
98638A 1)10
a-PORT MUX

BEBOP/CONCERTO

INTERNAL MAINTENANCE SPECIFICATIONS

February 1990

HEWLETT PACKARD

GRENOBLE NETWORKS DIVISION

HP confidential 1

HP confidential 2

REVISION HISTORY

BUG FIX MAY -1988 by Sylvie MOULIN

Due to a design "feature ll ,of the eTe chip,' a' spurious interrupt
is generated When Z80performs a write to the chip to enable
interrupts and when ,own-~unter reaches zero value "at 'the same
time. 4 .

The fix affects CTC initialization for SIO/PIO loopback test in
MX4sT. Only the first two lines of each CTC are used as baud
rate generator. So the initialization is restricted to these
four lines.

CHANGES : in MX4sT see labels MSIO 20 and MSIO 30
locations 2FC(H) and 30B(H)

LD B,4 has been replaced by LD B,2.

BUG FIX FEB-1990 by Sylvie MOULIN

This fix corrects forgettings of changes proposed in CARMEN (HP
98638A) IMS, paragraph 119.2 a) * SIO initialization: a)".
Each time WRO is changed, bit 4 should be set to 1.
In the "original" finnware, changes (with regard to FORDYCE)
have been made in MX4sT and MX4IN.

CHANGES : in MXPTO see locations lE(H), 30(H) and 45(H) .
in MXPTl see locations IF(H), 31(H) and 4.6(H).
in MXPT2 see locations 20(H), 32(H) and 47(H) .
in MXPT3 see locations 21(H), 33(H) and 48 (H) .
in MXSBR see locations 35 (H) and 42 (H) .

HP confidential 3

BUG FIX FEB -1990 by Sylvie MOULIN

This fix reflects a FORDYCE (HP 98642A) fix written by Randy
STOUT in August 1989.
The fix sets up RTSB line before initializing the first SIO
port. This was accomplished by reversing the order of
initialization of the four SIO ports. So now port 3 (SIO 1
ch B) is set up first, then port 2 (SIO 1 ch A), port + (SIO 0
ch B) and port 0 (SIO 0 ch A).
This fix avoids receiving garbage on a port before being in
internal loopback mode.

CHANGES : in MX4sT
- see labels MSIO 120 and MSIO 170

(six lines changed) -
- see label ROM SIO

(order of the-table reversed).

RS422 MODIFICATION FEB-1990 by Sylvie MOULIN

CONCERTO uses an Rs422 ADP. On this Rs422 ADP all the modem
signals are hardware-loopbacked to keep the compatibility with
the RS232 ADP (product number 40299-60002).
During Self Test there is a test to determine whether there is
a loopback hood on each port. To detect that loopback hood data
is looping through the following line combination :

out 3 (SR) ---> in 3 (IC). ..
With the Rs422 ADP this test always detects a hood on all the
ports. And then when the external loopback test. starts, it
fails because TX and RX are not loopbacked too ! (when there is
no loopback hood on each port of course ...)

CHANGES : in MX4sT
all the tests about external loopback have been
deleted.

HP confidential 4

HP confidential 5

CHAPTER 1
PRODUCT IDENTIFICA TION AND OVERVIEW

1.1 IDENTIFICATION

This document describes the internal structure of the firmware implemented for
the HP-DIO II EIGHT MODEM PORT MULTIPLEXER CARD : HP 98638A.

This product will be referred to as CARMEN throughout this document.

Here is the list of software project members :

* Sylvie MOULIN in GND for the firmware,
* Perr,y SCOTT in FSD for the interface between firmware and driver.

Throughout this document HP 98642A product will be referred to as FORDYCE.

NOTE : This document assumes the reader has the full understanding of all the
information given in the firmware External Reference Specifications
(ERS) .

1.2 OVERVIEW

BEBOP is a multiplexor assembly designed for HP9000 serie 3XO system. It
provides the full modem connection of up to 8 asynchronous workstations to the
system in a point-to-point configuration.

BEBOP is the project that releases CARMEN SPECIAL as an ING product.
BEBOP/CARMEN is the same product. CARMEN name will be used hereunder.

CONCERTO is an addendum to CARMEN. CONCERTO provides the Rs422 connection to
the DIO-8 Multiplexer.

CARMEN will be used starting with the #6.2 HPUNIX version and the following
ones.

CARMEN is basically composed of 3 parts a PC board assy, a cable, an Active
Distribution Panel (ADP).

CARMEN
PC BOARD

1
1 9 pin cable ---------
11---------------------11 AD P
1 ---------
1

CARMEN is leveraged from the today 98642A four port Mux and re-use cable and
connection box (ADP) from 40299A NIO Mux. It implements with CREM chip the
SESAME architecture designed in Grenoble Network Division.

HP confidential 6

The PC Board is basically leveraged from the 98642A four port Mux : roughly 2
sets of this electronic are implemented on the board to provide 8 channels.
Some electronic has been added to supply modem connections on all ports. All
data and modem signals are multiplexed inside a chip coded name "CREM".
Information is transmitted on a serial link cable to the Active Distribution
Panel (ADP). Inside the ADP is also a "CREM" chip to demultiplexed data and
modem signals.

As described above, the PC board is mainly composed of 2 four port Mux linked
together from one side to DIO-II P2 connector and other side to CREM chip.
These 2 sets of four ports work exactly in the same way.

HP confidential 7

CHAPTER 2
REFERENCE

2.1 RELEVANT DOCUMENTS

* HP-DIO I four channel terminal multiplexer
firmware
External Reference Specifications (ERS)
by Elizabeth POTEET.

* HP-DIO I four channel terminal multiplexer
firmware
Internal Maintenance Specifications (IMS)
by Elizabeth POTEET.

* HP 98642A four channel asynchronous multiplexer
installation manual (no 98642-90001).

* ZILOG z80 CPU (Central Processing Unit)
Product specification.

* ZILOG z80 CTC (Counter/Timer Circuit)
Product specification.

* ZILOG z80 SIO (Serial Input/Output controller)
Product specification.

* ZILOG z80 PIO (Parallel Input/Output controller)
Product specification.

* MICROPROCESSOR APPLICATIONS REFERENCE BOOK (Volume 1)
Using the Z80 SIO in asynchronous communications·
Application note.

2.2 GLOSSARY

The following is a list of the abreviations used in this document :

- RX Receive, most commonly used to describe the characters which must
be sent to the host from one of the ports.

- TX Transmit, most commonly used to describe the characters which are
sent by the host to one of the ports.

- ISR Interrupt Service Routine.

HP confidential 8

CHAPTER 3
DESIGN OVERVIEW

3.1 DESIGN APPROACH

Because of the CARMEN board structure, there are two microprocessors, two
RAMs and two ROMs. So there are also two CARMEN firmware: each one controls
four modem ports to reach the number of eight for the CARMEN card.

It has been decided to reuse the FORDYCE firmware and to extend it to full
modem ports.

3.2 OVERVIEW OF OPERATION

The purpose of this paragraph is to give an overview of the basic structure
of the CARMEN firmware.

Except for the self test and initialization routine, all of the firmware on
the card is completely interrupt driven.

The CARMEN firmware can be accessed in three ways:

A) system power up

B) soft reset

C) Z80 interrupts
- SIO

* receive interrupt routines
* receive error routines
* transmit interrupt routines
* external status interrupt routines

- CTC
* host interrupt service routine
* timer interrupt service routine
* modem timer interrupt service routine.

3 • 2.1 SYSTEM POWER UP

This causes a card reset and a jump to location Oh in the ROM where is
MX4sT file.

This file consists in a self test which is followed in all cases by the
MX4IN file (the initialization routine).

The end of initialization routine is an idle loop that is in essence the
main routine of the firmware: it is called the lido nothing loop".

HP confidential 9

3.2.2 SOFT RESET

A soft reset causes a NMI interrupt to the z-80 causing a jump to location
66h in the ROM.

This location is a routine which contains a call to the MX4IN file. So the
initialization routine (ending with the lido nothing loop") is executed.

3.2.3 Z80 INTERRUPTS

The Z80 may be interrupted by either the SIOs or the CTCs.

3.2.3.1 INTERRUPTS COMING FROM THE SIOs

For each port, there are four different types of interrupts.

The interrupts vector associated with the SIOs looks like

@ 1FCO TXl transmit ISR (port 1)
@ lFC2 EX 1 external status ISR (port 1)
@ 1FC4 REC1 receive ISR (port 1)
@ lFC6 RX ERR1 receive error ISR (port 1)

@ lFC8 TXO transmit ISR (port 0)
@ lFCA EX 0 external status ISR (port 0)
@ lFCC RECO receive ISR (port 0)
@ 1FCE RX ERRO receive error ISR (port 0)

@ lFDO TX_3 transmit ISR (port 3)
@ lFD2 EX_3 external status ISR (port 3)
@ lFD4 REC_3 receive ISR (port 3)
@ lFD6 RX_ERR3 receive error ISR (port 3).

@ lFD8 TX2 transmit ISR (port 2)
@ lFDA EX-2 external status ISR (port 2)
@ lFDC REC2 receive ISR (port 2)
@ lFDE RX ERR2 receive error ISR (port 2)

An interrupt coming from the SIOs, invokes one of the following files

MX4TX (for the TX i ISRs) ,
MXEXT (for the EX-i ISRs) ,
MX4RX (for the REC i ISRs) ,
RXERR (for the RX _ ERRi ISRs).

HP confidential 10

3.2.3.2 INTERRUPTS COMING FROM THE CTCs

The interrupts vector associated with the CTCs looks like

@ 1FE4 HSTINT (host interrupt)

@ 1FFO TMR ISR (timer interrupt)

@ 1FF6 MDM SUB (modem interrupt)

Host interrupt:
Whenever the host writes a value to the COM_REG, an interrupt is
generated to the z80 via the CTC 0 channel 2.
The ISR invoked by the interrupts vector is HSTINT defined in the MXHST
file.
The purpose of this routine is to determine the type of host interrupt
called.

Timer interrupt
The eTC 1 channel 2 is a 16 millisecond timer. When it times out, the Z80
is interrupted.
The ISR invoked by the interrupts vector is TMR ISR defined in the MXTMR
file.
The purpose of this routine is to send an interrupt to the host to inform
it to check the Rx registers.

Modem interrupt
The CTC 1 channel 3 is a timer which interrupts the z80. The ISR invoked
by the interrupts vector is MDM SUB defined in the MXMDM file.
The purpose of this routine is to check all the modem input lines.

3.3 DESIGN CONVENTIONS & STANDARDS

Because of complexity and real-time delays of the HP-UX MUX driver, the
driver writer didn't want to grab the SEM REG (the semaphore register) any
longer than necessary. So the read/wrIte of some registers have been made
outside the grab-ungrab frame (registers like MODM_OUT_i, MODM_IN_i, RFIFO,
XFIFO) .

HP confidential 11

CHAPTER 4
HARDW ARE CONSIDERATIONS

4.1 Dual Inline Package (DIP) SWITCHES

There are 8 DIP switches on the CARMEN board :

1
2 ••• 3
4 ••• 8

indicates the system console connection
indicates the card interrupt priority
indicates the card select code.

WARNING : Number 8 (of select code) will always be set to zero by hardware.
So you have no action on the least significant bit of the select
code.

NOTE Because of CARMEN board structure, the CARMEN card will be seen in
two addresses. As there is only one DIP switches on this board, the
hardware adds 1 to the select code (on the DIP switches) to obtain
a second select code. So the CARMEN card will be in two
consecutive addresses.
PORTS 0 to 3 of the ADP will be addressed by the LOWER select code
(which ends by 0) and PORTS 4 to 7 of the ADP by the HIGHER select
code (which ends by 1).

4.2 CTCs

There are two CTCs for a Z80 microprocessor.

Each CTC has four counter/timer channels for a total of 8 available in the
CARMEN firmware.

Four of these are used as baud rate generators (one for each port).

One is used for the interrupts coming from the host and two are used as
timers.

The last one is unused.

CTC 0 channel 0 baud rate generator for port 0
CTC 0 channel 1 baud rate generator for port 1
CTC 0 channel 2 host interrupt line
CTC 0 channel 3 unused

CTC 1 channel 0 baud rate generator for port 2
CTC 1 channel 1 baud rate generator for port 3
CTC 1 channel 2 timer for interface registers
CTC 1 channel 3 modem timer for input lines

WARNING make sure that there isn't CTC with the following date codes, 8727
or 8722, on the board.

HP confidential 12

4.3810s

There are two SIOs for a z80 microprocessor.

Each SIO has two channels. Each channel represents one port for the TX and RX
lines.

SIO 0
SIO 0
SIO 1
sro 1

channel A
channel B
channel A
channel B

port 0
port 1
port 2
port 3.

WARNING the RTS signal of SIO 1 channel B is used to select the internal
loopback on the CARMEN card, ie the RTS signal enables the
frontplane RS232 buffer ICs.

4.4 PIOs

There are two PIOs for a z80 microprocessor.

Each PIO has two channels. Each channel represents one port for the modem
lines (CS, DM, RR, Ie, SR, TR, RS).

PIO 0
pro 0
pro 1
PlO 1

channel A
channel B
channel A
channel B

port 0
port 1
port 2
port 3.

WARNING: make sure that there isn't PIO 8551 B version on the board.

4.5 FIRMWARE PRIORITY SCHEME

All firmware events will be interrupt driven.

When the Z-80 is executing an Interrupt Service Routine, interrupts will be
disabled to prevent another interrupt from preempting the current routine.
Therefore, the priority of the interrupts is dependent upon the priority of
the SIO and CTC channels and their placement on the interrupt daisy chain.
The following is a list of the firmware events in order of their priority
(high to low) :

1. RECEIVE DATA - PORT 0
2. TRANSMIT DATA - PORT 0
3. RECEIVE DATA - PORT 1
4. TRANSMIT DATA - PORT 1
5. RECEIVE DATA - PORT 2
6. TRANSMIT DATA - PORT 2
7. RECEIVE DATA - PORT 3
8. TRANSMIT DATA - PORT 3
9. TIMER INTERRUPl'S

10. HOST INTERRUPTS
11. MODEM TIMER INTERRUPTS

HP confidential 13

CHAPTER 5
DEF AUL T SETTINGS

5.1 DEFAULT Duallnline Package (DIP) SWITCHES

1
2 ••• 3
4 ..• 8

(console connection) set to "0" (i.e. no)
(card interrupt priority) set to "3" (i.e. highest)
(card select code) set to "28" (in decimal)

5.2 DEFAUL T LINE CHARACTERISTICS AND FORMAT

When the card powers up, it will set up the SIOs with the default line
characteristics. The host will be able to change these after self test and
initialization routine.

The following is a list of each line characteristic and its default value.
The default line characteristics will be the same for each port.

* SPEED set to "9600 BAUD"
* NUMBER OF STOP BITS set to "1"
* PARITY set to "NONE"
* NUMBER OF BITS PER CHARACTER set to "8"

5.3 DEFAULT BIT MAP

After the initialization routine has been executed, the Bit Map will be
cleared (i.e. all locations = 0).

In other words, the card will not be set to recognize any character.

5.4 DEFAULT TIMERS SETTING

The 16 millisecond timer will be off after power up and the initialization
routine. The host is responsible for enabling the timer.

The modem timer will be on after power up and the initialization routine. It
will cause an input modem lines check which has no effect toward the host
until this one decides to start "work" (i.e. when MODM-MASK-i are different
from zero).

HP confidential 14

CHAPTER 6
MODULE INTERFACE SPECIFICATIONS

6.1 FILES LIST

- MX4sT self-test

- MX4IN initialization routine

MX4RX receive ISR's for all four ports

- RXERR receive error ISR's for all four ports

- MX4TX transmit ISR's for all four ports

- MXTMR 16 ms timer ISR

- MXHST host ISR

- MXEXT external status ISR's for all four ports

- MXPTO port specific interrupts for port 0

- MXPT1 port specific interrupts for port 1

- MXPT2 port specific interrupts for port 2

- MXPT3 port specific interrupts for port 3

- MXSBR subroutines for configuration change interrupt and for send
break interrupt

- MXMOD modem output lines change ISR

- EXTMR 16 ms timer on/off ISR

- MXMDM modem input lines change ISR

- MX VA variable labels

- MX4EQ system equates

HP confidential 15

6.2 TOP-DOWN DIAGRAM

The following is an outline of the relationships of the firmware modules to
each other and the source of the interrupt that starts off a particular chain
of events.

The labels in parenthesis are those which are used in the code. The
preceeding file names are more general because they referred to the UNIX
files.

The file names that are indented are those routines that are called by the
preceeding file name. For example, MX4sT calls MX4IN which in turn calls
MXMDM.

6.2.1 WITHOUT INTERRUPT

MX4sT
/--» MX4IN

1--» MXMDM

6 . 2. 2 WITHIN INTERRUPT

IT SIO --> MX4TX
(TX 0
TX-1
TX-2
TX=3)

IT SIO --> MX4RX
(REC 0
REC-1
REC2
REC=3)

IT SIO - - > RXERR
(RX ERRO
RX-ERR1
RX-ERR2
RX=ERR3)

IT SIO --> MXEXT

HP confidential 16

(EX 0
EX-l
EX-2
EX=3)

IT CTC - - > MXTMR
(TMR_ISR)

IT CTC - - > MXMDM
(MDM SUB
MDM:COM)

IT CTC - - > MXHST
(HSTINT)

1--» MX4sT
(MX4ST)

1--» Mx4IN
(INIT)

1--» EXTMR
(TMROFF)

1--» MXMOD
(MODOUT)

1--» MXPTO
(ISRPTO)

1--» MXSBR
(HSTCON
SNDBRK)

1--» MXPTl
(ISRPT1)

1--» MXSBR
(HSTCON

SNDBRK)
1--» MXPT2

(ISRPT2)
1--» MXSBR

(HSTCON
SNDBRK)

1--» MXPT3
(ISRPT3)

1--» MXSBR
(HSTCON
SNDBRK)

6.2.3 VARIABLES AND EQUATES

MX VA

MX4EQ

HP confidential 17

6.3 ROM MAP

The following is an illustration of ROM showing the files position.

The value at the high byte of ROM is a CRC checksum value which is used to
test ROM in the Self Test.

lFFF ------------------------
eRC CHECKSUM I

lFFC ------------------------
unused I

lFF7 ------------------------
1 ISR VECTORS

lFCO ------------------------
1 unused

MXMDM

I EXTMR

I MXMOD

MXSBR

MXPT3

I MXPT2

I MXPTl

MXPTO

1 MXEXT
1-----------------------
I MXHST I

I MXTMR

I MX4TX

1 RXERR I

MX4RX I

MX4IN

MX4sT
0000 ------------------------

HP confidential 18

6.4 DETAILED DESCRIPTION OF FIRMWARE MODULES

This paragraph is devoted to a detailed description of each of the firmware
modules. A firmware module is rather loosely defined as a piece of code with
one entry point and one exit point which performs one basic function.

This paragraph identifies each of these modules by entry point name and shows
the source of interrupt which causes the execution of the routine.

Included in the description is the following information : all labels which
are either used or defined in the file which have impact on other files
(simple in-file jump labels are not included), variables used in the file
(all variables in the firmware are defined in the file MX-VA) , and all macros
called in the file (all macros used in the firmware are contained in the file
MX4EQ) .

The term "Global Labels" will be used to denote those labels which are
defined in the file being described but used in other files.

Th~ term "External Labels" will be used to denote the opposite : those labels
which are defined in other files and used in the currently described file.

The term "Variables" will be used to describe those labels which are used to
define a portion of RAM address space. As mentioned above, all of the
variables in the firmware are defined in the file MX-VA and are therefore
external to all of the other files.

6.4.1 MX4sT - SELF TEST

This file contains the entire Self Test.

Global Labels
External Labels
Variables
Macros
Include

MX4sT, CTC -ERR 0
INIT
ST-COND ,TEST ,PORT
none
none

For more details, see chapter VII "SELF TEST".

HP confidential 19

6.4.2 MX4IN - INITIALIZATION ROUTINE

The initialization code is contained in this file. At the end of the
initialization, the file also contains the lido nothing ll loop that occupies
the card while waiting for interrupts.

Global Labels INIT, BD-TAB
External Labels TX-O,TX-l,TX-2,TX-3,

REC-O,REC-l,REC-2,REC-3,
RX-ERRO,RX-ERR1,RX-ERR2,RX-ERR3,
EX-O,EX-l,EX-2,EX_3,
CONFG-O,CONFG-l,CONFG-2,CONFG-3,
BD-O,BD-l,BD-2,BD-3,
TMR-ISR,
CTC-ERRO,
HSTINT,
MOM-SUB

Variables THEAD-O,THEAD-l,THEAD-2,THEAD-3,
WR3-0,WR3-1,WR3-2,WR3-3,
TTAIL-O,TTAIL-l,TTAIL-2,TTAIL-3,
BITS-O,BITS-l,BITS-2,BITS-3,
WR4-o,WR4-1,WR4-2,WR4-3,
WRS-O,WRS-l,WRS-2,WRS-3,
TMRFLG,
C-MSTAT-REG,
PORT

Macros none
Include MX4EQ

EXTERNAL DESCRIPTION : INIT

This routine is divided in two parts. The first one is used by the
self test to test NMI. The second part is the initialization code
it-self. All the RAM is set to zero except for the ST-COND register
which indicates the result of self test.

INTERNAL DESCRIPTION : INIT

Clear reset register
Reset cleared interrupt mode
Set initial stack address
Reset all SIOs
Load CTCs with baud rate and time constant value
Configure interrupt vector addresses in the SIOs
Program all SIO channel
Initialize RAM to 0
Initialize bits masks
Initialize the SIO write register variables
Initialize configuration and baud rate registers
Initialize all PIOs
Check the input modem lines
Release semaphore register
Initialize CTC timers
Mainline idle loop

HP confidential 20

6.4.3 MX4RX - RECEIVE ISR's

This file contains the Receive ISR's for all four ports. These routines
are expanded macros.

Global Labels
External Labels
Variables

Macros
Include

REC-0,REC-1,REC-2,REC-3
none
STAT-O,STAT-1,STAT-2,STAT-3,
RHEAD-O,RHEAD-l,RHEAD-2,RHEAD-3,
RTAIL-O,RTAIL-l,RTAIL-2,RTAIL-3,
BIT-MAP,
ICR-TAB,
BITS-O,BITS-1,BITS-2,BITS-3
RECISR
MX4EQ

EXTERNAL DESCRIPTION: REC-O,REC-l,REC-2,REC-3

The four routines, REC-O, REC-l, REC-2 and REC-3 will be described
together as they are virtually the same routine. The code for all four
is defined in the macro RECISR.

The Receive routines are called when the SIO has received a character
at one of the ports. The z-80 accesses the correct vector location for
the interrupt and causes a jump to the correct Receive routine.

The Basic purpose of the Receive routine is to retrieve the character
from the SIO and place it in the correct Receive buffer in RAM along
with an accompanying status byte. The character is placed in RAM, and
then the Bit Map location for the character is checked to see if it is
a special character, i.e., the host wants to know of it presence
immediately. If the correct bit for the character and the port is set,
a Special Character interrupt is sent to the host. It is the
responsibility of the host to determine which character is special
because the Special Character interrupt only notifies the host that
such a character has been received. It doesn't specify which character
it is and where in the buffer it has been placed.

HP confidential 21

INTERNAL DESCRIPI'ION : REC-O,REC-l ,REC-2 ,REC-3

Retrieve head pointer index for Receive buffer
Retrieve tail pointer index for Receive buffer
Tail pointer = Tail pointer + 2
If Head = Tail then ;no more room in buffer

Retrieve character and discard
Set 'buffer overflow' bit in Status byte
Go to exit

else
Retrieve character from SIO
Mask off any parity bits
Put character into buffer
Increment buffer address
Put status byte into buffer
Clear status byte register

;available buffer space

Tail pointer index = tail pointer index + 1
Check correct Bit Map location
If Bit Map position for port set then ;special character

Grab semaphore
Set bit in ICR-TAB for port-specific interrupt
Set bit in INT-COND register
Clear semaphore

Effective tail pointer = base + tail pointer index

UPON ENTRY No relevant values in any registers.

UPON EXIT No relevant values in any registers.

CALLED BY SIO - Receive character interrupt

CALLED ROUTINES none

HP confidential 22

6 . 4. 4 RXERR - RECEIVE ERROR ISR' s

This file contains the Receive Error interrupt service routines for all
four ports. These routines are expanded macros.

Global Labels RX-ERRO ,RX-ERRl ,RX-ERR2 ,RX-ERR3
External Labels None
Variables STAT-O,STAT-l,STAT-2,STAT-3,

RHEAD-O,RHEAD-l,RHEAD-2,RHEAD-3,
RTAIL-O,RTAIL-l,RTAIL-2,RTAIL-3,
BIT-MAP,
ICR-TAB,
BITS-O,BITS-l,BITS-2,BITS-3

Macros SPEC-RX
RECISR

Include MX4EQ

EXTERNAL DESCRIPTION : RX-ERRO,RX-ERR1,RX-ERR2,RX-ERR3

As with the Receive routines, these four routines , RXERRO, RXERR1,
RXERR2, RXERR3, will be described together as they too are virtually
identical except for the port references. In addition, except for the
addition of code to decipher the type of error, these routines are the
same as the Receive routines. As a matter of fact, the same macro is
called. Therefore, only the first portion of these routines will be
described. At the end of that, each Receive error routine is identical
to the regular Receive routine for that port.

The Receive Error routines are called when the SIO detects either a
parity, framing, or SIO overflow error on the received character. The
error type is denoted in the status byte and' the Receive error then
proceeds as the regular receive routine.

INTERNAL DESCRIPTION : RX-ERRO,RX-ERR1,RX-ERR2,RX-ERR3

Retrieve contents of SIO Read Register 1
Shift 1 bit to left ;so aligns with status byte
Mask off all but bits 7,6, & 5
Retrieve status byte register
Write new value to status byte
Reset SIO error latches

*The macro RECISR is now called - the routine proceeds exactly as a
Receive routine.

UPON ENTRY no relevant register values

UPON EXIT no relevant register values

CALLED BY SIO - RECEIVE ERROR INTERRUPT

CALLED ROUTINES none

HP confidential 23

6.4.5 MX4TX - TRANSMIT ISR's

This file contains the Transmit interrupt service routines for all four
ports. These routines are expanded macros.

Global Labels
External Labels
Variables

Macros
Include

TX-O,TX-l,TX-2,TX-3
none
THEAD-O,THEAD-l,THEAD-2,THEAD-3,
TTAIL-O,TTAIL-l,TTAIL-2,TTAIL-3,
TONO,TON1,TON2,TON3,
ICR-TAB,
BITS-O,BITS-l,BITS-2,BITS-3
TX-ISR
MX4EQ

EXTERNAL DESCRIPTION : TX-O,TX-l,TX-2,TX-3

As with the Receive and the Receive Error routines, these four
routines, TX-O, TX-l, TX-2, TX-3, are also functionally identical, i.e.
all four call the same macro. A Transmit interrupt is generated by the
SIO as the SIO transmit buffer goes empty. In other words, the SIO
interrupts the z-80 when it is ready for another character to transmit.

The Transmit interrupt routine is responsible for retrieving a
character from the appropriate Transmit buffer and sending it to the
SIO. The Head and Tail index pointers for the Transmit buffer are
first checked to see if the buffer is empty and the card sends the host
a TX Buffer Empty interrupt. If it is, a value is sent to the SIO to
turn off TX interrupts. If there are characters in the buffer, the
next character is retrieved and sent to the SIO and the Head index is
updated.

INTERNAL DESCRIPTION : TX-O,TX-l,TX-2,TX-3

Retrieve Head pointer index for Transmit buffer
Retrieve Tail pointer index for Transmit buffer
If Head = Tail then ;buffer is empty

Turn off Transmitter interrupts from SIO
Clear Transmitter on/off flag
Grab Semaphore register
Send host a TX Buffer Empty interrupt
Release Semaphore register

else
Effective Head pointer address = Head index + Base
Retrieve character from TX buffer
Send character to SIO
Increment Head index

UPON ENTRY no relevant register values

UPON EXIT no relevant register values

CALLED BY SIO - TRANSMIT BUFFER EMPTY INTERRUPT

CALLED ROUTINES none

HP confidential 24

6.4.6 MXTMR - 16 MILLSEC. TIMER INTERRUPT

This file contains the CTC interrupt service routine which sends a Timer
interrupt to the host.

Global Labels
External Labels
Variables
Macros
Include

TMR-ISR
none
none
none
MX4EQ

EXTERNAL DESCRIPTION : TMR-ISR

This routine, TMR-ISR, is called every time the CTC timer associated
with the routine is to send a Timer interrupt to the host to inform it
to check the Receive buffers for characters.

INTERNAL DESCRIPTION : TMR-ISR

Grab Semaphore register
Send Timer interrupt to host
Release Semaphore

;set bit in INT-COND register

UPON ENTRY no relevant register values

UPON EXIT no relevant register values

CALLED BY CTC - TIME OUT INTERRUPT

CALLED ROUTINES none

HP confidential 25

6.4.7 MXHST - HOST ISR

This file contains the beginning of the interrupt service routine which is
invoked by CTC O,CH 2 when the host puts a value in the COM-REG register.
This file contains the portion of the host ISR which decodes the COM-REG
register to decipher the reason for the interrupt.

Global Labels HSTINT,
EEE2,EEE3,EEE4,EEE5,EEE6,EEE7

External Labels ISRPTO,ISRPT1,ISRPT2,ISRPT3,
MODOUT,
TMROFF,
MX4sT

Variables TMPTAB,
CMND-TAB,
MINT-REG,
C-MINT REG,
MODM-OUT-O,MODM-OUT-l,MODM-OUT-2,MODM-OUT-3

Macros none
Include MX4EQ

EXTERNAL DESCRIPTION : HSTINT

This routine, HSTINT, is called when the host writes a value to the
COM-REG register, i.e. sends an interrupt to the card. This routine
empties the contents of the CMND-TAB and COM-REG registers and begins
checking the bits in both to determine what type of host interrupt was
requested. When the interrupt has been interpreted the correct service
routine is called. Once the interrupt has been completely serviced,
control will return to this routine and a jump will be made to the
beginning of the routine again to see if the host has sent another
interrupt during the course of servicing the current one. This cycle
will continue until the COM-REG register is empty.

INTERNAL DESCRIPTION : HSTINT

Grab Semaphore register
Retrieve value in COM-REG register
If COM-REG register = 0 then goto exit
else
Retrieve value in CMND-TAB
Clear COM-REG and CMND-TAB registers
Release Semaphore register
Check each bit in COM-REG reg. and jump to appropriate routine if set
Go to beginning of routine

UPON ENTRY no relevant register (Z-80) values

UPON EXIT E register contains the remaining bits to be checked
from the original value in the COM-REG register.

CALLED BY CTC - HOST INTERRUPT

CALLED ROUTINES ISRPTO, ISRPT1,ISRPT2,ISRPT3,MODOUT,TMROFF ,MX4sT

HP confidential 26

6 . 4. 8 MXEXT - EXTERNAL STATUS I SR ' s

This file contains the SIO External Status interrupt service routines for
all four ports. An external status interrupt occurs when a Break has been
received.

Global Labels
External Labels
Variables

Macros
Include

EX-O,EX-l,EX-2,EX-3
none
RBRK-O,RBRK-l,RBRK-2,RBRK-3,
STAT-O,STAT-l,STAT-2,STAT-3
none
MX4EQ

EXTERNAL DESCRIPTION : EX-O,EX-l,EX-2,EX-3

As with the Receive, Receive Error, and Transmit routines, these
routines, EX-O, EX-l, EX-2, EX-3, will be described together in this
paragraph. These interrupt service routines are called when one of the
SIO channels has a transition on the Break input. A TX underrun will
also cause this interrupt although these routines will not take any
action if that is what has triggered the ISR.

Break (BRK-SUB) is a subroutine which is called by all four routines.
It will be described later in the current paragraph.

INTERNAL DESCRIPTION: EX-O,EX-l,EX-2,EX-3

Load parameters for Break subroutine
Call BRK-SUB

UPON ENTRY no relevant registers

UPON EXIT Before calling BRK-SUB -
C reg = SIO control address for port
HL reg = Address of Break on/off flag for port
DE reg = Address of Status byte for port

CALLED BY SIO EXTERNAL STATUS INTERRUPT

CALLED ROUTINES BRK-SUB

HP confidential 27

EXTERNAL DESCRIPTION: BRK -SUB

BRK-SUB is a subroutine which is called by EX-O, EX-1, EX-2, and EX-3,
the External Status interrupt service routines for ports 0 through 3.
The purpose of this subroutine is to detect both the beginning of an
incoming Break and the end of an incoming Break in the SIO. (See the
Zilog Z80-SIO Product Specification details on how a Break is detected
by the SIO).

INTERNAL DESCRIPTION: BRK -SUB

If Start-of-Break then
Break Flag: =1
Turn off RX interrupt

else
If End-of-Break then

Break Flag=O
Error reset the port

(BRK flag=O and Break bit in SIO=l)

(To prevent interrupt for null char)

(BRK flag=l and Break bit in SIO=O)

(In case SIO is programmed for odd
parity - null causes parity error)

Set Break bit in status word (Will get RX interrupt for the null
char. when reinable)

Reinable RX interrupt

UPON ENTRY

UPON EXIT

C reg - SIO control address for port
HL reg - Address of Break on/off flag for port
DE reg - Address of Status byte for port

B reg - Contains contents of SIO Read register 0

CALLED BY EX-O, EX-1, EX-2, EX-3

CALLED ROUTINES none

HP confidential 28

6.4.9 MXPTO - MXPTl - MXPl'2 - MXPT3 - PORT SPECIFIC ISR' s

MXPTO

This file contains part of the Interrupt Service
interrupt. In particular it contains the routine for
interrupt for port 0.

routine for a host
a port specific

Global Labels
External Labels

Variables

Macros
Include

MXPT1

ISRPTO
BD-TAB,
EEE2,
SNDBRK,
HSTCON
TMPTAB,
CONFG-O,WR3-0,WR4-o,WR5-0,BD-O,TTAIL-O,THEAD-O,
TONO,BITS-O
HOSTI'X
MX4EQ

This file contains part of the Interrupt Service
interrupt. In particular it contains the routine for
interrupt for port 1.

routine for a host
a port specific

Global Labels
External Labels

Variables

Macros
Include

MXPT2

ISRPTl
BD-TAB,
EEE3,
SNDBRK,
HSTCON
TMPl'AB,
CONFG-l, WR3-1, WR4-1, WR5-1 ,BD-l" TTAIL-l, THEAD-l,
TON1,BITS-l
HOSTI'X
MX4EQ

This file contains part of the Interrupt Service routine for a host
interrupt. In particular it contains the routine for a port specific
interrupt for port 2.

Global Labels
External Labels

Variables

Macros
Include

ISRPT2
BD-TAB,
EEE4,
SNDBRK,
HSTCON
TMPTAB,
CONFG-2,WR3-2,WR4-2,WR5-2,BD-2,TTAIL-2,THEAD-2,
TON2,BITS-2
HOSTI'X
MX4EQ

HP confidential 29

MXPT3

This file contains part of the Interrupt Service
interrupt. In particular it contains the routine for
interrupt for port 3.

Global Labels
External Labels

ISRPT3
. BD-TAB,
EEE5,
SNDBRK,
HSTCON

routine for a host
a port specific

Variables TMPTAB,
CONFG-3,WR3-3,WR4-3,WR5-3,BD-3,TTAIL-3,THEAD-3,
TON3,BITS-3

Macros
Include

HOSTTX
MX4EQ

EXTERNAL DESCRIPTION : ISRPTO, ISRPT1, ISRPT2, ISRPT3

These four routines, ISRPTO, ISRPT1, ISRPT2, ISRPT3, will be documented
together as they are virtually identical except for variable names.
These four routines (one for each of the four ports) identify which
port specific interrupt the host is sending from the bits in ICR-TAB.
The interrupt can be either a Configuration Change interrupt, a TX
Buffer Not Empty interrupt, or a Send Break interrupt (or any
combination of the three).

The purpose of the Configuration Change interrupt is to reconfigure the
line characteristics of the SIO and change the baud rate as desired by
the host. The CONFG register contains the parity type, the number of
stop bits, and the number of bits per character. This register is set
by the host and accessed in this routine by the card. The BD register
is the index to the BD table which contain the C~C Channel Control Word
and prescale value for the baud rate requested.

The Send Break interrupt is fully contained in a subroutine called
SNDBRK which will be described in its own section later in the current
document.

HP confidential 30

INTERNAL DESCRIPTION : ISRPTO, ISRPTl ,ISRPT2 ,ISRPI'3

Retrieve bit 0 from TMP-TAB (bit determined Confg. interrupt)
If bit 0 = 1 then

Call HSTCON (routine does 1st part of Confg.)
Load SIO Write Reg. 4 with new value
Load SIO Write Reg. 5 with new value
Load SIO Write Reg. 3 with new value
Get contents of BD register
Multiply by 2
Add to BD Table base
Retrieve CTC Channel Control Word from BD-TAB
Send to CTC
Inc pointer
Retrieve CTC Time Constant value
Send to CTC

Retrieve remaining bits from CMND-TAB
If bit 1 = 1 then (bit for TX Buffer Not Empty ISR)

If Transmitter flag off then
Retrieve Head Pointer Index for TX Buffer
Retrieve Tail Pointer Index for TX Buffer
If Head <> Tail then

Obtain effective TX Buffer address
Retrieve character
Send character to UART (SIO)
Increment index
Turn on Transmitter flag

If bit 2 = 1 then (bit for Send Break interrupt)
Call SEND BREAK routine

Return to calling routine (calling routine is HSTINT)

UPON ENTRY REGISTER D - contains the TMP-TAB bits which were
retrieved from CMNP-TAB

REGISTER E - DO NOT USE! The HSTCON routine uses this
register to hold th~ contents of the
COM-REG register. Remember, there can be
more than one interrupt at a time sent.

UPON EXIT REGISTER E - Unchanged

CALLED BY HSTINT

CALLS ROUTINES HSTCON, SNDBRK

HP confidential 31

6.4.10 MXSBR - SUBROUTINES FOR PORT SPECIFIC ISR's

This file contains two subroutines which are part of the host interrupt
service routine. These subroutines are called by ISRPTO, ISRPT1, ISRPT2
and ISRPT3. The first subroutine is part of a Configuration Change
interrupt from the host. The second subroutine is part of the Send Break
interrupt from the host.

Global Labels

External Labels
Variables
Macros
Include

HSTCON,
SNDBRK
none
BITS-MSK
none
MX4EQ

EXTERNAL DESCRIPTION : HSTCON

This subroutine, HSTCON, is the first part of the processing of a port
specific Configuration Data Change Interrupt from the host. This
routine basically changes the order of the bits read from the CONFG
register to the corresponding bit patterns needed to program the SIO
write registers. The basic algorithm of this routine is to start with
the value of CONFG and change first the parity bits, then the stop
bits, then the bits per character, to match the corresponding patterns
needed to program the SIO write registers correctly. At the end of
this routine, the A register will contain the three pieces of
information in from the CONFG register with the bits changed so they
match the bit patterns needed by the SIO write registers to make the
actual configuration changes. However, this routine does not include
actually programming the SIO write registers. That is done in the
calling routine (as explained in the section on ISRPTO, ISRPT1, ISRPT2,
ISRPT3). This routine does include programming the mask value in the
BITS-i register which will be used to strip parity bits off of Receive
characters. This mask is based on the number ?f Receive bits per
character requested by the change. (This algorithm is described in the
paragraph 6.5 "Common Algorithmsll).

INTERNAL DESCRIPTION : HSTCON

If bit 1 in CONFG=O then bit
Rotate 2 bits right
Increment A register
Rotate back 2 bits left
Swap bits 4 & 5
If 8 bits per character
BITS-i=FF

If 7 bits per character
BITS-i=7F

If 6 bits per character
BITS-i=3F

If 5 bits per character
BITS-i=lF

HP confidential 32

0=1 (even parity; set parity enable/WR4)
(stop bits pattern same if add 1)
(contains original value of CONFG)

(now matches bits per char in WR3 & 5)

UPON ENTRY A Reg - contains the CONFG register value
Dreg - used by calling routine - DO NOT USE
E reg - used by calling routine - DO NOT USE

UPON EXIT A Reg - contains the altered value of CONFG reg.
Dreg - unaltered
E reg - unaltered

CALLED BY ISRPTO, ISRPT1, ISRPT2, ISRPT3

CALLS ROUTINES none

EXTERNAL DESCRIPTION: SNDBRK

This subroutine, SNDBRK, is used when the host sends the card a Send
Break interrupt. A break interrupt can be notifying the card to either
begin or end a break. The card determines which by checking the Break
bit in WR5. If the Break bit (bit 4)=0 then this is a start of break.
If bit 4=1 then this is a signal to end a break.

INTERNAL DESCRIPTION SNDBRK

If Break bit = 0 then
Set WR5 bit 4 in WR5 variable
Send new WR5 value to SIO

Else
Reset WR5 bit 4 in WR5 variable
Send new WR5 value to SIO

UPON ENTRY Dreg - Used in the calling routine - DO NOT ALTER
E reg - Used in the calling routine - DO NOT ALTER

UPON EXIT D reg unaltered
E reg unaltered

CALLED BY ISRPTO, ISRPT1, ISRPT2, ISRPT3

CALLS ROUTINES none

HP confidential 33

6.4.11 MXMOD - MODEM OUTPUT LINE CHANGE ROUTINE

This file contains the part of the host interrupt service routine which is
responsible for handling a Modem Output Line Change interrupt.

Global Labels
External Labels
Variables

Macros
Include

MODOUT
EEE6
MODM-OUT-O,MODM-OUT-1,MODM-OUT-2,MODM-OUT-3,
MINT-REG,
C-MINT-REG,
none
MX4EQ

EXTERNAL DESCRIPTION : MODOUT

This routine, MODOUT, is basically a subroutine called by the Host
interrupt routine when a Modem Ouput Change is sent by the host. The
purpose of this routine is to set the modem output lines to match the
bit pattern in the MODM-OUT-i register. Bit 0 represents the RS line.
Bit 1 represents the TR line and bit 2 represents the SR line. As
there is no record of which line is different, this routine sets all
the lines as indicated by the MODM-OUT-i register.

INTERNAL DESCRIPTION : MODOUT

For each port
if there is a change on modem output lines

then write new value on PIO
Return to the calling routine

UPON ENTRY E Reg - used in the calling routine - DO NOT ALTER

UPON EXIT E Reg unaltered

CALLED BY HSTINT

CALLS ROUTINES none although returns to HSTINT by a jump

HP confidential 34

6.4.12 EXTMR - TIMER ON/OFF ROUTINE

This file contains the part of the host interrupt service routine which is
responsible for handling a Timer On/Off interrupt.

Global Labels TMROFF
External Labels EEE7
Variables TMRFLG
Macros none
Include none

EXTERNAL DESCRIPTION : TMROFF

This routine, TMROFF, is part of the Host interrupt Timer On/Off
interrupt service routine. The purpose of this routine is to either
turn the 16 millisecond Receive buffer timer on or off. A flag is used
to determine whether it is already on or off. If the flag is off, this
routine turns the timer on and if the flag is on this routine turns the
timer off. The flag is changed accordingly at the end of the routine.

INTERNAL DESCRIPTION : TMROFF

Retrieve the Timer flag
If Timer flag=1 (timer is already on)
Turn off CTC timer
Timer flag=O (update timer flag)

If Timer flag=O (timer is off)
Retrieve CTC Channel Control Word
Send to CTC
Retrieve Time Constant Register value
Send to CTC (restarts timer)
Timer flag=l (update timer flag)

Return to caller

UPON ENTRY E Reg - used in the calling routin& - DO NOT ALTER

UPON EXIT E Reg Unaltered

CALLED BY HSTINT

CALLS ROUTINES none although returns to HSTINT by jump

HP confidential 35

6.4.13 MXMDM - MODEM INPUT LINE CHANGE ROUTINE

This file contains the CTC interrupt service routine and the subroutine
itself which check the modem input lines.

Global Labels MDM-SUB,MOM-COM
External Labels none
Variables MODM-IN-O,MODM-IN-1,MODM-IN-2,MODM-IN-3,

MODM-MASK-O,MODM-MASK-l,MODM-MASK-2,MODM-MASK-3,
MSTAT-REG,
C-MSTAT-REG,
MSTAT-FLAG,
PIO-WM

Macros none
Include MX4EQ

EXTERNAL DESCRIPTION : MOM-SUB

This subroutine is the ISR invoked by CTC 1 CH 3.

INTERNAL DESCRIPTION : MDM-SUB

Disable interrupts
Call MOM-COM
Enable interrupts
Return from interrupt

EXTERNAL DESCRIPTION : MOM-COM

The purpose of this subroutine is to check the status of the four modem
input lines and see whether or not there has been a change in the
lines. If there has been a change, this routine then reflects that
change in the MODM-IN-i register and checks the ~ODM-MASK-i register to
see if the host wants to be interrupted. If the bit in MODM-MASK-i
representing the changed line is on, the card will tpen send an INPUT
MODEM LINE CHANGE INTERRUPT to the host. The four lines that this
routine deals with are the modem lines RR, CS, and DM.

INTERNAL DESCRIPTION MOM-COM

For each port
Read PIO
If bits read = RR, CS, and DM bits in MODM-IN-i then Exit
else

MODM-IN-i := PIO read bits
If MODM-IN-i.AND.MODM-MSK-i > 0 then

grab semaphore
send Input Modem Line Change Interrupt to host
release semaphore

UPON ENTRY none

UPON EXIT no relevant register values

CALLED BY INIT,MOM-SUB

CALLS ROUTINES none

HP confidential 36

6.4.14 MX-VAR - VARIABLES

This file contains all of the variable labels which are used in the
firmware. The file is divided into two segments, a data segment and an
absolute segment. The variables defined in the data segment (DATA) are
those used only by the firmware and the variables defined in the absolute
segment (ORG) are used by both the card and the host.

Global Labels

External Labels
Variables
Macros
Include

every label defined in the file is public. All of
the labels listed as "Variables" in the other file
descriptions are Global Labels in this file
none
not applicable
not applicable
not applicable

HP confidential 37

6.4.15 MX4EQ - EQUATES

This file is not part of the object code. It is a sort of service file
which contains all of the equates used in the firmware and defines all of
the macros. This file is copied to almost every other file in the firmware
with the exception of MX4sT and MX-VA •

The names of the macros contained in this file are:

RECISR - Used in MX4RX
SPEC-RX - Used in RXERR
TX - ISR - Used in MX4TX
HOSTTX - Used in MXPTO, MXPT1, MXPT2, MXPT3

HP confidential 38

6.5 COMMON ALGORITHMS

6.5.1 RECEIVE BUFFER, EMPTY/FULL DECISION

The Receive buffers are handled as circular FIFO data structures with an
associated head and tail index for each. The algorithm used here never
lets the buffer get completely full, so when then head and tail indexes are
equal it means that the buffer is empty, not full. The method for making
sure the buffer never gets completely full is to add 2 to the tail index
and check for equality with the head index before a Receive character is
placed into the buffer. If they are equal, the buffer is assumed full and
the character received is discarded. In essence this means that there is
really only room for 127 characters per Receive buffer instead of 128.

6.5.2 RECEIVE HEAD & TAIL POINTER HANDLING

The head and tail pointers for the Receive buffers consist of Head and Tail
index pointers and a base pointer address. The base pointer is the upper
byte of the Receive buffer address and the head and tail index pointers are
the lower bytes. The effective address then for any address in a Receive
buffer is the concatenation of the base and the head or tail index. As the
Receive buffers are only 256 bytes, buffer wrapparound is automatically
taken care of as the head and tail indexes are 8 bit quantities.

6.5.3 BIT MAP CHECK

As explained in the Firmware ERS, the Bit Map is a 256 byte table with each
byte representing a character. In other words, the character whose value
is 56' is associated with the byte in the Bit Map whose relative placement
in the table is 56 from the beginning of the table. ;, The first four bits in
each Bit Map location represent the four ports. When a character is
received, it is concatenated with the Bit Map Base value to form the
effective address of the Bit Map location associated with the character.
Once the byte is retrieved, the bit representing the port the character was
received at is checked. If the bit is on, the character is a "special"
character and a Special Character interrupt is sent to the host. If the
bit is off, no interrupt is sent.

6.5.4 STRIPPING PARITY BITS

After each received character is retrieved from the SlO, a logical AND is
performed with it and the contents of a location called BITS-MSK. This
location contains a mask designed to strip off any possible parity bits
that might be at- tached to the character. The value of BITS-MSK is based
upon the number of bits per character the card is configured to. If the
card is configured to 7 bits per character, BITS-MSK will contain a "l" in
the first 7 bit locations and a .. a" in the 8th bit. If the card is set to
6 bits per character, BITS-MSK is 00111111 or 3F hex. The same idea holds
for other bits per character settings. BITS-MSK is updated every time the
card is reconfigured.

HP confidential 39

6.5.5 SENDING AN INTERRUPT TO THE HOST - USE OF SEMAPHORE REGISTER

As described in the ERSt when the card wants to send an interrupt to the
host it writes a value to the INT-COND register. However t before writing
to either the INT-COND register or the ICR-TAB t the card will first IIgrab"
the Semaphore register. In other words t the card will check the Semaphore
register to see if it is free. If not t the card will sit and cycle t
continually checking the Semaphore register until the host releases it.
The basic protocol· is the same for the card and the host. Both grab the
Semaphore before accessing either the COM-REG register t the INT-COND
register t the CMND-TAB registers t or the ICR-TAB registers.

6.5.6 STATUS BYTE

There is a location reserved for the status byte which is initially set to
zero in the initialization routine. This byte is retrieved and written to
the appropriate Receive buffer as each character is placed in the buffer.
If there is no room in the buffer and the receive character is discarded,
the buff~r overflow bit is set in this byte. The next character that is
placed in the Receive buffer will also have the status byte with the
overflow bit set, notifying the host that there are missing characters
between the last one picked up and the current character. The Receive
error routine also can alter the status byte to display error conditions
associated with an incoming character. However, once a character is placed
in the buffer with the status byte, the status byte register is cleared for
the next character.

6.5.7 TRANSMIT BUFFER, EMPTY/FULL DECISION

As with the Receive buffers, the Transmit buffers are also handled as
circular FIFO buffers. Also, the Transmit algori thm.,which resolves empty
or full buffer arbitration is the same for Transmit Buffers as it is for
Receive buffers. In the case of the Transmit buffers, the host never lets
the buffer get completely full, so when the Head and Tail pointer indexes
are equal, the buffer is empty.

6.5.8 TRANSMIT HEAD & TAIL POINTER HANDLING

As with the Receive buffer pointers, the head and tail pointers are
actually a concatenation of head and tail pointer indexes and a Transmit
buffer base address (which represents the upper byte of the actual Transmit
buffer address). However, unlike the Receive buffer pointers, the Transmit
head index actually consists of two values, the base lower byte and the
head pointer index. Buffer wrapparound is handled by incrementing the head
pointer index, and masking off the top nibble. When the actual pointer
address is needed, the head index is added to the base lower byte and the
result is concatenated with the base upper byte.

HP confidential 40

6.5.9 REASON FOR CYCLING IN HSTINT ROUTINE

As with all of the interrupt service routines, the HSTINT is
non-interruptable. In other words, interrupts are disabled at the start of
the routine and reinabled at the end of the routine. Consequently, during
the course of this routine, if the host sends another interrupt it will be
lost because the CTC can't buffer interrupts. Therefore, this routine will
keep checking for and servicing interrupts until the COM-REG register is
empty.

6.5.10 DECIPHERING THE TYPE OF INTERRUPT

The E register is used to hold the contents of the COM-REG register as it
is being deciphered. Each bit position in the COM-REG register represents
a particular interrupt (with the exception of bit 7). Therefore, the
interrupts are deciphered by putting the value in the COM-REG register into
the E register and rotating each bit to the right one by one testing the
carry bit each time. If a bit is on, this routine jumps to the subroutine
responsible for handling that particular interrupt. It is possible for
there to be more than one interrupt set in the COM-REG register. When
program control returns from a subroutine, this routine resumes checking
the rest of the bits.

6.5.11 CHANGING THE SIO WRITE REGISTERS TO NEW CONFIGURATION

The subroutine, HSTCON, is responsible for changing the bit pattern in the
CONFG register to match the format in the SIO Write registers (This is
explained in more detail in the section on HSTCON.) Upon return from HSTCON
the B register contains the changed bit pattern. Write Register 4 is
updated by clearing out the old lower byte and ANDing it with the lower
byte of the B register value which contains the bits"representing the new
parity and stop bits information. The new value in Write register 4 is
then written to the SIO. SIO Write register 5 is updated next. Bits 5 and
6 in the B register value represent the new TX' bits-per-character
information. Bits 5 and 6 in the old Write register 5 are cleared and the
replaced with those in the B register. This is then written to the SIO.
Finally, bits 6 & 7 in the B register are substituted for bits 6 and 7 in
Write register 3. These bits represent the RX bits-per-character
information. The new copy of Write register is then written to the SIO.

6.5.12 CHANGING THE BAUD RATE

The BD register contains a number which represents an index into the
BD-TAB, the table which contains the CTC Channel Control Words and the CTC
Time Constant values which determine a specific baud rate. The value in
the BD register is multiplied by 2 (since each baud rate has the two
associated CTC values) and added to the base BD-TAB address to form the
effective address. The correct Channel Control Word and the Time Constant
value are then sent to the CTC.

HP confidential 41

6.5.13 MUTUAL MANAGEMENT FOR MODEM LINES

The management of MSTAT-REG and MINT-REG is the responsability of both the
card and the host.

For MSTAT-REG the card writes it and the host , after reading it, clears
it. For MINT-REG the host writes it and the card, after reading it, clears
it.

HP confidential 42

CHAPTER 7
SELF TEST

The purpose of this chapter is to give a detailed explanation of the Self Test
firmware. Self Test is that portion of code which attempts to functionally
test all accessible hardware on the board. It includes a ROM test, a RAM test,
a CTC test, a SIO test and a PIO test. Self Test resides in the EPROM beginning
at address OH.

There are two ways that Self Test can be invoked: it is automatically invoked
during power up when the Auto Reset line on the Z-80 is pulled and it may be
invoked by a Self Test interrupt from the host.

The following paragraphs will contain a detailed explanation of each of the
component tests in the Self Test. The term "component" is rather loosely here
to refer piece of hardware that can be separately tested.

7.1 SELF TEST INITIALIZATION

The following tasks are done before any of the hardware component tests:

* Interrupts are disabled.

* The stack pointer is initialized.

* The reset bit in the Reset/I.D. register is cleared (the reason is that
the state of this bit is indeterminate after power up and must be cleared
for a Soft Reset to be issued).

* The CTC, SIO and PIO channels are all reset. They should all have been
reset automatically during the power up.

* The IX register which is used to identify the type of failure (in case
Self Test fails) is set to zero. As each test is performed, the IX
register is incremented.

* The COM-REG register is first set to zero, then read back into the A
register. This is to insure that it is both cleared and that the
interrupt line is reset (remember that a write from the host to the
COM-REG register sends an interrupt to the card and a read from the card
to the COM-REG register clears it. Also, the state of the COM-REG
register is indeterminate after power up so this puts it in a known
state) .

NOTE : the COM-REG register cannot really be tested in Self Test because,
as explained above, the host must write to it to generate an
interrupt.

* At the end of this self-test, when it is successful, all the modem
lines (on PIOs) are inactives (i.e. set to "Oil).

HP confidential 43

WARNING: FOR SIOs (see the application note "using the z80 SIO ... ")

- "Up to two transitions can be remenbered by the internal logic of the
SIO. Therefore, it is desirable to do at least two different Reset
External/Status Interrupt commands as late as possible in the
initialization ll

•

"Since it doesn't hurt, these commands are given each time WHO is
change'd to point to another register. This is an easy way to code the
initialization to ensure that the appropriate resets occur".

- "The SIO contains a three-character input buffer for each channel".
During power up (or just after), the CREM (a circuit on the board)
sometimes sends garbage to the SIO. In that case the input buffer has
to be emptied (more details in the SIO-TEST subroutine).

HP confidential 44

7.2 RESERVED ADDRESSES

There are a few reserved locations in the first part of the Self Test. These
are addresses that have (or might have) fixed meaning in certain
circumstances.

There are only two that are fixed : addresses 038H and o66H. They have been
chosen because the Self Test jumps around this section of addresses (35H to
6DH) .

The interrupt vectors for the CTC test are placed in between (addresses 48H
to 57H) simply because there was room there.

7.2.1 ADDRESS 38H

This address is the one triggered if the z-80 ever gets the value FFH as an
operation code.

If the program ever jumps outside the legal address space, ie physical
memory, the value the z-80 gets will most likely be FFH (tri-state line
assuming high) in which case this will be the address which is jumped to.

The routine at this address adds lOOH to whatever is in the IX register to
identify the error and then jumps to the Self Test failure section of code.

7.2.2 ADDRESS 66H

This address is the one triggered when the NMI (Non Maskable Interrupt)
line on the z-80 is pulled.

Setting bit 7 in the Reset/I.D. register causes an NMI.

The code at this location disables interrupts, calls the initialization
routine, reinables interrupts and returns from the NMI.

RECALL THAT : setting bit 7 in the Reset/I.D. register is called a Soft
Reset.

When a Soft Reset is issued by the host, a jump is made
initialization routine and THERE IS NO RETURN FROM THE NMI.
initialization routine jumps over the return in this circumstance.

to the
The

However, to test the NMI, the Self Test also issues a Soft Reset. In this
case, due to a value set in a test variable, the initialization routine
returns control back to the calling routine and the RETN instruction at
location 6BH is executed.

HP confidential 45

7.3 INT_COND AND INTERRUPT REGISTER TEST

~

The INT CONn and INTERRUPT registers are tested together because the function
of INT COND register impacts the INTERRUPT register. In other words, they
are intertwined in some respects.

The INTERRUPT test is split into two parts in the firmware separated by the
NMI and RESET/I.D. register test.

The reason for this is that the first part of the test writes to the INT COND
register which causes the IRQ (bit 6) bit to be set in the INTERRUPT
register. Keeping in mind that we do not want to send an interrupt to the
host, the only way to clear this is either a read from the host or a reset.
Since the NMI test causes a Soft Reset, this bit is cleared.

Then the second part of the INTERRUPT register test is performed.

TEST OUTLINE

Increment IX
Clear bit 7 (lEN) of the INTERRUPT register
Read INTERRUPT register
If bit 7 <> 0 then jump to Self Test error routine

Write to the INT CONn register (should set the IRQ bit in INTERRUPT reg)
Read the INTERRuPT register
Should be IEN=O (bit 7) and IRQ=l (bit 6). If not, jump to the Self Test

error routine

NOTE: AT THIS POINT THE TEST IS SEPARATED BY THE NMI & RESET/I.D. TEST

Set bit 7 of the INTERRUPT register
Read INTERRUPT register
Should be IEN=l, IRQ=O. If not, jump to the Self Test error routine

Clear the INTERRUPT register
Read the INTERRUPT register
Should be IEN=O, IRQ=O

HP confidential 46

7.4 NMI AND RESET 11.0. TEST

The first portion of this test masks off the upper 3 bits of the Reset/I.D.
register and tests the remaining 5 bits for correct card I.D. The correct
card I.D. for the CARMEN card is 5.

The second portion of this code causes a Soft Reset to the z-80 and tests
whether a NMI is actually generated. A value (SVAL) is written to a test
register before the NMI is executed. If the NMI executes correctly, control
will be passed to the initialization routine where the value in the test
register will be changed to match EVAL.

The SVAL and ,EVAL matching algorithm works in the following manner: if the
initialization routine finds the value SVAL in the test register, it changes
the test register value to EVAL and returns to the calling routine. When the
NMI test has regained control, it verifies that the routine actually executed
the NMI by identifying the value EVAL in the test register which was set by
the initialization routine.

If the initialization routine is called and the test register does not have
the value, SVAL in the test register, the initialization routine executes the
rest of its routine and does not return to the caller.

TEST OUTLINE

Increment IX
Retrieve value in RESET/I.D. register
Mask off bit 7 (bits 5 and 6 are hardwired to 0)
If lower bits <> 5 then jump to Self Test error routine

Load Test with Sval
Cause a z-80 reset by setting bit 7 in the RESET/I.D. register
Wait for return from interrupt
Retrieve value in Test
Compare with EVAL. If different, jump to Self Test error routine
Clear Test register

HP confidential 47

7.5 SEMAPHORE REGISTER TEST

There are basically three parts to the Semaphore register test.

The first part puts the register into a known state by writing to it and
testing that the write set it to zero.

The second part of the test checks the Semaphore register again to see if the
read (which was performed to check the write results) set it.

The third part of the test is another write to the Semaphore register and a
check to see if bit 7 went from a 1 to 0 correctly.

The Semaphore register is left set (bit 7=1) by the last read. It will be
cleared in the initialization routine. The reason for this is added
protection against the host attempting to send or receive an interrupt before
the card has completed its Self Test and initialization routine.

NOTE ; Remember that if the Semaphore register is initially reset (bit 7=0),
reading it will return the value with bit 7=0, but the act of reading
the Semaphore register will have set bit 7 to 1. A second read would
confirm this.

TEST OUTLINE

Increment IX
Write to the Semaphore register
Read the Semaphore register
If bit 1=1 then jump to Self Test error routine

Read the Semaphore register
If bit 1=0 then jump to Self Test error routine

Write to the Semaphore register
Read the Semaphore register
If bit 7=1 then jump to Self Test error routine

HP confidential 48

7.6 ROM TEST

This test performs a CRC using the polynomial x**16+x**2+X+l and checks it
against a previously calculated CRC already stored in the upper two bytes of
ROM.

The check character is stored with the low order byte first.

7.7 RAM TEST

This performs a test of the static RAM for stuck-at-O and stuck-at-l faults
and address decoder failures.

The test basically consists of four stages.

In the first, a pattern (55H) is written to every location in RAM.

The second pass consists of reading each location and checking the value read
against the pattern written.

An alternate pattern (AAH) is then written to every location.

The final is pass is a second read of each location, checking each value read
against the second pattern written.

TEST OUTLINE

Increment IX
Write 01010101 to each RAM location
1=0
While (1=1+1) <= end of RAM Do

Begin
If RAM(I) <> 01010101 then jump to Self Test error routine
RAM(I)=10101010

End

I=Index of last RAM location
While (1=1-1) >= Beginning of RAM Do

Begin
If RAM(I) <> 10101010 then jump to Self Test error routine
RAM(I) = 01010101

End
Reset Stack Pointer with Stack Address

HP confidential 49

7.8 CTC TEST

There are basically two CTC tests, both of which are executed on all four
channels of both CTC's.

The first test checks the downcounting ability of the CTC channels by setting
the CTC time constant to a known value, then checking whether it downcounts
correctly within a known time period.

The second test checks the timer ability and interrupt priority each of the
CTC channels by setting them up in sequence and letting them downcount to
zero, cause an interrupt, and jump to the test interrupt vector, altering the
vector for the next interrupt expected.

WARNING: This is a very tricky test with strict timing constraints. For
further explanation see below.

The two tests are performed on the two CTC's in the following order:
Algorithm 1 (the first test) is performed on both CTC first, then Algorithm
2. Each test is done on one CTC at a time.

TEST OUTLINE FOR ALGORITHM 1

Increment IX
Reset all CTC channels
Set up interrupt vectors in RAM with the data in the ROM test interrupt

vectors for the CTC - 8 locations with a jump instruction to a CTC error
routine (in the first test, if the downcounter counts to zero, its an
error and the CTC error routine will call the Self Test error routine).

Set the Interrupt mode to 2
Enable interrupts

NOTE : For the first part of this test, all channels must be read before
256 T states have elapsed from the time each chapnel is started
i.e. before the time constant register downcounts.

For each channel •
Load Channel Control Word (interrupt enabled, timer mode, prescale

value = 256)
Load Time Constant Register = 0

For each channel . . •
Read Time Constant Register
If <> 0 then jump to Self Test error

NOTE : For the second part of this test, all channels must be read after
256 T states but before 512 T states from the time the channel is
started. Remember that the time constant register was originally
set to zero, so when it downcounts (after 256T states) it will be
255.

For each channel
Read Time Constant Register
If <> 255 then jump to Self Test error

Execute this test a second time (without reseting the timing)

HP confidential 50

TEST OUTLINE FOR ALGORITHM 2 :

NOTE: Remember that Algorithm 1 set the jump-to-error-routine
instructions in RAM locations and passed the RAM address to the eTC
as interrupt vector addresses. In the following test, each eTC
channel is set to interrupt in a controlled sequence. The sequence
should be channel 2, followed by channel 0, then channell, finally
channel3 (interrupt priority also determines sequence). The
sequence is verified by giving a different interrupt vector address
to the channel which is expected to interrupt. This new vector
address points to a routine which changes the interrupt vector
address of the second channel which is supposed to interrupt. In
other words, if the channels interrupt in the right sequence the
interrupt does not jump them to the error routine originally
pointed to. Also, each alternate interrupt routine sets a bit in
the B register which verifies that the routines were actually
executed.

Increment IX
Load all eTC channels - interrupt enabled, prescale value = 16, timer mode
Load address of second interrupt routine into RAM CTC vector location
Load Time Constant for each channel (these are carefully calculated as is

the order that the channels are triggered to insure the correct
interrupt sequence.

Enable interrupts
Wait (2 NOP instructions)
Disable interrupts
If B register <> OFOH then call Self Test error routines

SECOND INTERRUPT ROUTINE EXPLANATION

Reload vector address for this channel with old error routine address
Reset channel
Set bit in B register
Load RAM vector address for next expected channel ~ith address of the

second interrupt routine for that channel
Enable interrupts
Return from interrupt

HP confidential 51

7.9 SIO TEST

This test basically performs loopbacks on the transmit and receive lines of
all of the SIO ports.

The test will perform an lIinternal" loopback which disables the frontplane
buffer ICs and sends data out the SIO and back again.

NOTE : Internal loopback is determined by the status of the RTS line on
channel B in SIO 1. If RTS=l, the frontplane RS232 buffer ICs are
disabled and the TX lines loop back into the RX lines.

Available bit in Read Register 0 of the SIO. A deadman timer of approx. 16
milliseconds is set initially to insure that the code does not loop forever
in case there is an error.

TEST OUTLINE :

Reset all CTC channels and program for 19.2K baud
Set up interrupt vector for deadman timer on CTC 1, CH. 2
Program all SIO channels - 8 bit, 1 stop bit, no parity

Internal loopback
Start deadman timer
Enable interrupts
For 1=1 to 8 do

Wait until TX buffer empty
If RX Character Available bit set (Read Reg 0)
then empty the FIFO

If RX Character Available bit set (Read Reg 0)
then empty the FIFO

* because of the
* three-char
* input buffer
* of SIOs

If RX Character Available bit
then jump to Self Test error

Send OAAH on TX line

set (Read Reg 0)

Wait until RX Character Available bit set
Read in character
If <> character sent go to Self Test error routine
Complement test character (now 055H)

Stop deadman timer

NOTE: The subroutine used to loop back data is SIO-TEST.

HP confidential 52

1.10 SELF TEST END

7.10.1 UPON SUCCESSFUL COMPLETION

* Self test will put the PASS variable (value EOH) into the ST COND
register.

* After saving the PASS variable in the ST COND register, a self
test done interrupt is sent to the host.

* Then the self test executes the initialization routine.

7.10.2 UPON UNSUCCESSFUL COMPLETION

* Self test will put the value of the IX register into the ST COND
register. The value in the IX register indicates where the self-test
failed (see the IX values below for their interpretation).

* After saving the IX register in the ST COND register, a self test
done interrupt is sent to the host.

* Then the self test executes (or attempts to execute) the
initialization routine.

7.10.3 SELF TEST RESULTS

IN OTHER WORDS, the card is left in basically the same state upon self test
failure that it is upon a successful completion of self test.

When booting, the system console will display a message identifying the
card by :

* ID number
* select code

When a failure happens, in addition there will be :
* the word "failed"
* a number which indicates the type of failure (the value of ST COND

register) .

HP confidential 53

VALUE OF IX/ST-COND REGISTER UPON SELF TEST FAILURE :

IX = 1 INT_COND and INTERRUPT registers
IX = 2 NMI and RESET / ID register
IX = 3 SEMAPHORE register
IX = 4 ROM
IX = 5 RAM
IX = 6 CTC 0 - algorithm 1
IX = 7 CTC 0 - algorithm 2
IX = 8 CTC 1 - algorithm 1
IX = 9 CTC 1 - algorithm 2
IX = 10 internal loopback on port 0 (SIO 0 channel A)
IX = 11 internal loopback on port 1 (SIO 0 channel B)
IX = 12 internal loopback on port 2 (SIO 1 channel A)
IX = 13 internal loopback on port 3 (SIO 1 channel B)
IX = 1xx jumped outside of address space

HP confidential 54

CHAPTER 8
DA T A STRUCTURE IMPLEMENT A TION

This chapter defines all the symbols which are not used as a label or
subprogram name. All equates and variables used in the firmware are contained
in two files: MX-VA and MX4EQ.

The labels defined in MX-VA are all of the variables used in the firmware.
They will be defined in two section; those that are accessed by both the card
and the host and those that are only accessed by the card.

The labels defined in MX4EQ are equates used throughout the firmware. This
file is copied to almost every other file. The labels defined in MX4EQ are
cross referenced by the files which use each in the individual file
descriptions.

This chapter will merely give a description of the usage of each without
specifying which firmware module uses them.

HP confidential 55

8.1 SHARED VARIABLES (by host and card) IN MX-VA

BD-O This contains the baud rate value for port o.
BD-1 This contains the baud rate value for port 1.
BD-2 This contains the baud rate value for port 2.
BD-3 This contains the baud rate value for port 3.

BIT-MAP : This defines the starting address for the Bit Map table

CMND-TAB : This defines the starting address of the COM-REG
register port specific interrupt table.

CONFG-O
CONFG-1
CONFG-2
CONFG-3

ICR-TAB

Contains the current configuration data code for port 0
Contains the current configuration data code for port 1
Contains the current configuration data code for port 2
Contains the current configuration data code for port 3

This defines the starting address of the INT-COND
register port specific interrupt table.

MINT-REG contains the information designating on which port(s), output
modem lines have to be changed

MODM-IN-O
MODM-IN-1
MODM-IN-2
MODM-IN-3

Contains current status of the input modem lines for port 0
Contains current status of the input modem lines for port 1
Contains current status of the input modem lines for port 2
Contains current status of the input modem lines for port 3

MODM-MASK-O Contains the information designating which modem input
lines the host wants to be notified of in the event
of a change, for port 0

MODM-MASK-1 for port 1
MODM-MASK-2 for port 2
MODM-MASK-3 for port 3

MODM-OUT-O Contains current status of the output modem lines for port
MODM-OUT-1 Contains current status of the output modem lines for port
MODM-OUT-2 Contains current status of the output modem lines for port
MODM-OUT-3 Contains current status of the output modem lines for port

MSTAT-REG : contains the information designating on which port(s), input
modem lines have changed (according to MODM-MASK-i)

RHEAD-O The head pointer index for the Receive FIFO for port 0
RHEAD-l The head pointer index for the Receive FIFO for port 1
RHEAD-2 The head pointer index for the Receive FIFO for port 2
RHEAD-3 The head pointer index for the Receive FIFO for port 3

RTAIL-O The tail pointer index for the Receive FIFO for port 0
RTAIL-1 The tail pointer index for the Receive FIFO for port 1
RTAIL-2 The tail pointer index for the Receive FIFO for port 2
RTAIL-3 The tail pointer index for the Receive FIFO for port 3

HP confidential 56

0
1
2
3

ST-COND Contains the result of Self Test

THEAD-O The head pointer index for the Transmit FIFO for port 0
THEAD-l The head pointer index for the Transmit FIFO for port 1
THEAD-2 The head pointer index for the Transmit FIFO for port 2
THEAD-3 The head pointer index for the Transmit FIFO for port 3

TTAIL-O The tail pointer index for the Transmit FIFO for port 0
TTAIL-l The tail pointer index for the Transmit FIFO for port 1
TTAIL-2 The tail pointer index for the Transmit FIFO for port 2
TTAIL-3 The tail pointer index for the Transmit FIFO for port 3

HP confidential 57

8.2 UNSHARED VARIABLES (by card only) IN MX -VA

BITS-O
BITS-l
BITS-2
BITS-3

Contains mask to strip off parity bits on RX chars for port 0
Contains mask to strip off parity bits on RX chars for port 1
Contains mask to strip off parity bits on RX chars for port 2
Contains mask to strip off parity bits on RX chars for port 3

C-MINT-REG : copy of MINT-REG

C-MSTAT-REG : work area for MSTAT-REG

MSTAT-FLAG : used to indicate which port is scanned

PIO-WM : work area for PIO-i-xx

PORT : store area for IX register and then work area designating one port

RBRK-O
RBRK-l
RBRK-2
RBRK-3

STAT-O
STAT-l
STAT-2
STAT-3

This is the end-of-break-detected flag for port 0
This is the ·end-of-break-detected flag for port 1
This is the end-of-break-detected flag for port 2
This is the end-of-break-detected flag for port 3

Contains the bit pattern for the status register - port 0
Contains the bit pattern for the status register - port 1
Contains the bit pattern for the status register - port 2
Contains the bit pattern for the status register - port 3

TEST : This is a general purpose location used in Self Test

TMPTAB

TMRFLG

TON 0
TONl
TON 2
TON3

WR3-0
WR4-o
WRS-O

WR3-1
WR4-1
WRS-l

WR3-2
WR4-2
WRS-2

WR3-3
WR4-3
WRS-3

The starting addr. of the temporary table for CMND-TAB data

The flag which indicates whether the timer .. is off or on

Transmitter on/off flag for port 0
Transmitter on/off flag for port 1
Transmitter on/off flag for port 2
Transmitter on/off flag for port 3

Contains the current value in SIO write register 3 for port 0
Contains the current value in SIO write register 4 for port 0
Contains the current value in SIO write register S for port 0

Contains the current value in SIO write register 3 for port 1
Contains the current value in SIO write register 4 for port 1
Contains the current value in SIO write register 5 for port 1

Contains the current value in SIO write register 3 for port 2
Contains the current value in SIO write register 4 for port 2
Contains the current value in SIO write register 5 for port 2

Contains the current value in SIO write register 3 for port 3
Contains the current value in SIO write register 4 for port 3
Contains the current value in SIO write register 5 for port 3

HP confidential S8

8.3 EQUATES IN MX4EQ

BEG-BD : Initial value for BD registers - 9600 baud

BEG-CONFG : Initial value for CONFG registers

BREAK: Contains bit position value for the status byte break bit

CTC-O-CO CTC 0 Channel o address
CTC-O-Cl CTC 0 Channel 1 address
CTC-0-C2 CTC 0 Channel 2 address
CTC-O-C3 CTC 0 Channel 3 address

CTC-1-CO CTC 1 Channel 0 address
CTC-l-C1 CTC 1 Channel 1 address
CTC-1-C2 CTC 1 Channel 2 address
CTC-1-C3 CTC 1 Channel 3 address

COM-REG : Address of commamd register

CTC-VO Beginning CTC 0 vector in RAM for Self Test CTC tests

CTC-Vl Beginning CTC 1 vector in RAM for Self Test CTC tests

CTCWRD CTC Channel Control word value for 16 millsec. timer

ERR-MSK : Mask used to isolate status byte bits in RX Error ISR

EVAL : Test value in Self Test - NMI test

FRAME : Contains bit position value for Framing error in Status byte

IC-BIT : Bit position in MODM-MASK and MODM-IN reg. for IC bit

INT-CODE INT-COND register value of Self Test Done interrupt

INT-COND Address of INT-COND register

INT-REG Address of Hardware status register - INT-REG

MOD-INT INT-COND bit for Input Modem Line Change interrupt

OVRRUN Contains bit position value for Overrun error in Status byte

PARITY Contains bit position value for Parity error in Status byte

PASS : Value of ST-COND register when Self Test passes

HP confidential 59

PIO-O-AD PIO 0 Channel A data address
PIO-O-AC PIO 0 Channel A control address
PIO-O-BD PIO 0 Channel B data address
PIO-O-BC PIO 0 Channel B control address

PIO-l-AD PIO 1 Channel A data address
PIO-l-AC PIO 1 Channel A control address
PIO-l-BD PIO 1 Channel B data address
PIO-l-BC PIO 1 Channel B control address

PORTO Bit position for port specific into in INT-COND reg. - port
PORTl Bit position for port specific into in INT-COND reg. - port
PORT 2 Bit position for port specific into in INT-COND reg. - port
PORT3 Bit position for port specific into in INT-COND reg. - port

RAM-BEG Address of beginning of RAM

RAM-SEG Number of 256 byte segments in RAM - used in Self Test

RAM-SIZ Number of bytes in RAM

RESET : Address of RESET/ID register

ROM-BEG Address of beginning of ROM

ROM-END Address of last byte of ROM

ROM-SEG Number of 4K segments of ROM - used in Self Test

RX-BASEO High byte of RX FIFO tail pointer
RX-BASEl High byte of RX FIFO tail pointer
RX-BASE2 High byte of RX FIFO tail pointer
RX-BASE3 High byte of RX FIFO tail pointer

SEM-REG : Address of Semaphore register

SIO-O-AD
SIO-O-AC
SIO-O-BD
SIO-O-BC

SIO-l-AD
SIO-l-AC
SIO-l-BD
SIO-l-BC

SIO 0 Channel A data address
SIO 0 Channel A control address
SIO 0 Channel B data address
SIO 0 Channel B control address

SIO 1 Channel A data address
SIO 1 Channel A control address
SIO 1 Channel B data address
SIO 1 Channel B control address

indexes - port
indexes - port
indexes - port
indexes - port

0
1
2
3

0
1
2
3

SPEC-ICR ICR-TAB bit position value for Special Character interrupt

ST-COND : Address of ST-COND register (this is also defined in &MX-VAR
Its a case of overkill but was done before this was written)

ST-INT INT-COND bit position value for Self Test interrupt

HP confidential 60

STK-ADDR : stack address

SVAL Test value used in Self Test - NMI test

TEST Address of general purpose test location (this is also defined
in &MX-VAR as is ST-COND - another case of overkill)

TFIFO-O
TFIFO-1
TFIFO-2
TFIFO-3

Low byte
Low byte
Low byte
Low byte

base for TX head pointer
base for TX head pointer
base for TX head pointer
base for TX head pointer

index for port 0
index for port 1
index for port 2
index for port 3

TME-INT INT-COND bit position value for Time-Out Timer interrupt

TMSK : Mask to isolate the low nibble of the TX head pointer

TMRPRE : CTC prescale value for the 16 millisecond timer

TX-BASE : Contains the high byte value for all of the TX head pointers

TX-ICR : ICR-TAB bit for TX buffer empty interrupt

VEC : The beginning address of the interrupt vectors in ROM

HP confidential 61

CHAPTER 9
PRODUCT EVOLUTION

9.1 CARMEN

To implement the changes for the modem lines, a choice has been made. I will
first explain this solution. Then I will list the second choice which fits
better the FORDYCE firmware structure.

a) When a change occurs on a modem line, it has been choosen to keep the
FORDYCE manner to indicate that change to the other part (host or card).

COM REG REGISTER

{non-specific} {port-specific}
7 6 543 210

IxxxlST ITMEIMODIP3 IP2 IPl IpO I

I
I
I
I
I
I
I

I
I
I
I
I

I
I
I

I
1------->

1----------->
1--------------->

1------------------->

----------------------->

HP confidential 62

CMND-TAB
7-3 2 1 0

UNUSED I BRK I TX I CON I

I "IBRK ITX ICON I

I "IBRK ITX ICON I

" IBRK ITX ICON I
------------------------------­..

MINT-REG
7-4' 3 2 1 0

UNUSED IP3 IP2 IPl IPO I

INT-COND REGISTER

{non-specific} {port-specific}
7 6 543 210

IxxxlTMEIMODIST Ip3 IP2 IPl Ipo I

I
I
I
I
I
I
I

I
I
I
I
I

1
I
1

I
1------->

1----------->
1--------------->

1------------------->

--------------------------->

ICR-TAB
7-2

UNUSED

1 0

ISPECI TX I

1 .. I SPEC I TX I

I .. ISPECI TX I

I .. I SPEC I TX I

MSTAT-REG
7-4 3 2 1 0

UNUSED IP3 IP2 Ipl IPO I

So MODM bit in COM-REG and INT-COND registers is set to "1". To know on
which port the change occured, the MINT-REG and MSTAT-REG have to be read.

HP confidential 63

b) An other solution could have used the FORDYCE structure for the
port-specific interrupts and the unused bits of CMND-TAB and ICR-TAB.

COM REG REGISTER

{non-specific} {port-specific}
7 6 543 210

IxxxlST ITMElxxxlP3 Ip2 IPl IPO I CMND-TAB
7-3 2 1 a

I I 1 I -------------------------------
I I 1 1-------> I UNUSED IMODM IBRK ITX ICON I
1 1 I -------------------------------
1 I 1-----------> I UNUSED IMODM IBRK ITX ICON I
I I -------------------------------
I 1---------------> I UNUSED IMODM IBRK ITX ICON'
I -------------------------------
1-------------------> I UNUSED IMODM IBRK ITX ICON I

INT-COND REGISTER

{non-specific} {port-specific}
7654321 0

IxxxlTMElxxxlST IP3 IP2 IPl IPO I

I
I
I
I
I
I
I

1
1
I
I
1

I
I
I

I
1------->

1----------->
1--------------->

1------------------->

1 UNUSED"

I UNUSED

I UNUSED

1 UNUSED

ICR-TAB
7-3 2 1 a

IMODM ISPECI TX 1

. IMODM ISPEC, TX I

IMODM ISPECI TX 1

IMODM ISPEC, TX I

So if a change occured on a modem line for a particular port, the
corresponding bit (from a to 3) should be set to "1" in the CMND-TAB or
ICR-TAB to indicate on which port it occured. Then an unused bit of
CMND-TAB or ICR-TAB should be used as a MODM bit.

HP confidential 64

9.2 FORDYCE

Here are some remarks about the FORDYCE firmware. If a PCO was decided for an
other reason, it would be good to make these changes too.

In CARMEN firmware these changes are already done (for the lines of code kept
from FORDYCE to CARMEN firmware of course).

NOTE : The line numbers refer to the assembled source of FORDYCE.

a) Changes to be done in FORDYCE firmware (and already done in CARMEN
firmware because these lines of code were kept) :

* NMI and RESET/I.D. register

Before line 345 an instruction should be included.
It should look like :

XOR A
LD [INT-REG] ,A
LD A, [INT-REG]
AND OCOH
CP 0
JP NZ,ST-ERR

So, when the AND instruction is executed, the logical operation is done
between the value CO and the A register which has been previously
updated with the INT-REG value (without the new line, the A register was
not updated with the INT-REG value, and was always equal to zero for the
execution of the AND instruction).

* Subroutine SIO-TEST

The deadman timer should be stopped at the end of this subroutine. Two
lines should be added before line 1311.
It should look like :

DI
LD A,33H
OUT [CTC-1-C2],A
RET

* Set the BAUD RATE GENERATION CLOCKS in CTCs
(in asynchronous SIO test)

The four channels of each CTC are all initialized with the baud rate
generation clock. But only the two first channels are used as baud rate
generation clock. To prevent a design flaw of CTCs, the two other
initializations have to be removed. So line 928 (before label MSIO-20)
and line 938 (before label MSIO-30) should be changed in the following
manner :

LD B,2

HP confidential 65

* SIO and CTC addresses :

These addresses have 8 bits: B7 ••• BO.

Bits 7 to 4 are used in the following manner
0111 ==> SIO-O
1011 ==> SIO-l
1101 ==> CTC-O
1110 ==> CTC-l

So a "0" in a bit selects a particular circuit.

Bi ts 1 and 0 are used t'o select the channel wi thin a particular circuit
(there are two different channels for a circuit).

Bits 3 and 2 are unused : they are set to "0" but it would be better if
they were set to "1" because a "Oil means a selection ...

* SIO initialization :

a) The ZILOG application note called "using the z80 SIO in asynchronous
communications", recommends to give the Reset External/Status Interrupt
command each time WRO is changed to point to another register ...
This means that each time WHO is changed, bit 4 should be set to "l".

b) Each SIO channel has a three-character input buffer. During power up,
this buffer may get full of garbage. So it would be good to empty it
during the self-test routine.

FOR MORE INFORMATION, see paragraph 7.1 SELF TEST INITIALIZATION.

* RECISR macro :

When a special character is received, the interrupt is first sent to the
host and then the character is put in the FIFO. It would be better to
put the character in the FIFO before sending the interrupt to the host.

b) Changes to be done in FORDYCE firmware (but not done in CARMEN firmware
because these lines of code were not kept) :

* Subroutine LOOP-TEST

The deadman timer is useless in this subroutine. Lines 1213 thru 1217
and line 1247 should be removed. These lines are the following ones

LD A,OB7H
OUT [CTC-1-C2],A
XOR A
OUT [CTC-1-C2],A
EI

DI

HP confidential 66

* About SIO reconfiguration for 8 bit TX and TX enable

Before label PORT2, lines 1147 thru 1150 are useless because SIO 0
~ channel A had been configurated and never used inbetween. These four

lines should be removed. They look like

LD A,S
OUT [SIO-O-AC],A
LD A,68H
OUT [SIO-O-AC],A

9.3 FORDYCE TO CARMEN

a) ALL the FORDYCE files have been modified to convert the FORDYCE
firmware in an HP9000 format.

NOTE : this HP9000 version of FORDYCE firmware is available.

b) Some FORDYCE files have been modified to become CARMEN files. There
are the following ones

- MX4sT,
- MX4IN,
- MXHST,
- MXEXT,
- MXMOD,
- MX-VA,
- MX4EQ.

c) A file has been added for the CARMEN firmware
- MXMDM.

HP confidential 67

Table of contents

CHAPI'ER 1
PRODUCT IDENTIFICATION AND OVERVIEW•............................ 6

CHAPI'ER 2
REFERENCE

2.1 RELEVANT DOCUMENTS
2 • 2 GLOSSARY•.......

CHAPI'ER 3
DESIGN OVERVIEW

3.1 DESIGN APPROACH
3.2 OVERVIEW OF OPERATION

3.2.1 SYSTEM POWER UP.
3.2.2 SOFT RESET
3.2.3 Z80 INTERRUPTS ..

3.2.3.1 INTERRUPTS COMING FROM THE SIOs.
3.2.3.2 INTERRUPTS COMING FROM THE CTCs.

3.3 DESIGN CONVENTIONS & STANDARDS

CHAPI'ER 4

· .8

· .8
· .8

.9

· . · .9
· •. • 9
· · .. 9

.10
. ... 10

· .10
· .11
.11

HARDWARE CONSIDERATIONS 12

4.1 Dual Inline Package (DIP)
4.2 CTCs ·
4.3 SIOs ·
4.4 PIOs ·
4.5 FIRMWARE PRIORITY SCHEME

CHAPI'ER 5
DEFAULT SETTINGS

SWITCHES

......

5.1 DEFAULT Dual Inline Package (DIP) SWITCHES
5.2 DEFAULT LINE CHARACTERISTICS AND FORMAT ••..••.
5.3 DEFAULT BIT MAP •••••••

. ~ · .. 12 ·12
.13

· .13 · · · .13

· .. 14

· .• 14
· .. 14
· •. 14

5.4 DEFAULT TIMERS SE'l"l'ING •••••.•..••........•.••.•.•••.....•..••....••••.. 14

CHAPI'ER 6
MODULE INTERFACE SPECIFICATIONS

6.1 FILES LIST ..•.......•...
6.2 TOP-DOWN DIAGRAM .•.•••

6. 2.1 WITHOUT INTERRUPT ..
6.2.2 WITHIN INTERRUPT
6.2.3 VARIABLES AND EQUATES

6.3 ROM MAP ••.....................
6.4 DETAILED DESCRIPTION OF FIRMWARE MODULES

· .15

....... · •. 15 · ·16
· .16

· · .16
· · .17

· · .. 18 · · · .. 19

Table of contents (continued)

6.4.1 MX4sT - SELF TEST ... 19
6.4.2 MX4IN - INITIALIZATION ROUTINE 20
6.4.3 MX4RX - RECEI'VE ISR' s ... 21
6. 4. 4 RXERR - RECEI'VE ERROR ISR' s ... 23
6.4.5 MX4TX - TR.ANSMIT ISR' s•........... 24
6.4.6 MXTMR - 16 MILLSEC. TIMER INTERRUPT 25
6 . 4. 7 MXlIST - HOST ISR•... 26
6.4.8 MXEXT - EXTERNAL STATU'S ISR' s 27
6.4.9 MXPTO - MXPT1 - MXPT2 - MXPT3 - PORT SPECIFIC ISR?s 29
6.4.10 MXSBR - SUBROUTINES FOR PORT SPECIFIC ISR's 32
6.4.11 MXMOD - MODEM OUTPUT LINE CHANGE ROUTlNE 34
6.4.12 EXTMR - TIMER ON/OFF ROUTINE 35
6.4.13 MXMDM - MODEM INPUT LINE CHANGE ROUTINE 36
6.4.14 MX -VAR - VARIABLES ... 37
6.4.15 MX4EQ - EquATES•.. 38

6. 5 COMt-iON ALGORITJn.!S•...................... 39
6.5.1 RECEIVE BUFFER, EMPTY/FULL DECISION•...................... 39
6.5.2 RECEI'VE HEAD & TAIL POINTER HANDLING 39
6.5.3 BIT MA.P CHECK ••••••••••••••• • ••••••• • •• • •••••••••••• • •••••• • • • • • ••• • 39
6.5.4 STRIPPING PARITY BITS ... 39
6.5.5 SENDING AN INTERRUPT TO THE HOST - USE OF SEMAPHORE REGISTER 40
6 . 5 . 6 STATUS BYTE ... 40
6.5.7 TRANSMIT BUFFER, EMPTY/FULL DECISION 40
6.5.8 TRANSMIT HEAD & TAIL POINTER HANDLING 40
6.5.9 REASON FOR CYCLING IN HSTINT ROUTlNE 41
6.5.10 DECIPHERING THE TYPE OF INTERRUPT 41
6.5.11 CHANGING THE SIO WRITE REGISTERS TO NEW CONFIGURATION 41
6.5.12 CHANGING THE BAtJD RATE .•... 41
6.5.13 MUTUAL MANAGEMENT FOR MODEM LlNES 42

CHAPTER 7
SELF TEST .. 43

7.1 SELF TEST INITIALIZATION•....................... 43
7 .2 RESERVED ADDRESSES•....................•..............•....... 45

7 .2.1 ADDRESS 3aR •• · •••••••••.••••.•••••••••••.•••••••••••••••••••••••••••• 45
7 .2.2 ADDRESS 66H •••••••••••••••••••••••••••••••.••••••••••••••••••••••••. 45

7.3 INT_CONDAND INTERRUPT REGISTER TEST 46
7 . 4 NMI ~ RESET / I • D . TEST•.......... 47
7.5 SEMA.PHORE REGISTER TEST•....•.....•.........••..•...••.....••••.•.. 48
7 . 6 ROM TEST ••••..•.•..••...•......•..............•........•....•..•....... 49
7 • 7 R.AM TEST '... 49
7 .8 eTC TEST•......•..........•.•.......••...•.........•.•..••. 50
7 • 9 S10 TEST .•.•.•••......••.••...........•..•...............•..•..•..•.••• 52
1.10 SELF TEST END ••• 53

7.10.1 UPON SUCCESSFUL COMPLETION .•...............•..•.•..•.•..•.••••••.•. 53
7.10.2 UPON UNSUCCESSFUL COMPLETION .•.•..•.•...•..•.•..•..•••••••...•••... 53
7 .10.3 SELF TEST RESULTS ..• · · ..••.•..••.......••..•....••• · .•. ' ••..•.••.•.. 53

CHAPTER 8
DATA STRUCTURE IMPLE~NTATION•........•..•...................•.•.... 55

8.1 SHARED VARIABLES (by host and card) IN MX-VA 56
8.2 UNSHARED VARIABLES (by card only) IN MX-VA••.... 58
8.3 EQUATES IN t-DC:4EQ•...................................... 59

CHAPTER 9
PRODUCT EVOLUTION

9.1 CARMEN
9.2 FORDYCE
9.3 FORDYCE TO CARMEN

Table of contents (continued)

.62

.62

.65
.•• 67

