
North American Response Centers

HP 3000 APPLICATION NOTE #31

Calling the CREATEPROCESS Intrinsic
Sample Programs

FliiW HEWLETT
-.:~ PACKARD

July 1, 1987
Document pIN 5958-5824R2727

H P 3000 Printer Configuration Guide - Revised
MPE System Logfile Record Formats
H P 3000 Stack Operation
COBOL II/3000 Programs: Tracing Illegal Data
KSAM Topics: COBOL's Index I/O; File Data Integrity
Port Failures, Terminal Hangs, TERMDSM
Serial Printers - Configuration, Cabling, Muxes
System Configuration or System Table Related Errors
Pascal/3000 - Using Dynamic Variables
Terminal Types for HP 3000 HPIB Computers - Revised
Laser Printers - A Software and Hardware Overview
FORTRAN Language Considerations - A Guide to Common Problems
IMAGE: Updating to TurboIMAGE & Improving Data Base Loads
Optimizing VPLUS Utilization
The Case of the Suspect Track for 792X Disc Drives
Stack Overflows: Causes & Cures for COBOL II Programs
Output Spooling
COBOLII and MPE Intrinsics
Asynchronous Modems
VFC Files
Private Volumes
TurboIMAGE: Transaction Logging
H P 2680A, 2688A Error Trailers
H PTrend: An Installation and Problem Solving Guide
The Startup State Configurator
A Programmer's Guide to VPLUS/3000
Disc Cache

Note # Published

4 4/15/86
5 5/01/86
6 5/15/86
7 6/01/86
8 6/15/86
9 7/01/86

10 7/15/86
11 8/01/86
12 8/15/86
13 9/01/86
14 9/15/86
15 10/01/86
16 10/15/86
17 '11/01/86
18 11/15/86
19 12/01/86
20 1/01/87
21 1/15/87
22 2/15/87
23 3/01/87
24 3/15/87
25 4/01/87
26 4/15/87
27 5/01/87
28 5/15/87
29 6/01/87
30 6/15/87

H~ 3000 APPLICATION NOTES are published by the North American Response Centers twice a_
month and distributed with the Software Status Bulletin, These notes address topics, where the volume
of calls received at the Centers indicates a need for addition to or consolidation of information available
through HP support services, You may obtain previous notes (single copies oply, please) by returning
the attached Reader Comment Sheet listing their numbers.

Topic

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not
be liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

This document contains proprietary information which is protected copyright. All rights are reserved.
Permission to copy all or part of this document is granted provided that the copies are not made or
distributed for direct commercial advantage; that this copyright notice, and the title of the publication
and its date appear; and that notice is given that copying is by permission of Hewlett-Packard
Company. To copy otherwise, or to republish, requires prior written consent of Hewlett-Packard
Company.

Copyright @) 1987 by HEWLETT-PACKARD COMPANY

CALLING THE CREATEPROCESS INTRINSIC

With the introduction of the CREATEPROCESS intrinsic in MPE V/E it became possible to create and
activate a son process that uses a $STDLIST and $STDIN different from those used by the father process.
However, in order to use this capability it is necessary to assign a "pointer to a byte array" to an
element of a logical array. This task is easy in SPL, which provides convenient syntax for indirect
addressing, in COBOLII which provides a ". LOC. II pseudo- intrinsic, and in Pascal, which provides a
BADDRESS function that returns a pointer to a byte array. But suppose you have none of these
languages on your system and you need to use this feature with FORTRAN/3000, FORTRAN/??,
BUSINESS BASIC, TRANSACT or some language acquired from an independent software
house? This note supplies a description of the necessary underlying principles and examples,
written and tested at the Response Center, of code for doing this on every language in which it is possible
on the HP3000. You will note the omission of RPG, which cannot call intrinsics and BASIC/3000
which cannot call any external that expects a parameter to be passed by value (which includes all
OPTION VARIABLEexternals; they expect a bit map to be passed by value).

POINTERS ARE ADDRESSES

A future application note will discuss the topic of addressing and parameter passing in further detail.
This note will address only the material necessary for an understanding of calling the
CREATEPROCESS intrinsic.

What is a pointer to a byte array? It is simply a 16 bit number that tells how many BYTES to count from
the DB register to the first BYTE of storage allocated for a byte array. This is also known as the IIbyte
address" of the byte array.

The HP3000 uses word addresses as well as byte addresses. Word addresses,too, are 16 bit numbers and
they tell how many WORDS to count from DB to the first WORD of storage of the object in question.

SOME PRINCIPLES OF PARAMETER PASSING

There are two methods of parameter passing that are important in discussing how to obtain a pointer to a
byte array; passing by value and passing by reference. Passing a parameter by value means that a copy
of the data is received by the called subprogram. Passing by reference means that the called
subprogram receives the byte address or word address at which the data are actually stored.

When calling MPE intrinsics a programmer usually need not be concerned with the details of how a
parameter is passed as long as the intrinsics are declared in the program as system intrinsics. If they. are
declared as system intrinsics, the compiler (for most languages) will open SPLINTR.·PUB. SYS to find out
how the parameters are to be passed and then generate a calling sequence that passes them as expected.
If the intrinsic is OPTION VARIABLE it will also generate the bit map to be passed 'by value that is
required by these intrinsics. All of this is transparent to the programmer.

There are two cases where it is necessary to explicitly control how the parameters are passed to an MPE
intrinsic. First is if you need to "fool" the intrinsic in order to achieve some special result. (In this case
don't declare it as an intrinsic and use the language specific syntax to force the method of passing.)
Second is if you are using TRANSACT. TRANCOMP will not automatically generate the correct
parameter passing methods for MPE intrinsics, even if the intrinsics are declared by
DEFINE(INTRINSIC) in the program.

HOW TO GET A POINTER TO A BYTE ARRAY

In those languages which do not provide a function to return a byte address or an explicit method of
indirection in addressing, you must use the principles sketched above and seek a way get a byte address
into a 16 bit word. If you can do this, you can assign the contents of this word to an element of the
array required byCREATEPROCESS.

The ASCII and BINARY intrinsics provide you with the necessary tools to do this. The ASCII intrinsic·
expects to receive three parameters: WORD, a 16 bit word passed by value; BASE, a 16 bit word passed
by value; STRING, a 16 bit word containing a byte address. The intent is to take the WORD parameter
as a number which is to be converted into an ASCII numeric representation. The BASE parameter
represents the base (octal, decimal, etc.) in which the ASCII representation is to appear. The
STRING parameter points to a storage location where the ASCII string will be returned.

The BINARY intrinsic has two parameters: STRING, a 16 bit word containing a byte address; LENGTH,
a 16 bit word containing a byte address. The intent is the reverse of the ASCII intrinsic. A numeric
ASCII string, stored at the byte address contained in STRING, and of length .LENGTH is to be converted
to its corresponding binary value.

Both of these intrinsics are functions, and return a result to a specified variable of the calling routine.

Now comes the need to IIfool" the ASCII intrinsic in order to achieve a special result. You have a
program in which you have declared a byte array. You have initialized this array to contain the
name of a file to be used as $STDIN for the son process to be created, being careful to terminate the
file name with a carriage return as required. You need to assign a pointer to this byte array to an
element of the array to pass to CREATEPROCESS. You can do this as follows:

1. DO NOT DECLARE THE ASCII INTRINSIC AS A SYSTEM INTRINSIC! Instead, declare it
as a short integer external function written in SPL.

2. Call the ASCII intrinsic using the declared name of the byte array. Note that the byte array
needs a pointer as its first parameter.

3. Use the BINARY intrinsic (it is O. K. to declare it as a system intrinsic) to convert the string
returned by the ASCII intrinsic into a binary number. This number is then assigned into an
element of the array to be passed to CREATEPROCESS.

Since you have not declared the ASCII intrinsic as a SYSTEM intrinsic, the compiler will use the
default method of parameter passing (ie, pass by reference). In the first parameter, the ASCII intrinsic
expects to receive a word by value. The word it actually received was passed by reference, but it
has no way of knowing this. It simply assumes it contains a number to be converted and converts it into
an ASCII string. The BASE parameter must be passed by value. The method of doing this is language
specific and can befound in the appropriate language reference manual. It is also illustrated in the
languages for which it is applicable in the following code examples.

2

USING THE EXAMPLE PROGRAMS

The rest of this note consists of:

1. a sample $STDIN file which contains instructions for TDP.PUB.SYS or EDITOR/3000

2. a sample TEXTFILE for TDP or EDITOR

3. sample programs which can be entered in an editor, compiled, prepped with PH capability
and run

Sample $STDIN File

TEXT TEXTFILE
LIST ALL
EXIT

Sample TEXTFILE for TDP.PUB.SYS

This is a test to verify
the call of the CREATEPROCESS
intrinsic with $STDIN
redirected to another file.

3

SAMPLE PROGRAM FOR BUSINESS BASIC

10 OPTION BASE 1
20 INTRINSIC Createprocess,Binary
30 EXTERNAL SPL SHORT INTEGER Ascii(Fname$, SHORT INTEGER VALUE Base,

ST$)
40 REM
50 REM
60 REM For process handling applications Business BASIC provides the
70 REM SYSTEMRUN statement which eliminates the need to write
80 REM this code~ It is included in this application note in order
90 REM to document a method of getting a pointer to a byte

100 REM array in case it should be needed for some other kind
110 REM of application.
120 REM
130 REM
140 SHORT INTEGER Error,Pin,Itemnums(10),Items(10),Length
150 DIM Progname$[36],St$[10]
160 Progname$="TDP.PUB.SYS II

170 Stdin$="STDIN "
180 REM
190 REM This filename must terminate with a carriage return (CHR$(13»).
200 REM
210 Stdin$[8]=CHR$(13)
220 Items(l)=l
230 Itemnums(1)=3
240 Items(2)=3
250 Itemnums(2)=10
260 Itemnums(3)=8
270 Itemnums(4)=0
280 Base=10
290 Length=FNCALL(Ascii(Stdin$,Base,St$»
300 Items(3)=FNCALL(Binary(St$,Length»
310 CALL Createprocess(Error,Pin,Progname$,Itemnums(*),Items(*»
320 IF Error<>O THEN PRINT Error
330 END

4

PIC X(8) VALUE "STDIN
PIC S9(4) COMP VALUE 3328.

PIC S9(4) COMPo
PIC S9(4) COMPo
PIC X(36) VALUE "TDP.PUB.SYS II

SAMPLE PROGRAM FOR COBOLII

001000 IDENTIFICATION DIVISION.
001000 IDENTIFICATION DIVISION.
001100 PROGRAM-ID. COBOL-EXAMPLE.
001200 AUTHOR. RESPONSE CENTER.
001300 REMARKS. This program is calls the CREATEPROCESS intrinsic
001400 with $STDIN redirected.
001500 DATA DIVISION.
001600 WORKING-STORAGE SECTION.
001700 01 CPERR
001800 01 PIN
001900 01 PROGNAME
002000 01 STDIN.
002100 05 NAME
002200 05 CR
002300 01 ITEMNUMS.
002400 05 ITEMNUM OCCURS 4 TIMES PIC S9(4) COMPo
002500 01 ITEMS.
002600 05 ITEM OCCURS 3 TIMES PIC S9(4) COMPo
002900 PROCEDURE DIVISION.
003000 C-P.
003300 MOVE 3 TO ITEMNUM(1).
003400 MOVE 1 TO ITEM(1).
003700 MOVE 10 TO ITEMNUM(2).
003800 MOVE 3 TO ITEM(2).
004100 MOVE 8 TO ITEMNUM(3).
004200 CALL INTRINSIC ". LOC. II USING @STDIN GIVING ITEM(3).
004300 MOVE 0 TO ITEMNUM(4).
004400 CALL INTRINSIC "CREATEPROCESS" USING CPERR, PIN, PROGNAME,
004500 ITEMNUMS, ITEMS.
004600 IF CPERR NOT EQUAL TO 0 THEN DISPLAY CPERR.
004700 STOP RUN.

5

SAMPLE PROGRAM FOR FORTRAN/3000

$CONTROL USLINIT
PROGRAM FTN3000
SYSTEM INTRINSIC CREATEPROCESS
CHARACTER*36 PROGNAME, FILENAME
INTEGER ERROR, PIN, ITEMNUMS(12)
LOGICAL ITEMS(12), SUSP,LOC
PROGNAME = 'TDP.PUB.SYS '
FILENAME = 'STDIN '

C
C THIS FILENAME MUST TERMINATE WITH A CARRIAGE RETURN
C

FILENAME[7:1] = %15C
ITEMNUMS(1) = 3
ITEMS (1) = %1L
ITEMNUMS(2) = 10
ITEMS(2)=%3L
ITEMNUMS(3)=8
ITEMS(3)=LOC(FILENAME)
ITEMNUMS(4)=0 .
CALL CREATEPROCESS(ERROR,PIN,PROGNAME,ITEMNUMS,ITEMS)
IF (.CC.) 10,20,10

10 CONTINUE
WRITE(6,100) ERROR

20 CONTINUE
STOP

100 FORMAT(' CREATEPROCESS FAILURE - ERROR NUMBER: ' ,13)
END

C
C

LOGICAL FUNCTION LOC(FILENAME)
SYSTEM INTRINSIC BINARY
INTEGER ASCII,LENGTH
CHARACTER*6 STR
CHARACTER*36 FILENAME
LENGTH=ASCII(FILENAME,\10\,STR)
LOC=BINARY(STR,LENGTH)
RETURN
END

6

SAMPLE PROGRAM FOR FORTRAN 77

$STANDARD LEVEL SYSTEM
$USLINIT -
$SHORT

PROGRAM FTN77
IMPLICIT NONE
SYSTEM INTRINSIC CREATEPROCESS
CHARACTER PROGNAME*36,STDIN*36
INTEGER*2 ERROR,PIN,ITEMNUMS(10),ITEMS(10),LOC
STDIN = 'STDIN '
PROGNAME = 'TDP.PUB.SYS

C
C THIS FILE NAME MUST TERMINATE WITH A CARRIAGE RETURN,
C WHICH IS ASCII CHARACTER 13 (DECIMAL).
C

STDIN(7:7) = CHAR(13)
ITEMNUMS(1) = 3
ITEMS(1) = 1
ITEMNUMS(2) = 10
ITEMS(2) = 3
ITEMNUMS(3) = 8
ITEMS(3) = LOC(STDIN)
ITEMNUMS(4) = 0
CALL CREATEPROCESS(ERROR,PIN,PROGNAME,ITEMNUMS,ITEMS)
IF (ERROR .NE. 0) THEN

WRITE(6,100) ERROR
ENDIF
STOP

100 FORMAT(' CREATEPROCESS ERROR NUMBER =',13)
END

C
C
$SHORT

INTEGER*2 FUNCTION LOC(NAME)
$ALIAS ASCII SPL (%REF, %VAL, %REF)

IMPLICIT NONE
SYSTEM INTRINSIC BINARY
CHARACTER*36 NAME
CHARACTER*6 STRING
INTEGER*2 LENGTH~ASCII

LENGTH = ASCII(NAME,10,STRING)
LOC = BINARY(STRING,LENGTH)
RETURN
END

7

SAMPLE PROGRAM FOR PASCAL

$STANDARD LEVEL 'HP3000'$
$USLINIT$-

PROGRAM PASCAL(INPUT,OUTPUT);
TYPE

SMALL = -32768 .. 32767;
SMALARAY = ARRAY [1 .. 5] OF SMALL;
BYTES = PACKED ARRAY[1 .. 36] OF CHAR;

INUMS = RECORD
FLAGS: SMALL;
SUSP: SMALL;
STDIN:SMALL;

END;

VAR ERROR,
PIN: SMALL;
PROGNAME: BYTES;
ITEMNUMS: SMALARAY;
ITEMS: INUMS;
STDIN: BYTES;

{ FIRST PARAMETER OF INTRINSIC }
{ SECOND PARAMETER }
{ THIRD PARAMETER }
{ FOURTH PARAMETER }
{ FIFTH PARAMETER }

PROCEDURE CREATEPROCESS; INTRINSIC;
BEGIN

STDIN := 'STDIN ';
STDIN[7] := CHR(13);
PROGNAME := 'TDP.PUB.SYS '
ITEMNUMS[l] := 3;
ITEMNUMS [2] := 10;
ITEMNUMS[3] := 8;
ITEMNUMS[4] := 0;
ITEMS.FLAGS := 1;
ITEMS.SUSP := 3;
ITEMS.STDIN := BADDRESS(STDIN);
CREATEPROCESS(ERROR,PIN,PROGNAME,ITEMNUMS,ITEMS);

END.

8

SAMPLE PROGRAM FOR SPL

$CONTROL USLINIT
BEGIN

INTEGER ERROR;
INTEGER PIN;
BYTE ARRAY PROGNAME(0:15) := "TDP.PUB.SYS II

INTEGER ARRAY ITEMNUMS(0:8);
ARRAY ITEMS(0:8);
BYTE ARRAY INPUTFILE(0:8) := "STDIN II

BYTE ARRAY ERRNUM(O:8);
ARRAY LBUF(*)=ERRNUM(O);

INTRINSIC CREATEPROCESS,ASCII,PRINT;

INPUTFILE(6) := %15;
ITEMS(O) := 1;
ITEMNUMS(O) := 3;
ITEMS (1) :=3;
ITEMNUMS(1) := 10;
ITEMS(2) := @INPUTFILE;
ITEMNUMS(2) := 8;
ITEMNUMS(3) := 0;

CREATEPROCESS(ERROR, PIN, PROGNAME, ITEMNUMS, ITEMS);
IF ERROR <> 0 THEN

BEGIN
ASCII(ERROR,10,ERRNUM);
PRINT(LBUF,-8,%40);

END;

END.

9

SAMPLE PROGRAM FOR TRANSACT

SYSTEM TRNSCT;

DEFINE(ITEM) PROGNAME
STDIN
CCTL
ERROR
PIN
ITEMNUMS
ITEMNUM
ITEMS
ITEM
STRING
BASE
LENGTH
MAP

LIST PROGNAME:
STDIN:
ERROR:
PIN:
ITEMNUMS:
ITEMS:
STRING:
BASE:
LENGTH:
MAP;

X(36) :
X(8):
I(4)=STDIN(8):
I (4) :
I (4) :

41 (4) :
I(4)=ITEMNUMS(1):

41(4):
I(4)=ITEMS(1):
X(6):
I (4) :
I (4) :
I (4) ;

MOVE (PROGNAME) = IITDP.PUB.SYS II
MOVE (STDIN) = IISTDIN II;
LET (CCTL) = 13*256;

LET OFFSET(ITEMNUM) = 0;
LET OFFSET(ITEM) = 0;
LET (ITEMNUM) = 3;
LET (ITEM) = 1;

LET OFFSET(ITEMNUM) = 2;
LET OFFSET(ITEM) = 2;
LET (ITEMNUM) = 10;
LET (ITEM) = 3;

LET OFFSET(ITEMNUM) = 4;
LET OFFSET(ITEM) = 4;
LET (ITEMNUM) = 8;
LET (BASE) = 10;
PROC ASCII(%(STDIN), #(BASE) , %(STRING), &(LENGTH));
PROC BINARY(%(STRING), #(LENGTH), &(ITEM));
LET OFFSET(ITEMNUM) = 6;
LET (ITEMNUM) = 0;

10

« Note that in TRANSACT you can DEFINE(INTRINSIC) CREATEPROCESS,
but this does not have the effect of opening the SPLINTR file
at compile time and generating the calling sequences in
accordance with the declarations in it for you, as it will in
the other languages. You must explicitly pass the parameters
as the external procedure expects to receive them, including
commas for parameters omitted (two for double word parameters
passed by value if omitted). In the case of OPTION VARIABLE
externals such as CREATREPROCESS this also means that you must
pass a bit map by value. See Chapter 7 of the SPL Reference
Manual for detailed discussion of this matter. »

LET (MAP) = 31;
PROC CREATEPROCESS((ERROR), (PIN), %(PROGNAME),

(ITEMNUMS), (ITEMS), #(MAP));
IF .(ERROR) = 0 THEN GO TO STOP
ELSE DISPLAY "CREATEPROCESS ERROR NUMBER = ":ERROR

STOP:
EXIT;

END;

11

