
HEWLETT-PACKARD

CONFIDENTIAL

DIO BUS SPECIFICATION

VERSION 1.0

APRIL 1 6, 1984

HP DRAWING NO: 5955-7669

DOCUMENT CONTROL

CHANGES'TO"THIS DOCUMENT SHOULD BE .

COORDINATED THROUGH THE RND R&D LAB.,

DISTRIBUTION

THIS DOCUMENT IS DISTRIBUTED BY THE
RND R&D LAB.

010 BUS SPECIFICATION

PRINTING HISTORY

First draft: December 14, 1982
Second draft: March 27, 1983

Version 1.0: April 16, 1984

Copyright ~ Hewlett-Packard Co. 1984

This material contains proprietary information protected by
copyright laws. Any reproduction, photocopying or translation of
any portion of this document to any foreign or computer language
without the expressed written consent of Hewlett-Packard Company
is forbidden.

HP CONFIDENTIAL -- Version 1.0

DIO BUS SPECIFICATION

TABLE OF CONTENTS

CHAPTER 1 FOREWARD ... 1

CHAPTER 2 INTRODUCTION

2.1 OBJECTIVES OF THE DIO BUS SPECIFICATION. . 2
2.2 PROCEDURE FOR RESOLVING CHANGES. . . . 3
2.3 WHAT IS NOT COVERED IN THIS DOCUMENT . 3
2.4 RECOMMENDED DESIGN METHODOLOGY. 4

CHAPTER 3 DIO BUS BACKGROUND INFORMATION

3.1 SPECIFICATION TERMINOLOGY.
3.2 INTERFACE SYSTEM ELEMENTS.
3.3 BUS SUBSYSTEMS
3.4 BUS TIMING BACKGROUND .. .

5
6
8
9

CHAPTER 4 I/O MEMORY MAP AND I/O CARD REGISTERS

4.1 SERIES 200 MEMORY MAP ..
4.2 E~TERNAL I/O MEMORY MAP.
4.3 I/O CARD REGISTERS

CHAPTER 5 DATA TRANSFERS

5·1
5·2
5·3
5.4
5·5
5.6
5.7
5.8

DATA TRANSFER SIGNALS
OVERVIEW OF THE DATA TRANSFER.
READ CYCLE
WRITE CYCLE.
READ-MODIFY-WRITE. . ..
ENDT OVERVIEW
READ CYCLE USING ENDT ..
WRITE CYCLE USING ENDT .

CHAPTER 6 BUS ERROR AND STRETCH OPERATION

6.1
6.2
6.3
6.4
6.5
6.6

BUS ERROR SIGNALS.
BERR TIMING.
BUS TIMEOUT.
AUTO LOCATE OF PROCESSOR RAM .
BERR FOR PAGE FAULTING
GUIDELINES FOR UTILIZING BERR.

HP CONFIDENTIAL -- Version 1.0

· . 13
· . 14
· . 15

· .. 19
...... 20

· .. 22
· . . 27
· .• 28

. 31

. 33
· . . 35

· . . 37
· . . 38
· .. 38
· .. 39
· .. 39
· .. 40

010 BUS SPECIFICATION

CHAPTER 7 INTERRUPT OPERATION

7.1 INTERRUPT SIGNALS
7.2 EXTERNAL VECTORED INTERRUPT CYCLE.
7.3 AUTOVECTORED INTERRUPT CYCLE

CHAPTER 8 BUS ARBITRATION

8.1 BUS ARBITRATION SIGNALS ..
8.2 BUS ARBITRATION OVERVIEW.
8.3 BUS ARBITRATION SEQUENCE .

CHAPTER 9 DMA OPERATION

9.1
9.2
9·3
9.4
9·5
9.6
9.7

DMA SIGNALS ...
DMA OVERVIEW . .
98620 DMA CONTROLLER
DMA OUTPUT CYCLE . .
DMA INPUT CYCLE ...
DMA SPEED CONSIDERATIONS .
TERMINATING DMA TRANSFERS.

CHAPTER 10 DIO BUS UTILITIES

10.1 BUS DRIVE DISABLE
10.2 RESET OPERATION
10.3 HALT OPERATION
10.4 FUNCTION CODE SIGNALS.

CHAPTER 11 ELECTRICAL SPECIFICATIONS

11.1 POWER DISTRIBUTION AND GROUNDING .
11.2 POWER SUPPLY TOLERANCES
11.3 I/O CARD CURRENT REQUIREMENTS ..
11.4 ON-CARD FUSE SPECIFICATION.
11.5 SIGNAL LOADING

HP CONFIDENTIAL -- Version 1.0

· . 41
· . 43
· . 45

· • 46
• . 47

49

· • 52
· . 53
• . 54
• . 55
· . 58
· . 61
· . 62

· . 63
· . 63
· . 64
· . 65

· • 66
• . 67
· . 67

68
· . 69

DIO BUS SPECIFICATION

CHAPTER 12 MECHANICAL SPECIFICATIONS

12.1 DIO BUS CARD SPECIFICATIONS ..
12.2 CARDCAGE SPECIFICATIONS ..
12.3 MINIMIZING EMI ...

. 70
. 74

12.4 PC CARD LAYOUT RULES
12.5 DIO BUS PINOUTS ...

CHAPTER 13 OPERATION IN THE 9888A BUS EXPANDER

· .. 74
· . 77

· .. 78

13.1 FEATURES OF THE BUS EXPANDER 80
13.2 OPERATING LIMITATIONS IN THE BUS EXPANDER.. 81

CHAPTER 14 SYSTEM AND BUS MASTER DESIGN GUIDELINES. 83

CHAPTER 15 DIO BUS SLAVE DESIGN SUMMARY

15.1 EXTERNAL I/O CARD DESIGN GUIDELINES ..
15.2 EXTERNAL I/O CARD DESIGN EXAMPLE ..

· . 84
· .. 86

CHAPTER 16 REQUIRED DIO BUS FUNCTIONS FOR AN I/O BUS

16.1 S~GNALS NOT SUPPORTED ON A DIO-BASED I/O BUS .. 91
16.2 SIGNALS REQUIRED ON A DIO-BASED I/O BUS. .. 93

CHAPTER 17 I/O CARD QUALIFICATION

17.1 SOFTWARE QUALIFICATION ..
17.2 HARDWARE QUALIFICATION.
17.3 SAFETY COMPLIANCE ...

HP CONFIDENTIAL -- Version 1.0

· . 94
· . 94

. 96

DIO BUS SPECIFICATION

FOREWARD
dJ

CHAPTER 1 1 __ ---------------1

This standard is the result of a cooperative effort involving
engineers at FSD, RND, CSY and DSD during the period from November
1982 to the present. The following people have contributed to
this document; their assistance and the assistance of others is
greatly appreciated:

FSD: Doug Buhler
John Byrnes
Steve Chorak
Greg Herman
Bill Hirth
Greg Lawson
Nick Mati
Tim Mikkelsen
Shaw Moldauer
Jon Rubinstein
Martin Speer
Dan Swanson
Tom Thrasher
Keith Weeks
Jerry Wick
Steve Wolf

RND: Vince Cavanna
Steve Haddock

CSY: Paul Zimmer

DSD: Tom Szolyga

In addition, the assistance of our managers is acknowledged:

FSD: Ken Watts

RND: Doug Boliere

Again, thank you for your cooperation and assistance.

Dave Sweetser, FSD

1

INTRODUCTION CHAPTER 2

2.1 OBJECTIVES OF THE DIO BUS SPECIFICATION

The DIO (Desktop computer I/O) BUS was first introduced in 1981
with FSD's 9826A computer along with several I/O cards. Since
then, several other DIO BUS mainframes and I/O cards have been
introduced. Because several divisions will be designing or
using hardware based on the DIO BUS, a decision was made to
document the DIO BUS as an HP standard. The objectives of this
effort are two-fold:

1. The primary objective is to provide sufficient information
to design a DIO BUS slave device, such as an I/O card.
However, while the DIO BUS is the system bus for several
mainframes, future products may utilize the DIO BUS
solely as an I/O bus. A DIO-based I/O bus does not require
all of the functions presently defined by the DIO BUS.
Therefore, the Chapter REQUIRED DIO BUS FUNCTIONS FOR AN
I/O BUS lists those signals which would not supported on a
DIO-based I/O bus. I/O card designers must adhere to the
limitations specified in this chapter.

2. A secondary objective is to support the design of Bus
Masters. While Bus Master design is not covered
explicitly, the DIO BUS specifications must be followed by
Bus Master designers to guarantee that Bus Slave timing
requirements are met. Additional Bus Master guidelines are
available in the document SERIES 200 SYSTEM SPECIFICATION,
available from the FSD Hardware R&D Lab. The purpose of
that document is to support Series 200 system design
activities.

2

CHAPTER 2: INTRODUCTION

2.2 PROCEDURE FOR RESOLVING CHANGES

The specifications provided in this document must be followed.
In certain cases, however, a designer may not be able to comply
with one or more specifications. In such a case, the designer
must either: (1) seek to change the specification or (2) obtain
approval for area{s) of non-compliance.

Changes to this document require a consensus from FSD, RND
and any other division currently using 'the DIO BUS. Change
requests will be coordinated through the RND R&D Lab, with RND
reviewing all change requests relative to their necessity and
implementation. If an agreement is reached between RND and the
requesting division, RND will submit in writing the proposed
change to FSD and other using divisions for their concurrence.
If all divisions concur, the change will be made. If concurrence
is lacking, the change will not be made and the requesting
division has the option of pursuing the change through management
channels.

In a similar manner, a designer that finds it necessary to
violate a specification should notify RND R&D of his intent.
RND, if unable to find a solution, will notify all affected
divisions in writing of the proposed violation. Each division
must respond in writing, either agreeing to the non-compliance
or disagreeing. In the case of a disagreement, an effort will
be made to resolve it at the lowest possible level; if this is
not possible, successive levels of management will become
involved as necessary.

2. 3 WHAT I S NOT COVERED IN THIS DOCUMENT

The following information is not contained within this document:

1. As stated above, Bus Master design is not covered in this
document. Refer to the SERIES 200 SYSTEM SPECIFICATION
available ~rom the FSD Hardware R&D Lab for information on
Bus Master design and other system design issues.

2. Previ"ous releases of this document contained a card ID Table
and a card SELECT CODE Table. However, because of the
changing nature of this information, the ID and SELECT
CODE Tables have been removed from this document; they can
be obtained from the RND R&D Lab. Designers should obtain
ID and SELECT CODE assignments from RND before beginning a
new design.

3

CHAPTER 2: INTRODUCTION

3. Several of the DIO BUS timing and electrical specifications
were derived from characteristics of the 74LS244 and 74LS245
drivers. Characterization of other logic families (e.g. ALS)~
how~ver, has not been done. This is an area requiring future
work.

2.4 RECOMMENDED DESIGN METHODOLOGY

Listed below is a recommended methodology for designing a card
for the DIO BUS.

1. Prior to beginning a project, the designer should contact
RND to obtain ID and SELECT CODE assignments as well as to
ensure that he has the latest version of this specification.

2. Designers should review the design of existing DIO BUS
products. The products listed in the separately-available
ID and SELECT CODE Tables provide a good reference of existing
DIO BUS products. The divisions with ER for these products
can be contacted for more information, i.e. the schematic,
theory of operation, etc. Designers should also reference
the SERIES 200 SYSTEM SPECIFICATION available from the FSD
Hardware R&D Lab.

3. An alternative that may expedite I/O card development is
the 98630A breadboard interface card available from FSD.
This card contains the essential circuitry to support data
transfers, interrupt requests and DMA operation and
provides approximately 15 square inches for breadboarding.

4. Even though a designer follows this document rigorously,
testing of the product in its intended environments is
ABSOLUTELY ESSENTIAL. The Chapter I/O CARD QUALIFICATION
gives guidelines for this testing.

5. One of the keys to ensuring timely completion of a product
is successful interdivisional cooperation. Marketing
plans, product data sheets, hardware ERS's, software
specifications, etc. should be prepared by the designing
division{s) and distributed to those who are involved with
the development, manufacturing and marketing of these
products or their host systems.

4

DIO BUS BACKGROUND INFORMATION CHAPTER 3

This chapter provides basic background information on the DIO
BUS, including terminology, a description of bus interface
elements and timing information.

3.1 SPECIFICATION TERMINOLOGY

The following terminology is used throughout this document:

1. Active low signals are denoted with a * following the
name. This is equivalent to a bar over the signal name
which is often used for active low signals. Thus, the
following are equivalent:

BAS* = BAS

2. When a signal is referenced as 'asserted', 'true', 'false',
etc., it is relative to the signal FUNCTION. For example,
to say that BAS is asserted means the Buffered Address
Strobe is active, i.e. performing its function of strobing
the address. Whether it exists as BAS or BAS* on the
backplane is irrelevant.

3. References to 'high' and 'low' refer directly to TTL
voltage levels. When referring to high and low signals, the
actual name of the signal is used. For example, when the
signal BAS* is described as being low, the signal entitled
BAS* has a TTL logic low level. The TTL levels are defined
as follows:

HIGH >= 2.0V

LOW <= .Bv

4. The composite signal BR/W is denoted as BR/W*. BR/W*
high indicates a read operation; BR/W* low indicates a
write operation.

5. The definition of 'byte' is agreed upon by all -- B bits.
A 'word' is defined to be 16 bits. The least significant
bit of a byte or word is defined as Bit o.

5

CHAPTER 3: DIO BUS BACKGROUND INFORMATION

3.2 INTERFACE SYSTEM ELEMENTS

The functional modules of the DIO BUS are shown below. Where
signals go specifically from one functional module to another
functional module, the two modules are shown side-by-side for
clarity. Modules that drive many other modules (e.g. RESET) are
shown as stand-alone.

INTERRUPT
REQUEST
HANDLER

--------> BAl - BA23 -------->
<-------> BDO - BD15 <------->

--------> BFCO - BFCl ------->

1

1<--------
1

1-------->
1-------->
1

1<--------
1<--------

IR1* - IR7*

BAl - BA3
IACK*

VECTOR*
BDO - BD7

1

<--------1
1

-------->1
-------->1

1

<--------1
<--------1

INTERRUPT
REQUESTER

______ 1 1 _____ -

6

1

BUS REQUEST
ARBITER

DMA REQUEST
HANDLER

RESET & HALT
DRIVER

AUTO DTACK
MODULE

BUS DRIVE

CHAPTER 3: DIO BUS BACKGROUND INFORMATION

1 1 1
1<-------- BR* <--------1 1
1 1 1 BG1*
1--------> BG* -------->IBUS REQUESTER 1--->BG2*
1 1 1
1<-------- BGACK* <--------1 1
I 1 1

1 1
1<-------- DMARO* <--------1
1--------> DMACKO* -------->1
I 1 DMA
1<-------- DMAR1* <--------1 REQUESTER
1--------> DMACK1* -------->1
I 1
1<-------- DMARDY* <--------1
1--------- DONE* -------->1
1--------> FOLD* -------->1
I 1

I
1--------> RESET*
1--------> HALT*
1

The AUTO DTACK MODULE has no interface lines.
DTACK generation is dependent upon the address
and is internal to the module.

I 1
1<--------- BDRV* <----------1 BUS DRIVE

BG3*

IDISABLE HANDLER I 1 DISABLE
1 1 1

1
BUS TIMEOUT 1---------> BERR*

1

1 1
BUS ERROR 1<--------- BERR* <----------1 BUS ERROR DRIVER

HANDLER 1 1
1

7

CHAPTER 3: DIO BUS BACKGROUND INFORMATION

3.3 BUS SUBSYSTEMS

Bus subsystems that are defined are shown below:

MASTER CONTROLLER
SUBSYSTEM

BUS MASTER

INTERRUPT REQUEST
HANDLER

BUS REQUEST
ARBITER

BUS ERROR HANDLER

BUS TIMEOUT

BUS DRIVE DISABLE
HANDLER

RESET & HALT DRIVER

BUS MASTER SUBSYSTEM

1 1
1 BUS MASTER I
1----------------------
I INTERRUPT REQUEST
1 HANDLER
1----------------------
1 INTERRUPT REQUESTER
1----------------------
1 BUS ERROR HANDLER
1----------------------
1 BUS REQUESTER
1----------------------
1 RESET & HALT DRIVER

1-----------------------------------

*

*

*

*

*

There will always be one, and only one,
MASTER CONTROLLER SUBSYSTEM. The MASTER
CONTROLLER includes functional elements
that can be on several boards, e.g. the
POWERFAIL DRIVER signals might originate
from a power supply board.

* = OPTIONAL ELEMENT

8

CHAPTER 3: DIO BUS BACKGROUND INFORMATION

SLAVE SUBSYSTEM DMA CONTROLLER

BUS SLAVE

INTERRUPT
REQUESTER

DMA REQUESTER

BUS DISABLE
DRIVER

RESET & HALT
DRIVER

*

*

*

*

3.4 BUS TIMING BACKGROUND

1
DMA REQUEST 1

1 HANDLER 1
1------------------1
1 INTERRUPT 1
1 REQUESTER 1

1------------------1
1 BUS REQUESTER 1

1------------------1
1 BUS MASTER I

1 1

* = OPTIONAL ELEMENT

*

Before discussing DIO BUS timing, it should be pointed out that
in most mainframes (e.g. the 9836A), all slots are identical.
There is no ordering or prioritizing of address, interrupt
capability, etc. by location in the backplane. All timing
specifications apply equally to all slots. It is possible,
however, that future mainframes may have slot-dependent features
(e.g. interrupt prioritizing). Thus, designers must be aware of
features of each mainframe that their products will operate in.

Note also that timing specifications for the DIO BUS were
developed using the 8 Mhz 68000. Designs incorporating other
processors must ensure that the DIO BUS specifications are met.

The DIO BUS is ASYNCHRONOUS; that is, there is no clock on the
backplane to reference signals to. While address and data
generation are related to the CPU clock, the actual clock does
not appear on the bus. The presence of address or data is
indicated by various control lines which execute interlocked
handshakes to convey address and data. Because the address,
data and control lines are not referenced to a clock on the
backplane, signal skew must be controlled to maintain the
relative timing between these signals.

9

CHAPTER 3: DIO BUS BACKGROUND INFORMATION

For example, the 68000 is guaranteed to drive the address bus
lines 30 nsec prior to asserting Address Strobe. Most receiving
devices require at least 15 nsec of address setup time prior to
Address Strobe. To guarantee 15 nsec of address setup time, the
following rules were developed to control gate delays and bus
loading (these are expanded on in more detail in later
chapters) .

1. Each board is limited to one LS load on the address bus,
data bus, the address strobe, the data strobes and the
read/write signal.

2. The PC board trace length on bus signals should be as short
as possible and, in any case, must not exceed 3 inches.

3. The SN74LS245 (or equivalent SN74LS244) is used to drive
the above signals.

NOTE: IN SOME CASES, EXISTING DEVICES VIOLATE THESE RULES;
HOWEVER, NEW DESIGNS MUST ADHERE TO THESE RULES.

At this point, a historical perspective is worthwhile to
show how the above guidelines originated. During the early
development of the 9826, it became clear that controlling bus
capacitance was essential, hence Rules 1 and 2 above. Also, to
minimize b~s skew, it was decided to specify a 'standard' bus
driver, hence Rule 3. Next, to develop detailed timing
specifications, further analysis was performed on the 14LS245.

To define bus skew, two efforts were made: (1) model the 14LS245
and determine formulas for worst-case minimum and maximum gate
delays as a function of bus capacitance and (2) measure delays
for a number of 74LS245 parts with different date codes. The
formulas for gate delay, if used with worst-case conditions
(fully loaded bus, fast address strobe driver, slow bus driver,
etc.), yield unworkable numbers (negative setup times). It was
felt that such a worst-case scenario is a low probability and
not the appropriate design center. Therefore, effort 2
(measuring delays) was investigated.

10

CHAPl'ER 3: DIO BUS BACKGROUND I NFORMAT I ON

Using a sample of 74LS245 parts with different date codes, the
worst-case difference in gate delays was measured for a 500 pf
load. The difference between the fastest gate and the slowest
gate (in different packages) was 9.5 nsec. This was derated by
50% to 15 nsec for margin as well as to cover skew on the bus
itself caused by different signal loading. Returning to the
68000 example, if the address precedes the address strobe by 30
nsec at the 68000 output, then (using 74LS245's to drive the
bus) all receiving devices are guaranteed to have 15 nsec (30 -
15) of address setup time prior to the address strobe.

In addition to determining bus skew, the worst-case high-to-Iow
and low-to-high delay times were determined for a 74LS245
driving a 500 pf load. Delay times were measured relative to
the output reaching the nominal device threshold. For example,
experimental and published data indicates that 1.7V is
sufficient to be seen as a high for the 74LS245; hence, the
low-to-high time delay measurement concluded when the output
reached 1.7V. The results, which are shown below, have been
used in calculating several timing specs. Drivers for
signals such as DTACK* (which has a pullup resistor) require
approximately 50 ns to drive the bus from high to low. Likewise,
a buffer without a pullup has approximately 40 ns of delay (e.g.
the DMA Controller's Fold Buffer). These times include
propagation delays.

WITH PULL UP RESISTOR:
(1 kohm)

WITHOUT PULL UP RESISTOR:

47.5 ns high to low
37.5 ns low to high

39.5 ns high to low
39.5 ns low to high

Data was not taken for pull up resistors larger than 1 kohm.
However, larger pullups will 'group' the rise and fall times
closer to the non-pull up rise and fall times.

The original DESIGNER'S GUIDE TO THE 9826 CARDCAGE had several
timing diagrams labeled 'Bus Master'. These diagrams were
basically the timing of the 68000 and did not represent DIO BUS
signals. Such diagrams are not included in this document.

11

CHAPTER 3: DIO BUS BACKGROUND INFORMATION

In summary, the following points can be made:

1. The skews due to the bus drivers and the bus itself are
not specified separately. Instead, a 'lumped' skew
specification of 15 ns is provided. Between any two
signals driven by 74LS245 drivers, 15 ns of skew can
develop between their inputs and outputs, where the outputs
are measured at the receiving device on the bus.

2. In many cases, the DIO BUS timing specifications have
been derived using the minimum or maximum 68000 timing
specifications plus or minus the 15 ns skew, whichever is
appropriate.

3. The guideline does not take into account signals driven by
devices other than the 74LS245. Such guidelines may be
added by RND in a future release of this document.

The terms CYCLE and STATE need to be explained as these terms
are sometimes used erroneously. CYCLE refers to a complete
clock cycle, e.g. 125 ns for an 8 Mhz clock. STATE refers to
one half of a clock cycle and is based on Motorola's
nomenclature; STATES are numbered from SO to S7, representing 8
states, or 4 cycles. In a bus transaction, the 68000 inserts
wait states between states s4 and S5 as necessary. An example of
erroneous usage of these terms is in reference to RAM access
times: it ~s often referred to as a 5-state access when the
correct description is a 5-cycle access.

12

\

I/O MEMORY MAP AND I/O CARD REGISTERS CHAPTER 4

4.1 SERIES 200 MEMORY MAP

The DIO BUS SPECIFICATION is not intended to document
in detail the Series 200 memory map. Instead, memory map
documentation is limited to the External I/O memory map. For
reference only, the Series 200 Memory Map is shown below.

FFFFFF

RAM 7 MBYTE

900000

MONITOR & TEST ROM/RAM 1 MBYTE
800000

EXTERNAL I/O 2 MBYTE

600000

Asynchronous

500000 ---------- INTERNAL I/O ---------- 2 MBYTE

Synchronous
400000

SYSTEM & ADD-ON ROM 4 MBYTE

000000

13

CHAPTER 4: I/O MEMORY MAP AND I/O CARD REGISTERS

This Series 200 memory map is shown above; addresses are in
HEX. The 68000's 24 bit address can address 16 Mbytes of
memory. The External I/O occupies 2 Mbytes (600000 - 7FFFFF).
The Internal I/O address space (400000 - 5FFFFF) is used for
internal peripherals (e.g. the graphics board) and is discussed
in detail in Appendix A.

4.2 EXTERNAL I/O MEMORY MAP

The External I/O address space is divided into 32 segments of 64
kbytes each. The I/O cards contain Select Code switches which
determine the physical address of the card in the External I/O
address space. 5 switches permit the user to set 32 Select
Codes, from 0-31, to determine which 64 Kbyte memory space the
card resides in. The address format .is shown below:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 1 6 5 4 3 2

I
0 1 1 1 1 1 1 1 I I/O Register Select

I & Device Memory
0 0 0 0 0 I

I
Ext. I/O Select Code 0-31
Select

Not all External I/O Select Codes can be used with existing
operating systems. For example, Select Code 1 is assigned by
all operating systems to the internal HP-IB interface which
resides in the Internal I/O address space. If an I/O card is
installed with Select Code 7, the operating system will ignore
it and direct Select Code 7 activity to the internal HP-IB
interface operating in the Internal I/O space.

With Pascal and BASIC, all Select Codes from 0-1 reference
internal I/O devices only. It is important to realize that,
ELECTRICALLY speaking, I/O cards can be set to Select Codes 0-7
but that the OPERATING SYSTEMS map Select Codes 0-1 to addresses
in the Internal I/O space. Thus, with BASIC and Pascal, I/O
cards set from 0-7 are inaccessible; only I/O cards set from
8-31 can be accessed. At the assembly language level, however,
I/O cards with Select Codes over the entire range of 0-31 can be
accessed.

14

1

CHAPTER 4: I/O MEMORY MAP AND I/O CARD REGISTERS

HPL permits setting of I/O cards to Select Codes 1-6 and 8-15;
refer to HPL OPERATING MANUAL AND PROGRAMMING UPDATE FOR THE HP
9826 AND 9836 COMPUTERS, 09826-90040, for more information.

4.3 I/O CARD REGISTERS

The function of certain registers within I/O devices are
pre-assigned. Note that because I/O cards are byte-oriented and
these registers are connected to the lower byte of the data bus,
their system addresses are 1,3, 5 ... relative to the card's
base address. The designer is free to implement registers in
addition to (not in lieu of) the ones listed below. Also, the
designer is not required to uniquely map each register within
the card's I/O space, i.e. registers may be multipli-mapped
(which simplifies address decoding) as long as registers do not
'exist outside' the card's 64 kbyte I/O space (unless the
card is specifically designed to occupy multiple 64K chunks).

The defined I/O registers are:

ADDRESS 1 7 6 5 4 3 2 1 o

READ ID
I SECONDARY

R/L*I IDl lIDO
I I --1--1--

PRIMARY ID

WRITE RESET x I x 1 x x x x x x
I I

Good system design requires that the operating system must be
capable of resetting an I/O card to its power-on state. One of
two methods must be implemented:

1. If the card contains LSI circuitry such as an interface
controller chip, a sequence of commands can be defined to
reset the interface controller to its power-on state.

2. If the card does not have such a sequence, the card must be
capable of being reset to its power-on state via a memory
write cycle to address 1 as shown above. The data written
is 80 hex (this can be ignored to simplify the design).

15

CHAPTER 4: I/O MEMORY MAP AND I/O CARD REGISTERS

R/L* - REMOTE/LOCAL*: A 1 indicates that the mainframe
may be controlled from a remote source via this
I/O card. For example, under software control,
a mainframe may receive its keyboard inputs from
an RS-232 card and likewise output its display data
via the card. This has uses in certain environments
where it is desireable to lock out local access and
provide remote control of the mainframe.

This feature has not been used to date (except for the
98628 card, where the card's firmware monitors this bit).
In future data communications cards (e.g. a terminal
multiplexer card, Ethernet, etc ..), it is recommended that
this function be provided, either via a jumper or a
switch. Non-communications oriented cards (e.g. an A/D
card) should set this bit to O. NOTE: Except in rare
cases, software is lacking to use this feature; if the
remote feature is to be used, software development is
required.

PRIMARY ID - Bits 0-4 contain the PRIMARY ID, which
identifies each device. Because 5 bits can only
define 32 unique devices, Bits 5 & 6 are defined
as Secondary ID bits as discussed below.

Where~s the Select Code bits are switch-selectable,
the ID bits must be hardwired. Designers should obtain
their ID assignment from RND. If possible, the ID and
default Select Code should be the same.

SECONDARY IDO,l -- The 2 SECONDARY ID bits are used to provide 4
additional IDs for each PRIMARY ID. Although these bits
are located in a higher order position than the PRIMARY ID
bits, they should be consider lower order in that they are
used to extend the range of each of the PRIMARY ID's
defined in Bits 0-4.

Initially, only bits 0-4 defined the device ID; software typically
masked off the upper 3 bits and examined the lower 5 bits.
However, because future Internal I/O devices as well as I/O
cards will have IDs, it became necessary to increase the number
of IDs. Accordingly, Bits 5 and 6 have been defined as the
SECONDARY ID bits. Formerly these bits were S (Smart Card
Identifier) and R (Reserved), respectively.

16

CHAPI'ER 4: I/O MEMORY MAP AND I/O CARD REGISTERS

Unfortunately, not all 128 IDs (7 bits) are available. This is
because, as stated above, existing software only looks at the
lower 5 bits. For example, the 98625 Disc Interface card uses
ID 8. If another external I/O card wanted to use this same
PRIMARY ID with a different SECONDARY ID, problems will result.
This is because the SECONDARY ID bits may be ignored, causing
the card to be interpreted as the 98625. However, this same
PRIMARY ID can be used (with a different SECONDARY ID) by an
INTERNAL I/O device in a new mainframe since the operating
system will look at all 7 bits. Therefore, certain existing
PRIMARY IDs are used by new Internal I/O devices where the
functions are the same or similar.

To be completely safe, additional IDs can be defined using
Register 5, the EXTENSION ID REGISTER. If the PRIMARY ID is 0
(SECONDARY ID = don't care), then the device ID is defined by
the EXTENSION ID in Register 5. Register 5 contains the
EXTENSION ID only if the PRIMARY ID is O.

As with the Select Code table, the ID Assignment Table has
been removed from this document and is available from the R&D
Lab at Roseville Network Division.

ADDRESS 3 7 6 5 4 3 2 1

, , INTERRUPT ,
0

READ STATUS , IE , IR LEVEL x x DEl , DEO , I ,
, --,-- -- --,--,--,

WRITE CONTROL

I

I IE , x x x x x , DEl' DEO , , , , , ,
-- -- -- -- -- -- -- --

x - These bits are not defined and may be assigned
functions by the card designer.

IE - Interrupt Request Enabled, set or cleared by a Write Control,
is read by a Read Status. IE is cleared by both a bus reset
(RESET* = low) and a card reset (write to Register 1).

17

CHAPTER 4: I/O MEMORY MAP AND I/O CARD REGISTERS

IR - Card is requesting interrupt, used for software polling to
determine interrupt origin. If IR is true and IE is set,
one of the DIO BUS interrupt lines (IR3*, IR4*, IR5* or
IR6*) is asserted, depending on the Interrupt Level
switches. A software-accessible means of clearing IR must
be provided on the card. IR should NOT be cleared by a
read of this register.

INTERRUPT LEVEL - These bits permit reading of the interrupt level
as shown below:

00 Interrupt Level 3
01 Interrupt Level 4
10 Interrupt Level 5
11 Interrupt Level 6

Current I/O cards have 2 switches to set the interrupt level;
these switches map into the 2 INTERRUPT LEVEL bits.
Alternately, a card could permit the interrupt level to
be programmable (e.g. using the corresponding bits in the
writeable CONTROL REGISTER). Refer to the Chapter DIO BUS
SLAVE DESIGN SUMMARY for more details on interrupt levels.

DEO, DEl - DMA Enabled on Channel 0, DMA Enabled on Channell,
set or cleared by a Write Control, read by a Read
Status. If the card does not implement DMA, these
bits can be used for other functions in both the
Control and Status Registers. DEO and DEl are cleared
by both a bus reset (RESET* = low) and a card reset
(write to Register 1).

ADDRESS 5 7 6 5 4 3 2 1

READ EXTENSION ID EXTENSION ID (0 - 255)

The EXTENSION ID register is valid only if the PRIMARY ID in
Register 1 is o.

18

o

DATA TRANSFERS CHAPTER 5

This chapter discusses the transfer of data between Bus Masters
and Bus Slaves. Timing background information is given in
Chapter 3 and should be reviewed prior to reading this chapter.

5.1 DATA TRANSFER SIGNALS

The bus signals used in data transfers are shown below. Signal
names starting with B (buffered) are derived from 68000 signal
names -- the 68000 name is that which follows the B. A brief
description of each signal is given; for more detailed
information, refer to the 68000 data sheet. Two of the signals,
lMA and ENDT, are HP-defined.

1. BAl-BA23

2. BAS *

3. BDO-BD15

4. BR/W*

5. BUOS*
BLDS*
BDS*

6. DTACK*

The 23 bit address bus. Note that BAO is not
on the bus; its value is conveyed in BUDS and
BLDS.

BUFFERED ADDRESS STROBE, defines when the
address is valid, used to delimit bus cycle.

BUFFERED DATA 0 - 15, the 16 bit data bus.

BUFFERED READ/WRITE, high for read, low for
write.

BUFFERED UPPER DATA STROBE, BUFFERED LOWER
DATA STROBE and BUFFER DATA STROBE. BUDS
indicates that BD8-BD15 are involved; BLDS
indicates that BDO-BD7 are involved. BDS is
NOT a bus signal and is used generically to
refer to either BLDS or BUDS.

, DATA TRANSFER ACKNOWLEDGE is issued by the Bus
Slave (RAM, I/O card, etc.) to inform the CPU
that it can complete the memory cycle. During
a read, it indicates that the Bus Slave's data
is valid on the bus. During a write operation,
it indicates that the Bus Slave has accepted
the data.

19

7. lMA*

8. ENDT*

9. BFCO-BFC2

CHAPTER 5: DATA TRANSFERS

I'M ADDRESSED, an output from a card that is
addressed. This is used by the Bus Expander to
reverse its data bus buffers if a card in the
Bus Expander is addressed. All DIO cards must
generate IMA, including DMA Controllers when
registers are read (the 98620 DMA Controller does
not generate lMA, which has complicated system
design). .

ENABLE DTACK, generated by Processor boards, used
by Bus Slaves to control generation of DTACK.
Permits a pseudo-synchronous, repeatable access
time equivalent to 5 clock cycles.

BUFFERED FUNCTION CODES, defines type of
transaction occurring on the bus.

5.2 OVERVIEW OF THE DATA TRANSFER

BAS, which defines when the bus address BAl-BA23 is valid,
begins the data transfer operation. ~R/W* defines whether the
operation is a read or a write. BLDS and BUDS indicate which
byte(s) of the 16 bit data bus are involved in the data
transfer.

An interlo~ked handshake is used to transfer data between
the Bus Master and the Bus Slave. DTACK (Data Transfer
Acknowledge) is the signal that indicates when the Bus Slave has
accepted data from the bus or provided data to the bus. The
data handshake occurs as follows:

1. Bus Master asserts BA1-BA23, BAS, BR/W, BUDS, BLDS and the
data bus BDO-BD15 (if a write operation).

2. Bus Slave asserts DTACK when data accepted from bus or
provided to bus.

3. Bus Master negates BAS when DTACK seen (cycle complete).

4. Bus Slave negates DTACK when BAS negated.

20

r

CHAPTER 5: DATA TRANSFERS

DTACK is needed because the response time of devices can vary.
For example, the access time of RAM can vary due to refresh.
However, other devices, such as the ROM card, are guaranteed to
respond to accesses in a fixed time. To simplify design for
those devices that respond in a fixed time, certain Processor Boards
implement a feature called AUTO DTACK in which the DTACK signal
is generated on the Processor Board itself. Processor Boards
generate DTACK based on the device address; DTACK is generated
for all devices in the address range 0-4FFFFF. This covers ROM
cards and devices in the Internal I/O space 400000-4FFFFF. The
actual BAS-to-AUTO DTACK timing depends on address bits A14 and
A15. Refer to the SERIES 200 SYSTEM SPECIFICATION available from
FSD Hardware R&D Lab for more details.

The DIO SPEC permits DTACK* to be driven either by a tri-state
buffer or an open collector gate. Assuming a 500 pf bus and a
3.3K pullup resistor (as used on the 09826-66515 CPU board) on
DTACK*, an RC time constant of 1.6 usec results. Because this
would result in an unacceptably slow rise time on DTACK*, Bus
Masters actively pull up DTACK* after a cycle when BAS* goes
high. Likewise, Bus Slaves release DTACK* when BAS* goes high
but with some inherent delay relative to the active pullup.

This contention (Bus Master pulling DTACK* high, Bus Slave
momentarily holding it low) has been observed to cause glitches
on DTACK*. This contention problem has been fixed in new
processor designs (e.g. by using a delay line to delay the
active pullup). However, because of the many machines in the
field which could have DTACK* glitches, DTACK* should not be
used as a clock (at least not on the rising edge).

Another signal related to DTACK is ENDT (Enable DTACK). ENDT is
generated by the Bus Master and may be used to improve the
response time of Bus Slaves. On 680DO-based Bus Masters, ENDT is
basically Address Strobe delayed by 1-1/2 clock cycles. Bus
Slaves can optionally use ENDT to generate an 'earlY' DTACK,
permitting 5 cycle read/write accesses. ENDT is discussed in
detail in Sections 5.6, 5.7 and 5.8.

21

CHAPTER 5: DATA TRANSFERS

5.3 READ CYCLE

Figure 5-1 depicts a read cycle. As discussed in Chapter 3,
timing requirements are specified on the bus measured at
the signal receiver. The key aspects of a read cycle are:

1. Prior to the beginning of the read cycle, BR/W*, BUDS* and
BLDS* are set high by the CPU. A pullup device on the
Processor Board actively pulls up DTACK*. The setup time on
BR/W* high is 15 nsec before BAS* goes low. Because this is
a read cycle, BR/W* remains high during the entire cycle.

2. The Bus Master drives the address bus BA1-BA23 with a
minimum address setup time of 15 ns before BAS is asserted.

3. All Bus Slaves determine if they are being addressed using
BAS as a decode enable; the device being addressed
responds with IMA within 70 ns after BAS is asserted, i.e.
the receiver must see IMA within 70 ns of BAS.

4. If a Bus Slave is being addressed, it puts data on the bus
after BDS goes true. Note that BDS can precede or follow
BAS by up to 75 ns; even though BDS may precede BAS, the
Bus Slave cannot drive the bus until it has decoded that it
is being addressed. Bus Slaves must not drive the upper/lower
data lines unless they are specifically strobed; otherwise,
folding by the DMA Controller can be affected.

NOTE:,It is worthwhile to use the above BAS to BDS timing
as an example of how some of the timing
specifications were derived. Relative to the
68000 clock, BDS or BAS occurs a maximum of 60
ns after the clock. Assuming (very worse case)
that one signal occurs 0 ns after the clock and
the other occurs 60 ns after the clock, then
the signals can be 60 ns apart (in either
direction). Adding in 15 ns for bus skew yields
the 75 ns specification.

5. The time from BDS to data valid is device-dependent; DTACK
is generated by the Bus Slave to qualify this data. There
are 3.cases affecting data setup time prior to DTACK:

A. When using ENDT, data may be placed on the bus after
DTACK. Refer to Sections 5.6 and 5.7 for more detail.

B. If the device does not use ENDT and cannot be a DMA
source, then the data setup time prior to DTACK is 15
ns. As usual, this setup time must be met at the
receiving device.

22

CHAPTER 5: DATA TRANSFERS

C. If the device being read is a DMA source (e.g. memory
during a DMA output), then an additional 40 ns of data
setup time prior to DTACK must be provided, or 55 ns
total. The additional 40 ns is required due to the Fold
Buffer delay when transferring data from the upper byte
of memory to the low data byte for the I/O card. DMA
and Fold Buffer operation is discussed in the Chapter
DMA OPERATION.

For I/O-to-memory DMA (DMA input) transfers, the data
setup time from the I/O card is still specified at 15
ns, measured with respect to DMARDY (which the DMA
Controller uses to generate BLDS and/or BUDS for the
RAM). Unlike DMA output, additional setup time is not
required because there are matching delays in both the
data (Fold Buffer delay) and in generating BLDS and/or
BUDS from DMARDY.

6. The Bus Master detects that DTACK has occurred, accepts the
data on the bus and then ends the cycle by negating BAS
and BDS. The Bus Master must set BAS false within 350 ns
of assertion of DTACK.

7. The Bus Slave detects that the cycle has ended when BAS or
BDS go false (whichever occurs first) and then stops
driving IMA, DTACK and the Data Bus. Likewise, the Bus
Master stops driving the address bus.

Bus Slaves drive IMA* and DTACK* with either an open collector
gate or a tri-state driver. While the high-to-Iow
transition is controlled by this driver, the low-to-high
transition is dependent on 2 factors external to the Bus
Slave: (1) A pullup resistor to +5V and (2) an active
pullup driver. For DTACK*, the pullup resistor is either
on the Processor board or the Bus Expander (depending where
the card is installed). For IMA*, the pullup is only in
the Bus Expander. To provide a faster rise time than is
provided by the pullup resistor, these signals are also
actively pulled high. The active pullup devices (either on
the Processor board or the Bus Expander) are activated
after BAS* goes high. Because the active pullup may be
activated before the Bus Slave releases its low-driven
signal, a short conflict may occur. To minimize this
conflict, the Bus Slave must release IMA* and DTACK* within
50 nsec of BAS* going high.

23

CHAPTER 5: DATA TRANSFERS

Because the Bus Expander does not assert lMA* high until 70
ns after BAS* goes high, there should be no conflict.
However, problems have been seen with DTACK* since certain
Processor boards assert DTACK* high immediately after BAS*
goes high. This contention has been observed to cause
glitches in DTACK; thus, DTACK* should not be used as a
clock. Note that during DMA cycles, the DTACK* pullup is
still asserted by the Processor board, not the DMA
Controller.

Relative to BAS or BDS, the following signals change with
the indicated delay:

A. Address hold:
B. lMA* release:
c. DTACK* release:
D. Data Bus release:

15ns. min.
50ns max.
50ns max.
lOOns max.

24

CHAPTER 5: DATA TRANSFERS

FIGURE 5-1: DIO BUS READ CYCLE

Bill -81\23

BA/ar

READ CYCLE TIMES (ns) MIN MAX NOTES

1a BAS * low when Bus Error occurs 4000 1
1b BAS * low to avoid Bus Error 3500 2
2a BAS * low to DTACK* low w/o bus error, DMA 1500 3
2b BAS* low to DTACK* low w/o bus error,non-DMA 3000 3

3 DTACK* low to BAS* high 350 4
4 BAS* high 140
5 Address setup before BAS* low 15
6 BR/W* high to BAS* low or BDS* low 15 5
7 BAS* low to IMA* low 0 70 6
8 BAS* low to BDS* low -75 75 7

9a Data setup before DTACK* low, non-DMA source 15 8
9b Data setup time before DTACK* low,DMA source 55 8
10 BAS* or BDS* high to data release 0 100 9
11 BR/W* hold after BAS* or BDS* high 65 10
12 Address hold after BAS* or BDS* high 15 10,11
13 BAS* high to IMA* release a 50 12
14 BAS* high·to DTACK* release 0 50 12

25

CHAPTER 5: DATA TRANSFERS

NOTES: 1. As discussed in the Chapter BUS ERROR AND STRETCH OPERATION,
the BAS* low time is limited in Series 200 mainframes by the
Bus Error timer. This timer is set at 4.0 usec on early CPU
boards; later CPU boards, however, have increased this time.

2. To provide margin, the maximum BAS* low time is specified
as 3500 ns.

3. The Bus Error timer does not 'know' whether a DMA cycle is
being executed. The shorter time for the DMA cycle
reflects the fact that the memory must be read and the I/O
operation completed within a single memory cycle.

4. Meeting this timing spec ensures that the maximum BAS* low
time of 3500 ns will be achieved, i.e. 3000 ns + 350 ns <

3500 ns.

5. The 68000 specification permits 40 ns; however, the 15 ns
limit documented in the DESIGNER'S GUIDE TO THE 9826A
CARDCAGE is retained.

6. This time was previously specified at 50 ns; however,
because 50 ns is too restrictive and because the Bus
Expander (the only user of lMA) allows 70 ns, this time
has been increased. Since the IMA* bus driver itself can
have up to 50 ns of delay (see Section 3.4), the on-board
delay in address decoding must be less than 20 ns.

7. This time was derived from the min/max delays (0/60 ns)
for BDS* and BAS* relative to the 68000 clock. Assuming
(very worse case) that one signal is delayed 0 ns while the
other is delayed 60 ns and adding in 15 ns for bus driver
skew yields the +/- 75 ns spec. Because the skew between
LDS* and UDS* is not specified by Motorola, one must assume
a similar skew is possible between these 2 signals.

8. As usual, these times are measured at the bus receiver.

9. Whichever goes high first of BAS* or BDS*.

10. Whichever goes high last of BAS* or BDS*. If the 68000
gives up the bus to another bus master at the completion of
the cycle, the 65 ns is still guaranteed since the other
bus master must wait 100 ns after BAS* and DTACK* are high
before assuming control. For a 68000 read cycle followed by
a write cycle, the 65 ns is provided by the fact that
BR/W* stays high until BAS* goes low at the beginning of
the write cycle.

26

CHAPTER 5: DATA TRANSFERS

FIGURE 5-1 NOTES (continued)

11. Based on the 68000 and buffer/bus skew, the address hold
time is 15 ns. However, the 98256A (256 kbyte RAM board)
requires 40 ns of address hold time. This is presently
achieved because the address bus is typically driven longer
than the specified minimum and is tri-stated after the
cycle (i.e. it floats at its current value).

12. The release time specifies when the open collector gate or
tri-state driver must stop driving the low signal. The
low-to-high transition is then controlled by external
pullup resistors and drivers as described above.

5.4 WRITE CYCLE

Figure 5-2 shows the write cycle. As discussed in Chapter 3,
timing requirements are specified on the bus measured at
the signal receiver. The key aspects of a write cycle are:

1. Prior to the beginning of the write cycle, BR/W*, BUDS* and
BLDS* are pulled high by the processor. A pullup device
on the Bus Master actively pulls up DTACK*.

2. Address and BFCO-BFC2 are valid with a minimum address
setup time of 15ns before BAS is asserted. BR/W* goes
low 75ns before to 35ns after the assertion of BAS.

3. All devices on the bus determine if they are being
addressed using BAS as a decode enable; the device being
addressed responds with IMA within 70 nsec after BAS
occurs.

4. Data is valid on the data bus BDO-BD15 a minimum of 15 nsec
prior to BDS (BLDS or BUDS, whichever occurs first). The
occurrence of BDS indicates that data is valid. Notice that
the time from BAS to the data strobes can vary over a wide
range (50 os to 2500 ns). The longer times typically occur
during DMA operation because a read must be performed
prior-to the write operation.

5. When BDS goes true, BR/W* is guaranteed to be low; BR/W
should NOT be qualified with BAS because of the potential
for bus conflicts since BR/W* can still be changing up to
35 nsec after BAS goes true.

27

CHAPTER 5: DATA TRANSFERS

6. The Bus Slave stores the data and asserts DTACK, indicating
to the Bus Master that the storage operation is complete.

7. The Bus Master detects that DTACK is true and negates BAS
and BDS within 350 nsec. The Bus Master then removes the
data BDO-BD15 from the data bus. To allow data hold time
so that the Bus Slave can clock the data at the same time
it asserts DTACK, the minimum Bus Master data hold time
after detection of DTACK is 85ns.

8. The following signals change with the indicated delay after
the negation of BDS and BAS (whichever occurs last).

A. Address hold: 15 ns min.
B. BR/W* hold: 25 ns min.
C. 1MA* release: 50 ns max.
D. DTACK* release: 50 ns max.
E. DTACK* pull-up asserted 0 ns min.

on current Processor
boards

5.5 READ-MOD1FY-WR1TE

The 68000's Read-modify-write cycle is not supported on
any current Series 200 hardware. One problem is the
requirement for DTACK* to be asserted twice during the
cycle. Memory boards do not actively pull DTACK*
high; only Processor boards do this (after BAS* goes high).
Therefore, between DTACK's, DTACK* is pulled up only by
a pullup resistor and is not guaranteed to go high before
the second DTACK occurs.

28

CHAPTER 5: DATA TRANSFERS

FIGURE 5-2: DIO BUS WRITE CYCLE

8AI-BA2.J

Brt/w

'DTilCI<

WRITE CYCLE TIMES (ns) MIN MAX NOTES

la BAS * low when Bus Error occurs 4000 1
lb BAS * low to avoid Bus Error 3500 2
2a BAS * low to DTACK* low w/o bus error, DMA 1500 3
2b BAS* low to DTACK* low w/o bus error,non-DMA 3000 3

3 DTACK* low to BAS* high w/o bus error 350
4 BAS* high. 140
5 Address setup before BAS* 15
6 BAS* low to IMA* low 0 70
7 BAS* low to BR/W* low -75 45
8 BAS* low to BDS* low 50 2500 4
9 BR/W* low to BDS* low 65 5

10 Data setup before BDS* low 15
11 Data hold after DTACK* low 85
12 BR/W* hold after BAS* or BDS* high 15 6
13 Address hold after BAS* or BDS* 15 7
14 BAS* high to IMA* release 0 50 8
15 BAS* high to DTACK* release 0 50 8

29

CHAPTER 5: DATA TRANSFERS

NOTES: 1. As discussed in the Chapter BUS ERROR AND STRETCH OPERATION,
the BAS* low time is limited in Series 200 mainframes by the
Bus Error timer. This timer is set at 4.0 usec on early CPU
boards; later CPU boards, however, have increased this time.

2. To provide margin, the maximum BAS* low time is specified
as 3500 ns.

3. The Bus Error timer does not 'know' whether a DMA cycle is
being executed. The shorter time for the DMA cycle
reflects the fact that the memory must be read and the I/O
operation completed within a single memory cycle.

4. The minimum time was listed in previous documentation at 85
ns. However, based on the 68000 timing, a minimum time of
50 ns is required.

5. Specs 7 & 8 imply that BDS* could go low within 5 nsec of
BR/W* going low (50-45). In actuality, this cannot happen
as guaranteed by Spec 9.

6. Whichever goes high last of BAS* or BDS*.

7. Based on the 68000 and buffer/bus skew, the address hold
time is 15 ns. However, the 98256A (256 kbyte RAM board)
requires 40 ns of address hold time. This is presently
achieved because the address bus is typically driven longer
than ~he specified minimum and is tri-stated after the
cycle (i.e. it floats at its current value).

8. The release time specifies when the open collector gate or
tri-state driver must stop driving the signal low. The
low-to-high transition is then controlled by external
pullup resistors and drivers as described above.

30

CHAPTER 5: DATA TRANSFERS

5.6 ENDT OVERVIEW

As discussed previously, Enable DTACK (ENDT) is used to improve
the response time of certain DIO BUS devices such as RAM cards.
These devices use ENDT (which is basically BAS delayed by 1-1/2
clock cycles) to generate an 'early' DTACK. For example, during
a CPU read, ENDT is used to generate DTACK before the data is
even on the bus; however, because the 68000 accepts the data
up to 90 ns after DTACK, the read cycle will be completed
successfully as long as the device provides the data within 90
ns of DTACK. The following comments on ENDT usage are
necessary:

1. ENDT can be used to provide 5 cycle read/write accesses.
However, during those memory cycles where the card is
unable to accept or provide data within the required time
(e.g. during a RAM refresh cycle), then the card must
inhibit use of ENDT to generate the early DTACK.

2. While ENDT is currently used only for certain cards such as
RAM and EPROM, other devices which contain memory, such as
new I/O cards, could use ENDT to improve their response time.
In general, the RAM on Bus Masters does not use ENDT since
the RAM control logic can use the CPU clock.

3. Cards that use ENDT must also be able to work without
it. For example, the 98620A DMA Controller does not
generate ENDT. Likewise, new Bus Masters are not required
to generate ENDT.

4. If a new DMA Controller is designed that generates ENDT
during a DMA cycle, ENDT should be used by memory (not
the I/O card) during the DMA cycle.

In the timing discussions that follow, the timing margins appear
very tight, if not unworkable. This is attributable to using
worse-case timing specs for all parameters. In actuality,
sufficient marglin exists to ensure that 5 cycle accesses are
achievable. For example, the worse-case ENDT-DTACK timing on the
09826-66522 board violates the timing specification; however,
the production test for 5 cycle timing has yet to detect a
failure of this board to achieve 5 cycle accesses (except, of
course, during memory refresh cycles).

31

. CHAPTER 5: DATA TRANSFERS

The maximum time from ENDT-in to DTACK-out is calculated below.
This applies to both read and write cycles.

125 ns

-9 ns

-30 ns

-12 ns

Clock cycle period. ENDT is generated on the
falling edge of the clock and DTACK must be valid
prior to the next falling edge in order to achieve
5 cycle accesses.

Maximum delay in the 74s74 flip-flop that generates
ENDT.

Maximum delay in the 74LS245 buffer that drives ENDT.
This delay is less than the standard 47.5 ns delay
since the loading on ENDT is typically less than 500 pf
(call this 'engineering judgement').

Delay of the Processor's DTACK receiver (LS125).
The typical spec (not the maximum) is used here since
the loading on the signal is much less than the 45 pf load
that the part is characterized at (more engineering
judgement).

-20 ns Maximum DTACK setup time prior to the trailing edge of
-------- the clock.

54 ns ,This represents the Bus Slave's requirement for
generating DTACK from the ENDT input. Because the
DTACK bus driver requires a maximum of 47.5 ns,
approximately 6.5 ns remain for internal logic
delay. However, because all these timing
specifications are worse-case and thus statistically
unlikely to occur together, more delay than 6.5 ns is
allowed. Specifying the permissable time delay is
difficult; the guideline is to keep the internal
delay as small as possible. The penalty
for larger time delays is 6 cycle accesses
in some systems, not the desired 5 cycle accesses.

32

CHAPTER 5: DATA TRANSFERS

5.7 READ CYCLE USING ENDT

The following read cycle timing using ENDT is based on Series
200 Bus Masters. As discussed above, devices that use ENDT to
generate DTACK must provide data within a certain time after
DTACK. Because Bus Slaves begin memory accesses using BAS,
the time from BAS* going low to data valid on the bus is
calculated. The method of calculating this timing is explained
so that users can apply ENDT to their application.

437.5 ns Represents 3-1/2 clock cycles. BAS* starts with the
r1s1ng edge of the CPU clock; data must be valid just
before the clock's falling edge, 3-1/2 cycles later.

-60 ns Maximum delay from rising edge of clock to AS*.

-47.5 ns Maximum delay of BAS* bus driver.

-12 ns

-15 ns

303 ns

Maximum data delay on CPU board due to bus receivers.

CPU data setup time before trailing edge of clock.

Thus, the Bus Slave must have data valid within 303
ns of BAS* going low if ENDT is used to generate
DTACK as discussed above. Because the Bus Slave's
data bus drivers can require up to 39.5 ns, internal
delays in accessing data must be less than 303 - 39.5
= 263.5 ns.

33

1
2
3
4
5
6
7

CHAPTER 5: DATA TRANSFERS

FIGURE 5-3: READ CYCLE TIMING WITH ENDT

CL..oc.1I;,

(+=,,(R.tiFe~,,-NC_fi_

ONLY) f---0--
BAI- 8A 23 ___ -r-+-----+----+------jr----,

bA7" VAL..ro

L-~------_4------+-----r--~

I

~~------~@~------~al ~
----------------~et=)r------

I

READ TIMING (ns) MIN MAX NOTES

I I
Clock per~od @ 8 Mhz 125 ns nominal I
BAS* delay from clock high I 107·5 I
ENDT* delay from clock low I 39 I
ENDT* low to DTACK* low I 54 I
DTACK* low setup before clock low 32 I I
BAS* low to read data valid I 303 I
Data setup before clock 27 I I

I I

NOTES: 1. The clock is on the Bus Master and does not
appear on the DIO BUS; it is shown for REFERENCE
ONLY.

2. As it should, Spec 3 + Spec 4 + Spec 5 = 125 ns.

1

2

3. These times assume ENDT* loading is less than the
500 pf assumed for the data bus, address bus, etc.

34

CHAPTER 5: DATA TRANSFERS

5.8 WRITE CYCLE USING ENDT

During write cycles, the time from BAS* going low to data
becoming invalid (indicating completion of the cycle) is of
interest. Likewise, the time from the data strobes BLDS and
BUDS going true (indicating valid data on the bus) to the data
becoming invalid is also of interest. These times are
calculated below:

1. MINIMUM BAS* LOW TO DATA INVALID TIME:

437.5 ns

-60 ns

-47.5 ns

-15 ns

o ns

+30 ns

345 ns

3-1/2 clock cycles

Maximum delay from rising edge of clock to AS*.

Maximum delay of BAS* bus driver.

Maximum skew between BAS* and data

Minimum delay of data bus drivers. Any delay
extends the time from BAS* low to data invalid;
however, to continue with the worse-case
analysis, 0 must be used.

Minimum data hold after BAS* goes high.
Because the data bus buffers continue to
drive the bus after BAS*and BDS* go high,
this hold time does occur on the bus.

2. MINIMUM DATA STROBES LOW TO DATA INVALID TIME - - The data
strobes are delayed from BAS* by one clock cycle (125 ns).
Therefore, the time from the data strobes going low to data
invalid is 345 - 125 = 220 ns.

35

1
2
3
4
5
6
7
8
9

CHAPTER 5: DATA TRANSFERS

FIGURE 5-4: WRITE CYCLE TIMING WITH ENDT

C L.oci;

[fo. lHfHNCG'
ONL'{)

l.@
----+--..

~ __ +-~ __________ r---

ao~-S1)IS
----------~--/~_4----------------~--------

WRITE TIMING WITH ENDT (ns) MIN MAX NOTES

I I
Clock period @ B Mhz 125 ns nominal I 1
BAS* delay from clock high I 107.5 I
ENDT* delay from clock low I 39 I
ENDT* low to DTACK* low I 54 I
DTACK* low setup before clock low 32 I I
BAS* low to BDS* low (nominal) I 125 I
Data setup before BDS* low 15 I I
BAS* low to data invalid 345 I I
BDS* low to data invalid 220 I I

I I

NOTES: 1. The clock is on the Bus Master and does not appear on
the 010 BUS; it is shown for REFERENCE ONLY.

2. These times assume ENDT* loading is less than the
500 pf assumed for the data bus, address bus, etc.

36

BUS ERROR AND STRETCH OPERATION CHAPTER 6

An exception sequence is generated when the CPU's bus error
input signal BERR* is asserted. This signal is open collector,
permitting it to be generated by any device (including the
Processor board). Applications of the bus error signal are
device dependent; several applications that DIO BUS designers
should be ~ware of are discussed in this chapter.

An addition (4-83) to the DIO BUS was the signal STRETCH*, which
was assigned to the previously-spare pin 98. The STRETCH*
signal, which was to be generated by the 1 Mbyte parity RAM card
in case of a parity error, would cause certain processor boards
(e.g. the Memory Management Processor board) to insert an extra
half cycle in the CPU clock. This would permit BERR* (also
generated by the RAM card) to have sufficient setup time at the
CPU.

The situation, however, has changed. It was recently (11-83)
discovered that even with STRETCH, the BERR signal generated by
the RAM card would not have sufficient setup time on the
processor board. Therefore, the STRETCH function has been
abandoned and will not be generated by RAM cards. However,
because Processor boards (09826-66517) have been shipped which
respond to STRETCH, it is not possible to free the pin (98) as a
spare. The pin, however, has been designated as a 'processor
spare' in that future processor boards can use this pin as an
OUTPUT since they will not be operating in the same machine as
those processor boards which respond to this signal as an
input.

6.1 SIGNALS

BERR*

Pin 98

I

BUS ERROR, when asserted, causes the Processor to
terminate the bus cycle. When BERR is negated, the
Processor begins its exception processing.

This signal was called STRETCH*, is now a 'processor
spare' as discussed above.

37

CHAPTER 6: BUS ERROR AND STRETCH OPERATION

6.2 BERR TIMING

BERR timing is different for 68000 and 68010 processors. The
68000 BERR input can be asynchronous; the only requirement is
that BERR arrive before DTACK. The 68010 permits BERR to arrive
after DTACK; however, BERR must meet a setup time before the CPU
clock. According to Motorola, "this setup time is critical to
proper operation, and the Mc68010 may exhibit erratic behavior
if it is violated". Because BERR timing varies for different
mainframes and different Processor boards, timing diagrams are
not included in this document. The reader is referred to
Section 6.6 which provides guidelines for utilizing BERR.

6.3 BUS TIMEOUT

Series 200 Processor boards generate the bus error signal,
BERR, when an accessed card fails to respond within a certain
time. As discussed previously, a device responds with DTACK, so
logically the time from BAS going true to the arrival of DTACK
would be monitored. However, DTACK causes BAS to go false (with
some delay) so the BERR circuit simply monitors the length of
BAS; if DTACK occurs too late or fails to occur, BAS will remain
true and a counter will time out.

A 4-bit BERR counter is located on Series 200 Processor boards
and is cle~red when BAS is false. When BAS is true, it begins
counting (4 Mhz clock) and generates a BERR when it overflows (after
16 counts); 16 x 250 nsec = 4.0 usec. To provide margin, the
maximum width of BAS is spec'd at 3.5 usec. To ensure that
DTACK has time to reset BAS prior to 3.5 usec, DTACK must arrive
2 CPU clocks (250 nsec, synchronizing time) earlier. Because of
this time, other delays and to provide ample margin, the maximum
time from BAS* going low to DTACK* going low has been spec'd at
3.0 usec.

From the above, it appears that devices have 3.0 usec to DTACK.
However, for devices that implement DMA, it is not this simple.
For example, during a DMA output cycle, RAM must be read and the
I/O card written to within one BAS cycle. Thus, the combined
RAM read time and I/O card write time must be less than 3.0
usec.

38

CHAPTER 6: BUS ERROR AND STRETCH OPERATION

For a DMA input (I/O read, memory write), DMARDY must be true
(indicating valid I/O card data) within 2.5 usec of DMACK. As
usual, DTACK (indicating the memory card has accepted the data)
must be true within 3.0 usec of BAS going true to prevent a BERR
timeout.

For a DMA output (memory read, I/O write), memory is ready
within 1.5 usec as evidenced by DTACK; the I/O card has another
1.5 usec to accept the data, as evidenced by DMARDY.

Because the Master Controller implements the BUS TIMEOUT
function, other Bus Masters do not have to generate it; however,
other Bus Masters do have to respond to it if the Master
Controller generates it while another Bus Master has control of
the bus. Acceptable responses are: (1) handle the bus timeout
problem or (2) give up the bus to the Master Controller and
let it resolve the problem. Refer to the SERIES 200 SYSTEM
SPECIFICATION for more details.

6.4 AUTO LOCATE OF PROCESSOR RAM

The BERR signal generated by the BAS timeout counter is used to
auto-locate RAM on 9826/36 Processor boards (but not on the 9816
Processor board). The Processor RAM auto-locates itself at the
bottom (lower addresses) of RAM memory, eliminating the need for
the user to set switches on an internal board. This works as
follows: at power-on, the processor writes to and reads from
each block of memory to determine how much memory is available.
When there is no response from a memory card (indicating that
the access is below all plug-in memory), the BERR counter times
out and generates BERR. A latch then latches the bus-error
address as the Processor board's RAM address. Auto location
is a Series 200 implementation detail, not a Bus Master
requirement.

I

6.5 BERR FOR PAGE FAULTING

Memory management Processor boards such as the 09826-66517
generate BERR upon detection of a page fault. DTACK is
not generated so that a normal BERR trap occurs. Note:
due to the unavailability of the 68010, early 09826-66517
boards have the 68000 and thus do not support page faulting.

39

CHAPTER 6: BUS ERROR AND STRETCH OPERATION

·6.6 GUIDELINES FOR UTILIZING BERR

This section gives guidelines for using BERR in new designs. It
should be noted that presently (4-84) BERR is generated only by
Processor boards. The only card which uses BERR (in addition to
the Processor boards themselves) is the 98620 DMA Controller.

1. Because of the critical nature of BERR timing and the
differences in operation with different mainframes and
Processor boards, the FSD & RND R&D Labs should be
consulted prior to designing a card which generates BERR.
In addition, the following information should be studied:

A. BERR specifications for the different 680xx Processors.

B.-Hardware and software documentation on BERR
operation and limitations in current mainframes.

2. Even though a Processor board or another board may generate
BERR, a Bus Slave may not 'see' it. For example, BERR is
an input only from the 9888 Bus Expander; thus, a Processor
generated BERR is not seen by cards in the expander.
Therefore, cards may utilize BERR if it is present, but
they must not depend on it being available unless the
stipu~ation is made that the card must reside in the
mainframe. Such a stipulation is acceptable for a
one-per-system type of card (e.g. the 98620 DMA Controller)
but is not acceptable for generic I/O cards.

3. If a Bus Slave does respond to BERR, it should terminate all
DIO BUS transactions, i.e. 'get off of the bus'.

40

INTERRUPT OPERATION CHAPTER 7

The 010 BUS supports seven interrupt levels and 2 methods of
responding to interrupts: (1) External Vectored and (2)
Autovectored. External vectoring requires the interrupting
device to put an 8-bit vector on the bus and assert the VECTOR
signal. With autovectoring, the interrupting device does not
provide a vector and the Processor generates its own default vector.

CAUTION: External vectored interrupts do not operate as
described in the predecessor to this document,
the DESIGNERS GUIDE TO THE 9826A CARDCAGE. Existing
Processor boards do not generate several of the control
signals described in that document.

However, as discussed in the Chapter REQUIRED DIO BUS
FUNCTIONS FOR AN I/O BUS, I/O card designers should
NOT design cards that implement externally vectored
interrupts, i.e. only autovectored interrupts should
be used. Therefore, the description of external
vectored interrupts in this document (section 7.2)
should be viewed as primarily historical in nature,
to describe an existing (but never used) DID BUS
feature. While external vectored interrupts should
not be used in products, they may be used in special,
one-of-a-kind projects as long as the designer accepts
the risks involved.

7.1 INTERRUPT SIGNALS

The interrupt signals on the DID BUS are shown below. Interrupts
3-6 are for external I/O cards. Interrupts 1,2 and 7 are for
internal I/O. The assignment of these interrupt levels for the
9826/36 is shown below as an example; however, the SERIES 200
SYSTEM SPECIFICATION should be referenced for the most current
information.

1. IR1*

2. IR2*

Interrupt 1, Keyboard/real time clock

Interrupt 2, 9826/36 internal floppy
controller

41

LOWEST LEVEL

CHAPTER 7: INTERRUPT OPERATION

3. IR3* Interrupt 3, External I/O
4. IR4* Interrupt 4, External I/O
5. IR5* Interrupt 5, External I/O
6. IR6* Interrupt 6, External I/O

7. IR7* Interrupt 7, Reset key, powerfail HIGHEST LEVEL

8. IACK* Interrupt Acknowledge, output from the Bus Master

9. VECTOR* Output of interrupting device if it has an
interrupt vector to put on BDO-BD7.

There is no IRO* signal; level 0 is the quiescent (non
interrupting) state. For 6aOOO-based Bus Masters, logic is
needed to encode these interrupt signals into the 3 processor
inputs, IPLO, IPLl and IPL2. For exa.mple, Series 200 Bus
Masters use an 74LS148 8-to-3 priority encoder to encode INTi -
INT7 to generate IPLO, IPLl and IPL2.

The following interrupt levels· are the only I/O interrupt levels
which have been 'hardwired'; all plug-in I/O cards have a 2-bit
switch to select levels 3-6.

98620A DMA Controller - Level 3
98620B DMA Controller - Programmable from 3-7
Internal HP-IB (9816/26/36) - Level 3
Intern~l RS-232 (9816) - Level 4

Even though IR1, IR2 and IR7 are not currently used for external
I/O, the signals have been put on the backplane for
expandability and compatibility with future products. Any cards
which use these interrupt levels should be designed to respond
to the Internal I/O memory space since the operating system
protocol for these levels is designed around a known set of
internal peripherals and is different than the protocol for the
external I/O memory space.

Levelland 7 interrupts are driven by open collector gates in
the 9826/36. However, Level 2, used by the 09826-66561 and
09826-66562 floppy controller boards, is driven by a standard
LS-TTL gate and -!~hus cannot be used by other devices.

42

CHAPTER 7: INTERRUPT OPERATION

7.2 EXTERNAL VECTORED INTERRUPT ACKNOWLEDGE CYCLE

If the priority of the pending interrupt is greater than the
current processor priority, the following interrupt sequence
begins in which the Bus Master attempts to read an 8-bit
interrupt vector from the interrupting I/O card. This operation
is the same as a normal read, except lACK serves in lieu of BAS;
BAS remains false. Interrupt timing is shown in Figure 5-1.

1. Prior to the beginning of the cycle, the
address bits (BA1- BA3) are set equal to
level being acknowledged. Likewise, the
Code bits FCO, FC1 and FC2 are set to 1.
decodes the Function Code bits and gates
Strobe to generate IACK*.

lowest three
the interrupt
68000 Function

The Bus Master
with Address

2. When FCO, FC1 and FC2 are 1, the bus driver for BLDS*, ENDT*,
BUDS * , BR/W*, BAS * , BFCO, BFC1 and BFC2 is disabled on
these CPU boards: 09826-66514, -66515, -66516 and the
09816-66511. These signals should be considered
undefined.

3. In response to lACK, each interrupting card detects: (1) if
it is interrupting and (2) if its interrupt level is being
acknowledged (by looking at BAl-BA3). If so, the card
asserts the VECTOR signal within 100 nsec after lACK occurs
to indicate to the processor that it has an 8-bit interrupt
vector to put on the lower byte of the data bus. If the
interrupting card does not respond within 100 ns, Bus
Master circuitry will initiate an Autovector interrupt
response, as discussed in the next section.

4. If the VECTOR is asserted within 100 ns, reading of the
8-bit vector occurs. Because the data strobes are
disabled, the interrupting card provides its vector in
response to lACK, as described:

A. After detecting lACK, the interrupting card drives its
vector on BDO-BD7. Data is setup a minimum of 15 ns
prior to assertion of DTACK (as measured at the
receiver) .

B. The CPU detects that DTACK has occurred, accepts the
vector and ends the interrupt acknowledge by setting
lACK false.

C. The interrupting card then releases the VECTOR signal
within 50 nsec after IACK goes false and releases the
drive on the data bus within 100 nsec after lACK is
false.

43

CHAPTER 7: INTERRUPT OPERATION

FIGURE 7-1: EXTERNAL VECTORED INTERRUPT ACKNOWLEDGE CYCLE

~AI.2.3

INTERRUPT ACKNOWLEDGE CYCLE TIMING MIN MAX

1 IACK* low 4500
2 IACK* low to DTACK* low w/o bus error 3000
3 Address setup before IACK* low 15
4 IACK* low to IMA* low 0 70
5 IACK* low to VECTOR* low 0 100
6 Data setup before DTACK* low 15
7 Data hold after IACK* high 0 100
8 Address hold after IACK* high 15
9 IACK* high to IMA* high 0 50

10 IACK* high to VECTOR* high 0 50
11 IACK* high to DTACK* high 0 50

44

CHAPTER 7: INTERRUPT OPERATION

External Vectoring has not been implemented on any I/O card to
date (4-84) and thus its operation has not been tested. If
External Vectoring is implemented, extensive qualification will
be required to verify that it works with the different
mainframes and processor boards. Also, designers should be aware
that only one vectoring card per interrupt level is allowed
unless a hardware arbitration scheme is included. Multiple
autovectoring I/O cards may reside on the same level as a
single vectoring card since the vectoring card will override
autovectoring cards.

Refer to the Chapter OPERATION IN THE 9888A BUS EXPANDER for problems
relative to vectored interrupt operation in the Bus Expander.

7.3 AUTOVECTORED INTERRUPT CYCLE

If an interrupting card does not generate VECTOR, the Bus Master
automatically generates its own vector as follows:

1. Steps 1-3 outlined above occur (the Bus Master does not
'know' yet that it is an Autovector cycle).

2. With Autovectoring, the interrupting card does not assert
VECTOR in response to lACK, nor does it provide the vector
itself. Logic on the Processor Board detects that VECTOR*
remains high and, within 100 ns of lACK, asserts VPA (Valid
Peripheral Address), an input to the 68000.

3. The processor recognizes that, if VPA is asserted during
the interrupt acknowledge cycle, it is an Autovector
cycle. The processor uses an internally generated vector
that is a function of the interrupt level being serviced.
The 7 interrupt vectors, corresponding to interrupt levels
1-7, are 25 through 31 decimal. These are used to access
4-byte addresses from 100 - 124 which vector operation to
RAM. Refe~ to the 68000 Data Sheet for more information.

4. If more than one I/O card is on the same interrupt
level, then it is not possible to tell which card is
interrupting. Thus, a machine level service poll routine
must be used to determine which card to service. The two
most significant bits of the status register contain
interrupt information. The most significant bit indicates
if the card is enabled to interrupt. The next most
significant bit indicates if the card is in an interrupt
state.

45

BUS ARBITRATION CHAPTER 8

The DIO BUS design permits other Bus Masters to acquire the DIO
BUS and perform memory read/write operations. To support
multiple Bus Masters (up to 4 in addition to the Master
Controller), a bus arbitration scheme is used.

NOTE: DESIGNERS CONSIDERING DESIGNING BUS MASTER I/O CARDS
MUST CONTACT FSD TO DETERMINE THE SYSTEM IMPLICATIONS
OF SUCH PLANS. FOR EXAMPLE, FUTURE MAINFRAMES MAY
SEPARATE THE SYSTEM BUS AND THE I/O BUS SUCH THAT
THE SYSTEM BUS IS NOT CONTROLLABLE FROM THE I/O BUS.

8.1 BUS ARBITRATION SIGNALS

The signals used to arbitrate control of the bus are:

1. BR*

2. BG*

3. BG1*

4. BG2*

5. BG3*

Bus Request, asserted by the device(s} requesting
control of the bus, is wire-ORed among all Bus Masters.

Bus Grant, Master Controller output, goes to Bus
Grant input of Bus Master A.

Bus Grant 1, Bus Grant output from Bus Master A,
connected to Bus Grant input of Bus Master B.

Bus Grant 2, Bus Grant output from Bus Master B,
connected to Bus Grant input of Bus Master C.

Bus Grant 3, Bus Grant output from Bus Master C,
connected to Bus Grant input of Bus Master D.
Note that Bus Master D's Bus Grant output is not
connected to another device.

6. BGACK* Bus Grant Acknowledge, a tri-state signal generated
by the the Bus Master accepting the bus to verify
that the bus is now controlled by the new bus master.

46

CHAPTER 8: BUS ARBITRATION

8.2 BUS ARBITRATION OVERVIEW

The bus arbitration scheme permits other Bus Masters to request
and receive control of the DIO BUS. Certain bus grant signals
are daisy chained from the Master Controller to each Bus
Master. While it may appear that the daisy chain supports a
priority scheme, in actuality it does not. It is basically
first-come-first-serve. The current Bus Master (but not the
Master Controller) can keep the bus indefinitely regardless of
other devices which want the bus. Current Master Controllers,
however, give up the bus immediately whenever any other Bus
Master requests it.

Arbitration is handled via the Bus Grant signals (BG, BG1, BG2
and BG3) which are daisy-chained from the Master Controller
to Bus Masters A, B, C and D (see Figure 8-1 on the next page).
Connections to the desired Bus Grant signals are made by jumpers
on each Bus Master; alternatively, switches could be used.
Thus, the daisy chain is NOT hardwired on the backplane itself
but requires the user to configure it.

The Master Controller's BG* signal controls arbitration. When
this signal is high (false), the BGIN* signal of all Bus Masters is
high. Each Bus Master uses this high signal to enable a latch which
samples the on-board 'My Request' signal. When BG* goes low (in
response to BR from a Bus Master seeking control of the bus),
the first Bus Master in the daisy chain that has latched a valid
My Request signal will maintain a high BGOUT* output to inhibit
'downstream' Bus Masters from assuming control. When BGACK is false
(it may have been true if another Bus Master had control of the
bus), then that Bus Master which is asserting a high BGOUT* will
assume control of the bus as indicated by BGACK true.

The Bus Master that assumes control asserts BGACK to inform the
Master Controller that it has the bus. In response to BGACK,
the Master Contvoller sets BG false, which re-initiates sampling
by each Bus Master of the on-board My Request signal in
preparation for the next arbitration. If BR is true, the
Master Controller re-asserts BG to re-arbitrate while the
current Bus Master has control. The Master Controller will
assume control of the bus when BGACK goes false if BR is also
false.

47

CHAPTER 8: BUS ARBITRATION

FIGURE 8-1: CONFIGURATION OF BUS ARBITRATION SIGNALS

MASTER CONTROLLER

BGACK* BR* BG*

BG*
I ---~I

1
1 I

I
V BG1* BG2* BG3*

1 1
1 I I

1 1
I 1 I

1 0--<--1 BR* (A) BGIN*I--<---o I
I 1 1 I 1 I
0--------<--1 BGACK* BGOUT*I-->--------o
1 1 1 ------------1 I 1
I I 1 1
I I 1 1
I I 1 1
I I I I 1 1
1 0--<--1 BR* (B) BGIN*I---<-------o
1 1 1 1 1 1
0--------<--1 BGACK* BGOUT*I--->------------o
I I I
1 1

- ______ 1 I 1 I
I I 1

1 1 I 1 I
1 1
1 I I

1 1 1
I 1 1 1

1 0--<--1 BR* (C) BGIN*I---<------------o
I I 1 1 1 1 1
0--------<--1 BGACK* BGOUT*I--->-----------------o
I 1 1
I 1

------------1 I 1 1 1
I 1 I 1

1 1 I I I 1
1 1 1 I I 1
1 1 1 I 1 1 I 1
I 0--<--1 BR* (D) BGIN*I---<-----------------o
1 1 - I I I I I I
0--------<--1 BGACK* BGOUT*I I I I I
I I 1 ---------------_1 I I I I

NOTE: The BR* output is open-collector. The BGACK*
output is tri-state.

48

CHAPTER 8: BUS ARBITRATION

8.3 BUS ARBITRATION SEQUENCE

The bus arbitration sequence is discussed below:

1. A Bus Master desiring the bus assert BR to the Master
Controller. The Master Controller eventually responds with
BG (response time is 0 ns to infinity).

2. The assertion of BG by the Master Controller begins the
arbitration among the Bus Masters. If BG reaches a device
that is not requesting the bus, it is simply passed along
(from BGIN to BGOUT). When BG reaches a device that is
requesting the bus, the signal is blocked from going
further.

3. The device that 'blocks' BG then awaits the bUs's
availability as indicated by BAS, DTACK and BGACK going
false while BG remains true (again, the response time can
be infinity). When these conditions are met, the new Bus
Master must then wait a minimum of 100 ns to allow the old
Bus Master to tri-state its signals before asserting BGACK.

NOTE: Current processor boards do not wait 100 ns
before enabling their drivers after regaining
control of the bus. Therefore, there will be
bus contention while the former Bus Master
tri-states its drivers.

4. After asserting BGACK, the device then releases BR within
100 ns. BR must be removed within 100 ns after assertion
of BGACK so that the Master Controller does not decide
that another Bus Master is also requesting the bus.

5. When BGACK is asserted, the Master Controller negates BG
which ripples through the arbitration daisy-chain and
prepares the arbitration logic for the next arbitration.

6. When the current Bus Master is finished, it drives BAS,
DTACK and BGACK false prior to tri-stating the bus
drivers. T.he Bus Master must tri-state its drivers within
100 ns of negating BGACK so the next Bus Master can take
over the bus. However, certain CPU boards, when regaining
control of the bus, drive the address bus immediately
upon negation of BGACK. Therefore, the device relinquishing
the bus should tri-state its address bus simultaneously
with negating BGACK.

Shown on the next two pages is the bus handoff timing and an
example of a bus handoff involving multiple Bus Masters.

49

CHAPI'ER 8: BUS ARBITRATION

FIGURE 8-2: BUS ARBITRATION TIMING

BR

B&A'~ __________________ ~

- --e~ J l)T~ (It:.

., 't

O+~e~ J~" t'e..
V~/"'~ b~~ I

~ i-t-,' 3+41\ -+ ~
Re'\JP~ti~.! d ClltC. \I" ~

___ 1)_,,_; \I_~_"' ____ --s}~------I(Dr .'V,,,,,

BUS ARBITRATION TIMING MIN

1 BR* low to BG* low 0
2 BG* low to BGACK*, BAS* and DTACK* high 0

(bus available)
3 Bus available to BGACK* low 100
4 BGACK*'low to bus signals driven 0
5 BGACK* low to BG* high 190
6 BGACK* low to BR* high 0
7 BGACK* high to bus signals tri-state 0

except for address bus
8 BGACK* high to address bus tri-state
9 BG* high (arbitration reset time) 187

50

MAX

I
infintyl
infintyl

I
I
I

465 I
100 I
100 I

I
0 I

I
I

CHAPTER 8: BUS ARBITRATION

FIGURE 8-3: EXAMPLE OF BUS HANDOFF

hA.sT"e-.I"ft. .8

r A'.:'~4ArL'.~ .8.(' 4'~r

: /"lAS" r ... ~ .P H"~~.s ,

O.r".7" ""IJlrr

f "1-f4'/.l-i'",r,,,...,

;¥"'Jr,,, 4/1

~.t'~ 1'*fS"L" 4"

~""t.I """'T.I r ~1'''~Ar,_ ~4 ... "tI

\,---
""'Ar~l-e C

..... A y"".,r &"",,<4/"

~ A.s.rl~"".r

"'W~N~.J F-r'££

""'Arr<tf'~ ~ ",J.r''''"
-'''~N IUJ "~II

/ I ~ ________________________________ J I
I •

/yAS~4:~

f .A'1'~4'AS41 ~S'
'.--+---

I .. .HA.Sr4"" 4 ~.r~r,..rl'" ,UJ

I I ~
AP~J ~. ________________ ~~~ __________ ~X~ ____________ ~)~~ _____________________)---:

Jr~p"S~~ ____________ ~~~ _________ ~r-\~ ______ ~~ ~
I I I

---........ ! -----/VA.Yrc~..!J dN' 4~..r ----.... ~~.~---- /'?A~IC P 1M' Ic;'S ~

51

DMA OPERATION C~~R 9

The DIO BUS supports 2 DMA channels. A DMA Controller (the
98620A card in Series 200 computers) monitors DMA requests from
I/O cards, requests control of the bus and orchestrates DMA data
transfers. DMA data rates exceeding 2 Mbytes/sec are possible
in Word Mode. This chapter gives an overview of DMA operation
and discusses DMA input and output operation.

9.1 DMA SIGNALS

The signals
addition to
signals are

1. DMARO*
DMAR1*

2. DMACKO*
DMACK1*

3. DMARDY*

4. DONE *

5. FOLD*

unique to DMA operation are listed below. In
these signals, the normal Master-Slave data transfer
used.

DMA REQUEST, asserted by an I/O card to request
a DMA transfer on DMA Channel 0 or DMA Channell.

DMA ACKNOWLEDGE, response from the DMA Controller,
acknowledges DMA request on Channel 0 or Channell.

DMA READY, indicates that the I/O card has provided
the data (DMA input) or accepted the data (output).

DONE, an output from the DMA Controller to 'tag'
the last DMA transfer. DONE can be used at the
option of the I/O card designer to determine
when DMA is done, e.g. to assert EOI on the last
byte in an HP-IB transfer.

FOLD, an output from the DMA Controller to
indicate that the data byte needs to be folded
from the upper byte of the data bus (from memory)
to the lower byte (to an I/O card) or from the
lower byte (from an I/O card) to the upper byte
(to memory).

In the discussions that follow, DMARO and DMACKO are used;
however, all operations apply equally to DMACKl and DMAR1.

52

CHAPTER 9: DMA OPERATION

9.2 DMA OVERVIEW

Two enable a DMA transfer, the operating system performs two
operations:

1. Programs the DMA Controller with the type of transfer
(word/byte, input/output, priority, etc.).

2. Enables DMA channel 0 or DMA channell on the I/O card by
writing to its Control Register 3. When the I/O card is
ready to transfer data, it will request a DMA operation on
the assigned channel using DMARO or DMAR1. In response to
this request, the DMA Controller requests and eventually
receives control of the bus from the Bus Master and then
executes the DMA transfer.

A DMA transfer takes a single bus cycle during which data
is both read and stored. The reference to 'a single bus
cycle' means that all operations happen during a single BAS*
high-Iow-high cycle. For a DMA output cycle, the data is fetched
from memory and written to the I/O card. For a DMA input cycle,
the data is read from the I/O card and stored in memory. The
I/O card itself is programmed to request the DMA transfer; upon
seeing this DMA request, the DMA Controller requests and
receives control of the bus and provides the necessary address
and control signals to perform the transfer.

During a DMA operation, the memory device does a normal data
transfer using BAS, BR/W, BLDS/BUDS, DTACK, etc. Therefore, the
I/O card must use different signals to handshake data. As
discussed above, the I/O card asserts DMARO to request a DMA
transfer. Once the DMA Controller has control of the bus, it
asserts BAS (which initiates the RAM access) and DMACKO (which
initiates the I/O card operation). When the I/O card has
provided or accepted the data, it responds with DMARDY which is
analagous to DTACK during a normal transfer.

Both Byte and Word DMA transfers are supported. In Word Mode,
data is transferred a word at a time between memory and the I/O
device. However, most I/O cards are byte oriented and do not
even connect to the upper byte of the data bus; Byte mode
supports these I/O cards. In Byte Mode, I/O data is transferred
on the low byte of the data bus to/from both the upper and lower
bytes of memory. The DMA Controller supports this via a 'Fold
Buffer' which is used to transfer data between the upper byte of
memory and the lower byte of the data bus for I/O cards. During
a DMA input operation, the Fold Buffer is alternately used to
transfer I/O data to the upper byte of memory (BDB-BD15).

53

CHAPTER 9: DMA OPERATION

Likewise, during a DMA output operation, the Fold Buffer is used
to transfer memory data on BD8-BD15 to the lower data byte for
the I/O card. The DMA Controller provides the FOLD signal
indicating when folding is to occur; this is used primarily by
the Bus Expander.

Note that, depending on programming of the DMA Controller, the
speed of the I/O card and the speed of the peripheral, the DMA
Controller may give up control of the bus between DMA cycles.
Relinquishing of bus control depends upon 2 factors: (1) The
time for the I/O card to request another DMA transfer and (2)
the channel priority programmed into the DMA Controller. This
is discussed in more detail below.

NOTES: 1. While an I/O card is enabled for a DMA transfer, it must
still respond to normal bus cycles between DMA cycles
so its Control and Status Registers can be read.

2. The g8620A DMA Cont.roller does not generate ENDT.

3. In Series 200 machines, it is not possible to DMA from
alpha or graphics memory.

9.3 98620 DMA CONTROLLER

Because th~ 98620 DMA Controller is used, to implement DMA in
Series 200 products, an overview of its performance is given
below. Designers implementing DMA on an I/O card should
obtain additional documentation on this device. The key
features of the 98620 DMA Controller are:

1. Provides 2 independent DMA channels with programmable
priorities.

2. Capable of 1.2 Mtransfers/sec, providing 1.2 Mbytes/sec
in byte mode or 2.4 Mbytes/sec in word mode.

3. Supports I/O-memory and memory-I/O transfers, but not
memory-memory transfers.

4. Provides a full 16 Mbyte address range on both channels and a
maximum transfer length of 64k transfers, i.e. 64k bytes (in
byte mode) or 128k bytes (in word mode).

54

CHAPTER 9: DMA OPERATION

5. Memory mapped to asynchronous internal I/O address space
500000 (Channel 0) and 500008 (Channell).

6. 'Hardwired' to be Bus Master A (see the Chapter BUS
ARBITRATION).

7. Available as a 98620A (interrupt hardwired to level 3) or
a 98620B (interrupt programmable from 3-7 for UNIX systems).

9.4 DMA OUTPUT CYCLE

Figure 9-1 shows the DMA Output cycle. To do a DMA output, a
memory read is followed by an I/O write. Again, DMA Channel 0
is assumed; all operations apply equally to DMA Channell.

1. The I/O card asserts DMARO, indicating that it is ready to
begin a DMA output operation.

2. The DMA Controller detects this request and, if not the
current Bus Master, it requests, and is eventually
granted, the system bus.

3. The DMA Controller then initiates what looks like a normal
memory read cycle:

A. Memory address is put on the bus and BR/W* line is set
to read (high).

B. BAS and BDS are asserted for the memory device and DMA
Acknowledge (DMACKO) is asserted to indicate to the I/O
card that a DMA cycle has started. The I/O card
responds to DMACKO as it does to BAS during a normal
transfer. If the DMA transfer is a word transfer, BLDS
and BUDS are strobed simultaneously. If a byte
transfer, BLDS or BUDS is strobed (depending on the byte
being read). If the upper byte is being read, the Fold
Buffer is used to transfer data from the upper byte to
the lower byte of the data bus for the I/O card.

4. When the I/O card detects DMACKO, it can optionally release
DMARO. This is discussed in more detail below.

55

.CHAPTER 9: DMA OPERATION

5. The memory device fetches the data, places it on the bus
with 55 ns of setup time and asserts DTACK. The I/O card
detects DTACK and, reacting to it like it normally reacts
to BDS, begins its own sequence to accept the data. If in
burst mode and DMARO was set false after DMACKO, the I/O
card must re-assert DMARO to request the next cycle. In
either case, the I/O card asserts DMARDY when it has
accepted the data.

6. The DMA Controller detects that DMARDY has occurred and,
responding to it like Bus Masters normally respond to
DTACK, ends the cycle by removing BAS, BLDS/BUDS and
DMACKO. Once the I/O card detects that DMACKO is gone, it
removes DMARDY.

7. On the last transfer, the DMA Controller generates the DONE
signal to tell the I/O card that 'this is the last byte'.
An I/O card can, at its option, use this bit to inhibit
further DMA Requests. Once the transfer count is
satisfied, the DMA controller ignores further DMA Requests
and relinquishes the bus.

The DONE signal works as follows: DONE is asserted by the
DMA Controller on the last DMA transfer with the same
timing as DMACKO. For an input operation, DONE can
be used by the I/O card to inhibit further acceptance or
handshaking of data from the peripheral. Without the DONE
signa~, the I/O card, not realizing that the transfer is
complete, could accept the next byte from the peripheral.
This can result in data being lost (unless the transfer
count is set to the actual size minus 1).

For an output operation, the DONE signal is not typically
needed since the DMA Controller simply ignores DMARO from
the I/O card when the transfer count is satisfied. If
desired, the DONE signal can be used by the I/O card to
inhibit an extra DMA Request. Also, the I/O card can use
DONE to tag the last byte with an indicator (e.g. EOI on
the 98625 card).

Note that DONE floats when the DMA Controller does
not have control of the bus. Designers should use
appropriate techniques (e.g. qualify DONE with another
signal) to ensure that its undefined state does not cause
problems.

1
2a
2b
3
4
5
6
7
8
9

10
11

CHAPTER 9: DMA OPERATION

FIGURE 9-1: DMA OUTPUT CYCLE

o.do.ir"hDI'I ~,\UI rtJ ,.e DIIiIA Co I'IG~ \dv~ MI'.H.+-Cr
501.10(,1: DE.S tlfI'-(1aN

SA' - 21 __ -t-''---+--\--_ _'__--'--'--=+-+-_________ _+_''

B~J. __ __

6"T.Ui ..
(rIo t. ~ "6U)

!
D""A~OV !

('!:fO c.--.l 'IT It(. I< :> \ ~-----i(?)

F 0&-O by+-c ... ".1 .. , II!tQtlAcK'I aJJ"u e\l~")

DMA OVTPUT TIMING MIN

DMAR* release after DMACK* 0
DMAR* low after DTACK* low, Priority = 0
DMAR* low after DTACK*, Priority = 1
BR/W* setup before DMACK* low 15
BR/W* hold after DMACK* high 15
Data setup before DTACK* low 55
BAS* low to DTACK* low 0
DMACK* low to DMARDY* low w/o bus error
Data hold after DMARDY* low 85
DMARDY* release after DMACK* high 0
DMACK* low to FOLD*, DONE* low -15
DMACK* high to FOLD*, DONE* high -15

57

rIo DMAC.

O/lllAC

To/O

MAX

65
1600

1500
3000

50
53
53

rio

I/D.
DM A c.

I)/MA(..

~f{rg E .. ~ l"

NOTES

1
2,3
2,3

4

CHAPTER 9: DMA OPERATION

NOTES: 1. The I/O card may keep DMAR* low after its request
is acknowledged if it intends to do multiple DMA
cycles.

2. To request another DMA cycle, the I/O card must assert
assert DMAR* within the specified time after the memory
device's DTACK*.

3. After satisfying Specification 2, the 98625A Disc
Interface card can set DMAR* high. Thus, during the
next cycle, DMAR* may still be high when DMACK* goes low.

4. Memory must provide a minimum of 55 ns data setup time
prior to DTACK in order to provide 15 ns of data setup
time for the I/O card (due to 40 ns delay through the Fold
Buffer).

9.5 DMA INPUT CYCLE

Figure 9-2 shows the DMA Input cycle. To do a DMA input, an I/O
read is followed by a memory write. Again, DMA Channel ° is
assumed; all operations apply equally to DMA Channell.

1. The I/O card asserts DMARO, indicating that it is ready to
begin a DMA input operation.

2. The DMA Controller detects this request and, if not the
current Bus Master, it requests, and is eventually
granted, the system bus.

3. The DMA Controller then initiates what looks like a normal
memory write cycle:

A. Memory address is put on the bus and BR/W* line is set to
write (low). Notice that BR/W* is set low prior to BAS
contrary to a normal write cycle in which BR/W* may go low
after BAS. Since the DMA Controller knows that a memory
write operation is to occur, it can assert BR/W
immediately.

B. BAS is asserted for the memory device and DMACKO is
asserted to indicate to the I/O card that a DMA cycle has
started.

CHAPTER 9: DMA OPERATION

4. The I/O card responds to DMACKO the same as it does to BAS
during a non-DMA transfer in that it enables the data
transfer. When the I/O card detects DMACKO, it can
optionally release DMARO; this is discussed in more detail
below. In response to DMACKO, the I/O card fetches the
data, places it on the bus and asserts DMARDY with a
minimum data setup time of 15 ns. Because this setup time
is measured at the RECIEVER end of the bus, the setup time
(for data and DMARDY) at the inputs to the DRIVERS on the
I/O card must be 30 ns. DMARDY indicates to the DMA
Controller that the bus data is valid.

5. IF the DMA transfer is a byte transfer and the data is to
be written to the upper byte of memory, the DMA Controller
uses its Fold Buffer to move the byte from the lower data
byte to the upper data byte. In either case, the DMA
Controller detects that DMARDY has occurred and asserts the
BLDS and/or BUDS to indicate to memory that data is valid
on the bus.

6. The memory then stores the data and asserts DTACK to
indicate that data has been accepted. The DMA Controller
detects that DTACK has occurred and ends the cycle by
removing BAS, BLDS/BUDS and DMACKO. In response to the
removal of BAS, the memory card removes DTACK; likewise,
in response to the removal of DMACKO, the I/O card removes
DMARDY.

7. On the last transfer, the DMA Controller generates the DONE
signal to tell the I/O card that 'this is the last
byte'. An I/O card can, at its option, use this bit to
inhibit further DMA Requests. Once the transfer count is
satisfied, the DMA controller ignores further DMA Requests
and relinquishes the bus.

8. A bus error also causes the DMA Controller to terminate the
DMA transfer and relinquish the bus. A bus error occurs if
a DMARDY does not occur within 2.5 usec of DMACKO going
true.

59

I I
I 1 I
I 2a I
I I
I 2b I
I 3 I
I 4 I
I 5 I
I 6 I
I 7 1
I 8 I
I 9 I
I 10 I
I 11 I

CHAPTER 9: DMA OPERATION

FIGURE 9-2: DMA INPUT CYCLE

OTJ\C~

:)""'4,(OY

C -XI_ "D"TA c. K')

DMA INPUT CYCLE TIMING

DMAR* release after DMACK*
DMAR* low after DTACK* low for burst mode,

Priority = 0
DMAR* 'low after DTACK*, Priority = 1
BR/W~ low before DMACK* low
BR/W* high after DMACK* high
DMACK* low to DMARDY* low w/o bus error
BAS* low to DTACK* low w/o bus error
Data, setup before DMARDY* low
Data hold after DMACK* high
DMARDY* release after DMACK* high
DMACK* low to FOLD*, DONE* low
DMACK* high to FOLD*, DONE* high

~ DESTWftrtoN

rIo DMAC.

D~"C ME'MoA':"

DMt1< r::/o

D.t1A-C ,...,EMIf? Y

I 1 ___ _

60

CHAPTER 9: DMA OPERATION

9.6 DMA SPEED CONSIDERATIONS

To optimize the speed of DMA transfers, the transfer (data
read, data write) must be completed during a single bus cycle.
Also, the overhead time of the DMA Controller must be minimal
and the device connected to the I/O card must be able to provide
or accept the data immediately. The time for the existing DMA
Controller (98620A) to synchronize the handshake signals is
similar to the response of the 68000 and adds minimal overhead.

To meet the desired performance, the DMA Controller must also
minimize overhead time between bus cycles. The DMA Controller
is designed to hold the bus continuously providing that the I/O
card can generate another DMA Request (DMARO) within a certain
length of time after DTACK. This time is either 65 ns (DMA
Priority bit = 0) or 1.6 usec (Priority bit = 1). See
specification 2 in Figures 9-1 and 9-2. Burst mode requires a
65 ns response; if the I/O card does not assert DMAR within 65
ns, the DMA Controller relinquishes the bus at the end of the
cycle to the next highest priority bus master (typically the
Master Controller).

Because designing an I/O card to respond to DTACK with DMARO
within 65 ns adds complexity to the I/O card, the DMA Controller
can be programmed for the 1.6 usec DTACK-DMARO response time in
the hope that the I/O card will generate another DMA Request.
As mentioned above, selection of this time is done with the
Priority bit; this works as follows:

1. In Burst Mode, the Priority bit is 0 and the I/O card must
assert DMARO within 65 ns of DTACK. This ensures that the
DMA Controller keeps control of the bus and provides 1.2
Mbytes/sec.

2. If the Priority signal for the channel is 1, then the bus
is not rel~quished until 1.6 usec after the last transfer
is complete.

61

CHAPTER 9: DMA OPERATION

9.7 TERMINATING DMA TRANSFERS

DMA transfers can be terminated in several ways:

1. The DMA Controller can be programmed to interrupt the
Master Controller after the transfer is complete and the
bus relinquished.

2. The Bus Master can monitor the ARM bit in the DMA
Controller between DMA cycles (assuming that the bus
is released between DMA cycles). When the ARM bit is
o after completion of the DMA transfer, the Bus Master
can react accordingly.

3. The I/O card can use the DONE signal from the DMA
Controller to interrupt the Bus Master. The 98625A Disc
Interface card uses this technique.

62

DIO BUS UTILITIES CHAPTER 10

This chapter identifies and defines the signal lines which serve
utility-type functions on the DIO bus. These utility lines
supply initialization and diagnostic capability for the bus and
consist of the following signals:

1. BUS DRIVE DISABLE (BDRV*)
2. RESET*
3. HALT*
4. FUNCTION CODES (BFCO, BFC1, BFC2)

10.1 BUS DRIVE DISABLE

The 09826-66516, 09826-66517 and the 09816-66511 Processor boards
respond to the BDRV* signal (this signal is called BMON* in the
9816). The 98206A Test Stimulus Board generates BDRV to disable
the CPU board boot ROM from responding and to enable the test
code on the Test Stimulus board to respond. This permits testing
of the computer without depending on a working boot ROM.

Because BDRV* is primarily a diagnostic/development tool and is
not used by I/O cards, detailed information is not provided
here. For more information on the functions of BDRV* (BMON*),
refer to the appropriate processor board documentation and the
98206A documentation.

10.2 RESET OPERATION

In the 9826 and 9836, RESET and HALT are asserted by the power
supply at power-on and remain true until 120 msec after +5V
reaches 4.5 volts. When RESET goes false, the 12V supply will
have been within its 11.5V limit for at least 55 msec. At
power-down, RESET is re-asserted within 15 msec after 5V drops
to approximately 4 volts. Note that RESET comes too late to
properly r~set devices at power-down; RESET would ideally be
asserted before 5V reaches its TTL limit (4.75). Refer to the
SERIES 200 SYSTEM SPECIFICATION for more information on power-on
RESET.

CHAPTER 10: DIO BUS UTILITIES

In Series 200 mainframes, activating RESET on the DIO BUS does
not reset the Processor board unless HALT is simultaneously
asserted; thus, RESET by itself only resets other bus devices.
When RESET and HALT are both asserted, the Processor board is
reset to its power-on state. In response to RESET and HALT,
certain Processor boards refloat their RAM in preparation for
auto locate while others keep the address fixed; refer to
individual Processor board documentation.

In addition to responding to an external RESET, 68000-based
Processor boards can use the RESET instruction to strobe
RESET* low on the DIO BUS.

Thus, in specifying RESET* timing, there are 3 areas that need
to be covered:

1. The duration of RESET* at power-on to properly reset the
Processor -- In new designs, RESET* and HALT* should be
low at power-on and remain low until all supplies have
stabilized within their operating limits for at least 150
ms. At power-down, RESET* should go low before any supply
exceeds its operating limits.

2. The duration of RESET* (and HALT*) after power-on to reset
the Processor -- RESET* (and HALT*) should be 50 usec. minimum.

3. The width of the RESET* output pulse generated by the
Proce~sor in executing the RESET instruction -- The
minimum RESET* pulse width is 8 usec.

10.3 HALT OPERATION

HALT is asserted on the DIO BUS at power-up in Series 200
mainframes with the same timing as RESET. In addition, HALT can
be asserted by an DIO BUS device to halt the CPU. HALT cannot
be asserted on the DIO BUS by existing Processor boards because
their is no output driver from the CPU to the HALT pin; there
is, however, a receiving buffer which permits a DIO BUS device
to halt the processor in Series 200 mainframes.

Processor boards containing 68000 CPU's support re-run if BERR*
and HALT* are asserted per the CPU re-run timing requirements.
However, re-run has never been tested in Series 200 mainframes
so it is not known whether it functions correctly.

64

CHAPTER 10: DIO BUS UTILITIES

10.4 FUNCTION CODE SIGNALS

The Function Codes (FCO, FCl and FC2) generated by the 68000 are
buffered (BFCO, BFCl and BFC2) and brought out on the bus for
general purpose use and for future expandability. As would be
expected, the Function Code buffer is disabled when bus control
is passed; however, this buffer is also disabled (on certain
Processor boards) during an interrupt acknowledge cycle to
inhibit certain control signals which happen to share the same
buffer. Therefore, when FCO = FC1 = FC2 = 1 (interrupt
acknowledge), the buffered Function Codes on the bus will float
(no pullups) and are undefined. Therefore, to use Function
Codes, these guidelines should be followed:

1. When BAS occurs, the Buffered Function Codes on the DIO BUS
are valid. BAS* is one of the control signals disabled
during an interrupt acknowledge cycle; however, since BAS*
is pulled up by a pullup resistor, it does not float (in
contrast to BFCO-2, which do float).

2. During an interrupt acknowledge cycle, BFCO, BFC1
and BFC2 on the bus are undefined and cannot be used.

ELECTRICAL SPECIFICATIONS CHAPTER 11

This chapter defines the non-timing electrical specifications
for the DIO BUS. Included in this chapter are the power supply
tolerances, the I/O card power dissipation specifications and
the signal loading. Pinouts of the 010 BUS are discussed in
the Chapter MECHANICAL SPECIFICATIONS.

Note that all slots in the I/O backplane are identical in the
9826, 9836A/C, 9816, 9888 and the 9920; there is no ordering or
prioritizing of address, interrupt capability, etc. by location
in the backplane. Future products, however, may have
slot-dependent features.

11.1 POWER DISTRIBUTION AND GROUNDING

Power on the DIO BUS is distributed on the backplane as
regulated DC supplies. The supplies are:

+5 Vdc -- Main logic supply

+12 Vdc -- Provided for I/O circuitry requiring multiple
voltages. Can also be used for analog
applications. NOTE: This supply is used for the
floppy drive motor in 9826A's; designers should be
aware of potential noise on the line.

-12 Vdc -- Provided for I/O circuitry requiring multiple
voltages, can also be used for analog applications.

The DIO BUS (see the next Chapter) provides 14 logic ground lines
(GND). In addition, 2 lines are used for DGND (dirty ground) to
be used for future cards which generate excessive ground noise
(e.g. a card with relays). The DGND lines run separately from
the I/O backplane thru the motherboard to the power supply.
Because they are not presently used by I/O cards, they may be
redefined to be 'clean ground', i.e. for use by analog I/O
cards; this will be discussed further by the DIO BUS committee.

66

CHAPTER 11: ELECTRICAL SPECIFICATIONS

11.2 POWER SUPPLY TOLERANCES

The supply performance specs shown below allow for the affects
of line regulat':,':'n, load regulation, cross regulation, initial
accuracy, tempel'~.t .. ',lre stability and ripple. The tolerances
represent the worst-case tolerances for existing and planned DIO
BUS devices.

SUPPLY

+5

+12

-12

TOLERANCE

+5/-4.3%

+6/-4%

+10/-4%

RANGE

4.78, 5.25

12.7, 11.5

-13.2, -11.5

11.3 I/O CARD POWER AND CURRENT REQUIREMENTS

The current specification for each slot in the I/O cardcage is
given below. Note that I/O cards that are 'double high' can
consume twice this amount of power since they occupy two slots
in the card cage.

TYPICAL POWER & CURRENT MAXIMUM POWER & CURRENT

I
TYP. TYPICAL AVERAGE MAX. I MAXIMUM AVERAGE
PWER/ DC AMPS PWER/ I DC AMPS
BD BD I

I I
(WATTS) +5 +12 -12 (WATrS) I +5 I +12 -12

I I
1 1

Standard 4.4 .8 .096 .064 5·3 I .96 1 .120 .080
1 1
I 1

High Pwr 7.6 1.4 .166 .110 9.2 11.68 I .207 .138
I I
I I

67

CHAPTER 11: ELECTRICAL SPECIFICATIONS

NOTES: 1. The 'average' DC current represents just that, the
average current over some small period of time. Thus,
peak currents (such as might occur during a memory
refresh) are not a concern.

2. Maximum power and current data is for reference only.
The designer should ensure that typical power and
current specs are not exceeded.

3. Any combination of currents may be used as long as
current and power specs are not exceeded. For
example, to stay within 4.4 watts for a low-power
card, it is not possible to use the typical currents
on all supplies, which would dissipate 5.92 watts.
If the typical current on +5V is .8 amps, then .4
watts (4.4 - 5 X .8) can be drawn from +12V and -12V.

4. Expression of I/O card power requirements in terms of
a standard deviation about a mean is not necessary
because: (1) sampling of hardware in production
demonstrated that the spread is very small and (2) the
power supply has sufficient capacity to handle
heavier loads.

11.4 ON-CARD FUSE REQUIREMENTS

A UL/CSA/IEC requirement is that any device operating from a
supply capable of supplying more than 8 amps be fused. Because
the +5V supply in Series 200 mainframes is capable of supplying
more than 8 amps, a fuse is required in series with the +5V
supply on each plug-in board. The suggested fuse is a 4 amp
fuse, HP PIN 2110-0592, which is soldered in to the board.
A plug-in fuse is also available. The right-angle holder is part
number 2110-0691. The part number for a 5 amp fuse for this
holder is 2110-0520; other sizes are also available.

In addition to fusing +5V, the Data Comm cards (98628/
98629/98691) also fuse +12V and -12V. This was done because
these supplies appear on the I/O connector and are used for
powering external devices such as the 98629 card's external pod.

However, FSD's Product Regulation Department states that because
of the possibility that I/O cards can operate in mainframes with
+/- 12V supplies capable of supplying more than 8 amps,
these supplies should also be fused. Because the fuses are
inexpensive and auto insertable, this is not seen as a
serious disadvantage.

68

CHAPTER 11: ELECTRICAL SPECIFICATIONS

11.5 SIGNAL LOADING

The table below shows the receiver loading and recommended driver
for each of the signals.

Receive Loading Signal Driver

BAS * , BR/W*, BUDS* and BLDS* 1 LS load max SN74LS245 buffer

Any 3S/0C LS gate DTACK*, 1 LS load max
IACK*, BG*, DONE * , BERR*,
DMACKO - DMACK1
iNT3* - INT6*, VECTOR*, BR*,
DMARDY*, IMA*, DMARO*-DMAR1*

BGACK*, ENDT* 1 LS load max Any 3 state LS gate

BG1* - BG3* 2 LS loads max. Any LS gate

BFCO* - BFC2* 2 LS loads max. SN74LS245

RESET* 5 LS loads max. SN7417 OC Buffer

HALT* .8 rna TOTAL for Any 3S/0C LS gate
card cage

BAO - BA23 1 LS load max. SN74LS245 Buffer

BDO - BD15 SN74LS245 Buffer SN74LS245 Buffer

NOTES: 1. 3S/0C = 3-State driver or Open Collector

2. 'Any 3S/0C LS gate' was indicated as the signal driver for
BGACK* in previous versions of this document. However,
problems were encountered with the slow rise times of
an open-collector driver in a recent project; thus, the
spec has been changed to required a 3 state driver.

3. ALS gates are acceptable as recelv1ng devices. Also,
Schmitt trigger input devices should be used where
possible as receivers.

4. Until ALS drivers are characterized on the bus, only
74LS244/245 drivers should be used.

69

MECHANICAL SPECIFICATIONS CHAPTER 12

This chapter presents sufficient mechanical information to
ensure that DIO BUS backplanes, card cages and PC boards are
mechanically compatible.

12.1 DIO BUS CARD SPECIFICATIONS

The drawings on the following page shows the size requirement for
I/O cards, non-I/O cards and the metal coverplate. The main points
are:

1. I/O cards fit in every other slot of the I/O backplane and
are secured by thumbscrews thru a metal backplate. The slots
in between hold non-I/O cards such as RAM and ROM cards.

2. Non-I/O cards have a recess at the rear to allow clearance
for the connector of the next-lower I/O card.

3. I/O cards have a keep-out area in the rear where traces and
parts are not allowed to prevent them from shorting to the
metal backplate.

4. I/O c~rds also have a keep-out area along each side to keep
traces (specifically pop-thrus) away from the cardguides.
Solder can bead up through pop-thrus, causing jamming with
the I/O card guide. Refer to Section 12.2, item 1, for more
information.

5. For both types of cards, space must be left on either side
of the board to prevent components from interfering with
the card cage guides.

6. I/O connectors are left-justified and extended to the right
as needed for the size of the connector.

7. Note that keying (to prevent inserting a card upside down) is
provided by the 2 different length notches on each side of
the edge connector.

70

/.3~ ./t~
- -..,

II r J7/F/l5
~ It) J.

I
1 1-

..... 1. ."........ I
A 1400 .07S To ALI. Y'DI~') I

~1./('3UJ,4S .".r i G.,~nlu"!tG.SLe I

-011$ LOJI llePflEs.£~T~

\ 1HE Ilo Co".INec.lt>R i.
roil. HoVNr'~~ HOLSS

,,"""""D I DAft

P. \) 12-Z1·"
e 11 .Il::u:tl

-{<Df-:':: --r- \"- -'-
Wi--" _...f-- \- - -------

-4 LI\VEQ. C."AQ.b
· ~It:>e t. - Cot"\9o..,e""'- ~\t)E
• ~Ioe Z. - +sv t>\..-~t-JE.
·!.Il:>E. 3 - qQ.ovt..)\) ;>\.- ~e.

, ~'D~ 4 - (.IRC\}\T ~'t>E

- AI..\" 11\)!.\t)l:. R. 'H\ .Of. R

~ p t.. l!.oA~O O~\IO"'S.
• ~~ ~~2.. - 9a£.. 2(", - 2,.("Sol
'y?IO - ~a('1.l.-zr.sol
• ~c..t> - '78(.. 2.3 - 2.t-SOI
• H'P'~ - 18G. 2..4 - U.sa,

CoIJAJEtlull _.....:.:.-:::... - -

MOUA.JTlI\J4 Ito\..ti~
MV~T r..., w.,,,,'"
T"eL.e EIJDP<>IIJTS,

, I

f
I

I

~

"'511401#0 Alletls. IA,)O,Ct\TB CLeAQAA)ce;
Foil. C.AQO 4vlt)~!.. No COMPoA)E;~"'~
,(IRe TO Be WI"~ltJ TI-\~ ,1"2S WIl>e; A126~

DO NOT ec:.ALa nt.a _AWING

UHL..&88 0 _ ",c,"'KO.

DI ~ AM'N INCH"

'I'Ot.aIIIANC" ... *.0.

•

.. ----- -
---p .----

~ ' 1

1-:-1 OTY 11-----.. ,,-ttlI-,AL-i>E--;-'-K-II,-O'T-..,..---1 l"L·~,._ I .. AT·LoOM II--.... -n-_-c.-· I

I.;:;;-==:...-----~ 1''-'''--1 HEWLI:TT III PACICA.O
..... I DAft I 8::... i3r). - I/o CARD I'oil
_.E.. [3AulI:t.V 110-"19 1 TIna -

_HEll? 0,.

n
~

~
~
::u

H
Cl

~
I\)

~ ~ I\) , n
~

~
H

H n
......... :t>
0 ~

• '1j ttl n '1j
tz:I

OJ n
0 H

~ ~
H

t:J n

ttl ~
H H

~ ~
ttl

-Ie.. ORIEr-.)\~.,.\()t-J

... LAY!: R BOAR\>
• S,ICt": 1 - c..OM?Ot-.) t: ".n ~\oe
'~IDt; 2.. - ~sv P\-(.Io.t.JG
• !;.\b~! - ""~Ol)IV~ PL..~,,->e.
• .~It:le4 - c..,iLc..UIT :;,,\:)I:.

- rc,. ~oA~b O~TIOf\)~
• ~'f~TEt--\ R.~t-'\ (~I.SZI)
.~t:>t:) o~ R~"" ("t..S2..2-)
• At:>tl 010 l20M ('2.1.5'12.)
• Bl.c'i!.~LE 'kEMOK'i
'DMA

- SJl40€O .q~e4!a IAJOlcATE C~E~rl./lV,JCE
~o,~ C.QRI';) 4vICe:.. ,vo COM?ONe"J'ts/TR,q.::€S
AR~ TO OE WfTH'~ TN'!> .I~S W/ul< IiH~e.q

---------_.-

• 8-

I
I:NQ'NfE"'NO ItESP'ONS,eU .. ,n [;ii .I:~A 0 I

o /' I' I' 10 18 I" 17 I" 10 1'0 \" \.. I'· 1'8 \ O'M I "~YI.'OH. I A~CO 1 DATe

" /17 ... r'o -Tzo '" ... I , '" ,.0 ... I I.' 10• I --::-I'------s-::---::~r:-,-... :::---c~-----·,'....,/)=~..;.;....--,'-~=--
I r' I I i oo i I 10. Ii; I I I I ..LLI .((,3 IA.IAJ ./(, \ zl lU'hf..90 I e;i:!o .,4_'2_1_'8_'

."l."~.

DM;~~(il ;;:
--- '~r~ '" --!!:-~~Jl-)

'I

.070

DO NOT SCAl.E TN'. D"AWING

UHLI:.' OTHIf"WISE '''I[CIP'':D.

0IMI["'8'0 "1 IN INCH£..

TOLlI!ltANCr:. JI:." 01 ••• * aa.

+

I ,nM I OTY I-----.... -T-E .. -' .. -... -M-SC-.. -'"-'OH---I .",,"L ~ .. '" NO

1'OOL.,>.I(;o HOLe (1.)
- .lIq FH!> tp"",,.et»

I M .. T·L~WG NO li--MA-T-.L-....,-c-·'

I.::OIO=AWH;.:.::.::..,.' __ --:-:lo:::..;.: .. n=---_.I PC. 13 \). - I
P. BAI..t..'e~ 1/()-'1-7~1 NoN - rIo

::::::~TO~OO I I':';:'::;~:;':':C':::""'=~M:;:";='LY:",--"" ______ I ~Au_.c~0?8Z.(;-Z~S)()(
.u " .. owe I "N'OH I.CAU FULL B - - -

n
::x:
:x>

"'%j ~
H tzl
Cl !lj

~ I-l
I\)

I-l
I\)

I s:
I\) tzl

n
=z:

z ~
0 H
Z (")

I ~ H

f..t -...
0 CIl

'U
"tI tzl
n n

H
OJ "'%j

0 H

?d n
:x>

tJ 8
H

CIl 0
H Z
N CIl
tzl

CHAPTER 12: MECHANICAL SPECIFICATIONS

FIGURE 12-3: I/O COVERPLATE DRAWING

I.S FULL R~ ..

18.7(211 3~·:~t\! I * j-'--'-'--ll-'-' I
I e _\.._- + -- e--t~~~--t'+'--

9, ZS.3(2) I ,'I . I) "" j "I" J '-1~S.13 OIA
,a c I --1-, ,- - - r- -- --
--.'--~!----~--~~------~------------~--~----~--~----------~

5.~ ~ ~3.45(2) 94.9-, , '89.0-11
DATUM

107.8 '9" 5 48.1 '22.9 _.

I
138.1

1.6R (2)

32R (4)
C'SINK 6.86 OIA X 90· (2)

I/O Card Coverplate

1.6R (4)

The drawing shows cut-outs and drilled holes for 24-, 36-, 50-, and 64-pin connectors.
AmphenoI manufactures conrectors which can be used with the Breadboard Inte-:-face) as shown
in the following table. .

Connector
Si:e

24-p1n
SO-pin
64-p1n

73

Amphenol
Part Number

57-92245-12
57-92505-12
57-92645-12

CHAPTER 12: MECHANICAL SPECIFICATIONS

12.2 CARDCAGE SPECIFICATIONS

Shown on the following 2 pages are a drawing of the 9826/36
card cage and the I/O backplane. The following points are worth
noting:

1. While a component keepout area is specified for cards, PC
traces can (and do) run inside of this keepout area. Therefore,
to prevent shorts, metal cardguides must not be used.

2. Even though I/O cards only user every other connector
on the backplane shown in Figure 12-5, new designs
should implement this same connector scheme. In addition
to providing slots for RAM cards, ROM cards, etc., this
scheme also supports 'double-high' I/O cards that require
both boards to connect to the bus.

3. The center-to-center board spacing is 15 mm (.59 inches).

12.3 MINIMIZING RFI

To minimize EMI problems, the following rules should be followed:

1. PC boards should be a minimum of 4 layers, with planes 2
and 3 reserved for power and ground, respectively. Boards
greater than 4 layers should maintain power and ground on
the middle layers so that a good high frequency bypass
capacitor is formed between the power and ground planes.
This minimizes the current loop area.

It has been suggested that the power and ground layers
should be placed nearer the outer layers to act as
shielding for inner layer traces. In general, it has been
found that placing power and ground on the middle layers
(to form the high frequency bypass capacitor) is more
effective in minimizing RFI.

2. I/O cards must contain a sheet metal coverplate with
thumbscrews to securely mount the board in the computer
and provide good electrical connection to safety ground.

3. Grounding of I/O cable housings or shields is done through
the I/O coverplate to the mainframe rear panel. Appropriate
techniques must be used to ensure solid contact between the
connector housing and the coverplate. Also, the thumbscrews
must provide good contact between the coverplate and the rear
panel. If the shield ground appears on a pin of the connector
(as with HP-IB), a generously-sized PC trace must go between
the connector pin to one of the screw pads which secure the
coverplate to the PC board.

74

CHAPTER 12: MECHANICAL SPECIFICATIONS

FIGURE 12-4: 9826/36 I/O CARD CAGE

The HP 9S26/9S3~ Card Cage

There are eight card slots in Model 26 (9826) and 36 (9836) Computers. The I\1odel 16 Computer
only has two slots, while the HP 9920 Computer and HP 9888 Bus Expander each have 16 slots.

75

-4 L"-YEI2. CO""iZ!:>
. ~\':'>= \ - C.at ... ~~hJ~ t.JT ~ ltoe
'~IQE' z. - ~5\1 pl...A~e
'S,Ct= 3 - C:!:<'.::>vNt:> P~A.tJ€.

·::'IDE4--C,r-C.V\\ ""1 DE

- Solt. ";'~-r) '<;.:?t:A~ IIJ"~IC.\'C C-L<::A \?..:;ucG
.=-~~ ::A::..;) ~'..IIC';:;. /J~ CoM\:>orJ~'.JTS

IL:::::;: T'- ;j£. WITt' ,AJ 'Hl!. .I~S w";;':; AI(<.-h

I

_.- === =:;;::::: ====--

f.'J5~

,250 CTYP)

r, _____ ,_

.OI..K TV;> (t.. f't.(\("t:')
ARoUJJf.) AI.L FIJI('II:',<;: C")JIJ~ -:.l)R~

AUD C"T-rol--t uuT! I lie. c.",~ AJc IC!>

1-:-1 OTT 1------------- --.. -A-TL-~-.. -"T-N-O- ----- -----

O t: ... SIONS A''':: I,., INCHIl8

TOLr"ANCr. JlX * 0' •• X. ooe

ID4TE

R£L£A~r TO ~"OD f

J: 10 SA '"" ft.A "E
H7IVL£TT ~ P~CKARD

I

n

I"Zj ~ H
0 :u

~ ~
f\)

r-'
f\)
I 3:

\J1 tzl
()

::r::
\0 ~
CO H
f\) ()
0\ ~

-......... t-t
w
0\ CIl

H ~
-......... ()

0 H
I"Zj

t:P H
~ n
()

~ ~
~ H
t1 0

~ Z
CIl

tzl

CHAPTER 12: MECHANICAL SPECIFICATIONS

12.4 PC CARD LAYOUT RULES

The following PC layout rules should be met:

1. Each card must limit loading to one LS or ALS load on the
following signals: BA1-BA23, BAS, BDO-BD15, BUDS, BLDS
and BR/W.

2. The PC board trace length for the above signals should be
as short as possible and no more than 3 inches. Where
possible, these signals should be isolated from the ground
and power planes to minimize capacitance. Therefore, for
6-8 layer boards containing power and ground on the middle
layers, the bus signals should be in the outer layers.

3. If the I/O cable connector contains a drain or shield wire,
it should be connected by a generously-sized trace to the
screw which secures the I/O backplate to the PC board. The
connection to safety ground is then completed by the
backplate, thumbscrew and rear panel assembly. The drain or
shield wire should not be connected to logic ground.

4. PC boards should be a minimum of 4 layers, with planes 2
and 3 being power and ground, respectively. For >4 layers,
the middle layers should be power and ground for a good RF
bypass.

5. IC's are mounted parallel to the connector with pin 1 of
the IC oriented to the lower left when viewing the board
from the component side with connector pin 1 also oriented
to the lower left. NOTE: This should be treated as a
recommendation since some devices (e.g. the 98629 card)
violate this.

6. The maximum component height is 10 rom (.39 inches) to prevent
components from shorting to the leads of the next-higher
board. As discussed previously, the board center-to-center
spacing is 15 mm (.59 inches).

I

7. The PC edge connector is a standard S100 connector with 100
pins on .125 11 centers.

8. The edge connector finger width is .060 II. This dimens ion
was carefully chosen and ensures that adjacent traces won't
short in the connector.

77

CHAPTER 12: MECHANICAL SPECIFICATIONS

12.5 DIO BUS PIN ASSIGNMENTS

Pin assignments for the DIO BUS backplane are shown on the next
page. Odd pins are on the component side, even pins on the circuit
side. Relative to viewing the board from the component side with
the connector pointing down~ the pins are numbered from left to
right. The following Series 200 pinout considerations are worth
noting:

1. The 2 DGND lines run from the I/O backplane thru the
motherboard (connecting to the OEM slot) to the power
supply; they are not bused to each connector on the 9826/36
motherboard. The OEM slot is an empty slot internal to the
9826/36 for potential use by HP OEMs.

2. Spare lines 0, 1 and 2 (pins 5, 27 and 28) are bussed from
the I/O backplane to the CPU, Disc Controller and Expansion
slots.

3. The 2 spare lines which were formally +/-15V (pins 97 and
98) are bussed from the I/O backplane connector to the CPU,
OEM and Disc Controller slots.

4. IMA* and FOLD* (pins 41 and 42) are bussed to all I/O slots
on the I/O backplane in Series 200 products; however, they
are NOT connected to the I/O backplane PC edge connector.
The I/O backplane female edge connector mounted on the
motherboard has pins 41 and 42 tied to +5V.

5. The internal OEM slot connector is the same as the I/O
backplane connector except pins 41 and 42 are no-connects.
Because the OEM slot does not have the FOLD signal,
neither the DMA Controller nor the Bus Expander card are
electrically compatible with the OEM slot. Mechanically,
the OEM slot accepts a board that is larger than the
standard I/O board.

6. Spare pins MUST remain open until they are defined in
this document. They are NOT subject to designer definition.

7. The 9826 and 36 reference Pin 29 as BDRV*; the 9816
references it as BMON*.

The DIO BUS pinouts are shown below. These are provided on the
I/O backplane only; connectors internal to the 9826/36 do NOT
have the same pinouts.

78

CHAPTER 12: MECHANICAL SPECIFICATIONS

COMPONENT SIDE 1 DMARO* 2 DMAR1* CIRCUIT SIDE
3 DMACKO* 4 DMACK*
5 Spare 0 6 IR7*
7 IR2* 8 IR1*
9 DMARDY* 10 BG1*

11 BG2* 12 BG3*
13 GND 14 GND
15 IR4* 16 IR3*
17 IR6* 18 IR5*
19 VECTOR* 20 IACK*
21 GND 22 GND
23 BG* 24 BR*
25 DONE * 26 BGACK*
27 Spare 1 28 Spare 2
29 BDRV* (BMON*) 30 ENDT*
31 BFCO 32 BFC1
33 BFC2 34 DTACK*
35 GND 36 GND
37 RESET* 38 BERR*
39 GND 40 GND
41 lMA* 42 FOLD*
43 BLDS* 44 BUDS *
45 BR/W* 46 BAS *
47 GND 48 GND
49 HALT* 50 BAl
51 BA2 52 BA3
53 BA4 54 BA5
55 BA6 56 BA7
57 BA8 58 BA9
59 BAlO 60 BAll
61 GND 62 GND
63 BAl2 64 BAl3
65 BAl4 66 BAl5
67 BAl6 68 BA17
69 BAl8 70 BAl9
71 BA20 72 BA21
73 BA22 74 BA23
75 GND 76 GND
77 BDO 78 BD1
79 ' BD2 80 BD3
81 BD4 82 BD5
83 BD6 84 BD7
85 +5v 86 +5v
87 BD8 88 BD9
89 BD10 90 BD11
91 BD12 92 BD13
93 BD14 94 BD15
95 DGND 96 DGND
97 spare 98 Processor Spare (was STRETCH*)
99 -12v 100 +12v

79

OPERATION IN THE 9888A BUS EXPANDER CHAPTER 13

FSD manufactures the 9888A Bus Expander for the Series 200
computers. Devices for the Bus Expander are required to meet
the same electrical and mechanical constraints as devices ~hich
plug directly into a mainframe. The Bus Expander employs delay
lines and latches to ensure that all DIO BUS timing requirements
are met (except as noted in section 13.2). This chapter
discusses features of the Bus Expander and several limitations
affecting operation of DIO BUS devices in the expander.

13.1 FEATURES OF THE BUS EXPANDER

The features of the Bus Expander are:

1. The Bus Expander plugs into an I/O slot in the computer; up
to 4 Bus Expanders can be plugged into a computer. An
Expander may NOT be attached to another Expander.

2. The Bus Expander is totally self-powered.

3. The Bus Expander has 16 connectors which will support 8 I/O
cards and 8 RAM cards or 16 RAM cards.

4. A 5.2, foot cable connects the Bus Expander to the computer.
Signals are buffered at each end of this cable (on the
board that plugs into the computer and on the board in the
expander). The IMA (I'm Addressed) signal discussed
previously is used to turn these buffers around if the
addressed card is in the Expander.

5. I/O cards that implement DMA (e.g. the 98622A GPIO card)
can operate in the Bus Expander. If both the memory card
and the I/O card involved in a DMA transaction are in the
same Expander, then the Expander itself performs any
necessary data folding operation in response to the DMA
Controller's FOLD signal (if the DMA Controller did the
folding, signal delays would be excessive).

80

CHAPTER 13: OPERATION IN THE BUS EXPANDER

13.2 OPERATING LIMITATIONS WITHIN THE BUS EXPANDER

In designing OIO BUS devices, designers should be aware of
certain limitations when operating in the 9888A Bus Expander:

1. Bus Masters cannot operate in the Bus Expander; there is no
provision for 'turning around' certain signals such as the
address bus. Thus, the 98620A DMA Controller must reside
in the mainframe.

2. ROM boards are not guaranteed to work in the Bus Expander
due to Auto DTACKing. With Auto DTACKing, ROM cards are
required to have data present within a certain length of time.
Because of signal delays between the Bus Expander and the
mainframe, data setup time prior to the Auto DTACK is not
guaranteed.

3. RAM boards will operate in the Bus Expander; however, RAM
boards typically require 6-cycle accesses as opposed to
5-cycle access for boards installed in the mainframe. This
is due to signal delays. SoftwaTe being executed from the
Bus Expander will thus run proportionately slower and timing
loops will be altered.

4. Interrupt cards which implement external vectored interrupts
will not work in the Bus Expander for 2 reasons:

A. The VECTOR signal from the interrupting card will not
(worse case) reach the Processor board in time to
inhibit auto vectoring.

B. Even if the VECTOR signal reaches the Processor board
in time, the interrupt vector cannot be read by the
Processor board. This is due to the fact that BAS is not
generated during an interrupt vector cycle; without BAS,
the card does not generate lMA, so the Bus Expander's
data bus buffers do not 'turn around'.

5. The BORV* slignal discussed in the Chapter DIO BUS UTILITIES
is not supported in the Bus Expander; cards which use BDRV*
must be installed in the mainframe.

81

CHAPTER 13: OPERATION IN THE BUS EXPANDER

6. The BERR* signal is an input from the Bus Expander to the
mainframe. A BERR* signal generated by the mainframe (e.g.
the CPU board) cannot be seen by an I/O card.

7. The 9826/36 Powerfail option (which is installed internally
in the mainframe) is not supported with the Bus Expander.
The Bus Expander resets the computer when the power fails
and again when power returns. This will destroy any data
or programs in memory. For correct operation, the Expander
must be turned on before the computer is powered up and not
powered down while the computer is operating.

8. A timing error was recently (9-83) discovered in the Bus
Expander. The error is on the 09888-66502 card which is
the buffering electronics on the 'expander side' of the
cable between the mainframe and the expander. This card
uses BAS to latch BR/W. The purpose of this latch is to
guarantee sufficient BR/W hold time on the trailing edge of
BAS. The problem is that the latch's data (BR/W) setup
requirement is not guaranteed prior to the clock (BAS) even
though the card does delay BAS by 30 ns. A Production
Change Order is currently (2-84) being implemented at FSD
that will add an additional 35 ns of delay to BAS (65 ns
total). At the same time, the board number will be changed
from 09888-66502 to 09888-66504. Note that the likelihood
of this problem occuring is low due to the number of timing
param~ters that must be 'biased' towards worst-case.

The position of FSD is that units in the field were adequately
tested in production and no re-work is required. However, the
possibility still exists that a unit might be marginal and
could (over time, temperature, etc.) exhibit intermittent
(and typically undiagnosable) errors. Therefore, it is
recommended that internal users upgrade their Bus Expanders
with the 09888-66504 board if any inexplicable problems
are encountered.

82

SYSTEM AND BUS MASTER DESIGN GUIDELINES CHAPTER 14

The subject matter of this chapter is now covered in the SERIES
200 SYSTEM SPECIFICATION available from the FSD Hardware R&D
Lab; accordingly, the contents of this chapter have been deleted.
The reader is encouraged to obtain the above document.

83

DIO BUS SLAVE DESIGN SUMMARY CHAPTER 15

Although many details covering Bus Slave design are covered in
other chapters, the key requirements are summarized below.
This chapter covers primarily External I/O cards (e.g. the GPIO
interface). Examples are provided; however, the reader is
strongly encouraged to review the design of existing cards before
attempting a new design.

15.1 EXTERNAL I/O CARD DESIGN GUIDELINES

The following design guidelines are for external I/O cards
only. Following these guidelines is a sample design
highlighting key features.

1. I/O cards may be either 8 bit or 16 bit devices. 8 bit
devices should reside on the lower (odd) byte of the
16 bit data bus.

2. Designing I/O cards that can perform DMA transfers is left
to the option of the designer. I/O cards that implement
DMA can optionally use DONE from the DMA Controller to
determine when the last transfer is occurring.

3. While a card is enabled for DMA, it must still respond to
normal bus cycles so Status and Control registers can be
accessed.

4. I/O cards must provide 5 Select Code switches to
provide Select Codes up to 31.

5. I/O cards must implement Registers 1 and 3 as defined in
the Chapter I/O MEMORY MAP AND I/O CARD REGISTERS.
Register 5 may be implemented if an Extension ID is
necessary. Additional registers and bits may be defined as
needed.

84

CHAPTER 15: 010 BUS SLAVE DESIGN SUMMARY

6. Implementing interrupt capability is left to the option of
the designer; however, it is STRONGLY recommended that
interrupt capability be included. An I/O card without
interrupts will not work well with UNIX; if the operating
system has to poll an I/O card to determine its need for
servicing, extended (e.g. 1 second) dropouts may occur.
Because of the previously discussed problems with vectored
interrupts, they should not be used.

It is highly recommended that I/O cards provide switches
to select interrupt levels 3 to 6. However, other options
are possible, e.g.:

A. Make the interrupt level programmable {e.g. use
undefined bits in the card's CONTROL REGISTER to permit
programming of the interrupt level bits}.

B. Permit interrupt levels to be set (either via switches
or software) over a broader level than from 3 to 6
(e.g. from 1 to 7). This is NOT recommended, however,
since special care is required in system configuration
to avoid conflicts. For example, the 09826-66562
floppy control board used in certain Series 200
products is hardwired to interrupt level 2 and drives
the interrupt signal with an Ls04, i.e. it is not open
collector. An I/O card on interrupt level 2 would
fight with this Ls04. Designers that want to
implement interrupts outside of the range from 3 to 6
should consult with hardware and software people at
FSD to evaluate potential problems.

7. If I/O cards are designed containing more than one
interface {e.g. an RS-232 card containing four channels},
the card can be designed in two ways:

A. If it is desired that existing software work without
modification, then the card must appear exactly like
mUltiple single-interface cards, e.g. each interface
should occupy its own 64K address slot.

B. If the design goals do not permit the hardware to
be identical with existing I/O cards, then the
software drivers will have to be re-written.

8. For testability reasons, it is advised that no write-only
registers be implemented; all registers should be read/write.
Also, no read-then-clear registers should be used.

CHAPTER 15: DIO BUS SLAVE DESIGN SUMMARY

9. I/O card designers should design to the DIO BUS functions
outlined in the Chapter REQUIRED DIO BUS FUNCTIONS FOR
AN I/O BUS.

15.2 EXTERNAL I/O CARD DESIGN EXAMPLE

This section presents an example 8-bit I/O card design and
describes the following interface elements:

1. BUS SLAVE INTERFACE (data transfer interface)

2. INTERRUPT REQUESTER

3. DMA REQUESTER

DATA TRANSFER INTERFACE

Figure 15-1 shows a typical circuit used for transferring data
between the I/O device and the Processor. The key elements
are:

1. U7, a 74LS688 comparator, compares the upper 8 address bits
to the bit pattern for the External I/O memory space and
the user-set Select Code switches. It is enabled by BAS*;
becau~e the address precedes BAS* by 15 ns, the output
(CS*) does not have glitches.

2. CS* low generates IMA* low and enables the DTACK* buffer
(UB). CS* low is not used to enable the bus driver, Ul,
because of a possible driver conflict between the I/O card
and the CPU board. This would occur during a write cycle
when BR/W* goes low after BAS* goes low; BR/W* low causes
~he CPU drivers to drive the data bus while the I/O card
would also drive the data bus (until it recognized that
BR/W* is low, within 15-20 ns). To avoid this, the I/O
card does not enable its bus driver until BLDS* is low.

3. u6, pin 3 (U6-3) goes low (indicating the start of a cycle)
when CS* is low and BLDS* is low. u6-3 low generates
DTACK* low with some delay, regardless of whether the
operation is a read or a write. The delay time is set to
the longest time required for either reading a register
(plus 15 ns setup on the bus) or setting up a register for
clocking when DTACK is asserted. u6-3 also enables the
data bus buffer Ul.

86

CHAPTER 15: DIO BUS SLAVE DESIGN SUMMARY

4. Reading and writing are then determined by BR/W* as follows:

A. READING (BR/W* high)

(1) BR/W* high enables Ul to drive the data bus BDO-BD15.

(2) u6-3 low and BR/W* high enables the read decoder (U5,
lYO-3) which enable~ the device at the address set by
BA1-BA2 to drive the internal data bus (and thus
BDO-BD15). As mentioned above, the DTACK delay circuit
ensures 15 ns of setup time prior to setting DTACK low.

(3) The card remains in this state until BLDS* or BAS* goes
high, disabling U1 and the read decoder.

B. WRITING (BR/W* low)

(1) BR/W* causes Ul to drive the internal data bus.

(2) u6-3 low and BR/W* low enables the write decoder
(U5, 2YO-3) which generates write strobes depending
on the address BAl-BA2.

(3) Generation of DTACK ends the write strobe. The
data hold time for the register is guaranteed by
the minimum response time of the Bus Master to
DTACK* low (85 ns).

(4) The write cycle ends when BLDS* or BAS goes high.

87

CHAPTER 15: DIO BUS SLAVE DESIGN SUMMARY

FIGURE 15-1: DATA TRANSFER INTERFACE

-----C>----~~----~

--1>--.-+--.-......--..-,

I ~t---+-:---~::-' -
q~~--------~-----I __ ~s-.,

, I ,
~!V71 ..

~,,.

c;;

88

CHAPTER 15: DIO BUS SLAVE DESIGN SUMMARY

INTERRUPT REQUESTER

Figure 15-2 shows a typical interrupt request circuit. The
circuit operates as follows:

1. If INTERRUPl' REQUEST and INTERRUPT ENABLE are true, one of
the interrupt request signals (IR3*, IR4*, IR5* or IR6*)
will be low, as determined by the 2-bit INTERRUPT LEVEL
setting.

2. A software poll is used to determine which card is
interrupting. Bit 6 of the Status Register indicates
INTERRUPT REQUEST; bit 7 indicates INTERRUPT ENABLE.

NOTE: BECAUSE EXTERNAL INTERRUPT VECTORING DOES NOT WORK
IN THE BUS EXPANDER, THE CIRCUITRY FOR IMPLEMENTING
EXTERNAL VECTORED INTERRUPTS IS NOT DISCUSSED.

DMA REQUESTER

Figure 15-3 shows a typical DMA interface; it operates as follows:

1. A DMA REQUEST signal from the I/O card causes DMARO* or
DMAR1* to go low if the DMA channel is enabled as
determined by DEO or DEl in the Control Register.

2. DMACKO or DMACK1 enables the data bus buffer U1. During
a normal R/W operation, the direction of this buffer
is determined by BR/W*. During a DMA operation, the
exclusive-OR gate inverts BR/W* to control the direction;
this is because BR/W* is intended for memory so the I/O
card uses it in the opposite way.

I

3. The I/O card generates DMARDY just as it normally generates
DTACK during a R/W cycle. For a DMA input cycle, the delay
timing starts immediately with BR/W* high. For a DMA
output cycle, the delay timing is not started until valid
data is on the bus as indicated by DTACK from the memory
device.

89

:

90

\

CHAPTER 15: DIO BUS SLAVE DESIGN SUMMARY

FIGURE 15-2: INTERRUPT INTERFACE

,
f ..r/i? CA~Q P-'f'-'f 4'(/1' fU~ ~- ,S'] -,

4~ I ,

" .. ,.. I . -
I) we 11.E"' (IHrtR.oL

y

V.; ~?.J u~ c<H
, I- r fI~j~ A----.,. I r~I"~ -

.r}.J i~~R IJ pr t:1IA!LG

f~*r '"1"

~I A

llY ICo

I
11 Zt'D ,.

. c "I If; r,.,_ .r;

c ' I ZC; ~ J.NiE~~!)?-:-- ;f'e~"'~,f"

c I.ZY~9 R~QVE-ST '
• C J I /St5

FIGURE 15-3: DMA INTERFACE

- ----------

~ - J)

____ ~~----1-----~---4------+-+-------~ ~hA<

~
~~AC~ --------~.v_--~--~~~~--------.

,t;.- c--" /!"~

-~, ,. • .?,;~ .. .r./c.?
c:,;,." 7

,
_I

REQUIRED 010 BUS FUNCTIONS FOR AN I/O BUS CHAPTER 16

Product plans at FSD defined a product (which has since been
cancelled) which used the DIO BUS strictly as an I/O bus (i.e.
not a memory/processor bus). Accordingly, an investigation was
made of what 010 BUS signals would be required on a DIO-based
I/O bus. Because the subject may arise again with other future
mainframes, the outcome of this investigation is covered in this
chapter. This chapter discusses those signals that are required
on a DIO-based I/O bus and those signal which are not supported
(and thus which must not be used by I/O cards).

16.1 SIGNALS NOT SUPPORTED ON A DIO-BASED I/O BUS

As an I/O bus, not all of the functions provided by the DIO BUS
are needed. In addition, there are other functions, such
as vectored interrupts, which are not usable and can be
eliminated. Listed below are those functions which may not
be supported in mainframes which have a DIO-based I/O bus.
Therefore, I/O card designers should not (repeat: not) expect
these functions and signals to be available. The unsupported
signals must be kept open on the I/O backplane and must not be
used for other functions.

1. FUNCTION CODES (BFCO, BFCl and BFC2): These are provided
by 68xxx processors and are not available from other
processors (e.g. SPECTRUM); therefore, I/O card designers
should not use these signals.

2. VECTORED INTERRUPTS (IACK*, VEC?OR*): Vectored interrupts
are not supported for several reasons:

A. No veotoring cards have ever been built, either
on the bench or in production. Different BOOT ROMs
in different mainframes support vectored interrupts
differently. Designing a vectoring card would require
an extensive qualification effort and would introduce
uncertainty as to whether a vectoring card would work
in machines already in the field (since this capability
has not been tested at the factory).

91

CHAPTER 16: REQUIRED DIO BUS FUNCTION FOR AN I/O BUS

B. The DIO BUS does not provide a priority scheme to
arbitrate among different vectoring cards on the same
interrupt level. Therefore, only one vectoring card
per interrupt level would be permitted, limiting its
usefulness.

C. Vectoring cards, if designed, will not work in the
9888A Bus Expander.

NOTE: Even though I/O cards do not implement vectored
interrupts, mainframes themselves may provide
this capability for I/O cards. For example, an
'intelligent backplane' can detect that an interrupt
request line from an I/O slot is being pulled and
provide a vector during the Processor's interrupt
acknowledge cycle.

3. BDRV* (BMON*): This is for testing and permits test card
code to 'replace' the BOOT ROM on certain processor boards.
It is not supported on a DIO-based I/O bus.

4. FOLD*: In Series 200 mainframes, this signal is provided
by the 98620A DMA Controller and is used for byte packing
from an 8 bit I/O card to 16 bit wide memory. It is presently
used only by the 9888A Bus Expander and the 98620A itself and
is not used by I/O cards. Thus, it may not supported on a
DIO-based I/O bus and should not be used.

5. BERR* as an input: DIO cards may generate BERR but must not
expect BERR to be available as an input (for example, the BERR
generated by a Processor board in response to a transfer
timeout). While a card plugged into a mainframe will see
a processor-generated BERR, a card plugged into the 9888
Bus Expander will not see it. This is because the expander
drives BERR from the expander into the mainframe, not from
the mainframe to the expander.

6. ENDT*: An existing guideline is that cards that work with ENDT*
(Enable DTACK) must also be able to work without it (albeit at
a lower speed). Therefore, I/O card designers may optionally
design cards that use ENDT* (as long as the card will work
without it).

92

CHAPTER 16: REQUIRED DIO BUS FUNCTION FOR AN I/O BUS

16.2 SIGNALS REQUIRED ON A DIO-BASED I/O BUS

Those DIO BUS signals not discussed above are required to be
implemented on an I/O bus. Most of these required signals need
no further explanation: BDO-BD15, BA1-BA23, BUDS, BLDS, BR/W*,
DTACK, IMA*, IR3-IR6*, DONE*, RESET*, HALT*, DMARO*, DMACKO*, DMAR1*,
DMACK1* and DMARDY*. However, several other signals deserve some
discussion as to why they are required:

1. IR1*, IR2*, IR7*: This document specifies that I/O cards
generate interrupts on IR3-IR6*. However, to preserve
generality and expandability, a DIO-based I/O bus should
respond to the remaining 3 interrupt levels, IR1*, IR2*
and IR7*.

93

I/O CARD QUALIFICATION CHAPTER 17

Because I/O cards will be used with different mainframes, operating
systems, etc. a thorough I/O card qualification program is absolutely
necessary to ensure that all hardware, software and safety issues
are resolved. This is an area that is constantly changing as new
hardware and software is released, as regulatory requirements change
and as our interpretation of these requirements change. Designers
are responsible for ensuring that their products are properly
qualified per the latest operating environments and regulations.

Qualification of new I/O cards can be broken down into three
areas:

1. SOFTWARE QUALIFICATION
2. HARDWARE QUALIFICATION
3. SAFETY COMPLIANCE

17.1 SOFTWARE QUALIFICATION

The key concern with software is, of course, its reliability.
Sufficient QA should be performed to ensure that the card
operates w~th the different operating systems. When operating
systems are revised, new operating systems are released or when
changes are made to an I/O card which affect its operation,
additional software QA should be performed.

17.2 HARDWARE QUALIFICATION

Hardware testing can be divided into 2 areas:

1. CONFIGURATION TESTING
2. ENVIRONMENTAL TESTING

Configuration Testing involves testing the new I/O card with
different mainframe configurations. Environmental testing
involves testing the I/O card in different operating environments.

94

CHAPTER 17: I/O CARD QUALIFICATION

CONFIGURATION TESTING -- New I/O cards must be tested with
certain mainframe configurations. For example, listed below
are several mainframe/CPU board combinations that exist or
are planned. This is not to say that a new I/O card should
be tested with each combination or that it should be tested
with only these combinations. For example, as new CPU boards
are developed for new mainframes, the plan for configuration
testing should be modified accordingly.

CPU BOARD 9816A 9826A 9836A 9836c 9920A

09816-66512 x

09826-66514 x

09826-66515 x x

09826-66516 x x x x

09826-66517 x x x x

I/O cards should also be tested in the 9888A Bus Expander attached
to a subset of mainframes/CPU boards.

ENVIRONMENTAL TESTING -- In performing environmental tests at
FSD, a subset of possible configurations are selected for testing
in the following areas:

1. Class B testing.

2. TAF testing (prototypes, small sample size, short
duration, high stress). NOTE: TAF = Test-Analyze-Fix.

I

3. STRIFE testing (production boards, larger sample size,
many test cycles). NOTE: STRIFE = Stress-Life.

95

CHAPTER 17: I/O CARD QUALIFICATION

Class B requires RFI testing. FSD Product Assurance has
established the following guidelines for RFI testing of new
I/O cards:

1. VDE level B-2 and FCC Class B RFI specifications must be
met.

2. The new I/O card must be qualified with each product
(or groups of products) that is licensed separately.
I/O cards must currently qualify with the following
mainframes.

1. 9816A
2. 9826A or 9836A or 9836c (all under one license)
3. 9920A.

3. A system test is required. The system must consist
of a mainframe, an input device (e.g. mass memory)
and an output device (e.g. a printer). Where it makes
sense, the new I/O card may be used to interface to
the input or output device. To establish your exact
test configuration, you need to contact FSD's Product
Regulation Dept.

4. The system should actively exercise the new I/O card
during testing.

5. Wher~ a CRT is part of the system, an alternating pattern
of dots on the CRT should be displayed.

ASIDE: IT IS HIGHLY RECOMMENDED THAT A DOCUMENT BE
PREPARED GIVING DETAILED (AND CURRENT) REQUIREMENTS
FOR HARDWARE AND SOFTWARE QUALIFICATION. SUCH
A DOCUMENT IS THE BEST MEANS OF COORDINATING
INTER-CORPORATE DEVELOPMENT AND QUALIFICATION OF
I/O CARDS.

17.3 SAFETY COMPLIANCE

I/O cards should be designed to meet the normal UL/CSA/IEC
safety requirements. In addition, the following guidelines have
been developed within the Computer Group.

1. Ground current carrying capacity: The conductive path
between the I/O cable shield and the safety ground pin of
the power receptacle should be capable of carrying 30 amps
for 120 seconds. This can also be expressed in resistance
for the following 2 cases:

CHAPTER 11: I/O CARD QUALIFICATION

A. For cables less than 4 meters, the DC resistance between
the end of the cable and the safety ground pin of the
power receptacle should be less than 100 milliohms,
measured after 120 seconds.

B. For cable lengths over 4 meters, the DC resistance
between the I/O connector on the card itself and the
safety ground pin of the power receptacle should be less
than 100 milliohms, measured after 120 seconds.

2. Additional clarification is needed for the above specifications:

A. Product Assurance states that the mechanical connection
between the connector shroud and the connector on the
I/O coverplate cannot be relied upon to carry this
current. Therefore, the I/O connector pin(s) alone must be
capable of carrying this current. During testing, the
connector shroud must be isolated from the connector on
the I/O coverplate. Since the safety ground path from
the I/O card to the power receptacle is via the thumbscrews
(and not the PC edge connector), it is implied that the
thumbscrew connection to the rear panel is a reliable
connection.

B. Specifications that refer to measuring resistance
between an I/O card and the power receptacle are
obviously mainframe dependent; to achieve a mainframe
independent specification for the designer, Product
Assurance states that the designer may substitute 'I/O
coverplate at the thumbscrews' for 'safety ground pin of
the power receptacle' in specifications 1A and 1B above,
while substituting 10 milliohms in lieu of 100
milliohms.

3. Because the +5V supply in the Series 200 computers has over
an 8 amp fault current capability, an on-board fuse is
required. Refer to Section 11.4 for the recommended fuse.
Even though current Series 200 mainframes cannot supply
8 amps on the +/- 12V supply, fuses are still required in
these supplies to ensure compliance in future mainframes
that are capable of supplying 8 amps.

91

	001
	002
	003
	004
	005
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97

