
INTEREX
HP Users
Conference

August
5-8, 1991
San Diego

RETURN TO:
HPL/RESEARCH LIBRARY

BUILDING #2L
P.O. BOX 10490

PALO ALTO, CA. 94303-0971
PHONE # 415-857-3092

PROCEEDINGS
VOLUMEl

MPE, MPE XL,

OoA-,

Networking,

Management

Th. In'.rnational

Anociolion of

Hewlett·Packard

Compule, U.e,.

~ /1)/6\ f

H 17 H 121
!1q l

~) \

INTEREX
The International Association of Hewlett-Packard Computer Users

PROCEEDINGS
of the

1991 INTEREX HP Users Conference

MPE, MPE Xl, O.A.,
Networking, Management

at p ", :' J'.'.~ ·..-.. ;,-i

G':·:,,:~.:.-..J t;w"--~' :;)~ :~';'" ~~:.::.:~ "~:'..~>i:J lliM

San Diego, California
August 5-8, 1991

Volume 1

Index by Paper Number

3101 Surviving In A Multiple Protocol World
Jay Swearingen - The Apex Group

3102 Save the Trees! (and your printers and people)
Debra Canfield - Dairylea Cooperative Inc.

3103 A Quick Look At the MPE XL Memory Dump For System Managers
DoaaId E. DeFreese .. McDonnell Aircraft Company

3104 Technical Evaluation of Relational Technology on HP 3000/950 at Mohawk CoOege
Robert Hilverth - Mohawk College of Applied Arts & Tech.

3105 Mainframe Software Idanagement Techniques: What Every HP User Should Know
A Betsy Leight .. Operations Control Systems

3106 Oracle ROOMS on HP 3000 - Narrow Tolerance Performance Tuning Tips
Mirek Ziolkowski - DCE Information Management COll!»l1ltancy

3107 Me and My Shadow
101m D. AUeyo-Day - Alleyn-Day International

3110 MPE from a VMS Perspective
Robert S. Dobis - Crowe, Chizek and Company

3111 -Rail System for Tomorrow Data Communication Trains-
AlOO Falossi - Cable Management Systems, Inc.

;J113 Disappearing Dial-Up, Solving Communication Problems
James D. Ham - Southeastern Public Service Authority

3114 MPElXL Internals and Performances
Midlael Hornsby - Beecbglen Development, Inc.

3115 Capacity Planning in the Trenches
Robert Lund .. Lund Performance Solutions

3116 MPE XL Performance Considerations in the 90s
Sian Sieler .. Allegro Consultants, Inc.

3117 Data Integrity and Recovery: The IMAGEIAdager Approach
Alfredo Rego - Adager

) 118 Increasing Availability with Optimal Backup
Jim Nissea .. Hewlett-Packard

3119 High Availability on the HP 3000
lessy Hsu, KeodaIl Sutton - Hewlett-Packard

3120 New Disc Management Intrinsic
Lalitba Pejavar, Pat Alvarez .. Hewlett-Packard

3121 MPE XL Enhanced FOS Security
Rich Webber - Hewlett-Packard

3122 Serial Message Routing & Electronic Authorization
Debra Thompson - Hewlett-Packard Co.

.,)123 Client/Server Application Development Tools
John Yu, Henry Lieu - Hewlett-Packard

3124 Disk Recording Technology From DC to Light
Michael Rusnack - Hewlett-Packard Co.

3125 DISK ARRAYS - Mass Storage of the Future?
Ed Pavlinik - Hewlett-Packard Co.

3126 HP 3000 Systems Management
Robert Winter, David Strauss - Hewlett-Packard Co.

3127 Managing MPE XL Configurations
Doug Claar, Fred Parkes - Hewlett-Packard

Index by Paper Number

3128 Bounds Analysis or The Poor Man's Capacity Plan!
Bryan Carron - Hewlett-Packard Co.

3129 Supporting an NS/3000 Network
Steve Beasley - Hewlett-Packard

3130 Native Mode Spooler - What does it Mean to you?
Gary Fletcher - Hewlett-Packard Co.

3131 HP Predictive Support, Making the Diffenmce in Support
Tamera Stoneburner, Kent Ostby - Hewlett-Packard Co.

3132 First Line Performance Analysis Using OLANCEPLUSIXL
DomIa FountaiD - Hewlett-Packard .

3134 How To Win Memory aad Inftueoce CPU
Scott Pierson - Hewlett-Packard Co.

3135 A Standard Operating System Interface For MPE XL
Rajesh Lalwaai - Howlett-PackanI Co.

3136 Transaction Analysis For Capacity PlaDDing
Ralph T. Kotoski • Hewlett-PackanI Co.

3137 Remote Performance Management For HP Systems
Jay Mellman - Hewlett-Packard Co.

3138 Developing With the User in Min4.
Usa Bums - Hewlett-Packard Co.

3140 The Emulation of UNIX Intrinsics on MPElXL
Jay Zimmett • Quest Software

3201 Oetting Over The Hurdles Of Oracle Financials On The HP 3000s
CraiB P. Albrecht - Cray Research, Inc.

3202 •... , But We Only Have COBOU The Real Dilemma.·
Rafael Benitez, Tom Renz • Martin Marietta Info. Systems Oroup

3203 Application Installation
Frannie Casella - Northern Calif. Cancer Center

3204 Decision Tables - Making the Complex Simpl~

George Federman - George Federman & Associates
3205 Dynamic Menu Systems for the Cognos Product

Oene Harmon - AH Computer Services, Inc.
3206 Simplified TurbolMAOE & VIEW Calls Through COBOL Copy I.b

Rick Hoover - CIV Software
3207 ANSI COBOL 85 or How I Learned to Stop Worrying and Love the Bomb

Robert A. Karlin - Karlins' Komer
3208 Integrating Omnidex into Your System Applications

Tim Klooster - Dynamic Information Systems Corporation
3209 The EH Saftey Rep. Info. System on the Safety Perf. Measurement System is Where

Patricia Irene Loo - EO&G Idaho You'll Find WP and Helps wi a V-PLUS!
3210 The OMNIDEX Handbook-Tips for Tuning OMNIDEX IMS Performance

Shawn Morris - Dynamic Information Systems Corporation
3211 Tradition vs. Transcendence in Software Engineering

Natalie M. Minenko - Oracle Corporation
3212 MPE VIE FORTRAN: The Internals of Alternate Return Paths

Craig Nickerson - United Electric Controls Company
3213 Database Indexing: The Key to Performance

Alfredo Rego - Adager

ii

Index by Paper Number

Understanding CASE

Turbo IMAGE Logging

Relational Database Design

Client/SelVer System Design

The MPE XL System Debugger

Memory Management On MPE XL

Database Standards: Rallying Points

Information Management in the 1990's

Allbase/SQL High Availability Features

The Evolution of Relational Technology

TurbolMAGE/XL's Standard Interface to Third-Party

CASE ME, Case Tools in Software Migration

COBOL 8S on XL Machines: We've Got A Language!

Creating Seamless Packages Through Process Handling

Automate Testing To Improve Software Quality

The Data Warehouse Approach to Developing DSSIEIS

Critical Item Update - What Will It Do For Me?

HP Motif XL: The X Window System On MPE XL

Applied Computerized Telephony: You Won't Be Left On Hold

AIFs on MPE XL

ALLBASE/DB2 CONN-SQL Gateway to IBM DB2 Mainframe Data

Managing A PowerHouse Environment3214 .

David Robinson - PowerSpec Intue~oM~EXL To Your Advantage A Guide for the Applications Progammer3215 smg

Pamela H. Bristow - A.H. Custom Software Making QTP Run Efficiently
3216 .

John D. Alleyn-Day - Alleyn-Day International
3217

Larry Boyd - Bradmark Computer Systems
3218

. Kirk Buecher - Hewlett-Packard Co.
3219

Steven M. Cooper - Allegro Concultants, Inc.

3221 . D.
Lawrence Facer • FACER Information e8lgn

3~obert Green, David Greer - Robelle Com»ulling Ltd.

3223 .
Kareo Heater· Infocentre Corporation

3225
Rick Hoov« • C1V Software

3~ P. Korb _ Innovative Software Solutions, Inc.
3227

David R. Mendoza - Software Development Resources
3228

Peter Ney - DeE Information Management Consultancy

3229 .
Steve Palmer - Steve Palmer & Assocaates

3230
Alfredo Rego - Adager

3232
Jo-ning Ta - Oracle Parkway

3233 . S C
Eric Savage - Dynamic Information ystems orp.

3234
Garry L. Smith· Charles McMurray Company

3235 .
Howard Rosenfield - Oracle Corporation

3236
Scott Cressler - Hewlett-Packard Co.

3237
Steve Aliamus - Hewlett-Packard

3238
Jeanne Elmer - Hewlett-Packard Co.

3239
Alex Tsukerman - Hewlett-Packard

3240
Jim Nagler - Hewlett-Packard

iii

Index by Paper Number

3241 Coexistence: TurboIMAGE and SQL
Tad Olson - Hewlett-Packard

3242 Application Development Alternatives for ALLBASE/SQL
Rajoo Nagar - Hewlett-Packard

3243 MPE XL Development on a Multi-Platform Environment
Beth Eikenbary - Hewlett-Packard

3244 The INs and OUTs of Database Design
Lynn Barnes - Hewlett-Packard

3246 DBChange Plus: New and Improved
Mark Borowy - Hewlett-Packard

3247 Develop Software Using A Synthesis Approach
Phil Nguyen - Lockheed Engineering & Sciences

3248 HP 3000 Case Strategy
Phiroze Petigura - Hewlett-Packard

3902 The Pros and Cons of Prototyping
Georse Federman - George Federman & Associates

3905 Using HPs -F- Words and Gain Control of Your Sequential Files
Richard Roberts - Standard-Thompson Corp.

3911 Data - Now That You've Got It, What Are You Going To Do With It?
John L. Bomba - Innovative Information Systems, Inc.

3912 Pitfalls In Moving To A 4GL
Billy S. Hollis - Zortec

3913 TurboImage and Allbase Converting and Integrating These Data Sources Using 4GLs
Marlene Nesson - Information Builders, Inc.

3917 TurboIMAGEIXL Performance
Denys Beauchemin - Bradmark Technologies Inc.

3920 The Future of IMAGE on the HP 3000 is SQL
Wirt Atmar - AlCS Research, Inc.

3921 Venturing Into ALLBASE
Brad Tashenberg - Bradmark Technolgies, Inc.

4101 Windows - When the Time is Right
Russell Bradford - Bradford Business Systems, Inc.

4102 An Anatomy of a Successful LAN Installation
Neil R. Brooks - Int'l Foundation of Employee Benefit

4103 The Black Hole of PC Investment
James Call - The NPD Group

4104 Cooperative Processing Using Windows 3.0 and Networking
Doug Walker - Walker Richer & Quinn

4105 NewWave: All About Agents
Leonard Block - The Apex Group

4107 Pre-Editing Transacations Using Reflection, MPEX, STREAMX, and PowerHouse
Steve Hammond - Association of American Medical Colleges

4108 Implementing HP's NewWave Office
Dr. David Johnson - Johnson Computer Software Team Limited

4109 Distributed Processing at Harvard University
Joel Martin - Harvard University

4110 EDI Diskette Transfer - The Connectivity Issue
Ken Nutsford - Timeshare Systems Limited

iv

Index by Paper Number

4111 ·Hook me up, Scotty· - Towards the Enterprise Network
Anthony Fumivall- SDUSoftware, Inc.

4112 Growing into NewWave Computing
Jeff Eastman, Thong Pham - Hewlett-Packard Co.

4113 Developing Applications with Client/Server ALLBASE
Anjali Mulgaonkar - Hewlett-Packard Co.

411S Getting SQL Data Into NewWave
Robert Ross - Hewlett-Packard Co.

4116 Managing PC SIW: A Better Way
Roo Slone - Hewlett-Packard Co.

4901 -How To Inventory City Trees With Paradox &. GIS MAP-
Augusta Crutchfield - City of Sunnyvale

SI02 If It Ain't Broke, Don't Fix It!
J.B. Waatenon - CDSI

5103 The Technology of Data Distribution
Roger Lawson - Proactive Systems, Inc.

5104 The Effect of 4GL (Powerhouse) on the MIS Environment
Brad T. Smith - Rochester &. Pittsburgh Coal Co.

5 lOS Maintaining a Quality Staff Starts During the Interview
Jeff Odom - Bahlsen, Inc.

5106 Effectively Managing Your System's Resources
Carl M. Rusk - Infocenlre Corporation

5107 The Myths and Facts of Performance Numbers
Husni Sayed - IBM, Inc.

5108 Motivating Yourself and Your Staff
Lynn A. Novo - Network Systems Company

5109 HP Employment Trends in the 1990's
Jerry Lindsey - CompuSearch of Chatham County

5110 You Want That Ad Hoc Report When? Then Do It Yourself!
Brian Nakagawa - Stars To Go .

5111 The 10 Best Kept Secrets of Managing Technical People
Jason M. Goertz - Mattedor Computer Services

5112 Is Your Disaster Recovery Plan a Disaster?
J.L. Hill - Lockheed Engineering & Sciences Co.

S114 CASE in the HP 3000 Environment
Betsy Leight - Operations Control Systems

S11S Don't be Cruel To A Heart That's TI1Ie
Diane Amos - Amos &. Associates

S116 Expanding Your Computer Operations Into Europe isn't necessarily a vacation!
John R. Bedard - SI. Jude Medical, Inc.

S117 Understanding the Power and Authority Inherent in Technology: The New
Robert Berry, Jeri Wenger - San Bernardino County Information Systems Management Challenge

S118 Support Contracts
Margaret Brunner - Northern California Cancer Center

5119 Software Engineering and Corporate Growth
Julian Estrada Catcedo - Carvajal S.A.

5120 To FAX or not to FAX
Tom Renz - Martin Marietta Data Systems

v

Index by Paper Number

Informatics in the Future

Saving Training Dollars

Earthquakes: A Strategy

High Water and Broken Bridges

Managing The Non-Networked PC

Computer Litigation In The 1990's

So You Want To Buy a Computer?

Managing for Success-Managing UP

Managing Your Data Processing Costs

The Perils of Writing a Security Policy

Support Contracts-A User's Perspective

Motivation: When -KITA- Won't Work

End User Computing - A Formula For Success

How to Commit (or Prevent) Computer Crimes

Why Computer Professional Aren't Extinct....Yet

A New Generation of 4GL's

Shared Data: Understanding It And Using It Correctly

The Troth About Purchasing HP Computer Equipment

5121

Dennis R. Werner - Obtaining the Competitive Edge Through Automated Data Collection5122
Ray Agrusti - Eagle Consulting & Development Corp.

5123
Robert Apsood - Strategic Systems, Inc.

512S
Bud Beamsuard - Syntex Research

5127
Edward L Bye - IofoSol, Inc.

5128 .

Douglas Colter - Iofocentre Corporation Managing Computer Burnout

5129 . . f TN at Chattanooga
Dr. Elisabeth M. Craig - Umvemty 0 ANATOMY OF RECOVERY _ Drawing on Experience

5131 .

James A. Depp - UP TIME Disaster Recovery, I~c. Th P ork Done. Managing a Documentation Project
5132 . Gettmg ~ aperw .

Pamela Dickerson - American Data Industn~ ~rvice Level Agreements-only As Good As The Data
5134

Brian Duncombe - Strategic Software Group Ltd. How To Telecommute And Retain Your Sanity
5135

Paul Edwards - Computer Resource Group
5136 .

Charles Finley - ConAm Corporataon
5137 .

Charles Finley - ConAm Corporataon
5138

Michael M. Finn - 21st Century Systems Group
5139

Jeff Franz - 21st Century Systems Group
5140

Robert M. Gignac
5141

Robert M. Gignac-

5142 . St.
David Haberman - Innovative Informataon ys ems

5143
Suzanne Harmon -

5144 .
Karen Heater - Infocentre Corporataon

5145
Michael Hornsby - Beechglen Development, Inc.

5146
Jim Knight - Medstat Systems, Inc.

5148
Gaylord Maines - Bahlsen, Inc.

5149 .
Louis R. Mills - Bio-Rad LaboratOries

vi

Index by Paper Number

'L' Plates for IMAGE

HP 3000 Backup Strategies

Old MacDonald Had A Network

Managing Employee Learning

Maximizing Your Training Dollars

Bloodless Prototypes and Purchases

·Change: WISH IT WERE EASY?·

The Information Terrorist-Computer Viruses

QUIZ For Beginners (And Not So Beginners)

How To Survive As A Small Shop Manager

Let Go Of That Banana!

Unattended Data Centers.... Fantasy or Reality?

Information Management Technologies Into The 1990's

Working With Difficult People

When Is A RUG Not Something You Walk On Or Beat?

Performance Management - The People Kind

Linking Corporate Strategy And Information Systems

A Practical Approach To Disaster Recovery Planning

Tracking Software Quality Using Standard Questionnaires

Spending To $ave on Software

Popular Mass Storage: Optical Disk and Helical Scan Recording

5150
Louis R. Mills - Bio-Rad Laboratories

5151
Lynn A. Novo - Network Systems Company

5152
Dick 0neI - DCE Information Management Consultancy

5153
John Painter - Computer Solutions Inc

51S4 ' •

Rick Paquette - Weyerhaeuser
5155

Nancy Peacock - Bio-Rad Laboratories Inc
51S6 ' •

Frank J. Pinkela - Unison Software Inc
5157 ' •

Shelby Robert - Proactive Systems
5158

HUSDi Sayed - IEM, Inc.
5161

David G. Robins - Hewlett-Packard
5162

Chosen Cheng - Hewlett-Packard Co
5163 •

Lori Teller, Sandra F10rstedt - Hewlett-Packard
5164

Orland Larson - Hewlett-Packard Co
5166 .

Mike Anoiss. Hewlett-Packard Co. I.T. Strategy and Open Systems

5167 Performance· O·Doug McBride. Hewlett-Packard IS a arty Word Around Here (or, How to Get Your Act Together Using
5170 Capacity Management)

Jon O. Dune _ Dune Placement Services I Surviving With The Simpsons
5916 ' nco

Louis R. Mills - Bio-Rad Laboratories
6102

David Largent - N.G.Gilbert Corp.
6103

David Merit - ORBIT Software
6104

Shelby Robert - Proactive Systems
6105

Jim Alexander - Dynamic Information Systems Corporation
6106

Anthony Furnivall - SOL/Software Inc
6108 ' .

Robyn S. Kerekes - Boat America Corp
6110 .

John T. Monaghan - Rudolph and Sletten, Inc.

vii

Index by Paper Number

6111 The Backup Primer
Jeff Odom - Bahlsen, Inc.

6112 System Management - Baptismal By Fire
Susan Waller - Copos

6113 Copying Files in MPE XL
Joseph Feiner - Hewlett-Packard

6114 -The Evolution of the MIS Professional or What Your Boss Should Have Known
Joseph Mendelsohn - L&J Associates All Along-

T029 The Phases of Quick
David G. Robinson - PowerSpec Intl., Inc.

T032 Managing IT/MIS in the 19908: A Look at a Rapidly Changing Field
John Podkomorski - Hewlett-Packard

viii

Index by AuthQr

Agrusti, Ray Obtaining the Competitive Edge Through Automated Data Collection
5122, Eagle Consulting & Development Corp.

Albrecht, Craig P. Getting Over The Hurdles Of Oracle Financials On The HP 3000s
3201, Cray Research. Inc.

Alexander, Jim Bloodless Prototypes and Purchases
6105, Dynamic Information Systems Corporation

Aliamus, Steve Applied Computerized Telephony: You Won't Be Left On Hold
3237, Hewlett-Packard

AlIeyn-Day, Joim D. Making QTP Run Efficiently
3216. AlIeyn-Day International

AlIeyn-Day. John D. Me and My Shadow
3107, AIIeyn-Day International

Amos, Diane Don't be Cruel To A Heart That's True
5115, Amos & Associates

ADniss, Mike I.T. Strategy and Open Systems
5166. Hewlett-Packard Co.

Apgood, Robert Computer Litigation In 1be 1990's
5123, Strategic Systems. Inc.

Atmar. Wirt The Future of IMAGE on the HP 3000 is SQL
3920. AlCS Resean:h. Inc.

Bames, Lyan The INs and OUTs of Database Design
3244. Hewlett-Packard

Beamguard, Bud Earthquakes: A Strategy
5125. SyDtex Research

Beasley, Steve Supporting an NS/3000 Network
3129. Hewlett-Packard

Beauchemin. Denys TurboIMAGElXL Performance
3917, Bradmart Technologies Inc.

Bedard, John R. Expanding Your Computer Operations Into Europe isn't necessarily a vacation!
5116. St. Jude Medical. Inc.

Benitez. Rafael. Renz, Tom "...• But We Only Have COBOL! The Real Dilemma.·
3202, Martin Marietta Info. Systems Group

Berry, Robert, Wenger. Jeri Understanding the Power and Authority Inherent in Technology: The New
5117, San Bernardino County Information Systems Management Challenge

Block, Leonard NewWave: All About Agents
4105. The Apex Group

Bomba, John L. Data - Now That You've Got It, What Are You Going To Do With It?
3911, Innovative Infonnation Systems, Inc.

Boronkay, Mark DBChange Plus: New and Improved
3246, Hewlett-Packard

Boyd, Larry Turbo IMAGE Logging
3217, Bradmark Computer Systems

Bradford, Russell Windows - When the Time is Right
4101, Bradford Business Systems, Inc.

Bristow, Pamela H. Using MPE XL To Your Advantage A Guide for the Applications Progammer
3215. A.H. Custom Software

Brooks, Neil R. An Anatomy of a Successful LAN Installation
4102. Int'l Foundation of Employee Benefit

ix

Index by AuthQr

Bronner, Margaret Support Contracts
5118, Northern California Cancer Center

Buecher, Kirk The Data Warehouse Approach to Developing DSSIEIS
3218, Hewlett-Packard Co.

Burns, Lisa Developing With the User in Mind
3138, Hewlett-Packard Co.

Bye, Edward L. Managing for Success-Managing UP
5127, InfoSol, Inc.

Call, James The Black Hole of PC Investment
4103, The NPD Group

Canfield, Debra Save the Trees! (and your printers and people)
3102, Dairylea Cooperative Inc.

Carroll, Bryan Bounds Analysis or The Poor Man's Capacity Plan!
3128, Hewlett-Packard Co.

Casella, Frannie Application Installation
3203, Northern Calif. Cancer Center

Catcedo, Julian Estrada Software Engineering and Corporate Growth
5119, Carvajal S.A.

Cheng, Chosen Maximizing Your Training Dollars
5162, Hewlett-Packard Co.

Claar, Doug, Parkes, Fred Managing MPE XL Configurations
3127, Hewlett-Packard

Colter, Douglas End User Computing - A Formula For Success
5128, Infocentte Corporation

Cooper, Steven M. Critical Item Update - What Will It Do For Me?
3219, Allegro Concultants, Inc.

Craig, Dr. Elisabeth M. Managing Computer Burnout
5129, University of TN at Chattanooga

Cressler, Scott HP Motif XL: The X Window System On MPE XL
3236, Hewlett-Packard Co.

Crutchfield, Augusta "How To Inventory City Trees With Paradox &. GIS MAP"
4901, City of Sunnyvale

DeFreese, Donald E. A Quick Look At the MPE XL Memory Dump For System Managers
3103, McDonnell Aircraft Company

Depp, James A. ANATOMY OF RECOVERY - Drawing on Experience
5131, UP TIME Disaster Recovery, Inc.

Dickerson, Pamela Getting The Paperwork Done: Managing a Documentation Project
5132, American Data Industries

Dobis, Robert S. MPE from a VMS Perspective
3110, Crowe, Chizek and Company

Duncombe, Brian Service Level Agreements-Only As Good As The Data
5134, Strategic Software Group Ltd.

Dune, Jon o. Surviving With The Simpsons
S170, Durre Placement Services, Inc.

Eastman, Jeff, Pham, Thong Growing into NewWave Computing
4112, Hewlett-Packard Co.

Edwards, Paul How To Telecommute And Retain Your Sanity
5135, Computer Resource Group

x

Index by Authoi-

Eikenbary, Beth MPE XL Development on a Multi-Platform Environmeat
3243, Hewlett-Packard

Elmer, Jeanne AlPs on MPE XL
3238, Hewlett-Packard Co.

Facer, Lawrence Memory Management On MPE XL
3221, FACER Information Design

Falossi, Aldo -Rail System for Tomorrow Data Communication Trains-
3111, Cable Management Systems, Inc.

Federman, George Decision Tables - Making the Complex Simple
3204, George Federman & Associates

Federman, George The Pros and Cons of Prototyping
3902, George Federman & Associates

Feiner, Joseph Copying Files in MPE XL
6113, Hewlett-Packard

Finley, awlea Informatics in the Future
5137, CooAm Corporation

Finley, Charles The Truth About Purchasing HP Computer Equipment
5136, CooAm Corporation

Finn, Michael M. Support Contracts-A User's Perspective
5138, 21st Century Systems Group

Fletcher, Gary Native Mode Spooler - What does it Mean to you?
3130, Hewlett-Packard Co.

Fountain, DoaDa Fi~1 Line Performance Analysis Using GLANCEPLUSIXL
3132, Hewlett-Packard

Franz, Jeff Saving Training Dollars
5139, 21st Century Systems Group

Fumivall, Anthony -Hook me up, Scotty- - Towards the Enterprise Network
4111, SDUSoftware, Inc.

Fumivall, Anthony Old MacDonald Had A Network
6106, SDUSoftware, Inc.

Gignac, Robert M. Motivation: When -KITA- Won't Work
5141

Gignac, Robert M. So You Want To Buy a Computer?
5140

Goertz, Jason M. The 10 Best Kept Secrets of Managing Technical People
5Ill, Mattedor Computer Services

Green, Robert, Greer, David The MPE XL System Debugger
3222, Robelle Consulting Ud.

Haberman, David Managing The Non-Networked PC
5142, Innovative Information Systems

Ham, James D. Disappearing Dial-Up, Solving Communication Problems
3113, Southeastern Public Service Authority

Hammond, Steve Pre-Editing Transacations Using Reflection, MPEX, STREAMX, and
4107, Association of American Medical Colleges PowerHouse

Harmon, Gene Dynamic Menu Systems for the Cognos Product
3205, AH Computer Services, Inc.

Harmon, Suzanne Why Computer Professional Aren't Extinct....Yet
5143

Heater, Karen A New Generation of 4GL's
5144, Infocentre Corporation

xi

Index by Author

Heater. Kareo Understanding CASE
3223. Infocentre Corporation

Hill. J.L. Is Your Disaster Recovery Plan a Disaster'?
5112. Lockheed Engineering &. Sciences Co.

Hilverth. Robert Technical Evaluation of R~lationaiTechnology on HP 3000/950 at Mohawk
3104. Mohawk College of Applied Arts &. Tech. College

Hollis. Billy S. Pitfalls 10 Moving To A 4GL
3912. Zortec

Hoover. Rick Simplified TurbolMAGE &. VIEW Calls Through COBOL Copy l.b
3206. CIV Software

Hoover'. Rick COBOL as on XL Machines: We've Got A Language!
322S. CIV Software

Hornsby, Michael MPEIXL Internals and PerfOJ1D8llCeS
3114. Beechsleo Development. Inc.

Homsby, Micbael Managing Your Data Processing Costs
5145, Beechgleo Development. Inc.

Hsu, Jessy. Sutton. Kendall High Availability on the HP 3000
3119. Hewlett-Packard

Johnson. Dr. David Implementing HP's NewWave Office
4108. Johnson Computer Software Team Limited

Karlin. Robert A. ANSI COBOL 85 or How I Learned to Stop Worrying and Love the Bomb
3207. KarliDs' Komer

Kerekes. Robyn S. QUIZ For Beginners (And Not So Beginners)
6108. Boat America Corp.

Klooster. Tam Integrating Omnidex into Your System Applications
3208. Dynamic Information Systems Corporation

Knight. Jim The Perils of Writing a Security Policy
5146. Medstat Systems. Inc.

Korb. JobD P. Creating Seamless Packages Through Process Handling
3226. 1oDovative Software Solutions, Inc.

Kotoski. Ralph T. Transaction Analysis For Capacity Planning
3136. Hewlett-Packard Co.

Lalwani. Rajesb A Standard Operating System Interface For MPE XL
3135. Hewlett-Packard Co.

Largent. David When Is A RUG Not Something You Walk On Or Beat?
6102, N.G.Gilbert Corp.

Larson, Orland Information Management Technologies Into The 1990's
5164. Hewlett-Packard Co.

Lawson. Roger The Technology of Data Distribution
5103, Proactive Systems, Inc.

Leight, Betsy CASE in the HP 3000 Environment
5114, Operations Control Systems

Leight. Betsy Mainframe Software Management Techniques: What Every HP User Should
3105. Operations Control Systems Know

Lindsey, Jerry HP Employment Trends in the 1990's
5109, CompuSearch of Chatham County

Loo, Patricia Irene The EH Safley Rep. Info. System on the Safety Perf. Measurement System is Where
3209, EG&.G Idaho you·n Find WP and Helps wi a V-PLUS!

xii

Index by Author

HP 3000 Backup Strategies

Working With Difficult People

High Water and Broken Bridges

Capacity Planning in the Trenches

How To Survive As A Small Shop Manager

Increasing Availability with Optimal Backup

The Information Terrorist-Computer Vinases

Performance Management - The People Kind

Distributed Processing at Harvard University

Develop Software Using A Synthesis Approach

How to Commit (or Prevent) Computer Crimes

Tradition vs. Transcendence in Software Engineering

~veloping Applications with Client/Server ALLBASE

Application Development Alternatives for ALLBASElSQL

You Want That Ad Hoc Report When? Then Do It Yourselfl

MPE VIE FORTRAN: The Internals of Alternate Return Paths

ALLBASE/DB2 CONN-SQL Gateway to IBM DB2 Mainframe Data

·The Evolution of the MIS Professional or What Your Boss Should Have Known
All Aloog·

Automate Testing To Improve Software Quality

Lund, Robert
3115, Lund Performance Solutions

Maines, Gaylord
5148, Bahlsen, Inc.

Martin, Joel
4109, Harvard University

McBride, Doug Performance is a Dirty Wortl Around Here (or, How to Get Your Act Together Using
5167, Hewlett-Packard Capacity Management)

MeI1maD, Jay Remote Performance Management For HP Systems
3137, Hewlett-Packard Co.

Mendelsohn, Joseph
6114, L&J Associates

Mendom, David R.
3227, Software Development Resources

Merit, David
6103, ORBIT Software

Mills, Louis R.
5ISO, Bio-Rad Laboratories

Mills, Louis R.
5149, Bio-Rad Laboratories

Mills, Louis R.
5916, Bio-Rad Laboratories

Mineako, Natalie M.
3211, Oracle Corporation

MooagbaD, Jobo T.
6110, Rudolph and Sletten, Inc.

Morris, Shawn The OMNIDEX Handbook-Tips for Tuning OMNIDEX IMS Performance
3210, Dynamic Infonnation Systems Corporation

Mulpookar, Anjali
4113, Hewlett-Packard Co.

Nagar, Rajoo
3242, Hewlett-Packard

Nagler, Jim
3240, Hewlett-Packard

Nakagawa, Brian
5110, Stars To Go

Nesson, Marlene Turbolmage and Allbase Converting and Integrating These Data Sources Using
3913, Infonnation Builders, Inc. 4GLs

Ney, Peter Information Management in the 1990's
3228, DCE Infonnation Management Consultancy

Nguyen, Phil
3247, Lockheed Engineering & Sciences

Nickerson, Craig
3212, United Electric Controls Company

Nissen, Jim
3118, Hewlett-Packard

Novo, Lynn A.
5151, Network Systems Company

xiii

Index by Author

Novo, L)'DIl A. Motivating Yourself and Your Staff
5108, Network Systems Company

Nut&ford, Keo EDI Diskette Transfer - The Connectivity Issue
4110, Timesbaro Systems Limited

Odom. Jeff The Backup Primer
6111, BahIseo, Inc.

Odom. Jeff Maintaining a Quality Staff Starts DurinB the Interview
StOS. Bah1sea, Inc.

Olson, Tad Coexistence: TurboIMAOE aDd SQL
3241, Hewlett-Packard

Onel, Dick Linking Corporate Strategy And Information Systems
5152, DeE Information Management Consultancy

Painter, John A Practical Approach To Disaster Recovery Phuming
5153, Computea'Solutions, Inc.

Palmer, Steve Client/Server System Design
3229, Steve Palmer & Associates

Paquette, Rick Tracking Software Quality Using Standard QuestiODDaires
5154, Weyerhaeuser

Pavlin.ik, Ed DISK ARRAYS - Mass Storage of the Future?
3125, Hewlett-Packard Co.

Peacock. Nancy Let 00 Of That Banana!
5155, Bio-Rad Laboratories, Inc.

Pejavar, Lalitha, Alvarez. Pat New Disc Management Intrinsic
3120, Hewlett-Packard

Petigura, Phiroze HP 3000 Case Strategy
3248, Hewlett-Packard

Piersoa, Scott How To Win Memory and Influence CPU
3134, Hewlett-Packard Co.Pink. Frank J. Unattended Data Centers.... Fantasy or Reality?
5156, Unison Software, Inc.

Podkomorkski, John Managing IT/MIS in the 1990's: A Look at a Rapidly Changing Field
T032, Hewlett-Packard

Rego, Alfredo Data Integrity and Recovery: The IMAOEIAdager Approach
3117, Adager

Rego, Alfredo Database Indexing: The Key to Performance
3213, Adager

Rego, Alfredo Database Standards: Rallying Points
3230, Adager

Reoz, Tom To FAX or not to FAX
5120, Martin Marietta Data Systems

Riihilahti, Pasi, Lammi, Olli Migrating From HP 260 to HP 9000 Migraine or Not?
8065, Raha-automaathyhdistys (Ray)

Robert, Shelby Spending To Save on Software
5157, Proactive Systems

Robert, Shelby 'L' Plates for IMAGE
6104, Proactive Systems

Roberts, Richard Using HPs -F- Words and Gain Control of Your Sequential Files
3905, Standard-Thompson Corp.

xiv

Index by Author

Robins, David G. Managing Employee Learning
5161, Hewlett-Packard

Robinson, David Managing A PowerHouse Environment
3214, PowerSpec International

Robinson, David The Phases of Quick
1'029. PowerSpec International

Rosenfield, Howard The Evolution of Relational Technology
3235, Oracle Corporation

Ross, Robert Getting SQL Data Into NewWave
4115, Hewlett-Packard Co.

Rusk, Carl M. Effectively Managing Your System's Resources
5106, Infoceotre Corporation

Rusoack. Michael Disk Recording Technology From DC to Light
3124, Hewlett-Packard Co.

Savage, Eric TurboIMAGE/XL's Standard Interface to Third-Party
3233, Dynamic Information Systems Corp.

Sayed, Husni The Myths and Facts of Performance Numbers
5107, IBM, Inc.

Sayed, Husni Popular Mass Storage: Optical Disk and Helical Scan Recording
SISa, IBM, Inc.

Sieler, Stan MPE XL Performance Considerations in the 90s
3116, Allegro Consultants, Inc.

Slone, Ron Managing PC SIW: A Better Way
4116, Hewlett-Packard Co.

Smith, Brad T. The Effect of 4GL (Powerhouse) on the MIS Environment
5104, Rochester & Pittsburgh Coal Co.

Smith, Garry L. CASE ME, Case Tools in Software Migration
3234, Charles McMurray Company

Stoneburner, Tamera, Ostby, Kent HP Predictive Support, Making the Difference in Support
3131, Hewlett-Packard Co.

Swearingen, Jay Surviving In A Multiple Protocol World
3101, The Apex Group

Ta, Ja-ning Relational Database Design
3232, Oracle Parkway

Tashenberg, Brad Venturing Into ALLBASE
3921, Bradmark Technolgies, Inc.

Teller, Lori, Florstedt, Sandra "Change: WISH IT WERE EASY?"
5163, Hewlett-Packard

Thompson, Debra Serial Message Routing & Electronic Authorization
3122, Hewlett-Packard Co.

Tsukerman, Alex Allbase/SQL High Availability Features
3239, Hewlett-Packard

Walker, Doug Cooperative Processing Using Windows 3.0 and Networking
4104, Walker Richer & Quinn

Waller, Susan System Management - Baptismal By Fire
6112, Cognos

Watterson, J.B. If It Ain't Broke, Don't Fix It!
SI02, CDSI

xv

Index by Author

Webber, Rich MPE XL Enhanced FOS Security
3121, Hewlett-Packard

Werner, Dennis R. Shared Data: Understanding It And Using It Correctly
5121

Winter, Robert, Strauss, David HP 3000 Systems Management
3126, Hewlett-Packard Co.

Yu, John, Lieu, Henry Client/Server Application Development Tools
3123, Hewlett-Packard

Zimmett, Jay The Emulation of UNIX Intrinsics on MPEIXL
3140, Quest Software

Ziolkowski, Mirek Oracle ROBMS on HP 3000 - Narrow Tolerance Performance Tuning Tips
3106, DeE Information Management Coru;ultancy

xvi

Index by Category

MPE/MPE XL SYSTEMS/APPLICATIONS

3101 Surviving In A Multiple Protocol World
Jay Swearingen - The Apex Group

3102 Save the Trees! (and your printers and people)
Debra Canfield - Dairylea Cooperative Inc.

3103 A Quick Look At th~ MPE XL Memory Dump For System Managers
Donald E. DeFreese - McDonnell Aircraft Company

3104 Technical Evaluation of R~lational Technology on HP 3000/950 at Mohawk College
Robert Hilverth - Mohawk College of Applied Arts & Tech.

3105 Mainframe Software Manag~m~nt Techniques: What Every HP User Should Know
Betsy Leight - Operations Control Systems

3106 Oracle RDBMS on HP 3000 - Narrow Tolerance Performance Tuning Tips
Mirek Zlotkowski - DCE Information Management Consultancy

3107 Me and My Shadow
John D. Alleyn-Day - Alleyn-Day International

3110 MPE from a VMS Perspective
Robert s. Dobis - Crowe, Chizek and Company

3111 -Rail System for Tomorrow Data Communication Trains-
Aldo Falossi - Cable Management Systems, Inc.

3113 Disappearing Dial-Up, Solving Communication Problems
James D. Ham - Southeastern Public Service Authority

3114 MPEIXL Intemals and Performances
Michael Hornsby - Beechglen Developm~nt. Inc.

3115 Capacity Planning in the Treacl1es
Robert Lund - Lund Performance Solutions

3116 MPE XL Performance Considerations in the 90s
Stan Sieler - Allegro Consultants, Inc.

3117 Data Int~grily and Recovery: The IMAGEIAdager Approach
~MfN(Io Rego - Adager
~! Increasing Availability with Oplimal Backup
~N~ - Hewlett-Packard

(3119/.-' High Availability on the HP 3000
'---TeSsy Hsu, Kendall Sutton - Hewlett-Packard

3120 New Disc Management Intrinsic
Lalitha Pejavar, Pat Alvarez - Hewlett-Packard

3121 MPE XL Enhanced FOS Security
Rich Webber - Hewlett-Packard

3122 S~rial Message Routing & Electronic Authorization
Debra Thompson - Hewlett-Packard Co.

3123 Clienl/Server Application Development Tools
John Yu, Henry lieu - Hewlett-Packard

3124 Disk Recording Technology From DC to Light
Michael Rusnack - Hewlett-Packard Co.

3125 DISK ARRAYS - Mass Storage of the Future?
Ed Pavlinik - Hewlett-Packard Co.

3126 HP 3000 Systems Management
Robert Winler, David Strauss - Hewlett-Packard Co.

xvii

Index by Category

3127 Managing MPE XL Configurations
DouS Claar, Fred Parkes - Hewlett-Packard

3128 Bounds Analysis or The Poor Man's Capacity Plan!
Bryan Carron - Hewlett-Packard Co.

3129 Supporting an NS/3000 Network
Steve Beasley - Hewlett-Packard

3130 Native Mode Spooler - What does it Mean to you?
Gary FIetcber - Hewlett-Packard Co.

3131 HP Predictive Support, Making the Difference in Support
Tamem StoDebumet. Kent Ostby - Hewlett-Packard Co.

3132 First Line Performance Analysis Using OLANCEPLUSIXL
Doana Fountain - Hewlett-Packard

3134 How To Win Memory and Influence CPU
ScoU Pier&OD - Hewlett-Packard Co.

3135 A Standard Operating System Interface For MPE XL
lbUesb Lalwani - Hewlett-Packard Co.

3136 Transaction Analysis For Capacity Planning
Ralph T. Kotoski· Hewlett-Packard Co.

3137 Remote Performance Management For HP Systems
Jay Mellman - Hewlett-Packard Co.

3138 Developing With the User in Mind
Usa Bums - Hewlett-Packard Co.

3140 The Emulation of UNIX Intrinsics on MPEIXL
Jay Zimmett - Quest Software

3201 Getting Over The Hurdles Of Oracle Financials On The HP 3000s
Craig P. Albrecht • Cray Research, Inc.

3202 •... , But We Only Have COBOL! The Real Dilemma. •
Rafael Beoitez. Tom Renz - Martin Marietta Info. Systems Group

3203 Application InstaJlation
Pl'BDDie Casella - Northern Calif. Cancer Center

3204 Decision Tables - Making the Complex Simple
George Federman - George Federman & Associates

3205 Dynamic Menu Systems for the Cognos Product
Oeae Harmon - AH Computer Services, Inc.

3206 Simplified TurholMAGE & VIEW Calls Through COBOL Copy l.b
Rick Hoover - CIV Software

3207 ANSI COBOL 85 or How I Learned to Stop Worrying and Love the Bomb
Robert A. Karlin - Karlins' Komer

3208 Integrating Omnidex into Your System Applications
Tim Klooster - Dynamic Information Systems Corporation

3209 The EH Safley Rep. Info. System on the Safety Perf. Measurement System is Where
Patricia Irene Loo - EG&G Idaho You'll Find WP and Helps wI a V-PLUS!

3210 The OMNIDEX Handbook-Tips for Tuning OMNIDEX IMS Performance
Shawn Morris - Dynamic Information Systems Corporation

3211 Tradition vs. Transcendence in Software Engineering
Natalie M. Mineoko - Oracle Corporation

3212 MPE VIE FORTRAN: The Internals of Alternate Return Paths
Craig Nickerson - United Electric Controls Company

xviii

Index by Cateeory

Understanding CASE

Turbo IMAGE Logging

Relational Database Design

Client/Server System Design

The MPE XL System Debugger

Database Standards: Rallying Points

Infonnation Management in the 1990's

Allbase/SQL High Availability Features

The Evolution of Relational Technology

Database Indexing: The Key to Performance

CASE ME, Case Tools in Software Migration

TurhoIMAGE/XL's Standard Interface to Third-Party

COBOL 85 on XL Machines: We"ve Got A Language!

Creating Seamless Packages Through Process Handling

Automate Testing To Improve Software Quality

The Data Warehouse Approach to Developing DSSIEIS

Critical Item Update - What Will It Do For Me?

Memory Management On MPE XL

HP Motif XL: The X Window System On MPE XL

Applied Computerized Telephony: You Won't Be Left On Hold

AIFs on MPE XL

3213

Alfredo Rego - Adager Managing A PowerHouse Environment
3214 .

David Robinson - PowerSpec Intue~atloM~E XL To Your Advantage A Guide for the Applications Progammer3215 smg

Pamela H. Bristow - A.H. Custom Software Making QTP Run Efficiently
3216 .

John D. Alleyn-Day - A1leyn-Day International
3217

Larry Boyd - Bradmark Computer Systems
3218

Kirk Buechet - Hewlett-Packard Co.
3219

Steven M. Cooper - Allegro Concultants, Inc.

3221 . D'
Lawrence Facer - FACER Infonnatlon eslgn

3:bert Green, David Greer - Robelle Consulting Ltd.

3223 .
Karen Heater - Infocentre Corporation

3225
Rick Hoover - CIV Software

3226 I' I
John P. Korb - Innovative Software So utlons, nco

3227
David R. Mendoza - Software Development Resources

3228 . .
Peter Ney - DCE Infonnatlon Management Consultancy

3229 .
Steve Palmer - Steve Palmer & ASSOCiates

3230 .

Alfredo Rego - Adager
3232

Jo-ning Ta - Oracle Parkway
3233 .

Eric Savage - Dynamic Infonnatlon Systems Corp.
3234

Garry L. Smith - Charles McMurray Company

3235 .
Howard Rosenfield - Oracle Corporation

3236
Scott Cressler - Hewlett-Packard Co.

3237
Steve A1iamus - Hewlett-Packard

3238
Jeanne Elmer - Hewlett-Packard Co.·

3239
Alex Tsukerman - Hewlett-Packard

xix

Index by Cateeory

3240 ALLBASE/DB2 CONN-SQL Gateway to IBM DB2 Mainframe Data
Jim Nagler - Hewlett-Packard

3241 Coexistence: TurboIMAGE and SQL
Tad Olson - Hewlett-Packard

3242 Application Deveiopment Alternatives for ALLBASE/SQL
Rajoo Nagar - Hewlett-Packard

3243 MPE XL Development on a Multi-Platform Environment
Beth Eikenbary - Hewlett-Packard

3244 The INs and OUTs of Database Design
Lynn Barnes - Hewlett-Packard

3246 DBChange Plus: New and Improved
Mark Boronkay - Hewlett-Packard

3247 Develop Software Using A Synthesis Approach
Phil Nguyen - Lockheed Engineering & Sciences

3248 HP 3000 Case Strategy
Phiroze Petigura - Hewlett-Packard

3902 The Pros and Cons of Prototyping
George Federman - Oeorge Federman & Associat~

3905 Using HPs -F- Words and Gain Control of Your Sequential Files
Richard Roberts - Standard-Thompson Corp.

3911 Data - Now That You've Got It, What Are You Going To Do With It?
John L. Bomba - Innovative Information Systems, Inc.

3912 Pitfalls In Moving To A 4GL
Billy S. Hollis - Zortec

3913 TurboImage and Allba~ Converting and Integrating These Data Sources Using 4GLs
Marlene Nesson -Information Builders, Inc.

3917 TurbolMAGEIXL Performance
Denys Beauchemin - Bradmark Technologies Inc.

39'20 The Future of IMAGE on the HP 3000 is SQL
Wirt Atmar - AlCS Research, Inc.

3921 Venturing Into ALLBASE
Brad Tashenberg - Bradmark Technolgies, Inc.

5916 Working With Difficult People
Louis R. Mills - Bio-Rad Laboratories

PC INTEGRATION

4101 Windows - When the Time is Right
Russell Bradford - Bradford Business Systems, Inc.

4102 An Anatomy of a Successful LAN Installation
Neil R. Brooks - Int'l Foundation of Employee Benefit

4103 The Black Hole of PC Investment
James Call - The NPD Group

4104 Cooperative Processing Using Windows 3.0 and Networking
Doug Walker - Walker Richer & Quinn

4105 NewWave: All About Agents
Leonard Block - The Apex Group

xx

Getting SQL Data Into NewWave

Growing into NewWave Computing

Developing Applications with Client/Server AllBASE

Distributed Processing at Harvard University

EDI Diskette Transfer - The Connectivity Issue

-Hook me up, Scotty- - Towards the Enterprise Network

Managing PC SIW: A Better Way

-How To Inventory City Trees With Paradox &. GIS MAP-

Index by CateeOry

4107 Pre-Editing Transacations Usin Refl .
Steve Hammond _ Association of American Med.·cal C II g ectlon, MPEX, STREAMX, and PowerHouse

4108 0 eges
Dr. David Johnson _ Johnson Computer Software T L·· ...1 Implementing HP's NewWave Office

4109 eam Inutcu

Joel Martin - Harvard University
4110

Ken Nutsford - Timeshare Systems Limited
4111

Anthony Fumivall- SDUSoftware Inc
4112 ' .

Jeff Eastman, Thong Pbam - Hewlett-Packard Co
4113 .

Aqjali Mulgaonkar - Hewlett-Packard Co
4115 .

Robert Ross - Hewlett-Packard Co.
4116

Ron Slone - Hewlett-Packard Co
4901 .

Augusta Crutchfield - City of Sunnyvale

MANAGEMENT

5102J.B. Watterson _CDSI If It Ain't Broke, Don't Fix It!

5103Roger Lawson _ Proactive Systems Inc The Technology of Data Distribution

5104 ' •
Brad T. Smith _ Rochester &. Pittsburgh Coal Co The Effc=ct of 4GL (Powerhouse) on the MIS Environment

5105 .
Jeff Odom _ Bahlsen, Inc. Maintaining a Quality Staff Starts During the Interview

5106Carl M. Rusk _ Infocentre Corporation Effectively Managing Your System's Resources

5107Husoi Sayed _ IBM, Inc. The Myths and Facts of Performance Numbers

5108
Lynn A. Novo _ Network Systems Company Motivating Yourself and Your Staff

5109
Jerry Lindsey _ CompuSearch of Chatham C t HP Employment Trends in the 1990's

5110 oun y
Brian Nakagawa _ Stars To Go You Want That Ad Hoc Report When? Then Do It Yourselfl

5111Jason M. Goertz _ Mattedor Computer Se . The 10 Best Kept Secrets of Managing Technical People
5112 rvlces

J.L. Hill _ Lockheed Engineering & Scie C Is Your Disaster Recovery Plan a Disaster?
5114 nces o.

Betsy Leight _ Operations Control Systems CASE in the HP 3000 Environment

xxi

Index by Cate,ory

5115 Don't be Cruel To A Heart That's True
Diane Amos - Amos & Associates

5116 Expanding Your Computer Operations Into Europe isn't ·necessarily a vacation!
John R. Bedard - St. Jude Medical, Inc.

5117 Understanding the Power and Authority Inherent in Technology: The New
Robert Berry, Jeri Wenger - San Bernardino County Information Systems Management Challenge

5118 Support Contracts
Margaret Brunner' - Northern California Cancer Center

5119 Software Engineering and Corporate Growth
Julian Estrada Catcedo - Carvajal S.A.

5120 To FAX or not to FAX
Tom Rem: - Martin Marietta Data Systems

5121 Shared Data: Understanding It And Using It Correctly
DemUs R. Werner -

5122 Obtaining the Competitive Edge Through Automated Data Collection
Ray Agrusti - Eagle Consulting & Development Corp.

5123 Computer Litigation In The 1990's
Robert Apgood - Strategic Systems, Inc.

5125 Earthquakes: A Strategy
Bud Beamguard - Syntex Research

5127 Managing for Success-Managing UP
Edward L. Bye - InfoSol, Inc.

5128 End User Computing - A Fonnula For Success
Douglas Colter -Infocentre Corporation

5129 Managing Computer Burnout
Dr. Elisabeth M. Craig - University of TN at Chattanooga

5131 ANATOMY OF RECOVERY - Drawing on Experience
James A. Depp - UP TIME Disaster Recovery, Inc.

5132 Getting The Paperwork Done: Managing a Documentation Project
Pamela Dickerson - American Data Industries

5134 Service Level Agreements-Qnly As Good As The Data
Brian Duncombe - Strategic Software Group Ltd.

5135 How To Telecommute And Retain Your Sanity
Paul Edwards - Computer Resource Group

5136 The Truth About Purchasing HP Computer Equipment
Charles Finley - ConAm Corporation

5137 Informatics in the Future
Charles Finley - ConAm Corporation

5138 Support Contracts-A User's Perspective
Michael M. Finn - 21st Century Systems Group

5139 Saving Training Dollars
Jeff Franz - 21st Century Systems Group

5140 So You Want To Buy a Computer?
Robert M. Gignac

5141 Motivation: When -KITA- Won't Work
Robert M. Gignac

5142 Managing The Non-Networked PC
David Haberman - Innovative Information Systems

xxii

Index by Category

Let Go Of That Banana!

A New Generation of 4GL's

Managing Employee Learning

Maximizing Your Training Dollars

·Change: WISH IT WERE EASyr

Managing Your Data Processing Costs

The Perils of Writing a Security Policy

The Information Terrorist-Computer Viruses

High Water and Broken Bridges

How to Commit (or Prevent) Computer Crimes

Unattended Data Centers..•. Fantasy or Reality?

Why Computer Professional Aren't Extinct•.•.Yet

Information Management Technologies Into The 1990's

Performance Management - The People Kind

Linking Corporate Strategy And Information Systems

A Practical Approach To Disaster Recovery Planning

Tracking Software Quality Using Standard Questionnaires

Spending To $ave on Software

Popular Mass Storage: Optical Disk and Helical Scan Recording

5143
Suzanne Harmon

5144
Karen Heater - Infocentre Corporation

5145
Michael Hornsby - Beechglen Development Inc

5146 ' .

Jim Knight - Medstat Systems Inc
5148 ' .

Gaylord Maines - Bahlsen Inc.
5149 '

Louis R. Mins - Bio-Rad Laboratories
5150

Louis R. Mills - Bio-Rad Laboratories
5151

Lynn A. Novo - Network Systems Company
5152

Dick Onel - DeE In~o t' M•• rma Ion anagement Consultancy
5153 .

John Painter - Computer Solutions Inc
51S4 ' .

Rick Paquette - Weyerhaeuser
5155

Nancy Peacock - Bio-RP'1 Laboratories Inc
51S6 ' .

Frank J. Pinkela - Unison Software Inc
5157 ' .

Shelby Robert - Proactive Systems
5158

Husni Sayed - IEM, Inc.
5161

David G. Robins - Hewlett-Packard
5162

Chosen Cheng - Hewlett-Packard Co
5163 .

Lori Teller, Sandra Florstedt - Hewlett-Packard
5164

Orland Larson - Hewlett-Packard Co
5166 .

Mike Anniss _ Hewlett-Packard Co. LT. Strategy and Open Systems

5167 Performance is a Dirty Word ArouDoug McBride _ Hewlett-Packard ml Here (or, How to Get Your Act Together Using
5170 Capacity Management)

Jon O. Durre _ Durre Placement Services, Inc. Surviving With The Simpsons

xxiii

The Phases of Quick

Index by CategO[)'

NEW USER

6102David Largent _ N.G.Gilbert Corp When Is A RUG Not Something You Walk On Or Beat?

6103 .
David Merit _ ORBIT Software HP 3000 Backup Strategies

6104
Shelby Robert _Proactive Systems -L· Plates for IMAGE

6105
6:::~ - Dyuamic Information Systems Corporation Bloodless Prototypes and Purcbases

Anthony Fumivall _ SDUSoftware Inc Old MacDonald Had A Network

6108 • .
Robyn S. Kerekes _Boat America Corp QUIZ For Beginners (And Not So BegiDDers)

6110 •
John T. Monaghan _ Rudolph and Sletten Inc How To Survive As A Small Shop Manager

6111 • .
Jeff Odom _ Bahlsen. Inc. The Backup Primer

6112Susan Waller _ Copos System Management - Baptismal By Fire

6113
Joseph Feiner _ Hewlett-Packard Copying Files in MPE XL

6114 eTh E I .Joseph Mendelsohn _ L&J AssI:x;i:tesvO UhOR of the MIS Professional or What Your Boss Should Have Known
All Along-

TUTORIALS
1"029

David Robinson - PowerSpec
1'032John Podkomorski _ Hewlett-Packard Managing IT/MIS in the 1990·5: A Look at a Rapidly Changing Field

xxiv

Paper Number 3101
Surviving in a Multiple Protocol World

(The Sargassum Sea Frogfish and Networking)
Submitted By Jay W. Swearingen

The Apex Group
7151 Columbia Gateway Drive

Suite F
Columbia, MD 21046

(301)290-1606

SUlViving In A Multiple Protocol World 3101-1

There is a Unle-known reabn of nature where seeing is not
necessarily beUeving,for in it nothing is ever quite what it seems.
It is a world peopled with innumerable animals that spend their
Uves in a carnival of make-beUeve, masquerading in a fantastic
array of costumes. But there is nothing frivolous about this
carnival world. For its inhabitants wear their disguises for only
one purpose - to escape death.

James PoUng

I. INTRODUCTION

Ever since the beginning of time, every animal that bas ever existed bas bad the same problem.
Ifanimals are to survive they must confront their predators or avoid them. If it bas some sort
of strength - physical, chemical or armored - it can face up boldly to its enemies and defy them.
If it is harmless, tasty, or soft-bodied, it must find some way of concealing itself.

The worst part of this threat is that there is never any escape, because no animal can hide from
its predators indefinitely. Under duress it may flee and hide, but it can only do this
occasionally. It bas to come out c." ~ding at regular intervals to hunt its own food. The 8nimal
is forced to playa dual role - one of the hunter and the hunted most of its waking life. When
not perfonning these life sustaining activities, it must render itself inconspicuous. It must
conceal its form with some sort of camouflage.

In nature there are creatures on land and sea that disguise themselves as twigs, or leaves, or
sponges, or any number of other objects of no appeal to a meal-seeking predator. A "dew drop"
on a leaf that a passing bird ignores, for example, may be a tasty, edible beetle. Or a swaying
"reed" in the bulmshes may on close inspection prove to be a long-necked bird dehoorately
imitating the breeze-blown reeds surrounding it.

The sargassum fish is named for its home, the Sargasso Sea. This is a large part of the
Atlantic just west of the West Indies which is blanketed with a tangled mass of brownish
seaweed, kept afloat by berrylike growths that are really air-filled bladders. While it is a fish,
it is hard to believe, even when it is view up close. It is so well disguised with fleshy tassels,
weedlike fibers, nodes, and bladder-shaped growths that it truly looks more like a clump of
weeds than an animal.

The sargassum fish never leaves the protection of the Sargasso Seats weedbeds because it has
no need to. No predator can tell it from the weeds it hides in. Neither can the tiny fish it feeds

Surviving In A Multiple Protocol World 3101-2

on. In fact, the fish it feeds on practically swim into its jaws. It has nearly lost the need to
swim. It merely crawls through its weedbed home with the help of a pair of fins it uses as legs.
Yet grotesque as it is, the fish is superbly disguised and adminlbly adapted to its environment.

Today in our Infonnation Systems organizations, we have a similar need to blend and adapt in
a complex and varied environment. Networks today no longer consist of single genre of all
encompassing data communications implementations. In the past if you needed a network you
merely called your computer vendor, and if they had one, they came and installed it. Today in
its place, we have many kinds of networks at work in our organizations solving a wide range
of problems. It is not uncommon to have network implementations from IBM, Microsoft,
Novell, lIP, DEC, and those that originated in the public domain to be operating in a single
entelprise. There are many opinions on why this diversity in networks exists. Generally these
thoughts can be grouped in the following categories:

III

•

•

•

The failures of traditional MIS to respond efficiently, inexpensively, and rapidly
to end-user requirements. User groups simply "built their own".

Perpetuation of proprietary network strategies from individual equipment
manufacturers (lIP, DEC, IBM, etc.) that contributed to the failures above and
IS ability to respond.

The incredible pricelperfonnance opportunities of the PC and PC software versus
traditional mini and mainframe computing, and

The success and proliferation of departmental compllting and the low barrier to
entry of these networks.

Whatever the reasons, it is clear that today we are faced with a multi-vendor, multi-platform,
multi-protocol, multi-standard world. Most organizations are grappling with the task ofbringing
a uniform commonality to these environments and allow the strengths of each individual
computing environment to be used as needed for the tasks it is best suited for. For instance, a
entelprise-wide electronic mail network, a accounting system, a departmental office automation
server, and an executive information system may very well reside on different computing
platforms. These platforms probably use different operating systems, protocols, and cabling
types, and the workstations that sit on our users desk may very well be also totally different.

How we respond or adapt to these different environments is of great concern in most
organizations. This paper will talk about the various methods available to IS or data
communications managers for managing these problems. Like animals that are trying to survive
in a difficult world, we must adapt to our environment and unite these disparate islands of
network automation so that we may seamlessly camouflage the differences in these network
implementations and exploit their individual strengths. Like the Sargassum Sea Frogfish we
must disguise and adapt to our environment.

SUlViving In A Multiple Protocol World 3101-3

n. AN OVERVIEW OF PROTOCOLS

Why should I know more about protocols? I believe there are several good answers. First, we
are moving towards a new model of computing called the Client/Server model. 'Ibis model
relies on a cooperative relationship between workstations (clients) and application processors
(servers). We are moving towards this model because of:

1) Processing gets cheaper the closer we get to the processor. A MIP on a PC is
significantly 'cheaper than a MIP on a mainframe.

2) Most organizations have failed to exploit the tremendous power that sits on users
desk. Most of the time, this processing power far exceeds the power that sits in
the computer room.

3) Organizations have a large investment in productivity and application software
and hardware mnning their companies. 1be cost of replacing these investments
in most cases would be prohibitive. Rather, it makes more sense to continue
using these applications and application engines through a computer architecture
that can bring them together in a·uniform structure.

4) The advances made in relational database technology for managing, storing, and
reporting informatioD. Additionally, the sophisticatiOD ofend user reporting tools
that can access these databases is a breakthrough in easo-of-use and flexibility.

Client/SelVer computing demands a good understanding of the protocols available to you .00 the
ones in use within your organization today. Secondly, as organizations downsize and the
recession lessens, IS budgets are going to tighten.. Most IS manager will be having to get more
with less. This means knowing what you have and how you can get more out of it. A solid
understanding of protocols is one area that wUl pay dividends. Finally, we are experiencing
great improvement in the netwom management tools that are available to us. It is possible today
to manage an entire enterprise netwotk from a single workstation. Making correct decisions
regarding netwotk management tools requires a good knowledge of the protocols at play.

If managed properly, sophisticated multi-protocol netwotks can become a strategic weapon for
most companies and increase our ability to respond to changes in the organizational stnlcture in
the ever-ehanging corporations in the u.S. Mergers, "spin-offs" and takeovers seem as common
as ever. Our ability to adapt our netwotk to meet these changes could be a real competitive
advantage.

Before discussing the various ways of managing a multiprotocol environment, it is useful to
review the most popular protocOl stacks in use today. This list is in no way the "master" list
but represents the vast majority of those protocols that are the most popular and identified by
IS and data communications professionals as being in their current and future plans.

Surviving In A Multiple Protocol World 3101-4

This section will focus on the following protocols:

TCPIIP (Transmission Control ProtocollIntemet Protocol
OSI (the Open Systems Interconnect protocols)
SNA (IBM's System Network Architecture
DECNET (Digital Equipment Corporation network)
NetBEUI (IBM's NetBIOS Extended User Interface)
NetBios (Microsoft's and 3Com's NetBios Protocol)
XNS (Xerox Network System)
AppleTalk (Apple's Network Protocol)
HP Network: Services (lIP NS)
IPX (Novell's Intemetwork Packet Exchange)

These ten protocols surely represent most of the protocols in use throughout the world. There
are hundreds of individual protocols that are used by many organization worldwide. These
individual protocols usually only define communications on a single network layer. For
instance, X.2S the popular packet network: access protocol specifies only three levels of
connections. In this case it defines the physical level, link level, and packet level that roughly
map to the fist three layers of the ISOIOSI model. When we talk of protocols like TCPIIP we
are referring to full protocol suites. That is, TCPIIP, XNS and the others above, we are
describing protocols that specify all or many layers (or the equivalent) of the ISO model.

A Quiek 1Review of Networking Basics

A network is made up of hardware and software that connect computers and allow them to share
resources and devices. Generally, we can describe a network: in three different but interrelated
components:

1. Physical connections such as coaxial and fiber optic cable, connectors, and
interface hardware.

2. Software used to facilitate communications between various participating
computers and peripherals. This software is built on roles and conventions that
define proper operations. Protocols such as TCPIIP are and example of such
roles.

3. Frameworks Oll" stmctures that have been established for networking. These
frameworks can be private or public and allow for the distribution of information
throughout a department, a organization, or an entetprise. An example of such
a stmcture could be Compusel'Ve, the Federal Governments Internet, or the
private network that connects the hundreds of Hewlett-Packard facilities world
wide.

SUlViving In A Multiple Protocol World 3101-5

An example of these three network components in its simplest fonn could be a single ethernet
cable that connects several PCs in a local area network and that use TCPIIP protocols. This
network could be part of the larger Internet, an organization of wide area networks. The
ethernet cable, TCPIIP, and the Internet represent all three components of a network.

Examining Network Protocols

When data communications take place, infonnation is passed between two hosts in two different
directions. Infonnation is passed vertically across layers of network boundaries and laterally
between corresponding peer layers according to roles know to those in~racting layers. These
mles, or protocols, make up the process interface between peer layers and permit hosts to
communicate with each other.

As illustrated in Figure 1, protocol suites define many different layers. The layers between the
application and physictJl layer are made up of software. Bach succeeding software layer
provides increasingly more complex services than the layer below it. Once you reach the
application layer, an individual without any networking experience can make use of a network
without any understanding of the underlying, lower layers.

To truly understand what makes up a protocol suite, it is useful to take apart a single protocol,
layer by layer, and understand its inner workings. The other protocols suites we will discuss
all have similar stroctures with a similar layered foundation. Perbaps the most talked about
protocol suite that is predicted to be the most popular is the OSI Reference Model (RM). The
OSI model defines communication processes into seven layers. Each layer can directly
communicate only with adjacent layers, and indirectly only with its peer on another system.
Each layer uses the services of the layer below and provides services to the layer above,
depending on the direction of the transmission. Each layer manages its individual
responsibilities and is aware of only the layer directly above and below it. However, each
individual layer can still receive infonnation from any other layer indirectly through adjacent
network layers.

Physical Layer

Data Link Layer

This defines the actual medium chosen for data
transmission. This could be lOBaseT, RS-232C and 802.5
token ring - all examples of the physical layer.

The physical layer converses with other peer physical
layers and passes data to the data link layer.

Device drivers or interfaceS that control actual hardware.
A Network Interface Card in your PC operates at the data
link Level.

This layer creates data frames out of raw bits that come
over the "cable" into the respective host computer. These

Surviving In A Multiple Protocol World 3101-6

~ II II II II II II II II II II II II II II~

~ II II II II II II II II II II II II II II~

••

~ II II II II II. II II II II II II II II~

Peer to Peer

.... II II II II II • a II II II II II II II~

~ II II II II II II D II II II II II D II~

Communications

Figure I. Peer to Peer Communications

Surviving In A Multiple Protocol World 3101-7

Network Layer

Transport Layer

Session Layer

Presentation Layer

Application Layer

frames are also known as packets. Network bridges
opemte at the data link layer also known as the MAC
layer.

The network layer is concerned with routing data over
multiple hops from one system to another. If a packet is
received, the network layer will decide if it was intended
for a local or remote host. If it was intended for a local
host it will send it up to the transport layer. If it was
intended for a remote computer it will either be fOlWarded
or discarded. Systems that are responsible for fOlWarding
packets to remote hosts are called routers when they
operate at the network layer.

The transport layer is primarily concerned with the
successful transmission of data in discrete transaction units
called datagrams. It receives data from the session layer
and bre:ak it up into packets so they can be used by the
networlc layer. This layer is also concerned with flow
control between peer hosts.

Devices called gateways operate at this level. A gateway
can communicate with more than one network and can take
a packet created on one network, translates it so another
network can read it, and then sends it on to that network.

'Ibis layer manages system sessions between processes by
starting, m8ll8ging, and closing connections to remote
hosts. Once a connection is established, an application
process can do things like transfer a ftle, use a virtual
terminal service, or perfonn further interprocess activities.

The presentalion layer manages the representation of data
between application processes. It works hand-in-hand with
the local opemting system (MS-DOS, UNIX, MPH, etc.)
to translate the data it wants to send or receive. Through
a process called negotiation, each preselllation layer peer
chose the syntax or "language" it will use for this
tremslation.

This layer is at the very top of the OSI model. This layer
is almost totally defined and includes programs that conduct
virtual tenninal, network fue transfer, electronic mail
tmnsfer, and network management software.

Surviving In A Multiple Protocol World 3101-8

7

6

5

4

3

2

1

Gateway

Router

Bridge

Repeater

Figure II. 051 reference model layers and internetworking
platforms.

Surviving In A Multiple Protocol World 3101-9

A Protocol Summary

TCP/IP (Transmission Control Protocol/Internet Protocol

TCPIIP is a layered protocol suite developed for the U.S. Department of Defense (DOD)
by the Advanced Research Projects Agency (ARPA) in the early 1970s. It has become
the defacto standard protocol suite for UNIX platforms.

TCPIIP is characterized by its applications including Telnet (Virtual Terminal), FTP
(File Transfer), SMTP (Simple Mail Transfer Protocol for E-Mail tmnsfer), and SNMP
(Simple Network Management Protocol for managing and reporting networks and
network: events). TCPIIP provides a somewhat painless migration into OSI in most
implementations.

OSI (the Open Systems Interconnect protocols)

As described above, this International Standard Organization model is a hierarchical
seven layer protocol suite. While this protocol is not totally implemented by most
vendors, it has growing strength and momentum in the marketplace.

SNA (IBM's System Network Arcbitedure

SNA is a network architecture intended to allow IBM customers to constJuct their own
private networks, both host and suhnet. It to is a hierarchical network strocture
allowing for peer-to-peer communications.

DECNET (Digital Equipment Corporation network)

DBCNet is Digital Equipment Corporation's proprietary network implementation. It
offers robust performance in part because it combines the equivalent of multiple OSI
levels. This makes DBCNet somewhat less modular than with more standard, open
protocols.

NetBEUI (IBM's NetBios Extended User Interface)

NetBEUI is a fast, memory stingy, proprietary protocol for token ring networks
developed by mM. It is compatible with NetBios and is an integral part of IBM's SNA.
NetBEUI is the standard protocol that is shipped with Microsoft's LANManager.
NetBEUI (like NetBIOS), cannot be routed thus limiting it applicability in WAN applications.

Surviving In A Multiple Protocol World 3101-10

NetBios (Microsoft's and 3Com's NetBios Protocol)

NetBios was developed by 3eorn and provides efficient peer-to-peer communications via
virtual circuits in both ethemet and token-ring networks. While NetBios does not fully
address the entire OSI model, it does address the network, transport, and session layer.
This makes it easy to intemperate with many other netwoddng protocols. Like
NetBBUI, NetBIOS is weak in wide are network functionality. NetBIOS is usually pared
with other more robust WAN rich protocols when needed.

XNS (Xerox Network System)

Developed by Xerox, XNS is a widely used suite of protocols specifically designed for
ethemet networks. While more efficient than TCPIIP, it is slower than NBP. Multiple
versions of XNS sometimes creates compatibility problems.

AppleTaik (Apple's Network Protocol)

AppleTaIk is a function rich protocol suite that operates at a relatively slow speed. It
was designed for Macintosh users to access remote resources like printers and other
shareable resources. AppIetaJk uses very little RAM and must bave a bridge or gateway
to access ethemet or tokeD ring netwolks.

BP-NS (Bewlett-Packard's Network Services)

Back in the early 80's, HP was one of the first companies to bave a very functional, tme
peer-to-peer netwotk. Back when other companies were only talking about it, HP had
virtual terminal, network file transfer, network peripherall access, and a well defined
network API. The bad news was that it was extremely proprietary and did not
intemperate with anything other than IBM mainframes using 2780/3780 type emulation.

Today NS is based mostly on industry standard protocols, primarily TCPIIP. It still uses
proprietary software at the application level. For instance, virtual terminal on the UP
3000, called VT/3000, is still the main way tbat HP 3000'8, Pes and terminals
communicate and is proprietary.

IPX (Novell Internetwork Packet Exchange)

Novell's IPX is a proprietary protocols suite based on XNS. It roughly corresponds to
the OSI model and provide a good general purpose functionality. Like NetBIOS and
NetBEIU it is very weak in wide area functionality. With NetWare 3.11 its Wide Area
capabilities have improve.

These protocols make up the various animals in our kingdom. How we blend in and coexist

SUlViving iii A Multiple Protocol World 3101-11

with these environments will be the subject of the next section.

m. A MULTIPLE PROTOCOL WORLD

How do we get our unlike networks to work together? There are many ways - some more
conventional than other. This sections will concern itself with three main techniques: Shared
Packet Drivers, Routers & Gateways, and Protocol Standardization. Bach bas its own
advantages and disadvantages but the methods described are reliable, proven ways to integrate
a multi-protocol environment.

Shared Packet Drivers

Shared Packet Drivers are a relatively new concept that have only recently become
popular outside the academic community. It used to be that a desktop computer could
only ron a single protocol at a time. Ifwe wanted to load a second or different protocol
it usually required a "reboot." Some organization even resorted to the expensive option
of installing multiple network interface cards in a single PC - one for 3Com and one for
Novell and maybe even a IRMA card for IBM mainframe communications for example.
Not only was this very expensive, but these implementations consumed huge amounts of
memory and did not coexist with popular productivity software like Word Perfect and
Lotus 123.

Shared Packet Drivers were developed to alleviate these problems wbile not paying a
significant memory or performance penalty. These drivers allow multiple protocols to
be loaded and unloaded on demand. For instance, an individual PC could connect to a
Novell (lPX), Unix (TCPIIP), and HP 3000 connection (AdvanceNBT) all from a single
network connection and without rebooting their· workstation. The three Shared Packet
Driver implementations we will be discussing are the Microsoft/3Com NDIS, Clarkson
Packet Driver Specification, and Novell's Open Datalink Interface (ODI).

Mierosoftl3Com NDIS - The Network Driver Interface Specification (NDIS) is
a standardized interface for OS/2 and DOS network platforms. NDIS drivers can
be classified into two types: protocol drivers and Media Access Control (MAC)
drivers. The MAC driver forms the bottom layer of the protocol stack and is the
driver that controls the network hardware (network interface card). The
remaining higher layers of the protocol stack are implemented in one or more
protocol drivers (TCP, XNS, etc). The MAC drivers are typically provided by
the manufacturer of the network interface board such as 3eom, Western Digital,
or lIP. These drivers can be used with any vendors NDIS-eompliant protocol
drivers such as SUNs NFS, FI'Ps TCPIIP for DOS, Microsoft's LAN Manager
and many others.

Surviving In A Multiple Protocol World 3101-12

OSI
Reference

Model

APPUCATION

PRESENTATION Using
NDIS

SESSION
IEEE

TRANSPORT Model

NETWORK
Protocol

DATA LINK
Manager

PHYSICAL PHVS:CAL PHYSICAL

Figure III. NDIS - Dual Protocol. Single MACa

Surviving In A Multiple Protocol World 3101-13

All NDIS drivers, both MAC and protocol, have a common structure. Each
driver has an upper and lower boundary. The drivers are linked to fonn a stack
by connecting, or binding, the upper boundary of one driver (MAC) to the lower
level of the other driver (protocol driver). This binding can be repeat multiple
time thus creating a separate protocol stacks using a single network interface
card. The MAC driver at the bottom of the stack always is connected to the
network hardware. NDIS also allows us to have two completely parallel stacks
in one machine, each with its own adapter card and MAC driver, to implement
two different protocols. This could be used to create a bridge with one protocol
connected to two networks.

This driver implementation would allow a single workstation to ron applications
on many different systems using different protocols.

Packet Driver - A solution for easily "swapping" multiple protocol stacks
in and out of desktops was fIrSt developed in 1981 at Clarkson University.
They developed the Packet Driver Specification (PDS) for maintaining
several protocols using a single network interface card (NIC). Recently
TCPIIP software vendor FrP and Brigham Young University have been
collaborating for providing a full range of multi-protocol management
software. Clarkson has written compatible drivers for nearly all popular
NICs including 3Com, mM, BICC, ISOLAN, InterLan, and Western
Digital. Both ethemet and token ring are supported under this
specification. Other software vendors like '!be Wollongong Group also
support the Packet Driver Specification. If Novell IPX is one of the
protocols that you need to ron, BYU will provide a modified Netware
shell specifically designed to work with PDS.

While this solution provides an excellent way for operating multiple protocol
stacks, some IS managers will feel uncomfortable operating software that resides
in the public domain as does Clarkson PDS. This concern may be well founded
given what is at stake in the corporate networks of today.

NoveU ODI - A third solution from Novell is called the Open Datalink Interface.
This interface supports multiple, simultaneous protocol stacks on Novell servers.
It is only supported on NetWare 3.1 or greater and is somewhat of a Novell
centric approach.

Unlike NDIS, ODI does not just change the client software running in Novell
nets. Rather it manages the multiple protocol connections at the server. This
means that all network traffic must go through the Netware Server before leaving
the Netware world into a different protocol.

Surviving In A Multiple Protocol World 3101-14

With the introduction of 3.11, Novell has announced support for TCPIIP and
Sun's NFS. They meld XNS (IPX is their version ofXNS) and TCPlIPtogether
in a manner that minimizes their differences, yet exploits their complimentary
characteristics. To integmte TCPIIP with Netware, the operating system uses
four Netware Loadable Modules (NLMs) which manage most of the multiprotocol
tasking. Unfortunately, most network interface cards do not yet support ODI.
You will either have to replace your NICs or put pressure on your vendor to
write an ODI driver for the ones you have.

These three shared driver implementations make the concept of the "universal
workstation" possible. That is, shared drivers could allow workstations to be configured
similarly for multiple hardware and software platform access with minimum knowledge
about the underlying network activity such as protocol or host interface.

When we add the a graphical user interface such as Windows 3.0 or Ne"'Wave, a
common user interface can also be obtained. While most applications available today
would not fully exploit the Windows environment, their is still significant power in the
universal workstation concept. For instance, a individual workstation could logon to a
variety of host, extract information and transfer it back using the Windows Clipboard or
file transfer. This would allow for a "cut & paste" capability among all participating
hosts.

Shared Packet Drivers do not address the coexistence of all protocol stICks. The next
section will talk about gateway technologies as another method for managing multiple
protocol environments.

UsiDg Routen & Gateways in Multiple Protocol Enviromnents

Another technique for blending unlike protocol stacks is the use of routers and gateways.
These network components can be standalone black boxes, dedicated lPcs, or software
and baJdware that resides on a server platform. First a quick definition of Routers and
Gateways:

RmIlm: - A single protocol router connects two networks ronning the same high
level protocol. Operating at the·network layer routers possesses a higher level
of intelligence than bridges. This makes them particularly suited for complex
or large networks. Routers use a hierarchical addressing scheme that
distinguishes between device addresses and network address. They allow the
logical sepamtion of an internetwork into many subnetworks. The subnetworks
are logically independent administmtive domains allowing distributed network
management strategies to be enforced. Unlike bridges, routers do not impose
constraints on network topology. They can accommodate any number of paths
and active loops.

SutViving In A Multiple Protocol World 3101-15

Routers use internal routing tables that includes network addresses and the devices
on each network. Unlike bridges, they do not include the specific network
address of each device. Where bridges make a simple forward or discard
decision based on the routing table,' routers use this infonnation to select the best
route for each packet. Routers also contain one or more algorithm that
determines the number of hops between network segments and calculates the best
or shortest path for network packets.

Gateways - These devices operate above the network layer and uses the session,
presentation, and appUeation lllyers. Typically gateways translate data into the
fonnat expected to be seen by the host it is destined for. That is, the function of
a gateway is to convert packets from one protocol to another. To use and over
used metaphor, a gateway is analogous to a United Nations interpreter who can
accept Chinese input and produce English output.

Routers In Adion

A Multiprotocol router is simply a router that supports more than one protocol. It can
provide software support for muting a number of high-level protocols simultaneously and
within a single system. Multiprotocol routers eliminate the need for, and the expense of,
having a muter for every high-level protocol on the internetwork.

The differences between routers and gateways have become blurred over the past couple
years. 1be emergence of -magic boxes" that can do bridging, routing, bridging &
routing (brouting) and low level gateway functions have been the main cause. However,
we typically think in tenns of routers not doing any translation or protocol conversion.
We also generally think in terms of two or more routers. That is routers only receive
packets addressed to it by either an end station (source address) or another router. Based
on the address of the final destination network and the infonnation contained in the
routing table, the router determines the next segment to which to send the packet, and
the entire routing process occurs on this hop-to-hop basis.

A simple example of a multipmtocol router could be a multiprotocol router such as a
those manufactured by cisco Systems. The cisco will mute over IS separate protocols
from a single box with multiple interface cards. The packets can be DBCNet, TCP/IP,
Appletalk, XNS and others. The physical interfaces can be ethernet, token ring,
AppleTaIk or some wide area serial connection. The router acts as a traffic cop directing
packets to their appointed destination based on its knowledge of the network. The router
will not translate multiple high level protocols and allow them to intemperate.

Another multiprotocol muter implementation would be a Appletalk to ethemet nblack
box". By placing additional client software on the MAC, data could travel over an
Appletalk connection into the router and out over the ethemet for running TCPIIP
applications. The client software simply encapsulates TCPIIP packets inside ofAppletalk

Surviving In A Multiple Protocol World 3101-16

packets, transports them to the ApplelTCP router, then strips them off l~ving "virginIf

TCPIIP packets for use by a compliant, participating host.

Gateways As Interpreters

A dedicated PC with gateway software that has an ethemet card running TCPIIP and a
Token Ring Card ronning Novell IPX is an example of a simple gateway. The device
is translating high level protocols into fonns that the destination host is expecting to see.
Users on the Novell network can transparently connect to host computers running TCPIIP
on ethemet as though they were directly connected to that network. Another example
of a gateway is BPs NS LAN Gateway. It provides personal computer integration
capability from Pes nmning Novell NetWare to LAN based BP 3000s. It is a dedicated
PC nmning gateway software. Novell client Pes install BP NS-User Services on their
Pes and it allows them to ron lIP DeskManager, access lIP 3000 based peripherals, and
conduct network file transfer.

Gateways can also be used for communicating to SNA environments, perfonning
protocol conversion, and full ttanslation to the IBM world. Products like the
DCAlMicrosoft Comm Server provides access to mainframe applications and convenient
file transfer facility, no matter what physical links are needed. Consisting of two
sepamte software components: a server component that roDS on a selVer system, and a
client application the roDS on user Pes, it provides full 3270 terminal emulation printer
emulation, and file transfer. In this implementation, the network selVer does the
majority of the work unlike traditional SNA Gateway implementations. This product
provides the IiDk to the IBM mainframe, the SNA software on the server, and client
software for management of the applications.

Other examples of high level gateways are electronic mail gateways such as X.400 and
SMTP gateways. These gateways provide message translation to and from unlike E-Mail
Systems for translation and interoperability.

Standardization of Protoeo..

As Shared Packet Drivers and Routers & Gateways are applied to the opening analogy
of adapting to ones environment as does various species of the animal kingdom, then the
next technique is analogous to burning down the forest and choosing which animals will
live in the new forest. An effective, but sometimes politically unacceptable, techniques
is to ron a single protocol stack on all host throughout your organization.

It is quite possible to ron TCPIIP on every major hardware and software platfonn on the
market. No other protocol stack even comes close. This includes IBM mainframes,
Apple MACs, Digital VAXs, nearly everyone's Unix, DOS, OS/2, and others. As
mentioned earlier, this whole business of multivendor networking was caused primarily

SUlViving In A Multiple Protocol World 3101-17

as a bottom-up phenomenon. Workgroup using AppleTaIk, XNS, Novell IPX, and
TCPIIP were initially isolated affairs with little need to get onto the corporate backbone
and access the wide area. Today, however, business requires integration of LANs of all
types regardless of the preferences of corporation's centralized planners.

Conceptually, ifone could standardize on a single protocol, many of the entelprise-wide
problems would go away. We would have no need for multiple protocol stacks in PC,
no need for gateways, and no needs for different network emulation.

For instance, PC nets could nan MS LANmanager, minicomputer servers nanning Unix
could nan LanManagerlX, Mainframe computers could nan MicroTempus' LanManager
for MVS, DBC's Pathworks (LM for VMS) and they could all be connected via etbemet
and TCPIIP. This would provide virtual tenniDal, network file transfer, resource
sharing, electronic mail transfer, netwoIk management services, common application
APIs for client/server computing, and much more.

If you can do it politically, salvage your investment in application software and
hardware, and be able to pay for it, things would be great. You would also be well
positioned to migrate your entire entelprise to OSI as it becomes more widely
implemented.

IV. NOW WHAT?

By now I bave probably only given you an adequate survey of techniques for tackling
multivendor networking. Most of these techniques should apply to your organization, but
probably not totally.

A Scenario

Let's take a fictional organization that is geographically distributed in San Francisco, Chicago,
New York, and Denver. 1be organization if nanning financial and accounting software at
corporate (New York) on an IBM 3090 nanning MVS. New York is also nanning a 200 node
Novell network using token ring cards and OS/2 LANMaDager. San Francisco has a large
VAX cluster roDDing engineering applications and a Novell Netware network on a 486 server
using 10BaseT ethemet cards. Chicago bas a Marketing group with SO node Appletalk network
and Denver is operating a manufacturing facility using lIP 3000s in a classical timesharing mode
with terminals and a PC net using lIP Resource Sharing also connected to the lIP 3000.

The Requirement

This company has the following requirements for data communication:

New York Receive financial information from each of the locations

Surviving In A Multiple Protocol World 3101-18

San Fran

Denver

Chicago

Send and receive E-Mail from its NYC mainframe to all locations
Receive, approve, and return promotion plans from Chicago

Send Bill of Material files to Denver's HP 3000
Access product safety infonnation from New York on OS/2 server
Send Chicago product design infonnation
Pull customer service records from Denver

Send financial reporting to NYC mainframe
Receive Bill ofMaterial and Engineering enhancements from San Francisco
Send and receive electronic mail to everyone

Send and Receive E-Mail
Send budget data to New York mainframe
Get production statistic from Denver for quarterly and annual report

As illustrated in Figure IV, a solution could be implemented to provide the needed requirement
and to allow unlike computer pIatfonns to communicate. The specific design could include:

1) A high meed bmuter network connectinl all four cities. It is configured in a star
configuration so that each city has an alternate path if network downtime is
experienced. All protocols in use could be routed and those not mutable could
be bridged as necessary. The brouters talk Simple Network Management
Protocol (SNMP) for proper network management as do most of the other
network components.

2) New York - Full TCPIIP would be installed on the IBM 3090. This includes all
TCP applications such as telnet, ftp, SNMP, and SMTP. The token ring network
is connected through a token card in the FBP. LANManager stations could ron
dual stacks using NDIS. In this case they could ron XNS for local LANManager
functions and then dynamically switch to TCPIIP to talk to the mainframe,
Appletalk, VAX, or lIP hosts. 3270 users could continue to ron E-Mail and
terminals whille the PCs could logon using TN3270 using TCPIIP.

3) ~ - The AppletaIk network could continue to use its native protocols for
nonnaI operations. Using a Apple/TCPIIP gateway, they could logon to the
mainframe using TN3270 for E-Mail, use FfP to pull data from Denver and
tmnsfer data to NYC as needed.

4) San Francisco - By installing TCPIIP on the VAX cluster, we could logon on to
the product safety database in NYC, tnmsfer bill of materials and engineering
ftIes to Denver, and send new product designs to Chicago. The Novell network
could have its own E-Mail systemwithaSMTPgateway(shippedwith3.11) for

Surviving In A Multiple Protocol World 3101-19

San Francisco

VAX Cluster

Chicago New York

AS 232C 10BaseT

Denver

Figure IV. Fictional Enterprise Network

Surviving In A Multiple Protocol World 3101-20

interacting with the mainframe E-Mail system. Using ODI, we could also access
any other TCPIIP implemented host for file transfer and virtual terminal.

5) ~ - Novell communications take place through a HP NS gateway. This
allows all Netware connected Pcs in San Francisco to access customer service
records on the HP Resource file system. FIll is installed on the HP 3000 for
transferring financial data to New York and bill of materials from San Francisco.
PC based TN3270 software is installed on the Denver Pcs for accessing the
electronic mail system in New York.

V. CONCLUSION

There are as many different ways to solve this problem as there are network engineers. The
important thing is that there are very good ways to make a bunch of different protocols talk
together within an organization. Rather than fighting the differences in these protocols, it is
usually better to exploit their strengths and leverage off of the significant hardware and software
investment your organization bas made. This is not only smart business but will position your
organization for tightening IS budgets and the emerging client/sever model of computing.

Like the Sargassum Sea Frogfish, we should adapt to our environment and blend into it
seamlessly. In this way we can keep "afloat", well disguised with out anyone even knowing we
are different.

1baDk You.

Surviving In A Multiple Protocol World 3101-21

BmLIOGRAPHY

Allers, Rex, "Tech Talk - NDIS Concepts",~ Winter 1991, pg. 5-16.

Barry, David, "Running the Plays: Linking LANS in Mixed-Protocol Environments",~,
Winter 1991, pg. 30-32.

Bradner, Scott 0., "Testing Multiprotocol Routers: How Fast is Fast Enough", Data
Communications, pg. 70-86.

CIaJt, Dooald F., "The Protocol Playbook",~, Winter 1991, pg. 26-28.

Day, Micbael, "Netware 3.11 Successfully Combines TCPIIP and XNS", LAN Dmes, April
IS, 1991, pg. S3-56.

Dortch, Michael, "A Protocols CbaIk TaIk",~, Winter 1991, pg. 25.

Harrison, Brad, "Magic Boxes with Multi-Standanl Support Emerge", LAN Computing,
Febmary 29, 1991, pg. 1, 25.

King Steven, "Multiport Bridges: A New Architecture for Ethernet", Data Communications,
August 1990, pg. 72-75.

Knack, KeUa, "UNIX International's OSA Will Become SVR4 Development Base", LAN
Computin" February 29, 1991, pg. 1, 25.

LiebiDg, Edward, "Netware 3.11 Close to Its Promise", LANThnes, April 15, 1991, pg. 1,95.

Morris, Desmond, Animal Watchinl, Crown Publishers, Inc., New Yode, 1990.

Morrow, Monique, "Charting a Path Through the Protocol Maze", LAN Technoml,V, December
1990, pg. 79-82.

Poling, James, Animals in DispUe, W.W. Norton & Company, New Yode, 1966.

Roman, Bob, "Making the Big Connections: Implementing Intemetworks with Bridges, Routers,
and Brouters",~, Summer 1990, pg. 14-25.

Sabo, L. Michael, Interworkine LANs Through WANs, McGraw-Hill, 1990.

Tannenbaum, Andrew S., Computer Networks, Prentice-Hall, 1981.

The Wollongong Group, Intemetworking: An Introduction, The Wollongong Group, Palo Alto,
California, 1989.

Surviving In A Multiple Protocol World 3101-22

Paper Number: 3102

Save the Trees! (and your printers and people)

Debra B. M. Canfield
Dairylea Cooperative Inc.

P.O. Box 4844
Syracuse, New York 13221-4844

315-433-0100

I grew up in the woods. My hometown is the second largest city in New
Jersey, by area that is. "53 square miles ofscenic beauty" was the caption on the only
postcard I can ever remember seeing of Estell Manor, and that showed a picture of a
tree-lined country road. With a population of about 650, we had a lot more trees than
people. So, I'm naturally interested in saving the trees. However, to be honest with
you, my· interest in reducing the amount of printing we do at work didn't start with a
desire to save the trees. It came from a desire to make my life easier by reducing the
amount of paper we had to look at, print, load into the printer, take off the printer,
distribute, etc.

This paper presents the techniques we've used at Dairylea Cooperative Inc. to
reduce printing. You probably won't find anything here which will be in competition
for "great idea of the year," but hopefully, at least one of the ideas will be something
you had not thought of before or a catalyst to help you think of something better.

First, a number of techniques for reducing the amount of printing which is done
will be discussed. Then, we'll look at general principles for deciding where to start
and how to implement printing reduction. Finally, we'll review the benefits produced
by reducing your printing requirements.

Techniques to Reduce Printing Requirements

;NOCCTL

Carriage-control is a good technique for quickly adding whi~ space to your
paper. When you need white space, your printer will put out the pages much faster by
advancing pages, etc., than by printing blank lines. But sometimes, you really don't
need all that white space.

For instance, our general ledger system produces nicely laid out maintenance
reports. Among its features is a page advance every time the department changes. If
you add the same account number to fifty locations, the report you get to check your
results is fifty pages long. All I really want is a one-page report with one line for each
of the fifty accounts. Instead of being able to quickly scan down one page for errors, I
have to flip through fifty pages.

What are my alternatives? I really need to see the report, so I can't just delete
it. The maintenance program is part of a (horribly written) purchased package, so
changing it is not feasible. My solution is to print it without carriage-control. All I
had to do was modify the file equation in the job stream by adding ;NOCCTL as
follows:

:FILE LP;DEV = LP;NOCCTL

Save the Trees! (and your printers and people) 3102-1

No, reports without carriage-control are not pretty. But, if you just need to
look at it fast and aren't trying to impress the chairman of the board, who cares? I find
;NOCCTL to be a great solution when I need to see a report but don't care what it
looks like, and when modifying the creating program is impossible or simply not worth
the time it would take.

Figure 1 summarizes the implementation effort cost of using ;NOCCTL.
Implementation is rated on a scale from easy to difficult, and cost ranges from free to
expensive. ;NOCCTL is easy to implement, since you only have to modify file
equations. As with any technique you use for the first time, your initial
implementation will take a little more effort, since you need to test it and make sure
you understand how it works. Once the file equations are changed, no effort is needed
to use ;NOCCTL on an ongoing basis. Since ;NOCCTL is built into MPE, the only
cost involved is the time you spend on implementation.

Stdlist Handling

I have always been annoyed by all the page breaks MPE puts into Stdlists.
What a waste of paper and of my time when I have to look through them. Every time
the job runs FCOPY or QUERY, does a LISTF or STORFJRESTORE, etc., you get a
new page. Do you need three FCOPYs in a row? You get three pages.
Unfortunately, adding ;NOCCTL to the end of the JOB command doesn't work.

What are my alternatives? I could just delete the Stdlists. I could figure out a
way to print them without carriage-eontrol. Or I could buy, or write, software to take
care of them.

Deleting Stdlists is easy. Just add the following line anywhere in your job

;NOCCTL

Implementation
Easy Medium Difficult

Flrst•••C::===============::J1
Later --'

On-
golng-•-------------------------,

Cost
Free Medium Expensive

Startup.._L...-J

On-
golng-•------------------------,

Figure 1

Save the Trees! (and your printers and people) 3102-2

streams. I recommend that you add it right before the :EOJ line, so your Stdlist won't
be deleted unless your job stream runs all the way through.

:SET STDLIST = DELETE

Personally, I find deleting Stdlists spooky. I don't always look at Stdlists, but
it's nice to have them if I want to look at them. Many times I've gone back to old
Stdlists to see what actually happened or to show a user what jobs they actually ran
(versus what they say they ran).

There are two cases where I do use :SET STDLIST=DELETE. First, for
security reasons. If there is something in the job stream that I definitely do not want
anyone to see, I want it to disappear. Second, we use :SET STDLIST=DELETE to
get rid of successful compile streams. Other criteria may make more sense at your
shop, but while we may delete Stdlists for test jobs, we never delete them for
production. In fact, we save them for two months.

Back in 1986 at the Detroit conference I discovered a vendor selling a software
package that would look through standard lists for errors and would print them all
together at a later time, removing the carriage-eontrol for me. At that time the soft
ware was called "$Stdlist Management Processor," and that's exactly what it did. One
day of running the trial copy was enough to know we could no longer live without it.

Granted, the biggest plus for us is looking through the Stdlists for errors
automatically (our operators used to have to do this), but a big fringe benefit is the way
it prints the Stdlists. I have it set to merge them all together at 4:00 A.M., and then
we print them, index included, in the morning. Instead of our Stdlists being printed
and piled up during the day, making them more likely to be lost, the listing is much
smaller, because the carriage-control is gone, and the Stdlists don't get lost, because
they are printed all together the first thing each morning.

$Stdlist Management Processor eventually developed into JOBRSQ, which does
much more than what I've briefly mentioned here. In fact, to even further reduce your
printing, JOBRSQ has an option for sending your Stdlists to microfiche. If you' re
interested in finding out more about JOBRSQ, contact NSD.

If you don't want to buy a complete Stdlist solution, and you don' t have the
resources to develop something fancy for yourself, you can still compress the carriage
control out of your Stdlists on line or in batch with the routines shown in Figures 2
through 4.

Figure 2 shows a command file for on line spoolfile compression using the
native mode spooler for MPE XL. The approach is to build a file to hold the spoolfiles
temporarily and set a ;NOCCTL file equation for it. The command file prompts for
spoolfile numbers, which it copies to the holding file. When the last file is copied,
indicated by pressing <Enter> in response to the spoolfile number prompt, the
holding file is printed and then purged.

Note that since the command file simply prompts for spooltile numbers, it can
be used to eliminate carriage-control from any spoolfile. Therefore, it might be useful
for reports for which you want to eliminate carriage-control as discussed above, but for
which you cannot access the file equation.

The job stream in figure 3 is strictly for Stdlists with the native mode spooler,
since it uses the LISTSPF command to get a list of spoolfiles with a designation of
U$STDLIST." It uses a similar approach to the command file, but puts

Save the Trees! (and your printers and people) 3102-3

Command file for On Line Spoolfile Compression
with N.ative Mode Spooler

COMMENT Command file to compress printing by eliminating CCTL.
PURGE NOCCHOLD
BUILD NOCCHOLDiREC=-1008iDISC=100000iSPOOL
FILE NOCCHOLDiNOCCTLiACC=APPENO
WHILE SETVAR CSPOOLFIL, INPUT C"Spoolfile # to compress:"» <> ""
IF FINFOC'OlSPOOLFIL.OUT.HPSPOOL',O)

FCOPY FROM=OlSPOOLFIL.OUT.HPSPOOLiTO=*NOCCHOLO
SPOOLF O!SPOOLFILiDELETE

ELSE
ECHO Spoolfile lSPooLFIL does not exist. Stdlist not copied.

ENDIF
ENDWHILE
SPooLF NOCCHOLDiPRINTiDEV=LP
PURGE NOCCHOLD

Figure 2

Batch Stdlist Compression with Native Mode Spooler

JOB NOCCSTRM,OPERATOR.SYSiOUTCLASS=,1
COMMENT Job stream to compress all Stdlists.
PURGE NOCCHOLD
BUILD NOCCHOLDiREC=-1008;DISC=100000;SPOOL
FILE NOCCHOLDiNOCCTLiACC=APPENO
PURGE NOCCLIST
FILE NOCCLISTiREC=-80
LISTSPF O@iSELEQ=[FILEDES~$STDLISTAND STATE=READY] > *NOCCLIST
EDITOR
TEXT NOCCLIST
DELETE 1/3
FINO "INPUT SPOOL FILES"
DELETE *-1
DELETE */LAST
CHANGE 9/80 TO IN ALL
CHANGE 9 TO "'" IN ALL
HOLD ALL
CHANGE 9/80 TO ".OUT.HPSPooLiTO=*NOCCHOLO" IN ALL
CHANGE" "TO"" IN ALL (because FCOPY doesn't like spaces in the filename)
CHANGE" "TO"" IN ALL
CHANGE" "TO IN ALL
CHANGE" II TO " II IN ALL
CHANGE" II TO II " IN ALL
CHANGE "#" TO "FCOPY FROM=" IN ALL
ADD ,HOLDQ,NOW
CHANGE n%n TO njDELETE" IN ALL
CHANGE "#" TO "SPOOLF " IN ALL
KEEP
END
SETVAR HPAUTOCONT TRUE (so job will continue if Stdlist disappears before it's copied)
NOCCLIST
SPOOLF NOCCHOLDjPRINTiDEV=LP
PURGE NOCCHOLD
PURGE NOCCLIST
SET STDLIST=DELETE
EOJ

Figure 3

Save the Trees! (and your printers and people) 3102-4

Batch Spoolfile Compression with MPE V and SPOOK5

JOB NOCCSTM1,NOCCUSER.SYSiOUTCLASS=NOCC,1
COMMENT First part of process to compress Spoolfiles with SPOOK.
COMMENT NOCCUSER.SYS should be a unique user so SPOOK append
COMMENT in NOCCSTM2 doesn't get confused.
COMMENT All Spoolfiles which you wish to include should be sent
COMMENT to a unique device class, NOCC, so other spoolfiles

:COMMENT are not included in the NOCCTL copying.
:SHOWOUT SPiJOB=@JiREADYiDEV=NOCC
:STREAM NOCCSTM2
:EOJ

:JOB NOCCSTM2,NOCCUSER.SYSiOUTCLASS=NOCC,1
:COMMENT Second part of process to compress spoolfiles with SPOOK.
: CONTINUE
:PURGE NOCCLIST
:RUN SPOOKS.PUB.SYS
FILE NOCCLIST;RECg-71,3,F,ASCII
APPEND NOCCUSER.SYS;ALL,*NOCCLIST
EXIT

: EDITOR
TEXT NOCCLIST
WHILE
FIND ":JOS"
DELETE 1/*
FIND FIRST
FIND "DEV/CL"
DELETE 1/*
DELETE * (This procedure will not work unless more than one spoolfile
FIND "FILE" is found by SHOWOUT in NOCCSTM1. If there are less than 2
DELETE * ILAST spoolfiles, "FILE" will not be found.)
DELETE *
CHANGE 19/72 TO " " IN ALL
CHANGE 1/10 TO n%" IN ALL
HOLD ALL
CHANGE 10/72 TO ";ALL,*NOCCHOLD" IN ALL
CHANGE "'" TO n APPEND " IN ALL
ADD ,HOLDQ,NOW
CHANGE "%" TO " PURGE " IN ALL
ADD
EXIT
YES
:FILE LPiDEV=LPiNOCCTL
:FCOPY FROM=NOCCHOLD;TO=*LP
:SET STDLIST=DELETE
$EOJ
II
CHANGE "$EOJ" TO n:EOJ" IN ALL
ADD .1
$JOS NOCCSTM3,NOCCUSER.SYS;OUTCLASS=NOCC,1
:PURGE NOCCHOLD
:SUILD NOCCHOLDiREC=-132iDISC=100000
:FILE NOCCHOLDiNOCCTLiACC=APPEND
:RUN SPOOKS.PUS.SYS
II
CHANGE nSJOS" TO ":JOS" IN .1
KEEP
END

:STREAM NOCCLIST
:SET STDLIST=DELETE
:EOJ

Figure 4

Save the Trees! (and your printers and people) 3102-5

the listing of Stdlists from LISTSPF into a file and then uses EDITOR to create a
command file which copies and purges the spoolfiles. Note that with either approach,
the carriage-control characters are not actually gone. They print in the first column of
the listing as characters and are no longer interpreted as carriage-control codes.

Figure 4 shows a spoolfile compression job stream routine for MPE V and
SPOOKS. A command file routine is not provided, since MPE V does not provide
WHILE and INPUT commands. The first job stream, NOCCSTMl, does a
SHOWOUT of all ready spoolfiles on a particular device. By sending your Stdlists to a
unique device class with the :OUTCLASS parameter, you will insure that only Stdlists
are copied. NOCCSTMI then streams a second job, NOCCSTM2, which uses
SPOOKS to copy the Stdlistjust produced for NOCCSTMI. Next, EDITOR is used to
manipulate the Stdlist, leaving only the spoolfile numbers and adding commands to
create a job stream which appends and purges the spoolfiles. Finally, it streams the
third job, NOCCSTM3, which it just created.

You cannot use :SET STDLIST=DELETE in NOCCSTMl, since its Stdlist is
used in NOCCSTM2. When the job is run the second time, the Stdlist from the first
run will be included in the SHOWOUT and will be printed and purged in
NOCCSTM3. NOCCSTM2 uses APPEND in SPOOKS and a WHILE loop in
EDITOR to delete all but the last Stdlist. [*]

The command file and job streams shown are designed to serve as examples. If
you decide to use them, you might wish to enhance them. For instance you could add
a :STREAM command with the ;IN parameter to the job stream to have it

:SET STDLIST=DELETE

Implementation
Eaey Medium Difficult

Flrat ================:J1

Later ___

On
golng-.------------------------.

eoat
Free Medium Expensive

Startup__L-- ----I1
On
golng-.------------------------,

Figure 5

* I wish to express my thanks to Dave Stanton of Chestnut Data Systems for testing and
debugging the MPE VISPOOKS job streams. Since Dairylea now uses MPE XL and the
native mode spooler, I was unable to test the SPOOK routine for myself.

Save the Trees! (and your printers and people) 3102-6

automatically restream itself to run at a certain time each day. If/ou are going to print
many Stdlists one after another, you may wish to add lines 0 ***s or some other
character just before :EOJ or just after :JOB in your job streams to help you find where
each job starts and ends.

Remember, you can't take the carriage-eontrol out of a Stdlist if it starts
printing before you grab it. If you want to access your Stdlists, you need to keep your
outfence up, or use a low output priority with the ;OUTCLASS parameter in your job
streams as shown in figures 3 and 4.

Bear in mind that any Stdlist handling option other than :SET
STDLIST=DELETE trades processing for printing. If your system is already
overloaded, you may be able to compensate in part by scheduling your Stdlist
manipulation for off-peak hours. Also, if errors in your Stdlists are your only
notification of problems, rou will need a method to either override your special
handling and print the Stdhst in question immediately or develop another method for
error reporting.

Figures 5 through 7 summarize the implementation effort and costs for the
described Stdlist techniques. :SET STDLIST=DELETE is similar to ;NOCCTL in
that it comes with MPE and involves only a simple addition to job streams. JOBRSQ
requires some thought and decisions up front, but then just runs automatically, taking
care of itself. Since it comes from a vendor, there is an initial license fee and ongoing
maintenance charges. Maintenance includes periodic updates which require only a little
effort to install and a little more to read about and decide whether to use the new
features provided.

Using a job stream versus a command file to compress Stdlists will probably
require more initial thought and planning, but a command file will require more

JOBRSQ

Implementation
Easy Medium DIfficult

Flr.t =========:J1
late'.. ----'

On
golng-.-------------------------,

Coat
Free Medium Expensive

Startup C==:::J1
On-

golng......C================:=J
Figure 6

Save the Trees! (and your printers and people) 3102-7

ongoing effort, since spoolfile numbers need to be entered one by one each time they
are used. Since they only require MPE, the cost is low.

Microfiche

Back in 1983 when I started working for Dairylea, my first assignment was to
work on the accounting reports. When I asked to see the year-to-date general ledger, I
was told that they only printed monthly ledgers. A year-to-date one would be too long
to print.

They were probably surprised at the request, because how could I possibly think
they'd print something so long'? After all, you could just look at all the monthly
reports to get the same information. I was surprised at the answer, because I certainly
didn't expect to be handed the report on paper. Hadn't they ever heard of microfiche'?

Microfiche is a highly reduced alternative to printing. Reduction ratios can vary
among 24, 42, 48 and 72. At a reduction ratio of 48, 270 pages of printed material fit
on a single sheet of microfiche, which measures about 4" by 6". 42 and 48 are the
most common reduction ratios used. Using a ratio of 24 requires more fiche, and at 72
it is difficult to get consistent, clear results. While you can hold microfiche up to a
light and get a general idea of the type of pages it contains, you really need a
microfiche reader to view it. Microfiche readers are ordered with lens sizes to match
the reduction you use, and reader/printers are also available. Generally a company
using microfiche would need at least one reader/printer to provide hard copy when
microfiche is the only source for certain information.

The cost of microfiche is about $2.50 per sheet for originals and 19 cents per
sheet for copies. Compare that to the cost for 270 pieces of paper, the time it takes to

Command Files/Job Stream

Implementation
Ea8Y Medium Difficult

Flr.t•••••=============:=J1
Later --II

On
golng------------------------,

Coat
Free Medium Expensive

Startup ---'I

On-
golng-• ..--------------------.---,

Figure 7

Save the Trees! (and your printers and people) 3102-8

print and distribute it and the space it takes to store. If you can replace more than one
copy of a report with microfiche, the media cost will actually be less with microfiche
than with paper. Prices on microfiche readers and reader/printers vary widely, but as a
rough estimate, you could expect to pay about $250 for a reader and $1700 for a
reader/printer. Companies with large printing requirements may be able to recoup this
cost in dollars as well as ease of use. It's not easy to lug around reports hundreds of
pages long when you need to look at them.

For Dairylea, microfiche has made a big difference. Now, rather than not
having year-to-date general ledgers because they are too long to print, we can fit twenty
years' worth in a shoe box. We used to buy two-part checks, and our copies filled a
room. When someone needed a copy, it was cumbersome to find the original and put
the large binder on the copy machine to get it. Now we save money with one-part
checks, have all our copies easily available on microfiche and quickly make copies
when needed with the reader/printer.

The procedure for obtaining microfiche is quite simple. We create the reports
we want to go to microfiche initially as a disc file when we don't need to print a copy,
and then FCOPY the disc file to tape. If we do need to print a copy, as in the case of
checks, we save a copy of the spoolfile and copy that to tape. Actually with our checks
we offer direct deposit as an alternative, so for the microfiche we append the spoolfile
from the direct deposit confirmations, which are laid out like checks, to the actual
check spoolfile to obtain a single set of microfiche for the check run. We do our
FCOPYs in jobs which are streamed by the creating job for disc files and are streamed
by JOBRSQ for spoolfiles. The only thing we need to do is load a tape, call the
microfiche company to come get it, and we have the microfiche back the next day.

Where do you start if you want to try microfiche? Look in the yellow pages
under "Microfilming Service, Equip & Supls." Call a couple of companies. They will
be happy to pay you a visit and tell you all about it. They will have you create a
sample tape and give them a few sample printed pages. They can automatically include
background information on the microfiche, such as a check form, so that when you
view and print from the microfiche, you will see the check, rather than just what you
print on the check. You can also find companies to sell you readers and reader/printers
in the same section of the yellow pages. As with anything else, the companies will
vary. Even though we had used the same company for years, we switched to a
different company about a year ago when we found someone who provides better prices
and service.

Just a note on microfilm: Microfilm is more familiar to the general public than
microfiche. Microfilm is similar to microfiche, except that it comes in long narrow
rolls, something like camera film. As I understand it, microfilm was available first,
but in about 1979 or 1980 the industry changed, and many companies who were using
microfilm for C.O.M. applications switched to microfiche. C.O.M., which stands for
computer output microfilm, is \"hat you use when you skip the paper and go right from
the computer (generally via magnetic tape). Ironically, C.O.M. is produced primarily
on microfiche, rather than microfilm as the name implies. Microfilm is widely used for
source documents applications, that is, by copying hard copy documents onto
microfilm.

The implementation effort and costs of microfiche are summarized in figure 8.
Getting started requires some investigation and testing, but once you have your first
procedures worked out, setting up a new job for microfiche is relatively easy. When
you automatically create the required files and job streams to copy them, the ongoing
effort involves little more than loading a magnetic tape. The initial expense involves
the cost of the readers or reader/printers you require. Depending on volume, the

Save the Trees! (and your printers and people) 3102-9

ongoing use of microfiche can actually produce a savings rather than an expense when
compared to printing on paper.

Reports on Computer Screens

Detroit, back in 1986, was a great conference for me. Besides finding
JOBRSQ, I read a short product announcement in the conference Daily for software to
let you view your reports, instead of printing them. That sounded like good news to
me, so I went right over to the Chestnut Data Systems booth to ask about SCAN.
Unfortunately for me, it was brand new, as in not quite done yet. Fortunately, as soon
as it was done, they sent a trial copy, and after loading just one report into it, I knew
we had to have it.

The first reports we used SCAN for were, guess what, those same general
ledger reports for which we were using microfiche. Each month when we ran the new
year-to-date general ledger, we threw out the microfiche from the prior month. The
only one we saved was the final for the year. With SCAN, we could update the
general ledger as often as we wished without the cost of producing microfiche. We
still produce a copy on microfiche for permanent storage at. the end of the year, but the
cost of SCAN was recovered in less than a year just from what we saved by not
microfiching those general ledger reports each month.

The next application for which we used SCAN was our member trial balances.
It seemed like accounting was always running them, and they always had to have them
right away, so someone in our department would be interrupted from their own work to
get the report off the printer. Since the report is fairly long, it wasn't feasible to send
it to a slower printer in the accounting department. Also, since the report was laid out
so nice, jumping to a new page for each member, it wasted lots of paper.

Microfiche

Implementation
Ea8Y Medium Difficult

Flr.t••••••••••=========::J1

Later•••-==============::::J
On
golng--------------------------,

eost
Free Medium Expensive

Startup••••••••-============::::ll
On-
golng~1-----------------------,

Figure 8

Save the Trees! (and your printers and people) 3102-10

I talked to the culprit in accounting. Why do you run so many? If they made
any transactions, they needed a new copy. Why do you need it in such a hurry?
Something about getting checks out (life or death in our business). Do you keep them
all? No, just the final for the month. Do you look at the whole report each time you
run it? No, just the total on the last page to make sure it is right, and maybe the pages
for a couple members. How would you like to be able to look at it on your screen and
just print out the whole report or certain pages to whatever printer you want only when
you need a hard copy? Yes, indeed. It was just the solution for them and us.

Now, when accounting runs a trial balance they have an option for printing it or
putting it into SCAN. They always choose SCAN. The job stream displays a message
back on their terminal when it's loaded, and then they can call it up, jump directly to
the last page to check totals and jump directly to the page for any member they need to
check. When they have their final for the month, they simply print it through SCAN.
They aren't in a hurry to get the printed copy, because they know it's right, since they
looked at it on their screen. They get their work done faster, and we don't get
interrupted or waste paper.

To be useful to us, software to provide viewing reports on the screen has to
have the following features:

1. It has to be easy to get the report into it. I don't want to be
interrupted, and the user has enough problems.

2. It has to be easy to use. See note about users in point 1.

3. It has to provide direct access. It's not realistic to hunt through
hundreds of pages on your screen to find a particular account
number or member. You can't flip through screens as fast as you
can through paper.

4. It needs good printing options. While part of the benefit is to
eliminate printing, we do need to print some pages sometimes,
and we want to be able to select the printer and environment we
want to use.

5. Adequate security must be provided. Our users don't have access
to MPE, and we only want certain people to be able to see and
otherwise handle certain reports.

Besides passing on all the above points, SCAN offers other useful features such
as archiving reports to tape, keeping a certain number of copies of each report, or
keeping it for a certain number of days, freezing page headings, 132 column mode, etc.
For more information contact Chestnut Data Systems.

Shortly after we bought SCAN one of our other third-party software packages
added screen report viewing to their package. My first reaction was, nOh no, I wasted
my money. It But when I saw what they had to offer, I quickly changed my mind.
Making reports available in an editor type of environment, even if you can't edit it, is
not my idea of a useful way for users to view reports on their computer screens.

Viewing reports on your computer screen instead of printing them is great for
long reports, reports you need fast, reports you simply throwaway, reports you update
frequently, reports which need to be shared, etc. While it may seem like what you
need in some of these cases is something truly on line rather than just a report, it is
often not the case. Many reports would not be practical to produce with an on line
program, and if you are using purchased software, you may not be able to write an on

Save the Trees! (and your printers and people) 3102-11

line program. Also, if you already have a report which is just what you want, setting it
up for screen viewing is nothing compared to the work it would take to write an on line
application to do the same thing.

Remember, if you can view reports on your screen, you are keeping them in
computer storage, which is a tradeoff for the paper you save and will affect your
backups. In the right circumstances,' it is well worth it.

Figure 9 summarizes the implementation effort and cost of using SCAN. As
with any new software, SCAN requires some study up front to understand how to use
it. After the first report, later reports are relatively easy to set up, and ongoing use
requires no effort other than installing new updates. The cost is an initial license fee
and ongoing maintenance charges.

Reduction Printing

While eliminating carriage control can make more fit on a page by eliminating
empty space, reduction printing puts more on a page by treating a single piece of paper
as if it was made up of multiple pages. The ability to print with reduction ratios of 2: 1
(2 up) and 4: 1 (4 up) was one of the major reasons we bought our HP2680A printer
back in 1987. The savings in paper helped pay for it. Now with LaserJet printers and
software written for them, reduction printing is available on a wider scale. Also, since
reduction printing requires fewer physical pages, print speed increases.

The most common way we print on our HP2680A is 2 up, saving 50% of the
paper used with standard printing. With this format, the characters are still easy to
read, and it is more convenient when using a report. Take a compile listing, for
example. How often do you flip back and forth when looking at a program to follow

SCAN

Implementation
Eaey Medium DIfficult

FI'.t•••••••••-=========:::J1
Late' --'"

On
golng-.------------------------,

eoat
Free Medium Expen.lve

Startup••••••••••••••••r::==::::J1
On-

golng......C===============:J
Figure 9

Save the Trees! (and your printers and people) 3102-12

the logic? With two pages printed on a single sheet of paper, you don't need to flip
pages as often.

We also do a fair amount of 4 up printing, saving 75% of the paper used with
standard printing. We use 4 up printing for reports which we don't need to look at
often, if ever, or which we only need to take a quick look at without actually reading.
For example, we print our Stdlists 4 up. As I mentioned earlier, we want to print them
in case we need them, but we don't really look at them unless we have a question or
problem. 4 up is small, and when I have to read it line by line, I personally use a
magnifying glass, but that inconvenience is more than made up for by all the paper we
save and all the days we don't look at them at all.

4 up is also good for maintenance reports you only need to quickly glance
through looking for errors. On the ones we print 4 up, any abnormalities show up
because the line length or format is different, and if we spot this, we can look closely
and read what it says. Accounting prints their monthly journal entry listing this way.
Apparently they look at it only rarely, if ever, but they can't quite bring themselves to
do without it completely.

Printing standard one page per sheet of paper (1 up) is the exception for us.
People need a good reason to justify printing this way. One allowable reason is that
they have to tear the report apart to distribute it. Paper tears easily on the perforation,
but it's a pain to cut apart 2 up reports (though for some reports they still prefer to
print 2 up and cut them apart). Another valid reason to print 1 up is when people need
to write allover the report. If you need to write comments or numbers beside printed
lines, it's hard to do it when the printing is small.

All we had to do to start using reduction printing, once we had our HP2680A
laser printer, was to add one of the following parameters to our file equations:

;ENV = LP2.HPENV.SYS for 2 up printing
;ENV = LP4.HPENV.SYS for 4 up printing.

We have not tried any of the reduction printing software available for LaserJets,
so I can't make any estimates of how easy they are to use or how much they cost.
Depending upon the type and quantity of your printing, it might be well worth your
ti me to investigate.

Another way to create reduced printing is to treat pages of narrow reports
programmatically as multiple columns on a page, the way you create three across
labels. This can be tricky programmatically, but we use Hewlett Packard t s Business
Report Writer (BRW), which gives us this option. In BRW you make this selection as
"Number of Horizontal Pages" on the Define Reports screen. When a report is narrow
and two pages can be printed side by side, we do so. Combining this with our standard
2 up printing 1 we essentially achieve 4 up paper savings with 2 up character legibility.
Similarly, even if you don't have a printer which does 2 up printing, you can create the
same paper savings with multiple horizontal pages.

With LaserJet lIDs and LaserJet IIIDs, duplex printing offers another paper
saving opportunity. It isn I t used much at Dairylea. In fact the only thing which I
know of which is regularly printed duplex is the computer users newsletter I write. But
duplex may be just the thing for something you do in your business. Duplex printing is
controlled with the following escape sequences:

< Esc> &11 S for long-edge binding
< Esc> &12S for short-edge binding

Save the Trees! (and your printers and people) 3102-13

The implementation effort and costs of reduction printing are summarized in
figures 10 and 11. While using ;ENV theoretically only involves changing a file
equation, we found that the MAXDATA needs to be increased for some programs
which create reports with an environment specified in the file equation. As part of
MPE, the only cost, assuming you already have a printer capable of using them, is the
effort to make the changes.

The implementation effort for creating multiple column reports which are
essentially two or more pages side by side varies depending how you do it. If you have

;ENV=

Implementation
Easy Medium DIfficult

Flr.t•••-================::JI
Later•••==============::::J
On
golng-er---------------------.,

eost
Free Medium expensive

Startup_. ---------~I

On-.
golnge---------------------

Multiple Horizontal Pages

Implementation
Easy Medium DIfficult

Flr.t•••••••••C========JI
Lat.r••••-==============::J
On-

golng-• ..-----------------------

eoat
Free Medium Expensive

Startup•••C:===============::J1
On
golng-er------------------------.

Figure 10

Save the Trees! (arid your printers and people) 3102-14

software which provides it as an option, it is quite simple. It will be more complex if
you have to modify your programs to accommodate it. Duplex printing is easily
accomplished with software which supports it directly or with a little more effort by
adding the appropriate escape sequence as the frrst line of your printed report. Don't
forget to add the reset escape sequence «Esc> E) as the last line. Again, assuming
you have a printer which supports it, the cost of duplex is simply some initial effort.

Eliminate

One of the funniest computer cartoons I ever saw was of a printer and a paper
shredder side by side. As the paper was coming off the printer it was feeding directly
into the shredder. Perhaps you don't have the direct feed option installed, but do you
have any reports where this is the end result?

The biggest printing savings that can be achieved is when you can simply
eliminate something you used to print. This sounds obvious, but with all the different
reports and all the different people using them, it may be hard to spot when a report is
not used. If you can't eliminate a report completely, you may be able to eliminate one
or more of the copies printed.

Besides reports which aren't used at all, you may be able to eliminate printing if
you discover that only a little piece of a report IS used. For example, you may have a
report showing pages of detail and a grand total. If the total is all that is used, you
could shorten it to one page, or eliminate it altogether by having the total displayed on
the screen of the requesting user. In one case where we do this, we still print the one
page, so the user can save it as backup, but they can continue with their next task
sooner by not having to wait for the piece of paper. That crucial number for which
they are waiting is already displayed on their screen.

Duplex

Implementation
Eaey Medium Difficultflrat•••Il:==============::J1

Late'.. -'"

On
golng-.---------------------------.

Cost
Free Medium Expensive

Startup ----J1
On
golng-.r-----------------------.

Figure 11

Save the Trees! (and your printers and people) 3102-15

The old standby method of how to determine which reports are really needed is
to stop distributing all of them and wait to see which ones people come looking for.
However, just because someone comes for it doesn't prove that the report is actually
used. Joe in sales may come looking for that report because he knows he has to run it
every day and put it on Ann's desk. Joe may not realize that it goes right from Ann's
desk into the paper recycling container.

Figure 12 shows the implementation effort and cost related to eliminating
reports. The biggest difficulty with eliminating reports is identifying what can be
eliminated. Or, if a report can't be eliminated entirely, you need to come up with an
appropriate alternative. The cost is simply a factor of the time involved.

Direct Fax/EDI

Direct Fax and Electronic Data Interchange (EDI) have two things in common
of which I am aware. First, they both seem to be potential ways to reduce printing
requirements. Second, I don't know much about either one. They are included here
for completeness and to suggest you investigate them if they appear to be a good fit for
your organization.

If you are printing reports only to fax them to someone else, you'll reduce your
printing and a big nuisance if you implement faxing .directly from)'our HP3000. If
you are in the kind of business where EDI would be helpful, go for It. Dairylea isn't,
so I don't have time to look into it.

Eliminate

Implementation
Eaay Medium Difficult

Flrat......=============:::J1
Lat.r••••C============:::J
On-
golng-.---------------------..

eoat
Free Medium Expenalv.

Startup ----II

On
golng-.-----------------------.

Figure 12

Save the Trees! (and your printers and people) 3102-16

Implementation

So, you want to reduce your printing requirements, and now you have some
ideas about how to do it. Where do your start?

First, identify areas where you can make an improvement. Try asking these
questions:

1. What is the longest printed report?

2. Which report is run over and over?

3. What printing interrupts you?

4. What would be the biggest help to a particular department?

5. What will be simple/reasonable for you to do?

You may find a report which you can completely eliminate. Great! But if it's
only two pages long and run once a year, big deal. You may identify an elegant
solution for a given department when, in fact, you could have been a bigger help to
them with a simple solution.

Don't start with a big complex project. Start with something easy, so you can
get immediate results. You can enhance your solution as a second step, if necessary.
For example, if you want to get into microfiche, you might want to pick a long report
which doesn't require a special form, produce a disc or spoolfile, whichever is easier,
FCOPY it to tape and get your first microfiche report into the hands of your users.
Later you can work out the best way to get it to tape in a more automated fashion on a
regular basis.

Next, determine which printing reduction technique is most appropriate for the
particular printing requirement. Try these questions:

1. Does it have to look nice? If so, forget ;NOCCTL.

2. How long is it?

3. How long does it need to be kept, and how long does it need to
be readily available?

4. How is it used? Does it need to be cut up? Does anybody write
on it?

5. How many people use it?

6. Who uses it?

7. How quickly is it needed?

For example, when I talked about microfiche, I talked about how we use it for
long general ledger reports and for copies of checks. When I talked about viewing
reports on the computer screen, I talked about how it was even better than microfiche
for the general ledger reports, ,but I didn't talk about the check copies. Setting the
check copies up for viewing on the computer screen would be totally inappropriate.

Save the Trees! (and your printers and people) 3102-17

For one thing there are way too many of them. I'd certainly have to buy more
computer storage, and it would complicate my backups. More importantly, the users
simply have no need for diat kind of immediate access. They rarely use the check
copies, but they need to keep them forever. Likewise, I didn't talk about member trial
balances on microfiche. One of the main requirements for these trial balances is
immediate access. They certainly can't wait for the overnight turnaround of
microfiche.

Similarly, neither microfiche nor screen viewing makes sense when the people
who use the report don't have access to computers or microfiche readers, and giving
somebody with a visual handicap 4 up reports to use isn't very thoughtful.

Finally, put your solution into practice. Make sure you consider the people
who will use the new solution and involve them early enough in the process. Unless
you are absolutely positive they will be thrilled with the new approach, don't just throw
it at them one day. People typically don't like surprises in the work place, and a little
advance salesmanship on your part will make a big difference in whether you have a
smooth transition and acceptance of the new approach. Emphasize what it will do for
them, not what it will do for you.

Make sure that the people involved thoroughly understand the new approach and
any new procedures they must use. At times, eliminating the possibility of using the
old method may be an appropriate means of insuring that the new technique is used.
Other times it is better to provide options for whether and how to print a particular
report each time it is run.

Benefits

While many of the benefits of reducing printing requirements have been
mentioned throughout this paper, they are listed as follows by way of summary:

1. Save paper, ribbons, toner, etc.

2. Save wear and tear on printers

3. Save wear and tear on people

4. Decrease storage requirements

5. Ease of use

6. Convenience

7. Available sooner

8. Available more widely

9. Reduce interruptions

10. Move toward operatorless environment

Not every technique will provide every benefit, but appropriate techniques for
each circumstance will benefit all and help make your company a better place to live.

Save the Trees! (and your printers and people) 3102-18

Appendix

Disclaimer: This paper is not a review of all software which might be used to
reduce printing. Software used by Dairylea Cooperative Inc. is described as a way of
illustrating a particular technique. If you are interested in a particular technique, you
should investigate alternatives for yourself. Vendor shows at Hewlett Packard user
conferences and advertising and reviews in HP related periodicals are good places to
start looking for third-party solutions. Ask other users for recommendations.

In case you are interested in contacting either of the vendors mentioned in this
paper, their addresses follow.

Chestnut Data Systems
Suite 613
6981 N. Park Drive
Pennsauken, NJ 08109
609-662-1611

NSD, Inc.
1400 Fashion Island Blvd.
Fourth Floor
San Mateo, CA 94404
415-573-5923

Save the Trees! (and your printers and people) 3102-19

A Quick Look At The MPEXL Memory Dump For System Managers

Donald E. DeFreese
McDonnell Aircraft COlnpany

5695 Campus Parkway
Building 274 Departnlent 462C Mailcode 274 1125

Hazelwood, Missouri 63042-2338
(314) 233-3332

3103-1

A Quick Look At The MPEXL Memory Dump For System Managers

For most all HP sites, a system failure is bound to happen. I give HP
credit for working very hard at providing the best releases of operating
systems possible for general distribution. Howevel nothing is perfect.
You may go for many months without a single problem and suddenly experience
a crash. Some sites simply shrug their shoulders, document the crash and
reboot the machine. But the problem can still hit you again when you least
expect it. Others faithfully perform memory dumps at every failure, but
allow HP to review the data to form a problem resolution for you. But to
be an informed System Manager and get your hands alittle dirty in the dump
could save you from experiencing that next crash.

This paper is not intended to be the all encompassing dump analysis to
pinpoint exact causes of the failure and be 'the expert in the field'.
Instead, use the information as a learning tool for yourself to gain added
information on your own system. Don't be afraid to look at the dump. Your
entrance will only be in an examining mode to look at the instant of death.
At no time will you be modifying the actual operating system. Your view is
thru the window and not smashing it.

There are two areas to address in the reading of the memory dump:
(1) Proper Execution of Dump and Restoration
(2) Interrogating Dump for Failure Information.

I realize that other papers and HP documentation has been written on
performing memory dumps, but without proper procedures, valuable data could
be lost.

3103-2

A Quick Look At The MPEXL Memory Dump For System Managers

Step One - Execution of Dump and Restoration

Performing the memory dump has been documented by many individuals in
different manuals and services. One that I recommend is on HP's
Supportline dialup service from the Response Center available to Teamline
and Hesponseline customers. You can obtain a copy by searching for document
number MVAH000183 titled 'MPE/XL System Interrupt Recovery Procedures'.
Supportline has a print command (PH DOC) that prints the document to a
slaved printer. You should have a copy of this document handy for writing
up your own operator procedures for incIus ion into a workbook near the
system console. This will reduce the phone calls asking how to do the
dump.

As a synopsys of the dump process the steps are as follows:

(1) Write down System Abort information from console
The system abort number will be used at a later time for restoring the

dump back to the system. This number will set the filename for use by DAT.

(2) Label a scratch tape with abort number, date and time.
Proper labeling of the dump tape will reduce questions later if

multiple aborts occur.

(3) Mount the scratch tape in LDEV 7
This drive is also known as the ' Alternate Boot Path' you use tor

system updates and patches. The tape should be loaded and online before
continuing.

(4) Press <ctrl> B to display the CM> prompt
If the prompt does not display, you may have the cpu locked out. On

the series 950-980, a key is on the display panel with three possible
positions. If the key is in the 'Secured' position, you must turn the key
straight up to the 'Console Enabled' position. Then return to the console
and press the <ctrl> B again. This time, the CM> prompt should display.

(5) Type TC and press return
The TC command is a Transfer Control command that reboots the cpu trom

disk without resetting the hardware. A very important point is to use only
the TC command and NOT the RS command. If you should enter the RS command,
the system memory will be erased making a memory dump impossible.

(6) If autoboot is enabled, press any key to cancel operation.
On many systems, the autoboot option is enabled that will execute a

preset startup mode without operator intervention. If you do not interrupt
this operation, the system will reboot itself and wipe out all memory data.
If this option is not enabled, the system will stop at the ISL> prompt.

(7) Boot from primary boot path (Y or N)?
Since the system is to be booted from disk rather than tape, answer Y

to boot from primary path.

(8) Interact with IPL (Y or N)?>
You must enter Y to interact with IPL if a dump is to be taken.

Otherwise, the system will start under a START RECOVERY and wipe out all
memory data.

3103-3

A Quick Look At The MPEXL Memory Dump For System Managers

(9) At the ISL prompt, enter DUMP
This will begin execution of the dump program. The program is loaded

from disk and start operation.

(10) Enter user identification string for this dump (80 chars or less):
The dump program allows you to enter a description of up to 80

characters that will be written to the dump tape. This is not required and
can be bypassed by pressing return.

(11) Wait for dump tape to be written to.
Depending on the size of your machine (amount of real memory plus

number of disk drives for virtual memory) the dump could take quite awhile.
You will receive messages about the amount of virtual memory on each drive
that is being dumped.

(12) Once the dump is complete, system will reboot
The system restarts the boot process allover again after the

conclus ion of the dump. This is so the ISL is executed and the type of
start can be initiated.

(13) If autoboot is enabled, press any key to cancel operation.
On many systems, the autoboot option is enabled that will execute a

preset startup mode without operator intervention. If you do not interrupt
this operation, the system will reboot itself and wipe out all memory data.
If this option is not enabled, the system will stop at the ISL> prompt.

(14) Boot from primary boot path (Y or N)?:
Since the system is to be booted from disk rather than tape, answer Y

to boot from primary path.

(15) Interact with IPL (Y or N)?:
Enter Y to interact if you wish to restart the machine under a START

NORECOVERY. Otherwise the system will start by default under a START
RECOVERY.

(16) At the ISL prompt, enter START RECOVERY
After any system abort, a START RECOVERY is the preferred method to

restart the operating system. This will retain all streamed in wait or
restart jobs as well as all spool files. Under Native Mode Spooler, a
START RECOVERY is not required to retain output spoolfiles. But if a
NORECOVERY was executed, streamed jobs would be removed from the system.

(17) Bring the system back up for system recovery.
Some applications that were executing will require recovery after

system aborts. Your site procedures will dictate what functions Operations
should perform at this time.

Now that the system is back up, users could log back on and resume
activity. HP however recomends that a START NORECOVERY be performed as
soon as possible following any type of system abort. This is a good
practice to recover fully from any type of abort to completely rebuild all
system tables, clearing all transaction manager activity in a normal
manner. System reliability is not assured under the START RECOVERY mode.

Following a successful restart of the system, the load of the dump to
the system is needed. To restore the dump tape, log onto MGR.TELESUP. The

3103-4

A Quick Look At The MPEXL Memory Dump For System Managers

Response Center prefers the dump be restored to the 'DAT' group where the
dump program resides. But my on opinion is to create a new group called
'DUMP', home your logon to this group and create the dump files there. This
way, all dump files are centrally located, separate from HP's own code and
easily found for later cleanup. You may also want to exclude the group
from any backups you perform due to the large size of the file created. The
dump that the following examples were taken from was over 900,000 sectors
(128 megabytes of real memory plus 10 system disk drives for virtual
memory). If you use a HP 7980xc tape drive for backups, this file set will
take up almost 1/2 of a single tape.

As you have probably performed in the past, the command to load the
dump back to the system is GETDUMP. The Supportline application note
recomends that the dumpname to use begin with the letter 'A' followed by
the abort number, or the word 'HANG' for system hangs. Similar to the use
of the 'DUMP' group to find the dumpfiles easier, a standard name for each
dume will separate out your current dumpfile from others that may still be
on the system.

3103-5

A Quick Look At The MPEXL Memory Dump For System Managers

Step Two - Interrogating Dump for Failure Information.

Now comes the time to review the dump to analyze your failure. From
step three, you performed the restore of the dump tape back to the system.
If you have exited the DAT program, reexecute DAT.DAT again.

For clarity sake, the use of different character fonts will designate
if the characters are input by you, or output from the program. If the
characters appear as SHOWJOB they are input by you.

Many System Managers may not have noticed the introductory banner that
DAT displays to the screen. If you were alittle curious, you may have
stumbled into the function HP uses at the Response Center to begin reading
the dump. The entry banner for Dat looks something like the following (this
was taken from the DAT program provided on MPEXL release 2.2),:

Type "macstart" to load Macros Be Symbols.

MACSTART
Welcome to the DAT Macro facility.

Enter the dump file set name to process:

The tipoff was the message to Type "macstart" for macros. HP has
provided a wealth of predefined macros that setup easy to execute functions
that steps you thru the dump. Please perform the following steps to begin
the dump reading. Your response to the dump file set is the same file name
from the dump restore of step three. Do not enter the full filename of the
dump file. Leave off the suffix 'HEM'. DAT assumes the memory dump file
always ends in the characters 'HEM'. After entering the filename, the
macro displays the abort number read from the file, last active process
number and operating system release. The display will look similar to the
following:

Error reading dumpworthy file name length from descriptor record.

Dump Title: SYSTEM CRASH CAUSED BY CARELESS SYSTEM MANAGER
Last PIN c6

WARNING! Errors were encountered during dump open.
Do you wish to continue anyway? (N/Y) Y

RELEASE: A.41.01 MPE XL HP31900 A.51.07 . USER VERSION: A.41.01

(UNWIND - Unwinding Out Of Lockup Loop)
(UWLOCKUP - HALT $7,$406 = '7,11030)

This release of MPE that failed was A.41.01 or MPEXL 2.2. The term
last pin represents the active process number the system was executing that
the system created an abnormal situation. To prevent a possible data
corruption, the system will shut down.

3103-6

1990091016
1990082715

A Quick Look At The MPEXL Memory Dump For System Managers

Once the macro has determined the release of the operating system, you
will be prompted for which macros you would like loaded for you. So the OAT
program will display the following question:

Please choose which macros & symbol files you wish to load.
MUI~ip:e choice may bellenter~d al~ at o~ce (default ~cr>lIis all).
Val1.d l.nput examples: 1 2 3 or OS DB or <cr> or ALL •

1) OS macros & symbols
2) Data Comm macros & symbols
3) Data Base Core &Turbo Image Macros & symbols
8) User macros & symbols
9) 00 not load any macros

Enter your selection:

The selection you should make at this point is selection 1 only. This
will load enough information into macros to browse the operating system.
Any other macros will only take additional time to load and are not used in
this paper.

After entering your selection for OS macros, the program will display
the following on your screen:

OS Symbol file SYMOS.OSA51.TELESUP is now open.
Next line maps VAMOS.OSA51.TELESUP

VAMOS.OSA51.TELESUP 10000.0 Bytes =1bdO

You may experience a warning message that reads:
WARNING! OS Build 10 Timestamps in System Globals & SIMOS do NOT match.

You can disregard this warning since the macros will load
successfully.

Additional date information about symbol files will be displayed before
control is turned over to you.

OS Build 10 Timestamp in System Globals
OS Build ID Timestamp in SYMOS File

OS Macros restored from file MOS.OSA51.TELESUP.
OS OAT MACROS HP30357 A.40.49 Copyright Hewlett-Packard Co. 1987

$llc ($c6) nmdat >

Your needed macros are now ready for use. The messages about loading
files and maps from a group named OSA51 refers to the release of the
operating system that is being analyzed. MPEXL 2.2 operating system itself
is known as product number HP31900 release A. 51.07. You can find this
information by doing a SHOWME command and reading the header acrost the
screen. This release is set in the system and can not be changed.

3103-7

A Quick Look At The MPEXL Memory Dump For System Managers

Now let's find out what was happening at the time of the abort. The
first macro command you should enter is:

SYSTEM ABORT 11030 FROM SUBSYSTEM 1101 (Memory Manager)
An attempt was made to FREEZE an invalid virtual address.

SECONDARY STATUS: INFO =#-34, SUBSYSTEM = '107 (Virtual Space Management)
The length specified was beyond the bounds of the specified object.

(UNWIND - Unwinding Out Of Lockup Loop)
(UWLOCKUP - HALT $7,$406 = '7,11030)

MPE/XL VERSION: A.51.07

SYSTEM CONSOLE AT LDEV 120

Last Pin $c6

CPU: PROCESS RUNNING

HP3000 SERIES 950 With Processor Revision o.

CURRENT REGISTERS:

RO =00000000 cOOOOOOO 0035a358 00002490 R4 =OOOOOOOa c7638000 4033f290 4033
R8 =00000000 4033f2aO 4033f328 00000000 R12=00000000 00000000 00000000 0000
R16=00000000 00000000 00000000 ffffffff R20=00000000 00ba0120 OOOOOOOf ffff
R24=04060000 ffde006b 04060065 c0202008 R28=00007ffd 00000000 4033f408 0035

IpsW=0004ffOf=jthlnxbCvmrQPDI PRIV=O SAR=OOOl PCQF=a.190ed8 a.190edc

SRO=OOOOOOOa 00000000 00000000 00000000 sR4=0000000a 0000009c OOOOOOOb 0000
TRo=006dc800 007dc800 00000058 4033f408 TR4=00000001 00002041 1f000010 0017
PID1=0314=018a(W) PID2=0626=0313(W) PID3=0000=0000(W) PID4=0000=0000(W)

RCTR=OOOOOOOO ISR=OOOOOOOa IOR=OOOOOOOO IIR=00020005 IVA=0015b800 ITMR=735f
EIEM=ffffffff EIRR=03000000 CCR=0080

Much of what is listed here about register values is not needed for
simple dump analys is. However, the upper port ion does display the actual
system abort number, subsystem number with subsystem description and a
simple statement on what the problem was that the system detected to force
the system abort. For this dump, a secondary status is also displayed with
additional information for pinpointing the problem. So up to this point,
one program was attempting a function on virtual memory that the memory
manager halted before corrupting memory that was owned by another process.
Within this display the ldev where the system console was currently set to
is shown. This could also help to track down a problem if your shop
switches the console location many times throughout the day. Finally, the
item labeled 'Last Pin' is the process number of the active program when
the system aborted. This process is the cause to the system failing.

3103-8

A Quick Look At The MPEXL Memory Dump For System Managers

Sometimes, your system has aborted in off-hours when no operators are
monitoring the console. If you were expecting a console reply tor scheduled
processes, a search on this data will help later in system recovery. To
find out what replies were waiting, enter the command:

Operator Requests Pending

No operator Requests Pending

For our abort, no replies were waiting. This could be useful if you
needed to rerun any jobs that were active. Your recovery steps for restarts
may be dependant on what step a job was in.

Next question would be 'what sessions and jobs were active at the
time?' No problem with this answer. Simply enter the next command to
receive a list of jobs:

UI_SHOWJOB
JSMAIH

JOBNUM STATE IPRI JIN JLIST INTRODUCED JOB NAME PIN

Is484 EXEC 8 825 825 150 22:13 M191511,MJ~AGER.SYS,PUB $1e
'J2 EXEC 15 lOS 11 144 23:13 LOGOFF,MANAGER.SYS,PUB $34
IJ3 EXEC 15 lOS 8 144 23:13 SCOPEJOB,MANAGER.SYS,SCOPE $28
IJ4 EXEC 15 lOS 8 144 23:13 SCOPEJB2,MANAGER.SYS,SCOPE2 $39
IJ5 EXEC 15 lOS 8 144 23:14 NETBASE,MGR.NETBASE,PUB $51
'J6 EXEC 15 lOS 8 144 23:15 NBRSPOOL,MGR.NETBASE,PUB $69
'J64 EXEC 15 lOS 8 148 5:00 NRJE,MANAGER.SYS,NRJE $1c
IJ8 EXEC 15 lOS 8 144 23:17 IBMNODE,OPERATOR.SYS,IBMSPOOL $6b
'S474 EXEC 8 811 811 150 15:48 MONITOR4,oPERATOR.SYS,SYSOPER $3c
Is415 EXEC 8 20 20 150 15:48 CONSOLE4,oPERATOR.SYS,SYSOPER $ce
Is41 EXEC 8 4 4 148 8:51 LABEL1,OPERATOR.SYS,SYSOPER $a4

11 JOBS:
o INITIALIZING; 0 INTRODUCED
o WAIT

11 EXEC; INCL 4 SESSIONS
o SCHEDULED; 0 SUSPENDED
o 'l"'ERMINATING; 0 ERROR STATE

JOBFENCE= 1; JLIMIT= 10; SLIMIT= 100

The format the UI SHOWJOB displays is very similar to the MPEXL
SHOWJOB command with session/job number, ldev, time and jobname. Under the
column jobname is an expanded jobname that also displays the group each
sess ion/job is homed to. Knowing who was logged on at the time of the
crash will help in your recovery procedures if any jobs require resta:rt
intervention.

3103-9

A Quick Look At The MPEXL Memory Dump For System Managers

Next, review the programs executing that were running in privilege
mode. Quite often, a privilege mode program will attempt to execute a call
that will result in a violation that the operating system considers to
possibly cause system corruption. The method the system will use then to
protect itself is to halt all processing. This is quite drastic, but a
safe way to block any further attempts at the bad code.

PM-fAMILY

Parent PIN Program File

$bc CI.PUB.SYS

Family Tree for Process Number $c6

$c6 (SCOUT.XLTOOLS.TELESUP)

JSMAIN PIN Program File

$7e JSMAIN.PUB.SYS

You can see from this example that the current pin c6was running the
program SCOUT. XLTOOLS. TELESUP. This program was an old unsupported system
resource monitor used under older releases of the operating system before
the availability of HP Glance/XL. The use of this program was never
guarenteed to function with every release of the system software due to
changes in memory layout. You will see in this particular example, that
the current process number (c6) happens to match exactly with the session
number #484. You now know which user on the machine that was active at the
abort time.

3103-10

A Quick Look At The MPEXL Memory Dump For System Managers

For the next step, a greater detail look at the active process is
needed. A single command as follows will show the environment the program
was running under:

PROCESS_CURRENT

********************* LAST PROCESS INFORMATION *******************
PIN: $c6 PROGRAM FILE: SCOUT.XLTOOLS.TELESUP

JOB NUMBER: Is484

Process Library Names:

'XL.PUB.SYS'

'NL.PUB.SYS'

'SCOUT.XLTOOLS.TELESUP'

PIN $c6 NOT WAITING ON A SEMAPHORE.

PROCESS TREE:

$c6 (SCOUT.XLTOOLS.TELESUP) Is484

===== DISPATCHER INFORMATION FOR A PROCESS
S

Y
s
p
r
o
c PIN' State Wait Event Pri Class Blocked Reason

$c6 EXECUTING Not Waiting $7aff BS NOT BLOCKED

ENVIRONMENT INFORMATION:

TOTAL , OF SWITCHES

$0

ERROR STACK FOR PIN: $c6

, SWITCHES TO CM

$0

, SWITCHES TO NM

$0

Entries displayed in most recent to least recent order:

SUBSYSTEM
HUMBER

SUBSYSTEM
ERROR NUMBER

SUBSYSTEM
NAME

1107 #-34 Virtual Space Management
The length specified was beyond the bounds of the specified object.

#8 #-1
Illegal DB register setting (FSERR 1)

3103-11

A Quick Look At The MPEXL Memory Dump For System Managers

,S '-150
INVALID ITEM NUMBER (FSERR 150)

STACK MARKER TRACE:

(UNWIND - Unwinding Out Of Lockup Loop)
(UWLOCKUP - HALT $7,$406 ='7,'1030)

PC=a.00190edS system abort
NM* 0) sp=4033f40S RP=a.0035a35S freeze+$laO
NM 1) sp=4033f40S RP=a.002fa234 get tune dispatching info+$264
NM 2) Sp=4033f26S RP=a.002f9760 ?get_tune_dispatching_info+$S

Unless you want to debug the system code, the stack dump is of little
use to you. However, the identification of the executing program name - in
this case SCOUT. XLTOOLS. TELESUP from sess ion number 484 pinpoints the
precise user that caused the system abort. Referring back to the UI SHOWJOB
display from above, the logon id associated with the program is
M191517,MANAGER.SYS (this happens to be me ... I caused the abort by running
the program). You could now go to the user and ask him/her questions on
what was being attempted by running the program. You could come up with
alternatives to keep the program from aborting, or locking the program up
from access until a fix can be found later.

3103-12

A Quick Look At The MPEXL Memory Dump For System Managers

The solution to this problem was simple and required no action on the
part of the Response Center. Under MPEXL 2.2, the program can no longer be
run to monitor system activity. A supported method would be to use another
product such as HP Glance/XL designed for the particluar release ot the
operating system included on the subsys tape. For our particular crash, the
answer was to purge the program and eliminate the risk of ever running the
program again. Problem solved, little downtime and a reduced window for
failures.

Some additional commands you may want to use for further data
gathering on the suspect process that caused the abort are:

UI_CIHISTORY
Displays the redo stack of the MPEXL commands. This is only limited to

the limit set for the variable HPREDOSlZE.

UI_SHOWVAR
All system pre-defined and user defined variables.

UI_TEMPFILES
Temporary files either open or closed for the session.

UI_USER
Fully qualified session_name ,user. account ,homegroup.

3103-13

A Quick Look At The MPEXL Memory Dump For System Managers

In conclusion, you should feel free to look at the dump to identify
the possible cause to your problem. Many times, these problems are
self-inflicted by programs created yourself. Sometimes the problems are
from programs contributed from other sources that are not compatible with
the release of your operating system. Be aware that any upgrade to MPEXL
could cause perfectly happy programs to become vicious little monsters to
active systems. And sometimes, you just can't find a reason for the
failure. If the latter is true, let HP do the research for you. They are
the ones with the resources, knowledge and people to find the solutions for
you. Use the information you gather from the dump as as an assistant would
to the master carpenter. Point out to HP what was going on at the time, but
don't be telling them what caused it. Your help can save you and them time
in finding a resolution to your problem. And for you, a system that will
stay at a higher level of uptime for happier users.

3103-14

Paper # 3104

Technical Bvalua~ioD of
Rela~ioDal Technology

OD BP 3000/950
a~ Mohawk COllege.

Robert Hilverth, I.S.P.
Systems Analyst,

Systems and Programming Dept.
Computer Services Division

Mohawk College of Applied Arts and Technology
P.O. Box 2034,

Hamilton, Ontario Canada
LaN 3T2

Phone: (416) 575-1212 x3052
Fax:(416) 575-2334

I. ID~roduc~ioD

This evaluation resulted from a recommendation placed before the Mohawk College
Computer Steering Committee by a financial software acquisition team. They
wished to quality assure their selection of financial package which required a
specific relational technology upon which to run. The Systems and Programming
Department was requested to examine the suitability of the branded relational
technology in the Mohawk College administrative computing environment.

Each DBMS has unique performance characteristics which, when matched with the
"appropriate" computer, provides the necessary information throughput to carry
on the business of the organization. The prLmary intent of this evaluation was
to quantitatively determine whether the identified brand name relational
technology running on an HP3000/950 would allow us to meet the currently
established users' expectations for information throughput. For comparison
purposes the current Mohawk College Turbo Image / 4GL environment was used as the
baseline.

The intent of this paper is not to identify a particular product and show its
superiority/inferiority compared to another product, but rather, to present the
process which actually was used to do the evaluation. Therefore, in the
remainder of this paper the word RELATIONAL should be interpreted as the name of
a brand name relational technology and NETWORK/4GL to be the benchmark against
which the comparison is made.

Support

The quantitative data and its interpretation was reviewed by the relational
technology vendor, HP and another Ontario Community College, running the same
relational technology, to ensure objectivity in reporting the results.

Technical Evaluation of Relational Technology on HP 3000/950 at Mohawk College

3104-1

II. lIe~hod

ASSWDp~ioDS

Any process which runs on any computer system uses computer resources. These
computer resources are the CPU, DISC and MEMORY. The quantity and mix of
resources used determine the performance of that process. Processes that use
less of any of these resources are better than processes that use more of these
resources.

Design of comparable ~es~ SY8~_S (mr.rNOU/tGL and ~IORAL)

To make the tests meaningful in our environment, we chose to take a subset of our
existing student database and restructure i~ into a form where all "like" data
is together, and repetitive (redundant) data exists once only. This is called
"3rd Normal Form", and is the desired way to store information in any network or
relational database. The following data was chosen for our tests:

STUDBNT-PGM (1,804 records)
One or more data entries for

each full-time day student. Includes
a program of study identifier, status
in the program, mature student signal
etc ••

FINANCE-CE (9,259 records)
Multiple data entries for each

ENROLLMENT which identifies course
fee information. Includes course,
section and student identifiers as
well as the amount and fee type.

ENROLLMENT (19,989 records)
Multiple data entries for each

student who has ever registered in a
continuing education course section.
This dataset (table) ties a student
to a specific course section.
Includes course identifier, section
identifier, student identifier, term,
status in the section, grade
achieved, etc ••

TEST DATA STRUCTURE

Figure 1 - Test Data Structure

STUDENT-INFORMATION (9,926 records)
Data for each student.

Includes Mohawk Id, first and
surname, birthdate, address etc ••

COURSE-MASTER (12,560 records)
Data for each course offered at

Mohawk. Includes ~he course
identifier, fees, possible grades and
course title.

PROGRAM-MASTER (227 records)
Data for each program of study

offered at Mohawk. Includes program
identifier and program title.

COURSE-SECTION (8,941 records)
Data for each section of a

course offered at Mohawk. Includes
course and section identifier, term,
course controller, campus, start/end
date, enrollment counts, instructor
name, fees and discounts etc ••

FINANCE-DAY (4,059 records)
Multiple data entries for each

STUDENT-PGM which identifies fees
paid for a specific term in any
program of study by a student.
Includes student and program
identifiers, term, amount and the fee
type.

Technical Evaluation of Relational Technology on HP 3000/950 at Mohawk College

3104-2

'.rests

Two different types of tests were conducted. Measurements were taken of
RELATIONAL and NETWORK/4GL in a "head-to-head", single-user mode with normal
daily processing running simultaneously. Measurements also were taken to
determine RELATIONAL's multi-user capabilities.

For the single-user test we measured the length of time (elapse) each test took
and the amount of time the process was active (CPU time). Elapse time could be
measured to the nearest minute and CPO time could be measured to the nearest
second. In addition, during the test Period, "snapshots" were taken of system
performance using GLANCE. Every 30 seconds GLANCE provided data on the existing
mix of processes running. Of interest was the percentage of CPU usage for the
NETWORK/4GL and RELATIONAL processes as well as the total CPU utilization. At
the same time, measurements were taken for NETWORK/4GL and RELATIONAL which
showed the amount of memory each process was using and the rate of disc access.

Specifically, the tests carried out were: Test 1 (A-H), load the eight datasets
(tables) with data; Test 2, change a date updated field for all records in the
ENROLLMENT table; Test 3 (and 3A), count the number of students who have no
ENROLLMENT information; Test 4, report the essential data needed to create a
course section list in section/student surname sequence; Test 5, report the
essential data needed to create a student transcript; Test 6 (and 6A), report
the accumulated fees paid for each program of study; Test 7, report the
accumulated continuing education course fee paid by each student; Test 8, delete
data from all tables.

The multi-user RELATIONAL performance evaluation was done to determine, if
possible, what the effect of many RELATIONAL users would be on system
performance.

The multi-user test initiated some of the same tests from the single-user trial.
Each of six RELATIONAL users initiated the sf.t.\~ atreaJn of tests at stepped
intervals.

Each user and test component was timed, and GLANCE was used to capture
performance statistics. Again, this test was performed with normal day time
activities carried on in the background.

To ensure that the result represented fairly the capabilities of RELATIONAL in
the Mohawk College environment, RELATIONAL was given the opportunity to rerun any
test. If the results were deemed to be below those expected by RELATIONAL,
tuning of the code was allowed and the test was re-run.

Once graphic representation of the raw data was completed the results were
examined by Computer Services staff from another Ontario COmmunity College.
Their input was sought because of their experience with RELATIONAL on an
HP3000/925. In addition, our Hewlett-Packard Systems Engineer and RELATIONAL's
Systems Engineer-examined our results. In each case, we requested clarification
on the interpretation of the results achieved by our testing.

Measurements for Single-User '.rests

Head-to-head performance testing was carried on during the business day. Both
the RELATIONAL and NETWORK/4GL tests were initiated at the same time, and were
competing for resources against each other, as well as against the other normal
daily processes that were running. Therefore, the comparison of RELATIONAL to
NETWORK/4GL is running with the same background activity.

Technical Evaluation of Relational Technology on HP 3000/950 at Mohawk College

3104-3

Each test was designed to measure DBMS performance, not report writing
capabilities. Attempts at producing "pretty" reports were avoided. Only
essential data was reported in the simplest form possible.

RELATIONAL was provided every opportunity to show peak performance. A software
support engineer from RELATIONAL was allowed to tune any code for tests which
showed "poor" results and was allowed multiple tries in achieving RELATIONAL's
"best" results.

Testing was broken down into 3 major activities over the 3 day test period.

The first activity was to load data from existing MPE files into the target data
structures. Each of the previously identified data sets (tables) were loaded
individually. The tasks were started on two separate terminals at the same time
and a third terminal was used to gather the GLANCE statistics. The load process
was started on the 1st day and carried into the morning of the second day.

The second activity, once data had been loaded was to manipulate it and generate
some common reports. The second half of the 2nd day was used to measure the
results of data manipulation and reporting.

The third activity was to delete the data from the respective NETWORK and
RELATIONAL data structures. This activity was carried on during the third day
of testing.

Nea8uremen~s for Mul~i-User ~e.~s

A separate day was set aside to determine the effect of multiple RELATIONAL users
on the HP3000/950. For this test 6 RELATIONAL users were logged on and ran a
subset of tests used in the single-user tests. Each RELATIONAL user was logged
on at stepped intervals. The measurements taken identified the interactive
effect of one RELATIONAL user on other RELATIONAL users.

III. ReBul~s from Single-User ~e.~8

Over the 3 day test period, no significant difference could be detected in the
length of time (Elapse minutes) and the amount of processing time (CPU seconds)
consumed, with the exception of 2 tests.

Test 12 (Date update) and test #3A (Course Section List) did show some
significant differences. In test #2 RELATIONAL used significantly less CPU time
and completed the task 4 minutes faster than NETWORK/4GL. In test 13A, a
variation on test 13, an alternate style of coding in RELATIONAL produced
significantly poorer results than NETWORK/4GL. RELATIONAL test 13A ran
approximately 1 hour longer than the NETWORK/4GL equivalent. As test 13 did the
same task more efficiently, test #3A was not included in the overall analysis.

Figures 2 through 5 identify the aggregate and daily comparisons of Elapse and
CPU time for all single-user tests. RELATIONAL's performance was surprisingly
good. Historically, relational technology was known to be slower than other DBMS
technologies. RELATIONAL seems to have overcome this.

Technical Evaluation of Relational Technology on HP 3000/950 at Mohawk College

3104-4

Test Comparison
Test Totals (excluding 3/A)

ReIaJlonaJ DBNetwork 08

---------------"""'T'3500
3000

...__ 2500

..._~ 2000 .g

...__ c

..._ 1500 !
tn...__.... 1000

500

'III Elapse Mlnules • CPU 5econds

Figure 2 - Test Totals

Test Comparison
Day 1

Test Comparison
Day2(~31A)

I_ E1IpM MlrU.. _ CPU Stcands I_E!IpM CPU Secanda

Figure 3 - Total Day 1 Figure 4 - Totals Day 2

Test Comparison
DayS

1000100
700

=)2DO
100
o

Figure 5 - Totals Day 3

Technical Evaluation of Relational Technology on HP 3000/950 at Mohawk College

3104-.5

CPU % Comparison
Day 1

1- NetwoI1(/4GL ReIitlonII (f+8) •••• AI Proc:eaa

Pigure 6 - CPU Usage Day 1

CPU % Comparison
Day 2

1- NelworIY4Gl fWalIonaI (f +8) _ •• /II Proc:asea

Figure 7 - CPU Usage Day 2

CPU % Comparison
Day 3

1- NclwofkI4Gl ReIalJonaJ (f +8) •••• AD Processes

Fizure 8 - CPU Usage Day 3

Technical Evaluation of Relational Technology on HP 3000/950 at Mohawk College

3104-6

Cen~ral Processing Uni~ (CPU) Usage

During the 3 day test period, the HP analysis tool, GLANCE, was used to capture
performance information every 30 seconds.

On a day by day basis, the comparison (as a ') of CPU tLme used by NETWORK/4GL
and by RELATIONAL tended to be the same. For the purposes of this daily
analysis, the two components of RELATIONAL (Foreground and Background) have been
combined. The RELATIONAL foreground process can be directly attributed to the
activity of a particular user. The background processes receive data from the
foreground processes (multiple RELATIONAL users) and actually read and write data
to the database, as well as performing various data maintenance/audit tasks.

The heavy line, which tended toward 100' is the total system wide CPU activity.
On day 1 and 2 there were very short Periods of time when total CPU capacity was
not being used. On day 3, only towards the end of the day, was CPU activity
reduced. This high level of CPU activity is considered "normal" for an
HP3000/MPE XL system.

On day 2 between 11:18 and 12:27 test #3A was running. Due to an inefficient
coding style, the RELATIONAL process ran for about an hour after the completion
of the equivalent NETWORK/4GL task. After 1 hour the RELATIONAL test was
aborted.

The trend shown by the graphs (figure 2 - 8) confirms that RELATIONAL performs
similarly to NETWORK/4GL when comparing Elapse tLme and CPU time, running as a
single user.

Technical Evaluation of Relational Technology on HP 3000/950 at Mohawk College

3104-7

Disc Transfers I Second
Day 1

T1mooiDay

1-NelwOfkl4Gl ReI~ ~+8) I
Figure 9 - Disc Transfers Day 1

Disc Transfers I Second
Day 2

···--···-······-·-··1-··--··-·----·-·-·-·-

1-NltwOlk/4Gl. Relidonal (f +8) I
Figure 10 - Disc Transfers Day 2

Disc Transfers I Second
Day 3

1-Nelworkl4Gl. RelIIIonaI (f+8) I
Figure 11 - Disc Transfers Day 3

Technical Evaluation of Relational Technology on HP 3000/950 at Mohawk College

3104-8

Physical Disc Activity

Significant differences were detected on all three days of single-user
head-to-head testing of RELATIONAL and NETWORK/4GL when comparing the rate at
which processes make use of disc.

Over the 3 test days the rate of physical disc transfers per second tended to be
3 times higher for RELATIONAL than for NETWORK/4GL.

On day 1 and day 2, until 10:54, data was being loaded into both databases. It
is during this phase of activity that the greatest difference can be seen between
RELATIONAL and NETWORK/4GL.

From 10: 54 on day 2 an update process and several report processes were run. The
degree of disc interaction for both RELATIONAL and NETWORK/4GL was reduced.

On day 3 the data in both databases was being deleted. Although the difference
between the RELATIONAL and NETWORK/4GL is not as great as loading data, the
RELATIONAL rate of disc transfers is higher. Toward the end of the trial, the
NETWORK/4GL process finished before the RELATIONAL process. When there was no
longer any contention for disc drive 1 (both databases were on the same disc
drive) the rate for RELATIONAL dramatically increased.

Upon checking the individual test results, the high disc transfer rate can be
attributed to the RELATIONAL background processes. These processes actually
write data to the database as well as maintain several other data files for audit
and recovery purposes. When compared to the activity of NETWORK/4GL, RELATIONAL
is actually doing more reading of and writing to disc.

Technical Evaluation of Relational Technology on HP 3000/950 at Mohawk College

3104-9

Memory Usage
Day 1

181----------------=:-1

15:49 18:10 UI:21 18:34
TlmoolDay

1-NeIwofkI4Gl RelIIIonaI (f t8) I
Figure 12 - Memory Usage Day 1

1-NllwOfkl4Gl RelIIIonaI (f+8) I
Figure 13 - Memory Usage Day 2

Memory Usage
Oay3

! 1

1-Networkl4Gl RelIllonal (f+8) I
Figure 14 - Memory Usage Day 3

Technical Evaluation of Relational Technology on HP 3000/950 at Mohawk College

3104-10

Memory U~iliza~ioD

As with physical disc activity, significant differences were detected in memory
usage on all three days of single-user "head-to-head" testing.

Over the 3 test days, the amount of memory usage tended to be 5 times higher for
RELATIONAL than for NETWORK/4GL.

There was a high degree of correlation between high rates of disc transfers and
high points of memory utilization for RELATIONAL.

Memory utilization for RELATIONAL tended to be highest and sustained at that
level, on day 1 and until 10:54 on day 2, when data was being loaded into the
database. Memory usage tended to be lowest when reporting processes were running
during the second half of day 2. The delete process running on day 3 had
moderately high memory usage until the NETWORK/4GL process had finished. At that
point there was a gradual increase in the amount of memory used by RELATIONAL.

Running the functionally equivalent tests head-to-head, we found that the
RELATIONAL product and NETWORK/4GL seemed to perform similarly. The length of
time (elapse minutes) the comparative test took and the amount of Central
Processing time (CPU seconds) tended to be the same. These results would suggest
that there is no significant difference between NBTWORK/4GL and RELATIONAL.
During the running of the head-to-head comparisons we used a performance
evaluation tool (GLANCE) which was set to take a performance "snapshot" of CPU
usage, DISC activity and MEMORY usage every 30 seconds. Using these "snapshots",
some significant differences were detected. Over the 3 day testing period,
comparisons of CPU utilization (as a , of the total available) showed no
discernable difference. However, physical DISC accesses and MEMORY usage did
show marked differences. On average the DISC activity (physical transfers per
second) is about 3 times greater for RELATIONAL than for NETWORK/4GL. Similarly,
on average the MEMORY usage (megabytes) is about 5 times greater for RELATIONAL
than for NETWORK/4GL.

In the single-user head-to-head comparisons the RELATIONAL processes tended
toward significantly greater DISC and MEMORY usage and tended to be equal in CPU
usage.

Technical Evaluation of Relational Technology on HP 3000/950 at Mohawk College

3104-11

6

5

4
~

011)
U)

::::)

3

2

l ~l!llTest> i2 !3 iil1 15 6 7 n! i 1o t:: : ::: ! :

10:15 10:41 10:59 11 :17 11 :35 11 :53 12:11 12:29
Figure 15 - Relational Multi-User Launch Schedule

Multi-User Test
00:43, ,~-Test 2
00:36-·····..· ····..···..····· ··..· ·· ··..· ·..·· ·· ..,

Test 3-.-
Test 4

00:28-·..········..·· ··..·..·..· ·····..···· ····..·..·..· .., .

-£)--~ OO:21j
~ o---.----ilI... Tost 6

ii:l ...=~:~,~..:"""":e::..00'14 ,.- -...... T st 7

00:07+ ::=~:.~:~.~:~~~:.;.;*:::~;;;.~'"..;;:;;~;;;~;~:~::....... •
00:00 I .. '1 III I

User 1 User 3 User 5
User 2 User 4 User 8

Pigure 16 - Relational Multi-User Elapse TLmes

Technical Evaluation of Relational Technology on HP 3000/950 at Mohawk College

3104-12

IV. Results from Multi-User Tests

To determine the effect of running multiple RELATIONAL users, the same series of
tests (test 2 through test 7) were run by 6 users. Each user initiated the test
sequence after a set interval had elapsed. Figure 15 identifies the sequence of
tests run, and the start/end times for each of the 6 RELATIONAL users. For User
1 and 2, the test sequence was repeated but the second occurrence is not included
in the elapse time evaluation presented as figure 16.

Tests 3 through 7 reported on data in the RELATIONAL database. Test 2 was an
update request. The elapse time data for tests 3 through 7 suggests a longer
elapse time for the first user and a decrease in processing elapse time for
subsequent users. Test 2 shows the opposite trend.

Tests 3 through 7, because the request is repeated verbatim, stores 'the request
in a buffer area. Subsequent users who request the same query do not require
that the query be re-interpreted. Therefore the request is processed faster.

Test 2 required an update to a date field for all records in a table with a
unique value for each user. Since each request was different, RELATIONAL had to
re-interpret each request prior to processing it. Consequently, each user from
1 through 4, had longer and longer elapse times for test 2.

By the time that User 5 had started test 2, User 1 had restarted test 2 for the
second time. User 1 had locked the table that required the update and User 5 had
to wait until User 1 had finished.

Similarly, User 6 had to wait until User 5 had finished and User 2 had to wait
until User 6 had finished. Because the entire table is locked, no other
User/process could complete its task. This would be true even if each process
needed to update different records.

Technical Evaluation of Relational Technology on HP 3000/950 at Mohawk College

3104-13

Figure 17 - Multi-User CPU Usage

Figure 18 - Multi-User Disc Transfers

Figure 19 - Multi-User Memory Usage

Technical Evaluation of Relational Technology on HP 3000/950 at Mohawk College

3104-14

Multi-User RELATIONAL CPU, Disc and Memory Usage.

There was a need to be able to uniquely identify the RELATIONAL Foreground and
RELATIONAL Background related functions for CPU, Disc activity and Memory usage.
To clearly show each over time, the RELATIONAL Background values were multiplied
by -1. Of particular interest is the effect of multiple RELATIONAL users on the
amount of memory used by RELATIONAL as a whole.

CPU Usage

Total system wide CPU usage was consistently close to 100%. The foreground
processes, composed of user test requests, were significantly higher than the
background processes which consume very little CPU. These CPU usage curves
represent "normal" activity. If there is any available CPU then the system
consumes it by processing faster.

Disc Transfer Rate

The bulk of the disc accesses are done by the background processes. Although the
interpretation of the graph is difficult, there is a tendency for the background
disc function to mirror the background memory usage. Whenever background memory
peaks, background disc transfer rates increase. Whenever background memory
sustains some level, background disc transfer rates sustain a correlated level.

Memory Usage

Memory usage for the foreground activity tends to show a step function,
incrementing the amount of memory being used for each additional user.
Increasing to 6 users from 10:15 to 11:35, then decreasing to 0 users from 11:35
to the end of the test, there is a step-like rise and fall in foreground memory
usage. The background memory usage consumes more memory but tends to grow
gradually until 11: 17, then remains relatively level, with no decline until there
is only 1 user remaining active at 12:29.

Technical Evaluation of Relational Technology on HP 3000/950 at Mohawk College

3104-15

v. COnclusions

RELATIONAL's database management technology is more complex than the 2 level
network technology used by Image. We were impressed by the speed at which data
was processed by RELATIONAL. Traditionally, relational database management
systems tended to be slow in comparison to "hierarchical" or "network" databases.
RELATIONAL was able to prove to us that its single-user processing speed (Elapse
and CPU times) was as good as NETWORK/4GL'S speed.

However, processing speed was only one of three criteria being evaluated. On the
HP3000/950, there is a top limit of 128 megabytes of memory. About 1/3 to 1/2
of this is used by the system for the management of the system (operating system,
program code, program data stacks and extra data segments/objects). Assuming the
worst case, the remainder of about 64 megabytes is set aside for file space.
This must be shared by all system users. It is our belief that RELATIONAL's high
of 16 megabytes usage is an indicator that our current 950 model of HP3000 is not
large enough to support our norm of 70 to 90 concurrent users, if all the
processes they execute would be RELATIONAL processes. The multi-user RELATIONAL
test shed a little more light on memory usage. We believe that the high rate of
DISC transactions for RELATIONAL is a byproduct of the large amount of memory
being utilized.

The high rate of physical disc transfers also may be an indicator of poor
performance. The HP3000/MPE XL systems use a "virtual memory" technology to
allow many users to share the same memory space. When the operating system
determines that a portion of memory has not been used for some time, it swaps
that memory to disc, so as to provide another user with memory space. When the
process that originally was using the swapped out memory requires it again, the
second user's memory is moved to disc and the first user's memory is returned
from disc. The large amounts of memory required by RELATIONAL and the high disc
transfer rates that are evident, suggest that adding a large number of RELATIONAL
users would cause the computer system to do more "virtual memory" swapping, and
less user processing. This would lead to slower elapse times for the tested
processes.

The multi-user test provided more information on how the RELATIONAL foreground
and background processes effected memory usage, and system performance.

By executing the same series of processes by a number of users, several problem
areas were illuminated.

In general, CPU utilization, DISC transfers and MEMORY use tended to follow the
pattern set by the single-user tests. Inquiry test components tended to be
marginally slower (elapse time) for the first user than the rest. This is due
to the first user interpreting an inquiry and subsequent users processing that
interpreted inquiry. The update test showed increasingly longer elapse times
with each subsequent user. When one user overlapped another user processing the
update test, the table locking strategy, which prevents 2 or more users from
updating the same data table at the same time, caused significant increases in
processing time. One user had to wait for the previous user to finish the task
on the data table before access was allowed.

Multiple users can cause processing bottlenecks due to their interaction with one
another. As more users make unique queries, the longer the elapse time for the
completion of each query.

Technical Evaluation of Relational Technology on HP 3000/950 at Mohawk College

3104-16

When multiple users are updating, creating or deleting records in the same table,
each must wait in a queue for their turn in processing against that table. In
a production transaction processing environment this is not an acceptable locking
strategy.

In general, most of the existing computer power on our HP3000/950 is used for
transaction processing. The minority is used for retrieval of data for reporting
only. Characteristically, transaction processing requires the accessing of
information to determine if it exists. If it is present, the data may be updated
or deleted. If it is absent, the data may be created. These update, create,
delete activities require the data to be locked while the process is active. The
narrower range of data that is affected by the lock the better. Ideally, only
those bits of data that are being changed/deleted/created should be unavailable
to other users. Currently, RELATIONAL's locking strategy is to lock an entire
table (grouping) of data.

RELATIONAL processing consists of two components: foreground processes which
interact with the user, and background processes which control data retrieval,
storage, and audit/ integrity. In the multi-user test each new user required just
under one megabyte of additional memory for the foreground process. Our
consultation with another Ontario Community College suggested that our test
results were on the low side. Their experience suggested that 1.5 megabytes
foreground per RELATIONAL user is more likely. The memory requirement for the
background processes, which are shared by all RELATIONAL users peaked at 15
megabytes, but tended on average between 10 and 12 megabytes. Given the worst
case of 15 megabytes for the background and 1.5 megabytes foreground for each
RELATIONAL user, a serious processing bottleneck could occur with 30 to 35
"heavy" data processing users. With "lighter" users this number may be doubled
to 60 - 70. In our estimation, at this point our existing HP3000/950 computer
system would be spending more time swapping memory to disc and back than actually
processing users' tasks. This could translate into unacceptable response times
for the our computer clients.

Examination of the data suggested that the HP3000/950 is not large enough to
support our current number of users if all processes running would be RELATIONAL.
In our estimation the tested version of RELATIONAL would not meet performance
expectations required to carryon the College's business.

Technical Evaluation of Relational Technology on HP 3000/950 at Mohawk College

3104-17

#3105
Main&ame Software Management Techniques:

WlIlat Every lIP 3000 User Should Know

Betsy Leight
OPBRATIONS CONTROL SYSTEMS

S60 San Antonio Raod
Palo Alto, California 94306

(415) 493-4122

INTRODUCTION

Today's HP 3000 professionals are becoming increasingly concerned about software and
data integrity. And as a result, implementing a reliable method of tightening control over
the changes to systems and applications has become a prime objective ofmany shops.

An isolated change may initially seem harmless, but the ripple effect upon interrelated
systems can often be devastating. As the volume of code used in a shop becomes greater,
the effect of these change can become staggering. With an industry average cost of $50
per line, the software investment of even a small site can be valued well into the millions
of dollars.

Despite the enormous value of today's software applicatioDS, much of it is vulnerable to
inadvertent errors. The reason: MIS departments often use tedious manual procedures
to track program changes, and these procedures are seldom if ever followed faithfully
throughout the organization. Without an improved approach to monitoring how and why
changes are made, a company's entire computer and software asset are at serious risk.

First, consider the case of our firm, Operations Control Systems. With over 4000 prod
ucts installed throughout the world, our customer support staff receives requests for
dozens of modifications every month. At the same time as these maintenance and
enhancement requests are coming in, our R&D team is also under pressure to develop
new products. Shipping a new release represents a major project for almost every depart
ment within the company. Without an efficient means to manage changes, maintenance
work would forever delay progress on new development. Through the· task of managing
our own intemal software maintenance and release management process, we at OCS
developed much of our initial expertise in the area of change management.

Through feedback from our customers, we started to refine these techniques and make
them available to the general HP user. When we first surveyed our customer base in
1986, we found that the application maintenance backlog was not unique to software
developers. Some customers who relied entirely on vendor-supplied software with seem
ingly minor modifications ran as many as 6 months to 2 years behind schedule on their
maintenance work. Thus, while many non-data-processing executives think that their
MIS staff is focusing on new applications, the reality may be that MIS is bogged down in
maintenance and change related activities.

Mainframe Software Management Techniques 3105-1

This highlights a second major need for change management. Change management
improves the ability ofthe MIS department to reaet to user demands for program changes.

TIlE NEED FOR CHANGB CONTROL

In order to understand the change conttol problem and how to solve it, let's explore the
nature of the problem in an uncontrolled environment. The problem stems from the fact
that in many HP3000 shops, programmers can access production source directly. This
can have several consequences.

First, consider an environment where multiple programmers make simultaneous changes
to source code files. In this situation, the last programmer to update each file overwrites
the changes made by other programmers. The result is frustration and wasted time syn
chronizing and retesting all ofthe changes.

Second, a careless programmer might inadvertently destroy the source code of a critical
application. If a production error occurs and the source code cannot be restored easily,
production could be delayed for hours or even days. The original author may not be
available. The program may even have to be rewritten from an old copy, wasting devel
opment and test time and possibly reintroducing old bugs or creating new ones.

Third, the development procedures found in many shops eventually result in discrepan
cies between source and object code files. That is, the master (or official) source files
may not recompile into the current production object files. Since it is almost impossible
to recreate source from object code, days might be spent searching for the correct version,
recompiling it and validating it against the current production code. And, with all of this
effort, there will be no guarantee that the source will exactly recreate the current produc
tion code.

These situations point out a fundamental rule of good change control: Programmen
should never have unrestricted access to production filesl

At first glance, these problems may appear obvious, but the fact is that many HP 3000 data
centers continually react to the problems they cause, rather than introduce standards and
controls to avoid them. After all, a data center is there to support its users. This charter
forces management to focus resources on meeting daily user requests, distributing reports,
managing hardware and completing batch production, rather than on implementing long
term solutions to problems that are not well understood. Although many shops can ron
error free for months, an innocent 1001dDg error can snowball into a major catastrophe.

Mainframe Software Management Teclmiques 3105-2

If this is the orientation of your shop, you might want to consider this fact: the efficiency
and accuracy of your work depends upon the integrity of your software assets. Is your
data center a candidate for better change control? Try taking the following test.

What software systems do you have?
Where and why were the last changes made?
What programs comprise these systems?
Where are the appropriate backup copies?
How often do these programs change?
Which user requested the lut set of changes?
Who is responsible for the chaDges?
What is the status of a specific change request?

If you cannot answer aU these questions readily, your shop probably needs a better
approach to managing changes.

Proper change control provides immediate answers to these aitical questions. The result
is more than just visibility and auditability. It is more than data integrity and improved
maintenance efficiency. A good change control system ensures that every program
change is authorized and controlled, making it possible to quickly restore systems when
necessary. Change control techniques also make it possible to monitor chaDges made to
software from the earliest stages of development through the testing phase and all the way
through the move to production process.

Change control also improves the Quality Assurance process. It allows operations per
sonnel to test new systems, moving software from development to test, or from test to
production. And, all of this wD1 be done with complete audit trails that allow the identifi
cation of each entity promoted and tested.

Another important aspect of change control is provision for management inquiry in areas
such as: the status of a change, the current version of a file, the change history of a tile,
and the impact of a proposed change. Supplying this information can often be a tremen
dous benefit to managing the software life cycle.

RECOMMENDED CONTROLS FOR ALL SHOPS

In order to achieve the bene&ts of change control, a shop should address each of the
following &ve major categories:

Control through stmgea: Keeping control over the movement ofsoftware tluough
the development and maintenance process.

Change history: ProvidiDg a complete history of every change requested and made
to the source code.

MaiDfreme Software Management Tedmiquea 3105-3

Control over source and procedures: Maintaining control over users authorized to
access source code and the processes that render source into executable form.·

Security: Retaining control over the personnel who are authorized to make pro
gram changes.

Inventory: Maintaining an accurate inventory of all the programs, files and other
components of each system.

A more detailed checklist identifying good change control practices appears at the end of
this article. With these items in mind, lets look at the costs and benefits ofmanual change
control techniques.

MANUAL CHANGE CONTROL

HP 3000 users have developed a variety of creative procedures for controlling changes in
their environments.

A common strategy requires programmers to FeOPY source code from the production
location into a development location. This strategy can be implemented at three levels.

1. ' The development area may be nothing more than a set of individual groups where
files reside. In this case, each programmer copies all ofthe necessary files into his
own group where he makes the appropriate changes. There is no standardized
testing environment.

2. Separate account structures may be maintained for production and development.
Often a separate account structure is maintained for testing as well, to duplicate
the production account structure. Thus, each programmer can be confident that
testing is conducted in an environment that closely resembles production. Estab
lishing separate account strue:tures on a single computer often produces adequate
results.

3. A separate development computer may be used, thus eliminating the possibility of
direct access to master files located on the production computer. Although this
approach is ideal, it is not possible without a separate development computer.

Unless stringent controls exist, however, this strategy does not guarantee that only one
individual can check out a particular file at a time. And, since programmen are not
restricted from accessing production accounts, there is no way to audit their access.

Once the development is completed, many shops allow the same programmer to test their
own work and simply overlay the original production files with the new version of code.
Since such a procedure seldom represents adequate control, it is widely suggested that a
formal Quality Assurance (QlA) process be used.

Mainframe Software Management Techniques 3105-4

There are several ways to initiate such a process, depending upon the resources that are
available. Smaller companies may have programmers QlA test their colleagues' develo~
ment efforts. In these cases, tests are usually performed in the development account.

Larger organizations may dedicate one or more individuals whose sole function is testing.
Here, a separate Q/A test account is generally set up to reflect the production account
structure. In this case it is vital that the developer is finished, all claims to the code are
relinquished. After it has been moved to QjA for testing, the one copy of the code wiD
exist only in Q/A. If the QlA analyst locates an error, the code will be returned to the
original developer for revision. It is now QlA's tum to relinquish all claim to the code by
moving it back to the development location and purging it from Q/A. If simultaneous
copies were to exist in both locatioDS, last-minute changes in development might not be
included in the Q/A version. Thus, the final production version would not be accurate.
It is surprising how often this obvious safeguard is overlooked.

At the conclusion of the QlA phase, another step will often exist. A higher level manager
will perform a final approval on the development code to certify that all standards have
been met and all tests have 1been satisfactorily completed.

Following final approval, the finished code is ready to be moved into the production loca
tion. Since the new files will be copied into production with the same names as the 0rigi
nal files, the original files must first be backed up to tape to avoid loss of the earlier version.
Next code must be recompiled to assure an exact match between source and object.
Lastly, JCL and other files must be updated.

This update process is tedious, time-consuming and error prone, especially when large
numbers of files are involved. Nevertheless, precise standards cannot be eliminated at
this final stage or the shop will run the risk of serious inconsistencies.

Based on the previous disc::ussion, it is possible to state several general rules for good
change control:

First, establish separate accounts for production (master files), development and, ifpossi
ble, test. Test accounts should be mirror copies of production. This allows files to retain
their original FILE.GROUP names as they are moved from test to production and makes
it possible to visualize the link between a developing program and its productionlmaster
version.

Second, when files are checked out" from the production location to development, a copy
should be made. The original source should never be destroyed. However, when devel
opment is complete, files should be moved to the test location, thus eliminating synchro
nization problems with old versioDS.

Third, when Q/A has approved all changes, a project leader or manager should verify that
adequate and accurate test procedures have been followed. Only at this point should
code be moved into the production hbrary. Ifsystem loads are heavy, such updates could

Mainframe Software Management Techniques 3105-5

occur in batch and should be initiated by operations or a production Librarian. The tim
ing of the release into production should be coordinated with the user's schedules, with
the release of other modules and with documentation changes, etc.

Prior to updating the library, the original production copy should be verified and stored.
Without this step it is much more difficult to return to a prior version in the case of a
problem. As a general rule, we recommend that the authority to release files to produc
tion be resb'ieted.

AUTOMATED CHANGE CONTROL

Although this article has described the minimum requirements necessary to achieve reli
able change control, implementing these controls places a considerable burden on every
one involved in the change process ••. unless the process is automated.

Although an automated change control system will require some initial planning, once it
is operational, the burden on the MIS staff will actually decrease. The process would be
as follows:

The first step in implementing an automated change control system is to define your
development environment. Decide -what files you want to control, what types of file
movements will be performed, what approvals will be required at which stage, and who
will be authorized to perform or authorize each type of file movement. This will depend
on such things as:

The size ofyour development staff
The levels ofmanagement and job responsibilities in your ~evelopmentgroup
The size, complexity, and volatility ofyour applications
The amount ofpackaged software used by your firm
The physical hardware configuration ofyour computen
The degree ofcontrol which you and your auditors agree is appropriate.

The following examples show four typical development environments, presented in order
of increasing complexity.

As you read through them however, keep in mind that these are only intended to be rep
resentative examplesj each shop is different. A good automated change control system
must be contigurable to meet the specific needs of the organization.

Mainframe Software Management Tedmiques 3105-6

EXAMPLE 1 - BASIC DEVELOPMENT ENVIRONMENT

The basic development environment is a small shop with a single computer and a staff
consisting of two programmers, one day-shift operator, and a "shirt sleeves" manager.
The development control objectives are basic, but critical:

They need to know where the current production versions of all source, object,
and job files are,

They need to be sure that all changes are made to copies ofthose files in a sepa
rate test location,

They need to assure that all changes are approved by the manager before they arc
put into production, and

They need to do this without further burdening their staffwho is already working
long hours.

The first step here, as for most installations, is to identify all of the production source,
object, and job files. These files need to be grouped together and secured. Through an
automated change.mntrol system, this can be accomplished by creating customized filesets
which represent whole groups of files. This eliminates the need to change the operating
system account/group stlUeture or move any of the files around.

The second step is to define the file movement policy, or steps, that will be allowed in the
shop. In this example, we have three basic file movement steps:

1. A CHECKour procedure, which copies source, object, or job files from the
master location into a development location,

2. An APPROVE step, which allows the manager to stamp a changed file with their
approval, and

3. A CHECKIN step, which allows the programmer to move a group of files back
into the master library when they have been approved. This step also makes an
automatic backup copy of the old master file. In addition, the backup copy is
compressed to a small fraction of its original size to save disc space.

Mainframe Software Management Tecbniques 3105-7

This process is illustrated below:

CHECKOUT

APPROVE

CHECKIN

To maintain the security of the master library using MPB alone, the CHBCKOur and
CHBCKIN steps would have to be performed by a manager, an operator or an additional
employee. The approval step would have to be documented on paper. With an automat
ed change control system, the CHBCKOur step can be defined to make test copies of
the master files even though the master hbrary is secured. The automated system can
keep track of these copies and can prevent multiple programmen from checking out
copies ofthe same file at the same time. The APPROVE step can be defined to mark the
file(s) as approved, and can be restricted so that only the manager can use it. Further
more, the CHBCKIN step can be defined to allow the programmer to push his changed,
approved tiles from his test environment into the master library without having to log on
to the master account, and automatically archive the old venions.

EXAMPLE 2 - SEPARATE Q/A FUNCTION

This example illustrates a medium-sized shop with a tighdy controlled development pro
cess. The MIS organization consists of a manager, six programmers, two operaton, and
a full-time quality assurance staff of two. Due to the critical nature of their applications,
this shop insists that their Q/A staff perform full unit and system testing on every change.
They also require management approval of the testing procedure before any new or
changed software can be put into production. They do, however, need to allow their pro
gramming staff to make "quick fixes" on an emergency basis, thus bypassing the delays
that would normally accompany the QlA process. It is especially critical that a complete
and reliable audit trail be maintained for these quick fixes.

We can define this environment as follows:

1. A CHBCKOur step as descnbed in Example 1. This allows the programmers
that only one copy at a time is modified (other concurrent copies can be made
with read-only access).

2. A SUBMIT step, to allow programmers to move their modified source, object and
job streams into the Q/A area.

MaiDframe Software Management Techniques 3105-8

3. A GETCURRENT step to bring read-only copies from the master library directly
into the Q/A area. This allows the QlA staff to perform an integrated test using
the current production versions of programs that are not currently being changed.

4. Since not all changes will pass QlA, we need a way to get the files back into the
development location. We define a REJECT step which will be performed by the
QlA staffwhen a program fails testing.

5. QlA will signify that a change has passed its system tests with a new step called
TBSTOK. 1bis will help the manager keep track of the status ofwork on various
programs and is a positive indicator that testing is complete.

6. We still need an APPROVE step, but it is defined to operate on files in the Q/A
location. The APPROVE step will be performed only after they have been
TESTOK'd.

7. The CHBCKIN step now moves files directly from QlA to the master library,
once they have been APPROVEd.

8. Fmally, we define a FIX step, which moves files directly from the development
area to the master library.

1bis development environment is illustrated below:

GETCURRENT

Here again, the automated system facilitates file movement, emergency fixes, and man
agement approval without burdening their staff. The CHBCKOtrI', SUBMIT,
REJEcr, and CHBCKIN steps are defined to operate on specific groups of files, so users
do not need to fully qualify file references. Wild-card references may also be used to
move groups of files at once. These steps can be defined to automatically purge the files
from their original location after copying to eliminate any need for additional housekeep
ing efforts. Because an audit trail is maintained for each step, no extra effort is required to
control use of the emezgency FIX capability - the manager gains complete visibility by
simply listing all uses of the FIX step.

Mainframe Software Management Techniques 3105-9

E.~-\.'dPLE 3 - NElWORKING, SOFIWARE DISTRIBL7IO:S,
SOLraCFJOBJECT SYNCHRONIZATION

T:.e primary difference between this example and the two previous ones is that there are
s.e; ..-ate computers for production and development. In addition, the company's applica
:i~::s run on multiple remote computers. As in previous examples, the master library
;o~Wns the production source, object, and job files, but in this case, the object and job
Cle.s are actually executed on the various remote computers. This adds the important con
trol objective of assuring that all of the remote sites are running the correct versions of the
code. To this we will add the audit requirement of source-object synchronization: we
must assure that the object files in the master library (and on the remote computers) were
in fact generated from the source files in the master library.

The rules and file movement steps for this environment are the same as for Example #2,
with the following exceptions:

1. A new step, called RELBASB, is defined to distribute groups of object and job
files to the remote computers. This step will copy the files specified to all of the
remote computers, and produce an audit trail to verify that the copies were suc
cessfully transferred.

2. The CHBCKIN and FIX steps will be modified to move only source and job files
into the master library, and to automatically stream compile jobs to generate the
object files from the new source. Since the new source has already been compiled
to test the changes, this step is redundant, but it is an effective way of assuring
that the source and object files always match and are synchronized.

3. While the remainder ofthe steps function as they did in Example #2, the automated
system makes the multi-computer environment transparent to the development
sta£[Now CHBCKOUf, GBTCURRBNT, CHBCKIN, AND FIX all operate
between the production and development computers without requiring extra steps
or command.

The resulting environment is illustrated below:

GETCURRENT

Mainframe Software Management Techniques 3105-10

EXAMPLE 4 - PACKAGE][) SOFIWAlRE, ADVANCED VERSION CONTROL

In this example, the company uses third-party application software and receives periodic
releases of the software from the vendor. Their own programmers have also customized
portions of the software in-house. They have developed custom reporting and other
extensions to the software. Whenever this shop receives a new release from the vendor,
the new software is placed into its own separate account. There it is integrated with exist
ing software by the programming staft tested by the Q/A group and eventually put into
production in the same manner as intemally developed software.

Since the software is run on a large number of remote computers, the company releases
newly approved production software in stages. First, a small number of remote users
conduct a beta test for a limited period. When this stage is satisfactorily completed, the
software is released to the remainder of the sites. Because of this procedure, the company
needs to maintain two or more versions of the software simultaneously, and, in emergen
cy situations, make changes to a prior version without interfering with work performed on
the new version.

The rules and file movement steps defined for this environment are the same as Example
#3 except for the following:

1. A new step, VENDOur, has been defined for programmers to check out source
and job files directly from the vendor software location. The step will prevent the
programmer from accidentally getting an old version from a different location.

2. The CHECKOur step is redefined to select the latest version ofthe software
from the master libraJy. This is accomplished by searching the "new release
location first. Ifthe file is not found there, the "old release" location is searched.
This assures that the programmers do not inadvertently use old versions of the
software.

3. The CHECKIN and FIX steps are redefined to move files into the "new release"
location.

4. The RELEASE step now operates on the version locations much as CHECK
OUT does. When specific files are released, the automated system searches for
the most recent version, and finds it even if it has not been changed for several
versions. If a general release is made, only the files that have changed are dis
tributed. This reduces tape and disc storage requirements as well as network
distribution costs by eliminating unnecessary file transfers.

Mainframe Software Management Techniques 3105-11

The resulting enviromnent is illustrated below:

It is important to note that this rather complicated development enviromnent can be pre
cisely controlled with minimal effort through the careful choice of predefined file move
ment steps. Searching through two or more locations for the most current version can be
performed automatically by the automated change control system. This enables the shop
to maintain the integrity of prior venioDS while building a new version ..• without repli
cating files that have not changed. It also assures that programmers always get the most
current version of any file.

SUMMARY

HP 3000 data centen have built a substantial asset in their software and data files. Yet,
without effective change control, it is virtually impossible to guarantee the integrity of
modifications to this valuable asset.

Furthermore, industry SUlVeyB show that most firms have a substantial software mainte
nance backlog. Without efficient means to manage changes, this backlog severely ham
pen the progress of new development efforts. As a result, it is becoming quite common
for HP 3000 shops to establish formal procedures for software change control.

Although many shops initially attempt to implement change control through a manual
system, these systems have met with limited success due to the heavy burden they place
on the MIS staff and the inherent unreliability of the manual approach. Because auto
mated change control systems provide an effective, reliable solution while reducing the
burden on the MIS staff, they have recently become the standard. These automated sys
tems improve development and maintenance efficiency and ensure that all program
changes are properly authorized, documented and tracked.

Mainframe Software Management Techniques 3105-12

Automated systems provide management with quick access to the status of changes, the
change history of a file and the impact of a proposed change. They provide programJl1e!S
with an environment that allows them to concentrate on programming rather than on
searching for the correct versions of files and documenting their usage.

Safeguarding the integrity of the software asset while paving the way for more efficient
productive development and maintenance, is one of the most compelling challenges fac
ing HP 3000 professionals today. Automated change control systems can provide the
tools to meet this challenge.

Mainframc Software Managemcnt Techniqucs 3105-13

CHANGE CONTROL CHECKLIST

Change control procedures for computer programs should be established and followed.
The intCDt of these controls is to prevent unauthorized, inaccurate, and unreliable program
changes from being incorporated into the live production environment. Both scheduled
and emergency changes must be appropriately controlled to maintain the cmgoiDg integrity
of software.

You can use the followiDg tedmiques to ensure that proper controls are being maintained
over your program changes:

Develop and adhere to formally approved written standards for aU program
changes
Define and enforce procedures detailing who can initiate and who can authorize
program change requests
Describe and track the nature and reasons for proposed changes Enforce testing
and acceptance procedures for all program changes including emergency changes
Test all program changes under normal operating conditions
Involve users in preparing test data and reviewing test results
Investigate and correct aU errors before transferring code to production
Certify that all test results demonstrate adequate protection from fraud, waste,
and misuse ofthe program
Document all program changes and update appropriate documentation as
changes are made
Log all completed changes as weD as those changes in progress
Utilize a formal system to report all changes to users and project managers
Enforce a checkout-e:heckin procedure that prevents a file from being simultane
ously modified by more than one programmer
Develop procedures to analyze whether other systems are affected by new program
modification
Retain and secure original source code until changes have been processed, tested
and updated
limit the frequency ofprogram changes, except for emergency cases
Notify both the user and BDP project manager when emergency changes are made

MaiDframe Software Management Techniques 3105-14

TITLE:

AUTHOR:

Oracle RDBMS:.on HP 3000 - Narrow Tolerance

Performance Tuhing Tips

Mirek Zlotkowski

DeE Information Management Consultancy

Prisengracht 747-751; 1017 JX Amsterdam

Amsterdam, L8N 3T3

THE NETHERLANDS

FINAL PAPER WAS NOT AVAILABLE AT TIME OF PRINTING.

PAPERNO. 3106

Paper Number 3107

ME AND MY SHADOW

by
John D. Alleyn-Day

Alleyn Day International
1721 M. L. K. Way, Suite 3

Berkeley CA 94709-2101
415-486-8202

Introduction

One of our clients uses the HP3000 for an extremely critical
application that can tolerate virtually no downtime. They
were upgrading from a Series III and they wanted a "hot
backup" - a second machine networked to the first so that a
copy of the operating data would be maintained on the second
machine and continuously updated with almost zero delay. If
the primary system failed, switching to the second machine
was to be effected in a minute or two.

Requirements

To understand why we picked the methods that we did, it is
necessa~y to know something about the system. The computer
runs a single application with two major components.

The first major component consists of a set of input screens
run in block mode and used by about twenty operators. At
the busiest time, they each produce about one transaction
every 4 minutes consisting of about 1Kbyte of data.

The other major. component of the system is a batch program
that runs continuously. This job runs a communication
system of 10 regular 1200 baud modems and two fax modems.
It produces about 20 transactions a minute of about 40 bytes
each.

In total, therefore, we are producing data at the maximum
rate of about 100 bytes per second. This is very slow by
network standards, just under the throughput of a 1200 baud
modem. This is especially true, considering that the busi
est time only lasts about two hours a day.

The file system consists of IMAGE datasets, several KSAM
files, and a number of MPE flat files. The operator screen
program adds records to several IMAGE datasets and to three
of the KSAM files. The batch program makes updates to one
of the KSAM files. This is the major part of the data that
must be shadowed from one system to the other.

ME AND MY SHADOW 3107 - 1

The data is very transitory, as it expires within a two-week
period. It is allowed to accumulate for a month, at which
point monthly statistics are computed, the old data purged
and the datasets reorganized.

If the main computer were to go down it is desirable to keep
as many operator terminals going as possible. However, the
outgoing communication network only requires a m1n1mum
configuration as all messages are assigned a priority and
those of the highest priority would go out even with a small
number of modems. Some considerable compromises can be made
in the performance of the backup system in the interest of
minimizing the cost.

Networking Software

The biggest single decision was the method of networking the
computers.

One possible solution was to w~ite our own software to
communicate from machine to machine using one of the serial
ports on each machine. This would be a solution that would
be non-standard, closely tied to the application software
and that would probably take a long time for all the bugs to
be ironed out. It would also take a long time to write and
to get into production.

It was much preferable to find an off-the~shelf solution,
if, in fact, one existed. There is a product from HP called
"Silhouette" that will shadow databases from one HP3000 to
another. Unfortunately, it works only with IMAGE databases.
I understand that it uses IMAGE logging to do its thing and
this is a fairly high overhead operation. With our heavy
reliance upon KSAM flIes, this product was unlikely to do
the trick for us.
Fortunately, HP recommended us to Quest Software and their
product "Netbase" and this is the product that we finally
used. This product will also shadow files from one computer
to another, but it is not restricted to IMAGE files. Net
base intercepts the standard intrinsic calls to the file
system, plus a selection of other intrinsics and thereby
gets access to the data that is to be passed over the net
work.

Because the intercept routines are usually kept in an ac
count SL, the application programs must be run with "lib=p"
or "lib=g". The interception is done with very little
overhead and there is a method of running standard programs
like "FCOPY" or "QUERY" in a shadowing mode without having
to place routines in the system SL.

In addition a job is kept running all the time that contains

ME AND MY SHADOW 3107 - 2

the processes that do the actual transmission and reception,
using standard HP network calls. The processes in this job
are also responsible for posting data to the shadow files.

Hardware

The hardware selected for our main machine, the "A" comput
er, was a Micro XE, with a large Eagle drive and 72 ATP
ports. Since we were looking for a minimum cost setup, the
backup hardware chosen was a Micro GX. This has only 16
ports which is not enough to run all of the terminals and
modems, but we decided that, since downtime on an HP3000 is
rare, an attenuated performance under emergency conditions
was acceptable.

A standard network would have cost us as much as the backup
computer by itself, so we were looking for a low-cost alter
native. It seemed reasonable that there should be a low
cost alternative when we considered the ext~emely slow
transfer rates that we were looking for. HP has such an
alternative, but it is not too widely known. The alterna
tive is known as ASNL (ASynchronous Network Link). Using
this method, two serial ports on an HP3000 can be linked at
a speed of 9600 bits per second and made to look like a
standard network. One of the quirks of this system is that
it is only officially supported using modems, not hardwired.
However, it works beautifully with a $65 cable connecting
the two machines, and costs under $3,000 total for both
machines. It is more than adequate for our purposes, and
the price is right.

Of course, in the case of an emergency, we would have to be
able to switch the terminals and modems from one machine to
the other. This was accomplished very easily with a set of
A-B switches in a rack-mount panel, and this switching
scheme is shown diagrammatically in Figure I.

Because the "B" system is seriously limited in the number of
ports available, the peripherals are cut to a minimum in the
emergency mode. Note the "X" switch that is arranged so
that, under normal circumstances, an outgoing modem is at
tached to the "A" machine and a standard incoming modem is
attached to the "B"system. In emergency operation, this
incoming modem is lost, to make room for an additional
outgoing modem.

It should also be noted that the system has only one tape
drive, on a HPIB switch to connect to either machine, and
one serial printer, that is connected to the "A" machine.
This printer is not capable of being switched to the "B"
machine.

ME AND MY SHADOW 3107 ... 3

Setting It Up

The hardware and software was very easy to set up. Plugging
in modems, terminals, and switches is tedious and repetitive
labor, but easily accomplished. The terminal and modem
switches are rack-mounted and fit neatly in the cabinet
containing our tape~drive and Eagle disc drive.

HP took care of setting up the ASNL link (They won't sell it
without consulting help), and installing the Netbase system
was very simple. However, it took quite a time to under
stand some of the intricacies of getting files back and
forth from computer to computer, and optimizing the trans
mission. Quest Software were very supportive during this
phase, dialing in to the computer when necessa~y to solve
problems for us.

It should be noted that we did not purchase NS from HP, so
facilities such as remote access are unavailable.

The software comes in three parts, Shadowing, Network File
Access and Remote Spooling. The shadowing portion was
clearly needed, but a careful study was made to see whether
we needed the other capabilities, since we wished to keep
our expense to a minimum.

There is one operation that is not amenable to networkin~,

namely the monthly purges and reorganizations. Not only 1S
the asynchronous connection too slow, but we discovered that
programs such as Dbgeneral, which is used for IMAGE reorgan
ization, and Copyrite, which is used for KSAM reorganiza
tion, are not amenable to shadowing because they use special
privileged mode intrinsics that Netbase will not intercept.

There is an alternative way to handle this using Netbase.
The remote spooling handles input files as well as output
files, so it is possible to submit a job on one machine and
then move it to a second machine for execution. Using this
feature, I set up jobs streams that submitted twin jobs, one
for the "A" machine and another to be copied to the "B"
machine. In this way, the purges and reorganizations were
done in parallel without any shadowing. Note that the
p~iority for the job destined for the B machine and the job
fence on the B machine must be lower than those for the A
machine, so that the job destined for the B machine does not
run prematurely on the A machine.

Our testing indicated that we could do all we needed using
the Shadowing option together with the Spooling option, so
the system has no Remote File Access.

We needed to make one change to the application programs for
a satisfactory system. The operator program usually writes
a significant number of records to several different files

ME AND MY SHADOW 3107 - 4

for a complete transaction. In the case of an emergency
switch to the backup machine, we needed a method of recog
n1z1ng which transactions had been completed and which ones
had not. This turned out to be very readily accomplished
with a flag set in the first record written, which is turned
off as the last action of the transaction. However, .this
flag is not a key value, and we have to run a serial read on
this file before turning up the backup system. It only
takes about two minutes, but if not for this, switchover
could be accomplished in a few seconds.

There is also the question of getting back to the "A" ma
chine after it has returned on-line. It would have been
possible to shadow back from the "B" machine to the "A"
machine. However, this seemed to be pointless and foolish.
If the "A" machine fails, then it is likely that the data on
it is in an undesirable and unknown state. Under these
circumstances, it is better simply to store the data from
the "B" machine and restore it on the "A" machine. Jobs
were set up to carry out this process, as well as the re
verse one of synchronizing the data on the "B" system with
that on "A". This implies that, when an emergency occurs,
operation will continue on the backup machine until the
close of business gives an opportunity to switch back.

Experience

The actual operation of the system satisfied our highest
expectations. The load placed on the "A" system was minimal
and unnoticeable. The "B" machine is usually updated so
quickly that is almost impossible to measure any delay. The
only possible difficulty is the complexity of keeping track
of identical jobs initiated on one machine, but running on
two different ones.

We ran into one or two minor bugs in the software, princi
pally associated with KSAM files. Quest Software were able
to resolve the problem in an amazingly short time, and
provided an updated version of the software in less than 24
hours.

How does it work in an eme~gency? The equipment has been
installed now for about 18 months, and, as expected, we
haven't had any hardware problems. We have had to switch
machines on a couple of occasions as a result of software or
operational problems. The "B" machine has always taken over
without a problem.

Other Benefits

We gained other benefits from this system that we had not
anticipated.

ME AND MY SHADOW 3107 - 5

First of all, the second machine is used for software devel
opment, thereby taking a load off the production machine.
We have also set up the shadowing so that program files are
shadowed in the opposite direction to data, namely from the
"B" system to the "A" system. In this way, when a program
is updated on the "B" machine, the update is automatically
reflected on to the "A" machine without actually copying it.
Since we did not buy the Network File Access portion of
Netbase, copying the file would necessitate either storing
to tape and restoring on the "A" machine or using a PC to
download and upload the program.

However, this trick has a problem. When a program file is
replaced it is usual to purge the old program file before
copying the new one into place. The MPE "purge" command is
not intercepted by the Netbase software, and so the program
file on the "A" machine does not get deleted. "Rename" has
the same problem.

A special purge was therefore written that imitates the
standard MPE command, opening a file and closing it with a
disposition of "delete". This command can be intercepted by
Netbase and shadowed across the network. By setting up UDCs
for "purge" and "rename" using this program, the programs
can be properly shadowed from one machine to the other.

A second benefit is that, since the data is identical on
both machines and all the software development is on the "B"
machine, we only need to back up the "B" machine. The tape
drive is therefore usually connected to the "B" machine and
used for backups, which can be carried out during normal
operating hours.

The spooling feature can be used generally to submit jobs on
the "A" machine and have them run on the "B" machine.
Furthermore the database on the "B" machine can be set up to
allow reading, and so reports can be run on that machine
without adding any load to the "A" machine. At present,
this is only used for producing one report, a large report
that is spooled to tape and put on microfiche.

We only have one printer and this is on the "A" machine.
Consequently, whenever we want to print something from the
"B" machine it must be first moved over to the "A" machine.
This can be accompished very easily. The "B" system has a
ficticious printer configured with two device classes that
are both spooled. There is a second continuously-running
batch job that picks up output sent to one of our fictitious
device classes and ships it over the link.

ME AND MY SHADOW 3107 - 6

Conclusions

Our experience with a "hot backup" of this kind indicates
that it is very easy to set up with the tools available
today. The operation is very reliable and can give benefits
over and above those to be expected from a simple shadowing
operation.

ME AND MY SHADOW 3107 - 7

Fig.]

ME AND MY SHADOW 3107 - 8

NPE from a VMS perspective

Paper #3110

By Robert S. Dobis and steven M. Elsten

Crowe, Chizek and Company
2100 Market Tower

10 West Market street
Indianapolis, IN 46204-2976

(317) 632-8989

The objective of this presentation is to highlight some of the
similarities and differences, from the application developers
perspective, between MPE on the HP3000 and VMS on the Digital
VAX. Our intent is to provide a general, introductory cross
reference between both environments. with this reference, users
familiar with one of the two operating systems will have a
starting point when beginning to develop programs in the other
operating system. The general areas to be covered in this
presentation are:

File Names

System Commands

Command Procedures

File Structures

Databases

Query Languages

Programming Languages

Forms Handlers

Application Development Tools

HPE from a VMS Perspective

3110 - 1

VIIS VB MPB PILE IlAMBS

MPB

NOT USED

GROUP/ACCOUNT

TWO LEVELS

8 CHARACTERS IN LENGTH

VMS

DEVICE NAME

DIRECTORY PATH

UNLIMITED LEVELS

39 CHARACTERS IN LENGTH

BXAMPLBS:

(VMS)

DUAl: [ROOT. LEVEL1.LEVEL2] FILE_NAME.DAT

(MPB)

FILENAME.GRPNAME.ACCTNAME

MPB from a VMS perspective

3110 - 2

VMS COIOIANDS AND THEIR MPB EOUlVALBNTS

VMS

BACKUP

COpy

CREATE

DEASSIGN

DEFINE/ASSIGN

DELETE

DELETE/ENTRY

DIFFERENCE

DIRECTORY

EDIT

INQUIRE

LINK

LOGOUT

MAIL

PRINT

RENAME

RUN

SEARCH

SET DEFAULT

SHOW DEVICE

SHOW LOGICAL

SHOW PROCESS

SHOW QUEUE (batch)

SHOW QUEUE (print)

MPB

STORE/RESTORE

COPY

BUILD

RESET

FILE

PURGE

ABORTJOB #J/DELETESPOOLFILE

Third party software

LISTF

Editor

INPUT

LINKEDIT

BYE

Third party software

FCOPY/Editor

RENAME

RUN

Editor

CHGROUP

SHOWDEV

LISTEQ

SHOWME

SHOWJOB

SHOWOUT/LISTSPF

MPB fro. a VMS perspective

3110 - 3

VMS COMMAlmS AIfD THBIR DB BOUIVALBIITS
(continue4)

VIIS IIPB

SHOW SYMBOL SHOWVAR

SHOW USERS SHOWJOB

STOP/ID ABORTJOB #S

SUBMIT STREAM

Symbol Assign SETVAR/SETJCW

TYPE PRINT/FCOPY

IIPB from a VMS perspective

3110 - 4

SYMBOLS

VMS VB IIPB COIOlAlfD PROCBDURBS

MPB

VARIABLES

LOGICALS

IF ••• THEN ••• ELSE

GOTO

WRITE SYS$OUTPUT

INQUIRE

@<FILE NAME>

PARAMETER PASSING

EXAMPLBS:

(VIIS)

FILE EQUATIONS

IF ••• THEN ••• ELSE

GOTO/WHILE

ECHO

INPUT

<FILE NAME>

PARAMETER PASSING

$ INQUIRE/PROMPT="ENTER PROGRAM NUMBER .. PROG_NAME
$ IF PROG NAME .EQS. "PROG1"
$ THEN -
$ DEFINE DATA FILE DUAO:[DATA]DATA FILE.DAT
$ RUN TEST PROGRAM -
$ ELSE -
$ DEFINE DATA FILE DUAl: [DATA] DATA FILE.DAT
$ RUN TEST PROGRAM -
$ ENDIF -
$ DEASSIGN DATA_FILE

$ @SAMPLE PROC
PROGI

(DB)

INPUT PROGNAMEiPROMPT="ENTER PROGRAM NUMBER II

IF !PROGNAME = "PROG1" THEN
FILE DATAFILE=DATAFILE.GROUPl
RUN TESTPROG.RUNGROUP

ELSE
FILE DATAFILE=DATAFILE.GROUP2
RUN TESTPROG.RUNGROUP

ENDIF
RESET DATAFILE

TESTPROC
PROG2

MPH from a vas Perspective

3110 - 5

VIIS

VMS VB IIPB :rILE STRUCTURBS

IIPB

RMS (Sequential)

RMS (Indexed)

File Definition Language/
EDIT/FDL

CREATE/FDL

MULTIPLE KEYS

1 FILE

MPE (Flat file)

KSAM

KSAMUTIL

BUILD (KSAMUTIL)

MULTIPLE KEYS

2 FILES (KEY FILE/DATA FILE)

MPH from a VMS perspective

3110 - 6

VMS

VIIS VB MPE DATABASES

IIPB

ROB (RELATIONAL)

ORACLE

INGRES

SMARTSTAR

SYBASE

IMAGE (HIERARCHICAL)
ALLBASE (RELATIONAL)

ORACLE

INGRES

MPB from a VMS Perspective

3110 - 7

VMS vs MPE QUERY LANGUAGES

DATATRIBVB

RMS AND DATABASE FILES

READY

FIND

PRINT/LIST

MODIFY

ERASE

PROCEDURES

RECORD DEFINITIONS

DOMAIN DEFINITIONS

@<PROCEDURE NAME>

BXAMPLES:

QUERY

DATABASES ONLY

DEFINE

FIND

REPORT

UPDATE

DELETE

PROCEDURES

UNSUPPORTED

UNSUPPORTED

XEQ <PROCEDURE NAME>

(DATATRl:BVB)

READY DOMAIN1
FIND DOMAIN1 WITH KEY FIELD = "ABCD"
PRINT ALL DATAl, DATA'2, DATA3
MODIFY ALL DATA4, DATA5

ABC
123

FINISH

(QUERY)

DEFINE
DBNAME1
PASSWORD
1
DSETNAME1

FIND KEY FIELD = "ABCD"
REPORT -

D1,DATA1,20
D2,DATA2,40
D3,DATA3,60
END

UPDATE REPLACE,DATA4="XYZ"jDATA5="123"jEND
EXIT

MPB from a VMS perspective

3110 - 8

VIIS VB lIP. PROGRlOOIII1G LUlGUAGlBS

IIPB

BASIC

C

COBOL

UNSUPPORTED

FORTRAN

PASCAL

PL/l

SPL

VIIS

BASIC

C

COBOL

DIBOL

FORTRAN

PASCAL

PL/l

UNSUPPORTED

IIPB from a VMS Perspective

3110 - t

VMS VB MPB FORMS IlUlDLBRS

TDIIS

MPH

VXBW

Form Files/Libraries Forms Stored in COD Form Libraries

FHS/EDIT FDU FORMSPEC

Screen Layout Editor Screen Layout Editor Screen Layout Editor

FMS/LIB NOT SUPPORTED FORMSPEC

Datatype Edits in form Datatype Edits in form Datatype Edits in form

No Advanced Validation Range/List Validation Processing Specs

External Procedure Calls External Calls to Requests External Intrinsic Calls

Char or Block Mode Char or Block Mode Block Mode

MPH from a VMS Perspective

3110 - 10

VIIS VB MPB APPLICATIOII DBVBLOPKBRT TOOLS

VIIS

COPY/INCLUDE FILES

TEXT EDITORS (EDT, TPU, •••)

BATCH LISTING/PRINT FILES

COMMAND PROCEDURES

SYMBOLS

LOGICAL

DATATRIEVE

CDD

IIPB

COPYLIBS - COBEDIT

EDIT3000, QEDIT, TDP, •••

NATIVE MODE SPOOLER

COMMAND PROCEDURES

COMMAND PROCEDURE NAME
HPPATH

FILE EQUATIONS

QUERY

SYSTEM DICTIONARY

MPB from a VMS Perspective

3110 - 11

RAIl, SYSTEMS FOR TOMORROW

DATA COMMUNICATION TRAINSoo •••••

By: AIde Falessi
Cable Management Systems

3200 West Warner Ave.
Santa Ana, Ca. 92704

(714) 662--0664

Paper Number 3111

3111-0

EASTCMIPIJS

RAIL SYSTEMS FOR TOMORROW

DATA COMMUNICATION TRAINS .

By Aido Falossi

Cable Management Systems, Inc.

Any way we look at it, the standard work being

conducted under the joint auspices of the Electronics

Industry Association (EIA), the Institute of Electrical

& Electronic Engineering (IEEE), and the

Telecommunications Industry Association (TIA), leads

towards a structured wiring based on fiber and copper

media. The F.D.D.I. (Fiber Distributed Data Interface)

standard has been given a prominent position as a

backbone network scheme in the wiring now being drafted

and scheduled for completion in 1992 .
..--..-..--.-- ~-.~--.-u

W£STCAMPUS

Rail Systems for Tomorrow
Data Communication Trains .

The movement towards "STANDARDS" wiring schemes began

building momentum after the break-up of AT&T in the

early 1980's. Before deregulation, building wiring

being done for Voice and Data were in the majority of

cases done by the telephone companies using voice

(analog) components and installation technique based on

telephone expertise gained by AT&T over the years.

Even before the divestiture of AT&T the market was

being flooded with new communications and computing

systems. Each vendor had its own solution and network

scheme (Ethernet, Novel, Arcnet, RS232 and now even

Token-Ring). Each supplier specified its own unique

distances, medium, and connectors, leaving the user

with little choice o~her than re-cable their facilities

every time they added a new system or moved to a

different transport protocol.

Visualize a Fortune 1000 company which had a Wang VIS

system for word processing, an IBM system 38 for

administration and an HP 3000 for manufacturing.

Although the backbone could be wired for Ethernet

(thick or thin coax) the premise wiring bringing

Rail Systems for Tomorrow
Data Communication Trains •••••••

3111- 2

communication to the various offices would require dual

coax for Wang, Twin-ax for the IBM and multiple twisted

pair for the HP. The user had few

choices either dedicate a user location to a

specific system or wire three different sets of cable

to each user location.

The problem faced by the user became more complex as

personal computers invaded his company how to

network these intelligent stations to his main frames

and what transport medium must he use.

Over the years several vendors have offered their own

cabling systems, but users, (more often than not),

found themselves locked into a proprietary medium and

systems scheme which provided transmission and

flexibility limitation.

standards like RS232 will become outdated as users will

move to RS422/23 to increase the effective transmission

speed between computer and terminals as computing power

provided by faster main frame and personal computers

require faster data transfer. standards such as

Rail Systems for Tomorrow
Data Communication Trains •.•••••

3111-·3

lOBaseT have been quickly developed and approved as

interim stop-gap to take advantage of the billions of

feet of wire which AT&T has placed in industrial,

commercial and residential facilities. Companies have

started , become successful and some have disappeared

all in the effort to take advantage of the network

market opportunity which promises faster speeds, longer

distances, flexibility, easy management and

maintenance.

The u.s. rail industry promised the same when millions

of feet of railroad tracks were put down across the

country.

I can hear the rail executive's

conversations we will offer the public

movement from the east to the west, north and south.

We'll be able to move freight, troops for our defense,

transport from the smallest to the largest animals,

have wagon, for fuel, milk, restaurant to feed

passengers and beds for those on long trips. They

forgot one major parameter "SPEED" ! The U·. S.

rail system cannot support trains at over 100 miles per

Rail Systems for Tomorrow
Data Communication Trains •••••••

3111-4

hour while we can now manufacture locomotives which can

achieve speeds of over 250 miles per hour.

The telephone industry did the same when the promised

panecea facilities with 25 pair cables of 24 gauge (24

AWG) unshielded.

I can hear the phone man talking we don't need

to worry about bandwidth since voice it's typically

between 300 and 7500 herts. Let's not worry about loss

on the line, we will put amplifiers when needed and if

the signal is too low to hear, people will scream

louder on the phone. Crosstalk will make us more money

since people will stay longer on the phone to hear the

conversation on the other line.

To prevent problems such as the ones faced by the

railroad industry, The Electronic Industry Association

(EIA) stepped in and tried to create standards in media

that would accommodate several different vendors.

The task proved to be a major undertaking even with the

help of the Telephone Industry Association (TIA), the

Rail Systems for Tomorrow
Data Communication Trains

3111--5

Building Industry Service International (BICSI), the

Building Owner and Manager Association (BOEMA), and the

Construction Specifications Institute (CSI).

The EIA continued its work with computer manufacturers,

communication vendors as well as the major users such

as HMO's, Insurance firms and Banks the

outcome may be worth waiting meanwhile, what

is a user supposed to plan for his network needs of

today with an eye towards the future .

"RAIL SYSTEMS FOR TOMORROW

DATA COMMUNICATION TRAINS "

This writer feels that we must look at the problem

faced by our industry (network) from a different

prospective. Somewhat the same way "MA" BELL wired the

building years ago, or the utility companies

distributes power throughout our facilities today.

Before the building walls are closed, outlets for phone

and power are wired at strategic locations, after the

walls are closed the terminating connectors are

Rail Systems for Tomorrow
Data Communication Trains •••••••

3111-6

installed and tested regardless if a toaster made by

G.E. or Emerson is plugged in or a phone made by AT&T

or NEC will be used into the respective power and phone

outlets.

The computer/communication industry can learn a great

deal from these approaches, especially when industry

forecasts are projecting that by the year 2000 there

will be a Terminal (or PC's) in every modern office

location where there is a phone being used.

The solution to our dilemma is somewhat more

complicated than the one faced by the power or

telephone industry.

How can a building or facility be wired intelligently

for computer data communication when vendors of

equipments have designed their products to run on

proprietary hardware, connectors, media, software,

etc., etc.

To better understand our dilemma, we need to take a

look at our task.

Rail Systems for Tomorrow
Data Communication Trains •..••••

3111- 7

There are four basic elements that make up Local Area

Networks (LAN's).

1) The Topology

2) The Proto-Call

3) The Access Method

4) The Medium

While Topology, Proto-Call and Access Method change

from vendor to vendor it appears that the Medium - The

Cabling System - is finally headed towards standards

which are transparent to the hardware/software

manufacturers.

In the past, the questions posed by the Data

Communications Manager was based on "When is it

better to use what medium"? "What are the

advantages and disadvantages of each type ad cable"?

TWISTED PAIR, UNSHIELDED

The Good:

Rail Sys~ems for Tomorrow
Da~a Communica~ion Trains •.•••••

3111-8

* It's the most flexible and the easiest to move and

install in most situations.

* It's easier to install than the other types of

copper

cables and it's familiar to most people so they feel

comfortable with it.

* It's the least expensive type of copper cable.

The Bad:

* It carries the least amount of information at

limited

data rate.

* It's very vulnerable to lightning, the elements and

interference.

* Emits an electromagnetic field which can cause

interference with other copper cables like crosstalk

or data errors.

TWISTED PAIR, SHIELDED

The Good:

* Less likely to cause interference than unshielded

cable. Less likely to be affected by nearby

Rail Systems for Tomorrow
Data Communication Trains •••••••

3111- 9

equipment

or wires.

* Less vulnerable to the elements than unshielded.

* It's quick and easy to install. Everybody has a lot

of experience with it.

* It has higher data rate than unshielded.

* It has low bandwidth compared to coax and fiber

optics.

The Good:

* Carries more ~nformation than twisted pair, shielded

or unshielded.

* There is a healthy supply and it's easy to install.

The Bad:

* It's bulkier than twisted pair and difficult to

move.

Coax cable is quite rigid and requires special

tools

to get it where you want it.

Rail Systems for Tomorrow
Data Communication Trains •••••••

3111-10

* It's hard to move coax and Networks using this

Medium are costly.

FIBER OPTICS

The Good:

* Carries information at undreamed-of speeds.

* Neither creates nor is susceptible to most

interference because it doesn't have an

electromagnetic field.

* The cost of fiber has dropped by 75% in the last

few years.

The Bad:

* It's still expensive to convert optical to

electrical energy.

* Most people don't know how to install it.

* A small imperfection in the cable can mess up all

the signals.

Rail Systems for Tomorrow
Data Communication Trains •.•••••

3111- 11

Present day medium (cable) standards are predicated on

the best known and most often referred Local Area

Network (LAN) specifications.

For example: The Ethernet electrical specifications are

intended for LAN systems with data rates that do not

exceed 10 million bits per second (Mbps).

Ethernet (as a standard) has been around for over 10

years and as computer systems have progressed, the

LAN's capacity needs have increased. other factors

driving up the capacity of existing networks include

CAD/CAM work station performance, the movement towards

distributed applications and the increased number of

multiple sub/networks increasing the load on the

backbone.

"If historY has taught us anything is that computer

systems will increase in through-put power and

humans will be hard pressed to run 1 mile below 3

minutes "

What that means is that anytime we have processors

Rail Systems for Tomorrow
Data Communication Trains •••••••

3111 .. 12

(intelligent devices) communicating with each other

without the interaction of a human, we can expect

increased through-put which can only be limited by the

rail road tracks (medium) handling the movement of date

from one point to the other. While if there's human

interaction, the best we can expect is how much faster

we can read, type, and/or handle human transitions.

It's quite improbable for a human to increase its

through-put by an order of magnitude while from

Ethernet to F.D.D.I. (Fiber Distributed Data Interface)

an order of magnitude increase in through-put is a

reality today.

Understanding the limitations of humans and the part

they play in the computer data communication scenario,

"our goal is to design" a Network Cabling System to

make it simple, yet manageable.

Backbone Cabling Solution

How are the communications and facilities managers

going to install Fiber Optic Cabling to support todays

need and future requirements 1 The

Rail Systems for Tomorrow
Data Communication Trains •••••••

3111--13

answer is simpler than might be expected.

Network cabling design is straight forward with the

understanding of the basic building blocks and the

facilities layout.

.•

•••

& ~ WORKSTATION• -- ROUTER

l---fiBllIM--~ •••

Rail Systems for Tomorrow
Data Communication Trains•..

3111- 14

-: - • - - - _.•••.••• - • - - PATCH PANEL-Patch Cords

PATCH PANEL RACK

:lata Distributiof··
iJsers Jrops •• - •.• "
via Pa~ch Panels \ --.

Terminal-MaY~i··t·~·~·~~~~~~~~~~~~~~~~~~~~~~~~lRS232C/422- Coax.
TwihAx or BNC/TNC

Trunk Cables·-·
Llata

!nter~adiate ~••~_~~~~~~~~;;~~~:~==~~;§~~~;:~
Distr:':lUtio:') _•••••
Frame (IDF) from \ ~
'I'!:"unk cables to : •.•

users dro~~~!--f"t'~~~~~~~~~~~~~~~~~~~~~~~~

Maybe RS232J· _..... ..
422 Ccax; TwinAx
or BNC/TNC

__ - ·Pax Machine

Voice
.. _..... - .. Distribution

Ii . via Intermediate
"-i' . _.. - : frame (IDF)

'~ Main Lstribution
_~ Voice (MPD)

. - . - - Modems for Remtt,::
Communication

Main Distribut.ion Frame (MDF) DATA/VOle:
to respective floors

Input/Output from
computer via Cluster
Cables (MDF) to Patch
?anels

Trunk Cables -_
Voice

Underground wiring to next
building

First: The selection of 62.5/125 micron (m) fiber has

emerged as the standard for both the computer OEM and

building wiring environment, thus making the selection

of fiber size easier. Shielded and unshielded twisted

pair cable, while relatively inexpensive and already a

large installed base, is limited in use for a backbone

LAN by distance and bandwidth. In the last two years,

optical fiber has begun the migration from the outside

plant environment, up the building riser, up to the

distr~bution closets.

Rail Systems for Tomorrow
Data Communication Trains .

3111- 15

Second: How is fiber backbone configured? Fiber can

be implemented like coax while it provides a high

bandwidth, it can be used for transmission link among

computers and peripheral equipment. A fiber network is

typically configured as a dual, counter-rotating ring

with branch and tree links joined to the ring at

concentrators. The dual ring, (which requires running

multiple fibers to each station in the ring), is self-

healing when a fault occurs in one fiber link or at a

cross bridge location. This protects the system from

downtime when a failure occurs.

Fiber provides flexibility in designing networks for a

number of different applications, including the

following:

Data Center: The high speed backbone within the data

center should be wired as in a campus or building

environment. A physical star topology is recommended.

Many devices can be served with one or more

intermediate distribution frame (IDF), connecting

CPU's, storage controllers, other peripherals and

communication servers.

Rail Systems for Tomorrow
Data Communication ~ra1nB•••••••

3111-16

Since the data center is typically small, (less than

100 Ft.), using a patch panel system approach to

connect the devices offers flexibility. Also because

the cables are short, each device can be easily re-

routed or removed if damaged.

The patch panel system becomes the central point for

connecting all the devices using jumper cables provides

additional flexibility is gained since the equipment

may be easily connected in a point-to-point, star or

ring configuration. The user can quickly change

topologies by rearranging the cross connect jumper

cables at the patch panels.

Fiber cables in the data center is normally a duplex

cable of rugged design, to withstand installation force

and the environment under a data center raised floor.

Inside Building: In a building environment, the riser

fiber cable is the backbone connecting the equipment

room (data center) and the individual floor (or

distribution closets). Cables in a rotating dual ring

Rail Systems for Tomorrow
Data Communication Trains .•.....

3111- 17

run back to the data center, and on each floor, using

distribution panels are connected to the Local Area

Networks, (LAN's), PC's, and via terminals via routers,

bridges, or directly to peripheral servers.

Depending upon the individual application a cable fiber

count may require from 6 ·to 36 fibers to satisfy

current and future network needs.

Intrabuilding cable should meet the 1990 National

Electric Code (NEC) requirements designated by

Underwriter laboratories, Inc. The code specifies the

Rail Systems for Tomorrow
Data Communication Trains •••••••

3111- 18

level of safety that each cable must meet; plenum,

riser or general purpose.

The general contractor installing the cable should also

be familiar with local building codes to select the

appropriate cable and methods of installation.

Users stations: Once the fiber cable backbone, main

distribution frame (MDF) and the intermediate

distribution frame (IDF) has been designed and

installed for the unattended equipments from the data

center to the distribution closets (LAN's) the final

portion of the wiring system is implemented to bring

data outlets to each (present and future) location

which will have a terminal or peripheral.

Since most office locations are occupied by a human,

the recomme·nded media for this task is shielded twisted

pair copper cable capable of supporting data

transmissions of 10 - 20 Mbps.

Each user location should be wired with a cable

consisting of four (4) pair terminated to a multiple

Rail Systems for Tomorrow
Data Communciation Trainseoeo •.•

3111--19

outlet which can be custom configured for the specific

devices which will eventually connect to it.

In the distribution closet (twisted-pair) Servers,

MAU's. Patch Panels, etc., provide for topology

conversion in addition to station expansion and

rearrangement.

Growth of the network can be modular and non-

disruptive, addition and deletions can be accomplished

by merely plugging and unplugging jumper cables.

Conclusion: Whether installing coax or twisted-pair

backbone in a building (or campus) environment today,

the user must plan for the eventual migration of fiber

into his network. Future cost and time in adding,

maintaining and managing the flow of data from the data

center to the user can be drastically reduced by using

standard components and good (planned) design

practices.

Rail Systems for Tomorroy
Data Communication Trains •••••••

3111-20

PAPER #3113
DISAPPEARING DIAL-UP

JAMESD. HAM

SOUTHEASTERN PUBLIC SERVICE AUTHORITY
OF VIRGINIA

723 WOODLAKE DRIVE
P. O. BOX 1346

CHESAPEAKE, VIRGINIA 23320
804-399-8924

DISAPPEARING DIAL-UP 3113-1

DISAPPEARING DIAL-UP

Are you planning to move your data processing center? No
doubt you have ordered the raised floor, halogen fire suppression
system environmental unit, patch panel, ups, isolater/requlator,
vacuum cleaner, and microwave oven, but have you installed and
tested the new dial-up service from your local telephone company?
This simple "standard" element of your system has tremendous
problem communications network may help you to avoid the pitfalls
which we leaped into.

Our organization has a dial-Up network of HP150 microcomputers
located at widely scattered transfer sites. Each of these 150s
call our HP3000 twice each night: once to upload the day's
transactions then later to download a newly updated customer file.
We use ADVANCELINK as our communication software. Recently, after
cuch preparation, we moved our data center to an adjacent
cunicipality. Prior to the move, our electrical engineer checked
the power supply and the environmental systems, and we had verified
that the new dial-Up lines were live, (ie: we had used a telephone
to make calls to and from the new site).

The move was accomplished, and the computer was set up and
operational the same day. Our administration users, who did not
cove with us, were up and running at 9600 baud via leased line and
S channel muxes that same day. The first week the success rate of
uploads and downloads on the dial-up network slipped from its'
previous high percentage, but we did not become alarmed. There
~ere many other issues related to the move occupying us, and we
were accustomed to missing a site now and then due to excessive
line noise, cut cables, or operator error. However, after two
~eeks the success rate dropped rapidly, and by the end of six weeks
.as around ten percent!

The symptoms varied, but the essence was that the HP150's
could not maintain the line connection long enough to complete the
data transmission. Most of the time the ADVANCELINK error message
."as "connection failed." Occasionally, we would get a "no carrier"
cessage, or the transmission would stop mid-file with the 150 just
sitting there and the modem at the HP3000 remaining in a busy
state. A data analyzer could have shown us just what was coming
across the line, but as we were not experiencing bad data, just no
data, we did not try to obtain one. Well, intuition told us that
the problem had to lie with the new telephone lines. They and the
hC power supply were the only new elements in the system, and the
AC checked okay. However, after the telephone company technician
tested our lines, he informed us that our lines were within
specifications for "voice" grade service (dial-Up) and there was

DISAPPEARING DIAL-UP 3113-2

nothing he could do. We checked with the phone company business
office and received the same response. There was nothing they
could do to improve our service.

since relief from the phone company did not appear imminent,
and the data had to be moved daily, we devised a three part plan to
attack the problem: (1) implement an alternative method of moving
the data for immediate relief, (2) find a way to use the dial-up
lines as they were for the short haul, and (3) pursue with
determination convincing the phone company to improve our service
as a permanent solution.

In our case, the alternative to the telephone lines was a
"sneaker net" with 3.5" diskettes as the medium. Our courier
visited all but two of the sites daily, and transfer trucks
visiting those two sites could deliver diskettes to a common
location where the courier could pick them up. We quickly produced
operating procedures for the diskette upload and download processes
and installed corresponding command files on the remote computers.
One problem with this solution was that the sites presented a
hostile environmental to the 150's, and some of the diskette drives
were no longer operable. Success with the telephone network had
made the expense of maintaining the diskette drives no longer seem
necessary.

Our bridges hadn't been burned, just allowed to decay!
Replacement and repair of the drives was accomplished as rapidly as
possible. In the interim, some sites had to be visited daily to
collect the previous days' transactions. A fixed drive was
connected to the transfer sites' 150 and the transactions were
copied from their fixed disc to the portable drive. The collected
data was then uploaded to the HP3000 back at the Data Center.

In trying to make the degraded phone service work we
discovered that if the transfer site operator executed ADVANCELINK
and typed in the telephone number, instead of letting a command
file establish connection, we could get a 20 to 30 percent connect
rate. Once connected, the file transfer usually completed
successfully. This confirmed our belief that our hardware and
software were not the source of these problems. This operator
intervention required us to transmit during working hours, which
often resulted in customers waiting in line at the site. still, it
was better than driving to the site with a fixed drive! Trial and
error in modifying the command files disclosed that eliminating
having the 150 wait for the HP3000 to respond with the terminator
character (ctrljQ) and slowing the 150s down improved the
transmission success rate to about 60 percent and made daytime
transmission unnecessary. Pauses were inserted after commands such
as "HELLO" and "BYE", extra new lines sent to the 3000 before and
after "HELLO", "&DSCOPyll, "BYE", etc., and the character delay
times increased to achieve the improvement.

DISAPPEARING DIAL-UP 3113-3

The third area of effort was directed at the telephone
company. We called the business repair office repeatedly with
complaints of a degradation of service compared with that at our
previous location. Their technician was called back to check our
lines again, with the same results. A former telephone company
employee had informed us that different levels of service existed
for each line type, and suggested that we inquire as to our service
level. Oh yes, we had consulted many persons and organizations
during the course of the problem. Part of ~ur problem solving
procedure is to search the available experience bank. While doing
so we received one solid lead, much sympathy, and two offers of a
complete communications evaluation; for a fee. We followed the
lead and escalated our complaints to the manager of the local
central office with requests for a service upgrade. Suggestions by
the phone company that we install leased data circuits were
rejected with the insistent request that they provide us dial-up
service equal to that which we had previously. We did not want the
monthly expense of mUltiple data circuits, or the vulnerability of
one mUltipoint circuit linking sites in eight cities and counties
and crossing two telephone companies at that time. In addition,
all of our modems were dial-Up and would have to have been replaced
with non-dialing units. By this time the telephone companys'
business Office, maintenance office, engineering section, and
public relations office had all been brought into the discussions
with our organization.

In support of our effort with the phone company, and in
devising workarounds, we went through the standard problem
identification steps, evaluating the hardware, software,
procedures, and environment. One element at a time every link in
the dial-up network except the HP3000 was replaced. On our order,
the phone company installed one of their data jacks on our line,
with no results. From the phone company entry panel, we ran new
twisted pair to the computer room via a different route, replaced
the remote modem, the local modem,· the modem and telephone cables

. at each end, and replaced the HP150. We also tried different
versions and different copies of ADVANCELINK and the ADVANCELINK
command files. We discovered that dialing any other computer from
our remote sites worked fine, and that dialing out on one of our
new lines and back in on the other compounded the problem so badly
that we could not use an HP150 in the data center to test modems,
etc. Testing had to be done from a remote site. Of course, all of
these efforts confirm our belief that the dial-up service was the
problem, but more importantly, the tests supported our negotiations
with the phone company, and assured management that every avenue of
relief was being explored. Some improvement in connectivity was
gained by using the same make of modem at the host site and the
remote site. Previously we had not done this. We also found that
MNP error correction modems and modems with adaptive equalization

DISAPPEARING DIAL-UP 3113-4

will not solve all communications line problems. Modems with these
features were obtained on approval from vendors for some of our
tests.

The phone company had measured our lines several times and
reported to us that the decibel (power) level and slope (decibel
loss), while within their "voice" grade specs, definitely would not
support "high speed" data transfer, (1200 baud). We were at the end
of that particular service line, the wires were old, etc. They
also told us that there was no tariff within their rate structure
which would allow them to upgrade our service. Our next step was
to request that they quote us a price for upgrading the equipment
or devising a new tariff and to let them know that we were willing
to bear the cost of correcting our problem. Persistence pays!
After five months of discussion at various levels between our
organization and the phone company they announced that they were
going to fix the problem, and they did, within two weeks! In
essence, the phone company solved our problems by installing MFT's,
(metal frame terminators), on our liens in their central office.
An MFT increases line frequency. We had been asking whether MFT's
might help our situation since learning of their existence from
their former employee. A simple solution at the end of a complex
path. No special charges or rate changes were levied against us by
the phone company!

In conclusion I would suggest that: (1) New dial-up service
be thoroughly tested with your production configuration, or as
close as you can manage, in advance of the move. We may have
discovered our problem sooner if we had taken a 150 to the new
center and tried communicating with a remote site. If your new
service will not be ready prior to the move it may be feasible to
test the phone service from another organization located near your
new data center and on the same service line. (2) Try tweaking the
communication software or command files while waiting for the phone
company to correct the situation. Some service was better than no
service in our case. And (3) comprehensive testing, and presenting
an organized case are helpful in dealing with the telephone company
bureaucracy.

DISAPPEARING DIAL-UP 3113-5

INTEREX '91 San Diego MPFlXL Internals & Performance

MPE/XL Internals
& Performance

by

Michael C. Hornsby

Beechglen Development Inc.

2026 Beechglen Ct.

Cincinnati, Ohio 45233

(513) 922-0509

3114-0

INTEREX '91 San Diego

Overview

MPFJXL Internals & Performance

~ The HP3000 Product Line
~-> Price, Performance, Market Forces
- Applications and Data Bases
--> Spaces, Turbo Image/XL, Special Caps
~ MPE/XL Tables
--> KSO's, Process Tables, Memory Mgmt
- MPE/XL Fine Management
--> Directory, XM, Mapped Files
- Common Performance ProblelDs
..-> Development, Dispatching, Configuration

MPFJXL Internals & Performance
3114-1

MPFJXL Internals & Performance INTEREX '91 San Diego

The HP3000 Product Line

- Price versus Performance
~-> Life Cycles, Pricing, and Futures

.. Processor & BUS Differences
~-> TLB, Cache, and Memory Sizes
.. Program Modes of Operation

--> Compatibility, Translated, and Native
.. Market and Technical Forces

--> Competition, UNIX, Applications

MPFJXL Internals & Performance
3114·2

INTEREX '91 San Diego MPFJXL Internals & Performance

The HP3000 Product line

Model Max Base CPU TLB REL $'5
Users Memory Cache PERF

920* 20 24Mb 64Kb 64E 1.0 26K
922* 152 32Mb 32Kb 4K 1.7 75K
932* 250 32Mb 128Kb 4K 2.8 lOOK
948* 400 64Mb 1Mb 8K 6.0 190K
955 600 96Mb 256Kb 16K 5.4 385K
958* 600 96Mb 1Mb 8K 8.6 310K
960 600 128Mb 1Mb 16K 7.5 485K
980.100 600 192Mb 1Mb 128E 13.0 675K
980.200 600 256Mb 2Mb 256E 20.0 1050K

--
* - Package price includes disc & tape

MPFJXL Internals & Performance
3114-3

MPFJXL Internals & Performance INTEREX '91 San Diego

MPE/XL Price versus Performance

MPF/XL Internals & Performance
3114-4

INTEREX '91 San Diego MPFJXL Internals & Performance

HPPA Processor Architecture

+1----:::----+1

+--------------+--------1------+----------------+
I I I I
v v v v

1
+i~;t;~~ti~~+1 +1T;~~;1~ti~~+1 +1--Fl~~ti~~-+1 +1--s;;t;;---1+

and Lookaside Point Interface

~~:~-~~:~:~ ---~~~~::_- ~~~:~::~~~: ---~~~:_---

I
v

+------------------+
1 External Bus 1

MPFJXL Internals & Performance
3114-5

MPFIXL Internals & Performance INTEREX '91 San Diego

HP3000 HPPA Two Bus Architecture

I~~~~~:~~~~~~I I~~~:::::~~~I
+-----------1-----------------------1-----------+
l------~~~::~:-~~~-i~:~~+I~~-~~:~-~~~~~~::!-----l
I I Iv v V+-----------+ +-----------+ +-----------+

lChannel 1/°1 1 Serial 1 lchannel 1/°1
--~~~~:::_- _:~:~::~::- --~~~~:::_-

I
v+-----+---+

l----~~~~~~:-:~~-~~~-i~:~~-I~~-~~:~-~~~~~;:!----l
I I I
v v v+-----------+ +-----------+ +-----------+

1--~~;~~~~--1 1--~~;;~~~--1 1-~~~~~~~-1

MPE/XL Internals & Pedormance
3114-6

INTEREX '91 San Diego MPFlXL Internals & Performance

HP3000 HPPA Three Bus Architecture

+-----------+ +----------+ +-----------+

l--~:~-~~---l l~i!~~:~~~~l 1---~::::~--1
+----1------------------1-------------------1---+
l--~~~::~-~:~~:~-~~~-i~~~~-~~~-~~:~-~~~~~~~::!--l
, I+-----------+ +-----------+

1
central Bus1 1central Bus1
--~~~~:::_- --~~~~:::_-

1--+
1-------~:~::~:-~~~-~~:~~+~~~-~~:~-~~~~~~::!-----1
I I I+-----------+ +-----------+ +-----------+

1channel 1/01 1 Serial 1 1channel 1/01
--~~~~:::_- _:~::::~::- --~~~~:::_-

1-----+---+
l----~~~~~::-~~~-~~~-~:~~~-I~~-~~:~-~~~~~:;l----l

I I I+-----------+ +-----------+ +-----------+
1--~~;~~~~--1 1--~~;~~~~--1 1-:~~~~:~-1

MPFJXL Internals & Performance
3114-7

MPF/XL Internals & Performance INTEREX '91 San Diego

Applications and Data Bases

- Process Spaces
--> Address Methods, Paging, Content

• Turbo Image/XL
--> Caste, Performance, Evolution
- Special Capabilities
--> Process Handling, Segments, Priv Code

- KSAM and Message Files
--> Niches, Problems, Opportunities

MPFlXL Internals & Performance
3114-8

INTEREX '91 San Diego MPE/XL Internals & Performance

MPE/XL Process Local Space

+-------------------------+DEAD ZONE

XRT <- External
------------------------- Transfer

GUARD ZONE Table (XRT)

CM STACK

GUARD ZONE
------------------------- < DATA POINTER

GLOBAL DATA AREA (GR27)

NM STACK

------------------------- < STACK POINTER
(GR30)

PASCAL HEAP

4GB--> -------------------------+

MPFJXL Internals & Performance
3114-9

MPFJXL Internals & Performance

MPE/XL Tables

- Known System Objects
~-> Structures, KSO's

- Process Control Structures
~-> PIB, PCB, PCBX

.. Dispatching Tables
--> Globals, TCB, Locking

- Memory Management
--> MIB, PDIR, PDIRX

MPFJXL Internals & Performance
3114-10

INTEREX '91 San Diego

INTEREX '91 San Diego MPFJXL Internals & Pedormance

MPE/XL PROCESS CONTROL TABLES

+-----------+

1KSO TABLE 1
-----------I+-----------+

1PIa TABLE 1
-----------I+---+I I I I

+l---PIBx----l+ l+--PROCEss--l+ l+---PCB----l+ l+---PCBx---+l
--_:~~~~--- ---~~~~~--- -_:~~~~--- --_:~~~~--

1---+I I I J

l
+---KNoW;---+l +l----cM-----+l +l---;AR----+l +l--PROCEss-+l
--~;~~~~-- --~~~~~~~-- -_:~~~~--- ---~~~~~--

MPFJXL Internals & Performance
3114-11

MPFJXL Internals & Performance INTEREX '91 San Diego

MPE/XL Dispatcher Queue Assignments

SUbqueue 1Base 1Limit 1Min 1Max 1Queue 1Process
--------- -_::~-- -_::~-- _:~~:- _:~~:- --_:~~:_-- --_:~~:_-

AS 0 99 Linear MPE/XL
BS 100 149 Linear MPE/XL
CS 152 200 200 2000 Circular Sessions
DS 202 238 2000 2000 Circular Jobs
ES 240 253 2000 2000 Circular Jobs

Hi9hest «««««««««««««««««««««« Lowest
Pr10rity «««««««««««««««««««««« Priority

~---------------------lbo----------l!;--------2b2------;!o-;s!

~;;;------~~------Li;i~1 BS
<----------->
Base Limit CS

<--------->
Base Limit DS<-------> ES

BaseLimit <--->
B L

MPFJXL Internals & Performance
3114-12

INTEREX '91 San Diego MPFJXL Internals & Performance

MPE/Xl MEMORY LOCALITY TABLES

-------------->

PIB
+--------------+

LOCALITY
LIST

HEADER

I 1+--------------+
MEMORY INFORMATION

BLOCK
MIB

+--------------+
BASE VPN

LDEV

SECTOR ADDR

PAGE INFO

1 QUAD INFO 1
+--------------+

LOCALITY
HEADER

+--------------+
LL 10 INFO

LL HEAD

LL TAIL

FAULT INFO

1 1
+------r-------+

LOCALITY
ENTRY

+--------------+
PIN

NEXT LL ENTRY

<------------- PREV LL ENTRY

MIB POINTER

PREFETCH FLAG

MPFJXL Internals & Performance
3114-13

MPFlXL Internals & Performance INTEREX '91 San Diego

MPE/XL MEMORY MANAGEMENT
TABLES

Page Directory
PDIR

Phys +--------------+Page VIRT PAGE #
Number --------------

1
VIRT PAGE #

VIRT PAGE #

1 VIRT PAGE # 1+--------------+
Page Directory

Extension
PDIRX

Phys +--------------+Page MEM RESIDENT
Number --------------

1
IMI

NEXT ROC

-------------- <-----
PREV ROC

I 10 INFO I+--------------+

Global
Information

+--------------+MM 10 STATUS

ROC HEADER
+------> --------------

ROC TRAILER

CYCLE INFO

1 AVAILABLE INFI
+--------------+

MPFJXL Internals & Performance
3114·14

INTEREX '91 San Diego MPFJXL Internals & Performance

MPE/XL File Management

• Transaction Management
--> XMButTers, XMlogging

.. Directory Structures
~-> Label Table, Extent Blocks

• Mapped Files
.-> Compilers, File System Bypass, Pointers
.. Volume Management
--> Recovery, Installation Management

MPFJXL Internals & Performance
3114-15

MPFJXL Internals & Performance INTEREX '91 San Diego

Process
Local
Space

MPE/XL Transaction Management

File Transaction Transaction
Physical Management Management

Page Journal Log File

r~~~~~~~~~~r--I->r~~~~~~~~~~r-_I->+~~~~~~~~~~+--I_>+~~~~~~~~~~+
Process
Local
Space

File
Physical

Page

1+~~~~~~~~~~+1--+1 +l~~~~~~~~~~l++1->
-> XXXXXXXXXX --

---------- ----------

XXXXXXXXXX --+

1-> xxxxxxxxxx

MPFJXL Internals & Performance
3114-16

INTEREX '91 San Diego MPFJXL Internals & Performance

MPE/XL FILE SYSTEM DIRECTORY

LABEL TABLE
+--------------+

TABLE MGMT HDR
LABEL MGMT HDR

DIRECTORY ROOT

1
--------------1LABEL ENTRY

EXTENT BLOCK

---LABEL

ACCOUNT T
+---------------=--------+

------> 1~~~:~~~~:-~:~~~:~~~-~~~~1

1 I~~~~Z~~~~~~~~~~~~~~,
GRO P T

+------------=-------+
1~~~:~~~~~:-~~~~~:~~:1

FILl T
+-----------=--------+
1~~~~:~~:~~-~:~~~:~~:1

ENTRY-----J

MPFJXL Internals & Performance
3114-17

MPFJXL Internals & Performance INTEREX '91 San Diego

MPE/XL Volume Management

+---------+

L:~:!-J
I+-----------------------+

~ ~ ~

~~~;~~~~j j~~~~~~~~j j~~~::~~~j
1------------+
~ ~+---------+ +---------+

l:::~~~~::l l--~~~:---l

MPFJXL Internals & Performance
3114-18



INTEREX '91 San Diego MPE/XL Internals & Performance

Common Performance Problems

• Development Activities
--> Compiles, Reports, Testing

- Short Transactions
--> Data Entry, File Transfers

- Process Handling
~-> ASK, COGNOS, HPDESK
.. Resource Sharing

--> Servers, Cooperative Processing

MPFlXL Internals & Performance
3114·19





IHP 3000 Capacity Planning in the Trenches

Robert A. Lund
Paper number 3115

Lund Performance Solutions
34130 Parkwoods Dr. NE
Albany, Oregon 97321

(503) 327-3800 FAX (503) 327-3276

Abstract

This paper will focus on capacity planning in the trenches. I will outline an HP
3000 capacity planning scheme that will insure pro-active performance
management. I will stay as practical as possible and cover some of the best (and
not so best) ways that others have dealt with the problem of planning for future
application growth, and how best to meet that growth with an upgraded hardware
configuration.

What is Capacity Planning?

The art of capacity planning involves a proper marriage of hardware to application
load and function. It helps answer the question, "How much CPU horsepower,
memory, disc drives, etc. do we need to provide adequate service for our data
processing demands?"

Planning ahead for your data processing needs for two, three or even five years
down the road is one aspect of an initial system sizing plan. But what about mid
stream when your accounting department "must" have a new payroll application
added? Will the system handle it? Demands for system processing power are
shifting sands indeed. This is one of the unknowns that DP Managers are faced
with periodically.

Simply stated, capacity is usually thought of in terms of the horsepower of
computer hardware, and the ability of that hardware to adequately fulfill the
transaction requirements of the user community. Capacity planning, therefore,
involves implementing a schedule to accommodate future growth. Accurately
procuring hardware to drive the increase in load, within a timely fashion (read: no
budget bustingl), is what capacity planners are faced with.

HP 3000 Capacity Planning in the Trenches
3115-1



Small companies often times have one person who wears the "hat" of many job
functions. A system manager can be programmer, analyst, network specialist,
capacity planner, and part time accounting supervisor, all in onel I will attempt to
provide help for not only folks that are versed in performance management, but
also for the poor multi-role souls.

Why Perform Capacity Planning?

Planning for future growth in system processing is just plain good sense. Just as
in any aspect of business planning, you must also give some thought to computer
hardware needs in the future.

By considering how you are going to match hardware upgrades with new loads,
you will benefit in the following ways:

1) Your management will have the confidence that you are on top of future
planning

2) You will not miss opportunities to extend the life of your system because you
will be on top of monitoring and properly attending to housekeeping chores

3) You will minimize budget surprises for additional hardware

4) You will have the confidence that user service levels will be covered because
you are continually monitoring them and taking action to insure their adequacy

5) You will see the early warning signs that point to an impending hardware
upgrade

6) You will spend less time in evenings and weekends fretting about system
throughput (overtime, job over-runs, user complaints, etc.)

7) Bottom line: You will not be flying blind into the futurel

Let's get a bit more practical. Let's assume that you are the one responsible
(perhaps by default) for the capacity planning effort. What are the demands
placed on you? You are paid to deliver results and answer difficult questions.
Some of the more down-to-earth questions that come up in OP meetings, or worse
yet, in board of director meetings are as follows:

o "How do we accurately size an upgrade to our current system?"

o "When is improved performance not likely when migrating to a larger system?"

HP 3000 Capacity Planning in the Trenches
3115-2



o "If we increase our accounts payable transactions from 50 per day to 100, what
will be the net impact on the system?"

o "Do we have to go native mode if we migrate to MPE XL?"

o "When should a faster CPU be installed, and how long can we expect it to last?"

o "What will happen to response times when we add 25% more workstations next
month?"

o "What is the most cost effective way to implement a permanent capacity
planning strategy?R

Though we won't be able to answer all these questions in this paper, we will
address some of the ways to deal with the subject of capacity planning.

Start Here: Profiling Your System's Performance

First things first, however. Consider this analogy. Before you can conclude
whether your car is capable of pulling a new boat, you need to assess its current
condition. If the engine is not tuned up, you will be making an assumption,
perhaps falsely, that the car will not be able to handle the new load. You might
then think that you need a larger one with more horsepower. A new (or larger)
boat may mean a new car; this means money.

In the trenches, it is important to consider this analogy in light of your computer's
current condition; this is the first logical step in implementing and maintaining a
viable capacity planning effort.

It is critical that you stay on top of your system's "health". This is just plain
wisdom, but more than that, it is a necessary prelude to implementing a real world
capacity plan. A profile of your system answers the question, "What is my
system's current utilization and remaining capacity?"

Much has been written about monitoring and tuning systems. I will provide a brief
synopsis of a few things to keep in mind:

1) Be sure that your system has enough memory. In the course of our consulting
and training classes we find an amazing number of memory starved systems. It is
very difficult to forecast future capacity if a system is deficient in memory. This is
due to the fact that increased memory management means an increase in CPU
overhead. It generally also means that disk I/O activity will also go up. Your
forecast will be inaccurate if you do not have an adequate amount to begin with.

HP 3000 Capacity Planning in the Trenches
3115-3



2) Take your system's "pulsen in regard to the major resource areas: CPU,
Memory, and I/O. If anyone of these resource indicators look to be excessive,
then your system might be quite nilln. How do you define excessive? Your
software support representative or the vendor who supplies your performance
monitoring tool should be able to help you. Research has quantified various
thresholds for things like the amount of CPU busy on overhead, pause for disk,
data locality, memory page faults, etc. I would be glad to discuss these with
anyone reading this paper.

3) Check the condition of your databases in particular. You will find that some of
the disk I/O indicators (#2 above) point indirectly to database inefficiency. If you
are trying to forecast future hardware needs for a system that houses very "dirty"
databases, then you may be overbuying on hardware. For example, a very large
memory configuration on an MPE XL system can hide an I/O problem. If you are
not opposed to increase the amount of hardware you need to make up· for poor
housekeeping, then so be it. Most companies cannot afford to do that.
Unfortunately, if you do not perform some kind of diagnostics against your
databases, you will not know what kind of shape they are in. This too will cloud
your forecast. Some of the tools we see people using are DBLOADNG,
HOWMESSY, Adager, DBGENERAL, and Flexibase.

Once you know where your system stands, then you can proceed to the next
step: Characterize your workloads.

Workload Characterization

A workload is basically an aggregate of. users and programs that constitute a
meaningful measure of business activity on the system. A workload might be all
the programs that are run in the Finance account. If you knew how much CPU,
disk activity, etc. was attributed to this workload, then you would be better
equipped to forecast the future. So, if this workload were to increase by 50%,
then you could roughly figure the net impact of this workload's growth on the
system as a whole.

In order to gather workload information, you will have to utilize a performance
monitoring tool. Some tools have workload characterization built in. If you have
one that does not support this feature, you might be able to write a program that
would go through all the processes for a given interval and sum up key resource
utilization. You will want to group these processes so that none fall through the
"crack"; all activity, including system overhead, should be accounted for in 8

workload.

HP 3000 Capacity Planning in the Trenches
3115-4



You'll also need to gather data for your system's usage during a representative
time. It is surprising, but true, that you really only need a small amount of data
during of a typical busy time if you are going to use the modelling method of
capacity planning. However, if you use the forecast method, you will need at
least a few months.

Having characterized workload information, the next step is to load that data into
a spreadsheet for simple modelling.

Workload data, either taken from your performance tool, or from your extract file
may then be loaded into a spreadsheet or statistical package. Then you could
apply some growth factors and come up with a decent forecast of future CPU
needs, for example. Figure 1.1 (later on) will illustrate how workloads can be used
to forecast future CPU requirements.

The above steps illustrate a very simple overview of one method of capacity
planning. I will now cover a number of different methodologies that are used to
deal with future forecasting. The above method described the modelling method,
which will be discussed in a bit more detail.

Method Number One: Educated Guessing...also known as "at the mercy of the
salesrep"

This is by far the most common way we have seen HP 3000 shops perform
capacity planning. The scenario goes something like this:

1) The system manager notes an exponential increase in user response complaints
along with near infinite batch completion times.

2) The complaints get increasingly worse; middle managers use the open door
policy and "go over" the system manager to voice their complaints of system
sluggishness.

3) The top manager calls in the system manager. "What meaneth these
complaints? What do you have in mind to improve the situation?"

4) The system manager staggers out of the boss's office, somewhat despairing,
thinking to himself, "which floppy disk did I put my resume on1-

5) Reality hits the next morning and the system manager fires up the monitoring
tool and produces a report that shows the system 90% busy for most of the day.
His conclusion: "This is a no-brainer, we need a bigger CPU". He proudly struts
into the MIS director's office and reports the news, "We need a bigger CPU".

HP 3000 Capacity Planning in the Trenches
3115-5



After all, nobody can argue with the facts. The salesman further convinces them
that a 9-something-or-other will solve their problems.

6) A few months later the requisition order is signed, costing a couple hundred
thousand for the upgrade.

This scene is not uncommon. A couple problems with this method of capacity
planning are as follows:

o It ·is moderateiy re-active and certainly not pro-active...bad management

o It does not take into account some other areas of performance management like,

"Which programs are costing us the most CPU over time?"

"Which applications could be run at a lower priority and thereby spread the CPU
'nuggets' in a way that robs Peter to pay Paul because Peter doesn't need as
much as Paul?"

"What percentage of the CPU busy time was attributed to overhead and
memory management; are there consequently areas that could be tuned, or
applications that could be improved to save CPU?"

o It does not quantify the amount of CPU necessary to sustain a given level of
workload growth over the next few years; it merely hopes, prays, and assumes
that this system will carry the ·company three or so years.

o By the way, where are we going to get two hundred grand?

o Or, in the case of folks who do not have a performance tool, what if they think a
bigger CPU will solve the problem, but they really need more memory or a less
serialized database?

o Which workloads on the system are most responsible for CPU erosion? Is it the
finance department, manufacturing, or order entry?

o What percentage of the 100% busy is really due to our high priority applications
like order entry, customer lookups, etc. The fact of the matter is that even a
simple batch job will generally puff up the CPU utilization to 100%. One
hundred percent busy alone is a very "sandy" foundation on which to build an
upgrade case. What about the CPU queue lengths as well as other signs of true
CPU shortage like process preemptions, etc.

HP 3000 Capacity Planning in the Trenches
3115·6



This kind of capacity planning is dangerous and expensive. It is not the kind of
heads-up management that is to be espoused by shops that are taking their jobs
seriously...except those which have large amounts of money to "burn"' Educated
guessing is very common, however. It is not the method that I recommend.

Method Number Two: Benchmarking

This method of capacity planning does not easily take into account future growth,
but can be very accurate in showing you what size system can help you now.

Benchmarking involves re-creating your environment on a hardware configuration
that mirrors the kind you envision upgrading to. To really do this right (re-creating
your environment EXACTLY), as you might see, can be very involved. You must
take as much of your interactive and batch environment as possible and transport
them to another system, presumably at a different site.

The most we have seen done of this is folks taking some of their most bothersome
batch jobs and running them on a larger 9xx system and walking away drooling at
the results. If you are unable to re-create reality as it will be, interactive users,
datacomm, et ai, then this method could give one a false sense of security.

Sometimes benchmarking can be done in a synthetic way by writing some
programs that re-create the environment you are trying to forecast. This is
sometimes referred to as load simulation. We use this method in our lab to try the
limits of a particular hardware configuration. You simply run your simulated
environment, and then increase the number of users (or whatever) for a workload
and re-run, taking appropriate response and transaction measurements.

Method Number Three: Trend extropolation/statistical forecasting

This method is described by the ICCM Capacity Management Handbook [1] as
follows:

-It simply involves keeping historical data on capacity utilization, by application, and using this as
the basis for predicting future activity. Statistical techniques such as linear regression can be used
to develop formulas for computing future loads, or simple arithmetic percentages can be calculated
and used to make such projections.-

The most common way to perform this method of capacity planning is to first
collect data. This should be taught in "HP 3000 101 H class; always collect and
log performance data on the basis of workload CPU utilization. Without a sizable
data trend, it will make future projection more difficult.

HP 3000 Capacity Planning in the Trenches
3115-7



Then, the data is presented graphically. This is the best way to visualize patterns
of system usage over time. Various peaks and valleys can be observed in the
past. Then an extrapolation line can be drawn out into the future. This growth
line would take into account a certain growth rate, either from what the average
slope of the past trend has been, or modified by you to increase or decrease the
rate of growth. Where that line intercepts a critical resource saturation point is
the approximate date that you better have money budgeted to deal will application
improvement or buy more hardware.

One major downside of this method of capacity planning is that it is difficult, if not
impossible, to foretell the effect of additional applications or hardware changes.
One writer likened this to navigating a twisting mountain road by monitoring the
rear view mirrorl

Method Number Four: Analytical Modelling

This method involves collecting individual workload consumption of various
resources, specifically disk and CPU, utilizing a set of formulas to apply growth
rates, and then come up with key performance indicators. Some of these
indicators are transaction throughput, CPU and disk utilizations, and user and
batch response times.

Be forewarned that this method is not for the faint hearted, especially if you are
looking for tremendous accuracy. The math involved in analytical modelling can
range from simple to tough; sometimes the equations look the same upside down
as they do right side upl But you really do not need to be a math giant to utilize
these formulas.

If you wish to experiment with this method, it is recommended that you obtain a
standard book on the subject, "Quantitative System Performance" (2).

A very simple model is a good place to start. Let's say you have measured the
CPU utilization of the following workloads on your system (Figure 1.1). The BASE
column is the CPU utilization as reported by your performance tool. You load this
data into a spreadsheet and apply some simple growth rates which provides the
subsequent columns of utilizations. It is easy to see that sometime around May
the CPU would be projected to reach saturation (90% for MPE XL, 75% for MPE
V).

One could even get trickier and add an application, change growth rates for
workloads at differing times, etc. This simple example does not take into account
things like memory, disk I/O, file/resource lock contention, etc. It is very
simplistic.

HP 3000 Capacity Planning in the Trenches
3115-8



However, we have found in our studies, if your application is primarily CPU
intensive, this method can be quite accurate. At any rate, it is a good place to
start.

--------- % CPU Utilization -----------
BASE JAN FEB MAR APR MAY JUN JUL

FINANCE 11 12 13 14 15 16 17 18

MANUFACTURING 45 47 49 51 53 55 57 58

TELEMARKETING 8 9 10 11 12 13 14 15

SYSTEM OVERHEAD 3 4 5 6 7 8 9 10
-----------------------------------------

67% 72% 77% 82% 87% 92% 97% 102%

Figure 1

Keep in mind that this method does not take into account disk I/O and memory
constraints. For example, in April you might run out of memory though the
system is only 87% utilized.

We have also seen a number of systems that reached saturation in their
application's ability to process transactions. The serialization of a data structure
or an application can have just as negative effect on performance as can a
resource shortage.

A good example of this involves process handling. One application I have seen
involves a controlling process that acts as the traffic cop. There may be 20 users
submitting their transactions through this one process and life may be rosy. But
what happens when the transaction volume increases considerably? A queue of
user requests begins to form. Each user then waits (and suffers) accordingly. The
application vendor eventually went to a multi-threaded controlling process which
could easily handle the increase in transaction traffic.

One customer that we performed consulting for had about one half of their series
960 virtually paralyzed due to application/data locality constraints. Upgrading to
even an 980 series 200 would have done little or no good for them.

These limitations have to be kept in mind when using simple modelling for capacity
planning.

HP 3000 Capacity Planning in the Trenches
3115-9



Steps for Capacity Planning

Here are a few steps to use as an outline for a capacity plan:

1) Get appropriate backing from management. You'll want to address the need to
free an appropriate staff member up to deal with the issue. This means time and
money.

2) Interview key managers and users to get historical data. This involves taking
some human and computer "pulse" points with regards to how the system has
been performing in the past.

3) Collect resource usage by application workload. Characterize workloads
(aggregates of users and processes) so that they are meaningful from a business
perspective and not just from a data processing view.

4) Determine growth rates by asking key management. It is important to factor
any new or greatly modified workloads that will enter into the picture sometime
down the road.

5) Forecast resource usage. Use modelling or forecasting methods described
previously.

6) Validate your forecast by comparing the forecast to actual resource usage.

7) Re-adjust your techniques and keep dialogue open with appropriate
managers/users.

It is true that capacity planning often times ends up being an educated hunch. But
it doesn't have to be. As you can see from this discussion, if you want to avoid
the educated guess method, you will have to obtain a commitment from
management (and yourself!) to put forth some time, energy, and money to find a
method that will be suitable to your needs.

References

1. The IS Capacity Management Handbook Series, "Workload Forecasting, "
Volume I.
2. Lazowska et al "Quantitative System Performance: Computer System Analysis
using Queueing Network Models". Prentice-Hall, 1984.
3. Watson, Cheryl "Capacity Planning", Watson & Walker, 1989
4. Lund, Robert "The Perils of Flying Blind or Why it is imperative to Have a
Performance Monitoring Gameplan", Interact Magazine July, 1991

HP 3000 Capacity Planning in the Trenches
3115-10



INTEREX '91- Paper #3116

MPE XL Performance Considemtions in the 90s

Allegro Consultants, Inc.
2101 Woodside Road

Redwood City, CA 94062
Voice: (415) 369-2303

Fax: (415) 369-2304

O. Introduction

With the release of MPE XL 3.0 and the HP 3000/980-200, MPE XL has come of
age. This paper investigates performance considerations in various aspects of MPE
XL. Included are: memory access considerations, page fault costs (and avoidance
strategies), file system characteristics, and (perhaps most importantly) techniques to
take advantage of multiple CPUs (as in the 980-200).

1. Memory Access Considerations

This section deals with two views of memory access: the micro view and the macro
view. In the micro viewpoint, we will be looking at what happens when a single
word of memory is touched. In the macro view, we will consider how we can take
advantage of machines with up to one billion bytes of RAM memory.

1.1 Memory Access: Micro View

This section will look at the work done by the computer to accomplish a simple load
from memory.

On PA RISe computers, such as the HP 3OO0/9xx, HP9000/8xx, and HP9000/7xx,
memory is accessed only via Stores and Loads.

(PA means Precision Architecture, Hewlett-Packard's name for their RISC desi~n.

It was originally called HP High Precision Architecture, then HP PreciSion
Architecture, and is now referred to simply as Precision Architecture. RIse means
Reduced Instruction Set Computer, and CISC means Complex Instruction Set
Computer.)

The PA RISC philosophy of restricting memory access to only the load/store
instructions is in sharp contrast to most CISC computers. The Classic HP 3000 had
a number of instructions that accessed memory in addition to performing other
work.

The primary reason behind this strict interface with memory is that fetching data
from memory is very slow, compared to the speed of ordinary instruction execution.

Note: parts ofthis section are greatly expanded in the book ''Beyond Risc'~

MPE XL Performance Considerations in the 90s
3116 - 1



1.1.1 Code Fragment

The following description of what the PA RISC hardware does to implement a
single LDW instructIon will lay the groundwork for the rest of this micro view
section. (The LOW instruction loads 32-bits of data from the location specified by
a virtual address into one of 32 general purpose registers.)

For this example, assume that the code is fetching the value of "old ktr" from the
following Pascal/XL code fragment: -

var
ktr
old_ktr

: integer;
: integer;

ktr := old_ktr;

The code emitted for the above statement would be:

LDW 12(0,27),1
STW 1,8(0,27)

The LDW instruction is read: load 32 bits from virtual memory (at the address
which is the sum of # 12 and the value in General Register 27 (r27» into General
Register 1 (r1).

(Note: for the rest of this paper, the phrase "General Register" will be abbreviated to 'T'~

as in: r1)

Thus, this LDW instruction already causes the hardware to do some arithmetic in
the process of generating the final address from which to load. The value (decimal
12, or #12) that is added to the base register (r27) is known as the displacement.
This form of addressing (displacement plus base register) is one of several available
in PA RISC, and is probably the most common in code generated by the Pascal/XL
compiler.

For this example, assume that the fmal 64-bit virtual address specified by the "LDW
12(0,27)" instruction is: $5f1.$40331014

1.1.2 Virtual Addresses

PA RISe is generally described as having 64-bit virtual addresses. In the LOW
instruction above, the base virtual address is specified by the "(0,27)" portion of the
instruction. The two numbers in parenthesIs are the "s-field" and the "General
Register" (r), respectively. The s-field can have values in the range 0 to 3, and the
General Register has values in the range 0 to 31.

Note: the computer has eight space registers (srO, sr1, ..., sr7), but srO and the last four
(sr4..sr7) cannot be directly used in load/store instructions.

The general form for a simple LOW instruction is:

LOW d (5, b), t

MPE XL Performance Considerations in the 90s
3116 - 2



Where:
d
s

b
t

displacement (-8192 .• 8191)
s-field (either a "0", which is treated special,
or 1, 2, or 3 (selecting space register sri,
sr2, or sr3»
base register (0 .• 31 for rO .• r31)
target register (0 .. 31 for rO .. r31)

2)

3)

1)

Note: when an instruction is 'viewed'~ most tools do not bother showing the ''sr'' and "r"
characters. They are implied by their position in the instruction. Debug/XL and
Pascal/XL omit the "sr" and 'r'~ Avatar (from Software Research Northwest)
omits them by default, but has a mode to include them, ifdesired.

When a load/store instruction specifies srI, sr2, or sr3, the final 64-bit virtual
address is assembled as:

[srI (or sr2 or sr3)] • [gr##] + d

Or, in other words, the upper 32 bits (called the "space id") is the value of the
specified Space Register, and the bottom 32 bits (called the "offsettt

) is the value of
the specified General Register plus the offset value (tid"). (There are some
addressing modes where "d" is considered to be a register instead of an immediate
value, but this paper will not be going into these.)

Whenever a load/store instruction specifies Space Register 0 (srO), the hardware
handles the building of the final 64-blt address quite differently: the bottom 32 bits
are calculated the same as above (i.e.: gr## + d), but the top 32 bits are calculated
as follows:

Take the upper two bits of the value in the specified General Register. (This
can only be binary values 00, 01, 10, or 11.)

Add the value 4 to the value found in step 1. (This can only result in 4, 5, 6,
or 7).

Use the value of sr4, sr5, sr6, or sr7 for the upper 32 bits (if the sum was 4,
use sr4; if the sum was 7, use sr7).

This form (0, gr##) of a virtual address is called a "short" virtual address. The other
form (1/2/3, gr#) is called a "long" virtual address. In the debugger, Debug/XL,
addresses that are specified with a dot (.) in the middle are long addresses (e.g.:
$a.cOOOOOOO), and addresses specified with no dot are short addresses (e.g.:
$cOOOOOOO).

Short virtual addresses may seem complicated, but they provide a method of
accessing portions of different spaces in an efficient manner. In most native mode
programs, the vast majority of all addresses used are short addresses.

1.1.3 Finding the Data

Once the final 64-bit virtual address has been constructed by the hardware, it has to
determine several more things:

1) Is the data in memory?

2) Are you authorized to access it?

MPE XL Performance Considerations in the 90s
3116 - 3



3) (for a store) Should you be interrupted because of a data breakpoint?

Memory (physical and virtual) is broken into uniform sized chunks called "pages".
The size of a page is 4,096 bytes. (The hardware thinks of pages as being only 2,048
bytes, but we can ignore that for this discussion.)

A page is the basic unit of memory that is handled by the memory management
software. If a page of virtual memory is "present", then it occupies a page of physical
memory (RAM). If a page of virtual memory is "absent", then the operating system
will have to read it from disc if we want to access even a single byte in it.

Given the concept of a "page", the "is the data in memory"
question can be rephrased:

1) Determine what virtual page the address resides in.

2) Is that page in memory?

I have discussed the mechanics of mapping virtual addresses to physical addresses in
various papers, as well as in "Beyond RISe", and do not want to be redundant here.
So, let's assume that the page is in memory, starting at physical address $40000, and
that we are authorized to access it.

Once the physical address of the page has been determined, the hardware adds to
that base address the bottom 11 bits of the virtual address. Since the final 64-bit
virtual address for our LDW is $5f1.$40331014, the bottom 11 bits would be: $014.
The sum of hexadecimal $14 and $40000 is $40014. The hardware now has the
physical byte address of the data.

1.1.4 Cache

If the hardware was to attempt to fetch the data directly from memory at this point,
the following would happen:

1) The CPU marks the target register (rl for this example) as "busy" (this will
prevent subsequent instructions from trying to access it until the data is
actually ready).

2) The address ($40014) would be put on the "bus".

3) One of the memory controllers would (hopefully!) recognize the address as
being in the memory attached to it. (If no controller, or more than one
controller, recognized the address, the computer would probably die.)

4) The controller would fetch the 32-bit word and put the value on the "bus".

5) The CPU would take the value from the bus and put it into the target register
(rl in this example) and marks it as "not busy".

In addition to being complicated, the above process is~. If the next instruction
after the LOW tried to access the target register (r1), then it would be blocked until
the data arrived in the register. This blocking is called "register interlock".

MPE XL Performance Considerations in the 90s
3116 - 4



The time required to actually fetch data from memory does not seem to have been
published by HP. My timing tests on a 925 and 935 show that fetching a word from
memory takes 32 cycles.

In order to solve the memory access performance problem, most computers have
added a "cache", which is sort of a table of recently accessed memory addresses and
their values. PA RISC has done the same. When the CPU is about to fetch a word
of memory, it checks the cache to see if the data is in it. If it is, then the value
remembered there will be used. H it is not, then it proceeds as described above.
When data is in the cache, it takes two cycles to be brought into the target register.
This reflect one (or more) orders of magnitude of performance difference between
cache and the memory controller!

All PA RISC models have two caches: the Data Cache and the Instruction Cache.
Data (information accessed with loads/stores) is handled by the Data Cache.
Instructions (code) are handled by the Instruction Cache. On a most models, these
two caches are in separate areas. On a few models, they are combined into one.

Caches are very expensive, compared to the cost of RAM chips. As a result,
hardware designers must compromise between the desire for a big cache and an
affordable computer. The size of the cache varies between the various 9xx
computers. The following table shows the cache sizes for most of the known
models:

CPU Model
Cache 1
Type 1 920 922 925 930 932 935 948 949 950 955 958 960 980-100

-- ----1------- -- ---- ----- -- -------------------------------- -- -- ----
Data I 64 + + 64 + + 512 128 + 128 512 512 512
Code t 64 + + 64 + + 512 512 + 128 512 512 512

-- --- -1--- ---- -------- --- ------ ---- ----- ----- --- ---- -- ---- -- -------
totals: 128 32 16 128 128 128 1024 640 128 256 1024 1024 1024

Note: all cache sizes are in units ofKilobytes.

Note: "+" signifies a combined Data and Instruction cache.

Note: the 980-200, since it contains two 980-100 CPU boards, could be thought
of as having 1024k/l024k cache sizes, but this would be misleading
because it does not provide that much better a chance that your data will
be in cache, as a single instruction executing on one of the processors will
ONLYsearch the cache for that processor, not for both processors)

The bigger the cache, the better the chance that data you want will be in it.

One technique that keeps the 'price of the cache down, and also helps increase the
efficiency of typical programs, IS that the cache is organized in "lines", not in "words".

Consider a cache that is implemented as a table like the following, which is a paired
list of 64-bit virtual addresses and 32-bit data:

64-bit Address
$xxxxxxxx.$xxxxxxxx

$000005fl.$40331014
$000025fl.$12300000
$00000323.$403f0014
$OOOl05f3.$60f31014

32-bit Data

$12345678
$00000000
$10002038
$20202020

MPE XL Performance Considerations in the 90s
3116 - 5



In the above example, it would require 96 bits for each word of data stored (64 bits
for the address J?lus 32 bits for the data). This represents a ratio of 96/32 bits, or 3.
(I.e.: it costs 3 bits for every 1 bit of data.)

Instead, PA RISC cache is organized like the following table:

60-bit Address
$xxxxxxxx.$xxxxxxxO

$000005f1.$40331010
$000025f1.$12300000
$00000323.$403f0010
$000105f3.$60f31010

16 bytes of data

$00000278 $12345678 $23900fff $44409aaa
$00000000 $00000000 $00000000 $00000000
$10002037 $10002038 $10002039 $1000203a
$5354414e $20202020 $5349454c $45522020

Note the "0" in the last (right-most) nibble of the address. Every cache line starts at
a multiple of 16. The word our LOW is trying to load is the second word of the
cache hne. Whenever the CPU tries to access a byte that is not in cache, 16 bytes
will be fetched by the memory controller and put on the bus. The CPU will pu t all
16 bytes in the cache. This means that for every 128 bits of data (8 * 16), the cache
has 60 bits of address, or 188 bits per line. This is a ratio of 188/128, or 1.468, which
is much better than the first type of cache organization.

Most models of PA RISC have a 32-byte cache line, but 16 bytes seems to be the
minimum size (and is the 930's size), all larger cache line sizes are a multiple of 16.
(Note: there are other aspects to cache organization, but this model will suffice.)

It is the concept of the cache line that is responsible for one of the more annoying
characteristics of PA RISC: words (32-bit data) can be loaded/stored only into
addresses that are a multiple of 4. Half words (16-bits) can be loaded/stored only
into addresses that are a multiple of 2. Double words (64-bltS) can be
loadedjstored only into addresses that are multiples of 8. (Bytes can he
loaded/stored anywhere, since every byte address is a multiple of one!)

The basic reason: an element being loaded/stored is not allowed to cross a cache
line. (I.e.: be partially in one cache line and partially in another.) Because cache
lines start at multiples of 16 (or 32 or 64), every address that is a multiple of 4 is
guaranteed to never cross a cache line. (And similarly for multiples of 2 and 8).

Whenever the "cost" for an instruction is discussed, the issue of the CPU's pipeline
arises. Although the PA RISC computers have an instruction pipeline that is from
three to five deep, in general one Instruction completes every cycle. So, for the
purpose of discussing the cost of an instruction, we can usually ignore the pipeline
and think of the CPU as executing one ordinary instruction per cycle.

My timings show the following "cost" for a few instructions and events (times derived
on a 3000/925 and 3000/935):

#C3cles
1

1.5

InstructionIContext
NOP & most instructions that do not have register interlocks.

LDW (and other Loads), ignoring the location of the actual data.
This is the minimum cost.

MPE XL Performance Considerations in the 90s
3116 - 6



730

806900

should take:
1.5 cycles
1 cycle
1 cycle
1 cycle
1 cycle
1 cycle
1 cycle

+1 Register interlock. The "+ 1" means that one extra cycle is used
getting the data (re'l.uested by the previous instruction) from the
cache and into the regIster.

The following sequence
: assuming cache line for r27 is in cache.

instruction should take:
LOW 0(0,27), 31 1.5 cycles
ADD! 1, 31, 31 1

2.5 cycles total

Actually takes 3.5 cycles, where the extra cycle is the register
interlock. (Note: assumes that the cache line for the address in r27 is
already in cache.)

32 Cache miss penalty.
This penalty is pm<;l only when an instruction tries to access a register
that was loaded into and the data is not yet in memory, as show below.

:assuming cache line for r27 is NOT in cache.
instruction should take:

LOW 0(0,27), 31 ; 1.5 cycles
ADD! 1, 31, 31 ; 1 cycle

Actually 34.5 cycles. The extra here is the 32 cycle penalty for a cache
miss.

TLB miss penalty. If a virtual address is not found in the cache, the
hardware checks the Translation Lookaside Buffer (TLB) in an
attempt to quickly determine the physical nlemory address that the
data resides in. If there is no entry in the TLB for the virtual page
that the address is a part of, a "Data TLB Miss Fault" (DTLB miss) is
generated, and the operating system is invoked to determine where
(and if!) the virtual page resides in physical memory.

Page fault penalty. If the virtual address is part of a virtual page that
is not currently in memory, the hardware traps to the operating
s~stem, and asks for the page to be read from dISC (or allocated and
filled with blanks or nulls), then the instruction is re-executed. (On a
935, 806900 is about 53 milliseconds.)

Note that an LDW (or LDH or LDB) will not always "cost" 32 extra cycles. Depending
on how well the compiler emitted the code, you might see an LDW costing no extra
cycles at all! The following example demonstrates how this can be:

iassuming cache line for r27 is NOT in cache.
iand assuming no one has recently loaded into
ir20 (or r31).
: instruction

LOW 0(0,27), 31
ADD! 1, 20, 20
ADD! 1, 20, 20
ADD! 1, 20, 20
ADD! 1, 20, 20
ADD! 1, 20, 20
ADD! 1, 20, 20

MPE XL Performance Considerations in the 90s
3116 - 7



ADD! 1, 20, 20 1 cycle
ADD! 1, 20, 20 1 cycle
ADD! 1, 20, 20 1 cycle
ADD! 1, 20, 20 1 cycle
ADD! 1, 31, 31 1 cycle

; should be 12.5 or 44.51??
This actually·takes 34.5 cycles.

The above example shows how the CPU will continue to work, as long as no
instruction tries to touch a register that has been loaded into. The optimizer for
most Native Mode langua~es tries to put as much of this kind of work as possible
between a "load" instruction and the next instruction that will use the loaded
register.

1.1.5 Data Alignment

The previous section mentioned why PA RISC computers cannot load a 32-bit word
from an arbitrary byte address. Instead, such loads require addresses that are 32-bit
aligned (Le.: a multiple of 4).

Most of the Native Mode compilers have a means of letting the user specify that
certain 32-bit variables are not aligned nicely, and they can emit lengthier code to
access the variables safely.

In migrating programs from the Classic HP 3000 (which did not have this
restriction), some users have told the Pascal/XL or COBOL/XL or
FORTRAN/XL compilers to use n$HP3000 16" alignment, which causes the
compiler to emit three instructions instead of one for every load/store.

1.1.6 Short Signed Integers

Many Native Mode languages support the concept of a 16-bit signed integer data
type (e.g.: shortint in Pascal/XL). Users who are trying to conserve memory by
using shortints instead of integers may not be aware of the performance
considerations. Loading a shortint into a register typically requires two instructions:
one for the 16-bit load, and one to extend the sign (usually an EXTRS instruction).
The sign extension converts the 16-bit number into a signed 32-bit number, which is
necessary before doing any arithmetic with it.

1.1.7 Putting It All Together

The two words that best characterize what can be done about memory performance
are: locality and alignment.

The CPU pays a performance penalty when it accesses memory. It pays a much
bigger penalty if the new data is not in the same cache line as previously used data.
Finally, it pays a tremendous penalty if the data is on a page that is not in memory.
Thus, the locality (degree of closeness) of your memory accesses is critical. You can
take these steps to group together data that is likely to be accessed at the same time:

1) Arrange global variables so that commonly used data is grouped together.
(Of course, this contradicts one of the gwdelines of readable programs ...
sigh)

MPE XL Performance Considerations in the 90s
3116 - 8



2)

3)

4)

When defining a record (or struct) in Pascal (or C), group together the fields
that are used together.

When declaring a matrix (doubly dimensioned arrays) in C, FORTRAN, or
Pascal, consider how you will be typically accessing them: along a row or
alon~ a column? If possible, make the common path be along a row, as a
matrIX is stored one row after another in memory (for C and Pascal).
FORTRAN stores a matrix the opposite, in column-major order, so your
FORTRAN program should have the common path be along the column, not
the row.

In an ordinary Pascal/XL record (and in all C/XL structs), the compiler will
silently waste bytes between fields in order to keep the fields aligned on the
most efficient boundaries. One way to override this is to use the Pascal/XL
extension "crunched record". If any of your code has crunched records,
examine them closely to determine if any 32-bit fields cross 32-bit
boundaries.

1)

2)

Data that is aligned nicely loads quicker (a three to one ratio). If you have any 32
bit variables (or tnJes) that have been declared as having 8-bit or 16-bit alignment
(as in $HP3000_16), examine them and do either:

Remove the special alignment qualification, so the variables will be treated
as 32-bit aligned only. (Note: ifyou remove the qualification, and then attempt
to access a 32-bit variable that is not 32-bit aligned, yourprogram will abort with
an ''invalid address alignment" error.)

If a procedure/function/subroutine has a reference parameter which is a
non-32-bit aligned 32-bit variable, copy it into a local 32-bit variable (which is
a normal 32-bit aligned variable).

Variables that are 16-bits in size (e.g.: shortint in Pascal/XL) have similar alignment
problems as 32-bit variables, with the difference being that their addresses should be
16-bit aligned (i.e.: an even byte address).

1.2 Memory Access: Macro View

The HP 3000/980 hardware (all models) will support up to one gigabyte of memory
(1,073,741,824 bytes). The second question this should raise is: how can I take
advantage of this much memory?

The first question is: how much does one gigabyte cost? Luckily, there is more than
one manufacturer of memory boards for the HP 3000/950, /960, and /980 (unlike
the smaller models). This leads to price (and warranty) competition that benefits
the users. HP sells 980-100 memory at $1,500 per megabyte; Kelly Computer
Systems is less than half the HP price. Thus, the cost of one gigabyte of memory
ranges from $750,000 to $1,500,000!

Regardless of the total amount of memory on your HP 3000/9xx, its cost, or who
manufactured it, one thing should be clear: there is a lot more memory available
today on any current HP 3000/9xx model than on any Classic HP 3000. (Except, of
course, for a Classic HP 3000/70, which could be configured with a Kelly RAM Disc
of up to 120 megabytes.)

So, if we are now using computers with so much memory, how do we take advantage
of it?

MPE XL Performance Considerations in the 90s
3116 - 9



On the Classic, programs were limited to 64KB of directly addressable memory.
With cleverness (and with a speed penalty), extra data segments could raise this
limit up to (in theory) 65 megabytes.

On MPE XL, Native Mode programs can easily access up to one gigabyte of
memory directly, two gigabytes with very slight programming changes, and dozens of
gigabytes with clever programming (by opening dozens of large mapped files).

When programs are being migrated from MPE V to MPE XL, the following steps
are usually followed:

1) Run the program in Compatibility Mode;

2) Recompile the program in a Native Mode language, making the minimal
changes necessary.

Unfortunately, this is where most users stop. As my partner, Steve Cooper, has said:
a third migration is necessary to fully take advantage of the new archItecture (and
MPEXL).

Look at your programs closely, and try to determine if there are any places where
Classic memory constraints severely affected the design. Examples include: disc
based lookup tables and iterative calculations instead of table lookups.

2. Page Faults

Virtual memory is wonderful. It allows the program (and programmer) to think that
the computer has much more memory than it actually does. However, this is not
without a cost. Section 1 briefly discussed the cost of a page fault (-800000 cycles).
That cost should not be taken as gospel, as many different factors can influence the
actual cost. These include:

1)

2)

3)

Does the page reside on disc (or was it never allocated)? The former
requires a disc read, while the latter does not, and instead a page of memory
will be allocated and filled with blanks or nulls.

Has the system been gettin~ a lot of page faults? If it has, it may not service
your process's fault for awhIle.
Where on disc is the page? Fetching the page will involve contention for the
disc, controller, and bus. At the disc, rotational latency, seek time, and data
transfer rate all affect the cost.

4) Where should the page be put in memory? On a busy system, the memory
manager will be slower in deciding. Worse yet, it may throw out one of your
soon-to-be-accessed pages to make room for the current page.

The best strategy in minimizing page fault costs is to avoid them. Some of the same
techniques used to optimize cache line hits (section 1) can be used in a more global
scale here. In cache optimization, you are trying to keep items in the same 16 (or
32) byte cache line. In virtual memory optimization, you are trying to keep data that
is used "together" within a 4,096 byte virtual page.

We have one page fault avoidance strategy available that has no cache-line
equivalent: prefetching. Prefetching is the act of asking MPE XL to bring one (or
more) virtual pages from disc into memory before we actually need them. Even the

MPE XL Performance Considerations in the 90s
3116 - 10



Classic HP 3000 had some degree of programmer controlled prefetching (i.e.: the
FREADSEEK intrinsic).

On MPE XL, there are three methods of prefetching: automatic prefetching (done
by the file system), the FREADSEEK intrinsic (used by the programmer), and the
internal "prefetch" procedure (callable by the aggressive programmer using
privileged mode).

As my previous papers have shown, the automatic prefetch done for us by the file
system seems to bring somewhere between 1 and 8 VIrtual pages of our file at a time.
However, we have no control whatsoever over this function. (Even choosing
random versus sequential reads has no impact.)

The internal routine, prefetch, is the most efficient method of requesting MPE XL
to bring in one (or more) pages of data before you actually need it. However, HP
has chosen to cloak the internals of MPE XL in secrecy, rendering this routine
difficult for the avera~e programmer to access. For now, we'll leave it with a
warning: if you deternune how to call the routine, please be cautious: attempting to
prefetch very large amounts of data (e.g.: a megabyte) can result in system fallures.

The FREADSEEK intrinsic is a somewhat slower method of requesting prefetchin~.

It is also much more awkward to use. To prefetch using FREADSEEK, decide If
you are going to be thinking of the data in terms of byte offsets within a mapped file
or as records.

The most im{>ortant fact to remember when adding either kind of prefetching to a
program is thIS: ask for the data sufficiently ahead of time so that MPE XL has time
to bring it in to memory before you actually need it. If you don't ask for the data
soon enough, your program might actually run slower: in addition to the time
required to initiate the prefetching, you would be spending time with page faults.

Let's consider the byte offsets viewpoint first. If we assume that your program is
processing data (from a mapped file) at the rate of bytesyrocessedyer millisec,
and that requesting a quantum (a "chunk") of disc data of fetch_quantum bytes (say,
100,000) takes millisecs to fetch quantum, then we have the information necessary
to determine how far aheao of titiie the prefetch should be issued. We can calculate
the time required to process one quantum of data (once it is in memory) as follows:

millisecs_to-process_quantum := fetch_quantum_bytes div
bytes-processed-per_milliseci

We will need to prefetch a "quantum" at the larger of the above value and
millisecs to fetch quantum before we need it. If the millisecs to~rocess quantum
value is [arger than millisecs to fetch quantum, then we are "CPU bound: On the
other hand, if riiilliSecs toyrocess quantum is less than
millisecs to fetch quantum, then we are I/O Dound. If the two values are the
same, then we are-CPU and I/O bound.

If we are CPU bound (or both), then we can simply prefetch one quantum ahead of
where we are now. (E.g.: prefetch from byte 100,000 when we are about to start
processing byte O. Prefetch from byte 200,000 when we are about to start processing
byte 100,000.)

If we are I/O bound, then we will have to prefetch several quantums ahead of time.
The actual value is:

MPE XL Performance Considerations in the 90s
3116· 11



bytes_ahead := bytes-processed-per_millisec
* millisecs_to_fetch_quantum;

Remember that the bytesyrocessedyer millisec is subject to large changes from
the low-end of 3000/9xx computers to thelrlgh-end.

As a final guideline, I would suggest a limit of one million for both the quantum and
for the ''bytes ahead" value. When either number becomes much larger, you run the
risk of the memory manager undoing some of your prefetch efforts.

The record viewpoint is similar, with the calculations being done in terms of records
rather than by!es. The record viewpoint makes the actual prefetching easier. Using
FREADSEEK, the prefetching of tin" records starting at record "d" would be:

records-per_freadseek:=(16384 + record_size_in_bytes - l)div
record_size_in_bytes;

while n > 0 do
begin
freadseek (file#, d);
if ccode <> cce then

complain (or ignore, error possibly due to
prefetching past the end of the file);

d := d + records-per_freadseek;
n := n - records-per_freadseek;
end;

The above algorithm attempts to avoid calling the FREADSEEK intrinsic for every
record. After all, MPE XL will typically bring in about four virtual pages for each
FREADSEEK. Since four pages is 16,384 bytes, it means that (for most files)
several records have been prefetched. The actual number of pages definitely varies,
but tests show that four virtual pages is a reasonable average.

Of course, the above analysis is concerned with the operation of a single process,
excluding all other processes on the system. If our program is running on an I/O
bound system, then 15 will usually take more time to fetch "quantum" bytes from disc,
so we should be asking for the data even earlier.

Another consideration for prefetching is that the earlier we ask for the data
(particularly on a multi-user machine), the more chance there is of the memory
manager deciding to throw out some of our own prefetched pages to make room for
another fetch request (ours or from another process).

Lastly, if our program is to be running on a system that is considered "memory
bound", then we probably don't want it to be prefetching, as there is no memory to
spare.

3. File System

MPE XL provides Native Mode programs with three methods of opening existing
disc files: the FOPEN intrinsic, and two variations of the HPFOPEN intrinsic, as
shown:

FOPEN, using the file name
HPFOPEN, using the file name
HPFOPEN, using the ufid (Unique File IDentifier) of the file.

MPE XL Performance Considerations in the 90s
3116 - 12



Some publications have touted the third method as being the most efficient, so I
thought it should be tested in real life.

First, an explanation of how the three methods work is needed.

FOPEN calls an internal MPE XL routine called "fopen nm", which calls another
internal routine called "open old". Open old searches the directory for the
filename passed into FOPEN. IT the filenameis found in the directory, its entry will
contain a ufid. A ufid is a 20-byte data structure that can be thought of as a
"pointer" into another data structure called the "label table". It is the label table that
keeps track of where the various portions of the file's data reside on disc.

HPFOPEN (with a filename) calls open old directly (without calling fopen nm),
and the file open proceeds as above. - -

The third method (HPFOPEN with a ufid) also calls open old, but completely
bypasses the directory search. The ufid is treated as a pOinterinto the label table.
It is checked for validity (to prevent random generated ufids from causing
problems), and is then used just like the ufid that the other two methods fetched
from the directory.

In principle, the third method should be quicker than the first two methods because
the directory search phase is eliminated. Unfortunately, timings don't bear this out.

The following table shows the number of instructions required for each of the three
methods to open a permanent file in the logon group (specifying only a file part, not
a group name or account name). Two scenarios were tested for each method. The
first was to open a file which was not currently open by anyone else in the system.
The second was to open a file that another process already had open.

File: foo
Method
FOPEN
HPFOPEN-title
HPFOPEN-ufid

# Instructions
(when not in use) (already in use)

28824 25829
28855 25824
29551 13383

Note: the "# instructions" is not the same as "# cycles'~ As discussed in section 1, an
instruction can take more than one cycle. The actual time required by any
method will vary, depending on the cache miss ratio and number ofpage faults
(among others). The instruction count does not reflect the cost of any page
faults, TLB misses, or other interruptions. Further, the instruction count varies
about 4% across multiple runs (perhaps partially due to system logging).

The above results surprised me, as I expected the HPFOPEN-ufid method to be
much faster. I can only conjecture that the intrinsic is subjecting the user-supplied
ufid to an expensive validity check, which is not applied to ufids found In the
directory search. The low cost of the "already in use" HPFOPEN-ufid could,
perhaps, be because the open old finds an instance of the already-open file's ufid in
a table somewhere, and can bYPass the validity checking.

I increased the cost of the directory search by testing the opening of a file in another
account.

I did one last test, comparing opening permanent files to temporary files:

MPE XL Performance Considerations in the 90s
3116 - 13



File: acctjobs.pub.sys # Instructions
Method (when not in use) (already in use)
FOPEN 33246 36180
HPFOPEN-title 34508 37442
HPFOPEN-ufid 33010 13704

Note that the number of instructions for the HPFOPEN-ufid (when not in use) is
now the smallest of the three methods, although just barely.

I cannot explain why the "already in use" open now takes more time for the FOPEN
and HPFOPEN-title methods, when it took less time with a non-fullv-qualified
filename. I repeated the tests and obtained similar results. <I

File: temp
Method
FOPEN
HPFOPEN
HPFOPEN

# Instructions
(when not in use) (already in use)

20317 20194
21641 21516
22141 17972

The results of this test taught me one lesson: if my program needs to pass data to
another program (in the same job/session), a temporary file is cheaper to open, by
up to 30%.

4. Multiple CPUs

Multiple CPUs are not new. Commercial computers with more than one ti~tly

coupled CPU have been available since the mid 19608. (I learned ALGOL uSIng a
dual CPU Burroughs B6700 in 1970.) Even the venerable HP 3000, model II, had
some support for multiple CPUs (although it was never released in a two CPU
model).

With the advent of the HP 3000/980-200 (a dual processor system), we can now
start taking advantage of multi-processing. When looked at from the viewpoint of
speeding up a single process, a multiple CPU machine is a waste. (In fact, it costs a
small amount of performance, compared to a single CPU machine with a single
CPU operating system.) However, many programs today can be restructured to take
advantage of multiple CPUs.

Consider a night-time batch program that runs in, essentially, stand-alone mode.
(Perhaps it is sequentially reading a TurbolMAGE master dataset, looking for
account numbers. For each account number found, it follows a detail chain, looking
for unpaid invoices. As unpaid invoices are found, they are written to a report.)
This typical program will run for a short time and then block, waiting for data from
disc. When the data is ready, the process resumes running. This type of program is
easy to recognize using any performance tools the CPU time is substantially less
than the elapsed time, even when run stand-alone.

If the program can be broken into two parts to run in parallel, the second one can
usefully utilize the I/O wait time of the first one, and vice versa. Taking our earlier
example, if the fust program was tasked with reading the first half of the master
dataset, and the second program was tasked with reading the second half, then the
set of two programs will probably finish much sooner than the original one. Given a
program that ran, by itself, in 3600 seconds of elapsed time, using 1200 seconds of
CPU time, about 2400 seconds were spent waiting for I/O.

MPE XL Performance Considerations in the 90s
3116 - 14



If the program is split in two, on a single CPU machine, the best-case estimate for
the elapsed time would be about 3000 seconds. (If the two were run in succession,
they would each take 1800 seconds elapsed and 600 CPU, each waiting for 1200
seconds. The best-case assumption is that, when running in parallel, all of the CPU
for the second process is done while the first process was waiting for I/O,
representing a savings of 600 seconds.) With a dual CPU machine, the best case
assumption drops to 1800 seconds. (Of course, this isn't a very likely result, as the
I/O requests will overlap, causing contention for I/O resources.)

On any MPE XL machine, a program that is not CPU bound is a potential
candidate for splitting into multIple rrograms. When looked at as a stand-alone
application, the major drawbacks 0 splitting a program is increased MPE XL
overhead (dispatcher), and increased program complexity. As part of a busy
machine, splitting a single program can have potentially hurt overall system
performance (because there is now one more hungry mouth to eat CPU time).

The programs that will benefit the most from a second CPU are those that are CPU
bound.

5. Summaty

The aspect of memory usage that has the most impact on performance is locality.
Performance gains, both small and large, can be achieved by keeping locality In
mind when designing algorithms and data structures.

When compared to the Classic HP 3000s, memory on an MPE XL machine is far
cheaper and much more plentiful than ever before. We should keep this in mind
when designing new algonthms.

Multiple CPUs are, finally, a reality on the HP 3000. I look forward to writing, and
seeing others write, programs that can truly take advantage of the new power this
will offer.

MPE XL Performance Considerations in the 90s
3116 - 15





Data Integrity and Recovery: The IMAGEIAdagen- approach.

F. Alfredo Rego

Adager Lab Manager

Adager
Sun Valley, Idaho

83353-0030
U.S.A.

Telephone +1 (208) 726-9100 Fax +1 (208) 726-8191

Hewlett-Packard's IMAGE Database Management System has many features designed to en
hance its integrity. Unfortunately, despite our best efforts, IMAGE databases may suffer
structural damage. Adager Corporation's Adager (The Adapter/Manager for IMAGE Data
bases) has many features designed to quickly detect, diagnose and correct (if possible) database
failures.

Reliability, speed and ease-of-use are extremely important when dealing with faulty database
structures. We know what we want our databases should remain correct and available despite
failures. This requires a lot of work. Keeping our guard up means several things. First of all,
we should try to avoid problems. Unfortunately, we may fail despite our best efforts. If so,
we should locate. and fix the errors and we should remove the causes.

As Fred White says, "Your choice of method of repair is governed by a) the nature and extent
of the damage, b) your knowledge of IMAGE, c) your knowledge of the data in the database
and d) the tools at your disposal together with your ability to apply them."

Adager provides a wealth of database-therapy functionality. But, before reviewing Adager's
specific methodology, let's review the general subject of database therapy.

To be ON or not to be ON: that Is the BIT question!

When a bit stands by itself, without any relationships whatsoever with other bits, this "on/off"
question has no correct answer. But when a bit is part of a redundant conglomerate, the
question's chance of having a correct answer increases (as a function of the number of
redundant "colleagues" in the conglomerate). For example, consider "parity bits". With one
parity bit, our only hope is to detect a one-bit mischief: with more parity bits, we can hope to
illm point our fingers to the offending bit and (if we are really smart and if we want to pay
the price in terms of extra bits) to correct it!

IMAGE databases have built-in redundancies (involving critical fields, chain pointers, chain

3117-1



counts, entry counts and "presence" bits). It is mathematically very simple to detect inconsis
tencies among these redundant IMAGE elements. The hardware (any flavor of HP3000
computer) that supports IMAGE databases has all kinds of error-detecting and error-correcting
components (such as memory, discs, tape drives, and so on).

Keeping your guard up

IMAGE is extremely reliable (since it has few bugs of its own) and resilient (since it shows
"compassion" toward the faults of its underlying hardware and operating system). IMAGE, by
design, contains spare resources (for instance, the redundancy between pointers and search
fields). Nevertheless, IMAGE structures do fail. Such failures may go undetected or they may
show up on a user's screen or report. Depending on how your application programs deal (or
fail to deal) with database problems, you may end up with a nicely-logged set of diagnostics
that pinpoint specific chains or you may find yourself with aborted jobs that say nothing at all.
In any case, you must always be on your toes!

Prevention

A bit of prevention can save many megabytes worth of reloading. As an example of an
elementary precaution, consider the electrical power that makes our computers tick. Since my
early days in Guatemala, back in the seventies, I always have insisted on a healthy standard for
my HP3000 computers: uninterruptible power supplies (UPSS) backed up by diesel generators.
I am dismayed to see how many big companies (with vast resources) choose D2l to invest in
these elementary measures. I am also very pleased to see that some smart organizations (notably
Hewlett-Packard's response centers) have opted for outstanding batteries of UPSs and powerful
auxiliary generators.

Fault tolerant technologies typically carry performance penalties. This applies to Cault tolerance
toward lousy electrical power as well as to fault tolerance toward lousy systems or applications
programming (not to mention lousy hardware). We must decide the relative worth of the
various options (for instance, consider the extremes of never backing up at all versus backing
up every five minutes).

Backup and (hopefully) recovery

Backup is one thing; recovery is another thing altogether. I quote from my Practitioner's
Experiences essay:

"People can store things on the wrong set of tapes, clobbering whatever data was on
the tapes! And people can restore from the wrong set of tapes, clobbering whatever
data was on disc! A well-organized tape-library system is a good investment, especial
ly if it is itself computerized (after all, you are trying,~, to protect yourself
from sloppy operators...)

People can physically keep your backup tapes in a hostile environment, thereby
rendering them useless. I recommend professional handling of your off-site tape
storage. And I recommend that you periodically check the validity of the tapes kept
both on-site and off-site. What would happen if you hid. to restore some file from

Rego 3117-2



some tape that was physically impossible to read [or that did not quite contain what it
was supposed to have, due to a bug in the backup software)1

People can fail to backup the system at all. Whether they do it intentionally or
innocently is irrelevant the catastrophic consequences are the same. How do you know
that the tapes that are supposed to contain your full sysdumps really contain them?
Backing things up is a chore. How do you know that your people are not taking
shortcuts? I know a user who has an HP3000 machine dedicated to just a single
purpose: a Diliwl from the sysdump tapes produced by other computers. If any reload
has any difficulties whatsoever, he takes immediate action to correct the problem while
it is important but not urgent. Most people wait until a problem is important, urgent,
and impossible to solve within the given time/resource constraints."

What if you lowered your guard and you DOW face database damage!

Broken chains are painful. Why should we add insult to injury using primitive methods to
detect and fix broken chains? When we are forced to embark on a fixing mission, we are
naturally nervous. Particularly if we are not gurus. Even bit pushers should feel uncomfort
able dealing with cryptic listings in octal (or hexadecimal), since a minor human mistake may
have disastrous consequences. All of us have experienced, at one time or another, the
frustration that unfriendly systems generate. We all deserve better human interfaces. There is
no reason to compound an already tense situation with temperamental database therapy
software!

The first step is to detect the errors and to diagnose the faults. Then, we must devise a
strategy to recover the database. One approach is to restore the whole database from the latest
backup (assuming that the fault happened BfW: such backup) and then use DBRECOV to apply
all logged transactions. If this is unfeasible (due to the unbearably long times involved, or to
the lack of backup, or to the lack of log files), then we must treat the database in an OnLine
manner. Regardless of our choice of methodology, our objective is to put the database back
into a stable state. Ideally, we should also find the culprit and remove it so we don't go
through the whole thing over and over again.

One of the toughest challenges facing the database therapist is the correction of discrepancies
between critical fields and their associated pointer structures. Fortunately, redundancy comes
to your help (if the pointers are broken but the SearchField is not, you can reconstruct the
pointers; if the SearchField is broken but the pointers are fine, you can reconstruct the
SearchField -- a little trickier in the case of master datasets, though). If the pointers are
broken Bnd. the SearchField is also broken, then a combination of "amputation" and "trans
planting" may be necessary.

Typically, diagnostics will identify faulty entries by entry numbers and/or by the values of the
offending search fields. In either case, we must eventually define~ search field value that
will guide us in trying to find the ChainHead. The fact that we find (or fail to find) the
ChainHead does not really tell us much if we have not exhaustively tested its master dataset
beforehand. For instance, even when we find the ChainHead, the involved synonym chain may
have been broken in the past and there might be other "floating" duplicate master ChainHeads
with the same search field value. Not finding the ChainHead is an even surer symptom of a
faulty master dataset. The conclusion is that a complete certification of the involved master
datasets is a pre-requisite for doing any kind of chain therapy.

When starting with an entry identified by its entry number, we should not assume that the
"key" value of the entry at that location is valid.

Rego 3117-3



When starting with a search field value, we must remember that decimal data formats (IMAGE
types "z" and "P") present a special challenge, since non-negative values may be signed or
unsigned. We must try both, treating them as separate requests.

After any fixing, a serial scan of the involved datasets is necessary, to pick up any pieces that
may have been left scattered around. This applies to entries as well as to the global dataset
HighWater mark, FreeEntry count and detail FreeEntry list.

The post-fixing dataset certification should make sure that there are neither duplicate master
ChainHeads nor orphan detail entries.

For checkup (auditing) and treatment (fixing), the technique of zooming is very convenient,
since we can select the level of involvement (and the amount of time involved in the process):
All or some of the paths in a dataset? All or some of the chains in a path? Consistency
between the global counts and pointers of a dataset and the actual entries in the dataset (detail
FreeEntry lists, HighWater marks, FreeEntry counts)? Consistency between the root-file tables
and the actual datasets as they exist on disc?

A special case of zooming is "windowing" (or "paging", from an MPE viewpoint). IMAGE
entries are grouped into MPE blocks. Sometimes, entire MPE blocks are shifted (typically by
one byte) as a consequence of hardware or software failures. At other times, entire MPE
blocks are over-written by the spooler or other software. If we just look at IMAGE entries,
we will get some bizarre diagnostics. If we look at them from the perspective of MPE blocks,
we can usually see a more reasonable pattern. Under extreme cases of clobbered blocks, the
only reasonable thing to do is to "amputate" (zero out) the offending blocks, perhaps "trans
planting" information substitutes from some backup medium and "bridging" the pointers to
rebuild the involved chains.

Beware of simplistic solutions

I saw a case where, due to an unlucky coincidence (involving two master chainheads with
different search field values pointing to the ~ detail entry), two chains got hopelessly
intermingled. In this case, the search field values were correct but the pointers were incorrect.
One (incorrect) way of "fixing" the problem relied on the simplistic approach of changing the
"offending" search field values (which were just fine) to match a given chainhead's value. The
correct way is to disentangle the pointers to reconnect all the appropriate chain members.

This whole problem could have been eliminated by plugging one of the few holes in IMAGE
(the lack of checking for strict correspondence between the search field values for III members
of a given chain). If you are serious about improving the quality of IMAGE, please write a
note to your Hewlett-Packard software support engineer stating this enhancement request.

Subtleties

The most powerful methods can also be the most dangerous, in the wrong hands. Strong
medicines (such as privileged DEBUG or DISKEDIT) need prescription and administration, as
opposed to "over the counter" solutions.

Rego 3117-4



Adager's Database-Therapy Functions

With Adager's expert guidance, you can conveniently examine and repair all kinds of database
bits and bytes without cumbersome octal or hexadecimal displays.

Why do you need database therapy?

You need database therapy because your database has been, somehow, damaged. It is great to
fix the symptoms, but you must still address the causes. Please implement policies and
procedures that will avoid an encore.

If you need database therapy, something has happened that needs your attention. Here is a list
of things that you may want to investigate:

- partial database stores,
- incomplete database stores,
- partial database restores,
- incomplete database restores,
- privileged programs,
- power failures or brownouts,
- system failures,
- hardware failures,
- new hardware,
- new software.

Is database therapy guaranteed?

No. The possibilities for database errors range from "very simple to fix" (such as one bad bit
or a couple of broken chain links) to "practically impossible to fix" (such as the results of an
incorrectly-handled partial database store/restore).

It is (mathematically) simple to detect inconsistencies between redundant IMAGE elements. It
may be (practically) difficult and tedious to fix the inconsistencies.

In the best case, you will repair your database problems in a matter of minutes.

In the worst case, you may have to restore an earlier version of your database and roll-forward
its transactions.

Examine Chain

Adager examines a specific chain (detail or synonym). Adager reports to you (and logs
internally) any inconsistencies it finds. You may subsequently use Fix Chain to repair
individual broken chains or Fox Path to rebuild the path's damaged chains.

While you examine chains, other processes may access the database in compatible read-only
modes.

Rego 3117-5



Examine Path

To examine a path is to examine all of its chains.

If you specify a master (manual or automatic) dataset, Adager will examine the master
dataset's synonym chains.

If you specify a detail dataset, Adager will examine the detail dataset's paths (which include
the detail ChainLinks as well as the related master ChainHeads).

Adager reports to you (and logs internally) any inconsistencies it finds. You may sub
sequently use Fix Chain to repair individual broken chains or Fix Path to rebuild the path's
damaged chains.

While you examine paths, other processes may access the database in compatible read-only
modes.

Fix Chain

If you request a master (manual or automatic) dataset, Adager will deal with specific
synonym chains.

If you request a detail dataset, Adager will deal with specific path chains (which include the
detail ChainLinks as well as the related master ChainHeads).

If a detail dataset has more than one path, Adager takes a yery methodical approach.
Instead of attempting to deal with all paths simultaneously (which would drive you to
distraction), Adager deals with one path at a time.

If you specify a search field Yalue, Adager will use hashing to locate the "last" and "first"
pointers in the master ChainHead.

As an alternative, you can specify an entry number. Adager will still hash to locate the
master ChainHead but, in addition, Adager will use the given entry's "previous" and "next"
pointers to look for its neighbors (if any).

As still another alternative, you can deal with the priyi/eged portions of specific entries
(in-use bits, counts, pointers and search field values), as well as the global dataset counts
and pointers (kept in the file's user label).

You may specify entries on-line, one at a time, or through an Adager-produced log file.

If a path has too many defective chains, you might prefer to use Fix Path, which rebuilds
the chains in the path from scratch, based on search field values.

Fix Dataset

Fix Dataset deals with individual dataset structures whereas Fix Path and Fix Chain deal
with path relationships between datasets.

For a master dataset, Fix Dataset re-hashes its entries, rebuilding all synonym chains in the
process. Adager deletes duplicate entries and automatic master entries whose detail Chain
Heads are all zeroes. Adager updates the dataset's entry count. (To repair only specific

Rego 3117-6



synonym chains, please use Fix Chain.)

For a detail dataset, Fix Dataset rebuilds the delete chain, if one exists, and updates the
dataset's entry count. (To repair broken detail chains, please use Fix Chain or Fix Path.)

Fix Path

Adager rebuilds the chains on a detail's path according to the values of the detail's search
field (and according to the values of the detail's sort field, if the path is sorted).

Before attempting to fix a detail's path, you should apply the Examine Path function to the
related master dataset's synonym chains. If you find any problems in the synonym chains,
please fix them before continuing (you may use Fix Dataset or Fix Chain).

Fix Path is meant for detail paths. To rebuild all of the synonym chains on a master
dataset, please see Fix Dataset above.

Replace Dataset

If you have lost the file for a dataset, Adager creates a brand-new empty file, with the
appropriate structure.

If the dataset is a master with paths, you should subsequently do a Fix Path on each path
(through the related detail datasets). This adds the master entries (with the appropriate
search field values) required to "parent" the orphan detail chains, if any.

If the dataset is a detail with paths, you should subsequently do a Fix Path on each path to
initialize the master ChainHeads.

Conclusion: "success" and "failure"

There are two possible outcomes once we finish our database therapy operation: "success" and
"failure". We should not become too complacent when we think we were successful, since there
are still some tough questions (how did we get into the mess?, why did it happen at all?, what
can we do to avoid an encore?) And even when we face an apparent failure, we should keep
things in perspective and learn as much as possible in the process of going down fighting for
our database's life.

Rego 3117-7





Paper# 3118

INCREASED SYSTEM AVAILABILITY WITH OPTIMAL BACKUPS

Sue Coatney (408)447-5588
Jim Nissen (408)447-5720

Hewlett-Packard
Commercial Systems Division

19447 Pruneridge Ave
Cupertino, CA 95014

1. Introduction

System Backup is a daily chore; whether you do full backups or partial backups. As your
systems get larger and support more users, completing your backup becomes even more
difficult. You will have to carefully schedule operations in order to maximize availability of
your systems and minimize the interruption of user processing. You may have to require
your operators to work off-hours just to mount tapes for your backup.

You will ensure that your backup gets done, because you backup your systems for many
reasons. These may include archival, disaster recovery, operator error, user error, and even
disk space management. While a brute force backup can meet all these requirements,
structuring the backup to meet the specific requirements of your shop can significantly
increase the availability of your system.

The release of several new products like HP 1300H Digital Data Storage (DDS), HP
C1700A Optical Library Systems, and TurboSfORFlXL n gives you many new
options. By using these new technologies in an optimal fashion you can greatly improve your
backup performance and recovery performance. These solutions will help you meet your
changing business requirements.

As your business environment continues to change, the need for your systems to be
available longer for business processing is constantly increasing: you may even be moving
to, or planning to move to, a 24 hour a day/ 7 days a week/52 weeks a year availability
schedule. Planning for this type of environment requires new applications and system
utilities to maximize system availability and to reduce or eliminate "planned" downtime.

1.1 Backup requirements

When asked what is required in a ''Backup'' product, many of you would respond that you
need a FAST, UNATfENDED, and ONLINE backup. These requirements are characterized
by the following:

• FAST backup, usually by dedicating some system resources to accomplish this.

• UNATfENDED backup, which means the backup can continue automatically
without requiring someone to be there to change media. Depending on system storage
requirements, this may also be accomplished by taking advantage of newer technologies
for media.

Optimal Backup.f 3118-1



• ONLINE backup, which means users and jobs can be actively running while the backup
is occurring.

Your shop may require one or more of these. For example, you may require both unattended
and online backup. On the other hand, you may only require unattended backup.
Addressing these three requirements can be accomplished in a number of ways, also.
Today, a number of backup options are available to address one or more of these
requirements.

For example, unattended backup can be accomplished by using high density media like
DDS or optical disk. You can further extend the ''level'' of unattendeness by using high
density media with software backup products which provide software data compression. The
ultimate unattendeness can be provided when a media management facility is coupled with an
optical library system. For example, the media management facility within TurboSTOREJXL
n will allow you to do multiple backups to your Optical Library System without operator
intervention. It will also provide for selective file retrieval without any operator intervention.

Suppose you have 5 GB of storage to backup and it currently requires 36 reels of 112"
tape and takes 5 hours. If your objective is to get critical your applications up within 2
hours instead of 5 houTS, you can combine features/options like high density software data
compression with DDS media. If you don't want to be down at all, plus you want your
backup to be unattended, you can combine TurboSTOREJXL n with online backup, with
fast data compression, and with multiple DDS drives or the Optical Library System.

1.2 Backup trade-offs

Addressing your backup requirements require different trade-offs. The use of features like
online backup and software data compression will use system resources.

Online backup for example will add overhead to the CPU resource as well as the disk
subsystem. Use of software data compression will use even more CPU resources. You will
need to trade-off media usage against 'CPU usage. For example if your system is lightly
loaded during online backup, you may choose the high density data compression. If it is
heavily loaded you would probably choose no data compression. In any case you would
not choose to do an online backup during peak hours.

You may want to consider online backup even if you don't have a 24 hour requirement. For
example using online backup to ease the race to daylight may be the right choice for your
shop. Being able to fInish the backup while your morning work load ramps up may be just
what your shop needs.

You should also consider unattended backup solutions such as TurboSTORE/XL with
DDS or Optical Library Systems, even if you have a 24 hour staff. By reducing the
requirement for operator intervention, you also reduce the probability of operator errors.

Developing an optimal backup strategy for your shop will consist of matching your
requirements to the available solutions. TurboSfORFlXL II has a wide variety of
options which can be used to increase the availability of your system. First let us address
online backup and its ramifications.

Optimal Backups 31/8-2



2. Online Backup

TurboSTORFlXL IT provides an online backup option. The use of online backup raises new
issues. A question you may ask is why have online backup when the dedicated backup
already requires a large amount of the CPU. TurboSTORFJXL IT is designed to get the
backup done as fast as possible and therefore it will consume as much of system resources as
necessary. In fact the ";INTER" option (which allows for interleaving of files) is what
typically causes TurboSTORFJXL IT to limit the 10 rate to the disk subsystem. This is not
what you want if your trying to get useful work done during the backup. When data
compression is added to TurboSTORFJXL IT it is possible for TurboSTORE n to limit on
CPU cycles. The only other limits to process throughput is the 10 rate to the backup
device and the priority of the TurboSTORFJXL IT process. Therefore, in the online mode,
you must decide on which compression algorithm (if any) and how to use your backup
devices (i.e. parallel or sequential) in addition to which devices to be used.

The backup and system performance will depend upon the 10 rate of the disk subsystem,
speed of the CPU, priority of the backup process, and 10 rate of the backup devices. Hit
takes 2 hours to complete a dedicated backup of your system, it is unlikely that you would
want to set up your online backup to complete in that time. You will want to set up the online
backup to leave some system resources for the users. A strategy might be to use 50% of
system resources for backup and allow the backup to take twice as long. Remember your
critical application is up during the backup. CutTently there are two mechanisms to
throttle or slow down the backup process effectively. The first is running the backup process in
a specific queue. The ";INTER" option will override this and put TurboSTOREJXL IT at
top of the C queue. The second is the 10 rate which the backup device will accept data. H the
backup device is a streaming tape drive you will want it to limit the process throughput.
Figure 2 shows the effective overhead for given throughput rates on a HP3000/950.

Optimal Backups 3118-3



100

High DC ..

HlghDCOl mF••' DC Ol RII

CPU Utilization
for TurboSTORE/XL II

NoDe. F••IDe.

No DCOl •

100 Percetage of CPU

40

1GB/hr 2GBlhr

DATA RATE

The logging overhead incurred with online backup should also be considered. A shadow log
which maintains the before image of each and every file· is maintained until that file is
committed to the backup media. The amount of CPU overhead that is incurred is
dependent on the write activity to that file. Therefore the system throughput would be
enhanced by making sure that the most active file sets are backed up first.

3. Data Compression
TurboSfORE'JXL II provides two different software algorithms for data compression. The first
is a Run Length Encoding which provides an average compression ratio of 2.1:1 on MPE
XL. This algorithm basically removes repeated bytes or characters from the file. It is a
simple and relatively fast algorithm. The second is the LZ encoding algorithm. It encodes
data into a byte string dictionary. The dictionary resides in the data and compression occurs
any time a byte string is repeated. This algorithm provides an average compression ratio
of 3.6:1.

The average compression ratios stated above mayor may not be realized in your shop.
Some data is more redundant (and therefore more compressible) than other data. Figure 1
shows the compression ratios of various file sets. Note that both types of program files have
very little redundancy. On the other hand, catalogs are more compressible and data
bases are the most compressible. Although not shown here, attempting to compress a
non-compressible file requires as much or more CPU than attempting to compress a
compressible file.

Therefore, if your backups include a large quantity of program and library files you may not
achieve high compression ratios. If the bulk of these files are application and system
software, they probably never change between system updates. A simple change in backup
procedures from two level to a three level partial strategy could greatly increase the efficiency
of your weekly backups. For example whenever you update your system or add a major new

Optimal Backups 3118-4



subsystem or application package do a full backup. Then modify your job streams for
weekly backups to do partial backups from that date with the ":DATE > = " option in
TurboSfORE/XL. If your daily backups are relative to the weekly then you will be able to
find any file on one of three tape sets.

Software Data Compression
for TurboSTORE/XL II

Compre••
Fast
~

Compre••
HI Density--8 ..c_o_m_p_re_s_sl_o_n_R_8_tl_O ....e

8

4

CP1 CP2 NP1 NP2 CT1 CT2 CT3 DB1 DB2 DB3 DB4 DBS

DATA TYPE
CP=CM Program. NP=NM Program. CT=System Catalog. DB=Data Ba.e

6

4

2

o

The key here is that if you separate executing code, static data, and dynamic data from each
other you can maximize the efficiency of the data compression algorithms.

4. Data Bases

The 900 series HP3000s support two HP data bases, TurboImage and AllbaselSQL as well
as several third party data bases. Currently DBSfORE is recommended to be used to backup
TurboImage data bases. This will ensure the integrity of the data base for roll-backlroll
forward recovery. The STORE or srOREONLINE commands within SQLUtil are
recommended for backup of Allbase/SQL data bases. The srOREONLINE command
coupled with TurboSTORFlXL II with Online Backup will provide for no interruption of the
Allbase/SQL applications.

Optimal Backups 3118-5



5. Volume Sets
Another way to increase availability is to separate your applications onto separate Volume Sets.
By doing this you can backup one application (using the ONVS option in TurbosrORE'/XL IT)
while all others are still available. There is an additional advantage to partitioning your data
onto separate volume sets. If in the unlikely event you have a head crash on one of your disks,
you will only have to reload one volume set and not an entire system.

6. Archival

By using the ''DA1E<='' option with the ''PURGE'' option you can build a rudimentary
Archival system. Using this option of store you can archive files which have not been accessed
recently. For example you could archive all files which have not been accessed in the last week
or month or whatever. Appendix 1 contains a command file and EDITOR use file which
creates an online directory of all files which have been archived. This is done by using the
filelist which is generated with the SHOW option.

Appendix 2 contains a command file that will restore a previously archived file. It will find the
most recently archived version of the file. By using the ask option the user can find earlier
versions of the file. A similar command file could be written to do an archive list function
which would aid in finding archived files.

7. Device Organization

With TurboSfOREIXL IT it is feasible to organize both your backup and Restore process to
use multiple devices. Using multiple devices will decrease the amount of time your backup
(and restore) process will take. There are several ways to organize your devices - sequential,
parallel, and parallel device pools.

7.1 Sequential Devices

One method of using multiple devices is to copy files sequentially to a group of identical
backup devices. As soon as the media on the first backup device is filled, TurboSfORE will
immediately start writing to the second backup device. No time is lost while swapping media
on the backup devices.

Using sequential devices is particularly useful when using tape devices, which require operator
intervention and have long rewind times.

7.2 Parallel devices

Using parallel devices results in using multiple devices concurrently. Using parallel devices will
use more system resources than one or sequential devices, but it will shorten the backup time.

If your using TurboSfORElXL II with an optical library system, using parallel devices is the
most efficient method of backing up your system.

Optimal Backups 3118-6



7.3 Parallel Device Pools

Parallel device pools provide the advantages of both parallel and sequential devices. Basically,
your copying multiple file sets concurrently and have additional backup devices ready when the
media on the first set of devices is filled.

8. Backup Device Support

TurboSfORFlXL II supports a variety of backup devices. They include 1/2 inch tape, DDS
tape drives, and Optical Library Systems. Each of the device groups have sPeCific
characteristics - certain ones will meet your backup needs better than others. Devices which
are supported (as of Release 3.0) are:

• HP7974 1/2 Inch Tape Drive

• HP7978 AlB 1/2 Inch Tape Drive

• HP7979 1/2 Inch Tape Drive

• HP7980 1/2 Inch Tape Drive

• HP7980XC 1/2 Inch Tape Drive

• HP1300H DDS Tape Drive

• HPC1700A Optical Library System

Each of these devices have varYing characteristics and capacities. We will now discuss these
different device characteristics.

8.1 1/2 Inch Tape

8.1.1 Capacity

Half-inch tape devices have several different densities available (1600, 6250, and 6250 with
Data Compression). The density used will determine how many bits of data are distributed on
an inch of magnetic tape. Assuming a 2400 foot reel of magnetic tape, a tape stored at a
density of 1600 bpi will contain approximately 42 MB of data. A tape stored using a density of
6250 bpi will contain 140 MB of data. The hardware compression on the HP7980XC drive will
result with a 3-5X compression ration. Therefore, a tape stored using hardware data
compression could result in 420 to 700 MB of data being stored per tape.
NOTE: Compression ratios vary depending on the data being compressed. Depending upon the
data it is feasible to have less than a 3 times data compression, or greater than 5 times using
XC hardware data compression.

As mentioned earlier, it is feasible to use the data compression which TurboSfORFlXL II
provides on the 1/2 inch tape devices which have data compression support themselves. Testing
has not shown any significant increase of capacity when both hardware & software data
compression are used. Overall, if you have a 7980XC tape drive you will achieve better
compression and CPU performance using the hardware compression it provides.

Optimal Backups 3118-7



8.1.2 Transfer Rates

The effective TurboSTORFJXL transfer rate for 1/2 inch tape devices is very dependent upon
which device you are using as well as the number of devices connected to each HP-m Device
Adapter card.

Device transfer rates are as follows:

1/2 Inch Tape Transfer Rates

Device Name Transfer Rate

BP7974 149 KBlsec

BP7978A/B 395 KBlsec

BP7979 186 KBlsec

BP7980 695 KBlsec

BP7980XC 790 KBlsec

Since the HP-m card has a limited transfer rate of 1 MBlsec, transfer rates will be limited if
too many devices are attached to a single HPm Device Adapter Card. The combined transfer
rate of all devices connected to a single HPm Device Adapter card is limited to the transfer
rate of the card, 1 MBlsec.

8.1.3 Operator Intervention Needed

A significant amount of operator intervention is needed for every reel change. After
TurboSTORFJXL has completed writing a tape, an operator needs to swap tapes before
TurboSTORFJXL can continue. H an operator is available to service the tape drive, in a best
case scenario it will take approximately 3.5 minutes before TurboSfORFJXL can continue
with the backup.

To reduce the amount of time your system sits idle waiting for operator intervention, multiple
tape drives can be used with TurboSTORFJXL. TurboSTORFJXL offers sequential (when
one drive completes, the next drive starts) and parallel (uses several devices concurrently).
Creating parallel pools of sequential devices will provide the greatest benefit by maximizing
backup data throughput and minimizing the impact of operator intervention.

8.2 DDS Tape Devices

8.2.1 Capacity

The DDS tape devices have only one density (or way of writing data to the tape). A 60m tape
can contain up to 1.2 GB of uncompressed data. With the data compression functionality
available in TurboSfORElXL II, up to 5 GB of compressed data can be placed onto one tape

Optimal Backups 3118-8



cartridge.

The DDS tape cartridges are also much smaller than the 1tl.. reels of tape. The DDS cartridges
are approximately the size of a credit card, with a depth of ltl...

8.2.2 Data Transfer Rates

The DDS device transfer rate is 175 KBlsec. The DDS device is capable of writing 1.2 GB in 2
hours. Using TurboSTOREJXL IT high compression, up to 5 GB of data can be written to the
same physical tape in approximately 2 hours.

The data compression provided with TurboSTOREJXL II and the large data capacity of DDS
tapes results in significantly less operator intexvention needed during your backup process.

8.3 Optical Library Systems

8.3.1 Capacity
The data capacity of an entire optical disk which is used on MPE XL is currently a little less
than 600 MB (300 MBlside)of uncompressed data. The Optical Library System contains 32
storage slots. Each of the 32 storage slots can hold an optical disk. A fully loaded Optical
Library System can contain approximately 19 GB of uncompressed backup data.

The TurboSTOREJXL II data compression capabilities can also be used with the Optical
Library System. Using the TurboSTOREJXL II high data compression, each piece of media
can contain approximately 2.1 GB of backup data. Therefore, a fully loaded Optical Library
SYStem, utilizing high TurboSTORE/XL IT data compression can contain up to 70 GB of data.

8.3.2 Transfer Rates

Utilizing both of the imbedded disk drives in the Optical Library System results in a write
transfer rate of 500 KBlsec of uncompressed data. With TurboSfOREJXL II's low data
compression, you will be able to store 7.5 GB per hour to a single Optical Library System.
Since reading data from an optical library system is twice as fast as writing, Restore
perfonnance will be significantly better than Store.

The data transfer rates when using the TurboSfORE/XL II data compression are very
dependent upon CPU availability and speed.

8.3.3 Operator Intervention

The Optical Library System also contains an autochanger mechanism, which is controlled by
the TurboSTOREJXL II with Optical Support software. When TurboSTORE/XL n needs the
next piece of media to continue writing or reading the backup, no operator intexvention is
needed to swap the media. As long as enough Scratch media is kept inside of the Optical
Library System, no operator intervention will be needed to complete the backup. The converse
is also true, if all the necessary disks are placed inside the Optical Disk Library System,
operator intervention won't be needed when restoring files onto your MPE XL system.

Optimal Backups 3118-9



9. Access Time for Restore

Access time for Restoring files is dependent upon several factors:

• Type of backup device (1/2 inch tape, DDS, or Optical).

• Number of files being restored.

• Where your files are located on your backup media.

• CPU availability (potentially).

The length of time needed to restore a large amount of files is very dependent upon the
transfer rate of your backup device. When restoring a small number of files, other factors
influence the restore speed. Those factors will be discussed in further detail.

9.1 Selective File Restore with Tape

Restoring a specific file or set of files from tape (either 1/2 inch or DDS) involves the
following:

• Issue the Restore command.

• Mounting the last volume of a multi-volume set:

• Mounting the volume which TurboSfORE'/XL directs you to.

• TurboSfORE'/XL skips over other files on tape to the requested file.

• The file(s) will be restored from the tape volume(s).

Once the correct tape volume is mounted the amount of time spent locating the files is
relatively short. TurboSfORFJXL n uses ''File Marks" on the 1/2 inch tape drives and "Save
Set Marks" on the DDS devices to skip to the file requested. Using these technologies,
TurboSfORFJXL n is able to locate your file within 1-2 minutes. Once the file is found, the
actual data transfer happens relatively quickly - although it does depend upon file size and
device transfer rates.

9.2 Selective File Restore with Optical Library Systems

Restoring a specific file or set of files from an Optical Library System involves the following
actions:

• Issue the Restore command with the appropriate backup name specified.

• TurboSfORE IT will mount optical disk volumes which match the backup name specified in
the Restore command, looking for the requested file(s).

• If the necessary media is not within the Optical Library System, the operator will be
prompted on the console to place the correct media in the Optical Library System mailslot.

If the necessary backup media is within the Optical Library System, files will be restored within
a matter of minutes. The actual time necessary depends on ho\\' many optical disks need to be
mounted before the file(s) are found. It takes approximately 1 minute to get each disk
mounted and into the corrcct statc before files can be located.

Optimal Backups 3118-10



10. Media Handling

Backups are done so that in case a disaster occurs, the data on your system can be retrieved.
As a result it is important to keep media labelled with backup infonnation (so you know what
media to retrieve data from) and to use good quality media (so the data can be retrieved).
Proper media handling and care will make your backup process smoother.

10.1 '1/2 Inch Tape

• To prevent data loss, 112 inch tapes need to be rewound and reconditioned every 2-3 years.

• The heads on the tape drives need to be cleaned every 10 hours of use.

• Media and tape devices should not be exposed to temperature or humidity extremes.

• Good quality tapes should be used to prevent time-wasting retries.

• 1/2 tapes are large and require a large amount of floor space for storage. Tapes must be
stored vertically.

10.2 DDS Tapes

• DDS cleaning cartridges need to be used after every 25 hours of use.

• Media and DDS devices should not be exposed to temperature or humidity extremes.

• DDS tapes are small & require a significantly smaller amount of floor space for storage.

10.3 Optical Library Systems

• Rewritable optical media is good for 10+ years.

• No media or optical head cleaning is needed.

• To eliminate operator intervention during backups enough SCRATCH media to complete
your backup should be available in the Optical Library System.

• Media from previous backups can be left inside the Optical Library System so Restores can
be perfonned without operator intervention.

• Media removed from the Optical Library System should be labelled with the backup
name/date and returned to it's plastic case.

• Neither optical media or the Optical Library System should not be exposed to temperature
or humidity extremes.

11. Conclusion

In planning your backup strategy you must first determine your requirements and then
organize your procedures for optimal performance. Answering the following questions
will help define your requirements:

Optimal Backup... 3118-11



• Do you need to keep your system up 24 hours a day or would online backup help in your
race for daylight?

• How does online backup fit into your needs?

• Can moving to an unattended backup solution optimize your operator's productivity, or will
it help alleviate operator errors?

• Does having unattended or online backup capability reduce your operational costs?

• How does your backup strategy help you provide better service to your users?

• Is storage space for media important to you?

• How important is media life and/or media cost?

• How important is unattended archival retrieval?

• What is the projected growth of your system?

When you understand the answers to these questions you will be able to select the
peripherals and backup product(s) to meet your requirements. Once you have chosen your
backup solution, then you can optimize your backup process.

Several approaches have been suggested to optimize your backups. The basic concept is to
"Divide and Conquer." By separating your backups you can get optimal performance from the
available backup products. You may be concerned that you have more backups to manage
and this is true. However with tape management systems or the HPC1700A Optical Library
System and the use of command files and/or job streams this effort can be easily managed.

Optimal Backups 3118-12



Appendix 1

COMMAND FILE "STOREfI'
ANYPARM ins t r i ng=oo II
setvar comstring UpS(lIt instring")

conment

conment Remove any user spec if i ed show opt i on and add opt i on

conrnent requi red for ut i l i ty

conment
setvar comstring comstring-liiSHOWII_" ,SHORT"_II, LONG"-" ,DATES"

setvar ccmstring comstring-" ,SECURITY"-" ,OFFLINE"
setvar comstring ccmstring-I=SHORT"_"=LONG"_II=DATESI'

setvar comstring ccmstring-II=SECURITY"-"=OFFLlNE"+"iSHOY=LOHG"

continue
purge archdi r1

continue

purge archdi r2

conment

conment Read last store nurber

conment

setvar cierror 0

continue

input asc i i nun<archd i r •pub. sys

if c i error<> 0 then

build archdi r .pub.sysjdisc=10; rec=60, 16, f ,asci i inocctl
fi le archdi r=archdi r.pub.sys,old;rec=60, 16, f ,ase; i ;nocctl

echo RFOOOOOO»*archdi r

echo NO DATE»*archdi r

echo ~ t Ii",,,, t It: t Au ~ U t »*archdir

setvar asci inun "RFOOOOOOII

setvar cierror 0

endif

setvar ase; inun str(lI! asci inurn" ,3,6)

setvar nun t asc i i nun

setvar nun nun+1000001

setvar asci inLm "RFII+str(lI! nurn" ,2,6)

echo !asc i i nllll>archdi r2

conment

conment Execute TurboSTORE

conrnent

continue

reset sys list

STORE !comstring>archdir1

save archdi r1

save archdi r2

conment

conment Have EDITOR remove exteraneous informantion
conment join it to the archive directory
conment

continue
purge archdi r3

run editor.pub.sys <archedit.pub.sys

copyarchdir3,archdir.pub.sys;yes

Optimal Backups 3118-13



purge archdi r3
reset sysl ist
reset archdi r2
echo purge archdi r1
echo purge archdi r2
deletevar comstring
deletevar asci inun
deletevar nun

EDITOR FILE "ARCHEDIT .PUB.SYS"

SET TIME=3000
T ARCHDIR2

JQ ARCHDIR1,UNN
DQ 2,3,5

CQ 85/255 TO 11****" IN ALL
FQ FIRST

WHILE
FQ liTHE BACKUP TO DASS NAME IS"

BEGIN

CQ liTHE BACKUP TO DASS NAME IS II TO "NAMEcll

copy * to 5
END

FQ FIRST

WHILE

FQ IIF ILENAME GROUP ACCOONT"
BEGIN
FQ *-1

DQ 6/*

L *+1

END
FQ FIRST

FQ IIF I LENAME GROUP ACCOUNT II

CQ 28/74 TO 1111 IN */LAST

GATHER ALL
FQ 8
FQ II ****11

DQ */LAST

CQ "****" TO 1111 IN AL L

CQ 1/40 TO "*******************************************" IN LAST
JQ ARCHD IR•PUB. SYS, UNN
SET FORMAT=DEFAULT

SET RIGHT=40

SET LENGTH=40
SET FIXED

K ARCHDIR3,UNN
EXIT

Optimal Backups 3118-14



Appendix 2

COIMAND FILE IIRESTOREFII

ANYPARM instring=NULL
SETVAR comstdng UPS(III instringll _ 1I II_II lI+lli NO II)

SETVAR comstring comstring-II

SETVAR comstring comstring-"
SETVAR comstring comstring-U
SETVAR comstring comstring_11

SETVAR comstring comstring- II

SETVAR comstring comstring- II

SETVAR comstring cClmString- n

SETVAR comstring comstring-"
SETVAR comstring comstring-II
SETVAR comstring comstring_II@I.U@I_II@I_n@•• II@•• II@I.II@._II@.

SETVAR pos POS(Ui",comstring)
SETVAR answer STR(comstring,pos+1,3)

SETVAR comstring LFT(comstring,pos-1 )+.....

SETVAR pos POS("." ,comstring)

SETVAR fname LFT(comstring,pos-1)

SETVAR comstring STRCccmstring,pos+1,20)

SETVAR pos POSCI.",comstring)

SETVAR gname LFTCcomstring,pos-1)

SETVAR comstring STRCcomstring,pos+1,20)

SETVAR pos POSC".",comstring)
SETVAR aname LFT(comstring,pos-1)

IF gname="" THEN
SETVAR gname hpgroup

ENDIF
IF aname=1I1I THEN

SETVAR aname hpaccount

ENDIF

SETVAR fname LFTCfname+" II ,8)
SETVAR gname LFT(gname+" ",8)
SETVAR aname LFT(aname+1I II ,8)
SETVAR fname fname+"."+gname+ u • lI+aname

FILE INfILE=$STDIN

ARCHFIND <archdir.pub.sys

CONTINUE

DELETEVAR comstring

DELETEVAR pas

DELETEVAR answer

DELETEVAR fname

DELETEVAR gname
DELETEVAR aname

COMMAND FILE IIARCHfJND.PUB.SYSII

PARM 8=8

Optimal Backups 3118-15



SETVAR fnstring II II

WHILE lft(instring,3)<>"i1##l1
INPUT instring

SETVAR instring lI'instring"
SETVAR terrpstr lftC"finstringll ,2)
IF terrpstr=IIRFIl THEN

SETVAR rfi le lft("' instring" ,8)
INPUT instring

SETVAR instring III instringll

SETVAR date instring

INPUT instring

SETVAR instring "I instringll
SETVAR bname 1111

SETVAR tt!q)Str lft(instrfng,S)
IF terrpstr="NAME=1I THEN

SETVAR bname lft(instring,31)

ENDIF
ENDIF

SETVAR terrpstr l ftCinstring,26)

IF l ft CterJ1)Str , 3)<>"###" THEN
WHI LE l ft(terrpstr ,3)<>"***"

SETVAR answer2 IIY"

IF fname=tefl1)Str THEN
SETVAR t~tr tf!q)Str-"
SETVAR terrpstr teft1)Str- U

SETVAR terrpstr tf!q)Str-"
IF answer=IIASKu THEN

SETVAR ansr "k"
WHI LE ansr<>IIYU and ansr<>uNu

ECHO Do you want 1tenpstr from 'date?
INPUT ansr iproq:»t=U(YES/NO)? u<*INFI LE
SETVAR ansr ups( lft(1I1 ansrU _ II 11.11 11,1»

SETVAR answer2 ansr
ENDWHILE

ENDIF
IF answer2=uyu THEN

IF LFT(bname,S)="NAME=1I THEN

RESTORE; 1terrpstr;MOSET=(Mo)i IbnameiSHOW
SETVAR instring U#####I"

ELSE
SETVAR media str(instring,30,10)
SETVAR set str( instring,27,2)

CONTINUE

PURGE I rfiLe

BUILD Irff leidisc=10irec=36, 16, f ,asci i ;nocctl
FILE temp=1 rfi le,oldirec=36, 16, f ,asci i ;nocctl
ECHO Mount backup from Idate »*tenp
ECHO Medi a 'medi a of Store Set ! set»*tenp
TEllOP Mount backup from Idate
TELLOP Media lmedia of Store Set Iset
FILE ! rf i le;dev=tape

CONTINUE

RESTORE *1 rfi le;' tE!q)StriSHOW
DElETEVAR medi a

Optimal Backups 3118-16



DE lETEVAR set
PURGE ! rfile
SETVAR instring "######"

ENDIF

ENDIF

ENDIF

INPUT tempstr
SETVAR tempstr 1ft(1I1 tempstrU , 26)

ENDWHIlE

ELSE

ECHO File ! fname not found.
ENDIF

ENDWHILE

DELETEVAR tempstr
DELETEVAR rfi le
DELETEVAR date
DELETEVAR bname
DELETEVAR answer2

Optimal Backups 3118-17





High Availability OD the BP 3000

Jessy Hsu and Kendall sutton
Commercial System Division
Hewlett-Packard Company

19447 Pruneridge Ave.
Cupertino, CA 95014

Abstract

In organizations that rely on online transaction processing (OLTP), whether
it's business, manufacturing, or government, there is an increasing need for
greater system up time. While the HP 3000 has a reputation for superior
reliability, today's OLTP environments demand high availability features
that reduce system downtime to an absolute minimum. HP has responded to
this need with several high availability products. This paper will discuss
the use of Mirrored Disk/XL, TurboStore II/XL (with online backup), SPU
Switchover/XL (Which allows data sets to be switched from one SPU to
another), and how they fit into a high availability data center
configuration. We will also discuss how these products form the building
blocks for further advances in the area of high availability on the HP 3000.



Table of Contents

O. Introduction

1. System Outage Characteristics
1.1 unplanned outages
1.2 Planned Downtime

2. Increasing Levels of System Availability - HP's Strategy

2.1 Pre-1990 System Availability

2.2 1990/1991 High Availability Offering - CDAC

2.2.1 Unplanned Outages
2.2.1.1 Mirrored Disk/XL eliminates downtime due to disk failures
2.2.1.2 SPU Switchover/XL provides recovery due to SPU failure
2.2.1.3 AutoRestart/XL minimizes downtime due to software failures
2.2.1.4 Preventative Maintenance (PM) minimizes outages

2.2.2 Planned Downtime
2.2.2.1 TurboSTORE/XL II virtually eliminates backup downtime
2.2.2.2 Mirrored Disk/XL provides online backup
2.2.2.3 SPU Switchover/XL supports preventative maintenance
2.2.2.4 Dynamic reconfiguration eliminates significant downtime
2.2.2.5 Powerpatch/XL minimizes the impact of software fixes

2.3 Future System Availability Technologies - SCA
2.3.1 System Component Availability (SCA) Concept
2.3.2 Parity Disk Arrays (PDAs) Increase Cost-Effectiveness
2.3.3 Continuing towards Software Resilience

2.4 Summary of HP 3000's Availability Strategy

3. High Availability Data Center Recommendations

4. Summary

Figure 1. Causes of extended downtime
Figure 2. Sources of planned system downtime
Figure 3. Mirrored Disk/XL operation
Figure 4. SPU Switchover/XL operation
Figure 5. TurboSTORE/XL II operation
Figure 6. Disk storage product family
Figure 7. HP3000/MPE XL High Availability Data Center
Figure 8. SPU Switchover/XL Configuration
Figure 9. SPU Switchover/XL Hardware Configuration

Appendix: SPU switchover/XL Product Feature Set and Implementation

3119-2



Introduction

For organizations that increasingly rely on online transaction processing
(OLTP) -- whether it be business, industry, or government -- the need for
greater system uptime goes in only one direction: up. In focusing on
making the HP 3000 a leader in the OLTP market, HP has recognized and
addressed this need.

To ensure a leadership position in the OLTP market, HP has produced several
products to increase system availability. The goal is continuous
availability eliminating the effects of unplanned and planned system
downtime from being apparent to your end users. The strategy is to provide
the appropriate system availability based on evolving market needs.

1. System outage Characteristics

Downtime for a customer is the time when the system is not available to the
end user. Hence, the system can be defined to be available if an end user
can carry out a unit of work (e.g. transaction) against the data (e.g.
database). The causes of customer outages or downtime can typically be
classified as either unplanned or planned.

1.1 unplanned outages

Unplanned downtime is the time when the system is not available due to
software and/or hardware failures. The objective of highly available
systems is to minimize this downtime, thereby maximizing a customer's return
on their computer system investment.

A 1989 INTEREX survey (Figure 1) shows that the major components that
contribute to unplanned system downtime are disk failure, SPU failure and
software failure. It reflects components which cause extended unplanned
downtime and demonstrates that even infrequent failures can lead to large
amounts of downtime. Disk failures represent the area of greatest extended
outages. Much of the sustained downtime is due to data recovery, which
occurs upon replacement of the failed disk element.

Today's HP 3000 PA-RISC systems and disk subsystem has very high MTBF (Mean
Time Between Failures) and system outages caused by SPU or disk failure are
infrequent relative to competitive systems. However, it is HP's objective to
reduce the system outage impact of those infrequent failures even further.
with high availability solutions available since 1990, outage time can be
greatly reduced. This will be discussed in the 1990 Availability Plan
section.

Software failures represent another major factor causing system outages. HP
recognizes the problem and currently deploys quality methodologies to
improve software reliability. Minimizing the impact of software failures
will center on reducing the number of system failures and the time to
recover.

3119- 3



Mean Time

To Repair

In Hours

5

4

3

2

Disk

Source: Interex Survey 1988

SPU Software

Piqure 1. Causea of extended downtime

% of respondents

100
90%

80

Backup Peripheral Hardware System
Configuration Maintenance Software

Instanatlon

Disk
Mgmt

Other

Source: Interex Survey 1989 (185 respondents)

Piqure 2. Sources of planned system downtime

3119- 4



1.2 Planned downtime

Planned downtime is a result of system activities like backup, configuration
management, etc. Figure 2 suggests that backup and configuration are the
number one and number two critical area of planned downtime.

As we will discuss in upcoming sections, the focus of high availability
offerings is to manage or eliminate these factors. As HP's high-end system
configurations continue to grow and more disks, more memory, and more users
are connected on a system, the management and control of these activities
will be crucial to meeting the increasing demands for higher availability.
HP recognizes this and our strategy is to seek ways to resolve these
factors.

2. Increasing levels of system availability - &P's strategy

2.1 Pre-1990 availability

with the introduction of PA-RISC (Precision Architecture--Reduced
Instruction Set Computing), HP redefined quality commercial systems. Based
on early warranty data, HP 3000 Series 950s achieved well over 55% increases
in reliability over the industry-acknowledged highly reliable Series 70.
PA-RISC has been a significant factor in a leading industry watcher,
Datapro, annually rating UP's reliability superior to all others, including
IBM and DEC.

The ability to simplify dramatically the number of components over
traditional computer architectures is the primary reason for the increase in
reliability. Additionally, other high reliability features are designed
into PA-RISC based systems. These features range from Predictive Support/XL
which can predict maintenance needs before a failure can happen, to HP
PowerFail, which provides uninterrupted battery backup after a power failure
has occurred.

2.2 1990/1991 high availability offering - CDAC

In 1990/1991, the strategy was to provide an integrated high availability
architecture known as CDAC (Continuous Data Access Control). The
architecture focused on minimizing the fundamental causes of unplanned and
planned outages and maximizing system availability.. The first suite of
products to address these needs include products to manage disk (Mirrored
Disk/XL), processor (SPU switchover/XL), and software failures
(AutoRestart/XL). As for minimizing the need for scheduled outages, HP 3000
systems offer a variety of continuous operation products while performing
various system activities, such as backup (TurboSTORE/XL II) and
configuration management (OpenView DTC Manager, DTC/Terminal Access).

3119-5



2.2.1 Unplanned outages

As can be seen in Figure 1, the major cause of unplanned downtime is
hardware failures, primarily disk and spu. With the increasing complexity
of processor units and a larger number of disk drives per system, hardware
failures have the potential to significantly increase their contribution to
unplanned downtime. In particular, products such as Mirrored Disk/XL and
SPU switchover/XL have been introduced in order to minimize the impact of
such hardware failures. Incr.eased system reliability in conjunction with
AutoRestart/XL helps to both reduce the frequency of downtime events as well
as reduce the recovery time associated with a software failure.

2.2.1.1. Mirrored Disk/XL eliminates downtime due to disk failures

Mirrored Disk/XL eliminates vulnerability to disk drive failures by
providing redundant or mirrored disk drives for user-selected critical
application data. In the event of the failure of a disk that is mirrored,
all I/O activity for the mirrored pair is automatically switched to the
alternate disk. Repair and resynchronization of the failed disk are
performed online with no interruption in application processing. Further,
in using separate I/O interfaces for the mirrored disk partners, all single
points of failure are eliminated in the disk SUbsystem.

2.2.1.2. SPU Switchover/XL provides recovery due to SPU failure

SPU Switchover/XL automatically detects system failures and allows the
system operator to initiate switchover between a pair of SPUs without
interruption of the secondary system. Both SPUs can be running applications
with the primary SPU typically running critical OLTP applications and the
secondary SPU running less critical applications (such as application
development). No additional processing overhead is required to support SPU
Switchover/XL on either processor. Additionally, full data integrity is
ensured as the failed (primary) SPU relinquishes control of the disk and
transaction log to the secondary SPU.

SPU Switchover/xL is a new product available on MPE XL release 3.0. A more
complete explana~ion along with an example of its use is presented in the
Appendix A.

2.2.1.3 AutoRestart/XL minimizes downtime due to software failures

Normally, significant time can pass before a software system failure is
recognized and an operator is able to respond by initiating a dump and
manually restarting the system. Software failures can contribute
significantly to the amount of extended downtime as shown in Figure 1.
AutoRestart/XL minimizes this downtime by automatically and immediately
saving the system state and initiating system restart. No operation
intervention or action is necessary. Hence, system recovery time is
minimized due to a software failure. Further, by saving the system state to
disk rather than tape, the time required to save the system state is cut by
at least 50% on high-end HP 3000 systems with larger memories.

3119-6



Data duplicated on mirrored disks

Normal operating mode
o Transparent to users/applications

o Minimal overhead on disk writes
o Higher performance on disk reads
o SImple control and operation

Fiber : Fiber

~E~n)2

Disk failure Access to

second disk

When disk fails
o Transparent sWitch on failure
o Online replacement of disk

Piqure 3. Mirrored Disk/XL operation

LAN

Primary ~~~i~ir
System ~

Piqure 4. SPU switohover/XL operation

3119'9'

Secondary

System



2.2.1.4 Preventative Maintenance (PH) minimizes outaqes

In the event that the elimination of unplanned outages is not possible,
solutions which can transform this downtime into scheduled maintenance or
planned downtime can be crucial to increasing system availability.

Solutions like Predictive Support/XL provide this capability. Predictive
Support/XL provides a proactive preventative maintenance (PM) approach to
detecting and resolving problems within various subsystems, i.e. memory,
tape, disk drives. Predictive Support/XL is a standard feature of MPE/XL's
software support and can provide automatic reporting into HP's support
centers. Hence, PM minimizes the chances of various system component
outages.

2.2.2 Planned downtime

As demonstrated in Figure 2, managing and reducing planned downtime covers a
broad area. To eliminate planned downtime, mUltiple solutions are
necessary.

2.2.2.1 TurboSTORB/XL II virtually eliminates baokup downtime

HP's approach in 1990/1991 has been to focus on areas that provide the
greatest impact on system availability. TurboSTORE/XL II was developed to
address online backup, an area identified in Figure 2 as a chief reason for
planned downtime.

TurboSTORE/XL II can eliminate downtime due to backup requirements. with
the online backup feature of TurboSTORE/XL II, around-the-clock data
processing is supported while system backups occur. Though normally a 5
minute application interruption occurs to ensure complete data integrity,
with ALLBASE/SQL, this interruption is eliminated. Further, the time and
need to handle media (i.e. tape) during the backup process can be
eliminated. Unattended backup is supported with up to 74 Gbytes of capacity
when utilizing HP's Rewritable optical Disk Library System. The impact on
production is minimized. Further, increased performance using mUltiple
backup devices in parallel (files are interleaved on the devices) can
dramatically reduce backup time.

2.2.2.2. Mirrored Disk/XL provides online baokup

Mirrored Disk/XL allows users to "split" the mirrored pair and backup files
while continuing to process applications. Additionally, Mirrored Disk/XL
eliminates disk failures as well as minimizing overhead due to system
backup.

2.2.2.3 SPU Svitchover/XL supports preventative maintenanoe

Although SPU Switchover/XL is targeted at reducing unplanned downtime, it
provides an excellent mechanism to switch applications and data from one
system to another for any reason. For example, if a system needs to be down
for preventative maintenance (PM) or for deferred repair service, SPU
Switchover/XL minimizes the associated application downtime.

3ll9;S



Online Backup I

Parallel device
store & recovery

I Fast, Flexible Recovery

Unattended Backup I

~DDS

I.--J) 1.3/5 GB
Multiple .

device' :

~OPtical
U20/70GB

Selective file retrieval

and fast search

I'iqure 5. TurboSTORB/XL II operation

Availability

I Standard Disk I
• No failure protection,

but upgradab1e

• Protection against HDA
(head disk assembly) failure

• Single pOints of failure

• Very low downtime

• Online replacement of
failed mechanisms

• 25-40% price premium

• Highest availability

• No single poin t of
failure

• Online replacement of

failed mechanisms

• 100% price premium

Price

I'iqure I. Disk storaqe product family

3119- 9



2.2.2.4 Dynamic reconfiquration eliminates significant downtime

Solutions like openView DTC Manager ~implify configuring, installing,
monitoring and diagnosing DTC related 1ssues. Further, solutions like
DTC/Terminal Access provide for dynamic reconfiguration (e.g. add/delete) of
terminals without system interruption. DTC/Terminal Access also enhances
system availability by its ability to dynamically switch from one system to
another on the same LAN.

2.2.2.5 Powerpatcb/XL minimizes the impact of software fixes

HP Powerpatch/XL is a proactive patch product designed to fix known software
problems on customer systems before they experience them. Powerpatch/XL
provides the ability to customize the patch application process for only
those products (MPE/XL, data communications, etc.) actually installed on a
customer's system. The patches supplied with Powerpatch/XL have been field
tested for a minimum of 30 days.

Further, Powerpatch/XL minimizes planned downtime. The background
installation of patches can continue as users continue to use the system.
Only when final implementation of the patches occur is the system briefly
impacted.

2.3 Future System Availability Technologies - SCA

For future sys~em availability HP will focus on providing incremental
improvements In high availability. We will also emphasize the development
of more cost-effective high availability solutions, as indicated by industry
trends, for 1992 and beyond through a concept called System Component
Availability (SCA).

2.3.1 System Component Availability (SCA) concept

The technology available today has provided for a multiple box solution to
reduce unplanned outages. For example, SPU Switchover/XL requires two
system processing units (SPUs) to provide redundancy in processors. The
same is true for disk mirroring. The cost for redundancy is justified for
ensuring high system availability.

Through System Component Availability (SCA) this cost premium can be lowered
while providing somewhat greater availability than a standard system
component, e.g. SPU, disk. SCA creates a family of high availability
solutions. In many cases "filling" in between the standard and the totally
redundant solutions, Figure 6 represents an example of this with disk. The
seA concept involves designing and building high availability into the
actual components (e.g. SPU, disk).

For example, disk availability solutions will involve not only disk
mirroring but also parity disk arrays (PDA) -- disk SCA. More details about
PDA are described in the next section. Though providing greatly increased
data availability, PDAs do not provide the redundancy in disk controllers,
power supplies or interface adapters that mirrored disks allow. This
positions PDAs as an availability solution between standard and mirrored
disk, as shown in Figure 6. The objective is greater cost-effectiveness
with a lower price premium.

3119-10



In minimizing planned downtime, such as backup, HP may focus on process
automation, flexibility in leveraging backup devices for mUltiple systems,
and performance improvements. While increased functionality will occur, the
primary focus will be on improving cost-effectiveness. Other areas of
improved planned downtime management, e.g. configuration management, will
follow in due course.

2.3.2 Parity disk arrays (PDAs) increase cost-effectiveness

Currently, the disk mirroring product for MPE/XL systems allows mirroring of
data in user volume sets. The product provides protection against failure
of disk mechanisms (HDA--head disk assembly), disk controllers and HP-FL
interface adapters. Hence, disk mirroring provides complete redundancy of
the disk subsystem.

An upcoming extension to full disk mirroring is the concept of parity disk
arrays (PDAs). In concept, PDAs might involve five separate disk mechanisms
connected to a single controller and single HP-FL interface adapter. In a
parity configuration, four disk mechanisms serve to store data while the
optional fifth mechanism stores the parity data of the other four. In the
event of a HDA failure, all data is protected through the use of the parity
data. PDAs allow for rapid and transparent reconstruction of any lost data,
as well as easy, online servicing of the failed HDA mechanism.

The system component availability (SeA) feature of PDAs, provide a cost
reduction over disk mirroring. The result is a more cost-effective approach
in providing protection against HDA failures. Note, however, that a PDA
architecture does not provide complete protection against disk failures as
does disk mirroring. For instance, the PDA concept does not provide for
redundancy in disk controllers, disk power supplies or HP-FL interface
adapters. As such, PDAs actually "fill a hole" in providing a continuing
array of solutions aimed at reducing outages due to disk failures.

2.3.3 continuinq towards software resilience

For 1992 and beyond, HP will focus on reducing system failures and ways of
making the system more resilient to software and hardware failures. Some
current system failures could be isolated to a single process which could be
aborted instead of bringing the system down. HP will also emphasize on
fault isolation strategy, such as the use of "footprinting" in the kernel in
order to isolate and recover from error conditions without causing a system
abort.

2.4 Summary of BP 3000'8 availability strategy

The strategy to achieve higher system availability summarized above is based
on three fundamental elements:

- Provide exceptionally reliable system components
- Provide a product family of integrated continuous availability solutions
- Increase the cost-effectiveness of providing continuous availability

with these elements HP is setting a direction which will position itself as
a leader in OLTP.

3119-11



3. High Availability Data Center Recommendations

The individual high availability product offerings from HP can be combined
to provide maximum availability for critical applications and data.

Proper planning is required to create the optimum hardware configuration and
data placement strategy. We will examine a setup that uses the following
products to achieve maximum data availability:

TurboStore II/XL with On-line Backup
Autorestart/XL
Mirrored Disk/XL
SPU Switchover/XL
parity Disk Arrays (coming out with MPE XL release 4.0)
Open View DTC Manager

Figure 7 shows a conceptual view of a high availability data center. In
this scheme all critical data and applications have been migrated to
mirrored volume sets which are configured to be switchable between two SPUs.

Each system is equipped with an additional user volume set so Autorestart/XL
can perform a fast dump to disk and automatically reboot the system in the
event of a software failure.

The system volume set on each system is made up of parity disk arrays
(PDAs). (Available '92) While they do not cover the complete disk subsystem
with redundant components, they provide a high level of protection against
failures.

Open View DTC Manager is running on a PC connected to the LAN to provide
terminal switchover and assist in network switchover.

For backup, TurboStore II/XL with on-line backup is used. It can be used to
backup to a magneto-optical device for large capacity unattended backups.
And with Allbase/SQL applications, the on-line backup takes place with zero
application downtime. Other application data requires only a short
quiescent period before the backup begins, then the applications can
continue.

In this high availability configuration, only a limited number of events can
cause unexpected downtime, and only very rare events (such as a site
disaster or two mirrored disks failing at the same time) can cause an
extended period where the data is not available.

Planned downtime is minimized with the use of TurboStore II/XL with on-line
backup. Planned downtime is also reduced by scheduling a switchover in the
event that a machine requires an extended period of down time for preventive
maintenance or hardware/software updates or configuration changes.



Pigure 7. BP3000/MPE XL Biqb Availability Data Center

HP3000/MPE XL High Availability Data Center

OpenView

DTe
Manager

Dump Vol Set

Sys Vol Set

In SUJDDlIlry •••

Mirrored Disks
Switchable Volume Sets

Dump Vol Set

Sys Vol Set

DDS

Magneto-Optical

Laroe Capacity Bacl<Llp

lkIatt~BacN.lp

HP's commitment to leadership in the OLTP market has led to a focus on
enhancing system availability. HP will implement a phased approach to
delivering increasing system availability which allows both the time to
develop the appropriate technology as well as the time for customers to
adopt.

HP believes that the solutions proposed here will dramatically reduce both
scheduled and unscheduled system outages. Our goal is to provide continuous
availability in your data processing environment and support the ever
growing processing demands of your business. Today, HP 3000's high
availability solutions are the foundation for this future.

3119-13



Appendix A

Introduotion

SPU switchoverlXL Product Peatur8 Set and Implementation

SPU Switchover/XL is a new product designed to increase data availability on
HP 3000 Series 900 computer systems. In the event that a system must be
down for a prolonged period of time (e.g. because of a hardware failure or
preventive maintenance) mission critical data and applications can be
switched to an alternate SPU so that processing can continue.

SPU switohover/XL has the followinq features:

o switchover of volume sets between a pair of systems - One or more user
volume sets can be switched back and forth between a pair systems. Once
configured, the volume sets can be switched from one system to the other
whenever desired. The switchover could be initiated because of extended
downtime on one system, or for load balancing.

Note: Switchable volume sets must consist of only HP-FL disks.

o Recovery time Data recovery time is less than that associated with a
reboot of a system.

o No reboot of alternate - The system that volume sets are being switched
to can continue normal processing during and after the switchover.
However, the performance implications of the additional load will need to
be evaluated.

o Simple operator commands All volume sets in
configuration are switched from one system to the other
command.

the switchover
with a single

o switchback - When the system from which the volume sets were switched is
once again operational, the sets can be switched back to their home
system. This can be done without impact to processes (on either system)
that are not using the data on the switchable sets.

Note: This product is not intended to assist in recovery from software
failures. Even though switchover time is less than reboot time, the
additional overhead of switching users over to the alternate system,
and eventually back to the home system, would probably negate the
advantage. This would need to be evaluated on a case by case basis.

Hardware configuration

Figure 8 shows an overview of the hardware configuration for SPU
Switchover/XL. The most notable characteristic is the fact that each group
of switchable disk drives has a physical connection to both systems. (A
more detailed picture of how this is accomplished is presented below.)

The drives are accessible by only one system at a time. During boot, the
drives will mount for access on their home system as specified in the SPU
switchover configuration. On the alternate system, they will appear as
volume type LOCKED and will not be available for access.

3119-14



apair -

Figure 9 shows a more detailed view of the SPU switchover configuration.
switchable volume sets are connected to two systems via the HP Fiber Link
interface. There may be up to eight disk drives connected together with
P-Bus cables from each HP-FL Device Adapter card. The minimum number of
switchable disks is two, since one HP-FL DA card from each machine must
connect to a disk drive in the chain.

Software configuration

Using sysgen

Sysgen is used to configure SPU switchover. The purpose of the
configuration is to define which volume sets may be switched, and the home
and alternate systems for those volume sets. The configuration will be used
to determine on which system a volume set will mount at boot time.

Commands

asystem - Used to give each system a name. This name is used in subsequent
configuration commands.

Used to specify a pair of systems, one of which is a home system
(for some volume set(s» and one of which is an alternate.

avolset - Used to identify a switchable volume set. The parameters of the
command specify the home system and alternate systems for that
volume set.

show - Used to display the current configuration.

dvolset - Used do delete a volume set from the configuration.

dpair - Used to delete
configuration.

a home/alternate system pair from the

dsystem - Used to delete the system name previously specified.

working Example

Let's examine the steps necessary to set up an SPU switchover/XL
configuration on a pair of systems. For the purposes of this example, we
will be sharing a two volume mirrored volume set (four disks total) called
DATA VOL SET between two machines. The machines will be named XX and YY. XX
will-be the home system for the volume set and YY will be the alternate.

The hardware would be set up as shown in figure 9. Assume that the disks are
brand new and have no data on them. Further assume that the normal sysgen
configuration files have been established that designate the disks on one of
the FL chains to be ldevs 31 and 32, and the disks on the other FL chain to
be 41 and 42, on both systems. (Note that switchable disks do NOT need to
be the same ldev on both systems for SPU switchover/XL to function.)

Given this initial hardware and software configuration, we are ready to
begin the SPU Switchover/XL software configuration. Before any switchover
configuration is present, disks that are connected to two systems follow a
simple rule during the bootup process. A disk will mount for access on the

3119-15



system that "talks" to that disk first. It will mount as "LOCKED" (as
displayed by the DSTAT command) on the other system. It will not be
available for either access or initialization on the other system.

Therefore, in preparing for switchover configuration, we make sure that the
system on which we plan to do the configuration (system XX) is booted before
the other system (YY).

On system XX we would see the following from a DSTAT command:

LDEV-TYPE STATUS VOLUME (VOLUME SET - GEN)
----------- --------- -----------------------------
30- 079371 MASTER-Me MEMBER1 (DATA_VOL_SET-O)
31- 079371 MEMBER-Me MEMBER2 (DATA_VOL_SET-O)
40- 079371 MASTER-Me MEMBER1 (DATA_VOL_SET-O)
41- 079371 MEMBER-MD MEMBER2 (DATA_VOL_SET-O)

This shows that the volume set is mounted for access by the system.

On system YY we would see the following from a DSTAT command:

LDEV-TYPE STATUS
----------- ---------
30- 079371 LOCKED
31- 079371 LOCKED
40- 079371 LOCKED
41- 079371 LOCKED

VOLUME (VOLUME SET - GEN)

The status is LOCKED because these disks are locked by another system and
not available for access.

Although we plan to do the configuration on system XX, there is one part of
it we must do on system YY. We must give system YY its switchover
configuration name directly on the system itself. All other configuration
work will be done on system XX.

After running SYSGEN on system YY, the following is typed at the sysgen
prompt:

sysgen> spu

This will display a list of commands and give the spu prompt, at which the
following is typed:

spu> asystem YY

This is the only action taken on YY. The rest of the configuration is done
on XX.

On system XX, sysgen is run and the spu command is entered.
series of commands will:

1) name system XX for switchover configuration purposes

2) designate XX as the primary and YY as the alternate system

3119-16

The following



3) designate DATA_VOL_SET as a switchable volume set whose home system is XX

spu> asystem XX

spu> apair home=XX alt=yy

spu> avolset volset=DATA VOL_SET home=XX

We could now use the show command to see what we have set up:

spu> show

Home

xx

Alternate

yy

Volume Sets

At this point we are ready to save the configuration in the usual manner.

spu> hold
spu> exit

sysgen> keep
sysgen> exit

The switchover configuration is now ready to be activated. This is done
using the new CI command SPUCONTROL.

After the initial switchover configuration (as well as after any changes are
made to the switchover configuration) the SPUCONTROL SETUP command must be
issued. This pushes the configuration file SPUINFOP over to the other
system so that the two are in sync.

:SPUCONTROL SETUP

Now that the SPUIJ:FOP files are in sync on the two systems, we are ready to
complete the activation of the switchover environment with the following
command:

:SPUCONTROL START

This begins the background communication between the two SPUs.
point, the volume set DATA VOL_SET can be switched from XX to
desired.

At this
yy when

If the system XX were to suffer a failure, a repeating console message would
appear on yy notifying the operator of that fact. The determination would
then be made whether to switch the volume set over to YY or not. If it is
determined that XX will be down for an extended period and a switchover is
necessary, it can be effected from system YY with a single command:

:SWITCHOVER from=XX

This will mount all volume sets (in this case just DATA VOL SET) configured
to be home to XX, on YY. They will go through the -normal transaction
management recovery process and then be available for access.

3119- 17



When XX has been repaired and we are ready to switch the volume set back to
it, we must first close the set on YY.

:VSCLOSE DATA_VOL_SET

All files on the volume set must be closed before the VSCLOSE will succeed.
Once the volume set is closed, we issue the following from XX:

:SWITCHBACK from=YY

This will mount the volume set on XX and it will be ready for immediate
access. (There is no transaction management recovery here because the
volume set was closed.)

Note that the volume set could have been switched from XX to YY at any time
by simply issuing a VSCLOSE on the set from system XX, followed by the
SWITCHOVER command on YY.

3119-18



IPUA

I
I
I
I

I
I
I'
I
I
I
IL ~

IPU.

Wiquro 8. 8PO switohover/ZL configuration

3119-1.9



SPU-A

~iqur. ,. 8PU switohover/ZL Bardware configuration

3119- 20



HPVOLINFO - A NEW DISK MANAGEMENT INTRINSIC

by
Pat Alvarez

Lalitha Pejavar

Commercial Systems Division
Hewlett-Packard

19447 Pruneridge Ave
Cupertino, CA 95014

(408)725-8900

ABSTRACT

There has been a growing need among DP and MIS managers for a programmatic tool to track
disk space usage. This \\'ould supplement the already available commands and utilities such as
DSTAT~ FREES and VOLlTTIL which are essentially more interactive in nature.
HP\'OLINFO is a new intrinsic which has been added to the MPE intrinsic library (both MPE
V and MPElXL) designed to fill this need. It is intended to provide the user with the capability
to programmatically extract disk space usage information. As the user's system becomes more
complex due to increased number of disks with larger disk capacities, it becomes important to
dynamically monitor the usage, especially wben approaching the current maximum
configuration limit of 64 spindles. Using the HPVOLINFO intrinsic to monitor disk space
usage regularly, problems that are likely to impact performance and limit resource availability
can be anticipated and timely preemptive action can be taken to avoid them. The
HPVOLINFO intrinsic enables users to retrieve 45 different metrics related to disk
management. Additionally, these metrics can be charted to produce a visual representation of
usage trends. More importantly, the information generated by HPVOLINFO can be used to
automatically trigger other actions specified by the user.

INTRODUCTION

On MPE, there are different methods to find out bow much disk space is available or used
through various commands and utilities - LISfF) REPORT, VINIT, FREES, VOLUTIL, etc.
But, currently, no intrinsics return this type of information and therefore, the process of
gathering volume space information becomes a very manual process through the use of these
commands and utilities. Since no volume intrinsics exist today, the customer must write
privileged mode programs which are not supported by HP in order to retrieve volume
information from the system tables. As a way to gather volume information more easily, the
HPVOLINFO intrinsic has been added to the MPE intrinsic library on both MPE V and
MPElXL. Note: The terms "volume" and "disk" will be used interchangeably throughout this
document.

HPVOLINFO is designed to provide the MIS and DP managers the capability to
programmatically extract infonnation regarding disk space usage from system and nonsystem
volumes. 'lbe volume information that is returned can be used to track volume space usage.
More specifically, the information that is returned describes how the space on volumes is
allocated - i.e. how much is used for operating system purposes, how much space is free space.
how much space is used for spool files, etc. In addition, HPVOLINFO provides information
about the structure of the disks on a system, Le. volume set names, volume class names.

HPVOLINFO - A New Disk Management Intrinsic 3120 - 1



volume names, etc.

The information that can be retrieved using HPVOLINFO includes:

• Drive type

• Capacity of a volume

• Sector size of a drive

• Amount of volume space used by MPE

• Spool file space usage

• Permanent file space usage

• Volume type

• Volume set name

• Number of volume classes

• List of volume classes

• Ldev that a volume is configured on

• Free space information

• Number of member volumes

• List of member volume names

• Number of volume sets

• List of volume sets

CHARACTERISTICS of HPVOLINFO

Using HPVOLINFO, up to 6 items of information can be retrieved for each call of the intrinsic
for either a device (a volume), a set (one or more volumes logically grouped), or a class
(logical groups in a volume set). The following is the syntax for an HPVOLINFO intrinsic
call:

HPVOLINFO (status, volspecitiernum, volspecitier [,itemnum, item] [...] );

The parameter volspecijiernum is used to indicate the type of volume selection that is to be
used to obtain information from HPVOLINFO. It can range from 0 to 5 depending upon
whether the caller is specifyjng all volumes on a system, a specific logical device number, a
volume set, a volume class, a volume name or a device class name. The default for
volspecijiernum is 0, i.e. all volumes on the system, if the parameter is not specified. The next
parameter, volspecifier, is used in conjunction with the volspecifiernum parameter and actually
contains the information indicated in the fonner. For example, a volspecijierlZunJ of 1 refers to
a specific logical device number which is then passed as an integer in the vo/specifier
parameter. Similarly, a vOlspecifiernum of 2 indicates that the user is specifying a volume set
name which then is passed in the vo/specifier parameter as a character array. Since a
l'olspecifierlllll1l of 0 indicates all volumes. the vo/specifier parameter is ignored. A detailed
description of this usage is provided in the MPE Intrinsics Reference Manual.

HPVOLINFO - A New Disk Management Intrinsic 3120 - 2



The itel1mum and item parameters (up to 6 pairs of itemnum parameters and associated item
buffers) are for the actual characteristics that the user would query through this intrinsic.
Itemllum is the cardinal number of the item desired (see summary of item numbers and items).
For example, the user would use an itemnum of 5 to get the number of mounted volumes for a
given set, and HPVOLINFO would return this integer value in the item parameter. Similarly,
the user would use an itemnum of 7 to get the names of the volumes which are a part of a
given set, and HPVOLINFO would return in the item parameter a character array consisting of
volume names. A complete list of valid itemnums and the detailed information regarding the
associated item buffers can be found in the MPE Intrinsics Reference Manual.

An optional status parameter is also provided that serves as a check as to whether the call was
successful. However, it is strongly recommended that this status parameter is used in practice
since failure to do so will cause the calling program to abort if the call was unsuccessful.

The following table summarizes the information returned by the HPVOLINFO intrinsic.

ITEM # 1: Reserved for system use.

ITEM # 2 and 3 : Number and List or Volume Sets

Item 2 returns the number of system and nonsystem volume sets configured on the
system and Item 3 returns a list of all the system and nonsystem volume set names
configured on the system. The user \vould typically want to use Item 2 in
conjunction with Item 3 so that the value returned by Item 2 can be used to
determine the size of the buffer to pass when calling HPVOLINFO with Item 3.

ITEM # 4 and 5: Number and List of Volume Classes

Item 4 returns the number of volume classes and Item 5 returns a list of volume
class names associated with a volume or volume set. Since a volume can be
associated with more than one volume class, Item 4 can be used to retrieve the
number of volume classes belonging to a specific volume. Likewise, it can return
the number of classes associated \\'ith a set. Similarly· Item 5 can be used to return
a list of volume classes that the volume is a member of or that is a subset of a set.
The user would typically want to use Item 4 in conjunction with Item 5 so that the
value returned by Item 4 can be used to determine the size of the buffer to pass
when calling HPVOLINFO with Item 5.

ITEM # 6 and 7: Number and List of Member Volumes

Item 6 returns the number of member volumes and Item 7 returns the list of names
of the member volumes in the specified volume set, volume class or device class.
The user would typically want to use Item 6 in conjunction with Item 7 so that the
value returned by Item 6 can be used to determine the size of the buffer to pass
when calling HPVOLINFO with Item 7.

Table 1 - Summary of Item Numbers and Items (continued)

HPVOLINFO - A New Disk Management Intrinsic 3120 - 3



ITEM # 8 and 10: Drive Type and Volume Type

Item 8 returns the drive type and Item 10 returns the volume type of a given
volume. The drive type refers to the name of the drive i.e. HP7935 or HP7937.
Volume type will return whether a given volume belongs to either a system or
nonsystem volume set.

ITEM # 9: Drive Sector Size

Item 9 returns the drives logical sector size. Currently, this logical size is always
256 bytes.

ITEM # 11 and 12: Volume Name and Volume Set Name

Item 11 returns the volume name and Item 12 returns the volume set name
corresponding to the passed Idev. An Idev can be associated with only one volume
set.

ITEM # 13: Logical Device Number

Item 13 returns the logical device number of the specified volume.

ITEM # 14 and 15: Volume Capacity

Item 14 and 15 return the volume capacity for a given volume or the total capacity
of all the volumes for a given volume set or class.

ITEM # 16 through 29: MPE Overhead

Items 16 through 29 return MPE overhead or volume space that is used for
operating system purposes. Item 16 and 17 return the total MPE overhead. This
total consists of everything on a volume that is not set aside for file space use. On
MPE V, the MPE overhead includes - volume label, virtual memory, directory.
defective tracks/sector table, initial segments, disk cold load infonnation table,
volume table, free space map and channel programs; on MPEIXL - volume label,
file label table, directory, volume set infonnation table,free space map, transient
space and transaction management overhead. A subset of the MPE overhead is
returned through items 18 and 19 (MPEIXL transient space), 20 and 21 (MPEIXL
configured transient space), 22 and 23 (MPE V Virtual memory), 24 and 25
(Directory), 26 and 27 (MPEIXL file label tables), and 28 and 29 (MPEIXL
transaction management).

ITEM # 30 and 31: Spool File Disk Space Usage

Iterns 30 and 31 return spool file disk space usage. Spool file space consists of the
volume space that is used by spool files. Spool files are files that are not a part of
the permanent file space. This space can only be found on system volumes that arc
configured with the device class of SPOOL.

Table 1 - Summary of Item Numbers and Items (continued)

HPVOLINFO - A New Disk Management Intrinsic 3120 - 4



ITEM # 32 and 33: Disk Space Used by Permanent Files

Item 32 and 33 return the disk space used by permanent files.

ITEM # 36 through 43: Free Space Information

Items 36 through 43 return free space information for a volume or a group of
volumes. By using Item 36 and 37, the user can pass -an array that specifies a series
of ranges, and the intrinsic will return the number of free areas whose size is within
each of the ranges. Item 38 and 39 returns the free space distribution sectors per
range. The user can pass an array that specifies a series of ranges, and the intrinsic
will return, for each range specified in the array, the total free space for free areas
found in that range. Item 40 and 41 return the total free space on a volume or a
group of volumes. Item 42 and 43 return the largest contiguous free space area on
a volume or a group of volumes.

Tabel 1 • Summary of Item Numbers and Items

INTRINSIC USAGE

This section describes how to obtain and use the infonnation returned from the HPVOLINFO
intrinsic.

Prior to the HPVOLINFO intrinsic, invoking MPE commands was the only \vay the user \\'as
able to get volume information. For example, the DSTAT command could be used to get the
volume set name that a particular Idev is associated with, and the REPORT command could
be used to get the amount of permanent file space used on the system and then the filespace
sectors displayed by the REPORT command could be summed up. Using these commands the
user could analyze the composition and management of his disks.

Consider, for example, trying to detennine the disk space utilization of the system disks. For
simplicity, we \\111 assume that there are no user volumes (private volumes, on MPE V) on the
system. The type of information the user would want to knO\V includes: the amount of space
used by fvfPE, Le. directory space, virtual memory, volume label, etc., the amount of space
being used for permanent files and spool fil~s, and the amount of free space.

To obtain the space used for permanent files, spool files and free space, the user could do the
following:

:DSTAT ALL

:REPORT @.@

:SBOWOUT STATUS

:DISCFREE (on MPE V, FREES)

Displays disk management information

Returns permanent f\le space

Returns spool file space

Reports free space

HPVOLINFO - A New Disk Management Intrinsic 3120 - 5



Trying to determine the amount of directory space used or any disk space used by MPE
becomes a little more difficult, if not impossible. In addition, trying to determine these figures
for a particular disk as opposed to all the system disks, makes the task become even more
difficult. Likewise, if this case was extended to include user volumes, gathering this type of
information becomes even more complicated.

HPVOLINFO will now provide the user with a supported interface to the operating system to
obtain volume information. HPVOLINFO allows the user to programmatically obtain all the
information described above, along with some other features not mentioned in the example. It
will return this information per disk, set, or class for both system and user volumes.

Some examples using HPVOLINFO include:

• Determine the amount of 'lost disk space" on the system and therefore, predict when a
"condense" (through VINIT) or "recover lost disk space" is needed

• Maintain a history of the disks on the system (i.e, fragmentation, allocation) in order to
predict future disk requirements and forecast future disk space needs

• Customize the VOLtJI1L "SHOW" commands

Determine "lost disk space"

On MPE V, any free unused space not referenced by the Disk Free Space Map (DFSM), is
considered "lost disk space". For example, space results in this state when a system failure
occurs due to temporary files being opened. This space can only be recovered \\~hile in
INITIAL or through the CONDENSE command in VINIT. Because the time to recover this
space is approximately 5 to 10 minutes for every 1000 files, this process can take a very long
time for a very large system -- regardless of the amount of lost disk space.

In the past, typically, a "recover lost disk space" was done in a reactive type manner. For
example, if users were experiencing "out of disk space" problems, this was a good sign that a
"recover lost disk space" was needed and a decision had to be made as to whether recovery
steps should be taken. Using HPVOLINFO, the amount of lost disk space on the system can
be determined and prevent unneeded recovery from occurring. To determine lost disk space,
each of the items below must be retrieved from HPVOLINFO and the following equation
applied: (program illustrated in Example 1)

capacity of all the disk drives { Item 15 }

- permanent file space { Item 33 }

- spool file space { Item 31 }

- MPE overhead { Item 17 }

- tree space { Item 41 }

= lost disk space

HPVOLINFO - A New Disk Management Intrinsic 3120 - 6



program lost_disk_space (input. output);

const
vol_set_specifier =2; { specifier is a volume set }

max_items 6' { 6 items of information can be retrieved }

capacity_item 15; { defines BPVOLINFO itemnum 15 }

mpe_overhead_item = 17; { defines BPVOLINFO itemnum 17 }

spool_file_item 31; { defines BPVOLINFO itemnum 31 }

perm_file_item 33; { defines BPVOLINFO itemnum 33 }

free_space_item 41; { defines BPVOLINFO itemnum 41 }

(int.sint);
record

case tag
sint
int

end;

type
int_type
status_type

: int_type of
(sint packed array [1 .. 2] of shortint);
(int : integer);

status

item_capacity.
item_mpe_overhead.
item_spool_file.
item_perm_file.
item_free_space
itemnum

var

{ volspecifier can be an integer or a character array }
volspecifier_type = record

case integer of
o (pac packed array [1 .. 70] of char);
1 : (int : shortint);

end;

status_type; { returns information if error occurs}

{ returns HPVOLIHFO item for capacity}
{ returns HPVOLINFO item for overhead}
{ returns HPVOLINFO item for spool files }
{ returns HPVOLINFO item for perm files}

longreal; { returns HPVOLIHFO item for free space}
array [l .. max_items] of shortint;

volspecifiernum
volspecifier

shortint; { defines BPVOLIRFO volspecifiernum }
volspecifier_type;{ defines HPVOLINFO volspecifier }

longreal;

procedure hpvolinfo; intrinsic;

begin

status.int 0;

Example 1 - Determining Lost Disk Space Using HPVOLINFO (continued)

HPVOLINFO - A New Disk Management Intrinsic 3120 - 7



volspecifiernum := vol_set_specifier; { volume specifier is system}
volspecifier.pac := 'Y.mpexl_system_volume_setY.';{ volume set }

itemnum[l] := capacity_item;
itemnum[2] := mpe_overhead_item;
itemnum[3] := spool_file_item;
itemnum[4] := perm_file_item;
itemnum[5] := free_space_item;

{ retrieve 5 items from BPVOLIRFO }

hpvolinfo(status.int. volspecifiernum. volspecifier.
itemnum[l]. item_capacity.
itemnum[2]. item_ape_overhead.
itemnum[3]. item_spool_file.
itemnum[4]. item_perm_file.
itemnum[5]. item_free_space.);

if status.int <> 0 then
begin

vriteln('ERROR occurred in HPVOLIHFO');
vriteln('Error -, status.sint[l]);
writeln('Subsystem = '. status.sint[2]);

end
else

begin
{ determine lost disk space and display values }
lost_space := item_capacity - item_mpe_overhead 

item_spool_file - item_perm_file 
item_free_space;

writeln('Capacity
writeln('Overhead
writeln('Spool file
writeln( 'Perm file
writeln('Free space
writeln('Lost Disk Space

end;

end.

='

='
=' •
='
=' •

item_capacity);
item_mpe_overhead);
item_spool_file);
item_perm_file);
item_free_space);
lost_space);

Example I - Determining Lost Disk Space Using HPVOLINFO

Tracking Disk Trends

Whether it is to determine how to allocate disk space for new projects or to determine when
more disks arc required, HPVOLINFO can be used to track disk space usage, and therefore,
future disk needs can be predicted. This information can also be used for planning purposes.
One way of doing this is to create a job that produces output reports based on the information
returned by HPVOLINFO. This job can be scheduled at any specified time of the day on a
routine basis. These output reports can be used for tracking disk space usage, and to

HPVOLINFO - A New Disk Management Intrinsic 3120 - 8



detennine the appropriate steps required to assure efficient disk space use. Also, if desired,
the output can be mapped to operator warning messages when deemed necessary. For
example, warning messages can be used when it is determined that disk space limits are being
reached. Likewise, warning messages can be used to let the operator know the space
availability on particular disks.

Customize VOLUTIL "SHOW" commands

The SHOWSET, SHOWCLASS, and SHOWVOL commands in VOLUfIL display set, class
and volume information. Since HPVOLINFO not only returns disk space infonnation, but
also returns formatting type infonnation (volume set name, volume name, drive type), the user
could use a combination of the infonnation that HPVOLINFO returns to create his own
customized VOLUTIL "SHOW" commands. For example, the output from the VOLUfIL
SHOWSET SfRUcr command for the system volumes on a system would look as follows:

volutil: showset mpexl_system_volume_set struct

MEMBERl
MEMBER2
MEMBER3

DISC

Volumes in class: MPEXL_SYSTEH_VOLUHE_SET:DISC

MEMBER1
MEMBER2
MEHBER3

The same information can be returned by HPVOLINFO using items #6 and #7 (number of
member volumes and list of member volumes) to return the 'Volumes in set" and the
"Volumes in class"; and items #4 and #5 (number of volume classes and list of volume classes)
to return the "Classes in set".

LIMITATIONS

HPVOLINFO gives the user a snapshot of disk space at the time the call is executed. It does
not give the user any indication of how the disk space is dynamically changing over time.
Therefore, if a lot of activity is occurring on the system at the time the call to HPVOLINFO is
made, some of the items returned may not reflect the expected result. For example, when
HPVOLINFO is called .to return the disk space used by permanent files, a value is returned.
But, if immediately after the value is returned, a process on the system purges a file (FCLOSEs
a file with disposition 4), the value will not reflect this difference. Also, a call to the intrinsic
to retrieve certain items such as permanent file space will require considerable CPU resources
and should be avoided at peak load times.

HPVOLINFO ~ A New Disk Management Intrinsic 3120 ~ 9



The HPVOLINFO intrinsic will return a "volume not mounted" error if the logical device
number, volume set or volume class for which the information is requested, is not logically
mounted. Logically mounted refers to invoking the commands LMOUNT or MOUNT on
MPE V and VSRESERVESYS or VSRESERVE on MPFJXL. If a volume is taken offline
while the process is accessing it through HPVOLINFO , the process will hang. This is because
lOs cannot complete for that disk until the volume is back online.

On MPFJXL, since mirrored disks maintain identical copies of the same information on two
disks, the values that are returned by this intrinsic reflect information from one of the volumes
selected randomly in a mirrored disk pair.

CONCLUSION

The HPVOLINFO intrinsic fills the need for accessing information in a timely manner so that
disk space management becomes more effective. The more complex systems get, the greater
the need will be for accurate information extracting tools. For example, Volume Management
in MPEJXL enables the user to control and manage his disk space allocation based on a
functional and application based relationship. This is because of its well partitioned volumes,
volume sets (System Volume Set and User Volume Set) and volume classes. HPVOLINFO
takes advantage of this powerful Volume Management facility giving the user an efficient tool
to manage his disk space. As a result, the user can better utilize the disk space as opposed to
having to unnecessarily add more resources and thus, saving precious capital.

HPVOLINFO - A New Disk Management Intrinsic 3120 - 10



MPE Xl Enhanced FOS Security

by
Rich Webber

MPE XL Support Engineer
Commercial Systems Division

Hewlett -Packard Company

INTRODUCTION

With the 3.0 release of MPE XL. Hewlett-Packard will introduce several new and enhanced system
security features. f\fost of the information presented in this paper is available in the Fundamental
Operating System manual set but it is spread across seven different manuals. It is provided here in an
attempt to centralize it for easy reference.

The .;hanges in ~IPE Xl provided with Enhanct'd FOS Security address three primary areas:

• DiscretiC'nary Ac~ess C~mtrol

• LvgC'n Access Security
• Security Auditing

Discretionary Access Control

File access on ~IPE Xl can be made m('re secure by the implementation of a Discretionary Access Control
(DAC) mechanism. This mechanism is dlscretlvnary. in that it is up to the owner of the object to grant
access rights to whomever he wishes and access is based solely on this, not on the enforcement of some
mandatory rules (e. g., a file access matrix),

Logon Access Security

Three new features have been added to improve logon access security:

• A new CI command for manipulating user pas~words

• Enhancements to password prompting
• Job submitter banner

Security Auditing

The following security auditing enhdn~tmentshave b.,;en implemented within the system logging fa~iJity:

• Logging of password changes
• Logging of system logging cvnfiguration
• Logging of restore
• Logging of printer acce~s failure
• Logging of ACD changes
• Logging of stream initiation
• Logging of user logging
• Logging of process creation
• Auditabllity by named user

MPE XL Enhanced FOS Security
3121-1



DISCRETIONARY ACCESS CONTROL

The C2 classifIcation of the Trusted System Evaluation Criteria requires that a trusted system "shall
define and control access between named users and named objects", and the enforcement mechani~JO "shall
be capable of including or excluding access to the granularity of a single user". The DAC guideline from
the National Computer Security Center recommends the use of Access Control Lists (ACLs) as the best
way to meet the DAC requirements. Access Control Definitions will be the DAC mechanism on MPE XL.
Access Control Definitions (ACDs) are extensions of Access Control Lists in the sense that an ACD not
only contains a list of users who can access an object (e.g., a file or a device), but it may also contain
restrictions such as the day and time at which a user can access the object. Each protected object can
have an attached ACD which specifies who can or cannot access the object. At the time the object is
initially accessed (e. g., file open), this function is evaluated to determine if the access attempt should be
granted or denied.

Only a subset of the possible features of Ac~ess rontrol Definitions will be implemented on MPE XL.
This implementation is fully compatible with the MPE VIE V-Delta-4 implementation of ACDs. Files
and devices are the only objects protected by ACDs, and an ACD wiJI only contain a list of users and the
access modes each user has to the file or device.

ACD Overview

ACDs can be associated with files and devices. An ACD consists of a list of users and the access modes
those users are granted for that file or de\'ice. Each entry in the list is termed the "userspec/mode pair. II

As the creator of a file you may create an ACD for that file which c<.'uld be defined as follows:

• ACD D (R: FARK.DOE; W.A,L: @.DOE,@.PAYROLL)

or

• ACD c (NONE: RAY. DOE, @. CSSO ; R,W : @.@)

The first ACD would grant read access to FARK. DOE and writ'!: append, and lock ~ccess to aU users in
the DOE and PAYROLL accounts. No other user can access the file except the owner (file creator,
account manager, and system manager). The second example a)J0ws no access to RAY. DOE or any user in
the CSSO account but read and write access to all other users on the system.

Each user specification (e. g., RAY. DOE or @.@) and associated modes make up an entry in the ACD. The
maximum number of entries allowed in an ACD is forty (40), twice the maximum on MPE V/E.

ACD Security Policy

Only the owner of a file or device can create and changf' the ACD for that file or device. For a file, the
owners are the file creator, the account manager (\f the account where the file resides, and the system
manager. For devices, the owner of all devices is the system manager. The owners, by definition, have all
access to the object.

\\'hen an ACD is attached to an object, it solely determines the access to the object. In other words, the
ACD overrides existing file security mechanisms such as release/secure, file lockwords, and account, group
and file level attributes. For devices, ACDs override ND capability check.

~IPE XL Enhanced FOS Security
3121-2



Having access to a file or device is different fr('lm having permission to access the ACD for that file or
device. For example, if a user has read (R) acce~s to a file or device, he mayor may not have permission to
read the ACD for that file, depending on if he is granted RACD permission.

The owner of an ACD has all permissions to the ACD. That is, the owner is the ONLY one who can
create, delete, modify, list, and copy the ACD. Ilowever, the owner can authorize other users to access his
ACD. By giving users "RACDtI permission, the owner allows users to READ and COpy the ACD.

RACD is the only permission type allowed to be given to other users.

Where ACDs are Stored

An ACD for a file is stored in the file label extension for that file. An ACD for a device or class is stored
in the file label extension of the appropriate file in the "300Odevs" account.

How ACDs are Created and Maintained

File/device ACDs c~n be created and maintai~let1 through the :ALTSEC command and through the
intrinsic HPA('OPUT.

In additi(\n, ACDs can also be created as the re!'uJt of :COPY, :FCOPY, and :RESTORE when new files are
'rea ted using thrc;e commands.

File ACDs bc",ome a rart of the permanent file objects and therefore will survive a re-boot or optionally
can be STORE'd ur FCOPYhi to a ta pe. Device ACDs, however, are not part of permanent objects and
must be re-applied each time the system is re-booted. It is suggested that this be done by adding the
appropriate :ALTSEC cCommands to create the device ACDs in the SYSSTART file or to a command file
which is inducferi in the SYS~TART file.

Manipulating ACDs using Commands

ACDs can be crtated, modified, and deleted uc:ing the: ALTSEC command. This command can also be used
to copy an ACD from one (.bject to another. The standard access specifications are used (e.g., R, H, A,
L, X). Two new specifications have been added: NONE and RACD to allow no access whatsoever to the file
and to allow read and copy access to the file's ACD, respectively.

To see the contents of an ACD, the : LISTf and : LISTfI LE commands are used for files and the
: SHOWDEV l,\)mmand is ul'ed for devices.

MPE XL Enhanced FOS Security
3121-3



:ALTSEC
[;NEWACD = {(pair spec)} ]

{....acdfTlename} J
[,FILENAME*] ]

[;COPYACD = {sourceobjectname} [,LOEV ]]
[ ,DEVNAME ]]

LfI LENAME*] {(pair_spec) } ]
ALTSE(; objectname [,LDEV ] [;ADDPAIR = {....acdfilename} ]

[,DEVCLASS]
[,DEVNAME ] [ ;REPPAIR {(pa i r 8 pee ) } ]

{....acdfTlename} ]
[ ;OELPAIR {(userspecification)} ]

{....acdfilename} ]
[ ;OELACD ]

* - Default entry

Examples: ALTSEC AfILE;NEWACD=(R,W:OPERATOR.SYS;X:@.@)
ALTSEC 22,LDEV;COPYACD=21,LDEV

:LISTF XYZZY, 4

The output of this command will show if the file has an associated ACDt and what access the user has
according to that ACD.

********************
fILE: XYZZY.P~B.CSSO

SYSTEM READ: ANY
SECURITY--WRITE: AC

(ACCT) APPEND: AC
LOCK: AC
EXECUTE: ANY

SYSTEM READ: CU
SECURITY--WRITE: CU

(GROUP) APPEND: GU
LOCK: GU
EXECUTE: GU
SAVE: GU

SECURITY--READ: ANY
(FILE) WRITE: ANY

APPEND: "NY
LOCK: AN':'
EXECUTE: ANY

fCODE: 0
--SECURITY IS ON

ACO EXISTS

fOR JOE.CSSO: READ,WRITE,APPEND,LOCK,EXECUTE

The nACO EXISTSndisplay is new. Other possible displays in thi:; place are: NO ACO and ACD CORRUPTED.

MPE XL Enhanced FOS Secunty
3121-4



:lISTr XYZZY,-2

This new "_2" option of the :LISTF command wi)) display the content of the ACD associated with the file.
If there is no ACD applicable to the file, t.he output wi)) show "NO AeD". Output for this command wi))
contain all entries of the ACD as follows;

ACCOUNT= CSSO

FILENAME

GROUP= PUB

------------ACO ENTRIES--------------

XYZZy JOE. DOE
@.OSE
@.@

R
R,W,A,L,X
X

The new :LISTFILE command contains an option to list the ACD associated with the file. The output for
this option is the same as shown above.

: SHOHDEV has been modified to display ACDs associated with devices.

[devname ]
:SHOWOEV [ldev ] [;ACO)

[devclassname)

.\n example (\utput from the :SHO\\'DEV command with the ACD option included is as follows:

:SHOWDEV 14; P.CO

lOEV AVAIL OWNERSHIP VOLIO DEN ASSOCIATION

14 SPOOLED
ACO ENTRIES:

SPOOLER OUT
@@ : R,W,X

Manipulating ACDs using Intrlnslcs

Programmatic query and manipulation of ACDs is accomplished through the use of the HPACDINFO;
HPACDPUT, and IIYfOPEN intrinsics.

HPACOINFO alJows a program to obtain information regarding an ACD's number of entries, ver-.jon
identifi(,ati(\n, anti identity of the first user in the access list. For each additional entry, information thitt
can be obtainc:d includes the specified user's access modes and the next user identity in the list.

HPACDPUT allows a program to create, delete and copy entire ACDs for specified objects. Additionally,
u~er r-pecificatiun/pairs can be added, replaced or deleted.

AJJitionally, a new option, HOP_OPTION_ACD (1164), has been added to the li.:t of options for the
IIPfOPEN intrinsic. This option allows the caller to specify an ACD specification to be ;\ rplied to the new
f,le which is created by the HPFOPEN call. This option is only legal for new files.

MPE XL Enhanced FOS Security
3121-5



How ACDs are Used

ACDs are used to determine if a user trying to access a file/device is authorized to do so. When there is an
ACD associated with a file/device. the old access matrix (including lockwords) is not used to determine
who can access a file/device. Instead. the ACD is the only mechanism used to determine who can access
the file/device.

Thus. ACDs are checked in two different ways: when accessing a hie, and when acquiring a device.

Accessing a File

In order for a user to access a file, the system win execute the following checks at HPFOPEN/FOPEN
time:

.1. The systelll win check whetl.er the user is any of the following:

• System Manager (has S~f capability),

• AC(,(lunt f\.fanager (has A~ capability), or

• CREATOR of the fae.

If the user is any of these three. then access to the file is granted. Otherwise, the following ~heck is
executed by the system.

2. The s)"slt:m checks if there is an ACD associated with the file. If there is one, the system evaluates the
ACD to determine whether the user is granted access to the file. This evaluation is done by matching the
user to any of the user specifications given in the ACD.

Matd.ing the user to the ACD is done as follows:

• the user name is compared to all the specific names (username. accountname) in the ACD. If the
name does not match, then

• the user name is compared to all the account groupings (@. acc\luntname) in the ACD. If r.o
m~tching account entry is found. then

• tl:e user name is compared to any system grouping present (@. @). If no system entry (@.@) is f0und
in the ACD. then

• the user is not gra nted access.

If a mat(.h is found. the user is given the access and permissions specified in the match entry.

3. If 110 applicable ACD is found. then the old access matrix and Jockword are used to determine if the
u~er is granted ac<.ess to the file. When a user is denied access to a file, whether becau~-e of ACD
verification or according to the old access matrix. the same file system error, security violation. is returneri
to the user.

MPE XL Enhanced FOS Security
3121-6



Special Case:

PRIVILEGED FILES:

I. The system checks whether the process has PM capability, whether the file code matches, and the
privilege level is the correct one. If none of these conditions hold, then the user is denied access. If all of
these conditions hold, t~en

2. The system checks if there is an ACD associated with the file. If there is one, the system evaluates the
ACD to determine whether the user has access to the file.

3. If there is no ACD, then the old access matrix and lock.words are used to determine if the user is
granted access to the file.

Acquiring a Device

For a user to acquire a device, the system will execute the following checks at HPFOPEN/FOPEN time:

I. The system will check whether the user is System l\1anager or the process has PM capability, in which
case the user is allowed to acquire the device.

2. Otherwise, the system checks if the device has an ACD cissociated with it. If there is an ACD, then the
system evaluates the ACD the ~ame way that is described Jbove. That is, the system tries to match the
user's name with any of the user c::recifications in tile ACD. If there is a match, then the user is allowed to
aCQuire the device as specified in the ACD. Otherwise, the user is disallowed acquisition of the device.

3. If there is no ACD, then acquiring the device is doae as is dune tod:lY.

A user FOPENs a device by giving either a device CI.iSS name, a de"ice name, or a device number.

If the user FOPENs a DEVICE CLASS then, the sy~tem will take ~he first available device which belongs
to that device class and perform the checks described ahove to determine if the user is allowed to acquire
the device. If the user is disallowed, then the user will have to try again.

If the user FOPENs a DEVICE NUt\·1BER then, the systtm will only try to match the user with a user
specification in the ACD for the ~~cifjc device. If there i~ a match, th::n the user is granted access. If
there is no match then the user is denied access.

When a user is denied access to a device, whether because of ACD verification or according to the old
acc('.:c: checking method, the same file system error, security violation, is rtturned to the user.

Commands to COpy an ACD

There are several ways ACDs can be copied. Use the : All SEC command to copy an ACD from one
hit/device to another. The :COPY command, the rCOPY utility, and STORE/RESTORE operate on files
only. Dctaile~ descriptions follow.

MPE XL Enhanced FOS Security
3121-7



:ALTSEC

[, fI lENAME* 1
AlTSEC objectname [,lDEV ] [;COPYACD

[ ,DEVC LASS1
[,DEVNAME ]

* - Default entry

[ ,fI lENAME*] ]
{sourceobjectname} [,lDEV ]]

[,DEVNAME ]]

Wild cards will be a])owed for the target filename so a user can copy an ACD to more than one file at a
time. Wild card characters allowed and their meanings are the same as in the :LISTF command.

Similarly, an ACD can be copied to all devices on the system by using the "@" wild card instead of
targetdevicenumber/targetdevicename.

:COPY

The COpy command has been modified to always copy the ACD associated with the source file to the
target file, if one is present. No syntax change is needed for the :COPY commtlnd.

:COPY [from=] souTcefile ; [toe] targetfile

FCOPY

The FCOPY subsystem has also been modified to copy a file's ACD by default. Use the ;NOA("O option to
cn:ate the new file without an ACD:

:FCOPY fr\.\m=sourcefile;toctargetfile [;NOACD]

Note that copying the file will fail if the user copying the ACD is not authorized to do so. That is, neither
the file nor the ACD will be copied even if the user is authorized to cop~. the file.

STORE

STORE has been modified to store ACDs associated with files by default. If it is desired to have files
stored without their ACDs, use the ;NOACD option on the STORE comm::and line.

:STORE fiJp.name ... (;NOACD]

'Vhen storing a file with an ACD associated with it, the ACD will be evaluated to check if the user is
granted access to store the file and the ACD (RACD permission is rcquin:u). If the user is not granted
access to copy the ACD, then storing the file will fail.

If wild cards are used to define file names,then the system win try to store each of the files with th~ir

associated ACD. If in the process there are files for which storing the ACD fails, an appropriate message
will be di~played.

MPE XL Enhanced FOS Security
3121-8



RESTORE

As with STORE, the default for RESTORE is to copy a file's associated ACD when restoring the file. Use
the ;NOACD option on the RESTORE command line to override the default and not copy the ACD.

:RESTORE filename ... [;NOACD]

When restoring a file which has an ACD associated wjth it, the ACD will be evaluated to check if the user
is granted access to the file and the ACD (RACD permission is required). If the user is not granted access
to copy the ACD, then restoring the file will fail. Otherwise, the ACD will be copied from tape and
attached to the restored file on disk.

If wild cards are used to define file names, then the system will try to restore each of the files with its
associated ACD. If in the process there are fjles for which restoring the ACD fails, an appropriate message
will be displayed.

Migration of ACDs

l\1igration of file ACDs is accomplished via the STORE/RESTORE process. Transporting files with ACDs
is poc:c:ible both ways, frc-In an !\1PE VIE system to MPE XL, and vice versa.

Since de\·jc.e ACOs are tied to the system configuration of a specific system, device ACD migration from
one system to th~ next is not available.

ACDs on MPE XL vs. MPE VIE: Key Differences

Although ACDs are the ~ame on MPE XL as those on MPE V/E, there are some differences between the
two versions as noted below:

• The maximum numb~r of ACD entries (pairs) has been increased from 20 to 40 on MPE XL.

• Unlike on MPE VIE where device ACDs are permanent until changed, device ACDs on ~fPE XL do
not survive across system startnrs. Thi~ is because configuration may change at any st:lrtup and all
device and class files in the 13000devs" account (where ACDs are kept for devices) are rebuilt at
every start. To keLp the same device ACDs, the : AlTSEC command can be used in the SYSSTART
file to create the ACDs at every start.

• Internally, MPE XL ACDs are kept in the File Label Table, a disk data structure of MPE XL.
However, on MPE V/E al& ACD is physically part of the file (kept in the file's pseudo extent).

• File wiltlcards can be ust>rl with the :AlTSEC command on ~iPE XL to manipulate the ACDs for
multiple files. Thi;" feature is not implemented on MPE V/E (can only do one file at a time).

• The HPACDPUT and IIPACDINFO intrinsics are fully compatible with those on l\-fPE V/E.
Howe\"er, additional options have been added to allow users to specify a file by its Unique File
Descriptor (lJFID), and to ~pec;fy a device by its device name.

• When spooJfiles are t nwsferred from MPE V/E to MPE XL using the SPFXFER program, if the file
creator docs not have act,css to the printer the spoolfile is put in DEFER state.

MPE XL Enhanced FOS Security
3121-9



LOGON ACCESS SECURITY

This section describes the logon access security features implemented for FOS Security:

• A new CI command for manipulating user passwords
• Enhancements to password prompting
• Job submitter banner

:Password Command

The :PASSWORO command is a new FOS command which allows all users to change the password
associated with their user name. Prior to the introduction of this command only account or system
managers could manipulate user passwords.

When a user name is associated with a non-blank password, users are re-authenticated before they are
allowed to change the password. This re-authentication protects against a person other than a user 10's
owner from walking up to an unattended terminal and using the :PASSWORD command within a
logged-on session to change a user password. Re-authentication is performed by prompting users for
their user passwords and verifying their responses. If an incorrect re-authenticati(\n password is entered,
the :PASSWORD command terminates after displaying an error message on the user's terminal and a
message on the system console.

New passwords are prompted for twice in order to cat.:.h nonrecurring typographic errors. All password
responses are converted to upper case upon input. If both new password responses are not the same
(ignoring case), the password will not be c.hanged and th~ command will terminate with an error message.
New passwords must !i:atisfy password syntax rules and be different than the old user password. These
password syntax rules are the same as the rules enforced for the :NEWUSER and :ALTUSER commands:
the password must be no longer than eight characters long, begin with a character, and contain only
alphanumeric characters. A message indicating whet.her a user password has been changed is displayed on
the user's terminal before the commallii terminates.

The ers HPTIMEOUT variable value is enforced while waiting for user respunses to password prompts. If
this time interval expires while the :PAS~\VORD command is waiting for a user to enter a password, the
session is terminated just as if the time interval expired while waiting at the CI prompt for input.

Because passwords should f.ot be stort"d in files wheIe they can be discovered by other users, and
non-interactive input must be stored in some type (\f file. the :PASS\VORO command has been restricted
to be exe<.utable only in interactive sessions whose $STDIN and $STDOUT have not been redirected.

Password privacy would be seriously undermined if the :PASS\\'ORD command could be invoked from
within a job file containing the new password. Programs may execute the :PASSWORO command
programmatically as long as the program is executing within a session environment which satisfies the
previously stated restrictions. The :PASS\\'ORD comnland avoids displaying passwords on full duplex
terminals by disabling character echo while prompting for passwords and by not allowing passwords to be
specified as command line parameters.

MPE XL Enhanced FOS Security
3121-10



(old password entered)
(new password entered)

(new password entered again)

:PASSWORD Dialogue Examples

Successful Password Replacement

:PASSHORD
ENTER OLD USER PASSWORD:
ENTER NEN USER PASSNORD:
ENTER NEN USER PASSWORD AGAIN:.
PASSNORD MAS CHANGED SUCCESSfUllY.

Unsucce~~rul Re-autbentication

: PASSWORD
ENTER OLD USER PASSWORD: (incorrect password entered)
INCORRECT PASSWORD. (C!ERR 2502)
PASSWORD NAS NOT CHANGED.

l!nsuccessful New Password Verification

:PASSHORD
ENTER OLD USER PASSWORD: (old password entered)
t.NTfR N[N USER PASSWORD: (new password entered)
£NTER NEN USER PASSWORD AGAIN: (typographic error)
NfN PASSWORD IS NOT CONSISTENT. (CIERR 2503)
PASSHORD HAS NOT CHANGED.

Interactions with Other Features

Successful invocations of the :PASSWORD command will generate password change log records if system
logging of password changes has been enabled.

Compatibility

The ~fPE XL :PASSWORD command is upwards compatible with the MPE VIE :PASS\\'ORD command.
The ~tPE XL :PASSWORD command differs from the VIE command in three ways. User passwords are
changed only when the new password is different than the old pllssword. Secondly, the J\.fPE XL
:PASSWORD command is programmatically executable. Thirdly, the Cl's HPTIMEOUT value is enforced
while waiting for user input.

MPE XL Enhanced FOS Security
3121-11



Enhanced Logon Password Prompting

Logon password prompting is being enhanced in two ways. The first enhan~t:ment is that all password
prompts will contain the account) user, or group name in addition to the type of password (account) user,
or group) which is currently displayed. For example, the logon prompt requesting the user password
associated with the MANAGER.SYS user ID will be ENTER USER (MANAGER) PASSHORD:. The second
enhancement is that the password prompting which currently occurs for the :HELLO and :CHGROUP
commands will be extended to the following areas:

• :STARTSESS commands within sessions
• STARTSESS intrinsic calls in programs executing within sessions
• :STREAM commands within sessions, prompting win occur for each first level :J08 and :DATA

command

Password prompting and verification will continue to follow the existing rules for the :HELLO command.
Users will be prompted a maximum of three times for each password. Each failure to supply a correct
password will cause a message containing the user's identity and the logical device number of the logon
device to be disl'Jayed on the systt:m cons,)le. If the logical device belongs to a device class which has been
associated with a user) the error message will be displayed on the $STDLIST of the a,"sociated user rather
than on the system console. Failure to supply a correct response after being prompted for the same
rttssw\:rd thrl"e times will cause the error message INCORRECT PASSWORD. (CIERR 1441) to be
disrJayed on the user's terminal. :STREAM commands will ignore input after this error occurs until
~ither anot Itt'T :J08 or :DATA command is read or an end of file occurs; other commands will terminate
after disrJaying this error message.

RecalJ:,e the :l.J.\TA command does not include a group specification, group password prompting J.'es not
apl·Jy to .DATA commands. Pas~word prompting does not occur when $STDIN or $STDLIST have been
redirected) bf"cause reading responses from a redirected $STDIN would be just another form of embedding
pa~~w(\rds in command lines. Allowing passwords to be ommitted from job files will help reduce the risk
of r:lssword CXp0sure dut to passwords embedded in job files.

E~HANCED PASS"·ORD PROMPTING EXAMPLES. The following logon passw\,)rd prompting
examples a~S\lme the MANAGfR.SYS user 10 has both user and account passwords and that the
SECURITY group has a group password. The following examples are assumed to have run under session
number 72 logged on as the OPERATOR.SYS user ID using a terminal with the device name
OPERTL:R~1.

Job File :STREAM ExampJ()

:PRINT JOBrllE
!JOB JOprIlE,~~NACER.SYS,S[CURITY

!SHOHHE
!EOJ
:STREAH JOBrIlE
ENTER ACCOUNT (SYS) PASSWORD:
ENTER USER (~ANAG[R) PASS~IORD:

ENTER GROUP (S[CURITY) PASSWORD:
#J420

MPE XL Enhanced FOS Security
3121-12

(correct password supplied)
(correct password supplied)

(correct password supplied)



Interactive :STREAM Example

:STREAH
>!JOB INTERACT,HANAGER.SYS,SECURITY
ENTER ACCOUNT (SYS) PASSWORD:
ENTER USER (MANAGER) PASSHORD:
ENTER GROUP (SECURITY) PASSWORD:
>!SHOWHE
>!EOJ
#J421
>:

Job Authentication Failure Example

: STREAM JOBFILE
ENTER ACCOUNT (SYS) PASSWORD:
ENTER ACCOUNT (SYS) PASSWORD:
ENTER ACCOUNT (SYS) PASSWORD:
INCORRECT PAS~HORD. (CIERR 1441)

(correct password supplied)
(correct password supplied)

(correct password supplied)

(incorrect password supplied)
(incorrect password supplierl)
(incorrect password supplied)

On the system console the message INVALID PASSWORD rOR lI,tI DURING LOGON ON L£J£V 1#\. (js
65) is displayed three times, once for each incorrect password. The user's logon information
(jsnametuser. account,group and the Idev of the user's logon device are substituted into the console
message.

Interactions with Other Features

Existing password prompting will use the new password prompts which include the user's user, account, or
group name. For example for the command :HELLO MANAGER. SYS the new prompt WIlJ be ENTER
USER (MANAGER) PASSHORD rather than the old ENTER USER PASSWORD prompt.

The password prompting for the :CHGROUP command will be m:tde consistent with other password
prompting. An INCORRECT PASSWORD (CIERR 1441) error message will no longer be displayed on the
user's terminal for the first two incorrect attempts for each password. This error message was not
displayed during other password prompting dialogues. The present inconsistent behavior was the result of
a programming defed in the STARTLOGON module.

If the Stream Initiation log type is enabled, a log record will be logged for all successful batch suhmissions.

Job Password Prompting Limitations

Although job password prompting can reduce the ll~ed to embt=d passwords in job files it does not
eliminate this need. Jobs which are streamed by jobs must still contain embedded passwords. Job
password prompting 3)SO does not address the desire to limit knowledge of authentication passwords to the
user responsible for a user ID. Users must reveal their authentication passwords to other users if they
wish to allow other uselS to submit jobs on their behalf.

~fPE XL Enhanced FOS Security
3121-13



Job Submitter Banner

The job submitter banner information displayed to $STDLIST is the date and time a job was submitted,
the job submitter's user identity (user. account), job/session number, and logon device number. This banner
is displayed between the logon banner and the welcome message in the format:

STREAMED BY Jsname,user.8ccount ('Jsnum) on lDEVN
STREAM DATE: day, IftIIUIl dd, yyyy, hh:.. AM/PH

An example of the banner format is:

STREAMED BY BACKUP,OPERATOR.SYS ('S73) ON lDEVN 20
STREAM DATE: HON, APR 15. 1991. 10:50 AM

Some jobs are initiated by a system process. An example might be a job streamed as part of the system
startup activities contained in the SYSSTART file. The job submitter information for these jobs will be as
foHows:

STREAr'1ED BY (SYSTEM PROCESS) ON lDEVIl 20
STREAM DATE: HON, APR 15. 1991. 10:50 AM

The job submitter information is kept in a new data segment (DST #61). The file that preserves this DST
on disk is called DSTJSEC. PUB. SYS.

MPE XL Enhanced FOS Security
3121-14



SECURITY AUDITING

System logging has been enhanced with eight new logtypes which provide additional auditing information.
The new logging events are:

• Logging of password changes is added as log type 134. It can be activated to record USER, GROUP,
and ACCOUNT password change events.

• Logging of system logging configun.tion is added as log type 135. It records the current system
logging configuration.

• Logging of RESTORE is added as log type 136. It records restoration of files onto the system.

• Logging of printer access failure is added as log type 137. It allows the system manager to audit
failures in attaching spoolfiles to printers.

• log;ing of ACD changes is added as log type 138. It records all ACD creations, alterations, and
deldions.

• logging of stream initiation is a,~ded as log type 139. It allows the system manager to know who
streams or tries to stream a ji'h.

• l.t"\gging of user logging is added as log type 140. It records all OPENLOG and CLOSELOG intrinsic
calls.

ct logging of process initiation is added as log t}pe 141. It provides information for tracing the
creation of processes on the sy~tem.

ct AuditabiJity by named user provides the ability to selectively audit the actions of one or more users
based on individual identity. LOGTOOL will allow users of the utility to format log records
selected by user identifications.

NOTE

With these enhancements to auditing, system log files will be filling up
faster. This will requir~ mure attention to the archiving of old log files.

MPE XL Enhanced FOS Security
3121-15



SYSGEN will show system logging configuration as:

configurable item

, of user logging processes
, users per logging process

system log events

System logging enabled
System up record
Job initiation record
Job termination record
Process termination record
rile close record
System shutdown record
Power failure record
Spooling log record
I/O error record
Physical mount/dismount
logical/mount/dismount
Tape labels record
Console log record
program file event
New commercial spooling
Architected interface
Password changes
System logging configuration
Restore logging
Printer access failure
ACD changes
Stream initiation
User logging
Process creation
Chgroup record
File open record
Maintenance request log
diagnostic information record
high priority machine check
low priority machine check
CM file close record

MPE XL Enhanced FOS Security
3121-16

max

64
256

event ,

100
101
102
103
104
105
106
107
108
111
112
113
114
115
116
120
130
134
135
136
137
138
139
140
141
143
144
146
150
151
152
160

min

2
1

current

64
128

status

OFr
ON

OFr
OFr
OFr
OFr

ON
ON

OFr
ON

OFr
OFr
OFF

ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON

OFF
ON

OFr
OFr
OFr



Logging of Password changes

This feature allows the system manager to audit the changing of passwords via the MPE XL commands
(:ALTACCT, :ALTGROUP, :ALTUSER, and :PASSV':ORD) and the ;DIRECTORY option of the RESTORE
utility.

A ntw log type 134 will be added to the system logging facility. The MPE operating system and
LOGIOOl wi)) recognize this new log event. It can be enabled by SYSGEN followed by a START
NORECOVER Y. This event is initially disabled.

System logging will record when a user, group or account password is changed via MPE commands or
other HP utility ph.'grams. The log record will contain the following information:

Header:

o record type
o record length
o timestamp
G job/session number
o PIN

log information:

o ident ification of user who changed password (includes job/session name, user na me, group
name, ac~ount name)

o idenhficatil....n of user \J.·hose vassword was changed (includes aCC0unt name if account
&:,assword changed; group name if group password changed; user and account names if user
passw<.'rd changed)

o input logical device number from which the password was changed
o program file name from which password change was executed
o type cha:tgt:J (I User; 2 Group; 4 Account)

For example, JOH~. PAYROll,DOE with job/session name JREPORT, successfully changed account
password for PA YROLL account via the c<.'mmand executor. The change was made from Idev 21.

lOGTOOL will (<,rmelt the following layout after the standard header:

TARGET USER: TARGET GROUP:
TARGET ACC0UNT: PAYROLL TYPE CHANGED: ACCOUNT
LDf.V: 21
EXECUTED fROM: CI.PUB.SYS
USER: JOHN GROUP: DOE
ACCOUNT: PAYOOLL JSNAME: JREPORT

MPE Xl Enhanced FOS Security
3121-17



The following is the password changes logging record format:

length
in word bit 0 15

(1) 1 Record type 134 1
1------------------------------------------,

(1) 1 Record length 1
1------------------------------------------1

(1) 1 PIN 1
1------------------------------------------1

(3) 1 Time stamp 1
1------------------------------------------1

(2) 1 Job type / job number 1
==========================================1

(8) TARGET USER NAME 1

------------------------------------------1
(8 ) TARGET GROUP NAME 1

------------------------------------------1
(8) TARGET ACCOUNT NAME 1

------------------------------------------1
(1 ) TYPE CHANGED 1

------------------------------------------1
(1) INPUT LDEV NUMBER 1

------------------------------------------1
(25) EXECUTED fROM 1

------------------------------------------1
(3) Reserved 1

==========================================1
(8) USER NAME 1

1------------------------------------------1
(8) 1 GROUP NAME 1

1------------------------------------------1
(8) I ACCOUNT NAME 1

1------------------------------------------1
(8) 1 JOB/SESSION NAME 1

Logging of System Logging Configuration

The run time system logging ,-onf;guration can be altered at boot time using a configuration file created
by SYSGEN. This feature will rrovide the audit trial of the logging configuration changes.

A new log type 135 wiJ) be added to the system Jogging facility. It can be enabled by SYSGEN f\.'Uowed
by a START NORECOVERY. This event is initiaIJy enabled.

The MPE operating system anu LOGTOOL will recognize this new log event. When this feature is
enabled. system logging c,"'OfigIJration will be recorded when the system is started.

MPE XL Enhanced FOS St:,-urity
3121-18



The Jog record will contain the folh.,wing information:

Header:

• record type
• record length
• timestamp
• job/session number
• PIN

Log information:

• identification of the user who makes changes to the configuration
(includes job/session name, user name, group name, account name)

• logical device number
• new system logging configuration

For example, user CONFIG,MANAGER. SYS,PUB changed the system Jogging configuration from Idev 20.
The ~ystem log types 100,101,102, Ill, 151, and 152 are enabled. LOGTOOL will format it as:

SYSTEM UP: ON
JOB TERMINATION: OFF
NM FILE CLOSE: OFF
POWER FAILURE: OFF
I/O ERROR: ON
LOG. MOUNT/DISMOUNT:OFF
CONSOLE lOG: OFF
NCS LOGGING: OFF
PASSWORD CHANGE: OFF
RESTORE: OFF
ACD CHANGE: OFF
USER LOGGING: OFF
SECURITY CONFIG: uFF
fILE OPEN: OFF
AUTO-DIAG/SUM: OFF
LPMC: ON

lOGICAL DEVICE: 20
SYSTEM lOG CONFIG:
lOG FAILURE: ON
JOB INITIATION: ON
PROCESS TERMINATION:OFF
SHUTDOWN: OFF
SPOOLING: OFF
PHY. MOUNT/DISMOUNT:OFF
TAPE LABELS: OFF
PROGRAM FILE EVENT: OFF
AIF LOGGING: OFF
SYS lOG CCNFIG: OFF
PRINTER ACCESS: OFF
STREAM INITIATION: OFF
PROCESS CREATION: OFF
CHGROUP: OFF
COMMAND LOGGING: OFF
HPMC: ON
CM FILE CLOSE: OFF
USER: MANAGER
ACCOUNT: SYS

GROUP:
JSNAME:

PUB
CONFIG

MPE XL Enhanced FOS Security
3121-19



The following is the system up log record format:

length
in word bit 0 15

(1) 1 Record type 135 1
1-------------------------------------------1

(1) 1 Record length 1
1-------------------------------------------1

(1) I PIN 1
1-------------------------------------------1

(3) 1 Time stamp 1
1-------------------------------------------1

(2) 1 Job type / Job number I
===========================================1

(1) Reserved 1
-------------------------------------------1

(1) lDEV NUMBER 1
-------------------------------------------1

(4) SYSTEM LOer-ING MASKING WORDS 1
===========================================1

(8) USER NAHf I
-------------------------------------------1

(8) GROUP NAME 1
-------------------------------------------1

(8) ACCOUNT NAME 1

-------------------------------------------1
(8) JOB/SESSION NAME 1

MPE XL Enhanced FOS Security
3121-20



Logging of Restore

The creation of files via RESTORE needs to be auditable.

A new log type 136 will be added to the system logging facility. It can be enabled by SYSGEN followed
by a START NORECOVERY. This logging type is initially disabled.

The l\fPE operating system and LOGTOOL will recognize this new log event. If this feature is enabled, the
system logging facility will log restore of files.

The log record win contain the following information:

Header:

• record type
• record length
• timestamp
• joh/session number

• PIN

Log information:

• identification of the user who restored a file (includes job/session name, user name, group
name, account Il~ l1le)

• name of the llle ",hich was restored (includes file name, group name, account name)
• name of the crt:J.tor of the file
• disk volume idt' .. :ification where the file will reside. It consists of volume type and volume

type name. (vulume type: 0::: volume name, 1 • volume class name, 2 1:1 volume set name)
• access type: I I: Restore~ a new file; 2 ::I Replaces an existing disk file

For example, a user, JOHN.PA YROLL,DOE with job/session name as JREPORT, restored a new file
FTEST. TESTGP. PAYROLL on a volume set caned MY_TEST_VOL_SET. The file creator was DOLE.

LOGTooL will format the following layout after the standard header:

fILE GROUP:
CREATOR:

fILE NAME:
fILE AcrOUNT:
ACCESS TYPE:
VOLUME 10:
USER NAME:
USER ACCOUNT:

fTfST
PAYROLL
1
MY TEST VOL SET
JOHN - - USER GROUP:
PAYROLL JOB/SESSION NAME:

TESTGP
OOLE

OOE
JREPORT

MPE XL Enhanced FOS Security
3121-21



The following is the Restore Jog record format:

length
in word bi t 0 15

(1 ) 1 Reco rd type = 136 1
1-------------------------------------------1

(1) 1 Record length 1
1-------------------------------------------1

(1) 1 PIN 1
1-------------------------------------------1

(3) 1 Time stamp 1

-------------------------------------------1
(2) Job type / job number 1

===============:========:==================1
(8) fILE NAME 1

-------------------------------------------1
(8) fILE GROUP 1

-------------------------------------------1
(8) fILE ACCOUNT 1

---------------------------------------- --I
(8) CREATOR I

-------------------------------------------!
(17) VOLUME IDENTIfICATION I

-------------------------------------------1
(1) ACCESS TYPE 1

1===========================================1
(8) I USER NAME 1

1-------------------------------------------1
(8) I GROUP NAME 1

1-------------------------------------------1
(8) 1 ACCOUNT NAME I

1-------------------------------------------1
(8) 1 JOB/SESSION NAME I

MPE XL Enhanced FOS Security
3121-22



Logging of Printer Access Failure

This feature allows the system manager to audit failures in attaching spoolfiles to printers. This does not
include creating new spoolfiles which are I(\gged by FOPEN.

A new log type 137 will be added to the system logging facility. It can be enabled by SYSGEN followed
by a START NORECOvERY. This event is initially disabled.

The MPE operating system and LOGTOOL will recognize this new log event. When this feature is
enabled) failures to attach spoolfiles to printers will be logged.

The log record will contain the following information:

Header:

• record type
• record length
• timest3mp
• job/session number
• PIN

Log information:

• identifi~ati0n 0f the user who owns the output spoolfile
(includes job number. job name. user name. account name)

• spool file name
• target device 11a me/class
• number of records in the output spoolfile
• failure flag: 1 :a internal failure of access check; 2 IS ~ecurity violation

For example. a user, JOH~. PAYROLL,DOE with job number NJl2 and job name as JREPORT, spooled an
output file FNA~fE.TEST. PAYROLL with file size of 200 records to a printer whose target device class
name was LP. It failed in device ACD security check.

LOGTOOL will format the fo1l0wing la)'t"ut after the standard header:

ACCOUNT:
JOB NUMBER:

USER:
J/S TYPE
JOB NAME:
SPOOLfILE NAME:
fILE SIZE:
fAILURE FLAG:
USER NAME:
USER ACCOUNT:

JOIlN
JOB
JREPORT
FNAME.TEST.PAYROLL
200 TARGET DEVICE:
Security violation
JOHN USER GROUP:
PAYROLL JOB/SESSION NAME:

PAYROLL
72

LP

DOE
JREPORT

MPE XL Enhanced FOS Security
3121-23



The following is the printer access failure logging record formtlt:

length
in word bi t 0 15

(1) 1 Record type 137 1
1------------------------------------------1

(1) 1 Record length 1
1------------------------------------------1

(1) 1 PIN 1
1------------------------------------------1

(3) 1 Time stamp 1
1------------------------------------------1

(2) 1 Job type / job number 1

==========================================1
(2) CREATOR JOB NUMBER 1

------------------------------------------1
(8) CREATOR JOB NAME 1

------------------------------------------1
(8) CREATOR USER NAME 1

------------------------------------------1
(8) CREATOR ACCOUNT NAME 1

------------------------------------------1
(25) 5POOLFILE NAME 1

------------------------------------------1
(8) TARGET DEVICE NAME/CLASS 1

------------------------------------------1
(1) RESERVED 1

------------------------------------------1
(2) FILE SIZE I

------------------------------------------1
(1) STATUS I

I=============~============================I
(8) 1 U~ER NAME I

1------------------------------------------1
(8) 1 GROUP NAME 1

1------------------------------------------1
(8) 1 ACCOUNT NAME 1

1------------------------------------------1
(8) 1 JOB/SESSION NAME 1

MPE XL Enhanced FOS Security
3121-24



Logging of ACD changes

A('Ds can be changed by MPE commands and intrinsic calls. This feature allows the system manager to
audit both types of these events.

A new log type 138 will be added to the system logging facility. The MPE operating system and
LOGTOOL will recogniz.e this new log event. It can be enabled by SYSGEN followed by a START
NORECOVERY. This event is initially disabled.

System logging will record when ACDs are changed (created, deleted, copied, or modified) via MPE
c.ommands and intrinsic caBs. The log record will contain the following information:

Header:

o record type
o Tt:cord length
o timestamp
o job/ses~iun number
o PIN

• identification of the user who changed ACD (includes job/session name, user name, group
.lame, account name)

• object type and object name whose ACD was changed
• object type and obje~t nanJe from where ACD was copied
• type of change to the ACD: create, add pair, replace pair, copy, deJett; pair, or delete
• program file name from which ACD change was executed
• status returned (HPE status)

For example, a user JOHN. PAYROLL,DOE with job/session name as JREPORT, successfully created an
ACD for a file FTEST. TESTGP. rAYROLL from the command executor.

LOGTOOL will format the following layout after the standard header:

FTEST.TESTGP.PAYROLLTARGET OBJECT:
SOURCE OBJECT:
FUNCTION:
EXECUTED FROM:
STATUS:
USER:
ACCOUNT:

CREATE
CI.PUB.SYS
SUf)cessful
JOHN
PAYROLL

GROUP:
JSNAME:

DOE
JREPORT

MPE XL Enhanced FOS Security
3121-25



The following is the ACD changes logging record format:

length
in word bi t 0 15

(, ) Rpr.o rd type 138 1
- -- -- .. ---- -- - ----- -------- -- ------- -------1

(1) Record length 1
------------------------------------------1

(1) PIN 1
------------------------------------------1

(3) Time stamp 1
------------------------------------------1

(2) Job type / job number 1
==========================================1

(25) TARGET OBJECT NAME 1
------------------------------------------1

(25) SOURCE OBJECT NAME 1
------------------------------------------1

(4) fUNCTION 1
------------------------------------------1

(25) EXECUTED fROM 1

------------------------------------------1
(2) STATUS 1

==========================================1
(8) USER NAME 1

------------------------------------------1
(8) GROUP NAME 1

··_----------------------------------------1
(8) ACCOUNT NAME 1

------------------------------------------1
(8) JOB/SESSION NAME 1

MPE XL Enhanced FOS Security
3121-26



Logging of Stream Initiation

Tt.is feature enables the system manager to know who streams a job and when and where it occurs.

A new log type 139 will be added to the system logging facility. The MPE operating system and log file
frport generator, LOGTOOL will recognize this new log event. It can be enabled by SYSGEN followed by
a STAR T NORECOVERY. This event is initially disabled.

When this feature is enabled, any user streaming a job will have the event logged. The new log record will
contain the following information:

Header:

• record type
• record length
• timestamp
• job/session nurnber
• PIN

Log information:

• identification of the user who streamed tl:e job (includes job/session name, user name, group
name, account name)

• name of the job file tha t was streamed (inchldes file Jlame, group name, account name)
G logical device number where the job was streamed
• identification assumed by the job (includes j/s number, user name, group name, account name)
• time that the job was schedult.d to be launched
• name of the job streamed

For example, a user, with user name JOHN, acc,")unt name PAYROLL, group name DOE, and job/session
name JREPORT, streamed a job file .1 TEST. TESl GP. TESTACCT which logged on as IIJ 12
QA~iGR.QAACCT,QAGP with a job name as JOBTEST from Idev 21 and an input spool id 1115. The job
is scheduled to be launched at 3:00 Pill, Monday, August 5, 1991.

LOGTOOL will format the following layout after the standard header:

INPUT LDEV:
JOB FILE NAME:
LOGON J/S TYPE:
LOGON USER:
LOGON ACCOUNT:
INPUT SPOOLFILE
SCHEDULE DATE:
USER:
ACCOUNT:

21
JTEST.TESTGP.T£STACCT
JOB LOGeN J/S NUMBER:
QA/tK;R LOGON GROUP:
QAACCr LOGON JOB NAME:

10: 15
HON~ AUG 5~ 7991 SCHEDULE TIME:
JOHN &KOUP:
PAYROLL JSNAME:

12
QAGP
JOBT£ST

3:00 PH
DOE
JREPORT

MPE XL Enhanced FOS Security
3121-27



The fdlowing i!' the stream initiation logging record format:

length
in word bi t 0 15

(1)' Record type 139 I
1------------------------------------------1

(1) 1 Record length I
1------------------------------------------1

(1) 1 PIN I
1------------------------------------------1

(3) 1 Time stamp 1
1------------------------------------------1

(2) I Job type / job number I
==========================================1

(1) INPUT LDEV 1

------------------------------------------1
(25) JOB FILE NAME I

(2)

(8)

(8)

(8)

(8)

(2)

(1)

JOB LOGON J/S NUMBER

JOB LOGON USER

JOB LOGON GROUP

JOB LOGON ACCOUNT

JOB NAME

INPUT SPOOLfILE 10

SCHEDULED DATE

(2) SCHEDULED TIME I
1==========================================1

(8) 1 USER NAME I

1------------------------------------------1
(8) 1 GROUP NAME I

1------------------------------------------1
(8) 1 ACCOUNT NAME I

1------------------------------------------1
(8) 1 JOB/SESSION NAME 1

MPE XL Enhanced FOS Security
3121-28



logging of User Logging

This feature enables the system manager to determine who accesses or tries to access the user logging
facility by logging all OPENLOG and CLOSELOG intrinsic calls.

A new log type 140 will be added to the system logging facility. This new log record will be recognized
by the MPE operating system and log file report generator LOGTOOL. It can be enabled by SYSGEN
followed by a START NORECOVERY. This event is initially disabled.

When it is enabled, all OPENLOG and CLOSELOG intrinsic calls will be logged. The new log record will
have the fonowing information:

Header:

• record type
• record lengt h
• timestamp
• job/session number

• PIN

Log inf(,rmation:

• identificatit'n (\f the usrr ~'ho caned OPENLOG or CLOSELOG (includes job/session name,
user name, gfC\\lP nar,l~, 3~CO\lnt name)

• name (If the program file fn)m where OPENLOG or CLOSELOG was called
• intrinsic that the user called, either OPENLOG or CLOSELOG
• logging index (its value is returned from OPE~LOG. It identifies the access to the user

logging facility)
• h1gging identificaticn
• mode of the intrinsic c~ll, either 0 for WAIT or 1 fJr NOWAIT
• status of the intrinsic call

For eXJmple, a user JOHN. PAynOLI.)DOE with .job/ses~i(\n name as JREPORT, ran a program
FTEST.l ESTGP. TESTACCT which caned the OPENLOG intrinsic. The intrinsic call had index 1000,
logid JOHNID) mode 0 and t1lc;re was no error returned from the call.

LOGTOOL will format the following layout after the standard header:

GROUP:
JSNAME:

PROGRAM FILE NAME:
INTRINSIC:
LOG 10:
STATUS:
USER:
ACCOUNT:

FTfST.TESTGP.TESTACCT
OPfNLOG INDEX:
JOHNID MODE:
o
JOHN
PAYROLL

1000
WAIT

00£
JRfPORT

MPE XL Enhanced FOS Security
3121-29



The following is the user logging Jog record format:

length
in word bi t 0 15

(1) 1 Record type 140 1
1-------------------------------------------1

(1) 1 Record length 1
1-------------------------------------------1

(1) r PIN 1
1-------------------------------------------1

(3) 1 Time stamp I

1-------------------------------------------1
(2) 1 Job type / job number 1

1===========================================1
(25) I PROGRAM fILE NAME 1

1-------------------------------------------1
(4) 1 INTRINSIC I

I - - - - - - - - - - - - - -- - - .. - - - - - -- - - - - -- - -- - -- -- - ---I
(2) 1 INDEX 1

1-------------------------------------------1
(4) 1 LOGID I

-------------------------------------------1
(1) MODE I

-------------------------------------------1
(1) STATUS 1

=============================~=============I
(8) USER NAME 1

-------------------------------------------1
(8) GROUP NAME 1

-------------------------------------------1
(8) ACCOUNT NAME 1

-------------------------------------------1
(8) JOB/SESSION NAME 1

The LOG ID fjeld in the log record will be "XXXXX}C' for CLOSELOG
intrinsic when the index jc; bad.

MPE XL Enhanced FOS Security
3121-30



logging of Process Creation

This feature provides information for tracing the creation of a process on the system.

A new Jog type 141 will be added to the system logging facility. It can be enabled by SYSGEN followed
by a START NORECOVERY. This event is initially disabled.

When it is enabled, the system logging facility will log all process creations. The new log record will have
the following information:

Header:

• record type
• record length
• timestamp
• job/session number

• PIN

Log information:

• ident ification of the user who initi~ted the process (includes job/session name, user name,
gronp name, account l-.ame)

• proce::1i iJentification (PIO) initiated
• rarent 1'10
• priority of the proct:ss
• process space II)
• program name that the prc1cess was initiated from
• capabilities of the created process
• native mode heap ~ize in bytes

For example, a user JOHN. PAYROLL,DOE with job/session name as JRFPORT, ran a program
FTEST. TESTGP. TfSTACCT with PID 2300000002. The program initiated a process with PID
3300000001, priority 130 and Sl'ifce ID 556. The process created had capabilities of IA,BA,PH,PM and
h~d N~f heap size 200000 bytes.

LOGTOOL will format the following layout after the standard header:

PROCESS CAP IA:
PROCESS CAP MR:
PROCESS CAP PH:
GROUP:
JSNAME:

PROGRAM FILE NAME:
PIo INITIATED:
SPACE 10:
NM HEAP SIZE:
PROCESS-CAP BA:
PROCESS ~AP PM:
PROCESS CAP OS:
USER:
ACCOUNT:

FT£ST.T£STGP.TESTACCT
3300000001 PRIORITY:
556 PARENT PIo:
200000
YES
YES
NO
JOHN
PAYROLL

730
2300000002

YES
NO
YES
OOE
JREPORT

MPE XL Enhanced FOS Security
3121-31



The following is the process initiation log record format:

length
in word bi t 0 15

(1) I Record type 141 1
�-------------------------------------------1

(1) 1 Record length 1
1-------------------------------------------1

(1) 1 PIN 1
1-------------------------------------------1

(3) 1 Time stamp 1
1-------------------------------------------1

(2) 1 Job type / Job number 1
===========================================1

(25) fILE NAME I
-------------------------------------------1

(1) RESERVED 1
-------------------------------------------1

(2) PRIORITY 1

-------------------------------------------1
(2) PROCESS SPACE 10 1

-------------------------------------------1
(4) PARENT PIO 1

-------------------------------------------1
(2) NM HEAP SIZE 1

--------~----~-----------------------------I
(2) PROCESS CAPABILITIES MASK 1

-------------------------------------------1
(8) RfSERVED 1

I============~==============================I
(8) I USFR NAME 1

1-------··-----------------------------------1
(8) 1 GROUP NAME 1

1-------------------------------------------1
(8) 1 ACCOUNT NAME 1

1-------------------------------------------1
(8) 1 JOB/SESSION NAME I

MPE XL Enhanced FOS Security
3121-32



System logging mask:

User Attributes
bit capabi I i ty

0 - SM
1 - AM
2 - AL
3 - GL
4 - OJ
5 - OP

fill! access attributes
6 - CV
7 - UV
8 - LG
9 - SP

10 - PS
11 - NA
12 - NM
13 - CS
14 - NO
15 - Sf

Program/Group Attributes
bi t capabi I i ty
23 BA
24 IA
25 PM
28 MR
30 OS
31 PH

Auditability by Named User

The "auditability by named user" feature will enable a system manager to selectively audit the actions of
one or more users based on individual identity. To do this the LOGTOOL utility has been modified to
select security relevant log records from the system 10g files. System managers define a named user by
specifying (via the LIST command) a job/session name) user name) and/or account name. Security relevant
events are then seleded.

Three optional parameters) JSNAME) USER and ACCOUNT) have been added to the LIST command in
LOGTOOL. The syntax will be:

LIST LOG=<log list>
[;JSNAME=<job/session name>]
[;USER=<user name>]
[;ACCOUNT=<account name>]

The inrut should not be longer than 80 characters. The default value of these new parameters is @.

For example) to LIST log records from log files numbered 1 to 5) with log type 142 and user identification
Jfl:,ST,JOHN. PAYROLL) the LIST command will be:

>LIST LOG= I/5;TYPE= 142;JSNAME=JTEST;USER=JOHN;ACCOUNT=PAYROLL

MPE XL Enhanced FOS Security
3121-33



To select log records from log files numbered 1 to 5, with log type 142 and user identification
@.@.PAYROLL, the LIST command will be:

>LIST LOGc:J/5;TYPEDI42;ACCOUNT=PAYROLL

To allow LOGTOOL to select security relevant log records based on the user identification, all security
relevant log records will contain user identification entries USNAME, USER, and ACCOUNT). Those
security relevant log events are:

• job initiation (type 102)
• job termination (type 103)
• process termination (type 104)
• file close (type 105, 160)
• physical mount/dismount (type 112)
• logical mount/dismount (type 113)
• tape labels (type 114)
• console log (type I 15)
• program file event (type 116)
• Native Mode Spooling (type J20)
• Architecture Interface (type 130)
• password change (type 134)
• system logging configuration (type 135)
• restore (type 136)
• printer access failure (type 137)
• ACD change (type 138)
• stream initiation (type 139)
• user logging access (type 140)
• process initiation (type 141)
• securi~y monitor configuration change (type 142)
• change group (type 143)
• file oren (type 144)
• command logging (type 145)

The following existing log records will be appended with user identification entries:

• job termination (type 103)
• process terminati0n (type 104)
• physicallllount/dismount (type 112)
• tape labels (type 114)
• console log (type I 15)
• program file e\·ent (t}·pe 116)
• Native Mode Spooling (type 120)
• change group (type 143)

MPE XL Enhanced FOS Security
3121-34



Paper # 3122

Serial Message Routing and Electronic Authorization

The Key to Work Flow Automation

Martin Hurren

Hewlett-Packard Company
Pinewood Info. Sys. Division

Nine Mile Ride
Wokingham
Berkshire

UK

Tel. 44-344-763526

There are three objectives for this presentation. First, to define
and segment work flow automation highlighting the central role of
serial message routing and electronic authorization; second, to
present specific examples of work flow automation and the
measurable benefits it can provide; and, third, to discuss
Hewlett-Packard's implementation of work flow automation.

Office automation is often thought of as automating the secretarial
task of creating documents and the accounting task of spreadsheet
analysis. Measurable benefits, such as those provided by computer
integrated manufacturing in decreasing the time to turn raw
material into finished goods and lower the cost of manufacturing,
have not been easy to establish in the office environment.

Work flow automation can be viewed as computer integrated
manufacturing for the office. Most office tasks, such as getting a
purchase requisition approved and into the hands of a purchasing
agent or processing an insurance claim, can be thought of as
repeatable processes with raw material, work in progress,
production schedules and points of specific action.

Paper # 3122-1
Serial Message Routing and Electronic Authorization



Changing the focus of office automation from automating discrete
tasks to automating processes can bring measurable increases in the
benefits provided. In addition, the support for mUltiple media
types (text, data, graphics and scanned images) greatly expands the
number of processes which can be automated.

Work flow can be segmented along the dimensions of the complexity
of the process and the frequency with which the process is
repeated, or, more simply, the transaction volume.

The four major segments of work flow are the following:

Routine work flow automation: This is the serial routing of
work from one step to the next with authorization and/or
acknowledgment required along the way. These are relatively
low complexity tasks and the frequency can vary from low to
high.

Dynamic work flow automation: This is similar to routine work
flow, but the processes being automated are more complex,
typically change more frequently, and actions are more content
and context dependent.

Document creation: This covers relatively complex process
which are not often repeated.

High speed continuous: These are high volume process, such as
check processing.

There are a number of major components that appear in work flow
applications, but the amount and complexity of the procedures and
routes are what distinguish routine from· dynamic work flow
applications.

Paper # 3122-2
Serial Message Routing and Electronic Authorization



The major components of work flow automation are:

Work units - processible "chunks" of works

User Mailboxes - individual mail drops and rules for
processing

Routes - paths for work units and procedures to be invoked
along the way

Procedures - stored programs called and executed when work
units enter mailboxes

Queues - accumulation of processed work units in mailboxes at
a point in time

Source: M. Howard, Gartner Group, Technology, T-260-730
May 29, 1990

Electronic mail systems today provide mail boxes, routing
algorithms and user directories. These electronic mail components
become the basic underpinning for work flow when they are extended
to allow serial distribution and procedures, such as electronic
authorization.

A fundamental decision when implementing work flow is whether to
leverage an electronic mail system with corporate directories,
world wide networking, and sophisticated administration or to
implement a separate work flow system which must ultimately
duplicate most of the features of electronic mail.

Paper # 3122-3
Serial Message Routing and Electronic Authorization



Nine different applications of work flow automation are presented
below:

Routine Work Flow Automation

Purchase requisitions
Engineering change orders to manufacturing and
service/support
"Exception" reporting

Dynamic Work Flow Automation

Insurance claims processing
Medical records management

Document Creation

Technical documentation
Training guides

High Speed continuous

Check processing
Credit card processing

Some examples, such as insurance claims processing, are industry
specific, but most of the applications are relevant to business,
government and education.

The benefits listed above from work flow automation are well
defined and measurable. Lowered costs result from both simple
changes, such as electronic forms allowing data to be entered only
once whereas data entered onto paper forms must later be keyed into
a system or transferred from one form to another, and more complex
changes, such as being able to monitor the flow of work through a
process, analyze bottlenecks and modifying the process to remove
those bottlenecks.

Paper # 3122-4
Serial Message Routing and Electronic Authorization



The fact that units of work can be made "read only" and
authorization is provided by secure passwords improves security.
In addition, each step of a process can be logged by the system and
reviewed, so no work can be "lost" or "buried in an in tray".
These transaction logs can be retained for later aUditing, if
necessary.

The speed with which work, such as customer service requests, is
completed can be the source of increased customer satisfaction and,
ultimately, revenue. In addition, the use of electronic forms and
preconfigured routing distribution lists allows much more rapid
change to work processes. with paper based systems, the pace of
change can be dictated by the speed with which new forms can be
manufactured and distributed. This can effectively put the
stationary department on the critical path when implementing
change.

The value of any communications system is largely a function of the
number of people it links together. Hewlett-Packard's approach,
therefore, is to build an electronic messaging infrastructure which
supports users across a wide variety of workstation types and both
HP and non-HP systems.

To achieve this multi-vendor infrastructure, HP provides its
electronic messaging components on non-HP hardware. This
infrastructure is built upon a client/server architecture and
industry standards, such as X.400 and MicroSoft Windows, to provide
the broadest possible reach and the tightest possible integration
with existing applications.

Routine work flow au'tomation is achieved by extending this
electronic messaging infrastructure through the addition of serial
message routing and electronic authorization. This approach has
been called "surfing on standards", and it is one of the ways in
which HP is adding value beyond the standards bodies' definitions.

Paper # 3122-5
Serial Message Routing and Electronic Authorization



HP's electronic messaging infrastructure is an integral component
of our office systems product line, NewWave Office. NewWave Office
covers both routine work flow as described above and also dynamic
work flow with its document image management component. All
NewWave Office components conform to the same client/server and
standards based architecture, so a single, consistent approach to
mailboxes, directory management and routing mechanisms can
ultimately be shared between NewWave Office solutions for routine
and dynamic work flow automation.

The serial message routing and electronic authorization extensions
to HP's NewWave Office will begin shipping at the beginning of '92.

As the computer integrated manufacturing system for the office,
work flow automation provides clear and measurable benefits. These
include:

Lower Costs

- Eliminate printing/stocking/scrapping paper based forms
- Eliminate paper mail, paper storage & retrieval
- Leverage e-mail directory management & administration

Increase Security and Reliability

- Eliminate tampering
- Increase confidentiality
- Auditab1e transaction logging

Increase Customer satisfaction and Revenue

- Reduce time to action
- Flexibility for rapid change
- Closed reliability

There is a broad range of potential applications of work flow
automation in the office, but underpinning all of these
applications are basic electronic messaging components, such as
mail boxes, directories, and message routing.

Paper # 3122-6
Serial Message Routing and Electronic Authorization



Routine work flow automation is created by extending standard
electronic mail applications with serial message routing and
procedures, such as electronic authorization. Dynamic work flow
automation builds upon this infrastructure and allows more complex,
changeable and user driven processes to be automated.

Hewlett-Packard is at work extending its NewWave Office
mUlti-platform, multi-vendor electronic messaging products to
provide routine work flow automation. This development is
coordinated with the NewWave Office document image management
system to enable dynamic workflow automation. HP's approach of
"surfing on standards" and support for both HP and non-HP hardware
allows it to provide robust messaging and workflow solutions in
customers' often complex multi-vendor environments.

Paper # 3122-7
Serial Message Routing and Electronic Authorization





Client/Server Application Development Tools

John Yu/Henry Ueu
Hewlett-Packard Company

Information Networks DMslon
MS 43LS

19420 Homestead Road
Cupertino, CA 95014

Paper Number: 3123

1. Introduction

As the trend in business moves towards decentralized operations to increase Its competitiveness
and to better serve Its customers' needs, the computing resources have to be distributed to
allow for Increased communication In this diverse environment. There are two emerging trends
for distributed computing. The first one Is Enterprisewide computing which Implies that all the
computers in a company are connected Into network, with overall management accomplished by
a mainframe. The second one is Client/Server computing which divides tasks between clients
(usually personal computers and workstations) and servers (often mlnl-computers and
mainframes). The client/server computing, In particular, has been gaining momentum to
become THE architecture to provide resource (data, peripheral devices, etc.) sharing in a
distributed computing environment. The following statements are quoted from market surveys
published by many reputable IndUstry groups:

• Sierra Group April 1990: Client/server computing Is a fixture In many large corporations. The
study found that 64 percent of Fortune 500 companies that responded are Implementing
client/server solutions; the remaining companies expect to do so within one year.

• Business Research Group October 1990: Of the 750 Fortune-1ooo firms surveyed, two-thrids
are currently using a client/server architecture, or wUl do so within next 18 months.

• Yankee Group Janurary 19911: A survey of Fortune 1000 Information systems departments
reveals that 69 percent of the respondents either have client/server systems or plan to
acquire them in the near future. Some 85 percent of those firms use or plan to use
client/server systems for mlssion-crltlcal applications.

Although more and more companies are adopting the client/server architecture In their
distributed computing environment, this architecture Is currendy being Implemented mainly to
provide peripheral sharing (such as printer sharing and file sharing) and limited database sharing
only. The complexity and lack of development tools has hindered the widespread development
of client/server applications. The lack of a set of easy-to-use tools which enables the users to
develop their distributed applications In a productive way for Information sharing through
transparent data access across a multl-appllcatlon, multi-network, multi-platform, and multl
vendor environment. has prevented users from getting the full benefit of resource sharing in a
distributed computing environment.

Today, software developers would face the following problems while deVeloping a distributed
application:

• User's programs are not network-transparent. Developers need to re-wrlte their programs
whenever a new network transport protocol support Is reqUired.

• DeVelopers need to choose the right network Application Programmatic Interfaces (APls) that
meet their needs. Understanding the complexity of network API! and choosing the right
ones are technical challenge to the application developers.

Client/Server Application Development Tools 3123-1



• Developers need to learn a new network transport Interface whenever the underlying
transport is changed. Developers also need to learn new programming languages and
development tools in order to write applications on some of the new network transports.

• Developers need to be famnlar with the storage allocation scheme associated with a
structured data to be exchanged between the client and the seNer programs developed in
different languages or different language implementations, and executed on different
platforms.

The upper part of Figure 1 illustrates the complexity of developing and maintaining a
client/seNer application which supports multiple network transports. The lower part of Figure
1 shows the diversity of a client/seNer application which uses different network transport
Application Programmatic Interfaces (APls) through different calling conventions and different
calling sequences.

Figure 2 examplifles a case where the memory allocation schemes and data presentation
methods vary considerably even when programs are written in the same programming
language and executed In a single-vendor environment.

1.1 What is NHLL

NHLL (Network High Level Language) Is a programming toolkit containing facilities required to
aid programmers in developing client/seNer-based distributed applications. It aims at providing
network transparency to 3GLs (3rd Generation programming Languages such as Cobol, C,
Fortran, and Pascal) users. Using NHLL, the 3GL users can concentrate on their application
program development and let NHLL handle the complexity of different types of undertying
networking transport protocol. Programs using NHLL can be moved from one networking
protocols to another without re-compiling through NHLL's capability of linking the correct
transport protocol at run-time by NHLL run-time network configuration.

The key components of NHLL are summarized below:

• NULL Embedded Statements consist of six data transfer statements and three data
conversion statements. They are simple to understand and easy to use. The syntax of these
statements Is language independent, and networking transport Independent as well.

• NULL Data Conversion Services are built into NHLL to help developers resolve data
representation differences between client and seNer running on different platforms or using
different languages. This is a very critical feature required whenever data is exchanged in
form of structure (not simple byte stream) between client and server.

• NULL Run-TIme Ubrary maps NHLL statements to network transports and resolves "seNice"
to "network address" translation at run time. It also prOVides six exported C subroutines for
developers to write programs directly accessing to NHLL services without using language
pre-processor.

• NULL Network Configuration provides "seNice-ta-network address" translation.

• NULL Supportability Tools/Functions are additional features provided by NHLL in areas of
network tracing and logging, and seNer management among others.

The upper part of Figure 3 Illustrates how NHLL can be used to develop complex client/seNer
applications in an easy and structured way. It demonstrates that multiple NHLL seNer programs
can support multiple NHLL clients over different transports concurrently~

Client/SeNer Application Development Tools 3123-2



2. NHLL Embedded Statement

NHLL Embedded Statements are language-independent verbs which can be Included in
programs written In conventional languages. NHLL verb definitions are simple to understand and
easy to use. Users don't have to re-leam NHLL when they switch from one programming
language to another. NHLL statements are also network Independent and they run on the top of
various industry standard transport APls (such as NamedPipe, Novell SPX, BSD Socket, and LU
6.2). This allows user to switch from one network transport to another without changing the
application and to support additional new transports without modifying source code. NHLL also
provides optional data conversion services so that applications written In different languages on
different machines or same language but different Implementations (e.g. MlcroFocus Cobol on
PC and Hewlett-Packard Cobol on HP 3000) can send and receive structured data in addition to
simple byte streams. It makes distributed applications developed In NHLL highly portable to
different vendors' platforms.

All NHLL Embedded Statements start with ''EXEC NHLL" and end with "END-EXEC". The
following are syntax rules for the NHLL embedded statements:

EXEC NHLL USTEN ON :semceJlame RETURN (:status) END-EXEC.

EXEC NHLL TALK TO :se",iceJlame RETURN (:status) END-EXEC.

EXEC NHLL RECEIVE VALUES (:msg [, :Ien)) [NOWAIl) RETURN (:status[, :msgid]) END-EXEC.

EXEC NHLL SEND VALUES (:msg [, [ :Ien] [, :msgid]]) RETURN (:status) END-EXEC.

EXEC NHLL CLOSE [ALL] RETURN (:status) END-EXEC.

EXEC NHLL CONTEXT TO :serviceJlame RETURN (:status) END-EXEC.

EXEC NHLL COMPILER IS :Ianguage_vendor-flame END-EXEC.

EXEC NHLL CONVERSION {NONE I SAME LANGUAGE I DIFFERENT LANGUAGE} END-EXEC.

EXEC NHLL {BEGIN I END} DECLARE SECTION END-EXEC.

The lower part of Figure 3 depicts the client/server communication model using NHLL
embedded statements (data transfer verbs).

2.1 USTEN ON Statement

SYNTAX

EXEC NHLL USTEN ON :semceJlame RETURN (:status) END-EXEC.

DESCRIPTION

USTEN ON Is callable by the server only. The call Is to associate the server application
with an Indicated service_Dame and thus makes itself available to serve the requests from
clients. No activity can occur between the server and clients unless LISTEN ON has been
run successfully at least once.

Even though the server can run on the top of multiple transports simultaneously, only one
LISTEN ON call Is needed. LISTEN ON will translate an Indicated 'service_name' into one

Client/Server Application Development Tools 3123-3



or multiple network/transport addresses according to NHLL configuration set up by the
NHLL network administrator. Once the call returns successfully, the server should be able
to receive requests from clients over any of supported transport types. In case of multiple
transport supports, USTEN ON is considered a faOure only when the server fails to listen
over ALL of the transport supports as specified in the configuration.

2.2 TALK TO Statement

SYNTAX

EXEC NHLL TALK TO :sel'ViceJlame RETURN (:status) END-EXEC.

DESCRIPTION

TAU< TO Is used by the client application only to establish Its connection to a server that
provides the services as Indicated by the setViceJlame. There may be more than one
transport address associated with an Indicated service_name. TALK TO may use one as a
primary route and the rest as alternative routes. No request/reply message a client can
send/receive to/from a server until It establishes Its connection to a server by calling TALK
TO successfully. A client may connect Itself to multiple servers concurrently by Issuing a
series of TALK TO calls with different service names.

2.3 RECEIVE Statement

SYNTAX

EXEC NHLL RECEIVE VALUES (:msg [. :lenJ) [NOWAIT] RETURN(:status[, :msgid]) END-EXEC.

DESCRIPTION

RECEIVE can be called by both client and server applications. Server uses this call to
receive any request message from any connected client. Client uses this call to receive a
reply message from a server which Is currently communicating with.

RECEIVE can run in either WAIT or NOWAIT mode. In a WAIT mode, RECEIVE won't
return until a message is available to be received. However, in a NOWAIT mode, RECEIVE
will return Immediately with NO_MESAGE status when there is no message available for the
caller to receive. If NOWAIT Is omitted in the NHLL embedded statement, It indicates that
RECEIVE is In a WAIT mode. Otherwise, RECEIVE operates in a NOWAIT mode.

If the optional parameter len is present, then the data being received Is treated as a byte
stream and the user controls the amount of data received and its interpretation. If the
optional parameter len Is missing, then as far as the user Is concerned, a data structure is
being received. The data specification verbs, together with the declaration of the
parameter nug in the NHLL declaration section, determine conversions performed.

nugid Is used by a client to correlate a reply message to an outstanding request message.
It Is used by a server In replying to a received request message. However, Msgid is
optional. In the absence of Msgid, a request and a reply message are correlated by
subsequent SEND and RECEIVE calls.

If the caller-provided buffer is smaller than the whole message's length, RECEIVE will fill up
the receiving buffer and return MORE_DATA as a status code. And subsequent RECEIVE

Client/Server Application Development Tools 3123-4



call(s) will receive the remaining portion of message.

For a server, RECEIVE can receive a message from any connected client over any
transport type. For a client who maintains connections with multiple servers, it should be
aware of which server it is currently having the CONTEXT with. If the client chooses to
receive message from another server, it has to call CONTEXT TO before RECEIVE.

2.4 SEND Statement

SYNTAX

EXEC NHLL SEND VALUES (:msg [, [:len] [,:msgid))) RETURN (:status) END-EXEC.

DESCRIPTION

SEND can be called by both client and server applications. Server uses this call to send a
reply message to a client. Client uses this call to send a request message to a server.

SEND is in WAIT and message mode. It won't return the control to the caller until a whole
message has been sent out throught the network transport successfully or an error has
been encountered.

If the optional parameter len is present, then the data being sent is treated as a byte stream
and the user controls the amount of data received and its interpretation. If the optional
parameter len is missing, then as far as the user is concerned, a data structure Is being
sent. The data specification verbs, together with the declaration of the parameter msg in
the NHLL declaration section, determine the conversions performed.

The client can choose an Integral number ranging from 1 to (20*16-1) as a message
identifier. Once the client received a reply message from a server, it can then use the
message identifier obtained in RECEIVE to corelate it to an outstanding request. The
usage of msgid is OPTIONAL. Its usage is very useful especially when a client has mUltiple
outstanding requests at a time.

If a client who maintains connections with multiple servers, it should be aware of which
server it is currently having the CONTEXT with. If the client chooses to send a message to
another server, it has to call CONTEXT TO before SEND.

2.5 CLOSE Statement

SYNTAX

EXEC NHLL CLOSE [ALL] RETURN (:status) END-EXEC.

DESCRIPTION

CLOSE can be called by both client and server. If the server calls CLOSE with ALL option,
all the connections to clients over all supported transport types will be closed down.
Afterward, a server can no longer serve clients until USTEN ON is called successfully
again. If the server calls CLOSE without the ALL option, then only the connection to a
client the server just finishes communicating with will be disconnected.

If the client calls CLOSE with ALL option, all the connections established by the client will

Client/Server Application Development Tools 3123-5



be disconnected. If the client calls CLOSE without the ALL option. It will only disconnect
the connection with a server which It Is currently having a context with.

2.6 CONTEXT TO Statement

SYNTAX

EXEC NHLL CONTEXT TO :semceJlQlne RETURN (:status) END-EXEC.

DESCRlmON

CONTEXT TO Is only callable by the client whOe It Is maintaining mUltiple connections. The
client should Invoke CONTEXT TO to switch to a desired server that It would like to
communicate with next. If CpNTEXT falls. It won't destroy ihe current context.

2.7 COMPILER IS Statement

SYNTAX

EXEC NHLL COMPILER IS language_vendorJlame END-EXEC.

DESCRIPTION

COMPILER is one of the commands used for data conversion support. The memory
allocation on a given machine for a particular language depends on the compiler. For
instance, on an IBM-PC or Its compatible machine. a MicroFocus Cobol compiler may have
different memory allocation for a structure than a Ryan MacFartand Cobol compUer.

The Language_vendor-llame must be chosen from a list of specified names, which are
platform dependent. If this command Is not specified, then a default language_vendorJ1ame
Is selected. The default supplier_names are dependent on the platforms and languages
supported by NHLL

2.8 CONVERSION Statement

SYNTAX

EXEC NHLL CONVERSION {NONE I SAME LANGUAGE I DIFFERENT LANGUAGE} END-EXEC.

DESCRlmON

CONVERSION Is one of the commands used for data conversion support. Three options
are provided to make an optimal compromise between data transfer needs and the
overhead Imposed as a result. This command must occur before the BEGIN DECLARE
SECTION command. If not specified, the option NONE Is assumed.

The representation of a data structure varies with the type of system (hardware and OS),
the language In which the data structure Is defined, the compner being used, and the
compiler options being used. Figure 2 Olustrates the differences In data alignment, byte
ordering, and storage allocation of the same data structure on three different platforms.

Client/Server Application Development Tools 3123-6



o Some examples of system related differences are· An IBM machine will uses EBCDIC
code for character representation, whereas a HP machine uses ASCII code for
character representation. A PC has a different byte ordering scheme for an integer than
a HP or SUN machine. The sizes of integers typically vary by machine type. A DEC
machine based on MIPs architecture will have a different byte alignment than a SGI
machine based on the same architecture.

o Some examples of language related differences are - In C language, a character string
Is null terminated whereas In Cobol, a string Is blank filled. MicroSoft C on PC has
different byte ordering than MicroFocus Colla on the PC. Cobol can represent an
integer In many different ways depending on the USAGE clause. Of course. data
structure layout is completely different.

• Some examples of complier and complier related differences are - Using MicroSoft C
on the PC. complier options can be speclfied ~arge, small. medium model etc.), that
will impact the layout of a data structure. Two different compliers from different vendors
on the PC (e.g. MicroSoft C vs. Bortand Turbo C). or any other hardware are quite likely
to generate different data alignment. MlcroFocus Cobol complier on PC or any other
machine will do data alignment, and even byte ordering, differently depending on
Compiler options chosen.

In a client/server environment, it is highly likely that the pieces of the product will be
running on different systems. It is also likely. that the language being used will be different,
e.g.• writing the client program in C and writing server program In Cobol. In this
environment, the developer faces the task of first figuring out what the differences are. and
then. developing codes to eliminate the differences. NHLL gives the developer the ability to
eliminate this problem without any intervention on behalf of the deVeloper.

Data Conversion Impacts only those structures being sent or received for which the
optional parameter len is not specified in the SEND and RECEIVE commands. Also all such
data structures must be declared in the NHLL declaration section.

The option NONE is typically used in cases where client and the server applications have
been developed in the same language using the same compiler. and are running on the
same type of systems. In this case, NHLL Performs no data conversion.

The option SAME LANGUAGE is typically used in cases where the client and the server
application have been developed in the same language. but using different compliers from
different vendors, or running on different types of machines or both. In this case, th~

declaration of the data structures should be the same on both the client and the server.
NHLL provides data conversion services required to resolve the differences of storage
allocation for structured messages and data representation of the messages to be
exchanged between the client system and the server system.

The option DIFFERENT LANGUAGE is typically used In cases where the client and the
server application have been deVeloped in different languages and may be running on
different types of machines. In this case, the declaration of the data structures must be
semantically the same on both the client and the server. NHLL prOVides data conversion
services required to resolve the differences of memory allocation for structured messages
and data representaton of the messages to be exchanged between the client program and
the server program written in different languages and executed on different platforms.

2.9 DECLARE Statement

SYNTAX

Client/Server Application Development Tools 3123-7



EXEC NHLL {BEGIN I END} DEClARE SECTION END-EXEC.

DESCRIPTION

BEGIN DECLARE SECTION starts the NHLL declaration section and END DECLARE
SECTION ends the NHLL declaration section. All nasg variables used for data transfer In
NHLL SEND and RECEIVE statements must be declared In the NHLL declaration section
unless the optional parameter len Is used for simple byte stream transfer.

The purpose of declaring the nasg variables for the SEND and RECEIVE commands in the
declaration section Is to allow the generation of data definition structures and Inllne
conversion codes for those structures for which data conversion Is desired. NHLL will add
data declarations In the NHLL declaration section. It wDl also generate code In either
procedures or paragraphs to support the data conversion for the structure declared and
used later. AlsO Inllne code generated wDl be dependent on the data structure and the
type of data conversion selected.

3. NHLL Client/Server Sample Programs

There are two NHLL sample programs Included here to help developers realize how easy It is to
use NHLL to develop client/server application programs. The first one Is a NHLL client program
written in C and second one Is a NHLL server program written In Cobol. The client program
accepts a database update request (add, modify, or delete) from the user and sends It to the
server for processing. The server receives the request, calls a database update routine, and
returns the request status back to the requesting client.

Client/Server Application Development T0018 3123-8



Sample NULL Client Program WritteD iD C

/* This is a MBLL/C source program which adds/deletes/modifies an employee
database record based on the user's request. */

EXEC BBLL COIVERSIOI DIFFERERT LAIGUAGE ERD-EXEC.

long nhll_status; /* variable for nhll status return fI./
char service_name 0 = "employee"; /* string for service name */

EXEC IBLL BEGII DECLARE SECTIOR ElD-EXEC.
struct {

char request_type;
int employee_number;
char employee_name[20];
int request_status;

} emp_record;
EXEC IBLL EID DECLARE SECTIOI EID-EXEC.

maine)
{

/* talk to the server by specifying the service name. */

EXEC IBLL TALK TO :service_name RETURI (:nhll_status) EID-EXEC.
if (nhll_status != 0) exit(1);

/* Wait for user's request Add/Modify/Delete employee database record */

while (1) {
get_database_request(&emp_record);
if (emp_record.request_type == 'E') close_conn(O);

/* Send request to the server for database update processing

EXEC BBLL SEID VALUES (:emp_record) RETURI (:nhll_status) EID-EXEC.
if (nhll_status != 0) close_conn(1);

/* Wait for response from the server

EXEC BBLL RECEIVE VALUES (:emp_record) RETURR (:nhll_status) EBD-EXEC.
if (nhll_status != 0) close_conn(1);
display_database_response(iemp_record);

}

}
close_conn(ret_code)
int ret_code;
{

/* close the connection */

EXEC BBLL CLOSE RETURI (:nhll_status) EBD-EXEC.
exit(ret_code);

}

Client/Server Application Development Tools 3123-9



Sample NULL Server Program Written In Cobol

VALUE SPACES.
SYIC.
VALUE SPACES.
SYlC.
SYIC VALUE o.

PIC 1(01)
PIC S9(9)
PIC 1(20)
PIC S9(9)
PIC S9(9)

001800 IDEITIFICATIOR DIVISIOI.
002000 PROGRAM-ID. SERVER.
002200
002300 AUTHOR. John Yu.
002500 DATE-COMPILED. APRIL 30. 1991.
003000
003100 REMARKS.
003102 This program is one of the 2 programs vhich demonstrates
003104 the functionality and easy of use of the IHLL (Ietvork
003105 High-Level Language). This program accepts request from
003105 the client and processes the employee database update
003108 request. Once done. it then sends request status back to
003109 the requesting client.
004300
004400 EIVIROIMEIT DIVISIOI.
004800
006500 DATA DIVISIOI.
006600 FILE SECTIOR.
006900
011000 VORKIIG-STORAGE SECTIOI.
012110
012111 01 EMP-RECORD.
012112 02 REQUEST-TYPE
012112 02 EMPLOYEE-lUMBER
012171 02 EMPLOYEE-lAME
012171 02 REQUEST-STATUS
012171 77 ICode
012800
012900 PROCEDURE DIVISIOI.
013550 BEGII SECTIOI.
013600 OOOO-MAII-COITROL.
013700
014810 EXEC IBLL LISTEI 01 'employee' RETURI (:ICode) EID-EIEC.
014840 IF ICode lOT =0 THEI GO TO CLOSE-COil.
014842
015101 OOOO-MAII-LOOP.
015107
015108 EIEC IBLL RECEIVE VALUES (:EMP-RECORD) RETURI (:ICode) BID-EIEC.
015109 IF ICode lOT = 0 THEI GO TO CLOSE-COil.
015114 CALL "database-update" using EMP-RECORD.
015115 EIEC IHLL SEID VALUES (:EKP-RECORD) RETUU (:ICode) BID-EIEC.
015116 IF ICode lOT = 0 TBEI GO TO CLOSE-COil.
015117 GO TO OOOO-MAII-LOOP.
014880
014881 CLOSE-COil.
014882 EIEC IHLL CLOSE EID-EIEC.
014883 STOP aUI.

Client/Server Application Development T0015 3123-10



4. NHLL Run-TIme Ubrary

NHLL Run-Time Ubrary provides a set of C routines which are directly callable from programs
written in C language or any other languages supporting C subroutine calling mechanism. It
consists of six exported C library routines as following:

Run-Time Library Routine

nhll_listen
nhll_talk
nhll_receive
nhll_send
nhll_close
nhll_context

Corresponding Embedded Statement

LISTER 01
TALK TO
RECEIVE
SEID
CLOSE
CORTEXT TO

The functional description for these six routines are almost identical to their counterparts of
NHLL Embedded Statements. The following syntax rules specify the parametric Interface when
calling NHLL run-time library routines:

SYNTAX

void nhIlJisten(service_name, status)
char *service_name;
long *status;

void nhILtalk(service_name, status)
char *service_name;
long *status;

void nhlLrecelve(msg, len, msgid, time_out, status)
char *msg;
long *Ien;
long *msgld;
long *time_out;
long *status;

void nhll_send(msg, len, msgid, flag, status)
char *msg;
long *Ien;
long *msgid;
long *flag;
long *status;

void nhILclose(status)
long *status;

void nhll_context(servlce_name, status)
char *servlce_name;
long *status;

IMPORTANT NOTE: Software developers who decide to use this run-time library should be
aware that It only provides NHLL data transfer services and It Is only callable from programs
written In C or any other languages supporting C subroutine calling mechanism. Applications
which either are written In languages without calling mechanism to access C subroutines, or
require NHLL data conversion services should use NHLL embedded statements to obtain the

Client/Server Application Development Tools 3123-11



complete NHLL services. There Is another NHLL run-time library which contains all the routines
required for data conversion services. These routines, however, are only callable by programs
which have been pre-processed by NHLL. Since application programs are shielded from the
complexity of the NHLL data conversion routines, this particular library will not be discussed In
this paper.

5. NHLL Network Configuration

NHLL Itself doesn't provide network transport mechanism. Instead, It uses industry standard
APls (Application Programmatic Interfaces) to access to various commonly used types of
transport. To provide network transparency to NHLL application developers and their end-users,
a configuration file Is required to allow NHLL to establish a connection between the client and
the server for subsequent data exchange over the configured transports. NHLL will search for a
fde named nbllenf first in the current working fDe directory and then in the NHLL default file
directory. The first file matches will be used by NHLL to map the specified service.ftQme to its
associated network addresses.

NHLL configuration information should be stored In nhllcnf In the following format:

*serviceJlame_J
Transport_type{Transport_attribute_1 I {Transport_attribute_N
Transport_type{Transport_attribute_1 I {Transport_attribute_M

Transport_type{Transport_attribute_1 I {Transport_attribute_P
*seTV;ceJlamefl
Transport_type{Tran~port_attribute_1 I {Transport_attribute_Q

Transport_type{Transport_attribute_1 I {Transport_attribute_Z

Thers is one ·service_name entry occupying one line for each service to USTEN ON or TALK TO.
There should be one or more transport configuration items directly uncler the associated service
name entry. Each transport configuration item occupies one line and consists of multiple
attributes separated by the character '/'. The number of attrubites varies depending on the
types of transport specified. The basic format of transport configuration item for TCPISSC, HP
NS, and LM is described as below:

TRANSPORT_TYPE/HOST_NAME{TRANSPORT.-ADDRESS

There is a list of NHLL-supported transport types. The TRANSPORT_TYPE attribute must be
spelled exactly as NHLL expects:

TCP for TCPISSD Sockets
LM for LanManager/NAMED-PIPES
NS for HP NS/3000 and NS/9000 NetlPC
SPX for Netware or Portable Netware
etc.

TRANSPORT.-ACDRESS means PORT.-ADDRESS In the case of TCP/SSD; means NetlPC
socket name in the case of HP NS; and means PIPE name In the case of LanManager.

For example: supposedly there are two server applications. One handles service named "sales"
which resides on system "nadeA" and can serve Its clients via both TCPISSD with
PORT-.ADDRESS = ''X90FA'' in hex format and LM with PIPE name = "pipea". Another handles
services named "inventory" which resides on system "nodeS" and can serve its clients only via

Client/Server Application Development Tools 3123-12



TCP/BSD with PORT~DDRESS = "12345" in decimal format. Then you need to prepare the
nbllenr file which looks like:

*SALES
TCP/nodeA/X90FA
LM/nodeA/pipea
*Inventory
TCP/node8/12345

NHLL accesses to ahllenr only when USTEN ON or TALK TO is Invoked. Any changes to
nbBenr will not take effect untO the next USTEN ON or TAU< TO is called. USTEN ON will try to
establish ALL the connections associated with desired transports as configured in nhllenf under
the specified service name. TALK TO, however, wUl only establish one connection to the server
and It is the first transport which establishes a successful connection wUl be used by TAU< TO.

8. NHLL Supportability Toole/Functions

NHLL provides various tools and built-In functions to facDltate users In developing and managing
client/server-based distributed applications. These tools and functions can be divided into two
groups, namely, application development support and application management support.

6.1 NHLL Application Development Support Tools/Functions

The following NHLL application development support tools/functions can be used to facilitate
users in debugging and testing their programs during the application development stage.

NULL Procedure Trac:1ng: NHLL provides a procedure tracing mechanism which allows software
developers to capture critical NHLL-speciflc information In a trace fOe for debugging purpose.

NULL Loopbaek Testing: Many types of network transport NHLL supports have the ability to
allow the communication between a client and a server which are running on the same machine.
This feature gives the application developers a chance to test the complete application on a
single development machine before deploying the client program out onto the remote machine.
(Note: The development and testing machine must have mUlti-processing capability In order to
execute both client and server programs together on the same machine.)

6.2 NHLL Application Management Support Toos/Functlons

The following NHLL application management support tools/functions can be used to facilitate
users In troubleshooting and server monitoring when distributed application gets deployed in a
production mode.

NHLL Event/ElTOr ILogging: NHLL provides an event/error logging mechanism which allows
NHLL network administrators and users to capture critical NHLL-speciflc events and errors In a
log file for trOUbleshooting purpose.

NULL Server Monitor: NHLL provides a utility which allows NHLL network administrator to
monitor the status of NHLL servers and associated network transports running on the local
system.

7. Peer-to-Peer Communication

Since NHLL architecture Is based on the cllent/server'model with a hierarchical nature, it doesn't
provide peer-ta-peer communication (such as client-to-cllent and server-to-server) support

Client/Server Application Development Tools 3123-13



directly. However, by adding a thin layer of application-specific handshaking protocols,
developers would be able to build the peer-to-peer communication capability on top of NHLL
The key to implementing peer-te-peer communication over NHLL is that the server needs to
have a table to keep track of which client has signed on and what its NHLL network identifier is.
(Note: The NHLL network identifier is stored as part of the msgid which is only known to the
server.) Developers can design the client/server programs in such a way that the first message
a client sends to the server is always Its signon identifier, e.g. user name. The server can record
the client's signon identifier along with Its associated NHLL network identifier which can be
extracted from the received msgid.

CUent-to-CUent Communication: The upper part of Figure 4 Dlustrates how client-to-client
communication can be implemented using a pass-through NHLL server.

Server-to-server Communication: The lower part of Figure 4 depicts how server-ta-server
communication can be implemented using a pass-through NHLL client. The example used in
the case Is a typical service distribution architecture. The front-end server to which all regular
clients connect acts as a service dispatcher. It determines which back-end server has the ability
to handle the client's request and sends/receives requests/responses to/from a pass-through
client associated with the requested back-end server. The following logic flow describes how
this implementation works:

• All the back-end servers are up and running. All their associated pass-through clients are up
and running too. Each pass-through client TALK TO Its associated server then TAU< TO the
front-end server. Each pass-through client sends a "signon" message to the front-end server
identifying Itself as a pass-through client along with its associated service name.

• The front-end server receives signon messages from Its clients. If a signon message is from
a pass-through client (not a regualr client), then it understands that a particular back-end
server is ready to serve.

• When the front-end server receives a service request from a regular client, it looks up the
signon table to see if the requested server is ready. It then sends the request to the pass
through client associated with the desired back-end server by filling this client's NHLL
network identifier in the previously received msgid.

• When the pass-through client receives a request, it calls CONTEXT TO verb to switch its
connection to the associated back-end server and relays the request to the back-end server.

• When the pass-through client receives response from the back-end server, it calls CONTEXT
TO verb to switch its connection back to the front-end server and relays the response to the
front-end server. The front-end server can then send the response to the requesting (regular)
client.

8. Summary

Computing in the 1990s will require distributed applications which will allow for increased
communication in a diverse environment. Choosing the right tools to develop and integrate
distributed applications is pivotal to the success of users' business. NHLL provides data transfer
services and data conversion services and productivity improvement tools so that application
developers can focus on how to deal with the complexity of the business applications rather than
worrying about how to solve the networking and data conversion problems. Using NHLL, the
distributed application developers can obtain benefits in the following areas:

• Major reduction in network-based software development time and cost.

o Hardware and language differences between client and server are done by NHLL
o Lower maintenance cost with one version of software

Client/Server Application Development Tools 3123-14



o Frees up networking developers to work on other product development
o Supports developers in the programming languages and tools they are famUiar with

• Less programming training required for client/server Implementations

o No training on networking technologies
o Minimal training for use of NHLL statements
o Same set of verbs for all programming languages
o Network protocol transparency supported by a single Interface

• Leveraged Investment of software development

o Multiple-vendor platform portability
o Multiple network transport support with one version of software
o Faster time to market with new products and additonal transports

The solution providers. application developers, and system Integrators can use NHLL to gain the
benefits with today's technologies and wUI also grow Into solutions for tomorrow.

Client/Server Application Development Tools 3123-15



Dependency On Network Transport Type

HP9000/800

PROGRAMSERVER,
I

I

I

: I BSD IIF I I Named-Pipes IIF I I NetlPC IIF I,
-I-T-C~~;S~- ;r~~s~~r~ -1-1- -~~-~~n-s~~r; - - -,- -1~~;N-e~I~~~;a~~p-o~t-I-

t
ITCP/BSD Transport

:i---~;D- I~; ---i:
I I

I

I CLIENT PROGRAM :1 _

HP/APOLLO WORKSTATION

LM Transport

Personal Computer

t
INS/NetlPC Transport I
:-1- --~e~I~~ ~/~ - - -,-:

HP 9000/300

X number of transport interfaces to develop/maintain on the server side
X versions of client program to develop/maintain on the client side

Dependency On Network Transport Interfaces
SERVER PROGRAM USING NetlPC SERVER PROGRAM USING BSD

socket()
bin a ( )

liS ten ( )
accept()

, e c • ( II
sen d ( )

IPCShutdown()
IPCShutdown()
IPCShutdown()

I P C C rea t e ( ) - - - - - - - - Create a call socket -- - - - - - - - - - -
I peN a m e ( ) - - - - - - - - Register the socket name - - - - - - - - - - - -
I P C R e c v C n ( ) - - - - - - Wait for connection request - - - - - - - - - -

BSD accepts connectIon request - - - - - - - 
LOOP

I
,P C R e c v ( )
IPCSend()

END L 00 P

- - - - - - Close call socket __ - - - - C los e _ soc k e t ( )
BSD closes -accepted- socket --. c los e _ soc k e t ( )

- - - NetlPC closes vIrtual cirCUIt

CLIENT PROGRAM USING NetlPC CLIENT PROGRAM USING BSD

socket()
connect()

IPCShutdown()
IPCShutdown()
IPCShutdown()

I peL 0 0 c k u P ( ) . - - - NetlPC looks for server's name
I pee rea t e ( ) - - - - - - - - Create a call socket - - - - - - - - - - .
I P C Con n e c t ( ) - - - _ Request to connect to server __ - - - - - -
I P C R e c v ( ) - - - _ NetlPC receives connection confirmation

L 00 P • III P C Sen d ( ) sen d ( )
IPCRecv() recv()

END L 00 P
- - - - - - Close call socket -- - - - - c los e _ soc k e t ( )

• - NetlPC closes destination socket
- - - NetlPC closes virtual cirCUIt

Net work High-Level Language FIGURE - 1

Client/Server Application Development Tools 3123-16



Value = Oxt

Value =8Somesh Gupta
8;

Value = Ox3344;

Value = 'A':

Value = Ox2233:

Value = 5:
Value =Ox12345678:

MEMORY ALLOCATION AND DATA PRESENTAT][ON
ON THREE DIFFERENT PLATFORMS

struct {

unsigned int request_type;

char employee_name[20];

unsigned int employee_num;

char sec:

unsigned int date_of_hire;

short ranking:

unsigned long year _salary;

} emp_record:

HP-UX Series 800

32 salary_

Network High-Level Language FIGURE - 2

~ =One Stack Byte

Client/Server Application Development Tools 3123-17



NHLL Data Transfer & Data Conversion Services

HP9000/800 HP3000/900

SERVER PROGRAM A I SERVER PROGRAM B I
USING C & NHLL VERBS USING COBOL & NHLL VERBS

NHLL RUN-TIME LIBRARY I NHLL RUN-TIME LIBRARY I
BSD I NAMED-PIPES I NOVELL SPX I NetlPC I

1
BSD NAMED-PIPES!NOVELL SPX BSD I NetlPC

NHL.L RUN-TIME LIBRARY NHLL RUN-TIME LIBRARY NHLL RUN-TIME LIBRARY

CLIENT PROGRAM X CLIENT PROGRAM Y CLIENT PROGRAM Z
USING C & NHLL VERBS USING COBOL & NHLL VERBS USING C & NHLL VERBS

HP/APOLLO WORKSTATIONS PERSONAL COMPUTERS HP 9000/300 WORKSTATIONS

~ NHLL Provides Multi-client/Multi-server Architecture

0 NHLL Provides Multi-transport Support

Q) NHLL Provides MultI-language Support

~ NHLL Provides MultI-platform Support

NHLL Client/Server Communication Model

LISTEN ON A LISTEN ON B
Connection EstabllshDlent Phase

C~-L~ TALK TO A ~ TALK TO B
(J) (J)

m
(') m
r . :n:IJ - .

RECEIVE SEND SEND RECEIVE
< m <
m Data Tran....r Pbase Z Data Trans"er Phase m
:0 SEND RECEIVE -f RECEIVE SEND ::IJ

~
I

./» X OJ

teL~
CONTEXT TO A CONTEXT TO B

~SEtCCLOS~
Connection Termination Phase

Net work High-Level Language FIGURE - 3

Client/Server Application Development Tools 3123-18



CLIENT-lO-CLIENT COMMUN~CATION OVER NHLL

B
NO

SERVER
SEND

NON 10 = A SIGNON 10 =
RECEIVE RECEIVE
SIGNON 10 SIGNON 10
FROM XX FROM YY---------------------------- RECEIVE A SEND A ~
*FROM XX *TOYY

t,,
I

t
SIGNON ID NHLL NET ID

SEND A
A XX RECEIVE A

*TOB B YY * FROM A

CLIENT A CLIENT SIGNON TABLE CLIENT B

SE
SIG

SERVER-TO-SERVER COMMUNICATION OVER NHLL

CLIENT SIGNON TABLE
SIGNON 10 NHLL NET ID

INVENTORY WW
SALES XX
CLIENT #1 yy

CLIENT #N ZZ

GENERAL SERVICES DISPATCHER

SERVER

Client #1 Requests
Inventory Service

I
S

Client #N Requests
Sales Service

Network High-Level Language FIGURE - 4

Client/Server Application Development Tools 3123-19



I.
i

-·~--:-----··---1

_._-.- .... .....- .

.~.

I
-,j0_... _-__ ........._j

; ~\



DISK RECORDING TECHNOLOGY-FROM DC TO LIGIIT

Michael Rusnack
Hewlett-Packard Company

Disk Storage Systems Division
11413 ChiDden Blvd.

Boise, ID 83704

INTRODUCTION

This presentation discusses the evolution of disk drive recording technology.
Examples used in this paper mainly refer to Hewlett-Packard products. Even
though HP products are highlighted, the same examples can be applied to most
disk drive manufacturers.

The goal of this tutorial is to help you to understand the vocabulary associated
with the specification of disk drives. From there, using the terms and
definitions learned, we will walk through the 20 years of disk drive history
from magnetic recording technology through optical data storage. The goal of
this presentation is to bring to you awareness of the trends in disk recording
technology over the years. Second, understanding of the offering of each disk
drive model. And finally, to determine what are your specific recording needs
and how to select a product to meet those needs, be it magnetic, writable optical
or read-only optical.

When reviewing a data sheet, often, you will find the phrase "state of the art"
or similar claim. What is state of the art? Is it the highest capacity? Fastest
transfer? Smallest size? What other specifications should be considered? To
begin this 20-year tour through disk recording technology, the vocabulary of the
technology must be reviewed. Next, the evolution of the technology will be
discussed. This will include the growth of magnetic recording in capabilities,
and the simultaneous reduction in size of the devices. Finally, an introduction
to optical recording technology will be presented.

TERMS AND DEFlINITIONS

Disk drive technology has its own vocabulary, unique meanings of words and
acronyms like most technologies. As preparation for the more in-depth
technical portions of this tutorial, I would like to review some of these terms:

HEAD - The device used to sense (read) or alter (write) the magnetic signals
on the media. Typically there is one head per surface.

3124-1



Disk Recording Technology - From DC to Light

DISK - It is important to understand the proper spelling. Until audio compact
discs, the spelling was with a c. In order to differentiate computer mass
storage device from audio devices...

AUDIO/VIDEO - disC

COMPUTER - disK

Certainly it is up to the discretion of the manufacturer how they spell
the word, however those in the know spell it with a k.

MEDIA - The material used to record the data. Magnetic disk drives use an
aluminum platter coated with magnetic particles. Until recently, the
disks were coated with a thin layer of iron oxide. The iron oxide is
sprayed on to the disks as it is spun at a high rate of speed. The'oxide
spreads over the surface, collecting at the outside diameter.

Higher recording densities have been achieved as the result in
breakthroughs in thinfilm media development. The same aluminum disk
is used; however, very thin layers of metal are sputtered onto the
surfaces. The result is a very shiny, mirror-like surface. Typically,
both sides of the recording surface are used to store data.

Recording media can range in diameters from 14" to 2.5". Industry
standard sizes include 14, 8, 5.25, 3.5 and 2.5" diameters. Figure 1
below shows a size comparison of these disks.

ell. I
14"

0 8"

0 5.25"

0 3.5"

0 2.5"

Flgure 1- Comparison of Media Size

3124-2



Disk Recording Technology - From DC to Light

BIT - The term is derived from binary logic, a bit is either on or off, one or
zero.

BYTE - Eight bits make up one byte. The memory capacity of a device can be
specified in either bits or bytes. You can be easily confused if the bits
and bytes were confused.

A convention often used when describing the capacity of a device is to
abbreviate; two million bytes is 2 MB. Five million bits is expressed as
5 Mb. Note the large B (bytes) and small b (bits).

BPI - Bits per inch

FRIPI - (pronounced fripee) Flux reversals per inch. The last three are
measures of data density. Basically, this is a description of how tightly
packed is the data on the media. This corresponds to the capacity of the
drive.

BPI and FRIPI are measures of linear density. The data on the disk is
written in concentric circles or tracks. If you were to take the track
(circumference) and draw a straight line, this would be the linear
density.

TRACK - A concentric circle of data, typically numbered 0 to N, from the
outside (00) to the inside diameter (ID).

TPI - Tracks per inch

Sector - The track is made up of sectors. Each sector contains
information necessary for position verification, data and error
correction. Figure 2 below shows the typical format of one
sector.

{{

}}

(
Data

Figure 2 - Sector Make Up

3124-3



Disk Recording Technology - From DC to Light

The sector has several components. The first bits encountered (after the
sector gap) are the sync bits. These awaken timing circuits that use the
timing bits for clock synchronization. Next, the header contains address
location, including head (or surface), cylinder (or track) and sector
number. The data field contains the user data. The ECC (Error
Correction Code) and CRC (Cyclic Redundancy Code) are used to
ensure the accuracy of the data.

ACTUATOR - ~e actuator is the device that positions the heads on to the
media for the purpose of reading and writing the data. There are several
types of actuators. Low cost drives, floppies and hard drives alike, may
use a stepper-motor. This actuator is slow, and its steps are larger
compared to linear or rotary actuators. The result is the need for tracks
to be wider and spaced further apart.

Extremely high performance actuators use a linear voice coil. The
actuator moves in a straight line, front to back. Although high
performance movement is achieved, the actuator assembly is large and
bulky.

A compromise is the rotary actuator. Like the tone-arm of a record
player, the arm rotates at an arc across the surface. Speed and accuracy
are present in a much smaller and more compact package.

SERVO - To understand the differences in disk drives, and their evolution,
some mention must be made about the servo positioning system. This
refers to the system that locates the read/write head over the proper
track. The type of positioning system affects three parameters:

Accuracy
Time to move from track to track
Track density

There are several types of servo systems, each have benefits and
detriments. Listed below are some types and examples:

Electro-Mechanical
Optical
Embedded
Dedicated
Sampled

Stepper motor
Source!sensor (graticle)

Written on servo surface
Written with data

The stepper motor is used most typically in floppy drives, and the
embedded used in hard disk drives.

3124-4



Disk Recording Technology - From DC to Light

The dedicated servo system uses a dedicated surface to contain the
position information. The sampled servo system writes the position
information in areas that no data is written, the gap between sectors.

THE MAGNETIC DoMAIN

Early disk drives used removable disk cartridges or packs. These packs allowed
users to interchange data much like a floppy system today. Magnetic recording
on hard disks is much like tape recording in that a magnetic material is
magnetized in specific patterns that represent encoded data. In the case of tape
technology, the tape (magnetic media) is drug over the read/write head. The
speed of the tape is optimized to minimize wear to either the tape or head. The
data on a disk passes by the head at over 1600 inches per second, compared to
30 inches per second for a tape drive. To read and write data at these speeds,
the head must not actually contact the disk, however it must be very close. The
data head had to "fly" over the data; typical flying heights range from 15 to 25
micro-inches. It is difficult to relate to just how much 20 millionths of an inch
is. In the figure below, several comparisons are made to everyday items.

IIQIIU a.1r

......,DI....

Figure 3 - Flying Height Comparison

The stable flying of the head is critical. At the equivalent of 90 miles per hour,
the head must be fly stable in a clean chamber. To ensure this, early
manufacturers required that the media chamber be sealed, purged and filled with
nitrogen or even helium. As the technology developed, the sealed/pressurized
chamber was replaced with an air filtration and circulation system. A blower
and an absolute filter were used to circulate clean air through the disk chamber.
Often, the disks will spin to purge the chamber of any contaminates prior to the
loading of the heads.

If the head and media were to come in contact, no matte, the reason, irreparable
damage will occur. This event is called a head crash. Often, the slightest
contact will result in the damage of the media surface. The oxide surface is soft
and is easily removed by the hard-glass'head. This results in the generation of
contaminates. The contaminants are generated faster than the filtration system

3124-5



Disk Recording Technology - From DC to Ught

can remove them, thus the crash propagates. The final result is total loss of
data; the recording media is literally scraped away.

The early disk recording technology was lead by IBM (International Business
Machine). Whenever a "futures" slide was presented, everyone was one
generation behind IBM. Often, the disk technology was referred to by the
heads/media interface. Flying head drives like HP's MAC family, HP
7906/20/25 drives used the IBM 3330 technology head design. These heads
were relatively large and cumbersome. They literally flew over the disks.
Pictured below is a head assembly. At rest, the assembly is bent as seen below.
To bend the assembly straight takes 150 grams (or 5.25 ounces). The upward
force that keeps the head flying above the media is due to the aerodynamic
design of the head assembly.

At Rest

Stable Flying
1501

Figure 4 - Head Loading

This technology used 14 inch (or larger) platters. With bit and track densities
relatively low, the only way to increase storage capacity per spindle was to add
additional platters. A 14 inch disk has about two inches of usable space for data
storage. Hewlett-Packard's first offering in this area was the HP 7900; a 14
inch drive using two platters. This yielded 5 MB total storage. This first
offering had 100 TPI with 2200 BPI. How does this compare with future
offerings? Illustrated in the figure below is the increase of tracks per inch and
the increase of data storage per 14 inch surface.

3124-6



Disk Recording Technology - From DC to Light

14· Flying Head Technology

Tracks per Inch Growth

Me40.--------------..,

20

0'--__
"12 "73 "7. "1'5 "J6 "77 "11 I'" 1MO IMl 1M2 1'83

MB per Surface Growth

Figure 5 - Technology Growth

The capacity needs of computer users were being increased over the years with
new products every couple of years. Each product increased the bit andlor
track density with each generation. To further increase capacity, more platters
were added to the drives.

The demand from the disk drive users was not only to increase storage, but to
decrease the size of the package. The disk drive was not only examined for it
capacity, but its size and power draw were studied.

Again, as with previous entries into the disk drive market, the technology was
driven by IBM. This class of drives was referred to as Winchester Technology.
The differentiating factor of this technology was that the heads did not retract
from the disk's surface at power down. An area where the heads were allowed
to reside when the disks were not spinning was designated as the landing zone.
This area was typically located at the 10, well away from any customer data.
Before the development of the harder, thin-film media, the oxide media was
coated with a thin layer of oil that reduced the chance of damage when the
heads came to rest on the disk's surface.

The second distinguishing feature was the heads and media were now sealed in a
nearly air tight chamber. With flying heights being reduced and tighter
tolerances being maintained, the sealed HDA (Head Disk Assembly) was born.

3124-7



Disk Recording Technology - From DC to Light

With the exception of a small vent hole, the heads and media were sealed from
outside contamination.

New oxide fonnulations and smaller head sizes allowed the increase in tracks
per inch, thus resulting in even greater storage capacity per data surface. The
demand for greater storage per spindle grew, as did the requirements for smaller
sized disk drives. To meet these needs, the next step was to thin-film media.
These disks start with the same aluminum disk substrate as the oxide, however
the magnetic coating consists of several layers of metal deposited on to the
surface by sputtering. The first HP product to use this new technology media
was the HP 7936/37 family of disk drives. The cross section of a thin film disk
is depicted in the graphic below. This is substantially more complex than the
oxide media.

~~--~o:-------, Lurleatla. La,lr
Wllr LaJer

Ma.aaUe LaYlr

Nlckd

Figure 6 - Thin Film Layers

The thin-film media used was 8 inch rather than the previous 14 inch used in
earlier products. Though the 8 inch disk had only 1.25 inches of usable area.
the capacity per surface was 37.8MB: a gain of twenty two percent, more
storage capacity on a disk that is nearly half the diameter and one third the
footprint of the previous disk products.

Like its Winchester predecessor, the thin-film disk drive's HDA is sealed. The
new technology disks present a new challenge- corrosion. Special filtration
systems must be applied to not only remove particulates, but to remove moisture
and corrosive chemicals. In parallel with the reduction in the size of the HDA,
a corresponding reduction in the overall number of electronic components
occurred. Many of the functions performed by hundred of discrete components
are now integrated a few chips. Through hole electronic components are
replaced by much smaller surface mount components to save space and reduce
the size of the printed circuit assemblies. Electronics that once were contained
on three PC boards are reduced to one board, and one half the size of earlier
boards. With the smaller HDAs and highly integrated PCAs, the reliability of
these disk drives exceed their predecessors by a factor of ten.

3124-8



Disk Recording Technology - From DC to Light

The demand for more storage capacity grows with each and every computer
system. With the increase in competition within the disk drive industry, the
focus is on cost reduction. The new technology media is the secret to the
increase in MB per drive, however the cost of the new disks are several times
that of the oxide media. The focus is not on capacity per spindle but the cost of
that unit. There were two primary methods to reduce cost - use 5.25 inch disks
and manufacture in volume. Using smaller disks, more can be produced per
deposition machine. Secondly, at higher volumes the cost per disk drops
significantly.

Where is the limit? Where will it all end? We have experienced growth in
capacity, offering hundreds of MB on a single spindle. Conversely, we have
watched the disk size shrink from 14 inch to 8 inch all the way to 2.5 inches.
From the table below, the answer may be apparent.

... .. . -. ,

... . ·:techlnoiogy·l:r~D~~:f~~·M~g.~ti~;.:~e~_a··,;; ;
:. :..::':: ~: ': : : ~ : : ' . : .. :: '::.: :

...•.•...•..• :.: ...•·•• :·TP(•• ·•••. :.:ii~t·H:::: ~:~:1~~ •• ::
....................... - - .

:··:··8~::·:· :.: :: : .. :·ltit.·:·:::::'·: .:: :tilll::: :::::.';: <·::;::=·22:·
... ,-... . ..... , ... - .

. ..·:·20~5K : ':.:;":~: 27:':

.... 14'SjC .. ··~ft· 7v '" :ta.! '

. ::.'::: .... ~::: : ;:.. : :.: ~~~: .';':.: ..~ :(. :~:.:.:::.: ::::::~ :~:::: :.: :.::

Figure 7 - Technology Trends

From the second generation 5.25 inch disk on, the densities appear to have
peaked. Indeed, there will be a breakthrough in the head/media technology
someday. Vertical recording technology is in the laboratory today, and is said
to be the next step in magnetic recording. Until then, or another technology
breakthrough, these physical limitations will remain the barrier.

..•and then there was light

With the advent of Winchester technology and the sealed HDA, the computer
users are in need of a removable media drive. Applications such as data
interchange, archive and security, optical data storage have come to pass. In
addition to having a removable storage medium, the optical drives are lower in

3124-9



Disk Recording Technology - From DC to Light

cost than their magnetic counterparts. Magnetic storage will not be displaced by
optical technology today, however, as it has much slower performance.

Data is written (and read) using a LASER as opposed to a magnetic head. Due
to the ability of the LASER to be focused to a very small area, the data densities
on optical disks are 10 times or more than the equivalent size magnetic disk.
Hewlett-Packard's Magneto-Optical disk drive Model 650A, boasts of densities
of 15,875 TPI on a 5.25 inch disk. This translates to 325 MB of storage per
surface. That is a 10 fold increase in track density and over 6 times increase in
raw data storage when compared to a magnetic disk.

Features of optical recording .technology include:

-Low cost per MB
-High data densities
-Removability of media
-Longevity of written data
-Not susceptible to magnetic fields

There are three types of optical storage devices:

o Read/Write
o Write Once/Read Many (WORM)
o CD-ROM

Read/Write optical devices come in three flavors:

o Magneto-Optical (MO)
o Dye Polymer
o Phase Change

MO media can be erased and rewritten repeatedly, like hard disks. The MO
drive uses a high power LASER to assist in the write process, and a low power
LASER to read the written data. There is a layer in the MO media that has a
very high magnetic resistance. The magnetic field required to alter the bit
direction varies greatly with temperature. The LASER is focused to a small
point on the media. This action heats the magnetic layer to its Curie Point. At
this high temperature, the properties of the magnetic layer change, thus allowing
the drive' s magnetic field to alter the magnetic polarity of the bit. The direction
of the magnet' s polarity determines whether the bit is a 0 or a 1. This write
process is sh<?wn in the figure below.

3124-10



Disk Recording Technology - From DC to Light

LASER
Beam

tit +

SOUTH

Figure 8 - MO Write Process

To read data written on an MO cartridge, the technology takes advantage of a
physical law known as the Kerr Effect. This law states that a magnetic field
affects the polarity of reflected light. By detecting the light's polarity, the
direction of the magnetic field can be determined.

Dye Polymer technology uses a translucent plastic disk with a colored layer
which absorbs heat from the drive's LASER. A blister is formed on the area
heated by the LASER. Reading the Dye Polymer disk is similar to reading a
CD-ROM. The blisters reflect light differently than the flat areas. One
drawback of this technology is the media life is limited to less than 10,000 write
cycles.

The Phase Change method uses a plastic disk with a special metal layer. Heat
generated by the drive's LASER changes the molecular structure of spots on the
metal layer from an amorphous state to a crystalline state. To read, differences
in the reflected brightness in the crystalline spots are detected. As in the Dye
Polymer method, the Phase Change disk has a finite limit to the number of
write cycles.

3124-11



Disk Recording Technology - From DC to Light

WORM or Write Once Read Many is another type of optical disk drive.
WORM uses a disk with a special metal layer. Heat generated by the drive's
LASER alters the media surface. Like the process noted above, the WORM
media can be written only once. WORM is used for archive for material that
will not change, such as insurance data, title history or printed documents.
Since the WORM data can not be altered, it is secure and considered a
permanent record.

Computer based CD-ROM technology is built on the home stereo mechanism.
This read only device can store up to 550 MB of computer data. That is the
equivalent of 200,000 printed pages of text, 5000 high quality color images or
one hour of CD quality audio.

Data on the CD-ROM is organized in equal-length sectors that spiral from the
inside to the outside diameter of the disk. This differs from the magnetic disk,
as well as its optical counterparts, in that they are written in concentric circles.
The format of the 'digital' CD is the same as the conventional CD that stores
music. The result is that integrated with the digital data is audio.

Shown below is how information is recorded on a compact disk.

~ 1- 1.6 microns

Pit

Land

Figure 9 • CD-ROM Data Pattern

The ones and zeros are recorded as pits. The flat areas between the pits are
called lands. The continuous spiral spaces the tracks 1.6 microns apart. This
results in a track density of 16,000 TPI, 10 times more dense than magnetic
recording.

The process to produce CD-ROM media is relatively low cost and simple. The
data is mastered from any of a number of sources, tape, floppy, even magnetic
disk. When the preparation of the data is complete, the formatted CD-ROM

3124-12



Disk Recording Technology· From DC 10 Light

image is cut into a glass disk using a high power LASER. The glass master is
then taken to an electroplating process where a metal stamper is made. Using
the metal stamper, an injection molded disk can be produced one every few
seconds. The base material is then placed in a metalization process where it is
coated with a reflective aluminum layer. The aluminum layer is covered with a
protective layer of clear polycarbonate. Pictured in the graphic below is a
cross-section of a compact disk.

Label
Overcoating

I

1
I

Polycarbonate

I
Aluminum Coating

Figure 10 - CD-ROM Cross Section

Encyclopedia Britanica recently introduced "Compton's Multi Media
Encyclopedia" that includes spoken segments of famous speeches, classical
music and a 20 minute glossary of terms. The encyclopedia, with 31,000
articles, 15,000 photographs, charts and diagrams is only one of the many
applications of this young technology.

For many years, mM has led the charge in computer technology. Today, there
are many companies with R&D efforts in this field. Although "Big Blue"
manages to be on the forefront of technology most of the time, the rest of the
world is right there too.

This presentation has provided you with a brief overview of the evolution disk
recording technology. To cover every aspect of recording technology would
take hours. It is my intention that presentation has provided you with new
knowledge and understanding of this technology. With this new awareness, I
hope that you will see your disk drives as more than just data storage.

3124-13





DISK ARRAYS - MASS STORAGE OF THE FUTURE?
Paper 3125

Ed Pavlinik
Hewlett-Packard

Disk Storage Systems Division
11413 Chinden Boulevard

Boise, Idaho 83707
(208) 323-2060

INTRODUCTION

Disk storage arrays have recently become a leading topic of discussion in the
computer systems business, not just among industry gurus, but also at trade shows
and user group meetings worldwide. A variety of papers have been published and
numerous articles have appeared in industry pubhcations. As a result, innovative
users are more than mildly curious about the ramifications of using these devices on
their computer systems. In fact, some users may already be using disk arrays on PC
based systems.

What makes the disk array different from traditional on-line disk storage devices and
how can the typical data processing manager take advantage of this new technology?
The goal of this paper is to provide an understanding of disk arrays as a potential
solution to changing mass storage requirements.

THE DISK ARRAY CONCEPT

Large Capacity Storage from Small Disks

The typical disk storage array is basically a mass storage system utilizing a large
number of small form factor disk drives, such as 5.25" or 3.5", which are linked
together with an intelli~ent controller to provide a large amount of disk stora~e.

Capacities of the 5.25 t diameter disks have been steadily increasin8 as dIsk
manufacturers push the limits of magnetic recording technology. SimIlarly, 3.5"
diameter disk drives have also been increasing in capacity due to improvements in
track and bit densities.

Since the smaller diameter disks are also being mass produced in large volumes,
production economies of scale will result in lower manufacturing overhead and cost
per megabyte when compared to eight-inch or fourteen-inch disk mechanisms.
Obviously, the same storage capacity can be designed into a large single spindle high
capacity disk drive. The drawbacks of the single large expensive disk are higher
manufacturing costs due to lower production volumes and potentially lower
performance, since so much data is stored on a single spindle under one actuator.

The disk storage array allows larger computer systems to take advantage of many of
the benefits associated with smaller form factor disk drives and overcomes some of
their limitations through the intelligence built into the disk array controller. The disk
array controller can be designed to offer a high degree of flexibility in meeting

Disk Arrays - 3125 -1-



diverse user requirements. Optimization of the various tradeoffs can also be
achieved in a general purpose array or if appropriate, other special arrays can be
designed to solve specific user needs.

Array Terminology

The terminology used to describe disk arrays can lead to some confusion, since
several vendors use the term "disk array" to describe different products. For
example, some data sheets refer to products as disk arrays, even though technically
they might more properly be described as conventional disk storage systems or disk
cluster controllers. By another definition, the term disk array consists of multiple
disk drives under the overall command ofa single controller. Despite possible
confusion in terminology, the primary function of the array is to increase total storage
capacity as well as to improve performance by selectively spreading files over
multiple disks. The file spreading technique utilized by the intelligent controller is
caned disk striping. Striping is a technique which writes a single byte of information
to each disk drive in the array in a parallel fashion. All the striped disks work in
unison on a single I/O transfer.

Disk striping can also be accomplished in software by designing a special disk driver
to spread files across several individual disk volumes. In this case the computer
performs all of the data manipulation as well as the disk management and as a
result, the overhead may be qUIte high. In a disk array the array controller does the
striping outboard of the CPU, thus saving CPU cycles for other tasks. Products are
available from a number of vendors which illustrate both methods of disk drive data
striping.

Data Availability Hierarchy

A good way to visualize the concept of data availability is to consider a complete
hierarchy of data protection. In this model, higher data availability is achievable via
various techni'lues for a corresponding increase in cost. Depending on the level of
availability desued, one can pick a point on the cost curve for the specific solution
desired. For example, if a medium level of availability is perfectly adequate for some
applications, there are solutions available to meet those needs for a lower cost than
the completely redundant fault tolerant solution.

Here's an example showing these various levels of availability starting from highly
reliable disk storage systems and then working upward to progres~ive)y greater data
availability through the use of such innovations like disk arrays, disk mirroring, and
fault tolerant systems. As you might expect, costs will increase as one moves toward
the top of the pyramid. Many ap{'Jications, however, demand these high availability
systems despite the higher costs, sInce the benefits outweigh them. It all depends on
the cost of system downtime unique to every business.

Disk Arrays - 3125 ·2-



DATA AVAILABILITY
HIERARCHY

MIRRORED DISKS

. DISK STORAGE ARRAYS

HIGHLY RELIABLE
DISK STORAGE SYSTEMS

The highest level in this hierarchy represents fault tolerant systems which incorporate
full redundancy and include disk storage systems with no single point of failure. As a
result, a system is created that features almost no downtime. These systems
represent perhaps the ultimate in high data availability for use in mission critical
applications and offer continuous data processing with such features as multiple
processors, redundant I/O, and software checkpoints.

Disk drive reliability may be considered to be a cornerstone or foundation in this
hierarchy upon which additional layers of data protection may be constructed.
Continual improvements in disk drive reliability have made possible the design of
disk mechanIsms with a Mean Time Between Failure Rate (MTBF) in excess of
150,000 hours. However, this large MTBF does not guarantee against failures, but
only implies that failures will occur less frequently on average.

Moving up to successively higher layers in the data availability hierarchy becomes
increasingly costly, since redundant duplication of hardware is a requirement for fault
tolerant systems. However, the middle sections of the hierarchy may offer
acceptable levels of data availability for far less cost than the fully "bulletproof'
solutions. Many applications can take advantage of this medium level of availability
and the lower cost is an attractive feature. These intermediate levels of the
availability hierarchy consist of disk storage arrays and disk mirroring products which
will be examined in more detail in later sections of this paper.

Increasing disk hardware reliability will have an enormous effect on data availability.
However, a high Mean Time Between Failure (MTBF) for a disk drive does not
guarantee against disk failure. It represents an average number based on field
experience or a theoretical calculation based on component failure rates. High

Disk Arrays - 3125 -3-



MTBF disk drives will still fail, but not with the same frequency as they have in the
past. When a disk failure occurs, it may bring down the computer system for a long
period of time, particularly if the data has been corrupted and a system reload is
needed. Ten hours or more of downtime is not an uncommon result when a disk
failure occurs. To many customers this amount of system downtime is intolerable.

As the number of individual disk mechanisms in an array increases, the Mean Time
Between Failure (MTBF) for the entire disk storage system decreases
proportionately. This makes intuitive sense, since the more components that exist in
a system, the less reliable the total system becomes. For example, the approximate
number for the average MTBF of a disk storage configuration will be the average
MTBF for a single disk divided by the number of mechanisms attached to the system.
Given these facts, an array consisting of multiple disk mechanisms required a new
method to increase data availability as a means to avoid more frequent disk failures
and resultant system crashes. This led to the search for a controller design which
maintains system and data availability even in the event of a disk failure.

As a result, the parity disk concept was developed, providing the array controller with
the intelligence to reconstruct data from a failed dIsk drive on demand. This results
in a data protection shield which renders a disk failure completely transparent to the
user. Disk failures in a parity disk array now have no effect on the end user! The
array will now provide high data availability, use lower cost disk mechanisms, provide
large quantities of storage, and provide performance improvements, all at the same
time. Consequently, the disk array is a hIghly flexible mass storage device by virtue of
meeting an these diverse user requirements.

Disk Array Performance

Although the primary function of the array is to provide a lar~e amount of storage at
a high level of data availability, in certain modes and applications some performance
gains may be realized. Through the use of an intellIgent controller managing the
operation of several disk drives, it is possible to achieve performance gains from a
number of different perspectives. H all spindles are synchronized and the data is
striped over all disks, data transfers take place in parallel. Therefore, the array has a
potential speed advantage for large data transfers. Instead of one disk transferring
data, the array has multiple disks transferring simultaneously. In this mode of
operation the disk array appears to the host system as one large disk drive.

In another controller design, the array may appear to the computer system as several
unique disk drives all operating independently of each other. This allows for
concurrent disk mechanism operation without data striping or parity, useful for very
I/O intensive applications, since multiple UO's can be executed at the same time.

Different types of arrays can also achieve concurrent operation for certain
operations by working together in pairs of a much larger group. Arrays of this type
can process multiple small transfers simultaneously to speed up performance. In this
example, the striping is done on a smaller number of disks In the group for small
transfers and large transfers will keep all the drives busy in paraJJeJ. This will be
explained in more detail in subsequent sections of this paper.

Disk Arrays • 3125 -4-



REDUNDANT ARRAYS or INEXPENSIVE DISKS (RAID)

A common industry buzzword associated with the subject of disk arrays is called
RAID, an acronym for Redundant Arrays of Inexpensive Disks. Many different
configurations of disk arrays are possible, dependin~ on the requirements of the end
user and the goals of the manufacturer. Each deSIgn has a different functionality
built into the controller to accomplish specific goals related to disk performance and
data availability. A University of California at Berkely paper entitled itA Case for
Redundant Arrays of Inexpensive Disks (RAID)" by Patterson, Gibson, and Katz,
summarized five categories of disk arrays. Since only three of these configurations
are practical for most on-line transaction processing systems, we will examine them in
more detail.

RAID LEVEL ONE - DISK MIRRORING

This classification describes the concept of disk mirroring, where fully redundant disk
drives are used to store data on a computer system. Here's a representative sample
of a typical disk mirroring storage system:

MIRRORED DISK OPERATION
Normal Operating Mode
• Transparent To Users/Applications
• Minimal Overhead On Disk Writes
• Higher Performance On Disk Reads
• Simple Control & Operation

Data DupUcated On Mirrored Dlaka

When Disk Fails
• Transparent Switch On Failure
II Online Replacement Of Disk

,
I
•
•Fiber 1

Unk 11

~e
o ---

Accel. to Second Dllk

In the event 'of a disk failure, the special disk mirroring software will automatically
switch aU I/O activity for the mirrored pair of disks to the surviving disk in the pair.
Repair and resynchronization of the failed disk drive can be done transparently to
users and applications. The system knows that a failure has occurred via a console
message, but the users and their applications will have the same access to the data as

Disk Arrays - 3125 -5-



if nothing at all had happened. High data availability is a key user benefit from disk
mirroring, since it extends system uptime by saving the system in the event of a disk
failure. Mirroring has minimal overhead on disk writes, since two copies of the data
and any changes have to be made. Higher performance can be achieved on disk
reads however, since I/O can be processed by two disk spindles concurrently. This
provides a performance benefit in addition to high data availability.

The disk mirroring solution duplicates the entire disk system, thus protecting the data
against power supply, controller, fan, and cablinB failures, in addition to a failure in
the disk mechanism. The disadvantage of disk mirroring is the cost of duplicating the
disk drives, making the effective cost per megabyte twice that of an unmirrored
system. Actually, the true cost may actually be more than twice as much due to the
cost of the disk mirroring software which manages the entire operation. For data
which must be protected at all costs and remain on-line in "a high availability system,
disk mirroring advantages will far outweigh the higher costs.

Disk mirroring also allows a system to be designed to achieve on-line backup. Since
there are two disks storing every bit of data on the system, one disk in the mirrored
pair can service on-line transaction processing, while the other can be dedicated for
backing up to a secondary storage device. The only delay in the system is
approximately five minutes of quiescent time at the beginning of the process to
maintain data integrity. After the backup has been completed, the software
schedules an on-line resynchronization of the mirrored disks.

RAID LEVEL THREE • PARI1Y DISK

This type of disk array uses a separate parity disk to store checksum data. The
function of the parity disk is to store the EXCLUSIVE OR of the data kept on the
data disks. This allows for a bit-by-bit comparison and subsequent reconstruction of
the data in the event of a failure of one of the data disks. The number of data disks
in the group is usually chosen to be an even number and will depend on total capacity
desired as well as packaging consid~rations. The disk spindles are synchronized so
that at a given point in time all the heads in the group of disks are reading or writing
on the same sector location in parallel.

Data is spread or striped across all the data disks in the array on a byte-by-byte basis,
and the array appears to the system as a single large disk drive. During normal
operation the array transfers data in a parallel fashion at the theoretical rate of a
single mechanism multiplied by the number of data drives. Actual transfer rate
depends on the host bus adapter bandwidth and system data patterns. For some
applications, a performance improvement will be achieved in the resultant higher
transfer rate. Every write operation will involve all disks in the array, since new
parity needs to be written to the parity disk. Reads involve all the data disks in the
array. .

Here's an example of a typical dedicated parity disk array configuration. Notice how
the parity disk can protect even multiples of data disk drives, even though only four
disks are shown.

Disk Arrays • 3125 -6-



DISK STORAGE ARRAY

PARITY CONFIGURATION

HOST

COMPUTER

Disk Array Controller

I I I I I
~ ~~ ~ •••• efd

DATA PARITY
DISKS DISK

In the event of a disk failure, the array controller reconstructs data that is missing
from the failed disk through the use of the parity information. Since all the bytes are
buffered, there should be no loss of performance as the controller is specially
designed for speed to accomplish the extra tasks involved. The array can operate in
this mode with no loss of efficiency until the chance occurrence of another disk
failure, but statistically the probability of that haepening is very small. The system
knows that a disk failure has occurred, and the faded mechanism can be replaced at
the next service call or else during a slack period in the system operation. A new
drive can be inserted to replace the faulty unit and the array controller will rebuild
the data on the new disk. During all this activity, the system is still available for on
line transaction processing applications.

The cost per usable megabyte of storage in this type of disk array increases due to the
dedicated parity disk which cannot be used for storage of user data. For example, in
a four-way striped parity array, there is 25% overhead in storage costs. This is due to
the fact that the product consists of five disk mechanisms, but user data can be stored
on only four. The overhead associated with the parity is a small price to pay for the
increased system uptime.

Other components of the array can be duplicated to guard against power supply and
controller failures. A lar~e amount of flexibility exists for variations in the design of
this type of array, dependIng on user requirements.

Disk Arrays • 3125 ·7·



RAID LEVEL FIVE - DATA EMBEDDED WITH PARI1Y ACROSS ALL DISKS

This design is more complex and therefore more costly than the level three disk
array. Here's an example of a mass storage array incorporating a level five
controller:

DISK STORAGE ARRAY

RAID LEVEL FIVE

HOST
COMPUTER

PARITY 0 0 0 0

1 PARITY 1 1 1
2 2 PARITY 2 2
3 3 3 PARrTv 3
.- 4 4 4 PARITY

The data is still striped across all the disks in the group, but the parity information for
each sector is not stored on the same disk. The array controller manages the
generation and location of the parity information for each sector stored. For
example, the controller parity and data storage sequence might be as follows: for
sector zero the parity data is stored on disk one, sector one's parity is stored on disk
two, sector two's parity is on disk three, sector three's on disk four, etc.

This level five array may in some applications have decreased write performance,
depending on the system, since for a write involving just a few disks in the group for a
small block of data, all the disks in the group need to be read, new parity calculated,
and then new parity information rewritten. This "READ-MODIFY-WRITF" cycle
represents extra overhead for small writes, when compared to a level three design.
On small reads involving just a few disks, better read concurrence occurs, since the
array may be processing multiple I/O's to different disks in the group.

In the event of a disk failure in a level five. array, the missing data is calculated from
the parity or checksum information in the same fashion as in the level three array.
Data availability is correspondingly increased due to the extension of system uptime,

Disk Arrays - 3125 -8-



TITLE:

AUTHOR:

HP 3000 Systems Management

Robert Winter & Davjd Strauss

Hewlett - Packard

c/o Ella Washington

19091 Pruneridge Avenue; M/S 46LK

Cupertino, CA 95014

FINAL PAPER NOT AVAILABLE, HANDOUTS \VILL BE PROVIDED AT
TlrvlE OF SESSION.

PAPERNO. 3126





Paper #3127
Managing MPE/XL Configurations

Doug Claar and Fred Parkes
Hewlett-Packard

19447 Pruneridge Ave.
Cupertino, Ca. 95014

(408) 725-8111

MPE/XL offers great advantages over MPE V/E by providing increased flexibility and capabilities to
manage system hardware configurations. System managers can use configuration files to customize
their system configuration and manage multiple configurations.

This paper provides information that will enable MPE/XL system managers to effectively use and
manage configuration files to meet their needs. The following questions are answered:

• How can I use SYSGEN to customize my system's configuration?

• How can I manage the configurations of multiple systems from a single system?

• Can my system run without a configuration?

• What precautions should I take?

With this information, system managers will be able to manage single and multiple systems more
effectively and to avoid common configuration problems.

In order to describe the management of configuration files, we first define some terms and then set
up a system. We will start with a factory system load tape (SLT) and install from it. Then we will
do the first START after the IISTALL. Next we will describe the process of changing the configuration
files for the system. This allows for as many iterations as required to perfect it. We then write a
customer SLT for this system and update from it. Then we will describe further changes a system
manager might need to make to the configuration files, including multiple configurations for the
same system and multiple systems. Finally, we talk about common problems with configurations
and how to recover from them.

We will limit our discussion to configuration files of the MPE/XL software platform. We do not
discuss data communications and terminals, applications, or how to configure and run your business
applications.

Definitions

When discussing system configuration, there are several terms and concepts that must be understood
and agreed upon. Many of these are defined here.

Configuration Files. Configuration files are a set of eight files in the same group. These files are
managed by SYSGEN and contain configuration information. These files come as a set, and some
of them have pointers into other files in the set. The number of files in the set may change in the
future. Configuration files must reside on LDEV 1, the main system volume.

Configuration Groups. A configuration group contains configuration files and is in the SYS ac
count. The groups are created when the system is installed or updated or when SYSGEN needs a new
group for keeping configuration files.

Managing MPE/XL Configurations 3127-1



System Load Tape. A system load tape (SLT) is a tape written by SYSGEN. The SLT is in a
format that can be booted by 900 Series HP 3000 hardware. It is not in STORE/RESTORE format.
An SLT contains two sections. a tape boot section and a disk section. An SLT contains enough files
and data to install an MPE/XL system on disk. After the installation. the system can be started
and the console can be logged on as MAHAGER. SYS. An SLT contains one set of configuration files in
the group COIFIG.SYS. These are the files that are treated as configuration files by a system update.
They are written to disk during an UPDATE COIFIG or any INSTALL. SLTs come in two types. factory
and customer SLTs.

Factory System Load Tape. A factory SLT is created by Hewlett-Packard and contains a
factory version of MPE/XL. This level of the operating system must be tailored by AUTOINST
to provide business solutions. The tape also contains an "empty" configuration group, a copy of
sample configuration files, and system logging numbers (used to determine the starting system log
file numbers) set to zero.

Customer System Load Tape. A customer SLT is created by SYSGEN and contains a set of
configuration files in the group COIFIG. SYS. By default, the system logging numbers will be non
zero, and the tape does not have any of the sample configuration files supplied by Hewlett-Packard.
The operating system on the tape is a duplicate of the system it was written from. A customer SLT
configured and written by SYSGEN while running AUTOINST will be ready for use as a software
platform to install and run customer solution software.

When Is a Config File Not a Config File? On disk, configuration files are the files that
contain configuration information. They a.re located in a group in the SYS account on LDEV 1.
Configuration files are managed by SYSGEN.

On a system load tape, written by SYSGEN, there is only one set of files that are configuration
files. These are the files in the group COIIFIG.SYS. They come from the files in the base group that
SYSGEN is pointing to when the TAPE command is invoked. Configuration files on an SLT are
always written to disk by INSTALL. Configuration files are not replaced by an UPDATE IOCOIFIG
(the default parameter). Configuration files are replaced by an UPDATE CORFIG.

All other files on an SLT are either system files, IPL files, boot files, or autoboot files. The files on an
SLT that look like configuration files (Hewlett-Packard-supplied sample configurations) are system
files. System files are always written to disk by INSTALL and are always replaced by UPDATE.

The file IDP. COIIFlG. SYS, on an SLT. is a system file-not a configuration file. It is always replaced
by UPDATE and is always written to disk by INSTA LL.

Empty Configuration Groups. An empty configuration group does not contain any configu
ration files except the file lDP. A factory SLT contains an empty configuration group COlFlG. SYS
because the tape is intended for any system.

Default Options. The default options discussed here are START GROUP=COIFIG RECOVERY and
UPDATE BOCOIFIG.

Configuration Files in the BOOTUP Group. The configuration files in the group BOOTUP
are saved there during a START IORECOVERY. They are used during a START RECOVERY. They are
protected while the operating system is up and running.

3127-2 Managing MPE/XL Configurations



Paths. The PA-RISe architecture defines where to store the information about the hardware paths
to the devices that are needed to boot. The primary boot path tells where to find the device that
the PA-RISe machine will usually boot from. This is almost always a disk. The alternate boot path
tells where to find an alternate boot device, usually a tape drive. The console path tells where to
send messages to and receive input from. This is usually the terminal used as the system console.
Once the system is up, the primary boot path becomes LDEV I, the console path becomes LDEV
20, and the alternate boot path usually becomes LDEV 7.

Setting Up a System for the First Time

A 900 Series HP 3000 hardware system begins life as hardware with no system software. The disk
volumes are blank. The process of creating a running system starts with an INSTALL from an
alternate device (in this case, a factory SLT on a tape drive). The INSTALL image is booted from
the tape and initializes the system master disk, LDEV 1. Disk labels, system objects, and a file
system with a minimum account structure are added. INSTALL then reads all the files from the
SLT and writes all of them to LDEV 1 using the file system. When the installation is finished, the
system then has enough data to boot the operating system. The configuration files on disk may
not be what you expect. The group CORFIG. SYS is an empty configuration group. It contains a
system identification file, IDP. CORFIG. SYS, but does not contain any configuration information. The
configuration information is in the Hewlett-Packard-supplied sample files in groups such as COIFG950
and ALI1K925. The configuration in these groups is our best guess at what typical systems might
look like. We intend to make your job easier by providing a configuration that requires minor
changes to match your configuration. For more information, including which sample configuration
group to use, please consult the installation manual for the factory SLT and the System Startup,
Configuration, and Shutdown Reference Manual (32650-90042). The first startup after a system
installation is different and requires some special attention.

The first startup after system installation from a factory SLT needs a GROUP= parameter with an
appropriate configuration group. For example:

START GROUP=COIFG950 IORECOVERY

Using a group with configuration information in it gives the system a place to start. Starting with
the default group, COBFIG, after an install from a factory SLT is not a supported way to start a
system. The first startup after installation initializes additional members of the system volume set if
they are configured, ready, and not a private volume. The first startup after system installation also
initializes system values. Those are the values identified as changed in SYSGEN MISC configurator
only when an UPDATE from tape is performed (for example, RINs and GRINs). The configuration
group used by the START command is also the default group used by SYSGEN when it is run. If
that group is empty, there is confusion when SYSGEN is run. It is best for all concerned that this
first startup after installation be given a valid configuration group.

Once the system is running, it is time to change the software configuration information to match
the real hardware configuration. This is one of the places where SYSGEN is used.

Using SYSGEN to Manage Configurations

Unlike many other systems, including MPE VIE, MPE/XL allows multiple ·configurations to be
present on disk. As we saw earlier, the system can be started from anyone of these configurations.
There are some interesting possibilities here. We'll talk about using multiple configurations to

Managing MPE/XL Configurations 3127-3



manage multiple systems later, but even with just one system, there are some uses. One use is to
create a backup copy of the old configuration in case the new one doesn't work. It is much nicer to
come up with what you had before than to come up with just your primary boot path, secondary
boot path, and console path. Another possibility is to use multiple configurations when you're only
going to need a particular configuration for a short while. For example, if a third party is going to
use your machine for a few weeks and you need to hook up some equipment for them (or remove it),
you can keep your regular configuration somewhere else and put it back when they leave.

The only "UL-approved" way to move configurations is with SYSGEN. Other methods run into
pitfalls, such as moving the configuration files off the boot disk: You can't configure a disk into
the system if the information to configure it is on that disk! Configuration files are an interlocking
set: It is dangerous to mix and match individual configuration files. A system produced by mixing
configuration files will usually not come up correctly. If you stick with using SYSGEN to work with
configuration files, you'll be assured of success.

Using SYSGEN to Change Configuration Information

Some people are overwhelmed, at least initially, by the number of commands and options available
in SYSGEN. It turns out that most things work quite nicely with the default values, so that, for
example, even though there are more than 20 parameters available to the ADEV command, usually
only the three required parameters are needed. Among the configurators, the 10 configurator is
probably the most frequently used; so we'll deal with that one in some detail, but first we'll take
short trips to the other configurators.

The LOG Configurator. The LOG configurator is fairly straightforward. It is used to determine
which system events will be logged, as well as to determine two characteristics of user logging. System
logging is the process by which the system records information about the goings on in the system.
Things like file opens, user logons, console messages, and many other events can all be recorded. The
names of the system log events are self-explanatory-you can look at them and decide if you want
to know about each one. I always tend to turn on the ones that tell me who's been on the system
and what things they've touched, but it's up to you. MPE/XL records the events that it wants to
know about whether you do anything or not, so there aren't any requirements from that end. Of
course, the more events that you turn on, the faster you create log files, and the more disk space
they will occupy-and there's never enough disk space. Log files are those files in PUB. SYS that look
like LOG####.PUB.SYS, where #### is some number. If you have lots and lots of them, either
your system is going up and down frequently (you get a new log file each time you boot), or no one
has been purging the old ones off. If it is the latter case, somebody out there in disk marketing is
thanking you.

One common problem that you might encounter is when you turn on all sorts of logging events...and
find that your log files don't have anything worth mentioning in them. You go back into SYSGEN,
see that the events that you picked are all on, and start muttering about murder and mayhem.
While in SYSGEN, you notice that event 100, 'System logging enabled,' is off. Thrning on this
master switch, keeping and rebooting, begins to fill up your log file with:

(OUTPUT)13:06/164/IIVALID PASSWORD FOR "MAHAGER.SYS." DURIIG LOGOI 01 LDEV #62.

and other useful messages. Event 100 is like the main circuit breaker: If it is off, only the emergency
lighting (the log events that MPE/XL keeps on) works. Ifit is on, both the regular and the emergency
lights are on.

3121-4 Managing MPE/XL Configurations



User logging is mostly outside the control of SYSGEN. Only the number of user logging processes
and the number of users per logging process can be controlled. I guess if you need user logging, you
know what to do with these parameters.

The MISC Configurator. The MISC configurator, like its name suggests, contains a lot of
miscellaneous information. Originally, this configuratof was called LIMIT, because it was intended
to have all of the operating limits, including system table sizes. Yod remember system tables, don't
you? MPE VIE had lots of them, and SYSDUMP asked you the size of all of them:

:sysdump *t

ARY CHARGES? Y
VERSIOR =G.03.06.?
MEMORY SIZE =4096 (MI8=266, MA1=8192)?
I/O COIFIGURATIOR CBAIGES?
SYSTEM TABLE CHARGES?
MESSAGE CATALOG CHARGES?
SOFTDUMP COMMARD CHARGES?
LOGGING CHARGES?
DISC ALLOCATIOR CHARGES?
SCHEDULING CHARGES?
SEGMENT LIMIT CHARGES?
SYSTEM PROGRAM CHARGES?

oops, I wanted SEGMENT LIMIT CHANGES! Break, abort, try again...
:sysdump *t

With MPEjXL, a standard table interface was introduced that allowed the operating system more
flexibility in determining sizes for itself, so· there isn't as great a need for specifying limits. But
nature abhors a vacuum, so other configurable items were invented. These things weren't really
limits, but they certainly weren't 10, LOG, or SYSFILE either-and there were too many to put up
there with the TAPE command, and, well, they ended up here. But since they weren't really limits,
the configurator name was changed to miscellaneous, or MISe for short. Most of the parameters in
MISe can be left alone, at least initially. In fact, every default configuration shipped, from Series
922 to Series 980, has the same MISe values in it.

The SYSFILE Configurator. The SYSFILE configurator contains information to manage the
files that go onto a system load tape (SLT). In general, only those things necessary to boot and
configure the system should be on the SLT. The rest of the files should be on a STORE tape. If you
follow this line of thought, there won't be much reason for you to be making changes in this area.
One thing that you should know about this configurator is that AUTOINST runs the SYSGEN
SYSFILE configurator against every configuration that it can find in order to update the list of files
to be dumped to tape so that it matches the current operating system. Otherwise, if you created
an SLT from a configuration that had the release 2.0 list of files, but was a release 2.2 system, the
system created from that SLT probably wouldn't even boot-and if it did I it wouldn't have all of
the pieces necessary to correctly run the operating system. In this specific example, the programs
needed for the new spooler wouldn't be present.

Running AUTOINST against all of the configuration files on the system can, however, have side
effects. In the R&D labs, we created a test version of the operating system on a machine running
a different version of the OS. When we updated one of these machines to release 2.2, our release
2.0 SYSFILE configurations were updated by AUTOINST to contain release 2.2 files. This left us
temporarily unable to build release 2.0 systems. This won't generally be a problem outside of the

Managing MPE/XL Configurations 3127-5



R&D lab, as it is primarily related to having configuration files for more than one operating system
release on your system-but it is a side-effect worth noting.

The 10 Configurator. The 10 configurator is the most used configurator of the four. It's purpose
is simple-to connect the system to the outside world. To do this, it defines paths, devices, and
classes. It can also define members of the system volume set.

The path commands are perhaps misnamed, but "add a configuration for the cards that form a path
to the device tJ was too long. The place where people often get confused is in knowing when to use
the path commands and when to use the device commands. After all, the device is part of the path.
The difference between the two is that, if you want to talk to something from MPE/XL, you need
additional information, including a logical device number. One way to package this would have been
to add the path for the device, and then have an additional command to say "for this path, here's
some additional information"; but instead the decision was made to let the user do all the device
related configuration in one command. So the rule is: "If it has a logical device number, use the
device commands."

PA-RlSC has a flexible, expandable, hierarchical bus structure that spans a wide range of systems.
Depending on the performance of the system, the number of bus levels will vary. We see the results
of this directly today in the Series 950 and above machines, which have a system memory bus,
whereas machines like the Series 932 start with the midrange system midbus.

One problem with mapping SYSGEN 10 components to the real world is that we don't configure the
"pipes" (the busses); we configure the "fittings" (the adapters) and the "spigots" (the devices). So
we talk about bus converters, channel adapters, and device adapters, which are the paths between
the busses and not the busses themselves.

Fittings (adapters) are added from the source outwards. These components are added with the
APATH command, generally specifying only the path and product number and defaulting the other
parameters. The number of pieces that must be fitted depend on what the highest bus is and off
of which bus the device hangs. For now, the path flows from (optionally) a bus converter, then to
a channel adapter, a device adapter, and finally the device. But remember that the device must be
added separately. So, depending on how many pieces exist when you start, you must do between
zero and three APATB commands. One benefit of a hierarchical structure is that the earlier parts
(like the bus converter) are probably already added for you, because someone else needed them, too.

Once you get to the device level, switch over to the device command, ADEV. Once again, only the
required parameters-LDEV number, path and product ID-are usually needed. Classes can be
added with the device commands, or they can be added with the class commands. The device must
be added before the class, so do it all in the ADEV command, and save yourself an extra command.1

So the path and device commands are the real workhorses of 10 configuration.

There is one last group of commands in 10. The volume commands provide a subset of VOLUTIL's
functionality for the system volume set. The primary use of this feature is to allow operations staff
to reinstall the system without someone who can run VOLUTIL being around. This is especially
nice if you are a system manager who works days plus emergencies and who has a 24-hour-a-day
operations staff. Grave shift can reload the system without you having to pull an all-nighter.

Pulling It All Together. Once you have made the necessary changes, there is still the matter of
getting them to take effect. After making changes in a configurator, you must use the BOLD command
to hold onto those changes while you work in other configurators. SYSGE~ will issue a warning if you
try to leave a·configurator without first holding. If you don't issue the BOLD command, your changes

1In hindsight, implementing classes as something added to devices was a poor design choice internally, leading to
the currently troublesome limit of eight classes per LDEV.

3127-6 Managing MPE/XL Configurations



will be lost. Once you have made all 'Of your changes in all of the configurators, you must either
make a tape, keep the configuration (in COIFIG.SYS), or both. MPE/XL documentation recoIIUnends
always cutting a tape and doing an UPDATE COIFIG from it-and that's a good suggestion. But if
you're in a hurry, you can just keep and reboot with START IORECOVERY, making the tape later.
(Of course, if something happens and you have to update or install, you'll lose the changes that
you made.) Your active configuration should always be in COIFIG.SYS, but it doesn't hurt to have
a backup copy somewhere else. For example, before you start to make changes, you might issue a
KEEP BACKUP command from within SYSGEN just in case. Don't keep your system configuration
back in the sample group, because the next update from a factory SLT will write over it.

There are some things that will not change without an update. In particular, changes to the RlNs
and GRINs, to USERVERSION in the MISC configurator and to the number of user processes in the
LOG configurator only take effect on an UPDATE COIFIG (or, of course, an IISTALL). By definition,
the changes in the SYSFILE configurator require an update (either CONFIG or not) or an install to
take effect, since that configurator deals only with the contents of the tape. Finally, changes made
with the volume commands (AVOL, DVOL, IIVOL) in the 10 configurator will, by definition, only
take effect on an install, since these commands indicate which system volumes should be initialized
during the first start after install.

Activating Configuration Changes. Most configuration changes are made during system in
stallation, but when any configuration changes have been made and kept in the group COIFIG. SYS
with the SYSGEB KEEP command, it is time to use the information.

To do this, shut the system down with:

Control A SHUTDOWI

boot the system and issue

START BORECOVERY GROUP=COBFIG

While the system is coming up and after it is up, look for the correct configuration and anything that
is not correct. If there are changes to be made, run SYSGEN and make any needed changes. Keep
them in the COBFIG. SYS group. To test them, shut the system down, boot, and start it again, just
as we did. When all configuration information is correct, it is time to continue with the next step.
If this is part of an installation or update from a factory SLT, it is time to run AUTOINST. This
installs the rest of the software and writes a customer SLT. Software installation is not complete
until the system is updated with this customer SLT. Some of the subsystems added by AUTOINST
require changes in the system IIL.PUB.SYS. These changes are not complete until after an update
from that customer SLT. Again shut the system down and update from the customer SLT.

Now start the system and make any other alterations needed, (SYSSTART file, welcome message,
accounting information).

Release of aNew Level of the System

The time will come when a system is up and running on one level of MPE/XL and a new level is
released. The new release comes in the form of a factory SLT and some other tapes. Always consult
the manuals that come with the new tapes. The process of updating to the new level is as follows:

1. Backup the system.

Managing MPE/XL Configurations 3121-1



2. Make space available on LDEV l.

3. Shut the system down.

4. Update from the new factory SLT.

5. Start the system.

6. Run AUTOINST.

7. Shut the system down.

8. Update from the new customer SLT.

9. Start the system again.

To prepare for an update from a factory tape, a full backup is good security. In case something does
go wrong, a system can be recovered with a backup. Making space available on LDEV 1 is important.
Without enough space, a problem or even a disaster is possible. The space on LDEV 1 is needed in
case some of the files on the SLT have changed in size, or in case there are new files on the SLT. The
ISL UPDATE command uses, by default, the IOCOIFIG parameter. This means that the configuration
files in COIFIG. SYS are not replaced. The configuration files in other Hewlett-Packard-supplied
sample groups (for example, CORFG960) will be replaced.

The first start after an update is a START RORECOVERY. With some system releases, the format
and sometimes the content of configuration files changes. When AUTOINST is run; it changes the
format and content of all old configuration files on the system. It is important not to restore old
configuration files after this step. AUTOINST writes a customer SLT with the changes needed for
this system.

The update from the customer SLT puts the changes on LDEV 1 and makes them part of the system.
Start the system again and make the system ready for use.

Managing Multiple Configurations

SYSGEN offers advanced users the ability to control multiple systems' configurations from one hub
machine. Hewlett-Packard uses this capability to create and manage all of the various machine
specific configurations that are put on the factory SLT as system files. (for example CO~G980,

CORFG949, and so on.) It's as simple as keeping the different configurations in different groups, but
you'Il generally want to use script files to keep track of things. Script files are discussed a little later.

Once you have created multiple configurations, you can propagate them by cutting a different tape
for each configuration; or you can add the configuration files 88 system program files, as Bewlett
Packard has done. There are advantages to each setup, with the primary advantage of adding the
files as system program files being that you can use the same tape for everyone. Thus, once you
have set everything up just the way you want it, you can update from that one tape everywhere;
however, you will then have to run SYSGEN on each system to move that system's configuration
into COIFIG.SYS. With one tape per configuration, it's just an UPDATE, which can be done by
operations.

Script Files

Script files are just ASCII files containing SYSGEN commands, with the recommended first com
mand of PERKYES. (This prevents strange things from happening when SYSGEN decides to ask for

3127-8 Managing MPE/XL Configurations



confirmation of something.) SYSGEN is safe to use in script mode: If any problems are encountered,
SYSGEN does not make a tape or do a keep, and sets the JeW to a non-zero value. The scripts
used in the lab to create the default configurations come in two parts: the 10 part, which varies
from platform to platform, and the everything-else part, since that part doesn't change. In general,
this is probably a good separation. Unfortunately, SYSGEN doesn't currently support an IBCLUDE
command; so these files must either be combined outside of SYSGEN, or else SYSGEN must be run
twice. We've chosen to combine the files outside of SYSGEN, which is easy given file redirection;

:FILE nevpass=$IEVPASS;REC=-80"F,ASCII
:PRIRT firstpart >*newpass
:PRIIT secondpart »$OLDPASS
:SYSGEI confis-group,,$OLDPASS

Doing Without

If you find a system with an incorrect set or with no configuration files at all and you want to bring
the system up you can start it without configuration files. This method is usually used to recover
from a disaster, but it can be used any time that it is needed. Issue the START command with the
GROUP= parameter pointing to a nonexistent group. For example:

START GROUP=TRASB IORECOVERY

When the system is booting, it gets the path to LDEV 1 from the primary path stored in stable
storage. It gets the path to LDEV 7 (the tape) from the alternate path and gets the path to LDEV
20 from the console path in stable storage. These are enough devices to run the system and change
the configuration files or restore some from backup media. If the group in the START GROUP= exists,
the system does not configure LDEV 7 and has only two devices configured.

Problems, Warnings, Do's and Don'ts

Always Use START NORECOVERY. To change configurations requires a START BORECOVERY.
A start with recovery (the default) will use the configuration information from the last start with
IORECOVERY.

Where Are My RINs and GRINs? If your system does not have the correct number of RINs
or GRINs, this is what has happened: When a system is installed from a factory SLT, the group
COIFIG •SYS does not contain any configuration information. A start with the default GROUP= pa
rameter or GROUP=COIFIG is a start without configuration files. You will probably discover it quickly
when there are only two LDEVs available. The system also has a default number of RINs and
GRINs. The next start, even with the correct group and ROUCOVERY does not change the number
of RINs and GRINs. To correct this problem, either re-install and start with the correct group, or
update with a customer SLT and use UPDATE COIFIG.

Moving Configuration Files with SYSGEN. Do use SYSGEN to manage configuration files.
Do not use STORE and RESTORE. Do not move configuration files off of LDEV 1. If you have
a system with configuration files on an LDEV other than LDEV 1, the system starts only with
LDEV 1 configured. There are at least two ways to recover the system. One way is to issue

Managing MPE/XL Configurations 3127-9



UPDATE COIFIG from your customer SLT. UPDATE purges the directory names of the configuration
files in COIFIG.SYS and puts the files back on LDEV 1.

Another way is to start the system without configuration files. Then restore all of the configuration
files (from t.COIFIG.SYS) from a backup STORE tape into another group. RESTORE will not be
able to purge the files in COBFIG. SYS because they can not be opened. The RESTORE cOIIUDand can
be used to restore them to another group. For example: create a new group TEMPCOR. SYS and issue
the conunand CHGROUP TEMPCOR to change to the new group: then

RESTORE *T;G.CORFIG.SYS;SHOW;LOCAL
Control A SHUTDOWN
START GROUP=TEMPCOB IORECOVERY

When the system is up and running with all system volumes online, use SYSGEN to keep the
correct configuration files back in the COIFIG group on LDEV 1. At this point, your system has
been recovered, and you might want to start again with START GROUP=COIFIG IOUCOVERY.

Always Run SYSGEN after Datacomm Changes. Because of interactions between data
comm devices, local devices, and compatibility mode tables, SYSGEN must always be run, and the
configuration kept, after making a change in the datacomm configuration. Just running SYSGEN is
not enough, because SYSGEN stores information for datacomm in its configuration files, and a KEEP
must be done to save that information. A START IORECOVERY must be done to make the datacomm
changes take effect.

Conclusion

We have talked about what configurations are and where they come from. We have described how
to change and manage configurations on an MPE/XL system. You have seen some of the more
common problems, how to avoid them or at least how to recover from them. We believe that the
information here will make you more effective as a system manager. You need no longer cower in
fear when you have to add a device to your system. You can walk tall and proud. You are a system
configuration super-star.

3127-10 Managing MPE/XL Configurations



Bounds Analysis
or

The Poor Man's Capacity Plan!

Paper # 3128
Bryan Carroll

Hewlett Packard
19111 Pruneridge Ave. 44MV

Cupertino, Ca. 95014
(408) 447-5833

Performance of our computer systems is something we always
have to have. We are always interested in ways to get more
performance, but how can we tell when we are going to run
out? This determination is critical to running a successful
business, keeping computer users happy, and in some cases,
keeping our jobs!

The traditional methods to address this problem are with an
expensive sizing study or capacity plan involving lots of
engineering time and money. Enter Bounds Analysis! Bounds
Analysis is the simplest approach to solving the issue of
computer system capacity using queueing network models.
With very little work, it is possible to determine an upper
and lower bound on system throughput and response times!

Bounds analysis can be computed very quickly by hand, yet
provides us with valuable information about system
bottlenecks, throughput, and response time. What would you
give to know how much response time would change if you
added 10 new users to your system? These questions and many
more are answered with bounds analysis.

This paper will explore bounds analysis, the algorithms
used, how to parameterize the algorithms, several uses and
several examples.

Bounds analysis can provide us with a unique insight into
the variables affecting performance. Have you ever been
caught spending lots of time and perhaps money trying to
enhance the performance of a system only to learn that
performance was unchanged? This is often the result of
trying to make changes to a part of the system which is not
slowing the performance of the system. Bounds analysis will
show us how much impact each resource is having on the
performance of the system.

The algorithms used in Bounds Analysis are very easy to use
and can be very simply calculated by hand. This is one of
the major strengths of Bounds Analysis. Because it is
simple, you can try different values which represent various
alternatives you may be consideringo In this way, Bounds

Bounds Analysis 3128 - 1 Poor Man's Capacity Plan!



Analysis can help you determine the best alternative to
pursue.

Bounds Analysis is most commonly applied in two situations.
First, when evaluating the impact of changes to an existing
system. The algorithms can be parameterized to reflect the
performance of an existing system. Then various changes can
be made to the parameters to reflect possible changes to the
existing system.

The second of the two most common applications of Bounds
Analysis is to predict the performance of a system that does
not exist. When a new application is being developed or a
new system is being acquired, estimates of resource usage
can be made to parameterize the algorithms. The resulting
graphs can be used to predict response times and throughput
for systems that do not even exist!

The idea of addressing performance of software before it is
actually written is an emerging field. It is referred to as
Software Performance Engineering (SPE) and is the topic of
an excellent book by Dr. Connie Smith. The title of the
book is Performance Engineering of Software Systems
pUblished by Addison Wesley in 1990. The book contains
several chapters which can help you arrive at estimates to
parameterize the Bounds Analysis algorithms.

A quick note for those of you who may already be familiar
with Bounds Analysis. There are two different types of
bounds that can be computed, Asymptotic and Balanced System
Bounds. Balanced System Bounds algorithms provide a
slightly tighter bound on both response times and
throughput. Asymptotic Bounds algorithms are easier to
compute and they apply to a wider class of systems. The
remainder of this paper will only deal with Asymptotic
Bounds.

What does Bounds Analysis Look Like?

Let's take a look at what Bounds Analysis can do for us. A
throughput curve is represented on a graph where the Y axis
represents some r&levant rate (usually transactions per
second). The X axis varies the number of users in the
system and is often called the popUlation. The basic shape
of a throughput curve starts at some low number and grows
rapidly. When the critical resource becomes saturated, the
throughput curve will flatten until there is no increase in
throughput as users are added. Since we know this basic
shape, all we need to know is how fast the curve rises at
first and at what point it flattens out.

Assume you are considering the impact of two different
changes to your system, upgrading the CPU or adding a faster
disk. The following three throughput graphs show the

Bounds Analysis 3128 - 2 Poor Man's Capacity Plan!



changes that can be expected. The lines are labeled with
the algorithm used to generate the data, but do not get
distracted with this notation now. We will discuss this
later. The first graph shows the system as it exists today.
The second graph shows the result of upgrading the CPU to a
processor that is 50\ faster. The third graph shows the
result of adding a faster disk to the current system.

Current System
Throughput Bounds

5

15

20

.,,>
~'

~"
"",~-~G----·-----------------

~-0 ..........._ ......:.-......._ ......._ .... ...._ ........_ ..........-.....

Transactions Per Second

25...--------------...---~---........~~,
"

~'
,~

~~
,til'

"

o ~ ro ~ ~ ~ ~ M ~ ~ m m ~ m ~ ~

Number of Users (N)

CPU Upgrade
TIIroughpllt 80undt

Disk Upgrade
'Throughput Bounds

OClBlJOCllIleoJl)IO'ilOllDtClCIIGl'GtID

ttlllllltolu.nN

OClJOJ040lIleoJl)IO'ilOllDlCICIIGl'GtID

,*",1IIt 01 UlcnH

The actual throughput curves for the above systems will
start off at zero and follow the N/CD+Z) line fairly
closely. Throughput will continue to rise until it
approaches the intersection with the l/D(max) line where it

Bounds Analysis 3128 - 3 Poor Man's Capacity Plan!



will begin to flatten. Therefore, the first two lines on
the graph represent upper limits for throughput. This
represents the best case and is known as the optimistic
bound on throughput.

The lower line (N/(ND+Z» represents the lower limit or the
worst case for throughput. It is consequently called the
pessimistic bound on throughput. This algorithm assumes
that every transaction must wait at every resource behind
every other transaction in the system. This is not very
valuable and we will therefore not be concerned with this
line through the remainder of the pape~.

The point at which the critical resource becomes saturated
is represented on the graph by the intersection of the
N/(D+Z) line and the l/D(max) line. In the current system
example, the optimal throughput can be reached with about 50
or 55 users. Throughput will not increase much beyond this
point since it is bounded by l/D(max). The CPU upgrade
alternative will move this optimal throughput value to about
110 users or a 100\ improvement. The Disk upgrade
alternative will actually cause the optimal throughput value
to fall slightly BELOW the current system. We can conclude
that the best throughput can be obtained by upgrading the
CPU rather than the disks.

Response Time Example

The following three graphs show the same results for
response times. Again the lines are labeled with the
algorithm used to generate the line. Do not get side
tracked on this notation. We will discuss it next.
Response time curves are represented on a graph with the Y
axis indicating average response time. The X axis is the
same number of users as represented on the throughput graph.
The basic shape of a response time curve, like the
throughput curve, starts off at some low value. It then
slowly rises until it reaches the same critical resource
saturation point and then it goes up rapidly. Therefore,
all we need to know to bound response times is the initial
value and where the response times start getting high very
fast.

Bounds Analysis 3128 - 4 Poor Man's Capacity Plan!



Current System
Response Time Bounds

o NO NDtnaJO-Z

3 Respons, l1me In Seconds

O........... ........__...~/..._ ......_ ......_ ......_ .......__....

, I
, I
, I, '

2 , ', :
, I
, I, ,

I I
, I
, I
, I

I I

o 10 20 30 40 60 70 80 90 100 flO 120 130 140 160

Number of Users eN)

CPU Upg~ade

Re5pen$" Tune BoJnd$
DI!:~. U~!ade

Reaponse TIN 90tmds

)~,......s--

I,
I,

I,,
I,,,,

I, ,
c

)~,_ .. SeaIfG

I
I,,,

I,,,,,,,

,

I
I

I
I.

,
I

I

OllftlJ040lIIlllIlVlOWllIIlIIGD1IDMlltID

ttIIlt.<atu.-to
OClIOJ040lDlllIIVIOWGl"llZaDMIIUD

~atua-to

The actual response time curves for the above systems will
start off at some minimum value very near the line labeled
'D'. It will increase very slowly until it approaches the
line labeled ND(max)-Z where it begins to rise very quickly.
These two lines represent the best case for response time
and are called the optimistic bound on response times.

The other line, ND, represents the worst case for response
times and is therefore called the pessimistic bound on
response time. Like the pessimistic bound on throughput,
this algorithm assumes that every transaction must wait at
every resource behind every other transaction in the system.

Bounds Analysis 3128 - 5 Poor Man's Capacity Plan!



This is also not very valuable to us and we will not be
using it throughout the remainder of the paper.

As in the throughput bounds, the critical resource
saturation point is defined by the intersection of the two
optimistic bound lines. This saturation point will be the
same on the throughput and response ti~e bounds since we are
representing the same system.

As you can see, the changes to both throughput and response
times are most dramatic when upgrading the cpu. The reason
for this is that the CPU is the critical resource on this
system.

Algorithms

We have ignored the actual algorithms up to this point to
illustrate how valuable the bounds graphs can be. Now we
will follow through with the promise of how simple the
graphs are to generate. Notice that the optimistic bounds
(the ones we are interested in) are all straight lines. The
only math you must know is how to substitute values into a
very simple equation and plot the line on the graph. We
were conveniently able to ignore the curved pessimistic
bound lines which are only slightly more difficult to plot.

Drawing these lines breaks down into remembering the basic
equation for a line from algebra. The basic equation is:

Y=rnX+b

where:

X is the value to plot on the Y axis
mis the slope of the line. The higher
the value, the steeper the line.
X is the value to plot on the X axis
R is the Y intercept. This is the value
of Y when X is o.

Enough of the algebra review. Just stay with me a little
longer and you will see how simple it is.

Parameters

There is really just one small set of resource demands you
must derive to develop the bounds graphs. These values are
the service demands at the various devices. The other
values needed are a total of the service demands and the
maximum of all the service demands.

The notation used to represent these service demands is D(k)
where k is a particular resource. For example, a typical
system will have a D(cpu) to represent the service demand at

Bounds Analysis 3128 - 6 Poor Man's Capacity Plan!



the CPU. D(disk1) would represent the service demand at
device disk1. You will have as many D() values as you have
resources that need to be represented in the bounds
analysis. Yeu may want to define a D(dc), for example, to
represent the service time at a data communications device.

The service demand is the time the device is busy working on
a transaction. A typical service demand might be D(cpu) =
40 ms. This indicates that the CPU was bUsy 40 milliseconds
servicing a transaction.

One special case of a service demand is the think time.
This is represented by the letter Z. This value will allow
the algorithms to determine how many of the users are
thinking and how many are requesting service from the
system.

The service demands used for the current system in the
example above are as follows:

D(cpu)
D(diskl)
D(disk2)
D(disk3)
D(disk4)
D(disk5)
D(disk6)
D(disk7)
D(dc)
Z

85 ms.
20.1 ms.
20.1 ms.
20.1 ms.
20.1 ms.
20.1 ms.
20.1 ms.
20.1 ms.
20.1 ms.
4.5 sees.

Two special cases of service demands are significant and
must be obtained from the individual service demands. They
are the maximum single service demand (D(max» and the total
of all the service demands (D).

The maximum service demand is the highest value of all the
D(k). In the example above, D(max) = D(cpu) = 85 ms is the
maximum single service demand. This resource demand is very
significant in that it is the service demand at the critical
resource. This resource will be the limiting factor on both
the throughput and response time bounds graphs.

The total of all the service demands is just a simple sum.
D = D(cpu) + D(diskl) + •••• D(dc). This value is very
significant for the response time graph. In the best
possible case, response time can only be as good as the sum
of all the service times at all the devices used in the
transaction, or D.

other Rotation

There are a few other notation definitions you will need to
know to understand the algorithms. The X axis value for

Bounds Analysis 3128 - 7 Poor Man's Capacity Plan!



both graphs is the number of users or the population. This
value is represented by the letter 'N'.

The Y axis value for the throughput graph represents the
rate at which work is being done. This is normally a
transaction rate per second and is represented by the letter
'X' •

The Y axis value for the response time graph represents the
time in seconds of the average response time. It is
sometimes referred to as the residence time of the
transaction in the system. The time a transaction spends
requesting and receiving service from the various devices in
the system is the time the transaction is resident in the
system. This response time or residence time is represented
by the letter 'R'.

We have mentioned already this notion of a critical resource
reaching its saturation point. This is often referred to as
the bottleneck resource. Since this point on the graph is
very important, we use special notation to represent it.
The symbol N* ('N' star) represents the value of N (the
population) where the critical resource is saturated. N* is
very important and tells us how many users a system can
support before the system begins to suffer delays because a
device is being saturated.

Throughput Bounds

The optimistic throughput bounds can be defined with two
algorithms. The first algorithm will limit throughput until
the critical resource becomes saturated. This algorithm is
X = N/(D+Z) and is stated as the throughput (X) is equal to
the population (N) divided by the sum of the total service
demand (D) and the think time (Z). Plot this line by
selecting values of N and plugging them into the algorithm
to arrive at a corresponding value of throughput (X).

The second algorithm that limits throughput considers the
critical resource saturation and therefore involves D(max).
The algorithm is X = l/D(max) and is stated as throughput
(X) is the inverse of the highest service demand. Notice
that this algorithm does not consider the population (N) and
therefore will not change as the population changes. This
will be a line parallel to the X axis that crosses the Y
axis at a value l/D(max).

Given these two algorithms, we can then compute the
population where the critical resource saturates, N*. This
value is where the two throughput (X) values are equal and
can be represented as l/D(max) = N/(D+Z).

Bounds Analysis 3128 - 8 Poor Man's Capacity Plan!



Example

Let's look at another example of how to draw a throughput
bound graph. Let's say that for a particular application we
are writing, a typical transaction will do ten data base
reads and two data base writes. Additionally, the
transaction will use process handling to spawn a son process
to do much of this work.

We must translate this transaction definition into service
demands. We can consult our local data base expert or the
Image Handbook for estimates or write a quick program to
time these operations on a sample data base. We may be able
to conclude from this that a data base read call required 5
milliseconds of CPU time and 15 milliseconds waiting for
disk. The data base write averaged 15 milliseconds of CPU
time and 45 milliseconds waiting for the disk.

The service demand represented by the process handling can
be derived in the same way. Let's say that we wrote a quick
program and measured 200 ms of CPU time and 650 ms of disk
service time to do the process handling.

With the above environment, we can derive the service
demands as follows. The demand at the CPU, D(cpu) would be
ten times the CPU time per data base read, plus two times
the CPU time per data base writes, plus the CPU time for the
process handling. In other words:

D(cpu) = 10 * 5 + 2 * 15 + 200 = 280 ms.

The demand at the Disks, D(disk) would be ten times the disk
wait time for data base reads, plus two times the disk wait
time for data base writes, plus the wait time for the
process handling or:

D(disk) = 10 * 15 + 2 * 45 + 650 = 890 ms.

This value represents the service time of all the disks
combined. We need to break the disk service times down by
the number of disks that will be used with this application.
Let's say that we were using eight disk drives, so the
service demand at each of the eight disks could be
approximated by dividing the total by eight. In other
words, D(diskl) = D(disk2) = D(disk3) = D(disk4) D(disk5)
D(disk6) = D(disk7) = D(disk8) = D(disk) I 8 = 890 I 8 =
111.25 ms.

Rote: MPE XL has been designed to scale with the
speed of the processor. This means that the disk
subsystem will not become the critical resource in·
most interactive workloads. Our bounds analysis
calculation can take advantage of this by

Bounds Analysis 3128 - 9 Poor Man's Capacity Plan!



selecting a number of disk drives that will make
the service demand at each disk lower than the
service demand at the cpu. This will accurately
represent most MPE XL systems.

In addition to the above service demands, we may want to add
10\ to the service demand at the cpu to take care of the
local processing required to set up the process handling and
the data base calls. Now let's add a think time of say 10
seconds. Therefore, the parameters we need to create the
throughput bounds graphs is:

D(cpu)
D(disk1)
D(disk2)
D(disk3)
D(disk4)
D(disk5)
D(disk6)
D(disk1)
D(disk8)
D(max)
D
Z

280 ms + 10\ = 308 ms
111.25 ms
111.25 ms
111.25 ms
111.25 ms
111.25 ms
111.25 ms
111.25 ms
111.25 ms
D(cpu) = 308 ms
D(k) = 1198 ms
10000 ms (10 seconds)

Now we have everything we need to draw the throughput
bounds. Lets start with the optimistic bounds from 0 users
through N*, the number of users at the saturation point of
the critical resource. The critical resource will be the
resource with the highest service demand which is the cpu in
this case. This algorithm is throughput (X) equals the
population (N) divided by the sum of the total service
demand (D) and the think time (Z) or X = N/(D+Z). Compute a
few points to put on the graph by substitution and convert
from transactions per millisecond to transactions per second
(multiply by 1000).

X = N/(D+Z) x
o

.89
2.7
4.5

N
o

10
30
50

The optimistic bounds for users above the saturation point
does not vary with the number of users (N). This bound will
be a line that parallels the X axis with a throughput (X)
value of l/D(max). In our example this throughput value is
l/D(max) = 1/308 ms = 3.2 transactions per second.

Here is what our throughput bounds graph looks like.

Bounds Analysis 3128 - 10 Poor Man's Capacity Plan!



4

2

3

Throughput Bounds Example

N/lD+Z)

Transactions Per Second
5.........-------...----~---------...

",
I,

I'
",,,

I,,,,
o .I'

o 10 20 30 40 60 60 10 80 90 100 flO 120 130 140 160

... Number of Users eN)

Since we know the general shape of the throughput curve
(starting low, rising quickly until approaching the l/D(max)
line, then flattening), we can approximate it given the
above bounds. What we have learned is that the saturation
point of the critical resource (CPU in this example) is
reached with around 35 users. We will not be able to
increase the throughput of the system be adding more than
about 35 users.

Response Time Bounds

The optimistic response time bounds can be defined, as with
the optimistic throughput bounds, with two algorithms. The
first algorithm will limit response time from 0 users
through the number of users needed to saturate the critical
resource, N*. This algorithm is really just a single value
which is the best case response time will every be and is
represented by D. Recall that D is the sum of all the
resource demands at all the devices. This line on the graph
will parallel the X axis and cross the Y axis at a response
time value of D.

The second algorithm will limit response time beginning
around the saturation point of the critical resource. This
algorithm is in the form of the equation of a straight line
(y=mx+b). The algorithm returns the response time (R) which

Bounds Analysis 3128 - 11 Poor Man's Capacity Plan!



is the result of mUltiplying the number of users eN) by the
largest service demand (D(max» and sUbtracting the think
time (Z) or R = ND(max) - z.
Now that we have these two algorithms, we can again compute
the population wher~ the critical resource saturates, N*.
This value is where the two response values are equal and it
will be the same as the N* computed for the throughput
values. It can be computed with the response time
algorithms by setting them equal to each other as in D =
ND(max) - z.
Let's use the same example we defined above to generate a
response time bound graph. The bound for the number of
users from 0 to N* is defined a D which from the table above
is 1198 ms.

The optimistic bounds for users above the saturation point
is defined by R = ND(max) - Z. Compute a few points to plot
on the graph by substitution and convert response time from
milliseconds to seconds.

R = ND(max) - Z R
-10
-.7
5.4
8.4

N
o

30
50
60

Here is what our response time bounds graph looks like.

Bounds Analysis 3128 - 12 Poor Man's Capacity Plan!



Response Time Bounds Example

o ~z

Response Time In Secopds

2

3 ,,,
u,,,,,

o

~

6,,
O"'_~I1111111111_""'''' ''''__''-'''''''_~''''_-'-'''' ''~

10 20 3d 40 50 60 70 80 90 100 110 120 130 140 160

Ntt Number of Users (N)

Again, we know the general shape of the response time curve
(starting near the '0' line, rising slowly until approaching
the ND(max)-Z line, then rising quickly) and can approximate
it given the above bounds. We can see that response time
will get very bad very quickly beginning at around 30 users.
Response time will be unreasonable if we need to support
more than 30 users.

Saturation Point

We have already defined the saturation point of the critical
resource and how it limits throughput and response times.
We can go one step farther, however. Draw a smooth
throughput or response time curve on the above graphs. The
throughput and response time values that correspond to a
population of N* is quite a bit less (less throughput,
higher response time) than the value delivered by the
algorithms.

This reflects the characteristic of queueing systems where
significant queueing delay (waiting in line to use the
resource like the CPU) will be experienced BEFORE the device
is 100% utilized. The smooth line we drew should accurately
reflect the actual throughput and response times we can
observe on this system. Therefore, the number of users this
system can support with good throughput and response time is

Bounds Analysis 3128 - 13 Poor Man's Capacity Plan!



less than N*. N* represents the number of users it would
take to consume 100\ of the critical resource.

So how much below the N* value do we want to be? The answer
to this, of course, is it depends. The optimal number of
users will depend on what response time expectations your
users have and how steep the vertical throughput (X=N/(D+Z»
and response time bound (R=ND(max)-Z) lines are. If the
lines are very steep (close to paralleling the Y axis) a
smooth curve will start rising long before reaching the N*
value. A flatter curve (close to paralleling the X axis)
will remain close to the optimistic bound near the N* value.

Analysis

We have learned that the system we defined will support
something less than 35 users. The close~ we get to 35
users, the faster throughput will flatten and response times
will go up. What can we do if we need to support more than
35 users on this system? We might be able to purchase a
different system or modify the application design.

Re-Size the CPU

The critical resource in our example is the CPU, so if we
can increase the speed of the CPU, we should be able to
support more users. Let's go back and redefine the Bounds
Analysis parameters to reflect a faster CPU.

Let's assume the next CPU we will consider is twice as fast
as the first one. All we must do is reduce the demand at
the CPU to reflect this change. Here is what our new
parameters would look like.

D(cpu)
D(disk1)
D(disk2)
D(disk3)
D(disk4)
D(disk5)
D(disk6)
D(disk7)
D(disk8)
D(max)
D
Z

308 / 2 = 154 ms
111.25 ms
111.25 ms
111.25 ms
111.25 ms
111.25 ms
111.25 ms
111.25 ms
111.25 ms
D(cpu) = 154.ms
D(k) = 1044 ms
10000 ms (10 seconds)

We have cut the demand at the CPU in half. D(max) has also
been reduced by the same amount and the total demand D, has
also been reduced. The new throughput and response time
bounds look like this.

Bounds Analysis 3128 - 14 Poor Man's Capacity Plan!



Thloughput Bound!> Ellample
~grade me CPV

a a III JO 4D ell eo 10 110 III tel GIl uo tel III

"'1I!lM~Ulertto

Respon!.e Time Bounds ElCzample
UpgradedCPV

I,,,
I,,

I
I
I

/1
a a 1QJ04D III eo ldID1IOGlIClGlUOtellll

"'~Ulcnto

We have been able to significantly increase N* which means
we will be able to support more users. The slope of the
vertical lines is also much lower meaning the throughput and
response times will not degrade as fast when we approach N*.

Modify Application Design

Another alternative we may have is to modify the design of
the application. If we examine our description of the
application, we might be able to eliminate the process
handling. The overhead of process creation can be
eliminated if we can move all the code into one program. In
this case, we can significantly reduce resource demands.

The new CPU demand (D(cpu» will be ten times the CPU time
per data base read plus two times the CPU time per data base
write. We can eliminate the 200 milliseconds of overhead
required by the process handling. Our new D(cpu) is:

D(cpu) = 10 * 5 + 2 * 15 = 80 ms.

As before, we may want to increase D(cpu) by about 10\ to
take care of any local processing. This would increase
D(cpu) by 8 ms to 88 ms.

The demand at the disks (D(disk» would also be
significantly reduced. The new total would be ten times the
disk wait time for the data base reads plus two times the
disk wait time for the data base writes. The process
handling overhead is again eliminated. Our new D(disk) is:

D(disk) = 10 * 15 + 2 * 45 240 ms.

As before, this service demand would be spread among the
available disk drives. In this example, we have eight
disks, so an approximation of the service at each disk is
D(disk) I 8 = 240 I 8 = 30 ms. Here is what our new service
demands look like:

Bounds Analysis 3128 - 15 Poor Man's Capacity Plan!



D(cpu)
D(disk1)
D(disk2)
D(disk3)
D(disk4)
D(diskS)
D(disk6)
D(disk7)
D(disk8)
D(max)
D
Z

88 ms
30 ms
30 ms
30 ms
30 ms
30 ms
30 ms
30 ms
30 ms
D(cpu) = 88 ms
D(k) = 328 ms
10000 ms (10 seconds)

We have now cut the service demands at the CPU and disk by
more than 300%! Here is what our new throughput and
response time bounds look like.

Throughput Bound!» Example
Madfy ApplicatIOn Design. 01111"'11 CPU

Re~ponf.e Tune Bounds E),ll.'llp!e
Madly ~tlOnDesign. OriS,"I' CPU

,,,,,,,,,,,,
/

..1
o II ftl JO 40 8lI III ~ 10 '» III tel IGD UD t4D S

,*,11'" otUlinH ...

OllftlJ0401CI1I01ID1D101Iltel1llDUllt4DS
ftIt\CIlIf otUllnH ....

We have again been able to significantly increase N* which
means we will be able to support even more users. In this
case, the change in the application design will enable us
to support more than 3 times more users! And we were able
to make this determination before any code was written! The
slope of the vertical lines is also much lower meaning the
throughput and response times will not degrade as fast when
we approach N*.

Bounds Analysis Limitations

Bounds Analysis is a very useful tool to have, but it does
have two limitations worth mentioning. First, resource
demands must be independent of the load on the system. In
other words, the service demands must be the same with one
or 100 users on the system. For most resources this is not
a problem. Potential conflicts might arise when users are
sharing a resource (say a data base structure>. and must lock
it before access can be granted. The time this lock is held
may vary depending on how many users are on the system.

Bounds Analysis 3128 - 16 Poor Man's Capacity Plan!



The other limitation is that all system activity must be
generalized to one set of parameters. In others words, a
single average D(cpu) must apply to the entire system. This
is usually not a problem, especially in the two examples we
discussed - sizing a system and predicting performance of a
new application.

Note: There are Bounds Analysis Algorithms to address
multiple workloads on a single system. These algorithms are
more complex, however, which would wipe out one of the
primary advantages of Bounds Analysis - simplicity.

Summary

Bounds Analysis is very powerful. Most of its power is in
its simplicity and ease of calculations. A simple spread
sheet can easily be created to generate the graphs.

The most difficult aspect of Bounds Analysis is obtaining
the correct parameter values. These, however, are also not
overwhelming. Since the calculations are so simple, initial
guesses can be made at the parameters and refined as more
information is acquired. Good resources are available to
help estimate parameters in various technical papers and
books. One excellent source is Dr. Connie Smith's book
entitled Performance Engineering of Software Systems. Of
course, the most accurate data can be obtained by writing
simple programs to time various events.

References:

Quantitative System Performance, E. Lazowska Et.al.,
Prentice-Hall, Englewood/ Cliffs, New Jersey, 1984.

Performance Engineering of Software Systems, Connie Smith,
Addison-Wesley, 1990.

Bounds Analysis 3128 - 17 Poor Man's Capacity Plan!



' .. ";.- ~.

~;-- ".'

;.:~~ .. :.



Paper #3129

SUPPORTING AN NS/3000 NETWORK

steve Beasley
Hewlett-packard company

Midwest Sales Region
2205 East Empire street

Bloominqton, Illinois 61701
309/662-9411

Introduction

For users of the HP3000, our definition of a network has
changed drastically over the past seven or eight years.
In 1984, many of us might have defined a local area network
as two HP3000's in the same room with a cable connecting
the INP's. Wide area networks meant having modems between
two locations, and non-HP connectivity was primarily an RJE
link to the corporate mainframe. Configuration was defined
in the I/O section of Sysdump, and the OS/3000 software was
fairly simple to operate and use.

The "network" was not that complicated during those days.
When problems occurred, a quick check of the cables or the
modems was always a good first step. If those were fine,
the software configuration could be verified rather easily,
and "tuning" the network was not really an option. Most
importantly, the stable environment of our OS/3000 networks
rarely created more than an occasional support headache.

As our networks grew to include real 802.3 LAN's, we got our
first taste of NS/3000. The hardware was fast, the software
was easy to implement, and the configuration was best left
at the factory-defined defaults. Many sites began utilizing
X.25 networks, but those networks were generally based upon
the OS/X.25 software. Life in the network was still pretty
simple and functionality was rather limited.

Networking seems to have exploded with functionality over
the past few years, increasing our usage and dependence on
our internal and external networks. Our LAN's and WAN's now
include mUltiple topologies, with bridges, routers, various
backbones, and various protocols. TCP/IP has become a
requirement for most networks, and that means NS/3000 for
the HP shop. Even for those environments that are limited
to HP3000 communications, the migration to MPE XL has pre
cipitated the move to NS/3000 and its TCP/IP protocols.

Along with this tremendous increase in functionality and
connectivity comes an increase in the responsibilities
necessary to support the network. From the MPE XL system's
perspective, the responsibilities include network planning,
network configuration, and network troubleshooting.

supporting an NS/3000 Network 3129-1



Network Planning

The most critical aspect of any project is the planning
stage, which generally receives the least amount of time.
This is particularly true with networks, since many networks
begin simple and continuously expand to include new applica
tions at various sites. However, when planning is given the
appropriate emphasis, the following areas deserve attention:

TOPOLOGY

The network topology, or how the nodes will be
connected, is critical to the success of the net
work. Topologies may include 802.3 LAN's, X.25
packet switches, extended LAN's with bridges, as
well as Ethertwist networks and HP Routers. The
topologies selected for the NS/3000 network are a
key factor in determining the cost, performance,
hardware configuration, and supportability of the
network.

SUPPORTABILITY

Special attention must be given to the level of
support required by the network topology. The
ability to support the NS/3000 software will be
somewhat dependent on the hardware components of
the network. Network management for each of the
components (switches, hUbs, routers, etc.) should
include configuration, diagnostics, and statistics
reporting. If those network management features
are not available remotely, then the network plan
must address the need for some kind of on-site
assistance when configuring or trOUbleshooting
the remote locations.

DOCUMENT THE NETWORK

One of the most critical elements of supporting
any network is the level of documentation avail
able about the network. The documentation should
specify all network-related addresses including
X.25 addresses, IP addresses, and any hardware
addresses being used. Additionally, all config
uration parameters (line speeds, packet sizes,
timer values, window sizes, etc.) should be
appropriately documented. This documentation is
valuable not only when implementing the network,

Supporting an NS/3000 Network 3129-2



but also as a troubleshooting aid. For instance,
no one wants to spend time trying to determine the
particular address of a particular network
component when fifty users are screaming that the
network is down. The list of items to document
may vary from one network to another, but the more
complete the documentation, the easier it is to
support the network.

The planning elements mentioned above will be crucial to
one's ability to actually support any network. A well
planned network is worth the extra effort and expertise
required to do the planning, even if that means utilizing
outside consulting resources.

Network Configuration

Configuration of a network, a PC, or a mainframe generally
consists of two distinct processes. First, the person
responsible for the configuration must "understand" and
determine what the appropriate configuration parameters
should be. The second process ensures that the
configuration is properly implemented and/or distributed to
the appropriate locations (PC's, mainframes, network
components, etc.)

For an NS/3000 network, the configuration values reside in
the NMCONFIG file in PUB.SYS and are accessed via NMMGR.
(On an MPE/V system, the configuration file is in the
NSCONF.NET.SYS file.) Since the job of determining the
appropriate values will have a direct impact on the stab
ility of the network, the network administrator needs to
take whatever steps are necessary to understand the
configuration parameters.

With an NS/3000 network, this first step should pr~bably

include understanding some concepts about the TCP/IP
protocolS. One of the best reference sources for this
understanding of TCP/IP is the book Internetworkinq with TCP
(2nd edition) by David Comer. While one may not need to
read this book cover-to-cover, it is a good source for
looking up various aspects of the TCP or IP protocols.
Additionally, if the network utilizes any X.25 links, the
book X.25: The PSN Connection from Hewlett-Packard provides
an excellent reference on the X.25 Recommendation. In
addition to these reference materials, the NS3000/XL NMMGR
Screens Reference Manual provides a good description of most
of the appropriate values.

As part of the effort to determine the "right" NMCONFIG
parameter values, the network administrator needs to
consider a few details under each of the following sections:

Supporting an NS/3000 Network 3129-3



The "link" section of the NMCONFIG file is used to
define which hardware link(s) will be used by the
networking software. For each link used by the
network, a corresponding link name must be
defined. The only significant parameter under
this section is the LINK.linkname field, which has
the physical path descriptor for the LANIC or PSI
card. This is one parameter that must match the
system configuration, so don't guess! The best
way to get this value is to ask the customer
Engineer when he installs the card. Otherwise,
the network administrator will need to run SYSGEN
to get the path or ask someone else.

LOGGING

The best values for the "logging" section are the
factory-defined defaults. These values may need
to be altered when troubleshooting, which will be
discussed later. For normal operations, there may
be two exceptions to the default values. First,
if the console operator is easily alarmed or very
irritated by unusual messages, it may be better to
reduce the console logging messages. This may
include limiting console logging to the "internal
errors" for both Transport (sOO0003) and for Net
work Services (sub0006). These classes of errors
should provide adequate notification of network
related problems.

The second situation which may warrant a change of
the default logging values is for educational
purposes. By setting all values to "Y" for con
sole logging, a significant number of logging
messages will be displayed on the console. These
messages provide an excellent description of what
is happening within the code. Default values are
recommended after this "education" is completed.

Logging will be discussed in more detail as part
of the troubleshooting section. However, unless
one of the two scenarios mentioned above exists,
the default logging is appropriate.

NODENAME

Configuring the local nodename is the most simple
step in the configuration. However, this field is
important if the local system has mUltiple network
links, since this nodename is associated wi~h all
of the attached networks. For example, the $BACK

supporting an NS/3000 Network 3129-4



feature is a method of pointing to the "local"
system when accessing a "remote" system. File
equations on the remote can reference $BACK as a
means of accessing the originating (local) system.
However, if the "local" system has two links (LAN
and X.25, for example) that local nodename is
associated with both links. To make the $BACK
feature work as expected, the network directory
must be carefully constructed. This will be
discussed in more detail within the Network
Directory (NSDIR.NET.SYS) section.

NETXPORT

The "netxport" screens contain three major sec
tions, including 1) global, 2) gprot, and 3) NI.

The "global" section is used primarily to define
the "Name Search Methods". If the network is
LAN-based, then the factory default is fine.
However, if your network has multiple links and
the network directory is defined so that each node
is specified, then it is better to change the
search order so that the directory is first. This
will ensure that a connection takes the intended
route.

The "gprot" section can provide the most trouble
when configuring the network, for two reasons.
First, several TCP-related items are defined under
the "gprot" section. These parameters can have a
significant impact on network stability if not set
properly. The second reason for the trouble
serves to complicate the first: these values are
shared by all networks on the particular system.
Therefore, the TCP-related values configured for
the system will be used by LAN, X.25, and
point-to-point. These three network types can
have drastically different characteristics, so
the network administrator must, in essence,
configure for the worst case. This might involve
setting the TCP retransmission timers to
accommodate a very busy X.25 network. These
values may be inappropriate for the LAN and could
actually cause a slight degradation in throughput.
However, setting the retransmission timers to
accommodate an efficient LAN could easily result
in the X.25 network connections being
disconnected. In order to configure a reasonable
compromise, the network administrator must
understand the various parameters and how his
network reacts to those parameters.

supporting an NS/3000 Network 3129-5



The "NI" section allows for the configuration of
each "network interface". For MPE XL, this can
include one interface for LAN, multiple inter
faces for X.25 and point-to-point (router), and an
NI for loopback. Configuring the NI's for LAN,
loopback, and point-to-point are rather concise.
The X.25 NI can have an enormous amount of data
associated with it, depending upon the size of the
X.25 network. Although the NI is essential, the
values are generally straightforward.

In addition to configuring the NMCONFIG file, the network
administrator must also ~onfigure the network directory.
The network directory ~s a powerful component of the NS
network and should receive a thorough analysis before its
implementation into the network. All systems will fall into
one of two categories: single network systems or multiple
network systems. The network directory for single network
systems is easy. For example:

1. HP3000 system is connected to one LAN. The
network directory is not required. If present,
the directory will probably have one entry for
each system on the LAN.

2. HP3000 system is connected to one X.25 network.
Although the directory is required, the directory
can have one entry per each system on the X.25
network. Each system would most likely have only
one node name.

3. HP3000 system is connected to one router network.
The directory is required, but would be similar
to the simple directory for the X.25 network.

However, for systems with mUltiple network links, the dir
ectories can be complex. The network administrator has a
few decisions to make with regards to how each node will be
referenced. For example, please consider the three
scenarios outlined on the next pages in figures 1, 2, and 3.

1. Figure 1 has one system (HP1) with a LAN link and
an X.25 link. HP2 is connected only to the X.25
network, and HP3 is connected only to the LAN net
work. In this scenario, the network directories
can be identical on all three systems and each
system can have only one nodename.

2. Figure 2 now has HP2 as a member of both the LAN
and X.25 networks, just like HP1. There are now
two possible paths between HPl and HP2. The
directories can remain identical, with each system
having only one nodename, but the network user has
no control over which network is used.

supporting an NS/3000 Network 3129-6



FIGURE 1
LAN Network = C192.006.002 nnn
X.25 Network = C192.006.001 nnn

HP3.HPOFFICE.HP

HP1.HPOFFICE.HP HP2.HPOFFICE.HP

NETWORK DIRECTORY (All Systems)

Node

HP1.HPOFFICE.HP
HP1.HPOFFICE.HP
HP2.HPOFFICE.HP
HP3.HPOFFICE.HP

Type Address Address Key

1 192.006.002 001 none
3 192.006.001 001 HP1
3 192.006.001 002 HP2
1 192.006.002 003 none

FIGURE 2
LAN Network = C192.006.002 nnn

X.25 Network =C192.006.001 nnn

HP3.HPOFFICE.HP

HP1.HPOFFICE.HP HP2.HPOFFICE.HP

NETWORK DIRECTORY (All Systems)

Node Type Address Address Key

HP1.HPOFFICE.HP 1 192.006.002 001 none
HP1.HPOFFICE.HP 3 192.006.001 001 HPl
HP2.HPOFFICE.HP 1 192.006.002 002 none
HP2.HPOFFICE.HP 3 192.006.001 002 HP2
HP3.HPOFFICE.HP 1 192.006.002 003 none

supporting an NS/3000 Network 3129-7



FIGURE 3
LAN Network =C192.006.002 nnn
X.25 Network = C192.006.001 nnn

HP3.HPOFF!CE.HP

HP1.HPOFFICE.HP HP2.HPOFFICE.HP

NETWORK DIRECTORY (All Systems)

Node

HP1.HPOFFICE.HP
HP1X.HPOFFICE.HP
HP2.HPOFFICE.HP
HP2X.HPOFFICE.HP
HP3.HPOFFICE.HP

Type Address Address Key

1 192.006.002 001 none
3 192.006.001 001 HP1
1 192.006.002 002 none
3 192.006.001 002 HP2
1 192.006.002 003 none

Supporting an NS/3000 Network 3129-8



3. Figure 3 is similar to Figure 2, but HP1 and HP2
now have mUltiple nodenames, HP1X and HP2X. The
network user on HP2 can specify "HP1" if he wants
to access HPl over the LAN. If, however, he wants
to use the X.25 connection, he specifies HP1X.
This configuration is particularly valuable when
testing or supporting multiple network systems in
that it allows one to test applications over both
network links and ensures that the correct network
is being utilized.

NOTE: This scenario is where the local nodename
becomes significant. For instance, if $BACK is
specified between HPl and HP2, whichever nodename
is configured as the "local nodename" will
determine the return path for the $BACK. So, if
HP1X calls HP2X and specifies a $BACK command, the
$BACK will actually use the LAN to return to HP1.
(The lab is currently modifying this "feature" to
rely upon the originating system's IP address, not
its local nodename.)

Once the network directory and the NMCONFIG file have been
properly configured, the network administrator must decide
how to manage that configuration. There are basically two
alternatives: 1) Configure each system uniquely or 2) use
the same NMCONFIG and network directory on all systems.

In a small network of maybe five or fewer systems, each node
can be realistically configured uniquely. This means the
network administrator must either logon to each system and
type in the configuration values for the NMCONFIG and the
network directory, or he can have someone else perform that
task, using the network documentation. Even in avery small
network, this method is prone to errors. These configura
tions have dozens of parameters, many of which are easily
mistyped. This decentralized approach will work for small
networks, although it is not easy to manage.

For large networks, a centralized method of configuration is
essential. The chance of incorrect configurations gets
astronomical when the number of network nodes and the number
of "network administrators" increases. Also, while various
configurations will "work", trOUbleshooting a network with
mUltiple variations of the NMCONFIG and network directory
becomes a support nightmare. (Obviously each node must have
its own unique name and address, but all other parameters
should be identical whenever possible.)

In order to accomplish this centralized configuration, the
network administrator has two options. First, the pattern
configuration file can be built (inclUding the directory),

Supporting an NS/3000 Network 3129-9



then copied to the various nodes. The changes unique to
each node can then be made by hand. The other alternative
is to use the maintenance mode interface within NMMGR. This
somewhat "unknown" feature allows the configuration of the
NMCONFIG and the network directory via batch mode. By using
this functionality and a little programming, the entire
configuration process can be completely automated. Some
programming will be required in order to "customize" each
batch job with the unique nodename and address for that
system. The effort required to set up this batch process
is a small price to pay for the automation of these
configuration files.

Configuration management is not necessarily an easy task,
but it is essential to the ability to support an NS/3000
network.

NETWORK TROUBLESHOOTING

Even the most well planned, well documented, and thought
fUlly configured network is vulnerable to problems. The
NS/3000 software does occasionally have a bug, the communi
cation lines occasionally falter, and hardware components
have been known to fail. So, until the perfect, totally
reliable network is invented, part of our job will continue
to be troubleshooting.

Fortunately for those of us who support the networks, our
ability to troubleshoot an NS/3000 network has been greatly
enhanced during recent months. A recent patch from the
Information Networks Division in Cupertino provides the
release of a set of troubleshooting tools, called NETTOOL.
(These tools are officially released on MPE XL 3.0 and
beyond.) NETTOOL resides in NET.SYS and is accessed by
typing NETTOOL.NET. This new set of tools comes with an
excellent help facility and many useful features. The key
functionality for supporting an NS/3000 network resides in
the following commands: resource, config, nameaddr, ping,
status, nmdump, and x25stat.

RESOURCE

The resource display is similar to an unsupported
utility on the MPE/V systems, but provides more
documentation on the individual resources. The
DISPLAY command will cause the entire resource
table to print on the screen. The last column
indicates whether this value is acceptable or not
acceptable. Acceptable is indicated with a":)"
and unacceptable with a n:(n. (When tilting this
paper to the right, the markings resemble a smile
or a frown.) If the user needs a detailed expla-

Supporting an NS/3000 Network 3129-10



nation of a certain item, he can type "detail",
followed by 1Ditem" and will then be prompted for
the item number. Once again, type "DISPLAY" and
now a good description of that item will print to
the terminal. This is an excellent tool to help
determine if certain parameters are configured too
low. (NOTE: the GPROT MSG POOL currently
displays "unacceptable". This will be fixed in a
future release.)

CONFIG

The "config" option allows the user to obtain a
listing of the NETXPORT section of the NMCONFIG
file without having to execute NMMGR. As most
network administrators have learned, NMCONFIG can
be easily modified, thus requiring the vali
dation process. The "config" option eliminates
this unnecessary access into NMMGR and is an
excellent tool to introduce to network operators,
without worrying if they might accidentally alter
the NMCONFIG file.

"Config" will also let the user display the net
work directory and provides an option to compare
two configuration files.

NAMEADDR

For anyone who has had to restart the network in
order to correct an entry in the cache, this new
functionality is greatly appreciated. within the
"nameaddr" command, the cache can be displayed in
various ways. The "mapping" option will display
each IP address and its mapping to an 802.3 hard
ware address or an X.25 address key.

within this command is the ability to delete an
entry from the cache, which can eliminate the need
to restart the network because of an error in the
cache or because someone decided to alter a node's
address.

When troubleshooting, this "window" into the cache
can provide considerable insight as to potential
problems on the network.

Supporting an NS/3000 Network 3129-11



While rather simple in its functionality, the new
"ping" command can be very useful to determine if
a device is reachable on the network. If, for
example, a router is installed on the network, the
HP3000 can "ping" the router using its IP address.
If the device responds, the addressing must be
correct and the physical connection is working.

STATUS

The "status" command is, obviously, designed to
provide status information at the link level, as
well as for each network interface configured.
This command will provide some useful information
regarding the node itself, the hardware links, as
well as information relative to each network
interface.

NMDUMP

The NM logfiles can be one of the most useful
troubleshooting tools available on the system.
The information in the logfiles is determined by
the values given under "logging" in the NMCONFIG
file. The "nmdump" allows the user to read those
logfiles. An enhancement has been implemented
which provides a summary display of the logfile,
without requiring the user to view the entire
file. (The NMDUMP file previously resided in
PUB.SYS. The version with NETTOOL provides the
new summary option.)

During certain problem scenarios, HP support
personnel may ask that the customer turn on
specific log classes (such as, "informative" or
"detailed" events). These messages can then be
used by the labs to isolate problems.

X25STAT

For sites that use X.25, the features available
with "X25stat" are invaluable for providing the
necessary level of support. Data can be obtained
on which links are used, which VC's are assigned
to the links, the amount of traffic, and which
nodes are connected, plus much, much more.

supporting an NS/3000 Network 3129-12



For most network support personnel, the information NETTOOL
provides will be all that is necessary to support the NS
software. Additionally, this group of tools can provide
significant information on various hardware components.

For those networks that include X.25 connections from the
MPE XL system, the DTCManager workstation is a useful tool
for evaluating the status of the X.25 card (the SNP). Most
of this functionality is intended to provide hardware
oriented statistics via the pc. However, for first level
troubleshooting, the X25 site Management (under MONITORING)
and the Show Status (under Diagnostics) will provide some
useful data. The X25 Level 2 and Level 3 statistics under
Show status provide information that will assist in solv
ing X.25 related problems.

SUMMARY

In order to support an NS/3000 network, numerous factors
must be considered. Even with the best planning, solid
configurations, and good troubleshooting tools, the unique
qualities of each network will dictate that the network
administrator (or support personnel) will constantly be
searching for ways to improve the support of the NS/3000
network. Also, the items above relate primarily to those
networks that use NS/3000 as the communications protocol.
As more and more networks expand to include a variety of
communications, the tools needed to support those networks
will need to expand, as well. Hopefully, the concepts
defined above will help in the on-going effort to provide
the best possible network support.

Supporting an NS/3000 Network 3129-13



-.\_.

.... ~.. .,

.~. .. _ ....

: .:... •• '~ := 1 '.

··-f: .'.

.L::- ..~ .

:i I"' -:.-1 -.'. _. , .- .- ....- '-



Paper #3130

Native Mode Spooler - What does it mean to you?

Gary Fletcher
Technical Consultant

Hewlett Packard
24 Inverness Place East
Englewood, CO 80112

(303) 649-5750

ive Mode Spooler - What does it mean to you? 3130-1



With MPE XL release 2.1, the compatibility mode spooler was replaced by a Native
Mode Spooler (NMS). Many MPE XL and MPE VIE users are apprehensive about
migrating to this new spooler because they do not understand the impact that this new
spooler may have on their system. This paper will discuss some of the features and
benefits of the NM spooler and tell you what you should be aware of when migrating to
the new spooler.

With the native mode spooler, the file system creates spoolfiles as ordinary disk files.
A new account, HPSPOOL, will be created to handle spoolfiles and spooler processes.
The NMS maintains three kinds of permanent disk files in separate groups:

Type of File

Input spoolfiles
Output spoolfiles
Checkpoint files

Group.Account

IN.HPSPOOL
OUT.HPSPOOL
device.HPSPOOL

An input spooler reads data from its device and uses that to create an input spoolfile.
The data may consist of one or more batch jobs, data files, or any combination of the
two. Input spoolfiles are private files, meaning they are only accessible to a user
running in privileged mode. They are not printed, but are used strictly as input for
other processes. The system creates input spoolfiles by the STREAM command or by a
spooler process controlling a spooled input device. Input spoolfiles have the format
Innnn.IN.HPSPOOL where nnnn is the spoolfile identifier (SPOOLID).

An output spooler processes output spoolfiles- files which were created by a user
accessing a spooled output device such as a printer or plotter. Output spoolfiles can be
either private or non-private files. Output spoolfile names have the format
Onnnn.OUT.HPSPOOL where nnnn is the SPOOLID.

Two spoolfile directories, referred to collectively as the SPFDIR, link the spoolfiles to
the spooling subsystem. If output spoolfiles are not linked to the SPFDIR they can not
be printed or listed with the LISTSPF command.

The checkpoint file is a companion to the output spoolfiles. The checkpoint file help
the spooler recover from device problems such as power failures and paper jams.
When a spoolfile does not print completely, the next spooler process that prints it, on
the same device, uses the checkpoint file. Checkpoint files are kept in device name
groups in the HPSPOOL account. Their names have the format
Cnnnn.device.HPSPOOL where nnnn is the SPOOLID and device is the device name,
such as LP.

INSTALLATION

With MPE XL 2.1 and subsequent releases, the NMS is part of the fundamental
operating system (FOS) and is installed on the system during a INSTALL or UPDATE.
Additionally, be sure to check with your account assigned SE or the Response Center
and install any applicable patches.

Native Mode Spooler - What does it mean to you? 3130-2



The new account (HPSPOOL) will be created as part of the FOS installation. An
account manager, MGR.HPSPOOL will also be created. However, it should never be
necessary to log on as that user and you should never allow any user to log on to this
account. Therefore, both the user and the account should be passworded.

The HPSPOOL account, its groups (OUT, IN, etc.), and its user (MGR) should never
be altered or deleted. Doing so may result in an inoperable spooling system or may
crash the system. Rebooting the system will rebuild the accounting structure.

CONFIGURATION

Since spoolfiles are normal MPE XL disk files in an ordinary account structure, the
configuration for NUMBER OF SECTORS PER SPOOLFILE EXTENT and MAX
NUMBER OF SPOOLFILE KILOSECTORS does not apply and has been deleted from
the SYSGEN utility. You may control the amount of disk space allocated to spoolfiles
by varying the HPSPOOL account file space limit. You may limit input and output
spoolfile disk space usage independently by adjusting the IN and OUT group file space
limits. The default file space limits set for the HPSPOOL account and its groups is
unlimited file space.

If you do limit the directory file space on HPSPOOL or any of its groups, and you
encounter this limit at the time you are creating a spoolfile, all spooling queues will be
globally disabled, and the following message will be displayed on the console:

"ALL SPOOLING QUEUES HAVE BEEN GLOBALLY DISABLED DUE TO
A FILE SPACE LIMIT ON THE HPSPOOL ACCOUNT OR ITS GROUPS.
USE THE OPENQ @ COMMAND TO GLOBALLY ENABLE THE
SPOOLING QUEUES WHEN THE CONDITION HAS BEEN
CORRECTED. "

SUPPORTED DlEVICES

The native mode spooler requires a tape drive as the only device supported for input
spooling. However, the following output devices are currently supported:

HP 2680 and HP 2688 laser page printers.

HP 256x CIPER protocol printers

Serially connected printers such as the LaserJet series and the HP 293x series.z

Serially connected plotters.

The NMS does not support the HP 2608S.

Note for the OFFSET= page parameter of the SUSPEND, RESUME and RELEASE
options of the SPOOLER command, a page is defined as follows:

Native Mode Spooler - What does it mean to you? 3130-3



For the HP2680 and HP2688: a physical sheet (which may contain one or more
logical pages)

For CIPER protocol devices: a physical sheet

For serial printers: the OFFSET option is not reliable (except for OFFSET=1
or OFFSET =0, the beginning of file). No error or warning message is
generated if it is used on such devices; however, results are unpredictable.

SECURITY

The HPSPOOL account will be built as part of system startup, if it does not already
exist. The default security levels are as follows:

HPSPOOL Account:
IN Group:
OUT Group:
Device Groups:

(R,A,W,L,X:ANY)
(R,A,W,L,X,S:ANY)
(R,A,W,L,X,S:ANY)
(R,A,W,L,X,S:GU)

where R is read, A is append, W is write, L is lock, X is execute, S is save, ANY is
any user, and GU is group user.

Never allow any user to log on to the HPSPOOL account, password both the
HPSPOOL account and its MGR user.

Since spoolfiles are normal MPE XL disk files, non-private spoolfiles can be accessed
according to normal MPE security guidelines, as follows:

If you have SM capability, you may access any non-private spoolfiles. This
means you can read, delete or alter a spoolfile using either NMS commands and
intrinsics or standard MPE XL commands and intrinsics.

If you have AM capability, you may access any spoolfile whose creating user is
in your account.

If you are the creating user, you my access spoolfiles that you create.

If you have read access to non-private spoolfiles, you may store and restore them with
the STORE and RESTORE commands, respectively. If you have write access, you
may purge them using STORE with the ;PURGE option.

Users with sufficient capabilities can use any editor that supports variable length record
files to read and edit spoolfiles. The editor should only be used to browse the
spoolfile. If you edit a spoolfile and save it, the saved file is no longer a valid
spoolfile. The system does not let you overwrite the original spoolfile in
OUT.HPSPOOL. However you can overwrite an unlinked spoolfile in a group to
which ~ou have access. Note when modifying or saving a spoolfile with a text editor it
is poSSIble to corrupt the internal file format. This may cause unexpected results when
the file is printed~

Native Mode Spooler - What does it mean to you? 3130-4



You may not browse or edit input spoolfiles.

The ;PRIVATE option generates a spoolfile that may be accessed in privileged mode
only. Private spoolfiles may not be saved or copied. They may only be purged,
printed or (within limits) altered using the SPOOLF command. The PURGE or COpy
commands may not be used on private files. To create a private spoolfile simply add
;PRIVATE onto a file equation for a spoolfile:

FILE PRINTME;PRIVATE

or, add ;PRIVATE directly to the JOB command:

JOB MYJOB;PRIVATE

The COpy command allows the copying of non-private output spoolfiles. The new file
is not linked to the spoolfile directory.

You may use PURGE to purge a non-private output spoolfile. The PURGE command
cannot be used on a private spoolfile nor can it be used on any file which it does not
have exclusive access.

You may rename spoolfiles using the RENAME command if you have access to them.
This is allowed only with spoolfiles that are not linked to the spoolfile directory
(SPFDIR).

PROGRAM, JOB and UDC CHANGES

Normally, no program changes are necessary. If your program simply outputs to the
compatibility mode spooler, it should work as always. However, if you are accessing
any of the data structures used by the CM spooler or using any of the internal entry
points of the CM spooler, your subsystem will require changes. This is because the
NM spooler is a native mode implementation, compatibility mode data structures and
entry points will not be utilized. If you have specific questions as to how this may
effect you, please contact your account assigned SE or the Response Center.

When utilizing 3rd party spooling packages, please contact your 3rd party software
support representative for compatibility information. Listed here are most of the 3rd
party spooler packages and their suppliers:

Product Name

UNISPOOL
OMNISPOOL
SPOOLMATE
MPEX
SPOOLRESCUE
NBSPOOL
RSPOOL

Supplier

HOLLAND HOUSE
CAROLlAN
UNISON
VESOFT
NSD
QUEST
Unsupported

Native Mode Spooler - What does it mean to you? 3130-5



Since the SPOOK utility is obsolete with the NMS, it is important to locate references
to SPOOK in job streams and UDC's and use the appropriate NMS commands instead
(see SPOOLER AND SPOOLFILE MANAGEMENT).

The JOB command has been enhanced to include two new parameters, insert these
where appropriate:

;PRIVATE - Generates a private spoolfile that can be accessed in privileged
mode only. See SECURITY for more information.

;SPSAVE - If you use this parameter, the output spoolfile is not purged after
the last copy of it has been printed. The OUT.HPSPOOL account retains the
spoolfile. You can not use the SPSAVE parameter with a private spoolfile.

The system startup file (SYSSTART.PUB.SYS) may contain commands to enable
spooling and to start spooling processes. These should be modified to include the new
NMS commands. What follows is an example of a system startup file:

STARTUP
ALLOW @.@;COMMANDS=LOG
OUTFENCE14
SPOOLER 6;OPENQ
SPOOLER 18;START
STREAMS 10
HEADOFF 18
LIMIT 5,30
JOBFENCE 7
WELCOME SYSMSG.MESSAGE
VMOUNT ON,AUTO
COMMENT END OF SYSSTART FILE

SPOOLER AND SPOOLFILE MANAGEMENT:

With the introduction of the native mode spooler, new commands have been added to
enhance the management and control of both the spooler processes and spoolfiles. In
addition, two new utilities provide SPOOK command support. Therefore, it is
important that the personnel in charge of managing the spooler process be aware of the
following changes.

The following MPE XL commands available for spoolfile/spooler control, prior to
MPE XL 2.1, are still supported and function almost exactly the same as they always
have:

ALTSPOOLFILE
DELETESPOOLFILE
HEADON
HEADOFF
OPENQ
OUTFENCE
RESUMESPOOL

SHOWDEV
SHOWIN
SHOWOUT
SHUTQ
STARTSPOOL
STOPSPOOL
SUSPENDSPOOL

Native Mode Spooler - What does it mean to you? 3130-6



However, the native mode spooler has surpassed the capabilities of these commands by
adding three new commands:

SPOOLER - Manages and controls the spooler process. You can use the
SPOOLER command to start, stop, suspend and resume spooler processes, and
release spoolfiles from a spooler process. Therefore, it replaces the old
STARTSPOOL, STOPSPOOL, SUSPENDSPOOL, RESUMESPOOL, OPENQ
and SHUTQ commands.

SPOOLF - Enables you to alter the characteristics of the spoolfiles themselves.
You can use the SPOOLF command to alter the device, the output priority, the
number of copies to print and whether or not the spoolfile should be saved or
deferred. You may also use it to print or delete spoolfiles. Therefore, it
replaces the old ALTSPOOLFILE and DELETESPOOLFILE commands.

LISTSPF - Lists information about input and output spoolfiles. The LISTSPF
command can give you much more information than the old SHOWIN and
SHOWOUT commands.

For complete command descriptions and parameter definitions of these new commands,
please refer to the MPE XL Commands Reference Manual (32650-90003) and the
Native Mode Spooler Reference Manual (32650-90166).

The general migration path from the old CI commands to the new CI commands is
shown below:

CI Commands

ALTSPOOLFILE
DELETESPOOLFILE
HEADON
HEADOFF
OPENQ
OUTFENCE
RESUMESPOOL
SHOWDEV

SHOWIN
SHOWOUT
SHUTQ
STARTSPOOL
STOPSPOOL
SUSPENDSPOOL

NMS Replacements

SPOOLF filename;ALTER
SPOOLF filename;DELETE
HEADON
HEADOFF
OPENQ
OUTFENCE
SPOOLER filename;RESUME
SPOOLER filename;SHOW or
SHOWDEV
LISTSPF
LISTSPF
SHUTQ
SPOOLER;START
SPOOLER;STOP
SPOOLER;SUSPEND

Note that the old CI commands remain, and will continue to perform the same
functions as before.

Most of the commands listed above are operator commands (with the exception of
SHOWIN and SHOWOUT). In order to allow general users to use these commands,

Native Mode Spooler - What does it mean to you? 3130-7



you must use the ASSOCIATE command. This command links a device class, such as
LP, to an individual user on the system. Before you can be associated, the system
manager must run a utility program (ASOCTBL.PUB.SYS) in order to create a device
class user association table. This table defines which users may be associated with
which device classes. More information about the ASSOCIATE command can be
found in the MPE XL Commands Reference Manual (32650-90003).

By continuing to support the old spooler commands, the spooler and spoolfile
management aspects of your NMS migration can be relatively transparent. The largest
impact may be to those users of the SPOOK utility. The SPOOK utility will be
obsolete with the native mode spooler. Its functions will be replaced by new spooler
commands and utilities or existing MPE utilities.

Two new utilities have been created to assist in the transition from SPOOK:

SPFXFER - The spoolfile tape transfer utility will write NM Spoolfiles to tape
in a fonnat which can be read by the SPOOK utility on MPE· VIE (for release
G.02.BO and after) and pre-2.1 MPE XL systems. This utility will also be able
to read OUTPUT tapes created by SPOOK on these older operating systems.
Therefore, it can be used to transport spoolfiles between MPE XL systems that
contain the native mode spooler and MPE systems that do not. Its four
commands (Input, Output, Help and Exit) are similar to commands seen in the
SPOOK utility, and use the same syntax.

PRINTSPF - The print spoolfile utility displays both the data and the special
overhead area of each record of a spoolfile. Thus it can be used to look at the
forms control options of spoolfiles, such as page eject locations, double spacing,
etc. The syntax of PRINTSPF is similar to that of the MPE XL PRINT
command.

For complete command descriptions and parameter definitions of these new utilities,
please refer to the Native Mode Spooler Reference Manual (32650-90166).

The migration path from SPOOK commands to the new CI commands and the new
spooler utilities is shown below:

SPOOK Commands

ALTER
APPEND
COpy
FIND
INPUT
LIST
MODE
OUTPUT
PURGE

SHOW
TEXT

NMS Replacements

SPOOLF filename;ALTER
FCOPY
COpy or FCOPY
A text editor, or a string search utility
RESTORE or the SPFXFER utility
PRINT or a text editor
The PRINTSPF utility
STORE or the SPFXFER utility
PURGE or
SPOOLF filename;DELETE
LISTSPF
A text editor

Native Mode Spooler - What does it mean to you? 3130-8



MAINTAINING BACKWARDS COMPATIBILITY

As permanent MPE XL disk files, output spoolfiles can be copied to other MPE XL
2. 1 systems through normal STORE/RESTORE.

To maintain compatibility with pre-2.1 MPE XL and MPE VIE systems, the spoolfile
tape transfer utility (SPFXFER) must be used. SPFXFER is located in the PUB group
of the SYS account.

The SPFXFER utility can do the following:

Transfer NMS spoolfiles to tape in a format that MPE XL's SPOOK and MPE's
SPOOKS can read. Note for MPE VIE spooler releases prior to G.02.BO,
SPOOKS will not be able to read SPFXFER tapes.

Read SPOOK tapes created from any release of MPE XL and MPE VIE,
including those created by releases prior to G.02.BO.

SPFXFER's INPUT command is used to read output spoolfiles from tape into the OUT
group of the HPSPOOL account and assigns them new SPOOLIDs. The user and
account of the spoolfile owner does not have to exist in the system directory, nor is it
created. Note that SPFXFER does not restore user labels because NMS spoolfiles do
not have them.

SPFXFER's OUTPUT command is used to store output spoolfiles "to tape in a SPOOK
compatible format. To maintain backwards compatibility with MPE VIE systems, if
the job or session number is larger than 16,383, the system assigns a smaller number.
Also, if the number of copies is greater than 127, the number of copies is reduced.

Refer to the Native Mode Spooler Reference Manual (32650-90166) for a complete
description of the SPFXFER utility.

Prior to MPE XL 2.1, when spoolfiles were created they were fixed record length files.
Now, on 2. 1, they are variable length records. This can create a compatibility problem
for processes that require fixed record length files. This has been a common concern
for customers that have their spoolfiles microfiched. One solution is to use FCOPY to
copy the spoolfiles to a fixed record length format. This can be done in the following
manner:

FILE x;STD;DEV = DISC;CODE=O;DISC =###;REC =###, ,F,ASCII
FCOPY FROM=Onnn.OUT.HPSPOOL;TO=*x;NEW

The ;CODE=O parameter will remove the NMS file code of 1517. The
;DISC= option is mandatory and must be specified when using the default size.

Another solution, is to use the SPFXFER utility to create a tape with fixed record
length spoolfiles.

Native Mode Spooler - What does it mean to you? 3130-9



RECOVERY

The NMS uses its checkpoint files to recover devices which were in the act of printing
when a device interruption occurs such as a power failure or paper jam. The success of
the recovery depends greatly on the type of device:

CIPER protocol printers support page checkpoints and will recover to a specific
page.

The HP2680 and HP2688 laser printers perform a silent run from the beginning
of the file to the point of recovery, enabling them to resume printing at the
correct page.

A serial printer has no feedback to tell the spooler of its page location, so
printing may not resume at the correct page.

Since spoolfiles are permanent disk files, spoolfile recovery following a system
interruption is no more complicated than it is for other disk files but does depend on the
type of system startup and the state of the spoolfile at the time of the interruption:

The system preserves output spoolfiles for all system startups except INSTALL.

The system purges all input spoolfiles whenever an UPDATE or START
NORECOVERY occurs.

If the system is booted with a START NORECOVERY, an apostrophe (') is
inserted in each output spoolfiles associated job or session number. Ex: J'1234

Output spoolfiles that are in the CREATE state when the system is interrupted
may not be completely recovered. Any data not posted to disk before the
interruption can not be recovered. If no data was posted, the spoolfile is
deleted.

Native Mode Spooler - What does it mean to you? 3130-10



May 1, 1991

HP Proactive Maintenance Services
-- Making the Difference in Support

(paper for San Diego Interex Annual Conference in August)

Tamera Stoneburner

with thanks to John Ediger, Michael McCorquodale, Kent
Ostby, Lynne Radzykewycz, and Claudia Zornow

Worldwide CUstomer Support Operations
Hewlett-Packard Company

100 Mayfield Avenue
Mountain View, CA 94043

(415) 968-5600

Introduction

Computers are present in almost every aspect of business
today. with more and more applications and critical
business functions being managed on computers and computer
networks, customers have come to need, and expect, virtually
100% system uptime.

And while hardware reliability is increasing, a single hour
of unplanned downtime can cost a business thousands or
millions of dollars. This is why it is no longer acceptable
for computer vendors to just REACT to computer problems
after they happen. customers are placing increasing value
on software tools that can PREDICT and prevent costly system
failures.

Hewlett-Packard recognized this situation several years ago
and has been addressing the need for proactive services with
HP Predictive Support on the HP 3000's and HP RemoteWatch
Support on the HP 9000 Series 300 and 400 workstations.

There has been a significant increase in the number of
companies creating these kinds of tools for new segments of
the marketplace. Gone are the days that the big minicomputer
was only product family utilizing proactive support
services.

HP is regarded by industry consultants, customers, and
competitors alike as th§ company that sets the standard for
high-quality support services in the computer industry.
Proactive support services such as HP Predictive and HP
RemoteWatch are a key ingredient to this success.
This paper discusses how HP's proactive services continue to
high levels of customer satisfaction. We'll explain how the

n 3131-1



need for remote-access tools evolved, then explore the HP
Predictive and HP RemoteWatch programs, examining how they
work in the real world. We'll end with a comparison of the
two programs.

Background

To prevent customer downtime, HP has long offered
traditional preventive maintenance programs, as well as a
variety of diagnostic tools. Although these tools provide
significant value, HP engineers wanted to design more
proactive diagnostic tools that would highlight potential
problems in time to solve them before they occur. Such
proactive tools would minimize customer downtime and expense
while increasing user productivity.

HP offered its first remote-access proactive service, HP
Predictive Support, in 1986 on HP 3000 minicomputers.
Predictive Support flags potential problems and prevents or
solves them before the problem results in unscheduled
downtime -- thus transforming unscheduled downtime into
scheduled maintenance. The program has been updated over
time as the system platforms have changed and expanded.
Late last year the company offered its second remote-access
proactive service, HP RemoteWatch, to flag potential
problems on HP 9000 workstations. Service contracts today
include either HP Predictive support or HP RemoteWatch
support software at no additional cost to the customer.

Let's look at how proactive support tools such as HP
Predictive and HP RemoteWatch help HP customers.

Predictive Case Study

A large newspaper publisher has four HP 3000 minicomputers
running the MPE VIE operating system (one recently was
upgraded to MPE X/L). The system administrators generate
daily HP Predictive status reports between 6:30 and 7:00
a.m.

chanism. The publisher contends that without the HP
Predictive alert, the systems would have crashed before
day's end, losing all hard-disk data.

RemoteWatch Case Study

The department of geoscience in a large university currently
uses a network of HP 9000 Series 300 workstations involving
30 nodes to run ocean circulation and heatflow models of the
earth. None of the ten research team members claim to be
true system administrators, but by utilizing HP RemoteWatch
they are able to solve minor problems quickly and avoid
downtime.

3131-2



The three professors on the research team typically use the
system during the day, and their seven graduate students use
it at night. One of those students inadvertently ran a
program that re-set all of the device files. The next
morning a professor received an electronic-mail message from
HP RemoteWatch telling him that his tape drive was
malfunctioning, implying that the previous evening's data
back-up had not run. He found the student who had used the
workstation, learned what happened, and thus was able to
troubleshoot and solve the backup failure.

HP Predictive and HP RemoteWatch Compared

Both HP Predictive and HP RemoteWatch support services
detect errors and offer proactive system administration.
Currently the programs run on different platforms -- HP
Predictive Support on HP 3000 CISC and RISC minicomputers,
HP RemoteWatch Support on HP 9000 Series 300 and 400 CISC
workstations.

HP Predictive and HP RemoteWatch Support focus on the
prediction and detection of hardware errors using expert
based rules. In addition, HP RemoteWatch Support also
provides monitoring of configuration changes which are a
major cause of problems in workstation environments.

HP Predictive forwards data via modem to the HP Response
Center where it is routed to an available Response Center
Engineer.

The Response Center Engineer may first dial into the
customer's system via modem in order to run more diagnostics
or access files not already sent to the Response Center. He
or she then calls the customer back, and attempts to solve
the problem by phone. If this fails to solve the problem,
the Response Center Engineer sends a CUstomer Engineer to
the site. Thanks to HP Predictive Support, the Customer
Engineer will know the exact nature of the problem, and
which test equipment and replacement parts to bring along,
thus minimizing repair time.

HP RemoteWatch monitors system threshold error configuration
for both stand-alone and clustered workstaitons. Each day
it reports significant errors, configuration changes and
exceeded thresholds to the system administrator via
electronic mail. This information is detected through the
use of predetermined activity thresholds and filtering of
error messages. The messages correspond with instructions
in the operating manual that tells the administrator what to
do next -- whether it involves a simple configuation change
or calling the HP Response Center for assistance.

3131-3



When installed on a cluster server, HP RemoteWatch
configures itself to the client nodes, running without user
intervention. When a node or other equipment is added, the
program automatically reconfigures itself.

Conclusion

Hewlett-Packard is committed to developing proactive support
services to maximize your system uptime on all HP product
platforms. We have been, and intend to remain the industry
leader in proactive support services. We depend on you, our
HP customers to tell us what you need and to let us know how
we can make your computing environment more productive.
Demonstrations of HP Predictive Support and HP RemoteWatch
Support are currently running in the exhibit hall.

3131-4



** FIRST-LEVEL PERFORMANCE ANALYSIS (USING GLANCEPLUS/XL) **
[Paper #3132]

By: Donna Fountain, HP3000 Performance Specialist
Hewlett-Packard Company, Inc.

Commercial Systems Division
19111 Pruneridge Avenue

Cupertino, CA 95014
(408) 447-1458

Solving performance problems is a valued skill. However, a more
impressive accomplishment is to prevent problems from happening
in the first place. This article will provide methodologies for
first-level troubleshooting of performance problems on your 900
Series HP3000 Computer.

Following this article is a "First-Level Performance Analysis
Checklist". The checklist encapsulates all bottleneck indicator~

that are discussed in this article. You can use the checklist a:·;
a handy reference when monitoring the performance of your 900
Series computer. The key to effective performance management is
to monitor your system on a regular basis. You will recognize
the early symptoms which will help you to avert many performance
problems.

Your performance tool can be used for re-active troubleshooting.
When slow-downs occur, activate your performance monitoring too:!
to assess workload imbalances or saturation of critical system
resources. Is one particular group of users monopolizing system
resources? Is a database lock preventing online users from
accessing a database?

As a part of pro-active performance management, observe the
resource utilization levels for CPU, memory and disk. The soone.'
you unveil a problem or potential problem, the more lead-time
you'll have to put a solution in place. For example, you can
plan for a CPU upgrade or redistribute workloads as your compute'
approaches capacity rather than when the CPU is saturated.

Real-time performance utilities are not intended to be used for
long-term trend analysis or as logging utilities. They cannot bf~

used to address all matters regarding application performance nOJ'
can online tools be expected to meet all of your performance

First-Level Performance Analysis 3132-0.1



needs. For more in-depth performance analysis and additional
functionality, you will need to supplement your performance
toolbox with other utilities, such as utilities whose primary
function is longer-term data collection/analysis, those designed
for analyzing application program, etc.

For the purpose of this article, Hewlett-Packard's GlancePlus/XL
is cited. However, these basic performance analysis concepts can
be applied to all other real-time performance monitoring
utilities as well.

First-Level Performance Analysis 3132-0:~



** WHAT IS GLANCEPLUS/XL? **

HP GlancePlus/XL is Hewlett-Packard's online performance
monitoring and diagnostic utility for HP3000 MPE XL-based
computers. GlancePlus/XL runs on MPE XL Release 2.1 or later.
It is incorporated as part of the Master Installation Tape (MIT)
beginning with MPE XL Release 2.2. Graphical displays depict h()w
the three primary system resources -- CPU, disk, and memory
are being utilized. In addition, detailed information is
displayed for jobs, sessions, and processes.

** HOW DOES GLANCEPLUS/XL GET ITS INFORMATION? **

GlancePlus/XL gets the majority of its information from the
Measurement Interface (MI). The Measurement Interface is a
module (i.e., part of the operating system code) contained withill
MPE XL. Measurement Interface code gathers computer performancE'
information. All performance tools, including those authored by
HP as well as our vendors, access the Measurement Interface for
the purpose of collecting, formatting, and displaying performanc"
statistics.

The Measurement Interface must be enabled or turned-on before
performance data can be collected. Therefore, if your process
running GlancePlus/XL turns on the MI, statistics will be
initialized at zero and tabulated from that moment forward.
However, if another performance tool running on the system (e.g.,
LaserRX) has already turned on the Measurement Interface,
statistics will reflect performance-related activities that have
occurred since the MI was originally enabled.

First-Level Performance Analysis 3132-0 ;



** GLANCEPLUS/XL OPERATIONAL OVERVIEW **

GlancePlus/XL consists of several screen displays including:

a GLOBAL utilization overview;

one screen for each of the three primary system resources
CPU detail, MEMORY detail, and DISK detail;

. detailed data screens for JOBs, SESSIONs, and PROCESSes.

Other screens available are: an in-depth HELP facility and a
FILTER screen which permits the user to display information on
selected processes.

Upon running GlancePlus/XL, the GLOBAL screen is displayed.
Information regarding global utilization of CPU, disk, and memory
is depicted in bar format and locked at the top of the screen.
Once the utility is executing, the user can freely move among a] I
of the screens going from anyone screen to any of the others.
As the user moves about in GlancePlus/XL, the global utilization
bars continue to be displayed and updated at the top of each cor"
screen. This keeps timely information regarding the three
primary system resources at the fingertips of the system manager.

GLOBAL Screen.

The GLOBAL Screen presents an overall view of how the system is
performing. Following the global utilization bars is informatiull
regarding interesting processes. A process is defined as
"interesting" if it exceeds a user configurable threshold value,
is newly created, or was terminated during the last interval.
Detailed information shown for each interesting process include~~'

job/session number, logical device. number, user logon, process
identification number (PIN), program name, scheduling queue,
priority, amount of CPU used, disk I/O transfer rate, number of
transactions during the last interval, average response time, and
wait reason.

CPU DETAIL SCREEN.

First-Level Performance Analysis 3132-()"



The CPU detail screen provides information regarding system CPU
metrics. As with other core screens, the Global Bars are
displayed at the top. Next, CPU consumption for the current
interval is broken down by type (e.g., session, batch, memory
manager). Following is a bar which depicts system CPU usage by
queue. Then there is a miscellaneous section reflecting variou~~

CPU measures, such as switch information, launch rate, and
interval compatibility mode percentage. At the bottom of the
display, the top CPU consumer is identified.

MEMORY DETAIL SCREEN.

System memory metrics are reflected on the MEMORY detail screen.
Following the Global Bars is fault rate information. The total
number of memory page faults during the interval is broken down
by object type. At the bottom of the screen is miscellaneous
memory manager information, such as physical memory size, memory
manager clock cycle delta, and System Library Page Faults.

DISK DETAIL SCREEN.

The DISK detail screen reveals the activities of the system dist
drives. As usual, the Global Bars are displayed. Next, disk
performance measurement statistics are reflected for each
individual disk drive (e.g., physical read rate, current queue
length, and utilization %). A summary section follows which
gives global disk metrics for the interval. Information
regarding the pin with the highest level of disk usage appears a 1

the bottom of the screen.

JOB/SESSION Screen.

The JOB/SESSION screen begins with a display of the three Globa"'
Bars. Next, two additional bars depict how the selected job or
session is using CPU and Disk resources. Totals are accumulate<l
for elapsed time, CPU time, and number of disk transfers
completed since the measurement interface was enabled. Finally,
interesting processes relating to that job or session are
displayed. Details revealed regarding each process include:
process identification number, program name, priority, CPU %,
disk transfer rate, number of transactions, response time, wait

First-Level Performance Analysis 3132-()'·



state, total CPU time, total disk I/O, and PIN of the
job/session's parent.

PROCESS Screen.

Following the Global Bars on the PROCESS Screen are the Process
Bars. The Process Bars show how the selected process is using
CPU and Disk resources. The fully qualified program name is
displayed. Total elapsed time, CPU time, and number of disk
I/O's is displayed for the process since the MI was turned on.
The State Bar shows the the process's wait state over its entire
life (i.e. running time). The Last Interval Process state Bar
depicts the process's wait state during the last time interval
only.

Details displayed for a particular process include: current wajl
state, scheduling queue, priority, scheduling state, rate of
terminal transactions completed during the last interval,
compatibility mode percentage, native mode switches,
compatibility mode switches, and response time. Additional
information that can be displayed for a process includes: name[-~

of all open files, family tree, and HPDEBUG procedure trace. If
SPT/XL has been purchased, an SPT/XL collection process can be
initiated via a softkey to collect metrics on a currently
executing process.

For further information regarding operation and functionality'of
GlancePlus/XL, please refer to the HP GLANCEPLUS/XL USER'S
MANUAL, part number BI787-90001.

First-Level Performance Analysis 3132-()1,



** FIRST-LEVEL PERFORMANCE ANALYSIS USING GLANCEPLUS/XL **

CPU BOTTLENECK INDICATORS.

The Central Processing Unit (CPU) is responsible for executing
the instructions that do the work required by user and system
processes. CPU usage is a good first approximation of how well ;1

system is performing. A CPU bottleneck is a situation where
demand for CPU exceeds the supply. Processes on the system are
requesting more CPU than the system can provide.

There are four CPU bottleneck indicators listed on the
GlancePlus/XL checklist: CPU Busy %, average switches per
second, interval CM %, and average length of the current ready
queue. CPU Busy % is the primary CPU bottleneck indicator. Th~'

latter three are secondary indicators which are used to
sUbstantiate a CPU bottleneck.

CPU BOTTLENECK INDICATOR: CPU GLOBAL BAR

When probing the system with GlancePlus/XL, the system manager
should first note the global CPU Busy % which is the first bar
appearing at the top of each core GlancePlus/XL Screen. CPU Bu~\·

is a fairly good approximation of how well the system is
performing. Be sure to note the composition of the global CPU
Busy bar. User activity can be comprised solely of online,
solely of batch, or a combination of both.

For example, if CPU Busy is consistently 70% with only
interactive users on the system and no batch activity, there is (l

definite possibility of a CPU bottleneck. On the other hand, if
CPU Busy is consistently 100% but there is a lot of batch
activity on the system, (e.g., 55%), there probably isn't a CPU
bottleneck. In the latter case, batch activity probably consump~:

surplus CPU, since minimal demand is being placed on the system
for CPU by the online users. If the majority of the CPU
utilization is batch, that usually implies that there is plenty
of CPU capacity left for online sessions.

Here are some RULES OF THUMB for systems where CPU BUSY is
composed of predominantly online users:

* When global CPU Busy consistently hits 60%, you should
start evaluating your current environment and projecting

First-Level Performance Analysis 3132-0'/



future computing needs. At this point in time, begin
planning for a CPU' upgrade. Keep in mind that it is
always best to have a consensus of other indicators
before declaring that a CPU bottleneck exists.

* When global CPU Busy % is consistently in excess of 70%,
a CPU bottleneck exists. Reexamine workload attributes
and processes that are consuming the cpu. If your
environment is streamlined for maximum operating
efficiency and CPU Busy is in excess of 70%, it is
time to order your CPU upgrade. Monitoring and advance
planning can prevent many performance problems and is
less stressful and more cost effective than managing
system resources on a re-active basis.

* When global CPU busy % exceeds 85%, serious performance
degradation is inevitable.

CPU BOTTLENECK INDICATOR: CPU UTILIZATION

CPU utilization is one of the most popular measure of system
performance. To calculate the specific utilization level, it is
important to sum the total amount of CPU consumed by the variouf~

system resources and online processes during the current
interval: Memory Manager activities, operating system processes
(e.g., Network Services), session processes, dispatcher, and
Interrupt Control Stack (ICS) activities.

CPU UTILIZATION

+ +
session

+ +

GLANCEPLUS/XL
THRESHOLD

70%
disp CPU Busy

utilization

CPU BOTTLENECK INDICATOR: AVERAGE # OF SWITCHES PER SECOND

MPE XL has a Switch subsystem which resolves differences between
native mode and compatibility mode access. MPE XL transparently
handles switches between modes for system routines. Native modf'
to compatibility mode switches are usually more expensive in
terms of resource expenditures than are compatibility mode to
native mode switches. When switching from native mode to
compatibility mode, 32 bit addresses must be converted before
they can be handled by a 16 bit address range. When a
compatibility mode procedure calls a native mode procedure, thi~

is not an issue since native mode code can access the full

First-Level Performance Analysis 3132-0::



address range. Thus, CPU consumption is more expensive for
native mode to compatibility mode switches.

AVERAGE # OF SWITCHES PER SECOND

__~~__~/sec + /sec
switches to CM switches to·NM avg # switches

per second

GLANCEPLUS/XL
THRESHOLD

8/922 ..• 150
8/925 ..• 150
8/932 •.• 240
S/935 .•. 300
8/949 .•• 550
8/950 .•• 300
8/955 ••• 450
5/960 ••• 600
S/980 .• 1000

CPU BOTTLENECK INDICATOR: INTERVAL COMPATIBILITY MODE PERCENTAf.;l:

The interval compatibility mode (CM) percentage depicts the
percentage of time the CPU spent in compatibility mode between
switches. Some of the CM time will be time spent in operating
system code (e.g., RIO and message files): however, most of the
major sUbsystems are in native mode (e.g., TurbolMAGE, KSAM,
VPLUS) .

For systems exceeding the threshold of 20% compatibility mode,
establish a strategy and appropriate timetable to migrate any
remaining compatibility mode programs and applications to native
mode. In the interim, be sure to at least translate those
remaining program files with the Object Code Translator (OCT).

20%------,INTERVAL COMPATIBILITY MODE PERCENTAGE

CPU BOTTLENECK INDICATOR: CURRENT READY QUEUE

GLANCEPLUS/XL
THRESHOLD

This statistic represents the average number of processes that
are ready to execute but must wait their turn to'get the cpu. A
module of the MPE XL Operating System called the Dispatcher
maintains processes requiring the CPU in a priority-ordered 1is1
This list is called the Dispatch Queue in MPE XL pre-2.1 releasp~:

First-Level Performance Analysis 3132-(.1'\



and the Ready Queue in 2.1 and later releases. Scheduling
algorithms dictate how the processes' priorities are maintained
and adjusted. The Dispatcher is priority-driven and will give
the CPU to the highest priority process that has requested it.

The ready queue is a measure of contention for the CPU during tlv'
current interval only. For example, if the average length of th,·
ready queue during the current interval is 16, it exceeds the
threshold of 15 and is a CPU bottleneck indicator for the curren1

interval only. If the average length of the ready queue
maintains a level of 15 or higher over a duration of intervals
(e.g., one hour), it is indicative of a system CPU bottleneck.

GLANCEPLUS/XL
THRESHOLD

CURRENT READY QUEUE 15

CPU BOTTLENECK INDICATOR: "TOP CPU CONSUMER" PROCESSES

A good place to check next is the list of interesting processes
on the Global Screen. The interesting processes are those
utilizing a large % of one or more of the primary system
resources. If the preliminary indication is that a CPU
bottleneck exists, the list of interesting processes will provid f '

a good list of candidates for further examination. Details
revealed for each of the displayed processes include:
job/session number, logical device number, logon, PIN, program
name, queue/priority, CPU%, disk I/O transfer rate, number of
transactions, average response time, and wait states.

Examine the CPU % column. Is one process, one application, or
one group of users monopolizing the CPU during the past interval
The CPU-TOT column in the JOB/SESSION and PROCESS Screen will
unveil the total amount of CPU processor time that has been used
during the life of the job or session.

If additional details are needed to understand how particular
processes are using the CPU, go to the Process Screen. In
addition to the typical CPU statistics such as % of CPU used
during the last interval and total CPU used during the life of
the process, the Process Screen shows the % of time that the
process spent in a particular WAIT STATE over its entire life.

Check the PRI (priority) column to see if someone is running at
higher than their scheduled queue. For example, if you observe "
job with a PRI of 0156, you might want to investigate why it is
running at such a high priority.

First-Level Performance Analysis 3132-lfl



FIRST STEPS IN ALLEVIATING A CPU BOTTLENECK

Improve system performance by reducing the demand for cpu. If
the program that you've identified as consuming a lot of cpu is
running in compatibility mode, migrate the program to native
mode. Remember that optimal program performance is achieved when
running in native mode on a PA-RISC system. If factors such as
application size, availability of source code, or lack of time
prevent immediate recompilation to native mode, the compatibility
mode program files should be translated via a utility called the
Object Code Translator.

Check the CS queue for such things as running reports and
compiling programs. These types of activities should really be
accomplished via a job stream in the OS queue. Inappropriate C[;
queue activities include: compiling programs, large sorts, and
reporting programs. To temporarily alleviate the cpu drain, U5('

the GlancePlus/XL command "Q" to dynamically reprioritize the
queue and/or priority.

Evaluate batch jobs running in the OS queue. If possible, run
some/all of the batch jobs at night instead of during the day.
Reschedule those essential batch jobs restricting them to
non-critical periods only.

Use the :SHOWQ command to verify the settings of the CS and OS
queues (please refer to Performance Note #2 for more details).
As of MPE 2.1, there is a new property of the :TUNE command
called oscillate/boost. This can be enabled for the CS, OS, and
ES scheduling queues to address the problem of poor long
transaction response time. By :TUNEing the queues for overlap
and enabling oscillation, a system manager can cause the long
transactions to be reset to the base of their scheduling queue
when they decay to the limit of the queue.

Other ways to reduce the demand for CPU include:

· optimize UOCs to reduce overhead incurred during logon.

· When using process handling, recycle processes rather than
spawning additional processes. ACTIVATE/SUSPEND is much
more resource efficient than CREATE/KILL.

· Offload graphics, spreadsheets, etc. to personal computers.

• Streamline applications to eliminate inefficiencies. For
example, use the SORT utility to presort large data files.
For very small data files, an internal sort would be more
efficient. Additional performance tools can assist in
diagnosing application performance, such as
Hewlett-Packard's Software Performance Tuner (SPT/XL).

First-Level Performance Analysis 3132-.1 I



MEMORY BOTTLENECK INDICATORS.

The third global bar reveals the overall contents of main memory,
Components of the memory bar show how much memory is being used'
for different types of objects including: resident MPE code,
stacks, extra data segments/data objects, and files. The total
amount of main memory being used is expressed in megabytes and i!:
displayed to the right of the bar. It is normal for main memory
to be fully utilized even when there is little activity on the
system.

MEMORY BOTTLENECK INDICATOR: MEMORY MANAGER CPU

A certain amount of CPU resources is needed for operating system
management. A typical level of interrupts on the HP3000 Series
900 system consumes approximately 15-20% of total CPU resources.
For example, let's say that the "M" or MPE function component of
the CPU Global Bar shows 30%. 30% "M" activity minus 15-20% fOJ
interrupts leaves approximately 10-15% CPU activity attributablp
to memory manager/dispatcher activity. This could be indicativf'
of a memory shortage if the majority of that 10-15% is
attributable to memory management overhead.

You can use the standalone metric for memory manager CPU
utilization that is reported on the CPU DETAIL screen. Memory
manager CPU bUSy % is the first category listed in the
utilization section which appears right below the Global Bars.
The normal guideline or rule of thumb for memory manager overhen d

is that 8% or over constitutes memory pressure.

GLANCEPLUS/XL
THRESHOLD

MEMORY MANAGER CPU UTILIZATION 8%

MEMORY BOTTLENECK INDICATOR: MEMORY MANAGER CLOCK DELTA

The Memory Manager Clock Cycle Delta is located to the right at
the bottom of the MEMORY DETAIL screen. The size of the
machine's physical memory (in megabytes) is to the left.

All things remaining the same, the more memory a system contain~.

the longer it will take to cycle through memory. Conversely, if
there is less memory in a computer, it will cycle through memory
more quickly.

First-Level Performance Analysis 3132-'1.:



Note that the Memory Manager Clock Cycle Delta is a new statistjt'
which replaces the more familiar "Clock Cycle Rate Per Minute".
This is due, in part, to the slower rate at which the MPE XL
Memory Manager recycles through main memory. Memory Manager
Clock Cycle Delta is expressed as rate *per hour*. A change in
this delta of more than 25 over the period of an hour may
indicate possible memory pressure.

GLANCEPLUS/XL
THRESHOLD

MEMORY MANAGER CLOCK CYCLE DELTA
per hour

25 per hour

MEMORY BOTTLENECK INDICATOR: OVERALL PAGE FAULT RATE

A page fault oc('"l"~~ v,Yhen a program tries to reference a data
object (e.g., f' 0, database) that is not present in memory
The program SUt" . 'xecution, and the operating system
retrieves the needed page(s).

There are 10 different types of page faults reflected in the
MEMORY DETAIL screen of GlancePlus/XL. The Overall Page Fault
Rate field is a summation of these 10 types of memory faults
during the current interval. A fault rate greater than 30 faul~~:

per second sustained *over several intervals* indicates memory
pressure.

GLANCEPLUS/XL
THRESHOLD

OVERALL PAGE FAULT RATE 30 per second

MEMORY BOTTLENECK INDICATOR: SYSTEM LIBRARY CODE PAGE FAULT RA'I'1-:

This metric reveals the total number of faults during the curren i

interval for native mode and compatibility mode system librarie~:

A sustained rate of greater than two faults per second may
indicate a memory bottleneck condition.

GLANCEPLUS/XL
THRESHOLD

SYSTEM LIBRARY CODE PAGE FAULT RATE 2 per second

First-Level Performance Analysis 3132-1



FIRST STEPS IN ALLEVIATING A MEMORY BOTTLENECK

Memory bottleneck indicators are less definitive. However, the .. '"
are a few additional GlancePlus/XL indicators which will assist
in identifying memory pressure at the process level.

A wait reason of MEM as reported on the GLOBAL, JOB, SESSION, all,)
PROCESS screens indicates that a process is waiting on either
library code, program code, data, or any combination of the thre('
to be brought into memory. These objects are brought into memory
in pages. It is normal to occasionally find a process in a MEM
wait state. However, if a process is repeatedly observed as
waiting on MEM, this can be indicative of poor locality.
Application logic may be forcing continuous branchs to other
pages.

Multiple processes in MEM waits can be indicative of a memory
shortage. As the demand for memory outstrips the supply, object~:

residing in main memory are kicked out to make room for objects
needed by higher priority processes. When your process again
becomes active, its needed pages must be brought back into main
memory before it can run. This excessive memory management
overhead causes system performance to degrade.

Many of the housekeeping rules that apply to alleviating CPU
bottlenecks also apply to reducing memory usage. These include:

· Minimizing the use of UDCs and combining UDC files;

· Shutting datacomm lines down when not in use. They tie up
memory and freeze it;

· Minimizing file opens, program loads, and user log-ons.

If your 900 Series system is not at maximum memory configuration.
you have the option of adding an additional memory board to
impact the bottleneck. You also have the option of reducing thp
demand which will involve application optimization for good dat;.,
locality.

Always evaluate memory pressure in conjunction with CPU
utilization. A saturated CPU will often exhibit memory pressur~'

symptoms. When the CPU bottleneck is alleviated, often the
memory pressure indicators will disappear.

DISK BOTTLENECK INDICATORS.

When discussing the sUbject of a disk bottleneck, we are
referring only to physical disk I/Os. Physical disk I/Os are

First-Level Performance Analysis 3132-1,1



those that actually require some type of interaction with an
external device.

DISK BOTTLENECK INDICATOR: PHYSICAL DISK TRANSFERS PER SECOND

The Global Disk Bar reveals information about physical disk
transfers happening on the system. The number to the right of
the Disk Bar reports the actual number of physical disk transfer~:

occurring in the current interval. The Disk Bar depicts physicn'
disk transfers by category: memory management (swapping)
transfers, system process transfers (e.g., datacomm), interactiv(:
process transfers, and batch process transfers.

25 physical disk I/Os per second is the guideline for assessing
the disk transfer rate. This is a guideline only, as disk
bottlenecks are not very common on MPE XL. PA-RISC architectur('
was designed to eliminate disk I/O. Thus, this threshold of 25
physical disk I/Os per second is based on limited data.

GLANCEPLUS/XL
THRESHOLD

PHYSICAL DISK TRANSFERS PER SECOND

DISK BOTTLENECK INDICATOR: CPU PAUSED FOR DISK

25 lOs/second

When the CPU is in a Paused for Disk state, no CPU is being usetl
The system is waiting for a particular process's disk I/O to tal."
place. During this time, the system was not able to perform any
other function. This category also measures time which is spen1
waiting on memory manager disk I/O.

GLANCEPLUS/XL
THRESHOLD

CPU PAUSED FOR DISK 25%

DISK BOTTLENECK INDICATOR: UTILIZATION LEVEL PER EACH DISK DRI"":

Below the Global Bars on the DISK DETAIL screen is the
utilization statistics on a per disk drive basis. utilization

First-Level Performance Analysis 3132-1 1
,



refers to the percentage of time during the current interval th3 i

the drive was in use servicing disk I/O reads and disk I/O
writes. The indicator for a disk bottleneck at the drive level
is 80% utilization over a sustained period.

GLANCEPLUS/XL
THRESHOLD

UTILIZATION LEVEL FOR EACH DISK DRIVE

FIRST STEPS IN ALLEVIATING A DISK BOTTLENECK

80%

The first step in diagnosing disk bottleneck symptoms is to
isolate the problem down to its source. GlancePlus/XL will
enable you to trace the high level of disk I/O to its origin.
Begin by going to the GLOBAL screen. Scan through the list of
interesting processes to identify those that are DISC-waited.

Next, look at the TRN column to reveal the rate per minute at
which the <return> or <enter> key was pressed during the last
interval. Transactions where the think time is less than .1
second are not counted, since they are probably hardware status
replies. If the TRN rate is excessively high, investigate
modems, etc. for possible broken hardware. Another event that
could vastly inflate the TRN rate by causing interrupts is the
setting of a manual or other object on the keyboard. The number
of transactions is 0 for most batch jobs, because they generally
do not read from terminals.

Finally, check the RESP column to get the average time between
the <return> or <enter> key being pressed and the computer being'
ready to accept more input. This number will be 0.0 for batch
jobs and for any sessions with no transactions occurring during
the last interval. RESP is a calculated value, so don't use it
as an absolute number. Instead, use RESP as a relative number
and as an indicator.

For example, the value of RESP is normally between .0 and .5 fOl

a particular process. When experiencing system performance
problems, the system manager runs GlancePlus/XL and notices thai
RESP has increased to 2.5 for that particular process. This is d

five-fold increase and can be indicative of change. Perhaps
there is a bug in the application program, or the system's
environment has changed significantly such as adding a new
application that shares the same database.

Further investigation will be needed to determine whether or no1
an I/O bottleneck exists and what disk drives are being impacte(l
Once you have identified a list of prospective candidates, you
can proceed to the JOB/SESSION or PROCESS screens to examine

First-Level Performance Analysis 3132-1',



DISC-TOT, the total number of physical disk transfers that were
completed during the life of the job, session, or process. Thf'
PROCESS screen will provide even more in-depth clues (e.g., all
open files and their level of activity).

There are several housekeeping rules that will insure good
throughput on a 900 Series HP3000 system. First, insure that
sufficient freespace is available on all drives. Next, archive
files that have not been accessed for a specific period of time,
and purge them off the system. Other good practices will also
affect disk throughput: minimizing file opens and closes, good
UDC strategy, PC offloading, eliminating unnecessary log-ons,
etc.

LOCKS AND LOGICAL CONTENTION.

G1anceP1us/XL will assist you in identifying issues that are
related to resource contention. The GLOBAL screen will reveal
WAIT reasons for the most resource-intensive processes during th~~

last interval. To investigate locking/logical contention, look
for processes that are waited for one of the following: SEM
(semaphore), DBMS (database management system), SIR (system
identification resource), or RIN (resource identification
number) .

LOCKING/LOGICAL CONTENTION INDICATOR: IMP % OF STATE/LAST BAR

To gain a perspective of what percentage of time a particular
process spends in the various WAIT states, proceed to the PROCES::
Screen. The Elapsed Time Process State bar shows the WAIT state~:

for the process over the duration of time it has been running
since the Measurement Interface was enabled. The Last Interval
Process State bar reflects the same information but for the
current interval only.

The DBMS wait state indicates that a process is waiting on a
database management system lock (DBMS). User processes as well
as the HP SQL subsystem processes will, at times, be reported a~;

DBMS waited. If a process repetitively appears as DBMS waited,
the possibility of locking contention exists. TurbolMAGE/XL
sUbsystem locks show up as SEM (i.e., semaphore-waited).

An indicator of contention would be if the percentage of time
spent in the "Q" state is greater than or equal to 15% on the
Process State/Last Bars. All processes impeded by a syncronizin',

First-Level Performance Analysis 3132-1';



mechanism are summed in the "Q" state percentage. This includef~

both DBMS- and SEM- waited processes.

If the "Q" category in the Process state Bar exceeds 15%, logicr.l l

contention over time is established. If the "Q" category in the
Process Last Bar exceeds 15%, locking/logical contention is
presently occurring.

GLANCEPLUS/XL
THRESHOLD

IMPEDED % OF STATE/LAST BAR 15%

FIRST STEPS IN ALLEVIATING LOCKING/LOGICAL CONTENTION

Once a contention issue has been identified, further
investigation will be needed. Excessive waits may reveal that all
application's locking strategy is not appropriate. Locking
strategies should be carefully selected and take place at the
lowest level possible to avoid monopolizing resources. For
example, TurboIMAGE database locks can take place at the base,
set, and item level. After a possible contention issue has been
detected with GlancePlus/XL, run DBUTIL.PUB.SYS and issue a SHOW
dbname LOCKS command to verify whether or not a problem exists.

Solutions to a locking/logical condition revolve around the
application and its design. possible areas of interest would be
to investigate locking strategy on files or datasets. Due to thp
possible complexity involved additional performance tools, such
as Hewlett-Packard's SPT/XL, may be needed.

First-Level Performance Analysis 3132-]n



**SUMMARY**

For those times when crisis management prevails, a performance
monitoring tool is essential for immediate troubleshooting. wittl
regular monitoring and advance planning, you will be using your
performance utility to *maintain* control of your 900 Series
HP3000 system rather than to *gain* control.

In either case, you need to be aware of the main bottleneck
indicators. These indicators will provide you with the necessar¥
data to make informed decisions -- both pro-active and re-active.
The "First-Level Performance Analysis Checklist" is a handy
one-page summary of the major resource bottleneck indicators.
Please feel free to make additional copies of this checklist fo}"
yourself and others.

The "bottom line" is to monitor your system regularly to avert
performance problems. By examining your computer system's
resource usage levels, you will often be able to pro-actively
recognize and alleviate bottleneck symptoms before they become
full-blown problems. Your reward will be longer lead-times for
handling many performance issues.

First-Level Performance Analysis 3132-1'1



** FIRST-LEVEL PERFORMANCE ANALYSIS USING GLANCEPLUS/XL **
CPU BOTTLENECK INDICATORS
************************* THRESHOl,l \

(C) * + + + +
MemMgr system session ICS disp

(CPU Busy Utilization)

(C) /sec + /sec
switches to CM switches to NM

(Average # of switches Per Second)

70%

S922 ••. l!:)()
S925 .•• 150
S932 ••• 24(1
S935 ••• 30n
S949 .•. 55"
S950 •.• 30n
S955 ••• 45(1
S960 ••. 60 n

S980 •. 10CH)

(C)

(C)

Interval Compatibility Mode %

Current Ready Queue

20%

15

*Examine the "Top CPU Consumer" process(es). Are processes
critical to your site being consistently flagged as CPU waited':'

MEMORY BOTTLENECK INDICATORS
****************************

(C) *Memory Manager CPU utilization

(M) *Memory Manager Clock Cycle Delta

(M) Overall Page Fault Rate

(M) System Library Code Page Fault Rate

DISK BOTTLENECK INDICATORS
**************************

8%

25/hour

30/sec

2/sec

(D)

(C)

(D)

*Physical Disk transfers/second

*CPU Paused for Disk

utilization level per each disk

30 IOs/se l :

25%

80%

SOFTWARE/CONTENTION INDICATORS
******************************

(P) "Q" (impeded % of State/Last bar 15%

*Examine interesting processes that are flagged as "Q" (impeded)

FOOTNOTES * indicates primary bottleneck indicator
********* () maps to GlancePlus/XL screens where data can

be retrieved (C=CPU, D=disk, M=memory, P=proces~:.\

First-Level Performance Analysis 3l32-?O



Paper # 3134
Bow to Win Memory and Influence CPU:

A Look at MPB XL system Performance

D. Scott Pierson
Hewlett Packard Company

Commercial Education Instructor
1421 S. Manhattan Ave
Fullerton, California

(714) 758-5565

with the growth of computer automation within the the
business community, it is becoming more important that
management address the issue of effective utilization of
system resources. When analyzing the performance of a
partiCUlar machine, MPE XL systems are similar to all
computer systems, in that, the factors of CPU, MEMORY, I/O,
LOCKS and LATCHES, and system management techniques are
usually all added together in a formula. The problem is that
there are no formulas in performance. Performance tuning is
not to be looked at as a science with formulas and tables to
look up the answers, but rather as a form of art that must
consider many other pieces of information than would fit in a
formula or equation.

So, our focus must be on an understanding and appreciation of
the design of the system and how to best utilize its
features. Through the use of MPE commands, HP GlancePlus XL,
and HP LaserRX there is much that can be done by the system
manager to effectively utilize the system to its potential
prior to the intervention of a consultant level performance
analyst.

WHAT IS PERFORMANCE?

A computer system is one of many resources that a business
may utilize to maximize profit. The computer is beneficial if
it can contribute to an employee or entity to maximize their
income related potential. If that potential is hindered due
to the computers inability to service all of the needs placed
upon it at a given time, we would consider this to be a
problem with performance. An indication of a performance
problem might surface in slow response time as seen by the
users or delays in batch job completion, to name a few.

Before addressing the sUbject of performance, the system
manager must be able to answer several key questions. Before
continuing, it is essential to have these answers. The
manager is first asked to characterize the environment.
Simple ~nswers of 80% interactive and 20% batch

How to Win Memory and Influence CPU
3134-1



will not suffice. The manager must explain "what is the
function of the computer", "how does information flow through
the company and the computer", "what is needed of the
computer", and "what prioritized activity must complete at
the sacrifice of all other activity". The number one mistake
made by system managers attempting performance analysis is to
immediately jump to solutions. So, they attempt to learn all
that they can about the functionality and control of the
computer. But, in actuality, that same effort should have
first been put into an understanding of how their company
does business. This is the essence to performance analysis
being a form of art and not a science. All environments are
different. Once the environment is understood, application of
that knowledge to the limited resource will maximize its
availability and consumption.

We have found the most important point that is the basis of
all performance analysis, knowledge of the environment. with
this as our base, the principles of performance can be
applied to the MPE XL operating system.

When troubleshooting a possible performance problem, it is
important to adhere to several basic concepts generic to
troubleshooting. First, IIBVBR ASSUME THE OBVIOUS. This is a
very common mistake made in the industry. It is easy to jump
right into in depth technical solutions to resolve a problem
without any success and finally come to the conclusion that
the solution was something obvious, directly underneath our
nose.

Second I TO OBTAIN THB CORRECT A1fSWBRS, YOU HUST ASK THB
CORRECT Q~ESTIONS. A user's perception of a performance
problem 1S usually completely different from that of the
system manager's. If the user's expectations are properly set
early, many "false alarms" can be alleviated. Make sure to
ask specific "closed end" questions to obtain the needed
information. Quantify the information as much as po~sible.

For example, "What was the expected result?", "What 1S the
current reSUlt?", and "What is the derivation between the
two?". Notice the difference between the answers from these
direct closed end questions and a response of "the computer
seems to be running slow today." Link this information into
the knowledge of the environment.

Third, LOOK PAST THB PROBLBH WITH POSSIBLB SOLUTIONS. When
implementing a solution it is possible to cause mUltiple new
problems as a result of the solution. In the classic MPE
systems, if I/O were a bottleneck, system managers could
utilize disk controller caching. This could actually cause
two new problems of CPU and MEMORY if those two resources
were already b~und.

How to Win Memory and Influence CPU
3134-2



Fourth, CHANGB ONLY ONE VARIABLB BBFORE RETESTING POR THE
EPFECTS. After asking the correct questions and looking past
the problem with the possible solution, only make one change
to the system before retesting for the results of the change.
If more than one change is implemented, there is no way to be
certain which change corrected the problem or if mUltiple
changes stalemated each other.

Now that there is a procedure in place for resolving
performance fluctuations, it is time to identify the
contributors and the solutions. Resources that contribute to
a degradation of system performance can be characterized as
"bottlenecks". The most common performance bottlenecks are
CPU, Memory, I/O, Locks and Latches, and that of the system
manager. In the way of solutions, all solutions can be broken
into one of two categories, "Buy More" or "Use Less".

Buy more or use less has been worded many different ways to
disguise what actually is being recommended. It could be
called "Increase the Supply" and "Reduce the Demand", but it
is the same old thing. These concepts can b~ applied to many
different scenarios. If discussing a household budget and a
difficulty in paying the billS, the same solutions are
available. The individual can increase the supply of income
or reduce the demand on the income. The same dollar can not
be used to pay two different bills at the same time. This is
one individual who has tried it.

"Use Less" is a broad category to catch all solutions that do
not involve the purchase of hardware. But, what if the demand
cannot be reduced or the users cannot use less of the
resource? In this situation, that resource must be divided
between the most important consumers competing for the
resource. The system manager is right back to the need to
know the environment and prioritize the activity that takes
place. Now, the system manager can balance the load and time
at which the consumers compete for the resource.

In the HP3000 MPE XL operating system environment, there are
several software solutions that will attempt to automate the
system performance tuning on behalf of the system manager.
Note that the software will only be as effective as the
system manager's ability to make the above decisions in
balancing the resource load.

Since most environments can neither afford nor need the
purchase of hardware, a review of how a system manager may
use less of the resources in demand would be in order. When
considering buying more or using less, it is important to
compare the cost of the solution to the benefit gained from
the solution. If it will cost more to implement the solution

How to Win Memory and Influence CPU
3134-3'



than will be
consider other
problem.

gained by the solution, it would be best to
alternatives or simply put up with the

There is much that can be done by a system manager prior to
paying for the expertise of a performance consultant. A
performance consultant is not always needed. System managers
will be able to save the department and HP a lot of time and
money by performing basic performance analysis.

The next objective is to identify the performance bottleneck.
All systems arrive with a "Free" performance tool. It is
called the "Look and Listen" method. By looking at the LED
display of the computer, a system manager can relatively
determine the activity level of the system. The second
character position of the display indicates the approximate
activity level of the system. A display of "FOFF" indicates
the system is 0% active or idle, "F5FF" for 50% active, and
"FAFF" indicating a level of 100% active. A system manager
could also look at the disk drives. If the disk is bUsy, the
access light will be flashing continuously. with the older
793X drives, the read/write heads could be heard moving back
and forth indicating the activity level on a drive. The disk
could be seen moving and bouncing across the floor of the
computer room. Early warnings of disk imbalances were first
noticed through this method. Some system managers actually
shutdown the system to re-align the disk units back into a
straight line.

This is not to say that a system manager need only walk into
the computer room and look at the CPU lights and disk drive
movement to analyze performance. Much more is needed. But,
this is a first level observation of performance. If the
system manager is walking past the computer and notices that
an "F8FF" is flashing in the LED display, indicating 80%
utilization, it might be wise to determine what activity is
taking place on the system." Or, if a user were to call and
ask if the system was performing poorly and there was a
"F1FF" in the LED, look first to possible causes of the user
work station, or application, and not yet to the entire
system. The bottom line being that the system manager needs
to have a good "gut feel" for the type of activity that takes
place on the computer. This will assist in providing a basis
with which to compare all activity levels.

This same look and listen method can be applied to the end
user. Look at what the users are performing on the system
and listen to their comments. The users are what keep the
computer center in demand. Eliminate the users and there is
no computer center. Listening to the end users and providing
the tools to make them more productive will allow the

How to Win Memory and Influence CPU
3134-4



computer facility to grow and flourish.

LACK 01' RESOURCES CREATE BOTTLBHBCltS

A resource is anything that is in demand and is limited in
supply. Performance degradation occurs when one of the
system resources of CPU, memory, disk I/O, or locks and
latches reaches the point at which the system can no longer
perform to its requested level. This symptom is called a
bottleneck. Detection of bottlenecks is difficult due to the
conditions quickly disappearing or the overlap and
interrelation of resources. A shortage of one resource could
lead to the misuse or shortage of another, as was the case in
the earlier example of MPE caching. In some cases, there
could be more than one bottleneck.

The performance of MPE XL systems has been designed to scale
directly with respect to processor speed, main memory
availability, and workload. This implies that disk I/O be
eliminated whenever possible.

THE DISK BOTTLENECK

Disk is the medium on which data is stored until requested
for a process. I/O is the physical action of input or output
to the disk media. If a process references a piece of data
that is not present in memory, then that information must be
retrieved from disk. Relatively, this is the slowest
operation for the hardware to perform and is measured in
milliseconds. It is important to note that in most
environments, due to new enhancem~nts to the MPE XL operating
system, I/O will not be a bottleneck.

Although disk I/O is not typically a bottleneck on MPE XL
systems, much can be done to reduce or optimize I/O and can
result in a savings of 5% to 8% in some cases. There are many
ways to reduce I/O. The use of fiber-optic disk over HPIB
disk, load balancing, and reduction of fragmentation, just to
name a few.

Fiber-optic interface is a solution available for several
disk drives and an upgrade for others. HP-FL drives offer
three main benefits over the HPIB interface. HP-FL can
transfer data at 5 megabytes per second in comparison to 1
megabyte per second of HPIB. HP-FL can be located at
distances of up to 500 meters from the cpu. HP-FL supports a
maximum of eight disks per HP-FL device adapter. The
"transmission speed, although five times that of HPIB, is only
a small part of a physical I/O. Of an average physical I/O
of 25 milliseconds, the transfer time only accounts for
approximately 1-3 milliseconds. with the transfer being such

How to Win Memory and Influence cpu
3134-5



a small part of the total I/O, a system manager should not
justify HP-FL on the transfer speed alone. Second, a common
limitation of HPIB has been the distance at which all disk
drives for each channel are supported from the system. This
distance of approximately 15 meters is calculated using both
the load of the device and the total cable length. The
greater the distance, the more the signal can attenuate or
weaken. Since fiber optic uses light transmitted through
light emitting diodes, LEOs, there is no weakening or signal
loss, thus the greater distance. Finally the maximum
supported devices on a fiber optic interface is eight
compared to six on HPIB. In comparing the two interfaces, HP
does not recommend more than four disk drives to an HPIS
channel and six disk drives to an HP-FL channel without the
possibility of significant performance degradation. This
limitation is due to the hardware. Any more disks on the same
channel and the hardware might not be able to service the
requests. The request will not be lost, it will be placed in
queue until it can be completed. In summary, more disk at
greater distances with faster transmissions speeds. Today,
only disk devices are supported on HP-FL channels.

Sufficient free disk space available on the system is
extremely important in reducing I/O demand. The way in which
the file system manages free space and candidate locations
for the placement of new file extents is completely different
from MPE. If there is a lack of sufficient free space, the
file system will have to work harder in locating candidate
free space locations. The secondary storage manager must
fulfill the requests demanded by the volume manager for
placement of data on disk. The harder the file system has to
work, the greater the delay to the process. The free space
must be available to both permanent and transient structures.
The free space must also be distributed to mUltiple disk
drives. If the requested disk type is restricted to only one
disk drive then all requests will be queued up and processed
serially through that drive.

The :DISCFREE command can be used to determine how much
space, PERM or TRANS, is available as well as how much is
being utilized per drive. An even balance across all drives
will potentially maximize the I/O capability for the channel.
The system balances disk placement utilizing the configured
percentage set within SYSGEN or VOLUTIL. If the disk drives
are configured similarly, the system manager will usually see
an even distribution of total disk space.

Disk load balancing is most commonly referred to as the
balancing of the most commonly accessed files across all
volume set drives. Use the scenario of a disk drive being
able to process 25 I/Os per second. Not by choice, all of

How to Win Memory and Influence CPU
3134-6



the most referenced files for an application located on
that drive. The use of the application then places a demand
of 50 I/Os per second on the drive. It is easy to discern
that the disk drive can service only a portion of that
demand. As least 25 of the requested I/Os would be waiting.
If that same load were equally distributed across two or more
drives, each able to handle 25 I/Os per second, then the
demand of 50 could easily be met and there would be no
processes paused for the I/O to complete. The theory is easy.
The application is difficult. How to identify the files and
distribute them equally across multiple disk drives is the
most difficult part of this process. System managers must
rely on their knowledge of the application mix and work load
of the system. Partial backups can assist in determining
which files or applications are utilized for a given day. But
even that is just the files that have been modified, not the
ones that have been accessed. To obtain more detailed
information, the system manager could utilize system logging.
Turning the FILE OPEN event type "ON" would log all accesses
of files to disc. The log files could then be read to
determine the most heavily accessed files. The system manager
needs to know what takes place on the system but not to the
granularity of how each application works, just the files it
utilizes. Distribution of files and applications across
channel adapters, device adapters and disk drives will assist
in achieving the I/O potential for the system.

A many times forgotten or overlooked database issue that can
have a significant effect on I/O is the concurrence of data
within a database. The more dynamic, always changing, a
database becomes, the more the data will not be sorted
physically but be linked together through chains. A chain
logically links a record to the previous and next record. As
records are added and deleted from the database, they are no
longer in physical order but now in logical order. If a
sequential search of the database is requested, the I/O
system will use an algorithm to perform a prefetch of
additional data to that which was requested. If the ordered
data is not all physically located together on disk in one
location, mUltiple I/Os will have to be performed to
retrieve what could have been retrieved in only one I/O.
Thus, the need for concurrence of data within the database.
This can be corrected through the process of
unloading/loading the database. Most system managers have
the responsibility of database administration without the
luxury of database theory or training. A good majority of
the escalated performance problem sites resolved found
database performance to be the problem. To use another
analogy, performing a UNLOAD/LOAD of the database is like
changing the oil in a car. Most owners usually know that it
needs to be done periodically. The owner also knows it will

How to Win Memory and Influence CPU
3134-7



be a long time before the engine stops due to the lack of
changing the oil. So, many people do not change the oil
until it gets black because preventive maintenance is a low
priority. Dirty oil contributes to friction. Friction is the
major cause of engine wear. Some cars will continue to run
while others will eventually slow down and then stop.
Improperly managed databases can be a major cause in system
degradation but many times not viewed as significant to the
system manager until it is too late. Some applications
utilizing databases may continue to function just fine while
others will eventually slow and become a performance problem.
The system manager will have to react with database
management. Proactive is certainly easier, and less
stressful, than reactive.

MY DISK IS GOING TO PIECES

There are two types of fragmentation: disk and file. Disk
fragmentation occurs when the free disk space for a drive is
fragmented into such small pieces of disk, that it is
difficult for the secondary space manager (SSM) to find
candidate locations to satisfy new data storage, both
permanent and transient. There is no current HP utility to
alleviate this condition. MPE XL uses a concept called
paging. All disk is partitioned into 16 sector boundaries
(4096 bytes), or a page. Since all files and free disk
utilize the same common denominator, there cannot be a
segment of disk that is too small to be utilized by the SSM.
If a 160 sector piece of free disk is requested and there are
no pieces of that size or larger, the SSM simply subtracts
16 sectors, uses a new value of 144 sectors, and looks again.
This continues all the way down to the smallest piece of 16
sectors. If none of these are available, the system must be
out of free disk. Large contiguous chunks of free space are
desirable to prevent this type of activity to be forced on
the SSM.

File fragmentation follows the same concept. Based on the
availability of free space to the SSM, as a file continues to
grow, the information can either be stored in one large chunk
of disk, or it can be divided, fragmented, into many small
pieces of disk. When it is time to read that information, if
it is in one location, fewer I/Os will be needed than if that
information were stored in many different locations, smaller
in size. DIRUTIL is a TELESUP utility that can be used to
identify the extent of fragmentation in a file. Using FCOPY
to copy from the old file into one initially allocated file
extent is one method of combining mUltiple small fragments of
a file into one contiguous location on disk. The system
manager is faced with the dilemma of possibly having large
chunks of disk space preallocated to a file. This would

How to Win Memory and Influence CPU
3134-8



reduce I/O activity at the expense of wasting disk space.

THE MEMORY BOTTLENECK

Before a process can execute on the computer, the CPU
(Central Processing Unit) will require that all of the data
resources that the process will need to begin, be present in
memory. Memory is fast, limited, and expensive. There are
three types of memory: CPU cache, main memory, and virtual
memory.

CPU cache is the fastest and most expensive memory. This is
the small amount of memory that is located on the CPU board.
It stores the most recent instructions that have executed on
the CPU. These are not the lines of code in your program but
the computers translation of that program code. Each line of
code translates into many many lines of instructions. RIse
architecture, in part, was built on the premise that many of
the same instructions are used over and over, thus RISC or
reduced instruction set computer. If the CPU can retrieve the
next instruction to be executed from the CPU cache and not
request it from main memory, execution can continue without
a delay. Nothing can be done to improve CPU cache other than
upgrade to a larger processor which usually has a larger CPU
cache.

Main memory is second in speed and cost to CPU cache. It is
not as expensive nor as fast as CPU cache, but it is much
faster than virtual memory. Main memory is divided into the
same partitions as that of disk. Main memory attempts to keep
the most recently referenced data and code available for use
by the CPU. The larger the amount of main memory on the
system, the better memory management can satisfy the requests
placed upon it for data without requesting I/O to take place.

Some things must always remain in main memory. The operating
system retains some of its structures in memory and will not
allow them to be swapped out to virtual memory on disk. A
user can also freeze resources in main memory. This could be
very advantageous to a process if it never had to be blocked
on an I/O and its resources were always memory resident. But
it can also be very damaging to the rest of the system users.
The amount of main memory available to be shared by all of
the other processes has just been reduced. Their demand will
have be satisfied with less of a resource.

BOW MUCB JlBMORY IS IIBBDBD?

As a general rule, to predict the memory requirement of the
system, the following formula could be used. Allocate 16
megabytes for the operating system and an additional .5 to 1

How to Win Memory and. Influence CPU
3134-9



megabyte per interactive user. For example, if there will be
100 active users, memory configuration would require 16 meg
for the system, plus between 50 meg, (for a low end of.5 meg
per user) to 100 meg, (at 1 meg per user). That would be a
total of between 66 meg and 116 meg of memory. Which end of
this scale is best for your organization will depend on the
degree to which your applications are memory intensive, how
much parent/child processing is being performed, as well as
how much shared code the users will utilize. Some batch
applications have been known to be memory intensive and a
need for SUbstantially more memory per active batch process
has encroached 8 megabytes per job. This is certainly not
the norm but is worth mentioning to demonstrate that these
are only guidelines and memory requirements differ from
application to application. Whatever mix you chose for your
environment, the vendor supplying the software will assist
with preliminary estimates. If anything, a good portion of
the user community is over memory configured at system
purchase. This is great. This condition provides for ample
growth without needing to address the memory concern too
early in the system life cycle.

Virtual memory is the slowest and least expensive of the
three. The operating system uses virtual addressing to give
the appearance of having a large main memory system through
the use of secondary storage on disk. What does that mean?
The cost of main memory is high and it is limited in supply.
So, we fake out the system by giving the impression that
there is an unlimited supply by providing virtual memory on
disk. Relatively speaking, disk is cheap. So the most
recent data is kept in main memory and the oldest will
typically be swapped out to the extended virtual memory on
disk. If a process needs some data and the memory manager
cannot find it in main memory, a disk request is posted to
retrieve the information from virtual memory on disk.

A system manager can view the amount of disk currently being
utilized by virtual memory through the DISCFREE command for
the TRANSient space utilization. If anything, we use a lot
of disk in MPE XL. Each process that logs onto the system,
whether it be a session or job, will consume approximately
10,000 sectors of transient space. If parent/child
processing is utilized, as in the case of menu driven
applications, the child process will utilize an additional
2,000 to 9,000 sectors. To complicate matters more, if upon
completion the child suspends instead of terminating, the
space will not be returned until the parent process
terminates. Note: transient space is only configured and
utilized on system domain disk drives, not user private
volume domain disk drives. There is a plus and a minus
associated with this. The plus is achieved if the user

How to Win Memory and Influence CPU
3134-10



performs redundant activity while logged into the
application. If the user prints many of the same reports,
the child process can suspend after the printing of the first
report. Thus, the process will not have to reallocate all of
the table entries and resources for the code to execute
again. This reduces the user wait time for each additional
printing of the report. If the child process is terminated
upon completion, each subsequent launch of the child will
have to reallocate and obtain those entries again for the
report to be generated. This minus side of this scenario is
realized when the system manager sees the free disk space
start slipping away. Remember, if you have free disk, the
users will find a way to consume it.

So we use more disk. What problems could that produce? If
there is no free space and a new process attempts to log on
and cannot get its allocation as listed above, the process
will not be allowed to logon until there is sufficient space
available. A job will be placed into a WAIT state and a
session will be told that the system is unavailable. Imagine
the following scenario. A system manager partitions the disk
into volume domains leaving only two disk drives to the
system domain. The two drives are utilized by the operating
system, system log files, software, and transient space which
can only reside on the system domain drives. Free space is
gradually consumed and goes unnoticed by the system manager.
The manager is then requested to add an additional 50 users
to the system. Everything might seem in order at first
glance. But, multiply the 50 users by the 10,000 sectors
minimum required for logon. Hope that the system manager had
500,000 sectors of TRANSient space available. This
particular condition has caught many system managers off
guard.

Whatever happened to ALLOCATE and AUTOALLOCATE? Due to the
differences in the way that the Memory Manager handles the
allocation of a program's code segments as well as the amount
of memory that the system has available, there is no longer a
need to ALLOCATE or AUTOALLOCATE a native mode program. The
ALLOCATE command will still provide a benefit to
compatibility mode and translated program code. The problem
being that there is no command that will provide a list of
the programs that have been ALLOCATED. with HP's
recommendation that all code be eventually migrated to native
mode, this should not have too much importance for the
average MPE/XL environment.

THE CPU BOTTLENECK

The Central Processing unit (CPU) executes programs on behalf

How to Win Memory and Influence CPU
3134-11



of the users. In a multi-user environment there will be many
users all requesting the services of the CPU at relatively
the same time. Users believe there is only one person that
the computer is servicing. But the system manager realizes
that there are mUltiple users with this same belief. So, the
system manager must assist the computer in prioritizing the
activity of the system so that all the users are relatively
productive.

THE KIP MISCONCBPTION

Users enter commands and run programs. The CPU breaks that
activity down into instructions that can be executed by the
CPU hardware. The relative speed of the CPU is based on how
many of these instructions the computer can process, measured
in Millions of Instructions per Second (MIPs). Many
performance specialists refer to MIPs as Meaningless
Increment of Performance. A MIP rating should not be used as
a measurement to compare relative performance of different
computers due to the differences in the machine instruction
set. Different computers complete code in a different number
of instructions. Therefore, what difference does it make how
many instructions it can process in a second of time? To use
an analogy, it would be like comparing the speed of a car by
the RPMs of the engine. If the engine of the car is currently
doing 4000 rpms, how fast is the car moving? It is impossible
to predict. The car could be in first gear, third gear, or
even in park. MIPS is only beneficial in comparing like
systems from the same vendor. Any further comparison should
utilize one of the industry standard mechanisms shared with
multiple vendors such as a TPC-A benchmark.

The CPU bottleneck is one area in which the system manager is
afforded a lot of control. Through the use of standard MPE
commands and special software products, the system manager is
allowed to redistribute the processing of the CPU with many
activities. There is a limit to how much processing power the
system manager can distribute between the processes. Once
that resource runs to capacity, the same two alternatives are
available, "buy more" or "use less". An upgrade of the CPU is
not always a viable solution in the early stages of system
tuning for there is much that can be done to adjust a
processes consumption of the available cpu. So we will focus
in on the "use less" portion of the alternatives. Remember
as stated before, use less many times means· balance the load
or distribute the consumption.

Processing can be broken into two broad categories of
overhead and user. Overhead processing is impacted by the
resources of memory, I/O, and management of the CPU. For
example, if memory is limited, the processor will be spending

How to Win Memory and Influence cpu
3134-12



more time managing the limited resource. That time could have
been spent processing on behalf of the user process. A
system manager will want to monitor the amount of CPU spent
on overhead and maintain levels under 20%. Anything higher
may indicate other problems to be investigated. Today, this
activity can only be displayed through the use of a purchased
performance product.

In a multiprocessing environment, "there are mUltiple user
processes that will be in contention for the processing power
of the cpu. A system manager must be able to rank or
prioritize the concurrent activity of the system. It is with
this list of prioritized activity, whether formal or
informal, that a system manager will base a decision when two
user processes are competing for the CPU at the same time.
They both can't have sole ownership. It must be divided.
The distribution does not have to be even. It can be if they
are of equal importance. The most difficult decision is
"which process is the most important" or "is it always the
same priority list".

SQUEAKY WHEEL GETS THE OIL

Usually when asking a system manager to prioritize the
activity that takes place on the system or to identify which
process is the highest priority, a manager will respond,
"that depends". It depends on the time of day, day of the
week, week of the month or year, and who is complaining the
loudest. This may be the case in your environment. It doesn't
mean that yOU'll spend your entire career putting out fires.
It may mean that either your environment is so dynamically
changing that rules cannot be applied or the users need to
have their expectations reset. A user calls and states that
they need a report immediately, and it is for the president.
No problem, the request can be met. Another user calls and
states that they need a report, and it is for the president,
and so on, and so on, and so on. There will come a time when
the system manager will have to decide if the president
really needs all of these reports or if the users have
learned to say anything that it will take to guarantee that
their report is generated quickly.

By default, all processes are considered equal. Interactive
sessions and batch jobs are each placed into two separate
circular queues. The queues are considered circular because
they allow a process to begin with a high priority and decay
to a low priority. As the process consumes CPU, its priority
will lower so that other processes that are ready with an
equal or higher priority may share or compete for the use of
the processor. There are five queues on the computer named A,
B, C, D, and E, A being the highest to E being the lowest.

How to Win Memory and Influence cpu
3134-13



The A queue is reserved for system activity. The B queue is
mainly used for system activity but can also be utilized as
the highest user queue. A system manager might use this queue
for a logon when a performance problem is suspected. This
will allow the system manager to process at a higher priority
than the possible activity causing the CPU bottleneck.
Extreme discretion should be used when considering a logon
into the B queue. The system manager's activity in this queue
is also contributing to the performance problem. In some
cases, the use of the B queue to view the current system
conditions will justify the degradation associated with the
use of the queue. The C queue is the default for all
interactive sessions and has a value between 152 and 200. The
D queue is the default for all batch activity and has a value
between 200 through 238. The E queue has been left as a
special nondefault queue that the system manager can utilize
for special activity. As processes compete for the use of
the CPU, the operating system utilizes a dispatcher to rank
and prioritize all requesting processes. The lower the
priority number for a process, the higher the priority on the
system. The default queues for sessions and jobs (CQ and DQ
respectively) are not overlapped. This means that it is
possible for sessions to completely monopolize the cpu. If
the CQ processes can use 100% of the CPU, then the DQ batch
jobs will never have a higher priority than the CQ activity
and will be shut out from the CPU. This condition is referred
to as process starvation.

The queues can be overlapped by the system manager to allow a
DQ batch job the opportunity to share a portion of the CQ
cpu. The greater the degree that the queues are overlapped,
the more impact the batch activity can affect the CQ
sessions. The queues are not overlapped by default for this
reason. Interactive activity has the highest user priority on
the computer because the cpu is servicing an user at the
other end of a terminal. Batch activity is lower because
there is no interaction with a end user. The input is
received from the batch file. A system manager can modify the
characteristics of a queue through the :TUNE command.
Existing parameters brought over from the classic MPE
environment include the BASE and LIMIT for the queue. This is
the upper and lower bounds of the queue. Each time that a
process launches on the CPU, the process priority will begin
at the base of the queue. The priority will decay toward the
limit of the queue as CPU is consumed. The MIN and MAX
parameters of the :TUNE command set the minimum and maximum
value for the quantum of CPU a process is allowed to consume
before the decay takes place. C queue processes use this
upper and lower bounds to form a range for calculation of the
System Average Quantum (SAQ). All current C queue processes
have their quantum consumption averaged into the SAQ allowing

How to Win Memory and Influence cpu
3134-14



the system to adjust according to activity. The system
manager can modify the MIN and MAX range settings to favor
either long or short transactions for the C queue. The
default values are 200 ms and 2000 ms, respectively. By
lowering the MAX, the system will favor short transactions.
By raising the MIN, the system will favor long transactions.
In many environments, the default settings will allow the
system the most flexibility in adjusting to the current
demand of the system. The system does not average D queue
process quantums. The MIN and MAX parameters are set to the
same value. The default is 2000 ms.

When a process is performing a long transaction, one that
would require many quantums of CPU to complete, the process
priority will eventually decay to the base 9f the queue where
it will remain until completion. Remaining at a low priority
could cause process starvation. starvation occurs when a
process is not permitted CPU for execution because the
priority is lower than all other requesting processes. A new
:TUNE parameter has been added as of operating system version
2.1. A system manager may set the C, D, or E queue to either
DECAY or OSCILLATE. The default setting of DECAY will let the
process decay to the limit and remain there until completion.
Oscillate will boost the priority of the process back to the
base once it has reached the limit. The process will then
begin a decay to the limit again. The decay and oscillate
boost will continue until the process completes.

As of 2.1 version of MPE XL, two new control commands have
been introduced. The :SHOWPROC command will allow the system
manager to determine at what priority a process is currently
executing. It will also show the child processes within the
process tree and how much CPU each have consumed. The
:ALTPROC command allows a system manager to alter the
priority of the process after the execution has started.
This is one of the most significant control commands to have
been added to the operating system. If a process is either
consuming to much CPU or not receiving enough CPU, the
process' priority can be altered to achieve the desired
result. The new priority can be in one of three categories.
It can be placed into a new queue, it can be fixed at a
specific value with no decay in priority, or it can be fixed
at the queue manager located at the base of the queue also
with no decay. The :ALTPROC command can only be issued by a
user with OP or SM capability.

There are three modes of program execution. They are
compatibility mode (CM), native mode (NM), and translated
compatibility mode. The MPE XL operating system has been
designed to execute in native mode. Execution in
compatibility mode will be much slower than native mode in

How to Win Memory and Influence CPU
3134-15



almost all programs. A system manager should convert all CM
programs to NM through recompiling the source. This process
requires some modification of the code in almost all cases.
This may not be possible in all environments. In those cases,
the compatibility mode programs should be translated through
the :OCTCOMP command. This will attempt to optimize the
execution of the CM program to take advantage of NM
structures. The translation of a program does not require the
source, the system manager uses the compiled object for the
object code translation (OCT). A translated eM program will
occupy 8 to 10 times the original disk space of the CM
program. Performance of the program will be at the sacrifice
of system disk space.

Excessive logon and logoff activity can also significantly
impact the cpu. Some environments require high levels of
security and implement inactivity timeout features. If a
session has no activity at the terminal, within a period of
time set by the system manager, the session is logged off.
When the user wishes to resume work, the user will have to
log onto the computer again. Logon and logoff is very
intensive activity for the computer to perform. The system
manager will need to weigh the benefit of security against
the negative of overhead associated with extra 10gons and
logoffs.

User defined commands (UDCs) will also delay a user logon.
Each UDC that is cataloged for a user will have to be checked
when the user logs onto the system. with the use of command
files and the implied run feature, a system manager might be
able to eliminate many of the UDCs on the system. A command
file cannot utilize a UDC option of LOGON. This would be one
reason for retaining some UDCs.

Batch activity on the system is another concern. How many
batch jobs should the system manager allow to be executing on
the system at the same time? When considering the :LIMIT for
executing jobs, there are two considerations. First, will the
job be considered a "sleeper" job. A sleeper job is one that
wakes up periodically to execute and then returns to a
"sleeping" stake not competing for .CPU. If it is not
competing for cpu while it is in this "sleeping" state, the
system manager should not consider that job with the same
weight as another when setting the job limit. Second, the
higher the job limit, the more each of the nonsleeping jobs
will have to share the available CPU. This will prolong the
time it takes the processor to complete the job and allow a
new job to take its place. For example, there are 20 jobs
that need to execute on the system. They will each require 1
minute of cpu time to complete. If the job limit is set to
20, all of the jobs will execute at the same time. If the

How to Win Memory and Influence cpu
3134-16



processor provides 10 seconds of CPU to each job, it would
take 200 seconds to provide each job with 1/6 of the required
CPU to complete. At this point, no jobs have completed. Under
the same conditions but with the job limit set to 2, after
the elapse of 200 CPU seconds, 3 jobs will have completed and
2 others will have received 10 CPU seconds each. In many
environments, the users batch jobs are short and only require
small amounts of CPU. with a low limit, the system can
utilize a first in first out method of processing.

PERPORMANCB TOOLS

Hewlett Packard has several performance products available.
The two most common tools that will assist system managers in
most environments are HP GlancePlus XL and HP LaserRX. They
are very different in the information and application of the
tool in the problem solving process.

HP GlancePlus XL would be considered a reactive and time of
occurrence tool. System managers may react to performance
fluctuations by entering the HP GlancePlus XL software and
view the activity contributing to the current situation. It
is considered a time of occurrence tool because it does not
retain activity over long periods of time other than in
cumulative totals.

HP LaserRX falls into the category of a reactive/proactive
and after the time of occurrence performance tool. HP LaserRX
utilizes a PC with a HP LaserRom drive to analyze the data
offloading the processing overhead from the computer. System
managers may proactively look at data over a period of time
to anticipate activity levels. HP LaserRX also stores
information about activity that the system manager
predetermines as significant into log files. These log files
can be analyzed after the time of the performance
fluctuation. The information will only be as useful as the
items the system manager has viewed as significant. If the
fluctuation involves activity that is not within one of these
preset categories, then it will be grouped together in a
category of "other". The "other" category may not provide
enough information to make any determinations. Too many
categories will heavily impact the performance of the system
and negate the benefit of using the tool.

Either of these tools will provide the system manager with
information to evaluate the system load. Hewlett Packard has
provided recommendations on the threshold values for each of
the bottlenecks discussed above. That information has been
published in the Performance Application notes that are
included with the Software Status Bulletins (SSB). They are
also archived on the HP LaserRom product.

How to Win Memory and Influence CPU
3134-17



Finally, when addressing
possible solutions, always
patches for the release
installed.

CONCLUSION

the performance bottleneck with
insure that the most current

of the operating system have been

There are many resources available to a system manager for
the improvement of performance. As knowledge and comfort
level increase, so will the use of MPE commands and
performance tools. In summary, there are two critical points
to remember in analyzing performance. First, know the
environment before attempting any analysis or implementing
any solutions. Second, when considering the alternatives to
alleviate the performance fluctuation, if it costs a lot to
get a little, then look for other alternatives or put up with
the problem.

How to Win Memory and Influence CPU
3134-18



BIOGRAPHICAL SKETCH

Name: D. Scott Pierson

Presentation Title: Bow to WiD .amory and Influence CPU:
A Look at KPB XL system Performance

Paper Number: 3134

Day/Time:

Scott Pierson is an Education Services Instructor with
Hewlett Packard Company. He has been an instructor in the
Fullerton area for the past two years focusing in the MPE XL
migration and performance material. Scott is requested all
over the united states for his classroom delivery of advanced
courses.

Scott is frequently utilized by the Response Center and the
sales force in providing consulting to the Hewlett Packard
customer.

Prior experience includes a Response Center engineer position
in the Mt. View Response Center for 1 and 1/2 years, and a
system manager position with an aerospace company in the
Fullerton area.

Scott graduated from California Polytechnic University of
Pomona in 1986 with a BS in Computer Information Systems.

3134-19



·-.~ I::

'. I ::~.' •

"\

. -:;-- .. :::~ I :_:

:'1.; ...... _., •

..... ~:"': ..•] .



Paper Number: 3135

A Standard Operating System Interface for MPE XL

Rajesh Lalwani

He1l1ett-Packard
19447, Pruneridge Avenue 47UH

Cupertino, CA 95014 USA

(408) 447-7456

Abstract

Hewlett-Packard is committed to providing standards across all of its product
lines. POSIX is an IEEE standard for a Portable Operating System Interface to
support source-level application portability. It forms a basic layer which is a
first step towards more extensive sets of standards such as those currently being
defined by X/Open. POSIX will provide access to the strengths of MPE XL through a
standard interface, improving portability to the HP 3000 and increasing the number
of application solutions available. POSIX is significantly different from MPE XL
in a number of technical areas like Directory Structure and File System, File
Access and Security, Process Management, Signals, and User Identification. The
target audience for this paper is application developers and users familiar vith
the technical concepts of the MPE XL Operating System. The paper presents an
overview of POSIX. discusses specifics of its implementation on the HP 3000-series
900, describes the concepts new to MPE XL users. and points out the major
differences between POSIXand MPE XL.

1. INTRODUCTION

IEEE Std 1003.1-1988 is the first of a group of proposed standards generally referred to as
POSIX. POSIX is an acronym for Portable Operating System Interface. The purpose of this
standard is to define a standard operating system interface and environment to support source
level application portability. POSIX is intended for system implementors and application
software developers. Other areas under active consideration of IEEE at this time are:

• Shell and Utility facilities - P1003.2
• Verification Testing - P1003.3
• Realtime facilities - P1003.4
• Ada Language bindings - P1003.5
• Securetrrusted System considerations - P1003.6
• System Administration - P1OD3.?

A Standard Operating System Interface for MPE XL 3135-1



• Network interface facilities - P1003.8
• FORTRAN Language bindings - P1003.9
• Language-independent service descriptions
• An overall guide to POSIX-based or related Open Systems standards - P1003.0

This paper concentrates mainly on the concepts described in P1003.1. IEEE Std 1003.1-1988
has been published as a paperback book and is available at several technical bookstores.

Conventions Used

Following conventions have been used throughout the paper:

a. POSIX means IEEE Std 1003.1-1988 unless otherwise mentioned.

b. HP 3000 means HP 3000-series 900.

c. MPE XL intrinsic names are written as HPFOPEN. POSIX and C language functions are
written as mkdir(). Appendix A gives a one-line description of all the POSIX and C
language functions mentioned in the paper.

d. Various system wide constants defined by POSIX and declared in the C include file
<limits.h> are "'litten as {_POSDLPATII_MAX}. These constants can be used inside
programs that use C language interface.

2. AN OVERVIEW OF THE POSIX CONCEPTS

This section will present an overview of the fundamental POSIX concepts. Note that it does
not describe specific POSIX interfaces in detail but, instead, focuses on the basic environment
to which these interfaces provide access. This section does not describe the MPE XL
implementation of these concepts. Section 4 gives the highlights of the POSIX implementation
on the HP 3000.

2.1 User Identification

The MPE XL operating system has been designed primarily for use in a departmental setting.
All the users in a particular department are typically grouped together and placed in one
account. So, an MPE XL system has one or more accounts and each user belongs to an
account. All the users are identified by a user.account string, for example, MGR.PAYROLL.
The user. account associated with a job or session does not change for the life of the job or
session.

On the other hand, POSIX supports individual users. Thus, POSIX does not presume a
user. account structure. Each user has an associated string of characters as an identification;
generally referred to as a login name. An example of a login name is rlalvani.

Each system maintains a user database (similar to the /etclpasswd file on UNIX systems)

3135-2 A Standard Operating System Interface for MPE~



which contains at least the following infonnation for each user:

1. login name
2. numerical user ID (UID)
3. numerical group ID (GID)
4. initial working directory
5. initial user program (shell)

Each system user is identified by a non-negative number known as a user ID or UID. For
example, the user rlalwani could have a UID=12. When the identity of a user is associated
with a process, a user ID is referred to as a real user 10, an effective user 10, or an (optional)
saved set-user-ID.

To facilitate sharing of files among users on the system, POSIX supports grouping of users.
lbis is similar to the file sharing among users in the same account on MPE XL. Each POSIX
user is a member of at least one group. A group is identified by a group 10 or GID which is a
non-negative number. For example, the user rlalwani could bea member of a group with
GID=14. There may be other members in the same group and they will all have the same
GID (14). When the identity of a group is associated with a process, a group ID is referred to
as a real group ID, an effective group ID, or an (optional) saved set-group-IO. Each system
also maintains a group database which contains at least the following information for each
group:

1. group name
2. numerical group ID
3. list of names or numbers of all users in the group

2.2 Process Management

MPE XL users are familiar with the CREATE and CREATEPROCESS intrinsics. These two
intrinsics are used to create a new process. The process who calls the intrinsic is called the
parent process and the newly created process the child process. Actually, these instrinsics do
two things:

1. create a new process, and

2. decide what code the new process is going to execute as specified by the f ormaldesig
parameter.

POSIX requires two separate functions fork() and exec respectively to accomplish the two tasks
mentioned above. There are some benefits of this approach. For example, the child process
could use the variables set by its parent between tasks 1 and 2 above. The variables are used
by the parent process to communicate information to the child process. Also, after fork() both
the processes are active unlike MPE XL where the parent process must call ACTIVATE to start
the child process. A process creation example is described in section 3.

The function fork() creates a new process which is an almost identical copy or clone of the

A Standard Operating System Interface for MPE XL 3135-3



process that called the fork() function. Both processes execute the same program code. One
difference between the two processes is that fork() returns the process ID of the child to the
parent, and returns zero to the child process. When parent and child processes start executing,
they execute the statement just after the call to fork(). Typically, the child process either
branches to a different path in the same code to take advantage of the variables, file
descriptors set by the parent process, or calls one of the exec family of functions to replace its
image with a new executable file. The child process may choose to terminate by using the
exit() function, and its parent process may wait for that event by using the wait() function.

The exec family of functions - execl(), execv(), execle(), execve(), execlp(), execvp() replace the
current process image with a new process image. The new image is constructed from a regular,
executable file called the new process image file. There is no return from a successful exec,
because the calling process image is overlaid by the new process image. No new process is
created as a result of exec functions.

The program that calls one of the exec functions can pass arguments to the new process image
via the argc and argv arguments of the main() function.

Now, let us look at some POSIX definitions.

Each process in the system is uniquely identified during its lifetime by a positive number,
called a process ID or PID. This is similar to the concept of Process Identification Number
(PIN) on MPE XL.

Each process in the system is a member of a process group that is identified by a process
group ID. This grouping permits the signaling (to be explained later) of related processes. A
newly created process becomes a member of the process group of its creator. A process whose
process ID is the same as its process group ID is referred to as the process group leader.

Let us look at the process specific attributes such as real UID, real OID, effective UID,
effective GID, and supplementary GIDs that will help explain the concepts of File Access and
Security in the later part of this paper.

The real user ID is an attribute of a process that, at the time of process creation, identifies the
user who created the process. Similarly, real group ID is the attribute of a process that, at the
time of process creation, identifies the group of the user who created the process.

The effective user ID is an attribute of a process that is used in determining various
permissions, including file access permissions. Similarly, the effective group ID is an attribute
of a process that is used in determining various permissions, including file access permissions.

Typically, the effective UID and effective GID are used by processes to assume the identity of
another user. Let us look at an example. Take the case of the user with the login name
rlalvani as seen earlier. Initially, the shell runs with real UID = effective UID = 12 and
real GID = effective GID = 14. Assume that there is an executable file called passvd which
rlalvani decides to execute. In POSIX, there are two bits associated with every executable
file that tell the system to use the UID and GIn of the owner of the file as the effective UID

3135-4 A Standard Operating System Interface for MPE XL



and effective GID of the process running that file. (This is in contrast to the normal method
of using the UID and GID of the user executing the file.) So when rlalvani decides to run
passvd, the effective UID and effective GID of that process will change to those of the owner
of passwd. Now, if the owner of the file passvd had read/write access to the user database
file, say I etc/passvd, the program would succeed in modifying the file I etc/passud even
if rlalvani did not have write access to it. This is because the effective UID/GID, not the
real UID/GID, is used to determine file access permissions.

The real UID, real GID, effective UID, and effective GID are all subject to change during the
process lifetime. The reader should see setuid() and setgid() for details.

A process also has up to {NGROUPS-MAX} supplementary group IDs used to determine file
access permissions, in addition to the effective group ID. The supplementary group IDs of a
process are set to the supplementary group IDs of the parent process when the process is
created. The minimum value of {NGROUPS_MAX} on any implementation of POSIX is 0
which means that a particular implementation mayor may not support the concept of
supplementary GIDs.

2.3 Signals

For users familiar with MPE XL, signals provide functionality roughly similar to that provided
by a combination of intrinsics like XCONTRAP I RESETCONTROL I XARITRAP I ARITRAP I

XSYSTRAP, XLIBTRAP, SUSPEND, ACTIVATE. KILL etc.

As an example, XCONTRAP is used to arm and disarm a user-written subsystem break trap
handling procedure. For most applications, this signal is generated by pressing control-yo If it
is armed, the trap handler is invoked when an enabled subsystem break signal is received
during an interactive session. Once a process has received a subsystem break trap, it cannot
receive another until it calls the RESETCONTROL intrinsic to re-enable the subsystem break
signal.

The functionality provided by POSIX signals is similar to what was just described. POSIX
provides a number of different types of signals, and a process can take one of several actions
(default, ignore, or user-written) when a signal is received. So, let us have a look at the
POSIX signals.

A signal is a mechanism by which a process may be notified of, or affected by, an event
occurring in the system. Examples of such events include hardware exceptions and specific
actions by processes.

A signal is said to be generated for a process when the event that causes the signal first occurs.
Examples of such events include detection of an illegal hardware instruction (symbolic
constant, SIGILL), erroneous arithmetic operation, such as division by zero (SIGFPE),
terminal activity, as well as the invocation of the kill() function. See Tables 1 and 2 for other
types of signals.

For most signals, a process can take one of the following three actions:

A Standard Operating System Interface for MPE XL 3135-5



1. Take the signal specific default action (SIG_DFL).

2. Ignore the signal (SIG_IGN). However, a process cannot take SIG_IGN action for
SIGKILL or SIGSfOP signals.

3. Execute a user-written signal-catching function. The system does not allow a process to
catch SIGKILL or SIGSfOP signals.

A signal is said to be delivered to a process when the appropriate action, defined by the
process for the particular signal, is taken.

Each process has a signal mask that defines the set of signals which cannot be delivered to the
process. A new process inherits the signal mask from its parent. Each process can manipulate
the signal mask using functions like sigaction(), sigprocmask(), and sigsuspend().

The following tables give the symbolic constant and a brief description for each of the required
signals and job control signals. All POSIX implementations support the required signals.
POSIX implementations that provide job control (such as background/foreground jobs) support
the job control signals in addition to the required signals.

Table 1 : Required Signals

Symbolic Description
Constant
SIGABRT Abnormal termination signal, such as is initiated by

the abortn function.
SIGALRM Timeout signal, such as is initiated by the

alarm() funct ion.
SIGFPE Erroneous arithmetic operation, such as division by

zero or an operation resultin£ in overflow.
SIGHUP Hangup detected on controlling terminal or death of

controllin£ process.
SIGILL Detection of an invalid hardware instruction.
SIGINT Interactive attention si£nal.
SIGKILL Termination'si£nal (cannot be cau~ht or irnored).
SIGPIPE Write on a pipe with no readers.
SIGQUIT Interactive termination si£nal.
SIGSEGV Detection of an invalid memory reference.
SIGTERM Termination simal.
SIGUSR1 Reserved as apPlication-defined si£Dal 1.
SIGUSR2 Reserved as apPlication-defined si£Dal 2.

3135-6 A Standard Operating System Interface for MPE XL



Table 2 : Job Control Signals

Symbolic Description
Constant
SIGCHLD Child nrocess terminated or stopped.
SIGCONT Continue if stopped.
SIGSTOP Stop siimal (cannot be causrht or inored).
SIGSTP Interactive stop si£nal.
SIGTTIN Read from control terminal attempted by a member

of a back2:round process 2:roup.
SIGTTOU Write to control terminal attempted by a member

of a back2:round process 2:rou'D.

2.4 Directory Structure and File System

MPE XL users are familiar with the file. group. account directory structure. In this model,
the directory tree consists of one or more accounts. Each account contains one or more
groups. Finally, each group has zero or more files in it. Hence, the MPE XL's
file. group. account directory structure can be looked at as a 3-1evel hierarchical structure.
The first level has account entries, the second level group entries, and the third level the actual
files. POSIX's view of the directory structure is an expanded version of MPE hierarchy. The
POSIX directory structure has a root directory which is represented by a slash (I). The root
directory may have files and directories under it. The directories can, in turn, have files and
directories under them. The figure on the next page shows the MPE XL and POSIX directory
structure.

Now, let us look at some POSIX definitions.

A file is an object that can be written to, or read from, or both. A file has certain attributes,
including access permissions and type. A directory is a file that contains directory entries.
No two directory entries in the same directory can have the same name. The interesting thing
to note is that unlike MPE XL, POSIX views a directory as a rile (of directory type). Finally,
a directory entry is an object that associates a filename with a file. Several directory entries
or links can associate names with the same file. Thus, POSIX distinguishes between the file
and the filename. 11lis is different from MPE XL, where each file can be referenced only by
one name.

The POSIX file naming rules are also different from MPE. On MPE XL, each account,
group, and file can have a name of, at most, 8 characters. The valid characters are upper case
letters and digits with the restriction that the first character cannot be a digit. Hence, MPEXL,
PUB, A8000000, and NEWUSER are all valid MPE XL names (for files, groups, or accoUDts)
but 81FNAME and LONGFNAME are illegal names.

A Standard Operating System Interface for MPE XL 3135-7



MPE XL Directory Structure

~
SYS PAYR:)ll

A
PUB GRP1 PUB

A I A
ALE1 ALE2 RLE3 RLE1 RLE1 ALE2 RlE3

POSIX Directory Structure

sUgh1Jy-longer-fUe.name passwct PassWd

I
dlr

~
ftle1 ALE1

A POSIX filename consists of 1 to {NAME_MAX} bytes. {NAME.-MAX} is implementation
dependent, but it cannot be less than 14. For a filename to be portable across conforming
implementations of IEEE Std 1003.1-1988, it can consist only of the following characters:

ABC D E F G H I J K L MN 0 P Q R STU V WX Y Z

abc d e f g h i j kIm n 0 p q r stu v w x y z

o 1 2 3 4 5 6 7 89. _ -

The hyphen cannot be used as the first character. Unlike MPE XL, POSIX filenames are case
sensitive. The filenames consisting of a single dot character (.) and consisting solely of two dot
characters (.. ) have special meaning and are referred to as dot and dot-dot repeetively. Their
meaning will be explained below.

Examples of valid POSIX filenames are myfile, MyFile, file-20, paper. text,
_system_file, and 12181990. The filename myfile is different from MyFile. One

3135-8 A Standard Operating System Interface for MPE XL



example of an invalid filename is -system-file because it begins with a hyphen.

A pathname is a string that is used to identify'oa file. It consists of, at most, {PAlH_M.A.X}
bytes, including the terminating null character. It has an optional beginning slash (the
character I), followed by zero or more filenames (also known as pathname components)
separated by slashes. If the patbname refers to a directory, it may also have one or more
trailing slashes. {PATII_MAX} is defined by a particular implementation of POSIX but it
cannot be less than 255.

Current Working Directory

On MPE XL, every job and session has an associated logon group which is used to qualify an
unqualified filename. For example, if a user logs on as follows

HELLO RAJESH.MPEXL,PUB

the logon group is PUB. MPEXL and an unqualified file reference such as LETTER would
actually refer to the file LETTER. PUB .MPEXL. POSIX uses two such references - current
working directory and root directory. It is important to note that these references are defined
for each process. Thus, two processes in a single session can have two different current
working directories. The root directory of a process is usually the same as the root of the
system directory.

If the pathname begins with a slash, the predecessor of the first filename in the pathname is
the root directory of the process, and such P3thnames are referred to as absolute patbnames.
For example, /usr/mail/rlalvani is an absolute pathname. An absolute pathname is
similar to a fully qualified filename on MPE XL. If the pathname does not begin with a slash,
the predecessor of the frrst filename of the pathname is the current working directory (CWD)
of the process and such patbnames are referred to as relative pathnames. MyDir/MyFile is
an example of a relative pathname. A relative patbname is similar to a fully unqualified
filename on MPE XL. The special filename dot refers to the directory specified by its
predecessor in the pathname, and dot-dot refers to the parent directory of its predecessor
directory in the pathname.

Other examples of an absolute patbname are /tmp/rlalvani/filel,
Itmp/rlalvani/./filel, /tmp/rlalwani/ .. /rlalwani/filel, and
/SYS/PUB/CATALOG. By the way, the first three patbnames refer to the same file.

An example of a relative patbname is filet. If the Current Working Directory is
/tmp/rlalvani, refering to file1 will actually mean /tmp/rlalvani/file1.

2.5 File Access and Security

The standard file access control mechanism of POSIX uses the file pennission bits. It is quite
different from the models used by MPE XL: file access matrix based, capability based, file
lockword based, and access control definition or ACD based. Let us look at the model used
byPOSIX.

A Standard Operating System Interface for MPE XL 3135-9



A process can access a file in the following ways: read, write, and execute/search. The
meaning of read and write access is analogous to the meaning on MPE XL. Search access
applies to a directory whereas execute access applies to an executable file like a program or a
script file. There is a subtle difference between read (as applied to a directory) and search
access. If· a process wants to open a directory and read the entries in it (possibly using
opendir(), readdir(), the process needs read permission for that directory. But if a process
wants to access a file, say, /tmp/rlalvani/file1, the process needs search permission for all
the directories in the path, namely, /. tmp. and rlalvani in this particular case.

Every file in the file system has file permission bits associated with it. Since a directory is a
file of directory type, the same is true for all directories in the file system. File permission bits
contain the information about a file that is used, along with other infonnation, to detennine
whether a process has read, write, or execute/search pennission to a file. The bits are divided
into three classes: owner, group, and other. In addition to the file permission bits, there is a
user ID (owner UID) and a group ID (owner GIn) associated with every file in the file system.
The owner UID and owner GID are initialized to the UID and OlD of the creator (user) of
the file at the time of file creation.

For the purposes of access control, processes are classified as belonging to one of three access
classes: file owner class, file group class and file other class. A process is in the file owner class
of a file if the effective UID of the process matches the user ID of the file. A process is in the
file group class of a file if the process is not in the file owner class and if the effective OlD or
one of the supplementary OIDs of the process matches the group ID associated with the file.
A specific implementation may define additional members of the file group class. Lastly, a
process is in the file other class of a file if the process is not in the file owner class or file group
class. Let us look at an example.

Suppose, the user rlalvani creates a program file called prog in his current working
directory /users/rlalvani. When the file is created, the owner UID and owner OID will
be assigned values of 12 and 14 respectively (the UID and OID of rlalvani). Now, let us
assume that the permission bits for the rue prog are as follows:

owner: read (r), write (w), execute(x)
group: none
other : execute

Consider two users tshem (UID=25, 010=14) and boconnor (UID=27, OID=15) on a
system that doesn't support any supplementary GIDs. Both try to execute the file
/users/rlalvani/prog. Let us assume that the directories /, user and rlalvani give
the search access to everyone (i.e., owner, group, and other). It can be seen that the user
tahem will be in the file group class, hence tahem cannot execute the file. But the user
boconnor is in the file other class and hence has execute access to the file. Thus the user
boconnor will succeed in executing the program file.

The standard file access control mechanism of POSIX uses the file permission bits described
above. These bits are set at file creation time and can be changed by the chmod() function.
These bits can be read by calling stat() orIstat() functions.

3135-10 A Standard Operating System Interface for MPE XL



Implementations of POSIX may also provide additional or alternate file access control
mechanisms or both. An additional access control mechanism can only further restrict the
access pennissions defined by the file permission bits. An alternate access control mechanism,
if enabled, is used instead of the standard mechanism. The alternate access control mechanism
has some constraints, the chief being that it must be enabled only by explicit user action, on a
per-file basis. Lastly, POSIX also allows privilege based security in which access may be
granted to a process if it has appropriate privilege. Each POSIX implementation can define
what constitutes an appropriate privilege.

Although POSIX 1003.6 (Security) has not been finalized yet, it is worth mentioning that it
proposes the access control lists (ACLs) as a file access control mechanism. The concept of
ACLs is the same as ACDs (Access Control Definitions) currently available on MPE XL.

3. WRITING AN APPLICATION USING POSIX INTERFACE

The previous section presented a number of POSIX concepts. To see how some of them fit
together and how they are typically used in the POSIXIUNIX world, let us design an
application.

Problem Statement

Write a shell (command interpreter) which will be put in the user database as the initial user
program for the user rlalwani. The shell will read a program name typed at the terminal and
create a process to run that program. The program file resides in the initial working directory
and there are no command line parameters. When the program tenmnates, the shell would
again prompt for another program name. The shell will terminate when the user types ''bye''.

Also, the shell should be able to handle control-c interrupt at the terminal which would be sent
by the tenninal handler as SIGINT. H control-c is pressed at the shell prompt, it should be
ignored. But if control-c is pressed when a program is being executed, the program should be
terminated (unless the program takes a specific action for SIGINT) and the shell should
prompt for a new program name.

Writing the Shell

The shell program myshell. c will make use of the fork() and execlp() functions to create a
new child process and to run a specific program file.

/* Simple Shell - myshell. c */

'include <limits.h>
'include <stdio. h>
'include <sfs/types. h>
'include <signal. h>

A Standard Operating System Interface for MPE XL 3135-11



#def ine TRUE 1
MainO
{

char program_name [ _POSIX_BAME_MAI] j /* Bame of the program that */
/* the user vants to run */

int *stat_Ioc j /* Pointer to the status of the terminated */
/* child */

pid_t child_pidj /* The process ID of the child process */

1: sigaction(SIGINT. SIG_IGB. lIULL) j /* Ignore the SIGIHT signal */

2: vhile (TRUE)
{

3:

4:

6:

6:

7:

printf ("\n$") j /* shell prompt */
scanf (fl%S", program_name) j
if (!strncmp(program_name. "bye", strlen("bye"»

break; /* quit the loop */

child_pid :::: forkO j

8:

9:

10:

if (child_pid)
vait (stat_Ioc) ;

else

/* parent process */

/* child process */
{

11: sigaction(SIGIBT. SIG_DFL, NULL) j
12: execlp(program_name, (char *) 0) i

}

13: /* vhile loop */

The following figure shows what happens when myshell is executed.

parent
process

fork returns PaD of child

3135-12 A Standard Operating System Interface for MPE XL



Let us see how the whole thing works. Assume that the system administrator has modified the
user database corresponding to rlalvani so that when rlalvani logs OD, the initial program
(shell) that will be invoked by the system is myshell. There will be a process that will be
executing the above code.

When the above program starts executing at line 1, it uses the sigaction() function to ignore the
control-c signal (SIGINT). So from now on, whenever a control-c is pressed on the terminal, it
will be ignored by this shell process. Between lines 2 and 13 is an infinite loop unless an
explicit action is taken within the body of the loop to quit. In our program, the break
statement at line 6 accomplishes this purpose. The progr:am prints a new line character and the
"$" prompt (line 3). It reads the name of the program typed by the user (line 4). If it is not
"bye", statement at line 7 creates a new process by using fork(). From now on there are two
processes running exactly the same code. The only way to know whether the process is the
parent process or the child process is to see the value returned by the fork() function call. If it
is some non-zero value, it is the parent process and hence the program decides to wait for the
death of the child process (line 9). H it is the child process, the program first uses the function
sigact;on() to associate a default action to be taken when a SIGINT signal is received (line 11).
In case of SIGINT, the. default action is to terminate the process. Now, the program uses
execlp() to replace the current image (our shell program) with the program that user specified
(line 12). There will be no return from this call to execlp(). There are two interesting
scenarios: one in which the user program terminates normally (using an _exit(), exit() function
or return from the ma;n() function); and, two, in which the user types control-c. Let us look at
both of them.

If the user program terminates normally, the call to wait() will complete and the parent process
(shell) will start executing. It will go to the beginning of the loop and prompt for next program
name.

If the user presses control-c, this signal is sent to both the parent process and the child process.
The parent process has chosen to ignore it. But it will be awakened and will no longer be
stuck at line 9. It will start executing the loop again and prompt the user for another program
name. Let us see what happens to the child process. If the user program didn't use any
s;gaction(), the default action will be taken for it and in this case, it will be terminated. If the
user program used sigaction() function to associate some other action with SIGINT, that action
will be taken when a control-c is typed at the terminal.

The shell program repeats the loop until the user types "bye" at the prompt. At this point, the
statement at line 6 is executed and the shell program leaves the loop. Since there are no more
statements after the loop, the shell process terminates.

4. HIGHLIGHTS OF IPOSIX IMPLEMENTATION ON HP 3000

The POSIX implementation on HP 3000 has been architected with two main goals:

A Standard Operating System Interface for MPE XL 3135-13



• Backward Compatibility

If the system manager elects not to enable POSIX on an HP 3000, or if a user elects not to
use the new POSIX features (on a system which has POSIX enabled) at all, the behavior of
an MPE XL application will remain the same.

• Integration

MPE XL users will be able to access the new features as transparently as possible. MPE
XI oJ users will have access to most of the new features, such as hierarchical directory,
through familiar commands and intrinsics. MPE XL interfaces will be able to access files
created by a POSIX interface and vice versa.

Let us look at a few specific areas.

• User Identification

Users will continue to log on as they do today on MPE XL using the :HELLO command. Each
user must belong to an MPE account. When POSIX is enabled, all the users in an account
form a group and have the same GID.

For example, if POSIX has been enabled on an HP 3000 system and a user MGR in account
MPEXL wants to log on in a group called PUB, slhe will issue the following command:

HELLO MGR.MPEXL,PUB

• File Name Resolution

This sub-section explains file name resolution using the MPE interface. An example of an
MPE interface is the intrinsic HPFOPEN. File name resolution using a POSIX interface such as
open() was explained in the sub-section Directory Structure and File System of section 2
above. An example, however, is given at the end of this sub-section.

If a file name is presented to an MPE XL interface, either the MPE name server or the POSIX
name server will be invoked as follows:

POSIX Name Server

The POSIX name server will be invoked if the filename begins with a slash or a dot.

MPE Name Server

The MPE name server will be invoked if the filename does not begin with a slash or a dot.

In the case of the MPE name server, the filename will be resolved as follows:

3135-14 A Standard Operating System Interface for :MPE XL



• If the filename is fully qualified, such as A.B.C, it will continue to refer to the file A in the
group B in the account C. This is regardless of the CWO and the logon account. See the
examples below.

• If the filename is of the fonn A.B, it will refer to the file A in the group B of the logon
account. This is regardless of where the CWO is. Note that the filename A.B refers to the
same file as it does today.

• If the filename is of the fonn A, it will refer to the file A in the CWO. Note that if the
CWO were the same as the logon group, filename A will refer to the same file as it does
today.

In all the three cases above, MPE name server converts the file, group and account name to
upper case letters.

The above set of rules for filename resolution is an excellent example of backward compatibility
and integration mentioned earlier. Let us look at some examples now.

Assume that an HP 3000 system has POSIX enabled and a user logs on as follows:

HELLO MGR.MPEXL,PUB

where MPEXL is an MPE account and PUB an MPE group in that account. Now, if the user
wants to refer to a file called LEITER in the logon group using an MPE interface, slhe could
use any of the following names: LETTER, LETTER.PUB, LETTER.PUB.MPEXL. H the user
wants to use the new hierarchical directory structure and wants to refer to a file f 00 in
directory bin under the root, slhe could refer to it by /bin/foo.

SYS
MPEXL

bln

A ~
PUB GRP2 PUB roo FOO.GRP2 FOO.PUB.SYS FOO

I
FOO FOO l.ETTEA

A Standard Operating System Interface for MPE XL 3135-15



Now, the user changes hislher current working directory (CWD) to Ibin. H slhe wants to
refer to the file f 00 (lower case letters) in the CWD using an MPE XL interface, slhe cannot
use the filename f 00 because the absence of a slash or a dot in the beginning would invoke the
MPE name server. Since the l\1PE name server upshifts the name, it will refer to the file FOO
(upper case letters) in the CWD which is different from the file foo in the CWD.

Also, assume there are files named FOO .GRP2 and FOO . PUB .SYS in the CWD (/bin). Note
that these are valid filenames in POSIX syntax because dot is a legal character. H the user
supplies the names FOO.GRP2 (or foo.grp2), and FOO.PUB.SYS (or foo.pub.sys) to an
MPE interface, they will be considered MPE filenames and will refer to (file FOO in group
GRP2 in account MPEXL) and (file FOO in group PUB in account SYS) respectively.

So, how can the user access these two files using an MPE interface? According to the above
rule, if a filename begins with a slash or a dot, it is considered to be a POSIX filename. Thus,
using . IFOO •GRP2 and . IFOO •PUB .SYS will do the job.

On the other hand, if the user is accessing files via a POSIX interface such as open(), the above
two files can be referenced as FOO. GRP2 and FOO. PUB. Sys. To access the file FOO in group
PUB in account SYS, the user can specify ISYS/PUB/FOO.

s. CONCLUDING REMARKS

POSIX is an IEEE operating system interface standard endorsed by both X10pen and the
Open Software Foundation. Since POSIX defines a standard set of operating system
interfaces, it will be easy for third party developers to port an application program from one
POSIX-compliant vendor platform to another. POSIX also makes it easier to port an
application from a UNIX platform to a POSIX-compliant platform. 11lls ease of portability
results in an increased number of application solutions available to the customer.

POSIX only defines an interface and leaves the internal implementation to the vendor
implementing POSIX. Thus, POSIX applications running on HP 3000 can take advantage of
its high availability, reliability and high performance OLTP (on-line transaction processing).

6. TRADEMARKS

Ada is a registered trademark of the U.S. Government - Ada Joint Program Office.
UNIX is a registered trademark of AT&T.
XlOpen is a trademark of X/Open Company Limited.

7. ACKNOWLEDGMENTS

I sincerely thank my colleagues who reviewed the paper and provided invaluable feedback. I
would like to especially thank Janet Garcia, Brian O'Connor and Jeff Vance who helped me
substantially write the paper in its present form.

3135-16 A Standard Operating System Interface for MPE XL



8. BIOGRAPHY

Rajesh Lalwani received M.Tech. in Computer Science from the Indian Institute of
Technology, New Delhi in 1986. In 1988, he received M.S. in Computer Science from the
Pennsylvania State University. In 1990, he obtained Computer Science Certificate in
Databases from Stanford University.

Rajesh Lalwani joined Hewlett-Packard Company in 1988 as a Software Development
Engineer in the MPE Lab. Currently, he is a member of a project providing Open Systems
Interlaces on the liP 3000 systems.

APPENDIX A

The following table gives a one line description for each of the P1003.1 and C language
functions mentioned in the paper.

A Standard Operating System Interface for :MPE XL 3135-17



Function Name One-line DescriDtion
_exit terminate the calling process
abort abort a process (not a P1003.1 function)
alarm cause system to send SlGALRM signal afteI

specified time
chmod change S_lSUlD, S_lSGlD, file permission

bits for a file
exec a family of functions to replace the

current process image with a new
process imall:e

exit terminate the calling process (not a
P1003.1 function)

fork create a new process
fstat obtain information about a file
kill send a signal to a process or a group of

processes
mkdir create a new directorY
ODen open a file
opendir opens a directory stream corresponding

to a directory name
printf print formatted output
readdir returns a pointer to the directory

entry at the current position
scanf formatted input
setgid set real GlD, effective GlD, and/or saved

set-GID
setuid set real UID, effective UlD, and/or saved

set-UID
sigaction examine and/or specify an action

associated with a sitz:nal
sigprocmask examine and/or change a process's signal

mask
sigsuspend replace the process's signal mask and

suspend the 'Drocess
stat obtain information about an open file
strncmD compare character strinll:s
wait obtain information about one of the

terminated child processes

3135-18 A Standard Operating System Interface for MPE XL



Paper II: 3136

Transaction Analysis

for Capacity Planning

Ralph T. Kotoski
Hewlett-Packard Company

24 Inverness Place East
Englewood, Colorado 80112

(303) 649-5761

Transaction Analysis for Capacity Planning
3136-1



Introduction

Today, more than ever, capacity planning is critical to business success. With
competitiveness on the rise, companies have to carefully plan for all types of
situations. One of the difficult areas to plan for is in the Information Systems area.
Computers, as with any business asset, have finite capacities. The focus of this
paper is to address one area of capacity analysis. This paper will illustrate simple,
low overhead techniques for determining system resource utilization and response
time for specific critical transactions.

It is often difficult to accurately determine specific transaction response time and
resource utilization with common tools available today. Most tools provide an
response time report averaged over all types of transactions. But what if we want to
know about a single, tightly defined transaction? The job has just become more
difficult. With the advent of SPT/XL and several new system intrinsics, it is possible
to obtain very detailed information regarding any definable transaction, including
number and type of intrinsic calls, response time, where a transaction spent most of
its time, etc. However, the overhead of capturing and logging this data precludes
most from being able to utilize this tool on a continuous basis. It was designed with
application optimization in mind, not as capacity planning or trending tool. So, what
can be done?

The major point of this paper is to illustrate a method for obtaining certain types of
performance data in order to make capacity analysis easier. In this paper,
transactions will be defined from several perspectives. It will illustrate how current
tools available relate to these perspectives. Finally, a simple, low overhead
technique for capturing pertinent transaction information will be presented.

What is a Transaction?

Defining the attributes of a transaction can be difficult and depends upon how the
transaction is viewed. From a user perspective, a transaction may include several
lines of data entry, one or two lookups, and some more data entry. From the
application developer perspective, that user transaction may translate into a
transaction for the initial data entry, two transactions for the lookups, and another
transaction for the final data entry. Without some sort of logging, in a
TurboIMAGE database for example, each DB intrinsic call to the database is
treated as a transaction. From the system perspective, the HP 3000 by default,
treats each terminal read completion as a transaction. This is known as a terminal
transaction. In character mode applications, a terminal transaction occurs each time
a user hits Carriage Return. In block mode applications, several terminal
transactions occur each time the ENTER key is hit.

Transaction Analysis for Cap3city Planning
3136-2



Let's work our way back through the list to see the importance of each perspective
and its impact on our view of response time. The Measurement Interface in the
MPE (both VIE and XL) operating system has no way of knowing what constitutes
a user or logical transaction. By default, then, it assumes each terminal read
completion to be a transaction. All metrics provided by tools strictly using only the
Measurement Interface are based upon terminal read completions. Every time a
user hits the Carriage Return key in a character mode application, a terminal read is
completed and the Measurement Interface logs the pertinent data for that
transaction. In block mode applications, several terminal transactions occur
between the system and the sending terminal when the ENTER key is hit by the
user. Generally, the handshaking terminal reads are filtered.

The data reported by performance tools can be somewhat misleading, as it is based
upon individual terminal transactions. Response times from these tools can appear
lower than that perceived by users. This is why it is imperative to understand the
difference between what a user perceives as a transaction and the system thinks is a
transaction. The graph below, Figure 1, shows a typical representation of terminal
transaction data collected from the Measurement Interface in MPE.

21.1

15.8

10.8

5.8

Think 88:00-17:18

~~~:-: 1'\ !-:!
~ ~ ~ ~ \,! ~ iii ~ ~
\I Uti,'.. II
.. ~ • II '.
y , ~ i t

~

Figure 1 • Transaction Response Graph from LaserRx

In this representation, Think, First Response, Prompt, and Rate are based upon
terminal read completions. If the applications on this system were character mode

Transaction Analysis for Capacity Planning
3136-3

and each terminal transaction constituted a transaction in the minds of the users,
then a direct correspondence cC\uld be made between user perceptions and
performance tool reporting.

From an application development or processing standpoint, a transaction can be
something much different than the completion of a terminal read. A transaction can
incorporate several database accesses, output to a report file, and even sorting of
data. Generally, an application developer will bracket a transaction with the
DBBEGIN and DBEND intrinsics and use TurboIMAGE logging. This way, if
some problem should occur, recovery is relatively simple, and the database will not
have any incomplete transactions.

A complex transaction, in this sense, may take a relatively long period of time to
complete. It may even require additional input from the user. This kind of
transaction may appear to the Measurement Interface of MPE as several terminal
transactions. Consequently, MPE will record the transaction count, and, the
response time for each terminal transaction.

As mentioned earlier, the program developer can use two new intrinsics,
STARTfRAN and ENDTRAN, in conjunction with SPT/XL to define and
optimize transactions.

Finally, and most importantly, we need to take a look at the definition of a
transaction from the user perspective. Most users do not view the work they are
doing on the system in terms of transactions. However, they do know when the
system is slow, that is, when response time is long.

How is this concept translated into something that can be related to the available
metrics from the system? First, and foremost, we need to understand what kinds of
transactions users think are receiving poor response time. Many times, users will
not even consider relatively short data input transactions as transactions. Users will
believe a look-up or a posting of an order as their only transaction (if they even
think in terms of transactions). Therefore, it is imperative we concentrate on what
users consider a transaction. Once we have done this, we can focus on capturing the
relevant data in order to better understand the how the system is responding to the
environment.

Having put forth the effort to understand and define transactions from the user
perspective, the type of information needed about each transaction should be
defined. In order to maintain a low overhead approach, it is important to limit the
quantities and types of data collected. It is important to capture and log only the
most important data. Capturing and logging too much data could cause

Transaction Analysis for Capacity Planning
3136-4

performance problems. The following list illustrates some of the types of
performance data generally desired for transaction analysis purposes:

Response Time,

CPU Time,

Nested Response Time, and

Nested CPU Time.

Nested Response and CPU Times may be required when certain smaller
transactions are nested within a larger major transaction. It is also desirable to
timestamp the transaction data in order to be able to focus on a particular window
of time.

It may also be useful to log pertinent user information, such as logon, terminalldev
and a user identification number of some sort. Finally, though it may be more
overhead than it is worth, information such as frequency and type of intrinsic calls
could be logged. This would be more helpful in optimization rather than capacity
analysis, and would be better suited in an environment using SPT/XL.

After defining the type of data to be collected, the next step is to integrate the data
capture code into the application. The first step is to define the logfile where the
data is to be kept. For this purpose, a Long Mapped file (Long Mapped files can be
shared among processes and Short Mapped files cannot) should be used for
optimum performance. As an example, let's define our logfile record as follows:

Figure 2 • Possible Log File Record Format

It is important to point out that we do not want the logging process to perform any
more work, such as calculations, than is necessary. For example, causing the process
to calculate transaction response and CPU time would place unnecessary overhead
inside the application. It is better to save this type of activity for the reporting
process, discussed later. It is critical that the logging activity use minimal system
resources in performing its duty.

Transaction Analysis for Capacity Planning
3136-5

The best way to access a Mapped file is through Pascal/XL or C/XL The reason
for this is that all access to Mapped files is via a virtual address pointer. Pascal and
C are both ideally suited for this type of access. The examples in this paper will be
in loose Pascal subprograms (meaning literal descriptions may be used instead of
syntactically correct code) and include descriptions of interfaces from COBOL II
applications. The focus will be on how to use the method, not on writing actual
code.

Two other specifications need to be made at this point. During the logging
operation, the process will need exclusive access to the logfile while it is obtaining
the pointer and adding the data record. Rather than lock the actual logfile, we will
utilize an additional file for locking purposes. This is done because many dirty
logfile pages in memory may cause serious performance problems when the process
calls FUNLOCK. This file can be empty, since we are using it as a locking
semaphore only. Tests have shown using FLOCK requires significantly fewer
system resources than using a global RIN as a semaphore.

The other point to be addressed is keeping track of the pointer into the logfile. This
is best done with a third file, also a Long Mapped file. As the pointer into the
logfile increments, the new value will be stored in the pointer file. In order to start
the logging at the beginning of a new logfile, a separate process should be run to
store the initial pointer in the ponter file and initialize the logfile.

In the initialization portion of the application, the logfile, the lock file, and the
pointer file need to be defined and opened. They need to be opened with Share
access, Read/Write, and the lock file needs to be allowed Dynamic Locking. The
COBOL application should have the following definitions for the logfile in place:

01 Filenum PIC 89(8) Comp Value O.
01 HPFOPEN-8tatus.

02 HPFOPEN-8tatus-L PIC 89(4) Comp Value O.
02 HPFOPEN-8tatus-R PIC 89(4) Comp Value O.

01 Filename-Option PIC 89(8) Comp Value 2.
01 Filename PIC X(26) Value "%Logfilename%".
01 Foption-Option PIC 89(8) Comp Value 3.
01 Foption PIC 89(8) Comp Value 1.
01 8hareoption-Option PIC 89(8) Comp Value 13.
01 8hareoption PIC 89(8) CompValue3
01 Aoption-Option PIC 89(8) Comp Value 11.
01 Aoption PIC 89(8) Comp Value 4.
01 Fileptr-Option PIC 89(8) Comp Value 21.
01 Fileptr PIC 89(18) Comp.

Transaction Analysis for Capacity Planning
3136-6

The initial call to open the logfile from COBOL would look similar to the following:

Call Intrinsic wHPFOPEN" using Filenum HPFOPEN-Status
Filename-Option Filename Foption-Option Foption
Shareoption-Option Shareoption Aoption-OptioDl Aoption
Fileptr-Option Fileptr.

The definition of and initial call to open the pointer file will be identical to that of
the logfile, with the exception of the name, file number, and file pointer. The
pointer file should be built large enough to hold a 64 bit pointer and be in binary
format. The following BUILD command should suffice:

:BUILD PTRFILE;REC=8 t l t F,BINARY;DISC=S,I,I.

The file used for locking can be a flat file of any description. It will also be defined
similarly to the logfile and the pointer file with the exception of allowing Dynamic
Locking. The additional COBOL definition for Dynamic locking would be:

01
01

Lockoption-Option
Lockoption

PIC 89(8)
PIC S9(8)

Comp Value 12.
Comp Value 1.

The reason separate pointer and locking files are used is due to FUNLOCK causing
dirty pages to be posted to disk each time it is called. Naturally, the pointer file will
have a dirty page each time the beginning or ending of a transaction is logged. If the
two files were combined, an extra disk I/O would be generated for each call to the
logging subprogram (two per transaction logged).

Once the files have all been opened, some initialization is in order. At this point,
the program will know the PIN and user information. This can be loaded into the
record that will eventually be passed to the Pascal logging subprogram later. It
should be kept globally so it does not have to be loaded each time a transaction is
logged. The information can be obtain using the JOBINFO and PROCINFO
intrinsics.

Once the program is ready to call the logging subprogram, either at the beginning or
the ending of a transaction, several activities should occur. First, the transaction

Transaction Analysis for Capacity Planning
3136-7

name, number and the Begin/End flag should be moved into the record to be
passed to the logging subprogram.

Next, the program will need to gain exclusive access to the logfile by issuing an
unconditional lock via the FLOCK intrinsic. The file is locked by the calling routine
so it doesn't have to pass the file information to the logging subprogram, which
would be unnecessary overhead. FLOCK should be called as the last action prior to
calling the Pascal logging subprogram.

At this point, the logging subprogram can be called, as follows:

Call "move2log" using Pointptr Rec.

Where Pointptr is the pointer into the pointer file and Rec is the data record with
the information to be stored in the logfile.

The following Pascal/XL code defines move21og. It is not entirely complete,
however, there is enough to show how to write the routine.

$Standard Level "Ext Modcal"$
$Subprogram -
Program dummy-outer-block;

{ Not Complete! }
Type

bur_type =record

xact name
xact- number
pin
user info
b e Oag
date
time
cpu_time

Packed Array[l••lO] of Char;
integer;
integer
Packed Array[1•.26] of Char;
Packed Array[l•.2] of Char;
integer;
integer;
integer;

{ This buffer can be whatever size and combination of types as
necessary to contain the data to be logged, but be sure the
COBOL definitions match. }

Transaction Analysis for Capacity Planning
3136-8

ptr_type = globalanyptr;

Procedure move21og (VAR fileptr
VAR file rec

VAK

globalanyptr;
buC_type);

rec-ptr "$EXTNADDR$ buC_type;

temp_ptr: "$EXTNADDR$ ptr_type;

BEGIN

temp ptr: = fileptr;
rec-ptr := temp_ptr"; {Gets pointer into logfile }

{ At this point get Date, Time, and CPU Time }

Calendar(file_ree.date); { Date & Time stamp}
file ree.time:= Timer; { For Elapsed Time}
file- ree.cpu time: = Proctime; { For CPU Time}
rec=ptr" := rile_rec; { Puts info in logfile }

ree-ptr : = Addtopointer(rec-ptr,78);
temp_ptr" :=rec-ptr; { Updates logfile pointer in pointer file}

END;
BEGIN
END.

It would be advisable to add end-of-file checking for the logfile prior to attempting
to add a record to the logfile.

Finally, don't forget to call FUNLOCK to release the exclusive hold on the fileset
after returning to the calling COBOL routine from move21og.

Now that we have seen how to perform the logging process itself, several other
aspects need to be discussed. First, whether or not the logfile should be attached to
the Transaction Manager. The Transaction Manager will ensure the logfile is kept
up to date within a minimum of one second before a system crash. Since this

Transaction Analysis for Capacity Planning
3136-9

process utilizes Mapped files, many of the logfile records may still reside in memory
and not been posted to disk. The Transaction Manager ensures the data will be
posted to disk. However, there will be a slight performance penalty for using the
Transaction Manager, which will be most noticeable during the Checkpoint process.

The real task is to question the value of this data, especially if only an hour or two of
data is lost. It is not, generally, crucial to business operations. The goal is to try to
ensure the lowest overhead possible for the logging process. It is also possible to try
logging with and without the logfile attached to the Transaction Manager. If there is
no noticeable difference in performance, attaching the logfile to the Transaction
Manager may be justifiable.

Next, due to the way mapped files exist, it is difficult and somewhat expensive to
update the EOF marker after each transaction is logged. To avoid this, use a "fill"
method when building the logfile. For example, as part of the logfile creation
process, fill the logfile with a meaningless character or series of characters. The
other benefit of doing this comes during the reporting process. The program
generating the report can look for this meaningless data as an indication of reaching
the end of valid data.

It should be noted, at this point, the logfile should be replaced with a newly created
logfile after the reporting process has completed.

The final point to be discussed deals with the reporting process. With the logfile
created, the information will need to be extracted and reported in some fashion.
The frequency of the execution of the reporting process will depend upon several
variables, such as length of time to generate a report, necessity of timeliness, and
availability of system capacity during off-peak hours.

This paper will not go into great detail regarding the reporting process. Many
options exist from home-grown programs to third party report generators. An
alternative may be to summarize the data and upload it to a Personal Computer so
that it can be represented in a graphical format. Actually, for on-going analysis, this
may be the most attractive alternative.

A brief explanation of the calculation of Response Time and CPU Time for
transactions is in order. The reporting process must match up the beginning and
ending log records for each transaction. This is best done utilizing the Transaction
Number stored in the logfile record. Once they have been matched, it is a simple
matter of subtracting the beginning time from the ending time to obtain the result.

Transaction Analysis for Capacity Planning
3136-10

Given the way the logfile has been constructed, it is possible to window in on certain
types of transactions during certain processing periods. It is also possible to gather
information about a single user or group of users. The point is this, with careful
planning, a large amount of information can be made available while keeping the
overhead of collection to a minimum. The information can be used to gauge
response time patterns, to understand which transactions are the most intensive, and
to plot a course' for the future.

Acknowledeement

I want to thank Larry Kemp, HP in Belleview, for answering some Pascal questions.
He also provided the basis of the code examples in this paper through his class,
Optinlizing Applications Around the MPE XL File System.

Biblioa-aphy

Hewlett-Packard Company

Hewlett-Packard Company

Hewlett-Packard Company

Optimizing Applications Around the MPE XL File
~ class, 1990.

MPE XL Intrinsics Reference Manual, Third
Edition, April, 1990, Chapter 4.

HP Pascal Programmer's Guide, Fourth Edition,
October, 1988, Chapters 3, 4, and 10.

Transaction Analysis for Capacity Planning
3136-11

Remote Performance Management for UP Systems

"Jay Mellman
Application Support Division
Hewlett-Packard Company

100 Mayfield Avenue
Mountain View, CA 94043

(415) 691-5759

Performance management has traditionally been, if not a difficult task,

certainly an abstract one. It was characterized by voluminous amounts of data, a

tremendous difficulty of mapping this data to user workloads, and a perception by

management of performance as a foreign language. If that is true, then, remote

performance management was mostly a dream. The thought of being located apart

from the systems and users created unease for the performance professional; it

implied a total lack of control over the systems environment. When you take these

issues together, it's no· wonder that most organizations avoided the remote aspect

altogether. However, with today's technology, remote performance management

can become a part of normal system management activity. This paper discusses the

issues involved in planning and implementing remote management.

The Remote Environment

More and more, distributed computing is becoming a forceful trend in

organizations. Organizations feel that they can better serve business needs by

placing the appropriate computing resources~ where they are needed. A

decade ago, minicomputers fit in to the move toward departmental computing;

today, that trend includes moves to the desktop and the smaller operation, creating

very complex environments. At the same time, firms are concerned the high and

Remote Performance Management 3137-1

rising costs of managing these complex environments, especially as the cost of these

systems declines. Organizations are c~ntralizing their management effort in order

to reduce staffing costs, eliminate duplication of efforts, and leverage expertise

across the organization.

Some of these environinents may be "lights out," for example, a point-of-sale

system in a chain of stores. All aspects of the operation must be handled

automatically or by a system manager performing tasks over a network or phone

line. The company has no desire to place systems staff at each location, and yet they

intend for all necessary activities to occur. Such an environment creates specific

needs for all activities including performance diagnosis and planning. That means

more challenging work for the systems manager as he or she attempts to manage the

performance of these systems from afar.

Other environments also involve what we'll call remote management. Fewer

system are located in or managed completely by a single data center. A

manufacturing plant may run automatically most of the time, with responsibility for

managing that system on a day-to-day basis residing with the staff at that location.

But if you are part of a corporate systems staff that needs data for yearly business

planning, you may require access to that performance data from a remote location.

Likewise, consider a network of workstations and servers dispersed throughout a

campus. You may be responsible for managing those servers, including answering

user complaints and the management desire for planning and reporting even though

these systems support a variety of departments doing a variety of different work. In

any of these cases, it may be your job to ensure that the systems serve the users

Remote Performan::e Management 3137-2

effectively. Below are some guidelines to follow as you strive to manage these

remote environments effectively.

Understand Your Business

The key to successful performance management, and especially remote

management, is understanding the business ·environment. The.fu:s1~ is to

investigate the areas of stability and instability within the remote environment.

Environments with a great deal of variability or change require different system

management strategies. For example, a system responsible for inventory and

warehouse management may have a relatively stable workload during the day. On

the other hand, the workload on a system running an order processing department

could vary greatly. There may also be significant seasonal considerations as well: a

point-of-sale system during the holiday season may be quite a bit busier than

normal.

The~~ in setting up a plan is to characterize the demands placed

upon the remote system. You probably have an intuitive sense of which systems,

applications, or users are your biggest headaches or are undergoing the greatest

changes. In a remote environment, understanding the applications running and

characterizing the demands placed upon them is critical. You, the system manager,

must understand what business activity drives your users' applications and

workloads. I...et's look at an example:

Suppose we know that the payroll department tends to complain about their

throughput at the end of the month. How are we notified of their problem?

Generally, they will call the help-desk complaining about slow systems. We don't

Remote Perf'onnance Management 3137-3

need to invest in a systems planning project. A little experience and investigation

tells you that payroll is processing our paychecks.and that the payroll application is

driven by the number of employees. There are several ways to make good use of

that information. Short term, we can work around their need by either freeing up

resources or changing other users' behaviors. Longer term, we can plan for

equipment needs as the number of employees and the activity of our payroll

application grow.

This example demonstrates that to accomplish effective performance

management of systems, understanding the~ of your workload is critical,

especially in a remote operation. Your goal is to have your systems operate within

acceptable limits, in this case, to reduce complaints. Experts within your

organization probably can already characterize the business activity. Combining

your knowledge of system performance with your programmers and application

users leads to a constructive understanding of the system dynamics.

Given these business needs described above, the third~ is to look into

setting standards for your system performance. How many transactions per hour

does the payroll department need? What kind of CPU power is necessary to

support our programming staff! What kind of response time is the order processing

team going to expect? These questions have shared owners. As stated above, you

need to work with those partners to understand their requirements.

Set Standards

Next, you need to break down these standards into what would be ideal and

what is realistic. Perhaps the warehouse needs to process several hundred orders

Remote Perfonnanc:e Management 31374

per day, all with multiple items. Ideally, that organization may want one second

response time. Using your knowledge of the systems environment and working with

the warehouse team, you may set a realistic goal of three seconds. Or maybe your

short term goal is to reduce phone complaints from that group. Some customers,

especially those familiar with ffiM and VM systems, are looking to guarantee

particular response levels to specific users. As long as you are able to distinguish

between ideal and realistic, you can set shared standards to manage a system

remotely to meet your goals over time.

Second, there are some statistics that you may use personally (e.g. to

highlight a· potential problem) and others that you will use to communicate

effectively. There are some system statistics that you will need for problem solving.

You may find it helpful to know whenever there are more· than 50 active sessions.

There are also indicators which are powerful tools for negotiating with a department

to change their batch processing or help sell a system upgrade to your management.

Does it make sense to talk to the accounting department about CPU utilization?

About memory management? It may make more sense to talk to them about their

transactions per hour. Other statistics may be needed to show that same

department that they use too much of a given system with their daytime batch jobs.

In a complete remote management plan, both of these kinds of indicators will be

desirable and should be thought of ahead of time.

Understand Response.Characteristics

Another key to successful remote management is to characterize your data

center's response to a systems problem. Let's say that you have a system located in

another site managing a warehouse. What ~appens when there is a problem with

Remote PerformallCC Management 3137-5

that system? How do you find out about the problem? Do you have any operations

staff there to address to problem? Are you responsible only for oversight of that

system? Planning for upgrades? These questionS help define the amount and

quality of information you need to gain control over your systems environment.

One scenario might be that you oversee a relatively sophisticated local staff.

In this case, reviewing data monthly may be enough. If the staff has some

experience with basic issues of performance, you may only be involved on rare

occasions. You may be called upon to help with capacity planning, while most issues

and user demands are handled by the local operations staff. On the other extreme,

there may be no local staff at all: a lights-out environment. As described above, not

only do you need to have a clear sense of the application and its dynamic, but you

will tend to need a high level of specific information on a regular basis to avoid

performance degradation. A lights-out environment forces you to be proactive in

your approach.

Even in cases where you have a local operations staff in place, planning is

necessary. A staff can easily schedule jobs incorrectly, miss console messages, or

simply not have enough training. For example, if you rely on an operations person

to call you once the system has ground to a halt, you will be reacting to crisis after

crisis. At best, having a well-trained staff means having a system operate within

your specifications most of the time. At worst, you may personally assume the fire

fighting responsibility, as well as for recognizing and planning to avoid these

situations. But overall, the less you have a staff to handle performance issues for

you, the more robust your remote management and information needs must be.

Remote Perfonnance Management 3137-6

Consequences

The final characteristic to consider are the consequences of a performance

degradation. For instance, let's look at a local operations person managing a system

dedicated to checking out materials at a library. Such an environment is relatively

stable (single application, limited throughput), you· have some support capability

should problems arise, and the consequences of a slowdown are not devastating (a

line at the checkout counter). For this system, your major performance duty may

indeed be planning for the future needs. Indeed, you may only need monthly

performance data to keep this operation running smoothly. On the. other hand, let's

say that you manage a system in an urgent care facility from the main hospital data

center. Here, you may have multiple applications (patient tracking, billing) with

much uncertainty about traffic, no local operations staff to help, and larger

consequences if things slow down or stop. As above, the more dire the

consequences of poor performance, the more robust your plan should be.

Building a Reporting Process

With this framework, we can approach the process of getting you the

information to manage the performance of remote systems. First, you need to

define the frequency and the amount of detail in your reporting: how often do you

want particular information? The library example implies infrequent data reporting

needs at a summarized level; for the health center, detailed information is needed

quite often. If you know that the center is beginning to process close to a defined

number of transactions per hour, you may be flagged to look for potential

alternatives prior to the calls complaining about a system slowdown. For this type of

environment, besides a warning bell to get your attention, you may want hourly

reports at a high level. If you understand the dynamics of the system, daily

Remote Performance Management 3137-7

summaries of system and application performance will help you stay ahead of

potential problems by understanding when you are approaching some of your key

standards.

These standards also point you directly to the kinds of data you require.

Based on the particular characteristics of the system, is CPU utilization required

every five minutes? Are there key numbers of sessions or logons that signal a

problem or designate an important trend? Keeping in mind our discussion of

personal versus communicated me~cs,what kind of data should you be aware of on

an ongoing basis and what do you expect your management will need to know? The

process of defining your data requirements is an iterative one. In some cases, you

will find that there are two or three pieces of information that give you tremendous

understanding and control over that system. In other cases, a little bit of data will

lead you to need more specific system information on a more regular basis. The key

is to know what information you need, for what purpose, and how often you need it.

Technical solutions

There are many issues in planning a remote performance program. Overall,

the first effort is to characterize the demands placed on the remote system.

Working with your users, you need to understand what business activity, changes,

and growth may occur. Only then, can you take other issues into account. To

summarize, these issues are:

o How stable is the remote environment? the less stability in terms of

system activity, the more proactive you need to be;

o how critical are the applications in the remote environment? the

more critical, the more robust your information and tracking needs

will be;

Remote Performance Management 3137~

o what sort of staffing is in place in the remote environment? the less

you can count on a staff to handle performance issues, the further

ahead of the problems you will need to be;
o what kinds of standards are you going to apply to the remote systems?

are you guaranteeing certain levels of performance to either users or

management? will you rely on user complaints to drive your actions?

what are your management's expectations about system performance

and new purchases of equipment?

With these questions in mind, what data do you need to see? Then, how do you get

the information you've identified?

In the beginning, there were only system monitoring tools. Examples might

be OYr/3000, ps, or FREES. To get information, you had to log on to the remote

system and be prepared to wait until the problem reoccurred. In some cases, you

had to rely on a staff to call you and tell you what was on the terminal screen. The

logging capability of a tool like OYr/3000 gave some insight into the past, but the

nature of the tool impeded quick analysis. In the UNIX environment, a tool like

sar(l) helped, but in general, performance management was an art. The

performance tools available did not lend themselves to a remote performance

analysis, even if you did invest in a monitoring tool. A monitoring tool generally did

not reduce the amount of data you needed to work with. More importantly, it was a

sizable effort to meet some other needs described above: relating system workloads

to user activities, communicating effectively with management, or reducing

problems by staying ahead of performance issues and trends.

Today, the situation is much improved, as tools now help the user deal with

these issues. A tool such as HP LaserRX provides trending capability for both

systems and application statistics and begins to help in relating system activity to

Remote Perfonnance Management 3137-9

user behaviors. Vendors recognized that they could present information in a form

that management and users could understand. Tools were also designed with

logging or continuous collection in ~d. These tools could be used to quickly

diagnose reoccurring problems and uncover situations that had already resolved

themselves (e.g. a slow batch job or a slow print queue on a network server). Tools

also began allowing the user to access performance data over a wide variety of

network and serial configurations. You now had the power to deal with some issues

remotely.

The next generation of tools meets even more of the needs of the remote

environment. As stated above, a key part of managing systems remotely is to

understand the dynamics of the given systems and devise key measures for flagging

and managing problems. In doing so, there ought to be some sort of regular

reporting to provide that base of understanding. Incorporating new features, UP

LaserRX and UP NewWave agent technology can automatically provide reporting

on remote systems. Once you have set your standards for a remote system (e.g. the

accounting application should not use more than 20% of CPU or no more than 4

processes should be paused waiting for disk), current technology can easily provide

the information. With these reports, you could provide information to a local

operations staff, stay on top of user activity and demands, and be prepared to

communicate whatever information management desires. You need to provide the

business and systems understanding; the tools will provide summarized data broken

down by workload where appropriate, easily transferred from the remote location,

and displayed effectively without you manipulating the data.

Remote Perfonnance Management 3137·10

Taking current technology to the next step, your understanding of the remote

environment should let you set up exception-based reporting. Using the agent

technology, you can set up guidelines within which you need to be notified. In the

above example, let's say you need to know when disk queues begin growing; your

realistic goal for the system is no more than 6 processes waiting for disk; you know

from experience that system performance becomes unacceptable at that point if

allowed to continue to too long. You can set up an agent task and an HlP LaserRX

macro to extract data from the system on an hourly basis and prompt you when the

disk queue reaches 4, your personal standard. Hopefully, you will have the time to

react to the situation before the users begin calling or the operations grind to a halt.

And as has been said, your reporting is based on the characteristics of your remote

environment and the standards you need to achieve.

The state of current technology for the HP market is that remote

performance management requires human interaction. Some may never go away.

In a networked environment, perhaps alarms will register on a network map,

allowing system performance to reside alongside of fault management and isolation

as a management task. For other situations, the computer might notify you through

a beeper or even voice mail. Going one step further, artificial intelligence and rule

based modeling will allow you to define steps for the system to take on its own. For

instance, should conditions indicate an imminent slowdown of the order processing

application, the system could follow your wishes by sending a message to the

programmers as it lowers their program priority in favor of the higher priority

activity. These techniques, while relieving you of much day-to-day action, will place

an even higher requirement on the need to understand your business and systems

environment.

Remote Performance Management 3137-11

The technology exists today for you to make remote performance

management a part of your system management job. From an MIS point of view,

this is consistent with pressures to reduce data center management costs and to

move toward distributed computing. As stated at the beginning of this article, the

key to successful performance management is understanding the business

environment and how your users use the systems. By accurately characterizing your

remote systems environment, building in and collecting the appropriate measures,

and communicating these effectively, you can build your credibility and success.

The costs of following these guidelines are not overwhelming, but the benefits can

be. You will increase user satisfaction with their systems, meet business goals for

MIS in terms of cost reduction or profit improvement, and be better able to meet

the changing nature of most businesses.

Remote Performance Management 3137-U

Developing With The User In Mind

Lisa Burns
Hewlett-Packard

Open Systems Software Division
19447 Pruneridge Ave.
Cupertino, CA 95014

A few years ago I had the opportunity to write an application for
Stanford University as a volunteer project. I wrote a data entry
program us ing Lotus 123 and the HP PortablePlus laptop computer. It
was a great learning experience -- I learned Lotus and macros, and the
Stanford fundrais ing office learned to use PC's for pledge tracking.
However, a very interesting thing happened to me while pilot testing
the program: I had to use it! It was an awful shock to realize that
my masterpiece was a tremendous pain to work with. The program was
easy to write and change, but awkward and clumsy for data entry. A lot
of tabbing was required, mistakes were easy to make, and data entry
took a long time. Training the Stanford staff was more difficult than
I had expected and many of them were reluctant to use the package until
it was improved. I had made the mistake of writing the data entry
package from a programmer's perspective, not from a user's perspective.

Fortunately for Hewlett-Packard, project teams in our area take a dif
ferent approach than I took with Stanford. We work closely with users
and with user representatives throughout our development process to en
sure that the user interface on our business applications fits effi
ciently into the data entry process and that needs for efficiency,
keystroke reduction and productivity are met. In this article, I'll
describe the process we use to maintain that user perspective
throughout the entire software development lifecycle and give you some
things to cons ider in order to work with users in your own shop.
Finally, I'll discuss the results we have had with user involvement in
HP's sales systems area.

The first thing we consider setting up a project in our shop is, "Who
are our users?" This may seem like a simple question, but sometimes
the answer is far from clear. For your own shop, you need to consider
your primary users first of all. These are the people who use your
system directly, working with your data entry screens, your reports,
your online inquiry and other system funct ions. Next, however,' you
need to look at those departments and people who use your data, who
need summary information, or who read yvur databa~e directly. These
people must also be involved in your design activities. For example, a
work order processing system may have work OLder data entry people and

3138 - 1

maintenance staff as primary users. These people enter and retrieve
data directly from screens and reports. However, accounting workers
who book maintenance billings against the general ledger are indirect
users of work order data and should be represented in a system design.

Once you have identified your user base, you need to plan the involve
ment of representatives of that base in your development process. If
you sit next to your users, as many MIS folks are lucky enough to do,
you may simply need to plan weekly meetings with them to clarify needs
and review specifications. If your users are scattered across several
cities or countries, as ours are, this may not be practical. Instead
of weekly meetings, you may need to set up telephone conferences, video
conferences or perhaps monthly meetings to discuss system plans. Be
sure that your plan includes a cross section of your user base. For
example, this may mean getting both data entry people and management
report users involved in your meetings, or involving one sales rep from
each district. For a multi-national situation, you may need to involve
users from several countries;

Whatever your plan, however, a key ingredient is management commitment
to the plan. If you need two hours of an accounting clerk's time once
a week, you must have support from that person's manage-r. The manager
must agree to have someone else answer the phone and perform that per
son's tasks while they are in your meeting. Similarly, if you are as
king a person to attend a monthly meeting hundreds of miles ~way once a
month, you will need travel money as well as management commitment to
the time away from the user's job. Even a phone conference requires
support. Establish the time and money commitment with user management
before you go any further with your project.

Another option to consider when setting up user involvement is to avoid
the necessity of borrowing time from a user by hiring them instead! By
including former users on the project team itself, you have dedicated
resources at your disposal. You need not wait for a meeting or con
ference to clarify a point or check a specification. Also, these user
advocates will likely have many contacts from their old job. They can
thus research problems and clarify questions quickly. Most important,
because they have lived the life of a system user, they will have a
completely different perspective than that of your programmers. This
perspective is critical to your success.

Finally, you need to establish authority for specification and im
plementation phase signoffs. Although you have been working closely
with endusers, data entry folks and report users, they probably are not
the ones who have authority to approve your system. For small shops,
it may be the accounting manager who will review and agree to your sys
tem specifications. For larger operations, you may need representa
tives from each store in your chain, for example, to review and approve
the test plan or other document. Whether you need to talk to Fred down
the hall or get fifteen signatures from the review committee, set this
up up front.

3138 - 2

Once you have the groundwork done, it's time to start investigating and
designing. Our life cycle, which is probably similar to your own, goes
from investigation to external specifications, to internal
specifications, followed by coding and testing, and finally user alpha
site testing. During your investigation, you will want to fully under
stand and document .existing information flows and system designs. In
addition, you will want to ask about functions missing from current
systems and procedures. This will probably mean that programmers need
to watch users performing their jobs even if you have users on the
project team itself . Additionally, you may interview the users you
have hired or arranged time with, and have them explain their business
process to you.

Once you have completed the investigation and generated whichever docu
ments or flowcharts are needed, design work begins. This is where user
involvement is by far the most critical. As you prepare draft screen
and report layouts, and as you begin describing the functionality of
your system, work closely with the users you identified earlier. Ask
them to check the placement of fields on screens and make sure that you
do not require the user to tab allover the place to get to a frequent
ly used field. Be sure that reports are organized intuitively and are
easy to understand. Above all, ask the user representatives to make
sure that programmers have not overlooked a critical function or field.
Are add and delete functions adequate, for example, or is a modify
function required? Ask the users to test the completeness of your
designs by looking at example transactions or inquiries from their
jobs.

During the system design phase, you may want to consider different
tools to help you check the proposed software with your users.
Hands-on demos and prototypes may be especially helpful in this area,
as may mockups of reports. We have also used phone conferences and
video conferences to check our designs with users from many different
geographies and functions. Finally, by involving user representatives
in software inspections (also called structured walk-throughs or peer
review meetings), you can uncover and prevent system design defects and
ensure that all designs are adequately reviewed.

At the end of this design phase, you will probably produce an external
specifications document, or at the very least, a set of screens, edits
and reports. When this is published to your users, you will undoubted
ly be asked to change it -- in fact, if you are not asked to change it,
the users may not have read it! Because of the upfront work you have
done reviewing and prototyping your system with various user represen
tatives, you will hopefully have a proposed system very close to user
needs, and the changes requested will be minor and easy to incorporate.
Assuming this is the case, you must now make the changes if appropriate
and set expectations firmly that additional changes will become more
expensive as time goes on. The phrase, "speak now or· forever hold your
peace II is probably appropriate about now. While completely frozen
specifications are impossible, you should aim for something pretty
"slushy" before you get user signoff on ·the ES.

3138 - 3

Now it's time to write the internal specifications for your system.
This is mainly a technical activity, so user involvement will be less
at this stage. You may be able to give your users a break, or if you
have hired user representatives, you can start them writing the
documentation for the system. Programmers may still occasionally need
to contact them for clarification on edits or system functionality t

however.

Once you have completed pseudo-code, modules narratives or hierarchy
charts for your system, and you begin coding and testing, user involve
ment will increase again. You will need to include users in test plan
writing and execution. This is another critical task. If you are like
me, you are not very good at thinking up realistic test cases. For ex
ample, the only HP product number I know off the top of my head is the
2225A, the Thinkjet. Sales orders with 20 line items, all 2225A's, do
not make very representative test cases. For this reason, taking
sample transactions from your users' production workload is a great
idea. User representatives can help you test error conditions, bound
ary conditions, as well as realistic production transactions. You will
probably want to include them in software inspections of your test
plans, and you may want to have them actually execute the unit tests
themselves.

One caution here: don't leave your programmers completely out of the
unit test execution. Having to actually use your own software can have
a very sobering effect. By testing your own code, you can begin to see
why having to tab over 15 fields to get to the one you need is an an
noyance. Programmers working with users is probably the best combina
tion for testing.

As you approach the end of the construction phase and are executing the
final unit test plans and fixing minor defects, you will want to in
volve the users in writing your system test plan. Again, they will
help ensure that you are covering all production cases as well as error
conditions. In addition, they will help you make sure that your test
environment matches a true user environment. For example, they can
help you in storing copies of user data files, databases, account
structure and user lists, and restoring them onto your test machine or
into your test account. This will make sure that your test environment
is as close as possible to the one you will encounter in production.
Also, users can help you exercise the system's complete functionality
-- all kinds of transactions, data flows and interfaces. You will cer
tainly want to have them review your system test plan document, and you
may have them run the test itself.

One important thing to keep in mind during the system test is that you
may need to involve programmers and users from other functional areas
during the test. For example, if you are testing a new invoicing sys
tem which updates the accounts receivable files, you may need to in
volve users from the AR department.as well as the invoicing area. Be
sure to plan with the AR department well in advance to arrange for
these people to help you. State very clearly the time and task
requirements so that there ~re no surprises later.

3138 - 4

As the system test winds down, you should be meeting with the users who
will actually run the production test of the new software. Testing a
new system requires time away from their jobs and will mean extra ef
fort for both the users and the development team. Be sure that you
cover how each feature will be tested, whether parallel procedures are
involved for an initial time, and how to move from parallel to produc
tion. Also, remember that they need not only to test the software it
self, but also the training and documentation for the system. They
will also test your software installation as well as the installation
procedures. The end users probably have better ideas than you do about
how to test the system's functionality -- let them decide what will
work best.

Next, decide how changes will be made to the new software during the
production test. You may need to establish criteria for critical needs
vs. enhancements. You will also need to decide how and when to in
stall any changes to the software. For example, will the development
team simply move the new code onto the production machine or account?
Will tapes be given to the system manager? Will PC users be given new
floppies? How will versions be tracked? These things sound simple,
but if they are not planned, many bad feelings may result.

Finally, decide how to get signoff on the new system. Will you need to
bring in all fifteen user council members for a review meeting, or will
buying Fred a beer be enough? How will any open issues be resolved?
By establishing these procedures before the start of the production
test, you will avoid many misunderstandings.

In our shop, we have found that the steps listed above work very well.
Thel'e seems to be a very direct correlation between user involvement
and the subsequent success of the project.

Several of our project teams have gotten commitments from user manage
ment to have users spend time reviewing documents or helping the
development team by answering questions. One of these project teams
has taken the approach of setting up a user council. Representatives
from each of the several user sites meet once a month or so throughout
the life of the project to review documents from the development team.
At these meetings, they also may view prototypes, suggest test cases,
etc. This approach has worked well for the team. Their project is
currently in production test at a user site in the Midwest, and only a
few defects have been found, all minor. The users are happy with the
functionality and with the "look and feel ll of the new system.

My own project team has been lucky enough to hire some former users
onto our staff. These people, our support team, provide a tremendous
resource to the programmers. They have helped us analyze data entry
transactions to determine how many VPLUS screens are needed for a given
transaction, which fields are needed and how long the fields should be,
where the fields should be placed, and how the softkeys should work.
They have analyzed report layouts for field length, field placement and
overall legibility. They have reviewed prototypes with current users

3138 - 5

in our various sites, and worked with the programmers to make changes
to our software. Working with our user council, they have researched
issues ~nd department procedures which affect us. They have inspected
our ES, and have assisted with specifying edits and data flows for our
IS. Now that we are writing unit test plans, they are inspecting them
and helping us come up with test data. They will do the same for our
system test. Since they are so involved, they have been able to write
accurate and well-designed training and documentation materials for the
new system. Our users are very happy· with the team, largely due to the
efforts of the support team. We expect the software to be very well
received, as other projects we developed this way have been.

I hope that the information in this article allows you to increase user
involvement in your own software development process. We have found
that programmers, unfortunately, think like programmers. Users can
help you see your software through the eyes of someone who works with
your data entry screens 40 hours a week. The difference in customer
satisfaction is dramatic. Remember, users are the reason for your
software, the reason for your job, the reason for your paycheck. Hold
on to that paycheck by keeping them involved.

3138 - 6

A version of this paper appeared originally in HP Professional
magazine.

3138 - 7

Paper - 3140

Porting the UNIX System Environment to MPE/XL

Jay Zimmett

Quest Software
610 Newport Center Drive

Suite 890
Newport Beach, CA. 92660

714-720-1434

3140 - 0

Porting the UNIX System Environment to MPE/XL

Jay ZiDDllett
Quest Software

Quest Software recently completed the porting of a major
networking package (Portable Netware from UNIX to MPE/XL).
Novell's Portable Netware software is designed to rUn under
the UNIX Operating System with its Hierarchical File System,
Streams Data Communications Services, Shared Memory Access,
and other UNIX services. Since MPE/XL does not currently
provide any of these services directly, an environment that
provides these services had to be created. This paper will
discuss the design strategies used to implement a UNIX
environment under MPE/XL.

CONVERSION

The project was to co~vert Portable Netware LAN software to
run on the Hewlett-Packard Spectrum line of computers.

Portable Netware consists of several hundred source modules
written in ncn. The first step was to get the source loaded
on the HP system (development was done on a 935 using MPE/XL
2.2). The source modules were delivered in UNIX file format.
They were restored to a PC using the Interactive Solutions
version of UNIX. The files were then prepared, copied to DOS
and then transmitted to the HP-3000. The HP compiler quickly
allowed us to compile the Netware source, but the compiled
programs had no operating environment in which to execute.
Since our number one philosophy regarding the port was DON'T
CHANGE THE SOURCE, it was decided to provide these services
for the MPE/XL operating system.

UNIX INTRINSICS

HP's UNIX environment, POSIX (Portable Operating System
Information Exchange) is still months away, and we needed to
provide the same, or almost the same, functionality under
MPE/XL that UNIX was providing. It was decided that a nunix
liken environment would be placed between MPE/XL and
Netware/XL.

3140-1

+-----------------------------+
I Portable Netware/XL I
+-----+------------------+----+

I I
+-----------------+------+ +-----+-------------------+
I Unix Intrinsics t-----t Data Communications I
+-----------+------------+ +-----------+-------------+

I I
+-------------+------------------------------+--------------+
I MPE/XL Operating System I
+---+

This environment would need to provide the following types of
functionality: shared memory access, UNIX directory access,
file information, signaling, interprocess communications,
process creation, semaphoring and data communications (data
communications was done by Jim Kramer and is not discussed in
this paper) .

SHARED MEMORY ACCESS

UNIX has a feature which allows you to request a segment of
memory and to share that memory between processes. In order
to use this feature, we needed to provide emulation for the
following UNIX calls:

SHMGET
SHMAT
SHMCTL

- Get a Shared Memory Segment.
- Attach the Segment to the calling Process.
- Shared Memory Control Operations.

Implementation of shared memory operations was accomplished
by creating a file of the size specified in the SHMGET call,
and then accessing the file with short mapped pointers. This
HPFOPEN option allows you to access a file as one huge array.

3140 -2

+-------------------------------+
I Netware/XL Process A I

+-----+------------------+------+
I I

+-----+---------+
I Shm Semaphore I
+-----+---------+

I

+-------+-------+
I Shared Memory I

+-------+-------+
I

+-----+------------------+------+
I Netware/XL Process B I

+-------------------------------+

MUtual exclusion is accomplished by locking and unlocking an
auxiliary file. Using an auxiliary file allows a major
performance improvement over locking and unlocking the shared
file itself. This is because a call to FUNLOCK will cause the
MPE/XL operating system to post to disc any pages touched for
writing if the file is opened in a modify access mode. This
feature of MPE/XL's locking strategy results in a lot of
unnecessary I/O when programs accessing the shared memory
file are mostly reading the data, and doing very little
updating.

INTERPROCESS COMMUNICATION

Interprocess communication is a feature of UNIX that
processes have of communicating between themselves. The UNIX
calls that were provided are:

MSGGET - Get a Message Queue
MSGCTL - Message Control Operations
MSGSND - Send a Message
MSGRCV - Receive a Message

UNIX interprocess communication was implemented using HP's
new product, the Architected Interface Facility (AIF). AIF's
are a set of HP supported intrinsics that allow you "safe"
access to MPE/XL internal information. The AIF port functions
were used to create, send and receive messages. Message files

3140 - 3

could have been used but message file access is still in
compatibility mode and is, therefore, much slower.

+-------------------------------+
I I+--+ Netware/XL Process +--+
I I
+--------------+----------------+

I
+-----+-------+ +-------+-------+

AIF Ports I I Shm Semaphore I
+-------+-------+
I Shared Memory I
+-------+-------+ +-----+-------+

I
+-------+-------+

+--------------+----------------+
I I+--+ Netware/XL Process +--+
I I
+-------------------------------+

SIGNALS

Another nice feature of UNIX is the use of signals or process
interrupts. This allows a process to set a signal function to
be executed upon receipt of that specific signal. The signals
that needed to be implmented were:

ALARM
SIGNAL
SIGSET
SIGHOLD
SIGRLSE
KILL

Set an Alarm Timer Trap
Set a system Signal Trap
Set a process Signal Trap
Hold back Signal Trap
Release Held back Signal Trap
Trip a Signal

Signal Trap

+---------------+ +------------------+ +---------------+

I Netware/XL 1--1 Signal(Shutdown) 1--1 Shutdown Code I
I I I I

+---------------+ +------------------+ +-----~-+-------+

I

3140-4

+------------j j----------------------j I
I Send KILL j---j Shutdown Signal File j--------+
+------------+ +----------------------+

Signals were implemented using MPE/XL message files and
using software interrupts that are set using the FCONTROL
intrinsic. A process can set a signal by passing a signal
number and an interrupt procedure address to the SIGNAL
function. When this occurs a message file is created and a
software interrupt procedure is attached to the file. Then
when the KILL function is called a record is written to the
file, thus generating the software interrupt and the
execution of the user procedure. Alarm signals were
implemented the same way, except that they use a timed read
to generate the interrupt.

FILE SYSTEM INFORMATION

UNIX, like MPE/XL, provides information about the files that
reside within its file domain. MPE/XL however reports things
in words and sectors, while UNIX uses bytes. Numerous
functions were needed; here are a few of them:

CUSERID - Login Name of User.
FSTAT - File Information on an opened file.
GETUIED - User Capabilities.
GETPID - Get Process ID.
GETENV - Get Environment Variable.
PUTENV - Put Environment Variable.
STAT - File Information on a closed file.
STATFS - Disc volume information.

CUSERID and GETUIED were easy to implement; a call to the WHO
intrinsic satisfied both calls. GETPID is a call to PROCINFO
to return the Process ID Number. GETENV is provided in the
HP C library and PUTENV is a SETVAR done with the HPCICOMMAND
intrinsic. STATFS is implemented using the new HPVOLINFO
intrinsic (curiously I could never get the numbers to match
the DiscFree command). FSTAT and STAT were not as easy.

FSTAT and STAT needed to return the file size in bytes, and
the file's access, modify and creation times. The time had
to be returned in Greenwich Mean Time, not MPE calendar
format. Also, STAT needed to return this information on

3140 -5

files not currently open. One big item, MPE does not keep
track of file size in bytes; there is no such thing as a one
byte file!

NETWARE/XL File Format

+---------------+---------------+--------------+
I MPE/XL Label I User Labels I User Data I
+---------------+-------~-------+--------------+

If the file is open, a call to FSTAT has the MPE/XL file
number. Information on opened files is abundantly provided by
the MPE/XL intrinsics. If file information is requested on a
file that is closed, MPE/XL provides few ways of getting
this information. Opening and then closing the file will
provide the information needed, however there is the cost of
opening and closing the file, not to mention the file's
access times are then changed (remember, I need to return
this information and if it is always changing, that is a
problem). The solution is to write the information needed to
user label zero at time of file creation. Luckily, the
MPE/XL intrinsic FLA.BELINFO returns user label zero and all
the rest of the information that I need without updating the
access times. I then convert the dates into their new format
and return the information requested.

SEMAPHORES

Netware/XL uses a UNIX function called FCNTL which among
other things allows byte level locking of files. This
can allow you to define bytes of a file as a process
resource semaphore and as long as all processes honor this
design a system resource locking mechanism can be devised.

Netware/XL Semaphore File

+------------+-------------------+--------------------+
I Byte 0 I Byte 1 I Byte 2 I

Shm Memory Bindery Data Base Trustee Data Base
+------------+-------------------+--------------------+

3140-6

This scheme of semaphoring was accomplished using MPE/XL
file locks on empty files. FLOCK and FUNLOCK are extremely
fast on a file open for read access only. MPE/XL internal
lock mechanisms will be used at a later time.

PROCESS CREATION

The needs of Portable Netware/XL for process spawning was
straightforward. Netware/XL needed to create sons as peer
processes. The CREATEPROCESS intrinsic was used to launch
sons with the Father not waiting on termination of the sons.

+-----------------+
I Netware/XL I
+--------+--------+

I
+-------------+-------+----+---------------+
I I I I

+-----+-----+ +----+----+ +----+-----+ +-----+-----+

INCPEngine I I SAP I I SRVAgent I I PTRServer I
+-----------+ +---------+ +----------+ +-----------+

This allows Netware/XL to still function and communicate to
its sons using shared memory and AIF ports. Netware/XL will
start and stop NCPEngines as needed to services clients.

UNIX DIRECTORY

MPE/XL currently only supports a two level hierarchical
directory which we know as Group and Accounts.

MPE Directory

+--------------+
I Account: NW I
+-------+------+

3140 -7

+-----+------+ +-----------+

I Group: DOC t-----t Files

+-----+------+ +-----------+
I

+-----+------+ +-----------+

I Group: SRC t-----t Files

+------------+ +-----'------+

UNIX on the other hand supports a multi-level hierarchical
directory which can support other directories.

Unix Directory

+--------------+

I Account: NW I

+-------+------+
I

+-----+------+ +-------+ +------------+ +-------+

I Group: DOC t-----t Files t----t Group: WP t---t Files I
+-----+------+ +-------+ +------------+ +-------+

I
+-----+------+ +-------+ +------------+ +-------+

I Group: SRC 1-----1 Files 1----1 Group: DIR 1---1 Files I
. I I I I I I

+------------+ +-------+ +------------+ +-------+

How do you map a Multi-level directory on a Two-level fixed
directory? The key word here is map. A translation is needed
between file names such as /usr/netware/sys/net$obj.sys and
names that MPE/XL will accept. KSAM/XL provides such a
mechanism where I can pseudo build a hierarchical directory
within the KSAM file that maps to a valid MPE/XL file name.

KSAM DIRECTORY ENTRY

3140 - 8

+----------------+-----------------+-------------------+

I I
Directory I I

Unix Path Name Type: F~~e MPE/XL File.Group

+----------------+-----------------+-------------------+

MPE/XL names are generated names such as A0000001.SYSVOL,
A0000002.SYSVOL, and are mapped to UNIX path names using the
KSAM/XL file.

In order to gain control for performance and 1 byte
granularity all I/O functions to Portable Netware/XL files
and user data files are done through Quest's own file system
access methods using long mapped pointers.

+-----------------+
I Netware/XL I
+--------+--------+

I
+--------+--------+
I UNIX Calls I
+--------+--------+

I
+--------+--------+ +-----------------+
I Mapped Access t----t File Open Cache I
+--------+--------+ +-----------------+

I
+--------+--------+
I MPE File System I

+-----------------+

Duplicate information about a file's history is kept with
each file as a permanent user label which allows the
rebuilding of the KSAM/XL directory in case of corruption.
This should not occur as KSAM/XL is tied to the Transaction
Management System which protects and automatically recovers

3140 - 9

from a system failure.

NETWARE/XL OPTIMIZATION

Four HP tools were extremely helpful in debugging and
optimization of the work that we had performed.

mB
GLANCEXL
SPT
DEBUG

- Symbolic Source Level Debugger
- System Monitor
- Software Performance Tuner
- Old reliable debug

Without XDB I would have killed a couple of trees getting
listings. Finally a source level debugger for the HP-3000!
XDB is a must for any serious programing effort. GLANCEXL is
a replacement for OPT/3000 for the classic and has been much
enhanced. SPT traces the execution of your program
and lets you know what procedures were executed and what
MPE/XL intrinsics were called. Was a great benefit to see
where time was being spent and at what cost. Good job HP, how
about including monitoring of the AIF's? Debug took a side
seat to XDB, but its nice to be able to crawl inside and
really take a look at somethings.

CONCLUSION

This has been a most interesting project, and proves that
just about anything can be done on the HP, even UNIX
applications. As of this writing BETA code has been shipped
and is working! By the time of the conference HP should be
shipping NetWare for the HP-3000. Future products in the
Networking area will be NFS (Network File System), it will
allow UNIX systems to attach an HP-3000 account as a native
UNIX file system and read/write to these files.

NOTE: UNIX is a registered trademark of AT&T

3140 -10

Getting Ouer the Hurdles of Oracle FinalJ1cials on the
HP3000's Hardware Platform

Craig P. Albrecht
Technical Systems Analyst
Corporate Infonnation Genter
Cray Research , Inc

ABSTRACT
Learn how to make your HP3000 adapt to the constraints of Oracle. This presentation details
the information and techniques needed to make Oracle and HP3000 a more positive experience.
Detail topics include CRT mapping to database creation. Learn the tools and options available on
the HP3000 to monitor and manipulate the Oracle databases. Understand the kernel. Learn how
to work with Oracle support staff rather than against them. When Oracle comes out with a
major release uPdate, understand how this impacts any customized changes that may have been
made to the existing environment. Last of all. learn the potential power behind the "8"pecial
"I"nterest "G"roup of MPE XL user of Oracle Financial Applications.

INTRODUCTION
In the early part of 1990. the financial users stated a need for a new financial system since they
had outgrown the existing one. The choice was to write one In-house or to purchase one from a
third-party vendor.

Corporate Information Center. CIC. has been up until now a traditional HP3000 COBOL shop
since the early 80·s. The data center managed a network of 8 HP3000's located world-wide
with an additional 4 HP3000's residing at corporate.

The users began the search for a new flnancials software package. By mid-1990. Oracle
Financlals - Accounts Payable and Purchasing - was decided to be the software of choice by the
financial users.

Oracle stated that their ROBMS and Financial Applications would run on the HP3000, 900
series. XL. Oracle was called in to load it and run a demo on our system to prove to CIC and the
users that it indeed worked. The demo ended up being brief and Incomplete In terms of testing
out all the functionality and system specifics, like terminal testing, printing reports, etc.
The users said they wanted it even though their testing was Incomplete. The choice for the
HP3000 hardware platform was chosen because: 1) Our expertise resided on that hardware
platform, and 2) We had heard that the Transaction throughput was greater than that of Unix.

Needless to say. the birth of Oracle Financlals began at Cray Research along with the CIC role of
installing, support, debugging. bitching. headaches.... started. To ensure the successful
implementation of the decision, the Transition team was born. This team consisted of 1
manager/coordinator and 6 existing CIC employees that were the best in a given area:

3201-1

Getting Ouer the Hurdles of Oracle Financials on the
HP3000's Hardware Platform

networking. production control. systems analyst.... For myself. technical and system
knowledge.

This paper is intended for a new and/or existing site that will use/is using Oracle Financials on
the HP3000 hardware platform. The issues that will be covered are more towards the technical
side. excluding the application details.

~W~'lr~1MJ : TERMINAL Device
We are dealing with 2 major factors: 1) The HP3000 runs certain applications in a BLOCK

mode environment which is unique to HP. 2) Oracle runs based on an ANSINT mode.

The problem arises because most HP3000 shops have HP terminals but only have the HP mode
option. Only certain HP terminals can function both with Oracle and HP block mode
applications. The HP700/92 and HP2392A terminals can do both HP mode and ANSIIVT mode.
One of the common problems. is sharing one terminal device between HP block mode and Oracle
Financials applications.

Another dilemma was how Oracle maps the keys to the keyboard. Oracle defaults the numeric
keypad to single-stoke function keys. They commonly map functionality keys to the numeric
keypad. Our accounting users wanted the numeric keypad as such. Now the task of relocating
these keys to a different part of the keyboard became the challenge. In total there are about 46
keys that can be used when running the Oracle Financials. However. there are only about 15
commonly used keys used by the end user.

First. the Oracle function keys on the numeric keypad were mapped to the F1-F8 function keys
with a second set of Oracle function keys were also mapped to the F1-F8 keys but prefixed by a
an <escape>. The users determine which keys they would want as single keystroke keys. the
most commonly used keys. these Oracle function keys became the F1-F8 keys while the less
commonly used keys are prefixed with an <escape> F1-F8.

Once the end financial users decide on how they want the key board to look like in terms of
functionality. the challenge was to map all terminal device that could run Oracle Financials. The
following devices could run Oracle Financialsand old existing HP3000 software: IBM type PC
using Reflections 3.4 or greater. Macintosh running Reflections 2+ or MicroPhones II (these
are VT emulation only). Reflections 1+ for the Macintosh emulated HP mode.

When using Reflections with IBM-type PC's • an enhanced keyboard is recommended but not
required. To assist in remapping the keyboard. you will have to use the tools supplied with
Reflections when purchased: KEYMON. KEYMAP. R1V. VT.KBM to name a few. Note. each PC
will need to have a special VT configuration file that contains the remapped keyboard keys.
proper VT settings. the user COM# port. and the users choice of colors. Note. if any changes to
this file are made. the keys MUST be remapped into this configuration file.

2

3201-2

Getting Duer the Hurdles of Oracle Finonci81s Oln the
HP3000's Hardware Platform

The Oracle Financial Software can run on IBM type PC running from an Xl to an AT with an
enhanced to an non-enhanced keyboard. The other key element to note, is what type of BIOS is
being used, Standard or Enhanced. The BIOS will determine what codes from the keyboard are
being generated for remapping. The BIOS and codes generated by the keyboard are determined
by executing the Reflection program KEYMON.

The other problem was to make it easy for the end financial user to run the Oracle Financial
software and any old application software that resides on the system. The use of HP command
files make this easier.

®W®lr~lMI : PRINTER Devices
Ever ask the Oracle porting group if they ever tested printers on this port? The answer
probably will be yes, but I would not believe them. Printing has been a major issue since day 1
and still is an issue as of this writing.

Like terminals, plan on becoming intimate with your printer and what it's capable of doing and
how you can programmically alter some .ofits functionality.

Oracle Financials tend to print reports at 66 lines per page or else x number of lines per page
using the <FF> character. The only problem is, most HP printer are set up to print 60 lines per
page with 3 blank lines at the top and bottom with automatic perf skipping. This is one option
that must be turned OFF. There is an escape sequence to do this so read your printer manuals.
Remember to align your paper in the printer at the perf because Oracle will need all 66 lines.

The funny thing, when Oracle shipped their printer routine, they shipped it with a print
configuration file for a Desk Top laser printer. Ask yourself, how many production companies
print a 500 page report on this type of device? We, the data processing staff, -ended up telling
Oracle how to set up certain printers to make the reports come out properly, sometimesI This
showed their lack of knowledge and thorough testing...

Also, their reports are inconsistent in paging. If a report page is only 60 lines, 6 blank lines
are printed before the next·page begins. One problem, the reports are not all set up for 66
lines per page so the reports now tend to get misaligned, skewed. Hard to read and/or to misread
reports.

Specialty forms are also another headache until you learn how to setup your printer because
Oracle does not give any explanation. Examples would be checks, PO forms, ...

Now what about the HP2680A printer, the Laser Page Printer? Oracle did not even know what
one was so it was never tested like so many other HP printers. This printer does not operate the
same way as the majority of HP printers because it does not understand escape sequences. It

3
3201-3

Getting Ouer the Hurdles of Oracle Financials on the
HP3000's Hardware Platform

uses environment files and primitive paging done via CCTl characters like in Fortran.

Both HP and Oracle have been aware of this Problem, but no resolution has been shared with me.
I have ended up creating 4 new ENVironment files purely for Oracle reporting only. The form
is setup for 132 columns by 66 lines per page. The only major exception is that a report must
be reviewed for page break consistency - always at 66 lines per page.

®W®1r~rMl : DISC Storage
Be prepare to invest in disc drives. Oracle loves to use the word megabytes as a unit of quantity.

The Oracle database runs best when you can allocate a large contiguous space for database files,
although, you can have many small ones that look like one big chuck to Oracles RDBMS, ahhough
is less efficient.

One of the nicer things about Oracles RDBMS is that you can easily add space to the database if
the limit has been reached. The real problem occurs on the HP3000 side of things.

How does one create contiguous spaces on the HP3000? On the pre-900 series HP3000, there
was an option to do a disc condense in a relatively short time, without human intervention. Safel

The only way to allocate a hugh chuck of contiguous space, is to do a full system dump, then
purge the files except for the SYStem accounts. Before doing a restore of the full backup, create
your Oracle database files. Plan ahead what databases are needed so that the files can be spread
out onto different drives to prevent head contention. The more medium size disc drives, the
better compared to few large, gigabyte, drives.

HP needs to come up with away of condensing files on disc drives. A reload type procedure is
risky and very time consuming especially when you start getting into gigabytes of disc storage.

I have tried to use MPEX to shuffle files around from one drive to another without success. If
the original file resides on drive A and I moved it to drive C, I verified the move using MPEX
and the MPE LlSTF command. The move was successful but when the free space on the drives
is to be verified by the MPE DISCFREE command, it did NOT verify. It showed no change on
drive A or C. It's as though the file was never moved.

If there is a solution, please let us all know.

~W~1f~lMJ : MEMORY
Oracle RDBMS uses what they call SGA, System-Global Area. On the HP3000, this is a mapped
file. It does not physically occupy all the space in .main memory, but is used in conjunction
with virtual memory. Up until about 5 months ago, there was a 2 megabyte maximum. This
created many problems, especially if you had a large database and/or many users. By

4

3201-4

Getting Ouer the Hurdles of Oracle Financials on the
HP3000's Hardware Platform

configuring the SGA using the OINIT parameter file, which contains over 50 values that need to
be changed for growth or else tuned for performance, caused the SGA to go over the 2 megabyte
limit.

As one would think, this would demand a large size for the control area within the SGA. Oracle
RDBMS is, in its own way, a separate piece that can be looked at as an addition to the base MPE
operating system. It contains 4 system processes that run in the background once Oracle
RDBMS is startedJbooted. These processes are: System monitor, Process monitor, Database
writer, Log writer and possible Archiver, if turned on.

The new SGA limit is now 96 megabytes. This is the limit for 1 database and/or all the Oracle
databases you have on your system in total. Oracle and Hewlett-Packed have worked together to
make this possible. The only noted shortcoming, is to allocate this space. It must be allocated by
a program and should be run after a boot of the HP operating system to guarantee the space is
available because this space is also used by the MPE operating system. To ensure this space can
be allocated, make it part of your system startup procedure, in your ·STARTUp· UDC.

~'fI~V~lHJ : CPU
Is there enough CPU on your system? Good questionI

The nature of the Oracle application is to run in character mode. This means that every
character that is typed is sent to the CPU to be processed. For the nature and functionality in
terms of how it works, this is the way to implement. But, for the nature of the HP3000, this
is a severe degradation of the systems performance because the HP3000 system was not
designed for this type of 10. The HP3000 was designed for record 10 and HP block 10.

Oracle and Hewlett-Packard both recognized this as a problem after many days of telling them
of this problem. The solution that has been agreed upon is what they called Field mode. Certain
fields will only be sent to the CPU when a special character is entered as the end-of-field
terminator. An example would be to use the carriage return as an end-ot-field terminator.
Other fields may still oPerate in character mode. Other functions, like painting the screen will
be enhanced to use non-character mode painting.

At this time, the RDBMS is ready for field mode, but the applications need to be changed to
handle field mode. Also at this time, once field mode becomes part of the application, the
functionality of the terminal keyboard will change some. This is due to lack of end-of-field
terminators. Oracle is working with HP to have more, so there is more flexibility in terms how
one can remap the keyboard.

From what I know, this feature is due to be out in the next release of financials, MPL 8.3.

~W®1r~(M] : Connectivity

5
3201-5

Getting Ouer the Hurdles of Oracle Financia's on the
HP3000's Hardware Platform

I just heard the latest news that this item should no longer be a problem, but I will explain
anyway so you can verify this if your company fds into this category.

The problem was, to run Oracle Financials on the HP3000, the terminals used need to be
directly connected to the OTC. One the reasons for this is the OTC had a new function that was
implemented on the HP3000 900 series. This was called -.vpeahead". Without typeahead, the
Oracle Application would not paint the screen properly and/or would force the end users to type
about 1 character a second so that no key strokes would be lost, but the use of the function keys
would also be lost if it sent more that 1 character to the CPU. In most cases, all but 4 function
keys remained unaffected. This was NOT a acceptable solution.

Nowadays, most companies have more than 1 computer system and tie them together via a
network. While networking HP3000's together via NS, you create virtual terminals on the
remote machine via the host. Well, if Oracle Financials reside on your remote machine, you're
out of luck. The functionality of "typeahead" is bypassed since access is though a network
instead of a OTC. So if you wanted to run Oracle Financials, all users must be connected to the
host machine, which will have to be the Oracle Financials machine and users MUST be connected
via a OTC to the host.

NOTE: Oracle Financials must have "typeahead" when the end users are running the application
only. Other applications on your system, host and remote, may be affect by "typeahead" where
it could cause problems, for example HPOesk. When invoking Oracle Financials via a command
file, turn "typeahead" ON and when ending the application, tum "typeahead" OFF. Typeahead is
a system variable called: HPTYPEAHEAO TRUEIFALSE.

@OO~©Ib~ lFOOOo.\OO©Oo.\lL~: ORGANIZATION of Files
The nature of the HP3000 file structure is: Accounts, Groups and Files. This is not like the
Unix file system on which the majority of the ports reside. So this port needed to be
reorganized to accommodate the existing file structure. The Unix file system contains many
subdirectories, has longer directorieslfile names, not restricted to uppercase alpha numeric
names. In Unix, the use of extension of filenames makes it nice because you can have the same
basename in a directory but have different extensions. Example: A Sal script called
"tablesz.sql" but the report/output file is called "tablesz.lst" all in the same subdirectory.

When a port is made, It's not quick and mistakes are made easily. The filenames are not always
the easiest to convert to recognizable names, but the groups and accounts are. Most Oracle books
are based on the Unix Operating system so one must do conversions to the HP3000 environment.

Example: AP7BNOOO • This is a group name that refers to the Account Payable subsystem, MPL
(Master Porting library) 7.x, and the BIN (executable) ·subdirectory.

The current HP3000 Oracle data processing staff keeps on reminding the Oracle Porting team

6
3201-6

Getting OllJer the Hurdles of Oracle Financoals on the
HP3000's Hardware Platform

to be careful to prevent errors.

©OOb.\©lL~ IFDOO~OO©Ob.\lL~ : EXPERIENCE with HP3000
Oracle has been separated into 2 main groups: the RDBMS kernel group and the porting/support
group.

The kernel group has been around for awhile, and is made up of people who used to work for
Hewlett-Packard, and have vast knowledge. The RDBMS is sound in most HP data processing
staffs opinion, but the Financial Applications are another matter.

The porting people to this hardware platform leave something to be desired. Although they are
getting better, but slowly. At least they are getting some HP education.

The latest news that I heard is the 2 groups will be working more closely together instead of as
separate identities. The kernel group will educate the porting/supporting groups more on the
nature of the HP3000.

©OO~©IL~ IFUItiJ~OO©O~lL~ : World Wide Support/Contractors
With contractors, assuming they have prior experience, ask to speak to past clients for
there recommendation and ask for their work to be guaranteed

Most contractors are fresh out of MBA school and have only theoretical knowledge of Oracle
Financials. They lack experience with their own system. SadI We have ended up educating some
of them. If the procedures they create 'work', they end up being incorrect and/or poorly
written. Non-professional and it shows.

Be careful. The good contractors are in demand, so book ahead. Be careful of newlinexperience
ones. You want one who knows the given application belter than yourself as well as actually
knows itl

World Wide Support is improving by hiring qualified staff or by getting there current staff
trained better. The problems are just getting through to speak to a trained support staff
member. Getting solutions on the first try is rare but improving. Since this platform is
relative new, the trained support staff is small and lacking experience both in the application
and hardware. To get one of these people is a 40/60 chance.

Remember not to close a TAR unless you are satisfied with your answer. If having a problem
with a support member in resolving· your question, returning calls, etc., ask to speak to the
duty manager. Inform your CSS manager of your situation. If you still have problems, go up the
ladder of command.

A common problem that we have by being in a different time zone. Qualified support people

7
3201-7

Getting Ouer the Hurdles of Oracle Financiols on the
HP3000's Hardware Platform

don't start work until a-gam Pacific time. That's roughly 2 hours once our company starts its
business day. Then they often return the calls at 5pm or later central time when no one is here.
Reminding them of this situation has helped a little but still is a problem.

Your input is advised to Oracle about the support so they can improve. Use constructive
criticism.

@1rfXJ~OO

When fix tapes arrive to correct bugs, they usually contain a bug number and instructions on
how to run a script. This is NOT fine, the data processing people want to know more
information.

The information need is a short description of what the patch is fixing because the bug numbers,
do not have meaning to us. Information about what is being fixed is needed because a company
may have made customized changes to the Oracle oode.

Keep reminding Oracle to give more information on fixes/patches.

Oracle has helped in the conversion process be letting you access your old IMAGE data in read
only mode by using the product SQl·Connect. We have not used the product.

@ir(}{)~OO : Conferences/Users Groups
There are 3 main levels of conference: 1) local area conferences, 2) Regional area conferences
and 3) International Conferences. Also, there are two main types of User Groups: 1) Oracle
broad and 2) Financials.

Once a year, Oracle organizes a week-long conference, (5 days), called I Oracles International
Users Week'. These contains all subjects - from Tips to Techniques, Tuning, Case Studies, mini
courses of Oracle Products, Question and Answer sessions, Round tables discussions with Oracle
andlor the hardware vendors and many more. Last year alone, about 500 papers were
published.

At this conference, they also have a vendor show of 3rd party software vendors and hardware
vendors to showoff their speed when running Oracle as well as their compatibility, tools and
aids.

This conference is a MUST for those who want to· meet the people who are responsible for the
RDBMS, port, support, ... and their managers. Here are the people whose names you've heard
but never gotten SPeak with directly. Build up a rapport, but do not threaten them. Just tell
them how you are concerned about some of the short comings andlor possible show stoppers.
This conference generally brings people together who are running Oracle on the same hardware
platform, but more important, people who are using Oracle Financials on the same hardware

8
3201-8

Getting Oller the Hurdles of Oracle FioancDals Oln the
HP3000's Hardware Platform

platform. Oracle never gave you those names before because they did not want to be a reference
at that point in time. Now the birth of the non-official support group of Oracle Financials on
your hardware platform is born.

At the Regional level, the size is much smaller and has about the same topics. It is worthwhile
in the sense of meeting people who are doing similar things as you are in the same general area.

At the Local level, you meet with people in your general area that are Oracle users. A good place
to start to meet people and possibly run into some who have a similar situation as yourself.
Much knowledge can be learned here. At times, the can get Oracle to come in an give a demo
about a new major release of their softwareltool. This is also true with third party software
vendors.

A new addition is the Oracle Financial Users Group. The last meeting was held in Washington,
DC. The thrust of this conference is Oracle Financials. This is not sponsored by Oracle, but key
players from Oracle do show up.

©@OO@lblYJ®O@OO
Remember that this paper is from my point of view and the experiences that I have. I take no
side in saying whether or not to go with Oracle Financials on your HP3000, or with Oracle
Financials on any other hardware platform.

This is a technical information paper that you can use when talking with Oracle Corporation and
with Hewlett-Packard.

Remember to ask MANY questions when dealing with the 2 vendors. Demand a list of existing
HP3000 Oracle Financial users as references. There are about 7 known
companies/corporations to date that are running Oracle Financials on a HP30aO hardware
platform. I don't know how many are on Oracle's Reference list, but ask. Talk to these people
and I would advise trying to spend some time on-site seeing the product in a productionllive
environment verses just seeing a demo.

~(P)IP)OifO@OO~lb Ollill1@I1lJiJ\l&l~O@)1lil

If you have additional technical questions, or would like copies of how to configure your devices
(terminals, printers, ...) please feel free to contact me.

Included are some examples of some Reflections files: keyboard remapping files, procedures
how to initially set up the special VT configuration file. Also included are: some common
<escape> sequences used by the HP printers..., a keyboard layout that our financials users are
using..., some examples of command files that invoke the Oracle Application.

9
3201-9

Getting Ouer the Hurdles of Oracle Financials on the
HP3000's Hardware Platform

~OOOO@lYJOO©~rMJ~OOlr

Cray Research, Inc is no longer running Oracle Financials on a HP3000 960. We have switched
over to a HP9000 870 machine about 4 weeks ago. The main reason for the switch is
connectivity to the rest of the Cray network that contains many flavors of Unix machines. The
rest of Cray will have some sort of access to Oracle Financials and we at Corporate will need to
get data from other systems as well. The HP3000 does not fully support our needsl

Craig P. Albrecht
Cray Research , Inc
1440 Northland Drive
Mendota Heights, MN 55120

Direct Phone: (612) 683-7281 (cst)

10
3201-10

Getting Ouer the Hurdles of OratDe Finantials on the
HP3000's Hardware Platform

Example: Reflection Keyboard tile tor a IBM AT ty.pe compute with an enhanced BIOS and
keyboard

keyboard-id = ENHANCED

term = VT

set num-Iock ON

num-lock = vt-pf1
kp-slash = vt-pf2
kp-star = vt-pf3
kp-minus = vt-pf4

kp-plus = vt-minus
shift kp-plus =vt-comma

; - Note: "1\[" is an <escape>

f1 = 111\[5" ; pfS
f2 = 111\[6" ; pf6
f3 = 111\[7" ; pf7
f4 = 111\[8" ; pf8
f5 = 111\[9" ; pf9
f6 = 111\[0" ; pflO
f7 = 111\[_" ; pfll
f8 = 111\[=" ; pfl2
f9 = null
flO = null
fll = null
f12 =null

kp-enter = return

cp-ins = null
cp-del = null
cp-home = null
cp-end = null
cp-pgup =null
cp-pgdn = null

11

3201-11

Getting Ouer the Hurdles of Oracle Financials on the
HP3000's Hardware Platform

Example: Reflection Keyboard file for a IBM AT 1"p9 computer with an enhanced BIOS but has
a standard keyboard

term = VT

set num-Iock on

69 hide = vt-pfl
53 eO-prefixed hide = vt-pf2
k~tMt =v~pa

kp-minus = vt-pf4

kp-plus
shift kp-plus

fl =111\[5" ; pfS
f2 = 111\[6" ; pf6
f3 = 111\[7' ; pO
f4 = 111\[8" ; pf8
fS = 111\[9" ; pf 9
f6 = 111\[0" ; pflO
o = 111\[_" ; pfll
f8 = 111\[=" ; pfl2

f9 = null
flO = null

= vt-minus
=vt-comma

Example: procedyre to create a VI configuratjon fjle wbh Reflection wUh the remapped keyboard

1] Rl Execute Reflections in the HP Mode
2] alt-e Configuration keys
3] f7 Global Configuration
4] fl Next Choice <DEC>
5] f6 Save to disc
6] {new filename.CFG} for the VT Oracle emulation
7] return
8] Adjust the baud rate, proper COM port, ...
9] f6 Save to disc

12
3201-12

Save to disc

Optional (color configuration)
activate color after you made your selection

Save to disc

Getting Ouer the Hurdles of Oracle Financiels Olfl the
HP3000's Hardware \Platform

10] return
11] alt-e Configuration keys
12] Make sure receive and transmit pacing is XON/XOFF, verify the baud rate and
COMport.
13] f6
14] return
15] f3 Terminal page 1
16] Initial Label set <User>, User Label lines <0>, Backspace key <BKSP>, Keypad
mode <NORMAL>, Cursor Key mode <NORMAL>, Terminal type <VT22o-7>, DA
response <VT100>
17] f6 Save to disc
18] return
19] f7
19.1] fl
19.2] f6
19.3] return
20] COMPLETED

Load the Keyboard map file into the VT Oracle configuration file.

KEYMAP {VT Oracle keyboard file} {VT Oracle Reflection configuration file}

NOTE: When configuring colors, the flowing list must be configured and
each must be a unique color patterned for easy of readability and
functionality:

1] Normal
4] Inverse
7] Underline/Bold

2] Bold
5] Inverse/Underline/Bold
8] Inverse/Underline

13

3201....·13

3] Underline
6] Inverse/Bold

Getting Ouer the Hurdles of Oracle Financials on the
HP3000's Hardware Platform

EXAMPLE: HP3QQQ command file to invoke the Reflection VI Oracle Configuration file'

echo "<esc>&j@" Set the user keys but do not display them
echo "<esc>&oFLoad {VT Oracle configuration file}"
pause 1
setvar HPTYPEAHEAD TRUE
FOUND {invoke Oracle Foundation with the proper CRT definition}
setvar HPTYPEAHEAD FALSE
echo "<esc>&OFLoad R1.CFG" Load the HP terminal emulator
echo "<esc>&k01\" Reset the terminal class from DEC to HP

EXAMPLE: How to toggle the HPZQQ192 and Hp2392A terminals in and out of VTlANSI mode

lrlh10@ @}I@IITfil\p)~@g @1Jil(Q] lllftltmlJilW 0iJi)@!r@ \'!AYIO~~ !ID@ @lYJ[p)[p)~O@(Q] ~~

R[h)@ ©@IJil~@lf@IJil©@D

14

3201-14

TITLE:

AUTHOR:

But We on1 y Have CaBOT, I The Rea 1 oj 1 emma "

Rafael Benitez

Martin Marietta Info. Systems Group

P.O. Box 179; MiS A16330

Denver, CO 80201

303-790-3615

FINAL PAPER WAS NOT AVAILABLE AT TIME OF PRINTING.

PAPERNO. 3202

3203
APPLICATION INSTALLATION

FRANNIE CASELLA
NORTHERN CALIFORNIA CANCER CENTER
1420 HARBOR BAY PARKWAY, SUITE 260

ALAMEDA, CA 94501
(415) 748-6111

OVERVJ:EW

This paper will address the issues and constraints in
installing third party maintained software on an HP3000.

Our organization has the source code to our major
application but the bulk of the maintenance of this
application is carried out by another organization which
owns the source code. We also install our own
modifications to this source code due to our own special
needs. Thus the nightmare begins.

INTRODUCTJ:ON

At one time or another we have all been a slave to two
masters. If you are lucky the two want very similar
things from you. If you are not so lucky you end up
writing a paper like this.

First a brief background on my two masters. The first
and primary master is the Federal Government;
specifically the National Cancer Institute (NCI). My
second one is the State of California; specifically the
Department of Health Services. We hold contracts from
each to periodically provide them with specific data from
our Cancer Tumor Database file. Our application software
CANDIS (Cancer Data Information System), which is used

APPLICATION INSTALLATION
3203-1

to maintain the data, is owned by the state and the bulk
of the maintenance is carried out by them.

We collect cancer data from all hospitals in the five San
Francisco Bay Area counties using Cansur/Net software.
This software is also maintained by the state but is
totally independent of the CANDIS software. The data is
uploaded, edited and reported on bi-monthly by the CANDIS
software through a series of COBOL programs which run in
batch mode. The data is checked for accuracy and
completeness and then modified through a series of View
screens and three COBOL programs which run on-line.

The cancer data is then regularly sent to both the State
and the Feds, but each requires a different version of
the data. For this reason, we enhance the State's
software to comply with the standards of the Federal
Government to handle those situations when the
requirements for the Feds can be easily incorporated into
the State's software. Confused? Join the club!!

The standard we follow is that the database holds the
data according to the state's specifications. Any
modification which is necessary for the Feds but not the
state is then handled in a separate program. This
program runs on the data after it has been extracted from
the database. Any recodes to data or any manipulation
which needs to be made to conform to the Federal
regulations is done to the extract file only. This way
the database stays in sync with the State and the Feds
receive their data in the format they stipulate. This
keeps both masters happy.

BACKGROUND

After the state installed the first version of CANDIS,
we made the modifications necessary to meet the Federal
requirements that wouldn't interfere with the State's
specifications. The big fiasco didn't happen until the
second version release came from the state. After the

APPLICATION INSTALLATION
3203-2

installation we found that several of the modifications
we had made for the Fed's were gone. After making all
of these changes AGAIN, we realized that it was time to
sit down and plan our strategy before the next release.
Neither the programming staff nor the users wanted to
ever go through another few weeks like we had after that
last installation.

The following is a list of issues which we put together
as a checklist of sorts to make sure that the next
installation went quickly, smoothly and, most important,
that nothing was forgotten.

receiving the software
the accounting structure
comparing the new release with the old
modifications
keeping track
testing
installing

Receiving the Software

This seems like a somewhat trivial point to bring up but
what it includes is the fact that you should be prepared
for the software prior to physically receiving the
release.

Try to get an exact date of the release if this is at all
possible. Many times it is not. Try to pin down the
date to something a little more precise than "spring".
At least go for a specific month and once you have that
you can usually determine if it will be early in the
month or more towards the end. This is important for
your initial planning to determine when the software will
be available to the end users once the release is in
house.

One must remember that the end users will be impacted by
this version release also. If there are major chanqes
perhaps training will have to be arranged. In our shop,

APPLICATION INSTALLATION
3203-3

we are on a tight production schedule. We upload
approximately 1500 to 2000 new records every two weeks.
It is imperative that we keep on this schedule to insure
that we stay current and don't let the cases get back
logged. What this means is that we must coordinate the
installation with the production calendar. We try to
minimize the user down time which usually means working
on the weekends.

If you take some time prior to receiving the release to
prepare for its installation you can save yourself time
and energy. I know this is a new concept for some of
you, it was for us. We call it Planning Ahead!!

If you have a large programming staff take the time early
to pick the lucky soules) who will be doing the install.
You might even want to let them know ahead of time so
that they can be mentally prepared for it. If your staff
is small and the person knows who he or she is, you might
want to just sneak up on them, smile politely, whisper
the install date and then run. This gives them time to
finish current projects and adjust their workload
accordingly.

An important and somewhat time-consuming task is creating
an "install" environment. This should be created as
similar to the production environment as possible. If
room permits on the system one can just store the
production account and restore it into a test account.
If you are like most of us, space on your system is a bit
tight. What we did was to create two test databases.

The first is very small, approximately 500 records. It
is used for all the initial testing. It is by no means
a perfect test database. It does allow the programmers
to quickly test out their programs to see if they run to
completion. It also lets them work out any bugs in their
JCL, e.g. missing file statements, incorrect file names,
etc. It is strictly used as a primary check before any
thorough testing begins.

We then created a scaled-down version of the database as
close to production as possible. A product such as

APPLICATION INSTALLATION
3203-4

SUPRTOOL by Robelle is great for this. It allows you to
select every IIInth" record from a dataset to be copied for
loading into a test database.

This can all be done ahead of time so that when the
software does arrive it can be immediately put onto the
system and nobody has to wonder "now where did I put that
tape?".

THB ACCOUNTZHG STRUCTURE

As mentioned in the previous section it is very important
to keep your test environment as close to your production
environment as possible. Of course we all know this
already. What is also important though is keeping the
current software totally separate from the new version
release. This can get quite confusing if you aren't
careful. Don't mix any new and old software until the
actual release. What we did was to set up three groups
in the test account. We call them SRCOLD, SRCNEW and
SOURCE.

SRCOLD holds all of the current source code; SRCNEW is
where the new release is put; and then as each program
is reviewed and the necessary modifications made, that
source code goes into SOURCE and will become the current
version of our software.

The same holds true for the JCL. When receiving updates
for running programs in batch mode, we also set up groups
to hold these files. We use JOBOLD, JOBNEW and JOBS.
The same logic applies as above for the source code.
Once the accounting structure is set up and the new
release downloaded onto the HP3000 you are ready to start
looking at just what it is that you have been sent.

An often overlooked detail is making sure that the
install environment has the identical CAPABILITIES and
ACCESS as the production environment. You want to ensure
that when the application is moved into production that
it runs without a hitch.

APPLICATION INSTALLATION
3203-5

COMPARXNG THE NEW RELEASE WXTH THE OLD

I don't know about most of you out there but when I
install a new version of software I like to know exactly
what changes have been made to it before the users come
running down the hall screaming "did you know that this
program now does this?". This way I can always say "yes,
of course I do -- I installed it".

More importantly, by looking at the modifications that
have been added to the code before you install them for
the users, you have a chance to discuss them with the
users and determine whether you in fact should install
the change. It really does pay in the long run to take
the time and discuss modifications with the people who
have the authority to decide whether the application
would be better off with or without the new change. This
not only makes it easier on the staff who then only has
to install it once, but it also makes the users feel that
they have some input into the application they are using.

Hopefully, your release comes with some kind of
documentation as to which programs have been modified and
which have not. This was not always the case for us.
Eventually we did start getting some documentation but
we had already come up with a way of determining the
changes ourselves. We made a list of all programs and
JCL in the system. We then compared each of the programs
against the version which was currently running. As we
reviewed each piece, we checked it off as having been
looked at.

A great product for comparing different versions of
source code is SCOMPARE by the ALDON Computer Group.
What this software does is to compare two versions of the
same program and detail every line of code which has been
modified. The output is very easy to comprehend. You
even have the option of creating an editfile. This file
holds all the line numbers for which should be added and

APPLICATION INSTALLATION
3203-6

which should be deleted to make the old version match up
with the new version. If you decide that the new version
is not quite what you want to install, SCOMPARE allows
you to pick and choose which new lines of code you do
want and easily discard the lines you donUt. I don't
know of any other software on the HP3000 that does
anything similar to this, but I can say that if you need
to compare modules or entire programs SCOMPARE can easily
save you hours of work.

One standard we follow here is that those changes we
receive and do not wish to install are left in the
program and just commented out. This way the code stays
in the program as self-documentation and is available if
the users change their minds in the future.

At this point we are not only looking at the code that
was added but looking for code that may not have been
added. What I mean here is that if the documentation
states that code has been added to perform a specific
function, I look to see that somewhere there is code to
do that. This also goes for bug fixes. Has the code
been modified that is going to take care of all the bugs
listed as "fixed" in the documentation? Has any code
been removed which shouldn't have been?

I check off all these types of things on my checklist as
I go along. This list then becomes part of the
documentation of the installation.

MODIFICATIONS

Once the modifications have been identified and everyone
has agreed on which ones to install, the process is very
simple. We move the newly modified program into the
SOURCE group. At this point I like to run another
SCOMPARE just to make sure that all the new changes are
accounted for and in the right spot in the program.

SCOMPARE will also work on copylibs, so don't forget to
take a look at them. It can do the entire copylib or
just a member or two.

APPLICATION INSTALLATION
3203-7

Once everything has been verified I run my compile. If
all goes well, I mark off that program and move onto the
next until they're all done.

KEEPING TRACK

Keeping track of which programs have been revised can be
as simple as the checklist I mentioned previously. I
make a list of all programs which need to be modified and
after they are looked at I check them off, then when the
changes have been made, another checkmark. The same goes
for a clean compile and the final move into the SOURCE
group. This checklist can also be used for keeping track
of which have been tested later on. This is also how I
remember which programs I have made modifications to
which were not part of the install from the state. This
way I am sure to include them in the new release.

This may seem unne:cessary, but if you work in an
environment like m1ne where I am constantly being
interrupted, this simple checklist can save your sanity.
To tell you the truth, even without interruptions from
users I sometimes find it hard to remember what I did
yesterday, so you can see why this is a must for me!

TESTING

I am not going to go into the fine art of testing here
but I do want to stress the importance of testing each
of the programs which have been modified. Even the
smallest change to a piece of code can make HUGE errors,
as I'm sure you are all aware. We once had a programmer
working for us whose answer to the question "did you test
it?" was "well, just look at the code - it's only one
line". Not a good answer!!! Even the one-line changes
need to be fully tested.

APPLICATION INSTALLATION
3203-8

As I mentioned earlier in this paper and I'm sure all you
programmers out there already know, it is imperative that
your testing environment be as close to the real thing
as possible. Many bugs that slip through are because the
testing environment does not accurately represent what
is out there on the live database. Also remember that
some things that need to be tested are codes not found
in the live database but which are tested for in the
programs. You need records that are old as well as more
recent. You need some with multiple entries (if this is
possible for you) and those that are single. You need
a wide variety of codes in different fields so that all
possibilities are checked for each new piece of code.

If the record does not exist on the test database which
will thoroughly test a piece of code, I use DBEDIT from
Robelle to create the record or I use Query to modify one
that will force it to fit my specifications. Just
remember that taking the time to test thoroughly up front
prevents a lot of headaches later on down the road.

After each of the modified pieces of code has been tested
I then test it again within the context of the entire
program. I select certain records on the test database
which I follow through the program. I then check the end
results to be sure they match my expected results. When
this has been done for all programs I then run a complete
application test to verify that all the programs work
together the way they were intended.

Testing is very time consuming. I don't let this portion
be hurried. I make sure that when we are targeting an
installation date that I have given myself plenty of time
for testing. If things don't go well when testing, we
delay the install date rather than put untested code into
production.

INSTALLING

The actual installation of the new software should now
be a piece of cake. All of the new code is together in

APPLICATION INSTALLATION
3203~9

one group, it has all been tested and now it needs to be
moved into the production environment. This can be as
simple as storing your executable code from the group in
the test account and restoring it into the production
group. The same can be done for the source code (if it
is to be kept in the production account). We have a
"library" account which holds all the new source code as
well as the previous version as a backup. This
guarantees that if revisions need to be made at a later
date, the programmer knows where the current version
resides. There should never be any doubt as to which
program is the version to be modified!!! After the
source code is in the "library" account (or where ever
it is kept on your system) it is a very good idea to back
it all up onto tape. Then all of the source should be
removed from the test environment. This removes the
possibility of someone assuming that the code in "test"
is the current version and using it when making changes
in the future. That is a very easy way to get your
software out of sync.

For those programs which will be running in batch mode,
be careful that the job card has been modified to point
to the production account. Another gotcha here is to be
sure that the output files for production are built to
the proper size. It's very easy to forget to increase
their capacities after they have been built for testing
in the test account.

Again, be sure that the users are aware when the
installation is to occur. If it is to happen over the
weekend make certain that people who occasionally or
regularly work on the weekend know that the install is
taking place and that the production account will be
inaccessible. We have made it a policy that when we are
installing new software in the production account that
the entire system is off limits to everyone. This saves
time in trying to figure out who needs to know and who
doesn't. Everyone needs to know and everyone needs to
stay off!

APPLICATION INSTALLATION
3203-10

CONCLUSION

Congratulations, the new application has been installed
and everything is done, right? Wrong! At this point the
users are using the new version but everyone should be
alert to the fact that things could still go wrong.

We watch our first few live runs very closely. I review
all the output to be sure counts look accurate, that the
data itself looks correct on all the different reports.
Are the codes that are being printed out valid values for
each field? This is the type of error that is often
overlooked because people assume that if there is data
printed out on the report, that the data is correct.
This is not always the case.

Users should be extra aware of any discrepancies in the
new release. Whether it is a strange looking code, a
View screen that doesn't look quite right anymore, or a
report that perhaps doesn't total correctly. They should
all be on the lookout for anything out of the ordinary.
Even if the user turns out to be wrong about a possible
bug, it is better that the problem be looked into as
early as possible. We really encourage our users to come
to us any time they feel that something is out of whack.

If problems do ceme up or bugs are found in the software
we have found that notifying the state immediately was
to our advantage. In the beginning we attempted to fix
them ourselves and then to notify them. sometimes the
fix we made was not written the same way as their fix and
then we were out of sync, AGAIN.

We also realized that when we did call about a potential
problem, we had to make sure that we did not call and
start screaming. Funny how that immediately puts people
on the defensive. It's far better to call and ask them
to look into the problem or perhaps offer a possible
solution (if asked). Keep the lines of communication
open -- you may need them for something in the future!

APPLICATION INSTALLATION
3203-11

A few final thoughts are:

the importance of planning ahead

the importance of not being rushed

paying attention to the detail work

carefully testing all programs

coordinating the install with the users

APPLICATION INSTALLATION
3203-12

Paper #: 3204

DECISION TABLES - MAKING THE COMPLEX SIMPLE

George Federman
George Federman & Associates

6236 Parkhurst Drive
Goleta, CA 93117
(805) 683-3037

Decision tables are overpraised and underutilized. Every text on
systems analysis states their virtues. They can clarify complex user
specifications. They can aid the analyst in specifying logic to a
programmer. When complete, they can remain a part of user
documentation, leaving a window into otherwise hidden and intricate
logic. More succinct than pseudocode, they offer checks for
completeness and consistency that pseudocode can't provide. Yet
despite all this capability, this once-popular tool is now relatively
unused.

I'd like to review some of the fundamentals of decision tables in an
attempt to once again present the power of the tool.

Let's begin with a simple example of translating a company policy
into a decision table. We're going to interview the CEO of Mind
Trippers, a data processing consulting firm with a strong '60's
orientation. In our interview, Bat D. Fledermaus, the CEO, says:

"We dig our free time, man, and like to plan some groovy things to do
when we have time left over from work. But if a project's overdue,
we put our bods in gear and go to work. If it's a normal workday,
well, work's a grind, but we gotta do it, so it's off to work. Sometimes
we have research to do, and then we truck on down to the university
library. That's it, man, a simple corporate philosophy and how we
earn our daily bread."

Having interviewed the CEO, we can put his policy into a decision
table, using a technique borrowed from T. R. Gildersleeve (32-40).
First, we isolate all the conditions. Underlining these:

"We dig our free time, man, and like to plan some groovy things to do
when we have time left over from work. But if a project's overdue,

Decision Tables - Making the Complex Simple Page 3204-1

we put our bods in gear and go to work. If it's a normal workday,
well, work's a grind, but we gotta do it, so it's off to work. Sometimes
we have research to do, and then we truck on down to the university
library. That's it, man, a simple corporate philosophy and how we
earn our daily bread."

Having isolated the conditions, we'll isolate the actions:

"We dig our free time, man, and like to plan some groovY things to do
when we have time left over from work. But if a project's overdue,
we put our bods in gear and go to work. If it's a normal workday,
well, work's a grind, but we gotta do it, so it's off to work. Sometimes
we have research to do, and then we truck on down to the university
library. That's it, man, a simple corporate philosophy and how we
earn our daily bread."

Gildersleeve then recommends that we standardize the language, and
if any duplicate conditions or actions exist (like "go to work" when
we have an overdue project or on a workday), remove the duplicates
(41-44). Standardizing and removing duplicates, we have:

Conditions:

1. Time left over from work?
2. Overdue project?
3. Normal workday?
4. Need to do research?

Actions:

1. Go to work.
2. Go to the library.
3 . Plan leisure activities.

Following Gildersleeve's guidelines, we'll eliminate negative
conditions (45). These already exist in another form, and just
rephrase one or more of the already existing conditions in the
opposite way. Thus "time left over from work" can be removed as a
condition, since it is implied when the other three conditions have
"N" (false) values.

Gildersleeve then lists several other steps to· take (listing actions in
execution order, including an else rule, eliminating redundancy and
contradiction, optimizing searching, and checking for completeness)

Decision Tables - Making the Complex Simple Page 3204-2

(106). We'll deal with some of these as we construct and review our
initial decision table.

Defining some terms first, a decision table consists of condition stubs,
condition entries, action stubs, and action entries. Anyone row shows
a condition and its entries or an action and its entries. Any rule
column shows what actions should be taken given certain values for
the various conditions. Thus, in Figure ·1 below, the conditions are in
the upper left quadrant of the table (overdue project, normal
workday, etc.) The condition entries are in the upper right quadrant.
(These are YIN entries, since each condition is phrased as a YIN or
true/false question. The entry can also be a minus sign or hyphen,
which serves as the indifference symbol or "don't care" symbol. If a
condition is irrelevant, and could be Y or N without affecting the
resulting action, we use a "don't care" symbol.)

The actions appear in the lower left quadrant, and the action entries
are marked with an X in the lower right quadrant. (If we wanted the
actions to be executed in a specific sequence, we could use 1, 2, 3, etc.
as action entries instead of an X. However, if the order in which the
action stubs appear is the order in which we want them performed,
an X is sufficient.)

Table name or process identification
DE1ERMINE DAILY SCHEDULE

Rules
123

Overdue project? Y - -
Normal workday? - Y -
Need to do research? - - y

Go to work X X
Go to the library X
Plan leisure activities
Figure 1. Determine daily schedule (incorrect rules).

Our first decision table is remarkably simple, and simply wrong.
Rule 1 says that if there is an overdue project, company policy is to
have employees go to work. Rule 2 says that if it is a normal
workday, the policy is to go to work. Finally, Rule 3 says that if
research has to be done, company policy is to send employees to the
library. Each rule has "don't cares" in it, indicating that the other
conditions are irrelevant in determining the action.

Intuitively, we know the table is wrong. It looks like employees will
never "plan leisure activities," yet this is an action listed on the table
and one we know should be invoked if they have free time. We can
also see that if it is a normal workday but employees need to do

Decision Tables - Making the Complex Simple Page 3204-3

research, we have contradictory rules, and don't know whether they
go to work or go to the library. We could try to figure out the
inconsistencies on our own, but one of the virtues of decision tables
is the ability to mechanically arrive at a complete, consistent table.

Let's do some of the simple mechanics. First of all, we have three
conditions, each of which can take on a Y or N value. In theory, we
should have 2x2x2 simple rules, or 8 altogether. (If we itemized
these, we would expect to see YVY, YYN, YNY, YNN, NYY, NYN, NNY,
and NNN, reading down each rule column.)

But our table has
indifference symbols.
complex ones?

three mixed. or complex rules, containing
How many simple -rules are represented in the

Since each indifference symbol represents the acceptability of both a
Y and a N (since we don't care what value that condition has), each
symbol represents two alternatives. Looking at Rule 1 (Y- -), the Y is
one value, the first dash represents two possible values, and the
second dash represents two more possible values. In short, we have
1x2x2 simple rules combined into one complex rule in Rule 1.
Following the same reasoning, we have 2xlx2 simple rules
represented in complex Rule 2, and 2x2xl simple rules in Rule 3.
Technically speaking, we have computed "column counts" and
discovered that each rule (column) has a count of four. If we sum all
three column counts, we find that we have 12 simple rules
embedded in our table, when we only expected eight.

Let's expand the complex rules into simple ones, not only itemizing
the 12, but finding out where we deviated from the expected count.
Taking Rule 1 first:

Y becomes Y Y and then
YN

1 abc d
Y Y Y Y
YYNN
YNYN

by expanding each don't care in tum into a Y value and an N value.

Doing the same for Rule 2:

Y
becomes' Y N and then

YY

2 abc d
YYNN
YYYY
YNYN

Decision Tables - Making the Complex Simple Page 3204-4

Expanding each "don't care" in Rule 3:

y

becomes
YN
YY

and then
3 abc d

YNYN
YYNN
YYYY

If we compare these 12 simple rules, we immediately detect
problems. Rule la and 2a are identical: they have the same
condition entries (YYY) and the same action. Therefore rule 2a is
redundant and can be eliminated.

Rule 1a and 3a have the same condition entries (YYY), but lead to
different actions ("go to work" versus "go to the library"). We have a
contradiction, and have to go back to the user to determine what
action to take. (Let's assume Bat D. Fledermaus says that work is
more important than anything else, and if there is a conflict, his
personnel go to work. In that case, we would eliminate rule 3a.)

Continuing the comparison, we find that 1band 2b are identical, so
2b is redundant and can be eliminated. Rules lc and 3c are
contradictions, as are 2c and 3b, and following the CEO's emphais on
work, we eliminate 3c and 3b.

If we eliminate 2a, 2b, 3a, 3b, and 3c, we now have seven rules left
from our original 12. (See Figure 2.) We expected eight. What's
missing?

Table name or process identification
DE1ERMINE DAILY SCHEDULE

Rules
1234567

Overdue project? Y Y Y Y N N N
Normal workday? Y Y N N Y Y N
Need to do research? y N Y N Y N Y
Go to work X X X X X X
Go to the library X
Plan leisure activities
Figure 2.. Determine daily schedule (missing rule).

All work and no play makes Fledermaus a dull boy. Unless we add
an eighth rule, NNN, there will never- be any free time, and no one
will ever plan any leisure activities. We add the missin Lt rule, and
finally get the complete table in Figure 3.

The table is easy to read, and reflects the policy described above.
Looking at Rules 1 through 4, if there is an overdue project, then

Decision Tables - Making the Complex Simple Page 3204-5

workday or weekend, personnel go to work. Rules 5 and 6 indicate
that if there are no overdue projects, but it's a normal workday, it's
off to work. On weekends, if research is needed, it's off to the
university library (Rule 7). Finally, assuming no critical projects, no
workday, and no research to do, it's time to plan some leisure
activities (Rule 8).

Table name or process identification
DETERMINE DAILY SCHEDULE

Rules
1234567 8

Overdue project? Y Y Y Y N N N N
Normal workday? Y Y N N Y Y N N
Need to do research? Y N Y N Y N Y N

Go to work X X X X X X
Go to the library X
Plan leisure activities X
Figure 3. Determine daily schedule (complete).

A table is correct and complete if two conditions are met. The first
is that the sum of the column counts matches the expected simple
rule count. Here, each column has a column count of one (YYY is
evaluated as lxlxl, YYN is lxlxl, etc.) and the sum of the counts is
eight. The expected count is 2x2x2, the product of the possible
outcomes for each condition, and the two numbers are the same.

The second condition is that each simple rule is unique. One
technique for verifying uniqueness is to take column 1 and compare
it to columns 2 through 8, looking for duplicates. If there are none,
then compare column 2 with columns 3 through 8, then column 3
with columns 4 through 8, etc. In our table, each column is unique.
Thus the table is indeed complete and correct.

At this point, we can consolidate simple rules into complex ones to
simplify the table. If a rule differs from another in just one value for
a single condition, and the rules have the identical actions, the two
rules can be combined and an indifference symbol substituted for
that specific value. Thus we could combine Rule 1 (YYY) and Rule 2
(YYN) into (YY-), Rule 3 (YNY) and Rule 4 (YNN) into YN-, and the two
new columns (YY- and YN-) into a single rule (Y- -). Similarly, we can
combine Rule 5 (NYY) and Rule 6 (NYN) into a single rule NY-. Can
we combine Rule 7 and Rule 8? No, because Rule 7 has one action
("go to the library") while Rule 8 has another.

Our final table appears in Figure 4.

Decision Tables - Making the Complex Simple Page 3204-6

Table name or process identification
DETERMINE DAILY SCHEDULE

Rules
123 4

Overdue project? Y N N N
Normal workday? - Y N N
Need to do research? - - Y N
Go to work X X
Go to the library X
Plan leisure activities X
Figure 4. Determine daily schedule (final).

This table is a limited entry decision table (LEDT). The way the
conditions are phrased, we are limited to two values in the condition
entries (Y or N). Siolilarly, the action entries are a number (1, 2, 3,
etc.) or an X, but really limit us to two choices (perform the action or
don't). Other types of tables can be created, such as an extended
entry decision table (EEDT), where. the condition and action entries
"extend" the wording in the stubs and can take on more than two
values. We could also have a mixed entry decision table (MEDT), a
blend of limited and extended entries in one table. (Examples of an
EEDT and an MEDT appear below.)

If we wanted to code from this table, it naturally divides into an
if..else coding structure. If we bifurcate the table at condition 1
("overdue project?"), drawing a line down to separate the Y from the
N rules, and another ·line between condition 1 and condition 2, we
have the frrst "if" clause in an if..else structure. (See Figure 5.)

If overdue project
go to work

else ...

If we do the same with condition 2, we have the second clause:

If overdue project
go to work

else if normal workday
go to work

else ...

Finally, doing the same for condition three:

If overdue project
go to work

else if normal workday
go to work

Decision Tables - Making the Complex Simple Page 3204-7

eIse if need to do research
go to the library

else
plan leisure activities.

Table name or process identification
DETERMINE DAILY SCHEDULE

Rules
123 4

Overdue project? Y N N N
Normal workday? - Y N N
Need to do research? - - Y N
Go to work X X
Go to the library X
Plan leisure activities X
Figure 5. Determine daily schedule (bifurcated).

A mechanically-perfect LEDT should still be reviewed. Let's assume
we are comparing two numbers, A and B, and want to print a
message indicating which is greater or if they are equal. We have
three conditions (A>B, A<B, or A=B) and could create the table in
Figure 6.

Table name or process identification
COMPARE A TO B

Rules
123 4

A>B? Y N N N
A<B? - Y N N
A=B? - - Y N
Print "A is greater than B" X
Print "A is less than B" X
Print "A equals B" X
Figure 6. Comparison table (LEDT).

Reading the table, it seems to make sense. The table has three
conditions, and we expect eight simple rules. We indeed have eight
simple rules. Each rule has to be unique, and each is. We know that
we have no redundant, contradictory, or missing rules. Thus we
have a mechanically-perfect table.

We also have a small problem. Rule 4 (NNN) makes no sense. It is
impossible. Similarly, Rule 1 contains four ,simple rules, but if we
expanded tbe rule Y- - into YYY, YYN, YNY, and YNN, we would find
that only YNN makes sense. The remainder are also impossible.
Similarly, expanding Rule 2 (NY-), NYY is impossible and only NYN
makes sense. Out of our original eight rules in our mechanically-

Decision Tables - Making the Complex Simple Page 3204-8

perfect table, only three make sense, and five are impossible. To be
meaningful, our table should be reduced to the one in Figure 7.

Table name or process identification
COMPAREATOB

Rules
123

A>B? Y N N
A<B? N y N
A=B? N N y

Print "A is 2feater than B" X
Print "A is less than B" X
Print "A equals B" X
Figure 7. Comparison table (LEDT).

We are now logically correct, but have three simple rules where we
expected eight. We could explain the difference by using new
notation within the condition entries (like an asterisk or N! to
indicate an N by implication) or by additional notes. As an
alternative, we could create the extended entry decision table (EEDT)
in Figure 8.

Table name
COMPAREATOB 1

Rules
2 3

A is >B <B =B
Print "A is " "greater "less than "equal

than B" B" to B"
Figure 8. Comparison table (as EEDT).

We could also have blended the limited entry format with the
extended entry format to get the mixed entry decision table (MEDT)
in Figure 9.

Table name
COMPAREATOB

Rules
2 3

A is >B <B' =B
Print "A is X
greater than B"
Print "A is less X
than B"
Print "A equals X
B"
Figure 9. Comparison table (as MEDT).

Now we have both a mechanically-perfect table and a logically-sound
one free of impossible rules.

Decision Tables - Making the Complex Simple Page 3204-9

Returning to the idea of passing a table to a programmer as a
specification, an EEDT or MEDT immediately translates into a case
structure, with case structures or if..else structures nested within it.

There are further advantages from a programmer's point of view.
Tables can be factored and nested, and both condition checks and
actions can invoke subtables.

As aD example, a condition like "overdue project?" will have a
condition entry (Y or N) that could be returned as a value from
anOther table. That subtable could later become code which links an
employee to each of his projects, compares each project due date
with the current date, and returns a Y if any due date exceeds the
current date or an N otherwise.

Action stubs could invoke subtables. "Plan leisure activities" could
be a call to another table, and ultimately be coded as a PERFORM or a
called subroutine.

We can create manager tables and worker tables. We can have
condition-only tables and action-only tables, factoring out complex
condition checks or actions so that the larger parent table (or
manager table) is simpler to read and follow. Tables can be divided
and nested like hierarchy charts or leveled data flow diagrams.

As an added benefit, all the constructs of structured programming
(sequence, selection, and iteration) are available in decision tables.
This one-to-one correspondence could greatly enhance analyst
programmer communication and result in the writing of much
clearer specifications.

We've seen the benefits of tables for clarifying policies and
procedures and for creating clear programmer specifications. The
same clarity is available when tables remain part of user
documentation. In a concise, graphic form, tables provide a macro
view of all the conditions and all the actions that pertain to a policy
or procedure. Moreover, no matter how complex the logic in the
table, the user can trace that logic just by following the columns.
This standardized way of reading logic frees the user from having to
learn different styles of "structured English" and pseudocode.
Finally, if user specifications to the analyst consist of tables, and
those tables (as is or amplified) become analyst specifications to the
programmer, we now have a common form of communication among
all three, and a common window into the final system.

Decision Tables - Making the Complex Simple Page 3204-10

Bibliography

CODASYL. A Modern Appraisal of Decision Tables. New York:
Association for Computing Machinery, 1982.

Gildersleeve, Thomas R. Decision Tables and Their Practical
Allplication in Data Processing. Englewood Cliffs, N.J.: Prentice-Hall,
1970.

Humby, Edward.
Macdonald, 1973.

Programs from Decision Tables. London:

Hurley, Richard B. Decision Tables in Software Engineerine. New
York: Van Nostrand Reinhold, 1983.

London, Keith R. Decision Tables. Princeton, N.J.: Auerbach, 1972.

Metzner, John R., and Bruce H. Barnes. Decision Table Languages and
Systems. New York: Academic Press, 1977.

Montalbano, Michael. Decision Tables. Chicago: Science Research
Associates, 1974.

Pollack, Solomon L., Harry T. Hicks, Jr., and William J. Hanison.
Decision Tables: Theory and Practice. New York: John Wiley & Sons,
1971.

Decision Tables - Making the Complex Simple Page 3204-11

Paper I 3205

DYNAMIC MENU SYSTEMS FOR THE COGNOS PRODUCT

Gene Barmon
AD Custom Software, Inc.

8210 Terrace Drive
El Cerrito, CA 94530

(415) 525-5070

Genesis/Goals

As consultants for a variety of clients, we attempt to design
systems which provide the maximum functionality for our client's
needs, and which also provide the maximum benefit from the use of
a fourth generation lanquage, such as the Cognos product. However,
more often than not, many of our best methodologies derive from
specific requests from our clients. One of these requests is the
subject of my paper today: a dynamic menu system which includes
within it a security and printer control system.

The normal setup of an hierarchical menu system which we had
designed for many of our clients, meets most requirements of
clarity and functionality; however, it requires the user to
navigate up and down long chains of menu selections. These
navigations can be tedious, lengthy, and confusing.

Goals of the the new system for our client were the following:

1. Allow the user to bring up the screen of their choice, with
NO menu navigation; instead allow:

a. Entry of NEXT;xxxx in the ACTION field to allow the
call of the new xxxx screen.

or

b. Entry of MENU in the ACTION field to present the user
with a screen of allowable menu· choices.

3205-1

DYNAMIC MENU SYSTEMS

2. Establish security at the application program level; also
allow definition of users independent of system user signon.

3. Allow assignment of system logical printers to user CRT's.
For example, this will allow a requested report or completed
form to print out on a laser printer which is located near
the CRT on which the requesting user is signed on.

Hei:hodology

To accomplish the goals listed above, it is necessary to create the
file structure necessary to support it, and certain 'use' files.
The required files are (also see file layouts at end of paper) :

(note: I have not bothered to define Automatic Masters)

1. TBL-FN-MODULE. (Table of Functional Modules)

Field Definitions:

1. FUNCTION.
This is a menu code which will appear on the user's menu
and is used as a mnemonic to call the desired function.

2. MODULE.
This is the fully defined module name
(filename.group.account) which will be executed
when the FUNCTION is called.

3. DESC-MODULE.
This is the description which will be displayed on the
user's menu screen.

4. FLAG-MODULE •
This is a field which is not necessary for the generation
of the menu system, but which can be used in conjunction with
the field FLAG-LEVEL to establish security by function within
an application program.

5. FLAG-LEVEL.
This is the field which establishes the level of security,
and is compared to the level of the user's security when
menu functions are assigned to the user.

3205-2

DYNAMIC MENU SYSTEMS

6. USER-LEVEL.
This field may be used to discrimate between classes of
users; for example: Bome-office, Branch, Systems.

7. NEXT-MODULE .
(obsolete)

2. TBL-PASSWORD (Table of Passwords by user)

Field Definitions:

1. EMP-ID.
This is the sign-on used; usually a first name.

2. PASSWORD .
This is the password assigned to the user which must be
entered at the first sign-on menu for the user.

3. NAME.
The complete name of the user.

4. BOME-AGENCY.
Optionally defined field which the user must supply. Will
become part of a parameter list to be passed to each called
function.

5. BOME-FACILITY.
(see BOME-AGENCY)

6. FLAG-SECURITY.
This field will be used to determine if the user is allowed
to have a particular function of part of his menu.

7. FLAG-EXIT.
This will be used to see if the user is entitled to return
to the system prompt.

8. USER-LEVEL.
This is usually used to assign the user a level of system,
home-office, or branch (or some corollary of this structure).

3205-3

DYNAMIC MENU SYSTEMS

9. FIRST-PROGRAM.
This is used to designate the first function which will be
automatically executed after successful user sign-on.

3. TBL-PW-MODULE. (Table of Modules which have been established
for the menus of each user)

Field Definitions:

1. PW-MODULE-KEY.
This key is constructed for each function that is set up
for the user.

2. EMP-ID.
This is the sign-on ID used in the initial sign-on screen.

3. FLAG-LEVEL (See above)

4. SEQ-FUNCTION.
If used, this will control the sequence in which the menu
functions will be displayed to the user.

4. TBL-PRINTERS. (Table of system printers)

Field Definitions:

1. PRINTER-ID.
Use as the identifier which can be referenced when assigning
this printer to a specific CRT.

2. LOGICAL-DEV-NO.
Use the system logical device number of the physical printer.

3. DESCRIPTION.
Use this field to specify where the printer is located.

4. PRINTER-TYPE.
Indicate the type of printer (laser, dot-matrix, etc.)

5. SPOOL-SLAVE •
Indicate if the printer is slave or spool (sp/sl)

3205-4

DYNAMIC MENU SYSTEMS

5. TBL-CRTS. (Table of CRT's using the menu system; needed if
printers are to be assigned to them)

Field Definitions:

1. CRT-MOD-CLN-KEY.
Contains the system device-number, the menu function code,
and the facility (or corollary designator).

2. PRINTER-ID.
Contains the PRINTER-ID mnemonic for the printer set up in
the file TBL-PRINTERS.

3. TRAY-NO.
Contains the tray number of the printer (if laser).

Use riles; (see listings at end of paper)

1. NEXT. USE.

This file must be used in the procedure section of each
QUICK program which is on the user menu. Its function
is to allow the user to either directly call another
screen, or to pull up his own menu screen.

2. TEMP.USE

This file contains File and temporary statements used by
NEXT. USE.

3. STDHDRQK.USE.

This file contains standard screen header information
and is used in each QUICK program which is on the menu
system. It is also required by NEXT. USE.

SCRBBR SYSTEMs

The preceding files are used by the following QUICK screens (which
comprise the MENU system):

(note: see printouts of these screens at the end of the paper)

3205-5

DYNAMIC MENU SYSTEMS

1. System main menu (PCHMENU) .

Functions:

1. Prompt for user-id and password and validate on TBL-PASSWORD
file.

2. Determine home agency/facility of signee; possibly allow
sign-on to facility other than home; initialize parameter
list to pass on to selected functions (allowing these
functions to qualify/select records on screen-files.

3. Allow for direct call of any allowed (depending on security)
function, or a call of screen displaying all allowed
functions.

2. Custom User Menu (ALLNEXT).

Functions:

1. Display the list of menu functions set up for the user
who has signed on.

2. Allow selection and execution of a function.

3 • Maintenance of Menu Punctions (TFNMODU).

Functions:

1. Maintain all functions which can be executed by a user
of the menu system, and assign security levels.

4. Assignment of Users, User-security, and Punction-assiqnmt
(TPASSWDU) .

Functions:

1. Maintain roster of menu users and their security levels.

2. Allow designation of function to be execution at initial
signon

3. Maintain list of functions which may be executed by user.

3205-6

DYNAMIC MENU SYSTEMS

5. Printer Maintenance (TPRINTU).

Functions:

1. Maintain table of printers which can be assigned to
CRT's.

6. CRT Maintenance (TCRTSU).

Functions:

1. Maintain table of CRT's by device number and function.

PRAC~ICAL CO.SIDBRA~IO.SI

At the end of this paper, you will find tile QUICK code for the
programs which are absolutely critical to the correct
implementation of this system. Although the menu system presented
in this paper will run satifactorily on either a classic or
Spectrum machine, the classic version will be subject to stack
overflow if there is too much reciprocal calling between functions.

This system also includes code which takes advantage of the DISC
omnidex product; this code is used solely for sorted presentation
of the function codes, and may be safely removed without affecting
the functionality of the menu system. You will notice that the
code for program = TPASSWDU, is set up exactly as an application
QUICK execution module MUST be set up (in other words, it has a
standard parameter list, and it utilizes the use files: temp. use,
stdhdrqk.use, and next.use).

Our experience has been that most users like this method of menu
presentation; they quickly learn the 4-character mnemonic function
codes, and rarely return to the main menu. From a system
administrator's point of view, the system offers both the
advantages of security, and the capability to offer the users just
the menu functions required by them to do their job; all within the
same application.

3205-7

DYNAMIC MENU SYSTEMS

USE FUNCTION. USE NOL
DRAW THICK 3,1 TO 3,80
ALIGN (" 30) (, , 60)
TITLE "I" AT ,25
FIELD PASS-FACILITY-NM DISPLAY REFRESH PREDISPLAY
FIELD PASS-EMP-NM DISPLAY REFRESH PREDISPLAY
TITLE "I" AT ,59
SKIP
ALIGN (,,21) (,,30) (,,60) (,,71)
;FIELD FUNCTION-ID DISPLAY REFRESH PREDISPLAY
FIELD NEXT-FUNCTION NOENTRY NOID UPSHIFT iLABEL "Next..
TITLE "I" AT ,25
FIELD FUNCTION-NM DISPLAY REFRESH PREDISPLAY
FIELD SYSTEM-DATE DISPLAY REFRESH PREDISPLAY
FIELD FUNCTION-ID DISPLAY REFRESH PREDISPLAY
rFIELD SYSTEM-TIME DISPLAY REFRESH PREDISPLAY PIC "AA:AA:AA"
TITLE "I" AT ,59
SKIP
USE HILITERQ.USE NOL

It
STDHDRQK. USE, UNN
11 all

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

It
NEXT.USE,UNN
11 all

1 iUSE SOMUSE8.USE NOL
2 .PROCEDURE INITIALIZE
3 BEGIN
4
5 LET THIS-FUNCTION = NEXT-FUNCTION
6 LET NEXT-FUNCTION = " ..
7 DISPLAY FUNCTION~NM

8 i DO INTERNAL SETKEYS
9

10 END
11
12 PROCEDURE INPUT NEXT-FUNCTION
13 BEGIN
14 IF FIELDTEXT a " "

15 THEN
16 LET FIELDTEXT = "<"
17 END
18
19 PROCEDURE INTERNAL NEXT-INT
20 BEGIN
21
22 IF NEXT-FUNCTION = "<" iOR NEXT-FUNCTION =
23 THEN BEGIN
24 LET NEXT-FUNCTION = "
25 RUN SCREEN ALLNEXT ,
26 MODE F PASSING ,
27 PASS-EMP-ID, ,
28 PASS-FACILITY, ,
29 PASS-AGENCY, ,
30 PASS-FACILITY-NM, ,
31 PASS-EMP-NM, &
32 NEXT-FUNCTION, &
33 FUNCTION-ID, & DYNAMIC MENU SYSTEMS
34 FUNCTION-NM, , 3205-8
35 PARAMETER1, ,

END

END

PROCEDURE DESIGNER NEXT NODATA &
HELP "To Proceed to Next Screen Choice"

BEGIN

IF PASS-FACILITY = AND PASS-EMP-ID ::;:
THEN ERROR &
"Error - Invalid system sign-on"

ACCEPT NEXT-FUNCTION

DYNAMIC MENU SYSTEMS
3205-9

DO INTERNAL NEXT-INT

END

GET TBL-PW-MODULE VIA PW-MODULE-KEY &
USING PASS-EMP-ID + NEXT-FUNCTION + FUNCTION-KEY UNIQUE OPT

IF NOT ACCESSOK
THEN

ERROR lei &
"Error - Your password does not allow access to this screen"

IF FLAG-LEVEL OF TBL-FN-MODULE ::;: "S"
THEN

LET FUNCTION-KEY = A A

ELSE
IF FLAG-LEVEL OF TBL-FN-MODULE ::;: "A"

THEN
LET FUNCTION-KEY = PASS-AGENCY

ELSE
LET FUNCTION-KEY = PASS-FACILITY

LET FUNCTION-KEY = H "

PROCEDURE DESIGNER MENU NODATA &
HELP "To Proceed to Menu"

IF NEXT-FUNCTION <> II H

THEN BEGIN
LET FUNCTION-NM a DESC-MODULE OF TBL-FN-MODULE
LET FUNCTION-ID ::;: II (II + MODULE OF TBL-FN-MODULE &

[1: «INDEX(MODULE OF TBL-FN-MODULE,"."» - 1») + H)"
RUN COMMAND FILE-EQUATE
RETURN
END

PARAMETER2, &
PARAMETER3, &
PARAMETER4, PARAMETERS

GET TBL-FN-MODULE VIA FUNCTION USING NEXT-FUNCTION UNIQUE OPT
END

ELSE BEGIN
GET TBL-FN-MODULE VIA FUNCTION USING NEXT-FUNCTION UNIQUE OPT
IF NOT ACCESSOK

THEN
ERROR AError - This function not currently validA

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

96 BEGIN
97
98 LET NEXT-FUNCTION = ,,<It
99

tOo IF PASS-FACILITY = "" AND PASS-EMP-ID = " It
101 THEN ERROR &
102 "Error - Invalid systemsiqn-on"
103 DO INTERNAL NEXT-INT
104
lOS END
106

DYNAMIC MENU SYSTEMS
. 3205-10

FILE TBL-PW-MODULE ALIAS TBL-PW-ALIAS PRIMARY OCCURS 38 OPEN DBMODE 1

ALLNEXTn &

&

ALLNEXT. QKS
AH COMPUTER SERVICES, INC (SH)
11/89
MENU TO CHOOSE NEXT FUNCTION

i****·**************************************
DATA DEFINITIONS

THE ITEMS LISTED BELOW ARE PRESENT SO
THAT DATA MAY BE PASSED BETWEEN SUB

i PROGRAMS. -

i****************···***·*********··***·*····

i****~**************************************
iFlLE DEFINITIONS:
i****~**************************************

USE TEMP. USE NOL

iEDITOR NAME
iAUTHOR
iDATE
iJIMS SYSTEM

DESCRIPTION OF SCREEN &
"MENU SCREEN
" .. ,
"This is the user menu screen which allows any user access" &
"to the functions allowed by the security system."

SCREEN ALLNEXT.QKC ACTIVITIES FIND, CHANGE
WINDOW ON LINE 49 FOR 23 LINES &

MESSAGE ON LINE 72 RECEIVING &
PASS-EMP-ID, &
PASS-FACILITY, &
PASS-AGENCY, &
PASS-FACILITY-NM, &
PASS-EMP-NM, &
NEXT-FUNCTION, &
FUNCTION-ID, ,
FUNCTION-NM, &
PARAMETER1, ,
PARAMETER2, &
PARAMETER3, PARAMETER4, PARAMETERS

/t
ALLNEXT.QKS,UNN
/1 all

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

&
44
45
46
47
48
49
50
51
52
53
54
55
56

CLOSE
ACCESS VIA EMP-ID USING PASS-EMP-ID
SELECT IF FLAG-LEVEL OF TBL-PW-ALIAS = "S" OR ,

(FLAG-LEVEL OF TBL-PW-ALIAS III "AN AND &
FUNCTION-LEVEL OF TBL-PW-ALIAS 1:1 PASS-AGENCY) OR &

(FLAG-LEVEL OF TBL-PW-ALIAS • "C" AND ,
FUNCTION-LEVEL OF TBL-PW-ALIAS 1:1 PASS-FACILITY) OR &

(FLAG-LEVEL OF TBL-PW-ALIAS GE "1" AND &
FLAG-LEVEL OF TBL-PW-ALIAS LE -9-)

DYNAMIC MENU SYSTEHS
PILE TBL-PH-MODULE ALIAS TBL-PH-ALIAS SECONDARY , 3205-11

OCCURS WITH TBL-PW-ALIAS OPEN DBMODE 1 CLOSB

USE FUNCTION. USE NOL

ACCESS VIA FUNCTION USING FUNCTION OF TBL-PW-ALIAS

PROCEDURE INTERNAL NEXT-INT
BEGIN

GET TBL-PW-MODULE VIA PW-MODULE-KEY &
USING PASS-EMP-ID + NEXT-FUNCTION + FUNCTION-KEY OPTIONAL

IF NOT ACCESSOK

DYNAMIC MENU SYSTEMS
3205-12

IF FLAG-LEVEL OF TBL-FN-MODULE = "S"
THEN

LET FUNCTION-KEY s " "

ELSE
IF FLAG-LEVEL OF TBL-FN-MODULE a "A"

THEN
LET FUNCTION-KEY = PASS-AGENCY

ELSE
LET FUNCTION-KEY ~ PASS-FACILITY

LET FUNCTION-KEY =" "

SKIP 2
ALIGN (, ,10) (, ,15) (, ,44) (, ,49)
CLUSTER OCCURS WITH TBL-PW-ALIAS VERTICAL FOR 1,34
FIELD FUNCTION OF TBL-PW-ALIAS DISPLAY
FIELD DESC-MODULE OF TBL-FN-ALIAS DISPLAY

LAYOUT SECTION

IF NEXT-FUNCTION <> " "
THEN BEGIN
GET TBL-PH-MODULE VIA FUNCTION USING NEXT-FUNCTION UNIQUE OPT
IF NOT ACCESSOK

THEN
ERROR "Error - This function not currently valid"

USE HILITEDS.USE NOL
DRAW THICK 3,1 TO 3,80
ALIGN (" 3 0) (, , 60)
TITLE "I" AT ,25
FIELD PASS-FACILITY-NM DISPLAY PREDISPLAY
FIELD PASS-EMP-NM DISPLAY PREDISPLAY
TITLE "I" AT ,59
SKIP
USE HILITEOP.USE NOL
ALIGN (,15,20) (,,60) (,,71)
TITLE "(ALLNEXT)" AT ,1
FIELD NEXT-FUNCTION NOENTRY UPSHIFT NOID LABEL "Next"
TITLE "I" AT ,25
TITLE "Individualized Menu" AT ,30
USE HILITEDS.USE NOL
FIELD SYSTEM-DATE DISPLAY PREDISPLAY
FIELD SYSTEM-TIME DISPLAY PREDISPLAY PIC nAA:AA:AA"

TITLE "I" AT ,59
SKIP

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
.12
113
114
115
116

117 THEN BEGIN
118 LET NEXT-FUNCTION g..
119 ERROR" ,
120 "Error - Your password does not allow access to this screen"
121 END
122
123 LET FUNCTION-NM = DESC-MODULE OF TBL-FN-MODULE
124 LET FUNCTION-ID = "(" + MODULE OF TBL-FN-MODULE &
125 [1: «INDEX(MODULE OF TBL-FN-MODULE,"."» - 1)] + A)A
126 RUN COMMAND FILE-EQUATE
127 RETURN
128 END
129
130 LET NEXT-FUNCTION a " A

131
132 END
133
134 PROCEDURE DESIGNER AUTO NODATA HELP "To Proceed to Next Screen Choice"

135 BEGIN
136
137 LET NEXT-FUNCTION c "<"
138
139 DO INTERNAL NEXT-INT
140
141 END
142
143 PROCEDURE DESIGNER NEXT NODATA HELP "To Proceed to Next Screen Choice"

\44 BEGIN
145
146 ACCEPT NEXT-FUNCTION
147
148 DO INTERNAL NEXT-INT
149
150 END
151
152 PROCEDURE DESIGNER MENU NODATA HELP "To Proceed to Menu"
153 BEGIN
154
155 LET NEXT-FUNCTION 1:1 "<"
156
157 DO INTERNAL NEXT-INT
158
159 END
160
161 BUILD

DYNAMIC MENU SYSTEMS
3205-13

MODE: FACTION: I I LSiGene Harmon
(PCHMENU) Next Integrated Library System 05/05/91 18:29:46
p~etiliititititititiijitititiitilliiililtieetieetieleeeeetileeeeeltieetielltiiltititilileilitiitilileell

Employee ID GENE
Gene Harmon

HAYWARD MAIN LIBRARY

Password

Copyright 1991, City of Hayward, California

1 15

DYNAKIC MENU SYSTEMS
3205-14

MODE:F ACTION: 15TH FLOOR MALES ICHERYL EVANS
(ALLNEXT) Next Individualized Menu 05/05/1991 21:24:19
pqeeeetieeeeeeeetieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeetieeeeeeeeeeeeeeeeeeeeeeeee

Menu

BNMU BIN MASTER MAINTENANCE
APRP ARCHIVE PROPERTY
TPAS PASSWORD MAINTENANCE
CLST CODE TABLE LISTING
IVMU INVENTORY MASTER MAINT.
OPRG OPEN REGISTER
ITST TEST FOR NEW INMATE SCRN
FAMU FACILITY MASTER MAINT.
JCMU JOB-CODE MASTER MAINT.
AGMU AGENCY MASTER MAINT.
CLRG CLOSE REGISTER
INMU INMATE MAINTENANCE
AIMT ARCHIVE INMATE
RLSE DAILY RELEASE SCREEN
TCRT CRT MAINTENANCE
PNID ASSIGN PROPERTY IO'S
BNAD PROPERTY BIN ASSIGNMENT
TIME TIME-CARD MAINTENANCE
PROP PROPERTY ENTRY

1

TFNM FUNCTION MODULE
TRAM PROPERTY TRANSFER
AWKR ARCHIVE WORK RELEASE
AREG ARCHIVE REGISTER BALANCE
CODE CODE TABLE MAINTENANCE
PTST PROPERTY ENTRY TEST ONLY
TPRI PRINTER MAINTENANCE
TRRG TRANSFER REGISTER CASH
ACMR ARCHIVE COMMISSARY REQU
TEST TEST FOR SECURITY
ADJC ADJUST CASH ACCOUNT
ADJP ADJUST PROPERTY CASH
BINL BIN/PROPERTY LOOKUP

15

DYNAMIC HBNU SYSTBKS
3205-15

MODE: FACTION: I 5TH FLOOR MALES ICHERYL EVANS
(TFNMODU) Next FUNCTION MODULE 05/05/1991 21:25:17
~~eeeeeee~ei~iiiieeieeieiieieieitieijtietieieetiieeeeetieieeeeeeeieeeeeeeeeeeeeeeeeeee

Dese Flag FIg Usr
Pnet Module Module Next Mod Lvi Lvi
'4'464'4"4"'6'6'4"444"4"44'4'4464'4"4'66444444444A4A44444644444444444'4

01 ACMR ARCCROlA.QKC.JIMS ARCHIVE COMMISSARY REQU 0 3 8M
02 ADJC CSHADJ01.QKC.JIHS ADJUST CASH ACCOUNT 0 3 SM
03 ADJP CSHADJ02.QKC.JIMS ADJUST PROPERTY CASH 0 3 SM
04 AGMU AGENCYHU. QKC. JIMS AGENCY MASTER MAINT. 0 3 SM
05 AIMT ARCIHOlA.QKC.JIMS ARCHIVE INMATE 0 3 SM
06 APRP ARCPROlA.QKC.JIMS ARCHIVE PROPERTY 0 3 SM
07 AREG ARCRGOlA.QKC.JIMS ARCHIVE REGISTER BALANCE 0 3 SM
08 AWKR ARCWROlA.QKC.JIMS ARCHIVE WORK RELEASE 0 3 8M
09 BINL BINPROPL.QKC.JIMS BIN/PROPERTY LOOKUP 0 3 8M
10 BNAD PROPBINU.QKC.JIMS PROPERTY BIN ASSIGNMENT 0 3 SM
11 BNMU BINMD.QKC.JIMS BIN MASTER MAINTENANCE 0 3 SM
12 COOl INMTPROP.QKC.JIHS INMATE PROPERTY C 3 SM
13 C002 INMATEUA.QKC.JIMS VIEW ALL INMATES C 2 SM
14 C003 CSHADJOl.QKC.JIMS ADJUST CASH BAL C 1 SM
15 C004 INMRATEU.QKC.JIMS SERVICE RATES C 3 SM
16 COOS RELSPROP.QKC.JIMS RELEASE PROPERTY C 3 SM

Menu Add 25 15 Update

DYNAMIC MENU SYSTEMS
3205-16

MODE:F ACTION: I HAYWARD MAIN LIBRARY IGene Harmon
PASSWORD MAINTENANCE 05/05/91 (TPASSWDU)

~~tiijijieetieijijijeeAtititiijijijijijtiitieetieeetititiiijijtititititieetiijtieeeitieelltitieeeeeeijilllllltilliUI

~~ Employee 10 GENE NAME Gene Harmon 02 Initial Funct:

03 Password G Facil MAINUser Level SM Security Flaq 1 Exit Y
eeeetilijtiietiltieeeeeeeijeeeeelltiieeetitititieeeeetieeeeetiieeeeeeeeetileeilleeeeelijietieee

Function Seq Description Level
446446444644664444444446444444444444444444444464444'444444444444444444444444444
04 ITEM ITEM TYPE MAINTENANCE 1
05 DATE LIBRARY CLOSED DATES 1
06 PATT PATRON TYPE MAINTENANCE 1
07 CONY MARC TAG CONVERSION TBL 1
08 CLST CODE TABLE LISTING 1
09 CODE CODE TABLE MAINTENANCE 1
10 TCRT CRT MAINTENANCE 1
11 TPRI PRINTER MAINTENANCE 1
12 MESS USER MESSAGING SYSTEM 1
13 CIRC PATRON ACTIVITY 1
14 CHKO CHECKOUT PROCESSING 1
15 FINE PATRON FINES PROCESSING 1

Add Add 25 15 Update

DYNAMIC MENU SYSTEMS
3205-17

MODE: FACTION: I 5TH FLOOR MALES ICHERYL EVANS
(TPRINTU) Next PRINTER ~NTENANCE 05/05/1991 21:27:04
~~etitititieeetieeeetititietitietitititititititietieeeeeetieetieeeetitietieeeeeeeeitilleelitititieeitieititieee

Printer Dev # Description Type Slave
66666644466

01 TRAINING 125 IN BOH TRAINING ROOM LASER SP
02 REGISTER 102 CASH REGISTER NONE SL
03 PAINT126 126 PAINTJET IN THE TRAINING ROOM PAINTJET SP
04 PAINTJET 113 PAINTJET PAINTJET SL
05 LASER 113 LASER PRINTER LASER SL
06 ABCDEFGH 1111 BY THE WINDOW DOT MATlUX SP
07 LP 113 SYSTEM LINE PRINTER DOT MATRIX SL
08
09
10
11
12
13
14
15
16

Menu Add 25 15 Update

DYNAMIC MENU SYSTEMS
3205-18

MODE: FACTION: I 5TH FLOOR MALES ICHERYL EVANS
(TCRTSU) Next CRT MAINTENANCE 05/05/1991 21:23:53
~~iietieeetietileeaeiiiilieitilleieeileeeieetieeeetietieiiieeiiiiiiiiiileeeliielieieeie

Dev I Function Facility Printer Tray I
446444444444444444444444444444'4

01 102 TRAM 5M LASER 1
02 102 PNID 5M LP 1
03 102 INMU 5M LASER 1
04 115 PNID LP 1
05 101 TRAM LASER 1
06 103 PNID 5M LASER 1
07 101 TRAM 5M LASER 1
08 116 PNID LP 1
09 101 PNID 5M LASER 1
10 102 TRAM LASER 1
11
12
13
14
15
16

Menu Add 25 15 Update

DYNAKIC MENU SYSTEMS
3205-19

FILE TBL-PH-MODULE DESIGNER OPEN DBMODE 1
FILE TBL-PW-MODULE DESIGNER OPEN DBMODE 1

DEFINE FILE-EQUATE CHAR*80 a &
"FILE NEXTSCRNgn + MODULE OF TBL-PH-MODULE

TEMPORARY NEXT-FUNCTION CHAR*4
TEMPORARY THIS-FUNCTION CHAR*4 RESET AT STARTUP
TEMPORARY FUNCTION-KEY CHAR*2
TEMPORARY PASS-EMP-ID CHAR*8
TEMPORARY PASS-FACILITY CHAR*4
TEMPORARY PASS-AGENCY CIIAR*4 RESET AT STARTUP
TEMPORARY PASS-FACILITY-NM CIIAR*28
TEMPORARY PASS-EMP-NM CHAR*20
TEMPORARY FUNCTION-ID CHAR*10
TEMPORARY FUNCTION-NM CHAR*28
TEMPORARY PARAMETER1 INTEGER SIZE 4
TEMPORARY PARAMETER2 INTEGER SIZE 4
TEMPORARY PARAMETER3 CIIAR*20
TEMPORARY PARAMETER4 CHAR*30
TEMPORARY PARAMETERS INTEGER SIZE 4
TEMPORARY TEMP-PASSWORD CHAR*8
DEFINE SYSTEM-DATE DATE - SYSDATE
DEFINE SYSTEM-TIME NUM*6 a SYSTIME I 100

It
TEMP.USE,UNN
11 all

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

DYNAMIC KENU SYSTEMS
3205-20

Simplified IMAGE And VIEW Calls Through
The Use Of COBOL Copy Libraries

By

Rick Hoover
CN Software

700 Hanover Dr.
Shelby N.C. 28150

As a consultant, I found that there were all different types of users of
HP3000's. The type that I seemed to encounter the most were the programming staffs
that did not have a good grasp of the HP inner workings. The tendency to shy away
from IMAGE and especially VIEW was rampant in these shops. Most of the time I
found that it was a case of lack of training. Without teaching the basics of VIEW
and/or IMAGE, new programmers will not be able to fully comprehend how to access
form files and/or IMAGE databases.

With this lack of understanding, I decided to create a copy library that would be
as generic as possible but still be powerful enough to allow me to use the copy
members to create programs for clients. The copy members that are in the handout (and
should also be on the contributed library tape at the conference) will allow any user to
access VIEW and IMAGE, I believe, easily and without much training. I have
developed many programs and systems using the copy members.

A few months ago I met an employee of a site that I had worked at. He told me
that he had little exposure (translated: none) to the HP and more importantly, VIEW
and IMAGE. He tried to read the documentation in the HP manuals but didn't get very
far. He then started reading my programs and copy members and found out how things
really worked. This made my day.

Conventions used in the paper:

Throughout the paper I will be referring to the actual names of the copy
members. The program examples will be in lower case letters (I always write my
COBOL programs in lower case letters to delineate them from other peoples programs).
The programs, due to their length, cannot be listed in this paper but are in excerpted
form in the body of the paper. The complete IMAGE and VIEW copy member are also
too long for this paper. Both the program listings and copy library listing will be
available in printed form at the conference and are available at the above address Gust
send a large manila envelope with return postage.. .it's about 30 pages),. I would be
happy to send these out. The 3 programs used in this paper are actual working

Simplified IMAGE and VIEW Calls Paper # 3206 Page 1

programs. All programs were written using the COBOL85 compiler. If you are not yet
on COBOL85 (and if not, why not, see my paper on COBOL85 #3225), don't worry,
these same copy members will work just as well under COBOL or COBOLII.

The forms that are used will be discussed briefly at the beginning of each
section. They will not be displayed in the paper.

The copy members that will be used are:

IMAGAREA

IMAGLINK

VAREA

VLINK

VIEWCALL

IMAGCALL

RESULT

this is the copy member that contains all the information about
the IMAGE data base(s). This copy member should only be used
for main programs, since there are value clauses throughout the
copy member.

this is the copy member that contains all the information
PASSED from the main program to the subroutine. This copy
member has no value clauses at all.

this is the copy member that has all the VIEW communication
information for main programs. There are value clauses all
though the copy member. Do not use this copy member for
CALLed subroutines.

this is the copy member used in CALLed subroutines where the
VIEW communication area is passed. This copy member should
not be used for main programs unless the programmer wishes to
initialiZe all the fields necessary.

this .copy me.mber contains ALL calls to the VIEW intrinsics
necessary to drive on-line screens. Please note that not all VIEW
calls exist in the copy member. For example, this copy member
does not contain the VIEW intrinsic calls if the programmer
wishes to change the attributes of a field.

this copy member controls ALL access to an IMAGE data base.

this copy member contains all the IMAGE and VIEW resultant
checks.

I would. like to state at this time that the terms RESULT, VAREA, VLINK,
IMAGAREA and IMAGLINK have been used before by PROTOS Software in their
COBOL system. The copy members here do NOT conform to the PROTOS copy
members at all. I just liked the names.. If you are using PROTOS in your shop, please
make appropriate changes in the names.

Simplified IMAGE and VIEW Calls Paper # 3206 Page 2

These are the only copy members that are needed for the system.
The only other rule that I have used across the board is that there are no VIEW

editing routines in any screen. The fields are all defined as type CHAR.There are a
couple of routines that I wrote that are CALLed by the system that take care of numeric
changes and date calculations.

DerIDing A Form:

The first part of the WORKING-STORAGE SECTION contains the definition
of the form. There are two sections to the definition of the form. The first section
defines the form fields:

01 apOOO-fonn.
OS apOOO-company-name
OS apOOO-todays-date
OS apOOO-user-name
OS apOOO-screen-JOumber

pic x(20).
pic x(OB).
pic x(20) value spaces.
pic x(02).

This definition shows each field on the VIEW screen (whether display only or
not) and the exact size. Please note that these fields are defined in order on the screen
from left to right, top to bottom. VIEW will number the fields in a different order if
the programmer adds and deletes fields on the screen as the development cycle runs. Be
aware of the field numbers because you will be using them in the PROCEDURE
DIVISION of the programs.

The second section defines the exact size of the form and the form name.

01 apOOO-form-size
. 01 apOOO-form-name

pic 59(04) comp value SO.
pic x(l6) value "APOOO".

Even though these two sections do not have to be placed together, it makes it
nice to be able to see the two definitions together.

I have always put copy member COPY statements at the end of the
WORKING-STORAGE section and at the end of the PROCEDURE DIVISION.
That is why you will see just prior to the PROCEDURlE DIVISION the COpy
statements.

copy imagarea.
copy messrecd.
copy result.
copy varea.

There is a new copy member name that was not mentioned in the above list. I
have included this one in the copy library only because the Accounts Payable system

Simplified IMAGE and VIEW Calls Paper # 3206 Page 3

has a data set that contains all the VIEW messages used. There is a short routine that
will retrieve messages from the data base and place them in the VIEW message
window.

Opening A Data Base:

The next couple of lines defines the way the data base gets opened through the
copy library. There are a couple of defaults that are built into the communications
procedures that _you may'change. The first default is the password. By default, the
password is ";" (creator). The field that contains the password in working storage is
called IMAGE-PASSWORD. The second default field contains the mode that the data
base will be opened. This field is called OPEN-MODE. The default value is 1. Prior
to performing the open paragraph, the programmer could move any other number to
the field OPEN-MODE. There is a field in the copy library that I have set up to
contain the name of the data base. If you wish, you may do the same thing, otherwise
you will need to pass the data base name to any CALLed program that needs to access
the data base.

The code to open the data base is:

move apdb-data-base
move "WRITER"

perform image-open

move data-base

to data-base
to image-password

to apdb-data-base

The above code will either open the requested data base or display an error
message. Because this is'a generic copy library, the last line is required to initialize the
first two bytes of the field apdb-data-base. There is an 88 level field that you can use
to control the program called IMAGE-NO-ERRORS. This is set off the IMAGE
CONDITION-WORD.

Opening A Fonns Fl1e:

The code to open a fonns file is very easy and short. Only 2 lines of code are
needed to open a forms fue.

move IIAPFORMn

perform view-open

to v-fonn-fde-name

The copy member that actually perform the VIEW-OPEN will first check to
insure that a forms file name was placed in the V-FORM-FILE-NAME field. It will
then call VOPENFORMF to open the forms file requested. If there is a problem

Simplified IMAGE and VIEW Calls Paper # 3206 Page 4

opening the forms file, the program will display a message and then abort. The
paragraph will then open the terminal by calling VOPENTERM. If an error occurs,
the routine will display an error message and abort the program.

At this point the data base is opened and the forms file is opened. Now the
program will go through the processing of the data.

move 1
initialize

toargument-9999
apOOO-fonn

perform message-routine

These lines of code will initialize all fields on the screen (this is part of
COB0L85, you may just as easily say move spaces to apOOO-form). The paragraph
message-routine will go out to the data base and move the requested message (based
on argument-9999) to the field v-message-line. Remember, no screen is displayed yet.
Everything for the display is set to go however.

The next lines will further ready the form for display.

move 2
move apOO-form-nmme
move apOOO-form-size
move apOOO-form

perform view-display-form
perform view-display-data

to v-field-number
to v-next-form-name
to v-data-buffer-Iength
to v-data-buffer

These lines of code will place the cursor in the second field on the form (in this case
the field apOOO-screen-number, remember what I said about VIEW numbering fields),
then place the actual name of the form in the field V-NEXT-FORM-NAME, then set
up the size of the form buffer. Finally the form layout gets moved to the generic V
DATA-BUFFER. This will allow the program to have all available information set.
The performed paragraph VIEW-DISPLAY-FORM will first check to insure that the
form name was not left blank, then call the VIEW intrinsics VGETNEXTFORM. If
the call to the intrinsic VGETNEXTFORM fails, the program will be aborted with an
error message, otherwise the intrinsics VPUTWINDOW, VPUTBUFFER and
VINITFORM will be called. The form is still not on the screen so we go to the next
step which is to perform the paragraph V-DISPLAY-DATA. This paragraph calls the
VIEW intrinsics VPUTWINDOW, VINITFORM, VPUTBUFFER and
VPLACECURSOR. Now everything is in ready to read the screen. The next couple of
lines of code will do just that.

Simplified IMAGE and VIEW Calls Paper # 3206 Page S

initialize v-oumber-of-errors

perform view-autoread

There are 2 paragraphs that may be performed in the copy library. One is called
view-read the other is called view-autoread. The main difference is this: view-read
will call the VIEW intrinsics VSHOWFORM, VPLACECURSOR, VREADFIELDS,
VFlELDEDITS, VFlNISHFORM and VGETBUFFER. The paragraph view
autoread will first perform view-read then 'fool around' with the VIEW
communication area to trick the communication area into thinking that the enter key
was pressed, then call view-read a second time, then put the VIEW communication
area back together. Why you may ask. Well, this goes back to the way that VIEW
works. VIEW will only transfer data from the screen to the data buffer when the
ENTER key is pressed, never when function keys are pressed. So, to get VIEW to read
data by using function keys, you must trick VIEW into thinking that the ENTER key
was pressed. You accomplish this by setting up the communication area with a different
value in the V-TERMINAL-OPTIONS slot. Notice that I have added 2 to the field
then performed the view-read then subtracted 2 from the field. This is the way to
automatically have VIEW re-read the screen without any key being pressed. I also save
the field V-LAST-KEY-PRFSSED so that I may find out what key was actually
pressed. So now not only can programs be controlled by use of function keys, but data
can be used to read data (for information...the AlP system does not use the ENTER
key for any processing).

The VAREA/VLINK copy members have all nine keys defined as Po-P8 and
ENTER-KEY.

All CALLs to subroutines that will use the VIEW area will need the copy
member passed. So you will find a lot of:

call ftAPOll ti using image-area, v-area ...

which will pass all information though the Uokage section using the vlink copy
member. This will be discussed when we get to subroutines.

Simplified IMAGE and VIEW Calls Paper # 3206 Page 6

Closing Data Bases

The last piece of code in the first example program will close the data base and
forms file. First, the data base gets closed:

move apdb-data-base

perf'onn image-close-db

to data-base

This performed paragraph will close the data base. The only field that will need
to be set is the name of the data base to be closed. All other information is already pre
set in the performed paragraph. This will close all access to the user of the data base.

Closing Forms Files:

The closing of forms files is even easier than closing data bases. To close a
forms file the program only needs to perform 1 paragraph:

perf'orm view-close

This paragraph will call the VIEW intrinsics VCLOSETERM and
VCLOSEFORMF. This will shut down all access to the forms fue.

The actual flow of a main program for VIEW calls would normally be:

open the form fIle

display the fonn

display the data

read the screen

go back to display the data
until exit

close the fonn fIle

(view-open)

(view-display-fonn)

(view-display-data)

(view-read or
view-autoread)

(view-close)

There are three other perform paragraphs in the copy library. One of these,
VIEW-ERROR-ROUTINE allows the user to set up a message in the message
window. VIEW-CUSTOM-ERROR-ROUTINE allows the program to set an error
message up and have the field become highlighted. The next one is VIEW-CUSTOM
MESSAGE which sets the message in the window and places the cursor in a specific
field. The last one VIEW-PRINT allows the user to print the form on the screen. I

Simplified IMAGE and VIEW Calls Paper # 3206 Page 7

have not had a real need to use these recently, so I will not go into them in this paper,
maybe next year.

This completes all I have to say about VIEW. There are many other intrinsic
calls that can be used with VIEW, but, as I said, this copy library was meant to be one
that a new programmer could feel comfortable about. One other thing I would like to
mention about these routines in VIEW. HP came up with a package called HiLi, which
is basically macros for VIEW. This is free and available on ALL HP3000's. I gave a
talk last year on COB0L85 and HiLi and the one comment I made then and I will make
it now is that HiLi is HiLi and VIEW intrinsics are VIEW intrinsics. They cannot live
in harmony! You may not write a program calling HiLi intrinsics and then pass that
information to a program using VIEW intrinsics or visa-versa. With this copy library of
routines you may (1) pass information from a program using the copy library routines
to an existing program that uses VIEW intrinsics and (2) add to the paragraphs with
your own clever touches. These routines cannot be used with HiLi either.

Simplified IMAGE and VIEW Calls Paper # 3206 Page 8

On to IMAGE.

I purposely left out any information on IMAGE except for the opens and closes
because there isn't as easy a flow as VIEW has. The IMAGE performed paragraphs
will do a wealth of processing for the programmer as long as a few. ground rules are
understood on how the paragraphs work.

First, all calls to the IMAGE routines will need at least the data base name.
Most will need the data set name. These should always be put in to insure that the
performed paragraphs are initialized before each call. All access of the data base which
will return data (DBGET's) will need to have a MOVE statement immediately after.
Again, the performed paragraphs are generic and, as such, will return the data in a
field called DATA-BUFFER. I think you will be able to see how all of this ties
together over the next examples. One thing to remember, once the above simple rules
are understood, you will be able to access any kind of data without knowing a lot about
IMAGE (Well, that's not entirely true because the only way to understand what
happens in a data base is to understand IMAGE, but, a new user can learn while
doing).

The fust example that will be shown is a simple inquiry to a manual master.
The data set that' will be accessed is VENDOR-MASTER. The copy member that
defines the vendor master data set contains a line in the copy member:

01 VENDOR-DATA-SET PIC X(l6) VALUE
"VENDOR-MASTER;"•

To access this data set the program needs the following information:

1. the name of the data base
2. the name of the data set
3. the argument value (in this case the vendor number which is the key)

So the code will look like this:

move apdb-data-base
move vendor-data-set
move apOOl-vendoJr-number

perform lmage-calculated

to data-base
to data-set
to argument

The above code will either (1) successfully retrieve the vendor master record
from the data base or (2) fail in finding the record with the value stored in the field
apOOl-vendor-number.

Simplified IMAGE and VIEW Calls Paper # 3206 Page 9

The next 2 lines will check out the value of the result of the call to DBGET
through an 88 level assigned to IMAGE-CONDITION-WORD:

if image-no-errors
move data-buffer

else ...
to vendor-record

The above code will check to see if the record was found. IT it was found, the
initial data would be placed in the field DATA-BUFFER. This is another generic field
used in the processing the DBGET.

As you will se in the follwoing examples image-calculated is a powerful
paragraph. It will call DBINFO to find out what kind of data set you are trying to
access, then, if the data set is an automatic or manual master, it will call DBGET.
However, if the data set is a detail, it will first call DBFIND then call DBGET.

The next example in the first program is to add a transaction to the data base.
This is accomplished by performing first a data base lock then a put to the data base
then a data base unlock. The only reason I chose a data base lock was for quick clarity.
I would normally have chosen a data set lock for this kind of maintenance. The code
that is required is:

move apdb-data-base

perform image-base-Iock

move apdb-data-base
move vendor-data-set
move vendor-record

perform image-put

move apdb-data-base

to data-base

to data-base
to data-set
to data-buffer

to data-base

perform image-unlock

The above example will first call DBLOCK with an unconditional lock. There
is a field that is initially set to "U" to set up the unconditional lock. If you would rather
have conditional locking, set LOCKING-TYPE to spaces. It will then set up the data
set and move the data into the generic DATA-BUFFER for the call to DBPUT.
Finally, it will release the data base lock by calling DBUNLOCK.

The update routine is similar to the add routine in that the same exact code is
used except the perform image-put is replaced with perform image-update. The

Simplified IMAGE and VIEW Calls Paper # 3206 Page 10

update paragraph will call DBUPDATE with the data buffer containing all the changed
data. Please be aware that the routine will not succeed if the user attempts to change a
critical item (sort or search item).

The delete routine is similar to both the add and update. In this routine the user
only needs to perform image-delete. This routine does not need the data buffer since
no data is being manipulated.

To summarize all maintenance to the data base (adds, checnges, deletes and
inquires):

1. Give the name of the data base to data-base

2. Give the name of the data set to data-set

3. If detail data set, give the search item name to search-item

4. Give the argument value to either argument or argument-9999

5. The result data will be palced in the field data-buffer

6. Move the result data to your own data record layout

Now that we have laid out accessing a record in the data base, let's expand and
get multiple records. We do this by either reading serially through a data set or by
reading forward or backward on a chain.

There is one performed paragraph that will allow the user to read serially
through a data set. The code to read a data set serially is:

move apdb-data-base
move vendor-data-set

perform image-serial-read

if image-no-errors
move data-buffer

to data-base
to data-set

to vendor-record

This small piece of code will probably be in a performed looping paragraph.
The data set will be serially read through until the end of data set happens. Then the
image condition word will be set to 11.

Simplified IMAGE and VIEW Calls Paper # 3206 Page 11

On the other hand, let's say that you have already performed image-calculated
on a detail data set and now wish to read the next record on the chain. To do this:

move apdb-data-base
move detall-set-name

perform image-get-next

to data-base
to data-set

The three lines of code will read the next entry in the chain. The converse of
this would be to perform image-get-previous. Either perform will read along the
chain. This way the user can read multiple records and search for data with just a few
lines of code.

The rest of the performed paragraphs will take care of other tasks such as
IMAGE logging, rewinding a data set, directed and primary gets and re-reading
locations.

To rewind a data set (this is used to insure that the program always starts a
serial read at the first record in the data set):

move apdb-data-base
move vendor-data-set

perform image-rewind

to data-base
to data-set

The data set will now begin at the first record. This routine will call DBCLOSE
with mode 3.

To re-read the same location (this is used mainly when mass deletes are done to
a manual master data set to get rid of migrating secondaries):

move apdb-data-base
move vendor-data-set

perform image-re-read

to data-base
to data-set

This will return an error 17 (no entry) if there is no record at the location.

Simplified IMAGE and VIEW Calls Paper # 3206 Page 12

To begin/end IMAGE logging:

move apdb-data-base to data-base
move "This is the start of logging" to image-text

perform image-begin-Iog

do something

move apdb-data-base to data-base
move "This is the end of logging" to image-text

perform image-end-Iog

Now IMAGE will have logical transactions in the data base.

In conclusion:

I hope this short paper will help out users, especially new users, who are unsure
of IMAGE and VIEW. Granted, not everything that you can do is in this copy library,
but, given the time, many other functions can be placed in the copy library to allow
many different accesses and changes to the data flow of your programs. I tried to give
reasonable names to the performed paragraphs so that not only could someone (myself
included) could look at the programs months or years from now and still understand
what was going on. I have always felt that the clearer the names, the easier to follow. I
think that performing a paragraph names image-get-next is clearer than calling
DBGET in mode S.

Simplified IMAGE and VIEW Calls Paper # 3206 Page 13

_ ':t
.1\.·.·

"".;:;":'.

OPt cobol Ii
or

~OW I (80rp8d 10 ilop
uJorrqlpq

opd (OU8 1fi8 fJOJDb

robert o. korflp
korflpf korp8r

1616 dop poord 0(18.

p. P.lllfllool Co.
91605

(616) 96l-9331

ANS COBOL 8S or How I Learned to

Stop Worrying and Love The Bomb 3207-1 Robert A Karlin

INTRODUCTION

In May of 1959, the. leading suppliers of computer hardware met with the
Department ofDef~ for the Conference on Data Systems Languages, CODASYL.
Charles Phillips, from the Department of Defense, informed the representatives of
IBM, Burroughs, Honeywell, General Electric, National Cash Register, Pbilco,
Sperry Rand, RCA and Sylvania that the Pentagon wanted a uniform business
programming language, and wanted it as soon as it could get it

The conferees went to work, and by mid-autumn had developed the basis for a
new language, called Common Business Oriented Language, or COBOL. But even
before the designers could present the language to the full committee, another group of
committee members declared the project dea~ and endorsed an entirely different
language developed by Honeywell, called FACT (Fully Automated Compiling
Technique). In fact, Charles Phillips, who now cJtaired the executive committee of
CODASYL, one day received a heavy crate. Upon opening it, he found a small
marble tablet with a rec:umbent lamb carved at the top. Chiseled into the marble was
the single word "COBOL". 'There was no epitaph.

Premature reports of the death of COBOL have since abounded. From ROO, to
put, to PASCAL. to BASIC, to 4GL, to SQL and other "user friendly" report writers
and database update packages, to dBASE, to C, the list goes on and on. And yet
COBOL still survives, and is the mo~commonly used language for today's business
community. What is it about the language that seems to attract so many people?

First, and probably most important, manyprogr8Qls are written in COBOL
precisely because many programi have already been Written in COBOL. There is a
wealth of experience to draw on, and there is a certain safety in going where everyone
has gone before.

Second, COBOL seems to have a very shallow learning curve. Programmers
become prolific in COBOL faster than in most other languages. This is partly because
of COBOL's strengths, but is also in part because of COBOL's weaknesses. Many
errors that plague other languages are impossible in COBOL, because of the lack of
such features as implicit variable definition, local variables and paramettic procedures.

Third, there is a large pool of trained COBOL programmers available. And, in
addition, most of these programmers are also trained in modem development
tecbniques, such as structured design and analysis, data base design and

ANS COBOL 85 or How I Learned to

Stop Wonying and LDve The Bomb 3207·2 Robert A Karlin

implementation and user interaction tools and techniques. This is not always true of
programmers trained only in Pascal or c.

And, (mally, COBOL is an evolving language. Since the initial COBOL
specifications were published in April of 1960, there have been three major language
revisions, the ftrst in 1968, the second in 1974, and the third in 1985. Each revision
has added strength and power to the language. The COBOL committee of the
American National Standards Institute (ANSI) is presently working on the fourth
revision, to be published sometime in the mid-l990s.

In specific, the 1985 version ofCOHOL has provided an enonnous wealth ofnew
features. This paper describes some of these features, along with examples of how
these features can proVide software that is both easier to write and easier to maintain.
When possible, actual programs have been used to illustrate these features.

Unfortunately, some features described here have not yet been implemented on all
hardware platforms. If there is any doubt, check the specific reference manual for the
hardware platform that is being used.

ANS COBOL 8S or How I Learned to

Stop Worrying and Love The Bomb 3207-3 Robert A Karnin

SCOPE TERMINATORS

One ofthe most useful additions made to COBOL by the 1985 ANSI standard was
the addition of Scope Terminators, that is, constructs that terminate the scope of a
COBOLverb. Consider the following:

COBOk74
IF RECORD-IDENTIFIER EQUALS 'PAYMENT'

COMPUTE AMOUNT = RECORD- AMOUNT / 10

IF RECORD-TYPE = 'LOAN'

COMPUTE AMOUNT =- AMOUNT + RECORD- INTEREST

COMPUTE PAYMENT-DUE = (AMOUNT / 365) * DAYS-PAID

ELSE
COMPUTE PAYMENT-DUB = (AMOtJN'l' I 365) * DAYS-PAID.

Note that·the computation for the PAYMENT-DUE field must be repeated twice.
Now, let's look at the same calculation in COBOL-8S:

COBOl.cSS
IF RECORD- IDENTIFIER EQUALS 'PAYMEN'l"

COMPUTE AMOUNT = RECORD-AMOUNT / 10

IF RECORD-TYPE = 'LOAN'
COMPOTE AMOUNT = AMOUNT + RECORD-INTEREST

END-IF

COMPUTE PAYMENT-DUE :II:: (AMOUNT / 365) * DAYS-PAID

END-IF.

We can now easily see that the PAYMENT-DUE calculation is the same regardless
ofwhat the record type is, a fact that was not evident in the fll'St instance. Also, since
the PAYMENT-DUE calculation is in only one place, any modifications to that
calculation are made only in that one place, preventing the possibility of missing the
second calculation. Note that the final END-IF is not required by most compilers.

Let's take a look at another example:

COBOk74
IF RBCORD- IDENTIFIER EQUALS 'PAYMENT'

COMPUTE AMOUNT I:: RlCORD-AMOUNT / 10
IF RECORD-TYPE = 'LOAN'

COMPUTE AMOUNT = AMOUNT + RECORD - IN'l'EREST.

ANS COBOL as or How I Learned to

Stop Worrying and LDve The Bomb 3207-4 Robert A Karlin

One of the most prevalent errors in COBOL coding is the misplaced period. In the
above example, a period after the fll'St compute statement would change tllle calculation
in a certain number of cases. Because the particular scenario that produces an error in
result may only occur sporadically, it could easily go unnoticed for years. lUsing
scope terminators, however:

COBQkBS

IF RECORD-IDENTIFIER EQUALS 'PAnmNT'

COMPUTE AMOUNT = RECORD-AMOUNT / 10

IF RECORD-TYPE = 'LOAN'
COMPUTE AMOUNT :a: AMOUNT + RECORD- IN'l'BREST
END-IF

END-IF.

If a period was accidentally placed after tile first compute statement, the compiler
would reject the second END-IF statement as superfluous, signalling to the
programmer that an error of some sort had occurred.

It should be noted that all verbs tbat contain multiple operands may take a scope
terminator. Whereas an END-MOVE statement seems excessive, END-READ
statements that terminate an AT END condition on a read statement are extremely
useful. Other "scope terminators that are useful for documentation purposes are the
END-COMPUTE, the END-SEARCH, and the END-(aritlunetic]. We will discuss
two other scope tenDinaIors, the END-PERFORM and the END-EVALUATE, later.

ANS COBOL 8S or How I Learned to
Stop WOITYina and Love The 180mb 3207-5 Robert A Karlin

INLINE PERFORMS with TEST BEFORE and TEST AFTER

One of the more frostrating problems with COBOL has been the lack of effective
block control structures. Looping through code involved either separating the code
into a separate subroutine, or resorting to the excessive use of the 00 TO verb. In
addition, there was no construct that allowed the programmer to always execute a loop
once, since the COBOL perform would always examine the conditional prior to
executing the performed subroutine. COBOL·8S has enhanced the PERFORM
statement to answer these two problems.

The first enhancement to the PERFORM statement allows the programmer to code
his subroutine directly within the perform statement. For example, in COBOL-74:

COBOl.c74
PERFORM OlOO~I~TIALIZE-TABLE

VARYING TABLE- INDEX FROM 1 BY 1
UNTIL TABLE-INDEX IS GREATER THAN 10.

OlOO-I~~IALIZE-TABLE.

MOVE TABLE-INDEX TO TABLE-LlNE(TABLE-INDEX).

while in COBOL-8S

COBOk85
PERFORM VARYING TABLE- INDEX FROM 1 BY 1

UNTIL TABLE - INDEX IS GREATER THAN 10
MOVE TABLE - INDEX TO TABLE - LINE (TABLE - INDEX
END.. PERFORM.

There need not be anything within the PERFORM as in the following:

COBOk85

PERFORM VARYING TABLE- INDEX FROM 1 BY 1

UNTIL TABLE-LlNE(TABLE-INDEX) = LlNE-OF-BUSlNESS

END- PERFORM.

ADD 1 TO TABLE- POLICIES (TABLE- INDEX).

In addition to the inline PERFORM, COBOL-8S includes the additional syntax
options WITH TEST BEFORE and WITH TEST AFI'ER. The default is TEST
BPPORE, to maintain compatibility with earlier releases.

ANS COBOL 8S or How I Learned to

Stop Worrying and Love The Bomb 3207-6 Robert A Karlin

EVALUATE

Another traditional lack in COBOL bas been a CASE structure, that is, a structure
that allows a programmer to select alternatives from some form of interrogatory list
The GO 10 DEPENDING ON allowed limited branching based on numeric selection,
but was insufficient in providing maintainable, easy to read code in any case that had
more than a half dozen selections. Extensive use of nested IFs couRd provide a
solution in many cases, but the resultant code could give strong men nightmares.

COBOL-8S has provided the EVALUATE verb, possibly the most powerful case
structure verb that exists in third generation procedura1languages. In its simplest form
it would look like this (I have provided an IF statement in COBOL-74 to illustrate the
comparable syntax):

COBOL-74
IF RECORD-TYPE = 'A'

PERFORM PROCESS-ADD

ELSE
IF RECORD TYPE = 'C'

PERFORM PROCESS - CHANGE

BLSE
IF RECORD-TYPE = 'D'

PERFORM PROCESS - DELETE

ELSE
ADD 1 TO TYPE-ERROR

PERFORM PROCESS - ERROR.

COBOL-SS
EVALUATE RECORD-TYPE

WHEN 'A'

PERFORM PROCESS - ADD

WHEN 'C'

PERFORM PROCESS - CHANGE

WHEN 'D'

PERFORM PROCESS - DELETE

WHEN OTHER

ADD 1 TO TYPE - ERROR

PERFORM PROCESS - ERROR
END- EVALUATE.

ANS COBOL 8S or How I Learned to
Stop Worrying and Love The Bomb 3207-7 Robert A Karlin

The WHEN clauses need not be in any onler. Each WHEN is terminated either by
the next WHEN, the END-EVALUATE, or a period. WHEN OTHER is used to

select all conditions not explicitly specified. Ifthere are no statements between WHEN
clauses, the EVALUATE falls through and executes the first executable statement it
finds within the BYALUATE. To process a null option, the CONTINUE place holder
must be used:

COBOk85
EVALUATE RECORD-TYPE

WHEN 'a'
WHEN 'A'

PERFORM PROCESS - ADD

WHEN 'e'
WHEN 'c'

PERFORM PROCESS - CHANGE

WHEN 'de
WHEN 10'

PERFORM PROCESS-DELETE

WHEN 'I'
CONTINUE

WHEN OTHER
ADD 1 TO TYPE-ERROR
PERFORM PROCESS - ERROR

BND-EVALUATE.

The strength ofthe EVALUATE is in dle fact that tile conditional comparison may
be as complex as necessary. For example:

mBQL-BS
EVALUATE (LOAN-AMOUNT * INTEREST) / 100

WHEN 0 THRO PRINCIPLE * .20

PERFORM NEW-LOAN
WHEN PRINCIPLE * .20 '1'HRO PRINCIPLE * .80

CONTINUE
WHEN OTHER

PERFORM MATURE- LOAN
BND-EVALUATE.

The EVALUATE command may also contain a second conditional comparison as
well:

ANS COBOL 8S or How I Learned to

Stop Wmrying and Love The Bomb 3207-8 Robert A Karlin

COBQL-74
IF RECORD-TYPE = 'L' AND RECORD-ACTION = 'A'

PERFORM NEW- LOAN
ELSE

IF RECORD-TYPE = 'A' AND RECORD-ACTION = 'A'
PERFORM NEW- ACCOUNT

ELSE
IF RECORD-TYPE = 'L' AND RECORD-ACTION = 'e'

PERFORM CHANGE - LOAN
ELSE

IF RECORD-TYPE = 'A' AND RECORD-ACTION = 'C'
PERFORM CHANGE - ACCOUNT

ELSE
IF RECORD- ACTION • 'D '

PERFORM DELETE - RECORD •

COBOk85
EVALUATE RECORD-TYPE ALSO RECORD-ACTION

WHEN 'L' ALSO 'A'
PERFORM NEW- LOAN

WHEN 'A' ALSO 'A'
PERFORM NEW-ACCOUNT

WHEN 'L' ALSO 'c'
PERFORM CHANGE- LOAN

WHEN 'A' ALSO 'c'
PERFORM CHANGE - ACCOUNT

WHEN ANY ALSO 'D'
PERFORM DELETE- RECORD

END - EVALUATE.

And the EVALVATE command may take a completely generic conditional, that is,
a construct that can choose from among many diverse and posibly unrelated choices:

COBOlc8S
EVALUATE TRUE
••••WHEN HEADER-RECORD

PERFORM LAST- RECORD
WHEN PRINCIPLE == 0

PERFORM PAIO-OFF-LOAN
WHEN PRINCIPLE> INTEREST

PERFORM MATURE- LOAN

WHEN PRINCIPLE NOT > INTEREST
PERFORM YOUNG- LOAN

END- EVALUATE •

ANS COBOL 8S or How I Learned to

Stop WonyiDg and Love The Bomb 3207-9 Robert A Karlin

Note that the EVALUATE command processes the conditional statements in the
order that they are expressed. In the above example, when PRINCIPLE equals zero,
the second condition will be executed, and then the EVALUATE verb is exited, even
though the last condition may also seem to apply. It should be noted that FALSE is
also a valid generic conditional for the EVALVATE verb.

ANS COBOL 8S or How I Learned to
Stop Worrying and LDve The Bomb 3207-10 Robert A Karlin

SETTING CONDITiONALS

One ofthe more interesting features ofCOBOL was the 88 level conditional data
This feature allowed programmers to provide meaningful descriptions of codes and
switches in programs. Unfortunately, theprogrannner still needed to knowwlllat the
switch setting and the switch name was in order to set-the proper value. COBOL-8S
provides a new method of setting 88 level conditionals using the·SET vezb.

01 SWITCHES.

05 END-OF-FlLE-SWITCH
88 END-OF-FlLE

PIC X VALUE 'N'.

VALUE 'Y'.

COBQL-74

READ INPUT - FILE

AT END MOVE 'Y' TO END-OF-FILE-SWITCH.

COBOL-SS

READ INPUT - FILE

AT END SET END-OF-FlLE TO TRUE.

Note that not only is the programmer insulated from the value of the switch itself,
but the switch is being set with the same name that it will be interrogated with.latez. If
there were multiple values coded for an 88 level~ the COBOL compiler willi choose the
ftrst VALUE to move to the switch:

01 SWITCHES.

OS RECORD-TYPE-FLAG

88 DEPOSIT
88 LOAN PAYMENT
88 WITHDRAWAL

88 MONEY-IN

88 MONEY-OUT

COBOL-as

SET MONEY-IN TO TRUE.

PIC X.
VALUE 'D'.

VALUE 'L'.

VALUE 'W'.
VALUE ID' 'L'.

VALUE 'W'.

In the above example, RECORD-TYPE-FLAG would be set to tDt, since that was
the first value in the value list. Unfortunately there is no way to SET an 88 level. to

FALSE, since the compiler would not know which value to chose.

ANS COBOL 85 or How I Learned to
Stop Worrying and Love The Bomb 3207-11 Robert A. Karlin

INITIALIZATIONS

COBOL-8S has provided a Dumber of interesting features to facilitate some
common programming chores. One ofthe most useful is the INITIALIZE verb. In its
simplest form, the INITIALIZE verb wiD set all subordinate levels for a data item to

zeroes or spaces, dependiDa OD the type of data being initialized. The INITIALIZE
statement will also initialize any class of data subordinate to a data item to any
characters that are applopliate to that data class.

01 DATA- STRUCTURE.
05 FILLER
OS NUMERIC- ITEM

05 ALPHA-ITEM

05 PILLER.
10 NUMERIC-EDITED-ITEM

COBOL-as

INITIALIZE DATA-STRUC'1'URE.

Is equivalent to

COBOL-"
MOVE ZEROBS TO NUllERIC- ITEM,

mDlBRIC- EDITED- I'.l'BM.

MOVE SPACES TO ALPHA-ITEM.

PIC x.
PIC 9.
PIC X.

PIC 9.9.

Note that the INITIALIZE verb does not IOOve spaces to e1emel1tal FIILER items.

COBOL-as
INITIALIZE DATA- STRUC'l't1RB REPLACING ALPIIANtJIIBRIC BY • * •

This construct will move uterisks to ALPHA-rrEM. NUMERIC-ITEM and
NUMERIC-EDrrED-ITEM will be 1IDChanIed.

The INmAUZE va'b will work on all oceunences oftable items declared with the
OCCURS clause, but will not affect items that are INDEX items, and items tIlat
contain or are subordinate to a REDEFINES clause (thouab DATA-STR.UCTURE
may contain a REDEFINES clause or be subordinate to one).

ANS COBOL as or How I Learned to
Stop Worrying and LDve The Bomb 3207-12 Robert A Karlin

MOVE ENHANCEMENTS

COBOI.r85 finally corrects a deficiency that has plagued software designers since
the language was originally developed , that being the ability to dynamically access
part of an alphanumeric field. The STRING and UNSTRING commands, added by
the COBOL-74 standard, allowed the programmer to parse a field, if there were a
limited n1llDba" of delimiters, if the number of fields were known, if the resulting field
sizes were known, if ..., if ..., if COBOL-8S provides Reference Modification,
the ability to specify a starting byte position (relative to one) within a field, and the
number ofbytes to move (i.e. [START]:[LENGTH):

COBOL-SS

01 ALPHAMERIC-LINE

01 ALPHAMERIC- LINE- 2

PIC X(80) •

PIC X(4tO).

MOVE ALPHAMERIC-LINE (21:10) TO ALPHAMERIC-LINE-2.

MOVE 'LITERAL' TO ALPHAMERIC-LINE (32:7).

The move takes place using the roles for moving simple alphanumeric fields. The
fields must be dermed as USAGE DISPLAY (the COBOL default), and, if the sending
field is numeric or numeric edited, it is treated as if it had been redefined a s simple
alphanumeric field. The starting position and/or the length may be any arithmetic
expression.

COBOL-SS

PERFORM VARYING POSITION FROM 1 BY 1 UNTIL POINTER> 10

MOVE ALPHAMERIC-LINE (POINTER: 1) TO

ALPHAMERIC-LINE-2 (POINTER * 2:1)

END- PERFORM

MOVE SPACES TO

ALPHAMERIC-LINE-2 «POINTER * 2) + 1:32 - (POINTER * 2»

The last line translates as MOVE SPACES to the beginning of ALlPHAMERIC
LINE-2 plus 1 plus (POINTER times 2) bytes, for a length of 32 minus (poINTER
times 2).

Another enhancement to COBOL provides the DEEDITED move, that is, the
ability to move ftom a numeric edited field to a computational muneric field.

ANS COBOL 85 or How I Learned to

Stop Worrying and Love The Bomb 3207-13 Robert A Karlin

COBOL-as
01 NUMERIC-EDITED
01 NUMERIC- CALCULATED

PIC ZZZ9.99CR.
PIC S9(4}V99 COMP-3.

MOVE -35.42 TO NUMERIC-EDITED.
MOVE NUMERIC-EDITED TO NUMERIC-CALCULATED.

Note that NUMERIC-EDITED cannot be used on the right side of a computation
as in: NUMERIC-eALCULATED =NUMERlC-EDrrED + 1.

ANS COBOL 8S or How I Learned to

Stop Worrying and Love The Bomb 3207-14 Robert A Karlin

PIC X(10).

PIC X(lO) •
PIC X(lO).

NESTED SOURCE PROGRAMS

Earlier in 1his text it was mentioned that COBOL does not provide the ability to use
parametric procedures. This is not entirely correct. COBOL-8S has provided a
method of local variable storage and parametric procedures: the nested program. A
nested program must occur at the end of the procedure division, and is treated very
much like an external called program. Like a main program (see Miscellaneous
Enhancements), a nested program does not need to contain all four divisions. A
program may optionally declare data or files that may be referenced by all programs
subordinate to it, or may declare data or files that can be shared by any program in the
ron unit, that is, the aggregate code file produced by the compile and link.

COBOL-as
IDENTIFICATION DIVISION.
PROGRAM- ID • CALLER.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FILE-1 ASSIGN TO ZZZZZ.

SELECT FILE-2 ASSIGN TO YYYYY.
DATA DIVISION.
FILE SBCTION.

FD FILE-1 IS GLOBAL.

01 RECORD-l.

03 FIELD-1l
03 FIELD-12

FD FILE-2.

01 RECORD-2 IS GLOBAL.

03 FIBLD 21
WORKING- STORAGE SECTION.

77 STATUS-FIELD
88 GOOD
88 BAD

PROCEDURE DIVISION.

OOOO-MAINLINE.
OPEN INPUT FILE-2

PIC X(l) •
VALUE 'Y'.

VALUE 'N'.

ANS COBOL 8S or How I Learned to
Stop Worryina and Love The Bomb 3207-15 Robert A Karlin

OUTPUT FILE-1 ..
READ FlLE-2

AT END MOVE HIGH-VALUES TO RECORD-2.

PERFORM UNTIL RECORD-2 = HIGH-VALUES

CALL • SUBPROGRAM-1' USING STATUS - FIBLD

IF GOOD

CALL 'SUBPROGRAM- 2' USING STATUS - FIELD

IF BAD

DISPLAY 'BAD RECORD ' RECORD-2

END-IF

END-IF

READ FILE-2

AT END MOVE HIGH-VALUES TO RECORD-2

END-READ

END - PERFORM.

CLOSE FILE-l

FILE-2.
IDENTIFICATION DIVISION.

PROGRAM- ID. SUBPROGRAM-1.

DATA DIVISION.

WORKING- STORAGE SECTION.

01 COUNT PIC 89 (9) VALUE 0 EXTERNAL.

LINKAGE SECTION.
77 STATUS-FIELD PIC X(l).

88 GOOD VALUE 'Y·.

88 BAD VALUE 'N'.

PROCEDURE DIVISION USING STATUS-FIELD.

OOOO-MAINLINE.
IF RECORD-2(1:2) = 'OK'

SET GOOD TO TRUE
ADD 1 TO COUNT

ELSE
SET BAD TO TRUE.

EXIT PROGRAM.
END PROGRAM SUBPROGRAM-I.

IDENTIFICATION DIVISION.
PROGRAM- ID. SUBPROGRAM- 2 •

DATA DIVISION.

WORKING- STORAGE SECTION.

01 COUNT PIC 89(9) VALUE 0 EXTERNAL.

ANS COBOL as or How I Learned to
Stop Worrying and Love The Bomb 3207-16 Robert A Karlin

LINKAGE SECTION.
77 STATUS-FIELD PIC X(l) .

88 GOOD VALUE ' Y' •

88 BAD VALUE 'N'.

PROCEDURE DIVISION USING STATUS-FIELD.
OOOO-MAINLINE.

MOVE FIELD-21 TO FIELD-ll.
MOVE COUNT TO FIELD-12.
WRITE FILE-1.
SET STATUS - FIELD ~ GOOD.
EXIT PROGRAM.
END PROGRAM SUBPROGRAM- 2 •
END PROGRAM CALLER.

The GLOBAL keyword allows all subordinate programs to reference the tile
and/or data item that contains it, as well as all data items subordinate to tine GLOBAL
item. The EXTERNAL keyword defines a data area that is common to all programs
that include the definition. Note that if there are subordinate items to the EXTERNAL
item, they must be defined exmctly the same in all referenced cases, but the data area
may be subsequerttly redefined.

A nested program may also include the keywords COMMON and INITIAL on tile
PROGRAM-ID line. The COMMON keyword specifies that the proaram may be
called by any program in the ron unit The INITIAL specifies that all items are to be
reset to their initial state, that is, to either the values specified in tile VALUE clauses,
or to an undeCIDed state if there is DO VALUE clause specified.

COBOL-as
IDENTIFICATION DIV2SION.
PROGRAM-m. SUBPROGRAM-3 IS COMHON PROGRAM.

COBOL-as

IDENTIFICATION DIVISION.
PROGRAM-ID. SUBPROGRAM-4 IS INITIAL PROGRAM.

COBOL-as
IDENTIFICATION DIViSION
PROGRAM-:ID. SUBPROGRAM-4 IS INITIAL CDIIION PROGRAM.

Note also that multiple COBOL-8S programs may follow one another in a
compilation stream. Each proaram is terminated by an END PROGRAM statemeIIt, or
by tile termination of tile input stream.

ANS COBOL 8S or How I Learned to

Stop Worrying and Love The Bomb 3207-17 Robert A Karlin

MISCELLANEOUS ENHANCEMENTS

COBOL-8S has provided a number ofminor enhancements that are useful to know
about One of these is enhancement to the CALL verb to allow data to be passed by
value instead ofby reference.

COBOL-SS
01 FIELD-l
01 FIELD-2
01 FIELD-)

PIC X VALUE 'A'.
PIC X VALUE IB'.
PIC X vALUE 'C'.

CALL • SUBPROG' USING BY REFERENCE FIELD-l
FIELD-2

BY CONTEXT FIELD-).

Another enhancement included in COBOL-8S is the implied FILLER statement.

COBOL-74
01 FIELDS.

03 FILLER
03 FIELD-l
03 FILLER REDEFINES FIELD-l.

OS FILLER
as FIELD-12

COBOL-as
01 FIELDS.

03
03 FIELD-I
03 REDEFINES FIELD-I.

as
os FIELD-12

PIC x.
PIC xx.

PIC x.
PIC X.

PIC x.
PIC xx.

PIC x.
PIC x.

And yet another enhancement found in COBOL-85 is the reduction in the minimum
program. The following illustrates the minimum compilable program.

COBOL-?4

IDENTIFICATION DIVISION.
PROGRAM-ID. COBOL74.
ENVIRONMENT DIVISION.

ANS COBOL 8S or How I Learned to

Stop Worrying and Love The Bomb 3207·18 Robert A. Karlin

DATA DIVISION.
PROCEDURE DIVISION.

STOP RUN.

COBOL-as
IDENTIFICATION DI~SION.

PROGRAM-ID. COBOL-SS.

The above also illustrates a fourth enhancement to COBOL-SS. The compiler will
automatically generate a program exit after the last line ofthe program if the program
falls through it The compiler will also automatically close all open files when the
program is exited.

COBOL-85 provides another arithmetic operator, ••, for exponentiation. 3·· 2
will result in three squared, or 9. The exponent may be fractional, 4 •• .S will result
in the square root of 4, resulting in 2. The exponentiation opentor may appear
anywhere that any other- aritllunetic operator may occur.

COBOL-8S allows fields that contain OCCURS clauses to be initialized using a
VALUE clause. This would be equivalent to coding each entry separately with a
VALUE clause.

COBOL-74
01 FIELDS.

as FIELD-A.
10 FILLER
10 FILLER
10 FILLER

05 FILLER REDEFINES FIELD-A.
10 PIELD-l

TIMES.

PIC 9 VALUE O.
PIC 9 VALUE O.
PIC 9 VALUE O.

PIC 9 OCCURS 3

COBOL-8S

01 FIELDS.
05 FIELD-1 PIC 9 OCCURS 3 TIMBS VALUE o.

COBOL-8S allows the substitution of BINARY and PACKED-DECIMAL for
COMP and COMP-3. respectively.

In COBOL-SS, the CONTINUE statement acts as a NO OPERATION and may

ANS COBOL as or How I Lamed to

Stop Wonying and Love The Bomb 3207-19 Robert A. Karlin

occur anywhere a COBOL-85 procedure division statement may occur.

COBOL-85 enhances the INSPECT verb, adding the INSPECT CONVERTING
option:

COBOL-SS

INSPECT FIELD- A CONVERTING I ABC I TO I DEF' •

COBOL will examine each byte of FIELD-A, comparing it to each byte of the
string 'ABC'. Ifa match is found, COBOL will replace it with the corresponding byte
from the string'DEF. If FIELD-A contained 'CAT, the above would convert it to

'FDT'.

COBOL-8S provides two new class tests, ALHABETIC-UPPER and
ALPHABETIC-lDWER.

COBOL-as

IF FIELD-A IS ALPHABETIC-LOWER

PERFORM UPSHIFT-FIELD-A.

COBOL-8S allows the programmer to defme a SYMBOLIC to identify a particular
character in an alphabet.

COBOL-SS
SPECIAL NAMES.

SYMBOLIC CHARACTER BEL IS 07.

MOVE BEL TO FIELD- A.
DISPLAY BEL 'WAKE UP' •

COBOL-8S allows the programmer to specify his own class test for use in
conditionals. When used in a conditional phrase, COBOL-8S checks each character in
the compared field to determine if it is part of the class. In the following example, if
all characters in FIELD-A were A or B or C or Qor Z, the conditional would be true
and the MOVE would be executed.

COBOL-8S
SPECIAL NAMES.

CLASS A-THRU-C-AND-QZ IS 'A' TBRO 'e l IQI 'ZI.

ANS COBOL 8S or How I Learned to
Stop Worrying and Love The Bomb 3207-20 Robert A Karlin

IF FIELD-A IS A-THRU-C-AND-QZ
MOVE FIELD-l TO FIELD-2.

COBOL-85 allows subscripted and indexed tables to be referenced by an offset to

a current subsaipt or index.

COBOL-as

MOVE TABLE-ENTRY (INDlCE + 1) TO TABLE-ENTRY (SUB - 3).

And, finally, COBOL-8S elimitates the REMARKS section in the
IDENTIFICAnON division, and the NOTE paragraph in the PROCEDURE division.
These are considered repDaced by the COBOL-74 '.' (comment) in column 7
cOnstnlct.

ANS COBOL as or How I Learned to
Stop Wonying and Love The Bomb 3207-21 Robert A. Karlin

BOMBS AWAY

COBOL has changed greatly since its conception in 1960. And COBOL has
grown to be the most widely used business programming language today. Much of
the credit for this goes to the original design team, who created a language that was
easy to understand and simple to use. But credit must also be given to the American
National Standards Institute Technical CODDDittee for their effort in keeping COBOL a
living, growing product that is responsive to the needs of CUlTent users. The next
version of COBOL will probably be available by the middle of this decade. Under
discussion are enhancements to provide Object Oriented extentioDs, network related
struetures,and asynchronous task support. Copies of the CUlTent standard may be
obtained from:

American National Standards Committee
1430 Broadway
New York, NY. 10018

Ask for ANSI Standard X3.23-1985. There will be a nominal publication charge.
Any comments about COBOL-8S, or enhancement suggestions should be addressed to

TECHNICAL COMMITIEE X3J4 (COBOL) at the above address.

ANS COBOL as or How I Learned to

Stop Worrying and Love The Bomb 3207..22 Robert A Karlin

Paper #3208
Integrating the OMNIDEX IMS Into Your System AppUeations

Tim Klooster
DYNAMIC INFORMATION SYSTEMS CORPORATION

5733 Central Avenue
Boulder, Colorado 80301

(303) 444-4000

1bis paper will present examples of applications using the OMNIDEX Information Management
System (lMS). These examples represent actual systems or designs that have inc«porated
features of the OMNIDEX IMS and put into p-actice the concepts~

The ptII'pQ§e is to present these examples in a way that will help the reader think of ways to
incorporate similar implementations into his own applications.

The examples presented illustrate database design with the OMNIDBX IMS, keywording,
IMSAM discrete mode, and Document Management.

This paper presumes that the reader has a basic knowledge of the concepts used by the OMNIDEX
IMS.

EXAMPLE 1: KEYWORD RETRIEVAL

Problem Tracking System:

This example takes advantage of the power of OMNIDEX keywording. Keywording simply refers
to the ability of OMNIDEX to parse or break down a field by its special characters and give
retrieval access to the field by any word within the field. 1he power of this feature becomes
especially apparent with a large descriptive or textual field where many keywords exist within the
field.

Another feature utilized in this example is data item grouping. Grouping in OMNIDEX is a
feature where two or more fields are logically treated as a single entity. This allows multiple
fields to be searched simultaneously for a value or values.

1bis feature is set up during the OMNIDEX installation simply by appending the grouping optim
to the field name. When searching for a value in the field, OMNIDEX recognizes that it is a
grouped field and automatically searches acra;s all fields in the group for the same value.

The requirements for this application included the ability to catalog and retrieve data 8EOciated
with all customer accounts.

Additionally, storage of all problem situatioos and the resolutions for each account was required.
These situations could be referenced when a similar problem was alCOUDlered. 1be database
would serve as a "knowledge base" for solving problems.

3208-1
Integrating the OMNIDEX IMS Into Your System Applications

Since the customer service department assists customers as they call in, it was~ for them
to be able to access the data while the customer remained on the phone. This required their data
processing department to create a system that would give the users a fast and flexible environment
for their data retrievals.

The design that was implemented included a customer master dataset with associated problem
descriptim and resolutioo description detail datasets. The customer master p-ovided keyword
lookup; by customer name, company, title, city, state, zip, and phone. The customer name, title,
company name, and company-alias fields were grouped together so that the user could simply
enter any of the information at a single prompt and retrieve the master data immediately.

The problem detail dataset provided keyword 8CC<& on the comments and error description fields.
The users can access this information by an error code or by entering any word in the descripdm
or comments fields. The resolution detail dataset provided access by any word in the descriptim
or comments fields. The customer service department can now provide assistance to their
customers while the customer is on the phone.

This system also allowed the company to catalog and isolate problem areas with their service.
Daily and monthly supunary reports are generated showing areas needing auentim. Forecasting
of future p-oblems is also~ble.

Keywording can be a benefit to any application where flexible retrievals are required on data that
is textual in nature.

Other applications that can benefit from keyw«ding include marketing, legal case tracking, and
medical chart tracking.

EXAMPLE 2 - DATABASE DESIGN
Sales Order Database

This example uses a sales order database designed in IMAGE to allow multiple path entry into the
primary datasets (see Figure 1-1). KSAM files were used to allow partial key lookups by product
name and customer name. Automatic master datasets were created for access by sales date and
order number.

In the redesigned database model (see Figure 1-2), we see that OMNIDEX and IMSAM have been
incorporated to create a much simpler database structure.

The KSAM (des were replaced with OMNIDBX keys (Xl ptXIuct name and customer name. This
eliminates the worry of maintaining extemal KSAM files. If a sort is required on either of these
fields, IMSAM could be added.

The automatic master datasets, sales-dates and orders, have been replaced by OMNIDBX keys.
The inventory dataset can now become a manual master dataset physically as well as logically
with the multiple key capability of OMNIDEX.

We now have restored the natural IMAGE sttucture of a parent-ehild relatimship (one record to
many) between the order header and order lines datasets.

1bis structure allows much easier retrievals across the datasets because we now have data
structures that are correctly represented in IMAGE.

3208-2
Integrating the OMNIDEX IMS Into Your System Applications

EXAMPLE 3 - DATABASE DESIGN
Franchise Management System

nus example illustrates how OMNIDEX domains can allow a hierarchical tiered structure design
in an IMAGE database. Hierarchical databases traditionally facilitate a "top-down" style of data
retrieval much better than a network database like IMAGE.

Figure 2-1 shows the structures involved in a franchise management system. Each level has a one
to many relationship with the level below it. For example, there are multiple divisioos within a
company and each company has multiple offices.

Network databases such as IMAGE are designed for a two level ~ single master to many detail
dataset relationship. The master dataset represents a single entity with the detail data sets
representing multiple entities or events~ated with the master dataset. Since IMAGE will not
allow levels below a detail dataset, we find our designs going horizontally instead of
"top-to-bottom" as they logically are in real life.

Using OMNIDEX search item (SI) domains, we can simulate a hierarchical design inside of
IMAGE. A search item domain refers to indexing a detail dataset with its associated master
dataset. Figure 2-2 shows the IMAGE design of the structure outlined in Figure 2-1. Automatic
masters are used to allow f~ OMNIDEX SI domains to be placed around each detail dataset.
Generally, automatic master indexes are not required in IMAGE when OMNIDEX or IMSAM
indexes are present. I use them in this design to create an SI domain for each detail dataset.

The multirmd function in OMNIDEX will allow us to easily cross SI domains for our retrievals
requiring multiple dataset- access. These domains illustrate a "sawtooth" design which generally
favors the "top-down" type of retrievals that are difficult in IMAGE.

The retrieval outlined below illustrates how a -top-down" retrieval can be easily performed in
IMAGE using OMNIDEX SI domains. If we ask the question, "How many people under the age
of 21 are employed in the Colorado region?-, we are required to start at the companies level and
end up in the people level.

IMAGE retrieval without OMNIDEX:

The retrieval process would begin with a serial read of the companies dataset since state would not
be the mes likely key. To rmd the associated divisi~ for each qualifying company, we would
do a chained read into the division detail set. We would continue by finding the chain head for
every office within each qualifying division and then read down the chain into the office dataset.
We would continue this process until we reached.the people dataset, where program logic would
be required to select the age group while reading down the chain.

To satisfy this retrieval, we had to perform a serial read of a dataset, build record selection logic
into our program, and read all the records in each detail chain, whether we needed them or not.

By retrieving records that we don·t need, through a serial <X' chained read, we incur an increase in
the time it will take to execute this retrieval. Building selection logic into a program also requires
programming time when developing this application. These requirements often pre<:lude the
ability to perform ad-hoc reporting requests against our data.

3208-3
Integrating the OMNIDEX IMS Into Your System Applications

OMNIDEX retrieval:

To perform this retrieval using OMNIDEX, the multirmd feature would be utilized.* The serial
read in IMAGE of the company dataset would be replaced with an ODXFIND intrinsic call to
qualify oo1y the entries that we require. We then perform our "top-down" retrieval~ using
multifind to Cf(& the domains. This process requires only a call to ODXFIND to qualify the
entries in our target domaiIL When we reach the people domain, we can qualify the en1ries that
satisfy our age requirement.

An added performance benefit of this design is that multifmd takes action only against the
OMNIDEX index sets. In mail cases, this can result in a much faster qualification of the entries
compared to retrieving the records from the IMAGE datasets.

This action lends itself easily to an ad-hoc query environment as long as the number of
OMNIDEX IDs that are qualified and used as input to the multifind operation are kept at a
reasooable number. DISC recommends that this number be under a thousand.

Alternative desip:

An alternative to using automatic master datasets and search item domains in the above design
would be to create stand-alone detail datasets for each level of the hierarchy. OMNIDEX detail
domains (DR) would be installed under detail datasets. OMNIDEX indexes would be placed OIl

the common fields between the detail datasets.

A new feature was added to OMNIDEX version 2.05/2.06 that allows any specified field to be
written to an ASCn fde using the ODXTRANSFER inttiDsic. The e<mtents of this fde is then
used as input into the ODXFIND intrinsic against the target dataset. The ODXTRANSFER call
uses the new mode +100 and allows you to specify the field you want to transfer in the "options"
parameter.

This feature allows multifind to cra;s detail domains whereas before you were limited to crossing
search item domains or into one detail domain.

The advantage of this design is that it9s more simplistic and provides improvement in update
overhead over the design using automatic master datasets. The enhancement to ODXTRANSFER
allows the creation of a "relational-like" environment where linkages between files can be
dynamically created as needed instead of being pre-defined at design time. The files can be inside
the same database or in different databases. The only requirement is a common data item with
OMNIDEX installed on the target dataset.

The disadvantage of using stand-alone details and ODXTRANSFER is a poEible increase in
processing time due to the disk activity of writing and reading the Ascn file that is used as the
link between the two datasets. Careful plarming of the'relatiooships between datasets when setting
up your design can help insure acceptable retrieval times.

*For a discussion of Multiflnd. refer to Page 2·78 of the OMNIDEX AdmlnistndDnJ Guide

3208-4
Integrating the OMNIDEX IMS Into Your System Applications

EXAMPLE 4: IMSAM DISCRETE MODE
Statistical Reporting System

Discrete mode refers to taking action against the OMNIDEX and IMSAM indexes only. By
comparison, normal mode refers to action taken against both the OMNIDEX and IMSAM indexes
along with the IMAGE datasets.

IMSAM discrete mode can greatly benefit data retrieval access times since information can
generally be extracted from the IMSAM indexes much faster than the IMAGE datasets.
Additionally, IMSAM returns the data sorted to your program.

Discrete mode requires that all required data is stored in the IMSAM index key. This is
accomplished using compSte keys. CompSte keys are a feature of IMSAM where all ~ parts
of multiple fields can be concatenated into one key. When the data is returned, it is sorted in the
order of the components of the compSte key. Currently, you can have up to seven components
in an IMSAM compSte key for a total of 128 bytes in length. IMSAM diScrete mode is generally
30 - 100 times faster than normal mode.

This application called for the ability to store and access a very large amount of data for a period
of two to three years. IMSAM was chasen to provide multiple level sorting m the data.

Discrete mode retrievals were chosen to provide the performance required in the monthly
reporting cycle. 1De application began with a few million records and would grow up to ten
million in the next year.

A single stand-alone detail dataset was created for storage. (Note: A stand-alone b-tree is possible for
this application. A stand-alone detail set was chosen because updates were performed on a monthly
basis, requiring aU the data to be present in either aflatfile or data set to load into the IMSAM indexes.)

IMSAM compSte keys were constructed based on the sort requirements and control breaks for
the monthly summary reports. All sales amounts and quantities were inchJded at the end of the
key. .

Reporting the data utilized IMSAM discrete mode by calling DBIOET using mode 1300 to
pngtion the pointer at the requested area of the b-tree. Subsequent DBIGETS with a mode 1090
are then used to read down the b-tree.

3208-5
Integrating the OMNIDEX IMS Into Your System Applications

A sample performance analysis of expected retrieval times is as follows:

1. IMSAM has a maximum tree block size of4096 bytes.

2. One of the IMSAM composite keys has a length of 64 bytes.

3. Each disk drive access will yield a maximum 64 IMSAM keys.

(lMSAM block size / IMSAM lceysize c number of keys per read)

4. 11le average number of records Per month = 416,667.

(10 million total records/24 months =records per month)

5. Ma;t monthly reports will report the p'evious months sales and a comparison with
the same month in the previous year.

6. An average of 833,333 records will be read for each reprt (416,667 x 2 =
833,333) - 2 months

7. 11le disk drive average access time per monthly repn would be apP'oximately 6.6
minutes.

11le calculation is as follows:

- 833,333/64 (rees per block) = 13,021 I/O·s (rounded)
- add 8 I/O·s to position record pointers in the b-tree
(4 for previous year + 4 to reset at current year)

- 13,0291/0·s /33 c 395 secoods or 6.6 minutes
(33 = lIP benchmark of the number of I/O·s per secood fm- an Eagle diskdrive)

This performance analysis shows that it is possible to have great performance m a large number
of recOrds in your dataset when using IMSAM discrete mode fm' the retrieval.

When setting up your IMSAM composite keys, use the following guidelines:

1. Your selection fields should be the leftmc:m fields in the composite key.

2. The order of the components should match the sm order of your repm.

In the event that your selection order differs from your sttt order, you should maintain the sort
order as your most important criteria. The selection fields can be spread out over the composite
key in some cases. For example, if you need to select on the first and forth components of your
key, you must insure that the second and third components are set to low values so they don·t
cause unwanted selections. You must also monibX' those fields as you read down the b-tree. It
may be required that you periodically reposition your record pointer as these values change.

Other good applications for IMSAM discrete mode include any large historical application, an
online general ledger, or any ad-hoc requirements where all the required data can be stored in the
key.

3208-6
Integrating the OMNIDEX IMS Into Your System Applications

EXAMPLE 5: DOCUMENT MANAGEMENT
Correspondence Tracking System

Document management in OMNIDEX provides the ability to index any ASCII file. Each word in
the document can be indexed allowing for keyword retrieval anywhere in the documenL 11le
DATADEX KEYWORD command must be used to load the documents into the index sets.
Datadex or any programming language can then be used for retrieving and displaying the
documents. The only design requirements for a document management system are an IMAGE
master dataset with fields to store an internal number fm- each document and the name of the file
that has been indexed. Retrievals are then Performed against the OMNIDEX index sets and file
names are returned to the program. The ODXVIEW intrinsic is used to view the files online in
your programs. ODXVIEW allows for user input while viewing the document. 11le user is
allowed to scroll forward or backward in the file by lines or pages.

A large corpOration needed to catalog internal and external _ and track the routing
of memos internally. Functionality included the ability to retrieve documents by the sender,
sendees, memo subject, and document keywords. 1be documents were scanned and loaded into
ASCII (ties on the HP. DATADEX was then used to·load the keywords into a database.

The database included a master dataset with the following fields:

- document number
-filename
- subject
- sender initials
- sendee initials
- memo-date
-comments

(J2) KEY

(X26)

(JOO)

(X4)

(X4)

(J2)

(DO)

A memo routing detail dataset allowed for memos to be passed to other people with the senders
comments and tickler and due dates.

The master and detail sets were indexed together using a search item domain installation. Mem~
could be retrieved by any master field or document keyword. A screen function key was set up to
list the corresponding memo routing information. This detail set was I.inked to the master using
the document number search item. Document number was sorted by a send date field so that the
most recent routing would be displayed first. Viewing the actual memo is possible using the file
name from the master dataset as input into a call to the ODXVIBW intrinsic.

Utilizing a document management system like this allows instant access to any document without
having to search for paper copies or through documents archived to microfilm.

Other examples of document IIWlagement systems include a source code Cl'<&-referenee, online
reference manuals, and legal documents.

3208-7
Integrating the OMNIDEX lMS Into Your System Applications

SUMMARY

There are many places where an indexing system like the OMNIDBX IMS can be used in your
applications. Database design can be heavily influenced when OMNIDEX or IMSAM are used.
Remember, you don9t have to change your database design to use the OMNIDEX IMS though! If
your existing database cannot be altered, you can still install OMNIDEX or IMSAM witmut
affecting your data.

The keywm-ding power of OMNIDEX can be used in practically any application. IMSAM
provides a great alternative to sort keys when your chains are Ioos~ chain maintenaDce is high.

Discrete mode retrievals in IMSAM can make complex repminl poeSble when before it was
considered imJXmible. Larger amounts of data can be stored aDd acCC&ied online. When deciding
whether to use IMSAM discrete mode or not, it is highly beoeficial to work through an analysis of
your disk overhead in retrievals and updates. This analysis will p:ovide you with a basis to
determine keysize, components of the keys, and tree block size.

You will also be able to JRdict the speed of your retrievals and which reports and queries are
feasible.

Document management also illustrates the power of relational keywording. The ability to retrieve
and maintain documents online can be ofvalue in many applications.

Hopefully, I have presented an example or two that made you think of a new way that you can put
your new indexing system to work in your company. Getting iDfmnation to your users in a fast
and flexible way is becoming more and m~e important every day.

Good luck with your new applications!

3208-8
Integrating the OMNIDEX IMS Into Your System Applications

EX~STING DATA BASE

Figure 1-1

3208-9
Integrating the OMNIDEX IMS Into Your System Applications

REDESIGNED DATA BASE

INVENTORY ORDER-UNEa CUST-NOTE8

OMNIDEX IMS
INDEXES

Figure 1-2

3208-10
Integrating the OMNIDEX IMSInto Your System Applications

Database Design

I

I

I

I

I

Figure 2-1

3208-11
Integrating the OMNIDEX IMS Into Your System Applications

Paper #:3209

The EH Safety Representative Information System on the Safety Pen10nnance
Measurement System is where you will fmd••• Word Processing and Helps with a

V - P L US!

Patricia Irene Lao
EG&G Idaho, Inc.

P.O. Box 1625
Idaho Falls, Idaho 83415-3405

(208) 526-6063

1.0 Introduction

What are some of the current environmental, safety, and health problems being found at
different DOE facilities? What are some of latest software products available for HP-3000
on-line applications? How can I meet my customer's ever-ehanging requirements? These
and many other questions will be focused on within this review of the Environment, Safety,
and Health (EH) Safety Representative Information System (SRIS) located on the Safety
Performance Measurement System (SPMS). SPMS is a collection of automated
environmental, safety, and health information modules for reference by DOE and DOE
contractors. SPMS is operated by the Management Information Systems (MIS) Unit of the
System Safety Development Center at EG&G Idaho, Inc.

In the following sectiOlllS an overview of SRIS, an on-line system designed for the HP-3000,
will be presented along with an analysis of design methods and software packages used to
develop the system.

2.0 What is the EH Safe1ty Representative Information System (SRIS)?

2.1 General Overview of SRIS

If your job requires keeping updated on environmental, safety, or health findings
within DOE, SRIS and other modules on SPMS are invaluable tools for analysis.
SRIS was developed to disseminate safety representative reports across the DOE
community. Currendy, safety representatives are located at the following locations:

The EH Safety Rep. Information System oa SPMS is where you will rlDd...
Word ProeessiDa aad Helps with a V • P L U S!

3209-1

1. Idaho Falls, Idaho
2. Oak Ridge, Tennessee
3. Richland, Washington
4. Golden, Colorado
S. Aiken, South Carolina

The EH Safety Representatives report directly to DOE Headquarters and perform
continual inspections at their respective locations. Following their inspection, the
safety representatives document their findings by entering them into the SRIS
database. These findings include any environmental, safety, or health problems.
When completed, the safety representative submits the report for review by the
appropriate operations office. According to DOE guidelines, the operations office
is given two fun working days following the submittal of the safety representative's
report to respond. After two full working days, the report is automatically released
to the DOE community for review.

1.1 CapabiUties of SRIS

SRIS is a resPOnsive system providing keyword search, report generation, on-line
data entry with ,a word processing enVironment, aDd personal computer (PC) data
interface capabilities. '

Searches can be performed to locate findings and responses on a variety of attributes
(e.g., site, organization code, occurrence date of finding, keyword search on
narrative text). After retrieving requested items the appropriate report (daily,
weekly, monthly, or special) can be generated.

Safety representatives may enter their reports using a PC application or on-line data
entry screens. This'versatility allows users to select the software environment they
feel most comfortable with for data entry. The PC application allows data entry
using almost any familiar word processor and provides a window environment with
easily accessible help screens. The HP-3000 also offers a word-processing
environment and a help facility.

1.3 Access Restrictions

The Department of Energy (DOE) can be divided into three unique entities:

1. DOE contractors (e.g., EG&G Idaho, Inc., Westinghouse Idaho Nuclear
Company, Inc.) - Companies who have received', contracts from DOE to
perform designated tasks such as operate DOE-owned facilities.

The EH Safety Rep. Ialormatioa System oa SPMS is where,you wID fiDd•••
Word Proeessiag and Helps with a V • P L U SI

3209-2

2. DOE Operations Offices (e.g., Idaho Operations, Richland Operations)
These regional DOE offices perform contract administration and oversight.

3. DOE Headquarters - Located in Washington D.C., this is the parent office
of all DOE facilities.

SRIS is designed to allow only authorized DOE and contractor personnel to read,
write, and respond to certain reports.

Users searching for report items are limited by the following "reading restrictions":

• Contractors may read all released· reports for their own facility.
• Operations office personnel may read all submittetf reports for their own

site and all released reports.
• DOE Headquarters personnel may read all released reports.

EH Safety Representatives (who enter findings) and contractors and operations office
personnel (who respond to findings from safety representatives) are limited by the
following "writing restrictions":

• Contractors may respond to daily, weekly, or monthly items that are related
to their own facility.

• Operations office personnel may respond to daily, weekly, or monthly
submitted reports that are related to their operations office.

• Safety representatives may add to or update any of their site's daily, weekly,
or special reports until the reports are released.

3.0 System Requirements of SKIS

Safety Representatives are located at various DOE facilities throughout the United States and
enter daily, weekly, monthly, and special reports for DOE Headquarters review. This factor
accounted for the most comprehensive and difficult requirement of SRIS. That is, provide
a centralized, easily accessible, and timely reporting system. Due to the diversity of skills
amoDg Safety Representatives, "user-friendliness" was also of prime consideration. To
provide an "easy to use" system several modes of data entry were developed. (Initially, time

Released reports refer to all SPMS SRIS reports that have been "submitted" by the safety
representative for more than two fun working days.

Submitted reports refer to all reports that have been completed by the safety representative.

The ED Safety Rep. Information System on SPMS is where you wiD rmd...
WOll"d Proeessq and Helps with 8 V • P L U S!

3209-3

restraints also made it imperative that a system be prepared quickly with available expertise
and software. After initial development, ·eDhancements and other modes of data entry were
designed). These included data entry screens on the HP-3000, PC data entry screens with
an "upload- facility to the HP-3000, and with the use of a -template-, a user may create a
file using almost any familiar word processor and then load the information to the HP-3000
database. For dissemination of reports, a centralized, easy to use, and fast means to retrieve
reports was required. Security restraints were also of primary consideration for both data
entry and retrieval.

4.0 Methods used to achieve requirements on the HP-3000

4.1 Data Entry Screens, Help Facility and Word Processing

To provide user-friendly data-entry screens on the HP-3000, HP's VPLUS utility
was used for fast screen generation of data entry modules (see Figure 1 on the
following page as an example VPLUS screen). To improve -ease of use- in the
VPLUS data entry screens, software was reviewed to provide on-line helps. Of
primary importance, the help screen software needed to provide an easy method of
integration with existing VPLUS screen applications (since the majority of our data
entry applications use VPLUS). "AUTO HELP" by PROBUS accomplished this task
to best meet our needs. By pressing f6 the user can receive a general help
information on the current data· entry screen. Also by placing a question mark (1)
in the field being questioned and pressing the numeric pad's <ENTER> key, help
can be retrieved for the respective field. The help screen might appear as shown in
Figure 2 on the following page.

Due to the combined factors that VPLUS does not include any word processing
functionality and the extensive amount of narrative text that safety representatives
enter, research was also performed to find an efficient means for entering narrative.
It was determined that word .processors with available "hooks" into an HP-3000
application are extremely rare products! Fortunately, however, one that met the
requirements of SRIS was found. Minisoft's MiniWord and Toolkit provided a
complete word processor for on-line applications. Commands are all performed
through assigned function keys and/or control key sequences. A template ofallowed
functions was provided to each safety representative as a quick reference guide.
Figure 3 shows an example of how the word processor appears to the users.

The EH Safety Rep. IDformation System on SPMS is where JOu will find...
Word ProcessiDa aDd Helps with • V • P L U Sf

3209-4

** ADD ** EH Safety Representative Report Input Screen

REPORT KEY
Type..**********"*

Site Date
ID 08/09/90

Section Item

? 01
Org

3003003
Facility

IF
Building

WCB

Discipline Code:
Priority:

Group Responsible: SSDe
Keywords: SSDe SRIS WORD PROCBSSIRG~ Blr.rRY
References:

Title: SRIS DAD ~y AHD WORD PROCBSSIRG CAPABILITY

Note:
* * * * * * * * * * * * * * " *
* TAB - forward Screen HELP - f6 *
* <shift> TAB - backwards Field HELP - "1" and numeric ENTER key *
* * * * * * * * * * * * * * " *

Bnt;er dat;a Press LJ (ADD) when you are ready t;o add t;ezt;.

Figure 1. SRIS data entry screen.

Field: REPORT_SBCTION

Section is a code for the desired section
(or subtitle) of the report. Allowable
sections are as follows:

Report Type Section Code Section Name
----------- ------------ ------------Daily (D) FIND Findings

Weekly (W) ADM Administrative
MFWA Major Focus of

Weekly Activities
WSO Weekly Summary of

Observations
Monthly (M) ADM Administrative

MSO Monthly Summary of
Observations

Special (S) INTRO Introduction
FIND Findings

Auto Help
2.04 EG&G -0001

(c) COPYRIGHT 1989
ALL RIGHTS RESERVED

PROBUS
International

Inc.

Figure 2. SRIS help screen.

The En Safety Rep. laformatlo8 System 08 SPMS It where you wDI flad...
Word Proceulna and Helps with a V • P L U SI

3209-5

PG 0001 LINE 01 COL
I
I

•••• T •••• T •••• T •••• T •••• T •••• T •••• T •••• T •••••••••••••••••••••R •••••••••••••

~is is an exaaple of the word proce••iDg capabilitie. for
the BB Safety Representative Info~tion Sy.tea. ~iWord by
lliniSOft, Inc. is a co_plete word processor with wordwrap,
spell check, blocking function., and other variou. fo~ttiDg

function••

Figure 3. MiniWord word processor linked into VPLUS application.

4.1 Search and Retrieval

To meet the basic search and retrieval requirements for SRIS, in-house software
(lIP's Image, a database management system, and Omnidex by Dynamic
Information Systems Corporation, a high-speed search indexing utility) and
previously written search routines were utilized to provide responsive and accurate
searches. Figure 4 shows an example of the search and retrieval capabilities within
SRIS:

The EH Safety Rep. IDI'ormatioD System on SPMS is where you wID find...
Word Processina aDd Helps with a V • P L U SI

3209-6

15. Contractor Response
16. Verification Narr.
17. Add Date (yyyymmdd)
18. Create Initial Subset
19. Reinitialize

15. Contractor Response
16. Verification Narr.
17. Add Date (yyyymmdd)
18. Create Initial Subset
19. Reinitialize

** Safety Representative Information System Search and Reports **

1. Site 8. Priority (1,11,111)
2. Report Date(yyyymmdd) 9. Group Responsible
3. Report Type (D,W,M,S) 10. Keywords
4. Organization Code 11. References
5. Facility Acronym 12. Title
6. Building 13. Report Narrative
7. Perf. Objective 14. Field Office Response

Type "HELP" for general info. or "HELP" and an item I, ie. "HELP 3".
Press 'RETURN' key only to en~ selection or enter field number(s):
1

Now enter your Site
For help on this field, type "HELP"
Press 'RETURN' only for previous prompt
ID

176 cases met the search requirements.

1. site 8. Priority (1,11,111)
2. Report Date (yyyymmdd) 9. Group Responsible
3. Report Type (D,W,M,S) 10. Keywords
4. Organization Code 11. References
5. Facility Acronym 12. Title
6. Building 13. Report Narrative
7. Perf. Objective 14. Pield Office Response

Type "HELP" for general info. or "HELP" and an item I, ie. "HELP 3".
Press 'RETURN' key only to end selection or enter field number(s):
13

Now enter your Report Narrative
For help on this field, type "HELP"
Press 'RETURN' only for previous prompt
fire, safety

14 cases met the search requirements.

Figure 4. Example of SRIS search and retrieval.

4.3 Report Generation

For report generation, a fourth generation report writer (QUIZ by Cognos) provided
a quick, easy means to develop the necessary reports. Figure S shows an example
of generating a report after performing the search shown in Figure 4.

The EH Salety Rep......ormatloa System OD SPMS is where you wW rlDd...
Word Processlaa aDd Helps with a V • P L U SI

3209-7

1. Safety Rep. Daily Finding Report
2. Daily Report with Headings
3. Safety Rep. Weekly Report
4. Safety Rep. Monthly Report

5. Safety Rep. Special Report
6. List of Report Titles (by Site)
7. List of Report Titles (alphabetic)

For general help, type "HELP"
For help on any field, type "HELP", followed by
a number between 1 and 7
Press 'RETURN' key only to end selection criteria
Enter Report field choice number 1

**** Print DAILY Findings Report ****
* *
* **** This is a 80 column portrait report ***

Do you want your output on your terminal or
on the SSDC printer. (T/P/L) [T] ?~

Do you desire a hardcopy (YIN) [N] ?
Do you want to pause after each screen (YIN) [Y) ?Y

Printed from SPMS on 08/09/90

EB SAFETY REPRESENTATIVE INFORMATION SYSTEM
Daily Report of Findings for 08/20/90

Site: XXX OPERATIONS

Finding No: 01
Priority: III

Title: INSTALLATION OF DRIP TRAYS WHICH DID NOT RECEIVE
SAFETY REVIEW

Page 1

Finding:

During a tour on 8117190, several (8-10) plexiglas8 drip trays
were observed in the overhead of the -13 foot elevation of the
ZZZ facility. The trays were apparently installed to
prevent drips from acid and cadmium bearing system valves and
flanges from falling to the floor. Above the trays, were
wet pipe fire protection sprinkler components, including spray
heads.

Figure S. Example of SRIS report generation.

De EH Safety Rep. IDI'ormatioD System oa SPMS 8 where you wiD fiDeI...
Word ProeessiDa aDd Helps witb • V - P L U SI

3209-8

5.0 Conclusions

SRIS utilizes a variety of software packages to provide a powerful system which can meet
the changing requirements of the customer in a timely manner. Too often, system analysts
try to meet their customer's requirements by using available in-house software and/or
developing the system with the use of only one software development tool. This can create
a system which may not fully meet user requirements. The EH Safety Representative
Information System has made use of advanced technologies in HP-3000 application software,
providing a comprehensive, easy to use, and maintainable system. As requirements and
technologies change, so can SRISI

The EEl Safety Rep. IDlormadoa System OD SPMS .. where JOU will fIDd...
Word Pr8eeu1Da aacI Helps with a V - P L U SI

3209-9

The Omnidex Handbook:
Tips for Tuning Omnidex Performance

C. Shawn Morris
Dynamic Information Systems Corp.

5733 Central Avenue
Boulder, Colorado, 80301

(303) 444-4000

Introduction

Much has been written about IMAGE performance as it relates to the
underlying IMAGE indexing structure. This information has helped
users to identify real or potential performance problems, and
adjust their data base administration practices to avoid problems
and improve performance. However, little information is available
to guide the user in diagnosing problems with alternate J.ndexing
products such as Omnidex.

This paper will provide the Omnidex user with specifics about the
internals of Omnidex keyword indexes. Common problems and their
underlying causes will be discussed as well. Along the way,
remedies and recommendations will be provided as guidelines to help
the Data Base Administrator maximize Omnidex index efficiency and
throughput.

omnidex Indexing Structure

In order to understand the overhead and possible pitfalls of
Omnidex keys, one must first gain a basic understanding of the
internal structure of omnidex indexes. Before beginning that
discussion, however, a few terms need to be defined.

Terms to Know

An omnidex keyword field is an IMAGE field that has been designated
as an Omnidex key at installation time. A keyword is a word found
somewhere in the omnidex keyword field. Keywords are delimited by
spaces, special characters and field boundaries, and one omnidex
keyword field may contain several keywords.

A record complex is defined as a master record and it's associated
detail records. An example of a record complex is a customer
master record and all order records for that customer, or a batch
header record, and all batch detail records entered for that batch.
Another way to think of a record complex is a single, variable
length record containing all data related to an entity.

The omnidex ID is a double word integer value (e.g. IMAGE type 12)
between 1 and 8,388,607 that uniquely identifies a record complex.

The·OMNIDEX Handbook 3210- 1

In practice, the Omnidex ID is either the IMAGE search item value
of a record (if the search item is a double word integer), or a
number that uniquely identifies the search item. This allows
omnidex to store double word integer references to search items
rather than the search items themselves which can be as large as 64
words.

An IMAGE domain is defined by a master data set and it's associated
detail sets. All data sets in the domain are related by a common
field known as the IMAGE search item. Thus, a data set contains
records, and a domain contains record complexes.

An omnidex domain is defined by the data sets of an IMAGE domain
that contain omnidex keyword fields. The common search item for
those sets is called the omnidex search item.

To summarize, an omnidex ID either i§ a search item, or has a one
to-one relationship with a search item. The search item associated
with an omnidex ID is common to the master and possibly one or more
detail records in a record complex. Because Omnidex IDs are used
to identify the record complex that a keyword belongs too, it is
helpful to examine first how the omnidex ID is stored and how it is
assigned.

The Inverted File Structure

When building the indexes for an omnidex keyword field, all records
in the Omnidex domain are searched, and words in the Omnidex
keyword field (delimited by spaces and special characters) are
parsed out of the field and copied to a file. with each keyword,
an Omnidex ID is recorded which identifies the search item of the
record complex from which the word came. In the simplest case, the
omnidex ID is also the IMAGE search item.

After all keywords are extracted, the unload file is sorted by
keyword and Omnidex ID. All IDs are then loaded into a master and
detail data set, with each unique keyword becoming a search item
for a chain of Omnidex IDs. This structure is called an inverted
file index because the data values are used to retrieve search
items, rather than using the search items to retrieve the data.

To illustrate the indexes that result from this process, assume
that 3 records exist in a CUSTOMERS master data set, as shown
below:

CUSTOMER-NO:
CUSTOMER-NAME:

2
Joe smith

7
Joe Jones

9
Sloppy Joe

If CUSTOMER-NAME is designated as an omnidex keyword field, the
resulting inverted index would look like this:

The OMNIDEX Handbook 3210- 2

2
7
9

7 2 9

This list allows Omnidex to very quickly determine how many records
contain a keyword such as "JOE" and to determine the unique search
item for each record.

Implementing the Inverted File Index

The Omnidex indexing method is implemented using IMAGE data sets
and is maintained using only IMAGE intrinsics. As a result,
Omnidex index maintenance participates in all IMAGE activities,
including shared locking, set and item security, and logging. An
approximation of the actual IMAGE implementation is discussed next.
While not exact in every detail, the discussion is adequate to
understand the performance issues involved with omnidex indexing.

As stated earlier, the main Omnidex index sets consist of a master
and detail data set. The master record holds the keyword, and the
detail set holds the omnidex lOs of the records that contain the
keyword. In graphic form, the structure would look like this:

Master data set
with a search
item of ODX'WORD.

Detail data set
chained by OOX'WORD
that holds Omnidex
IDs.

WORDS

JOE
For simplicity, assume that each detail record can
hold up to three Omnidex IDs. Leaving a space in
each record for insertion of new Omnidex IDs, the
physical records to track the keyword JOE would look
like Figure 1.

To retrieve all records containing the keyword JOE,
Omnidex simply performs an IMAGE DBFIND on OOX'WORD
with an argument of "JOE", followed by a chained
read of the detail data set. Omnidex then returns Figure 1
the search items to the application program. For
each search item returned, IMAGE reads can be
executed on the appropriate master or detail data sets to retrieve
the corresponding records.

The OMNIOEX Handbook 3210- 3

Maintaining the Inverted Index

Now, let's take the example a bit further and add a customer to the
data set, then consider the IMAGE transactions required to maintain
the list for JOE in "real time".~ Here's the customer record:

CUSTOMER-NO: 10
CUSTOMER-NAME: Joe

Before adding the record, Omnidex parses the keyword out of the
field CUSTOMER-NAME, and establishes the head of the
chain containing lOs for the keyword JOE. Backward
chained reads are then performed until the proper Joe
record is found in which to insert the new Omnidex
IO. In this case, only one backward read is needed
to find where to put an Omnidex IO of 10. Finally,
OBUPOATE is called to insert the IO in the IO chain.
The reSUlting Omnidex IO chain looks like Figure 2.

Estimating omnidex I/O

This example illustrates the most favorable Figure 2
situation for Omnidex indexing;

If the omnidex ID being inserted is always greater than the
largest omnidex ID in the chain, only 1 read to disc and 3
writes to disc are needed to index a keyword.

Adding 3 initial reads, the estimate for indexing a new Qmnidex
record is then:

#I/Os = 3 + 4 * Ikeywords

where l1LQ§ is the total number of reads or writes required to
index the entire record, and 'keywords is the number of words
(separated by spaces and special characters) in the record to be
indexed. If only 1 keyword occurs in each Omnidex keyword field,
then the estimate is:

II/Os = 3 + 4 * #keys

where~ is the number of Omnidex keyword fields installed on
the data set.

This formula should look familiar; it is also the estimate for I/O
required to update an IMAGE path. with IMAGE, however, the
occurrence of secondaries can .greatly increase the amount of work

The OMNIDEX Handbook 3210- 4

required to maintain the IMAGE path. with Omnidex keys, a similar
affliction can occur.

The Perilous Packed Pointer Predicament

Omnidex IDs must be inserted in an ID chain such that they remain
in sorted order. This is no problem when an empty slot is
available. Yet, when an index record is completely "packed" with
IDs, all IDs greater than the one being inserted must be shifted by
one along the ID chain. consequently, the highest ID in the
insertion record must in turn be inserted in the next record in the
chain. If many consecutive records are packed, then many
repetitions of this "ripple effect" can occur. I call this
phenomenon the "perilous packed pointer predicament".

To illustrate, let's go back to our original example, and add three
records who's Omnidex IDs are not the largest values in the chain.
Here are the records:

CUSTOMER-NO: 4
CUSTOMER-NAME: Good Joe

5
Joe Bob Smith

3
Joe Bob Jones

Conceptually, the new inverted index looks like this:

BOB ~ !IQE ~ mum ~
3 4 2 3 2 9
5 3 7 5

4
5
7
9

Remember that the Omnidex IDs for the records to which each keyword
belongs are kept in sorted order. This allows for easy comparison
of lists and is the basis for the ability of omnidex to perform
"AND", "OR" and "NOT" logic. The IMAGE procedure calls required to
add references to records 4 , 5 and 3 (in that order) for the
keyword JOE would proceed as follows:

For record 4:

Perform DBFIND mode 1 on the OOX'WORD search item
using "JOE" as the argument. Read the chain
backwards until the proper record is located.

Call OBUPOATE to update the record so that it
contains the new Omnidex ID in the proper order.

JOE

The OMNIDEX Handbook 3210- 5

For record 5:

Perform OBFINO mode 1 on the OOX'WORO search item
using "JOE" as the argument. Read the chain
backwards until the proper record is located.

Call DBUPDATE to update the record so that it
contains the new omnidex 10 in the proper order.

"Push" the 10 for record 7 into the next index
record using OBGET mode 5, followed by DBUPOATE.

For record 3:

Perform OBFINO mode 1 on the OOX'WORD search item
using "JOE" as the argument. Read the chain
backwards until the proper record is located.

Call OBUPOATE to update the record so that it
contains the new Omnidex 10 in the proper order.

Push the Omnidex 10 for record 5 into the next
record using OBGET mode 5, followed by OBUPDATE.

By now, you should notice the following;

JOE

JOE

JOE

JOE

To insert an omnidex ID into a packed record takes an extra
forward chained read and update (2 I/Os) to push an ID to the

The OMNIOEX Handbook 3210- 6

next record 0

Just to make sure this concept hits home, let's insert another
record for customer number 1.

CUSTOMER-NO:
CUSTOMER-NAME:

1
Joe Lunch Pail

Perform DBFIND mode 1 on the ODX'WORD search item
using "JOE" as the argument. Read the chain
backwards until the proper record is located.

Call DBUPDATE to update the record so that it
contains the new Omnidex ID in the proper order.

Push the omnidex ID for record 4 into the next index
record using DBGET mode 5, followed by DBUPDATE.

JOE

Push the omnidex ID for record 9 into a new index ~

record using a call to DBPUT.

To extend the observation from before;

When inserting an omnidex ID into a packed index record, two
additional disc I/OS are required. for EACH COHSECU'l'IVE PACKED
RECORD.

That's the perilous packed pointer predicament. It occurs when
omnidex "ripples" all IDs forward in an ID chain until a record is
found with an open slot for an Omnidex ID. True omnidex indexing
allows for up to 64 Omnidex IDs per index record and 4 empty slots,
making it much less likely that this will occur. Over time on an

The OMNIDEX Handbook 3210- 7

active data base, however, the conditions for this phenomenon can
develop.

similar to Migrating Secondaries

This situation is very similar to the problem of migrating
secondaries, where IMAGE "bumps" a record with a secondary search
item to make room for a primary, and attempts to relocate the
record. IMAGE may read through several IMAGE blocks before finding
an empty address for the record with the secondary search item.

omnidex OVerhead Summarized

To summarize the previous discussion, the overhead required to
index a keyword depends on where in the 10 chain that the ID must
be inserted. If the 10 is not inserted at the end of the ID chain,
any extra work required depends on the availability of an empty
slot in the index record. If no empty slots exist, the overhead
increases by two I/Os for every packed index record after the one
in which the Omnidex ID is initially inserted. Therefore, it is
helpful to know how omnidex IDs are assigned to determine if there
is potential for performance problems.

Assignment of the omnidex ID

When a new record is introduced through a DBPUT call, the Omnidex
ID that is assigned is usually greater than any previously used.
Consequently, maintenance of the chains of omnidex IDs is done at
the end of the index chain, and overhead is minimized.

One instance where insertion of omnidexIDs occurs somewhere in the
middle of an ID chain is after records are deleted. Whenever an
omnidex record complex is removed, the Omnidex ID that was assigned
to the record complex is saved for later use on the "free ID list".
omnidex IDs are then re-used on a last in, first out (LIFO) basis.
The free ID list is very similar in concept to the "delete chain"
that IMAGE uses to track and re-use detail data set addresses from
which records are deleted.

The other instance where Omnidex IDs are inserted is when records
are updated, or when detail records containing omnidex keyword
fields are added to an existing record complex. In both instances,
keywords in omnidex keyword.fields are assigned to an omnidex ID
that was previously allocated to a record complex. The value of
the ID, and where it might be inserted in an index chain is often
unpredictable.

Finally, a Useful Conclusion!

While little has been put forth to this point as to what actions

The OMNIDEX Handbook 3210- 8

can be taken to minimize Omnidex overhead, enough information is
available to establish our first guideline:

If records are not deleted, or deletes are rare, overhead for
adding new records is minimal.

If a data set is fairly static, at least from the standpoint of
deletes and updates, then most of the IMAGE transactions required
to maintain omnidex ID chains occurs at the end of the chains.

This is not uncommon for reference files such as customer masters,
catalog masters, vendor masters and history files. In many cases,
records in these files are rarely modified after their initial
load. As a result, these kinds of data sets are great candidates
for omnidex indexing, because the cost to maintain them is low,
while the benefit from increased retrieval capability is high.

Minimizing omnidex OVerhead

In many cases a data set will not be static, receiving frequent
add, delete and update transactions. consequently, omnidex
indexing can add significant overhead to these transactions. Just
as one would hesitate to add an IMAGE path to a detail data set
unless it served some useful purpose, one must weigh the usefulness
of a new Omnidex key against the overhead it adds. Fortunately,
Omnidex keys have many more useful purposes than IMAGE keys!

Now that the pertinent features of the Omnidex indexing mechanisms
are revealed, it's time to look at ways of minimizing the overhead
associated with an omnidex keyword field. The available methods
reflect two strategies:

- Defer indexing to periods of low activity

- Manage indexes for real time throughput

Deferring Index Transactions

Several methods exist to avoid the extra IMAGE transactions
required to index keywords in real time. Usually, this involves
some method of preventing Omnidex from indexing keywords, followed
by a complete or partial rebuilding of indexes at some strategic
time.

Disabling Real Time Indexing

The easiest way to avoid the overhead of indexing keywords is to
completely bypass the mechanisms that cause indexes to be
maintained in real time. If it is not imperative that records be
available for retrieval by Omnidex keys immediately after they are
added, disabling real time indexing eliminates the overhead

The OMNIDEX Handbook 3210- 9

associated with omnidex indexing. 2

For example, if users wish to retrieve GL transactions in an
accounting data base, it's conceivable that only those transactions
for closed months are of value for retrieval. In this case, one
may wish to index all records after the period closing, and bypass
real time indexing during the day-to-day transaction input. When
the new period is closed, all records can be indexed again. The
ways to disable real time indexing are straightforward.

If a program calls the Omnidex IMS intrinsics DBIPUT, DBIDELETE and
DBIUPDATE to write to a data base, these intrinsics can be called
using "IMAGE-only" mode 3

• This causes omnidex to bypass the
indexing of keywords at the time of the transaction.

Another option, for programs that do not use the Omnidex "OBI"
calls to update the data base, is to simply decline to implement
the call conversion feature of omnidex. The call conversion
feature traps calls to DBPUT, DBDELETE and DBUPDATE, and calls
DBIPUT, DBIDELETE or DBIUPDATE on behalf of the program. If this
mechanism is not put in place, no indexing of records occurs in
real time.

After a period of activity, usually every night, or after a
milestone such as the close of an accounting period, a complete
reindexing of the omnidex keys is performed. During this time, no
other processes are allowed to have the data base open. After the
process completes, all keyword fields are indexed and available for
omnidex retrieval.

The HI Field Option

The BI or "Batch Indexing" option is assigned at the time that a
field is designated as an Omnidex keyword field. While disabling
real time indexing bypasses inde~ing for all key fields, the BI
option allows the user to choose specific keys for which to
disregard indexing.

Assuming that the mechanisms for real time indexing are not
disabled, Omnidex keyword fields possessing the BI option are
excluded from indexing at the time of a put, delete or update. All
keyword fields not installed with this option are indexed in real
time. As with the "disabling" alternative described earlier, all
omnidex keyword fields are reindexed in a period of low activity to

2 Note that th:l.& a1't:.eZOftat:l.ve :1.& bo_'t:. _u:l.'t:.C!td ~en 2DO_t o~ th_
un:l.nCSex_CS act:l.v:l.ty C'tOJDlD_ ~rOJD new reaordlll. Wb.en XNAGJB rectozod
CSe1._t__ or upda't:.e_ 0C'tC'tuz" w:l.thou't:. rea1. 't:.:l.me :l.nCS_x ma:l.n't:.enanc_,
:l.nc:ons:l._'t:._na.:l._s between ~_ :l.nCSexe_ anCS the data recoz:0d8 may
re&u1.t.

3 xr 't::.b_ data ba__ :1._ opened w:l.'t:b _bared, 1DOCS:I.~y aace••
eDDXOPBH' IDOCS_ 1.), th_n an XMAGB-on1.y IDOCS_ wou1.d be used w:l.th
DDXx.oc::K a_ we1.1. •

The OMNIDEX Handbook 3210-10

reflect the most recent transactions.

Again using the example of accounting transactions, you may wish to
designate several fields as Omnidex keyword fields, and add the BI
option to all Omnidex keyword fields except the posting status. If
a mechanism for real time indexing is in place, the posting status
field is indexed immediately after a record is added, while other
Omnidex keyword fields are ignored. This technique permits quick
retrievals using the posting status keyword field (perhaps to
retrieve unposted records), while other Omnidex retrievals would be
permitted only on records for closed periods.

Advantages/Disadvantages

The advantage of the above techniques is that index updates are
ignored either completely or for selected keys. Consequently, no
I/O is generated to maintain the omnidex indexes. The drawbacks
with these methods are that changes to keyword fields are not
immediately reflected in the indexes, and a complete reindexing of
all keys, whether they were indexed in real time or not, is
required to make the indexes consistent with the data records. A
technique called "Deferred Update" can give the same benefits, but
requires a less intensive process to bring the indexes up-to-date.

Deferred Update Indexing

The Deferred Update process consists of two steps. In the first
step, a flag is set, either at data base open time, or separately
with the ODXUTIL utility program, which instructs Omnidex to defer,
rather than ignore all indexing activity. For each put, delete or
update, all keywords and Omnidex IDs to be added to or deleted from
the indexes are written to files. Since the records are small and
the blocks large, writes to the files consume very little I/O
overhead. As a reSUlt, the time required to add 1000 records with
indexing disabled is essentially the same as the time required to
add 1000 records with indexing deferred.

After all records are added, the ODXUTIL indexing program is used
to update the deferred keywords. In this step, the deferred
keyword files are first sorted in keyword and 10 order. Then the
indexed keywords are unloaded from the omnidex index data sets and
sorted in the same order. Finally, all keywords are merged back
into the indexes, with common keyword deletes and adds canceling
each other out. This process takes only slightly longer than a
simple primary path reload of the omnidex detail index data set.

Advantages/Disadvantages of Deferred Update

The advantage of the Deferred Update process is that the sort/merge
procedure takes considerably less time than an exhaustive read and
reindex of the entire data set. This follows from the fact that

The OMNIDEX Handbook 3210-11

the index data sets are considerably smaller and more compact than
the data files that they reference.

Of course, nothing is free, and there are a couple of drawbacks.
First, when a process is performing IMAGE updates in deferred
update mode, it must have exclusive write access to the data base
(DBOPEN modes 3 or 4). While other processes may have the data
base open for reading, no other processes may write to the data
base during the first step of the Deferred Update process4

• During
the ODXUTIL update step, exclusive access is required to the data
base, and no other processes may have the data base open.

The other drawback to this method is that a Deferred Update process
may be performed on only one Omnidex domain at a time. While
programs may be run repeatedly in deferred update mode to update
the same domain, the deferred activity must be Updated (via the
second step of Deferred Update) before any other domains may be
updated, or before the data base can be opened in shared,
read/write mode.

For these reasons, deferred update is best suited for speeding up
nightly batch updates that normally have exclusive access to the
data base. It will almost always be faster than real time indexing
of each transaction (unless a small percentage are updated), and
will usually beat a complete reindexing as well (unless a very
large percent of records are updated).

Managing Indexes for Real Time Throughput

All of the above described methods use techniques that completely
avoid the overhead of real time indexing. They each have the added
advantage of leaving the indexes "well organized" after the process
is finished, whereas real time indexing may gradually proceed
towards packing of index records. However, real time indexing is
often desired to get immediate retrieval capability on the Omnidex
keyword fields. It is here that some knowledge of the index
internals, and a few techniques, can help to keep Omnidex indexing
running smoothly.

The Excluded Words List

The Excluded Words List represents the easiest, most effective, yet
possibly the most neglected technique for improving real time
throughput. It is easily built, easily installed, improves both
real time and batch indexing performance, and its concept is
simple. In short, the Excluded Words List contains words that
should not be added to the Omnidex indexes. Whenever a reindexing
is performed, or a record is added or updated, keywords that are

4 C~~curro~~ road accoss ~& a11~wed ~~1y w~th DOOPBH ~_ 4.

The OMNIDEX Handbook 3210-12

parsed from the Omnidex key fields are checked to see if they exist
in the Excluded Words List. If so, they are not indexed, reducing
disc accesses and increasing overall throughput.

Typically, the excluded words list contains "noise" words that are
of little value for retrieval purposes like "and", "the" and "of".
For free form keyword fields, a comprehensive Excluded Words List
can save a great deal of the I/O required to index each record.
Take for example a field in a customer record that contains
customer names. Each name would consist of a first name, last
name, middle name or initial, and a salutation such as Mr., Mrs.,
or Ms., for a total of four keywords per key. By adding the words
MR, MRS and MS to the Excluded Words List, only three of the four
words in each name field must be indexed - an I/O (and time)
savings of 25 percent!

The excluded words list should also contain keywords that occur in
a majority of the record complexes in an Omnidex domain. For
example, if most of the record complexes in a domain contain a
company code of "01", the omnidex ID chain associated with the "01"
keyword may be very long. Consequently, many disc access may be
required for searches of the chain, causing new ID insertion or
Omnidex retrievals to take a prohibitive amount of time.

It is easy to determine the likely candidates for excluded words.
A good starting point is the default excluded words file,
XCLUDES.PUB.DISC, provided with the Omnidex software. Then, after
indexing all keyword fields (or a representative subset), use the
keyword lookup feature of the DATADEX inquiry program to
interrogate the indexes for each keyS.

From the list of words that were indexed, identify obvious noise
words or words that occur in more than 1/2 of the record complexes
in the Omnidex domain. Add these words using the editor of your
choice to your file containing excluded words. Load the file using
the ODXUTIL "XCLUDE" command, and reindex all keys.

Periodic Reindexing

If the Excluded Words List is the most neglected method of
improving throughput, then Periodic Reindexing is the second most
neglected, but effective method of improving throughput. As
indicated earlier, records in an Omnidex ID chain normally contain
64 slots each for omnidex IDs. After a complete reindexinq, 4 of
those slots are empty, reserved as "pad" space for insertion of new
IDs. As a result, insertion of new omnidex IDs can be accomplished
without the "ripple effect" that sometimes increases omnidex

S A DATADBX retr~ava1 on an omn~dex keyword f~e1d u_~n9 ~e
arqumen't:. ".OaZ" ~~11 1~_'t:. a11 keyworda ~ndexed from an ASC:J::J: f~_1d_

Refer to ~e DATADBX referenoe manua1 for more ~nfo~'t:.~on on ~.
keyword 100kup fea't:.ure_

The OMNIDEX Handbook 3210-13

overhead.

Another benefit of Periodic Reindexing is that the resulting
Omnidex 10 chains are sorted in primary path order on the OOX'WORD
keyword path. This is advantageous for omnidex indexing, as it
would be for any detail data set that is reloaded on a commonly
used IMAGE path. Since all records for a given keyword are
physically contiguous in the omnidex detail index set, several
chained reads can be accomplished without generating another read
to disc. Since there are 7 records per block in the Omnidex detail
index set, Omnidex can scan as many as 448 omnidex lOs per I/O when
searching for the place to insert a new omnidex 106

• For the same
reasons, Periodic Reindexing enhances the performance of Omnidex
keyword retrievals as well.

The benefits of a reloaded detail index set can be obtained without
completely reindexing by simply reloading the Omnidex detail index
data set using any popular IMAGE data base utility. A program
called OOXMGR is provided with every Omnidex software tape which
gives the capability to perform capacity changes and reloads on
Omnidex index data sets. If you have a regular schedule for
reloading detail data sets, include yourOmnidex detail index sets
in the rotation. You can identify the sets by first obtaining a
list of all data sets in the data base. Every data set beginning
with the characters "XOOX'" is an omnidex detail index set.

Increasing Index Pad Space

As stated earlier, 4 slots are left in each of the Omnidex detail
index records for insertion of new omnidex lOs. In a dynamic data
base, however, these slots will be systematically taken, creating
increasing numbers of packed records. As the occurrence of packed
index records increases, forming chains of contiguous packed
records, Omnidex overhead problems begin to develop.

While reindexing the Omnidex keyword fields will alleviate the
packing problem, and option in OOXUTIL utility program can greatly
extend the time it takes for index records to become packed with
Omnidex lOs. This in turn will reduce the frequency with which you
should periodically reindex.

By using a command called "SET PAOli, ODXUTIL permits the user to
increase the "pad space 'l to a maximum of 16 slots for insertion· of
new lOs. As a result, four times as many IDs can be inserted into
a given index record before all slots are used up. The SET PAO
option must be used every time you reindex with ODXUTIL if you want
more empty slots than the default of 4.

The OMNIOEX Handbook 3210-14

The tradeoff for increasing the pad space is that it takes more
records (and possibly a higher capacity and more disc space) in the
omnidex index detail set to hold the same number of omnidex IDs.
For a pad setting of 16, expect the number of Omnidex detail index
records to increase by around 15%.

Conclusions

This paper focused on a conceptual model of the "real time"
updating of Omnidex indexes. The model aids in presenting the
kinds of performance problems that can occur when maintaining the
detail data set that contains the inverted file index.

In general, performance problems begin when the IMAGE detail
records that contain the Omnidex ID references become "packed".
Consequently, inserting an ID into the chain causes a "ripple
effect" that adds 2 I/Os for every consecutive "packed" index
record (moving forward from the first record) in the chain.

Performance can best be enhanced by not indexing in real time at
all. The indexing can be completed nights or weekends, when there
are CPU cycles to spare. This option is best suited for static
data bases, because new updates are not reflected in the omnidex
indexes until the next reindex process is performed.

If real time indexing is required, then performance can be greatly
improved by using the Excluded Words List. Periodically rebuilding
the indexes (weekly if possible, monthly if not) reallocates slots
for insertion of new IDs and reloads the Omnidex detail index set.
Increasing the number of empty slots using the ODXUTIL "SET PAD"
option allocates many more slots for insertion, reducing the need
for periodic reindexing.

The suggestions contained herein will give the Omnidex user an
assortment of weapons with which to fight the perpetual performance
battle. More importantly, however, it is my hope that a glimpse of
the omnidex internals, accompanied with the explanation of when and
how each suggestion improves performance, will permit the data base
administrator to tailor a mixture of these procedures that best
fits his or her unique data base environment.

The OMNIDEX Handbook 3210-15

Tradition vs. Transcendence in Software Engineering

Paper No. 3211

Natalie M. Minenko
Technical Staff

Oracle Corporation

HP Products Division
400 Oracle Parkway

MD: 40P-ll
Redwood Shores, CA 94065

(415) 506-7000

Abstract

When developing a new software product for the marketplace,
several questions must be asked early in the design stage, including,
"Who are my users?", "How will my software impact my users?",
"How easy will it be for them to learn and use this product?", and
"How will this product make my users more efficient, more
productive, and more profitable?" This paper focuses on the
dichotomy of two software engineering principles that are essential
to user centered design: tradition versus transcendence.

Tradition is the principle which measures how much of the
user's outside knowledge and previous experience can be applied to
the new product. Transcendence is the quality which indicates how
progressive and innovative a product is, whether it is a bold advance
which will revolutionize the way users think and do their work or
something that is not so much a break from tradition.

This paper will examine these two principles of software
engineering and show how they are essential in answering the above
questions and creating a usable and marketable product. Some
examples will be drawn from case studies using Hewlett-Packard's V
Plus and Oracle Corporation's SQL Forms in the MPE XL environment.
These two software packages are both commercially available from
Hewlett-Packard and Oracle Corporation, respectively.

Tradition vs. Transcendence...3211-1 N. Minenko

If the city of San Diego suddenly passed an ordinance to
reverse all of its street lights, such that green meant "stop" and red
meant "go," the results would immediately be felt in hospitals and
insurance claim offices citywide. Even after local residents got used
the new system, accidents would still occur due to the unsuspecting
tourist who missed the signs proclaiming, "In this city, green means
stop and red means go." Rescinding the law could only make matters
worse in the short term--motorists and pedestrians would be so
confused that they might start avoiding San Diego altogether rather
than take their chances at getting hit.

While this is a rather extreme example, it serves to illustrate
the point that successful software products must provide the user
with a familiar environment to work in for maximum productivity.
If a user can apply previous knowledge gained from the outside
world to a product, that guarantees a shorter learning curve than if
he or she had to learn all of the product methodology from scratch.
As Shneiderman offers in his guidelines for form fill-in design, "If
Address were replaced by Domicile, many users would be uncertain
or anxious about what to do." "Tradition" is the principle which
measures how much of the user's outside knowledge and previous
experience can be applied to the new product.

Providing users with familiar environments is one of the
reasons for Oracle Corporation's software engineering strategy.
Oracle Corporation's HP Products Division is solely responsible for
modifying generic "base code" to run on an HP 3000 MPE XL system.
It is necessary that the finished product has a similar look-and-feel
to what MPE XL users have experienced in the past, from other
companies as well as from previous ORACLE software releases.
ORACLE for MPE XL products cannot, for example, allow file name
extensions as the DOS and UNIX environments do. They must
support the eight softkeys found on HP terminals whenever possible.
And even though developers in Oracle's Macintosh group are
required to use the desktop metaphor and the Macintosh Graphical
User Interface, the HP Products Division cannot expect its customers
to point and click in order to use ORACLE until the NewWave
interface is supported. These are all examples of the constraints of
tradition in software engineering.

Yet without some changes and adaptations, software would not
evolve and improve over time. Sometimes, just a small feature is

Tradition vs. Transcendence ... 3 211- 2 N. Minenko

needed to make a big difference in a product. Function key support
that eliminates repetitive keystrokes might fall into this category. At
other times, a complete reworking of the design is needed to achieve
the desired result. This is often the case when the logical flow of a
process must be redefined to maximize the user's productivity.
"Transcendence" is the quality that indicates how progressive and
innovative a product is, whether it is a bold advance which will
revolutionize the way users think and do their work or something
that is not so much a break from tradition. It is a quality that must
be exploited carefully, so that users can see the connection between
their current approach to the task at hand and the methodologies
used in your product. Too much innovation, and your users won't be
able to see how your 23rd century product will help to solve their
problems today.

Having defined tradition and transcendence in the software
development context, we proceed to examine user centered design
and the questions that it raises. "Who are my users?", "How will my
software impact my users?", "How easy will it be for them to learn
and use this product?", and "How will this product make my users
more efficient, more productive, and more profitable?" are the basic
questions that must be asked early in the design phase of a product.
When considering each question, the engineer must weigh the
influences of tradition and transcendence to determine the overall
design.

A common pitfall of designers in all professions is failing to
identify the user's needs and the design issues they raise, then
designing to meet those needs and solve the user's problem. Too
often in their haste to be innovative, engineers can architect a
product that either fails to solve the user's problem because (1) the
parameters of the problem were misunderstood, or (2) the result
embodies a great solution to a problem that the user never had in
the first place. A classic example of failure to ask "Who are my
users?" comes from architecture and the ill-fated Pruitt-Igoe low
income housing complex. [Bannon 28] Built in St. Louis in the early
1950's, it consisted of large apartment complexes surrounded by
open spaces while bypassing traditional streets, gardens, and
semi-private spaces. Although it won an award from the American
Institute of Architects and was notable in that "the intelligent
planning of abstract space was to promote healthy behavior" [Jencks
9], the design was totally inappropriate for the occupants. The

Tradition VI. Transcendence...32 11 • 3 N. Minenko

architect neglected the fact that most of the occupants did not have
prior experience living in a densely packed community, nor did he
incorporate many places for traditional social activity in his design.
In his effort to provide an innovative housing structure, the architect
failed to consider the parameters of the design problem and meet his
users' needs. The end result is that the complex became the site of
vandalism, drug abuse, and crime, and was demolished within
twenty years.

The question "How will my software impact my users?" is
overlooked far too often at many development sites. Whether they
intend to or n~t, designers impose their own values and expectations
on end users to varying degrees. The Pruitt-Igoe housing project is
an example of an intentional attempt at behavior modification that
failed miserably. Word processing software provides an example of
how computerization has unintentionally modified some people's
methodology for document production. In the days when a writer
had only a typewriter and a red pen to create his or her works, a
common scenario consisted of 3 stages. First the writer would jot
down his or her initial ideas in free form on a page. Once these ideas
jelled, the writer would then type out one or two drafts of the
document in a rough form. During the final part of this process, the
writer usually typed very carefully, as each revision at this stage
was potentially the final copy. The large amount of retyping
required to make any major changes was a big disincentive for the
writer to change the structure of the document at this point. Today,
word processing software has virtually eliminated the third stage in
this process, as well as combined parts of the first and second stages
for maximum productivity. The result is that the writer is much
more efficient at producing a document and has maximized his or her
creative potential. Because of its total flexibility, word processing
software has fostered a generation of writers who feel comfortable
putting their initial thoughts up on the screen and making changes
up through the final printing.

Along the same lines, the prudent software designer will
consider the product's impact on the end users in terms of the
learning curve for the product. He or she must keep in mind
scenarios for the beginning, intermediate, and advanced user, and
design accordingly. When making design decisions, the software
developer must anticipate where users might be overly frustrated
and where they would be bored stiff. It is helpful to ask, "Is the

Tradition vs. Transcendence...3 211- 4 N. Minenko

logical flow of my program clear? Should I shorten the commands
needed by the experienced user?" when critiquing the software
design.

Often software developers focus on the steps necessary to learn
and use a new product, but fail to ask "How easy will it be to learn
this product?" and as a corollary, "How can I make the task of
learning simpler?" An example of this comes from user interface
design. The traditional user interface is a command line with a list of
somewhat cryptic commands. Through trial and error, and a host of
documentation manuals, users eventually become comfortable with
the syntax and commands and learn to use the machine. With the
advent of real time graphics came Graphical User Interfaces (GUIs)
and a new look for computing. Through the use of metaphors, GUI
architects can capitalize on the user's knowledge of the real world.
For example, objects in the Macintosh GUI behave in a traditional
sense: folders are where one stores files, and the trash can is where
one throws them away. Objects in the trash can stay there until the
user empties the trash. The transcendence that made this object
oriented interface revolutionary was the emphasis on "see and point"
to manipulate objects rather than "remember and type." [Apple
Computer Corp. 4] With just a few tips to get one started, the new
user can become proficient with a GUI very quickly. Very often, as
is the case in this example, simplifying the user's task of learning a
new operating system required a total rethinking of its design, as
opposed to merely eliminat.ing a few keystrokes.

Ease of learning and increased user productivity are two
reasons Oracle Corporation strives for a common look and feel among
its products while maintaining a native look-and-feel for each
individual platform. Current development efforts in the HP Products
Division are focusing on programmable softkeys for UP terminals and
workstations. Although the varied functionality of ORACLE tools
prevents 100% correspondence for each key in every product,
similar functionalities will have similar key mappings in each
ORACLE tool. Additionally, the mechanism to allow end user
customization of the eight softkeys will become standard throughout
Oracle's HP MPE XL product line. These two features promote
common look-and-feel among products. While our default
configuration will ensure a native MPE XL look-and-feel, the fact that
each user will be able to customize the softkeys ensures that ORACLE

Tradition vs. Transcendence ...32 11 · 5 N. Minenko

products will be flexible enough to provide an environment that is
familiar to the user.

An additional example of common look-and-feel among MPE
XL products is evident in standardized installation procedures. All
products are now shipped with two installation scripts. TAPEINST is
the script which will restore files from a distribution tape into the
ORACLE customer's MPE XL software account. Before completion,
TAP E INS T instructs the customer to run the product installation script
which creates the necessary users and tables in the database account
and completes the product installation. Naming convention dictates
that this script will begin with alpha characters that identify the
product and end in -INST. Since all ORACLE for MPE XL tools follow
this convention, even if a product arrives without documentation, the
customer will know how to install it on his or her system.

Finally, the most important question to answer is, "How will
this product make my users more efficient, more productive, and
more profitable?" This is where transcendence becomes a key issue,
because any product that does not help end users accomplish their
tasks better than they did before does not have much potential in
the marketplace. The successful software product will be flexible
enough to accommodate users with multiple levels of expertise,
provide expanded and enhanced capabilities with minimum of user
effort, and remain intuitive enough so that the user knows what to
do next. Answers to this question usually become key selling points
for the product.·

Oracle Corporation resolves this issue by designing a tightly
integrated product line and maintaining an architecture that is highly
portable across different software platforms. This strategy not only
allows maximum efficiency for ORACLE development efforts but
minimizes the learning curve and increases productivity for end
users. This is not to say that ORACLE software is stagnant, however.
New technology is constantly being investigated, developed, and
implemented in new product releases and revisions.

Examples of transcendence in software engineering can be seen
in the SQL*Forms product. When SQL*Forms was first introduced in
the MPE XL marketplace, users immediately realized significant gains
in efficiency. With the 4th-generation environment that SQL*Forms
provides, users could build a powerful form-based application in a

Tradition vs. Transcendence...3 211- 6 N. Minenko

matter of minutes, because SQL*Forms takes care of the low level
details of implementation and access to the form. A comparable
application could take days to implement with Hewlett-Packard's V
Plus: since this is a 3rd-generation tool, the form structure is
defined, but the user must code all routines needed to access the
form. Although it took some time for users to switch from a
3rd-generation language to a 4th-generation development
environment, the resulting increase in productivity, both in terms of
development time and application portability, more than made up
for the small amount of time spent learning the new product.
SQL*Forms V3.0 incorporated additional innovations into the product.
In previous versions, the use of macros left users clamoring for a
means of procedural control in their applications. Development
responded by introducing triggers which utilized PL/SQL code.
Although this meant that many users now needed to learn PL/SQL,
the tradeoff for streamlined, easy to create applications was
acceptable.

When developing new software for the marketplace, it is
important to remember the concept of tradition vs. transcendence
and maintain each quality in proper proportion. A user centered
approach to design begins by posing relevant questions to identify
end users and their needs. In this method, it is essential that the
product designer determine what traditional context end users are
familiar with before deciding how much innovation or
"transcendence" to introduce in a new product. For maximum
benefit, these issues must be considered early and often during the
software design cycle.

Tradition vs. Transcendence ...32 11 -7 N. Minenko

Works Cited

Apple Computer Corp. Apple Interface Guidelines. Chapter 1,
Philosophy

Bannon, Liam J. "Issues in Design: Some Notes", Chapter 2,
User Centered System Design. Ed. Donald A. Norman and Stephen W.
Draper. New Jersey: Lawrence Erlbaum Associates, Inc. 1986

Jencks, C. The language of post modern architecture. New
York: Rizoli. 1984

Shneiderman, Ben. Designing the Human Interface. Chapter 2,
Theories, Principles, and Guidelines. p. 41-80

The author wishes to thank Prof. Terry Winograd, Department
of Computer Science, Stanford University, for introducing the concept
of Tradition vs. Transcendence.

ORACLE is a registered trademark of Oracle Corporation.

MPE XL, NewWave, and V Plus are registered trademarks of
Hewlett-Packard.

DOS is a registered trademark of International Business Machines.

UNIX is a registered trademark of AT&T.

Macintosh is a registered trademark of Apple Computer Corporation.

Tradition vs. Transcendence... 3 211- 8 N. Minenko

Tradition

• How much of the user's outside
knowledge and previous
exper~ence can be applied to the
new product?

Tradition vs. Transcendence ...32 11 · 9 N. Minenko

Transcendence

• How progressive and innovative
is the product?

• Bold revolutionary advance?

• Or not?

Tradition VI. Transcendence...3 211-1 0 N. Minenko

IFour Essential Questions I
• Who are my users?
• How will my software impact my

users?

• How easy will it be for them to
learn and use this product?

• How will this product make my
users more efficient, more
productive, and more profitable?

Tradition vs. Transcendence... 3 211 · 11 N. Minenko

Paper #3212:
MPB V/B PORTRAN: The Internals of Alternate Return Paths

Craig Nickerson
united Electric Controls Co.

P.O. Box 9143
watertown, MA 02172-9143

U.S.A.
Tel. (617) 926-1000

Introduction

As a systems/applications programmer, I have worked
extensively with FORTRAN 66 (FORTRAN/3000) under MPE since
our company first acquired an HP3000 in 1982. FORTRAN 77
was added to our system when a major upgrade in our ASK
manufacturing software was released in that language. We
never implemented this upgrade because of the extent of our
own modifications and enhancements to the earlier FORTRAN 66
version; however, I found that in many situations,
FORTRAN 77 made. program coding and structuring a lot easier,
it having such features as IF-THEN-ELSE, the ability to call
most Compiler Library procedures directly, and the ability
to suppress actual, as well as formal, parameter checking.

Over the past several years, in the course of modifying and
developing applications software (not to mention a lot of
digging through manuals), I have written a large body of
general-purpose library procedures, most of them in
FORTRAN 66; these include several subroutines using alter
nate return paths. This is one area where the two FORTRANs
are mutually incompatible, and in this paper it is my pleas
ure ~o share with you how I worked around this obstacle.

Basically, my solution consists of original library
procedures called by one FORTRAN to handle operations per
formed transparently by the other FORTRAN's object code.
Unfortunately, I have no SPL source code to show you--we.
don't have the SPL/3000 compiler, and we've never bothered
to get it because I've found ways to work around it (Which I
touch on briefly in Appendix II); so, my discussion of these
procedures will be in terms of their logic. I hope that my
descriptions will be clear enough to enable you to write
them yourself.

I am assuming that you are a FORTRAN programmer with some
experience and understanding of the MPE stack architecture,
and have recourse to SPL. The HP3000/MPE shops most likely
to have both FORTRAN compilers are those that are running
ASK software and have upgraded their manUfacturing or other
applications from that vendor to the FORTRAN 77 conversions
from FORTRAN 66.

After stUdying this paper, you will have the potential
ability to:

• Call an alternate-return subroutine compiled in one
FORTRAN from a program compiled in the other.

FORTRAN Alternate Return Path Internals 3212-1

• Design a FORTRAN alternate-return subroutine to be
callable from either 66 or 77 in the conventional
manner, through separate entry points.

• Set up, in FORTRAN, a code segment address as an
alternate return point.

Where I am describing code syntax or giving examples, I
observe the following conventions:

• Optional coding is enclosed in square brackets ([]).

• Braces ({}) indicate a choice that must be made among
two or more coding options.

• Generic names of procedures or parameters are given in
lower-case.

• Since I am assuming FORTRAN experience, my code samples
are skeletal; an ellipse (•••) on a line by itself
indicates that source code not relating to my point has
been left out.

• Where the FORTRAN manuals use the terms "actual
argument" and "dummy argument", I adhere to the more
general terms "actual parameter" and "formal param
eter", respectively.

What Is an Alternate Return Path?

What I am calling the "alternate return path" construct is a
means by which a FORTRAN program may specify a statement
label where execution may conditionally resume when a called
subroutine returns. It is a standard feature of both
FORTRANs and well-documented in the manuals, but I review it
here for your convenience.

This is the general syntax in FORTRAN 66 of the CALL
statement using an alternate return path:

CALL subrtn([parml[,parm2 •••],]$labell[,$labe12 •••])

The calling sequence is identical in FORTRAN 77, except that
"*" is used instead of "$".
The called subroutine--which you must write in the same
version of FORTRAN (66 or 77) as the caller, if you're
programming strictly "by the book"--is designed for alter
nate returns by the inclusion of the appropriate number of
"*"'s in the formal parameter list, according to the number
of label identifiers to be passed by the caller:

SUBROUTIBB subrtD([pa~l[,parm2 •••],]·[,· •••])

A simple RETURN statement returns control to the caller at
the statement following the CALL; an alternate return path
is taken by inclUding a "label index" in the RETURN state-

FORTRAN Alternate Return Path Internals 3212-2

mente For example: If the formal parameter list contains
at least two "*"'s, a RETURN 2 statement will return to the
caller via the statement indicated by the second label
identifier in the CALL.

Only a SUBROUTINE-type procedure may employ alternate return
code.

To illustrate:

C OPEN THE MANUFACTURING DATABASE.
CALL OPENMFGDB(MFGDB,*800,*810)
PRINT I (" Mfg. Database opened. nI) ,

C CAN'T GET IN JUST NOW.
800 CONTINUE

PRINT 0 (I" **MFG. DATABASE NOT AVAILABLE**"/) v
STOP

C SERIOUS PROBLEM!
810 CONTINUE

PRINT I (I" **CAN' IT OPEN MFG. DATABASE**"/)'
CALL QUIT(l)
STOP
END

SUBROUTINE OPENMFGDB(IDB,*,*)

RETURN

RETURN 1

RETURN 2

END

If the ManUfacturing Database is opened successfully,
subroutine OPENMFGDB executes a simple RETURN statement
which returns control to the PRINT statement following the
call; if the database is down for maintenance, OPENMFGDB
displays an informative message and RETURN 1 selects a re
turn via statement 800; if the database can't be opened for
any other reason, RETURN 2 selects a return via statement
810.

~ tbfl Obj ect~ I2Q§Yi

This is what generally happens in FORTRAN at object-code
level when a normal subroutine or a function is called
(assuming that no parameters are passed by value):

1. Any constants passed to the procedure are copied from
the code segment to the top-of-stack (TOS). If an
actual parameter is an expression, which could involve
a nested function call, it is evaluated and the result
placed at the TOS.

2. If the procedure is a function, one or more words,

FORTRAN Alternate Return Path Internals 3212-3

depending upon the function data type, are allocated at
the TOS for the returned value.

3. If there is at least one passed parameter, a parameter
list is built at the TOS, consisting of one DB-relative
word address or byte pointer per parameter (a
FORTRAN 77 string descriptor involves an additional
word for the byte count); each address points to where
a variable has been mapped by the compiler, or to where
a constant or expression value has been stacked.

4. When the PCAL instruction (the active ingredient of the
CALL statement and function reference) is executed, a
4-word stack marker is placed at the TOS above the
parameter list (if present), and the Q-register is set
to the resultant S-register (TOS pointer) value. Among
the machine register values saved in the stack marker
is that of the index (X-) register, accessible to the
called procedure (at object code level) at Q-3; this is
important to FORTRAN 66, as we'll see further on.

5. When the subroutine or function executes an EXIT
instruction (the active ingredient of the RETURN state
ment), the machine registers are reloaded from the
saved values in the stack marker, which is then deleted
from the TOS along with the parameter list. Since the
P- and status registers are also saved (at Q-2 and Q-1,
respectively, from the perspective of the called proce
dure), this is how the CPU knows at what address in
what code segment to resume execution.

6. Any residue at the TOS--function and expression values,
constants, etc.--is put away or otherwise deleted by
the caller's object code before execution of the next
statement so that the stack is "in balance", i.e. the
S-register is pointing where it was when the statement
calling the procedure began execution.

I have included, as Appendix I to this paper, an excerpt
from our Supplemental Procedure Library documentation which
describes the stack marker in the context of the entire
stack structure.

When an alternate-return subroutine is called in FORTRAN 66,
the object code in the caller loads a 0 into the X-register
just before executing the PCAL. The X-register save word in
the stack marker thus initially contains a o.
When a FORTRAN 66 subroutine takes an alternate return path,
the object code stores the label index, specified in the
RETURN statement, to Q-3 just before exiting. The caller's
object code then branches to one or another location depen
ding upon the value it finds in the X-register.

In FORTRAN 77, the caller's object code calls the subroutine
as though it were a type INTEGER*2 function, i.e. it stacks
a 0 and the parameter list, in that order.

When taking an alternate return path, the object code in the

FORTRAN Alternate Return Path Internals 3212-4

"callee" behaves as though it were returning the label index
as a function value. The caller's object code then uses the
value it finds at the TOS to determine where to branch.

In both languages, a returned label index value of 0
indicates a normal return via the next statement after the
CALL.

At object code level in the above FORTRAN 77 sample,
OPENMFGDB finds the address of array MFGDB (formal name IDB)
at Q-4 and the label index word, initialized to 0, at Q-5.
A simple RETURN statement leaves the index word alone, but
RETURN 1 or RETURN 2 stores thereto a 1 or a 2, respective
ly. All RETURNs generate an EXIT 1 instruction, which
deletes only the MFGDB address along with the stack marker,
leaving the label index at the TOS for the caller's Object
code to test and branch to the PRINT statement following the
CALL, or to statement 800, or to statement 810, depending
upon whether a 0, 1 or 2 is found.

FORTRAN 66 loads and tests the label index in the same
manner, except that the called subroutine stores it at Q-3-
the X-register save word in the stack marker--so that upon
return, the caller finds it in the x-register.

The two methods of setting the label index are illustrated
on the next page.

FORTRAN Alternate Return Path Internals 3212-5

(Top-of-Stack)
s--->I-----------------------------

I
I Data local to the currently
I executing procedure.

Q+1 >

Q---> delta-Q (Q - prev. Q)

Q-1 > STATUS

Q-2 > Return address (reI. P)

+->Q-3 > X Index

A

I
I

Stack marker
I
I
v

A FORTRAN 77 subroutine sets the label index here;
the caller finds it at the top-of-stack. It is
tested and deleted, along with any stacked con
stant/expression values of passed parameters,
before execution of the next statement.

V

Q-4 >

+-->
I
I
I
I
I
I
I
I
I
+--

1 or more parameters
passed to currently
executing procedure

(optional)

Values of constants and
expressions passed as par
ameters, pointed to by
parameter list (optional)

Data local to the caller
V

+------ A FORTRAN 66 subroutine sets the label index here;
the caller finds it in the X-register.

FORTRAN Alternate Return Path Internals 3212-6

The Solution for Mutual Callability
Part I: 77 Calling 66

To solve the problem of calling a FORTRAN 66 alternate
return subroutine from FORTRAN 77, I prepared two
procedures: subroutine PUTXREG and function GETXREGF.

Internally, PUTXREG copies the formal parameter value to
Q-3, whence it is placed in the X-register upon exit;
GETXREGF simply returns the value it finds in Q-3.

Implementation of these procedures is as follows:

ZNTBGBR[62] GBTXRBGP

CALL PU'.I!XRBG (0)
CALL subrtD[Cparml[,parm2 •.•])]
ZDX=GBTXRBGI' C)

laJ)ell
ZP(ZDXoGT.O)GOTO (ClaJ)ell,labe12[,labe13 •••]),ZDX)

Your FORTRAN 77 program must adhere to these design points:

1. Compiler options must include "CHECK ACTUAL PARM 1",
which suppresses checking of actual parameter type and
plurality for compatibility with the called procedure.
The object library structure counts FORTRAN 66 labels
as typed parameters in both reference and entry defin
itions, even though they don't have entries in stacked
parameter lists.

2. All parameters passed to 8ubrtn must be either local
simple variables or constants, since array element
addressing involves the X-register, and expression
evaluation and references to global data (especially
within COMMON blocks) are more than likely to do so.
Where subrtn is expecting an array name, you must use a
local simple variable EQUIVALENCEd to the appropriate
element (in which case, the array itself must also be
local).

3. Your program size is limited with respect to the amount
of local stack. After the first 127 words above Q are
exhausted for mapping local and initialized global
data, the compiler resorts to mapping arrays for any
thing that's left and may have to use the X-register
even when a local item isn't sUbscripted. The x
register must contain a 0 when peAL is executed. Use
of the "TABLES" compiler list option will show you
where and how all of your variables are mapped.

4. The value returned by GETXREGF must be captured in a
separate statement as shown above, never implicitly
within an expression.

FORTRAN Alternate Return Path Internals 3212-7

The Solution for Mutual Callability
Part II: 66 Calling 77

If a FORTRAN 77 alternate-return subroutine was compiled
under option "$CHECK FORMAL PARM 0" and has at least one
data parameter, all yOU need to do in FORTRAN 66 is to call
it as a type INTEGER function:

ZHBGBR suhrtn

ZDx=subrtn(parmi[,parm2 •••])
labeli

ZP(ZDX.GT.O)GOTO {(labeli,labe12[,labe13 •••]),ZDX)

Otherwise, two new procedures are called for. Mine are
PUSHTOS and POPTOS, which emulate the operations their names
imply; the former "pushes" one word of data onto the TOS,
the latter "pops" one word of data from the TOS into a
variable.

Internally, PUSHTOS overwrites the formal parameter address
with the parameter value, then does an EXIT 0 which leaves
it at the TOS. POPTOS finds the target value at Q-5, which
it copies into the passed variable; an EXIT 2 then deletes
the "popped" word from the TOS along with the (one-word)
parameter list.

(Happily, PUSHTOS works whether I pass it a variable or a
constant. I designed it with a reference parameter so that
when one has occasion to use it in FORTRAN 77, one need not
suffer the embarrassment of forgetting to employ an $ALIAS
directive.)

Implementation is as follows:

CALL PUSIITOS(O)
CALL suhrtn[(parmi[,parm2 •••])]
CALL POP'l'OS (IDX)

labeli
IFCIDX.GT.O)GOTO (Clabeli,labe12[,labe13 •••]),IDX)

Here, the restriction applying to the parameters passed to
subrtn is that no constants or expressions are allowed; this
is because constant, expression and function values have to
be stacked before the parameter list is built. The
manually-stacked label index word and the parameter list.
must be directly adjacent.

This time, there is no need to worry about actual parameter
checking (Which can't be controlled in FORTRAN 66 anyway),
since FORTRAN 77 labels are transparent to the object lib
rary structure.

Designing A Subroutine fQx Two-Way compatibility

An alternate-return subroutine may be designed to be
callable from either FORTRAN by using a separate entry point
for each language and a utility procedure for passing the

FORTRAN Alternate Return Path Internals 3212-8

c

label index in the required manner. My active ingredient
for this scheme is (in SPL notation):

PROCEDURE SETRTN(ICTL,IPATH);
INTEGER ICTL, IPATH;

ICTL is a control word indicating which FORTRAN is
anticipating an alternate return path, and where to put the
label index; IPATH is the label index itself. After calling
SETRTN, a simple RETURN statement is all that's needed to
exit via the selected path.

In the case of FORTRAN 77, the label index must be returned
to the word just below the parameter list, so SETRTN needs
to know the length of the list in words; absent any passed
string descriptors, this is simply equal to the number of
parameters exclusive of label identifiers. SETRTN may be
provided the list length directly.through ICTL, but if the
subroutine has mUltiple entry points, SETRTN may alternat
ively be told through a flag bit to fetch the list length
from the subroutinees Q+1, where it has been placed trans
parently by the initialization code (so that a RETURN
statement may be executed at any point in the sUbprogram
unit with the correct stack decrement). The parameter list
length is, of course, irrelevant for FORTRAN 66, since the
label index is always returned to the X-register via the
stack marker.

Internally, SETRTN locates the subroutine's stack marker by
using the delta Q value stored at address Q in its own stack
marker; thus, we have Q'=Q-de1ta Q. Flag bit ICTL(O:l)
indicates whether we're using "mode 66" (off) or "mode 77"
(on); if this bit is on, flag bit ICTL(l:l) indicates
whether to fetch the subroutine's parameter list length from
field ICTL(10:6) (off) or from address Q'+l (on). The
desired label index, supplied by IPATH, is copied to Q'-3
for mode 66, or to Q'-p1ist_len-4 for mode 77.

I recommend that the two-way subroutine calling SETRTN be
written in FORTRAN 77 and structured this way:

$COBTROL SBORT, CHECK FORMAL PARK 1 [, '0 ••]

SUBROUTINE ftn77_8ntry([parms.o.,]*[, ••••])

control=140000B
GOTO la])el

ENTRY ftn66entry[(parms •••)]
control=O

C
label COB'l'IBUB

CALL SBTRTH(control,path)

RETURN

END

The entry point for FORTRAN 77 should be the primary, with

FORTRAN Alternate Return Path Internals 3212-9

"*"IS provided for the sake of documentation; the name
should also include the underscore (II II) character to make
it unreferenceable from FORTRAN 66. All formal parameter
checking must be suppressed to enable linkaqe from
FORTRAN 66; level 1 checking retains the requirement that
both entry points be referenced as subroutines. (By the
way, this is what is meant by the phrase "procedure type";
function type checking may be suppressed by using any check
ing level less than 3.)

The label index is specified in the call to SETRTN rather
than in the RETURN statement. Since the label index word is
always initialized to 0 by the caller's object code, it is
not necessary to call SETRTN for a normal exit; nor will a
simple RETURN statement clobber a label index youlve just
set up.

I have successfully used SETRTN in a COBOL II subroutine to
set an alternate return path in mode 77; mode 66 is not
practicable because COBOL II's formal checking level and the
actual checking level in FORTRAN 66 are both fixed at 3. I
have not determined precisely how COBOL II handles the par
ameter list length for mUltiple entry points, but since it
is fixed at object time for each entry point, you can always
set up the appropriate value to be passed explicitly to
SETRTN.

Another Kind of Alternate Return;
The Code Segment Address as Actual Parameter

In designing a COBOL II interface to the FORTRAN 66
Formatter intrinsics, I was forced, for lack of SPL, to
write in FORTRAN 77 so that I could "$ALIAS" around the
apostrophes in the procedure names. Then, I ran into an
interesting problem with the FMTINITI procedure--the LAST
parameter, described in the Compiler Library Reference
Manual as a "label identifier", is really an address in the
calling code segment! Obviously, the "*label" construct is
of no use here, for when a error is detected, FMTINITI takes
its alternate return path by copying LAST into Q-2--the
return address save word in its stack marker--just before
exiting.

The procedures I designed to get around this difficulty are
FMTATOP and FMTABOT, as shown in this FORTRAN 77 sample;

$CONTROL STANDARD LEVEL SYSTEM, SHORT
$CHECK ACTUAL pARM 2,FTN3000 66 CHARS ON
$ALIAS-FMTINIT = "FMTINIT III (%REF, %VAL, %VAL, %VAL, %VAL)
$ALIAS TFORM = "TFORM'"

« other $ALIASls as needed for the list element transfer »
« routines. »

INTEGER GETXREGF

C VERY FIRST STEP 1
CALL ITl'ATOP(LAST)

FORTRAN Alternate Return Path Internals 3212-10

C TEST CONDITION CODE.
CALL SAVECCODE
ICC=GETXREGF()
IF(ICC)10,10,100

10 CONTINUE !ALL SET.

CALL FMTINIT(FORMAT,UNIT,REC,IOTYPE,LAST)

« list element procedure calls and other processing. »

CALL TFORM !NORMAL END OF CALL BLOCK.
100 CALL PKTABO'l' !TAIL MARKER.

CALL SAVECCODE
ICC=GETXREGF ()
IF(ICC)errlabel,oklabel,eoflabel

FMTATOP copies the return address from Q-2 into LAST, with
bit 0 set on (you'll see why presently), sets up CCG in the
status save word (Q-l), and does an EXIT 0 which leaves the
address of LAST at the TOS. CCG results in a branch taken
around everything to the call to FMTABOT.

At this point, LAST is pointing at the instruction following
the PCAL to FMTATOP; bit 0 in LAST is on to indicate that
this is not the "label identifier" we intend to pass to
FMTINITI.

FMTABOT reads LAST by doing a load-indirect from Q-4.
Finding bit 0 on, it saves this value internally, reloads
LAST from Q-2, reloads Q-2 from the saved previous value of
LAST with bit 0 cleared, sets up CCE and exits. The next
time FMTABOT is called (upon exit from TFORM'), it finds
LAST bit 0 off, in which case it does nothing but exit.

By manipulating the return vector in the stack marker, the
initial call to FMTABOT forces a return via the Condition
Code test following the call to FMTATOP, which detecting
CCE, allows procession to the call to FMTINIT'; at this
point, LAST is pointing where it is supposed to--the
Condition Code test following the call to FMTABOT; succeed
ing calls to FMTABOT just drop through, leaving intact the
Condition Code from TFORMI.

As you can see, FMTATOP and FMTABOT, as well as the
Formatter routines themselves, require some careful program
structuring. I deemed it needful to pass LAST to FMTABOT
via the TOS, because the object code generated to build a
parameter list would put the Condition Code from TFORM' at
risk. Because it is, therefore, absolutely essential that
the address of LAST be at the TOS when FMTABOT is called (an
extra word which may be removed at a suitable time by cal
ling POPTOS with a dummy variable), LAST must be a simple
variable, to insure that the object code will not delete any
additional words from the TOS after FMTATOP returns.

I should mention that unless an error occurs and it has to
exit through LAST, FMTINIT' creates a temporary global area
above the caller's procedure-local data and stores the key

FORTRAN Alternate Return Path Internals 3212-11

address in DB-2, for use by the transfer routines; this area
is cleared away by TFORM'. (The SORT/MERGE intrinsics com
municate with each other in a similar fashion.)

Doubtless you're wondering why I'm not using
.. IF(CCODE(» to test the Condition Code--somewhere bet
ween versions A.00.09 and A.01.00 of FORTRAN 77/V, HP
decided to render the CCODE() construct. completely useless
except for declared system intrinsica, so I developed
SAVECCODE as a work-around. All it does is read the saved
Condition Code from Q-1, and store to Q-3 a 0, +1 or -1,
depending upon whether it finds CCE, CCG or CCL, respective
ly. I chose to work with the x-register so that with no
parameter list to build for SAVECCODE, the status register's
precious cargo is out of harm's way until it is saved in the
stack marker. Our old friend GETXREGF can then be called to
retrieve the representative value in a "plain vanilla" var
iable--providing for more flexible methods of testing than
would be possible with the standard construct. Please note,
however, that SAVECCODE does not work (in FORTRAN 77) with
any MPE system intrinsics that are explicitly declared as
such in your source code.

Conclusion

With the utility procedures I've described added to your
systems/application programming library, you won't have to
rewrite existing FORTRAN 66 alternate-return subroutines (at
least, not until you migrate to a different operating sys
tem). with the range of mutual callability between the two
FORTRANs thus extended, yOU'll have greater flexibility in
choosing a compiler language for a new program. Bear in
mind, however, that this interface is best suited for stand
alone utility programs, and interactive applications where
the CPU time required for each transaction is not a critical
factor.

You may find these procedures useful for other things. For
example, my universal procedure call interface, used in
FORTRAN to call dynamically loaded SL procedures, uses
PUSHTOS and POPTOS to stack parameter lists and allocate and
retrieve function values.

FORTRAN Alternate Return Path Internals 3212-12

APPBRDZX .l

[The following is an excerpt from reference documentation
that I wrote for our programming staff. Slight alterations
have been made for the purposes of this paper. For more
information about the Process Control Block Extension
(PCBX), see Eugene Volokh's excellent paper "Secrets of
System T~bles••• Revealed!" (1985 INTEREX Proceedings,
Washington, D.C.).]

Qser Process Stack Structure

1-----------------------------Z--->I unused
-~-~--------~------~---------S--->

Data local to the currently
executing procedure.

Q+1 >

Q---> delta-Q (Q - prev. Q)

Q-1 > STATUS

Q-2 > Return address (reI. P)

Q-3 > X Index

A

I
I

Stack marker
I
I
v

DB ->

Qi ->

Q-4 >

QOB >

1 or more parameters
passed to currently
executing procedure

(optional)

Main program local data +
any other stack markers and
procedure-local data.

-----------------------------1
·1

Initial stack marker 1
1

-----------------------------1
1

Fixed global area I
1

-----------------------------1
1

V V

FORTRAN Alternate Return Path Internals 3212-13

A A

I
1 User-managed global area

DL ->1
1-----------------------------, --------------DL-1> I @DL - @a I A

DL-2>

DL-3>

DL-4>

DL-5>

c--->

b--->

a--->

@DL - @b

@DL - @c

PXFIXED expansion count

PXFILE

PXFlXED

PXGLOB

PCBX
1
1
I
1
I
I
I
v

DB Data Base. Word address is always 0, by definition.
Register value is a segment-relative offset stored at
PXGLOB 1.

DL Lower limit of accessability in User Mode. Register
value is relative to DB «=0). Segment-relative offset
stored at PXGLOB o.

Q Base of local data of currently executing subprogram.
Register value is relative to DB.

Qi Q-initial; highest DB-relative address of the static
global area. Stored at PXFlXED 3. Address Qi contains
the PARK value passed through the :RUN command or the
process-handling intrinsics; Qi-1 and Qi-2 contain the
byte pointer and length, respectively, of the INFO
string.

QOB Base of the outer block's (main-program's) local data.
For a user process, QOB=Qi+4.

S Pointer to the current top-of-stack. Register value is
relative to DB. The net effect of calling PUSHTOS or
POPTOS is to respectively increment or decrement the
s-register value by one.

Z Highest value ever attained ·by S. Value is stored at

FORTRAN Alternate Return Path Internals 3212-14

PXFIXED 20 Displacement relative to DB may be dynam
ically set through the ZSIZE intrinsic; left to its own
devices, it never decreases in value.

stack Markers

The PCAL instruction, generated by CALL statements and
function references in FORTRAN, and the CALL verb in COBOL,
pushes a four-word stack marker onto the top-of-stack and
reloads the Q-register from S. This object contains the
following information:

Q-3 Index register contents at the time of the
PCAL.

Q-2 Code-segment-relative offset of the
instruction immediately following the PCAL in
the code segment of origin. .

Q-1 status register contents at the time of the
PCAL. The following fields are of signific
ance to the programmer:

(0: 1)

(1: 1)

(2: 1)

(6:2)

(8:8)

o = User Mode;
1 = Privileged Mode.

Set on if external interrupts
enabled.

Set on if user traps enabled.

Condition Code:
o CCG;
1 = CCL;
2 = CCE.

CST number of the code segment of
origin; this and the code offset in
Q-2 constitute the return vector.

Q-O Displacement, in positive words, from the
Q-reqister value just prior to the PCAL;
backward link to the previous stack marker.

If the called procedure has one or more parameters, a
parameter list is pushed onto the top-of-stack by other
compiler-generated instructions prior to executing PCAL.

The EXIT instruction, generated by the RETURN statement in
FORTRAN, and the GOBACK verb in COBOL, is the reverse of
PCAL; the index and status registers are restored from Q-3
and Q-1, respectively; Q is decremented by the number of
words indicated by Q-O; and process execution resumes at the
location given by the return vector. The stack marker, and
everything on the stack above it, is deleted from the top
of-stack, and S is adjusted to reflect the number of words
deleted. The stack decrement (SDEC) field of ~he Ex_r
instruction may specify up to 255 additional words to be

FORTRAN Alternate Return Path Internals 3212-15

deleted•••

All stack markers are backward-linked through the 4th word,
as far as the initial stack marker •.•

Any stack marker may be read, modified, or relocated and
relinked ••• i however, the stack locations containing the
status save words of stack markers that were "on-line", i.e.
in the trace-back chain, as of the last peAL or EXIT are
write-protected in User Mode.

FORTRAN Alternate Return Path Internals 3212-16

APPENDIX II:
Bow A Did It WithOut SPL

As far as the operating system is concerned, a USL that you
created is your data file to do whatever you want with; so,
you are at liberty to alter the machine code that your
compiler gave you, and prepare it as changed.

To manage without SPL/3000, I wrote a library procedure for
each of several basic stack addressing and register
retrieval operations. In each case, I created a program
structure in FORTRAN 66, using dummy statements to allocate
space for special machine code, and compiled it into a
separate USL with all list options. with help from Chapter
9 of the MPE V Tables Manua~, I then edited the Relocatable
Binary Module (RBM) with the DISKED5 utility, replacing
object code generated by the dummy statements with the
machine instructions I needed. Thus, the operation that
"could only be done in SPL" was reduced to a simple library
procedure call.

By the time I needed access to the index register for my
alternate return path interface, I had enough SPL-type oper
at~ons encapsu1ated to write PUTXREG and GETXREG(F) as
FORTRAN 66 procedures that work as" written, without any
post-compile editing. Here is the source code that resul
ted:

PROCEDURES USED BY FORTRAN" FOR CALLING
FORTRAN66 SUBROUTINES WITH ALTERNATE
RETURNS. THESE WORK BY MANIPULATING THE
INDEX REGISTER SAVE WORD IN THE STACK
MARKER.

CRN ••• SPECIAL PARAMETERLESS
INTEGER FUNCTION ENTRY
"GETXREGF" FOR FORTRAN 77.

02/28/91

$CONTROL SEGMENT=UEC'SEG'3,CHECK=O
c**
C** PROGRAM NAME: PUTXREG/GETXREG
c** SOURCE FILE XREGS
C** VERSION STANDARD U. E.
C** PROGRAMMER C.R.N/UE
C** CREATED 10/31/89
C
C** UPDATED
C
C
C
C DESCRIPTION
C
C
C
C
C

C

C

C

C

SUBROUTINE PUTXREG(IX)

INTEGER GETQREG,PEEKDB

CALL POKEDB(IX,GETQREG(IDUM)-3)
RETURN

ENTRY GETXREG(IX)

IX=PEEKDB(GETQREG(IDUM)-3)
RETURN

C

"FORTRAN Alternate Return Path Internals 3212-17

C**2/28/91
C
C
C
C

CRN••• FUNCTION-TYPE GETXREG ENTRY FOR FORTRAN
77 PROGRAMS WITH VERY LARGE LOCAL STACK. MUST
BE REFERENCED AS A PARAMETERLESS INTEGER
FUNCTION.

ENTRY GETXREGF
C

IT=GETQREG(IDUM)
CALL POKEDB(PEEKDB(IT-3),IT-4)
RETURN
END

Integer function GETQREG returns the stack marker location
(Q-register value) for the procedure calling it. The loca
tion of the initial stack marker (QOB) for the calling
process is returned to the passed variable.

GETQREG resides in a privileged code segment added to our
system library; Privileged Mode is required to read the Q
initial value from the PCBX (see Appendix I).

PEEKDB and POKEDB are User. Mode procedures used, often in
conjunction with GETQREG, to access calculated addresses
anywhere on the stack at or above DL. I also use them with
the DLSIZE intrinsic, and another procedure of mine called
GETDLREG, to access the "heap" (user-managed global area).

* * * * *

FORTRAN Alternate Return Path Internals 3212-18

Database indexing: The key to performance

F. Alfredo Rego

Adager Lab Manager

Adager
Sun Valley, Idaho

83353-0030
U.S.A.

Telephone +1 (208) 726-9100 Fax +1 (208) 726-8191

Typically, we are interested in accessing a group of entries from a database (for instance, "all
the outstanding orders from customer XYZ"). One approach is to scan the database serially,
beginning with the first entry and ending with the last entry, "running into" the desired entries
along the way. If we have millions of entries, with only a few that meet our selection criteria,
we may not be able to afford to use this approach for on-line applications. Another approach
is to use indexing methods that allow us to jump directly into the entry or entries which
interest us without having to wade through millions of irrelevant entries.

The only purpose of an indexing system is to serve as a performance booster. There are many
kinds of indexing methods, with various advantages and disadvantages. In this essay, I focus
on the technological challenges posed by the requirement that we should be able to add,
maintain and delete indices quickly and conveniently.

Breaking free from indexing traps

There are several types of indexing methods, just as there are many kinds of database
management systems. But let's not be confused by this apparent variety. Deep down inside,
all databases are nothing more, or less, than bunches of bits. All indexing schemes are, by the
same token, attempts to shortcut the route that leads us into certain desired bunches of bits
within a database.

As long as we keep these fundamental concepts straight, we will be able to take advantage of
indices when they exist, without having a nervous collapse when they are gone. Let's take~
paragraph from Hewlett-Packard as an exercise in going back to basics. More than 5 years
ago, on page 24 of the March 1986 issue of UP's Information Systems & Manufacturing News,
Terrie Murphy said in an article on ALLBASE:

HPSQL's simple tabular-data structure, with no predefined data-access paths. significantly
increases database-administrator (DBA) and programmer productivity. DBAs have great free
dom in structuring the database, since it is not necessary to predict all future access paths at
design [time]. If the data is available in the database. it is immediately accessible at any

3213-1

future time. In non-relational models, all access paths need to be known when the database is
designed. This adds significantly to overall program-development time. In addition, with no
predefined data-access paths, the data structure can be modified in many ways without alfecting
existing programs; thus greatly simplifying application maintenance.

The issue is "predefined access paths", as viewed from an ALLBASE/SQL perspective. We can
easily rewrite the same paragraph from an IMAGE viewpoint:

IMAGE's simple tabular-data structure, with (or without) predefined data-access paths, signifi
cantly increases database-administrator (DBA) and programmer productivity. DBAs have great
freedom in structuring the database, since it is not necessary to predict all future access paths at
design [time}. If the data is available in the database, it is immediately accessible at any
future time. In IMAGE, all access paths need !1J2l. be known when the database is designed. This
saves significant overall program-development time. In addition, with (or without) predefined
data-access paths, the data structure can be modified in many ways without affecting existing
programs; thus greatly simplifying application maintenance.

Without too much effort, we can re-write this paragraph so that pre-defined access paths
appear as slaves or liberators from the perspective of any database management system. Since
most of the HP3000 users share IMAGE as a common bond, and since IMAGE has undeserved
Iy gotten bad press regarding indexing and pre-defined access paths, let's use IMAGE as an
example. Even though we will speak in IMAGE terms, let's remember that the same
methodology applies to any DBMS.

IMAGE allows you independence from predefined access paths (and from many structural
modifications), provided you follow some sensible guidelines.

As a prerequisite, you should be aware of several IMAGE design criteria that People tend to
ignore:

I. An IMAGE dataset is a simple tabular data structure. The widespread belief that IMAGE is
a "pointer-based network DBMS" is not true. You can build an IMAGE database that does
J!21 have any pointers whatsoever. You can always scan a dataset serially, from beginning to
end, to select the entries of interest to you, but you might get bored doing this (particularly
if you have millions of entries). IMAGE gives you the choice of two kinds of datasets
(masters and details), each optimized for a given high-speed access method. You may,
almost instantly, access specific master entries using hashing, if you wish. But please
remember that you don't have to use hashing at all. Likewise, you may access, extremely
quickly, specific detail entries using an IMAGE-provided combination of hashing and
chaining, if you wish. But please keep in mind that you don't have to use chains at all.

2. The IMAGE intrinsics that allow you to add, access and update entries (DBPUT, DBGET,
DBUPDATE) have an important parameter: the list of those specific fields that interest you.

3. The IMAGE DBINFO intrinsic gives you a wealth of information at run time.

Binding: at compilation time or at rUD time?

Knowing these (and other) IMAGE design criteria is necessary but not sufficient. As another
prerequisite, you should use high programming standards (this, naturally, applies to any kind of
computer work that you do). A very important programming standard is that you should
postpone binding as much as possible. This means that you should not burden your programs,
at compilation time, with hard-wired stuff. You should wait until run time to adjust to the

Rego 3213-2

prevailing conditions of the day.

In the case of predefined access paths, if any, you should not even think about including (or
excluding) them in the strategy of your programs. You should find out, at run time, whether a
given field in a given dataset is an IMAGE search field or not (using DBINFO). If you are not
dealing with a search field, you might have to do a serial scan" of the whole dataset (using
DBGETs mode 2 or 3) to find those entries, if any, whose field values you want. (You are
certainly free to develop non-IMAGE indexing schemes to avoid such serial scans.) If you are
dealing with an IMAGE search field, you can be much more efficient. For a master dataset,
use hashing (DBGET mode 7). For a detail dataset, use an IMAGE-provided combination of
hashing and chaining (an initial DBFIND followed by DBGETs mode S or 6).

If you follow these reasonable guidelines, your applications will be totally immune to changes
in access paths. You will be able to add or delete paths at will, to suit the performance needs
of your users. And, as a fun bonus, since the only difference between masters and details is
access method, you will also be able to change masters to details or details to masters without
impacting any of your application programs.

What do you think now about Hewlett-Packard's assertion that "In non-relational models, all
access paths need to be known when the database is designed"? I am sure HP meant to qualify
this statement by adding, "if your programming standards are so low that you hard-code
everything".

This hard-coding issue has nothing to do with being relational or non-relational. If you
hard-code in SQL, nothing will save you from getting into deep trouble. Let's illustrate this
observation.

In the case of adding, accessing or updating IMAGE entries, you should not even think of
using "@" to specify the list of fields that interest you. The "@" list asks IMAGE to deal with
all the current fields in the dataset. If you add, delete or shuffle the fields of a dataset, you
must then edit and recompile all the programs that access that dataset. (Absolutely the same is
true in SQL if you use SQL's instead of a specific list of columns.)

Since this prospect does not attract me, I strictly follow a methodology with IMAGE field lists.
Even though it may take a little more effort up front, I always build a list with the names of
those specific fields that the program~ to access. The first time I invoke an access
intrinsic (DBPUT, DBGET or DBUPDATE), I pass it this list. Afterwards, when I invoke an
access intrinsic that depends on the same list, I pass it IMAGE's asterisk list ("."), which tells
IMAGE "don't bother to assemble and check my list; simply use the previous list". (The
asterisk "." means different things to different people: It is important to remember that SQL
interprets it to mean "give me everything".)

For more than a decade now, I have been able to add, delete and shuffle fields in my IMAGE
datasets. Even though this fact, in itself, is significant, it is even more impressive because I
have not been forced to edit or recompile those programs that don't use such fields.

What do you think now about Hewlett-Packard's opinion that 1with SQL] the data structure
can be modified in many ways without affecting existing programs"? Of course, HP meant to
qualify this opinion by adding, "provided you don't use the SQL asterisk '.' instead of a
specific list of columns in your SQL statements".

Rego 3213-3

IndexinR ami stru~tural freedom

By binding as late as possible, we gain two kinds of freedom: the freedom from pre-defined
access paths and the freedom from rigid data structures.

We are able to add, maintain and delete indices quickly and conveniently. We can use the
indices that are "bound" with the official DBMS (such as hashing and chaining in IMAGE) and
we can use our own (or third-party) indices to complement the official indices.

Since indices are only one aspect of the general database structure, we are also able to add,
maintain and delete any other database objects as well.

The fact that, with run-time binding, our indexing schemes are flexible is just one of the
consequences of having a flexible over-all approach to database management.

Rego 3213-4

TITLE:

AUTHOR:

Managing A PowerHouse Environment

David Robinson

PowerSpec International

403 Cross Lake Drive

~uquay-Varina, NC 27526

919-552-8049

FINAL PAPER WAS NOT AVAILABLE AT TIME OF PRINTING.

PAPERNO. 3214

, ,__ • '._ •• __ . ~ .- __ . ._~._~ : __.;;'._'_,r~••';;;_

____ ._.- ~,__~~ -. # .~. __' • ._. • ,;.;. •• ' '.'. e.--.:__. __.. -;'~""':" . __
..~~.

USING MPE XL TO YOUR ADVANTAGE -
A GUIDE FOR THE APPLICATIONS PROGRAMMER

Pamela Herbert Bristow
A.H. CUstom Software, Inc.
El cerrito, CA 94530

(415) 535-5070

The introduction of the RISC architecture and the MPE XL
operating system marked a strong advancement for the HP 3000
line of computers. MPE XL, although similar in commands and
syntax to its predecessor MPE V, is a far superior operating
system. And now MPE XL 2.x (either 1 or 2) has been delivered
and with it comes an even greater functionality than was found
in the initial MPE XL offering.

In this paper I will give an overview of the new features
in MPE XL for those readers who are new to XL. Then I will
discuss a few of the features implemented in version 2.x that
are of most interest to me inclUding some aspects of the
native mode spooler, 'command input/output redirection and the
FINFO command.

USJ:RG VARJ:ABLBS

There are 2 types of variables in MPE XL. These are the
predefined global variables and the user defined variables.
Of the 70 some predefined global variables (as a I counted
them in version 2.2) some are read only but many of them can
be used to 'customize' the environment for any given user or
job by using the :SETVAR command. To see what all of the
possibilities are try typing

:SHOWVAR @

This will give you a listing of all of the system global
variables and what their values are. It will also show you
any user defined variables that have been set up and what
their values are. I will refer to several of these variables
in discussing other features of MPE XL that I like to use.
A :SHOWVAR without the @ will show you all of the user defined
variables.

The way you alter any variable is to use the

:SETVAR

command.
Variables can have 3 different value types - integer,

string and Boolean. The system variables have a preset type
and if you try to set one to the wrong type of data the system
will return an error. User variable can be set in any of

USJ:IIG IIPB XL TO YOUR ADVAIITAGB -
A GUJ:DB POR TBB APPLICATIONS PROGRAMIER 3215 - 1

three ways e.g.

:SETVAR X 1 or :SETVAR X 'XYZ' or SETVAR X TRUE

Once a variable has been declared the value it contains
can be de-referenced to allow variable Substitution, and
string functions can be applied to extract parts of a variable
value. For example the system variable HPDATEF is set to the
date in the format

TUE, FEB 27, 1990.

To extract the day of the week enter

:SETVAR DAY n![LFT(HPDATEF,3)]"

The exclamation point de-references the variable HPDATE
meaning that it substitutes the value of the variable in place
of the variable itself. The LFT parameter along with the ,3
following the HPDATE variable extracts just the left most 3
characters so that now if you type

: SHOWVAR DAY

you will see :DAY TUE

If you then enter

: SETVAR TIMEFRAME "!! DAY"
: SHOWVAR TIMEFRAME

MPE XL will return :TIMEFRAME = lDAY

This is because the double exclamation points resolve to a
single exclamation point giving you back the variable. If you
then type

: SETVAR THISTIME = "! TIMEFRAME"
:SHOWVAR THISTIME

MPE XL will return

:THISTIME = TUE

This de-referencing technique can be used in command files to
dynamically set the value of a variable.

USIIIG IIPB XL '1'0 YOUR ADVU'l'AGB -
A GUIDB ~OR TBB APPLICATIOIIS PROGRAMMBR 3215 - 2

A BRZBP WORD ON BXPRBSSZOR BVALUATOR PUHCTZOBS
In an example above I use the LFT function to extract the

3 left most bytes of a character string. This is but one of
many expression evaluator functions that MPE XL provides.
These functions return boolean, string or numeric results and
can be used to parse character strings, do numerical
manipulations and set up TRUE/FALSE conditions and tests. An
explicit discussion of them would require a paper in itself
but I mention them here because I use a couple more in
examples further on in this paper.

COJIIIABD LZIIB BZS'1'ORY STACK

The command line history stack was the first MPE XL
feature I discovered. In MPE V if you miss-typed a command
and then tried to recover with a :REDO only to type :REOD, you
would be stuck keying in the entire command again. Not so
anymore. MPE XL has a command line history stack that will
store a variable number of commands. The exact number of
commands is determined by a predefined variable called
HPREDOSIZE that has a default value of 20. To see what is
in the stack you type

:LISTREDO

What is returned is a listing of the last 20 commands you have
issued along with their absolute number e.g.

11) LISTF FILEA,2
12) RENAME FILEA,FLEB
13) RENAME FILE, FILEB
14) QE
15) QUICK

30) LISTF FILEC,2

These commands can be referenced in several ways, either by
absolute number (i.e. REDO 20) or by relative number (e.g.
REDO -2) or by initial characters (e.g. REDO LISTF). This
last technique will bring back the most recent command that
begins with the characters LISTF.

There is also a :00 command that allows you tore-execute
any command in the history stack directly. You can access the
command as you do for :REoo (by absolute or relative number
or by character strinq) with the default beinq the last
command executed. The:DO command has an additional feature
that allows you to edit the command before executinq it. The

UBIRG IIPB XL '1'0 YOUR ADVAIITAGB -
A GUIDB ~OR TBB APPLICATIOBS PROGRAKKBR 3215 - 3

syntax is

:00 [CMD=cmdid] [EDIT = editstring].

For example if you typed in

: QUECK

when you had intended to key in :QUICK you could edit and
execute the command in one step by entering

:oo,n RI"

which would return and execute the string

: QUICK

The options on the edit string must be in the same
position as they would be if you were using the interactive
:REDO command. Trying to get. the insert, delete and replace
commands to come out in the right place strikes me as more
difficult than using the interactive :REoo but there are some
very handy ways to use :00. These are:

> appends characters on to the end of the line.
>R replaces characters at the end of the line so that the

last character in the >R command is at the end of the
line.

C changes all occurrences of one string to another.
>0 deletes from the end of the line moving from right to

left. You can enter mUltiple Os.

For example, if you typed

:LISTF MYPROD,2

and what you really meant was :LISTF MYPROG,2 you could re
execute the command quickly by typing

:00 ,C/D/G

which would immediately re-execute the previous command
changing all occurrences of 'D' to 'G'. Similarly if you
forgot that you needed to ·run a program with a LIB=G
parameter you could say

:00 ,">iLIB=G" or:oo RUN, ">LIB=G"

Note that you must surround the edit string with quotes if
there are embedded blanks or special characters such as semi
colons.

USIIIG IIPB XL '1'0. YOUR ADVAIITAGB -
A GUID.WOR TBB APPLICATIOIIS PROGBAMMBR 3215 - 4

GREATBR BASB AIm FLEXIBILITY III CRBATIlIG UD BXBCU'l'IIIG
COJIMANDS AND PROGRAMS

There are now more options for implementing and executing
command files and programs. In MPE V you could either

execute a cataloged command (UDC) or an MPE command or :RUN
a program. If you wanted to catalog a new command you had to
reset the entire catalog. These bonds have been broken.

The command interpreter (CI) now searches through 3
I areas I each time it tries to resolve a command. The catalog
is checked first to see if the command is a UDC. If the
command is not found there it is then checked to see if it
is a regular MPE command (e.g. LISTF or PURGE). If it is not,
the CI then checks for the command in any of the groups or
group. accounts specified in the variable HPPATH. The default
path is your logon group followed by the PUB group of your
logon account, followed by PUB.SYS. The CI also uses an
implied RUN so that you can just type the name of a program
in and if it is found it will be executed.

This means several things. First of all it means that
you never need to create a UDe to execute a program stored in
PUB.SYS. If you type in

:DBUTIL

the CI will find the program DBUTIL.PUB.SYS and execute it.
It also means that if you want to alter the wayan MPE command
functions by using a command file (e.g. having the STREAM
command execute STREAMX), just typing the name of the command
won't work because the CI will execute the MPE command before
it finds the command file. You can get around this by using
the :XEQ command which will directly execute the file,
bypassing the UDC and MPE regular command checks (but using
the HPPATH search).

Given all of these options you now must consider the most
advantageous place to store any given command. Just briefly,
the major advantages of UDes are that they execute very
quickly, they are shared by all users who have access to them
and they cannot be inadvertently purged as easily as command
files. The advantage to command files is that they are very
easy to change and can be stored and maintained in private
groups.

There is another option somewhere in between which is
the ability to APPEND and DELETE individual UDes from the
catalog without having to reset the entire thing. This can
be very nice if you have a team working on a project where you
want to catalog a command that may need to change a bit from
time to time or if you need to keep adding UDCs as the

USIIIG IIPB XL '1'0 YOUR ADVAR'l'AGB -
A GUIDB ~OR TBB APPLICATIONS PROGRAJlHBR 3215 - 5

project develops. To do this you type

:SETCATALOG UDCB;APPEND

If you now need to alter UOCB you can edit it as UDCe and
reset the commands in it by typing

: SETCATALOG UOCB; DELETE
: SETCATALOG uoce;APPEND

This prevents altering the wrong editor file for all of the
other UDes at the user or account level and ruining everyone's
day when you reset the catalog to the incorrect file of
commands.

Similarly, you can create individual command files in the
group of your choice and change them easily. This is
especially useful if you are working on a test version of a
program and need to set up a bunch of file equations to run
your test version along with a bunch of productions versions
of programs. For example, you can create a file called
FILEQ.mygroup that looks like this:

FlLEA
FILEB
BASEA

FILEA.TRAINING
FILEB. TRAINING
BASEA.TRAINING

and then set the variable HPPATH to point to your group

:SETVAR HPPATH "mygroup,lhpgroup,pub,pub.sys"

When you type in the characters

:FILEQ

all of the file equations in that command file will be created
and you never have to touch the catalog. If the file
equations need to change you can just edit the file and re
execute it and the new equations will be in place.

SBTTIIfG TO RPPATR VARIABLB

The HPPATH variable can be used very effectively to
customize the working environment for each programmer. One
of the simplest solutions is to have a logon UDe that says

SETVAR HPPATH n 1HPJOBNAME, 1HPGROUP, PUB, PUB. SYS" or
SETVAR HPPATH "lHPJOBNAME,lHPPATH"

USING IIPB XL TO YOUR ADVAH'l'AGB -
A GUIDB POR TRB APPLICATIONS PROGRAllllBR 3215 - 6

HPJOBNAME is set to the characters that you type as the first
part of your :HELLO command before you type the user name as
in

:HELLO PHB,MANAGER.TRAINING

As long as there is a group called PHB, the HPPATH will be set
to check that group for commands first (after checking the
UDes, and MPE commands and not finding the command there) so
that if 3 people want to use

:QE

to. call QEDIT but they all want to bring it up with different
parameters they can all have their way without having a
catalog war.

THB PRZNT COKHABD

:PRINT allows you to direct the contents of a file to
print wherever you want it to. The major advantage to this
is that you don't have to wait for a program to execute to
list the output. There are also some options to control the
listing. The syntax for the command is

:PRINT filename;OUT=outfile;START=m;END=;n;PAGE=p;UNN

The :PRINT default is to list the file to your terminal
and stop every 23 lines and ask you if you wish to continue.
You can use the PAGE parameter to control this by typing

:PRINT FILEA;PAGE=O

to cause the entire document to print out without a page
break. This is useful if you are using a slave printer and
want to run with LOG BOTTOM ON to print the file out
immediately. If you know which lines of a file you want to
look at you can use the START and END parameters. :PRINT
FILEA;START=20 will start listing the file at line 20.
:PRINT FILEAiSTART = -20 will list the last 20 records of the
file.

CllANGZIfG GROUPS WITROUT LOGGZIIG ON AGAIII

How many times have you gone to run DBUTIL or KSAMUTIL
or some other data base/file management program only to
discover that you are not logged on in to the group that the
data reside in? Until now you had to log in again, specifying
the correct group as your home group. In doing so you would

USIIIG IIPB XL TO YOUR ADVUTAGE -
A GUIDE POR TBB APPLICATIONS PROGRAllMBR 3215 - 7

lose any file equations or variables that you had set up
during your session. with MPE XL you can issue the

:CHGROUP groupname

command and you will be 'moved' to the group specified. When
you are done with the file maintenance you can type :CHGROUP
without the group name parameter and you will be back in your
logon home group.

COPYING I'ILES WITH I'AR PBWBR KEYSTROKES

FCOPY always seemed to me to be a tedious command to use.
All of that 'FROM=' and 'TO=' and designating a file's current
status (NEW,OLD etc). seemed such a bother to me. with MPE
XL comes the :COPY command that eliminates all of that. You
can now type

:COPY FILEA.MYGROUP,FILEA.PUB;YES

and FILEA will be purged from •PUB if necessary and copied in
from .MYGROUP. If you leave off the ;YES parameter the system
will ask you if you wish to purge the 'TO' file giving you
an opportunity to confirm the copy before executing it.

THB I'IDO COJOlARl)

The FINFO command gives you an easy way to get
information on a file. It has the same capabilities as the
FLABELINFO intrinsic but can be used directly. The syntax for
the command is

FINFO(MYFILE,KEY) where MYFILE is the name of the file
of interest and KEY can have either a numeric or literal
value. Some of the possible values are:

option option return type and meaning
num name/alias

------------ ----------------~-------
0 "exists" boolean TRUE if file exists
1 "full filename" string, fUlly qualified name
2 "group name" string
3 "account name" string
6 "creation date" string format DAY, MM DD, YYYY
6 "created"

-6 "intcreated" integer format YYYYMMDD
7 "accessed" string, format DAY, MM DD, YYYY

-7 "intaccessed" integer format YYYYMMDD
8 "last mod date" string format DAY, MM DD, YYYY

-8 "intmoddate" integer format YYYYMMDD
12 "file limit" integer

USING IIPB XL '1'0 YOUR ADVARTAGB -
A GUIDB I'OR '1'BB APPLICATIONS PROGRAMHBR 3215 - 8

13
19
24

"formatted foptions"
"end of file"
"last mod time"

string
integer
string HH:MM AM or PM

You can use the command to return a boolean value e.g.
IF FINFO("MYFILE","EXISTS") = TRUE

THEN •••
or you can write a little command file to give you information
about a file or about a file equation in a format of your own
personal design that is most useful to you e.g.

PARK FILE
IF FINFO("!FILE","EXISTS") = TRUE THEN

SETVAR A FINFO(" !FILE", "FULL FILENAME")
SETVAR B FINFO("!FILE","CREATION DATE")
SETVAR C FINFO("!FILE","FILE LIMIT")
SETVAR 0 FINFO("!FILE","END OF FILE")
SETVAR F FINFO("!FILE","LAST MOD DATE")
SETVAR E FINFO("lFILE", "LAST MOD TIME")
ECHO ************************************
ECHO file name: 1A
ECHO created : !B
ECHO limit: !C
ECHO eof: !D
ECHO last mod: IF!E
ECHO ************************************
ENDIF

IF FINFO("!FlLE","EXISTS") = FALSE THEN
ECHO ------!> The file IFlLE does not exist 1<-------

ENDIF

To use this command file you simply enter
SF MYFILE
at the MPE prompt and, if MYFILE exists you will see

**
file name: MYFILE.MYGROUP.MYACCT
created : MON, MAY 6, 1991
limit : 100
eof : 25
last mod: WED, MAY 8, 1991 12:24 PM

**

If you have a file equation such as

TESTFILE = MYFlLE.MYGROUP.MYACCT

you can enter

USIKG IIPB XL TO YOUR ADVAIt'l'AGB -
A GUIDB POR TBB APPLICATIOK8-PROGRAHMBR 3215 - 9

SF TESTFILE

and the display described above will be returned. This is
very handy if you have command files that set a particular
file equation to any of many values depending on what you are
testing and you can't remember how it is currently set.

If TESTFILE does not exist this command file will return

--------> The file TESTFILE does not exist <----------
The reason for the exclamation points is to prevent MPEXL from
trying to evaluate the 'less than' and 'greater than' signs
as part of the expression.

TBB DTZVB IIODB SPOOLBR

with the release of MPE XL 2.1 came the demise of that
ghastly, ghostly utility SPOOK. Spool files are handled quite
differently in MPE XL 2.1 and beyond. The output spoolfiles
are now written to disk as regular MPE files (with a lot of
special characters to control printing) with the name

dfid.OUT.HPSOOL

where dfid is the file's device file ide Just as with SPOOK
you can keep the file on disk by using an OUTCLASS parameter
with a low number in your job card. Then, when you raise the
outclass number to allow the file to print it will be deleted
from disk. However, if you use the ;SPSAVE parameter in your
job card, the file will remain on disk even after it has
printed. This gives you automatic report backup. To see what
output spoolfiles you have you can use the LISTSPF command.

The feature I most like about the native mode spooler is
that you can use the PRINT command on the dfid.OUT.HPSPOOL
file while the job is executing! This allows you to view the
progress the job is making along the way which, for long
running jobs, can be very nice.

COJOlUD ZIJPUT/OUTPUT RBDZRBCTZO.

MPE XL 2.1 and above gives you the ability to 'grab' the
output of any command and write it to a disk file , or to
'feed' input to a command from a disk file. This is a very
powerful feature because it gives you almost unlimited
capabilities for using the operating system to read and write
files. It also gives you the ability to manipulate the output
from commands and use the result as is, or altered, as input
to another command. I have used this feature to create a
STREAM command that traps the job number and output spoolfile
device id and stores them in variables so that I can easily

USZ.G IIPB XL·ro YOUR ADVAIITAGB -
A GUZDB POR TBB APPLICATIOBS PROGRAMMBR 3215 -10

device id and stores them in variables so that I can easily
manipulate the job. I called my STREAM command STRM so that
I didn't have to catalog it to override the MPE STREAM
command.
This is the command file STRM:

PARK JOB
ERRCLEAR
IF FINFO("lJOB","EXISTS") TRUE THEN

CONTINUE
STREAM !JOB > CMOS
CONTINUE
IF HPCIERR <> 0

PRINT CMDSiSTART=2
ENOIF

RESET CMOS
INPUT JOB HUM < CMOS
ECHO !JOB HUM
SHOWOUT SP;JOB = !JOB HUM > CMOS
SETVAR FILE_INFO FINFO("CMDS","EOFft)
IF FINFO("CMDS","EOF") > 2 THEN

PRINT CMDSiSTART=2iEND=3 > OFIOFILE
ENOIF

INPUT OFIO HUM < DFIOFILE
SETVAR OFID RTRIM(STR(OFIO_HUM,11,8»
ECHO !JOB HUM !OFIO

ELSE -
ECHO
ECHO
ECHO THE JOB FILE !JOB DOES NOT EXIST

ECHO
ECHO
ENOIF

When this command executes it first checks to see that
there is such a file as !JOB that can be submitted. I could
simply have returned the HPCIERRMSG but I preferred a move
informative and personalized response. In this case, if I try
to STRM MYJOB.JOB and no such file exists the command file
returns

THE JOB FILE MYJOB.JOB DOES NOT EXIST

Otherwise, it streams the job and writes the output of
the stream command to a temporary file called CMOS. If the
streaming was not successful (due to a bad job card or
something) then the second line of CMOS is written to the
screen. This contains the error message.

A successful stream will cause the #Jxxx that usually
shows up on the screen to be written to CMOS. This output is
then referred to as INPUT and the value is written to the

USIIIG IIPB XL TO YOUR ADVAlMTAGB -
A GUIDB POR TBB APPLICATIONS PROGRAMMBR 3215 -11

variable JOB NOM which is echoed to the screen so that I can
see what it Is.

The command file then executes a SHOWOUT command on the
job and writes the output to CMDS again so that I can trap the
output spoolfile device file ide The actual output from the
SHOWOUT command is:

DEV/CL DFID JOBNUM FNAKE STATE FRM SPACE RANK PRI
#c
LP #01234 #J789 $STDLIST OPENED 2048 1

1
OUTFENCE 1
OUTFENCE 1 FOR LDEV 6

What I want from this output is just the #01234 which, in the
real 80 column world starts in position 11 of the second line
and can be up to 8 characters long. Therefore, I print the
second line of the CMDS file to a file called DFIDFILE and
then use this as INPUT to DFID HUM which is parsed into a
variable called DFID using the exPression evaluator functions
RTRIM and STR. What I actually see on the screen is

#J789
#J789 01234

and what I have is a variable called JOB NOM that is set to
the job number of the last job I submitted (in this case
#J789) and a variable called DFID which is set to the output
spoolfile device file id of the last job I streamed.

I now have one additional command file that I use to monitor
the progress of my job. I call this one PRT and it performs
a PRINT command on the output spoolfile for the last job I
submitted:

PARK PAGE=0,START=1
PRINT !DFID.OUT.HPSPOOLiPAGE=!PAGEiSTART=!START

The PAGE and START parameters can be altered as time goes on
so that I can start further and further in to the spoolfile
as it gets longer. For example, when the job has just been
executed I can type

PRT

and see the output from the first line to the end with no
stops. If I see 50 lines at that time and want to check back
in 5 minutes, I can type

PRT .0 50

USING IIPB XL TO YOUR ADVAlfTAGB -
A GUIDB ~OR TBB APPLICATIONS PROGRAMMBR 3215 -12

and the output to my screen will begin at line 50 of the
spoolfile.

You can use these same techniques to write command files
to alter the input priority of a job or abort it or whatever
you choose and have the privileges to do.

If you wish to have output from a command appended to the
end of an already existing file you can specify that as:

SHOWOUT SP;JOB=!JOB » CMOS

StJllllARy

The MPE XL command interpreter has some very powerful
features that allow you to customize your working environment
and to create simple or complex command procedures to automate
routine functions. The end result for me has been an
increase in productivity and in my level of satisfaction with
working on the 3000. Whether you choose to become proficient
at developing complex command files or just use some of the
more basic features of this operating system, you are sure to
find that the improvements it offers will make your
professional life much more efficient and a lot more fun.

REPBRE.CBS
Cooper, Kevin "A Programmer Looks at MPE XL" Interact volume
8, issue 10

Cressler, Scott and Vance, Jeff liThe Life of an MPE XL
Command"

Interact volume 9, issue 9

Mak, James Tsze-Leung IlCUstomizing MPE XL Commands" Interact
volume 9, issue 12

Cressler Scott, and Vance, Jeff "Advanced CI Programming"
BARUG - Proceedings of the 1990 Santa Cruz Conference

USIIIG MPB XL TO YOUR ADVAlft'AGB -
A GUIDB POR TBB APPLICATIOIIS PROGBAKMBR 3215 -13

Paper Number 3216

MAKING QTP RUN EFFICIENTLY

by
John D. Alleyn-Day

Alleyn-Day International
1721 M. L. K. Way, Suite 3

Berkeley CA 94709-2101
415-486-8202

Fourth Generation Languages have great power and can be used
to write processing programs easily and quickly. However,
they also have a reputation for being extremely inefficient

a reputation which may not be entirely deserved. Many
programs w~itten in fourth generation languages are ineffi
cient because the programmer is tempted to use programming
methods without really understanding what the language is
doing.

I am ~oing to discuss a particular example using QTP (Power
house). The same situation could arise in several other
fourth generation languages. Some of what I will present is
more complex than would normally be the case, but it con
tains elements that serve as a general example for use as a
cookbook for anyone that wants to follow my technique. Also
my remarks apply principally to Classic machines running
MPE/V. Spectrum machines have different considerations that
will modify what I am considering here.

I have worked at several clients with fourth generation
languages and seen various circumstances in which batch
programs written in QTP or some similar language were taking
excessive times to ~un. The fourth generation language is
usually used to access data from KSAM files and from IMAGE
databases. Some batch programs have taken all weekend to
run, just to turn out a report. In some cases, the time
needed was so extreme that the jobs were aborted so that
other users could get their share of computer resources!

It became apparent to me that the inefficiencies were not
necessarily an integral part of the fourth generation lan
guage but rather of the way in which the language was used.
The simplicity of the programming methods encourages pro
grammers, myself included, to construct very inefficient
programs without realizing the true import of their code. I
will illustrate this for you as we go along.

The usual start to a QTP program (or a QUIZ program) is a
statement along the following lines:

access datafile link to auditfile

MAKING QTP RUN EFFICIENTLY 3216 - 1

followed by various selection, sorting and updating crite
ria. Most othe~ fourth generation languages will have a
similar statement that joins two or more files together.
The performance problems start right here with this state
ment. We have to look very carefully at what this statement
is doing.

Let us suppose that these files are big files. In this
context, by a "big" file, I am going to mean about 500,000
records. With files of this size the prog~am will take many
hours to run. If it starts at 5.00 p.m. then it may not be
finished when work starts at 8.00 am the next morning!

If we had written a good COBOL program to solve this prob
lem, it would have taken only an hour or two to run. Howev
er, this inefficiency is not an inescapable problem associ
ated with the fourth generation language. There is a cardi
nal rule which must be applied. Know what your fourth
generation language is actually doing.

The statement above is asking QTP to read "datafile" sequen
tially and for each record to read a corresponding record
from the "auditfile". The records are linked by a "key"
value, implicit in the data st~ucture for ou~ simple situa
tion. Reading the datafile sequentially is usually fast and
depends significantly on its blocking factor. If we suppose
a blocking factor of 10, then we can estimate that this
process will take about 40 minutes (I am using 20 I/O's per
second as an average disc access time). If you are set up
for multi-record access this process should take only
minutes, because multi-record access essentially uses a very
high blocking factor. .

The part that makes the performance so poor is the random
reads implied by the access to "auditfile". In general,
each record requires a single disc read, and the random
access process will take about 7 hours, and there is nothing
multi-record access can do about it. If the linkage is to a
detail file rather than a master, then each record will
probably require two disc l/Os and will take about 14 hours.

So the major part of the inefficiency of the processing is
not dependent on any specific fourth generation language,
but rather on the processing methods that are generally
encouraged by fourth generation languages. Specific methods
for improving this performance depends on the particular
language used, but the general .approach is the same. I will
illustrate my methodology using QTP, leaving you to make the
necessary adjustments to achieve similar results in your own
language.

Now that we know why our program takes so long to run, we
can set about making it Tun faster -- much faster. Twenty

MAKING QTP RUN EFFICIENTLY 3216 - 2

or thirty percent improvement in efficiency will not be
enough; we need it to run five to ten times faster. For
this phase, we adopt another rule, "Use batch techniques for
batch programs". This shouldn't be anything new. The
"Image Handbook" in the chapter called "Throw off you~

Chains" contains lots of hints for handling database files
in a batch environment. The fact that this is a fourth
generation language rather than a third generation language
shouldn't make much difference. In our QTP program we
totally ignored the tenet "paths should be reserved for on
line users". The major ~eason for the poor performance is
the keyed reads that are being carried out to obtain data
from secondary files. How can we avoid this?

We have to avoid the random reads. In fact, we have to go
back a few years to the heyday of mainframes and batch
processing and take a look at how we got our COBOL program
to do the same process in an hou~ or two.

How did we write our batch COBOL program without random
access? We made extensive use of the sort and merge pro
grams and our COBOL program did a lot of record matching.
Specifically, we would take our two files, extract the data
we needed and add to each one a "record type" to identify
which file the record came from. Then we would merge them
and sort them by a composite key, made up of the key that we
wanted to match on followed by the record identifier.

We would then have a file in which all the data for a par
ticular key would be g~ouped together, with the first record
of a group coming from the first file and the second record
coming from the second file. At this point our COBOL pro
gram would merge these two records into a single composite
record and write it out to a new file.

This file contains precisely the data that we would have got
from our "access" statement. However, except for the
reco~d matching, we have used only standard record extrac
tion, sort and merges, all of which have been carefully
developed over the years for optimum efficiency. The COBOL
record matching program is also reading files sequentially
and should therefore be very efficient as well.

How can we do this for ou~ own case, without having to w~ite

a COBOL program? The first parts of the processing are
fairly elementary and I don't plan to describe them in
detail. Use SUPRTOOL or COPYRITE (or write a short program
in QTP) to extract the data and create the new "record-type"
field. The extracts should have identical formats, with
locations for each field that will eventually be needed, and
the second file should be appended to the first. Sorting
these extracts will give us the file described above with
the records grouped by matching key.

MAKING QTP RUN EFFICIENTLY 3216 - 3

From here we have two possibilities. If you have been using
SUPRTOOL then you will also have SUPRLINK which will do the
record matching for you. If you don't have SUPRTOOL, then
we have to use QTP to get the same result, and I will now
describe in detail how you do this.

Actually, I am going to describe a QTP program that does
rather more than this. However, you can use this as a model
and use just the pieces that you need. This program was
written for an "audit" process" in which we were concerned
with changes that were being made manually to a database and
we wanted an independent check on those changes. For this
purpose, we wrote a simple extract routine in QTP that
sorted and copied the dataset contents to an MPE flat file
before any changes were made. After the manual changes were
complete, the same extract was run again to produce a second
MPE file. We then compared the two files, to determine the
records that had been added or deleted.

In this case we were interested not in matching records, but
in non-matching records, so the program is more complex than
in the simple case above. Here is the QTP program. The
file "auditnew" is a combination of the two files sorted as
described above.

access auditnew
sorted on terminal-key, map-key, record-type

temporary n-data character*26
temporary n-flag integer*1
temporary p-flag integer*1
temporary p-data character*26

item p-flag
item p-data
item n-data
item n-flag

n-flag at record-type
n-data at record-type
map-key + terminal-key
record-type

subfile temp2 keep alias delete-file &
if (p-flag = 1 and n-flag = 1) &
or (p-flag = 1 and n-flag = 2 and p-data <> n-data) &
include p-flag, p-data

subfile temp2 alias add-file &
if (p-flag = 2 and n-flag = 2) &
or (p-flag = 1 and n-flag = 2 and p-data <> n-data) &
include n-flag, n-data

subfile temp2 alias last-record at final &
if n-flag = 1 &
include n-flag, n-data

MAKING QTP RUN EFFICIENTLY 3216 - 4

subfile temp2 alias first-record at initial &
if record-type = 2 &
include record-type, map-key, terminal-key

What we have done here is to produce the program using QTP
that we would previously have w~itten in COBOL. We have set
up fields in "working storage" to keep track of data from
p~evious records. Be very careful when using this program.
The order of some of the statements, particularly the "item"
statements, is crucial for proper operation.

Actually, this program won't quite solve the original prob
lem. It actually finds all the non-matching records, rather
than the matching records, a task which is very tricky to do
in QTP using the conventional "access" statement, and be
comes impossible in this case where we are comparing two MPE
files. However, the changes needed to get matching records
only are trivial and left as an exercise for the reader.

One final point. A programmer must use judgment in applying
the techniques I have illustrated. On small files the
increased efficiency possible with these techniques will
probably not repay the time you spend doing the additional
analysis. However, if you ~un a program very frequently,
analysis and reprogramming for greater efficiency may be
very valuable, even if small files are involved. Some
installations run small reports everyday at lunch-time in
preparation for the afternoon's work. In such a case, the
extra effort to increase speed may be easily justified.

Finally, I suggest that the Fou~th Generation Language
Developers consider this problem. Many vendors claim that
their systems run batch programs. This is true -- in a
way. Fourth Generation Language programs can be run in
batch, but as I have demonstrated, they use--on-line tech
niques most of the time. This should be changed. Language
statements used by the fourth generation languages do not
necessarily stipulate the processing actually carried out.
The example that I used from QTP now imply the use of keyed
reads, leading to inefficient batch programs. Why could not
a Fourth Generation Language interpret the same "access"
statements as extracts, sorts, merges and record matching,
similar to the processes that I actually used? A fourth
generation language that could choose its processing method
based on whether it was considered to be batch or on-line
could achieve a substantial improvement in efficiency, and
an increased market acceptance.

So far as I know, the fourth generation language vendors
have not seen this as a problem that they need to address.
However, as mentioned above, there is one group that has
stepped into the breach, namely Robelle. They have a part
of SUPRTOOL called SUPRLINK, which carries out the matching

MAKING QTP RUN EFFICIENTLY 3216 - 5

of ~ecords in an efficient manner and which appears to have
all the capability necessary to solve the problem that I
have described here.

To sum up, if you are having problems with your fourth
generation language efficiency, there are two steps to
follow. First, understand exactly how you~ fourth genera
tion language operates and carries out its processing.
Secondly, make use of batch techniques for your batch pro
grams and not the on-line techniques that you may be seduced
into using by the your fourth generation language. And, of
course, use your judgment as to when it is worth the trouble
and when it is not.

MAKING QTP RUN EFFICIENTLY 3216 - 6

Paper # 3217
Turbolmage Logging

By: Larry Boyd
Bradmark Technologies, Inc.
4265 San Felipe, Suite 800

Houston, TX 77027
(713)621-2808

Introduction

Transaction logging is a feature provided with standard Turbolmage that can save you from losing
hours, days, or even weeks worth of data. This paper will discuss issues such as who should use
transaction logging, what can logging be used for, howdoyou getstarted, and some logging tips. But
first we need to talk about some of the myths about logging.

Myths about Image Transaction Logging

There are three major myths about Image Transaction Logging. The first revolves around
implementation, the second around performance, and the third about usage. All will be briefly
discussed now, but covered in greater detail later.

1. IILogging requires source code changes."

Logging DOES NOT require source code changes. Once logging has been enabled
on a data base all Physical transactions (DBPUT, DBUPDATE, DBDELETE) will be
logged.

2. "Logging is a heavy load on the system."

Although logging does use some resources, most users WILL NOT notice any
degradation in performance. In most on-line applications logging will have no
statistical effect on performance. If this is aquestion, enable logging for aweek and
monitor the performance.

3. "Logging is for Recovery."

Manyof those who log DO NOTuse logging for recovery. There are many additional
usages. Logging records ALL adds, deletes, and updates, so the log file can be a
valuable resource for resolving specific problems and issues.

Turbolmage Logging

3217 ·1

Who Should Use Logging?

In some cases logging can be used as an optional aid to an application. Inothercases, logging should
always be used as protection.

1. Logging should ALWAYS be enabled when using the Output Deferredoption
on a database.

Both TUrbolmageN and TUrbolmage/XL have the capability to enable
Output Deferred. This can be done using DBCONTROL for the duration of
the current DBOPEN or it can be turned on using DBUTIL for all DBOPENs.

With this option TurbolmageN will not write Image Buffers to disc until they
are needed by buffer management. On XL, the MPE Transaction Manager
is bypassed and data pages are held in memory until no more memory is
available. Also, on either machine, a DBCLOSE will cause the data to be
written to disc immediately. Since data is not written to disc and no log of
the changes are made by MPE, asystem failure is very likely to cause major
structural damage to the data base. The ONLY way to repair this damage
correctly is to use DBRECOV orto restore thedatabase from abackuptape.

2. Logging should be used if you have a High Volume of transactions
processed between your database backups.

If recovery by hand from afailure would require a large amount of time, then
logging should be used. Since there are two ways, Roll-forward and Roll
back, to use DBRECOV, if applications are set up properly, recovery can be
done in a matter of minutes instead of hours or even days.

3. Logging should be used if transactions have No Paper Backup.

Often in today's world customers place orders over the telephone and there
is no paper backup. Here it would be almost impossible to recreate all
transactions if recovery was necessary.

4. Logging should be used if an Audit Trail is required by internal or external
auditors for changes to a database or dataset.

With Image Transaction Logging and a log file reporting system, such as
DBAUDIT, all changes to a database, dataset, or even to a field can be
reported. The log file keeps up with the change and the environment from
which the change was made (Le. Program, User, Logical Device, etc.)

Turbolmage Logging

3217· 2

5. Logging should be used if there are many Remote Users modifying the
database.

Remote users are difficult to communicate with or monitor easily. Since
almost all contact is over the telephone you cannot see the input screen or
data. This makes it much more difficult to recreate data from failures and
give less control of the physical access to data bases, which may increase
the need for an audit trail. With logging enabled you can examine the log file
to see what was exactly entered when they report aproblem and to monitor
all accesses to data bases.

6. Logging should be used on databases which require long backup times.

Some databases take quite awhile to backup. If logging has been enabled,
your data base will be protected if a failure occurs. Therefore, backups can
be reduced from daily to every other day, for example, or from daily to
weekly.

Remember to consider the volume of changes (see #2). If the volume is not
considered high, meaning recovery would not take too long, you can
increase the time between backups.

7. Logging can also be used as a very good debugging tool.

With all the information given in the log file, you can usually find the smallest
of problems. This information can be used to verify that the data is in the
correct format, or that the IMAGE intrinsics are being called in the correct
order.

8. The information can be used for monitoring performance problems.

When are the high I/O periods for uPdates? If all of the updates are being
done during a small period of time, can they be spread out over a longer
period to reduce peak time? Which programs do the most updating? Can
these programs be reviewed for performance evaluation?

What Can Logging Be U88cI Fort

Recovery

The primary use for logging is recove..,. There are three different types of recovery.
They are Intrinsic Level Recovery (ILR), Roll-Forward recovery, and Roll-Back
recovery. Both Roll-Forward and Roll-Back recovery require Image Transaction
Logging, whereas ILR does not.

ILR is a process that is used to ensure the phvslcal integrity of a database. This
keeps broken chains from corrupting the database. Once enabled, the logging and
recovery is done automatically.

Turbolmage Logging

3217· 3

NOTE Although ILR is available on the XL machines, it is no longer
required, or recommended, to protect the structural integrity of the data
base. This is because Turbolmage is integrated with Transaction Manager
(XM). There are other changes to ILR that can be found in the Turbolmagel
XL Database Management System Reference Manual (#30391-90001)
appendix H.

Roll-Forward and Roll-Back recovery are used to ensure the logical integrity of a
database. A logical transaction is defined as a sequence of one or more physical
transactions to a database. To define a logical transaction in a program the
DBBEGIN and the DBEND (or DBXBEGIN/DBXEND can be used on XL) proce
dures are used to surround all of the DBPUT, DBDELETE, and DBUPDATE calls
(physical transactions) that make up the logical transaction.

If Image Transaction Logging is enabled on a data base, DBRECOV may be used
to recover the data base. In the event of a system or data base failure, when
DBBEGIN and DBEND are used, the completed logical transactions can be
recovered. DBRECOVwill notapply thephysicaltransactions ifaDBBEGIN is found
without a DBEND marking the end of the logical transaction. When a "soft" failure
occurs on the data base, the Roll-Back recovery can be used to "erase" the physical
transactions that were added before the logical transaction failed. When a "hard"
failure occurs, Roll-Forward recovery is used to re-apply all transactions since
logging was started.

Source code changes are required to convert a sequence of physical transactions
intoa logicaltransaction bysurrounding thephysicaltransactionswith DBBEGIN and
DBEND. Without the DBBEGIN and DBEND recovery is still possible, but not at the
logical transaction level.

A very important development of IMAGE has been the expansion of the logical
transaction to more than one data base. At one time there was no way to tell IMAGE
that a logical transaction included physical transactions to several data bases.
UNTIL NOWI In the current versions of Turbolmage, on both MPEN and MPElXL,
there are new DBBEGINIDBEND modes. These will allow a logical transaction to
include more than one data base, and is called MDBX, or Multiple Data Base
Transaction.

Audit Trail

As stated earlier, there are many additional uses for Image Transaction Logging. It
is a very good process for audR trail reporting. Not only can you report the actual
changes to the data base, but you can also report the specific user, port, or program
information. So, you can monitor changes in complete detail.

Turbolmage Logging

3217· 4

Debugging

With the user and program information you can use logging to see what is actually
happening to adata base. This can be great fordebugging aprogram (Did it update
all the data sets correctly? Did it update them in the correct order?).

Testing

In a third-party application you can use logging to verify that the product does
everything correctly. This can greatly reduce the guess work while testing a third
party application, or even your own.

Tuning

Fortunlng, loggingcan be used to seewhich program, database, ordataset is used
the most. Then you can allocate your time based on where optimizing will help the
most.

How Do You Get Started?

There are several steps that must be completed to initiate transaction logging on a data base. I will
discuss the basic steps necessary to start logging to disc, but for more detail see the Turbolmage
manual (for both V and XL, see chapter 7).

1. Give Logging (LG) capability to the account. First, the system manager
must give the account LG capability.

:altacct account;cap=ia,ba, .u, LG

2. Give all users who will be using logging Logging (LG) capability. This
includes application users and the logging manager.

:altuser mgr;cap=ia,ba, , LG
:altuser userl;cap=ia,ba, , LG

3. Build the log disc file. When logging to disc you must build the new file and
allocate space for it.

:build ~disc= 1000,32, I;codc=log

The~ is a standard MPE file name, assigned by you. If the~ is
five characters or less, and ends with "001", you can specific AUTO on the
GETLOG command. Then logging will open a new log file when the current
one is full. Otherwise, logging will fail when the log file fills.

Turbolmage Logging

3217· 5

4. Log on as a user with logging or operator capability to obtain a log identifier
(1JHJk[), and link the kJgj{tto a log file.

:Hello mgr.account
:getlog k2gktlog=~,disc

The kJgj{t is a variable that is assigned by you.

5. Run DBUTIL to set the data base to the kJgj{t.

:run dbutil.pub.sys
»set DBNAME logid=kJgj{t

>>enable DBNAME for logging
or

>>enable DBNAME for Roll-back
Enabling a data base for logging sets the Roll-forward switch, and enabling
a database for Roll-back sets the Roll-back switch, along with the RolI
forward switCh.

>>exit

The above steps are one-time operations and do not need to be repeated.

Once thedata base has been enabled for logging, no one can open the data base until the 1JHJiJ:lhas
been "activated" by the console operator using the :LOG command (If the :ALLOW command has
been executed, the use must have logging or operator capability).

:log 1JHJiJ:l,start

There are several concerns that should be considered to protect the data base and log files during
backups and recovery. These are described in detail in Chapter 7 of the Turbolmage manuals.

To turn off logging, the steps are reversed and the commands are a little different:

:log 1J2Qkt,stop

:run dbutil.pub.sys
>>disable DBNAME for Roll-Back
>>disable DBNAME for logging
>>exit

:rellog 1J2Qkt

Turbolmage Logging

3217· 6

logging Tips

SinceTransaction Logging has very powerful features and many uses, following is ashort list of items
to.consider.

With multiple data bases you should use the new MDBX option of DBBEGIN/DBEND. If a
failure occurs during the "window" ofthe DBEND, the logical transaction will still be complete.

If you make any structural changes to adata base then abackup should be done and logging
must be restarted with a new log file. The log file must match the data base structure (same
set and item names and numbers).

On DBUPDATEs, Image does not include the Key fields of detail data sets, only the relative
record number.

With DELTA logging, IMAGE logs only the fields from the first item changed to the last item
changed. This reduces the record size necessary of the log record, thereby, reducing the
amount of storage space.

Logging does NOT automatically stop when the :LOG k2gjJ;J,stop command is issued. A flag
is set and when the last active usercloses the data base, then logging will stop. This means
that if someone fails to log off at the end of the day, you will not be able to stop logging and
do backup.

Conclusion

We have quickly looked at logging and its many advantages. We have covered when you should log,
what you can do with logging, how to get started, and tips on logging.

We did not cover the disadvantages, nor the details on managing the logging process. You should
read Chapter7 of the Turbolmage manual before starting. But do not be afraid of logging. It has very
good uses and should be used in most of your shops.

Turbolmage Logging

3217·7

PAPER # 3218
liTHE DATA WAREHOUSE APPROACH

TO DEVELOPING DSS/EIS APPLICATIONS"
KIRK W. BUECHER

HEWLETT-PACKARD GREELEY SITE
700 71ST AVE GREELEY, CO 80634 (303) 350-4291

Intro -

Imagine that you are back in ancient Rome, you are a slave,
~wne~ by rich and powerful masters, (that's not too hard to
1mag1ne, is it?). You know that someday you may be asked to
fight a strong and resourceful Gladiator known as EIS or
Executive Information Systems, for the entertainment of your
masters. There are several possible outcomes: You may have
been lucky up to this point and have not yet been asked to
fight. You may have been unlucky and were called into the
ring to do battle against the mighty EIS, unfortunately you
had little or no training, poor tools or weapons, and limited
support and were beaten. Perhaps you were more talented or
better equipped and managed to win your first battle against
EIS, but are now being asked to go into the ring again to
face a new more. complex EIS.

Regardless of what category you or your systems group may
fall into, the purpose of this paper/presentation is to give
you a edge so that your first or current EIS challenge is
successful. That edge is liThe Data Warehouse Approach to
Developing DSS/EIS Applications".

Decision Support Systems and Executive Information Systems
have been hot topics in computer trade journals for the last
three or four years. The focus of most of these articles is
on the tools, the user interface, the many pitfalls, or the
amazing advantages to implementing a DSS/EIS application.
What is often over looked or discounted is the importance of
the data source for these applications.

This paper/presentation will focus on the foundation that
often determines the success or failure of these
applications. sometimes known as a "SUbject database",
"summary database", or "data warehouse", it is this structure
that is one of the true keys to developing successful DSS/EIS
applications.

3218 - 1

A Quick Refresher -

What is an EIS? A common definition is that an EIS system is
intended to provide easy access, to easy to understand,
primarily graphically displayed, individually specified,
information that can be interrogated and manipulated by
non-technical, often managerial end users.

This type of system on executive's desktops has the potential
to allow them to :

o Simplify sift through immense quantities of data and
quickly extract relevant information

o Accelerate - eliminate the constraints of time and distance
to the flow of information

o Expand Thinking widen the horizon of thinking and
understanding of the business

o Motivate - affect people's attention and behavior

Index Group consultants active in this area, have seen EIS's
proven crucial to executives making major changes in business
directions (such as shifting from a product to a market
focus), organizational structure (especially flattening the
organization and the elimination of staff functions) and
organizational communications patterns (as in moving to
global product sourcing).

If taken to its full potential, an EIS system can be the
informational nerve center, the "vital signs" monitoring post
for an organization.

Although the concepts of an EIS have been in existence for
over a decade in academic circles, it wasn't until the last
year or two, that the tools and technology were widely
available and affordable enough for most companies to develop
their first application. Five years ago, the only EIS tools
a firm could purchase were from Comshare or Pilot Executive
Software, ran only on large IBM mainframes and cost as much
as $300,000.

3218 - 2

data

Todays tools are often PC based, priced under $1000, are
easier to develop in, and in many cases have more features.
It is also very likely that you already have some of the
pieces needed to build a complete EIS application.

The major components of EIS tools are
retrieval/extraction and data display/manipulation.

Beginning with data extraction, the tools range in ability to
access data in a single format on a single platform to many
formats on PC's, Mainframes, and Unix machines. Query is one
example of the low end of this range and HP's product,
Information Access an example of the high end.

with data display/manipulation, there is another range of
capabilities. with these tools, the spectrum can be broken
down based on flexibility of the display, "drill down"
features, the ability of playing "what if" games, the ability
to perform more in depth analysis of the data, and ease of
use for the user. Some examples of this range would be
Gallery Collection or Harvard Graphics at the low end, Lotus
123, Excel, Forest & Trees somewhere in the middle, and
PowerPlay, Lightship, and Level V near the high end. All of
these packages have deferent strengths and weakness of
feature sets that make any sort of comparison rough at best.
Newwave and Windows 3.0 can also be powerful supplements to
these tools. It is important at this point to note that most
display tools have some data storage requirement. These
files or databases are simply needed to drive the display
tool. They are not the original source of the data or the
"data warehouse". They are the holding area for data that
the display tools need to provide "drill down" capabilities
for example.

The Data Warehouse - Intro

The Data Warehouse is an emerging technique for information
resource management. To quote William H. Inmon, a noted
database author and lecturer, "If the 1970's were the age of
database, and the 1980's were the age of PC's and
fourth-generation languages (4GLs), then surely the 1990's
will be the age of the data warehouse."

3218 - 3

The premise behind the data warehouse is to deposit and
maintain, on-line, all pertinent information with full
history retention, integrated data along the lines of the
major subjects of the corporation. It is important to note
that the data warehouse contains fundamentally different data
from classical operational databases. Operational databases
contain current-value data (data that is accurate at the
moment of usage). Inventory levels, account balances, and
current addresses are all common forms of current-value data.
In contrast, the data warehouse contains data that is
accurate at some particular moment in time (that is, data
over a time perspective).

For example, imagine an airline's decision process when its
current "Summary" style EIS system points out that its
on-time record is poor in comparison to the Industry average.
What can be done? Management can not simply yell at everyone
to "Hurry up!" Someone must look at the actual detailed
history and analyze the factors that led to those late
departures and arrivals. It must be possible to determine why
flight #189 from Denver to San Diego was twenty minutes late
on May 6th, 1991.

Using another analogy that points out one of the common short
comings of many EIB applications: Imagine that you are trying
to ford a wide, muddy river. Are you interested in the
average river depth, average current speed, average bottom
composition, highest water level this month, and highest
level year to date? These may be interesting data points,
but if that is all the information you have, you may have a
rough crossing. What you really want to know is the shortest,
safest place to cross the river~

It is because the data in the warehouse is historical and
integrated across application boundaries, that it is the
ideal foundation for EIS processing. The data warehouse's
main purpose then becomes to serve as the source of
reconcilability for the EIS. Data integrity and consistency
are key to any data warehouse. The value comes from the
explicit agreement, across systems, on the standard data item
names, representations and meanings. Data items can be
transferred and still have the same meaning regardless of
context.

3218 - 4

A number of leading companies, including Bell Atlantic,
American Airlines, Citibank NA, Bankamerica Corp., AT&T,
Liberty Mutual Insurance Co., and X-Mart Corp., have in place
or are implementing systems of this type. Even IBM has
heralded this technology, due to how well it fits with their
"Repository" strategy.

The current EIS headache -

When beginning an EIS project, it quickly becomes apparent
that the data Management wants, is often spread across
several databases, contained in files, and in a spreadsheet
or two. In examining the data sources, it is common to
discover that the update timing, item naming conventions,
formats, and structures, all differ greatly. This makes data
synthesis, analysis, or comparison very difficult. Without
major push-ups by the EIS software and the people developing
the application, the end users are really limited to using
the data in only a slightly different way from the purpose
envisioned when the data was first automated.

If your company is lucky or smart enough to have historical
data available electronically, users generally cannot pull
data from these sources to merge with other sources. This is
because once a data item has been removed from its original
application and the further from that application it moves,
interpreting it correctly is and becomes more and more
difficult.

If a data item cannot be correctly understood, it cannot be
combined with other information to manufacture a new product.
Instead, it is just data pollution. Once this type of data
pollution enters your EIS application, it can throw you into
another common EIS trap. One of constant justification,
reconciliation and research into why your EIS's data just
doesn't seem to add up or correlate to some other source that
the users think it should.

To add to these problems, as optical data storage comes down
in price and gains acceptance, we will see an explosion of
new data and applications as increasing amounts of textual,
graphical, aUdio, and video data is automated and put online.

3218 - 5

The Data Warehouse is the answer. By making connections
between data and its interpretation consistent, a data
warehouse can add this value. It makes different
application's data like different nation's currency. The
currency has value where it originates but must be translated
outside its issuing country. The more widely understood the
data is as negotiable information, the more valuable it is.
The data warehouse acts as a filter so systems groups can
accumulate information and develop a way of managing mixed
systems that retain the data's content and make it
consistently available and valuable to the end users.

Data warehouse components -

Data warehouse consists of three functional components, the
data warehouse's database, the warehouse's directory or
dictionary, and the warehouse's filtering or conditioning
system.

The data warehouse's database contains all the company's data
for a given SUbject area in a relational database management
system. (It would be possible to do in Image, but this is not
recommended. Image vs. Relational will covered briefly in a
later section.) It establishes information authority,
superseding that of the production application system's. As
it evolves, production systems will be considered more as
"data in .process" systems, while the data warehouse contains
edited and audited data in rationalized and integrated data
structures.

The warehouse's directory/dictionary defines the data stored
in the data warehouse's database. The directory/dictionary
could be implemented as a commercial data dictionary or as
extensions to the DBMS catalog. It would contain data item
names, edit rules, formats for data, name and structure
mapping between .various data sources and the data warehouse
database's accepted internal format. Additionally, it
controls the data conditioning process. The mappings are
triggered by 'the conditioning system when data is entered
into the data warehouse's database.

3218 - 6

The warehouse's filtering/conditioning system is a collection
of procedures and control statements for extracting data from
sources outside the data warehouse. It then restructures,
renames and reformats that data according to the standards
stored in the directory/dictionary. The
filtering/conditioning system is implemented using a
fourth-generation language or a data manipulation product.
(Cognos's Powerhouse and HP's Information Access would be
examples of each of those.) Some of the other functions of
the filtering/conditioning system are to validate data
quality while reporting results back to the originating
system and to update the warehouse's directory/dictionary.
Once this system is in place, it does not eliminate the need
for application (source) systems to edit and audit data. It
is impossible to ensure that edits and audits are performed
or performed properly at the first processing point. Data,
therefore, must be re-examined before being loaded into the
data warehouse.

Issues - -

IMAGE vs. Relational -

When building a data warehouse, it is highly recommended that
a relational database package be used. Reasons for this
recommendation include the outstanding flexibility of
relational (which is very critical in the early stages of the
data warehouse development), the portability across
platforms, and standards that SQL brings with it.

In the non-HP world when a EIS type system is discussed, the
use of a relational package is considered to be simply one of
the basics needed to be successful.

On the other hand, if your shop does not have relational
package in house, do not add to your already large challenge,
by trying to learn and implement relational while building a
data warehouse and EIS applications. stay with IMAGE, it is
where you already have some level of expertise, it is stable,
and there is a wealth of modification/monitoring/performance
tools available. In addition, it is very low cost when
compared to relational and can out perform relational in many
cases. stay with IMAGE but start making plans to move to
relational. It is the better solution.

3218 - 7

(Note: There are many more global issues to be considered as
well when contrasting IMAGE vs. Relational. Please see the
Bibliography and other proceedings for more information
sources.)

Selecting items and timing of extracts -

In most cases the data needed to popUlate a data warehouse
will be determined by the wants of the executive first, then
by the natural associations of the key data with secondary
data needed to add meaning and depth of understanding. It is
important that the MIS group ask the right questions of
management and that management understands that they have a
key role in determining what data on what schedule will be
moved into the data warehouse. Once this has been decided,
the extraction process is put in place so that the original
source's data can be routinely transferred through the
filtering/conditioning module and into the data warehouse
data base. For the sake of audit balancing, one strategy
would be to use a common synchronization point, hourly,
daily, weekly or monthly, at which point new data is
transferred.

Another problem area arises when a key data item is
identified and is found to be in two or more sources. Often
the problem is compounded when different formats or values
are discovered. There are no secrets to resolving these type
of problems, it just takes time. Time is needed to
investigate the source systems, interfaces between systems,
performance issues, and closeness to the real world "thing"
that this data represents. Sometimes even after all the data
about the data is gathered it comes down to a best guess
tempered by how "pure" the data feels or how global the
format appears.

3218 - 8

Getting started -

Companies that implement a data warehouse do so because their
production applications cannot support the intensive analyses
or top-down management examinations of data that is needed.
In the absence of such an intense, management driven need, it
is unlikely that a data warehouse will be successful. Without
a data warehouse, EIS systems are more difficult to build and
implement.

Too much planning will kill a data warehouse. The reasoning
here is that building a data warehouse often involves a lot
of politics, some up-front technical confusion, a data
management learning curve, and a considerable re-education
about an organization's information. If an attempt is made to
answer every objection before moving toward implementation,
the project will be slowed to the point of losing your
executive sponsor's support.

Keep in mind that the complete analysis of an organization's
data normally takes years and is never complete. Do not allow
others to set this as a goal for you or for the data
warehouse. If this happens, rest assured that success will be
very elusive. Instead, meet the EIS driven need behind the
first project. Make that successful, and then build on it.

Pick a project big enough to have a good return on your
companies investment, but small enough to be reasonably
accomplished within six to nine months. If no concrete
results are seen within this time frame, funding and
management's commitment to the project could easily be lost.

Use whatever software is already available for your first
attempt. Image or relational PC based databases, application
generators (4th GL's), report writers, and existing data
dictionaries, should all be used and leveraged from.

3218 - 9

One area not to cut corners on, is the user interface tools.
Here, a small amount of money, less than a $1000, can go a
long way. Look at the many PC based EIS tools with the end
users. Find a package that meets their needs and matches
their skill level. Get the most out of that package by
coupling it with Windows 3.0 or NewWave. With a slick front
end that makes your users happy, it is then possible to
develop your data warehouse and it's infrastructure without
heavy time constraints.

Choose current staff members who already have experience with
the existing tools -and are willing to use then in a new way.
Look for people that have a good data management perspective.
Anyone with relational experience ~r eager to learn
relational technology, would be a plus.

Summary -

Your time is coming. That time when your rich and powerful
masters call your name to come and challenge the mighty
Gladiator, EIS. It doesn't matter if this is the first or
fiftieth time, consider building a data warehouse.

It has the ability to capture and maintain, on-line, all
pertinent information with full history retention. A data
warehouse can improve the Executive's access to data for
decision making at all levels. Instead of seeing just summary
data or averages for a year or a month, analysts and
Executives alike can look at the actual data and-base their
decisions on more solid ground.

with the data warehouse as a powerful weapon in your hand,
you will be able to defeat todays challenger and be better
prepared to meet the challenges of the future.

3218 - 10

Bibliography -

1. Parvin Rahnavard, "Decision Support System", Interex
Orlando Proceedings, 1988.

2. Terrence O'Brien, Janet Eden-Harris, "Executive
Information systemsO', Interact June 1989.

3. Terrence O'Brien, Janet Eden-Harris, "How to Build an
Executive Information System Using Today's Technology",
Interex San Franciso Proceedings, 1989.

4. Will McClatchy, "EIS Powers Executives", InformationWeek,
October 9, 1989.

5. Gary Guiden, Douglas Ewers, "The Keys to Successful
Executive Support Systems", Indications 5:5,
September/October 1988.

6. Cort Van Rensselaer, "Real-World Data Management",
Computer Decisions, 1988.

7. J.A. Zackman, "A Framework for Information Systems
Architecture", IBM Systems Journal 26:3 1987.

8. John Bongiovanni, "solving the EIS Puzzle, The Real
story", Information Center Manager, AT&T Denver, 1990.

9. Mike Phillips, "Future Trends in Data Resource
Management", DAMA, Denver, January 11, 19890

10. Cecilia Bellomo, "To Go Relational or Not? An
Introductory Guide", Interact 10:2, February 1990.

11. O.J. Larson, "strategic Importance of Relational Database
Technology", Interex Nashville Proceedings, 1989.

12. William H. Inmon, "The Cabinet Effect", Database
Programming & Design 4:5, May 1991.

3218 - 11

INTEREX '91 - Paper #3219

Critical Item UQdate
What Will It Do For Me?

Steven ;ZCooper
Chairman, SIGlMAGE

Allegro Consultants, Inc.
2101 Woodside Road

Redwood City, CA 94062
UUNET: scooper@aUegro.com

Voice: (415) 369-2303
FAX: (415) 369-2304

For over a decade now, one enhancement request has been consistently at or
near the top of every list submitted to HP: add the ability to update critical items to
IMAGE. At the Boston Interex conference in 1990, HP committed to the
implementation of this long-awaited feature. Now that it's coming, exactly what is
coming? What will it do for me? This paper attempts to answer these questions.

First, let's make sure that we understand what the problem is today. IMAGE
(aka TurboIMAGE) manages records for us. We add new records by calling
DBPUT and delete old ones by calling DBDELETE. These records are composed of
fields. After we obtain a record by calling DBGET, we can update a value in a field
by changing the value in our copy of the record and then calling DBUPDATE. But
not always. H we attempt to change the value of a field that IMAGE considers a
"special" field, then the DBUPDATE will fail, returning the exceptional condition
#41, ''Attempt to Update a Critical Item".

What does IMAGE consider a "special" field? There are three kinds of fields
that are "special". Master datasets contain records that are retrieved by a key value.
All records in a master dataset must have unique key values. The field that is
designated as the ker in a master dataset is the first of the "special" cases and cannot
be changed via a cal to DBUPDATE.

Detail datasets contain records that do not have to be unique. They may be
retrieved sequentially, but are more often retrieved through chained access, that is,
records that contain the same value in a .search. field are chained together by
IMAGE for rapid retrieval. A detail dataset may have 0 to 16 such search fields,
determined by the database administrator (dba). These fields are also "special";
none of them can be changed (yet) via a call to DBUPDATE.

And lastly, when accessing these detail dataset records by reading up or down
a chain, the dba has a choice of retrieving the records in chronological order (the
order in which they were DBPUT into the dataset) or in sorted order, sorted
according to the value in another field, known as the sort field. Each of the search
fields mar have a sort field specified. These sort fields are also declared to be
"special" Inasmuch as IMAGE will not allow them to be changed via a call to
DBUPDATE.

The IMAGE manual refers to these "special" fields as critical items. Thus, an
attempt to change these fields is commonly known as the critical item update
problem. (Yes, there is a difference between "items" and "fieldstt

, and we should be
calling this "the critical field update problem". But as long as it gets solved, I don't
much care what the manual calls it.)

Critical Item Update - What Will It Do For Me?
3219 - 1

The following is my understanding of the enhancements underway by HP, as
presented by HP at the March, 1991 Reno SIGIMAGE meetin~. As this software
has not yet been released by HP, we must consider this informatIon preliminary and
subject to change prior to its release. Use this information only to start the flow of
creative juices; don't start changing procedures until you receive the updated
software and carefully review the assocIated documentation. The plans that HP has
shared with us include enhancements to TurboIMAGE/XL only, not its MPE V
counterpart.

By default, IMAGE will continue to function as it always has, rejecting all
attempts to DBUPDATE a change to a critical item. However, the database
administrator will be able to use DBUTIL to enable and disable the new critical
item update feature on a database-by-database basis. When enabled, you will be
able to change two of the three kinds of "special" fields via a call to DBUPDATE:

* If you change the value of a search field in a record of a detail
dataset, then IMAGE will remove the record from the chain that it is
currently on (corresponding to its original search field value) and
place it on another chain. If the record has other search fields that
were not changed, those chains will be unaffected.

* H you change the value of a sort field in a record of a detail dataset,
then IMAGE will reposition the record in that chain, according to its
new sort value. Again, all unchanged chains will remain unaffected.

* IMAGE will continue to reject attempts to change the key value in
master datasets.

Since it is the search and sort fields and not the ke4;:: that are affected,
HP may call this feature SSUPDATE (for Search and Sort). Incidentally, we
will continue to set the MODE parameter of DBUPDA1: to one, as we always
have.

Some programs have probably been written that expect the DBUPDATE to
fail if someone attempts to update a -search or a sort field. Of course, these
programs will continue to work as before by default. But, if the database
administrator enables the new feature, these programs may begin performing
updates that would have otherwise been rejected. For this reason, two other
intrinsics have been enhanced: A new mode for DBINFO will inform the program if
critical item updates have been enabled for this database. A new mode for
DBCONTROL will allow the program to turn off the feature for itself, even if other
accessors of the database may be using it.

Now that we understand what we can't do today and what we will be able to
do soon, let's examine what this much-requested feature will do for us. First,
consider the unsophisticated user using a tool such as QUERY. Our user knows how
to FIND records and knows that values that have been found can be updated with
the REPlACE command. However, at some point in the past, the user tried to
REPLACE the value in a search field only to have it fail with some mysterious error
message. When brought to the attention of a data process~gperson, the advice was
to DELETE the record, then ADD it back again, carefully reentering all of the
fields. Even if no mistake was made in the reentry, the new record will be placed at
the end of all of the unsorted chains to which It belongs, thereby destroying the
original chain chronology.

Critical Item Update· What Will It Do For Me?
3219· 2

Once the database had been enabled for critical item update, our user would
have been able to REPLACE without problem, never having to understand the
database's design, IMAGE internals, or the DELETE/ADD kludge. Programs such
as QUERY will automatically, silently, and efficiendy take advantage of this new
feature.

How about more sophisticated users, perhaps the database administrators
themselves? On several occasions, I have considered linking a new automatic
master dataset to an existing detail dataset in order to speed up .retrieval. Adding
the dataset and the linkage is easy with the very powerful third-party database
utilities. The tough part is tryin~ to determine how many existing programs,
interactive and batch, will now fail attempting to modify the field that has just
become a search item. Most of the time, the difficulo/ in finding and fixing these
programs is so overwhelming, that we just give up and live without the path. What a
shame.

The same problem applies in an even simpler case: deciding to sort a path
that is currently unsorted. Here too, the new sort field would become a critical field,
thereby causing unknown numbers of programs to fail due to IMAGE's previous
refusal to perform critical item updates.

Of course, once the database is enabled for critical item update, the paths
and the sorts can be added with impunity. This gives the database administrator
new ~ower to tune the database and keep up with changing business needs without a
massive maintenance programming task.

Perhaps an example is in order. Consider an Order Processing system that
keeps invoice data in a detail dataset. This dataset might be linked to a Customer
master, so that we can obtain all of the invoices for a customer quickly. It might also
be linked to a Date master, so that we can obtain all of the invoices produced on a
particular date quickly. We might also have a status field that indicates whether the
Invoice is "PAID", "CURRENT', "30 days past due", "60 days past due", or "over 90
days past due". Now, since the vast majority of invoices in this dataset are
(hopefully) paid, to find our delinquent invoices, we will have to sequentially read
through the entire dataset. If we decide that we need quicker access to this
information, the logical approach would be to add a Status master, linked through
the status field. However, now when an invoice changes status, say when it is paid
or when it rolls from "current" to "30 days", we will not be able to simply
DBUPDATE it, but will have to DBDELETE It and DBPUT it back. The programs
that make these DBUPDATEs will all have to be identified and changed. The
critical item update enhancement eliminates all of these problems; we can add our
path without adversely affecting existing programs.

Ironically, it will probably be the report writers and the data extraction
programs that will benefit most from this enhancement request, even though these
programs do no updatin~ at all! Huge amounts of time are ty{>ically spent in these
programs, doing sequential reads of datasets. They would obVIously benefit greatly
from the addition of new paths. Indeed, many report generators will automatically
use these new paths once they are added. But they have not been added, due to the
risk of adversely affecting other programs with the critical item update problem.

All of the improvements mentioned above come for free: no programming
changes are required. But are there other benefits that would come from recoding?
The answer is yes. Most programs are written to be cognizant of critical fields.
Typically, when a program needs to update a search or sort field, the program will
DBGET the record, DBDELETE it, change the value in its buffer, then DBPUT it
back again. With critical item update enabled, the program could instead DBGET

Critical Item Update· What Will It Do For Me?
3219· 3

the record, change the value in its buffer, then do the DBUPDATE. Besides the
elimination of one intrinsic call, there are other performance savings. IMAGE does
not have to add the deleted record to the free chain and then instantly remove it
again for the newly added record. But if the record has other unchanged search
fields, the reduction in overhead can be significant. In the worst case of sixteen
paths, only one of which has its search value chan~ed, the new DBUPDATE will take
around 5% of the CPU time and far fewer disc I/O's than the DBDELETE/DBPUT
pair would have taken. The improvement could be amazing for proWams that do
this often. And, as a bonus, the chronology of the other fifteen chains IS maintained!

Clever programmers have been anticipating this change for years. In any
case, we can take a clue from them and borrow their technique in anticipation of the
upcoming change. Whenever they want to DBUPDATE a detail dataset record, they
first try by calling DBUPDATE. If this fails with Exception Condition #41, they then
silently do the DBDELETE and DBPUT automatically. These programs will
automatically begin running faster, without modification, once the databases they
access have been enabled for critical item update.

HP has breathed new life into IMAGE with the critical item update
enhancement. Now that we've been given what we've been asking for all of these
years, it is up to us to use it to its full advantage. With a little forethought, this
feature will not only make it easier to update databases, but can have a significant,
positive impact on the overall performance of the system as well.

Critical Item Update - What Will It Do For Me?
3219 - 4

Paper: 3221

Title: Memory Management

Author: Laurie Facer

Company: FACER System
Performance Division
106 Boldleaf Court,
North Carolina 27513

Phone: 1-800-458-1558

Memory Management On MPEXL

Memory is an intermediary storage area used by active programs (processes) to
store code and data.

It is used because of its speed. It is considerably faster than disc access and is more
accessable by the CPU. Because of cost, however, its availability is limited. It is,
therefore, used as an intermediary storage area and requires the transfer of data
and code to and from disc.

A memory management system has been written to ensure the most efficient use of
the scarce memory resource. Memory management's function is to ensure that code
and data required for CPU processing is available when needed. The more disc I/O
that can be eliminated by holding code and data in main memory, the more
efficiently will the machine· operate.

In doing this, memory manager should function with the least possible amount of
overhead on the system.

Memory Management Architecture

To be able to understand how well memory management is operating, we need to
understand some basic concepts.

Memory manager works with logical pages. Data and code are stored in pages both

Memory Management On MPEXL 3221-1

in memory and on disc. A logical page represents 4096 bytes (KB) of storage area.
(The physical page size is 2048 bytes. The word pages in this paper refers to the
logical page.) A page may be either fully or partially occupied and the data or code
may flow over into one or more further pages.

Because of MPEXL's virtual memory addressing system, there is no practical
restriction on the number of pages that a process uses. The 64KB limit set by the
MPE Classic 16 bit addressing system has been eliminated. MPEXL's 48 bit virtual
addressing system allows an addressable memory space of 280 trillion bytes. The 64
bit addressing found on the 980 allows an even larger addressable memory space.

However, as stated earlier, the amount of main memory available is limited.
Memory manager manages this limitation by ensuring that as many pages as
possible are stored in memory with the least amount of disc I/O.

Intitial Page Allocations

Before a process can obtain access to the CPU it has to have the code and data
(pages) that it needs allocated into main memory. This requires disc I/O to transfer
pages into memory. As a process performs its processing it will probably require
additional pages to be made available in memory.

The additional allocations for a process once it has been initialized will result from
the need to load new code segments, when the process's stack is increased or heap
expanded beyond the current page, to perform file reads and writes, or when its
pages need to be swapped from transient memory.

Code and Data Pages

The allocation of code and data pages occurs most frequently at the initiation of a
process or job/session. After that point they should occur infrequently.

Code allocations after initial allocations indicate bad locality of code. That is, code
that is continuously being called by another routine resides in a different page.
MPEXL does, however, have a complex routine to minimise the probability of both
pages not being allocated.

Data pages are allocated after initial allocations due to stack or heap expansion
beyond the current page. A program that is increasing its stack size will cause these
allocations.

Memory Management On MPEXL 3221-2

File Pages

For a process to be able to process a ftle record, that record must reside in main
memory. The disc I/O system requests the page containing the record required and
memory manager stores it into main memory.

If the page required by the process is not memory resident the process is faulted in
CPU and is placed in the dispatcher queue until the page is made available. By
avoiding page faults, processes complete faster and overhead on the system is
reduced.

One of the main problems with MPE on the classic architecture was the level of disc
I/O faults. This was addressed with the introduction of memory disc caching.
Caching placed the block containing the required record plus additional blocks of
the same file into main memory. There was a strong probability that the next record
required by the process would be in the current or one of the additional blocks
placed in memory. This reduced the fault rate with subsequent reductions in system
overhead.

MPEXL recognises that disc I/O is the slowest part of computer processing and has
implemented a prefetch algorithm that reduces disc I/O. This is done, however, by
placing additional overhead on memory utilization.

Prefetch Algorithm

MPEXL has a prefetch algorithm that replaces the role played by disc caching on
MPE. It is a superior solution to disc caching and has made dramatic improvements
to performance.

The prefetch algorithm utilizes the additional memory available on the MPEXL
machines by loading into memory not only the currently required pages but
additional pages. For serial reads the pages loaded start at the current page
followed by up to eight pages following from that page. Random reads cause the
current page plus pages either side of the required page to be loaded.

The prefetch algorithm works well on MPEXL for three reasons - a) MPEXL has a
lot more memory available than the classic machines and loading additional pages
places less strain on resources; b) memory management under MPEXL is more
efficient than under MPE; and c) the prefetch algorithm is an integral part of
MPEXL and has not been grafted onto the operating system in the same way that
disc caching was.

Memory Management On MPEXL 3221-3

Transient Space

It does not take too many processes to be active before all available memory is
utilized. To reduce the restictions of memoty size on the ability to create and run
processes, an overflow area is set aside on disc. This area is called transient space
(virtual memory on MPE).

Memoty manager utilizes this area by swapping pages not being referenced by
"active" processes from mainmemoty to transient space. It then uses the page areas
made available in main memory for pages required by "active" processes.

Memory Management On MPEXL 3221-4

Managing A~located Pages

Once pages are loaded into main memory, memory manager then utilises transient
space as an overflow area. To do this memory manager has to decide which pages
are to be kept in main memory and which pages can be swapped to transient space.

Each page in main memory is flagged as being in one of five states - present, absent,
in motion in, being kicked out, and recoverable overlay candidate. The important
conditions to understand are present, absent and recoverable overlay candidate
(ROC). A present page is one that is being referenced by a currently active process.
An absent page is one that is empty, and a ROC is a present page that has not been
referenced recently by an active process.

Memory manager utilises both absent and ROC pages when allocating pages into
memory. It searches its absent pages first, then searches the pages flagged as ROCs.
ROC pages are a second best option as they contain data and may need to be
swapped to transient space before another page can be allocated. This swapping
process requires disc I/O.

MPEXL tries to maintain a pool of 32 pages for new page allocations. If the pages
available falls below this level it scans the present pages looking for ROCs. Each
time it scans memory looking for ROCs, it tests to see if a flag is turned "on". If it is,
it then resets the flag to "off". If the flag is already set to "off", it sets the page to
ROC status. If a page has been set to "off" and it is referenced by a process, the flag
is set back to "on".

With more recent releases of MPEXL, memory management has been made more
efficient by flagging prefetched pages from sequential reads as ROCs as soon as
they are loaded into memory. This has had the result of lowering the priority of
prefetched pages staying in main memory. Prefetched pages take a lot of memory
space. At the same time, the need to maintain them in memory is less pressing than
it is for other objects. By flagging prefetched pages as ROes immediately, the
number of pages available for providing free space is dramatically increased.

MPEXL also maintains a memory pressure flag. This flag is based on the number of
times memory manager needed to cycle memory to find ROCs. As this value
reaches thresholds, the criteria for marking pages as ROCs becomes more severe.

When there is too little memory for the current level of processing, the search for
ROes becomes urgent and results in system overhead. The system overhead
appears in the form of higher memory manager utilisation of CPU, increased
process wait times as processes wait for pages to be made present, and increased
disc I/O as pages are swapped to and from transient memory.

Memory Management On MPEXL 3221-5

Memory Pressure

Pressure is placed upon memory for three reasons - a) process initiation is high, b)
faults due to absent pages are high, and c) memory available is too small.

Process Initiation

When a process is initiated, a high number of allocations are generated due to the
initialisation of code and data pages into memory. Additional page allocations for
active processes depend on new code segments being required, expansion of the
stack pointer beyond the current page, disc I/O, and transient memory activity.

Absent Page Faults

Absent page faults. occur for two main reasons - a) file read or write occurs and
page is not in memory, and 2) page has been allocated to memory but subsequently
swapped to transient memory. An absent page fault initiates a disc I/O to transfer
pages from disc to memory. Memory manager has to find the free pages in main
memory into which to place the new pages. For file activity (excluding mapped files)
this also means .utilising theprefetch algorithm and allocating not only the required
page but'all associated pages.

High page allocations place a work load on memory manager -. even with adequate
amounts of memory space.

Inadequate Memory

When memory becomes fully utilised the memory manager has to more frequently
perform the function of maintaining the "free" page pool and swapping pages to
and from transient space. This activity places an overhead on the system in the form
of disc I/O and CPU· utilisation..Even if allocation rates are low, an inadequate
memory size will see page management generate additional workloads.

Memory Management On MPEXL 3221-6

Is Memory A Bottleneck?

To determine if memory is under prressure, that is, memory is becoming or has
become a bottleneck and to determine what to do about the situation, the following
questions must be answered:

1) What indicators show that memory is under pressure?

2) What type of pressure is memory under - lack of memory space or high
allocation rates?

3) What processes are causing memory pressure?

CPU Utilization

The flISt indicator of memory manager being a bottleneck is the amount of CPU
time it uses to pedorm its functions. Fortunately memory manager has a low
utilisation of CPU time. However, any CPU time diverted away from user processes
needs to be minimized.

The amount of CPU time that can be tolerably diverted away from processes will
depend on your processing requirements. I would recommend that - over extended
periods - 2 to 5% CPU utilization by memory manager is an indicator of moderate
memory pressure and anytllting above 5% would indicate high memory pressure.

Process Walt Times

Memory 'is also a bottleneck if it is causing processes to wait. If a process has to wait
for memory related activities, this extends its processing time and lengthens its
response time. If many processes are continuously waiting for memory, then
memory is a botteneck for those processes.

Memory Management On MPEXL 3221-7

Causes Of Memory Pressure

Lack Of Memory

There are several good indicators of memory manager having trouble maintaining
required pages in memory, that is, memory size is too small to maintain the number
of pages in main memory to allow the machine to function efficiently.

Symptoms

Memory Cycle Rate

The Memory Cycle Rate is a good indicator of the severity of memory pressure. If
this rate is high (more than 25 cycles per hour) then memory manager is
continuously looking for ROCs. This is a good indicator of lack of memory space as
the memory manager is having trouble keeping a pool of 32 "free" pages.

Swapouts

Another good indicator of lack of memory space is the number of Swapouts that are
occuring. It represents the number of times memory manager needed· to swap a
page from main memory to transient memory due to memory pressure.

Transient Page Faults

Transient page faults occur when a process is blocked in CPU due to the absence of
an already allocated page in main memory. The required page has been swapped to
transient memory. This is an indicator of memory manager not being able to handle
workloads.

Solution

There are only two real ways to solve the problem of too little memory - increase
the memory size or reduce the workloads. If memory pressure is accompanied with
high allocation rates and file activity (see below), reducing these workloads may
solve the problem.

High Page Allocations

A high level of memory allocations can place pressure onto the system. This
pressure will in tum effect all of the other memory indicators. It will cause high
CPU usage by memory manager and will place pressure on the need to maintain the
"free" page pool.

Memory Management On MPEXL 3221·8

Symptoms

Allocation Rate

Allocation rates show the number of page allocations being made per second This
figure needs to be correlated with the other memory manager indicators to
determine how the allocations are effecting the system.

Transient Memory Swapouts

If allocations are placing pressure on memory, you will also see high transient
memory swapouts. This occurs as the "free" page pool is reduced and existing pages
need to be swapped from main memory to transient memory to make room for the
new pages.

Process Initiation and Logons

High allocation rates are usually the result of a high level of process initiation and
logons as process data and code segments are initially placed into main memory.

Page Faults

Every time a page fault in the CPU occurs, a disc I/O is performed to load pages
into memory. Reducing I/O activity reduces allocations.

Solution

An increase in memory size will help if there are also symptoms of memory pressure
(see above). If there is no memory pressure, increasing memory size will not help as
the problem lies not with fmding additional memory space, but with the overhead in
allocating many pages in a short interval.

Reduced process initiation and logons will reduce the number of allocations. This
can be done through better process scheduling and a good menu system that utilizes
process handling.

The only solution to high I/O activity is to reduce the amount of disc I/O that needs
to be pedormed. This can be done through improving I/O related algorithms within
programs, better system design, and rescheduling processes that generate a high
level of disc I/O activity to run at quieter periods during the day.

Memory Management On MPEXL 3221·9

Detecting The Cause Of Pressure
Global Activity

By looking at the allocation and page fault rates versus the transient memory
activity, it can be determined if memory is under pressure due to lack of memory
space or high allocation rates.

Firstly, look at the memory manager CPU activity. If the percentage of CPU utilised
by memory manager is above 2%, then some pressure may be occuring. If it is above
5%, then this would indicate that there is definitely memory p~essure.

To determine the source of the pressure, look at the allocation and page fault rates
in relation to the transient memory activity. If allocations are moderate to low (that
is, not much higher than found during less busy periods on the machine) and
transient memory activity is high, then the pressure is due to a lack of memory
space.

This can be verified by looking at the memory cycle rate. If this indicator is higher
than normal, then lack of memory space is causing excessive memory. manager
activity.

If allocations and page faults are high when transient memory activity is not much
higher than normal, then allocations are the source of the pressure. Usually,
however, you will find that when allocation rates increase, this is accompanied by
higher levels of transient memory activity as memory manager needs to make room
for the new pages.

Process Activity

Process Allocations

By looking at process activity we can determine the effects of memory pressure and
the possible sources of that pressure.

If the memory allocation rates are high, we need to look at processes to determine
if the allocations are due to excessive initiations of processes or processes
demanding additional pages during processing.

Memory Walts

The effects of memory management activity can be seen by looking at the memory
related wait times that processes are experiencing.

Memory Management On MPEXL 3221-10

Page Faulting

All fIle activity results in memory manager having to allocate pages in main
memory. Processes that have high I/O activity will generate extra work for memory
manager. How well memory manager is serving a process's I/O requests is indicated
by the number of page faults that occur.

A page fault occurs when a process is blocked in the CPU due to the absence of a
page in memory. The prefetch algorithm endeavors to minimize page faults by
preallocating pages that it thinks might be required next. A process that has a high
level of page faults is a) not being serviced well by memory manager and the
prefetch algorithm, and b) is placing additional overhead on the system.

If many processes are experiencing high page faults, then memory manager may be
a bottleneck. If a few processes are incurring page faults, then those processes are
placing overhead on the memory manager.

Memory Management On MPEXL 3221·11

San Diego Interex Paper 3222

The MPE XL System Debugger

Presented by Bob Green
Written by David J. Greer

Robelle Consulting Ltd.
Unit 201, 15399-102A Ave.

Surrey, B.C. Canada V3R 7KI
Phone: (604) 582-1700

Fax: (604) 582-1799

MPE XL comes with a powerful program debugger. For those of us who have struggled
with Debug/V, there are many great features to look forward to. But, like all new
software, there is a learning curve in understanding the new MPE XL debugger.
Attempting to find the dozen or so most useful features in the three-inch stack of paper
called the System Debugger Reference Manual is impossible, unless you have three spare
months. In this article, I intend to summarize the features I've found most useful.

I am indebted to Stan Sieler of Allegro Consultants who taught me much of what is
presented in this article. To obtain the maximum benefit from this article, you should
try all of the examples that are presented. Having both a CM- and an NM-program
available that calls the FWRITE intrinsic will make following the examples that much
easier. If you are going to be a big user of Debug/XL, then you really have to have the
reference manual. Order part #32650-90013, System Debug Reference Manual.

Native-Mode or Compatibility-Mode

HP was very kind to write not only a nice debugger for native-mode programs, but
include features for debugging compatibility-mode programs too. When I first attempted
to debug a CM-program, I got so confused that I returned to my classic HP 3000 where
at least I knew all the command names. The next section will show Debug/XL
commands for our old favorite Debug/V commands.

Debug/V Versus Debug/XL

Just like Debug/V, you can invoke Debug/XL by including the keyword "Debug" on the
:Run Command for your program. Debug/XL responds with its "CM" prompt

:run testprog;debug

eM DEBUG Intrinsic: PROG %6.3542
cmdebug >

If you have a Pmap (or Robelle's Qmap), you can set a breakpoint just as you would in
Debug/V -- using segment.offset:

cmdebug >B 0.45

Anyone who has struggled with Pmaps knows how convenient it would be if the system
debugger took advantage of the FPMAP information stored in program files. With this
information it should be possible to set a breakpoint by procedure name. Debug/XL lets
you either set a symbolic breakpoint at the first logical instruction in your procedure or
at the more useful entry-point:

3222-1 MPE XL Debulger

cmdebug >B open'input'file
cmdebug >B ?open'input'file
cmdebug >B open'input'file+255
cmdebug >c

Breakpoints

{first instruction}
{? implies entry point}
{octal offset from first}
{Continue = Resume}

In the last ten years, I have probably lost over a month of time from one horrible
default in Debug/V. In Debug/V, the Break Command would only break the first time
it encountered the breakpoint, unless you added ":@" to the Break Command. In
Debug/XL the default is to always break. Occasionally, you only want the breakpoint to
be invoked once. Use ",-I" after the break location to have the breakpoint removed
after one occurrence:

nmdebug >b ?open'input'file,-l {break once}

Clearing Breakpoints

In Debug/V, the Clear Command disables breakpoints that have been set with the Break
Command. In Debug/XL, use the BD (Breakpoint Delete) Command to remove
breakpoints:

nmdebug >bd
nmdebug >bd @

Setting a "Return" Breakpoint

(You will be asked for which one)
(Delete all breakpoints)

One of the most useful breakpoints is the one immediately after a procedure call.
Suppose that your program calls the procedure extract ready. You want to know
the result of extract ready, so you would like a breakpoint in the calling code
immediately after the canto extract_ready. You do the following:

cmdebug >b ?extract_readY
cmdebug >c

cmdebug >lev lib p,-l
cmdebug >c

{break at extract ready}
{-I means only break once)
{continue execution}

The "lev I" goes back to the previous logical level in the calling sequence (use "tr,d" to
see a complete traceback). The"b p" sets a breakpoint at the compatibility-mode
program counter. The "lev I" places the program counter at the instruction alter the one
that called the current procedure. The ",-I" tells Debug/XL to execute the breakpoint
once and then throw it away. Note that it's safe to use this breakpoint anywhere in the
extract_ready procedure -- not just at the beginning.

What if we are in native-mode code (e.g., FWRITE)? Our return breakpoint won't
work, since we called FWRITE from compatibility-mode. To set a return breakpoint in
this case, first switch into cmdebug:

cmdebug >b ?FWRITE
cmdebug >c

MPE XL Debugger 3222- 2

nmdebug >cm
cmdebug >lev lib p,-l
cmdebug >c

Abort Command -- Getting Out of Debug

{break at NM FWRITE}
(switch into CM)
(set return breakpoint)
(continue execution)

You can terminate your program with the Abort Command. Use this any time that
Debug/XL is prompting for commands. The Debug/XL Abort Command is similar to
the Debug/V E@ Command.

Displaying Values

When I first used Debug/XL, I became totally confused about how to display the usual
DB-, Q-, and S-relative values. It turns out to be very simple. In Debug/V the Display
Command takes the register as a parameter. In Debug/XL there are separate command
names for displaying values relative to each register. Here are the Debug/V and
Debug/XL Display Commands:

Debug/V
D DB
D S
o Q

Debug/XL
OOB
OS
OQ

The Debug/XL Display Command has a count as its second parameter (just like
Debug/V), but the display attribute is different. Here is the comparison:

Debug/V
,I
,0
,H
,A

Debug/XL
,lor 0
,% or 0
,$ or H
,S

Description
Decimal
Octal (default in CM)
Hexadecimal {default in NM}
Ascii/String

Instead of S, you can also use A for displaying string values. The A-option is closer to
the A-option of Debug/V, but we find the S-option more useful.

By default, the S-option displays all characters you request and only displays the virtual
address of the string once. If you want to see as many characters per line as possible,
with each new line starting with the virtual address of the characters displayed, use this
command:

cmdebug >dq l04,200,s,e

Symbolic Machine Code

("en shows addresses)

Our list above doesn't show you how to display the actual run-time machine instructions
(commonly called decompiling). That's because Debug/XL has many excellent features
to symbolically display code. While you can use the DC (Display Code) Command to
show symbolic code, we have found a better method -- windows.

3222- 3 MPE XL Debugger

Symbolic Traceback

The Debug/V Trace Command was almost useless. You had to manually work through
the segment numbers and offsets to figure out the true procedure names. The
Debug/XL Trace Command produces a proper symbolic traceback of procedure names.

You can also use the traceback to observe switches from native-mode to
compatibility-mode. For example, if you have SM capability you can set a breakpoint
in any system SL or system XL routine. KSAM files come in two flavors: CM and NM.
If you access a CM KSAM file from a NM program, MPE XL calls the CM FWRITE
intrinsic. You can easily prove this to yourself by setting a breakpoint in the CM
FWRITE intrinsic:

:run testprogidebug
nmdebug >cmdebug
cmdebug >b ?FWRITE
cmdebug >c

cmdebug >tr,d

MPE XL Debugger 3222-4

{NM program to read CM KSAM file}
{switch to CM}
{question-mark for entry point}
{continue execution}

{note the ",d" on the TR Command}
{traceback showing switches}

Compatibility-Mode Windows

The WON Command is the real power of Debug/XL. WON is short for Windows On.
When you turn windows on, the top portion of the screen is reserved for a symbolic
display of the currently executing code, another portion displays register and/or stack
values, and the bottom of the screen is used to enter commands. This is a very powerful
feature.

eM Window Example

The following is an example compatibility-mode window. We first set a breakpoint,
continue to that breakpoint, and finally we turn windows on.

cmdebug >b ?input'command
cmdebug >c

cmdebug >won

(break at the entry point)
(continue execution)

{turn windows on}

The top three lines of the display show the register information:

R X Regs OB=001200 OBOST=001632 X=000002 STATUS=(mlTroC CCG 007) PIN=051 <-I
5OST=001627 OL=1n450 Q=023620 S=023620 CMPC=PROG 000006.006711 1 R Window
CIR=035004 MAPFLAG=O MAPDST=OOOOOO <-I

Fcnf) % PROG 6.6711 (7) SETUP CSTX 7 Level 0 <-I
006707: INPUT •C04MANO+X437 031031 2. PCAL 7ERRX 1
006710: INPUT •COMMANO+X440 032000 4. SXIT 0 1 Qrf)

006711: [1] > ?INPUT I CaotAND 035004 .. ADOS 4 1 Window

006712: INPUT •CCl4MANO+X442 171700 .. LRA S-O 1
006713: INPUT •COMMAND+X443 051401 S. STOR Q+1 1
006714: INPUT •COMMAND+X444 035023 .. ADDS X23 ,
006715: INPUT •caotANO+X445 041401 C. LOAD Q+1 <-I
ax (OB mode) QDST=001627 Level 0 <-I
023610: 000000 047420 061006 000006 1n600 DOOOO02 DOO364 1 a
023620:Q>0000014 <S 1 \:Iindow

023630: <-I
S% (OB mode) SDST=001627 Level 0 <-I
023610: 000000 047420 061006 000006 1n600 DOOOO02 000364 I S
023620:Q>0000014 <S <-I Window
Conmands <-I

1 Conmand
%47 (%103) cmdebug > <-I Window

For most of us, only the DL=, Q=, S=, and X= values are interesting. If the DBDST and
the SDST (the DB- and S- data segments) are different, you are in split-stack mode.
Line four shows that we are currently at location 6.6711 in the program. The PROG
would change if the breakpoint was inside an SL. Next we see seven instructions. The
"[1]" means breakpoint number 1. The ">" symbol next to "?INPUT'COMMAND" shows
the next instruction to be executed. The bottom of the display shows the values around
the Q- and S- registers. In our example, the Q and S registers are the same so the Q
and S-displays are identical. Finally, you are prompted for more Debug/XL commands.

3222- S MPE XL Debugger

Single-Stepping

One other command adds a lot of power to windows: S - - single-stepping. The S
Command executes the next instruction, then returns control to Debug/XL. After the
execution, register and stack values are updated and any changed values are highlighted.
Because the compatibility-mode window shows the top few words of the stack, you can
often get an instant picture of what is going on. Here is the first window after
executing one single-step:

cmdebug >s {single-step}

Level 0CSTX 7

2. PCAL 1ERRX

4. SXIT 0

.. ADDS 4
LRA S-O

STOR 0+1

ADDS %23

LOAD 0+1

R % Regs OB=001200 08OST=001632 X=000002 STATUS=(mlTroC CCG 007) PIN=1

5OST=001632 OL=177450 Q=023620 S=023624 CMPC=PROG 000006.

CIR=171700 MAPFLAG=O MAPDST=OOOOOO
cmP % PROG 6.6712 (1) SETUP

006707: INPUT'COMMANO+%437 031031

006710: I NPUT ICCM4ANO+%440 032000

006711 : [1] 1INPUT •CCl'MANO 035004
006712: > INPUT' CCl4MANO+%442 171700

006713: INPUTICOMMANO+%443 051401 S.

006714: INPUTICOCMANO+%444 035023 ..

006715: INPUT 'CCl4MANO+%445 041401 C.
Q % (DB mode) QD"ST=001632 Level 0

023610: 000000 047420 061006 000006 177600 000002 00364
023620:Q>000014 000002 006712 062007
023630:

S % (DB mode) SDST=001632 Level 0

023610: 000000 047420 061006 000006 177600 000002 00364

023620:Q>000014 000002 006712 062007<S

Conmands

%47 (%103) cmdebug >

The ">" symbol has moved forward by one instruction. The register values have been
updated and the top of stack has changed because we added four to the S-register.

Set CRON

This sounds like the title of a futuristic movie, but when combined with single-stepping
it can be very powerful. Once you start using the S (Single-Step) Command, you'll find
yourself typing it a lot, especially when debugging NM programs where you have a lot
more instructions per source code statement. Fortunately, the Debug/XL designers
already thought of this. When you Set CRON, hitting Return tells Debug/XL "execute
the last command that I typed". This is most useful when your last command was S, but
it applies to any command:

cmdebug >set cron
cmdebug >s
cmdebug >
cmdebug >
cmdebug >

(Return = last-command)
(single-step)
{another single-step!}
{and one more}
(and so on)

MPE XL Debugger 3222- 6

Multiple Steps

While single-stepping is useful, it can be very slow. You can step through a program
faster using multiple instructions for every step. The following example shows how to
step through every seven executed instructions. Note: you must have a space after the
Step Command and before the number of instructions to execute (e.g., "S7" is invalid):

cmdebug >set cron
cmdebug >s 7
cmdebug >
cmdebug >
cmdebug >

(Return = last-command)
{execute seven instructions}
{another seven!}
(and seven more)
(and so on)

3222-7 MPE XL Debugger

Native-Mode Debugging

Much of what has been discussed applies to native-mode. There are a few minor
differences:

l. You don't need to specify Fpmap (or any other magic parameter) on the :Link
Command. Procedure name and location information is automatically included in all
NM program files.

2. Since the first instruction of a procedure and its entry point are the same, you never
need to use a question mark. If you happen to type a question mark, Debug/XL
may not print an error. In this case, you will have set a breakpoint in a stub
procedure. Since you almost never want to do this, it's important to remember not
to type the question mark before the procedure name.

3. In most programming languages, any separators (e.g., apostrophes) used in procedure
names will now become underbars.

Here is our previous breakpoint example in native-mode:

{break at procedure entry}

Case Sensitivity

It is easy to see that portions of MPE XL were affected by UNIX and the C
programming language. In UNIX and C, case is significant (Le., upper-case and
lower-case are not the same). When setting breakpoints in native-mode code, it is
important to remember this. Most MPE XL routine names are in upper-case. The most
well-known exceptions are all of the IMAGE and VPLUS intrinsics which are in
lower-case. The following example results in a Debug/XL error:

nmdebug >b fwrite

Switching Modes

{not found; lower-case}

Sometimes you want to switch between CM-debug and NM-debug. For example, the
NM-FWRITE intrinsic calls the CM-FWRITE intrinsic for certain types of files (e.g.,
circular). These commands would set breakpoints in both the CM- and NM- FWRITE
intrinsics:

nmdebug >b FWRITE
nmdebug >cm
cmdebug >b ?FWRITE
cmdebug >nm
nmdebug >c

MPE XL Debugger

{NM- FWRITE breakpoint}
{switch into cmdebug}
{CM-FWRITE breakpoint}
(switch back into nmdebug)
{continue execution}

3222- 8

Native-Mode Windows

The WON (Windows On) Command is just as powerful in native-mode as in
compatibility-mode. The display is different -- instead of the old familiar DB, S, and
Q registers, there is a strange group of 32 "general-purpose" registers. The code looks a
lot different too -- those famous RIse instructions instead of our old faithful Classic
3000 ones.

NM Window Example

We will show an example native-mode window, by setting a breakpoint for the FWRITE
intrinsic:

nmdebug >b FWRITE
nmdebug >c

nmdebug >won

(requires SM capability)
(continue execution»

(turn windows on)

GR$ ipsw=0006feOf=jthlnxbCVmrQPOI priv=O pc=oOOOOOOa.OO4a5fcO pin=00OO007a

rO 00000000 40100e20 004aee30 00000001 r4 cOOOOOOO OOOOffff 4033292a 00000000

r8 00000001 00000009 00000004 4034a880 r12 00000000 OOOOOOOO 00000000 00000000

r16 00000000 00000000 00000000 cOOOOOOO r20 cOOOOOOO 00000001 85240000 00000314

r24 40332604 000000d0 00000001 c0202008 r28 00000001 ffffffff 4034afdS 004aee30

nn9$ SYS a.4aSfbS NL.PUB.SYS/FSPACE+SSa4 Level 0,0

004aSfbS: FSPACE+$Sa4 e840cOOO BY 0(2)

004aSfbc: FSPACE+$S88 4fc33d31 LDWM -360(0,30),3

004aSfcO: [1] > FWRITE 6bc23fd9 STW 2, -20(0,30)

004aSfc4: FWRITE+$4 6fc30340 STWM 3,416(0,30)

004aSfc8: FWRITE+S8 6bc43cc9 STW 4, -412(0,30)

004aSfcc: FWRITE+Sc 6bcS3cd1 STW 5, -408(0,30)

004aSfdO: FWRITE+$10 6bc63cd9 STW 6, -404(0,30)

conmands

$7 ($1d) nndebug >

<-I
1 R

1 Window

1
<-I
<-,

1
INDP
1 Window

1
1
1

<-I
<- 1 Corrmand

1 Window

<-I

The first line contains general information about the process (e.g., the pin number). The
pc= is the program counter (notice it's a full 64-bit address in space.offset format).
Lines two through four of the display show all 32 general-purpose registers. The fifth
line shows where the first instruction in the window is located (in NL.Pub.Sys @
FSPACE :·S5a4). The native-mode instructions are shown, along with the breakpoint
number "[1]" and the next instruction to be executed is marked with the ">".

There are two commands that can be a big benefit in examining the code "around" a
breakpoint: PB (Program Back) and PF (Program Forward).

Paging

Debug/XL windows have to display all their information in the twenty-four lines on a
standard terminal screen. By default, the size of the symbolic instruction list is seven
instructions. Especially when you are single-stepping through instructions, it is very
useful to see the previous seven instructions or the next seven. The PB (Program Back)

3222- 9 MPE XL Debugger

Command displays the previous seven instructions and the PF (Program Forward)
Command shows the next seven. While seven instructions is the default, there are
commands to change the size of the program window. If you have changed the size,
Program Back and Program Forward adjust themselves to the new window size.

nmdebug >pf
nmdebug >pb

PL Command

(program forward)
{program back}

If you want to change the number of program instructions on the screen, use the PL
Command (Program List). The PL Command assumes that the number of lines you want
is in the current base. Therefore, PL 10 means 16 instructions in NM Debug and 8
instructions in CM Debug. To get around the problem, we always specify the number
of instructions in decimal:

nlltdebug >pl #10

MPE XL Debugger

{show "ten" instructions}

3222-10

Native-Mode Procedure Parameters

Long-time users of DebugjV know how to anticipate where procedure parameters will
be located. For example, if we had a procedure with this declaration:

integer procedure convint(buf,len);
value len;
integer len;
byte array bUf;

In eM-debug, we would look at the parameters as follows:

!result

!len
!@buf

Q-6

Q-4
Q-5

cmdebug >dq -6
cmdebug >dq -4
cmdebug >dq -5
Q-%5 % 000104
cmdebug >ddb 104/2,10,s

(result of Convint procedure)
(length of buffer)
(address of buffer)
(must use this value below)
{print actual buffer contents}

Notice that we had to divide the value at Q-S (i.e., %104) by two, since the buffer was
passed as a byte address. In native-mode, this irritation disappears (except for those
using SPLash! to emulate Classic byte addressing).

Native-Mode Calling Conventions

With the power to set breakpoints symbolically, by just knowing the name of a
procedure, there is even more incentive to be able to guess the location of procedure
parameters. NM procedures are allocated registers for the first four parameters, but
they are allocated left-to-right -- the opposite of CM procedures. The first parameter
is assigned to Register-26, the second to Register-2S, the third to Register-24, the
fourth to Register-23, and any remaining parameters are stored on the NM stack. The
return value is in Register-28 (and Register-29 for 64-bit values). For native-mode,
you would think of the declaration for Convint as:

integer procedure convint(buf,len); !result R28
value len;
integer len; !len R25
byte array bUf; !@buf R26

If you have windows on, the 32 general-purpose registers are always displayed. The
only problem area is the buffer parameter:

nmdebug >b convint
mndebug >won
nmdebug >c

nmdebug >=r25
nmdebug >dv r26,10,s

{note lower-case}
{windows on}
{continue execution}

{debug breaks @ convint}
{display the length}
{display virtual uses the contents}
{of register 26 as an address}

3222-11 MPE XL Debugger

Variables

Debug/XL contains a programming language. We won't try and cover all of the features
of this language, but variables are so powerful that they are worth knowing about. In
our example with the Convint procedure, suppose that the buffer you are passing to
Convint is a global variable. Setting the breakpoint at Convint gives you a convenient
method to find and save the address of your buffer so that you can use it at any
breakpoint.

nmdebug >var buf var=r26
nmdebug >dv bUf_var,lO,s
nmdebug >c

nmdebug >dv bUf_var,lO,s

(save address of buffer)
(display buffer contents)
(continue execution)

(sometime much later ...)
(display the buffer contents)

The final Display Virtual Command displays ·the contents of the buffer using the address
that we saved. When the breakpoint takes place, we may have no convenient way of
finding ~he program variable that has the address of our buffer. Because we have saved
the address in the Debug/XL variable "buf_ var", we display the buffer contents without
knowing where the address is stored.

Virtual Addresses

So far, we have assumed that all addresses are 32-bits. In MPE XL, addresses are
actually 64-bits. Debug/XL shows these addresses as space.offset. If you are working
with mapped files, you will find that the full 64-bit address suddenly becomes
important. The following example opens a file with mapped access, saves the virtual
address of the file into a variable, and then displays the actual contents of the file.

nmdebug >map "filel. suprtest" (open an mpe file mapped)
nmdebug >var fileaddr mapva("filel.suprtest")
nmdebug >=fileaddr (display the virtual address)

Debug/XL has a built-in calculator that accepts any Debug/XL expression. You invoke
the calculator with an equal sign "=". Debug/XL evaluates the calculator expression and
prints the result. The calculator will display the full 64-bit address of "filel.suprtest" as
space.offset.

You can display the actual contents of the file:

nmdebug >dv fileaddr,20,s (first 20-bytes of file)

Warning: Due to a very serious bug In MPE XL, never, never, never do this on the file
Catalog.Pub.Sys. If you open Catalog.Pub.Sys with mapped access, you will cause a
system failure.

The map command displays the virtual address of a file in space.offset format. You can
use the DV (Display Virtual) Command to display the file contents or you can use our
method. We prefer using a variable and mapva function, since typing in a full 64-bit
address correctly is quite difficult.

MPE XL Debugger 3222-12

Cseq.Pub.Nuggets

While it is easy to predict the layout of parameters in our simple example, things can get
more complicated in MPE XL. For example, addresses can be passed as 64-bit
quantities instead of the default 32-bit values. The best way I've found to determine
parameter location is to use the Cseq (&.alling §muence) utility in the Nuggets collection
(available from Software Research Northwest 206-463-3030). Here is the CseQ output
for the FWRITE intrinsic:

{R26, bits = 16}
{(skip 25) R23, R24}
(bits = 65536)
(Address type = LongAddr)
(SP-S0032, bits = 16)
(SP-S0036, bits = 16)

int16
Ulnt16

int16
record

Parm 3:
Parm 4:

uncheckable_anyvar

Note that the buffer parameter is a "LongAddr" that is passed in both R23 and R24 (the
first is the space and the second is the offset). Fortunately, it is still easy to see the
contents of the buffer. If we were at a breakpoint at the start of FWRITE, we would
display the buffer with:

Procedure FWRITE (
Parm 1:
Parm 2: anyvar

nmdebug >dv r23.r24,20,s {display buffer contents}

Integers: 16-bit versus 32-bit

Cmdebug displays integers in octal as 16-bit quantities. Nmdebug displays integers in
hex as 32-bit Quantities. In our FWRITE example, it is easy to see the value of the
length parameter.

nmdebug >dv sp-32,1
$ 00005fOO

{display the length}

We used the DV (Display Virtual) Command to display the stack contents. The ",1" is
not necessary - it's the default, but we have shown it to make the following examples a
little clearer. The "dv sp-32" displays the value at sp-32 as a 32-bit Quantity, but we
know that the actual value of FWRITE's length parameter is a 16-bit quantity. You can
display two 16-bit integers using the following:

nmdebug >dv sp-32, 1, , ,2 (display two 16-bit integers)
$ 0000 5fOO
nmdebug >dv sp-32, 1, #, ,2 {display two integers in decimal}
0 24320

Display Virtual always rounds down to a virtual address that is a multiple of four and
then displays one or more 32 bit words.

3222-13 MPE XL Debugger

Miscellaneous Tips

Setting a "Return" Breakpoint

We showed how to set a return breakpoint in compatibility-mode. You use a similar
method to set a return breakpoint in native-mode code:

nmdebug >b extract_ready
nmdebug- >c

nmdebug >lev lib pc,-l
nmdebug >c

{break at extract ready}
{-I means only break once}
{continue execution}

The only difference between a CM return breakpoint, and an NM one, is the name of
the program counter. In native-mode it's called "pc". This sets a return breakpoint
immediately after the code that called extract ready. Note that it's safe to use this
breakpoint anywhere in the extract_ready procedure -- not just at the beginning.

Debugging Batch Programs

In Debug/V, there was no practical way to debug a program running in batch. In
Debug/XL, you can debug a batch program on the console, although it's a bit messy to
set up. You have to do these steps:

1. Obtain the pin number of the program you want to debug. You'll need to use a
program like Shot.Pub.Nuggets. You can use the Showproc Command, if you have
MPE XL version 2.1 or later versions.

2. Go to the console and insure that there will be no output on the console. The
easiest way to do this is to initiate a :Restore on the console. This assumes that your
tape drive is not configured for auto-reply. Do not reply to the tape request.

{On the console ••• }
:hello user.acct
: restore

3. On another terminal, log on with SM capability and enter debug. For example,

:hello manager.sys
: debug

4. Once you are inside Debug, you must set an environment variable and _force a
breakpoint in the batch program. Our example assumes that the batch program will
call the FWRITE intrinsic:

nmdebug >env job debug true
nmdebug >b FWRITE:pin#

{set special variable}
{don't forget the pin#}

You don't actually type fib FWRITE:pin#" when setting the breakpoint. You substitute
the actual pin# that you obtained in step 1 (e.g., "b FWRITE:I03").

When the batch program encounters the breakpoint, Debug/XL is invoked and all

MPE XL Debugger

Debug/XL input/output is done via the console. On the console you can type any of the
usual Debug/XL commands. When you finish your debugging session, you'll need to
remember to abort the :Restore that you initiated. You must also return to the
Manager.Sys session and disable job debugging:

cmdebug >env job_debug false

Macros

Debug/XL contains a small programming language that lets you create your own macros.
Debug/XL has no command to skip over procedure calls, although almost all PC-based
debuggers have this feature. When single-stepping through a program, you rarely want
to single-step through external procedures (e.g., the Print intrinsic). Use the j macro to
jump over the next native-mode BL instruction. Macros use braces for the body of the
macro (i.e., as begin/end), so don't interpret the braces as comments. Here is how to
declare the· macro:

nmdebug >mac j {b pc+$8,-1; c}

Macros are declared with the Mac Command. The first parameter to the Mac Command
is the macro name (in this case it's j). The body of the macro follows and is surrounded
with braces. Macros can take several lines. The j macro sets a breakpoint at the next
native-mode instruction after a branch-and-Iink "pc+$8". The breakpoint is only
executed once ",-1". Multiple commands are separated by semi-colons ";". The last step
of the macro is to execute the Continue Command "c". Note that the j macro is only
useful around branch-and-link instructions which is why we jump eight bytes ahead of
the program counter instead of four. You execute the macro as if it were a built-in
Debug/XL command:

nmdebug >j

Vfilepages Macro

When doing any performance measurements with disc files, you need to know what
portion of the file is in memory. This macro takes advantage of many features of
Debug/XL. The macro displays the number of pages of a file that are currently present
in virtual memory.

Purpose: Display the number of pages (and
sectors) of a file that are in memory.

Warning: Never use this macro on catalog.pub.sys.

1*
1*
1*
1*
1*
1*
1*

Macro: Vfilepages

mac vfilepages (filename:str) {
map !filenamei
w !filename " contains "i
w vainfo(mapva(!filename),"pages in meml):"D";
w II pages in memory = "; - -
w vainfo(mapva(!filename),"pages in mem")*#16:"D";
w .. sectors"; - -
WI;
unmap(mapindex(!filename»i
}

3222-15 MPE XL Debugger

Lines starting with "/*" are treated as comments. The "filename" is a parameter to the
macro and it's of string type. To understand the rest of the macro requires looking up
the description of the Map, Mapva, W, WL, and Unmap Commands and an
understanding of the Vainfo and Mapindex Function. We'll leave that up to you. To
invoke this macro, you would do the following (note the quotes around the filename):

vfilepages "file50.suprtest"
file50.suprtest contains 8 pages in memory = 128 sectors

Warning: Because this macro uses the Debug/XL Map Command, do not use it on the
file catalog.pub.sys. If you do, you will cause a system failure.

DBUGINIT File

Once you start writing macros, you will want to have them automatically loaded when
you enter Debug/XL. Debug/XL always executes a use-file called DBUGINIT.
Debug/XL first looks for this file in the same group and account as the program, then it
looks in the logon group and account. Rather than fill our DBUGINIT file with macros,
we fill it with Use Commands for different files that contain useful macros: You can use
:file commands for the DBUGINIT file, but you must use a fully qualified filename.
For example:

:hello david.dev,david
:print dbuginit.macro.dev
use splash.macro.splash
use macros.macro.dev
:file dbuginit.david.dev=debuginit.macro.dev
:run testprogidebug (Debug/XL will use debuginit.macro)

:Setdump Command

Classic MPE contains a :Setdump Command, but I believe most of us ignored it because
the traceback it printed was not symbolic. If you enable :setdump in MPE XL, you not
only get an excellent symbolic traceback, but in native-mode you are placed into
Debug/XL (certain exceptions apply to privileged-mode programs).

MPE Commands

You can enter almost any MPE command by preceding it with a colon. This includes
UDes and the :Run Command. Often in the middle of a debugging session, you need to
examine your source code. An easier way to do this is to run your editor from within
Debug/XL. One word of caution -- Debug/XL, like many HP products, fails to see if a
son process has terminated or suspended.

We also find it useful to invoke Cseq.Pub.Nuggets when we are debugging a program.
This lets us determine the location of the parameters for any MPE intrinsic:

nmdebug >:cseq.pub.nuggets (obtain parameter addresses)

MPE XL Debugger 3222-16

Running Qedit from Debug/XL

If you invoke Qedit from Debug/XL, be sure to run it with Parm=32 (this tells Qedit
not to suspend on exit). The most likely reason to invoke Qedit from Debug/XL is to
examine your source code. If you do not /Shut your file before running your program,
you will get "Error: Busy file" when you try to open your file inside Qedit (inside
Debug/XL). To get around the problem, you can either /List your source code or /Text
a copy.

Conclusion

If you are going to make heavy use of Debug/XL, I strongly recommend getting the
System Debug Reference Manual. While it's not helpful for learning Debug/XL, it's
invaluable in looking up specific commands and their syntax. That part number again is
#32650-90013.

When I first set out to write this article, I thought that it would only take me a few
paragraphs to convey what I'd learned about Debug/XL. If you've got this far, you
realize that I underestimated the amount of material -- not surprising given the rich
feature set of Debug/XL.

3222-17 MPE XL Debugger

COBOL85 On XL Machines

We've Got A Language!

Rick Hoover

CIV Software
700 Hanover Dr.

Shelby, N.C. 28150

The first question I asked myself was, 'Why a paper on COBOL? Does anybody
care anymore? After all, COBOL has been around so long. Would anybody read this
treatise?'

That was my thought in 1990 when I presented a paper at the Boston INTEREX
about COBOL85 and HiLi. I had completed a consulting job on my first XL machine
and spent a lot of time leaning the new capabilities of XL. All of my programs were
written using the standard COBOLll commands, creating a USL and prepping the USL
into an executable program. Part of the way into the project I found the COBOL
compiler commands to compile a COBOLll program into native mode. My first
compiles scared the heck out of me. Something had to be wrong! Compiles on the 950
that took 25-40 seconds were now taking 2-3 seconds.Something's not working. Were
was the USL rue? HELP!!!

My fears were put to rest as I completed the project. Native mode is good. I can
compile programs faster and create object files that can be linked to XL files and
programs can use multiple XL files and

This also led to a day when I sat down with a manual called HiLi. I only knew
this term as a game played mainly in Florida. I found out that HiLi was HP's answer to
VIEW macros. While thumbing through the rest of the manuals I stumbled across the
one manual I would have never thought to look at. But there it was. COBOL. I've been
a COBOL programmer now for over a dozen years. What new could I learn from this
book. Maybe there was something I didn't know about COBOL on the XL. I began my
search.

There were many grey enhanced sections in the manual. What were these? I
later found out that COBOL had grown up. It was now COBOL, COBOLII and
COBOL85. Back in the early 80's when I moved from COBOL to COBOLn, well let's
just say that I wasn't running around yelling from the rooftops, 'WOW LOOK AT
THIS...LOOK WHAT I CAN DO NOW!'. But since I found out about COB0L85's
enhancements, all I can say is 'WOW LOOK AT THIS...LOOK WHAT I CAN DO
NOW!'.

COBOL8S On XL Machines 3225 - 1

This paper is in no means a complete reference to the enhancements to COBOL.
Rather, this paper is meant to show the people out there that are still using COBOLll
that there are some really neat things you can do with the COB0L85 compiler. Let me
also state that the COBOL85 compiler is (1) on both the Classic and Spectrum
machines and (2) you probably already have it and just don't know it. COBOL85 is in
the COBOLll.PUB.SYS file. There are entry points to the COBOL85 commands.
There should be a file called COBUDC.PUB.SYS that contains the routines to compile
using the COBOL85 entry points (this is for Classic users). And, if you own COBOLII,
you were automatically upgraded to COB0L85.

I will be discussing each division separately in describing the enhancements
available.

Finally, I will be throwing in some of my techniques throughout the paper.
These techniques work for me. They may not work for you. So be it. There will also
be a few comments made about certain things you can do in COBOL that you may
already know. I spent a couple of years doing training classes across the country for a
software company. The comments that I will be making in this paper were second
nature to me, but I found that there were many programmers that didn't know about the
things that I talked about. I will explain later.

IDENTIFICATION DIVISION

This is the shortest section in the whole paper. With the exception of the
PROGRAM-ID, all paragraphs are obsolete in COB0L85. Well, that's nice but what
else is there? Well, there really wasn't that much to begin with. There is one
enhancement to the PROGRAM-ID paragraph. You can say:

PROGRAM-ID. MYPROGRAM IS INITIAL PROGRAM.

This is the same as saying $CONTROL DYNAMIC.

ENVIRONMENT DIVISION

This division is now completely optional. There are a few new items that are
well worth mentioning in this division.

SYMBOLIC CHARACTERS BELL IS 8.

DISPLAY "YOU ARE NOT ALLOWED TO DO THAT" BELL

The SYMBOLIC CHARACTERS statement allows the programmer to send
any kind of special character (such as line feed, carriage return, etc.) to a statement.
This can allow for a stronger message or a more impressive formatted message.

COBOLSS On XL Machines 3225 - 2

CLASS A-GOOD-GRADE IS "A", "B", "C"

IF GRADE-ASSIGNED IS A-GOOD-GRADE DISPLAY "GOOD"

There is now a CLASS statement that will let the programmer set up specific
logic flow in the program. These CLASS statements will act in a mode similar to 88
levels except they become program specific. They also compare a variable to a known
value.

SELECT OPTIONAL MYF1LE ...

You can now not only have the 0PI10NAL keyword but, if the file is not
present and opened in 1-0 or extended mode, a new file will be created.

MEMORY SIZE, SEGMENT-LIMIT and MULTIPLE FILE statements are
now obsolete.

DATA DIVISION.

This is where we will separate the ultra fancy from the new. I am now hard at
work (or is that hardly working) on a paper about local and external fields and
programs in COBOL85. I will not be discussing external programs and fields at this
time. Let's just say that for those of you who work with languages like PASCAL and
C, you will find this to be just to your liking.

When COBOL came out there was a term used in the DATA DIVISION called
FILLER. Programmers got sooooo tired of typing in FILLER all the time. COBOLII
came along and said "Those of you who are tired of FILLER may now type in F
instead. So we went from:

05 FILLER pic x(02).

to

05 F pic x(02).

Today, we don't even need F:

05 pic x(02).

There are two new USAGE verbs available. BINARY is the same as COMP.
PACKED-DECIMAL is the same as COMP-3.

COBOL8S On XL Machines 3225 - 3

PROCEDURE DIVISION.

Now we come to the fun zone. This is where it's happening. There are so many
new concepts in the PROCEDURE DIVISION, it becomes hard to know where to
start. Here goes...

ACCEPT TODAYS-DAY FROM DAY-OF-WEEK

This statement will set the field TODAYS-DAY to 1 if the day of week is
Monday, 2 if Tuesday etc.

DISPLAY "PLEASE,TYPE IN YOUR NAME:" NO ADVANCING

This form of the DISPLAY statement will leave the cursor immediately after the
: in the DISPLAY statement.

This next statement is one of the more powerful statements for COBOL. We
COBOL programmers finally have a CASE statement (and a very powerful one also).

EVALUATE MYFlELD-l AlSO MYFlELD-2
WHEN "A" AlSO "B" PERFORM PARA-A
WHEN "C" AlSO "D" PERFORM PARA-B
WHEN "E" AlSO ANY PERFORM PARA-C
WHEN OTHER PERFORM PARA-D

END-EVALUATE

EVALUATE CHECK-THIS> 0 AlSO SOMETHING-ELSE
WHEN TRUE AlSO "An PERFORM PARA-F

PERFORM PARA-G
MOVE THIS-FIELD TO THAT-FIELD

WHEN FAlSE AlSO "A" PERFORM PARA-H
WHEN FAlSE AlSO ANY PERFORM PARA-I

END-EVALUATE

The BVALUATE statement sets up 1 or 2 fields to be checked. If the field is
actually a condition (as in the second example) the programmer can use the terms
TRUE and FALSE to control processing. The EVALUATE statement flows through
the WHEN statements until the conditions are satisfied. If the conditions are not
satisfied and the WHEN OTHER is available, control will pass down to the WHEN
OTHER otherwise control will fallout of the EVALUATE. Once a condition is met,
the rest of the WHEN statements will be ignored. EVALUATE can work with strings,
characters and numerics.

COBOL8S On XL Machines 3225 - 4

There was one other statement that you may have noticed in the examples. That
statement was the END-EVALUATE. Many of the COBOL verbs allow control via an
END-verb statement. I will demonstrate:

IFA>B
IFC>D

IFE>F
MOVEXTOY
IFG=H

CONTINUE
ELSE

MOVEQTOZ
END-IF

END-IF
MOVEMTON
END-IF

END-IF

In the above example I have created a nested loop that has 2 new wrinkles that
could not have been accomplished before. The first thing you may notice is that there is
a new verb CONTINUE hiding in the code. This allows you to make positive
statements rather than negative statements about the logic flow. You will not have to
say IF A NOT = B to complete a phrase. The other thing you may have noticed is that
I can do certain things in the IF statement based on a condition without having to leave
the nested IF to PERFORM a paragraph. And I can also do something after the IF's
have been resolved.

I have very few IF constructs that were not easily changed over to this new top
down format. The END-IF competes the associated IF. Be sure to always have a
consistent IF...END-IF link.

INITIALIZE MYFlELD-l MYFlELD-2

This statement will let the programmer set records or fields to an initial state
prior to moving data to them. This is a lot better than moving spaces to all
alphanumeric fields and zeros to all numeric fields. You can also initialize fields to a
set value by saying:

INITIALIZE MYFIELD-A
REPLACING ALPHANUMERIC BY "AR

NUMERIC BY "9"

COBOLSS On XL Machines 3225 - 5

In-line PERFORMs are now available. The program does not have to leave the
flow to do specific steps. By simply stating:

PERFORM VARYING NUMBER-FIELD FROM 1 BY 1
UNTIL NUMBER-FIELD> 10
INITIAUZE TABLE-ARRAY(NUMBER-FIELD)

END-PERFORM

The above example will initialize an array called TABLE-ARRAY. If you leave
off the name of a paragraph, the assumption of an in-line perform will be done. You
can also nest in-line performs as in:

PERFORM 10 TIMES
PERFORM UNTIL END-OF-FILE

ADD 1 TO TOTAL

END-PERFORM
END-PERFORM

The above code example shows how to construct a nested in-line perform.
There is one other touch you can give the in-line perform:

PERFORM wrm TEST AFTER UN'i1L A > 10

END-PERFORM

The above example has the phrase WITH TEST AFfER which states that the
code inside the in-line perform will be run at least once The conditional phrase will be
checked after the perform is executed. By default, the PERFORM has an implicit
WITH TEST BEFORE.

COBOL8S On XL Machines 3225 - 6

The last example in the PROCEDURE DIVISION that I will go over is the
READ statement since it has a couple of niceties that go over a lot of other verbs:

READMYFILE
AT END

code
NOT AT END

code
END-READ

This makes for logical programming. You can now control most of the verbs
with a NOT statement that will control program flow. The above example allows you
to place a read statement inside of a performed paragraph that can also contain if
statements that can also contain performs that can also contain...

Needless to say the effect is wonderful. The verbs that have this capability are:

WRITE READ RETURN
REWRITE START CALL
ADD COMPUTE DIVIDE
ACCEPT

DELETE READ
STRING UNSTRING
MULTIPLY SUBTRACT

This allows control over all phases of these verbs. The ability to control a verb
if there is an overflow condition has always been available but the ability to say that if
an overflow condition occurs, do this otherwise do that and not have to worry about
period placement makes the logic flow a lot cleaner.I've found that during the course of
developing programs, I can greatly increase the readability of any program by using
these techniques.

As I stated in the beginning, this is not meant to be a complete treatise on
COBOL85. But for those of you who use the language, try some of these techniques
the next time you work on a program. You will find that there is a lot to be gained.

COBOLSS On XL Machines 3225 - 7

Creating Seamless Packages Through Process Handling

John P. Korb
Paper 3226

Innovative Software Solutions, Inc.
10705 Colton Street, Fairfax, VA 22032

(703) 273-5025

When a company purchases an HP 3000 it receives the FOS (Fundamental
Operating System) and a number of utilities. Over time additional software is
purchased from HP and other vendors. Often, however, many tasks which could be
accomplished by the combined use of several utilities are judged ''will require
extensive programming" or "not possible with present resources" and so a user
requirement goes unfulfilled.

Process handling and the interfacing of utilities to each other to form a problem
solution are two often neglected topics. This paper will discuss some of the
applications of process handling and the combining and interfacing of utilities in
solving problems.

What is Process Handling
Process Handling is one of the MPE "special capabilities". A simple description of
Process Handling might be the ability of one program to start up one or more
programs during its own execution.

The MPE operating system considers each and every unique execution of a program
a "process." When the system operator starts up MPE a process is started which
loads MPE into memory and starts up the various processes which MPE needs to
function at a minimal level. Thus, MPE itself uses Process Handling to build and
control itself. When MPE starts up it builds processes for spooling, memory
logging, device recognition, controlling user processes (sessions and jobs), loading
programs into memory, and a number of other functions. When a person signs onto
the system MPE creates a process which becomes the "main" part of the user's job
or session. This "user main" process is the command interpreter which supplies the
colon prompt and accepts MPE commands. When the user enters a "RUN"
command or invokes a subsystem (EDITOR for example) the "user main" process
uses process handling to create a process for the program or subsystem to be run.

Process Relationships
Processes are related to each other and have a sort of genealogy. With the

Creating Seamless Packages Through Process Handling Paper 3226-1

exception of the first process within MPE, every process has a "father" process
which created it. Processes which share a common father process are "brother"
processes. When a process creates another process, the process created is a "son"
process. Thus, when the user enters a "RUN" command at the colon prompt, the
"user main" process creates a "user son of main" process for the program or
subsystem to be run.

The "user main" or "command interpreter" process only allows one son process at a
time. This is why if the user enters a "RUN" command to run a program, presses
"BREAK" to interrupt the program's execution, and enters another "RUN"
command without aborting the first program, MPE will respond with "COMMAND
NOT ALLOWED IN BREAK". This restriction is a limitation of the command
interpreter and the· "RUN" command and not a limitation of process handling. In
fact, within MPE a number of processes are running simultaneously - the spooler
processes and data communication processes for example. A programmer with
access to process handling can often have multiple son processes executing
concurrently.

Another restriction imposed upon "user main" is that the command interpreter and
the son process cannot be executing at the same time. Either the command
interpreter is active or the son process but not both. Again, a programmer can set
up a program which executes a son process while the father process continues to
run. This parallelism adds greatly to the capabilities and usefulness of process
handling.

Just as human genealogy is often plotted as a "family tree", process genealogy is
often plotted as a "process tree". In a process tree the "user son of main" is the
trunk of the tree, its sons are the major limbs, off them sprout their sons, etc. There
can be a considerable number of generations of processes in a process tree, but
practically there are typically two to five generations.

Processes are dependent upon their fathers for their survival. If a process aborts (or
terminates normally), all its son (and grandson, and greatgrandson, etc.) processes
terminate.

Creating A Son Process
A programmer starts a process very much as the MPE "RUN" command does· by
calling the CREATE or CREATEPROCESS intrinsic. The CREATEPROCESS
intrinsic allows the programmer considerable control over the process it creates. In
fact, CREATEPROCESS allows more flexibility and more options than the RUN
command does. Three of the options of CREATEPROCES are of particular value.
These three options (items 3, 8, and 9) allow the programmer to start a program in
a mode in which multiple proceses within the process tree are executing
concurrently. While other CREATEPROCESS options may be of use later, only

Paper 3226-2 Creating Seamless Packages Through Process Handling

items 3, 8, and 9 are needed for the average application (more about these items
later). For those who have used the CREATEPROCESS intrinsic in the past,
please note that item 10 is NOT used. Item 10 tells CREATEPROCESS to suspend
the calling process and to expect reactivation of the calling process from a son
process, father proces or either father or son process. In order to have the father
and son processes run concurrently, item 10 is omitted. The side effect of this is
that CREATEPROCESS will create the process but will not tell the process to
begin executing. If item 10 is provided and has a non-zero value, the father process
will be suspeneded and only the son process will executing.

Once CREATEPROCESS has created a son process, it returns a PIN (Process
Identification Number). The PIN is like a label and is used in calls to various
intrinsics to specify the process upon which the intrinsic is to act.

A process which has been created just sits there until it is allowed to execute. Some
applications of CREATEPROCESS automatically start the process (activate it)
after creating the son process. When CREATEPROCESS item 10 is omitted (as
previously discussed), CREATEPROCESS does not automatically start the process,
and the programmer must do so himself.

To tell a process to begin executing, the programmer calls the ACTIVATE intrinsic,
passing ACfIVATE the PIN returned by CREATEPROCESS. When both the
father and son processes are to execute concurrently, the susp (suspend) parameter
of ACfIVATE should be zero or omitted. Just as with item 10 of
CREATEPROCESS, a non-zero value for susp causes the father process to
suspend.

The Terminal Interface
When running multiple processes concurrently within a single session, a serious
probem becomes apparent - the user cannot determine which process his terminal
input will be routed to. This is because all processes within the session normally
share the session's one terminal for input and output.

Due to the single-threaded nature of the terminal I/O, only one input or output
operation can occur on the terminal at a time. The result is chaos. With multiple
processes running concurrently, process "X" may print a prompt on the terminal,
but before process "X" reaches the code which accepts the prompt's response,
another process (process "Y") may request input from the terminal and any
response the user enters for process "X"'s prompt ends up going to process "Y".

As an example, assume that a programmer has written a program which in tum runs
both EDITOR and SPOOKS as concurrently executing son processes. Prompts for
both EDITOR and SPOOKS are displayed on the screen. Since the EDITOR
prompt appears first, the user enters an "A" (for ADD) command, thinking that

Creating Seamless Packages Through Process Handling Paper 3226-3

ERROR=20 BVTEcO INVALID COMMAND NAME

T3COMPL READV JOHN.RD
LOGLIST READY JOHN.RD

#S8 FANTASIA READY JOHN.RD

EDITOR will then prompt for an acccept text lines. Instead, the cursor moves to
the next line and the user is perplexed. Mter sitting and waiting a couple of
minutes, the user presses {RETURN} and instead of receiving a line number prompt
from EDITOR, receives a prompt from SPOOKS followed by a line number
prompt. Additionally, output from both programs is interleaved. Below is an
example (user input is underlined).

:run chaos

HP32201A.07.17 EDIT/3000 SUN, SEP 23, 1990, 1:13 PM
(C) HEWLETT-PACKARD co. 1985
I~
SPOOKS G.03.0S (C) HEWLETT-PACKARD CO., 1983
> ~

1 ..::.th:.:..,.:...:"s:.........:.i.::.s--:s~o:.:.:.m=e_t.:.:e~s:..::t;........:.;da=-:t=a:..:..
#FILE #JOB FNAME STATE OWNER
#079 #J33 $STDLIST READV JOHN.RD

2 #081 #J34 $STDLIST READV JOHN.RD
more test data
#080 #J33
#043 #58

3 #042
this is line 3.
>LL

4
LL
> •.•
Llil
ERROR=46 BVTE=2 NO TEXT FILE
I> Llil
-
>

>

>

2

3

this is some test data.

more test data

this is line 3.

-
> ~

l-
END OF PROGRAM
I~

END OF PROGRAM

Utilities and programs interact with the terminal by writing characters to and
reading characters from the terminal device. While the terminal is a physical
device, a program sees the terminal as one or more files. When a session is created,
two files are opened for accessing the terminal - $STDIN and $STDUST. Input
from the terminal is read from $STDIN and output to the terminal is written to

Paper 3226-4 Creating Seamless Packages Through Process Handling

$STDUST.

Both CREATEPROCESS and RUN allow the diversion of data from its normal
terminal-to-program and program-to-terminal paths. The RUN command has
;STDIN= and ;STDLIST= options which allow the user to specify file names to be
used to supply program input ($STDIN) and receive program output ($STDLIST).
The CREATEPROCESS intrinsic uses options 8 and 9 to specify the ;STDIN= and
;STDUST= options.

A special type of file is particularly useful when diverting program input and output.
The special file type is the "message" file or "IPC" (IPC refering to Inter-Process
Communication) file. Message files have the unique characteristic of operating like
a queue or pipe. The data written to a mesage file is read from the message file in
the same order as it was written (FIFO or First In, First Out). Message files can
also buffer program input and output, depending upon how the message files are
built. Thus, two or more programs can be linked together with message files
providing loose or tight coupling between the programs and data flowing through
the message files in real-time.

Some programs can accept input and display meaningful output when their $STDIN
and $STDLIST are diverted, and others cannot. Generally, programs which use
screen forms (such as V/PLUS applications) cannot easily have their $STDIN and
$STDUST diverted. The reason for this is their block mode input/output as
opposed to normal character mode input/output.

In character mode characters are transmitted by the terminal to the HP 3000 as the
keys are struck on the keyboard. In block mode the keystrokes cause data to be
entered on a form. When the user presses the "ENTER" key, a handshake between
the HP 3000 and the terminal begins which ultimately results in entire fields of data
being transmitted from the form on the screen to the HP 3000 as one block.
Typically, the terminal inserts various special characters between data fields and
performs various data editing functions before sending the block of data.

Additionally, most forms management packages evaluate the environment they are
running in when initializing themselves. For example, the FRELATE intrinsic is
called to see if $STDIN and $STDLIST are related (as they would be with a
terminal, but would not be when message files are used). Also, forms management
packages evaluate terminal configuration settings, terminal model identification,
character echo, and much more. All of this complicates the task of attempting to
divert $STDIN and $STDLIST making block mode applications poor choices for
package integration.

Programs which use character mode are a different story. The input/output
operations performed by character mode programs are less complex than those of
block mode programs and it is often rather easy to divert the $STDIN and

Creating Seamless Packages Through Process Handling Paper 3226-5

$STDLIST of character mode programs.

By using the CREATEPROCESS options 8 and 9, the $STDIN and $STDUST of
programs can be redirected to make use of message files. If those message files are
shared with the father process, the father can filter data going to the son process, as
well as filter data returned from the son process. Some uses of this capability might
be to enhance the functionality of a program, simplify the syntax of its commands,
edit or summarize the output of the program, restrict access to certain commands,
or perhaps replace the command interface with menu selection.

A Filter Program
A character mode program such as SPOOKS is a relatively easy program to deal
with. SPOOK does not perform fancy checks of the terminal environment and has a
single prompt. Output formats are few, and while error messages don't have a lot of
detail, they do give the location of the error within the error message, as in
"*ERROR=20 BYTE=O* INVALID COMMAND NAME".

Consider the following enhancement request. t~ccounting department personnel
should NOT be permitted access to SPOOK's Append, Copy, Input, or Output
commands. Also, they must be prevented from Texting in spool files with file names
other than $STDLIST." The initial response to this request might be "not possible.
SPOOK is an HP utility and we can't modify it." But wait. The accounting
department doesn't have direct access to MPE (they have one of those security
programs they purchased from a third-party vendor), so they don't have access to
the :RUN command. What if the commands going to SPOOK and the output
received back from SPOOK were filtered and edited by a program? Couldn't that
program impose the requested security?

To satisfy the request the security package will run a "filter" program which accepts
commands from the user, checks for restricted commands, passes unrestricted
commands on to SPOOK, and displays SPOOK's output on the terminal.

SPOOK permits only one command per line. This simplifies the programming of
the "filter" program as commands must begin with the first non-blank character of
each input line.

The prompt SPOOK uses is a two character string consisting of a greater-than
symbol followed by a blank. Also, prompt string is always written with carriage
control 208 (%320) which specifies "no carriage return, no line feed". Therefore,
the prompt string can be recognized as an output record containing a character with
the decimal value 208 followed by a greater-than character followed by a blank
character.

SPOOK reads 72 characters at each command prompt, so the filter program should

Paper 3226-6 Creating Seamless Packages Through Process Handling

also read 72 characters.

So, to perform the function of the first half of the request, the filter program can be
fairly simple. To demonstrate the logic required, a form of pseudo-code will be
used. Note that "<CR>" indicates a "carriage return" character, "@" as a variable
prefIX means "use the address of', and "1--" preceeds a comment. The names of
MPE intrinsics are in ALL CAPS.

Label Start
!--Declarations
Integer Error, ParmNo, ReadLen, CCTl, Commandlen,

ShowCmdLen, BlankPosition;
DoubleInteger ProcStatus;
Log1calFlag STDlIST'Found;
String To, From, UserCommand, SpookOutput, ShowCommand;

l--Subroutines
Subroutine Display'Thru'Prompt;

loop;
Readlen:=FREAD (FromSpook, SpookOutput, -132);
If ConditionCode <> CCE then Return;
CCTl:=SpookOutput(l,I);
Print SpookOutput(2,Readlen) using CCTl;
If SpookOutput = (208,"> ") then Return;

EndLoop;
EndSubroutine;

Subroutine Read/Command;
loop;

Commandlen:=FREAD(StdlnX, UserCommand, -72);
Deblank UserCommand; l--Remove leading blanks
If UserCommand = {"A","C","I","O"} then

Print "Restricted Command.";
Else

FWRITE (ToSpook, UserComrnand, -Commandlen, 0);
EndIf

Endloop;
EndSubroutine;

!--Main Code
COMMAND ["Purge PipeTo"<CR>, Error, ParmNo];
COMMAND ["Purge PipeFrom"<CR>, Error, ParmNo];
COMMAND ["Build PipeTo;Msg;Rec=-72,3,V,ASCII;Disc=I,I,I"<CR>,

Error, ParmNo];
COMMAND ["Build PipeFrom;Msg;Reca -132,10,V,ASCII;CCTL;Discm l,I,I"

<CR>, Error, ParmNo];
To:p"PipeTo"<CR>;
From:="PipeFrom"<CR>;
CREATEPROCESS [Error, PIN, "Spooks.Pub.Sys", Items a (3,8,9,0),

ItemValues m (I,@To,@From)];
If Error then

Print "Unable to create SPOOKS due to CREATEPROCESS error
",Error;

TERMINATE;
EndIf

Creating Seamless Packages Through Process Handling Paper 3226-7

ACTIVATE [PIN];
ToSpook:;FOPEN [To, %30107, %1302];
FromSpook:gFOPEN [From, %30507, %1300];
StdInX:;FOPEN [, %154, %0];
StdList:;FOPEN [, %514, %2];

Loop:
ProcStatus:;GETPROCINFO [PIN]; I--Make sure SPOOK is still alive

If ConditionCode <> CCE then TERMINATE;
Display'Thru'Prompt;
ProcStatus:;GETPROCINFO [PIN]; I--Make sure SPOOK is still alive

If ConditionCode <> CCE then TERMINATE;
Read'Command;

EndLoop;

What about the second half of the request (only allow the "texting" of spool files
named "$STDUST")? This part of the request is simply an enhancement of the
preceeding example. When the user enters a "T" command, the command is first
sent to SPOOK as a "SHOW" command. The output of the "SHOW" command
will contain the name of the file. As each line of the "SHOW" command output is
received, it is checked for the file name "$STDUST". Only if "$STDUST" is found
is the "TEXT" command passed through to SPOOK. Below are the changed blocks
of pseudo code. Note that the subroutine "Search'For'STDLIST" has been added
and the subroutine "Read'Command" has been modified.

Subroutine Search'For'STDLIST;
STDLIST'Found:=False;
Loop;

ReadLen:;FREAD (FromSpook, SpookOutput, -132);
If ConditionCode <> CCE then Return;
If SpookOutput(lS,25) a "$STDLIST" then

STDLIST'Found:;True;
EndIf
If SpookOutput = (20S,"> ") then Return;
CCTL:=SpookOutput(l,l);
Print SpookOutput(2,ReadLen) using CCTL;

EndLoop;
EndSubroutine;

Subroutine Read'Command;
Loop;

CommandLen:gFREAD(StdInX, UserCommand, -72);
Deblank UserCommand; I--Remove leading blanks
If UserCommand = { ItAIt ,IIC",IIII,"0'1} then

Print "Restricted Command.";
Else

If UserCommand ::I "T tl then
BlankPosition:=Position of II II in UserCommand;
ShowCommand:=

liS "+UserCommand(BlankPosition+1,CommandLen);
ShowCmdLen:-Length(ShowCommand);
FWRITE [ToSpook, ShowCommand, -ShowCmdLen, 0);
Search'For'STDLIST;
If STDLIST'Found then

Paper 3226-8 Creating Seamless Packages Through Process Handling

FWRITE (ToSpook, UserCommand, -CommandLen, 0);
Else

Print "Restriced Spool File.";
EndIf;

Else
FWRITE (ToSpook, UserCommand, -CommandLen, 0);

EndIf;
EndIf;

EndLoop;
EndSubroutine;

The above listings meet the requirements of the program request and can be coded
in most programming languages (COBO~ C, PASCAL, SPL, etc.).

Beyond Just Reads And Writes
SPOOK does not perform checks to find out the characteristics of the environment
in which it is being run. Many other programs do, however, and as a result they can
be more difficult to incorporate into a process handling environment. Below are
some questions which help determine the difficulty of the interface to be built and
the approach to be taken. If the questions and answers seem to make constructing
an interface difficult or impossible, just be patient as there is an approach which
handles most if not all of the problems which come up.

• What does the program's prompt look like?
In order to determine when to request input from the terminal user, some data from
the son program must be used as the trigger which tells the father process "the son
program wants input". In the earlier SPOOK example the trigger was the prompt
string. Fortunately, there was only one prompt string to search for. Unfortunately,
most other programs use multiple prompts.

II Is the same prompt used throughout the program?
EDITOR is an example of a program with multiple (and changing) prompts. The
normal EDITOR prompt is "f'. However, the ADD command prompts with a ten
character field containing blanks, a line number, and more blanks. The important
thing is to know the types of prompts used and if they are not constant, what pattern
they follow.

• Are all terminal inputs preceeded by a prompt?
Note that EDITOR's MODIFY command prompts by starting a null length line.
The preceeding print line (which is really the prompt) is not distinguishable from
any other print line. Thus, what can be done about the MODIFY command?

• How many characters of input does the program expect?
Without the program source code it may seem difficult to determine the number of
characters the program expects. One easy way is to simply sit down with the
program and at its prompt enter as many characters as possible, counting them up

Creating Seamless Packages Through Process Handling Paper 3226-9

as they are entered. When the number of characters the program expects has been
reached, the program ends the input operation and the program continues.

• Does the number of characters to be read from the terminal change depending
upon previous commands or the type of input being requested?

Once again, entering characters until the program says "no more" may be the
easiest way to find out.

• Is the terminal read supposed to be timed?
Timed terminal reads are often used when .passwords are to be entered or when a
database transaction require input while the database is locked. In the case of the
database transaction, the timing of the terminal read prevents the user from getting
up and walking away from the terminal and causing all users to be locked out of the
database for an extended period of time. Some programs display a "timeout"
message if there is no response in the designated time period. In such cases,
manually keep track of the elapsed time between the prompt and the "timeout"
message.

• Were FCONTROL, FSETMODE, or FDEVICECONTROL options set to
change the way terminal input/output takes place (echo otT for database
passwords, for example)?

FCONTROL and FDEVICECONTROL each have dozens of options which the
application designer can use. Many of these options have significant impact on how
the application interacts with the terminal and the user. If the effects of
FCONTROL, FSETMODE, and FDEVICECONTROL are ignored, the
application may fail to operate. Unfortunately, these intrinsics do not send any
information to $STDLIST so there is no way of capturing information about
FCONTROL, FSETMODE, or FDEVICECONTROL calls in redirected
$STDLISTs.

• Is FRELATE calIed to determine if the program's STDIN and STDLIST form
an interactive, duplicative pair?

Programs such as EDITOR use PRELATE to determine if they are being run
interactively or in batch. When run from a terminal, FRELATE returns to the
program status information which is interpreted as "this program is being run
interactively." When run from a job or with $STDIN and/or $STDLIST redirected,
the status information returned is different and is interpreted by the program as
"this program is being run in batch." This is important as many programs terminate
after the first error when run in batch, but continue to accept and process
commands when run interactively.

• Does the program use a CONTROL-Y trap?
EDITOR and many other programs use the subsystem break (CONTROL-Y) as a
way of allowing the user to suspend or terminate command processing. A typical
application of CONTROL-Y is to terminate a listing, as when the user enters

Paper 3226-10 Creating Seamless Packages Through Process Handling

"L 1/10000" instead of "L 1/1000". Without the CONTROL-Y trap the user would
have to sit and wait while unwanted data is displayed on the terminal screen. With
CONTROL-Y the user can stop the display at any time. One side effect of having
multiple processes executing concurrently is that only one CONTROL-Y can be
active at a time. If two programs which use CONTROL-Yare executing within the
same session, only one program (the program which most recently set the
CONTROL-Y trap) will have the CONTROL-Y feature. The other program will
ignore any presses of CONTROL-V. What can be done with the other programs
which require CONTROL-V?

Intrinsic Call Interception (hooking)
While it may seem that the above problems are insurmountable, there is a way of
obtaining and passing the required information from program to program. The
solution involves intercepting the calls a program makes to selected MPE intrinsics.

~. Just as the intrinsics interpret what to do by examining the parameter values they
were called with, procedures which intercept the calls can determin what functions
the intrinsics called are to perform. The methodology of intercepting calls to
intrinsics is not new - it has been around since the late 70's or early 80's. To fmd out
more about intercepting intrinsic calls, please look for articles and papers on
"hooking programs." Papers on hooking programs can be found in most recent
conference "Proceedings."

Intercepting intrinsic calls is useful as it provides a data collection capability. Once
collected, the problem becomes one of how to transmit the data to other processes.
Standard program output is sent to $STDLIST. Since the son process has its
$STDIN and $STDLIST diverted to message files, with another process (the father
process) at the other end of the message files, perhaps the son process's $STDIN
and $STDUST may be used for communicating the information collected from the
intrinsic calls.

By using a message file with carriage control (CCfL), not only is it possible to
determine the carriage control necessary for the proper display of program output,
but it is also possible to transmit intrinsic parameters. The method used involves
the use of unused carriage control values. When passing carriage control
information through a message file, there are 256 possible carriage control codes (a
table of valid carriage control can be found in the "MPE Intrinsics Reference
Manual" discussion of the FWRITE intrinsic). With the exception of carriage
control values zero and one, most of the low-value codes are not used. Since
relatively few intrinsics need be intercepted, each intrinsic can be assigned to an
unused carriage control value. The code which intercepts the call to a particular
intrinsic communicates the intercepted data by writing a record to the program's
$STDUST specifying the values of the intercepted parameters as the data portion
of the record, and a carriage control value specifying the intrinsic call intercepted.

Creating Seamless Packages Through Process Handling Paper 3226-11

The father process then examines each record it reads from the message fIle to
determine if the record read contains one of the special carriage control values that
are being used to transmit intrinsic information. If an "intrinsic data" record is
found, the father process can then take whatever action is specified (turn echo off,
read 80 characters from the terminal, etc.).

Some of the data obtained from the intrinsic calls may be needed when calls are
made to other intrinsics. As an example, the FREAD intrinsic can be used to read
from a disc file, a tape file, the terminal, etc. To determine whether the file being
read from is supposed to be the terminal (in which case the father process must
supply the data) or from some other source (in which the file can be read directly),
the parameters passed to FOPEN must be evaluated (FOPTIONS, FILENAME).
Two methods are easy to implement - store FOPEN information in the global area
of the process's stack or pass the FOPEN information to the father process for safe
keeping. The fust method requires restructuring the program file but is fast. The
second method involves sending data between the two processes for every FOPEN
or FREAD and is slow. Again, please see previous conference PROCEEDINGS
for any of a number of articles on hooking and making structural changes to
program files. In almost all cases it is preferable to save information obtained from
FOPEN calls in the global area of the program's stack.

Now that there appears to be a method of passing intrinsic call information between
the processes, some of the previously noted interfacing problems have solutions.
Below is a second look at the interfacing problems.

• What does the program's prompt look like?
• Is the same prompt used throughout the program?
• Are all terminal inputs preceeded by a prompt?
• How many characters of input does the program expect?
• Does the number of characters to be read from the terminal change depending

upon previous commands or the type of input being requested?
The READ, READX, and FREAD intrinsics can accept input from the terminal.
With calls to those intrinsics intercepted and information about the calls (number of
characters to read) passed back to the father process through special "print" records
containing unusual carriage control values, it no-longer becomes necessary to know
what the prompt lines look like, or how many types of prompts there are. If
multiple processes are being managed by the father process (SPOOK, EDITOR,
and LISTDIR5 for example), the father process can simply save the last print record
received from each of the processes as the prompt strings. Thus, if the user is
presently interacting with EDITOR and is in ADD mode and decides to issue a
SPOOK command, the father process can simply redisplay the last print line
received from EDITOR (the line number prompt) to reprompt the user for the next
EDITOR line.

• Is the terminal read supposed to be timed?

Paper 3226-12 Creating Seamless Packages Through Process Handling

Timed reads are enabled through the FCONTROL intrinsic. If calls to
FCONTROL are intercepted and those pertaining to the terminal are passed on to
the father process, then the father process can use the passed data to set up the
timed read.

• Were FCONTROL, FSETMODE, or FDEVICECONTROL options set to
change the way terminal input/output takes place (echo otT for database
passwords, for example)?

Just as in the case of the timed reads, calls to FCONTRO~ FSETMODE, and
FDEVICECONTROL can be handled by the father process.

• Is FRELATE called to determine if the program's STDIN and STDLIST form
an interactive, duplicative pair?

Since the object is to make the application think it is running interactively, the calls
to FRELATE can be simple diverted with the diverting procedure returning a value
which indicates interactive access.

• Does the program use a CONTROL-Y trap?
While only one process can make use of CONTROL-Y at a time, CONTROL-Y
can effectively be shared if it is re-enabled by the son process after each terminal
input completes. For example, if both EDITOR and SPOOK are being run from a
common father process, there would normally be a conflict in the use of the
CONTROL-Y. However, if one of the processes is waiting on input and the other is
running, a solution to the CONTROL-Y contlict can be found by having the
procedures which intercept the calls to READ, READX, and FREAD re-enable
CONTROL-Y before exiting.

To illustrate what an intrinsic interception procedures might look like, two are
printed below as samples.

Copyright 1987 by Innovative Software Solutions, Inc.
Permission to use provided credit is given is hereby granted.
All other rights reserved.

Intrinsic
Name

Replacement CCTl Data Values Global
Procedure Name Code To Father Accessed?

READ >-------> ISSO•........ 2 len
READX >------> ISSRO•..•.. 3 len
FREAD >------> ISSR1 4 len
FOPEN >------> ISSOP•...............
FCONTROl >---> ISSFCTlO .•....... 5 CtlCode,Param
FSETMODE >---> ISSFSMDO 6 ModeFlags
XCONTRAP >---> ISSCTRlV•..•.....••..••....•
FRElATE >----> ISSFRElT ..•..•••...•.•.•..•.•....•

Intrinsic Interception Procedure ISSRI
(Replacement for the FRead Intrinsic)

Creating Seamless Packages Through Process Handling

Read
Read
Read
Read/Write
Read
Read
Read/Write
Read

Paper 3226-13

Integer Procedure
Value
Integer
Logical Array

Begin
Logical
Byte Pointer
Logical
Integer

. Integer
Logical Array
Byte Array

Intrinsic

ISSRI (FileNum, Target, TCount);
FileNum, TCount;
FileNum, TCount;
Target;

Status'Rtn=Q-l;
Global'Data;
FOpts, SetCtrlY;
CtrlYPLabel, OldPLabel;
LenRead, Len;
LBuf(O:19);
BBuf(*)=LBuf;

ASCII FRead, Print, XConTrap;

SetCtrlY:=FALSE;

« Find the FOptions saved by the FOPEN intercept »
« procedure. »
@Global'Data:=O;
While Global'Data <> "KJnavEnosillAylimEKC Il do

@Global'Data:=@Global'Data(256);
@Global'Oata:=@Global'Data(22);
FOpts:=Logical(G1oba1'Data(FileNum*2»*256+

Logical (G1oba1'Data(FileNum*2+1»;

If FOpts.(lO:3) 1:1 4 or
FOpts.(lO:3) = 5 then begin
« A $STDIN or $STDINX file »
« Tell the father process to perform a read of TCount »
LBuf:=Logical(TCount);
« CCTL 4 tells father source is FREAD »
Print (LBuf, -2, 4);
SetCtrlY:=TRUE;

End;

« Read the data sent from the father process »
LenRead:=FRead (FileNum, Target, TCount);
Push (Status);
Status'Rtn.(6:2):=TOS.(6:2);
ISSRl:IIILenRead;

If SetCtr1Y then begin
« Reset the CONTROL-Y trap (if any) »
CtrlYPLabel:=Integer(Logical(G1oba1'Data)*256+

Log1ca1(G1obal'Data(1»);
If CtrlYPLabel <> 0 then begin

XConTrap (CtrlYPLabe1, OldPLabel);
End;

End;
End; «ISSRl»

Intrinsic Interception Procedure ISSCTRLY
(Replacement for the XConTrap Intrinsic)

Procedure ISSCTRI.Y (PLabel, OldPLabel);
Value PLabel;

Paper 3226-14 Creating Seamless Packages Through Process Handling

Integer
Begin

Logical
Byte Pointer
Logical
Logical Array
Byte Array
Integer

Intrinsic

PLabel,OldPLabel;

Status'Rtn;:;:Q-l;
Global'Data;
FOpts;
LBuf(O:19);
BBuf(*)=LBuf;
Len;

ASCII, Print, XConTrap;

« Find the File Information obtained from FOPEN »
@Global'Data:=O;
While Global'Data <> "KJnavEnosillAylimEKC" do

@Global'Data:=@Global'Data(256);
@Global'Data:=@Global'Data(22);

« Store the CONTROL-Y PLABEL in the GLOBAL part of the stack
»

Global'Data:=PLabel.(O:8);
Global'Data(1}:=PLabel.(8:8);
XConTrap (PLabel, OldPLabel);
Push (Status);
Status'Rtn.(6:2):=TOS.{6:2};

End; «ISSCTRLY»

Handling Multiple Son Processes
Once a single son process has been handled successfully, handling multiple son
processes is not terribly difficult. The key to handling multiple processes is to
decide how and when each process is to execute and what information about the
terminal environment must be saved and restored as the father process switches
between son processes.

As an example, assume that a new programming environment is desired (a
programming environment was chosen as it is common to most shops which other
applications might not be). At present the programmers waste a lot of time texting
and re-texting their source files and entering and exiting from various utilities. The
goal is to make the programmers more productive by allowing them to switch back
and forth between utilities lightning fast and without having to re-text their source
files or spool files. The programmers spend most of their day working with
SUPERED (a third-party program editor), SPOOKS, MPE commands, the COBOL
compiler, SEGMENTER, and QUERY. The solution is to keep as many of the
utilities ready to run as possible. All the utilities are individual programs and can be
process handled with the exception of the MPE commands. Assume for a moment
that someone has a program which allows most MPE commands (including PREP,
RUN, SEGMENTER) which may be incorporated into the package. Thus, the
application become one of process handling six different programs, keeping the
programs suspended but ready to run when fed some input.

SUPERED, SPOOK5, the MPE command program, SEGDVR (the SEGMENTER
program), and QUERY can all be run concurrently. The COBOL compiler can be

Creating Seamless Packages Through Process Handling Paper 3226-15

Prep with MAXDATA=8192 or greater *

Prep with MAXDATA=8192 or greater *

FNAME STATE OWNER
LOGLIST READY JOHN.RD
MYLIST READY JOHN.RD

invoked when needed. To switch from one utility to another the user enters the
name of the utility preceeded by a "$", as in "$SUPERED" or "$SPOOK".
SUPERED and QUERY turn character echoing off and change various input
options through calls to the FCONTROL and FSETMODE intrinsics. Some of
these settings may not be fully compatible with the operation of the other utilities or
may confuse the user when used out of context, so it is wise to track which
FCONTROL and FSETMODE options have been set within which programs. This
can easily be done by keeping a set of variables relating to terminal echo,
FSETMODE line feed mode, etc. for each of the programs being process handled.
Also, variables will be needed to hold the most recent prompt string (last print
record received prior to a request for terminal input), the number of characters
requested from the terminal, and any time limit to be placed upon the terminal
input. If desired, the father process could even remind the programmer of the
utility being switched to when a process switch occurs. Below is an example of how
what the terminal screen of such a programming environment might look (user
input is underlined).

SUPEREDIT>m 1
1 $Control USLInit, List, Source

Changes:a, Verbs
1 $Control USLInit, List, Source, Verbs

Changes:_
SUPEREDIT>LL

7 *
SUPEREDIT>~

Saved.
SUPEREDIT>~

:COBOL MySource,MyUSL,*MyList
... Cobol compiler messages ...
:Sspook
> ~

#FILE #JOB
#043 #S8
#045 #S8
> t 45
> f "***"
> Ssegmenter
-usl myusl
-prepare myrunimaxdata g 8192ifpmap
Sedit
SUPEREDIT>~

7 *
SUPEREDIT>

Again, the advantage of such a system is that all the programs needed by the
programmer are instantly available and the programmer can switch between utilities
without having to wait through the re-initialization of the utilities or the re-texting
of files. When the utility is re-entered, the utility resumes execution right were it
left off - in the case of an editor, at the same prompt or line at which it was left,

Remember, handling multiple utilities at once can be difficult and may seem

Paper 3226-16 Creating Seamless Packages Through Process Handling

impossible at first. To simplify the task and make it much easier to tackle, it is best
to begin with attempting to handle only one utility. The lessons learned from the
experience gained save much time and effort when designing the interfaces for
other utilities.

Summary
Process handling allows the execution of one or more programs from within another
program and can be used in many ways.

A program with an awkward interface (even if the source code is not available) can
receive a face lift through process handling. Prompts or series of prompts can be
replaced with new prompts or even menus.

Time and resources can be saved by process handling multiple concurrent utilities
or programs. Switching between programs becomes lightning-fast. Also, the CPU
time spend entering and exiting from programs and re-texting files or re-opening
databases is saved.

New applications can be created by combining readily available utilities. As an
example, QUERY, SORT, and EDITOR can be process handled such that the user
never sees the underlying QUERY, SORT, and EDITOR - only the merged result
of their execution (imagine creating your own user-specific 4GL tools without the
4GL price tag).

As familiarity with process handling and input/output redirection builds; the
posibilities of new applications for process handling grow. Try process handling. It
isn't as hard as it may seem, and is very powerful.

Technical Note - Calling CREATEPROCESS/ACTIVATE

Call CREATEPROCESS specifying items 3,8, and 9. Bits 10 and 11 of the word
passed for item 3 should be set according to the SL file to be used when the
program is loaded by MPE.

Item 3: (15:1):=1 activate father upon termination
(10:2):=x x=O for LIB=S

x=1 for UB=P
x=2 for LIB=G

Item 8: a pointer to (the address of) a string containing the name
of the file to be used instead of $STDIN.

Item 9: a pointer to (the address of) a string containing the name

Creating Seamless Packages Through Process Handling Paper 3226-17

ofthe file to be used instead· of $STDLIST.

Remember to call ACI1VATE with the ·"susp" parameter zero or omitted.

Paper 3226-18 Creating Seamless Packages Through Process Handling

TITLE:

AUTHOR:

Automate Testing To Improve Software Quality

David R. Mendoza

President

Software Development Resources
845 Berkeley Way

Vista, CA 92084

(619) 726-9753

FINAL PAPER WAS NOT AVAILABLE AT TIME OF PRINTING.

PAPERNO. 3227

TITLE:

AUTHOR:

Information Management in the 1990's

Peter Ney

DCE Information Management Consultancy

Prinsengracht 747 - 751

1017 JX Amsterdam

NETHERLANDS Phone-+31 20-264400

FINAL PAPER WAS NOT AVAILABLE AT TIME OF PRINTING.

PAPERNO. 3228

Paper I 3229

Client Server System Design

steve Palmer
steve Palmer & Associates

3028 Driscoll Drive
San Diego, CA 92117

619/274-3601

What is Client/server System Design?

Client/Server is a system design methodology that integrates
multi vendor hardware and software solutions. The multi
vendor environments are transparent to the user. Suddenly
you have a PC that can store 32 GBS of data! Data
management and transaction functions are managed
independently from user interface and application functions.

A typical Client/Server system design places an HP3000 as
the server. This HOST machine has the storage and power to
process transactions about data. It can store data in IMAGE
data bases, KSAM file structures, MPE files of many kinds
i.e., sequential, RIO, message, circular files. It can
transfer data to and from disk storage ·at speeds up to
19,200 bits per second.

The typical Server is a PC. Either Macintosh or IBM
platforms work well. They are inexpensive and they have
great looking Graphical User Interfaces. A reasonable
amount of local data can be maintained for data validation
and quick lookup.

Client/Server System Design - 3229- 1

Some Examples

This year, we wrote a Sales Contact and Order Entry system
that allows sales people in the field to use their laptop
PC's on the road. They had access to an abbreviated
Customer Master List, a detail customer Master for customers
they will meet with this week, and a Price List (good for
the next 30 days).

Their laptops have programs that allow them to lookup data
in each file, to print an order, to maintain information
about their contacts, and common everyday PC programs like
LOTUS/1-2-3 and MicroSoft Word.

At the end of each day, they call into the central HP3000
and synchronize their data files. Only the changed
information is transferred.

This year, we wrote a Document Retrieval system. The
customer was comfortable with the Graphical User Interface
of the PC environment and wanted to use that look and feel
for Document Retrieval. Some of their documents are
LOTUS/1-2-3 worksheets and WordPerfect 5.0 documents. All
the maintenance happens at the PC level; but we centralize
data storage, which allows multiple users to access the
information simUltaneously. Client/Server was the perfect
solution.

Also this year, we wrote an Order Entry System for a
customer that wanted to off load some work from their HP3000
computer system. The system was too bUSy handling VIEW/JOOO
screens. By allowing a PC to process the screen data
(screen painting, data validation, and data normalization)
we relieved the HP3000 of about half its work. By the way,
this user eliminated the need to upgrade to a faster HPJOOO
and saved $100,000.

Why design for Client/Server?

According to the Business Research Group of Cahner's
Publishing Company in Newton, Mass., greater business
productivity, not lower cost, is the main reason companies
are quickly adopting Client/Server technology.

By taking advantage of a modern Graphical User Interface
that has widgets like radio buttons, slider bars, mouse
events, color, and sound we make a user more effective. The
training issue is reduced, too. Imagine training your users
in this familiar PC environment once. You can change the
Server to anything you want, and the user part of an
application remains the same.

Client/Server System Design - 3229- 2

You can attach and detach whenever it is convenient. Your
system design must incorporate routines to synchronize the
data pools on the Client and Server. We will talk about this
later.

Now you can access HP/3000 data with programs like LOTUS/l
2-3, WordPerfect and dBASE. This isn't anything new; we
have had this capability for a few years in copying down a
file and importing it into PC based programs. But, imagine
the ability of viewing HP/3000 data interactively and
dynamically. Would that be of interest to you?

Client/Server System Components

The Server hardware component of a Client/Server approach
could be an HP3000 computer system (or anything else that
supports an interactive link with the Clients). The main
task of this system is to maintain data files and to read
and write data in files. Therefore, fast disk access time
is advantageous. A high speed CPU is less important since
most of an application's thinking happens in the Client
hardware. You will probably need 1 terminal port for each
Client. Clients may be hardwired or connected via modem.

The Client hardware could be a personal computer such as an
IBM PC or Macintosh; it could also be a Unix workstation.
It is important that this system have graphics capability
with a minimum amount of disk (either diskette or hard disk)
to store the operating system, the application screen
programs and some validation tables in files, if they are
needed by the application. It is also important that this
system possess communications capability compatable with the
Server such as asynchronous on the HP3000. It should have
ample main memory to store it's operating system,
application program plus the process-to-process linkage
software needed at run time.

Server software is a program that can monitor one or more
terminal ports. It's main task is to send and receive
messages (or transactions) that are esentially requests for
data service (read, write, update, delete, find, etc.).
This programmable Server is a critical feature that allows
data management and transaction functions to be managed
separately from user interface and application functions.
stored procedures and triggers allows for unscheduled
transactions to be properly processed.

Client software is a user application program. We have
found that the best use of Client software is in graphically
representing data on a screen and allowing a user to use
special devices like a mouse, bar code readers, and hand
readers. These programs must send and receive messages that

Client/Server System Design - 3229- 3

result in data being read, written, updated, deleted or
found on the Server.

Process-to-process linkage software is required to
synchronize the Server and Client. It provides the data
communications link for interprocess communications. And,
it should invisibly handle the transport of data between
Client and Server.

In order for Client/Server to function, a session must be
active on the Server. This is establish by a conventional
:HELLO command. If you are running a u~IX based Client, you
must also be logged onto that system. Personal computers
generally do not require a log on unless you are running on
a network.

What do we use for software tools?

On the Server, we use PPL (Process-to-Process Link from
Walker, Richer & Quinn). This product contains the linkage
software described above. It takes the form of 2-programs
that reside on the HP3000 (or DEC) Server, PPLTOOL and
PPLHOST and 2-programs that reside on the Client (PPLPC.EXE
and R1LINK.EXE).

PPLHOST is the communication's server for PPL and PPLTOOL is
the application's server. PPLPC.EXE is the application
server on the Client system. This is a small (about 4K)
terminate and stay resident program that identifies where
the communications driver, PPLCOM.SYS, is within the
Client's main memory. It must be running whenever a PPL
application is running. R1LINK.EXE is a limited version of
Reflections I that allows a user to log onto the Server
system. Advanced capabilities such as Block Mode screen
handling is not present in this program. It is assumed that
screens will be managed by the Client.

On the Client, our application development uses the ncn
programming language from MicroSoft, a set of nCn language
callable routines that manage screens and windows. The
average ncn program that contains a few windows and data
fields that manipUlate 3 or 4 data bases is about 1000 lines
of code and is extremely fast and efficient.

We have also been successful in interfacing MicroSoft COBOL
(Version 4.0) with PPL. This is not a capability that is
built into the WRQ product. We wrote an interface between
COBOL and the PC PPL Library of callable routines.

Client/Server System Design - 3229- 4

Proceea-to-ProceM Link

Cl

How does PPL work?

There are 2 ways you can implement systems with PPL from
Walker, Richer & Quinn. You can use PPLTOOL on the Server
to service calls from the Client, which are essentially
identical with the calls you would make to the MPE intrinsic
library. This is convenient since you don't need to learn
anything new and you do not write any application code for
the HP3000 environment. The disadvantages include bigger
and more complex Client programs, slower execution when
handling large amounts of data. These programs are not
portable to a DEC VAX environment.

A more efficient approach, but also more difficult, is to
make direct PPL calls. Here you write an application
program for both the Client and Server. On the HP3000, your
program interfaces with PPL via an IPC file. Your program
can do preprocessing of the data on the HP3000, then pass
down only the results to the Client. The Client portion is
portable to a VAX environment since design is not dependent
on knowing host database structure.

Here is how the second approach works:

1. The user logs onto the host via Reflection.

2. When PPLPC.EXE is loaded on the Client it writes
the address of the application entry point to the
device driver PPLCOM.SYS. PPLPC.EXE then terminates
and stays resident.

3. When the Client application runs, it opens the
device driver PPLCOM.SYS and reads the address of the

Client/Server System Design - 3229- 5

entry point for PPLPC. EXE. To communicate wi th the
Server, the Client application calls this address.

4. The host application makes a Version check to
verify that PPLPC. EXE is functioning and to get the
version number.

5. The Client application makes an Initialized
connection call to pass the communication's parameters
for the link to PPLPC.EXE. The parameters are passed
through a Refleciton configuration file. This starts
PPLHOST on the Server.

6. The Client application makes an open circuit call,
passing the name of the host application program to
PPLPC •EXE which then sends a message to PPLHOST to
activate the host application as a son process. Two
files are required: (1) messages from PPLHOST to the
application and (2) messages from the application to
PPLHOST.

7 • Data is exchanged using the PPL error-detecting
protocol.

S. When the Client application is ready to send a
message to the host application, it calls PPLPC.EXE
with a Send a message command (either synchronous or
asynchronous is supported).

9. PPLHOST sends an acknowledgement to PPLPC when it
receives a message and writes the message to the IPC
file called SRV2USER.

10. When the host application is ready to send a
message to the Client application, it writes a send a
message record to the IPC file called USER2SRV.
PPLHOST reads the message and sends it to PPLPC •EXE
which then stores the messagein its internal buffer,
and sends an acknowledgement to PPLHOST.

11. When PPLHOST receives the ACK from PPLPC, it
writes an Acknowledgement record to the IPC file
SRV2USER. At this point, PPLHOST and PPLPC.EXE resume
the exchange of control packets while they are not
doing application work.

Appendix A is a ~C" program that illustrates how you might
use npPLTOOLn to call MPE intrinsics or IMAGE data base
intrinsics. This is only one of many subroutines in the
Document Processing System.

Appendix B is a sample PPL program written in the "C"
programming language. It illustrates how direct PPL calls
can be coded.

Client/server System Design - 3229- 6

Attach/Detach Feature

Good Client/Server system design might include an
Attach/Detach feature. The classic need is illustrated in
our Sales System. Since our sales people are in the field
most of the time, it is not possible for them to be
connected to the Server all the time. We decided to give
them enough information locally stored in the Client to run
independently from the Server.

This created one gigantic problem- how to keep the data
synchronized. Our initial approach was to copy the data
bases down to the Clients at night. This worked fine since
there was enough time at night to download.

A better approach is to maintain a change flag in the Server
data bases. This extra field in each record is used to
indicate a N New, M Modified, D Deleted record. Records are
retained for 1 week with a change date. A last download
date and time is kept in each Client. When a data download
is performed, only those changes that occurred since the
last download date and time are transferred from the Server
to the Client. After the transfer, the Client download date
is updated to current date and time. This was a great
improvement over the total transfer method.

When the Client updates a local record, a change date and
time is recorded in that record. When transferring data
from the Client to the Server, all data that has changed
from the last upload date and time is sent to the Server. A
batch process on the Server is run once per day. It's job
it to resolve conflicts between many Clients that are making
changes (even to identical records) in the data base. We
established the rule that when 2 Clients want to change the
same record on the Server, the Client with the most recent
date and time gets recorded and the others get printed on an
exception report.

Client/Server System Design - 3229- 7

Here is the logic of this rule:

Because we use ISAM or KSAM file structures for a good part
of our work, the file structures and retrieval methods are
identical on both the Server and Client. Therefore, it is
easy to write application Client programs that process data
either from the Server or locally in the Client. The
application logic doesn't change much when running in a
detached mode.

Conclusions about Client/Server

Client/Server is a useful design methodology. It can
improve your user's impression of an application by using
Graphical User Interfaces. It ,is easier to train users on a
system where they are familiar. It eliminates the need to
change your application in the future when you need to move
to another Server platform. And it can save you the
necessity of upgrading your HP3000 computer system by off
loading some application's activities to the Client.

Client/Server is not easy to implement. It requires a good
knowledge of both the Server and Client environments.
Programming capability is essential for both machines. On
the HP3000, you must know which intrinsics to use, and when.
On the PC, you must be proffecient in the ncn programming
languages and Graphical User Interfaces.

We think Client/Server is a good strategy. Our customers
like the speed, look and feel of their Client/Server
systems. They like thinking that the server can change and
the user interface stays the same. And, they like saving
money.

Client/Server System Design - 3229- 8

Appendix A

F I L E S • C

File Handling
Document Processing System
Copyright (c) 1991
Steve Palmer & Associates
3028 Driscoll Drive
San Diego, CA 92117

/*
*
*
*
*
*
*
*
*
*
*
*
*
*/

'include <vcstdio.h>
#include nsbp.hn

ALL RIGHTS RESERVED

/* <--- key size here

2]; /* rqd by HP3000 */
55]; /* key #1 */
20]; /* name of org file */
55]; /* key 12 */
2]; /* true/false flag */
2]; /* checked outodify?*/

/* File is INDEX */
COUNT index found;
COUNT index=file_open;
TEXT index_FILE[17]; /*
TEXT index_POS_BLK[128];
TEXT index_key_buf[55];

struct {
char deleteflag
char fldid
char subfile
char zipfilename
char mstrdoc
char available

} index_buf;

file name */

*/

/* index FILE HANDLING FOLLOWS */

COUNT index_open()
{

empty(btmsg, 30);
empty(index_FILE, 16);
strncpy(index_FILE, "index ", 8);

empty(index_buf.deleteflag, 2);
empty (index_buf •fldid, 55) ;
empty(index_buf.zipfilename, 55);
empty(index_buf.subfile, 20);
empty(index_buf.mstrdoc, 2);
empty(index_buf.available, 2);
empty(index_key_buf, 55);

OPENAGAIN:

Client/server System Design - 3229- 9

BUF_LEN = sizeof(index_buf);
BTSTAT= BTRV(B OPEN, index POS BLK, &index_buf,

&BUF_LEN,Index_FILE, 1); -
if (BTSTAT == 12)

{ index_create();
goto OPENAGAIN;

}
if (BTSTAT 1= 0)

(sprintf(buf,nproblem opening %s status = %dn ,
index_FILE, BTSTAT);

do_msg();
}

else
(index_file_open = ISTRUE;

empty(index_buf.deleteflag, 2);
empty(index_buf.fldid, 55);
empty(index_buf.zipfilename, 55);
empty(index_buf.subfile, 20);
empty(index_buf.mstrdoc, 2);
empty(index_buf.available, 2);
empty(index_key_buf, 55);

if(useppl)
(xindex = FOPEN(index_FILE, 7, 229);
if (cond_code 1= CCE)

{sprintf(buf,nproblem opening %s status %dR ,

index_FILE, cond_code);

return(O);
/* end of procedure */

COUNT index_get_equal()
{ empty(index_key_buf, 55);

strncpy(index_key_buf, index_buf.fldid, 55);

BUF_LEN = sizeof(index_buf);
BTSTAT=BTRV(B_GET_EQUAL, index_POS_BLK, &index_buf,

&BUF_LEN,index_key_buf, 0);
if (BTSTAT 1= 0)

(sprintf(buf,nindex get equal- %d",BTSTAT);
index_found = ISFALSE;

}
else

{
index found

} -
ISTRUE;

Client/server System Design - 3229- 10

if(useppl)
{BUF LEN = 0 - BUF LEN;
FREADBYKEY(xindex~ (char*)&index bUf, BUF LEN,

index_key=buf, O)i-
if (cond_code 1= CCE)

(sprintf(buf,nproblem with Index - get equal\nn):
do_msg() :
index found = ISFALSEi

} -

return(O);
/* end of find_equal */

COUNT index_qet_alt_equal()
(empty(index_key_buf, 50):

strncpy(index_key_buf, index_buf.zipfilename, 49):

BUF_LEN = sizeof(index_buf)i
BTSTAT=BTRV(B_GET_EQUAL, index_POS_BLK, &index_buf,

&BUF_LEN,index_key_buf, 1);
if (BTSTAT 1= 0)

(sprintf(buf,nindex qet equal- %dn,BTSTAT);
/* do_msg(); */

indeX_found = ISFALSE;
}

else
{
index found

} - ISTRUEi

if (useppl)
(BUF LEN = ° - BUF LEN;
FFINDBYKEY(xindex~ index_key_buf,

78,trlen(index_key_buf) ,0);

if (cond code 1= CCE)
{sprintf(buf,nproblem getting Alt Indexn);
do_msg() ;
index found ISFALSE;

} -
else

{index found
} -

ISTRUE;

return(O);
/* end of find_equal */

COUNT index_get_first()
(empty(index_key_buf, 55);

strncpy(index_buf.zipfilename, ptr, strlen(ptr»;
BUF_LEN = sizeof(index_buf);

Client/Server System Design - 3229- 11

BTSTAT=BTRV(B GET FIRST, index POS BLK, &index_buf,
&BUF_LEN,index_key=buf~1):

if (BTSTAT != 0)
{

index_found = ISFALSE:
}

else
{
index found
} - ISTRUE:

if(useppl)
(BUF LEN = 0 - BUF LEN:
FFIiDBYKEY(xindex~ index_key_buf, 78, 55, 0):
if (cond_code 1= CCE)

(index found = ISFALSE:
sprintf(buf,nlndex not found- FFINDBYKEY");

}

return(O);
/* end of get first */

COUNT index_get_next()
(BUF_LEN = sizeof(index_buf):

BTSTAT=BTRV(B GET NEXT, index POS BLK, &index_buf,
&BUF_LEN,index_key_buf; 1);

if (BTSTAT != 0)
{ index found = ISFALSE:
} -

else
{
index found ISTRUE:
} -

if(useppl)
(BUF LEN = 0 - BUF LEN:
FREAnC(xindex, index_buf.deleteflag, BUF_LEN):
if (cond_code != CCE)

(sprintf(buf,nproblem with Index File- get nextR);

do_msg() :
index found = ISFALSE;

} -

return(O):
/* end of get next */

COUNT index_get-prev()
(BUF_LEN = sizeof(index_buf):

BTSTAT=BTRV(B GET PREV, index POS BLK, &index bUf,
&BUF_LEN, index..-key_buf; 0.); -

if (BTSTAT != 0)
(sprintf(buf,nBeginning of selectionsn):

Client/Server System Design - 3229- 12

do_msg();
index_found ISFALSE;

}
else

{
index found ISTRUE:
} -

if(useppl)
{BUF LEN = 0 - BUF LEN:
FPOINT(xindex, -i):
if (cond_code != CCE)

(sprintf(buf,nindex File- get priorn):

do_msg():
index found = ISFALSE:

} -
}

return(O):
/* end of get prior */

COUNT index_upd()
BUF_LEN = sizeof(index_buf):
BTSTAT=BTRV(B_UPDATE, index_poS_BLK, 'index_buf, &BUF_LEN,

index_key_buf, 0);
if (BTSTAT != 0)

(sprintf(buf,nUpdate Problem- index File %dn,BTSTAT);
index found = ISFALSE:

} -
else

{
index found ISTRUE:
} -

if(useppl)
(BUF LEN = 0 - BUF LEN;
FUPDATE(xindex, index_buf.deleteflag, BUF_LEN);
if (cond_code 1= CCE)

{sprintf(buf,nHP3000 Index File- UpdateD);
do_msq():
index found = ISFALSEi

} -

/* end of update */

COUNT index_ins()
(empty(index_key_buf, 55):

BUF_LEN = sizeof(index_buf);
strncpy(index_key_buf, index_buf.fldid, 55):

BTSTAT=BTRV(B_INSERT, index_POS_BLK, &index_buf,
&BUF_LEN,index_key_buf, 0):

if (BTSTAT 1= 0)
{ sprintf(buf,nInsert Problem- index File %dn,BTSTAT):

Client/Server System Design - 3229- 13

do_msg() ;
index_found ISFALSE;

}
else

{
index found ISTRUE;
} -

if(useppl)
(BUF LEN = 0 - BUF LEN;
FLOCK(xindex, 1);
FWRITE(xindex, index_buf.deleteflag, BUF_LEN, O)i
if (cond_code 1= CCE)

(sprintf(buf,nindex File- Insert now");
index found = ISFALSE;

} -
FUNLOCK(xindex);

}

/* end of insert */

COUNT index_dele)
(empty(index_key_buf, 55);

strncpy(index_key_buf, index_buf.zipfilename, 55):
BUF_LEN = sizeof(index_buf);
BTSTAT=BTRV(B_DELETE, index_POS_BLK, 'index_buf, 'BUF_LEN,

index_key_buf, I):
if (BTSTAT 1= 0)

{ sprintf(buf,"Delete Problem- index File tdn,BTSTAT);
do_msg() ;
index found ISFALSE;

} -
else

{index found ISTRUE;
} -

if(useppl)
(BUF LEN = 0 - BUF LEN;
FLOCK(xindex, 1);
FREMOVE(xindex);
if (cond_code 1= CCE)

(sprintf(buf,"Problem with Index File- Delete");
do_msg() ;
index found = ISFALSE;

} -
FUNLOCK(xindex):

}

/* end of delete */

COUNT index_create()
(empty(btmsg, 30):

empty(index_FILE, 16);

Client/Server System Design - 3229- 14

strncpy(index_FILE, "index ", 8):

FILE_BUF.REC_LEN

FILE BUF.PAGE SIZ
FILE-BUF.FILE-FLAG
FILE- BUF •NDX CNT

/* key #1 */
FILE_BUF.KEY_BUF[O].KEY_POS
FILE_BUF.KEY_BUF[O].KEY_LEN
FILE_BUF.KEY_BUF[O].KEY_FLAG

MODI DUPI B_STR_TYPEi
FILE_BUF.KEY_BUF[O].KEY_TYPE

/* key #2 */
FILE_BUF.KEY_BUF[l].KEY_POS
FILE_BUF.KEY_BUF[l].KEY_LEN
FILE_BUF.KEY_BUF[l].KEY_FLAG

MODIDUPIB_STR_TYPEi
FILE_BUF.KEY_BUF[l].KEY_TYPE

sizeof(index_buf)i
1024;
0:
2:

3;
55;

B_STR_TYPEi

78;
55;

= B_STR_TYPE;

BUF_LEN = sizeof(FILE_BUF):
BTSTAT = BTRV(B_CREATE, index_POS_BLK, 'FILE_BUF,

&BUF LEN, index FILE, -1);
if (BTSTAT != 0) T

sprintf(buf,"Problem creating %s status = %d",
index_FILE, BTSTAT);

do msg();
-}

Client/Server System Design - 3229- 15

Copyright 1989 Walker Richer , Quinn.

Compiled with Microsoft C v. 5.1 with lAS IZp switches.
Must link in CALLXSM.OBJ.

/*
*
*
*
*
*
*
*
**1

XSEND.C

Appendix B

- Batch file transfer between PC and HP-3000.

'include <stdlib.h>
'include <stdio.h>

Idefine XSEND

Idefine TRUE 1
Idefine FALSE 0
Idefine byte unsigned char

Idefine SLASH '\x2F' 1* I */
Idefine SEMICOLON '\x3B' 1* *1
Idefine QUIETFLAG '\x5l' 1* Q. */
Idefine CR '\xOD' /* CR *1

Idefine CONNECT CMD OxOl
Idefine SHUT XFER OxOl
Idefine XFER-ABORT Ox04
Idefine USR ABoRT Ox55
Idefine NO XFER Ox4l
Idefine TOHOST OX02
Idefine FROMHOST Ox03
Idefine DISCONN CMD Ox02
Idefine WRITE cMo Ox03
Idefine OPEN CMo OxOS
Idefine INIT-CMD OxOO
Idefine RECV-CMD Ox04
Idefine MASK- OxFF
Idefine IN PROCESS OxFD
Idefine QUEUED OxFF
Idefine BINARY OxOO
Idefine ASCII OxOl
Idefine DELETE_FILE Ox04

'define CONFIG_FILE n\\PPLTOOL\\PPL.CFG"

struct ftpb {
unsigned char PB_REQ; 1* put the command here *1

unsigned char PB_IDi /* returned by init, ids user */
unsigned char PB_HANDLE;I* this will be returned */
unsigned PB_PC_SPEC_LEN;/* length of pc file name *1
char far *PB_PC_SPEC; 1* ptr to ASCII pc file name *1

Client/Server system Design - 3229- 16

buffer length *1
ptr to buffer (for host filec)*1
xfer type (currently ignored) *1
length of file attribute string*1
MPE file attributes *1

*/
*1
*1
*1
*1
*1
*1

unsigned PB BUF LEN; 1*
char far -*PB-BUF; 1*
unsigned PB_XFER_TYPE; 1*
unsigned PB_ATTR_LEN; 1*
char far *PB_ATTRIBUTES;I*
unsigned char PB FLAGS; 1*
unsigned char PB=OVERWRITE; /* overwrite flag
unsigned char PB_COMPRESSil*
unsigned char PB_STAT_CODE; 1* status code returned
unsigned PB_STR_LEN; 1* string length
char far *PB_STRING; 1* ptr to message string
long int PB_UNITS; 1* file size (unsigned chars
long int PB_XFERRED; /* units (chars or records)

xferred */
} ftparm_block;

struct ftpb far *ftfar-ptr =&ftparm_block;

int quiet=FALSE;
char pcfilespec[80], hpfilespeC[80], attributes[80];

lif defined(XSEND)
char unit_message[] = "Characters transferred: ";
char prog_name[] = "XSEND";
int direction = TOHOST;

lelse
char unit_message[] = "Records transferred: ";
char prog_name[] = "XRECElVE";
int direction = FROMHOST;

#endif

/* function prototypes */

extern byte GETXFR();
extern byte CALLXFR(struct ftpb far *);
void evaluate_arquments(int, char *[]);
void initialize-ppl(void);
void send_files(void);
void shutdown(void);

main(int nargs, char *args[])
(

evaluate_arquments(nargs, args);
initialize-ppl();
send_files();
shutdown();
exit(O);

void evaluate_arquments(int nargs, char *args[])
{

int minargs=2, i;

Client/Server System Design - 3229- 17

if (args[l][O] == SLASH && toupper(args[l][l]
==QUIETFLAG) {

minargs = 3;
quiet = TRUE;)

if (nargs < minargs)
if (!quiet)

exit(l);)

if (quiet) strcpy(pcfilespec, args[2]);
else strcpy(pcfilespec, args[l]);

strcpy(hpfilespec,"\O");
if (quiet && nargs == 4) strcpy(hpfilespec,args[3]);
if (!quiet && nargs == 3) strcpy(hpfilespec,args[2]);
if «strncmp(hpfilespec,"\On,l» == 0)

strcpy(hpfilespec,pcfilespec);

strcpy(attributes, "\on);
for (i=O;i<strlen(hpfilespec);i++)

if (hpfilespec[i] == SEMICOLON) {
strcpy(attributes,&hpfilespec[i+1]);
strncpy(hpfilespec[i], "\0",1);
break; }

void initialize-ppl(void)
{
byte cond_code=O;

if (!quiet) printf("\nInitializing Transfer ••• \nn):

cond_code = GETXFR(); /* get address from pplcom.sys */
if (cond_code == 0) { /* if OK, initialize xfer */

ftparm_block.PB_REQ = INIT_CMD:
ftparm_block.PB_BUF = CONFIG_FILE:
ftparm_block.PB_BUF_LEN = strlen(CONFIG_FILE);
CALLXFR(ftfar-ptr);
cond_code=ftparm_block.PB_STAT_CODE;

if (cond_code != 0) {
if (!quiet)

printf(ninitialize: error %d\nn,cond_code):
exit(2); }

void send_files(void)
{
char errmsg[80];
byte cond code;
int len,-transtype=BINARY;

Client/Server System Design - 3229- 18

long xferred=Oli

if (!quiet) printf(n\nStarting file transfer ••• \n");
strupr(attributes)i
if (strstr(attributes,nASCIIn) != 0) transtype=ASCII:
ftparm_block.PB_XFER_TYPE transtype;

lif defined(XSEND)
if (len = strIen(attributes»

ftparm_block.PB_ATTR_LEN len + 1;
ftparm_block.PB_ATTRIBUTES attributes;
ftparm_block.PB_XFER_TYPE =

ftparm_block.PB_XFER_TYPEI2;
attributes[len] = '\xFF'; }

lendif
ftparm_block.PB_REQ
ftparm_block.PB_OVERWRITE
ftparm_block.PB_PC_SPEC
ftparm_block.PB_PC_SPEC_LEN
ftparm_block.PB_BUF
ftparm_block.PB_BUF_LEN
ftparm_block.PB_STRING
ftparm_block.PB_STR_LEN
ftparm_block.PB_XFERRED
ftparm_block.PB_UNITS
strcpy(errmsg, "\0");

direction;
= DELETE FILE:
= pefilespee;
= strlen(pcfilespee);
= hpfilespee;
= strlen(hpfilespec);
= errmsg;

80;
0;

= 0;

CALLXFR(ftfar-ptr):
while«eond_code=ftparm_bloek.PB_STAT_CODE)

continue;
QUEUED)

while (TRUE) {
eond code = ftparm block.PB STAT CODE;
if (cond_code != IN_PROCESS) break;

if (ftparm_bloek.PB_XFERRED != xferred)
xferred = ftparm_bloek.PB_XFERRED:
if (!quiet)

printf("%s%ld%c",unit_message,xferred,CR);
}
if (eond_eode == 0 && !quiet) printf("\nComplete.\n"):
if (cond_code 1= 0) (

if (!quiet) printf("\nErr transfer: %d\nn,cond_code);
shutdown();
exit(3); }

}
void shutdown(void)
(

ftparm_block.PB_REQ SHUT_XFER;
CALLXFR(ftfar-ptr);

Client/Server System Design - 3229- 19

Database standards: Rallying points

F. Alfredo Rego

Adager

SUD Valley, Idaho
83353-0030

U.S.A.

Dr. Edgar F. Codd established a sound mathematical foundation for database management with
his relational model. Unfortunately, many suppliers of database management systems, claiming
a relational pedigree, have twisted the relational ideas to suit (or justify) their implementations
and to claim that they "are" standard (or "follow" the standard).

Some people believe that anything that has "SQL" in it is ipso facto "relational". This is a
consequence of the widespread belief that SQL is an integral part of the relational model for
database management when in fact it is not. Most people are led to believe that there is· such
a thing as a standard SQL. Do I have a surprise in store for them!

Historical backgrouDd

In early 1986, I met with several Hewlett-Packard executives in Cupertino who were very
excited about the name that they had devised for their new strategic database product,
ALLBASE. "The beauty of this concept," they said, "is that it will integrate the best practical
aspects of IMAGE with the best theoretical aspects of the relational model for database
management." They asked me if I liked the name and the concept behind it. I said that both
the name and the concept were wonderful. I still think so now, after more than five years.

A recent conversation I had about the relational model for database management with its
creator, Dr. Edgar F. Codd, makes HP's initial conception of ALLBASE even more relevant.

My cODversatioD with Dr. Edgar F. Codd

At the SCRUG meeting in Pasadena, on May 9, 1991, I interviewed Codd in the setting of a
public forum. I began my conversation with Codd by explaining that I had selected the
session's title, "Understanding Databases," because it was ambiguous. We can choose to
interpret the word "understanding" either as a verb or as an adjective. As a verb, "under
standing" means that we are taking some action to try to understand what databases are. As an
adjective, "understanding" means that we are talking about databases that treat us in a
motherly fashion, that are tolerant, compassionate and sympathetic, that never break down,
that always perform beyond the call of duty, that don't require expensive maintenance.

3230-1

I then asked Codd if he knew of any such magically understanding databases. Laughing, he
said, "Not at all." Addressing the audience, I asked if anybody else knew of any such
magically understanding databases. More laughter. Funny, I thought, after having waded
through all the glossy literature. Given this reality, we decided to interpret the word
"understanding" as a verb. I invited Codd to help all of us in our efforts to try to understand
what databases are.

As the basis for our discussion, I selected some key ideas from Codd's recent book (The
Relational Model lor Database Management, Version 2, Addison-Wesley, 1990).

The evidence would suggest that few people understand the relational model for database
management (although many people certainly know SQL very well). I encouraged everyone to
read and to study Codd's book because it brings together, under one cover, his fundamental
ideas. To illustrate, I quote from the book:

"Four important points concerning relations follow:

1. every relation is a set;

2. not every set is a relation;

3. every relation can be perceived as a table;

4. not every table is a correct perception of a relation.

Designers of the relational DBMS products of many vendors appear to be ignorant of these
facts or to have ignored them" (page 27).

"Of course, in many of the relational DBMS products on the market today, support for the
integrity features of the relational model is quite weak. This weakness reflects irresponsibility
on the part of DBMS vendors" (page 435).

Given these facts, I asked Codd about his feelings whenever people use "SQL" as synonymous
with "the relational model for database management." Codd proceeded to clarify the myths
surrounding SQL, with particular attention to the overselling of SQL as the standard for
relational database management systems. "SQL is just a data sublanguage invented in late 1972
by a group in IBM Research, Yorktown Heights, NY. Although it was claimed that the
language was based on several of my early papers on RM, it is quite weak in its fidelity to the
model," Codd said.

"How was SQL ever adopted as an ANSI and ISO standard?", I asked. Codd replied, "That's an
excellent question; I wish I knew the answer." (For those interested in pursuing this issue,
Codd has devoted chapter 23 in his book to discussing the serious flaws in SQL.)

Because Codd had dedicated his book "To fellow pilots and aircrew in the Royal Air Force
during World War II," I knew that he would, as a pilot, appreciate the fact that airplanes are
amazing things that come in all shapes and prices. There is one airplane that went around the
world without refueling; it was very slow, extremely uncomfortable, as fragile as a kiss and,
therefore, unable to go through the storms and the turbulence that commercial jets usually
encounter. There are huge, slow cargo planes. There is the Concorde. There are business
jets. There is Air Force One, with a bed and (we would assume) a shower.

Rego 3230-2

When I asked Codd about his recommendation for the "standard airplane" that everybody must
have, he said, "Such a thing does not exist." While on this topic, he referred to page 22 of his
book "I believe that the days of monstrous programming languages are numbered, and that the
future lies with specialized sublanguages that can inter-communicate with one another.A To
me, this sounded very similar to what is expected of open systems, whose existence depends on
specialized things that inter-communicate well, as opposed to monstrous things that try to be
all things to all people.

Codd shared with us his observations about the main shortcomings of the wishful implementa
tions of the relational model, using IB~s DB2 to illustrate. "DB2, with about 50% compliance
with the relational model, is the most faithful implementation," Codd said. "But even DB2 is
still a long shot. The main problem is that all so-called relational database management
systems do not support the fundamental features of the relational model. The fact that they
may (or may not) support some other features does not relieve them of the responsibility of
supporting the fundamental features. Without sound fundamentals, any structure is bound to
collapse eventually. Everywhere, users are losing their patience. Things are taking too long
and are too expensive. There is a deluge of marketing hype," Codd complained.

Regarding my question about any hope for the convergence of these so-called relational
database management systems towards the relational model, Codd explained that, "Due to some
fundamental decisions that the implementors had made early on in the game, it would be very
difficult for them to converge towards the relational model."

I then brought up an issue that is highly relevant to the members of the HP3000 community
who have developed high-quality, reliable applications based on IMAGE. Why should these
people migrate to a poor-quality, unreliable, expensive and non-compliant so-called relational
DBMS? Codd had only a couple of minutes to address this question, as it was the last question
before lunch. Codd quickly mentioned that"Any conversion is a very expensive proposition in
terms of labor costs, since automatic conversions are ineffective and need a great deal of
babysitting." Codd did not foresee labor costs decreasing. "Therefore," he reasoned, Steven
though it would be an expensive migration, everyone should convert to a so-called relational
implementation as soon as possible." En route to lunch, an IMAGE user approached us noting
that the word "possible" might best be interpreted to mean "economically feasible."

There is no question in my mind about the ever-rising costs of conversion, but I do not agree
with conversion for conversion's sake. I believe that there is only one valid reason for
converting: to escape from a poor database management system that is not able to support
vital applications. And then, people should only convert to a clearly outstanding database
management system. Anything else is an exercise in futility.

What are we to do with SQL?

Codd . himself does not think that SQL is a particularly outstanding ambassador of the
relational model. On the contrary, he says on page 444 of his book, "Vendors, however, are
forging ahead with both 'products on top' and 'distributed RDBMS products', disregarding
errors in present relational DBMS products. All the evidence indicates that they will continue
to do so. An inevitable result is that existing errors will become more difficult to fix, because
more products and more users will be affected. Over time, the defects and deficiencies in the
present versions of SQL will become totally embedded in relational DBMS products. It is
important to be aware that, first, the language SQL is not part of the relational model.
Second, the defects and deficiencies in SQL correspond closely to the various departures of
SQL from the relational model."

Rego 3230-3

During lunch, immediately after our public conversation, Dr. Codd and I discussed the SQL
issue. As an example of the confusion, he mentioned that, during a visit he paid to one of the
various SQL-standardizing committees, the members of the committee agreed on only one
thing: they agreed to disagree with Codd.

Regardless of SQL's weaknesses, it is obvious that it is today's lingua franca for databases.
The desire for a single, common language is nothing new. For instance, scientists have spoken
all kinds of native languages, yet they have felt the strong need to inter-communicate. One
solution would have been for each scientist to learn all of the languages spoken by everybody
else. Because this would have been unlikely, scientists "agreed" (voluntarily or not) on some
common language. In this manner, each scientist had to speak at most two languages, the
scientist's native language and the common language of the day.

There are two important points about common languages:

1. The existence of a common language does not preclude the existence of "native" languages.

2. A common language is not forever, as it depends on political factors.

Because political factors are constantly shifting, several common languages have come and
gone in the Western scientific community: Greek, Roman, German, French, English. Today,
English is the common language for computers. As a highly-structured subset of English, SQL
appears to be the emerging common language for database inter-communication.

Given these facts, we might as well learn SQL, even if we don't approve of it. And we might
as well teach SQL to our favorite database management system.

Hewlett-Packard's ALLBASE Idea to the rescue

The beauty of Hewlett-Packard's ALLBASE concept is its inclusive quality. HP is making
significant progress toward fulfilling this ALLBASE promise. For instance, ALLBASE/Turbo
CONNECT currently allows SQL read-only access to IMAGE databases. Right now, HP is
seriously considering the obvious evolution of ALLBASE/Turbo CONNECT: SQL read and
write access to IMAGE databases.

How serious is HP about implementing SQL· read/write access to IMAGE databases? HP is
very serious, indeed, but it needs your input to help define the future directions for its
database programs. On this topic, The HP Chronicle (on page 20, May 1991 issue) has an
article, "HP seeks customer input on databa.;es", quoting Doug Dedo, HP IMAGE product line
manager. Here is a sample of noteworthy items in the article:

Seeking input from customers to help define luture directions lor its database programs.
Hewlett-Packard has released a survey gauging customer needs... "1 think that this is a good
opportunity to really get into the heart 01 the Turbo/MAGE program and have a voice be heard
in a productive. proactive way." said Doug Dedo. "{The survey comes} in a time where it can
be incorporated into business planning activities."

The first area [01 the survey] involved "Just how do people want TurbolMAGE itself to move
into the 21st Century." he said. "We are definitely moving it there... Some people call it
mature. Competitors think it is obsolete and yet we've got a phenomenally large customer base
and a huge set of applications that are really providing valid business solutions today."

In the second area. HP officials sought input about ALLBASE/Turbo CONNECT write

Rego 3230-4

{access}, the bridge between the relational and the TurbolMAGE world. "Our ALLBASE SQL
product has an ALLBASE/Turbo CONNECT that links it to TurbolMAGE so that you can do an
SQL query and be able to pull information simultaneously out of the relational database as well
as out of a TurboIMAGE database," Dedo explained.

Within the last six months, customers have expressed a desire to be able to write back into the
TurboIMAGE database. "So the second piece in the questionnaire was to start getting more
detailed data on what I customers} see and how they would use the write capability."

"The goal of the survey is to compile information on user needs so that these needs can be met
by HP in future product releases," Dedo said.

BreaklDg free from IMAGE's physical IImltadoDs

IMAGE's physical limitations have to do with the way HP has chosen to implement (or not to
implement) its various design criteria. The April 1991 Interact includes an article by Wirt
Atmar (of QueryCalc fame) called "The future of IMAGE on the HP3000 is SQL" Atmar
quotes a senior Hewlett-Packard executive:

"The problem is that TurboIMAGE has been tuned for over 15 years and there are not many
ways we can improve it anymore." Wim Roelandts, HP vice-president and general manager of
the Computer Systems Group, made this statement last year.

But this is not true. A number of rather simple enhancements to IMAGE would make dramatic
differences in its use, in its performance, and in the minds of its users. Now thai HP has
graciously agreed to implement the critical item update enhancement, the foundation has been
laid lor a number 01 truly significant enhancements to IMAGE...

These few enhancements, which would not only revolutionize the use of IMAGE but also ensure
its future competitiveness, are among the most commonly touted advantages of SQL databases.
But they have nothing to do with SQL per see They should be part and parcel of any
competitive database structure. IMAGE is particularly amenable to these modifications. And
none of them are difficult to accomplish. HP already has all of the code in hand to implement
each enhancement.

Atmar's article points to the problem and to the solution, the implementation of the original
ALLBASE idea. Dedo's survey is a step in the right direction. I applaud HP's willingness to
give IMAGE the ability to inter-communicate.

GiviDg HMAGE the ability to inter-communicate

The bottom line is: Because IMAGE needs to inter-communicate with other database manage
ment systems, the issue boils down to providing a read/write SQL interface for IMAGE today
(whether we like SQL as a lingua franca or not). This will be a significant step in fulfilling
the original Hewlett-Packard promise for ALLBASE: Standardized access to IMAGE databases
and to relational databases. This will provide Hewlett-Packard users and applications develop
ers with the best of both worlds. What a wonderful idea.

Rego 3230-5

.. ':~ ..

.. ~ 1: 7~'::', 1:: ' ~ -....... :"..'; ~

I~:.·~ 'i:~: r:.:{~ . t:.;~. ~.~

:.~ ~', '. -: .. ' ,.., ::~: ..

":•.~'_;,. '-- .'t .. _

. ;.;!, ~.; ~ f : ...

PaperN~ber:3232

Relational Database Design
Jo-ning Ta

Oracle Coroption

400 Oracle Parkway

Redwood Shores, CA 94065

(415) 506- 2974

3232-0

1 Introduction

This paper presents basic techniques for designing a relational
database with emphasis on data integrity by using the result from
an entity relationship modelling. Traditionally, data integrity is
specified and enforced within the database applications. Whereas
today, the data integrity has been added to the SQL language by
the ANSI 89 standard(ANSI X3.135-1989). It means the
relational systems start to embed more data integrity into the
database kernel. The relational systems now can guarantee better
integrity and consistency. The application development
productivity can be improved because less coding has to be done
on data role checking. Better perfonnance can be expected
because data integrity can be implemented and optimized more
efficiently in the database kernel.

This paper is mainly emphasizing on the logical database design.
The physical database design is not going to be addressed. The
audience is assumed to have some basic knowledge of SQL and
relational database.

Relational Database Design 3232-1

2 Entity Relationship Modelling

Entity Relationship Modelling is a means of defining and controlling
the defmition of the information needs. The definition can be used as
the framework in database design. Briefly, Entity Relationship
Modelling involves identifying

• the things of importance in an organization(Entities),

• the properties of those things(Attributes),

• and how they are related to one another(Relationships)

The output ofthe modelling, Entity Relationship Diagram, can be used
for both relational(e.g. Oracle, Allbase/SQL) and non-relational system
(e.g. TurboIMAGE).

The following elements are important in Entity Relationship
Modelling:

• Entity

A thing or object of significance, whether real or imagined, about
which information needs to be known or held.

• Relationship

A named, significant association between two entities. There are
three types of relationship, which are One to Many(l:M), Many to
One(M:1), Many to Many(M:M). Many to Many relationships are
common during early strategy or analysis periods. By the end of the
analysis stage, they shall all be resolved. Resolution is achieved by
means of inserting a new intersection entity between the two ends.

• Attribute: Any description of an entity

Relational Database Design 3232-2

Relational Database Design 3232-3

3 Relational Terminology

• Relation

A mathematical object in the form of a table, with distinct unordered
rows, and atomic, unordered columns. In a relational system, table
are the only explicit way of representing relationships. A large
number of the implicit relationships are also contained in the
database. These are specified by the Referential Integrity Constraint
and the relational operator (e.g. JOIN) at the runtime.

• Tuple

A row in the table.

• Primary key

A column or combination of columns whose values uniquely
identify rows in a table. Primary keys can not be NULL.

• Foreign key

A column or combination of columns whose values match the
primary key of another table. (or possible of the same table which is
called "self-referencing")

• Domain

A set of allowed values all of the same type.

• Candidate key: Any column or combination of columns whose
contents could be used to uniquely identify rows in a table. Every
relation has at least one candidate key. When multiple candidate
keys exist, the designer chooses one to become the primary key.
Then the remaining candidate keys(if any) are alternate keys. It
may be used as a secondary access to the data.

• Composite key: A combination of columns as a key.

Relational Database Design 3232-4

4 Mapping from entity relationship to relational
database

1. Each entity is mapped into a table. A useful standard is to use the
plural from of the entity for the table name.

2. Each attribute is mapped into a column of the same name with the
proper types in the table that the entity has just been mapped into.
Optional attributes become NULL columns. Mandatory attributes
should be non-NULL columns.

3. The components of the unique identifier of the entity become the
primary key of the table. Remember also that an entity may be
uniquely identified by a combination of attributes and/or
relationships. When relationships are used follow along the
relationship and bring down as columns a copy of the unique
identification components of the entity at the far end of the
relationships as part of the primary key.(This may be recursive until
attributes are eventually found.)

4. Many to one(and one to one) relationship become foreign key. That
is, bring down a copy of the unique identifier of each referenced
entity from the one end and use as columns of foreign key.Optional
relationships create NULL columns.Mandatory relationships create
not NULL columns.

Relational Database Design 3232-5

Following is an example of mapping:

STEP
Create table aitports(

code char (4) PRIMARY KEY,

name char (40) not NULL,

Create table airlines(

code char(4) PRIMARY KEY,

name char (40) not NULL,

Parent_airline_code char (4) NULL,

reference airlines(code),

Create table airline_routes(

flight_number number (4),

airline_code char (4),

from_airport_code char (4) not NULL,

to_ariport_code char(4) not NULL,

Relational Database Design

1

2/3
2

1

2/3
2

4

1

2

3

4

4

3232-6

scheduled date NULL, 2

departure_time date NULL, 2

constraint PRIMARY KEY 3

(flight_number, airline_code),

constraint FOREIGN KEY(airline_code) 4

references airlines(code),

constraint FOREIGN KEY 4

(from_airport_code) references airports(code),

constraint FOREIGN KEY 4

(to_airport_code) references airports(code),

)

Relational Database Design 3232-7

5 Data Integrity

Data integrity guarantees that data in a database adheres to a predefined
set of constraints. It ensures that users only perform operations which
leave the database in a consistent state.

There are two types of implementations for enforcing data integrity.

• Declarative

Declarative constraints and actions can be specified in the CREATE
TABLE statement. At the end of each multiple step update(after all
actual updates done in a UPDATE statement), the constraints are
enforced and actions are taken.

• Procedural

Triggers and application code can both specify the conditions and
actions. Trigger is a user-defined SQL block associated with a
specific table, and implicitly frred(executed) when a triggering
statement is issued against the table. The procedural implementation
is not covered in this paper.

Relational Database Design 3232-8

6 Types of data integrity

• Entity Integrity

It governs the data content of a single row. It serves as an intra-table
constraint.

not NULL: columns must have values.

default: default value for columns not specified on INSERT.

unique: no two rows/fields have the same value.

check: must be true of all inserts and updates on the table.

create table emp(

empno number(4), /* PRIMARY KEY */
ename char(20), not NULL,

deptno number(4), /* FOREIGN KEY */
mgrno number(4), /* FOREIGN KEY */

salary number(6)

constraint sal_range check(salary < 9000),

hiredate date default SYSDATE,

create table dept(

deptno number(4) /* PRIMARY KEY */
dname varchar2(20) unique,

depbngr number(4), /* FOREIGN KEY */

)

• Referential Integrity

It enforces a master/detail relationship between tables based on
primary/foreign keys. It ensures that any detail record must always
have a corresponding master when insert, update, and delete
statements are issued against the table.

Relational Database Design 323~9

For TurboIMAGE, the master/detail relationship is modelled by the
manual master and detail set.

When there is a delete or update on the primary/unique key that the
foreign key is referencing to, there are two actions which can be
specified. One is DELETE CASCADE. What it means is ifa master
row is deleted, foreign key rows referencing the deleted row's key
are deleted automatically. The other is UPDATE/DELETE
RESTRICT. This basically makes sure a master row cannot be
updated or deleted if. referenced by any foreign keys when the
UPDATE/DELETE statement is issued against it.

Following is an example of specifying the Referential Integrity for
the emp and dept tables.

create table emp(

empno number(4) PRIMARY KEY,

ename char(20), not NULL,

deptno number(4)

constraint work_in FOREIGN KEY (deptno)

references dept(deptno) on DELETE CASCADE,

mgmo number(4)

constraint work_for FOREIGN KEY (mgmo)

references emp(empno),

salary number(6)

constraint sal_range check(salary < 9000),

hiredate date default SYSDATE,

create table dept(

deptno number(4) PRIMARY KEY,

dname varchar2(20) unique,

deptmgr number(4)

constraint run_by FOREIGN KEY (mgmo)

references emp(empno),

Relational Database Design 3232-10

7 How to enforce the referential integrity if the
relational system does not directly support it

The crucial importance of primary and foreign keys to relational
database design has been stressed. Following is a way that you can
enforce the primary and foreign key disciplines yourself if the relational
system that you work with does not provide the direct support. (For
Oracle, Version 6 only accepts the syntax for Referential Integrity. It
does not enforce it in the RDBMS. Version 7 will support both the
Entity Integrity and Referential Integrity)

For each primary key in your design:

• Specify NOT NULL for each field in the primary key.

• Create a UNITQUE index over the combination of all fields in the
primary key.

• Ensure that this index is in existence right after the table creation.
This is to make sure all inserts and updates of the primary keys will
follow the discipline.

For each foreign key in your design:

• Find out if the foreign key can be null. Specify NOT NULL for each
field in the foreign key if it is not allowed to be NULL.

• Create an index over the combination of all fields in the foreign key.
If the foreign key and its matching primary key will often be used as
the basis for join operation.

• Take the foreign key constraints as part of the application
specification. Have one module/routine which does the updates or
inserts of the foreign key. However, have every one who wants to
insert/update the foreign keys all go through this same routine.

• Use the authorization mechanism to control the insert/update/delete
to the primary key table and the foreign key table.

General business rules:

It specify complex business conditions. Traditionally, all of the
business rules are specified in the applications. With the offering of
"triggers" and stored procedures", a big percentage of the general
business rules can move to the databases.

Relational Database Design 3232-11

8 Miscellaneous Topics

• Sequence Numbers

System generated unique identifiers.

The sequence numbers can be produced by means of a table, each
row of which contains the name of a sequence and the next value to
be allocated. However, if many tables with system-generated
identifiers are subject to frequent INSERTs, having a single
sequence table may lead to contentions. In such a case, a
considerable improvement can be made by having a separate control
table for each sequence to be generated. Oracle Version 6 provides
its own sequence number generator which multiple users may
generate unique integers. Sequence numbers may be used to
generate primary keys automatically.

Example:

CREATE SEQUENCE [user.] sequence

INCREMENT BY 1

STARTwrrn 1

The numbers are generated when the pseudo-column NEXTVAL is
accessed.

INSERT INTO table

VALUES

([user.] sequence.NEXTVAL)

• Selective Denonnalization

The process of nonnalization and the technique of Entity
Relationship Modelling both aspire to a design which is devoid of
redundancy. The reason for eliminating redundancy is to remove the
difficulties associated with updating duplicated infonnation.

On the other hand, a nonnalized design involves separate table
which may have to be joined to satisfy given queries, and this in
itself is an overhead.

Relational Database Design 3232-12

So the database designer may introduce some redundancy for
performances when two or more tables are:

* relatively static with respect to DML.

* relatively active with respect to cross-table queries.

• Artificial Primary Keys

In practice, it may be hard to find primary keys. Many entities, such
as people, do not come with unique identity codes. Also, some
unique identifiers in a table may tum out to very complex, a
combination of many columns or even the whole row(composite
key). The composite keys can lead to redundancy ifa composite key
is used to link the relationship between a master and detail. Also, it
is clumsy that the users have to write their queries like:

WHERE master.key_partl = detail.key-part1

AND master.key-part2 =detail.key_para

AND master.key-part3 = detail.key_part3

In these cases, the designer may consider specifying an invented
artificial primary key. The user can use the sequence numbers as the
artificial primary keys. One disadvantage is that if the original
composite key content in the master relation is always needed when
querying the detail relation contents, then more joins will now be
needed.

Relational Database Design 3232-13

9 Use of CASE ·tools

Computer-Aided Software Engineering(CASE) tools are available
from many different vendors. Most offer some form of entity
relationship of data modelling capability. A large amount of the
database design can be carried out automatically by these CASE tools.
However, this is only a starting point, as the database design now needs
careful scrutinizing to ensure that it provides full support in a
performance/space efficient manner. for the applications. This may
require careful denonnalization, controlled replication across a
network, and detailed physical design of indexes and disk utilization.

Relational Database Design 3232-14

10 Conc~usion

Database design has traditionally been regarded as a very difficult task,
requiring very specialized skills. With the data integrity enhancement in
SQL, relational database systems simplifies the relational database
design task. The designer can describe the complex data requirements
in a very declarative way, and application programmers can skip many
data checking and enforcement in the code. All these allow us to
concentrate in building a more complex database now and in the future.

Relational Database Design 3232-15

TITLE:

AUTHOR:

TurboIMAGE/XL's Standard Interface to Third-

Party

Eric Savage

Dynamic Information Systems Corp.

652 Bair Island Road
Suite 101

Redwood City, CA 94063

(4l5) 367-9696

FINAL PAPER NOT AVAILABLE, HANDOUTS WILL BE PROVIDED AT
TIME OF SESSION.

PAPERNO. 3233

Paper Number 3234

CASE ME
Computer Aided Software Engineering Tools

for Managing User Expectations in
a Software Migration Project

By

Garry L. smith
Charles McMurray Company

2520 N. Argyle
Fresno, CA 93727

(209) 292-5751

This paper presents the use of Computer Aided Software
Engineering (CASE) tools to Manage user Expectations (ME) of a
finished software product. After decades of meeting the end user
needs, the computer software industry has only in the last five
years started to provide tools for the software developer. Now at
last CASE tools are out of the infancy stage and actively being
used by Information Systems departments. This paper focuses on the
use of CASE tools to upgrade an 'over-the-hill' software
application.

Replacing software that is at the end of its life-cycle is a
task that will continue to be at the top of the agenda for many
Information Systems departments. Software which has been modified
over time to meet changing business strategies and to satisfy
external requirements leads to a patch work of highly customized
application software.

This paper details the use of Data Flow Diaqrams(DFDs) and
data dictionaries to document the entity relations, the system
functions, the operational flow of data and the existing manual
procedures of the company. This paper does not attempt to teach the
concepts of structured analysis, data flow diagrams, nor data
dictionaries, but merely presents how these tools were used during
a software migration process. The CASE tools provide a methodology
for standardizing and maintaining documentation about the
organization's management information system.

This paper describes a software migration project for the
Charles McMurray Company which had a custom software application
which had evolved over a fourteen year period and over two
different vendor hardware platforms. The lack of integration,
standards and program documentation propelled management to make a
decision on acquiring a new software application.

CASE Tools in Software Migration 3234 - 1

Part and parcel of the Information Systems life cycle is the
replacement/upgrade of hardware and software. The McMurray company
had recently acquired a new hardware system(HP-3000/922RX) so there
was no question as to the hardware on which the application
software needed to run on. There are four major software
replacement strategies: 1) modify the existing system to provide
integration and data integrity, 2) develop a new system, 3)
purchase a new integrated software system and 4) purchase a system
and modify the application to meet the company's needs. This is
the basic scenario faced by many Information Systems department at
the end of the software life cycle. The four alternatives are
typically generic, and with the application of internal
values/politics and the ubiquitous cost/benefit analysis each
company reaches its own course of action. The optimal solution for
Charles McMurray Company was to find an integrated software
application the provided 80% of the company's information
processing requirements and provide the flexibility for
modification. Therefore, McMurray has chosen option number four(4) ,
modify the 'off-the-shelf' system.

Having decided on the appropriate course of action, a project
plan was created and signed by the president of the company(see
appendix "A"). A project plan is crucial to the success of any
project involving more than two people and greater than 40 man
hours. This project plan summarized the rational for acquiring a
software package, defined the project boundaries, the objectives,
the approach to be used, the resources required, individual's
responsibilities and a general time-line of target dates for the
major milestones needed to complete the project. This project plan
was then presented and distributed to all the employees of the
company. Future enhancements were also discussed and input was
solicited from all employees at the meeting.

The use of a project plan is imperative to maintain project
focus and timeliness. The detailed tasks and milestones provided by
the project plan allow for periodic reviews of the project ' s
progress. The official approval of the project by the company
president provides the license for the Information Systems
department to collect data, interview employees, and allocate
company resources to achieve the completion of the project.

Before serious evaluation of vendor packages could occur there
were several questions that needed to be resolved; what is the
current functionality being. provided by the existing software?,
what are the problem areas?, what areas can be improved upon? The
projected was started in September of 1990. By using some simple
front-end CASE Tools such as a Data Flow Diagrammer, Data
Dictionary, Word Processor the existing system was documented.
Using the diagrams generated (see appendix "B") the major

CASE Tools in Software Migration 3234 - 2

deficiencies and lack of integration were highlighted for the
users. After having analyzed the existing system, a new proposed
system generated(see appendix nCn). Diagram modifications were
easily accomplished by using a diagramming tool. The analysis
occurred within about a two month time-frame.

It is important to clarify the context in which the acronym
CASE is used. CASE is the new buzzword in information technology,
just as was 4GL and Relational. What many vendors call CASE are in
essence back-end CASE Tools used for programming productivity.
Front-End CASE is typically used for analysis productivity. The
acronym I-CASE stands for Integrated Computer Aided Software
Engineering, which includes a both a front-end and back-end CASE
tools integrated to form on seamless process from analysis-design
through database maintenance and program revisions.

The use of front-end CASE tools greatly facilitated the
documentation of existing system functionality. The diagrams in
Appendix show what currently existed and what will be. These can be
understood by the user and are easily modified. The use of the
data dictionary(see appendix non) provides the documentation of
data elements and their attributes for the systems department to
validate detailed program logic.

In the development of complex software systems from the
'ground-Up' integration between front-end (design) and back
end (program productivity) is important. Integrated C~E tools help
minimize the software development costs and 1ncrease the
completeness and cohesion of the final product. There are few
products on the market today that accomplish this task. Those
products that are available are typically beyond the bUdgets of
most small I.S. shops. Therefore, Charles McMurray uses a
combination of front-end and back-end CASE tools to accomplish the
software migration. For a front-end tool Charles McMurray uses a
personal computer based data flow diagrammer with data dictionary
capabilities.

In the past CASE tools comprised of: 4GLs, Word processors,
copy libraries, Full Screen Editors. Today, any shop that does not
provide personal computers to their programmer/analysts and other
senior Information systems staff is severely impeding the
productivity of their organization. The concept of the information
workbenoh which uses the micro-computer for its memory and
processing capabilities, quality of graphics, networking, multi
tasking and connectivity as the major hardware tool is of vital
importance to the CASE system.

At Charles McMurray all Information Systems staff are equipped
with Vectra compatible 386 machines with mUlti-sync color monitors

CASE Tools in Software Migration 3234 - 3

and a m1n1mum of 40 megabytes of disk. This allows the use of the
full array of products available for the MS-DOS/Windows and/or New
Wave environment. The ability to upload and download information
between systems, capture 'screens for documentation, present
structured english of detailed conversion logic/algorithms and
document the cross-reference of data elements between the old to
the new system reduced conversion errors. The documentation
generated and discussed with the user provided a method for
involving the user in the software migration process.

The search for software vendors occurred in parallel with the
specifications definition and three final vendor packages
identified to reviewed in detail by December of 1990. These
packages were reviewed based on the primary criteria of cost versus
functionality. The other major criteria included availability of
source and ease of system modification. At the end of December a
software vendor was selected and an integrated General Ledger,
Accounts Payable, Accounts Receivable, Order Processing, Inventory
and Purchasing system was delivered to the Information System
department.

Since cost was a primary factor in the selection criteria the
acquired system was written in COBOL. The overwhelming task of
modifying of several hundred COBOL programs, was slightly reduced
by the extensive use of copy libraries and the purchase of a full
screen editor for the HP-3000. Here again, any systems department
which does not provide a full screen editor on the HP-3000 for
their programmers is losing the full potential of their programming
staff. Other future tools that will be proposed during the bUdget
approval process include: revision/module management system, system
wide dictionary, database tools, and a report writer. The future
acquisition of a back-end CASE tool such as a report writer, will
provide some additional gains over using just the QUERY/V
capabilities.

The continued contact between systems department and the users
is accomplished by structured walk-throug~which provide a forum
for discussing the project progression and any issues or problems
that need to be resolved. Since, one of the goals of the software
migration was to continue tp provide the Charles McMurray users
with the same functions currently available on their existing
system, the statement - "We want the report [and/or screens] to
look like the old system." was common during these meetings. By
stressing the concept of functionality not similarity many reports
and screens did not have to be re-written. A software migration
project is the best time to question the user on why they are
performing certain procedures and suggest changes to eliminate
redundancy. The use of data flow diagrams also helped implement
changes in manual filing procedures, since the new system will

CASE Tools in Software Migration 3234 - 4

maintain and track most of the data required by the users. Many of
these manual procedures were developed to overcome the deficiencies
of the old system.

As the conversion progresses to a production environment
additional enhancements are requested by the user. This is due to
their increasing familiarity with the new system and the revelation
of the new system potential. An important part of managing the
users' expectations is based on the project plan and the
presentation of data flow diagrams indicating the functionality
that will be provided in the initial migration. Therefore, the
initial project plan details only the conversion process of
migrating from the existing software system to the new software
environment. In order for management and the users to understand
the impact of the new system on the organization and communicate
the changes in information flow which will occur as a result of the
new software, the data flow diagrams were helpful as a visual model
of the new software (See attachment "C").

Depending on the company's financial resources and the success
of the original migration project the Information Systems
department should have the support of the company's management and
user community for continuing to increase the information
technology used in the company. The long term goals for the
software replacement include: increase customer service,
flexibility to allow for c~'pany expansion without major increases
in personnel. The new software will provide the ability to
implement cost effective information technology to increase
McMurray's competitive advantage. The possibility exists for
decision support systems for inventory pricing and purchasing. The
new software will provide capability for customer and vendor
analysis reports, begin to automate inventory control by using bar
codes, and finally install lap-top personal computers with each
salesman for inventory pricing, availability and customer order
entry. All of these projected changes can be readily incorporated
into the documentation as the result of using automated CASE tools
and can be reviewed for completeness and consistency.

CASE Tools in Software Migration 3234 - 5

Conclusion

The basic modules of eASE technology have been in use for
years by many shops. However, the concepts of the integrated CASE
tools and the software workbench are a refinement of the islands of
automation that exist to increase the productivity of the
information worker.

Top management and Information Systems managers must bUdget
the resources for systems departments to continue to upgrade and
invest in tools for their staff. They must also continue to educate
their management and user staff on the use of Information
Technology. The challenge of 1990's are multi-faceted involving
integrated networks, voice-data-video transmissions, high-level
code management, multi-vendor software and hardware platforms,
object-oriented programming and holistic databases. The evolution
of the I. S . department to new areas of processing require the
information systems department to document large complex systems.
Nowadays their are many levels and players in an organization's
information processing: the individual processor, the work-group,
the organization processing, inter-organization processing
(Electronic Data Interchange(EDI», the manual user procedures and
the continued support of all the old and existing systems nobody
has the resources nor understanding to replace nor upgrade!!! When
the resources are available to implement a new organizational
information system, the ability to comprehend and document the
current state of affairs is crucial to designing and implementing
a replacement software system. CASE tools and the related concepts
provide a standardized consistent methodology for accomplishing the
challenging task of software replacement in the 1990's. There are
several excellent books by noted authors that will provide a great
source of information for your staff, purchase these books for
department and encourage your staff to read and actively discuss
the concepts presented in these books. As an Information System
manager you should be attending seminars and classes to further you
own knOWledge and understanding of the on-going Information
Technology evolution.

CASE Tools in Software Migration 3234 - 6

Glossary of Terms

4GL Fourth Generation Language Program development
environment. Typically a database system with a set of software
development tools such as menu generators, screen builders, report
writers, compilers, linkers·and debuggers.

Back End CASE Tools - CASE tools which provide automation in
programming, implementation and maintenance portion of the software
development life cycle.

CASE - Computer Aided Software Engineering

context Diagram - the top level diagram of a multi-level data flow
diagram.

Data Dictionary - a collection of all the data elements used in a
software. Each data element in the dictionary is described as to
its inclusion in data flows, files, sources, sinks and attributes.

Data Flow Diagram - a graphic representation used to show the
interfaces and functions of the components in a system; used to
determine the sources and sinks of data. Graphical representation
of the data flows between components.

Entity-Relation Diagram - shows only the entity types and their
relationships.

Front End CASE Tools - CASE tools which provide automation in the
design and analysis portion of the software development life cycle.

Pseudo Code high level, machine independent program logic
specifications.

Structured English a subset of the English language with
restricted syntax and vocabulary, used for process specifications.
Used in conjunction with logical constructs of structured
programming to create program pseudo code.

Structured Analysis - a disciplined step-by-step approach for
performing system analysis and producing a system specification
which conforms to a specific set of rules and principles. The
major methodologies are: Yourdon structured design, Gane-Sarson
structured analysis, DeMarco structured analysis, Orr structured
design, Jackson structured design.

CASE Tools in ~oftware Migration 3234 - 7

Bibliography

Yourdon, Edward Modern structured Analysis. Englewood Cliffs, N.J.:
Yourdon Press 1989.

Martin, James Database Design. Englewood Cliffs, N.J.:
Prentice-Hall 1985.

McClure, Carma CASE is Software Automation. Englewood Cliffs,
N.J.: Prentice-Hall 1989.

Kronke, David Management Information systems. Santa Cruz, CA
Mitchell Publishing, Inc 1989.

Visible Systems corporation Visible Analyst. 950 Winter Street,
Waltham, MA 02154

Cognos Corporation PowerDesign, PowerCASE, PowerHouse. 67 South
Bedford, Burlington, MA 01803-5164

Hewlett-Packard Company HP SoftBench. 19310 Pruneridge Ave,
Cupertino, CA 95014

Informix Software Inc. Informix. 4100 Bohannon Drive, Menlo Park,
CA 94025

Infocentre corporation StJeedware. 2300 East Katella Ave #150,
Anaheim, CA 92806

CASE Tools i~ Software Migration 3234 - 8

Project Name
Project Number
Original Date
Revision Date

Appendix A

Integrated Software Implementation for Charles McMurray
ISI001.MST
October 5, 1990

I. Project Background
Charles McMurray started its computerization in 1976 with the purchase

of an NCR computer system running inventory control software. This software
was developed and enhanced over a period of time by several individuals. In
1983, Charles McMurray, purchased a Hewlett-Packard 3000(BP-3000) series 39
computer system and converted all the existing NCR software to the HP-3000.

Recognizing the limitations of the existing application software,
Charles McMurray has started on a project for evaluating, purchasinq,
modifying and installing an integrated application software system.

II. Project Definition
This project plan will define the steps for acquisition, modification,

installation and conversion to an integrated application software for
Charles McMurray.

The steps are as follows:
2.1 Define the modifications required for the new_system, so that

existing functions will also be available in the new system.
2.2 Define the data migration strategy from the existing software

to the new integration application software system.
2.3 Define the installation and training criteria for the new~

system.

III. Project Objectiyes.
3.1 Identify all existing functions that are performed at Charles

McMurray for Order Processing, Inventory Management, Accounts
Receivable, Accounts Payable, Purchasing and General Ledger.

3.2 Identify the modifications to the new application that will be
required to continue performing the functions defined
in step 3.1.

3.3 Establish a concrete plan for the testing, acceptance and
control of the implementation for the new system.

IV. Approach.

4.1 Analyze the current- system, file structure and data elements.
4.2 Define the files and data elements to be converted to the new

""'system either manually and/or by a conversion program.
See attachment 'B' for the data element conversion
cross-reference table.

4.3 Define the testing steps needed to validate the fundamentals
of the _ system with the functional requirements. See attachmen~
IC' for the functional test definitions. The test scripts will
provide for a structured training format. If during the
training/testing the system fails to meet the requirement of the
user then an Information System Service Request will be completed
with the specific structured english describing the required
function.

CASE Tools in Software Migration 3234 - 9

Appendix A

4.4 Define the framework and steps needed for implementing the
modified application in a production environment.
See attachment 'A' for details.

V. Project Scope.
5.1 Define the division of labor for project tasks with the

Development Team for the implementation of the ""'function
requirements in a production environment.

5.2 Users will perform the tests and quality assurance phase of the
project as defined in attachment 'A' and in section VI
Project Resource Requirements.

VI. Project Resources Requirements.
6.1 ""'Development Team:

6.2 Training' Documentation: Garry L. Smith

6.3 Documentation and standards provide by the software vendor.

6.4 Software Resources: - CASE tool.
Personal Computer productivity tools •
.....Application Software.

6.5 Hardware Resources: HP-3000 Series 922RX.
Nine(9) Track 1600 BPI tape Drive.
Personal Computer System.

VII. Project completion Definition.
This project will be considered finished upon the successful
completion of the criteria noted below.

7.1 Quality assurance results have been formally approved by the
development team.

VIII. Estimated Completion Date.
8.1 See Attachment 'A' , 'B' and 'C'

8.2 The estimated completion date is June 1, 1991.

IX. start Date.
Project is started upon formal approval.

Approved. Date: 10/10/90.

_ a
President, Charles McMurray company.

CASE Tools in Software Migration 3234 - 10

Appendix A

Revised: 12/20/90

IIIQtlmplementation and Conversion Plan

No. Task Description By Plan Actual
---------------------~------------------ --------

1 Analyze existing procedure and system GS 10/10 -
requirements. 11/20/90 12/03/90

1.1 Accounts Receivable MS/KT 10/10/90

1.2 Accounts Payable MC 10/16/90

1.3 General Ledger MC 10/23/90

1.4 Inventory Management DC 10/26/90

1.5 Purchasing DC 11/05/90

1.6 Order Entry DC/CS 11/15/90
BY/KT

2. Review the data elements and define GS/DC 11/20/90 12/03/90
the conversion procedures needed to
convert the existing KSAM files.

3. Identify KSAM data elements that need to GS 11/30/90 12/03/90
be added to the databases or
modification required to the conversion
procedures.

3.1 Convert the KSAM file structures to GS 12/15/90 12/17/90
the ~system for use in testing.

4. Begin modifications to ~source code GS 01/05/91 12/17/90
as specified in step 1 process. - 03/25/91

4.1 Identify any additional changes to GS 03/25/91
the conversion rrcce~ures and/or
changes to the ystem.

5. Begin implementing the General Ledger
system in the production environment.

GS 03/25/91

5.1 General Ledger Training and
Setup GS/MC 03/18/91

CASE Tools in Software Migration 3234 - 11

Appendix B

Pl'oJec t: KCK
Parent: KCH.J,I.VD,_8

Chlrles HcHurray CO.
Existing $gsteM

Page No.
11-21-1998 LiSt Modified

Curg S"ith

Vendor-DeIiverg

Vendop-Invoicf

Vendor-ra.gMent

Order-DeIivery

CUSTOMER
CREDITS

CustOMfl'-Cl'edi ts

CustOMfl'-StateMent

Sacl'wnto-OI'deJlS •

Existing Sgst... Nanllll Int.,
W'L bans.

CASE Tools in Software Migration 3234 - 12

Appendix C

ProJect: HCBA
Parent: HCHJ,tvrL_9

Ch!~les ncHurr~y C~.
Hew SortHal'e Application

lE\jE~ 1

Page NIl. 1
12-97-1999 Last Hodilie:

CaJ'l'Y SNjth

'Jendo,-Deliver-y

lJendolPPayttent

VendolPInvoice

AP-shh-ledgel'
/

/
I

\
AR-Sub-'edgel'

I

Ordel'-DeIivery

CustoMelPlnvoice

CustoMel'-stateMent

CustottelPCHdi ts

1
(Accounts

___Cu_st_oM_el'_-P_aY_M_en_t .~" Receivable
\ :

n '~r1
,.~~ ri
:;~ Ii '+--~~~~---4ll.,"1 GeneN.l
- 1 "I....J JOUl\na!-Iilby Ji'" Ledgel'

lJu
Hanual Intl'Y
GIL tl'ans.

HeN SuttwaI'e

SaCl'aJtento-ONel'S •

CASE Tools in Software Migration 3234 - 13

Date: 05-09-1991
Time: 12 : 06 : 49

EMU

Description:

Appendix D

Project: MCM

Single Entry Listinq

DATA ELEMENT

Page:

Estimated Montly Usaqe is based on historical weighting of
quantities sold in the previous 12 months.

Location:

DATA FLOW

Date: 05-09-1991
Time: 12:12:05

Item-SOQ

--> Item-SOQ

Project: MCM

Single Entry Listing

DATA FLOW

Page:

Description:

Create purchase orders by vendor based on the EMU formula.
See Misc. EMU label description.

Composition:

safety, on-order, EMU

Notes:

This requires a 24 period history for the EMU calculation.
12-current, 12-prior year.

qty-shipped

Description:

Quantity Shipped on this order.

Values & Meanings:

Num(7.2)

Location:

DATA ELEMENT

DATA FLOW --> Confirm-Order

CASE Tools in Software Migration 3234 - 14

Paper Number: 3235

The Evolution of Relational Technology

Howard Rosenfield
400 Oracle Parkway

Redwood Shores, CA 94065
415/506-6161

The Evolution ofRelational Technology 3235-1

Introduction

The old axiom that "knowledge is power" applies more than ever in today's highly
competitive markets. The ability to access the right data quickly and in useful fonnats
is critical to success. Companies continue to invest millions of dollars in technology
to ensure that their various organizations can access up-to-date infonnation and beat
the competition.

The increasing need for data management tools, like Database Management Systems
(DBMS), clearly illustrates how dependent businesses of all types and sizes are on
timely and accurate infonnation. DBMS technology is constantlyevolving to meet their
increasing demands, and has moved beyond the hierarchical and network based
implementations of the past. Today's relational implementation of DBMS technology
provides data managers with an easy-to-use, flexible, timely and powerful way to
provide the needed infonnation to ron their businesses.

This paper traces the evolution of relational DBMS technology from its inception in
the 1960's to the present. A discussion of what makes a DBMS relational and how it
works are included. Advances in hardware and software that have contributed to the
development of the relational databases as they exist today will also be covered. Key
current and future trends will also be touched upon to highlight what the technology
can, and will do for the data processing professional.

Technology Trends Leading Up To Relational DBMSs

Early implementations of DBMSs made full use of the hardware that they were
designed to run on. These systems have limited funCtionality and flexibility by today's
standards. The relational DBMS evolved partly out of earlier data modeling schemas,
and has gone far beyond the limitations of its predecessors.

HIERARCHICAL A hierarchical DBMS can be thought of as set of parent-child relationships
that form a tree etructured database. Each node has only one parent, but can have
many children. When a query for information is put to the hierarchical DBMS the basic
operation is a tree search. Each node is traced from the root node through the 'tree'
until the conditions of the query are met. The nodes of the database hierarchy (or
hierarchical tree) consist of records connected to each other via links.

When the fust hierarchical DBMSs (IBM's DL/1 and IMS) were introduced in the 1960's,
they managed data in a manner that was previously unknown. Data administration
was being performed with flat files and COBOL. The introduction of the first
commercially viable hierarchical DBMS, IBM's IMS, came in 1968. This pioneering

The Evolution ofRelational Technology 3235-2

DBMS represented a significant step in the evolution of data management. The
applications developed using hierarchical databases were efficient and fast for
situations where the type of information that the user required was static. However,
a great deal of real world infonnation was not well suited for the hierarchical
implementation. In these systems, data is contained in strictly nested hierarchies. Each
node has only one parent. Data had to be represented several times. This was a waste
ofdata storage space and made the database difficult to update or correct. Hierarchical
databases limited how you could modify data structures, and how the data was
logically represented. Therefore, the type and amount of infonnation that could be
extracted from a given body of data was restricted.

NE1WORK The network model of DBMS design, such as Hewlett-Packard's IMAGE &
Cullinet's IDBMS, built upon the earlier hierarchical model. While the hierarchical
model permits onlyone parent to each child node (one-ta-many relationships between
data), the network implementation was designed to let each node have several
pointers that point to many other nodes (one-ta-many & many-to-one relationships).
These pointers or data links are clearly defmed in the DBTG (Data Base Task Group)
data defInition language (DDL).

This new concept of a DDL allowed the network DBMS architecture to move beyond
its hierarchical cousin. The data structure was no longer severely restricted. You could
now defme many different types ofdata links to get at the data. Still, the network model
is a limited tool for data management. For instance, the data links are often extremely
complex and since any node can be linked with any other (nested data links) it is often
difficult to figure out how to modify the database. Even when it is known what the
data access paths look like, it is often difficult to change them.

In a network DBMS, there is no notion of the ad hoc query. This restricts the type of
infonnation that can be extracted from the database. Even though this method ofdata
modeling is more flexible than its hierarchical predecessor, it is limited by the
complexity of its data structure and remains inflexible.

The Relational Model

In the late 1960's Dr. E.F. Codd, who was working for IBM at the time, first
conceptualized the relational data model. The fIrSt working implementation of the
relational model was developed at mM San Jose in the mid-70's, and was known as
SystemIR. The fIrSt commercially viable implementation of a relational DBMS was
delivered by Oracle in the late 1970's.

SQl

Manipulation of data with relational databases Is done using SQL (pronounced -seque/'), SQL
standsforStructured QueryLanguage. Itwasdeveloped for the relational data model In themk:i
1970's by IBM (C.J. Date). It has since been adopted by ANSI (American National Standards
Institute) as the standard language for relational databases.

SQL has three distinct components:

• DMl (Data Manipulation language)
• DOL (Data Definition language)
• Del (Data Control language)

T1HI Evolution ofRelational Technology 3235-3

The relational model represents a simple yet very robust way of viewing data. It is
relatively easy to maintain, and data can be represented in many different ways. In
addition to the One-to-Many and Many-to-One relationships that could be performed
with network architected databases, the relational model pennits Many-to-Many data
relationships. Relational data modeling allows for greater flexibility in data analysis
than its predecessors. This has led to the development of powerful 4GL tools that are
used by application developers and end users to access the database.

In relational databases, all data is conceptually stored in tables. A relational database
consists ofa set of tables. The tables consist ofcolumns (also referred to as fields) and
rows of data records. Each row of a table is a representation of a set of attributes
defmed by the columns. Tables are joined on their mutual columns. Every table has
a column known as a primary key to uniquely identify each row. Sometimes a table
requires a combination oftwo columns to form a primarykey. Aforeignkeyis a column
in a table that is not used to uniquely identify each row of the table, but is a primary
key in another table. For instance, given the two tables EMPLOYEE and DEPARTMENT
we can point out the primary and foreign keys:

EMPLOYEE

gil Y

Bmployce Employee Job Mauger DepaI1meDt
Number NIDlC NumbIlr

8941 JOlla SaIesmID 8941 10

6578 Smltb Qert 7465 30

3276 R.oborta ADalyJt 9287 20

7642 JohDloD Mauger 9933 10

~ -,
Fonl ICet PrImary Keys

DEPARTMENT

DepaI1meDt DepaI1meDt 1.oc:IdoD
Number Name

10 SaIcI SulDteao

20 0perati0Da SlDPnDdIco

30 AccountfDa New York

If we needed to join the two tables, we would do so with the department number
column since it is the common column between the two tables.

Relational data modeling does not rely on nested pointers to join each of its nodes or
entities together. The difficulties of maintaining and modifying a database that exist
in the network data model are no longer an issue because these nested data links are
not used. The inability to accurately reflect real world data that exists with hierarchical

DML handlesfunctionssuch as retrieving, updating, Inserting and deleting rows. The commands
SELECT, UPDATE, INSERT and DELETE are used to manipulate tables, with SELECT being the most
widely used. The structure of a SELECT statement Is as follows:

SELECT [DISTINCT] item-list
FROM tables
[WHERE search-condItIons]
[GROUP BY columns]
[HAVING expression]
[ORDER BY columns]

Items are selected from rows In a table or tables. Specific search conditions can be described
by using a WHERE statement. If the search conditions are met, the resulting data can be
organized by GROUP BY, HAVING, and/or ORDER BY statements. An example using the

The Evolution ofRelational Technology 3235-4

databases is also greatly reduced with the relational model. Data structures are no
longer inflexible. Instead, there is logical and physical data independence. Data
independence is defmed by C.]. Date (a developer ofSystemIR and a relational DBMS
authority) as, "the immunity of applications to change in storage structure and access
strategy." In other words, each table has its own theme, and two or more tables can
be connected or joined as long as they share a common attribute. This can be done
without effecting an application. This strategy eliminates the data redundancy that
occurs in hierarchical databases. You can extract infonnation from the database simply
by doing something like the following from the SQL command line:

SELECf • (. indicates a wildcard)
FROM DEPARTMENT;

This would retrieve all infonnation contained in the DEPARTMENT table.

The concept ofa view is very important to relational databases. Views can be thought
of as virtual tables since they are not physically stored in the database and are not
pennanent. They are extremely useful to the user for one-time extraction of
infonnation from the database without having to alter the data structure. They also
maintain data independence and enhance security by insulating users from knowing
in which tables the data they' re working with is actually stored.

Data DIctionary

The basic outline of a relational DBMS requires that there be a data dictionary (also
known as a system catalog) to store infonnation about all of the objects (table names,
indexes, views, etc.). The data dictionary is comprised of tables, just like any other
part of a relational database. Anyone can query the data dictionary to fmd out the
names of tables, column names of a particular table, or what tables share a common
column name. The data dictionary is also used by the DBMS itself to provide security.
For example, all information pertaining to the GRANT commands issued are contained
in the data dictionary, and the DBMS uses this infonnation to check whether or not
a particular user has access to a particular database object. Distributed databases (to
be covered later) are another area where the data dictionary is used by the DBMS.
Infonnation about which remote computer contains which parts of the database is
contained in data dictionary tables.

EMPLOYEE and DEPARTMENT tables could be:

SELECT * (* Indicates a wildcard)
FROM EMPLOYEE
WHERE DEPARTMENT NUMBER .10
ORDER BY EMPLOYEE NUMBER;

This would retrieve all Information from the EMPLOYEE table where the department number Is
equal to 10. The data would beordered byemployee number, withJohnson (#17642) being listed
first and Jones (#8941) being listed next.

DML also Includes the transaction management commands COMMIT and ROLLBACK. The
COMMIT statement Instructs the database to physically write any changes that have been
made. The ROLLBACK command can be used by database administrators to literally roll back
any updates that have been made to the database since the last commit. The ROLLBACK

The Evolution ofRelational Technology 3236·6

Why Relational?

Initially, relational DBMS technology was not seen as a viable solution to the problems
ofdata management. In the early 1980's relational database technology was described
as too slow for businesses in their pursuit to manage and use their data effidendy. It
was considered to be strictly an academic endeavor with little chance of becoming a
practical commercial tool.

In fact, this was not so much a limitation of the relational design but a limitation ofthe
hardware that existed at the time. As a result, the relational approach initially appeared
less robust than what was available at the time. Opinions have changed with advances
in hardware and software technology.

The hardware configurations of the late 1970's and early 1980's did not have the high
powered CPUs that exist today. Consequently, the software of the time was designed
to be I/O intensive, and not CPU reliant. This is the case with hierarchical and network
DBMSs. To extract information from the database, rigidly defmed data links are used.
This requires relatively little CPU processing since the data links explicitly define what
data access paths should be used.

The relational data model was designed for flexibility and ease-of-use. It was also
designed for flexible and efficient search algorithms, which have the effect of limiting
the amount of VO done by the system. These advanced search algorithms are
transparent to the end user. The goal in relational design is to minimize the number
of access paths to a particular piece of information. A minimal number of data blocks
are examined, which results in less disk I/O. This method ofdata retrieval does place
higher demands on the CPU because the DBMS is required to do a lot of the 'thinking'
that would be taken care ofby predefmed data links in hierarchical and network DBMS
implementations.

Reliance upon CPU power was a painful fact of life for relational DBMS users in the
early 1980's. The CPUs of the time had limited horsepower by today's standards.
However, the increasing speed oftoday's processors has exceeded the advances-made
in disk I/O. Hardware designs no longer impede the performance ofrelational DBMSs
In fact, transaction rates required for OLTP (On-Une Transaction Processing) envi
ronments are satisfied by relational DBMSs Relational databases are now achieving
transaction rates in the hundreds of TPS (Transactions Per Second) range. In a few
years, thousands of TPS will be the nonn.

command maintains the Integrity of the databases In cases where transactions are not
completed for some reason, such as power or communication failures.

SQl Data Definition language (DOL) Is used to create tables, Indexes and views. The creation
of a table would have the following format:

CREATE TABLE employee
(Employee_Number nurn,
Employee_Name char(15),
Employee_Address char(40),
Department char(5»

SQl's Data Control Language (Del) Is used for database security purposes. The two main
commands are GRANT and REVOKE. With these commands, database administratorscan give
users the authority to SELECT, UPDATE, INSERT and DELETE from tables or views.

The Evolution ofRelatIonal Technology 3235·6

All of this is not to say that the relational DBMS was mature software when it was fust
introduced in the late 1970's. Deficiencies in the relational model prevented it from
becoming commercially viable. The majority of these 'missing' features are included
in today's relational model, which is now an effident and reliable tool for managing
data.

Row level locking is a recent improvement. Until recently, when a user wanted to
extract or read data from a particular table the database engine locked the entire table
to other users. This limited the usability and speed ofapplications. Row-Ievellocking
means that users can proceed nonnally while someone is updating a particular row
of a table in the database. Because the DBMS only locks the row that is being written
to, other users can access the rest of the rows in the table. Improved SQL optimizers,
advances in distributed database technology (described below), and portability of
relational technology across dozens of hardware platfonns are additional enhance
ments made to relational DBMS implementations.

ClIent-8erver

Until recently, all database processing was done on centralized minicomputers or
mainframes accessed by dumb terminals. These centralized processors often became
overloaded as more users were added and applications became more complex.
Personal Computers (PCs) began to be used widely as centralized processing was
becomingoverloaded. Theyprovided low-cost, user-friendlyalternatives to centralized
computing. Networking technology began to evolve as users sought ways to link their
PCs together so that resources could be shared. If additional processing power was
required on a Local Area Network (LAN) another PC could be purchased and added
to the network at minimal cost. However, despite all of these advantages, PC LANs
still did not give the user a complete solution.

Many of the following features inherent in centralized computing could not be
provided by pcs:

• Data Integrity-The PC environment could not protect against the loss or
corruption of data if system failure occurred.

• SecUrity-It was difficult to restrict access to unauthorized users.

• Availability-Hardwarevendors have invested heavily to assure that their
mini's and mainframes are nmning at all times of the day and night. pcs
do not offer this high level of availability.

• CentraljzedDatabaseAdministrattonlCentraljzedProcessin~Havingone

group responsible for data management and system performance helps
to maintain a more stable data processing environment.

• Peiformance-The PC does not have the CPU throughput processing
reqUired for most data management.

CUENT-8ERVER computing is a relatively recent phenomena. It combines the best of the
centralized computing world with the PC LAN environment by dividing an application
up into two parts. The database setver's tasks are handled by the mini or mainframe
with their high availability and performance. Data integrity and security are enforced
here, and here is where the database resides. The smaller client machine is usually

The Evolution ofRelational Technology 3236-7

a PC, Macintosh, or UNIX workstation, which handles all processing required by the
application and communicates with the database server via the network. SQL
statements are passed from the client to the server. The requested information is then
sent back over the network from the database server to the client machine running the
front-end user interface tools.

Multiple clients can concurrently access the same database server. Should the
demands of the clients surpass the capacity of the database server, extra resources can
be added in two ways (known as scalability):

• Vertical Scaling--The server can be replaced with a larger machine with
more capacity (disk, CPU, memory, etc.).

• Horizontal Scaling-Additional servers can be added to the configura
tion, thus spreading the demands ofclient machines over several servers.

Client-server technology is beginning to become widely used by data processing
professionals with tools like Microsoft Windows becoming available. It gives them a
way to optimize their large investments in mini/mainframes and PC LANs by
combining them into heterogeneous computing environments that take the best of
both worlds without the limitations of either.

Distributed Databases

A distributed DBMS (DDBMS) is a database spread out overmultiple computers. These
computers are usually located at different physical sites, and are connected by a
communications network. The concept of a local database, with its own database
administrator, still exists with DDBMSs However, there is also the concept of a global
database made up of autonomous, local databases spread out over many physical
nodes. The global database appears as one logical database to the user or application
developer. All global operations conducted by the DBMS are transparent to the user.
The relational data model supports this concept because data is located by value and
not via pointers or physical position, as is the case with hierarchical and network
DBMSs

The DDBMS allows a more accurate representation of how information exists within
an enterprise. Since companies typically have many geographically dispersed
computers, it is logical to assume that data is also organized this way. Aglobal database
draws from multiple, physically dispersed databases. This is ofgreat advantage to the
user. For instance, let's say you were the chainnan of Ford Motor Company and you
wanted to design a new ad campaign for the Escort. Before you sat down with your
advertising people, perhaps you felt it would be good to review some demographic
infonnation on the people that bought Escorts over the past year. With a DDBMS, you
could issue a SQL query that would retrieve the needed data from various databases
residing in San Francisco, New York, Paris, Rome etc. How this information is retrieved
and delivered to your screen would be transparent to you, and would be handled by
the DDBMS.

A distributed DBMS allows the user to request information from a database without
having to worryabout how it is being retrieved. The data integrity on the various nodes
of a DDBMS is maintained, and each node is controlled locally. The data on multiple
databases can also be easily accessed or modified.

The Evolution ofRelational Technology 3235·8

LocA11ON TRANSPARENCY of data is accomplished by a data dictionary that maintains and
coordinates distributed transactions. The locations ofall tables, rows, indexes, etc. are
found in the data dictionary which is referenced by the DBMS when a distributed
transaction is issued. The user issuing a query against a remote database does not need
to know where the data is located since the database engine performs the search.

When a table is modified that is referenced by another table on a different node, both
the referencing and referenced table need to maintain the same value in both tables
for a common column. This concept is known as referentialintegrity. It canbe defmed
as the enforcement of relationships among data. It is based on the concepts ofmaster/
detail relationships between tables and primary (pK) and foreign keys (FK). This can
be illustrated with the DEPARTMENT and EMPLOYEE tables below. If a new
employee, Clark, is added to the EMPLOYEE table with a department number of 15
an errorwill be returned. The detail table (EMPLOYEE) will reference the master table
(DEPARTMENl) and fmd that 15 is not a valid department number.

Refenaeecl Table (1D88ter table) RefereadDg tabb (depeDd_t tabIle)

EMPLOYEE

Employee Employee Job Muapr Department

Department Loc:atioD Number Name Number

Umber Name 8941 10DeI SalClDWl 8941 10
10 Sales SaD Diego

6578 Smith Cak 7465 30
20 0perati0Da SaD PIIDdaco

3276 1lobeItI ADalyat 9287 20
30 AccountiDa NewYark

t
7642 JoImIoD Muapr 9933 10

I

DEPARTMENT

Department
N

Consistency of data across database nodes is enforced with a mechanism known as
two-pbase commit. In a perfect world with no system failures, there would be no need
for such a mechanism. However, a system can breakdown during a distributed
COMMIT transaction (save to the database) which can create an inconsistent state in
the database. To maintain data integrity, the transaction is done in two phases:

e Prepare Phase-The node that issues the COMMIT (parent node) asks
each of its dependent nodes (child nodes) to notify it when they are
prepared to commit their part of the transaction. They are told not to take
any action, until instructed to by the parent node.

e CommitPbase-The parent node commits, unless there has been a failure
during the Prepare Phase. Ofafailureoccurs, theparentnode rolls baclJ
does not execute-the transactionJ The parent node then instructs each
child node to commit or roll back the transaction. Each child node then
infonns the parent node that it has committed or rolled back the
transaction.

Relational DBMS will lead the way to the Widespread use of distributed databases.
They will profoundly effect how data management is handled. For example, users will
be able to tap global databases and draw inferences from data residing on separate
databases located all over the country or the world. This will be possible without the
user having to know about where the data is located, or how it is extracted. DBMSs

The Evolution ofRelst/onal Technology 3235-9

with open architecture will make distributed databases even more invaluable to the
data manager. A DBMS with an open architecture provides tools that pennit access
to heterogeneous DBMSs (i.e., relational to network, relational to hierarchical). Any
MIS manager that has to deal with more than one DBMS to manage data will find an
open architected DBMS essential. It protects the considerable investment made in one
DBMS architecture and still allows work to proceed in another. Many relational
database vendors already offer heterogeneous D.BMS tools.

Future DBMS Trends

The amount of information that is currently accessible is growing at an exponential
rate. Take online text databases as an example. By the late 1980's there were over
two billion documents stored in databases. In 1979, there were 400 online text
databases worldwide. By 1988, the number was in excess of 3000. This is only an
approximation of the public online databases. There are many proprietary databases
that are not accessible to the general public. There are also millions of databases
containing information on almost anything imaginable (such as sales, inventory,
financial information, and market research).

This information is only useful if the user can retrieve what is needed. The database
engine must have highly sophisticated data access paths. Just as relationalDBMSs
handle more database searching than their hierarchical and network predecessors,
future DBMS technology will be even more intelligent when it comes to retrieving
infonnation. The user's ability to process and locate information may not improve
dramatically even though the amount ofonline data is increasing at a steady rate. The
DBMS must retrieve data more efficiently. It is a safe assumption, given its simple yet
powerful design, that the relational data model will be able to accommodate the next
stage ofDBMS evolution without forcing its users to make drastic changes in how they
manage their data. Users will be able to use their existing applications, and take
advantage of the new technology as it becomes available.

One way ofmaking a relational database more intelligent is to use a more sophisticated
indexing process where the index is based on concepts or objects rather than
individual keywords. This approach is often referred to as object-orlented data
modeling. An object can be thought of as anything that can be defined as a noun or
a noun phrase. This approach represents data in a format which is very close to the
user's perception of real world data. A person, a concept like DNA, a picture, or an
architect's design can all be thought ofas objects. An object is defined by its attributes.
For a car, the attributes might include model, year, color, and horsepower. The
concept of the class is important to object-oriented databases. Every object is a
member of specific category or class. A class may also be defined as a subclass of one
or more other classes. An example would be the Chevrolet ColVette, which is a
member of the American sports car class, which could be a subclass of the sports car
class, which could be a subclass of the automobile class, and so on. How the classes
and subclasses interrelate is a matter of database design.

The relational model will be able to handle the evolution to object-oriented design
without traumatizing data managers. Every row in a table can be thought of as
containing a database object. The object can be identified by the tables primary key,
and the class of the object can be thought of as the table in which the row resides. By
enhancing the current relational data model to include features of the objeet-oriented
model the evolution of the DBMS will move towards an objeet-oriented approach
where the relational model sulVives as a subset of the overall object-oriented model.

The Evolution ofRelational Technology 3235-10

New DBMS architectures take a few years to mature to the point where they can be
used in production environments. Because the relational model will evolve from its
current state to a more object-oriented model, the data manager will not have to start
from scratch in order to take advantage of the latest DBMS technology. Applications
will be enhanced gradually by taking advantage of appropriate features as they are
developed. There will also be no need to decide whether an application will run
against a relational database or the newer objeet-oriented database. It is possible that
an application will span relational and objeet-oriented designs. A single query could
retum results by accessing both tables and objects which will coexist in the same
database.

This step in the evolution of DBMS design will be transparent to the end user.
However, the enhanced power and flexibility of future database designs will permit
the development of highly advanced user interface tools that will make infonnation
highly accessible to those who need it. This will result in more efficient use of
infonnation and greater productivity.

Conclusion

Relational database technology provides today's data managers with an easy-to-use,
flexible, and powerful way to access the information required to run their businesses.
While it was once considered to be strictly an academic endeavor, it has evolved
beyond its hierarchical and network predecessors to become the state of the art in
database management systems. By taking advantage of today's powerful CPUs
relational technology has been able to provide the speed once reselVed only for
hierarchical and network databases and the usability that was previously lacking in
those earlier DBMS designs. Relational database performancewill continue to improve
by taking advantage of future advances in CPU power.

Client-server computing and distributed databases based on relational technology will
help users and application developers fmd new and innovative ways to access and
utilize their information. Object-oriented databases will eventually evolve out of the
relational model. Data will be conceptualized in a different way. This will allow
businesses to use the information at their disposal to its fullest potential. The relational
data model will be a big part of this evolution, so data managers will not have to make
drastic choices about which DBMS technology to use. Relational database technology
is the tool that will allow businesses to manage their complex data needs today and
in the future.

The EvolutIon ofRelational Technology 3235·11

lIP Motif XL: Tbe X Window System on MPE XL
Paper Number 3236

Scott Cressler

Hewlett-Packard
19447 Pruneridge AveDue

Cupertino, CA 95014
(408)447-5548

HP Motif XL is the implementation of the X Window System, the Xt Toolkit and the
OSFlMotif widget libretry for MPE XL. This paper will discuss the components of an
application which uses HP Motif XL to present a graphical user interface from an HP 3000
Series 900.

X OVERVIEW

The X Window System is an industry standard application programming interface. Developed
and maintained by the Massachussets Institute of Technology (MIT), X can be used by an
application developer to present a graphical user interface. lbis interlace can be displayed on
a high-resolution display connected to the machine on whicb the application is executing or on
another machine on the network. lbis distributed nature is achieved through the client/server
architecture of the X Window System. The application acts as a client, requesting user
interface services from a process called the X display server. This process manages the higb
resolution display, the keyboard and the mouse of the machine acting as the X display. It also
informs the client application when the user provides input.

Applications which use X to present their user interface enjoy two types of portability. The
interface pan of the application can easily be ported, through recompilation and relinking, to
any system which supports the X libraries. Additionally, the protocol used to communicate
from the client to the display server is standardized so a client can display on any X display
server, regardless of hardware or operating system.

The ability to present a windowed, graphical user interface over a network is provided through
a set of programmatic interfaces called the X library (XIib). This library is very flexible,
imposing few constraints on the X developer. However, this flexibility also causes program
development to be quite tedious. Fortunately, another library out of MIT, the Xt Toolkit,
provides a set of programmatic interfaces which significantly ease the creation of an X user
interface. Xt supports the creation and use of widgets. "Widget" is the name given to a set of
functions and data structures which, when used by an application with the Xt interfaces, will
display and manage user interaction with a piece of a user interface. For example, a "push
button widget" would display a button and then inform the application when the user has
"pushed" the button with the mouse. A library of these widgets can be used to create an entire
X user interface without having to use Xlib functions directly.

One such library of widgets, which is gaining much acceptance in the industry, is from the

HP Motif XL: Tbe X Window System OD MPE XL 3236-1

Open Software Foundation (OSF) and is called OSFlMotif. Witb the OSFlMotif widgets an
application can present an X user interface which has a three-dimensional appearance and
behavior. This user interface would also be consistent in appearance and behavior with
Microsoft's OS/2 Presentation Manager (PM) (and Windows 3.0), reducing the training time
needed for a user accustomed to PM to learn an OSF/Motif application. The ease of a user
who is familiar with one type of user interface to use other programs with a similiar user
interface is called "user portability." This is a portability benefit enjoyed by OSFlMotif
applications which is not as easy to achieve using X alone.

HP Motif XL is the implementation of these three programmatic interface libraries on l\.fPE
XL. It consists of the Xlib, Xt and OSFlMotif libraries and the header (or include) files
necessary to allow an OSF/Motif application to be compiled, linked and run on an HP 3000
Series 900. This application, written in the C language, will then be an X client application
and can display on an X display server connected to the same LAN. An HP 9000 workstation
is an example of an X display server.

THE APPLICATION

This paper will center around a small HP Motif XL application. The application is a Pizza
Price Calculator, which is called PIZZA. lbrougb a set of buttons, the user chooses the size
of the pizza and the toppings. As each topping is chosen, the new price of the pizza is
displayed. There are also buttons for choosing all toppmgs, for choosing no toppings and for
exiting the application. A complete listing of the C language source code of the application
can be found at the end of this paper.

This is the appearance of the user interface of the PIZZA application:

The Pizza Price Calculator

Altbough this application is fairly trivial, it is a good example to demonstrate the use of X and
OSFlMotif. It can also be seen in more general terms as an application to detennine pricing of
a product being ordered.

3236-2 HP Motif XL: The X Window System on MPE XL

TERMINOLOGY

This section contains the definition of several terms which will be used in the paper. You
might scan it now and use it for reference later.

Application Class Name - This name is used to group applicatiODS into similar classes. Any
resources (see below) which are defined for a given application class name will apply to any
application which specifies that name during initialization.

Events - The display server informs the application of input in its window, the need to redraw
its window because it was overlapped and is now exposed, or other interesting occurences by
sending the application "events."

Gadgets - A simplified form of a widget. Although gadgets lack some of the functionality of
widgets, such as the ability to have their colors individually customized by the user, they are
faster than widgets and use less memory. For this reason, gadgets should be used wherever
possible.

Geometry - The geometry of a widget is its size and placement in the window.

Resources - A resource is a customizable attribute of an application and its user interface,
e.g., the foreground color of the application window or the font used in displaying text.
Resource values can be specified by the developer, system manager or user through
configuration files, called resource files. They can also be specified on the command line when
the program is executed.

WidgetS - A widget is a set of functions and data structures which can be used and reused by
an application to display and manage user interaction with a piece of a user interface.

HP Motif XL: Tbe X Window System on MPlE XL 3236-3

MAIN APPLICATION BODY

The main() function of a C program is the one which is executed when the program is run. X
applications all have fairly similar mainO functions. This section will "step through" the major
components of the main body of the PIZZA application. The following is the source of the
mainO function:

aain(argc, argv)
iDt argc;
char ••argv;
{

irg &1[1];
iDt ac;
ItlppContext app;

initializelnfo();

topLevel = ItAppInitialize(aapp, /. (default) application context */
"Pizza", /* application clus JUUle */
lULL, /* no options */
0, /* Dumber of optiOD8 */
aargc, /* u8ed to get standard co_and liDe */
argv, /* options and applicatioD DUle */
lULL, /* no fallback resources ./
al, /* DO args */
0); /* DO arg8 */

/* Tell Shell to resize if its children (specifically geometry
aanaging children like Foms) ask it to.•/

ac = 0;
XtSetArg(al[ac], lIIIallovShellResize, True);
ac++;
XtSetValues (topLevel, all ac);

createlnterfaceVidget8();

ItlealizeVidget(topLevel)i

ItlppMaiDLoop(app);
}

Declantions

The declarations of al and ae are peculiar to an application which uses widgets through Xt.
"AI" stands for "argument list" and "sc" for "argument count". An argument list is a structure
which is used to specify resource values when creating a widget or modify the resource values

3236-4 lIP Motif XL: The X WIndow System on MPE XL

of an existing widget. This topic is discussed more in the section "Allow Shell Resizing" below.

Initialization

After the declaration portions, the following statements are the first statements of the program:

initializeIDfo();

topLevel =ItAppInitialize(tapp. ,. (default) application context ./
"Pizza". ,. application c1us DUe .,

lULL. ,. DO optione .,
O. ,. Duber of OptiODlS .,
tarlC. ,. uaeel to set standard cOlDlUld liD••/
ur. ,. options uuI app1icatioD lLUe ./
lULL. ,. DO fallback resources .,
al, ,. DO arl8 .,
0), ,. DO arlS .,

The first function called, initializelnfo{), is a local function to the PIZZA application which
simply initializes some arrays of information about the prices and names of the pizza toppings.
In a real application this function would probably access a database to obtain this information.

The next function, however, is a call to the Xt function XtAppInitialize(). Every application
which uses Xt must call this function before using any other Xt interfaces. XtApplnitialize()
performs several important tasks. It reads all the user and system resource files to create a
database of resource values for use by the application and its widgets. lbis function also
makes the connection with the display server process.

XtAppInitialize() also searches the command-line arguments to the program for some standard
parameters, such as the display server name and the background and foreground colors of the
application.

Finally, XtAppInitializeO creates a shell widget. It is the first widget created and handles any
communication with the window manager. 1bis widget will also be the "parent" of all other
widgets in the application. It has a widget ID which is functionally returned and saved in the
topLevel variable.

The first parameter of XtApplDitialize() is the address of an application context structure
which will be initialized by this function. The application context is a structure maintained by
Xt which contains information about the application. Most applications, including PIZZA, do
not directly manipulate the application context, ~t it must be passed to other Xt routines.

The second parameter identifies the class name of the application. This name is used when
determining which resources found in resource files apply to this application. Multiple, related
applications can share .an application class name. The program name of the application

BP Motif XL: The X Window System on MPE XL 3136-5

(obtained by XtAppInitialize from argv) is also used for finding resources specific to this
particular application, as opposed to all applications in the same class. Resources are too large
a feature of X applications to cover in this paper. For an exceDeDt discussion of resources and
application classes, see the "X Toolkit Iotrinsics Programming Manual" in the bibliography.

The next two parameters of the function are used when the application wishes to define some
of its own command-line arguments to be handled by XtAppInitialize(). The PIZZA
application does not use this feature, so these parameters have been initialized to NUlL and o.

Argv and argc are passed in the next two parameters to XtApplDitializeO. Argv and argc are
standard parameters in the main function of any C language program. On MPE XL, the
INFO string of a program is parsed (by C startup code), and the resulting array of string
arguments is passed to the program as argv. Argc is a count of the number of these arguments.
When J'UIlDing a program using Xt, some standard parameters, such as the display server and
the foreground and background colors, may be specified in the INFO string. This information
is used by Xt and is obtained by passing argv to XtApplDitialize().

As discussed earlier argv is parsed by XtAppInitializeO. Any standard command-line options
found in argv, such as the display name, are removed from the argv array.

The NULL passed in the next parameter indicates that PIZZA will not be using the fallback
resources feature of XtApplnitializeO.

The final two parameters are used if the caller wishes to customize the sheD widget which is
created by this functioD.

AUowing SheD Resizing

The next section of the mainO function is the foDowing:

ae = o.
ItSetAra(al [ae]. ldallovShellllesize. True);
ae++.
ItSetValues(topLevel. al, ae);

XtSetValues() is an Xt function which can be used to set resource values after the widget has
been created. As discussed earlier, aI is an argument list which consists of an array of resource
name and resource value pairs. The function XtSetArg() is used to add an entry to the list. In
this call to XtSetArg(), an entry is being added to the argument list to specify that the resource
referred to by the XmNaUowShellResize CODStant is to be set to true. Setting this resource to
true allows cbi1dren widgets of the SheD widget to request geometry changes, including resizing
and repositioning. This is necessary because the PIZZA application requires some of its
widgets to resize during the execution of the program. For example, the Label gadget in which
the calculated price is displayed chaDges size to fit the length of the price.

Create And Manage Widgets

3236-6 lIP Motif XL: The X Wmdow System on MPE XL

In mainO, the function createInterfaceWidgetsO is called next. 1bis function creates and
manages all the widgets in the user interface of the application. Creation of a widget consists
of allocating and initializing the data structures in the application to control the appearance and
behavior of each widget.

Widgets which are created specifying a widget as their parent are called children of that widget.
A parent widget usually controls the layout, that is, the location and size, of its children. The
only widgets which have children are widgets whose purpose is to control layout. The Form
and RowColumn widgets of OSFlMotif are such widgets and will be discussed in the
"Geometry Managers" section.

After aeating a widget its parent is informed that·· it must manage this cbi1d, which consists of
controlling its geometry.

1bis createlnterfaceWidgets() function is discussed in detail in the sections "Creation Of
Widgets" and "Callback Functions".

Realize The Widgets

Creating the widgets does not involve communication with the display server and so does not
result in anything visible on the display. This process of creating windows on the display and
making them visible is called realizing the widgets. The function XtRealizeWidget() performs
this task for the widget passed to it and all descendants of that widget. For this reason,
XtRealizeWidget() is called with the widget ID of the toptevel widget which is the parent of
all the widgets in the user interface.

Process Events

The main part of any X program is a loop which waits for the next event from the server and
then processes it. In an Xt application, all events are processed by the Xt code. Application
work is done through callback ,functions,. which are discussed in the "Callback Functions"
section. The loop which processes events is, therefore, cont8med in the function
XtAppMainLoop(), which is called at the end of the main() function. .

lIP Motif XL: The X Window System on MPE XL 3236-7

CREATION OF WIDGETS

AD Example Creation

The following code from the createInterfaceWidgets() function creates and manages the
PusbButtonGadget which will be used to exit the application. 1bis code illustrates the process
of creating and managing a widget:

ae = OJ
DStriDgPtr =

bStriDgCreateLtol(tllxit", lIISnIIG_DEFAULT_Cl.&aSET) j
ItSetArs(al [ae] , lIIIlabelStrins, DStriJllPtr) j
ae++j
ItSetArs(al [ae] , ldtopAttachaeDt. IIllTTACB_OPPOSlTE_VmGBT) j
ae++j
ItSetArg(al [ae] , ldtopVidget, prieePuahButtonGadget) j
ae++;
ItSetArg(al [ae] , ldriptAttachaeDt, lUTTACB_FOIJI);
ae++j
ItSetArg(al[ae], l1IIriptOff••t, 10) j
ae++j
exitPushButtonGadget ..

lJIlCreatePushButtonGadget(fora, "exitPushButtonGad&ettl , al, ae) j
ItManaseChild(exitPuahButtonGadlet);
lmStringFree(zmStriDsPtr);
ItAddCallbaek(exitPuabButtonGadset.lmlaetivateCallback,

exitCallback , (ItPointer)O);

This code performs the following tasks which are common to the aeation of most widgets:

• Specify the values of several resources in the argument list to control the creation of the
widget.

• Create ~e widget.

• Inform the parent of the widget that it is to manage this cbild widget.

• Register a callback function for the widget.

The call to XmStringCreateLtoRO is an OSFlMotif function to create a structure called a
compound string. Compound strings allow control over the direction of the display and the
character set used when displaying a string. The function caD used here specifies that the
string "Exit" is to be displayed from left to right using the default character set. A pointer to
the structure which has been created is retUrned and passed to XtSetArg() to specify the string
to use as the label of the push button.

The Form widget is the parent of the exitPusbButtonGadget gadget. The other four calls to

3236-8 HP Motir XL: The X Window System on MPE XL

XtSetArgO set up resources used by the Form. The Form widget uses these resources to
determine how to control the geometty of the exitPushButtonGadget gadget. The Form widget
is discussed in more detail in the "Geometry Managers" section.

The call to XmCreatePushButtonGadgetO aeates the data structures needed by Xt to
implement this widget. The first parameter indicates that the Form widget whose ID is stored
in the form variable is to be the parent of the new push button gadget. The next parameter is
the resource name of the widget, which can be used when specifying resources specific to this
widget. The last two parameters are the argument list and the count of the number of
arguments which are used to inOuence the creation of the widget.

Next the parent of the widget is informed that it is to manage the size and placement of this
new widget through a call to XtManageawdO.

The call to XmStringFree() simply frees the memory allocated by XmCreateStringLtoRO.

The final function call adds a callback function for this widget. Callback functions are
discussed in the "Callback Functions" section.

Widget Hierarchy

The widgets which art; aeated by createInterfaceWidgets() form a tree structure of parents and
children. The following figure illustrates this widget tree:

I
rowColumDl

~

tideLabelGadget siz.eFrame toppiDpFrame price"ndeLabe1Gadget

'"
pric:eFnune

I
priceLabe1Gadgct

tog!eButtooGadgetl •.•3 togleButtoDGadgetl •••9 DODCPusbButtDDGadget everythiDsPusbButtoDGadact

PIZZA AppUcation Widget Tree

The Form widget is used to manage the placement of the other widgets. Frame widgets simply
create a visible frame which resizes to enclose its cbildren. The first frame, sizeFrame, has one
child which is a RowColumn widget. RowColumn widgets are used to organize their children

HP MotU' XL: The X Window System 011 MPE XL 3236-9

into rows and columns. This widget is used to align its three ToggIeButtODGadget children in a
horizontal row. ToggleButtonGadgets are buttons which represent a state, either they are set
or unset (pushed down or popped up). They usually provide the user a choice. These toggle
buttons are used to choose the size of the pizza, small, medium or large._-J

Size BuUODs Appearance

The diamond shape used for these toggle buttoDs is specified using the XmNindicatorType
resource during creation. This sbape indicates to the user that the buttons will follow "radio
button" behavior, that is, only one of the buttons can be set at a time.

The next frame, toppingsFrame, also bas a RowColumn as its cbi1d. 'Ibis RowColumn has
several ToggIeButtonGadgets as its cbildren which it organizes into three rows. These toggle
buttons are used to specify what toppings the pizza is to have (the square shape of the toggle
buttons indicates to the user that more than one button can be set at one time). There are also
two PushButtonGadgets which are used to specify that the pizza is to have "everything" (all
toppings) or no toppings.

Topping Buttons Appearance

The last frame, priceFrame, contains a LabelGadget. A LabelGadget simply displays a string.
This is where the price of the pizza is displayed.

prlceFreme
prtceLebelGedget

PrIce Label

3236-10 HP Motif XL: The X Window System on MPE XL

The exitPushButtonGadget was discussed above. A PushButtonGadget presents a button
which appears to be pressed when the mouse is clicked on it and then rebounds to its unpressed
appearance. They usually represent an action the user can perform, such as exiting the
program.

exitPushButtonGedget~
Exit Button

CALLBACK FUNCTIONS

Since all user input, through events, is processed by the Xt and widget code, bow does the
application get a chance to react to user activity? . The answer is a mechanism called callback
functioDS. A callback is a function which has a predefined interface and which is called when
certain events or combinations of eVents have occurred. For example, when a
PushButtonGadget is pressed, several events are generated. 'These events inform the client
application that the mouse button was pressed,' that it was pressed in the PusbButtonGadget,
and that it was released while still in the PushButtonGadget. Functions registered as Activate
callbacks for this PusbButtonGadget win only be called if all these events are generated. For
instance, if the mouse button is pressed in the PusbButtonGadget but released outside of the
gadget, the Activate callbacks are not called.

The documentation for a widget itemizes the callbacks which make sense for a given widget
and under what conditions each callback will be called.

A widget maintains a list of the functions which are to be called when a given callback
condition occurs. The application adds its function to that list by calling the Xt function
XtAddCallback().

Here is an example Activate callback for the Exit push button:

static void
exi~Callbaek(widge~. elieD~_da~a. eall_da~a)

Widget widget;
caddr_t clieDt_da~a;

caddr_t call_data;
{

exit();
)

When this function is called, the first parameter, widget, will c:ontain the 1D of the widget
which called it. The second parameter is called clienLdata because it can be used by the
application (remember, X applications are called clients) to pass information to the callback.

HP Motif XL: The X Window System on MPE XL 3236-11

This is most useful when the same callback function is called by several widgets. The
client_data field can easily be used to identify the reason the callback was called. aient_data
will be discussed further below. The third parameter,. call_data, is used by some widgets (as
opposed to the application) to pass information to the callback.

This is the code which adds this callback function to the Activate c:allback function list for
exitPushButtonGadget:

.xi~PushBu~~oDGadge~ =
lIaCreatePu8hButtonGadget (10m. ".xitPuhButtonGadget". &1. ac);

ItKanageChild(exitPuahButtonGadget);
lmStringFree(zaStringPtr);
ItjddCallbact(exitPuahButtonGadget.lalac~ivateCallback.exi~Callbact.

(ItPointer)O)i

The widget must be created before a callback can be added. XmNactivateCallback is an
OSFlMotif constant which specifies the type of callback to. the widget. The last parameter is
not used in the case of the exitPusbButtonGadget. 'Ibis parameter can be used by an
application to specify client data. The value of this parameter will be passed in the clieDLdata
parameter when the widget code calls the callback.

3236-12 HP Motif XL: The X Window System OD MPE XL

Here is a graphic representation of the use of a callback function to implement the Exit button:

SERVER

Button is pushed

CLIENT

main() {

Initialization LtAddCal1back(~tPushButtODGadget, ... ,

Crea
eIItCallback, ...);

te widget
Register callback
XtMainLoop();

~__---l.~ Dispatch event to PusbButtonGadget code ~

PushButtonGadget code {
Determine that Activate bas occurred
Call Activate callback functions ---_

exitCallbackO {

}

Exit CaDback

A good eDJDple of the use of clienLdata is the callback triggered when the "pizza size" toggle
buttons are selected:

8tatic .oid
8izeButtoDValueCbansedCallback(vidlet.8izeIDdex. call_data)
Vidset wiqet;
ca4dr_'t 8izeIJulex i
caddr_t call_data i
{

ch08eDSize • 8izelDdexi

calclPriDtPrice();
}

And some code fragments from the creation of the toggle buttons:

HP Motif XL: The X WiDdow System on MPE XL 3236-13

for (i=O; i < IUM_SIZES; i++) {

ac =0;
if (i == choaenSize) {

/* This ia the default size. sust .tart the button as pressed. */
ItSet&rg(al[ae]. Idset. True);
ac++;

}

zmStriDgPtr =lmStringCroateLtoR(sizeArray[i] ••izelame.
lmSTRIIG_DEFAULT_CBARSET);

ItSetArs(al[ae]. XdlabelStriDg. DStringPtr);
ae++;
I'tSet&rg(al [ae]. ldindieatorType. laDlE_OF_OIY) ;
ae++;
sizeArray[i].vidge'tID =ImCreateToggleButtonGadget(rovColumn1.

sizeArray[i] .sizeJUle. &1. ac);
I'tManageChild(sizeArray[i].vidgetID):
lJIlS'triDgFree (DlStringPtr) ; ,
ItAddCallback(aizeArray[i].widgetID.laIvalueChangedCallback.

sizeButtonValueChangedCallbaek. (I'tPointer)i);

}

The above "for" loop creates three toggle buttons. The widget IDs are saved in an array. As
each gadget is created, a callback is added to its valueC1anged callback list. The
valueChanged callbacks are called when the toggle button is pressed by the user, changing its
state from set to unset or vice versa. The index in the sizeAnay of widget information is
passed as the fourth parameter of the XtAddCallback() call. This is the client data parameter
and will be passed in the second parameter when the callback is called. This parameter of the
sizeButtonValueC1angedCallback() function, sizelndex, is assigned to the chosenSize global
variable. The chosenSize variable is used when calculating the price of the pizza to index into
size'AlTay to get the base price of a pizza of the chosen size.

The effect. is that when a size togglebuttOD is pressed, the widget calls the
sizeButtonValueC1angedCallbackO function, chosenSize is updated, and calcNPrintPriceO is
called. 1bis latter function uses chosenSize, the sizeAnay and the information about the
chosen toppings to calculate the current price of the pizza and display it in the
priceLabelGadget.

3236-14 HP Motif XL: The X Window System on MPE XL

GEOMETRY MANAGERS

As mentioned earlier, some widgets exist simply to constrain the layout of other widgets. The
layout of a widget consists of its size and location in the window. Two of these "constraint
widgets" are used in the PIZZA application: the Form and the RowColumn.

Forms

The purpose of an OSFlMotif Form widget is to JD8D8ge the layout of its cbildren. rust the
Form is created and then each widget is created, specifying the widget ID of the Form as its
parent. When a widget is the cbi1d of a Fmm, some new resources can be specified for that
widget. They define to the Form what kind of positioning on the Form the widget should
have. Attachments for the left, right, top and bottom sides of the widget can be specified.

Here is an example of the use of these CODStraints:

ac =0;
DS~riDg~r=

bS~ringCrea'teL~oR("Pizza Price". IJISTlIIG_DEFAULT_CUISET);
I~Se~Arg(al[ac]. IdlabelS'triDs. DStriDgP'tr);
ac++.
I'tSe~Arg(al[ac]. JaIbo~'tOll1't~acJuaea~.laAn'lCB_FOU);
ac++;
I~Set!rg(al[ac].Jdbo~tollDff8e~.10);
ac++;
I~Se~Arg(al[ac]. Jdlef~&'t~achlleD~.IaATI'&CB_OPPOSlTE_VIDGET);
ac++;
I'tSetArg(al [ac]. ldleftVidget. ~oppiJlgaFrUle);

ac++.
I~Se~&rg(al[ac]. IJDItoplt~achmeDt. la&TTACB_VmGET);
ac++;
ItSetArg(al[ac]. Jd~OpOff8ca~. 10).
ac++;
I~Se~.lrg(al[ac]. IdtopViqe~. toppiD&8Frue);
ac++;
priceTi~leLabelGadg.t=

bCreateLabelGadlet (fom. "prie.Ti~l.LabelGad&.t".all ac);

This is a code fragment from the creation of the LabelGadget which is displayed next to the
calculated price. It displays the string "Pizza Price". The values given to the
XmNbottomAttaehment and XmNbottomOffset resources define that the bottom of the
LabelGadget will be attached to the bottom of the Form with an offset of ten pixels. If the
Form is resized, the LabelGadget will stay ten pixels from the bottom of the Form.

The next two resources specify that the left side of the LabelGadget is to be attached to the left
side of the toppingsFrame widget. Notice the use of ATIAQLOPPOSITE..WlDGET rather

HP Motif XL: The X WIndow System on MPE XL 3236-15

than ATIACH_WIDGET. AlTAca.WIDGET would attacb the left side of the
LabelGadget to the right side of the frame. Since the goal is to align the left sides of these
widgets vertically, AlTAca.OPPOSITE_WIDGEr must be used.

Fmally, the Dext three resource value assignments will Cluse the top of the LabelGadget to be
attached to toppingsFrame with an offset of ten pixels.

Here is what the LabelGadget looks like when positioned:

leftWtdget
end

topWtdget

topOffaet {

bot t omOff set {

prtceTttleLebelGedget
priceTitleLabeiGadget Form Positioning

This practice of attaching widgets to each other is much more flexible than specifying the X
and Y coordinates.. It is also easier because determining the X and Y coordinates in pixels can
be tedious.

RowColumn

The main purpose of the OSFlMotif RowColumn widget is to arrange. its child widgets in rows
and columns. Using a RowColumn widget removes the responsibility of determining exact
positions from the application developer. The RowColumn will also automatically adjust
positions of its children when new child widgets are added.

When the number of widgets which must be organized into rows and columns is unknown at
the time of writing the application, a RowColumn is indispensible. In the PIZZA application,
the toppings widgets are currently 'bard-coded" into the initialization function. However, the
application is written to create the topping toggle buttons in a loop, and they are all created as
children of a RowColumn. This means the application could easily be changed to read the
toppings from a file. and create the Dumber of toggle buttons necessary. They would all be
arranged nicely in the RowColumn, regardless of bow many were created.

An additional feature of the RowColumn widget is its ability to manage behavior as weD as

3236-16 HP Motif XL: The X Window System on MPE XL

layout. The following code fragment is from the creation of the RowColumn containing the
toggle buttons which are used to choose the size of the pizza:

ItSetArg(al [ae]. laIradioBehavior. True);
ae++;
rovColUllJ11 = laCreateao.co11Ul1l(aizeFrue. "rovCo11llm1" • al, ac:);

Only one of the size toggle buttons should be set at a time, since only one size of pizza can be
selected at any time. By setting the XmNradioBehavior to true for the RowColumn, the
RowColumn itself will prevent more than one of its cbild toggle buttons from being set at a
time. When one of the toggle buttons is pressed, the one which was currendy pressed is reset.
Although this feature could be implemented by the application developer, it is a great boost to
productivity to have the RowColumn provide it. To give the use a~ queue that these
buttons are radio buttons, the XmNindicatorType resource of each toggle button is set to
XmONE..OF-MANY when they are created. This gives them the diamond shape which is
defined for radio buttoos by the OSFlMotif Style Guide.

BUILDING TIlE APPLICATION

The focus of this paper 10 far has been a discussion of the use of OSFlMotif and the Xt
Toolkit. These discussions are general to any platform supporting these two application
programming interfaces (APIs). This section, however, will discuss !topics specific to HP Motif
XL, the implementation of these APIs on MPE XL.

Pradud Structure

The liP Motif XL product will be located in an MPE XL account called HPX11. All header
(include) files, including those for X, Xt and Xm (OSFlMotif), will be included in the group
H.HPXll. The relocatable libraries (RLs) with which an HP Motif XL application must be
liDked are located in L1B.HPX11.

CompiUng

So how is the PIZZA application compiled? Assuming that the file PlZZAC contaiDs the
source, the following command would perform the compile:

:c:c:zl pizzaC:.JPizza.lpizza;iB1oDN-IB.BPI11"

This command will compile the source in PlZZAC into an object file called YPIZZA and
produce a listing file called LPIZZA.

The INFOm string in this command is very important, but before discussing it you should
understand how the C Compiler on MPE XL (CCXL) handles include statements. The

HP Motif XL: The X Window System on MPE XL 3136-17

following is a typical set of include statements in an OSFlMotif application and, in fact, are
used in the PIZZA application:

'include <1aI1Il.h>
.include <lll/Shell.h>
'include <la/Form. h>
'include <lm!RowColwm. h>
'include <Ill/IntrinsicP.h>

For those versed in the use of X and OSFlMotif on a UNIX platform, the hierarchical
organization of header files. is familiar. These statements in a C program specify that the files
named Xm.h, Form.h and RowColumn~hare to be included from the Xm~directorylocated in
the system default header directory (/usrrmcludeon most UNIX platforms). Notice that the
case of the flle names is significant, e.g., Form.h is different from form.h.

All of these include statements would have to be. changed when compiling on MPE XL except
for a feature of CCXL. When the CCXL preprocessor encounters something of the form:

'include <lm/lm.h>

It ·strips the prefix and postfix and searches for a file named XM in the H' group of the SYS
account. However, the include files for HP MotiiXL are located in·H.HPXl1. To resolve
this problem, the "-I" option passed in the INFO:::: string allows the developer to override the
standard search path for header files. Given the above CCXL command, when the
preprocessor encounters the above include statement, it will search for the file XM in the group
H.HPXll before searching in H.SYS.

Without these two features ofCCXL (the preprocessor's stripping' of prefixes and postfixes and
the "·1" option) all includes in :In X application would have to'bedifferent on MPE XL from
other platforms.

LiDkIng

After an object file is produced by a successful compile, the program file can be generated by
linking the object file. The following command would link the PIZZA application:

:liDt from=ypizzaito=pizz&irl=libxa.lib.hpxll,libxt.lib.hpxl1,a
libxl1.1ib.hpxl1.1ibc.lib••, ••libcr~.lib••, •• libcaD8i.lib.I,.

The FROM parameter specifies the name of the object file, and the TO parameter specifies the
name of 'the program file being generated..The RL parameter specifies a list of relocatable
libraries (RLs) to be linked to the object file. The code needed by the object file will be

3236-18 HP Motif XL: The X Window SyStem on MPE XL

included from the RLs in the program file. Due to dependencies in the relocatable libraries,
they must be specified in the order shown above.

Compatibility And Portability

Because HP Motif XL is a port of industry standard API libraries, its use bas significant
implications for the portability of an application. HP Motif XL is based on X Version 11,
Release 4 and OSFlMotif 1.1. An application written for those APIs will port easily to MPE
XL. An additional benefit for those shops supporting multiple platforms, the user interface
code of an application written with HP Motif XL will port easily to other platforms supporting
X and OSFlMotif.

There are several areas which must be addressed when either porting code to HP Motif XL or
writing code which is to be portable to another platform:

1. Include file names

2. Resource file names

3. XmFileSelectionBox behavior

The previously mentioned features of CCXL prevent the need for changes in most include
statements found in an OSFlMotif application. .However, the file naming limitations on MPE
XL prevent CCXL from handling includes where the name of the file is longer than eight
characters.

The following include statements are from the PIZZA application:

'include <Im/lovColumn.h>
'include <X11/In~riD.icP.h>

In this example, both RowColumn and IntriDsicP are longer than eight characters. For this
reason, the names of some of the header files are different on MPE XL from other systems
and the include statements must be changed. The following example is a good way to modify
the source so it will compile both on an MPE XL system and on other platforms:

'i1nde1 apexl
'include <lII/lovColllllD.h>
'include <X11/In~riD.icP.ll>

'el.. /* ~.xl *,
'include <lm!avColUllll.h>
'include <111'ID~rD8CP.h>

.endif ,* mpexl *,

The standard define "mpexl" is defined by CCXL. When this source is compiled on MPE XL,

BP Motif XL: The X Window System on MPE XL 3236-19

the files RWCOLUMN.H.HPXll and INTRNSCP.H.HPXll will be included.

The correspondence between the standard names of the header files and their names on MPE
XL will be documented with the HP Motif XL product.

Related to this discussion of header files, the following set of iDstructions must be included in
the source before including any HP Motif XL header files:

.ifdef apexl

.include <mpexl.h>

.edif

This axle will cause (when compiled for MPE XL) the header file MPEXL.H.HPXll to be
included. MPEXL.H.HPXll contains some definitions needed by the HP Motif XL header
files.

Another difference between HP Motif XL and X on other systems is also related to names.
Because of the limitations on file names imposed by the MPE XL file system, the names and
locations of the resource files used by X applications are different. For descriptions of the use
of these files,· please see the "X Toolkit Intrinsics Programming Manual" listed in the
bibliography. The following is a summary of the differences:

• Application Qass Default files are found in the group APPDEFLTS.HPXl1 on MPE XL,
Dot in the directory /usrllibIX11/a~defaults

• Application class names must follow MPE XL file naming roles if an Application Oass
Defaults file is to be used

• The user resource file is called XDEFAULT on MPE XL, as opposed to .Xdefaults on
UNIX

• The Xdefaults-host User Environment Specific Resource file is not supponed on MPE XL,
only the use of the XENVlRONMENT variable

Another HP Motif XL ponability concern is related to the OSF/Motif FIJeSelectionBox widget.
This is a sophisticated widget which is used when an application requires the user to choose a
file. The widget presents a window with a scrollable list of files from which the user may
choose. It is very specific to the UNIX-style hierarchical file system. In porting this widget to
MPE XL, its behavior was changed to reflect the structure of the MPE XL file system. The
function interface has not changed. However, an application which is being ported to MPE
XL from a UNIX platform and expects file names of the form found on UNIX may need
changes. lIDs is because once the user has chosen a file and the appropriate callback is called,
the application can get the file name string of the chosen file. On MPE XL this will be (if
fully qualified) of the form FILE.GROUP.ACCOUNT, whereas on UNIX this might have
been of the form /dirl/dir2ldir3/dir4/dirS/file. If the application processes the file name at all,
it will probably have to be changed for MPE XL. However, if it simply passes the file name
string to something like the C library openO function, it may continue to operate correctly
without change on MPE XL.

3136-20 HP Motif XL: The X Window System on MPE XL

CONCLUSIONS

The release of HP Motif XL on MPE XL will provide new options for HP 3000 Value Added
Business (VAB) partners. It can be used to port the user interface of applications written for
other platforms to MPE XL, iDaeasing the number and type of applications available for HP
3000 customers. It can be used to create user interface code on the HP 3000 which is portable
in a multiple platform shop.

HP Motif XL can even be used to add a bit-mapped graphic portion to an otherwise forms
oriented application. Imagine a VPLUS application which is used for analyzing the data in a
database. If this application were being used from a window on an X display, at the touch of a
function key the application could open an X Window and display a pie chart of the data.

WHERE TO GO FROM HERE

There are many good books available today discussing X, Xt and OSFlMotif programming.
HP also offers excellent classes in C programming and X and OSFlMotif programming.

lIP Motif XL: The X Window System on MPE XL 3236-21

BIBLIOGRAPHY

Hewlett-Packard, "HP OSFlMotif Programmer's Reference", Hewlett-Packard Company, 1989.

Nye, Adrian, "Xlib Programming Manual, Version 11", O'Reilly &. Associates, Inc., 1990.

O'Reilly, lim, "X Toolkit Intrinsics Reference Manual for X Version 11", O'Reilly &.
Associates, Inc., 1990.

Nye, Adrian and O'Reilly, Tun, "X Toolkit Intrinsics Programming Manual for X Version 11",
O'Reilly &. Associates, Inc., 1990.

Young, Douglas A., "X Window Systems Programming and Applications with Xt", Prentice
Hall,1989.

OSF and OSFIMotij are trademarks 01 the Open Software Foundation. X tmd The X Window
System are tTademarlcs 01 the Massachusetts Insitute 01 Technology. UNIX is a trademark of
AT&T.

3236-22 BP Motif XL: The X Window System on MPE XL

APPENDIX A: PIZZAC

/ •••••••••••••••••••••0 ••••••••••••••••••

•• A Simple BP Motif XL Example ••

•• ••
•• Author: Sco~t Cressler ••
•• Date 1/8/91 ••
o. ••
0 •••••••••••••••••••••••••••••••••••••••/

8ifdef apexl
#include <mpexl.h>
#endif

'include <stdio.h>
.include <string.h>
.include <lm/lm.h>
.include <111/Shell.h>
'include <1m/DialogS.h>
'include <1JIIForz. h>
'include <lm/Frue. h>
'include <lm/LabelG.h>

'ifndef mpexl
'include <lm/RovColumn.h>
'else /. apexl ./
'include <lIIl/RvCo11UllD.h>
'endif /. apexl ./

'include <1JIITouleBG. h>

'ifndef mpexl
'include <lll/IntrinsicP.h>
.else I. apexl .1
'include <111/IntrnscP.h>
.endif /. apexl ./

'include <WDialogS.h>

'ifndef apexl
'include <Protocola.h> /. vi11 be in /uar/inc1ude/lll or ••• /Ill/It .1
.elae /. .,ex1 ./
'inc1ude <Prtocols. h>
.edif /. apexl ./

/. Constant defiDitio~s for toppings. */

HP Motif XL: The X WIDdow System on MPE XL 3236-23

tel.fiDe IUII_TOPPIIGS 9
telefiDe OIIOIS 0
leiefiDe PEPPElOII 1
telefiDe J1USBlOOIIS 2
telefiDe OLIVES 3
telefine PllEAPPLE 4
telefiDe CUiDIAI_BACOI 6
telefiDe SAUSAGE 6
leIefiDe TOIl&TOES 7
letefiDe ElTU_CBEESE 8
letefiDe EVERYTBI.G 1000
letefine 10TBIIG 1001

.truet topping {
Widget vidgetID;
char .topping...e j

int chosen;
float price;

};

atruet topping toppiDg&rray[IUR_TOPPIIGS];

leIefine lUI_SIZES 3

8truet pizza5ize {
Vidget vidgetID;
char ••iz..... j

float price;
}i

.truct pizza5ize sizeArray [lUll_SIZES] ;

int choaenSize cO;

float toppingsPrice =0.0;

/. Global yariables used by main aDd other routines ./

ItAppContext app_contert;

Vidget topLevel;

/. Vidgets defined/created by this application. global ao they CaD be
acceslled bl aUltiple creation functions .•/

atatie Vidget fora;
atatic Vidget titl.LabelGadset.
atatic Vidget lIizeFralle;

3236-24 HP Motif XL: The X Window System on MPE XL

atatic Vidget rovColumn1;
atatic Vidget toppingsFrame;
atatic Vidget rovColumn2;
atatic Widget everythingPuahButtonGadget;
atatic Widget nothingPushButtonGadget;
atatic Widget priceTitleLabelGadget;
atatic Widget rovColumnS;
atatic Widget priceFrue;
atatic Vidget priceLabelGadget;
atatic Vidget exitPuahButtonGadget;

void createlnterfaceVidgets(),
void initializelnfo(),

,.
.. aain routine ..,

aain(argc, argv)
int argc,
char ••argv;
{

Arg &1[1];
int ac;
ItAppContext app;

initializelnfo();

~opLevel = ItApplnitialize(aapp,
"Pizza",
lULL,
0,
aargc,
argv,
lULL,
al,
0);

,. (default) -applicatioD context .,
,. application clue ..e .,
,. DO options .,
,. Duber of optiOns .,
,. used to get 8tandard cOlllllWUl line .,
,. optioDs and application name .,
,. DO fallback resourc•••,
,. DO arga .,
,. DO args .,

,. Tell Shell to resize if its children (specifically geoaetry
aanaging children like Fonas) ask it to. ./

ac =0;
ItSetArg(al [ae]. ldallovShellResize, True);
ac++;
ItSetValues(topLevel, al, ac),

createInterfaceVidgets();

HP Motif XL: Tbe X WindOVI System on MPE XL 3236-25

ItRealizeVidset(topLevel);

ItAppKaiDLoop(app);
}

/. Function to initialize the arra, of topping choice. and prices••/
void
iDitializeIJdo()
{

iDt i;

for (i=O; i < IUK_TOPPIIGS; i++) {
toppiDgArray[i] •chosen = False t
toppiDgArray[i] •price = 0.0;

}

toppiDgArray[O].price =0.12;
toppiDgArray[1].price =0.62;
toppiDgArray [2] •price = 0.23 t
toppi.DgArray [3] .price = O. 16.
toppi.DgArray [4] .price = 0.27.
toppiDgArray[6].price =0.68;
toppi.DgArray[6] .price = 0.47;
toppingArray[7].price =0.13;
toppi.DgArray[8].price =0.26;
toppiDgArray [0] •toppinglame = "Onions".
toppi.DgArray [1] •toppinglame = "Pepperoni";
toppi.DgArray [2] . toppinglame = "Xushrooma".
toppiDgArray [3] •toppingl..e = "Olives";
toppi.DgArray [4] . toppinglame = "PiDeapple".
toppiDgArray [6] •toppinglame = "Canadian Bacon";
toppingArray [6J •toppinglame = "Sausage";
toppi.DgArray [7] . toppinglame ="Tomatoes";
toppiDgArray [8] •toppinglame = "Extra Cheese";

/. Until values are read frOID a file ..••/
aizeArray [0] •aizeJue ="Saall·';
sizeArray[lJ . aizelame 8: ·'Xedium·';
sizeArray[2] •aizelame ="Large";
aizeArray [0] •price =4.99;
aizeArray[l].price =7.99;
aizeArra,[2J.price =9.99;

}

atatic .oi4
ca1clPri.DtPrice()

3236-26 HP Motif XL: The X Window System on MPE XL

{

Arg al[11];
int ac;
ImString xmStringPtr;
float pizzaPric0;
static char priceString[10];
int i;

pizzaPrice = sizeArray[choaenSize].price;

for (i =0; i < IUM_TOPPIIGS; i++)
if (toppingArray[i].choaen)

pizzaPrice = pizzaPrice + toppiDIirray[i].price;

ae =0;
sprintf (priceString, "$%. 2f". pizzaPrice);
xmstringPtr = lmStringCreateLtol(priceStriDg,

lmSTRIIG_DEFAULT_CB&RSET);
ItSetArg(al [ae] , ImIlabelStriDg, DStriDgPtr);
ac++;
ItSetValue. (priceLabelGaclget. al D ac);

}

/. Callback Procedures */
static void
toppingButtonValueChangedCallbaek(vidget.toppiDgIndex. call_data)
Widget Widget;
caddr_t toppingIDclex;
caddr_t call_data;
{

Arg al[11];
int ac;
lmString zmStringPtr;
float pizzaPrice;
static Char priceStriDg[10];

toppingArray[(int)toppinglndex].cho.en=
l(toppiDgArray[(int)toppiDglndex].choaen).

calcIPriDtPrice();
}

atatic void
aizeButtonValueChaDgedCallback(vidget.aizeIndex. call_data)
Widget vidget;
caddr_t aizelndex;
cacldr_t call_data;

HP Motif XL: The X Window System on MPE XL 3236-27

{

chosenSize =sizelndex;

ca!cIPrintPrice();
}

atatic Yoid
allOrlothinSCallback(vidget, client_data, call_data)
Widget widget;
caddr_t client_data;
caddr_t call_data;
{

iDt i;

if (client_data m= EVERYTBIIG) {
for (i = 0; i < IUK_TOPPIIGS; i++) {

toppingArray[i] •chosen = True;
/. Set the state of the button to 'be set but don't call the

valueChanged callback siDce we have already set the choaen
field8 ••/

lmTollleButtonGa4getSetState(toppiDglrray[i].vidietID,
True. Falae);

}
} else {

for (i =0; i < IUR_TOPPIIGS; i++) {
toppingArray[i].chosen c Falae;
/. Set the state of the button to 'be 1Ulset 'but don't call the

valueChused callback siDce ve have already set the choaen
fields .•/

ImToggleButtonGadgetSetState(toppiDglrray[i].vidgetID.
False, Falae);

}
}

calcIPriDtPrice();
}

atatic void
ezitCallback(vidaet. client_data, call_data)
Vidaet vidget;
caddr_t client_data;
caddr_teall_data;
{

ezit().
}

/. Function to create a set of radio buttons in a frue to indicate the

3236-28 HP Motif XL: The X Window System on MPE XL

.ize of the pizza. */
void
ereateSizeRadioButtoDS()
{

Arg al[11];
int ac;
lmString DStri.qPtr;

iDt i;

ac =o.
ItSetArs(al[ac]. IaIleftAttachIDent, lIIATTACB_FOIlJl);
ae++;
ItSetArI(al[ac]. IdleftDffset. 10).
ae++.
ItSetArs(al [ac] , IalftopAttachment, IIlATTACB_VIDGET).
ac++;
ItSetArg(al[ae], IaItopOff.et, 10).
ac++.
ItSetArg(al[ae], 1IlItopVidget, titleLabelGadget).
ac++ •
• izeFrue =

laCreateFraae(foJ1D. "sizeFralle", al, ac).
ItlanageChild(aizeFraae);

ae c 0;
ItSetArg(al[ac], Jdorientation, IdORIZOITAL).
ac++;
ItSetlrg(al[ae], IdpackiDg. IJIPACK_TIGBT).
ac++.
ItSetArI(al [ae] , ImIradioBehavior. True);
ac++;
rovCol1UDJl1 =

IaCreateRovColWID(aizeFr8llle, "rovColum1", all ae).
ItlanageChild(rovColumn1).

for (i=O; i < tUM_SIZES; i++) {

ac = 0;
if (i c: choaenSize) {

/. This is the default aize, IlUt start the button as pre••ed••/
ItSetArg(al[ac]. Id.et. True).
ac++.

}
xmstringPtr =lmStringCreateLtoR(aizeArray[i].sizeUame.

IaSTRIIG_DEFAULT_CIlBSET).
ItSetArg(al[ae]. IdlabelStriDg, DStringPtr).
ac++;
ItSetArs(al[ac], ldindicatorType, !mOIE_OF_IAIY);

RP Motif XL: The X Window System on MPE XL 3136-29

ac++;
sizeArray[i].vidgetID =IaCreateToggleButtoDGadlet(rowColumn1,

8izeirray[i] .sizelue, al. ac);
ItlanageChild(sizeArray[i].widgetID);
laStriDgFree(zaStriDgPtr);
ItAddCallback(size1rray[i].vidgetID,laIvalueChangedCallback,

sizeButtoDValueChansedCallback, (ItPointer)i);

}

}

,. Function to create a set of toggle buttoDs :1D a frue eo the user CaD

choose vhich tOpping8 go on the pizza••,
yoid
createToppiDg8Buttons()
{

Arg al[11];
int aCt
ImStriDg DlStringPtr;
int i;

ac =0;
ItSetArg(al[ac], ldleftAttachment, laATTACB_OPPOSlTE_VIDGET);
ac++;
ItSetlrg(al[ac]. ldleftVidget. aizeFrame);
ac++;
ItSetArg(al[ac]. ldrightAttachlleDt". bATTACB_FORK);
ac++;
ItSetlrg(al[ac]. ldrightOffeet.-- 10);
ac++;
ItSetArg(al[ac]. ldtopAttachment. lmATTACB_VIDGET);
ac++;
ItSetlrg(al[ac]. IdtopOffset. 10);
ac++;
ItSetlrg(al[ac]. ldtopVidget. aizeFraae);
ac++;
toppingsFraae II

IaCreateFrue(form. "toppiDgsFraaett
• al, ac);

ItlaaageChild(toppiDgarr..e);

ac a 0;
ItSetlrg(al[ac]. IdD1IIlCo11U1D8. 3); ,. Actually DUll of rovs .,
ac++;
ItSetlrg(al[ac]. ldoriatatioD. IIIIIIORIZOITAL);
ac++;
ItSetArg(al[ac]. blpactiq. ImPACK_COLUD);
ac++;

3236-30 BP Motif XL: The X Window System on MPE XL .

rovColuam2 =
bCreatelovColUIUl(toppingsFr••• "rowCol1lmL2". al, ac);

ItManageChild(rovColumn2):

for (i = 0: i < IUM_TOPPIIGS: i++) {
ac = 0;
zmStringPtr = lmStringCreateLtoR(toppiDsArraJ[i].toppiDI1..e.

lmSTRIIG_DEFAULT_CIAISET);
ItS.tlrg(al[ac]. Idlab.lStriDg. DStriD&Ptr);
ac++;
toppiDgArray[i].vidg.tID= laCreateToII1.ButtonGad&et(rovColuan2,

toppiDgArray [i] •toppiD&.... , al, ac);
ItRanageChildCtoppiDgArra,[i].widg.tID);
XmStriDgFr.e(zmStriDgPtr);
ItAddCallback(toppingArray[i].widgetID,x.lvalueChanse4callbaCk,

toppingButtonValu.ChangedCallback, (ItPoint.r)i);
}

ac = 0:
DStringPtr =

lJDStringCreateLtoR(ltEv.rythiDglt ,1aST1IIG_DEF1ULT_CDlSET);
ItSetArg(al[ac], lIlIlab.lString, DStriDgPtr);
ac++:
everythiDgPuahButtonGadget =

ImCreatePushButtoDGadget(rovColumn2, "everythiagPuahButtonGadget",
al, aC)i

ItKanageChild(everythingPuahButtonGadg.t);
lmStringFree(DStriDIPtr).
ItAddCallback(everythingPuahButtonGadget,lmIactivateCallback,

allOrBothingCallback, (ltPointer)EVBaYTBIIG)i

ac =0:
xmStringPtr =

XmStriDgCreateLtoJlC"lothing", lIISnIIG_DEF1ULT_CBAlSET)i
ItSetArg(al[ac], ImIlabelStriDg, DStriqPtr);
ac++:
nothingPushButtonGadget =

ImCreatePushButtonGadg.t(rovColum2, "nothiDgPuaUuttonGadget" ,
al, aC)i

ItKanag.Child(nothiDgPuahButtonGadg.t);
lmStringFr.e(zmStringPtr);
ItAddCallback(nothingPuahButtoDGadget.lmlactivateCallback,

allOrlothiDgCallback. (ltPointer)IOTBIIG):

}

,- Function to create a .et of toale buttoDs iD a frue 80 the user can
choos. vhich toppings go OD the pizza.•,

HP Motif XL: The X WIndow System on MPE XL 3236-31

void
createPrieeVidget8()
{

Arg &1[11];
int ae;
lmString zmStringPtr;

ac =0;
DStringPtr =

laStringCreateLtollC"Piua Price", 1IISTlIIG_DEFAULT_CBAItSET);
ItSetArgCal[ae], lIIIlabelStriJlg, DStriDgPtr);
ae++;
ItSetArg(al [ae] , ldbottOllAttacbent, lIIln'ACB_POIII);
ae++;
ItSetArgCal[ae], lJdbottOllOffaet, 10);
ac++;
ItSetArg(al [ae]. lIIlIleftAttachllent, lIUTTACB_OPPOSlTE_VIDGET);
ac++;
ItSetArg(al [ae] , ldleftVidget, toppingaFrame);
ae++;
ItSetArg(al [ae] , ldtopAttacUent, laATTACB_VmGET):
ae++;
ItSetArg(al[ae], ldtopOffaet, 10);
ae++;
ItSetArgCal [ae] , 1IIItopVidget, toppi.DgaFrue);
ae++;
prieeTitleLabelGadget c

IIlCreateLabelGadget(form, "prieeTitleLabelGadget", al, ac);
ItManageChild(prieeTitleLabelGadget):
lmStriDgFree(xmStriDgPtr);

ae =0;
ItSetArg(al[ae], lmImargiDVidth, 10);
ae++;
ItSetArg(al [ae]. lmIbottomAttaehllent. lJUTTACB_IOIE);
ae++;
ItSetArg(al [ae]. lJDIIleftAttachllent. lJDATTACB_VIDGET);
ae++;
ItSetArg(al [ae] , lIlIleftVidget, priceTitleLabelGadget);
ac++;
ItSetArg(al [ae] , ldtopAttachllent, laATTACB_OPPOSlTE_VIDGET):
ac++;
ItSetArg(al [ae]. ldtopVidget, priceTitleLabelGadget);
ac++;
priceFruae II:

laCreateFruae(form, "priceFrame... al, ae);
ItManageChild(prieeFrame);

3236-32 BP Motif XL: The X Window System on MPE XL

ac =0;
priceLabelGadget =

IIlCreateLabelGadget (priceFr.... "priceLabelGadget". al. ac);
ItManageChild(priceLabelGadlet).
laStringFree(XDStrin&Ptr).

calcIPrintPrice();

}

,* Create ~he widget ~ree *,
Yoid
ereatelnterfaceVidgeta()
{

Arg &1[11].
int ac.
lmS~riDg zaStriDgPtr;

ac = 0;
form =

lmCreateFora(topLevel, "fora", al, ac);
ItKanageChild(fora).

ac c 0:
DStriDgPtr ::

IIIStriDgCreateLtol("Piua Price Calculator", ImSTllIIG_DEFAULT_cnaslT).
ItSetArg(al [ac] , lIIIlabelStriDg, DStringPtr).
ac++;
ItSetArs(al [ac] , lIIIleft&ttaehaent, lUTTACI_FOlUI).
ac++.
ItSetArg(al [ac] , IdrightAttaehlaent, IJdTTACB_FOIUI);
ac++;
titleLabelGadget =

bCreateLabelGadget(fora, "titleLabelGadlet", al, ac);
ItKanageChild(titleLabelGadget).
ImStriDgFree(zmStriDgPtr);

createSizeRadioButtons().

createToppiDssButtona();

createPriceWidgeta();

ac c O.
DStr1DgPtr I:

lmStriDgCreateLtol("Exit", lmSTaIIG_DEFAULT_CB&1SET);
ItSetArg(al[ac]. lIIIlabelStriDg. DStriDgPtr).
ac++;
ItSetArg(al [ac] , laItopAttachaent, IUTTACI_OPPOSITE_WIDGET);

BP Motif XL: The X Window System on MPE XL 3236-33

ae++;
ItSetArg(al [ae]. IIlItopVidget. prieeTitleLabelGadset).
ae++;
ItSetArg(al [ae]. 1IlIriptAttaehaent. laATTACB_FOIUI).
ae++;
ItSetArg(al [ae]. IIIIriptOf1aet. 10);
ae++;
exitPushButtonGadget c

bCreatePushButtonGaqet (fora. "exitPushButtonGadset". al, ac);
ItManageChild(exitPuehButtonGad&et);
lmStringFree(xmstringPtr).
ItAddCallbaek(exitPushButtonGad&et.x.JactivateCallbact. exitCallback,

(ItPointer)O)j

}

3236-34 HP Motif XL: The X Window SyStem on MPE XL

3237

Applied Computerized Telephony: You won't be left on hold

steve Aliamus

Hewlett-Packard Direct
1320 Kifer Road

Sunnyvale, California
408-730-6046

"Hey Brian, what does this 'TONER LOW' message on the
printer mean?"

For the past week, Brian had been regularly removing the
LaserJet's toner cartridge, shaking it, and reinstalling it
into the printer. He had hoped to avoid buying a new toner
cartridge for as long as possible, but the daily shaking
ritual was now occurring every hour. Time to break down and
call HP Direct's toll free 800 number.

When Brian's call reached the HP Direct switchboard, an
Applied Computerized Telephony (ACT) system detected the
phone call, accessed information on Brian's account and past
purchases, and displayed the information on the terminal of
a waiting sales consultant. Simultaneously, the phone call
was ringing on the same sales consultant's telephone.

"Hello, this is Maya with Hewlett-Packard Direct. How may I
help you?"
"Hi, this is Brian Hunt, and •.. "
"Brian! How does your department like the LaserJet II
printer?"

Not only does Maya know that Brian has a LaserJet printer,
but what model, when it was purchased and any optional
accessories. With minimal effort, Brian orders his toner
cartridge. Several months later, Brian receives a call to
remind him that his toner cartridge may be running low,
based upon the usage rate determined from his last order.

The above scenario can happen because of ACT, which
addresses the need of businesses to process both voice and
data technologies. ACT consists of hardware and software
components which integrate HP Computers with Northern
Telecom Meridian 1 and SL-l telephone switches (PBXs) for a
new generation of integrated voice and data applications.

This paper discusses the use of ACT and the components
needed for its installation. Included are details of a
pilot ACT project developed and installed 'at HP Direct, and
the potential benefits seen in our organization.

3237-1

Applied Computerized Telephony: You won't be left on hold

ACT provides information about incoming telephone calls,
such as the calling number and number dialed, directly to
application programs. This benefits businesses in
telesales, telemarketing, customer assistance, service and
support, help desks, collections, distribution and
purchasing. Applications can use ACT to originate, answer
and manipulate telephone calls automatically, allowing these
telephone intensive businesses to increase productivity,
improve customer service, and increase revenue.

Increased Productivity

ACT provides the ability to route phone calls to the most
appropriate agent, and simultaneously present customer
information on the same agent's screen. This increases the
volume of calls that can be received. Needless call
transfers between agents are eliminated. Information about
the purpose of the call, based upon the number dialed by the
caller, is presented on the terminal screen before the call
is answered. Agents answer each call appropriately on an
individual basis. Telephone agents no longer need to be
separated by product line.

outbound environments also benefit from ACT. with automated
dialing applications, agents process calls quickly, and
avoid manually dialing numbers and listening to busy signals
and unanswered ringing.

Improved Customer Service

Callers are handled efficiently and professionally. The
identity of the caller stays with the call as it is
transferred, so customers need not repeat any information to
each new agent. Intelligent routing of calls ensures
customers are sent to the most appropriate destination.

Increased Revenue

Since calls from customers are processed more intelligently,
agents are able to handle more calls. Increased call
volumes lead to more customer contacts and sales. Telephone
calls are also shorter, since customers can be identified
immediately by their inbound phone nUmber, and transfers and
hold times are minimized.

3237-2

Applied Computerized Telephony: You won't be left on hold

Corporate Networks operation (CHO)

Hewlett-Packard and Northern Telecom formed an alliance
organization composed of both technical and marketing
personnel dedicated to ACT solutions. Consultation,
installation and configuration of ACT can be handled by CNO.
An agreement for the exchange of technical information and
synchronized escalation of hot sites has been signed by both
companies. Problem resolution for the ACT product is
handled through the established support arms of both HP and
NT.

The ACT components

The ACT product consists of an ACT Call Processing Server,
Server Software and the ACT Application Programming
Interface (API). (See figure 1) The server software
resides on an HP9000 Series 300 server connected to the PBX.
The server manages connections between application programs
and the call processing features of the PBX. ACT messages
originating from application programs are converted
automatically into specific PBX messages to invoke the
required functions on the PBX.

(figure 1)

Standard IEEE 802.3/Ethernet and TCP/IP networking are used
for the communications between the application programs and
the server. This open networking environment allows maximum
flexibility in designing a solution for mUltiple computers
with a single ACT server.

3237-3

Applied Computerized Telephony: You won't be left on hold

not need
a general

coding and

Northern Telecom Meridian 1 and SL-1 PBX

The Meridian 1 and SL-1 family of PBXs are customer premise
digital telephone switches with a variety of advanced
customer calling features, data connectivity, and
networking.

The messaging interface on the PBX which passes and receives
command and status information to the ACT Server is the
Meridian Link, a LAP-B (RS-232 or 422) synchronous link
which operates at speeds up to 19.2 Kbps. The Meridian Link
consists of a software package and an Enhanced Serial Data
Interface (ESDI) card on the PBX.

Telephone companies offer a service which passes the
caller's telephone number to the called party. This caller
identification, Automatic Number Identification (ANI), is
passed across the Meridian Link to the application program.
In order to receive ANI information, the appropriate trunks
must be ordered from the phone company, and specialized
trunk interface hardware and software on the PBX must be
purchased. In addition to ANI information, Direct Number
Identification Systems (DNIS) is passed to the application
program. The DNIS number is the phone number that the
customer dialed to reach the PBX. For businesses that
handle several incoming numbers, DNIS allows the application
program to display the appropriate information for each
different incoming call.

Although the application programmer will probably
to know all the details about the PBX,
understanding of it is helpful during the
debugging stages of your ACT project.

3237-4

Applied Computerized Telephony: You won't be left on hold

The ACT Call Processing Server

The ACT Call Processing Server translates ACT messages
originating from the application program and converts them
to Meridian Link messages. The ACT server is a dedicated
system, and should only be used for ACT and telephone switch
related activities. The ACT server consists of:

- HP-UX based platform
- Internal Disk
- Standard TCP/IP networking
- Telephone switch specific interface

The ACT Server utilizes standard HP LAN Link/300 and TCP/IP
software for end-to-end connection oriented message
transport with the client application. Interprocess
communications provide the higher level communications
services. For communications with the PBX, the HP X.25/9000
interface is used. (See figure 2) The server is also
responsible for enforcing security, allowing users to access
only the set of telephone capabilities for which they are
authorized.

PBX

CONTROl
PROCH~

Pel<
MESSAGES

Pel'
INTERFACE

HP9000 SERVER

ACT SfRVER SOFTWil'RE

ACT
CAU

ImOCESSlNG
Pex MESSAGES

SPECIFIC
MeSSAGES

IPC

I----

TcPnP

PBX
80UINTERFACE

HP3000

APPLICATION

GAll
PROCESSING

API

ACT-CP
MESSAGES

IPC

TCP/IP

802.3

HP9000

APPLICATION

CAll
PROCESSING

API

ACT-CP
MESSAGES

IPC

TcPnP

802.3

(figure 2)

3237-5

Applied Computerized Telephony: You won't be left on hold

During normal operations, the ACT server will generally
display PBX and ACT status messages. While developing the
application program, it is important to locate the ACT
server near the desk of the programmer. certain types of
debugging are possible only if status codes and messages
displayed on the ACT server terminal are visible, so having
the server nearby makes these tasks easier.

The host computer

Both the HP3000 and HP9000 can be used as platforms for
application programs that will interact with the ACT server.
On HP3000 systems, the LAN link product, which includes the
necessary TCP/IP and Net/IPC software, is required. For
HP9000 systems, the LAN/300 or LAN/BOO link product, and
NS-ARPA services, which includes Berkeley Sockets, are
required.

Application Program Interface (API)

The ACT API is designed to provide a simple means for the
application programmer to generate ACT protocol messages,
and to shield the programmer from the underlying low level
network procedure calls. The API consists of callable
subroutines, such as ACTMAKECALL, ACTANSWER, ACTHOLD,
ACTTRANSFER, and ACTDROPCALL, and makes it easy for the
programmer to integrate ACT functionality into new and
existing applications.

The role of the API is to take the parameters passed from
the application program, place the parameters into an ACT
formatted buffer, then send the request to the server via
the network. Similarly, when a response is returned by the
server, the API accepts the response from the network and
returns data into application variables.

3237-6

Applied Computerized Telephony: You won't be left on hold

RP Direct's interest in ACT

HP Direct is both a marketing and a distribution channel for
a specific line of HP products consisting of computer
supplies and accessories. In addition, the telemarketing
channel sells items such as calculators, plotter supplies
and low-cost instruments manufactured and marketed at other
HP sites.

In its role as a channel of distribution, HP Direct uses
catalogues, mini-catalogues, fliers and ·promotional pieces
to stimulate sales through a telemarketing force of over 100
people. This sales force handles a host of supplies and
accessories, totaling over 20,000 parts.

with several thousand phone calls per day coming through HP
Direct's switchboard, we are a prime candidate for ACT
technology. Our telephone sales consultants would benefit
in several areas. Customers who call our 800 number often
do not have their customer account number handy, causing a
search of their name to be made on our database. Although
searching only takes a moment, it is time that could be used
to lookup the customers past purchases or buying trends. In
addition, the phone call is longer, which means bigger phone
bills. ACT eliminates the need for customers to have to
provide their account number, as it can be obtained
automatically from their phone call.

Another benefit of the use of ACT at HP Direct is the
transferring of calls. Many times, a customer needs to
speak to a product specialist. with so many different
products being sold through HP Direct, certain sales
consultants are given training on specific products. When a
phone call reaches our switchboard, and a sales consultant
realizes after a short conversation that the customer really
needs to speak to a product specialist, the phone call is
transferred. Without ACT, the customer must again identify
himself and restate his request, which is extremely
frustrating. ACT provides the ability to transfer the
telephone call and a screenful of data (including a short
remark) to a waiting agent.

3237-7

Applied Computerized Telephony: You won't be left on hold

BP Direct configuration

Before attempting to implement ACT within our Telemarketing
department, we created a test environment separate from our
800 number. By working closely with CNO and our Telecom
department, we were able to configure our PBX so that only
two phones were actually using ACT. That way, we could test
all the features of ACT in a controlled environment, without
adversely affecting our production systems.

For our pilot ACT project, two terminals, two agent
telephones and two "outside" telephones were configured.
(See figure 3) The outside lines would simulate a customer
call, with both ANI and DNIS (customer phone number and
number dialed) being delivered to the PBX.

ACT Server

HPJOOO

(figure 3)

3237-8

Applied Computerized Telephony: You won't be left on hold

Usinq the API iDt~insics

The first thing our sales order entry application needed was
a connection to the ACT server. A connection is established
by calling the ACTINITIALIZB intrinsic. If successful, a
channel identifier, and the software revision level of the
server and switch, are returned. The channel identifier is
used in all subsequent requests to the server.

Our application was not going to use ACT to make outbound
calls. Yet, the ACTKAKBCALL intrinsic can place a telephone
call from a phone which is under server control to any phone
in the global telephone network. In the future, ACTMAKECALL
will be able to automatically detect bUsy signals and
unanswered calls, further maximizing agents on-line time.

Normally, when an application program issues an FREAD or
FWRITE on a device, the program is interrupted until the
read or write has completed. There are, however, situations
where the application program should have the ability to
interrupt a read or write. with many of the ACT intrinsics,
NOWAIT I/O is used, because it is not known when a phone
will ring, or when a customer may hang up the phone. To
address this issue, the ACTBVBBTKONITOR intrinsic is used to
monitor activity on an agent's telephone extension.
Activities include going on-hook or off-hook (hanging up or
picking up the receiver), incoming calls (with ANI and DNIS
information) and other events dependent on switch features.
The application program can monitor multiple phone
extensions, and choose to poll or wait for event completion
using IOWAIT or IODONTWAIT.

When the phone rings~ you need to answer it. The ACTAKSWZR
intrinsic responds to notification of an inbound call by
placing the called telephone in the off-hook state. This
has the same effect as lifting the handset from the cradle.
But, before the called phone can be answered, it must be
monitored with ACTEVENTMONITOR. So, during the
initialization stage of the application program, it is
mandatory that the agent and his phone extension are
provided to the ACT API. Otherwise, ACTANSWER will have no
affect on the ringing phone.

3237-9

Applied Computerized Telephony: You won't be left on hold

If a customer phones, and needs to speak to a different
agent, the call must be transferred. ACTTRANSPER performs
an unsupervised (blind) call transfer to a new number by
connecting the transferred party to the specified number.
The transferring party will be dropped from the call at the
time the transfer begins. (Our version of ACT did not yet
have consultive transfer implemented). The agent that
receives the transferred call is provided all the
original information about the call (ANI and DNIS included).

After the telephone call is completed, you must hang up the
phone. The ACTDROPCALL intrinsic disconnects a party from a
call. It is common to receive an error while dropping a
call, as customers will generally hang up their phone before
ACT has a chance to process. In this case, ACTDROPCALL
returns a "261:ERR_DIS_FLD" error, indicating that the call
has already been marked as disconnected because one of the
parties has manually hung up.

To disconnect from ACT completely, ACTTBRMIBATB is used. It
will shutdown the connection between the application and the
ACT server. All event monitoring for the channel is
terminated as well.

Using a controller program

The ACT API is complicated slightly by the 'fact that
telephone operations take a relatively long time in computer
terms. To allow this waiting time to be productive, the API
returns control to the application immediately after
accepting requests that may require a long wait (waiting for
the phone to ring, for example). The application can then
choose to poll or wait for event completion.

To the programmer, using the API directly within your own
application can become complicated. It may .be advantageous
to place the ACT intrinsics in another program to avoid the
comp1exity·of adding NOWAIT I/O to any new or existing
application. Another reason to write a separate program is
to facilitate the transfer situation. When transferring a
call from one phone to another, the screen data associated
with the call also needs to be sent. Every application must
be able to communicate with every other application user.
Adding all the code to handle each call processing function
and error condition, and communication information for other
users on the system would cause a significant change in an
existing application.

3237-10

Applied Computerized Telephony: You won't be left on hold

In our application, we created a separate controller, acting
as a signal program that would interface to the ACT
intrinsics on behalf of our application. Each application
needing to communicate with the controller would write a
request to a message file that was writable by all users.
When the application needed to read information, another
message file, readable only by the specific user, was used.
(See figure 4) It was much easier to modify our existing
application to read and write message files as a short term
solution. In the future, we plan to make the investment to
integrate ACT directly into our application.

(figure 4)

Our prototype ACT project demonstrated the ability to answer
an incoming telephone call and display a customer record in
a TurboIMAGE database from the ANI, via a single function
key. The DNIS was displayed on the screen, so our sales
consultants could see what number the customer dialed to
reach our switchboard. In addition, a message appeared on
the screen indicating whether the phone call was a new call
or a transfer. By the time you could say "Welcome to
Hewlett-Packard Direct, how may I help you?", all the
information had appeared on the screen.

To perform a call transfer, our application displayed a list
of agents currently connected to the ACT server, and
prompted the sales consultant for a short message to be sent
along with the transferred call. On the sales consultant's
terminal receiving the transfer, a message indicating that a
call was being transferred, who was transferring it, and the
short message were displayed. Also, the same customer
record appeared on the screen, so the new sales consultant
would not have to ask the customer to repeat any
information.

3237-11

Applied Computerized Telephony: You won't be left on hold

Although our pilot ACT project has not been installed into
production, many potential benefits are anticipated. In
addition to automatic customer identification and call
transfers described above, we found that the ANI from
abandoned calls (when a customer hangs up before reaching a
sales consultant) could be captured. Our telemarketing
department plans to use this data to improve service levels
for our customers.

Conclusion

Numerous forces are driving companies to implement new
telephone and computer technologies to enhance sales,
marketing and customer service operations. Some of these
include rising costs of face-to-face sales efforts,
expanding geographic market areas, cost effectiveness of
centralization, emphasis on customer service as a product
differentiator, and overall increases in global competition.
Marketing and service organizations are expected to
represent a larger percentage of corporate information
.systems expenditures over the next several years.

Applied Computerized Telephony integrates telephone switches
with HP3000 and HP9000 applications, creating an exciting
new generation of voice and data systems. HP Direct's
prototype ACT system demonstrated to us that the technology
can create a solution that provides impressive productivity
gains, increased customer satisfaction, and sales
opportunities never before possible. These same benefits
can be seen in your organization when ACT is integrated into
your telephone applications.

APPUED COMPUTERIZED TELEPHONY

HP'S STRATEGY FOR INTEGRATING VOICE & DATA

3237-12

Applied Computerized Telephony: You won't be left on hold

- 1 -

AIFs ON MPEIXL

by
Rajesh Desai
JeOlllle E/nler

Commercial Systems Divisioll
Hew/etl-Packard

19447 Prulleridge A,'e
Cupertino, CA 95014

(408)725-8900

INTRODUCTION

In the past, Independent Software Vendors have often required access to operating system
internal information in order to provide sophisticated end-user solutions. Disseminating
dynamically changing data structures and information control flow has been a challenge to
platform suppliers, and not always done in a timely or consistent fashion. Independent
Software Vendors face the challenge of maintaining their products conforming to the
modifications done to the operating system from release to release. With the advent of
MPEJXL, Hewlett-Packard embarked on an ambitious program to provide equivalent means.
for developing advanced solutions while addressing the problems posed by system evolution.
These program objectives led to the development of the Architected Interface Facility (AIF)
products.

The Architected Interface Facility products are lo\\'-level system interfaces designed to expose
internals in a controlled manner or, to export or enhance existing system functionality and yet
remain independent of a system release. These products in many cases. are not unlike
intrinsics. However, they do differ in one significant way: Architected Interfaces assume a
privileged user and therefore limits their error checking and allow access to sensitive system
data and functionality. Conversely, intrinsics are "bullet- proof' and often don't meet the
performance or functional needs of Independent Software Vendors. Currently there are three
Architected Interface products - Operating System, Measurement Interface and Procedure
Exits.

ARCHITECTED INTERFACE FACILITY: OPERATING SYSTEM

The Architected Interface to the MPElXL operating system provides access to internal system
data and functionality. Correspondingly, there are two types of interfaces available within this
product, Information Access and Functionality Access interfaces. Information Access AIFs
allow read or write access to internal system tables. For each class of objects for which
interfaces are provided, there are two procedures: a GET and a pur. The GEf interface \vill
return information about a specific instance of a class as identified by input keys. The PlIT
interface also accepts an instance of class from the caller and updates system tables to reflect
the state requested. Additionally, an anchor interface is provided to retrieve one or more
instances of an object class reflecting the current state of the system. Functionality Acces.'i
interfaces allow the developer to take advantage of operating system functionality. Below is a
list of the class of objects for which Information Access Interfaces and Functionality lnterf~,ccs

arc currently available.

AIFs on MPElXL 3238 - 1

Information Access

• Accounting

• File

• Job/Session

• Process

• Reply Information

• System Configuration

• Spooler

• System Wide

J....unctionalit}· Access

• Change Logon

• Convert Address (CM to NM)

• File Close

• Ports

• Global Object

• Time

ARCHITECTED INTERFACE FACILITY: MEASUREMENT INTERFACE

The Architected Interface to the Measurement Interface allows read access to internal
measurement counters. Counters are the method that the operating system uses to track events
that occur on the system. A counter unit of measure can be either count or time. Count is the
number of times an event occurred or the quantity of an event that happened. Time is the
length of time that an event happened or the time stamp when an event occurred. Counter
values are returned for four types of information by the AIFs to the measurement interface:

• Global Counter Information

• Process Counter Information

• I/O Counter Information

• Processor Counter Information

ARCHITECTED INTERFACE FACILITY: PROCEDURE EXITS

The Architccted Interface Facility: Procedure Exits product enables you to replace or augment
system functionality on MPEJXL. Software solutions may be accomplished through run time
interception of MPEJXL procedures residing in NL.PUB.SYS or other system lihraries.]t docs
this by letting the developer specify ccrtain procedures to be executed in place of, or in
addition to, existing procedures within the system or user code in both compatibility mode

AIFs on MPElXL 3238 - 2

(eM) and native mode (NM). This specification may either be performed on a system-\\'ide or
a process-local basis. to allow limiting the scope of effect. User supplied procedures to execute
at procedure interception time are defined as handlers. The procedure that has been
intercepted is defined as a target. Handlers can execute prior to (invocation handler) or upon
completion (termination handler) of a target. They may also execute instead of the target
procedure, defined as stubbing out a procedure. Access to the target procedure's parameters is
made available to handlers for inspection and/or modification. The Architected Interface
Facility: Procedure Exits product binds and unbinds handler routines to targets dynamically,
without the need for rebooting or relinking the system. Binding and unbinding affects all
processes currently running as well as those subsequently created.

EXAMPLES

Below we "'ill discuss some examples of how you could use the Architected Interface Facility
products to accomplish a variety of tasks.

Generalized File Equations:

One way to accomplish generalized file equations is through the use of the Architectcd
Interface Facility: Procedure Exits. By enabling an invocation (a handler that executes prior to
the execution of a target) procedure exit on file open, an application could catch every file
open on a system. The procedure exit could then examine the file name, compare it to a list of
special file equations, and then pas.c; file open a modified file name. The following diagram
illustrates the execution:

AIFs on MPEJXL 3238· :1

Normal Execution

+------------+ +------------+
IOpen a file I I I
Icalled JfooJI-------------------------------->1 FOPEN 'fooJI
I I I I
+------------+

Execution with a
Procedure Exit

+------~-----+

+------------+ +-------------+
'Open a file 1---+ +-->1 I
Icalled Jfoo J I I I I FOPEN Jmoo J I
I I I I I I
+------------+ I I +-------------+

I I
I +------------+ I
+---->1 Translate 1-----+

lany fil~ f@ I
I to m@ I
+------------+

In this example, the application tries to open a file called 'foo'. Under normal circumstances.
the application calls file open with the file name, and file open opens the file. The application
user can specify a normal file equation such as :

FILE FOO = MOO

This will make the file system oPen a file called 'moo', instead of 'foo'. But "'hat if the user
docs not specifically know what the file will be called. Furthermore, suppose the user wants all
files that are in a group called could enter file equations for each file, if the names are known.
and if the number of files docs not exceed the file equation table. But it would be more
convenient, if the user could just tell the applications to replace all files from the group
'group!' with all files from a group called 'group2'. The user wants to ,vrite a file equation Jike
this:

FILE @.GROUPI = @.GROUP2

This feature would be nice, but it does not exist. Wild carded file equations would be relatively
simple to implement, however, the application writer could usc the Architectcd Interface
Facility: Procedure Exits. Since all calls to file open are intercepted by a procedure exit. the
procedure exit just needs to look for the file equation (the details are left for the designer of
such a utility). and modify the file name appropriately in the parameter list to FOPEN upon
interception. This could all be done with the user being totally unaware of what is h'lppcning.

AIFs on MPEJXL 32JS - 4

Imagine trying to compile a program that includes several other files. Now let's say that the
included files need to be modified. The programmer could use wild carded file equations to
point the compiler to the new include files in a work group, leaving the original files
untouched. This could be very useful if several people are working on the same group of files
or if they must use different versions of the same file. Each version of the files could be kept in
separate groups. The programmer could use wild carded file equations to point the compiler to
the correct group.

Event Handling :

Currently, several events are monitored throughout the operating system via the measurement
interface which are made accessible to the developer with the Architected Interface Facility:
Measurement Interface. However, not all events of interest may be monitored. A developer
interested in monitoring an event can take advantage of the Architected Interface Facility
products to do so. Take for example the event of logging on to the system. A system manager
may wish to limit the number of logons per user for performance reasons. This could be done
with a combination of Architected Interface Facility: Procedure Exits and Architected Interface
Facility: Operating System. A product could intercept the :HELLO command using AIF:
Procedure Exits. This product could then call AIFACCfGEf within the AIF:OS product and
retrieve the logon count for the user logging on. If the logon count is zero, the handler would
allow the logon to continue. Otherwise, the procedure could be stubbed out ,vith the handler
reporting a failed logon.

Automatic File Archiving :

The purgjng of files is a common event on the operating system. People from time to time
mistakenly purge a file that they didn't mean to. The file in some cases can be recovered from
a back up tape, but may often not be current or even backed up. A nice feature to have \\'ould
be the ability to save off those files purged in a backup group for a period of time so that it
may be recovered if it is decided that the file is still needed. One way to accomplish this task is
to use a combination of the Architected Interface Facility: Procedure Exits and the Architected
Interface Facility: Operating System products. In this example. we will arm the procedure
FCLOSE with both an invocation handler and a termination handler. AIFs to the Operating
system \\TilI be used to gather information needed for for both handlers and initial setup.
Below is an algorithm that could be used to accomplish this task. The algorithm assumes that
every group on the system has a corresponding back-up group within the same account in
which to save discarded files. This algorithm is an outline and does not give specific calling
sequences to the procedures used or other specific implementation details.

AIFs on MPElXL 3238 - 5

Initial Setup :

(a) Call AIFSCGET to determine the maximum number of pins allowed
on the system.

(b) Call AIFGLOBACQ to acquire a global object. In this object, set up
an array from one to maximum pin with the following record
structure:
shared_data_array = record

file_close boolean;
file_name packed array [1 .. 48] of char;

end;
We will index into this array based on pin number to share information
between invocation and termination handlers to FCLOSE.

(c) Initialize data structure to false and blanks.

(d) Install an invocation handler and termination handler on FCLOSE.

In\'ocation Handler :

{ Examine parameters to fclose and determine disp parameter passed}
disp := FCLOSE(disp);

{ only worry if we are deleting the file }
if (disp = delete) then

begin

{ Determine our pin to index into global array shared by this handler }
{ and the termination handler·}
my_pin .- AIFPROCGET;

{ fill in data we want to communicate to the termination handler, }
{ namely that a fclose with a disposition of delete has occurred and }
{ the name of the file being deleted}
shared_data_array[my_pin].file_close:= True;
shared_data_array[my_pin].file_name := file_name;{in parameter list}

{ Modify the disp parameter to FCLOSE to close as a permanent file }
FCLOSE(disp) := CLOSE AS A PERMANENT FILE;

end;

AIFs on MPFlXL 323~ - 6

Termination Handler :

{ Determine our pin to index into global array to retrieve information}
{ from invocation handler }
my_pin := AIFPROCGET;

{ Check array in global object indexed by pin to determine the file}
{ vas being closed with a delete disposition}
if shared_data_array[my_pin].file_close= True then

begin

{ Issue a programmatic COPY of the file to the corresponding back-up }
{ group using the HPCICOMHARD intrinsic. }
HPCICOMMAHD(command copy,

source shared_data_array[my_pin].file_name,
destination = corresponding archive group);

{ Issue a programmatic PURGE to now purge the file, again using the}
{ the intrinsic HPCICOHMAHD }
HPCICOMMAND(command purge,

file = shared_data_array[my_pin].file_name);

{ reset the fclose_disp parameter in the global array to false }
shared_data_array[my_pinJ.file_close:= False;

end;

CONCLUSION

In summary, the Architected Interface Facility products, allow for supported access to internal
system data, functionality, or provide enhanced functionality. The Architected Interface
Facility: OPerating System and Architected Interface Facility: Measurement Interface are
available on MPFJXL 2.1 and later. The Architected Interface Facility: Procedure Exits is
available on MPEJXL 3.0 and later.

AIFs on MPEJXL 3238 - 7

Papt>r #:i2:i9
ALLBASE/SQL High Ava.ila.bility F(~a.tures

Alt'X Tsukt'flllan
Ht>wlt->l.t.- Packard

IH4tJ7 Pfulleridge AVt'

(~upprt.illo, ('A m>OI-1
(408) 11 /17-()7:l8

Abstract

J\ sigllificaill. work h~ heen pul illl.(1 ALLBASE/SQL 1.0 ill(,fe~~t' produd, availability, i,e, luilliulizing
of plalllwd dat.aha.""t' <tow II l.iII It'. Th,· Itt'\\' hi~h ilva.ilabilit.y ft'at.ures iucllld... :

I. Ollliue STORE facilit.y. whidl allows t.ll<' DHEIlVirOllllJellt. to be backed up without. int.errupt.iug
t.ransact.ion pro('t->S.~in~.

1. Mlllt.iplt· log filt:'s. Thi:-- f('al.llrc' allows lo~ filt~ t.o bt' addt~d/ddet.ed/st.ored during llorlnal
sy~t.<.'lIJ opt"rat,ioll. It. also pr(Jvid,~~ f1C'xihilil.y ill lIlanagin~ t.he log spa("f~.

:s. Improvt'd algorit.hm lor dllnl loggill~, Thi:, ft'alurt" providt' fault.-t.oleran("(" of log file:-- \yit,h
1'(':--pC,'d t.() a ~illglt-> devio' failllrt'.

:1. Mort, rohnst, roJlforward rc'c'ow'r.v al~orit,hlll. This ft.'al.lIrC'lIlakes t.he pro("f"S~ of tht, forward
rc'('ovpry Il'S.... t'rror prOllt'.

r). Support. for log flit's 011 raw d('",i(TS, Ha.w dc'vin'S providc' higlwr pt"rforulaJ)("t'.

Ii, Dymulli(' spal'f' t'XIJCtIl:,ioll whc'I'I' DB Efilc":o\ whidl hc'c'olllC' rull arc' alll.omat.ically c"xpallclpd wit.hill
l.h,· 1I:,'·r-:o\IH'c'ific·c1 lilllil:'.

Tlti:, papc'r c1,,:,c'rihc,:, how III IISC' I.IIC' allCl\"c' ff'alllrl':' 1.0 itt'lli,''''c' :o\1I100t.IJ and ('()IIt.iIlUOU~ 0IH'ri".ioll
uf I.IIC' DBFII\"irolllllc'lIl. Wil.!1 rc'spc'~'1 1.1t IlBElivirulllllt'1I1. hac'kup/rt·c'ov4·f)'. II all'lJ provid.>:; ii shorl

Ilvc'r"ic'w "I' I.l'iUlSW'1 iUIi lo~].!.illJ.!..

Logging overview

I. Tc' rC"'o"I'1' a IlBEII\,irfllllllc'lIl h.1 iI c'C1l1sisl,('1I1 sl elk a.rl.,'r a S,\'!o;I."111 ('ra.-.;h, l; pdal.l':' 01':111 ('oIlUllil.
I.·" I 1';HISiI,'I iCIIt=-' arc' ,~IIiIl'alll"c'" 1•• 1... r,'c'o\"c·rC'cl. Thi:, ft,,, I III"" i:.; ('allc'd soft ~:rash (or rullha('k)
I'I·""\C·I'.\·.

III f"'-I'r"al~' I ht' DBEII"i1'''"'' It'llI frnlll I lit' p""",ioll:' ItiiC'kllp t:opy "p 10 I.h,· .·tln"III...illlC' ill I.t...
··;I~t· ••1' Jllc,e1i;, faillJl'C' "11 I.h.· I)BElild:--L Thi:-- il";c rolll'ctrward rc'l'O""'Q·.

,t, '1" 1"' -,1',',11. II ... IHU',II\'i I'tllI 11 ... 111 frlllli Ihc'I,r"v;"JI=-, lJa('klll' ('(,II'Y Ult 1.1I :o\Ollh' ol.lIC·1' ill 1.lu·pa,-;1

'1':11" i:tl 1'1I11fflrwilrdL rill=-' fC'alllrl' Illay I... IJ:--c,d 10 "c'IIIU\'C' ail dttl.ahii....c· IIpclal.I 's art.c'r "'·I'I.aili

,i

III ot.her words. At.omicit.y. (·oll:~ist.enfY. and Durahility properties of t.hf~ transaft.ion fIloclt'l a.r~

achieveJ through logging. Tlw ot.h~r prop~rt.y, Isolation, is a<"hieved using lockillg allfl will uot be
disc uSSt'd here,

Tlw log consists of mult.iple files, alld each of t.hem may be duplicated for in('f(~ased robUt)t.llt~S,

The syto;1.t"m maintains a Jirect.ory of currently defined log files, The log files may b~ added/dd('t.t....d/djspJayt~(1
whil~ tht~ syst.em is operat.ional.

The ('ont.ent$- of a log file is log rt'(.·ord~. Most. log re('ords describt" updat.e:-o t.o t.lw lISf'r dat.a.
Typically, such record cOllt,a.ius tlw pr~vious vallie of t.ht' dat.a (a bf'fore-illlage), and t.tlt" IWW vahlt'
of t,ht~ dat.a (an aft.er-image), Befort.'-illiages i~ used t.o reHlO\'f~ t.lw results of incoluplt,t,{' t.ransactions,
and after-illlagt~s an'" used t.o l1lak~ the results of complet.ed t.ransact.ions pc.'rsist.('IIL Th(' 10"; n'('ords
JllUSt. be writ.teu t.he disk before the corresponding dat.a re('ords are, and they also lUust. bf' writ.l.t~1l

t.o t.h~ disk befort~ t.he lIst~r rec(~ived ronfirmat,ion t.hat t.ht' t.ransl\rtioll has <:olllluit.t.ed. This st.rat.t:'gy
(writ.e-ahead logging) is common for most. rOlluuerrial <latabas<' sysl.t.~rns.

An individual t.ransaction may ~pall nlUJtiple log files. Th~ system itself automat.irally swit.ches
from one log filf' to anot.her when t.he current. log becomes full.

Depending 011 t.he user requirements. a DB EnvirollJuent. call run in eit.her an archive modt· or a
Iloll-ar('hivf~ mode, In arrhive lllod(~. it. is possible to rerOVf>r from media failureto' using L>HEnviroll
lIleIl I, ba('kl.lp (arrhivf» ropy. and tht' log tilt':", rreat.ed af"c~r t.lw harkup wa.~ t.akc~11. It. is aJ~() possibl..
t.o recov~r frolll syst.c~1H crashes by using 0111)" t.11f' 08EIIVironlll(~nt, 011 r.he' disk and t.tH-' log file(s)
on the disk at. t.ht.~ t.inIt' of (~ra.'ih, In a Iloll-archivt:~ modt'. it. is only possible t.o re(~()Vf.'r frolll syst.t.'1l1
crashes. Alt.hough OUt" can uSt"' a barkup ('opy of t.he DBEllviroul1wut. in non-archive modt,. all t.llt"
updat.es 1.0 t.h~ dahahast' which happ~ned aft.t>r t.his ("opY was t.aken, are lost., Frolll t.h.. ()pt~ral.i()nal

point of vi~\\'. all ar(:hivt'" logging lIIay r~4uirt' lIIort~ log spa('c'. aud the log spa.n~ is reus('d ditft·rt~IIt.ly

- t.lw logs lIlust. he:' ~wriodit-ally s"or~d t.o b~<'ofl)~ usablt' again, In this arl.idt'. Wt"' will hf' lIIosl.ly
t.alkillg abollt arc'hivt' fl)Otlf'. Sill(·f·' t.his is wherf' our availabilit.y f'llhall(·ement.:-- r('ally pay oft'.

Continous operation

I' is t'a.~il·r 1.0 c'xplaill our availahilil~' 1'1111,,11(,"111.'111.:" hy pailll.illf.!; a pid.urt' of a (if lUll id"al. 1.1 ... 11 a'
It 'a....' .If'sirahlt,) .'OIlI.ill~.IIS DHEIIVirOlllllt'lIt op.·ral.ioll. Tlw 1I~"r :-0110111.1 h.· ahl.' 'II rlill ill a 1·lIvirc.'lI
1It"lIt a.... lollows:

• Pf'riodirally, :-oay olin' it wf·..k. s'·or.' 1.lll' IlHEllvirollllwlIl '.0 SOliif' ar<'hivallllf'dia (lIsllall~·. I.al'."
widl"'" 'IiIVill~ f.(, hrillg th.' DUEII\'irolllllf'lll dowlI.

• MUI'f' I"rc'<ilwlIl.ly. :-oay 011("(' a d'ly, Joo't.or.' t.11C' lop; fil.~(s) f'Ollto'lIl1lf'd h~' t.hiJoo' pf'riocr~ opl'ral.iull 1.<,

SUI lit , ardlival lIlf>dia. :\~aill, t,l", IlBEllvirolllllt'lI1. i:-o lip wlwlI this is .101

• If it is tlf"SirHhl.' '.tt <'Imil';. , tilt' IUAAill~ l'aralllf'I,.'r~. sudl a.... 1·0 ('rf~a".' a IIt'W lo~ Spat'f' or 1<.

f.·IlI"\'f' 1.1 ... old OIW. t.hi:-o t'itll alS<.J h.' dOll.' wil.h,,"t. hrill,L!;ill~ 1.11C' DUEllvlfnlllllt'lIl clCIWl1. .

III ord.·r 1.(1 :-ol.nr.· ,.1 ... DHEII\'iroIlIlIC'1I1 wllilc~ 1.1 ... IISf'r Irallsal·t.iuIIS aff' st.ill a'·li,·.·. ST<)I{ r has ''''''11
I'liltal"'.'" It. d... its opc'ralioll:; ollli ..." III urd..r 1.0 IlIalla~I' lo~ span' whil.' 1.11.' 1I:"'I'r I.rall:"ilt'l iOIl:" af"
sl.ill a('I.i\'I·. tilt' I(I~ span' nUl Iw di\'i.lt'tl illl.•• 1I1U1t.iplc- pa.rls (file's). wlwrt' "ad. I'al'l 1'<111 IH' I'rltt'I's~I,tl

witl. a si~f1itif'a1" c1c·~r.'C' of illtte'IH'lIdt'lIf'.· frOll1 1.•I·ht'r parIs. ~ow W.· .'Xpl:1I1I Itil III ... ~n 'If f· :llId
1111111 ipl.· lu~ lilt'S ill 1I10rt' clt'l.ail.

Online STORE

OIiJine STORE i~ useel t.o (·r."a"t· it burkup ('opy of a DBEnvirollluent when the DBEllvirolllllclit.
i~ aft.ivf:'. Th~ ropy which is rreat.('d can bt' lIsed iu t.he subsequent. rollforward recovery. In fact..
r.h~ ('opy {'an only h.· lIs~d ill t.lw rollforwanl reCOVt'ry, since t.hc~ DBEuviromnent. hllage 1t. ront.ahls
is illronsist.t:'nt.. This is ill (,ollt.ra.~t. wit.h t.hc' ha<'kup eopy made when thfl DBEuvirolJJllent is not.
ad.ive. Tht' lls~r should Iw fiWart' of it.. alt.hough ALLBASE will euforce the rule aut.olnatkally, so
t.hat. ('ON NECT t.o all ill(·ollsist.elli. DBElivirolllllellt. is not. possible. During roJlforward ree·overy.
l.lw logs ar(' appli•.'el to nt·a...• a ('.onsist.t'lit. (preferably. up-to-date) copy of a. OBEnvirolunent.. It. is
also important. 1.0 know that t.tw TSTOR.E-II is r~qtlirt'd on XL t.o do an ALLBASE online backup,

ALLBAS'E requirt'S that. ai, 1c.'a.lSi. t.l.., log files which were in use during an online STORE window
must. bt' applied dllrill~ rollforward n·(·overy. ot.lw·rwise t.hf.' DB Environmeut. will not. he comcist.ent..
Tlwrefoff'. the IIfo't'r lUust. enSlIrt' that. all I.IIt,,'St' logs arc' availa.ble.' at. recovery t.illlt'.

011 a caut.iouary IlOt.~. au Ouline STORE is a <.lat.a-int.ensive operation which COlnpetes for systenl
resources with tilt' user transact.ions. Therefor<', even if t.he system does not have to be shutdown.
it. may bt, dt'Sirabl(.\ t.o run t.lte .STORE ('ollcurrently with Ilou-prime t.hne batch jobs, as opposed
t.o running it. at. t.l1P pc"ak of OLTP workload. If OIlC' really has to rUIl it. conc,urrent.ly with OLTP.
it. may bt' desirablc' t.o lower t.11t' STOH E priorit.y. ill which rag(' it. will take longer. but. t.he illipaet.
will Iw 1t:'S~ Ilol.irl'ahlt' t.o "'w ol;rp IISt'I·. "VI' don't, have.' any hard Ilumb~rs t.o quant.ify t.hc· ahovt"
rerollmlf'udat.iolJs.

Multiple logs

M"I ..iplc' log filt'~ allow for slIIool.h 1IlCt.llfiW·IIU·lIt of hot.h t.lat' log spa('''' and t.he' log ofi('kup sdwdtllc,:"
(I'f""rrt'd 1.0 a.... fi Swil dll()~ ('lIhalH'I'lIIt'lIl ill I.ht' ALLBi\SE lit,c·ralun·). If t.hc· log span' is insuftkic'lI1..
which r"slIh,l'\ ill frt'qu"111 loS!: f,,11 fOlHlil.ic.H1l'\. a IIt'W lo~ filc' lIIay Iw addc~d whilc" t.1lt-' syst.('111 is sl.ill
opc·ra.l.iolla!. And if '.11t' lo~ span' St't'II,:-. '.0 ht' ,'x(·t>ssi\~t·. t.l t~xt.ra log tilt'S ma.y Iw c.lc·ld.c'(1. It. is al:-;<)
pOl'\l'\ihlc' I\,I 1I10\'t' lo~ filt·s frOl1l Ollt· dt'vi ... · 1(\ allot.lwr.

Lu~ fill':- whidl arc' lIul i'lIrrl·1I1.ly ill 11l'\1' hy 1.1ll' S.\':-;lt'llI ('all Iw sl.ort'd 011 SOllU' archi\'allll,·dia. TI...
frt'q"'-IIC'y of l'\1.orill~ I()~ lil,'l'\ dt'IH'IIe1l'\ Oil I.IIl' 1·(III~itlt'ral.iolll'\ or possihlt' clfit.a 1e.)l'\S aIltl of Ilt'n'l'\Sil.y h~

1'...... I·11l' lu~s a:-. l'\0111i a.... po:-.sibh-. Dfil.a 1(1:-;.... Illay rt':';III1, frolll a dallla~t"d 10K file, 011 .. Ill' dil'\k. Slidl lo).!,
"allllnl h,' IISI't! It II' Ilw rnllforward fl·C·O\,f·ry. 'I() l'\I)lv-' t.hil'\ problC'III.. d'f' Ill;" LLO< ~ f.'a"."r,· "'lUld
I... IIsc·d (dc':--crilll'd lal.t·r). :tIId/or I.lac· lo.!!.:" l'\l.o.. ld IH' l'\IOfl'd oft' wit" slItfki"lIl, frc'tf"t·lll·y. Hili ,.hc·n·
i:- :llllll.llC'r rc·a.'-iOlI I'CH' :-;"ol'ill~ ,.11t' logl'\ wit.h l'\Oll ... rl'~lIlarit.y - "h.. sysl.c'm will 1101. l'('IISc' t.lU' log (ill
ardliw' IIlod,·) 11111 il il. lIa:-- h"c'lI l'\I.ol"·'1.

III fielditillll I,u I.IIl' ".. Iwl.iollalily ,.'1' add/dc'I..I"/:-'lol'l' lo~~. it. fairly rOlllprc'lw,,~iv,·. display ffiCilit.y
i:- /,nl\·id.'d I.CI l'\h- 1\\' IIll' '·lIrr"III. ;o;I.a"" tIl' 1."1' lop. dir.'('lory. TIlt' i"forllla.t.ioll ill('llId~l'\ log file' lIalllc·l'\.
I.lwil' rt-s/'I·.. I.iv,· l'\i:l.c·l'\. alld wlwl.lll'r IIr 1101. 1.111' In~i" hav,· h('c'lI dalllagc'(l. Tlwrt' is also illformatioll
:-.h""1 ''/Il' lal"sI ;)lIlill" hiWklll' alld IIll' el\'l'raJl alll(llllli 1)1' frt'" lo~ Sp(1C·'·.

Dual Loggillg

1l1l:!I ll)~.~ill.~ il" 1I:'I·d II' illl:r";ls,' 11I.e. :l\'ailahilily. II \'''Ipluy:" it IIljrrorrillg l'\(·ht'lIlt'. wlwrt' ill~I.c'ad or
.,111 lile- I~,r ,·:,d, I,,~. I.W., lil,·:-- Mo' lI:-'l·d. Ltll-!. wrill'l'\ drl' il'\l'\III·d lu hol.1I I()~:-. If it writc' I.e I niH' lo~ fil.·
rail:--. it i~ ""Irkc'd ;IS "llad". itlld II ... l'\.Vl'\It'1I1 wril.l·l'\ "Itly 1.0 it .. p;oud" log fill' ... Bad" I()~~ aI'" 1101 IIl'\"c1
1"11' 1'",'11\'.·1'.\'. alit! wl ...11 I Ia,· I,,~ i:- SI.UI·I'll. IIl1ly :a ".!-!;Illld" filc· i:o: dIOSt'lI. \lVllt'lI a sysl.l'lIl swit hl't':" i"I.(l
'1 I..~ ~1l.!,:lill. II... ' 'ta"" j"di"i11 til" i~ r"l'\c'I III ttl I...,. \\'flrd:" ... had" silllply IlIt'all:" IIli1'. I·h.· Ill;.!. dot,:" "nl
""111 :Ii" ""111,,11'1" i"rll,.IIIiII jelli. :111.1 i~ I l...r"li II'" 111111:00:1111" rill' 1·,·I·I/\'I·ry. or """r~I'. a prilllary log, fiI,·

and a backuJl log tilt" should never bt" pl~.("ed 01'1 t.h~ salllt" physical d~vin.. otherwist~ ',hey would fail
t.ogt>t.her, thus defeat.ing the purpose of mirrorring.

It. is nat.ural t.o conlpart~ dual logs wit.h mirrorred disks. Mirrorred disks use more space, since
t.ht' wholt" disk is Illirrorred, not, just individual log file(s), and t.herefort> are mort" expensive'. On the
other hand, t.ht" mirrorred disk I/Os are issued by ..he Operating Syst.em in parallel, whilt~ ALLBASE
serially writes t,o tht' prinlary and then t.o the nurror. Therefore, performance of tlw Inirrorred disks
is bt'tt.er. In t.h..- future. however, ALLBASE llIay come up with a parallel sc.ht~lllt" for dua.l loggiug.

Rollforward recovery

Alt.hough t.h~ feature exist,ed in previous releases. SOllle new work has b~ell dont.~ to Illakf' t.he process
of rollfor ward recovery more robust. and user-friendly. The most, ilnportant reasou for perforJning
rollforward recovery is luedia failure 011 eit,her a DBEfile or a log file. Anot.her reason for t.he
rollforward recovery may be luassive logical contanlinatioll of data. For exanlple. consider a case
where a 10(. of data which were entt'red an.er May 10 was absolutely lneallillgless. In this case, partial
rollforward may bt' reconuuendcd "0 bring a DBEnvironment. to SOJl~ (·olJsist.en(. point. ill the pa.~t,.

Rollforward r~{'overy is perforliled using SQLUTIL. The following St'4ut'II('t' of st,t~PS is re(·olll
Illendf'd:

l. St.ore.' all t.tH.~ log files which are st,iII ou the disk and have not. bt'ell st.ored before to t.he t,apfl
(or ot,her archiv..- media) using the RESClJBLOG (~olullland. 111 ordt.~r to simplify this st.ep, ',hE'
uSt"r lila)' aU.t~lllpt t.o perform a SHO\VLOG cOllullaud (wit,h au Otflillt~ flavour). which would
display all I.ht.' log inl()rlllat,ioll. Only good logl'; which have flot bf.'t-'II st.orc.·tJ should ht' rcsflwd.
II. is possihlf'" howp.vt.·r, t.hat. even all offline SHOWLOf; will fail ~ art'sult. of utt.'dia failurf'.
HUI ill allY casp. it. is always wort.h I,ryill~.

1.. H.{~I,Orc' 1.11t.' prc'\'iolls olllilllt~ ha('kup ('opy lIsing t.lw RESTORE (·ollllllalld.

:t Do all "tnillt' SIIO\VLO(: ("ollllltalld 011 1.11(' rest.or,'d DHEn\'irolllllt,,,I. It will display 1.114'
Sf'tlIIC'Ih"" 1II11111wl' of I.hc' firs. lo~ to hc' a.pplit'd durillg I()rwartl rpc'overy.

·1. Illi.iliH:;l' n'('o\,c'ry lISill~ tile.' SETliPRE('OVERY c'olllJllalltl, Tlli~ fOllllllalH1 spc't'ilit's wht'l.II.'r
Iht' IlHEII"irollllu'lIl sholiid Iw rollt'tl If)rWartl '·Olllpl"".·I)' up-to-(Ia,.f· or lip 10 it Spt'(·iti(· l,illaC'="
!.alllf'. Furl.IlC'r, il pro\'id.·s I.ltc' lo~~illp.; paralllc",f'rs ",IIidl. will l.akf' ..tft'(·I. aft.c'r ,.11f' DHEII\'iroll-
11 .. '111 ha.'" h,'c'll n·('o\'f'rt'(1. .'

~.. For pat'll lop.; I.tI i!pply, 11:.... 1.11f' H.~;(~OVEH.LOr: rOllllllalld. II' a lu~ i:-; 1101 011 disk. it. lias Iw
prc'l'('dc'd hy it HESTORELO(~ c'Ollllllctlld \.0 hri,,;!; III\' 10K ill. Tht' Sysl.C'1I1 will aut.olllal.i,'ally
\'t'riry .. lit' f'OI'rC·'·'.IIt's~ of log St'qlwlln' lIullthc>rs. WIlt'" RESTORELO(: i:'\ lIi"f'tl. it. is dt~sirahlc'

to rt'lICllllc' 1.11f' lo~ Iilc·. ol.llf'rwisc' difl~rc·lIl. i"carllal.iolls or 1.1 ... :-;alllt' lot!: Iil(, lIIay ovc'rwril.f' c'ad,
ol.llt'r.

I). If r.'C'O\'f'ry 1·0 it ~1Jf'('ilir '.illlf'st.allip wa:o- spc'(·ili..d. I·hc' sysl.f~11I will iLulnlllalic'"lIy :"\IUp wlwil ,.his
l.iIlWSI.illllp IIa:-. h.·c'" rt'acllC'd. O!.llf'rwisC'. 1.11t' IISf·r should iS~lIc' E~ DH.t-:<.'<)V EH\" "Olllllla-IIe1
aft"'r IIIf' 1,,:0;1 lo~ ha... IH'c·1I applil·cl.

If. dllrill~ rolll'orward rc'('o\·c'ry. I.h'·r,· W(1.... all I/O error rl';Hlill~ Ih.' IClI!,. hili !.hc' DBEllvirOIlIlIC'IlI
I~ plt~·si("a.lIy n)llsis1.c·lI!.. I.IIC' f!.)lIIl)rward ft,,'u\'c'ry willnllillal.'· willi i, w;II·llil.l!.. III Ilti~ n~"'c'. 1,1 ...
DBElIvirolllllc'lI1 j:-- usahl.'. 1,111 il i~ IIIl)sl Ilrc'l"a"I~' Hoi· 1I1 1-l.o .. d......

If a S.V:--I.C'III c·r;t.~ltc's dllrill~ rulll()rward rC'I'o\'l·"y. 1,1 ... II:""" is ild\'i:·:,'d III ... ·a!'!!I.,· 1.1", I..~I. loJ!.. TI",
SY:-;'Plll IIIaY rC'l.lIrll a warllillg ,.lla. ,.his lup: i:-- 11111 .tt" :-;..tlllf'l ·. Thi~ \\arlllll.~ ";111 Ill" i.u;IInrc'd: il. :"illlply
1I1"illl:o- ,.hill ,.1 ... :--.\is'11I llii:-i all·,·ady I'Plllpl"'l'oI work ""ill, Ih.· I. I.!.!, . .\lId lilt' I"''XI • '11" ",It•• 111.1 h" i1-l'pli.·d.

Logs on raw devices

Raw logs is H perfOl'll1anCe ft"'at.ure. The additional perfor~Ila.IlCf-' is gained by bypassill~ t.he UNIX
filt' syst.f-'TIl, and by rell10villg indirect blocks. On t.ht> other hauet. t.heft' arc.' SOJW~ yhjllg~ about. I.h('
ra.w dt>vir('s I.hal. t.ht'" user should take int.o ar('ount.:

• The raw filt's require all 1/0 t.r.allsfers t.o be lK multiples, in order t.o a('comodat.(' t.his rult',
t.llf:' syst.t'llI IIla.y have t.o round t.ht' current. log block 1.0 a 1K boundary. As a rt'Sult., all Unix
(not. lH'r~ssa.rily raw!) logs may be somewhat, larger t.hall •.heir XL ('ollnt.t>rparr. .

• DBA should t~xerrise SOUlt' addit.ional rare whf'"11 using part.itions b€,a,('IIa.~' of p~siblc' oyprlap
ping wit.h ot.her part.it.ions,

Dynamic space expansion

Uyllalllir span' (~xpa.nsioll is a feat.ur~ which allows tht' DHElivirOlllllt·lIl. syst.t"l11 t.o iucr('8Sp t.lw
URElik spacp wl...11 lIec.'ded wit.hout. allY mwr inf.t'rventioll. He'fon', if a nHEfil(..~t, would he('olH('
full. ttl(' mwr would havc' t.o mallually <'reah' allot.her DBEfil(' alltl add it. t.o t.11C' DB Efile.sd., In t.11C'
Illeallt.illlt'. uo U8er t.raJlsart.iolis which net.·d ..his additional span' would Iw able t.o pron·ed. Alf;O.

'. ;\(Iding cUlot.ht'r DBEfilt' is ~, DDL operat.ion. and if t.hf'" DB EuvironHlt'lll. is run in DM L only ,uodf'",
il ha.~ t.o ht' shut. down. hrought. up wit.h DDL. shut. down agaill, alld hroull;ht. lip wit.hout. DDL.
~ow, a.11 t.lw U~t'r Ia~-.; 1.0 do is 1.0 delhlt' a DHEfilt· as bt.>illg c.>xpalldal>lt'. Mort· pre('isdy. at. t.lu- t.iltlt:'
of crt·at.ioll of t.Iw UHf:filc' t.he user lIIay sperify t.he illit.ial SP<H'f-' allo('at.ioll for '.11<' tile. f.11C' 'Jlaxi'Jlu'lI
span' allo(·at.ioll f()r 1.11f' filc>, alld t.hE' c'xpansion iunc'lIll'lI1. Wht"'IH'vt'r t.hf:' !"yst,('1II fllns Ollt of cI~t.a or
iwl.·x ~pHn' ill a :-:pt'('ific I.lBEfilC'sc""" il. dwrk:, all t.Iw c'xpalldahlc' DHEfilt'l" ill t.Iw filc>:-:t'l a.ml t'xpall(l:,
1.1 ... 01 ... who="C' ral.if.) of 1.1 ... IIlaxillllllll si~c' 1.0 t.llt' curn·lIl. si:w is t.lw sllIallesl.. Thi!" a.l~orit.lllll c~II=-'lIrf"S

iUt lIuiforill J!;rowl.h of all t.he· c'xpantlahlt' DBEfilc'S, ali<I it. work:, "YC'II if DDL is disahlt·d.

3240: ALLBASE/DB2 CONNECT - SQL Gateway to IBM's DB2

Jim Nagler
Hewlett Packard

Commercial Systems Division
CUpertino, California 95014

408 447-4048

INTEREX Conference; August 5-8, 1991: San Diego, CA

ABSTRACT

ALLBASE/DB2 'CONNECT provides transparent access to DB2 data
in a standard relational format. Users may query, update,
load, unload, create, or drop data from DB2 using ISQL,
ISQL command files, Information Access, NewWave Access or
NewWave Agent scripts.

The benefits of this product to the user are numerous:

* DB2 data can be accessed using products that support
ALLBASE in a manner that is consistent with accessing
ALLBASE/SQL

* Data may be exchanged with DB2 via unload or load
sequences during off load periods

* Data translation is performed in a transparent manner

* No knowledge of IBM MVS JCL is required for data exchange

The following figure shows one of the many possible client
server relationships with ALLBASE/DB2 .CONNECT. In this
case, an IBM mainframe is the server for DB2 data and the
HP3000 is a client to the DB2 server. The HP3000 is also a
server for the PC Clients. More than one DB2 server can be
accessed.

ALLBASE/DB2 CONNECT 3240-1

IBM

DB2

C'CS
SOLHost

DB2

IBM

='<::S
SQLHost

37xe:· I 37;-.:·~

37x5 / 37xO
HP 3000

~
ISOLo"

. Information Access sol
, tC-.LLBASE SOL

~~ Terminal LLJo.2 .API
SN.'O=:'L.nk

USing ISOL r--:p~s=:--I-c::~-a----,. -d-~i

Sfol"ver

i];
~fHJi

Vt?c1r ~
IBM r'!.:'~:TlAr

01 p':.!::
U~lr.g

Inforrna1.or. A('c~~:i} PC
or ~wW~'1€' AC(f)~s.

Usir~ ISOL

3240-2 ALLBASE/DB2 CONNECT

1. INTRODUCTION

As Open Systems and Database Standards continue to evolve,
more emphasis is placed on the ability of customer systems
to not only meet these standards, but to also share data
among applications that span the more frequently
encountered environments. ALLBASE/DB2 CONNECT extends HP's
connectivity to include heterogeneous systems.

In this environment, the DB2 Data Base Administrator
continues to control access to the DB2 data. HP connecting
users can be assigned surrogate DB2 userids, and the normal
DB2 GRANT and REVOKE commands can be used to control
access.

The DB2 connection is configured using installation and
configuration techniques that are similar to the methods
used with ALLBASE/NET. Standard SNA LU6.2 connections are
configured between the IBM host and the HP system using
techniques that are familiar to ALLBASE/NET users. Users
connect to DB2 in a manner that is similar to the method
used to interconnect ALLBASE XL to Unix Database
Environments. These connections are available to
authorized ALLBASE users.

2. DB2 and ATJ~ASE - Two Relational Worlds

In a general way, ALLBASE and DB2 are two implementations
of the same relational model. Some differences exist in
the SQL language used for each implementation, but both
languages are moving toward compliance with an evolving
standard. ALLBASE is approaching compliance with the ANSI
SQL standard.

When users access DB2 using ALLBASE/DB2 CONNECT, they will
be using an ALLBASE data access tool. CUrrently available
tools include ISQL, Information Access and NeWWave Access.

ALLBASE/DB2 CONNECT does not change SQL statements obtained
from the connecting tools. DB2 users or tools must enter
SQL statements applicable to the DB2 release involved with
this connection. Error messages produced by DB2 are
normally displayed after the offending statement by the
connecting tool.

While this connection provides for transparent data access,
some differences may be observed. A few differences exist
in the Data Manipulation Language statements. A few
differences also exist in the range and significance of
floating point numbers. Some differences also exist in the
Data Definition Language statements. More differences
exist when the system catalogs are compared.

ALLBASE/DB2 CONNECT supports dynamically prepared SQL
statements only.

ALLBASE/DB2 CONNECT 3240-3

2,1 Transferring Data Types

When a user selects data from a DB2 table, the data is
displayed in ALLBASE/SQL data format. When ALLBASE/DB2
CONNECT selects the data from· DB2, some of the IBM data may
be converted to ALLBASE/SQL data types. For instance, the
date and time formats for DB2 data types differ from the
ALLBASE/SQL data type formats for date and time. Also,
some IBM data types are not fully supported, e.g., GRAPHIC
and VARGRAPHIC.

The limits on the data types differ between the two systems
in some cases. The ALLBASE/SQL and DB2 data types and
their conversions are described below:

ALLBASE/SOL COmments Jm2. Comments

INTEGER INTEGER
INTEGER SMALLINT
FLOAT defaults to FLOAT Defaults to 8

8 bytes byte float.
Differences
exist.

DECIMAL DECIMAL
CHAR 1 to 3996 CHAR 1 to 254.
VARCHAR VARCHAR Depends on page

size
TIME TIME
DATE DATE
DATETIME TIMESTAMP
CHAR GRAPHIC
CHAR VARGRAPHIC
CHAR LONG VARGRAPHIC
REAL REAL 4 byte float

Some DB2 commands are the same as ALLBASE SQL commands.
However, you cannot use ALLBASE SQL commands that are not
supported in DB2. The following table shows SQL commands
(either statlc orALLBASE SQL commands) that cannot be used
with ALLBASE/DB2 CONNECT:

3240-4

COmmand

ADD
BEGIN
CHECKPOINT
CLOSE
DECLARE
DESCRIBE
END
EXECUTE
FETCH
INCLUDE
OPEN

ALLBASE/DB2 CONNECT

Command

PREPARE
REFETCH
REMOVE
RESET
SAVEPOINT
SELECT INTO
SQLBXPIAIN
START
STOP
TERMINATE
TRANSFER
WHENEVER

2.2 DB2 with ATJ:RME ISOL

When using ISQL, some restrictions apply. certain ISQL
commands are not enabled. These commands include:

INSTALL

LIST SET

UNLOAD INTERNAL

LOAD INTERNAL

This command is used with static
SQL.
This command will not display the
OWNER setting.
This command sets the owner name to
the value entered by the user.
OWNER.MODULE is not defined by DB2.
The internal format is only
recognizable by ALLBASE/SQL. DB2
users can use the external load
format.

The ISQL command LOAD EXTERNAL loads data from an ASCII
file into the DB2 database. ALLBASE/DB2 CONNECT converts
these rows in the file into DB2 format and adds them to the
DB2 table named in the LOAD command. The ISQL command
UNLOAD EXTERNAL unloads data from a DB2 database into an
ASCII file.

To upload data from ALLBASE/SQL to DB2, a user can specify
both the UNLOAD and LOAD EXTERNAL commands. The user can
issue the UNLOAD EXTERNAL command to unload ALLBASE/SQL
data to an ASCII file. The user can then issue the LOAD
EXTERNAL command to load this data into DB2. These
commands can be time initiated.

2.3 DB2 with Hewwave Access or InfOrmation Access

Access to DB2 data can be made from a PC using Information
Access PC or NeWWave Access on the PC.

For either application, the ALLBASE/DB2 CONNECT alias name
is used whenever a DBEnvironment name is requested. In
most cases, the PC user will not notice any difference
between the DBEnvironment name and the alias name.

A view and table are needed in DB2 when using Information
Access or NeWWave Access in order to make the system tables
compatible. Information Access and HeWWave Access create a
list of available tables vhen an initial connection is
made. Options can be set for DB2 connections which limit
the number· of tables that vill be extracted froll DB2 when
the initial connection is established.

NeWWave Agent scripts are supported. These scripts can be
used to coJDbineALLBASE data and DB2 data vith PC
applications. Information Access batch files are
supported.

ALLBASE/DB2 CONNECT 3240-5

3. Setting Up AT,T.B"SE/QB2 CONHICT

ALLBASE/DB2 CONNECT can be used in conjunction with
hardware and software on the IBM system, the BP 3000, and
PCs. The IBM system becomes a server, the HP 3000 becomes
both a client to the IBM system and optionally, a server to
the PCs.

The following figure illustrates the hardware and software
requirements for connecting the HP 3000 to DB2.

HP 3000

...----........... 1

I
I l'rOI '" Ir·.rr"'~II·'\~ 'I('('~('(' Sf}1I .),,_ (~ I!'.i:ill~, ~!I1 PI ... \.1) , \\1.

""""""---.----!
Ir-_--;.i--I ' ~ L L Eo-~ -:-. F: . ::. -::.L

___--....--....!. :.\ i.R.:.~·F ..rlp.,::- I~.:-.' II!F.CT

r· .~.'.: :....~.:: i <i

IBM System

37 ;~. ~J .' ·~~7,· C
COnll;7·: Um!

3240-6

For the BP3000, ALLBASE/DB2 CONNECT uses the LU6.2 API,
SNALink, the PSI card .and· either a Modem or a DSU to
connect to the IBM system. On the IBM system, another
modem or DSU is needed, a communications port, VTAM, Gupta
Technologies' SQLHost, optionally eICS (or a direct
connection), and DB2.

Two utility programs enable the connection parameters to be
configured. The HMKGR utility is used to configure the
W6.2 API/XL and SNALink 80ftware. The NetUtil utility
program is used to configure the AliasDB file parameters
and the NETUser Pile parameters. The AliasDB file entry
configures information concerning data buffer sizes (for
exchange with the SQLH08t transaction), transaction name,
trace control, etc. The U.er file entry assigns DB2
userids and passwords to BP ullers. These userids and
passwords can be validated at each connection.

ALLBASE/DB2 CONNECT

4, Bun Time Considerations

ALLBASE/DB2 CONNECT can be used to pass data in the range
of 1 to 16 megabytes per hour, The rate achieved will be
based on the baud rate of the communications line used,
The actual data rate achieved can be improved by
compression techniques. and software on the IBM system, the
HP 3000, and PCs,

5, Summary

This paper has presented an overall picture of ALLBASE/DB2
CONNECT. Hopefully it has given an insight into how
ALLBASE/DB2 CONNECT operates, and how ALLBASE and DB2 data
can be combined.

More information concerning the usage, installation, and
setup can be found in the individual manuals for
ALLBASE/DB2 CONNECT and the required products.

Though the concept of combining data from heterogeneous
database systems and hardware is still new, HP has made a
step forward by extending the integrated ALLBASE
environment for the combination of relational data from HP
ux environments to now include IBM's DB2.

ALLBASE/DB2 CONNECT 3240-7

TITLE:

AUTHOR:

Coexistence: TurbolMAGE and SQL

Tad Olsen

Hewlett-Packard Co.

19420 Homestead Ave.
MiS 44MA

Cupertino, CA 95014-9974

(408) 447-4088

FINAL PAPER NOT AVAILABLE, HANDOUTS WILL BE PROVIDED AT
TIME OF SESSION.

PAPERNO. 3241

3242:

ABSTRACT

The ALLBASE/SQL ROBMS: "Optimized for HP Platforms"

Rajoo Nagar
Hewlett-Packard

Commercial Systems Division
CUpertino, California 95014

(408) 447-6526

INTEREX Conference: August 5-8, 1991: San Diego, CA

This paper reviews the direction HP is taking with its relational
database, ALLBASE/SQL, the application development alternatives now
available with the database, and the recent advancements in the area
of case and client-server tools. The paper also discusses performance
enhancements and new functionality in ALLBASE/SQL with the latest release
of the product, and HP's role in database standards such as the SQL
Access Group. This paper is targeted primarily at MIS Managers and
technical professionals.

The ALLBASE/SQL RDBMS: "optimized for HP Platforms" 3242-1

PRODUCT OVERVIEW

HP ALLBASE/SQL is Hewlett-Packard/s Relational Database Management System
(RDBMS) offering on the HP 3000 Series 900 and HP 9000 computer systems.
Tremendous performance improvements and new features have made
HP ALLBASE/SQL very competitive with leading third party RDBMS offerings.
HP ALLBASE/SQL offers leading on-line transaction processing (OLTP)
performance, transparent interoperability with non-HP databases, and
superior supportability and data reliability for maximum uptime in mission
critical applications.

Hp/s strong commitment to HP ALLBASE/SQL as its strategic database for
HP platforms has translated into significant improvements in both
performance and features with every release. Today, HP ALLBASE/SQL offers
unparalleled on-line performance on the HP 3000 Series 900 systems, and is
also a strong performer on the HP 9000 systems. The RDBMS has been
optimized and tuned for HP/s operating systems and underlying PA-RISC
(Precision Architecture reduced-instruction-set computing) architecture.
This is because high OLTP performance can be most effectively and
quickly delivered through a close coupling of the database and system
software. Users can expect to see this competitive advantage in
performance increase over time, as HP more tightly integrates
HP ALLBASE/SQL with its operating systems and hardware.

The mid 1991 releases of HP ALLBASE/SQL (MPE-XL 3.0, HP-UX S.O)
incorporate significant enhancements to the database management system.
An expected 100% increase in performance (TPC-A) on HP-UX will give
HP ALLBASE/SQL a clear performance advantage on the HP 9000 systems.
In addition, this latest release of HP ALLBASE/SQL incorporates new
features such as server enforced referential integrity, on-line backup,
automatic log switching, and large free text storage through BLOB
(binary large object) support.

New 4GL application development and client-server tools for the database
are discussed below under a separate section.

PRODUCT STRATEGY

The HP ALLBASE/SQL strategy is based on the following goals:

* To provide the fastest performing database engine on PA-RISC systems

* To provide open solutions through:
o a choice of leading multi-vendor application development tools
o interoperability with other databases in heterogeneous

environments
o support for leading industry standards

* To provide solutions to enable co-existence with HP TurboIMAGE
databases.

The ALLBASE/SQL ROBMS: "Optimized for HP Platforms" 3242-2

* To provide superior supportability and data reliability for mission
critical applications

By integrating multi-vendor tools and embracing industry standards like
SQL Access, HP ALLBASE/SQL represents an open database system offering
users all the advantages of an engine tightly integrated with the
operating system, while at the same time providing openness and
application portability. The .HP ALLBASE/SQL strategy is to provide
users with the best of both worlds: high performance, integrity and
supportability through tight integration with the operating system,
and openness through multi-vendor tools integration, foreign data access
and standards.

PERFORMANCE

HP ALLBASE/SQL offers leading on-line performance on HP platforms. This
advantage is the direct result of HP's tightly integrating HP ALLBASE/SQL
with HP operating systems and hardware, thus allowing maximum use of
available CPU power and operating system features. HP's tuning efforts
in the HP ALLBASE/SQL database engine and HP operating systems in the
last two releases have yielded remarkable performance gains on MPEXL
and HP-UX systems, placing HP ALLBASE/SQL in the forefront of relational
database performance. TPC-A benchmark tests show a 15%-25% performance
gain for MPE-XL 3.0, and a 100% performance improvement for HP-UX 8.0.

In addition to tight integration with the operating system, HP ALLBASE/SQL
high performance can be attributed to the following features in the
engine:

* Path length tuning
* Raw I/O (on HP-UX systems)
* Cost-based, statistical optimizer
* Hash indexes
* Group commits
* Read uncommitted concurrency option
* Cross-transaction cursors
* Bulk data transfer
* Improved sort algorithms
* Fast inter-process communication between front-end and back-end
* Multi-processor support

New functionality has also been added to the database to provide better
on-line application performance with third party application development
tools.

The HP ALLBASE/SQL strategy is to continue offering leadership TPC-A
performance on HP platforms. (TPC-A is the industry standard benchmark
recently adopted by the Transaction Processing Council. Increasingly,
vendors are using TPC-A as the yardstick for comparing database
performance reSUlts.)

MULTI-VENDOR TOOLS INTEGRATION

HP ALLBASE/SQL is compatible with several industry-leading multi-vendor

The ALLBASE/SQL RDBMS: ·Optimized for HP Platforms" 3242-3

application development and client-server tools. Applications
developed using these toolsets will be able to run on HP ALLBASE/SQL or
on other databases supported by the tools with little or no modification.

The separation of application development tools from the database engine
is a trend that is beginning to gain momentum in the relational DBMS
market. HP has responded by providing linkages of popular multi-vendor
4GLs to HP ALLBASE/SQL. Cognos' Powerhouse, Ingres' Application By Forms
(ABF), Information Builders' FOCUS and InfoCentre's Speedware 4GL tools
support access to HP ALLBASE/SQL on the HP 3000 and HP 9000 systems.

The Cognos and Ingres application development toolsets provide
compatibility across a wide variety of platforms such as HP, DEC,
IBM, and Unix. FOCUS is a 4GL application development and report
writing tool dominant in the mainframe market, and Speedware is a high
performance 4GL for the HP 3000 systems. HP's strategy is to
continue to increase the 4GL solutions available with HP ALLBASE/SQL.

Separating the application development tools from the database engine
allows customers to choose the preferred application development
environment and database for their information management needs, even if
they are not supplied by the same vendor. It also gives customers the
flexibility to mix and match front-end toolsets with back-end database
engines. Providing a high performance, integrated database engine and
flexibility in tools selection differentiates HP ALLBASE/SQL from other
relational databases.

In the client-server area, HP is working to provide users with a choice
of PC-based client-server 4GLs that access ALLBASE/SQL on the HP 3000
and HP 9000 systems. SQLWindows from Gupta Technologies, and
Powerbuilder from PowerSoft will be available in the late 1991 - early
1992 time frame. On HP-UX workstations, the Ingres/Windows 4GL will
enable users to build graphical client-server applications that access
ALLBASE/SQL on the HP 3000 and HP 9000 servers.

Industry standards organizations such as the SQL Access Group support
the trend towards database and tools separation by providing the standard
application programming interface (API) and network protocols, so that
users can mix and match heterogeneous SQL products in a multi-vendor
environment.

INTEROPERABILITY VIA STANDARD INTERFACES

An open system requires the full backing and support of industry leaders
to ensure customers the benefits of direct interoperability. The SQL
Access Group members include relational database vendors such as
as Informix, Ingres, Oracle, Sybase etc. and systems vendors such as
DEC, HP, NCR, Sun and Tandem. HP is one of the founding members
and an active producer member of the group. The mission of the SQL
Access Group is to implement an application programming interface (API)
and ISO-based Remote Database Access (RDA) standard that will provide
an interoperability solution for customers who own mUltiple databases,
running on different machines, and who wish to link their databases
through a standard interface. In the future, users will be free to mix
and match SQL Access compliant products to meet their information

The ALLBASE/SQL ROBMS: "Optimized for HP Platforms" 3242-4

management needs. The SQL Access standard interface will be provided with
HP ALLBASE/SQL in 1991, allowing interoperability between HP ALLBASE/SQL
and other databases that conform to SQL Access.

HP ALLBASE/SQL FEATURES

a. Overview/Unique Features

Based on the industry standard ANSI SQL specification, HP ALLBASE/SQL
is a functionally complete relational database that runs in native
mode on the MPE-XL and HP-UX platforms.

Briefly, here is an overview of the current HP ALLBASE/SQL offering:

- Price/performance leader on MPE-XL and HP-UX
- Fastest RDBMS on HP platforms (based on audited and fully

disclosed TPC-A and TPC-B benchmark data)
- 100% conformant with ANSI SQL Levelland X/OPEN XPG3
- Interactive SQL and preprocessors bundled with database
- Full Native Language Support
- Complete set of HP and multi-vendor tools for application

development and connectivity
- Backed by HP commitment to quality and reliability
- Worldwide support
- Lower cost of ownership than competing products

From a features point of view, here is what the current
HP ALLBASE/SQL product offers on MPE-XL 3.0 and HP-UX 8.0 releases:

- Data access via B-trees indexes and hashing
- Cost-based query optimizer
- Interactive SQL interface
- Referential Integrity (conforms to ANSI SQL1 Addendum)
- Graphics, voice, and free text storage (binary large objects)
- Dynamic SQL
- PC client tools
- NewWave integration
- Multi-vendor, mUlti-platform 4GL and Query/Reporting tools
- Language preprocesors for C, Cobol, Fortran, Pascal , Ada
- Variety of DBA tools: SQLUtil, SQLMigrate, SQLCheck,

and SQLGen
- Automatic deadlock detection and resolution
- Concurrency control: Isolation Levels -

Read Committed
CUrsor stability

. Repeatable Reads
Read Uncommitted (Dirty Reads)

- Transaction Control: Manual , automatic locking
Savepoints
Checkpoints
Cross-transaction cursors

- Full recovery mechanism: Rollforward recovery
Rollback recovery
Physical image logging

- Group Commits
- High availability options: On-line backup

The ALLBASE/SQL RDBMS: ·Optimized for HP Platforms" 3242-5

Automatic log switching
Dual logging capability
Dynamic database restructuring

(column deletes not allowed)
Dynamic space expansion

- Page level locking
- Flexible (DBA-assigned) security scheme
- Null data handling
- Unique "Keep CUrsor" capability with LOCK option
- Transparent remote reads/writes across the network
- Support of 8- , 16-bit characters (NLS)
- Bulk data transfers
- Multi-processor support
- Raw I/O on HP-UX

b. User Environment

The current HP ALLBASE/SQL user environment consists of a complete
set of HP and third-party tools centered around the HP ALLBASE/SQL
database. The interactive SQL (ISQL) interface is based on the ANSI
standard SQL, and provides interactive access to the database via DOL
and DML commands. 4GL, reporting and query tools are available for
application development, creation of reports, and ad-hoc querying of
the database. Ad-hoc queries are supported via both a command-line
and a menu-driven SQL interface. PC-based client-server 4GL tools
facilitate PC-based application development and execution against
the server database.

HP's growing list of key third party tools and applications for
HP ALLBASE/SQL provides customers an even richer set of solutions
for information management.

c. Application Development

Application develoment in the HP ALLBASE/SQL environment is
facilitated by the use of 4GL and 3GL application development tools
from HP and third parties, and by the interactive SQL (ISQL)
interface to the database. Language preprocessors for C, Cobol,
Pascal and Fortran allow programmers to access the database from
these languages via embedded SQL (application programming interface)
calls.

d. Decision Support

HP ALLBASE/SQL provides a platform for decision support when used in
conjunction with NewWave Office Information Access. NewWave Access
is a PC-based data retrieval tool that accesses and downloads data
transparently from an HP ALLBASE/SQL database residing on the host
machine. The data can then be viewed through any of the popular PC
PC packages such a~ Lotus 1-2-3, Symphony, Dbase, etc.

Decision support tools from leading third parties are available
with HP ALLBASE/SQL. For example, the FOCUS report-writing toolset,
Ingres/Graphs and QBF (Query By Forms), and Powerhouse QUIZ all
provide powerful decision support capabilities.

The ALLBASE/SQL RDBMS: "optimized for HP Platforms" 3242-6

e. Remote Data Access

HP ALLBASE/NET allows access to remote HP ALLBASE/SQL databases on
systems connected via LAN or X.25i both NS and ARPA protocols are
supported. The NET product connects SQL databases to each other
and provides both users and applications with transparent read/write
capability to remote systems. No special linking is required to
create applications that can access a remote database. HP ALLBASE/NET
supports transparent remote access to HP ALLBASE/SQL from the ALLBASE
and third party tools as well as user-written preprocessed
applications. HP ALLBASE/NET supports peer-to-peer networking
between databases, as well as client-server connectivity between
workstations and minicomputers.

f. Client-server integration

Read access to HP ALLBASE/SQL from the PC is supported today with
HP NeWWave Access. Program-to-program communication between the
the host SQL server and PC client applications over a LAN is under
development and will be implemented using HP ALLBASE/SQL as the
server database and third party PC-based 4GLs as the client
component. Full read/write access to HP ALLBASE/SQL from PC
applications will be supported, and this capability is expected to
be available in the late 1991 - early 1992 time frame. The third
party PC-based 4GLs include SQLWindows from Gupta Technologies,
and Powerbuilder from PowerSoft Corp. Synergist is a PC-based
client-server 4GL from Gateway Systems that currently interfaces
with HP ALLBASE/SQL on MPE-XL systems.

HP will support Cognos Powerhouse and Ingres/Windows 4GL tools on
the HP-UX workstation platform, and will support full read/write
access from these tools to HP ALLBASE/SQL on MPE-XL and HP-UX
servers.

4GL Development Environment

Traditional Client-Server

Application
Components

4GL

Database

operating System

User Interface

Workstation/
Terminal X-terminal PC

Allbase, FOCUS, Ingres Synergist
Ingres, Powerhouse Powerhouse SQL Windows
Speedware Powerbuilder

ALLBASE/SQL ALLBASE/SQL ALLBASE/SQL

MPE-XL/HP-UX MPE-XL/HP-UX MPE-XL/HP-UX

4GLs available will accomodate a variety of display
devices and GUls (MS/Windows, OSF/Motif, PM, etc.)

The ALLBASE/SQL ROBMS: "Optmized for HP Platforms" 3242-7

g. Connectivity

Transparent connectivity between HP ALLBASE/SQL databases on MPE-XL
and HP-UX systems is provided through the ALLBASE/NET product. Thus
applications can be developed which share common source across the
HP 3000 and HP 9000 families.

Connectivity between HP NeWWave Office Information Access on the PC,
and HP ALLBASE/SQL on either MPE-XL or HP-UX is supported through Lan
Manager and serial connection in a NeWWave Office server
environment.

HP ALLBASE/Turbo CONNECT provides transparent read access to
HP TurbolMAGE database from any HP ALLBASE/SQL interface. The
product allows customers to begin new application development using a
relational database as the platform, while still being able to
read HP TurboIMAGE data. By providing a link between the two
databases, and a common user interface and common tools, HP has made
co-existence between HP ALLBASE/SQL and HP TurbolMAGE much smoother
and easier.

Read/write transparent connectivity to IBM's DB2 database from
HP ALLBASE/SQL application level calls is available with the MPE-XL
3.0 release. HP ALLBASE/DB2 Connect allows DRAs, application
developers, and decision support users running on an HP 3000 MPE-XL
system to interactively create, read, modify, and update
information in a DB2 database on an IBM MVS mainframe.

Interoperability with other relational databases through the
SQL Access standard interface is expected to be available in the
1991 -1992 time frame.

h. HP TurbolMAGE - HP ALLBASE/SQL coexistence

HP ALLBASE/SQL is an ideal solution for customers already using
HP TurbolMAGE but wanting to take advantage of relational technology.
HP ALLBASE/Turbo Connect lets these customers' applications co-exist
by allowing HP ALLBASE/SQL applications to read HP TurbolMAGE data.
HP TurbolMAGE customers can begin new application development using
any of several 3GL or 4GL tools that access both HP TurbolMAGE and
HP ALLBASE/SQL databases. Moreover, HP's strategy is to provide a
set of migration tools and consulting services for customers
moving between these environments.

i. Data Integrity

HP ALLBASE/SQL has many mechanisms to preserve the integrity of
customer data. Referential integrity, security controls, concurrency
controls and recovery mechanisms are a few of these, and are
discussed below.

1. Referential Integrity. HP ALLBASE/SQL supports referential
integrity checks in the database. Integrity constraints allow
the user to check data integrity at the schema level, rather
than coding complex checks in application programs. In addition

The ALLBASE/SQL RDBMS: ·Optimized for HP Platforms" 3242-8

to simplifying the work of coding, this leads to improved
performance. Referential integrity in HP ALLBASE/SQL is
implemented using primary and foreign key constraints, and
conforms to ANSI SQLl Level 1 Addendum.

2. Security. The database allows read and write access privileges
to be assigned at the table level. Access restriction at the
column level may be obtained by defining a view of the table
which omits the sensitive information. Modification authority
may be granted at the column level without requiring that a
view be specified. write access supports a combination of
row modifications and deletes. Appropriate levels of access
privileges are specified by the DBA for individual users or
groups of users.

Views can also be used to improve security by allowing users
to access only that data for which they have a need. Since the
view is not actually a physical table, the use of views does not
result in redundant data.

3. Concurrency Control. This is provided by locking at the
database, table, and page level. Three kinds of explicit locks
are provided: An exclusive lock, which prevents other users
from accessing the entity and allows the entity to be updated.
A shared lock, which allows other users to read, but not later
update the referenced entity. And a share-subexclusive lock,
that allows users to alter part of a table and exclude others
from altering the table, but allowing others to read the
unaltered portions of a table. The database also provides
intent update locking during read operations. Intent update
locking is used when a read operation may be followed by an
update for the read page. This type of locking is used to avoid
the potential for deadlocks when two users try to upgrade their
shared locks to exclusive on the same page.

The database also provides a set of four isolation levels
for controlling concurrency and throughput. These are
Read Committed (Re), Read uncommitted (RU), Cursor Stability
(CS), and Repeatable Reads (RR). Anyone of these can be
selected as an option with the BEGIN WORK command. The default
is Repeatable Reads.

In addition, Keep CUrsor, a special extension to the concept
of a cursor, allows a cursor to span multiple transactions. This
capability improves performance by allowing an application to
commit or roll back a transaction and still keep a cursor open.

4. Recovery. A full recovery mechanism is provided to protect data
integrity in the event of hardware and software failures:
Rollback recovery, Rollforward recovery, and physical image
logging. Savepoint and Checkpoint features are used to
control recovery. Savepoints allow users to undo changes within
a transaction.upto the specified savepoint. Checkpoints are

The ALLBASE/SQL ROBMS: "Optimized for HP Platforms" 3242-9

used by the DBA to flush the buffers to disk when the log
becomes full. If archive logging is not being used, checkpoints
free up log space, and shorten the time to recovery in the event
of a system crash.

j. High Availability

1. On-line backup. On-line backup is a process whereby a database
backup takes place without bringing down the database system.
At a later stage, a log file can be applied to the archived
database copy, bringing the database to a consistent state.
On-line backup provides nearly continuous access to
HP ALLBASE/SQL"data.

2. Automatic log switching. With the automatic log switch
enhancement, switching to a new log is done automatically while
backup is in progress.

3. Dual Log is another mechanism for ensuring data availability.
The dual log option, if enabled by the DBA, results in the
second log being automatically invoked by the database if the
first log becomes damaged.

4. Dynamic restructuring allows the database structure, table
capacities, and security to be changed without unloading and
loading the database, thus improving database availability for
users.

5. Dynamic Space Expansion allows DBEFile space to be expanded
on-line, without having to bring down the database, and this
capability significantly improves availability.

k. Large text storage/Imaging

With the latest release, HP ALLBASE/SQL supports long, binary data
types. This allows users to store very large, variable data
(unlimited size columns) in their binary format. This is useful
for storage of non-character data, such as graphic images or voice,
without the side-effects of CHARACTER interpretation.

1. Localization

HP ALLBASE/SQL lets users manipUlate databases in a wide variety of
native languages. Either a-bit or 16-bit character data can be
used, as appropriate for the language selected. Truncation is
performed correctly for a and 16-bit character data. The database
will display prompts, messages and banners in the language selected,
and it displays system dates and times according to the local
customs. In addition, the database accepts responses to its prompts
in the native language selected.

The ALLBASE/SQL RDBMS: "Optimized for HP Platforms" 3242-10

m. DB Administration

A variety of database administration tools are included with the
database system, and can be used by the DBA to manage the database
environment, and to facilitate database integrity verification
and migration.

SQLUtil
SQLGen
SQLCheck *
SQLMigrate

SQLMonitor **

DBE configuration (alteration) utilities
Schema and load generation tool
Integrity checking tool
Transparent migration from previous releases of
HP ALLBASE/SQL
Performance analysis tool

* SE tool. ** SE tool, available as a product in the next release.

STANDARDS CONFORMANCE

The two most widely recognized organizations which help shape SQL
standards are ANSI SQL and X/OPEN. ANSI SQL is driven by the
participating vendors and industry researchers in the US. ISO is the
international counterpart of ANSI SQL'that drives the European market.
X/OPEN is a defacto standard that influences the UNIX-based SQL products.
Another emerging standard is the SQL Access Group, which is implementing
a remote database access standard for database interoperability in
heterogeneous environments.

HP ALLBASE/SQL utilizes ANSI SQL for data definition language (DDL) and
data manipulation language (DML) operations. Today, the product conforms
100% to ANSI SQL Levelland X/OPEN XPG3 standards, and almost fully
complies with ANSI SQL Level 2. The SQL Levell Addendum that defines
referential integrity is satisfied with the latest release of
HP ALLBASE/SQL. The SQL Access standard interface is still being defined,
and is expected to be available with HP ALLBASE/SQL in 1991.

HP uses industry standard benchmarks such as TPC-A and TPC-B to publish
the performance of HP ALLBASE/SQL on the HP 3000 and HP 9000 systems.

PRICING/PACKAGING

The HP ALLBASE/SQL development package includes the core RDBMS, the
interactive SQL (ISQL) product, the DB administration utilities, and the
preprocessors for C, Cobol, Fortran and Pascal. The SQL Run-time product
includes all the products in the development package except the
preprocessors.

On the HP 3000 Series 900 systems, the HP ALLBASE/SQL development package
is bundled as a preconfiqured "Add SQL" option. The 4GL tools and
connectivity products are purchased separately.

On the HP 9000 systems, HP ALLBASE/SQL is available both asa run-time
and development package, and the price ranges from $2,050 to $109,960.
Again, the 4GL tools and connectivity products are purchased separately.

The ALLBASE/SQL RDBMS: "Optimized for HP Platforms" 3242-11

STRATEGIC ALLIANCES (VABs/ISVs)

The following VABs are among those who have committed to HP ALLBASE/SQL
as of Fall 1990. Many of these applications will be available on HP
platforms in the next six to twelve months.

western Data Systems

ASK Computer Systems
BSA, Inc.
Cevan, Holland
Collier Jackson
Computrac
DPAI

DRC
Financial Data Planning
Hilco
IMAC
InfoCenter
Jobscope
MDSS
Mitchell Humphrey
People Soft
Q-CIM
RMS
SATeON

o

o
o
o
o
o
o
o
o
o
o
o
o

o
o
o
o
o
o

Manufacturing
Direct Marketing
Local Government
Accounting and Financials
Legal Industry, Accounting
Financial Management & Manufacturing
Control
Wholesale Distribution
Insurance and Pension Administration
Monitor and Control System
End User Reporting Tools
Travel, Library and others
Manufacturing
Manufacturing Decision Support
Accounting and Financials
Human Resource Management
Manufacturing
Retail Distribution & Financials
Wholesale Distribution and
Process Manufacturing
Manufacturing, Accounting, and
Contract Management

The following independent software vendors (ISVs) have committed to
integrating their tools with HP ALLBASE/SQL:

*
*•••
••
••

Cognos
Gateway
InfoCenter
Information Builders
Ingres
Gupta Technologies
PowerSoft Corp.
CGI
SoftLab

Powerhouse 4GL package
Synergist 4GL
Speedware 4GL
Focus 4GL
4GL, Query and Case tools
SQLWindows
Powerbuilder
Paclan
Maestro II

These tools will be available on both HP-UX and HPE-XL platforms, with
the exception of Speedware 4GL that will initially be available on MPE-XL
only.

FUTURE DIRECTIONS

The following new functionality and products are expected to be available
with future releases of HP ALLBASE/SQL in the 1992 time frame:

o Stored procedur~s

o Business rules/triggers
o Transaction Processing Monitor (based on X/OPEN) support
o Row level locking

The ALLBASE/SQL RDBMS: "Optimized for HP Platforms" 3242-12

o Interoperability with other RDBMSs via SQL Access interface.
o Performance analysis tool
o New DBA tools

Distributed databases:

The distributed ALLBASE product is currently under development and is
expected to be introduced in late 1991 - early 1992 time frame. Some of
the features that are expected to be introduced in the first release
are 2-phase commit, distributed transaction management, and locati~n

transparency of distributed databases.

SUMMARY

Specific opportunities for HP ALLBASE/SQL include customer environments
that place a premium on:

* Leadership price/performance and performance
* Broad selection of multi-vendor application development tools
* Tight integration with HP products and support
* HP quality, reliability and service

The ALLBASE/SQL RDBMS: "Optimized for HP Platforms" 3242-13

3243
MPE XL Development in a Multi-Platform Environment

Beth Eikenbary
19447 Pruneridge Avenue 47UP

Cupertino, CA 95014
(408) 447-6146

In the past, application developers placed most of their
emphasis on optimizing development for a specific hardware
platform. This was a natural consequence of the proprietary
operating system mentality that has permeated the computer
industry in the past. Today, as a result of the Open Systems
movement, application developers are now focusing on
optimizing the portability of an application across hardware
platforms. This paper will first look at some of the key
ingredients in developing portable applications, review the
porting process and then discuss how to effectively manage
mutli-platform development projects within your organization.

Before jumping into the porting process, I want to provide a
few key definitions. The first area of confusion is the
usage of porting versus portability. Porting is a process by
which an application is moved from one execution platform to
another. Portability on the other hand is a measure of how
well a particular application behaves during anyone port.
Portability variables are· hardware, operating system,
language and database.

There are two basic types of ports: cookie-cutter and custom.
A cookie-cutter port assumes minimal changes to the
application source when moving to a new platform. The
benefit of a cookie-cutter port is its low-cost combined with
a high degree of compatibility across the platforms. On the
other hand, custom ports result in higher performance and
extra features at a higher cost in porting and maintenance.
Before embarking on development of a new application, it is
important to determine both the type of port desired as well
as the expected domain 21 portability. The expected domain
of portability is a definition of the specific environments,
including hardware, operating systems and networks, where you
think the application software will need to execute 0 Where
the type of port, cookie-cutter versus custom, dictates the
degree of standardization required in your application, the
domain of portability identifies those standards which will
be most critical to you in your potential porting efforts.

This seems to be a logical point in discussing porting and
portability to look at the role of standards in application

HPE XL Development in a Multi-Platform Enyironment

3243-1

any application
portability is

standards is to

development. Standards are critical in
development project where application
required. The rationale behind using
increase programmer productivity by:

-reducing the amount of specialized code
-reducing the number of variants in solving a specific

problem area
-providing a consistent framework for the development
team

-increasing programmer portability by allowing them to
focus on application technology, not a specific computer
platform.

However, standards are not the panacea that the computer
vendors want us to believe. An Open System certainly goes a
long way toward ensuring a consistent interface to an
operating system or networking software, but it does not
eliminate all of your portability problems. Despite the best
intentions of the standards bodies and the computer vendors,
standards vary slightly from platform to platform. This is
due in part to the fact that standards reflect old technical
concepts on top of perpetually evolving and enhancing
technologies; computer vendors often sacrifice 100%
conformance to a standard in order to allow new technologies
to emerge. In addition to the problem of compatible
interfaces, the use of standards may result in a performance
hit. Performance is normally a function of optimizing the
unique attributes of the hardware; standards can often make
it impossible for a vendor. to optimize performance for their
underlying hardware given the constraints of the standard
definition.

Given the potential problems with the adoption of standards,
it is important to pick and choose those standards which you
are going to adopt. As a rule of thumb, don't enforce a
standard unless required by your selected domain of
portability. For example, a database intensive OLTP
application should focus on adopting standards in the area of
user interface, data base interfaces and the file system. It
is not critical to require adoption of standards for system
administration or tools but a networking standard should also
be considered. As a rule it is also better to try to use
standards which are self-enforcing. Application development
is still part craft and, as such, the developers still gain a
great deal of pride through the uniquely solving development
problems. Whenever possible, invest in the development of
tools and process whenever you can to enforce compliance.
Developers will usually choose the path of least resistance.

As we just discussed, using standards is a key means for
ensuring that your application will be portable. When
considering the role of standards in your application

HPE XL Deyelopment in a Multi-Platform Enyironment

3243-2

development process, consider not only formal, industry
standards such as the POSIX interfaces, but also the creation
and enforcement of internal coding standards. In many ways
internal coding standards can have as big an impact on the
portability of an application as the use of formal standards.
Internal standards which should be considered are:

-style standards for naming and formatting
-structure standards for isolation of non-portable code
-testing standards (remember, the test suites will need to

be ported as well as the application)
-interface standards which will allow for consistent

end user interaction across input devices (workstations,
personal computers and/or terminals).

-documentation standards to allow for easy porting

Code scanners which check for code consistency and standards
adherence provide significant productivity advantages during
core application development. In the area of code scanners,
one product stands out as the premier solution, Mclint. This
tool scans code for adherence to various standards, such as
POSIX or STDC. It can also be enhanced to scan code for
adherence to those internal standards you have also
established. Use of this tool, or at a minimum the standard
UNIX 'lint' command, can save you significant time during the
porting process.

The choice of language will also have a significant impact on
your ability to hide variation within the source. C is the
acknowledge language of choice when porting due to its
flexibility. With the adoption of ASCII C by the major
vendors, problems with variations of C libraries across
platforms has been significantly reduced. Within your C
programs, variation can be hidden easily by the use of
include files and functions. The C Preprocessor itself is a
powerful tool for easing porting as well. The C Preprocessor
provides for file inclusion, definition of manifest
constants, definition of "call-by-name" functions (macros)
and conditional compilation. One note of warning: C is a
very flexible language and inherent in this flexibility is
the ability to easily misuse the features and functions. It
is important to establish standards around the use of include
files, manifest constants and macros to ensure clean, high
quality code.

Ensuring application portability is only half the battle; the
other half of the battle is actuality porting the application
across multiple platforms. An overview description of a
porting process follows.

Most companies choose organizationally to separate
application development and enhancement from the porting
process. This is due primarily to the dramatically different

MPE XL Development in a Multi-Platform Enyironment

3243-3

skill sets required from the engineers. In application
development the emphasis is on solving the business problem
with the actual implementation a secondary activity.
Porting, on the other hand is a technical activity requiring
very little understanding of the business problem the
application solves. Another way of looking at the difference
is that application development focuses on the product
externals whereas porting focuses on the product internals.

A key development platform is chosen to support the initial
application development. Choice of this platform is either
historical: this is the platform the application was
originally designed to execute upon; or based upon the
availability of development and programming tools/utilities.
In many companies, porting of existing applications is deemed
to be unfeasible because the application itself is not
portable. This does not mean that an organization has to
completely re-train their programming staff on a new platform
just to be able to develop portable applications. But many
organization when faced with a major application re-write
choose to move to a more open development platform such as a
workstation or personal computer to achieve higher
programming productivity. The trade-off of re-training of
the development teams versus increased productivity is one
each organization needs to evaluate for themselves.

Once an application is completed, the source is moved from
the development platform to Source Staging Platforms. Source
Staging Platforms are those platforms to which you want to
port your application. In the example depicted in the
following diagram, an IBM 4390 has been chosen as the
Development Platform with MPE XL, UNIX and IBM AS/400
timeshares as Source Staging Platforms. A version of the
application source then is moved to each of these Platforms.
A team trained in the nuances of the target execution
platform is assigned to port the actual application and its
accompanying test suites.

The first step in a port is to get the application running on
the target platform; the second step, which is optional, is
to then optimize for features, functions and performance
provided by a specific platform. Once the application port
is completed, the source is then merged back into the
Development Platform Source Management System (SMa).

Subsequent releases from the Development group also have.to
be ported. Depending upon the complexity of the subsequent
release, the porting team may be required to co~pletely

re-port the application or merely port changed modules.
Having all source under a single 5MB will give you the data
required to determine how to go about porting subsequent
releases. The following diagram provides an overview of the
porting process.

MRE XL Development in a Multi-Platform Enyironment

3243-4

Porting Process

I

lM~ I~~I
P.t Source
ftrSpedflc

Platform Vemions

Dlatrl>utt Core PrHuct Source

Return Pwte4
Vtrafon to Source ""'It

IBM4390I~--~
DeYe~ ~

Platform _

LoC81
§MS

2J hWfy
Platform
Specific
toft

3)C.,.ae
Li1k
Test

4) Optinize for
Ptatform Felhl'es.
Petfomance ..
Desired

There are several key tools required to suport the porting
activity. Obviously, the most critical is the Source
Management and Configuration Management Systems. These two
tools are critical for containing and managing the porting
effort. Standard application build and integration tools are
also very important. These tools make it possible to easily
reconstructs the application on the target platforms. Of
course, the choice of application development environment
will also have a significant impact on the productivity of
both your development and porting teams. More indepth
discussion of each of the three tools areas follows.

First: source code control is a key to porting and
supporting an application across mUltiple platforms.
Basically, porting results in a development environment
characterized by mUltiple applications, probably multiple
versions of each of these applications compounded across
mUltiple target systems. One can easily see that effectively
managing source versions will be a key to your ability to
productively support your application development teams and
your end users.

A Source Management System (SMB) allows
development and porting groups to proceed with

each of the
comprehensive

MEl XL Development in a Hulti-P1atform Enyironment

3243-5

tracking of working versions, easy reconstruction of previous
versions, and co-ordinating simultaneous development projects
while maintaining programmer accountability. The 5MB you
select should allow for efficient storage of mUltiple
versions. Although a 5MB goes a long way in managing your
source, you also need to development an ancillary set of
tools to further improve programmer productivity. These
types of tools include a application reminder system which
informs others of changes to various source modules or
searches for files checked out for long periods of times and
nags the programmer. These tools are specific to an
organization and the products it is working with. Their need
should grow out of the process of automating your development
and porting activities.

Simple reconfiguration also makes the porting of an
application easier. There are many methods available and as
with the Source Management System and ancillary tools, your
standard approaches will grow out the unique needs of your
organization, application product and selected platforms. As
a starting point, configuration change methodologies should
cover compile, link and run time changes. At compile time,
configuration management needs to consider conditional
compilations as well as configuration of header files.
Linking features include the selection of optional features
and optimizations. At run time, configuration management
focuses on environment variables such as resource mapping or
location of files. The configuration management system
should also be a repository for documenting the What, why and
how of each unique configuration. This key information is
often lost during development and porting.

Secondly: the build tools simplify the compile and link
phases of the typical edit/compile/link/debug loop used
during application development. It shortens this part of the
cycle by compiling only those parts of an application that
require recompilation because of direct or indirect changes.
In addition, the build tool should also simplify the task of
building and maintaining the application by creating and
maintaining the dependency control files required for
intelligent builds. This build tool needs to be flexible
enough to build a standalone portion of the application and
powerful enough to build an entire version based upon
information in the Source Management System and configuration
management system. Since your build tool will need to
execute across all of your target platforms, the tool itself
needs to be portable as well.

Lastly: the application development environment which you
select should be designed to facilitate rapid, interactive
program development, test and maintenance in a distributed
network. The concept of working within a distributed network
is key when considering development of portable applications.

HPE XL Deyelopment in a Multi-Platform Enyironment

3243-6

A application development environment which facilitates
development within a network can centralize many of the
porting tasks, such as source control, but still provide for
local compilation, test and execution on the target
platforms. When looking for a productive application
development environment, the key criteria for selecting a
distributed development environment is the degree to which
the network configuration is hidden from the programmer.

For example, data should be able to reside on any platform in
the network. A developer working at a workstation should be
able to easily access data on any of the target platforms.
With large application development/porting projects, it is
more effective to manage and administer data centrally than
to have the data duplicated on each workstation in the
network. For example, source control, tape backup and
archiving as well as configuration management are easier when
the project files are centralized.

The following diagram is an example of a possible distributed
development environment for the porting task described
earlier. In this development environment, a separate LAN is
established for the application development and porting
teams. Separate LANs ensure close team communication without
an overload of inappropriate messages due to cross-team

Distributed Application Development

Project Team CommW\Icat:e8 via
LAN-Be.eed Development

environment

HPE XL Deyelgpment in a Multi-Platform Enyironment

3243-7

application
application

message traffic. Although each team works independently
through their established networks, they are all tied to the
same timeshare network of HP3000s, HP9000s and IBM systems.

In this example, each member of the engineering team has a
small, inexpensive X display machine (possibly a diskless HP
workstation or an X terminal). The tool server would
typically resides on the LAN hub machine. The new HP9000
Model 720 provides an excellent hub for distributed
application development by providing the robust UNIX
development environment with the processing power required to
support a team of programmers. The BP9000 Model 720 is then
tied to a series of timeshares, inclUding the BP9000 Model
800 and an BP3000 Model 900. These timeshares are used as
data storage facilities for the applications targeted for
execution on that platform. A similar set of timeshare would
need to be established for the IBM execution platforms as
well.

As you can see a development environment which supports
distributed application development provides many advantages
to those who are focusing on the development of portable
applications. The greatest benefit from this type of
environment is in the standardization of the environment
across all of the platforms. Since the same basic set of
tools is supported through the same development environment,
porting teams do not need to learn a new set of development
tools for each of the target execution platforms. As a new
port in undertaken, the target platform is merely added to
the network as a data server. The development team is still
utilizing the same tools. Only those tools which control
that actual application construction need to be modified to
support the new platform.

Other criteria to consider when selecting a
development environment which supports both
development and porting are:

-Leverage existing tools: You will want to
integrated those tools which you develop internally
to automate your internal porting process. The
application development environment should easily
accommodate integration of internal tools with those
supplied with by the vendor.

-support integrated tool sets: The tools should
cooperate to present a task-oriented environment that
lets users concentrate on what they want to dO, not
how to do it.

-Support interchangeable tools: Application
development as mentioned before presents a very
different problem to the programmer than porting.

HPE XL Development in a Multi-Platform Environment

3243-8

Different CASE tools will be used for core application
development and maintenance than for the porting process.
However, all tools will need to communicate effectively
with the data server. The interchangability of tools
allows each team to select the tools which best meet
their needs while ensuring effective cross team
communication.

-Support application development teams: The tools and
application development environment should support team
coordination and the management of project files in a
distributed development environmento Automated
communication between team members is a definite
requirement in the porting environment as identified
earlier.

-Build on standards: You are not only concerned with
the portability of your applications but also with the
portability of your application development
environment; you will be able to move your
develompent activities to new platforms without facing
re-training your application development teams.

Selection of your application development environment can
have a dramatic effect on the productivity of the application
development team today and in the future. When selecting an
application development environment, it is important to
consider both the needs of the application developer and the
porting specialist.

In summary, this pape: has outlined some of the key
requirements for ensur1ng application portability 'during
initial development through the adoption of industry
standards and the creation of internal, portability
standards. The selection of which standards are required for
your anticipated application execution platforms was also
discussed prior to reviewing the porting process.

A standard porting process was reviewed. This process
separated the development process from the porting process.
In reviewing the porting process, the criticality of a good
Source Management System and Configuration Management tools
became evident. In addition to these two tools, the need for
sophisticated application integration and build tools was
also discussed. The selection of application development
environment which supported distributed application
development was seen as the last step in preparing for
mUlti-platform development. The application development
environment is the point in which all of the pieces of the
problem of developing and porting applications come together.
This environment determines the degree of productivity the
application developers in your organization will achieve.

HPE XL pevelQpment in a Multi-Platform Environment

3243-9

·..... : _."

". \' .~. ~ - .
1. -:. -~:..'

..... ~~;

Paper # 3244
TIIB 1118 1\10) OU'1'S OP DATUASB DBSIGN

by Lynn Barnes
Hewlett Packard Co.

(301) 258-2112

Introduction

In the mid 1960's database technology began replacing file
systems and a new era of information management began. Over
the years as the size of most organizations grew so did their
databases. with this size increase has come an increasing
realization of the need for good database design. With small
databases, design is generally not complicated. However,
with medium to large databases -- with 30 to hundreds of
users, executing multiple application programs, doing
hundreds of queries against, many megabytes of data-
database design becomes far more complex. Efficient and
effective database design is essential to today's
organizations which rely heavily on their information
systems.

This paper will take the reader through the major steps of
database design. It will discuss the goals of database
design and its five phases: Requirements gathering,
conceptual design, logical design, physical design, and
implementation. After reading this paper, the reader should
understand the importance and methodology of good database
design.

Goals of a
applications'
natural and
Additionally,
requirements,
objectives.
accomplish or

database designer are to satisfy the users' and
information requirements while providing a
easily understood information structure.

the designer must meet the processing
storage requirements, and performance

Unfortunately, these goals are hard to
even measure.

with the above design goals in mind, an effective database
should be:

o Shareable among mUltiple applications.

o Flexible enough to support changes in process.

3244- 1

o Streamlined with minimal redundant data.

o Designed to accommodate the anticipated growth of the
organization.

o Complete.

o Easily understood by both end users and data
processing personnel. This includes database
structure, naming conventions, and data definitions.

~ S~aqes

Over the years database design has slowly evolved from an art
to a science. structured database design is now a
well-defined process with its major stages being:

o Requirements gathering and analysis
o Conceptual database design
o Logical database design
o Physical database design
o Database implementation

During these phases the designer must look at both the data
content and structure as well as the database processing and
software application. Traditionally, database design was
attempted with a primary focus on one or the other of these
design approaches but rarely were these two activities
emphasized equally. It is now recognized that data content
and structure design (known as data-driven design) and
database processing and software application design (also
known as process-driven design) must proceed together with
very tight coupling to achieve a good overall database
design.

Requiremepts Gathering AD4 lA.lysis

Requirements gathering and analysis i~ very important to
effective database design. The designer must understand the

3244- 2

expectations of the users and the intended use of the
database. The first step to defining the requirements is to
identify all users and application which will interact with
the database and determe what their individual and global
requirements are. The following activities can be performed
during requirements gathering:

o Review any existing documentation or previously
written requirements analysiso

o Identify users and applications that will use the
database.

o Identify processing requirements:
transaction type, frequency, and volumes
interaction between the transactions and the
data object
information flow
data input and output
storage requirements
hardware and software platform

o Interview key users from all groups to determine:
users' goals and expectations
users' priorities
performance, integrity, security, or
administrative constraints
key applications and application interactions
application and user growth plans

Once the information is gathered, the designer should begin
the analysis and generation of a global data model. The
requirements and global data model is then usually
transformed into a formal requirements specification with
text, tables, diagrams, and/or charts. It is important that
sufficient time be allocated to requirements gathering and
analysis because it is crucial for the future success of the
database system.

conceptual Database Design

The second phase
conceptual schema.

of database design
During this phase the

3244- 3

is to
data

develop the
requirements

determined in the first phase are used to produce a
conceptual data model. Transaction design should begin in
parallel with conceptual data modeling. Transaction
information plays a crucial role in the physical design
phase.

Conceptual data modeling

The conceptual data model is a high-level data model which is
usually independent of the database management system (DBMS)
to be used. The conceptual data model documents the users
view of the data, incorporats the policies of the
organization, and shows the relationships between the
different data.

The conceptual model consists of three main components:
Entities, attributes, and relationships. An entity is a
"thing" about which an organization collects data. An
attribute provides information about an entity. A
relationship describes how each entity relates to another.

An entity is a noun. It is a person, place, thing, event, or
concept; such as EMPLOYEE, STATE, PARTS, ORDER, and
DEPARTMENT. Entities in the final conceptual data model
should be fundamentally important to the entire organization.
The database designer must be able to differentiate between
what is important to the organization or an individual user.
Usually an organization will already be collecting data about
information that is important to it. Existing reports and
forms give good leads to potential entities.

An attribute can be thought of as an adjective which
describes or qualifies the entity. For example, the values
for Name, Address, and HireDate could be attributes used to
describe the entity EMPLOYEE. All entities have a set of
attributes which describe the entity. Among this set of
attributes, there must be an . attribute (or combination of
attributes) which uniquely identifies each occurrence of data
within the entity. This attribute(s) is called the unique
identifier for that entity.

A relationship is the verb which defines the association
between two entities. Works_for might be a relationship
between the entities EMPLOYEE and DEPARTMENT. Relationships
are stated in terms of action and define the rules and
policies of the organization.

3244- 4

Although it is generally easy to define entities, attributes,
and relationships, it is sometimes difficult to distinguish
their roles in the data model. Should City be an entity or
an attribute? Should Orders be an entity or a relationship?
The designer must decide whether the user organization needs
to collect information about the item or if it is a piece of
information about another entity. The following guidelines
can be used by the designer to help differentiate between
these constructs:

o Entities should contain descriptive information. If
there is descriptive information about an object, it
should be classified as an entity. If the object only
requires one descriptor, it should be classified as an
attribute.

o Classify multi-valued attributes as entities. If more
than one value for a descriptor corresponds to one
value of the unique identifier for an entity, the
descriptor should be classified as a separate entity,
even if it does not have its own descriptors.

o Attach attributes to the entities they most directly
describe. For example, office_building should be an
attribute of DEPARTMENT not EMPLOYEE.

o Avoid composite identifiers when possible. A
composite identifier is a unique identifier which is
made up of two or more attributes. If these
attributes are all unique identifiers for other
entities, then define this entity as a weak entity (an
entity which relies on the keys from other entities to
establish its uniqueness) or a relationship.

o Subtypes of entities should become entities. Some
entities may contain attributes which are not common
to all occurrences of the entity. For example, you
may want to keep additional information about managers
in the EMPLOYEE entity. This subset of information
about managers should be kept in a separate entity.

Once the entities, attributes, and relationships have been
identified, the entity-relationship (ER) diagram can be
constructed. The ER diagram gives the designer a simplistic
and readable view of the conceptual schema. ER modeling is a

3244- 5

method of representing data requirements using a set of
semantic definitions. currently no standard ER model exists:
therefore, this paper will use the semantics and notations
most widely used within Hewlett-Packard.

Entity

Weak Entity

Relationship

Attributes

Primary Key

Foreign Key

Descriptor (Non-key)

Weak Entity Key

Multivalued

Rela t ionship Attribute

IEMPLOYEE I

II DEPENDENT II

works-on

Emp No

Emp_No (FK)

Emp_Name

Name

{Locations}

C8~

Figure 1. ER constructs for basic objects

Figure 1 illustrates the fundamental ER constructs used for
basic objects while Figure 2 shows the fundamental constructs
for relationship types. Using the symbols defined in these
two figures, an ER diagram can be constructed which depict
the conceptual data model in a pictorial form.

3244- 6

Degree

Unary

Binary

Ternary

Exclusive

Cardinality

One-to-One

One-to-Many

Many-to-Many

Dependencies

Mandatory

Fully Optional
Partially Optional

I EWPlOYEE ~ DEPAAnEHT I
StMEA I.... I PMT

~

~~bI I1-: 1-

I aFlOVEE I IIIl-eIIII I OEPAATNlNT I
I EWPlOYEE ~4""" IDEMATNEHTI OR EJIIllOY£E ~DEJWmOJ I

, EWPlOYEE 1~4.,q-oR ~~I PAo.ECT OR I ENFlOYEf~ PAo.ECT'

PMTS D !!lC!!i!d br q ~A

I DIPlove DO..-.-.
o<J PAO.ECTS

PMTS D 0fdIIrS ()(d ORDER

Figure 2. ER constructs for relationship types.

All of the basic objects in Figure 1 have been previously
defined. We will now focus on defining the relationship
types in Figure 2.

Degree The degree of a relationship is the number of
participating entities.

Unary - A unary relationship (also called an involuted
relationship) exist when one occurrence of an entity has a
relationship with another occurrence of the same entity.

3244- 7

dependency of a relationship refers to
must be present to support the

relationship states that
the relationship may exist

Binary - A binary relationship is a relationship between two
different entities.

Ternary A ternary relationship relates three entities to
each other in such a way that they cannot be decomposed into
equivalent binary relationships.

Exclusive A exclusive relationship is one in which an
entity is shown to relate to two or more other entities but
may have a relationship with only one of these entities at a
time. The arc indicates an either/or relationship.

Cardinality - The cardinality ratio specifies the number of
relationship instances that an entity can participate in.

One-to-one A cardinality ratio of one-to-one (1:1) means
that for each occurrence of an entity there can be only one
occurrence of the other entity in the relationship.

One-to-many A cardinality ratio of one-to-many (l:N)
indicates that one entity occurrence is related to one or
more occurrences of the other entity in the relationship.

Many-to-many A cardinality ratio of many-to-many (M:N)
means that many occurrences of one entity are related to many
occurrences of the other entity in the relationship.

Dependencies The
whether an entity
relationship.

Mandatory A mandatory relationship requires both entities
to participate in the relationship. Neither entity may exist
without the other. The participating entities are dependent
on each other.

Fully optional - A fully optional
the participating entities in
independent of each other.

Partially optional A partially optional relationship
indicates that one entity is dependent on the other but the
reverse is not true. The other entity may exist
independently.

Figure 3 shows the information needs for a company's

3244-8

database. This dat~ will be used in further diagrams to
illustrate the different data models.

DEPARTMENT

Dept-No, Dept-Name, {Location}, Manager, Mgr_Start

PROJECT

Proj-Name, Proj-No, Location, Control-Dept,

Completion-Code, Completion-Date

EMPLOYEE

Emp-Name, Emp-No, Address, Salary, SSN, Job_Code,

Dept, Supervisor, {Project, Hours}, Prim-Lang, Sec-Lang,

Mgmt-Level, Yr-Mgr

DEPENDENT
Name, Relationship, Sex, BOate, Employee

Figure 3. Company data.

Using the company data, figure 4 illustrates the first pass
of the conceptual data model before refinement has taken
place.

3244- 9

DEPARTMENT

EMPLOYEE works- for Dept_No
DEPENDENT

Emp_No
Dept_Name

~~r!l~ Emp_Name manages {Location}

Relationship
dependent_of

Address
Sex Salary 60~Bdate SSN

Job_Code works- on
PROJECT

Proj_No

Proj_Name

Location
PROGRAMMER CLERICAL MANAGER Completion_Code
Prim_Lang Mgmt_Level Completion_Date
Sec_Lang Yr_Mgr

Figure 4. Company Database Conceptual Model
before refinement.

Once the preliminary conceptual data model is developed, the
designer must qo throuqh the refinement process. During this
process primary keys must be identified, entities must be
reviewed, and redundant entities must be removed.
Many-to-many and involuted relationships must be examined for
hidden entities. If implied relationships exist, remove any
unnecessary direct relationships. Foreiqn keys need to be
identified to support relationships.

Figure 5 shows the Company database final conceptual data
model.

3244- 10

SUPERVISOR
Sup Emp_No O=K)

Emp No O=KJ
Yrs_Sup.%.superVIse DEPARTMENT

EMPLOYEE works_For Dept_No
DEPENDENT Emp_No "/ Dept_Name
Emp_No (FK) Emp_Name

manages {Location}Address -Name I\.. _ dependent_ot
Salary 1

.....,

Relationship
v- SSN

c§r~~Sex Job_Code ! controls
Bdate Dept_No FK)

{Proj_No) FK) works_On
Sup_ErIlJ_No eFKJ '- -/

~

~
-" PROJECT

\ 1 I) Proj_No

~ ~ ~- Proj_Name

PROGRAMMER CLERICAl.
Location

MANAGER

Emp_No (FK) Emp_No (A() Emp_No O=KJ
Completion_Code

Prim_Lang Mgmt_Level
Completion_Date

Sec_Lang Yr_Mgr

Figure 5. Company Database conceptual Data Model
after refinement

Defininq and refininq the conceptual data model is an
iterative process. There should be several modelinq
sessions, each producinq a more complete and detailed model.
As previously mentioned, transaction desiqn should be
occurrinq in parallel with conceptual data modelinq.

Transaction Desiqn

When a database is beinq desiqned much is already known about
the applications that will use the database. An important

3244- 11

part of database design is to understand the characteristics
of the transactions that will be applied against the database
early in the design process.

One technique for specifying transactions is to identify
their input/output and functional behavior. Transactions are
usually grouped as retrieval, update, or mixed transactions.
Knowing these characteristics, as well as the relative
importance of transactions and their rate of invocation is a
crucial part in physical database design.

Logical Database pesign

The third phase of database design is to develop of the
logical data model. Although the logical model is still DBMS
independent, the goal of logical data modeling is to come up
with a record-based schema which will easily translate into a
physical data model.

Logical data modeling includes the following activities:

o Examine attributes which may contain null values.
Often a null-valued attribute is indicates of a hidden
entity. Avoid keys that may have null values. Many
database experts believe that nulls should always be
avoided.

o Examine subtype entities. If a SUbtype entity has a
different set of attributes, or if one of the SUbtype
categories has attributes then make it an entity.

o Convert all many-to-many relationships to two
one-to-many relationships with a connecting entity to
link them together. The connecting entity should have
the primary keys on the two new entities as its
foreign keys.

o Examine fully optional relationships and partially
optional one-to-many relationships where the optional
part is the 'one' side. This is okay if the optional
part is on the 'many' side. To avoid null foreign
keys, consider placing a connecting entity between the
two original entities.

3244- 12

o Normalize the data model to third normal form. During
physical database design it may be desirable to
denormalize parts of the model to maximize transaction
performance.

The goal of logical data modeling is to address a limited
number of implementation issues and prepare the model for
physical database design. Figure 6 shows the ER diagram for
the Company database logical data model.

SUPERVISOR
Sup EIf1) No ~K)

Emp No (Ft<J
Yrs_Sup

superVIsor

MANAGER

Eft\P_No (Ft<)

Mgmt_Level

Dept_Loc
Dept_No (FK)

Location

controls

DEPARTMENT
Dept_No

Dept_Name
{Locabon)

PROJECT

ProLNo

Proj_Name
LocatIon

COMP_PROJ

Proj_No (A()

Completion_Code
Completion_Date

manages

WORKS-oN

Emp_No ~K)

ProLNo CFK>

Hours

EMPLOYEE
EInJ) No
Emp_Name
Address
Salary
SSN
Job_Code
Dept_No CFK>
Sup_EInP_No (A()

PROGRAMMER

Emp_No CFt<)

Prim_Lang

DEPENDENT

Emp_No (Ft<.)

Name
Relationship
Sex
Bdate

Figure 6. Company Database Loqical Data Model

3244- 13

Physical Da~abase Design

The next phase of database design entails converting the
logical model into a physical database design. The physical
design is a merging of the logical design, the transaction
design, and the rules of the chosen DBMS.

The first step in physical design is to map the entities,
attributes, and relationships into components of the DBMS.
This can usually be done by following a few generalized
steps.

Step 1: Each entity translates to a relation in the physical
model. All attributes of the entity will become attributes
of the relation. The primary key should be supported by a
unique index and all foreign keys should be supported by
non-unique indexes.

Step 2: For each weak entity type, create a relation with
all the attributes of the weak entity plus the primary key
attribute(s) of the owner entity. The primary key of the new
relation will be the a composite of the primary key of the
owner entity and the partial key of the weak entity.

Step 3: For each one-to-one relationship type, the primary
key of at least one of the participating entities must be
included as a foreign key of the other participating entity.
It is best to choose an entity type with total participation
for placing the foreign key.

step 4: If any relationship types have attributes associated
with them, the attributes should be moved to one of the
participating entities. If the attribute is multivalued, the
relationship should become an entity.

step 5: For each one-to-many relationship type, the entity
on the 'many' side should contain the primary key of the
entity on the 'one' as a foreign key.

step 6: If there are any many-to-many relationships, create
a new connecting relation which has as its foreign keys the
primary keys of the participating many-to-many entities.

step 7: If there are any multivalued attributes, create a

3244- 14

new relation with the primary key of the original entity
included as a foreign key in the new entity.

step 8: For each n-ary relationship type (n is the number
of participating entities) where n > 2, create a new
relation. Include in the new relation as foreign keys the
primary keys of the participating entities. The primary key
of the new relation is the combination of all of the foreign
keys.

After the physical data model is designed it must be tuned
for performance, flexibility, updatebility, accessability and
so on. During this step the information from the transaction
design is heavily used.

When fine tuning the physical design the designer must
understand how the database will be accessed. For each
transaction, the designer should know:

o The files that will be accessed by queries or updates.

o The fields on which any selection conditions are
specified.

o The fields on which any join condition are specified.

o The fields whose values will be retrieved by the
~e~.

o The types of update operations on each file.

o The fields on which any selection conditions for a
delete or modify operation are specified.

o The fields whose values will be changed by a modify
operation.

o The fre~ency of invocation of the transactions.

o The time constraints of the transactions.

Relations may be denormalized, merged together, or divided to
improve performance. Indexes need to be evaluated. Rules of
the DBMS need to be applied to the data model to optimize its
efficiency. Locking strategy, views, security, audit needs,

3244- 15

file placement, and database parameters all have to be
considered. Once the physical database design is considered
fully tuned and complete, it will need to be implemented.

Da~abas. Xmp1em.ntatiog

Implementing the database is usually done by the database
administrator (DBA) using the guidelines defined by the
database desiqner. Using the data definition language (DDL)
of the DBMS, the DBA will create the database environment,
tables, indexes, views, and security. The DBA will set the
database parameters and define the backup strategy. After
the designers specification have been fully carried out, the
database will be ready to load and use.

Conclusion

For many years· database design was an afterthought.
Applications were written and databases where built without
any real understanding of the relationship of the two. All
too often it was after the database application was
implemented that the creators realized the design errors (or
lack of design errors). Once applications are written for a
database changing the desiqn of the database without
extensive application program changes is virtually
impossible. Most of the cost of an application is in its
maintenance. This cost can be greatly reduced by good,
thorough database and application design up front.

3244- 16

OBChange Plus: New and Improved
Mark Boronkay

Hewlett - Packard
19111 Pruneridge Avenue, Bldg. 44MA

Cupertino, California 95014
(408) 447-5009

Have you ever experienced database corruption? Hopefully not but if so. think about how the corruption
was resolved. Some shops rebuild their database from scratch. Others might risk further corruption by
attempting to patch the database themselves. In any case. it is certain that a significant amount of time
will be involved. Now think about this. Wouldn't it be great if database corruption could be detected
and resolved in a timely manner not requiring massive amounts of technical expertise? With DBChange
Plus it is now possible to check a database for corruption and resolve the corruption quickly and easily.
By issuing the CHECK BASE command. nBChange Plus will scan your entire database looking for
corruption. Similarly, the FIX BASE command will direct nBChange Plus to resolve corruption within
the database. nBChange Plus is an extended database administrative tool containing all the restructuring
features provided by its predecessor DBCHANGE/V. as well as new features designed to decrease the
effort required to maintain a database.

What is DBChange Plus?

DBChange Plus is a command-driven database maintenance tool which offers a simple way of performing
database restructuring and maintenance tasks. DBChange Plus saves a copy of the database structure and
uses a change file to keep track of requested changes. The changes are then applied when requested by
the user. All changes are performed without the use of a database unload or load. The following
function~ are available with DBChange Plus:

o Restructuring a database
o Capacity ltlanagement
o Checking a database for structural corruption
o Fixing structural corruption
o Erasing a dataset
o Repacking a dataset
o Copying a database
o Displaying database structural information

How does OBChange Plus run?

DBChange Plus consists of 3 files. One of the files is a message catalog (OBCCOOO) containing the bulk of
the me~ges generated by nBChange Plus. An nBChange Plus commands and options are also included in
this me~age file for verification upon user input. Using a message catalog not only eliminates the need to
hard code, but also allows future messages and commands to be added or localized more easily. The \)ther
t\\·o files are: DBCPLUS and DBAPLUS.

OBChange Plus is a two-step process consisting of a front end processor and a database generah'\r. The
front ~r,d program used by DBChange Plus is called OBCPlUS. OBCPlUS prompts' the user for illput and
~t~rcs the reque:;1c; in a changp file. If the ~hange file does not exist. OBCPlUS will build it. If the change
flle d"cs exists. OeCPlUS will a)Jow you to either write over or add to the existing data. TIle ~ccond

DBChan2f> Plus: New a"d Impr\wp.ti 3246 - 1

program, DBAPLUS, then reads the change file created by OBCPLUS and does the actual work requested by
the user.

These two programs, DBCPLUS and OBAPLUS, can be executed as a single cohesive unit or they can be run
independently from each other. Issuing the PERFORM COMMANDS command within DBCPLUS will launch a
DBAPLUS process which will then read the change file and transforms the database accordingly. The
following example illustrates how easy it is to use DBChange Plus interactively to increase the capacity of
a dataset:

:DBCPLUS
>Base ORDERS
>Change Capacity INVENTORY 650
>Perform Commands
>Exit

«Begin the DBChange Plus process»
«Define the database»
«Increase capacity of INVENTORY dataset to 650»
«Launch DBAPLUS»
<<Terminate DBChange Plus»

In the above example, entering DBCPLUS at the colon prompt initiates the DBChange Plus utility. The
first command entered in the above example is the BASE command. This command defines the database
for DBChange Plus. At this point, DBChange Plus builds (or modifies) the change file. Next, the command
to increase the capacity of the INVENTORY dataset to 6 SO is entered. Finally the PERFORM
COMMANDS command is issued. This will launch the DBAPLUS program as a son process. Control will
return to the user when the DBAPLUS process is completed. The EXIT command causes DBChange Plus
to terminate.

(When using the PERFORM COMMANDS command, DBAPLUS will automatically check the value of a
special JCW set by DBCPLUS. DBAPLUS will not execute if the value is anything other than '0'. This
built-in feature of PERFORM COMMANDS prevents DBAPLUS from executing if lOme type of error is
detected in DBCPLUS.)

Requests could also be batched by the user in the change file only to be processed by DBAPLUS at a later
time. To do this, the user simply runs the OBCPLuS program and does not indicate PERFORM COMMANDS
before exiting DBCPLUS. At a later time, the user can simply run DBAPLUS in which case they will be
prompted for the name of the database to transform.

File equates can be used in order to implement DBChange Plus as a batch process, UDC or command file.
Special JCWs have also been employed by DBChange Plus to help the user control the flow of processing
between DBCPLUS and DBAPLUS when used as separate programs. DBCPLUSJCW will be set to non-O if
an error occurs during DBCPLUS. Likewise, DBAPLUSJCW will be set to non-O if an error occurs during
DBAPLUS. The example on the following page illustrates a typical jobstream and its use of file equates
and JCW checking:

«Define database for DBCPLUS»
«Change capacity of SALES to 300»
«Exit DBCPLUS»
«Check DBCPLUS JCW»
«Define change file for DBAPLUS»
«Launch DBAPLUS»
«Check DBAPLUS JCW»

Increase Successful!!!!

!JOB CAPINCR,User.Acct;Outclass=LP,2
!DBCPLUS
Base ORDERS New
Change Cap SALES 300
Exit
!If DBCPLUSJCW = 0 THEN
! FILE DBCHGF=ORDERSCF
! RUN DBAPLUS.PUB.SYS;PARM=15
! IF DBAPLUSJCW = 0 THEN

TELL User.Acct; Capacity
ENDIF

!ENDIF
!EOJ

DBC}vnge Plus: New and Improved 3246 - 2

How Does DBChange Plus Work?

The first thing to note about the command interface is that there are two distinct classes of .commands
used by DBChange Plus: DEFERRED and IMMEDIATE. Deferred commands are those that will change
the structure of a database. They are considered deferred because OBChange Plus simply stores them in
the change file until a user explicitly directs DBChange Plus to execute them. That is, by themselves they
have no immediate effect on the database. The deferred commands are:

ADD, CHANGE, CHECK, DELETE, ERASE, FIX, RENAME, REORDER. RECOVE~, REPACK

Immediate commands are those that do not alter the original database. They provide information about
or help with the operation of the OSCPLUS program. Their effect is immediately known. The immediate
commands are:

BASE, CANCEL, CONTROL, COPY, EXIT, HELP, OUTPUT, PERFORM COMMANDS, PRINT, RECOVER,
REDO, REVIEW, XEQ

As noted earlier, OBCPLUS simply builds the change file containing the users requests. The database is
actually transformed by OBAPLUS where a new schema is built based on the change file. That new
schema is then file equated to DBSTEXT. OBSCHEMA next creates the new root file. Following the creation
of the new rootfile, individual temporary files representing datasets are built based on those sets
designated in the change file containing changes. Data is then transformed and/or copied where
appropriate. Finally the current rootfile and datasets are purged and the new temporary rootfile and
datasets are saved as permanent.

nBChange Plus will order all deferred commands intelligently for maximum data safety and throughput.
For example, if a user entered a REPACK command prior to a FIX command, the FIX command will be
executed first. Likewise, if two contradictory commands are entered, the most recent command entered
takes precedence. An example of that would be if a user changes the capacity of a dataset to 20,000 and
a moment later changes the same capacity to 10,000. The most recent request (capacity 10,000) will be
the one used during database transformation time.

MPE commands can be issued within DBChange Plus. Simply input the MPE colon: and the MPE
command after the OBCPLUS prompt> (for example, >: LISTf). The command interface also supports the
MPE RUN command (for example, >: RUN QUERY. PUB. SYS).

Wh~t Does DBChange POus Do That DBCHANGE/V Doesn't?

In addition to retaining the features of its predecessor DBCHANGE/V, DBChange Plus adds the ability to:

o check a database for structural corruption,
o fix many structural problems
o monitor tbe capacity (fill rate) of a dataset and automatically increase or de('rease its size
o give optimal performance recommendations
o change maximum block length (BLOCKMAX)
o delete item/set security
o erase dafasets
o repack detail data sets

DBChange Plus: New and Improved 3246 - 3

Each of the above new features were designed to give the user added flexibility and power in the design
and maintenance of TurbolMAGE databases. Let's take a closer look at each of these new features.

CHECK DATABASE
OBChange Plus has the ability to check a database (or parts of it) for various structural integrity
problems. There are two different methods DBChange Plus can use to check a database: QUICK and
STANDARD. The QUICK method does a check to determine whether a problem truly does exist or not.
In order to do this check quickly, DBChange Plus uses checksum information derived from the database
instead of following all the chains. This method will identify problem datasets but will not isolate the
particular entry that needs to be fixed.

A more precise check can be done with STANDARD checking. This method takes a bit longer since it
follows chains, but it does a better job in isolating where the corruption exists. If corruption is found in
the database, the CHECK function will generate an analysis and a diagnostic file. This file can then be
used by the FIX function to resolve the corruption.

CHECK can be performed on the rootfile, dataset(s), path(s), or the entire base. CHECK ROOT will look for
inconsistencies in the rootfile. CHECK PATH will detect errors between datasets such as chain head and
chain count inconsistencies. CHECK SET will detect inconsistencies within a dataset such as bitmap
problems and forward/backward pointer on a chain. The CHECK SET analysis will contain the following
information:

o number of entries in the set
o capacity of the set
o ~rcentage full
o high water mark (detail datasets only)
o delete chain count (detail datasets only)
o percentage of secondaries (master datasets only)
o longest cluster of blocks required for open slot (master datasets only)
o average cluster of blocks required for open slot (master datasets only)

The following is an example of output from the CHECK SET @(check all data sets) command:

CHECK SET (MASTER)

Master Set Name Type Entries
Pct

Capacity Full
Pct
Sec

Longest
Cluster

Average
Cluster

CUSTOMER
DATE-MASTER

M
A

10
9

221
211

5 0.0
4 0.0

o
o

0.0
0.0

CHECK SET (DETAIL)

Detail Set Name Entries
Pct

Capacity Full
Highest

Entry Used
Delete

Chain Count

SALES

CHECK INFORMATION

Set Name Type
Search Item

Message(s)

60 308 19 60 o

No problems were detected by CHECK.

DBChange Plus: New and Impro\Oed 3246 - 4

The CHECK PATH function detects broken chains or incorrect pointer linkages. For a master set, CHECKPATH follows and examines synonym chains. For detail sets, CHECK PATH follows and examines detailchain pointers and the chain head pointers in the associated master data sets. The following data isreported by CHECK PATH:

o seal'~h item name (will display SYNONYM CHAINS for masters)
o Rt type
o maximum number of entries In the longest synonym or detail ~hain
o average number of entries per chain
o standard deviation of average number of entries per chain
o percentage of forward pointers that point outside the current block
o average number of blocks per chain
o packing ratio (efficiency of path)

The following is an example of what the CHECK PATH @(check all data paths) command will produce as areport:

CHECK PATH

Set Name
Search Item

Type
(PS)

Max
Chain

Avg
Chain

Std
Dev

Pct
Far

Ptrs
Avg

Blocks
Packing

Ratio
CUSTOMER M

SYNONYM CHAINS 1.00 0.00 0 1.00 N/ADATE-MASTER A
SYNONYM CHAINS 1.00 0.00 0 1.00 N/APRODUCT M
SYNONYM CHAINS 1.00 0.00 0 1.00 M/ASALES D
ACCOUNT (s) 41 20.00 23.81 30 1.00 0.14STOCK' (P) 45 20.00 22.61 12 3.33 0.30PURCH-DATE 23 1.50 8.85 13 2.00 0.50DELIV-DATE 29 15.00 11.22 12 2.75 0.36INVENTORY D
STOCK' 0 0.00 0.00 0 0.00 0.00SUPPLIER 0 0.00 0.00 0 0.00 0.00LASTSHIPDATE 0 0.00 0.00 0 0.00 0.00

CHECK INFORMATION

Set Name Type
Search Item

Message(s)
--No problems were detected by CHECK.

OBChange Plus: New and Improved 3246 - S

- «Define database for DBCPLUS»
«Standard database Check»
«Do Check Now!!!».
«Exit DBCPLUS»

The CHECK BASE function does an implicit CHECK ROOT. CHECK PATH @. and CHECK SET @. The
report produced is a concatenation of the CHECK PATH and CHECK SET analysis. The (ollowing is an
example of a job that can be streamed at desired intervals. It does a full check against a database called
ORDERS. By simply changing the base name. the same job can be run against other databases.

!JOB CHECKER,User.Acct;Outclass=LP,2
!OBCPLUS
Base ORDERS New
Check Base
Perform Commands 15
Exit
!EOJ

FIX DATABASE
The fIX function attempts to resolve the corruption uncovered based on the data generated by CHECK. If
fIX is indicated without a CHECK. it will generate its own diagnostic file by running CHECK prior to the
fIX routines. fIX can recogniz.e and resolve the following problems:

o User Label Inconsistencies
o Delete Chain Errors
o Broken Chains
o Bit Map Errors
o Unlinked Entries
o Root File Path Sequence Corruption (also corrected during restructure)

Consider the following seven entry chain in a detail data set called ACCOUNTS (record numben are
pictured as decimal values) where record 1126 is the head of the chain and record III 9 is the tail of the
chain:

26<---->27<----)28<---->7<---->8<---->16<---->19

Now suppose that for some reason, the forward pointer for record 1/27 pointed to # 100 rather than 1128
as it should. Furthermore, suppose that the backward pointer for record #8 pointed to 11200 rather than
117 as it should. The following illustration depicts the broken chain environment:

------>100
I

26<---->27<---- 28<---->7 ---->8<---->16<---->19
I

200<-----

The example on the following page illustrates the output generated by fIX BASE on this corrupted
database. Note that the report prior to the error messages is again a concatenation of CHECK SET @and
CHECK PATH @.

DBChange Plus: New ar,J Impr\.weJ 324ft - 6

CHECK SET (MASTER)
Pet Pet Longest Average

Master Set Name Type Entries Capacity Full Sec Cluster Cluster

CUSTOMER M 10 221 5 0.0 0 0.0
DATE-MASTER A 9 211 4 0.0 0 0.0
PRODUCT M 10 307 3 0.0 0 0.0

CHECK SET (DETAIL)
Pct Highest Delete

Detail Set Name Entries Capaci ty Full Entry Used Chain Count

SALES 60 308 19 60 0
INVENTORY 0 4S0 0 0 0

CHECK PATH
Pct

Set Name Type Max Avg Std Far Avg Packing
Search Item (PS) Chain Chain Dev Ptrs Blocks Ratio

CUSTOMER M
SYNONYM CHAINS 1.00 0.00 0 1.00 N/A

DATE-MASTER A
SYNONYM CHAINS 1.00 0.00 0 1.00 N/A

PRODUCT M
SYNONYM CHAINS 1.00 0.00 0 1.00 N/A

SALES D
ACCOUNT (S) 47 20.00 23.81 32 7.33 0.14
STOCK' (P) 4S 20.00 22.61 12 3.33 0.30
PURCH-DATE 23 7.50 8.85 13 2.00 O.!'O
DELIV-DATE 29 15.00 11.22 12 2.75 0.36

INVENTORY 0
STOCK' a 0.00 0.00 0 0.00 0.00
SUPPLIER 0 0.00 0.00 a 0.00 0.00
LASTSHIPDATE 0 0.00 0.00 0 0.00 0.00

CHECK INFORMATION

Set Name Type
Search Item

Message(s)
--
SALES D

ACCOUNT (Path 1; linked to master CUSTOMER, path 1)
Path Chain inconsistencies detected (CHK 400).
Chainhead record 1S chain count mismatches entries on chain (CHK 450).
Record 7 is not linked into the proper chain (CHK 460).
Record 8 contains bad backward pointer (CHK 440).
Record 27 contains bad forward pointer (CHK 430).
Record 28 is not linked into the proper chain (CHK 460).

FIX INfORMATION

All requested fixes have been successfully applied.

OnChange Plus: New and Improved 3246 - 7

Note that the corruption is characterized at the end of the report and that there is a FIX INFORMATION
section verifying that the fixes were applied.

CAPACITY MANAGEMENT
The ability to monitor the growth of particular data sets is very useful. How many times have you had to
rerun a job after finding out that a data set filled up and the program aborted? Sound familiar?
DBChange Plus has the ability to control the growth of data sets by previewing the capacity venus the
entry count of data sets. If the percentage differs from what you tell DBChange Plus it should be, then
that set is either flagged as needing a capacity change OR the new capacity is automatically inserted in
the change file. With the CONTROL PERCENTfULL command, the user determines whether to CHANGE
CAPAC ITY manually or let DBChange Plus change the capacity. CONTROL PERCENTfULL has the
following command syntax:

CONTROL PERCENTfULL SETNAME MINfUlL MAXfULL [NEWfULL]

SETNAME can be for one set or one of the following:

@ to indicate that CONTROL PERCENTFULL applies to all data sets
@MASTERS to indicate that the CONTROL PERCENTFULL applies to aU master data sets
@DETAILS to indicate that the CONTROL PERCENTFULL applies to all detail data sets

MINfULL is the minimum percentage full desired for the given data set. If the set is less than the
MI NFULL, DBChange Plus will print a warning indicating so. Zero may be used for this parameter.

MAXFULL is the maximum percentage full desired for the given data set. If the set is more than the
MAXfULL, DBChange Plus will print a warning indicating so.

NEWfULL is the desired percentage full for the given data set. If the set is less than MINfULL or greater
than MAXFULL, the NEWfULL option will AUTOMATICALLY COMPUTE and ADJUST the capacity
within the change file.

If the capacity is to be expanded, the data set file will be enlarged. If the detail set capacity is to be
reduced, a REPACK SET SERIAL will be used to reduce the file. The new capacity will be based on the
desired percentage full (NEWFULL) and will be adjusted: to avoid 2's complement numbers for master sets,
and to round to the nearest block for detail sets. If a CAPACITY CHANGE or REPACK SET is already
pending for a data set, CONTROL PERCENTfULL may print a warning and cancel the previous change.
Some examples of CONTROL PERCENTfULL are:

CONTROL PERCENTfULl @ 0 70: If any of the data sets are more than 70'10 full, print a message
indicating so.

CONTROL PERCENTfULL @DETAIL 55 85 65: If any of the detail da.ta sets are less than SSX full or
greater than 85% full, change the capacity so that it becomes no more than 6SX full.

CONTROL PERCENTfULL INVENTORY 60 80: If the INVENTORY data set is less than 60010 full or greater
than 80010 full, print a message indicating so.

OPTIMIZE PERFORMANCE
Performance recommenl)dti(\l1~ are made indirectly through the reports produced by CHECK SET and
CHECK PATH commands. Regular checks of the database can prevent performance problems caused by
large cluster~ ~n master data set~. poor racking on heavily used chains, and large gaps caused by deleted
records in detail data sets. let's take a look at how the statistics in the CHECK PATH report can offer us
help in performance tuning.

DBChange Plus: New and Improved 3246 - 8

MAX CHAIN and AVERAGE CHAIN: While long chains are not necessarily harmful to the database,
they can have a considerable effect on performance. Consider the case of a master set with an inefficient
capacity. This situation can lead to an inordinate amount of synonym chains which will effect
performance during DBPUTs to their related detail datasets. Another example is the use of sorted chains.
The longer the chain becomes, the more time it may take to add items to that chain. You may want to
consider the following guidelines when evaluating chain lengths based on the CHECK PATH report:

o choosing an efficient capacity win keep synonym chains to a minimum.
o the average chain should not exceed 40% of the capacity.
o data items most heavily used should be specified as a search item for Il detail data set repack.
o sorted chains should be less than SO records unless key values are added in ascending order over time.

In addition to chain length evaluation, other inferences can be made from the statistics offered by CHECK
PATH:

STD DEV (standard deviation) is an indication of the accuracy of the Avg Chain statistic. The closer
to 0.00 this number is, the more accurate the Avg Chain statistic is.

PCT FAR PTRS is the percentage of forward pointers that point outside the current block. This
statistic can be used to enhance the packing ratio described below.

PACKING RAno is the efficiency of the path. It is the optimal average number of blocks per chain
divided by the actual number of blocks per chain. A value of 1000" means that every individual chain
for the specified path occupies the minimum number of blocks possible. Although packing ratio will
vary from application to application, try to maintain a packing ratio of at least 600" on primary paths.

The CHECK SET can also offer us statistics which can help fine tune performance. In the area of master
data sets, OBChange Plus offers these statistics:

PCT FULL is the percentage of the data set capacity currently in use. The recommended percent full
for a master data set is between 60-" and 80-"- If a master data set capacity is significantly less than
60% full, a serial read becomes slower. If a master data set is greater than 800" full, OBPUT intrinsics
involving the master data set can slow down.

peT SEC is the Percentage of secondary entries. In general, the lower the Percentage. the better. A
high percentage indicates that the hashing algorithm is creating many synonyms. To decrease the
percentage of secondaries, increase the data set capacity to a larger number that is not a power of two.

LONGEST CLUSTER and AVERAGE CLUSTER are the longest and average number of
TurbolMAGE blocks that must be read to find an open slot to place a synonym. If two records with
the same hash value are added to a master set, one of them must be placed in another slot. Acceptable
guidelines range from a cluster of lOon a heavily loaded transaction processing system to as much as
200 on a very lightly loaded system. A collection of historical statistics about the database can help
you evaluate if the longest and average clusters are within a reasonable nnge. Your database use"
can help identify clustering problems by reporting slow response time when adding records to a
particular set. Once you have determined if the range should be changed, increase or decrease the
data set capacity accordingly.

In the area of detail da ta sets, DBChange Plus offers us these statistics:

PCT FULL is the percentage of the data set capacity that is not available for use. This statistic is
useful for capacity planning.

HIGHEST ENTRY USED is the record number of the highest entry ever used. When reducing data

DBChange Plus: New and Improved 3246 - 9

set capacitYt do not reduce it below the highest entry used; otherwise you must repack the data set to
recover the unused space in the middle of the data set.

DELETE CHAIN COUNT is the number of records in the delete chain. This number should be as
close to 0 as possible. A high delete chain count may mean a problem with a large quantity of deletes.
For example, if you have a program that performs a large number of deletes, gaps may be left in your
detail data set. Subsequent record additions may disburse data randomly within the data set. As a
result, chain reads may be slow. To correct a high delete chain countt repack the data set.

CHANGE BLOCK LENGTH (BLOCKMAX)
There are instances where the default block size (S 12 half-words) is not sufficient to hold an optimal
number of TurbolMAGE entries. And without optimizing the block lengths, it is possible that disc space
could be wasted. Let's say for instance that you have a particular dataset whose media length is 100
half-words and the blocking factor is 10. In this case, the block size must be at least 1001 half-words in
order to hold all 10 entries. Obviously, a block size of S12 half-words is not sufficient for this dataset.
The CHANGE BLOCKMAX feature within DBChange Plus will allow the user to modify the block length for
this particular dataset so that all 10 entries will fit properly.

The CHANGE BLOCKMAX command can be specified for all datasets, for a range of datasets or for
particular datasets. To apply the new BLOCKMAX to all datasets, the user specifies the '@' as one of the
options in CHANGE BLOCKMAX command. To apply the new BLOCKMAX to a range of datasets, the user
specifies the beginning dataset and ending dataset as options in the CHANGE BLOCKMAX command. To
apply the new BLOCKMAX to a particular dataset, the user specifies the single dataset. An example to
set the BLOCKMAX to 2048 for the whole database would look like this:

>CHANGE BLOCKMAX @2048

This command is similar to the $CONTROL BLOCKMAX command used in DBSCHEMA. In fact, DBChange
Plus essentially inserts a $CONTROL BLOCKMAX command in the schema at the appropriate spots prior to
rebuilding the database.

DELETE ITEM/SET SECURITY
As an application changes, it sometimes becomes necessary to change the type of availability to data the
end user has. One way this can be accomplished is to modify the application itself to prevent the user
from accessing the data. Another method is to change the read/write classes at the item or set level

The following example illustrates how easy it is to delete the set security for a dataset resulting in a
read-only dataset to all except the database creator:

>DELETE SETSECURITY orders

ERASE DATASET
Unlike OBUTI L ERASE which erases the entire database, the DBChange Plus function deletes all entries in
a given data~t. There are three cases which apply to the ERASE command: erasing details, erasing manual
masters, erasing automatic masters.

Det~ils:

All entries in the detail set are erased and corresponding master sets are updated. If the deletion of a
detail entry results in an manual master entry not being linked to any detail entries, then the master
entry is left in the set.

Manual ~fasters:

In a manual master set, only those entries with no corresponding detail entries are erased. If the ~('t is
linked to one or more detail sets whose path count is not zero, a message is displayed stating that the
master cann"t be erased due to existing detail set entries.

DBChange Plus: New and Improved 3246 - 10

Automatic Masters:
Automatic master datasets cannot be explicitly erased.

In order to prevent accidental deletion of data, DBChange Plus asks the user to confirm the ERASE
command in session mode. The confirmation is bypassed during batch processing. The CANCEL ERASE
command allows the user to cancel an ERASE command that has not yet been executed. It is important to
note that once DBAPLUS has been run, the ERASE COMMAND cannot be cancelled.

REPACK DATASET
The REPACK SET function comes in two flavors: serial and chained. The chained version will repack your
set along a specified path. If no path is specified for the chained repack, then the primary path is
assumed. Repacking a dataset along a specified path is an excellent way to improve performance of a
chained read. A serial repack is useful when reducing the capacity in a detail data set which is highly
fragmented (i.e., a dataset which has many chunks of data intermixed with many chunks of free space).
The serial venion of repack does not require a path name. The REPACK SET command is valid for detail
data sets only. A CANCEL REPACK command will cancel a previous REPACK SET command. Again it is
important to note that once DBAPLUS has been run, the REPACK SET command cannot be cancelled.

The repack works by rebuilding the set, eliminating gaps left by deleted entries and adjusting the pointers.
In order to accomplish this, OBChange Plus uses an internal mapping file. Once the mapping file is built
and loaded with data OBChange Plus proceeds to rebuild according to whether the repack is serial or
chained.

Summary......

As you can see, OBChange Plus provides database users with a simple solution for database restructuring
and maintenance tasks. In addition, it also provides features to help the user make performance decisions
based on data analysis. But most of all, it is designed to be easy and simple to use.

DBChange Plus: New and Improvell 3246 - II

Paper 3247
Develop Software Using ~ Synthesis Approach

Phil Nguyen
Wayne McKinney

Lockheed Engineering and Sciences Co.
2400 NASA Road 1, Houston, TX 77058

(713) 333-7177

I. Software Reuse Is Here

Traditional software development methodologies are inadequate.
They often have limited perspective and never address issues such
as program integration or software reuse. On the other hand, one
characteristic of rapid software development is that it empha
sizes code reuse throughout the project's life cycle.

Recently, our financial analysis group requested that an applica
tion be developed for them that could compile data from time
cards. They wanted it to acquire data for a month and then
create a summary report of labor grades by skill code within
division and branch.

From this project, we learned how to orient ourselves toward
developing reusable software. The application was constructed
using a number of modular SUbroutines, where each subroutine was
independent, compact, and handled one specific function. Because
the code was highly modular, we could easily retrofit it for use
in future applications.

Several other good results came out of our work with that appli
cation. We have reduced thousands of lines of code to hundreds,
thus making the task of software maintenance easier and less
costly. Moreover, the application's code was structured so that
it was easier to understand and easier to test.

By using data tables in the application, we derived a second
benefit. The subsystem was made more reliable and more flexible.
It can now handle many changes in business entities with a mini
mum of ef~ort by mis production personnel, and it can handle
those changes in real time.

Our work has shown us that when a project is completed, an effort
should be made to identify what software components could be
added to a software reuse library. Once the reusable code has
been identified, we should next find efficient pieces of code and
store these in the library as well. By having these examples and
reusable subroutines in one place, all programmers can inspect
them and exploit their capabilities. It makes sense to create
such a library, for it lets us capitalize on both existing soft
ware resources and the expertise of good programmers.

Develop Software Using a Synthesis Approach
3247 - 1

Software reuse does not have to start at the beginning of a
project - it can even start after a project has completed. The
only prerequisite is the availability of a database that can
serve as a common ground for both software developers and pro
grammers. Once this system is in place, it can serve as a source
code "textbook" that can be continually updated and annotated by
the people who use it (Figure I-I).

II. Members of g Program Family

The evolution of factory industry has reorganized the way that
products are manufactured. Today, products often evolve into a
family of products rather than a single product system. The main
reason for this progression is that of economy and maintainabili
ty. Building products in a setting of mass production almost
always costs us less. It does not matter whether we are talking
about a line of Honda Accords or a family of medical equipment.
Each model is slightly different from the rest. Software devel
opment should follow a similar approach.

"Synthesis" is used in "Synthesis Approach" to represent a sys
tematic process for rapidly creating different members of a
program family. Stepping back from our limited perspective as
programmers, we were able to see the coherency of the functions
that our programs must perform. Now, when new applications are
being developed or programs are being modified, we are able to
transfer code. By doing this, we are creating a new member of a
software family.

Lockheed has an application that tracks the procurement of items
critical to space shuttle flights. Throughout its use by our
Purchasing department, it has proven to be a reliable application
that assures both the timely acquisition of flight hardware and
the avoidance of any procurement problems.

Specifically, this application scans all our purchasing records
and computes the actual time elapsed for the various phases of
procurement. It then compares elapsed time with the "standard"
amount of time that these phases are supposed to take. Lastly,
it prints a report detailing variances from these standards.

Later, we created another application that looks at a two month
spread of fiscal year costing data, calculates deltas, and com
pares them with preset tolerances. Any values found to exceed
the "standard" tolerances will be printed in a report. In actual
use, this application can detect problems at an early stage to
one of any 1,500 job accounts.

Develop Software Using a Synthesis Approach
3247 - 2

Do you see a similarity between these two applications? You
should, because they are members of the same program family.
Code that was developed to run reliably in a procurement envi
ronment, can now be modified to handle a data processing need in
an entirely different setting. Developing software using the
Synthesis Approach lets us map variations in requirements to
variations on a standard design. Because this approach enables
us to easily generate deliverable products, our software develop
ment can achieve a high level of productivity and a high level of
quality.

Look at the applications that your data processing shop creates
and maintains. Regardless of what language or product your
applications are written in, you will find that functionally they
are quite similar to each other. Do you see the makings of a
family here? If you do, then you should be working at creating a
software development environment that fosters the computer as
sisted generation of program family members.

We have in our shop a system that handles employee termination
activities. Its primary task is to generate reports for manage
ment showing a summary count of employee terminations by job
code, by branch, or by department. It also generates other
pieces of information such as turnover rates. Code for this
application was developed and tested to such an extent that it
does its work flawlessly.

Now step back from the previous explanation and consider what
this termination application does. It creates reports that
summarize by different classes, and it calculates information
based on these summaries. Later, our Purchasing department came
back to us asking for an application that could perform vendor
ratings. For each vendor, Purchasing wanted a summarized report
that presented information such as how good the service was,
pricing, delivery time, average days late, and so on. Do you see
a similarity here? The employee termination application was
modified so that it could provide the exact information that
Purchasing needed. Development was quick and this application's
performance has been quite good.

Was it by luck that we happened upon two similar applications?
No. We were able to see similar requirements between these
applications and take appropriate action. Using the Synthesis
Approach, it's possible to generate program family members
easily, flawlessly, and meet project deadlines. Can programmers
accomplish this feat alone? No. User involvement is very much
needed. To aid us in bringing users into the project, we need to
use another tool of the Synthesis Approach - that of rapid proto
typing.

Develop Software Using a Synthesis Approach
3247 - 3

III. User Involvement ~ Needed

Thanks to rapid prototyping, users can now be brought into the
development loop quite early in the software life cycle. An
analogy to this kind of prototyping is that of producing a play.
Think of the users of the application as the play's audience.
You have the multifaceted job of being the writer, producer and
director of the play. Just as in some modern plays, software
development is often easier when you, the programmer, call for
audience participation.

One example of a project where we involved users from the begin
ning was an application that rates the performance of vendors.
Purchasing needed a system that could gather statistical informa
tion on vendors. By looking at a vendor's past performance,
Purchasing wanted to determine which vendors were reliable and
which ones could be depended upon to deliver on time.

As with any other development project, we held various meetings
with Purchasing to determine what the specific requirements were.
Once we reached an agreement upon the requirements, we decided to
test how reliable they were by prototyping a demo of the vendor
rating system. After system installation, output was constantly
being reviewed to check the validity of the different rating
categories.

Because the level of user participation was high, we were able to
make a number of improvements to the prototype in an effort to
deliver the final system. One area needing improvement was that
of the reports. A detail report was difficult to read and
contained redundant information. A summary report containing
rating data confused the users. Even the information found in
one report did not support the information found in another. It
looked as though the reports were in a hopeless state. However,
by getting the users to wade into the quagmire with us, we were
able to correct each of these problems.

The users, clearly, did not want to be handicapped by their own
system. As a result, they were motivated to meet with us so that
the reports and presentation of the data could be changed to meet
their needs. with our software environment, we were able to
provide an immediate response to each change in requirements.
Though our modifications were extensive, we kept a skeleton of
the old prototype intact. We simply replaced old blocks of code
with new blocks. Our case tool helped ensure that the new blocks
could interface with the rest of the application.

Develop Software Using a Synthesis Approach
3247 - 4

What was created in the end was a very useful application that
ensured the company success in locating vendors who provided
quality services. The reports (Figure 3-1) look well organized,
are easy to understand, and show at glance how well a vendor is
performing. Even now, the application's users are constantly
testing its functionality. They want to be sure that we left
nothing out of this application. Could such a successful appli
cation have been created without the user's continual involve
ment?

Under traditional methodologies, software development can start
only when needs are well defined and requirements are stable.
Yet in a dynamic business environment, stable requirements will
usually not happen. Even if stable requirements are present,
users are often not able to present them in a formal written
format. A better approach asks for rapid prototyping that can
generate a test system that we can take to the user and let him
evaluate. As we saw in the previous example, the user can often
clarify the requirements if he has an example that he can evalu
ate.

IV. Benefits of Rapid Prototyping

Though the Synthesis Approach stresses the use of existing to aid
in building new program family members, there will come a time
when you don't have a prior model to work from. Does our ap
proach break down in such a situation? Not at all, for with the
aid of rapid prototyping, we can start building the "alpha"
program and then expand from there. We encountered this "alpha"
program when we built a system that aided Purchasing in the
acquisition and tracking of items purchased for use on space
shuttle flights.

Prior to the implementation of our system, Purchasing tracked
flight critical hardware on a Lotus 1-2-3 spreadsheet. For small
volumes of purchases, this method worked well, but when volume
increased, they quickly needed a system that was more capable and
more reliable than lotus. Our initial discussions with Purchas
ing showed that their requirements were vague.

We decided to go straight to the person who had previously han
dled the data on flight critical purchases. Discussions with
this person gave us enough information that we could rapidly
prototype a data base around which the application would be
centered. From this data base, we created a series of screens
into which purchasing data could be entered. We also prototyped
an initial set of reports that analyzed the data that was en
tered.

Develop Software Using a synthesis Approach
3247 - 5

After this prototype was used for a week, a meeting with the
actual users of the system showed that they could now more clear
ly state their requirements. They wanted data sorted and catego
rized by dollar amount, a record of time intervals between pro
curement phases, and reports on any purchases that exceed the
"standard" time intervals between phases. Purchasing wanted to
be able to recognize any troublesome purchases and take steps to
resolve those problems. We also desired a set of charts that
could visually summarize for management the application's data.

At this stage of the project, we still didn't have any formalized
written requirements for the application. However, we did have
enough information from which we could create another generation
of the prototype. In this next prototype, we included all of
what the user had previously required. We also added more busi
ness oriented functions that made the user's job a lot easier
(Figure 4-1).

Even after all of our requirements were formally stated and the
final application delivered, the application's users often came
back month after month requesting more changes. By prototyping
each change and by borrowing code from existing applications, we
were able to quickly deliver a new function that not only met the
user's requirements, but also fulfilled his need for accurate and
timely information. Business functions may change, but our
application will be able to quickly change with it because we
developed it using the software synthesis Approach.

v. Conclusion

Often times, the software developer must assume a role similar to
that of a chief cook who oversees a big restaurant. He has
available to him a wealth of materials and tools with which he
can make a wonderful creation. The only trick involved is know
ing how to quickly integrate these tools to come up with a
product that the users can view, tOUCh, and evaluate.

Every restaurant has difficult-to-please diners. The users will
often come back every month or every week to request change or
enhancement to your system. However, like a good cook, you will
not get upset because you know that by following the software
Synthesis Approach, you can vary the ingredients to create a new
and better dish that will surely please them.

By paying attention to the customers' palate, a big restaurant
can cater to changing desires. For the software developer, this
means you must pay attention to what the user asks for. Communi
cation is essential. By using rapid prototyping and case tools,
you will be able to quickly please your users and ensure that
your application remains a highly functional part of its program
family.

Develop Software Using a Synthesis Approach
3247 - 6

What's great about the Synthesis Approach is that it's an ap
proach that can change with the times. A next generation compo
nent to this approach will most surely be that of automated
application development. Could it be that cooks will no longer
be needed in the kitchen? Perhaps. However, until that time
comes, we encourage you to create an environment that fosters the
automation of code development and that follows the software
Synthesis Approach. Both you and your users will be happy that
you did.

The two most obvious benefits are lower development costs and
lower maintenance cost. Another benefit of not lesser magnitude
is in faster delivery of final products. As such, development
using this approach grants us the ability to handle the enormous
user backlog that MIS is facing today.

As always, MIS departments are under tremendous pressure to
respond to rapid changes in the business environment. By embrac
ing the Synthesis Approach, you will be able to meet these chal
lenges by delivering products that are high in quality and meet
your needs. Though the Synthesis Approach is new, it's possible
that it could help solve some long standing problems such as
integrating dissimilar types of data and assimilate new technolo
gy into old systems.

References

1. Raymond T. Yeh "Case for Rapid Application Development"
CASE World Conference Proceedings. Spring 1991

2. William M. Ulrich "Re-Development Engineering
an Information Blueprint for the 1990's"
CASE Outlook 90, No 2 1990

Formulating

3. David M. Weiss "Synthesis: Integrating Product and
Process" Software Engineering RICIS Symposium, 1990

Develop Software Using a Synthesis Approach
3247 - 7

·on....no..
a

Jlaouaalona

primary sources
In form
aultable for retrleva

IIMI_'

"".'", .

dlaoUMlona

F;~ '-I

DEVELOP SOFTWARE USING A SYNTHESIS APPROACH
3247 - 8

12/24/90 VENDOR PERFORMANCE BY PURCHASE ORDER FOR PERIOO 11/01 THRU 11/30/1990

CtlCPET S DAYS
PO NUMBER PO DOLLARS CLOSE DATE PRICE? ACCEPT ON TIME LATE SERVICE C'

3 COt CXItP.

02A0146266 9,563.00 11/02/90 100.00 0

VENDOR: 400530606 .----•••••••••• -. RATING --.
1 PO'S: 9,563.00 100

BICC-VERO ELECTRONICS INC.

02C0149754 3,709.10 11/07/90 100.00 0

VENDOR: 000072199 ..-- -- -- -- RATING ---
1 PO'S: 3,709.10 100

CC»U'UADD
02C0144891 2,655.00 11/06190 100.00 0 G

VENDOR: 001263003 .-••• ------ •••• -- RATING ---
1 PO'S: 2,655.00 100

COCPURIZE
02C0148920 2,6n.00 11/01/90 y 100.00 y 0 E
02C0149268 5,264.00 11/01/90 y 100.00 y 0 E
02C0149269 7.00 11/01/90 y 100.00 y 0 E
02C0149670 4,836.00 11/01/90 y 100.00 N 13 G
02C0149671 5,542.00 11/01/90 Y 100.00 y 0 E

F\~ 3-1

DEVELOP SOFTWARE USING A SYNTHESIS APPROACH
3247 - 9

;MAIN

FLIGHT DATABASE
MENU TREE

DATA ENTRY
MAINTAIN

EDIT
UPDATE

QUERY
PAST DUE
VIEW BY PO
STD MIO
ARRIVAL PLAN
MOVE

REPORT
COMPLETE
ACTUAL
VARIANCE
GRAPH
TREND

VENDOR
REASON
PERFORMANCE
DOUBLE

HELP
LEAVE

DEVELOP SOFTWARE USING A SYNTHESIS APPROACH
3247 - 10

Paper'3248
lIP 3000 Open CASE

Phiroze Petigura
Hewle~PackardCompany
19111 Pruneridge Avenue

Cupertino,CA 95014
(408) 447-6122

Introduction

Computer-Aided Software Engineering, or CASE, bas been used by lIP 3000 developers for
many years to streamline development and maintenance of commercial applications. CASE
addresses one of the most critical business needs today - the ability to quickly, and effectively
manage a business' infonnation assets. 'I11e HP 3000 open CASE program provides developers
and value-added software businesses with CASE tools for developing and maintaining applica
tion for HP 3000 systems. 'l11e HP 3000 open CASE program provides support for methods and
advanced CASE tools for the lIP 3000 commercial MIS and value-added software developer
communities.

The subject of this white paper is the HP 3000 commercial CASE program. It presents HP's
strategy to extend CASE to meet the needs of new applications on HP 3000 systems. Although
this paper primarily addresses the needs ofin-house MIS departments, it applies equally to the
needs ofvalue-added software suppliers.

Objectives of HP 3000 Open CASE

'I1le objectives of the HlP 3000 open CASE program are to deliver to lIP 3000 MIS and
value-added application developers:

• the best-in-c1ass CASE tools from leading CASE vendors,

• a multi-vendor CASE solution,

o CASE tools ranging from standalone to complete integrated-CASE solutions,

• CASE tools for both mainframe class and open systems, ~lientJserverapplications.

HPrecognizes that as the capabilities ofthe lIP 3000grows to meet mainframe and open systems
standards, the breadth of developer requirements must also increase. Besides enhancing the
current set of lIP 3000 application development tools and protecting its customers'investment
in existing development tools, these objectives broaden the HP 3000 CASE tools offering and
addresses the application development needs of new, open systems and mainframe class
applications.

Refer to Appendix A for a profile on lIP 3000 developers.

HP 3000 Open CASE 3248-1

The Benefits of CASE

To Corporate MIS Departments

As businesses become increasingly driven by information, the ability to easily deploy and modify
its information systems can be a significant competitive advantage. Rapid deployment and
modification of information systems give businesses the ability to quickly focus on new oppor
tunities, offer a better level ofservice, expand, consolidate with other information systems, and
keep pace with changing information management technologies. In todays competitive busi
ness environment, strength in information management is as crucial to an enterprise's success
as strength in areas such as engineering, manufacturing, finance, or sales.

CASE provides this advantage by reducing the investment required to build and maintain new
applications. CASE accomplishes this by providing methods and tools that streamline applica
tion development. Methods provide discipline to the application development process. For
example, methods improve the quality, usability, and maintainability ofapplications by ensur
ing that adequate analysis and design are conducted in the early stages of a project and by
ensuring the production of accurate project and product documentation. CASE tools assist in
the implementation and maintenance of applications. CASE tools can, for example, alleviate
much ofthe actual coding burden ofprogrammers thereby increasing the speed ofimpIementa
tion and maintenance, and decreasing the likelihood ofintroducing coding errors.

CASE helps address the growing maintenance backlogs experienced by MIS departments.
Research shows that today up to 75% ofMIS resources are devoted to the maintenance ofexisting
applications. Diverting MIS resources towards maintenance not only inhibits the ability for
businesses to develop new information systems but also increases the cost of operations and
decreases the morale of the programming staff. CASE tools and techniques can reduce the
maintenance backlog by giving developers the ability to reverse engineer existing application
code into new code that is easier to maintain or more compatible with new technologies.

To Value-Added Software Suppliers

CASE plays an important role for value-added software businesses. These companies, whose
business is to develop, market, and support software business solutions, experience many ofthe
same challenges as conventional MIS departments. In order to remain competitive, they must
quickly adapt their products to new business practices, regulations, and standards. They must
be capable of delivering enhancements and fixes in a timely manner. Value-added software
suppliers must be able to adapt their product to the quickly changing technologies used by their
customers. Today, for example, many software businesses are considering client/server com
puting technologies. For value- added software businesses, CASE provides a quick and inex
pensive means to keep up with business trends and technologies.

CASE in the 1990's has become a m~or topic of interest and a pressing need among forward
looking developers from both MIS organizations and value-added software businesses. CASE
has become as important to decision makers in the application development arena today as
traditional system attributes such as pricelperformance, reliability, mass storage capacity, or
support.

Refer to Appendix B for a discussion ofCASE terms and concepts.

3248-2 HP 3000 Open CASE

HP 3000 Open CASE Product Strategy

HP's strategy to achieve the objectives ofHP 3000 open CASE is to:

• strengthen the current set of lIP 3000 application development tools,

• deliver new, best-in-class, CASE tools from leading third-parties
andHP,

ct offer state-of-the art integrated-CASE tools.

Strengthen Current BP 3000 CASE Tool

The HP 3000 currently provides developers with a comprehensive set ofhigh quality CASE and
decision support tools that meet the needs ofalmost all HP 3000 applications. 'Ibese tools are
supplied not only by lIP but also by leading third-party CASE tools vendors. Current CASE
tools for developing applications for lIP 3000 systems include analysis and design tools,
construction tools (industry standard 3GLs, de facto standard 4GLs, report writers, decision
support tools, industry standard database management systems, forms management systems),
testing tools, and maintenance tools (symbolic debuggers, impact analysis tools, version control
tools).

These CASE tools address all them~orphases ofthe applications development lifeeycle. Figure
1 shows each of these phases and the activities fol' each phase and figure 2 lists some of the
m~ol'CASE tools available for each phase.

Figure I. Major Activities lor Each Phase 01Development

4--- Upper CASE ---. 4-------- Lower CASE

Plannlngl I Dealgn Implementation Teat Maintenance
Analyala

Planning 3GL Conalructlon Quality V.ralon
Aaaur.nee Control

Requlrementa Analyale 4GL eona'ructlon

Application D.algn Da'abaa. Conatructlon PGrformance Changet
Tuning Managem.nt

SCreen eonat,ucUOn
Dctbug H...

Reporting And o.clalon Support Engln..rtng

Edit

Project And Configuration Management

HP 3000 Open CASE 3248-3

Figure 2. Major HP 3000 Tools Available Today

~ Upper CASE ---.. -------- Low.r CASE

PI.nnlngi I Dealgn Imp......nt.tlon T.at M.lntenance
An.lyala

3GL Conetructlon D.t.baa. Qu.nty V.relon
Planning

• HPCOBOI.
Conatructlon Aaaur.nee Control

Requlremente Analyale • HPC • HP Al.LBASE/SQL • 6pMd T..V3000 • HPSRC".,*,
Appllc.tIon Dealgn • HPFORTRAN

• HP TurltoNAGE iii Au1oTeat. ..,.".,.."tJ
• HPA4SC4L

.OrKie

• lnfonna1ion e...,r.g Workbeftdl 4GL Conelructlon
.~.. P....ormance Chang•

.~.tDf ·..... Tuning M.nagement
• Or__ CASE*De..., .COGNO&~• • TurltoNAGE • HP/.I..RXIJ!toIW .HP~

.lnfocen1r.~. SerNn .HP~
• HPSMICh

• 181 Focus Conalruetlon • HPSPT • Aabotl3000...... TooIa
• HP IoRUS Debug ~J

• Oraele SQl*Far.a
• DocI3000• Swn_gi.t • HP 1oR1&'tthlb_ .HP....
~1IlpSl.)

• ProtOi Reporting And ~

• liP AU.BASE/G. Oedelon Support • liP Tooe.I Ae-
• T,.,..c~

• HP Al.UJASElBRW
Englneertng

•)';.,.cW
• HPALUJAS~y • COGNOSEdit • HP,..Ac~ Fb.-CASE

• HPEDIT ·".,.

• Robe.. QEOIT

Protect And Conflgurallon M.nagement
• Patttmcl. "rojKt lIlaIlaglMl'lO
• liP SRC I&on6pntion.."."."."tJ

HP Toob
Third~rtyTooIa

The tools listed in figure 2 form the core ofthe HP 3000 CASE offering. There are, in total, over
200 CASE tools from more than 120vendors available for HP 3000 application development and
maintenance. 'Ibese tools will continue to meet the needs ofthe majority ofHP 3000 application
developers. HP will protect its customers' investment in these tools and continue to enhance
the functionality and scope of these tools.

Refer to Appendix C for a description of some of these CASE tools.

HPs information management strategy is based around support for both of HP's strategic
database management systems: HP TurboIMAGE and HP ALLBASF.JSQL

Enhancements To TurboIMAGE

TurboIMAGE is the highest performance, network model database management system on the
HP3000 and is widely used byMISand value-added software developers to support performance
critical OLTP applications. HP will protect its customers' investment in TurboIMAGE applica
tiODS by continuing to improve TurboIMAGE performance to scale with the high performance
HP 3000 systems.

3248-4 HP 3000 Open,CASE

Enhancements To ALLBASFJSQL

ALLBASElSQL. is HP's ANSI standard, price/performance leading relational database manage
ment system. ALLBASEISQL has gained wide acceptance for new, Btandarda-based, OLTP
applications. Recently, HP enriched its ALLBASEISQL offering by announcing the availability
of several leading third-party CASE tools for ALLBASEISQL:

o Powerhouse (Cognos Corp.)

o logres Tools (Iogres Corp.)

G Focus (Information Builders Inc.), and

• Speedware (Infocentre Corp).

These leading third-party CASE tool vendors will support ALLBASEISQL 'Ibis not only gives
HP 3000 developers the choice ofa wide range oftools for ALLBASElSQL applications, but also
lets them easily port between ALLBASElSQL and other multi-vendor relational databases. For
example, developers concemed with performance or data integrity would choose ALL
BASElSQL, while those needing access to multi-vendor systems would choose one ofthe leading
multi-vendor databases. This flexibility gives an important advantage to value-added software
businesses and MIS developers wishing to support a diversified installed base of systems.

In addition to more tools, HPhas made enhancements to ALLBASElSQL price/performance and
functionality. ALLBASElSQL has achieved tight integration with the PA-RISC platform to
deliver the leading priee/performance OLTP solutions for HP3000 systems. Because ofthe tight
integration, this price/performance leadership will seale with releases ofhigh performance HP
3000 systems. HP has also enhanced the functionality ofALLBASElSQL by providing connec
tivity to TurbolMAGE and DB2 databases through the ALLBASEI1'urbo Connect and ALL
BASFJDB2 Connect products, and connectivity to other ALLBASEISQL databases through
ALLBASFJNET.

HP has alsoenhanced ALLBASElSQLto support the construction ofwindows-based, client-serv
er applications. At present, HP supports an application programming interface (API) for HP
3000 ALLBASElSQL servers and M8-Windows 3.o-based clients. HP will also support the
industry-standard, client-server API for ALLBASElSQL based on the standards set by the SQL
Access Group.

Database Conversion Tools

HP will provide re-engineering tools that allow developers to convert TurboIMAGE applications
into ALLBASElSQL applications. CASE tools such as PowerCASE from Cognos will be able to
convert TurbolMAGE applications to ALLBASFJSQL applications.

Best-in-Class CASE Tools Through Leading Third-Parties

The HP 3000 has become one of the most open commercial application development platforms
available today by supporting a very wide variety ofstandalone CASE tools from leading third
party CASE vendors. As the quality and sophistication of the CASE tools increase, HP will
broaden its focus to include more tools from third-party CASE vendors.

HP 3000 Open CASE 3248-5

Third-party CASE iool vendors have led the development of new standards and tools for
implementing client/server applications. In keeping with lIPs New Wave Computing thrust to
become the leading distributed computing vendor, HP will deliver the best open systems,
client/server application development tools for lIP 3000 systems as part of the HP 3000 open
CASE program. Through its own investment, and through third-parties, HP will also deliver a
broad offering ofhigh quality CASE tools for open systems, hostlterminal and mainframe class
applications. The major new and existing CASE tools for HP 3000 systems are described below:

FOCUS

FOCUS is a leading 4GL and reporting tool from Information Builders Inc. and is one of the
most widely used mainframe 4GLs. FOCUS runs on a large number ofmainframe, midrange,
and personal computerplatfonns and supports a variety ofdatabase management systems(DB2,
IMS, ORACLE, Rdb, dBASE, etc.). FOCUS will be enhanced to support ALLBASFJSQL in the
second quarter of 1991. FOCUS is suitable for new, mainframe class applications and porting
ofmainframe applications to lIP 3000 systems.

IngreBIWindoW8 4GL

IngreslWindows 4GL is a client/server 4GL that allows users to develop applications that use
the HP 3000 as a database server and personal computers or workstation as clients. IngresIWin
dows 4GL supports a variety of windowing interfaces such as MS- Windows, OSF/Motif, and
Presentation Manager. IngreslWindow 4GL is suitable for open systems client/server applica
tions. It will be available for lIP 3000 systems and ALLBASElSQL by the second quarter of
1991.

SQIJWindOW8

SQlJWindows from Gupta is a client/server application development tool. SQUWindows runs
under MB-Windows 3.0 and allows developers to build applications that use the HP 3000 as an
ALLBASFJSQL server. SQIJWindows will give developers the ability to connect to DB2 and
Oracle databases. SQUWindow8 is ideal for OLTP, open systems client/server applications. It
will be available in the second half of 1991.

PowerBuilder

PowerBuilder from Powersoft Corporation is a design and construction tool for client/server
applications. Applications constructed with PowerBuilder will run in MB-Windows 3.0 and 0812
Presentation Manager (PM) environments and will use the HP 3000 as an ALLBASFJSQL
server. PowerBuilder will be available for HP 3000 systems in the second halfof 1991.

Powerhouse 4GL

Powerhouse 4GL from Cognos Inc. is the leading high performance 4GL on HP 3000 systems.
Powerhouse 4GL currently supports TurboIMAGE databases and will support ALLBASFJSQL
databases in the second quarter of 1991. Powerhouse 4GL will be integrated with the Cognos'
PoweJCASE product in the second quarter of 1991 to provide design to code capabilities for HP
3000 systems.

3248-6 HP 3000 Open CASE

SpeedWare

SpeedWare from Infocentre Corporation is a leading high performance client/server 4GL for HP
3000 systems. Speedware currently supports application development against TurboIMAGE
databases and will support ALLBASElSQL in the second quarter of 1991. Infoeentre provides
a high level application specification facility that supports rapid implementation ofSpeedware
applications.

mtegrated·CASE Tools for the HP 3000

Integrated-CASE, or I-CASE, tools consist of sets of individual tools, from single vendors, that
aid applications development and support all phases of the application development lifecycle.
1- CASE tools provide developers with the capability to automatically generate 3GL or 4GL
applications from high level designs and to maintain applications at the design level. I-CASE
tools are a single vendor solution built around a repository through which individual tools within
the I-CASE toolset can share information about an application. 'Ibis allows the I-CASE tool to
propagate changes through an entire set of programs, databases, and screens from a single
change to application design.

The difference between I-CASE tools and traditional, standalone CASE tools lie in overall
functionality and flexibility ofchoice. Because ofits tight integration and lifecycle orientation,
I-CASE offers greater overall functionality and power to developers. However, I-CASE users
can only choose from the limited number oftools available within the I-CASE toolset. Figure 3
illustrates the broad tradeoffbetweenfunctionality and flexibility when movingtrom standalone
CASE to I-CASE. Today, I-CASE tools fonn among the most powerful CASE tools available.
I-CASE tools not only support entire development lifecye1e methodologies but can also provide
developers with the capability to manage large application development teams. I-CASE tools
are used primarily for large, mainframe class applications.

Figure 3. CASE Tool Categories

Standalone Tools

~~OOI I

'O@J
Integrated-CASE

Tools

Integration/Project size

HP 3000 Open CASE 3248-7

Because of the complete lifecycle and methodology orientation of I-CASE, developers adopting
I-CASE tools should have a long term commitment to the tool. The development organization,
including users, programmers, and managers need to be trained in the new development
methodologies, processes and tools supported by the I-CASE tool. Additional hardware and
software such as personal computers and LAN-based servers may also have to be purchased to
support the I-CASE tool.

HP recently announced the following leading I-CASE tools for HP 3000 systems:

PACLAN and PACLANIX

The I-CASE tools from the French-based CGI Informatique includes PACBASE, PACLAN, and
PACLANIX. CGI is the world's largest I-CASE vendor. The CGI I-CASE tools operate in a
client/server environment ofpersonal computers and workstations on a LAN to a server-resident
repository. 'I11e CGI products support application development for a large number ofplatforms
and supports a variety of methodologies. '!be CGI products currently generate COBOL and
TurbolMAGE applications for HP 3000 batch mode environments and will generate ALL
BASElSQL and VPLUS applications for lIP 3000 systems by mid-1OO1. CGI also provides a
reverse engineering facility called PACREVERSE to aid in the maintenance ofexisting COBOL
code.

The CGI products are ideal for moderate to large COBOL development efforts ranging in size
from about 4 to about 50 developers. CGI products are ideally suited for mainframe class
developers and those wishing to downsize from mainframes to lIP 3000 systems.

Maestron

Maestro n is an I-CASE tool from Softlab Inc. of Germany. Maestro n roDS in a client/server
environment consisting of personal computers on a LAN to an HP 9000 server. Maestro II
supports the connectivity and tenninal emulation capabilities for connecting to, compiling, and
testing applications on an HP 3000. It is eustomizable and will support any standard or custom
development methodology. Maestro II is rich in project management and configuration man
agement functionality, and supports application development for many platforms.

Maestro II is a high-end CASE environment that is ideal for very large projects with very large
programming staffs. Maestro II will be available for the HP 3000 and will support COBOL,
ALLBASElSQL, and VPLUS in the second halfof 1991.

PowerCASE

PowerCASE is an I-CASE tool from Cognos Corp. for developers of Powerhouse 4GL applica
tions. PowerCASE is a PC-based graphical design tool that allows developers to design and
generate Powerhouse 4GL, ALLBASFJSQL, and 'furboIMAGE applications for HP 3000 sys
tems. PowerCASE uses Entity-Relationship modeling and Data Flow Diagramming techniques
to design applications, and supports the Cognos development methodology. PowerCASE can be
used to migrate TurboIMAGE Powerhouse 4GL applications to ALLBASFJSQL Powerhouse
4GL applications

PowerCASE is suitable for small to medium Powerhouse 4GL developers. PowerCASE will be
available for HP 3000 systems in the second quarter of 1991.

3248-8 HP 3000 Open CASE

Oracle CASE

Oracle's CASE toolset includes CASE*Method, CASE*Dictionary, CASE*Designer, and
CASE*Generator. 1'bis toolset only supports the ORACLE database, and generates SQL*Forms
eode from applications designed using CASE*Designer and CASE*Method. Oracle's CASE
toolset runs on a large number ofPC and UNIX workstation platfonns and can target HP 3000
systems. Oracle's CASE toolset is available now.

Figure 4 shows how well the new HP 3000 I-CASE tools are suited to different application
development situations.

Figure 4. New HP 3000 I-CASE Tools
liz. Of

Applcallon
MAESTRO II

• COIICL
PACLAN

• YPLUI

• ALLIIASElIQL

Medium

8maa

Summary

ORACLE CASE

• Or... DBMS

• SQl..ttFonu

POWERCASE

• AUBASElSQL

• 1\IrtIoIMAGE

• PcMwHou..

• COBOL

• ¥PLUS

Br.adth Of Functlona,"y

The HP 3000 open CASE program addresses the needs ofboth MIS and value-added software
developers. 'Ibe HP 3000 open CASE program has been successful in protecting the existing
investment in HP 3000 CASE tools and in providing powerful, new standalone CASE, and
integrated-CASE, tools for new applications development. This means application developers
not only have the ability to maintain their existing applications using their tools of choice but
also have the option to use new, best-in-class CASE tools to implement new, mission critical
applications.

These new CASE tools not only meet the needs oftodays applications but also provide the means
to develop future applications for open and high-end HP 3000 systems. Figure 5 shows that
these new CASE tools not only meet the needs ofmainframe class and open systems developers
but also the need for tools to develop hostJterminal and client/server applications. From the
preceding discussion on CASE tools, and analysis of the requirements of different application
developers, it is clear there is no single superior CASE solution for all developers. Developer
organizations must choose their CASE strategy in light of the size and complexity of their

HP 3000 Open CASE 3248-9

application development projects and the ability and willingness of the organization to adopt
certain CASE tools and practices. lIP has therefore chosen to offer all HP 3000 developers a
broad choice of best-in-class standalone CASE and I-CASE tools through the lIP 3000 open
CASE program.

Figure 6. New HP 3000 CASE Tools

Run Time Environment

Host/Terminal Client/Server

..•C-o..
>
CD

C

PACLAN ceQI Syetema) HP VPWSlWlncIow.
M....ro II CSottlab) HP N.ww.va Ace•••
Foe... aBO

PoworCASE Cognoa) SQLlWJndowa Cupta)

PowerHoua. (Cognoa) Ingr••lWlndow. 4GL Onsar.e)

ORACLE CASE IOracla) Powerbullder (Power.off

lnar•• 4GL lnarea)
Speed.a,. Onfocentre)

Appendix A • Changing HP 3000 Developer Profiles

Although well-entrenched as a leading commercial midrange system, the HP 3000 is now
positioned as both a mainframe and an open system. With the advent of the PA-RISC
architecture, the HP 3000 now seales from the very low-end systems to the high-end multiproc
essor mainframe class systems. BPs early thrust into distributed computing through its New
Wave computing efforts has also made HP 3000 systems a leading open system.

In order to understand the need for eASE for HP 3000 systems it is necessary to understand
the makeup of HP 3000 applications developers and how this has changed as the lIP 3000 has
grown into a mainframe class and open system. In addition to the traditional group ofHP 3000
application developers, there is a growing need amongboth eDstingand new lIP3000 customers
to address the development ofmainframe class, open systems hostJterminal, and open systems
client/server applications.

Mainframe Application Developer

'Ibis group consists ofdevelopen whose size bas made their applications development require
ments characteristic of those of developers in the mainframe class environment. Applications
developed by this group are typically large, business critical systems involving multi-penon
efforts which last several years. Once deployed, these systems require periodic rework and
generally have a dedicated maintenance staffassigned to it. 'n1e main application development
requirements or mainframe class developers are:

3248-10 lIP 3000 Open.CASE

3GL Development

The high-end developer has relied primarily on traditional 3GL development tools for imple
menting systems. 'llrls toolset (COBOL, TurboIMAGE, SQL, and VPLUS) has typically yielded
better perfonning applications than equivalent 4GL implementations. 'Ilris performance advan
tage is important to this group because the business critical nature of their applications.
Although some high-end developers are moving development to 4GLs, the greater part of
high-end developers will continue to use 3GLs. CASE tools for these developers must therefore
support the traditional development toolset.

Project Management

These developers have a need for CASE tools to control and manage the applications develop
ment process. As high-end developers typically develop and maintain large projects involving
teams of programmers their requirement of CASE tools extend beyond simply reducing the
investment necessary to construct and maintain applications.

The high-end developer needs CASE tools that assist in the management of the development
and maintenance processes. This ranges from the enforcement of methodologies to the close
tracking ofresources expended on constructing an application.

Configuration Management

Large project often require configuration management tools. These tools facilitate the building
and distribution of the application. Large projects are typically divided and given to different
teams of programmers to implement. Configuration management tools to ensure that all the
correct versions of the software are included in any given version of the application.

Platform-Independent Tools

The high-end developer often needs to contend with a multi-vendor computing environment.
Although applications may originally have been developed and deployed on specific systems, as
these accounts move forward towards enterprise wide computing there is a growing need to
deploy the same application on the different systems. High-end developers therefore need access
to the same CASE tools for the HP 3000 as are available for their IBM compatible mainframes
to simplify migration to HP 3000 systems.

Application Generation

Application generation is the ability to automatically produce the code for an application from
high level specifications. It eliminates the need to write the code, build the databases, or
implement the screens necessary for the application. Application generation improves the
quality and speed of implementation, and speeds up maintenance by giving programmers the
capability to make changes to the application at the design level and re- generate the application.
Application generation also facilitates reuse ofdesigns and code.

HP 3000 Open CASE 3248-11

CUentlServer Migration

As personal computers become more prevalent in the mainframe class environment, there will
be a growing need to take advantage of their power and user friendliness. As the availability
of personal computers among users increases, mainframe class application developers will
require tools to migrate existingapplications into client/server applications to betterutilize their
personal computers. HP VPLUSlWindows is an example ofa tool for migrating terminal-based
VPLUS applications to a MS- Windows-based, client/server environment.

Open Systems Developer

Unlike the high-end developer, the open systems developer consists of smaller developel'8
concerned with developing and deploying portable applications for an open, standards-based
environment. Applications developed by this group typically make use of industry standard
3GL's and 4GL's, database management systems, forms management systems, and operating
system services.

The m~orityof HP's value-added software businesses are open systems developers. The main
requirements of the open systems applications developer are:

Support For Standards

Open systems CASE tools must support coding to these standards. Applications developed by
the open systems developer must be platform portable by virtue of adherence to official or de
facto standards. Figure 6 shows the standards for open systems applications.

Client/Server 4GL

Besides the ability to develop open systems host/terminal applications, the open systems
developer needs the capability to develop client/server applications. Although client/server is
not a new concept, implementing client/server applications has been difficult. In order to
construct client/server transaction processingapplications, developers not only need to be expert
on both the client and server platforms but also need to know how to manage the networking,
and the graphical user interfaces of the client. High levellanguages, such as 4GL's, facilitate
the construction ofclient/server application by shielding the developer from many of the details
ofconstruction.

3248-12 HP 3000 Open CASE

Figure 8. Standards foll" Open Systems Applications

HewWave

• X WIndow_ ay_tom • OSF Motif

Network
Servlc••

• 011
• ••
• IIGMII·LAll_
a'"
• IIC8

• M8 Wlndo••
• PM

Appllc.tlon Environment

PA-RISC

Application

Relational DBa
• AUMIE • ORACLE
...... IGL
-IIU ConMct • ORAlE__PIA

-SOL Acoeu

Operating System

Languag••
a Tools

• POIIX.1
• POIII.!

• ANSI C
cc.MaOL
MSCAL
IIORT'RAIlI

• ALJ.aASE·.......
• eoe-.
....f~

• POCUS• ,.,.,a1....~

Application Generation

Like the mainframe class application developers, open systems application developers will want
tools that automate implementation.

The CASE requirements for each group are shown in figure 7~

Figure 7. Application Development Requirements

Run Time Environment

Host/Terminal Client/Server

~

CD
Q.
o
a;
>
CD
C

• Project Management • Client/Server Toolo
• Configuration Management • Application Generation
• Platform Independent Tools • Project Management
• 3GL Development Tools • Configuration Management
• Application Generation

• Client/server 4GL
• Support For Standarda • Support For Standard.
• Application Generation • Application Generation

HP 3000 Open CASE 3248-13

Appendix B • What is CASE

CASE refers to the tools and methods that increase the quality ofapplications and decrease the
investment necessary to develop and maintain applications. CASE applies equally to commer
cial applications development or technical software engineering projects. The differences
between commercial and technical CASE lie primarily in the methods and tools used. This
discussion is confined to commercial CASE.

CASE Tools

CASE tools aid and automate the design, implementation, and maintenance of applications.
CASE tools support every phase ofapplications development including planning and analysis,
design, implementation, test, and maintenance. CASE tools range from PC- based graphical
design tools to server-based version control and arclrlving tools.

CASE tools are not new to applications development. Tools such as 4GLs, application gener
ators, version management systems, symbolic debuggers, etc. have been used for many years.
Many of these tools were originally developed as in-house productivity tools and found initial
acceptance by small projects and small MIS departments that needed to leverage limited
programming resources. However, as a result of pressures to trim costs and improve the
responsiveness ofMIS to changingbusiness needs and technologies, more and more mainstream
MIS departments have begun to use CASE tools as the means to achieve this.

The developmentofCASE tools has made rapid progress in recentyears. With wider acceptance
and usage of tools, the CASE vendor community has seen the emergence of standards in areas
such as import and export specifications and diagramming conventions. The CASE industry
has seen the emergence orCASE companies that have taken leadership positions in the market.
Canadian and US companies such as Cognos, Infocentre, and Knowledgeware, and European
companies such as CGI Systems, and Softlab have become leading CASE vendors.

Upper and Lower CASE

CASE tools are frequently referred to as either upper CASE or lower CASE tools. This
distinction refers to the phases of the lifecycle that different tools address. Upper CASE
addresses the planning, analysis, and design phases while lower CASE addresses the imple
mentation, testing, and maintenance phases. In general, upper CASE tools are graphical in
nature, employ diagramming or charting techniques, and often nm on personal computers or
workstations. 'Ole output ofupper CASE tools are application designs applicable to most target
system. Lower CASE tools do not require graphics capabilities and are often deployed on a
server or multiuser system.

Methods

CASE methodologies refers to the discipline adhered to during the process of developing
applications. Methodologies help ensure the quality ofthe final application by identifying each
step in the development of an application and formalizing the activities, standards, and
checkpoints that need to be adhered. to. Formal methodologies such as Information Engineering,
Yourdon, SSADM. and othershave been used for many years with large application development

3248-14 lIP 3000 Open CASE

projects and by mainstream MIS organizations. These methodologies have not, however, seen
widespread acceptance among smaller developers because of the high cost of implementation
and training associated with their use.

In practice, CASE tools and methodologies are highly interdependent. The combined use of
methodologies and CASE tools gives application developers the powerful capability to not only
automate implementation but also enforce the process. Recent developments in CASE has seen
the emergence of sophisticated CASE tools that can be configured to support different method
ologies. 'I1lese integrated-CASE tools not only represent a significant step towards making
CASE address mainstream MIS needs but also reduces the cost of entry for smaller MIS
organizations to use CASE.

Target and Development Systems

Descriptions ofCASE tools often refer to target and development systems. Target systems are
where the applications will run in production. Development systems are where applications are
developed. In many instances, target and development systems are the same. Applications are
developed and deployed on the same system because it gives developers the ability to custom
build the application for optimal performance on the production system.

Recently target and development systems have begun to diverge. As the price/performance of
production systems decreases and the specialized computing needs ofCASE tools increases, the
choice ofdevelopment and target systems becomes driven by different constraints. Development
systems are often selected for features such as the ability to support graphics and for individual
productivity. For example, DOS-based personal computers and UNIX workstations are often
selected as development platforms because their sophisticated graphical displays and dedicated
computing power makes them ideal for todays advanced CASE tools. On he other hand, target
systems are often selected because of performance, reliability, data integrity, system security,
systems management, and other production related features.

The division between target and development systems have brought about a new class oftarget
system independent CASE tools which pennit the development ofapplications for a variety of
systems from single application specifications.

Lifecycle Framework

CASE tools are often referred to in the context of how they address different phases of the
application development lifecycle. Each phase corresponds to a set of activities that are
undertaken for applications development. These phases are planning and analysis, design,
implementation, test, and production and maintenance. 'lbese are often depicted in a lifecycle
framework like the one shown in figure 8.

HP 3000 Open CASE 3248-15

Figure 8. AppUcation Development Lilecycle Framework

....- Upper CASE --... ~-------Lower CASE -------~

Planning! I Design Implementation Te.t Maintenance
Analyals

......
I Progresalon of application development actlvltlea

......

Croas Ufecycle Actlvilies

Planning and analysis

These activities occur at the very beginning ofthe application development process and involves
the analysis and mapping ofa company's business goals to its information systems plans.

Design

'Ibis phase translate the information system needs identified in the previous phase into high
level data and process models. During this phase, the data and process needs ofthe information
system under design can be evaluated at an abstract level before construction ofthe application
occurs.

Implementation

This phase involves the building of the application. Tools used at this phase are 3GL's, 4GL's,
database management systems, and forms management systems. More recently, report writers
and code generators are also being used at this phase.

Test

This is the phase during which the application is tested for compliance to specifications and
debugged. 'l1le tools employed during this activity are code analyzers, debuggers, and testing
tools.

ProductioDlMaintelUlDCe

This phase comprises activities performed after an application is deployed into production. 'Ibis
includes such tasks as implementing enhancements and bug fixes. Another, less well under
stood, task performed during this phase is software distribution to remote operations. For

3248-16 lIP 3000 Open"CASE

centralized MIS departments, the task ofensuring that each remote production system bas the
latest software revision is often complex, expensive, and prone to error. The complexity
increases for client/server applications where it is necessary to distribute to each client system.
The tools most often utilized during this phase are source management, source analysis, and
reverse engineering tools.

Cross IJlecycle

These are the activities, such as project management and configuration management, that occur
across all the phases ofapplication development.

Appendix C • Major Hewlett-Packard CASE Tools for the
HP3000

HPCOBOLU

HP COBOL n is an optimizing compiler for 1985 ANSI Standard COBOL code. COBOL is an
ideal 3GL for batch and OLTP applications.

HPVPLUS

HP VPLUS is a fonns management system for all HP block mode terminals. HP VPLUS
intrinsies are callable from most programming languages. HP VPLUS is optimized for perform
ance on HP 3000 systems.

HP VPLUSlWindow8

HP's VPLUSlWindows is a client/server application development tool, and migration tool for
existing VPLUS applications. VPLUStWindows permits hostJterminal VPLUS applications to
run as client/server applications under MS-Windows 3.0 and New Wave. VPLUSlWindows runs
in a PC-LAN environment connected to one or more HP 3000 systems or servers.

HP New Wave Acce88

New Wave Access is a client/server decision support tool that runs under MS-Windows 3.0 and
New Wave. New Wave Access allows end users to graphically extract and manipulate data from
many sources (ALLBASElSQL, TurboIMAGE, DB2 and Oracle). New Wave Access lets end user
offioad programmers by defining and generating their own decision support applications.

HP TransactIXL

TransactIXL is a high-level programming language for developing OLTP applications for
TurboIMAGE databases and VPLUS forms. The TransactIXL compiler is available for all HP
3000 Series 900 systems. TransactIXL applications require fewer lines of code to implement
and results in reduced development and maintenance costs.

HP 3000 Open CASE 3248-17

HP ALLBASE/4GL

ALLBASFJ4GL is an advanced 4GL for developing OLTP applications for ALLBASElSQL and
TurboIMAGE databases. ALLBASFJ4GL gives developers the ability to rapidly prototype
applications using the ALLBASFJ4GL screen painter.

HP ALLBASFJBRW

HP ALLBASFJBRWis a high performance reporting tool for MIS professionals and sophisticated
end users. It supports ALLBASFJSQL and TurboIMAGE databases.

BP ALLBASEIQuery

HP ALLBASFJQuery is an easy-to-use end user decision support and reporting tool. It gives
end users decision makers the ability to extract, format, and report data resident in ALI,
BASElSQL and TurboIMAGE databases.

HP Information Access

HP Information Access is a PC-based decision support tool that gives decision makers the ability
to extract and report data resident in ALLBASElSQL, TurboIMAGE, and DB2 databases.

HP GlancePlusIXL

HP GlancePlusIXL is a diagnostic and performance monitoring tool that gives programmers the
ability to tune the performance of their application by identifying its performance bottlenecks.

BP Software Performance TunerlXL (SPT)

HP SPI' is a tool that provides information on the efficiency ofan application's algorithms and
code.

HP Symbolic DebugIXL

HPSymbolic DebugIXL is a on-line debugger for all HP 3000 applications. It gives programmers
the ability to track memory- resident values using symbolic names instead of relative memory
addresses. It also allows programmers to track and debug code paths.

BPEDITIXL

HP EDITIXL is a full function, screen oriented editor for application developers. It supports
standard and COBOL line numbering and has features such as automatic indentation and line
shifting. HP EDITIXL has comprehensive on-line help.

3248-18 HP 3000 Open CASE

UP Software Revision Controller (SRC)

HP SRe is a sophisticated version management and configuration management system design
to control changes to program code and other files. lIP SRC offers check-inlcheck-out facilities
to guarantee the integrity of the files it manages. HP SRC also maintains an audit trail or
changes made to a file.

HP SearcbIXL

HP SearchIXL is a general-purpose search utility for quickly finding the occurrence ofwords or
patterns in files or groups offiles. lIP SearchIXL supports searches against wildcard characters
and patterns stored in other files. lIP SearchIXL can search up to 65,000 files at a single time.

HlP BrowseJXL

HP BrowseIXL is a full-screen, interactive utility for programmers to quickly examine and print
the contents offiles or search for patterns without having to use a standard editor or reporting
tool. HP BrowseIXL supports windowing to access two files simultaneously.

HP 3000 Open CASE 3248-19

Paper #: 3902

The Pros and Cons of Prototyping

George Federman
George Federman & Associates

6236 Parkhurst Drive
Goleta, CA 93117
(805) 683-3037

In many disciplines, paper plans and working models go hand-in-hand
in designing new structures and systems. In systems analysis and
design, prototyping offers us the same use of working models.
However, in many data processing environments, the prototyping
approach is rejected out of hand.

The reasons are understandable. After many years of fighting for
structured analysis and structured design, few data processing
managers or project leaders would welcome a code-it-now, fix-it
later philosophy. Prototyping looks like that philosophy under a new
name.

However, if prototyping is seen as augmenting rather than replacing
a structured systems development life cycle, and seen as a tool for
inquiry and modelling rather than seat-of-the-pants programming,
its virtues become much clearer.

In the requirements phase of systems analysis, prototyping can
elicit user needs, and confirm our understanding of their needs,
better than any other technique.

In the physical design phase, it offers users a hands-on model of the
system, a model they can manipulate and question. With prototyping,
we get immediate user feedback, and the chance to quickly correct
or improve designs based on that feedback.

There are drawbacks. Prototyping only works in some situations, and
not in others, and we have to know when to prototype. Prototyping
may lead us to select a design and begin coding sooner than we
should. Prototyping encourages user response and iterative
modification; sometimes we end up in an infinite loop, forever
tweaking the model. Prototyping, like all methodologies, can be

The Pros and Cons of Prototyping Page 3902-1

carried to extremes, and sometimes the working model is delivered
as the final system, with critical edits, controls, and procedures
still missing.

Any design technique has its benefits and drawbacks, and
prototyping is no exception. But properly used, it offers us
remarkable opportunities for improving and accelerating system
design.

The Pros and Cons of Prototyping Page 3902-2

Paper # 3905
usinq Bpi s "Fill words and qain control of your sequential files

Rick Roberts
Standard-Thomson Corp.
152 Grove Street
Waltham, MA. 02154
(617) 894-7310

What are HP's "F" words?

In the context of this presentation, they are the intrinsic
calls for managing files. Some examples would be:

FOPEN FREAD FWRITE FDELETE FSPACE FCLOSE

They all begin with the letter "F".

Why use intrinsic file calls ?

When I first started working on an HP I was surprised by how
ineffectively they handled sequential files. Maybe HP felt
sequential files were a thing of the past, with KSAM files and
Image database files being the future. Sometimes simplicity
can be the elegant and effective solution.

What can you possible do with intrinsics ?

Lots I was surprised once I started researching intrinsics
by what could be done and how effective they were. We will
discuss:

creating/Finding variably named files
Sizing the file (other than the default size)
Checking if a file exists; then delete or add
Deleting a file
Renaming a file
Delete logical records (and they said it COUldn't be done)

All this can be done from within a program, where the logical
flow of a system can best be managed.

Before I describe the actual code to do this, I will explain
some practical instances where I have used file intrinsics,
when nothing else would do.

usinq Bpls lip" words 3905-1

[CASE 1] My first experience with file intrinsics came when
our company had a need to create order files quickly. We felt
that using image datasets directly would slow the process.
Most of our sales were taken over the phone and during the
hectic ordering seasons we wanted to provide the fastest
possible way to serve our customers.

We felt that if we created sequential files with variable
names, we could then have a batch program running in a lower
priority queue to add them to the Image order sets. We used
an Image master set to keep a control number for file names
and added that number on to a prefix to generate a file name.
The batch program then read through a range of file names to
generate orders. We used a prefix of "won to indicate a work
order. We discovered that by doing this we also could use
"BO" as a prefix to indicate a backorder on the original order
and "HO" to indicate an order on hold.

Once we began using the system we found that our telephone
sales people could create orders faster than the batch file
could add them. Our customer service was improved and the
system worked well.

[CASE 2] In another instance we needed to create requisitions
for parts. The planners were thumbing through large MRP
reports to determine what needed to be ordered. What we
wanted to provide the planners, was a file of recommended
parts and the dates they needed. The generation of
requisitions took place over the period of a week and we
wanted to be able to delete records that had already been
processed so the planners only viewed what hadn't been
completed yet.

We used intrinsics to name the files according to the part's
class code which was unique to a planner. We made the
sequential file an RIO (Relative I/O) file and were able to
"FDELETE" logical records. These were large volatile files
that would wreak havoc on an Image dataset but were handled
quite easily by using sequential files.

[CASE 3] Another situation involved files that we use for our
executive information system. These were small files
containing summary information on the status of different
aspects of our business. Daily Sales, Daily Shipping
Statistics, Inventory Levels, Status of our Production Plan.

These files were all snapshots of the status on specific days,
so we incorporated the date into the file name. In some cases
we accumulated month-to-date and year-to-date information. By
using file intrinsics we could "step back" from today's date
to find the previous days file for accumulation information.
If anyone viewing the information wanted to see the status for
a previous date, they entered the date and the information was
displayed quickly and easily.

Using HP's "F" words 3905-2

CODE FOR USING INTRINSICS

CONFIGURATION SECTION
SPECIAL-NAMES.

CONDITION-CODE IS ERROR-FIELD.

WORKING STORAGE SECTION

01 DEVICE
01 FNAMEI.

05 FI-PRE
05 Fl-NUM
05 FI-LOC

01 FNAME2.
05 F2-PRE
05 F2-CODE

01 FNOI
01 FN02
01 FSIZEI
01 RECSIZEI
01 RECSIZE2
01 ECODE
01 SECCODE
01 CCNTRL
01 DI8P-O
01 DISP-l
01 DISP-2
01 DISP-3
01 DISP-4

01 IN-RECI.
01 IN-REC2.

PIC X(08) VALUE "DISC".

PIC X(02) VALUE "WO".
PIC 9(06).
PIC X(I7) VALUE "group.acct".

PIC X(03) VALUE "REQ".
PIC 9(04)B.
PIC S9(4) COMPo
PIC 89(4) COMPo
PIC S9(9) COMP VALUE 20000.
PIC S9(4) COMP VALUE -94.
PIC S9(4) COMP VALUE -48.
PIC 89(4) COMP VALUE O.
PIC 89(4) COMP VALUE O.
PIC S9(4) COMP VALUE O.
PIC 89(4) COMP VALUE O.
PIC S9(4) COMP VALUE 1.
PIC S9(4) COMP VALUE 2.
PIC S9(4) COMP VALUE 3.
PIC 89(4) COMP VALUE 4.

this area would contain the layout for your files.

PIGURE 1

Using Bpi. "P" words 3905-3

Figure 1 shows the necessary data fields for this processing.
Some of these fields will be discussed later when I cover the
processing code.

CONDITION-CODE must be defined under special-names and is
returned after every intrinsic call. Error-field is not
defined anywhere else in the program and is the data name
referred to for error checking.

DEVICE will always be DISC since we are dealing with
sequential files.

FNAMEl is the parameter that tells the call what file to
"FOPEN". In one example we have set the prefix to "WO". The
file we are creating or finding will begin with WOe The
second part of the file is defined to have six digits. This
is the variable "name" part of the file. The last field
contains the group and account. It should be noted that the
filename parameter must be terminated by a nonalphanumeric
character other than a slash (I) or period (.). I use a
blank.

FNOl is the parameter that is passed back by the "FOPEN".
After the file is opened any further references to the file
will use this system assigned file number.

FSIZE1 is the file size (number of records). If this
parameter is not used the default is 1024. You can make this
parameter larger than necessary and then "shrink" the file to
exact size with an "FCLOSE" parameter.

RECSIZE1 is the length of each record. A negative number
indicates the number of bytes; if positive, it is the number
of words.

IN-REC1 is the area where the file record is placed when it is
"FREAD" and should contain the file layout.

The rest of the parameters will be explained later.

This is easy!! Let's go on to the processing involved.

The first step is to open the file.
examples of "FOPEN".

FIGURE 2 shows some

Most of the parameters have already been discussed. The end
of the call has the statement, GIVING FN01. This is the
system assigned file number that is used in all subsequent
calls to this file.

There are two new parameters in the call; both represented by
octal numbers (preceded by a % sign) • These are the "F"
(file) options and the "A" (access) options. These two
options are key in describing the file and the source of most
errors when using file intrinsics.

usinq HP's "F" words 3905-4

EXAMPLES OF "FOPEN"s

CALL INTRINSIC "FOPEN" USING FNAME1, %4, %101,
RECSIZEl, DEVICE, GIVING FNOI.

CALL INTRINSIC "FOPEN" USING FNAME1, %5, %104,
RECSIZE1, \\ \\ \\ \\ FSIZE1, GIVING FNOI.

CALL INTRINSIC "FOPEN" USING FNAMEl, %1, %1300,
RECSIZEJI., DEVICE, GIVING FNOI.

CALL INTRINSIC "FOPEN" USING FNAMEJl, %10004, %4,
RECSIZEJI., DEVICE, GIVING FNOI.

FIGURE 2

EXAMPLES OF "FCLOSE"s

CALL INTRINSIC "FCLOSE" USING FNOl, DHSP-O, SECCOIl)E

CALL INTRINSIC "FCLOSE" USING FNOl, DISP-l, SECCODE

CALL INTRINSIC "FCLOSE" USING FNOl, DISP-2, SECCOlOE

CALL INTRINSiC "FCLOSE" USING FNOl, DISP-3, SECCODE

CALL INTRINSIC "FCLOSE" USING FNOl, DISP-4, SECCODE

CALL INTRINSIC "FCLOSE" USING FNOl, %11, SECCODE

FIGURE 3

using' HP's "Fie words 3905-5

01 POS 1 I POS 2 I POS 3 I POS 4 I POS 5 I
0 STD ALLOW NO CCTL FILENAME BIN

: FILE FIXED NEW

1 RIO NO CCTL $STDLIST BIN
VARIABLE PERM

2 CIR NO NO CCTL $NEWPASS BIN
: FILE UNDEF. TEMP

3 MSG NO NOCCTL $OLDPASS BIN
: FILE SPOOL TEMP/PERM

4 KSAM CCTL $STDIN ASCII
: FILE FIXED NEW

5 CCTL $STDINX ASCII
VARIABLE PERM

6 CCTL $NULL ASCII
UNDEF. TEMP

7 CCTL ASCII
SPOOL TEMP/PERM

FIGURE.. "F" options

D POS 1 POS 2 POS 3 POS 4

0 WAIT BUF NO FLOCK READ ONLY
NON MULTI DEFAULT NO MULTI REC

1 WAIT aUF WRITE ONLY
INTRA-JOB EXCLUSIVE

2 WAIT aUF NO FLOCK WRITE (SAVE)
INTERJOB SEMI READ MULTI RECORD ONLY

3 BUF APPEND ONLY
SHARE

4 NO WAIT NO BUF FLOCK READ / WRITE
NON MULTI DEFAULT NO MULTI REC

5 NO WAIT NO BUF UPDATE
INTRA-JOB EXCLUSIVE

6 NO WAIT NO BUF FLOCK EXECUTE
INTER-JOB SEMI READ MULTI RECORD

7 NO BUF
SHARE

FIGURE 5 - "A" options

Using HP's "I''' words 3905-6

FIGURES 4 and 5 show the combinations of "Fill and "A" options.
Though there are many combinations, in actual practice you
will use very few. The left most column contains the value
you would use in the position across the top. If the position
is not specified, the defaults (0 row) are in effect.

In FIGURE 2 most of the "F" options use the defaults in the
first four positions. They are:

STANDARD SEQUENTIAL FILE
ALLOWS :FILE OVERRIDE
NO CARRIAGE CONTROL
FIXED LENGTH RECORDS
USE THE FORMAL FILE DESIGNATOR (FNAME1)

The exception to this is example four. It is described as an
RIO (Relative I/O) file. This allows for the deletion of
logical records.

position five is where the most variation is found.
EXAMPLE 1 is a NEW ASCII file (%4)
EXAMPLE 2 is a PERMANENT ASCII file (%5)
EXAMPLE 3 is a PERMANENT BINARY file (%1)
EXAMPLE 4 is a NEW ASCII RIO file (%10004)

The "A" options (FIGURE 5) describe the type of access.

position 1 sets two options. The first is the NOWAIT option.
You must be running in privileged mode to use NOWAIT and
control is returned before completion of the I/O. I would
recommend you not use NOWAIT. The second part is MULTI
access. This would allow processes located in different jobs
or sessions to open the same file. The default is NO MULTI
access. In the third example we have set this to INTRA-JOB
access.

position 2 also sets two options. The first is the BUF
option. BUF allows for normal MPE bUffering of records.
NOBUF allows for physical block transferring. I have always
used the BUF option. (Let MPE do the work). The second
option is the type of access. The most common are EXCLUSIVE
(1) and SHARE (3). In example four I have used the default.
The default is dependant on the option selected for position
4. If READ ONLY is set, then the option is SEMI-READ. All
other settings for position 4 result in EXCLUSIVE access (1).

position 3 sets locking and multi record access. Normally the
default of NO FLOCK and NO MULTI READ is used. Most of the
files I have used are not updated by mUltiple sessions. There
is usually a singular batch program that will update them and
no locking is required. The MULTI RECORD option would allow
you to read in more than one logical record depending on the
file size parameter used in the call. Don't tempt fate, stick
to one record at a time.

position 4 declares how the file will be used. Most times it
is READ ONLY, WRITE ONLY, or READ/WRITE. UPDATE would imply
READ/WRITE and is used occasionally. APPEND ONLY implies
WRITE ONLY access, but starts at the end of file marker.

Using HP's "F" words 3905-7

These options may seem confusing, but by reading the manual
and experimentation you should get a feeling for how these
options make your file react.

The next step is "FCLOSE". This tells the system what to do
with your file when you are done. Figure 3 shows all the
possible "FCLOSE"s. Note that FNOl is now used to reference
the file. The last parameter is the security code for the
file. I have always used 0, which allows unrestricted access.
You can tell I'm a liberal. If you use 1, the file can only
be accessed by its creator. This is for the power hungry.
The second parameter is the disposition.

DISP-O No change. The file remains as it was before it
was opened.

DISP-l Saves the file as a permanent file
DISP-2 Saves it as a job/session temporary file (rewind)
DISP-3 Same as DISP-2 with (no rewind)
DISP-4 The file is deleted from the system. I have

sometimes named this parameter "POOF"
There is another option in the disposition parameter of
"FCLOSE". This option allows for the return of unused disc
space to the system. If the file is opened with a large file
size it could be "shrunk" by using a %1 in front of the other
half of the parameter. A %11 would make the file a permanent
file and return space to the system.

Figure 6 is an example of how you can check if a file exists,
delete it if it does, and then open it as a new file.
The first call opens the file as a permanent ASCII file.
The next sentence checks the condition code after the open.
On all intrinsic calls the ERROR-FIELD is set to one of three
conditions. ERROR-FIELD is set to 0 if the call was
successful. The other two, greater than 0 and less than 0,
indicate an error condition.

In this example we have checked for ERROR-CODE being equal to
o. Since the "FOPEN" was for an existing file, this tells us
the file does exist. In this example it should not exist. ~y

using an "FCLOSE" with a disposition of %4, the file 1.S

deleted. Next the file is opened as a new ASCII file and the
processing would continue.

[CASE 1] Figure 7 shows how the processing would be handled
by the batch file looking for orders.
The INIT paragraph determines the range of file names you wish
to cover. It would be customized to each situation, but here
I have stored a beginning number and the number of reads I
want to execute.

In the Perform statement the variable I becomes the beginning
file number and is varied until the last file number is
reached.
In the PROCESS paragraph the file number (I) is moved to the
variable portion of the file name. Remember they are prefixed
by"WO". The file is then opened as if it existed (%5). If
it doesn't exist, who cares, go get the next potential file.
If it does exist, then go add the order and close the file
with DISP-4 to remove it.

usinq Bpi. "F" words 3905-8

CALL INTRINSIC "FOPEN" USING FNAMEl, %5, %101,
RECSIZlEl, DEVICE, GIVING FNOI.

IF ERROR-FIELD = 0
CALL INTRINSIC "FCLOSE" USING FNOl, DISP-4,

SECCODE
END-IF.
CALL INTRINSIC "FOPEN" USING FNAME1, %4, %101,

RECSIZEl, DEVICE, GIVING FNOI.

PIGURE 6 - Sample "paPER" "PCLOSE" Combination

INIT.
get BEG-NO
ADD TOT-READS TO BEG-NO GIVING END-NO.
PERFORM PROCESS VARYING I FROM BEG-NO BY 1

UNTIL I > END-NO

PROCESS.
MOVE I TO Fl-NUM.
CALL INTRINSIC "FOPEN" USING FNAMEl, %5, %100,

RECSIZE1, DEVICE, GIVING FNOI.
IF ERROR-FIELD = 0

PERFORM some work
ELSE

who cares.

FIGURE 7 - [CASE 1]

Usinq HP's "F" words 3905-9

01 REC-CNT
01 FDISP

PIC S9(4) COMP.
PIC S9(4) COMP.

MULTIPLY REC-CNT BY -1 GIVING FDISP.
CALL INTRINSIC "FSPACE" USING FN01, FDISP.
MOVE 1 TO FDISP.
PERFORM DELETE REC-CNT TIM:ES.

DELETE.
CALL INTRINSIC "FDELETE" USING FNOI.
CALL INTRINSIC "FSPACE" USING FNOl, FDISP.

PIGURE 8 - [CASE 2]

[CASE 2] In case 2 I mentioned being able to delete records.
Figure 8 shows the pertinent code.

Up to this point the file has been opened as an RIO file, the
part requested by the planner has been displayed, and he has
processed it as a requisition. Under the program
specifications I want to delete the work already completed.

When the records were first read, they were counted and I kept
that count in REC-CNT. Now we need to delete those records,
except the file pointer is at the end of the processed
records. We can use the "FSPACE" intrinsic to point to the
beginning of the records. By negating REC-CNT we can use this
to space BACKWARD. The first call to "FSPACE" does this.

The next step is to put the displacement value to 1. Now the
DELETE paragraph is performed once for each record to be
deleted.

The call to "FDELETE" deletes the logical record. For some
mysterious reason (known only to HP) the file pointer is not
moved by an "FDELETE"! Therefore I used "FSPACE" with a value
of 1 to move the pointer forward allowing the next "FDELETE"
to delete the next record.

usinq RP's "P" words 3905-10

01 FILE-SWITCH PIC X.
88 FILE-FOUND VALUE "Y".

01 J PIC S9(4) COMPo
01 SAVE-DATE.

05 S-MO PIC 99.
05 S-DY PIC 99.

01 FNAMEI.
05 FI-PREF PIC X(03) VALUE "DSR".
05 FI-MD PIC X(04)B.

FIND-LAST.
set save date to todays' month-day

MOVE "N" TO FILE-SWITCH.
MOVEOTOJ.
PERFORM OPEN

UNTIL FILE-FOUND OR J > 40.
IFJ>40

DISPLAY "File not Found E-O-J"
GO TO PACK-IT-IN

ELSE
process filc.

OPEN.
ADD 1 TO J.
MOVE SAVE-DATE TO FI-MD.
CALL INTRINSIC "FOPEN" USING FNAME1, %5, %104,

RECSIZE1, DEVICE, GIVING FNOlo
IF ERROR-FIELD = 0

MOVE "Y" TO FILE-SWITCH
ELSE

SUBTRACT 1 FROM S-DY
IF S-DY < 1

MOVE 31 TO S-DY
SUBTRACT 1 FROM S-MO
IF S-MO < 1

MOVE 12 TO S-MO.

PIGURE 9 - [CASE 3]

using Bpls tll'" words 3905-11

[CASE 3] Figure 9 shows the code for the third case. I needed
to search backward for a file with the date as part of the
name.

The FIND-LAST paragraph sets up the necessary parameters for
the recurring "FOPEN" statement. The counter J is used in
case someone keys in a first century date and the program gets
"lost in space" and runs forever.

The OPEN paragraph tries to open a file as an existing ASCII
file (%5). If the file doesn't exist it changes the filename
(date portion) to try again.

One is subtracted from the day and when zero is reached it
moves 31 to the day and subtracts 1 from the month. If the
month reaches zero, 12 is then moved to month.

What a great routine!

My favorite part is the fact I don't have to worry about how
many days there are in a month. I start at 31 and work
backward. If I don't find it, so what. If someone (another
programmer) was careless enough to create a February 31
(0231 suffix) file, then I will find it. I get to be smart in
this program. Of course if someone creates a February 32
(0232 sUffix) file I will never find it, but neither will
they! !

Usinq HP's "FlU words 3905-12

01 ECODE
01 MSGB
01 BLEN

PIC S9(4) COMPo
PIC X(72) VALUE SPACES.
PIC S9(4) COMP VALUE O.

READ-A-FILE
CALL INTRINSIC "FREAD" USING FNOI, IN-REel,

RECSIZEI.
IF ERROR-FIELD = 0

process record
ELSE

IF ERR~R-FIELD > 0
MOVE "Y" TO END-OF-INPUT

ELSE
CALL INTRINSIC "FCHECK" USING FNOI,

ECODE
CALL INTRINSIC "FERRMSG" USING ECODE,

MSGB,BLEN
DISPLAY MSGB.

WRITE-TO-A-FILE.
CALL INTRINSIC "FWRITE" USING FNOI, IN-RECI,

RECSIZEI, CCNTRL.
IF ERROR-FIELD = 0

keep processing
ELSE

IF ERROR-FIELD > 0
DISPLAY "File Full" OOPS!!

ELSE
CALL INTRINSIC "FCHECK" USING FNOI,

ECODE
CALL INTRINSIC "FERlRMSG" USING ECODE,

MSGB,BLEN
DISPLAY MSGB.

FIGURE 10 -[ERROR ROUTINE]

Using' UP's "F" words 3905-13

The last two calls are "FREAD" and "FWRITE". Lest you think
I was running the UTOPIA operating system, I have included the
all-purpose error routine in FIGURE 10.

The "FREAD" and "FWRITE" are pretty straightforward. They use
the system assigned file number and the record size. The
other parameter is the working storage area where the record
is stored. In the "FWRITE" call there is also a carriage
control parameter that would be used for print files. It is
set to zero for sequential files.

If the ERROR-FIELD is not equal to 0 you can call "FCHECK"
using the file number for the call. The returned error code
(ECODE) is then used in the "FERRMSG" call to obtain a
description of the error. This is for all of us that don't
have the error codes memorized. The description is returned
to the second parameter (MSGB in this case). You can then
display the error and do whatever processing would be
necessary.

The ERROR-FIELD > 0 for an "FREAD" indicates that it is the
end of the file and is not always an error. On an "FWRITE"
this same error means the file is full.

HP's "Fit words are not really bad words.

They give you better control over sequential files and help
you design better systems. You will have the opportunity to
look very clever without spending any extra effort or time.

I hope this has you thinking of the possibilities that exist
when you start using file intrinsics.

THANK YOU

usinq BP's "F" words 3905-14

Paper #3911

"Data - Now that you've got it. ..
What are you going to do with it?"

John Bomba

Innovative Information Systems, Inc.
123 Commons Court

Chadds Ford, PA 19317
(800) 766-7880

Today's "typical" data processing organization has become reasonably proficient in it's
development of online transaction based systems. These systems support basic business
functionality by collecting data, automating redundant tasks, and hopefully expediting daily
operations. As well as th~ systems may address individual needs, they fall short in their ability
to meet the growing demands of the business community.

Capturing the data is only part of the battle. Providing access to the data, in a timely
manner, in an understandable and useable format is the remainder of the puzzle. Solving these
issues will result in turning the "data" into information, and can be accomplished through the
development of an Information Plan.

Information Planning is the first phases in the systems life cycle. By definition,
information planning is the process by which an organization determines what data it will need
to collect, how to collect it, who needs it, and how it should be delivered over the next several
years to meet the organization's objectives. It reviews these issues in order to maximize the use
of hardware, software, communication, and personnel resources. The plan provides a framework
through which the remaining phases of the systems life cycle can be achieved. Yearly updates
to the plan will ensure that system development is consistent with the changing business needs
of the company.

Organizations have spent years and countless dollars "automating" business functions.
They now possess an unquantifiable and valuable asset, "data". As valuable as this data is, it is
tremendously under and ineffectively utilized in most environments. These islands of data need
to be integrated, turning data into the information needed to direct your business into the future.
An Information Plan will assist you in this effort by providing a road map that identifies where
you are, where you need to go, and a way to get there.

"Data - Now that you've got it. ..
What are you going to do with it?"

3911-1

Pitfalls in Moving to a 4GL

Author - Billy Hollis

Abstract

Several generations of computer languages have set a trend of increasing programmer productivity.
The fourth generation of languages has continued this trend, but has led to new problems. 4GLs in
general have not fulfilled their promise. and this has slowed their acceptance.

We will discuss the 4GL concept, including how they increase programmer productivity. Then we
will look at common problems in moving to a 4GL and how to avoid them. Performance issues in
going to a 4GL will be addressed. Methods for facilitating migration. such as conversion of COBOL
to 4GL software, will be covered. Finally we will discuss the overall business case (pros and cons) for
moving to a 4GL environment.

This presentation is relevant to those interested in the topic of fourth generation languages on the
HP ~OOO and HP 9000 platforms.

The Fourth Generation of Computer Languages

The first generation

The lirst computers were programmed in binary. Each program was actually produced as a series of
bits. This is usually called the first generation of programming.

The second generation

Later. mnemonic assemhlers were introduced. This allowed programmers to specify an instruction
and have the "assembler" translate it to binary and perform things like address assignments. This was
the second generation of programming.

The third generation

Then higher levcllanguages were introduced. These "third generation languages" included COBOL.
FORTRAN. and BASIC. Later. languages such as C and Pascal were added. and even though they
had some improvements. they were not different in concept.

The driving force behind these generations was improved programmer productivity. As computer
prices came down. it became more and more feasible to shift work to the computer rather than the
programmer.

3912-1

The fourth generation

In the late seventies. the concept of a "fourth generdtion languagell (ahhreviated as 4(;L) was
introduced. The idea was to achieve another jump in programmer productivity. System Z from
Zortec was one of the results of this new generation of languages. which have several general
methods to achieve the increase in programmer productivity.

What are the requirements of a 4GL?

James Martin lists the following requirements of a Fourth Generation Language:

• IL is user-friendly
• A non-professional programmer can ohtain results with it
• It employs a data hase management system directly
• Programs can he created with an order or magnitude fewer instructions than COBOL
• Nonprocedural code is used where possihle
• It makes intelligent default assumptions ahout what the user wants. where possihle
• Il enforces or encourages structured code
• Il is easy to understand and maintain structured code
• Non-DP users can learn a suhset of the language in a two-day training course
• It is designed for easy dehugging
• ResuILs can he ohtained in an order of magnitude less time than with COBOL or PL/1

How 4GLs increase productivity

Non-procedural logic - the programmer can specify what is to he done rather than exactly how to do
it.

Concise code - One generally accepted feature of fourth generation languages is the ahility to
perform a task with one tenth the numher of lines of code as a JGL such as COBOL. This means
fewer lines to write. fewer Jines to dehug, and fewer lines to maintain.

"Intelligent Uefaults" - The language should try to IIguess" what the programmer wants to do as often
as possihle. The programmer should never have to specifically request the most common option or
parameter - it should he assumed. The programmer is only concerned with exceptions to the rule.

Application (;enerators - For common programs such as reports and liIe maintenance. application
generators should he used to produce the finished product, relieving the programmer of the tedious
work of producing the same type of program over and over with minor dilTerences.

Other desirable attributes of 4GLs

Other features of 4G L~ that contrihute to their advantages over 3G L~ include:

I)rototyping Tools or Abilities - Either the language itself is constructed to alJow easy prototyping. or
there are special tools huilt in to help with the prototyping process (Of hoth). Note that this ahility is
completely different from CASE methods. although there is some overlap.

IPitfalls in moving to a 4GL 3912-2 page 2

)'ortability - 4GL~ often are seen as a way to become hardware independent Having learned the
lessons of COBOL and FORTRAN, 4GL~ usually try not to vary in syntax from computer to
computer. This gives some degree of portability of the software.

Documentation Tools - Sometimes included in a 4GL is some capability to assist with documentation
of the finished product Again, this is not the same as CASE. but there is overlap.

Summary of Major 4GL Characteristics and Benefits

II Primary purpose - increased programmer productivity

• Brief code to perform complex actions

• Let the software take care of nit-picking details

• Ease of program maintenance because code is brief and easy to understand

• Easy prototyping

III Desirable capahilities include portahility. documentation tools, and end-user tools which are
accessible to non-programmers

The end result of all these features is intended to be faster application development.

Components of a typical 4GL

Most 4GLc; share the following components:

• Data dictionary
• Interactive editorlcompilcr
• Integrated debugger
• Integrated database engine

Let's look at these elements one at a time.

Data Dictionary

One of the major innovations of 4GL~ is the required use of a data dictionary. While the data
dictionary concept is not new (many systems designers grafted data dictionaries nnto JG L languages
as a useful supplement). it was only with 4GLc; that the data dictionary became an inlegrcd part oflhe
system.

A data dictionary is a centre,1 repository of information ahout data structures. In the hest case, just
about everything a program (or programmer) needs to know about data can be stored there.

PUlling all the definitions for data lites in one place has several advantages. Programs do not need to
contain data definitions. so they have fewer lines. Systems are easier to maintain because any
changes to data hase structure only need to he made in one place.

IPitfalls in moving to a 4GL 3912-3 page 3

The data dictionary also allows end-user oriented tools to work. Users don't need to know anything
about data structures to use query languages, for example. They just need to know the data names
they want information about. With the data name, the 4GL will look up the rest of the database
information in the data dictionary.

The data dictionary contains definitions for data records. Each record definition includes field
definitions for the individual fields in the record. The field definitions consist of things like data
name, data type, length, default screen labels, and so forth.

Interactive Editor/Complier

4GL compilers (or interpreters) are usually interactive, which means they can check source
statements as you enter them. Ifyou make a mistake while entering a program line. you find out
about it immediately. 4GL compilerslinterpreters usually have a great deal of intelligence built in.
For example, programmers can usually omit explicit OPEN and CLOSE statements and the compiler
will insert them as necessary.

Integrated debugger

Debuggers have been around a long time as add-ons to languages. Some 4GLs have a debugger built
in. This means it can be a lot easier and more convenient to use. Properly used, a debugger can save
tremendous amounts of time in finding program logic errors.

Integrated database engine

No major 3GL was designed with a fully functional built-in database. External databases were
grafted on with varying degrees of success. This is one of the factors that made variants of 3GLs so
different and incompatible.

4GLs have an integrated database. 'Ibis means the databasing methods are transparent to the
programmer. A program using an ISAM database on one platform can still look exactly the same on
another platform that uses hashed indexes. This makes the language easier to learn and use, and
more portable.

If 4GLs are so great, why doesn't everybody have one?

The description of a 4GL above covers all the positive aspects. But 4GLs are a long way from being
the dominant software development tools. Why?

Of course, one factor is that most existing 3GLs are locked into one brand of hardware. The
programmers are secure in their knowledge of their development language and existing applications.
In a word, there is inertia - a definite resistance to change.

But there's a lot more to it than that. The fact is that there can be many hidden costs in moving to
the typical fourth generation language. We will examine the reasons for this in detail below.

IPitfalls in moving to a 4GL 3912-4 page 4

Things to look out for when choosing a 4GL

Here are the major items that can cause problems when trying to shift to a 4GL:

• Radically different proprietary syntax - no compatibility with existing 3GL source code

• Proprietary data formats

• Resource hogging (lOx is not uncommon)

• No coexistence with current environment - need complete rewrite before starting to use new
system.

• Not flexible enough to handle whole range of development needs

• Sometimes ties the user to one hardware platform

Let's look at these one at a time.

Proprietary syntax

Many 4GLs were designed according to theoretical models developed in an academic environment.
The resulting syntax often ignored the lessons bitterly learned in real-world computing environments.
Though 3GLs are not perfect, there are many aspects of them that work well, and existing
programmers have a huge knowledge base gathered while using 3GLs. Inventing a totally new,
proprietary syntax meant creating new problems of steep learning curves, and no preservation of the
existing knowledge base of programmers.

Proprietary data formats

As with syntax, 4GLs were often designed to use theoretical models of database structures. While
these models may have some advantages, there were two problems in using them. Old data
structures could not be read or written by the 4GL (meaning massive file conversion), and these
models were usually not designed with performance in mind.

Resource hogging

As mentioned above, new database models that did not take performance into account caused some
4GLs to use resources over 3GLs. The amount of extra resources was, in some cases, so large that
existing hardware environments had to be massively upgraded to perform the same tasks in a 4GL
environment.

Early 4GLs were also typically interpreted rather than compiled (and some still are). This resulted in
another performance degradation.

These major factors plus some other minor ones, often caused a typical application to consume five
times as much memory and disk space as an equivalent application in COBOL or FORTRAN.

No coexistence with current environments

The proprietary features mentioned above meant that a typical 4GL could not be put in place next to
a COBOL environment, for example, and co-exist with it. Since different data structures are

IPitfalls in moving to a 4GL 3912-5 page 5

required, the transition to a 4GL had to be abrupt and complete. There was much work to be done
before the 4GL could be used at all, and then there was no going back. This dramatically increased
the risk in trying a 4GL for a development environment.

Not flexible enough to handle the whole range of development needs

4GLs must contain high-level non-procedural syntax to be effective. But that can taken to an
extreme. If the 4GL contains only high-level syntax, then low-level bit-oriented oPerations are
impossible. This makes it necessary to have another language as a supplement to the 4GL

In summary....

So the overall concern is the large hidden expenses in transition. These can make cost justification
difficult. The move to a 4GL can mean a significant Period ofchaos for the MIS department, which
means a great expense in man-hours throughout the company.

Let's look at the worst case situation. To use the new 4GL, the data needs to be converted to a new
proprietary format. All the existing programs have to be re-written before the 3GL can be discarded.
The lack ofco-existence between the current 3GL environment and the new 4GL means the
company will have to make a significant investment to see if the 4GL is even going to work out.

And the syntax most 4GLs employ can make a significant impact on the usefulness of the new
language. Because the syntax is radically different than the 3GL, programmers will have a steep
learning curve. This means a fairly long Period of time before they can be productive using the new
development tool. And with a more limited syntax, the new language may not allow the same degree
ofcomplexity in programs as the former 3GL This means such languages as C or COBOL will be
necessary to fill the voids where the new 4GL fails to measure up.

Some notes on portability

4GLs vary in their portability. Some run on a wide range of systems with virtually no change. Others
are limited to a few systems, or are not really exactly the same on the different platforms they
support. And ifyou thought that because a 4GL meets certain ANSI standards, you would have a
very portable language, you may be disappointed to fmd that there may still be a lot ofwork in
moving from one platform to another because typically ANSI standards are not complete enough to
ensure portability.

The Good News

Many of the problems mentioned above have been addressed in the latest 4GLs which are now
available. Some of these have an architecture that overcomes the traditional4GL problems. A 4GL
that eliminates the difficulties discussed needs the following features:

• Works with existing databases

• Has easy-to-Iearn syntax because it supports familiar 3GL procedural logic

• Less resource utilization - ideally less than what 3GLs use

IPitfalls in moving to a 4GL 3912-6 page 6

.. Conversion utilities that can convert 3GL code to 4GL code automatically (thereby
preserving the investment in existing code)

.. High portability - all the way to the compiled code

• More powerful language syntax so that 4GL can be the only language required, from low bit
level operations through 3GL procedural logic up to true 4GL concise code.

There are some other desirable capabilities of a modern 4GL that builds on the evolving technology
of advanced development environments:

• Supports 3GLsyntax in line

II Lots of utilities to increase productivity, preferably written in the 4GL itself to allow easy
customization

• Application generators for commonly used functions - that produce finished, customizabJe
source programs

• Ideally, should give relational access to data without overhead of a typical relational database
engine

4GLs are available with these features. But some 4GLs, because of their architecture, cannot
implement some or all of these abilities. So it's important to check on any of these which are
important to you before choosing a 4GL

Another important asPect to check in detail is portability - not only to the platforms you use now, but
the ones you expect to use in the next few years. Also remember that many 4GLs attain portability
by simply being interpretive. This means portability has a high price - extremely high resource
requirements. A truly portable 4GL can make virtually all utilities and compiled code exactly the
same on all platforms. On the following page is a diagram showing the modules of our 4GL, System
Z. To show its extreme portability, you should note that all modules except the Interface Module
and the Data Base Files are exactly the same on each platform which System Z supports. This level
of portability is the ideal situation.

IPitfalls in moving to a 4GL 3912-7 page 7

System Z Component Overview

Z
Programmer

ZIP ZFORMS ZREPORT

GEN
compiler

Compiled
Programs

ZMENU

Other
Utilities

,

Data
Dictionary

ZQL

Interface
Module

•

Data
Dictionary

Utilities

\/

Data
Files

IPitfalls in moving to a 4GL

I'tllJlllllm&\
Figure 1

3912-8 page 8

Converting COBOL to a 4GL Environment

One of the desirable characteristics of a 4GL that was mentioned above is the capability to convert
existing COBOL code to 4GL syntax, thereby preserving existing investment in programs. This is
one of the most misunderstood capabilities of 4GLs. Some prosPective 4GL users view COBOL
conversion as a panacea - others don't understand how it can work at all.

Those who are suspicious of the possibility of converting COBOL have usually used COBOL
translators before. These programs, which are intended to convert one Ilflavor" of COBOL into
another, have been around for quite a while. Most of them have limited usefulness. Even a simple
COBOL program has many aspects that are difficult to pin down with a translator.

But, as strange as it sounds, it's actually easier to convert from COBOL to a 4GL than it is to
translate flavors of COBOLI That's because 4GL programs tend to be simpler and more non
procedural. Processes don't have to be specified in detail.

At the opposite extreme, some users believe they can just dump COBOL in one side of a conversion
utility and get complete, efficient 4GL programs out the other. This is not realistic. To take one
example, no conversion utility is going to understand how a call to a user-defined library works. The
best COBOL conversions have a table look-up facility to allow substitution of 4GL syntax for user
defined calls, but setting up such tables takes work. And even if the conversion facility produces a
functioning end result, the program will not be as efficient as a program coded from scratch in the
4GL

But if these points are taken into account, the ability to convert COBOL to 4GL syntax can save a
large amount of time in getting to a complete 4GL environment.

Bottom Une •The Business Case for Using a 4GL

Why should you consider a 4GL? Here are some of the possible reasons:

• A 4GL can allow you to get MIS changes and additions on line faster, making your company
more competitive

• A 4GL can allow you to serve your customers better

III A 4GL can protect your investment in existing databases

III A 4GL can protect your investment in software by allowing portability to newer, better
machines

• By accomplishing some or all of the above, a 4GL can allow your company to have higher
earnings per share

The goal is to find a sane migration from the third computing generation to the fourth. There are
certainly pitfalls to avoid. We have presented some of the potential problems to watch out for.
Taking these into account, you can choose a 4GL which will enhance your ability to deliver software
systems, but won't destroy your peace of mind in the process.

IPitfalls in moving to a 4GL 3912-9 page 9

3913-1

Paper Number: 3913

Presentation Title: TurboIMAGE and Allbase/SQL converting and
Integrating these Data Sources Using 4GLs

Author: Marlene Nesson

Address: 1250 Broadway, New York, New York 10001

Telephone: (212) 736-4433

situation Analysis

The HP environment was predictable before the introduction of RISC

(Reduced Instruction Set Computing) architecture. All midrange com

puters ran the MPE (Multi Programming Executive) operating system,

and the database used was almost always TurboIMAGE. A small

minority used KSAM (Keyed Sequential Access Method), and most used

flat MPE files for secondary storage. HP View Screen was the

interface for Cobol applications, and networking services consisted

of tr~nsferring data to and from a mainframe via RJE.

For those in search of a 4GL (Fourth Generation Language), the

choices were few but familiar. Whether the choice for application

development was Powerhouse, Speedware, or HP's Rapid, the database

was always TurboIMAGE, and for the most part, HP 3000 users were

accustomed to working in a closed proprietary environment.

Title: TurboIMAGE and Allbase/SQL Conv.rting and Integrating
These Data Sources Using 4GLs

3913-1

3913-2

The UP Environment Today

"Open Systems" is the operative term on the tongues of HP users

today, a phrase which carries with it a more complex application

model, and a variety of tools, a database management systems and

network interfaces from which to choose.

The introduction of 32 bit RISC architecture ushered in new and pow-

erful databases for the HP environment. Many of these products are

designed to replace TurboIMAGE rather than co-exist with it. Some

products offer limited access to TurboIMAGE data, others offer con-

version utilities, and others have no provisions at all for working

with TurboIMAGE data.

While Open Systems provides flexibility and increased options, it

also jars HP users from the comfortable pre-Spectrum environment.

The choices are more complex, and with many third party vendors

designing their products without a commitment to protect existing

investments in TurboIMAGE data, the risks are greater than ever

before. The difficult transition between the advantages of an Open

Systems environment and the easy, safe decision-making process of

the proprietary closed one has arrived.

The Thrust toward Open Systems

The X/Open definition of open systems is "Software environments con-

sisting of products and technologies which are designed and

Title: TurboIMAGE and Allbase/SQL Converting and Integrating
These Data Sources Using 4GLs

391 3-2

3913-3

implemented in accordance with standards established and defacto;

that are vendor independent and that are commonly available."

Using this definition as a baseline, we can extract the real world

benefits of an open systems environment for each type of user in an

organization:

End Users - Open Systems will give them transparent access to data,

using one common user interface. This results in reduced training

time, and higher productivity across a broad range of applications.

Gain

MIS Administrators - The hardware and software independence of Open

Systems allows them to provide better integration of multi-vendor

environments, scalable applications across platforms, and mor prod-

uct choices to suit specific requirements.

Application Developers - A common source for application development

reduces training and porting costs, as well as increasing the pro

ductivity of this group. A common source also allows for tighter

development schedules, and better workflow through an area that tra-

ditionally gets bottlenecked with application requests.

SOlution Vendors - Open Systems gives providers the ability to offer

new technologies to users of many different systems faster than

before. Products will be available to users of many platforms at the

same time.

Title: TurbolMAGE and Allbase/SQL Converting and Integrating
These Data Sources Using 4GLs

3913-3

3913-4

Open Systems and Operating Systems

Open systems has undeniably created an increase in choices not only

in databases, tools and interfaces, but choices in operating systems

as well. HP users can upgrade to MPE XL, migrate to HP-UX, or commit

to relational databases such as Allbase/SQL.

In this emerging, mUlti-vendor, multi-database environment, users

need tools that provide freedom of choice and that efficiently inte

grate old and existing technology. These tools must also provide a

growth path for integrating future technologies as well.

4GLSi A Perspective

A 4GL must provide the ability to work with mUltiple data sources

across mUltiple platforms, provide ~pplication interoperability, and

fUlly support industry standards.

The major 4GL components that form the foundation from which these

requirements are satisfied are outlined below. Although it is not an

exhaustive list, it provides the functional requirements that should

accommodate needs of today, and offer an architecture designed to

handle software and hardware advances in the future:

4GL Components

1. Single language for application development.
A single language for application development should be
standard regardless of the data structure and regardless of
the complexity of the application requirements. The lan-

Title: TurboIMAGE and Allbase/SQL Converting and Integrating
These Data Sources Using 4GLs

3913-4

3913-5

guage should be easy to learn and use but also provide com
putational capabilities found in traditional programming
languages. The language should support sub-routines and
procedural controls so developers can specify process flows
and interactive dialogues.

2. Flexible database choice.
The ability to implement the database of choice is critical
for a 4GL now and in the future. The 4GL should provide
developers the ability to snap-on the desired database for
reporting and maintenance of database.

3. Comprehensive Decision Support facilities
A full complement of Decision Support tools should be
included in the 4GL. Decision support covers the process by
which data is retrieved, analyzed, formatted, displayed and
transformed into information. These functions should be spe
cified with simple language, easy to learn, yet powerful
enough to handle any reporting requirement. It should be a
powerful offering inclUding a Report Writer, statistic and
graphic packages. These tools will enable an integrated
environment for turning data into information.

4. Automatic code generators
The ability to automatically generate the 4GL code for
application development is critical to enable a productive
environment. The code generators for reports and maintenance
procedures should be user friendly, easy to use and generate
error-free code.

5. Universal access to diverse data structures
The ability to access and integrate different structures
together, across operating systems, enables productivity
especially in the light of the mixed technology both hard
ware and software environments today and in the future.

6. Combine diverse data structures
The ability to dynamically join different data sources
together, such as relational, hierarchical, network, etc.
The facility should be simple to use so even casual users
can produce reports, for example, which consolidate data
from diverse sources.

7. Screen and window painters
Productive facilities such as screen and window painters
enables developers to add window-based front ends to appli
cations without the need to know the 4GL syntax. These
facilities should provide the flexible for the developer to
create pop-up and pUll-down windows that will be attractive
and easy to use for end-users accessing the systems. The

Title: TurboIMAGE and Allbase/SQL Converting and Integrating
These Data Sources Using 4GLs

3913-5

3913-6

generated code should be able to be enhanced easily so as to
provide the flexibility for application changes and enhance
ments.

8. Dictionary is flexible and functional
The dictionary of a 4GL should be the central warehouse of
information about field names, lengths, data formats, secu
rity, data validation criteria, etc. The dictionary can even
playa more powerful role if, for instance, it supports pre
defined relational joins within the dictionary itself. The
dictionary for data sources (such as TurboIMAGE, All
base/SQL, etc.) should be automatically generated by access
ing the native database dictionary.

9. Obey existing security
The 4GL should honor existing security of the database and
provide the ability for the application developer to further
refine existing security.

10. Manage simultaneous updates
simultaneous updates by mUltiple users should not lock out
users but employ a mechanism to manage simultaneous updating
of a database while ensuring the integrity of the data. Com
mit and rollback facilities to permit (commit) or deny
(rollback) updates should be available.

11. Available across all major platforms.
with the diverse environments today and in the future, it is
critical the product run under all major operating system.
If this is not the case, it could present an unpalatable
situation if a different hardware platform is incorporated
into your enterprise. This is costly both in terms of the
purchase of the product as well as the time required to
develop expertise in the new product.

12. Code is portable across all major platforms
Portability of code in a mixed environment gives the appli
cation developer the ability to choose the right processor
to develop an application. For instance, the application
developer should have the ability to program the applica
tions on a pc, thereby freeing up resources on the HP, and
porting those applications directly to the HP.

13. Client/server architecture
The 4GL should support and support client/server architec
ture enabling processing to be distributed.

14. Connecting diverse hardware platforms and commitment to
standards

Title: TurboIMAGE and Allbase/SQL Converting and Integrating
These Data Sources Using 4GLs

3913-6

3913-7

connection to diverse hardware platforms is critical. It is
equally important, however, for the technology to support
standard protocols such as SNA LU 2.0, LU 6.2, and TCP/IP.

15. Futures
The commitment of the company to the integration of new
technology into its product line inclUding: Expert System
support, GUls, Object Oriented paradigms, and CASE tools,
will provide the tools to further enhance productivity.

If you are thinking about incorporating a 4GL in your environment,

currently evaluating a 4GL, or evaluating the functionality of your

current 4GL, the product you choose should provide comprehen-

sive functionality and should embrace the strategy that will

make the product viable now and in the future. Challenges, such

as the integration and/or conversion of TurbolMAGE with All

base/SQL, will then be a painless task and enable you to main-

tain investment in current and future technology.

4GLs in the HP marketplace provide HP data support but, for

instance, do not run on all major platforms, such as the IBM main-

frame environment. So although the 4GL may be attractive function

ally, it may not be suitable solution in a diverse hardware environ

ment that includes a mainframe.

An example of a 4GL that would meet these requirements, is FOCUS

from Information Builders. FOCUS provides the breadth of

functionality and strategic direction by providing a robust 4GL,

runs on all major platforms inclUding: HP MPE XL, HP-UX, IBM main

frame, and PC both DOS and OS/2. Code is portable across operating

Title: TurboIMAGE and Allbase/SQL Converting and Integrating
These Data Sources Using 4GLs

3913-7

3913-8

systems, and provides an interoperatable environment. Access to

TurboIMAGE , Allbase/SQL, KSAM, MPE are all supported.

Advantages of Relational Technology

If you have not yet made the decision to convert your TurbolMAGE to

A1lbase/SQL, it may be worthwhile, to briefly look at the advantages

of a relational database. certainly, there are both pros and cons.

HP users know that TurboIMAGE database has been an excellent per

former on the MPE XL operating system but Allbase/SQL is catching

up. In the old debit-credit benchmark, TurboIMAGE scored a 19 TPS;

A11base/SQL (SQL 2.0) scored an impressive 14.4 TPS. HP has made

significant performance improvements since this time, and plans to

further improve the performance of Al1base/SQL in 3.0 of the HP MPE

XL release.

Let's look at some of the benefits using a relational versus a net-

work, in this case, TurboIMAGE structure.

Application pevelopment Needs and Flexibility

Relational databases lends itself to easier translation of data

needs into an application than that of a TurboIMAGE database.

Once the relational databases are created, there is greater flexi

bility to modify the database design to meet changing data needs.

Applications depend less on the underlying database design in case

of a relational database management system (ROBMS) than they would

in case of a DBMS like TurboIMAGE.

Title: TurboIMAGE and Allbase/SQL Converting and Integrating
These Data Sources Using 4GLs

3913-8

3913-9

MUltiple Keys

Relational tables provide the ability to define mUltiple keys

whereas in a TurboIMAGE master dataset only one key is allowed. This

could possibly mean less programming effort and less complexity in

the application because the need for navigation of data is reduced.

Ease of sorting

Sorted output is required in almost every single application.

Output is sorted from a table by keys with only a small effort

required in terms of runtime system and programming effort versus

the effort required with TurboIMAGE structures.

Integrated Package

More and more third party 4GL vendors offer an integrated package

inclUding: interface to relational database systems (Allbase/SQL,

Oracle, Sybase, Ingres, Informix), as well as comprehensive applica

tion development and end-user tools.

Future Technology

Relational technology is the choice today and probably of tomorrow.

Innovation and Growth

Finally, growth and innovation of SQL products are constant because

of the intense competition. This trend should continue and ensure

increased functionality and flexibility for the future. Figure 1

summarizes the advantages of relational technology.

Titla: TurboIMAGE and Allbase/SQL Converting and Integrating
These Data Sources Using 4GLs

3913-9

3913-10

*--** Adyantages of a Relational Database Enyironment *
* *
* ** Application Development Needs *
* Flexibility *
* MUltiple Keys *
* Ease of sorting *
* Integrated Package *
* Choice of the future *
* Innovation and Growth *
* **--*Figure 1

Although there are advantages to moving to a relational database,

the best decision is to analyze the business need you are looking to

solve and implement the most appropriate database structure to meet

your needs.

Terminology and Basic Concepts

Before we actually look at converting and integrating TurboIMAGE and

Allbase/SQL, it would be helpful to look at the terminology and

basic conceptual differences between TurboIMAGE and Allbase/SQL.

with this knowledge, it will then become more apparent how powerful

a 4GL can be when we look at converting and integrating these two

dissimilar structures.

In order to understand Allbase/SQL it's important to learn some new

jargon. Figure 2 describes a description of new terms introduced

with relational technology, from a TurboIMAGE perspective.

Title: TurboIMAGE and Allbase/SQL Converting and Integrating
These Data Sources Using 4GLs

3913-10

3913-11

Given the various terms defined, perhaps the most confusing is also

the simplest database. We "open" a TurboIMAGE database. For every

application, whether the application program uses one database or

several databases, each is opened individually. The relationship

between databases is non-structural; any structure is imposed by

your program. In Allbase/SQL, however, the operative term is

"connect" to a database environment.

In addition to terminology differences, there are some basic differ

ences with regard to data names, data types, subitems, security, and

table definitions.

Data Names

TurboIMAGE allows names to be up to 16 characters long whereas,

Allbase/SQL allows basic names to be up to 20 characters long.

pata Types

The mapping between data types is shown in Figure 3. All TurbolMAGE

data types except Z (External, Zoned, Decimal) have an equivalent in

Allbase/SQL.

Subitems

Subitems do not exist in Allbase/SQL. You would need to translate

any TurboIMAGE field with a subitem count greater than one to mul

tiple columns in Allbase/SQL.

Title: TurboIMAGE and Allbase/SQL Converting and Integrating
These Data Sources Using 4GLs

3913-11

3913-12

For example, given the following TurboIMAGE field:

COMMISSION, 412

would need to be translated to four column in an Allbase/SQL table:

COMMISSIONl, INTEGER
COMMISSION2, INTEGER
COMMISSION3, INTEGER
COMMISSION4, INTEGER

*--** *
* *
• •
• •
• TurboIMAGE Allbase/SQL Definition •
• •
• •
• Entry' Row 'Record' in TurboIMAGE •
• or a 'tuple' in SQL. •
* •
• Field Column Data unit within a •
• row or entry •
• •
• Set Table Logical entity •
• containing data •
• entries or rows •

• *• •
• Database owner Logical entity •
• containing database •
• sets or tables •
* •
• Query ISQL The basic HP supplied •
• programs for ad hoc •
• queries and updates •
* of TurboIMAGE and •
• Allbase/SQL databases ••
• •
• Root File DBECON file File contains control *
• information·
.--.Figure 2

Title: TurboIMAGE and Allbase/SQL Converting and Integrating
These Data Sources Using 4GLs

3913-12

3913-13

--
* ** TurboIHAGE A11base/SOL *
* P DECIMAL *
* Z DECIMAL *
* R FLOAT *
* I,J,K SMALLINT If length 1 (16 bits) *
* INTEGER If length 2 (32 bits) *
* CHAR If length greater than 2 *
* X,U CHAR *
--

Figure 3

Security

A11base/SQL and TurboIMAGE security are fundamentally different.

Security in TurboIMAGE is established by the password determining

items a user can read and/or write. with TurboIMAGE, passwords are a

structural element of a TurbolMAGE database and restructuring is

required to accommodate any access changes. Any user who has know1-

edge of the password can access the database.

Read/Write access to a data field is determined in Allbase/SQL by

assigning user logon IDs to Allbase/SQL groups and assigning various

access capabilities to the groups. This information can be changed

anytime by the DBA. Capabilities of the USER are thus completely

determined by the user's logon ID and can be revoked or expanded at

any time.

Table pefinitions

with TurboIMAGE, the first step is to define all of the items

available in your database. Next, within each set, specify the items

Title: TurboIMAGE and Allbase/SQL Converting and Integrating
These Data Sources Using 4GLs

3913-13

3913-14

to be fields in that set. If you wish to add fields or items later,

you would need to restructure.

In Allbase/SQL, define the columns for a table within the definition

of the table itself. If you wish to use a column of the same name

and data type in another table, you must redefine it in that table.

Additional new columns can be added to the end of a table at any

time with a single Allbase/SQL command. If you wish to add columns

in the middle of the table you can do so but it requires three or

four Allbase/SQL commands.

Indexing

TurboIMAGE and Allbase/SQL both feature indexes. Changing a TurboIM-

AGE index definition requires database restructuring.

Allbase/SQL, on the other hand has an interesting concept of immedi-

ate creation or deletion of indexes. Certainly, there are both

positive and negative ramifications. A positive offshoot of immedi

ate creation of an index is the construction of a quarterly report.

Once the report is completed, the index can be dropped so online

applications will not be slowed down by the maintenance of the

index. On the negative side, you can incur a huge overhead from

regularly generating an index.

Converting a TurboIKAGE Database and APplication to Allbase/SOL

Assuming, you have made the decision to convert your TurboIMAGE

database to Allbase/SQL what are key elements to consider and work

Title: TurboIMAGE and Allbase/SQL Converting and Integrating
These Data Sources Using 4GLs

3913-14

3913-15

to be done? We will approach this from 2 angles: 1) with a 3GL and

2) with a 4GL. Although both approaches are feasible, the 4GL solu

tion will require less resources and provide the flexibility for new

application needs for the future.

First, with a 3GL the steps are:

1) Create a logical database to meet all your known data
needs. You can either try to best mirror the TurbolMAGE
data structure or you can start from the beginning without
regard to the current data structure and create the logi
cal design.

2) Convert the logical database design into an Allbase/SQL
database design. Of course, you must invest the time to
read the Allbase/SQL reference manuals.

3) Create the Allbase/SQL database (structurally).

4) Convert Data from TurboIMAGE database to Allbase/SQL.
One alternative is to write a COBOL program to select all
or selected portions of data from the TurboIMAGE database.
write the selected data to a flat file. Then create
another program to load the data into the Allbase/SQL
database.

This step would also include determining the conversion
from the existent TurboIMAGE datatypes to the correspond
ing Allbase/SQL datatypes (refer to Figure 3).

This process would be duplicated for every TurboIMAGE
database.

5) write or rewrite your application code.
The number of reports, the requirements of maintenance,
and complexity of application, will indicate the number of
programs that will need to be rewritten or created.

From the above discussion, it is evident that the time required can

be substantial in the analysis, creation, extraction, loading of the

data, and finally the re-engineering of the existing programs for

Title: TurbolMAGE and Allbase/SQL Converting and Integrating
These Data Sources Using 4GLs

3913-15

3913-16

reporting and maintenance. The actual time required would be depen

dent upon a number of variables including: the number of TurbolMAGE

databases, the number and reports and complexity of reports (sort

ing, totals, subtotals, aggregation (sum, count, etc.» and the com

plexity of the maintenance procedures required.

Let's now look at the process that would be required with a 4GL.

Certainly, the functionality and capabilities differ among the

existent 4GLs available in the marketplace. But let's assume you

choose a 4GL that meets most or all of the suggested requirements of

a 4GL (outlined above). The process would be as follows:

1. Create a Logical structure

2. Determine Data Requirements

Determine the fields from the TurbolMAGE database that
you wish to extract (can be all or selected fields).

3. Convert data from TurboIMAGE to Allbase/SQL

*a. Use an End-User tool to extract data

4GL code should be generated automatically that will
extract the TurbolMAGE data based on the user require
ment.

*b. Use an End-User tool to automatically create All
base/SQL Tables

Tables should automatically be created based on user
requirement (i.e., fields chosen, sort fields
identified, etc.). The database administrator should
have the ability to change the structure created if
desired.

*c. Use an End-User tool to automatically load the data

The 4GL request to load the data should be automati
cally created and should be flexible to
run in batch mode if appropriate or required.

Title: TurbolMAGE and Allbase/SQL Converting and Integrating
These Data Sources Using 4GLs

3913-16

3913-17

* The ultimate situation would be a 1 step end-user conversion
tool that combines all 3 steps (a, b, c).

4. Create maintenance and reporting programs

The 4GL requests to create screen driven update procedures
and reports should be automatically created.

steps 1 and 2 above would be the only required "think" time. step 3

and 4 should be performed quickly. Given the 4GL has a powerful

report writer that provides for automatic totals, subtotals, aggre

gation, etc., the time required to convert the existent application

from TurboIMAGE to Allbase/SQL would be significantly reduced using

a 4GL.

The conversion of TurboIMAGE databases and applications to All-

base/SQL is, as we can see from above, is feasible using a 3GL if

there is the time and necessary resources available to perform the

tasks. The number of TurboIMAGE databases, and the complexity of the

application, will determine the feasibility of converting using 3GL

technology.

Using a 4GL however, the task is quicker and does not present the

challenge of the requirement for additional resources. A 4GL that is

rich in functionality will promote the quick and efficient creation

of SQL tables, and reports and maintenance procedures (very time

consuming in a traditional 3GL language).

Title: TurboIMAGE and Allbase/SQL Converting and Integrating
These Data Sources Using 4GLs

3913-17

3913-18

An extremely important benefit of a 4GL that must not be overlooked

is the increased productivity for new applications as well as

enhancements to existing applications. If the 4GL has powerful

tools, applications can be enhanced quickly and new applications can

be created quickly and efficiently.

Integration of TurboIHAGE and Allbase/SOL

Integration of TurboI MAGE and Allbase/SQL databases presents a whole

new challenge. The question is: How can you integrate these

structures together using a 3GL and a 4GL. Firstly let's look at a

solution using a 3GL then a 4GL.

Because the two databases are inherently different, TurbolMAGE is a

network structure, Allbase/SQL is a relational structure, there is

no apparent simple method to integrate these data structures

together using a 3GL.

One possible approach for reporting is to extract the requested data

from TurboIMAGE, write the data to a file and then save the file.

Similarly, perform the same exercise using the Allbase/SQL database.

write a program to merge the data from the two files into one file.

Finally write the required reports. Based on application

requirements, the creation of reports can be simple or very complex

with requirements such as numerous sorts, subtotals, totals,

aggregation, headings, footings, etc.

Title: TurboIMAGE and Allbase/SQL converting and Integrating
These Data Sources Using 4GLs

3913-18

3913-19

Maintenance of both data structures would require the creation of

programs to update the Allbase/SQL databases. Essentially, this

mears you must commence from the beginning, creating all the

required maintenance programs including screens, etc. to update the

new Allbase/SQL structures.

The number of Allbase/SQL tables will dictate the amount of time and

resources required to accomplish these tasks using a 3GL. Realisti

cally how much resource would be required to integrate and create

the required reports? In addition to the number of Allbase/SQL

tables, other variables include: the selection criteria, report

requirements (subtotals, totals, aggregation functions, headings,

footings, etc.) and the number of reports.

Let's now look at what would be required to perform these two acti

vities using a 4GL.

Report generation would entail logically joining the two structures

together (assuming there are fields in common across the data struc-

tures). Once this is completed, the desired reports would be created

using an end-user report generator. Given a powerful 4GL report

writer with effective end-user code generators, complex report gen

eration, as described above, will be easy and quick.

For maintenance, combine the TurboIMAGE and Allbase/SQL databases

together and then create the maintenance procedures to update the

combined structure. The 4GL should supply end-user tools to automat-

Title: TurboIMAGE and Allbase/SQL converting and Integrating
These Data Sources Using 4GLs

3913-19

3913-20

ically generate the procedure to update the combined structure.

The time and resource to accomplish these tasks should be minimal if

the 4GL is extremely flexible, functional and designed architectu-

rally to integrate diverse structures for reporting and maintenance.

Summary

Let's conclude by highlighting the issues discussed in this session.

with the introduction of RIse technology, HP users find themselves

with many more choices and decisions. There are more powerful 4GLs,

operating systems to choose, and relational technology to consider.

A diverse hardware and software environment suggests the tools of

choice be flexible, comprehensive, and provide multivendor compre

hensive, and provide multivendor connectivity and interoperability

now and in the future. A well architected 4GL with a full complement

of features today with a solid strategy for the future is worth pur

suing.

Relational technology has become more or less a standard.

Although there are several advantages to this relatively new

technology, the decision to invest in relational technology

should not dictate the requirement to convert all TurboIMAGE appli

cations to Allbase/SQL. The business need should be examined and the

structure that meets the need should be employed. The best of both

worlds is a 4GL that will enable integration of both databases into

existing and new applications.

Title: TurboIMAGE and Allbase/SQL Converting and Integrating
These Data Sources Using 4GLs

3913-20

3913-21

Using a 3GL, the conversion of TurboIMAGE to Allbase/SQL can be a

time consuming and resource intensive process. There are

conversion issues that would be required to be addressed

including: data types, sUbitems, security, and table definitions,

to name a few. There are changes to existing programs and

creation of new ones. The requirements and volatile state of the

applications, would dictate the time and effort required now and

in the future using 3GL technology.

Using a 4GL, the conversion can be simple. If the 4GL enables the

joining of diverse structures together, has powerful end-user

tools, and addresses a majority of the conversion issues

automatically, the conversion from TurboIMAGE to Allbase/SQL

should be quick and easy with minimal allocation of time and

resource.

Similarly, the integration of TurboIMAGE and Allbase/SQL for

application development for reporting and maintenance can be

extremely resource intensive using a 3GL and with the choice of a

flexible, powerful 4GL, can be expedient.

The 4GL you choose can make the integration and conversion of todays

data structures and tomorrow a simple task and provide productivity

tools to enable efficient and effective application development in

the future.

Title: TurboIMAGE and Allbase/SQL Converting and Integrating
These Data Sources Using 4Gf~13_21

/

Paper#3917

TurbolmagelXL Performance

By Denys Beauchemin

Bradmark Technologies, Inc.

4265 San Felipe Suite 800

Houston, Texas 77027

(713)621-2808

TurbolMAGElXL has been around for about 4 years now, and already it has changed significantly. The performance

improvements have been dramatic and there are more features which are available now, or are planned for the future,

which make this DBMS still the uncontested winner in overall performance and usage on the HP3000 with MPElXL.

You may have heard a lot of talk about how Image is dead and ALLBASElSQL is the DBMS to which everyone and

everything is going. Well, don't believe it, TurbolMAGElXL is alive and well and is acquiring more features, at a taster

rate, than ever before. And these features are not little things either, they are very wide ranging in some cases.

Today, the subject I would like to cover, is something that is not talked about often enough; TurbolMAGElXL perfor

mance. I have given talks on the subject and have actually gotten very good feedback from folks who listened and went

ahead and did the things I discussed.

Let's face it, the present is TurboIMAGElXL. This is also true for the foreseable future. The information herein is long

overdue, and I am trying to catch up.

A) TurbolMAGElXL from 0.0 to 2.05 - HPIMAGE wI TurboWINDOW and TurbolMAGEN

When MPElXL was first born, TurbolMAGE was available but only in Compatibility mode. In order to go Native Mode

with your programs and your databases, you had to migrate your databases to HPIMAGE. This new DBMS was similar

to TurbolMAGE but "similar to" is not "exactly the same as", and therefore there would have been quite a bit of code

modification and even logic changes in the programs which were to be migrated to native mode to use HPIMAGE.

In order to facilitate this migration, HP introduced TurboWINDOW which was to provide a TurboIMAGE-type window into

an HPIMAGE DBEnvironment. This window had various degrees of transparency and the whole thing was not an

overwhelming success.

It was decided in late 1985 to migrate the current TurbolMAGE into native mode, and HPIMAGE wI TurboWINDOW was

put on the back burner.

B) TurbolMAGElXL - Migration, what migration?

The issue of migration for the databases and the programs which access them, is really a non-issue. One only needs to

restore the database from an MPEIV store or DBSTOAE and presto, it is available right now, and in Native Mode access

no less. Just make sure that you turn off ILA on MPEIV before you store the database as the ILA formats of V and XL

are incompatible. The neat thing about TurbolMAGElXL is that your programs can use it right then and there. If you

Turbolmage/XL Performance

3917 ·1

start recompiling your programs with a native mode code producing compiler, they will run without having to clicuige

anything in the code or the calling sequence. The programs accessing the databases can be NM or eM, mix and match

and everything works. It can't be any cleaner. The databases can be ported back to an MPEIV machine by just using

STORE with the TRANSPORT option. The only caveat here, is the size of the individual datasets. More on this later in

this presentation.

What is this new file in my group?

Each time a database is first opened, a file is created with the name xxxxxGB, with a filecode of -406. This file repre

sents what used to be the database global block (DBG) and the database buffers (DBB). It is now a permanent file

which is accessed by everyone using the database. It is purged after the last user closes the database.

Bye Bye ILR, Hello XM.

The first thing which comes to mind when one gets on a MPElXL system is the Transaction Manager (XM). This is the

method developed by HP to guarantee that information is not lost due to a system interruption. The first by-product of

the XM is the need to turn off ILR on your TURBO/XL databases. We will talk more about XM later on, in relation to

volume sets. On MPElXL 2.1, when you enable ILR, the 00 file is no longer created. Everything just gets posted to the

XM logfiles immediatly, thus slowing down the system. Some folks are saying that ILR should be enabled on XL system,

but that is just a little white lie, XM does an excellent job and thus, ILR should not be enabled.

Speed, speed, speed. $10000 words.

One of the things which was changed to increase performance without having to change anything in the logic of

TurbolMAGElXL was the increase of the global block from 32767 words to $10000 (65535) words. So crank up your

buffspecs to take advantage of this expansion, but beware of opening them to much on 2.1. More on that later.

Oh no, not private volumes! No, it's Volume Management.

Probably the most performance-improving action one can take on a MPElXL system, is also the one which is least

talked about. Each and every MPElXL system now in operation has at least one volume set;

MPEXL_SYSTEM_VOLUME_SET. So even if you do not want to get into volume management, it is there intrinsically.

The main point that I want to get across is that you need at least two volume sets, and probably more.

First, let's see what comprises a volume set. When a volume set is created, 400k sectors on the master of the volume

set is immediatly reserved by MPElXL. This chunk is needed for the directory of the volume set and for the XM logfiles. I

understand that this figure is supposed to be reduced in an upcoming version of MPEJXL, but I don't think it's an issue at

this time (by the way, this may explain why the 7912/14 are not supported on MPElXL).

After the master volume has been declared, you can add member volumes to the new volume set. All the volumes, the

master and the members, make up a single unit of recovery for the XM. It is not the intent of this presentation to describe

the workings of the XM. But let's look at the impact XM has on performance and let's see how multiple volume sets will

Turbolmage/XL Performance

3917· 2

affect said performance.

TurbolMAGElXL transactions all go through the XM, provided that AUTODEFER is not enabled. Now let's take a large

Xl system with many databases all on MPE_Xl_SYSTEM_VOlUME_SET. Since all transactions go through the same

XM logfiles, the system appears to "slow down" tor everybody at the same time, and quite frequently. This is because,

PIN 9 the checkpoint processor is busy posting all the transactions to the volume set. You see up to this point all the

DBPUTs, DBDElETEs and DBUPDATEs have not in actual fact been written to the databases. Rather, they have all

been accumulated in the volume set's XM logfile. If the system were to fail while the transactions were in the XM logfile,

nothing would be lost, because they would be recovered automatically by the XM when the volume set would be placed

on-line, ON ANY XL MACHINE.

The only (small) danger would be if the master volume set were to break and XM would not be able to read the logfiles,

ever. This would effectively disable the entire volume set, but not the system, or the other volume sets.

Back to the checkpoint processor. Now, while PIN 9 is busy updating the various volume members, the user activity on

these volumes is somewhat curtailed. It used to be quite dramatic a few releases ago of MPElXL, but even if it's better

now, it is still there. Therefore, if all your transactions go through the same XM logfile, on LDEV 1, along with having

some of the the directory on LDEV1 and most of transient memory (old virtual) also on LDEV 1, you can see that poor

LDEV 1 is quite busy and on things that are all high priority.

What I propose is the following. Leave MPEXl_SYSTEM_VOLUME_SET alone. Create new volume sets and place

your production accounts with their databases on these other volume sets. This will bring you many benefits, some of

which are:

1- You will relieve MPEXL_SYSTEM_VOLUME_SET from a lot of work thus increasing the system perfor

mance overall. You will be able to protect LDEV 1 from a lot of work better done on another drive. LDEV 1 is

loaded enough as it is by things over which you have absolutely no control.

2- The XM processing will be spread around multiple volume sets over different periods of time, thus increasi

ing overall system performance.

3- You will be able to control your disk utilization much more efficiently on separate volume sets.

4- It permits one to perform backUps for different areas at different times, and simplifies reloads immensely.

5- It gives the overall system an increased measure of resilience in case of disk failures and reduces the

recovery time for a system restart.

6- It is required for MIRRORED DISK/XL.

Turbolmage/XL Performance

3917 - 3

A more in-depth discussion of XM would be a subject for another presentation Suffice it to say, that this is the most

important action that can be taken to increase overall system performance.

C) The near-present, MPElXL 2.1-2.2 and TurbolMAGElXL

Mapped files, block sizes, pages and performance.

With MPE/XL 2.1-2.2, TurboIMAGE/XL uses a technique known as mapped files for access and updates. When pages

are retrieved from secondary storage (read disk drive), they.no longer have to pass through the main Image buffer.

Instead pointers are moved around and the pages are left in transient memory. The pointers are in effect, headers for

the buffer areas, and as such are much smaller, only a couple of dozen words. Therefore it is easy to reach whatever

maximum buffspecs is specified in DBUTIL. However, the &earch for the appropriate buffer is, at the present time, a

linear search, so one must look at balancing the search time, with the buffer specs. It is recommended by HP that the

maximum buffspecs be set between 60 and 80. Note that this is no longer true on 3.0.

A note on DBUTIL buffspecs. When the database is first DBOPENed, the DBG is built automatically to the largest

buffspecs specified in DBUTIL and never changes size, so beware of defaults! Since TurboIMAGE/XL now works on

pages (4096 bytes), thus closer to the machine, I wondered how the blocking size would affect performance. My

thoughts were that there would be a much smaller variation than before, as long as the block did not contain too much

unused space. I am now conducting tests and surveys of various databases with various block sizes and the effects of

block sizes on performance. This will surely be the subject of a future presentation.

Delta Logging.

At this time, the DBUPDATEs are logging only the items which have changed, in a range. For example, if there are 20

items in the set, and we modify item 3, 8 and 15, what will be logged will be items 3 thru 15. So if you do standard

updates, try to keep the items which are changed, contiguous. The DBPUTs and DBDELETEs still do before and after

images, at this time.

MPElXL file size and you thought FSERROR 106 was gone.

When I first logged on to an MPE/XL system, almost 5 years ago, I noticed that many files now had a file limit which

appeared on the L1STF like this: 4096000. For example, do this

:L1STF XL.PUB.SYS,2

ACCOUNT= SYS GROUP= PUB

FILENAME CODE LOGICAL RECORD

SIZE TYP EOF LIMIT RIB

XL NMXL 128W FB 38215 4096000

-SPACE

SECTORS #X MX

38912 19

Turbolmage/XL Performance

3917· 4

Look at that limit, I thought that was real large. Recently, I pUlled out my HP41 CV calculator, the MPElXL file system and

TurbolMAGElXL manuals and started doing some figuring. Let's take it from the top. The MPElXL file system manual,

along with the Intrinsics manual say that the biggest files you can open are as follows: If you use HPFOPEN with the

short mapped option, it's 4 megabytes or 2"22-1 bytes., If you use the long mapped option, it's 2 gigabytes or 2"31-1

bytes. How does that translate into old-fashioned sectors,(hey, I'm an old- fashioned guy), well here it is, just divide

2"31-1 by 2"8 bytes in a sector which gives (let's see now, 31-8=23) 2"23-1 or 8,388,607. Let's try it:

:BUILD DENYS; DISC=8388607; REC=-256

or 2"23-1 records of 2"8 bytes, which works out to 2,147,483,392 or 21\31-1 bytes. Let's try a bigger file:

:BUILD DENYS; DISC=8388608; REC=-256

EXTENT SIZE EXCEEDS MAXIMUM (FSERR 106) BUILD OF FILE DENYS.SOURCE.USM FAILED. (CIERR 279)

Well, it looks like my calculations were on the nose. There is a limit, easily reachable on MPElXl for file size. But

beware of that mesage about extent size exceeding maximum, it's very misleading. All this discussion brings us to this

with regards to TurboIMAGElXL; The extents specification seem to play some role, however we get affected only at

creation of the datasets. MPEIV used to play round-robin games extent by extent. Whichever disk drive was next on the

configuration list for that class of disk was where the next extent was placed. So during the creation of a large dataset,

provided that we are the only ones creating a file/extent at that time, this would happen:

Configuration for class DISC: 1,2,3,4,5

For 8 extents they would be placed, starting at say Idev 2 :

Extent # Disc Idev

2

2 3

3 4

4 5

5

6 2

7 3

8 4

Not so on MPElXL. No, on MPElXL each extent is on a most-available-space order. Which means that the next extent

is going to be created on the disk drive which has the most space left, on that volume set, for the volume class. Even

further, there seems to be a tendency for MPElXL to attempt to place the entire file on the same drive. I guess this is

predicated by the fact that one would try to do a BUILD or an HPFOPEN/FOPEN and allocate all the extents at that

time. So if you reload the volume set, you will find that your database datasets will "clump" up on the same volume, set

by set, given enough space on that drive of course. Let's look at a few last things and the end this numbers games.

Turbolmage/XL Performance

3917 - 5

In a database the largest set capacity is, you guessed it: 2"31-1, which works out, again to: 2,147,483,392 records.

This, according to the TurbolMAGElXL manual. How does that compare to TurbolMAGEN on MPEN? We", on MPEN

the file size was dictated by the extents, a file could have a maximum of 32 (2"5) extent, and each extent could have a

maximum of 65,535 (2"16-1) sectors, each sector was, of course, 256 (2"8) bytes. Therefore the biggest file is (2"5

*(2"16-1) * 2"8) or (2"29) - (2"13) or 536,862,720 bytes. You can also calculate it like this: 32*65535*256 bytes, but I

find it easier with exponents. (Big numbers boggle my mind.) As you can see, the improvement is (2"31)-((2"29)-(2"13»

or about 2"2 or about 4 times what is was on MPEIV.

MPElXL

MPEIV

2,147,483,392 bytes (2"31-1)

536,862,720 bytes ((2"29)-(2"13»

At the SIGIMAGE meeting in Reno, March 1991, one of the enhancement which was requested was the possibility of

increasing a dataset to 4 gigabytes and a further request was to increase it beyond 4 gigabytes. If the current size

limitation is a concern to you, please contact SIGIMAGE and let them know.

D) MPElXL ~.O and TurboIMAGElXL, the present.

With 3.0, HP brought in a lot of major enhancements. Let's look at a few of them:

1- Performance enhancements:

The buffspecs are now fixed at 1280, and the buffers are searched with a hashed table, not serially. So

whatever settings you use, they are now ignored, the buffspecs are only kept for compatibility's sake.

There are also changes in the modification intrinsics to enhance concurrency, but this will be the subject of a

future presentation.

2- MDBX Multi-Database Logging:

It is now possible to log transactions which affect mUltiple databases, up to 15. These transactions will be

recovered as one unit of work by DBRECOV. To use this feature, there are 2 new modes for DBBEGIN.

Mode 3: For multiple databases transaction, generates multiple log records, one per database.

Mode 4: Same as above, but only generates one record.

Note: All databases must log to the same logfile.

DBBEGIN and DBEND denote the start and end of a STATIC transaction.

3- Dynamic Rollback.

On TurboIMAGElXL, thanks to the XM, it is now possible to rollback a transaction, with one intrinsic. Of course

one must define a transaction and this is done with a DBXBEGIN/DBXEND pair. If at any time before the

DBXEND is called the system is interrupted, the program aborts or DBXUNDO is called, the transaction will

be rolled back. A transaction within DBXBEGINlDBXEND is known as a DYNAMIC transaction.

Throughout the transaction, strong locking must be maintained and if locks are released before the end of the

Turbolmage/XL Performance

3917· 6

transaction, or if any error is encountered by the modification intrinsics (DBPUT/DBDELETEIDBUPDATE) all

other IMAGE calls will fail until a DBXUNDO is performed (all the intrinsics will return a status of -222 until the

DBXUNDO).

The sequence would look like this:

DBLOCK

DBBEGIN «if so desired, but mode 1 only»

DBXBEGIN

transaction steps (excludes any calls to dbunlock) .

If any modify error is encountered, goto DBXUNDO nowl .

DBXEND or DBXUNDO

DBEND «if so desired»

DBUNLOCK

At this time, it is not possible to define a dynamic transaction which encompasses multiple databases. It will

surely come, but be aware that it will most assuredly be limited to databases within the same volume set.

In the case of system aborts, the transaction will be rolled back at the first DBOPEN to that database. It's like

an expanded ILA. When the volume set is brought- on-line, and at the very first DBOPEN to any database on

that volume set, XM will spawn off a 00 file for every database which had an active transaction at the time of

the sysabort. Then as each database is DBOPENed, TurbolMAGElXL takes over and applies the rollback for

the incomplete transactions contained in the 00 file.

Note: You can't use DBXBEGIN/DBXEND if AUTODEFER is enabled or if the database is opened in mode 21

There is one mode for DBXBEGIN, 1, but there are 2 modes for DBXEND, 1 and 2. Mode 1 just signifies the

end of the dynamic transaction. Mode 2 does the same but it also forces the write of the logging buffers to the

disk and if logging is enabled, it will also force the logging buffers in memory to disk. This would probably

degrade system performance but would enhance database stability. It is now possible, if only dynamic

transactions exist for a database, to run without logging enabled for the database. However, logging is used

for far more than just recovery, and it is still required in case of media failure (aka disk crash).

4- A new DBUTIL flag MUSTRECOVEA.

This flag is set/reset with DBUTIL. Once the flag is set, the first person to DBOPEN the database with write

access, sets another internal flag. When the last person with write access DBCLOSEs the database, this

other internal flag is reset, signifying that the database in consistent. If the system crashes whilst there is one

Turbolmage/Xl Performance

3917 -7

or more user with write access in the database, the flags are then interpreted to mean that the database is i

inconsistent and must be recovered before it can be used. Until the database is recovered, or the flag reset

with DBUTIL, only DBOPEN mode 7 (exclusive read access), is allowed.

Note: Enabling MUSTRECOVER for a database forces logging to be enabled also. Thus, if your database is

not set up for logging, the MUSTRECOVER facility cannot be used.

5- Expanded DBINFO.

DBINFO has a series of new modes which return a lot of useful information to the calling process:

401: TurbolMAGE logging information.

402: ILR information.

403: Dynamic Transaction information.

404: MDBX transaction logging information, inclUding RDBA.

901: Database NLS code.

E) MPElXL and TurboIMAGElXL. the future.

In an upcoming version ofTurboIMAGE, the Third-Party indexing products will be part of TurboIMAGE. This will meet

the most requested enhancement for TurboIMAGE, generic key searching. Of course these products are not free, but

they offer much more than just generic key search, And they will live within TurboIMAGE. Another widely requested

enhancement, the capability to update a critical field, search or sort, in a single detail record, is to be made available by

HP. This will need to be covered more at a later date.

In Reno, at SIGIMAGE, there was quite a series of enhancements which were enumerated, and I will let the officials of

SIGIMAGE be the folks to dissiminate this information. Suffice it to say at this time, that the 2-day meeting was really

excellent and fruitful, and that folks will be happy with the requests which are being forwarded to HP for review. As a

note, HP's participation in the meeting was intense. HP's commitment to TurbolMAGE is very apparent.

If you are interested in participating in SIGIMAGE, please contact Steve Cooper with Allegro Consultants in California.

In retrospect, one can sit back and ponder the history of TurboIMAGElXl. I wish I would have taken the time to record

much more information on the different releases of MPElXL and the impact on TurbolMAGElXL performance which

each new release. But I did not. Maybe someone else did, and if so, please share it with us. As a last observation,

TurbolMAGElXL now only shares the squeleton, the static structure with TurboIMAGE. The functionality has changed

and the run time environment is evolving much faster than most people are aware of up to now.

Turbolmage/XL Performance

3917· 8

Paper 3920

The Future of IMAGE is SQL
An Outline ofthe Simple Steps

Necessary to Merge IMAGE & SQL

WirtAtmar
AICS Research, Inc., University Park, NM 88003 USA

(505) 5249800 • FAX: (505) 5264700

At the most recent Southern California Re
gional Users' Group (SCRUG) meeting in
Los Angeles (May 8-10), Charles Finley,
SCRUG Chairman, asked during the final
day's luncheon, "How many of you be
lieve, given the way things are going, that
MPE is dying?" Almost everyone in atten
dance raised his hand. Charles then asked,
"How many of you believe that HP is pur
posefully trying to kill MPE?" About half
raised their hands. Charles asked a third
tirrIe, "How many of you think HP is not
purposefully trying to kill MPE?" The oth
er half raised their hands.

I was in this second group. I sincerely be
lieve that HP has absolutely no intention of
trying to kill the HP3000, MPE, or IM
AGE; indeed, I believe that the reaction
common in the HP3000 installed user base
has come as a complete surprise to the peo
ple at corporate. But the reaction should not
have been all that unexpected. It is a direct
result of HP losing sight of some very fun
damental objectives, primary among them
is misunderstanding the desires and needs
of its long-term customers.

The lynchpin of the HP3000's success is
and always has been IMAGE. To most us
ers, the HP3000 is IMAGE. However, for
the last several years, HP corporate market
ing has felt strong pressure to appeal to cur
rent DEC and IBM users, believing that
these people are their future market. SQL is
the common database structure among these
users, and that has been the only reason for
HP's preoccupation with SQL. The resuit
has been a marketing mistake that very
nearly duplicates that of Coca-Cola.

No corporation has any intention of doing
themselves or their customers harm, but
Coca-Cola, by intensely tracking marketing
reports of falling market share, and by
carefully listening to "industry watchers"
and stock market analysts, with great delib
eration and prudence, came to the most ex
traordinary conclusion in American corpo
rate history: on one day in 1984, they
simply stopped manufacturing their 100
year-old product in favor of New Coke.
What lay at the heart of such a monumental
mistake? Undoubtedly, the primary reason
was that no one who participated in the de
cision was a user of Coke. If they had
been, abandoning the product would have
been unthinkable.

The situation has been startlingly similar at
HP. For some time now, HP has paid far
too much attention to its stock analysts and
industry watchers. And HP has paid far
too little attention to its users. It was con
sumer reaction that turned Coke around. It
will be user reaction that similarly corrects
HP's path.

There is however a very simple solution to
what otherwise might well become a grave
situation. Merge SQL and IMAGE. It is to
everyone's benefit. It can be done. And it
can be done in a manner that is wholly
compatible with all prior usage of IMAGE.
And it is surprisingly easy to do.

When the participants at the recent SIG
IMAGE meeting in Reno (March 4-5) were
asked for their opinions as to the most
pressing enhancements to IMAGE, the
number one vote-getter was to put a full

The Future ofIMAGE
3920-1

read/write SQL shell on top of IMAGE.
IMAGE, as it is now, is a world-elass data
base. No competing database is as efficient,
as robust, or as reliable. But like all things
well done, IMAGE can be improved. An
SQL interface shell would represent a sig
nificant advance for three reasons: (1) a
standard query language is the enabling
technology necessary for the "open systems
concept", an idea which will only continue
to grow in importance. (2) An SQL shell
would minimize new user resistance when
moving to the HP3000 from an environ
ment in which SQL is the common database
structure. And, (3) the shell would actually
promote migration from SQL to IMAGE,
and thus the expansion and market accepta
bility of IMAGE. Maximally efficient data
base structures will always be a desired
quality, and no database structure is more
efficient than IMAGE.

Putting a full read/write shell on top of IM
AGE would probably be accomplished in
two stages. The frrst logical step would be .
simply to expand the capabilities of the ex
isting ALLBASElTurboConnect product to
full read/write capability, a move HP is
now considering. But the bold vision is to
ultimately merge the two products into one,
so that there is only a single IMAGE-SQL
database, completely bundled in with the
FOS, with dual-level access and two inter
faces, one through standard TurbolMAGE
intrinsics and the other through standard
SQL.

What is particularly appealing about work
ing towards the complete merger of the two
database structures is that the process does
not have to be done all in one step. Inter
mediate versions of IMAGE can be released
which would represent significant improve
ments while work continues towards a
complete ANSI-standard SQL-IMAGE
merger. As Ken Sletten, SIGRAPID Chair
man, has said, "This is a way of having
your cake and eating it too."

There are however several enhancements
that must be made to TurboIMAGE before
an SQL shell can be added. It is no coin-

cidience that these same enhancements have
been among the most commonly requested
enhancements to IMAGE over the past 15
years. There is a certain inevitability in the
design of any well implemented database
structure. The enhancements which are ne
cessary to prepare IMAGE for an SQL
merger are:

• Add the capability to add or drop
indexes easily.

• Add the capability to specify the type
ofindex to be used (hashed or b-tree).

• Add the capability to add or drop
datasets easily.

• Add the capability to add new
dataitems to the end ofa dataset easily.

• Add a KSAM-like capability for
overlapping keys.

• Optimize IMAGEfor maximally
efficient serial reads.

• Add automatic capacity management
ofdetail datasets.

These few enhancements are among the
most commonly touted advantages of SQL
databases, although they have nothing to
do with SQL per see They should be, and
should always have been, part and parcel
of the standard IMAGE database, too. IM
AGE is particularly amenable to these mod
ifications, and none of them are difficult.

When comparing IMAGE and SQL, it is
important to clearly understand what is an
attribute of the database and what is an at
tribute of the query language. The basic
SQL commands are listed in Table 1. The
fIrst seven commands (CREATE, DROP
and ALTER) deal solely with restructuring
the SQL database. Only the last four (SE
LECT, UPDATE, DELETE, and INSERT)
are part of the query language.

Because there is this very clean break in
structure, it's not only possible-but quite

The Future ofIMAGE
3920-2

reasonable-to have dual-level access to the
same database. The SQL query language is
only an upper-level shell imposed on a ge
neric database. IMAGE intrinsic-level ac
cess would continue to work as it always
have in an IMAGE-SQL merged database,
and will likely always be the preferred
high-speed, high-efficiency path into the
database.

CREATE TABLE
CREATE VIEW

CREATE INDEX

DROP TABLE
DROP VIEW

DROP INDEX

ALTER TABLE

SELECT
UPDATE
DELETE
INSERT

Table 1. The basic commands ofSQL

The Steps Necessary for Merger

First, a full read/write SQL
query language shell must be created.

The SQL query language interface to IM
AGE already partially exists. It is currently
half built, and is called ALLBASE/
TurboConnect (ATC). ATC is, at the mo
ment, a read-only shell. To be sure, a read
only product is easier to design than one
with write capabilities. Considerations such
as locking and rollback recovery need not
be addressed in the design of a read-only
interface that must be accounted for in a full
read/write shell. But, once the read-only
interface is up and working, as it is now,
80-90% of the task has been accomplished.
HP is now considering whether or not to
complete the task, and to its great credit, is
asking for your thoughts on the matter. The
person to write is:

Douglas Dedo
IMAGE Product Line Manager
Hewlett-Packard Company
19111 Pruneridge Ave. MIS 44MP
Cupertino, CA 95014 USA

FAX:(408) 447-0125
(408) 447-0872
(408) 447-4966

Doug Dedo has emphasized that the size of
your organization is not important. Every
one's comments will be given due consid
eration and are equally valued

Second, IMAGE must be
made more plastic.

Virtually all of the current attractiveness of
SQL lies in the freedom associated with re
structuring the database, not in the query
language. With a sufficiently plastic data
base structure, it is not necessary to predict
all future access paths at design time. This
plasticity often saves significant overall
program development time. As needs
evolve, a well-designed database structure
can often be modified without affecting ex
isting programs, thus greatly simplifying
application program maintenance.

Now that critical item update capability will
soon be a reality, IMAGE can be made to
be at least as plastic as SQL, if not more
so. With critical item update in place, data
items which are not now keyed search
items can be made to be so with guaranteed
certainty that the change will have absolute
ly no effect on any pre-existing application
program. Moreover, HP has all of the re
maining code in hand necessary to make
IMAGE as plastic as SQL with its
DBChange product. Only a very small
portion of the code is necessary to bring
IMAGE up to SQL standards: the capacity
to add or drop detail datasets, the capacity
to add or drop indexes from detail datasets,
and the capacity to add dataitems at the end
of an existing dataset. Adding this code to
IMAGE's standard capabilities will not be
particularly expensive or difficult.

The Future ofIMAGE
3920-3

Third, b-tree generic searches
must be added to IMAGE.

Adding generic search capabilities has been
one of the most commonly requested en
hancements to IMAGE, second only to crit
ical item update capability. And because a
true SQL shell can't be added until b-trees
exist in IMAGE, this is one of those rare
opportunities where a design process
works synergistically in everyone's favor.
There exists a very simple method available
to invisibly add high-speed b-trees to IM
AGE. In the procedure outlined in the ap
pendix, IMAGE b-trees would take full ad
vantage of the master dataset hashing
algorithm inherent to IMAGE and require
only the most minute of changes to IMAGE
master datasets. The method is surprising
ly simple to implement, and surprisingly
fast. DBGETs (database retrievals) would
be, on average, 2x faster than equivalent
KSAM retrievals. But more impressive
yet, DBDELETEs and DBPUTs of b-tree
search items would be 5-200x faster than
KSAM.

IMAGE's hashing algorithm is an extreme
ly efficient search algorithm-but the
search technique works only if you know
the whole key. If you do not, as is often
the case, you are condemned to a serial
read of the dataset. "Generic", partial-key
searches are the mechanisms which elimi
nate the necessity of having to perform
time-consuming serial reads of datasets.
The DBFIND procedure outlined in the ap
pendix takes advantage of the best attrib
utes of both b-trees and hashing keys.

Because the method is surprisingly simple
to implement, measurements on the perfor
mance gain over KSAM generic searches
can be precisely simulated and measured.
The results of a set of simulated IMAGE b
tree experiments using a payrecord dataset
that was duplicated into both IMAGE and
KSAM formats are presented in the figure
below.

The mechanism proposed here is simple
enough and easy enough to be included in
IMAGE as a universal feature, available to

1.0

IMAGE Serial Search

KSAM Partial
Key Search

"
" ,

'" '-------,,
Simulated IMAGE "
Partial Key Search " ,,,

'---------o -"'---r-----,.-·---,I....---..-j-----r-j--'"'"""""rj

5@ 58@ 585@ 5851@ 58517@ 585173@
(2767) (1620) (1617) (209) (25) (0)

Partial Key Pattern to be Matched

The Future ofIMAGE
3920-4

Fig. 1. The relative
speeds ofKSAM and
IMAGE b-tree generic
searches, as compared to
an IMAGE serial read.
The generic search pattern
in presented along the X
axis. The "@" symbol
represents a wild card.
The number ofrecords
qualifiedfor each pattern
is indicated in
parentheses.

The trial programs used
identical code, other than
the necessary differences
in intrinsic calls.

all users, without charge. The advantages
of this type of b-treeing are significant: (1)
The method is easily implemented. (2) It is
guaranteed to be fully compatible with all
prior usage. (3) It will be quite fast On av
erage, it will be much faster than KSAM b
trees-and by implication, most other SQL
implementations. (4) Under most circum
stances, the method presents quite minimal
(often no) overhead. The b-tree structure
will be modified only when the master data
set is modified, a rare event. (5) The tech
nique will not require the massive disc
space usage characteristic of other external
b-trees. (6) The b-tree is automatically
shared among IMAGE's paths (up to 16
paths/master dataset). And, (7) master data
sets may be quickly "converted" from nor
mal hashing keys to b-trees and vice-versa.

Fourth, this new, complete,
much-enhanced IMAGE-SQL
database should be bundled into
the price ofthe HP3000.

Rebundling IMAGE is the most important
enhancement request of all. The presence of
one common database on the HP3000 has
been the glue that has bound users in Lon
don, England and Paris, Texas together as
a single community. It cannot be repeated
too often that the lynchpin of the HP3000's
success is and always has been IMAGE. It
is entirely arguable that if IMAGE had not
been bundled into the HP3000 in 1977, the
HP3000 would not exist today.

The few steps outlined here are not original
ideas. Indeed, they were part of the prom
ise that HP made to itself and its customers
in 1986:

"HP is introducing ALLBASE,
the dual database-management
system, designed for all the new
HP Precision Architecture ma
chines. ALLBASE will enable
your customers to have both rela
tional and network access to data
in one all-encompassing data
base-management system. Your
customers no longer need to

choose a DBMS that fits some of
their application needs and force
fits the remainder. ALLBASE
will be the foundation for HP so
lutions for many years to come.
On its second release, ALLBASE
will even provide dual-access.
Dual access will enable our cus
tomers to access IMAGE data
through the relational interface
via SQL, the relational data lan
guage, and through the HP
IMAGE interface via IMAGE in
trinsics. Dual access will be a
unique competitive advantage for
HP" (the italics are HP's).

-Terrie Murphy/CSY
Information Systems &
Manufacturing News,
March, 1986.

Five years have elapsed since this para
graph was written. Should another five
years pass without the promise coming
true, the ffil3000 and MPE will surely die.
As with every evolving process, the
HP3000 is either actively growing or dy
ing. It cannot stand still. But the enhance
ments outlined in this article are relatively
simple. They could all be in place in two
or three years. The original intention was
that all of this structure would be fully
bundled into the price of the HP3000, as
IMAGE had been for virtually all of its
commercial life.

Why has HP backed away from its original
promise? For very human reasons, no
doubt. Time moves on and people change
jobs. And marketing pressures demand in
stantaneous solutions to lost sales. So for
reasons of meeting monthly sales quotas,
the inevitable thousand technical problems
that plague any project, and a loss of vision
in a sucession of managers, short cuts are
taken and existing, third-party products are
touted in favor of investing the necessary
time and manpower to bring IMAGE to full
competitiveness. But with a very little en
couragement from the user community, I
suspect that the promise can be kept alive.

The Future ofIMAGE
3920-5

Appendix

A Simple Method to Add
B-Trees to IMAGE
The term "b-tree" is short for binary-tree, a
decision tree where you are presented with
a series of greater-thanlless-than decisions.
B-trees characteristically have a number of
decision layers, simply because not much
sorting can occur at each decision layer
with only two responses. Nonetheless, in
dividual items, or groups of items, can be
isolated in a large set surprisingly quickly.
Twenty questions can isolate a single item
in a set of a million records.

But more importantly, b-trees are the mech
anism which allows generic search capabili
ty. A generic search is one such that the
query asked requires finding all of the en
tries in the database between two dates or
the names that begin with "SHA". IMAGE,
as it presently stands, cannot directly find
such entries. IMAGE's keying method is
called a hashing key technique. The advan
tage of hashed keys is their extraordinary
efficiency. The disadvantage of hashed
keys is that you can only search for one key
item value at a time, and you must know
the search item value in its entirety. Ifyou
do not, as is often the case, you have no
choice but to serially read every record in
the dataset.

However, b-trees can be added to IMAGE
quite easily, and in a manner that is com
pletely compatible with all prior usage. If a
key were to be specified as a b-tree key, a
nonnal IMAGE master dataset (manual or
automatic) would be built as a "hashing"
master as it always has been. Indeed, all
normal rules of IMAGE would apply other
than the master dataset would be marked as
a b-tree key. This "marking" would be
done by simply using an unused word in
the master dataset's user label, and that one
word would be a pointer to the correspond
ing b-tree's file name (Fig. 2). (Every IM
AGE dataset, either master and detail, has a
128-word user label attached. Only 6

words in the user label are currently used;
122 words are unused).

Otherwise, the construction of a master da
taset would be unchanged. The only dif
ference would be that a b-tree file would be
invisibly "attached" to the master dataset. A
consequence of this simple structure is that
a normal IMAGE (hashed) master dataset
could be converted at any time into a b-tree
key. The backwards conversion would
even be simpler. The "attached" b-tree
would simply be dropped.

The mechanism that accounts for the great
efficiency of IMAGE b-trees is that the
structure of the b-trees would not need to
be modified for the majority of fundamental
database transactions. The key item values
in the b-tree would be designed to automat
ically maintain a one-to-one correspon
dence with the search item values in the
master datasets, which are, as a conse
quence of the way IMAGE is designed,
guaranteed to be unique. The only time that
the b-tree structure would need to be
changed is when a key item value is either
added or deleted from a master dataset, a
relatively rare event. The simple lengthen
ing or shortening of a chain when records
are added or deleted from a detail dataset
would have no effect on the b-tree. Thus,
for most transactions, the b-tree would rep
resent no overhead cost at all.

How would a generic search work using
these IMAGE b-trees? Presume that the
query you wished to ask was (in QUERY
syntax):

Find invoicesJobnum ib 15,60

where ib means "is between". Because a
b-tree is attached to the JOB-ID master da
taset (as shown in Fig. 2), IMAGE would
first "walk" through the b-tree, identifying
the qualifying search item values within the
specified range (in this case, the values are
16, 18, 23, 30, and 42). Once this has
been done, and because the search item val
ues are now known in their entirety, the
hashed masters of IMAGE can be used to

The Future ofIMAGE
3920-6

full advantage. Each search item value
would be applied in tum in a chained search
of the INVOICES dataset. The search
would end when all of the qualifying
records in INVOICES have been found and
recorded.

Quite obviously, a few of the standard IM
AGE intrinsics would have to be modified
to take advantage of the new b-trees. But
again this modification can be made invisi
ble to all prior use. DBFIND (mode 1), as
it now exists, inherently assumes an
"equals" relational operator. Very little
work would be required to modify
DBFIND. The addition of six new modes
would be the only necessary changes to the
intrinsic call.

DBFIND(base,dset,mode,status,
item,argument(s))

where

mode = 1 implies "equals"
2 implies "greater than"
3 implies "less than"
4 implies "greater or equals"
5 implies "less than or equals"
6 implies "is between (inel)"
7 implies "is between (exel)"

Multiple arguments would only be used in
conjunction with modes 6 and 7.

Fig. 2. An automatic
master dataset with a b
tree attached. Because
there is a one-to-one cor
respondence between the
key item values in the
master dataset and the b
tree, walking through the
b-tree from the minimum
job number value to the
maximum allows a very
rapid way to find all of
the appropriate invoices
in a hashed "generic"
search.

AMOUNT
BAlANCE
DATE

JOBNUM

CATEGORY

INVOICES
(detaiQ

8 12 48 654

EMPLOYEES
(detam

LNAME
FNAME
SOCSECNUM

CITY
STATE
ZIP
MARRIED
NUMDEPEND

LABOR
(dataR)

EMP-ID
(master)

JOBNUM

SOCSECNUM

DATE
REGULAR
OVERTIME

Each of the specific job
number values shown in
the shaded portion ofthe
b-tree would be applied
in turn to the chained
searches until all ofthe
qualifying invoices had

L.- --' beenfouM and recorded.

The Future ofIMAGE
3920-7

Acknowledgements

A slightly modified version of this article
entitled, "The 110% Solution", appeared in
the July, 1991 issue ofHP World, a Euro
pean HP user magazine.

Various drafts of this article were reviewed
by Valerie Atmar, Steve Cooper, Mark Hal
stead, Charles Hill, Steve Manin, Alfredo
Rego, Stan Sieler, Ken Sletten, Frank
Smith, Fred White and Rene Woc. The au
thor wishes to express his sincere apprecia
tion to everyone for their careful reviews
and thoughtful comments.

"chained path"
for JOBNUM

_~~m~~" the records in which
JOBNUM = 8404

the detail dataset
INVOICES

The TurboIMAGE Database

The Future ofIMAGE
3920-8

VENTURING INTO ALLBASE

C. Bradley Tashenberg
Bradmark Technologies, Inc.
4265 San Felipe, Suite 800

Houston. Texas 77027
713-621-2808

After 18 years of familiarizing ourselves with IMAGE. HP now has the audacity to tell us that there is a new DBMS on the HP3000 which
we should seriously consider. It is known as ALLBASE/SQL and is not getting an enonnous impetus from HP.

What is ALLBASE/SQL? And more imponantly, why should we consider using it?

SQL, (Structured Query Language) is an ANSI standard in relational database access. This means that even though the underlying structure
may be, and usually is, different between computing platfonns, the access methodology looks the same to the end user. ALLBASE, the
HP relational DBMS, is devised in accordance with the 10 rules spelled out by Dr. E.F. Codd.

Beyond just introducing a new concept in data management to the current IMAGE users, there are other concerns which require careful
deliberation before jumping into the RDBMS pond. One of which is: "How deep is the pond?", while others relate to the wealth of
technology, which we as IMAGE users have come to expect.

Conceptually, ALLBASE/SQL offers a plethora of features not found in IMAGE. However, as with most new ideas, there is very little
established today through which one can take advantage of these features. HP has been very effective in selling the merits of ALLBASE/
SQL to many of the larger 4th GL companies and VARs. but at this time, very little software is on the shelf. There is currently a sizeable
development effon going on; Cognos is developing Powerhouse for ALLBASE/SQL, Infocentre is to announce shonly a Speedware
version for ALLBASE/SQL. and both Collier-Jackson and ASK have committed to have a future release of their fine products running on
ALLBASE/SQL. Again, very little is available now or in the near future.

Besides the concern ofa lack ofapplication software and utilities presently available. there is the one about "ye olde"learning curve. Even
though there are some similarities between ALLBASE/SQL and IMAGE, there are vast differences in concept and implementation and use
of these database management systems.

Perhaps the most fundamental difference is that ALLBASE/SQL consists of an extensively layered structure, which can be changed
dynamically at any time. This, more than anything, may be a source of difficulty in understanding. Let's examine this a little bit.

IMAGE is quite rigid in its structure. It has a root file, which contains the database dictionary and a series of associated datasets.

The datasets are either masters, accessible through unique key value, or details, which house related infonnation chained to one or more
masters. Paths are hard-linked between master and associated detail entries.

ALLBASE/SQL does not have the hard-wired relationships between objects. The relations between the objects are declared dynamically.
ALLBASE uses the concept of Data Base Environment (DBE) to store all the objects such as tables, indexes, views, modules, groups, etc.
The views, or stored select commands, can be used to create some semblance of pennanent relationship between objects. They can also
be used to limit the access to infonnation within the various tables. Layers of security. known as groups and users, can also be declared
to funher protect the infonnation.

The use ofindexes. views. and groups used in conjunction with the tables can greatly enhance the accessibility and security ofthe data within
the DBE.

One area of similarity between ALLBASE/SQL and IMAGE is in the indexes. ALLBASE/SQL has currently 4 types of indexes available:

HASHED
UNIQUE
NORMAL
CLUSTERED

Venturing Into Allbase
3921 ·1

With judicious use of these indexes. ALLBASE/SQL can be made to appear very similar to an IMAGE database. Consider first the master
datasets: one can create a table with a hashed index on the columns (or fields) and thereby make the data behave the same way as it would
in an IMAGE master set. as far as uniqueness of key and hashed insertion and retrieval of the data is concerned.

In order to emulate detail datasets with the data dependencies of master entries, one can make use of the normal (balanced tree, or b-tree
indexes) and referential constraints on other existing tables.

The indexes, unique or normal. resemble the old Index Sequential Access Method technique and the KSAM approach of HP. The clustered
index is an attempt to cluster rows (or records) with similar key values within the same areas of the tables.

By using indexes, information can be retrieved quickly and efficiently. So, although ALLBASE/SQL professes not to have any fixed or
concrete structure, it is usually used with these index structures. Furthermore, the overhead required to maintain these indexes is not less
than that which is required to maintain the IMAGE hashed and chained information. ALLBASE/SQL's layering isdefinitely more
substantial. Benchmark tests performed by Hewlett-Packard have demonstrated that ALLBASE/SQL is 25 to 50% slower than
TurbolMAGE for similar applications.

So why would anyone want give up performance? The reason is very simple: Industry Standards. Application developers wish to develop
to known industry standards, and one of these standards is SQL. Thus, by developing applications complying to standards such as POSIX
and SQL, one should be able to port these applications to any other platform adhering to the same standards.

Am I in favor of this concept? Of course I am! Am I in favor of this approach? At this time, no, I am not!

To recommend to people that they should go from a technology that has a high satisfaction level and comfort zone, to one that is still
in its infancy is too radical a change. There must be a transition!

Jumping from IMAGE to ALLBASE/SQL is akin to jumping from HP3000 MPE/V based machines to MPE/XL without a compatibility
mode. It is both risky and dangerous. It would require a major rewrite of all database accesses, and data storage concepts. At this stage,
there are no old friends such as Query. Powerhouse, Speedware, Visimage and others, to help make this transition a success.

However, there is a solution for the curious. With MPE/XL 3.0. HP introduces ALLBASE Turbo Connect (ATC), which provides read
only SQL access. From what I have heard through the rumor mill. there is a strong possibility of supporting the ATC through the new
IMAGE Open Architecture. This will further enh2nce and speed up the data retrievals by using the indexing packages.

Using this approach, there is no gamble. Ifyou don't like SQL because it's not working for you, you haven't lost anything. Conversely,
if you like SQL. you have a safe and easy method to effect the transition. without dramatically disturbing your current operation.

So. it looks as though IMAGE users may not have to forsake IMAGE to take advantage of SQL. They may very shortly have the best of
both worlds. and isn't this the way it should be?

Improve your relationships and venture forward! If you do it conservatively. you have nothing to lose!

March 1991

Venturing Into Allbase
3921 - 2

Paper 4101
Windows - When the Time is Right

Russell T. Bradford
Bradford Business Systems, Inc.
23151 Verdugo Drive, Suite 114

Laguna Hills, CA 92653
(714) 859-4428

Windows is the buzz-word of the 90s but to that end, not too terribly many
companies have plunged headlong into commiting their entire organizations
computing strategy to a Windows based environment. Why might this be? Well,
there are plenty of good reasons- like cost, complexity, lack of applications, time,
and more. None the less, I strongly feel that the time has come, the move
toward the Graphical User Interface (GUI) is already well underway, and your
organization should not be left behind.

The reasons for implementing a GUI outweigh the reasons not to. Many of the
reasons used to justify not going to a GUI are the same reasons why you should.
Reasons like cost, complexity, lack of applications, time, etc. Let me explain.

Many people feel that the costs of installing GUls as a company wide standard
are too high. This reasoning, as far as it goes, is quite sound. You need more
powerful and more robust computers to run a GUI, requiring more memory and
more disk space, plus a faster processor. With the cheaper non-GUI solution,
you make up for the additional hardware costs with people costs. While GUI
applications themselves don't necessarily run any faster than the character
based counter parts (they often run slower), they are far easier to learn and use.
This one aspect alone can save many times the cost of the hardware and
development costs. Ease of use translates into less time spent on training in
tandem with more and better use of applications. The ease of use comes from
the fact that all well behaved GUI applications work in essentially the same way.
Once the user learns how to use a word processor they can easily migrate to a
spreadsheet, text editor, calendar or graphics package with little or possibly no
training. This boils down to savings by not having your people sitting in class for
a few extra days saving not only the cost of the class but also receiving a faster
payback on the employees salary.

The complexity of creating a GUI application is nothing to gloss over lightly.
GUls are a bear to program. My company, Bradford Business Systems, has
been developing an application which uses all the different GUls; Windows, X
Windows, and Presentation manager. The cost and effort to program for these
are astronomical in comparison to char'-\cter applications. As mentioned earlier,
one needs bigger, better, and more expensive equipment. A whole host of
software is required just to get started and even more if you wish to cut the time
and effort required. Experience is at a premium. There just aren't very many

Windows - When the Time is Right
4101-1

experts for hire at present, and consultants with this sort of background are few
and far between. While complexity is a great reason to stay way from GUls,
making complex tasks easy is the whole reason GUls can be worth the effort.
For example, secretaries commonly are asked to use a desktop publishing
package to assemble complicated documents or manuals. In years past this job
was relegated to professional typesetters at a cost of over $20 to $30 per page.
Cumbersome command oriented packages were able to do a small portion of
the work that todays desktop publishing packages do, with far more effort and a
much steeper learning curve. The everyday use of desktop publishing would
never have been possible without a GUI. This same translation of more
complexity.in programming can apply to everything from accounting to data entry
to statistical analysis to report creation. The efforts of a few expensive
programmers can translate into far greater productivity to dozens or even
hundreds of end users.

Lack of applications seems to be a good reason for not moving to a GUI, at least
superficially. First off, although there are possibly 100,000 non-windowed
applications available for DOS, and hundreds if not thousands of non windowed
applications for most proprietary operating systems, all but a few are used by
only a handful of users each. The reasons for this are many. In some cases itls
poor quality. In others it is the lack of suitability to the task at hand while others
lack certain features required or desired. The biggest reason why all but a few
packages are not in wide spread use is that the costs of marketing software
today are astronomical and thus the little guy with a better mousetrap stands
little or no chance of letting the world know. One other reason why perfectly
good packaged software never goes into wide spread use is the fear by
consumers that since the product isn't widely used there will be little help in
learning and using the product. These last two reasons are most likely the
primary reasons why probably 950/0 of the applications available today are used
by fewer than 1,000 individuals or organizations.

It is this last reason again why a GUI can make relatively obscure software less
threatening. By maintaining the same look, feel, and operation of all other GUI
applications, users can follow their instincts in learning the application. As part
of the GUI guidelines, every item on every menu can display specific help simply
by pressing the f1 key. An operation like copying text using a word processor is
virtually identical to copying cells from one place to the next in a spreadsheet. A
user who has become proficient in a word processor should be able to pick up a
desktop publishing system in relatively little time. For Microsoft Windows there
are already hundreds, possibly thousands of applications already available and
many many more on the way. There are dozens of applications for each of the
areas of accounting, data base management, education, engineering, games,
graphics, languages, chemistry, fashion, insurance, legal, science, statistics,
transportation and more.

Windows - When the Time is Right
4101·2

While it is still likely that you may need to change from some of your current
applications to different ones which are based on a GUI, others have or will be
converted to Windows in the near term. To that end, switching to a new word
processor, text editor, spreadsheet or other application might be a beneficial
experience in that the training and time spent learning a new, GUI based
application will payoff in increased productivity later on. To that end, most
applications which might be converted straight across from their character based
counterparts tend to break the rules for GUls and thus eliminate the primary
benefit of commonality across the board. These applications should be avoided
like the plague because they tend to instill bad habits that are hard to break
downstream. We see this tendancy every day with our own customers. They
want our product to work like the old clunker they have been living with for
twenty years. While admittedly there would be a short term benefit of a slightly
shorter learning curve, they will pay a penalty for the next twenty years having to
rethink other applications that don~ conform to their old fashioned, non-standard
utility. When we explain this to our users we gain reluctant acceptance. As little
as a week later these same individuals are squealing with delight over how easy
things are and how much more capability they have and can readily gain access
to. Most of these people tell us that once they are hooked on a GUI, they would
never go back. Our users, programmers, are the hardest sell of all and so if we
can convince them, your users should be a snap.

One last point on the Black of applicationsBargument. Most companies don't live
with just canned software but also have in house applications. If you buy the
point that GUls are beneficial in terms of productivity and also that if your in
house application were a GUI that your users would be more productive, then is
it worth the effort? Consider the move to a GUI from a competitive aspect, your
company against the competition. While I would be hard pressed to argue that
the first company to start using a GUI for their main stream application will be the
most successful, I might be able to argue that the most productive will be. That
being the case, if a GUI makes your users more productive and thus more
profitable, it should be a key part of your decision to move to a GUI.

Time is another excuse why one might not dive head long into GUls. It does
take much longer to create a decent GUI application. There will also be better
tools for developing GUls after more time passes, but that will always be true no
matter how long you wait. The bottom line on the time aspect of this decision is
that time and the competition are working against you. The longer you wait, the
more chance that your competitors will streamline their entire operation,
including DP. During my many years of consulting, I saw far too many shops
dealing with the false economy of waiting for faster, better, cheaper hardware
and software while their users sat at their terminals waiting minutes for
information that should have been there in seconds. Productivity wasn't even
considered in these shops, just time and getting the best deal on hardware and
software. Many of these companies don't even exist today, partly because
productivity wasn't a big priority.

Windows· When the Time is Right
4101-3

Performance is another reason why some people are waiting. GUls do impose
greater overhead than character based applications. GUls can be as much as
half as fast at displaying data although a mor~ realistic figure would be only 100k
or 200/0 degradation. The difference is that the data is usually more meaningful.
Take a word processor for example. On a character based word processor, all
text is usually the same in appearance even though it varies in fonts, size, and
attributes on the printed page. So it takes a little longer to display a document
for a GUI based word processor that shows all the fonts, sizes and attributes just
as they would print, it most likely takes less time to create and properly edit the
document with the GUI despite the added overhead. In other cases, GUls
outperform terminals simply by having more facilities available.

An order entry application might require the operator to look up a customer by
name. With a GUI the user simply types a few letters of the customer name and
then scrolls though a list box to find the correct customer. This same capability
can be used for product lists, gl account, and anything else that requires
choosing from a list. Other items that can be selected from one of only a few
choices can be displayed as check boxes. If the choice must be unique, radio
buttons are used. These simple devices eliminate mistakes and avoid the
tedium of trying to work around the limitations of character based user
interfaces. How many times have you stood at the airline counter while the
agent ceaselessly banged away at the tab key trying to get the cursor to end up
on the right field to make a simple change to your ticket. With a GUI they would
have pointed to the correct choice and the line at the counter would have been
shorter by one person minutes sooner.

Simple GUI Da1e Entry Form

Windows - When the Time is Right
4101-4

I
I I

What it takes to create a GUI application:

Probably the biggest concern facing anyone thinking about committing to a GUI
is the task of writing their own in house application. How difficult is it? Will my
people be able to hack it or do we need new talent? How long will it take? While
I can~ accurately answer these questions without knowing your staff, I can tell
you this: writing GUI versions of our text editor SpeedEdit was the most difficult
programming task our company has ever undertaken. I have heard the same
comment from the people at Walker, Richer, and Quinn concerning their
Windows version of Reflection. But at the same time, now that the development
is over, I can honestly say that it was worth it. I say this not only because we are
reaping the financial benefits of strong sales but also it has made our product,
like Reflection for Windows and Tymlabs· Session, new, vital, state of the art and
preeminent in the industry by being one of the first and the best.

While most of the people reading this paper won' be going into the business of
selling software, creating an in-house application which is current and modem
can rarely be faulted. I also wouldn' recommend to anyone to quit their job and
write another text editor, terminal emulator, word processor or spreadsheet for
windows since they take years to develop and the market is rapidly becoming
flooded with very strong products. Your in house applications are another
matter. You probably have already realized that you will eventually have to take
the plunge and create more modern and up to date versions of your applications
but are not quite convinced that now is the time. This is what it takes, should
you decide your company is ready:

a) The first thing needed is a choice of environments. There are three,
possibly four, strong contenders for the standard GUI which will gain the
most wide spread acceptance throughout the industry.

MS-Windows. At present MS-Windows is in use by over 3 million
individuals, possibly double that number. By the end of 1992 that number
will be anywhere from 6 million to 10 million. By far this is the most
prevalent GUI today and in the foreseeable future. The only drawback is
that it is only available for pes. Rumor has it that Microsoft is working on
a portable set of libraries which can be used on other systems such as
Unix as well as proprietary operating systems such as MPE should the
likes of HP care to implement them.

Presentation Manager. This is the equivalent of Windows for OS/2, but
alas, it is somewhat different and requires recoding programs and
different libraries to implement. It was ISMs intent to implement
Presentation Manager on all their systems starting with the AS400, but
that isn't happening at all, or at least as quickly as hoped for. Those

Windows - When the Time is Right
4101-5

companies that bet on Presentation Manager over MS-Windows lost lots
of valuable time and market share as their competitors ran away with the
Windows market. passing up the virtually non-existent OS/2 market.
Since Microsoft has released a product called WLO (Windows Libraries
for OS/2). Windows applications can be readily ported to Presentation
Manager simply by relinking with a different set of libraries. PM seems to
be a bad bet at present.

X-Windows. At present there are two flavors of X-Window applications.
differentiated by their different look and feel, Motif and OpenWindows.
While both of these standards are based on the same underlying X
Windows libraries, they allow the user to interact with the system in
substantially different ways. It is my belief that Motif will become the
standard over OpenWindows since Motif is currently in more wide spread
use and that it more closely looks like both MS-Windows and Presentation
Manager. While Motif has the support of Hewlett-Packard. seo, and
dozens of other vendors. the major proponent of OpenWindows is Sun
Microsystems. Ive used both and my preference is Motif, since
OpenWindows is a large departure from the defacto standard MS
Windows. not to mention too heavy a reliance on the use of a mouse. A
couple of other developments may give Motif a little more support. It has
been rumored in the· press that in DOS 6.0 Microsoft plans to integrat~

Windows and DOS as well as provide a built in interface to X-Windows.
Since Motif looks most like MS-Windows. it would be the most reasonable
to have running side by side with native Windows applications.

When all is said and done, I believe there will be three standards which
we will have to live with, MS-Windows, Presentation Manager. and X
Windows Motif. Fortunately. it may be that some day there will be one
library interface to all three of these systems and thus no need to
reprogram for different operating platforms.

b. Next, you will need to procure a development toolkit for the platform of
your choosing. The toolkits usually include the following:

Libraries The interface to the windowing system called by your
applications. Applications call hundreds, possibly as
many as a thousand, different subroutines
(procedures) which handle the jobs of redisplaying
windows, processing keystrokes. tracking the mouse,
etc.

Resource Editor Resources are things like dialog boxes (like the one
shown earlier),· strings. menus, pictures, icons. and
fonts. You need to be able to graphically create and
manipulate these in order to make programming a

Windows - When the Time is Right
4101-6

Debugger

Misc. tools

GUI reasonable. This tool basically allows you to
create the objects which you use in your application.

Without a symbolic debugger that can handle your
windows application the job of creating, testing and
debugging an application as complex as a GUI would
be impossible.

Most toolkits offer a variety of other tools to allow you
to see how memory is being used, which applications
are running, view message ques, and monitor other
aspects of the GUI.

c) Language. You will need to choose a development language. For most
low level jobs, the only choice is C or C++. For application type software,
it is possible to write your code in COBOL but if so, make sure you have
located a COBOL which knows about Windows. One PC based compiler
claims to simplify the handling of MS-Windows considerably. Many 4th
GLs also support most of the popular GUls. With some of these, you
don't even need the toolkit although its probably a good idea to have it
around for those jobs that can' be handled any other way. Borlands C++
comes with its own Windows libraries to eliminate the need for the
Microsoft Windows SDK.

d) Training. Unless you are blessed with several programmers who are
already familiar with the GUI of choice, send several people to as much
training as you can afford. The cost and lost work time will more than be
made up for later on.

e) Design. You will most likely find that using a GUion a PC and combining
it with client-server technology is your best bet. This offloads the host in
two ways. The host isn't responsible for any part of the GUI load and the
front end portion of your application is completely off-line, allowing the
host to do what it does best, process transactions. In the best scenario,
the HP-3000 is nothing more than a data base and print server.

What you end up with is a far more complex application requiring more training
and more time to develop (unless the 4th GL handles its job completely). The
end result is an application which places a lighter load on the host while at the
same time makes the users faster, more productive and more accurate,
requiring far less training and support.

4th GLs

Windows - When the Time is Right
4101-7

While I can't claim to be an expert on 4th GLs since I haven't used even one, I
have been following their development with great interest. Currently, most of the
major data base players have their own GUI oriented 4th Gls. Oracle, Ingress
and Informix all have tools that promise to speed· application creation and allow
for client-server operation across dissimilar SQl based databases. These
products bear investigating as they sound like they can cut the time and cost
involved with developing a GUI based application dramatically.

Starting with MPE-Xl 2.2, the Ingres development tools are shipped with the
Alibase/SQL system which should greatly facilitate the implementation of a GUI
with your data base applications. A fundamental part of this package is
Windows/4GL, which is a Unix based utility to create client applications that have
read/write access to ALLBASElSQL on HP MPE-XL servers.

Many development tools are already on the market which greatly assist in the
development process, and stand to make the chore of developing a GUI based
application less threatening, not to mention less costly.

The final item which makes the time right for moving to a GUI is the robust
nature of the many network offerings for the HP systems. GUls require a fair
amount of horsepower and that horsepower can come in the form of a PC
running MS Windows or a workstation running Unix and X-Windows or an X
Terminal. These solutions all require a network and a high degree of
connectivity to speed not only your application, but also the development of that
application. For running a client server based application which uses X
Windows you may end up with an arrangement with a central HP-3000 acting as
a general purpose server, and one or more Unix based systems driving several
X Terminals. Alternatively, you might have just an HP-3000 with numerous PCs
networked into it. The days of the terminal are numbered and with that the days
of point to point connections are also numbered providing a need for high speed
networks and ultra smart workstations to take over and enhance their role. The
GUI is the medium which provides that ultra smart behavior and which flavor
GUI, at this time, is a subject for debate and also a matter of your own comfort
level.

Windows - When the Time is Right
4101-8

I~

Envision the day when a 3 foot by 2 foot portion of your desktop is a flat panel
display with dozens of windows displaying all sorts of information. Things like
your daily schedule, a to do list, the company profit and loss statement, a list of
calls to be made, the current production schedule, and various reports and
periodicals to which you have subscribed, as well as todays newpaper. Each of
these items looks as crisp and clean as their printed counterparts, complete with
color graphics and pictures. You even have a window on your screen with the
ongoing CNN newscast and another full video window attached to a camera
watching over the production shop floor. Now imagine, if you will, your clunky
old fashioned, slow, non-dynamic, heart of your business application which
hasn't been enhanced in nearly a decade, sitting right in the middle of the whole
screen crying out for all the world to hear, someone missed the boatl The time
is right, seize the opportunityl

Windows - When the Time is Right
4101-9

Paper # 4102
The Anatomy of a Successful LAN Installation

Neil R. Brooks
International Foundation of Employee Benefit Plans

18700 West Bluemound Road
Brookfield, Wisconsin 53008-0069

(414) 786-6700

My organization recently completed a year-long installation of a 100 node local area
network. In this paper I will evaluate the implementation of this massive project and
offer evidence as to why we think it was a success. Every project of this magnitude
has its own life cycle, from the realization that you need to do something to the
installation of the last workstation. This paper will examine the many factors that
must be considered, including what LAN topology to use, hardware platform,
software used, connectivity with your HP-3000, systems migration, development
platforms, training and many others. I will also discuss the need to construct a
realistic implementation schedule while maintaining day-to-day service for your user
base. This paper also examines the need to arm yourself with as much expert
knowledge as possible in today's ever-changing computing environment. For example,
how do you apply the knowledge gained from sessions attended at INTEREX
conferences, consultants and other users. It was both interesting and disturbing to
discover that Hewlett-Packard is not as committed as they say to working in a multi
vendor environment. We also had the opportunity to discover several hardware
problems for them as well. I will also offer some tips how to manage organizational
change and maintain your sanity at the same time.

I work for a non-profit educational foundation dedicated to the employee benefits
industry. As such we are very similar to INTEREX in our mission and structure. Our
user departments are comprised of membership, registrations, educational programs
and development, audio visual, graphic arts, printing, research and executive, which
must deal with the board of directors and various committees comprised of our
membership base. The Foundation was using an HP-3000/52 minicomputer with 35
terminals and an NBI word processing system with 20 terminals. At the time, we had
a potential user base of 100 employees out of a total of 125.

Prior to my accepting the position of MIS Director at the Foundation in March of
1989, I had the opportunity to review an MIS audit report prepared by Andersen
Consulting. The report detailed many problems, such as lax security, improper system
backup procedures, a lack of hardware, poorly functioning systems, an eleven man
year project backlog and many others.·Several months after I came on board, I began
to realize that the problems were much worse than detailed in the audit. For
example, because none of the information systems were integrated, there was much
redundant data being entered and maintained. Average system response time on the
HP-3000 was ten seconds, and it was not unusual to experience response times of 20
seconds or more. The systems were poorly written in Powerhouse, and contained
many modules that performed serial reads through tens of thousands of records
because of poorly designed data bases. We also faced a severe lack of hardware, with

The Anatomy of a Successful LAN Installation· 4102·1

only one third of the user base having access to an HP or NBI terminal. I also
conducted extensive interviews with department directors, and the MIS department
staff spent many hours observing the interaction between departments and the
information systems they used. This information was then used to prepare an
information systems needs analysis for each departme·nt.

In addition to my realizing that solutions were urgently needed for these problems,
I also had a mandate from our chief executive officer and the board of directors
because of their awareness of the problems detailed in the audit report. We were also
fortunate in that the user base realized that their MIS needs were not being met.
Given their usual reluctance to change, I took this as a sign that something really had
to be done. I set a goal to have a final proposal ready for presentation to the board
of directors by August of that year.

After determining the information system needs of the Foundation, we defined the
goals that we needed to accomplish.

--
-
-
--

LAN IMPLEMENTATION GOALS

To select a standard for hardware to be used.

To Install a network structure which would allow for
distributed processing to take place at each
workstation, as well as having the ability to obtain
Information from the HP-3000.

To Install microcomputers In all the departments for
personnel to use In day-to-day operations and greatly
reduce the amount of paper flow between departments.

Provide data security for all users, departments and for
the Foundation's Information systems.

To select standards for software to be used.

To share the Information between all departments via
electronic data exchange (EDE) with regard to current
so~are applications being used.

In order to implement these goals we decided to arm ourselves with as much
knowledge as possible, so that we could develop a list of solutions. I felt it was
important to remain as objective as possible, and not develop a sense of ownership
for any particular solution, thus eliminating those that could be more effective. I
began by contacting various consultants, all capable of offering various hardware and
software platforms. In addition, I also worked with the local Hewlett-Packard office.

The Anatomy of a Successful LAN Installation· 4102·2

In choosing an effective consultant, I looked for several key factors.

KEY FACTORS IN
CHOOSING A CONSULTANT

_ Years of experience In the business.

_ Areas of expertise.

_ Information provided by customer references.

_ Hardware/software vendors they representll

_ Willingness to provide solutions that meet your needs
Instead of theirs.

_ Level of knowledge as to where MIS Is headed, Instead
of where ~t has been.

_ Commission/pricing structures (do 1they favor one type
of solution over another because It means more money
In their pockets).

_ Technical support capabilities.

_ Cost of goods and services.

Many of the consultants I contacted appeared to be prejudiced and narrow-minded
in their approach to our problems. They could only offer solutions based upon what
they had done in the past. ffiM seemed to fit into this category the best, where' they
proposed installing an AS/400 and having a person in Colorado convert all of our
existing software so that it could run on this platform. It was not a viable solution to
convert bad code so that it could run on a bad machine. I also found that Hewlett
Packard was just as ineffective, because their commission structures favor the sale of
an HP-3000 over anything in the PC arena, resulting in their sales force proposing
solutions based upon their needs and not yours. I developed a consultant fact sheet,
which allowed me to rate each vendor using the same criteria. When all was said and
done, I chose three vendors as finalists, with the intent of having each submit a
proposal in a competitive bidding atmosphere.

It is also very important that you do not put all of your eggs in the consultant basket.
Therefore, we attended seminars, conferences, user group meetings and other forums
to try to increase our level of knowledge with the intent of being fully aware of what

The Anatomy of a Successful LAN Installation· 4102·3

solutions were available at that time, and would be available in the future. I also
contacted other organizations in the area that had recently installed local area
networks or were exploring the possibility of doing so. This type of networking
allowed me to gain insight into what types of solutions were effective, and which ones
were not. It always helps to be able to learn from someone else's successes and
failures. It was also helpful to perform abstract searches within our library at the
Foundation, and at the University of Wisconsin library. I gathered articles pertaining
to local area networks and new developments in the minicomputer arena. The
knowledge we gained on our own helped us to better judge the effectiveness of
various solutions presented by the consultants, thus allowing us to weed out the fact
from the fiction.

The next step in the process was to begin brainstorming possible solutions, based
upon the needs analysis prepared for each department and the goals we wanted to
achieve. Do not eliminate anything because of preconceived notions. IT anything, this
process should help to solidify your final solution through the process of identifying
the weakness of the alternatives. Also, all or part of one solution may be able to be
combined with another to provide a more viable third solution. This process should
result in the development of a solution that is based upon several factors.

FACTORS TO CONSIDER
IN CHOOSING A SOLUTION

_ Will It allow you to meet your stated goals?

_ What will It cost for Installation and maintenance?

_ Physical plant - does your building present physical
obstacles?

_ User base • level of knowledge, willingness to accept
change.

_ MIS department staffing and their level of knowledge.

_ Available and emerging technology.

_ Amount of training needed, and other special needs.

_ Maintaining service to user departments during
Installation.

_ Total disk and memory capacity required.

The Anatomy of a Successful LAN Installation· 4102-4

_ Security concerns.

_ Ability for future expanslonll

The solution we chose was intended to meet and exceed the objectives of our plan.
It consisted of a Lattisnet (Ethernet) LAN, consisting of 12 Synoptics departmental
concentrators, 2 workgroup concentrators and one premises concentrator. This LAN
topology would utilize fiber optic cable as the backbone and unshielded twisted pair
cable for the connections between concentrators and workstations. The file setver
would run under the Novell Netware/386 operating system. The hardware
configuration consisted of one HP Vectra RS/25C microcomputer for the file setver,
and 100 HP Vectra 286/12 microcomputers for the workstations. The file seIVer
would contain 1.2 gb of mirrored disk capacity and 16mb of main memory. Each
workstation would contain 640K of main memory, with the ability to expand it where
necessary. Each workstation would be diskless, thus preventing the introduction of
software or other data into the LAN without the control of the MIS department.
Each user would have the capability to share, process, view and manipulate their own
files on the network, and each would have access to inter-office communications and
appointment scheduling. If granted access by the network supeIVisor, individual users
would also have access to other computer systems located within the network
structure. Printing needs would be met by placing an HP LaserJet printer in each
department, providing each user with the capability to send their output to any
printer attached to the LAN. Through the use of gateway technology, the HP-3000
would be available on the network to provide users with access to the information
systems located on that platform. Remote dial-in access by network users located
outside of the physical boundaries of this network would be provided through a
dedicated 80386 microcomputer and communications software, and. would provide
access to 4 remote users simultaneously. A tape backup system would be installed to
provide the capability to perform a full system backup on a daily basis, including the
hard drives located on microcomputers in the MIS department. We also included 6
portable NEC personal computers to be used by employees at home and offsite at
the various educational programs, seminars and conferences conducted by the
Foundation.

The standard software platforms chosen included WordPerfect for word processing,
WordPerfect Office for electronic mail and scheduling, LOTUS-123 for spreadsheets,
Aldus PageMaker for desktop publishing, and DataEase for intradepartmental
database development. The platform for system development chosen was Visual
Cobol from MBP software, which combines the attributes of a 4GL with ANSI
COBOL/85 and includes a screen generator, program editor, prototyping tools and
program debugger. The database management system chosen was the BTRIEVE
relational database from Novell. The plan also included miscellaneous software
intended for use within one or two departments, such as Harvard Graphics for the
Audio Visual department, and SPSS/PC+ for statistical processing in the Research
Department.

The next step was to obtain comparative pricing for the plan from the three vendors
we had chosen to work with. This was done by submitting the final hardware and

The Anatomy of a Successful LAN Installation· 4102.5

software specifications to each, so that an apples to apples comparison could be
made. We asked each vendor if they offered any discounts, such as those based upon
quantities purchased, or special programs offered to educational or non-profit
organizations. If you have done your homework, you should feel comfortable with
what they present to you. Now is not the time to question if one or another vendor
is presenting a low bid just to get the business without providing the value and service
needed to implement a project of this magnitude. We then chose one vendor to do
business with. As it turns out, all three were very competitive in their pricing, and the
final decision was primarily based upon our comfort level, or how well we thought we
could work with them.

We then proceeded to developing an implementation schedule. The most important
factor to consider here is not to overextend yourself. It is very easy to attempt to
solve the problem all at once, especially if the problem you are attempting to solve
is very large and visible to the organization. You will be under pressure to "get the
thing in" from a variety of sources, including department managers, users, your boss
and the board of directors.

FACTORS TO CONSIDER IN DEVELOPING
AN IMPLEMENTATION SCHEDULE

_ Realistic capabilities of the MIS department.

_ Capabilities of the vendor.

_ Availability of hardware and software.

_ Ability to take advantage of emerging technology.

_ Price Increases/decreases and quantity discounts.

_ Need to maintain day-to-day service to the user
departments.

Based upon the above factors, we decided to install the LAN by phase. It was then
necessary to define the unit of measure for each phase and what it would entail. We
decided to install one department at a time over the course of one year. Each phase
would consist of four to five weeks, depending upon the size of the department. We
also decided to install the larger departments first, thus bringing the benefits of our
solution to the largest number of users in the shortest period of time. Another
advantage of this type of implementation schedule is to provide positive exposure to
the users in other departments who may be reluctant to accept the pending change.
IT they can see the advantages and hear about them from the users in the installed
departments, it will make your job that much easier when you are ready to install
their department.

The Anatomy of a Successful LAN Installation· 4102·6

It is also very important to determine how you will train your user base in the use of
the hardware and software they will be using. We analyzed the pros and cons of
training the users ourselves or utilizing an outside training service. We believed that
our training needs would be better met by training the users ourselves, for we could
better design the training to cover the needs of a specific department, the needs of
specific users, provide the fleXibility of scheduling, minimize the disruption to work
schedules and the fact that we knew the personalities involved. Keep in mind that
there is a correlation between a user's level of knowledge and their effective use of
the system. However, you may not have the internal resources necessary to do the
training in-house.

The final step was to prepare a proposal for presentation to the executive committee
and board of directors. The important factor to keep in mind here is to include all
of the details. Do not assume that your audience will not understand what is being
presented to them. In today's world of computer literacy, you may be making a big
mistake with this assumption. If you provide them with all of the detail, they will
know that you did your homework, which should increase their comfort level with the
proposal. If they do not understand various components they will ask questions, thus
providing you with the opportunity to provide greater detail during your presentation.
The proposal should also contain data that fully details the cost of the entire system.
This was presented in the form of a detailed list of all of the components of the
LAN. We also presented the implementation schedule in the form a timeline,
detailing the phase identification, department involved and the length of time
required for installation. The entire proposal contained over 80 pages of information.

COMPONENTS OF THE LAN PROPOSAL

_ Statement of objectives

_ Overview of the proposed system

_ EqUipment and product descriptions

_ Description of service and support

_ Implementation schedule

_ Cost for each phase

_ Outline of training methods

_ Total cost of the proposal

It is also very important to present realistic costs. Build in room for price increases,
even if you do not anticipate any, and allow yourself some breathing room for the

The Anatomy of a Successful LAN Installation· 4102·7

items you may have forgotten or overlooked. You cannot possibly include everything
at the proposal stage. The many unknowns will come back to haunt you ifyou do not
acknowledge that they indeed exist.

When the final proposal was completed we had Andersen Consulting review it for
feasibility and to obtain suggestions for improvement. I also obtained input from
several MIS directors I knew. Having an unbiased person or organization review your
proposal will provide you with an idea as to how the board of directors will react to
it. The questions the reviewer asks will also help you to prepare for the questions the
board will ask as well. This process should help to clarify items or fill in any holes in
your proposal if they exist.

We were then ready to present the proposal to the executive committee and our
board of directors. Surprisingly, this went much easier than anticipated. Most of the
questions they presented pertained to the need for every user to have a personal
computer on their desk. Very little was discussed in the area of costs, since I was
given a ceiling as to what we could spend months before, and the proposal came in
under this amount. Upon receiving their approval,we then began the long and
exciting process of implementation.

According to Michael Beer, Professor of Business Administration at the Harvard
Graduate School of Business, there are 5 key components to affect successful change
in an organization.

KEY COMPONENTS THAT AFFECT
CHANGE IN AN ORGANIZATION

Key managers must be dissatisfied.

The top manager must be committed to the change.

Slack resources must exist.

Political support must exist.

Change resources must match the size and kind of
change.

Fortunately, these 5 conditions existed at the Foundation as we were ready to embark
on our project. The board, CEO and department directors were dissatisfied with the
information systems. As a result they were fully committed to the project, for they felt
that the new system could only be an improvement. Slack resources existed in the
form of budget dollars that were pre-allocated to the project and then approved by
the board of directors. Because we involved the user departments from the very
beginning through the process.of obtaining their input and observing their use of the
existing systems, we had their political support. Finally, we believed that we had the

The Anatomy of a Successful LAN Installation· 4102·8

resources in the MIS department, our consultant and the user base to successfully
implement the project. Even though these conditions existed, we still braced ourselves
for a certain amount of resistance. We countered this possibility through effective
communication with the users and department managers.

We started the LAN implementation by calling a Foundation-wide meeting of all
employees to explain in detail just what we would be doing over the course of the
next 12 months. Because there was much speculation as to what MIS was up to, and
many rumors going around, this meeting served to clear up any misconceptions. This
was followed with departmental meetings between the users and their assigned
programmer/analyst, providing detail as to what would happen within their
department. Our goal was to educate, inform and make the department feel involved
in the installation process, thus reinforcing their sense of ownership to the project.

. Since each department is assigned a specific programmer/analyst, they knew exactly
who to tum to with questions about the project.

Prior to the installation of each phase the MIS department met as a group and
defined all of the tasks that needed to be accomplished and then assigned
responsibility for each item. This was done at our weekly staff meeting, and this
forum was also used to review the progress of each phase, any problems that
occurred and the items that were a success. In other words, be aware of what works
and what doesn't as you go. This allowed us to be proactive rather than reactive as
we proceeded with the installation. It also points out the value in installing the project
in phases, which gives you the opportunity to correct problems before they become
very visible, or grow to an unmanageable magnitude. Each phase was the
responsibility of the programmer/analyst assigned to the department. Because this
person worked with the department on a regular basis, they were familiar with their
day-to-day operations, any special needs and the personalities involved.

The first phase consisted of installing clean electrical outlets for the concentrators.
It then proceeded to installation of the premises cabling and concentrators,
installation of the file server, UPS system, gateway server for the HP-3000,
workstations in the MIS department and all related software. The intent was to get
the LAN fully operational in the first phase, thus allowing the MIS department to
begin the process of learning the Novell Netware/386 operating system, testing of all
software, the functionality of the workstations and each installed node of the network.
We did not want to begin installing any given department without knowing that the
hardware or software would function according to specifications. Surprisingly, the
cabling of the building went very smoothly and took only 4 days to complete. It also
had the ~ffect of generating excitement among the users~ for it was the first visible
sign that something was being done. After completion of the cabling we tested each
jack to make sure that each component of the data transmission system was
operational. We discovered two jacks to be inoperable through this process and had
the problem corrected while the cabler was still onsite. Upon completion of the
cabling we created a set of maps, detailing the location each LAN jack and all of the
concentrators. The maps also indicate which concentrator each jack is connected to.
This can prove invaluable when diagnosing a problem or in determining what your
expansion capabilities are.

The Anatomy of a Successful LAN Installation· 4102·9

The first major problem arose during the installation of phase 1. This involved the
gateway between the LAN and the HP-3000. We should have known this would be
a problem since Hewlett-Packard was not much help when we were trying to
determine the configuration of the gateway during the process of putting the proposal
together. For example, we were at first told that we could not put in a gateway with
an HP-3000/52, then we were told we could. The technical support offered by our
local HP office was less than desirable. When it came time to install the gateway
hardware and software we encountered one problem after another. First of all, they
sent a customer engineer·who was inexperienced in gateway configurations. What
should have taken several hours to install took several days. During this process,
there was much finger pointing between Hewlett-Packard and Wollongong, Inc., the
vendor for the TCP/IP software used. The one thing we learned at this point was that
HP is not at all committed to their marketing slogans of working in a multi-vendor
environment and their commitment to adhering to standards. For example, the
LANIC card designed for use in the HP-3000/52 is not IEEE 802.3 standard, which
is what HP had told us. After a week of hard work, and through figuring out the
problem ourselves, we were able to get the gateway operational. It was a matter of
getting both systems to communicate with each other. Fortunately, the other
components of phase 1 went in without any problems. However, because of this
problem we spent a considerable amount of time insuring that all of the software was
fully tested in a LAN environment. Our goal was to have the LAN fully operational
and functional prior to proceeding to the installation of the next phase.

Security structure and procedures were defined and implemented during phase 1. An
MIS policy was incorporated into the Foundation's regular policy manual which
formally defined and enforced the security policy for the user base. The directory
structure was established so that each department had its own directory.
Subdirectories were created for each user. A public subdirectory was also created for
shared documents and data. Each user was assigned a specific login identification
based upon their name. Passwords are required and have to be changed each month.
It is against the MIS policy to access any file in a private subdirectory, including
electronic mail. It is also against policy to login under another persons identification
and password. All files reside on the file server in a secure environment. A complete
system backup tape cartridge is kept offsite at all times.

The security structure also includes automatic dial-back for all incoming modem
access to the LAN through the communications server. All file transfer activity is
prohibited accept for word processing documents. All directories are scanned for
viruses on a daily basis. All database additions and modifications are also stamped
with the user's identification name. As a result of the policy and the defined structure
we have been able to maintain data integrity and user confidence in the system.

After the completion of phase 1 I created a series of worksheets in LOTUS for each
phase of the project. I used these to track the equipment ordered, the amount
budgeted for each item, the actual expense and the variance. This allowed me to
manage the total dollars allocated to each phase and the entire project. It also helped
in tracking what equipment and software had been received along with the items still
on backorder. I also used LOTUS to perform 'what if' analysis for substitutions of

The Anatomy of a Successful LAN Installation· 4102·10

hardware and to track equipment warranties and maintenance costs.

The installation of phase 2 involved the Research department, which included 5 users.
As I stated earlier, we designed the implementation schedule to include the largest
departments in the earliest phases. However, we felt it was prudent to install one of
the smaller departments first, using them as a test of our abilities and capabilities. If
any problems did occur, they would not involve a large number of users, nor would
it disrupt the operations of one of our larger departments, such as membership,
which could have had an effect on the Foundation as a whole. It is important that the
first department you install be done successfully, for word travels fast if something
goes wrong, and you'll be spending most of your time with rumor control instead of
on solving the problem. Again, it's the concept of managing the project proactively
instead of reactively. Fortunately, everything went like clockwork. When the hardware
arrived we unpacked it and set it up within the MIS department, to make sure that
it was fully functional. This is very important, for several personal computers arrived
from Hewlett-Packard dead on arrival. Again, installing dead equipment in a user
department can have a detrimental affect on your user's perception of the project.
We then proceeded to install the hardware on the agreed upon installation date. It
was at this time we discovered that we did not purchase any power strips.
Fortunately, we were able to hurry over to the local computer supply store and
purchase the necessary units. That was the last time we let that happen to us. Again,
it is impossible to think of everything, so be prepared for that sort of thing. The
important thing is to act as though you have your act together when doing anything
within a user department.

We had scheduled training in WordPerfect Office to follow immediately after the
hardware installation. This is the electronic mail and appointment schedular software.
It also serves as the shell or home menu for access to all of the software packages
available, including access to the HP-3000. We felt it was important to train the users
as soon as possible, thus making the LAN functional for a department as soon as they
had the hardware. The training they received was an abridged version, enough to get
them started, and it included basics about the Novell operating system, electronic
mail, and how to access other packages, such as WordPerfect and Lotus. Users were
given the manuals for WordPerfect Office and WordPerfect as soon as their
computers were installed. We scheduled full training in WordPerfect Office within
several weeks of the installation in each department, along with training in
WordPerfect because of the importance ofword processing to the Foundation. These
training sessions were scheduled over several days, and went into detail, covering each
function of the respective packages. Users were grouped together in training by level
of ability when possible. Each programmer/analyst, along with myself were assigned
a specific software package to train. Each member of the MIS department received
training from their fellow employees as well so that they could be available for
assistance. This also provided the trainer with valuable feedback and a measure of
the effectiveness of their training program. The intent was to have one person act as
the expert for each specific application. However, it is important that each person in
the MIS department be capable of providing assistance.

The training programs were developed with each department in mind. Sample

The Anatomy of a Successful LAN Installation· 4102·11

documents created in WordPerfect training were of the type used by the department
being trained. For example, research questionnaires were used when the Research
department was trained, since this is their primary use of word processing. The
training programs also concentrated on those features the department would use
most, however all of the functions in each package were covered fully. This approach
to training has been a huge success. It should also be noted that our intent was to
provide each user with word processing and electronic mail/scheduling even if they
had never used it before. Many department directors were soon creating many of
there own memos in less time than it took to dictate them to their secretaries, who
then had to type them or enter them into the old NBI word processing system.

Training in the other packages, such as LOTUS and DataBase was given to those
users that requested the software and where there was a demonstrable need for it as
part of their job function. With DataBase for example, we assigned a database
administrator in each department to act as the database manager. Our intent for this
database management system was to provide the means for users to develop simple
systems to manage data not related to the Foundation's integrated membership
system. However, we did not want DataBase or LOTUS being used to develop
redundant systems or spreadsheets within a department or between departments. This
also would have defeated the purpose of distnbuted processing and shared access to
files and data. Users were selected based upon their level of knowledge and
expertise. This training was provided several months after the installation of a given
department. It is important not to throw too much at the users in the very beginning.
They will not retain as much knowledge from the training program and they will not
have the opportunity to spend time using the package immediately following the
training, which should be done to reinforce what they have just learned.

I would suggest putting a lot of thought into whatever training program you develop.
This can make or break the success of the LAN. If users cannot use the tools they
are given, they will soon wonder why they went through the bother and disruption of
the install. It is also very important to get them trained as soon as possible in the
basics, otherwise they will become very frustrated trying to navigate the system on
their own, and the MIS staff will spend most of its time responding to isolated user
questions. Training, along with thorough communication between the MIS
department and the users is your most effective tool for managing the change a LAN
installation will bring about. Be prepared to respond to any negative reactions as
quickly as possible, especially when you are installing departments in phases. It only
takes one user to go around the organization bad-mouthing a software package to
have a negative affect on other use.rs. We knew we were on the right path when we
had departments asking if they could be installed earlier than scheduled.

We had built into the implementation schedule one week between each phase in
order for. us to sit down and review the phase just completed. It also provided for
flexibility in case of late shipme'nts or any other problems that might occur. The
review process is very important, for it provided us the opportunity to assess the
situation and determine what we could have done better, problems that couId have
been avoided or methods that could be improved. For example, following the
installation of the Research department, we determined that we would add a physical

The Anatomy of a Successful LAN Installation. 4102·12

inspection of each department prior to them being installed. Using a portable
computer, we retested each LAN jack and also determined exactly where each
workstation would be placed along with the location of the printer. This information
was recorded on a site inspection worksheet and was signed off by the department
director as well. This process also acted as a final verification of the workstation and
printer count for each department. We also developed a phase sign off form which
was completed by the department director, indicating that the department was
installed to their satisfaction. It also provided an area for comments where they could
detail their likes, dislikes, need for further training and other miscellaneous items. In
summary, it is important to know the status of the project at any given time, and to
know where you are going.

The remaining phases were installed according to our schedule. At no time did we
experience any delays that could have resulted in having to delay the installation of
any department. We had also allocated extra time for phases that involved smaller
departments, and took advantage of this to regroup, assess our progress and deal with
any problems. As we completed each phase it became quite routine, with everyone
knowing what had to be accomplished. Installing by phase also gave those users not
yet installed the opportunity to see first-hand what was in store for their departments.
This helped to alleviate the fear of the unknown and greatly contributed to the
overall success of the project. One problem this situation did create was an increasing
demand to shorten or alter the implementation schedule. This is something we never
expected, and took it as a measure of our success. That isn't to say that we did not
encounter any problems as we progressed. For example, we encountered a major
problem with the display quality in Hewlett-Packard's monochrome VGA monitors,
which were too dark in color mode. Because of this we received numerous complaints
from the users. We also uncovered a problem with the compatibility of the ROM
BIOS chips in the Vectra 286/12 personal computers being used in a diskless
environment. As of yet, Hewlett-Packard has not solved either of these problems.

In defining the success of any project of this type it is often difficult to offer concrete
evidence. However, I believe I can offer indications that our LAN is functioning to
everyone's satisfaction. Software usage analysis indicates heavy utilization ofelectronic
mail, scheduling, word processing and the systems that the MIS department has
developed and converted from the HP-3000 to the LAN. Users who had never used
the old NBI word processing system or the HP-3000 are now using the LAN and
have come to depend upon it. We hear many users state til don't know what I did
without it". Communications between departments has improved greatly through the
use of electronic mail. Critical information can be passed along to a user even when
they are away from the office. Another indicator is new ways of thinking about old
tasks and having the ability to create new ones. This has resulted in increasing the
customer service level we can give to our membership base. For example, we can
now provide online information to our members offsite at educational conferences,
confirming their registrations, hotel reservations and other data. In addition, the LAN
has experienced a 99.9% uptime rate since its installation. This speaks for the quality
of Hewlett-Packard hardware and the Novell Netware operating system.

The Anatomy of a Successful LAN Installation· 4102·13

INDICATORS OF A SUCCESSFUL
LAN INSTALLATION

_ 99.9% uptime rate since the first phase of Installation.

_ Acceptance and use of the software packages provided
as Indicated by observation and usage analysis tools
available In a Novell environment.

_ An Increase In creativity within departments, resulting
In new approaches to Job functions and problems.

_ The entire project was Installed on schedule and 9%
under budget.

_ Data remains secure and users have a high level of
trust In the confidentiality of their data.

Now that the LAN has been fully installed for approximately one year we have
moved on to the task of converting the HP-3000 based systems to the LAN. We have
employed many of the same techniques we used to implement the LAN in our
approach to this massive conversion project. We anticipate that it will take two years
to complete. One thing you should be prepared for when you reach this point
following the install is the- increase in expectations your users will have toward the
LAN and the MIS department. This will result in further demands being placed on
your resources. However this is more desirable than having them ask you to de-install
the hardware. In conclusion, the keys to success for a project of this magnitude
incorporate thorough planning, managing change through communication, expecting
the unexpected and a little luck.

The Anatomy of a Successful LAN Installation· 4102·14

4103
THE BLACK HOLE OF PC ZNVESTKENT

James Call
The NPD Group

900 west Short Road
Port Washinqton, New York 11050

INTRODUCTION

Many companies are having second thoughts about the
wisdom of their investments in PC's! After spending
millions on PC's and related programming, u.s. office
productivity seems stalled. Vendors answer with an ever
upwardly spiraling line of advancements:
XT .•. AT ... 286 ... 386 ... 486 ... etc. This paper addresses the
pitfalls which, in retrospect, have contributed to disap
pointing PC results.

We discuss these issues in three sections as follows:

• Symptoms

• Underlying Problems and opportunities

• What to Do About It

We include examples of both successful and unsuccessful
implementations and provide a checklist summarizing possible
improvement approaches.

The Black Hole of PC Investment 4103-1

I. SYMPTOMS

There is little disagreement that the u.s. is failing to
keep up in productivity. The larger industries, automobile
manufacturing and consumer electronics, are often cited, but
they are examples of a wider problem. PC's have been
installed by the millions to improve productivity, but
symptoms are emerging which suggest their promise is not
being fulfilled.

Few Successes Reported

In a review of some 600 articles in leading PC magazines,
only 2 articles dealt with productivity improvement results
relating to actual work accomplished. Looked at from
another angle, in 70 citations gleaned from a literature
search on the key words "labor productivity" and "capital
productivity", PC's were mentioned only once, but negatively
as "Despite computers, faxes, etc ... productivity lags."l A
cover story in Fortune Ma~azine lamented the "Puny Payoff
from Office Computers". They reported that "so far
productivity has grown more slowly in the computer age than
it did before computers came into wide use."

Misdirected Productivity Focus

When the word "productivity" does appear in PC literature
(usually in PC hardware or software ads) it tends to relate
to productivity in doing things with the PC itself, not to
the actual work of the company as a whole. For example, a
coprocessor makes the PC run faster, a spreadsheet add-in
makes you more productive manipulating the spreadsheet.

Said one user in the Fortune article cited, "If people
are doing the wrong things when you automate, you get them
to do the wrong things faster."

II. UNDERLYING PROBLEMS AND IMPROVEMENT OPPORTUNITIES

The symptoms just discussed underlie a number of problems
which have plagued PC implementations.

pC's Implemented Merely to Speed Up Existing Procedures

PC's may be implemented to merely speed up existing
procedures without regard to whether the basic procedure was
outmoded or even needed at all. This first wave of
"automation" then gives a false sense of security and
establishes a stake in a SUboptimal solution, discouraging
further attention to the real opportunity.

The Black Hole of PC Investment 4103-2

Word processing, spreadsheet software and numerous PC's
have replaced IBM Selectric typewriters without streamlining
the existing document flows~ The new found revision
capability also then stimulated trivial rewrites and fine
tuning, eating into the little time that was saved.

This inappropriate use of PC's has been called using the
PC only as an "electric pencil".

PC Focussed on Administrative Processes as Opposed to the
Actual Work Itself

An advertisement for a PC program which is designed to
optimize any worksheet cell by backsolving on a worksheet
variable promises "Achieve goals, maximize profits, and
minimize costs with this one program." Were it this simple.

This is an example of directing undo attention to a
process as opposed to the work of the firm. It at best
recapitulates what is already known about a real situation.
At worst it legitimizes a useless management exercise quite
unconnected to the opportunities one would find in the
reality of the factory floor. ~aleznick in his provocative
book, The Managerial Mystique describes the failure of
American management as the sUbstitution of process for
substance- " ... programs and procedures as a sUbstitute for
direct engagement in work."

PC's Implemented in spite of superior Alternatives

A spreadsheet program nearly 1000 lines long, replete
with macro's and data entry screens was laboriously
constructed to perform a rotation of survey questions.
(Such rotation is an important requirement to prevent "order
bias" in market research surveys. It keeps the same
questions from always being first or last.) At first glance
the spreadsheet appeared to automate something, but it took
2 hours to set up the inputs for each new project and to run
the program. It was subsequently discovered that a simple
row and column matrix of predetermined numbers listed on a
page of paper could serve the same purpose. To use the
latter method, one simply listed the question number down
the left, then read across to see the ordered location. Not
only did the "manual" table-based approach not require a PC,
but it was over 1000 times faster.

The Black Hole of PC Investment 4103-3

PC's Implemented Redundantly

A number of PC implementations provide capacity which is
already available on a corporate mainframe. Electronic mail
stands out as an example. If people are already connected
to a port on the mainframe, why reinvent the wheel.
Moreover the end result, on today's PC's, would likely fall
short of the file sharing ability, security and support we
take for granted in the mainframe environment.

An expensive solution to these comparative limitations,
when they arise midway in a PC implementation, may be more
PC disk, more memory, more PC's and a LAN. The investment
in PC redundancy, played out to its fullest extent sometimes
results in PC equipment and support costs which rivals that
of the mainframe data center. In essence, the users are
trying to build a new mainframe environment out of PC
building blocks, hoping to achieve similar functionality.

Companies may not be able to wisely bUdget or benefit
from huge investments when each expenditure, considered
alone, is far below an established capital expenditure
threshold.

Limited capability Sneaks Up On You

Things seem so good in the initial stages of a PC
implementation. Prototype data cases appear to demonstrate
feasibility, but as implementation proceeds, larger files
become a reality. Unforeseen tradeoffs of functionality are
then mandated by the limits of the technology. To. an
extent, we are spoiled by mainframes and thus gullible to
the initial ease of use of the PC.

Additional examples of PC constraints which may not be
initially obvious include:

1. Memory constraint on a spreadsheet, limiting the number
of lines.

2. Twenty five lines of only 80 characters each on a
screen.

3. Lack of an effective approach for system and data
backup and security of sensitive data bases.

Cumbersome Data Entry

Input and output from the PC often presents another snag
to overall productivity. Untold hours of labor are spent
retyping mainframe generated report data back into personal
spreadsheets, an ironic manual intervention. Moreover,
while the keyboard is still a major input device, users'
typing skills are often uneven at best.

The Black Hole of PC Investment 4103-4

Cheating the Cost Accounting system

The typical end user of the PC, with all tne best
intentions, spends numerous hours developing personal
applications, entering data and configuring applications
software. Much of this time is a substitute for what would
have been a more formal MIS project. Putting aside the
issue of whether the PC users' work results in a long term
corporate asset, the resources put into it bypass the corpo
rate charge back system. Even minimally successful results
then seem acceptable, since they appear to be "free". The
real kicker comes in when the author of the "PC System" is
promoted, transfers or leaves, and something goes wrong or a
change needs to be made.

Another important cost accounting issue arises in
companies where a charge back system is used for mainframe
computer processing. There may be real business reasons to
offload mainframe work to PC's but if the associated PC
costs are not reflected, users will not be able to make a
correct decision on where to best run an application. To an
individual PC user it may appear costs have been reduced
when a PC application bypasses the corporate cost system.
However, in fact, corporate costs may be higher overall.

III. WHAT TO DO ABOUT IT

Having discussed the symptoms and underlying problems
which have worked to limit PC productivity, let us now turn
our attention to what can be done about it. In any problem
we can profit by seeing in it an opportunity for
improvement. In that sense, problems are to be appreciated,
not lamented, for the improvement direction which they bring
to us.

Re-engineer Operations

The centerpiece of improving productivity is re
engineering operations. Re-engineering is a sUbject worthy
of a whole presentation (or even a life's work) in and of
itself. For the moment we will limit our scope to a summary
of four key aspects of re-engineering work activities as a
prerequisite to PC productivity:

• Eliminate
• Streamline
• Automate
• Minimize Hand offs

The Black Hole of PC Investment 4103-5

Eliminate

First look to eliminate existing steps, processes or
whole areas of activity. For example, a review of the
distribution list for a cost accounting report revealed that
only half the 12 recipients even used it. Of the 6 actual
users, none of them used all of it; each needed only the
section reporting on their own department.

As one author suggested in a recent Harvard Business
Review artiile on re-engineering work, "Don't automate,
obliterate. II

streamline

Once you have eliminated needless or redundant
activities, look to streamlining what is left. Keep in
mind, during the streamlining effort, that PC's or other
technology mayor may not play a part.

An example of streamlining would be to consolidate
information fields, originally on numerous forms, into a
single form. This might set the stage for a computer based
data file or e-mail. Again though, the streamlined manual
approach might be fine.

Automate

Once activities are streamlined, try to automate those
tasks which occur frequently or which, if infrequent, are
time consuming. It goes without saying that it is a waste
of time to automate something that takes little time
manually, although such needless automation is surprisingly
common. Don't lose sight of the fact that some jobs are
actually better done manually.

Minimize Hand Offs

In re-engineering, look closely at the pre- and post
steps of any task and see whether you can combine steps,
even if they occur in another department.

For example, a computer department issued a daily
production report' in a spreadsheet format. This was sent by
e-mail (HPDESK) to key users. It was discovered that one
user department was adding some critical information of
their own and reissuing their version of a similar report.
By simply enhancing the original report in the computer
room, an entire step in another department was eliminated.

A key concept is that once a given item is handled, try
to do all the tasks which focus on that item. This also
will help you avoid over specialization.

The Black Hole of PC Investment 4103-6

Keep an open Mind

In all the above, strive to keep an open mind. Challenge
preconceptions and consider striking out in new and
productive directions. For example, faced with a labor
shortage in data entry, specially programmed PC's were
installed in over 60 homes for "Work at Home" employees.
This tapped a new labor market and avoided the need for
expanding the office space as well. The somewhat non
traditional use of PC's would not normally have been thought
of without stretching our minds to remove constraints.

Don't set goals too low. Productivity improvements of 5,
10, even 1000 times existing rates are not uncommon in re
engineering situations.

Bringing It All Together

By re-engineering the work before you implement PC's you
will stand a much better chance of realizing real pro
ductivity gains. with aggressive re-engineering many
projects will turn out to deliver significant productivity
improvement and not even need the PC after all.

In cases where you do need a PC, the investment ~n

capital and operating costs will have a much better chance
of paying off.

PC productivity Checklist

The checklist on the following page outlines the key
suggestions of this presentation and suggests approaches
which can maximize your chances of significant productivity
improvements.

The Black Hole of PC Investment 4103-7

PC PRODUCTIVITY CHECKLIST

• Try to go beyond merely speeding up existing systems.

• Re-engineer operations first.

• Eliminate needless steps.

• Streamline activities and information flows.

• Automate time-consuming repetitive tasks.

• Minimize hand offs.

• Consider alternatives.

• Acknowledge all costs and benefits.

• Anticipate potential technology limits such as memory,
disk and processing speed.

• Keep an open mind.

The Black Hole of PC Investment 4103-8

REFERENCES

(1) New York Public Library, Literature search 5/91.

(2) Fortune cover story by William Bower, May 29, 1986.

(3)Abraham Zaleznick, The Managerial Mystique (New York:
& Row, 1989)

Harper

(4)Michael Hammer, "Reengineering Work... ," Harvard Business
Review, July-August 1990, 104-112.

The Black Hole of PC Investment 4103-9

TITLE:

AUTHOR:

Cooperative Processing Using Windows 3.0 and

Networking

Doug l\Talker

Walker, Richer & Quinn

2815 Eastlake Avenue East

Seattle, WA 98102

(206) 324-0350

FINAL PAPER WAS NOT AVAILABLE AT TIME OF PRINTING.

PAPERNO. 4104

	Index by Paper Number
	Index by Author
	Index by Category
	Surviving in a Multiple Protocol World
	Save the Trees! (and your printers and people)
	A Quick Look at the MPEXL Memory Dump For System Managers
	Technical Evaluation of Relational Technology on HP 3000/950 at Mohawk College
	Mainframe Software Management Techniques: What Every HP 3000 User Should Know
	Oracle RDBMS on HP 3000 - Narrow Tolerance Performance Tuhing Tips
	Me and My Shadow
	MPE from a VMS Perspective
	Rail Systems for Tomorrow; Data Communication Trains....
	Disappearing Dial-Up
	MPE/XL Internals and Performance
	HP 3000 Capacity Planning in the Trenches
	MPE XL Performance Considerations in the 90s
	Data Integrity and Recovery: The IMAGE/Adager Approach
	Increased System Availability with Optimal Backups
	High Availability on the HP 3000
	HPVOLINFO - A New Disk Management Intrinsic
	MPE XL Enhanced FOS Security
	Serial Message Routing and Electronic Authorization
	Client/Server Application Development Tools
	Disk Recording Technology-From DC to Light
	Disk Arrays - Mass Storage of the Future?
	HP 3000 Systems Management
	Managing MPE/XL Configurations
	Bounds Analysis or The Poor Man's Capacity Plan!
	Supporting an NS/3000 Network
	Native Mode Spooler - What does it mean to you?
	HP Proactive Maintenance Service -- Making the Difference in Support
	First-Level Performance Analysis (using GlancePlus/XL)
	How to Win Memory and Influence CPU: A Look at MPE XL System Performance
	A Standard Operating System Interface for MPE XL
	Transaction Analysis for Capacity Planning
	Remote Performance Management for HP Systems
	Developing With The User In Mind
	Porting the UNIX System Environment to MPE/XL
	Getting Over the Hurdles of Oracle Financials on the HP3000's Hardware Platform
	…But We Only Have COBOL! The Real Dilemma.
	Application Installation
	Decision Tables - Making the Complex Simple
	Dynamic Menu Systems for the Cognos Product
	Simplified IMAGE and VIEW Calls Through The Use Of COBOL Copy Libraries
	ANS COBOL 85 or How I Learned to Stop Worrying and Love the Bomb
	Integrating the OMNIDEX IMS Into Your System Applications
	The EH Safety Representative Information System on the Safety Performance Measurement System is where you will find… Word Processing and Helps with a V-PLUS!
	The Omnidex Handbook: Tips for Tuning Omnidex Performance
	Tradition vs. Transcendence in Software Engineering
	MPE V/E FORTRAN: The Internals of Alternate Return Paths
	Database indexing: The key to performance
	Managing A PowerHouse Environment
	Using MPE XL to Your Advantage - A Guide for the Applications Programmer
	Making QTP Run Efficiently
	TurboImage Logging
	The Data Warehouse Approach to Developing DSS/EIS Applications
	Critical Item Update - What Will It Do For Me?
	Memory Management On MPEXL
	The MPE XL System Debugger
	Understanding CASE
	COBOL85 On XL Machines, We've Got A Language!
	Creating Seamless Packages Through Process Handling
	Automate Testing To Improve Software Quality
	Information Management in the 1990's
	Client Server System Design
	Database standards: Rallying points
	Relational Database Design
	TurboIMAGE/XL's Standard Interface to Third-Party
	CASE ME: Computer Aided Software Engineering Tools for Managing User Expectations in a Software Migration Project
	The Evolution of Relational Technology
	HP Motif XL: The X Window System on MPE XL
	Applied Computerized Telephony: You won't be left on hold
	AIFs on MPE/XL
	ALLBASE/SQL High Availability Features
	ALLBASE/DB2 CONNECT - SQL Gateway to IBM's DB2
	Coexistence: TurboIMAGE and SQL
	The ALLBASE/SQL RDBMS: "Optimized for HP Platforms"
	MPE XL Development in a Multi-Platform Environment
	The Ins and Outs of Database Design
	DBChange Plus: New and Improved
	Develop Software Using a Synthesis Approach
	HP 3000 Open CASE
	The Pros and Cons of Prototyping
	Using HP's "F" words and gain control of your sequential files
	Data - Now that you've got it…What are you going to do with it?
	Pitfalls in Moving to a 4GL
	TurboIMAGE and Allbase/SQL Converting and Integrating these Data Sources Using 4GLs
	TurboImage/XL Performance
	The Future of IMAGE is SQL
	Venturing into ALLBASE
	Windows - When the Time is Right
	The Anatomy of a Successful LAN Installation
	The Black Hole of PC Investment
	Cooperative Processing Using Windows 3.0 and Networking

