or already exists) on a mass storage devin> other than the default mass
storage, the appropriate msus must be appended to the file name. If that device has a
hierarchical directory format (such as HFS or SRM discs), then you may also have to
specify a directory path (such as /USERS/MARK/PROJECT -1).

Then, in order to store data in (or retrieve data from) the file, you must assign an I/O
path name to the file. Line 470 shows an example of assigning an I/O path name to the
file (also called opeuiug au I/O path to the file). Lines 500 through 520 show data items
of various types being written into the file through the I/O path name.

The I/O path name is closed after all data have been sent to the file. In this instance,
closing the I/O path may have been optional, because a different I/O path name is
assigned to the file later in the program. (All I/O path names are automatically closed
by the system at the end of the program.) Closing an I/O path to a file updates the file
pointers.

1 Later sections describe using HP-UX and ASCII files.

7 -10 Data Storage and Retrieval

Since these data items are to be retrieved from the file, another ASSIGN statement is
executed to open the file (line 800). Notice that a different I/O path name was arbitrarily
chosen. Opening this I/O path name to the file sets the file pointer to the beginning of
the file. (Re-opening the I/O path name (oFile_l would have also reset the file pointer.)

Notice also that the msvs is not included with the file name. This shows that the current
default mass storage device; here ":;700;1" j is assumed when a mass storage device is not
specified.

The subsequent ENTER statements read the data items into variables; with BDAT and
HP- UX files!, the data type of each variable must match the data type type of each data
item. With ASCII files, for instance, you can read INTEGER items into REAL variables
and not have problems.

This is a fairly simple example; however, it shows the general steps you must take to
access files.

A Closer Look at General File Access
Before you can access a data file, you must assign an I/O path name to the file. Assigning
an I/O path name to the file sets up a table in computer memory that contains various
information describing the file, such as its type, which mass storage device it is stored
on, and its location on the media. The I/O path name is then used in I/O statements
(OUTPUT, ENTER, and TRANSFER) which move the data to and from the file. I/O
path names are also used to transfer data to and from devices. BASIC Interfacing
Techniques explains data transfers with devices and provides several relevant insights
into data representations. However, in this chapter we deal mostly with I/O paths to
files.

When using the BASIC internal (FORMAT OFF) data representation. This topic is discussed in the
section called "A Closer Look at BDAT and HP-UX Files".

Data Storage and Retrieval 7-11

Every I/O path to a file maintains the following information:

Validity Flag Tells whether the path is currently opened (assigned) or closed (not
assigned).

Type of Resource Holds the file type: ASCII, BDAT, or HP-UX.

Device Selector Stores the device selector of the drive. (I/O paths can also be associated
with devices and buffers. See BASIC Interfacing Techniques for further
details.)

Attributes Such as FORMAT OFF and FORMAT ON, BYTE, and PARITY ODD.

File Pointer There is a file pointer that points to the place in the file where the next
data item will be read or written. The file pointer is updated whenever
the file is accessed.

End-Of-File Pointer An I/O path has an EOF pointer that points to the byte that follows
the last byte of the file.

Opening an I/O Path
I/O path names are similar to other variable names, except that I/O path names are
preceded by the "@" character. When an I/O path name is used in a statement, the
system looks up the contents of the I/O path name and uses them as required by the
situation.

To open an I/O path to a file (to set the validity flag to Open), assign the I/O path name
to a file specifier by using an ASSIGN statement. For example, executing the following
statement:

ASSIGN <OPathl TO "Example"

assigns an I/O path name called <OPathl to the file Example. The file that you open must
already exist and must be a data file. If the file does not satisfy one of these requirements,
the system will return an error. If you do not use an msus in the file specifier, the system
will look for the file on the current MASS STORAGE IS device. If you want to access a
different device, use the msus syntax described earlier. For instance, the statement:

ASSIGN <OPath2 TO "Example:HP9122.700"

opens an I/O path to the file Example on an HP 9122 disc drive, interface select code 7
and primary address o. You must include the protect code or password, if the LIF or
SRM file has one, respectively.

7 -12 Data Storage and Retrieval

ASSIGNing an I/O path name to a file has the following effect on the I/O path table:

• If the I/O path is currently open, the system closes the I/O path and then re-opens
it. If the I/O path is not currently open, it is opened. In both cases, the system
sets the validity flag to Open.

• The file's type (ASCII, BDAT, or HP-UX) is set.

• The file's directory path (if in a hierarchical directory structure) and msus are
recorded.

• The specified attributes are assigned to the I/O path name. If an attribute is not
specified, the appropriate default attribute is assigned (such as FORMAT OFF
with BDAT and HP-UX files, and FORMAT ON with ASCII files).

• The file pointer is positioned to the beginning of the file.

• If the I/O path name is associated with a BDAT or HP-UX file, the physical EOF
pointer (read from the volume on which the file resides) is copied to the I/O path
table.

Once an I/O path has been opened to a file, you always use the path name to access the
file. An I/O path name is only valid in the context in which it is opened, unless you pass
it as a parameter or put it in the COM area. To place a path name in the COM area,
simply specify the path name in a COM statement before you ASSIGN it. For instance
the two statements below would declare an I/O path name in an unnamed COM area
and then open it:

100 COM <OPath3
110 ASSIGN <OPath3 TO "File1"

ASSigning Attributes
When you open an I/O path, certain attributes are assigned to it which define the way
data is to be read and written. There are two attributes which control how data items
are represented: FORMAT ON and FORMAT OFF.

• With FORMAT ON, ASCII data representations are used.

• With FORMAT OFF, the BASIC system's internal data representations are used.

Additional attributes are available, which provide control of such functions as parity gen
eration and checking, converting characters, and changing end-of-line (EOL) sequences.
See ASSIGN in the BASIC Language Reference, or "I/O Path Attributes" in the BASIC
Interfacing Techniques for further details.

Data Storage and Retrieval 7-13

As mentioned in the tutorial section, I3DAT files can use eitlwr data repr('s('ntation;
however, ASCII files permit only ASCII-data format. Therefore. if you specify FORMAT
OFF for an I/O path to an ASCII file, the system ignores it. The following ASSIGN
statement specifies a FORMAT attribute:

ASSIGN ~Pathl TO "Filel";FORMAT OFF

If Filel is a BDAT or HP-UX file. the FORMAT OFF attribute specifies that the internal
data formats are to be used when sending and receiving data through the I/O path. If
the file is of type ASCII, the attribute will be ignored. Note that FORMAT OFF is the
default FORMAT attribute for BDAT and HP-UX file.'>.

Executing the following statement directs the system to use the ASCII data representa
tion when sending and receiving data through the I/O path:

ASSIGN ~Path2 TO "File2";FORMAT ON

If File2 is a BDAT or HP-UX file, data will be written using ASCII format, and data read
from it will be interpreted as being in ASCII format. For an ASCII file, this attribute is
redundant since ASCII-data format is the only data representation allowed anyway.

If you want to change the attribute of an I/O path, you can do so by specifying the I/O
path name and attribute in an ASSIGN statement while excluding the file specifier. For
instance, if you wanted to change the attribute of ~Path2 to FORMAT OFF, you could
execute:

ASSIGN ~Path2;FORMAT OFF

Alternatively, you could re-enter the entire statement:

ASSIGN ~Path2 TO "File2";FORMAT OFF

These two statements, however, are not identical. The first one only changes the
FORMAT attribute. The second statement resets the entire I/O path table (e.g., resets
the file pointer to the beginning of the file).

It is important to note that once a file is written, changing the FORMAT attribute
of an I/O path to the file should only be attempted by experienced programmers. In
general, data should always be read in the same manner as it was written. For instance.
data written to a I3DAT or HP-UX file with FORMAT OFF should also be read with
FORMAT OFF, and vice versa. In addition, the same data types should be used to
write the file as to read the file. For instance. if data items were written as INTEGERs.
they should also be read as INTEGERs (this is mandatory with FORMAT OFF. but
not always necessary with FORMAT ON).

7-14 Data Storage and Retrieval

In theory, there is no limit to the number of I/O paths you can ASSIGN to the same file.
Each I/O path, however, has its own file pointer and EOF pointer, so that in practice it
can become exceedingly difficult to keep track of where you are in a file if you use more
than one I/O path. We recommend that you use only one I/O path at anyone time for
each file.

Closing I/O Paths
I/O path names not in the COM area are closed whenever the system moves into a
stopped state (e.g., STOP, END, SCRATCH, EDIT, etc.). I/O path names local to a
context are closed when control is returned to the calling context. Re-ASSIGNing an
I/O path name will also cancel its previous association.

You can also explicitly cancel an I/O path by ASSIGNing the path name to an *
(asterisk). For instance, the statement:

ASSIGN ~Path2 TO *

closes ~Path2 (sets the validity flag to Closed). ~Path2 cannot be used again until it is
re-assigned. You can re-assign a path name to the same file or to a different file.

Data Storage and Retrieval 7-15

A Closer Look at Using ASCII Files
You have already been introduced to general file I/O techniques in the example of writing
and reading a BDAT file in the preceding section. This section gives you a closer look at
ASCII file I/O techniques.

Example of ASCII File I/O
Storing data in ASCII files requires a few simple steps. The following program segment
shows a simplistic example of placing several items in an ASCII data file. Note that it
is nearly identical to the first example in the preceding "Overview of File I/O" section,
except for changes to the CREATE statement and file name.

100 REAL Real_array1(1:50,1:25) ,Real_array2(1:50, 1:25)
110 INTEGER Integer_var
120 DIM String$[100]

390 Specify "default" mass storage device.
400 MASS STORAGE IS ": ,700,1"
410
420 ! Create ASCII data file with 10 sectors
430 ! on .the "default" mass storage device.
440 CREATE ASCII "File_2",10
450
460 ! Assign (open) an I/O path name to the file.
470 ASSIGN ~Path_1 TO "File_2"
480
490 ! Write various data items into the file.
500 OUTPUT ~Path_1;" Literal" String literal.
510 OUTPUT ~Path_1;Real_array1(*) REAL array.
520 OUTPUT ~Path_1;255 Single INTEGER.
530
540 ! Close the I/O path.
550 ASSIGN ~Path_1 TO *

790 Open another I/O path to the file (assume same default drive).
800 ASSIGN ~F_1 TO "File_2"
810
820 ! Read data into another array (same size and type) .
830 ENTER ~F_1;String_var ! Must be same data types.
840 ENTER ~F_1;Real_array2(*)
850 ENTER ~F_1;Integer_var
860

7 -16 Data Storage and Retrieval

870 ! Close I/O path.
880 ASSIGN ~F_l TO *

Data Representations in ASCII Files
In an ASCII fiie, every data item, whether string or numeric, is represented by ASCII
characters; one~Qyt~ represents one ASCII character. Each data item is preceded by
a two-byte length header which indicates how many ASCII characters are in the item.
However, there is no "type" field for each item; data items contain no indication (in
the file) as to whether the item was stored as string or numeric data. For instance, the
number 456 would be stored as follows in an ASCII file:

LENGTH
HEADER =
BINARY 4

ASCII
CODES

Note that there is a space at the beginning of the data item. This signifies that the
number is positive. If a number is negative, a minus sign precedes the number. For
instance, the number -456, would be stored as follows:

---.~-"~----~.~--~
LENGTH ASCII

HEADER = CODES
BINARY 4

If the length of the data item is an odd number, the system ~~pads" the item with a space
to make it come out even. The string "ABC", for example, would be stored as follows:

I a I 3 I A I B I c I (pad) I
------'~\----~y~--~
LENGTH

HEADER =
BINARY 3

ASCII
CODES

Data Storage and Retrieval 7 -17

There is often a relatively large amount of overhead for Illlmeric data items. For iustam'p.
to store the integer 12 in an ASCII fik requires the following six bytes:

LENGTH
HEADER =
BINARY 3

ASCII
CODES

Similarly, reading numeric data from an ASCII file can be a complex and rrlativdy
slow operation. The numeric characters in an item must be entered and evaluat('d
individually by the system's "number builder" routine, which derives the number's
internal representation. (Keep in mind that this routine is called automatically when
data are entered into a numeric variable.) For example. suppose that the following item
is stored in an ASCII file:

LENGTH
HEADER =
BINARY 10

ASCII
CODES

Although it may srem obvious that this is not a numeric data item, the system has no way
of knowing this since there is no type-field stored with the item. Therefore, if you attempt
to enter this item into a numeric variable, the system uses the number-builder routine
to strip away all non-numeric characters and spaces and assign thr value 123 to the
numeric variable. When you add to this the intricacies of real numbers and exponential
notation, the situation becomes more complex. For more information about how the
number builder works. see the chapter called "Entering Data" in BA8Ir Interfacing
Techniques.

Because ASCII files require so much overhead (for storage of "smaIP' items), and because
retrieving numeric data from ASCII files is sometimes a complex process, they are not the
preferred file type for numeric data when compactness is an important criteria. Howrvrr.
as we mentioned before, ASCII files are interchangeable with many other HP products.

In this chapter, we refer to the data representation described above as ASCII-data format.
As mentioned earlier, you can also store data in BDAT files in ASCII format (by using the
FORMAT ON attribute). Be careful not to confuse the ASCII-file type with the ASCII
data format. The ASCII format used in BDAT files when FORMAT ON is specified
differs from the format used in ASCII files in several respects. Each item output to an
ASCII file has its own lrngth hrader: there are no length hraders in a FORMAT ON

7 -18 Data Storage and Retrieval

BDAT file. At the end of each OUTPUT statement an end-of-line sequence is written to
a FORMAT ON BDAT file unless surpressed by an IMAGE or EOL OFF. No end-of-line
sequence is written to an ASCII file at the end of an OUTPUT statement.

In general, you should only use ASCII files when you want to transport data between HP
Series 200/300 computers and other HP machines. There may be other instances where
you will want to use ASCII files; but you shonlo he aware that they cause a noticeable
transfer rate degradation compared to BDAT and HP-UX files (especially for numeric
data items).

Formatted OUTPUT with ASCII Files
As mentioned in the "Brief Comparison of File Types," you cannot format items sent to
ASCII files; that is, you cannot use the following statement with an ASCII file:

OUTPUT (QAscii_file USING 1I#.DD.D.4X.5AII;Number.String$

You can, however, direct the output to a string variable first, and then OUTPUT this
formatted string to an ASCII file:

OUTPUT String_var$ USING 1I#.DD.D.4X.5AII;Number.String$
OUTPUT (QAscii_file;String_var$

When a string variable is specified as the destination of data in an OUTPUT statement,
source items are evaluated individually and placed into the variable according to the free
field rules or the specified image, depending on which type of OUTPUT statement is used.
Thus, item terminators mayor may not be placed into the variable. The ASCII data
representation is always used during outputs to string variables; in fact, data output to
string variables is exactly like that sent to devices through I/O paths with the FORMAT
ON attribute.

When using OUTPUT to a string, characters are always placed into the variable
beginning at the first position; no other position can be specified as the beginning position
at which data will be placed. Thus, random access of the information in string variables
is not allowed from OUTPUT and ENTER statements; all data must be accessed serially.
For instance, if the characters "1234" are output to a string variable by one OUTPUT
statement, and a subsequent OUTPUT statement outputs the characters "5678" to the
same variable, the second output does not begin where the first one left off (i.e., at string
position five). The second OUTPUT statement begins placing characters in position
one, just as the first OUTPUT statement did, overwriting the data initially output to
the variable by the first OUTPUT statement.

Data Storage and Retrieval 7-19

The string variable's length header (2 bytes) is updated and compared to the dimensioned
length of the string as characters are output to the variable. If the string is filled before
all items have been output, an error is reported; however, the string contains the first n
characters output (where n is the dimensioned length of the string).

Example

The following program outputs string and numeric data items to a string variable and
then calls a subprogram which displays each character. its d{'rimal code, and its position
within the variable. Even though this program does not write to an ASCII file it shows
a character representation of what would appear in an ASCII file.

100 ASSIGN ~Crt TO 1 ! CRT is disp. device.
110
120 OUTPUT Str _ var$; 12. "AB" . 34
130
140 CALL Read_string(~Crt.Str_var$)
150
160 END
170
180
190 SUB Read_string(~Disp.Str_var$)
200

! Table heading. 210
220
230
240
250
260
270
280
290
300
310
320
330
340
350

OUTPUT ~Disp;" ______ ---------------"

360
370
380
390
400
410
420
430

7-20

OUTPUT ~Disp;"Character Code Pos."
OUTPUT ~Disp;"--------- ____ II
Dsp_img$="2X.4A.5X.3D.2X.3D"

Now read the string's contents.
FOR Str_pos=l TO LEN(Str_var$)

Code=NUM(Str_var$[Str_pos;l])
IF Code<32 THEN! Don't disp. CTRL chars.

Char$="CTRL"
ELSE

Char$=Str_var$[Str_pos;l]
END IF

Disp. char.

OUTPUT ~Disp USING Dsp_img$;Char$.Code.Str_pos
NEXT Str_pos

! Finish table.
OUTPUT ~Disp;"---------------------II
OUTPUT ~Disp ! Blank line.

SUBEND

Data Storage and Retrieval

r _mm_m __ mmu

Character Code Pos.
--------- ---- ----

32 1
1
2

A
B
CTRL
CTRL

3
4
CTRL
CTRL

49
50
44
65
66
13
10
32
51
52
13
10

2
3
4
5
6
7
8
9

10
11
12
13

Final Display

l

Outputting data to a string and then examining the string's contents is usually a more
convenient method of examining output data streams than using a mass storage file.
The preceding subprogram may facilitate the search for control characters. They are not
displayed, because they might cause the printer or CRT to perform control actions.

The following example program shows how outputs to string variables can be used to
reduce the overhead required in ASCII data files. To do this, the program compares two
possible methods for storing data in an ASCII data file. The first method stores 64 two
byte items in a file one at a time. Each two-byte item is preceded by a two-byte length
header. The second method stores 64 two-byte items in a string array which is output
to a string variable. The string variable is then output to an ASCII data file with only
one two-byte length header being used. Since the second method used only one two-byte
length header to store 64 two-byte items, it can easily be seen that the second method
required less overhead. Note that the second method is also the only way to format data
sent to ASCII data files.

Data Storage and Retrieval 7-21

100 PRINTER IS CRT
110
120 ! Create a file 1 record long (=256 bytes).
130 ON ERROR GO TO File_exists
140 CREATE ASCII "TABLE".l
150 File_exists: OFF ERROR
160
170
180 ! First method outputs 64 items individually ..
190 ASSIGN ~Ascii TO "TABLE"
200 FOR Item=l TO 64 ! Store 64 2-byte items.
210 OUTPUT ~Ascii;CHR$(Item+31)&CHR$(64+RND*32)
220 STATUS ~Ascii.5;Rec.Byte
230 DISP USING Image_l;Item.Rec.Byte
240 NEXT It em
250 Image_l: IMAGE "Item ".00." Record ".0." Byte ".30
260 DISP
270 Bytes_used=256*(Rec-l)+Byte-l
280 PRINT Bytes_used;" bytes used with 1st method."
290 PRINT
300 PRINT
310
320
330 Second method consolidates items.
340 DIM Array$(1:64) [2] .String$[128]
350 ASSIGN ~Ascii TO "TABLE"
360
370 FOR Item=l TO 64
380 Array$ (Item)=CHR$(Item+31)&CHR$ (64+RND*32)
390 NEXT Item
400
410 OUTPUT String$;Array$(*);
420 OUTPUT ~Ascii;String$
430
440 STATUS ~Ascii.5;Rec.Byte

Consolidate in string variable.
OUTPUT to file as 1 item.

450 Bytes_used=256*(Rec-l)+Byte-l
460 PRINT Bytes_used;" bytes used with 2nd method."
470
480 END

7-22 Data Storage and Retrieval

The program shows many of the features of using ASCII files and string variables. The
first method of outputting the data items shows how the file pointer varies as data are sent
to the file. Note that the file pointer points to the next file position at which a subsequent
byte will be placed. In this case, it is incremented by four by every OUTPUT statement
(since each item is a two-byte quantity preceded by a two-byte length header).

The program could have used a BDAT file, which would have resulted in using slightly
less disc-media space; however, using BDAT files usually saves much more disc space than
would be saved in this example. The program does not show that ASCII files cannot be
accessed randomly; this is one of the major differences between using ASCII and BDAT
(and HP-UX) files.

Example

The VAL$ function (or a user-defined function subprogram) and outputs made to string
variables can be used to generate the string representation of a number. The advantage of
the latter method is you can explicitly specify the number's image. The following program
compares a string generated by the VAL$ function to that generated by outputting a
number to a string variable.

100 X=12345678
110
120 PRINT VAL$(X)
130
140 OUTPUT Val$ USING
150 PRINT Val$
160
170 END

Printed Results

1.2345678E+7
123.E+05

"#,3D.E";X

Data Storage and Retrieval 7-23

Formatted ENTER with ASCII Files
Data is entered from string variables in much the same manner as output to the variable.
For example,

ENTER ~File;String$
ENTER String$;Varl, Var2$

All ENTER statements that use string variables as the data source interpret the data
according to the FORMAT ON attribute. Data is read from the variable beginning at
the first string position; if a subsequent ENTER statement reads characters from the
variable, the read also begins at the first position. If more data is to be entered from
the string than is contained in the string, an error is reported; however, all data entered
into the destination variable(s) before the end of the string was encountered remain in
the variable(s) after the error occurs.

When entering data from a string variable, the computer keeps track of the number of
characters taken from the variable and compares it to the string length. Thus, statement
termination conditions are not required; the ENTER statement automatically terminates
when the last character is read from the variable. However, item terminators are still
required if the items are to be separated and the lengths of the items are not known. If
the length of each item is known, an image can be used to separate the items.

Example

The following program shows an example of the need for either item terminators or
length of each item. The first item was not properly terminated and caused the second
item to not be recognized.

100 OUTPUT String$; IIABC123II ;
110
120 ! Now enter the data.
130 ON ERROR GO TO Try_again
140
150 First_try: !
160 ENTER String$;Str$,Nurn

OUTPUT w/o CR/LF.

170 OUTPUT CRT;IIFirst try results: II
180 OUTPUT CRT; "Str$= "; Str$, "Nurn=" ; Nurn
190 BEEP ! Report getting this far.
200 STOP
210
220 Try_again: OUTPUT CRT;IIErrorll;ERRN;1I on 1st tryll
230 OUTPUT CRT; IISTR$=II; Str$, IINurn=lI; Nurn
240 OUTPUT CRT
250
260

OFF ERROR ! The next one will work.

270 ENTER StringS USING 113A,3D";Str$,Nurn

7-24 Data Storage and Retrieval

280 OUTPUT CRT; "Second try results:"
290 OUTPUT CRT;" Str$= "; Str$. "Num=" ; Num
300
310 END

Executing the above program produces the following results:

Error 153 on 1st try
Str$=ABC123
Num= 0

Second try results:
Str$= ABC
Num= 123

This technique is convenient when attempting to enter an unknown amount of data or
when numeric and string items within incoming data are not terminated. The data can
be entered into a string variable and then searched by using images.

Example

ENTERs from string variables can also be used to generate a number from ASCII numeric
characters (a recognizable collection of decimal digits, decimal point, and exponent
information), rather than using the VAL function. As with outputs to string variables,
images can be used to interpret the data being entered.

30 Number$="Value= 43.5879E-13"
40
50 ENTER Number$;Value
60 PRINT "VALUE=";Value
70 END

Example

An ASCII file can always be read as strings even if the data is numeric. The following
program reads any ASCII file that has lines that are 80 characters or less in length.

10 DIM Buf$[80]
20 ASSIGN ~Str_file TO "File"
30 ON END ~Str_file GO TO Ending
40 LOOP
50 ENTER ~Str_file;Buf$
60 PRINT Buf$
70 END LOOP
80 Ending:
90 END

Data Storage and Retrieval 7-25

A Closer Look at BOAT and HP-UX Files
As mentioned earlier, BDAT and HP-UX files are designed for flexibility (random and
serial access, choice of data representations), storage-space efficiency, and speed. This
chapter provides several examples of using these types of files. (The "Porting and Sharing
Files" chapter also contains several examples of using HP-UX files from BASIC as well
as from HP-UX languages.)

Data Representations Available
The data representations available are:

• BASIC internal formats (allow the fastest data rates and are generally the most
space-efficient)

• ASCII format (the most interchangeable)

• Custom formats (design your own data representations using IMAGE specifiers)

More details of each type of representation are described in the remainder of this section.

Random vs. Serial Access
Random access means that you can directly read from and write to any record within the
file. while serial access only permits you to access the file in order, from the beginning.
That is, you must read records 1, 2, ... , n-1 before you can read record n. Serial access
can waste a lot of time if you're trying to access data at the end of a file. On the other
haneL if you want to access the entire file sequentially, you are better off using serial
access than random access. because it generally requires less programming effort and
often uses less file space. BDAT and HP-UX files can be accessed both randomly and
serially. while ASCII files can be accessed only serially.

7-26 Data Storage and Retrieval

Data Representations Used in BOAT Files
BDAT files allow you to store and retrieve data using internal format, ASCII format, or
user-defined formats.

• With internal format (FORMAT OFF), items are represented with the same format
the system uses to store data in internal computer memory. (This is the default
FORMAT for BDAT and HP-UX files.)

• With ASCII format (FORMAT ON), items are represented by ASCII characters.

• User-defined formats are implemented with programs that employ OUTPUT and
ENTER statements that reference IMAGE specifiers (items are represented by
ASCII characters).

Complete descriptions of ASCII and user-defined formats are given in BASIC Interfacing
Techniques. This section shows the details of internal (FORMAT OFF) representations
of numeric and string data.

BOAT Internal Representations (FORMAT OFF)
In most applications, you will use internal format for BDAT files. Unless we specify
otherwise, you can assume that when we talk about retrieving and storing data in BDAT
files, we are also talking about internal format. This format is synonymous with the
FORMAT OFF attribute, which is described later in this chapter.

Because FORMAT OFF assigned to BDAT files uses almost the same format as internal
memory, very little interpretation is needed to transfer data between the computer and
a FORMAT OFF file. FORMAT OFF files, therefore, not only save space but also save
time.

Data stored in internal format in BDAT files require the following number of bytes per
item:

Internal
Data Type Representation

INTEGER 2 bytes

REAL 8 bytes

COMPLEX 16 bytes
(same as 2 REALs)

String 4-byte length header;
1 byte per character
(plus 1 pad byte if string
length is an odd number)

Data Storage and Retrieval 7-27

INTEGER values are represented in BDAT files which have the FORMAT OFF attribute
by using a 16-bit, two's-complement notation, which provides a range -32768 thru
32767. If bit 15 (the MSB) is 0, the number is positive. If bit 15 equals 1, the number
is negative; the value of the negative number is obtained by changing all ones to zeros,
and all zeros to ones, and then adding one to the resulting value.

Examples

Binary Decimal
Representation Equivalent

00000000 00010111 23

11111111 11101000 -24

10000000 00000000 -32768

01111111 11111111 32767

11111111 11111111 -1

00000000 00000001 1

00100011 01000111 9031

11011100 10111001 -9031

REAL values are stored in BDAT files by using their internal format (when FORMAT
OFF is in effect): the IEEE-standard, 64-bit, floating-point notation. Each REAL
number is comprised of two parts: an exponent (11 bits), and a mantissa (53 bits).
The mantissa uses a sign-and-magnitude notation. The sign bit for the mantissa is not
contiguous with the rest of the mantissa bits; it is the most significant bit (MSB) of the
entire eight bytes. The ll-bit exponent is offset by 1023 and occupies the 2nd through
the 12th MSB's. Every REAL number is internally represented by the following equation.
(N ote that the mantissa is in binary notation):

mantissa sign 2exponent - 1023
- 1 X X 1. mantissa

7-28 Data Storage and Retrieval

The figure below shows how the real number "1/3" would be stored in a BDAT file.

Byte

Decimal value
of character

Binary value

1 2

63 213

3 4 8

85 85 85

of characiers ,-I tot ====:::::::===.:-i:' ============::::::============:=. 00111111 11010101 01010101 01010101 01010101

mantissa sign exponent mantissa

COMPLEX values are always stored as two REAL values.

String data are stored in FORMAT OFF BDAT files in their internal format.

• A 4-byte length header contains a value that specifies the length of the string (the
2 leading bytes of length header are always 0 for Series 200/300 computers) .

• Every character in a string is represented by one byte which contains the character's
ASCII code. If the length of the string is odd, a pad character is appended to the
string to get an even number of characters; however, the length header does not
include this pad character.

Examples
If stored as a string value, the number "45" would be:

00000000 00000000 00000000 00000010 00110100 00110101
~--------------~~--------------~-------~.. ,

Length = 0002 (binary) ACSII 52 ASCII 53

The string ~~A" would be stored:

00000000 00000000 00000000 00000001 01000001 00100000
L , L ,

Length = 0001 (binary) ASCII 65 ASCII 32

In this case, the space character (ASCII code 32) is used as the pad character; however,
not all operations use the space as the pad character.

Data Storage and Retrieval 7-29

ASCII and Custom Data Representations
When using the ASCII data format for BDAT files, all data items are represented with
ASCII characters. With user-defined formats, the image specifiers ref('renced by the
OUTPUT or ENTER statement are used to determine the data repres('ntatioll (which is
ASCII characters).

OUTPUT <OFile USING ISDD.DD.XX.B.#";Number.Binary_value
ENTER <OFile USING IB.B.40A.%";Bin_vall.Bin_va12.String$

Using both of these formats with BDAT files produce results identical to using them with
devices. The entir(' subject is described fully in BASIC Interfacing Techniques. The topic
of advanced transfer techniques for BDAT files is described in the same manual.

Data Representations with HP-UX Files
HP-UX files are very similar to BDAT files. The only differences between the two are:

• The internal representation (FORMAT OFF) of strings is slightly different:

• HP-UX FORMAT OFF strings have no length header; instead, they are
terminated by a null character, CHR$(O) .

• BDAT FORMAT OFF strings have a 4-byte length header;

• HP-UX files have a fixed record length of 1. (BDAT files allow user-definable record
lengths.)

• HP-UX files have no system sector like BDAT files do (see the next section for
details) .

The FORMAT ON representations for HP-UX files are the same as for devices. The
entire subject is described fully in BASIC Interfacing Techniques. The topic of advanced
transfer techniques for HP-UX files is described in the same manual.

Note

Throughout this section, you should be able to assume that
unless otherwise stated the techniques shown will apply to both
BDAT and HP-UX files.

7-30 Data Storage and Retrieval

BOAT File System Sector
On the disc, every BDAT file is preceded by a system sector that contains an end-of
file (EOF) pointer and the number of defined records in the file. All data is placed in
succeeding sectors. You cannot directly access the system sector. However, as you shall
see later, it is possible to indirectly change the value of an EOF pointer.

SECTOR: I " 1 1 2 3
I

: NUMBER
,

~ EOF OF
POINTER: DEFINED

...
,RECORDS

~----~------~.~\----------------------~~----------------
SYSTEM SECTOR DATA

EOF Pointer: • number of sectors from beginning of file
(32-bit binary number)

• number of bytes from beginning of sector
(32-bit binary number)

Number of defined records: See description below
(32-bit binary number)

Defined Records
To access a BDAT or HP-UX file randomly, you specify a particular defined record.
Records are the smallest units in a file directly addressable by a random OUTPUT or
ENTER .

• With BDAT files, defined records can be anywhere from 1 through 65534 bytes
long .

• With HP-UX files, defined records are always 1 byte long.

Data Storage and Retrieval 7 -31

Specifying Record Size (BOAT Files Only)
Both the length of the file and the length of the defined records in it are specified when
you create a BDAT file. This section shows how to specify the record length of a BDAT
file. (The next section talks about how to choose the record length.)

For example, the following statement would create a file called Example with 7 defined
records, each record being 128 bytes long:

CREATE BOAT II Example II ,7,128

If you don't specify a record length in the CREATE BDAT statement. the system will
set each record to the default length of 256 bytes.

Both the record length and the number of records are rounded to the nearest integer.
Further. the record length is rounded up to the nearest even integer. For example. the
statement:

CREATE BOAT IOdd",3.5,28.7

would create a file with 4 records, each 30 bytes long. On the other hand, the statement:

CREATE IOdder",3.49,28.3

would create a file with 3 records, each 28 bytes long.

Once a file is created, you cannot change its length, or the length of its records. You
must therefore calculate the record size and file size required before you create a file.

Choosing A Record Length (BOAT Files Only)
Record length is important only for random OUTPUTs and ENTERs. It is not important
for serial access. The most important consideration in selecting of a proper record length
is the type of data being stored and the way you want to retrieve it. Suppose, for
instance, that you want to store 100 real numbers in a file, and be able to access each
number individually. Since each REAL number uses 8 bytes, the data itself will take up
800 bytes of storage.

SYSTEM SECTOR

800 BYTES OF DATA

7 -32 Data Storage and Retrieval

The question is how to divide this data into records. If you define the record length to
be 8 bytes, then each REAL number will fill a record. To access the 15th number, you
would specify the 15th record. If the data is organized so that you are always accessing
two data items at a time, you would want to set the record length to 16 bytes.

The worst thing you can do with data of this type is to define a record length that is not
evenly divisible by eight. If, for example, you set the record length to four, you would
only be able to randomly access half of each real number at a time. In fact, the system
will return an End-Of-Record condition if you try to randomly read data into REAL
variables from records that are less than 8 bytes long.

So far, we have been talking about a file that contains only REAL numbers. For files that
contain only INTEGERs, you would want to define the record length to be a multiple
of two. To access each INTEGER individually, you would use a record length of two; to
access two INTEGERs at a time, you would use a record length of four, and so on.

Files that contain string data present a slightly more difficult situation since strings can
be of variable length. If you have three strings in a row that are 5, 12, and 18 bytes
long, respectively, there is no record length less than 22 that will permit you to randomly
access each string. If you select a record length of 10, for instance, you will be able to
randomly access the first string but not the second and third.

If you want to access strings randomly, therefore, you should make your records long
enough to hold the largest string. Once you've done this, there are two ways to write
string data to a BDAT file. The first, and easiest, is to output each string in random
mode. In other words, select a record length that will hold the longest string and then
write each string into its own record. Suppose, for example, that you wanted to OUTPUT
the following 5 names into a BDAT file and be able to access each one individually by
specifying a record number.

John Smith
Steve Anderson
Mary Martin
Bob Jones
Beth Robinson

Data Storage and Retrieval 7 -33

ThE' 10ngE'st namE'. "Steve AndE'rson". is 14 characters. To storE' it in a BDAT filE' would
require 18 bytes (four bytes for the length header). So you could create a file with record
length of 18 and then OUTPUT each item into a different record:

100 CREATE BDAT INames",5,18
110 ASSIGN (DFile TO "Names"
120 OUTPUT (DFile,l;"John Smith"
130 OUTPUT (DFile,2;"Steve Anderson"
140 OUTPUT (DFile,3;"Mary Martin"
150 OUTPUT (DFile, 4; "Bob Jones"
160 OUTPUT (DFile,5;"Beth Robinson"

Create a file.
Open the file (FORMAT OFF).
Write names to

successive records
in file.

On the disc, the file Names would look like the figure below. The four-byte length
headers show the decimal value of the bytes in the header. The data are shown in
ASCII characters.

10101011OIJlolhlni Islmli It Ihlxlx Ixlxlololol141slt lelvlel IAlnldle I
I r I s 10 I n 10 10 10 1111 M I a I r I y I 1M 1 a I r I t I i I n IC?! I x I x 10 10 10 19 I B 10 I b I I J 10 I

The unused portions of each record contain whatever data previously occupied that
physical space on the disc.

The other method for writing strings to a BDAT or HP-UX file is to pad each entry
so that they are all of uniform length. While this method involves more programming,
it allows you to pad the unused portions of each record with whatever characters you
choose. It also permits you to read and write the data serially as well as randomly. The
program below shows how you might enter the five names into a file by padding each
name with spaces.

100 CREATE BDAT INames",5,18
110 ASSIGN (DPathl TO II Names II
120 FOR Entry=l TO 5
130 LINPUT Name$[1;14]
140 OUTPUT (DPathl;Name$
150 NEXT Entry

7 -34 Data Storage and Retrieval

Create file.
Open the file (FORMAT OFF).

Get names from keyboard.
Write name to file.

In this program, we input each name from the keyboard and then pad the name with
spaces so that its length is 14 bytes. With the four-byte length header, each entry is 18
bytes, or one record. In line 140, we write the name serially to the file. Since every data
item is 18 bytes, there is no need to write randomly, although we could have if we wanted
to. Since the LINPUT statement is limited to 14 bytes, any names that are longer than
14 characters are automatically truncated.

If we had used the second program to enter the names, file Names would look like the
figure below:

loiolol141Jlolhlni Islmliltlhl I I I loiolol141Sltlelviei IAlnldlel
Irisloinioiolol141Mlairlyi IMlalrltlilnl I I loiolol141Blolbi IJlol
Inlelsl I I I I loiolol141Bleltlhi IRlolblilnlslolnl Ixlxlxlxlxlxl

EOF Pointers
There are two types of End-Of-File pointers associated with BDAT and HP-UX files:

• Logical EOF pointer in the I/O path table-maintained in the table of the I/O
path currently assigned to the file.

• Logical EOF pointer on the volume-resides on the physical volume that contains
the file:

• With BDAT files, it is in the system sector.

• With HP-UX files, the EOF pointer is stored in one of two places:

• On HFS volumes, it is read from the size stored in the file's inode .

• On LIF volumes, it is read from a long word stored in the directory.

The two pointers are always updated at the same time so that they always agree with
one another. (This may not be true if you use more than one I/O path to OUTPUT
data to one file.) The two pointers are updated when either of the two conditions below
occur.

• If, after an OUTPUT statement has been executed, the file pointer value is greater
than the EOF pointers, the EOF pointers are moved to the file pointer position.

• If an OUTPUT statement contains the "END" secondary word, the EOF pointers
are moved to the file pointer position regardless of their current values.

Data Storage and Retrieval 7-35

The function of EOF pointers is to mark the logical end of a data file. Every fil(' also
has a physical EOF on a volume -the last byte reserved for the file when you create it.
The EOF pointers cannot point beyond the physical EOF. The EOF pointer marks the
point at which no more data can be read. Also, you cannot randomly write data more
than one record past the current EOF position.

If you have a 100-record file, and the EOF pointers point to the 50th record, records
50 through 100 cannot be read. If you attempt to read data beyond an EOF pointer,
an EOF condition occurs. EOF conditions can be trapped with an ON END statement.
If you do not trap it, an EOF condition will cause Error 59. Attempting to read or
write beyond the physical EOF on a volume will also result in an EOF condition. EOF
conditions are described in more detail later in this chapter. Note that files on SRM and
HFS discs are extensible. Thus the file is extended rather than getting a physical EOF
condition.

Moving EOF Pointers
When you first create a file, the logical EOF on a volume has a pointer which points
to the first byte in the file. When you ASSIGN an I/O path to a file, the logical EOF
pointer on a volume is copied to the I/O path table. As you OUTPUT data items to
the file, both EOF pointers are moved so that they point to the next byte. This is also
where the file pointer is positioned.

If you overwrite a file, however, the EOF pointers will not necessarily agree with the file
pointer. For example, suppose you write 100 bytes to a file, and then re-ASSIGN the
I/O path. By re-ASSIGNing, you move the file pointer back to the first byte in the file.
The EOF pointers, though, still point to the 101st byte. They will not be changed until
the file pointer value is greater than 101, or until you specify an "END" in an OUTPUT
statement.

The secondary word "END" is used to move the EOF pointers backwards. It forces the
EOF pointers to be re-positioned to the file pointer byte even if it is earlier in the file
than their current position. In effect, this shrinks the file, causing data that lies past the
new EOF position to become inaccessible.

7 -36 Data Storage and Retrieval

Writing Data
Data is always written to a file with an OUTPUT statement via an I/O path. You can
OUTPUT numeric and string variables, numeric and string expressions, and numeric
and string arrays. When you OUTPUT data with the FORMAT OFF, data items are
written to the file in internal format (described earlier).

Thprp i~ no limit. t.o t.hp nnmhpr of oat.a it.pms V011 c.an write in a sinl!1e OUTPUT --- _...... --~ ------ - - - --- - -- ----- - - - - -- - -- - - - --- - ,,- -- - ---- .. - - - - u - --

statement, except that program statements are limited to two CRT lines. Also, if you
try to OUTPUT more data than the file can hold, or the record can hold (if you are using
random access), the system will return an EOF or EOR condition. If an EOF or EOR
condition occurs, the file retains any data output before the end condition occurred.

There is also no restriction on mixing different types of data in a single OUTPUT
statement. The system decides which data type each item is before it writes the item to
the disc. Any item enclosed in quotes is a string. Numeric variables and expressions are
OUTPUT according to their type (16 bytes for COMPLEX values, 8 bytes for REAL
values, and 2 bytes for INTEGER values). Arrays are written to the file in row-major
order (right-most subscript varies quickest).

Each data item in an OUTPUT statement should be separated by either a comma or
semi-colon (there is no operational difference between the two separators with FORMAT
OFF). Punctuation at the end of an OUTPUT statement is ignored with FORMAT
OFF.

Serial OUTPUT
Data is written serially to BDAT and HP-UX files whenever you do not specify a record
number in an OUTPUT statement. When writing data serially, each data item is
stored immediately after the previous item (with FORMAT OFF in effect, there are
no separators between items). Sector and record boundaries are ignored. Data items
are written to the file one by one, starting at the current position of the file pointer. As
each item is written, the file pointer is moved to the byte following the last byte of the
preceding item. After all of the data items have been OUTPUT, the file pointer points
to the byte following the last byte just written.

There are a number of circumstances where it is faster and easier to use serial access
instead of random access. The most obvious case is when you want to access the entire
file sequentially. If, for example, you have a list of data items that you want to store in
a file and you know that you will never want to read any of the items individually, you
should write the data serially. The fastest way to write data serially is to place the data
in an array and then OUTPUT the entire array at once.

Data Storage and Retrieval 7-37

Another situation where you might want to use serial access is if the file is so small
that it can fit entirely into internal memory at once. In this case. even if you want to
change individual items, it might be easier to treat the entire file as one or more arrays.
manipulate as desired, and then write the entire array(s) back to the file.

The examples below illustrate how data is stored serially in a BDAT file!. Assume
that the following statement was used to open the file (and assign the FORMAT OFF
attribute to the I/O path):

ASSIGN <DPathl TO "BDATorHPUX"; FORMAT OFF

The statement:

OUTPUT <DPathl;"First",24;2.6,

would result in the following storagc format:

I I I I I I I I I I ~
~----~----~~--------~------~~~~'~'------------~----------~

LENGTH
HEADER =
BINARY 5

ASCII
CODES

INTEGER 24 REAL 2.6

Note that quotation marks around a string are not written to the file. To write quote
marks to a file. enter two quote marks for cvery one you want to OUTPUT. Note also
that separators are not written to the file. To write a comma or semi-colon to a file. you
must enclose it in quotes. For instance, the statement:

OUTPUT <DPathl; """QUO""TE,","Next"

would be stored:

~ ____ ~----~' ~. ____________ ~------J' .~ ____ ~----~ ~ ____ _....----~
LENGTH

HEADER =
BINARY 8

ASCII
CODES

LENGTH
HEADER =
BINARY 4

ASCII
CODES

1 Most of the details of the subsequent examples also pertain to how data items are written to HP- UX
files. The main differencf' is that HP-UX files always have a df'finf'd rf'cord If'ngth of 1 bytf'.

7-38 Data Storage and Retrieval

The following sequence of serial OUTPUT statements show how data is written to a
BDAT file and how the file pointer and EOF pointers are updated.

The following statement creates a BDAT file with four 128-byte records.

CREATE BDAT IExample".4.128

1/0 PATH TABLE

FILE POINTER

EOF POINTER

1po~~~111111111111 11111111111111 III {
SYSTEM
SECTOR

,

When the file is initially created, the logical EOF pointer on the volume points to the
first byte in the file.

The following statement opens an I/O path to the file named Example.

ASSIGN <OPathl TO "Example"

,
EOF

}POINTER

SYSTEM
SECTOR

,

1/0 PATH TABLE

FILE POINTER

EOF POINTER

The logical EOF pointer on the volume is copied from the volume into the I/O path
table. The file pointer is positioned to the beginning of the file.

Data Storage and Retrieval 7-39

Fonrt('en bytes are written to the file with this statement.

OUTPUT <OPath1; "TEN CHARS."

I
\

EOF
) POINTER

SYSTEM
SECTOR

, .

0 0 0 10 T

LENGTH
HEADER =
BINARY 10

H

E N C H

ASCII
CODES

A R S

I

I 0 PATH TABLE

FILE POINTER

EOF POINTER

The EOF pointers are moved to the 15th byte. The file pointer also points to the 15th
byte.

This statement writes eight more bytes to the file.

OUTPUT <OPath1;12.5.END

I ,
(EOF
}POINTER

SYSTEM
SECTOR

0 0 o 10 T E N

I

C H A R S

10 PATH TABLE

- FILE POINTER

EOF POINTER

1 t
I

REAL 12.5

The file pointer now points to the 23rd byte. Both the logical EOF pointer in the I/O
path table and the logical EOF pointer on the volume are updated to 23.

7 -40 Data Storage and Retrieval

(

This statement writes eight more bytes to the file.

OUTPUT (QPathl;IFOUR"

I ,
(EOF
}POINTER

SYSTEM
SECTOR

0 0 o 10 T E

I

N C H A R S

\

10 PATH TABLE

FILE POINTER

EOF POINTER ~/ I I

0 0 0 4 F o U R

,- .. I

REAL 12.5 LENGTH ASCII
HEADER = CODES
BINARY 4

The file pointer now points to the 31st byte. The EOF pointers are updated to 31 because
31 is greater than 23, the current EOF value.

This statement re-assigns the I/O path name, which re-opens the file.

ASSIGN (QPathl TO "Example"

I ,
(EOF
) POINTER

SYSTEM
SECTOR

0 0 o 10 T E N

I

C

10 PATH TABLE

FILE POINTER

EOF POINTER -

\

H A R S 0 0 0 4 F 0 U R

The file pointer is positioned back to the beginning of the file. The value of logical EOF
pointer on a volume is copied into the logical EOF pointer in the I/O path table.

Data Storage and Retrieval 7-41

In this example. eighteen bytes (one INTEGER and two REALs) are OUTPUT, starting
at the beginning of the file.

OUTPUT ~Pathl;13.7.665.1/3.END

I
} EOF

POINTER

. --.....-.....
SYSTEM INTEGER REAL 7.665 REAL 13
SECTOR 13

f~

1\

LAST 4 BYTES
OF REAL 12.5

10 PATH TABLE

FILE POINTER

EOF POINTER

o 0 o 4 F 0 U R
(

The original data, therefore, is overwritten. The file pointer points to the 19th byte.
The EOF pointers are also positioned to 19 because the statement contains the "END"
secondary word.

Random OUTPUT
Random OUTPUT allows you to write to one record at a time. As with serial OUTPUT,
there are EOF and file pointers that are updated after every OUTPUT. The EOF
pointers follow the same rules as in serial access. The file pointer positioning is also
the same. except that it is moved to the beginning of the specified record before the
data is OUTPUT. If you wish to write randomly to a newly created file, either use a
CONTROL statement to position the EOF in the last record, or start at the beginning
of the file and write some "dummy" data into every record.

7-42 Data Storage and Retrieval

If you attempt to write more data to a record than the record will hold, the system will
report an End-Of-Record (EOR) condition. An EOF condition will result if you try to
write data more than one record past the EOF position. EOR conditions are treated
by the system just like EOF conditions, except that they return Error 60 instead of 59
if they are not trapped by ON END. Data already written to the file before an EOR
condition arises will remain intact. The examples below illustrate how data is stored
randomly in a BDAT file. (HP-UX files can also be accessed randomly; however, you
may recall that HP-UX files always have record lengths of 1 byte. Examples of accessing
1-byte records are shown in the subsequent section.)

CREATE BOAT "Random" ,10,10

I/O PATH TABLE

FILE POINTER

EOF POINTER

}po~~~111111 iii iii iii iii iii iii iii iii i I
SYSTEM
SECTOR

ASSIGN «IPath2 TO "Random"

1
EOF

) POINTER
)

SYSTEM
SECTOR

.

I/O PATH TABLE

FILE POINTER

EOF POINTER

I

Data Storage and Retrieval 7-43

OUTPUT IOPath2,1;"TOO LONG TO FIT IN RECORD"

I

} EOF
POINTER

SYSTEM
SECTOR

J'

0 0 0 25 T

LENGTH
HEADER =
BINARY 25

..
a a

ASCII
CODES

L a

r
I

I a PATH TABLE

FILE POINTER

EOF POINTER

Even though this statement produces an EOR condition, the EOF pointers and file
pointer are still updated. The ON END statement can be used to trap their error. Also,
the length header represents the length of the string characters sent to the file, since the
whole string is not written out.

OUTPUT IOPath2,2;2

10 PATH TABLE

FILE POINTER

EOF POINTER

I ,
I

EOF o 0 o 25 T a a L a I

)POINTER

-------SYSTEM INTEGER 2
SECTOR

7 -44 Data Storage and Retrieval

OUTPUT ~Path2,3;"THIRD"

I ,
(EOF
)POINTER

SYSTEM
SECTOR

0 0 o 25 T 0 0

.

OUTPUT ~Pathl,2;45.78

I

EOF
)POINTER

SYSTEM
SECTOR

.
0 0 o 25 T o 0

L 0

'---'
2

L 0

,

REAL 45.78

I 0 PATH TABLE

FILE POINTER

EOF POINTER

0 0 0 5 T H I R D

LENGTH
HEADER =
BINARY 5

H

ASCII
CODES

1/0 PATH TABLE

,--- FILE POINTER

EOF POINTER

0 0 0 5 T H I R D

-/
~
til
8

.

r-
IO

~
til
8

Data Storage and Retrieval 7-45

Reading Data From BOAT and HP-UX Files
Data is read from files with the ENTER statement. As with OUTPUT, data is passed
along an I/O path. You can use the same I/O path you used to OUTPUT the data or
you can use a different I/O path.

You can have several variables in a single ENTER statement. Each variable must be
separated from the other variables by either a comma or semi-colon. It is extremely
important to make sure that your variable types agree with the data types in the file.
If you wrote a REAL number to a file, you should ENTER it into a REAL variable;
INTEGERs should be entered into INTEGER variables; and strings into string variables.
The rule to remember is:

Read it the way you wrote it.

That is the only technique that is always guaranteed to work.

In addition to making sure that data types agree, it is also advisable to make sure that
access modes agree. If you wrote data serially, you should read it serially; and if you
wrote it randomly, you should read it randomly. There are a few exceptions to this rule
which we discuss later. However, you should be aware that mixing access modes can lead
to erroneous results unless you are aware of the precise mechanics of the file system.

Reading String Data From a File
When reading string data from a file, you must enter it into a string variable. How the
system does this depends on file type and FORMAT attribute assigned to the file:

• With FORMAT OFF assigned to a BDAT file, the system reads and interprets the
first four bytes after the file pointer as a length header. It will then try to ENTER
as many characters as the length header indicates. If the string has been padded by
the system to make its length even, the pad character is not read into the variable.

• With FORMAT OFF assigned to an HP-UX file. strings have no length header.
Instead. they are assumed to be null-terminated: that is, entry into the string
trrminates when a null character, CHR$(OL is encounterrd.

• With FORMAT ON assigned to either type of file, the system reads and interprets
the bytes as ASCII characters. The rules for item and ENTER-statement termina
tion match those for devices (see the "Entering Data" chapter of BASIC Interfacing
Techniques for details.)

7-46 Data Storage and Retrieval

After an ENTER statement has been executed, the file pointer is positioned to the next
unread byte. If the last data item was a padded string (written to a BDAT file when
using FORMAT OFF), the file pointer is positioned after the pad. If you use the same
I/O path name to read and write data to a file, the file pointer will be updated after
every ENTER and OUTPUT statement. If you use different I/O path names, each will
have its own file pointer which is independent of the other. However, be aware that each
also has its own EOF pointer and that these pointers may not match, which can cause
problems.

Entering data does not affect the EOF pointers. If you attempt to read past an EOF
pointer, the system will report an EOF condition.

Serial ENTER
When you read data serially, the system enters data into variables starting at the current
position of the file pointer and proceeds, byte by byte, until all of the variables in the
ENTER statement have been filled. If there is not enough data in the file to fill all of the
variables, the system returns an EOF condition. All variables that have already taken
values before the condition occurs retain their values.

The following program creates a BDAT file, assigns an I/O path name to the file (with
default FORMAT OFF attribute), writes five data items serially, and then retrieves the
data items.

10 CREATE BOAT "STORAGE",l ! Could also be an HP-UX file.
20 ASSIGN <OPath TO "STORAGE"
30 INTEGER Num,First,Fourth
40 Num=5
60 OUTPUT <OPath;Num, "squared" , " equals",Num*Num,"."
70 ASSIGN <OPath TO "STORAGE"
80 ENTER <OPath;First,Second$,Third$,Fourth,Fifth$
90 PRINT First;Second$;Third$,Fourth,Fifth$
100 END

5 squared equals 25.

Note that we re-ASSIGNed the I/O path in line 70. This was done to re-position the
file pointer to the beginning of the file. If we had omitted this statement, the ENTER
would have produced an EOF condition.

Data Storage and Retrieval 7-47

Random ENTER
When you ENTER data in random mode, the system starts reading data at the beginning
of the specified record and continues reading until either all of the variables are filled or
the system reaches the EOR or EOF. If the system comes to the end of the record before
it has filled all of the variables, an EOR condition is returned.

In the following example, we randomly OUTPUT data to 5 successive records, and then
ENTER the data into an array in reverse order.

10 CREATE BDAT "SQ_ROOTS",5,2*8
20 ASSIGN ~Path TO "SQ_ROOTS" ! Default is FORMAT OFF.
30 FOR Inc=l to 5
40 OUTPUT ~Path,Inc;Inc,SQR(Inc) ! Inc*8 is HP-UX record number.
50 NEXT Inc
60 FOR Inc=5 TO 1 STEP -1
70 ENTER ~Path,Inc;Num(Inc) ,Sqroot(Inc)
80 NEXT Inc
90 PRINT "Number" ,"Square Root"
100 FOR Inc=l TO 5
110 PRINT Num(Inc),Sqroot(Inc)
120 NEXT Inc
130 END

Number Square Root
1 1
2 1.41421356237
3 1.73205080757
4 2
5 2.2360679775

In this example, there was no need to re-ASSIGN the I/O path because the random
ENTER automatically re-positions the file pointer.

The comment on line 40 of the above program states how to be correctly positioned for
an HP-UX file. For example, the output statement would look like this:

OUTPUT ~Path,Inc*8;Inc,SQR(Inc)

7 -48 Data Storage and Retrieval

Executing a random ENTER without a variable list has the effect of moving the file
pointer to the beginning of the specified record. This is useful if you want to serially
access some data in the middle of a file. Suppose, for instance, that you have a BDAT
file containing 100 8-byte records, and each record has a REAL number in it. If you
want to read the last 50 data items, you can position the file pointer to the 51st record
and then serially read the remainder of the file into an array.

100 REAL Array(50)
110 ENTER ~Realpath,51; 51*8 is HP-UX record number.
120 ENTER ~Realpath;Array(*)

Accessing Files with Single-Byte Records
With BDAT files, you can define records to be just one byte long (defined records in HP
UX files are always 1 byte long). In this case, it doesn't make sense to read or write one
record at a time since even the shortest data type requires two bytes to store a number.

Random access to one-byte records, therefore, has its own set of rules. When you access
a one-byte record, the file pointer is positioned to the specified byte. From there, the
access proceeds in serial mode. Random OUTPUTs write as many bytes as the data
item requires, and random ENTERs read enough bytes to fill the variable.

The example below illustrates how you can read and write randomly to one-byte records.

10 INTEGER Int
20 CREATE BOAT "BYTE",100,1
30 ASSIGN ~Bytepath TO "BYTE"
40 OUTPUT ~Bytepath,1;3.67
50 OUTPUT ~Bytepath,9;3
60 OUTPUT ~Bytepath,11;"string"
70 ENTER ~Bytepath,9;Int
80 ENTER ~Bytepath,1;Real
90 ENTER ~Bytepath,11;Str$
100 PRINT Real
110 PRINT Int
120 PRINT Str$
130 END

3.67
3

string

Note that we had to declare the variable Int as an INTEGER. If we hadn't, the system
would have given it the default type of REAL and would therefore have required 8 bytes.

Data Storage and Retrieval 7 -49

Trapping EOF and EOR Conditions
An EOF condition exists whenever the system attempts to read data at, or beyond,
the byte marked by the EOF pointers. The EOR condition will arise if you attempt to
randomly read or write beyond the particular record specified. If, for example, you try
to randomly OUTPUT a 20-character string into a 10-byte record. an EOR condition
will occur. EOF conditions will also result whenever you try to read or write beyond the
physical end-of-file.

EOF and EOR conditions can he trapped with an ON END statf.'ment. ON END is
similar to ON ERROR except that it only traps EOF /EOR conditions and is only
applicable to the specified I/O path. If you do not have an ON END statement in a
program, the EOF /EOR condition will produce an error that is trappable by the ON
ERROR statement. Encountering a logical or physical end of filp will produc(' Error 59.
Encountering an end of record in random mode produces Error 60.

You can have any number of ON END statements in a program context. ON END
statements that refer to different I/O paths will not interfere with each other. even if the
paths go to the same file. If you have more than one ON END to the same I/O path.
the system will use whichever one it most recently executes during program flow.

An ON END is cancelled by the OFF END statement. OFF END only canc('ls th(' ON
END branch for the specified I/O path. Re-ASSIGNing an I/O path will also cancel any
existing ON END branch for the particular path.

7-50 Data Storage and Retrieval

The example below illustrates some of the more common situations that cause an EOF
condition.

100 CREATE BDAT "ONEND".10.8
110 ASSIGN (QEndpath TO "ONEND"
120 ON END (QEndpath GOTO Eofl
130 FOR Inc=l TO 20
140 OUTPUT (QEndpath.Inc;SQR(Inc)
150 NEXT Inc
160 Eofl:
170 PRINT "EOF: attempt to randomly write beyond physical EOF."
180 PRINT
190
200 ON END (QEndpath GOTO Eof2
210 OUTPUT (QEndpath.5;"THIS IS A STRING."
220 Eof2:
230 PRINT "EOR: attempt to randomly write item longer than record."
240 PRINT
250
260 ON END (QEndpath GOTO Eof3
270 ENTER (QEndpath.5;Str$
280 Eof3:
290 PRINT "EOR: attempt to read item longer than record."
300 PRINT
310
320
330
340
350

ASSIGN (QEndpath TO "ONEND"
ON END (QEndpath GOTO Eof4
FOR Inc=l TO 100

OUTPUT (QEndpath;"A"
360 NEXT Inc
370 Eof4:
380 PRINT "EOF: attempt to serially write beyond physical EOF."
390 PRINT
400
410 ASSIGN (QEndpath TO "ONEND"
420 ON END (QENDPATH GOTO Eof5
430 FOR Inc=l TO 100
440 ENTER (QEndpath;Str$
450 NEXT Inc
460 Eof5:
470 PRINT "EOF: attempt to serially read beyond physical EOF."
480 PRINT
490
500 ON END (QEndpath GOTO Eof6
510 OUTPUT (QEndpath.5;5.END
520 ENTER (QEndpath.6;X
530 Eof6:
540 PRINT "EOF: attempt to randomly read beyond logical EOF."
550
560 END

Data Storage and Retrieval 7 -51

EOF: attempt to randomly write beyond physical EOF.

EOR: attempt to randomly write item longer than record.

EOR: attempt to read item longer than record.

EOF: attempt to serially write beyond physical EOF.

EOF: attempt to serially read beyond physical EOF.

EOF: attempt to randomly read beyond logical EOF.

This example highlights a number of interesting points. First, in line 210 we try to
randomly write a 17-byte string into an 8-byte record. The system returns an EOR
condition. The length header for the string, however, is still 17. So when we try to read
the string in line 270, we again receive an EOR condition.

In line 320 we re-ASSIGN the I/O path name in order to position the file pointer to byte
1. Then we redefine the ON END branch. These two statements must appear in this
order since re-ASSIGNing an I/O path has the effect of canceling any ON END branch
previously associated with the path.

In line 510, we shrink the file by moving the EOF pointer to the end of record 5 with
the "END" secondary word. When we try to read record 6 in line 520 we get an EOF
condition.

7-52 Data Storage and Retrieval

Extended Access of Directories
The CAT statement has the following additional capabilities:

• Catalog an individual PROG-type file

• Send the directory to a string array

• Select files to be cataloged by name or by beginning ietter(s) of the file name

• Count the number of selected file entries

• Skip a specific number file entries before sending entries to the destination

• Suppress the catalog header

• Use the CRT format when when sending the directory to a string array.

• A listing of only the names of the files in the current working directory of the
current default volume.

Cataloging Individual PROG Files
A catalog of a PROG file yields the following information:

• A list of the binary programs contained in the program file and the size of each (in
bytes)

• The size of the main program (in bytes).

• A list of contexts (SUB and FN subprograms) and their sizes (in bytes)

Data Storage and Retrieval 7 -53

The following catalog listing is an example of a CAT Iwrformeu 011 all illdividual PROG
file. Note that this catalog format only requires 45 columns.

NEWPAGER_A
NAME

MAIN
FNBar$
FNRoman$
Killkeys
FNTrim$
FNUpc$
FNLwc$

SIZE TYPE

62002 BASIC
3680 BASIC
656 BASIC
426 BASIC
414 BASIC
344 BASIC
416 BASIC

Table_formatter 6810 BASIC
Strip 1260 BASIC

AVAILABLE ENTRIES 0

The AVAILABLE ENTRIES table entry is not currently used.

The following listing shows a program which was stored while a BIN! program was
resident in the computer. If the currently loaded BASIC system version is different from
the binary program version, a warning and the version codes of both BASIC system and
binary program are included in the catalog information. The following example shows
the format of the message returned.

NEWPAGER_B
NAME SIZE TYPE

PHYREC 1.0 1734 BASIC BINARY
*** WARNING:
MAIN
FNBar$

System level 5. Bin level 1.
56394 BASIC

FNRoman$
Killkeys
FNTrim$
FNUpc$
FNLwc$
Table_formatter

AVAILABLE ENTRIES o

3218 BASIC
656 BASIC
426 BASIC
414 BASIC
344 BASIC
374 BASIC

7622 BASIC

1 This "BIN" program was different than the "BIN" files currently available with BASIC systems (3.0 and
later revisions). This type of binary program was automatically stored with a program when STORE or
RE-STORE was executed.

7-54 Data Storage and Retrieval

Cataloging to a String Array
The following example program segment shows an example of directing the catalog of
mass storage file entries to the CRT and then to a string array.

100 PRINT II CAT to CRT. II

110 PRINT "-----------------------------------"
120 CAT TO #CRT;COUNT Files_and_headr ! Includes 5-line header.
130 PRINT "Number of files=";Files_and_headr-5
140 PRINT
150
160 PRINT II CAT to a string array. II
170 PRINT "-----------------------------------"
180 Array_size=Files_and_headr+2 ! Allow for 7-line header.
190 ALLOCATE Catalog$(l:Array_size) [80]
200 CAT TO Catalog$(*)
210 FOR Entry=! TO Array_size
220 PRINT Catalog$(Entry)
230 NEXT Entry
240 PRINT "Number of files=";Array_size-7
250 PRINT
260
270 END

Data Storage and Retrieval 7-55

The program produces the following output.

CAT to CRT.

: INTERNAL

VOLUME LABEL: B9836
FILE NAME PRO TYPE REC/FILE BYTE/REC ADDRESS DATE TIME
Datal ASCII 3 256 16 12-Jan-87 12:30
Chapl BDAT 3 256 20 13-Jan-87 8:00
Progl PROG 2 256 23 14-Jan-87 9: 10
Chap2 BDAT 7 256 26 14-Jan-87 10: 15
Prog2 PROG 2 256 33 14-Jan-87 12:30
Data2 ASCII 9 256 35 3-Mar-87 6:45
Chap3 BDAT 6 256 45 3-Mar-87 7:15
Data3 ASCII 5 256 51 3-Mar-87 9:00
BCD_INTR ASCII 3 256 56 25-Mar-87 7:00
BCD_CONFIG ASCII 9 256 59 25-Mar-87 8: 15
BCD_ENTl ASCII 2 256 68 31-Mar-87 9: 12
BCD_OUTl ASCII 1 256 70 l-Apr-87 10: 11
BCD_ENTBIN ASCII 2 256 71 21-Apr-87 12: 11
BCD_ENTFMT ASCII 10 256 73 9-Jun-87 9:00
Number of files= 14

CAT to a string array.

: INTERNAL, 4
LABEL: B9826
FORMAT: LIF
AVAILABLE SPACE: 892

SYS FILE NUMBER RECORD MODIFIED PUB OPEN
FILE NAME LEV TYPE TYPE RECORDS LENGTH DATE TIME ACC STAT
===================== ======== ======== ================ === ====
Datal 1 ASCII 3 256 12-Jan-87 12:30 MRW
Chap 1 1 98X6 BDAT 3 256 13-Jan-87 8:00 MRW
Progl 1 98X6 PROG 2 256 14-Jan-87 9: 10 MRW
Chap2 1 98X6 BDAT 7 256 14-Jan-87 10:15 MRW
Prog2 1 98X6 PROG 2 256 14-Jan-87 12:30 MRW
Data2 1 ASCII 9 256 3-Mar-87 6:45 MRW
Chap3 1 98X6 BDAT 6 256 3-Mar-87 7: 15 MRW
Data3 1 ASCII 5 256 3-Mar-87 9:00 MRW
BCD_INTR 1 ASCII 3 256 25-Mar-87 7:00 MRW
BCD_CONFIG 1 ASCII 9 256 25-Mar-87 8: 15 MRW
BCD_ENTl 1 ASCII 2 256 31-Mar-87 9: 12 MRW
BCD_OUTl 1 ASCII 1 256 l-Apr-87 10: 11 MRW
BCD_ENTBIN 1 ASCII 2 256 21-Apr-87 12:11 MRW
BCD_ENTFMT 1 ASCII 10 256 9-Jun-87 9:00 MRW
Number of files= 14

7 -56 Data Storage and Retrieval

You may have noticed that the format for catalogs sent to string arrays (the second
catalog listing) is different from catalogs sent to the PRINTER IS device. The format
for catalogs sent to string arrays is the SRM catalog format, which requires that each
array element must be dimensioned to hold at least 80 characters with this type of CAT
operation. Again, the header contains 7 lines, not 5 as with catalogs sent to devices.

Getting an "Extended" Catalog of a LIF or HFS Disc
When you are cataloging an HFS or LIF directory to a string array, the catalog format is
normally that of an SRM catalog. However, you can also specify an HFS- or LIF -format
catalog listing with the following syntax:

100 CAT TO String_array$(*); EXTEND

For an explanation of the HFS catalog listing, see the BASIC Language Reference
description of CAT.

Getting a Count of Files Cataloged
Including the keyword COUNT followed by a numeric variable returns the total number
of file entries plus header lines to that variable; in the preceding example program, the
variable Files_and_headr is used:

120 CAT TO #CRT;COUNT Files_and_headr ! Includes 5-line header.

In the above example, line 180 adds 2 to the variable Files_and_headr to compensate for
the 7-line header which is sent instead of the usual 5-line header (the next section shows
how to suppress the header) and stores the result in Array_size. Array_size is then used
to direct the computer to ALLOCATE just enough space in a string-array variable to
hold the directory listing. The program can then search the directory listing for further
information, if desired.

If the CAT operation would not have filled the string array, the unused array elements
would have been set to the null string (i.e., strings of length 0). If there are more
catalog lines than string-array elements, the operation stops when the array is filled. No
indication of the "overflow" is reported; the count returned is equal to the number of
array elements.

Data Storage and Retrieval 7-57

Suppressing the Catalog Header
To suppress the catalog header, use the following syntax:

CAT;NO HEADER
CAT TO String_array$(*) ;NO HEADER
CAT "Prog_2";NO HEADER

Using NO HEADER suppresses the 5-line heading of a LIF catalog format or 7-line
heading of an SRM or HFS catalog format. The catalog listing of a PROG file would be
4 lines shorter. The first line of each catalog listing contains the first directory entry, the
second element contains the' second entry. and so forth.

If the COUNT option is included. the count returned is the total number of selected files.

Cataloging Selected Files
The directory entries of files that begin with certain characters can be obtained by using
the secondary keyword SELECT. For this example, assume that the directory contains
the following entries:

: INTERNAL
VOLUME LABEL: B9836
FILE NAME PRO TYPE REC/FILE BYTE/REC ADDRESS DATE TIME
Datal ASCII 3 256 16 12-Jan-87 12:30
Chapl BDAT 3 256 20 13-Jan-87 8:00
Progl PROG 2 256 23 14-Jan-87 9: 10
Chap2 BDAT 7 256 26 14-Jan-87 10:15
Prog2 PROG 2 256 33 14-Jan-87 12:30
Data2 ASCII 9 256 35 3-Mar-87 6:45
Chap3 BDAT 6 256 45 3-Mar-87 7: 15
Data3 ASCII 5 256 51 3-Mar-87 9:00
BCD_INTR ASCII 3 256 56 25-Mar-87 7:00
BCD_CONFIG ASCII 9 256 59 25-Mar-87 8: 15
BCD_ENTl ASCII 2 256 68 31-Mar-87 9: 12
BCD_OUTl ASCII 1 256 70 l-Apr-87 10: 11
BCD_ENTBIN ASCII 2 256 71 21-Apr-87 12:11
BCD_ENTFMT ASCII 10 256 73 9-Jun-87 9:00
Number of files= 14

7 -58 Data Storage and Retrieval

Suppose that you want to catalog only files beginning with the letters "Prog". The
following examples show how this may be accomplished. Notice that this is not the same
operation as getting a catalog of a PROG file.

Beginning_chars$="Prog"
CAT;SELECT Beginning_chars$

CAT;SELECT "Prog" ,COUNT Files and_headr

The directory entries of the three files beginning with the letters "Prog" are sent to the
PRINTER IS device. In the second CAT statement above, the variable Files_and_headr
is filled with the number of selected files found on the current default mass storage device
plus 5 or 7 header lines. Both CAT statements above go to the PRINTER IS device (or
file) .

The following result would be sent to the system printing device.

: INTERNAL. 4
VOLUME LABEL: B9836
FILE NAME PRO TYPE REC/FILE BYTE/REC ADDRESS DATE TIME
Prog1 PROG 2 256 23 12-Jan-87 12:30
Prog2 PROG 2 256 33 13-Jan-87 8:00
Prog3 PROG 2 256 533 14-Jan-87 9: 10

SELECT may also be used to get the catalog of an individual file entry by selecting the
entire file name, as shown in the following statement:

CAT;SELECT "Chap3"

Note that if any other files begin with the letters "Chap3", they will also be listed.

Data Storage and Retrieval 7 -59

Getting a Count of Selected Files
It is often desirable to determine the total number of files on a disc or the number that
begin with a certain character or group of characters. The COUNT option directs the
computer to r{'turn the number of selected files in the variable that follows the COUNT
keyword.

CAT;COUNT Files_and_headr
CAT;SELECT "Data" ,COUNT Selected_files,NO HEADER

Thp first CAT op('ration returns a count of all fil{'s in the dir{'ctory plus 5 or 7 h{'ader
lines, since not including SELECT defaults to "select all files". The second operation
returns a count of the specifically selected files. Keep in mind that the number of selected
files includes the number of files sent to the destination plus the number of files skipped,
if any.

Catalogs sent to external devices in the LIF format have a five-line header; in SRM and
HFS formats they have seven-line headers. Catalogs to string arrays are SRM format
unless EXTEND is added. Catalogs of individual PROG files have a three-line header
and a one-line trailer. If an "overflow" of a string array occurs, the count is set to the
number of string-array elements plus the number of files skipped. If no entries are sent
to the destination (because the directory is empty, or because no entries were selected, or
because all selected entries were skipped), the value returned depends on whether there
is a header. If there is no header, then zero (0) is returned. If there is a header, then the
value returned is the size of the header plus the number following the skip option (the
number requested to be skipped).

If an option is given more than Ollce, only the last instance is used.

7 -60 Data Storage and Retrieval

Skipping Selected Files
If there are many files that begin with the same characters, it is often useful to be able
to skip some of the directory entries so that the catalog is not as long. This may be
especially useful when using a drive such as an HP 7912, which has the capability of
storing more than 10 000 files.

The following statement shows an example of skipping file entries before sending selected
entries to the destination.

CAT;SELECT "BCD",SKIP 5

: INTERNAL, 4
VOLUME LABEL: B9836
FILE NAME PRO TYPE REC/FILE BYTE/REC ADDRESS DATE TIME
BCD_ENTFMT ASCII 10 256 73 13-Jan-87 8:00

The first five "selected" files (that begin with the specified characters) are "skipped"
(i.e., not sent with the rest of the catalog information).

Including COUNT in the previous CAT operation (as shown below) returns a count of
the selected files (plus header lines), not just the catalog lines sent to the destination.
Remember that selected files includes all files skipped, if any. In this case, a value of 11
is returned, not 1 (or 6) as might be expected.

CAT·SELECT "BCD" ,SKIP 5,COUNT Catalog_lines

Note that if SKIP is included, the count remains the same (as long as at least one file
is cataloged). If the number of files to be skipped equals the number of files selected,
COUNT returns a value of zero.

CAT;SELECT "BCD",SKIP 6,COUNT Files_and_headr

Data Storage and Retrieval 7 -61

The following program shows an example of looking at the files in a catalog by viewing
a small "window~' of files at one time. The technique is useful for decreasing the amount
of memory required to hold a catalog listing in a string array.

100 ! Declare a small string array (7 elements).
110 DIM Array$(1:7) [80]
120
130 ! Send header to the array.
140 CAT TO Array$(*)
150 ! Print header.
160 FOR Element=l TO 7
170 PRINT Array$(Element) [1,45]
180 NEXT Element
190
200 ! Now get 7-line "windows" and print files therein.
210 First_file=l ! Begin with first file in directory.
220 REPEAT ! Send file entries to Array$ until last file sent.
230
240 ! Send files to Array$; SKIP files already printed;
250 ! return index (with COUNT) of last file sent to Array$.
260 CAT TO Array$(*);SKIP First_file-l,COUNT Last_file,NO HEADER
270 DISP "First file=";First_file;"; Last file=";Last_file
280
290 ! Print file entries (no entry printed when Last_file=O) .
300 FOR Element=l TO (Last_file-First_file)+l ! (6 or less)+l.
310 PRINT Array$(Element) [1,45]
320 NEXT Element
330
340 First_file=Last_file+l! Point to next "window."
350
360 UNTIL Last_file=O ! Until SKIP >= number of files.
370
380 END

7 -62 Data Storage and Retrieval

Using a Printer 8
Printers Supported. .. 8-1
Installing, Configuring, and Verifying Your Printer 8-2
The System Printer 8-2
Device Selectors .. 8-3

Primary Addresses .. 8-4
U sing Device Selectors .. 8-6
U sing the External Printer .. 8-7

Control Characters .. 8-7
Escape-Code Sequences .. 8-8

Formatted Printing ... 8-9
Using Images .. 8-11

Special Considerations. .. 8-16
Using SRM Printers through the Spooler. .. 8-17

Using a Spooler. .. 8-17

Using a Printer 8
Sooner or later a program needs to print something. A wide range of printers, supported
by BASIC, can be connected to the Series 200/300 computers. This chapter covers the
statements commonly used to communicate with external printers, including printers
controlled by an SRM spooler.

Printers Supported
The following list shows some of the printers that work with Series 200/300 BASIC:

• HP 2225 ThinkJet@ Printer

• HP 2686 Laser J et @ Printer

• HP 2601, 2602 Daisy-Wheel Impact Printers

• HP 2671, 2673, 9876 Thermal Printers

• HP 82906, 2932, 2934, 2563, 2565, 2566 Dot-Matrix Impact Printers

Check the Configuration Reference for your series of computer for a complete and up-to
date list of all printers supported by Series 200/300 BASIC.

Using a Printer 8-1

Installing, Configuring, and
Verifying Your Printer
Instructions for installing and configuring printers for use with this BASIC system are
provided in the Peripheral Installation Guide. The documentation that is shipped with
your printer may also contain some information about how to install, configure, and use
it.

Once your printer is installed, you should verify its operation by using the "Peripheral
Verification Utility" (VERIFY) described in the "Verifying and Labeling Peripherals"
chapter of Installing and Maintaining the BASIC System.

The System Printer
The PRINT statement normally directs text to the screen of the CRT.

PRINT "This message goes to the printer."
PRINT 3.14159.2.71828."String".55

Text may be re-directed to an external printer by using the PRINTER IS statement.
The PRINTER IS statement is used to change the system printer.

PRINTER IS CRT
PRINTER IS 701

The default system printer is the screen of the CRT.

After the printer is switched on and the computer and printer have been connected via an
interface cable, there is only one piece of information needed before printing can begin.
The computer needs to know the correct device selector for the printer. This is analogous
to knowing the correct telephone number before making a call.

8-2 U sing a Printer

Device Selectors
A device selector is a number that uniquely identifies a particular device connected to the
computer. When only one device is allowed on a given interface, it is uniquely identified
by the interface select code. In this case, the device selector is the same as the interface
select code.

For example, the internal CRT is the only device at the interface whose select code is 1.
To direct the output of PRINT statements to the CRT, use the following statements:

PRINTER IS 1
or

PRINTER IS CRT

This statement defines the screen of the CRT to be the system printer. Until changed,
the output of PRINT statements will appear on the screen of the CRT.

When more than one device can be connected to an interface, such as the internal HP-IB
interface (interface select code 7), the interface select code no longer uniquely identifies
the printer. Extra information is required. This extra information is the primary address.

U sing a Printer 8-3

Primary Addresses
Each printer has a set of switches, usually located on the back panel, which set the
primary address of the printer.

The following photographs show the switch locations on various printers. In addition to
the primary address switch segments, there are usually segments that control the printers
response to other signals on the HP-IB bus.

Figure 8-1. Printer Address Switches

8-4 U sing a Printer

Figure 8-1. Printer Address Switches (Continued)

The primary address, determined by the switch settings, is combined with the interface
select code to make up the device selector. In the following example the primary address
01 is appended to the interface select code 7 to produce the device selector 701.

PRINTER IS 701
or

PRINTER IS PRT

This statement tells the computer to use a the internai HP-IB interface (select code 7)
to communicate with a printer whose switches are set to the primary address 01. If the
printer's primary address is set to 11, the device selector would be 711.

A device selector can be created mathematically by multiplying the interface select code
by 100 and adding the primary address. For example, a printer on the internal HP-IB
bus whose primary address is set to 9 would have the device selector 709 (7 x 100 + 9
= 709).

To determine your printer's primary address, see the Peripheral Installation Guide or
your printer's installation manual.

Using a Printer 8-5

Using Device Selectors
A device selector is used by several different statements. In each of the following, the
numeric constant is a device selector.

PRINTER IS 1

PRINTER IS 701

PRINTER IS 22

CAT TO #701

PRINTALL IS 707

LIST #701

Specifies the internal CRT (default).

Specifies a printer with interface select code 7 and primary address
Ol.

Specifies a printer connected to interface select code 22.

Prints a disc directory at 70l.

Logs information on a printer whose select code is 7 and whose
primary address is 07 (binary 00111).

Lists the program in memory to a printer connected to the internal
HP-IB interface at primary address Ol.

Most statements allow a device selector to be assigned to a variable. Either INTEGER
or REAL variables may be used.

PRINTER IS Hal

CAT TO #Dog

The following three-letter mnemonic functions have been assigned useful values.

Table 8-1. Mnemonic Function Values

Mnemonic Value

PRT 701

KBD 2

CRT 1

For example, the following statements perform the same action:

PRINTER IS PRT
PRINTER IS 701

The mnemonic may be used anywhere the numeric device selector can be used.

8-6 U sing a Printer

Another method may be used to identify the printer within a program. An I/O path name
may be assigned to the printer; the printer is subsequently referenced by the I/O path
name. This technique is fully explained in the BASIC Interfacing Techniques manual.

Using the External Printer
Most ASCII characters are printed on an external printer just as they appear on the screen
of the CRT. Depending on your printer, there will be exceptions. Several printers will also
support an alternate character set: either a foreign character set, a graphics character
set, or an enhanced character set. If your printer supports an alternate character set, it
usually is accessed by sending a special command to the printer.

Control Characters
In addition to a "printable" character set, printers usually respond to control characters.
These non-printing characters produce a response from the printer. The following table
shows some of the control characters and their effect.

Table 8-2. Printer Control Characters

Printer's Response Control Character ASCII Value

ring printer's bell I GTRL ~[QJ 7

backspace one character I GTRL ~[8J 8

horizontal tab I GTRL ~DJ 9

line-feed I GTRL ~QJ 10

form-feed I GTRL~W 12

carriage-return IGTRL~~ 13

One way to send control characters to the printer is the CHR$ function. Execute the
following:

PRINTER IS 701

PRINT CHR$ (12)

U sing a Printer 8-7

The print(T responds with a formfeed. To resume printing on the internal CRT, execute
the following:

PRINTER IS 1
PRINT "Back to the CRT."

Other control characters may be valid for your printer. For example, sending a control-N
to the 82905A printer changes the character size (font) of subsequent text.

10 Crt=l
20 PRINTER IS 701
30 Big$=CHR$(14)
40 PRINT Big$;"Double-Width Text"
50 PRINTER IS Crt
60 END

Rder to the appropriate prilltpr manual for a completp listing of control characters and
their effect on your printer. Some control characters will only affect the current line of
text.

Escape-Code Sequences
Similar in use to control characters, escape-code sequences allow additional control over
most printers. These sequences consist of the escape character, CHR$(27), followed by
one or more characters.

For example, the HP 2631 printer is capable of printing characters in several different
fonts. To print extended characters on the HP 2631, an escape code sequence is sent to
the printer before the actual text to be printed is sent.

10 PRINTER IS 701
20 Esc$=CHR$(27)
30 Big$="&k1S"
40 Regular$="&kOS"
50 PRINT Esc$;Big$;"Extended-Font Text"
60 PRINT Esc$;Regular$;"Back to normal."
70 PRINTER IS 1
80 END

8-8 Using a Printer

Many escape code sequences can be used by more than one printer. For instance, the
HP 2671 and the HP 2631 share the same escape code sequence for underlining text.

10 PRINTER IS PRT
20 Under$=CHR$(27)&"&dD"
30 Normal$=CHR$(27)&"&dC"
40 PRINT "This is not underlined"
50 PRINT Under$&"This is underlined"&Normal$
60 PRINT !!Done.!!
70 PRINTER IS CRT
80 END

Since each printer may respond differently to control characters and escape code
sequences, check the manual that came with your printer.

Formatted Printing
For many applications the PRINT statement provides adequate formatting. The simplest
method of print formatting is by specifying a comma or semicolon between printed items.

When the comma is used to separate items, the printer will print the items on field bound
aries. Fields start in column one and occur every ten columns (columns 1,11,21,31, ...).
Using the following values in a PRINT statement: A=l.l, B=-22.2, C=3E+5,
D=5.1E+8.

PRINT A,B,C,D

Produces:

123456789012345678901234567890123456789
1.1 -22.2 300000 5.1E+8

Note the form of numbers in a normal PRINT statement. A positive number has a leading
and a trailing space printed with the number. A negative number uses the leading space
position for the "-" sign. This is why the positive numbers in the previous example
appear to print one column to the right of the field boundaries. The next example shows
how this form prevents numeric values from running together.

PRINT A;B;C;D

123456789012345678901234567890123
1.1 -22.2 300000 5.1E+8

U sing a Printer 8-9

Using the semicolon as the separator caused the numbers to be printed as closely together
as the "compact" form allows. The compact form always uses one leading space (except
when the number is negative) and one trailing space.

The comma and semicolon are often all that is needed to print a simple table. By using
the ability of the PRINT statement to print the entire contents of of a array, the comma
or semicolon can be used to format the output.

If each array element contained the value of its subscript, the statement:

PRINT Array(*);

Produces:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...

Another method of aligning items is to use the tabbing ability of the PRINT statement.

PRINT TAB(25) ;-1.414

123456789012345678901234567890123
-1.414

While PRINT TAB works with an external printer, PRINT TABXY may not. PRINT
TABXY may be used to specify both the horizontal and vertical position when printing
to the internal CRT.

A more powerful formatting technique employs the ability of the PRINT statement to
allow an image to specify the format.

8-10 U sing a Printer

Using Images
Just as a mold is used for a casting, an image can be used to format printing. An image
specifies how the printed item should appear. The computer then attempts to print to
item according to the image.

One way to specify an image is to include it in the PRINT statement. The image specifier
is enclosed \;vithin quotes and consists of one or more field specifiers . .J.A1 semicolon then
separates the image from the items to be printed.

PRINT USING "D.DDD";PI

This statement prints the value of pi (3.141592659 ...) rounded to three digits to the right
of the decimal point.

3.142

For each character "D" within the image, one digit is to be printed. Whenever the
number contains more non-zero digits to the right of the decimal than provided by the
field specifier, the last digit is rounded. If more precision is desired, more characters can
be used within the image.

PRINT USING "D.l0D";PI

3.1415926536

Instead of typing ten "D" specifiers, one for each digit, a shorter notation is to specify
a repeat factor before each field specifier character. The image "DDDDDD" is the same
as the image "6D".

The image specifier can be included in the PRINT statement or on it's own line. When
the specifier is on a different line, the PRINT statement accesses the image by either the
line number or the line label.

100 Format: IMAGE 6Z.DD
110 PRINT USING Format;A,B,C
120 PRINT USING 100;D,E,F

Both PRINT statements use the image in line 100.

Using a Printer 8-11

Numeric Image Specifiers
Several characters may be used within an image to specify the appearance of the printed
value.

Table 8-3. Numeric Image Specifiers

Image
Specifier Purpose

D Replace this specifier with one digit of the number to be printed. If the digit is
a leading zero, print a space. if the value is negative, the position may be used
by the negative sign.

Z Same as "D" except that leading zeros are printed.

E Prints two digits ofthe exponent after printing the sequence "E+". This specifier
is equal to "ESZZ". See the BASIC Language Reference for more details.

K Print the entire number without leading or trailing spaces.

S Print the sign of the number: either a "+" or "-".

M Print the sign if the number is negative; if positive, print a space.

Print the decimal point.

H Similar to K, except the number is printed using the European number format
(comma radix). (Requires 10)

R Print the comma (European radix). (Requires 10)

* Like Z, except that asterisks are printed instead of leading zeros. (Requires 10)

8-12 Using a Printer

To better understand the operation of the image specifiers examine the following
examples and results.

Table 8-4. Examples of Numeric Image Specifiers

Statement Output

PRINT USING "K";33.666 33.666

PRINT USING "00.000";33.666 33.666

PRINT USING "000.00";33.666 33.67

PRINT USING "ZZZ.00";33.666 033.67

PRINT USING "ZZZ"; .444 000

PRINT USING "ZZZ"; .555 001

PRINT USING "SO.30E";6.023E+23 +6.023E+23

PRINT USING "S30.30E";6.023E+23 +602.300E+21

PRINT USING "S50.3de";6.023E+23 +60230.000E+19

PRINT USING "H";3121.55 3121,55

PRINT USING "OOROO"; 19.95 19,95

PRINT USING "***"; . 555 **1

To specify multiple fields within the image, the field specifiers are separated by commas.

Table 8-5. Multiple-Field Numeric Image Specifiers

Statement Output

PRINT USING "K,50,50";100,200,300 100 200 300

PRINT USING "00,ZZ,OO";l,2,3 102 3

If the items to be printed can use the same image, the image need be listed only once.
The image will then be re-used for the subsequent items.

PRINT USING "50.00";3.98,5.95,27.50,139.95

123456789012345678901234567890123
3.98 5.95 27.50 139.95

The image is re-used for each value. An error will result if the number cannot be
accurately printed by the field specifier.

Using a Printer 8-13

String Image Specifiers
Similar to the numeric field image characters, several characters are provided for the
formatting of strings.

Table 8-6. String Image Specifiers

Image
Specifier Purpose

A Print one character of the string. If all characters of the string have been printed,
print a trailing blank.

K Print the entire string without leading or trailing blanks.

X Print a space.

"literal" Print the characters between the quotes.

The following examples show various ways to use string specifiers.

PRINT USING "5X.10A.2X.10A";"Tom"."Smith"

12345678901234567890123456789
Tom Smith

PRINT USING "5X.""John"".2X.10A";"Smith"

12345678901234567890123456789
John Smith

PRINT USING """PART NUMBER"".2X.100";90001234

12345678901234567890123456789
PART NUMBER 90001234

8-14 Using a Printer

Additional Image Specifiers
The following image specifiers serve a special purpose.

Image
Specifier

B

L

/
@

+
-

For example:

Table 8-7. Additional Image Specifiers

Purpose

Print the corresponding ASCII character. This is similar to the CHR$ function.

Suppress automatic end-of-line (EOL) sequence.

Send the current end-of-line (EOL) sequence; with 10, see the PRINTER IS
statement in the BASIC Language Reference for details on re-defining the EOL
sequence.

Send a carriage-return and a linefeed.

Send a formfeed.

Send a carriage-return as the EOL sequence. (Requires 10)

Send a linefeed as the EOL sequence. (Requires 10)

PRINT USING 11(0, #11 outputs a formfeed.

PRINT USING "D,X,3A,'II'OR NOT"",X,B,X,B,BII ;2,IBE",50,66,'69

Using a Printer 8-15

Special Considerations
If nothing prints, check if the printer is ON LINE. When the printer if OFF LINE the
computer and printer can communicate but no printing will occur.

Sending text to a non-existent printer will cause the computer to wait indefinitely for
the printer to respond. ON TIMEOUT may be used within a program to test for the
printer. To clear the error press I CLR I/O 1 or I Break I, check the interface cable and switch
settings, then try again.

Since the printer's device selector may change, keep track of the locations in the program
where a device selector is used. If most of the program's output is sent to a printer, you
may wish to use the PRINTER IS statement at the beginning of the program and then
send messages to the CRT screen by using the OUTPUT statement.

PRINTER IS 701
PRINT "Text to the printer."
OUTPUT 1;"Screen Message"
PRINT "Back to the printer."

If the program must use the PRINTER IS statement frequently, assign the device selector
to a variable; then if the device selector changes, only one program line will need to be
changed.

8-16 Using a Printer

Using SRM Printers through the Spooler
The SRM system not only provides shared access to printers and plotters, but also
manages their use so that workstations never need to wait for output to be generated.

To use shared printers, you place files to be printed into a special directory where they
are held until the printer is free. The system keeps track of the order in which files
arrive from the workstations, and outputs them in the same order. This method is called
"spooling," and the directory where the files are kept is called the "spooler directory."
Spooler directories are created for the SRM controller's use when the shared peripherals
are installed on the SRM system.

After a file is placed in a spooler directory, the workstation is free to do other processing.

Using a Spooler
Use of special SRM directories called "spooler directories" allows you to access a shared
printer or plotter. Setting up a spooler directory is explained in the "Interfaces and
Peripherals" chapter of the SRM System Manager's Guide. The examples in this section
assume that the spooler directories LP (for "Line Printer") and PL (for "PLotter") have
been created at the root of the SRM directory structure.

Spooling USing PRINTER IS
You can use the PRINTER IS statement to direct data to your shared printer. The
following command sequence illustrates this spooling method:

CREATE BDAT I/LP/Print_file",l
PRINTER IS "/LP/Print_file"
LIST
XREF
PRINTER IS CRT

PRINTER IS works only with BDAT files. Because the SRM 1.0 operating system's
spooling works only with ASCII files, you cannot use PRINTER IS for spooling with
that version of SRM.

Note

The DUMP DEVICE IS and PRINTALL IS statements do not
support directing data to files as shown above, so cannot be used
for printer spooling.

Using a Printer 8-17

Writing Files to the Spooler Directories
You may also access the printer associated with LP by placing the data to be printed in an
ASCII or BDAT file in that spooler directory. For example, to list a program currently
in memory, you could SAVE the program in LP as the file P1_LISTING by typing either:

SAVE II LP /P 1_LISTING : REMOTE II I Return I or I ENTER I
or

SAVE I/LP/P1_LISTING" I Return I or I ENTER I

The SAVE statement creates an ASCII file. Although this is the same syntax used to
save programs on a shared disc, the SRM system knows that LP is a spooler directory
and prints the file as soon as possible.

Note

When used for spooling, SAVE places a file in the spooler directory.
The file is printed, then purged. You may wish to save or create
the file first, then use the COPY statement to place the file into
the spooler directory.

Sending Program Output to a Shared Printer
To spool program output to a shared printer, create an ASCII or BDAT file, assign an
I/O path name to the file (which opens the file), and OUTPUT the data to that file.
With BDAT files, you should ASSIGN with FORMAT ON. When the file's contents are
to be printed, close the file. The following example program segment outputs the data
stored in the string array called Data$ to an ASCII file named PERFORMANCE.

760 CREATE ASCII I/LP/PERFORMANCE".100
770 ASSIGN «lSpool TO "/LP/PERFORMANCE"
780 OUTPUT «lSpool;"Performance Summary"
790 OUTPUT «lSpool;Data$(*)
800 ASSIGN «lSpool TO * ! Initiate printing.

The system waits until the file is non-empty and closed before sending its contents to
the output device. If your file is not printed or plotted within a reasonable amount of
time, you may not have closed it. You can verify that your file is ready to be printed or
plotted by cataloging the spooler directory:

CAT II /LP II I Return I or I ENTER I

8-18 Using a Printer

The open status (OPEN STAT) of the file currently being printed or plotted is listed as
locked (LOCK). Files currently being written to the spooler directory (either printer or
plotter) are listed as OPEN. Files that do not have a status word in the catalog are ready
for printing or plotting.

Version 2.0 of the SRM operating system (and later versions) allow BDAT files to be
sent to the printing device as a byte stream. (With SRM version 1.0, only ASCII files
can be used.)

Note

With the SRM 2.0 operating system, a BDAT file sent to the
spooler is printed exactly as the byte stream sent. Unless you set
up the BDAT file correctly, improper printer output or operation
could result. Therefore, you should ASSIGN BDAT files with
FORMAT ON before outputting data.

The spooler prints each string and numeric item on a separate line by inserting a carriage
return and line feed after each item. To put several strings on one line, concatenate them
into one string before using OUTPUT to send them to the spooler file. You may insert
ASCII control characters in the data by using the CHR$ string function.

Appearance of Output
Printed output for each file includes a one-page header, which identifies the directory
path to the file, the file's name, and the date and time of the printing.

To cause the printer to skip the paper perforation after printing a page (60 lines), prefix
your file name with "FF". For example:

SAVE "/LP /FF _MYTEXT" I Return I or I ENTER I

Using a Printer 8-19

8-20 U sing a Printer

The Real-Time Clock 9
Initial Clock Value .. 9-1

Do You Have a Non-Volatile Clock? .. 9-2
Clock Range and Accuracy .. 9-2
Reading the Clock .. 9-3

Determining the Date and Time of Day. .. 9-3
Setting the Clock ... 9-4

Clock Time Format ... 9-4
Setting Only the Time. .. 9-6
Setting Only the Date .. 9-8

Using Clock Functions and Example Programs 9-11
Day of the Week. .. 9-13
Days Between Two Dates ... 9-13
Interval Timing .. 9-13

Branching on Clock Events. .. 9-14
Cycles and Delays .. 9-15
Time of Day .. 9-16
Priority Restrictions .. .'. .. 9-17
Branching Restrictions .. 9-18

The Real-Time Clock 9
All Series 200 and 300 computers have a real-time clock that you can set and read to
monitor the time of day and date. In addition, all Series 300 computers (and some Series
200 computers) have a battery-backed, non-volatile clock that keeps time even \vhcn the
power is removed from the computer. This chapter describes using the clock and related
functions and statements.

Note

Many of the statements described in this chapter require the
CLOCK binary. Check the BASIC Language Reference for specific
requirements of each statement.

Initial Clock Value
When you initially boot the BASIC system, the real-time clock is set to one of these
values:

• With Series 300 computers, the clock value is read from the non-volatile clock and
placed into the real-time (volatile) clock.

• With Series 200 computers which have the 98270 Powerfail Option installed, the
real- time (volatile) clock time is set to the value of the non-volatile clock.

• With computers on the Shared Resource Management (SRM) system that don't
have a non-volatile clock, the clock value is taken from the SRM system. (This
occurs when the SRM and DCOMM binaries are loaded.)

• If the computer does not have a non-volatile clock (and is not connected to an SRM
system), the time is set to 12:00:00 a.m. (midnight), March 1, 1900.

The Real-Time Clock 9-1

Do You Have a Non-Volatile Clock?
There is a status register that you can interrogate to determine whether or not you have
a non-volatile clock in your computer. The following program shows how to use this
register.

100 STATUS 32.4;Clock_type
110 SELECT Clock_type
120 CASE 0
130 DISP "No battery-backed clock."
140
150 CASE 1
160 DISP "Series 200 (98270) battery-backed clock."
170
180 CASE 2
190 DISP "Series 300 (HP-HIL) battery-backed clock."
200
210 END SELECT
220 END

If you don't have a non-volatile clock, you will need to determine whether or not the
real-time clock is set to the proper time. Subsequent sections describe how to do this.

Clock Range and Accuracy
The range of Series 200 volatile and non-volatile clocks is March 1, 1900 through August
4, 2079. The Series 300 volatile and non-volatile clocks both have a lower limit of March
1, 1900. However, the upper limit of the volatile clock is August 4, 2079, while the upper
limit of the non-volatile clock is February 29, 2000.

The volatile real-time clocks provide an accuracy of ±5seconds per day. The Series 200
battery-backed "powerfail" (98270) clock maintains time to within ±2.5 seconds per day.
The Series 300 battery-backed clock maintains time to within ±5 seconds per day.

9-2 The Real-Time Clock

Reading the Clock
Internally, the clock maintains the year, month, day, hour, minute, and second as a
single real number. This number is scaled to an arbitrary "dawn of time," thus allowing
it to also represent the Julian date. The current value of the clock is returned by the
TIMEDATE function.

PRINT TIMEDATE

While the value returned contains all the information necessary to uniquely specify the
date and time to the nearest one-hundredth of a second, it needs to be "unpacked" to
provide understandable information.

Determining the Date and Time of Day
The following functions are available to extract the date and time of day from TIME
DATE.

The DATE$ function extracts the date from the value of TIMEDATE.

PRINT DATE$(TIMEDATE)

Prints: 1 Mar 1900

This is the default power-up date for machines without the battery-backed real-time
clock.

The TIME$ function returns the time of day.

PRINT TIME$(TIMEDATE)

Prints: 00: 05: 27

The Real-Time Clock 9-3

Setting the Clock

TIMEZONE and HP-UX Clock Compatibility

If you are sharing an HFS disc with an HP-UX system, you
will need to use the TIMEZONE IS statement before setting the
clock. This statement specifies the offset from Greenwich Mean
Time, providing compatibility with HP-UX time stamps on files
when switching back and forth between the BASIC and HP-UX
operating systems. See the BASIC Language Reference entry
TIMEZONE IS for details.

The SET TIMEDATE statement is used to set the clock.

SET TIMEDATE DATE("1 OCT 1987") + TIME("8:37:30")

The time of day can be changed without affecting the date by the SET TIME statement.

SET TIME TIME("9:55")

Note that an error is reported if you try to set the clock to a value outside the range
stated on the preceding page.

Clock Time Format
To minimize the space required to store the date and time, and yet insure a unique
value for each point in time, both time and date are combined as a single real number.
This value is the Julian date multiplied by the number of seconds in a day. By recalling
that there are 86400 seconds in a day, the date and time of day can be extracted from
TIMEDATE by the following simple algorithms.

TIMEDATE MOD 86400 returns the time of day, and

TIMEDATE DIV 86400 returns the Julian date.

The time of day is expressed in seconds past midnight and is easily divided into hours,
minutes. and seconds. The Julian date requires a bit more processing to extract the
month, day, and year but this method insures a unique value for each day over the entire
range of the clock.

9-4 The Real-Time Clock

Year Clock Value Hours Seconds

1900 2.086578144E+11 1 3600

1910 2.089733472E+11 2 7200

1920 2.092888800E+11 3 10800

1930 2.096044992E+11 4 14400

1940 2.099200320E+11 5 18000

1950 2.102356512E+11 6 21600

1960 2.105511840E+11 7 25200

1970 2.108668032E+11 8 28800

1980 2.111823360E+11 9 32400

1990 2. 114979552E+11 10 36000

2000 2. 118134880E+11 11 39600

2010 2. 121291072E+11 12 43200

2020 2. 124446400E+11 13 46800

2030 2. 127602592E+11 14 50400

2040 2. 130757920E+11 15 54000

2050 2. 133914112E+11 16 57600

2060 2. 137069440E+11 17 61200

2070 2. 140225632E+11 18 64800

2080 2. 143380960E+11 19 68400

20 72000

21 75600

22 79200

23 82800

24 86400

Figure 9-1. Clock Time

The Real-Time Clock 9-5

Setting Only the Time
The time of day is changed by SET TIME X, where X is the number of seconds past
midnight. The value of X must be in the range: 0 through 86399.99 seconds. The TIME
function will convert twenty-four hour formatted time (HH:MM:SS) into the value needed
to set the clock.

The TIME function converts an ASCII string representing a time of day, in twenty-four
hour format, into the number of seconds past midnight. For example:

SET TIME TIME("15:30:10")

Is equivalent to:

SET TIME 55810

Either of these statements will set the time of day without changing the date. Use the
SET TIMEDATE statement to change the date.

To display the new time, the TIME$ function formats the clock's value (TIMEDATE)
into hours, minutes, and seconds.

PRINT TIME$(TIMEDATE)

Prints: 15: 30: 16

Even though TIMEDATE returns a value containing both time of day and the Julian
date, TIME$ performs an internal modulo 86400 on the value passed to the function and
will always return a string in the range: 00: 00: 00 thru 23: 59 : 59.

The following program contains the routines to set and display the time of day. The
routines are written as user-defined functions that may be appended to your program.
Once appended to a program, the routines duplicate the TIME and TIME$ functions
available with CLOCK. The formatted time can then be displayed by the following
statement.

PRINT FNTime$(TIMEDATE)

Prints: 15: 31: 05

9-6 The Real-Time Clock

Given the clock's value, the FNTime$ function returns the time of day in 24 hour format
(HH:MM:SS). The FNTime function converts the time of day to seconds and is used to set
the clock.

10 Show_time:DISP FNTime$(TIMEDATE)
20 GOTO Show_time
30 END
40

While the program is running, type:
SET TIME FNTIME("11:5:30")
then press <EXECUTE> to show the new time.

50
60
70
80
90
100
110
120

1***
I
DEF FNTime$(Now) I Given 'SECONDS' Return 'hh:mm:ss'

130
140
150
160
170
180
190
200

Now=INT(Now) MOD 86400
H=Now DIV 3600
M=Now MOD 3600 DIV 60
S=Now MOD 60
OUTPUT T$ USING "#,ZZ,K";H,":",M,":",S
RETURN T$

FNEND

210
220

DEF FNTime(T$) I Given 'hh:mm:ss' Return 'SECONDS'

230 ON ERROR GO TO Err
240 ENTER T$;H,M,S
250 RETURN (3600*H+60*M+S) MOD 86400
260 Err:OFF ERROR
270 RETURN TIMEDATE MOD 86400
280 FNEND

After entering the program, follow the instructions at the beginning of the program to
verify correct operation. Store this program in a file named "FUNTIME". The functions
can be extracted from this program and appended to other programs by the LOADSUB
statement.

Note that the FNTime function requires hours, minutes, and seconds, while the TIME
function only requires hours and minutes.

The Real-Time Clock 9-7

Setting Only the Date
The date is changed by SET TIMEDATE X, where X is the Julian date multiplied by the
number of seconds in a day (86400). The DATE function converts a formatted date (DD
MMM YYYY) into the value needed to set the clock. Due to the wide range of values
allowed by the DATE function, negative years can be specified, but not when using the
function to set the clock.

The following statement will set the clock to the proper date.

SET TIMEDATE DATE("l Jun 1984")

When programming without CLOCK, the user-defined function FNDate can be used.

SET TIMEDATE FNDate("l Jun 1984")

Both of these statements are equivalent to the following statement.

SET TIMEDATE 2.113216992E+11

The DATE and FNDate functions convert the accompanying string (or string expression)
into the numeric value needed to set the clock. To read the clock, the DATE$ and
FNDate$ functions format the clock's value as the day, month, and year. For example,
the following line will print the date.

PRINT DATE$(TIMEDATE)

Prints: 1 Jun 1984

Programs that need to run without CLOCK can use the following user-defined functions
appended to the end of the program. These functions simulate the DATE and DATE$
keywords available in CLOCK. The algorithm is valid over the entire range of the clock.

Note the following functions are restricted to values the clock will accept, the DATE and
DATE$ functions available with CLOCK allow a much wider range of values (including
negative years).

9-8 The Real-Time Clock

10 Show_date: DISP FNDate$(TIMEDATE)
20 GOTO Show_date
30 END
40
50 While the program is running, type:
60 SET TIMEDATE FNDATE("l JAN 82") <EXECUTE>
70
nl'\
OV !**
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420

DEF FNDate$(Seconds) ! Given 'SECONDS' Return 'dd mmm yyyy'

DATA JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC
DIM Month$(1:12) [3]
READ Month$(*)

Julian=Seconds DIV 86400-1721119
Year=(4*Julian-l) DIV 146097
Julian=(4*Julian-l) MOD 146097
Day=Julian DIV 4
Julian=(4*Day+3) DIV 1461
Day=(4*Day+3) MOD 1461
Day=(Day+4) DIV 4
Month=(5*Day-3) DIV 153
Day=(5*Day-3) MOD 153
Day=(Day+5) DIV 5
Year=100*Year+Julian
IF Month<10 THEN

Month=Month+3
ELSE

Month=Month-9
Year=Year+l

END IF

Month

Day
Year

OUTPUT 0$ USING "#,ZZ,X,3A,X,4Z";Day,Month$(Month) ,Year
RETURN 0$

FNEND

DEF FNDate(Dmy$) ! Given 'dd mmm yyyy' Return 'SECONDS'

DATA JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC
DIM Month$(1:12) [3]
READ Month$(*)

430 ON ERROR GOTO Err
440 I$=Dmy$&"
450 ENTER 1$ USING "DD,4A,5D";Day,M$,Year
460 IF Year<100 THEN Year=Year+1900
470 FOR 1=1 TO 12
480 IF POS(M$,Month$(I» THEN Month=I
490 NEXT I

The Real-Time Clock 9-9

500 IF Month=O THEN Err
510 IF Month>2 THEN
520 Month=Month-3
530 ELSE
540 Month=Month+9
550 Year=Year-1
560 END IF
570 Century=Year DIV 100
580 Remainder=Year MOD 100
590 Julian=146097*Century DIV 4+1461*Remainder DIV 4+(153*Month+2) DIV
5+Day+1721119
600 Julian=Julian*86400
610 IF Julian<2.08662912E+11 OR Julian>=2.143252224E+11 THEN Err
620 RETURN Julian ! Return Julian date in SECONDS
630 Err:OFF ERROR ERROR in input.
640 RETURN TIMEDATE ! Return current date.
650 FNEND

Store the program in a file named "FUNDATE". Later the functions can be appended
to other programs by the LOAD SUB statement.

The functions FNDate$ and FNDate format the date as "DD MMM YYYY", where DD is
the day of the month, MMM is the first three letters of the month, and YYYY is the
year. The function FNDate will accept the last two digits of the year. See line 460. Note
that the FNDate function requires two digits for the day, while the DATE function does
not.

Different formats require only slight modification. By changing the following lines, the
date is formatted as "MM/DD /YYYY" .

330 OUTPUT D$ USING 1#,2D,A,2D,A,2DI;Month;I/I;Day;I/";Year

450 ENTER I$ USING 1#,ZZ,K";Month;Day;Year

European date format is obtained by swapping the month and day in the above
statements. When changing the format, be sure to switch both functions.

If the all numeric format is chosen, delete the three lines in each function that load the
array with the month mnemonics.

9-10 The Real-Time Clock

Using Clock Functions and Example Programs
The following statements summarize setting and displaying the clock.

SET TIMEDATE FNDate("12 DEC 1981") + FNTime("13:44:15")

SET TIME FNTime("8:30:00")

PRINT FNTime$(TIMEDATE)

DISP FNDate$(TIMEDATE)

It is important to note that SET TIMEDATE expects a date and time while the DATE
function and the user-defined function FNDate return only a date. This effectively sets
the clock to midnight of the date specified.

To keep the functions short, minimal parameter checking is performed. Additional
checking may be incorporated within the functions or within the calling context. If
FNDate or FNTime cannot correctly decode the input, the current value of the clock is
returned.

The date and time functions can be used with the following program shell to provide a
"friendly" interface to the clock.

10 PROGRAM SHELL FOR SETTING TIME AND DATE.
20
30 REQUIRES THE TIME AND DATE FUNCTIONS.
40
50 DIM Day$(0:6) [9]
60 DATA Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday
70 READ Day$(*)
80
90 ON ERROR GO TO Nofun
100 Dmy$=FNDate$(TIMEDATE)
110 Hms$=FNTime$(TIMEDATE)
120 OFF ERROR
130 Main:
140 CLEAR SCREEN
150 F$=CHR$ (255)&CHR$ (72)
160

Test if functions
have been loaded

Get NEW date

170
180
190

PRINT TABXY (1,14) ; "Enter the date, and press CONTINUE."
OUTPUT 2 USING "#,l1A,2A";Dmy$,F$

200 INPUT Dmy$
210

! WAIT for INPUT

220 ENTER Dmy$ USING "2D,4A,5D";D,M$,Y
230 CLEAR SCREEN

The Real-Time Clock 9-11

240
250 PRINT TABXY 0,14) ; "Enter the time of day and press CONTINUE"
260 OUTPUT 2 USING "#,11A,2A";Hms$,F$
270 INPUT Hms$
280 ENTER Dmy$ USING "2D,4A,5D";D,M$,Y
290
300 SET TIMEDATE FNDate(Dmy$)+FNTime(Hms$)
310
320 CLEAR SCREEN
330 W=(TIMEDATE DIV 86400) MOD 7 ! Day of week
340 PRINT TABXY(1,1);"The clock has been set to:"
350 PRINT TABXY(1,3);Day$(W);" ";Dmy$;" ";FNTime$(TIMEDATE)
360 GOTO Quit
370
380 ! ************ SUBROUTINES ************
390 !
400 Nofun:PRINT "The TIME & DATE FUNCTIONS must be appended,"
410 PRINT "(via LOADSUB) before program will work."
420 Quit:END
430
440 ************* FUNCTIONS **************
450
460 append time and date functions here

The program tests to see if the functions have been loaded by trying to use them. If
they are not loaded the program ends with an error message. With the CLOCK binary,
this program can still be used. Replace the calls to the user-defined functions with the
appropriate keywords. The error trapping can then be deleted.

To append the user-defined functions, execute the following statements while the demon
stration program is in memory.

LOADSUB ALL FROM "FUNDATE"
LOADSUB ALL FROM "FUNTIME"

Examine the program to be sure the functions have been loaded.

The program will prompt for the date and time, then set the clock accordingly. A program
snch as this may be used as the system start up program for applications requiring th('
date or time.

9-12 The Real-Time Clock

Day of the Week
An advantage of Julian dates is the simplicity of finding the day of the week. TIMEDATE
DIV 86400 MOD 7 returns a number which represents the day of the week. Monday is
represented by zero (0), and the numberillg continues through the week to Sunday which
is represented by six (6). See the previous program for an example of using this routine.

Days Between Two Dates
The number of days between two dates is easily calculated as the following program
demonstrates.

10 ! Days between two dates
20 INPUT "ENTER THE FIRST DATE (DD MMM YYYY)II.D1$
30 INPUT "ENTER THE SECOND DATE (DD MMM yYYY)II.D2$
40 Days=(DATE(D2$)-DATE(D1$» DIV 86400
50 DISP Days; II days between 'I;D1$;"' and 'I;D2$;I'"
60 END

Interval Timing
Timing a single event of short duration is quite simple.

10
20
30
40
50
60

TO=TIMEDATE
FOR J=1 TO 5555

NEXT J
T1=TIMEDATE

! Start

! Finish

70 PRINT lilt tookl;DROUND(T1-TO.3);lseconds"
80 END

Programs can and should be written so that they do not change the setting of the clock.
A short program, which simulates a stopwatch, allows interval timing without changing
the clock.

Program: STOPWATCH 10
20
30
40
50
60
70

Interval timing without changing the
ON KEY 5 LABEL II START II GOTO Start

clock

ON KEY 6 LABEL II STOP II GOTO Hold
ON KEY 7 LABEL II RESET II GOTO Reset
ON KEY 8 LABEL II LAP II GOSUB Lap

80 Reset:PRINT CHR$(12)
90 H=O
100 M=O
110 S=O
120
130 Hold:DISP TAB(9);H;I:I;M;I:";S

form-feed
Set all

to
zero.

Wait til

The Real-Time Clock 9-13

140 GOT a Hold
150
160 Lap:PRINT H;":";M;":";S
170 RETURN
180
190 Start:Z=3600*H+60*M+S-TIMEDATE
200 Loop:T=(TIMEDATE+Z) MOD 86400
210 T=INT(T*100)/100
220 H=T DIV 3600
230 M=T MOD 3600 DIV 60
240 S=T MOD 60
250 DISP TAB(9) ;H;":";M;":";S
260 GOTO Loop
270 END

Branching on Clock Events

keypress

Print lap

Elapsed-
time

.01 sec.
Hours
Minutes
Seconds
Show time
Do again

Several additional branching statements, available with CLOCK, allow end-of-statement
branches to be triggered according to the real-time clock's value.

• ON TIME enables a branch to be taken when the clock reaches a specified time of
day.

• ON DELAY enables a branch to be taken after a specified number of seconds has
elapsed.

• ON CYCLE enables a recurring branch to be taken with each passage of a specified
number of seconds.

The specified time can range from 0.01 thru 167772.15 seconds for the ON CYCLE and
ON DELAY statements and 0 thru 86399.99 seconds for ON TIME. The value specified
with ON TIME indicates the time of day (in seconds past midnight) for the branch to
occur.

Each of these statements has a corresponding statement to cancel the branch (OFF
TIME. OFF DELAY. and OFF CYCLE). A statement is also canceled by executing
another ON TIME, ON DELAY, or ON CYCLE statement.

All of the statements use the internal real-time clock. Care should be taken to avoid
writing programs that could change the clock's setting during execution. Since only one
resource is dedicated to each statement, certain restrictions apply to the use of these
statements.

9-14 The Real-Time Clock

Cycles and Delays
Both the ON CYCLE and ON DELAY statements enable a branch to be taken as soon as
the specified number of seconds has elapsed. ON CYCLE remains in effect, re-enabling
a branch with each passage of time. For example:

10
20
30
40 T:
50
60

ON CYCLE 1 GOSUB Five
ON DELAY 6 GOTO Quit

DISP TIME$(TIMEDATE)
GOTO T

70 Five:FOR 1=1 TO 5
80 PRINT RND;
90 NEXT I
100 PRINT
110 RETURN
120
130 Quit:END

Print 5 random numbers every second.
After 6 seconds quit.

Show the time.

The program will print five random numbers every second for six seconds and then stop.

Only one ON CYCLE and one ON DELAY statement can be active in a program context.
Executing a second ON CYCLE or ON DELAY statement in the same program context
deactivates the first ON CYCLE or ON DELAY statement. If a branch is missed, due
to priority restrictions or execution of a subprogram, the event is logged and the branch
will be taken when the restriction is removed or the original context is restored. If
an active ON CYCLE or ON DELAY statement gets canceled in an alternate context
(subprogram) the branch is restored when execution returns to the defining context. (See
Branching Restrictions for more information about this).

The Real-Time Clock 9-15

Time of Day
The ON TIME statement allows you to define and enable a branch to be taken when
the clock reaches a specified time of day, where time of day is expressed as seconds
past midnight. Using the TIME function simplifies setting an ON TIME statement by
allowing a formatted time of day to be used. For example:

ON TIME TIME("11:30") GOTO Lunch

Typically, the ON TIME statement is used to cause a branch at a specified time of day.
By adding an offset to the current clock value, the ON TIME statement can be used as
an interval timer. In the following example, both ON DELAY and ON TIME are used
as interval timers.

10 ON DELAY 5 GOSUB Takeoff
20 ON TIME (TIMEDATE+10) MOD 86400 GOSUB Touchdown
30 PRINT "STARTING ... ",TIME$(TIMEDATE)
40 Clock:DISP TIME$(TIMEDATE)
50 GOT a Clock
60
70 Takeoff:PRINT "TAKEOFF at ",TIME$(TIMEDATE)
80 RETURN
90 Touchdown:PRINT "TOUCHDOWN at ",TIME$(TIMEDATE)
100 RETURN
110 END

delay 5 seconds
delay 10 seconds

The starting time is printed when the program is executed. Five seconds later the first
subroutine is executed. Ten seconds after the program starts, the second subroutine is
executed.

Only one ON TIME statement can be active in a program context. If a branch is missed,
due to priority restrictions or execution of a subprogram, the event is logged and the
branch will be taken when the restriction is removed or the original context is restored.
If an active ON TIME statement gets canceled in an alternate context (subprogram)
the branch is restored when execution returns to the defining context. (See Branching
Restrictions for more information about this).

Due to the "match an exact time" nature of the ON TIME statement, if the specified time
occurs when the statement is temporarily canceled (by an OFF TIME in an alternate
context), no branch will be taken when the defining context is restored.

9-16 The Real-Time Clock

Priority Restrictions
A priority can be assigned to the branch defined by ON CYCLE, ON DELAY, and ON
TIME. For example:

ON CYCLE Seconds,Priority GO TO Label

If the system priority is higher than the branch priority at the time specified for the
branch, the event will be logged but the branch will not be taken until the system
priority falls below the branch priority. An example program follows.

10 COM Start
20 P=O
30 Up:P=P+l
40 IF P>15 THEN Quit
50 PRINT
60 PRINT "Priority:";P;
70 Start=TIMEDATE
80 ON CYCLE l,P RECOVER Up
90 ON DELAY .5,6 CALL Busy
100
110 W:GOTO W
120 Quit:END

Priority from 1 thru 15

Save the start-time for subprogram.
New priority every second if not Busy.
DELAY overrides CYCLE until priority

(P) is greater than 6.

130 !----------------- SUB has priority of 6 ---------------------
140 SUB Busy
150 COM Start
160 PRINT "SUB";
170 WHILE 1<10
180 IF TIMEDATE>Start+l
190 PRINT "*";
200 ELSE
210 PRINT " ".
220 END IF
230 1=1+1
240 WAIT .1
250 END WHILE
260 PRINT "DONE";
270 SUBEND

THEN Has ON CYCLE time been exceeded?
YES (only prints if Priority<7)

NO

Loop ten times

The Real-Time Clock 9-17

Once the priority assigned to the ON CYCLE statement is greater than the priority
assigned to the ON DELAY statement (6), the subprogram will be interrupted. After
running the program, change line 80 in the above program to the following:

80 ON CYCLE 1,P GOTO Up

Running the new version of the program will show that GOTO (or GOSUB) will not
interrupt a subprogram regardless of the assigned priority. The branch will be logged but
not taken until execution returns to the main program. If you write a program that makes
extensive use of subprograms and branching statements, use CALL and RECOVER to
insure proper operation.

Branching Restrictions
Certain restrictions apply to the use of ON TIME, ON CYCLE, and ON DELAY because
only one resource is dedicated to each statement. Assuming an active branch has been
defined in the main program, execution of a subprogram which sets up a new branch
will cause the loss of the original time. When the main program context is restored,
the original branch will be restored, but at the time defined in the subprogram. The
following program will illustrate this effect.

10 COM Counter
20 Counter=O
30 GINIT
40
50
60

GRID 1,1
DISP Counter
ON CYCLE 2 CALL Flash

70 W: GOTO W
80 END

Fill graphics raster with grid.

Flash graphics every 2 seconds.

90 !----------------- SUB to flash graphics raster·--------------
100 SUB Flash
110 COM Counter
120 GRAPHICS ON
130 Count er=Counter+1
140 DISP Counter
150
160
170

IF Counter=5 THEN
ON CYCLE .1,2 CALL Quit

180 END IF
190 GRAPHICS OFF
200 SUBEND

Change CYCLE value during fifth CALL.
New value (.1) will replace old (2).
Flash will end before Quit gets called.

210 !----------------- SUB that won't get called -----------------
220 SUB Quit
230 PRINT "PROGRAM HAS STOPPED"
240 STOP
250 SUBEND

9-18 The Real-Time Clock

The program starts out by flashing the graphics raster on and off every two seconds.
When the subprogram's ON CYCLE statement is activated during the fifth call to the
subprogram, the new value (0.1 second) replaces the old value (2.0 seconds) and the
program begins flashing the graphics raster at the new rate. Note that the branch to
the second subprogram (Quit) is not executed because the first subprogram is finished
before the specified time. To see the second subprogram execute, insert the following
line.

191 WAIT 1

The delay caused by the WAIT statement allows the subprogram's ON CYCLE statement
to branch to the second subprogram and stop execution.

If an active branch defined in the main program is canceled in a subprogram (by OFF
TIME, OFF DELAY, or OFF CYCLE) any branch missed during the execution of the
subprogram will be lost. When the context containing the original statement is restored,
the branch will be reactivated and processing will continue as if no branch was missed.

10
20
30

ON DELAY 1 GOTO Done
CALL Busy

GO TO II Done II in one second.
! Call to "Busy" takes two seconds.

40 PRINT "THIS WON'T BE PRINTED UNLESS BRANCH IS CANCELED BY THE SUB"
50
60 Done:PRINT "THIS LINE WILL BE PRINTED EVERY TIME"
70 END
80 ! ---
90 SUB Busy
100 WAIT 2
110 ! OFF DELAY
120 SUBEND

RUN then remove the "!" on this line and RUN again.

By removing the comment symbol (!) from the beginning of line 110, the OFF DELAY
statement will be executed causing any branch that has already been logged to be
canceled and allow line 40 to be printed.

The Real-Time Clock 9-19

Since branches only occur at the end of a line, no branch can be taken during an INPUT or
LINPUT statement. The following program shows a method of monitoring the keyboard
without preventing branches to be taken.

10 ON KBD GOTO Yes If key is pressed go get new value.
20 ON DELAY 3 GOTO Gone If no keypress in 3 seconds use defaults
30 DISP "PRESS A KEY"
40 W: GOTO W Wait here until keypress or end of delay.
50
60 Yes:OFF DELAY Someone is there.
70 OFF KBD
80 LINPUT "NEW VALUE?",A$
90 DISP "USING",A$
100 GOTO More
110
120 Gone:DISP Nobody there.
130 DISP "USING DEFAULTS"
140
150 More:WAIT 2
160 DISP "program continues "
170 END

The program waits a few seconds for a response. Processing continues with default values
if no key is pressed. Pressing a key will cause the program tg accept the new information.

9-20 The Real-Time Clock

Communicating with the Operator 10
Overview of Human I/O Mechanisms. .. 10-2

Other Factors ... 10-2
Displaying and Prompting .. 10-3

Displaying Messages: A Two-Step Process 10-3
Turning Off Unwanted Modes 10-3
Clearing the Screen .. 10-5
Determining Screen Width and Height. .. 10-7
Changing Alpha Height. .. 10-8
Displaying Characters on the Screen. .. 10-8

Custom Character Fonts .. 10-9
Character Cells. .. 10-9
Example of Changing One Character 10-13
Editing Supplied Fonts .. 10-14
Generating Sound. .. 10-16

Operator Input. .. 10-24
Softkey Inputs. .. 10-24
Using Knobs ... 10-32
Using Control Dials. .. 10-33
Accepting Alphanumeric Input 10-36
Get Past the First Trap. .. 10-36
Entering a Single Item. .. 10-38
LINPUT with Multiple Fields. .. 10-41
Yes and No Questions ... 10-43

Example Human Interfaces ... 10-45
An Expanded Softkey Menu. .. 10-45
Moving a Pointer. .. 10-51
An Example Custom Keyboard Interface 10-54

Communicating with the Operator 10
It is very unlikely that a computer could perform useful work without receiving input.
Much of that input is from electronic devices: instruments, mass storage devices, other
computers, and so on. Because a computer is an electronic device, it is very good at
these tasks. There are also times when the computer's input must come from the human
sitting in front of the computer.

Good human interfaces do not happen without some effort from the programmer. In
many programs, at least one fourth of the code is dedicated to human interface. It is
not unusual to use one half of a good program for operator interaction, error trapping,
explanatory messages, etc. Obviously, these estimates depend upon many factors, like
the task being performed and the intended operators. If you are the only person who
uses a program, that program may not need a friendly human interface. However, the
demands for a good human interface rise greatly if a program is used by many people
with different backgrounds. When the intended users do not understand computers, your
program must be very skillfully written so that it does not intimidate the operator or
make great demands on their ability to guess what your program wants from them.

Communicating with the Operator 10-1

Overview of Human I/O Mechanisms
Here are the elements of a human interface that this chapter discusses:

• Sending messages to the operator:

• Displaying text for the operator to read (DISP and PRINT).

• Changing display fonts (CHRX, CHRY, and SET CHR).

• Generating sound (BEEP and SOUND).

• Handling messages from the operator:

• Soft keys (ON KEY, KEY LABELS, LOAD KEY, SET KEY)

• Rotary pulse generators (ON KNOB and ON CDIAL)

• High-level alphanumeric input (INPUT, LINPUT, ENTER)

• Low-level keyboard input (trapping key codes with ON KBD)

Other Factors
These are certainly not the only elements in a human interface. A good human interface
carl involve the placement of hardware, use of graphic and voice communication, data
base management, artificial intelligence theories, and much more. However, you must
begin somewhere. Hopefully, the hints in this chapter will help your present programs
and whet your appetite for more elaborate human interfaces in future programs.

10-2 Communicating with the Operator

Displaying and Prompting
One of the simpler things to do for the operator is to display an explanation of what is
happening or what is expected. In the early days of computers, memory was a scarce and
expensive resource. Programmers were encouraged to use as little memory as possible.
It seemed as though there was a contest to see who could put the most information into
a 32-character message.

Please realize that those days are over. For example, there is no significant restriction
on program size: the standard machine is shipped with over a half-million characters of
memory, and there are usually at least 18 lines of 80 characters visible at all times on
the display. If you are sending your operator tiny, cryptic messages, you are making an
unnecessary mistake.

Displaying Messages: A Two-Step Process
Giving instructions to the operator can be viewed as two basic steps:

1. Prepare to use the display by putting it into a known, usable state (disable any
unwanted modes, clear the screen, etc.).

2. Use as much of the display as necessary to give readable instructions.

Turning Off Unwanted Modes
There are several modes that affect the appearance of the display. Each is very useful
for certain purposes; however, some are undesirable for the display of simple text. It
is embarrassing to the programmer and confusing to the operator when two or more
displays combine in an unplanned manner. The culprits are "left-over" alpha and "left
over" graphics. Left-over alpha can occur for a number of reasons:

• The operator may have used the knob or cursor-control keys to scroll text from the
off-screen buffer.

• With TABXY, the PRINT statement overwrites any old characters on a line with
new characters. However, if the old text is longer than the new text, the end of
the old line remains visible. Therefore, the following statements do not print three
blank lines. They just move the print position. Any old lines will still be on the
screen.

100 PRINT
110 PRINT
120 PRINT

Communicating with the Operator 10-3

• With color displays, each of the different display regions may have a different color
alpha pen in effect .

• If the PRINTALL mode is on, all interactions on the display line and keyboard
input line are sent to the PRINT/OUTPUT area; this may interact in an undesired
manner with your program's display.

Most, but not all, of these modes are discussed in this section. For a complete listing of
all display modes, see the "Display Interfaces" chapter of BASIC Interfacing Techniques.

Disabling and Enabling Alpha Scrolling
If you want to disable the cursor-control keys (such as [!] and [TI) from scrolling the
alpha display, execute this statement:

CONTROL KBD. 16; 1

This will prevent the user from interfering with which part of the alpha buffer is currently
shown. This techniques is useful, for instance, to prevent scrolling graphics when using
a bit-mapped alpha display (on which graphics and alpha are on the same raster).

If scrolling is currently disabled and you want to re-enable it, execute this statement:

CONTROL KBD.16;O

Disabling Printall Mode
The PRINTALL mode is canceled by writing a zero in the PRINTALL control register
(1). The following statement turns off the PRINTALL mode.

CONTROL KBD.1;O

Disabling Display Functions Mode
The DISPLAY FUNCTIONS mode can make a display look sloppy. The following
equivalent statements turn off the DISPLAY FUNCTIONS mode.

CONTROL CRT.4;O
DISPLAY FUNCTIONS OFF

10-4 Communicating with the Operator

Softkey Labels
The following statement displays the softkey labels on the bottom of the screen:

KEY LABELS ON

For most programs that use softkeys (discussed later in this chapter), this is a desirable
mode to be in.

If you have an ITF keyboard, you can select which softkey menu to display:

SYSTEM KEYS
USER 1 KEYS
USER 3 KEYS

These menus are also discussed later in this chapter (as well as in the "Introduction to
the System" chapter of the Using the BASIC System manual).

Clearing the Screen
You can use either of the following (equivalent) statements to clear the display screen:

CLEAR SCREEN
or
CLS

If you do not want to load the CRTX binary, you can use an OUTPUT to the keyboard
to accomplish the same purpose:

OUTPUT KBD;CHR$(255)&IK";

(The "Keyboard Interfaces" chapter of BASIC Interfacing Techniques fully describes the
details of keyboard outputs.)

Communicating with the Operator 10-5

Printing Blank Lines
To print a line that is blank is a different operation from sending only an end-of-line
sequence. A PRINT statement with no parameters simply sends an end-of-line sequence.
If the print position is at the start of a blank line when PRINT is executed, that line
remains blank. However, if there is text on that line, thr text remains. This is not to
say that it is "wrong" to use PRINT with no parameters. It just means that you cannot
guarantee the output of a blank line by using PRINT with no parameters.

To print a blank line, blanks must be printed. One of the most convenient ways to send
a line full of blanks is the TAB function. Here is a sequence that prints three blank lines:

100 STATUS CRT.9;Screen_width
110 PRINT TAB (Screen_width)
120 PRINT TAB (Screen_width)
130 PRINT TAB (Screen_width)

Disabling and Clearing Graphics Rasters
Left-over graphics can be turned off by the following statement (on displays which have
separate alpha and graphics rasters):

GRAPHICS OFF

To clear the graphics raster, use this statement:

GCLEAR

Series 300 color (mul ti-plane) displays may be configured to use different planes for alpha
and graphics so as to simulate the separate alpha and graphics rasters of some Series 200
displays.

SEPARATE ALPHA FROM GRAPHICS

Or you can also re-configure these displays so that alpha and graphics are not separate:

MERGE ALPHA WITH GRAPHICS

For further information concerning this topic, see the section called "Multi-Plane Bit
Mapped Displays" in the chapter called "Using Graphics Effectively" of BASIC Graphics
Techniques.

10-6 Communicating with the Operator

Determining Screen Width and Height
The first step in displaying information on the screen is to determine its size. Programs
written in this BASIC language can be used on either 50, 80 or 128-column displays.
The height of displays may also vary. There are CRT status registers that contain the
width and height of the screen.

If you are developing programs that will be transported between computers, status
register 9 will be very helpful to you. The screen width is useful in centering displays,
labeling softkeys, formatting tabular data, and other display tasks. The following
statement places the screen width in a variable called Crt_width.

100 STATUS CRT,9;Crt_width
110 OISP "Screen width =";Crt_width
120 END

There is also a SYSTEM$ function that returns useful information about the CRT. The
specifier "CRT ID" returns a string containing (among other things) the screen width
and availability of highlights and graphics. The following example shows one method of
determining the screen width with SYSTEM$.

120 Test$=SYSTEM$("CRT 10")
130 Crt_width=VAL(Test$[3,6])
140 OISP "Screen width =";Crt_width
150 END

You can also determine the screen's "current height," which is the number of lines
currently enabled to display alpha information:

150 STATUS CRT,13;Height
160 DISP "Screen width =";Crt_width
170 ENO

The number of lines returned includes key labels, system message line, keyboard input
line, DISP line, and OUTPUT area. See the subsequent discussions of display regions
for locations of these lines.

Communicating with the Operator 10-7

Changing Alpha Height
You can also change the alpha height by writing to CRT control register 13; the range
is 9 lines through the maximum for your particular display (25, 26 or 48).

These (equivalent) statements set the alpha height to 10 lines (which yields a 3-line
output area, since the 10 lines begin at the KEY LABELS area at the bottom of the
screen):

CONTROL CRT.13; 10
o
ALPHA HEIGHT 10

This is a handy way of specifying which part of the display is to be used for alpha and
scrolling (particularly useful when using a bit-mapped alpha display and you want to use
the top of the screen for graphics and the bottom part for text).

In order to return to the default alpha height, execute this statement:

ALPHA HEIGHT

Displaying Characters on the Screen
There are five regions of the display available for displaying messages for the operator.

Run Indicator

i:

I Output Area

} Blank Line

} Display Line

{

18 = default for 80 x 25 displays

19 = default for 80 x 26

41 = default for 128 x 48

} Keyboard Area (two lines)

} Message Results Line

} Softkey Labels (two lines)

Each requires a slightly different method of displaying characters on the CRT screen:

• PRINT and OUTPUT CRT -place characters in the "Output Area" of the screen.

• DISP-places characters on the "Display Line".

• OUTPUT KBD-places characters in the "Keyboard Input Line", just as if you
had typed them in at the keyboard.

10-8 Communicating with the Operator

• There is no direct method of displaying characters in the "System Message/Results"
line (but you can do it indirectly, such as with
OUTPUT KBD; II Message".kCHR$ (255).k I E" ;).

• ON KEY -allows you to put characters in the "Softkey Labels".

Since these topics are fully covered in the "Display Interfaces" chapter of BASIC
Interfacing Techniques, they wiH not be discussed here. See that chapter if you are
not already familiar with these keywords.

Custom Character Fonts
With displays on which the alpha and graphics share the same raster-usually called
"bit-mapped alpha displays" -you can re-define the bit patterns for characters. Here are
the displays that have this capability:

• Series 200 displays-only the Model 237 display.

• Series 300 displays-all displays except the HP 98546 Display Compatibility Inter
face.

This display architecture makes possible the definition of custom characters (and entire
fonts), with the ability to change them under program control.

Character Cells
Before getting into how to change the pixel (dot) patterns in individual characters, let's
see how characters are displayed on bit-mapped alpha screens.

Communicating with the Operator 10-9

Display characters are produced by turning on patterns of pixels-picture elements l or
dots in the shape of the intended characters. The following diagram shows the patterns
for the letter "All for each of the two sizes of bit-mapped alpha displays:

Charactor Cell of a
Medium-Resolution Display

""~---12 ------...~

•

10-10 Communicating with the Operator

-r-

.. ~

15

" -~

Charactor Cell of a
High-Resolution Display

__ r-

~~

• • • • • • • • • • • • • • • •
16 • • • • • • • • • •

" _

Determining Character Cell Size
As shown in the above diagrams, the character cell sizes are:

• 12 x 15 for medium-resolution bit-mapped displays

• 8 x 16 for high-resolution bit-mapped displays

You can determine the size of the character cell on the display currently in use with these
BASIC functions:

• CHRY returns the height of the character cell (i.e., number of rows).

• CHRX returns the width of the character cell (i.e., number of columns).

For instance, here are the results of executing these functions on a high-resolution display:

CHRX I Return I
8

CHRY I Return I
16

Character Font Storage in Memory
For each pixel of a character, there is one location in frame-buffer memory used to store
the pixel.

• On monochrome displays, only the least-significant bit of this frame-buffer memory!
location is used (one bit "deep", "single-plane" buffer).

Pixel drawn in
Pen 1

Only the least-significant bit is
used on monochrome displays.

t--+-+-........,::;-+--+--+--~ Pixels on monochrome displays
are either: on/white (bit 1)

or: off/black (bit - 0)

1 The frame buffer is an area of memory on the display card used to hold the pixel patterns shown on the
screen (frame). It also has some memory which is not displayed.

Communicating with the Operator 10-11

• On color displays, several of the least-significant bits are used- one for each plane;
for instance, if it is a four-plane display (on which 16 colors can be displayed
simultaneously), the low-order four bits of this INTEGER are used.

Pixel drawn in
Pen color 6

Soft Font Usage

Pixels can

be colored: 0000 pen

0001 pen

0010 pen

1111 pen

display)

0 (default black)

1 (default white)

2 (default red)

15 (default = brown)

The font used by the BASIC system is stored in a fixed location of the undisplayed
portion of frame-buffer memory!. Whenever a character is to be displayed, the display
driver (CRTB) reads the bit pattern for the character, and then writes that pattern into
the display buffer (the read/write memory that is displayed on the screen).

This is the character font used by the system at the following times:

• Whenever you type characters at the keyboard.

• Whenever PRINT is executed (when PRINTER IS CRT is in effect).

• Whenever DISP is executed.

• Any time the system writes characters on the display (such as when using CAT,
when the system reports an error, when softkey labels are displayed, etc.).

If you change one or more characters of this font, these characters will be used by the
system in all of these operations which the system subsequently performs.

1 These locations are read by the "Read_chrs" subprogram of the FONT _ED utility, which is explained
in the "BASIC Utilities Library" chapter of the Installing and Maintaining the BASIC System manual.

10-12 Communicating with the Operator

Restoring the Default Soft Font
The next few sections show you how to modify the font currently in memory. If you
should for any reason want to restore the default font (the one in place when BASIC is
booted), execute the following statement:

CONTROL CRT,21;0

This statement re-initializes the font to its boot-time default character set.

Example of Changing One Character
The following program shows an example of setting a new bit pattern for the character
A (the example is for a high-resolution monochrome1 display, which has a 16 row
by 8 column character cell). Note that there is an easier way to do this, as shown
in subsequent sections; however, this example is useful to show how the soft-font re
definition mechanism (SET CHR) works.

100 DATA 0,0,0,0,0,0,0,0
110 DATA 0,0,0,0,0,0,0,0
120 DATA 0,0,0,0,0,0,0,0
130 DATA 0,0,0,0,0,0,0,0
140 DATA 0,0,0,0,0,0,0,0
150 DATA 0,0,0,0,0,0,0,0
160 DATA O,O,O,:::U::go,o,o
170 DATA 0,0,::1::,0,0,::1::,0,0
180 DATA O,::t::,<>,O,O,O,X:,O
190 DATA 0 ,::;:.a::a::~::~::a::a::, 0
200 DATA 0,::['0,0,0,0,::1::,0
210 DATA oJ.L,o,o,o,O,&~O
220 DATA O,:!:~O,O,O,O,:~\O
230 DATA 0,0,0,0,0,0,0,0
240 DATA 0,0,0,0,0,0,0,0
250 DATA 0,0,0,0,0,0,0,0
260
270 INTEGER Char_cell(1:16,1:8)
280 READ Char_cell(*) Read data above into array.
290
300 PRINT "Before character re-definition: ";"A A A A"
310 PRINT
320 SET CHR NUM("A"),Char_cell(*)
330 PRINT "After character re-definition: ";"A A A A"
340 PRINT
350 END

For color displays, the example should use -1 instead of 1.

Communicating with the Operator 10-13

Lines 100 through 250 specify the bit patterns of the new character.

Line 270 dimensions an array used to store these bit patterns (one INTEGER element
per pixel.

Line 280 rearls these bit patterns specified in the DATA statements.

Line 300 shows what the character looks like before it is re-defined.

Line 320 changes the pattern currently used for the character "A" to the pattern read
from the DATA statements.

Line 330 prints four A's to show what the character looks like after it has been re-defined.

Editing Supplied Fonts
The FONT _EDitor utility on the BASIC Manual Example8 Di8c provides a method of
reading, decoding, and editing bit patterns. This section briefly describes the capabilities
of this utility. For information on how to use the FONT _EDitor, see the "BASiC Utilities
Library" chapter of the In8talling and Maintaining the BASIC SY8tem manual.

Font Editor Utility Capabilities
Here are the tasks we need to describe how to perform using the supplied Font Editor
Utility:

• Editing bit patterns of characters in the font

• Storing the edited font (in a file)

• Loading the font into memory

• Restoring the default font (the one that was in memory at the time that the BASIC
system was booted)

10-14 Communicating with the Operator

Re-Defining an Entire Font
The SET CHR statement was used in a preceding example to re-define one character. It
can also be used to re-define an entire font. The difference is that the array that stores
the bit patterns will have another dimension. whirh is used to index the characters in
the font.

870 ALLOCATE INTEGER Entire_font(0:256,l:CHRY,l:CHRX)

940 SET CHR O,Entire_font(*)

For a closer look at this type of technique, see the description of the Font Editor Utility
in the BASIC Utilities Library manual.

Communicating with the Operator 10-15

Generating Sound
Most Series 200/300 computers have the ability to generate single tones! .

• On computers that are not equipped with an HP-HIL interface, the sound capability
is limited to the BEEP statement. BEEP provides you with the ability to generate
tones of software-selectable frequency and duration. For instance, the following
statement generates a tone of approximately2 1220 Hz for 0.25 seconds:

BEEP 1220 , 0.25

• On computers equipped with an HP-HIL interface, there is a sound-generator chip3

which you can access from BASIC with the SOUND statement. You can use it in
one of two modes:

• When using simple numeric parameters (not a numeric array), SOUND allows
you to generate a single tone; you may software-select which tone generator to
use, as well as its frequency, volume, and duration. For instance, the following
statement uses voice 1 to generate a tone at frequency 1220 Hz, of maximum
volume, and with duration of 0.25 seconds:

SOUND 1,1220,15,0.25

• When using an INTEGER array, SOUND takes values from the array and
interprets them in a special way to produce a series of tones on one or more
of the available voices. Examples of this use are given subsequently in this
section.

The remainder of this section describes how to use the SOUND statement.

1 These tones are actually square waves that are sent through a simple power-amplifier circuit to a low
power speaker, if present.

2 See the BASIC Language Reference for the range of frequencies and durations available with this
statement.

3 The chip is a TI SN76494 Four-Voice Sound Generator.

10-16 Communicating with the Operator

Example of Single Tones
Load and run the "CScale" program from the Manual Examples disc. Here is a listing
of the program. It plays all eight major notes in the key of the C.

120 DATA C.C#.D.D#.E.F.F#.G.G#.A.A#.B.C
130
140 Base_freq=523.25 Base_freq = C
150 FOR Note=O TO 12
160 Freq=Base_freq*2-«Note)/12)
170 READ Note$
180 IF NOT POS(Note$.I#") THEN! "Natural" note.
190 PRINT USING 200;Note$.Freq
200 IMAGE INote: I .X.2A.3X.IFrequency:".2X.4D.DD
210 SOUND 1.Freq.8 .. 5
220 WAIT .5
230 END IF ! Natural note.
240 NEXT Note
250
260
270 END

Here are the printed results of running the program.

Note: C Frequency: 523.25
Note: D Frequency: 587.33
Note: E Frequency: 659.26
Note: F Frequency: 698.46
Note: G Frequency: 783.99
Note: A Frequency: 880.00
Note: B Frequency: 987.77
Note: C Frequency: 1046.50

Here is a line-by-line description of the program:

Line 120 lists the notes of the scale.

Line 140 specifies the frequency of middle C. (This will be used in calculating subsequent
frequencies.)

Lines 150 through 240 define a loop which reads the notes in the DATA statement and
calculate the corresponding frequency (if the note is a "natural" note-not a sharp or a
flat) .

Lines 190 and 200 print the note and its calculated frequency.

Communicating with the Operator 10-17

Line 210 generates the note. (The actual frequency often does not exactly match the
specified frequency. See SOUND in the BASIC Language Reference for a table of target
frequencies and errors.)

Line 220 executes a WAIT statement, which allows the note to finish playing before the
next note is sent to the sound chip.

A Simple Music Editor
The "InputSong" program on the Manual Examples disc re-defines the keyboard to
produce notes in the equal-tempered scale. Here is the softkey menu shown by the
program (when using an ITF keyboard), along with the things you can do with the
program:

l Play Load Store Done j
• Input a sequence of tones (see key definitions below)

• Play the notes back (press [IT] or [ill)

• Load notes from a file (@] or [ill)

• Store them in a file (@] or [TI])

• Quit the program ([ill or [ill)

10-18 Communicating with the Operator

Here are the definitions of the keys provided by the program:

C F G

1'000011
EJEJEJEJ
u~~EJ

EJ~~O
D~U~
~oU

If you want to play an existing song, select the Read (@]) option and then type in the
file name OdeToJoy. It plays a short song.

The program has been kept simple for the sake of brevity-very simple. It would
be fairly easy to enhance the program's capabilities: allow longer songs, add some
elementary editing capabilities, as well as some graphic output to the program, etc.
Such modifications, to use a familiar phrase, "are left as an exercise for the reader."

Communicating with the Operator 10-19

Arrays of Sound Instructions
As mentioned earlier, the SOUND statement also has the ability to play several tones,
based on instructions given in an array specified in the statement.

The values in the array are interpreted by the SOUND statement as follows:

Instruction Sound Chip Effect Produced

o Exit the SOUND statement (and stop reading array elements)

1 to 3 The specified voice is to be used; also says to read the next three array elements,
and interpret them as follows, respectively:

• tone number--used to set the frequency
(frequency = 83 333 / tone number).

• volume-O = off; 1 thru 15 are lowest to highest volume.

• duration-values 0 thru 255 are interpreted as follows:

o is interpreted as "sound indefinitely" .

1 thru 255 are interpreted as lO's of milliseconds
(i.e., 1/100 second);

4 Specifies that the noise voice is to be used; also says to read the next three
array elements and interpret them as above (the same as with voice numbers 1
to 3), except that the tone number parameter is interpreted as follows:

5 to 8

9

o => periodic noise; fast shift register clock;
1 => periodic noise; medium shift register clock;
2 => periodic noise; slow shift register clock;
3 => periodic noise; clock shift register with voice 3;

4 => white noise; fast shift register clock;
5 => white noise; medium shift register clock;
6 => white noise; slow shift register clock;
7 => white noise; clock shift register with voice 3.

Wait for voice 1 to 4, respectively, to finish sounding before executing the next
sound instruction (if any).

Read the following array element, and wait the specified interval
(100 microseconds x that element's value) before executing the
next instruction (if any).

10-20 Communicating with the Operator

If the end of the array is reached on one of these boundaries, then the SOUND statement
terminates normally; however, if the last element of the array has been reached and the
BASIC system expects to read more values, then error 17 will be reported (subscript out
of range).

Executing Example SOUND Instructions
Here is a simple program that will allow you to experiment with some of these
instructions. It is called "SoundInstr", and it is also on the Manual Examples disc.

120 OPTION BASE 1
130 ALLOCATE INTEGER Sound_array(10)
140
150 DATA 1,1000,15,100,5,2,500,12,50,0
160 READ Sound_array(*)
170 LOOP
180 OUTPUT KBD;Sound_array(*), ! Put "template" on input line.
190 INPUT "Edit SOUND array parameters.",Sound_array(*)
200 !
210 SOUND Sound_array(*) ! Now execute instructions.
220 !
230 END LOOP
240
250 END

After loading the program (or typing it in), run it and begin to experiment by varying
the instructions. (Use the ~ key to terminate the program.)

The first time through the loop, merely press I Return I to execute the instructions shown
on the keyboard input line. Here are the default instructions, with an explanation of
their effects.

Edit SOUND parameters:

1, 1000, 15, 100, 5, 2, 500, 12, 50, 0, I Return I
~ '''"---_,v " ~ '''---.... v.,----

! ! \
Voice=1
Freq.=83333/1000
Vol. =15
Dur. =100 ms

Wait for
voice 1
to stop

Voice=2 Exit SOUND
Freq.=83333/500 statement
Vol. =12
Dur. =50 ms

Communicating with the Operator 10-21

The second time through the loop, move the cursor to the left and modify one or two of
the parameters, and then press I Return I to execute the instructions. For instance, this is
a legal set of instructions:

1, 1000, 15, 100, 6, 2, 500, 12, 50,

t
Changed only

this parameter.

0, I Return I

Since the only parameter that was changed was the 6, the sounds on voices 1 and 2 are
now played simultaneously (instead of waiting for voice 1 to stop before starting voice
2). Note that voice 2 (the higher pitch) stops first, since it had the smaller duration
parameter.

The third and subsequent times through the loop, you can do either of the following
things:

• Press I Return I to re-play the preceding set of instructions.

• Move the cursor (8] or 0), modify one or more of the instructions (type over
existing characters, or use I I nsert char 1/1 Delete char I), and then press I Return I to hear
the instructions' effects.

10-22 Communicating with the Operator

Here are several additional examples of instruction sequences and their effects.

2, 500, 12, 150,
v

/
Voice=2
Freq.=83333/500
1r_,
VV.1.. =12
Our. =1.5 s

6,
'-.-"

I
4, 5, 15, 50,

v

f
White noise
Medium clock rate
1'_' VV.1.. =15
Our. =0.5 s

0, I Return I
'-.-"

\
Exit SOUND
statement

Wait for
voice 2
to stop

4, 4, 15, 10,
v

t.
White noise
Fast clock rate
Vol. =15
Our. =0.1 s

4, 5, 12, 50 , I Return I 9, 1000
~

r

--"v.-"\ I
White
Slow
Vol.

noise No exit (0) instruction
clock rate
=12

Our. =0.5 s

required, since
last array element
was reached.

Delay for
100 ms

(1000*100j.ls)

Example Song (Using SOUND Array Parameters)
The program in the file named "SoundArray" on the Manual Examples disc produces
a song using the SOUND statement and an array of instructions. Load and run the
program.

Communicating with the Operator 10-23

Operator Input
After sending messages to the operator about what you want, you can expect that you
will get some sort of meaningful feedback. This section summarizes the different methods
of handling operator inputs.

• Softkeys (ON KEY, KEY LABELS, LOAD KEY, SET KEY)

• Rotary pulse generators (ON KNOB and ON CDIAL)

• High-level alphanumeric input (INPUT, LINPUT, ENTER)

• Low-level keyboard input (trapping key codes with ON KBD)

Softkey Inputs
Softkeys are the keys at the top of your keyboard labeled [ill through [][] (on ITF
keyboards) or CEQ] through ~ (on 98203 keyboards)

There are two types of uses of softkeys:

• Typing-aids keys: these keys generate sequences of alphanumeric and system
keystrokes, which will save you time when repeatedly typing in information or
commands from the key board

• Program-interrupt keys: while a program is running, the softkeys can generate
interrupts (when ON KEY defines service routines for the keys)

Note that if a soft key does not have a current ON KEY definition, it can still be used as
a typing-aid.

Since both of the8e topic8 are already di8cu88ed in other place8 of the BASIC manual
set, they will not be discussed here. For further information about:

• Typing-aid keys: see "Introduction to the System" in the Using the BASIC System
manual.

• Program-interrupt keys: see the ;'Program Structure and Flow" chapter of the
BASIC' Programming Techniques manual. and th(' "Interrupts and Time-outs"
chapter of BASIC Interfacing Techniques.

However, since programmatically re-defining the softkeys is not an appropriate topic for
Using the BASIC System manual, it will be discussed here.

10-24 Communicating with the Operator

Defining Typing-Aid Softkeys Programmatically
There are two ways to programmatically re-define the typing-aid definitions of softkeys:

• Use LOAD KEY to load definitions from a file (for all keys). Note that LOAD
KEY with no arguments restores the default definitions of the softkeys.

• Use SET KEY to load definitions from a simple string (one key) or from a string
array (ranges of keys, or all keys).

The main differences between these statements are shown in the following table:

Source of
Method Definitions N umber of Keys Defined

LOAD KEY BDAT file All existing definitions are first cleared; then only keys with
definitions in file are re-defined.

SET KEY Simple string, or Single keys or ranges of keys may be re-defined.
string array

Listing Current Typing-Aid Softkey Definitions
Before getting started into how to change typing-aid definitions, it is handy to have a
tool for checking the current definitions. The LIST KEY statement allows you to show
these current definitions. The destination is either the current PRINTER IS device:

LIST KEY

or the specified device:

LIST KEY #Dev_selector

Storing and Loading Typing-Aids from Files
To store the current typing-aid definitions, use the STORE KEY statement. STORE
KEY first creates a BDAT file of the specified name, and then stores two types of
information in this file for each key (written in FORMAT OFF! representation):

• A key number (2-byte INTEGER)

• The corresponding typing-aid softkey's definition (a 4-byte string-length header,
followed by a string of ASCII characters that comprise the key's definition)

1 For details of FORMAT OFF attribute, see the BASIC Language Reference description of ASSIGN; or
see the BASIC Interfacing Techniques description in the "I/O Path Attributes" chapter.

Communicating with the Operator 10-25

In order to load these keys hack into the computer. usr thr LOAD KEY statrnwnt.
LOAD KEY first clears all current typing-aid definitions. and then loads new typing-aid
softkey definitions from a BDAT file.

This filp was created in one of two ways:

• By using STORE KEY (after making sure that all typing-aid soft key definitions
were as desired): for example:

STORE KEY "SOFTKEYS"

• By using OUTPUT to send thr same information to a BDAT file. Here is an
example program that does essentially what the preceding STORE KEY statement
does (assuming the same typing-aid definitions, of course):

100
110
120
130
140
150
160
170
180
190
200
210

! File "LOAD_KEY"
DIM Key_def$[160]
INTEGER Key_number
CREATE BOAT "SOFTKEYS".3
ASSIGN ~Keys TO "SOFTKEYS"
FOR 1=1 TO 8

READ Key_number.Key_def$
OUTPUT ~Keys;Key_number.Key_def$

NEXT I
ASSIGN ~Keys TO *
LOAD KEY "SOFTKEYS"

220 STOP

File name of this program.
In case of LONG definitions.
16-bit integer.
Create a 3-record file.
Open file (default=FORMAT OFF).
For all softkeys (ITF keyboard) .
Read key# and definition.

! Write them in file.

Now install the definitions.

230 DATA 5."that".8."work!".4."you".7."would"
240 DATA 2."I".1."See?".3."told".6."this"
250 END

Here are the resultant softkey labels on an ITF keyboard. (Details about the
number of characters available for soft key labels are shown in a subsequent section.)

~~_s_e_e_? ______ I ________ t_O_Id ______ Y_O_U _________ t_ha_t ______ t_h_iS ______ W_O_U_ld _____ w_o_r_k_' __ --',J

10-26 Communicating with the Operator

The proper way for a program to handle typing-aid definitions when it does not want
to make permanent modifications is to store the existing definitions in a file and reload
them at exit time. Here is an example of how this can be done:

10 INITIALIZE ": ,0",9
20 STORE KEY "Key_defs: ,0"
30 DIM A$(23) [1]
40 SET KEY O,A$(*)
50 PAUSE
60 LOAD KEY "Key_defs: ,0"
70 INITIALIZE ": ,0",0
80 END

create a memory volume to hold the file
store the key definitions in the file "Key_defs"

redefine all the keys to undefined

reload the old definitions of the keys
reclaim the memory volume storage

Note that LOAD BIN and memory volumes use a mark/release stack, so that the memory
volume storage can only be reclaimed if:

• no LOAD BIN was done after the INITIALIZE in line 10 above

• other memory volumes INITIALIZEd after it have heen reclaimed

I t should be released even if the second case mentioned above is not satisfied, since a
subsequent release of the later volumes will reclaim as many released memory volumes
as it can.

Using SET KEY
SET KEY allows you to either define a single typing-aid or to define multiple typing-aids,
depending on the string parameter you specify in the statement.

The following example program lines define typing-aid softkey @] (CE[)) to clear the
current line and produce some characters:

100 String$=CHR$(255)&"#"&"Some characters"
110 SET KEY 2,String$

The softkey label depends on the first few letters of the string Some characters. (The
characters used for the label vary for different keyboards, as well as other factors. See
the subsequent table for details.)

Communicating with the Operator 10-27

The following example program defines typing-aid soft keys [ill through [][) (CIT] through
[E[]) exactly as in the preceding example.

100 ! File "SET_KEY"
110 DIM Key_def$(1:8) [160]
120 INTEGER Key_number
150 FOR 1=1 TO 8

File name of this program.
In case of LONG definitions.
16-bit integer.
For all softkeys (ITF keyboard).

160 READ Key_number
170 READ Key_def$(Key_number)

Read key number (from DATA statements).
Read corresponding key definition.

180 NEXT I
200 SET KEY 1.Key_def$(*) Now install the definitions.
210
220 STOP
230 DATA 5."that".8."work!".4."you".7."would"
240 DATA 2."I".1."See?".3."told".6."this"
250 END

Here, again, are the resultant soft key labels:

l See?
I told you that

Softkey Labels

this would work! j
The following table shows the number of characters available for soft key labels for each
type of keyboard and display used with Series 200/300 computers.

ITF Keyboard
in 98203

Display Type ITF Keyboard KBD CMODE Keyboard

High-resolution display 16 14 16
(128-columns) (2x8) (2x7)

Medium-resolution display 16 14 14
(80-columns) (2x8) (2x7)

Model 226 display nla Ilia 8
(50-columns)

Note that the figures of "2 x 8" and "2 x 7" show that there are 2 lines of 8 or 7 characters
each.

10-28 Communicating with the Operator

Some strings produce special effects if present at the beginning of the key label text. Most
of these character sequences represent "System key" presses, such as I CLR LN I, (I Clear line 1
on an ITF keyboard), and I STEP I. You can type these characters into a typing-aid key by
holding down the I CTRL 1 key while pressing the desired system key. The two-character
key code produced contains a leading CHR$(255), which shows up as an inverse video
[3, followed by the character shown in the following table.

System Key
Characters Represented Effect on Key Label

[38 I STEP 1 ([ill) Step displayed in key label (if these are the only 2
characters in the label).

[3C I CONTINUE I([ill) Continue displayed in key label (if these are the only
2 characters in the label).

[3R, I RUN 1 ([ill) RUN displayed in key label (if these are the only 2
characters in the label).

[3A I PRT ALL 1 (00) Print All displayed in key label (if these are the only
2 characters in the label).

[3F I DISPLAY FCT~ ([@) Display Fctns displayed in key label (if these are the
only 2 characters in the label).

tenttk$ I ANY CHAR 1 ([ill) Any Char displayed in key label (if these are the only
2 characters in the label).

[3# I CLR LN 1 (I Clear line I) Not displayed in key label (if they are the 1st two
characters in the label).

~ "U nderline" character If the key label has two rows, and if this character is
CHR$(132) (not a system key code) either the 1st character in the key label or immediately

follows [3#, the system draws a line between the
top row and the bottom row of key label characters.
(Otherwise, no effect on key labels.)

Communicating with the Operator 10-29

Examples
On anD ITF keyboard, [IT] clears the current line and produces the characters EDIT. Tlw
contents of this typing-aid key are:

l [3#EDIT J
__ E_d_it_i_n_g_k_e_

Y

__ l __ __

The label looks like this:

L EDIT J
As another example of an ITF keyboard key, [gJ produces a I CONTINUE I System key press.
Its contents are only the following two characters:

l ~iting key 2 J
Here is the corresponding label:

l ~~ j

10-30 Communicating with the Operator

Note that in the preceding "System key sequences" table, the first five of the two
character sequences must be the only two characters in the softkey's definition. If there
are other characters in the definition, then the label shown in the table will not be
displayed; the subsequent characters are instead displayed. For instance, the following
typing-aid key contents would produce the following label:

I ~ Not Pretty I

l Editing key 2 j
l ~ Not j Pretty

As another example, suppose that you have an ITF keyboard and an 80-column display.
Since the key labels can have 16 characters, in 2-row-by-8-column format, it might be
desirable to use the underline character to split the rows. This typing-aid key contents
would produce a two-row key label:

l
~Top Bottom

J Editing key 2

l .!!L-
Bottom J

Communicating with the Operator 10-31

Using Knobs
The ON KNOB and GRAPHICS INPUT IS statements allow you to programmatically
sense knob rotation. Knob inputs can be received from built-in knobs on 98203-type
keyboards, or from HP-HIL knobs, and they can also be received from a mouse. This
section only discusses how to trap knob rotation by using ON KNOB. See the "Interactive
Graphics and Graphics Input" chapter of BASIC Graphics Techniques for examples of
using GRAPHICS INPUT IS.

The following program is a very short example that demonstrates a real-time interaction
between the knob and the CRT. If you run this example program and turn the knob.
you will see the kind of interaction that might be used for cursor control in a text editor,
for instance. Obviously, a real cursor-control routine would be much more sophisticated,
but this demonstrates the basic idea.

100 ON KNOB .1 GOSUB Move_blip
105 STATUS CRT.13;Alpha_height
110 Spin: GO TO Spin
120 !
130 Move_blip:
140 PRINT TABXY(Spotx.Spoty);" ".
150 Spotx=Spotx+KNOBX/5
160 Spoty=Spoty+KNOBY/5

Erase old 'blip'.
Scale knob inputs.

170 IF Spoty<l THEN Spoty=l Check range.
180 IF Spoty>Alpha_height THEN Spoty=Alpha_height
190 IF Spotx<l THEN Spotx=l
200 IF Spotx>50 THEN Spotx=50
210 PRINT TABXY(Spotx.Spoty);CHR$(127); Display new 'blip'.
220 RETURN
230 END

This example uses a short infinite loop to wait for pulses from the knob (line 110).
Interrupts from the knob are enabled by the ON KNOB statement in line 100. The
service routine erases the old "blip", performs some scaling and range checking on the
knob input, and prints the new "blip".

10-32 Communicating with the Operator

The scaling and range checking are very important in this kind of interactive routine.
Humans expect their interface to have a certain "feel." Displays should not change too
quickly or too slowly. Certain kinds of displays are expected to change logarithmically,
others are expected to change linearly. The boundary values of variables are expected to
conform to the boundaries of the display. To initiate yourself to some of these concepts,
try modifying this simple example. Remove one or more of the range checking lines.
(An easy way to do this kind of editing is to place an exclamation point in front of the
statement. This turns it into a comment, removing it from the How of execution. But
it can be easily returned to the program by deleting the exclamation point.) Also try
changing the scaling factor in lines 150 and 160. Notice the "feel" that results from larger
and smaller increments, or even logarithmic scaling.

Using Control Dials
BASIC provides the ability to set up event-initiated branches upon detecting the rotation
of knobs on "Control Dial" devices (such as the HP 46085A Control Dial Box).

Keywords and Capabilities
There are three BASIC keywords for accessing multiple-knob devices:

• ON CDIAL-sets up and enables interrupt branch upon detecting rotation of one
of the control dials .

• CDIAL-interrogates the BASIC system to determine:

• Which knob(s) have been rotated?

CDIAL (0) returns a 16-bit status word, with each bit
corresponding to a dial number (for example,
bit 15 set indicates that dial number 15 has
been rotated, while bit 1 indicates the same for dial 1.

Communicating with the Operator 10-33

• How much a particular knob has been rotated?

COIAL (1) returns the number of pulses accumulated for dial 1;
COIAL(2) returns the number of pulses accumulated for dial 2;

COIAL (15) returns the number of pulses accumulated for dial 15.

Here is the numbering of dials used by CDIAL:

from HP-HIL
interface

in computer

1 st Control Dial Box
(in HP-HIL link)

2nd Control Dial Box
(in HP-HIL link)

device
(if any)

Lost row mops into

1 st row of 1 st device

• OFF CDIAL-disables interrupt branching for control dials.

Does BASIC See the Control Dial Box?
The "Verifying and Labeling Devices" chapter of the Installing and Maintaining the
BASIC System manual describes how to check to see that HP Human Interface Link (HP
HIL) devices have been properly connected to the computer, are functioning correctly,
and have been logged in by the BASIC system. If you have not performed that verification
yet, you should do so now.

10-34 Communicating with the Operator

An Example Control Dial Handler
The following example program sets up an interrupt service routine for one Control Dial
box. The program is named "CDials", and it is on the Manual Examples disc. The
program draws a box in a 3-dimensional coordinate system. The dials are defined to
perform the following actions:

Diall

Dial 2

Dial 3

Dial 4

Dial 5

Changes the "X" location of the box.

Changes the "Y" location of the box.

Changes the "Z" location of the box.

Changes the "X" size of the box.

Changes the "Y" size of the box.

Dial 6 thru 9 No action has been implemented.

Here is the pertinent part of the interrupt-service routine for the Control Dial box:

350
360
370
380
390
400

Bits=CDIAL(O) ! Read 16-bit status word (which knobs?)

IF BIT(Bits,l) THEN X=X+.l*CDIAL(l)
IF BIT(Bits,2) THEN Y=Y+.l*CDIAL(2)
IF BIT(Bits,3) THEN Z=Z+.1*CDIAL(3)

Dial 1 turned; change X pos.
2 turned; Y pos.
3 turned; Z pos.

410 IF BIT(Bits,4) THEN X_size=X_size+.2*CDIAL(4)
420 IF BIT(Bits,5) THEN Y_size=Y_size+.3*CDIAL(5)
430

Change "X size".
Change "Y_size".

Line 350 interrogates the "status word" to determine which dial(s) have been rotated.
For each one that has been rotated, the corresponding action is taken (lines 370 through
420). For instance, rotating dial 1 moves the box along the X axis (while the Y and Z
coordinates remain fixed). Rotating dial 5 changes the "Y size" of the box (while the "X
size" remains constant).

In order to implement additional functions, all you need to do is to add similar IF ... THEN
statements (or segments) that execute the appropriate action.

Communicating with the Operator 10-35

Accepting Alphanumeric Input
When possible, it is a very good choice to used only softkeys and knobs to get input
from the operator. It eliminates the need for translating an endless variety of typing
mistakes that might be supplied as input to program variables. Softkey input is very
tightly controlled by the programmer. Unfortunately, it is often necessary to leave that
comfortable, controlled world. Suppose you need to get a device selector from the
operator. You can't very well define a softkey that increments a variable and expect
the operator to press it 701 times!

The proper handling of keyboard input may be one of the most neglected areas of
applications programs. Programmers often fail to see the program as users see it,
underestimate the potential for operator error, and balk at the amount of code needed
to skillfully handle incoming text. However, you need not write input routines that can
parse broken English with misspelled words. The objective is simply to keep the program
from terminating and to take some unnecessary pressure off the operator. Obviously,
a program can't tell if the operator misspelled a file name until it accesses the disc.
Therefore, error trapping is an important part of handling operator input.

One task that can be performed by the input routine is anticipating common problems.
Many of these are covered in this section's examples, but here is a preview. You know that
exceeding the dimensioned length of a string gives error 18. So don't use short strings in
an INPUT statement. You know that CAPS LOCK might be on or off when the operator
starts typing. So use an uppercase function to compare input with constants. You know
that an operator is likely to just press I CONTINUE I if he isn't sure how to respond. So use
reasonable defaults and don't try to send a null string to a NUM function.

Get Past the First Trap
Before you can do anything with a keyboard input, the computer must satisfy the items
in the input list and complete the input statement. There are two keywords available for
accepting input from the keyboard line: INPUT and LINPUT. Let's start by looking at
the features of these two statements.

The main advantages of INPUT are:

• Either numeric or string values can be input.

• If a variable does not receive a value from the keyboard, the value of that variable
is left unchanged.

• A single INPUT statement can process multiple fields, and those fields can be a
mix of string and numeric data.

10-36 Communicating with the Operator

The INPUT statement can be powerful and flexible. When you know the skill level of the
person running the program, INPUT can save some programming effort. However, this
statement does demand that the operator enter the requested fields properly. To find
out the details of INPUT, see the BASIC Language Reference. This section discusses
an alternative to INPUT that can make fewer demands on the operator. Some of the
disadvantages of INPUT are:

• Improper entries to numeric variables can cause errors such as "string is not a valid
number" and overflows.

• Certain characters can cause problems. Commas and quote marks have special
meanings and are the primary offenders.

• If DISP is used to supply a prompt, and multiple values are entered separately, the
prompt is lost.

The problem with INPUT is that the program is powerless to overcome the disadvantages.
If you are asking for a numeric quantity, and the operator keeps trying to enter a name,
the program will never leave the INPUT statement. The operating system will beep and
display error 32 until the operator gets tired or gets smart. In the event of an error, the
computer automatically re-executes the INPUT statement until the operator satisfies all
the requirements. Your program never gets a look at his input and you can't trap the
errors.

The LIN PUT statement can help with these potential problems. LINPUT stands for
"Literal INPUT." The result of any LIN PUT statement is a single string that contains
an exact image of what the operator typed. If I CONTINUE I ([][) on the ITF keyboard) is
pressed with no entry, the result is the null string. (Nothing typed, nothing returned.)
If you need things like default values, numeric quantities, and multiple values, you will
need to process the string after you get it.

Since LIN PUT accepts any characters without any special considerations, the only
normal error would be string overflow. If the string used to hold the LIN PUT characters
is dimensioned to 256 characters or more, it becomes impossible to overflow the string
from the keyboard line. Therefore, LIN PUT is a very "safe" way to get data from the
keyboard line. The following example shows some common techniques for accepting
operator input.

Communicating with the Operator 10-37

Entering a Single Item
This program segment requests the current month for use later in the program. A detailed
discussion follows the listing. Note that the general techniques presented can be used to
process many kinds of input. Entering a month is merely a convenient example.

100
110
120

OPTION BASE 1
DIM In$[160] ,Months$(12) [3]
INTEGER Temp,Current_month

130
140
150
160
170
180
190

OUTPUT KBD;"SCRATCH KE~"; ! Typing aids distracting if not needed
FOR Temp=l TO 12

READ Months$(Temp) ! String data for month names
NEXT Temp
DATA JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC
Current_month=3

200 Try_numeric:
210 DISP "Enter the month.
220 LINPUT "",In$
230 IF NOT LEN(In$) THEN
240 Temp=Current_month
250 GOTO Found
260 END IF

ON ERROR GOTO String
ENTER In$;Temp
OFF ERROR

! Default value

Default = ";Months$(Current_month);
Ask for operator input
Check for no input
Use default value

If no numerals, may be a string name
Try to extract a number
ENTER worked; change error trap

270
280
290
300
310

IF Temp<l OR Temp>12 THEN Not
GOTO Found

valid ! Check for impossible month value
! Value is OK; use it

320
330 String:
340 OFF ERROR ENTER error trap no longer needed
350 In$=UPC$(In$)
360 FOR Temp=l TO 12 Search for 1st three letters of month
370 IF POS(In$,Months$(Temp» THEN Found ! Match found; use that value
380 NEXT Temp ! If loop finishes, no match was found
390 !
400 Not_valid:
410 BEEP
420 DISP "Not a valid month. Please try again,"
430 WAIT 2
440 GOTO Try_numeric
450
460 Found:
470 Current_month=Temp
480
490 ! Program execution continues here

10-38 Communicating with the Operator

The first statement after the variable declarations removes the typing-aid key definitions.
This is done with an OUTPUT to the keyboard because SCRATCH commands cannot
be stored as a program line. You mayor may not want to include this in your programs.
If you are not using softkeys, the presence of soft key labels may be distracting to the
operator. They may indicate that many response choices are available when the keys are
actually unrelated to the current question. On the other hand, your program may have
loaded the typing aids with responses intended to help the operator. This is possible,
but was not done in the example. Obviously, if KBD is not present, the SCRATCH
KEY command will generate an error and shouldn't be included. For another method of
removing the typing-aid key definitions, read the section in this chapter entitled "Storing
and Loading Typing-Aids from Files."

An interesting feature of this example is that the operator may respond with the number
of the month, the name of the month, or an abbreviation of the name of the month. The
array Months$ is loaded with the first three letters of each month name so that name
responses can be identified.

The final initialization step is to provide a default for the current month. When possible,
requests for input should be accompanied by a default. If the default is wen chosen,
this increases the chances that the operator will not have to do any typing. Even if the
default will usually be changed, it can help show the operator an acceptable format for
the response.

The prompts available with INPUT and LINPUT statement must be literals and
therefore cannot show any program variables. This restriction is easily overcome.
Prompts appear in the same line as DISP items. The DISP statement can contain
variables. To use DISP items as a prompt, a trailing semicolon is used in the DISP
statements, and a null prompt is used in the LINPUT statement. This is a very useful
technique that is applicable to both LINPUT and single-prompt INPUT statements.

After the keyboard input is received, the first check determines if any data was entered.
It is reasonable to assume that the space bar might have been bumped accidentally
during any keyboard input. The TRIM$ function corrects this "problem." A null input
indicates that the operator wanted the default value, so no further processing is done.

Communicating with the Operator 10-39

The next check is to see if the number of the month was rntrred. Numrrals can br
converted to numeric data with the VAL function, but this demands the same strict
format as INPUT. A much more powerful and flexible way to extract numeric data from
a string is by using the ENTER statement. AdmittedlYl it is not likely that an operator
would enter extra text with the number-but why generate an error if he does? The
LINPUT jENTER combination can extract the month from responses like these:

4
"4"
MONTH=4
4th month

If a number is found , the error trap is disabled. In actual applications , the OFF ERROR
statement would be replaced by an ON ERROR statement that re-establishes the normal
error trapping used in the program. The final check ensures that the month is within
a meaningful range. You want to give the operator maximum flexibility, but accepting
the 54th month is too flexible. Range checking is a technique that should be used in all
good operator interfaces.

Although ENTER can do a lot, it cannot extract a number from a string that has no
numerals. Since the operator is permitted (and encouraged) to use the name of the
month, the program must handle this case. That is the purpose of the ON ERROR
statement before the ENTER. If the ENTER cannot find any numeric value 1 the error
trap directs program execution to the segment labeled String. This segment changes
the error trap, since it has served its purpose. Then the input data is searched for the
presence of a month name. A string comparison could be used, but that requires that
the month name be in a fixed location within the response. Again, there is no reason for
such a restriction. The POS function will find the desired letters anywhere in the line.
The UPC$ function eliminates any requirements about letter case. Thus. responses like
the following would all be valid:

JAN
January
MONTH=JAN
"january"

In any keyboard-input situation, there is always some possibility that the operator
entered pure garbage. If all the attempts to find a meaningful number or name fail ,
an error message is displayed, and the entire process is repeated. Another programming
choice is to assume the default if no meaningful input is found. You must judge for
yourself which choice is best. If accurate operator input is very important to the program,
then the program should keep asking until the operator gets smart. If the value in
question is not important , it might be best the assume a default and move on to the next
stage of the program.

10-40 Communicating with the Operator

Note that the desired variable, Current_month, is not updated unless a valid input was
received. All the testing and searching is done using a temporary variable. This is done
so that the default value is not destroyed by an invalid input.

LINPUT with Multiple Fields
This example requests the entire date: day, month, and year. As in the previous example,
there is nothing special about dates. The techniques ShO\Aln have general applications .. A;..

detailed discussion follows the listing.

100 OPTION BASE 1
110 DIM In$[160] ,Months$(12) [3] ,Left$[2]
120 INTEGER Temp,Current_day,Current_month,Current_year
130 Fmt: IMAGE #,2D,II,II,3A,II,II,K,K Format of date input
140 FOR Temp=l TO 12
150 READ Months$(Temp) String data for month names
160 NEXT Temp
170 DATA JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC
180 Left$=CHR$ (255)&CHR$ (72) Moves cursor to beginning of line
190 Current_day=l Set up default values ...
200 Current_month=ll In real applications, these might
210 Current_year=1982 come from the clock or a file.
220 !
230 Get_date:
240 OUTPUT KBD USING Fmt;Current_day,Months$(Current_month),
Current_year,Left$
250 LINPUT IIEnter the date, using this format.II,In$
260 ON ERROR GOTO Not_valid No numerals = error for ENTER
270 ENTER In$;Temp Extract the day
280 OFF ERROR ENTER worked; change error trap
290 IF Temp<l OR Temp>31 THEN Not_valid ! Check for impossible day-of-month
300 Current_day=Temp Value OK; use it
310 !
320 Temp=POS (In$, II , II) Look for first delimiter
330 IF NOT Temp THEN Not_valid No delimiter = bad format
340 In$=UPC$(In$[Temp+l]) Remove date field; make uppercase
350 FOR Temp=l TO 12 Try to find 1st three letters
360 IF POS(In$,Months$(Temp» THEN Found_month
370 NEXT Temp
380
390 Not_valid:

OFF ERROR ! Change ENTER error trapping
BEEP

400
410
420
430
440

DISP IIImproper entry. Please try again. II
WAIT 2

! Start over with this routine
450
460 Found_month:
470 Current_month=Temp Value OK; use it

Communicating with the Operator 10-41

480 ON ERROR GOTO Not_valid
490 ENTER In$;Temp
500 OFF ERROR
510 IF Temp<100 THEN Temp=Temp+1900
520 Current_year=Temp
530 !
540 ! Program execution continues here

No numerals = error for ENTER
Extract the year
ENTER worked; change error trap
Maybe there is no century?
Value OK; use it

The first segment declares the variables, stores the month abbreviations, establishes
some defaults, and contains an IMAGE statement that specifies the desired date format.
Although defaults are important, program constants are not always the best way to
supply defaults. Using the constant "12" as a default for a GPIO interface select code
makes sense. But the date will almost always be different from a constant stored in the
program. A real program should adopt some other method of assuming the date. If
your computer has a battery-backed real-time clock, the date might be extracted from
the clock value. If the program uses a file with the date stored in it, the last access date
might be close to the current date.

A significant feature of this example is the handling of multiple fields. Multiple fields
bring with them two special considerations. First, there is the need to show the operator
the proper format for the fields. Second, there is the need to extract those fields from a
single string, assuming that LINPUT is used.

The proper format for the fields is shown to the operator by using an OUTPUT to the
keyboard. The default values are sent to the keyboard line, formatted by an IMAGE
statement. This not only gives the operator the choice of simply pressing I CONTINUE I
([gJ on an ITF keyboard), but it also shows the appearance of a correct response. If
the default date is generated by a good source, it is reasonable to expect that the "day"
field will be changed more often than the month or year. Therefore, the OUTPUT to
the keyboard finishes by placing the cursor at the beginning of the line, in the day field.

The ON ERROR/ENTER technique is similar to the previous example. The ENTER
statement extracts only the day because the comma terminates that field. The day is
checked against resonable limits and assigned to the actual variable if it is acceptable.
This range rh('cking could be expanded to check for the maximum day allowed in a
specific month.

After the day is extracted, the string is searched for the comma delimiter, and the day
field is removed. This is done to prevent the day number from interfering with the
extraction of the year number. The resulting string is searched for the month name
using the same technique as the previuus example.

10-42 Communicating with the Operator

The year is extracted using the ENTER technique. If a valid number is found, one last
test is performed. The response might have contained only the last two digits of the
year. This is not likely, since the recommended format showed all four digits; but why
complain if it happens? If only two digits are found, the program supplies the 1900
automatically. By the way, this technique is not too effective if the dates being entered
might cross century boundaries.

Yes and No Questions
Frequently, all the computer needs from the operator is a simple "yes" or "no." The
"Expanded Softkey Menu" example showed one way to handle yes/no states. However,
that much processing is not always desired. If you only need to ask a single question,
why program 10 softkeys and 18 CRT lines? The following user-defined function shows
some simple, but friendly, processing for yes/no answers.

The objective of this routine is to provide as much flexibility as possible. This means
that we don't bother the operator about such things as bumping the space bar, pressing
I CAPS LOCK I (~on the ITF keyboard), or responding with a simple I CONTINUE I (@]on
the ITF keyboard). The main program provides a prompt or explanation and performs
a LINPUT with a 256-character string. It then passes that string to this function and
tests the results.

The function uses a local copy of the string just in case you need the actual input for some
other purpose in the main program. The response is trimmed and placed in uppercase.
Then the first letter is tested. Four cases are identified: the answer was "Y" (for yes),
the answer was "N" (for no), no answer was given, or the answer was not recognized.

2000 DEF FNYes(X$)
2010 DIM Temp$ [1]
2020 Temp$[l,l]=TRIM$(X$)
2030 SELECT Temp$
2040 CASE lIylI, "y"
2050 RETURN 1
2060 CASE liN II , "n"
2070 RETURN 0
2080 CASE II II

2090 RETURN -1
2100 CASE ELSE
2110 RETURN -2
2120 END SELECT
2130 FNEND

Communicating with the Operator 10-43

As mentioned previously. every question should have a default answer. The default
answer for a yes/no question depends greatly upon the nature of the question. If you
are asking the operator for permission to use standard, reasonable parameters for an
operation, then "yes" is a helpful default. If you are asking for permission to initialize a
disc and destroy all files, then the default answer had better be "NO"! When a question
or choice occurs more than once in a program, it is usually a good technique to use the
operator's previous response as the default. Put yourself in the user's place and think
about how the program should run.

To use this function to best advantage, the result must be tested thoughtfully. If the
operator simply presses I CONTINUE I ([EJ on the ITF keyboard), the result will be -l.
Therefore. the default should be assumed if FNYes=-1. A "yes" answer is indicated
by FNYes=l; whereas a non-negative answer can be tested simply as IF FNYes. A non
affirmative answer is FNYes<1. Any result less than zero is a noncommittal reply. Perhaps
the default could be assumed for any negative result, or perhaps a negative result should
cause the question to be repeated. The test IF NOT FNYes reveals a negative reply. As
you can see, many shades of interpretation are possible.

10-44 Communicating with the Operator

Example Human Interfaces
This section puts together some of the techniques discussed in preceding sections.

An Expanded Softkey Menu
A good human interface often involves the coordination of multiple resources. The
softkeys are a very good tool for accepting operator input. The biggest problem with
using softkeys is the severe limitation on the number of prompt characters associated
with each key. Therefore, a softkey interface is an appropriate task to demonstrate the
increased use of CRT space.

The goal of this technique is to display a readable and informative menu that monitors the
operator's input. The following program segment displays a summary of the parameters
that are controlled by softkeys. This summary is updated every time a soft key is pressed,
providing immediate feedback to the operator. This example uses many of the CRT
control techniques already presented. It also helps to show why the human interface of
a program can require so much code. This segment simply logs the operator's choice of
four items, and it is over 100 lines long. The purpose of each section of code is explained
after the listing.

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170

DIM Disc$[5] ,Clear$[2] ,Home$[2] ,Cmd$[l]
INTEGER Std_fmt,Roman,Screen,Center

Clear$=CHR$ (255)&CHR$ (75)
Home$=CHR$ (255)&CHR$ (84)
Disc$="RIGHT"
Cmd$="\"
Std_fmt=l
Roman=O
STATUS l,9;Screen
Center=(Screen-36)/2
MASS STORAGE IS ":INTERNAL"
PRINTER IS 1
GRAPHICS OFF
CONTROL 2,1;0
CONTROL 1,4;0
OUTPUT KBD;Clear$;

1180 Menu:

CLEAR SCR key
HOME key
Default parameters

Get screen width
Leading spaces for centering

Use CRT for displaying menu

PRT ALL off
DISPLAY FCTNS off
! Clear CRT

1190 OUTPUT KBD;Home$; ! Home display
1200 PRINT TABXY(l,l) Start at top with blank line
1210 PRINT TAB(Center);"KEY PURPOSE";TAB(Center+30);"VALUE"
1220 PRINT TAB(Center);"-----------------------------------"
1230 PRINT
1240 PRINT TAB (Center) ;" 5 Command Delimiter."; TAB (Center+31) ; Cmd$
1250 PRINT

Communicating with the Operator 10-45

1260 PRINT TAB(Center);" 6
1270 PRINT
1280 PRINT TAB(Center);" 7
1290 IF Std_fmt THEN
1300 PRINT "YES"
1310 ELSE
1320 PRINT "NO "
1330 END IF
1340 PRINT
1350 PRINT TAB(Center);" 8
1360 IF Roman THEN
1370 PRINT "YES"
1380 ELSE
1390 PRINT "NO "
1400 END IF
1410 PRINT
1420 PRINT TAB(Center);" 9
1430

Source Disc Drive ll ;TAB(Center+30);Disc$

Standard Format OK?";TAB(Center+30);

Use Roman Numerals?";TAB(Center+30);

START PRINTOUTII

1440 IF Screen=50 THEN ! Use short labels
1450 ON KEY 5 LABEL II Delim II GOTO Command
1460 ON KEY 6 LABEL II Disc " GOTO Drive
1470 ON KEY 7 LABEL " Format II GOTO Standard
1480 ON KEY 8 LABEL "Roman " GOTO Numbers
1490 ON KEY 9 LABEL "START " GOTO Begin
1500 ELSE Use long labels
1510 ON KEY 5 LABEL "Command Delim " GOTO Command
1520 ON JEY 6 LABEL " Select Drive " GOTO Drive
1530 ON KEY 7 LABEL II Stand. Fmt.? II GOTO Standard
1540 ON KEY 8 LABEL IIRoman Numeral?" GOTO Numbers
1550 ON KEY 9 LABEL " START PRINT " GOTO Begin
1560 END IF
1570
1580
1590
1600
1610
1620

ON KEY 0 GOTO
ON KEY 1 GOTO
ON KEY 2 GOTO
ON KEY 3 GOTO
ON KEY 4 GOTO

Not_used
Not_used
Not_used
Not_used
Not_used

1630 Spin: GOTO Spin
1640
1650 Not_used:
1660 BEEP 300,.1
1670 GOTO Spin
1680 !
1690 Command:
1700 IF Cmd$="\" THEN
1710 Cmd$="-"
1720 ELSE
1730 Cmd$="\"
1740 END IF
1750 GOTO Menu

10-46 Communicating with the Operator

Turn off unused keys

I Wait for softkey interrupt

Feedback for unused keys

Choose command delimiter

1760
1770 Drive: !
1780 IF Disc$="RIGHT" THEN Choose text source
1790 MASS STORAGE IS ":INTERNAL.4.1"
1800 Disc$="LEFT "
1810 ELSE
1820 MASS STORAGE IS ":INTERNAL.4.0"
1830 Disc$="RIGHT"
1840 END IF
1850 GOTO Menu
1860
1870 Standard:
1880 IF Std_fmt THEN Choose text format
1890 Std_fmt=O
1900 ELSE
1910 Std_fmt=1
1920 END IF
1930 GOTO Menu
1940
1950 Numbers:
1960 IF Roman THEN Choose numeral type
1970 Roman=O
1980 ELSE
1990 Roman=1
2000 END IF
2010 GOTO Menu
2020
2030 Begin:
2040 OUTPUT KBD;Clear$; ! Clear CRT
2050 OFF KEY Remove selection menu
2060
2070 Program continues here when user presses "START"
2080

The program uses softkeys 5 through 9. If you have an ITF keyboard, your softkeys are
labeled 1 through 8. You can modify the program to use the softkeys most useful for
your applications.

It is always good programming practice to declare all variables. The first two lines do
this. Next, the variables are given their starting values. Initialization is completed by
turning off unwanted modes and clearing the CRT.

Communicating with the Operator 10-47

The section at "Menu" displays a description and current status for each menu item.
This example shows some of the parameters that might be used by a simple text-printing
program. The items used are representative only. A real text formatter would have many
more parameters (all the more reason to present them clearly). The operator can choose
the following:

• Back-slash or up-caret as a command delimiter

• Right or left disc drive for the source of the text

• Standard or alternate format for the text

• Page numbering with Arabic or Roman numerals

Notice some important aspects of this menu. All items have default values and all defaults
are visible simultaneously. This is very important. It is irritating and confusing when an
operator must answer question after question to get a program to begin. It is far better
to show the default environment and allow a single keypress to start the program if the
defaults are acceptable. If any defaults need to be changed, the operator changes only
those items he wants to change. He can press "START" at any time, and in this simple
case~ never answers any questions. The operator wants a printout 1 not a game of "20
questions."

The current state of all items is displayed in a form that is meaningful to the operator. It
is reasonably safe to assume that all operators know what ~~RIGHT" and ~'LEFT" mean.
Very few would have any idea what ":INTERNALA,l" means. Programmers need to
If'arn about concepts like '~mass storage unit specifier." Operators shouldn't be bothered
by such things. Likewise, don't expect anyone to answer "I" or "0" to a question that
should be answered "YES ll or "NO."

A more technical aspect of this menu is the method used to update the display. Since
the scrolling keys are on one side of the softkeys and the knob is on the other side (of
98203 keyboards), it is reasonable to assume that the operator might accidentally move
the display out of place. One way to correct this would be to start each display update
with a CLEAR SCREEN statement. This guarantees the state of the CRT and the print
position. U nfortunatelYl it also causes a very undesirable "blinking off" of the display
each time a key is pressed. A constantly disappearing menu is very distracting. The
BASIC system now has the capability of disabling scrolling. See the discussion near the
beginning of this chapter for details.

10-48 Communicating with the Operator

The objective is to give the impression that nothing changed except the selected item.
Therefore, the "clear" sequence is sent before the first display only. Subsequent updates
use a "home" sequence to ensure the position of the text, and a TABXY to set the print
position. As a result, the new menu is written on top of the old menu. (The same
visual effect could be achieved by using individual TABXY functions to access each item
display, but that is a more difficult program to write.)

Since the old display is overwritten each time, it is important to erase all unneeded
characters. Notice that the "NO" displays are padded with a trailing blank to erase
the "S" left over from "YES." This technique can be extended to clear old displays of
unknown length. The following example displays a number and erases any remaining
digits from the old number. The variable Screen contains the screen width.

1300 PRINT Value;TAB(Screen)

The example also uses screen width for centering. Centering is not as important as
keeping the display properly updated, and centering slows down the update process
slightly. However, the technique is shown here in case you want to use it. During the
initialization of variables, the current screen width is determined. This might be 50 80 or
128 characters if the program is used on different models of computers. The width of the
menu display is subtracted from the screen width to determine the amount of left-over
space. If half of this space is sent at the beginning of the line, the remaining half will be
at the end of the line. This produces a centered display. The amount to be sent at the
beginning of the line is placed in the variable Center. This value is used to position the
start of each line and is also used as a reference point to position the second column.

Models with ITF keyboards allow 16 characters (2 rows of 8) in a soft key label. Models
with 80-column CRTs allow 14 characters in a soft key label. Models with 50-column
CRTs allow only 8 characters for these labels. Therefore, the variable Screen is also
used to control the display of soft key labels. This is the purpose of the segment at line
1440. The alternative is to restrict all softkey labels to 8 characters. This is possible,
but undesirable. It is difficult to say anything meaningful in 8 characters. Users with 80-
column CRTs will appreciate the extra meaning that is available with longer labels. The
128-column CRT can use longer labels, but this program uses the 14-character labels.

The ON KEY statements for keys 0 through 4 are used to turn off any typing-aid
definitions that might exist for those keys. An ON KEY definition overrides a typing-aid
definition when the program is running. However, if no ON KEY definition is supplied,
the typing-aid definition remains active. This is not desirable when you are trying to
achieve a program-controlled soft key menu. Therefore, the unused keys are given a
"dummy" ON KEY definition to keep the menu clean. For ITF keyboards, you should
"turn off" all 24 softkeys.

Communicating with the Operator 10-49

Notice also that when five or less soft keys are used, keys 5 through 9 art' defined. This
is to accommodate the Model 216 small keyboard. On the small keyboard. those are
the unshifted keys. Why make the operator press the shift key? If you have an ITF
keyboard, use keys 1 through 5.

The soft keys are defined to send program execution to a parameter-changing routine.
Each such routine ends by sending program execution to the display-update routine. In
this example, there is no demonstrated reason for repeating the ON KEY definitions
for every keypress. Those definitions could have been placed above the "Menu" line and
executed only once. However, some applications might need to change the key definitions
in response to changes in program variables. For example, a key that produces an "insert"
operation would be disabled when enough inserts had been performed to fill an array.
Also, it is possible to include the value of a string variable in a key label. Therefore, the
key labels may need to be rewritten as new selections are made. In cases like these, the
ON KEY statements need to be in the update path.

The final "cleanup" action takes place when the operator presses "START." This is the
signal that the selection menu is no longer needed. The menu display is cleared to reflect
the fact that it is no longer in use. The OFF KEY statement performs two functions 1

.

It turns off the soft key label area, which helps keep the CRT neat. More importantly, it
cancels all the ON KEY branches. If this were not done, the operator could cause the
program to jump back to the selection menu at any time. This is probably not desirable.
You may want to define some sort of "Aborf' key that lets the operator stop a lengthy
operation. But it is not likely that the selection menu would be the destination of an
abort operation. Remember, ON KEY definitions stay around forever unless you turn
them off or the program stops.

1 This example is intended for use on an HP 98203 keyboard. For an ITF keyboard, the default conditions
for key labels are slightly different. In this case, you can use KEY LABELS OFF to turn the softkey
labels off, and KEY LABELS ON to re-enable displaying them. You can alternatively use CRT control
register 12 to set the key-labels display mode to match the behavior of the 98203 keyboard. See the
BASIC Language Reference description of the KEY LABELS statement for details.

10-50 Communicating with the Operator

Not much has been said about the parameter-changing routines. The examples shown
use a simple IF ... THEN ... ELSE structure to select between to alternatives. This concept
can be expanded to allow selection of more than two choices. The MOD function is handy
when you want to cycle through several choices. The following example shows a routine
that rotates through four choices. This routine is intended to fit into our menu selection
process. Accent protocols for different languages are shown here, but the technique is
applicable to any selection item.

1910 Accents:
1920 Lang=(Lang+1) MOD 4
1930 SELECT Lang
1940 CASE 0
1950 Language$=II ENGLISH"
1960 CASE 1
1970 Language$="FRENCH II
1980 CASE 2
1990 Language$=ISPANISH"
2000 CASE 3
2010 Language$=IIGERMAN II
2020 END SELECT
2030 GOTO Menu

Moving a Pointer

Choose accent protocol

Many programs have a main menu from which the operator chooses a subtask. An
example might be an editing program that gives the choice of getting a file, storing a file,
editing a file, merging files, listing a file, protecting a file, deleting a file, etc. As with all
other tasks, there are many ways to present this choice to the operator. Each task might
be assigned to a softkey. The ON KBD statement might be used to equate individual keys
to each task. For example, E for edit, M for merge, G for get, and so on. Depending on the
application, one of these methods may be good. However, there are some considerations.
There might be more choices than softkeys, or the arrangement of the soft keys might
be awkward. The single-letter method is always just a little "dangerous". What if the
operator tries to type a word? Did "P" stand for "protect" or "purge"?

One alternative is to display all the choices, with a pointer to the current selection.
When the operator is sure that the selection is proper, a single press of a soft key tells
the computer "Do it." The menu choices can be full phrases with no abbreviations, since
the whole CRT is available for the display. The pointer can be moved by softkeys or by
<-he knob. Since we just discussed the softkeys, let's use the knob for this example.

Communicating with the Operator 10-51

The following example (' lears the CRT, displays seven selections, and allows thr knob to
cycle a pointer through the selections in either direction. In a real application. meaningful
phrases would be used to identify the selections, and a soft key would be defined to start
the selected process. Softkeys could also be used to move the pointer up and down. This
could be in addition to the knob or in place of it. A detailed discussion follows the listing.

100 DIM Marker$[4] ,Home$[2] ,Clear$[2]
110 INTEGER Point
120
130 Clear$=CHR$(255)&CHR$(75)
140 Home$=CHR$ (255)&CHR$ (84)
150 Marker$="=> "&CHR$ (8)&CHR$ (8)
160 Point=1
170 PRINTER IS 1
180 GRAPHICS OFF
190 CONTROL 2,1;0
200 CONTROL 1,4;0
210 OUTPUT KBD;Clear$;

CLEAR SCR key
HOME key
Pointer arrow
Default selection
Use CRT for menu display

PRT ALL off
DISPLAY FCTNS off
! Clear CRT

220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480

PRINT "Use shift and knob to move marker"
PRINT" Selection 1" Display menu
PRINT" Selection 2"
PRINT" Selection 3"
PRINT" Selection 4"
PRINT" Selection 5"
PRINT" Selection 6"
PRINT" Selection 7"
PRINT TABXY(1,Point) ; Marker$;

ON KNOB .2 GOTO Move_pointer
Spin: GOTO Spin

Move_pointer:
IF KNOBY>O THEN

Point=Point+1
ELSE

Point=Point-1
END IF
IF Point<1 THEN Point=7
IF Point>7 THEN Point=1
OUTPUT KBD;Home$;
PRINT II II.

PRINT TABXY(1,Point) ;Marker$;
GOTO Spin

490 END

10-52 Communicating with the Operator

Display starting marker

Enable knob
Wait for knob interrupt

Check knob direction

Keep pointer within limits

! Home the display
Erase old marker
Display new marker

The program starts by declaring and initializing the variables. The "clear" and "home"
sequences should look familiar to you by now. The Marker$ string is a contrived arrow
followed by two backspace characters. The backspace characters return the print position
to the beginning of the arrow each time it is displayed. This facilitates the erase operation
that is part of moving the arrow.

After the display is cleared; the menu selections are printed. This is done only once,
since the choices do not include any changing parameters. The TABXY function is used
to position a marker to the left of the default selection. Then the knob is enabled, and
the program sits in an idle loop waiting for an interrupt from the knob.

When the knob is turned, program execution branches to the pointer-moving routine. In
this example, the amount of knob movement is not used, only its direction is extracted
from the KNOBY function. It is possible to add an algorithm that accumulates the
counts from the knob so that a fixed amount of rotation is needed to move the pointer.
Such an improvement would give a more positive "linkage" between the knob and the
display, but is not necessary to this demonstration.

The pointer value is stored in the variable Point. This variable is increased or decreased
depending upon the direction of knob rotation. After the variable is updated, it is
necessary to keep it within the limits of the available selections. The option used here
was to "wrap around" when the pointer reached either end of the list. Another option
is to "freeze" the pointer when it reaches an end position. To do this, lines 420 and 430
would be modified as follows:

420 IF Point<1 THEN Point=1
430 IF Point>7 THEN Point=7

After the pointer value is updated, the display must be changed to reflect the new value.
First, the display is returned to home position. Although the knob no longer scrolls
the display, the scrolling keys are still active. They may have been pressed (perhaps
accidentally) and moved the display out of position!. Since the print position is always
at the beginning of the old pointer, that pointer can be erased by printing two blanks. The
new pointer is then printed using a TABXY function. Notice that end-of-line sequences
are not needed or desired. All the PRINT statements used in this updating process use
a trailing semicolon to suppress the EOL sequence.

1 See the discussion of "Disabling and Enabling Scrolling" near the beginning of this chapter for a method
of preventing this problem.

Communicating with the Operator 10-53

In this example, the x-coordinate was always 1. If needed, the x-coordinate is available
in the TABXY function to work with multi-column displays.

Assumed, but not shown, is an ON KEY statement that would start the selected process.
This key would branch to a routine that cleared the display, turned off the knob, and
used the variable Point in a SELECT or ON statement to access the chosen routine.

An Example Custom Keyboard Interface
An example subprogram called Kled that implements a custom keyboard interface is
provided on the BASIC Utilities disc in the "MEM_UTILS" file. It enables a branch to
an interrupt service routine for any keystroke using the ON KBD mechanism!. When a
branch is initiated, it traps the key codes (including "system key" codes) with the KBD$
function, and then initiates corresponding actions. Note that the SYSTEM$("KBD
LINE") function allows you to use the BASIC system's keyboard-input editing features
with OUTPUT to the keyboard (select code 2).

The MEM_ UTILS program also shows how to combine typing-aids and memory volumes
to create memory resident utility programs.

1 Since the ON KBD statement is described fully in the "Keyboard Interfaces" chapter of BASIC
Inter/aczng Techniques. it will not be described here.

10-54 Communicating with the Operator

Handling Errors 11
Overview of Error Responses .. 11-1
Anticipating Operator Errors. .. 11-2

Boundary Conditions. .. 11-2
REAL and COMPLEX Numbers and Comparisons 11-3

Trapping Errors with BASIC Programs. .. 11-5
Setting Up Error Service Routines (ON/OFF ERROR) 11-5
Disabling Error Trapping (OFF ERROR) .. 11-6
Determining Error Number and Location

(ERRN, ERRLN, ERRL, ERRDS, ERRM$) 11-7
A Closer Look at ON ERROR GOSUB 11-8
A Closer Look At ON ERROR GOTO 11-9
A Closer Look At ON ERROR CALL. .. 11-11
A Closer Look At ON ERROR RECOVER 11-13
Simulating Errors (CAUSE ERROR) .. 11-14
Clearing Error Conditions (CLEAR ERROR) 11-16

Handling Errors 11
Most programs are subject to errors at run time, even if all the typographical/syntactical
errors have been removed in the process of entering the program into the computer in
the first place. This chapter describes how BASIC programs can respond to these errors,
and shows how to write programs that attempt to either correct the problem or direct
the program user to take some sort of corrective action.

Overview of Error Responses
There are three courses of action that you may choose to take with respect to errors:

1. Try to prevent the error from happening in the first place (by communicating clearly
with the program user, by using range-checking routines, and so forth).

2. Once an error occurs, try to recover from it and continue execution (this involves
the BASIC program trapping and correcting errors).

3. Do nothing-let the system stop the program when an error happens.

The remainder of this chapter describes how to implement the first two alternatives.

The last alternative, which may seem frivolous at first glance, is certainly the easiest to
implement, and the nature of HP Series 200/300 BASIC is such that this is often a feasible
choice. Upon encountering a run-time error, the computer will pause program execution
and display a message giving the error number and the line in which the error happened,
and the programmer can then examine the program in light of this information and fix
things up. The key word here is "programmer." If the person running the program is
also the person who wrote the program, this approach works fine. If the person running
the program did not write it, or worse yet, does not know how to program, some attempt
should be made to prevent errors from happening in the first place, or to recover from
errors and continue running.

Handling Errors 11-1

Anticipating Operator Errors
When a programmer writes a program, he or she knows exactly what the program
is expected to do, and what kinds of inputs make sense for the problem. Given this
viewpoint, there is a strong tendency for the programmer not to take into account the
possibility that other people using the program might not understand the boundary
conditions. A programmer has no choice but to assume that every time a user has the
opportunity to feed an input to a program, a mistake can be made and an error can be
caused. If the programmer's outlook is noble, he or she will try to save the user from
needless anguish and frustration. Even if the programmer's outlook is less altrusitic, he
or she will try to keep from getting involved in future support problems. In either case,
an effort must be made to make the program more resistant to errors.

Boundary Conditions
A classic example of anticipating an operator error is the "division by zero" situation.
An INPUT statement is used to get the value for a variable, and the variable is used as a
divisor later in the program. If the operator should happen to enter a zero, accidentally
or intentionally, the program pauses with an error 31. It is far better to be watching
for an out-of-range input and respond gracefully. One method is shown in the following
example.

100 INPUT "Mpes traveled and total hours",Miles,Hours
110 IF Hours=O THEN
120 BEEP
130 PRINT "Improper value entered for hours."
140 PRINT "Try again!"
150 GO TO 100
160 END IF
170 Mph=Miles/Hours

Consider another simple example of giving a user the choice of six colors for a certain
bar graph. It might be preferable to have the user pick a number corresponding to the
color he wished to choose instead of having to type in up to six characters. In this case,
the program wouldn't have to check for each number, but rather it could use the logical
comparators to check for an entire range:

4030 CLEAR SCREEN
4040 DATA GREEN ,BLUE ,RED ,YELLOW ,PURPLE,PINK
4050 ALLOCATE Colors$(1:6) [6]
4060 READ Colors$(*)
4070 FOR 1=1 TO 6
4080 PRINT USING "DD,X,K";I,Colors$(I)
4090 NEXT I
4100 Ask: INPUT "Pick the number of a color",I

11-2 Handling Errors

4110 IF 1>=1 AND 1<=6 THEN Valid_Color
4140 BEEP
4150 DISP "Invalid answer II·

4160 WAIT 1
4170 GOTO Ask

The above example needs a little extra safeguarding. I, the variable being input, should
be declared to be an integer, since the only valid inputs are 1, 2, 3, 4, 5, and 6. An
answer like "pick the 3.14th color listed" does not make sense.

Real number boundaries are tested for in a manner similar to that of integers:

7010 INPUT "Enter the waveform's frequency (in KHz)" ,Frequency
7020 IF Frequency<=O THEN 7010
7030 INPUT "Enter the amplitude (0-10 volts)" ,Amplitude
7040 IF Amplitude<O OR Amplitude>10 THEN 7030
7050 INPUT "Enter the phase angle (in degrees)" ,Angle
7060 IF Angle<O OR Angle>180 THEN 7050
7070 Angle=Angle*PI/180

REAL and COMPLEX Numbers and Comparisons
A word of caution is in order about the use of the = comparator in conjunction with
REAL and COMPLEX (full-precision) numbers. Numbers on this computer are stored in
a binary form, which means that the information stored is not guaranteed to be an exact
representation of a decimal number-but it will be very close! What this means is that
a program should not use the = comparator in an IF statement where the comparison is
being performed on REAL or COMPLEX numbers. The comparison will yield a 'false'
or '0' value if the two are different by even one bit, even though the two numbers might
really be equal for all practical purposes.

There are two ways around this problem. The first is to try to state the comparison in
terms of the <= or >= comparators.

If it is necessary to do an equality comparison with a pair of REAL numbers, then the
second method must be used. This involves picking an error tolerance for how close to
being equal the two numbers can be to satisfy the test.

Real number line ~~--~

Xl X2
~ TO-+

Handling Errors 11-3

So if the difference between two REAL numbers X 1 and X2 is less than or equal to
a tolerance TO, we~ll say that Xl and X2 are "equal" to each other for all practical
purposes. The value of TO will depend upon the application, and must be chosen with
care.

For an example, assume that we've picked a tolerance of 10- 12 for comparing two real
numbers for equality. The proper way to compare the two numbers would be:

950 IF ABS(X1-X2)<=1E-12 THEN Numbers_equal
960 ! Otherwise they're not equal

Another technique for comparing two REAL or COMPLEX values is to use the DROUND
function. This is especially suited to applications where the data is known to have
a certain number of significant digits. For more details on binary representations of
dpcimal numbers, refer to the "Numeric Computation" chaptpr.

Note that >=, <=, and DROUND do not work with COMPLEX numbers, but you can
compare real parts and imaginary parts. For example, comparing two COMPLEX values
for equality would require something like this:

IF (ABS(REAL(C1)-REAL(C2)) <= 1E-12) AND
(ABS(IMAG(C1)-IMAG(C2)) <= 1E-12) THEN

11-4 Handling Errors

Trapping Errors with BASIC Programs
Despite the programmer's best efforts at screening the user's inputs in order to avoid
errors, errors will still happen occasionally. It is possible to recover from run-time errors,
provided the programmer predicts the places where errors are most likely to happen and
adequately handles the error cause(s).

Setting Up Error Service Routines
(ON/OFF ERROR)
The ON ERROR statement sets up a branching condition which will be taken any
time a recoverable error is encountered at run time. Here are some example statements
(further examples of each type of branch~GOSUB, GOTO, etc.--are given in subsequent
sections).

100 ON ERROR GOSUB Fix_it

100 ON ERROR GOTO Fix_it
100 ON ERROR RECOVER Fix_it

Choosing a Branch Type

400 Fix_it: Solve problem.

530 RETURN If GOSUB used.

400 Fix_it: Solve problem.

950 SUBEND

The type of branch that you choose (GOTO vs. GOSUB, etc.) depends on how you
want to handle the error.

• Using GOSUB indicates that you want to return to the statement that caused
the error (RETURN) or to the one following the statement that caused the error
(ERROR RETURN) when finished with your attempt to correct the error's cause .

• GOTO, on the other hand, may indicate that you do not want to re-attempt the
operation after attempting to correct the source of the error.

Handling Errors 11-5

Scope of Error Trapping and Recovery
GOTO and GOSUB are purely local in scope that is. they are active only within th('
context in which the ON ERROR is declared. CALL and RECOVER are global in
scope-after the ON ERROR is set up, the CALL or RECOVER will be executed any
time an error occurs, regardless of subprogram environment.

ON ERROR Execution at Run-Time
When an ON ERROR statement is executed, the BASIC system will make sure that the
specified line or subprogram exists in memory before the program will proceed .

• If GOTO. GOSUB, or RECOVER is specified. then the line identzjier must exist
in the current context (at pre-run).

• If CALL is used, then the specified subprogram must currently be in memory (at
run-time).

In either case, if the system can't find the given line, error 49 is reported.

ON ERROR Priority
ON ERROR has a priority of 17, which means that it will always take priority over any
other ON event branch, since the highest user-specifiable priority is 15.

Disabling Error Trapping
(OFF ERROR)
The OFF ERROR statement will cancel the ('ffects of the ON ERROR statement. and
no hranching will take place if an error is encountered.

The DISABLE statement has no effect on ON ERROR hranching.

11-6 Handling Errors

Determining Error Number and Location
(ERRN,ERRLN,ERRL,ERRDS,ERRM$)
ERRN is a function which returns the error number which caused the branch to be taken.
ERRN is a global function, meaning it can be used from the main program or from any
subprogram, and it will always return the number of the most recent error.

100 IF ERRN=80 THEN! Media not present in drive.
110 PRINT "Please insert the 'Examples' disc,"
120 PRINT "and press the 'Continue' key (f2)."
130 PAUSE
140 END IF

ERRLN is a function which returns the line number of the program line in which the
most recent error has occurred.

100 IF ERRLN<1280 THEN GOSUB During_init
110 IF (ERRLN>=1280 AND ERRLN<=2440) THEN GOSUB During_main
120 IF ERRLN>2440 THEN GOSUB During_Last

You can use this function, for instance, in determining what sort of situation-dependent
action to take. As in the above example, you may want to take a certain action if the
error occurred while "initializing" your program, another if during the "main" segment
of your program, and yet another if during the "last" part of the program.

ERRL is another function which is used to find the line in which the error was
encountered; however, the difference between this and the ERRLN function is that
ERRL is a boolean function. The program gives it a line identifier, and either a 1 or
a 0 is returned, depending upon whether or not the specified identifier indicates the line
which caused the error.

100 IF ERRL(1250) OR ERRL(1270) THEN GOSUB Fix_12xx
110 IF ERRL(1470) THEN GOSUB Fix_1470
120 IF ERRL(2450) OR ERRL(2530) THEN GOSUB Fix_24xx

ERRL is a local function, which means it can only be used in the same environment as
the line which caused the error. This implies that ERRL cannot be used in conjunction
with ON ERROR CALL, but it can be used with ON ERROR GOTO and ON ERROR
GOSUB. ERRL can be used with ON ERROR RECOVER only if the error did not occur
in a subprogram which was called by the environment which set up the ON ERROR
RECOVER.

Handling Errors 11-7

The ERRL function will acc('pt either a line number or a line label:

1140 DISP ERRL(710)

910 IF ERRL(Compute) THEN Fix_compute

ERRDS returns the device selector of the device which was involved in the last error.
For instance:

IF ERRDS=12 THEN GOSUB Fix_gpio

Note that this function is only updated when an error that involves an interface or device
occurs; otherwise, it remains unchanged until another error involving a device selector
occurs. Therefore, if the last error did not involve a device, then the value returned by
ERRDS may be irrelevant to the current situation.

ERRM$ is a string function which returns the text of the error which caused the branch
to be taken.

100 DISP ERRM$! Display default message. l ERROR 1 in 10 Configuration error J
A Closer Look at ON ERROR GOSUB
The ON ERROR GOSUB statement is used when you want to return to the program
line where the error occurred. You have two choices of returning:

• RETURN returns program control back to the line that caused the error, thus
indicating that you have corrected/resolved the error condition and want to re
execute this line .

• ERROR RETURN returns program control to the line following the line that caused
the error, thus indicating that you have taken alternative action in the subroutine
and do not want to re-execute the line that initially caused the error.

Note that if you do not correct the problem and subsequently use RETURN, the BASIC
system will repeatedly re-execute the problem-causing line (which will result in an infinite
loop between the ON ERROR GOSUB branch and the RETURN).

11-8 Handling Errors

When an error triggers a branch as a result of an ON ERROR GOSUB statement
being active, system priority is set at the highest possible level (17) until the RETURN
statement is executed, at which point the system priority is restored to the value it was
when the error happened.

100 Radical=B*B-4*A*C
110 Imaginary=O
120 ON ERROR GOSlffl Esr
130 Partial=SQRT(Radical)
140 OFF ERROR

350 Esr:
360
370
380
390

IF ERRN=30 THEN
Imaginary=l
Radical=ABS(Radical)

ELSE
BEEP

400
410

DISP IIUnexpected Error (II;ERRN;II)II
PAUSE

420
430

END IF
RETURN

Note

You cannot trap errors with ON ERROR while in an ON ERROR
GOSUB service routine.

A Closer Look At ON ERROR GOTO
The ON ERROR GOTO statement is often more useful than ON ERROR GOSUB,
especially if you are trying to service more than one error condition. However, ON
ERROR GOTO does not change system priority.

As with ON ERROR GOSUB, one error service routine can be used to service all the
error conditions in a given context. By testing both the ERRN (what went wrong) and
the ERRLN (where it went wrong) functions, you can take proper recovery actions.

One advantage of ON ERROR GOTO is that you can use another ON ERROR
statement in the service routine (which you cannot use with ON ERROR GOSUB). This
technique, however, requires that you re-establish the original error service routine after
correcting any errors (by re-executing the original ON ERROR GOTO statement). The
disadvantage is that more programming may be necessary in order to resume execution
at the appropriate point after each error service.

Handling Errors 11-9

10 RESTORE
20 PRINT
30 PRINT
40 PRINT "Coefficients of quadratic equation A"
50 DATA 0,0,0
60 READ A,B,C
70 Maxreal=1.79769313486231E+308
80 Overflow=O
90 Coefficients:
100 INPUT "A?",A
110 IF A=O THEN
120 DISP "Must be quadratic"
130 WAIT .5
140 GOTO Coefficients
150 END IF
160
170
180
190

PRINT
INPUT
PRINT
INPUT

"A=";A
"B?",B
"B=" ;B
"C?" ,C

200 PRINT "C=";C
210 Compute_roots:
220 ON ERROR GOTO Esr
230 Imaginary=O
240 Partl=-B/2.*A
250 Part2=SQR(B*B-4*A*C)/2.*A
260 IF NOT Imaginary THEN
270 Rootl=Partl+Part2
280 Root2=Partl-Part2
290 END IF
300 OFF ERROR
310 Print_roots:
320 IF Imaginary=O THEN
330 PRINT "Root 1 =";Rootl
340 PRINT "Root 2 =";Root2
350 ELSE
360 PRINT "Root 1 =";Partl;" +";Part2;" i"
370 PRINT "Root 2 =";Partl;" -";Part2;" i"
380 END IF
390 IF Overflow THEN PRINT "OVERFLOW"
400 STOP
410 Esr:
420 IF ERRN=30 THEN ! SQRT of negative number
430 Part2=SQRT(ABS(B*B-4*A*C))/2*A
440 Imaginary=l
450 Branch=l
460 GOTO 270
470 ELSE
480 IF ERRN=22 THEN REAL overflow
490 Overflow=l

11-10 Handling Errors

500 SELECT ERRLN
510 CASE 240
520 Part1=SGN(B) *SGN(A) *Maxreal
530 Branch=2
540 CASE 250
550 Part2=Maxreal
560 Branch=3
580 CASE 270
590 Rootl=Maxreal*SGN(Partl)
600 Branch=4
620 CASE 280
630 Root2=Maxreal*SGN(Part1)
640 Branch=5
660 PRINT "Unexpected overflow"
670 Branch=6
680 CASE ELSE
690 DISP "Unexpected error";ERRN
700 Branch=6
710 END SELECT
720 END IF
730 END IF
740 ON Branch GOTO 270,250,260,280,290,10
750 END

A Closer Look At ON ERROR CALL
ON ERROR CALL is global, meaning once it is activated, the specified subprogram will
be called immediately whenever an error is encountered, regardless of the current context.
System priority is set to level 17 inside the subprogram, and remains that way until the
SUBEXIT is executed, at which time the system priority will be restored to the value it
was when the error happened.

As with ON ERROR GOSUB, you will generally use the ON ERROR CALL statement
when you want to return to the program where the error occurred. You have two choices
of return destinations:

• SUBEXIT sends program control back to the line that caused the error, thus
indicating that you have corrected the cause of the problem and want to re-execute
this line .

• ERROR SUBEXIT sends program control to the line following the line that caused
the error, thus indicating that you have taken an alternative action and do not want
to re-execute the line that initially caused the error.

Note that if you do not correct the problem and subsequently use SUBEXIT, the BASIC
system will repeatedly re-execute the problem-causing line (which will result in an infinite
loop between the ON ERROR CALL branch and the SUBEXIT).

Handling Errors 11-11

Note

You cannot trap errors with ON ERROR while in an ON ERROR
CALL service routine.

Cannot Pass Parameters Using ON ERROR CALL
Bear in mind that an ON ... CALL statement can not pass parameters to the specified
subprogram, so the only way to communicate between the environment in which the
error is declared and the error service routine is through a COM block.

Using ERRLN and ERRL in Subprograms
You can use the ERRLN function in any context, and it returns the line number of the
most recent error. However, the ERRL function will not work in a different environment
than the one in which the ON ERROR statement is declared. For instance, the following
two statements will only work in the context in which the specified lines are defined:

100 IF ERRL(40) THEN GOTO Fix40
100 IF ERRL(Line_label) THEN Fix_line_label

The line identifier argument in ERRL will be modified properly when the program is
renumbered (such as explicitly by REN or implicitly by GET); however, that is not true
of expressions used in comparisons with the value returned by the ERRLN function.

So when using an ON ERROR CALL, you should set things up in such a manner that the
line number either doesn't matter, or can be guaranteed to always be the same one when
the error occurs. This can be accomplished by declaring the ON ERROR immediately
before the line in question, and immediately using OFF ERROR after it.

5010 ON ERROR CALL Fix_disc
5020 ASSIGN ~File TO "Data_file"
5030 OFF ERROR

7020 SUB Fix_disc
7030 SELECT ERRN
7040 CASE 80
7050 DISP "Door open -- shut it and press CaNT"
7060 PAUSE
7080 CASE 83
7090 DISP "Write protected -- fix and press CaNT"
7100 PAUSE
7120 CASE 85
7130 DISP "Disc not initialized -- fix and press CaNT"

11-12 Handling Errors

7140 PAUSE
7160 CASE 56
7170 DrSp "Creating Data_file"
7180 CREATE BOAT IData_file".20
7190 CASE ELSE
7200 Drsp "Unexpected error ";ERRN
7210 PAUSE
7220 SUBEND

A Closer Look At ON ERROR RECOVER
The ON ERROR RECOVER statement sets up an immediate branch to the specified
line whenever an error occurs. The line specified must be in the context of the
ON ... RECOVER statement. ON ERROR RECOVER is global in scope-it is active
not only in the environment in which it is defined, but also in any subprograms called
by the segment in which it is defined.

If an error is encountered while an ON ERROR RECOVER statement is active, the
system will restore the context of the program segment which actually set up the branch,
including its system priority, and will resume execution at the given line.

3250 ON ERROR RECOVER Give_up
3260 CALL Model_universe
3270 DrSp "Successfully completed"
3280 STOP
3290 Give_up: DrSp "Failure ";ERRN
3300 END

Handling Errors 11-13

Simulating Errors
(CAUSE ERROR)
Since it is not always convenient to set up the conditions that cause errors, this BASIC
system has a simple way of programmatically simulating errors. The following statement
does this:

CAUSE ERROR Error_number

The parameter Error _number is the number of the error that you want to simulate (error
numbers in the range 1001 through 1080 have special significance, as described later in
this section.) Thus, CAUSE ERROR is useful in testing and verifying your error trapping
routines.

The effects of this statement are the same as if the error were caused by real error
conditions:

• The ERRN function still returns the error number (in this case, it is the value that
you specified in the CAUSE ERROR statement).

• The ERRM$ function still returns the text of the corresponding error message (if
the ERR binary is present).

• The ERRLN function still returns the line number at which the error occurred (in
this case, the line number of the CAUSE ERROR statement).

• The ERRL function still returns a 1 when its argument is the line at which the
error occurred.

Note, however, that CAUSE ERROR does not change ERRDS.

If CAUSE ERROR is executed froIll the keyboard, the appropriate error message will
be reported, but none of the program-related error conditions are affected. (This is also
true of other keyboard-related errors.)

11-14 Handling Errors

Example of Simulating an Error
Here is an example of modifying one of the preceding examples to simulate an error.
(Note that the original statement has been "commented out" so that it will be easy to
put back in after the testing is finished.)

100 Radical=B*B-4*A*C
110 Imaginary=O
120 ON ERROR GOSUB Esr
130 CAUSE ERROR 30 ! Partial=SQRT(Radical) ~ Line modified.
140 OFF ERROR

350 Esr:
360
370
380
390
400
410
420
430

IF ERRN=30 THEN
Imaginary=l
Radical=ABS(Radical)

ELSE
BEEP
DISP "Unexpected Error (";ERRN;")"
PAUSE

END IF
RETURN

The error-trapping subroutine can then be tested to verify that it properly traps error
30. After this verification, you may want to modify the CAUSE ERROR line to simulate
other errors that could possibly occur at that point in the program. (In this example,
it is not necessary since all other errors are handled in the same manner; see lines 390
through 410.)

CAUSE ERROR and Error Numbers 1001 thru 1080
Error numbers 1001 through 1080 have been reserved to have special meaning for BASIC
programs. These errors are used to simulate errors which may occur when a binary has
not been loaded. The value returned by ERRN will be 1; the ERRM$ function will
return either:

ERROR 1 in line_number Missing binary binary_number
or

ERROR 1 in line_ number Missing binary binary_ name

The second message is returned with language-extension binaries (no binary name is
returned with driver binaries).

Handling Errors 11-15

Clearing Error Conditions
(CLEAR ERROR)
After you have finished handling an error in a program 1 it is convenient to clear the
indications that an error has occurred. The following statement performs this action:

100 CLEAR ERROR

This statement has the following effects on the error functions 1 values:

ERRN

ERRLN

ERRL

ERRM$

ERRDS

Subsequently returns o.

Subsequently returns o.

Subsequently returns 0 for all arguments (line identifiers) sent to it.

Subsequently returns the null string (string with length 0).

Is not affected by CLEAR ERROR.

Note that the CLEAR ERROR statement is not keyboard executable; it can only be
executed from a running program.

11-16 Handling Errors

Debugging Programs 12
Using Live Keyboard. .. 12-2

Executing Commands While a Program Is Running 12-2
Using Program Variables. .. 12-2
Calling Subprograms. .. 12-4
Pausing and Continuing a Program 12-5
Keyboard Commands Disallowed During Program Execution 12-5

Cross References .. 12-6
Generating a Cross-Reference Listing. .. 12-6

Single-Stepping a Program. .. 12-10
Thacing .. 12-12

TRACE ALL. .. 12-12
PRINTALL IS. .. 12-14
TRACE PAUSE. .. 12-15
TRACE OFF. .. 12-16
The CLR I/O (Break) Key. .. 12-16

Debugging Programs 12
The problem of debugging a program is distinct from the issues raised in the "Handling
Errors" chapter. The "Handling Errors" chapter is based on the premise that the
programmer is satisfied that the program works as it should, and that it then should
be made as foolproof as possible. This could be construed as putting the cart before the
horse-before you can make a program foolproof, you must get it to run correctly in the
first place. One of the key characteristics of a "bug" is that it doesn't necessarily have
to cause an error condition to occur-it only has to cause your program to give a wrong
answer. This chapter deals with the methods available to diagnose problems in logic and
semantics.

Naturally, the ideal way to debug a program is to write it correctly the first time
through, and all programmers should strive constantly to achieve this goal. Hopefully,
the techniques that have been been discussed in this manual will help you get a little
closer to this goal. The practice of writing self-documenting code and designing programs
in a top-down fashion should help immensely.

Aside from recommended methods of writing software, the computer itself has several
features which aid in the process of debugging.

Debugging Programs 12-1

Using Live Keyboard
One of the pleasing characteristics of your computer is that its keyboard is "live" even
during program execution. That is, you can issue commands to the computer while it
is running a program the same way that you issue commands to it while it is idle. For
instance, you can add two numbers together, examine the catalogue of the disk currently
installed in the drive, list the running program to a printer, scroll the CRT alpha buffer
up and down, or output a command to a function generator over HP-IB. Practically the
only thing you can't do from live keyboard while a program is running is write or modify
program lines, or attempt to alter the control structures of the program. (A complete
list of illegal keyboard operations is given a little later on.)

Executing Commands While a Program Is Running
By way of illustration. key in the following program. press I RUN 1 ([ill in the System.
User 1, and User 2 menus of an ITF keyboard), and then execute the commands shown
underneath the listing.

10 FOR 1=1 TO 1.E+6
20 NEXT I
30 END

CAT
2+2
SQR(6-~+17.2-2)

PRINT liTHE QUICK BROWN FOX"
TIMEDATE

Using Program Variables
Now, this program will take a fair amount of time to complete (on the order of minutes),
so to find out how far the prograIll has gone, look at the value of the variable I. Type:

OJ I Return 1 or I ENTER I.

The currellL value uf I will Le displayed at the bottom of the screen.

If you don't want to wait for the program to go through all OIle million iteratioIls, you
can merely change the value of I by entering:

1=999000

Thus, we have seen that live keyboard can be used to examine and/or change the contents
of the program's variables.

12-2 Debugging Programs

One aspect of live keyboard to be aware of is that the computer will only recognize
variables that exist in the current program environment. For instance, suppose that we
change our example program to call a subprogram inside the loop.

10 FOR 1=1 TO 1.E+5
15 CALL Dummy
20 NEXT I
30 END
40 SUB Dummy
50 FOR J=1 TO 10
60 NEXT J
70 SUBEND

While this program is running and you try and test the variable I from the keyboard,
chances are that you will only get a message saying that I doesn't exist in the current
context-most of the time will be spent in the subprogram. On the other hand, if you
test the value of J, it is highly likely that you will get an answer.

Similarly, operations like ASSIGN and ALLOCATE, which are declarative types of
statements, must use variables that are already known to the current environment when
they are executed from the keyboard. For example, in the following program, it is
perfectly legal to perform the operation ASSIGN ClDvm TO * from the keyboard, although
it is not legal to perform ASSIGN ClFile TO II DATA II from the keyboard.

1 ASSIGN ClDvm TO 724
10 FOR 1=1 TO 1.E+5
20 NEXT I
30 END

Live keyboard operations are allowed to use variables already known by the running
program. Live keyboard operations are not allowed to create variables.

Debugging Programs 12-3

Calling Subprograms
Although the GOTO and GOSUB commands are illegal from the keyboard, it is perfectly
legal to call subprograms from the keyboard. The parameters that are passed must either
be constants or must be variables that exist in the current context. Also, the program
in memory must be able to pass pre-run without errors.

Here is an example:

10 FOR 1=1 TO 1E5
20 NEXT I
30 END
40 SUB Gather(INTEGER X)
50 OPTION BASE 1
60 DIM A(32)
70 CREATE BOAT "File"&VAL$(X) ,1
80 ASSIGN ~Dvm TO 724
90 ASSIGN ~File TO "File"&VAL$(X)
100 OUTPUT ~Dvm;"N100S"
110 ENTER ~Dvm;A(*)
120 OUTPUT ~File;A(*)
130 PRINT A(*),
140 SUBEND
150 DEF FNPoly(X)
160 RETURN XA 3+3*X A 2+3*X+X
170 FNEND

By executing CALL Gather (1) from the keyboard, the main program will be suspended
while the subprogram is called, at which time a 1 record file will be opened, 32 readings
will be taken from the voltmeter and stored in the file, and the readings will be printed
on the screen. Then main program execution will resume where it left off.

Similarly, by executing FNPoly(1) , the value of the polynomial will be computed for X=l
and the answer (8) will be displayed at the bottom of the screen.

12-4 Debugging Programs

Pausing and Continuing a Program
You can also pause a program from the keyboard using the I PAUSE I (I Break I) key.

You may subsequently continue program execution:

• Press the I CONTINUE I key (@] in the System menu of an ITF keyboard)

• Execute a CONT statement:

CO NT I Return I or I ENTER I
or

CONT 100 I Return I or I ENTER I
or

CONT Line_label I Return I or I ENTER I

Note that a program which has been edited cannot be continued.

Keyboard Commands Disallowed During Program Execution
Here is a list of commands which may not be executed from the keyboard while a program
is running, although they may be executed from the keyboard if the computer is idle:

CHANGE FIND SCRATCH

CONT GET SCRATCH A

COPYLINES LOAD SCRATCH BIN

DEL MOVELINES SCRATCH C

EDIT RUN SYSBOOT

Debugging Programs 12-5

Cross References
When debugging a program, and you think that the problem may be that you misspelled
a variable name~ you can use the XREF command to alphabetically list all variable
names. This listing will also contain the line numbers where the variables were used, to
help you locate any problems caused by misspelling or using the wrong variable.

Another way of using a cross-reference listing is when you need to find every place a
particular variable name is used, but the system (and therefore the FIND command) is
not available. It is often advisable to generate a cross referencr at thr rnd of a hard-copy
(printer) listing of a large program. This information makes finding every occurrence of
a variable much easier.

Generating a Cross-Reference Listing
The following XREF command prints a cross-reference listing on the default PRINTER
IS device:

XREF

The next command sends a cross-reference to device selector 701:

XREF #701

12-6 Debugging Programs

Example Program and Cross Reference
Here is an example program, with a corresponding cross reference.

10 ! Fil "DoKeyFile"
20 DIM Key_value$[160]
30 INTEGER Key_number
40 CREATE BDAT "SOFTKEYS".3
50 ASSIGN <OKeys TO "SOFTKEYS"
60 FOR I~O TO 9
70 READ Key_number.Key_value$
80 OUTPUT <OKeys;Key_number.Key_value$
90 NEXT I
100 ASSIGN <OKeys TO *
110 LOAD KEY "SOFTKEYS"
120 ! ---- Key Data ----------------------
130 DATA 8."work!".5."that".1."See?".4."you"
140 DATA 2."I".3."told".7."would".6."this"
150 END

N ow generate a cross reference of the identifiers in the program:

XREF I Return I or I ENTER I

The following results are generated:

»» Cross Reference ««

* Numeric Variables
I 60 90
Key_number 30 <-DEF 70 80

* String Variables
Key_value$ 20 <-DEF 70 80

* I/O Path Names
<OKeys 50 80 100

Unused entries = 7

This is not an exhaustive list of XREF outputs, since there were no COM blocks,
subprogram calls, line labels, etc. However, it does give an idea of the general format of
a cross-reference listing. (For a complete description of XREF listings, see the BASIC
Language Reference.)

Debugging Programs 12-7

Note the <- DEF which appears in some of the line-number lists: this symbol appears
when:

• The identifier is a variable in a formal parameter list (that is, in a SUB or DEF FN
statement) .

• The identifier is a variable declared III a COM, DIM, REAL, INTEGER, or
COMPLEX statement.

• The identifier is a line label for that line.

Unused Entries
At the end of each context, a line is printed that begins with:

Unused entries =

The number of "unused entries" deals with the internal workings of the system. It tells
how many symbol table entries are available:

• for which space has already been made

• but which are not currently used by a variable

This is a count of the symbol table entries which have been marked by pre-run as
"unused". Unreferenced symbol table locations which have not yet been marked "unused"
by pre-run processing will show up in the lists of identifiers with empty reference lists.
Note that a distinction is made here between "unused" and "unreferenced".

Pre-run will convert unreferenced symbol table entries (entries which are defined by the
system but not used by a variable in the program) into "unused" entries. Unreferenced
entries can arise because you changed your mind about a variable's name or correded
a typing error (once the system reserves space for a symbol table entry, this space is
dedicated to the purpose of storing symbols until the corresponding context is destroyed,
such as with SCRATCH). "Unreferenced entries" can also arise in syntaxing some
statements where a numeric variable name which becomes a line label or a subprogram
name is created. Also, REN (renumber) can cause line numbers to merge if you have
unsatisfied line-number references. This shows up in the cross-reference as separate (but
adjacent) entries for the multiple symbol table entries for the line number.

Lefs go through an example to make this completely clear. At power-up the system
creates an empty symbol table with space for five entries. Doing an XREF at this point
will show Unused entries = 5 and no other symbols.

12-8 Debugging Programs

N ow type in the following program:

10 A=1
20 B=2
30 C=3
40 D=4
50 E=5

An XREF at this point will show five variables, each occurring in one line, and Unused

entries = 0 (all the pre-allocated spaces having been filled).

N ow add one more line:

60 F=6

A subsequent XREF will show six variables and Unused entries = 5. This happens
because when the system needs a symbol table location and none exists it always allocates
six additional spaces: one for its immediate needs, and five spares for future use.

Now delete lines 10 to 60 using DEL 10,60 or the I Delete line I (I DEL LN I) key. Then perform
another XREF. The listing will show six variables, each with an empty reference list, and
Unused entries = 5.

N ow store the following program line (as the only line):

10 END

and run the program. Now an XREF will show Unused entries = 11.

Doing a SCRATCH will restore the initial state with the symbol table reduced to five
empty locations.

Now enter the following program lines:

10 GOTO A
20 A:END

Then execute XREF. This will show a numeric variable A (which is an artifact of the
syntaxing process) and the line label A (referenced in two places). Running this program
will cause pre-run to recognize that there is no occurrence of a numeric variable A in the
program and reclaim the space for future use, converting it back into an "unused entry".
Variables which are defined in the program are considered "referenced" and cannot be
converted to "unused" even if no assignment or access is made to them, because they
must be present in the symbol table in order for the program to list. Such variables must
be found by looking at the XREF for variables with reference lists which contain only
defining occurrences « - DEF) .

Debugging Programs 12-9

Single-Stepping a Program
One of the most powerful debugging tools available is the capability of single-stepping a
program, one line at a time. This process allows the programmer to examine the values
of the variables and the sequence in which the program is running at each statement.
This is done with the I STEP I key (OIJ in the System menu of an ITF keyboard).

There are three ways to use the 1 STEP I key:

1. If the program is stopped (i.e., a pre-run has to be performed), pressing the 1 STEP I
key will cause the system to perform a pre-run on the program, but no program
lines will actually be executed. The first line that will be executed will appear in
the system message line at the bottom of the screen. Pressing the 1 STEP I key again
will cause that line to be executed, and the next line after that to be executed will
appear in the message line. If the I STEP I key is pressed causing the next lin(' to
appear in the display, and a live keyboard operation (such as examining the value
of a variable) is performed, the contents of the message line will change. Pressing
the 1 STEP I key again will still cause the line to be executed, even though it is no
longer visible in the display line. After the statement has completed, the next line
will appear.

2. If the program is in an INPUT or LINPUT statement, pressing the 1 STEP I key is
sufficient to terminate the operation. Any data entered from the keyboard will
be entered into the correct variables, just as though 1 CONTINUE I (@] on the ITF
keyboard) or 1 ENTER I (I Return Ion the ITF keyboard) had been pressed, but program
execution will be PAUSEd, and the statement immediately following the INPUT
or LINPUT will appear in the system message line.

3. If the program is in a PAlTSEd stah" pressing the 1 STEP I key will cause the next
lin(' to b(' ('x('cut('d. Th(' program count('r will not 1)(' r('s('t, nor will a pr('-run be
performed. Again, the next line to be executed will appear in the system message
line after the last one has been completed. A paused state is indicated by a dash
in the run light in the lower right-hand corner of the screen.

12-10 Debugging Programs

Type in the following example and execute it by pressing the I STEP 1 key repeatedly.

10 DIM A(1:5)
20 ! This is an example
30 S=O
40 FOR 1=1 TO 5
50 INPUT "Enter a number" ,A(!)
60 S=S+A (!)
70 NEXT I
80 PRINT S
90 PRINT A(*);
100 END

Notice that the I STEP 1 key caused every statement to appear in the system message
line, one at a time, even those statements that are not really executed, like DIM and
comments.

If you are stepping a program and encounter an INPUT, LINPUT, or ENTER KBD
statement, you can use I Return I, I ENTER I, or I CONTINUE 1 to enter your responses. The
system will remember that you are stepping the program and remain in single-step mode
after the input operation is complete (unless you press I CONTINUE 1 again after the input
operation is complete).

If you hold down the I STEP 1 key, to continuously step through program lines, you may
want to turn soft key labels off (especially when using bit-mapped alpha displays).

Debugging Programs 12-11

Tracing
The process of single-stepping, wonderful though it is, can be quite slow, especially if
the programmer has little or no idea which part of his program is causing the bug. An
alternative way of examining variable changes and program flow is available in the form
of the TRACE ALL statement.

TRACE ALL
When the TRACE ALL command is executed, it causes the system to issue a message
prior to executing every line (this shows the order in which the statellwnts wen' executed).
and if the statement caused any variables to change value, a message telling the variables
involved and their new values is also issued. The messages are issued to the system
message line, and the most useful way to use the TRACE ALL feature is to turn Print
All On with the I PRT ALL I key ([ill in the System menu of an ITF keyboard). unless of
course you're a very fast reader. (The print all mode will cause all information from the
DISP line, the keyboard input line, and the system message line to be logged on the
PRINTALL IS device.)

Turn Print All ON and key in the following example to see how TRACE ALL works:

10 TRACE ALL
20 FOR 1=1 TO 10
30 PRINT I;
40 IF I MOD 2 THEN
50 PRINT " is odd."
60 ELSE
70 PRINT " is even. "
80 END IF
90 NEXT I
100 END

12-12 Debugging Programs

There are two optional parameters that can be used with TRACE ALL. Both parameters
are line identifiers (line numbers or line labels). The first parameter tells the system when
to start tracing, and the second one (if it's specified) tells the system when to stop tracing.
The following example illustrates the use of one optional line specifier:

1 TRACE ALL 40
10 DIM A(1: 10)
20 FOR 1=1 TO 100
30 NEXT I
40 FOR J=l TO 10
50 A(J)=J
60 NEXT J
70 END

It is usually more useful to use the TRACE ALL command from the keyboard rather
than from the program because a program modification is not necessary if you want to
trace a different part of the program. All that's necessary is to type in a new TRACE
ALL command from the keyboard to override the old one. In the above example, to
trace the loop from 20 to 30 instead of the one from 40 to 60, simply delete line 1 and
type in TRACE 20.40 from the key board.

10 DIM A(1:10)
20 FOR 1=1 TO 100
30 NEXT I
40 FOR J=l TO 10
50 A(J)=J
60 NEXT J
70 END

The program will begin tracing at line 20, and keep on tracing until it's ready to execute
line 40, at which time it will terminate the trace messages and will continue executing
the program normally.

If the TRACE ALL statement uses a line label instead of a line number, be aware of what
happens if you have more than one occurrence of a given line label in your program. For
instance, it is perfectly legal to have the same line label in two or more different program
environments-line labels are local to subprograms and branching operations addressing
a given line label are treated separately in different subprograms.

Debugging Programs 12-13

However, when a TRACE ALL using a line labrl is rxecuted. the first line labrl in
memory is the one that gets used, regardless of the environment the program was in
when the TRACE ALL statement was executed. Thus in the following program. even
though the TRACE ALL Printout statement is executed inside the subprogram, tracing
does not commence until the subprogram has been exited and the Printout statement in
the main program has been executed.

10 DIM A(1: 10)
20 FOR 1=1 TO 10
30 CALL Dummy(A(*) ,I)
40 GOSUB Printout
50 NEXT I
60 STOP
70 Printout:
80 FOR J=l TO 10
90 PRINT A(J);",";
100 NEXT J
105 PRINT
110 RETURN
120 END
130 SUB Dummy(X(*) ,Z)
140 TRACE ALL Printout
150 FOR 1=1 TO 10
160 X(I)=Z*lOO+I
170 NEXT I
180 GOSUB Printout
190 SUBEXIT
200 Printout: !
210 PRINT "Dummy routine executed";Z
220 RETURN
230 SUBEND

If two line identifiers are used, their location with respect to each other does not matter.
Tracing will start when the line specified first is encountered, and it will stop when (or
if) the second line is encountered.

PRINTALL IS
The PRINTALL IS command is useful for switching the tracing messages between the
CRT and a hardcopy printer. For instance, turning PRINTALL ON during pre-run will
allow you to see which array variable has not been dimensioned. (Again, to get any record
at all of the trace messages, Print All must be On.) To cause the trace messages to be
logged on the CRT, execute PRINTALL IS CRT. (The CRT is the default PRINTALL
IS device that the system assumes when it wakes up.) To cause the messages to be
logged on a printer, merely change the select code to the appropriate value (PRINTALL
IS 701).

12-14 Debugging Programs

TRACE PAUSE
The TRACE PAUSE command can be used to set a "break point" in the program. The
program will execute at a reduced speed until the specified line is reached, at which time
the program will pause, and the specified line will be shown in the display line, indicating
that the program will execute it when execution is resumed. Execution may be resumed
with the I CONTINUE I key (@] in the System and User menus on an ITF keyboard), the
I STEP I key (ff1l in the System menu on an ITF keyboard), or by executing CONT from
the keyboard (the specified line identifier must be located in the current environment).

By executing the command TRACE PAUSE Printout from the keyboard, the following
program will pause every time it reaches line 70.

10 DIM A(1: 10)
20 FOR 1=1 TO 10
40 GOSUB Printout
50 NEXT I
60 STOP
70 Printout:
80 FOR J=l TO 10
90 PRINT A(J);",";
100 NEXT J
110 PRINT
120 RETURN
130 END

Try the following ways of continuing execution:

• press ~ (lliJ on the ITF key board)

• press I CaNT I NUE I (@] on the ITF key board)

• execute CONT 110

As with TRACE ALL, a new TRACE PAUSE statement overrides a previous one. The
same rules are applied when a line label is used in a TRACE PAUSE statement as are
applied to the TRACE ALL statement-the first line in memory having that label is
used.

Debugging Programs 12-15

TRACE OFF
TRACE OFF cancels the effects of any active TRACE ALL or TRACE PAUSE
statements. The status of Print All and the PRINTALL IS device will be unchanged.

TRACE OFF may be executed either from the program, or from the keyboard.

The CLR I/O (Break) Key
The I CLR I/O 1 key (I Break 1 on the ITF keyboard) suspends any active I/O operation
and pauses the program in such a way that the suspended statement will restart once
1 CONTINUE 1 ([EJ on the ITF keyboard) or I STEP 1 ([ill on the ITF keyboard) is pressed.
This is useful for operations which appear to "hang" the machine, such as printing to a
printer which isn't turned on.

Most devices will not respond to ENTER requests unless they have first been instructed
to respond. If improper values are sent to a device, it may refuse to respond. Therefore,
I CLR I/O 1 can help in debugging these situations.

Here are the operations that can be suspended with I CLR I/O I.

PRINT SEND ASSIGN

LIST PRINTALL outputs PURGE

CAT ENTER CREATE

OUTPUT INPUT

DUMP GRAPHICS HP -IB commands

DUMP ALPHA External plotter commands

12-16 Debugging Programs

Efficient Use of the
Computer's Resources 13

Data Storage .. 13-1
Data Storage in Read/Write Memory. .. 13-1
Data Storage on Mass Memory Devices. .. 13-3
Comments and Multi-character Identifiers. .. 13-4
Variable and Array Initialization. .. 13-4

Mass Memory Performance .. 13-5
Program Files .. 13-5
Data Files .. 13-6

Benchmarking Techniques. .. 13-7
INTEGER Variables ... 13-9

Minimum and Maximum Values 13-9
Mathematical Operations .. 13-9
Loops ... 13-11
Array Indexing. .. 13-12

REAL and COMPLEX Numbers. .. 13-13
Minimum and Maximum Values 13-13
Type Conversions. .. 13-13
Constants. .. 13-14
Polynomial Evaluations. .. 13-14
Logical Comparisons for Equality on REAL Numbers 13-17

Saving Time .. 13-18
Multiply vs. Add. .. 13-18
Exponentiation vs. Multiply and SQRT 13-18
Array Fetches vs. Simple Variables " 13-19
Concatenation vs. Substring Placement. .. 13-19
HP 98635 Floating-Point Math Card. .. 13-21
MC68881 Floating-Point Math Co-Processor 13-21
Enabling and Disabling Floating-Point Math Hardware. 13-21
MC68020 Internal Cache Memory 13-22

Saving Memory ... 13-23
Releasing Memory Volumes .. 13-25

Efficient Use of the
Computer's Resources 13
Every model of computer has certain characteristics which can result in better perfor
mance, provided the programmer knows what those characteristics are and how he can
take advantage of them. This chapter consists of a potpourri of such items.

Data Storage
It is usually desirable to minimize the usage of computer memory and mass storage. This
section describes how much space is required to store various types of data, which will
help you in using your storage resources for the best possible utilization.

Data Storage in Read/Write Memory
There are five data types on this computer: REAL, INTEGER, COMPLEX, strings, and
I/O path names. The memory occupied by data is made up of two parts: the memory
it actually takes to hold the intended information, and the memory that the system uses
to keep track of the information's location and form (this is called overhead). Strings,
INTEGERs, COMPLEXs and REALs can be declared either as simple variables or as
arrays. Arrays take different amounts of overhead than simple variables, but each element
of an array uses the same amount of memory that a corresponding simple variable uses
to actually store information.

The overhead required for any given symbol is kept in three tables:

• the symbol table

• the token table

• and the dimension table

The symbol table contains pointers to the value area, where the actual information is
kept, and to the other two tables. The token table contains the names of the various
symbols. The dimension table contains length information for strings and arrays, and is
not used for numeric scalars. The tables are not constructed in single units as symbols
are added and deleted. Rather, as new space is required, the system will first look to see
if there are any unused entries in the tables-if new space is allocated, usually enough
for several entries is allocated. For instance, the symbol table is built in increments of
five entries.

Efficient Use of the Computer's Resources 13-1

Symbol Table Overhead:

Token Table Overhead:

Dimension Table Overhead:

10 bytes per symbol

Number of characters in the name + 1 (if the above
number is odd, it is rounded up to an even number).
Note that the name for I/O path names, strings~ and
functions includes the @, $, and FN, respectively.

For arrays: 3 bytes (total size)
1 byte (number of dimensions)
4 bytes for each dimension (for the lower

bound, and the size of each dimension)

For strings: 2 bytes (maximum length)

For string arrays: all of the normal array overhead,
plus two bytes for the maximum allowed length of an
element

Note that line labels, COM labels, and subprograms are considered as symbols, and
occupy space in both the symbol and token tables. Line numbers used in statements,
like GOTO 20, also occupy space in the symbol table.

Every subprogram (or context) has its own set of tables. In addition~ there is a global
set of COM tables, where all information concerning COM blocks is kept. Symbols that
belong to a COM block will occur in both the COM tables and in any local tables in
which that COM block is declared. Since each context may define the names by which
it refers to COM block variables, there will be no entry in the COM token table for each
variable, but an entry in the COM token table will occur for COM labels.

ALLOCATEd variables require four bytes of overhead in addition to the overhead already
discussed for the symbol, token, and dimension tables.

13-2 Efficient Use of the Computer's Resources

The following table summarizes the storage requirements for various data types. This
table does not show the extra requirements just mentioned for ALLOCATEd and COM
variables.

Table 13-1. Data Type Storage Requirements

Type
~ - Overhead Information Storal!e

~

Simple INTEGER 10 bytes + name overhead 2 bytes

Simple REAL 10 bytes + name overhead 8 bytes

Simple COMPLEX 10 bytes + name overhead 16 bytes

Simple string 12 bytes + name overhead 1 byte per char. up to declared length
(padded to even number of chars.) + 2
bytes (length information)

I/O path name 10 bytes + name overhead 100 bytes

INTEGER array 14 bytes + name overhead 2 bytes per element
+ 4 bytes per dimension

REAL array 14 bytes + name overhead 8 bytes per element
+ 4 bytes per dimension

COMPLEX array 14 bytes + name overhead 16 bytes per element
+ 4 bytes per dimension

String array 16 bytes + name overhead 1 byte per char. up to declared length
+ 4 bytes per dimension (padded to even number of chars.)+ 2 bytes

(length information) per element

Data Storage on Mass Memory Devices
The amount of storage that data takes on mass storage media is similar to the amount
of memory that data takes internally, except that no overhead is required (on BDAT
files). Arrays and single values are interchangeable on mass storage-no distinguishing
information is kept on the media.

INTEGERs (and INTEGER arrays) 2 bytes (per element)

REALs (and REAL arrays) 8 bytes (per element)

COMPLEXs (and COMPLEX arrays) 16 bytes (per element)

Strings (and string arrays) 4 bytes + 1 byte per char up to current length,
padded to even number of chars. (per element)

Efficient Use of the Computer's Resources 13-3

For ASCII files, all information is converted to string (or ASCII) form, and a two-byte
length field is tacked onto the front of every field.

INTEGERs (and INTEGER arrays) 2 bytes + 1 byte per digit (per element)

REALs (and REAL arrays) 2 bytes + 1 byte per digit (per element)

COMPLEXs (and COMPLEX arrays) 2 bytes + 1 byte per digit (per element)

Strings (and string arrays) 2 bytes + 1 byte per char (per element)

Comments and Multi-character Identifiers
Self-documenting features such as in-line comments and multi-character variables and
line labels are useful because of the benefits to be reaped in terms of developing, testing,
debugging, and maintaining programs. They do take extra memory, but this shouldn't
be a problem if you keep the following points in mind.

Comments take 1 byte of memory for every character in the comment. If memory space
becomes a problem, many people resort to keeping two copies of their programs around·
one fully commented to use as reference material, and the other uncommented to use as
the "production version," which is the one that is actually used.

Multi-character identifiers are only spelled out in their entirety once-not every time they
are used. The program actually stores pointers whenever a reference to the identifier is
used, so using short identifiers won't result in any appreciable savings in memory used.

Variable and Array Initialization
Care should be taken to initialize any variables before using them in an expression (on the
right hand side of an =, as a left-hand snb~cript in a function or subprogram parametpr
list, as an argument to a built-in function, or in a PRINT/OUTPUT /DISP list). The
system will set variables to zero, strings to null, and I/O path names to undefined at
program prerun, but depending upon default settings is considered bad programming
practice and could lead to subtle errors. For instance, the first time a certain line is
executed, the variables used may be assumed to be zero because of the pre run operations.
Once this assumption has been made. the danger is that the programmer will branch back
to the same section of code and forget that the zeroing process has not been performed
an error may result that didn't occur previously.

13-4 Efficient Use of the Computer~s Resources

Mass Memory Performance

Program Files
There are two ways to store programs-they can be saved either as ASCII source strings
using the SAVE command, or they can be stored in an intermediate form that the BASIC
language system understands using the STORE command.

If the time it takes to load the program is important, always use the STORE command to
store the program instead of the SAVE command. The LOAD command, which reads in
files created by the STORE command, will execute about fifty times faster than the GET
command. This is because the LOAD command does not require that the information
on the file be processed in any way. Since the program is already in the form the system
needs it in, all that is necessary is to funnel the program directly into memory as fast as
the disc can spin (assuming an interleave of one).

SAVE files, on the other hand, require that the system parse and check the lines as they
are read, just the same as if a user had typed them in from the keyboard. Consequently,
the speed at which the program gets loaded into memory with the GET command will
be drastically slower than the LOAD command. Using the Model 226 and 236 internal
drives as an example of the relative speeds, a typical 8-Kbyte program will take about
30 seconds to GET, but only about one second to LOAD.

One advantage of the GET/SAVE commands is that it is possible to deal with programs
as string data.

Efficient Use of the Computer's Resources 13-5

Data Files
As with program files, there are two types of data files: ASCII and BDAT. ASCII files
require that all data be in string form, while BDAT files are interpreted as internal data
representations.

When reading or writing data to an ASCII file, the number formatter is required to
convert the data in between its internal representation and its ASCII form. When reading
or writing data to a BDAT file~ the data may stream directly back and forth with no
conversion required. Using the Model 226 and 236 internal drives as an example, an
8K-element REAL array (64K bytes) may take around 200 seconds to write in an ASCII
file, while the same array will only take about 5 seconds to write to a BDAT file.

The primary benefit of the ASCII data file is the transportation of data between
different models of Hewlett-Packard computers and terminals and between discs used
with different language systems.

13-6 Efficient Use of the Computer's Resources

Benchmarking Techniques
This section discusses the techniques used to determine how fast various operations
execute. Ideally, you should separate the measurement time from elapsed time:

10 Tl=TIMEDATE
20 T2=TIMEDATE
30 PRINT Tl-T2;"seconds used to read clock"
40 END

In actuality, the clock only has a resolution of 10 ms, so you won't usually be able to
time this operation.

Next, most operations are performed inside a loop in order to be able to time operations
that are faster than the resolution of the clock (clock resolution is 10 ms.). This also
tends to ~~smooth out" varying system overhead characteristics.

10 INTEGER I
20 Tl=TIMEDATE
30 FOR 1=1 TO 10000
40 NEXT I
50 T2=TIMEDATE
60 PRINT T2-Tl;"seconds of loop overhead"
70 END

A certain amount of time used in computational operations will involve moving infor
mation around. The time will be different depending upon the type of the information
being moved (string, REAL, COMPLEX or INTEGER), and for strings, the length.

10 REAL A.B.C
20 INTEGER I
30 B=PI
40 Tl=TIMEDATE
50 FOR 1=1 TO 10000
60 A=B
70 NEXT I
80 T2=TIMEDATE
90 PRINT T2-Tl;"seconds of loop overhead"
100 END

Efficient Use of the Computer's Resources 13-7

The next step is to actually time the operation of interest. It should be noted that for
arithmetic operations. the time spent performing the operation will vary depending upon
the two operands (number of digits and relative magnitudes).

10 REAL A,B,C
20 INTEGER I
30 B=PI*1.E+53
40 C=EXP(SQR(2)-13.81)
50 PRINT "B=";B,"C=";C
60 T1=TIMEDATE
70 FOR 1=1 TO 10000
80 A=B
90 NEXT I
100 T2=TIMEDATE
110 FOR 1=1 TO 10000
120 A=B+C
130 NEXT I
140 T3=TIMEDATE
150 Op_time=DROUND(T3-T2-T2+T1,3)
160 PRINT Op_time*100;"us. per operation"
170 END

The above program will show anywhere from 148 to 150 microseconds per operation for
addition.

Here is a list of a few other operations:

Addition 150 J-lS

Subtraction 165 J-lS

Multiplication 301 J-lS

Division 460 J-lS

Exponentiation 7590 J-lS

These times vary for differeut processor boards. Use these times aud others throughout
this chapter to compare the speeds of different operations.

13-8 Efficient Use of the Computer's Resources

INTEGER Variables
We have seen in the first section of this chapter that INTEGER variables don't take as
much memory as REAL variables (2 bytes instead of 8). Now we shall discover that some
operations with INTEGERs are much faster than the same operations with REALs.

'.1inimum and '.1aximum Values
The INTEGER variable type may store any whole number from -32768 to +32767
inclusive.

Mathematical Operations
There are two sets of math routines provided for the MOD, DIV, +, -, and * operations:
REAL and INTEGER. Depending upon the types of the operands used, the execution
times for these operations will vary widely. The tradeoffs are:

INTEGER math is the faster of the two, since it doesn't require as much "work." This
is because:

1. There are only two bytes of data to process instead of eight.

2. Operations do not have to deal with a combination of mantissa and exponent.

3. The results don't have to be normalized.

4. INTEGER math can be done directly in the hardware.

REAL math, though slower, is generally more widely used because it allows numbers
with fractional parts to be analyzed. REAL numbers carry about 16 decimal digits of
precision and have an exponent range of -308 to +308.

Note

All times specified are without the floating point card or the
MC68881 math coprocessor. If you have this card, your times
will be faster for REAL math.

For instance, suppose you want to compute your monthly pay. Assume that you're
making $5.17 an hour, that you work twenty-four days per month and that you work 14
hours per day. The calculation that you would use is 5.17*24*14 or $1737.12. In this
problem, you definitely want your computer to use REAL precision math (or you'll lose
17 cents per hour!) even though you're only using 6 of the 16 digits available.

Efficient Use of the Computer's Resources 13-9

The COlllput('r will pick whatevpr math routines it 1H'('ds to solve the current probleIll.
Howpver, the programmer can exprcise control over which math routinps get executed if
the following rules are understood.

• INTEGER math is used if both argullH'nts of a MOD. DIY. *. +. or - oppration arc
of type INTEGER. If the results of the' oppration cannot 1)(> stored in an INTEGER.
then an error is generated (INTEGER overHow).

• REAL math is used if either or both arguments of a MOD. DIY. *. +. or - operation
is of type REAL. If one of the arguments is of typP INTEGER. then that argument
is first converted to REAL.

• REAL math is always used for exponentiation (') and division (/).

The following table gives some approximate time comparisons! brtwren INTEGER and
REAL operations for +. -. and *. Thr times are approximations becausp REAL math
routines do different things depending upon the values of the operands. All times
shown here were found on operations with numbers having no fractional parts. The
multiplication times were found for operands in the range of -200 to +200.

Table 13-2. Approximate Execution Times: INTEGER vs. REAL

Operation REAL INTEGER

MOD 160 IlS 91 Ils

DIV 352 IlS 881ls

Addition 142 IlS 681ls

Subtraction 1741ls 681ls

Multiplication 152 IlS 771ls

Multiplication, like most math operations, will execute faster on INTEGER values. How
ever, bear in mind that it's much easier to get an INTEGER overHow on multiplications
than on additions and subtractions. For instance, 200*200 will give an INTEGER over
How. If you are performing multiplication on INTEGERs. you should carefully examinp
your program to ensure that the rangr of your answers doesn't force you to usp REALs.
even if the requirement for fractional precision doesn't.

1 These times are for a Series 200 computer with an MC68000 processor running at 8 MHz. They will be
significantly decreased on machines with higher clock rates or floating-point math hardwarp (HP 98635
lllath card or MC68881 co-processor).

13-10 Efficient Use of the Computer's Resources

Loops
In general, any FOR/NEXT loop using an index which has been declared to be an
INTEGER will execute about 2.4 times faster than a loop whose loop counter is a REAL.
Type in the two programs below and run them to see the difference.

10 REAL I
20 TO=TIMEDATE
30 FOR I=i TO iOOOO
40 NEXT I
50 PRINT TIMEDATE-TO;"seconds"
60 END

Time is about 1.67 seconds.

10 INTEGER I
20 TO=TIMEDATE
30 FOR 1=1 TO 10000
40 NEXT I
50 PRINT TIMEDATE-TO;"seconds"
60 END

Time is about .69 seconds.

Bear in mind that the 2.4 speed improvement is only on the time devoted to actually
incrementing and testing the loop variable (in these examples, I). SO, any loop that
iterates for 10 000 times will run about a second faster if the index is an INTEGER
instead of a REAL. Now, saving a second on a loop that executes 10 000 times may not
sound like much by itself, and it's not. But what if that loop is nested inside another
one that executes 10 000 times? Now your time savings is 10 000 seconds, or two hours
and forty-five minutes! Just for declaring the loop counters to be INTEGER.

Naturally, making a loop index an INTEGER will only work if the loop is not stepping
in fractions, and if the minimum and maximum values of the loop index do not exceed
the range of -32768 to +32767.

Efficient Use of the Computer's Resources 13-11

Array Indexing
Accessing individual array elements is faster if the variables or expressions giving the
indices into the array are INTEGER instead of REAL. This is because the system has
to convert floating-point numbers into an INTEGER in order to find the offset from the
beginning of the array. If the index is already in INTEGER form, the conversion isn't
necessary. The following example illustrates this point.

10 REAL I
20 DIM A(1:1000)
30 X=17.568
40 TO=TIMEDATE
50 FOR 1=1 TO 1000
60 A (I)=X
70 NEXT I
80 PRINT TIMEDATE-TO;"seconds"
90 END

10 INTEGER I
20 DIM A(1:1000)
30 X=17.568
40 TO=TIMEDATE
50 FOR 1=1 TO 1000
60 A (I)=X
70 NEXT I
80 PRINT TIMEDATE-TO;"seconds"
90 END

You will find a difference of .14 seconds between the two programs' execution times, due
to a combination of the loop counter being INTEGER and the INTEGER indexing of
tIl(' array. Again, if you ore operating on a much larger array, or if you ore working on a
multi-dimensional array, this number can become noticeable.

13-12 Efficient Use of the Computer's Resources

REAL and COMPLEX Numbers
This section describes details of using and storing REAL numbers. The information can
generally be applied to COMPLEX numbers, since COMPLEX numbers are essentially
two REAL numbers.

Minimum and Maximum Vaiues
The minimum REAL number that can be stored on this computer is approximately
±2.225 073 858 507202 x 10- 308 (The MINREAL function returns this value.)

The maximum REAL number that can be stored on this computer is approximately
±1.797 693134862315 x 10308 (The MAXREAL function returns this value.)

A REAL number can also have the value zero.

Type Conversions
Earlier, it was mentioned that any time a MOD, DIV, *, +, or - operation is performed
on two numbers of different type (one INTEGER, and one REAL), a type conversion
has to take place to convert the INTEGER to a REAL. This section will address other
situations where type conversions have to take place. •

Any time an INTEGER is used in an exponentiation or division operation, it must first
be converted to a REAL.

All of the following functions require a REAL argument (with the exception of VAL and
RND), and all of them return a REAL value (with the exception of RANDOMIZE). If
an INTEGER is passed in, or if the result is to be stored in an INTEGER, then the
appropriate type conversion must be made: EXP, LGT, LOG, RANDOMIZE, SQRT,
DROUND, RND, ACS, COS, ASN, SIN, ATN, TAN, VAL. Note that many of the
previously mentioned function also take COMPLEX arguments and return COMPLEX
arguments. These functions are: EXP, LGT, LOG, SQRT, ACS, COS, ASN, SIN, ATN,
TAN.

All of the comparison operators (=, <>, <, >, <=, >=) will return INTEGER values (0
or 1) but will accept either INTEGERs or REALs as arguments. The only comparison
operators allowed with COMPLEX values are = and <>. For more information on
comparisons of COMPLEX values read the section "REAL and COMPLEX Numbers
and Comparisons" in the chapter entitled "Handling Errors." The logical operators
AND, EXOR, OR, and NOT will convert any arguments to the INTEGER values 0 or 1
before the operation is performed, and an INTEGER 0 or 1 will be returned.

Efficient Use of the Computer's Resources 13-13

The binary bit functions (BINAND, SHIFT, ROTATE, BINIOR, BINCMP, BIT. BI
NEaR) require INTEGER inputs and provide INTEGER outputs. Type cOllversions
will be performed if REALs are supplied as inputs, or if the results are to be stored in a
REAL variable.

SGN returns an INTEGER (-1,0, 1) regardless of the type of the argument passed to
it. ABS and INT return the type of the argument that's passed to them.

If two INTEGERs are used to perform a MOD, DIV, *, +, or - operation, but the result
is to be stored in a REAL variable instead of an INTEGER. then the r('suIt must 1)('
converted from INTEGER to REAL.

Here is how long each type conversion takes:

INTEGER to REAL: 42 microseconds
REAL to INTEGER: 34 microseconds

Constants
All constants that are within the range of -32767 to 32767 that aren't entered with a
decimal point or an "E" (for scientific notation) are stored in the machine as INTEGERs.
Integer constants should always be used with INTEGER variables. but if they are used
with REAL variables they will have to be converted to REAL first. This operation will
slow down the execution of the program, as shown in the previous section. Any numbers
entered with decimal points (1.0, 3., .7, etc.), with an E (lE-304, .2E48, OEO, etc.),
or outside the valid INTEGER range (40000, -75986, etc.) will be stored as REAL
constants.

Polynomial Evaluations
The polynomial can waste much computer time because programmers tend to pick
the most obvious, and also the most time-consuming, method of evaluating them.
Polynomials are usually written mathematically as:

or

13-14 Efficient Use of the Computer's Resources

Hence the temptation is strong to evaluate a polynomial on a computer as:

2000 DEF FNPoly(X,Coefficient(*) ,INTEGER N)
2010 INTEGER I
2020 Y=O
2030 FOR 1=0 TO N
2040 Y=Y+Coefficient(I)*(X-I)
2050 NEXT I
2060 RETURN Y
2070 FNEND

In the above program, there are N + 1 additions, N + 1 multiplications, N + 1 exponentia
tions, and N+1 INTEGER to REAL conversions (I is converted to a REAL when the
exponentiation operation is performed). Now suppose the polynomial is written in the
equivalent form:

y=ao + x(al + x(a2 + ... + x(an) ...))

Then the corresponding program would be:

2000 DEF FNPoly(X,Coefficient(*) ,INTEGER N)
2010 INTEGER I
2020 Y=Coefficient(N)
2030 FOR I=N-1 TO 0 STEP -1
2040 Y=Coefficient(I)+X*Y
2050 NEXT I
2060 RETURN Y
2070 FNEND

Now there are only N additions and N multiplies, and NO exponentiations or INTEGER
to REAL conversions! The following chart shows the time savings as a function of
the order of the polynomial. For example, if the polynomial is of order 10, it is 70
milliseconds faster to use the nested multiply method to evaluate the polynomial than to
use exponentiation. Ifyou're plotting a thousand points on a graph, nested multiplication
will save you more than a minute!

Efficient Use of the Computer's Resources 13-15

DIFFERENCE BETNEEN NESTED MULTIPLICRTION
.4 RND EXPONENTIRTION ON POLYNOMIRL

U-J
o
z .2
o
u
w
en

EVRLURTION

--~~--~I--_~

1 S 2S 35 4S

ORDER OF POLYNOMIAL

Figure 13-1. Time Savings as a Function of Polynomial Order

13-16 Efficient Use of the Computer's Resources

Logical Comparisons for Equality on REAL Numbers
Don't do it.

If you are performing mathematical operations on REAL numbers, and then comparing
them for equality, the chances are that they will never come up equal. For example, in
the previous section on polynomial evaluation, you can pass the same value for X and
the same coefficient array to each of the two functions, and although the results will look
equal when you print them out, they won't show equality if you compare them. (Try it
and see.) A shorter example is to execute this expression from the keyboard:

.1+.1+.1+.1+.1+.1+.1=.7

The 0 at the bottom of the screen means that the machine doesn't consider the two
numbers to be equal. This is characteristic of the way that binary math works.

Any REAL numbers should be rounded first before being tested for equality. This is one
of the purposes of the DROUND function.

DROUNDC.1+.1+.1+.1+.1+.1+.1.12)=DROUNDC.7.12)

After rounding both numbers to 12 digits, the computer will now accept them as being
equal. See the "Numeric Computation" chapter for more discussion on the comparison
of REAL numbers.

Efficient Use of the Computer's Resources 13-17

Saving Time

Multiply vs. Add
It is always faster to add a number to itself than it is to multiply it by 2. For instance.
to perform 2*PI a thousand times takes .22 seconds, while to perform PI+PI a thousand
times takes .13 seconds.

However. if you want to multiply by 3, that is faster than adding the number three times.
3*PI executed a thousand times takes about the same as 2*PI (.22 seconds). but adding
PI+PI+PI a thousand times takes about .28 seconds.

Exponentiation vs. Multiply and SQRT
Exponentiation is very slow when compared to other mathematical operations. The
results are worth the wait when the exponent has a fractional part; raising a REAL
number to a REAL power is a complex operation. However, time can be saved if you
are alert to some special cases. The most common examples are squaring a number or
finding a square root. Using SQRT(X) takes only about one-fourth the time required by
the expression X- .5. Even more dramatic savings can be gained when raising numlwrs
to an integer power. Using X*X yields a 22-to-1 time savings over the expression X-2.

When using powers greater than 2 or 3, the expressions needed to achieve the repeated
multiplication can be somewhat cumbersome. and may not even fit on a program line.
However. repeated multiplication is so much faster than exponentiation that time savings
can be realized (for powers up to 14) even if a FOR ... NEXT loop has to be added to
repeat the multiplication.

13-18 Efficient Cse of the Computer's Resources

Array Fetches vs. Simpie· Variables
It takes more time to access an array element than it does a simple variable. This is
because the address of the array element has to be computed from the starting address
of the array and the offset within the array based on the specified indices. A simple
variable's address does not require this computation.

Thus, if you access a given array eiement often enough, especiaHy within a ioop, it win
often be faster to store the array element into a simple variable and then operate on the
simple variable.

Time to fetch a simple variable and store it:

Time to fetch an array variable and store it:

Difference:

136 J1S

260 J1S

124 J1s

This means that it is faster to fetch three simple variables than it is to fetch two array
elements.

Concatenation vs. Substring Placement
The concatenation operator (1£) allows you to combine two or more strings to construct
another string. This operation is discussed in the "String Manipulation" chapter. How
ever, there is a special case that can be accomplished faster without the concatenation
operator. This is the case where the new string is built by appending to the end of an
existing string. For example, A$=A$I£B$.

Concatenation works by constructing a temporary workspace in which all the components
are assembled. Then the result is moved to its destination. In the example above, A$ is
moved to a temporary workspace, B$ is appended to it, and the result is moved back to
A$. Thus, the original contents of A$, which weren't changed, have been moved twice
unnecessarily. A faster way to accomplish the same thing is:

A$[LEN(A$)+l]=B$

Another benefit of this approach is that the temporary workspace is not created. If
memory is tight and A$ is very large, concatenation could create a memory overflow.

Efficient Use of the Computer's Resources 13-19

The following chart shows the time savings that result from using substring placement
instead of concatenation.

15

14

13

~ 12 z
0
H 11
f-
a:
~ 1121
w
Il..
0 9
~
w 8
Il..

(J) 7
Q
Z

6 0
u
w

5 (J)
H

-.J
4 -.J

H

L 3

2

DIFFERENCE BETWEEN CONCATENTATION
AND SUBSTRING PLACEMENT

24121121 32121121

(t OF CHARACTERS IN FINAL STRING)

41210121

Figure 13-2. Time Savings: Substring Placement vs. Concatenation

13-20 Efficient Use of the Computer~s Resources

4800

HP 98635 Floating-Point Math Card
This card contains a special chip which performs floating-point math computations in
hardware rather than in software. It provides significant speed improvements over the
"math library" (software) computation method.

The BASIC system uses this card automatically, whenever installed. However, you can
disable and enable its use with CONTROL statements just like you can the MC68881
co-processor. See the following section for details.

MC68881 Floating-Point Math Co-Processor
Series 300 computers may optionally be equipped with MC68881 floating-point math co
processors. Not only does the MC68881 provide increased speed of floating-point math
calculations, but it also increases the accuracy of these calculations. The MC68881 has
80-bit (binary) precision as opposed to the 64-bit (binary) precision of the BASIC math
library and HP 98635 Floating-Point Math Card. In a series of standard math tests, the
RMS (root mean square) error in the 10 worst cases for the MC68881 ranged from 0 to
0.37 bit error. For the software math library and Floating-Point Math Card, the RMS
error in the worst 10 cases ranged from 0.33 to 4.2 bits of error.

While the BASIC math library and the HP 98635 Floating-Point Math Card produce
identical results, these values may not agree with those obtained from using the MC68881.
This may only be noticeable when strict equality with the math library or Floating-Point
Math Card is required (which is not recommended). For strict compliance, disable the
MC68881.

Enabling and Disabling Floating-Point Math Hardware
You can determine whether the MC68881 floating-point math co-processor or HP 98635
Floating-Point Math Card is currently enabled with the following statement:

STATUS 32,2;Float_on

If the variable called Float_on is assigned a value of 1, then the floating-point hardware
is currently enabled (this is the default condition). If it is assigned a value of 0, then it
is disabled.

If floating-point math hardware IS enabled but you want to disable it, execute this
statement:

CONTROL 32,2;0

If you want to re-enable this feature, you can do so with this statement:

CONTROL 32,2;1

Efficient Use of the Computer's Resources 13-21

MC68020 Internal Cache Memory
The MC68020 processors available on Series 300 computers have on-chip high-speed cache'
memory. This memory serves as storage for machine instruction sequences, typically
allowing the processor to decrease the amount of off-chip memory accesses and thus
speed program execution.

Enabling and Disabling Cache Memory
You can determine whether or not cache memory is currently enabled with this statement:

STATUS 32,3;Cache_on

If the variable called Cache_on is assigned a value of 1, then cache is currently enabled
(this is the default condition). If it is assigned a value of 0, then cache is disabled.

If the cache feature is enabled, but you want to disable it, you can do so with this
statement:

CONTROL 32,3;0

If you want to re-enable this feature, execute this statement:

CONTROL 32,3;1

13-22 Efficient Use of the Computer's Resources

Saving Memory
The ALLOCATE and DEALLOCATE statements can be used to make efficient use
of memory space in certain applications. They are useful in programs that contain a
number of large variables that are not all needed simultaneously. For example: during
data collection, a large string array is needed; during data processing a large numeric
look-up table is needed; and during output formatting, a string array is needed again.
Because a mass storage device is used to hold the data between processes, the same
memory area can be used for all these arrays.

To use ALLOCATE effectively, it is necessary to understand how the system reclaims
areas that have been DEALLOCATED. Space for allocated variables is built using a
stack discipline. The DEALLOCATE statement marks a space as unused. Unused space
can be reclaimed only if it is the last space on the stack. There are two operations that
use space in this stack. One is ALLOCATE, and the other is ON <event>.

Keeping other allocated variables from blocking deallocated space is relatively simple.
If you have only one allocated variable at any given time, this is not a problem. If you
have allocated variables in existence simultaneously, ALLOCATE them in the opposite
order of the DEALLOCATE statements. Think of this in the same way you would think
about nesting FOR ... NEXT loops.

Preventing blockage by ON conditions is more complicated. ON conditions, with one
exception, create control blocks that are permanent entries on the stack. As soon as you
declare an ON (or OFF) condition, all the previous entries on the stack are "locked in"
for the duration of the context and cannot be reclaimed. Therefore, all the control blocks
should be created before any variables are allocated. Once a control block is created, it
will be used by all subsequent ON and OFF statements that refer to the same resource.
A good technique is to include an OFF statement for each desired event before allocating
any variables.

Efficient Use of the Computer's Resources 13-23

The exception mentioned above is an ON condition declared for an I/O path name.
This includes ON END, ON EOT, and ON EOR. For these, subsequent ON and OFF
statements behave as previously described. However, if the I/O path is closed, any control
blocks associated with the path are marked as unused. This has two implications. One,
the reclaiming of the stack will not be blocked after the I/O path is closed. Two, you
cannot force the system to leave these control blocks at the beginning of the stack. Here
is an example:

200 ASSIGN ~File to "FRED"
210 ON END ~File GOTO Labell
220 ALLOCATE Array(255.4)

600 ASSIGN ~File TO "SUSAN"
610 ON END ~File GOTO Labe12
620 DEALLOCATE Array(*)

At first, the array and control block are allocated in the proper order. The ASSIGN
statement in line 600 closes the original path and opens a new path with the same name.
When the ON END control block for the new path is created, it it placed after the array
on the stack. Therefore, no memory space can be recovered by deallocating the array.

13-24 Efficient Use of the Computer's Resources

Releasing Memory Volumes
BASIC RAM disc memory can be reclaimed without having to do a SCRATCH A which
results in the loss of special typing aids and other customizations. However, you must
keep in mind that memory can only be reclaimed if no binaries have been loaded after
initializing the memory volume. To recover this memory, you would execute a line similar
to the fonowing:

INITIALIZE 11:,0, unit number II ,0

This, in effect, is equivalent to initializing the volume to 0 sectors to remove it from
memory.

The size of a memory volume is 256x n+ 14 where n is the number of sectors requested
in the INITIALIZE statement (unless n is zero).

Memory volumes are allocated in a mark and release stack. What this means is, you
only get the memory back if other subsequently created memory volumes are or have
been reclaimed. The following program illustrates how this works.

100 PRINT SYSTEM$(IIAVAILABLE MEMORYII)
110 INITIALIZE II: ,0 11 ,4
120 INITIALIZE II: ,0,1 11 ,4
130 INITIALIZE 11:,0,2 11 ,4
140 PRINT SYSTEM$(IIAVAILABLE MEMORYII)
150 INITIALIZE II: ,0,1 11 ,0
160 PRINT SYSTEM$("AVAILABLE MEMORY")
170 INITIALIZE II: ,0,2 11 ,0
180 PRINT SYSTEM$(IIAVAILABLE MEMORY II)
190 INITIALIZE II: ,0 11 ,0
200 PRINT SYSTEM$(IIAVAILABLE MEMORYII)
210 END

Efficient Use of the Computer's Resources 13-25

After running this program you would receive results similar to those shown below.

434428
431314
431314
433390
434428

where:

434428

431314

431314

433390

434428

is the initial size of the free space. This result IS displayed after
executing line 100.

is the memory left after creating three memory volumes. This result is
displayed after executing lines 110 through 120.

is the memory left after releasing one memory volume. However, note
that this memory volume remains trapped until all subsequent memory
volumes have been released. Therefore, the result you see is the same
as the previous one. This result is displayed after executing lines 150
and 160.

is the memory left after releasing two memory volumes. Since there
are no subsequent memory volumes following the volume released by
executing line 170. this memory volume and the trapped memory
volumes are released.

is the initial size of the free space when you started the program. This
result is displayed after executing lines 190 and 200.

13-26 Efficient Use of the Computer~s Resources

You can re-initialize a removed memory volume in its trapped space provided the newly
allocated space is no larger than the original space that was allocated. Otherwise, new
space will be allocated for it. (This happens even if enough trapped space exists for the
new size.) Here is a program to illustrate this:

100 PRINT SYSTEM$("AVAILABLE MEMORY"),"INIT"
110 INITIALIZE ": ,0",6
120 INITIALIZE": ,0,1",6
130 INITIALIZE ": ,0,2",6
140 INITIALIZE ": ,0,3",6
150 PRINT SYSTEM$("AVAILABLE MEMORY") ,"0123"
160 INITIALIZE ":,0, 1 II ,0
170 PRINT SYSTEM$("AVAILABLE MEMORY") ,"-1"
180 INITIALIZE ": ,0,2",0
190 PRINT SYSTEM$("AVAILABLE MEMORY") ,"-2"
200 INITIALIZE ": ,0,1",6 !+2
210 PRINT SYSTEM$("AVAILABLE MEMORY"),"+!"
220 INITIALIZE ": ,0,1",0
230 PRINT SYSTEM$("AVAILABLE MEMORY") ,"-1"
240 INITIALIZE ": ,0,3",0
250 PRINT SYSTEM$("AVAILABLE MEMORY") ,"-3"
260 INITIALIZE ": ,0",0
270 PRINT SYSTEM$("AVAILABLE MEMORY") ,"-0"
280 END

When the above program is run 'results similar to the following are displayed:

434186 IN IT
427986 0123
427986 -1
427986 -2
427986 +1
427986 -1
432636 -3
434186 -0

Efficient Use of the Computer's Resources 13-27

where:

434186

427986

427986

427986

427986

IN IT

0123

-1

-2

+1

is the initial size of the free space. This result is displayed after
executing line 100. INIT stands for the initial size.

is the amount of memory left after creating memory volumes zero
through three. This result is displayed after executing lines 110
through 150. The numbers "0123" represent the four memory
volumes that were created.

is the amount of memory left after releasing the unit 1 memory
volume. Since subsequent volumes exist, this volume remains
trapped until they have been released. Therefore, the available
memory displayed is not changed. This result is displayed after
executing lines 160 and 170. The "-I" is displayed for your
convenience. A minus (-) indicates that the memory volume
has been released, and the 1 is the unit number of the memory
volume.

is the amount of memory left after releasing the unit 2 memory
volume. Since subsequent volumes exist, this volume remains
trapped until they have been released. Therefore, the available
memory displayed is not changed. This result is displayed after
executing lines 180 and 190. The "-2" is displayed for your
convenience. A minus (-) indicates that the memory volume
has been released, and the 2 is the unit number of the memory
volume.

is the amount of memory left after re-initializing the unit 1
memory volume to its original size. Since the unit 1 memory
volume is trapped, you are able to re-initialize it. Note that
the available memory displayed is not changed. This result
is displayed after executing lines 200 and 210. The "+1" is
displayed for your convenience. A plus (+) indicates that the
memory volume has been added, and the 1 is the unit number of
the memory volume.

13-28 Efficient Use of the Computer's Resources

427986 -1

432636 -3

434186 -0

is the amount of memory left after releasing the unit 1 memory
volume. Since subsequent volumes exist, this volume remains
trapped until they have been released. Therefore, the available
memory displayed is not changed. This result is displayed after
executing lines 220 and 230. The "-I" is displayed for your
convenience. A minus (-) indicates that the memory volume
has been released, and the 1 is the unit number of the memory
volume.

is the amount of memory left after releasing the unit 3 memory
volume. Since subsequent volumes do not exist, this memory
volume is released. The memory for the unit 1 and unit 2 mem
ory volumes is also released. Therefore, the available memory
displayed is increased by 4650 bytes. This result is displayed af
ter executing lines 240 and 250. The "-3" is displayed for your
convenience. A minus (-) indicates that the memory volume
has been released, and the 3 is the unit number of the memory
volume.

is the amount of memory left after releasing the unit 0 memory
volume. Since all subsequent volumes are released, this memory
volume is also released and the available memory displayed is the
initial value. This result is displayed after executing lines 260 and
270. The "-0" is displayed for your convenience. A minus (-)
indicates that the memory volume has been released, and the 0
is the unit number of the memory volume.

Efficient Use of the Computer's Resources 13-29

l:"sing the same prograIll 1 remove the exclamation point "!" that is in front of the "+2"
comment on line 200. When you run the program1 you will receive results similar to the
following:

434190
427990
427990
427990
425928
427990
432640
434190

434190

427990

427990

427990

INIT
0123
-1
-2
+1
-1
-3
-0

INIT

0123

-1

-2

is the initial size of the free space. This result is displayed after
executing line 100. INIT stands for the initial size.

is the amount of memory left after creating memory volumes zero
through three. This result is displayed after executing lines 110
through 150. The numbers "012311 represent the four memory
volumes that were created.

is the amount of memory left after releasing the unit 1 memory
volume. Since subsequent volumes exist 1 this volume remains
trapped until they have been released. Therefore1 the available
memory displayed is not changed. This result is displayed after
executing lines 160 and 170. The "- r 1 is displayed for your
convenience. A minus (-) indicates that the memory volume
has been released. and the 1 is the unit number of the memory
volume.

is the amount of memory left after releasing the unit 2 memory
volume. Since subsequent volumes exist 1 this volume remains
trapped until they have been released. Therefore 1 the available
memory displayed is not changed. This result is displayed after
executing lines 180 and 190. The "_211 is displayed for your
convenience. A minus (-) indicates that the memory volume
has b('('n releas('d. and the 2 is the unit number of the memory
volume.

13-30 Efficient Use of the Computer 1s Resources

425928

427990

432640

434190

+1

-1

-3

-0

is the amount of memory left after re-ini tializing the unit 1 mem
ory volume to its original size plus two more sectors. Note that
the available memory displayed is changed and it has been de
creased by the size of the memory volume. This result is displayed
after executing lines 200 and 210. The "+ 1" is displayed for your
convenience. A plus (+) indicates that the memory volume has
been added, and the 1 is the unit number of the memory volume.

is the amount of memory left after releasing the unit 1 memory
volume. The available memory displayed is changed to the size of
the available memory prior to re-initializing the unit 1 memory
volume. This result is displayed after executing lines 220 and
230. The 44_1" is displayed for your convenience. A minus (-)
indicates that the memory volume has been released, and the 1
is the unit number of the memory volume.

is the amount of memory left after releasing the unit 3 memory
volume. Since subsequent volumes do not exist, this memory vol
ume is released. The memory for the unit 2 memory volume and
the original unit 1 memory volume is also released. Therefore,
the available memory displayed is changed. This result is dis
played after executing lines 240 and 250. The "-3" is displayed
for your convenience. A minus (-) indicates that the memory
volume has been released, and the 3 is the unit number of the
memory volume.

is the amount of memory left after releasing the unit 0 memory
volume. Since all subsequent volumes are released, this memory
volume and subsequent memory volumes are released and the
available memory displayed is the initial value. This result
is displayed after executing lines 260 and 270. The "-0" is
displayed for your convenience. A minus (-) indicates that the
memory volume has been released, and the 0 is the unit number
of the memory volume.

A result of being able to remove memory volumes is you are able to reclaim memory vol
ume space without losing special typing aids or other customizations which SCRATCH A
would undo.

Efficient Use of the Computer's Resources 13-31

13-32 Efficient Use of the Computer's Resources

Index

a
ABS function 3-16, 4-68
Accent Priority ... 5-67
Access of Directories, Extended ... 7-53
Accessing Files Created on Non-Series-200/300 SRM Workstations 17-29
ACS function ... 3-17
ACSH function .. 3-18
Actual values ... 6-10
Adding I terns to a Sorted List .. 5-25
Addresses, Primary ... 8-4
Allocate memory, Dynamically ... 3-3
ALLOCATE statement 3-3, 4-2, 4-7, 4-8, 4-25, 5-2, 12-3, 13-24
Alpha and Graphics Planes, Configuring Separate 15-29
Alpha Color Changes ... 15-38
Alpha Height, Changing 10-8
ALPHA HEIGHT statement .. 10-8
Alpha Screen Height and Graphics Scrolling 15-38
Alphanumeric Input, Accepting .. 10-36
Alternate CRT Characters .. 5-42
Anticipating Operator Errors ... 11-2
Appearance of Output ... 8-19
Arbitrary Exit Points .. 2-27
ARG function .. 4-68
Argument .. 3-25
Arithmetic Functions .. 3-15
Arithmetic Operations with Complex Arrays 4-28
Arithmetic Operators .. 3-9, 4-26
Array by Descending Subscripts, Searching an 4-40
Array, Copying a Subarray into an .. 4-20
Array, Dynamically Allocated .. 4-5
Array Element, Assigning an Individual 4-10
Array Fetches vs. Simple Variables 13-19
Array, four-dimensional ... 4-7
Array Functions ... 3-16
Array in Common .. 4-6

Index 1

Array Indexing. .. 13-12
Array Initialization .. 13-4
Array into a Subarray, Copying an .. 4-19
Array into ItselL Copying a Portion of an 4-22
Array Operations, Examples of Complex 4-67
Array, Planes of a Three-Dimensional REAL 4-3
Array, Printing an Entire ... 4-14
Array, Reordering an .. 5-28
Array, Searching a Three-Dimensional 4-43
Array. Summing the Elements in an 4-29
Array the Same Value, Assigning Every Element in an 4-11
Array, Three-Dimensional INTEGER 4-6
Array, Two-Dimensional COMPLEX 4-5
Array~ Two-Dimensional REAL Array 4-4
Array, Using the READ Statement to Fill an Entire 4-11
Arrays and Arithmetic Operators ... 4-26
Arrays, Boolean ... 4-30
Arrays, Copying Entire Arrays into Other 4-12
Arrays, Extracting Single Values From 4-10
Arrays, Filling .. 4-11
Arrays for Code Conversion, Using .. 4-70
Arrays for Display, Examples of Formatting 4-14
Arrays of Sound Instructions '. .. 10-20
Arrays, Passing Entire ... 4-16
Arrays, Printing ... 4-14
Arrays, Redimensioning .. 4-24
Arrayf', Reordering .. 4-32
Arrays, Searching Numeric ... 4-38
Arrays, Searching String ... 5-32
Arrays, Some Examples of ... 4-3
Arrays, Sorting ... 4-34
Arrays, Storage and Retrieval of ... 7-5
Arrays. String ... 5-3
ASCII and Custom Data Representations 7-30
ASCII Character Set, The .. 5-37
ASCII file ... 7-14, 7-17, 7-18, 7-23
ASCII File Access .. 17-18
ASCII File I/O, Example of .. 7-16
ASCII file I/O techniques .. 7-16
ASCII file type .. 7-19
ilSCII files ... 7-9. 13-6

2 Index

ASCII Files, A Closer Look at Using 7-16
ASCII Files, Data Representations in 7-17
ASCII Files, Formatted ENTER with 7-24
ASCII Files, Formatted OUTPUT with 7-19
ASCII format ... 7-27
ASCII Lexical Order ... 5-46
i\.SN function ,',... 3-17
ASNH function ... 3-18
ASSIGN statement 7-11, 7-12, 7-13, 7-14, 12-3, 17-6
Assignable priorities ... 2-34
Assigning an Individual Array Element 4-10
Assigning Every Element in an Array the Same Value 4-11
Assigning Variables ... 3-4
Assignment Surprise, Delayed ... 3-12
ATN function ... 3-17
ATNH function ... 3-18
Attributes, Assigning .. 7-13
Automaitc REORDER, Sorting with 4-34
Automatic Display Selection at System Boot 15-35
Automatic redimensioning .. 4-13
AVAILABLE ENTRIES table ... 7-54

b
Base Conversion Functions ... 3-30
BASE function .. 3-16, 4-9
BASIC 4.0 Enhancementsfor Series 200 Computers 15-42
BASIC and the Control Dial Box ... 10-34
BASIC Programs, Trapping Errors with 11-5
Battery-Backed Real-Time Clock 9-3, 15-6
BDAT and HP-UX Files, A Closer Look at 7-26
BDAT and HP-UX Files, Reading Data From 7-46
BDAT file 7-10, 7-11, 7-16, 7-23, 7-27, 7-28, 7-30, 7-33
BDAT File System Sector .. 7-31
BDAT files ... 7-9, 7-14, 7-19, 13-6
BDAT Internal Representations (FORMAT OFF) 7-27
BEEP statement ... 10-16
Benchmarking Techniques .. 13-7
BIN Files, Missing Driver .. 14-5
BIN AND function ... 3-19
Binary Files, HP-UX Text and .. 17-5
Binary Functions .. 3-18

Index 3

Binary Integers (HP-UX File Access) 17-14
Binary Real Values (HP-UX File Access) 17-12
Binary Strings (HP-UX File Access) 17-16
Binary tree .. 6-35, 6-36
BINCMP function ... 3-19
BINEOR function ... 3-19
BINIOR function .. 3-19
BIT function ... 3-19
Bits, Bytes, and Mode Types ... 5-61
Blank Lines. Printing .. 10-6
BNC Video Connectors, The Relay and 15-32
Boolean Arrays ... 4-30
Boundaries, keywords that define .. 2-12
Boundary Conditions .. 11-2
Branch Type, Choosing a .. 11-5
Branching on Clock Events ... 9-14
Branching Restrictions ... 9-18
Built-In Interfaces ... 15-7

c
Cache Memory, Enabling and Disabling 13-23
Cache Memory, MC68020 Internal .. 13-23
CALL ... 2-13
CALL statement 2-6, 6-4, 6-5, 6-19, 6-20, 6-22, 6-28
Calling Subprograms .. 12-4
Calling Subprograms from the Keyboard 6-22
Case COllversioll .. 5-19
Case Conversions 5-46, 5-48, 5-50, 5-52, 5-54
CASE ELSE statement ... 2-12, 2-18
Case of I/O Transfers, Special ... 14-26
CASE statf'mf'nt .. 2-12,2-19,5-36
CAT statement ... 7-53
Catalog Header, Suppressing the .. 7-58
Cataloging Individual PROG Files .. 7-53
Cataloging Selected Files ... 7-58
Cataloging to a String Array .. 7-55
Categories of New Features (BASIC 5.0) 16-2
CAUSE ERROR statement .. 11-14
CDIAL statement .. 10-33
Cell Size, Determining Character ... 10-11
Cells, Character ... 10-9

4 Index

Chaining Programs .. 2-39
Changes, Statement ... 14-6
Changing Alpha Height .. 10-8
Chapter Preview ... 1-2
Character Cell Size, Determining ... 10-11
Character Cells ... 10-9
Character, Example of Changing One 10-13
Character Font Storage in Memory 10-11
Character Replacement, "1 for 2" ... 5-64
Character Replacement, "2 for I" ... 5-66
Character Set, CRT ... 5-16
Character Set, The Extended ... 5-41
Characters, Control ... " 8-7
Characters, "Don't Care" .. 5-63
Characters, Finding "Missing" .. 5-42
Characters, Highlight .. 5-41
CHR$ function .. 2-21
CHR$ string function ... 5-15, 5-44
CHRX function .. 10-11
CHRY function .. 10-11
CLEAR ERROR statement .. 11-16
CLEAR SCREEN statement ... 10-49
Clearing Error Conditions ... 11-16
Clearing Graphics Rasters, Disabling and. .. 10-6
Clearing the Screen .. 10-5
CLOCK binary .. 9-1
Clock Events, Branching on .. 9-14
Clock Functions and Example Programs, Using 9-11
Clock Range and Accuracy .. 9-2
Clock, Reading the ... 9-3
Clock, setting ... 3-29
Clock, Setting the .. 9-4
Clock Time Format ... 9-4
Clock Value, Initial ... 9-1
CLR I/O (Break) Key, The .. 12-16
I CLR I/O I key .. 12-16
CMPLX function ... " 3-23, 4-69
Code Conversion, Using Arrays for .. 4-70
Color Changes, Hidden .. 15-40
Column vector .. 4-49
Columns of a Matrix, Summing Rows and 4-65

Index 5

COM Blocks ... 6-15,6-16
COM blocks ... 6-16, 6-17, 6-18, 6-26
COM Blocks, Hints for Using ... 6-17
COM statement 2-12, 2-39, 2-41, 2-42, 2-43, 4-2, 4-8, 5-2, 7-13
COM vs. Pass Parameters .. 6-16
Comments and Multi-character Identifiers 13-4
Common Data Types .. 17-4
Common File Types ... 17-3
Communicating with the Operator .. 10-1
Communication~ Program/Subprogram 6-8
Comparisons Between Two REAL or COMPLEX Values 3-14
Comparisons, REAL and COMPLEX Numbers and 11-3
Comparisons, Rounding Errors Resulting from 3-20
Compatibility. GLOAD /GSTORE .. 15-39
Compatibility Interface Capabilities, Display 15-32
Compatibility Interface, Using the Display 15-30
Compatibility Mode .. 15-20
Compatibility Mode, Enabling Keyboard (KBD CMODE ON) 15-19
Compatibility Mode, Exiting Keyboard (KBD CMODE OFF) 15-28
Compatibility Mode, HP 98203 Keyboard. .. 15-14
Compatibility with Preceding Versions 14-3
Compatibility with Previous Versions (BASIC 5.0) 16-1
COMPLEX. 3-1
COMPLEX Arguments and the Trigonometric Mode 3-24
Complex Array Operations, Examples of 4-67
Complex Arrays, Performing Arithmetic Operations with 4-28
CO~1PLEX Data Type ... 3-2
Complex Functions .. 3-22
COMPLEX Numbers, An Application for 3-26
COMPLEX Numbers and Comparisons, REAL and 11-3
COMPLEX Numhers, Determining the Parts of 3-24
COMPLEX Numbers, Evaluating ... 3-23
COMPLEX statement .. 4-2, 4-8
COMPLEX value .. 4-1
COMPLEX Values, Creating ... 3-23
COMPLEX variables ... 3-4
Composition of SRM File Names ... 17-24
Computer's Resources, Efficient Use of the 13-1
Concatenation, String ... 5-4
Concatenation vs. Substring Placement 13-19
Conditional Branching ... 2-13

6 Index

Conditional execution .. 2-10
Conditional Execution of One Segment 2-11
Conditional GOTO expressed ... 2-13
Conditional GOTO implied ... 2-13
Conditional segment ... 2-11
Conditional Segments, Multiple-Line 2-14
Conditional Subroutine .. 2-13
Configuration Program, Using a .. 15-12
Configurations Possible ... 15-33
Configuring, and Verifying Your Printer, Installing, 8-2
Configuring BASIC .. 14-3
Configuring Separate Alpha and Graphics Planes 15-29
CONJG function ... 3-24, 4-69
Constants ... 13-14
CONT statement ... 2-4
Context Switching ... 6-19
CONTINUE key ... 2-4, 2-5
Continuing a Program, Pausing and 12-5
Control Characters ... 8-7
Control Characters, Displaying .. ~. 5-38
Control Dial Box and BASIC .. 10-34
Control Dial Handler, An Example 10-35
Control Dials, Using .. 10-33
Conversion, Case .. 5-19
Conversion, N umber-Base .. 5-34
Conversions, Case 5-46, 5-48, 5-50, 5-52, 5-54
Conversions, Implicit Type .. 3-4
Conversions, Type .. 13-13
Converting from Rectangular to Polar Coordinates 3-25
Copying a Portion of an Array into Itself 4-22
Copying a Subarray into an Array ... 4-20
Copying a Su barray into another Su barray 4-21
Copying an Array into a Subarray ... 4-19
Copying Entire Arrays into Other Arrays 4-12
Copying Item-by-Item Using ENTER and OUTPUT 17-28
Copying Subarrays .. 4-16
Copying Subarrays, Rules for ... 4-23
COS function ... 3-17
COSH function ... 3-18
CREATE BDAT statement ... 7-32
CREATE statement .. 7-16, 17-5

Index 7

Creating COMPLEX Values .. 3-23
Cross Reference, Example Program and 12-7
Cross References .. 12-6
Cross-Reference Listing, Generating a 12-6
CRT Character Set .. 5-16
CRT Characters, Alternate ... 5-42
CRT function ... 3-31
CRTX binary ... 10-5
CSUB Capabilities (BASIC 5.0), Additional 16-11
CSUB Utility ... 18-1
CSUBs ... 14-6
CSUBs, Incompatible ... 15-37
Current Height 10-7
Cursor-control routine ... 2-35
Custom Character Fonts ... 10-9
Custom Keyboard Interface, An Example 10-55
Cycles and Delays ... 9-15

d
DATA and READ Statements, Using ',' 7-3
Data Files .. 13-6
Data From a File, Reading String ... 7-46
Data From BDAT and HP-UX Files, Reading 7-46
Data in Programs, Storing .. 7-2
Data in Variables, Storing ... 7-2
Data Input by the User ... 7-2
Data Pointer, :Moving the ... 7-6
Data Representations, ASCII and Custom 7 -30
Data Representations Available ... 7-26
Data Representations in ASCII Files 7-17
Data Representations with HP-UX Files 7-30
DATA statement 2-12, 4-12, 6-19, 7-1, 7-3, 7-4
Data Storage ... 13-1
Data Storage and Retrieval .. 7-1
Data Storage in Read/Write Memory 13-1
Data Stroage on Mass Memory Devices 13-3
Data Structure .. 6-34
Data, Textual Numeric .. , 17-6
Data Type, COMPLEX ... 3-2
Data Type, INTEGER .. 3-2
Data Type, REAL .. 3-1

8 Index

Data Type Stroage Requirements .. 13-3
Data Types, Common ... 17-4
Data, Writing 7-37
Data-Type Matching Between BASIC and C 17-5
Date and Time of Day, Determining the 9-3
Date format, European .. 9-10
DATE function ... 3-29
Date Functions, Time and .. 3-29
Date, Setting Only the .. 9-8
DATE$ string function .. 9-3
Dates, Days Between Two .. 9-13
Day of the Week .. 9-13
Day, Time of ... 9-16
Days Between Two Dates .. 9-13
DCOMM binary ... 9-1
Deactivated interrupt .. 2-36
Deactivating events .. 2-36
DEALLOCATE statement ... 3-3, 13-24
Debugging Programs .. 12-1
Declaration of variables, keywords used in the 2-12
Declaring Variables ... 3-3
DEF FN statement 2-12, 6-8, 6-28, 6-29, 6-30
Default dimensioned length of a string 5-1
Default mass storage device .. 7-10
Default Plotter. .. 14-14
Default range ... 4-18
Default Soft Font, Restoring the .. 10-13
Defined Records ... 7-31
Defining Typing-Aid Softkeys Programmatically. .. 10-25
DEG statement ... 3-17, 3-24,6-20
Degradation, rate ... 7-19
Degrees .. 3-17
DEL LN statement .. 6-29
Delayed Assignment Surprise ... 3-12
Delays, Cycles and .. 9-15
Deleting Subprograms .. 6-27, 6-29
DELSUB statement ... 6-27
DES a secondary word ... 4-35
DES secondary keyword .. 4-40
Description of Series 300 Hardware .. 15-3
Design, Top-Down ... 6-33

Index 9

DET function .. 3-16. 4-59
Detecting Ill-conditioned Matrices ... 4-61
Determinant .. 4-59
Determinant of a Matrix, The .. 4-59
Determining Character Cell Size ... 10-11
Determining Error Number and Location 11-7
Device Selectors .. 8-3
Device Selectors, Using ... 8-6
Device Viewport, Input ... 14-14
Dials, Using Control .. 10-33
DIM statement ... 2-12~ 3-3, 4-2, 5-2
Dimension table ... 13-1
dimension table ... 13-1
Dimensioning, Problems with Implicit 4-8
Directories, Extended Access of ... 7-53
Directory Paths, Allowing for SRM 17-26
DISABLE statement 2-38, 6-20, 6-21, 11-6
Disabled interrupt ... 2-36
Disabling and Clearing Graphics Rasters 10-6
Disabling and Enabling Alpha Scrolling 10-4
Disabling Display Functions Mode ... 10-4
Disabling Error Trapping (OFF ERROR) 11-6
Disabling Events .. 2-38
Disabling Printall Mode .. 10-4
Disjoint binary trees ... 6-35
Display Compatibility Interface Capabilities 15-32
Display Compatibility Interface~ Using thp 15-30
Display Drivers, Removing .. 15-35
Display Functions .. 14-25
Display Functions Mode, Disabling .. 10-4
Display Selection at System Boot, Automatic 15-35
Displaying and Prompting .. 10-3
Displaying Characters on the Screen 10-8
Displaying Messages ... 10-3
Displays. .. 15-4
Documentation ... 14-3
Don't Care Characters ... 5-63
DOT function ... 3-16, 4-51
Double-Subscript Substrings ... 5-7
Driver BIN Files, Missing .. 14-5
DROUND function .. 3-20. 3-21. 11-4

10 Index

DUMP DEVICE IS statement .. 8-17
DVAL function ... 3-30, 5-34
DVAL$ string function ... 5-34
Dyadic operator ... 3-12
Dynamically allocate memory .. 3-3
Dynamically Allocated, Two-Dimensional INTEGER Array 4-5

e
Editing Subprograms .. 6-28
Editor, A Simple Music ... 10-18
Editor, Font ... 10-14
Editor Utility Capabilities, Font .. 10-14
Efficient Use of the Computer's Resources 13-1
Elements in an Array, Summing the 4-29
EN ABLE statement ... 2-38
Enabling Alpha Scrolling, Disabling and. .. 10-4
Enabling and Disabling Cache Memory 13-23
Enabling and Disabling Floating-Point Math Hardware 13-21
Enabling Keyboard Compatibility Mode 15-19
END IF statement .. 2-12
END LOOP statement ... 2-12
END SELECT statement '" 2-12,2-18
END statement ... 2-3, 2-12,6-5
END WHILE statement .. 2-12
End-Of-File pointers ... 7-35
End-of-line (EOL) sequences .. 7-13
End-Of-Record .. 7-33
End-Of-Record (EOR) ... 7-43
Enhancements, 5.1 .. 18-1
ENTER, Random ... 7-48
ENTER, Serial .. 7-47
ENTER statement 7-11, 7-19, 7-24, 7-46
Entering a Single Item .. 10-38
EOF and EOR Conditions, Trapping 7-50
EOF Pointer .. 7-36
EOF pointer .. 7-13
EOF pointer, Logical .. 7-40
EOF pointer, Physical ... 7-40
EOF Pointers ... 7-35
EOF pointers ... 7-36
EOF Pointers, Moving ... 7-36

Index 11

Equations, Solving Simultaneous .. 4-55
ERRDS function .. 11-8
ERRL function ... 11-7, 11-14
ERRL in Subprograms, Using ERRLN and 11-12
ERRLN and ERRL in Subprograms, Using 11-12
ERRLN function .. 11-7, 11-14
ERRM$ string function .. 11-8, 11-14
ERRN function ... 11-7, 11-14
Error Conditions, Clearing .. 11-16
ErrOL Example of Simulating an ... 11-15
Error Number and Location, Determining 11-7
Error Responses, Overview of ... 11-1
ERROR RETURN statement ... 11-8
Error Trapping and Recovery. Scope of .. 11-6
Error Trapping (OFF ERROR), Disabling 11-6
Errors, Anticipating Operator. .. 11-2
Errors, Handling .. 11-1
Errors with BASIC Programs, Trapping 11-5
Escape-Code Sequences ... 8-8
European date format ... 9-10
Evaluating COMPLEX Numbers .. 3-23
Evaluating Expressions Containing Strings 5-4
Evaluating Scalar Expressions ... 3-9
Evaluation Hierarchy ... 5-4
Evaluations, Polynomial ... 13-14
Event-checking .. 2-30
Event-initiated branching 2-2, 2-30, 2-32
Event-initiated RECOVER statement 6-21
Events, Branching on Clock .. 9-14
Events, Disabling .. 2-38
Events, Types of .. 2-31
Executing Commands While a Program Is Running 12-2
Executing Example SOUND Instructions 10-21
EXIT IF statement ... 2-12, 2-29
Exiting Keyboard Compatibility Mode 15-28
EXP function ... 3-17
Expanded Soft key Menu, An ... 10-45
Exponential Functions ... 3-17
Exponentiation vs. Multiply and SQRT 13-18
Expressions as Pass Parameters ... 3-13
Expressions, hierarchy for ... 3-9

12 Index

Extended Access of Directories .. 7-53
Extended Character Set, The ... 5-41
External Printer, Using the .. 8-7

f
File Access, A Closer Look at General 7-11
File Access, ASCII ... 17-18
File Dump Utility, HP-UX .. 17-22
File Input and Output .. 7-7
File pointer ... 7-23
File specifier .. 7-10
File Specifiers, SRM .. 17-24
File Types, Brief Comparison of Available 7-7
File Types, Common .. 17-3
Files Cataloged, Getting a Count of 7-57
Files, Cataloging Selected .. 7-58
Files Created on Non-Series-200/300 SRM Workstations, Accessing 17-29
Files, Data ... 13-6
Files, Getting a Count of Selected ... 7-60
Files, Skipping Selected .. 7-61
Files, Storing and Loading Typing-Aids from 10~25
Files to the Spooler Directories, Writing 8-18
FIND statement .. 12-6
Floating-Point Math Card, HP 98635 13-21
Floating-Point Math Co-Processor, MC68881 13-21
Floating-Point Math Hardware, Enabling and Disabling 13-21
FN statement .. 2-6
FNEND statement .. 2-12, 6-27, 6-30
Folating-point math card ... 6-22
Font Editor .. " 10-14
Font Editor Utility ... 10-15
Font Editor Utility Capabilities .. 10-14
Font, Re-Defining an Entire ... 10-15
Font Storage in Memory, Character 10-11
Font Usage, Soft ... 10-12
Fonts, Custom Character ... 10-9
FOR statement .. 2-12, 2-24
Formal parameter list .. 6-11
Formal Parameter Lists ... 6-9
FORMAT attribute ... 7-14
Format, Clock Time .. 9-4

Index 13

FORMAT OFF statement 7-13, 7-14, 7-27
FORMAT ON attribute .. 7-19
FORMAT ON statement 7-13, 7-24, 7-27
Formatted ENTER with ASCII Files 7-24
Formatted OUTPUT with ASCII Files 7-19
Formatted Printing ... 8-9
Formatting Arrays for Display .. 4-14
FOR ... NEXT structure 2-22, 2-25, 2-26, 2-27
Four-dimensional array 4-7
FRACT function .. 3-16
FREN CH Lexical Order .. 5-48
Function, ABS ... 3-16, 4-68
Function, ACS .. 3-17
Function, ACSH .. 3-18
Function and a Subprogram, Difference 6-6
Function, ARG ... 4-68
Function, ASN .. 3-17
Function, ASNH .. 3-18
Function, ATN "' 3-17
Function, ATNH .. 3-18
Function, BASE ... 3-16
Function, BINAND .. 3-19
Function, BINCMP .. 3-19
Function, BINEOR .. 3-19
Function, BINI OR ... 3-19
Function, BIT .. 3-19
Function, CHRX ... 10-11
Function, CHRY ... 10-11
Function, CMPLX .. 3-23,4-69
Function, CONJG .. 3-24, 4-69
Function. COS .. 3-17
Function, COSH .. 3-18
Function, CRT .. 3-31
Function, DATE .. 3-29
Function, DET ... 3-16, 4-59
Function, DOT .. 3-16, 4-51
Function, DROUND ... 3-20, 3-21, 11-4
Function, DVAL ... 3-30, 5-34
Function, ERRDS ... 11-8
Function, ERRL .. 11-7, 11-14
Function, ERRLN ... 11-7, 11-14

14 Index

Function, ERRN .. 11-7, 11-14
Function, EXP .. 3-17
Function, FRACT ... 3-16
Function, IDN .. 4-52
Function, IMAG ... 3-24, 4-67
Function, INT .. 3-16
Function, INV .. 4-53
Function, IVAL .. 3-30, 5-34
Function, KBD ... 3-31
Function, KNOBX .. 14-9
Function, LGT .. 3-17
Function, LOG .. 3-17
Function, MAX .. 3-19, 5-33
Function, MAXREAL .. 3-16
Function, MIN ... 3-19, 5-33
Function, MINREAL .. 3-16
Function, NUM ... 5-14
Function, PI .. 3-17
Function, POS ... 5-12, 5-15
Function, PROUND ... 3-20
Function, PRT .. 3-31
Function, RANK .. 3-16
Function, REAL ... 3-24, 4-67
Function, RES .. 3-31
Function, RND ... 3-22
Function, ROTATE .. 3-19
Function, SC ... 3-31
Function, SGN .. 3-16
Function, SHIFT .. 3-19
Function, SIN ... 3-17
Function, SINH ... 3-18
Function, SIZE .. 3-16
Function, SQR .. 3-16
Function, SQRT .. 3-16, 3-23
Function, SUM ... 3-16
F-unction, TAB .. 10-6
Function, TAN .. 3-17
Function, TANH .. 3-18
Function, TIME ... 3-29, 9-6
Function, TIMEDATE ... 3-29, 9-3, 9-6
Function, Transpose ... 4-63

Index 15

FUllction, TRN .. 4-63
Function, VAL .. 5-13
Function, VAL$... 7-23
Functions and String Functions, REAL Precision 6-6
Functions, Arithmetic .. 3-15
Functions, Array .. 3-16
Functions, Base Conversion ... 3-30
Functions, Binary ... 3-18
Functions, Complex ... 3-22
Functions, Exponential ... 3-17
Functions, General .. 3-31
Functions, Hyperbolic .. 3-18
Functions, Limit .. 3-19
Functions, Numerical .. 3-15
Functions, Rounding ... 3-19
Functions, Step ... 3-13
Functions, String .. 5-17
Functions, String-Related .. 5-10
Functions, Subprograms and User-Defined 6-1
Functions, Time and Date .. 3-29
Functions, Trigonometric'.................................. 3-17

9
GCLEAR, Implicit ... 14-14
GCLEAR statement ... 10-6
General File Access, A Closer Look at 7 -11
General Functions ... 3-31
Generating a Cross-Reference Listing 12-6
Generating Sound .. 10-16
G ERMAN Lexical Order ... 5-50
GET statement 2-39, 2-40, 2-41, 6-17, 13-5
(; E~r, Using .. 2-40
GLOAD/GSTORE Compatibility .. 15-39
GOSUB statement 2-6, 2-7, 2-8, 6-19,6-20
GOTO statement 2-6,2-7, 2-13,2-27,6-19,6-20
Graphics Features (BASIC 5.0), Additional 16-10
GRAPHICS INPUT IS statement .. 10-32
GRAPHICS OFF statement .. 10-6

16 Index

Graphics Planes, Configuring Separate Alpha and 15-29
Graphics Rasters, Disabling and Clearing. .. 10-6
Graphics Scrolling, Alpha Screen Height and 15-38
Graphics Tablet DIGITIZE .. 14-15

h
Halting Program Execution .. 2-3
Handling Errors ... 11-1
Hardware Description ... 15-31
Hardware, Description of Series 300 Hardware 15-3
Hardware Supported (BASIC 5.0), New 16-2
Height, Changing Alpha .. 10-8
Height, current .. 10-7
Height, Determining Screen Width and 10-7
Helpful Documentation .. 14-3
HFS Disc Support ... 16-4
HFS Discs and Data Files, Sharing .. 17-2
HFS "Extended" Catalog, Getting an 7-57
Hidden Color Changes .. 15-40
Hierarchical File System (HFS) 7-9, 16-4
Hierarchy, Evaluation•....................................... 5-4
Hierarchy for expressions .. 3-9
Hierarchy, Math ... 3-10
Highlight Characters ... 5-41
HIL "System" Menu Labels 15-18
HIL "Typing-Aid" Softkey Labels .. 15-18
HP-HIL Keyboard Interface .. 15-8
HP-HIL Keyboards with Mouse .. 14-11
HP-HIL Knob Interval Parameter .. 15-41
HP-HIL Support (BASIC 5.0), Additional 16-9
HP-UX Binary Files ... 17-5
HP-UX File ... 7-14,7-31
HP-UX File Dump Utility ... 17-22
HP-UX File Terminology, A Note About 17-2
HP-UX Files, Data Representations with 7-30
HP-UX Text and Binary Files .. 17-5
HP-UX Text Files .. 17-5, 17-7
HP 2225 ThinkJet@ Printer ... 8-1
HP 2563 Dot-Matrix Impact Printer .. 8-1
HP 2565 Dot-Matrix Impact Printer .. 8-1
HP 2566 Dot-Matrix Impact Printer .. 8-1

Index 17

HP2601 Daisy-Wheel Impact Printer 8-1
HP 2602 Daisy-Wheel Impact Printer 8-1
HP 2671 Thermal Printer .. 8-1
HP 2673 Thermal Printer .. 8-1
HP 2686 Laser J et @ Printer .. 8-1
HP 2932 Dot-Matrix Impact Printer .. 8-1
HP 2934 Dot-Matrix Impact Printer .. 8-1
HP 3630A (PaintJet@) ... 18-1
HP 82906 Dot-Matrix Impact Printer 8-1
HP 98203 Keyboard Compatibility Mode 15-14
HP 98203 Softkey Labels .. 15-16
HP 98203 Specific Key Codes .. 15-37
HP 98548A ... 18-1
HP 98549A ... 18-1
HP 98550A ... 18-1
HP 98635 Floating-Point Math Card 13-21
HP 98644 Serial Interface Configuration 15-12
HP 98646A VME Interface ... 18-1
HP 9876 Thermal Printer .. 8-1
Human Interface Enhancements (BASIC 5.0) 16-5
Human Interfaces, Example .. 10-45
Human I/O Mechanisms, Overview of .. 10-2
Hyperbolic Functions .. 3-18

.
I

ID PROM 15-10
Identity ~1atrix ... 4-52
IDN function ... 4-52
IF statement. .. 2-12
IF ... THEN statement .. 2-11,2-12,2-13
IF ... THEN structure ... 2-29
IF ... THEN ... ELSE statement ... 2-16
Ill-Conditioned Matrices ... 4-60
Ill-conditioned Matrices, Detecting .. 4-61
IMAG function .. 3-24, 4-67
Image Specifiers, Additional .. 8-15
Image Specifiers, Numeric .. 8-12
Image Specifiers, String .. 8-14
lInages , Using 8-11
Implicit Dimensioning, Problems with 4-8
Implicit GCLEAR .. 14-14

18 Index

Implicit Type Conversions ... 3-4
Incompatible CSUBs 15-37
Indexing, Array .. 13-12
Individual Array Elements, Using ... 4-10
Infinite loop .. 2-7, 2-32, 2-33, 2-34
Initial Clock Value ... 9-1
Initialization, Variable ,""',........................... 6-20
Input, Accepting Alphanumeric .. 10-36
Input Device Viewport .. 14-14
Input, Operator .. 10-24
INPUT statement 5-19, 7-2, 10-36, 10-39, 12-10
Inputs, Softkey ... 10-24
Inserting Subprograms ... 6-28
Installing, Configuring, and Verifying Your Printer 8-2
Instructions, Arrays of Sound .. 10-20
INT function ... 3-16
INTEGER .. 3-1
INTEGER Data Type .. 3-2
INTEGER statement .. 2-12, 4-2, 4-8
INTEGER value ... 4-1
INTEGER Variables ... 13-9
Interface Capabilities, Display Compatibility 15-32
Interface Configuration, HP 98644 Serial. .. 15-12
Interface Enhancements (BASIC 5.0), Human 16-5
Interface, HP-HIL Keyboard .. 15-8
Interface select code .. 8-3
Interface, Serial ... 15-7
Interfaces, Built-In .. 15-7
Internal Numeric Formats ... 3-8
Internal real-time clock .. 9-14
Interrupt, deactivated .. 2-36
Interrupt, disabled .. 2-36
Interval Timing ... 9-13
INV function ... 4-53
Inverse Matrix .. 4-53
I/O path ... 7-12
I/O path name. .. 7-10, 7-12, 7-13
I/O Path, Opening an ... 7-12
I/O Paths, Closing .. 7-15
I/O techniques, ASCII file .. 7-16
I/O Transfers, Special Case of ... 14-26

Index 19

ITF Keyboards (such as the 46020) 15-17
IVAL function ... 3-30, 5-34
IV AL$ string function .. 5-34

k
KBD function .. 3-31
Key Codes, HP 98203 Specific .. 15-37
KEY LABELS OFF statement ... 10-51
KEY LABELS ON statement .. 10-51
Key specifier 4-44
Keyboard, Calling Subprograms from the 6-22
Keyboard Commands Disallowed During Program Execution 12-5
Keyboard Compatibility Mode, Enabling 15-19
Keyboard Compatibility Mode, Exiting 15-28
Keyboard Compatibility Mode, HP 98203 .. 15-14
Keyboard Interface, An Example Custom 10-55
Keyboard Interface, HP-HIL .. 15-8
Keyboard Layouts, Brief Comparison of 15-14
Keyboards with Built-in Knob ... 14-10
Keywords and Capabilities .. 10-33
Keywords Duplicating Register Operations 16-6
Keywords that define boundaries ... 2-12
Keywords that define program structures 2-12
Keywords that Duplicate Register Operations (BASIC 5.0), New 16-6
Keywords used in the declaration of variables 2-12
Keywords used to identify lines that are literals 2-12
KNI32_0 .. 14-13
Knob .. 14-9
Knob, Example of Using ... 2-34
Knob Interval Parameter, HP-HIL .. 15-41
Knoh, Keyboards with Built-in. .. 14-10
Knobs, Using .. 10-32
KNOBX function ... 14-9

I
LABEL, keyword .. 2-33
LABEL with PIVOT ... 14-22
Labels, Soft key 10-28
Language Extensions BIN Files, Missing 14-4
Length header. string variahle's ... 7-20

20 Index

LET statement .. 3-4, 7-2
LEX binary ... 5-5
LEX_AID program .. 5-58
Lexical Order, ASCII .. 5-46
Lexical Order, FRENCH ... 5-48
Lexical Order, GERMAN .. 5-50
Lexical Order; Introduction to .. 5-36
LEXICAL ORDER IS ... 5-19
LEXICAL ORDER IS statement 5-5, 5-36, 5-37, 5-43, 5-58, 5-60, 5-62
Lexical Order, Predefined .. 5-43
Lexical Order, SPANISH ... 5-52
Lexical Order, SWEDISH .. 5-54
LEXICAL ORDER, User-defined .. 5-56
Lexical Orders, U ser-Defined 5-58
Lexical Tables .. 5-45
LG T function ... 3-17
Libraries, Using Subprograms ... 6-24
LIF file .. 7-12
LIF Files to SRM, Porting .. 17-24
LIF Protect Codes, SRM Passwords vs. 17-27
Limit Functions ... 3-19
Linear Flow ... 2-3
Linear flow .. 2-2
LINK statement 18-1
LINPUT statement 5-19, 7-2, 7-35, 10-36, 10-39, 12-10
LINPUT with Multiple Fields .. 10-41
LIST KEY statement ... 10-25
Listing Current Typing-Aid Softkey Definitions 10-25
Literals, keywords used to identify lines that are 2-12
Live Keyboard, Using .. 12-2
LOAD command ... 2-39, 2-40
LOAD KEY statement .. 10-25
LOAD statement ... 2-39, 6-17, 6-26, 13-5
Loading and Running Programs, Just 15-11
Loading Several Subprograms at Once 6-25
Loading Subprograms .. 6-24
Loading Subprograms One at a Time 6-25
Loading Subprograms Prior to Execution 6-26
Loading Typing-Aids from Files, Storing and 10-25
LOADSUB statement .. 6-25, 9-7
LOADSUB ... FROM statement 6-24, 6-26, 6-27

Index 21

LOC condition field. .. 4-40, 4-42
LOC MAX condition field ... 4-39, 4-42
LOC MIN condition field .. 4-40, 4-42
LOG function ... 3-17
Logical Comparisons for Equality on REAL Numbers 13-17
Logical EOF pointer ... 7-40
Loop counter ... 2-22, 2-23, 2-24
Loop iterations, conditional ... 2-25
Loop iterations, fixed .. 2-25
Loop iterations formula .. 2-22
LOOP statement ... 2-12, 2-29
LOOP ... END LOOP structure 2-27, 2-28, 2-29
Loops ... 13-11
LWC$ string function 5-19, 5-36, 5-46, 5-48, 5-50, 5-52, 5-54

m
Machine Limits .. 3-7
Magnitude ... 3-25
Manual Organization ... 1-1
Mass Memory Devices, Data Stroage on 13-3
Mass Memory Performance ... 13-5
Mass storage files .. 7-1
MASS STORAGE IS statement .. 17-25
Mass Storage Volume Specification, SRM 17-25
MASS STROAGE IS statement ... 7-12
MAT binary ... 4-1
MAT REORDER statement 4-32, 4-36, 4-37
MAT SEARCH, Numeric Comparisons in 4-42
MAT SEARCH statement 4-38, 4-40, 4-42, 4-45, 5-32, 5-33, 5-36
MAT SORT statement 4-34, 4-35, 4-37, 4-43, 5-23, 5-36
MAT statement ... 4-8. 4-12. 4-26. 5-21
MAT Statement, Using the ... 4-26
Math Hierarchy ... 3-10
Mathematical Operations .. 13-9
Matrices and Vectors .. 4-47
Matrices, Ill-Conditioned ... 4-60
Matrices, Singular ... 4-57
Matrix Functions, Miscellaneous .. 4-63
Matrix, Identity ... 4-52
Matrix, Inverse ... 4-53
Matrix Multiplication .. 4-47

22 Index

Matrix, Summing Rows and Columns of a 4-65
Matrix, The Determinant of a .. 4-59
MAX condition field .. 4-39, 4-42
MAX function ... 3-6, 3-19, 5-33
Maximum Values, Minimum and 13-9, 13-13
MAXREAL function ... 3-16
MC68020 Internal Cache Memory .. 13-23
MC68881 Floating-Point Math Co-Processor 13-21
Memory, Saving .. 13-24
MEM_ UTILS utility ... 6-22
Menu, An Expanded Softkey ... 10-45
MERGE ALPHA statement .. 10-6
Merging Subprograms .. 6-29
Methods of Porting .. 15-2
MIN condition field ... 4-40, 4-42
MIN function .. 3-6, 3-19, 5-33
Minimum and Maximum Values 13-9, 13-13
MINREAL function ... 3-16
Miscellaneous Matrix Functions ... 4-63
Mnemomic Function Values .. 8-6
Mode, Compatibility .. 15-20
Mode, Disabling Display Functions .. 10-4
Mode, Disabling Printall :................................... 10-4
Mode Entries ... 5-60
Mode Index .. 5-61
Mode Type ... 5-61
Modes, Turning Off Unwanted .. 10-3
Modifying the Source Program(Porting to 4.0) 15-37
Monadic operator ... 3-12
MOVELINES statement .. 6-29,6-30
Moving a Pointer ... 10-52
Moving EOF Pointers .. 7-36
Moving the Data Pointer .. 7-6
MS BIN file .. 14-3
Multi-character Identifiers, Comments and 13-4
Multiple-Field Numeric Image Specifiers 8-13
Multiple-Line Conditional Segments 2-14
Multiplication, Matrix ... 4-47
Multiplication With Vectors .. 4-48
Multiply vs. Add ., .. 13-18
Music Editor, A Simple ... 10-18

Index 23

n
Nested constructs ... 2-15
NEXT statement .. 2-12
NO HEADER statement ... 7-58
Node .. 6-35
Non-volatile clock .. 9-2
Normal program flow .. 2-30
Null string .. 5-1
NUM function .. 5-14
Number builder routine .. 7-18
N umber-Base Conversion ... 5-34
Numbers, Sequence .. 5-60
Numeric Arrays .. 4-1
Numeric Arrays, Searching ... 4-38
Numeric Comparisons in MAT SEARCH 4-42
Numeric Computation .. 3-1
Numeric data items. .. 7-18
Numeric Data, Textual ... 17-6
Numeric Data Types 3-1
Numeric Expressions, Strings in ... 3-13
Numeric Formats, Internal .. 3-8
Numeric Image Specifiers ... 8-12
Numeric Image Specifiers, Examples of 8-13
Numeric Image Specifiers, Multiple-Field 8-13
Numeric-to-String Conversion ... 5-15
Numerical Functions ... 3-15

o
OFF CDIAL statement ... 10-34
OFF CYCLE statement .. 9-14
OFF DELAY statement .. 9-14
OFF END statement .. 7-50
OFF ERROR statement .. 10-40
OFF KEY statement ... 2-36, 2-37
OFF KNOB statement ... 2-36
OFF TIME statement ... 9-14
OFF -event ... 2-36
ON CDIAL statement ... 2-32, 10-33
ON CYCLE statement ... 2-32, 9-14, 9-15
ON DELAY statement ... 2-32, 9-14, 9-15
ON END statement ... 2-32. 7-44. 7-50

24 Index

ON EOR statement ... 2-32
ON EOT statement ... 2-32
ON ERROR branching. .. 11-6
ON ERROR CALL, A Closer Look At 11-11
ON ERROR CALL, Cannot Pass Parameters Using 11-12
ON ERROR Execution at Run-Time 11-6
ON ERROR GOSUB, A Closer Look at 11-8
ON ERROR GOTO, A Closer Look At 11-9
ON ERROR Priority .. 11-6
ON ERROR RECOVER, A Closer Look At 11-13
ON ERROR statement ... 2-32, 10-40
ON HIL EXT statement ... 2-32
ON INTR statement ... 2-32
ON KBD statement ... 2-32
ON KEY statement 2-32, 2-33, 6-20, 10-51
ON KNOB "interval" parameter ... 15-41
ON KNOB statement ... 2-32, 2-35, 10-32
ON SIGNAL statement .. 2-32
ON statement ... 2-20, 2-21
ON TIME statement ... 2-32,9-14
ON TIMEOUT statement ... 2-32, 8-16
ON-event ... 2-36
ON-event statement ... 2-30
ON ... CALL statement ... 6-28
One-dimensional array .. 4-1
One-Dimensional COMPLEX Array in Common 4-6
ON ... event statement .. 2-31
ON ... RECOVER statement ... 6-28
Operand array .. 4-12
Operations, Mathematical .. 13-9
Operator, dyadic .. 3-12
Operator Errors, Anticipating. .. 11-2
Operator Input .. 10-24
Operator, monadic .. 3-12
Operator, relational ... 3-12
Operators .. 3-12
Operators, Arrays and Arithmetic ... 4-26
OPTION BASE ... 6-20
OPTION BASE statement 2-12, 3-3, 4-2, 4-3, 4-32, 5-21
OPTIONAL parameter .. 6-14
OPTIONAL Parameters ... 6-13

Index 25

OPTIONAL/NPAR combination .. 6-13
Output, Appearance of ... 8-19
OUTPUT, Random ... 7-42
OUTPUT, Serial .. 7-37
OUTPUT statement 2-11, 7-19, 7-23, 7-37
Overhead in ASCII data files, reducing the 7-21
Overview of Human I/O Mechanisms 10-2

p
Page formatter program, writing a .. 2-8
PaintJet@ (HP 3630A) ... 18-1
Parameter Lists, Formal ... 6-9
Parameters, Expressions as Pass .. 3-13
Parameters Lists ... 6-8
Parameters, OPTIONAL ... 6-13
Parameters passed by reference .. 3-5
Parameters passed by value .. 3-5
Pass parameter list .. 6-12
Pass Parameter Lists .. 6-10
Pass Parameters, COM vs. ..: .. 6-16
Pass Parameters, Expressions as .. 3-13
Pass Parameters Using ON ERROR CALL, Cannot 11-12
Passing by Value vs. Passing By Reference 6-10
Passing Entire Arrays .. 4-16
PAUSE statement .. 2-5
Pausing and Continuing a Program .. 12-5
PDEV binary .. 6-29, 6-30
Phasor ... 3-27
PHYREC CSUB .. 14-7
PHYREC routine ... 14-7
PI function ... 3-17
PIVOT Statement, The ... 14-19
Planes of a Three-Dimensional REAL Array 4-3
Plotter, Default .. 14-14
PLOTTER IS Changes ... 15-39
Pointer, Moving a .. 10-52
Pointer, Moving the Data ... 7-6
Pointers .. 6-35
Pointers, EOF .. 7-35
Polar Coordinates, Converting from Rectangular to 3-25
Polynomial Evaluations ... 13-14

26 Index

Polynomial Order, Time Savings as a Function of 13-16
Porting and Sharing Files .. 17-1
Porting Considerations, Additional 15-38
Porting LIF Files to SRM ... 17-24
Porting, Methods of ... 15-2
Porting to 3.0 ... 14-1
Porting to 5.0 ... 16-1
Porting to Series 300 and 4.0 ... 15-1
Porting Topics Covered .. 14-2
POS function .. 2-20, 2-28, 5-12, 5-15
Precision Functions and String Functions, REAL 6-6
Prerun On LOADSUB .. 14-26
Primary Addresses ... 8-4
PRINT TAB statement .. 8-10
PRINT TABXY statement ... 8-10
PRINTALL IS statement ... 8-17, 12-14
Printall Mode, Disabling ... 10-4
Printer Control Characters .. 8-7
Printer, HP 2225 ThinkJet@ ... 8-1
Printer, HP 2563 Dot-Matrix Impact .. 8-1
Printer, HP 2565 Dot-Matrix Impact .. 8-1
Printer, HP 2566 Dot-Matrix Impact .. 8-1
Printer, HP 2601 Daisy-Wheel Impact 8-1
Printer, HP 2602 Daisy-Wheel Impact 8-1
Printer, HP 2671 Thermal ... 8-1
Printer, HP 2673 Thermal ... 8-1
Printer, HP 2686 Laser J et @ ... 8-1
Printer, HP 2932 Dot-Matrix Impact .. 8-1
Printer, HP 2934 Dot-Matrix Impact .. 8-1
Printer, HP 82906 Dot-Matrix Impact 8-1
Printer, HP 9876 Thermal ... 8-1
Printer, Installing, Configuring, and Verifying Your 8-2
PRINTER IS device .. 4-14, 4-30
PRINTER IS statement ... 8-2
Printer, The System .. 8-2
Printer , Using a .. 8-1
Printer, Using the External .. 8-7
Printers Supported ... 8-1
Printing an Entire Array ... 4-14
Printing Arrays ... 4-14
Printing Blank Lines ... 10-6

Index 27

Priorities~ assignable ... 2-34
Priority, Accent ... 5-67
Priority, ON ERROR .. 11-6
Priority Restrictions ... 9-17
Processor Boards .. 15-6
PROG Files, Cataloging Individual .. 7 -53
Program Counter .. 2-7
Program counter ... 2-2, 2-6
Program Design ... 6-21
Program flow .. 2-2
Program, Single-Stepping a .. 12-10
Program structures, keywords that define 2-12
Program Variables, Using .. 12-2
Program-interrupt keys ... 10-24
Program-to-Program Communication 2-41
Programming Additions (BASIC 5.0), General 16-7
Programs, chaining .. 2-39
Programs, Debugging .. 12-1
Program/Subprogram Communication 6-8
Prohibited Statements ... 2-12
Prompting, Displaying and ... 10-3
PROTECT statement. .. 17-27
PROUND function .. 3-20
PRT function ... 3-31

q
Questions, Yes and No 10-43

r
RAD statement ... 3-17, 3-24, 6-20
Radians .. 3-17
Random access. .. 7-19, 7-26
Random ENTER .. 7 -48
Random Number Function ... 3-22
Random OUTPUT .. 7-42
Random vs. Serial Access .. 7-26
RANDOMIZE statement ... 3-22
RANK function ... 3-16, 4-9
Rate degradation .. 7-19
Re-Defining an Entire Font .. 10-15
READ statement .. 4-12. 7-1. 7-3. 7-4. 7-5

28 Index

READ Statement to Fill an Entire Array, Using the 4-11
Reading Data From BDAT and HP-UX Files 7-46
Reading String Data From a File .. 7-46
Reading the Clock .. 9-3
Read/Write Memory, Data Storage in 13-1
REAL .. 3-1
REAL and COMPLEX Numbers and Comparisons 11-3
REAL Data Type .. 3-1
REAL function .. 3-24, 4-67
REAL Numbers .. 13-13
REAL Precision Functions and String Functions 6-6
REAL statement .. 2-12, 4-2, 4-8
REAL value ... 4-1
Real-Time Clock, Battery-Backed ... 15-6
Real-time clock, internal ... 9-14
Real-Time Clock, The .. 9-1
Real-time programming .. 2-34
Record Length (BDAT Files Only), Choosing A 7-32
Record Size (BDAT Files Only), Specifying 7-32
Records, Defined .. 7-31
RECOVER statement ... 6-19, 6-20, 6-28
RECOVER Statement, Subprograms and the 6-21
Recovery, Scope of Error Trapping and 11-6
Rectangular to Polar Coordinates, Converting from 3-25
Recursion .. 6-31
REDIM statement. .. 4-7, 4-8, 4-24, 4-25
Redimensioning Arrays .. 4-24
Redimensioning, Automatic 4-13
Reducing the overhead in ASCII data files 7-21
Reference, Pass by ... 6-10
References, Cross .. 12-6
Relational Operations ... 5-5
Relational operator .. 3-12
Relay and BNC Video Connectors, The 15-32
REM statement ... 2-12
REN statement ... 6-29
Reordering an Array ... 5-28
Reordering Arrays ... 4-32
REPEAT statement .. 2-12, 2-26
Repeat, String .. 5-18
REPEAT ... UNTIL structure 2-22, 2-25, 2-26, 2-27, 2-28, 2-29

Index 29

RES function ... 3-31
RESTORE statement ... 7-6
Restoring the Default Soft Font .. 10-13
RETURN stack ... 6-19
RETURN statement ... 2-7, 11-8
REV$ string function .. 5-17
Reverse, String .. 5-17
RND function .. 3-22
Root 6-35, 6-36
ROTATE function ... 3-19
Rounding Errors Resulting from Comparisons 3-20
Rounding Functions ... 3-19
Rounding problem .. 3-6
Row vector ... 4-49
Rows and Columns of a Matrix, Summing 4-65
RPLOT with PIVOT ... 14-19
RPT$ string function .. 5-18
Rules for Copying Subarrays .. 4-23
RUN command .. 6-1
RUN key .. 2-4
Run-Time, ON ERROR Execution at 11-6
Running Programs, Just Loading and 15-11

s
SAVE statement .. 6-27,7-2,8-18, 13-5
Saving Memory .. 13-24
Saving Time ... 13-18
SC function .. 3-31
Scalar Expressions, Evaluating ... 3-9
Scope of Error Trapping and Recovery 11-6
Screen, Clearing the ... 10-5
Screen, Displaying Characters on the 10-8
Screen Width and Height, Determining 10-7
Searching a Three-Dimensional Array 4-43
Searching a Vector .. 4-38
Searching an Array by Descending Subscripts 4-40
Searching and Sorting .. 5-22
Searching for Multiple Occurrences .. 4-45
Searching for Strings ... 5-30
Searching Numeric Arrays .. 4-38
Searching String Arrays .. 5-32

30 Index

Secondary word DES .. 4-35
SELECT constructs ... 2-17
SELECT statement. .. 2-12, 2-18, 2-19, 14-3
Selection ... 2-10
SEPARATE ALPHA statement ... 10-6
Sequence Numbers .. 5-60
Serial access .. 7-26
Serial ENTER .. 7-47
Serial Interface .. 15-7
Serial Interface Configuration, HP 98644 15-12
Serial OUTPUT .. 7-37
Serial storage of data .. 7-38
Series 300 Display, Switching Back to the. .. 15-34
Series 300 Hardware, Description of .. 15-3
Service Routines, Setting Up Error .. 11-5
SET KEY statement .. 10-25, 10-27
SET TIME statement .. 3-29,9-4
SET TIMEDATE statement 3-29, 9-4, 9-6
Setting Only the Date : 9-8
Setting Only the Time .. 9-6
Setting the Clock 9-4
Setting the clock ~. .. 3-29
Setting Up Error Service Routines ... 11-5
SGN function ... 3-16
Shared Printer, Sending Program Output to a 8-18
Sharing Files, Porting and .. 17-1
Sharing HFS Discs and Data Files ... 17-2
SHIFT function ... 3-19
Shift-in control character ... 2-27
Shift-out control character .. 2-27
Simple Branching .. 2-6
Simulating an Error, Example of ... 11-15
Simulating Errors (CAUSE ERROR) 11-14
Simultaneous Equations, Solving .. 4-55
SIN function .. 3-17
Single Tones, Example of .. 10-17
Single-Byte Access .. 7-49
Single-Stepping a Program .. 12-10
Single-Subscript Substrings .. 5-6
Singular Matrices ... 4-57
SINH function .. 3-18

Index 31

SIZE function ... 3-16, 4-9
Soft Font, Restoring the Default. .. 10-13
Soft Font Usage .. 10-12
Softkey Definitions, Listing Current Typing-Aid 10-25
Softkey Inputs ... 10-24
Softkey Labels ... 10-28
Softkey Labels, HP 98203 .. 15-16
Softkey Menu, An Expanded ... 10-45
Softkeys Programmatically, Defining Typing-Aid 10-25
Softkeys, Subprograms and ... 6-20
Solving Simultaneous Equations ... 4-55
Song, Example ... 10-23
Sorted List, Adding Items to a .. 5-25
Sorting Arrays .. 4-34
Sorting by Multiple Keys ... 5-26
Sorting by Substrings .. 5-24
Sorting, Searching and ... 5-22
Sorting to a Vector ... 4-36, 5-27
Sorting with Automatic REORDER 4-34
Sound, Generating ... 10-16
Sound Instructions, Arrays of .. 10-20
SOUND Instructions. Executing Example 10-21
SOUND statement ... 10-16, 10-20
Source Program(Porting to 4.0), Modifying the 15-37
SPANISH Lexical Order .. 5-52
Specifier. key ... 4-44
Specifier, Subarray .. 4-17
Specifiers. Additional Image .. 8-15
Specifiers, Numeric Image .. 8-12
Specifying Record Size (BDAT Files Only) 7-32
Speed Considerations .. 6-22
Spooler Directories, Writing Files to the 8-18
Spooler directory .. 8-17
Spooler, Using a .. 8-17
Spooler, Using SRM Printers through the 8-17
Spooling ... 8-17
Spooling Using PRINTER IS ... 8-17
SQR function ... 3-16
SQRT function ... 3-16, 3-23
SRM binary ... 9-1
SRM Directory Paths. Allowing for 17-26

32 Index

SRM file ... 7-12
SRM File Names, Composition of .. 17-24
SRM File Specifiers ... 17-24
SRM Mass Storage Volume Specification 17-25
SRM Passwords vs. LIF Protect Codes 17-27
SRM, Porting LIF Files to .. 17-24
SRM Printers through the Spooler , Using 8-17
SRM Workstations, Accessing Files Created on Non-Series-200/300 17-29
Starting subscript ... 4-46
Statement Changes .. 14-6
STATUS statement .. 5-43
STATUS/CONTROL Registers (BASIC 5.0), New 16-8
Step Functions .. 3-13
I STEP I key ... 12-10
STOP statement ... 2-4
Storage and Retrieval of Arrays .. 7-5
Storage Format for INTEGER Variables 3-8
Storage Format for REAL Variables .. 3-8
Storage in Memory, Character Font 10-11
Storage-space efficiency .. 7-26
STORE KEY statement " 10-26
STORE statement .. 6-27, 7-2, 13-5
Storing and Loading Typing-Aids from Files :............ 10-25
Storing Data in Programs ... 7-2
Storing Data in Variables ... 7-2
String .. 5-1
String Array, Cataloging to a ... 7-55
String Arrays .. 5-3
String Arrays and Subarrays, Copying 5-21
String Arrays, Searching ... 5-32
String Concatenation ... 5-4
String Data From a File, Reading ... 7-46
String, default dimensioned length of a 5-1
String Function, CHR$... 5-15, 5-44
String Function, DATE$.. 9-3
String Function, DVAL$... 5-34
String Function, ERRM$... 11-8, 11-14
String Function, IVAL$.. 5-34
String Function, LWC$ 5-19, 5-36, 5-46, 5-48, 5-50, 5-52, 5-54
String Function, REV$... 5-17
String Function, RPT$... 5-18

Index 33

String Function, SYSTEM$.. 5-41, 10-7
String Function, TIME$... 9-3, 9-6
String Function, TRIM$... 5-19
String Function, UPC$ 5-19, 5-36, 5-46, 5-48, 5-50, 5-52, 5-54
String Function, VAL$... 5-15
String Functions .. 5-17
String Functions, REAL Precision Functions and 6-6
String Image Specifiers ... 8-14
String Length, Current ... 5-10
String Length, Maximum ... 5-10
String Manipulation .. 5-1
String Repeat ... 5-18
String Reverse .. 5-17
String Storage ... 5-2
String, Thimming a .. 5-19
String variable ... 5-1
String variable's length header .. 7-20
String-Related Functions ... 5-10
String-to-Numeric Conversion ... 5-13
Strings, Evaluating Expressions Containing 5-4
Strings in Numeric Expressions ... 3-13
Strings, Searching for .. 5-30
Strings, Textual ... 17-9
Stroage, Data ... 13-1
SUB statement 2-12, 6-4, 6-8, 6-28, 6-29, 6-30, 6-31
Subarray, Copying a Subarray into another 4-21
Subarray Specifier ... 4-17
Subarray specifier examples ... 4-18
Subarrays, Copying .. 4-16
Subarrays, Copying String Arrays and 5-21
Subarrays, Rules for Copying ... 4-23
SUBEND statement ... 2-12, 6-27,6-30
Sl TBEXIT statement .. 6-30
Subprogram ... 2-7
Subprogram and User-Defined Function Names 6-5
Subprogram, Calling and Executing a 6-4
Subprogram, Difference Between a User-Defined Function and a 6-6
Subprogram Entry Execution Speed 6-23
Subprogram Libraries, Using .. 6-24
Subprogram Location ... 6-5
Subprograms, A Closer Look at .. 6-4

34 Index

Subprograms and Softkeys .. 6-20
Subprograms and Subroutines, Differences Between 6-5
Subprograms and the RECOVER Statement 6-21
Subprograms and User-Defined Functions 6-1
Subprograms at Once, Loading Several 6-25
Subprograms, Benefits of .. 6-3
Subprograms, Calling .. 12-4
Subprograms, Deleting .. 6-27, 6-29
Subprograms from the Keyboard, Calling 6-22
Subprograms in a PROG File, Listing the 6-24
Subprograms, Inserting .. 6-28
Subprograms, Loading ... 6-24
Subprograms, Merging ... 6-29
Subprograms One at a Time, Loading 6-25
Subprograms Prior to Execution, Loading 6-26
Subroutine .. 2-7
Subscript expression ... 4-17
Subscript range ... 4-17
Subscript, starting .. 4-46
Substring Position ... 5-11
Substrings ... 5-6
Substrings, Double-Subscript .. 5-7
Substrings, Single-Subscript ... 5-6
Substrings, Sorting by ... 5-24
Subtree .. 6-36
SUM function ... 3-16
Summing Rows and Columns of a Matrix 4-65
Summing the Elements in an Array .. 4-29
Suppressing the Catalog Header ... 7-58
SWEDISH Lexical Order ... 5-54
Switching Back to the Series 300 Display 15-34
Symbol table ... 13-1
symbol table .. 13-1
System key sequences ... 10-31
System Printer, The .. 8-2
System Sector, BDAT File .. 7-31
SYSTEM$ string function ... 5-41, 10-7
SYSTEM$("SYSTEM ID") Values, New 15-38

Index 35

t
TAB function ... 10-6
Tablet DIGITIZE, Graphics ... 14-15
TAN function ... 3-17
TANH function ... 3-18
Textual Numeric Data ... 17-6
Textual Strings ... 17-9
Three-Dimensional Array, Searching a 4-43
Three-Dimensional INTEGER Array 4-6
Time and Date Functions .. 3-29
Time Format, Clock .. 9-4
TIME function .. 3-29, 9-6
Time of Day .. 9-16
Time, Saving .. 13-18
Time Savings as a Function of Polynomial Order 13-16
Time, Setting Only the ... 9-6
TIME$ string function .. 9-3, 9-6
TIMEDATE function .. 3-29, 9-3, 9-6
Timing, Interval ... 9~13

Token table 13-1
token table ... 13-1
Tones, Example of Single .. 10-17
Top-Down Design .. 6-33, 6-36
TRACE ALL statement ... 12-12, 12-13
TRACE OFF statement. .. 12-16
TRACE PAUSE statement .. 12-15
Iracing ... 12-12
Transpose Function .. 4-63
Trapping and Recovery, Scope of Error 11-6
Trapping EOF and EOR Conditions 7-50
Trapping Errors with BASIC Programs 11-5
Trapping (OFF ERROR), Disabling Error 11-6
Tree structure .. 6-41
Trigonometric Functions ... 3-17
Trigonometric Mode, COMPLEX Arguments and the 3-24
TRIM$ string function ... 5-19
Trimming a String ... 5-19
TRN function ... 4-63
Turning Off Unwanted Modes ... 10-3
Two-dimensional ... 4-2
Two-Dimensional COMPLEX Array .. 4-5

36 Index

Two-Dimensional REAL Array ... 4-4
Type Conversions .. 13-13
Type Conversions, Implicit .. 3-4
Typing-aid keys .. 10-24
Typing-Aid Softkey Definitions, Listing Current 10-25
Typing-Aid Soft keys Programmatically, Defining 10-25
Typing-Aids from Files, Storing and Loading 10-25
Typing-aids keys ... 10-24

u
U nreferenced entries ... 12-8
UNTIL statement ... 2-12
Unused Entries ... 12-8
UPC$ string function 5-19, 5-36, 5-46, 5-48, 5-50, 5-52, 5-54
User-defined formats ... 7-27
User-defined LEXICAL ORDER .. 5-56
Utilities (BASIC 5.0), New ... 16-3

v
VAL function ... 5-13
VAL$ function .. 7-23
VAL$ string function ... 5-15
Value, Pass by .. 6-10
Variable and Array Initialization .. 13-4
Variable Initialization .. 6-20
Variables, Assigning .. 3-4
Variables, Declaring .. 3-3
Variables, keywords used in the declaration of .. 2-12
Variables, Using Program .. 12-2
Vector, Searching a .. 4-38
Vector, Sorting to a .. 4-36, 5-27
Vectors, Matrices and .. 4-47
Vectors, Multiplication With .. 4-48
Verifying Your Printer, Installing, Configuring, and 8-2
VIEWPORT Statement, The .. 14-15
VME Interface (HP 98646A) .. 18-1
Volatile real-time clocks ... 9-2
Volume Specification, SRM Mass Storage 17-25

Index 37

w
WAIT statement ... 2-5
Week, Day of the .. 9-13
WHILE statement .. 2-12, 2-26
WHILE ... END structure ... 2-22
WHILE ... END WHILE structure 2-27,2-29
Width and Height, Determining Screen 10-7
Writing a page formatter program .. 2-8
Writing Data ... 7-37
Writing Files to the Spooler Directories 8-18

x
XREF statement 12-6

y
Yes and No Questions ... 10-43

38 Index

fold--

MANUAL COMMENT CARD

BASIC 5.0/5.1
Programming Techniques

HP Part Number 98613-90012 11/87

Please help us improve this manual. Circle the numbers in the following
statement that best indicate how useful you found this manual. Then add
any further comments in the spaces below. In appreciation of your time, we
will enter your name in a quarterly drawing for an HP calculator. Thank
you.

The information in this manual:

Is poorly organized 1 2 3 4 5 Is well organized

Is hard to find 1 2 3 4 5 Is easy to find

Doesn't cover enough 1 2 3 4 5 Covers everything

Has too many errors 1 2 3 4 5 Is very accurate

Particular pages with errors?

Comments: __ __

Name: __ __

Job Title: ________________________ _

Company: __ _

Address: __________________________ ___

o Check here if you wish a reply.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 37

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Attn: Customer Documentation
3404 East Harmony Road
Fort Collins, Colorado 80525

LOVELAND, COLORADO

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

HP Part Number
98613-90012
Microfiche No. 98613-99012
Printed in U.S.A. 11/87

Flin- HEWLETT
It.:~ PACKARD

98613-90665
For Internal Use Only

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	01-00
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	02-00
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	03-00
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	04-001
	04-002
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	04-49
	04-50
	04-51
	04-52
	04-53
	04-54
	04-55
	04-56
	04-57
	04-58
	04-59
	04-60
	04-61
	04-62
	04-63
	04-64
	04-65
	04-66
	04-67
	04-68
	04-69
	04-70
	04-71
	04-72
	05-001
	05-002
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	05-44
	05-45
	05-46
	05-47
	05-48
	05-49
	05-50
	05-51
	05-52
	05-53
	05-54
	05-55
	05-56
	05-57
	05-58
	05-59
	05-60
	05-61
	05-62
	05-63
	05-64
	05-65
	05-66
	05-67
	05-68
	06-00
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	07-00
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	07-35
	07-36
	07-37
	07-38
	07-39
	07-40
	07-41
	07-42
	07-43
	07-44
	07-45
	07-46
	07-47
	07-48
	07-49
	07-50
	07-51
	07-52
	07-53
	07-54
	07-55
	07-56
	07-57
	07-58
	07-59
	07-60
	07-61
	07-62
	08-00
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	09-00
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	10-00
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	10-37
	10-38
	10-39
	10-40
	10-41
	10-42
	10-43
	10-44
	10-45
	10-46
	10-47
	10-48
	10-49
	10-50
	10-51
	10-52
	10-53
	10-54
	11-00
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	12-00
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	13-00
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	13-25
	13-26
	13-27
	13-28
	13-29
	13-30
	13-31
	13-32
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	Index-13
	Index-14
	Index-15
	Index-16
	Index-17
	Index-18
	Index-19
	Index-20
	Index-21
	Index-22
	Index-23
	Index-24
	Index-25
	Index-26
	Index-27
	Index-28
	Index-29
	Index-30
	Index-31
	Index-32
	Index-33
	Index-34
	Index-35
	Index-36
	Index-37
	Index-38
	replyA
	replyB
	xBack

