

have not had a real need to use these recently, so I will not go into them in this paper,
maybe next year.

This completes all I have to say about VIEW. There are many other intrinsic
calls that can be used with VIEW, but, as I said, this copy library was meant to be one
that a new programmer could feel comfortable about. One other thing I would like to
mention about these routines in VIEW. HP came up with a package called HiLi, which
is basically macros for VIEW. This is free and available on ALL HP3000's. I gave a
talk last year on COB0L85 and HiLi and the one comment I made then and I will make
it now is that HiLi is HiLi and VIEW intrinsics are VIEW intrinsics. They cannot live
in harmony! You may not write a program calling HiLi intrinsics and then pass that
information to a program using VIEW intrinsics or visa-versa. With this copy library of
routines you may (1) pass information from a program using the copy library routines
to an existing program that uses VIEW intrinsics and (2) add to the paragraphs with
your own clever touches. These routines cannot be used with HiLi either.

Simplified IMAGE and VIEW Calls Paper # 3206 Page 8

On to IMAGE.

I purposely left out any information on IMAGE except for the opens and closes
because there isn't as easy a flow as VIEW has. The IMAGE performed paragraphs
will do a wealth of processing for the programmer as long as a few. ground rules are
understood on how the paragraphs work.

First, all calls to the IMAGE routines will need at least the data base name.
Most will need the data set name. These should always be put in to insure that the
performed paragraphs are initialized before each call. All access of the data base which
will return data (DBGET's) will need to have a MOVE statement immediately after.
Again, the performed paragraphs are generic and, as such, will return the data in a
field called DATA-BUFFER. I think you will be able to see how all of this ties
together over the next examples. One thing to remember, once the above simple rules
are understood, you will be able to access any kind of data without knowing a lot about
IMAGE (Well, that's not entirely true because the only way to understand what
happens in a data base is to understand IMAGE, but, a new user can learn while
doing).

The fust example that will be shown is a simple inquiry to a manual master.
The data set that' will be accessed is VENDOR-MASTER. The copy member that
defines the vendor master data set contains a line in the copy member:

01 VENDOR-DATA-SET PIC X(l6) VALUE
"VENDOR-MASTER;"•

To access this data set the program needs the following information:

1. the name of the data base
2. the name of the data set
3. the argument value (in this case the vendor number which is the key)

So the code will look like this:

move apdb-data-base
move vendor-data-set
move apOOl-vendoJr-number

perform lmage-calculated

to data-base
to data-set
to argument

The above code will either (1) successfully retrieve the vendor master record
from the data base or (2) fail in finding the record with the value stored in the field
apOOl-vendor-number.

Simplified IMAGE and VIEW Calls Paper # 3206 Page 9

The next 2 lines will check out the value of the result of the call to DBGET
through an 88 level assigned to IMAGE-CONDITION-WORD:

if image-no-errors
move data-buffer

else ...
to vendor-record

The above code will check to see if the record was found. IT it was found, the
initial data would be placed in the field DATA-BUFFER. This is another generic field
used in the processing the DBGET.

As you will se in the follwoing examples image-calculated is a powerful
paragraph. It will call DBINFO to find out what kind of data set you are trying to
access, then, if the data set is an automatic or manual master, it will call DBGET.
However, if the data set is a detail, it will first call DBFIND then call DBGET.

The next example in the first program is to add a transaction to the data base.
This is accomplished by performing first a data base lock then a put to the data base
then a data base unlock. The only reason I chose a data base lock was for quick clarity.
I would normally have chosen a data set lock for this kind of maintenance. The code
that is required is:

move apdb-data-base

perform image-base-Iock

move apdb-data-base
move vendor-data-set
move vendor-record

perform image-put

move apdb-data-base

to data-base

to data-base
to data-set
to data-buffer

to data-base

perform image-unlock

The above example will first call DBLOCK with an unconditional lock. There
is a field that is initially set to "U" to set up the unconditional lock. If you would rather
have conditional locking, set LOCKING-TYPE to spaces. It will then set up the data
set and move the data into the generic DATA-BUFFER for the call to DBPUT.
Finally, it will release the data base lock by calling DBUNLOCK.

The update routine is similar to the add routine in that the same exact code is
used except the perform image-put is replaced with perform image-update. The

Simplified IMAGE and VIEW Calls Paper # 3206 Page 10

update paragraph will call DBUPDATE with the data buffer containing all the changed
data. Please be aware that the routine will not succeed if the user attempts to change a
critical item (sort or search item).

The delete routine is similar to both the add and update. In this routine the user
only needs to perform image-delete. This routine does not need the data buffer since
no data is being manipulated.

To summarize all maintenance to the data base (adds, checnges, deletes and
inquires):

1. Give the name of the data base to data-base

2. Give the name of the data set to data-set

3. If detail data set, give the search item name to search-item

4. Give the argument value to either argument or argument-9999

5. The result data will be palced in the field data-buffer

6. Move the result data to your own data record layout

Now that we have laid out accessing a record in the data base, let's expand and
get multiple records. We do this by either reading serially through a data set or by
reading forward or backward on a chain.

There is one performed paragraph that will allow the user to read serially
through a data set. The code to read a data set serially is:

move apdb-data-base
move vendor-data-set

perform image-serial-read

if image-no-errors
move data-buffer

to data-base
to data-set

to vendor-record

This small piece of code will probably be in a performed looping paragraph.
The data set will be serially read through until the end of data set happens. Then the
image condition word will be set to 11.

Simplified IMAGE and VIEW Calls Paper # 3206 Page 11

On the other hand, let's say that you have already performed image-calculated
on a detail data set and now wish to read the next record on the chain. To do this:

move apdb-data-base
move detall-set-name

perform image-get-next

to data-base
to data-set

The three lines of code will read the next entry in the chain. The converse of
this would be to perform image-get-previous. Either perform will read along the
chain. This way the user can read multiple records and search for data with just a few
lines of code.

The rest of the performed paragraphs will take care of other tasks such as
IMAGE logging, rewinding a data set, directed and primary gets and re-reading
locations.

To rewind a data set (this is used to insure that the program always starts a
serial read at the first record in the data set):

move apdb-data-base
move vendor-data-set

perform image-rewind

to data-base
to data-set

The data set will now begin at the first record. This routine will call DBCLOSE
with mode 3.

To re-read the same location (this is used mainly when mass deletes are done to
a manual master data set to get rid of migrating secondaries):

move apdb-data-base
move vendor-data-set

perform image-re-read

to data-base
to data-set

This will return an error 17 (no entry) if there is no record at the location.

Simplified IMAGE and VIEW Calls Paper # 3206 Page 12

To begin/end IMAGE logging:

move apdb-data-base to data-base
move "This is the start of logging" to image-text

perform image-begin-Iog

do something

move apdb-data-base to data-base
move "This is the end of logging" to image-text

perform image-end-Iog

Now IMAGE will have logical transactions in the data base.

In conclusion:

I hope this short paper will help out users, especially new users, who are unsure
of IMAGE and VIEW. Granted, not everything that you can do is in this copy library,
but, given the time, many other functions can be placed in the copy library to allow
many different accesses and changes to the data flow of your programs. I tried to give
reasonable names to the performed paragraphs so that not only could someone (myself
included) could look at the programs months or years from now and still understand
what was going on. I have always felt that the clearer the names, the easier to follow. I
think that performing a paragraph names image-get-next is clearer than calling
DBGET in mode S.

Simplified IMAGE and VIEW Calls Paper # 3206 Page 13

_ ':t
.1\.·.·

"".;:;":'.

OPt cobol Ii
or

~OW I (80rp8d 10 ilop
uJorrqlpq

opd (OU8 1fi8 fJOJDb

robert o. korflp
korflpf korp8r

1616 dop poord 0(18.

p. P.lllfllool Co.
91605

(616) 96l-9331

ANS COBOL 8S or How I Learned to

Stop Worrying and Love The Bomb 3207-1 Robert A Karlin

INTRODUCTION

In May of 1959, the. leading suppliers of computer hardware met with the
Department ofDef~ for the Conference on Data Systems Languages, CODASYL.
Charles Phillips, from the Department of Defense, informed the representatives of
IBM, Burroughs, Honeywell, General Electric, National Cash Register, Pbilco,
Sperry Rand, RCA and Sylvania that the Pentagon wanted a uniform business
programming language, and wanted it as soon as it could get it

The conferees went to work, and by mid-autumn had developed the basis for a
new language, called Common Business Oriented Language, or COBOL. But even
before the designers could present the language to the full committee, another group of
committee members declared the project dea~ and endorsed an entirely different
language developed by Honeywell, called FACT (Fully Automated Compiling
Technique). In fact, Charles Phillips, who now cJtaired the executive committee of
CODASYL, one day received a heavy crate. Upon opening it, he found a small
marble tablet with a rec:umbent lamb carved at the top. Chiseled into the marble was
the single word "COBOL". 'There was no epitaph.

Premature reports of the death of COBOL have since abounded. From ROO, to
put, to PASCAL. to BASIC, to 4GL, to SQL and other "user friendly" report writers
and database update packages, to dBASE, to C, the list goes on and on. And yet
COBOL still survives, and is the mo~commonly used language for today's business
community. What is it about the language that seems to attract so many people?

First, and probably most important, manyprogr8Qls are written in COBOL
precisely because many programi have already been Written in COBOL. There is a
wealth of experience to draw on, and there is a certain safety in going where everyone
has gone before.

Second, COBOL seems to have a very shallow learning curve. Programmers
become prolific in COBOL faster than in most other languages. This is partly because
of COBOL's strengths, but is also in part because of COBOL's weaknesses. Many
errors that plague other languages are impossible in COBOL, because of the lack of
such features as implicit variable definition, local variables and paramettic procedures.

Third, there is a large pool of trained COBOL programmers available. And, in
addition, most of these programmers are also trained in modem development
tecbniques, such as structured design and analysis, data base design and

ANS COBOL 85 or How I Learned to

Stop Wonying and LDve The Bomb 3207·2 Robert A Karlin

implementation and user interaction tools and techniques. This is not always true of
programmers trained only in Pascal or c.

And, (mally, COBOL is an evolving language. Since the initial COBOL
specifications were published in April of 1960, there have been three major language
revisions, the ftrst in 1968, the second in 1974, and the third in 1985. Each revision
has added strength and power to the language. The COBOL committee of the
American National Standards Institute (ANSI) is presently working on the fourth
revision, to be published sometime in the mid-l990s.

In specific, the 1985 version ofCOHOL has provided an enonnous wealth ofnew
features. This paper describes some of these features, along with examples of how
these features can proVide software that is both easier to write and easier to maintain.
When possible, actual programs have been used to illustrate these features.

Unfortunately, some features described here have not yet been implemented on all
hardware platforms. If there is any doubt, check the specific reference manual for the
hardware platform that is being used.

ANS COBOL 8S or How I Learned to

Stop Worrying and Love The Bomb 3207-3 Robert A Karnin

SCOPE TERMINATORS

One ofthe most useful additions made to COBOL by the 1985 ANSI standard was
the addition of Scope Terminators, that is, constructs that terminate the scope of a
COBOLverb. Consider the following:

COBOk74
IF RECORD-IDENTIFIER EQUALS 'PAYMENT'

COMPUTE AMOUNT = RECORD- AMOUNT / 10

IF RECORD-TYPE = 'LOAN'

COMPUTE AMOUNT =- AMOUNT + RECORD- INTEREST

COMPUTE PAYMENT-DUE = (AMOUNT / 365) * DAYS-PAID

ELSE
COMPUTE PAYMENT-DUB = (AMOtJN'l' I 365) * DAYS-PAID.

Note that·the computation for the PAYMENT-DUE field must be repeated twice.
Now, let's look at the same calculation in COBOL-8S:

COBOl.cSS
IF RECORD- IDENTIFIER EQUALS 'PAYMEN'l"

COMPUTE AMOUNT = RECORD-AMOUNT / 10

IF RECORD-TYPE = 'LOAN'
COMPOTE AMOUNT = AMOUNT + RECORD-INTEREST

END-IF

COMPUTE PAYMENT-DUE :II:: (AMOUNT / 365) * DAYS-PAID

END-IF.

We can now easily see that the PAYMENT-DUE calculation is the same regardless
ofwhat the record type is, a fact that was not evident in the fll'St instance. Also, since
the PAYMENT-DUE calculation is in only one place, any modifications to that
calculation are made only in that one place, preventing the possibility of missing the
second calculation. Note that the final END-IF is not required by most compilers.

Let's take a look at another example:

COBOk74
IF RBCORD- IDENTIFIER EQUALS 'PAYMENT'

COMPUTE AMOUNT I:: RlCORD-AMOUNT / 10
IF RECORD-TYPE = 'LOAN'

COMPUTE AMOUNT = AMOUNT + RECORD - IN'l'EREST.

ANS COBOL as or How I Learned to

Stop Worrying and LDve The Bomb 3207-4 Robert A Karlin

One of the most prevalent errors in COBOL coding is the misplaced period. In the
above example, a period after the fll'St compute statement would change tllle calculation
in a certain number of cases. Because the particular scenario that produces an error in
result may only occur sporadically, it could easily go unnoticed for years. lUsing
scope terminators, however:

COBQkBS

IF RECORD-IDENTIFIER EQUALS 'PAnmNT'

COMPUTE AMOUNT = RECORD-AMOUNT / 10

IF RECORD-TYPE = 'LOAN'
COMPUTE AMOUNT :a: AMOUNT + RECORD- IN'l'BREST
END-IF

END-IF.

If a period was accidentally placed after tile first compute statement, the compiler
would reject the second END-IF statement as superfluous, signalling to the
programmer that an error of some sort had occurred.

It should be noted that all verbs tbat contain multiple operands may take a scope
terminator. Whereas an END-MOVE statement seems excessive, END-READ
statements that terminate an AT END condition on a read statement are extremely
useful. Other "scope terminators that are useful for documentation purposes are the
END-COMPUTE, the END-SEARCH, and the END-(aritlunetic]. We will discuss
two other scope tenDinaIors, the END-PERFORM and the END-EVALUATE, later.

ANS COBOL 8S or How I Learned to
Stop WOITYina and Love The 180mb 3207-5 Robert A Karlin

INLINE PERFORMS with TEST BEFORE and TEST AFTER

One of the more frostrating problems with COBOL has been the lack of effective
block control structures. Looping through code involved either separating the code
into a separate subroutine, or resorting to the excessive use of the 00 TO verb. In
addition, there was no construct that allowed the programmer to always execute a loop
once, since the COBOL perform would always examine the conditional prior to
executing the performed subroutine. COBOL·8S has enhanced the PERFORM
statement to answer these two problems.

The first enhancement to the PERFORM statement allows the programmer to code
his subroutine directly within the perform statement. For example, in COBOL-74:

COBOl.c74
PERFORM OlOO~I~TIALIZE-TABLE

VARYING TABLE- INDEX FROM 1 BY 1
UNTIL TABLE-INDEX IS GREATER THAN 10.

OlOO-I~~IALIZE-TABLE.

MOVE TABLE-INDEX TO TABLE-LlNE(TABLE-INDEX).

while in COBOL-8S

COBOk85
PERFORM VARYING TABLE- INDEX FROM 1 BY 1

UNTIL TABLE - INDEX IS GREATER THAN 10
MOVE TABLE - INDEX TO TABLE - LINE (TABLE - INDEX
END.. PERFORM.

There need not be anything within the PERFORM as in the following:

COBOk85

PERFORM VARYING TABLE- INDEX FROM 1 BY 1

UNTIL TABLE-LlNE(TABLE-INDEX) = LlNE-OF-BUSlNESS

END- PERFORM.

ADD 1 TO TABLE- POLICIES (TABLE- INDEX).

In addition to the inline PERFORM, COBOL-8S includes the additional syntax
options WITH TEST BEFORE and WITH TEST AFI'ER. The default is TEST
BPPORE, to maintain compatibility with earlier releases.

ANS COBOL 8S or How I Learned to

Stop Worrying and Love The Bomb 3207-6 Robert A Karlin

EVALUATE

Another traditional lack in COBOL bas been a CASE structure, that is, a structure
that allows a programmer to select alternatives from some form of interrogatory list
The GO 10 DEPENDING ON allowed limited branching based on numeric selection,
but was insufficient in providing maintainable, easy to read code in any case that had
more than a half dozen selections. Extensive use of nested IFs couRd provide a
solution in many cases, but the resultant code could give strong men nightmares.

COBOL-8S has provided the EVALUATE verb, possibly the most powerful case
structure verb that exists in third generation procedura1languages. In its simplest form
it would look like this (I have provided an IF statement in COBOL-74 to illustrate the
comparable syntax):

COBOL-74
IF RECORD-TYPE = 'A'

PERFORM PROCESS-ADD

ELSE
IF RECORD TYPE = 'C'

PERFORM PROCESS - CHANGE

BLSE
IF RECORD-TYPE = 'D'

PERFORM PROCESS - DELETE

ELSE
ADD 1 TO TYPE-ERROR

PERFORM PROCESS - ERROR.

COBOL-SS
EVALUATE RECORD-TYPE

WHEN 'A'

PERFORM PROCESS - ADD

WHEN 'C'

PERFORM PROCESS - CHANGE

WHEN 'D'

PERFORM PROCESS - DELETE

WHEN OTHER

ADD 1 TO TYPE - ERROR

PERFORM PROCESS - ERROR
END- EVALUATE.

ANS COBOL 8S or How I Learned to
Stop Worrying and Love The Bomb 3207-7 Robert A Karlin

The WHEN clauses need not be in any onler. Each WHEN is terminated either by
the next WHEN, the END-EVALUATE, or a period. WHEN OTHER is used to

select all conditions not explicitly specified. Ifthere are no statements between WHEN
clauses, the EVALUATE falls through and executes the first executable statement it
finds within the BYALUATE. To process a null option, the CONTINUE place holder
must be used:

COBOk85
EVALUATE RECORD-TYPE

WHEN 'a'
WHEN 'A'

PERFORM PROCESS - ADD

WHEN 'e'
WHEN 'c'

PERFORM PROCESS - CHANGE

WHEN 'de
WHEN 10'

PERFORM PROCESS-DELETE

WHEN 'I'
CONTINUE

WHEN OTHER
ADD 1 TO TYPE-ERROR
PERFORM PROCESS - ERROR

BND-EVALUATE.

The strength ofthe EVALUATE is in dle fact that tile conditional comparison may
be as complex as necessary. For example:

mBQL-BS
EVALUATE (LOAN-AMOUNT * INTEREST) / 100

WHEN 0 THRO PRINCIPLE * .20

PERFORM NEW-LOAN
WHEN PRINCIPLE * .20 '1'HRO PRINCIPLE * .80

CONTINUE
WHEN OTHER

PERFORM MATURE- LOAN
BND-EVALUATE.

The EVALUATE command may also contain a second conditional comparison as
well:

ANS COBOL 8S or How I Learned to

Stop Wmrying and Love The Bomb 3207-8 Robert A Karlin

COBQL-74
IF RECORD-TYPE = 'L' AND RECORD-ACTION = 'A'

PERFORM NEW- LOAN
ELSE

IF RECORD-TYPE = 'A' AND RECORD-ACTION = 'A'
PERFORM NEW- ACCOUNT

ELSE
IF RECORD-TYPE = 'L' AND RECORD-ACTION = 'e'

PERFORM CHANGE - LOAN
ELSE

IF RECORD-TYPE = 'A' AND RECORD-ACTION = 'C'
PERFORM CHANGE - ACCOUNT

ELSE
IF RECORD- ACTION • 'D '

PERFORM DELETE - RECORD •

COBOk85
EVALUATE RECORD-TYPE ALSO RECORD-ACTION

WHEN 'L' ALSO 'A'
PERFORM NEW- LOAN

WHEN 'A' ALSO 'A'
PERFORM NEW-ACCOUNT

WHEN 'L' ALSO 'c'
PERFORM CHANGE- LOAN

WHEN 'A' ALSO 'c'
PERFORM CHANGE - ACCOUNT

WHEN ANY ALSO 'D'
PERFORM DELETE- RECORD

END - EVALUATE.

And the EVALVATE command may take a completely generic conditional, that is,
a construct that can choose from among many diverse and posibly unrelated choices:

COBOlc8S
EVALUATE TRUE
••••WHEN HEADER-RECORD

PERFORM LAST- RECORD
WHEN PRINCIPLE == 0

PERFORM PAIO-OFF-LOAN
WHEN PRINCIPLE> INTEREST

PERFORM MATURE- LOAN

WHEN PRINCIPLE NOT > INTEREST
PERFORM YOUNG- LOAN

END- EVALUATE •

ANS COBOL 8S or How I Learned to

Stop WonyiDg and Love The Bomb 3207-9 Robert A Karlin

Note that the EVALUATE command processes the conditional statements in the
order that they are expressed. In the above example, when PRINCIPLE equals zero,
the second condition will be executed, and then the EVALUATE verb is exited, even
though the last condition may also seem to apply. It should be noted that FALSE is
also a valid generic conditional for the EVALVATE verb.

ANS COBOL 8S or How I Learned to
Stop Worrying and LDve The Bomb 3207-10 Robert A Karlin

SETTING CONDITiONALS

One ofthe more interesting features ofCOBOL was the 88 level conditional data
This feature allowed programmers to provide meaningful descriptions of codes and
switches in programs. Unfortunately, theprogrannner still needed to knowwlllat the
switch setting and the switch name was in order to set-the proper value. COBOL-8S
provides a new method of setting 88 level conditionals using the·SET vezb.

01 SWITCHES.

05 END-OF-FlLE-SWITCH
88 END-OF-FlLE

PIC X VALUE 'N'.

VALUE 'Y'.

COBQL-74

READ INPUT - FILE

AT END MOVE 'Y' TO END-OF-FILE-SWITCH.

COBOL-SS

READ INPUT - FILE

AT END SET END-OF-FlLE TO TRUE.

Note that not only is the programmer insulated from the value of the switch itself,
but the switch is being set with the same name that it will be interrogated with.latez. If
there were multiple values coded for an 88 level~ the COBOL compiler willi choose the
ftrst VALUE to move to the switch:

01 SWITCHES.

OS RECORD-TYPE-FLAG

88 DEPOSIT
88 LOAN PAYMENT
88 WITHDRAWAL

88 MONEY-IN

88 MONEY-OUT

COBOL-as

SET MONEY-IN TO TRUE.

PIC X.
VALUE 'D'.

VALUE 'L'.

VALUE 'W'.
VALUE ID' 'L'.

VALUE 'W'.

In the above example, RECORD-TYPE-FLAG would be set to tDt, since that was
the first value in the value list. Unfortunately there is no way to SET an 88 level. to

FALSE, since the compiler would not know which value to chose.

ANS COBOL 85 or How I Learned to
Stop Worrying and Love The Bomb 3207-11 Robert A. Karlin

INITIALIZATIONS

COBOL-8S has provided a Dumber of interesting features to facilitate some
common programming chores. One ofthe most useful is the INITIALIZE verb. In its
simplest form, the INITIALIZE verb wiD set all subordinate levels for a data item to

zeroes or spaces, dependiDa OD the type of data being initialized. The INITIALIZE
statement will also initialize any class of data subordinate to a data item to any
characters that are applopliate to that data class.

01 DATA- STRUCTURE.
05 FILLER
OS NUMERIC- ITEM

05 ALPHA-ITEM

05 PILLER.
10 NUMERIC-EDITED-ITEM

COBOL-as

INITIALIZE DATA-STRUC'1'URE.

Is equivalent to

COBOL-"
MOVE ZEROBS TO NUllERIC- ITEM,

mDlBRIC- EDITED- I'.l'BM.

MOVE SPACES TO ALPHA-ITEM.

PIC x.
PIC 9.
PIC X.

PIC 9.9.

Note that the INITIALIZE verb does not IOOve spaces to e1emel1tal FIILER items.

COBOL-as
INITIALIZE DATA- STRUC'l't1RB REPLACING ALPIIANtJIIBRIC BY • * •

This construct will move uterisks to ALPHA-rrEM. NUMERIC-ITEM and
NUMERIC-EDrrED-ITEM will be 1IDChanIed.

The INmAUZE va'b will work on all oceunences oftable items declared with the
OCCURS clause, but will not affect items that are INDEX items, and items tIlat
contain or are subordinate to a REDEFINES clause (thouab DATA-STR.UCTURE
may contain a REDEFINES clause or be subordinate to one).

ANS COBOL as or How I Learned to
Stop Worrying and LDve The Bomb 3207-12 Robert A Karlin

MOVE ENHANCEMENTS

COBOI.r85 finally corrects a deficiency that has plagued software designers since
the language was originally developed , that being the ability to dynamically access
part of an alphanumeric field. The STRING and UNSTRING commands, added by
the COBOL-74 standard, allowed the programmer to parse a field, if there were a
limited n1llDba" of delimiters, if the number of fields were known, if the resulting field
sizes were known, if ..., if ..., if COBOL-8S provides Reference Modification,
the ability to specify a starting byte position (relative to one) within a field, and the
number ofbytes to move (i.e. [START]:[LENGTH):

COBOL-SS

01 ALPHAMERIC-LINE

01 ALPHAMERIC- LINE- 2

PIC X(80) •

PIC X(4tO).

MOVE ALPHAMERIC-LINE (21:10) TO ALPHAMERIC-LINE-2.

MOVE 'LITERAL' TO ALPHAMERIC-LINE (32:7).

The move takes place using the roles for moving simple alphanumeric fields. The
fields must be dermed as USAGE DISPLAY (the COBOL default), and, if the sending
field is numeric or numeric edited, it is treated as if it had been redefined a s simple
alphanumeric field. The starting position and/or the length may be any arithmetic
expression.

COBOL-SS

PERFORM VARYING POSITION FROM 1 BY 1 UNTIL POINTER> 10

MOVE ALPHAMERIC-LINE (POINTER: 1) TO

ALPHAMERIC-LINE-2 (POINTER * 2:1)

END- PERFORM

MOVE SPACES TO

ALPHAMERIC-LINE-2 «POINTER * 2) + 1:32 - (POINTER * 2»

The last line translates as MOVE SPACES to the beginning of ALlPHAMERIC
LINE-2 plus 1 plus (POINTER times 2) bytes, for a length of 32 minus (poINTER
times 2).

Another enhancement to COBOL provides the DEEDITED move, that is, the
ability to move ftom a numeric edited field to a computational muneric field.

ANS COBOL 85 or How I Learned to

Stop Worrying and Love The Bomb 3207-13 Robert A Karlin

COBOL-as
01 NUMERIC-EDITED
01 NUMERIC- CALCULATED

PIC ZZZ9.99CR.
PIC S9(4}V99 COMP-3.

MOVE -35.42 TO NUMERIC-EDITED.
MOVE NUMERIC-EDITED TO NUMERIC-CALCULATED.

Note that NUMERIC-EDITED cannot be used on the right side of a computation
as in: NUMERIC-eALCULATED =NUMERlC-EDrrED + 1.

ANS COBOL 8S or How I Learned to

Stop Worrying and Love The Bomb 3207-14 Robert A Karlin

PIC X(10).

PIC X(lO) •
PIC X(lO).

NESTED SOURCE PROGRAMS

Earlier in 1his text it was mentioned that COBOL does not provide the ability to use
parametric procedures. This is not entirely correct. COBOL-8S has provided a
method of local variable storage and parametric procedures: the nested program. A
nested program must occur at the end of the procedure division, and is treated very
much like an external called program. Like a main program (see Miscellaneous
Enhancements), a nested program does not need to contain all four divisions. A
program may optionally declare data or files that may be referenced by all programs
subordinate to it, or may declare data or files that can be shared by any program in the
ron unit, that is, the aggregate code file produced by the compile and link.

COBOL-as
IDENTIFICATION DIVISION.
PROGRAM- ID • CALLER.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FILE-1 ASSIGN TO ZZZZZ.

SELECT FILE-2 ASSIGN TO YYYYY.
DATA DIVISION.
FILE SBCTION.

FD FILE-1 IS GLOBAL.

01 RECORD-l.

03 FIELD-1l
03 FIELD-12

FD FILE-2.

01 RECORD-2 IS GLOBAL.

03 FIBLD 21
WORKING- STORAGE SECTION.

77 STATUS-FIELD
88 GOOD
88 BAD

PROCEDURE DIVISION.

OOOO-MAINLINE.
OPEN INPUT FILE-2

PIC X(l) •
VALUE 'Y'.

VALUE 'N'.

ANS COBOL 8S or How I Learned to
Stop Worryina and Love The Bomb 3207-15 Robert A Karlin

OUTPUT FILE-1 ..
READ FlLE-2

AT END MOVE HIGH-VALUES TO RECORD-2.

PERFORM UNTIL RECORD-2 = HIGH-VALUES

CALL • SUBPROGRAM-1' USING STATUS - FIBLD

IF GOOD

CALL 'SUBPROGRAM- 2' USING STATUS - FIELD

IF BAD

DISPLAY 'BAD RECORD ' RECORD-2

END-IF

END-IF

READ FILE-2

AT END MOVE HIGH-VALUES TO RECORD-2

END-READ

END - PERFORM.

CLOSE FILE-l

FILE-2.
IDENTIFICATION DIVISION.

PROGRAM- ID. SUBPROGRAM-1.

DATA DIVISION.

WORKING- STORAGE SECTION.

01 COUNT PIC 89 (9) VALUE 0 EXTERNAL.

LINKAGE SECTION.
77 STATUS-FIELD PIC X(l).

88 GOOD VALUE 'Y·.

88 BAD VALUE 'N'.

PROCEDURE DIVISION USING STATUS-FIELD.

OOOO-MAINLINE.
IF RECORD-2(1:2) = 'OK'

SET GOOD TO TRUE
ADD 1 TO COUNT

ELSE
SET BAD TO TRUE.

EXIT PROGRAM.
END PROGRAM SUBPROGRAM-I.

IDENTIFICATION DIVISION.
PROGRAM- ID. SUBPROGRAM- 2 •

DATA DIVISION.

WORKING- STORAGE SECTION.

01 COUNT PIC 89(9) VALUE 0 EXTERNAL.

ANS COBOL as or How I Learned to
Stop Worrying and Love The Bomb 3207-16 Robert A Karlin

LINKAGE SECTION.
77 STATUS-FIELD PIC X(l) .

88 GOOD VALUE ' Y' •

88 BAD VALUE 'N'.

PROCEDURE DIVISION USING STATUS-FIELD.
OOOO-MAINLINE.

MOVE FIELD-21 TO FIELD-ll.
MOVE COUNT TO FIELD-12.
WRITE FILE-1.
SET STATUS - FIELD ~ GOOD.
EXIT PROGRAM.
END PROGRAM SUBPROGRAM- 2 •
END PROGRAM CALLER.

The GLOBAL keyword allows all subordinate programs to reference the tile
and/or data item that contains it, as well as all data items subordinate to tine GLOBAL
item. The EXTERNAL keyword defines a data area that is common to all programs
that include the definition. Note that if there are subordinate items to the EXTERNAL
item, they must be defined exmctly the same in all referenced cases, but the data area
may be subsequerttly redefined.

A nested program may also include the keywords COMMON and INITIAL on tile
PROGRAM-ID line. The COMMON keyword specifies that the proaram may be
called by any program in the ron unit The INITIAL specifies that all items are to be
reset to their initial state, that is, to either the values specified in tile VALUE clauses,
or to an undeCIDed state if there is DO VALUE clause specified.

COBOL-as
IDENTIFICATION DIV2SION.
PROGRAM-m. SUBPROGRAM-3 IS COMHON PROGRAM.

COBOL-as

IDENTIFICATION DIVISION.
PROGRAM-ID. SUBPROGRAM-4 IS INITIAL PROGRAM.

COBOL-as
IDENTIFICATION DIViSION
PROGRAM-:ID. SUBPROGRAM-4 IS INITIAL CDIIION PROGRAM.

Note also that multiple COBOL-8S programs may follow one another in a
compilation stream. Each proaram is terminated by an END PROGRAM statemeIIt, or
by tile termination of tile input stream.

ANS COBOL 8S or How I Learned to

Stop Worrying and Love The Bomb 3207-17 Robert A Karlin

MISCELLANEOUS ENHANCEMENTS

COBOL-8S has provided a number ofminor enhancements that are useful to know
about One of these is enhancement to the CALL verb to allow data to be passed by
value instead ofby reference.

COBOL-SS
01 FIELD-l
01 FIELD-2
01 FIELD-)

PIC X VALUE 'A'.
PIC X VALUE IB'.
PIC X vALUE 'C'.

CALL • SUBPROG' USING BY REFERENCE FIELD-l
FIELD-2

BY CONTEXT FIELD-).

Another enhancement included in COBOL-8S is the implied FILLER statement.

COBOL-74
01 FIELDS.

03 FILLER
03 FIELD-l
03 FILLER REDEFINES FIELD-l.

OS FILLER
as FIELD-12

COBOL-as
01 FIELDS.

03
03 FIELD-I
03 REDEFINES FIELD-I.

as
os FIELD-12

PIC x.
PIC xx.

PIC x.
PIC X.

PIC x.
PIC xx.

PIC x.
PIC x.

And yet another enhancement found in COBOL-85 is the reduction in the minimum
program. The following illustrates the minimum compilable program.

COBOL-?4

IDENTIFICATION DIVISION.
PROGRAM-ID. COBOL74.
ENVIRONMENT DIVISION.

ANS COBOL 8S or How I Learned to

Stop Worrying and Love The Bomb 3207·18 Robert A. Karlin

DATA DIVISION.
PROCEDURE DIVISION.

STOP RUN.

COBOL-as
IDENTIFICATION DI~SION.

PROGRAM-ID. COBOL-SS.

The above also illustrates a fourth enhancement to COBOL-SS. The compiler will
automatically generate a program exit after the last line ofthe program if the program
falls through it The compiler will also automatically close all open files when the
program is exited.

COBOL-85 provides another arithmetic operator, ••, for exponentiation. 3·· 2
will result in three squared, or 9. The exponent may be fractional, 4 •• .S will result
in the square root of 4, resulting in 2. The exponentiation opentor may appear
anywhere that any other- aritllunetic operator may occur.

COBOL-8S allows fields that contain OCCURS clauses to be initialized using a
VALUE clause. This would be equivalent to coding each entry separately with a
VALUE clause.

COBOL-74
01 FIELDS.

as FIELD-A.
10 FILLER
10 FILLER
10 FILLER

05 FILLER REDEFINES FIELD-A.
10 PIELD-l

TIMES.

PIC 9 VALUE O.
PIC 9 VALUE O.
PIC 9 VALUE O.

PIC 9 OCCURS 3

COBOL-8S

01 FIELDS.
05 FIELD-1 PIC 9 OCCURS 3 TIMBS VALUE o.

COBOL-8S allows the substitution of BINARY and PACKED-DECIMAL for
COMP and COMP-3. respectively.

In COBOL-SS, the CONTINUE statement acts as a NO OPERATION and may

ANS COBOL as or How I Lamed to

Stop Wonying and Love The Bomb 3207-19 Robert A. Karlin

occur anywhere a COBOL-85 procedure division statement may occur.

COBOL-85 enhances the INSPECT verb, adding the INSPECT CONVERTING
option:

COBOL-SS

INSPECT FIELD- A CONVERTING I ABC I TO I DEF' •

COBOL will examine each byte of FIELD-A, comparing it to each byte of the
string 'ABC'. Ifa match is found, COBOL will replace it with the corresponding byte
from the string'DEF. If FIELD-A contained 'CAT, the above would convert it to

'FDT'.

COBOL-8S provides two new class tests, ALHABETIC-UPPER and
ALPHABETIC-lDWER.

COBOL-as

IF FIELD-A IS ALPHABETIC-LOWER

PERFORM UPSHIFT-FIELD-A.

COBOL-8S allows the programmer to defme a SYMBOLIC to identify a particular
character in an alphabet.

COBOL-SS
SPECIAL NAMES.

SYMBOLIC CHARACTER BEL IS 07.

MOVE BEL TO FIELD- A.
DISPLAY BEL 'WAKE UP' •

COBOL-8S allows the programmer to specify his own class test for use in
conditionals. When used in a conditional phrase, COBOL-8S checks each character in
the compared field to determine if it is part of the class. In the following example, if
all characters in FIELD-A were A or B or C or Qor Z, the conditional would be true
and the MOVE would be executed.

COBOL-8S
SPECIAL NAMES.

CLASS A-THRU-C-AND-QZ IS 'A' TBRO 'e l IQI 'ZI.

ANS COBOL 8S or How I Learned to
Stop Worrying and Love The Bomb 3207-20 Robert A Karlin

IF FIELD-A IS A-THRU-C-AND-QZ
MOVE FIELD-l TO FIELD-2.

COBOL-85 allows subscripted and indexed tables to be referenced by an offset to

a current subsaipt or index.

COBOL-as

MOVE TABLE-ENTRY (INDlCE + 1) TO TABLE-ENTRY (SUB - 3).

And, finally, COBOL-8S elimitates the REMARKS section in the
IDENTIFICAnON division, and the NOTE paragraph in the PROCEDURE division.
These are considered repDaced by the COBOL-74 '.' (comment) in column 7
cOnstnlct.

ANS COBOL as or How I Learned to
Stop Wonying and Love The Bomb 3207-21 Robert A. Karlin

BOMBS AWAY

COBOL has changed greatly since its conception in 1960. And COBOL has
grown to be the most widely used business programming language today. Much of
the credit for this goes to the original design team, who created a language that was
easy to understand and simple to use. But credit must also be given to the American
National Standards Institute Technical CODDDittee for their effort in keeping COBOL a
living, growing product that is responsive to the needs of CUlTent users. The next
version of COBOL will probably be available by the middle of this decade. Under
discussion are enhancements to provide Object Oriented extentioDs, network related
struetures,and asynchronous task support. Copies of the CUlTent standard may be
obtained from:

American National Standards Committee
1430 Broadway
New York, NY. 10018

Ask for ANSI Standard X3.23-1985. There will be a nominal publication charge.
Any comments about COBOL-8S, or enhancement suggestions should be addressed to

TECHNICAL COMMITIEE X3J4 (COBOL) at the above address.

ANS COBOL as or How I Learned to

Stop Worrying and Love The Bomb 3207..22 Robert A Karlin

Paper #3208
Integrating the OMNIDEX IMS Into Your System AppUeations

Tim Klooster
DYNAMIC INFORMATION SYSTEMS CORPORATION

5733 Central Avenue
Boulder, Colorado 80301

(303) 444-4000

1bis paper will present examples of applications using the OMNIDEX Information Management
System (lMS). These examples represent actual systems or designs that have inc«porated
features of the OMNIDEX IMS and put into p-actice the concepts~

The ptII'pQ§e is to present these examples in a way that will help the reader think of ways to
incorporate similar implementations into his own applications.

The examples presented illustrate database design with the OMNIDBX IMS, keywording,
IMSAM discrete mode, and Document Management.

This paper presumes that the reader has a basic knowledge of the concepts used by the OMNIDEX
IMS.

EXAMPLE 1: KEYWORD RETRIEVAL

Problem Tracking System:

This example takes advantage of the power of OMNIDEX keywording. Keywording simply refers
to the ability of OMNIDEX to parse or break down a field by its special characters and give
retrieval access to the field by any word within the field. 1he power of this feature becomes
especially apparent with a large descriptive or textual field where many keywords exist within the
field.

Another feature utilized in this example is data item grouping. Grouping in OMNIDEX is a
feature where two or more fields are logically treated as a single entity. This allows multiple
fields to be searched simultaneously for a value or values.

1bis feature is set up during the OMNIDEX installation simply by appending the grouping optim
to the field name. When searching for a value in the field, OMNIDEX recognizes that it is a
grouped field and automatically searches acra;s all fields in the group for the same value.

The requirements for this application included the ability to catalog and retrieve data 8EOciated
with all customer accounts.

Additionally, storage of all problem situatioos and the resolutions for each account was required.
These situations could be referenced when a similar problem was alCOUDlered. 1be database
would serve as a "knowledge base" for solving problems.

3208-1
Integrating the OMNIDEX IMS Into Your System Applications

Since the customer service department assists customers as they call in, it was~ for them
to be able to access the data while the customer remained on the phone. This required their data
processing department to create a system that would give the users a fast and flexible environment
for their data retrievals.

The design that was implemented included a customer master dataset with associated problem
descriptim and resolutioo description detail datasets. The customer master p-ovided keyword
lookup; by customer name, company, title, city, state, zip, and phone. The customer name, title,
company name, and company-alias fields were grouped together so that the user could simply
enter any of the information at a single prompt and retrieve the master data immediately.

The problem detail dataset provided keyword 8CC<& on the comments and error description fields.
The users can access this information by an error code or by entering any word in the descripdm
or comments fields. The resolution detail dataset provided access by any word in the descriptim
or comments fields. The customer service department can now provide assistance to their
customers while the customer is on the phone.

This system also allowed the company to catalog and isolate problem areas with their service.
Daily and monthly supunary reports are generated showing areas needing auentim. Forecasting
of future p-oblems is also~ble.

Keywording can be a benefit to any application where flexible retrievals are required on data that
is textual in nature.

Other applications that can benefit from keyw«ding include marketing, legal case tracking, and
medical chart tracking.

EXAMPLE 2 - DATABASE DESIGN
Sales Order Database

This example uses a sales order database designed in IMAGE to allow multiple path entry into the
primary datasets (see Figure 1-1). KSAM files were used to allow partial key lookups by product
name and customer name. Automatic master datasets were created for access by sales date and
order number.

In the redesigned database model (see Figure 1-2), we see that OMNIDEX and IMSAM have been
incorporated to create a much simpler database structure.

The KSAM (des were replaced with OMNIDBX keys (Xl ptXIuct name and customer name. This
eliminates the worry of maintaining extemal KSAM files. If a sort is required on either of these
fields, IMSAM could be added.

The automatic master datasets, sales-dates and orders, have been replaced by OMNIDBX keys.
The inventory dataset can now become a manual master dataset physically as well as logically
with the multiple key capability of OMNIDEX.

We now have restored the natural IMAGE sttucture of a parent-ehild relatimship (one record to
many) between the order header and order lines datasets.

1bis structure allows much easier retrievals across the datasets because we now have data
structures that are correctly represented in IMAGE.

3208-2
Integrating the OMNIDEX IMS Into Your System Applications

EXAMPLE 3 - DATABASE DESIGN
Franchise Management System

nus example illustrates how OMNIDEX domains can allow a hierarchical tiered structure design
in an IMAGE database. Hierarchical databases traditionally facilitate a "top-down" style of data
retrieval much better than a network database like IMAGE.

Figure 2-1 shows the structures involved in a franchise management system. Each level has a one
to many relationship with the level below it. For example, there are multiple divisioos within a
company and each company has multiple offices.

Network databases such as IMAGE are designed for a two level ~ single master to many detail
dataset relationship. The master dataset represents a single entity with the detail data sets
representing multiple entities or events~ated with the master dataset. Since IMAGE will not
allow levels below a detail dataset, we find our designs going horizontally instead of
"top-to-bottom" as they logically are in real life.

Using OMNIDEX search item (SI) domains, we can simulate a hierarchical design inside of
IMAGE. A search item domain refers to indexing a detail dataset with its associated master
dataset. Figure 2-2 shows the IMAGE design of the structure outlined in Figure 2-1. Automatic
masters are used to allow f~ OMNIDEX SI domains to be placed around each detail dataset.
Generally, automatic master indexes are not required in IMAGE when OMNIDEX or IMSAM
indexes are present. I use them in this design to create an SI domain for each detail dataset.

The multirmd function in OMNIDEX will allow us to easily cross SI domains for our retrievals
requiring multiple dataset- access. These domains illustrate a "sawtooth" design which generally
favors the "top-down" type of retrievals that are difficult in IMAGE.

The retrieval outlined below illustrates how a -top-down" retrieval can be easily performed in
IMAGE using OMNIDEX SI domains. If we ask the question, "How many people under the age
of 21 are employed in the Colorado region?-, we are required to start at the companies level and
end up in the people level.

IMAGE retrieval without OMNIDEX:

The retrieval process would begin with a serial read of the companies dataset since state would not
be the mes likely key. To rmd the associated divisi~ for each qualifying company, we would
do a chained read into the division detail set. We would continue by finding the chain head for
every office within each qualifying division and then read down the chain into the office dataset.
We would continue this process until we reached.the people dataset, where program logic would
be required to select the age group while reading down the chain.

To satisfy this retrieval, we had to perform a serial read of a dataset, build record selection logic
into our program, and read all the records in each detail chain, whether we needed them or not.

By retrieving records that we don·t need, through a serial <X' chained read, we incur an increase in
the time it will take to execute this retrieval. Building selection logic into a program also requires
programming time when developing this application. These requirements often pre<:lude the
ability to perform ad-hoc reporting requests against our data.

3208-3
Integrating the OMNIDEX IMS Into Your System Applications

OMNIDEX retrieval:

To perform this retrieval using OMNIDEX, the multirmd feature would be utilized.* The serial
read in IMAGE of the company dataset would be replaced with an ODXFIND intrinsic call to
qualify oo1y the entries that we require. We then perform our "top-down" retrieval~ using
multifind to Cf(& the domains. This process requires only a call to ODXFIND to qualify the
entries in our target domaiIL When we reach the people domain, we can qualify the en1ries that
satisfy our age requirement.

An added performance benefit of this design is that multifmd takes action only against the
OMNIDEX index sets. In mail cases, this can result in a much faster qualification of the entries
compared to retrieving the records from the IMAGE datasets.

This action lends itself easily to an ad-hoc query environment as long as the number of
OMNIDEX IDs that are qualified and used as input to the multifind operation are kept at a
reasooable number. DISC recommends that this number be under a thousand.

Alternative desip:

An alternative to using automatic master datasets and search item domains in the above design
would be to create stand-alone detail datasets for each level of the hierarchy. OMNIDEX detail
domains (DR) would be installed under detail datasets. OMNIDEX indexes would be placed OIl

the common fields between the detail datasets.

A new feature was added to OMNIDEX version 2.05/2.06 that allows any specified field to be
written to an ASCn fde using the ODXTRANSFER inttiDsic. The e<mtents of this fde is then
used as input into the ODXFIND intrinsic against the target dataset. The ODXTRANSFER call
uses the new mode +100 and allows you to specify the field you want to transfer in the "options"
parameter.

This feature allows multifind to cra;s detail domains whereas before you were limited to crossing
search item domains or into one detail domain.

The advantage of this design is that it9s more simplistic and provides improvement in update
overhead over the design using automatic master datasets. The enhancement to ODXTRANSFER
allows the creation of a "relational-like" environment where linkages between files can be
dynamically created as needed instead of being pre-defined at design time. The files can be inside
the same database or in different databases. The only requirement is a common data item with
OMNIDEX installed on the target dataset.

The disadvantage of using stand-alone details and ODXTRANSFER is a poEible increase in
processing time due to the disk activity of writing and reading the Ascn file that is used as the
link between the two datasets. Careful plarming of the'relatiooships between datasets when setting
up your design can help insure acceptable retrieval times.

*For a discussion of Multiflnd. refer to Page 2·78 of the OMNIDEX AdmlnistndDnJ Guide

3208-4
Integrating the OMNIDEX IMS Into Your System Applications

EXAMPLE 4: IMSAM DISCRETE MODE
Statistical Reporting System

Discrete mode refers to taking action against the OMNIDEX and IMSAM indexes only. By
comparison, normal mode refers to action taken against both the OMNIDEX and IMSAM indexes
along with the IMAGE datasets.

IMSAM discrete mode can greatly benefit data retrieval access times since information can
generally be extracted from the IMSAM indexes much faster than the IMAGE datasets.
Additionally, IMSAM returns the data sorted to your program.

Discrete mode requires that all required data is stored in the IMSAM index key. This is
accomplished using compSte keys. CompSte keys are a feature of IMSAM where all ~ parts
of multiple fields can be concatenated into one key. When the data is returned, it is sorted in the
order of the components of the compSte key. Currently, you can have up to seven components
in an IMSAM compSte key for a total of 128 bytes in length. IMSAM diScrete mode is generally
30 - 100 times faster than normal mode.

This application called for the ability to store and access a very large amount of data for a period
of two to three years. IMSAM was chasen to provide multiple level sorting m the data.

Discrete mode retrievals were chosen to provide the performance required in the monthly
reporting cycle. 1De application began with a few million records and would grow up to ten
million in the next year.

A single stand-alone detail dataset was created for storage. (Note: A stand-alone b-tree is possible for
this application. A stand-alone detail set was chosen because updates were performed on a monthly
basis, requiring aU the data to be present in either aflatfile or data set to load into the IMSAM indexes.)

IMSAM compSte keys were constructed based on the sort requirements and control breaks for
the monthly summary reports. All sales amounts and quantities were inchJded at the end of the
key. .

Reporting the data utilized IMSAM discrete mode by calling DBIOET using mode 1300 to
pngtion the pointer at the requested area of the b-tree. Subsequent DBIGETS with a mode 1090
are then used to read down the b-tree.

3208-5
Integrating the OMNIDEX IMS Into Your System Applications

A sample performance analysis of expected retrieval times is as follows:

1. IMSAM has a maximum tree block size of4096 bytes.

2. One of the IMSAM composite keys has a length of 64 bytes.

3. Each disk drive access will yield a maximum 64 IMSAM keys.

(lMSAM block size / IMSAM lceysize c number of keys per read)

4. 11le average number of records Per month = 416,667.

(10 million total records/24 months =records per month)

5. Ma;t monthly reports will report the p'evious months sales and a comparison with
the same month in the previous year.

6. An average of 833,333 records will be read for each reprt (416,667 x 2 =
833,333) - 2 months

7. 11le disk drive average access time per monthly repn would be apP'oximately 6.6
minutes.

11le calculation is as follows:

- 833,333/64 (rees per block) = 13,021 I/O·s (rounded)
- add 8 I/O·s to position record pointers in the b-tree
(4 for previous year + 4 to reset at current year)

- 13,0291/0·s /33 c 395 secoods or 6.6 minutes
(33 = lIP benchmark of the number of I/O·s per secood fm- an Eagle diskdrive)

This performance analysis shows that it is possible to have great performance m a large number
of recOrds in your dataset when using IMSAM discrete mode fm' the retrieval.

When setting up your IMSAM composite keys, use the following guidelines:

1. Your selection fields should be the leftmc:m fields in the composite key.

2. The order of the components should match the sm order of your repm.

In the event that your selection order differs from your sttt order, you should maintain the sort
order as your most important criteria. The selection fields can be spread out over the composite
key in some cases. For example, if you need to select on the first and forth components of your
key, you must insure that the second and third components are set to low values so they don·t
cause unwanted selections. You must also monibX' those fields as you read down the b-tree. It
may be required that you periodically reposition your record pointer as these values change.

Other good applications for IMSAM discrete mode include any large historical application, an
online general ledger, or any ad-hoc requirements where all the required data can be stored in the
key.

3208-6
Integrating the OMNIDEX IMS Into Your System Applications

EXAMPLE 5: DOCUMENT MANAGEMENT
Correspondence Tracking System

Document management in OMNIDEX provides the ability to index any ASCII file. Each word in
the document can be indexed allowing for keyword retrieval anywhere in the documenL 11le
DATADEX KEYWORD command must be used to load the documents into the index sets.
Datadex or any programming language can then be used for retrieving and displaying the
documents. The only design requirements for a document management system are an IMAGE
master dataset with fields to store an internal number fm- each document and the name of the file
that has been indexed. Retrievals are then Performed against the OMNIDEX index sets and file
names are returned to the program. The ODXVIEW intrinsic is used to view the files online in
your programs. ODXVIEW allows for user input while viewing the document. 11le user is
allowed to scroll forward or backward in the file by lines or pages.

A large corpOration needed to catalog internal and external _ and track the routing
of memos internally. Functionality included the ability to retrieve documents by the sender,
sendees, memo subject, and document keywords. 1be documents were scanned and loaded into
ASCII (ties on the HP. DATADEX was then used to·load the keywords into a database.

The database included a master dataset with the following fields:

- document number
-filename
- subject
- sender initials
- sendee initials
- memo-date
-comments

(J2) KEY

(X26)

(JOO)

(X4)

(X4)

(J2)

(DO)

A memo routing detail dataset allowed for memos to be passed to other people with the senders
comments and tickler and due dates.

The master and detail sets were indexed together using a search item domain installation. Mem~
could be retrieved by any master field or document keyword. A screen function key was set up to
list the corresponding memo routing information. This detail set was I.inked to the master using
the document number search item. Document number was sorted by a send date field so that the
most recent routing would be displayed first. Viewing the actual memo is possible using the file
name from the master dataset as input into a call to the ODXVIBW intrinsic.

Utilizing a document management system like this allows instant access to any document without
having to search for paper copies or through documents archived to microfilm.

Other examples of document IIWlagement systems include a source code Cl'<&-referenee, online
reference manuals, and legal documents.

3208-7
Integrating the OMNIDEX lMS Into Your System Applications

SUMMARY

There are many places where an indexing system like the OMNIDBX IMS can be used in your
applications. Database design can be heavily influenced when OMNIDEX or IMSAM are used.
Remember, you don9t have to change your database design to use the OMNIDEX IMS though! If
your existing database cannot be altered, you can still install OMNIDEX or IMSAM witmut
affecting your data.

The keywm-ding power of OMNIDEX can be used in practically any application. IMSAM
provides a great alternative to sort keys when your chains are Ioos~ chain maintenaDce is high.

Discrete mode retrievals in IMSAM can make complex repminl poeSble when before it was
considered imJXmible. Larger amounts of data can be stored aDd acCC&ied online. When deciding
whether to use IMSAM discrete mode or not, it is highly beoeficial to work through an analysis of
your disk overhead in retrievals and updates. This analysis will p:ovide you with a basis to
determine keysize, components of the keys, and tree block size.

You will also be able to JRdict the speed of your retrievals and which reports and queries are
feasible.

Document management also illustrates the power of relational keywording. The ability to retrieve
and maintain documents online can be ofvalue in many applications.

Hopefully, I have presented an example or two that made you think of a new way that you can put
your new indexing system to work in your company. Getting iDfmnation to your users in a fast
and flexible way is becoming more and m~e important every day.

Good luck with your new applications!

3208-8
Integrating the OMNIDEX IMS Into Your System Applications

EX~STING DATA BASE

Figure 1-1

3208-9
Integrating the OMNIDEX IMS Into Your System Applications

REDESIGNED DATA BASE

INVENTORY ORDER-UNEa CUST-NOTE8

OMNIDEX IMS
INDEXES

Figure 1-2

3208-10
Integrating the OMNIDEX IMSInto Your System Applications

Database Design

I

I

I

I

I

Figure 2-1

3208-11
Integrating the OMNIDEX IMS Into Your System Applications

Paper #:3209

The EH Safety Representative Information System on the Safety Pen10nnance
Measurement System is where you will fmd••• Word Processing and Helps with a

V - P L US!

Patricia Irene Lao
EG&G Idaho, Inc.

P.O. Box 1625
Idaho Falls, Idaho 83415-3405

(208) 526-6063

1.0 Introduction

What are some of the current environmental, safety, and health problems being found at
different DOE facilities? What are some of latest software products available for HP-3000
on-line applications? How can I meet my customer's ever-ehanging requirements? These
and many other questions will be focused on within this review of the Environment, Safety,
and Health (EH) Safety Representative Information System (SRIS) located on the Safety
Performance Measurement System (SPMS). SPMS is a collection of automated
environmental, safety, and health information modules for reference by DOE and DOE
contractors. SPMS is operated by the Management Information Systems (MIS) Unit of the
System Safety Development Center at EG&G Idaho, Inc.

In the following sectiOlllS an overview of SRIS, an on-line system designed for the HP-3000,
will be presented along with an analysis of design methods and software packages used to
develop the system.

2.0 What is the EH Safe1ty Representative Information System (SRIS)?

2.1 General Overview of SRIS

If your job requires keeping updated on environmental, safety, or health findings
within DOE, SRIS and other modules on SPMS are invaluable tools for analysis.
SRIS was developed to disseminate safety representative reports across the DOE
community. Currendy, safety representatives are located at the following locations:

The EH Safety Rep. Information System oa SPMS is where you will rlDd...
Word ProeessiDa aad Helps with a V • P L U S!

3209-1

1. Idaho Falls, Idaho
2. Oak Ridge, Tennessee
3. Richland, Washington
4. Golden, Colorado
S. Aiken, South Carolina

The EH Safety Representatives report directly to DOE Headquarters and perform
continual inspections at their respective locations. Following their inspection, the
safety representatives document their findings by entering them into the SRIS
database. These findings include any environmental, safety, or health problems.
When completed, the safety representative submits the report for review by the
appropriate operations office. According to DOE guidelines, the operations office
is given two fun working days following the submittal of the safety representative's
report to respond. After two full working days, the report is automatically released
to the DOE community for review.

1.1 CapabiUties of SRIS

SRIS is a resPOnsive system providing keyword search, report generation, on-line
data entry with ,a word processing enVironment, aDd personal computer (PC) data
interface capabilities. '

Searches can be performed to locate findings and responses on a variety of attributes
(e.g., site, organization code, occurrence date of finding, keyword search on
narrative text). After retrieving requested items the appropriate report (daily,
weekly, monthly, or special) can be generated.

Safety representatives may enter their reports using a PC application or on-line data
entry screens. This'versatility allows users to select the software environment they
feel most comfortable with for data entry. The PC application allows data entry
using almost any familiar word processor and provides a window environment with
easily accessible help screens. The HP-3000 also offers a word-processing
environment and a help facility.

1.3 Access Restrictions

The Department of Energy (DOE) can be divided into three unique entities:

1. DOE contractors (e.g., EG&G Idaho, Inc., Westinghouse Idaho Nuclear
Company, Inc.) - Companies who have received', contracts from DOE to
perform designated tasks such as operate DOE-owned facilities.

The EH Safety Rep. Ialormatioa System oa SPMS is where,you wID fiDd•••
Word Proeessiag and Helps with a V • P L U SI

3209-2

2. DOE Operations Offices (e.g., Idaho Operations, Richland Operations)
These regional DOE offices perform contract administration and oversight.

3. DOE Headquarters - Located in Washington D.C., this is the parent office
of all DOE facilities.

SRIS is designed to allow only authorized DOE and contractor personnel to read,
write, and respond to certain reports.

Users searching for report items are limited by the following "reading restrictions":

• Contractors may read all released· reports for their own facility.
• Operations office personnel may read all submittetf reports for their own

site and all released reports.
• DOE Headquarters personnel may read all released reports.

EH Safety Representatives (who enter findings) and contractors and operations office
personnel (who respond to findings from safety representatives) are limited by the
following "writing restrictions":

• Contractors may respond to daily, weekly, or monthly items that are related
to their own facility.

• Operations office personnel may respond to daily, weekly, or monthly
submitted reports that are related to their operations office.

• Safety representatives may add to or update any of their site's daily, weekly,
or special reports until the reports are released.

3.0 System Requirements of SKIS

Safety Representatives are located at various DOE facilities throughout the United States and
enter daily, weekly, monthly, and special reports for DOE Headquarters review. This factor
accounted for the most comprehensive and difficult requirement of SRIS. That is, provide
a centralized, easily accessible, and timely reporting system. Due to the diversity of skills
amoDg Safety Representatives, "user-friendliness" was also of prime consideration. To
provide an "easy to use" system several modes of data entry were developed. (Initially, time

Released reports refer to all SPMS SRIS reports that have been "submitted" by the safety
representative for more than two fun working days.

Submitted reports refer to all reports that have been completed by the safety representative.

The ED Safety Rep. Information System on SPMS is where you wiD rmd...
WOll"d Proeessq and Helps with 8 V • P L U S!

3209-3

restraints also made it imperative that a system be prepared quickly with available expertise
and software. After initial development, ·eDhancements and other modes of data entry were
designed). These included data entry screens on the HP-3000, PC data entry screens with
an "upload- facility to the HP-3000, and with the use of a -template-, a user may create a
file using almost any familiar word processor and then load the information to the HP-3000
database. For dissemination of reports, a centralized, easy to use, and fast means to retrieve
reports was required. Security restraints were also of primary consideration for both data
entry and retrieval.

4.0 Methods used to achieve requirements on the HP-3000

4.1 Data Entry Screens, Help Facility and Word Processing

To provide user-friendly data-entry screens on the HP-3000, HP's VPLUS utility
was used for fast screen generation of data entry modules (see Figure 1 on the
following page as an example VPLUS screen). To improve -ease of use- in the
VPLUS data entry screens, software was reviewed to provide on-line helps. Of
primary importance, the help screen software needed to provide an easy method of
integration with existing VPLUS screen applications (since the majority of our data
entry applications use VPLUS). "AUTO HELP" by PROBUS accomplished this task
to best meet our needs. By pressing f6 the user can receive a general help
information on the current data· entry screen. Also by placing a question mark (1)
in the field being questioned and pressing the numeric pad's <ENTER> key, help
can be retrieved for the respective field. The help screen might appear as shown in
Figure 2 on the following page.

Due to the combined factors that VPLUS does not include any word processing
functionality and the extensive amount of narrative text that safety representatives
enter, research was also performed to find an efficient means for entering narrative.
It was determined that word .processors with available "hooks" into an HP-3000
application are extremely rare products! Fortunately, however, one that met the
requirements of SRIS was found. Minisoft's MiniWord and Toolkit provided a
complete word processor for on-line applications. Commands are all performed
through assigned function keys and/or control key sequences. A template ofallowed
functions was provided to each safety representative as a quick reference guide.
Figure 3 shows an example of how the word processor appears to the users.

The EH Safety Rep. IDformation System on SPMS is where JOu will find...
Word ProcessiDa aDd Helps with • V • P L U Sf

3209-4

** ADD ** EH Safety Representative Report Input Screen

REPORT KEY
Type..**********"*

Site Date
ID 08/09/90

Section Item

? 01
Org

3003003
Facility

IF
Building

WCB

Discipline Code:
Priority:

Group Responsible: SSDe
Keywords: SSDe SRIS WORD PROCBSSIRG~ Blr.rRY
References:

Title: SRIS DAD ~y AHD WORD PROCBSSIRG CAPABILITY

Note:
* * * * * * * * * * * * * * " *
* TAB - forward Screen HELP - f6 *
* <shift> TAB - backwards Field HELP - "1" and numeric ENTER key *
* * * * * * * * * * * * * * " *

Bnt;er dat;a Press LJ (ADD) when you are ready t;o add t;ezt;.

Figure 1. SRIS data entry screen.

Field: REPORT_SBCTION

Section is a code for the desired section
(or subtitle) of the report. Allowable
sections are as follows:

Report Type Section Code Section Name
----------- ------------ ------------Daily (D) FIND Findings

Weekly (W) ADM Administrative
MFWA Major Focus of

Weekly Activities
WSO Weekly Summary of

Observations
Monthly (M) ADM Administrative

MSO Monthly Summary of
Observations

Special (S) INTRO Introduction
FIND Findings

Auto Help
2.04 EG&G -0001

(c) COPYRIGHT 1989
ALL RIGHTS RESERVED

PROBUS
International

Inc.

Figure 2. SRIS help screen.

The En Safety Rep. laformatlo8 System 08 SPMS It where you wDI flad...
Word Proceulna and Helps with a V • P L U SI

3209-5

PG 0001 LINE 01 COL
I
I

•••• T •••• T •••• T •••• T •••• T •••• T •••• T •••• T •••••••••••••••••••••R •••••••••••••

~is is an exaaple of the word proce••iDg capabilitie. for
the BB Safety Representative Info~tion Sy.tea. ~iWord by
lliniSOft, Inc. is a co_plete word processor with wordwrap,
spell check, blocking function., and other variou. fo~ttiDg

function••

Figure 3. MiniWord word processor linked into VPLUS application.

4.1 Search and Retrieval

To meet the basic search and retrieval requirements for SRIS, in-house software
(lIP's Image, a database management system, and Omnidex by Dynamic
Information Systems Corporation, a high-speed search indexing utility) and
previously written search routines were utilized to provide responsive and accurate
searches. Figure 4 shows an example of the search and retrieval capabilities within
SRIS:

The EH Safety Rep. IDI'ormatioD System on SPMS is where you wID find...
Word Processina aDd Helps with a V • P L U SI

3209-6

15. Contractor Response
16. Verification Narr.
17. Add Date (yyyymmdd)
18. Create Initial Subset
19. Reinitialize

15. Contractor Response
16. Verification Narr.
17. Add Date (yyyymmdd)
18. Create Initial Subset
19. Reinitialize

** Safety Representative Information System Search and Reports **

1. Site 8. Priority (1,11,111)
2. Report Date(yyyymmdd) 9. Group Responsible
3. Report Type (D,W,M,S) 10. Keywords
4. Organization Code 11. References
5. Facility Acronym 12. Title
6. Building 13. Report Narrative
7. Perf. Objective 14. Field Office Response

Type "HELP" for general info. or "HELP" and an item I, ie. "HELP 3".
Press 'RETURN' key only to en~ selection or enter field number(s):
1

Now enter your Site
For help on this field, type "HELP"
Press 'RETURN' only for previous prompt
ID

176 cases met the search requirements.

1. site 8. Priority (1,11,111)
2. Report Date (yyyymmdd) 9. Group Responsible
3. Report Type (D,W,M,S) 10. Keywords
4. Organization Code 11. References
5. Facility Acronym 12. Title
6. Building 13. Report Narrative
7. Perf. Objective 14. Pield Office Response

Type "HELP" for general info. or "HELP" and an item I, ie. "HELP 3".
Press 'RETURN' key only to end selection or enter field number(s):
13

Now enter your Report Narrative
For help on this field, type "HELP"
Press 'RETURN' only for previous prompt
fire, safety

14 cases met the search requirements.

Figure 4. Example of SRIS search and retrieval.

4.3 Report Generation

For report generation, a fourth generation report writer (QUIZ by Cognos) provided
a quick, easy means to develop the necessary reports. Figure S shows an example
of generating a report after performing the search shown in Figure 4.

The EH Salety Rep......ormatloa System OD SPMS is where you wW rlDd...
Word Processlaa aDd Helps with a V • P L U SI

3209-7

1. Safety Rep. Daily Finding Report
2. Daily Report with Headings
3. Safety Rep. Weekly Report
4. Safety Rep. Monthly Report

5. Safety Rep. Special Report
6. List of Report Titles (by Site)
7. List of Report Titles (alphabetic)

For general help, type "HELP"
For help on any field, type "HELP", followed by
a number between 1 and 7
Press 'RETURN' key only to end selection criteria
Enter Report field choice number 1

**** Print DAILY Findings Report ****
* *
* **** This is a 80 column portrait report ***

Do you want your output on your terminal or
on the SSDC printer. (T/P/L) [T] ?~

Do you desire a hardcopy (YIN) [N] ?
Do you want to pause after each screen (YIN) [Y) ?Y

Printed from SPMS on 08/09/90

EB SAFETY REPRESENTATIVE INFORMATION SYSTEM
Daily Report of Findings for 08/20/90

Site: XXX OPERATIONS

Finding No: 01
Priority: III

Title: INSTALLATION OF DRIP TRAYS WHICH DID NOT RECEIVE
SAFETY REVIEW

Page 1

Finding:

During a tour on 8117190, several (8-10) plexiglas8 drip trays
were observed in the overhead of the -13 foot elevation of the
ZZZ facility. The trays were apparently installed to
prevent drips from acid and cadmium bearing system valves and
flanges from falling to the floor. Above the trays, were
wet pipe fire protection sprinkler components, including spray
heads.

Figure S. Example of SRIS report generation.

De EH Safety Rep. IDI'ormatioD System oa SPMS 8 where you wiD fiDeI...
Word ProeessiDa aDd Helps witb • V - P L U SI

3209-8

5.0 Conclusions

SRIS utilizes a variety of software packages to provide a powerful system which can meet
the changing requirements of the customer in a timely manner. Too often, system analysts
try to meet their customer's requirements by using available in-house software and/or
developing the system with the use of only one software development tool. This can create
a system which may not fully meet user requirements. The EH Safety Representative
Information System has made use of advanced technologies in HP-3000 application software,
providing a comprehensive, easy to use, and maintainable system. As requirements and
technologies change, so can SRISI

The EEl Safety Rep. IDlormadoa System OD SPMS .. where JOU will fIDd...
Word Pr8eeu1Da aacI Helps with a V - P L U SI

3209-9

The Omnidex Handbook:
Tips for Tuning Omnidex Performance

C. Shawn Morris
Dynamic Information Systems Corp.

5733 Central Avenue
Boulder, Colorado, 80301

(303) 444-4000

Introduction

Much has been written about IMAGE performance as it relates to the
underlying IMAGE indexing structure. This information has helped
users to identify real or potential performance problems, and
adjust their data base administration practices to avoid problems
and improve performance. However, little information is available
to guide the user in diagnosing problems with alternate J.ndexing
products such as Omnidex.

This paper will provide the Omnidex user with specifics about the
internals of Omnidex keyword indexes. Common problems and their
underlying causes will be discussed as well. Along the way,
remedies and recommendations will be provided as guidelines to help
the Data Base Administrator maximize Omnidex index efficiency and
throughput.

omnidex Indexing Structure

In order to understand the overhead and possible pitfalls of
Omnidex keys, one must first gain a basic understanding of the
internal structure of omnidex indexes. Before beginning that
discussion, however, a few terms need to be defined.

Terms to Know

An omnidex keyword field is an IMAGE field that has been designated
as an Omnidex key at installation time. A keyword is a word found
somewhere in the omnidex keyword field. Keywords are delimited by
spaces, special characters and field boundaries, and one omnidex
keyword field may contain several keywords.

A record complex is defined as a master record and it's associated
detail records. An example of a record complex is a customer
master record and all order records for that customer, or a batch
header record, and all batch detail records entered for that batch.
Another way to think of a record complex is a single, variable
length record containing all data related to an entity.

The omnidex ID is a double word integer value (e.g. IMAGE type 12)
between 1 and 8,388,607 that uniquely identifies a record complex.

The·OMNIDEX Handbook 3210- 1

In practice, the Omnidex ID is either the IMAGE search item value
of a record (if the search item is a double word integer), or a
number that uniquely identifies the search item. This allows
omnidex to store double word integer references to search items
rather than the search items themselves which can be as large as 64
words.

An IMAGE domain is defined by a master data set and it's associated
detail sets. All data sets in the domain are related by a common
field known as the IMAGE search item. Thus, a data set contains
records, and a domain contains record complexes.

An omnidex domain is defined by the data sets of an IMAGE domain
that contain omnidex keyword fields. The common search item for
those sets is called the omnidex search item.

To summarize, an omnidex ID either i§ a search item, or has a one
to-one relationship with a search item. The search item associated
with an omnidex ID is common to the master and possibly one or more
detail records in a record complex. Because Omnidex IDs are used
to identify the record complex that a keyword belongs too, it is
helpful to examine first how the omnidex ID is stored and how it is
assigned.

The Inverted File Structure

When building the indexes for an omnidex keyword field, all records
in the Omnidex domain are searched, and words in the Omnidex
keyword field (delimited by spaces and special characters) are
parsed out of the field and copied to a file. with each keyword,
an Omnidex ID is recorded which identifies the search item of the
record complex from which the word came. In the simplest case, the
omnidex ID is also the IMAGE search item.

After all keywords are extracted, the unload file is sorted by
keyword and Omnidex ID. All IDs are then loaded into a master and
detail data set, with each unique keyword becoming a search item
for a chain of Omnidex IDs. This structure is called an inverted
file index because the data values are used to retrieve search
items, rather than using the search items to retrieve the data.

To illustrate the indexes that result from this process, assume
that 3 records exist in a CUSTOMERS master data set, as shown
below:

CUSTOMER-NO:
CUSTOMER-NAME:

2
Joe smith

7
Joe Jones

9
Sloppy Joe

If CUSTOMER-NAME is designated as an omnidex keyword field, the
resulting inverted index would look like this:

The OMNIDEX Handbook 3210- 2

2
7
9

7 2 9

This list allows Omnidex to very quickly determine how many records
contain a keyword such as "JOE" and to determine the unique search
item for each record.

Implementing the Inverted File Index

The Omnidex indexing method is implemented using IMAGE data sets
and is maintained using only IMAGE intrinsics. As a result,
Omnidex index maintenance participates in all IMAGE activities,
including shared locking, set and item security, and logging. An
approximation of the actual IMAGE implementation is discussed next.
While not exact in every detail, the discussion is adequate to
understand the performance issues involved with omnidex indexing.

As stated earlier, the main Omnidex index sets consist of a master
and detail data set. The master record holds the keyword, and the
detail set holds the omnidex lOs of the records that contain the
keyword. In graphic form, the structure would look like this:

Master data set
with a search
item of ODX'WORD.

Detail data set
chained by OOX'WORD
that holds Omnidex
IDs.

WORDS

JOE
For simplicity, assume that each detail record can
hold up to three Omnidex IDs. Leaving a space in
each record for insertion of new Omnidex IDs, the
physical records to track the keyword JOE would look
like Figure 1.

To retrieve all records containing the keyword JOE,
Omnidex simply performs an IMAGE DBFIND on OOX'WORD
with an argument of "JOE", followed by a chained
read of the detail data set. Omnidex then returns Figure 1
the search items to the application program. For
each search item returned, IMAGE reads can be
executed on the appropriate master or detail data sets to retrieve
the corresponding records.

The OMNIOEX Handbook 3210- 3

Maintaining the Inverted Index

Now, let's take the example a bit further and add a customer to the
data set, then consider the IMAGE transactions required to maintain
the list for JOE in "real time".~ Here's the customer record:

CUSTOMER-NO: 10
CUSTOMER-NAME: Joe

Before adding the record, Omnidex parses the keyword out of the
field CUSTOMER-NAME, and establishes the head of the
chain containing lOs for the keyword JOE. Backward
chained reads are then performed until the proper Joe
record is found in which to insert the new Omnidex
IO. In this case, only one backward read is needed
to find where to put an Omnidex IO of 10. Finally,
OBUPOATE is called to insert the IO in the IO chain.
The reSUlting Omnidex IO chain looks like Figure 2.

Estimating omnidex I/O

This example illustrates the most favorable Figure 2
situation for Omnidex indexing;

If the omnidex ID being inserted is always greater than the
largest omnidex ID in the chain, only 1 read to disc and 3
writes to disc are needed to index a keyword.

Adding 3 initial reads, the estimate for indexing a new Qmnidex
record is then:

#I/Os = 3 + 4 * Ikeywords

where l1LQ§ is the total number of reads or writes required to
index the entire record, and 'keywords is the number of words
(separated by spaces and special characters) in the record to be
indexed. If only 1 keyword occurs in each Omnidex keyword field,
then the estimate is:

II/Os = 3 + 4 * #keys

where~ is the number of Omnidex keyword fields installed on
the data set.

This formula should look familiar; it is also the estimate for I/O
required to update an IMAGE path. with IMAGE, however, the
occurrence of secondaries can .greatly increase the amount of work

The OMNIDEX Handbook 3210- 4

required to maintain the IMAGE path. with Omnidex keys, a similar
affliction can occur.

The Perilous Packed Pointer Predicament

Omnidex IDs must be inserted in an ID chain such that they remain
in sorted order. This is no problem when an empty slot is
available. Yet, when an index record is completely "packed" with
IDs, all IDs greater than the one being inserted must be shifted by
one along the ID chain. consequently, the highest ID in the
insertion record must in turn be inserted in the next record in the
chain. If many consecutive records are packed, then many
repetitions of this "ripple effect" can occur. I call this
phenomenon the "perilous packed pointer predicament".

To illustrate, let's go back to our original example, and add three
records who's Omnidex IDs are not the largest values in the chain.
Here are the records:

CUSTOMER-NO: 4
CUSTOMER-NAME: Good Joe

5
Joe Bob Smith

3
Joe Bob Jones

Conceptually, the new inverted index looks like this:

BOB ~ !IQE ~ mum ~
3 4 2 3 2 9
5 3 7 5

4
5
7
9

Remember that the Omnidex IDs for the records to which each keyword
belongs are kept in sorted order. This allows for easy comparison
of lists and is the basis for the ability of omnidex to perform
"AND", "OR" and "NOT" logic. The IMAGE procedure calls required to
add references to records 4 , 5 and 3 (in that order) for the
keyword JOE would proceed as follows:

For record 4:

Perform DBFIND mode 1 on the OOX'WORD search item
using "JOE" as the argument. Read the chain
backwards until the proper record is located.

Call OBUPOATE to update the record so that it
contains the new Omnidex ID in the proper order.

JOE

The OMNIDEX Handbook 3210- 5

For record 5:

Perform OBFINO mode 1 on the OOX'WORO search item
using "JOE" as the argument. Read the chain
backwards until the proper record is located.

Call DBUPDATE to update the record so that it
contains the new omnidex 10 in the proper order.

"Push" the 10 for record 7 into the next index
record using OBGET mode 5, followed by DBUPOATE.

For record 3:

Perform OBFINO mode 1 on the OOX'WORD search item
using "JOE" as the argument. Read the chain
backwards until the proper record is located.

Call OBUPOATE to update the record so that it
contains the new Omnidex 10 in the proper order.

Push the Omnidex 10 for record 5 into the next
record using OBGET mode 5, followed by OBUPDATE.

By now, you should notice the following;

JOE

JOE

JOE

JOE

To insert an omnidex ID into a packed record takes an extra
forward chained read and update (2 I/Os) to push an ID to the

The OMNIOEX Handbook 3210- 6

next record 0

Just to make sure this concept hits home, let's insert another
record for customer number 1.

CUSTOMER-NO:
CUSTOMER-NAME:

1
Joe Lunch Pail

Perform DBFIND mode 1 on the ODX'WORD search item
using "JOE" as the argument. Read the chain
backwards until the proper record is located.

Call DBUPDATE to update the record so that it
contains the new Omnidex ID in the proper order.

Push the omnidex ID for record 4 into the next index
record using DBGET mode 5, followed by DBUPDATE.

JOE

Push the omnidex ID for record 9 into a new index ~

record using a call to DBPUT.

To extend the observation from before;

When inserting an omnidex ID into a packed index record, two
additional disc I/OS are required. for EACH COHSECU'l'IVE PACKED
RECORD.

That's the perilous packed pointer predicament. It occurs when
omnidex "ripples" all IDs forward in an ID chain until a record is
found with an open slot for an Omnidex ID. True omnidex indexing
allows for up to 64 Omnidex IDs per index record and 4 empty slots,
making it much less likely that this will occur. Over time on an

The OMNIDEX Handbook 3210- 7

active data base, however, the conditions for this phenomenon can
develop.

similar to Migrating Secondaries

This situation is very similar to the problem of migrating
secondaries, where IMAGE "bumps" a record with a secondary search
item to make room for a primary, and attempts to relocate the
record. IMAGE may read through several IMAGE blocks before finding
an empty address for the record with the secondary search item.

omnidex OVerhead Summarized

To summarize the previous discussion, the overhead required to
index a keyword depends on where in the 10 chain that the ID must
be inserted. If the 10 is not inserted at the end of the ID chain,
any extra work required depends on the availability of an empty
slot in the index record. If no empty slots exist, the overhead
increases by two I/Os for every packed index record after the one
in which the Omnidex ID is initially inserted. Therefore, it is
helpful to know how omnidex IDs are assigned to determine if there
is potential for performance problems.

Assignment of the omnidex ID

When a new record is introduced through a DBPUT call, the Omnidex
ID that is assigned is usually greater than any previously used.
Consequently, maintenance of the chains of omnidex IDs is done at
the end of the index chain, and overhead is minimized.

One instance where insertion of omnidexIDs occurs somewhere in the
middle of an ID chain is after records are deleted. Whenever an
omnidex record complex is removed, the Omnidex ID that was assigned
to the record complex is saved for later use on the "free ID list".
omnidex IDs are then re-used on a last in, first out (LIFO) basis.
The free ID list is very similar in concept to the "delete chain"
that IMAGE uses to track and re-use detail data set addresses from
which records are deleted.

The other instance where Omnidex IDs are inserted is when records
are updated, or when detail records containing omnidex keyword
fields are added to an existing record complex. In both instances,
keywords in omnidex keyword.fields are assigned to an omnidex ID
that was previously allocated to a record complex. The value of
the ID, and where it might be inserted in an index chain is often
unpredictable.

Finally, a Useful Conclusion!

While little has been put forth to this point as to what actions

The OMNIDEX Handbook 3210- 8

can be taken to minimize Omnidex overhead, enough information is
available to establish our first guideline:

If records are not deleted, or deletes are rare, overhead for
adding new records is minimal.

If a data set is fairly static, at least from the standpoint of
deletes and updates, then most of the IMAGE transactions required
to maintain omnidex ID chains occurs at the end of the chains.

This is not uncommon for reference files such as customer masters,
catalog masters, vendor masters and history files. In many cases,
records in these files are rarely modified after their initial
load. As a result, these kinds of data sets are great candidates
for omnidex indexing, because the cost to maintain them is low,
while the benefit from increased retrieval capability is high.

Minimizing omnidex OVerhead

In many cases a data set will not be static, receiving frequent
add, delete and update transactions. consequently, omnidex
indexing can add significant overhead to these transactions. Just
as one would hesitate to add an IMAGE path to a detail data set
unless it served some useful purpose, one must weigh the usefulness
of a new Omnidex key against the overhead it adds. Fortunately,
Omnidex keys have many more useful purposes than IMAGE keys!

Now that the pertinent features of the Omnidex indexing mechanisms
are revealed, it's time to look at ways of minimizing the overhead
associated with an omnidex keyword field. The available methods
reflect two strategies:

- Defer indexing to periods of low activity

- Manage indexes for real time throughput

Deferring Index Transactions

Several methods exist to avoid the extra IMAGE transactions
required to index keywords in real time. Usually, this involves
some method of preventing Omnidex from indexing keywords, followed
by a complete or partial rebuilding of indexes at some strategic
time.

Disabling Real Time Indexing

The easiest way to avoid the overhead of indexing keywords is to
completely bypass the mechanisms that cause indexes to be
maintained in real time. If it is not imperative that records be
available for retrieval by Omnidex keys immediately after they are
added, disabling real time indexing eliminates the overhead

The OMNIDEX Handbook 3210- 9

associated with omnidex indexing. 2

For example, if users wish to retrieve GL transactions in an
accounting data base, it's conceivable that only those transactions
for closed months are of value for retrieval. In this case, one
may wish to index all records after the period closing, and bypass
real time indexing during the day-to-day transaction input. When
the new period is closed, all records can be indexed again. The
ways to disable real time indexing are straightforward.

If a program calls the Omnidex IMS intrinsics DBIPUT, DBIDELETE and
DBIUPDATE to write to a data base, these intrinsics can be called
using "IMAGE-only" mode 3

• This causes omnidex to bypass the
indexing of keywords at the time of the transaction.

Another option, for programs that do not use the Omnidex "OBI"
calls to update the data base, is to simply decline to implement
the call conversion feature of omnidex. The call conversion
feature traps calls to DBPUT, DBDELETE and DBUPDATE, and calls
DBIPUT, DBIDELETE or DBIUPDATE on behalf of the program. If this
mechanism is not put in place, no indexing of records occurs in
real time.

After a period of activity, usually every night, or after a
milestone such as the close of an accounting period, a complete
reindexing of the omnidex keys is performed. During this time, no
other processes are allowed to have the data base open. After the
process completes, all keyword fields are indexed and available for
omnidex retrieval.

The HI Field Option

The BI or "Batch Indexing" option is assigned at the time that a
field is designated as an Omnidex keyword field. While disabling
real time indexing bypasses inde~ing for all key fields, the BI
option allows the user to choose specific keys for which to
disregard indexing.

Assuming that the mechanisms for real time indexing are not
disabled, Omnidex keyword fields possessing the BI option are
excluded from indexing at the time of a put, delete or update. All
keyword fields not installed with this option are indexed in real
time. As with the "disabling" alternative described earlier, all
omnidex keyword fields are reindexed in a period of low activity to

2 Note that th:l.& a1't:.eZOftat:l.ve :1.& bo_'t:. _u:l.'t:.C!td ~en 2DO_t o~ th_
un:l.nCSex_CS act:l.v:l.ty C'tOJDlD_ ~rOJD new reaordlll. Wb.en XNAGJB rectozod
CSe1._t__ or upda't:.e_ 0C'tC'tuz" w:l.thou't:. rea1. 't:.:l.me :l.nCS_x ma:l.n't:.enanc_,
:l.nc:ons:l._'t:._na.:l._s between ~_ :l.nCSexe_ anCS the data recoz:0d8 may
re&u1.t.

3 xr 't::.b_ data ba__ :1._ opened w:l.'t:b _bared, 1DOCS:I.~y aace••
eDDXOPBH' IDOCS_ 1.), th_n an XMAGB-on1.y IDOCS_ wou1.d be used w:l.th
DDXx.oc::K a_ we1.1. •

The OMNIDEX Handbook 3210-10

reflect the most recent transactions.

Again using the example of accounting transactions, you may wish to
designate several fields as Omnidex keyword fields, and add the BI
option to all Omnidex keyword fields except the posting status. If
a mechanism for real time indexing is in place, the posting status
field is indexed immediately after a record is added, while other
Omnidex keyword fields are ignored. This technique permits quick
retrievals using the posting status keyword field (perhaps to
retrieve unposted records), while other Omnidex retrievals would be
permitted only on records for closed periods.

Advantages/Disadvantages

The advantage of the above techniques is that index updates are
ignored either completely or for selected keys. Consequently, no
I/O is generated to maintain the omnidex indexes. The drawbacks
with these methods are that changes to keyword fields are not
immediately reflected in the indexes, and a complete reindexing of
all keys, whether they were indexed in real time or not, is
required to make the indexes consistent with the data records. A
technique called "Deferred Update" can give the same benefits, but
requires a less intensive process to bring the indexes up-to-date.

Deferred Update Indexing

The Deferred Update process consists of two steps. In the first
step, a flag is set, either at data base open time, or separately
with the ODXUTIL utility program, which instructs Omnidex to defer,
rather than ignore all indexing activity. For each put, delete or
update, all keywords and Omnidex IDs to be added to or deleted from
the indexes are written to files. Since the records are small and
the blocks large, writes to the files consume very little I/O
overhead. As a reSUlt, the time required to add 1000 records with
indexing disabled is essentially the same as the time required to
add 1000 records with indexing deferred.

After all records are added, the ODXUTIL indexing program is used
to update the deferred keywords. In this step, the deferred
keyword files are first sorted in keyword and 10 order. Then the
indexed keywords are unloaded from the omnidex index data sets and
sorted in the same order. Finally, all keywords are merged back
into the indexes, with common keyword deletes and adds canceling
each other out. This process takes only slightly longer than a
simple primary path reload of the omnidex detail index data set.

Advantages/Disadvantages of Deferred Update

The advantage of the Deferred Update process is that the sort/merge
procedure takes considerably less time than an exhaustive read and
reindex of the entire data set. This follows from the fact that

The OMNIDEX Handbook 3210-11

the index data sets are considerably smaller and more compact than
the data files that they reference.

Of course, nothing is free, and there are a couple of drawbacks.
First, when a process is performing IMAGE updates in deferred
update mode, it must have exclusive write access to the data base
(DBOPEN modes 3 or 4). While other processes may have the data
base open for reading, no other processes may write to the data
base during the first step of the Deferred Update process4

• During
the ODXUTIL update step, exclusive access is required to the data
base, and no other processes may have the data base open.

The other drawback to this method is that a Deferred Update process
may be performed on only one Omnidex domain at a time. While
programs may be run repeatedly in deferred update mode to update
the same domain, the deferred activity must be Updated (via the
second step of Deferred Update) before any other domains may be
updated, or before the data base can be opened in shared,
read/write mode.

For these reasons, deferred update is best suited for speeding up
nightly batch updates that normally have exclusive access to the
data base. It will almost always be faster than real time indexing
of each transaction (unless a small percentage are updated), and
will usually beat a complete reindexing as well (unless a very
large percent of records are updated).

Managing Indexes for Real Time Throughput

All of the above described methods use techniques that completely
avoid the overhead of real time indexing. They each have the added
advantage of leaving the indexes "well organized" after the process
is finished, whereas real time indexing may gradually proceed
towards packing of index records. However, real time indexing is
often desired to get immediate retrieval capability on the Omnidex
keyword fields. It is here that some knowledge of the index
internals, and a few techniques, can help to keep Omnidex indexing
running smoothly.

The Excluded Words List

The Excluded Words List represents the easiest, most effective, yet
possibly the most neglected technique for improving real time
throughput. It is easily built, easily installed, improves both
real time and batch indexing performance, and its concept is
simple. In short, the Excluded Words List contains words that
should not be added to the Omnidex indexes. Whenever a reindexing
is performed, or a record is added or updated, keywords that are

4 C~~curro~~ road accoss ~& a11~wed ~~1y w~th DOOPBH ~_ 4.

The OMNIDEX Handbook 3210-12

parsed from the Omnidex key fields are checked to see if they exist
in the Excluded Words List. If so, they are not indexed, reducing
disc accesses and increasing overall throughput.

Typically, the excluded words list contains "noise" words that are
of little value for retrieval purposes like "and", "the" and "of".
For free form keyword fields, a comprehensive Excluded Words List
can save a great deal of the I/O required to index each record.
Take for example a field in a customer record that contains
customer names. Each name would consist of a first name, last
name, middle name or initial, and a salutation such as Mr., Mrs.,
or Ms., for a total of four keywords per key. By adding the words
MR, MRS and MS to the Excluded Words List, only three of the four
words in each name field must be indexed - an I/O (and time)
savings of 25 percent!

The excluded words list should also contain keywords that occur in
a majority of the record complexes in an Omnidex domain. For
example, if most of the record complexes in a domain contain a
company code of "01", the omnidex ID chain associated with the "01"
keyword may be very long. Consequently, many disc access may be
required for searches of the chain, causing new ID insertion or
Omnidex retrievals to take a prohibitive amount of time.

It is easy to determine the likely candidates for excluded words.
A good starting point is the default excluded words file,
XCLUDES.PUB.DISC, provided with the Omnidex software. Then, after
indexing all keyword fields (or a representative subset), use the
keyword lookup feature of the DATADEX inquiry program to
interrogate the indexes for each keyS.

From the list of words that were indexed, identify obvious noise
words or words that occur in more than 1/2 of the record complexes
in the Omnidex domain. Add these words using the editor of your
choice to your file containing excluded words. Load the file using
the ODXUTIL "XCLUDE" command, and reindex all keys.

Periodic Reindexing

If the Excluded Words List is the most neglected method of
improving throughput, then Periodic Reindexing is the second most
neglected, but effective method of improving throughput. As
indicated earlier, records in an Omnidex ID chain normally contain
64 slots each for omnidex IDs. After a complete reindexinq, 4 of
those slots are empty, reserved as "pad" space for insertion of new
IDs. As a result, insertion of new omnidex IDs can be accomplished
without the "ripple effect" that sometimes increases omnidex

S A DATADBX retr~ava1 on an omn~dex keyword f~e1d u_~n9 ~e
arqumen't:. ".OaZ" ~~11 1~_'t:. a11 keyworda ~ndexed from an ASC:J::J: f~_1d_

Refer to ~e DATADBX referenoe manua1 for more ~nfo~'t:.~on on ~.
keyword 100kup fea't:.ure_

The OMNIDEX Handbook 3210-13

overhead.

Another benefit of Periodic Reindexing is that the resulting
Omnidex 10 chains are sorted in primary path order on the OOX'WORD
keyword path. This is advantageous for omnidex indexing, as it
would be for any detail data set that is reloaded on a commonly
used IMAGE path. Since all records for a given keyword are
physically contiguous in the omnidex detail index set, several
chained reads can be accomplished without generating another read
to disc. Since there are 7 records per block in the Omnidex detail
index set, Omnidex can scan as many as 448 omnidex lOs per I/O when
searching for the place to insert a new omnidex 106

• For the same
reasons, Periodic Reindexing enhances the performance of Omnidex
keyword retrievals as well.

The benefits of a reloaded detail index set can be obtained without
completely reindexing by simply reloading the Omnidex detail index
data set using any popular IMAGE data base utility. A program
called OOXMGR is provided with every Omnidex software tape which
gives the capability to perform capacity changes and reloads on
Omnidex index data sets. If you have a regular schedule for
reloading detail data sets, include yourOmnidex detail index sets
in the rotation. You can identify the sets by first obtaining a
list of all data sets in the data base. Every data set beginning
with the characters "XOOX'" is an omnidex detail index set.

Increasing Index Pad Space

As stated earlier, 4 slots are left in each of the Omnidex detail
index records for insertion of new omnidex lOs. In a dynamic data
base, however, these slots will be systematically taken, creating
increasing numbers of packed records. As the occurrence of packed
index records increases, forming chains of contiguous packed
records, Omnidex overhead problems begin to develop.

While reindexing the Omnidex keyword fields will alleviate the
packing problem, and option in OOXUTIL utility program can greatly
extend the time it takes for index records to become packed with
Omnidex lOs. This in turn will reduce the frequency with which you
should periodically reindex.

By using a command called "SET PAOli, ODXUTIL permits the user to
increase the "pad space 'l to a maximum of 16 slots for insertion· of
new lOs. As a result, four times as many IDs can be inserted into
a given index record before all slots are used up. The SET PAO
option must be used every time you reindex with ODXUTIL if you want
more empty slots than the default of 4.

The OMNIOEX Handbook 3210-14

The tradeoff for increasing the pad space is that it takes more
records (and possibly a higher capacity and more disc space) in the
omnidex index detail set to hold the same number of omnidex IDs.
For a pad setting of 16, expect the number of Omnidex detail index
records to increase by around 15%.

Conclusions

This paper focused on a conceptual model of the "real time"
updating of Omnidex indexes. The model aids in presenting the
kinds of performance problems that can occur when maintaining the
detail data set that contains the inverted file index.

In general, performance problems begin when the IMAGE detail
records that contain the Omnidex ID references become "packed".
Consequently, inserting an ID into the chain causes a "ripple
effect" that adds 2 I/Os for every consecutive "packed" index
record (moving forward from the first record) in the chain.

Performance can best be enhanced by not indexing in real time at
all. The indexing can be completed nights or weekends, when there
are CPU cycles to spare. This option is best suited for static
data bases, because new updates are not reflected in the omnidex
indexes until the next reindex process is performed.

If real time indexing is required, then performance can be greatly
improved by using the Excluded Words List. Periodically rebuilding
the indexes (weekly if possible, monthly if not) reallocates slots
for insertion of new IDs and reloads the Omnidex detail index set.
Increasing the number of empty slots using the ODXUTIL "SET PAD"
option allocates many more slots for insertion, reducing the need
for periodic reindexing.

The suggestions contained herein will give the Omnidex user an
assortment of weapons with which to fight the perpetual performance
battle. More importantly, however, it is my hope that a glimpse of
the omnidex internals, accompanied with the explanation of when and
how each suggestion improves performance, will permit the data base
administrator to tailor a mixture of these procedures that best
fits his or her unique data base environment.

The OMNIDEX Handbook 3210-15

Tradition vs. Transcendence in Software Engineering

Paper No. 3211

Natalie M. Minenko
Technical Staff

Oracle Corporation

HP Products Division
400 Oracle Parkway

MD: 40P-ll
Redwood Shores, CA 94065

(415) 506-7000

Abstract

When developing a new software product for the marketplace,
several questions must be asked early in the design stage, including,
"Who are my users?", "How will my software impact my users?",
"How easy will it be for them to learn and use this product?", and
"How will this product make my users more efficient, more
productive, and more profitable?" This paper focuses on the
dichotomy of two software engineering principles that are essential
to user centered design: tradition versus transcendence.

Tradition is the principle which measures how much of the
user's outside knowledge and previous experience can be applied to
the new product. Transcendence is the quality which indicates how
progressive and innovative a product is, whether it is a bold advance
which will revolutionize the way users think and do their work or
something that is not so much a break from tradition.

This paper will examine these two principles of software
engineering and show how they are essential in answering the above
questions and creating a usable and marketable product. Some
examples will be drawn from case studies using Hewlett-Packard's V
Plus and Oracle Corporation's SQL Forms in the MPE XL environment.
These two software packages are both commercially available from
Hewlett-Packard and Oracle Corporation, respectively.

Tradition vs. Transcendence...3211-1 N. Minenko

If the city of San Diego suddenly passed an ordinance to
reverse all of its street lights, such that green meant "stop" and red
meant "go," the results would immediately be felt in hospitals and
insurance claim offices citywide. Even after local residents got used
the new system, accidents would still occur due to the unsuspecting
tourist who missed the signs proclaiming, "In this city, green means
stop and red means go." Rescinding the law could only make matters
worse in the short term--motorists and pedestrians would be so
confused that they might start avoiding San Diego altogether rather
than take their chances at getting hit.

While this is a rather extreme example, it serves to illustrate
the point that successful software products must provide the user
with a familiar environment to work in for maximum productivity.
If a user can apply previous knowledge gained from the outside
world to a product, that guarantees a shorter learning curve than if
he or she had to learn all of the product methodology from scratch.
As Shneiderman offers in his guidelines for form fill-in design, "If
Address were replaced by Domicile, many users would be uncertain
or anxious about what to do." "Tradition" is the principle which
measures how much of the user's outside knowledge and previous
experience can be applied to the new product.

Providing users with familiar environments is one of the
reasons for Oracle Corporation's software engineering strategy.
Oracle Corporation's HP Products Division is solely responsible for
modifying generic "base code" to run on an HP 3000 MPE XL system.
It is necessary that the finished product has a similar look-and-feel
to what MPE XL users have experienced in the past, from other
companies as well as from previous ORACLE software releases.
ORACLE for MPE XL products cannot, for example, allow file name
extensions as the DOS and UNIX environments do. They must
support the eight softkeys found on HP terminals whenever possible.
And even though developers in Oracle's Macintosh group are
required to use the desktop metaphor and the Macintosh Graphical
User Interface, the HP Products Division cannot expect its customers
to point and click in order to use ORACLE until the NewWave
interface is supported. These are all examples of the constraints of
tradition in software engineering.

Yet without some changes and adaptations, software would not
evolve and improve over time. Sometimes, just a small feature is

Tradition vs. Transcendence ... 3 211- 2 N. Minenko

needed to make a big difference in a product. Function key support
that eliminates repetitive keystrokes might fall into this category. At
other times, a complete reworking of the design is needed to achieve
the desired result. This is often the case when the logical flow of a
process must be redefined to maximize the user's productivity.
"Transcendence" is the quality that indicates how progressive and
innovative a product is, whether it is a bold advance which will
revolutionize the way users think and do their work or something
that is not so much a break from tradition. It is a quality that must
be exploited carefully, so that users can see the connection between
their current approach to the task at hand and the methodologies
used in your product. Too much innovation, and your users won't be
able to see how your 23rd century product will help to solve their
problems today.

Having defined tradition and transcendence in the software
development context, we proceed to examine user centered design
and the questions that it raises. "Who are my users?", "How will my
software impact my users?", "How easy will it be for them to learn
and use this product?", and "How will this product make my users
more efficient, more productive, and more profitable?" are the basic
questions that must be asked early in the design phase of a product.
When considering each question, the engineer must weigh the
influences of tradition and transcendence to determine the overall
design.

A common pitfall of designers in all professions is failing to
identify the user's needs and the design issues they raise, then
designing to meet those needs and solve the user's problem. Too
often in their haste to be innovative, engineers can architect a
product that either fails to solve the user's problem because (1) the
parameters of the problem were misunderstood, or (2) the result
embodies a great solution to a problem that the user never had in
the first place. A classic example of failure to ask "Who are my
users?" comes from architecture and the ill-fated Pruitt-Igoe low
income housing complex. [Bannon 28] Built in St. Louis in the early
1950's, it consisted of large apartment complexes surrounded by
open spaces while bypassing traditional streets, gardens, and
semi-private spaces. Although it won an award from the American
Institute of Architects and was notable in that "the intelligent
planning of abstract space was to promote healthy behavior" [Jencks
9], the design was totally inappropriate for the occupants. The

Tradition VI. Transcendence...32 11 • 3 N. Minenko

architect neglected the fact that most of the occupants did not have
prior experience living in a densely packed community, nor did he
incorporate many places for traditional social activity in his design.
In his effort to provide an innovative housing structure, the architect
failed to consider the parameters of the design problem and meet his
users' needs. The end result is that the complex became the site of
vandalism, drug abuse, and crime, and was demolished within
twenty years.

The question "How will my software impact my users?" is
overlooked far too often at many development sites. Whether they
intend to or n~t, designers impose their own values and expectations
on end users to varying degrees. The Pruitt-Igoe housing project is
an example of an intentional attempt at behavior modification that
failed miserably. Word processing software provides an example of
how computerization has unintentionally modified some people's
methodology for document production. In the days when a writer
had only a typewriter and a red pen to create his or her works, a
common scenario consisted of 3 stages. First the writer would jot
down his or her initial ideas in free form on a page. Once these ideas
jelled, the writer would then type out one or two drafts of the
document in a rough form. During the final part of this process, the
writer usually typed very carefully, as each revision at this stage
was potentially the final copy. The large amount of retyping
required to make any major changes was a big disincentive for the
writer to change the structure of the document at this point. Today,
word processing software has virtually eliminated the third stage in
this process, as well as combined parts of the first and second stages
for maximum productivity. The result is that the writer is much
more efficient at producing a document and has maximized his or her
creative potential. Because of its total flexibility, word processing
software has fostered a generation of writers who feel comfortable
putting their initial thoughts up on the screen and making changes
up through the final printing.

Along the same lines, the prudent software designer will
consider the product's impact on the end users in terms of the
learning curve for the product. He or she must keep in mind
scenarios for the beginning, intermediate, and advanced user, and
design accordingly. When making design decisions, the software
developer must anticipate where users might be overly frustrated
and where they would be bored stiff. It is helpful to ask, "Is the

Tradition vs. Transcendence...3 211- 4 N. Minenko

logical flow of my program clear? Should I shorten the commands
needed by the experienced user?" when critiquing the software
design.

Often software developers focus on the steps necessary to learn
and use a new product, but fail to ask "How easy will it be to learn
this product?" and as a corollary, "How can I make the task of
learning simpler?" An example of this comes from user interface
design. The traditional user interface is a command line with a list of
somewhat cryptic commands. Through trial and error, and a host of
documentation manuals, users eventually become comfortable with
the syntax and commands and learn to use the machine. With the
advent of real time graphics came Graphical User Interfaces (GUIs)
and a new look for computing. Through the use of metaphors, GUI
architects can capitalize on the user's knowledge of the real world.
For example, objects in the Macintosh GUI behave in a traditional
sense: folders are where one stores files, and the trash can is where
one throws them away. Objects in the trash can stay there until the
user empties the trash. The transcendence that made this object
oriented interface revolutionary was the emphasis on "see and point"
to manipulate objects rather than "remember and type." [Apple
Computer Corp. 4] With just a few tips to get one started, the new
user can become proficient with a GUI very quickly. Very often, as
is the case in this example, simplifying the user's task of learning a
new operating system required a total rethinking of its design, as
opposed to merely eliminat.ing a few keystrokes.

Ease of learning and increased user productivity are two
reasons Oracle Corporation strives for a common look and feel among
its products while maintaining a native look-and-feel for each
individual platform. Current development efforts in the HP Products
Division are focusing on programmable softkeys for UP terminals and
workstations. Although the varied functionality of ORACLE tools
prevents 100% correspondence for each key in every product,
similar functionalities will have similar key mappings in each
ORACLE tool. Additionally, the mechanism to allow end user
customization of the eight softkeys will become standard throughout
Oracle's HP MPE XL product line. These two features promote
common look-and-feel among products. While our default
configuration will ensure a native MPE XL look-and-feel, the fact that
each user will be able to customize the softkeys ensures that ORACLE

Tradition vs. Transcendence ...32 11 · 5 N. Minenko

products will be flexible enough to provide an environment that is
familiar to the user.

An additional example of common look-and-feel among MPE
XL products is evident in standardized installation procedures. All
products are now shipped with two installation scripts. TAPEINST is
the script which will restore files from a distribution tape into the
ORACLE customer's MPE XL software account. Before completion,
TAP E INS T instructs the customer to run the product installation script
which creates the necessary users and tables in the database account
and completes the product installation. Naming convention dictates
that this script will begin with alpha characters that identify the
product and end in -INST. Since all ORACLE for MPE XL tools follow
this convention, even if a product arrives without documentation, the
customer will know how to install it on his or her system.

Finally, the most important question to answer is, "How will
this product make my users more efficient, more productive, and
more profitable?" This is where transcendence becomes a key issue,
because any product that does not help end users accomplish their
tasks better than they did before does not have much potential in
the marketplace. The successful software product will be flexible
enough to accommodate users with multiple levels of expertise,
provide expanded and enhanced capabilities with minimum of user
effort, and remain intuitive enough so that the user knows what to
do next. Answers to this question usually become key selling points
for the product.·

Oracle Corporation resolves this issue by designing a tightly
integrated product line and maintaining an architecture that is highly
portable across different software platforms. This strategy not only
allows maximum efficiency for ORACLE development efforts but
minimizes the learning curve and increases productivity for end
users. This is not to say that ORACLE software is stagnant, however.
New technology is constantly being investigated, developed, and
implemented in new product releases and revisions.

Examples of transcendence in software engineering can be seen
in the SQL*Forms product. When SQL*Forms was first introduced in
the MPE XL marketplace, users immediately realized significant gains
in efficiency. With the 4th-generation environment that SQL*Forms
provides, users could build a powerful form-based application in a

Tradition vs. Transcendence...3 211- 6 N. Minenko

matter of minutes, because SQL*Forms takes care of the low level
details of implementation and access to the form. A comparable
application could take days to implement with Hewlett-Packard's V
Plus: since this is a 3rd-generation tool, the form structure is
defined, but the user must code all routines needed to access the
form. Although it took some time for users to switch from a
3rd-generation language to a 4th-generation development
environment, the resulting increase in productivity, both in terms of
development time and application portability, more than made up
for the small amount of time spent learning the new product.
SQL*Forms V3.0 incorporated additional innovations into the product.
In previous versions, the use of macros left users clamoring for a
means of procedural control in their applications. Development
responded by introducing triggers which utilized PL/SQL code.
Although this meant that many users now needed to learn PL/SQL,
the tradeoff for streamlined, easy to create applications was
acceptable.

When developing new software for the marketplace, it is
important to remember the concept of tradition vs. transcendence
and maintain each quality in proper proportion. A user centered
approach to design begins by posing relevant questions to identify
end users and their needs. In this method, it is essential that the
product designer determine what traditional context end users are
familiar with before deciding how much innovation or
"transcendence" to introduce in a new product. For maximum
benefit, these issues must be considered early and often during the
software design cycle.

Tradition vs. Transcendence ...32 11 -7 N. Minenko

Works Cited

Apple Computer Corp. Apple Interface Guidelines. Chapter 1,
Philosophy

Bannon, Liam J. "Issues in Design: Some Notes", Chapter 2,
User Centered System Design. Ed. Donald A. Norman and Stephen W.
Draper. New Jersey: Lawrence Erlbaum Associates, Inc. 1986

Jencks, C. The language of post modern architecture. New
York: Rizoli. 1984

Shneiderman, Ben. Designing the Human Interface. Chapter 2,
Theories, Principles, and Guidelines. p. 41-80

The author wishes to thank Prof. Terry Winograd, Department
of Computer Science, Stanford University, for introducing the concept
of Tradition vs. Transcendence.

ORACLE is a registered trademark of Oracle Corporation.

MPE XL, NewWave, and V Plus are registered trademarks of
Hewlett-Packard.

DOS is a registered trademark of International Business Machines.

UNIX is a registered trademark of AT&T.

Macintosh is a registered trademark of Apple Computer Corporation.

Tradition vs. Transcendence... 3 211- 8 N. Minenko

Tradition

• How much of the user's outside
knowledge and previous
exper~ence can be applied to the
new product?

Tradition vs. Transcendence ...32 11 · 9 N. Minenko

Transcendence

• How progressive and innovative
is the product?

• Bold revolutionary advance?

• Or not?

Tradition VI. Transcendence...3 211-1 0 N. Minenko

IFour Essential Questions I
• Who are my users?
• How will my software impact my

users?

• How easy will it be for them to
learn and use this product?

• How will this product make my
users more efficient, more
productive, and more profitable?

Tradition vs. Transcendence... 3 211 · 11 N. Minenko

Paper #3212:
MPB V/B PORTRAN: The Internals of Alternate Return Paths

Craig Nickerson
united Electric Controls Co.

P.O. Box 9143
watertown, MA 02172-9143

U.S.A.
Tel. (617) 926-1000

Introduction

As a systems/applications programmer, I have worked
extensively with FORTRAN 66 (FORTRAN/3000) under MPE since
our company first acquired an HP3000 in 1982. FORTRAN 77
was added to our system when a major upgrade in our ASK
manufacturing software was released in that language. We
never implemented this upgrade because of the extent of our
own modifications and enhancements to the earlier FORTRAN 66
version; however, I found that in many situations,
FORTRAN 77 made. program coding and structuring a lot easier,
it having such features as IF-THEN-ELSE, the ability to call
most Compiler Library procedures directly, and the ability
to suppress actual, as well as formal, parameter checking.

Over the past several years, in the course of modifying and
developing applications software (not to mention a lot of
digging through manuals), I have written a large body of
general-purpose library procedures, most of them in
FORTRAN 66; these include several subroutines using alter
nate return paths. This is one area where the two FORTRANs
are mutually incompatible, and in this paper it is my pleas
ure ~o share with you how I worked around this obstacle.

Basically, my solution consists of original library
procedures called by one FORTRAN to handle operations per
formed transparently by the other FORTRAN's object code.
Unfortunately, I have no SPL source code to show you--we.
don't have the SPL/3000 compiler, and we've never bothered
to get it because I've found ways to work around it (Which I
touch on briefly in Appendix II); so, my discussion of these
procedures will be in terms of their logic. I hope that my
descriptions will be clear enough to enable you to write
them yourself.

I am assuming that you are a FORTRAN programmer with some
experience and understanding of the MPE stack architecture,
and have recourse to SPL. The HP3000/MPE shops most likely
to have both FORTRAN compilers are those that are running
ASK software and have upgraded their manUfacturing or other
applications from that vendor to the FORTRAN 77 conversions
from FORTRAN 66.

After stUdying this paper, you will have the potential
ability to:

• Call an alternate-return subroutine compiled in one
FORTRAN from a program compiled in the other.

FORTRAN Alternate Return Path Internals 3212-1

• Design a FORTRAN alternate-return subroutine to be
callable from either 66 or 77 in the conventional
manner, through separate entry points.

• Set up, in FORTRAN, a code segment address as an
alternate return point.

Where I am describing code syntax or giving examples, I
observe the following conventions:

• Optional coding is enclosed in square brackets ([]).

• Braces ({}) indicate a choice that must be made among
two or more coding options.

• Generic names of procedures or parameters are given in
lower-case.

• Since I am assuming FORTRAN experience, my code samples
are skeletal; an ellipse (•••) on a line by itself
indicates that source code not relating to my point has
been left out.

• Where the FORTRAN manuals use the terms "actual
argument" and "dummy argument", I adhere to the more
general terms "actual parameter" and "formal param
eter", respectively.

What Is an Alternate Return Path?

What I am calling the "alternate return path" construct is a
means by which a FORTRAN program may specify a statement
label where execution may conditionally resume when a called
subroutine returns. It is a standard feature of both
FORTRANs and well-documented in the manuals, but I review it
here for your convenience.

This is the general syntax in FORTRAN 66 of the CALL
statement using an alternate return path:

CALL subrtn([parml[,parm2 •••],]$labell[,$labe12 •••])

The calling sequence is identical in FORTRAN 77, except that
"*" is used instead of "$".
The called subroutine--which you must write in the same
version of FORTRAN (66 or 77) as the caller, if you're
programming strictly "by the book"--is designed for alter
nate returns by the inclusion of the appropriate number of
"*"'s in the formal parameter list, according to the number
of label identifiers to be passed by the caller:

SUBROUTIBB subrtD([pa~l[,parm2 •••],]·[,· •••])

A simple RETURN statement returns control to the caller at
the statement following the CALL; an alternate return path
is taken by inclUding a "label index" in the RETURN state-

FORTRAN Alternate Return Path Internals 3212-2

mente For example: If the formal parameter list contains
at least two "*"'s, a RETURN 2 statement will return to the
caller via the statement indicated by the second label
identifier in the CALL.

Only a SUBROUTINE-type procedure may employ alternate return
code.

To illustrate:

C OPEN THE MANUFACTURING DATABASE.
CALL OPENMFGDB(MFGDB,*800,*810)
PRINT I (" Mfg. Database opened. nI) ,

C CAN'T GET IN JUST NOW.
800 CONTINUE

PRINT 0 (I" **MFG. DATABASE NOT AVAILABLE**"/) v
STOP

C SERIOUS PROBLEM!
810 CONTINUE

PRINT I (I" **CAN' IT OPEN MFG. DATABASE**"/)'
CALL QUIT(l)
STOP
END

SUBROUTINE OPENMFGDB(IDB,*,*)

RETURN

RETURN 1

RETURN 2

END

If the ManUfacturing Database is opened successfully,
subroutine OPENMFGDB executes a simple RETURN statement
which returns control to the PRINT statement following the
call; if the database is down for maintenance, OPENMFGDB
displays an informative message and RETURN 1 selects a re
turn via statement 800; if the database can't be opened for
any other reason, RETURN 2 selects a return via statement
810.

~ tbfl Obj ect~ I2Q§Yi

This is what generally happens in FORTRAN at object-code
level when a normal subroutine or a function is called
(assuming that no parameters are passed by value):

1. Any constants passed to the procedure are copied from
the code segment to the top-of-stack (TOS). If an
actual parameter is an expression, which could involve
a nested function call, it is evaluated and the result
placed at the TOS.

2. If the procedure is a function, one or more words,

FORTRAN Alternate Return Path Internals 3212-3

depending upon the function data type, are allocated at
the TOS for the returned value.

3. If there is at least one passed parameter, a parameter
list is built at the TOS, consisting of one DB-relative
word address or byte pointer per parameter (a
FORTRAN 77 string descriptor involves an additional
word for the byte count); each address points to where
a variable has been mapped by the compiler, or to where
a constant or expression value has been stacked.

4. When the PCAL instruction (the active ingredient of the
CALL statement and function reference) is executed, a
4-word stack marker is placed at the TOS above the
parameter list (if present), and the Q-register is set
to the resultant S-register (TOS pointer) value. Among
the machine register values saved in the stack marker
is that of the index (X-) register, accessible to the
called procedure (at object code level) at Q-3; this is
important to FORTRAN 66, as we'll see further on.

5. When the subroutine or function executes an EXIT
instruction (the active ingredient of the RETURN state
ment), the machine registers are reloaded from the
saved values in the stack marker, which is then deleted
from the TOS along with the parameter list. Since the
P- and status registers are also saved (at Q-2 and Q-1,
respectively, from the perspective of the called proce
dure), this is how the CPU knows at what address in
what code segment to resume execution.

6. Any residue at the TOS--function and expression values,
constants, etc.--is put away or otherwise deleted by
the caller's object code before execution of the next
statement so that the stack is "in balance", i.e. the
S-register is pointing where it was when the statement
calling the procedure began execution.

I have included, as Appendix I to this paper, an excerpt
from our Supplemental Procedure Library documentation which
describes the stack marker in the context of the entire
stack structure.

When an alternate-return subroutine is called in FORTRAN 66,
the object code in the caller loads a 0 into the X-register
just before executing the PCAL. The X-register save word in
the stack marker thus initially contains a o.
When a FORTRAN 66 subroutine takes an alternate return path,
the object code stores the label index, specified in the
RETURN statement, to Q-3 just before exiting. The caller's
object code then branches to one or another location depen
ding upon the value it finds in the X-register.

In FORTRAN 77, the caller's object code calls the subroutine
as though it were a type INTEGER*2 function, i.e. it stacks
a 0 and the parameter list, in that order.

When taking an alternate return path, the object code in the

FORTRAN Alternate Return Path Internals 3212-4

"callee" behaves as though it were returning the label index
as a function value. The caller's object code then uses the
value it finds at the TOS to determine where to branch.

In both languages, a returned label index value of 0
indicates a normal return via the next statement after the
CALL.

At object code level in the above FORTRAN 77 sample,
OPENMFGDB finds the address of array MFGDB (formal name IDB)
at Q-4 and the label index word, initialized to 0, at Q-5.
A simple RETURN statement leaves the index word alone, but
RETURN 1 or RETURN 2 stores thereto a 1 or a 2, respective
ly. All RETURNs generate an EXIT 1 instruction, which
deletes only the MFGDB address along with the stack marker,
leaving the label index at the TOS for the caller's Object
code to test and branch to the PRINT statement following the
CALL, or to statement 800, or to statement 810, depending
upon whether a 0, 1 or 2 is found.

FORTRAN 66 loads and tests the label index in the same
manner, except that the called subroutine stores it at Q-3-
the X-register save word in the stack marker--so that upon
return, the caller finds it in the x-register.

The two methods of setting the label index are illustrated
on the next page.

FORTRAN Alternate Return Path Internals 3212-5

(Top-of-Stack)
s--->I-----------------------------

I
I Data local to the currently
I executing procedure.

Q+1 >

Q---> delta-Q (Q - prev. Q)

Q-1 > STATUS

Q-2 > Return address (reI. P)

+->Q-3 > X Index

A

I
I

Stack marker
I
I
v

A FORTRAN 77 subroutine sets the label index here;
the caller finds it at the top-of-stack. It is
tested and deleted, along with any stacked con
stant/expression values of passed parameters,
before execution of the next statement.

V

Q-4 >

+-->
I
I
I
I
I
I
I
I
I
+--

1 or more parameters
passed to currently
executing procedure

(optional)

Values of constants and
expressions passed as par
ameters, pointed to by
parameter list (optional)

Data local to the caller
V

+------ A FORTRAN 66 subroutine sets the label index here;
the caller finds it in the X-register.

FORTRAN Alternate Return Path Internals 3212-6

The Solution for Mutual Callability
Part I: 77 Calling 66

To solve the problem of calling a FORTRAN 66 alternate
return subroutine from FORTRAN 77, I prepared two
procedures: subroutine PUTXREG and function GETXREGF.

Internally, PUTXREG copies the formal parameter value to
Q-3, whence it is placed in the X-register upon exit;
GETXREGF simply returns the value it finds in Q-3.

Implementation of these procedures is as follows:

ZNTBGBR[62] GBTXRBGP

CALL PU'.I!XRBG (0)
CALL subrtD[Cparml[,parm2 •.•])]
ZDX=GBTXRBGI' C)

laJ)ell
ZP(ZDXoGT.O)GOTO (ClaJ)ell,labe12[,labe13 •••]),ZDX)

Your FORTRAN 77 program must adhere to these design points:

1. Compiler options must include "CHECK ACTUAL PARM 1",
which suppresses checking of actual parameter type and
plurality for compatibility with the called procedure.
The object library structure counts FORTRAN 66 labels
as typed parameters in both reference and entry defin
itions, even though they don't have entries in stacked
parameter lists.

2. All parameters passed to 8ubrtn must be either local
simple variables or constants, since array element
addressing involves the X-register, and expression
evaluation and references to global data (especially
within COMMON blocks) are more than likely to do so.
Where subrtn is expecting an array name, you must use a
local simple variable EQUIVALENCEd to the appropriate
element (in which case, the array itself must also be
local).

3. Your program size is limited with respect to the amount
of local stack. After the first 127 words above Q are
exhausted for mapping local and initialized global
data, the compiler resorts to mapping arrays for any
thing that's left and may have to use the X-register
even when a local item isn't sUbscripted. The x
register must contain a 0 when peAL is executed. Use
of the "TABLES" compiler list option will show you
where and how all of your variables are mapped.

4. The value returned by GETXREGF must be captured in a
separate statement as shown above, never implicitly
within an expression.

FORTRAN Alternate Return Path Internals 3212-7

The Solution for Mutual Callability
Part II: 66 Calling 77

If a FORTRAN 77 alternate-return subroutine was compiled
under option "$CHECK FORMAL PARM 0" and has at least one
data parameter, all yOU need to do in FORTRAN 66 is to call
it as a type INTEGER function:

ZHBGBR suhrtn

ZDx=subrtn(parmi[,parm2 •••])
labeli

ZP(ZDX.GT.O)GOTO {(labeli,labe12[,labe13 •••]),ZDX)

Otherwise, two new procedures are called for. Mine are
PUSHTOS and POPTOS, which emulate the operations their names
imply; the former "pushes" one word of data onto the TOS,
the latter "pops" one word of data from the TOS into a
variable.

Internally, PUSHTOS overwrites the formal parameter address
with the parameter value, then does an EXIT 0 which leaves
it at the TOS. POPTOS finds the target value at Q-5, which
it copies into the passed variable; an EXIT 2 then deletes
the "popped" word from the TOS along with the (one-word)
parameter list.

(Happily, PUSHTOS works whether I pass it a variable or a
constant. I designed it with a reference parameter so that
when one has occasion to use it in FORTRAN 77, one need not
suffer the embarrassment of forgetting to employ an $ALIAS
directive.)

Implementation is as follows:

CALL PUSIITOS(O)
CALL suhrtn[(parmi[,parm2 •••])]
CALL POP'l'OS (IDX)

labeli
IFCIDX.GT.O)GOTO (Clabeli,labe12[,labe13 •••]),IDX)

Here, the restriction applying to the parameters passed to
subrtn is that no constants or expressions are allowed; this
is because constant, expression and function values have to
be stacked before the parameter list is built. The
manually-stacked label index word and the parameter list.
must be directly adjacent.

This time, there is no need to worry about actual parameter
checking (Which can't be controlled in FORTRAN 66 anyway),
since FORTRAN 77 labels are transparent to the object lib
rary structure.

Designing A Subroutine fQx Two-Way compatibility

An alternate-return subroutine may be designed to be
callable from either FORTRAN by using a separate entry point
for each language and a utility procedure for passing the

FORTRAN Alternate Return Path Internals 3212-8

c

label index in the required manner. My active ingredient
for this scheme is (in SPL notation):

PROCEDURE SETRTN(ICTL,IPATH);
INTEGER ICTL, IPATH;

ICTL is a control word indicating which FORTRAN is
anticipating an alternate return path, and where to put the
label index; IPATH is the label index itself. After calling
SETRTN, a simple RETURN statement is all that's needed to
exit via the selected path.

In the case of FORTRAN 77, the label index must be returned
to the word just below the parameter list, so SETRTN needs
to know the length of the list in words; absent any passed
string descriptors, this is simply equal to the number of
parameters exclusive of label identifiers. SETRTN may be
provided the list length directly.through ICTL, but if the
subroutine has mUltiple entry points, SETRTN may alternat
ively be told through a flag bit to fetch the list length
from the subroutinees Q+1, where it has been placed trans
parently by the initialization code (so that a RETURN
statement may be executed at any point in the sUbprogram
unit with the correct stack decrement). The parameter list
length is, of course, irrelevant for FORTRAN 66, since the
label index is always returned to the X-register via the
stack marker.

Internally, SETRTN locates the subroutine's stack marker by
using the delta Q value stored at address Q in its own stack
marker; thus, we have Q'=Q-de1ta Q. Flag bit ICTL(O:l)
indicates whether we're using "mode 66" (off) or "mode 77"
(on); if this bit is on, flag bit ICTL(l:l) indicates
whether to fetch the subroutine's parameter list length from
field ICTL(10:6) (off) or from address Q'+l (on). The
desired label index, supplied by IPATH, is copied to Q'-3
for mode 66, or to Q'-p1ist_len-4 for mode 77.

I recommend that the two-way subroutine calling SETRTN be
written in FORTRAN 77 and structured this way:

$COBTROL SBORT, CHECK FORMAL PARK 1 [, '0 ••]

SUBROUTINE ftn77_8ntry([parms.o.,]*[, ••••])

control=140000B
GOTO la])el

ENTRY ftn66entry[(parms •••)]
control=O

C
label COB'l'IBUB

CALL SBTRTH(control,path)

RETURN

END

The entry point for FORTRAN 77 should be the primary, with

FORTRAN Alternate Return Path Internals 3212-9

"*"IS provided for the sake of documentation; the name
should also include the underscore (II II) character to make
it unreferenceable from FORTRAN 66. All formal parameter
checking must be suppressed to enable linkaqe from
FORTRAN 66; level 1 checking retains the requirement that
both entry points be referenced as subroutines. (By the
way, this is what is meant by the phrase "procedure type";
function type checking may be suppressed by using any check
ing level less than 3.)

The label index is specified in the call to SETRTN rather
than in the RETURN statement. Since the label index word is
always initialized to 0 by the caller's object code, it is
not necessary to call SETRTN for a normal exit; nor will a
simple RETURN statement clobber a label index youlve just
set up.

I have successfully used SETRTN in a COBOL II subroutine to
set an alternate return path in mode 77; mode 66 is not
practicable because COBOL II's formal checking level and the
actual checking level in FORTRAN 66 are both fixed at 3. I
have not determined precisely how COBOL II handles the par
ameter list length for mUltiple entry points, but since it
is fixed at object time for each entry point, you can always
set up the appropriate value to be passed explicitly to
SETRTN.

Another Kind of Alternate Return;
The Code Segment Address as Actual Parameter

In designing a COBOL II interface to the FORTRAN 66
Formatter intrinsics, I was forced, for lack of SPL, to
write in FORTRAN 77 so that I could "$ALIAS" around the
apostrophes in the procedure names. Then, I ran into an
interesting problem with the FMTINITI procedure--the LAST
parameter, described in the Compiler Library Reference
Manual as a "label identifier", is really an address in the
calling code segment! Obviously, the "*label" construct is
of no use here, for when a error is detected, FMTINITI takes
its alternate return path by copying LAST into Q-2--the
return address save word in its stack marker--just before
exiting.

The procedures I designed to get around this difficulty are
FMTATOP and FMTABOT, as shown in this FORTRAN 77 sample;

$CONTROL STANDARD LEVEL SYSTEM, SHORT
$CHECK ACTUAL pARM 2,FTN3000 66 CHARS ON
$ALIAS-FMTINIT = "FMTINIT III (%REF, %VAL, %VAL, %VAL, %VAL)
$ALIAS TFORM = "TFORM'"

« other $ALIASls as needed for the list element transfer »
« routines. »

INTEGER GETXREGF

C VERY FIRST STEP 1
CALL ITl'ATOP(LAST)

FORTRAN Alternate Return Path Internals 3212-10

C TEST CONDITION CODE.
CALL SAVECCODE
ICC=GETXREGF()
IF(ICC)10,10,100

10 CONTINUE !ALL SET.

CALL FMTINIT(FORMAT,UNIT,REC,IOTYPE,LAST)

« list element procedure calls and other processing. »

CALL TFORM !NORMAL END OF CALL BLOCK.
100 CALL PKTABO'l' !TAIL MARKER.

CALL SAVECCODE
ICC=GETXREGF ()
IF(ICC)errlabel,oklabel,eoflabel

FMTATOP copies the return address from Q-2 into LAST, with
bit 0 set on (you'll see why presently), sets up CCG in the
status save word (Q-l), and does an EXIT 0 which leaves the
address of LAST at the TOS. CCG results in a branch taken
around everything to the call to FMTABOT.

At this point, LAST is pointing at the instruction following
the PCAL to FMTATOP; bit 0 in LAST is on to indicate that
this is not the "label identifier" we intend to pass to
FMTINITI.

FMTABOT reads LAST by doing a load-indirect from Q-4.
Finding bit 0 on, it saves this value internally, reloads
LAST from Q-2, reloads Q-2 from the saved previous value of
LAST with bit 0 cleared, sets up CCE and exits. The next
time FMTABOT is called (upon exit from TFORM'), it finds
LAST bit 0 off, in which case it does nothing but exit.

By manipulating the return vector in the stack marker, the
initial call to FMTABOT forces a return via the Condition
Code test following the call to FMTATOP, which detecting
CCE, allows procession to the call to FMTINIT'; at this
point, LAST is pointing where it is supposed to--the
Condition Code test following the call to FMTABOT; succeed
ing calls to FMTABOT just drop through, leaving intact the
Condition Code from TFORMI.

As you can see, FMTATOP and FMTABOT, as well as the
Formatter routines themselves, require some careful program
structuring. I deemed it needful to pass LAST to FMTABOT
via the TOS, because the object code generated to build a
parameter list would put the Condition Code from TFORM' at
risk. Because it is, therefore, absolutely essential that
the address of LAST be at the TOS when FMTABOT is called (an
extra word which may be removed at a suitable time by cal
ling POPTOS with a dummy variable), LAST must be a simple
variable, to insure that the object code will not delete any
additional words from the TOS after FMTATOP returns.

I should mention that unless an error occurs and it has to
exit through LAST, FMTINIT' creates a temporary global area
above the caller's procedure-local data and stores the key

FORTRAN Alternate Return Path Internals 3212-11

address in DB-2, for use by the transfer routines; this area
is cleared away by TFORM'. (The SORT/MERGE intrinsics com
municate with each other in a similar fashion.)

Doubtless you're wondering why I'm not using
.. IF(CCODE(» to test the Condition Code--somewhere bet
ween versions A.00.09 and A.01.00 of FORTRAN 77/V, HP
decided to render the CCODE() construct. completely useless
except for declared system intrinsica, so I developed
SAVECCODE as a work-around. All it does is read the saved
Condition Code from Q-1, and store to Q-3 a 0, +1 or -1,
depending upon whether it finds CCE, CCG or CCL, respective
ly. I chose to work with the x-register so that with no
parameter list to build for SAVECCODE, the status register's
precious cargo is out of harm's way until it is saved in the
stack marker. Our old friend GETXREGF can then be called to
retrieve the representative value in a "plain vanilla" var
iable--providing for more flexible methods of testing than
would be possible with the standard construct. Please note,
however, that SAVECCODE does not work (in FORTRAN 77) with
any MPE system intrinsics that are explicitly declared as
such in your source code.

Conclusion

With the utility procedures I've described added to your
systems/application programming library, you won't have to
rewrite existing FORTRAN 66 alternate-return subroutines (at
least, not until you migrate to a different operating sys
tem). with the range of mutual callability between the two
FORTRANs thus extended, yOU'll have greater flexibility in
choosing a compiler language for a new program. Bear in
mind, however, that this interface is best suited for stand
alone utility programs, and interactive applications where
the CPU time required for each transaction is not a critical
factor.

You may find these procedures useful for other things. For
example, my universal procedure call interface, used in
FORTRAN to call dynamically loaded SL procedures, uses
PUSHTOS and POPTOS to stack parameter lists and allocate and
retrieve function values.

FORTRAN Alternate Return Path Internals 3212-12

APPBRDZX .l

[The following is an excerpt from reference documentation
that I wrote for our programming staff. Slight alterations
have been made for the purposes of this paper. For more
information about the Process Control Block Extension
(PCBX), see Eugene Volokh's excellent paper "Secrets of
System T~bles••• Revealed!" (1985 INTEREX Proceedings,
Washington, D.C.).]

Qser Process Stack Structure

1-----------------------------Z--->I unused
-~-~--------~------~---------S--->

Data local to the currently
executing procedure.

Q+1 >

Q---> delta-Q (Q - prev. Q)

Q-1 > STATUS

Q-2 > Return address (reI. P)

Q-3 > X Index

A

I
I

Stack marker
I
I
v

DB ->

Qi ->

Q-4 >

QOB >

1 or more parameters
passed to currently
executing procedure

(optional)

Main program local data +
any other stack markers and
procedure-local data.

-----------------------------1
·1

Initial stack marker 1
1

-----------------------------1
1

Fixed global area I
1

-----------------------------1
1

V V

FORTRAN Alternate Return Path Internals 3212-13

A A

I
1 User-managed global area

DL ->1
1-----------------------------, --------------DL-1> I @DL - @a I A

DL-2>

DL-3>

DL-4>

DL-5>

c--->

b--->

a--->

@DL - @b

@DL - @c

PXFIXED expansion count

PXFILE

PXFlXED

PXGLOB

PCBX
1
1
I
1
I
I
I
v

DB Data Base. Word address is always 0, by definition.
Register value is a segment-relative offset stored at
PXGLOB 1.

DL Lower limit of accessability in User Mode. Register
value is relative to DB «=0). Segment-relative offset
stored at PXGLOB o.

Q Base of local data of currently executing subprogram.
Register value is relative to DB.

Qi Q-initial; highest DB-relative address of the static
global area. Stored at PXFlXED 3. Address Qi contains
the PARK value passed through the :RUN command or the
process-handling intrinsics; Qi-1 and Qi-2 contain the
byte pointer and length, respectively, of the INFO
string.

QOB Base of the outer block's (main-program's) local data.
For a user process, QOB=Qi+4.

S Pointer to the current top-of-stack. Register value is
relative to DB. The net effect of calling PUSHTOS or
POPTOS is to respectively increment or decrement the
s-register value by one.

Z Highest value ever attained ·by S. Value is stored at

FORTRAN Alternate Return Path Internals 3212-14

PXFIXED 20 Displacement relative to DB may be dynam
ically set through the ZSIZE intrinsic; left to its own
devices, it never decreases in value.

stack Markers

The PCAL instruction, generated by CALL statements and
function references in FORTRAN, and the CALL verb in COBOL,
pushes a four-word stack marker onto the top-of-stack and
reloads the Q-register from S. This object contains the
following information:

Q-3 Index register contents at the time of the
PCAL.

Q-2 Code-segment-relative offset of the
instruction immediately following the PCAL in
the code segment of origin. .

Q-1 status register contents at the time of the
PCAL. The following fields are of signific
ance to the programmer:

(0: 1)

(1: 1)

(2: 1)

(6:2)

(8:8)

o = User Mode;
1 = Privileged Mode.

Set on if external interrupts
enabled.

Set on if user traps enabled.

Condition Code:
o CCG;
1 = CCL;
2 = CCE.

CST number of the code segment of
origin; this and the code offset in
Q-2 constitute the return vector.

Q-O Displacement, in positive words, from the
Q-reqister value just prior to the PCAL;
backward link to the previous stack marker.

If the called procedure has one or more parameters, a
parameter list is pushed onto the top-of-stack by other
compiler-generated instructions prior to executing PCAL.

The EXIT instruction, generated by the RETURN statement in
FORTRAN, and the GOBACK verb in COBOL, is the reverse of
PCAL; the index and status registers are restored from Q-3
and Q-1, respectively; Q is decremented by the number of
words indicated by Q-O; and process execution resumes at the
location given by the return vector. The stack marker, and
everything on the stack above it, is deleted from the top
of-stack, and S is adjusted to reflect the number of words
deleted. The stack decrement (SDEC) field of ~he Ex_r
instruction may specify up to 255 additional words to be

FORTRAN Alternate Return Path Internals 3212-15

deleted•••

All stack markers are backward-linked through the 4th word,
as far as the initial stack marker •.•

Any stack marker may be read, modified, or relocated and
relinked ••• i however, the stack locations containing the
status save words of stack markers that were "on-line", i.e.
in the trace-back chain, as of the last peAL or EXIT are
write-protected in User Mode.

FORTRAN Alternate Return Path Internals 3212-16

APPENDIX II:
Bow A Did It WithOut SPL

As far as the operating system is concerned, a USL that you
created is your data file to do whatever you want with; so,
you are at liberty to alter the machine code that your
compiler gave you, and prepare it as changed.

To manage without SPL/3000, I wrote a library procedure for
each of several basic stack addressing and register
retrieval operations. In each case, I created a program
structure in FORTRAN 66, using dummy statements to allocate
space for special machine code, and compiled it into a
separate USL with all list options. with help from Chapter
9 of the MPE V Tables Manua~, I then edited the Relocatable
Binary Module (RBM) with the DISKED5 utility, replacing
object code generated by the dummy statements with the
machine instructions I needed. Thus, the operation that
"could only be done in SPL" was reduced to a simple library
procedure call.

By the time I needed access to the index register for my
alternate return path interface, I had enough SPL-type oper
at~ons encapsu1ated to write PUTXREG and GETXREG(F) as
FORTRAN 66 procedures that work as" written, without any
post-compile editing. Here is the source code that resul
ted:

PROCEDURES USED BY FORTRAN" FOR CALLING
FORTRAN66 SUBROUTINES WITH ALTERNATE
RETURNS. THESE WORK BY MANIPULATING THE
INDEX REGISTER SAVE WORD IN THE STACK
MARKER.

CRN ••• SPECIAL PARAMETERLESS
INTEGER FUNCTION ENTRY
"GETXREGF" FOR FORTRAN 77.

02/28/91

$CONTROL SEGMENT=UEC'SEG'3,CHECK=O
c**
C** PROGRAM NAME: PUTXREG/GETXREG
c** SOURCE FILE XREGS
C** VERSION STANDARD U. E.
C** PROGRAMMER C.R.N/UE
C** CREATED 10/31/89
C
C** UPDATED
C
C
C
C DESCRIPTION
C
C
C
C
C

C

C

C

C

SUBROUTINE PUTXREG(IX)

INTEGER GETQREG,PEEKDB

CALL POKEDB(IX,GETQREG(IDUM)-3)
RETURN

ENTRY GETXREG(IX)

IX=PEEKDB(GETQREG(IDUM)-3)
RETURN

C

"FORTRAN Alternate Return Path Internals 3212-17

C**2/28/91
C
C
C
C

CRN••• FUNCTION-TYPE GETXREG ENTRY FOR FORTRAN
77 PROGRAMS WITH VERY LARGE LOCAL STACK. MUST
BE REFERENCED AS A PARAMETERLESS INTEGER
FUNCTION.

ENTRY GETXREGF
C

IT=GETQREG(IDUM)
CALL POKEDB(PEEKDB(IT-3),IT-4)
RETURN
END

Integer function GETQREG returns the stack marker location
(Q-register value) for the procedure calling it. The loca
tion of the initial stack marker (QOB) for the calling
process is returned to the passed variable.

GETQREG resides in a privileged code segment added to our
system library; Privileged Mode is required to read the Q
initial value from the PCBX (see Appendix I).

PEEKDB and POKEDB are User. Mode procedures used, often in
conjunction with GETQREG, to access calculated addresses
anywhere on the stack at or above DL. I also use them with
the DLSIZE intrinsic, and another procedure of mine called
GETDLREG, to access the "heap" (user-managed global area).

* * * * *

FORTRAN Alternate Return Path Internals 3212-18

Database indexing: The key to performance

F. Alfredo Rego

Adager Lab Manager

Adager
Sun Valley, Idaho

83353-0030
U.S.A.

Telephone +1 (208) 726-9100 Fax +1 (208) 726-8191

Typically, we are interested in accessing a group of entries from a database (for instance, "all
the outstanding orders from customer XYZ"). One approach is to scan the database serially,
beginning with the first entry and ending with the last entry, "running into" the desired entries
along the way. If we have millions of entries, with only a few that meet our selection criteria,
we may not be able to afford to use this approach for on-line applications. Another approach
is to use indexing methods that allow us to jump directly into the entry or entries which
interest us without having to wade through millions of irrelevant entries.

The only purpose of an indexing system is to serve as a performance booster. There are many
kinds of indexing methods, with various advantages and disadvantages. In this essay, I focus
on the technological challenges posed by the requirement that we should be able to add,
maintain and delete indices quickly and conveniently.

Breaking free from indexing traps

There are several types of indexing methods, just as there are many kinds of database
management systems. But let's not be confused by this apparent variety. Deep down inside,
all databases are nothing more, or less, than bunches of bits. All indexing schemes are, by the
same token, attempts to shortcut the route that leads us into certain desired bunches of bits
within a database.

As long as we keep these fundamental concepts straight, we will be able to take advantage of
indices when they exist, without having a nervous collapse when they are gone. Let's take~
paragraph from Hewlett-Packard as an exercise in going back to basics. More than 5 years
ago, on page 24 of the March 1986 issue of UP's Information Systems & Manufacturing News,
Terrie Murphy said in an article on ALLBASE:

HPSQL's simple tabular-data structure, with no predefined data-access paths. significantly
increases database-administrator (DBA) and programmer productivity. DBAs have great free
dom in structuring the database, since it is not necessary to predict all future access paths at
design [time]. If the data is available in the database. it is immediately accessible at any

3213-1

future time. In non-relational models, all access paths need to be known when the database is
designed. This adds significantly to overall program-development time. In addition, with no
predefined data-access paths, the data structure can be modified in many ways without alfecting
existing programs; thus greatly simplifying application maintenance.

The issue is "predefined access paths", as viewed from an ALLBASE/SQL perspective. We can
easily rewrite the same paragraph from an IMAGE viewpoint:

IMAGE's simple tabular-data structure, with (or without) predefined data-access paths, signifi
cantly increases database-administrator (DBA) and programmer productivity. DBAs have great
freedom in structuring the database, since it is not necessary to predict all future access paths at
design [time}. If the data is available in the database, it is immediately accessible at any
future time. In IMAGE, all access paths need !1J2l. be known when the database is designed. This
saves significant overall program-development time. In addition, with (or without) predefined
data-access paths, the data structure can be modified in many ways without affecting existing
programs; thus greatly simplifying application maintenance.

Without too much effort, we can re-write this paragraph so that pre-defined access paths
appear as slaves or liberators from the perspective of any database management system. Since
most of the HP3000 users share IMAGE as a common bond, and since IMAGE has undeserved
Iy gotten bad press regarding indexing and pre-defined access paths, let's use IMAGE as an
example. Even though we will speak in IMAGE terms, let's remember that the same
methodology applies to any DBMS.

IMAGE allows you independence from predefined access paths (and from many structural
modifications), provided you follow some sensible guidelines.

As a prerequisite, you should be aware of several IMAGE design criteria that People tend to
ignore:

I. An IMAGE dataset is a simple tabular data structure. The widespread belief that IMAGE is
a "pointer-based network DBMS" is not true. You can build an IMAGE database that does
J!21 have any pointers whatsoever. You can always scan a dataset serially, from beginning to
end, to select the entries of interest to you, but you might get bored doing this (particularly
if you have millions of entries). IMAGE gives you the choice of two kinds of datasets
(masters and details), each optimized for a given high-speed access method. You may,
almost instantly, access specific master entries using hashing, if you wish. But please
remember that you don't have to use hashing at all. Likewise, you may access, extremely
quickly, specific detail entries using an IMAGE-provided combination of hashing and
chaining, if you wish. But please keep in mind that you don't have to use chains at all.

2. The IMAGE intrinsics that allow you to add, access and update entries (DBPUT, DBGET,
DBUPDATE) have an important parameter: the list of those specific fields that interest you.

3. The IMAGE DBINFO intrinsic gives you a wealth of information at run time.

Binding: at compilation time or at rUD time?

Knowing these (and other) IMAGE design criteria is necessary but not sufficient. As another
prerequisite, you should use high programming standards (this, naturally, applies to any kind of
computer work that you do). A very important programming standard is that you should
postpone binding as much as possible. This means that you should not burden your programs,
at compilation time, with hard-wired stuff. You should wait until run time to adjust to the

Rego 3213-2

prevailing conditions of the day.

In the case of predefined access paths, if any, you should not even think about including (or
excluding) them in the strategy of your programs. You should find out, at run time, whether a
given field in a given dataset is an IMAGE search field or not (using DBINFO). If you are not
dealing with a search field, you might have to do a serial scan" of the whole dataset (using
DBGETs mode 2 or 3) to find those entries, if any, whose field values you want. (You are
certainly free to develop non-IMAGE indexing schemes to avoid such serial scans.) If you are
dealing with an IMAGE search field, you can be much more efficient. For a master dataset,
use hashing (DBGET mode 7). For a detail dataset, use an IMAGE-provided combination of
hashing and chaining (an initial DBFIND followed by DBGETs mode S or 6).

If you follow these reasonable guidelines, your applications will be totally immune to changes
in access paths. You will be able to add or delete paths at will, to suit the performance needs
of your users. And, as a fun bonus, since the only difference between masters and details is
access method, you will also be able to change masters to details or details to masters without
impacting any of your application programs.

What do you think now about Hewlett-Packard's assertion that "In non-relational models, all
access paths need to be known when the database is designed"? I am sure HP meant to qualify
this statement by adding, "if your programming standards are so low that you hard-code
everything".

This hard-coding issue has nothing to do with being relational or non-relational. If you
hard-code in SQL, nothing will save you from getting into deep trouble. Let's illustrate this
observation.

In the case of adding, accessing or updating IMAGE entries, you should not even think of
using "@" to specify the list of fields that interest you. The "@" list asks IMAGE to deal with
all the current fields in the dataset. If you add, delete or shuffle the fields of a dataset, you
must then edit and recompile all the programs that access that dataset. (Absolutely the same is
true in SQL if you use SQL's instead of a specific list of columns.)

Since this prospect does not attract me, I strictly follow a methodology with IMAGE field lists.
Even though it may take a little more effort up front, I always build a list with the names of
those specific fields that the program~ to access. The first time I invoke an access
intrinsic (DBPUT, DBGET or DBUPDATE), I pass it this list. Afterwards, when I invoke an
access intrinsic that depends on the same list, I pass it IMAGE's asterisk list ("."), which tells
IMAGE "don't bother to assemble and check my list; simply use the previous list". (The
asterisk "." means different things to different people: It is important to remember that SQL
interprets it to mean "give me everything".)

For more than a decade now, I have been able to add, delete and shuffle fields in my IMAGE
datasets. Even though this fact, in itself, is significant, it is even more impressive because I
have not been forced to edit or recompile those programs that don't use such fields.

What do you think now about Hewlett-Packard's opinion that 1with SQL] the data structure
can be modified in many ways without affecting existing programs"? Of course, HP meant to
qualify this opinion by adding, "provided you don't use the SQL asterisk '.' instead of a
specific list of columns in your SQL statements".

Rego 3213-3

IndexinR ami stru~tural freedom

By binding as late as possible, we gain two kinds of freedom: the freedom from pre-defined
access paths and the freedom from rigid data structures.

We are able to add, maintain and delete indices quickly and conveniently. We can use the
indices that are "bound" with the official DBMS (such as hashing and chaining in IMAGE) and
we can use our own (or third-party) indices to complement the official indices.

Since indices are only one aspect of the general database structure, we are also able to add,
maintain and delete any other database objects as well.

The fact that, with run-time binding, our indexing schemes are flexible is just one of the
consequences of having a flexible over-all approach to database management.

Rego 3213-4

TITLE:

AUTHOR:

Managing A PowerHouse Environment

David Robinson

PowerSpec International

403 Cross Lake Drive

~uquay-Varina, NC 27526

919-552-8049

FINAL PAPER WAS NOT AVAILABLE AT TIME OF PRINTING.

PAPERNO. 3214

, ,__ • '._ •• __ . ~ .- __ . ._~._~ : __.;;'._'_,r~••';;;_

____ ._.- ~,__~~ -. # .~. __' • ._. • ,;.;. •• ' '.'. e.--.:__. __.. -;'~""':" . __
..~~.

USING MPE XL TO YOUR ADVANTAGE -
A GUIDE FOR THE APPLICATIONS PROGRAMMER

Pamela Herbert Bristow
A.H. CUstom Software, Inc.
El cerrito, CA 94530

(415) 535-5070

The introduction of the RISC architecture and the MPE XL
operating system marked a strong advancement for the HP 3000
line of computers. MPE XL, although similar in commands and
syntax to its predecessor MPE V, is a far superior operating
system. And now MPE XL 2.x (either 1 or 2) has been delivered
and with it comes an even greater functionality than was found
in the initial MPE XL offering.

In this paper I will give an overview of the new features
in MPE XL for those readers who are new to XL. Then I will
discuss a few of the features implemented in version 2.x that
are of most interest to me inclUding some aspects of the
native mode spooler, 'command input/output redirection and the
FINFO command.

USJ:RG VARJ:ABLBS

There are 2 types of variables in MPE XL. These are the
predefined global variables and the user defined variables.
Of the 70 some predefined global variables (as a I counted
them in version 2.2) some are read only but many of them can
be used to 'customize' the environment for any given user or
job by using the :SETVAR command. To see what all of the
possibilities are try typing

:SHOWVAR @

This will give you a listing of all of the system global
variables and what their values are. It will also show you
any user defined variables that have been set up and what
their values are. I will refer to several of these variables
in discussing other features of MPE XL that I like to use.
A :SHOWVAR without the @ will show you all of the user defined
variables.

The way you alter any variable is to use the

:SETVAR

command.
Variables can have 3 different value types - integer,

string and Boolean. The system variables have a preset type
and if you try to set one to the wrong type of data the system
will return an error. User variable can be set in any of

USJ:IIG IIPB XL TO YOUR ADVAIITAGB -
A GUJ:DB POR TBB APPLICATIONS PROGRAMIER 3215 - 1

three ways e.g.

:SETVAR X 1 or :SETVAR X 'XYZ' or SETVAR X TRUE

Once a variable has been declared the value it contains
can be de-referenced to allow variable Substitution, and
string functions can be applied to extract parts of a variable
value. For example the system variable HPDATEF is set to the
date in the format

TUE, FEB 27, 1990.

To extract the day of the week enter

:SETVAR DAY n![LFT(HPDATEF,3)]"

The exclamation point de-references the variable HPDATE
meaning that it substitutes the value of the variable in place
of the variable itself. The LFT parameter along with the ,3
following the HPDATE variable extracts just the left most 3
characters so that now if you type

: SHOWVAR DAY

you will see :DAY TUE

If you then enter

: SETVAR TIMEFRAME "!! DAY"
: SHOWVAR TIMEFRAME

MPE XL will return :TIMEFRAME = lDAY

This is because the double exclamation points resolve to a
single exclamation point giving you back the variable. If you
then type

: SETVAR THISTIME = "! TIMEFRAME"
:SHOWVAR THISTIME

MPE XL will return

:THISTIME = TUE

This de-referencing technique can be used in command files to
dynamically set the value of a variable.

USIIIG IIPB XL '1'0 YOUR ADVU'l'AGB -
A GUIDB ~OR TBB APPLICATIOIIS PROGRAMMBR 3215 - 2

A BRZBP WORD ON BXPRBSSZOR BVALUATOR PUHCTZOBS
In an example above I use the LFT function to extract the

3 left most bytes of a character string. This is but one of
many expression evaluator functions that MPE XL provides.
These functions return boolean, string or numeric results and
can be used to parse character strings, do numerical
manipulations and set up TRUE/FALSE conditions and tests. An
explicit discussion of them would require a paper in itself
but I mention them here because I use a couple more in
examples further on in this paper.

COJIIIABD LZIIB BZS'1'ORY STACK

The command line history stack was the first MPE XL
feature I discovered. In MPE V if you miss-typed a command
and then tried to recover with a :REDO only to type :REOD, you
would be stuck keying in the entire command again. Not so
anymore. MPE XL has a command line history stack that will
store a variable number of commands. The exact number of
commands is determined by a predefined variable called
HPREDOSIZE that has a default value of 20. To see what is
in the stack you type

:LISTREDO

What is returned is a listing of the last 20 commands you have
issued along with their absolute number e.g.

11) LISTF FILEA,2
12) RENAME FILEA,FLEB
13) RENAME FILE, FILEB
14) QE
15) QUICK

30) LISTF FILEC,2

These commands can be referenced in several ways, either by
absolute number (i.e. REDO 20) or by relative number (e.g.
REDO -2) or by initial characters (e.g. REDO LISTF). This
last technique will bring back the most recent command that
begins with the characters LISTF.

There is also a :00 command that allows you tore-execute
any command in the history stack directly. You can access the
command as you do for :REoo (by absolute or relative number
or by character strinq) with the default beinq the last
command executed. The:DO command has an additional feature
that allows you to edit the command before executinq it. The

UBIRG IIPB XL '1'0 YOUR ADVAIITAGB -
A GUIDB ~OR TBB APPLICATIOBS PROGRAKKBR 3215 - 3

syntax is

:00 [CMD=cmdid] [EDIT = editstring].

For example if you typed in

: QUECK

when you had intended to key in :QUICK you could edit and
execute the command in one step by entering

:oo,n RI"

which would return and execute the string

: QUICK

The options on the edit string must be in the same
position as they would be if you were using the interactive
:REDO command. Trying to get. the insert, delete and replace
commands to come out in the right place strikes me as more
difficult than using the interactive :REoo but there are some
very handy ways to use :00. These are:

> appends characters on to the end of the line.
>R replaces characters at the end of the line so that the

last character in the >R command is at the end of the
line.

C changes all occurrences of one string to another.
>0 deletes from the end of the line moving from right to

left. You can enter mUltiple Os.

For example, if you typed

:LISTF MYPROD,2

and what you really meant was :LISTF MYPROG,2 you could re
execute the command quickly by typing

:00 ,C/D/G

which would immediately re-execute the previous command
changing all occurrences of 'D' to 'G'. Similarly if you
forgot that you needed to ·run a program with a LIB=G
parameter you could say

:00 ,">iLIB=G" or:oo RUN, ">LIB=G"

Note that you must surround the edit string with quotes if
there are embedded blanks or special characters such as semi
colons.

USIIIG IIPB XL '1'0. YOUR ADVAIITAGB -
A GUID.WOR TBB APPLICATIOIIS PROGBAMMBR 3215 - 4

GREATBR BASB AIm FLEXIBILITY III CRBATIlIG UD BXBCU'l'IIIG
COJIMANDS AND PROGRAMS

There are now more options for implementing and executing
command files and programs. In MPE V you could either

execute a cataloged command (UDC) or an MPE command or :RUN
a program. If you wanted to catalog a new command you had to
reset the entire catalog. These bonds have been broken.

The command interpreter (CI) now searches through 3
I areas I each time it tries to resolve a command. The catalog
is checked first to see if the command is a UDC. If the
command is not found there it is then checked to see if it
is a regular MPE command (e.g. LISTF or PURGE). If it is not,
the CI then checks for the command in any of the groups or
group. accounts specified in the variable HPPATH. The default
path is your logon group followed by the PUB group of your
logon account, followed by PUB.SYS. The CI also uses an
implied RUN so that you can just type the name of a program
in and if it is found it will be executed.

This means several things. First of all it means that
you never need to create a UDe to execute a program stored in
PUB.SYS. If you type in

:DBUTIL

the CI will find the program DBUTIL.PUB.SYS and execute it.
It also means that if you want to alter the wayan MPE command
functions by using a command file (e.g. having the STREAM
command execute STREAMX), just typing the name of the command
won't work because the CI will execute the MPE command before
it finds the command file. You can get around this by using
the :XEQ command which will directly execute the file,
bypassing the UDC and MPE regular command checks (but using
the HPPATH search).

Given all of these options you now must consider the most
advantageous place to store any given command. Just briefly,
the major advantages of UDes are that they execute very
quickly, they are shared by all users who have access to them
and they cannot be inadvertently purged as easily as command
files. The advantage to command files is that they are very
easy to change and can be stored and maintained in private
groups.

There is another option somewhere in between which is
the ability to APPEND and DELETE individual UDes from the
catalog without having to reset the entire thing. This can
be very nice if you have a team working on a project where you
want to catalog a command that may need to change a bit from
time to time or if you need to keep adding UDCs as the

USIIIG IIPB XL '1'0 YOUR ADVAR'l'AGB -
A GUIDB ~OR TBB APPLICATIONS PROGRAJlHBR 3215 - 5

project develops. To do this you type

:SETCATALOG UDCB;APPEND

If you now need to alter UOCB you can edit it as UDCe and
reset the commands in it by typing

: SETCATALOG UOCB; DELETE
: SETCATALOG uoce;APPEND

This prevents altering the wrong editor file for all of the
other UDes at the user or account level and ruining everyone's
day when you reset the catalog to the incorrect file of
commands.

Similarly, you can create individual command files in the
group of your choice and change them easily. This is
especially useful if you are working on a test version of a
program and need to set up a bunch of file equations to run
your test version along with a bunch of productions versions
of programs. For example, you can create a file called
FILEQ.mygroup that looks like this:

FlLEA
FILEB
BASEA

FILEA.TRAINING
FILEB. TRAINING
BASEA.TRAINING

and then set the variable HPPATH to point to your group

:SETVAR HPPATH "mygroup,lhpgroup,pub,pub.sys"

When you type in the characters

:FILEQ

all of the file equations in that command file will be created
and you never have to touch the catalog. If the file
equations need to change you can just edit the file and re
execute it and the new equations will be in place.

SBTTIIfG TO RPPATR VARIABLB

The HPPATH variable can be used very effectively to
customize the working environment for each programmer. One
of the simplest solutions is to have a logon UDe that says

SETVAR HPPATH n 1HPJOBNAME, 1HPGROUP, PUB, PUB. SYS" or
SETVAR HPPATH "lHPJOBNAME,lHPPATH"

USING IIPB XL TO YOUR ADVAH'l'AGB -
A GUIDB POR TRB APPLICATIONS PROGRAllllBR 3215 - 6

HPJOBNAME is set to the characters that you type as the first
part of your :HELLO command before you type the user name as
in

:HELLO PHB,MANAGER.TRAINING

As long as there is a group called PHB, the HPPATH will be set
to check that group for commands first (after checking the
UDes, and MPE commands and not finding the command there) so
that if 3 people want to use

:QE

to. call QEDIT but they all want to bring it up with different
parameters they can all have their way without having a
catalog war.

THB PRZNT COKHABD

:PRINT allows you to direct the contents of a file to
print wherever you want it to. The major advantage to this
is that you don't have to wait for a program to execute to
list the output. There are also some options to control the
listing. The syntax for the command is

:PRINT filename;OUT=outfile;START=m;END=;n;PAGE=p;UNN

The :PRINT default is to list the file to your terminal
and stop every 23 lines and ask you if you wish to continue.
You can use the PAGE parameter to control this by typing

:PRINT FILEA;PAGE=O

to cause the entire document to print out without a page
break. This is useful if you are using a slave printer and
want to run with LOG BOTTOM ON to print the file out
immediately. If you know which lines of a file you want to
look at you can use the START and END parameters. :PRINT
FILEA;START=20 will start listing the file at line 20.
:PRINT FILEAiSTART = -20 will list the last 20 records of the
file.

CllANGZIfG GROUPS WITROUT LOGGZIIG ON AGAIII

How many times have you gone to run DBUTIL or KSAMUTIL
or some other data base/file management program only to
discover that you are not logged on in to the group that the
data reside in? Until now you had to log in again, specifying
the correct group as your home group. In doing so you would

USIIIG IIPB XL TO YOUR ADVUTAGE -
A GUIDE POR TBB APPLICATIONS PROGRAllMBR 3215 - 7

lose any file equations or variables that you had set up
during your session. with MPE XL you can issue the

:CHGROUP groupname

command and you will be 'moved' to the group specified. When
you are done with the file maintenance you can type :CHGROUP
without the group name parameter and you will be back in your
logon home group.

COPYING I'ILES WITH I'AR PBWBR KEYSTROKES

FCOPY always seemed to me to be a tedious command to use.
All of that 'FROM=' and 'TO=' and designating a file's current
status (NEW,OLD etc). seemed such a bother to me. with MPE
XL comes the :COPY command that eliminates all of that. You
can now type

:COPY FILEA.MYGROUP,FILEA.PUB;YES

and FILEA will be purged from •PUB if necessary and copied in
from .MYGROUP. If you leave off the ;YES parameter the system
will ask you if you wish to purge the 'TO' file giving you
an opportunity to confirm the copy before executing it.

THB I'IDO COJOlARl)

The FINFO command gives you an easy way to get
information on a file. It has the same capabilities as the
FLABELINFO intrinsic but can be used directly. The syntax for
the command is

FINFO(MYFILE,KEY) where MYFILE is the name of the file
of interest and KEY can have either a numeric or literal
value. Some of the possible values are:

option option return type and meaning
num name/alias

------------ ----------------~-------
0 "exists" boolean TRUE if file exists
1 "full filename" string, fUlly qualified name
2 "group name" string
3 "account name" string
6 "creation date" string format DAY, MM DD, YYYY
6 "created"

-6 "intcreated" integer format YYYYMMDD
7 "accessed" string, format DAY, MM DD, YYYY

-7 "intaccessed" integer format YYYYMMDD
8 "last mod date" string format DAY, MM DD, YYYY

-8 "intmoddate" integer format YYYYMMDD
12 "file limit" integer

USING IIPB XL '1'0 YOUR ADVARTAGB -
A GUIDB I'OR '1'BB APPLICATIONS PROGRAMHBR 3215 - 8

13
19
24

"formatted foptions"
"end of file"
"last mod time"

string
integer
string HH:MM AM or PM

You can use the command to return a boolean value e.g.
IF FINFO("MYFILE","EXISTS") = TRUE

THEN •••
or you can write a little command file to give you information
about a file or about a file equation in a format of your own
personal design that is most useful to you e.g.

PARK FILE
IF FINFO("!FILE","EXISTS") = TRUE THEN

SETVAR A FINFO(" !FILE", "FULL FILENAME")
SETVAR B FINFO("!FILE","CREATION DATE")
SETVAR C FINFO("!FILE","FILE LIMIT")
SETVAR 0 FINFO("!FILE","END OF FILE")
SETVAR F FINFO("!FILE","LAST MOD DATE")
SETVAR E FINFO("lFILE", "LAST MOD TIME")
ECHO ************************************
ECHO file name: 1A
ECHO created : !B
ECHO limit: !C
ECHO eof: !D
ECHO last mod: IF!E
ECHO ************************************
ENDIF

IF FINFO("!FlLE","EXISTS") = FALSE THEN
ECHO ------!> The file IFlLE does not exist 1<-------

ENDIF

To use this command file you simply enter
SF MYFILE
at the MPE prompt and, if MYFILE exists you will see

**
file name: MYFILE.MYGROUP.MYACCT
created : MON, MAY 6, 1991
limit : 100
eof : 25
last mod: WED, MAY 8, 1991 12:24 PM

**

If you have a file equation such as

TESTFILE = MYFlLE.MYGROUP.MYACCT

you can enter

USIKG IIPB XL TO YOUR ADVAIt'l'AGB -
A GUIDB POR TBB APPLICATIOK8-PROGRAHMBR 3215 - 9

SF TESTFILE

and the display described above will be returned. This is
very handy if you have command files that set a particular
file equation to any of many values depending on what you are
testing and you can't remember how it is currently set.

If TESTFILE does not exist this command file will return

--------> The file TESTFILE does not exist <----------
The reason for the exclamation points is to prevent MPEXL from
trying to evaluate the 'less than' and 'greater than' signs
as part of the expression.

TBB DTZVB IIODB SPOOLBR

with the release of MPE XL 2.1 came the demise of that
ghastly, ghostly utility SPOOK. Spool files are handled quite
differently in MPE XL 2.1 and beyond. The output spoolfiles
are now written to disk as regular MPE files (with a lot of
special characters to control printing) with the name

dfid.OUT.HPSOOL

where dfid is the file's device file ide Just as with SPOOK
you can keep the file on disk by using an OUTCLASS parameter
with a low number in your job card. Then, when you raise the
outclass number to allow the file to print it will be deleted
from disk. However, if you use the ;SPSAVE parameter in your
job card, the file will remain on disk even after it has
printed. This gives you automatic report backup. To see what
output spoolfiles you have you can use the LISTSPF command.

The feature I most like about the native mode spooler is
that you can use the PRINT command on the dfid.OUT.HPSPOOL
file while the job is executing! This allows you to view the
progress the job is making along the way which, for long
running jobs, can be very nice.

COJOlUD ZIJPUT/OUTPUT RBDZRBCTZO.

MPE XL 2.1 and above gives you the ability to 'grab' the
output of any command and write it to a disk file , or to
'feed' input to a command from a disk file. This is a very
powerful feature because it gives you almost unlimited
capabilities for using the operating system to read and write
files. It also gives you the ability to manipulate the output
from commands and use the result as is, or altered, as input
to another command. I have used this feature to create a
STREAM command that traps the job number and output spoolfile
device id and stores them in variables so that I can easily

USZ.G IIPB XL·ro YOUR ADVAIITAGB -
A GUZDB POR TBB APPLICATIOBS PROGRAMMBR 3215 -10

device id and stores them in variables so that I can easily
manipulate the job. I called my STREAM command STRM so that
I didn't have to catalog it to override the MPE STREAM
command.
This is the command file STRM:

PARK JOB
ERRCLEAR
IF FINFO("lJOB","EXISTS") TRUE THEN

CONTINUE
STREAM !JOB > CMOS
CONTINUE
IF HPCIERR <> 0

PRINT CMDSiSTART=2
ENOIF

RESET CMOS
INPUT JOB HUM < CMOS
ECHO !JOB HUM
SHOWOUT SP;JOB = !JOB HUM > CMOS
SETVAR FILE_INFO FINFO("CMDS","EOFft)
IF FINFO("CMDS","EOF") > 2 THEN

PRINT CMDSiSTART=2iEND=3 > OFIOFILE
ENOIF

INPUT OFIO HUM < DFIOFILE
SETVAR OFID RTRIM(STR(OFIO_HUM,11,8»
ECHO !JOB HUM !OFIO

ELSE -
ECHO
ECHO
ECHO THE JOB FILE !JOB DOES NOT EXIST

ECHO
ECHO
ENOIF

When this command executes it first checks to see that
there is such a file as !JOB that can be submitted. I could
simply have returned the HPCIERRMSG but I preferred a move
informative and personalized response. In this case, if I try
to STRM MYJOB.JOB and no such file exists the command file
returns

THE JOB FILE MYJOB.JOB DOES NOT EXIST

Otherwise, it streams the job and writes the output of
the stream command to a temporary file called CMOS. If the
streaming was not successful (due to a bad job card or
something) then the second line of CMOS is written to the
screen. This contains the error message.

A successful stream will cause the #Jxxx that usually
shows up on the screen to be written to CMOS. This output is
then referred to as INPUT and the value is written to the

USIIIG IIPB XL TO YOUR ADVAlMTAGB -
A GUIDB POR TBB APPLICATIONS PROGRAMMBR 3215 -11

variable JOB NOM which is echoed to the screen so that I can
see what it Is.

The command file then executes a SHOWOUT command on the
job and writes the output to CMDS again so that I can trap the
output spoolfile device file ide The actual output from the
SHOWOUT command is:

DEV/CL DFID JOBNUM FNAKE STATE FRM SPACE RANK PRI
#c
LP #01234 #J789 $STDLIST OPENED 2048 1

1
OUTFENCE 1
OUTFENCE 1 FOR LDEV 6

What I want from this output is just the #01234 which, in the
real 80 column world starts in position 11 of the second line
and can be up to 8 characters long. Therefore, I print the
second line of the CMDS file to a file called DFIDFILE and
then use this as INPUT to DFID HUM which is parsed into a
variable called DFID using the exPression evaluator functions
RTRIM and STR. What I actually see on the screen is

#J789
#J789 01234

and what I have is a variable called JOB NOM that is set to
the job number of the last job I submitted (in this case
#J789) and a variable called DFID which is set to the output
spoolfile device file id of the last job I streamed.

I now have one additional command file that I use to monitor
the progress of my job. I call this one PRT and it performs
a PRINT command on the output spoolfile for the last job I
submitted:

PARK PAGE=0,START=1
PRINT !DFID.OUT.HPSPOOLiPAGE=!PAGEiSTART=!START

The PAGE and START parameters can be altered as time goes on
so that I can start further and further in to the spoolfile
as it gets longer. For example, when the job has just been
executed I can type

PRT

and see the output from the first line to the end with no
stops. If I see 50 lines at that time and want to check back
in 5 minutes, I can type

PRT .0 50

USING IIPB XL TO YOUR ADVAlfTAGB -
A GUIDB ~OR TBB APPLICATIONS PROGRAMMBR 3215 -12

and the output to my screen will begin at line 50 of the
spoolfile.

You can use these same techniques to write command files
to alter the input priority of a job or abort it or whatever
you choose and have the privileges to do.

If you wish to have output from a command appended to the
end of an already existing file you can specify that as:

SHOWOUT SP;JOB=!JOB » CMOS

StJllllARy

The MPE XL command interpreter has some very powerful
features that allow you to customize your working environment
and to create simple or complex command procedures to automate
routine functions. The end result for me has been an
increase in productivity and in my level of satisfaction with
working on the 3000. Whether you choose to become proficient
at developing complex command files or just use some of the
more basic features of this operating system, you are sure to
find that the improvements it offers will make your
professional life much more efficient and a lot more fun.

REPBRE.CBS
Cooper, Kevin "A Programmer Looks at MPE XL" Interact volume
8, issue 10

Cressler, Scott and Vance, Jeff liThe Life of an MPE XL
Command"

Interact volume 9, issue 9

Mak, James Tsze-Leung IlCUstomizing MPE XL Commands" Interact
volume 9, issue 12

Cressler Scott, and Vance, Jeff "Advanced CI Programming"
BARUG - Proceedings of the 1990 Santa Cruz Conference

USIIIG MPB XL TO YOUR ADVAlft'AGB -
A GUIDB POR TBB APPLICATIOIIS PROGBAKMBR 3215 -13

Paper Number 3216

MAKING QTP RUN EFFICIENTLY

by
John D. Alleyn-Day

Alleyn-Day International
1721 M. L. K. Way, Suite 3

Berkeley CA 94709-2101
415-486-8202

Fourth Generation Languages have great power and can be used
to write processing programs easily and quickly. However,
they also have a reputation for being extremely inefficient

a reputation which may not be entirely deserved. Many
programs w~itten in fourth generation languages are ineffi
cient because the programmer is tempted to use programming
methods without really understanding what the language is
doing.

I am ~oing to discuss a particular example using QTP (Power
house). The same situation could arise in several other
fourth generation languages. Some of what I will present is
more complex than would normally be the case, but it con
tains elements that serve as a general example for use as a
cookbook for anyone that wants to follow my technique. Also
my remarks apply principally to Classic machines running
MPE/V. Spectrum machines have different considerations that
will modify what I am considering here.

I have worked at several clients with fourth generation
languages and seen various circumstances in which batch
programs written in QTP or some similar language were taking
excessive times to ~un. The fourth generation language is
usually used to access data from KSAM files and from IMAGE
databases. Some batch programs have taken all weekend to
run, just to turn out a report. In some cases, the time
needed was so extreme that the jobs were aborted so that
other users could get their share of computer resources!

It became apparent to me that the inefficiencies were not
necessarily an integral part of the fourth generation lan
guage but rather of the way in which the language was used.
The simplicity of the programming methods encourages pro
grammers, myself included, to construct very inefficient
programs without realizing the true import of their code. I
will illustrate this for you as we go along.

The usual start to a QTP program (or a QUIZ program) is a
statement along the following lines:

access datafile link to auditfile

MAKING QTP RUN EFFICIENTLY 3216 - 1

followed by various selection, sorting and updating crite
ria. Most othe~ fourth generation languages will have a
similar statement that joins two or more files together.
The performance problems start right here with this state
ment. We have to look very carefully at what this statement
is doing.

Let us suppose that these files are big files. In this
context, by a "big" file, I am going to mean about 500,000
records. With files of this size the prog~am will take many
hours to run. If it starts at 5.00 p.m. then it may not be
finished when work starts at 8.00 am the next morning!

If we had written a good COBOL program to solve this prob
lem, it would have taken only an hour or two to run. Howev
er, this inefficiency is not an inescapable problem associ
ated with the fourth generation language. There is a cardi
nal rule which must be applied. Know what your fourth
generation language is actually doing.

The statement above is asking QTP to read "datafile" sequen
tially and for each record to read a corresponding record
from the "auditfile". The records are linked by a "key"
value, implicit in the data st~ucture for ou~ simple situa
tion. Reading the datafile sequentially is usually fast and
depends significantly on its blocking factor. If we suppose
a blocking factor of 10, then we can estimate that this
process will take about 40 minutes (I am using 20 I/O's per
second as an average disc access time). If you are set up
for multi-record access this process should take only
minutes, because multi-record access essentially uses a very
high blocking factor. .

The part that makes the performance so poor is the random
reads implied by the access to "auditfile". In general,
each record requires a single disc read, and the random
access process will take about 7 hours, and there is nothing
multi-record access can do about it. If the linkage is to a
detail file rather than a master, then each record will
probably require two disc l/Os and will take about 14 hours.

So the major part of the inefficiency of the processing is
not dependent on any specific fourth generation language,
but rather on the processing methods that are generally
encouraged by fourth generation languages. Specific methods
for improving this performance depends on the particular
language used, but the general .approach is the same. I will
illustrate my methodology using QTP, leaving you to make the
necessary adjustments to achieve similar results in your own
language.

Now that we know why our program takes so long to run, we
can set about making it Tun faster -- much faster. Twenty

MAKING QTP RUN EFFICIENTLY 3216 - 2

or thirty percent improvement in efficiency will not be
enough; we need it to run five to ten times faster. For
this phase, we adopt another rule, "Use batch techniques for
batch programs". This shouldn't be anything new. The
"Image Handbook" in the chapter called "Throw off you~

Chains" contains lots of hints for handling database files
in a batch environment. The fact that this is a fourth
generation language rather than a third generation language
shouldn't make much difference. In our QTP program we
totally ignored the tenet "paths should be reserved for on
line users". The major ~eason for the poor performance is
the keyed reads that are being carried out to obtain data
from secondary files. How can we avoid this?

We have to avoid the random reads. In fact, we have to go
back a few years to the heyday of mainframes and batch
processing and take a look at how we got our COBOL program
to do the same process in an hou~ or two.

How did we write our batch COBOL program without random
access? We made extensive use of the sort and merge pro
grams and our COBOL program did a lot of record matching.
Specifically, we would take our two files, extract the data
we needed and add to each one a "record type" to identify
which file the record came from. Then we would merge them
and sort them by a composite key, made up of the key that we
wanted to match on followed by the record identifier.

We would then have a file in which all the data for a par
ticular key would be g~ouped together, with the first record
of a group coming from the first file and the second record
coming from the second file. At this point our COBOL pro
gram would merge these two records into a single composite
record and write it out to a new file.

This file contains precisely the data that we would have got
from our "access" statement. However, except for the
reco~d matching, we have used only standard record extrac
tion, sort and merges, all of which have been carefully
developed over the years for optimum efficiency. The COBOL
record matching program is also reading files sequentially
and should therefore be very efficient as well.

How can we do this for ou~ own case, without having to w~ite

a COBOL program? The first parts of the processing are
fairly elementary and I don't plan to describe them in
detail. Use SUPRTOOL or COPYRITE (or write a short program
in QTP) to extract the data and create the new "record-type"
field. The extracts should have identical formats, with
locations for each field that will eventually be needed, and
the second file should be appended to the first. Sorting
these extracts will give us the file described above with
the records grouped by matching key.

MAKING QTP RUN EFFICIENTLY 3216 - 3

From here we have two possibilities. If you have been using
SUPRTOOL then you will also have SUPRLINK which will do the
record matching for you. If you don't have SUPRTOOL, then
we have to use QTP to get the same result, and I will now
describe in detail how you do this.

Actually, I am going to describe a QTP program that does
rather more than this. However, you can use this as a model
and use just the pieces that you need. This program was
written for an "audit" process" in which we were concerned
with changes that were being made manually to a database and
we wanted an independent check on those changes. For this
purpose, we wrote a simple extract routine in QTP that
sorted and copied the dataset contents to an MPE flat file
before any changes were made. After the manual changes were
complete, the same extract was run again to produce a second
MPE file. We then compared the two files, to determine the
records that had been added or deleted.

In this case we were interested not in matching records, but
in non-matching records, so the program is more complex than
in the simple case above. Here is the QTP program. The
file "auditnew" is a combination of the two files sorted as
described above.

access auditnew
sorted on terminal-key, map-key, record-type

temporary n-data character*26
temporary n-flag integer*1
temporary p-flag integer*1
temporary p-data character*26

item p-flag
item p-data
item n-data
item n-flag

n-flag at record-type
n-data at record-type
map-key + terminal-key
record-type

subfile temp2 keep alias delete-file &
if (p-flag = 1 and n-flag = 1) &
or (p-flag = 1 and n-flag = 2 and p-data <> n-data) &
include p-flag, p-data

subfile temp2 alias add-file &
if (p-flag = 2 and n-flag = 2) &
or (p-flag = 1 and n-flag = 2 and p-data <> n-data) &
include n-flag, n-data

subfile temp2 alias last-record at final &
if n-flag = 1 &
include n-flag, n-data

MAKING QTP RUN EFFICIENTLY 3216 - 4

subfile temp2 alias first-record at initial &
if record-type = 2 &
include record-type, map-key, terminal-key

What we have done here is to produce the program using QTP
that we would previously have w~itten in COBOL. We have set
up fields in "working storage" to keep track of data from
p~evious records. Be very careful when using this program.
The order of some of the statements, particularly the "item"
statements, is crucial for proper operation.

Actually, this program won't quite solve the original prob
lem. It actually finds all the non-matching records, rather
than the matching records, a task which is very tricky to do
in QTP using the conventional "access" statement, and be
comes impossible in this case where we are comparing two MPE
files. However, the changes needed to get matching records
only are trivial and left as an exercise for the reader.

One final point. A programmer must use judgment in applying
the techniques I have illustrated. On small files the
increased efficiency possible with these techniques will
probably not repay the time you spend doing the additional
analysis. However, if you ~un a program very frequently,
analysis and reprogramming for greater efficiency may be
very valuable, even if small files are involved. Some
installations run small reports everyday at lunch-time in
preparation for the afternoon's work. In such a case, the
extra effort to increase speed may be easily justified.

Finally, I suggest that the Fou~th Generation Language
Developers consider this problem. Many vendors claim that
their systems run batch programs. This is true -- in a
way. Fourth Generation Language programs can be run in
batch, but as I have demonstrated, they use--on-line tech
niques most of the time. This should be changed. Language
statements used by the fourth generation languages do not
necessarily stipulate the processing actually carried out.
The example that I used from QTP now imply the use of keyed
reads, leading to inefficient batch programs. Why could not
a Fourth Generation Language interpret the same "access"
statements as extracts, sorts, merges and record matching,
similar to the processes that I actually used? A fourth
generation language that could choose its processing method
based on whether it was considered to be batch or on-line
could achieve a substantial improvement in efficiency, and
an increased market acceptance.

So far as I know, the fourth generation language vendors
have not seen this as a problem that they need to address.
However, as mentioned above, there is one group that has
stepped into the breach, namely Robelle. They have a part
of SUPRTOOL called SUPRLINK, which carries out the matching

MAKING QTP RUN EFFICIENTLY 3216 - 5

of ~ecords in an efficient manner and which appears to have
all the capability necessary to solve the problem that I
have described here.

To sum up, if you are having problems with your fourth
generation language efficiency, there are two steps to
follow. First, understand exactly how you~ fourth genera
tion language operates and carries out its processing.
Secondly, make use of batch techniques for your batch pro
grams and not the on-line techniques that you may be seduced
into using by the your fourth generation language. And, of
course, use your judgment as to when it is worth the trouble
and when it is not.

MAKING QTP RUN EFFICIENTLY 3216 - 6

Paper # 3217
Turbolmage Logging

By: Larry Boyd
Bradmark Technologies, Inc.
4265 San Felipe, Suite 800

Houston, TX 77027
(713)621-2808

Introduction

Transaction logging is a feature provided with standard Turbolmage that can save you from losing
hours, days, or even weeks worth of data. This paper will discuss issues such as who should use
transaction logging, what can logging be used for, howdoyou getstarted, and some logging tips. But
first we need to talk about some of the myths about logging.

Myths about Image Transaction Logging

There are three major myths about Image Transaction Logging. The first revolves around
implementation, the second around performance, and the third about usage. All will be briefly
discussed now, but covered in greater detail later.

1. IILogging requires source code changes."

Logging DOES NOT require source code changes. Once logging has been enabled
on a data base all Physical transactions (DBPUT, DBUPDATE, DBDELETE) will be
logged.

2. "Logging is a heavy load on the system."

Although logging does use some resources, most users WILL NOT notice any
degradation in performance. In most on-line applications logging will have no
statistical effect on performance. If this is aquestion, enable logging for aweek and
monitor the performance.

3. "Logging is for Recovery."

Manyof those who log DO NOTuse logging for recovery. There are many additional
usages. Logging records ALL adds, deletes, and updates, so the log file can be a
valuable resource for resolving specific problems and issues.

Turbolmage Logging

3217 ·1

Who Should Use Logging?

In some cases logging can be used as an optional aid to an application. Inothercases, logging should
always be used as protection.

1. Logging should ALWAYS be enabled when using the Output Deferredoption
on a database.

Both TUrbolmageN and TUrbolmage/XL have the capability to enable
Output Deferred. This can be done using DBCONTROL for the duration of
the current DBOPEN or it can be turned on using DBUTIL for all DBOPENs.

With this option TurbolmageN will not write Image Buffers to disc until they
are needed by buffer management. On XL, the MPE Transaction Manager
is bypassed and data pages are held in memory until no more memory is
available. Also, on either machine, a DBCLOSE will cause the data to be
written to disc immediately. Since data is not written to disc and no log of
the changes are made by MPE, asystem failure is very likely to cause major
structural damage to the data base. The ONLY way to repair this damage
correctly is to use DBRECOV orto restore thedatabase from abackuptape.

2. Logging should be used if you have a High Volume of transactions
processed between your database backups.

If recovery by hand from afailure would require a large amount of time, then
logging should be used. Since there are two ways, Roll-forward and Roll
back, to use DBRECOV, if applications are set up properly, recovery can be
done in a matter of minutes instead of hours or even days.

3. Logging should be used if transactions have No Paper Backup.

Often in today's world customers place orders over the telephone and there
is no paper backup. Here it would be almost impossible to recreate all
transactions if recovery was necessary.

4. Logging should be used if an Audit Trail is required by internal or external
auditors for changes to a database or dataset.

With Image Transaction Logging and a log file reporting system, such as
DBAUDIT, all changes to a database, dataset, or even to a field can be
reported. The log file keeps up with the change and the environment from
which the change was made (Le. Program, User, Logical Device, etc.)

Turbolmage Logging

3217· 2

5. Logging should be used if there are many Remote Users modifying the
database.

Remote users are difficult to communicate with or monitor easily. Since
almost all contact is over the telephone you cannot see the input screen or
data. This makes it much more difficult to recreate data from failures and
give less control of the physical access to data bases, which may increase
the need for an audit trail. With logging enabled you can examine the log file
to see what was exactly entered when they report aproblem and to monitor
all accesses to data bases.

6. Logging should be used on databases which require long backup times.

Some databases take quite awhile to backup. If logging has been enabled,
your data base will be protected if a failure occurs. Therefore, backups can
be reduced from daily to every other day, for example, or from daily to
weekly.

Remember to consider the volume of changes (see #2). If the volume is not
considered high, meaning recovery would not take too long, you can
increase the time between backups.

7. Logging can also be used as a very good debugging tool.

With all the information given in the log file, you can usually find the smallest
of problems. This information can be used to verify that the data is in the
correct format, or that the IMAGE intrinsics are being called in the correct
order.

8. The information can be used for monitoring performance problems.

When are the high I/O periods for uPdates? If all of the updates are being
done during a small period of time, can they be spread out over a longer
period to reduce peak time? Which programs do the most updating? Can
these programs be reviewed for performance evaluation?

What Can Logging Be U88cI Fort

Recovery

The primary use for logging is recove..,. There are three different types of recovery.
They are Intrinsic Level Recovery (ILR), Roll-Forward recovery, and Roll-Back
recovery. Both Roll-Forward and Roll-Back recovery require Image Transaction
Logging, whereas ILR does not.

ILR is a process that is used to ensure the phvslcal integrity of a database. This
keeps broken chains from corrupting the database. Once enabled, the logging and
recovery is done automatically.

Turbolmage Logging

3217· 3

NOTE Although ILR is available on the XL machines, it is no longer
required, or recommended, to protect the structural integrity of the data
base. This is because Turbolmage is integrated with Transaction Manager
(XM). There are other changes to ILR that can be found in the Turbolmagel
XL Database Management System Reference Manual (#30391-90001)
appendix H.

Roll-Forward and Roll-Back recovery are used to ensure the logical integrity of a
database. A logical transaction is defined as a sequence of one or more physical
transactions to a database. To define a logical transaction in a program the
DBBEGIN and the DBEND (or DBXBEGIN/DBXEND can be used on XL) proce
dures are used to surround all of the DBPUT, DBDELETE, and DBUPDATE calls
(physical transactions) that make up the logical transaction.

If Image Transaction Logging is enabled on a data base, DBRECOV may be used
to recover the data base. In the event of a system or data base failure, when
DBBEGIN and DBEND are used, the completed logical transactions can be
recovered. DBRECOVwill notapply thephysicaltransactions ifaDBBEGIN is found
without a DBEND marking the end of the logical transaction. When a "soft" failure
occurs on the data base, the Roll-Back recovery can be used to "erase" the physical
transactions that were added before the logical transaction failed. When a "hard"
failure occurs, Roll-Forward recovery is used to re-apply all transactions since
logging was started.

Source code changes are required to convert a sequence of physical transactions
intoa logicaltransaction bysurrounding thephysicaltransactionswith DBBEGIN and
DBEND. Without the DBBEGIN and DBEND recovery is still possible, but not at the
logical transaction level.

A very important development of IMAGE has been the expansion of the logical
transaction to more than one data base. At one time there was no way to tell IMAGE
that a logical transaction included physical transactions to several data bases.
UNTIL NOWI In the current versions of Turbolmage, on both MPEN and MPElXL,
there are new DBBEGINIDBEND modes. These will allow a logical transaction to
include more than one data base, and is called MDBX, or Multiple Data Base
Transaction.

Audit Trail

As stated earlier, there are many additional uses for Image Transaction Logging. It
is a very good process for audR trail reporting. Not only can you report the actual
changes to the data base, but you can also report the specific user, port, or program
information. So, you can monitor changes in complete detail.

Turbolmage Logging

3217· 4

Debugging

With the user and program information you can use logging to see what is actually
happening to adata base. This can be great fordebugging aprogram (Did it update
all the data sets correctly? Did it update them in the correct order?).

Testing

In a third-party application you can use logging to verify that the product does
everything correctly. This can greatly reduce the guess work while testing a third
party application, or even your own.

Tuning

Fortunlng, loggingcan be used to seewhich program, database, ordataset is used
the most. Then you can allocate your time based on where optimizing will help the
most.

How Do You Get Started?

There are several steps that must be completed to initiate transaction logging on a data base. I will
discuss the basic steps necessary to start logging to disc, but for more detail see the Turbolmage
manual (for both V and XL, see chapter 7).

1. Give Logging (LG) capability to the account. First, the system manager
must give the account LG capability.

:altacct account;cap=ia,ba, .u, LG

2. Give all users who will be using logging Logging (LG) capability. This
includes application users and the logging manager.

:altuser mgr;cap=ia,ba, , LG
:altuser userl;cap=ia,ba, , LG

3. Build the log disc file. When logging to disc you must build the new file and
allocate space for it.

:build ~disc= 1000,32, I;codc=log

The~ is a standard MPE file name, assigned by you. If the~ is
five characters or less, and ends with "001", you can specific AUTO on the
GETLOG command. Then logging will open a new log file when the current
one is full. Otherwise, logging will fail when the log file fills.

Turbolmage Logging

3217· 5

4. Log on as a user with logging or operator capability to obtain a log identifier
(1JHJk[), and link the kJgj{tto a log file.

:Hello mgr.account
:getlog k2gktlog=~,disc

The kJgj{t is a variable that is assigned by you.

5. Run DBUTIL to set the data base to the kJgj{t.

:run dbutil.pub.sys
»set DBNAME logid=kJgj{t

>>enable DBNAME for logging
or

>>enable DBNAME for Roll-back
Enabling a data base for logging sets the Roll-forward switch, and enabling
a database for Roll-back sets the Roll-back switch, along with the RolI
forward switCh.

>>exit

The above steps are one-time operations and do not need to be repeated.

Once thedata base has been enabled for logging, no one can open the data base until the 1JHJiJ:lhas
been "activated" by the console operator using the :LOG command (If the :ALLOW command has
been executed, the use must have logging or operator capability).

:log 1JHJiJ:l,start

There are several concerns that should be considered to protect the data base and log files during
backups and recovery. These are described in detail in Chapter 7 of the Turbolmage manuals.

To turn off logging, the steps are reversed and the commands are a little different:

:log 1J2Qkt,stop

:run dbutil.pub.sys
>>disable DBNAME for Roll-Back
>>disable DBNAME for logging
>>exit

:rellog 1J2Qkt

Turbolmage Logging

3217· 6

logging Tips

SinceTransaction Logging has very powerful features and many uses, following is ashort list of items
to.consider.

With multiple data bases you should use the new MDBX option of DBBEGIN/DBEND. If a
failure occurs during the "window" ofthe DBEND, the logical transaction will still be complete.

If you make any structural changes to adata base then abackup should be done and logging
must be restarted with a new log file. The log file must match the data base structure (same
set and item names and numbers).

On DBUPDATEs, Image does not include the Key fields of detail data sets, only the relative
record number.

With DELTA logging, IMAGE logs only the fields from the first item changed to the last item
changed. This reduces the record size necessary of the log record, thereby, reducing the
amount of storage space.

Logging does NOT automatically stop when the :LOG k2gjJ;J,stop command is issued. A flag
is set and when the last active usercloses the data base, then logging will stop. This means
that if someone fails to log off at the end of the day, you will not be able to stop logging and
do backup.

Conclusion

We have quickly looked at logging and its many advantages. We have covered when you should log,
what you can do with logging, how to get started, and tips on logging.

We did not cover the disadvantages, nor the details on managing the logging process. You should
read Chapter7 of the Turbolmage manual before starting. But do not be afraid of logging. It has very
good uses and should be used in most of your shops.

Turbolmage Logging

3217·7

PAPER # 3218
liTHE DATA WAREHOUSE APPROACH

TO DEVELOPING DSS/EIS APPLICATIONS"
KIRK W. BUECHER

HEWLETT-PACKARD GREELEY SITE
700 71ST AVE GREELEY, CO 80634 (303) 350-4291

Intro -

Imagine that you are back in ancient Rome, you are a slave,
~wne~ by rich and powerful masters, (that's not too hard to
1mag1ne, is it?). You know that someday you may be asked to
fight a strong and resourceful Gladiator known as EIS or
Executive Information Systems, for the entertainment of your
masters. There are several possible outcomes: You may have
been lucky up to this point and have not yet been asked to
fight. You may have been unlucky and were called into the
ring to do battle against the mighty EIS, unfortunately you
had little or no training, poor tools or weapons, and limited
support and were beaten. Perhaps you were more talented or
better equipped and managed to win your first battle against
EIS, but are now being asked to go into the ring again to
face a new more. complex EIS.

Regardless of what category you or your systems group may
fall into, the purpose of this paper/presentation is to give
you a edge so that your first or current EIS challenge is
successful. That edge is liThe Data Warehouse Approach to
Developing DSS/EIS Applications".

Decision Support Systems and Executive Information Systems
have been hot topics in computer trade journals for the last
three or four years. The focus of most of these articles is
on the tools, the user interface, the many pitfalls, or the
amazing advantages to implementing a DSS/EIS application.
What is often over looked or discounted is the importance of
the data source for these applications.

This paper/presentation will focus on the foundation that
often determines the success or failure of these
applications. sometimes known as a "SUbject database",
"summary database", or "data warehouse", it is this structure
that is one of the true keys to developing successful DSS/EIS
applications.

3218 - 1

A Quick Refresher -

What is an EIS? A common definition is that an EIS system is
intended to provide easy access, to easy to understand,
primarily graphically displayed, individually specified,
information that can be interrogated and manipulated by
non-technical, often managerial end users.

This type of system on executive's desktops has the potential
to allow them to :

o Simplify sift through immense quantities of data and
quickly extract relevant information

o Accelerate - eliminate the constraints of time and distance
to the flow of information

o Expand Thinking widen the horizon of thinking and
understanding of the business

o Motivate - affect people's attention and behavior

Index Group consultants active in this area, have seen EIS's
proven crucial to executives making major changes in business
directions (such as shifting from a product to a market
focus), organizational structure (especially flattening the
organization and the elimination of staff functions) and
organizational communications patterns (as in moving to
global product sourcing).

If taken to its full potential, an EIS system can be the
informational nerve center, the "vital signs" monitoring post
for an organization.

Although the concepts of an EIS have been in existence for
over a decade in academic circles, it wasn't until the last
year or two, that the tools and technology were widely
available and affordable enough for most companies to develop
their first application. Five years ago, the only EIS tools
a firm could purchase were from Comshare or Pilot Executive
Software, ran only on large IBM mainframes and cost as much
as $300,000.

3218 - 2

data

Todays tools are often PC based, priced under $1000, are
easier to develop in, and in many cases have more features.
It is also very likely that you already have some of the
pieces needed to build a complete EIS application.

The major components of EIS tools are
retrieval/extraction and data display/manipulation.

Beginning with data extraction, the tools range in ability to
access data in a single format on a single platform to many
formats on PC's, Mainframes, and Unix machines. Query is one
example of the low end of this range and HP's product,
Information Access an example of the high end.

with data display/manipulation, there is another range of
capabilities. with these tools, the spectrum can be broken
down based on flexibility of the display, "drill down"
features, the ability of playing "what if" games, the ability
to perform more in depth analysis of the data, and ease of
use for the user. Some examples of this range would be
Gallery Collection or Harvard Graphics at the low end, Lotus
123, Excel, Forest & Trees somewhere in the middle, and
PowerPlay, Lightship, and Level V near the high end. All of
these packages have deferent strengths and weakness of
feature sets that make any sort of comparison rough at best.
Newwave and Windows 3.0 can also be powerful supplements to
these tools. It is important at this point to note that most
display tools have some data storage requirement. These
files or databases are simply needed to drive the display
tool. They are not the original source of the data or the
"data warehouse". They are the holding area for data that
the display tools need to provide "drill down" capabilities
for example.

The Data Warehouse - Intro

The Data Warehouse is an emerging technique for information
resource management. To quote William H. Inmon, a noted
database author and lecturer, "If the 1970's were the age of
database, and the 1980's were the age of PC's and
fourth-generation languages (4GLs), then surely the 1990's
will be the age of the data warehouse."

3218 - 3

The premise behind the data warehouse is to deposit and
maintain, on-line, all pertinent information with full
history retention, integrated data along the lines of the
major subjects of the corporation. It is important to note
that the data warehouse contains fundamentally different data
from classical operational databases. Operational databases
contain current-value data (data that is accurate at the
moment of usage). Inventory levels, account balances, and
current addresses are all common forms of current-value data.
In contrast, the data warehouse contains data that is
accurate at some particular moment in time (that is, data
over a time perspective).

For example, imagine an airline's decision process when its
current "Summary" style EIS system points out that its
on-time record is poor in comparison to the Industry average.
What can be done? Management can not simply yell at everyone
to "Hurry up!" Someone must look at the actual detailed
history and analyze the factors that led to those late
departures and arrivals. It must be possible to determine why
flight #189 from Denver to San Diego was twenty minutes late
on May 6th, 1991.

Using another analogy that points out one of the common short
comings of many EIB applications: Imagine that you are trying
to ford a wide, muddy river. Are you interested in the
average river depth, average current speed, average bottom
composition, highest water level this month, and highest
level year to date? These may be interesting data points,
but if that is all the information you have, you may have a
rough crossing. What you really want to know is the shortest,
safest place to cross the river~

It is because the data in the warehouse is historical and
integrated across application boundaries, that it is the
ideal foundation for EIS processing. The data warehouse's
main purpose then becomes to serve as the source of
reconcilability for the EIS. Data integrity and consistency
are key to any data warehouse. The value comes from the
explicit agreement, across systems, on the standard data item
names, representations and meanings. Data items can be
transferred and still have the same meaning regardless of
context.

3218 - 4

A number of leading companies, including Bell Atlantic,
American Airlines, Citibank NA, Bankamerica Corp., AT&T,
Liberty Mutual Insurance Co., and X-Mart Corp., have in place
or are implementing systems of this type. Even IBM has
heralded this technology, due to how well it fits with their
"Repository" strategy.

The current EIS headache -

When beginning an EIS project, it quickly becomes apparent
that the data Management wants, is often spread across
several databases, contained in files, and in a spreadsheet
or two. In examining the data sources, it is common to
discover that the update timing, item naming conventions,
formats, and structures, all differ greatly. This makes data
synthesis, analysis, or comparison very difficult. Without
major push-ups by the EIS software and the people developing
the application, the end users are really limited to using
the data in only a slightly different way from the purpose
envisioned when the data was first automated.

If your company is lucky or smart enough to have historical
data available electronically, users generally cannot pull
data from these sources to merge with other sources. This is
because once a data item has been removed from its original
application and the further from that application it moves,
interpreting it correctly is and becomes more and more
difficult.

If a data item cannot be correctly understood, it cannot be
combined with other information to manufacture a new product.
Instead, it is just data pollution. Once this type of data
pollution enters your EIS application, it can throw you into
another common EIS trap. One of constant justification,
reconciliation and research into why your EIS's data just
doesn't seem to add up or correlate to some other source that
the users think it should.

To add to these problems, as optical data storage comes down
in price and gains acceptance, we will see an explosion of
new data and applications as increasing amounts of textual,
graphical, aUdio, and video data is automated and put online.

3218 - 5

The Data Warehouse is the answer. By making connections
between data and its interpretation consistent, a data
warehouse can add this value. It makes different
application's data like different nation's currency. The
currency has value where it originates but must be translated
outside its issuing country. The more widely understood the
data is as negotiable information, the more valuable it is.
The data warehouse acts as a filter so systems groups can
accumulate information and develop a way of managing mixed
systems that retain the data's content and make it
consistently available and valuable to the end users.

Data warehouse components -

Data warehouse consists of three functional components, the
data warehouse's database, the warehouse's directory or
dictionary, and the warehouse's filtering or conditioning
system.

The data warehouse's database contains all the company's data
for a given SUbject area in a relational database management
system. (It would be possible to do in Image, but this is not
recommended. Image vs. Relational will covered briefly in a
later section.) It establishes information authority,
superseding that of the production application system's. As
it evolves, production systems will be considered more as
"data in .process" systems, while the data warehouse contains
edited and audited data in rationalized and integrated data
structures.

The warehouse's directory/dictionary defines the data stored
in the data warehouse's database. The directory/dictionary
could be implemented as a commercial data dictionary or as
extensions to the DBMS catalog. It would contain data item
names, edit rules, formats for data, name and structure
mapping between .various data sources and the data warehouse
database's accepted internal format. Additionally, it
controls the data conditioning process. The mappings are
triggered by 'the conditioning system when data is entered
into the data warehouse's database.

3218 - 6

The warehouse's filtering/conditioning system is a collection
of procedures and control statements for extracting data from
sources outside the data warehouse. It then restructures,
renames and reformats that data according to the standards
stored in the directory/dictionary. The
filtering/conditioning system is implemented using a
fourth-generation language or a data manipulation product.
(Cognos's Powerhouse and HP's Information Access would be
examples of each of those.) Some of the other functions of
the filtering/conditioning system are to validate data
quality while reporting results back to the originating
system and to update the warehouse's directory/dictionary.
Once this system is in place, it does not eliminate the need
for application (source) systems to edit and audit data. It
is impossible to ensure that edits and audits are performed
or performed properly at the first processing point. Data,
therefore, must be re-examined before being loaded into the
data warehouse.

Issues - -

IMAGE vs. Relational -

When building a data warehouse, it is highly recommended that
a relational database package be used. Reasons for this
recommendation include the outstanding flexibility of
relational (which is very critical in the early stages of the
data warehouse development), the portability across
platforms, and standards that SQL brings with it.

In the non-HP world when a EIS type system is discussed, the
use of a relational package is considered to be simply one of
the basics needed to be successful.

On the other hand, if your shop does not have relational
package in house, do not add to your already large challenge,
by trying to learn and implement relational while building a
data warehouse and EIS applications. stay with IMAGE, it is
where you already have some level of expertise, it is stable,
and there is a wealth of modification/monitoring/performance
tools available. In addition, it is very low cost when
compared to relational and can out perform relational in many
cases. stay with IMAGE but start making plans to move to
relational. It is the better solution.

3218 - 7

(Note: There are many more global issues to be considered as
well when contrasting IMAGE vs. Relational. Please see the
Bibliography and other proceedings for more information
sources.)

Selecting items and timing of extracts -

In most cases the data needed to popUlate a data warehouse
will be determined by the wants of the executive first, then
by the natural associations of the key data with secondary
data needed to add meaning and depth of understanding. It is
important that the MIS group ask the right questions of
management and that management understands that they have a
key role in determining what data on what schedule will be
moved into the data warehouse. Once this has been decided,
the extraction process is put in place so that the original
source's data can be routinely transferred through the
filtering/conditioning module and into the data warehouse
data base. For the sake of audit balancing, one strategy
would be to use a common synchronization point, hourly,
daily, weekly or monthly, at which point new data is
transferred.

Another problem area arises when a key data item is
identified and is found to be in two or more sources. Often
the problem is compounded when different formats or values
are discovered. There are no secrets to resolving these type
of problems, it just takes time. Time is needed to
investigate the source systems, interfaces between systems,
performance issues, and closeness to the real world "thing"
that this data represents. Sometimes even after all the data
about the data is gathered it comes down to a best guess
tempered by how "pure" the data feels or how global the
format appears.

3218 - 8

Getting started -

Companies that implement a data warehouse do so because their
production applications cannot support the intensive analyses
or top-down management examinations of data that is needed.
In the absence of such an intense, management driven need, it
is unlikely that a data warehouse will be successful. Without
a data warehouse, EIS systems are more difficult to build and
implement.

Too much planning will kill a data warehouse. The reasoning
here is that building a data warehouse often involves a lot
of politics, some up-front technical confusion, a data
management learning curve, and a considerable re-education
about an organization's information. If an attempt is made to
answer every objection before moving toward implementation,
the project will be slowed to the point of losing your
executive sponsor's support.

Keep in mind that the complete analysis of an organization's
data normally takes years and is never complete. Do not allow
others to set this as a goal for you or for the data
warehouse. If this happens, rest assured that success will be
very elusive. Instead, meet the EIS driven need behind the
first project. Make that successful, and then build on it.

Pick a project big enough to have a good return on your
companies investment, but small enough to be reasonably
accomplished within six to nine months. If no concrete
results are seen within this time frame, funding and
management's commitment to the project could easily be lost.

Use whatever software is already available for your first
attempt. Image or relational PC based databases, application
generators (4th GL's), report writers, and existing data
dictionaries, should all be used and leveraged from.

3218 - 9

One area not to cut corners on, is the user interface tools.
Here, a small amount of money, less than a $1000, can go a
long way. Look at the many PC based EIS tools with the end
users. Find a package that meets their needs and matches
their skill level. Get the most out of that package by
coupling it with Windows 3.0 or NewWave. With a slick front
end that makes your users happy, it is then possible to
develop your data warehouse and it's infrastructure without
heavy time constraints.

Choose current staff members who already have experience with
the existing tools -and are willing to use then in a new way.
Look for people that have a good data management perspective.
Anyone with relational experience ~r eager to learn
relational technology, would be a plus.

Summary -

Your time is coming. That time when your rich and powerful
masters call your name to come and challenge the mighty
Gladiator, EIS. It doesn't matter if this is the first or
fiftieth time, consider building a data warehouse.

It has the ability to capture and maintain, on-line, all
pertinent information with full history retention. A data
warehouse can improve the Executive's access to data for
decision making at all levels. Instead of seeing just summary
data or averages for a year or a month, analysts and
Executives alike can look at the actual data and-base their
decisions on more solid ground.

with the data warehouse as a powerful weapon in your hand,
you will be able to defeat todays challenger and be better
prepared to meet the challenges of the future.

3218 - 10

Bibliography -

1. Parvin Rahnavard, "Decision Support System", Interex
Orlando Proceedings, 1988.

2. Terrence O'Brien, Janet Eden-Harris, "Executive
Information systemsO', Interact June 1989.

3. Terrence O'Brien, Janet Eden-Harris, "How to Build an
Executive Information System Using Today's Technology",
Interex San Franciso Proceedings, 1989.

4. Will McClatchy, "EIS Powers Executives", InformationWeek,
October 9, 1989.

5. Gary Guiden, Douglas Ewers, "The Keys to Successful
Executive Support Systems", Indications 5:5,
September/October 1988.

6. Cort Van Rensselaer, "Real-World Data Management",
Computer Decisions, 1988.

7. J.A. Zackman, "A Framework for Information Systems
Architecture", IBM Systems Journal 26:3 1987.

8. John Bongiovanni, "solving the EIS Puzzle, The Real
story", Information Center Manager, AT&T Denver, 1990.

9. Mike Phillips, "Future Trends in Data Resource
Management", DAMA, Denver, January 11, 19890

10. Cecilia Bellomo, "To Go Relational or Not? An
Introductory Guide", Interact 10:2, February 1990.

11. O.J. Larson, "strategic Importance of Relational Database
Technology", Interex Nashville Proceedings, 1989.

12. William H. Inmon, "The Cabinet Effect", Database
Programming & Design 4:5, May 1991.

3218 - 11

INTEREX '91 - Paper #3219

Critical Item UQdate
What Will It Do For Me?

Steven ;ZCooper
Chairman, SIGlMAGE

Allegro Consultants, Inc.
2101 Woodside Road

Redwood City, CA 94062
UUNET: scooper@aUegro.com

Voice: (415) 369-2303
FAX: (415) 369-2304

For over a decade now, one enhancement request has been consistently at or
near the top of every list submitted to HP: add the ability to update critical items to
IMAGE. At the Boston Interex conference in 1990, HP committed to the
implementation of this long-awaited feature. Now that it's coming, exactly what is
coming? What will it do for me? This paper attempts to answer these questions.

First, let's make sure that we understand what the problem is today. IMAGE
(aka TurboIMAGE) manages records for us. We add new records by calling
DBPUT and delete old ones by calling DBDELETE. These records are composed of
fields. After we obtain a record by calling DBGET, we can update a value in a field
by changing the value in our copy of the record and then calling DBUPDATE. But
not always. H we attempt to change the value of a field that IMAGE considers a
"special" field, then the DBUPDATE will fail, returning the exceptional condition
#41, ''Attempt to Update a Critical Item".

What does IMAGE consider a "special" field? There are three kinds of fields
that are "special". Master datasets contain records that are retrieved by a key value.
All records in a master dataset must have unique key values. The field that is
designated as the ker in a master dataset is the first of the "special" cases and cannot
be changed via a cal to DBUPDATE.

Detail datasets contain records that do not have to be unique. They may be
retrieved sequentially, but are more often retrieved through chained access, that is,
records that contain the same value in a .search. field are chained together by
IMAGE for rapid retrieval. A detail dataset may have 0 to 16 such search fields,
determined by the database administrator (dba). These fields are also "special";
none of them can be changed (yet) via a call to DBUPDATE.

And lastly, when accessing these detail dataset records by reading up or down
a chain, the dba has a choice of retrieving the records in chronological order (the
order in which they were DBPUT into the dataset) or in sorted order, sorted
according to the value in another field, known as the sort field. Each of the search
fields mar have a sort field specified. These sort fields are also declared to be
"special" Inasmuch as IMAGE will not allow them to be changed via a call to
DBUPDATE.

The IMAGE manual refers to these "special" fields as critical items. Thus, an
attempt to change these fields is commonly known as the critical item update
problem. (Yes, there is a difference between "items" and "fieldstt

, and we should be
calling this "the critical field update problem". But as long as it gets solved, I don't
much care what the manual calls it.)

Critical Item Update - What Will It Do For Me?
3219 - 1

The following is my understanding of the enhancements underway by HP, as
presented by HP at the March, 1991 Reno SIGIMAGE meetin~. As this software
has not yet been released by HP, we must consider this informatIon preliminary and
subject to change prior to its release. Use this information only to start the flow of
creative juices; don't start changing procedures until you receive the updated
software and carefully review the assocIated documentation. The plans that HP has
shared with us include enhancements to TurboIMAGE/XL only, not its MPE V
counterpart.

By default, IMAGE will continue to function as it always has, rejecting all
attempts to DBUPDATE a change to a critical item. However, the database
administrator will be able to use DBUTIL to enable and disable the new critical
item update feature on a database-by-database basis. When enabled, you will be
able to change two of the three kinds of "special" fields via a call to DBUPDATE:

* If you change the value of a search field in a record of a detail
dataset, then IMAGE will remove the record from the chain that it is
currently on (corresponding to its original search field value) and
place it on another chain. If the record has other search fields that
were not changed, those chains will be unaffected.

* H you change the value of a sort field in a record of a detail dataset,
then IMAGE will reposition the record in that chain, according to its
new sort value. Again, all unchanged chains will remain unaffected.

* IMAGE will continue to reject attempts to change the key value in
master datasets.

Since it is the search and sort fields and not the ke4;:: that are affected,
HP may call this feature SSUPDATE (for Search and Sort). Incidentally, we
will continue to set the MODE parameter of DBUPDA1: to one, as we always
have.

Some programs have probably been written that expect the DBUPDATE to
fail if someone attempts to update a -search or a sort field. Of course, these
programs will continue to work as before by default. But, if the database
administrator enables the new feature, these programs may begin performing
updates that would have otherwise been rejected. For this reason, two other
intrinsics have been enhanced: A new mode for DBINFO will inform the program if
critical item updates have been enabled for this database. A new mode for
DBCONTROL will allow the program to turn off the feature for itself, even if other
accessors of the database may be using it.

Now that we understand what we can't do today and what we will be able to
do soon, let's examine what this much-requested feature will do for us. First,
consider the unsophisticated user using a tool such as QUERY. Our user knows how
to FIND records and knows that values that have been found can be updated with
the REPlACE command. However, at some point in the past, the user tried to
REPLACE the value in a search field only to have it fail with some mysterious error
message. When brought to the attention of a data process~gperson, the advice was
to DELETE the record, then ADD it back again, carefully reentering all of the
fields. Even if no mistake was made in the reentry, the new record will be placed at
the end of all of the unsorted chains to which It belongs, thereby destroying the
original chain chronology.

Critical Item Update· What Will It Do For Me?
3219· 2

Once the database had been enabled for critical item update, our user would
have been able to REPLACE without problem, never having to understand the
database's design, IMAGE internals, or the DELETE/ADD kludge. Programs such
as QUERY will automatically, silently, and efficiendy take advantage of this new
feature.

How about more sophisticated users, perhaps the database administrators
themselves? On several occasions, I have considered linking a new automatic
master dataset to an existing detail dataset in order to speed up .retrieval. Adding
the dataset and the linkage is easy with the very powerful third-party database
utilities. The tough part is tryin~ to determine how many existing programs,
interactive and batch, will now fail attempting to modify the field that has just
become a search item. Most of the time, the difficulo/ in finding and fixing these
programs is so overwhelming, that we just give up and live without the path. What a
shame.

The same problem applies in an even simpler case: deciding to sort a path
that is currently unsorted. Here too, the new sort field would become a critical field,
thereby causing unknown numbers of programs to fail due to IMAGE's previous
refusal to perform critical item updates.

Of course, once the database is enabled for critical item update, the paths
and the sorts can be added with impunity. This gives the database administrator
new ~ower to tune the database and keep up with changing business needs without a
massive maintenance programming task.

Perhaps an example is in order. Consider an Order Processing system that
keeps invoice data in a detail dataset. This dataset might be linked to a Customer
master, so that we can obtain all of the invoices for a customer quickly. It might also
be linked to a Date master, so that we can obtain all of the invoices produced on a
particular date quickly. We might also have a status field that indicates whether the
Invoice is "PAID", "CURRENT', "30 days past due", "60 days past due", or "over 90
days past due". Now, since the vast majority of invoices in this dataset are
(hopefully) paid, to find our delinquent invoices, we will have to sequentially read
through the entire dataset. If we decide that we need quicker access to this
information, the logical approach would be to add a Status master, linked through
the status field. However, now when an invoice changes status, say when it is paid
or when it rolls from "current" to "30 days", we will not be able to simply
DBUPDATE it, but will have to DBDELETE It and DBPUT it back. The programs
that make these DBUPDATEs will all have to be identified and changed. The
critical item update enhancement eliminates all of these problems; we can add our
path without adversely affecting existing programs.

Ironically, it will probably be the report writers and the data extraction
programs that will benefit most from this enhancement request, even though these
programs do no updatin~ at all! Huge amounts of time are ty{>ically spent in these
programs, doing sequential reads of datasets. They would obVIously benefit greatly
from the addition of new paths. Indeed, many report generators will automatically
use these new paths once they are added. But they have not been added, due to the
risk of adversely affecting other programs with the critical item update problem.

All of the improvements mentioned above come for free: no programming
changes are required. But are there other benefits that would come from recoding?
The answer is yes. Most programs are written to be cognizant of critical fields.
Typically, when a program needs to update a search or sort field, the program will
DBGET the record, DBDELETE it, change the value in its buffer, then DBPUT it
back again. With critical item update enabled, the program could instead DBGET

Critical Item Update· What Will It Do For Me?
3219· 3

the record, change the value in its buffer, then do the DBUPDATE. Besides the
elimination of one intrinsic call, there are other performance savings. IMAGE does
not have to add the deleted record to the free chain and then instantly remove it
again for the newly added record. But if the record has other unchanged search
fields, the reduction in overhead can be significant. In the worst case of sixteen
paths, only one of which has its search value chan~ed, the new DBUPDATE will take
around 5% of the CPU time and far fewer disc I/O's than the DBDELETE/DBPUT
pair would have taken. The improvement could be amazing for proWams that do
this often. And, as a bonus, the chronology of the other fifteen chains IS maintained!

Clever programmers have been anticipating this change for years. In any
case, we can take a clue from them and borrow their technique in anticipation of the
upcoming change. Whenever they want to DBUPDATE a detail dataset record, they
first try by calling DBUPDATE. If this fails with Exception Condition #41, they then
silently do the DBDELETE and DBPUT automatically. These programs will
automatically begin running faster, without modification, once the databases they
access have been enabled for critical item update.

HP has breathed new life into IMAGE with the critical item update
enhancement. Now that we've been given what we've been asking for all of these
years, it is up to us to use it to its full advantage. With a little forethought, this
feature will not only make it easier to update databases, but can have a significant,
positive impact on the overall performance of the system as well.

Critical Item Update - What Will It Do For Me?
3219 - 4

Paper: 3221

Title: Memory Management

Author: Laurie Facer

Company: FACER System
Performance Division
106 Boldleaf Court,
North Carolina 27513

Phone: 1-800-458-1558

Memory Management On MPEXL

Memory is an intermediary storage area used by active programs (processes) to
store code and data.

It is used because of its speed. It is considerably faster than disc access and is more
accessable by the CPU. Because of cost, however, its availability is limited. It is,
therefore, used as an intermediary storage area and requires the transfer of data
and code to and from disc.

A memory management system has been written to ensure the most efficient use of
the scarce memory resource. Memory management's function is to ensure that code
and data required for CPU processing is available when needed. The more disc I/O
that can be eliminated by holding code and data in main memory, the more
efficiently will the machine· operate.

In doing this, memory manager should function with the least possible amount of
overhead on the system.

Memory Management Architecture

To be able to understand how well memory management is operating, we need to
understand some basic concepts.

Memory manager works with logical pages. Data and code are stored in pages both

Memory Management On MPEXL 3221-1

in memory and on disc. A logical page represents 4096 bytes (KB) of storage area.
(The physical page size is 2048 bytes. The word pages in this paper refers to the
logical page.) A page may be either fully or partially occupied and the data or code
may flow over into one or more further pages.

Because of MPEXL's virtual memory addressing system, there is no practical
restriction on the number of pages that a process uses. The 64KB limit set by the
MPE Classic 16 bit addressing system has been eliminated. MPEXL's 48 bit virtual
addressing system allows an addressable memory space of 280 trillion bytes. The 64
bit addressing found on the 980 allows an even larger addressable memory space.

However, as stated earlier, the amount of main memory available is limited.
Memory manager manages this limitation by ensuring that as many pages as
possible are stored in memory with the least amount of disc I/O.

Intitial Page Allocations

Before a process can obtain access to the CPU it has to have the code and data
(pages) that it needs allocated into main memory. This requires disc I/O to transfer
pages into memory. As a process performs its processing it will probably require
additional pages to be made available in memory.

The additional allocations for a process once it has been initialized will result from
the need to load new code segments, when the process's stack is increased or heap
expanded beyond the current page, to perform file reads and writes, or when its
pages need to be swapped from transient memory.

Code and Data Pages

The allocation of code and data pages occurs most frequently at the initiation of a
process or job/session. After that point they should occur infrequently.

Code allocations after initial allocations indicate bad locality of code. That is, code
that is continuously being called by another routine resides in a different page.
MPEXL does, however, have a complex routine to minimise the probability of both
pages not being allocated.

Data pages are allocated after initial allocations due to stack or heap expansion
beyond the current page. A program that is increasing its stack size will cause these
allocations.

Memory Management On MPEXL 3221-2

File Pages

For a process to be able to process a ftle record, that record must reside in main
memory. The disc I/O system requests the page containing the record required and
memory manager stores it into main memory.

If the page required by the process is not memory resident the process is faulted in
CPU and is placed in the dispatcher queue until the page is made available. By
avoiding page faults, processes complete faster and overhead on the system is
reduced.

One of the main problems with MPE on the classic architecture was the level of disc
I/O faults. This was addressed with the introduction of memory disc caching.
Caching placed the block containing the required record plus additional blocks of
the same file into main memory. There was a strong probability that the next record
required by the process would be in the current or one of the additional blocks
placed in memory. This reduced the fault rate with subsequent reductions in system
overhead.

MPEXL recognises that disc I/O is the slowest part of computer processing and has
implemented a prefetch algorithm that reduces disc I/O. This is done, however, by
placing additional overhead on memory utilization.

Prefetch Algorithm

MPEXL has a prefetch algorithm that replaces the role played by disc caching on
MPE. It is a superior solution to disc caching and has made dramatic improvements
to performance.

The prefetch algorithm utilizes the additional memory available on the MPEXL
machines by loading into memory not only the currently required pages but
additional pages. For serial reads the pages loaded start at the current page
followed by up to eight pages following from that page. Random reads cause the
current page plus pages either side of the required page to be loaded.

The prefetch algorithm works well on MPEXL for three reasons - a) MPEXL has a
lot more memory available than the classic machines and loading additional pages
places less strain on resources; b) memory management under MPEXL is more
efficient than under MPE; and c) the prefetch algorithm is an integral part of
MPEXL and has not been grafted onto the operating system in the same way that
disc caching was.

Memory Management On MPEXL 3221-3

Transient Space

It does not take too many processes to be active before all available memory is
utilized. To reduce the restictions of memoty size on the ability to create and run
processes, an overflow area is set aside on disc. This area is called transient space
(virtual memory on MPE).

Memoty manager utilizes this area by swapping pages not being referenced by
"active" processes from mainmemoty to transient space. It then uses the page areas
made available in main memory for pages required by "active" processes.

Memory Management On MPEXL 3221-4

Managing A~located Pages

Once pages are loaded into main memory, memory manager then utilises transient
space as an overflow area. To do this memory manager has to decide which pages
are to be kept in main memory and which pages can be swapped to transient space.

Each page in main memory is flagged as being in one of five states - present, absent,
in motion in, being kicked out, and recoverable overlay candidate. The important
conditions to understand are present, absent and recoverable overlay candidate
(ROC). A present page is one that is being referenced by a currently active process.
An absent page is one that is empty, and a ROC is a present page that has not been
referenced recently by an active process.

Memory manager utilises both absent and ROC pages when allocating pages into
memory. It searches its absent pages first, then searches the pages flagged as ROCs.
ROC pages are a second best option as they contain data and may need to be
swapped to transient space before another page can be allocated. This swapping
process requires disc I/O.

MPEXL tries to maintain a pool of 32 pages for new page allocations. If the pages
available falls below this level it scans the present pages looking for ROCs. Each
time it scans memory looking for ROCs, it tests to see if a flag is turned "on". If it is,
it then resets the flag to "off". If the flag is already set to "off", it sets the page to
ROC status. If a page has been set to "off" and it is referenced by a process, the flag
is set back to "on".

With more recent releases of MPEXL, memory management has been made more
efficient by flagging prefetched pages from sequential reads as ROCs as soon as
they are loaded into memory. This has had the result of lowering the priority of
prefetched pages staying in main memory. Prefetched pages take a lot of memory
space. At the same time, the need to maintain them in memory is less pressing than
it is for other objects. By flagging prefetched pages as ROes immediately, the
number of pages available for providing free space is dramatically increased.

MPEXL also maintains a memory pressure flag. This flag is based on the number of
times memory manager needed to cycle memory to find ROCs. As this value
reaches thresholds, the criteria for marking pages as ROCs becomes more severe.

When there is too little memory for the current level of processing, the search for
ROes becomes urgent and results in system overhead. The system overhead
appears in the form of higher memory manager utilisation of CPU, increased
process wait times as processes wait for pages to be made present, and increased
disc I/O as pages are swapped to and from transient memory.

Memory Management On MPEXL 3221-5

Memory Pressure

Pressure is placed upon memory for three reasons - a) process initiation is high, b)
faults due to absent pages are high, and c) memory available is too small.

Process Initiation

When a process is initiated, a high number of allocations are generated due to the
initialisation of code and data pages into memory. Additional page allocations for
active processes depend on new code segments being required, expansion of the
stack pointer beyond the current page, disc I/O, and transient memory activity.

Absent Page Faults

Absent page faults. occur for two main reasons - a) file read or write occurs and
page is not in memory, and 2) page has been allocated to memory but subsequently
swapped to transient memory. An absent page fault initiates a disc I/O to transfer
pages from disc to memory. Memory manager has to find the free pages in main
memory into which to place the new pages. For file activity (excluding mapped files)
this also means .utilising theprefetch algorithm and allocating not only the required
page but'all associated pages.

High page allocations place a work load on memory manager -. even with adequate
amounts of memory space.

Inadequate Memory

When memory becomes fully utilised the memory manager has to more frequently
perform the function of maintaining the "free" page pool and swapping pages to
and from transient space. This activity places an overhead on the system in the form
of disc I/O and CPU· utilisation..Even if allocation rates are low, an inadequate
memory size will see page management generate additional workloads.

Memory Management On MPEXL 3221-6

Is Memory A Bottleneck?

To determine if memory is under prressure, that is, memory is becoming or has
become a bottleneck and to determine what to do about the situation, the following
questions must be answered:

1) What indicators show that memory is under pressure?

2) What type of pressure is memory under - lack of memory space or high
allocation rates?

3) What processes are causing memory pressure?

CPU Utilization

The flISt indicator of memory manager being a bottleneck is the amount of CPU
time it uses to pedorm its functions. Fortunately memory manager has a low
utilisation of CPU time. However, any CPU time diverted away from user processes
needs to be minimized.

The amount of CPU time that can be tolerably diverted away from processes will
depend on your processing requirements. I would recommend that - over extended
periods - 2 to 5% CPU utilization by memory manager is an indicator of moderate
memory pressure and anytllting above 5% would indicate high memory pressure.

Process Walt Times

Memory 'is also a bottleneck if it is causing processes to wait. If a process has to wait
for memory related activities, this extends its processing time and lengthens its
response time. If many processes are continuously waiting for memory, then
memory is a botteneck for those processes.

Memory Management On MPEXL 3221-7

Causes Of Memory Pressure

Lack Of Memory

There are several good indicators of memory manager having trouble maintaining
required pages in memory, that is, memory size is too small to maintain the number
of pages in main memory to allow the machine to function efficiently.

Symptoms

Memory Cycle Rate

The Memory Cycle Rate is a good indicator of the severity of memory pressure. If
this rate is high (more than 25 cycles per hour) then memory manager is
continuously looking for ROCs. This is a good indicator of lack of memory space as
the memory manager is having trouble keeping a pool of 32 "free" pages.

Swapouts

Another good indicator of lack of memory space is the number of Swapouts that are
occuring. It represents the number of times memory manager needed· to swap a
page from main memory to transient memory due to memory pressure.

Transient Page Faults

Transient page faults occur when a process is blocked in CPU due to the absence of
an already allocated page in main memory. The required page has been swapped to
transient memory. This is an indicator of memory manager not being able to handle
workloads.

Solution

There are only two real ways to solve the problem of too little memory - increase
the memory size or reduce the workloads. If memory pressure is accompanied with
high allocation rates and file activity (see below), reducing these workloads may
solve the problem.

High Page Allocations

A high level of memory allocations can place pressure onto the system. This
pressure will in tum effect all of the other memory indicators. It will cause high
CPU usage by memory manager and will place pressure on the need to maintain the
"free" page pool.

Memory Management On MPEXL 3221·8

Symptoms

Allocation Rate

Allocation rates show the number of page allocations being made per second This
figure needs to be correlated with the other memory manager indicators to
determine how the allocations are effecting the system.

Transient Memory Swapouts

If allocations are placing pressure on memory, you will also see high transient
memory swapouts. This occurs as the "free" page pool is reduced and existing pages
need to be swapped from main memory to transient memory to make room for the
new pages.

Process Initiation and Logons

High allocation rates are usually the result of a high level of process initiation and
logons as process data and code segments are initially placed into main memory.

Page Faults

Every time a page fault in the CPU occurs, a disc I/O is performed to load pages
into memory. Reducing I/O activity reduces allocations.

Solution

An increase in memory size will help if there are also symptoms of memory pressure
(see above). If there is no memory pressure, increasing memory size will not help as
the problem lies not with fmding additional memory space, but with the overhead in
allocating many pages in a short interval.

Reduced process initiation and logons will reduce the number of allocations. This
can be done through better process scheduling and a good menu system that utilizes
process handling.

The only solution to high I/O activity is to reduce the amount of disc I/O that needs
to be pedormed. This can be done through improving I/O related algorithms within
programs, better system design, and rescheduling processes that generate a high
level of disc I/O activity to run at quieter periods during the day.

Memory Management On MPEXL 3221·9

Detecting The Cause Of Pressure
Global Activity

By looking at the allocation and page fault rates versus the transient memory
activity, it can be determined if memory is under pressure due to lack of memory
space or high allocation rates.

Firstly, look at the memory manager CPU activity. If the percentage of CPU utilised
by memory manager is above 2%, then some pressure may be occuring. If it is above
5%, then this would indicate that there is definitely memory p~essure.

To determine the source of the pressure, look at the allocation and page fault rates
in relation to the transient memory activity. If allocations are moderate to low (that
is, not much higher than found during less busy periods on the machine) and
transient memory activity is high, then the pressure is due to a lack of memory
space.

This can be verified by looking at the memory cycle rate. If this indicator is higher
than normal, then lack of memory space is causing excessive memory. manager
activity.

If allocations and page faults are high when transient memory activity is not much
higher than normal, then allocations are the source of the pressure. Usually,
however, you will find that when allocation rates increase, this is accompanied by
higher levels of transient memory activity as memory manager needs to make room
for the new pages.

Process Activity

Process Allocations

By looking at process activity we can determine the effects of memory pressure and
the possible sources of that pressure.

If the memory allocation rates are high, we need to look at processes to determine
if the allocations are due to excessive initiations of processes or processes
demanding additional pages during processing.

Memory Walts

The effects of memory management activity can be seen by looking at the memory
related wait times that processes are experiencing.

Memory Management On MPEXL 3221-10

Page Faulting

All fIle activity results in memory manager having to allocate pages in main
memory. Processes that have high I/O activity will generate extra work for memory
manager. How well memory manager is serving a process's I/O requests is indicated
by the number of page faults that occur.

A page fault occurs when a process is blocked in the CPU due to the absence of a
page in memory. The prefetch algorithm endeavors to minimize page faults by
preallocating pages that it thinks might be required next. A process that has a high
level of page faults is a) not being serviced well by memory manager and the
prefetch algorithm, and b) is placing additional overhead on the system.

If many processes are experiencing high page faults, then memory manager may be
a bottleneck. If a few processes are incurring page faults, then those processes are
placing overhead on the memory manager.

Memory Management On MPEXL 3221·11

San Diego Interex Paper 3222

The MPE XL System Debugger

Presented by Bob Green
Written by David J. Greer

Robelle Consulting Ltd.
Unit 201, 15399-102A Ave.

Surrey, B.C. Canada V3R 7KI
Phone: (604) 582-1700

Fax: (604) 582-1799

MPE XL comes with a powerful program debugger. For those of us who have struggled
with Debug/V, there are many great features to look forward to. But, like all new
software, there is a learning curve in understanding the new MPE XL debugger.
Attempting to find the dozen or so most useful features in the three-inch stack of paper
called the System Debugger Reference Manual is impossible, unless you have three spare
months. In this article, I intend to summarize the features I've found most useful.

I am indebted to Stan Sieler of Allegro Consultants who taught me much of what is
presented in this article. To obtain the maximum benefit from this article, you should
try all of the examples that are presented. Having both a CM- and an NM-program
available that calls the FWRITE intrinsic will make following the examples that much
easier. If you are going to be a big user of Debug/XL, then you really have to have the
reference manual. Order part #32650-90013, System Debug Reference Manual.

Native-Mode or Compatibility-Mode

HP was very kind to write not only a nice debugger for native-mode programs, but
include features for debugging compatibility-mode programs too. When I first attempted
to debug a CM-program, I got so confused that I returned to my classic HP 3000 where
at least I knew all the command names. The next section will show Debug/XL
commands for our old favorite Debug/V commands.

Debug/V Versus Debug/XL

Just like Debug/V, you can invoke Debug/XL by including the keyword "Debug" on the
:Run Command for your program. Debug/XL responds with its "CM" prompt

:run testprog;debug

eM DEBUG Intrinsic: PROG %6.3542
cmdebug >

If you have a Pmap (or Robelle's Qmap), you can set a breakpoint just as you would in
Debug/V -- using segment.offset:

cmdebug >B 0.45

Anyone who has struggled with Pmaps knows how convenient it would be if the system
debugger took advantage of the FPMAP information stored in program files. With this
information it should be possible to set a breakpoint by procedure name. Debug/XL lets
you either set a symbolic breakpoint at the first logical instruction in your procedure or
at the more useful entry-point:

3222-1 MPE XL Debulger

cmdebug >B open'input'file
cmdebug >B ?open'input'file
cmdebug >B open'input'file+255
cmdebug >c

Breakpoints

{first instruction}
{? implies entry point}
{octal offset from first}
{Continue = Resume}

In the last ten years, I have probably lost over a month of time from one horrible
default in Debug/V. In Debug/V, the Break Command would only break the first time
it encountered the breakpoint, unless you added ":@" to the Break Command. In
Debug/XL the default is to always break. Occasionally, you only want the breakpoint to
be invoked once. Use ",-I" after the break location to have the breakpoint removed
after one occurrence:

nmdebug >b ?open'input'file,-l {break once}

Clearing Breakpoints

In Debug/V, the Clear Command disables breakpoints that have been set with the Break
Command. In Debug/XL, use the BD (Breakpoint Delete) Command to remove
breakpoints:

nmdebug >bd
nmdebug >bd @

Setting a "Return" Breakpoint

(You will be asked for which one)
(Delete all breakpoints)

One of the most useful breakpoints is the one immediately after a procedure call.
Suppose that your program calls the procedure extract ready. You want to know
the result of extract ready, so you would like a breakpoint in the calling code
immediately after the canto extract_ready. You do the following:

cmdebug >b ?extract_readY
cmdebug >c

cmdebug >lev lib p,-l
cmdebug >c

{break at extract ready}
{-I means only break once)
{continue execution}

The "lev I" goes back to the previous logical level in the calling sequence (use "tr,d" to
see a complete traceback). The"b p" sets a breakpoint at the compatibility-mode
program counter. The "lev I" places the program counter at the instruction alter the one
that called the current procedure. The ",-I" tells Debug/XL to execute the breakpoint
once and then throw it away. Note that it's safe to use this breakpoint anywhere in the
extract_ready procedure -- not just at the beginning.

What if we are in native-mode code (e.g., FWRITE)? Our return breakpoint won't
work, since we called FWRITE from compatibility-mode. To set a return breakpoint in
this case, first switch into cmdebug:

cmdebug >b ?FWRITE
cmdebug >c

MPE XL Debugger 3222- 2

nmdebug >cm
cmdebug >lev lib p,-l
cmdebug >c

Abort Command -- Getting Out of Debug

{break at NM FWRITE}
(switch into CM)
(set return breakpoint)
(continue execution)

You can terminate your program with the Abort Command. Use this any time that
Debug/XL is prompting for commands. The Debug/XL Abort Command is similar to
the Debug/V E@ Command.

Displaying Values

When I first used Debug/XL, I became totally confused about how to display the usual
DB-, Q-, and S-relative values. It turns out to be very simple. In Debug/V the Display
Command takes the register as a parameter. In Debug/XL there are separate command
names for displaying values relative to each register. Here are the Debug/V and
Debug/XL Display Commands:

Debug/V
D DB
D S
o Q

Debug/XL
OOB
OS
OQ

The Debug/XL Display Command has a count as its second parameter (just like
Debug/V), but the display attribute is different. Here is the comparison:

Debug/V
,I
,0
,H
,A

Debug/XL
,lor 0
,% or 0
,$ or H
,S

Description
Decimal
Octal (default in CM)
Hexadecimal {default in NM}
Ascii/String

Instead of S, you can also use A for displaying string values. The A-option is closer to
the A-option of Debug/V, but we find the S-option more useful.

By default, the S-option displays all characters you request and only displays the virtual
address of the string once. If you want to see as many characters per line as possible,
with each new line starting with the virtual address of the characters displayed, use this
command:

cmdebug >dq l04,200,s,e

Symbolic Machine Code

("en shows addresses)

Our list above doesn't show you how to display the actual run-time machine instructions
(commonly called decompiling). That's because Debug/XL has many excellent features
to symbolically display code. While you can use the DC (Display Code) Command to
show symbolic code, we have found a better method -- windows.

3222- 3 MPE XL Debugger

Symbolic Traceback

The Debug/V Trace Command was almost useless. You had to manually work through
the segment numbers and offsets to figure out the true procedure names. The
Debug/XL Trace Command produces a proper symbolic traceback of procedure names.

You can also use the traceback to observe switches from native-mode to
compatibility-mode. For example, if you have SM capability you can set a breakpoint
in any system SL or system XL routine. KSAM files come in two flavors: CM and NM.
If you access a CM KSAM file from a NM program, MPE XL calls the CM FWRITE
intrinsic. You can easily prove this to yourself by setting a breakpoint in the CM
FWRITE intrinsic:

:run testprogidebug
nmdebug >cmdebug
cmdebug >b ?FWRITE
cmdebug >c

cmdebug >tr,d

MPE XL Debugger 3222-4

{NM program to read CM KSAM file}
{switch to CM}
{question-mark for entry point}
{continue execution}

{note the ",d" on the TR Command}
{traceback showing switches}

Compatibility-Mode Windows

The WON Command is the real power of Debug/XL. WON is short for Windows On.
When you turn windows on, the top portion of the screen is reserved for a symbolic
display of the currently executing code, another portion displays register and/or stack
values, and the bottom of the screen is used to enter commands. This is a very powerful
feature.

eM Window Example

The following is an example compatibility-mode window. We first set a breakpoint,
continue to that breakpoint, and finally we turn windows on.

cmdebug >b ?input'command
cmdebug >c

cmdebug >won

(break at the entry point)
(continue execution)

{turn windows on}

The top three lines of the display show the register information:

R X Regs OB=001200 OBOST=001632 X=000002 STATUS=(mlTroC CCG 007) PIN=051 <-I
5OST=001627 OL=1n450 Q=023620 S=023620 CMPC=PROG 000006.006711 1 R Window
CIR=035004 MAPFLAG=O MAPDST=OOOOOO <-I

Fcnf) % PROG 6.6711 (7) SETUP CSTX 7 Level 0 <-I
006707: INPUT •C04MANO+X437 031031 2. PCAL 7ERRX 1
006710: INPUT •COMMANO+X440 032000 4. SXIT 0 1 Qrf)

006711: [1] > ?INPUT I CaotAND 035004 .. ADOS 4 1 Window

006712: INPUT •CCl4MANO+X442 171700 .. LRA S-O 1
006713: INPUT •COMMAND+X443 051401 S. STOR Q+1 1
006714: INPUT •COMMAND+X444 035023 .. ADDS X23 ,
006715: INPUT •caotANO+X445 041401 C. LOAD Q+1 <-I
ax (OB mode) QDST=001627 Level 0 <-I
023610: 000000 047420 061006 000006 1n600 DOOOO02 DOO364 1 a
023620:Q>0000014 <S 1 \:Iindow

023630: <-I
S% (OB mode) SDST=001627 Level 0 <-I
023610: 000000 047420 061006 000006 1n600 DOOOO02 000364 I S
023620:Q>0000014 <S <-I Window
Conmands <-I

1 Conmand
%47 (%103) cmdebug > <-I Window

For most of us, only the DL=, Q=, S=, and X= values are interesting. If the DBDST and
the SDST (the DB- and S- data segments) are different, you are in split-stack mode.
Line four shows that we are currently at location 6.6711 in the program. The PROG
would change if the breakpoint was inside an SL. Next we see seven instructions. The
"[1]" means breakpoint number 1. The ">" symbol next to "?INPUT'COMMAND" shows
the next instruction to be executed. The bottom of the display shows the values around
the Q- and S- registers. In our example, the Q and S registers are the same so the Q
and S-displays are identical. Finally, you are prompted for more Debug/XL commands.

3222- S MPE XL Debugger

Single-Stepping

One other command adds a lot of power to windows: S - - single-stepping. The S
Command executes the next instruction, then returns control to Debug/XL. After the
execution, register and stack values are updated and any changed values are highlighted.
Because the compatibility-mode window shows the top few words of the stack, you can
often get an instant picture of what is going on. Here is the first window after
executing one single-step:

cmdebug >s {single-step}

Level 0CSTX 7

2. PCAL 1ERRX

4. SXIT 0

.. ADDS 4
LRA S-O

STOR 0+1

ADDS %23

LOAD 0+1

R % Regs OB=001200 08OST=001632 X=000002 STATUS=(mlTroC CCG 007) PIN=1

5OST=001632 OL=177450 Q=023620 S=023624 CMPC=PROG 000006.

CIR=171700 MAPFLAG=O MAPDST=OOOOOO
cmP % PROG 6.6712 (1) SETUP

006707: INPUT'COMMANO+%437 031031

006710: I NPUT ICCM4ANO+%440 032000

006711 : [1] 1INPUT •CCl'MANO 035004
006712: > INPUT' CCl4MANO+%442 171700

006713: INPUTICOMMANO+%443 051401 S.

006714: INPUTICOCMANO+%444 035023 ..

006715: INPUT 'CCl4MANO+%445 041401 C.
Q % (DB mode) QD"ST=001632 Level 0

023610: 000000 047420 061006 000006 177600 000002 00364
023620:Q>000014 000002 006712 062007
023630:

S % (DB mode) SDST=001632 Level 0

023610: 000000 047420 061006 000006 177600 000002 00364

023620:Q>000014 000002 006712 062007<S

Conmands

%47 (%103) cmdebug >

The ">" symbol has moved forward by one instruction. The register values have been
updated and the top of stack has changed because we added four to the S-register.

Set CRON

This sounds like the title of a futuristic movie, but when combined with single-stepping
it can be very powerful. Once you start using the S (Single-Step) Command, you'll find
yourself typing it a lot, especially when debugging NM programs where you have a lot
more instructions per source code statement. Fortunately, the Debug/XL designers
already thought of this. When you Set CRON, hitting Return tells Debug/XL "execute
the last command that I typed". This is most useful when your last command was S, but
it applies to any command:

cmdebug >set cron
cmdebug >s
cmdebug >
cmdebug >
cmdebug >

(Return = last-command)
(single-step)
{another single-step!}
{and one more}
(and so on)

MPE XL Debugger 3222- 6

Multiple Steps

While single-stepping is useful, it can be very slow. You can step through a program
faster using multiple instructions for every step. The following example shows how to
step through every seven executed instructions. Note: you must have a space after the
Step Command and before the number of instructions to execute (e.g., "S7" is invalid):

cmdebug >set cron
cmdebug >s 7
cmdebug >
cmdebug >
cmdebug >

(Return = last-command)
{execute seven instructions}
{another seven!}
(and seven more)
(and so on)

3222-7 MPE XL Debugger

Native-Mode Debugging

Much of what has been discussed applies to native-mode. There are a few minor
differences:

l. You don't need to specify Fpmap (or any other magic parameter) on the :Link
Command. Procedure name and location information is automatically included in all
NM program files.

2. Since the first instruction of a procedure and its entry point are the same, you never
need to use a question mark. If you happen to type a question mark, Debug/XL
may not print an error. In this case, you will have set a breakpoint in a stub
procedure. Since you almost never want to do this, it's important to remember not
to type the question mark before the procedure name.

3. In most programming languages, any separators (e.g., apostrophes) used in procedure
names will now become underbars.

Here is our previous breakpoint example in native-mode:

{break at procedure entry}

Case Sensitivity

It is easy to see that portions of MPE XL were affected by UNIX and the C
programming language. In UNIX and C, case is significant (Le., upper-case and
lower-case are not the same). When setting breakpoints in native-mode code, it is
important to remember this. Most MPE XL routine names are in upper-case. The most
well-known exceptions are all of the IMAGE and VPLUS intrinsics which are in
lower-case. The following example results in a Debug/XL error:

nmdebug >b fwrite

Switching Modes

{not found; lower-case}

Sometimes you want to switch between CM-debug and NM-debug. For example, the
NM-FWRITE intrinsic calls the CM-FWRITE intrinsic for certain types of files (e.g.,
circular). These commands would set breakpoints in both the CM- and NM- FWRITE
intrinsics:

nmdebug >b FWRITE
nmdebug >cm
cmdebug >b ?FWRITE
cmdebug >nm
nmdebug >c

MPE XL Debugger

{NM- FWRITE breakpoint}
{switch into cmdebug}
{CM-FWRITE breakpoint}
(switch back into nmdebug)
{continue execution}

3222- 8

Native-Mode Windows

The WON (Windows On) Command is just as powerful in native-mode as in
compatibility-mode. The display is different -- instead of the old familiar DB, S, and
Q registers, there is a strange group of 32 "general-purpose" registers. The code looks a
lot different too -- those famous RIse instructions instead of our old faithful Classic
3000 ones.

NM Window Example

We will show an example native-mode window, by setting a breakpoint for the FWRITE
intrinsic:

nmdebug >b FWRITE
nmdebug >c

nmdebug >won

(requires SM capability)
(continue execution»

(turn windows on)

GR$ ipsw=0006feOf=jthlnxbCVmrQPOI priv=O pc=oOOOOOOa.OO4a5fcO pin=00OO007a

rO 00000000 40100e20 004aee30 00000001 r4 cOOOOOOO OOOOffff 4033292a 00000000

r8 00000001 00000009 00000004 4034a880 r12 00000000 OOOOOOOO 00000000 00000000

r16 00000000 00000000 00000000 cOOOOOOO r20 cOOOOOOO 00000001 85240000 00000314

r24 40332604 000000d0 00000001 c0202008 r28 00000001 ffffffff 4034afdS 004aee30

nn9$ SYS a.4aSfbS NL.PUB.SYS/FSPACE+SSa4 Level 0,0

004aSfbS: FSPACE+$Sa4 e840cOOO BY 0(2)

004aSfbc: FSPACE+$S88 4fc33d31 LDWM -360(0,30),3

004aSfcO: [1] > FWRITE 6bc23fd9 STW 2, -20(0,30)

004aSfc4: FWRITE+$4 6fc30340 STWM 3,416(0,30)

004aSfc8: FWRITE+S8 6bc43cc9 STW 4, -412(0,30)

004aSfcc: FWRITE+Sc 6bcS3cd1 STW 5, -408(0,30)

004aSfdO: FWRITE+$10 6bc63cd9 STW 6, -404(0,30)

conmands

$7 ($1d) nndebug >

<-I
1 R

1 Window

1
<-I
<-,

1
INDP
1 Window

1
1
1

<-I
<- 1 Corrmand

1 Window

<-I

The first line contains general information about the process (e.g., the pin number). The
pc= is the program counter (notice it's a full 64-bit address in space.offset format).
Lines two through four of the display show all 32 general-purpose registers. The fifth
line shows where the first instruction in the window is located (in NL.Pub.Sys @
FSPACE :·S5a4). The native-mode instructions are shown, along with the breakpoint
number "[1]" and the next instruction to be executed is marked with the ">".

There are two commands that can be a big benefit in examining the code "around" a
breakpoint: PB (Program Back) and PF (Program Forward).

Paging

Debug/XL windows have to display all their information in the twenty-four lines on a
standard terminal screen. By default, the size of the symbolic instruction list is seven
instructions. Especially when you are single-stepping through instructions, it is very
useful to see the previous seven instructions or the next seven. The PB (Program Back)

3222- 9 MPE XL Debugger

Command displays the previous seven instructions and the PF (Program Forward)
Command shows the next seven. While seven instructions is the default, there are
commands to change the size of the program window. If you have changed the size,
Program Back and Program Forward adjust themselves to the new window size.

nmdebug >pf
nmdebug >pb

PL Command

(program forward)
{program back}

If you want to change the number of program instructions on the screen, use the PL
Command (Program List). The PL Command assumes that the number of lines you want
is in the current base. Therefore, PL 10 means 16 instructions in NM Debug and 8
instructions in CM Debug. To get around the problem, we always specify the number
of instructions in decimal:

nlltdebug >pl #10

MPE XL Debugger

{show "ten" instructions}

3222-10

Native-Mode Procedure Parameters

Long-time users of DebugjV know how to anticipate where procedure parameters will
be located. For example, if we had a procedure with this declaration:

integer procedure convint(buf,len);
value len;
integer len;
byte array bUf;

In eM-debug, we would look at the parameters as follows:

!result

!len
!@buf

Q-6

Q-4
Q-5

cmdebug >dq -6
cmdebug >dq -4
cmdebug >dq -5
Q-%5 % 000104
cmdebug >ddb 104/2,10,s

(result of Convint procedure)
(length of buffer)
(address of buffer)
(must use this value below)
{print actual buffer contents}

Notice that we had to divide the value at Q-S (i.e., %104) by two, since the buffer was
passed as a byte address. In native-mode, this irritation disappears (except for those
using SPLash! to emulate Classic byte addressing).

Native-Mode Calling Conventions

With the power to set breakpoints symbolically, by just knowing the name of a
procedure, there is even more incentive to be able to guess the location of procedure
parameters. NM procedures are allocated registers for the first four parameters, but
they are allocated left-to-right -- the opposite of CM procedures. The first parameter
is assigned to Register-26, the second to Register-2S, the third to Register-24, the
fourth to Register-23, and any remaining parameters are stored on the NM stack. The
return value is in Register-28 (and Register-29 for 64-bit values). For native-mode,
you would think of the declaration for Convint as:

integer procedure convint(buf,len); !result R28
value len;
integer len; !len R25
byte array bUf; !@buf R26

If you have windows on, the 32 general-purpose registers are always displayed. The
only problem area is the buffer parameter:

nmdebug >b convint
mndebug >won
nmdebug >c

nmdebug >=r25
nmdebug >dv r26,10,s

{note lower-case}
{windows on}
{continue execution}

{debug breaks @ convint}
{display the length}
{display virtual uses the contents}
{of register 26 as an address}

3222-11 MPE XL Debugger

Variables

Debug/XL contains a programming language. We won't try and cover all of the features
of this language, but variables are so powerful that they are worth knowing about. In
our example with the Convint procedure, suppose that the buffer you are passing to
Convint is a global variable. Setting the breakpoint at Convint gives you a convenient
method to find and save the address of your buffer so that you can use it at any
breakpoint.

nmdebug >var buf var=r26
nmdebug >dv bUf_var,lO,s
nmdebug >c

nmdebug >dv bUf_var,lO,s

(save address of buffer)
(display buffer contents)
(continue execution)

(sometime much later ...)
(display the buffer contents)

The final Display Virtual Command displays ·the contents of the buffer using the address
that we saved. When the breakpoint takes place, we may have no convenient way of
finding ~he program variable that has the address of our buffer. Because we have saved
the address in the Debug/XL variable "buf_ var", we display the buffer contents without
knowing where the address is stored.

Virtual Addresses

So far, we have assumed that all addresses are 32-bits. In MPE XL, addresses are
actually 64-bits. Debug/XL shows these addresses as space.offset. If you are working
with mapped files, you will find that the full 64-bit address suddenly becomes
important. The following example opens a file with mapped access, saves the virtual
address of the file into a variable, and then displays the actual contents of the file.

nmdebug >map "filel. suprtest" (open an mpe file mapped)
nmdebug >var fileaddr mapva("filel.suprtest")
nmdebug >=fileaddr (display the virtual address)

Debug/XL has a built-in calculator that accepts any Debug/XL expression. You invoke
the calculator with an equal sign "=". Debug/XL evaluates the calculator expression and
prints the result. The calculator will display the full 64-bit address of "filel.suprtest" as
space.offset.

You can display the actual contents of the file:

nmdebug >dv fileaddr,20,s (first 20-bytes of file)

Warning: Due to a very serious bug In MPE XL, never, never, never do this on the file
Catalog.Pub.Sys. If you open Catalog.Pub.Sys with mapped access, you will cause a
system failure.

The map command displays the virtual address of a file in space.offset format. You can
use the DV (Display Virtual) Command to display the file contents or you can use our
method. We prefer using a variable and mapva function, since typing in a full 64-bit
address correctly is quite difficult.

MPE XL Debugger 3222-12

Cseq.Pub.Nuggets

While it is easy to predict the layout of parameters in our simple example, things can get
more complicated in MPE XL. For example, addresses can be passed as 64-bit
quantities instead of the default 32-bit values. The best way I've found to determine
parameter location is to use the Cseq (&.alling §muence) utility in the Nuggets collection
(available from Software Research Northwest 206-463-3030). Here is the CseQ output
for the FWRITE intrinsic:

{R26, bits = 16}
{(skip 25) R23, R24}
(bits = 65536)
(Address type = LongAddr)
(SP-S0032, bits = 16)
(SP-S0036, bits = 16)

int16
Ulnt16

int16
record

Parm 3:
Parm 4:

uncheckable_anyvar

Note that the buffer parameter is a "LongAddr" that is passed in both R23 and R24 (the
first is the space and the second is the offset). Fortunately, it is still easy to see the
contents of the buffer. If we were at a breakpoint at the start of FWRITE, we would
display the buffer with:

Procedure FWRITE (
Parm 1:
Parm 2: anyvar

nmdebug >dv r23.r24,20,s {display buffer contents}

Integers: 16-bit versus 32-bit

Cmdebug displays integers in octal as 16-bit quantities. Nmdebug displays integers in
hex as 32-bit Quantities. In our FWRITE example, it is easy to see the value of the
length parameter.

nmdebug >dv sp-32,1
$ 00005fOO

{display the length}

We used the DV (Display Virtual) Command to display the stack contents. The ",1" is
not necessary - it's the default, but we have shown it to make the following examples a
little clearer. The "dv sp-32" displays the value at sp-32 as a 32-bit Quantity, but we
know that the actual value of FWRITE's length parameter is a 16-bit quantity. You can
display two 16-bit integers using the following:

nmdebug >dv sp-32, 1, , ,2 (display two 16-bit integers)
$ 0000 5fOO
nmdebug >dv sp-32, 1, #, ,2 {display two integers in decimal}
0 24320

Display Virtual always rounds down to a virtual address that is a multiple of four and
then displays one or more 32 bit words.

3222-13 MPE XL Debugger

Miscellaneous Tips

Setting a "Return" Breakpoint

We showed how to set a return breakpoint in compatibility-mode. You use a similar
method to set a return breakpoint in native-mode code:

nmdebug >b extract_ready
nmdebug- >c

nmdebug >lev lib pc,-l
nmdebug >c

{break at extract ready}
{-I means only break once}
{continue execution}

The only difference between a CM return breakpoint, and an NM one, is the name of
the program counter. In native-mode it's called "pc". This sets a return breakpoint
immediately after the code that called extract ready. Note that it's safe to use this
breakpoint anywhere in the extract_ready procedure -- not just at the beginning.

Debugging Batch Programs

In Debug/V, there was no practical way to debug a program running in batch. In
Debug/XL, you can debug a batch program on the console, although it's a bit messy to
set up. You have to do these steps:

1. Obtain the pin number of the program you want to debug. You'll need to use a
program like Shot.Pub.Nuggets. You can use the Showproc Command, if you have
MPE XL version 2.1 or later versions.

2. Go to the console and insure that there will be no output on the console. The
easiest way to do this is to initiate a :Restore on the console. This assumes that your
tape drive is not configured for auto-reply. Do not reply to the tape request.

{On the console ••• }
:hello user.acct
: restore

3. On another terminal, log on with SM capability and enter debug. For example,

:hello manager.sys
: debug

4. Once you are inside Debug, you must set an environment variable and _force a
breakpoint in the batch program. Our example assumes that the batch program will
call the FWRITE intrinsic:

nmdebug >env job debug true
nmdebug >b FWRITE:pin#

{set special variable}
{don't forget the pin#}

You don't actually type fib FWRITE:pin#" when setting the breakpoint. You substitute
the actual pin# that you obtained in step 1 (e.g., "b FWRITE:I03").

When the batch program encounters the breakpoint, Debug/XL is invoked and all

MPE XL Debugger

Debug/XL input/output is done via the console. On the console you can type any of the
usual Debug/XL commands. When you finish your debugging session, you'll need to
remember to abort the :Restore that you initiated. You must also return to the
Manager.Sys session and disable job debugging:

cmdebug >env job_debug false

Macros

Debug/XL contains a small programming language that lets you create your own macros.
Debug/XL has no command to skip over procedure calls, although almost all PC-based
debuggers have this feature. When single-stepping through a program, you rarely want
to single-step through external procedures (e.g., the Print intrinsic). Use the j macro to
jump over the next native-mode BL instruction. Macros use braces for the body of the
macro (i.e., as begin/end), so don't interpret the braces as comments. Here is how to
declare the· macro:

nmdebug >mac j {b pc+$8,-1; c}

Macros are declared with the Mac Command. The first parameter to the Mac Command
is the macro name (in this case it's j). The body of the macro follows and is surrounded
with braces. Macros can take several lines. The j macro sets a breakpoint at the next
native-mode instruction after a branch-and-Iink "pc+$8". The breakpoint is only
executed once ",-1". Multiple commands are separated by semi-colons ";". The last step
of the macro is to execute the Continue Command "c". Note that the j macro is only
useful around branch-and-link instructions which is why we jump eight bytes ahead of
the program counter instead of four. You execute the macro as if it were a built-in
Debug/XL command:

nmdebug >j

Vfilepages Macro

When doing any performance measurements with disc files, you need to know what
portion of the file is in memory. This macro takes advantage of many features of
Debug/XL. The macro displays the number of pages of a file that are currently present
in virtual memory.

Purpose: Display the number of pages (and
sectors) of a file that are in memory.

Warning: Never use this macro on catalog.pub.sys.

1*
1*
1*
1*
1*
1*
1*

Macro: Vfilepages

mac vfilepages (filename:str) {
map !filenamei
w !filename " contains "i
w vainfo(mapva(!filename),"pages in meml):"D";
w II pages in memory = "; - -
w vainfo(mapva(!filename),"pages in mem")*#16:"D";
w .. sectors"; - -
WI;
unmap(mapindex(!filename»i
}

3222-15 MPE XL Debugger

Lines starting with "/*" are treated as comments. The "filename" is a parameter to the
macro and it's of string type. To understand the rest of the macro requires looking up
the description of the Map, Mapva, W, WL, and Unmap Commands and an
understanding of the Vainfo and Mapindex Function. We'll leave that up to you. To
invoke this macro, you would do the following (note the quotes around the filename):

vfilepages "file50.suprtest"
file50.suprtest contains 8 pages in memory = 128 sectors

Warning: Because this macro uses the Debug/XL Map Command, do not use it on the
file catalog.pub.sys. If you do, you will cause a system failure.

DBUGINIT File

Once you start writing macros, you will want to have them automatically loaded when
you enter Debug/XL. Debug/XL always executes a use-file called DBUGINIT.
Debug/XL first looks for this file in the same group and account as the program, then it
looks in the logon group and account. Rather than fill our DBUGINIT file with macros,
we fill it with Use Commands for different files that contain useful macros: You can use
:file commands for the DBUGINIT file, but you must use a fully qualified filename.
For example:

:hello david.dev,david
:print dbuginit.macro.dev
use splash.macro.splash
use macros.macro.dev
:file dbuginit.david.dev=debuginit.macro.dev
:run testprogidebug (Debug/XL will use debuginit.macro)

:Setdump Command

Classic MPE contains a :Setdump Command, but I believe most of us ignored it because
the traceback it printed was not symbolic. If you enable :setdump in MPE XL, you not
only get an excellent symbolic traceback, but in native-mode you are placed into
Debug/XL (certain exceptions apply to privileged-mode programs).

MPE Commands

You can enter almost any MPE command by preceding it with a colon. This includes
UDes and the :Run Command. Often in the middle of a debugging session, you need to
examine your source code. An easier way to do this is to run your editor from within
Debug/XL. One word of caution -- Debug/XL, like many HP products, fails to see if a
son process has terminated or suspended.

We also find it useful to invoke Cseq.Pub.Nuggets when we are debugging a program.
This lets us determine the location of the parameters for any MPE intrinsic:

nmdebug >:cseq.pub.nuggets (obtain parameter addresses)

MPE XL Debugger 3222-16

Running Qedit from Debug/XL

If you invoke Qedit from Debug/XL, be sure to run it with Parm=32 (this tells Qedit
not to suspend on exit). The most likely reason to invoke Qedit from Debug/XL is to
examine your source code. If you do not /Shut your file before running your program,
you will get "Error: Busy file" when you try to open your file inside Qedit (inside
Debug/XL). To get around the problem, you can either /List your source code or /Text
a copy.

Conclusion

If you are going to make heavy use of Debug/XL, I strongly recommend getting the
System Debug Reference Manual. While it's not helpful for learning Debug/XL, it's
invaluable in looking up specific commands and their syntax. That part number again is
#32650-90013.

When I first set out to write this article, I thought that it would only take me a few
paragraphs to convey what I'd learned about Debug/XL. If you've got this far, you
realize that I underestimated the amount of material -- not surprising given the rich
feature set of Debug/XL.

3222-17 MPE XL Debugger

COBOL85 On XL Machines

We've Got A Language!

Rick Hoover

CIV Software
700 Hanover Dr.

Shelby, N.C. 28150

The first question I asked myself was, 'Why a paper on COBOL? Does anybody
care anymore? After all, COBOL has been around so long. Would anybody read this
treatise?'

That was my thought in 1990 when I presented a paper at the Boston INTEREX
about COBOL85 and HiLi. I had completed a consulting job on my first XL machine
and spent a lot of time leaning the new capabilities of XL. All of my programs were
written using the standard COBOLll commands, creating a USL and prepping the USL
into an executable program. Part of the way into the project I found the COBOL
compiler commands to compile a COBOLll program into native mode. My first
compiles scared the heck out of me. Something had to be wrong! Compiles on the 950
that took 25-40 seconds were now taking 2-3 seconds.Something's not working. Were
was the USL rue? HELP!!!

My fears were put to rest as I completed the project. Native mode is good. I can
compile programs faster and create object files that can be linked to XL files and
programs can use multiple XL files and

This also led to a day when I sat down with a manual called HiLi. I only knew
this term as a game played mainly in Florida. I found out that HiLi was HP's answer to
VIEW macros. While thumbing through the rest of the manuals I stumbled across the
one manual I would have never thought to look at. But there it was. COBOL. I've been
a COBOL programmer now for over a dozen years. What new could I learn from this
book. Maybe there was something I didn't know about COBOL on the XL. I began my
search.

There were many grey enhanced sections in the manual. What were these? I
later found out that COBOL had grown up. It was now COBOL, COBOLII and
COBOL85. Back in the early 80's when I moved from COBOL to COBOLn, well let's
just say that I wasn't running around yelling from the rooftops, 'WOW LOOK AT
THIS...LOOK WHAT I CAN DO NOW!'. But since I found out about COB0L85's
enhancements, all I can say is 'WOW LOOK AT THIS...LOOK WHAT I CAN DO
NOW!'.

COBOL8S On XL Machines 3225 - 1

This paper is in no means a complete reference to the enhancements to COBOL.
Rather, this paper is meant to show the people out there that are still using COBOLll
that there are some really neat things you can do with the COB0L85 compiler. Let me
also state that the COBOL85 compiler is (1) on both the Classic and Spectrum
machines and (2) you probably already have it and just don't know it. COBOL85 is in
the COBOLll.PUB.SYS file. There are entry points to the COBOL85 commands.
There should be a file called COBUDC.PUB.SYS that contains the routines to compile
using the COBOL85 entry points (this is for Classic users). And, if you own COBOLII,
you were automatically upgraded to COB0L85.

I will be discussing each division separately in describing the enhancements
available.

Finally, I will be throwing in some of my techniques throughout the paper.
These techniques work for me. They may not work for you. So be it. There will also
be a few comments made about certain things you can do in COBOL that you may
already know. I spent a couple of years doing training classes across the country for a
software company. The comments that I will be making in this paper were second
nature to me, but I found that there were many programmers that didn't know about the
things that I talked about. I will explain later.

IDENTIFICATION DIVISION

This is the shortest section in the whole paper. With the exception of the
PROGRAM-ID, all paragraphs are obsolete in COB0L85. Well, that's nice but what
else is there? Well, there really wasn't that much to begin with. There is one
enhancement to the PROGRAM-ID paragraph. You can say:

PROGRAM-ID. MYPROGRAM IS INITIAL PROGRAM.

This is the same as saying $CONTROL DYNAMIC.

ENVIRONMENT DIVISION

This division is now completely optional. There are a few new items that are
well worth mentioning in this division.

SYMBOLIC CHARACTERS BELL IS 8.

DISPLAY "YOU ARE NOT ALLOWED TO DO THAT" BELL

The SYMBOLIC CHARACTERS statement allows the programmer to send
any kind of special character (such as line feed, carriage return, etc.) to a statement.
This can allow for a stronger message or a more impressive formatted message.

COBOLSS On XL Machines 3225 - 2

CLASS A-GOOD-GRADE IS "A", "B", "C"

IF GRADE-ASSIGNED IS A-GOOD-GRADE DISPLAY "GOOD"

There is now a CLASS statement that will let the programmer set up specific
logic flow in the program. These CLASS statements will act in a mode similar to 88
levels except they become program specific. They also compare a variable to a known
value.

SELECT OPTIONAL MYF1LE ...

You can now not only have the 0PI10NAL keyword but, if the file is not
present and opened in 1-0 or extended mode, a new file will be created.

MEMORY SIZE, SEGMENT-LIMIT and MULTIPLE FILE statements are
now obsolete.

DATA DIVISION.

This is where we will separate the ultra fancy from the new. I am now hard at
work (or is that hardly working) on a paper about local and external fields and
programs in COBOL85. I will not be discussing external programs and fields at this
time. Let's just say that for those of you who work with languages like PASCAL and
C, you will find this to be just to your liking.

When COBOL came out there was a term used in the DATA DIVISION called
FILLER. Programmers got sooooo tired of typing in FILLER all the time. COBOLII
came along and said "Those of you who are tired of FILLER may now type in F
instead. So we went from:

05 FILLER pic x(02).

to

05 F pic x(02).

Today, we don't even need F:

05 pic x(02).

There are two new USAGE verbs available. BINARY is the same as COMP.
PACKED-DECIMAL is the same as COMP-3.

COBOL8S On XL Machines 3225 - 3

PROCEDURE DIVISION.

Now we come to the fun zone. This is where it's happening. There are so many
new concepts in the PROCEDURE DIVISION, it becomes hard to know where to
start. Here goes...

ACCEPT TODAYS-DAY FROM DAY-OF-WEEK

This statement will set the field TODAYS-DAY to 1 if the day of week is
Monday, 2 if Tuesday etc.

DISPLAY "PLEASE,TYPE IN YOUR NAME:" NO ADVANCING

This form of the DISPLAY statement will leave the cursor immediately after the
: in the DISPLAY statement.

This next statement is one of the more powerful statements for COBOL. We
COBOL programmers finally have a CASE statement (and a very powerful one also).

EVALUATE MYFlELD-l AlSO MYFlELD-2
WHEN "A" AlSO "B" PERFORM PARA-A
WHEN "C" AlSO "D" PERFORM PARA-B
WHEN "E" AlSO ANY PERFORM PARA-C
WHEN OTHER PERFORM PARA-D

END-EVALUATE

EVALUATE CHECK-THIS> 0 AlSO SOMETHING-ELSE
WHEN TRUE AlSO "An PERFORM PARA-F

PERFORM PARA-G
MOVE THIS-FIELD TO THAT-FIELD

WHEN FAlSE AlSO "A" PERFORM PARA-H
WHEN FAlSE AlSO ANY PERFORM PARA-I

END-EVALUATE

The BVALUATE statement sets up 1 or 2 fields to be checked. If the field is
actually a condition (as in the second example) the programmer can use the terms
TRUE and FALSE to control processing. The EVALUATE statement flows through
the WHEN statements until the conditions are satisfied. If the conditions are not
satisfied and the WHEN OTHER is available, control will pass down to the WHEN
OTHER otherwise control will fallout of the EVALUATE. Once a condition is met,
the rest of the WHEN statements will be ignored. EVALUATE can work with strings,
characters and numerics.

COBOL8S On XL Machines 3225 - 4

There was one other statement that you may have noticed in the examples. That
statement was the END-EVALUATE. Many of the COBOL verbs allow control via an
END-verb statement. I will demonstrate:

IFA>B
IFC>D

IFE>F
MOVEXTOY
IFG=H

CONTINUE
ELSE

MOVEQTOZ
END-IF

END-IF
MOVEMTON
END-IF

END-IF

In the above example I have created a nested loop that has 2 new wrinkles that
could not have been accomplished before. The first thing you may notice is that there is
a new verb CONTINUE hiding in the code. This allows you to make positive
statements rather than negative statements about the logic flow. You will not have to
say IF A NOT = B to complete a phrase. The other thing you may have noticed is that
I can do certain things in the IF statement based on a condition without having to leave
the nested IF to PERFORM a paragraph. And I can also do something after the IF's
have been resolved.

I have very few IF constructs that were not easily changed over to this new top
down format. The END-IF competes the associated IF. Be sure to always have a
consistent IF...END-IF link.

INITIALIZE MYFlELD-l MYFlELD-2

This statement will let the programmer set records or fields to an initial state
prior to moving data to them. This is a lot better than moving spaces to all
alphanumeric fields and zeros to all numeric fields. You can also initialize fields to a
set value by saying:

INITIALIZE MYFIELD-A
REPLACING ALPHANUMERIC BY "AR

NUMERIC BY "9"

COBOLSS On XL Machines 3225 - 5

In-line PERFORMs are now available. The program does not have to leave the
flow to do specific steps. By simply stating:

PERFORM VARYING NUMBER-FIELD FROM 1 BY 1
UNTIL NUMBER-FIELD> 10
INITIAUZE TABLE-ARRAY(NUMBER-FIELD)

END-PERFORM

The above example will initialize an array called TABLE-ARRAY. If you leave
off the name of a paragraph, the assumption of an in-line perform will be done. You
can also nest in-line performs as in:

PERFORM 10 TIMES
PERFORM UNTIL END-OF-FILE

ADD 1 TO TOTAL

END-PERFORM
END-PERFORM

The above code example shows how to construct a nested in-line perform.
There is one other touch you can give the in-line perform:

PERFORM wrm TEST AFTER UN'i1L A > 10

END-PERFORM

The above example has the phrase WITH TEST AFfER which states that the
code inside the in-line perform will be run at least once The conditional phrase will be
checked after the perform is executed. By default, the PERFORM has an implicit
WITH TEST BEFORE.

COBOL8S On XL Machines 3225 - 6

The last example in the PROCEDURE DIVISION that I will go over is the
READ statement since it has a couple of niceties that go over a lot of other verbs:

READMYFILE
AT END

code
NOT AT END

code
END-READ

This makes for logical programming. You can now control most of the verbs
with a NOT statement that will control program flow. The above example allows you
to place a read statement inside of a performed paragraph that can also contain if
statements that can also contain performs that can also contain...

Needless to say the effect is wonderful. The verbs that have this capability are:

WRITE READ RETURN
REWRITE START CALL
ADD COMPUTE DIVIDE
ACCEPT

DELETE READ
STRING UNSTRING
MULTIPLY SUBTRACT

This allows control over all phases of these verbs. The ability to control a verb
if there is an overflow condition has always been available but the ability to say that if
an overflow condition occurs, do this otherwise do that and not have to worry about
period placement makes the logic flow a lot cleaner.I've found that during the course of
developing programs, I can greatly increase the readability of any program by using
these techniques.

As I stated in the beginning, this is not meant to be a complete treatise on
COBOL85. But for those of you who use the language, try some of these techniques
the next time you work on a program. You will find that there is a lot to be gained.

COBOLSS On XL Machines 3225 - 7

Creating Seamless Packages Through Process Handling

John P. Korb
Paper 3226

Innovative Software Solutions, Inc.
10705 Colton Street, Fairfax, VA 22032

(703) 273-5025

When a company purchases an HP 3000 it receives the FOS (Fundamental
Operating System) and a number of utilities. Over time additional software is
purchased from HP and other vendors. Often, however, many tasks which could be
accomplished by the combined use of several utilities are judged ''will require
extensive programming" or "not possible with present resources" and so a user
requirement goes unfulfilled.

Process handling and the interfacing of utilities to each other to form a problem
solution are two often neglected topics. This paper will discuss some of the
applications of process handling and the combining and interfacing of utilities in
solving problems.

What is Process Handling
Process Handling is one of the MPE "special capabilities". A simple description of
Process Handling might be the ability of one program to start up one or more
programs during its own execution.

The MPE operating system considers each and every unique execution of a program
a "process." When the system operator starts up MPE a process is started which
loads MPE into memory and starts up the various processes which MPE needs to
function at a minimal level. Thus, MPE itself uses Process Handling to build and
control itself. When MPE starts up it builds processes for spooling, memory
logging, device recognition, controlling user processes (sessions and jobs), loading
programs into memory, and a number of other functions. When a person signs onto
the system MPE creates a process which becomes the "main" part of the user's job
or session. This "user main" process is the command interpreter which supplies the
colon prompt and accepts MPE commands. When the user enters a "RUN"
command or invokes a subsystem (EDITOR for example) the "user main" process
uses process handling to create a process for the program or subsystem to be run.

Process Relationships
Processes are related to each other and have a sort of genealogy. With the

Creating Seamless Packages Through Process Handling Paper 3226-1

exception of the first process within MPE, every process has a "father" process
which created it. Processes which share a common father process are "brother"
processes. When a process creates another process, the process created is a "son"
process. Thus, when the user enters a "RUN" command at the colon prompt, the
"user main" process creates a "user son of main" process for the program or
subsystem to be run.

The "user main" or "command interpreter" process only allows one son process at a
time. This is why if the user enters a "RUN" command to run a program, presses
"BREAK" to interrupt the program's execution, and enters another "RUN"
command without aborting the first program, MPE will respond with "COMMAND
NOT ALLOWED IN BREAK". This restriction is a limitation of the command
interpreter and the· "RUN" command and not a limitation of process handling. In
fact, within MPE a number of processes are running simultaneously - the spooler
processes and data communication processes for example. A programmer with
access to process handling can often have multiple son processes executing
concurrently.

Another restriction imposed upon "user main" is that the command interpreter and
the son process cannot be executing at the same time. Either the command
interpreter is active or the son process but not both. Again, a programmer can set
up a program which executes a son process while the father process continues to
run. This parallelism adds greatly to the capabilities and usefulness of process
handling.

Just as human genealogy is often plotted as a "family tree", process genealogy is
often plotted as a "process tree". In a process tree the "user son of main" is the
trunk of the tree, its sons are the major limbs, off them sprout their sons, etc. There
can be a considerable number of generations of processes in a process tree, but
practically there are typically two to five generations.

Processes are dependent upon their fathers for their survival. If a process aborts (or
terminates normally), all its son (and grandson, and greatgrandson, etc.) processes
terminate.

Creating A Son Process
A programmer starts a process very much as the MPE "RUN" command does· by
calling the CREATE or CREATEPROCESS intrinsic. The CREATEPROCESS
intrinsic allows the programmer considerable control over the process it creates. In
fact, CREATEPROCESS allows more flexibility and more options than the RUN
command does. Three of the options of CREATEPROCES are of particular value.
These three options (items 3, 8, and 9) allow the programmer to start a program in
a mode in which multiple proceses within the process tree are executing
concurrently. While other CREATEPROCESS options may be of use later, only

Paper 3226-2 Creating Seamless Packages Through Process Handling

items 3, 8, and 9 are needed for the average application (more about these items
later). For those who have used the CREATEPROCESS intrinsic in the past,
please note that item 10 is NOT used. Item 10 tells CREATEPROCESS to suspend
the calling process and to expect reactivation of the calling process from a son
process, father proces or either father or son process. In order to have the father
and son processes run concurrently, item 10 is omitted. The side effect of this is
that CREATEPROCESS will create the process but will not tell the process to
begin executing. If item 10 is provided and has a non-zero value, the father process
will be suspeneded and only the son process will executing.

Once CREATEPROCESS has created a son process, it returns a PIN (Process
Identification Number). The PIN is like a label and is used in calls to various
intrinsics to specify the process upon which the intrinsic is to act.

A process which has been created just sits there until it is allowed to execute. Some
applications of CREATEPROCESS automatically start the process (activate it)
after creating the son process. When CREATEPROCESS item 10 is omitted (as
previously discussed), CREATEPROCESS does not automatically start the process,
and the programmer must do so himself.

To tell a process to begin executing, the programmer calls the ACTIVATE intrinsic,
passing ACfIVATE the PIN returned by CREATEPROCESS. When both the
father and son processes are to execute concurrently, the susp (suspend) parameter
of ACfIVATE should be zero or omitted. Just as with item 10 of
CREATEPROCESS, a non-zero value for susp causes the father process to
suspend.

The Terminal Interface
When running multiple processes concurrently within a single session, a serious
probem becomes apparent - the user cannot determine which process his terminal
input will be routed to. This is because all processes within the session normally
share the session's one terminal for input and output.

Due to the single-threaded nature of the terminal I/O, only one input or output
operation can occur on the terminal at a time. The result is chaos. With multiple
processes running concurrently, process "X" may print a prompt on the terminal,
but before process "X" reaches the code which accepts the prompt's response,
another process (process "Y") may request input from the terminal and any
response the user enters for process "X"'s prompt ends up going to process "Y".

As an example, assume that a programmer has written a program which in tum runs
both EDITOR and SPOOKS as concurrently executing son processes. Prompts for
both EDITOR and SPOOKS are displayed on the screen. Since the EDITOR
prompt appears first, the user enters an "A" (for ADD) command, thinking that

Creating Seamless Packages Through Process Handling Paper 3226-3

ERROR=20 BVTEcO INVALID COMMAND NAME

T3COMPL READV JOHN.RD
LOGLIST READY JOHN.RD

#S8 FANTASIA READY JOHN.RD

EDITOR will then prompt for an acccept text lines. Instead, the cursor moves to
the next line and the user is perplexed. Mter sitting and waiting a couple of
minutes, the user presses {RETURN} and instead of receiving a line number prompt
from EDITOR, receives a prompt from SPOOKS followed by a line number
prompt. Additionally, output from both programs is interleaved. Below is an
example (user input is underlined).

:run chaos

HP32201A.07.17 EDIT/3000 SUN, SEP 23, 1990, 1:13 PM
(C) HEWLETT-PACKARD co. 1985
I~
SPOOKS G.03.0S (C) HEWLETT-PACKARD CO., 1983
> ~

1 ..::.th:.:..,.:...:"s:.........:.i.::.s--:s~o:.:.:.m=e_t.:.:e~s:..::t;........:.;da=-:t=a:..:..
#FILE #JOB FNAME STATE OWNER
#079 #J33 $STDLIST READV JOHN.RD

2 #081 #J34 $STDLIST READV JOHN.RD
more test data
#080 #J33
#043 #58

3 #042
this is line 3.
>LL

4
LL
> •.•
Llil
ERROR=46 BVTE=2 NO TEXT FILE
I> Llil
-
>

>

>

2

3

this is some test data.

more test data

this is line 3.

-
> ~

l-
END OF PROGRAM
I~

END OF PROGRAM

Utilities and programs interact with the terminal by writing characters to and
reading characters from the terminal device. While the terminal is a physical
device, a program sees the terminal as one or more files. When a session is created,
two files are opened for accessing the terminal - $STDIN and $STDUST. Input
from the terminal is read from $STDIN and output to the terminal is written to

Paper 3226-4 Creating Seamless Packages Through Process Handling

$STDUST.

Both CREATEPROCESS and RUN allow the diversion of data from its normal
terminal-to-program and program-to-terminal paths. The RUN command has
;STDIN= and ;STDLIST= options which allow the user to specify file names to be
used to supply program input ($STDIN) and receive program output ($STDLIST).
The CREATEPROCESS intrinsic uses options 8 and 9 to specify the ;STDIN= and
;STDUST= options.

A special type of file is particularly useful when diverting program input and output.
The special file type is the "message" file or "IPC" (IPC refering to Inter-Process
Communication) file. Message files have the unique characteristic of operating like
a queue or pipe. The data written to a mesage file is read from the message file in
the same order as it was written (FIFO or First In, First Out). Message files can
also buffer program input and output, depending upon how the message files are
built. Thus, two or more programs can be linked together with message files
providing loose or tight coupling between the programs and data flowing through
the message files in real-time.

Some programs can accept input and display meaningful output when their $STDIN
and $STDLIST are diverted, and others cannot. Generally, programs which use
screen forms (such as V/PLUS applications) cannot easily have their $STDIN and
$STDUST diverted. The reason for this is their block mode input/output as
opposed to normal character mode input/output.

In character mode characters are transmitted by the terminal to the HP 3000 as the
keys are struck on the keyboard. In block mode the keystrokes cause data to be
entered on a form. When the user presses the "ENTER" key, a handshake between
the HP 3000 and the terminal begins which ultimately results in entire fields of data
being transmitted from the form on the screen to the HP 3000 as one block.
Typically, the terminal inserts various special characters between data fields and
performs various data editing functions before sending the block of data.

Additionally, most forms management packages evaluate the environment they are
running in when initializing themselves. For example, the FRELATE intrinsic is
called to see if $STDIN and $STDLIST are related (as they would be with a
terminal, but would not be when message files are used). Also, forms management
packages evaluate terminal configuration settings, terminal model identification,
character echo, and much more. All of this complicates the task of attempting to
divert $STDIN and $STDLIST making block mode applications poor choices for
package integration.

Programs which use character mode are a different story. The input/output
operations performed by character mode programs are less complex than those of
block mode programs and it is often rather easy to divert the $STDIN and

Creating Seamless Packages Through Process Handling Paper 3226-5

$STDLIST of character mode programs.

By using the CREATEPROCESS options 8 and 9, the $STDIN and $STDUST of
programs can be redirected to make use of message files. If those message files are
shared with the father process, the father can filter data going to the son process, as
well as filter data returned from the son process. Some uses of this capability might
be to enhance the functionality of a program, simplify the syntax of its commands,
edit or summarize the output of the program, restrict access to certain commands,
or perhaps replace the command interface with menu selection.

A Filter Program
A character mode program such as SPOOKS is a relatively easy program to deal
with. SPOOK does not perform fancy checks of the terminal environment and has a
single prompt. Output formats are few, and while error messages don't have a lot of
detail, they do give the location of the error within the error message, as in
"*ERROR=20 BYTE=O* INVALID COMMAND NAME".

Consider the following enhancement request. t~ccounting department personnel
should NOT be permitted access to SPOOK's Append, Copy, Input, or Output
commands. Also, they must be prevented from Texting in spool files with file names
other than $STDLIST." The initial response to this request might be "not possible.
SPOOK is an HP utility and we can't modify it." But wait. The accounting
department doesn't have direct access to MPE (they have one of those security
programs they purchased from a third-party vendor), so they don't have access to
the :RUN command. What if the commands going to SPOOK and the output
received back from SPOOK were filtered and edited by a program? Couldn't that
program impose the requested security?

To satisfy the request the security package will run a "filter" program which accepts
commands from the user, checks for restricted commands, passes unrestricted
commands on to SPOOK, and displays SPOOK's output on the terminal.

SPOOK permits only one command per line. This simplifies the programming of
the "filter" program as commands must begin with the first non-blank character of
each input line.

The prompt SPOOK uses is a two character string consisting of a greater-than
symbol followed by a blank. Also, prompt string is always written with carriage
control 208 (%320) which specifies "no carriage return, no line feed". Therefore,
the prompt string can be recognized as an output record containing a character with
the decimal value 208 followed by a greater-than character followed by a blank
character.

SPOOK reads 72 characters at each command prompt, so the filter program should

Paper 3226-6 Creating Seamless Packages Through Process Handling

also read 72 characters.

So, to perform the function of the first half of the request, the filter program can be
fairly simple. To demonstrate the logic required, a form of pseudo-code will be
used. Note that "<CR>" indicates a "carriage return" character, "@" as a variable
prefIX means "use the address of', and "1--" preceeds a comment. The names of
MPE intrinsics are in ALL CAPS.

Label Start
!--Declarations
Integer Error, ParmNo, ReadLen, CCTl, Commandlen,

ShowCmdLen, BlankPosition;
DoubleInteger ProcStatus;
Log1calFlag STDlIST'Found;
String To, From, UserCommand, SpookOutput, ShowCommand;

l--Subroutines
Subroutine Display'Thru'Prompt;

loop;
Readlen:=FREAD (FromSpook, SpookOutput, -132);
If ConditionCode <> CCE then Return;
CCTl:=SpookOutput(l,I);
Print SpookOutput(2,Readlen) using CCTl;
If SpookOutput = (208,"> ") then Return;

EndLoop;
EndSubroutine;

Subroutine Read/Command;
loop;

Commandlen:=FREAD(StdlnX, UserCommand, -72);
Deblank UserCommand; l--Remove leading blanks
If UserCommand = {"A","C","I","O"} then

Print "Restricted Command.";
Else

FWRITE (ToSpook, UserComrnand, -Commandlen, 0);
EndIf

Endloop;
EndSubroutine;

!--Main Code
COMMAND ["Purge PipeTo"<CR>, Error, ParmNo];
COMMAND ["Purge PipeFrom"<CR>, Error, ParmNo];
COMMAND ["Build PipeTo;Msg;Rec=-72,3,V,ASCII;Disc=I,I,I"<CR>,

Error, ParmNo];
COMMAND ["Build PipeFrom;Msg;Reca -132,10,V,ASCII;CCTL;Discm l,I,I"

<CR>, Error, ParmNo];
To:p"PipeTo"<CR>;
From:="PipeFrom"<CR>;
CREATEPROCESS [Error, PIN, "Spooks.Pub.Sys", Items a (3,8,9,0),

ItemValues m (I,@To,@From)];
If Error then

Print "Unable to create SPOOKS due to CREATEPROCESS error
",Error;

TERMINATE;
EndIf

Creating Seamless Packages Through Process Handling Paper 3226-7

ACTIVATE [PIN];
ToSpook:;FOPEN [To, %30107, %1302];
FromSpook:gFOPEN [From, %30507, %1300];
StdInX:;FOPEN [, %154, %0];
StdList:;FOPEN [, %514, %2];

Loop:
ProcStatus:;GETPROCINFO [PIN]; I--Make sure SPOOK is still alive

If ConditionCode <> CCE then TERMINATE;
Display'Thru'Prompt;
ProcStatus:;GETPROCINFO [PIN]; I--Make sure SPOOK is still alive

If ConditionCode <> CCE then TERMINATE;
Read'Command;

EndLoop;

What about the second half of the request (only allow the "texting" of spool files
named "$STDUST")? This part of the request is simply an enhancement of the
preceeding example. When the user enters a "T" command, the command is first
sent to SPOOK as a "SHOW" command. The output of the "SHOW" command
will contain the name of the file. As each line of the "SHOW" command output is
received, it is checked for the file name "$STDUST". Only if "$STDUST" is found
is the "TEXT" command passed through to SPOOK. Below are the changed blocks
of pseudo code. Note that the subroutine "Search'For'STDLIST" has been added
and the subroutine "Read'Command" has been modified.

Subroutine Search'For'STDLIST;
STDLIST'Found:=False;
Loop;

ReadLen:;FREAD (FromSpook, SpookOutput, -132);
If ConditionCode <> CCE then Return;
If SpookOutput(lS,25) a "$STDLIST" then

STDLIST'Found:;True;
EndIf
If SpookOutput = (20S,"> ") then Return;
CCTL:=SpookOutput(l,l);
Print SpookOutput(2,ReadLen) using CCTL;

EndLoop;
EndSubroutine;

Subroutine Read'Command;
Loop;

CommandLen:gFREAD(StdInX, UserCommand, -72);
Deblank UserCommand; I--Remove leading blanks
If UserCommand = { ItAIt ,IIC",IIII,"0'1} then

Print "Restricted Command.";
Else

If UserCommand ::I "T tl then
BlankPosition:=Position of II II in UserCommand;
ShowCommand:=

liS "+UserCommand(BlankPosition+1,CommandLen);
ShowCmdLen:-Length(ShowCommand);
FWRITE [ToSpook, ShowCommand, -ShowCmdLen, 0);
Search'For'STDLIST;
If STDLIST'Found then

Paper 3226-8 Creating Seamless Packages Through Process Handling

FWRITE (ToSpook, UserCommand, -CommandLen, 0);
Else

Print "Restriced Spool File.";
EndIf;

Else
FWRITE (ToSpook, UserCommand, -CommandLen, 0);

EndIf;
EndIf;

EndLoop;
EndSubroutine;

The above listings meet the requirements of the program request and can be coded
in most programming languages (COBO~ C, PASCAL, SPL, etc.).

Beyond Just Reads And Writes
SPOOK does not perform checks to find out the characteristics of the environment
in which it is being run. Many other programs do, however, and as a result they can
be more difficult to incorporate into a process handling environment. Below are
some questions which help determine the difficulty of the interface to be built and
the approach to be taken. If the questions and answers seem to make constructing
an interface difficult or impossible, just be patient as there is an approach which
handles most if not all of the problems which come up.

• What does the program's prompt look like?
In order to determine when to request input from the terminal user, some data from
the son program must be used as the trigger which tells the father process "the son
program wants input". In the earlier SPOOK example the trigger was the prompt
string. Fortunately, there was only one prompt string to search for. Unfortunately,
most other programs use multiple prompts.

II Is the same prompt used throughout the program?
EDITOR is an example of a program with multiple (and changing) prompts. The
normal EDITOR prompt is "f'. However, the ADD command prompts with a ten
character field containing blanks, a line number, and more blanks. The important
thing is to know the types of prompts used and if they are not constant, what pattern
they follow.

• Are all terminal inputs preceeded by a prompt?
Note that EDITOR's MODIFY command prompts by starting a null length line.
The preceeding print line (which is really the prompt) is not distinguishable from
any other print line. Thus, what can be done about the MODIFY command?

• How many characters of input does the program expect?
Without the program source code it may seem difficult to determine the number of
characters the program expects. One easy way is to simply sit down with the
program and at its prompt enter as many characters as possible, counting them up

Creating Seamless Packages Through Process Handling Paper 3226-9

as they are entered. When the number of characters the program expects has been
reached, the program ends the input operation and the program continues.

• Does the number of characters to be read from the terminal change depending
upon previous commands or the type of input being requested?

Once again, entering characters until the program says "no more" may be the
easiest way to find out.

• Is the terminal read supposed to be timed?
Timed terminal reads are often used when .passwords are to be entered or when a
database transaction require input while the database is locked. In the case of the
database transaction, the timing of the terminal read prevents the user from getting
up and walking away from the terminal and causing all users to be locked out of the
database for an extended period of time. Some programs display a "timeout"
message if there is no response in the designated time period. In such cases,
manually keep track of the elapsed time between the prompt and the "timeout"
message.

• Were FCONTROL, FSETMODE, or FDEVICECONTROL options set to
change the way terminal input/output takes place (echo otT for database
passwords, for example)?

FCONTROL and FDEVICECONTROL each have dozens of options which the
application designer can use. Many of these options have significant impact on how
the application interacts with the terminal and the user. If the effects of
FCONTROL, FSETMODE, and FDEVICECONTROL are ignored, the
application may fail to operate. Unfortunately, these intrinsics do not send any
information to $STDLIST so there is no way of capturing information about
FCONTROL, FSETMODE, or FDEVICECONTROL calls in redirected
$STDLISTs.

• Is FRELATE calIed to determine if the program's STDIN and STDLIST form
an interactive, duplicative pair?

Programs such as EDITOR use PRELATE to determine if they are being run
interactively or in batch. When run from a terminal, FRELATE returns to the
program status information which is interpreted as "this program is being run
interactively." When run from a job or with $STDIN and/or $STDLIST redirected,
the status information returned is different and is interpreted by the program as
"this program is being run in batch." This is important as many programs terminate
after the first error when run in batch, but continue to accept and process
commands when run interactively.

• Does the program use a CONTROL-Y trap?
EDITOR and many other programs use the subsystem break (CONTROL-Y) as a
way of allowing the user to suspend or terminate command processing. A typical
application of CONTROL-Y is to terminate a listing, as when the user enters

Paper 3226-10 Creating Seamless Packages Through Process Handling

"L 1/10000" instead of "L 1/1000". Without the CONTROL-Y trap the user would
have to sit and wait while unwanted data is displayed on the terminal screen. With
CONTROL-Y the user can stop the display at any time. One side effect of having
multiple processes executing concurrently is that only one CONTROL-Y can be
active at a time. If two programs which use CONTROL-Yare executing within the
same session, only one program (the program which most recently set the
CONTROL-Y trap) will have the CONTROL-Y feature. The other program will
ignore any presses of CONTROL-V. What can be done with the other programs
which require CONTROL-V?

Intrinsic Call Interception (hooking)
While it may seem that the above problems are insurmountable, there is a way of
obtaining and passing the required information from program to program. The
solution involves intercepting the calls a program makes to selected MPE intrinsics.

~. Just as the intrinsics interpret what to do by examining the parameter values they
were called with, procedures which intercept the calls can determin what functions
the intrinsics called are to perform. The methodology of intercepting calls to
intrinsics is not new - it has been around since the late 70's or early 80's. To fmd out
more about intercepting intrinsic calls, please look for articles and papers on
"hooking programs." Papers on hooking programs can be found in most recent
conference "Proceedings."

Intercepting intrinsic calls is useful as it provides a data collection capability. Once
collected, the problem becomes one of how to transmit the data to other processes.
Standard program output is sent to $STDLIST. Since the son process has its
$STDIN and $STDLIST diverted to message files, with another process (the father
process) at the other end of the message files, perhaps the son process's $STDIN
and $STDUST may be used for communicating the information collected from the
intrinsic calls.

By using a message file with carriage control (CCfL), not only is it possible to
determine the carriage control necessary for the proper display of program output,
but it is also possible to transmit intrinsic parameters. The method used involves
the use of unused carriage control values. When passing carriage control
information through a message file, there are 256 possible carriage control codes (a
table of valid carriage control can be found in the "MPE Intrinsics Reference
Manual" discussion of the FWRITE intrinsic). With the exception of carriage
control values zero and one, most of the low-value codes are not used. Since
relatively few intrinsics need be intercepted, each intrinsic can be assigned to an
unused carriage control value. The code which intercepts the call to a particular
intrinsic communicates the intercepted data by writing a record to the program's
$STDUST specifying the values of the intercepted parameters as the data portion
of the record, and a carriage control value specifying the intrinsic call intercepted.

Creating Seamless Packages Through Process Handling Paper 3226-11

The father process then examines each record it reads from the message fIle to
determine if the record read contains one of the special carriage control values that
are being used to transmit intrinsic information. If an "intrinsic data" record is
found, the father process can then take whatever action is specified (turn echo off,
read 80 characters from the terminal, etc.).

Some of the data obtained from the intrinsic calls may be needed when calls are
made to other intrinsics. As an example, the FREAD intrinsic can be used to read
from a disc file, a tape file, the terminal, etc. To determine whether the file being
read from is supposed to be the terminal (in which case the father process must
supply the data) or from some other source (in which the file can be read directly),
the parameters passed to FOPEN must be evaluated (FOPTIONS, FILENAME).
Two methods are easy to implement - store FOPEN information in the global area
of the process's stack or pass the FOPEN information to the father process for safe
keeping. The fust method requires restructuring the program file but is fast. The
second method involves sending data between the two processes for every FOPEN
or FREAD and is slow. Again, please see previous conference PROCEEDINGS
for any of a number of articles on hooking and making structural changes to
program files. In almost all cases it is preferable to save information obtained from
FOPEN calls in the global area of the program's stack.

Now that there appears to be a method of passing intrinsic call information between
the processes, some of the previously noted interfacing problems have solutions.
Below is a second look at the interfacing problems.

• What does the program's prompt look like?
• Is the same prompt used throughout the program?
• Are all terminal inputs preceeded by a prompt?
• How many characters of input does the program expect?
• Does the number of characters to be read from the terminal change depending

upon previous commands or the type of input being requested?
The READ, READX, and FREAD intrinsics can accept input from the terminal.
With calls to those intrinsics intercepted and information about the calls (number of
characters to read) passed back to the father process through special "print" records
containing unusual carriage control values, it no-longer becomes necessary to know
what the prompt lines look like, or how many types of prompts there are. If
multiple processes are being managed by the father process (SPOOK, EDITOR,
and LISTDIR5 for example), the father process can simply save the last print record
received from each of the processes as the prompt strings. Thus, if the user is
presently interacting with EDITOR and is in ADD mode and decides to issue a
SPOOK command, the father process can simply redisplay the last print line
received from EDITOR (the line number prompt) to reprompt the user for the next
EDITOR line.

• Is the terminal read supposed to be timed?

Paper 3226-12 Creating Seamless Packages Through Process Handling

Timed reads are enabled through the FCONTROL intrinsic. If calls to
FCONTROL are intercepted and those pertaining to the terminal are passed on to
the father process, then the father process can use the passed data to set up the
timed read.

• Were FCONTROL, FSETMODE, or FDEVICECONTROL options set to
change the way terminal input/output takes place (echo otT for database
passwords, for example)?

Just as in the case of the timed reads, calls to FCONTRO~ FSETMODE, and
FDEVICECONTROL can be handled by the father process.

• Is FRELATE called to determine if the program's STDIN and STDLIST form
an interactive, duplicative pair?

Since the object is to make the application think it is running interactively, the calls
to FRELATE can be simple diverted with the diverting procedure returning a value
which indicates interactive access.

• Does the program use a CONTROL-Y trap?
While only one process can make use of CONTROL-Y at a time, CONTROL-Y
can effectively be shared if it is re-enabled by the son process after each terminal
input completes. For example, if both EDITOR and SPOOK are being run from a
common father process, there would normally be a conflict in the use of the
CONTROL-Y. However, if one of the processes is waiting on input and the other is
running, a solution to the CONTROL-Y contlict can be found by having the
procedures which intercept the calls to READ, READX, and FREAD re-enable
CONTROL-Y before exiting.

To illustrate what an intrinsic interception procedures might look like, two are
printed below as samples.

Copyright 1987 by Innovative Software Solutions, Inc.
Permission to use provided credit is given is hereby granted.
All other rights reserved.

Intrinsic
Name

Replacement CCTl Data Values Global
Procedure Name Code To Father Accessed?

READ >-------> ISSO•........ 2 len
READX >------> ISSRO•..•.. 3 len
FREAD >------> ISSR1 4 len
FOPEN >------> ISSOP•...............
FCONTROl >---> ISSFCTlO .•....... 5 CtlCode,Param
FSETMODE >---> ISSFSMDO 6 ModeFlags
XCONTRAP >---> ISSCTRlV•..•.....••..••....•
FRElATE >----> ISSFRElT ..•..•••...•.•.•..•.•....•

Intrinsic Interception Procedure ISSRI
(Replacement for the FRead Intrinsic)

Creating Seamless Packages Through Process Handling

Read
Read
Read
Read/Write
Read
Read
Read/Write
Read

Paper 3226-13

Integer Procedure
Value
Integer
Logical Array

Begin
Logical
Byte Pointer
Logical
Integer

. Integer
Logical Array
Byte Array

Intrinsic

ISSRI (FileNum, Target, TCount);
FileNum, TCount;
FileNum, TCount;
Target;

Status'Rtn=Q-l;
Global'Data;
FOpts, SetCtrlY;
CtrlYPLabel, OldPLabel;
LenRead, Len;
LBuf(O:19);
BBuf(*)=LBuf;

ASCII FRead, Print, XConTrap;

SetCtrlY:=FALSE;

« Find the FOptions saved by the FOPEN intercept »
« procedure. »
@Global'Data:=O;
While Global'Data <> "KJnavEnosillAylimEKC Il do

@Global'Data:=@Global'Data(256);
@Global'Oata:=@Global'Data(22);
FOpts:=Logical(G1oba1'Data(FileNum*2»*256+

Logical (G1oba1'Data(FileNum*2+1»;

If FOpts.(lO:3) 1:1 4 or
FOpts.(lO:3) = 5 then begin
« A $STDIN or $STDINX file »
« Tell the father process to perform a read of TCount »
LBuf:=Logical(TCount);
« CCTL 4 tells father source is FREAD »
Print (LBuf, -2, 4);
SetCtrlY:=TRUE;

End;

« Read the data sent from the father process »
LenRead:=FRead (FileNum, Target, TCount);
Push (Status);
Status'Rtn.(6:2):=TOS.(6:2);
ISSRl:IIILenRead;

If SetCtr1Y then begin
« Reset the CONTROL-Y trap (if any) »
CtrlYPLabel:=Integer(Logical(G1oba1'Data)*256+

Log1ca1(G1obal'Data(1»);
If CtrlYPLabel <> 0 then begin

XConTrap (CtrlYPLabe1, OldPLabel);
End;

End;
End; «ISSRl»

Intrinsic Interception Procedure ISSCTRLY
(Replacement for the XConTrap Intrinsic)

Procedure ISSCTRI.Y (PLabel, OldPLabel);
Value PLabel;

Paper 3226-14 Creating Seamless Packages Through Process Handling

Integer
Begin

Logical
Byte Pointer
Logical
Logical Array
Byte Array
Integer

Intrinsic

PLabel,OldPLabel;

Status'Rtn;:;:Q-l;
Global'Data;
FOpts;
LBuf(O:19);
BBuf(*)=LBuf;
Len;

ASCII, Print, XConTrap;

« Find the File Information obtained from FOPEN »
@Global'Data:=O;
While Global'Data <> "KJnavEnosillAylimEKC" do

@Global'Data:=@Global'Data(256);
@Global'Data:=@Global'Data(22);

« Store the CONTROL-Y PLABEL in the GLOBAL part of the stack
»

Global'Data:=PLabel.(O:8);
Global'Data(1}:=PLabel.(8:8);
XConTrap (PLabel, OldPLabel);
Push (Status);
Status'Rtn.(6:2):=TOS.{6:2};

End; «ISSCTRLY»

Handling Multiple Son Processes
Once a single son process has been handled successfully, handling multiple son
processes is not terribly difficult. The key to handling multiple processes is to
decide how and when each process is to execute and what information about the
terminal environment must be saved and restored as the father process switches
between son processes.

As an example, assume that a new programming environment is desired (a
programming environment was chosen as it is common to most shops which other
applications might not be). At present the programmers waste a lot of time texting
and re-texting their source files and entering and exiting from various utilities. The
goal is to make the programmers more productive by allowing them to switch back
and forth between utilities lightning fast and without having to re-text their source
files or spool files. The programmers spend most of their day working with
SUPERED (a third-party program editor), SPOOKS, MPE commands, the COBOL
compiler, SEGMENTER, and QUERY. The solution is to keep as many of the
utilities ready to run as possible. All the utilities are individual programs and can be
process handled with the exception of the MPE commands. Assume for a moment
that someone has a program which allows most MPE commands (including PREP,
RUN, SEGMENTER) which may be incorporated into the package. Thus, the
application become one of process handling six different programs, keeping the
programs suspended but ready to run when fed some input.

SUPERED, SPOOK5, the MPE command program, SEGDVR (the SEGMENTER
program), and QUERY can all be run concurrently. The COBOL compiler can be

Creating Seamless Packages Through Process Handling Paper 3226-15

Prep with MAXDATA=8192 or greater *

Prep with MAXDATA=8192 or greater *

FNAME STATE OWNER
LOGLIST READY JOHN.RD
MYLIST READY JOHN.RD

invoked when needed. To switch from one utility to another the user enters the
name of the utility preceeded by a "$", as in "$SUPERED" or "$SPOOK".
SUPERED and QUERY turn character echoing off and change various input
options through calls to the FCONTROL and FSETMODE intrinsics. Some of
these settings may not be fully compatible with the operation of the other utilities or
may confuse the user when used out of context, so it is wise to track which
FCONTROL and FSETMODE options have been set within which programs. This
can easily be done by keeping a set of variables relating to terminal echo,
FSETMODE line feed mode, etc. for each of the programs being process handled.
Also, variables will be needed to hold the most recent prompt string (last print
record received prior to a request for terminal input), the number of characters
requested from the terminal, and any time limit to be placed upon the terminal
input. If desired, the father process could even remind the programmer of the
utility being switched to when a process switch occurs. Below is an example of how
what the terminal screen of such a programming environment might look (user
input is underlined).

SUPEREDIT>m 1
1 $Control USLInit, List, Source

Changes:a, Verbs
1 $Control USLInit, List, Source, Verbs

Changes:_
SUPEREDIT>LL

7 *
SUPEREDIT>~

Saved.
SUPEREDIT>~

:COBOL MySource,MyUSL,*MyList
... Cobol compiler messages ...
:Sspook
> ~

#FILE #JOB
#043 #S8
#045 #S8
> t 45
> f "***"
> Ssegmenter
-usl myusl
-prepare myrunimaxdata g 8192ifpmap
Sedit
SUPEREDIT>~

7 *
SUPEREDIT>

Again, the advantage of such a system is that all the programs needed by the
programmer are instantly available and the programmer can switch between utilities
without having to wait through the re-initialization of the utilities or the re-texting
of files. When the utility is re-entered, the utility resumes execution right were it
left off - in the case of an editor, at the same prompt or line at which it was left,

Remember, handling multiple utilities at once can be difficult and may seem

Paper 3226-16 Creating Seamless Packages Through Process Handling

impossible at first. To simplify the task and make it much easier to tackle, it is best
to begin with attempting to handle only one utility. The lessons learned from the
experience gained save much time and effort when designing the interfaces for
other utilities.

Summary
Process handling allows the execution of one or more programs from within another
program and can be used in many ways.

A program with an awkward interface (even if the source code is not available) can
receive a face lift through process handling. Prompts or series of prompts can be
replaced with new prompts or even menus.

Time and resources can be saved by process handling multiple concurrent utilities
or programs. Switching between programs becomes lightning-fast. Also, the CPU
time spend entering and exiting from programs and re-texting files or re-opening
databases is saved.

New applications can be created by combining readily available utilities. As an
example, QUERY, SORT, and EDITOR can be process handled such that the user
never sees the underlying QUERY, SORT, and EDITOR - only the merged result
of their execution (imagine creating your own user-specific 4GL tools without the
4GL price tag).

As familiarity with process handling and input/output redirection builds; the
posibilities of new applications for process handling grow. Try process handling. It
isn't as hard as it may seem, and is very powerful.

Technical Note - Calling CREATEPROCESS/ACTIVATE

Call CREATEPROCESS specifying items 3,8, and 9. Bits 10 and 11 of the word
passed for item 3 should be set according to the SL file to be used when the
program is loaded by MPE.

Item 3: (15:1):=1 activate father upon termination
(10:2):=x x=O for LIB=S

x=1 for UB=P
x=2 for LIB=G

Item 8: a pointer to (the address of) a string containing the name
of the file to be used instead of $STDIN.

Item 9: a pointer to (the address of) a string containing the name

Creating Seamless Packages Through Process Handling Paper 3226-17

ofthe file to be used instead· of $STDLIST.

Remember to call ACI1VATE with the ·"susp" parameter zero or omitted.

Paper 3226-18 Creating Seamless Packages Through Process Handling

TITLE:

AUTHOR:

Automate Testing To Improve Software Quality

David R. Mendoza

President

Software Development Resources
845 Berkeley Way

Vista, CA 92084

(619) 726-9753

FINAL PAPER WAS NOT AVAILABLE AT TIME OF PRINTING.

PAPERNO. 3227

TITLE:

AUTHOR:

Information Management in the 1990's

Peter Ney

DCE Information Management Consultancy

Prinsengracht 747 - 751

1017 JX Amsterdam

NETHERLANDS Phone-+31 20-264400

FINAL PAPER WAS NOT AVAILABLE AT TIME OF PRINTING.

PAPERNO. 3228

Paper I 3229

Client Server System Design

steve Palmer
steve Palmer & Associates

3028 Driscoll Drive
San Diego, CA 92117

619/274-3601

What is Client/server System Design?

Client/Server is a system design methodology that integrates
multi vendor hardware and software solutions. The multi
vendor environments are transparent to the user. Suddenly
you have a PC that can store 32 GBS of data! Data
management and transaction functions are managed
independently from user interface and application functions.

A typical Client/Server system design places an HP3000 as
the server. This HOST machine has the storage and power to
process transactions about data. It can store data in IMAGE
data bases, KSAM file structures, MPE files of many kinds
i.e., sequential, RIO, message, circular files. It can
transfer data to and from disk storage ·at speeds up to
19,200 bits per second.

The typical Server is a PC. Either Macintosh or IBM
platforms work well. They are inexpensive and they have
great looking Graphical User Interfaces. A reasonable
amount of local data can be maintained for data validation
and quick lookup.

Client/Server System Design - 3229- 1

Some Examples

This year, we wrote a Sales Contact and Order Entry system
that allows sales people in the field to use their laptop
PC's on the road. They had access to an abbreviated
Customer Master List, a detail customer Master for customers
they will meet with this week, and a Price List (good for
the next 30 days).

Their laptops have programs that allow them to lookup data
in each file, to print an order, to maintain information
about their contacts, and common everyday PC programs like
LOTUS/1-2-3 and MicroSoft Word.

At the end of each day, they call into the central HP3000
and synchronize their data files. Only the changed
information is transferred.

This year, we wrote a Document Retrieval system. The
customer was comfortable with the Graphical User Interface
of the PC environment and wanted to use that look and feel
for Document Retrieval. Some of their documents are
LOTUS/1-2-3 worksheets and WordPerfect 5.0 documents. All
the maintenance happens at the PC level; but we centralize
data storage, which allows multiple users to access the
information simUltaneously. Client/Server was the perfect
solution.

Also this year, we wrote an Order Entry System for a
customer that wanted to off load some work from their HP3000
computer system. The system was too bUSy handling VIEW/JOOO
screens. By allowing a PC to process the screen data
(screen painting, data validation, and data normalization)
we relieved the HP3000 of about half its work. By the way,
this user eliminated the need to upgrade to a faster HPJOOO
and saved $100,000.

Why design for Client/Server?

According to the Business Research Group of Cahner's
Publishing Company in Newton, Mass., greater business
productivity, not lower cost, is the main reason companies
are quickly adopting Client/Server technology.

By taking advantage of a modern Graphical User Interface
that has widgets like radio buttons, slider bars, mouse
events, color, and sound we make a user more effective. The
training issue is reduced, too. Imagine training your users
in this familiar PC environment once. You can change the
Server to anything you want, and the user part of an
application remains the same.

Client/Server System Design - 3229- 2

You can attach and detach whenever it is convenient. Your
system design must incorporate routines to synchronize the
data pools on the Client and Server. We will talk about this
later.

Now you can access HP/3000 data with programs like LOTUS/l
2-3, WordPerfect and dBASE. This isn't anything new; we
have had this capability for a few years in copying down a
file and importing it into PC based programs. But, imagine
the ability of viewing HP/3000 data interactively and
dynamically. Would that be of interest to you?

Client/Server System Components

The Server hardware component of a Client/Server approach
could be an HP3000 computer system (or anything else that
supports an interactive link with the Clients). The main
task of this system is to maintain data files and to read
and write data in files. Therefore, fast disk access time
is advantageous. A high speed CPU is less important since
most of an application's thinking happens in the Client
hardware. You will probably need 1 terminal port for each
Client. Clients may be hardwired or connected via modem.

The Client hardware could be a personal computer such as an
IBM PC or Macintosh; it could also be a Unix workstation.
It is important that this system have graphics capability
with a minimum amount of disk (either diskette or hard disk)
to store the operating system, the application screen
programs and some validation tables in files, if they are
needed by the application. It is also important that this
system possess communications capability compatable with the
Server such as asynchronous on the HP3000. It should have
ample main memory to store it's operating system,
application program plus the process-to-process linkage
software needed at run time.

Server software is a program that can monitor one or more
terminal ports. It's main task is to send and receive
messages (or transactions) that are esentially requests for
data service (read, write, update, delete, find, etc.).
This programmable Server is a critical feature that allows
data management and transaction functions to be managed
separately from user interface and application functions.
stored procedures and triggers allows for unscheduled
transactions to be properly processed.

Client software is a user application program. We have
found that the best use of Client software is in graphically
representing data on a screen and allowing a user to use
special devices like a mouse, bar code readers, and hand
readers. These programs must send and receive messages that

Client/Server System Design - 3229- 3

result in data being read, written, updated, deleted or
found on the Server.

Process-to-process linkage software is required to
synchronize the Server and Client. It provides the data
communications link for interprocess communications. And,
it should invisibly handle the transport of data between
Client and Server.

In order for Client/Server to function, a session must be
active on the Server. This is establish by a conventional
:HELLO command. If you are running a u~IX based Client, you
must also be logged onto that system. Personal computers
generally do not require a log on unless you are running on
a network.

What do we use for software tools?

On the Server, we use PPL (Process-to-Process Link from
Walker, Richer & Quinn). This product contains the linkage
software described above. It takes the form of 2-programs
that reside on the HP3000 (or DEC) Server, PPLTOOL and
PPLHOST and 2-programs that reside on the Client (PPLPC.EXE
and R1LINK.EXE).

PPLHOST is the communication's server for PPL and PPLTOOL is
the application's server. PPLPC.EXE is the application
server on the Client system. This is a small (about 4K)
terminate and stay resident program that identifies where
the communications driver, PPLCOM.SYS, is within the
Client's main memory. It must be running whenever a PPL
application is running. R1LINK.EXE is a limited version of
Reflections I that allows a user to log onto the Server
system. Advanced capabilities such as Block Mode screen
handling is not present in this program. It is assumed that
screens will be managed by the Client.

On the Client, our application development uses the ncn
programming language from MicroSoft, a set of nCn language
callable routines that manage screens and windows. The
average ncn program that contains a few windows and data
fields that manipUlate 3 or 4 data bases is about 1000 lines
of code and is extremely fast and efficient.

We have also been successful in interfacing MicroSoft COBOL
(Version 4.0) with PPL. This is not a capability that is
built into the WRQ product. We wrote an interface between
COBOL and the PC PPL Library of callable routines.

Client/Server System Design - 3229- 4

Proceea-to-ProceM Link

Cl

How does PPL work?

There are 2 ways you can implement systems with PPL from
Walker, Richer & Quinn. You can use PPLTOOL on the Server
to service calls from the Client, which are essentially
identical with the calls you would make to the MPE intrinsic
library. This is convenient since you don't need to learn
anything new and you do not write any application code for
the HP3000 environment. The disadvantages include bigger
and more complex Client programs, slower execution when
handling large amounts of data. These programs are not
portable to a DEC VAX environment.

A more efficient approach, but also more difficult, is to
make direct PPL calls. Here you write an application
program for both the Client and Server. On the HP3000, your
program interfaces with PPL via an IPC file. Your program
can do preprocessing of the data on the HP3000, then pass
down only the results to the Client. The Client portion is
portable to a VAX environment since design is not dependent
on knowing host database structure.

Here is how the second approach works:

1. The user logs onto the host via Reflection.

2. When PPLPC.EXE is loaded on the Client it writes
the address of the application entry point to the
device driver PPLCOM.SYS. PPLPC.EXE then terminates
and stays resident.

3. When the Client application runs, it opens the
device driver PPLCOM.SYS and reads the address of the

Client/Server System Design - 3229- 5

entry point for PPLPC. EXE. To communicate wi th the
Server, the Client application calls this address.

4. The host application makes a Version check to
verify that PPLPC. EXE is functioning and to get the
version number.

5. The Client application makes an Initialized
connection call to pass the communication's parameters
for the link to PPLPC.EXE. The parameters are passed
through a Refleciton configuration file. This starts
PPLHOST on the Server.

6. The Client application makes an open circuit call,
passing the name of the host application program to
PPLPC •EXE which then sends a message to PPLHOST to
activate the host application as a son process. Two
files are required: (1) messages from PPLHOST to the
application and (2) messages from the application to
PPLHOST.

7 • Data is exchanged using the PPL error-detecting
protocol.

S. When the Client application is ready to send a
message to the host application, it calls PPLPC.EXE
with a Send a message command (either synchronous or
asynchronous is supported).

9. PPLHOST sends an acknowledgement to PPLPC when it
receives a message and writes the message to the IPC
file called SRV2USER.

10. When the host application is ready to send a
message to the Client application, it writes a send a
message record to the IPC file called USER2SRV.
PPLHOST reads the message and sends it to PPLPC •EXE
which then stores the messagein its internal buffer,
and sends an acknowledgement to PPLHOST.

11. When PPLHOST receives the ACK from PPLPC, it
writes an Acknowledgement record to the IPC file
SRV2USER. At this point, PPLHOST and PPLPC.EXE resume
the exchange of control packets while they are not
doing application work.

Appendix A is a ~C" program that illustrates how you might
use npPLTOOLn to call MPE intrinsics or IMAGE data base
intrinsics. This is only one of many subroutines in the
Document Processing System.

Appendix B is a sample PPL program written in the "C"
programming language. It illustrates how direct PPL calls
can be coded.

Client/server System Design - 3229- 6

Attach/Detach Feature

Good Client/Server system design might include an
Attach/Detach feature. The classic need is illustrated in
our Sales System. Since our sales people are in the field
most of the time, it is not possible for them to be
connected to the Server all the time. We decided to give
them enough information locally stored in the Client to run
independently from the Server.

This created one gigantic problem- how to keep the data
synchronized. Our initial approach was to copy the data
bases down to the Clients at night. This worked fine since
there was enough time at night to download.

A better approach is to maintain a change flag in the Server
data bases. This extra field in each record is used to
indicate a N New, M Modified, D Deleted record. Records are
retained for 1 week with a change date. A last download
date and time is kept in each Client. When a data download
is performed, only those changes that occurred since the
last download date and time are transferred from the Server
to the Client. After the transfer, the Client download date
is updated to current date and time. This was a great
improvement over the total transfer method.

When the Client updates a local record, a change date and
time is recorded in that record. When transferring data
from the Client to the Server, all data that has changed
from the last upload date and time is sent to the Server. A
batch process on the Server is run once per day. It's job
it to resolve conflicts between many Clients that are making
changes (even to identical records) in the data base. We
established the rule that when 2 Clients want to change the
same record on the Server, the Client with the most recent
date and time gets recorded and the others get printed on an
exception report.

Client/Server System Design - 3229- 7

Here is the logic of this rule:

Because we use ISAM or KSAM file structures for a good part
of our work, the file structures and retrieval methods are
identical on both the Server and Client. Therefore, it is
easy to write application Client programs that process data
either from the Server or locally in the Client. The
application logic doesn't change much when running in a
detached mode.

Conclusions about Client/Server

Client/Server is a useful design methodology. It can
improve your user's impression of an application by using
Graphical User Interfaces. It ,is easier to train users on a
system where they are familiar. It eliminates the need to
change your application in the future when you need to move
to another Server platform. And it can save you the
necessity of upgrading your HP3000 computer system by off
loading some application's activities to the Client.

Client/Server is not easy to implement. It requires a good
knowledge of both the Server and Client environments.
Programming capability is essential for both machines. On
the HP3000, you must know which intrinsics to use, and when.
On the PC, you must be proffecient in the ncn programming
languages and Graphical User Interfaces.

We think Client/Server is a good strategy. Our customers
like the speed, look and feel of their Client/Server
systems. They like thinking that the server can change and
the user interface stays the same. And, they like saving
money.

Client/Server System Design - 3229- 8

Appendix A

F I L E S • C

File Handling
Document Processing System
Copyright (c) 1991
Steve Palmer & Associates
3028 Driscoll Drive
San Diego, CA 92117

/*
*
*
*
*
*
*
*
*
*
*
*
*
*/

'include <vcstdio.h>
#include nsbp.hn

ALL RIGHTS RESERVED

/* <--- key size here

2]; /* rqd by HP3000 */
55]; /* key #1 */
20]; /* name of org file */
55]; /* key 12 */
2]; /* true/false flag */
2]; /* checked outodify?*/

/* File is INDEX */
COUNT index found;
COUNT index=file_open;
TEXT index_FILE[17]; /*
TEXT index_POS_BLK[128];
TEXT index_key_buf[55];

struct {
char deleteflag
char fldid
char subfile
char zipfilename
char mstrdoc
char available

} index_buf;

file name */

*/

/* index FILE HANDLING FOLLOWS */

COUNT index_open()
{

empty(btmsg, 30);
empty(index_FILE, 16);
strncpy(index_FILE, "index ", 8);

empty(index_buf.deleteflag, 2);
empty (index_buf •fldid, 55) ;
empty(index_buf.zipfilename, 55);
empty(index_buf.subfile, 20);
empty(index_buf.mstrdoc, 2);
empty(index_buf.available, 2);
empty(index_key_buf, 55);

OPENAGAIN:

Client/server System Design - 3229- 9

BUF_LEN = sizeof(index_buf);
BTSTAT= BTRV(B OPEN, index POS BLK, &index_buf,

&BUF_LEN,Index_FILE, 1); -
if (BTSTAT == 12)

{ index_create();
goto OPENAGAIN;

}
if (BTSTAT 1= 0)

(sprintf(buf,nproblem opening %s status = %dn ,
index_FILE, BTSTAT);

do_msg();
}

else
(index_file_open = ISTRUE;

empty(index_buf.deleteflag, 2);
empty(index_buf.fldid, 55);
empty(index_buf.zipfilename, 55);
empty(index_buf.subfile, 20);
empty(index_buf.mstrdoc, 2);
empty(index_buf.available, 2);
empty(index_key_buf, 55);

if(useppl)
(xindex = FOPEN(index_FILE, 7, 229);
if (cond_code 1= CCE)

{sprintf(buf,nproblem opening %s status %dR ,

index_FILE, cond_code);

return(O);
/* end of procedure */

COUNT index_get_equal()
{ empty(index_key_buf, 55);

strncpy(index_key_buf, index_buf.fldid, 55);

BUF_LEN = sizeof(index_buf);
BTSTAT=BTRV(B_GET_EQUAL, index_POS_BLK, &index_buf,

&BUF_LEN,index_key_buf, 0);
if (BTSTAT 1= 0)

(sprintf(buf,nindex get equal- %d",BTSTAT);
index_found = ISFALSE;

}
else

{
index found

} -
ISTRUE;

Client/server System Design - 3229- 10

if(useppl)
{BUF LEN = 0 - BUF LEN;
FREADBYKEY(xindex~ (char*)&index bUf, BUF LEN,

index_key=buf, O)i-
if (cond_code 1= CCE)

(sprintf(buf,nproblem with Index - get equal\nn):
do_msg() :
index found = ISFALSEi

} -

return(O);
/* end of find_equal */

COUNT index_qet_alt_equal()
(empty(index_key_buf, 50):

strncpy(index_key_buf, index_buf.zipfilename, 49):

BUF_LEN = sizeof(index_buf)i
BTSTAT=BTRV(B_GET_EQUAL, index_POS_BLK, &index_buf,

&BUF_LEN,index_key_buf, 1);
if (BTSTAT 1= 0)

(sprintf(buf,nindex qet equal- %dn,BTSTAT);
/* do_msg(); */

indeX_found = ISFALSE;
}

else
{
index found

} - ISTRUEi

if (useppl)
(BUF LEN = ° - BUF LEN;
FFINDBYKEY(xindex~ index_key_buf,

78,trlen(index_key_buf) ,0);

if (cond code 1= CCE)
{sprintf(buf,nproblem getting Alt Indexn);
do_msg() ;
index found ISFALSE;

} -
else

{index found
} -

ISTRUE;

return(O);
/* end of find_equal */

COUNT index_get_first()
(empty(index_key_buf, 55);

strncpy(index_buf.zipfilename, ptr, strlen(ptr»;
BUF_LEN = sizeof(index_buf);

Client/Server System Design - 3229- 11

BTSTAT=BTRV(B GET FIRST, index POS BLK, &index_buf,
&BUF_LEN,index_key=buf~1):

if (BTSTAT != 0)
{

index_found = ISFALSE:
}

else
{
index found
} - ISTRUE:

if(useppl)
(BUF LEN = 0 - BUF LEN:
FFIiDBYKEY(xindex~ index_key_buf, 78, 55, 0):
if (cond_code 1= CCE)

(index found = ISFALSE:
sprintf(buf,nlndex not found- FFINDBYKEY");

}

return(O);
/* end of get first */

COUNT index_get_next()
(BUF_LEN = sizeof(index_buf):

BTSTAT=BTRV(B GET NEXT, index POS BLK, &index_buf,
&BUF_LEN,index_key_buf; 1);

if (BTSTAT != 0)
{ index found = ISFALSE:
} -

else
{
index found ISTRUE:
} -

if(useppl)
(BUF LEN = 0 - BUF LEN:
FREAnC(xindex, index_buf.deleteflag, BUF_LEN):
if (cond_code != CCE)

(sprintf(buf,nproblem with Index File- get nextR);

do_msg() :
index found = ISFALSE;

} -

return(O):
/* end of get next */

COUNT index_get-prev()
(BUF_LEN = sizeof(index_buf):

BTSTAT=BTRV(B GET PREV, index POS BLK, &index bUf,
&BUF_LEN, index..-key_buf; 0.); -

if (BTSTAT != 0)
(sprintf(buf,nBeginning of selectionsn):

Client/Server System Design - 3229- 12

do_msg();
index_found ISFALSE;

}
else

{
index found ISTRUE:
} -

if(useppl)
{BUF LEN = 0 - BUF LEN:
FPOINT(xindex, -i):
if (cond_code != CCE)

(sprintf(buf,nindex File- get priorn):

do_msg():
index found = ISFALSE:

} -
}

return(O):
/* end of get prior */

COUNT index_upd()
BUF_LEN = sizeof(index_buf):
BTSTAT=BTRV(B_UPDATE, index_poS_BLK, 'index_buf, &BUF_LEN,

index_key_buf, 0);
if (BTSTAT != 0)

(sprintf(buf,nUpdate Problem- index File %dn,BTSTAT);
index found = ISFALSE:

} -
else

{
index found ISTRUE:
} -

if(useppl)
(BUF LEN = 0 - BUF LEN;
FUPDATE(xindex, index_buf.deleteflag, BUF_LEN);
if (cond_code 1= CCE)

{sprintf(buf,nHP3000 Index File- UpdateD);
do_msq():
index found = ISFALSEi

} -

/* end of update */

COUNT index_ins()
(empty(index_key_buf, 55):

BUF_LEN = sizeof(index_buf);
strncpy(index_key_buf, index_buf.fldid, 55):

BTSTAT=BTRV(B_INSERT, index_POS_BLK, &index_buf,
&BUF_LEN,index_key_buf, 0):

if (BTSTAT 1= 0)
{ sprintf(buf,nInsert Problem- index File %dn,BTSTAT):

Client/Server System Design - 3229- 13

do_msg() ;
index_found ISFALSE;

}
else

{
index found ISTRUE;
} -

if(useppl)
(BUF LEN = 0 - BUF LEN;
FLOCK(xindex, 1);
FWRITE(xindex, index_buf.deleteflag, BUF_LEN, O)i
if (cond_code 1= CCE)

(sprintf(buf,nindex File- Insert now");
index found = ISFALSE;

} -
FUNLOCK(xindex);

}

/* end of insert */

COUNT index_dele)
(empty(index_key_buf, 55);

strncpy(index_key_buf, index_buf.zipfilename, 55):
BUF_LEN = sizeof(index_buf);
BTSTAT=BTRV(B_DELETE, index_POS_BLK, 'index_buf, 'BUF_LEN,

index_key_buf, I):
if (BTSTAT 1= 0)

{ sprintf(buf,"Delete Problem- index File tdn,BTSTAT);
do_msg() ;
index found ISFALSE;

} -
else

{index found ISTRUE;
} -

if(useppl)
(BUF LEN = 0 - BUF LEN;
FLOCK(xindex, 1);
FREMOVE(xindex);
if (cond_code 1= CCE)

(sprintf(buf,"Problem with Index File- Delete");
do_msg() ;
index found = ISFALSE;

} -
FUNLOCK(xindex):

}

/* end of delete */

COUNT index_create()
(empty(btmsg, 30):

empty(index_FILE, 16);

Client/Server System Design - 3229- 14

strncpy(index_FILE, "index ", 8):

FILE_BUF.REC_LEN

FILE BUF.PAGE SIZ
FILE-BUF.FILE-FLAG
FILE- BUF •NDX CNT

/* key #1 */
FILE_BUF.KEY_BUF[O].KEY_POS
FILE_BUF.KEY_BUF[O].KEY_LEN
FILE_BUF.KEY_BUF[O].KEY_FLAG

MODI DUPI B_STR_TYPEi
FILE_BUF.KEY_BUF[O].KEY_TYPE

/* key #2 */
FILE_BUF.KEY_BUF[l].KEY_POS
FILE_BUF.KEY_BUF[l].KEY_LEN
FILE_BUF.KEY_BUF[l].KEY_FLAG

MODIDUPIB_STR_TYPEi
FILE_BUF.KEY_BUF[l].KEY_TYPE

sizeof(index_buf)i
1024;
0:
2:

3;
55;

B_STR_TYPEi

78;
55;

= B_STR_TYPE;

BUF_LEN = sizeof(FILE_BUF):
BTSTAT = BTRV(B_CREATE, index_POS_BLK, 'FILE_BUF,

&BUF LEN, index FILE, -1);
if (BTSTAT != 0) T

sprintf(buf,"Problem creating %s status = %d",
index_FILE, BTSTAT);

do msg();
-}

Client/Server System Design - 3229- 15

Copyright 1989 Walker Richer , Quinn.

Compiled with Microsoft C v. 5.1 with lAS IZp switches.
Must link in CALLXSM.OBJ.

/*
*
*
*
*
*
*
*
**1

XSEND.C

Appendix B

- Batch file transfer between PC and HP-3000.

'include <stdlib.h>
'include <stdio.h>

Idefine XSEND

Idefine TRUE 1
Idefine FALSE 0
Idefine byte unsigned char

Idefine SLASH '\x2F' 1* I */
Idefine SEMICOLON '\x3B' 1* *1
Idefine QUIETFLAG '\x5l' 1* Q. */
Idefine CR '\xOD' /* CR *1

Idefine CONNECT CMD OxOl
Idefine SHUT XFER OxOl
Idefine XFER-ABORT Ox04
Idefine USR ABoRT Ox55
Idefine NO XFER Ox4l
Idefine TOHOST OX02
Idefine FROMHOST Ox03
Idefine DISCONN CMD Ox02
Idefine WRITE cMo Ox03
Idefine OPEN CMo OxOS
Idefine INIT-CMD OxOO
Idefine RECV-CMD Ox04
Idefine MASK- OxFF
Idefine IN PROCESS OxFD
Idefine QUEUED OxFF
Idefine BINARY OxOO
Idefine ASCII OxOl
Idefine DELETE_FILE Ox04

'define CONFIG_FILE n\\PPLTOOL\\PPL.CFG"

struct ftpb {
unsigned char PB_REQ; 1* put the command here *1

unsigned char PB_IDi /* returned by init, ids user */
unsigned char PB_HANDLE;I* this will be returned */
unsigned PB_PC_SPEC_LEN;/* length of pc file name *1
char far *PB_PC_SPEC; 1* ptr to ASCII pc file name *1

Client/Server system Design - 3229- 16

buffer length *1
ptr to buffer (for host filec)*1
xfer type (currently ignored) *1
length of file attribute string*1
MPE file attributes *1

*/
*1
*1
*1
*1
*1
*1

unsigned PB BUF LEN; 1*
char far -*PB-BUF; 1*
unsigned PB_XFER_TYPE; 1*
unsigned PB_ATTR_LEN; 1*
char far *PB_ATTRIBUTES;I*
unsigned char PB FLAGS; 1*
unsigned char PB=OVERWRITE; /* overwrite flag
unsigned char PB_COMPRESSil*
unsigned char PB_STAT_CODE; 1* status code returned
unsigned PB_STR_LEN; 1* string length
char far *PB_STRING; 1* ptr to message string
long int PB_UNITS; 1* file size (unsigned chars
long int PB_XFERRED; /* units (chars or records)

xferred */
} ftparm_block;

struct ftpb far *ftfar-ptr =&ftparm_block;

int quiet=FALSE;
char pcfilespec[80], hpfilespeC[80], attributes[80];

lif defined(XSEND)
char unit_message[] = "Characters transferred: ";
char prog_name[] = "XSEND";
int direction = TOHOST;

lelse
char unit_message[] = "Records transferred: ";
char prog_name[] = "XRECElVE";
int direction = FROMHOST;

#endif

/* function prototypes */

extern byte GETXFR();
extern byte CALLXFR(struct ftpb far *);
void evaluate_arquments(int, char *[]);
void initialize-ppl(void);
void send_files(void);
void shutdown(void);

main(int nargs, char *args[])
(

evaluate_arquments(nargs, args);
initialize-ppl();
send_files();
shutdown();
exit(O);

void evaluate_arquments(int nargs, char *args[])
{

int minargs=2, i;

Client/Server System Design - 3229- 17

if (args[l][O] == SLASH && toupper(args[l][l]
==QUIETFLAG) {

minargs = 3;
quiet = TRUE;)

if (nargs < minargs)
if (!quiet)

exit(l);)

if (quiet) strcpy(pcfilespec, args[2]);
else strcpy(pcfilespec, args[l]);

strcpy(hpfilespec,"\O");
if (quiet && nargs == 4) strcpy(hpfilespec,args[3]);
if (!quiet && nargs == 3) strcpy(hpfilespec,args[2]);
if «strncmp(hpfilespec,"\On,l» == 0)

strcpy(hpfilespec,pcfilespec);

strcpy(attributes, "\on);
for (i=O;i<strlen(hpfilespec);i++)

if (hpfilespec[i] == SEMICOLON) {
strcpy(attributes,&hpfilespec[i+1]);
strncpy(hpfilespec[i], "\0",1);
break; }

void initialize-ppl(void)
{
byte cond_code=O;

if (!quiet) printf("\nInitializing Transfer ••• \nn):

cond_code = GETXFR(); /* get address from pplcom.sys */
if (cond_code == 0) { /* if OK, initialize xfer */

ftparm_block.PB_REQ = INIT_CMD:
ftparm_block.PB_BUF = CONFIG_FILE:
ftparm_block.PB_BUF_LEN = strlen(CONFIG_FILE);
CALLXFR(ftfar-ptr);
cond_code=ftparm_block.PB_STAT_CODE;

if (cond_code != 0) {
if (!quiet)

printf(ninitialize: error %d\nn,cond_code):
exit(2); }

void send_files(void)
{
char errmsg[80];
byte cond code;
int len,-transtype=BINARY;

Client/Server System Design - 3229- 18

long xferred=Oli

if (!quiet) printf(n\nStarting file transfer ••• \n");
strupr(attributes)i
if (strstr(attributes,nASCIIn) != 0) transtype=ASCII:
ftparm_block.PB_XFER_TYPE transtype;

lif defined(XSEND)
if (len = strIen(attributes»

ftparm_block.PB_ATTR_LEN len + 1;
ftparm_block.PB_ATTRIBUTES attributes;
ftparm_block.PB_XFER_TYPE =

ftparm_block.PB_XFER_TYPEI2;
attributes[len] = '\xFF'; }

lendif
ftparm_block.PB_REQ
ftparm_block.PB_OVERWRITE
ftparm_block.PB_PC_SPEC
ftparm_block.PB_PC_SPEC_LEN
ftparm_block.PB_BUF
ftparm_block.PB_BUF_LEN
ftparm_block.PB_STRING
ftparm_block.PB_STR_LEN
ftparm_block.PB_XFERRED
ftparm_block.PB_UNITS
strcpy(errmsg, "\0");

direction;
= DELETE FILE:
= pefilespee;
= strlen(pcfilespee);
= hpfilespee;
= strlen(hpfilespec);
= errmsg;

80;
0;

= 0;

CALLXFR(ftfar-ptr):
while«eond_code=ftparm_bloek.PB_STAT_CODE)

continue;
QUEUED)

while (TRUE) {
eond code = ftparm block.PB STAT CODE;
if (cond_code != IN_PROCESS) break;

if (ftparm_bloek.PB_XFERRED != xferred)
xferred = ftparm_bloek.PB_XFERRED:
if (!quiet)

printf("%s%ld%c",unit_message,xferred,CR);
}
if (eond_eode == 0 && !quiet) printf("\nComplete.\n"):
if (cond_code 1= 0) (

if (!quiet) printf("\nErr transfer: %d\nn,cond_code);
shutdown();
exit(3); }

}
void shutdown(void)
(

ftparm_block.PB_REQ SHUT_XFER;
CALLXFR(ftfar-ptr);

Client/Server System Design - 3229- 19

Database standards: Rallying points

F. Alfredo Rego

Adager

SUD Valley, Idaho
83353-0030

U.S.A.

Dr. Edgar F. Codd established a sound mathematical foundation for database management with
his relational model. Unfortunately, many suppliers of database management systems, claiming
a relational pedigree, have twisted the relational ideas to suit (or justify) their implementations
and to claim that they "are" standard (or "follow" the standard).

Some people believe that anything that has "SQL" in it is ipso facto "relational". This is a
consequence of the widespread belief that SQL is an integral part of the relational model for
database management when in fact it is not. Most people are led to believe that there is· such
a thing as a standard SQL. Do I have a surprise in store for them!

Historical backgrouDd

In early 1986, I met with several Hewlett-Packard executives in Cupertino who were very
excited about the name that they had devised for their new strategic database product,
ALLBASE. "The beauty of this concept," they said, "is that it will integrate the best practical
aspects of IMAGE with the best theoretical aspects of the relational model for database
management." They asked me if I liked the name and the concept behind it. I said that both
the name and the concept were wonderful. I still think so now, after more than five years.

A recent conversation I had about the relational model for database management with its
creator, Dr. Edgar F. Codd, makes HP's initial conception of ALLBASE even more relevant.

My cODversatioD with Dr. Edgar F. Codd

At the SCRUG meeting in Pasadena, on May 9, 1991, I interviewed Codd in the setting of a
public forum. I began my conversation with Codd by explaining that I had selected the
session's title, "Understanding Databases," because it was ambiguous. We can choose to
interpret the word "understanding" either as a verb or as an adjective. As a verb, "under
standing" means that we are taking some action to try to understand what databases are. As an
adjective, "understanding" means that we are talking about databases that treat us in a
motherly fashion, that are tolerant, compassionate and sympathetic, that never break down,
that always perform beyond the call of duty, that don't require expensive maintenance.

3230-1

I then asked Codd if he knew of any such magically understanding databases. Laughing, he
said, "Not at all." Addressing the audience, I asked if anybody else knew of any such
magically understanding databases. More laughter. Funny, I thought, after having waded
through all the glossy literature. Given this reality, we decided to interpret the word
"understanding" as a verb. I invited Codd to help all of us in our efforts to try to understand
what databases are.

As the basis for our discussion, I selected some key ideas from Codd's recent book (The
Relational Model lor Database Management, Version 2, Addison-Wesley, 1990).

The evidence would suggest that few people understand the relational model for database
management (although many people certainly know SQL very well). I encouraged everyone to
read and to study Codd's book because it brings together, under one cover, his fundamental
ideas. To illustrate, I quote from the book:

"Four important points concerning relations follow:

1. every relation is a set;

2. not every set is a relation;

3. every relation can be perceived as a table;

4. not every table is a correct perception of a relation.

Designers of the relational DBMS products of many vendors appear to be ignorant of these
facts or to have ignored them" (page 27).

"Of course, in many of the relational DBMS products on the market today, support for the
integrity features of the relational model is quite weak. This weakness reflects irresponsibility
on the part of DBMS vendors" (page 435).

Given these facts, I asked Codd about his feelings whenever people use "SQL" as synonymous
with "the relational model for database management." Codd proceeded to clarify the myths
surrounding SQL, with particular attention to the overselling of SQL as the standard for
relational database management systems. "SQL is just a data sublanguage invented in late 1972
by a group in IBM Research, Yorktown Heights, NY. Although it was claimed that the
language was based on several of my early papers on RM, it is quite weak in its fidelity to the
model," Codd said.

"How was SQL ever adopted as an ANSI and ISO standard?", I asked. Codd replied, "That's an
excellent question; I wish I knew the answer." (For those interested in pursuing this issue,
Codd has devoted chapter 23 in his book to discussing the serious flaws in SQL.)

Because Codd had dedicated his book "To fellow pilots and aircrew in the Royal Air Force
during World War II," I knew that he would, as a pilot, appreciate the fact that airplanes are
amazing things that come in all shapes and prices. There is one airplane that went around the
world without refueling; it was very slow, extremely uncomfortable, as fragile as a kiss and,
therefore, unable to go through the storms and the turbulence that commercial jets usually
encounter. There are huge, slow cargo planes. There is the Concorde. There are business
jets. There is Air Force One, with a bed and (we would assume) a shower.

Rego 3230-2

When I asked Codd about his recommendation for the "standard airplane" that everybody must
have, he said, "Such a thing does not exist." While on this topic, he referred to page 22 of his
book "I believe that the days of monstrous programming languages are numbered, and that the
future lies with specialized sublanguages that can inter-communicate with one another.A To
me, this sounded very similar to what is expected of open systems, whose existence depends on
specialized things that inter-communicate well, as opposed to monstrous things that try to be
all things to all people.

Codd shared with us his observations about the main shortcomings of the wishful implementa
tions of the relational model, using IB~s DB2 to illustrate. "DB2, with about 50% compliance
with the relational model, is the most faithful implementation," Codd said. "But even DB2 is
still a long shot. The main problem is that all so-called relational database management
systems do not support the fundamental features of the relational model. The fact that they
may (or may not) support some other features does not relieve them of the responsibility of
supporting the fundamental features. Without sound fundamentals, any structure is bound to
collapse eventually. Everywhere, users are losing their patience. Things are taking too long
and are too expensive. There is a deluge of marketing hype," Codd complained.

Regarding my question about any hope for the convergence of these so-called relational
database management systems towards the relational model, Codd explained that, "Due to some
fundamental decisions that the implementors had made early on in the game, it would be very
difficult for them to converge towards the relational model."

I then brought up an issue that is highly relevant to the members of the HP3000 community
who have developed high-quality, reliable applications based on IMAGE. Why should these
people migrate to a poor-quality, unreliable, expensive and non-compliant so-called relational
DBMS? Codd had only a couple of minutes to address this question, as it was the last question
before lunch. Codd quickly mentioned that"Any conversion is a very expensive proposition in
terms of labor costs, since automatic conversions are ineffective and need a great deal of
babysitting." Codd did not foresee labor costs decreasing. "Therefore," he reasoned, Steven
though it would be an expensive migration, everyone should convert to a so-called relational
implementation as soon as possible." En route to lunch, an IMAGE user approached us noting
that the word "possible" might best be interpreted to mean "economically feasible."

There is no question in my mind about the ever-rising costs of conversion, but I do not agree
with conversion for conversion's sake. I believe that there is only one valid reason for
converting: to escape from a poor database management system that is not able to support
vital applications. And then, people should only convert to a clearly outstanding database
management system. Anything else is an exercise in futility.

What are we to do with SQL?

Codd . himself does not think that SQL is a particularly outstanding ambassador of the
relational model. On the contrary, he says on page 444 of his book, "Vendors, however, are
forging ahead with both 'products on top' and 'distributed RDBMS products', disregarding
errors in present relational DBMS products. All the evidence indicates that they will continue
to do so. An inevitable result is that existing errors will become more difficult to fix, because
more products and more users will be affected. Over time, the defects and deficiencies in the
present versions of SQL will become totally embedded in relational DBMS products. It is
important to be aware that, first, the language SQL is not part of the relational model.
Second, the defects and deficiencies in SQL correspond closely to the various departures of
SQL from the relational model."

Rego 3230-3

During lunch, immediately after our public conversation, Dr. Codd and I discussed the SQL
issue. As an example of the confusion, he mentioned that, during a visit he paid to one of the
various SQL-standardizing committees, the members of the committee agreed on only one
thing: they agreed to disagree with Codd.

Regardless of SQL's weaknesses, it is obvious that it is today's lingua franca for databases.
The desire for a single, common language is nothing new. For instance, scientists have spoken
all kinds of native languages, yet they have felt the strong need to inter-communicate. One
solution would have been for each scientist to learn all of the languages spoken by everybody
else. Because this would have been unlikely, scientists "agreed" (voluntarily or not) on some
common language. In this manner, each scientist had to speak at most two languages, the
scientist's native language and the common language of the day.

There are two important points about common languages:

1. The existence of a common language does not preclude the existence of "native" languages.

2. A common language is not forever, as it depends on political factors.

Because political factors are constantly shifting, several common languages have come and
gone in the Western scientific community: Greek, Roman, German, French, English. Today,
English is the common language for computers. As a highly-structured subset of English, SQL
appears to be the emerging common language for database inter-communication.

Given these facts, we might as well learn SQL, even if we don't approve of it. And we might
as well teach SQL to our favorite database management system.

Hewlett-Packard's ALLBASE Idea to the rescue

The beauty of Hewlett-Packard's ALLBASE concept is its inclusive quality. HP is making
significant progress toward fulfilling this ALLBASE promise. For instance, ALLBASE/Turbo
CONNECT currently allows SQL read-only access to IMAGE databases. Right now, HP is
seriously considering the obvious evolution of ALLBASE/Turbo CONNECT: SQL read and
write access to IMAGE databases.

How serious is HP about implementing SQL· read/write access to IMAGE databases? HP is
very serious, indeed, but it needs your input to help define the future directions for its
database programs. On this topic, The HP Chronicle (on page 20, May 1991 issue) has an
article, "HP seeks customer input on databa.;es", quoting Doug Dedo, HP IMAGE product line
manager. Here is a sample of noteworthy items in the article:

Seeking input from customers to help define luture directions lor its database programs.
Hewlett-Packard has released a survey gauging customer needs... "1 think that this is a good
opportunity to really get into the heart 01 the Turbo/MAGE program and have a voice be heard
in a productive. proactive way." said Doug Dedo. "{The survey comes} in a time where it can
be incorporated into business planning activities."

The first area [01 the survey] involved "Just how do people want TurbolMAGE itself to move
into the 21st Century." he said. "We are definitely moving it there... Some people call it
mature. Competitors think it is obsolete and yet we've got a phenomenally large customer base
and a huge set of applications that are really providing valid business solutions today."

In the second area. HP officials sought input about ALLBASE/Turbo CONNECT write

Rego 3230-4

{access}, the bridge between the relational and the TurbolMAGE world. "Our ALLBASE SQL
product has an ALLBASE/Turbo CONNECT that links it to TurbolMAGE so that you can do an
SQL query and be able to pull information simultaneously out of the relational database as well
as out of a TurboIMAGE database," Dedo explained.

Within the last six months, customers have expressed a desire to be able to write back into the
TurboIMAGE database. "So the second piece in the questionnaire was to start getting more
detailed data on what I customers} see and how they would use the write capability."

"The goal of the survey is to compile information on user needs so that these needs can be met
by HP in future product releases," Dedo said.

BreaklDg free from IMAGE's physical IImltadoDs

IMAGE's physical limitations have to do with the way HP has chosen to implement (or not to
implement) its various design criteria. The April 1991 Interact includes an article by Wirt
Atmar (of QueryCalc fame) called "The future of IMAGE on the HP3000 is SQL" Atmar
quotes a senior Hewlett-Packard executive:

"The problem is that TurboIMAGE has been tuned for over 15 years and there are not many
ways we can improve it anymore." Wim Roelandts, HP vice-president and general manager of
the Computer Systems Group, made this statement last year.

But this is not true. A number of rather simple enhancements to IMAGE would make dramatic
differences in its use, in its performance, and in the minds of its users. Now thai HP has
graciously agreed to implement the critical item update enhancement, the foundation has been
laid lor a number 01 truly significant enhancements to IMAGE...

These few enhancements, which would not only revolutionize the use of IMAGE but also ensure
its future competitiveness, are among the most commonly touted advantages of SQL databases.
But they have nothing to do with SQL per see They should be part and parcel of any
competitive database structure. IMAGE is particularly amenable to these modifications. And
none of them are difficult to accomplish. HP already has all of the code in hand to implement
each enhancement.

Atmar's article points to the problem and to the solution, the implementation of the original
ALLBASE idea. Dedo's survey is a step in the right direction. I applaud HP's willingness to
give IMAGE the ability to inter-communicate.

GiviDg HMAGE the ability to inter-communicate

The bottom line is: Because IMAGE needs to inter-communicate with other database manage
ment systems, the issue boils down to providing a read/write SQL interface for IMAGE today
(whether we like SQL as a lingua franca or not). This will be a significant step in fulfilling
the original Hewlett-Packard promise for ALLBASE: Standardized access to IMAGE databases
and to relational databases. This will provide Hewlett-Packard users and applications develop
ers with the best of both worlds. What a wonderful idea.

Rego 3230-5

.. ':~ ..

.. ~ 1: 7~'::', 1:: ' ~ -....... :"..'; ~

I~:.·~ 'i:~: r:.:{~ . t:.;~. ~.~

:.~ ~', '. -: .. ' ,.., ::~: ..

":•.~'_;,. '-- .'t .. _

. ;.;!, ~.; ~ f : ...

PaperN~ber:3232

Relational Database Design
Jo-ning Ta

Oracle Coroption

400 Oracle Parkway

Redwood Shores, CA 94065

(415) 506- 2974

3232-0

1 Introduction

This paper presents basic techniques for designing a relational
database with emphasis on data integrity by using the result from
an entity relationship modelling. Traditionally, data integrity is
specified and enforced within the database applications. Whereas
today, the data integrity has been added to the SQL language by
the ANSI 89 standard(ANSI X3.135-1989). It means the
relational systems start to embed more data integrity into the
database kernel. The relational systems now can guarantee better
integrity and consistency. The application development
productivity can be improved because less coding has to be done
on data role checking. Better perfonnance can be expected
because data integrity can be implemented and optimized more
efficiently in the database kernel.

This paper is mainly emphasizing on the logical database design.
The physical database design is not going to be addressed. The
audience is assumed to have some basic knowledge of SQL and
relational database.

Relational Database Design 3232-1

2 Entity Relationship Modelling

Entity Relationship Modelling is a means of defining and controlling
the defmition of the information needs. The definition can be used as
the framework in database design. Briefly, Entity Relationship
Modelling involves identifying

• the things of importance in an organization(Entities),

• the properties of those things(Attributes),

• and how they are related to one another(Relationships)

The output ofthe modelling, Entity Relationship Diagram, can be used
for both relational(e.g. Oracle, Allbase/SQL) and non-relational system
(e.g. TurboIMAGE).

The following elements are important in Entity Relationship
Modelling:

• Entity

A thing or object of significance, whether real or imagined, about
which information needs to be known or held.

• Relationship

A named, significant association between two entities. There are
three types of relationship, which are One to Many(l:M), Many to
One(M:1), Many to Many(M:M). Many to Many relationships are
common during early strategy or analysis periods. By the end of the
analysis stage, they shall all be resolved. Resolution is achieved by
means of inserting a new intersection entity between the two ends.

• Attribute: Any description of an entity

Relational Database Design 3232-2

Relational Database Design 3232-3

3 Relational Terminology

• Relation

A mathematical object in the form of a table, with distinct unordered
rows, and atomic, unordered columns. In a relational system, table
are the only explicit way of representing relationships. A large
number of the implicit relationships are also contained in the
database. These are specified by the Referential Integrity Constraint
and the relational operator (e.g. JOIN) at the runtime.

• Tuple

A row in the table.

• Primary key

A column or combination of columns whose values uniquely
identify rows in a table. Primary keys can not be NULL.

• Foreign key

A column or combination of columns whose values match the
primary key of another table. (or possible of the same table which is
called "self-referencing")

• Domain

A set of allowed values all of the same type.

• Candidate key: Any column or combination of columns whose
contents could be used to uniquely identify rows in a table. Every
relation has at least one candidate key. When multiple candidate
keys exist, the designer chooses one to become the primary key.
Then the remaining candidate keys(if any) are alternate keys. It
may be used as a secondary access to the data.

• Composite key: A combination of columns as a key.

Relational Database Design 3232-4

4 Mapping from entity relationship to relational
database

1. Each entity is mapped into a table. A useful standard is to use the
plural from of the entity for the table name.

2. Each attribute is mapped into a column of the same name with the
proper types in the table that the entity has just been mapped into.
Optional attributes become NULL columns. Mandatory attributes
should be non-NULL columns.

3. The components of the unique identifier of the entity become the
primary key of the table. Remember also that an entity may be
uniquely identified by a combination of attributes and/or
relationships. When relationships are used follow along the
relationship and bring down as columns a copy of the unique
identification components of the entity at the far end of the
relationships as part of the primary key.(This may be recursive until
attributes are eventually found.)

4. Many to one(and one to one) relationship become foreign key. That
is, bring down a copy of the unique identifier of each referenced
entity from the one end and use as columns of foreign key.Optional
relationships create NULL columns.Mandatory relationships create
not NULL columns.

Relational Database Design 3232-5

Following is an example of mapping:

STEP
Create table aitports(

code char (4) PRIMARY KEY,

name char (40) not NULL,

Create table airlines(

code char(4) PRIMARY KEY,

name char (40) not NULL,

Parent_airline_code char (4) NULL,

reference airlines(code),

Create table airline_routes(

flight_number number (4),

airline_code char (4),

from_airport_code char (4) not NULL,

to_ariport_code char(4) not NULL,

Relational Database Design

1

2/3
2

1

2/3
2

4

1

2

3

4

4

3232-6

scheduled date NULL, 2

departure_time date NULL, 2

constraint PRIMARY KEY 3

(flight_number, airline_code),

constraint FOREIGN KEY(airline_code) 4

references airlines(code),

constraint FOREIGN KEY 4

(from_airport_code) references airports(code),

constraint FOREIGN KEY 4

(to_airport_code) references airports(code),

)

Relational Database Design 3232-7

5 Data Integrity

Data integrity guarantees that data in a database adheres to a predefined
set of constraints. It ensures that users only perform operations which
leave the database in a consistent state.

There are two types of implementations for enforcing data integrity.

• Declarative

Declarative constraints and actions can be specified in the CREATE
TABLE statement. At the end of each multiple step update(after all
actual updates done in a UPDATE statement), the constraints are
enforced and actions are taken.

• Procedural

Triggers and application code can both specify the conditions and
actions. Trigger is a user-defined SQL block associated with a
specific table, and implicitly frred(executed) when a triggering
statement is issued against the table. The procedural implementation
is not covered in this paper.

Relational Database Design 3232-8

6 Types of data integrity

• Entity Integrity

It governs the data content of a single row. It serves as an intra-table
constraint.

not NULL: columns must have values.

default: default value for columns not specified on INSERT.

unique: no two rows/fields have the same value.

check: must be true of all inserts and updates on the table.

create table emp(

empno number(4), /* PRIMARY KEY */
ename char(20), not NULL,

deptno number(4), /* FOREIGN KEY */
mgrno number(4), /* FOREIGN KEY */

salary number(6)

constraint sal_range check(salary < 9000),

hiredate date default SYSDATE,

create table dept(

deptno number(4) /* PRIMARY KEY */
dname varchar2(20) unique,

depbngr number(4), /* FOREIGN KEY */

)

• Referential Integrity

It enforces a master/detail relationship between tables based on
primary/foreign keys. It ensures that any detail record must always
have a corresponding master when insert, update, and delete
statements are issued against the table.

Relational Database Design 323~9

For TurboIMAGE, the master/detail relationship is modelled by the
manual master and detail set.

When there is a delete or update on the primary/unique key that the
foreign key is referencing to, there are two actions which can be
specified. One is DELETE CASCADE. What it means is ifa master
row is deleted, foreign key rows referencing the deleted row's key
are deleted automatically. The other is UPDATE/DELETE
RESTRICT. This basically makes sure a master row cannot be
updated or deleted if. referenced by any foreign keys when the
UPDATE/DELETE statement is issued against it.

Following is an example of specifying the Referential Integrity for
the emp and dept tables.

create table emp(

empno number(4) PRIMARY KEY,

ename char(20), not NULL,

deptno number(4)

constraint work_in FOREIGN KEY (deptno)

references dept(deptno) on DELETE CASCADE,

mgmo number(4)

constraint work_for FOREIGN KEY (mgmo)

references emp(empno),

salary number(6)

constraint sal_range check(salary < 9000),

hiredate date default SYSDATE,

create table dept(

deptno number(4) PRIMARY KEY,

dname varchar2(20) unique,

deptmgr number(4)

constraint run_by FOREIGN KEY (mgmo)

references emp(empno),

Relational Database Design 3232-10

7 How to enforce the referential integrity if the
relational system does not directly support it

The crucial importance of primary and foreign keys to relational
database design has been stressed. Following is a way that you can
enforce the primary and foreign key disciplines yourself if the relational
system that you work with does not provide the direct support. (For
Oracle, Version 6 only accepts the syntax for Referential Integrity. It
does not enforce it in the RDBMS. Version 7 will support both the
Entity Integrity and Referential Integrity)

For each primary key in your design:

• Specify NOT NULL for each field in the primary key.

• Create a UNITQUE index over the combination of all fields in the
primary key.

• Ensure that this index is in existence right after the table creation.
This is to make sure all inserts and updates of the primary keys will
follow the discipline.

For each foreign key in your design:

• Find out if the foreign key can be null. Specify NOT NULL for each
field in the foreign key if it is not allowed to be NULL.

• Create an index over the combination of all fields in the foreign key.
If the foreign key and its matching primary key will often be used as
the basis for join operation.

• Take the foreign key constraints as part of the application
specification. Have one module/routine which does the updates or
inserts of the foreign key. However, have every one who wants to
insert/update the foreign keys all go through this same routine.

• Use the authorization mechanism to control the insert/update/delete
to the primary key table and the foreign key table.

General business rules:

It specify complex business conditions. Traditionally, all of the
business rules are specified in the applications. With the offering of
"triggers" and stored procedures", a big percentage of the general
business rules can move to the databases.

Relational Database Design 3232-11

8 Miscellaneous Topics

• Sequence Numbers

System generated unique identifiers.

The sequence numbers can be produced by means of a table, each
row of which contains the name of a sequence and the next value to
be allocated. However, if many tables with system-generated
identifiers are subject to frequent INSERTs, having a single
sequence table may lead to contentions. In such a case, a
considerable improvement can be made by having a separate control
table for each sequence to be generated. Oracle Version 6 provides
its own sequence number generator which multiple users may
generate unique integers. Sequence numbers may be used to
generate primary keys automatically.

Example:

CREATE SEQUENCE [user.] sequence

INCREMENT BY 1

STARTwrrn 1

The numbers are generated when the pseudo-column NEXTVAL is
accessed.

INSERT INTO table

VALUES

([user.] sequence.NEXTVAL)

• Selective Denonnalization

The process of nonnalization and the technique of Entity
Relationship Modelling both aspire to a design which is devoid of
redundancy. The reason for eliminating redundancy is to remove the
difficulties associated with updating duplicated infonnation.

On the other hand, a nonnalized design involves separate table
which may have to be joined to satisfy given queries, and this in
itself is an overhead.

Relational Database Design 3232-12

So the database designer may introduce some redundancy for
performances when two or more tables are:

* relatively static with respect to DML.

* relatively active with respect to cross-table queries.

• Artificial Primary Keys

In practice, it may be hard to find primary keys. Many entities, such
as people, do not come with unique identity codes. Also, some
unique identifiers in a table may tum out to very complex, a
combination of many columns or even the whole row(composite
key). The composite keys can lead to redundancy ifa composite key
is used to link the relationship between a master and detail. Also, it
is clumsy that the users have to write their queries like:

WHERE master.key_partl = detail.key-part1

AND master.key-part2 =detail.key_para

AND master.key-part3 = detail.key_part3

In these cases, the designer may consider specifying an invented
artificial primary key. The user can use the sequence numbers as the
artificial primary keys. One disadvantage is that if the original
composite key content in the master relation is always needed when
querying the detail relation contents, then more joins will now be
needed.

Relational Database Design 3232-13

9 Use of CASE ·tools

Computer-Aided Software Engineering(CASE) tools are available
from many different vendors. Most offer some form of entity
relationship of data modelling capability. A large amount of the
database design can be carried out automatically by these CASE tools.
However, this is only a starting point, as the database design now needs
careful scrutinizing to ensure that it provides full support in a
performance/space efficient manner. for the applications. This may
require careful denonnalization, controlled replication across a
network, and detailed physical design of indexes and disk utilization.

Relational Database Design 3232-14

10 Conc~usion

Database design has traditionally been regarded as a very difficult task,
requiring very specialized skills. With the data integrity enhancement in
SQL, relational database systems simplifies the relational database
design task. The designer can describe the complex data requirements
in a very declarative way, and application programmers can skip many
data checking and enforcement in the code. All these allow us to
concentrate in building a more complex database now and in the future.

Relational Database Design 3232-15

TITLE:

AUTHOR:

TurboIMAGE/XL's Standard Interface to Third-

Party

Eric Savage

Dynamic Information Systems Corp.

652 Bair Island Road
Suite 101

Redwood City, CA 94063

(4l5) 367-9696

FINAL PAPER NOT AVAILABLE, HANDOUTS WILL BE PROVIDED AT
TIME OF SESSION.

PAPERNO. 3233

Paper Number 3234

CASE ME
Computer Aided Software Engineering Tools

for Managing User Expectations in
a Software Migration Project

By

Garry L. smith
Charles McMurray Company

2520 N. Argyle
Fresno, CA 93727

(209) 292-5751

This paper presents the use of Computer Aided Software
Engineering (CASE) tools to Manage user Expectations (ME) of a
finished software product. After decades of meeting the end user
needs, the computer software industry has only in the last five
years started to provide tools for the software developer. Now at
last CASE tools are out of the infancy stage and actively being
used by Information Systems departments. This paper focuses on the
use of CASE tools to upgrade an 'over-the-hill' software
application.

Replacing software that is at the end of its life-cycle is a
task that will continue to be at the top of the agenda for many
Information Systems departments. Software which has been modified
over time to meet changing business strategies and to satisfy
external requirements leads to a patch work of highly customized
application software.

This paper details the use of Data Flow Diaqrams(DFDs) and
data dictionaries to document the entity relations, the system
functions, the operational flow of data and the existing manual
procedures of the company. This paper does not attempt to teach the
concepts of structured analysis, data flow diagrams, nor data
dictionaries, but merely presents how these tools were used during
a software migration process. The CASE tools provide a methodology
for standardizing and maintaining documentation about the
organization's management information system.

This paper describes a software migration project for the
Charles McMurray Company which had a custom software application
which had evolved over a fourteen year period and over two
different vendor hardware platforms. The lack of integration,
standards and program documentation propelled management to make a
decision on acquiring a new software application.

CASE Tools in Software Migration 3234 - 1

Part and parcel of the Information Systems life cycle is the
replacement/upgrade of hardware and software. The McMurray company
had recently acquired a new hardware system(HP-3000/922RX) so there
was no question as to the hardware on which the application
software needed to run on. There are four major software
replacement strategies: 1) modify the existing system to provide
integration and data integrity, 2) develop a new system, 3)
purchase a new integrated software system and 4) purchase a system
and modify the application to meet the company's needs. This is
the basic scenario faced by many Information Systems department at
the end of the software life cycle. The four alternatives are
typically generic, and with the application of internal
values/politics and the ubiquitous cost/benefit analysis each
company reaches its own course of action. The optimal solution for
Charles McMurray Company was to find an integrated software
application the provided 80% of the company's information
processing requirements and provide the flexibility for
modification. Therefore, McMurray has chosen option number four(4) ,
modify the 'off-the-shelf' system.

Having decided on the appropriate course of action, a project
plan was created and signed by the president of the company(see
appendix "A"). A project plan is crucial to the success of any
project involving more than two people and greater than 40 man
hours. This project plan summarized the rational for acquiring a
software package, defined the project boundaries, the objectives,
the approach to be used, the resources required, individual's
responsibilities and a general time-line of target dates for the
major milestones needed to complete the project. This project plan
was then presented and distributed to all the employees of the
company. Future enhancements were also discussed and input was
solicited from all employees at the meeting.

The use of a project plan is imperative to maintain project
focus and timeliness. The detailed tasks and milestones provided by
the project plan allow for periodic reviews of the project ' s
progress. The official approval of the project by the company
president provides the license for the Information Systems
department to collect data, interview employees, and allocate
company resources to achieve the completion of the project.

Before serious evaluation of vendor packages could occur there
were several questions that needed to be resolved; what is the
current functionality being. provided by the existing software?,
what are the problem areas?, what areas can be improved upon? The
projected was started in September of 1990. By using some simple
front-end CASE Tools such as a Data Flow Diagrammer, Data
Dictionary, Word Processor the existing system was documented.
Using the diagrams generated (see appendix "B") the major

CASE Tools in Software Migration 3234 - 2

deficiencies and lack of integration were highlighted for the
users. After having analyzed the existing system, a new proposed
system generated(see appendix nCn). Diagram modifications were
easily accomplished by using a diagramming tool. The analysis
occurred within about a two month time-frame.

It is important to clarify the context in which the acronym
CASE is used. CASE is the new buzzword in information technology,
just as was 4GL and Relational. What many vendors call CASE are in
essence back-end CASE Tools used for programming productivity.
Front-End CASE is typically used for analysis productivity. The
acronym I-CASE stands for Integrated Computer Aided Software
Engineering, which includes a both a front-end and back-end CASE
tools integrated to form on seamless process from analysis-design
through database maintenance and program revisions.

The use of front-end CASE tools greatly facilitated the
documentation of existing system functionality. The diagrams in
Appendix show what currently existed and what will be. These can be
understood by the user and are easily modified. The use of the
data dictionary(see appendix non) provides the documentation of
data elements and their attributes for the systems department to
validate detailed program logic.

In the development of complex software systems from the
'ground-Up' integration between front-end (design) and back
end (program productivity) is important. Integrated C~E tools help
minimize the software development costs and 1ncrease the
completeness and cohesion of the final product. There are few
products on the market today that accomplish this task. Those
products that are available are typically beyond the bUdgets of
most small I.S. shops. Therefore, Charles McMurray uses a
combination of front-end and back-end CASE tools to accomplish the
software migration. For a front-end tool Charles McMurray uses a
personal computer based data flow diagrammer with data dictionary
capabilities.

In the past CASE tools comprised of: 4GLs, Word processors,
copy libraries, Full Screen Editors. Today, any shop that does not
provide personal computers to their programmer/analysts and other
senior Information systems staff is severely impeding the
productivity of their organization. The concept of the information
workbenoh which uses the micro-computer for its memory and
processing capabilities, quality of graphics, networking, multi
tasking and connectivity as the major hardware tool is of vital
importance to the CASE system.

At Charles McMurray all Information Systems staff are equipped
with Vectra compatible 386 machines with mUlti-sync color monitors

CASE Tools in Software Migration 3234 - 3

and a m1n1mum of 40 megabytes of disk. This allows the use of the
full array of products available for the MS-DOS/Windows and/or New
Wave environment. The ability to upload and download information
between systems, capture 'screens for documentation, present
structured english of detailed conversion logic/algorithms and
document the cross-reference of data elements between the old to
the new system reduced conversion errors. The documentation
generated and discussed with the user provided a method for
involving the user in the software migration process.

The search for software vendors occurred in parallel with the
specifications definition and three final vendor packages
identified to reviewed in detail by December of 1990. These
packages were reviewed based on the primary criteria of cost versus
functionality. The other major criteria included availability of
source and ease of system modification. At the end of December a
software vendor was selected and an integrated General Ledger,
Accounts Payable, Accounts Receivable, Order Processing, Inventory
and Purchasing system was delivered to the Information System
department.

Since cost was a primary factor in the selection criteria the
acquired system was written in COBOL. The overwhelming task of
modifying of several hundred COBOL programs, was slightly reduced
by the extensive use of copy libraries and the purchase of a full
screen editor for the HP-3000. Here again, any systems department
which does not provide a full screen editor on the HP-3000 for
their programmers is losing the full potential of their programming
staff. Other future tools that will be proposed during the bUdget
approval process include: revision/module management system, system
wide dictionary, database tools, and a report writer. The future
acquisition of a back-end CASE tool such as a report writer, will
provide some additional gains over using just the QUERY/V
capabilities.

The continued contact between systems department and the users
is accomplished by structured walk-throug~which provide a forum
for discussing the project progression and any issues or problems
that need to be resolved. Since, one of the goals of the software
migration was to continue tp provide the Charles McMurray users
with the same functions currently available on their existing
system, the statement - "We want the report [and/or screens] to
look like the old system." was common during these meetings. By
stressing the concept of functionality not similarity many reports
and screens did not have to be re-written. A software migration
project is the best time to question the user on why they are
performing certain procedures and suggest changes to eliminate
redundancy. The use of data flow diagrams also helped implement
changes in manual filing procedures, since the new system will

CASE Tools in Software Migration 3234 - 4

maintain and track most of the data required by the users. Many of
these manual procedures were developed to overcome the deficiencies
of the old system.

As the conversion progresses to a production environment
additional enhancements are requested by the user. This is due to
their increasing familiarity with the new system and the revelation
of the new system potential. An important part of managing the
users' expectations is based on the project plan and the
presentation of data flow diagrams indicating the functionality
that will be provided in the initial migration. Therefore, the
initial project plan details only the conversion process of
migrating from the existing software system to the new software
environment. In order for management and the users to understand
the impact of the new system on the organization and communicate
the changes in information flow which will occur as a result of the
new software, the data flow diagrams were helpful as a visual model
of the new software (See attachment "C").

Depending on the company's financial resources and the success
of the original migration project the Information Systems
department should have the support of the company's management and
user community for continuing to increase the information
technology used in the company. The long term goals for the
software replacement include: increase customer service,
flexibility to allow for c~'pany expansion without major increases
in personnel. The new software will provide the ability to
implement cost effective information technology to increase
McMurray's competitive advantage. The possibility exists for
decision support systems for inventory pricing and purchasing. The
new software will provide capability for customer and vendor
analysis reports, begin to automate inventory control by using bar
codes, and finally install lap-top personal computers with each
salesman for inventory pricing, availability and customer order
entry. All of these projected changes can be readily incorporated
into the documentation as the result of using automated CASE tools
and can be reviewed for completeness and consistency.

CASE Tools in Software Migration 3234 - 5

Conclusion

The basic modules of eASE technology have been in use for
years by many shops. However, the concepts of the integrated CASE
tools and the software workbench are a refinement of the islands of
automation that exist to increase the productivity of the
information worker.

Top management and Information Systems managers must bUdget
the resources for systems departments to continue to upgrade and
invest in tools for their staff. They must also continue to educate
their management and user staff on the use of Information
Technology. The challenge of 1990's are multi-faceted involving
integrated networks, voice-data-video transmissions, high-level
code management, multi-vendor software and hardware platforms,
object-oriented programming and holistic databases. The evolution
of the I. S . department to new areas of processing require the
information systems department to document large complex systems.
Nowadays their are many levels and players in an organization's
information processing: the individual processor, the work-group,
the organization processing, inter-organization processing
(Electronic Data Interchange(EDI», the manual user procedures and
the continued support of all the old and existing systems nobody
has the resources nor understanding to replace nor upgrade!!! When
the resources are available to implement a new organizational
information system, the ability to comprehend and document the
current state of affairs is crucial to designing and implementing
a replacement software system. CASE tools and the related concepts
provide a standardized consistent methodology for accomplishing the
challenging task of software replacement in the 1990's. There are
several excellent books by noted authors that will provide a great
source of information for your staff, purchase these books for
department and encourage your staff to read and actively discuss
the concepts presented in these books. As an Information System
manager you should be attending seminars and classes to further you
own knOWledge and understanding of the on-going Information
Technology evolution.

CASE Tools in Software Migration 3234 - 6

Glossary of Terms

4GL Fourth Generation Language Program development
environment. Typically a database system with a set of software
development tools such as menu generators, screen builders, report
writers, compilers, linkers·and debuggers.

Back End CASE Tools - CASE tools which provide automation in
programming, implementation and maintenance portion of the software
development life cycle.

CASE - Computer Aided Software Engineering

context Diagram - the top level diagram of a multi-level data flow
diagram.

Data Dictionary - a collection of all the data elements used in a
software. Each data element in the dictionary is described as to
its inclusion in data flows, files, sources, sinks and attributes.

Data Flow Diagram - a graphic representation used to show the
interfaces and functions of the components in a system; used to
determine the sources and sinks of data. Graphical representation
of the data flows between components.

Entity-Relation Diagram - shows only the entity types and their
relationships.

Front End CASE Tools - CASE tools which provide automation in the
design and analysis portion of the software development life cycle.

Pseudo Code high level, machine independent program logic
specifications.

Structured English a subset of the English language with
restricted syntax and vocabulary, used for process specifications.
Used in conjunction with logical constructs of structured
programming to create program pseudo code.

Structured Analysis - a disciplined step-by-step approach for
performing system analysis and producing a system specification
which conforms to a specific set of rules and principles. The
major methodologies are: Yourdon structured design, Gane-Sarson
structured analysis, DeMarco structured analysis, Orr structured
design, Jackson structured design.

CASE Tools in ~oftware Migration 3234 - 7

Bibliography

Yourdon, Edward Modern structured Analysis. Englewood Cliffs, N.J.:
Yourdon Press 1989.

Martin, James Database Design. Englewood Cliffs, N.J.:
Prentice-Hall 1985.

McClure, Carma CASE is Software Automation. Englewood Cliffs,
N.J.: Prentice-Hall 1989.

Kronke, David Management Information systems. Santa Cruz, CA
Mitchell Publishing, Inc 1989.

Visible Systems corporation Visible Analyst. 950 Winter Street,
Waltham, MA 02154

Cognos Corporation PowerDesign, PowerCASE, PowerHouse. 67 South
Bedford, Burlington, MA 01803-5164

Hewlett-Packard Company HP SoftBench. 19310 Pruneridge Ave,
Cupertino, CA 95014

Informix Software Inc. Informix. 4100 Bohannon Drive, Menlo Park,
CA 94025

Infocentre corporation StJeedware. 2300 East Katella Ave #150,
Anaheim, CA 92806

CASE Tools i~ Software Migration 3234 - 8

Project Name
Project Number
Original Date
Revision Date

Appendix A

Integrated Software Implementation for Charles McMurray
ISI001.MST
October 5, 1990

I. Project Background
Charles McMurray started its computerization in 1976 with the purchase

of an NCR computer system running inventory control software. This software
was developed and enhanced over a period of time by several individuals. In
1983, Charles McMurray, purchased a Hewlett-Packard 3000(BP-3000) series 39
computer system and converted all the existing NCR software to the HP-3000.

Recognizing the limitations of the existing application software,
Charles McMurray has started on a project for evaluating, purchasinq,
modifying and installing an integrated application software system.

II. Project Definition
This project plan will define the steps for acquisition, modification,

installation and conversion to an integrated application software for
Charles McMurray.

The steps are as follows:
2.1 Define the modifications required for the new_system, so that

existing functions will also be available in the new system.
2.2 Define the data migration strategy from the existing software

to the new integration application software system.
2.3 Define the installation and training criteria for the new~

system.

III. Project Objectiyes.
3.1 Identify all existing functions that are performed at Charles

McMurray for Order Processing, Inventory Management, Accounts
Receivable, Accounts Payable, Purchasing and General Ledger.

3.2 Identify the modifications to the new application that will be
required to continue performing the functions defined
in step 3.1.

3.3 Establish a concrete plan for the testing, acceptance and
control of the implementation for the new system.

IV. Approach.

4.1 Analyze the current- system, file structure and data elements.
4.2 Define the files and data elements to be converted to the new

""'system either manually and/or by a conversion program.
See attachment 'B' for the data element conversion
cross-reference table.

4.3 Define the testing steps needed to validate the fundamentals
of the _ system with the functional requirements. See attachmen~
IC' for the functional test definitions. The test scripts will
provide for a structured training format. If during the
training/testing the system fails to meet the requirement of the
user then an Information System Service Request will be completed
with the specific structured english describing the required
function.

CASE Tools in Software Migration 3234 - 9

Appendix A

4.4 Define the framework and steps needed for implementing the
modified application in a production environment.
See attachment 'A' for details.

V. Project Scope.
5.1 Define the division of labor for project tasks with the

Development Team for the implementation of the ""'function
requirements in a production environment.

5.2 Users will perform the tests and quality assurance phase of the
project as defined in attachment 'A' and in section VI
Project Resource Requirements.

VI. Project Resources Requirements.
6.1 ""'Development Team:

6.2 Training' Documentation: Garry L. Smith

6.3 Documentation and standards provide by the software vendor.

6.4 Software Resources: - CASE tool.
Personal Computer productivity tools •
.....Application Software.

6.5 Hardware Resources: HP-3000 Series 922RX.
Nine(9) Track 1600 BPI tape Drive.
Personal Computer System.

VII. Project completion Definition.
This project will be considered finished upon the successful
completion of the criteria noted below.

7.1 Quality assurance results have been formally approved by the
development team.

VIII. Estimated Completion Date.
8.1 See Attachment 'A' , 'B' and 'C'

8.2 The estimated completion date is June 1, 1991.

IX. start Date.
Project is started upon formal approval.

Approved. Date: 10/10/90.

_ a
President, Charles McMurray company.

CASE Tools in Software Migration 3234 - 10

Appendix A

Revised: 12/20/90

IIIQtlmplementation and Conversion Plan

No. Task Description By Plan Actual
---------------------~------------------ --------

1 Analyze existing procedure and system GS 10/10 -
requirements. 11/20/90 12/03/90

1.1 Accounts Receivable MS/KT 10/10/90

1.2 Accounts Payable MC 10/16/90

1.3 General Ledger MC 10/23/90

1.4 Inventory Management DC 10/26/90

1.5 Purchasing DC 11/05/90

1.6 Order Entry DC/CS 11/15/90
BY/KT

2. Review the data elements and define GS/DC 11/20/90 12/03/90
the conversion procedures needed to
convert the existing KSAM files.

3. Identify KSAM data elements that need to GS 11/30/90 12/03/90
be added to the databases or
modification required to the conversion
procedures.

3.1 Convert the KSAM file structures to GS 12/15/90 12/17/90
the ~system for use in testing.

4. Begin modifications to ~source code GS 01/05/91 12/17/90
as specified in step 1 process. - 03/25/91

4.1 Identify any additional changes to GS 03/25/91
the conversion rrcce~ures and/or
changes to the ystem.

5. Begin implementing the General Ledger
system in the production environment.

GS 03/25/91

5.1 General Ledger Training and
Setup GS/MC 03/18/91

CASE Tools in Software Migration 3234 - 11

Appendix B

Pl'oJec t: KCK
Parent: KCH.J,I.VD,_8

Chlrles HcHurray CO.
Existing $gsteM

Page No.
11-21-1998 LiSt Modified

Curg S"ith

Vendor-DeIiverg

Vendop-Invoicf

Vendor-ra.gMent

Order-DeIivery

CUSTOMER
CREDITS

CustOMfl'-Cl'edi ts

CustOMfl'-StateMent

Sacl'wnto-OI'deJlS •

Existing Sgst... Nanllll Int.,
W'L bans.

CASE Tools in Software Migration 3234 - 12

Appendix C

ProJect: HCBA
Parent: HCHJ,tvrL_9

Ch!~les ncHurr~y C~.
Hew SortHal'e Application

lE\jE~ 1

Page NIl. 1
12-97-1999 Last Hodilie:

CaJ'l'Y SNjth

'Jendo,-Deliver-y

lJendolPPayttent

VendolPInvoice

AP-shh-ledgel'
/

/
I

\
AR-Sub-'edgel'

I

Ordel'-DeIivery

CustoMelPlnvoice

CustoMel'-stateMent

CustottelPCHdi ts

1
(Accounts

___Cu_st_oM_el'_-P_aY_M_en_t .~" Receivable
\ :

n '~r1
,.~~ ri
:;~ Ii '+--~~~~---4ll.,"1 GeneN.l
- 1 "I....J JOUl\na!-Iilby Ji'" Ledgel'

lJu
Hanual Intl'Y
GIL tl'ans.

HeN SuttwaI'e

SaCl'aJtento-ONel'S •

CASE Tools in Software Migration 3234 - 13

Date: 05-09-1991
Time: 12 : 06 : 49

EMU

Description:

Appendix D

Project: MCM

Single Entry Listinq

DATA ELEMENT

Page:

Estimated Montly Usaqe is based on historical weighting of
quantities sold in the previous 12 months.

Location:

DATA FLOW

Date: 05-09-1991
Time: 12:12:05

Item-SOQ

--> Item-SOQ

Project: MCM

Single Entry Listing

DATA FLOW

Page:

Description:

Create purchase orders by vendor based on the EMU formula.
See Misc. EMU label description.

Composition:

safety, on-order, EMU

Notes:

This requires a 24 period history for the EMU calculation.
12-current, 12-prior year.

qty-shipped

Description:

Quantity Shipped on this order.

Values & Meanings:

Num(7.2)

Location:

DATA ELEMENT

DATA FLOW --> Confirm-Order

CASE Tools in Software Migration 3234 - 14

Paper Number: 3235

The Evolution of Relational Technology

Howard Rosenfield
400 Oracle Parkway

Redwood Shores, CA 94065
415/506-6161

The Evolution ofRelational Technology 3235-1

Introduction

The old axiom that "knowledge is power" applies more than ever in today's highly
competitive markets. The ability to access the right data quickly and in useful fonnats
is critical to success. Companies continue to invest millions of dollars in technology
to ensure that their various organizations can access up-to-date infonnation and beat
the competition.

The increasing need for data management tools, like Database Management Systems
(DBMS), clearly illustrates how dependent businesses of all types and sizes are on
timely and accurate infonnation. DBMS technology is constantlyevolving to meet their
increasing demands, and has moved beyond the hierarchical and network based
implementations of the past. Today's relational implementation of DBMS technology
provides data managers with an easy-to-use, flexible, timely and powerful way to
provide the needed infonnation to ron their businesses.

This paper traces the evolution of relational DBMS technology from its inception in
the 1960's to the present. A discussion of what makes a DBMS relational and how it
works are included. Advances in hardware and software that have contributed to the
development of the relational databases as they exist today will also be covered. Key
current and future trends will also be touched upon to highlight what the technology
can, and will do for the data processing professional.

Technology Trends Leading Up To Relational DBMSs

Early implementations of DBMSs made full use of the hardware that they were
designed to run on. These systems have limited funCtionality and flexibility by today's
standards. The relational DBMS evolved partly out of earlier data modeling schemas,
and has gone far beyond the limitations of its predecessors.

HIERARCHICAL A hierarchical DBMS can be thought of as set of parent-child relationships
that form a tree etructured database. Each node has only one parent, but can have
many children. When a query for information is put to the hierarchical DBMS the basic
operation is a tree search. Each node is traced from the root node through the 'tree'
until the conditions of the query are met. The nodes of the database hierarchy (or
hierarchical tree) consist of records connected to each other via links.

When the fust hierarchical DBMSs (IBM's DL/1 and IMS) were introduced in the 1960's,
they managed data in a manner that was previously unknown. Data administration
was being performed with flat files and COBOL. The introduction of the first
commercially viable hierarchical DBMS, IBM's IMS, came in 1968. This pioneering

The Evolution ofRelational Technology 3235-2

DBMS represented a significant step in the evolution of data management. The
applications developed using hierarchical databases were efficient and fast for
situations where the type of information that the user required was static. However,
a great deal of real world infonnation was not well suited for the hierarchical
implementation. In these systems, data is contained in strictly nested hierarchies. Each
node has only one parent. Data had to be represented several times. This was a waste
ofdata storage space and made the database difficult to update or correct. Hierarchical
databases limited how you could modify data structures, and how the data was
logically represented. Therefore, the type and amount of infonnation that could be
extracted from a given body of data was restricted.

NE1WORK The network model of DBMS design, such as Hewlett-Packard's IMAGE &
Cullinet's IDBMS, built upon the earlier hierarchical model. While the hierarchical
model permits onlyone parent to each child node (one-ta-many relationships between
data), the network implementation was designed to let each node have several
pointers that point to many other nodes (one-ta-many & many-to-one relationships).
These pointers or data links are clearly defmed in the DBTG (Data Base Task Group)
data defInition language (DDL).

This new concept of a DDL allowed the network DBMS architecture to move beyond
its hierarchical cousin. The data structure was no longer severely restricted. You could
now defme many different types ofdata links to get at the data. Still, the network model
is a limited tool for data management. For instance, the data links are often extremely
complex and since any node can be linked with any other (nested data links) it is often
difficult to figure out how to modify the database. Even when it is known what the
data access paths look like, it is often difficult to change them.

In a network DBMS, there is no notion of the ad hoc query. This restricts the type of
infonnation that can be extracted from the database. Even though this method ofdata
modeling is more flexible than its hierarchical predecessor, it is limited by the
complexity of its data structure and remains inflexible.

The Relational Model

In the late 1960's Dr. E.F. Codd, who was working for IBM at the time, first
conceptualized the relational data model. The fIrSt working implementation of the
relational model was developed at mM San Jose in the mid-70's, and was known as
SystemIR. The fIrSt commercially viable implementation of a relational DBMS was
delivered by Oracle in the late 1970's.

SQl

Manipulation of data with relational databases Is done using SQL (pronounced -seque/'), SQL
standsforStructured QueryLanguage. Itwasdeveloped for the relational data model In themk:i
1970's by IBM (C.J. Date). It has since been adopted by ANSI (American National Standards
Institute) as the standard language for relational databases.

SQL has three distinct components:

• DMl (Data Manipulation language)
• DOL (Data Definition language)
• Del (Data Control language)

T1HI Evolution ofRelational Technology 3235-3

The relational model represents a simple yet very robust way of viewing data. It is
relatively easy to maintain, and data can be represented in many different ways. In
addition to the One-to-Many and Many-to-One relationships that could be performed
with network architected databases, the relational model pennits Many-to-Many data
relationships. Relational data modeling allows for greater flexibility in data analysis
than its predecessors. This has led to the development of powerful 4GL tools that are
used by application developers and end users to access the database.

In relational databases, all data is conceptually stored in tables. A relational database
consists ofa set of tables. The tables consist ofcolumns (also referred to as fields) and
rows of data records. Each row of a table is a representation of a set of attributes
defmed by the columns. Tables are joined on their mutual columns. Every table has
a column known as a primary key to uniquely identify each row. Sometimes a table
requires a combination oftwo columns to form a primarykey. Aforeignkeyis a column
in a table that is not used to uniquely identify each row of the table, but is a primary
key in another table. For instance, given the two tables EMPLOYEE and DEPARTMENT
we can point out the primary and foreign keys:

EMPLOYEE

gil Y

Bmployce Employee Job Mauger DepaI1meDt
Number NIDlC NumbIlr

8941 JOlla SaIesmID 8941 10

6578 Smltb Qert 7465 30

3276 R.oborta ADalyJt 9287 20

7642 JohDloD Mauger 9933 10

~ -,
Fonl ICet PrImary Keys

DEPARTMENT

DepaI1meDt DepaI1meDt 1.oc:IdoD
Number Name

10 SaIcI SulDteao

20 0perati0Da SlDPnDdIco

30 AccountfDa New York

If we needed to join the two tables, we would do so with the department number
column since it is the common column between the two tables.

Relational data modeling does not rely on nested pointers to join each of its nodes or
entities together. The difficulties of maintaining and modifying a database that exist
in the network data model are no longer an issue because these nested data links are
not used. The inability to accurately reflect real world data that exists with hierarchical

DML handlesfunctionssuch as retrieving, updating, Inserting and deleting rows. The commands
SELECT, UPDATE, INSERT and DELETE are used to manipulate tables, with SELECT being the most
widely used. The structure of a SELECT statement Is as follows:

SELECT [DISTINCT] item-list
FROM tables
[WHERE search-condItIons]
[GROUP BY columns]
[HAVING expression]
[ORDER BY columns]

Items are selected from rows In a table or tables. Specific search conditions can be described
by using a WHERE statement. If the search conditions are met, the resulting data can be
organized by GROUP BY, HAVING, and/or ORDER BY statements. An example using the

The Evolution ofRelational Technology 3235-4

databases is also greatly reduced with the relational model. Data structures are no
longer inflexible. Instead, there is logical and physical data independence. Data
independence is defmed by C.]. Date (a developer ofSystemIR and a relational DBMS
authority) as, "the immunity of applications to change in storage structure and access
strategy." In other words, each table has its own theme, and two or more tables can
be connected or joined as long as they share a common attribute. This can be done
without effecting an application. This strategy eliminates the data redundancy that
occurs in hierarchical databases. You can extract infonnation from the database simply
by doing something like the following from the SQL command line:

SELECf • (. indicates a wildcard)
FROM DEPARTMENT;

This would retrieve all infonnation contained in the DEPARTMENT table.

The concept ofa view is very important to relational databases. Views can be thought
of as virtual tables since they are not physically stored in the database and are not
pennanent. They are extremely useful to the user for one-time extraction of
infonnation from the database without having to alter the data structure. They also
maintain data independence and enhance security by insulating users from knowing
in which tables the data they' re working with is actually stored.

Data DIctionary

The basic outline of a relational DBMS requires that there be a data dictionary (also
known as a system catalog) to store infonnation about all of the objects (table names,
indexes, views, etc.). The data dictionary is comprised of tables, just like any other
part of a relational database. Anyone can query the data dictionary to fmd out the
names of tables, column names of a particular table, or what tables share a common
column name. The data dictionary is also used by the DBMS itself to provide security.
For example, all information pertaining to the GRANT commands issued are contained
in the data dictionary, and the DBMS uses this infonnation to check whether or not
a particular user has access to a particular database object. Distributed databases (to
be covered later) are another area where the data dictionary is used by the DBMS.
Infonnation about which remote computer contains which parts of the database is
contained in data dictionary tables.

EMPLOYEE and DEPARTMENT tables could be:

SELECT * (* Indicates a wildcard)
FROM EMPLOYEE
WHERE DEPARTMENT NUMBER .10
ORDER BY EMPLOYEE NUMBER;

This would retrieve all Information from the EMPLOYEE table where the department number Is
equal to 10. The data would beordered byemployee number, withJohnson (#17642) being listed
first and Jones (#8941) being listed next.

DML also Includes the transaction management commands COMMIT and ROLLBACK. The
COMMIT statement Instructs the database to physically write any changes that have been
made. The ROLLBACK command can be used by database administrators to literally roll back
any updates that have been made to the database since the last commit. The ROLLBACK

The Evolution ofRelational Technology 3236·6

Why Relational?

Initially, relational DBMS technology was not seen as a viable solution to the problems
ofdata management. In the early 1980's relational database technology was described
as too slow for businesses in their pursuit to manage and use their data effidendy. It
was considered to be strictly an academic endeavor with little chance of becoming a
practical commercial tool.

In fact, this was not so much a limitation of the relational design but a limitation ofthe
hardware that existed at the time. As a result, the relational approach initially appeared
less robust than what was available at the time. Opinions have changed with advances
in hardware and software technology.

The hardware configurations of the late 1970's and early 1980's did not have the high
powered CPUs that exist today. Consequently, the software of the time was designed
to be I/O intensive, and not CPU reliant. This is the case with hierarchical and network
DBMSs. To extract information from the database, rigidly defmed data links are used.
This requires relatively little CPU processing since the data links explicitly define what
data access paths should be used.

The relational data model was designed for flexibility and ease-of-use. It was also
designed for flexible and efficient search algorithms, which have the effect of limiting
the amount of VO done by the system. These advanced search algorithms are
transparent to the end user. The goal in relational design is to minimize the number
of access paths to a particular piece of information. A minimal number of data blocks
are examined, which results in less disk I/O. This method ofdata retrieval does place
higher demands on the CPU because the DBMS is required to do a lot of the 'thinking'
that would be taken care ofby predefmed data links in hierarchical and network DBMS
implementations.

Reliance upon CPU power was a painful fact of life for relational DBMS users in the
early 1980's. The CPUs of the time had limited horsepower by today's standards.
However, the increasing speed oftoday's processors has exceeded the advances-made
in disk I/O. Hardware designs no longer impede the performance ofrelational DBMSs
In fact, transaction rates required for OLTP (On-Une Transaction Processing) envi
ronments are satisfied by relational DBMSs Relational databases are now achieving
transaction rates in the hundreds of TPS (Transactions Per Second) range. In a few
years, thousands of TPS will be the nonn.

command maintains the Integrity of the databases In cases where transactions are not
completed for some reason, such as power or communication failures.

SQl Data Definition language (DOL) Is used to create tables, Indexes and views. The creation
of a table would have the following format:

CREATE TABLE employee
(Employee_Number nurn,
Employee_Name char(15),
Employee_Address char(40),
Department char(5»

SQl's Data Control Language (Del) Is used for database security purposes. The two main
commands are GRANT and REVOKE. With these commands, database administratorscan give
users the authority to SELECT, UPDATE, INSERT and DELETE from tables or views.

The Evolution ofRelatIonal Technology 3235·6

All of this is not to say that the relational DBMS was mature software when it was fust
introduced in the late 1970's. Deficiencies in the relational model prevented it from
becoming commercially viable. The majority of these 'missing' features are included
in today's relational model, which is now an effident and reliable tool for managing
data.

Row level locking is a recent improvement. Until recently, when a user wanted to
extract or read data from a particular table the database engine locked the entire table
to other users. This limited the usability and speed ofapplications. Row-Ievellocking
means that users can proceed nonnally while someone is updating a particular row
of a table in the database. Because the DBMS only locks the row that is being written
to, other users can access the rest of the rows in the table. Improved SQL optimizers,
advances in distributed database technology (described below), and portability of
relational technology across dozens of hardware platfonns are additional enhance
ments made to relational DBMS implementations.

ClIent-8erver

Until recently, all database processing was done on centralized minicomputers or
mainframes accessed by dumb terminals. These centralized processors often became
overloaded as more users were added and applications became more complex.
Personal Computers (PCs) began to be used widely as centralized processing was
becomingoverloaded. Theyprovided low-cost, user-friendlyalternatives to centralized
computing. Networking technology began to evolve as users sought ways to link their
PCs together so that resources could be shared. If additional processing power was
required on a Local Area Network (LAN) another PC could be purchased and added
to the network at minimal cost. However, despite all of these advantages, PC LANs
still did not give the user a complete solution.

Many of the following features inherent in centralized computing could not be
provided by pcs:

• Data Integrity-The PC environment could not protect against the loss or
corruption of data if system failure occurred.

• SecUrity-It was difficult to restrict access to unauthorized users.

• Availability-Hardwarevendors have invested heavily to assure that their
mini's and mainframes are nmning at all times of the day and night. pcs
do not offer this high level of availability.

• CentraljzedDatabaseAdministrattonlCentraljzedProcessin~Havingone

group responsible for data management and system performance helps
to maintain a more stable data processing environment.

• Peiformance-The PC does not have the CPU throughput processing
reqUired for most data management.

CUENT-8ERVER computing is a relatively recent phenomena. It combines the best of the
centralized computing world with the PC LAN environment by dividing an application
up into two parts. The database setver's tasks are handled by the mini or mainframe
with their high availability and performance. Data integrity and security are enforced
here, and here is where the database resides. The smaller client machine is usually

The Evolution ofRelational Technology 3236-7

a PC, Macintosh, or UNIX workstation, which handles all processing required by the
application and communicates with the database server via the network. SQL
statements are passed from the client to the server. The requested information is then
sent back over the network from the database server to the client machine running the
front-end user interface tools.

Multiple clients can concurrently access the same database server. Should the
demands of the clients surpass the capacity of the database server, extra resources can
be added in two ways (known as scalability):

• Vertical Scaling--The server can be replaced with a larger machine with
more capacity (disk, CPU, memory, etc.).

• Horizontal Scaling-Additional servers can be added to the configura
tion, thus spreading the demands ofclient machines over several servers.

Client-server technology is beginning to become widely used by data processing
professionals with tools like Microsoft Windows becoming available. It gives them a
way to optimize their large investments in mini/mainframes and PC LANs by
combining them into heterogeneous computing environments that take the best of
both worlds without the limitations of either.

Distributed Databases

A distributed DBMS (DDBMS) is a database spread out overmultiple computers. These
computers are usually located at different physical sites, and are connected by a
communications network. The concept of a local database, with its own database
administrator, still exists with DDBMSs However, there is also the concept of a global
database made up of autonomous, local databases spread out over many physical
nodes. The global database appears as one logical database to the user or application
developer. All global operations conducted by the DBMS are transparent to the user.
The relational data model supports this concept because data is located by value and
not via pointers or physical position, as is the case with hierarchical and network
DBMSs

The DDBMS allows a more accurate representation of how information exists within
an enterprise. Since companies typically have many geographically dispersed
computers, it is logical to assume that data is also organized this way. Aglobal database
draws from multiple, physically dispersed databases. This is ofgreat advantage to the
user. For instance, let's say you were the chainnan of Ford Motor Company and you
wanted to design a new ad campaign for the Escort. Before you sat down with your
advertising people, perhaps you felt it would be good to review some demographic
infonnation on the people that bought Escorts over the past year. With a DDBMS, you
could issue a SQL query that would retrieve the needed data from various databases
residing in San Francisco, New York, Paris, Rome etc. How this information is retrieved
and delivered to your screen would be transparent to you, and would be handled by
the DDBMS.

A distributed DBMS allows the user to request information from a database without
having to worryabout how it is being retrieved. The data integrity on the various nodes
of a DDBMS is maintained, and each node is controlled locally. The data on multiple
databases can also be easily accessed or modified.

The Evolution ofRelational Technology 3235·8

LocA11ON TRANSPARENCY of data is accomplished by a data dictionary that maintains and
coordinates distributed transactions. The locations ofall tables, rows, indexes, etc. are
found in the data dictionary which is referenced by the DBMS when a distributed
transaction is issued. The user issuing a query against a remote database does not need
to know where the data is located since the database engine performs the search.

When a table is modified that is referenced by another table on a different node, both
the referencing and referenced table need to maintain the same value in both tables
for a common column. This concept is known as referentialintegrity. It canbe defmed
as the enforcement of relationships among data. It is based on the concepts ofmaster/
detail relationships between tables and primary (pK) and foreign keys (FK). This can
be illustrated with the DEPARTMENT and EMPLOYEE tables below. If a new
employee, Clark, is added to the EMPLOYEE table with a department number of 15
an errorwill be returned. The detail table (EMPLOYEE) will reference the master table
(DEPARTMENl) and fmd that 15 is not a valid department number.

Refenaeecl Table (1D88ter table) RefereadDg tabb (depeDd_t tabIle)

EMPLOYEE

Employee Employee Job Muapr Department

Department Loc:atioD Number Name Number

Umber Name 8941 10DeI SalClDWl 8941 10
10 Sales SaD Diego

6578 Smith Cak 7465 30
20 0perati0Da SaD PIIDdaco

3276 1lobeItI ADalyat 9287 20
30 AccountiDa NewYark

t
7642 JoImIoD Muapr 9933 10

I

DEPARTMENT

Department
N

Consistency of data across database nodes is enforced with a mechanism known as
two-pbase commit. In a perfect world with no system failures, there would be no need
for such a mechanism. However, a system can breakdown during a distributed
COMMIT transaction (save to the database) which can create an inconsistent state in
the database. To maintain data integrity, the transaction is done in two phases:

e Prepare Phase-The node that issues the COMMIT (parent node) asks
each of its dependent nodes (child nodes) to notify it when they are
prepared to commit their part of the transaction. They are told not to take
any action, until instructed to by the parent node.

e CommitPbase-The parent node commits, unless there has been a failure
during the Prepare Phase. Ofafailureoccurs, theparentnode rolls baclJ
does not execute-the transactionJ The parent node then instructs each
child node to commit or roll back the transaction. Each child node then
infonns the parent node that it has committed or rolled back the
transaction.

Relational DBMS will lead the way to the Widespread use of distributed databases.
They will profoundly effect how data management is handled. For example, users will
be able to tap global databases and draw inferences from data residing on separate
databases located all over the country or the world. This will be possible without the
user having to know about where the data is located, or how it is extracted. DBMSs

The Evolution ofRelst/onal Technology 3235-9

with open architecture will make distributed databases even more invaluable to the
data manager. A DBMS with an open architecture provides tools that pennit access
to heterogeneous DBMSs (i.e., relational to network, relational to hierarchical). Any
MIS manager that has to deal with more than one DBMS to manage data will find an
open architected DBMS essential. It protects the considerable investment made in one
DBMS architecture and still allows work to proceed in another. Many relational
database vendors already offer heterogeneous D.BMS tools.

Future DBMS Trends

The amount of information that is currently accessible is growing at an exponential
rate. Take online text databases as an example. By the late 1980's there were over
two billion documents stored in databases. In 1979, there were 400 online text
databases worldwide. By 1988, the number was in excess of 3000. This is only an
approximation of the public online databases. There are many proprietary databases
that are not accessible to the general public. There are also millions of databases
containing information on almost anything imaginable (such as sales, inventory,
financial information, and market research).

This information is only useful if the user can retrieve what is needed. The database
engine must have highly sophisticated data access paths. Just as relationalDBMSs
handle more database searching than their hierarchical and network predecessors,
future DBMS technology will be even more intelligent when it comes to retrieving
infonnation. The user's ability to process and locate information may not improve
dramatically even though the amount ofonline data is increasing at a steady rate. The
DBMS must retrieve data more efficiently. It is a safe assumption, given its simple yet
powerful design, that the relational data model will be able to accommodate the next
stage ofDBMS evolution without forcing its users to make drastic changes in how they
manage their data. Users will be able to use their existing applications, and take
advantage of the new technology as it becomes available.

One way ofmaking a relational database more intelligent is to use a more sophisticated
indexing process where the index is based on concepts or objects rather than
individual keywords. This approach is often referred to as object-orlented data
modeling. An object can be thought of as anything that can be defined as a noun or
a noun phrase. This approach represents data in a format which is very close to the
user's perception of real world data. A person, a concept like DNA, a picture, or an
architect's design can all be thought ofas objects. An object is defined by its attributes.
For a car, the attributes might include model, year, color, and horsepower. The
concept of the class is important to object-oriented databases. Every object is a
member of specific category or class. A class may also be defined as a subclass of one
or more other classes. An example would be the Chevrolet ColVette, which is a
member of the American sports car class, which could be a subclass of the sports car
class, which could be a subclass of the automobile class, and so on. How the classes
and subclasses interrelate is a matter of database design.

The relational model will be able to handle the evolution to object-oriented design
without traumatizing data managers. Every row in a table can be thought of as
containing a database object. The object can be identified by the tables primary key,
and the class of the object can be thought of as the table in which the row resides. By
enhancing the current relational data model to include features of the objeet-oriented
model the evolution of the DBMS will move towards an objeet-oriented approach
where the relational model sulVives as a subset of the overall object-oriented model.

The Evolution ofRelational Technology 3235-10

New DBMS architectures take a few years to mature to the point where they can be
used in production environments. Because the relational model will evolve from its
current state to a more object-oriented model, the data manager will not have to start
from scratch in order to take advantage of the latest DBMS technology. Applications
will be enhanced gradually by taking advantage of appropriate features as they are
developed. There will also be no need to decide whether an application will run
against a relational database or the newer objeet-oriented database. It is possible that
an application will span relational and objeet-oriented designs. A single query could
retum results by accessing both tables and objects which will coexist in the same
database.

This step in the evolution of DBMS design will be transparent to the end user.
However, the enhanced power and flexibility of future database designs will permit
the development of highly advanced user interface tools that will make infonnation
highly accessible to those who need it. This will result in more efficient use of
infonnation and greater productivity.

Conclusion

Relational database technology provides today's data managers with an easy-to-use,
flexible, and powerful way to access the information required to run their businesses.
While it was once considered to be strictly an academic endeavor, it has evolved
beyond its hierarchical and network predecessors to become the state of the art in
database management systems. By taking advantage of today's powerful CPUs
relational technology has been able to provide the speed once reselVed only for
hierarchical and network databases and the usability that was previously lacking in
those earlier DBMS designs. Relational database performancewill continue to improve
by taking advantage of future advances in CPU power.

Client-server computing and distributed databases based on relational technology will
help users and application developers fmd new and innovative ways to access and
utilize their information. Object-oriented databases will eventually evolve out of the
relational model. Data will be conceptualized in a different way. This will allow
businesses to use the information at their disposal to its fullest potential. The relational
data model will be a big part of this evolution, so data managers will not have to make
drastic choices about which DBMS technology to use. Relational database technology
is the tool that will allow businesses to manage their complex data needs today and
in the future.

The EvolutIon ofRelational Technology 3235·11

lIP Motif XL: Tbe X Window System on MPE XL
Paper Number 3236

Scott Cressler

Hewlett-Packard
19447 Pruneridge AveDue

Cupertino, CA 95014
(408)447-5548

HP Motif XL is the implementation of the X Window System, the Xt Toolkit and the
OSFlMotif widget libretry for MPE XL. This paper will discuss the components of an
application which uses HP Motif XL to present a graphical user interface from an HP 3000
Series 900.

X OVERVIEW

The X Window System is an industry standard application programming interface. Developed
and maintained by the Massachussets Institute of Technology (MIT), X can be used by an
application developer to present a graphical user interface. lbis interlace can be displayed on
a high-resolution display connected to the machine on whicb the application is executing or on
another machine on the network. lbis distributed nature is achieved through the client/server
architecture of the X Window System. The application acts as a client, requesting user
interface services from a process called the X display server. This process manages the higb
resolution display, the keyboard and the mouse of the machine acting as the X display. It also
informs the client application when the user provides input.

Applications which use X to present their user interface enjoy two types of portability. The
interface pan of the application can easily be ported, through recompilation and relinking, to
any system which supports the X libraries. Additionally, the protocol used to communicate
from the client to the display server is standardized so a client can display on any X display
server, regardless of hardware or operating system.

The ability to present a windowed, graphical user interface over a network is provided through
a set of programmatic interfaces called the X library (XIib). This library is very flexible,
imposing few constraints on the X developer. However, this flexibility also causes program
development to be quite tedious. Fortunately, another library out of MIT, the Xt Toolkit,
provides a set of programmatic interfaces which significantly ease the creation of an X user
interface. Xt supports the creation and use of widgets. "Widget" is the name given to a set of
functions and data structures which, when used by an application with the Xt interfaces, will
display and manage user interaction with a piece of a user interface. For example, a "push
button widget" would display a button and then inform the application when the user has
"pushed" the button with the mouse. A library of these widgets can be used to create an entire
X user interface without having to use Xlib functions directly.

One such library of widgets, which is gaining much acceptance in the industry, is from the

HP Motif XL: Tbe X Window System OD MPE XL 3236-1

Open Software Foundation (OSF) and is called OSFlMotif. Witb the OSFlMotif widgets an
application can present an X user interface which has a three-dimensional appearance and
behavior. This user interface would also be consistent in appearance and behavior with
Microsoft's OS/2 Presentation Manager (PM) (and Windows 3.0), reducing the training time
needed for a user accustomed to PM to learn an OSF/Motif application. The ease of a user
who is familiar with one type of user interface to use other programs with a similiar user
interface is called "user portability." This is a portability benefit enjoyed by OSFlMotif
applications which is not as easy to achieve using X alone.

HP Motif XL is the implementation of these three programmatic interface libraries on l\.fPE
XL. It consists of the Xlib, Xt and OSFlMotif libraries and the header (or include) files
necessary to allow an OSF/Motif application to be compiled, linked and run on an HP 3000
Series 900. This application, written in the C language, will then be an X client application
and can display on an X display server connected to the same LAN. An HP 9000 workstation
is an example of an X display server.

THE APPLICATION

This paper will center around a small HP Motif XL application. The application is a Pizza
Price Calculator, which is called PIZZA. lbrougb a set of buttons, the user chooses the size
of the pizza and the toppings. As each topping is chosen, the new price of the pizza is
displayed. There are also buttons for choosing all toppmgs, for choosing no toppings and for
exiting the application. A complete listing of the C language source code of the application
can be found at the end of this paper.

This is the appearance of the user interface of the PIZZA application:

The Pizza Price Calculator

Altbough this application is fairly trivial, it is a good example to demonstrate the use of X and
OSFlMotif. It can also be seen in more general terms as an application to detennine pricing of
a product being ordered.

3236-2 HP Motif XL: The X Window System on MPE XL

TERMINOLOGY

This section contains the definition of several terms which will be used in the paper. You
might scan it now and use it for reference later.

Application Class Name - This name is used to group applicatiODS into similar classes. Any
resources (see below) which are defined for a given application class name will apply to any
application which specifies that name during initialization.

Events - The display server informs the application of input in its window, the need to redraw
its window because it was overlapped and is now exposed, or other interesting occurences by
sending the application "events."

Gadgets - A simplified form of a widget. Although gadgets lack some of the functionality of
widgets, such as the ability to have their colors individually customized by the user, they are
faster than widgets and use less memory. For this reason, gadgets should be used wherever
possible.

Geometry - The geometry of a widget is its size and placement in the window.

Resources - A resource is a customizable attribute of an application and its user interface,
e.g., the foreground color of the application window or the font used in displaying text.
Resource values can be specified by the developer, system manager or user through
configuration files, called resource files. They can also be specified on the command line when
the program is executed.

WidgetS - A widget is a set of functions and data structures which can be used and reused by
an application to display and manage user interaction with a piece of a user interface.

HP Motif XL: Tbe X Window System on MPlE XL 3236-3

MAIN APPLICATION BODY

The main() function of a C program is the one which is executed when the program is run. X
applications all have fairly similar mainO functions. This section will "step through" the major
components of the main body of the PIZZA application. The following is the source of the
mainO function:

aain(argc, argv)
iDt argc;
char ••argv;
{

irg &1[1];
iDt ac;
ItlppContext app;

initializelnfo();

topLevel = ItAppInitialize(aapp, /. (default) application context */
"Pizza", /* application clus JUUle */
lULL, /* no options */
0, /* Dumber of optiOD8 */
aargc, /* u8ed to get standard co_and liDe */
argv, /* options and applicatioD DUle */
lULL, /* no fallback resources ./
al, /* DO args */
0); /* DO arg8 */

/* Tell Shell to resize if its children (specifically geometry
aanaging children like Foms) ask it to.•/

ac = 0;
XtSetArg(al[ac], lIIIallovShellResize, True);
ac++;
XtSetValues (topLevel, all ac);

createlnterfaceVidget8();

ItlealizeVidget(topLevel)i

ItlppMaiDLoop(app);
}

Declantions

The declarations of al and ae are peculiar to an application which uses widgets through Xt.
"AI" stands for "argument list" and "sc" for "argument count". An argument list is a structure
which is used to specify resource values when creating a widget or modify the resource values

3236-4 lIP Motif XL: The X WIndow System on MPE XL

of an existing widget. This topic is discussed more in the section "Allow Shell Resizing" below.

Initialization

After the declaration portions, the following statements are the first statements of the program:

initializeIDfo();

topLevel =ItAppInitialize(tapp. ,. (default) application context ./
"Pizza". ,. application c1us DUe .,

lULL. ,. DO optione .,
O. ,. Duber of OptiODlS .,
tarlC. ,. uaeel to set standard cOlDlUld liD••/
ur. ,. options uuI app1icatioD lLUe ./
lULL. ,. DO fallback resources .,
al, ,. DO arl8 .,
0), ,. DO arlS .,

The first function called, initializelnfo{), is a local function to the PIZZA application which
simply initializes some arrays of information about the prices and names of the pizza toppings.
In a real application this function would probably access a database to obtain this information.

The next function, however, is a call to the Xt function XtAppInitialize(). Every application
which uses Xt must call this function before using any other Xt interfaces. XtApplnitialize()
performs several important tasks. It reads all the user and system resource files to create a
database of resource values for use by the application and its widgets. lbis function also
makes the connection with the display server process.

XtAppInitialize() also searches the command-line arguments to the program for some standard
parameters, such as the display server name and the background and foreground colors of the
application.

Finally, XtAppInitializeO creates a shell widget. It is the first widget created and handles any
communication with the window manager. 1bis widget will also be the "parent" of all other
widgets in the application. It has a widget ID which is functionally returned and saved in the
topLevel variable.

The first parameter of XtApplDitialize() is the address of an application context structure
which will be initialized by this function. The application context is a structure maintained by
Xt which contains information about the application. Most applications, including PIZZA, do
not directly manipulate the application context, ~t it must be passed to other Xt routines.

The second parameter identifies the class name of the application. This name is used when
determining which resources found in resource files apply to this application. Multiple, related
applications can share .an application class name. The program name of the application

BP Motif XL: The X Window System on MPE XL 3136-5

(obtained by XtAppInitialize from argv) is also used for finding resources specific to this
particular application, as opposed to all applications in the same class. Resources are too large
a feature of X applications to cover in this paper. For an exceDeDt discussion of resources and
application classes, see the "X Toolkit Iotrinsics Programming Manual" in the bibliography.

The next two parameters of the function are used when the application wishes to define some
of its own command-line arguments to be handled by XtAppInitialize(). The PIZZA
application does not use this feature, so these parameters have been initialized to NUlL and o.

Argv and argc are passed in the next two parameters to XtApplDitializeO. Argv and argc are
standard parameters in the main function of any C language program. On MPE XL, the
INFO string of a program is parsed (by C startup code), and the resulting array of string
arguments is passed to the program as argv. Argc is a count of the number of these arguments.
When J'UIlDing a program using Xt, some standard parameters, such as the display server and
the foreground and background colors, may be specified in the INFO string. This information
is used by Xt and is obtained by passing argv to XtApplDitialize().

As discussed earlier argv is parsed by XtAppInitializeO. Any standard command-line options
found in argv, such as the display name, are removed from the argv array.

The NULL passed in the next parameter indicates that PIZZA will not be using the fallback
resources feature of XtApplnitializeO.

The final two parameters are used if the caller wishes to customize the sheD widget which is
created by this functioD.

AUowing SheD Resizing

The next section of the mainO function is the foDowing:

ae = o.
ItSetAra(al [ae]. ldallovShellllesize. True);
ae++.
ItSetValues(topLevel. al, ae);

XtSetValues() is an Xt function which can be used to set resource values after the widget has
been created. As discussed earlier, aI is an argument list which consists of an array of resource
name and resource value pairs. The function XtSetArg() is used to add an entry to the list. In
this call to XtSetArg(), an entry is being added to the argument list to specify that the resource
referred to by the XmNaUowShellResize CODStant is to be set to true. Setting this resource to
true allows cbi1dren widgets of the SheD widget to request geometry changes, including resizing
and repositioning. This is necessary because the PIZZA application requires some of its
widgets to resize during the execution of the program. For example, the Label gadget in which
the calculated price is displayed chaDges size to fit the length of the price.

Create And Manage Widgets

3236-6 lIP Motif XL: The X Wmdow System on MPE XL

In mainO, the function createInterfaceWidgetsO is called next. 1bis function creates and
manages all the widgets in the user interface of the application. Creation of a widget consists
of allocating and initializing the data structures in the application to control the appearance and
behavior of each widget.

Widgets which are created specifying a widget as their parent are called children of that widget.
A parent widget usually controls the layout, that is, the location and size, of its children. The
only widgets which have children are widgets whose purpose is to control layout. The Form
and RowColumn widgets of OSFlMotif are such widgets and will be discussed in the
"Geometry Managers" section.

After aeating a widget its parent is informed that·· it must manage this cbi1d, which consists of
controlling its geometry.

1bis createlnterfaceWidgets() function is discussed in detail in the sections "Creation Of
Widgets" and "Callback Functions".

Realize The Widgets

Creating the widgets does not involve communication with the display server and so does not
result in anything visible on the display. This process of creating windows on the display and
making them visible is called realizing the widgets. The function XtRealizeWidget() performs
this task for the widget passed to it and all descendants of that widget. For this reason,
XtRealizeWidget() is called with the widget ID of the toptevel widget which is the parent of
all the widgets in the user interface.

Process Events

The main part of any X program is a loop which waits for the next event from the server and
then processes it. In an Xt application, all events are processed by the Xt code. Application
work is done through callback ,functions,. which are discussed in the "Callback Functions"
section. The loop which processes events is, therefore, cont8med in the function
XtAppMainLoop(), which is called at the end of the main() function. .

lIP Motif XL: The X Window System on MPE XL 3236-7

CREATION OF WIDGETS

AD Example Creation

The following code from the createInterfaceWidgets() function creates and manages the
PusbButtonGadget which will be used to exit the application. 1bis code illustrates the process
of creating and managing a widget:

ae = OJ
DStriDgPtr =

bStriDgCreateLtol(tllxit", lIISnIIG_DEFAULT_Cl.&aSET) j
ItSetArs(al [ae] , lIIIlabelStrins, DStriJllPtr) j
ae++j
ItSetArs(al [ae] , ldtopAttachaeDt. IIllTTACB_OPPOSlTE_VmGBT) j
ae++j
ItSetArg(al [ae] , ldtopVidget, prieePuahButtonGadget) j
ae++;
ItSetArg(al [ae] , ldriptAttachaeDt, lUTTACB_FOIJI);
ae++j
ItSetArg(al[ae], l1IIriptOff••t, 10) j
ae++j
exitPushButtonGadget ..

lJIlCreatePushButtonGadget(fora, "exitPushButtonGad&ettl , al, ae) j
ItManaseChild(exitPuahButtonGadlet);
lmStringFree(zmStriDsPtr);
ItAddCallbaek(exitPuabButtonGadset.lmlaetivateCallback,

exitCallback , (ItPointer)O);

This code performs the following tasks which are common to the aeation of most widgets:

• Specify the values of several resources in the argument list to control the creation of the
widget.

• Create ~e widget.

• Inform the parent of the widget that it is to manage this cbild widget.

• Register a callback function for the widget.

The call to XmStringCreateLtoRO is an OSFlMotif function to create a structure called a
compound string. Compound strings allow control over the direction of the display and the
character set used when displaying a string. The function caD used here specifies that the
string "Exit" is to be displayed from left to right using the default character set. A pointer to
the structure which has been created is retUrned and passed to XtSetArg() to specify the string
to use as the label of the push button.

The Form widget is the parent of the exitPusbButtonGadget gadget. The other four calls to

3236-8 HP Motir XL: The X Window System on MPE XL

XtSetArgO set up resources used by the Form. The Form widget uses these resources to
determine how to control the geometty of the exitPushButtonGadget gadget. The Form widget
is discussed in more detail in the "Geometry Managers" section.

The call to XmCreatePushButtonGadgetO aeates the data structures needed by Xt to
implement this widget. The first parameter indicates that the Form widget whose ID is stored
in the form variable is to be the parent of the new push button gadget. The next parameter is
the resource name of the widget, which can be used when specifying resources specific to this
widget. The last two parameters are the argument list and the count of the number of
arguments which are used to inOuence the creation of the widget.

Next the parent of the widget is informed that it is to manage the size and placement of this
new widget through a call to XtManageawdO.

The call to XmStringFree() simply frees the memory allocated by XmCreateStringLtoRO.

The final function call adds a callback function for this widget. Callback functions are
discussed in the "Callback Functions" section.

Widget Hierarchy

The widgets which art; aeated by createInterfaceWidgets() form a tree structure of parents and
children. The following figure illustrates this widget tree:

I
rowColumDl

~

tideLabelGadget siz.eFrame toppiDpFrame price"ndeLabe1Gadget

'"
pric:eFnune

I
priceLabe1Gadgct

tog!eButtooGadgetl •.•3 togleButtoDGadgetl •••9 DODCPusbButtDDGadget everythiDsPusbButtoDGadact

PIZZA AppUcation Widget Tree

The Form widget is used to manage the placement of the other widgets. Frame widgets simply
create a visible frame which resizes to enclose its cbildren. The first frame, sizeFrame, has one
child which is a RowColumn widget. RowColumn widgets are used to organize their children

HP MotU' XL: The X Window System 011 MPE XL 3236-9

into rows and columns. This widget is used to align its three ToggIeButtODGadget children in a
horizontal row. ToggleButtonGadgets are buttons which represent a state, either they are set
or unset (pushed down or popped up). They usually provide the user a choice. These toggle
buttons are used to choose the size of the pizza, small, medium or large._-J

Size BuUODs Appearance

The diamond shape used for these toggle buttoDs is specified using the XmNindicatorType
resource during creation. This sbape indicates to the user that the buttons will follow "radio
button" behavior, that is, only one of the buttons can be set at a time.

The next frame, toppingsFrame, also bas a RowColumn as its cbi1d. 'Ibis RowColumn has
several ToggIeButtonGadgets as its cbildren which it organizes into three rows. These toggle
buttons are used to specify what toppings the pizza is to have (the square shape of the toggle
buttons indicates to the user that more than one button can be set at one time). There are also
two PushButtonGadgets which are used to specify that the pizza is to have "everything" (all
toppings) or no toppings.

Topping Buttons Appearance

The last frame, priceFrame, contains a LabelGadget. A LabelGadget simply displays a string.
This is where the price of the pizza is displayed.

prlceFreme
prtceLebelGedget

PrIce Label

3236-10 HP Motif XL: The X Window System on MPE XL

The exitPushButtonGadget was discussed above. A PushButtonGadget presents a button
which appears to be pressed when the mouse is clicked on it and then rebounds to its unpressed
appearance. They usually represent an action the user can perform, such as exiting the
program.

exitPushButtonGedget~
Exit Button

CALLBACK FUNCTIONS

Since all user input, through events, is processed by the Xt and widget code, bow does the
application get a chance to react to user activity? . The answer is a mechanism called callback
functioDS. A callback is a function which has a predefined interface and which is called when
certain events or combinations of eVents have occurred. For example, when a
PushButtonGadget is pressed, several events are generated. 'These events inform the client
application that the mouse button was pressed,' that it was pressed in the PusbButtonGadget,
and that it was released while still in the PushButtonGadget. Functions registered as Activate
callbacks for this PusbButtonGadget win only be called if all these events are generated. For
instance, if the mouse button is pressed in the PusbButtonGadget but released outside of the
gadget, the Activate callbacks are not called.

The documentation for a widget itemizes the callbacks which make sense for a given widget
and under what conditions each callback will be called.

A widget maintains a list of the functions which are to be called when a given callback
condition occurs. The application adds its function to that list by calling the Xt function
XtAddCallback().

Here is an example Activate callback for the Exit push button:

static void
exi~Callbaek(widge~. elieD~_da~a. eall_da~a)

Widget widget;
caddr_t clieDt_da~a;

caddr_t call_data;
{

exit();
)

When this function is called, the first parameter, widget, will c:ontain the 1D of the widget
which called it. The second parameter is called clienLdata because it can be used by the
application (remember, X applications are called clients) to pass information to the callback.

HP Motif XL: The X Window System on MPE XL 3236-11

This is most useful when the same callback function is called by several widgets. The
client_data field can easily be used to identify the reason the callback was called. aient_data
will be discussed further below. The third parameter,. call_data, is used by some widgets (as
opposed to the application) to pass information to the callback.

This is the code which adds this callback function to the Activate c:allback function list for
exitPushButtonGadget:

.xi~PushBu~~oDGadge~ =
lIaCreatePu8hButtonGadget (10m. ".xitPuhButtonGadget". &1. ac);

ItKanageChild(exitPuahButtonGadget);
lmStringFree(zaStringPtr);
ItjddCallbact(exitPuahButtonGadget.lalac~ivateCallback.exi~Callbact.

(ItPointer)O)i

The widget must be created before a callback can be added. XmNactivateCallback is an
OSFlMotif constant which specifies the type of callback to. the widget. The last parameter is
not used in the case of the exitPusbButtonGadget. 'Ibis parameter can be used by an
application to specify client data. The value of this parameter will be passed in the clieDLdata
parameter when the widget code calls the callback.

3236-12 HP Motif XL: The X Window System OD MPE XL

Here is a graphic representation of the use of a callback function to implement the Exit button:

SERVER

Button is pushed

CLIENT

main() {

Initialization LtAddCal1back(~tPushButtODGadget, ... ,

Crea
eIItCallback, ...);

te widget
Register callback
XtMainLoop();

~__---l.~ Dispatch event to PusbButtonGadget code ~

PushButtonGadget code {
Determine that Activate bas occurred
Call Activate callback functions ---_

exitCallbackO {

}

Exit CaDback

A good eDJDple of the use of clienLdata is the callback triggered when the "pizza size" toggle
buttons are selected:

8tatic .oid
8izeButtoDValueCbansedCallback(vidlet.8izeIDdex. call_data)
Vidset wiqet;
ca4dr_'t 8izeIJulex i
caddr_t call_data i
{

ch08eDSize • 8izelDdexi

calclPriDtPrice();
}

And some code fragments from the creation of the toggle buttons:

HP Motif XL: The X WiDdow System on MPE XL 3236-13

for (i=O; i < IUM_SIZES; i++) {

ac =0;
if (i == choaenSize) {

/* This ia the default size. sust .tart the button as pressed. */
ItSet&rg(al[ae]. Idset. True);
ac++;

}

zmStriDgPtr =lmStringCroateLtoR(sizeArray[i] ••izelame.
lmSTRIIG_DEFAULT_CBARSET);

ItSetArs(al[ae]. XdlabelStriDg. DStringPtr);
ae++;
I'tSet&rg(al [ae]. ldindieatorType. laDlE_OF_OIY) ;
ae++;
sizeArray[i].vidge'tID =ImCreateToggleButtonGadget(rovColumn1.

sizeArray[i] .sizeJUle. &1. ac);
I'tManageChild(sizeArray[i].vidgetID):
lJIlS'triDgFree (DlStringPtr) ; ,
ItAddCallback(aizeArray[i].widgetID.laIvalueChangedCallback.

sizeButtonValueChangedCallbaek. (I'tPointer)i);

}

The above "for" loop creates three toggle buttons. The widget IDs are saved in an array. As
each gadget is created, a callback is added to its valueC1anged callback list. The
valueChanged callbacks are called when the toggle button is pressed by the user, changing its
state from set to unset or vice versa. The index in the sizeAnay of widget information is
passed as the fourth parameter of the XtAddCallback() call. This is the client data parameter
and will be passed in the second parameter when the callback is called. This parameter of the
sizeButtonValueC1angedCallback() function, sizelndex, is assigned to the chosenSize global
variable. The chosenSize variable is used when calculating the price of the pizza to index into
size'AlTay to get the base price of a pizza of the chosen size.

The effect. is that when a size togglebuttOD is pressed, the widget calls the
sizeButtonValueC1angedCallbackO function, chosenSize is updated, and calcNPrintPriceO is
called. 1bis latter function uses chosenSize, the sizeAnay and the information about the
chosen toppings to calculate the current price of the pizza and display it in the
priceLabelGadget.

3236-14 HP Motif XL: The X Window System on MPE XL

GEOMETRY MANAGERS

As mentioned earlier, some widgets exist simply to constrain the layout of other widgets. The
layout of a widget consists of its size and location in the window. Two of these "constraint
widgets" are used in the PIZZA application: the Form and the RowColumn.

Forms

The purpose of an OSFlMotif Form widget is to JD8D8ge the layout of its cbildren. rust the
Form is created and then each widget is created, specifying the widget ID of the Form as its
parent. When a widget is the cbi1d of a Fmm, some new resources can be specified for that
widget. They define to the Form what kind of positioning on the Form the widget should
have. Attachments for the left, right, top and bottom sides of the widget can be specified.

Here is an example of the use of these CODStraints:

ac =0;
DS~riDg~r=

bS~ringCrea'teL~oR("Pizza Price". IJISTlIIG_DEFAULT_CUISET);
I~Se~Arg(al[ac]. IdlabelS'triDs. DStriDgP'tr);
ac++.
I'tSe~Arg(al[ac]. JaIbo~'tOll1't~acJuaea~.laAn'lCB_FOU);
ac++;
I~Set!rg(al[ac].Jdbo~tollDff8e~.10);
ac++;
I~Se~Arg(al[ac]. Jdlef~&'t~achlleD~.IaATI'&CB_OPPOSlTE_VIDGET);
ac++;
I'tSetArg(al [ac]. ldleftVidget. ~oppiJlgaFrUle);

ac++.
I~Se~&rg(al[ac]. IJDItoplt~achmeDt. la&TTACB_VmGET);
ac++;
ItSetArg(al[ac]. Jd~OpOff8ca~. 10).
ac++;
I~Se~.lrg(al[ac]. IdtopViqe~. toppiD&8Frue);
ac++;
priceTi~leLabelGadg.t=

bCreateLabelGadlet (fom. "prie.Ti~l.LabelGad&.t".all ac);

This is a code fragment from the creation of the LabelGadget which is displayed next to the
calculated price. It displays the string "Pizza Price". The values given to the
XmNbottomAttaehment and XmNbottomOffset resources define that the bottom of the
LabelGadget will be attached to the bottom of the Form with an offset of ten pixels. If the
Form is resized, the LabelGadget will stay ten pixels from the bottom of the Form.

The next two resources specify that the left side of the LabelGadget is to be attached to the left
side of the toppingsFrame widget. Notice the use of ATIAQLOPPOSITE..WlDGET rather

HP Motif XL: The X WIndow System on MPE XL 3236-15

than ATIACH_WIDGET. AlTAca.WIDGET would attacb the left side of the
LabelGadget to the right side of the frame. Since the goal is to align the left sides of these
widgets vertically, AlTAca.OPPOSITE_WIDGEr must be used.

Fmally, the Dext three resource value assignments will Cluse the top of the LabelGadget to be
attached to toppingsFrame with an offset of ten pixels.

Here is what the LabelGadget looks like when positioned:

leftWtdget
end

topWtdget

topOffaet {

bot t omOff set {

prtceTttleLebelGedget
priceTitleLabeiGadget Form Positioning

This practice of attaching widgets to each other is much more flexible than specifying the X
and Y coordinates.. It is also easier because determining the X and Y coordinates in pixels can
be tedious.

RowColumn

The main purpose of the OSFlMotif RowColumn widget is to arrange. its child widgets in rows
and columns. Using a RowColumn widget removes the responsibility of determining exact
positions from the application developer. The RowColumn will also automatically adjust
positions of its children when new child widgets are added.

When the number of widgets which must be organized into rows and columns is unknown at
the time of writing the application, a RowColumn is indispensible. In the PIZZA application,
the toppings widgets are currently 'bard-coded" into the initialization function. However, the
application is written to create the topping toggle buttons in a loop, and they are all created as
children of a RowColumn. This means the application could easily be changed to read the
toppings from a file. and create the Dumber of toggle buttons necessary. They would all be
arranged nicely in the RowColumn, regardless of bow many were created.

An additional feature of the RowColumn widget is its ability to manage behavior as weD as

3236-16 HP Motif XL: The X Window System on MPE XL

layout. The following code fragment is from the creation of the RowColumn containing the
toggle buttons which are used to choose the size of the pizza:

ItSetArg(al [ae]. laIradioBehavior. True);
ae++;
rovColUllJ11 = laCreateao.co11Ul1l(aizeFrue. "rovCo11llm1" • al, ac:);

Only one of the size toggle buttons should be set at a time, since only one size of pizza can be
selected at any time. By setting the XmNradioBehavior to true for the RowColumn, the
RowColumn itself will prevent more than one of its cbild toggle buttons from being set at a
time. When one of the toggle buttons is pressed, the one which was currendy pressed is reset.
Although this feature could be implemented by the application developer, it is a great boost to
productivity to have the RowColumn provide it. To give the use a~ queue that these
buttons are radio buttons, the XmNindicatorType resource of each toggle button is set to
XmONE..OF-MANY when they are created. This gives them the diamond shape which is
defined for radio buttoos by the OSFlMotif Style Guide.

BUILDING TIlE APPLICATION

The focus of this paper 10 far has been a discussion of the use of OSFlMotif and the Xt
Toolkit. These discussions are general to any platform supporting these two application
programming interfaces (APIs). This section, however, will discuss !topics specific to HP Motif
XL, the implementation of these APIs on MPE XL.

Pradud Structure

The liP Motif XL product will be located in an MPE XL account called HPX11. All header
(include) files, including those for X, Xt and Xm (OSFlMotif), will be included in the group
H.HPXll. The relocatable libraries (RLs) with which an HP Motif XL application must be
liDked are located in L1B.HPX11.

CompiUng

So how is the PIZZA application compiled? Assuming that the file PlZZAC contaiDs the
source, the following command would perform the compile:

:c:c:zl pizzaC:.JPizza.lpizza;iB1oDN-IB.BPI11"

This command will compile the source in PlZZAC into an object file called YPIZZA and
produce a listing file called LPIZZA.

The INFOm string in this command is very important, but before discussing it you should
understand how the C Compiler on MPE XL (CCXL) handles include statements. The

HP Motif XL: The X Window System on MPE XL 3136-17

following is a typical set of include statements in an OSFlMotif application and, in fact, are
used in the PIZZA application:

'include <1aI1Il.h>
.include <lll/Shell.h>
'include <la/Form. h>
'include <lm!RowColwm. h>
'include <Ill/IntrinsicP.h>

For those versed in the use of X and OSFlMotif on a UNIX platform, the hierarchical
organization of header files. is familiar. These statements in a C program specify that the files
named Xm.h, Form.h and RowColumn~hare to be included from the Xm~directorylocated in
the system default header directory (/usrrmcludeon most UNIX platforms). Notice that the
case of the flle names is significant, e.g., Form.h is different from form.h.

All of these include statements would have to be. changed when compiling on MPE XL except
for a feature of CCXL. When the CCXL preprocessor encounters something of the form:

'include <lm/lm.h>

It ·strips the prefix and postfix and searches for a file named XM in the H' group of the SYS
account. However, the include files for HP MotiiXL are located in·H.HPXl1. To resolve
this problem, the "-I" option passed in the INFO:::: string allows the developer to override the
standard search path for header files. Given the above CCXL command, when the
preprocessor encounters the above include statement, it will search for the file XM in the group
H.HPXll before searching in H.SYS.

Without these two features ofCCXL (the preprocessor's stripping' of prefixes and postfixes and
the "·1" option) all includes in :In X application would have to'bedifferent on MPE XL from
other platforms.

LiDkIng

After an object file is produced by a successful compile, the program file can be generated by
linking the object file. The following command would link the PIZZA application:

:liDt from=ypizzaito=pizz&irl=libxa.lib.hpxll,libxt.lib.hpxl1,a
libxl1.1ib.hpxl1.1ibc.lib••, ••libcr~.lib••, •• libcaD8i.lib.I,.

The FROM parameter specifies the name of the object file, and the TO parameter specifies the
name of 'the program file being generated..The RL parameter specifies a list of relocatable
libraries (RLs) to be linked to the object file. The code needed by the object file will be

3236-18 HP Motif XL: The X Window SyStem on MPE XL

included from the RLs in the program file. Due to dependencies in the relocatable libraries,
they must be specified in the order shown above.

Compatibility And Portability

Because HP Motif XL is a port of industry standard API libraries, its use bas significant
implications for the portability of an application. HP Motif XL is based on X Version 11,
Release 4 and OSFlMotif 1.1. An application written for those APIs will port easily to MPE
XL. An additional benefit for those shops supporting multiple platforms, the user interface
code of an application written with HP Motif XL will port easily to other platforms supporting
X and OSFlMotif.

There are several areas which must be addressed when either porting code to HP Motif XL or
writing code which is to be portable to another platform:

1. Include file names

2. Resource file names

3. XmFileSelectionBox behavior

The previously mentioned features of CCXL prevent the need for changes in most include
statements found in an OSFlMotif application. .However, the file naming limitations on MPE
XL prevent CCXL from handling includes where the name of the file is longer than eight
characters.

The following include statements are from the PIZZA application:

'include <Im/lovColumn.h>
'include <X11/In~riD.icP.h>

In this example, both RowColumn and IntriDsicP are longer than eight characters. For this
reason, the names of some of the header files are different on MPE XL from other systems
and the include statements must be changed. The following example is a good way to modify
the source so it will compile both on an MPE XL system and on other platforms:

'i1nde1 apexl
'include <lII/lovColllllD.h>
'include <X11/In~riD.icP.ll>

'el.. /* ~.xl *,
'include <lm!avColUllll.h>
'include <111'ID~rD8CP.h>

.endif ,* mpexl *,

The standard define "mpexl" is defined by CCXL. When this source is compiled on MPE XL,

BP Motif XL: The X Window System on MPE XL 3236-19

the files RWCOLUMN.H.HPXll and INTRNSCP.H.HPXll will be included.

The correspondence between the standard names of the header files and their names on MPE
XL will be documented with the HP Motif XL product.

Related to this discussion of header files, the following set of iDstructions must be included in
the source before including any HP Motif XL header files:

.ifdef apexl

.include <mpexl.h>

.edif

This axle will cause (when compiled for MPE XL) the header file MPEXL.H.HPXll to be
included. MPEXL.H.HPXll contains some definitions needed by the HP Motif XL header
files.

Another difference between HP Motif XL and X on other systems is also related to names.
Because of the limitations on file names imposed by the MPE XL file system, the names and
locations of the resource files used by X applications are different. For descriptions of the use
of these files,· please see the "X Toolkit Intrinsics Programming Manual" listed in the
bibliography. The following is a summary of the differences:

• Application Qass Default files are found in the group APPDEFLTS.HPXl1 on MPE XL,
Dot in the directory /usrllibIX11/a~defaults

• Application class names must follow MPE XL file naming roles if an Application Oass
Defaults file is to be used

• The user resource file is called XDEFAULT on MPE XL, as opposed to .Xdefaults on
UNIX

• The Xdefaults-host User Environment Specific Resource file is not supponed on MPE XL,
only the use of the XENVlRONMENT variable

Another HP Motif XL ponability concern is related to the OSF/Motif FIJeSelectionBox widget.
This is a sophisticated widget which is used when an application requires the user to choose a
file. The widget presents a window with a scrollable list of files from which the user may
choose. It is very specific to the UNIX-style hierarchical file system. In porting this widget to
MPE XL, its behavior was changed to reflect the structure of the MPE XL file system. The
function interface has not changed. However, an application which is being ported to MPE
XL from a UNIX platform and expects file names of the form found on UNIX may need
changes. lIDs is because once the user has chosen a file and the appropriate callback is called,
the application can get the file name string of the chosen file. On MPE XL this will be (if
fully qualified) of the form FILE.GROUP.ACCOUNT, whereas on UNIX this might have
been of the form /dirl/dir2ldir3/dir4/dirS/file. If the application processes the file name at all,
it will probably have to be changed for MPE XL. However, if it simply passes the file name
string to something like the C library openO function, it may continue to operate correctly
without change on MPE XL.

3136-20 HP Motif XL: The X Window System on MPE XL

CONCLUSIONS

The release of HP Motif XL on MPE XL will provide new options for HP 3000 Value Added
Business (VAB) partners. It can be used to port the user interface of applications written for
other platforms to MPE XL, iDaeasing the number and type of applications available for HP
3000 customers. It can be used to create user interface code on the HP 3000 which is portable
in a multiple platform shop.

HP Motif XL can even be used to add a bit-mapped graphic portion to an otherwise forms
oriented application. Imagine a VPLUS application which is used for analyzing the data in a
database. If this application were being used from a window on an X display, at the touch of a
function key the application could open an X Window and display a pie chart of the data.

WHERE TO GO FROM HERE

There are many good books available today discussing X, Xt and OSFlMotif programming.
HP also offers excellent classes in C programming and X and OSFlMotif programming.

lIP Motif XL: The X Window System on MPE XL 3236-21

BIBLIOGRAPHY

Hewlett-Packard, "HP OSFlMotif Programmer's Reference", Hewlett-Packard Company, 1989.

Nye, Adrian, "Xlib Programming Manual, Version 11", O'Reilly &. Associates, Inc., 1990.

O'Reilly, lim, "X Toolkit Intrinsics Reference Manual for X Version 11", O'Reilly &.
Associates, Inc., 1990.

Nye, Adrian and O'Reilly, Tun, "X Toolkit Intrinsics Programming Manual for X Version 11",
O'Reilly &. Associates, Inc., 1990.

Young, Douglas A., "X Window Systems Programming and Applications with Xt", Prentice
Hall,1989.

OSF and OSFIMotij are trademarks 01 the Open Software Foundation. X tmd The X Window
System are tTademarlcs 01 the Massachusetts Insitute 01 Technology. UNIX is a trademark of
AT&T.

3236-22 BP Motif XL: The X Window System on MPE XL

APPENDIX A: PIZZAC

/ •••••••••••••••••••••0 ••••••••••••••••••

•• A Simple BP Motif XL Example ••

•• ••
•• Author: Sco~t Cressler ••
•• Date 1/8/91 ••
o. ••
0 •••••••••••••••••••••••••••••••••••••••/

8ifdef apexl
#include <mpexl.h>
#endif

'include <stdio.h>
.include <string.h>
.include <lm/lm.h>
.include <111/Shell.h>
'include <1m/DialogS.h>
'include <1JIIForz. h>
'include <lm/Frue. h>
'include <lm/LabelG.h>

'ifndef mpexl
'include <lm/RovColumn.h>
'else /. apexl ./
'include <lIIl/RvCo11UllD.h>
'endif /. apexl ./

'include <1JIITouleBG. h>

'ifndef mpexl
'include <lll/IntrinsicP.h>
.else I. apexl .1
'include <111/IntrnscP.h>
.endif /. apexl ./

'include <WDialogS.h>

'ifndef apexl
'include <Protocola.h> /. vi11 be in /uar/inc1ude/lll or ••• /Ill/It .1
.elae /. .,ex1 ./
'inc1ude <Prtocols. h>
.edif /. apexl ./

/. Constant defiDitio~s for toppings. */

HP Motif XL: The X WIDdow System on MPE XL 3236-23

tel.fiDe IUII_TOPPIIGS 9
telefiDe OIIOIS 0
leiefiDe PEPPElOII 1
telefiDe J1USBlOOIIS 2
telefiDe OLIVES 3
telefine PllEAPPLE 4
telefiDe CUiDIAI_BACOI 6
telefiDe SAUSAGE 6
leIefiDe TOIl&TOES 7
letefiDe ElTU_CBEESE 8
letefiDe EVERYTBI.G 1000
letefine 10TBIIG 1001

.truet topping {
Widget vidgetID;
char .topping...e j

int chosen;
float price;

};

atruet topping toppiDg&rray[IUR_TOPPIIGS];

leIefine lUI_SIZES 3

8truet pizza5ize {
Vidget vidgetID;
char ••iz..... j

float price;
}i

.truct pizza5ize sizeArray [lUll_SIZES] ;

int choaenSize cO;

float toppingsPrice =0.0;

/. Global yariables used by main aDd other routines ./

ItAppContext app_contert;

Vidget topLevel;

/. Vidgets defined/created by this application. global ao they CaD be
acceslled bl aUltiple creation functions .•/

atatie Vidget fora;
atatic Vidget titl.LabelGadset.
atatic Vidget lIizeFralle;

3236-24 HP Motif XL: The X Window System on MPE XL

atatic Vidget rovColumn1;
atatic Vidget toppingsFrame;
atatic Vidget rovColumn2;
atatic Widget everythingPuahButtonGadget;
atatic Widget nothingPushButtonGadget;
atatic Widget priceTitleLabelGadget;
atatic Widget rovColumnS;
atatic Widget priceFrue;
atatic Vidget priceLabelGadget;
atatic Vidget exitPuahButtonGadget;

void createlnterfaceVidgets(),
void initializelnfo(),

,.
.. aain routine ..,

aain(argc, argv)
int argc,
char ••argv;
{

Arg &1[1];
int ac;
ItAppContext app;

initializelnfo();

~opLevel = ItApplnitialize(aapp,
"Pizza",
lULL,
0,
aargc,
argv,
lULL,
al,
0);

,. (default) -applicatioD context .,
,. application clue ..e .,
,. DO options .,
,. Duber of optiOns .,
,. used to get 8tandard cOlllllWUl line .,
,. optioDs and application name .,
,. DO fallback resourc•••,
,. DO arga .,
,. DO args .,

,. Tell Shell to resize if its children (specifically geoaetry
aanaging children like Fonas) ask it to. ./

ac =0;
ItSetArg(al [ae]. ldallovShellResize, True);
ac++;
ItSetValues(topLevel, al, ac),

createInterfaceVidgets();

HP Motif XL: Tbe X WindOVI System on MPE XL 3236-25

ItRealizeVidset(topLevel);

ItAppKaiDLoop(app);
}

/. Function to initialize the arra, of topping choice. and prices••/
void
iDitializeIJdo()
{

iDt i;

for (i=O; i < IUK_TOPPIIGS; i++) {
toppiDgArray[i] •chosen = False t
toppiDgArray[i] •price = 0.0;

}

toppiDgArray[O].price =0.12;
toppiDgArray[1].price =0.62;
toppiDgArray [2] •price = 0.23 t
toppi.DgArray [3] .price = O. 16.
toppi.DgArray [4] .price = 0.27.
toppiDgArray[6].price =0.68;
toppi.DgArray[6] .price = 0.47;
toppingArray[7].price =0.13;
toppi.DgArray[8].price =0.26;
toppiDgArray [0] •toppinglame = "Onions".
toppi.DgArray [1] •toppinglame = "Pepperoni";
toppi.DgArray [2] . toppinglame = "Xushrooma".
toppiDgArray [3] •toppingl..e = "Olives";
toppi.DgArray [4] . toppinglame = "PiDeapple".
toppiDgArray [6] •toppinglame = "Canadian Bacon";
toppingArray [6J •toppinglame = "Sausage";
toppi.DgArray [7] . toppinglame ="Tomatoes";
toppiDgArray [8] •toppinglame = "Extra Cheese";

/. Until values are read frOID a file ..••/
aizeArray [0] •aizeJue ="Saall·';
sizeArray[lJ . aizelame 8: ·'Xedium·';
sizeArray[2] •aizelame ="Large";
aizeArray [0] •price =4.99;
aizeArray[l].price =7.99;
aizeArra,[2J.price =9.99;

}

atatic .oi4
ca1clPri.DtPrice()

3236-26 HP Motif XL: The X Window System on MPE XL

{

Arg al[11];
int ac;
ImString xmStringPtr;
float pizzaPric0;
static char priceString[10];
int i;

pizzaPrice = sizeArray[choaenSize].price;

for (i =0; i < IUM_TOPPIIGS; i++)
if (toppingArray[i].choaen)

pizzaPrice = pizzaPrice + toppiDIirray[i].price;

ae =0;
sprintf (priceString, "$%. 2f". pizzaPrice);
xmstringPtr = lmStringCreateLtol(priceStriDg,

lmSTRIIG_DEFAULT_CB&RSET);
ItSetArg(al [ae] , ImIlabelStriDg, DStriDgPtr);
ac++;
ItSetValue. (priceLabelGaclget. al D ac);

}

/. Callback Procedures */
static void
toppingButtonValueChangedCallbaek(vidget.toppiDgIndex. call_data)
Widget Widget;
caddr_t toppingIDclex;
caddr_t call_data;
{

Arg al[11];
int ac;
lmString zmStringPtr;
float pizzaPrice;
static Char priceStriDg[10];

toppingArray[(int)toppinglndex].cho.en=
l(toppiDgArray[(int)toppiDglndex].choaen).

calcIPriDtPrice();
}

atatic void
aizeButtonValueChaDgedCallback(vidget.aizeIndex. call_data)
Widget vidget;
caddr_t aizelndex;
cacldr_t call_data;

HP Motif XL: The X Window System on MPE XL 3236-27

{

chosenSize =sizelndex;

ca!cIPrintPrice();
}

atatic Yoid
allOrlothinSCallback(vidget, client_data, call_data)
Widget widget;
caddr_t client_data;
caddr_t call_data;
{

iDt i;

if (client_data m= EVERYTBIIG) {
for (i = 0; i < IUK_TOPPIIGS; i++) {

toppingArray[i] •chosen = True;
/. Set the state of the button to 'be set but don't call the

valueChanged callback siDce we have already set the choaen
field8 ••/

lmTollleButtonGa4getSetState(toppiDglrray[i].vidietID,
True. Falae);

}
} else {

for (i =0; i < IUR_TOPPIIGS; i++) {
toppingArray[i].chosen c Falae;
/. Set the state of the button to 'be 1Ulset 'but don't call the

valueChused callback siDce ve have already set the choaen
fields .•/

ImToggleButtonGadgetSetState(toppiDglrray[i].vidgetID.
False, Falae);

}
}

calcIPriDtPrice();
}

atatic void
ezitCallback(vidaet. client_data, call_data)
Vidaet vidget;
caddr_t client_data;
caddr_teall_data;
{

ezit().
}

/. Function to create a set of radio buttons in a frue to indicate the

3236-28 HP Motif XL: The X Window System on MPE XL

.ize of the pizza. */
void
ereateSizeRadioButtoDS()
{

Arg al[11];
int ac;
lmString DStri.qPtr;

iDt i;

ac =o.
ItSetArs(al[ac]. IaIleftAttachIDent, lIIATTACB_FOIlJl);
ae++;
ItSetArI(al[ac]. IdleftDffset. 10).
ae++.
ItSetArs(al [ac] , IalftopAttachment, IIlATTACB_VIDGET).
ac++;
ItSetArg(al[ae], IaItopOff.et, 10).
ac++.
ItSetArg(al[ae], 1IlItopVidget, titleLabelGadget).
ac++ •
• izeFrue =

laCreateFraae(foJ1D. "sizeFralle", al, ac).
ItlanageChild(aizeFraae);

ae c 0;
ItSetArg(al[ac], Jdorientation, IdORIZOITAL).
ac++;
ItSetlrg(al[ae], IdpackiDg. IJIPACK_TIGBT).
ac++.
ItSetArI(al [ae] , ImIradioBehavior. True);
ac++;
rovCol1UDJl1 =

IaCreateRovColWID(aizeFr8llle, "rovColum1", all ae).
ItlanageChild(rovColumn1).

for (i=O; i < tUM_SIZES; i++) {

ac = 0;
if (i c: choaenSize) {

/. This is the default aize, IlUt start the button as pre••ed••/
ItSetArg(al[ac]. Id.et. True).
ac++.

}
xmstringPtr =lmStringCreateLtoR(aizeArray[i].sizeUame.

IaSTRIIG_DEFAULT_CIlBSET).
ItSetArg(al[ae]. IdlabelStriDg, DStringPtr).
ac++;
ItSetArs(al[ac], ldindicatorType, !mOIE_OF_IAIY);

RP Motif XL: The X Window System on MPE XL 3136-29

ac++;
sizeArray[i].vidgetID =IaCreateToggleButtoDGadlet(rowColumn1,

8izeirray[i] .sizelue, al. ac);
ItlanageChild(sizeArray[i].widgetID);
laStriDgFree(zaStriDgPtr);
ItAddCallback(size1rray[i].vidgetID,laIvalueChangedCallback,

sizeButtoDValueChansedCallback, (ItPointer)i);

}

}

,. Function to create a set of toggle buttoDs :1D a frue eo the user CaD

choose vhich tOpping8 go on the pizza••,
yoid
createToppiDg8Buttons()
{

Arg al[11];
int aCt
ImStriDg DlStringPtr;
int i;

ac =0;
ItSetArg(al[ac], ldleftAttachment, laATTACB_OPPOSlTE_VIDGET);
ac++;
ItSetlrg(al[ac]. ldleftVidget. aizeFrame);
ac++;
ItSetArg(al[ac]. ldrightAttachlleDt". bATTACB_FORK);
ac++;
ItSetlrg(al[ac]. ldrightOffeet.-- 10);
ac++;
ItSetArg(al[ac]. ldtopAttachment. lmATTACB_VIDGET);
ac++;
ItSetlrg(al[ac]. IdtopOffset. 10);
ac++;
ItSetlrg(al[ac]. ldtopVidget. aizeFraae);
ac++;
toppingsFraae II

IaCreateFrue(form. "toppiDgsFraaett
• al, ac);

ItlaaageChild(toppiDgarr..e);

ac a 0;
ItSetlrg(al[ac]. IdD1IIlCo11U1D8. 3); ,. Actually DUll of rovs .,
ac++;
ItSetlrg(al[ac]. ldoriatatioD. IIIIIIORIZOITAL);
ac++;
ItSetArg(al[ac]. blpactiq. ImPACK_COLUD);
ac++;

3236-30 BP Motif XL: The X Window System on MPE XL .

rovColuam2 =
bCreatelovColUIUl(toppingsFr••• "rowCol1lmL2". al, ac);

ItManageChild(rovColumn2):

for (i = 0: i < IUM_TOPPIIGS: i++) {
ac = 0;
zmStringPtr = lmStringCreateLtoR(toppiDsArraJ[i].toppiDI1..e.

lmSTRIIG_DEFAULT_CIAISET);
ItS.tlrg(al[ac]. Idlab.lStriDg. DStriD&Ptr);
ac++;
toppiDgArray[i].vidg.tID= laCreateToII1.ButtonGad&et(rovColuan2,

toppiDgArray [i] •toppiD&.... , al, ac);
ItRanageChildCtoppiDgArra,[i].widg.tID);
XmStriDgFr.e(zmStriDgPtr);
ItAddCallback(toppingArray[i].widgetID,x.lvalueChanse4callbaCk,

toppingButtonValu.ChangedCallback, (ItPoint.r)i);
}

ac = 0:
DStringPtr =

lJDStringCreateLtoR(ltEv.rythiDglt ,1aST1IIG_DEF1ULT_CDlSET);
ItSetArg(al[ac], lIlIlab.lString, DStriDgPtr);
ac++:
everythiDgPuahButtonGadget =

ImCreatePushButtoDGadget(rovColumn2, "everythiagPuahButtonGadget",
al, aC)i

ItKanageChild(everythingPuahButtonGadg.t);
lmStringFree(DStriDIPtr).
ItAddCallback(everythingPuahButtonGadget,lmIactivateCallback,

allOrBothingCallback, (ltPointer)EVBaYTBIIG)i

ac =0:
xmStringPtr =

XmStriDgCreateLtoJlC"lothing", lIISnIIG_DEF1ULT_CBAlSET)i
ItSetArg(al[ac], ImIlabelStriDg, DStriqPtr);
ac++:
nothingPushButtonGadget =

ImCreatePushButtonGadg.t(rovColum2, "nothiDgPuaUuttonGadget" ,
al, aC)i

ItKanag.Child(nothiDgPuahButtonGadg.t);
lmStringFr.e(zmStringPtr);
ItAddCallback(nothingPuahButtoDGadget.lmlactivateCallback,

allOrlothiDgCallback. (ltPointer)IOTBIIG):

}

,- Function to create a .et of toale buttoDs iD a frue 80 the user can
choos. vhich toppings go OD the pizza.•,

HP Motif XL: The X WIndow System on MPE XL 3236-31

void
createPrieeVidget8()
{

Arg &1[11];
int ae;
lmString zmStringPtr;

ac =0;
DStringPtr =

laStringCreateLtollC"Piua Price", 1IISTlIIG_DEFAULT_CBAItSET);
ItSetArgCal[ae], lIIIlabelStriJlg, DStriDgPtr);
ae++;
ItSetArg(al [ae] , ldbottOllAttacbent, lIIln'ACB_POIII);
ae++;
ItSetArgCal[ae], lJdbottOllOffaet, 10);
ac++;
ItSetArg(al [ae]. lIIlIleftAttachllent, lIUTTACB_OPPOSlTE_VIDGET);
ac++;
ItSetArg(al [ae] , ldleftVidget, toppingaFrame);
ae++;
ItSetArg(al [ae] , ldtopAttacUent, laATTACB_VmGET):
ae++;
ItSetArg(al[ae], ldtopOffaet, 10);
ae++;
ItSetArgCal [ae] , 1IIItopVidget, toppi.DgaFrue);
ae++;
prieeTitleLabelGadget c

IIlCreateLabelGadget(form, "prieeTitleLabelGadget", al, ac);
ItManageChild(prieeTitleLabelGadget):
lmStriDgFree(xmStriDgPtr);

ae =0;
ItSetArg(al[ae], lmImargiDVidth, 10);
ae++;
ItSetArg(al [ae]. lmIbottomAttaehllent. lJUTTACB_IOIE);
ae++;
ItSetArg(al [ae]. lJDIIleftAttachllent. lJDATTACB_VIDGET);
ae++;
ItSetArg(al [ae] , lIlIleftVidget, priceTitleLabelGadget);
ac++;
ItSetArg(al [ae] , ldtopAttachllent, laATTACB_OPPOSlTE_VIDGET):
ac++;
ItSetArg(al [ae]. ldtopVidget, priceTitleLabelGadget);
ac++;
priceFruae II:

laCreateFruae(form, "priceFrame... al, ae);
ItManageChild(prieeFrame);

3236-32 BP Motif XL: The X Window System on MPE XL

ac =0;
priceLabelGadget =

IIlCreateLabelGadget (priceFr.... "priceLabelGadget". al. ac);
ItManageChild(priceLabelGadlet).
laStringFree(XDStrin&Ptr).

calcIPrintPrice();

}

,* Create ~he widget ~ree *,
Yoid
ereatelnterfaceVidgeta()
{

Arg &1[11].
int ac.
lmS~riDg zaStriDgPtr;

ac = 0;
form =

lmCreateFora(topLevel, "fora", al, ac);
ItKanageChild(fora).

ac c 0:
DStriDgPtr ::

IIIStriDgCreateLtol("Piua Price Calculator", ImSTllIIG_DEFAULT_cnaslT).
ItSetArg(al [ac] , lIIIlabelStriDg, DStringPtr).
ac++;
ItSetArs(al [ac] , lIIIleft&ttaehaent, lUTTACI_FOlUI).
ac++.
ItSetArg(al [ac] , IdrightAttaehlaent, IJdTTACB_FOIUI);
ac++;
titleLabelGadget =

bCreateLabelGadget(fora, "titleLabelGadlet", al, ac);
ItKanageChild(titleLabelGadget).
ImStriDgFree(zmStriDgPtr);

createSizeRadioButtons().

createToppiDssButtona();

createPriceWidgeta();

ac c O.
DStr1DgPtr I:

lmStriDgCreateLtol("Exit", lmSTaIIG_DEFAULT_CB&1SET);
ItSetArg(al[ac]. lIIIlabelStriDg. DStriDgPtr).
ac++;
ItSetArg(al [ac] , laItopAttachaent, IUTTACI_OPPOSITE_WIDGET);

BP Motif XL: The X Window System on MPE XL 3236-33

ae++;
ItSetArg(al [ae]. IIlItopVidget. prieeTitleLabelGadset).
ae++;
ItSetArg(al [ae]. 1IlIriptAttaehaent. laATTACB_FOIUI).
ae++;
ItSetArg(al [ae]. IIIIriptOf1aet. 10);
ae++;
exitPushButtonGadget c

bCreatePushButtonGaqet (fora. "exitPushButtonGadset". al, ac);
ItManageChild(exitPuehButtonGad&et);
lmStringFree(xmstringPtr).
ItAddCallbaek(exitPushButtonGad&et.x.JactivateCallbact. exitCallback,

(ItPointer)O)j

}

3236-34 HP Motif XL: The X Window SyStem on MPE XL

3237

Applied Computerized Telephony: You won't be left on hold

steve Aliamus

Hewlett-Packard Direct
1320 Kifer Road

Sunnyvale, California
408-730-6046

"Hey Brian, what does this 'TONER LOW' message on the
printer mean?"

For the past week, Brian had been regularly removing the
LaserJet's toner cartridge, shaking it, and reinstalling it
into the printer. He had hoped to avoid buying a new toner
cartridge for as long as possible, but the daily shaking
ritual was now occurring every hour. Time to break down and
call HP Direct's toll free 800 number.

When Brian's call reached the HP Direct switchboard, an
Applied Computerized Telephony (ACT) system detected the
phone call, accessed information on Brian's account and past
purchases, and displayed the information on the terminal of
a waiting sales consultant. Simultaneously, the phone call
was ringing on the same sales consultant's telephone.

"Hello, this is Maya with Hewlett-Packard Direct. How may I
help you?"
"Hi, this is Brian Hunt, and •.. "
"Brian! How does your department like the LaserJet II
printer?"

Not only does Maya know that Brian has a LaserJet printer,
but what model, when it was purchased and any optional
accessories. With minimal effort, Brian orders his toner
cartridge. Several months later, Brian receives a call to
remind him that his toner cartridge may be running low,
based upon the usage rate determined from his last order.

The above scenario can happen because of ACT, which
addresses the need of businesses to process both voice and
data technologies. ACT consists of hardware and software
components which integrate HP Computers with Northern
Telecom Meridian 1 and SL-l telephone switches (PBXs) for a
new generation of integrated voice and data applications.

This paper discusses the use of ACT and the components
needed for its installation. Included are details of a
pilot ACT project developed and installed 'at HP Direct, and
the potential benefits seen in our organization.

3237-1

Applied Computerized Telephony: You won't be left on hold

ACT provides information about incoming telephone calls,
such as the calling number and number dialed, directly to
application programs. This benefits businesses in
telesales, telemarketing, customer assistance, service and
support, help desks, collections, distribution and
purchasing. Applications can use ACT to originate, answer
and manipulate telephone calls automatically, allowing these
telephone intensive businesses to increase productivity,
improve customer service, and increase revenue.

Increased Productivity

ACT provides the ability to route phone calls to the most
appropriate agent, and simultaneously present customer
information on the same agent's screen. This increases the
volume of calls that can be received. Needless call
transfers between agents are eliminated. Information about
the purpose of the call, based upon the number dialed by the
caller, is presented on the terminal screen before the call
is answered. Agents answer each call appropriately on an
individual basis. Telephone agents no longer need to be
separated by product line.

outbound environments also benefit from ACT. with automated
dialing applications, agents process calls quickly, and
avoid manually dialing numbers and listening to busy signals
and unanswered ringing.

Improved Customer Service

Callers are handled efficiently and professionally. The
identity of the caller stays with the call as it is
transferred, so customers need not repeat any information to
each new agent. Intelligent routing of calls ensures
customers are sent to the most appropriate destination.

Increased Revenue

Since calls from customers are processed more intelligently,
agents are able to handle more calls. Increased call
volumes lead to more customer contacts and sales. Telephone
calls are also shorter, since customers can be identified
immediately by their inbound phone nUmber, and transfers and
hold times are minimized.

3237-2

Applied Computerized Telephony: You won't be left on hold

Corporate Networks operation (CHO)

Hewlett-Packard and Northern Telecom formed an alliance
organization composed of both technical and marketing
personnel dedicated to ACT solutions. Consultation,
installation and configuration of ACT can be handled by CNO.
An agreement for the exchange of technical information and
synchronized escalation of hot sites has been signed by both
companies. Problem resolution for the ACT product is
handled through the established support arms of both HP and
NT.

The ACT components

The ACT product consists of an ACT Call Processing Server,
Server Software and the ACT Application Programming
Interface (API). (See figure 1) The server software
resides on an HP9000 Series 300 server connected to the PBX.
The server manages connections between application programs
and the call processing features of the PBX. ACT messages
originating from application programs are converted
automatically into specific PBX messages to invoke the
required functions on the PBX.

(figure 1)

Standard IEEE 802.3/Ethernet and TCP/IP networking are used
for the communications between the application programs and
the server. This open networking environment allows maximum
flexibility in designing a solution for mUltiple computers
with a single ACT server.

3237-3

Applied Computerized Telephony: You won't be left on hold

not need
a general

coding and

Northern Telecom Meridian 1 and SL-1 PBX

The Meridian 1 and SL-1 family of PBXs are customer premise
digital telephone switches with a variety of advanced
customer calling features, data connectivity, and
networking.

The messaging interface on the PBX which passes and receives
command and status information to the ACT Server is the
Meridian Link, a LAP-B (RS-232 or 422) synchronous link
which operates at speeds up to 19.2 Kbps. The Meridian Link
consists of a software package and an Enhanced Serial Data
Interface (ESDI) card on the PBX.

Telephone companies offer a service which passes the
caller's telephone number to the called party. This caller
identification, Automatic Number Identification (ANI), is
passed across the Meridian Link to the application program.
In order to receive ANI information, the appropriate trunks
must be ordered from the phone company, and specialized
trunk interface hardware and software on the PBX must be
purchased. In addition to ANI information, Direct Number
Identification Systems (DNIS) is passed to the application
program. The DNIS number is the phone number that the
customer dialed to reach the PBX. For businesses that
handle several incoming numbers, DNIS allows the application
program to display the appropriate information for each
different incoming call.

Although the application programmer will probably
to know all the details about the PBX,
understanding of it is helpful during the
debugging stages of your ACT project.

3237-4

Applied Computerized Telephony: You won't be left on hold

The ACT Call Processing Server

The ACT Call Processing Server translates ACT messages
originating from the application program and converts them
to Meridian Link messages. The ACT server is a dedicated
system, and should only be used for ACT and telephone switch
related activities. The ACT server consists of:

- HP-UX based platform
- Internal Disk
- Standard TCP/IP networking
- Telephone switch specific interface

The ACT Server utilizes standard HP LAN Link/300 and TCP/IP
software for end-to-end connection oriented message
transport with the client application. Interprocess
communications provide the higher level communications
services. For communications with the PBX, the HP X.25/9000
interface is used. (See figure 2) The server is also
responsible for enforcing security, allowing users to access
only the set of telephone capabilities for which they are
authorized.

PBX

CONTROl
PROCH~

Pel<
MESSAGES

Pel'
INTERFACE

HP9000 SERVER

ACT SfRVER SOFTWil'RE

ACT
CAU

ImOCESSlNG
Pex MESSAGES

SPECIFIC
MeSSAGES

IPC

I----

TcPnP

PBX
80UINTERFACE

HP3000

APPLICATION

GAll
PROCESSING

API

ACT-CP
MESSAGES

IPC

TCP/IP

802.3

HP9000

APPLICATION

CAll
PROCESSING

API

ACT-CP
MESSAGES

IPC

TcPnP

802.3

(figure 2)

3237-5

Applied Computerized Telephony: You won't be left on hold

During normal operations, the ACT server will generally
display PBX and ACT status messages. While developing the
application program, it is important to locate the ACT
server near the desk of the programmer. certain types of
debugging are possible only if status codes and messages
displayed on the ACT server terminal are visible, so having
the server nearby makes these tasks easier.

The host computer

Both the HP3000 and HP9000 can be used as platforms for
application programs that will interact with the ACT server.
On HP3000 systems, the LAN link product, which includes the
necessary TCP/IP and Net/IPC software, is required. For
HP9000 systems, the LAN/300 or LAN/BOO link product, and
NS-ARPA services, which includes Berkeley Sockets, are
required.

Application Program Interface (API)

The ACT API is designed to provide a simple means for the
application programmer to generate ACT protocol messages,
and to shield the programmer from the underlying low level
network procedure calls. The API consists of callable
subroutines, such as ACTMAKECALL, ACTANSWER, ACTHOLD,
ACTTRANSFER, and ACTDROPCALL, and makes it easy for the
programmer to integrate ACT functionality into new and
existing applications.

The role of the API is to take the parameters passed from
the application program, place the parameters into an ACT
formatted buffer, then send the request to the server via
the network. Similarly, when a response is returned by the
server, the API accepts the response from the network and
returns data into application variables.

3237-6

Applied Computerized Telephony: You won't be left on hold

RP Direct's interest in ACT

HP Direct is both a marketing and a distribution channel for
a specific line of HP products consisting of computer
supplies and accessories. In addition, the telemarketing
channel sells items such as calculators, plotter supplies
and low-cost instruments manufactured and marketed at other
HP sites.

In its role as a channel of distribution, HP Direct uses
catalogues, mini-catalogues, fliers and ·promotional pieces
to stimulate sales through a telemarketing force of over 100
people. This sales force handles a host of supplies and
accessories, totaling over 20,000 parts.

with several thousand phone calls per day coming through HP
Direct's switchboard, we are a prime candidate for ACT
technology. Our telephone sales consultants would benefit
in several areas. Customers who call our 800 number often
do not have their customer account number handy, causing a
search of their name to be made on our database. Although
searching only takes a moment, it is time that could be used
to lookup the customers past purchases or buying trends. In
addition, the phone call is longer, which means bigger phone
bills. ACT eliminates the need for customers to have to
provide their account number, as it can be obtained
automatically from their phone call.

Another benefit of the use of ACT at HP Direct is the
transferring of calls. Many times, a customer needs to
speak to a product specialist. with so many different
products being sold through HP Direct, certain sales
consultants are given training on specific products. When a
phone call reaches our switchboard, and a sales consultant
realizes after a short conversation that the customer really
needs to speak to a product specialist, the phone call is
transferred. Without ACT, the customer must again identify
himself and restate his request, which is extremely
frustrating. ACT provides the ability to transfer the
telephone call and a screenful of data (including a short
remark) to a waiting agent.

3237-7

Applied Computerized Telephony: You won't be left on hold

BP Direct configuration

Before attempting to implement ACT within our Telemarketing
department, we created a test environment separate from our
800 number. By working closely with CNO and our Telecom
department, we were able to configure our PBX so that only
two phones were actually using ACT. That way, we could test
all the features of ACT in a controlled environment, without
adversely affecting our production systems.

For our pilot ACT project, two terminals, two agent
telephones and two "outside" telephones were configured.
(See figure 3) The outside lines would simulate a customer
call, with both ANI and DNIS (customer phone number and
number dialed) being delivered to the PBX.

ACT Server

HPJOOO

(figure 3)

3237-8

Applied Computerized Telephony: You won't be left on hold

Usinq the API iDt~insics

The first thing our sales order entry application needed was
a connection to the ACT server. A connection is established
by calling the ACTINITIALIZB intrinsic. If successful, a
channel identifier, and the software revision level of the
server and switch, are returned. The channel identifier is
used in all subsequent requests to the server.

Our application was not going to use ACT to make outbound
calls. Yet, the ACTKAKBCALL intrinsic can place a telephone
call from a phone which is under server control to any phone
in the global telephone network. In the future, ACTMAKECALL
will be able to automatically detect bUsy signals and
unanswered calls, further maximizing agents on-line time.

Normally, when an application program issues an FREAD or
FWRITE on a device, the program is interrupted until the
read or write has completed. There are, however, situations
where the application program should have the ability to
interrupt a read or write. with many of the ACT intrinsics,
NOWAIT I/O is used, because it is not known when a phone
will ring, or when a customer may hang up the phone. To
address this issue, the ACTBVBBTKONITOR intrinsic is used to
monitor activity on an agent's telephone extension.
Activities include going on-hook or off-hook (hanging up or
picking up the receiver), incoming calls (with ANI and DNIS
information) and other events dependent on switch features.
The application program can monitor multiple phone
extensions, and choose to poll or wait for event completion
using IOWAIT or IODONTWAIT.

When the phone rings~ you need to answer it. The ACTAKSWZR
intrinsic responds to notification of an inbound call by
placing the called telephone in the off-hook state. This
has the same effect as lifting the handset from the cradle.
But, before the called phone can be answered, it must be
monitored with ACTEVENTMONITOR. So, during the
initialization stage of the application program, it is
mandatory that the agent and his phone extension are
provided to the ACT API. Otherwise, ACTANSWER will have no
affect on the ringing phone.

3237-9

Applied Computerized Telephony: You won't be left on hold

If a customer phones, and needs to speak to a different
agent, the call must be transferred. ACTTRANSPER performs
an unsupervised (blind) call transfer to a new number by
connecting the transferred party to the specified number.
The transferring party will be dropped from the call at the
time the transfer begins. (Our version of ACT did not yet
have consultive transfer implemented). The agent that
receives the transferred call is provided all the
original information about the call (ANI and DNIS included).

After the telephone call is completed, you must hang up the
phone. The ACTDROPCALL intrinsic disconnects a party from a
call. It is common to receive an error while dropping a
call, as customers will generally hang up their phone before
ACT has a chance to process. In this case, ACTDROPCALL
returns a "261:ERR_DIS_FLD" error, indicating that the call
has already been marked as disconnected because one of the
parties has manually hung up.

To disconnect from ACT completely, ACTTBRMIBATB is used. It
will shutdown the connection between the application and the
ACT server. All event monitoring for the channel is
terminated as well.

Using a controller program

The ACT API is complicated slightly by the 'fact that
telephone operations take a relatively long time in computer
terms. To allow this waiting time to be productive, the API
returns control to the application immediately after
accepting requests that may require a long wait (waiting for
the phone to ring, for example). The application can then
choose to poll or wait for event completion.

To the programmer, using the API directly within your own
application can become complicated. It may .be advantageous
to place the ACT intrinsics in another program to avoid the
comp1exity·of adding NOWAIT I/O to any new or existing
application. Another reason to write a separate program is
to facilitate the transfer situation. When transferring a
call from one phone to another, the screen data associated
with the call also needs to be sent. Every application must
be able to communicate with every other application user.
Adding all the code to handle each call processing function
and error condition, and communication information for other
users on the system would cause a significant change in an
existing application.

3237-10

Applied Computerized Telephony: You won't be left on hold

In our application, we created a separate controller, acting
as a signal program that would interface to the ACT
intrinsics on behalf of our application. Each application
needing to communicate with the controller would write a
request to a message file that was writable by all users.
When the application needed to read information, another
message file, readable only by the specific user, was used.
(See figure 4) It was much easier to modify our existing
application to read and write message files as a short term
solution. In the future, we plan to make the investment to
integrate ACT directly into our application.

(figure 4)

Our prototype ACT project demonstrated the ability to answer
an incoming telephone call and display a customer record in
a TurboIMAGE database from the ANI, via a single function
key. The DNIS was displayed on the screen, so our sales
consultants could see what number the customer dialed to
reach our switchboard. In addition, a message appeared on
the screen indicating whether the phone call was a new call
or a transfer. By the time you could say "Welcome to
Hewlett-Packard Direct, how may I help you?", all the
information had appeared on the screen.

To perform a call transfer, our application displayed a list
of agents currently connected to the ACT server, and
prompted the sales consultant for a short message to be sent
along with the transferred call. On the sales consultant's
terminal receiving the transfer, a message indicating that a
call was being transferred, who was transferring it, and the
short message were displayed. Also, the same customer
record appeared on the screen, so the new sales consultant
would not have to ask the customer to repeat any
information.

3237-11

Applied Computerized Telephony: You won't be left on hold

Although our pilot ACT project has not been installed into
production, many potential benefits are anticipated. In
addition to automatic customer identification and call
transfers described above, we found that the ANI from
abandoned calls (when a customer hangs up before reaching a
sales consultant) could be captured. Our telemarketing
department plans to use this data to improve service levels
for our customers.

Conclusion

Numerous forces are driving companies to implement new
telephone and computer technologies to enhance sales,
marketing and customer service operations. Some of these
include rising costs of face-to-face sales efforts,
expanding geographic market areas, cost effectiveness of
centralization, emphasis on customer service as a product
differentiator, and overall increases in global competition.
Marketing and service organizations are expected to
represent a larger percentage of corporate information
.systems expenditures over the next several years.

Applied Computerized Telephony integrates telephone switches
with HP3000 and HP9000 applications, creating an exciting
new generation of voice and data systems. HP Direct's
prototype ACT system demonstrated to us that the technology
can create a solution that provides impressive productivity
gains, increased customer satisfaction, and sales
opportunities never before possible. These same benefits
can be seen in your organization when ACT is integrated into
your telephone applications.

APPUED COMPUTERIZED TELEPHONY

HP'S STRATEGY FOR INTEGRATING VOICE & DATA

3237-12

Applied Computerized Telephony: You won't be left on hold

- 1 -

AIFs ON MPEIXL

by
Rajesh Desai
JeOlllle E/nler

Commercial Systems Divisioll
Hew/etl-Packard

19447 Prulleridge A,'e
Cupertino, CA 95014

(408)725-8900

INTRODUCTION

In the past, Independent Software Vendors have often required access to operating system
internal information in order to provide sophisticated end-user solutions. Disseminating
dynamically changing data structures and information control flow has been a challenge to
platform suppliers, and not always done in a timely or consistent fashion. Independent
Software Vendors face the challenge of maintaining their products conforming to the
modifications done to the operating system from release to release. With the advent of
MPEJXL, Hewlett-Packard embarked on an ambitious program to provide equivalent means.
for developing advanced solutions while addressing the problems posed by system evolution.
These program objectives led to the development of the Architected Interface Facility (AIF)
products.

The Architected Interface Facility products are lo\\'-level system interfaces designed to expose
internals in a controlled manner or, to export or enhance existing system functionality and yet
remain independent of a system release. These products in many cases. are not unlike
intrinsics. However, they do differ in one significant way: Architected Interfaces assume a
privileged user and therefore limits their error checking and allow access to sensitive system
data and functionality. Conversely, intrinsics are "bullet- proof' and often don't meet the
performance or functional needs of Independent Software Vendors. Currently there are three
Architected Interface products - Operating System, Measurement Interface and Procedure
Exits.

ARCHITECTED INTERFACE FACILITY: OPERATING SYSTEM

The Architected Interface to the MPElXL operating system provides access to internal system
data and functionality. Correspondingly, there are two types of interfaces available within this
product, Information Access and Functionality Access interfaces. Information Access AIFs
allow read or write access to internal system tables. For each class of objects for which
interfaces are provided, there are two procedures: a GET and a pur. The GEf interface \vill
return information about a specific instance of a class as identified by input keys. The PlIT
interface also accepts an instance of class from the caller and updates system tables to reflect
the state requested. Additionally, an anchor interface is provided to retrieve one or more
instances of an object class reflecting the current state of the system. Functionality Acces.'i
interfaces allow the developer to take advantage of operating system functionality. Below is a
list of the class of objects for which Information Access Interfaces and Functionality lnterf~,ccs

arc currently available.

AIFs on MPElXL 3238 - 1

Information Access

• Accounting

• File

• Job/Session

• Process

• Reply Information

• System Configuration

• Spooler

• System Wide

J....unctionalit}· Access

• Change Logon

• Convert Address (CM to NM)

• File Close

• Ports

• Global Object

• Time

ARCHITECTED INTERFACE FACILITY: MEASUREMENT INTERFACE

The Architected Interface to the Measurement Interface allows read access to internal
measurement counters. Counters are the method that the operating system uses to track events
that occur on the system. A counter unit of measure can be either count or time. Count is the
number of times an event occurred or the quantity of an event that happened. Time is the
length of time that an event happened or the time stamp when an event occurred. Counter
values are returned for four types of information by the AIFs to the measurement interface:

• Global Counter Information

• Process Counter Information

• I/O Counter Information

• Processor Counter Information

ARCHITECTED INTERFACE FACILITY: PROCEDURE EXITS

The Architccted Interface Facility: Procedure Exits product enables you to replace or augment
system functionality on MPEJXL. Software solutions may be accomplished through run time
interception of MPEJXL procedures residing in NL.PUB.SYS or other system lihraries.]t docs
this by letting the developer specify ccrtain procedures to be executed in place of, or in
addition to, existing procedures within the system or user code in both compatibility mode

AIFs on MPElXL 3238 - 2

(eM) and native mode (NM). This specification may either be performed on a system-\\'ide or
a process-local basis. to allow limiting the scope of effect. User supplied procedures to execute
at procedure interception time are defined as handlers. The procedure that has been
intercepted is defined as a target. Handlers can execute prior to (invocation handler) or upon
completion (termination handler) of a target. They may also execute instead of the target
procedure, defined as stubbing out a procedure. Access to the target procedure's parameters is
made available to handlers for inspection and/or modification. The Architected Interface
Facility: Procedure Exits product binds and unbinds handler routines to targets dynamically,
without the need for rebooting or relinking the system. Binding and unbinding affects all
processes currently running as well as those subsequently created.

EXAMPLES

Below we "'ill discuss some examples of how you could use the Architected Interface Facility
products to accomplish a variety of tasks.

Generalized File Equations:

One way to accomplish generalized file equations is through the use of the Architectcd
Interface Facility: Procedure Exits. By enabling an invocation (a handler that executes prior to
the execution of a target) procedure exit on file open, an application could catch every file
open on a system. The procedure exit could then examine the file name, compare it to a list of
special file equations, and then pas.c; file open a modified file name. The following diagram
illustrates the execution:

AIFs on MPEJXL 3238· :1

Normal Execution

+------------+ +------------+
IOpen a file I I I
Icalled JfooJI-------------------------------->1 FOPEN 'fooJI
I I I I
+------------+

Execution with a
Procedure Exit

+------~-----+

+------------+ +-------------+
'Open a file 1---+ +-->1 I
Icalled Jfoo J I I I I FOPEN Jmoo J I
I I I I I I
+------------+ I I +-------------+

I I
I +------------+ I
+---->1 Translate 1-----+

lany fil~ f@ I
I to m@ I
+------------+

In this example, the application tries to open a file called 'foo'. Under normal circumstances.
the application calls file open with the file name, and file open opens the file. The application
user can specify a normal file equation such as :

FILE FOO = MOO

This will make the file system oPen a file called 'moo', instead of 'foo'. But "'hat if the user
docs not specifically know what the file will be called. Furthermore, suppose the user wants all
files that are in a group called could enter file equations for each file, if the names are known.
and if the number of files docs not exceed the file equation table. But it would be more
convenient, if the user could just tell the applications to replace all files from the group
'group!' with all files from a group called 'group2'. The user wants to ,vrite a file equation Jike
this:

FILE @.GROUPI = @.GROUP2

This feature would be nice, but it does not exist. Wild carded file equations would be relatively
simple to implement, however, the application writer could usc the Architectcd Interface
Facility: Procedure Exits. Since all calls to file open are intercepted by a procedure exit. the
procedure exit just needs to look for the file equation (the details are left for the designer of
such a utility). and modify the file name appropriately in the parameter list to FOPEN upon
interception. This could all be done with the user being totally unaware of what is h'lppcning.

AIFs on MPEJXL 32JS - 4

Imagine trying to compile a program that includes several other files. Now let's say that the
included files need to be modified. The programmer could use wild carded file equations to
point the compiler to the new include files in a work group, leaving the original files
untouched. This could be very useful if several people are working on the same group of files
or if they must use different versions of the same file. Each version of the files could be kept in
separate groups. The programmer could use wild carded file equations to point the compiler to
the correct group.

Event Handling :

Currently, several events are monitored throughout the operating system via the measurement
interface which are made accessible to the developer with the Architected Interface Facility:
Measurement Interface. However, not all events of interest may be monitored. A developer
interested in monitoring an event can take advantage of the Architected Interface Facility
products to do so. Take for example the event of logging on to the system. A system manager
may wish to limit the number of logons per user for performance reasons. This could be done
with a combination of Architected Interface Facility: Procedure Exits and Architected Interface
Facility: Operating System. A product could intercept the :HELLO command using AIF:
Procedure Exits. This product could then call AIFACCfGEf within the AIF:OS product and
retrieve the logon count for the user logging on. If the logon count is zero, the handler would
allow the logon to continue. Otherwise, the procedure could be stubbed out ,vith the handler
reporting a failed logon.

Automatic File Archiving :

The purgjng of files is a common event on the operating system. People from time to time
mistakenly purge a file that they didn't mean to. The file in some cases can be recovered from
a back up tape, but may often not be current or even backed up. A nice feature to have \\'ould
be the ability to save off those files purged in a backup group for a period of time so that it
may be recovered if it is decided that the file is still needed. One way to accomplish this task is
to use a combination of the Architected Interface Facility: Procedure Exits and the Architected
Interface Facility: Operating System products. In this example. we will arm the procedure
FCLOSE with both an invocation handler and a termination handler. AIFs to the Operating
system \\TilI be used to gather information needed for for both handlers and initial setup.
Below is an algorithm that could be used to accomplish this task. The algorithm assumes that
every group on the system has a corresponding back-up group within the same account in
which to save discarded files. This algorithm is an outline and does not give specific calling
sequences to the procedures used or other specific implementation details.

AIFs on MPElXL 3238 - 5

Initial Setup :

(a) Call AIFSCGET to determine the maximum number of pins allowed
on the system.

(b) Call AIFGLOBACQ to acquire a global object. In this object, set up
an array from one to maximum pin with the following record
structure:
shared_data_array = record

file_close boolean;
file_name packed array [1 .. 48] of char;

end;
We will index into this array based on pin number to share information
between invocation and termination handlers to FCLOSE.

(c) Initialize data structure to false and blanks.

(d) Install an invocation handler and termination handler on FCLOSE.

In\'ocation Handler :

{ Examine parameters to fclose and determine disp parameter passed}
disp := FCLOSE(disp);

{ only worry if we are deleting the file }
if (disp = delete) then

begin

{ Determine our pin to index into global array shared by this handler }
{ and the termination handler·}
my_pin .- AIFPROCGET;

{ fill in data we want to communicate to the termination handler, }
{ namely that a fclose with a disposition of delete has occurred and }
{ the name of the file being deleted}
shared_data_array[my_pin].file_close:= True;
shared_data_array[my_pin].file_name := file_name;{in parameter list}

{ Modify the disp parameter to FCLOSE to close as a permanent file }
FCLOSE(disp) := CLOSE AS A PERMANENT FILE;

end;

AIFs on MPFlXL 323~ - 6

Termination Handler :

{ Determine our pin to index into global array to retrieve information}
{ from invocation handler }
my_pin := AIFPROCGET;

{ Check array in global object indexed by pin to determine the file}
{ vas being closed with a delete disposition}
if shared_data_array[my_pin].file_close= True then

begin

{ Issue a programmatic COPY of the file to the corresponding back-up }
{ group using the HPCICOMHARD intrinsic. }
HPCICOMMAHD(command copy,

source shared_data_array[my_pin].file_name,
destination = corresponding archive group);

{ Issue a programmatic PURGE to now purge the file, again using the}
{ the intrinsic HPCICOHMAHD }
HPCICOMMAND(command purge,

file = shared_data_array[my_pin].file_name);

{ reset the fclose_disp parameter in the global array to false }
shared_data_array[my_pinJ.file_close:= False;

end;

CONCLUSION

In summary, the Architected Interface Facility products, allow for supported access to internal
system data, functionality, or provide enhanced functionality. The Architected Interface
Facility: OPerating System and Architected Interface Facility: Measurement Interface are
available on MPFJXL 2.1 and later. The Architected Interface Facility: Procedure Exits is
available on MPEJXL 3.0 and later.

AIFs on MPEJXL 3238 - 7

Papt>r #:i2:i9
ALLBASE/SQL High Ava.ila.bility F(~a.tures

Alt'X Tsukt'flllan
Ht>wlt->l.t.- Packard

IH4tJ7 Pfulleridge AVt'

(~upprt.illo, ('A m>OI-1
(408) 11 /17-()7:l8

Abstract

J\ sigllificaill. work h~ heen pul illl.(1 ALLBASE/SQL 1.0 ill(,fe~~t' produd, availability, i,e, luilliulizing
of plalllwd dat.aha.""t' <tow II l.iII It'. Th,· Itt'\\' hi~h ilva.ilabilit.y ft'at.ures iucllld... :

I. Ollliue STORE facilit.y. whidl allows t.ll<' DHEIlVirOllllJellt. to be backed up without. int.errupt.iug
t.ransact.ion pro('t->S.~in~.

1. Mlllt.iplt· log filt:'s. Thi:-- f('al.llrc' allows lo~ filt~ t.o bt' addt~d/ddet.ed/st.ored during llorlnal
sy~t.<.'lIJ opt"rat,ioll. It. also pr(Jvid,~~ f1C'xihilil.y ill lIlanagin~ t.he log spa("f~.

:s. Improvt'd algorit.hm lor dllnl loggill~, Thi:, ft'alurt" providt' fault.-t.oleran("(" of log file:-- \yit,h
1'(':--pC,'d t.() a ~illglt-> devio' failllrt'.

:1. Mort, rohnst, roJlforward rc'c'ow'r.v al~orit,hlll. This ft.'al.lIrC'lIlakes t.he pro("f"S~ of tht, forward
rc'('ovpry Il'S.... t'rror prOllt'.

r). Support. for log flit's 011 raw d('",i(TS, Ha.w dc'vin'S providc' higlwr pt"rforulaJ)("t'.

Ii, Dymulli(' spal'f' t'XIJCtIl:,ioll whc'I'I' DB Efilc":o\ whidl hc'c'olllC' rull arc' alll.omat.ically c"xpallclpd wit.hill
l.h,· 1I:,'·r-:o\IH'c'ific·c1 lilllil:'.

Tlti:, papc'r c1,,:,c'rihc,:, how III IISC' I.IIC' allCl\"c' ff'alllrl':' 1.0 itt'lli,''''c' :o\1I100t.IJ and ('()IIt.iIlUOU~ 0IH'ri".ioll
uf I.IIC' DBFII\"irolllllc'lIl. Wil.!1 rc'spc'~'1 1.1t IlBElivirulllllt'1I1. hac'kup/rt·c'ov4·f)'. II all'lJ provid.>:; ii shorl

Ilvc'r"ic'w "I' I.l'iUlSW'1 iUIi lo~].!.illJ.!..

Logging overview

I. Tc' rC"'o"I'1' a IlBEII\,irfllllllc'lIl h.1 iI c'C1l1sisl,('1I1 sl elk a.rl.,'r a S,\'!o;I."111 ('ra.-.;h, l; pdal.l':' 01':111 ('oIlUllil.
I.·" I 1';HISiI,'I iCIIt=-' arc' ,~IIiIl'alll"c'" 1•• 1... r,'c'o\"c·rC'cl. Thi:, ft,,, I III"" i:.; ('allc'd soft ~:rash (or rullha('k)
I'I·""\C·I'.\·.

III f"'-I'r"al~' I ht' DBEII"i1'''"'' It'llI frnlll I lit' p""",ioll:' ItiiC'kllp t:opy "p 10 I.h,· .·tln"III...illlC' ill I.t...
··;I~t· ••1' Jllc,e1i;, faillJl'C' "11 I.h.· I)BElild:--L Thi:-- il";c rolll'ctrward rc'l'O""'Q·.

,t, '1" 1"' -,1',',11. II ... IHU',II\'i I'tllI 11 ... 111 frlllli Ihc'I,r"v;"JI=-, lJa('klll' ('(,II'Y Ult 1.1I :o\Ollh' ol.lIC·1' ill 1.lu·pa,-;1

'1':11" i:tl 1'1I11fflrwilrdL rill=-' fC'alllrl' Illay I... IJ:--c,d 10 "c'IIIU\'C' ail dttl.ahii....c· IIpclal.I 's art.c'r "'·I'I.aili

,i

III ot.her words. At.omicit.y. (·oll:~ist.enfY. and Durahility properties of t.hf~ transaft.ion fIloclt'l a.r~

achieveJ through logging. Tlw ot.h~r prop~rt.y, Isolation, is a<"hieved using lockillg allfl will uot be
disc uSSt'd here,

Tlw log consists of mult.iple files, alld each of t.hem may be duplicated for in('f(~ased robUt)t.llt~S,

The syto;1.t"m maintains a Jirect.ory of currently defined log files, The log files may b~ added/dd('t.t....d/djspJayt~(1
whil~ tht~ syst.em is operat.ional.

The ('ont.ent$- of a log file is log rt'(.·ord~. Most. log re('ords describt" updat.e:-o t.o t.lw lISf'r dat.a.
Typically, such record cOllt,a.ius tlw pr~vious vallie of t.ht' dat.a (a bf'fore-illlage), and t.tlt" IWW vahlt'
of t,ht~ dat.a (an aft.er-image), Befort.'-illiages i~ used t.o reHlO\'f~ t.lw results of incoluplt,t,{' t.ransactions,
and after-illlagt~s an'" used t.o l1lak~ the results of complet.ed t.ransact.ions pc.'rsist.('IIL Th(' 10"; n'('ords
JllUSt. be writ.teu t.he disk before the corresponding dat.a re('ords are, and they also lUust. bf' writ.l.t~1l

t.o t.h~ disk befort~ t.he lIst~r rec(~ived ronfirmat,ion t.hat t.ht' t.ransl\rtioll has <:olllluit.t.ed. This st.rat.t:'gy
(writ.e-ahead logging) is common for most. rOlluuerrial <latabas<' sysl.t.~rns.

An individual t.ransaction may ~pall nlUJtiple log files. Th~ system itself automat.irally swit.ches
from one log filf' to anot.her when t.he current. log becomes full.

Depending 011 t.he user requirements. a DB EnvirollJuent. call run in eit.her an archive modt· or a
Iloll-ar('hivf~ mode, In arrhive lllod(~. it. is possible to rerOVf>r from media failureto' using L>HEnviroll
lIleIl I, ba('kl.lp (arrhivf» ropy. and tht' log tilt':", rreat.ed af"c~r t.lw harkup wa.~ t.akc~11. It. is aJ~() possibl..
t.o recov~r frolll syst.c~1H crashes by using 0111)" t.11f' 08EIIVironlll(~nt, 011 r.he' disk and t.tH-' log file(s)
on the disk at. t.ht.~ t.inIt' of (~ra.'ih, In a Iloll-archivt:~ modt'. it. is only possible t.o re(~()Vf.'r frolll syst.t.'1l1
crashes. Alt.hough OUt" can uSt"' a barkup ('opy of t.he DBEllviroul1wut. in non-archive modt,. all t.llt"
updat.es 1.0 t.h~ dahahast' which happ~ned aft.t>r t.his ("opY was t.aken, are lost., Frolll t.h.. ()pt~ral.i()nal

point of vi~\\'. all ar(:hivt'" logging lIIay r~4uirt' lIIort~ log spa('c'. aud the log spa.n~ is reus('d ditft·rt~IIt.ly

- t.lw logs lIlust. he:' ~wriodit-ally s"or~d t.o b~<'ofl)~ usablt' again, In this arl.idt'. Wt"' will hf' lIIosl.ly
t.alkillg abollt arc'hivt' fl)Otlf'. Sill(·f·' t.his is wherf' our availabilit.y f'llhall(·ement.:-- r('ally pay oft'.

Continous operation

I' is t'a.~il·r 1.0 c'xplaill our availahilil~' 1'1111,,11(,"111.'111.:" hy pailll.illf.!; a pid.urt' of a (if lUll id"al. 1.1 ... 11 a'
It 'a....' .If'sirahlt,) .'OIlI.ill~.IIS DHEIIVirOlllllt'lIt op.·ral.ioll. Tlw 1I~"r :-0110111.1 h.· ahl.' 'II rlill ill a 1·lIvirc.'lI
1It"lIt a.... lollows:

• Pf'riodirally, :-oay olin' it wf·..k. s'·or.' 1.lll' IlHEllvirollllwlIl '.0 SOliif' ar<'hivallllf'dia (lIsllall~·. I.al'."
widl"'" 'IiIVill~ f.(, hrillg th.' DUEII\'irolllllf'lll dowlI.

• MUI'f' I"rc'<ilwlIl.ly. :-oay 011("(' a d'ly, Joo't.or.' t.11C' lop; fil.~(s) f'Ollto'lIl1lf'd h~' t.hiJoo' pf'riocr~ opl'ral.iull 1.<,

SUI lit , ardlival lIlf>dia. :\~aill, t,l", IlBEllvirolllllt'lI1. i:-o lip wlwlI this is .101

• If it is tlf"SirHhl.' '.tt <'Imil';. , tilt' IUAAill~ l'aralllf'I,.'r~. sudl a.... 1·0 ('rf~a".' a IIt'W lo~ Spat'f' or 1<.

f.·IlI"\'f' 1.1 ... old OIW. t.hi:-o t'itll alS<.J h.' dOll.' wil.h,,"t. hrill,L!;ill~ 1.11C' DUEllvlfnlllllt'lIl clCIWl1. .

III ord.·r 1.(1 :-ol.nr.· ,.1 ... DHEII\'iroIlIlIC'1I1 wllilc~ 1.1 ... IISf'r Irallsal·t.iuIIS aff' st.ill a'·li,·.·. ST<)I{ r has ''''''11
I'liltal"'.'" It. d... its opc'ralioll:; ollli ..." III urd..r 1.0 IlIalla~I' lo~ span' whil.' 1.11.' 1I:"'I'r I.rall:"ilt'l iOIl:" af"
sl.ill a('I.i\'I·. tilt' I(I~ span' nUl Iw di\'i.lt'tl illl.•• 1I1U1t.iplc- pa.rls (file's). wlwrt' "ad. I'al'l 1'<111 IH' I'rltt'I's~I,tl

witl. a si~f1itif'a1" c1c·~r.'C' of illtte'IH'lIdt'lIf'.· frOll1 1.•I·ht'r parIs. ~ow W.· .'Xpl:1I1I Itil III ... ~n 'If f· :llId
1111111 ipl.· lu~ lilt'S ill 1I10rt' clt'l.ail.

Online STORE

OIiJine STORE i~ useel t.o (·r."a"t· it burkup ('opy of a DBEnvirollluent when the DBEllvirolllllclit.
i~ aft.ivf:'. Th~ ropy which is rreat.('d can bt' lIsed iu t.he subsequent. rollforward recovery. In fact..
r.h~ ('opy {'an only h.· lIs~d ill t.lw rollforwanl reCOVt'ry, since t.hc~ DBEuviromnent. hllage 1t. ront.ahls
is illronsist.t:'nt.. This is ill (,ollt.ra.~t. wit.h t.hc' ha<'kup eopy made when thfl DBEuvirolJJllent is not.
ad.ive. Tht' lls~r should Iw fiWart' of it.. alt.hough ALLBASE will euforce the rule aut.olnatkally, so
t.hat. ('ON NECT t.o all ill(·ollsist.elli. DBElivirolllllellt. is not. possible. During roJlforward ree·overy.
l.lw logs ar(' appli•.'el to nt·a...• a ('.onsist.t'lit. (preferably. up-to-date) copy of a. OBEnvirolunent.. It. is
also important. 1.0 know that t.tw TSTOR.E-II is r~qtlirt'd on XL t.o do an ALLBASE online backup,

ALLBAS'E requirt'S that. ai, 1c.'a.lSi. t.l.., log files which were in use during an online STORE window
must. bt' applied dllrill~ rollforward n·(·overy. ot.lw·rwise t.hf.' DB Environmeut. will not. he comcist.ent..
Tlwrefoff'. the IIfo't'r lUust. enSlIrt' that. all I.IIt,,'St' logs arc' availa.ble.' at. recovery t.illlt'.

011 a caut.iouary IlOt.~. au Ouline STORE is a <.lat.a-int.ensive operation which COlnpetes for systenl
resources with tilt' user transact.ions. Therefor<', even if t.he system does not have to be shutdown.
it. may bt, dt'Sirabl(.\ t.o run t.lte .STORE ('ollcurrently with Ilou-prime t.hne batch jobs, as opposed
t.o running it. at. t.l1P pc"ak of OLTP workload. If OIlC' really has to rUIl it. conc,urrent.ly with OLTP.
it. may bt' desirablc' t.o lower t.11t' STOH E priorit.y. ill which rag(' it. will take longer. but. t.he illipaet.
will Iw 1t:'S~ Ilol.irl'ahlt' t.o "'w ol;rp IISt'I·. "VI' don't, have.' any hard Ilumb~rs t.o quant.ify t.hc· ahovt"
rerollmlf'udat.iolJs.

Multiple logs

M"I ..iplc' log filt'~ allow for slIIool.h 1IlCt.llfiW·IIU·lIt of hot.h t.lat' log spa('''' and t.he' log ofi('kup sdwdtllc,:"
(I'f""rrt'd 1.0 a.... fi Swil dll()~ ('lIhalH'I'lIIt'lIl ill I.ht' ALLBi\SE lit,c·ralun·). If t.hc· log span' is insuftkic'lI1..
which r"slIh,l'\ ill frt'qu"111 loS!: f,,11 fOlHlil.ic.H1l'\. a IIt'W lo~ filc' lIIay Iw addc~d whilc" t.1lt-' syst.('111 is sl.ill
opc·ra.l.iolla!. And if '.11t' lo~ span' St't'II,:-. '.0 ht' ,'x(·t>ssi\~t·. t.l t~xt.ra log tilt'S ma.y Iw c.lc·ld.c'(1. It. is al:-;<)
pOl'\l'\ihlc' I\,I 1I10\'t' lo~ filt·s frOl1l Ollt· dt'vi ... · 1(\ allot.lwr.

Lu~ fill':- whidl arc' lIul i'lIrrl·1I1.ly ill 11l'\1' hy 1.1ll' S.\':-;lt'llI ('all Iw sl.ort'd 011 SOllU' archi\'allll,·dia. TI...
frt'q"'-IIC'y of l'\1.orill~ I()~ lil,'l'\ dt'IH'IIe1l'\ Oil I.IIl' 1·(III~itlt'ral.iolll'\ or possihlt' clfit.a 1e.)l'\S aIltl of Ilt'n'l'\Sil.y h~

1'...... I·11l' lu~s a:-. l'\0111i a.... po:-.sibh-. Dfil.a 1(1:-;.... Illay rt':';III1, frolll a dallla~t"d 10K file, 011 .. Ill' dil'\k. Slidl lo).!,
"allllnl h,' IISI't! It II' Ilw rnllforward fl·C·O\,f·ry. 'I() l'\I)lv-' t.hil'\ problC'III.. d'f' Ill;" LLO< ~ f.'a"."r,· "'lUld
I... IIsc·d (dc':--crilll'd lal.t·r). :tIId/or I.lac· lo.!!.:" l'\l.o.. ld IH' l'\IOfl'd oft' wit" slItfki"lIl, frc'tf"t·lll·y. Hili ,.hc·n·
i:- :llllll.llC'r rc·a.'-iOlI I'CH' :-;"ol'ill~ ,.11t' logl'\ wit.h l'\Oll ... rl'~lIlarit.y - "h.. sysl.c'm will 1101. l'('IISc' t.lU' log (ill
ardliw' IIlod,·) 11111 il il. lIa:-- h"c'lI l'\I.ol"·'1.

III fielditillll I,u I.IIl' ".. Iwl.iollalily ,.'1' add/dc'I..I"/:-'lol'l' lo~~. it. fairly rOlllprc'lw,,~iv,·. display ffiCilit.y
i:- /,nl\·id.'d I.CI l'\h- 1\\' IIll' '·lIrr"III. ;o;I.a"" tIl' 1."1' lop. dir.'('lory. TIlt' i"forllla.t.ioll ill('llId~l'\ log file' lIalllc·l'\.
I.lwil' rt-s/'I·.. I.iv,· l'\i:l.c·l'\. alld wlwl.lll'r IIr 1101. 1.111' In~i" hav,· h('c'lI dalllagc'(l. Tlwrt' is also illformatioll
:-.h""1 ''/Il' lal"sI ;)lIlill" hiWklll' alld IIll' el\'l'raJl alll(llllli 1)1' frt'" lo~ Sp(1C·'·.

Dual Loggillg

1l1l:!I ll)~.~ill.~ il" 1I:'I·d II' illl:r";ls,' 11I.e. :l\'ailahilily. II \'''Ipluy:" it IIljrrorrillg l'\(·ht'lIlt'. wlwrt' ill~I.c'ad or
.,111 lile- I~,r ,·:,d, I,,~. I.W., lil,·:-- Mo' lI:-'l·d. Ltll-!. wrill'l'\ drl' il'\l'\III·d lu hol.1I I()~:-. If it writc' I.e I niH' lo~ fil.·
rail:--. it i~ ""Irkc'd ;IS "llad". itlld II ... l'\.Vl'\It'1I1 wril.l·l'\ "Itly 1.0 it .. p;oud" log fill' ... Bad" I()~~ aI'" 1101 IIl'\"c1
1"11' 1'",'11\'.·1'.\'. alit! wl ...11 I Ia,· I,,~ i:- SI.UI·I'll. IIl1ly :a ".!-!;Illld" filc· i:o: dIOSt'lI. \lVllt'lI a sysl.l'lIl swit hl't':" i"I.(l
'1 I..~ ~1l.!,:lill. II... ' 'ta"" j"di"i11 til" i~ r"l'\c'I III ttl I...,. \\'flrd:" ... had" silllply IlIt'all:" IIli1'. I·h.· Ill;.!. dot,:" "nl
""111 :Ii" ""111,,11'1" i"rll,.IIIiII jelli. :111.1 i~ I l...r"li II'" 111111:00:1111" rill' 1·,·I·I/\'I·ry. or """r~I'. a prilllary log, fiI,·

and a backuJl log tilt" should never bt" pl~.("ed 01'1 t.h~ salllt" physical d~vin.. otherwist~ ',hey would fail
t.ogt>t.her, thus defeat.ing the purpose of mirrorring.

It. is nat.ural t.o conlpart~ dual logs wit.h mirrorred disks. Mirrorred disks use more space, since
t.ht' wholt" disk is Illirrorred, not, just individual log file(s), and t.herefort> are mort" expensive'. On the
other hand, t.ht" mirrorred disk I/Os are issued by ..he Operating Syst.em in parallel, whilt~ ALLBASE
serially writes t,o tht' prinlary and then t.o the nurror. Therefore, performance of tlw Inirrorred disks
is bt'tt.er. In t.h..- future. however, ALLBASE llIay come up with a parallel sc.ht~lllt" for dua.l loggiug.

Rollforward recovery

Alt.hough t.h~ feature exist,ed in previous releases. SOllle new work has b~ell dont.~ to Illakf' t.he process
of rollfor ward recovery more robust. and user-friendly. The most, ilnportant reasou for perforJning
rollforward recovery is luedia failure 011 eit,her a DBEfile or a log file. Anot.her reason for t.he
rollforward recovery may be luassive logical contanlinatioll of data. For exanlple. consider a case
where a 10(. of data which were entt'red an.er May 10 was absolutely lneallillgless. In this case, partial
rollforward may bt' reconuuendcd "0 bring a DBEnvironment. to SOJl~ (·olJsist.en(. point. ill the pa.~t,.

Rollforward r~{'overy is perforliled using SQLUTIL. The following St'4ut'II('t' of st,t~PS is re(·olll
Illendf'd:

l. St.ore.' all t.tH.~ log files which are st,iII ou the disk and have not. bt'ell st.ored before to t.he t,apfl
(or ot,her archiv..- media) using the RESClJBLOG (~olullland. 111 ordt.~r to simplify this st.ep, ',hE'
uSt"r lila)' aU.t~lllpt t.o perform a SHO\VLOG cOllullaud (wit,h au Otflillt~ flavour). which would
display all I.ht.' log inl()rlllat,ioll. Only good logl'; which have flot bf.'t-'II st.orc.·tJ should ht' rcsflwd.
II. is possihlf'" howp.vt.·r, t.hat. even all offline SHOWLOf; will fail ~ art'sult. of utt.'dia failurf'.
HUI ill allY casp. it. is always wort.h I,ryill~.

1.. H.{~I,Orc' 1.11t.' prc'\'iolls olllilllt~ ha('kup ('opy lIsing t.lw RESTORE (·ollllllalld.

:t Do all "tnillt' SIIO\VLO(: ("ollllltalld 011 1.11(' rest.or,'d DHEn\'irolllllt,,,I. It will display 1.114'
Sf'tlIIC'Ih"" 1II11111wl' of I.hc' firs. lo~ to hc' a.pplit'd durillg I()rwartl rpc'overy.

·1. Illi.iliH:;l' n'('o\,c'ry lISill~ tile.' SETliPRE('OVERY c'olllJllalltl, Tlli~ fOllllllalH1 spc't'ilit's wht'l.II.'r
Iht' IlHEII"irollllu'lIl sholiid Iw rollt'tl If)rWartl '·Olllpl"".·I)' up-to-(Ia,.f· or lip 10 it Spt'(·iti(· l,illaC'="
!.alllf'. Furl.IlC'r, il pro\'id.·s I.ltc' lo~~illp.; paralllc",f'rs ",IIidl. will l.akf' ..tft'(·I. aft.c'r ,.11f' DHEII\'iroll-
11 .. '111 ha.'" h,'c'll n·('o\'f'rt'(1. .'

~.. For pat'll lop.; I.tI i!pply, 11:.... 1.11f' H.~;(~OVEH.LOr: rOllllllalld. II' a lu~ i:-; 1101 011 disk. it. lias Iw
prc'l'('dc'd hy it HESTORELO(~ c'Ollllllctlld \.0 hri,,;!; III\' 10K ill. Tht' Sysl.C'1I1 will aut.olllal.i,'ally
\'t'riry .. lit' f'OI'rC·'·'.IIt's~ of log St'qlwlln' lIullthc>rs. WIlt'" RESTORELO(: i:'\ lIi"f'tl. it. is dt~sirahlc'

to rt'lICllllc' 1.11f' lo~ Iilc·. ol.llf'rwisc' difl~rc·lIl. i"carllal.iolls or 1.1 ... :-;alllt' lot!: Iil(, lIIay ovc'rwril.f' c'ad,
ol.llt'r.

I). If r.'C'O\'f'ry 1·0 it ~1Jf'('ilir '.illlf'st.allip wa:o- spc'(·ili..d. I·hc' sysl.f~11I will iLulnlllalic'"lIy :"\IUp wlwil ,.his
l.iIlWSI.illllp IIa:-. h.·c'" rt'acllC'd. O!.llf'rwisC'. 1.11t' IISf·r should iS~lIc' E~ DH.t-:<.'<)V EH\" "Olllllla-IIe1
aft"'r IIIf' 1,,:0;1 lo~ ha... IH'c·1I applil·cl.

If. dllrill~ rolll'orward rc'('o\·c'ry. I.h'·r,· W(1.... all I/O error rl';Hlill~ Ih.' IClI!,. hili !.hc' DBEllvirOIlIlIC'IlI
I~ plt~·si("a.lIy n)llsis1.c·lI!.. I.IIC' f!.)lIIl)rward ft,,'u\'c'ry willnllillal.'· willi i, w;II·llil.l!.. III Ilti~ n~"'c'. 1,1 ...
DBElIvirolllllc'lI1 j:-- usahl.'. 1,111 il i~ IIIl)sl Ilrc'l"a"I~' Hoi· 1I1 1-l.o .. d......

If a S.V:--I.C'III c·r;t.~ltc's dllrill~ rulll()rward rC'I'o\'l·"y. 1,1 ... II:""" is ild\'i:·:,'d III ... ·a!'!!I.,· 1.1", I..~I. loJ!.. TI",
SY:-;'Plll IIIaY rC'l.lIrll a warllillg ,.lla. ,.his lup: i:-- 11111 .tt" :-;..tlllf'l ·. Thi~ \\arlllll.~ ";111 Ill" i.u;IInrc'd: il. :"illlply
1I1"illl:o- ,.hill ,.1 ... :--.\is'11I llii:-i all·,·ady I'Plllpl"'l'oI work ""ill, Ih.· I. I.!.!, . .\lId lilt' I"''XI • '11" ",It•• 111.1 h" i1-l'pli.·d.

Logs on raw devices

Raw logs is H perfOl'll1anCe ft"'at.ure. The additional perfor~Ila.IlCf-' is gained by bypassill~ t.he UNIX
filt' syst.f-'TIl, and by rell10villg indirect blocks. On t.ht> other hauet. t.heft' arc.' SOJW~ yhjllg~ about. I.h('
ra.w dt>vir('s I.hal. t.ht'" user should take int.o ar('ount.:

• The raw filt's require all 1/0 t.r.allsfers t.o be lK multiples, in order t.o a('comodat.(' t.his rult',
t.llf:' syst.t'llI IIla.y have t.o round t.ht' current. log block 1.0 a 1K boundary. As a rt'Sult., all Unix
(not. lH'r~ssa.rily raw!) logs may be somewhat, larger t.hall •.heir XL ('ollnt.t>rparr. .

• DBA should t~xerrise SOUlt' addit.ional rare whf'"11 using part.itions b€,a,('IIa.~' of p~siblc' oyprlap
ping wit.h ot.her part.it.ions,

Dynamic space expansion

Uyllalllir span' (~xpa.nsioll is a feat.ur~ which allows tht' DHElivirOlllllt·lIl. syst.t"l11 t.o iucr('8Sp t.lw
URElik spacp wl...11 lIec.'ded wit.hout. allY mwr inf.t'rventioll. He'fon', if a nHEfil(..~t, would he('olH('
full. ttl(' mwr would havc' t.o mallually <'reah' allot.her DBEfil(' alltl add it. t.o t.11C' DB Efile.sd., In t.11C'
Illeallt.illlt'. uo U8er t.raJlsart.iolis which net.·d ..his additional span' would Iw able t.o pron·ed. Alf;O.

'. ;\(Iding cUlot.ht'r DBEfilt' is ~, DDL operat.ion. and if t.hf'" DB EuvironHlt'lll. is run in DM L only ,uodf'",
il ha.~ t.o ht' shut. down. hrought. up wit.h DDL. shut. down agaill, alld hroull;ht. lip wit.hout. DDL.
~ow, a.11 t.lw U~t'r Ia~-.; 1.0 do is 1.0 delhlt' a DHEfilt· as bt.>illg c.>xpalldal>lt'. Mort· pre('isdy. at. t.lu- t.iltlt:'
of crt·at.ioll of t.Iw UHf:filc' t.he user lIIay sperify t.he illit.ial SP<H'f-' allo('at.ioll for '.11<' tile. f.11C' 'Jlaxi'Jlu'lI
span' allo(·at.ioll f()r 1.11f' filc>, alld t.hE' c'xpansion iunc'lIll'lI1. Wht"'IH'vt'r t.hf:' !"yst,('1II fllns Ollt of cI~t.a or
iwl.·x ~pHn' ill a :-:pt'('ific I.lBEfilC'sc""" il. dwrk:, all t.Iw c'xpalldahlc' DHEfilt'l" ill t.Iw filc>:-:t'l a.ml t'xpall(l:,
1.1 ... 01 ... who="C' ral.if.) of 1.1 ... IIlaxillllllll si~c' 1.0 t.llt' curn·lIl. si:w is t.lw sllIallesl.. Thi!" a.l~orit.lllll c~II=-'lIrf"S

iUt lIuiforill J!;rowl.h of all t.he· c'xpantlahlt' DBEfilc'S, ali<I it. work:, "YC'II if DDL is disahlt·d.

3240: ALLBASE/DB2 CONNECT - SQL Gateway to IBM's DB2

Jim Nagler
Hewlett Packard

Commercial Systems Division
CUpertino, California 95014

408 447-4048

INTEREX Conference; August 5-8, 1991: San Diego, CA

ABSTRACT

ALLBASE/DB2 'CONNECT provides transparent access to DB2 data
in a standard relational format. Users may query, update,
load, unload, create, or drop data from DB2 using ISQL,
ISQL command files, Information Access, NewWave Access or
NewWave Agent scripts.

The benefits of this product to the user are numerous:

* DB2 data can be accessed using products that support
ALLBASE in a manner that is consistent with accessing
ALLBASE/SQL

* Data may be exchanged with DB2 via unload or load
sequences during off load periods

* Data translation is performed in a transparent manner

* No knowledge of IBM MVS JCL is required for data exchange

The following figure shows one of the many possible client
server relationships with ALLBASE/DB2 .CONNECT. In this
case, an IBM mainframe is the server for DB2 data and the
HP3000 is a client to the DB2 server. The HP3000 is also a
server for the PC Clients. More than one DB2 server can be
accessed.

ALLBASE/DB2 CONNECT 3240-1

IBM

DB2

C'CS
SOLHost

DB2

IBM

='<::S
SQLHost

37xe:· I 37;-.:·~

37x5 / 37xO
HP 3000

~
ISOLo"

. Information Access sol
, tC-.LLBASE SOL

~~ Terminal LLJo.2 .API
SN.'O=:'L.nk

USing ISOL r--:p~s=:--I-c::~-a----,. -d-~i

Sfol"ver

i];
~fHJi

Vt?c1r ~
IBM r'!.:'~:TlAr

01 p':.!::
U~lr.g

Inforrna1.or. A('c~~:i} PC
or ~wW~'1€' AC(f)~s.

Usir~ ISOL

3240-2 ALLBASE/DB2 CONNECT

1. INTRODUCTION

As Open Systems and Database Standards continue to evolve,
more emphasis is placed on the ability of customer systems
to not only meet these standards, but to also share data
among applications that span the more frequently
encountered environments. ALLBASE/DB2 CONNECT extends HP's
connectivity to include heterogeneous systems.

In this environment, the DB2 Data Base Administrator
continues to control access to the DB2 data. HP connecting
users can be assigned surrogate DB2 userids, and the normal
DB2 GRANT and REVOKE commands can be used to control
access.

The DB2 connection is configured using installation and
configuration techniques that are similar to the methods
used with ALLBASE/NET. Standard SNA LU6.2 connections are
configured between the IBM host and the HP system using
techniques that are familiar to ALLBASE/NET users. Users
connect to DB2 in a manner that is similar to the method
used to interconnect ALLBASE XL to Unix Database
Environments. These connections are available to
authorized ALLBASE users.

2. DB2 and ATJ~ASE - Two Relational Worlds

In a general way, ALLBASE and DB2 are two implementations
of the same relational model. Some differences exist in
the SQL language used for each implementation, but both
languages are moving toward compliance with an evolving
standard. ALLBASE is approaching compliance with the ANSI
SQL standard.

When users access DB2 using ALLBASE/DB2 CONNECT, they will
be using an ALLBASE data access tool. CUrrently available
tools include ISQL, Information Access and NeWWave Access.

ALLBASE/DB2 CONNECT does not change SQL statements obtained
from the connecting tools. DB2 users or tools must enter
SQL statements applicable to the DB2 release involved with
this connection. Error messages produced by DB2 are
normally displayed after the offending statement by the
connecting tool.

While this connection provides for transparent data access,
some differences may be observed. A few differences exist
in the Data Manipulation Language statements. A few
differences also exist in the range and significance of
floating point numbers. Some differences also exist in the
Data Definition Language statements. More differences
exist when the system catalogs are compared.

ALLBASE/DB2 CONNECT supports dynamically prepared SQL
statements only.

ALLBASE/DB2 CONNECT 3240-3

2,1 Transferring Data Types

When a user selects data from a DB2 table, the data is
displayed in ALLBASE/SQL data format. When ALLBASE/DB2
CONNECT selects the data from· DB2, some of the IBM data may
be converted to ALLBASE/SQL data types. For instance, the
date and time formats for DB2 data types differ from the
ALLBASE/SQL data type formats for date and time. Also,
some IBM data types are not fully supported, e.g., GRAPHIC
and VARGRAPHIC.

The limits on the data types differ between the two systems
in some cases. The ALLBASE/SQL and DB2 data types and
their conversions are described below:

ALLBASE/SOL COmments Jm2. Comments

INTEGER INTEGER
INTEGER SMALLINT
FLOAT defaults to FLOAT Defaults to 8

8 bytes byte float.
Differences
exist.

DECIMAL DECIMAL
CHAR 1 to 3996 CHAR 1 to 254.
VARCHAR VARCHAR Depends on page

size
TIME TIME
DATE DATE
DATETIME TIMESTAMP
CHAR GRAPHIC
CHAR VARGRAPHIC
CHAR LONG VARGRAPHIC
REAL REAL 4 byte float

Some DB2 commands are the same as ALLBASE SQL commands.
However, you cannot use ALLBASE SQL commands that are not
supported in DB2. The following table shows SQL commands
(either statlc orALLBASE SQL commands) that cannot be used
with ALLBASE/DB2 CONNECT:

3240-4

COmmand

ADD
BEGIN
CHECKPOINT
CLOSE
DECLARE
DESCRIBE
END
EXECUTE
FETCH
INCLUDE
OPEN

ALLBASE/DB2 CONNECT

Command

PREPARE
REFETCH
REMOVE
RESET
SAVEPOINT
SELECT INTO
SQLBXPIAIN
START
STOP
TERMINATE
TRANSFER
WHENEVER

2.2 DB2 with ATJ:RME ISOL

When using ISQL, some restrictions apply. certain ISQL
commands are not enabled. These commands include:

INSTALL

LIST SET

UNLOAD INTERNAL

LOAD INTERNAL

This command is used with static
SQL.
This command will not display the
OWNER setting.
This command sets the owner name to
the value entered by the user.
OWNER.MODULE is not defined by DB2.
The internal format is only
recognizable by ALLBASE/SQL. DB2
users can use the external load
format.

The ISQL command LOAD EXTERNAL loads data from an ASCII
file into the DB2 database. ALLBASE/DB2 CONNECT converts
these rows in the file into DB2 format and adds them to the
DB2 table named in the LOAD command. The ISQL command
UNLOAD EXTERNAL unloads data from a DB2 database into an
ASCII file.

To upload data from ALLBASE/SQL to DB2, a user can specify
both the UNLOAD and LOAD EXTERNAL commands. The user can
issue the UNLOAD EXTERNAL command to unload ALLBASE/SQL
data to an ASCII file. The user can then issue the LOAD
EXTERNAL command to load this data into DB2. These
commands can be time initiated.

2.3 DB2 with Hewwave Access or InfOrmation Access

Access to DB2 data can be made from a PC using Information
Access PC or NeWWave Access on the PC.

For either application, the ALLBASE/DB2 CONNECT alias name
is used whenever a DBEnvironment name is requested. In
most cases, the PC user will not notice any difference
between the DBEnvironment name and the alias name.

A view and table are needed in DB2 when using Information
Access or NeWWave Access in order to make the system tables
compatible. Information Access and HeWWave Access create a
list of available tables vhen an initial connection is
made. Options can be set for DB2 connections which limit
the number· of tables that vill be extracted froll DB2 when
the initial connection is established.

NeWWave Agent scripts are supported. These scripts can be
used to coJDbineALLBASE data and DB2 data vith PC
applications. Information Access batch files are
supported.

ALLBASE/DB2 CONNECT 3240-5

3. Setting Up AT,T.B"SE/QB2 CONHICT

ALLBASE/DB2 CONNECT can be used in conjunction with
hardware and software on the IBM system, the BP 3000, and
PCs. The IBM system becomes a server, the HP 3000 becomes
both a client to the IBM system and optionally, a server to
the PCs.

The following figure illustrates the hardware and software
requirements for connecting the HP 3000 to DB2.

HP 3000

...----........... 1

I
I l'rOI '" Ir·.rr"'~II·'\~ 'I('('~('(' Sf}1I .),,_ (~ I!'.i:ill~, ~!I1 PI ... \.1) , \\1.

""""""---.----!
Ir-_--;.i--I ' ~ L L Eo-~ -:-. F: . ::. -::.L

___--....--....!. :.\ i.R.:.~·F ..rlp.,::- I~.:-.' II!F.CT

r· .~.'.: :....~.:: i <i

IBM System

37 ;~. ~J .' ·~~7,· C
COnll;7·: Um!

3240-6

For the BP3000, ALLBASE/DB2 CONNECT uses the LU6.2 API,
SNALink, the PSI card .and· either a Modem or a DSU to
connect to the IBM system. On the IBM system, another
modem or DSU is needed, a communications port, VTAM, Gupta
Technologies' SQLHost, optionally eICS (or a direct
connection), and DB2.

Two utility programs enable the connection parameters to be
configured. The HMKGR utility is used to configure the
W6.2 API/XL and SNALink 80ftware. The NetUtil utility
program is used to configure the AliasDB file parameters
and the NETUser Pile parameters. The AliasDB file entry
configures information concerning data buffer sizes (for
exchange with the SQLH08t transaction), transaction name,
trace control, etc. The U.er file entry assigns DB2
userids and passwords to BP ullers. These userids and
passwords can be validated at each connection.

ALLBASE/DB2 CONNECT

4, Bun Time Considerations

ALLBASE/DB2 CONNECT can be used to pass data in the range
of 1 to 16 megabytes per hour, The rate achieved will be
based on the baud rate of the communications line used,
The actual data rate achieved can be improved by
compression techniques. and software on the IBM system, the
HP 3000, and PCs,

5, Summary

This paper has presented an overall picture of ALLBASE/DB2
CONNECT. Hopefully it has given an insight into how
ALLBASE/DB2 CONNECT operates, and how ALLBASE and DB2 data
can be combined.

More information concerning the usage, installation, and
setup can be found in the individual manuals for
ALLBASE/DB2 CONNECT and the required products.

Though the concept of combining data from heterogeneous
database systems and hardware is still new, HP has made a
step forward by extending the integrated ALLBASE
environment for the combination of relational data from HP
ux environments to now include IBM's DB2.

ALLBASE/DB2 CONNECT 3240-7

TITLE:

AUTHOR:

Coexistence: TurbolMAGE and SQL

Tad Olsen

Hewlett-Packard Co.

19420 Homestead Ave.
MiS 44MA

Cupertino, CA 95014-9974

(408) 447-4088

FINAL PAPER NOT AVAILABLE, HANDOUTS WILL BE PROVIDED AT
TIME OF SESSION.

PAPERNO. 3241

3242:

ABSTRACT

The ALLBASE/SQL ROBMS: "Optimized for HP Platforms"

Rajoo Nagar
Hewlett-Packard

Commercial Systems Division
CUpertino, California 95014

(408) 447-6526

INTEREX Conference: August 5-8, 1991: San Diego, CA

This paper reviews the direction HP is taking with its relational
database, ALLBASE/SQL, the application development alternatives now
available with the database, and the recent advancements in the area
of case and client-server tools. The paper also discusses performance
enhancements and new functionality in ALLBASE/SQL with the latest release
of the product, and HP's role in database standards such as the SQL
Access Group. This paper is targeted primarily at MIS Managers and
technical professionals.

The ALLBASE/SQL RDBMS: "optimized for HP Platforms" 3242-1

PRODUCT OVERVIEW

HP ALLBASE/SQL is Hewlett-Packard/s Relational Database Management System
(RDBMS) offering on the HP 3000 Series 900 and HP 9000 computer systems.
Tremendous performance improvements and new features have made
HP ALLBASE/SQL very competitive with leading third party RDBMS offerings.
HP ALLBASE/SQL offers leading on-line transaction processing (OLTP)
performance, transparent interoperability with non-HP databases, and
superior supportability and data reliability for maximum uptime in mission
critical applications.

Hp/s strong commitment to HP ALLBASE/SQL as its strategic database for
HP platforms has translated into significant improvements in both
performance and features with every release. Today, HP ALLBASE/SQL offers
unparalleled on-line performance on the HP 3000 Series 900 systems, and is
also a strong performer on the HP 9000 systems. The RDBMS has been
optimized and tuned for HP/s operating systems and underlying PA-RISC
(Precision Architecture reduced-instruction-set computing) architecture.
This is because high OLTP performance can be most effectively and
quickly delivered through a close coupling of the database and system
software. Users can expect to see this competitive advantage in
performance increase over time, as HP more tightly integrates
HP ALLBASE/SQL with its operating systems and hardware.

The mid 1991 releases of HP ALLBASE/SQL (MPE-XL 3.0, HP-UX S.O)
incorporate significant enhancements to the database management system.
An expected 100% increase in performance (TPC-A) on HP-UX will give
HP ALLBASE/SQL a clear performance advantage on the HP 9000 systems.
In addition, this latest release of HP ALLBASE/SQL incorporates new
features such as server enforced referential integrity, on-line backup,
automatic log switching, and large free text storage through BLOB
(binary large object) support.

New 4GL application development and client-server tools for the database
are discussed below under a separate section.

PRODUCT STRATEGY

The HP ALLBASE/SQL strategy is based on the following goals:

* To provide the fastest performing database engine on PA-RISC systems

* To provide open solutions through:
o a choice of leading multi-vendor application development tools
o interoperability with other databases in heterogeneous

environments
o support for leading industry standards

* To provide solutions to enable co-existence with HP TurboIMAGE
databases.

The ALLBASE/SQL ROBMS: "Optimized for HP Platforms" 3242-2

* To provide superior supportability and data reliability for mission
critical applications

By integrating multi-vendor tools and embracing industry standards like
SQL Access, HP ALLBASE/SQL represents an open database system offering
users all the advantages of an engine tightly integrated with the
operating system, while at the same time providing openness and
application portability. The .HP ALLBASE/SQL strategy is to provide
users with the best of both worlds: high performance, integrity and
supportability through tight integration with the operating system,
and openness through multi-vendor tools integration, foreign data access
and standards.

PERFORMANCE

HP ALLBASE/SQL offers leading on-line performance on HP platforms. This
advantage is the direct result of HP's tightly integrating HP ALLBASE/SQL
with HP operating systems and hardware, thus allowing maximum use of
available CPU power and operating system features. HP's tuning efforts
in the HP ALLBASE/SQL database engine and HP operating systems in the
last two releases have yielded remarkable performance gains on MPEXL
and HP-UX systems, placing HP ALLBASE/SQL in the forefront of relational
database performance. TPC-A benchmark tests show a 15%-25% performance
gain for MPE-XL 3.0, and a 100% performance improvement for HP-UX 8.0.

In addition to tight integration with the operating system, HP ALLBASE/SQL
high performance can be attributed to the following features in the
engine:

* Path length tuning
* Raw I/O (on HP-UX systems)
* Cost-based, statistical optimizer
* Hash indexes
* Group commits
* Read uncommitted concurrency option
* Cross-transaction cursors
* Bulk data transfer
* Improved sort algorithms
* Fast inter-process communication between front-end and back-end
* Multi-processor support

New functionality has also been added to the database to provide better
on-line application performance with third party application development
tools.

The HP ALLBASE/SQL strategy is to continue offering leadership TPC-A
performance on HP platforms. (TPC-A is the industry standard benchmark
recently adopted by the Transaction Processing Council. Increasingly,
vendors are using TPC-A as the yardstick for comparing database
performance reSUlts.)

MULTI-VENDOR TOOLS INTEGRATION

HP ALLBASE/SQL is compatible with several industry-leading multi-vendor

The ALLBASE/SQL RDBMS: ·Optimized for HP Platforms" 3242-3

application development and client-server tools. Applications
developed using these toolsets will be able to run on HP ALLBASE/SQL or
on other databases supported by the tools with little or no modification.

The separation of application development tools from the database engine
is a trend that is beginning to gain momentum in the relational DBMS
market. HP has responded by providing linkages of popular multi-vendor
4GLs to HP ALLBASE/SQL. Cognos' Powerhouse, Ingres' Application By Forms
(ABF), Information Builders' FOCUS and InfoCentre's Speedware 4GL tools
support access to HP ALLBASE/SQL on the HP 3000 and HP 9000 systems.

The Cognos and Ingres application development toolsets provide
compatibility across a wide variety of platforms such as HP, DEC,
IBM, and Unix. FOCUS is a 4GL application development and report
writing tool dominant in the mainframe market, and Speedware is a high
performance 4GL for the HP 3000 systems. HP's strategy is to
continue to increase the 4GL solutions available with HP ALLBASE/SQL.

Separating the application development tools from the database engine
allows customers to choose the preferred application development
environment and database for their information management needs, even if
they are not supplied by the same vendor. It also gives customers the
flexibility to mix and match front-end toolsets with back-end database
engines. Providing a high performance, integrated database engine and
flexibility in tools selection differentiates HP ALLBASE/SQL from other
relational databases.

In the client-server area, HP is working to provide users with a choice
of PC-based client-server 4GLs that access ALLBASE/SQL on the HP 3000
and HP 9000 systems. SQLWindows from Gupta Technologies, and
Powerbuilder from PowerSoft will be available in the late 1991 - early
1992 time frame. On HP-UX workstations, the Ingres/Windows 4GL will
enable users to build graphical client-server applications that access
ALLBASE/SQL on the HP 3000 and HP 9000 servers.

Industry standards organizations such as the SQL Access Group support
the trend towards database and tools separation by providing the standard
application programming interface (API) and network protocols, so that
users can mix and match heterogeneous SQL products in a multi-vendor
environment.

INTEROPERABILITY VIA STANDARD INTERFACES

An open system requires the full backing and support of industry leaders
to ensure customers the benefits of direct interoperability. The SQL
Access Group members include relational database vendors such as
as Informix, Ingres, Oracle, Sybase etc. and systems vendors such as
DEC, HP, NCR, Sun and Tandem. HP is one of the founding members
and an active producer member of the group. The mission of the SQL
Access Group is to implement an application programming interface (API)
and ISO-based Remote Database Access (RDA) standard that will provide
an interoperability solution for customers who own mUltiple databases,
running on different machines, and who wish to link their databases
through a standard interface. In the future, users will be free to mix
and match SQL Access compliant products to meet their information

The ALLBASE/SQL ROBMS: "Optimized for HP Platforms" 3242-4

management needs. The SQL Access standard interface will be provided with
HP ALLBASE/SQL in 1991, allowing interoperability between HP ALLBASE/SQL
and other databases that conform to SQL Access.

HP ALLBASE/SQL FEATURES

a. Overview/Unique Features

Based on the industry standard ANSI SQL specification, HP ALLBASE/SQL
is a functionally complete relational database that runs in native
mode on the MPE-XL and HP-UX platforms.

Briefly, here is an overview of the current HP ALLBASE/SQL offering:

- Price/performance leader on MPE-XL and HP-UX
- Fastest RDBMS on HP platforms (based on audited and fully

disclosed TPC-A and TPC-B benchmark data)
- 100% conformant with ANSI SQL Levelland X/OPEN XPG3
- Interactive SQL and preprocessors bundled with database
- Full Native Language Support
- Complete set of HP and multi-vendor tools for application

development and connectivity
- Backed by HP commitment to quality and reliability
- Worldwide support
- Lower cost of ownership than competing products

From a features point of view, here is what the current
HP ALLBASE/SQL product offers on MPE-XL 3.0 and HP-UX 8.0 releases:

- Data access via B-trees indexes and hashing
- Cost-based query optimizer
- Interactive SQL interface
- Referential Integrity (conforms to ANSI SQL1 Addendum)
- Graphics, voice, and free text storage (binary large objects)
- Dynamic SQL
- PC client tools
- NewWave integration
- Multi-vendor, mUlti-platform 4GL and Query/Reporting tools
- Language preprocesors for C, Cobol, Fortran, Pascal , Ada
- Variety of DBA tools: SQLUtil, SQLMigrate, SQLCheck,

and SQLGen
- Automatic deadlock detection and resolution
- Concurrency control: Isolation Levels -

Read Committed
CUrsor stability

. Repeatable Reads
Read Uncommitted (Dirty Reads)

- Transaction Control: Manual , automatic locking
Savepoints
Checkpoints
Cross-transaction cursors

- Full recovery mechanism: Rollforward recovery
Rollback recovery
Physical image logging

- Group Commits
- High availability options: On-line backup

The ALLBASE/SQL RDBMS: ·Optimized for HP Platforms" 3242-5

Automatic log switching
Dual logging capability
Dynamic database restructuring

(column deletes not allowed)
Dynamic space expansion

- Page level locking
- Flexible (DBA-assigned) security scheme
- Null data handling
- Unique "Keep CUrsor" capability with LOCK option
- Transparent remote reads/writes across the network
- Support of 8- , 16-bit characters (NLS)
- Bulk data transfers
- Multi-processor support
- Raw I/O on HP-UX

b. User Environment

The current HP ALLBASE/SQL user environment consists of a complete
set of HP and third-party tools centered around the HP ALLBASE/SQL
database. The interactive SQL (ISQL) interface is based on the ANSI
standard SQL, and provides interactive access to the database via DOL
and DML commands. 4GL, reporting and query tools are available for
application development, creation of reports, and ad-hoc querying of
the database. Ad-hoc queries are supported via both a command-line
and a menu-driven SQL interface. PC-based client-server 4GL tools
facilitate PC-based application development and execution against
the server database.

HP's growing list of key third party tools and applications for
HP ALLBASE/SQL provides customers an even richer set of solutions
for information management.

c. Application Development

Application develoment in the HP ALLBASE/SQL environment is
facilitated by the use of 4GL and 3GL application development tools
from HP and third parties, and by the interactive SQL (ISQL)
interface to the database. Language preprocessors for C, Cobol,
Pascal and Fortran allow programmers to access the database from
these languages via embedded SQL (application programming interface)
calls.

d. Decision Support

HP ALLBASE/SQL provides a platform for decision support when used in
conjunction with NewWave Office Information Access. NewWave Access
is a PC-based data retrieval tool that accesses and downloads data
transparently from an HP ALLBASE/SQL database residing on the host
machine. The data can then be viewed through any of the popular PC
PC packages such a~ Lotus 1-2-3, Symphony, Dbase, etc.

Decision support tools from leading third parties are available
with HP ALLBASE/SQL. For example, the FOCUS report-writing toolset,
Ingres/Graphs and QBF (Query By Forms), and Powerhouse QUIZ all
provide powerful decision support capabilities.

The ALLBASE/SQL RDBMS: "optimized for HP Platforms" 3242-6

e. Remote Data Access

HP ALLBASE/NET allows access to remote HP ALLBASE/SQL databases on
systems connected via LAN or X.25i both NS and ARPA protocols are
supported. The NET product connects SQL databases to each other
and provides both users and applications with transparent read/write
capability to remote systems. No special linking is required to
create applications that can access a remote database. HP ALLBASE/NET
supports transparent remote access to HP ALLBASE/SQL from the ALLBASE
and third party tools as well as user-written preprocessed
applications. HP ALLBASE/NET supports peer-to-peer networking
between databases, as well as client-server connectivity between
workstations and minicomputers.

f. Client-server integration

Read access to HP ALLBASE/SQL from the PC is supported today with
HP NeWWave Access. Program-to-program communication between the
the host SQL server and PC client applications over a LAN is under
development and will be implemented using HP ALLBASE/SQL as the
server database and third party PC-based 4GLs as the client
component. Full read/write access to HP ALLBASE/SQL from PC
applications will be supported, and this capability is expected to
be available in the late 1991 - early 1992 time frame. The third
party PC-based 4GLs include SQLWindows from Gupta Technologies,
and Powerbuilder from PowerSoft Corp. Synergist is a PC-based
client-server 4GL from Gateway Systems that currently interfaces
with HP ALLBASE/SQL on MPE-XL systems.

HP will support Cognos Powerhouse and Ingres/Windows 4GL tools on
the HP-UX workstation platform, and will support full read/write
access from these tools to HP ALLBASE/SQL on MPE-XL and HP-UX
servers.

4GL Development Environment

Traditional Client-Server

Application
Components

4GL

Database

operating System

User Interface

Workstation/
Terminal X-terminal PC

Allbase, FOCUS, Ingres Synergist
Ingres, Powerhouse Powerhouse SQL Windows
Speedware Powerbuilder

ALLBASE/SQL ALLBASE/SQL ALLBASE/SQL

MPE-XL/HP-UX MPE-XL/HP-UX MPE-XL/HP-UX

4GLs available will accomodate a variety of display
devices and GUls (MS/Windows, OSF/Motif, PM, etc.)

The ALLBASE/SQL ROBMS: "Optmized for HP Platforms" 3242-7

g. Connectivity

Transparent connectivity between HP ALLBASE/SQL databases on MPE-XL
and HP-UX systems is provided through the ALLBASE/NET product. Thus
applications can be developed which share common source across the
HP 3000 and HP 9000 families.

Connectivity between HP NeWWave Office Information Access on the PC,
and HP ALLBASE/SQL on either MPE-XL or HP-UX is supported through Lan
Manager and serial connection in a NeWWave Office server
environment.

HP ALLBASE/Turbo CONNECT provides transparent read access to
HP TurbolMAGE database from any HP ALLBASE/SQL interface. The
product allows customers to begin new application development using a
relational database as the platform, while still being able to
read HP TurboIMAGE data. By providing a link between the two
databases, and a common user interface and common tools, HP has made
co-existence between HP ALLBASE/SQL and HP TurbolMAGE much smoother
and easier.

Read/write transparent connectivity to IBM's DB2 database from
HP ALLBASE/SQL application level calls is available with the MPE-XL
3.0 release. HP ALLBASE/DB2 Connect allows DRAs, application
developers, and decision support users running on an HP 3000 MPE-XL
system to interactively create, read, modify, and update
information in a DB2 database on an IBM MVS mainframe.

Interoperability with other relational databases through the
SQL Access standard interface is expected to be available in the
1991 -1992 time frame.

h. HP TurbolMAGE - HP ALLBASE/SQL coexistence

HP ALLBASE/SQL is an ideal solution for customers already using
HP TurbolMAGE but wanting to take advantage of relational technology.
HP ALLBASE/Turbo Connect lets these customers' applications co-exist
by allowing HP ALLBASE/SQL applications to read HP TurbolMAGE data.
HP TurbolMAGE customers can begin new application development using
any of several 3GL or 4GL tools that access both HP TurbolMAGE and
HP ALLBASE/SQL databases. Moreover, HP's strategy is to provide a
set of migration tools and consulting services for customers
moving between these environments.

i. Data Integrity

HP ALLBASE/SQL has many mechanisms to preserve the integrity of
customer data. Referential integrity, security controls, concurrency
controls and recovery mechanisms are a few of these, and are
discussed below.

1. Referential Integrity. HP ALLBASE/SQL supports referential
integrity checks in the database. Integrity constraints allow
the user to check data integrity at the schema level, rather
than coding complex checks in application programs. In addition

The ALLBASE/SQL RDBMS: ·Optimized for HP Platforms" 3242-8

to simplifying the work of coding, this leads to improved
performance. Referential integrity in HP ALLBASE/SQL is
implemented using primary and foreign key constraints, and
conforms to ANSI SQLl Level 1 Addendum.

2. Security. The database allows read and write access privileges
to be assigned at the table level. Access restriction at the
column level may be obtained by defining a view of the table
which omits the sensitive information. Modification authority
may be granted at the column level without requiring that a
view be specified. write access supports a combination of
row modifications and deletes. Appropriate levels of access
privileges are specified by the DBA for individual users or
groups of users.

Views can also be used to improve security by allowing users
to access only that data for which they have a need. Since the
view is not actually a physical table, the use of views does not
result in redundant data.

3. Concurrency Control. This is provided by locking at the
database, table, and page level. Three kinds of explicit locks
are provided: An exclusive lock, which prevents other users
from accessing the entity and allows the entity to be updated.
A shared lock, which allows other users to read, but not later
update the referenced entity. And a share-subexclusive lock,
that allows users to alter part of a table and exclude others
from altering the table, but allowing others to read the
unaltered portions of a table. The database also provides
intent update locking during read operations. Intent update
locking is used when a read operation may be followed by an
update for the read page. This type of locking is used to avoid
the potential for deadlocks when two users try to upgrade their
shared locks to exclusive on the same page.

The database also provides a set of four isolation levels
for controlling concurrency and throughput. These are
Read Committed (Re), Read uncommitted (RU), Cursor Stability
(CS), and Repeatable Reads (RR). Anyone of these can be
selected as an option with the BEGIN WORK command. The default
is Repeatable Reads.

In addition, Keep CUrsor, a special extension to the concept
of a cursor, allows a cursor to span multiple transactions. This
capability improves performance by allowing an application to
commit or roll back a transaction and still keep a cursor open.

4. Recovery. A full recovery mechanism is provided to protect data
integrity in the event of hardware and software failures:
Rollback recovery, Rollforward recovery, and physical image
logging. Savepoint and Checkpoint features are used to
control recovery. Savepoints allow users to undo changes within
a transaction.upto the specified savepoint. Checkpoints are

The ALLBASE/SQL ROBMS: "Optimized for HP Platforms" 3242-9

used by the DBA to flush the buffers to disk when the log
becomes full. If archive logging is not being used, checkpoints
free up log space, and shorten the time to recovery in the event
of a system crash.

j. High Availability

1. On-line backup. On-line backup is a process whereby a database
backup takes place without bringing down the database system.
At a later stage, a log file can be applied to the archived
database copy, bringing the database to a consistent state.
On-line backup provides nearly continuous access to
HP ALLBASE/SQL"data.

2. Automatic log switching. With the automatic log switch
enhancement, switching to a new log is done automatically while
backup is in progress.

3. Dual Log is another mechanism for ensuring data availability.
The dual log option, if enabled by the DBA, results in the
second log being automatically invoked by the database if the
first log becomes damaged.

4. Dynamic restructuring allows the database structure, table
capacities, and security to be changed without unloading and
loading the database, thus improving database availability for
users.

5. Dynamic Space Expansion allows DBEFile space to be expanded
on-line, without having to bring down the database, and this
capability significantly improves availability.

k. Large text storage/Imaging

With the latest release, HP ALLBASE/SQL supports long, binary data
types. This allows users to store very large, variable data
(unlimited size columns) in their binary format. This is useful
for storage of non-character data, such as graphic images or voice,
without the side-effects of CHARACTER interpretation.

1. Localization

HP ALLBASE/SQL lets users manipUlate databases in a wide variety of
native languages. Either a-bit or 16-bit character data can be
used, as appropriate for the language selected. Truncation is
performed correctly for a and 16-bit character data. The database
will display prompts, messages and banners in the language selected,
and it displays system dates and times according to the local
customs. In addition, the database accepts responses to its prompts
in the native language selected.

The ALLBASE/SQL RDBMS: "Optimized for HP Platforms" 3242-10

m. DB Administration

A variety of database administration tools are included with the
database system, and can be used by the DBA to manage the database
environment, and to facilitate database integrity verification
and migration.

SQLUtil
SQLGen
SQLCheck *
SQLMigrate

SQLMonitor **

DBE configuration (alteration) utilities
Schema and load generation tool
Integrity checking tool
Transparent migration from previous releases of
HP ALLBASE/SQL
Performance analysis tool

* SE tool. ** SE tool, available as a product in the next release.

STANDARDS CONFORMANCE

The two most widely recognized organizations which help shape SQL
standards are ANSI SQL and X/OPEN. ANSI SQL is driven by the
participating vendors and industry researchers in the US. ISO is the
international counterpart of ANSI SQL'that drives the European market.
X/OPEN is a defacto standard that influences the UNIX-based SQL products.
Another emerging standard is the SQL Access Group, which is implementing
a remote database access standard for database interoperability in
heterogeneous environments.

HP ALLBASE/SQL utilizes ANSI SQL for data definition language (DDL) and
data manipulation language (DML) operations. Today, the product conforms
100% to ANSI SQL Levelland X/OPEN XPG3 standards, and almost fully
complies with ANSI SQL Level 2. The SQL Levell Addendum that defines
referential integrity is satisfied with the latest release of
HP ALLBASE/SQL. The SQL Access standard interface is still being defined,
and is expected to be available with HP ALLBASE/SQL in 1991.

HP uses industry standard benchmarks such as TPC-A and TPC-B to publish
the performance of HP ALLBASE/SQL on the HP 3000 and HP 9000 systems.

PRICING/PACKAGING

The HP ALLBASE/SQL development package includes the core RDBMS, the
interactive SQL (ISQL) product, the DB administration utilities, and the
preprocessors for C, Cobol, Fortran and Pascal. The SQL Run-time product
includes all the products in the development package except the
preprocessors.

On the HP 3000 Series 900 systems, the HP ALLBASE/SQL development package
is bundled as a preconfiqured "Add SQL" option. The 4GL tools and
connectivity products are purchased separately.

On the HP 9000 systems, HP ALLBASE/SQL is available both asa run-time
and development package, and the price ranges from $2,050 to $109,960.
Again, the 4GL tools and connectivity products are purchased separately.

The ALLBASE/SQL RDBMS: "Optimized for HP Platforms" 3242-11

STRATEGIC ALLIANCES (VABs/ISVs)

The following VABs are among those who have committed to HP ALLBASE/SQL
as of Fall 1990. Many of these applications will be available on HP
platforms in the next six to twelve months.

western Data Systems

ASK Computer Systems
BSA, Inc.
Cevan, Holland
Collier Jackson
Computrac
DPAI

DRC
Financial Data Planning
Hilco
IMAC
InfoCenter
Jobscope
MDSS
Mitchell Humphrey
People Soft
Q-CIM
RMS
SATeON

o

o
o
o
o
o
o
o
o
o
o
o
o

o
o
o
o
o
o

Manufacturing
Direct Marketing
Local Government
Accounting and Financials
Legal Industry, Accounting
Financial Management & Manufacturing
Control
Wholesale Distribution
Insurance and Pension Administration
Monitor and Control System
End User Reporting Tools
Travel, Library and others
Manufacturing
Manufacturing Decision Support
Accounting and Financials
Human Resource Management
Manufacturing
Retail Distribution & Financials
Wholesale Distribution and
Process Manufacturing
Manufacturing, Accounting, and
Contract Management

The following independent software vendors (ISVs) have committed to
integrating their tools with HP ALLBASE/SQL:

*
*•••
••
••

Cognos
Gateway
InfoCenter
Information Builders
Ingres
Gupta Technologies
PowerSoft Corp.
CGI
SoftLab

Powerhouse 4GL package
Synergist 4GL
Speedware 4GL
Focus 4GL
4GL, Query and Case tools
SQLWindows
Powerbuilder
Paclan
Maestro II

These tools will be available on both HP-UX and HPE-XL platforms, with
the exception of Speedware 4GL that will initially be available on MPE-XL
only.

FUTURE DIRECTIONS

The following new functionality and products are expected to be available
with future releases of HP ALLBASE/SQL in the 1992 time frame:

o Stored procedur~s

o Business rules/triggers
o Transaction Processing Monitor (based on X/OPEN) support
o Row level locking

The ALLBASE/SQL RDBMS: "Optimized for HP Platforms" 3242-12

o Interoperability with other RDBMSs via SQL Access interface.
o Performance analysis tool
o New DBA tools

Distributed databases:

The distributed ALLBASE product is currently under development and is
expected to be introduced in late 1991 - early 1992 time frame. Some of
the features that are expected to be introduced in the first release
are 2-phase commit, distributed transaction management, and locati~n

transparency of distributed databases.

SUMMARY

Specific opportunities for HP ALLBASE/SQL include customer environments
that place a premium on:

* Leadership price/performance and performance
* Broad selection of multi-vendor application development tools
* Tight integration with HP products and support
* HP quality, reliability and service

The ALLBASE/SQL RDBMS: "Optimized for HP Platforms" 3242-13

3243
MPE XL Development in a Multi-Platform Environment

Beth Eikenbary
19447 Pruneridge Avenue 47UP

Cupertino, CA 95014
(408) 447-6146

In the past, application developers placed most of their
emphasis on optimizing development for a specific hardware
platform. This was a natural consequence of the proprietary
operating system mentality that has permeated the computer
industry in the past. Today, as a result of the Open Systems
movement, application developers are now focusing on
optimizing the portability of an application across hardware
platforms. This paper will first look at some of the key
ingredients in developing portable applications, review the
porting process and then discuss how to effectively manage
mutli-platform development projects within your organization.

Before jumping into the porting process, I want to provide a
few key definitions. The first area of confusion is the
usage of porting versus portability. Porting is a process by
which an application is moved from one execution platform to
another. Portability on the other hand is a measure of how
well a particular application behaves during anyone port.
Portability variables are· hardware, operating system,
language and database.

There are two basic types of ports: cookie-cutter and custom.
A cookie-cutter port assumes minimal changes to the
application source when moving to a new platform. The
benefit of a cookie-cutter port is its low-cost combined with
a high degree of compatibility across the platforms. On the
other hand, custom ports result in higher performance and
extra features at a higher cost in porting and maintenance.
Before embarking on development of a new application, it is
important to determine both the type of port desired as well
as the expected domain 21 portability. The expected domain
of portability is a definition of the specific environments,
including hardware, operating systems and networks, where you
think the application software will need to execute 0 Where
the type of port, cookie-cutter versus custom, dictates the
degree of standardization required in your application, the
domain of portability identifies those standards which will
be most critical to you in your potential porting efforts.

This seems to be a logical point in discussing porting and
portability to look at the role of standards in application

HPE XL Development in a Multi-Platform Enyironment

3243-1

any application
portability is

standards is to

development. Standards are critical in
development project where application
required. The rationale behind using
increase programmer productivity by:

-reducing the amount of specialized code
-reducing the number of variants in solving a specific

problem area
-providing a consistent framework for the development
team

-increasing programmer portability by allowing them to
focus on application technology, not a specific computer
platform.

However, standards are not the panacea that the computer
vendors want us to believe. An Open System certainly goes a
long way toward ensuring a consistent interface to an
operating system or networking software, but it does not
eliminate all of your portability problems. Despite the best
intentions of the standards bodies and the computer vendors,
standards vary slightly from platform to platform. This is
due in part to the fact that standards reflect old technical
concepts on top of perpetually evolving and enhancing
technologies; computer vendors often sacrifice 100%
conformance to a standard in order to allow new technologies
to emerge. In addition to the problem of compatible
interfaces, the use of standards may result in a performance
hit. Performance is normally a function of optimizing the
unique attributes of the hardware; standards can often make
it impossible for a vendor. to optimize performance for their
underlying hardware given the constraints of the standard
definition.

Given the potential problems with the adoption of standards,
it is important to pick and choose those standards which you
are going to adopt. As a rule of thumb, don't enforce a
standard unless required by your selected domain of
portability. For example, a database intensive OLTP
application should focus on adopting standards in the area of
user interface, data base interfaces and the file system. It
is not critical to require adoption of standards for system
administration or tools but a networking standard should also
be considered. As a rule it is also better to try to use
standards which are self-enforcing. Application development
is still part craft and, as such, the developers still gain a
great deal of pride through the uniquely solving development
problems. Whenever possible, invest in the development of
tools and process whenever you can to enforce compliance.
Developers will usually choose the path of least resistance.

As we just discussed, using standards is a key means for
ensuring that your application will be portable. When
considering the role of standards in your application

HPE XL Deyelopment in a Multi-Platform Enyironment

3243-2

development process, consider not only formal, industry
standards such as the POSIX interfaces, but also the creation
and enforcement of internal coding standards. In many ways
internal coding standards can have as big an impact on the
portability of an application as the use of formal standards.
Internal standards which should be considered are:

-style standards for naming and formatting
-structure standards for isolation of non-portable code
-testing standards (remember, the test suites will need to

be ported as well as the application)
-interface standards which will allow for consistent

end user interaction across input devices (workstations,
personal computers and/or terminals).

-documentation standards to allow for easy porting

Code scanners which check for code consistency and standards
adherence provide significant productivity advantages during
core application development. In the area of code scanners,
one product stands out as the premier solution, Mclint. This
tool scans code for adherence to various standards, such as
POSIX or STDC. It can also be enhanced to scan code for
adherence to those internal standards you have also
established. Use of this tool, or at a minimum the standard
UNIX 'lint' command, can save you significant time during the
porting process.

The choice of language will also have a significant impact on
your ability to hide variation within the source. C is the
acknowledge language of choice when porting due to its
flexibility. With the adoption of ASCII C by the major
vendors, problems with variations of C libraries across
platforms has been significantly reduced. Within your C
programs, variation can be hidden easily by the use of
include files and functions. The C Preprocessor itself is a
powerful tool for easing porting as well. The C Preprocessor
provides for file inclusion, definition of manifest
constants, definition of "call-by-name" functions (macros)
and conditional compilation. One note of warning: C is a
very flexible language and inherent in this flexibility is
the ability to easily misuse the features and functions. It
is important to establish standards around the use of include
files, manifest constants and macros to ensure clean, high
quality code.

Ensuring application portability is only half the battle; the
other half of the battle is actuality porting the application
across multiple platforms. An overview description of a
porting process follows.

Most companies choose organizationally to separate
application development and enhancement from the porting
process. This is due primarily to the dramatically different

MPE XL Development in a Multi-Platform Enyironment

3243-3

skill sets required from the engineers. In application
development the emphasis is on solving the business problem
with the actual implementation a secondary activity.
Porting, on the other hand is a technical activity requiring
very little understanding of the business problem the
application solves. Another way of looking at the difference
is that application development focuses on the product
externals whereas porting focuses on the product internals.

A key development platform is chosen to support the initial
application development. Choice of this platform is either
historical: this is the platform the application was
originally designed to execute upon; or based upon the
availability of development and programming tools/utilities.
In many companies, porting of existing applications is deemed
to be unfeasible because the application itself is not
portable. This does not mean that an organization has to
completely re-train their programming staff on a new platform
just to be able to develop portable applications. But many
organization when faced with a major application re-write
choose to move to a more open development platform such as a
workstation or personal computer to achieve higher
programming productivity. The trade-off of re-training of
the development teams versus increased productivity is one
each organization needs to evaluate for themselves.

Once an application is completed, the source is moved from
the development platform to Source Staging Platforms. Source
Staging Platforms are those platforms to which you want to
port your application. In the example depicted in the
following diagram, an IBM 4390 has been chosen as the
Development Platform with MPE XL, UNIX and IBM AS/400
timeshares as Source Staging Platforms. A version of the
application source then is moved to each of these Platforms.
A team trained in the nuances of the target execution
platform is assigned to port the actual application and its
accompanying test suites.

The first step in a port is to get the application running on
the target platform; the second step, which is optional, is
to then optimize for features, functions and performance
provided by a specific platform. Once the application port
is completed, the source is then merged back into the
Development Platform Source Management System (SMa).

Subsequent releases from the Development group also have.to
be ported. Depending upon the complexity of the subsequent
release, the porting team may be required to co~pletely

re-port the application or merely port changed modules.
Having all source under a single 5MB will give you the data
required to determine how to go about porting subsequent
releases. The following diagram provides an overview of the
porting process.

MRE XL Development in a Multi-Platform Enyironment

3243-4

Porting Process

I

lM~ I~~I
P.t Source
ftrSpedflc

Platform Vemions

Dlatrl>utt Core PrHuct Source

Return Pwte4
Vtrafon to Source ""'It

IBM4390I~--~
DeYe~ ~

Platform _

LoC81
§MS

2J hWfy
Platform
Specific
toft

3)C.,.ae
Li1k
Test

4) Optinize for
Ptatform Felhl'es.
Petfomance ..
Desired

There are several key tools required to suport the porting
activity. Obviously, the most critical is the Source
Management and Configuration Management Systems. These two
tools are critical for containing and managing the porting
effort. Standard application build and integration tools are
also very important. These tools make it possible to easily
reconstructs the application on the target platforms. Of
course, the choice of application development environment
will also have a significant impact on the productivity of
both your development and porting teams. More indepth
discussion of each of the three tools areas follows.

First: source code control is a key to porting and
supporting an application across mUltiple platforms.
Basically, porting results in a development environment
characterized by mUltiple applications, probably multiple
versions of each of these applications compounded across
mUltiple target systems. One can easily see that effectively
managing source versions will be a key to your ability to
productively support your application development teams and
your end users.

A Source Management System (SMB) allows
development and porting groups to proceed with

each of the
comprehensive

MEl XL Development in a Hulti-P1atform Enyironment

3243-5

tracking of working versions, easy reconstruction of previous
versions, and co-ordinating simultaneous development projects
while maintaining programmer accountability. The 5MB you
select should allow for efficient storage of mUltiple
versions. Although a 5MB goes a long way in managing your
source, you also need to development an ancillary set of
tools to further improve programmer productivity. These
types of tools include a application reminder system which
informs others of changes to various source modules or
searches for files checked out for long periods of times and
nags the programmer. These tools are specific to an
organization and the products it is working with. Their need
should grow out of the process of automating your development
and porting activities.

Simple reconfiguration also makes the porting of an
application easier. There are many methods available and as
with the Source Management System and ancillary tools, your
standard approaches will grow out the unique needs of your
organization, application product and selected platforms. As
a starting point, configuration change methodologies should
cover compile, link and run time changes. At compile time,
configuration management needs to consider conditional
compilations as well as configuration of header files.
Linking features include the selection of optional features
and optimizations. At run time, configuration management
focuses on environment variables such as resource mapping or
location of files. The configuration management system
should also be a repository for documenting the What, why and
how of each unique configuration. This key information is
often lost during development and porting.

Secondly: the build tools simplify the compile and link
phases of the typical edit/compile/link/debug loop used
during application development. It shortens this part of the
cycle by compiling only those parts of an application that
require recompilation because of direct or indirect changes.
In addition, the build tool should also simplify the task of
building and maintaining the application by creating and
maintaining the dependency control files required for
intelligent builds. This build tool needs to be flexible
enough to build a standalone portion of the application and
powerful enough to build an entire version based upon
information in the Source Management System and configuration
management system. Since your build tool will need to
execute across all of your target platforms, the tool itself
needs to be portable as well.

Lastly: the application development environment which you
select should be designed to facilitate rapid, interactive
program development, test and maintenance in a distributed
network. The concept of working within a distributed network
is key when considering development of portable applications.

HPE XL Deyelopment in a Multi-Platform Enyironment

3243-6

A application development environment which facilitates
development within a network can centralize many of the
porting tasks, such as source control, but still provide for
local compilation, test and execution on the target
platforms. When looking for a productive application
development environment, the key criteria for selecting a
distributed development environment is the degree to which
the network configuration is hidden from the programmer.

For example, data should be able to reside on any platform in
the network. A developer working at a workstation should be
able to easily access data on any of the target platforms.
With large application development/porting projects, it is
more effective to manage and administer data centrally than
to have the data duplicated on each workstation in the
network. For example, source control, tape backup and
archiving as well as configuration management are easier when
the project files are centralized.

The following diagram is an example of a possible distributed
development environment for the porting task described
earlier. In this development environment, a separate LAN is
established for the application development and porting
teams. Separate LANs ensure close team communication without
an overload of inappropriate messages due to cross-team

Distributed Application Development

Project Team CommW\Icat:e8 via
LAN-Be.eed Development

environment

HPE XL Deyelgpment in a Multi-Platform Enyironment

3243-7

application
application

message traffic. Although each team works independently
through their established networks, they are all tied to the
same timeshare network of HP3000s, HP9000s and IBM systems.

In this example, each member of the engineering team has a
small, inexpensive X display machine (possibly a diskless HP
workstation or an X terminal). The tool server would
typically resides on the LAN hub machine. The new HP9000
Model 720 provides an excellent hub for distributed
application development by providing the robust UNIX
development environment with the processing power required to
support a team of programmers. The BP9000 Model 720 is then
tied to a series of timeshares, inclUding the BP9000 Model
800 and an BP3000 Model 900. These timeshares are used as
data storage facilities for the applications targeted for
execution on that platform. A similar set of timeshare would
need to be established for the IBM execution platforms as
well.

As you can see a development environment which supports
distributed application development provides many advantages
to those who are focusing on the development of portable
applications. The greatest benefit from this type of
environment is in the standardization of the environment
across all of the platforms. Since the same basic set of
tools is supported through the same development environment,
porting teams do not need to learn a new set of development
tools for each of the target execution platforms. As a new
port in undertaken, the target platform is merely added to
the network as a data server. The development team is still
utilizing the same tools. Only those tools which control
that actual application construction need to be modified to
support the new platform.

Other criteria to consider when selecting a
development environment which supports both
development and porting are:

-Leverage existing tools: You will want to
integrated those tools which you develop internally
to automate your internal porting process. The
application development environment should easily
accommodate integration of internal tools with those
supplied with by the vendor.

-support integrated tool sets: The tools should
cooperate to present a task-oriented environment that
lets users concentrate on what they want to dO, not
how to do it.

-Support interchangeable tools: Application
development as mentioned before presents a very
different problem to the programmer than porting.

HPE XL Development in a Multi-Platform Environment

3243-8

Different CASE tools will be used for core application
development and maintenance than for the porting process.
However, all tools will need to communicate effectively
with the data server. The interchangability of tools
allows each team to select the tools which best meet
their needs while ensuring effective cross team
communication.

-Support application development teams: The tools and
application development environment should support team
coordination and the management of project files in a
distributed development environmento Automated
communication between team members is a definite
requirement in the porting environment as identified
earlier.

-Build on standards: You are not only concerned with
the portability of your applications but also with the
portability of your application development
environment; you will be able to move your
develompent activities to new platforms without facing
re-training your application development teams.

Selection of your application development environment can
have a dramatic effect on the productivity of the application
development team today and in the future. When selecting an
application development environment, it is important to
consider both the needs of the application developer and the
porting specialist.

In summary, this pape: has outlined some of the key
requirements for ensur1ng application portability 'during
initial development through the adoption of industry
standards and the creation of internal, portability
standards. The selection of which standards are required for
your anticipated application execution platforms was also
discussed prior to reviewing the porting process.

A standard porting process was reviewed. This process
separated the development process from the porting process.
In reviewing the porting process, the criticality of a good
Source Management System and Configuration Management tools
became evident. In addition to these two tools, the need for
sophisticated application integration and build tools was
also discussed. The selection of application development
environment which supported distributed application
development was seen as the last step in preparing for
mUlti-platform development. The application development
environment is the point in which all of the pieces of the
problem of developing and porting applications come together.
This environment determines the degree of productivity the
application developers in your organization will achieve.

HPE XL pevelQpment in a Multi-Platform Environment

3243-9

·..... : _."

". \' .~. ~ - .
1. -:. -~:..'

..... ~~;

Paper # 3244
TIIB 1118 1\10) OU'1'S OP DATUASB DBSIGN

by Lynn Barnes
Hewlett Packard Co.

(301) 258-2112

Introduction

In the mid 1960's database technology began replacing file
systems and a new era of information management began. Over
the years as the size of most organizations grew so did their
databases. with this size increase has come an increasing
realization of the need for good database design. With small
databases, design is generally not complicated. However,
with medium to large databases -- with 30 to hundreds of
users, executing multiple application programs, doing
hundreds of queries against, many megabytes of data-
database design becomes far more complex. Efficient and
effective database design is essential to today's
organizations which rely heavily on their information
systems.

This paper will take the reader through the major steps of
database design. It will discuss the goals of database
design and its five phases: Requirements gathering,
conceptual design, logical design, physical design, and
implementation. After reading this paper, the reader should
understand the importance and methodology of good database
design.

Goals of a
applications'
natural and
Additionally,
requirements,
objectives.
accomplish or

database designer are to satisfy the users' and
information requirements while providing a
easily understood information structure.

the designer must meet the processing
storage requirements, and performance

Unfortunately, these goals are hard to
even measure.

with the above design goals in mind, an effective database
should be:

o Shareable among mUltiple applications.

o Flexible enough to support changes in process.

3244- 1

o Streamlined with minimal redundant data.

o Designed to accommodate the anticipated growth of the
organization.

o Complete.

o Easily understood by both end users and data
processing personnel. This includes database
structure, naming conventions, and data definitions.

~ S~aqes

Over the years database design has slowly evolved from an art
to a science. structured database design is now a
well-defined process with its major stages being:

o Requirements gathering and analysis
o Conceptual database design
o Logical database design
o Physical database design
o Database implementation

During these phases the designer must look at both the data
content and structure as well as the database processing and
software application. Traditionally, database design was
attempted with a primary focus on one or the other of these
design approaches but rarely were these two activities
emphasized equally. It is now recognized that data content
and structure design (known as data-driven design) and
database processing and software application design (also
known as process-driven design) must proceed together with
very tight coupling to achieve a good overall database
design.

Requiremepts Gathering AD4 lA.lysis

Requirements gathering and analysis i~ very important to
effective database design. The designer must understand the

3244- 2

expectations of the users and the intended use of the
database. The first step to defining the requirements is to
identify all users and application which will interact with
the database and determe what their individual and global
requirements are. The following activities can be performed
during requirements gathering:

o Review any existing documentation or previously
written requirements analysiso

o Identify users and applications that will use the
database.

o Identify processing requirements:
transaction type, frequency, and volumes
interaction between the transactions and the
data object
information flow
data input and output
storage requirements
hardware and software platform

o Interview key users from all groups to determine:
users' goals and expectations
users' priorities
performance, integrity, security, or
administrative constraints
key applications and application interactions
application and user growth plans

Once the information is gathered, the designer should begin
the analysis and generation of a global data model. The
requirements and global data model is then usually
transformed into a formal requirements specification with
text, tables, diagrams, and/or charts. It is important that
sufficient time be allocated to requirements gathering and
analysis because it is crucial for the future success of the
database system.

conceptual Database Design

The second phase
conceptual schema.

of database design
During this phase the

3244- 3

is to
data

develop the
requirements

determined in the first phase are used to produce a
conceptual data model. Transaction design should begin in
parallel with conceptual data modeling. Transaction
information plays a crucial role in the physical design
phase.

Conceptual data modeling

The conceptual data model is a high-level data model which is
usually independent of the database management system (DBMS)
to be used. The conceptual data model documents the users
view of the data, incorporats the policies of the
organization, and shows the relationships between the
different data.

The conceptual model consists of three main components:
Entities, attributes, and relationships. An entity is a
"thing" about which an organization collects data. An
attribute provides information about an entity. A
relationship describes how each entity relates to another.

An entity is a noun. It is a person, place, thing, event, or
concept; such as EMPLOYEE, STATE, PARTS, ORDER, and
DEPARTMENT. Entities in the final conceptual data model
should be fundamentally important to the entire organization.
The database designer must be able to differentiate between
what is important to the organization or an individual user.
Usually an organization will already be collecting data about
information that is important to it. Existing reports and
forms give good leads to potential entities.

An attribute can be thought of as an adjective which
describes or qualifies the entity. For example, the values
for Name, Address, and HireDate could be attributes used to
describe the entity EMPLOYEE. All entities have a set of
attributes which describe the entity. Among this set of
attributes, there must be an . attribute (or combination of
attributes) which uniquely identifies each occurrence of data
within the entity. This attribute(s) is called the unique
identifier for that entity.

A relationship is the verb which defines the association
between two entities. Works_for might be a relationship
between the entities EMPLOYEE and DEPARTMENT. Relationships
are stated in terms of action and define the rules and
policies of the organization.

3244- 4

Although it is generally easy to define entities, attributes,
and relationships, it is sometimes difficult to distinguish
their roles in the data model. Should City be an entity or
an attribute? Should Orders be an entity or a relationship?
The designer must decide whether the user organization needs
to collect information about the item or if it is a piece of
information about another entity. The following guidelines
can be used by the designer to help differentiate between
these constructs:

o Entities should contain descriptive information. If
there is descriptive information about an object, it
should be classified as an entity. If the object only
requires one descriptor, it should be classified as an
attribute.

o Classify multi-valued attributes as entities. If more
than one value for a descriptor corresponds to one
value of the unique identifier for an entity, the
descriptor should be classified as a separate entity,
even if it does not have its own descriptors.

o Attach attributes to the entities they most directly
describe. For example, office_building should be an
attribute of DEPARTMENT not EMPLOYEE.

o Avoid composite identifiers when possible. A
composite identifier is a unique identifier which is
made up of two or more attributes. If these
attributes are all unique identifiers for other
entities, then define this entity as a weak entity (an
entity which relies on the keys from other entities to
establish its uniqueness) or a relationship.

o Subtypes of entities should become entities. Some
entities may contain attributes which are not common
to all occurrences of the entity. For example, you
may want to keep additional information about managers
in the EMPLOYEE entity. This subset of information
about managers should be kept in a separate entity.

Once the entities, attributes, and relationships have been
identified, the entity-relationship (ER) diagram can be
constructed. The ER diagram gives the designer a simplistic
and readable view of the conceptual schema. ER modeling is a

3244- 5

method of representing data requirements using a set of
semantic definitions. currently no standard ER model exists:
therefore, this paper will use the semantics and notations
most widely used within Hewlett-Packard.

Entity

Weak Entity

Relationship

Attributes

Primary Key

Foreign Key

Descriptor (Non-key)

Weak Entity Key

Multivalued

Rela t ionship Attribute

IEMPLOYEE I

II DEPENDENT II

works-on

Emp No

Emp_No (FK)

Emp_Name

Name

{Locations}

C8~

Figure 1. ER constructs for basic objects

Figure 1 illustrates the fundamental ER constructs used for
basic objects while Figure 2 shows the fundamental constructs
for relationship types. Using the symbols defined in these
two figures, an ER diagram can be constructed which depict
the conceptual data model in a pictorial form.

3244- 6

Degree

Unary

Binary

Ternary

Exclusive

Cardinality

One-to-One

One-to-Many

Many-to-Many

Dependencies

Mandatory

Fully Optional
Partially Optional

I EWPlOYEE ~ DEPAAnEHT I
StMEA I.... I PMT

~

~~bI I1-: 1-

I aFlOVEE I IIIl-eIIII I OEPAATNlNT I
I EWPlOYEE ~4""" IDEMATNEHTI OR EJIIllOY£E ~DEJWmOJ I

, EWPlOYEE 1~4.,q-oR ~~I PAo.ECT OR I ENFlOYEf~ PAo.ECT'

PMTS D !!lC!!i!d br q ~A

I DIPlove DO..-.-.
o<J PAO.ECTS

PMTS D 0fdIIrS ()(d ORDER

Figure 2. ER constructs for relationship types.

All of the basic objects in Figure 1 have been previously
defined. We will now focus on defining the relationship
types in Figure 2.

Degree The degree of a relationship is the number of
participating entities.

Unary - A unary relationship (also called an involuted
relationship) exist when one occurrence of an entity has a
relationship with another occurrence of the same entity.

3244- 7

dependency of a relationship refers to
must be present to support the

relationship states that
the relationship may exist

Binary - A binary relationship is a relationship between two
different entities.

Ternary A ternary relationship relates three entities to
each other in such a way that they cannot be decomposed into
equivalent binary relationships.

Exclusive A exclusive relationship is one in which an
entity is shown to relate to two or more other entities but
may have a relationship with only one of these entities at a
time. The arc indicates an either/or relationship.

Cardinality - The cardinality ratio specifies the number of
relationship instances that an entity can participate in.

One-to-one A cardinality ratio of one-to-one (1:1) means
that for each occurrence of an entity there can be only one
occurrence of the other entity in the relationship.

One-to-many A cardinality ratio of one-to-many (l:N)
indicates that one entity occurrence is related to one or
more occurrences of the other entity in the relationship.

Many-to-many A cardinality ratio of many-to-many (M:N)
means that many occurrences of one entity are related to many
occurrences of the other entity in the relationship.

Dependencies The
whether an entity
relationship.

Mandatory A mandatory relationship requires both entities
to participate in the relationship. Neither entity may exist
without the other. The participating entities are dependent
on each other.

Fully optional - A fully optional
the participating entities in
independent of each other.

Partially optional A partially optional relationship
indicates that one entity is dependent on the other but the
reverse is not true. The other entity may exist
independently.

Figure 3 shows the information needs for a company's

3244-8

database. This dat~ will be used in further diagrams to
illustrate the different data models.

DEPARTMENT

Dept-No, Dept-Name, {Location}, Manager, Mgr_Start

PROJECT

Proj-Name, Proj-No, Location, Control-Dept,

Completion-Code, Completion-Date

EMPLOYEE

Emp-Name, Emp-No, Address, Salary, SSN, Job_Code,

Dept, Supervisor, {Project, Hours}, Prim-Lang, Sec-Lang,

Mgmt-Level, Yr-Mgr

DEPENDENT
Name, Relationship, Sex, BOate, Employee

Figure 3. Company data.

Using the company data, figure 4 illustrates the first pass
of the conceptual data model before refinement has taken
place.

3244- 9

DEPARTMENT

EMPLOYEE works- for Dept_No
DEPENDENT

Emp_No
Dept_Name

~~r!l~ Emp_Name manages {Location}

Relationship
dependent_of

Address
Sex Salary 60~Bdate SSN

Job_Code works- on
PROJECT

Proj_No

Proj_Name

Location
PROGRAMMER CLERICAL MANAGER Completion_Code
Prim_Lang Mgmt_Level Completion_Date
Sec_Lang Yr_Mgr

Figure 4. Company Database Conceptual Model
before refinement.

Once the preliminary conceptual data model is developed, the
designer must qo throuqh the refinement process. During this
process primary keys must be identified, entities must be
reviewed, and redundant entities must be removed.
Many-to-many and involuted relationships must be examined for
hidden entities. If implied relationships exist, remove any
unnecessary direct relationships. Foreiqn keys need to be
identified to support relationships.

Figure 5 shows the Company database final conceptual data
model.

3244- 10

SUPERVISOR
Sup Emp_No O=K)

Emp No O=KJ
Yrs_Sup.%.superVIse DEPARTMENT

EMPLOYEE works_For Dept_No
DEPENDENT Emp_No "/ Dept_Name
Emp_No (FK) Emp_Name

manages {Location}Address -Name I\.. _ dependent_ot
Salary 1

.....,

Relationship
v- SSN

c§r~~Sex Job_Code ! controls
Bdate Dept_No FK)

{Proj_No) FK) works_On
Sup_ErIlJ_No eFKJ '- -/

~

~
-" PROJECT

\ 1 I) Proj_No

~ ~ ~- Proj_Name

PROGRAMMER CLERICAl.
Location

MANAGER

Emp_No (FK) Emp_No (A() Emp_No O=KJ
Completion_Code

Prim_Lang Mgmt_Level
Completion_Date

Sec_Lang Yr_Mgr

Figure 5. Company Database conceptual Data Model
after refinement

Defininq and refininq the conceptual data model is an
iterative process. There should be several modelinq
sessions, each producinq a more complete and detailed model.
As previously mentioned, transaction desiqn should be
occurrinq in parallel with conceptual data modelinq.

Transaction Desiqn

When a database is beinq desiqned much is already known about
the applications that will use the database. An important

3244- 11

part of database design is to understand the characteristics
of the transactions that will be applied against the database
early in the design process.

One technique for specifying transactions is to identify
their input/output and functional behavior. Transactions are
usually grouped as retrieval, update, or mixed transactions.
Knowing these characteristics, as well as the relative
importance of transactions and their rate of invocation is a
crucial part in physical database design.

Logical Database pesign

The third phase of database design is to develop of the
logical data model. Although the logical model is still DBMS
independent, the goal of logical data modeling is to come up
with a record-based schema which will easily translate into a
physical data model.

Logical data modeling includes the following activities:

o Examine attributes which may contain null values.
Often a null-valued attribute is indicates of a hidden
entity. Avoid keys that may have null values. Many
database experts believe that nulls should always be
avoided.

o Examine subtype entities. If a SUbtype entity has a
different set of attributes, or if one of the SUbtype
categories has attributes then make it an entity.

o Convert all many-to-many relationships to two
one-to-many relationships with a connecting entity to
link them together. The connecting entity should have
the primary keys on the two new entities as its
foreign keys.

o Examine fully optional relationships and partially
optional one-to-many relationships where the optional
part is the 'one' side. This is okay if the optional
part is on the 'many' side. To avoid null foreign
keys, consider placing a connecting entity between the
two original entities.

3244- 12

o Normalize the data model to third normal form. During
physical database design it may be desirable to
denormalize parts of the model to maximize transaction
performance.

The goal of logical data modeling is to address a limited
number of implementation issues and prepare the model for
physical database design. Figure 6 shows the ER diagram for
the Company database logical data model.

SUPERVISOR
Sup EIf1) No ~K)

Emp No (Ft<J
Yrs_Sup

superVIsor

MANAGER

Eft\P_No (Ft<)

Mgmt_Level

Dept_Loc
Dept_No (FK)

Location

controls

DEPARTMENT
Dept_No

Dept_Name
{Locabon)

PROJECT

ProLNo

Proj_Name
LocatIon

COMP_PROJ

Proj_No (A()

Completion_Code
Completion_Date

manages

WORKS-oN

Emp_No ~K)

ProLNo CFK>

Hours

EMPLOYEE
EInJ) No
Emp_Name
Address
Salary
SSN
Job_Code
Dept_No CFK>
Sup_EInP_No (A()

PROGRAMMER

Emp_No CFt<)

Prim_Lang

DEPENDENT

Emp_No (Ft<.)

Name
Relationship
Sex
Bdate

Figure 6. Company Database Loqical Data Model

3244- 13

Physical Da~abase Design

The next phase of database design entails converting the
logical model into a physical database design. The physical
design is a merging of the logical design, the transaction
design, and the rules of the chosen DBMS.

The first step in physical design is to map the entities,
attributes, and relationships into components of the DBMS.
This can usually be done by following a few generalized
steps.

Step 1: Each entity translates to a relation in the physical
model. All attributes of the entity will become attributes
of the relation. The primary key should be supported by a
unique index and all foreign keys should be supported by
non-unique indexes.

Step 2: For each weak entity type, create a relation with
all the attributes of the weak entity plus the primary key
attribute(s) of the owner entity. The primary key of the new
relation will be the a composite of the primary key of the
owner entity and the partial key of the weak entity.

Step 3: For each one-to-one relationship type, the primary
key of at least one of the participating entities must be
included as a foreign key of the other participating entity.
It is best to choose an entity type with total participation
for placing the foreign key.

step 4: If any relationship types have attributes associated
with them, the attributes should be moved to one of the
participating entities. If the attribute is multivalued, the
relationship should become an entity.

step 5: For each one-to-many relationship type, the entity
on the 'many' side should contain the primary key of the
entity on the 'one' as a foreign key.

step 6: If there are any many-to-many relationships, create
a new connecting relation which has as its foreign keys the
primary keys of the participating many-to-many entities.

step 7: If there are any multivalued attributes, create a

3244- 14

new relation with the primary key of the original entity
included as a foreign key in the new entity.

step 8: For each n-ary relationship type (n is the number
of participating entities) where n > 2, create a new
relation. Include in the new relation as foreign keys the
primary keys of the participating entities. The primary key
of the new relation is the combination of all of the foreign
keys.

After the physical data model is designed it must be tuned
for performance, flexibility, updatebility, accessability and
so on. During this step the information from the transaction
design is heavily used.

When fine tuning the physical design the designer must
understand how the database will be accessed. For each
transaction, the designer should know:

o The files that will be accessed by queries or updates.

o The fields on which any selection conditions are
specified.

o The fields on which any join condition are specified.

o The fields whose values will be retrieved by the
~e~.

o The types of update operations on each file.

o The fields on which any selection conditions for a
delete or modify operation are specified.

o The fields whose values will be changed by a modify
operation.

o The fre~ency of invocation of the transactions.

o The time constraints of the transactions.

Relations may be denormalized, merged together, or divided to
improve performance. Indexes need to be evaluated. Rules of
the DBMS need to be applied to the data model to optimize its
efficiency. Locking strategy, views, security, audit needs,

3244- 15

file placement, and database parameters all have to be
considered. Once the physical database design is considered
fully tuned and complete, it will need to be implemented.

Da~abas. Xmp1em.ntatiog

Implementing the database is usually done by the database
administrator (DBA) using the guidelines defined by the
database desiqner. Using the data definition language (DDL)
of the DBMS, the DBA will create the database environment,
tables, indexes, views, and security. The DBA will set the
database parameters and define the backup strategy. After
the designers specification have been fully carried out, the
database will be ready to load and use.

Conclusion

For many years· database design was an afterthought.
Applications were written and databases where built without
any real understanding of the relationship of the two. All
too often it was after the database application was
implemented that the creators realized the design errors (or
lack of design errors). Once applications are written for a
database changing the desiqn of the database without
extensive application program changes is virtually
impossible. Most of the cost of an application is in its
maintenance. This cost can be greatly reduced by good,
thorough database and application design up front.

3244- 16

OBChange Plus: New and Improved
Mark Boronkay

Hewlett - Packard
19111 Pruneridge Avenue, Bldg. 44MA

Cupertino, California 95014
(408) 447-5009

Have you ever experienced database corruption? Hopefully not but if so. think about how the corruption
was resolved. Some shops rebuild their database from scratch. Others might risk further corruption by
attempting to patch the database themselves. In any case. it is certain that a significant amount of time
will be involved. Now think about this. Wouldn't it be great if database corruption could be detected
and resolved in a timely manner not requiring massive amounts of technical expertise? With DBChange
Plus it is now possible to check a database for corruption and resolve the corruption quickly and easily.
By issuing the CHECK BASE command. nBChange Plus will scan your entire database looking for
corruption. Similarly, the FIX BASE command will direct nBChange Plus to resolve corruption within
the database. nBChange Plus is an extended database administrative tool containing all the restructuring
features provided by its predecessor DBCHANGE/V. as well as new features designed to decrease the
effort required to maintain a database.

What is DBChange Plus?

DBChange Plus is a command-driven database maintenance tool which offers a simple way of performing
database restructuring and maintenance tasks. DBChange Plus saves a copy of the database structure and
uses a change file to keep track of requested changes. The changes are then applied when requested by
the user. All changes are performed without the use of a database unload or load. The following
function~ are available with DBChange Plus:

o Restructuring a database
o Capacity ltlanagement
o Checking a database for structural corruption
o Fixing structural corruption
o Erasing a dataset
o Repacking a dataset
o Copying a database
o Displaying database structural information

How does OBChange Plus run?

DBChange Plus consists of 3 files. One of the files is a message catalog (OBCCOOO) containing the bulk of
the me~ges generated by nBChange Plus. An nBChange Plus commands and options are also included in
this me~age file for verification upon user input. Using a message catalog not only eliminates the need to
hard code, but also allows future messages and commands to be added or localized more easily. The \)ther
t\\·o files are: DBCPLUS and DBAPLUS.

OBChange Plus is a two-step process consisting of a front end processor and a database generah'\r. The
front ~r,d program used by DBChange Plus is called OBCPlUS. OBCPlUS prompts' the user for illput and
~t~rcs the reque:;1c; in a changp file. If the ~hange file does not exist. OBCPlUS will build it. If the change
flle d"cs exists. OeCPlUS will a)Jow you to either write over or add to the existing data. TIle ~ccond

DBChan2f> Plus: New a"d Impr\wp.ti 3246 - 1

program, DBAPLUS, then reads the change file created by OBCPLUS and does the actual work requested by
the user.

These two programs, DBCPLUS and OBAPLUS, can be executed as a single cohesive unit or they can be run
independently from each other. Issuing the PERFORM COMMANDS command within DBCPLUS will launch a
DBAPLUS process which will then read the change file and transforms the database accordingly. The
following example illustrates how easy it is to use DBChange Plus interactively to increase the capacity of
a dataset:

:DBCPLUS
>Base ORDERS
>Change Capacity INVENTORY 650
>Perform Commands
>Exit

«Begin the DBChange Plus process»
«Define the database»
«Increase capacity of INVENTORY dataset to 650»
«Launch DBAPLUS»
<<Terminate DBChange Plus»

In the above example, entering DBCPLUS at the colon prompt initiates the DBChange Plus utility. The
first command entered in the above example is the BASE command. This command defines the database
for DBChange Plus. At this point, DBChange Plus builds (or modifies) the change file. Next, the command
to increase the capacity of the INVENTORY dataset to 6 SO is entered. Finally the PERFORM
COMMANDS command is issued. This will launch the DBAPLUS program as a son process. Control will
return to the user when the DBAPLUS process is completed. The EXIT command causes DBChange Plus
to terminate.

(When using the PERFORM COMMANDS command, DBAPLUS will automatically check the value of a
special JCW set by DBCPLUS. DBAPLUS will not execute if the value is anything other than '0'. This
built-in feature of PERFORM COMMANDS prevents DBAPLUS from executing if lOme type of error is
detected in DBCPLUS.)

Requests could also be batched by the user in the change file only to be processed by DBAPLUS at a later
time. To do this, the user simply runs the OBCPLuS program and does not indicate PERFORM COMMANDS
before exiting DBCPLUS. At a later time, the user can simply run DBAPLUS in which case they will be
prompted for the name of the database to transform.

File equates can be used in order to implement DBChange Plus as a batch process, UDC or command file.
Special JCWs have also been employed by DBChange Plus to help the user control the flow of processing
between DBCPLUS and DBAPLUS when used as separate programs. DBCPLUSJCW will be set to non-O if
an error occurs during DBCPLUS. Likewise, DBAPLUSJCW will be set to non-O if an error occurs during
DBAPLUS. The example on the following page illustrates a typical jobstream and its use of file equates
and JCW checking:

«Define database for DBCPLUS»
«Change capacity of SALES to 300»
«Exit DBCPLUS»
«Check DBCPLUS JCW»
«Define change file for DBAPLUS»
«Launch DBAPLUS»
«Check DBAPLUS JCW»

Increase Successful!!!!

!JOB CAPINCR,User.Acct;Outclass=LP,2
!DBCPLUS
Base ORDERS New
Change Cap SALES 300
Exit
!If DBCPLUSJCW = 0 THEN
! FILE DBCHGF=ORDERSCF
! RUN DBAPLUS.PUB.SYS;PARM=15
! IF DBAPLUSJCW = 0 THEN

TELL User.Acct; Capacity
ENDIF

!ENDIF
!EOJ

DBC}vnge Plus: New and Improved 3246 - 2

How Does DBChange Plus Work?

The first thing to note about the command interface is that there are two distinct classes of .commands
used by DBChange Plus: DEFERRED and IMMEDIATE. Deferred commands are those that will change
the structure of a database. They are considered deferred because OBChange Plus simply stores them in
the change file until a user explicitly directs DBChange Plus to execute them. That is, by themselves they
have no immediate effect on the database. The deferred commands are:

ADD, CHANGE, CHECK, DELETE, ERASE, FIX, RENAME, REORDER. RECOVE~, REPACK

Immediate commands are those that do not alter the original database. They provide information about
or help with the operation of the OSCPLUS program. Their effect is immediately known. The immediate
commands are:

BASE, CANCEL, CONTROL, COPY, EXIT, HELP, OUTPUT, PERFORM COMMANDS, PRINT, RECOVER,
REDO, REVIEW, XEQ

As noted earlier, OBCPLUS simply builds the change file containing the users requests. The database is
actually transformed by OBAPLUS where a new schema is built based on the change file. That new
schema is then file equated to DBSTEXT. OBSCHEMA next creates the new root file. Following the creation
of the new rootfile, individual temporary files representing datasets are built based on those sets
designated in the change file containing changes. Data is then transformed and/or copied where
appropriate. Finally the current rootfile and datasets are purged and the new temporary rootfile and
datasets are saved as permanent.

nBChange Plus will order all deferred commands intelligently for maximum data safety and throughput.
For example, if a user entered a REPACK command prior to a FIX command, the FIX command will be
executed first. Likewise, if two contradictory commands are entered, the most recent command entered
takes precedence. An example of that would be if a user changes the capacity of a dataset to 20,000 and
a moment later changes the same capacity to 10,000. The most recent request (capacity 10,000) will be
the one used during database transformation time.

MPE commands can be issued within DBChange Plus. Simply input the MPE colon: and the MPE
command after the OBCPLUS prompt> (for example, >: LISTf). The command interface also supports the
MPE RUN command (for example, >: RUN QUERY. PUB. SYS).

Wh~t Does DBChange POus Do That DBCHANGE/V Doesn't?

In addition to retaining the features of its predecessor DBCHANGE/V, DBChange Plus adds the ability to:

o check a database for structural corruption,
o fix many structural problems
o monitor tbe capacity (fill rate) of a dataset and automatically increase or de('rease its size
o give optimal performance recommendations
o change maximum block length (BLOCKMAX)
o delete item/set security
o erase dafasets
o repack detail data sets

DBChange Plus: New and Improved 3246 - 3

Each of the above new features were designed to give the user added flexibility and power in the design
and maintenance of TurbolMAGE databases. Let's take a closer look at each of these new features.

CHECK DATABASE
OBChange Plus has the ability to check a database (or parts of it) for various structural integrity
problems. There are two different methods DBChange Plus can use to check a database: QUICK and
STANDARD. The QUICK method does a check to determine whether a problem truly does exist or not.
In order to do this check quickly, DBChange Plus uses checksum information derived from the database
instead of following all the chains. This method will identify problem datasets but will not isolate the
particular entry that needs to be fixed.

A more precise check can be done with STANDARD checking. This method takes a bit longer since it
follows chains, but it does a better job in isolating where the corruption exists. If corruption is found in
the database, the CHECK function will generate an analysis and a diagnostic file. This file can then be
used by the FIX function to resolve the corruption.

CHECK can be performed on the rootfile, dataset(s), path(s), or the entire base. CHECK ROOT will look for
inconsistencies in the rootfile. CHECK PATH will detect errors between datasets such as chain head and
chain count inconsistencies. CHECK SET will detect inconsistencies within a dataset such as bitmap
problems and forward/backward pointer on a chain. The CHECK SET analysis will contain the following
information:

o number of entries in the set
o capacity of the set
o ~rcentage full
o high water mark (detail datasets only)
o delete chain count (detail datasets only)
o percentage of secondaries (master datasets only)
o longest cluster of blocks required for open slot (master datasets only)
o average cluster of blocks required for open slot (master datasets only)

The following is an example of output from the CHECK SET @(check all data sets) command:

CHECK SET (MASTER)

Master Set Name Type Entries
Pct

Capacity Full
Pct
Sec

Longest
Cluster

Average
Cluster

CUSTOMER
DATE-MASTER

M
A

10
9

221
211

5 0.0
4 0.0

o
o

0.0
0.0

CHECK SET (DETAIL)

Detail Set Name Entries
Pct

Capacity Full
Highest

Entry Used
Delete

Chain Count

SALES

CHECK INFORMATION

Set Name Type
Search Item

Message(s)

60 308 19 60 o

No problems were detected by CHECK.

DBChange Plus: New and Impro\Oed 3246 - 4

The CHECK PATH function detects broken chains or incorrect pointer linkages. For a master set, CHECKPATH follows and examines synonym chains. For detail sets, CHECK PATH follows and examines detailchain pointers and the chain head pointers in the associated master data sets. The following data isreported by CHECK PATH:

o seal'~h item name (will display SYNONYM CHAINS for masters)
o Rt type
o maximum number of entries In the longest synonym or detail ~hain
o average number of entries per chain
o standard deviation of average number of entries per chain
o percentage of forward pointers that point outside the current block
o average number of blocks per chain
o packing ratio (efficiency of path)

The following is an example of what the CHECK PATH @(check all data paths) command will produce as areport:

CHECK PATH

Set Name
Search Item

Type
(PS)

Max
Chain

Avg
Chain

Std
Dev

Pct
Far

Ptrs
Avg

Blocks
Packing

Ratio
CUSTOMER M

SYNONYM CHAINS 1.00 0.00 0 1.00 N/ADATE-MASTER A
SYNONYM CHAINS 1.00 0.00 0 1.00 N/APRODUCT M
SYNONYM CHAINS 1.00 0.00 0 1.00 M/ASALES D
ACCOUNT (s) 41 20.00 23.81 30 1.00 0.14STOCK' (P) 45 20.00 22.61 12 3.33 0.30PURCH-DATE 23 1.50 8.85 13 2.00 0.50DELIV-DATE 29 15.00 11.22 12 2.75 0.36INVENTORY D
STOCK' 0 0.00 0.00 0 0.00 0.00SUPPLIER 0 0.00 0.00 0 0.00 0.00LASTSHIPDATE 0 0.00 0.00 0 0.00 0.00

CHECK INFORMATION

Set Name Type
Search Item

Message(s)
--No problems were detected by CHECK.

OBChange Plus: New and Improved 3246 - S

- «Define database for DBCPLUS»
«Standard database Check»
«Do Check Now!!!».
«Exit DBCPLUS»

The CHECK BASE function does an implicit CHECK ROOT. CHECK PATH @. and CHECK SET @. The
report produced is a concatenation of the CHECK PATH and CHECK SET analysis. The (ollowing is an
example of a job that can be streamed at desired intervals. It does a full check against a database called
ORDERS. By simply changing the base name. the same job can be run against other databases.

!JOB CHECKER,User.Acct;Outclass=LP,2
!OBCPLUS
Base ORDERS New
Check Base
Perform Commands 15
Exit
!EOJ

FIX DATABASE
The fIX function attempts to resolve the corruption uncovered based on the data generated by CHECK. If
fIX is indicated without a CHECK. it will generate its own diagnostic file by running CHECK prior to the
fIX routines. fIX can recogniz.e and resolve the following problems:

o User Label Inconsistencies
o Delete Chain Errors
o Broken Chains
o Bit Map Errors
o Unlinked Entries
o Root File Path Sequence Corruption (also corrected during restructure)

Consider the following seven entry chain in a detail data set called ACCOUNTS (record numben are
pictured as decimal values) where record 1126 is the head of the chain and record III 9 is the tail of the
chain:

26<---->27<----)28<---->7<---->8<---->16<---->19

Now suppose that for some reason, the forward pointer for record 1/27 pointed to # 100 rather than 1128
as it should. Furthermore, suppose that the backward pointer for record #8 pointed to 11200 rather than
117 as it should. The following illustration depicts the broken chain environment:

------>100
I

26<---->27<---- 28<---->7 ---->8<---->16<---->19
I

200<-----

The example on the following page illustrates the output generated by fIX BASE on this corrupted
database. Note that the report prior to the error messages is again a concatenation of CHECK SET @and
CHECK PATH @.

DBChange Plus: New ar,J Impr\.weJ 324ft - 6

CHECK SET (MASTER)
Pet Pet Longest Average

Master Set Name Type Entries Capacity Full Sec Cluster Cluster

CUSTOMER M 10 221 5 0.0 0 0.0
DATE-MASTER A 9 211 4 0.0 0 0.0
PRODUCT M 10 307 3 0.0 0 0.0

CHECK SET (DETAIL)
Pct Highest Delete

Detail Set Name Entries Capaci ty Full Entry Used Chain Count

SALES 60 308 19 60 0
INVENTORY 0 4S0 0 0 0

CHECK PATH
Pct

Set Name Type Max Avg Std Far Avg Packing
Search Item (PS) Chain Chain Dev Ptrs Blocks Ratio

CUSTOMER M
SYNONYM CHAINS 1.00 0.00 0 1.00 N/A

DATE-MASTER A
SYNONYM CHAINS 1.00 0.00 0 1.00 N/A

PRODUCT M
SYNONYM CHAINS 1.00 0.00 0 1.00 N/A

SALES D
ACCOUNT (S) 47 20.00 23.81 32 7.33 0.14
STOCK' (P) 4S 20.00 22.61 12 3.33 0.30
PURCH-DATE 23 7.50 8.85 13 2.00 O.!'O
DELIV-DATE 29 15.00 11.22 12 2.75 0.36

INVENTORY 0
STOCK' a 0.00 0.00 0 0.00 0.00
SUPPLIER 0 0.00 0.00 a 0.00 0.00
LASTSHIPDATE 0 0.00 0.00 0 0.00 0.00

CHECK INFORMATION

Set Name Type
Search Item

Message(s)
--
SALES D

ACCOUNT (Path 1; linked to master CUSTOMER, path 1)
Path Chain inconsistencies detected (CHK 400).
Chainhead record 1S chain count mismatches entries on chain (CHK 450).
Record 7 is not linked into the proper chain (CHK 460).
Record 8 contains bad backward pointer (CHK 440).
Record 27 contains bad forward pointer (CHK 430).
Record 28 is not linked into the proper chain (CHK 460).

FIX INfORMATION

All requested fixes have been successfully applied.

OnChange Plus: New and Improved 3246 - 7

Note that the corruption is characterized at the end of the report and that there is a FIX INFORMATION
section verifying that the fixes were applied.

CAPACITY MANAGEMENT
The ability to monitor the growth of particular data sets is very useful. How many times have you had to
rerun a job after finding out that a data set filled up and the program aborted? Sound familiar?
DBChange Plus has the ability to control the growth of data sets by previewing the capacity venus the
entry count of data sets. If the percentage differs from what you tell DBChange Plus it should be, then
that set is either flagged as needing a capacity change OR the new capacity is automatically inserted in
the change file. With the CONTROL PERCENTfULL command, the user determines whether to CHANGE
CAPAC ITY manually or let DBChange Plus change the capacity. CONTROL PERCENTfULL has the
following command syntax:

CONTROL PERCENTfULL SETNAME MINfUlL MAXfULL [NEWfULL]

SETNAME can be for one set or one of the following:

@ to indicate that CONTROL PERCENTFULL applies to all data sets
@MASTERS to indicate that the CONTROL PERCENTFULL applies to aU master data sets
@DETAILS to indicate that the CONTROL PERCENTFULL applies to all detail data sets

MINfULL is the minimum percentage full desired for the given data set. If the set is less than the
MI NFULL, DBChange Plus will print a warning indicating so. Zero may be used for this parameter.

MAXFULL is the maximum percentage full desired for the given data set. If the set is more than the
MAXfULL, DBChange Plus will print a warning indicating so.

NEWfULL is the desired percentage full for the given data set. If the set is less than MINfULL or greater
than MAXFULL, the NEWfULL option will AUTOMATICALLY COMPUTE and ADJUST the capacity
within the change file.

If the capacity is to be expanded, the data set file will be enlarged. If the detail set capacity is to be
reduced, a REPACK SET SERIAL will be used to reduce the file. The new capacity will be based on the
desired percentage full (NEWFULL) and will be adjusted: to avoid 2's complement numbers for master sets,
and to round to the nearest block for detail sets. If a CAPACITY CHANGE or REPACK SET is already
pending for a data set, CONTROL PERCENTfULL may print a warning and cancel the previous change.
Some examples of CONTROL PERCENTfULL are:

CONTROL PERCENTfULl @ 0 70: If any of the data sets are more than 70'10 full, print a message
indicating so.

CONTROL PERCENTfULL @DETAIL 55 85 65: If any of the detail da.ta sets are less than SSX full or
greater than 85% full, change the capacity so that it becomes no more than 6SX full.

CONTROL PERCENTfULL INVENTORY 60 80: If the INVENTORY data set is less than 60010 full or greater
than 80010 full, print a message indicating so.

OPTIMIZE PERFORMANCE
Performance recommenl)dti(\l1~ are made indirectly through the reports produced by CHECK SET and
CHECK PATH commands. Regular checks of the database can prevent performance problems caused by
large cluster~ ~n master data set~. poor racking on heavily used chains, and large gaps caused by deleted
records in detail data sets. let's take a look at how the statistics in the CHECK PATH report can offer us
help in performance tuning.

DBChange Plus: New and Improved 3246 - 8

MAX CHAIN and AVERAGE CHAIN: While long chains are not necessarily harmful to the database,
they can have a considerable effect on performance. Consider the case of a master set with an inefficient
capacity. This situation can lead to an inordinate amount of synonym chains which will effect
performance during DBPUTs to their related detail datasets. Another example is the use of sorted chains.
The longer the chain becomes, the more time it may take to add items to that chain. You may want to
consider the following guidelines when evaluating chain lengths based on the CHECK PATH report:

o choosing an efficient capacity win keep synonym chains to a minimum.
o the average chain should not exceed 40% of the capacity.
o data items most heavily used should be specified as a search item for Il detail data set repack.
o sorted chains should be less than SO records unless key values are added in ascending order over time.

In addition to chain length evaluation, other inferences can be made from the statistics offered by CHECK
PATH:

STD DEV (standard deviation) is an indication of the accuracy of the Avg Chain statistic. The closer
to 0.00 this number is, the more accurate the Avg Chain statistic is.

PCT FAR PTRS is the percentage of forward pointers that point outside the current block. This
statistic can be used to enhance the packing ratio described below.

PACKING RAno is the efficiency of the path. It is the optimal average number of blocks per chain
divided by the actual number of blocks per chain. A value of 1000" means that every individual chain
for the specified path occupies the minimum number of blocks possible. Although packing ratio will
vary from application to application, try to maintain a packing ratio of at least 600" on primary paths.

The CHECK SET can also offer us statistics which can help fine tune performance. In the area of master
data sets, OBChange Plus offers these statistics:

PCT FULL is the percentage of the data set capacity currently in use. The recommended percent full
for a master data set is between 60-" and 80-"- If a master data set capacity is significantly less than
60% full, a serial read becomes slower. If a master data set is greater than 800" full, OBPUT intrinsics
involving the master data set can slow down.

peT SEC is the Percentage of secondary entries. In general, the lower the Percentage. the better. A
high percentage indicates that the hashing algorithm is creating many synonyms. To decrease the
percentage of secondaries, increase the data set capacity to a larger number that is not a power of two.

LONGEST CLUSTER and AVERAGE CLUSTER are the longest and average number of
TurbolMAGE blocks that must be read to find an open slot to place a synonym. If two records with
the same hash value are added to a master set, one of them must be placed in another slot. Acceptable
guidelines range from a cluster of lOon a heavily loaded transaction processing system to as much as
200 on a very lightly loaded system. A collection of historical statistics about the database can help
you evaluate if the longest and average clusters are within a reasonable nnge. Your database use"
can help identify clustering problems by reporting slow response time when adding records to a
particular set. Once you have determined if the range should be changed, increase or decrease the
data set capacity accordingly.

In the area of detail da ta sets, DBChange Plus offers us these statistics:

PCT FULL is the percentage of the data set capacity that is not available for use. This statistic is
useful for capacity planning.

HIGHEST ENTRY USED is the record number of the highest entry ever used. When reducing data

DBChange Plus: New and Improved 3246 - 9

set capacitYt do not reduce it below the highest entry used; otherwise you must repack the data set to
recover the unused space in the middle of the data set.

DELETE CHAIN COUNT is the number of records in the delete chain. This number should be as
close to 0 as possible. A high delete chain count may mean a problem with a large quantity of deletes.
For example, if you have a program that performs a large number of deletes, gaps may be left in your
detail data set. Subsequent record additions may disburse data randomly within the data set. As a
result, chain reads may be slow. To correct a high delete chain countt repack the data set.

CHANGE BLOCK LENGTH (BLOCKMAX)
There are instances where the default block size (S 12 half-words) is not sufficient to hold an optimal
number of TurbolMAGE entries. And without optimizing the block lengths, it is possible that disc space
could be wasted. Let's say for instance that you have a particular dataset whose media length is 100
half-words and the blocking factor is 10. In this case, the block size must be at least 1001 half-words in
order to hold all 10 entries. Obviously, a block size of S12 half-words is not sufficient for this dataset.
The CHANGE BLOCKMAX feature within DBChange Plus will allow the user to modify the block length for
this particular dataset so that all 10 entries will fit properly.

The CHANGE BLOCKMAX command can be specified for all datasets, for a range of datasets or for
particular datasets. To apply the new BLOCKMAX to all datasets, the user specifies the '@' as one of the
options in CHANGE BLOCKMAX command. To apply the new BLOCKMAX to a range of datasets, the user
specifies the beginning dataset and ending dataset as options in the CHANGE BLOCKMAX command. To
apply the new BLOCKMAX to a particular dataset, the user specifies the single dataset. An example to
set the BLOCKMAX to 2048 for the whole database would look like this:

>CHANGE BLOCKMAX @2048

This command is similar to the $CONTROL BLOCKMAX command used in DBSCHEMA. In fact, DBChange
Plus essentially inserts a $CONTROL BLOCKMAX command in the schema at the appropriate spots prior to
rebuilding the database.

DELETE ITEM/SET SECURITY
As an application changes, it sometimes becomes necessary to change the type of availability to data the
end user has. One way this can be accomplished is to modify the application itself to prevent the user
from accessing the data. Another method is to change the read/write classes at the item or set level

The following example illustrates how easy it is to delete the set security for a dataset resulting in a
read-only dataset to all except the database creator:

>DELETE SETSECURITY orders

ERASE DATASET
Unlike OBUTI L ERASE which erases the entire database, the DBChange Plus function deletes all entries in
a given data~t. There are three cases which apply to the ERASE command: erasing details, erasing manual
masters, erasing automatic masters.

Det~ils:

All entries in the detail set are erased and corresponding master sets are updated. If the deletion of a
detail entry results in an manual master entry not being linked to any detail entries, then the master
entry is left in the set.

Manual ~fasters:

In a manual master set, only those entries with no corresponding detail entries are erased. If the ~('t is
linked to one or more detail sets whose path count is not zero, a message is displayed stating that the
master cann"t be erased due to existing detail set entries.

DBChange Plus: New and Improved 3246 - 10

Automatic Masters:
Automatic master datasets cannot be explicitly erased.

In order to prevent accidental deletion of data, DBChange Plus asks the user to confirm the ERASE
command in session mode. The confirmation is bypassed during batch processing. The CANCEL ERASE
command allows the user to cancel an ERASE command that has not yet been executed. It is important to
note that once DBAPLUS has been run, the ERASE COMMAND cannot be cancelled.

REPACK DATASET
The REPACK SET function comes in two flavors: serial and chained. The chained version will repack your
set along a specified path. If no path is specified for the chained repack, then the primary path is
assumed. Repacking a dataset along a specified path is an excellent way to improve performance of a
chained read. A serial repack is useful when reducing the capacity in a detail data set which is highly
fragmented (i.e., a dataset which has many chunks of data intermixed with many chunks of free space).
The serial venion of repack does not require a path name. The REPACK SET command is valid for detail
data sets only. A CANCEL REPACK command will cancel a previous REPACK SET command. Again it is
important to note that once DBAPLUS has been run, the REPACK SET command cannot be cancelled.

The repack works by rebuilding the set, eliminating gaps left by deleted entries and adjusting the pointers.
In order to accomplish this, OBChange Plus uses an internal mapping file. Once the mapping file is built
and loaded with data OBChange Plus proceeds to rebuild according to whether the repack is serial or
chained.

Summary......

As you can see, OBChange Plus provides database users with a simple solution for database restructuring
and maintenance tasks. In addition, it also provides features to help the user make performance decisions
based on data analysis. But most of all, it is designed to be easy and simple to use.

DBChange Plus: New and Improvell 3246 - II

Paper 3247
Develop Software Using ~ Synthesis Approach

Phil Nguyen
Wayne McKinney

Lockheed Engineering and Sciences Co.
2400 NASA Road 1, Houston, TX 77058

(713) 333-7177

I. Software Reuse Is Here

Traditional software development methodologies are inadequate.
They often have limited perspective and never address issues such
as program integration or software reuse. On the other hand, one
characteristic of rapid software development is that it empha
sizes code reuse throughout the project's life cycle.

Recently, our financial analysis group requested that an applica
tion be developed for them that could compile data from time
cards. They wanted it to acquire data for a month and then
create a summary report of labor grades by skill code within
division and branch.

From this project, we learned how to orient ourselves toward
developing reusable software. The application was constructed
using a number of modular SUbroutines, where each subroutine was
independent, compact, and handled one specific function. Because
the code was highly modular, we could easily retrofit it for use
in future applications.

Several other good results came out of our work with that appli
cation. We have reduced thousands of lines of code to hundreds,
thus making the task of software maintenance easier and less
costly. Moreover, the application's code was structured so that
it was easier to understand and easier to test.

By using data tables in the application, we derived a second
benefit. The subsystem was made more reliable and more flexible.
It can now handle many changes in business entities with a mini
mum of ef~ort by mis production personnel, and it can handle
those changes in real time.

Our work has shown us that when a project is completed, an effort
should be made to identify what software components could be
added to a software reuse library. Once the reusable code has
been identified, we should next find efficient pieces of code and
store these in the library as well. By having these examples and
reusable subroutines in one place, all programmers can inspect
them and exploit their capabilities. It makes sense to create
such a library, for it lets us capitalize on both existing soft
ware resources and the expertise of good programmers.

Develop Software Using a Synthesis Approach
3247 - 1

Software reuse does not have to start at the beginning of a
project - it can even start after a project has completed. The
only prerequisite is the availability of a database that can
serve as a common ground for both software developers and pro
grammers. Once this system is in place, it can serve as a source
code "textbook" that can be continually updated and annotated by
the people who use it (Figure I-I).

II. Members of g Program Family

The evolution of factory industry has reorganized the way that
products are manufactured. Today, products often evolve into a
family of products rather than a single product system. The main
reason for this progression is that of economy and maintainabili
ty. Building products in a setting of mass production almost
always costs us less. It does not matter whether we are talking
about a line of Honda Accords or a family of medical equipment.
Each model is slightly different from the rest. Software devel
opment should follow a similar approach.

"Synthesis" is used in "Synthesis Approach" to represent a sys
tematic process for rapidly creating different members of a
program family. Stepping back from our limited perspective as
programmers, we were able to see the coherency of the functions
that our programs must perform. Now, when new applications are
being developed or programs are being modified, we are able to
transfer code. By doing this, we are creating a new member of a
software family.

Lockheed has an application that tracks the procurement of items
critical to space shuttle flights. Throughout its use by our
Purchasing department, it has proven to be a reliable application
that assures both the timely acquisition of flight hardware and
the avoidance of any procurement problems.

Specifically, this application scans all our purchasing records
and computes the actual time elapsed for the various phases of
procurement. It then compares elapsed time with the "standard"
amount of time that these phases are supposed to take. Lastly,
it prints a report detailing variances from these standards.

Later, we created another application that looks at a two month
spread of fiscal year costing data, calculates deltas, and com
pares them with preset tolerances. Any values found to exceed
the "standard" tolerances will be printed in a report. In actual
use, this application can detect problems at an early stage to
one of any 1,500 job accounts.

Develop Software Using a Synthesis Approach
3247 - 2

Do you see a similarity between these two applications? You
should, because they are members of the same program family.
Code that was developed to run reliably in a procurement envi
ronment, can now be modified to handle a data processing need in
an entirely different setting. Developing software using the
Synthesis Approach lets us map variations in requirements to
variations on a standard design. Because this approach enables
us to easily generate deliverable products, our software develop
ment can achieve a high level of productivity and a high level of
quality.

Look at the applications that your data processing shop creates
and maintains. Regardless of what language or product your
applications are written in, you will find that functionally they
are quite similar to each other. Do you see the makings of a
family here? If you do, then you should be working at creating a
software development environment that fosters the computer as
sisted generation of program family members.

We have in our shop a system that handles employee termination
activities. Its primary task is to generate reports for manage
ment showing a summary count of employee terminations by job
code, by branch, or by department. It also generates other
pieces of information such as turnover rates. Code for this
application was developed and tested to such an extent that it
does its work flawlessly.

Now step back from the previous explanation and consider what
this termination application does. It creates reports that
summarize by different classes, and it calculates information
based on these summaries. Later, our Purchasing department came
back to us asking for an application that could perform vendor
ratings. For each vendor, Purchasing wanted a summarized report
that presented information such as how good the service was,
pricing, delivery time, average days late, and so on. Do you see
a similarity here? The employee termination application was
modified so that it could provide the exact information that
Purchasing needed. Development was quick and this application's
performance has been quite good.

Was it by luck that we happened upon two similar applications?
No. We were able to see similar requirements between these
applications and take appropriate action. Using the Synthesis
Approach, it's possible to generate program family members
easily, flawlessly, and meet project deadlines. Can programmers
accomplish this feat alone? No. User involvement is very much
needed. To aid us in bringing users into the project, we need to
use another tool of the Synthesis Approach - that of rapid proto
typing.

Develop Software Using a Synthesis Approach
3247 - 3

III. User Involvement ~ Needed

Thanks to rapid prototyping, users can now be brought into the
development loop quite early in the software life cycle. An
analogy to this kind of prototyping is that of producing a play.
Think of the users of the application as the play's audience.
You have the multifaceted job of being the writer, producer and
director of the play. Just as in some modern plays, software
development is often easier when you, the programmer, call for
audience participation.

One example of a project where we involved users from the begin
ning was an application that rates the performance of vendors.
Purchasing needed a system that could gather statistical informa
tion on vendors. By looking at a vendor's past performance,
Purchasing wanted to determine which vendors were reliable and
which ones could be depended upon to deliver on time.

As with any other development project, we held various meetings
with Purchasing to determine what the specific requirements were.
Once we reached an agreement upon the requirements, we decided to
test how reliable they were by prototyping a demo of the vendor
rating system. After system installation, output was constantly
being reviewed to check the validity of the different rating
categories.

Because the level of user participation was high, we were able to
make a number of improvements to the prototype in an effort to
deliver the final system. One area needing improvement was that
of the reports. A detail report was difficult to read and
contained redundant information. A summary report containing
rating data confused the users. Even the information found in
one report did not support the information found in another. It
looked as though the reports were in a hopeless state. However,
by getting the users to wade into the quagmire with us, we were
able to correct each of these problems.

The users, clearly, did not want to be handicapped by their own
system. As a result, they were motivated to meet with us so that
the reports and presentation of the data could be changed to meet
their needs. with our software environment, we were able to
provide an immediate response to each change in requirements.
Though our modifications were extensive, we kept a skeleton of
the old prototype intact. We simply replaced old blocks of code
with new blocks. Our case tool helped ensure that the new blocks
could interface with the rest of the application.

Develop Software Using a Synthesis Approach
3247 - 4

What was created in the end was a very useful application that
ensured the company success in locating vendors who provided
quality services. The reports (Figure 3-1) look well organized,
are easy to understand, and show at glance how well a vendor is
performing. Even now, the application's users are constantly
testing its functionality. They want to be sure that we left
nothing out of this application. Could such a successful appli
cation have been created without the user's continual involve
ment?

Under traditional methodologies, software development can start
only when needs are well defined and requirements are stable.
Yet in a dynamic business environment, stable requirements will
usually not happen. Even if stable requirements are present,
users are often not able to present them in a formal written
format. A better approach asks for rapid prototyping that can
generate a test system that we can take to the user and let him
evaluate. As we saw in the previous example, the user can often
clarify the requirements if he has an example that he can evalu
ate.

IV. Benefits of Rapid Prototyping

Though the Synthesis Approach stresses the use of existing to aid
in building new program family members, there will come a time
when you don't have a prior model to work from. Does our ap
proach break down in such a situation? Not at all, for with the
aid of rapid prototyping, we can start building the "alpha"
program and then expand from there. We encountered this "alpha"
program when we built a system that aided Purchasing in the
acquisition and tracking of items purchased for use on space
shuttle flights.

Prior to the implementation of our system, Purchasing tracked
flight critical hardware on a Lotus 1-2-3 spreadsheet. For small
volumes of purchases, this method worked well, but when volume
increased, they quickly needed a system that was more capable and
more reliable than lotus. Our initial discussions with Purchas
ing showed that their requirements were vague.

We decided to go straight to the person who had previously han
dled the data on flight critical purchases. Discussions with
this person gave us enough information that we could rapidly
prototype a data base around which the application would be
centered. From this data base, we created a series of screens
into which purchasing data could be entered. We also prototyped
an initial set of reports that analyzed the data that was en
tered.

Develop Software Using a synthesis Approach
3247 - 5

After this prototype was used for a week, a meeting with the
actual users of the system showed that they could now more clear
ly state their requirements. They wanted data sorted and catego
rized by dollar amount, a record of time intervals between pro
curement phases, and reports on any purchases that exceed the
"standard" time intervals between phases. Purchasing wanted to
be able to recognize any troublesome purchases and take steps to
resolve those problems. We also desired a set of charts that
could visually summarize for management the application's data.

At this stage of the project, we still didn't have any formalized
written requirements for the application. However, we did have
enough information from which we could create another generation
of the prototype. In this next prototype, we included all of
what the user had previously required. We also added more busi
ness oriented functions that made the user's job a lot easier
(Figure 4-1).

Even after all of our requirements were formally stated and the
final application delivered, the application's users often came
back month after month requesting more changes. By prototyping
each change and by borrowing code from existing applications, we
were able to quickly deliver a new function that not only met the
user's requirements, but also fulfilled his need for accurate and
timely information. Business functions may change, but our
application will be able to quickly change with it because we
developed it using the software synthesis Approach.

v. Conclusion

Often times, the software developer must assume a role similar to
that of a chief cook who oversees a big restaurant. He has
available to him a wealth of materials and tools with which he
can make a wonderful creation. The only trick involved is know
ing how to quickly integrate these tools to come up with a
product that the users can view, tOUCh, and evaluate.

Every restaurant has difficult-to-please diners. The users will
often come back every month or every week to request change or
enhancement to your system. However, like a good cook, you will
not get upset because you know that by following the software
Synthesis Approach, you can vary the ingredients to create a new
and better dish that will surely please them.

By paying attention to the customers' palate, a big restaurant
can cater to changing desires. For the software developer, this
means you must pay attention to what the user asks for. Communi
cation is essential. By using rapid prototyping and case tools,
you will be able to quickly please your users and ensure that
your application remains a highly functional part of its program
family.

Develop Software Using a Synthesis Approach
3247 - 6

What's great about the Synthesis Approach is that it's an ap
proach that can change with the times. A next generation compo
nent to this approach will most surely be that of automated
application development. Could it be that cooks will no longer
be needed in the kitchen? Perhaps. However, until that time
comes, we encourage you to create an environment that fosters the
automation of code development and that follows the software
Synthesis Approach. Both you and your users will be happy that
you did.

The two most obvious benefits are lower development costs and
lower maintenance cost. Another benefit of not lesser magnitude
is in faster delivery of final products. As such, development
using this approach grants us the ability to handle the enormous
user backlog that MIS is facing today.

As always, MIS departments are under tremendous pressure to
respond to rapid changes in the business environment. By embrac
ing the Synthesis Approach, you will be able to meet these chal
lenges by delivering products that are high in quality and meet
your needs. Though the Synthesis Approach is new, it's possible
that it could help solve some long standing problems such as
integrating dissimilar types of data and assimilate new technolo
gy into old systems.

References

1. Raymond T. Yeh "Case for Rapid Application Development"
CASE World Conference Proceedings. Spring 1991

2. William M. Ulrich "Re-Development Engineering
an Information Blueprint for the 1990's"
CASE Outlook 90, No 2 1990

Formulating

3. David M. Weiss "Synthesis: Integrating Product and
Process" Software Engineering RICIS Symposium, 1990

Develop Software Using a Synthesis Approach
3247 - 7

·on....no..
a

Jlaouaalona

primary sources
In form
aultable for retrleva

IIMI_'

"".'", .

dlaoUMlona

F;~ '-I

DEVELOP SOFTWARE USING A SYNTHESIS APPROACH
3247 - 8

12/24/90 VENDOR PERFORMANCE BY PURCHASE ORDER FOR PERIOO 11/01 THRU 11/30/1990

CtlCPET S DAYS
PO NUMBER PO DOLLARS CLOSE DATE PRICE? ACCEPT ON TIME LATE SERVICE C'

3 COt CXItP.

02A0146266 9,563.00 11/02/90 100.00 0

VENDOR: 400530606 .----•••••••••• -. RATING --.
1 PO'S: 9,563.00 100

BICC-VERO ELECTRONICS INC.

02C0149754 3,709.10 11/07/90 100.00 0

VENDOR: 000072199 ..-- -- -- -- RATING ---
1 PO'S: 3,709.10 100

CC»U'UADD
02C0144891 2,655.00 11/06190 100.00 0 G

VENDOR: 001263003 .-••• ------ •••• -- RATING ---
1 PO'S: 2,655.00 100

COCPURIZE
02C0148920 2,6n.00 11/01/90 y 100.00 y 0 E
02C0149268 5,264.00 11/01/90 y 100.00 y 0 E
02C0149269 7.00 11/01/90 y 100.00 y 0 E
02C0149670 4,836.00 11/01/90 y 100.00 N 13 G
02C0149671 5,542.00 11/01/90 Y 100.00 y 0 E

F\~ 3-1

DEVELOP SOFTWARE USING A SYNTHESIS APPROACH
3247 - 9

;MAIN

FLIGHT DATABASE
MENU TREE

DATA ENTRY
MAINTAIN

EDIT
UPDATE

QUERY
PAST DUE
VIEW BY PO
STD MIO
ARRIVAL PLAN
MOVE

REPORT
COMPLETE
ACTUAL
VARIANCE
GRAPH
TREND

VENDOR
REASON
PERFORMANCE
DOUBLE

HELP
LEAVE

DEVELOP SOFTWARE USING A SYNTHESIS APPROACH
3247 - 10

Paper'3248
lIP 3000 Open CASE

Phiroze Petigura
Hewle~PackardCompany
19111 Pruneridge Avenue

Cupertino,CA 95014
(408) 447-6122

Introduction

Computer-Aided Software Engineering, or CASE, bas been used by lIP 3000 developers for
many years to streamline development and maintenance of commercial applications. CASE
addresses one of the most critical business needs today - the ability to quickly, and effectively
manage a business' infonnation assets. 'I11e HP 3000 open CASE program provides developers
and value-added software businesses with CASE tools for developing and maintaining applica
tion for HP 3000 systems. 'l11e HP 3000 open CASE program provides support for methods and
advanced CASE tools for the lIP 3000 commercial MIS and value-added software developer
communities.

The subject of this white paper is the HP 3000 commercial CASE program. It presents HP's
strategy to extend CASE to meet the needs of new applications on HP 3000 systems. Although
this paper primarily addresses the needs ofin-house MIS departments, it applies equally to the
needs ofvalue-added software suppliers.

Objectives of HP 3000 Open CASE

'I1le objectives of the HlP 3000 open CASE program are to deliver to lIP 3000 MIS and
value-added application developers:

• the best-in-c1ass CASE tools from leading CASE vendors,

• a multi-vendor CASE solution,

o CASE tools ranging from standalone to complete integrated-CASE solutions,

• CASE tools for both mainframe class and open systems, ~lientJserverapplications.

HPrecognizes that as the capabilities ofthe lIP 3000grows to meet mainframe and open systems
standards, the breadth of developer requirements must also increase. Besides enhancing the
current set of lIP 3000 application development tools and protecting its customers'investment
in existing development tools, these objectives broaden the HP 3000 CASE tools offering and
addresses the application development needs of new, open systems and mainframe class
applications.

Refer to Appendix A for a profile on lIP 3000 developers.

HP 3000 Open CASE 3248-1

The Benefits of CASE

To Corporate MIS Departments

As businesses become increasingly driven by information, the ability to easily deploy and modify
its information systems can be a significant competitive advantage. Rapid deployment and
modification of information systems give businesses the ability to quickly focus on new oppor
tunities, offer a better level ofservice, expand, consolidate with other information systems, and
keep pace with changing information management technologies. In todays competitive busi
ness environment, strength in information management is as crucial to an enterprise's success
as strength in areas such as engineering, manufacturing, finance, or sales.

CASE provides this advantage by reducing the investment required to build and maintain new
applications. CASE accomplishes this by providing methods and tools that streamline applica
tion development. Methods provide discipline to the application development process. For
example, methods improve the quality, usability, and maintainability ofapplications by ensur
ing that adequate analysis and design are conducted in the early stages of a project and by
ensuring the production of accurate project and product documentation. CASE tools assist in
the implementation and maintenance of applications. CASE tools can, for example, alleviate
much ofthe actual coding burden ofprogrammers thereby increasing the speed ofimpIementa
tion and maintenance, and decreasing the likelihood ofintroducing coding errors.

CASE helps address the growing maintenance backlogs experienced by MIS departments.
Research shows that today up to 75% ofMIS resources are devoted to the maintenance ofexisting
applications. Diverting MIS resources towards maintenance not only inhibits the ability for
businesses to develop new information systems but also increases the cost of operations and
decreases the morale of the programming staff. CASE tools and techniques can reduce the
maintenance backlog by giving developers the ability to reverse engineer existing application
code into new code that is easier to maintain or more compatible with new technologies.

To Value-Added Software Suppliers

CASE plays an important role for value-added software businesses. These companies, whose
business is to develop, market, and support software business solutions, experience many ofthe
same challenges as conventional MIS departments. In order to remain competitive, they must
quickly adapt their products to new business practices, regulations, and standards. They must
be capable of delivering enhancements and fixes in a timely manner. Value-added software
suppliers must be able to adapt their product to the quickly changing technologies used by their
customers. Today, for example, many software businesses are considering client/server com
puting technologies. For value- added software businesses, CASE provides a quick and inex
pensive means to keep up with business trends and technologies.

CASE in the 1990's has become a m~or topic of interest and a pressing need among forward
looking developers from both MIS organizations and value-added software businesses. CASE
has become as important to decision makers in the application development arena today as
traditional system attributes such as pricelperformance, reliability, mass storage capacity, or
support.

Refer to Appendix B for a discussion ofCASE terms and concepts.

3248-2 HP 3000 Open CASE

HP 3000 Open CASE Product Strategy

HP's strategy to achieve the objectives ofHP 3000 open CASE is to:

• strengthen the current set of lIP 3000 application development tools,

• deliver new, best-in-class, CASE tools from leading third-parties
andHP,

ct offer state-of-the art integrated-CASE tools.

Strengthen Current BP 3000 CASE Tool

The HP 3000 currently provides developers with a comprehensive set ofhigh quality CASE and
decision support tools that meet the needs ofalmost all HP 3000 applications. 'Ibese tools are
supplied not only by lIP but also by leading third-party CASE tools vendors. Current CASE
tools for developing applications for lIP 3000 systems include analysis and design tools,
construction tools (industry standard 3GLs, de facto standard 4GLs, report writers, decision
support tools, industry standard database management systems, forms management systems),
testing tools, and maintenance tools (symbolic debuggers, impact analysis tools, version control
tools).

These CASE tools address all them~orphases ofthe applications development lifeeycle. Figure
1 shows each of these phases and the activities fol' each phase and figure 2 lists some of the
m~ol'CASE tools available for each phase.

Figure I. Major Activities lor Each Phase 01Development

4--- Upper CASE ---. 4-------- Lower CASE

Plannlngl I Dealgn Implementation Teat Maintenance
Analyala

Planning 3GL Conalructlon Quality V.ralon
Aaaur.nee Control

Requlrementa Analyale 4GL eona'ructlon

Application D.algn Da'abaa. Conatructlon PGrformance Changet
Tuning Managem.nt

SCreen eonat,ucUOn
Dctbug H...

Reporting And o.clalon Support Engln..rtng

Edit

Project And Configuration Management

HP 3000 Open CASE 3248-3

Figure 2. Major HP 3000 Tools Available Today

~ Upper CASE ---.. -------- Low.r CASE

PI.nnlngi I Dealgn Imp......nt.tlon T.at M.lntenance
An.lyala

3GL Conetructlon D.t.baa. Qu.nty V.relon
Planning

• HPCOBOI.
Conatructlon Aaaur.nee Control

Requlremente Analyale • HPC • HP Al.LBASE/SQL • 6pMd T..V3000 • HPSRC".,*,
Appllc.tIon Dealgn • HPFORTRAN

• HP TurltoNAGE iii Au1oTeat. ..,.".,.."tJ
• HPA4SC4L

.OrKie

• lnfonna1ion e...,r.g Workbeftdl 4GL Conelructlon
.~.. P....ormance Chang•

.~.tDf ·..... Tuning M.nagement
• Or__ CASE*De..., .COGNO&~• • TurltoNAGE • HP/.I..RXIJ!toIW .HP~

.lnfocen1r.~. SerNn .HP~
• HPSMICh

• 181 Focus Conalruetlon • HPSPT • Aabotl3000...... TooIa
• HP IoRUS Debug ~J

• Oraele SQl*Far.a
• DocI3000• Swn_gi.t • HP 1oR1&'tthlb_ .HP....
~1IlpSl.)

• ProtOi Reporting And ~

• liP AU.BASE/G. Oedelon Support • liP Tooe.I Ae-
• T,.,..c~

• HP Al.UJASElBRW
Englneertng

•)';.,.cW
• HPALUJAS~y • COGNOSEdit • HP,..Ac~ Fb.-CASE

• HPEDIT ·".,.

• Robe.. QEOIT

Protect And Conflgurallon M.nagement
• Patttmcl. "rojKt lIlaIlaglMl'lO
• liP SRC I&on6pntion.."."."."tJ

HP Toob
Third~rtyTooIa

The tools listed in figure 2 form the core ofthe HP 3000 CASE offering. There are, in total, over
200 CASE tools from more than 120vendors available for HP 3000 application development and
maintenance. 'Ibese tools will continue to meet the needs ofthe majority ofHP 3000 application
developers. HP will protect its customers' investment in these tools and continue to enhance
the functionality and scope of these tools.

Refer to Appendix C for a description of some of these CASE tools.

HPs information management strategy is based around support for both of HP's strategic
database management systems: HP TurboIMAGE and HP ALLBASF.JSQL

Enhancements To TurboIMAGE

TurboIMAGE is the highest performance, network model database management system on the
HP3000 and is widely used byMISand value-added software developers to support performance
critical OLTP applications. HP will protect its customers' investment in TurboIMAGE applica
tiODS by continuing to improve TurboIMAGE performance to scale with the high performance
HP 3000 systems.

3248-4 HP 3000 Open,CASE

Enhancements To ALLBASFJSQL

ALLBASElSQL. is HP's ANSI standard, price/performance leading relational database manage
ment system. ALLBASEISQL has gained wide acceptance for new, Btandarda-based, OLTP
applications. Recently, HP enriched its ALLBASEISQL offering by announcing the availability
of several leading third-party CASE tools for ALLBASEISQL:

o Powerhouse (Cognos Corp.)

o logres Tools (Iogres Corp.)

G Focus (Information Builders Inc.), and

• Speedware (Infocentre Corp).

These leading third-party CASE tool vendors will support ALLBASEISQL 'Ibis not only gives
HP 3000 developers the choice ofa wide range oftools for ALLBASElSQL applications, but also
lets them easily port between ALLBASElSQL and other multi-vendor relational databases. For
example, developers concemed with performance or data integrity would choose ALL
BASElSQL, while those needing access to multi-vendor systems would choose one ofthe leading
multi-vendor databases. This flexibility gives an important advantage to value-added software
businesses and MIS developers wishing to support a diversified installed base of systems.

In addition to more tools, HPhas made enhancements to ALLBASElSQL price/performance and
functionality. ALLBASElSQL has achieved tight integration with the PA-RISC platform to
deliver the leading priee/performance OLTP solutions for HP3000 systems. Because ofthe tight
integration, this price/performance leadership will seale with releases ofhigh performance HP
3000 systems. HP has also enhanced the functionality ofALLBASElSQL by providing connec
tivity to TurbolMAGE and DB2 databases through the ALLBASEI1'urbo Connect and ALL
BASFJDB2 Connect products, and connectivity to other ALLBASEISQL databases through
ALLBASFJNET.

HP has alsoenhanced ALLBASElSQLto support the construction ofwindows-based, client-serv
er applications. At present, HP supports an application programming interface (API) for HP
3000 ALLBASElSQL servers and M8-Windows 3.o-based clients. HP will also support the
industry-standard, client-server API for ALLBASElSQL based on the standards set by the SQL
Access Group.

Database Conversion Tools

HP will provide re-engineering tools that allow developers to convert TurboIMAGE applications
into ALLBASElSQL applications. CASE tools such as PowerCASE from Cognos will be able to
convert TurbolMAGE applications to ALLBASFJSQL applications.

Best-in-Class CASE Tools Through Leading Third-Parties

The HP 3000 has become one of the most open commercial application development platforms
available today by supporting a very wide variety ofstandalone CASE tools from leading third
party CASE vendors. As the quality and sophistication of the CASE tools increase, HP will
broaden its focus to include more tools from third-party CASE vendors.

HP 3000 Open CASE 3248-5

Third-party CASE iool vendors have led the development of new standards and tools for
implementing client/server applications. In keeping with lIPs New Wave Computing thrust to
become the leading distributed computing vendor, HP will deliver the best open systems,
client/server application development tools for lIP 3000 systems as part of the HP 3000 open
CASE program. Through its own investment, and through third-parties, HP will also deliver a
broad offering ofhigh quality CASE tools for open systems, hostlterminal and mainframe class
applications. The major new and existing CASE tools for HP 3000 systems are described below:

FOCUS

FOCUS is a leading 4GL and reporting tool from Information Builders Inc. and is one of the
most widely used mainframe 4GLs. FOCUS runs on a large number ofmainframe, midrange,
and personal computerplatfonns and supports a variety ofdatabase management systems(DB2,
IMS, ORACLE, Rdb, dBASE, etc.). FOCUS will be enhanced to support ALLBASFJSQL in the
second quarter of 1991. FOCUS is suitable for new, mainframe class applications and porting
ofmainframe applications to lIP 3000 systems.

IngreBIWindoW8 4GL

IngreslWindows 4GL is a client/server 4GL that allows users to develop applications that use
the HP 3000 as a database server and personal computers or workstation as clients. IngresIWin
dows 4GL supports a variety of windowing interfaces such as MS- Windows, OSF/Motif, and
Presentation Manager. IngreslWindow 4GL is suitable for open systems client/server applica
tions. It will be available for lIP 3000 systems and ALLBASElSQL by the second quarter of
1991.

SQIJWindOW8

SQlJWindows from Gupta is a client/server application development tool. SQUWindows runs
under MB-Windows 3.0 and allows developers to build applications that use the HP 3000 as an
ALLBASFJSQL server. SQIJWindows will give developers the ability to connect to DB2 and
Oracle databases. SQUWindow8 is ideal for OLTP, open systems client/server applications. It
will be available in the second half of 1991.

PowerBuilder

PowerBuilder from Powersoft Corporation is a design and construction tool for client/server
applications. Applications constructed with PowerBuilder will run in MB-Windows 3.0 and 0812
Presentation Manager (PM) environments and will use the HP 3000 as an ALLBASFJSQL
server. PowerBuilder will be available for HP 3000 systems in the second halfof 1991.

Powerhouse 4GL

Powerhouse 4GL from Cognos Inc. is the leading high performance 4GL on HP 3000 systems.
Powerhouse 4GL currently supports TurboIMAGE databases and will support ALLBASFJSQL
databases in the second quarter of 1991. Powerhouse 4GL will be integrated with the Cognos'
PoweJCASE product in the second quarter of 1991 to provide design to code capabilities for HP
3000 systems.

3248-6 HP 3000 Open CASE

SpeedWare

SpeedWare from Infocentre Corporation is a leading high performance client/server 4GL for HP
3000 systems. Speedware currently supports application development against TurboIMAGE
databases and will support ALLBASElSQL in the second quarter of 1991. Infoeentre provides
a high level application specification facility that supports rapid implementation ofSpeedware
applications.

mtegrated·CASE Tools for the HP 3000

Integrated-CASE, or I-CASE, tools consist of sets of individual tools, from single vendors, that
aid applications development and support all phases of the application development lifecycle.
1- CASE tools provide developers with the capability to automatically generate 3GL or 4GL
applications from high level designs and to maintain applications at the design level. I-CASE
tools are a single vendor solution built around a repository through which individual tools within
the I-CASE toolset can share information about an application. 'Ibis allows the I-CASE tool to
propagate changes through an entire set of programs, databases, and screens from a single
change to application design.

The difference between I-CASE tools and traditional, standalone CASE tools lie in overall
functionality and flexibility ofchoice. Because ofits tight integration and lifecycle orientation,
I-CASE offers greater overall functionality and power to developers. However, I-CASE users
can only choose from the limited number oftools available within the I-CASE toolset. Figure 3
illustrates the broad tradeoffbetweenfunctionality and flexibility when movingtrom standalone
CASE to I-CASE. Today, I-CASE tools fonn among the most powerful CASE tools available.
I-CASE tools not only support entire development lifecye1e methodologies but can also provide
developers with the capability to manage large application development teams. I-CASE tools
are used primarily for large, mainframe class applications.

Figure 3. CASE Tool Categories

Standalone Tools

~~OOI I

'O@J
Integrated-CASE

Tools

Integration/Project size

HP 3000 Open CASE 3248-7

Because of the complete lifecycle and methodology orientation of I-CASE, developers adopting
I-CASE tools should have a long term commitment to the tool. The development organization,
including users, programmers, and managers need to be trained in the new development
methodologies, processes and tools supported by the I-CASE tool. Additional hardware and
software such as personal computers and LAN-based servers may also have to be purchased to
support the I-CASE tool.

HP recently announced the following leading I-CASE tools for HP 3000 systems:

PACLAN and PACLANIX

The I-CASE tools from the French-based CGI Informatique includes PACBASE, PACLAN, and
PACLANIX. CGI is the world's largest I-CASE vendor. The CGI I-CASE tools operate in a
client/server environment ofpersonal computers and workstations on a LAN to a server-resident
repository. 'I11e CGI products support application development for a large number ofplatforms
and supports a variety of methodologies. '!be CGI products currently generate COBOL and
TurbolMAGE applications for HP 3000 batch mode environments and will generate ALL
BASElSQL and VPLUS applications for lIP 3000 systems by mid-1OO1. CGI also provides a
reverse engineering facility called PACREVERSE to aid in the maintenance ofexisting COBOL
code.

The CGI products are ideal for moderate to large COBOL development efforts ranging in size
from about 4 to about 50 developers. CGI products are ideally suited for mainframe class
developers and those wishing to downsize from mainframes to lIP 3000 systems.

Maestron

Maestro n is an I-CASE tool from Softlab Inc. of Germany. Maestro n roDS in a client/server
environment consisting of personal computers on a LAN to an HP 9000 server. Maestro II
supports the connectivity and tenninal emulation capabilities for connecting to, compiling, and
testing applications on an HP 3000. It is eustomizable and will support any standard or custom
development methodology. Maestro II is rich in project management and configuration man
agement functionality, and supports application development for many platforms.

Maestro II is a high-end CASE environment that is ideal for very large projects with very large
programming staffs. Maestro II will be available for the HP 3000 and will support COBOL,
ALLBASElSQL, and VPLUS in the second halfof 1991.

PowerCASE

PowerCASE is an I-CASE tool from Cognos Corp. for developers of Powerhouse 4GL applica
tions. PowerCASE is a PC-based graphical design tool that allows developers to design and
generate Powerhouse 4GL, ALLBASFJSQL, and 'furboIMAGE applications for HP 3000 sys
tems. PowerCASE uses Entity-Relationship modeling and Data Flow Diagramming techniques
to design applications, and supports the Cognos development methodology. PowerCASE can be
used to migrate TurboIMAGE Powerhouse 4GL applications to ALLBASFJSQL Powerhouse
4GL applications

PowerCASE is suitable for small to medium Powerhouse 4GL developers. PowerCASE will be
available for HP 3000 systems in the second quarter of 1991.

3248-8 HP 3000 Open CASE

Oracle CASE

Oracle's CASE toolset includes CASE*Method, CASE*Dictionary, CASE*Designer, and
CASE*Generator. 1'bis toolset only supports the ORACLE database, and generates SQL*Forms
eode from applications designed using CASE*Designer and CASE*Method. Oracle's CASE
toolset runs on a large number ofPC and UNIX workstation platfonns and can target HP 3000
systems. Oracle's CASE toolset is available now.

Figure 4 shows how well the new HP 3000 I-CASE tools are suited to different application
development situations.

Figure 4. New HP 3000 I-CASE Tools
liz. Of

Applcallon
MAESTRO II

• COIICL
PACLAN

• YPLUI

• ALLIIASElIQL

Medium

8maa

Summary

ORACLE CASE

• Or... DBMS

• SQl..ttFonu

POWERCASE

• AUBASElSQL

• 1\IrtIoIMAGE

• PcMwHou..

• COBOL

• ¥PLUS

Br.adth Of Functlona,"y

The HP 3000 open CASE program addresses the needs ofboth MIS and value-added software
developers. 'Ibe HP 3000 open CASE program has been successful in protecting the existing
investment in HP 3000 CASE tools and in providing powerful, new standalone CASE, and
integrated-CASE, tools for new applications development. This means application developers
not only have the ability to maintain their existing applications using their tools of choice but
also have the option to use new, best-in-class CASE tools to implement new, mission critical
applications.

These new CASE tools not only meet the needs oftodays applications but also provide the means
to develop future applications for open and high-end HP 3000 systems. Figure 5 shows that
these new CASE tools not only meet the needs ofmainframe class and open systems developers
but also the need for tools to develop hostJterminal and client/server applications. From the
preceding discussion on CASE tools, and analysis of the requirements of different application
developers, it is clear there is no single superior CASE solution for all developers. Developer
organizations must choose their CASE strategy in light of the size and complexity of their

HP 3000 Open CASE 3248-9

application development projects and the ability and willingness of the organization to adopt
certain CASE tools and practices. lIP has therefore chosen to offer all HP 3000 developers a
broad choice of best-in-class standalone CASE and I-CASE tools through the lIP 3000 open
CASE program.

Figure 6. New HP 3000 CASE Tools

Run Time Environment

Host/Terminal Client/Server

..•C-o..
>
CD

C

PACLAN ceQI Syetema) HP VPWSlWlncIow.
M....ro II CSottlab) HP N.ww.va Ace•••
Foe... aBO

PoworCASE Cognoa) SQLlWJndowa Cupta)

PowerHoua. (Cognoa) Ingr••lWlndow. 4GL Onsar.e)

ORACLE CASE IOracla) Powerbullder (Power.off

lnar•• 4GL lnarea)
Speed.a,. Onfocentre)

Appendix A • Changing HP 3000 Developer Profiles

Although well-entrenched as a leading commercial midrange system, the HP 3000 is now
positioned as both a mainframe and an open system. With the advent of the PA-RISC
architecture, the HP 3000 now seales from the very low-end systems to the high-end multiproc
essor mainframe class systems. BPs early thrust into distributed computing through its New
Wave computing efforts has also made HP 3000 systems a leading open system.

In order to understand the need for eASE for HP 3000 systems it is necessary to understand
the makeup of HP 3000 applications developers and how this has changed as the lIP 3000 has
grown into a mainframe class and open system. In addition to the traditional group ofHP 3000
application developers, there is a growing need amongboth eDstingand new lIP3000 customers
to address the development ofmainframe class, open systems hostJterminal, and open systems
client/server applications.

Mainframe Application Developer

'Ibis group consists ofdevelopen whose size bas made their applications development require
ments characteristic of those of developers in the mainframe class environment. Applications
developed by this group are typically large, business critical systems involving multi-penon
efforts which last several years. Once deployed, these systems require periodic rework and
generally have a dedicated maintenance staffassigned to it. 'n1e main application development
requirements or mainframe class developers are:

3248-10 lIP 3000 Open.CASE

3GL Development

The high-end developer has relied primarily on traditional 3GL development tools for imple
menting systems. 'llrls toolset (COBOL, TurboIMAGE, SQL, and VPLUS) has typically yielded
better perfonning applications than equivalent 4GL implementations. 'Ilris performance advan
tage is important to this group because the business critical nature of their applications.
Although some high-end developers are moving development to 4GLs, the greater part of
high-end developers will continue to use 3GLs. CASE tools for these developers must therefore
support the traditional development toolset.

Project Management

These developers have a need for CASE tools to control and manage the applications develop
ment process. As high-end developers typically develop and maintain large projects involving
teams of programmers their requirement of CASE tools extend beyond simply reducing the
investment necessary to construct and maintain applications.

The high-end developer needs CASE tools that assist in the management of the development
and maintenance processes. This ranges from the enforcement of methodologies to the close
tracking ofresources expended on constructing an application.

Configuration Management

Large project often require configuration management tools. These tools facilitate the building
and distribution of the application. Large projects are typically divided and given to different
teams of programmers to implement. Configuration management tools to ensure that all the
correct versions of the software are included in any given version of the application.

Platform-Independent Tools

The high-end developer often needs to contend with a multi-vendor computing environment.
Although applications may originally have been developed and deployed on specific systems, as
these accounts move forward towards enterprise wide computing there is a growing need to
deploy the same application on the different systems. High-end developers therefore need access
to the same CASE tools for the HP 3000 as are available for their IBM compatible mainframes
to simplify migration to HP 3000 systems.

Application Generation

Application generation is the ability to automatically produce the code for an application from
high level specifications. It eliminates the need to write the code, build the databases, or
implement the screens necessary for the application. Application generation improves the
quality and speed of implementation, and speeds up maintenance by giving programmers the
capability to make changes to the application at the design level and re- generate the application.
Application generation also facilitates reuse ofdesigns and code.

HP 3000 Open CASE 3248-11

CUentlServer Migration

As personal computers become more prevalent in the mainframe class environment, there will
be a growing need to take advantage of their power and user friendliness. As the availability
of personal computers among users increases, mainframe class application developers will
require tools to migrate existingapplications into client/server applications to betterutilize their
personal computers. HP VPLUSlWindows is an example ofa tool for migrating terminal-based
VPLUS applications to a MS- Windows-based, client/server environment.

Open Systems Developer

Unlike the high-end developer, the open systems developer consists of smaller developel'8
concerned with developing and deploying portable applications for an open, standards-based
environment. Applications developed by this group typically make use of industry standard
3GL's and 4GL's, database management systems, forms management systems, and operating
system services.

The m~orityof HP's value-added software businesses are open systems developers. The main
requirements of the open systems applications developer are:

Support For Standards

Open systems CASE tools must support coding to these standards. Applications developed by
the open systems developer must be platform portable by virtue of adherence to official or de
facto standards. Figure 6 shows the standards for open systems applications.

Client/Server 4GL

Besides the ability to develop open systems host/terminal applications, the open systems
developer needs the capability to develop client/server applications. Although client/server is
not a new concept, implementing client/server applications has been difficult. In order to
construct client/server transaction processingapplications, developers not only need to be expert
on both the client and server platforms but also need to know how to manage the networking,
and the graphical user interfaces of the client. High levellanguages, such as 4GL's, facilitate
the construction ofclient/server application by shielding the developer from many of the details
ofconstruction.

3248-12 HP 3000 Open CASE

Figure 8. Standards foll" Open Systems Applications

HewWave

• X WIndow_ ay_tom • OSF Motif

Network
Servlc••

• 011
• ••
• IIGMII·LAll_
a'"
• IIC8

• M8 Wlndo••
• PM

Appllc.tlon Environment

PA-RISC

Application

Relational DBa
• AUMIE • ORACLE
...... IGL
-IIU ConMct • ORAlE__PIA

-SOL Acoeu

Operating System

Languag••
a Tools

• POIIX.1
• POIII.!

• ANSI C
cc.MaOL
MSCAL
IIORT'RAIlI

• ALJ.aASE·.......
• eoe-.
....f~

• POCUS• ,.,.,a1....~

Application Generation

Like the mainframe class application developers, open systems application developers will want
tools that automate implementation.

The CASE requirements for each group are shown in figure 7~

Figure 7. Application Development Requirements

Run Time Environment

Host/Terminal Client/Server

~

CD
Q.
o
a;
>
CD
C

• Project Management • Client/Server Toolo
• Configuration Management • Application Generation
• Platform Independent Tools • Project Management
• 3GL Development Tools • Configuration Management
• Application Generation

• Client/server 4GL
• Support For Standarda • Support For Standard.
• Application Generation • Application Generation

HP 3000 Open CASE 3248-13

Appendix B • What is CASE

CASE refers to the tools and methods that increase the quality ofapplications and decrease the
investment necessary to develop and maintain applications. CASE applies equally to commer
cial applications development or technical software engineering projects. The differences
between commercial and technical CASE lie primarily in the methods and tools used. This
discussion is confined to commercial CASE.

CASE Tools

CASE tools aid and automate the design, implementation, and maintenance of applications.
CASE tools support every phase ofapplications development including planning and analysis,
design, implementation, test, and maintenance. CASE tools range from PC- based graphical
design tools to server-based version control and arclrlving tools.

CASE tools are not new to applications development. Tools such as 4GLs, application gener
ators, version management systems, symbolic debuggers, etc. have been used for many years.
Many of these tools were originally developed as in-house productivity tools and found initial
acceptance by small projects and small MIS departments that needed to leverage limited
programming resources. However, as a result of pressures to trim costs and improve the
responsiveness ofMIS to changingbusiness needs and technologies, more and more mainstream
MIS departments have begun to use CASE tools as the means to achieve this.

The developmentofCASE tools has made rapid progress in recentyears. With wider acceptance
and usage of tools, the CASE vendor community has seen the emergence of standards in areas
such as import and export specifications and diagramming conventions. The CASE industry
has seen the emergence orCASE companies that have taken leadership positions in the market.
Canadian and US companies such as Cognos, Infocentre, and Knowledgeware, and European
companies such as CGI Systems, and Softlab have become leading CASE vendors.

Upper and Lower CASE

CASE tools are frequently referred to as either upper CASE or lower CASE tools. This
distinction refers to the phases of the lifecycle that different tools address. Upper CASE
addresses the planning, analysis, and design phases while lower CASE addresses the imple
mentation, testing, and maintenance phases. In general, upper CASE tools are graphical in
nature, employ diagramming or charting techniques, and often nm on personal computers or
workstations. 'Ole output ofupper CASE tools are application designs applicable to most target
system. Lower CASE tools do not require graphics capabilities and are often deployed on a
server or multiuser system.

Methods

CASE methodologies refers to the discipline adhered to during the process of developing
applications. Methodologies help ensure the quality ofthe final application by identifying each
step in the development of an application and formalizing the activities, standards, and
checkpoints that need to be adhered. to. Formal methodologies such as Information Engineering,
Yourdon, SSADM. and othershave been used for many years with large application development

3248-14 lIP 3000 Open CASE

projects and by mainstream MIS organizations. These methodologies have not, however, seen
widespread acceptance among smaller developers because of the high cost of implementation
and training associated with their use.

In practice, CASE tools and methodologies are highly interdependent. The combined use of
methodologies and CASE tools gives application developers the powerful capability to not only
automate implementation but also enforce the process. Recent developments in CASE has seen
the emergence of sophisticated CASE tools that can be configured to support different method
ologies. 'I1lese integrated-CASE tools not only represent a significant step towards making
CASE address mainstream MIS needs but also reduces the cost of entry for smaller MIS
organizations to use CASE.

Target and Development Systems

Descriptions ofCASE tools often refer to target and development systems. Target systems are
where the applications will run in production. Development systems are where applications are
developed. In many instances, target and development systems are the same. Applications are
developed and deployed on the same system because it gives developers the ability to custom
build the application for optimal performance on the production system.

Recently target and development systems have begun to diverge. As the price/performance of
production systems decreases and the specialized computing needs ofCASE tools increases, the
choice ofdevelopment and target systems becomes driven by different constraints. Development
systems are often selected for features such as the ability to support graphics and for individual
productivity. For example, DOS-based personal computers and UNIX workstations are often
selected as development platforms because their sophisticated graphical displays and dedicated
computing power makes them ideal for todays advanced CASE tools. On he other hand, target
systems are often selected because of performance, reliability, data integrity, system security,
systems management, and other production related features.

The division between target and development systems have brought about a new class oftarget
system independent CASE tools which pennit the development ofapplications for a variety of
systems from single application specifications.

Lifecycle Framework

CASE tools are often referred to in the context of how they address different phases of the
application development lifecycle. Each phase corresponds to a set of activities that are
undertaken for applications development. These phases are planning and analysis, design,
implementation, test, and production and maintenance. 'lbese are often depicted in a lifecycle
framework like the one shown in figure 8.

HP 3000 Open CASE 3248-15

Figure 8. AppUcation Development Lilecycle Framework

....- Upper CASE --... ~-------Lower CASE -------~

Planning! I Design Implementation Te.t Maintenance
Analyals

......
I Progresalon of application development actlvltlea

......

Croas Ufecycle Actlvilies

Planning and analysis

These activities occur at the very beginning ofthe application development process and involves
the analysis and mapping ofa company's business goals to its information systems plans.

Design

'Ibis phase translate the information system needs identified in the previous phase into high
level data and process models. During this phase, the data and process needs ofthe information
system under design can be evaluated at an abstract level before construction ofthe application
occurs.

Implementation

This phase involves the building of the application. Tools used at this phase are 3GL's, 4GL's,
database management systems, and forms management systems. More recently, report writers
and code generators are also being used at this phase.

Test

This is the phase during which the application is tested for compliance to specifications and
debugged. 'l1le tools employed during this activity are code analyzers, debuggers, and testing
tools.

ProductioDlMaintelUlDCe

This phase comprises activities performed after an application is deployed into production. 'Ibis
includes such tasks as implementing enhancements and bug fixes. Another, less well under
stood, task performed during this phase is software distribution to remote operations. For

3248-16 lIP 3000 Open"CASE

centralized MIS departments, the task ofensuring that each remote production system bas the
latest software revision is often complex, expensive, and prone to error. The complexity
increases for client/server applications where it is necessary to distribute to each client system.
The tools most often utilized during this phase are source management, source analysis, and
reverse engineering tools.

Cross IJlecycle

These are the activities, such as project management and configuration management, that occur
across all the phases ofapplication development.

Appendix C • Major Hewlett-Packard CASE Tools for the
HP3000

HPCOBOLU

HP COBOL n is an optimizing compiler for 1985 ANSI Standard COBOL code. COBOL is an
ideal 3GL for batch and OLTP applications.

HPVPLUS

HP VPLUS is a fonns management system for all HP block mode terminals. HP VPLUS
intrinsies are callable from most programming languages. HP VPLUS is optimized for perform
ance on HP 3000 systems.

HP VPLUSlWindow8

HP's VPLUSlWindows is a client/server application development tool, and migration tool for
existing VPLUS applications. VPLUStWindows permits hostJterminal VPLUS applications to
run as client/server applications under MS-Windows 3.0 and New Wave. VPLUSlWindows runs
in a PC-LAN environment connected to one or more HP 3000 systems or servers.

HP New Wave Acce88

New Wave Access is a client/server decision support tool that runs under MS-Windows 3.0 and
New Wave. New Wave Access allows end users to graphically extract and manipulate data from
many sources (ALLBASElSQL, TurboIMAGE, DB2 and Oracle). New Wave Access lets end user
offioad programmers by defining and generating their own decision support applications.

HP TransactIXL

TransactIXL is a high-level programming language for developing OLTP applications for
TurboIMAGE databases and VPLUS forms. The TransactIXL compiler is available for all HP
3000 Series 900 systems. TransactIXL applications require fewer lines of code to implement
and results in reduced development and maintenance costs.

HP 3000 Open CASE 3248-17

HP ALLBASE/4GL

ALLBASFJ4GL is an advanced 4GL for developing OLTP applications for ALLBASElSQL and
TurboIMAGE databases. ALLBASFJ4GL gives developers the ability to rapidly prototype
applications using the ALLBASFJ4GL screen painter.

HP ALLBASFJBRW

HP ALLBASFJBRWis a high performance reporting tool for MIS professionals and sophisticated
end users. It supports ALLBASFJSQL and TurboIMAGE databases.

BP ALLBASEIQuery

HP ALLBASFJQuery is an easy-to-use end user decision support and reporting tool. It gives
end users decision makers the ability to extract, format, and report data resident in ALI,
BASElSQL and TurboIMAGE databases.

HP Information Access

HP Information Access is a PC-based decision support tool that gives decision makers the ability
to extract and report data resident in ALLBASElSQL, TurboIMAGE, and DB2 databases.

HP GlancePlusIXL

HP GlancePlusIXL is a diagnostic and performance monitoring tool that gives programmers the
ability to tune the performance of their application by identifying its performance bottlenecks.

BP Software Performance TunerlXL (SPT)

HP SPI' is a tool that provides information on the efficiency ofan application's algorithms and
code.

HP Symbolic DebugIXL

HPSymbolic DebugIXL is a on-line debugger for all HP 3000 applications. It gives programmers
the ability to track memory- resident values using symbolic names instead of relative memory
addresses. It also allows programmers to track and debug code paths.

BPEDITIXL

HP EDITIXL is a full function, screen oriented editor for application developers. It supports
standard and COBOL line numbering and has features such as automatic indentation and line
shifting. HP EDITIXL has comprehensive on-line help.

3248-18 HP 3000 Open CASE

UP Software Revision Controller (SRC)

HP SRe is a sophisticated version management and configuration management system design
to control changes to program code and other files. lIP SRC offers check-inlcheck-out facilities
to guarantee the integrity of the files it manages. HP SRC also maintains an audit trail or
changes made to a file.

HP SearcbIXL

HP SearchIXL is a general-purpose search utility for quickly finding the occurrence ofwords or
patterns in files or groups offiles. lIP SearchIXL supports searches against wildcard characters
and patterns stored in other files. lIP SearchIXL can search up to 65,000 files at a single time.

HlP BrowseJXL

HP BrowseIXL is a full-screen, interactive utility for programmers to quickly examine and print
the contents offiles or search for patterns without having to use a standard editor or reporting
tool. HP BrowseIXL supports windowing to access two files simultaneously.

HP 3000 Open CASE 3248-19

Paper #: 3902

The Pros and Cons of Prototyping

George Federman
George Federman & Associates

6236 Parkhurst Drive
Goleta, CA 93117
(805) 683-3037

In many disciplines, paper plans and working models go hand-in-hand
in designing new structures and systems. In systems analysis and
design, prototyping offers us the same use of working models.
However, in many data processing environments, the prototyping
approach is rejected out of hand.

The reasons are understandable. After many years of fighting for
structured analysis and structured design, few data processing
managers or project leaders would welcome a code-it-now, fix-it
later philosophy. Prototyping looks like that philosophy under a new
name.

However, if prototyping is seen as augmenting rather than replacing
a structured systems development life cycle, and seen as a tool for
inquiry and modelling rather than seat-of-the-pants programming,
its virtues become much clearer.

In the requirements phase of systems analysis, prototyping can
elicit user needs, and confirm our understanding of their needs,
better than any other technique.

In the physical design phase, it offers users a hands-on model of the
system, a model they can manipulate and question. With prototyping,
we get immediate user feedback, and the chance to quickly correct
or improve designs based on that feedback.

There are drawbacks. Prototyping only works in some situations, and
not in others, and we have to know when to prototype. Prototyping
may lead us to select a design and begin coding sooner than we
should. Prototyping encourages user response and iterative
modification; sometimes we end up in an infinite loop, forever
tweaking the model. Prototyping, like all methodologies, can be

The Pros and Cons of Prototyping Page 3902-1

carried to extremes, and sometimes the working model is delivered
as the final system, with critical edits, controls, and procedures
still missing.

Any design technique has its benefits and drawbacks, and
prototyping is no exception. But properly used, it offers us
remarkable opportunities for improving and accelerating system
design.

The Pros and Cons of Prototyping Page 3902-2

Paper # 3905
usinq Bpi s "Fill words and qain control of your sequential files

Rick Roberts
Standard-Thomson Corp.
152 Grove Street
Waltham, MA. 02154
(617) 894-7310

What are HP's "F" words?

In the context of this presentation, they are the intrinsic
calls for managing files. Some examples would be:

FOPEN FREAD FWRITE FDELETE FSPACE FCLOSE

They all begin with the letter "F".

Why use intrinsic file calls ?

When I first started working on an HP I was surprised by how
ineffectively they handled sequential files. Maybe HP felt
sequential files were a thing of the past, with KSAM files and
Image database files being the future. Sometimes simplicity
can be the elegant and effective solution.

What can you possible do with intrinsics ?

Lots I was surprised once I started researching intrinsics
by what could be done and how effective they were. We will
discuss:

creating/Finding variably named files
Sizing the file (other than the default size)
Checking if a file exists; then delete or add
Deleting a file
Renaming a file
Delete logical records (and they said it COUldn't be done)

All this can be done from within a program, where the logical
flow of a system can best be managed.

Before I describe the actual code to do this, I will explain
some practical instances where I have used file intrinsics,
when nothing else would do.

usinq Bpls lip" words 3905-1

[CASE 1] My first experience with file intrinsics came when
our company had a need to create order files quickly. We felt
that using image datasets directly would slow the process.
Most of our sales were taken over the phone and during the
hectic ordering seasons we wanted to provide the fastest
possible way to serve our customers.

We felt that if we created sequential files with variable
names, we could then have a batch program running in a lower
priority queue to add them to the Image order sets. We used
an Image master set to keep a control number for file names
and added that number on to a prefix to generate a file name.
The batch program then read through a range of file names to
generate orders. We used a prefix of "won to indicate a work
order. We discovered that by doing this we also could use
"BO" as a prefix to indicate a backorder on the original order
and "HO" to indicate an order on hold.

Once we began using the system we found that our telephone
sales people could create orders faster than the batch file
could add them. Our customer service was improved and the
system worked well.

[CASE 2] In another instance we needed to create requisitions
for parts. The planners were thumbing through large MRP
reports to determine what needed to be ordered. What we
wanted to provide the planners, was a file of recommended
parts and the dates they needed. The generation of
requisitions took place over the period of a week and we
wanted to be able to delete records that had already been
processed so the planners only viewed what hadn't been
completed yet.

We used intrinsics to name the files according to the part's
class code which was unique to a planner. We made the
sequential file an RIO (Relative I/O) file and were able to
"FDELETE" logical records. These were large volatile files
that would wreak havoc on an Image dataset but were handled
quite easily by using sequential files.

[CASE 3] Another situation involved files that we use for our
executive information system. These were small files
containing summary information on the status of different
aspects of our business. Daily Sales, Daily Shipping
Statistics, Inventory Levels, Status of our Production Plan.

These files were all snapshots of the status on specific days,
so we incorporated the date into the file name. In some cases
we accumulated month-to-date and year-to-date information. By
using file intrinsics we could "step back" from today's date
to find the previous days file for accumulation information.
If anyone viewing the information wanted to see the status for
a previous date, they entered the date and the information was
displayed quickly and easily.

Using HP's "F" words 3905-2

CODE FOR USING INTRINSICS

CONFIGURATION SECTION
SPECIAL-NAMES.

CONDITION-CODE IS ERROR-FIELD.

WORKING STORAGE SECTION

01 DEVICE
01 FNAMEI.

05 FI-PRE
05 Fl-NUM
05 FI-LOC

01 FNAME2.
05 F2-PRE
05 F2-CODE

01 FNOI
01 FN02
01 FSIZEI
01 RECSIZEI
01 RECSIZE2
01 ECODE
01 SECCODE
01 CCNTRL
01 DI8P-O
01 DISP-l
01 DISP-2
01 DISP-3
01 DISP-4

01 IN-RECI.
01 IN-REC2.

PIC X(08) VALUE "DISC".

PIC X(02) VALUE "WO".
PIC 9(06).
PIC X(I7) VALUE "group.acct".

PIC X(03) VALUE "REQ".
PIC 9(04)B.
PIC S9(4) COMPo
PIC 89(4) COMPo
PIC S9(9) COMP VALUE 20000.
PIC S9(4) COMP VALUE -94.
PIC S9(4) COMP VALUE -48.
PIC 89(4) COMP VALUE O.
PIC 89(4) COMP VALUE O.
PIC S9(4) COMP VALUE O.
PIC 89(4) COMP VALUE O.
PIC S9(4) COMP VALUE 1.
PIC S9(4) COMP VALUE 2.
PIC S9(4) COMP VALUE 3.
PIC 89(4) COMP VALUE 4.

this area would contain the layout for your files.

PIGURE 1

Using Bpi. "P" words 3905-3

Figure 1 shows the necessary data fields for this processing.
Some of these fields will be discussed later when I cover the
processing code.

CONDITION-CODE must be defined under special-names and is
returned after every intrinsic call. Error-field is not
defined anywhere else in the program and is the data name
referred to for error checking.

DEVICE will always be DISC since we are dealing with
sequential files.

FNAMEl is the parameter that tells the call what file to
"FOPEN". In one example we have set the prefix to "WO". The
file we are creating or finding will begin with WOe The
second part of the file is defined to have six digits. This
is the variable "name" part of the file. The last field
contains the group and account. It should be noted that the
filename parameter must be terminated by a nonalphanumeric
character other than a slash (I) or period (.). I use a
blank.

FNOl is the parameter that is passed back by the "FOPEN".
After the file is opened any further references to the file
will use this system assigned file number.

FSIZE1 is the file size (number of records). If this
parameter is not used the default is 1024. You can make this
parameter larger than necessary and then "shrink" the file to
exact size with an "FCLOSE" parameter.

RECSIZE1 is the length of each record. A negative number
indicates the number of bytes; if positive, it is the number
of words.

IN-REC1 is the area where the file record is placed when it is
"FREAD" and should contain the file layout.

The rest of the parameters will be explained later.

This is easy!! Let's go on to the processing involved.

The first step is to open the file.
examples of "FOPEN".

FIGURE 2 shows some

Most of the parameters have already been discussed. The end
of the call has the statement, GIVING FN01. This is the
system assigned file number that is used in all subsequent
calls to this file.

There are two new parameters in the call; both represented by
octal numbers (preceded by a % sign) • These are the "F"
(file) options and the "A" (access) options. These two
options are key in describing the file and the source of most
errors when using file intrinsics.

usinq HP's "F" words 3905-4

EXAMPLES OF "FOPEN"s

CALL INTRINSIC "FOPEN" USING FNAME1, %4, %101,
RECSIZEl, DEVICE, GIVING FNOI.

CALL INTRINSIC "FOPEN" USING FNAME1, %5, %104,
RECSIZE1, \\ \\ \\ \\ FSIZE1, GIVING FNOI.

CALL INTRINSIC "FOPEN" USING FNAMEl, %1, %1300,
RECSIZEJI., DEVICE, GIVING FNOI.

CALL INTRINSIC "FOPEN" USING FNAMEJl, %10004, %4,
RECSIZEJI., DEVICE, GIVING FNOI.

FIGURE 2

EXAMPLES OF "FCLOSE"s

CALL INTRINSIC "FCLOSE" USING FNOl, DHSP-O, SECCOIl)E

CALL INTRINSIC "FCLOSE" USING FNOl, DISP-l, SECCODE

CALL INTRINSIC "FCLOSE" USING FNOl, DISP-2, SECCOlOE

CALL INTRINSiC "FCLOSE" USING FNOl, DISP-3, SECCODE

CALL INTRINSIC "FCLOSE" USING FNOl, DISP-4, SECCODE

CALL INTRINSIC "FCLOSE" USING FNOl, %11, SECCODE

FIGURE 3

using' HP's "Fie words 3905-5

01 POS 1 I POS 2 I POS 3 I POS 4 I POS 5 I
0 STD ALLOW NO CCTL FILENAME BIN

: FILE FIXED NEW

1 RIO NO CCTL $STDLIST BIN
VARIABLE PERM

2 CIR NO NO CCTL $NEWPASS BIN
: FILE UNDEF. TEMP

3 MSG NO NOCCTL $OLDPASS BIN
: FILE SPOOL TEMP/PERM

4 KSAM CCTL $STDIN ASCII
: FILE FIXED NEW

5 CCTL $STDINX ASCII
VARIABLE PERM

6 CCTL $NULL ASCII
UNDEF. TEMP

7 CCTL ASCII
SPOOL TEMP/PERM

FIGURE.. "F" options

D POS 1 POS 2 POS 3 POS 4

0 WAIT BUF NO FLOCK READ ONLY
NON MULTI DEFAULT NO MULTI REC

1 WAIT aUF WRITE ONLY
INTRA-JOB EXCLUSIVE

2 WAIT aUF NO FLOCK WRITE (SAVE)
INTERJOB SEMI READ MULTI RECORD ONLY

3 BUF APPEND ONLY
SHARE

4 NO WAIT NO BUF FLOCK READ / WRITE
NON MULTI DEFAULT NO MULTI REC

5 NO WAIT NO BUF UPDATE
INTRA-JOB EXCLUSIVE

6 NO WAIT NO BUF FLOCK EXECUTE
INTER-JOB SEMI READ MULTI RECORD

7 NO BUF
SHARE

FIGURE 5 - "A" options

Using HP's "I''' words 3905-6

FIGURES 4 and 5 show the combinations of "Fill and "A" options.
Though there are many combinations, in actual practice you
will use very few. The left most column contains the value
you would use in the position across the top. If the position
is not specified, the defaults (0 row) are in effect.

In FIGURE 2 most of the "F" options use the defaults in the
first four positions. They are:

STANDARD SEQUENTIAL FILE
ALLOWS :FILE OVERRIDE
NO CARRIAGE CONTROL
FIXED LENGTH RECORDS
USE THE FORMAL FILE DESIGNATOR (FNAME1)

The exception to this is example four. It is described as an
RIO (Relative I/O) file. This allows for the deletion of
logical records.

position five is where the most variation is found.
EXAMPLE 1 is a NEW ASCII file (%4)
EXAMPLE 2 is a PERMANENT ASCII file (%5)
EXAMPLE 3 is a PERMANENT BINARY file (%1)
EXAMPLE 4 is a NEW ASCII RIO file (%10004)

The "A" options (FIGURE 5) describe the type of access.

position 1 sets two options. The first is the NOWAIT option.
You must be running in privileged mode to use NOWAIT and
control is returned before completion of the I/O. I would
recommend you not use NOWAIT. The second part is MULTI
access. This would allow processes located in different jobs
or sessions to open the same file. The default is NO MULTI
access. In the third example we have set this to INTRA-JOB
access.

position 2 also sets two options. The first is the BUF
option. BUF allows for normal MPE bUffering of records.
NOBUF allows for physical block transferring. I have always
used the BUF option. (Let MPE do the work). The second
option is the type of access. The most common are EXCLUSIVE
(1) and SHARE (3). In example four I have used the default.
The default is dependant on the option selected for position
4. If READ ONLY is set, then the option is SEMI-READ. All
other settings for position 4 result in EXCLUSIVE access (1).

position 3 sets locking and multi record access. Normally the
default of NO FLOCK and NO MULTI READ is used. Most of the
files I have used are not updated by mUltiple sessions. There
is usually a singular batch program that will update them and
no locking is required. The MULTI RECORD option would allow
you to read in more than one logical record depending on the
file size parameter used in the call. Don't tempt fate, stick
to one record at a time.

position 4 declares how the file will be used. Most times it
is READ ONLY, WRITE ONLY, or READ/WRITE. UPDATE would imply
READ/WRITE and is used occasionally. APPEND ONLY implies
WRITE ONLY access, but starts at the end of file marker.

Using HP's "F" words 3905-7

These options may seem confusing, but by reading the manual
and experimentation you should get a feeling for how these
options make your file react.

The next step is "FCLOSE". This tells the system what to do
with your file when you are done. Figure 3 shows all the
possible "FCLOSE"s. Note that FNOl is now used to reference
the file. The last parameter is the security code for the
file. I have always used 0, which allows unrestricted access.
You can tell I'm a liberal. If you use 1, the file can only
be accessed by its creator. This is for the power hungry.
The second parameter is the disposition.

DISP-O No change. The file remains as it was before it
was opened.

DISP-l Saves the file as a permanent file
DISP-2 Saves it as a job/session temporary file (rewind)
DISP-3 Same as DISP-2 with (no rewind)
DISP-4 The file is deleted from the system. I have

sometimes named this parameter "POOF"
There is another option in the disposition parameter of
"FCLOSE". This option allows for the return of unused disc
space to the system. If the file is opened with a large file
size it could be "shrunk" by using a %1 in front of the other
half of the parameter. A %11 would make the file a permanent
file and return space to the system.

Figure 6 is an example of how you can check if a file exists,
delete it if it does, and then open it as a new file.
The first call opens the file as a permanent ASCII file.
The next sentence checks the condition code after the open.
On all intrinsic calls the ERROR-FIELD is set to one of three
conditions. ERROR-FIELD is set to 0 if the call was
successful. The other two, greater than 0 and less than 0,
indicate an error condition.

In this example we have checked for ERROR-CODE being equal to
o. Since the "FOPEN" was for an existing file, this tells us
the file does exist. In this example it should not exist. ~y

using an "FCLOSE" with a disposition of %4, the file 1.S

deleted. Next the file is opened as a new ASCII file and the
processing would continue.

[CASE 1] Figure 7 shows how the processing would be handled
by the batch file looking for orders.
The INIT paragraph determines the range of file names you wish
to cover. It would be customized to each situation, but here
I have stored a beginning number and the number of reads I
want to execute.

In the Perform statement the variable I becomes the beginning
file number and is varied until the last file number is
reached.
In the PROCESS paragraph the file number (I) is moved to the
variable portion of the file name. Remember they are prefixed
by"WO". The file is then opened as if it existed (%5). If
it doesn't exist, who cares, go get the next potential file.
If it does exist, then go add the order and close the file
with DISP-4 to remove it.

usinq Bpi. "F" words 3905-8

CALL INTRINSIC "FOPEN" USING FNAMEl, %5, %101,
RECSIZlEl, DEVICE, GIVING FNOI.

IF ERROR-FIELD = 0
CALL INTRINSIC "FCLOSE" USING FNOl, DISP-4,

SECCODE
END-IF.
CALL INTRINSIC "FOPEN" USING FNAME1, %4, %101,

RECSIZEl, DEVICE, GIVING FNOI.

PIGURE 6 - Sample "paPER" "PCLOSE" Combination

INIT.
get BEG-NO
ADD TOT-READS TO BEG-NO GIVING END-NO.
PERFORM PROCESS VARYING I FROM BEG-NO BY 1

UNTIL I > END-NO

PROCESS.
MOVE I TO Fl-NUM.
CALL INTRINSIC "FOPEN" USING FNAMEl, %5, %100,

RECSIZE1, DEVICE, GIVING FNOI.
IF ERROR-FIELD = 0

PERFORM some work
ELSE

who cares.

FIGURE 7 - [CASE 1]

Usinq HP's "F" words 3905-9

01 REC-CNT
01 FDISP

PIC S9(4) COMP.
PIC S9(4) COMP.

MULTIPLY REC-CNT BY -1 GIVING FDISP.
CALL INTRINSIC "FSPACE" USING FN01, FDISP.
MOVE 1 TO FDISP.
PERFORM DELETE REC-CNT TIM:ES.

DELETE.
CALL INTRINSIC "FDELETE" USING FNOI.
CALL INTRINSIC "FSPACE" USING FNOl, FDISP.

PIGURE 8 - [CASE 2]

[CASE 2] In case 2 I mentioned being able to delete records.
Figure 8 shows the pertinent code.

Up to this point the file has been opened as an RIO file, the
part requested by the planner has been displayed, and he has
processed it as a requisition. Under the program
specifications I want to delete the work already completed.

When the records were first read, they were counted and I kept
that count in REC-CNT. Now we need to delete those records,
except the file pointer is at the end of the processed
records. We can use the "FSPACE" intrinsic to point to the
beginning of the records. By negating REC-CNT we can use this
to space BACKWARD. The first call to "FSPACE" does this.

The next step is to put the displacement value to 1. Now the
DELETE paragraph is performed once for each record to be
deleted.

The call to "FDELETE" deletes the logical record. For some
mysterious reason (known only to HP) the file pointer is not
moved by an "FDELETE"! Therefore I used "FSPACE" with a value
of 1 to move the pointer forward allowing the next "FDELETE"
to delete the next record.

usinq RP's "P" words 3905-10

01 FILE-SWITCH PIC X.
88 FILE-FOUND VALUE "Y".

01 J PIC S9(4) COMPo
01 SAVE-DATE.

05 S-MO PIC 99.
05 S-DY PIC 99.

01 FNAMEI.
05 FI-PREF PIC X(03) VALUE "DSR".
05 FI-MD PIC X(04)B.

FIND-LAST.
set save date to todays' month-day

MOVE "N" TO FILE-SWITCH.
MOVEOTOJ.
PERFORM OPEN

UNTIL FILE-FOUND OR J > 40.
IFJ>40

DISPLAY "File not Found E-O-J"
GO TO PACK-IT-IN

ELSE
process filc.

OPEN.
ADD 1 TO J.
MOVE SAVE-DATE TO FI-MD.
CALL INTRINSIC "FOPEN" USING FNAME1, %5, %104,

RECSIZE1, DEVICE, GIVING FNOlo
IF ERROR-FIELD = 0

MOVE "Y" TO FILE-SWITCH
ELSE

SUBTRACT 1 FROM S-DY
IF S-DY < 1

MOVE 31 TO S-DY
SUBTRACT 1 FROM S-MO
IF S-MO < 1

MOVE 12 TO S-MO.

PIGURE 9 - [CASE 3]

using Bpls tll'" words 3905-11

[CASE 3] Figure 9 shows the code for the third case. I needed
to search backward for a file with the date as part of the
name.

The FIND-LAST paragraph sets up the necessary parameters for
the recurring "FOPEN" statement. The counter J is used in
case someone keys in a first century date and the program gets
"lost in space" and runs forever.

The OPEN paragraph tries to open a file as an existing ASCII
file (%5). If the file doesn't exist it changes the filename
(date portion) to try again.

One is subtracted from the day and when zero is reached it
moves 31 to the day and subtracts 1 from the month. If the
month reaches zero, 12 is then moved to month.

What a great routine!

My favorite part is the fact I don't have to worry about how
many days there are in a month. I start at 31 and work
backward. If I don't find it, so what. If someone (another
programmer) was careless enough to create a February 31
(0231 suffix) file, then I will find it. I get to be smart in
this program. Of course if someone creates a February 32
(0232 sUffix) file I will never find it, but neither will
they! !

Usinq HP's "FlU words 3905-12

01 ECODE
01 MSGB
01 BLEN

PIC S9(4) COMPo
PIC X(72) VALUE SPACES.
PIC S9(4) COMP VALUE O.

READ-A-FILE
CALL INTRINSIC "FREAD" USING FNOI, IN-REel,

RECSIZEI.
IF ERROR-FIELD = 0

process record
ELSE

IF ERR~R-FIELD > 0
MOVE "Y" TO END-OF-INPUT

ELSE
CALL INTRINSIC "FCHECK" USING FNOI,

ECODE
CALL INTRINSIC "FERRMSG" USING ECODE,

MSGB,BLEN
DISPLAY MSGB.

WRITE-TO-A-FILE.
CALL INTRINSIC "FWRITE" USING FNOI, IN-RECI,

RECSIZEI, CCNTRL.
IF ERROR-FIELD = 0

keep processing
ELSE

IF ERROR-FIELD > 0
DISPLAY "File Full" OOPS!!

ELSE
CALL INTRINSIC "FCHECK" USING FNOI,

ECODE
CALL INTRINSIC "FERlRMSG" USING ECODE,

MSGB,BLEN
DISPLAY MSGB.

FIGURE 10 -[ERROR ROUTINE]

Using' UP's "F" words 3905-13

The last two calls are "FREAD" and "FWRITE". Lest you think
I was running the UTOPIA operating system, I have included the
all-purpose error routine in FIGURE 10.

The "FREAD" and "FWRITE" are pretty straightforward. They use
the system assigned file number and the record size. The
other parameter is the working storage area where the record
is stored. In the "FWRITE" call there is also a carriage
control parameter that would be used for print files. It is
set to zero for sequential files.

If the ERROR-FIELD is not equal to 0 you can call "FCHECK"
using the file number for the call. The returned error code
(ECODE) is then used in the "FERRMSG" call to obtain a
description of the error. This is for all of us that don't
have the error codes memorized. The description is returned
to the second parameter (MSGB in this case). You can then
display the error and do whatever processing would be
necessary.

The ERROR-FIELD > 0 for an "FREAD" indicates that it is the
end of the file and is not always an error. On an "FWRITE"
this same error means the file is full.

HP's "Fit words are not really bad words.

They give you better control over sequential files and help
you design better systems. You will have the opportunity to
look very clever without spending any extra effort or time.

I hope this has you thinking of the possibilities that exist
when you start using file intrinsics.

THANK YOU

usinq BP's "F" words 3905-14

Paper #3911

"Data - Now that you've got it. ..
What are you going to do with it?"

John Bomba

Innovative Information Systems, Inc.
123 Commons Court

Chadds Ford, PA 19317
(800) 766-7880

Today's "typical" data processing organization has become reasonably proficient in it's
development of online transaction based systems. These systems support basic business
functionality by collecting data, automating redundant tasks, and hopefully expediting daily
operations. As well as th~ systems may address individual needs, they fall short in their ability
to meet the growing demands of the business community.

Capturing the data is only part of the battle. Providing access to the data, in a timely
manner, in an understandable and useable format is the remainder of the puzzle. Solving these
issues will result in turning the "data" into information, and can be accomplished through the
development of an Information Plan.

Information Planning is the first phases in the systems life cycle. By definition,
information planning is the process by which an organization determines what data it will need
to collect, how to collect it, who needs it, and how it should be delivered over the next several
years to meet the organization's objectives. It reviews these issues in order to maximize the use
of hardware, software, communication, and personnel resources. The plan provides a framework
through which the remaining phases of the systems life cycle can be achieved. Yearly updates
to the plan will ensure that system development is consistent with the changing business needs
of the company.

Organizations have spent years and countless dollars "automating" business functions.
They now possess an unquantifiable and valuable asset, "data". As valuable as this data is, it is
tremendously under and ineffectively utilized in most environments. These islands of data need
to be integrated, turning data into the information needed to direct your business into the future.
An Information Plan will assist you in this effort by providing a road map that identifies where
you are, where you need to go, and a way to get there.

"Data - Now that you've got it. ..
What are you going to do with it?"

3911-1

Pitfalls in Moving to a 4GL

Author - Billy Hollis

Abstract

Several generations of computer languages have set a trend of increasing programmer productivity.
The fourth generation of languages has continued this trend, but has led to new problems. 4GLs in
general have not fulfilled their promise. and this has slowed their acceptance.

We will discuss the 4GL concept, including how they increase programmer productivity. Then we
will look at common problems in moving to a 4GL and how to avoid them. Performance issues in
going to a 4GL will be addressed. Methods for facilitating migration. such as conversion of COBOL
to 4GL software, will be covered. Finally we will discuss the overall business case (pros and cons) for
moving to a 4GL environment.

This presentation is relevant to those interested in the topic of fourth generation languages on the
HP ~OOO and HP 9000 platforms.

The Fourth Generation of Computer Languages

The first generation

The lirst computers were programmed in binary. Each program was actually produced as a series of
bits. This is usually called the first generation of programming.

The second generation

Later. mnemonic assemhlers were introduced. This allowed programmers to specify an instruction
and have the "assembler" translate it to binary and perform things like address assignments. This was
the second generation of programming.

The third generation

Then higher levcllanguages were introduced. These "third generation languages" included COBOL.
FORTRAN. and BASIC. Later. languages such as C and Pascal were added. and even though they
had some improvements. they were not different in concept.

The driving force behind these generations was improved programmer productivity. As computer
prices came down. it became more and more feasible to shift work to the computer rather than the
programmer.

3912-1

The fourth generation

In the late seventies. the concept of a "fourth generdtion languagell (ahhreviated as 4(;L) was
introduced. The idea was to achieve another jump in programmer productivity. System Z from
Zortec was one of the results of this new generation of languages. which have several general
methods to achieve the increase in programmer productivity.

What are the requirements of a 4GL?

James Martin lists the following requirements of a Fourth Generation Language:

• IL is user-friendly
• A non-professional programmer can ohtain results with it
• It employs a data hase management system directly
• Programs can he created with an order or magnitude fewer instructions than COBOL
• Nonprocedural code is used where possihle
• It makes intelligent default assumptions ahout what the user wants. where possihle
• Il enforces or encourages structured code
• Il is easy to understand and maintain structured code
• Non-DP users can learn a suhset of the language in a two-day training course
• It is designed for easy dehugging
• ResuILs can he ohtained in an order of magnitude less time than with COBOL or PL/1

How 4GLs increase productivity

Non-procedural logic - the programmer can specify what is to he done rather than exactly how to do
it.

Concise code - One generally accepted feature of fourth generation languages is the ahility to
perform a task with one tenth the numher of lines of code as a JGL such as COBOL. This means
fewer lines to write. fewer Jines to dehug, and fewer lines to maintain.

"Intelligent Uefaults" - The language should try to IIguess" what the programmer wants to do as often
as possihle. The programmer should never have to specifically request the most common option or
parameter - it should he assumed. The programmer is only concerned with exceptions to the rule.

Application (;enerators - For common programs such as reports and liIe maintenance. application
generators should he used to produce the finished product, relieving the programmer of the tedious
work of producing the same type of program over and over with minor dilTerences.

Other desirable attributes of 4GLs

Other features of 4G L~ that contrihute to their advantages over 3G L~ include:

I)rototyping Tools or Abilities - Either the language itself is constructed to alJow easy prototyping. or
there are special tools huilt in to help with the prototyping process (Of hoth). Note that this ahility is
completely different from CASE methods. although there is some overlap.

IPitfalls in moving to a 4GL 3912-2 page 2

)'ortability - 4GL~ often are seen as a way to become hardware independent Having learned the
lessons of COBOL and FORTRAN, 4GL~ usually try not to vary in syntax from computer to
computer. This gives some degree of portability of the software.

Documentation Tools - Sometimes included in a 4GL is some capability to assist with documentation
of the finished product Again, this is not the same as CASE. but there is overlap.

Summary of Major 4GL Characteristics and Benefits

II Primary purpose - increased programmer productivity

• Brief code to perform complex actions

• Let the software take care of nit-picking details

• Ease of program maintenance because code is brief and easy to understand

• Easy prototyping

III Desirable capahilities include portahility. documentation tools, and end-user tools which are
accessible to non-programmers

The end result of all these features is intended to be faster application development.

Components of a typical 4GL

Most 4GLc; share the following components:

• Data dictionary
• Interactive editorlcompilcr
• Integrated debugger
• Integrated database engine

Let's look at these elements one at a time.

Data Dictionary

One of the major innovations of 4GL~ is the required use of a data dictionary. While the data
dictionary concept is not new (many systems designers grafted data dictionaries nnto JG L languages
as a useful supplement). it was only with 4GLc; that the data dictionary became an inlegrcd part oflhe
system.

A data dictionary is a centre,1 repository of information ahout data structures. In the hest case, just
about everything a program (or programmer) needs to know about data can be stored there.

PUlling all the definitions for data lites in one place has several advantages. Programs do not need to
contain data definitions. so they have fewer lines. Systems are easier to maintain because any
changes to data hase structure only need to he made in one place.

IPitfalls in moving to a 4GL 3912-3 page 3

The data dictionary also allows end-user oriented tools to work. Users don't need to know anything
about data structures to use query languages, for example. They just need to know the data names
they want information about. With the data name, the 4GL will look up the rest of the database
information in the data dictionary.

The data dictionary contains definitions for data records. Each record definition includes field
definitions for the individual fields in the record. The field definitions consist of things like data
name, data type, length, default screen labels, and so forth.

Interactive Editor/Complier

4GL compilers (or interpreters) are usually interactive, which means they can check source
statements as you enter them. Ifyou make a mistake while entering a program line. you find out
about it immediately. 4GL compilerslinterpreters usually have a great deal of intelligence built in.
For example, programmers can usually omit explicit OPEN and CLOSE statements and the compiler
will insert them as necessary.

Integrated debugger

Debuggers have been around a long time as add-ons to languages. Some 4GLs have a debugger built
in. This means it can be a lot easier and more convenient to use. Properly used, a debugger can save
tremendous amounts of time in finding program logic errors.

Integrated database engine

No major 3GL was designed with a fully functional built-in database. External databases were
grafted on with varying degrees of success. This is one of the factors that made variants of 3GLs so
different and incompatible.

4GLs have an integrated database. 'Ibis means the databasing methods are transparent to the
programmer. A program using an ISAM database on one platform can still look exactly the same on
another platform that uses hashed indexes. This makes the language easier to learn and use, and
more portable.

If 4GLs are so great, why doesn't everybody have one?

The description of a 4GL above covers all the positive aspects. But 4GLs are a long way from being
the dominant software development tools. Why?

Of course, one factor is that most existing 3GLs are locked into one brand of hardware. The
programmers are secure in their knowledge of their development language and existing applications.
In a word, there is inertia - a definite resistance to change.

But there's a lot more to it than that. The fact is that there can be many hidden costs in moving to
the typical fourth generation language. We will examine the reasons for this in detail below.

IPitfalls in moving to a 4GL 3912-4 page 4

Things to look out for when choosing a 4GL

Here are the major items that can cause problems when trying to shift to a 4GL:

• Radically different proprietary syntax - no compatibility with existing 3GL source code

• Proprietary data formats

• Resource hogging (lOx is not uncommon)

• No coexistence with current environment - need complete rewrite before starting to use new
system.

• Not flexible enough to handle whole range of development needs

• Sometimes ties the user to one hardware platform

Let's look at these one at a time.

Proprietary syntax

Many 4GLs were designed according to theoretical models developed in an academic environment.
The resulting syntax often ignored the lessons bitterly learned in real-world computing environments.
Though 3GLs are not perfect, there are many aspects of them that work well, and existing
programmers have a huge knowledge base gathered while using 3GLs. Inventing a totally new,
proprietary syntax meant creating new problems of steep learning curves, and no preservation of the
existing knowledge base of programmers.

Proprietary data formats

As with syntax, 4GLs were often designed to use theoretical models of database structures. While
these models may have some advantages, there were two problems in using them. Old data
structures could not be read or written by the 4GL (meaning massive file conversion), and these
models were usually not designed with performance in mind.

Resource hogging

As mentioned above, new database models that did not take performance into account caused some
4GLs to use resources over 3GLs. The amount of extra resources was, in some cases, so large that
existing hardware environments had to be massively upgraded to perform the same tasks in a 4GL
environment.

Early 4GLs were also typically interpreted rather than compiled (and some still are). This resulted in
another performance degradation.

These major factors plus some other minor ones, often caused a typical application to consume five
times as much memory and disk space as an equivalent application in COBOL or FORTRAN.

No coexistence with current environments

The proprietary features mentioned above meant that a typical 4GL could not be put in place next to
a COBOL environment, for example, and co-exist with it. Since different data structures are

IPitfalls in moving to a 4GL 3912-5 page 5

required, the transition to a 4GL had to be abrupt and complete. There was much work to be done
before the 4GL could be used at all, and then there was no going back. This dramatically increased
the risk in trying a 4GL for a development environment.

Not flexible enough to handle the whole range of development needs

4GLs must contain high-level non-procedural syntax to be effective. But that can taken to an
extreme. If the 4GL contains only high-level syntax, then low-level bit-oriented oPerations are
impossible. This makes it necessary to have another language as a supplement to the 4GL

In summary....

So the overall concern is the large hidden expenses in transition. These can make cost justification
difficult. The move to a 4GL can mean a significant Period ofchaos for the MIS department, which
means a great expense in man-hours throughout the company.

Let's look at the worst case situation. To use the new 4GL, the data needs to be converted to a new
proprietary format. All the existing programs have to be re-written before the 3GL can be discarded.
The lack ofco-existence between the current 3GL environment and the new 4GL means the
company will have to make a significant investment to see if the 4GL is even going to work out.

And the syntax most 4GLs employ can make a significant impact on the usefulness of the new
language. Because the syntax is radically different than the 3GL, programmers will have a steep
learning curve. This means a fairly long Period of time before they can be productive using the new
development tool. And with a more limited syntax, the new language may not allow the same degree
ofcomplexity in programs as the former 3GL This means such languages as C or COBOL will be
necessary to fill the voids where the new 4GL fails to measure up.

Some notes on portability

4GLs vary in their portability. Some run on a wide range of systems with virtually no change. Others
are limited to a few systems, or are not really exactly the same on the different platforms they
support. And ifyou thought that because a 4GL meets certain ANSI standards, you would have a
very portable language, you may be disappointed to fmd that there may still be a lot ofwork in
moving from one platform to another because typically ANSI standards are not complete enough to
ensure portability.

The Good News

Many of the problems mentioned above have been addressed in the latest 4GLs which are now
available. Some of these have an architecture that overcomes the traditional4GL problems. A 4GL
that eliminates the difficulties discussed needs the following features:

• Works with existing databases

• Has easy-to-Iearn syntax because it supports familiar 3GL procedural logic

• Less resource utilization - ideally less than what 3GLs use

IPitfalls in moving to a 4GL 3912-6 page 6

.. Conversion utilities that can convert 3GL code to 4GL code automatically (thereby
preserving the investment in existing code)

.. High portability - all the way to the compiled code

• More powerful language syntax so that 4GL can be the only language required, from low bit
level operations through 3GL procedural logic up to true 4GL concise code.

There are some other desirable capabilities of a modern 4GL that builds on the evolving technology
of advanced development environments:

• Supports 3GLsyntax in line

II Lots of utilities to increase productivity, preferably written in the 4GL itself to allow easy
customization

• Application generators for commonly used functions - that produce finished, customizabJe
source programs

• Ideally, should give relational access to data without overhead of a typical relational database
engine

4GLs are available with these features. But some 4GLs, because of their architecture, cannot
implement some or all of these abilities. So it's important to check on any of these which are
important to you before choosing a 4GL

Another important asPect to check in detail is portability - not only to the platforms you use now, but
the ones you expect to use in the next few years. Also remember that many 4GLs attain portability
by simply being interpretive. This means portability has a high price - extremely high resource
requirements. A truly portable 4GL can make virtually all utilities and compiled code exactly the
same on all platforms. On the following page is a diagram showing the modules of our 4GL, System
Z. To show its extreme portability, you should note that all modules except the Interface Module
and the Data Base Files are exactly the same on each platform which System Z supports. This level
of portability is the ideal situation.

IPitfalls in moving to a 4GL 3912-7 page 7

System Z Component Overview

Z
Programmer

ZIP ZFORMS ZREPORT

GEN
compiler

Compiled
Programs

ZMENU

Other
Utilities

,

Data
Dictionary

ZQL

Interface
Module

•

Data
Dictionary

Utilities

\/

Data
Files

IPitfalls in moving to a 4GL

I'tllJlllllm&\
Figure 1

3912-8 page 8

Converting COBOL to a 4GL Environment

One of the desirable characteristics of a 4GL that was mentioned above is the capability to convert
existing COBOL code to 4GL syntax, thereby preserving existing investment in programs. This is
one of the most misunderstood capabilities of 4GLs. Some prosPective 4GL users view COBOL
conversion as a panacea - others don't understand how it can work at all.

Those who are suspicious of the possibility of converting COBOL have usually used COBOL
translators before. These programs, which are intended to convert one Ilflavor" of COBOL into
another, have been around for quite a while. Most of them have limited usefulness. Even a simple
COBOL program has many aspects that are difficult to pin down with a translator.

But, as strange as it sounds, it's actually easier to convert from COBOL to a 4GL than it is to
translate flavors of COBOLI That's because 4GL programs tend to be simpler and more non
procedural. Processes don't have to be specified in detail.

At the opposite extreme, some users believe they can just dump COBOL in one side of a conversion
utility and get complete, efficient 4GL programs out the other. This is not realistic. To take one
example, no conversion utility is going to understand how a call to a user-defined library works. The
best COBOL conversions have a table look-up facility to allow substitution of 4GL syntax for user
defined calls, but setting up such tables takes work. And even if the conversion facility produces a
functioning end result, the program will not be as efficient as a program coded from scratch in the
4GL

But if these points are taken into account, the ability to convert COBOL to 4GL syntax can save a
large amount of time in getting to a complete 4GL environment.

Bottom Une •The Business Case for Using a 4GL

Why should you consider a 4GL? Here are some of the possible reasons:

• A 4GL can allow you to get MIS changes and additions on line faster, making your company
more competitive

• A 4GL can allow you to serve your customers better

III A 4GL can protect your investment in existing databases

III A 4GL can protect your investment in software by allowing portability to newer, better
machines

• By accomplishing some or all of the above, a 4GL can allow your company to have higher
earnings per share

The goal is to find a sane migration from the third computing generation to the fourth. There are
certainly pitfalls to avoid. We have presented some of the potential problems to watch out for.
Taking these into account, you can choose a 4GL which will enhance your ability to deliver software
systems, but won't destroy your peace of mind in the process.

IPitfalls in moving to a 4GL 3912-9 page 9

3913-1

Paper Number: 3913

Presentation Title: TurboIMAGE and Allbase/SQL converting and
Integrating these Data Sources Using 4GLs

Author: Marlene Nesson

Address: 1250 Broadway, New York, New York 10001

Telephone: (212) 736-4433

situation Analysis

The HP environment was predictable before the introduction of RISC

(Reduced Instruction Set Computing) architecture. All midrange com

puters ran the MPE (Multi Programming Executive) operating system,

and the database used was almost always TurboIMAGE. A small

minority used KSAM (Keyed Sequential Access Method), and most used

flat MPE files for secondary storage. HP View Screen was the

interface for Cobol applications, and networking services consisted

of tr~nsferring data to and from a mainframe via RJE.

For those in search of a 4GL (Fourth Generation Language), the

choices were few but familiar. Whether the choice for application

development was Powerhouse, Speedware, or HP's Rapid, the database

was always TurboIMAGE, and for the most part, HP 3000 users were

accustomed to working in a closed proprietary environment.

Title: TurboIMAGE and Allbase/SQL Conv.rting and Integrating
These Data Sources Using 4GLs

3913-1

3913-2

The UP Environment Today

"Open Systems" is the operative term on the tongues of HP users

today, a phrase which carries with it a more complex application

model, and a variety of tools, a database management systems and

network interfaces from which to choose.

The introduction of 32 bit RISC architecture ushered in new and pow-

erful databases for the HP environment. Many of these products are

designed to replace TurboIMAGE rather than co-exist with it. Some

products offer limited access to TurboIMAGE data, others offer con-

version utilities, and others have no provisions at all for working

with TurboIMAGE data.

While Open Systems provides flexibility and increased options, it

also jars HP users from the comfortable pre-Spectrum environment.

The choices are more complex, and with many third party vendors

designing their products without a commitment to protect existing

investments in TurboIMAGE data, the risks are greater than ever

before. The difficult transition between the advantages of an Open

Systems environment and the easy, safe decision-making process of

the proprietary closed one has arrived.

The Thrust toward Open Systems

The X/Open definition of open systems is "Software environments con-

sisting of products and technologies which are designed and

Title: TurboIMAGE and Allbase/SQL Converting and Integrating
These Data Sources Using 4GLs

391 3-2

3913-3

implemented in accordance with standards established and defacto;

that are vendor independent and that are commonly available."

Using this definition as a baseline, we can extract the real world

benefits of an open systems environment for each type of user in an

organization:

End Users - Open Systems will give them transparent access to data,

using one common user interface. This results in reduced training

time, and higher productivity across a broad range of applications.

Gain

MIS Administrators - The hardware and software independence of Open

Systems allows them to provide better integration of multi-vendor

environments, scalable applications across platforms, and mor prod-

uct choices to suit specific requirements.

Application Developers - A common source for application development

reduces training and porting costs, as well as increasing the pro

ductivity of this group. A common source also allows for tighter

development schedules, and better workflow through an area that tra-

ditionally gets bottlenecked with application requests.

SOlution Vendors - Open Systems gives providers the ability to offer

new technologies to users of many different systems faster than

before. Products will be available to users of many platforms at the

same time.

Title: TurbolMAGE and Allbase/SQL Converting and Integrating
These Data Sources Using 4GLs

3913-3

3913-4

Open Systems and Operating Systems

Open systems has undeniably created an increase in choices not only

in databases, tools and interfaces, but choices in operating systems

as well. HP users can upgrade to MPE XL, migrate to HP-UX, or commit

to relational databases such as Allbase/SQL.

In this emerging, mUlti-vendor, multi-database environment, users

need tools that provide freedom of choice and that efficiently inte

grate old and existing technology. These tools must also provide a

growth path for integrating future technologies as well.

4GLSi A Perspective

A 4GL must provide the ability to work with mUltiple data sources

across mUltiple platforms, provide ~pplication interoperability, and

fUlly support industry standards.

The major 4GL components that form the foundation from which these

requirements are satisfied are outlined below. Although it is not an

exhaustive list, it provides the functional requirements that should

accommodate needs of today, and offer an architecture designed to

handle software and hardware advances in the future:

4GL Components

1. Single language for application development.
A single language for application development should be
standard regardless of the data structure and regardless of
the complexity of the application requirements. The lan-

Title: TurboIMAGE and Allbase/SQL Converting and Integrating
These Data Sources Using 4GLs

3913-4

3913-5

guage should be easy to learn and use but also provide com
putational capabilities found in traditional programming
languages. The language should support sub-routines and
procedural controls so developers can specify process flows
and interactive dialogues.

2. Flexible database choice.
The ability to implement the database of choice is critical
for a 4GL now and in the future. The 4GL should provide
developers the ability to snap-on the desired database for
reporting and maintenance of database.

3. Comprehensive Decision Support facilities
A full complement of Decision Support tools should be
included in the 4GL. Decision support covers the process by
which data is retrieved, analyzed, formatted, displayed and
transformed into information. These functions should be spe
cified with simple language, easy to learn, yet powerful
enough to handle any reporting requirement. It should be a
powerful offering inclUding a Report Writer, statistic and
graphic packages. These tools will enable an integrated
environment for turning data into information.

4. Automatic code generators
The ability to automatically generate the 4GL code for
application development is critical to enable a productive
environment. The code generators for reports and maintenance
procedures should be user friendly, easy to use and generate
error-free code.

5. Universal access to diverse data structures
The ability to access and integrate different structures
together, across operating systems, enables productivity
especially in the light of the mixed technology both hard
ware and software environments today and in the future.

6. Combine diverse data structures
The ability to dynamically join different data sources
together, such as relational, hierarchical, network, etc.
The facility should be simple to use so even casual users
can produce reports, for example, which consolidate data
from diverse sources.

7. Screen and window painters
Productive facilities such as screen and window painters
enables developers to add window-based front ends to appli
cations without the need to know the 4GL syntax. These
facilities should provide the flexible for the developer to
create pop-up and pUll-down windows that will be attractive
and easy to use for end-users accessing the systems. The

Title: TurboIMAGE and Allbase/SQL Converting and Integrating
These Data Sources Using 4GLs

3913-5

3913-6

generated code should be able to be enhanced easily so as to
provide the flexibility for application changes and enhance
ments.

8. Dictionary is flexible and functional
The dictionary of a 4GL should be the central warehouse of
information about field names, lengths, data formats, secu
rity, data validation criteria, etc. The dictionary can even
playa more powerful role if, for instance, it supports pre
defined relational joins within the dictionary itself. The
dictionary for data sources (such as TurboIMAGE, All
base/SQL, etc.) should be automatically generated by access
ing the native database dictionary.

9. Obey existing security
The 4GL should honor existing security of the database and
provide the ability for the application developer to further
refine existing security.

10. Manage simultaneous updates
simultaneous updates by mUltiple users should not lock out
users but employ a mechanism to manage simultaneous updating
of a database while ensuring the integrity of the data. Com
mit and rollback facilities to permit (commit) or deny
(rollback) updates should be available.

11. Available across all major platforms.
with the diverse environments today and in the future, it is
critical the product run under all major operating system.
If this is not the case, it could present an unpalatable
situation if a different hardware platform is incorporated
into your enterprise. This is costly both in terms of the
purchase of the product as well as the time required to
develop expertise in the new product.

12. Code is portable across all major platforms
Portability of code in a mixed environment gives the appli
cation developer the ability to choose the right processor
to develop an application. For instance, the application
developer should have the ability to program the applica
tions on a pc, thereby freeing up resources on the HP, and
porting those applications directly to the HP.

13. Client/server architecture
The 4GL should support and support client/server architec
ture enabling processing to be distributed.

14. Connecting diverse hardware platforms and commitment to
standards

Title: TurboIMAGE and Allbase/SQL Converting and Integrating
These Data Sources Using 4GLs

3913-6

3913-7

connection to diverse hardware platforms is critical. It is
equally important, however, for the technology to support
standard protocols such as SNA LU 2.0, LU 6.2, and TCP/IP.

15. Futures
The commitment of the company to the integration of new
technology into its product line inclUding: Expert System
support, GUls, Object Oriented paradigms, and CASE tools,
will provide the tools to further enhance productivity.

If you are thinking about incorporating a 4GL in your environment,

currently evaluating a 4GL, or evaluating the functionality of your

current 4GL, the product you choose should provide comprehen-

sive functionality and should embrace the strategy that will

make the product viable now and in the future. Challenges, such

as the integration and/or conversion of TurbolMAGE with All

base/SQL, will then be a painless task and enable you to main-

tain investment in current and future technology.

4GLs in the HP marketplace provide HP data support but, for

instance, do not run on all major platforms, such as the IBM main-

frame environment. So although the 4GL may be attractive function

ally, it may not be suitable solution in a diverse hardware environ

ment that includes a mainframe.

An example of a 4GL that would meet these requirements, is FOCUS

from Information Builders. FOCUS provides the breadth of

functionality and strategic direction by providing a robust 4GL,

runs on all major platforms inclUding: HP MPE XL, HP-UX, IBM main

frame, and PC both DOS and OS/2. Code is portable across operating

Title: TurboIMAGE and Allbase/SQL Converting and Integrating
These Data Sources Using 4GLs

3913-7

3913-8

systems, and provides an interoperatable environment. Access to

TurboIMAGE , Allbase/SQL, KSAM, MPE are all supported.

Advantages of Relational Technology

If you have not yet made the decision to convert your TurbolMAGE to

A1lbase/SQL, it may be worthwhile, to briefly look at the advantages

of a relational database. certainly, there are both pros and cons.

HP users know that TurboIMAGE database has been an excellent per

former on the MPE XL operating system but Allbase/SQL is catching

up. In the old debit-credit benchmark, TurboIMAGE scored a 19 TPS;

A11base/SQL (SQL 2.0) scored an impressive 14.4 TPS. HP has made

significant performance improvements since this time, and plans to

further improve the performance of Al1base/SQL in 3.0 of the HP MPE

XL release.

Let's look at some of the benefits using a relational versus a net-

work, in this case, TurboIMAGE structure.

Application pevelopment Needs and Flexibility

Relational databases lends itself to easier translation of data

needs into an application than that of a TurboIMAGE database.

Once the relational databases are created, there is greater flexi

bility to modify the database design to meet changing data needs.

Applications depend less on the underlying database design in case

of a relational database management system (ROBMS) than they would

in case of a DBMS like TurboIMAGE.

Title: TurboIMAGE and Allbase/SQL Converting and Integrating
These Data Sources Using 4GLs

3913-8

3913-9

MUltiple Keys

Relational tables provide the ability to define mUltiple keys

whereas in a TurboIMAGE master dataset only one key is allowed. This

could possibly mean less programming effort and less complexity in

the application because the need for navigation of data is reduced.

Ease of sorting

Sorted output is required in almost every single application.

Output is sorted from a table by keys with only a small effort

required in terms of runtime system and programming effort versus

the effort required with TurboIMAGE structures.

Integrated Package

More and more third party 4GL vendors offer an integrated package

inclUding: interface to relational database systems (Allbase/SQL,

Oracle, Sybase, Ingres, Informix), as well as comprehensive applica

tion development and end-user tools.

Future Technology

Relational technology is the choice today and probably of tomorrow.

Innovation and Growth

Finally, growth and innovation of SQL products are constant because

of the intense competition. This trend should continue and ensure

increased functionality and flexibility for the future. Figure 1

summarizes the advantages of relational technology.

Titla: TurboIMAGE and Allbase/SQL Converting and Integrating
These Data Sources Using 4GLs

3913-9

3913-10

*--** Adyantages of a Relational Database Enyironment *
* *
* ** Application Development Needs *
* Flexibility *
* MUltiple Keys *
* Ease of sorting *
* Integrated Package *
* Choice of the future *
* Innovation and Growth *
* **--*Figure 1

Although there are advantages to moving to a relational database,

the best decision is to analyze the business need you are looking to

solve and implement the most appropriate database structure to meet

your needs.

Terminology and Basic Concepts

Before we actually look at converting and integrating TurboIMAGE and

Allbase/SQL, it would be helpful to look at the terminology and

basic conceptual differences between TurboIMAGE and Allbase/SQL.

with this knowledge, it will then become more apparent how powerful

a 4GL can be when we look at converting and integrating these two

dissimilar structures.

In order to understand Allbase/SQL it's important to learn some new

jargon. Figure 2 describes a description of new terms introduced

with relational technology, from a TurboIMAGE perspective.

Title: TurboIMAGE and Allbase/SQL Converting and Integrating
These Data Sources Using 4GLs

3913-10

3913-11

Given the various terms defined, perhaps the most confusing is also

the simplest database. We "open" a TurboIMAGE database. For every

application, whether the application program uses one database or

several databases, each is opened individually. The relationship

between databases is non-structural; any structure is imposed by

your program. In Allbase/SQL, however, the operative term is

"connect" to a database environment.

In addition to terminology differences, there are some basic differ

ences with regard to data names, data types, subitems, security, and

table definitions.

Data Names

TurboIMAGE allows names to be up to 16 characters long whereas,

Allbase/SQL allows basic names to be up to 20 characters long.

pata Types

The mapping between data types is shown in Figure 3. All TurbolMAGE

data types except Z (External, Zoned, Decimal) have an equivalent in

Allbase/SQL.

Subitems

Subitems do not exist in Allbase/SQL. You would need to translate

any TurboIMAGE field with a subitem count greater than one to mul

tiple columns in Allbase/SQL.

Title: TurboIMAGE and Allbase/SQL Converting and Integrating
These Data Sources Using 4GLs

3913-11

3913-12

For example, given the following TurboIMAGE field:

COMMISSION, 412

would need to be translated to four column in an Allbase/SQL table:

COMMISSIONl, INTEGER
COMMISSION2, INTEGER
COMMISSION3, INTEGER
COMMISSION4, INTEGER

*--** *
* *
• •
• •
• TurboIMAGE Allbase/SQL Definition •
• •
• •
• Entry' Row 'Record' in TurboIMAGE •
• or a 'tuple' in SQL. •
* •
• Field Column Data unit within a •
• row or entry •
• •
• Set Table Logical entity •
• containing data •
• entries or rows •

• *• •
• Database owner Logical entity •
• containing database •
• sets or tables •
* •
• Query ISQL The basic HP supplied •
• programs for ad hoc •
• queries and updates •
* of TurboIMAGE and •
• Allbase/SQL databases ••
• •
• Root File DBECON file File contains control *
• information·
.--.Figure 2

Title: TurboIMAGE and Allbase/SQL Converting and Integrating
These Data Sources Using 4GLs

3913-12

3913-13

--
* ** TurboIHAGE A11base/SOL *
* P DECIMAL *
* Z DECIMAL *
* R FLOAT *
* I,J,K SMALLINT If length 1 (16 bits) *
* INTEGER If length 2 (32 bits) *
* CHAR If length greater than 2 *
* X,U CHAR *
--

Figure 3

Security

A11base/SQL and TurboIMAGE security are fundamentally different.

Security in TurboIMAGE is established by the password determining

items a user can read and/or write. with TurboIMAGE, passwords are a

structural element of a TurbolMAGE database and restructuring is

required to accommodate any access changes. Any user who has know1-

edge of the password can access the database.

Read/Write access to a data field is determined in Allbase/SQL by

assigning user logon IDs to Allbase/SQL groups and assigning various

access capabilities to the groups. This information can be changed

anytime by the DBA. Capabilities of the USER are thus completely

determined by the user's logon ID and can be revoked or expanded at

any time.

Table pefinitions

with TurboIMAGE, the first step is to define all of the items

available in your database. Next, within each set, specify the items

Title: TurboIMAGE and Allbase/SQL Converting and Integrating
These Data Sources Using 4GLs

3913-13

3913-14

to be fields in that set. If you wish to add fields or items later,

you would need to restructure.

In Allbase/SQL, define the columns for a table within the definition

of the table itself. If you wish to use a column of the same name

and data type in another table, you must redefine it in that table.

Additional new columns can be added to the end of a table at any

time with a single Allbase/SQL command. If you wish to add columns

in the middle of the table you can do so but it requires three or

four Allbase/SQL commands.

Indexing

TurboIMAGE and Allbase/SQL both feature indexes. Changing a TurboIM-

AGE index definition requires database restructuring.

Allbase/SQL, on the other hand has an interesting concept of immedi-

ate creation or deletion of indexes. Certainly, there are both

positive and negative ramifications. A positive offshoot of immedi

ate creation of an index is the construction of a quarterly report.

Once the report is completed, the index can be dropped so online

applications will not be slowed down by the maintenance of the

index. On the negative side, you can incur a huge overhead from

regularly generating an index.

Converting a TurboIKAGE Database and APplication to Allbase/SOL

Assuming, you have made the decision to convert your TurboIMAGE

database to Allbase/SQL what are key elements to consider and work

Title: TurboIMAGE and Allbase/SQL Converting and Integrating
These Data Sources Using 4GLs

3913-14

3913-15

to be done? We will approach this from 2 angles: 1) with a 3GL and

2) with a 4GL. Although both approaches are feasible, the 4GL solu

tion will require less resources and provide the flexibility for new

application needs for the future.

First, with a 3GL the steps are:

1) Create a logical database to meet all your known data
needs. You can either try to best mirror the TurbolMAGE
data structure or you can start from the beginning without
regard to the current data structure and create the logi
cal design.

2) Convert the logical database design into an Allbase/SQL
database design. Of course, you must invest the time to
read the Allbase/SQL reference manuals.

3) Create the Allbase/SQL database (structurally).

4) Convert Data from TurboIMAGE database to Allbase/SQL.
One alternative is to write a COBOL program to select all
or selected portions of data from the TurboIMAGE database.
write the selected data to a flat file. Then create
another program to load the data into the Allbase/SQL
database.

This step would also include determining the conversion
from the existent TurboIMAGE datatypes to the correspond
ing Allbase/SQL datatypes (refer to Figure 3).

This process would be duplicated for every TurboIMAGE
database.

5) write or rewrite your application code.
The number of reports, the requirements of maintenance,
and complexity of application, will indicate the number of
programs that will need to be rewritten or created.

From the above discussion, it is evident that the time required can

be substantial in the analysis, creation, extraction, loading of the

data, and finally the re-engineering of the existing programs for

Title: TurbolMAGE and Allbase/SQL Converting and Integrating
These Data Sources Using 4GLs

3913-15

3913-16

reporting and maintenance. The actual time required would be depen

dent upon a number of variables including: the number of TurbolMAGE

databases, the number and reports and complexity of reports (sort

ing, totals, subtotals, aggregation (sum, count, etc.» and the com

plexity of the maintenance procedures required.

Let's now look at the process that would be required with a 4GL.

Certainly, the functionality and capabilities differ among the

existent 4GLs available in the marketplace. But let's assume you

choose a 4GL that meets most or all of the suggested requirements of

a 4GL (outlined above). The process would be as follows:

1. Create a Logical structure

2. Determine Data Requirements

Determine the fields from the TurbolMAGE database that
you wish to extract (can be all or selected fields).

3. Convert data from TurboIMAGE to Allbase/SQL

*a. Use an End-User tool to extract data

4GL code should be generated automatically that will
extract the TurbolMAGE data based on the user require
ment.

*b. Use an End-User tool to automatically create All
base/SQL Tables

Tables should automatically be created based on user
requirement (i.e., fields chosen, sort fields
identified, etc.). The database administrator should
have the ability to change the structure created if
desired.

*c. Use an End-User tool to automatically load the data

The 4GL request to load the data should be automati
cally created and should be flexible to
run in batch mode if appropriate or required.

Title: TurbolMAGE and Allbase/SQL Converting and Integrating
These Data Sources Using 4GLs

3913-16

3913-17

* The ultimate situation would be a 1 step end-user conversion
tool that combines all 3 steps (a, b, c).

4. Create maintenance and reporting programs

The 4GL requests to create screen driven update procedures
and reports should be automatically created.

steps 1 and 2 above would be the only required "think" time. step 3

and 4 should be performed quickly. Given the 4GL has a powerful

report writer that provides for automatic totals, subtotals, aggre

gation, etc., the time required to convert the existent application

from TurboIMAGE to Allbase/SQL would be significantly reduced using

a 4GL.

The conversion of TurboIMAGE databases and applications to All-

base/SQL is, as we can see from above, is feasible using a 3GL if

there is the time and necessary resources available to perform the

tasks. The number of TurboIMAGE databases, and the complexity of the

application, will determine the feasibility of converting using 3GL

technology.

Using a 4GL however, the task is quicker and does not present the

challenge of the requirement for additional resources. A 4GL that is

rich in functionality will promote the quick and efficient creation

of SQL tables, and reports and maintenance procedures (very time

consuming in a traditional 3GL language).

Title: TurboIMAGE and Allbase/SQL Converting and Integrating
These Data Sources Using 4GLs

3913-17

3913-18

An extremely important benefit of a 4GL that must not be overlooked

is the increased productivity for new applications as well as

enhancements to existing applications. If the 4GL has powerful

tools, applications can be enhanced quickly and new applications can

be created quickly and efficiently.

Integration of TurboIHAGE and Allbase/SOL

Integration of TurboI MAGE and Allbase/SQL databases presents a whole

new challenge. The question is: How can you integrate these

structures together using a 3GL and a 4GL. Firstly let's look at a

solution using a 3GL then a 4GL.

Because the two databases are inherently different, TurbolMAGE is a

network structure, Allbase/SQL is a relational structure, there is

no apparent simple method to integrate these data structures

together using a 3GL.

One possible approach for reporting is to extract the requested data

from TurboIMAGE, write the data to a file and then save the file.

Similarly, perform the same exercise using the Allbase/SQL database.

write a program to merge the data from the two files into one file.

Finally write the required reports. Based on application

requirements, the creation of reports can be simple or very complex

with requirements such as numerous sorts, subtotals, totals,

aggregation, headings, footings, etc.

Title: TurboIMAGE and Allbase/SQL converting and Integrating
These Data Sources Using 4GLs

3913-18

3913-19

Maintenance of both data structures would require the creation of

programs to update the Allbase/SQL databases. Essentially, this

mears you must commence from the beginning, creating all the

required maintenance programs including screens, etc. to update the

new Allbase/SQL structures.

The number of Allbase/SQL tables will dictate the amount of time and

resources required to accomplish these tasks using a 3GL. Realisti

cally how much resource would be required to integrate and create

the required reports? In addition to the number of Allbase/SQL

tables, other variables include: the selection criteria, report

requirements (subtotals, totals, aggregation functions, headings,

footings, etc.) and the number of reports.

Let's now look at what would be required to perform these two acti

vities using a 4GL.

Report generation would entail logically joining the two structures

together (assuming there are fields in common across the data struc-

tures). Once this is completed, the desired reports would be created

using an end-user report generator. Given a powerful 4GL report

writer with effective end-user code generators, complex report gen

eration, as described above, will be easy and quick.

For maintenance, combine the TurboIMAGE and Allbase/SQL databases

together and then create the maintenance procedures to update the

combined structure. The 4GL should supply end-user tools to automat-

Title: TurboIMAGE and Allbase/SQL converting and Integrating
These Data Sources Using 4GLs

3913-19

3913-20

ically generate the procedure to update the combined structure.

The time and resource to accomplish these tasks should be minimal if

the 4GL is extremely flexible, functional and designed architectu-

rally to integrate diverse structures for reporting and maintenance.

Summary

Let's conclude by highlighting the issues discussed in this session.

with the introduction of RIse technology, HP users find themselves

with many more choices and decisions. There are more powerful 4GLs,

operating systems to choose, and relational technology to consider.

A diverse hardware and software environment suggests the tools of

choice be flexible, comprehensive, and provide multivendor compre

hensive, and provide multivendor connectivity and interoperability

now and in the future. A well architected 4GL with a full complement

of features today with a solid strategy for the future is worth pur

suing.

Relational technology has become more or less a standard.

Although there are several advantages to this relatively new

technology, the decision to invest in relational technology

should not dictate the requirement to convert all TurboIMAGE appli

cations to Allbase/SQL. The business need should be examined and the

structure that meets the need should be employed. The best of both

worlds is a 4GL that will enable integration of both databases into

existing and new applications.

Title: TurboIMAGE and Allbase/SQL Converting and Integrating
These Data Sources Using 4GLs

3913-20

3913-21

Using a 3GL, the conversion of TurboIMAGE to Allbase/SQL can be a

time consuming and resource intensive process. There are

conversion issues that would be required to be addressed

including: data types, sUbitems, security, and table definitions,

to name a few. There are changes to existing programs and

creation of new ones. The requirements and volatile state of the

applications, would dictate the time and effort required now and

in the future using 3GL technology.

Using a 4GL, the conversion can be simple. If the 4GL enables the

joining of diverse structures together, has powerful end-user

tools, and addresses a majority of the conversion issues

automatically, the conversion from TurboIMAGE to Allbase/SQL

should be quick and easy with minimal allocation of time and

resource.

Similarly, the integration of TurboIMAGE and Allbase/SQL for

application development for reporting and maintenance can be

extremely resource intensive using a 3GL and with the choice of a

flexible, powerful 4GL, can be expedient.

The 4GL you choose can make the integration and conversion of todays

data structures and tomorrow a simple task and provide productivity

tools to enable efficient and effective application development in

the future.

Title: TurboIMAGE and Allbase/SQL Converting and Integrating
These Data Sources Using 4Gf~13_21

/

Paper#3917

TurbolmagelXL Performance

By Denys Beauchemin

Bradmark Technologies, Inc.

4265 San Felipe Suite 800

Houston, Texas 77027

(713)621-2808

TurbolMAGElXL has been around for about 4 years now, and already it has changed significantly. The performance

improvements have been dramatic and there are more features which are available now, or are planned for the future,

which make this DBMS still the uncontested winner in overall performance and usage on the HP3000 with MPElXL.

You may have heard a lot of talk about how Image is dead and ALLBASElSQL is the DBMS to which everyone and

everything is going. Well, don't believe it, TurbolMAGElXL is alive and well and is acquiring more features, at a taster

rate, than ever before. And these features are not little things either, they are very wide ranging in some cases.

Today, the subject I would like to cover, is something that is not talked about often enough; TurbolMAGElXL perfor

mance. I have given talks on the subject and have actually gotten very good feedback from folks who listened and went

ahead and did the things I discussed.

Let's face it, the present is TurboIMAGElXL. This is also true for the foreseable future. The information herein is long

overdue, and I am trying to catch up.

A) TurbolMAGElXL from 0.0 to 2.05 - HPIMAGE wI TurboWINDOW and TurbolMAGEN

When MPElXL was first born, TurbolMAGE was available but only in Compatibility mode. In order to go Native Mode

with your programs and your databases, you had to migrate your databases to HPIMAGE. This new DBMS was similar

to TurbolMAGE but "similar to" is not "exactly the same as", and therefore there would have been quite a bit of code

modification and even logic changes in the programs which were to be migrated to native mode to use HPIMAGE.

In order to facilitate this migration, HP introduced TurboWINDOW which was to provide a TurboIMAGE-type window into

an HPIMAGE DBEnvironment. This window had various degrees of transparency and the whole thing was not an

overwhelming success.

It was decided in late 1985 to migrate the current TurbolMAGE into native mode, and HPIMAGE wI TurboWINDOW was

put on the back burner.

B) TurbolMAGElXL - Migration, what migration?

The issue of migration for the databases and the programs which access them, is really a non-issue. One only needs to

restore the database from an MPEIV store or DBSTOAE and presto, it is available right now, and in Native Mode access

no less. Just make sure that you turn off ILA on MPEIV before you store the database as the ILA formats of V and XL

are incompatible. The neat thing about TurbolMAGElXL is that your programs can use it right then and there. If you

Turbolmage/XL Performance

3917 ·1

start recompiling your programs with a native mode code producing compiler, they will run without having to clicuige

anything in the code or the calling sequence. The programs accessing the databases can be NM or eM, mix and match

and everything works. It can't be any cleaner. The databases can be ported back to an MPEIV machine by just using

STORE with the TRANSPORT option. The only caveat here, is the size of the individual datasets. More on this later in

this presentation.

What is this new file in my group?

Each time a database is first opened, a file is created with the name xxxxxGB, with a filecode of -406. This file repre

sents what used to be the database global block (DBG) and the database buffers (DBB). It is now a permanent file

which is accessed by everyone using the database. It is purged after the last user closes the database.

Bye Bye ILR, Hello XM.

The first thing which comes to mind when one gets on a MPElXL system is the Transaction Manager (XM). This is the

method developed by HP to guarantee that information is not lost due to a system interruption. The first by-product of

the XM is the need to turn off ILR on your TURBO/XL databases. We will talk more about XM later on, in relation to

volume sets. On MPElXL 2.1, when you enable ILR, the 00 file is no longer created. Everything just gets posted to the

XM logfiles immediatly, thus slowing down the system. Some folks are saying that ILR should be enabled on XL system,

but that is just a little white lie, XM does an excellent job and thus, ILR should not be enabled.

Speed, speed, speed. $10000 words.

One of the things which was changed to increase performance without having to change anything in the logic of

TurbolMAGElXL was the increase of the global block from 32767 words to $10000 (65535) words. So crank up your

buffspecs to take advantage of this expansion, but beware of opening them to much on 2.1. More on that later.

Oh no, not private volumes! No, it's Volume Management.

Probably the most performance-improving action one can take on a MPElXL system, is also the one which is least

talked about. Each and every MPElXL system now in operation has at least one volume set;

MPEXL_SYSTEM_VOLUME_SET. So even if you do not want to get into volume management, it is there intrinsically.

The main point that I want to get across is that you need at least two volume sets, and probably more.

First, let's see what comprises a volume set. When a volume set is created, 400k sectors on the master of the volume

set is immediatly reserved by MPElXL. This chunk is needed for the directory of the volume set and for the XM logfiles. I

understand that this figure is supposed to be reduced in an upcoming version of MPEJXL, but I don't think it's an issue at

this time (by the way, this may explain why the 7912/14 are not supported on MPElXL).

After the master volume has been declared, you can add member volumes to the new volume set. All the volumes, the

master and the members, make up a single unit of recovery for the XM. It is not the intent of this presentation to describe

the workings of the XM. But let's look at the impact XM has on performance and let's see how multiple volume sets will

Turbolmage/XL Performance

3917· 2

affect said performance.

TurbolMAGElXL transactions all go through the XM, provided that AUTODEFER is not enabled. Now let's take a large

Xl system with many databases all on MPE_Xl_SYSTEM_VOlUME_SET. Since all transactions go through the same

XM logfiles, the system appears to "slow down" tor everybody at the same time, and quite frequently. This is because,

PIN 9 the checkpoint processor is busy posting all the transactions to the volume set. You see up to this point all the

DBPUTs, DBDElETEs and DBUPDATEs have not in actual fact been written to the databases. Rather, they have all

been accumulated in the volume set's XM logfile. If the system were to fail while the transactions were in the XM logfile,

nothing would be lost, because they would be recovered automatically by the XM when the volume set would be placed

on-line, ON ANY XL MACHINE.

The only (small) danger would be if the master volume set were to break and XM would not be able to read the logfiles,

ever. This would effectively disable the entire volume set, but not the system, or the other volume sets.

Back to the checkpoint processor. Now, while PIN 9 is busy updating the various volume members, the user activity on

these volumes is somewhat curtailed. It used to be quite dramatic a few releases ago of MPElXL, but even if it's better

now, it is still there. Therefore, if all your transactions go through the same XM logfile, on LDEV 1, along with having

some of the the directory on LDEV1 and most of transient memory (old virtual) also on LDEV 1, you can see that poor

LDEV 1 is quite busy and on things that are all high priority.

What I propose is the following. Leave MPEXl_SYSTEM_VOLUME_SET alone. Create new volume sets and place

your production accounts with their databases on these other volume sets. This will bring you many benefits, some of

which are:

1- You will relieve MPEXL_SYSTEM_VOLUME_SET from a lot of work thus increasing the system perfor

mance overall. You will be able to protect LDEV 1 from a lot of work better done on another drive. LDEV 1 is

loaded enough as it is by things over which you have absolutely no control.

2- The XM processing will be spread around multiple volume sets over different periods of time, thus increasi

ing overall system performance.

3- You will be able to control your disk utilization much more efficiently on separate volume sets.

4- It permits one to perform backUps for different areas at different times, and simplifies reloads immensely.

5- It gives the overall system an increased measure of resilience in case of disk failures and reduces the

recovery time for a system restart.

6- It is required for MIRRORED DISK/XL.

Turbolmage/XL Performance

3917 - 3

A more in-depth discussion of XM would be a subject for another presentation Suffice it to say, that this is the most

important action that can be taken to increase overall system performance.

C) The near-present, MPElXL 2.1-2.2 and TurbolMAGElXL

Mapped files, block sizes, pages and performance.

With MPE/XL 2.1-2.2, TurboIMAGE/XL uses a technique known as mapped files for access and updates. When pages

are retrieved from secondary storage (read disk drive), they.no longer have to pass through the main Image buffer.

Instead pointers are moved around and the pages are left in transient memory. The pointers are in effect, headers for

the buffer areas, and as such are much smaller, only a couple of dozen words. Therefore it is easy to reach whatever

maximum buffspecs is specified in DBUTIL. However, the &earch for the appropriate buffer is, at the present time, a

linear search, so one must look at balancing the search time, with the buffer specs. It is recommended by HP that the

maximum buffspecs be set between 60 and 80. Note that this is no longer true on 3.0.

A note on DBUTIL buffspecs. When the database is first DBOPENed, the DBG is built automatically to the largest

buffspecs specified in DBUTIL and never changes size, so beware of defaults! Since TurboIMAGE/XL now works on

pages (4096 bytes), thus closer to the machine, I wondered how the blocking size would affect performance. My

thoughts were that there would be a much smaller variation than before, as long as the block did not contain too much

unused space. I am now conducting tests and surveys of various databases with various block sizes and the effects of

block sizes on performance. This will surely be the subject of a future presentation.

Delta Logging.

At this time, the DBUPDATEs are logging only the items which have changed, in a range. For example, if there are 20

items in the set, and we modify item 3, 8 and 15, what will be logged will be items 3 thru 15. So if you do standard

updates, try to keep the items which are changed, contiguous. The DBPUTs and DBDELETEs still do before and after

images, at this time.

MPElXL file size and you thought FSERROR 106 was gone.

When I first logged on to an MPE/XL system, almost 5 years ago, I noticed that many files now had a file limit which

appeared on the L1STF like this: 4096000. For example, do this

:L1STF XL.PUB.SYS,2

ACCOUNT= SYS GROUP= PUB

FILENAME CODE LOGICAL RECORD

SIZE TYP EOF LIMIT RIB

XL NMXL 128W FB 38215 4096000

-SPACE

SECTORS #X MX

38912 19

Turbolmage/XL Performance

3917· 4

Look at that limit, I thought that was real large. Recently, I pUlled out my HP41 CV calculator, the MPElXL file system and

TurbolMAGElXL manuals and started doing some figuring. Let's take it from the top. The MPElXL file system manual,

along with the Intrinsics manual say that the biggest files you can open are as follows: If you use HPFOPEN with the

short mapped option, it's 4 megabytes or 2"22-1 bytes., If you use the long mapped option, it's 2 gigabytes or 2"31-1

bytes. How does that translate into old-fashioned sectors,(hey, I'm an old- fashioned guy), well here it is, just divide

2"31-1 by 2"8 bytes in a sector which gives (let's see now, 31-8=23) 2"23-1 or 8,388,607. Let's try it:

:BUILD DENYS; DISC=8388607; REC=-256

or 2"23-1 records of 2"8 bytes, which works out to 2,147,483,392 or 21\31-1 bytes. Let's try a bigger file:

:BUILD DENYS; DISC=8388608; REC=-256

EXTENT SIZE EXCEEDS MAXIMUM (FSERR 106) BUILD OF FILE DENYS.SOURCE.USM FAILED. (CIERR 279)

Well, it looks like my calculations were on the nose. There is a limit, easily reachable on MPElXl for file size. But

beware of that mesage about extent size exceeding maximum, it's very misleading. All this discussion brings us to this

with regards to TurboIMAGElXL; The extents specification seem to play some role, however we get affected only at

creation of the datasets. MPEIV used to play round-robin games extent by extent. Whichever disk drive was next on the

configuration list for that class of disk was where the next extent was placed. So during the creation of a large dataset,

provided that we are the only ones creating a file/extent at that time, this would happen:

Configuration for class DISC: 1,2,3,4,5

For 8 extents they would be placed, starting at say Idev 2 :

Extent # Disc Idev

2

2 3

3 4

4 5

5

6 2

7 3

8 4

Not so on MPElXL. No, on MPElXL each extent is on a most-available-space order. Which means that the next extent

is going to be created on the disk drive which has the most space left, on that volume set, for the volume class. Even

further, there seems to be a tendency for MPElXL to attempt to place the entire file on the same drive. I guess this is

predicated by the fact that one would try to do a BUILD or an HPFOPEN/FOPEN and allocate all the extents at that

time. So if you reload the volume set, you will find that your database datasets will "clump" up on the same volume, set

by set, given enough space on that drive of course. Let's look at a few last things and the end this numbers games.

Turbolmage/XL Performance

3917 - 5

In a database the largest set capacity is, you guessed it: 2"31-1, which works out, again to: 2,147,483,392 records.

This, according to the TurbolMAGElXL manual. How does that compare to TurbolMAGEN on MPEN? We", on MPEN

the file size was dictated by the extents, a file could have a maximum of 32 (2"5) extent, and each extent could have a

maximum of 65,535 (2"16-1) sectors, each sector was, of course, 256 (2"8) bytes. Therefore the biggest file is (2"5

*(2"16-1) * 2"8) or (2"29) - (2"13) or 536,862,720 bytes. You can also calculate it like this: 32*65535*256 bytes, but I

find it easier with exponents. (Big numbers boggle my mind.) As you can see, the improvement is (2"31)-((2"29)-(2"13»

or about 2"2 or about 4 times what is was on MPEIV.

MPElXL

MPEIV

2,147,483,392 bytes (2"31-1)

536,862,720 bytes ((2"29)-(2"13»

At the SIGIMAGE meeting in Reno, March 1991, one of the enhancement which was requested was the possibility of

increasing a dataset to 4 gigabytes and a further request was to increase it beyond 4 gigabytes. If the current size

limitation is a concern to you, please contact SIGIMAGE and let them know.

D) MPElXL ~.O and TurboIMAGElXL, the present.

With 3.0, HP brought in a lot of major enhancements. Let's look at a few of them:

1- Performance enhancements:

The buffspecs are now fixed at 1280, and the buffers are searched with a hashed table, not serially. So

whatever settings you use, they are now ignored, the buffspecs are only kept for compatibility's sake.

There are also changes in the modification intrinsics to enhance concurrency, but this will be the subject of a

future presentation.

2- MDBX Multi-Database Logging:

It is now possible to log transactions which affect mUltiple databases, up to 15. These transactions will be

recovered as one unit of work by DBRECOV. To use this feature, there are 2 new modes for DBBEGIN.

Mode 3: For multiple databases transaction, generates multiple log records, one per database.

Mode 4: Same as above, but only generates one record.

Note: All databases must log to the same logfile.

DBBEGIN and DBEND denote the start and end of a STATIC transaction.

3- Dynamic Rollback.

On TurboIMAGElXL, thanks to the XM, it is now possible to rollback a transaction, with one intrinsic. Of course

one must define a transaction and this is done with a DBXBEGIN/DBXEND pair. If at any time before the

DBXEND is called the system is interrupted, the program aborts or DBXUNDO is called, the transaction will

be rolled back. A transaction within DBXBEGINlDBXEND is known as a DYNAMIC transaction.

Throughout the transaction, strong locking must be maintained and if locks are released before the end of the

Turbolmage/XL Performance

3917· 6

transaction, or if any error is encountered by the modification intrinsics (DBPUT/DBDELETEIDBUPDATE) all

other IMAGE calls will fail until a DBXUNDO is performed (all the intrinsics will return a status of -222 until the

DBXUNDO).

The sequence would look like this:

DBLOCK

DBBEGIN «if so desired, but mode 1 only»

DBXBEGIN

transaction steps (excludes any calls to dbunlock) .

If any modify error is encountered, goto DBXUNDO nowl .

DBXEND or DBXUNDO

DBEND «if so desired»

DBUNLOCK

At this time, it is not possible to define a dynamic transaction which encompasses multiple databases. It will

surely come, but be aware that it will most assuredly be limited to databases within the same volume set.

In the case of system aborts, the transaction will be rolled back at the first DBOPEN to that database. It's like

an expanded ILA. When the volume set is brought- on-line, and at the very first DBOPEN to any database on

that volume set, XM will spawn off a 00 file for every database which had an active transaction at the time of

the sysabort. Then as each database is DBOPENed, TurbolMAGElXL takes over and applies the rollback for

the incomplete transactions contained in the 00 file.

Note: You can't use DBXBEGIN/DBXEND if AUTODEFER is enabled or if the database is opened in mode 21

There is one mode for DBXBEGIN, 1, but there are 2 modes for DBXEND, 1 and 2. Mode 1 just signifies the

end of the dynamic transaction. Mode 2 does the same but it also forces the write of the logging buffers to the

disk and if logging is enabled, it will also force the logging buffers in memory to disk. This would probably

degrade system performance but would enhance database stability. It is now possible, if only dynamic

transactions exist for a database, to run without logging enabled for the database. However, logging is used

for far more than just recovery, and it is still required in case of media failure (aka disk crash).

4- A new DBUTIL flag MUSTRECOVEA.

This flag is set/reset with DBUTIL. Once the flag is set, the first person to DBOPEN the database with write

access, sets another internal flag. When the last person with write access DBCLOSEs the database, this

other internal flag is reset, signifying that the database in consistent. If the system crashes whilst there is one

Turbolmage/Xl Performance

3917 -7

or more user with write access in the database, the flags are then interpreted to mean that the database is i

inconsistent and must be recovered before it can be used. Until the database is recovered, or the flag reset

with DBUTIL, only DBOPEN mode 7 (exclusive read access), is allowed.

Note: Enabling MUSTRECOVER for a database forces logging to be enabled also. Thus, if your database is

not set up for logging, the MUSTRECOVER facility cannot be used.

5- Expanded DBINFO.

DBINFO has a series of new modes which return a lot of useful information to the calling process:

401: TurbolMAGE logging information.

402: ILR information.

403: Dynamic Transaction information.

404: MDBX transaction logging information, inclUding RDBA.

901: Database NLS code.

E) MPElXL and TurboIMAGElXL. the future.

In an upcoming version ofTurboIMAGE, the Third-Party indexing products will be part of TurboIMAGE. This will meet

the most requested enhancement for TurboIMAGE, generic key searching. Of course these products are not free, but

they offer much more than just generic key search, And they will live within TurboIMAGE. Another widely requested

enhancement, the capability to update a critical field, search or sort, in a single detail record, is to be made available by

HP. This will need to be covered more at a later date.

In Reno, at SIGIMAGE, there was quite a series of enhancements which were enumerated, and I will let the officials of

SIGIMAGE be the folks to dissiminate this information. Suffice it to say at this time, that the 2-day meeting was really

excellent and fruitful, and that folks will be happy with the requests which are being forwarded to HP for review. As a

note, HP's participation in the meeting was intense. HP's commitment to TurbolMAGE is very apparent.

If you are interested in participating in SIGIMAGE, please contact Steve Cooper with Allegro Consultants in California.

In retrospect, one can sit back and ponder the history of TurboIMAGElXl. I wish I would have taken the time to record

much more information on the different releases of MPElXL and the impact on TurbolMAGElXL performance which

each new release. But I did not. Maybe someone else did, and if so, please share it with us. As a last observation,

TurbolMAGElXL now only shares the squeleton, the static structure with TurboIMAGE. The functionality has changed

and the run time environment is evolving much faster than most people are aware of up to now.

Turbolmage/XL Performance

3917· 8

Paper 3920

The Future of IMAGE is SQL
An Outline ofthe Simple Steps

Necessary to Merge IMAGE & SQL

WirtAtmar
AICS Research, Inc., University Park, NM 88003 USA

(505) 5249800 • FAX: (505) 5264700

At the most recent Southern California Re
gional Users' Group (SCRUG) meeting in
Los Angeles (May 8-10), Charles Finley,
SCRUG Chairman, asked during the final
day's luncheon, "How many of you be
lieve, given the way things are going, that
MPE is dying?" Almost everyone in atten
dance raised his hand. Charles then asked,
"How many of you believe that HP is pur
posefully trying to kill MPE?" About half
raised their hands. Charles asked a third
tirrIe, "How many of you think HP is not
purposefully trying to kill MPE?" The oth
er half raised their hands.

I was in this second group. I sincerely be
lieve that HP has absolutely no intention of
trying to kill the HP3000, MPE, or IM
AGE; indeed, I believe that the reaction
common in the HP3000 installed user base
has come as a complete surprise to the peo
ple at corporate. But the reaction should not
have been all that unexpected. It is a direct
result of HP losing sight of some very fun
damental objectives, primary among them
is misunderstanding the desires and needs
of its long-term customers.

The lynchpin of the HP3000's success is
and always has been IMAGE. To most us
ers, the HP3000 is IMAGE. However, for
the last several years, HP corporate market
ing has felt strong pressure to appeal to cur
rent DEC and IBM users, believing that
these people are their future market. SQL is
the common database structure among these
users, and that has been the only reason for
HP's preoccupation with SQL. The resuit
has been a marketing mistake that very
nearly duplicates that of Coca-Cola.

No corporation has any intention of doing
themselves or their customers harm, but
Coca-Cola, by intensely tracking marketing
reports of falling market share, and by
carefully listening to "industry watchers"
and stock market analysts, with great delib
eration and prudence, came to the most ex
traordinary conclusion in American corpo
rate history: on one day in 1984, they
simply stopped manufacturing their 100
year-old product in favor of New Coke.
What lay at the heart of such a monumental
mistake? Undoubtedly, the primary reason
was that no one who participated in the de
cision was a user of Coke. If they had
been, abandoning the product would have
been unthinkable.

The situation has been startlingly similar at
HP. For some time now, HP has paid far
too much attention to its stock analysts and
industry watchers. And HP has paid far
too little attention to its users. It was con
sumer reaction that turned Coke around. It
will be user reaction that similarly corrects
HP's path.

There is however a very simple solution to
what otherwise might well become a grave
situation. Merge SQL and IMAGE. It is to
everyone's benefit. It can be done. And it
can be done in a manner that is wholly
compatible with all prior usage of IMAGE.
And it is surprisingly easy to do.

When the participants at the recent SIG
IMAGE meeting in Reno (March 4-5) were
asked for their opinions as to the most
pressing enhancements to IMAGE, the
number one vote-getter was to put a full

The Future ofIMAGE
3920-1

read/write SQL shell on top of IMAGE.
IMAGE, as it is now, is a world-elass data
base. No competing database is as efficient,
as robust, or as reliable. But like all things
well done, IMAGE can be improved. An
SQL interface shell would represent a sig
nificant advance for three reasons: (1) a
standard query language is the enabling
technology necessary for the "open systems
concept", an idea which will only continue
to grow in importance. (2) An SQL shell
would minimize new user resistance when
moving to the HP3000 from an environ
ment in which SQL is the common database
structure. And, (3) the shell would actually
promote migration from SQL to IMAGE,
and thus the expansion and market accepta
bility of IMAGE. Maximally efficient data
base structures will always be a desired
quality, and no database structure is more
efficient than IMAGE.

Putting a full read/write shell on top of IM
AGE would probably be accomplished in
two stages. The frrst logical step would be .
simply to expand the capabilities of the ex
isting ALLBASElTurboConnect product to
full read/write capability, a move HP is
now considering. But the bold vision is to
ultimately merge the two products into one,
so that there is only a single IMAGE-SQL
database, completely bundled in with the
FOS, with dual-level access and two inter
faces, one through standard TurbolMAGE
intrinsics and the other through standard
SQL.

What is particularly appealing about work
ing towards the complete merger of the two
database structures is that the process does
not have to be done all in one step. Inter
mediate versions of IMAGE can be released
which would represent significant improve
ments while work continues towards a
complete ANSI-standard SQL-IMAGE
merger. As Ken Sletten, SIGRAPID Chair
man, has said, "This is a way of having
your cake and eating it too."

There are however several enhancements
that must be made to TurboIMAGE before
an SQL shell can be added. It is no coin-

cidience that these same enhancements have
been among the most commonly requested
enhancements to IMAGE over the past 15
years. There is a certain inevitability in the
design of any well implemented database
structure. The enhancements which are ne
cessary to prepare IMAGE for an SQL
merger are:

• Add the capability to add or drop
indexes easily.

• Add the capability to specify the type
ofindex to be used (hashed or b-tree).

• Add the capability to add or drop
datasets easily.

• Add the capability to add new
dataitems to the end ofa dataset easily.

• Add a KSAM-like capability for
overlapping keys.

• Optimize IMAGEfor maximally
efficient serial reads.

• Add automatic capacity management
ofdetail datasets.

These few enhancements are among the
most commonly touted advantages of SQL
databases, although they have nothing to
do with SQL per see They should be, and
should always have been, part and parcel
of the standard IMAGE database, too. IM
AGE is particularly amenable to these mod
ifications, and none of them are difficult.

When comparing IMAGE and SQL, it is
important to clearly understand what is an
attribute of the database and what is an at
tribute of the query language. The basic
SQL commands are listed in Table 1. The
fIrst seven commands (CREATE, DROP
and ALTER) deal solely with restructuring
the SQL database. Only the last four (SE
LECT, UPDATE, DELETE, and INSERT)
are part of the query language.

Because there is this very clean break in
structure, it's not only possible-but quite

The Future ofIMAGE
3920-2

reasonable-to have dual-level access to the
same database. The SQL query language is
only an upper-level shell imposed on a ge
neric database. IMAGE intrinsic-level ac
cess would continue to work as it always
have in an IMAGE-SQL merged database,
and will likely always be the preferred
high-speed, high-efficiency path into the
database.

CREATE TABLE
CREATE VIEW

CREATE INDEX

DROP TABLE
DROP VIEW

DROP INDEX

ALTER TABLE

SELECT
UPDATE
DELETE
INSERT

Table 1. The basic commands ofSQL

The Steps Necessary for Merger

First, a full read/write SQL
query language shell must be created.

The SQL query language interface to IM
AGE already partially exists. It is currently
half built, and is called ALLBASE/
TurboConnect (ATC). ATC is, at the mo
ment, a read-only shell. To be sure, a read
only product is easier to design than one
with write capabilities. Considerations such
as locking and rollback recovery need not
be addressed in the design of a read-only
interface that must be accounted for in a full
read/write shell. But, once the read-only
interface is up and working, as it is now,
80-90% of the task has been accomplished.
HP is now considering whether or not to
complete the task, and to its great credit, is
asking for your thoughts on the matter. The
person to write is:

Douglas Dedo
IMAGE Product Line Manager
Hewlett-Packard Company
19111 Pruneridge Ave. MIS 44MP
Cupertino, CA 95014 USA

FAX:(408) 447-0125
(408) 447-0872
(408) 447-4966

Doug Dedo has emphasized that the size of
your organization is not important. Every
one's comments will be given due consid
eration and are equally valued

Second, IMAGE must be
made more plastic.

Virtually all of the current attractiveness of
SQL lies in the freedom associated with re
structuring the database, not in the query
language. With a sufficiently plastic data
base structure, it is not necessary to predict
all future access paths at design time. This
plasticity often saves significant overall
program development time. As needs
evolve, a well-designed database structure
can often be modified without affecting ex
isting programs, thus greatly simplifying
application program maintenance.

Now that critical item update capability will
soon be a reality, IMAGE can be made to
be at least as plastic as SQL, if not more
so. With critical item update in place, data
items which are not now keyed search
items can be made to be so with guaranteed
certainty that the change will have absolute
ly no effect on any pre-existing application
program. Moreover, HP has all of the re
maining code in hand necessary to make
IMAGE as plastic as SQL with its
DBChange product. Only a very small
portion of the code is necessary to bring
IMAGE up to SQL standards: the capacity
to add or drop detail datasets, the capacity
to add or drop indexes from detail datasets,
and the capacity to add dataitems at the end
of an existing dataset. Adding this code to
IMAGE's standard capabilities will not be
particularly expensive or difficult.

The Future ofIMAGE
3920-3

Third, b-tree generic searches
must be added to IMAGE.

Adding generic search capabilities has been
one of the most commonly requested en
hancements to IMAGE, second only to crit
ical item update capability. And because a
true SQL shell can't be added until b-trees
exist in IMAGE, this is one of those rare
opportunities where a design process
works synergistically in everyone's favor.
There exists a very simple method available
to invisibly add high-speed b-trees to IM
AGE. In the procedure outlined in the ap
pendix, IMAGE b-trees would take full ad
vantage of the master dataset hashing
algorithm inherent to IMAGE and require
only the most minute of changes to IMAGE
master datasets. The method is surprising
ly simple to implement, and surprisingly
fast. DBGETs (database retrievals) would
be, on average, 2x faster than equivalent
KSAM retrievals. But more impressive
yet, DBDELETEs and DBPUTs of b-tree
search items would be 5-200x faster than
KSAM.

IMAGE's hashing algorithm is an extreme
ly efficient search algorithm-but the
search technique works only if you know
the whole key. If you do not, as is often
the case, you are condemned to a serial
read of the dataset. "Generic", partial-key
searches are the mechanisms which elimi
nate the necessity of having to perform
time-consuming serial reads of datasets.
The DBFIND procedure outlined in the ap
pendix takes advantage of the best attrib
utes of both b-trees and hashing keys.

Because the method is surprisingly simple
to implement, measurements on the perfor
mance gain over KSAM generic searches
can be precisely simulated and measured.
The results of a set of simulated IMAGE b
tree experiments using a payrecord dataset
that was duplicated into both IMAGE and
KSAM formats are presented in the figure
below.

The mechanism proposed here is simple
enough and easy enough to be included in
IMAGE as a universal feature, available to

1.0

IMAGE Serial Search

KSAM Partial
Key Search

"
" ,

'" '-------,,
Simulated IMAGE "
Partial Key Search " ,,,

'---------o -"'---r-----,.-·---,I....---..-j-----r-j--'"'"""""rj

5@ 58@ 585@ 5851@ 58517@ 585173@
(2767) (1620) (1617) (209) (25) (0)

Partial Key Pattern to be Matched

The Future ofIMAGE
3920-4

Fig. 1. The relative
speeds ofKSAM and
IMAGE b-tree generic
searches, as compared to
an IMAGE serial read.
The generic search pattern
in presented along the X
axis. The "@" symbol
represents a wild card.
The number ofrecords
qualifiedfor each pattern
is indicated in
parentheses.

The trial programs used
identical code, other than
the necessary differences
in intrinsic calls.

all users, without charge. The advantages
of this type of b-treeing are significant: (1)
The method is easily implemented. (2) It is
guaranteed to be fully compatible with all
prior usage. (3) It will be quite fast On av
erage, it will be much faster than KSAM b
trees-and by implication, most other SQL
implementations. (4) Under most circum
stances, the method presents quite minimal
(often no) overhead. The b-tree structure
will be modified only when the master data
set is modified, a rare event. (5) The tech
nique will not require the massive disc
space usage characteristic of other external
b-trees. (6) The b-tree is automatically
shared among IMAGE's paths (up to 16
paths/master dataset). And, (7) master data
sets may be quickly "converted" from nor
mal hashing keys to b-trees and vice-versa.

Fourth, this new, complete,
much-enhanced IMAGE-SQL
database should be bundled into
the price ofthe HP3000.

Rebundling IMAGE is the most important
enhancement request of all. The presence of
one common database on the HP3000 has
been the glue that has bound users in Lon
don, England and Paris, Texas together as
a single community. It cannot be repeated
too often that the lynchpin of the HP3000's
success is and always has been IMAGE. It
is entirely arguable that if IMAGE had not
been bundled into the HP3000 in 1977, the
HP3000 would not exist today.

The few steps outlined here are not original
ideas. Indeed, they were part of the prom
ise that HP made to itself and its customers
in 1986:

"HP is introducing ALLBASE,
the dual database-management
system, designed for all the new
HP Precision Architecture ma
chines. ALLBASE will enable
your customers to have both rela
tional and network access to data
in one all-encompassing data
base-management system. Your
customers no longer need to

choose a DBMS that fits some of
their application needs and force
fits the remainder. ALLBASE
will be the foundation for HP so
lutions for many years to come.
On its second release, ALLBASE
will even provide dual-access.
Dual access will enable our cus
tomers to access IMAGE data
through the relational interface
via SQL, the relational data lan
guage, and through the HP
IMAGE interface via IMAGE in
trinsics. Dual access will be a
unique competitive advantage for
HP" (the italics are HP's).

-Terrie Murphy/CSY
Information Systems &
Manufacturing News,
March, 1986.

Five years have elapsed since this para
graph was written. Should another five
years pass without the promise coming
true, the ffil3000 and MPE will surely die.
As with every evolving process, the
HP3000 is either actively growing or dy
ing. It cannot stand still. But the enhance
ments outlined in this article are relatively
simple. They could all be in place in two
or three years. The original intention was
that all of this structure would be fully
bundled into the price of the HP3000, as
IMAGE had been for virtually all of its
commercial life.

Why has HP backed away from its original
promise? For very human reasons, no
doubt. Time moves on and people change
jobs. And marketing pressures demand in
stantaneous solutions to lost sales. So for
reasons of meeting monthly sales quotas,
the inevitable thousand technical problems
that plague any project, and a loss of vision
in a sucession of managers, short cuts are
taken and existing, third-party products are
touted in favor of investing the necessary
time and manpower to bring IMAGE to full
competitiveness. But with a very little en
couragement from the user community, I
suspect that the promise can be kept alive.

The Future ofIMAGE
3920-5

Appendix

A Simple Method to Add
B-Trees to IMAGE
The term "b-tree" is short for binary-tree, a
decision tree where you are presented with
a series of greater-thanlless-than decisions.
B-trees characteristically have a number of
decision layers, simply because not much
sorting can occur at each decision layer
with only two responses. Nonetheless, in
dividual items, or groups of items, can be
isolated in a large set surprisingly quickly.
Twenty questions can isolate a single item
in a set of a million records.

But more importantly, b-trees are the mech
anism which allows generic search capabili
ty. A generic search is one such that the
query asked requires finding all of the en
tries in the database between two dates or
the names that begin with "SHA". IMAGE,
as it presently stands, cannot directly find
such entries. IMAGE's keying method is
called a hashing key technique. The advan
tage of hashed keys is their extraordinary
efficiency. The disadvantage of hashed
keys is that you can only search for one key
item value at a time, and you must know
the search item value in its entirety. Ifyou
do not, as is often the case, you have no
choice but to serially read every record in
the dataset.

However, b-trees can be added to IMAGE
quite easily, and in a manner that is com
pletely compatible with all prior usage. If a
key were to be specified as a b-tree key, a
nonnal IMAGE master dataset (manual or
automatic) would be built as a "hashing"
master as it always has been. Indeed, all
normal rules of IMAGE would apply other
than the master dataset would be marked as
a b-tree key. This "marking" would be
done by simply using an unused word in
the master dataset's user label, and that one
word would be a pointer to the correspond
ing b-tree's file name (Fig. 2). (Every IM
AGE dataset, either master and detail, has a
128-word user label attached. Only 6

words in the user label are currently used;
122 words are unused).

Otherwise, the construction of a master da
taset would be unchanged. The only dif
ference would be that a b-tree file would be
invisibly "attached" to the master dataset. A
consequence of this simple structure is that
a normal IMAGE (hashed) master dataset
could be converted at any time into a b-tree
key. The backwards conversion would
even be simpler. The "attached" b-tree
would simply be dropped.

The mechanism that accounts for the great
efficiency of IMAGE b-trees is that the
structure of the b-trees would not need to
be modified for the majority of fundamental
database transactions. The key item values
in the b-tree would be designed to automat
ically maintain a one-to-one correspon
dence with the search item values in the
master datasets, which are, as a conse
quence of the way IMAGE is designed,
guaranteed to be unique. The only time that
the b-tree structure would need to be
changed is when a key item value is either
added or deleted from a master dataset, a
relatively rare event. The simple lengthen
ing or shortening of a chain when records
are added or deleted from a detail dataset
would have no effect on the b-tree. Thus,
for most transactions, the b-tree would rep
resent no overhead cost at all.

How would a generic search work using
these IMAGE b-trees? Presume that the
query you wished to ask was (in QUERY
syntax):

Find invoicesJobnum ib 15,60

where ib means "is between". Because a
b-tree is attached to the JOB-ID master da
taset (as shown in Fig. 2), IMAGE would
first "walk" through the b-tree, identifying
the qualifying search item values within the
specified range (in this case, the values are
16, 18, 23, 30, and 42). Once this has
been done, and because the search item val
ues are now known in their entirety, the
hashed masters of IMAGE can be used to

The Future ofIMAGE
3920-6

full advantage. Each search item value
would be applied in tum in a chained search
of the INVOICES dataset. The search
would end when all of the qualifying
records in INVOICES have been found and
recorded.

Quite obviously, a few of the standard IM
AGE intrinsics would have to be modified
to take advantage of the new b-trees. But
again this modification can be made invisi
ble to all prior use. DBFIND (mode 1), as
it now exists, inherently assumes an
"equals" relational operator. Very little
work would be required to modify
DBFIND. The addition of six new modes
would be the only necessary changes to the
intrinsic call.

DBFIND(base,dset,mode,status,
item,argument(s))

where

mode = 1 implies "equals"
2 implies "greater than"
3 implies "less than"
4 implies "greater or equals"
5 implies "less than or equals"
6 implies "is between (inel)"
7 implies "is between (exel)"

Multiple arguments would only be used in
conjunction with modes 6 and 7.

Fig. 2. An automatic
master dataset with a b
tree attached. Because
there is a one-to-one cor
respondence between the
key item values in the
master dataset and the b
tree, walking through the
b-tree from the minimum
job number value to the
maximum allows a very
rapid way to find all of
the appropriate invoices
in a hashed "generic"
search.

AMOUNT
BAlANCE
DATE

JOBNUM

CATEGORY

INVOICES
(detaiQ

8 12 48 654

EMPLOYEES
(detam

LNAME
FNAME
SOCSECNUM

CITY
STATE
ZIP
MARRIED
NUMDEPEND

LABOR
(dataR)

EMP-ID
(master)

JOBNUM

SOCSECNUM

DATE
REGULAR
OVERTIME

Each of the specific job
number values shown in
the shaded portion ofthe
b-tree would be applied
in turn to the chained
searches until all ofthe
qualifying invoices had

L.- --' beenfouM and recorded.

The Future ofIMAGE
3920-7

Acknowledgements

A slightly modified version of this article
entitled, "The 110% Solution", appeared in
the July, 1991 issue ofHP World, a Euro
pean HP user magazine.

Various drafts of this article were reviewed
by Valerie Atmar, Steve Cooper, Mark Hal
stead, Charles Hill, Steve Manin, Alfredo
Rego, Stan Sieler, Ken Sletten, Frank
Smith, Fred White and Rene Woc. The au
thor wishes to express his sincere apprecia
tion to everyone for their careful reviews
and thoughtful comments.

"chained path"
for JOBNUM

_~~m~~" the records in which
JOBNUM = 8404

the detail dataset
INVOICES

The TurboIMAGE Database

The Future ofIMAGE
3920-8

VENTURING INTO ALLBASE

C. Bradley Tashenberg
Bradmark Technologies, Inc.
4265 San Felipe, Suite 800

Houston. Texas 77027
713-621-2808

After 18 years of familiarizing ourselves with IMAGE. HP now has the audacity to tell us that there is a new DBMS on the HP3000 which
we should seriously consider. It is known as ALLBASE/SQL and is not getting an enonnous impetus from HP.

What is ALLBASE/SQL? And more imponantly, why should we consider using it?

SQL, (Structured Query Language) is an ANSI standard in relational database access. This means that even though the underlying structure
may be, and usually is, different between computing platfonns, the access methodology looks the same to the end user. ALLBASE, the
HP relational DBMS, is devised in accordance with the 10 rules spelled out by Dr. E.F. Codd.

Beyond just introducing a new concept in data management to the current IMAGE users, there are other concerns which require careful
deliberation before jumping into the RDBMS pond. One of which is: "How deep is the pond?", while others relate to the wealth of
technology, which we as IMAGE users have come to expect.

Conceptually, ALLBASE/SQL offers a plethora of features not found in IMAGE. However, as with most new ideas, there is very little
established today through which one can take advantage of these features. HP has been very effective in selling the merits of ALLBASE/
SQL to many of the larger 4th GL companies and VARs. but at this time, very little software is on the shelf. There is currently a sizeable
development effon going on; Cognos is developing Powerhouse for ALLBASE/SQL, Infocentre is to announce shonly a Speedware
version for ALLBASE/SQL. and both Collier-Jackson and ASK have committed to have a future release of their fine products running on
ALLBASE/SQL. Again, very little is available now or in the near future.

Besides the concern ofa lack ofapplication software and utilities presently available. there is the one about "ye olde"learning curve. Even
though there are some similarities between ALLBASE/SQL and IMAGE, there are vast differences in concept and implementation and use
of these database management systems.

Perhaps the most fundamental difference is that ALLBASE/SQL consists of an extensively layered structure, which can be changed
dynamically at any time. This, more than anything, may be a source of difficulty in understanding. Let's examine this a little bit.

IMAGE is quite rigid in its structure. It has a root file, which contains the database dictionary and a series of associated datasets.

The datasets are either masters, accessible through unique key value, or details, which house related infonnation chained to one or more
masters. Paths are hard-linked between master and associated detail entries.

ALLBASE/SQL does not have the hard-wired relationships between objects. The relations between the objects are declared dynamically.
ALLBASE uses the concept of Data Base Environment (DBE) to store all the objects such as tables, indexes, views, modules, groups, etc.
The views, or stored select commands, can be used to create some semblance of pennanent relationship between objects. They can also
be used to limit the access to infonnation within the various tables. Layers of security. known as groups and users, can also be declared
to funher protect the infonnation.

The use ofindexes. views. and groups used in conjunction with the tables can greatly enhance the accessibility and security ofthe data within
the DBE.

One area of similarity between ALLBASE/SQL and IMAGE is in the indexes. ALLBASE/SQL has currently 4 types of indexes available:

HASHED
UNIQUE
NORMAL
CLUSTERED

Venturing Into Allbase
3921 ·1

With judicious use of these indexes. ALLBASE/SQL can be made to appear very similar to an IMAGE database. Consider first the master
datasets: one can create a table with a hashed index on the columns (or fields) and thereby make the data behave the same way as it would
in an IMAGE master set. as far as uniqueness of key and hashed insertion and retrieval of the data is concerned.

In order to emulate detail datasets with the data dependencies of master entries, one can make use of the normal (balanced tree, or b-tree
indexes) and referential constraints on other existing tables.

The indexes, unique or normal. resemble the old Index Sequential Access Method technique and the KSAM approach of HP. The clustered
index is an attempt to cluster rows (or records) with similar key values within the same areas of the tables.

By using indexes, information can be retrieved quickly and efficiently. So, although ALLBASE/SQL professes not to have any fixed or
concrete structure, it is usually used with these index structures. Furthermore, the overhead required to maintain these indexes is not less
than that which is required to maintain the IMAGE hashed and chained information. ALLBASE/SQL's layering isdefinitely more
substantial. Benchmark tests performed by Hewlett-Packard have demonstrated that ALLBASE/SQL is 25 to 50% slower than
TurbolMAGE for similar applications.

So why would anyone want give up performance? The reason is very simple: Industry Standards. Application developers wish to develop
to known industry standards, and one of these standards is SQL. Thus, by developing applications complying to standards such as POSIX
and SQL, one should be able to port these applications to any other platform adhering to the same standards.

Am I in favor of this concept? Of course I am! Am I in favor of this approach? At this time, no, I am not!

To recommend to people that they should go from a technology that has a high satisfaction level and comfort zone, to one that is still
in its infancy is too radical a change. There must be a transition!

Jumping from IMAGE to ALLBASE/SQL is akin to jumping from HP3000 MPE/V based machines to MPE/XL without a compatibility
mode. It is both risky and dangerous. It would require a major rewrite of all database accesses, and data storage concepts. At this stage,
there are no old friends such as Query. Powerhouse, Speedware, Visimage and others, to help make this transition a success.

However, there is a solution for the curious. With MPE/XL 3.0. HP introduces ALLBASE Turbo Connect (ATC), which provides read
only SQL access. From what I have heard through the rumor mill. there is a strong possibility of supporting the ATC through the new
IMAGE Open Architecture. This will further enh2nce and speed up the data retrievals by using the indexing packages.

Using this approach, there is no gamble. Ifyou don't like SQL because it's not working for you, you haven't lost anything. Conversely,
if you like SQL. you have a safe and easy method to effect the transition. without dramatically disturbing your current operation.

So. it looks as though IMAGE users may not have to forsake IMAGE to take advantage of SQL. They may very shortly have the best of
both worlds. and isn't this the way it should be?

Improve your relationships and venture forward! If you do it conservatively. you have nothing to lose!

March 1991

Venturing Into Allbase
3921 - 2

Paper 4101
Windows - When the Time is Right

Russell T. Bradford
Bradford Business Systems, Inc.
23151 Verdugo Drive, Suite 114

Laguna Hills, CA 92653
(714) 859-4428

Windows is the buzz-word of the 90s but to that end, not too terribly many
companies have plunged headlong into commiting their entire organizations
computing strategy to a Windows based environment. Why might this be? Well,
there are plenty of good reasons- like cost, complexity, lack of applications, time,
and more. None the less, I strongly feel that the time has come, the move
toward the Graphical User Interface (GUI) is already well underway, and your
organization should not be left behind.

The reasons for implementing a GUI outweigh the reasons not to. Many of the
reasons used to justify not going to a GUI are the same reasons why you should.
Reasons like cost, complexity, lack of applications, time, etc. Let me explain.

Many people feel that the costs of installing GUls as a company wide standard
are too high. This reasoning, as far as it goes, is quite sound. You need more
powerful and more robust computers to run a GUI, requiring more memory and
more disk space, plus a faster processor. With the cheaper non-GUI solution,
you make up for the additional hardware costs with people costs. While GUI
applications themselves don't necessarily run any faster than the character
based counter parts (they often run slower), they are far easier to learn and use.
This one aspect alone can save many times the cost of the hardware and
development costs. Ease of use translates into less time spent on training in
tandem with more and better use of applications. The ease of use comes from
the fact that all well behaved GUI applications work in essentially the same way.
Once the user learns how to use a word processor they can easily migrate to a
spreadsheet, text editor, calendar or graphics package with little or possibly no
training. This boils down to savings by not having your people sitting in class for
a few extra days saving not only the cost of the class but also receiving a faster
payback on the employees salary.

The complexity of creating a GUI application is nothing to gloss over lightly.
GUls are a bear to program. My company, Bradford Business Systems, has
been developing an application which uses all the different GUls; Windows, X
Windows, and Presentation manager. The cost and effort to program for these
are astronomical in comparison to char'-\cter applications. As mentioned earlier,
one needs bigger, better, and more expensive equipment. A whole host of
software is required just to get started and even more if you wish to cut the time
and effort required. Experience is at a premium. There just aren't very many

Windows - When the Time is Right
4101-1

experts for hire at present, and consultants with this sort of background are few
and far between. While complexity is a great reason to stay way from GUls,
making complex tasks easy is the whole reason GUls can be worth the effort.
For example, secretaries commonly are asked to use a desktop publishing
package to assemble complicated documents or manuals. In years past this job
was relegated to professional typesetters at a cost of over $20 to $30 per page.
Cumbersome command oriented packages were able to do a small portion of
the work that todays desktop publishing packages do, with far more effort and a
much steeper learning curve. The everyday use of desktop publishing would
never have been possible without a GUI. This same translation of more
complexity.in programming can apply to everything from accounting to data entry
to statistical analysis to report creation. The efforts of a few expensive
programmers can translate into far greater productivity to dozens or even
hundreds of end users.

Lack of applications seems to be a good reason for not moving to a GUI, at least
superficially. First off, although there are possibly 100,000 non-windowed
applications available for DOS, and hundreds if not thousands of non windowed
applications for most proprietary operating systems, all but a few are used by
only a handful of users each. The reasons for this are many. In some cases itls
poor quality. In others it is the lack of suitability to the task at hand while others
lack certain features required or desired. The biggest reason why all but a few
packages are not in wide spread use is that the costs of marketing software
today are astronomical and thus the little guy with a better mousetrap stands
little or no chance of letting the world know. One other reason why perfectly
good packaged software never goes into wide spread use is the fear by
consumers that since the product isn't widely used there will be little help in
learning and using the product. These last two reasons are most likely the
primary reasons why probably 950/0 of the applications available today are used
by fewer than 1,000 individuals or organizations.

It is this last reason again why a GUI can make relatively obscure software less
threatening. By maintaining the same look, feel, and operation of all other GUI
applications, users can follow their instincts in learning the application. As part
of the GUI guidelines, every item on every menu can display specific help simply
by pressing the f1 key. An operation like copying text using a word processor is
virtually identical to copying cells from one place to the next in a spreadsheet. A
user who has become proficient in a word processor should be able to pick up a
desktop publishing system in relatively little time. For Microsoft Windows there
are already hundreds, possibly thousands of applications already available and
many many more on the way. There are dozens of applications for each of the
areas of accounting, data base management, education, engineering, games,
graphics, languages, chemistry, fashion, insurance, legal, science, statistics,
transportation and more.

Windows - When the Time is Right
4101·2

While it is still likely that you may need to change from some of your current
applications to different ones which are based on a GUI, others have or will be
converted to Windows in the near term. To that end, switching to a new word
processor, text editor, spreadsheet or other application might be a beneficial
experience in that the training and time spent learning a new, GUI based
application will payoff in increased productivity later on. To that end, most
applications which might be converted straight across from their character based
counterparts tend to break the rules for GUls and thus eliminate the primary
benefit of commonality across the board. These applications should be avoided
like the plague because they tend to instill bad habits that are hard to break
downstream. We see this tendancy every day with our own customers. They
want our product to work like the old clunker they have been living with for
twenty years. While admittedly there would be a short term benefit of a slightly
shorter learning curve, they will pay a penalty for the next twenty years having to
rethink other applications that don~ conform to their old fashioned, non-standard
utility. When we explain this to our users we gain reluctant acceptance. As little
as a week later these same individuals are squealing with delight over how easy
things are and how much more capability they have and can readily gain access
to. Most of these people tell us that once they are hooked on a GUI, they would
never go back. Our users, programmers, are the hardest sell of all and so if we
can convince them, your users should be a snap.

One last point on the Black of applicationsBargument. Most companies don't live
with just canned software but also have in house applications. If you buy the
point that GUls are beneficial in terms of productivity and also that if your in
house application were a GUI that your users would be more productive, then is
it worth the effort? Consider the move to a GUI from a competitive aspect, your
company against the competition. While I would be hard pressed to argue that
the first company to start using a GUI for their main stream application will be the
most successful, I might be able to argue that the most productive will be. That
being the case, if a GUI makes your users more productive and thus more
profitable, it should be a key part of your decision to move to a GUI.

Time is another excuse why one might not dive head long into GUls. It does
take much longer to create a decent GUI application. There will also be better
tools for developing GUls after more time passes, but that will always be true no
matter how long you wait. The bottom line on the time aspect of this decision is
that time and the competition are working against you. The longer you wait, the
more chance that your competitors will streamline their entire operation,
including DP. During my many years of consulting, I saw far too many shops
dealing with the false economy of waiting for faster, better, cheaper hardware
and software while their users sat at their terminals waiting minutes for
information that should have been there in seconds. Productivity wasn't even
considered in these shops, just time and getting the best deal on hardware and
software. Many of these companies don't even exist today, partly because
productivity wasn't a big priority.

Windows· When the Time is Right
4101-3

Performance is another reason why some people are waiting. GUls do impose
greater overhead than character based applications. GUls can be as much as
half as fast at displaying data although a mor~ realistic figure would be only 100k
or 200/0 degradation. The difference is that the data is usually more meaningful.
Take a word processor for example. On a character based word processor, all
text is usually the same in appearance even though it varies in fonts, size, and
attributes on the printed page. So it takes a little longer to display a document
for a GUI based word processor that shows all the fonts, sizes and attributes just
as they would print, it most likely takes less time to create and properly edit the
document with the GUI despite the added overhead. In other cases, GUls
outperform terminals simply by having more facilities available.

An order entry application might require the operator to look up a customer by
name. With a GUI the user simply types a few letters of the customer name and
then scrolls though a list box to find the correct customer. This same capability
can be used for product lists, gl account, and anything else that requires
choosing from a list. Other items that can be selected from one of only a few
choices can be displayed as check boxes. If the choice must be unique, radio
buttons are used. These simple devices eliminate mistakes and avoid the
tedium of trying to work around the limitations of character based user
interfaces. How many times have you stood at the airline counter while the
agent ceaselessly banged away at the tab key trying to get the cursor to end up
on the right field to make a simple change to your ticket. With a GUI they would
have pointed to the correct choice and the line at the counter would have been
shorter by one person minutes sooner.

Simple GUI Da1e Entry Form

Windows - When the Time is Right
4101-4

I
I I

What it takes to create a GUI application:

Probably the biggest concern facing anyone thinking about committing to a GUI
is the task of writing their own in house application. How difficult is it? Will my
people be able to hack it or do we need new talent? How long will it take? While
I can~ accurately answer these questions without knowing your staff, I can tell
you this: writing GUI versions of our text editor SpeedEdit was the most difficult
programming task our company has ever undertaken. I have heard the same
comment from the people at Walker, Richer, and Quinn concerning their
Windows version of Reflection. But at the same time, now that the development
is over, I can honestly say that it was worth it. I say this not only because we are
reaping the financial benefits of strong sales but also it has made our product,
like Reflection for Windows and Tymlabs· Session, new, vital, state of the art and
preeminent in the industry by being one of the first and the best.

While most of the people reading this paper won' be going into the business of
selling software, creating an in-house application which is current and modem
can rarely be faulted. I also wouldn' recommend to anyone to quit their job and
write another text editor, terminal emulator, word processor or spreadsheet for
windows since they take years to develop and the market is rapidly becoming
flooded with very strong products. Your in house applications are another
matter. You probably have already realized that you will eventually have to take
the plunge and create more modern and up to date versions of your applications
but are not quite convinced that now is the time. This is what it takes, should
you decide your company is ready:

a) The first thing needed is a choice of environments. There are three,
possibly four, strong contenders for the standard GUI which will gain the
most wide spread acceptance throughout the industry.

MS-Windows. At present MS-Windows is in use by over 3 million
individuals, possibly double that number. By the end of 1992 that number
will be anywhere from 6 million to 10 million. By far this is the most
prevalent GUI today and in the foreseeable future. The only drawback is
that it is only available for pes. Rumor has it that Microsoft is working on
a portable set of libraries which can be used on other systems such as
Unix as well as proprietary operating systems such as MPE should the
likes of HP care to implement them.

Presentation Manager. This is the equivalent of Windows for OS/2, but
alas, it is somewhat different and requires recoding programs and
different libraries to implement. It was ISMs intent to implement
Presentation Manager on all their systems starting with the AS400, but
that isn't happening at all, or at least as quickly as hoped for. Those

Windows - When the Time is Right
4101-5

companies that bet on Presentation Manager over MS-Windows lost lots
of valuable time and market share as their competitors ran away with the
Windows market. passing up the virtually non-existent OS/2 market.
Since Microsoft has released a product called WLO (Windows Libraries
for OS/2). Windows applications can be readily ported to Presentation
Manager simply by relinking with a different set of libraries. PM seems to
be a bad bet at present.

X-Windows. At present there are two flavors of X-Window applications.
differentiated by their different look and feel, Motif and OpenWindows.
While both of these standards are based on the same underlying X
Windows libraries, they allow the user to interact with the system in
substantially different ways. It is my belief that Motif will become the
standard over OpenWindows since Motif is currently in more wide spread
use and that it more closely looks like both MS-Windows and Presentation
Manager. While Motif has the support of Hewlett-Packard. seo, and
dozens of other vendors. the major proponent of OpenWindows is Sun
Microsystems. Ive used both and my preference is Motif, since
OpenWindows is a large departure from the defacto standard MS
Windows. not to mention too heavy a reliance on the use of a mouse. A
couple of other developments may give Motif a little more support. It has
been rumored in the· press that in DOS 6.0 Microsoft plans to integrat~

Windows and DOS as well as provide a built in interface to X-Windows.
Since Motif looks most like MS-Windows. it would be the most reasonable
to have running side by side with native Windows applications.

When all is said and done, I believe there will be three standards which
we will have to live with, MS-Windows, Presentation Manager. and X
Windows Motif. Fortunately. it may be that some day there will be one
library interface to all three of these systems and thus no need to
reprogram for different operating platforms.

b. Next, you will need to procure a development toolkit for the platform of
your choosing. The toolkits usually include the following:

Libraries The interface to the windowing system called by your
applications. Applications call hundreds, possibly as
many as a thousand, different subroutines
(procedures) which handle the jobs of redisplaying
windows, processing keystrokes. tracking the mouse,
etc.

Resource Editor Resources are things like dialog boxes (like the one
shown earlier),· strings. menus, pictures, icons. and
fonts. You need to be able to graphically create and
manipulate these in order to make programming a

Windows - When the Time is Right
4101-6

Debugger

Misc. tools

GUI reasonable. This tool basically allows you to
create the objects which you use in your application.

Without a symbolic debugger that can handle your
windows application the job of creating, testing and
debugging an application as complex as a GUI would
be impossible.

Most toolkits offer a variety of other tools to allow you
to see how memory is being used, which applications
are running, view message ques, and monitor other
aspects of the GUI.

c) Language. You will need to choose a development language. For most
low level jobs, the only choice is C or C++. For application type software,
it is possible to write your code in COBOL but if so, make sure you have
located a COBOL which knows about Windows. One PC based compiler
claims to simplify the handling of MS-Windows considerably. Many 4th
GLs also support most of the popular GUls. With some of these, you
don't even need the toolkit although its probably a good idea to have it
around for those jobs that can' be handled any other way. Borlands C++
comes with its own Windows libraries to eliminate the need for the
Microsoft Windows SDK.

d) Training. Unless you are blessed with several programmers who are
already familiar with the GUI of choice, send several people to as much
training as you can afford. The cost and lost work time will more than be
made up for later on.

e) Design. You will most likely find that using a GUion a PC and combining
it with client-server technology is your best bet. This offloads the host in
two ways. The host isn't responsible for any part of the GUI load and the
front end portion of your application is completely off-line, allowing the
host to do what it does best, process transactions. In the best scenario,
the HP-3000 is nothing more than a data base and print server.

What you end up with is a far more complex application requiring more training
and more time to develop (unless the 4th GL handles its job completely). The
end result is an application which places a lighter load on the host while at the
same time makes the users faster, more productive and more accurate,
requiring far less training and support.

4th GLs

Windows - When the Time is Right
4101-7

While I can't claim to be an expert on 4th GLs since I haven't used even one, I
have been following their development with great interest. Currently, most of the
major data base players have their own GUI oriented 4th Gls. Oracle, Ingress
and Informix all have tools that promise to speed· application creation and allow
for client-server operation across dissimilar SQl based databases. These
products bear investigating as they sound like they can cut the time and cost
involved with developing a GUI based application dramatically.

Starting with MPE-Xl 2.2, the Ingres development tools are shipped with the
Alibase/SQL system which should greatly facilitate the implementation of a GUI
with your data base applications. A fundamental part of this package is
Windows/4GL, which is a Unix based utility to create client applications that have
read/write access to ALLBASElSQL on HP MPE-XL servers.

Many development tools are already on the market which greatly assist in the
development process, and stand to make the chore of developing a GUI based
application less threatening, not to mention less costly.

The final item which makes the time right for moving to a GUI is the robust
nature of the many network offerings for the HP systems. GUls require a fair
amount of horsepower and that horsepower can come in the form of a PC
running MS Windows or a workstation running Unix and X-Windows or an X
Terminal. These solutions all require a network and a high degree of
connectivity to speed not only your application, but also the development of that
application. For running a client server based application which uses X
Windows you may end up with an arrangement with a central HP-3000 acting as
a general purpose server, and one or more Unix based systems driving several
X Terminals. Alternatively, you might have just an HP-3000 with numerous PCs
networked into it. The days of the terminal are numbered and with that the days
of point to point connections are also numbered providing a need for high speed
networks and ultra smart workstations to take over and enhance their role. The
GUI is the medium which provides that ultra smart behavior and which flavor
GUI, at this time, is a subject for debate and also a matter of your own comfort
level.

Windows - When the Time is Right
4101-8

I~

Envision the day when a 3 foot by 2 foot portion of your desktop is a flat panel
display with dozens of windows displaying all sorts of information. Things like
your daily schedule, a to do list, the company profit and loss statement, a list of
calls to be made, the current production schedule, and various reports and
periodicals to which you have subscribed, as well as todays newpaper. Each of
these items looks as crisp and clean as their printed counterparts, complete with
color graphics and pictures. You even have a window on your screen with the
ongoing CNN newscast and another full video window attached to a camera
watching over the production shop floor. Now imagine, if you will, your clunky
old fashioned, slow, non-dynamic, heart of your business application which
hasn't been enhanced in nearly a decade, sitting right in the middle of the whole
screen crying out for all the world to hear, someone missed the boatl The time
is right, seize the opportunityl

Windows - When the Time is Right
4101-9

Paper # 4102
The Anatomy of a Successful LAN Installation

Neil R. Brooks
International Foundation of Employee Benefit Plans

18700 West Bluemound Road
Brookfield, Wisconsin 53008-0069

(414) 786-6700

My organization recently completed a year-long installation of a 100 node local area
network. In this paper I will evaluate the implementation of this massive project and
offer evidence as to why we think it was a success. Every project of this magnitude
has its own life cycle, from the realization that you need to do something to the
installation of the last workstation. This paper will examine the many factors that
must be considered, including what LAN topology to use, hardware platform,
software used, connectivity with your HP-3000, systems migration, development
platforms, training and many others. I will also discuss the need to construct a
realistic implementation schedule while maintaining day-to-day service for your user
base. This paper also examines the need to arm yourself with as much expert
knowledge as possible in today's ever-changing computing environment. For example,
how do you apply the knowledge gained from sessions attended at INTEREX
conferences, consultants and other users. It was both interesting and disturbing to
discover that Hewlett-Packard is not as committed as they say to working in a multi
vendor environment. We also had the opportunity to discover several hardware
problems for them as well. I will also offer some tips how to manage organizational
change and maintain your sanity at the same time.

I work for a non-profit educational foundation dedicated to the employee benefits
industry. As such we are very similar to INTEREX in our mission and structure. Our
user departments are comprised of membership, registrations, educational programs
and development, audio visual, graphic arts, printing, research and executive, which
must deal with the board of directors and various committees comprised of our
membership base. The Foundation was using an HP-3000/52 minicomputer with 35
terminals and an NBI word processing system with 20 terminals. At the time, we had
a potential user base of 100 employees out of a total of 125.

Prior to my accepting the position of MIS Director at the Foundation in March of
1989, I had the opportunity to review an MIS audit report prepared by Andersen
Consulting. The report detailed many problems, such as lax security, improper system
backup procedures, a lack of hardware, poorly functioning systems, an eleven man
year project backlog and many others.·Several months after I came on board, I began
to realize that the problems were much worse than detailed in the audit. For
example, because none of the information systems were integrated, there was much
redundant data being entered and maintained. Average system response time on the
HP-3000 was ten seconds, and it was not unusual to experience response times of 20
seconds or more. The systems were poorly written in Powerhouse, and contained
many modules that performed serial reads through tens of thousands of records
because of poorly designed data bases. We also faced a severe lack of hardware, with

The Anatomy of a Successful LAN Installation· 4102·1

only one third of the user base having access to an HP or NBI terminal. I also
conducted extensive interviews with department directors, and the MIS department
staff spent many hours observing the interaction between departments and the
information systems they used. This information was then used to prepare an
information systems needs analysis for each departme·nt.

In addition to my realizing that solutions were urgently needed for these problems,
I also had a mandate from our chief executive officer and the board of directors
because of their awareness of the problems detailed in the audit report. We were also
fortunate in that the user base realized that their MIS needs were not being met.
Given their usual reluctance to change, I took this as a sign that something really had
to be done. I set a goal to have a final proposal ready for presentation to the board
of directors by August of that year.

After determining the information system needs of the Foundation, we defined the
goals that we needed to accomplish.

--
-
-
--

LAN IMPLEMENTATION GOALS

To select a standard for hardware to be used.

To Install a network structure which would allow for
distributed processing to take place at each
workstation, as well as having the ability to obtain
Information from the HP-3000.

To Install microcomputers In all the departments for
personnel to use In day-to-day operations and greatly
reduce the amount of paper flow between departments.

Provide data security for all users, departments and for
the Foundation's Information systems.

To select standards for software to be used.

To share the Information between all departments via
electronic data exchange (EDE) with regard to current
so~are applications being used.

In order to implement these goals we decided to arm ourselves with as much
knowledge as possible, so that we could develop a list of solutions. I felt it was
important to remain as objective as possible, and not develop a sense of ownership
for any particular solution, thus eliminating those that could be more effective. I
began by contacting various consultants, all capable of offering various hardware and
software platforms. In addition, I also worked with the local Hewlett-Packard office.

The Anatomy of a Successful LAN Installation· 4102·2

In choosing an effective consultant, I looked for several key factors.

KEY FACTORS IN
CHOOSING A CONSULTANT

_ Years of experience In the business.

_ Areas of expertise.

_ Information provided by customer references.

_ Hardware/software vendors they representll

_ Willingness to provide solutions that meet your needs
Instead of theirs.

_ Level of knowledge as to where MIS Is headed, Instead
of where ~t has been.

_ Commission/pricing structures (do 1they favor one type
of solution over another because It means more money
In their pockets).

_ Technical support capabilities.

_ Cost of goods and services.

Many of the consultants I contacted appeared to be prejudiced and narrow-minded
in their approach to our problems. They could only offer solutions based upon what
they had done in the past. ffiM seemed to fit into this category the best, where' they
proposed installing an AS/400 and having a person in Colorado convert all of our
existing software so that it could run on this platform. It was not a viable solution to
convert bad code so that it could run on a bad machine. I also found that Hewlett
Packard was just as ineffective, because their commission structures favor the sale of
an HP-3000 over anything in the PC arena, resulting in their sales force proposing
solutions based upon their needs and not yours. I developed a consultant fact sheet,
which allowed me to rate each vendor using the same criteria. When all was said and
done, I chose three vendors as finalists, with the intent of having each submit a
proposal in a competitive bidding atmosphere.

It is also very important that you do not put all of your eggs in the consultant basket.
Therefore, we attended seminars, conferences, user group meetings and other forums
to try to increase our level of knowledge with the intent of being fully aware of what

The Anatomy of a Successful LAN Installation· 4102·3

solutions were available at that time, and would be available in the future. I also
contacted other organizations in the area that had recently installed local area
networks or were exploring the possibility of doing so. This type of networking
allowed me to gain insight into what types of solutions were effective, and which ones
were not. It always helps to be able to learn from someone else's successes and
failures. It was also helpful to perform abstract searches within our library at the
Foundation, and at the University of Wisconsin library. I gathered articles pertaining
to local area networks and new developments in the minicomputer arena. The
knowledge we gained on our own helped us to better judge the effectiveness of
various solutions presented by the consultants, thus allowing us to weed out the fact
from the fiction.

The next step in the process was to begin brainstorming possible solutions, based
upon the needs analysis prepared for each department and the goals we wanted to
achieve. Do not eliminate anything because of preconceived notions. IT anything, this
process should help to solidify your final solution through the process of identifying
the weakness of the alternatives. Also, all or part of one solution may be able to be
combined with another to provide a more viable third solution. This process should
result in the development of a solution that is based upon several factors.

FACTORS TO CONSIDER
IN CHOOSING A SOLUTION

_ Will It allow you to meet your stated goals?

_ What will It cost for Installation and maintenance?

_ Physical plant - does your building present physical
obstacles?

_ User base • level of knowledge, willingness to accept
change.

_ MIS department staffing and their level of knowledge.

_ Available and emerging technology.

_ Amount of training needed, and other special needs.

_ Maintaining service to user departments during
Installation.

_ Total disk and memory capacity required.

The Anatomy of a Successful LAN Installation· 4102-4

_ Security concerns.

_ Ability for future expanslonll

The solution we chose was intended to meet and exceed the objectives of our plan.
It consisted of a Lattisnet (Ethernet) LAN, consisting of 12 Synoptics departmental
concentrators, 2 workgroup concentrators and one premises concentrator. This LAN
topology would utilize fiber optic cable as the backbone and unshielded twisted pair
cable for the connections between concentrators and workstations. The file setver
would run under the Novell Netware/386 operating system. The hardware
configuration consisted of one HP Vectra RS/25C microcomputer for the file setver,
and 100 HP Vectra 286/12 microcomputers for the workstations. The file seIVer
would contain 1.2 gb of mirrored disk capacity and 16mb of main memory. Each
workstation would contain 640K of main memory, with the ability to expand it where
necessary. Each workstation would be diskless, thus preventing the introduction of
software or other data into the LAN without the control of the MIS department.
Each user would have the capability to share, process, view and manipulate their own
files on the network, and each would have access to inter-office communications and
appointment scheduling. If granted access by the network supeIVisor, individual users
would also have access to other computer systems located within the network
structure. Printing needs would be met by placing an HP LaserJet printer in each
department, providing each user with the capability to send their output to any
printer attached to the LAN. Through the use of gateway technology, the HP-3000
would be available on the network to provide users with access to the information
systems located on that platform. Remote dial-in access by network users located
outside of the physical boundaries of this network would be provided through a
dedicated 80386 microcomputer and communications software, and. would provide
access to 4 remote users simultaneously. A tape backup system would be installed to
provide the capability to perform a full system backup on a daily basis, including the
hard drives located on microcomputers in the MIS department. We also included 6
portable NEC personal computers to be used by employees at home and offsite at
the various educational programs, seminars and conferences conducted by the
Foundation.

The standard software platforms chosen included WordPerfect for word processing,
WordPerfect Office for electronic mail and scheduling, LOTUS-123 for spreadsheets,
Aldus PageMaker for desktop publishing, and DataEase for intradepartmental
database development. The platform for system development chosen was Visual
Cobol from MBP software, which combines the attributes of a 4GL with ANSI
COBOL/85 and includes a screen generator, program editor, prototyping tools and
program debugger. The database management system chosen was the BTRIEVE
relational database from Novell. The plan also included miscellaneous software
intended for use within one or two departments, such as Harvard Graphics for the
Audio Visual department, and SPSS/PC+ for statistical processing in the Research
Department.

The next step was to obtain comparative pricing for the plan from the three vendors
we had chosen to work with. This was done by submitting the final hardware and

The Anatomy of a Successful LAN Installation· 4102.5

software specifications to each, so that an apples to apples comparison could be
made. We asked each vendor if they offered any discounts, such as those based upon
quantities purchased, or special programs offered to educational or non-profit
organizations. If you have done your homework, you should feel comfortable with
what they present to you. Now is not the time to question if one or another vendor
is presenting a low bid just to get the business without providing the value and service
needed to implement a project of this magnitude. We then chose one vendor to do
business with. As it turns out, all three were very competitive in their pricing, and the
final decision was primarily based upon our comfort level, or how well we thought we
could work with them.

We then proceeded to developing an implementation schedule. The most important
factor to consider here is not to overextend yourself. It is very easy to attempt to
solve the problem all at once, especially if the problem you are attempting to solve
is very large and visible to the organization. You will be under pressure to "get the
thing in" from a variety of sources, including department managers, users, your boss
and the board of directors.

FACTORS TO CONSIDER IN DEVELOPING
AN IMPLEMENTATION SCHEDULE

_ Realistic capabilities of the MIS department.

_ Capabilities of the vendor.

_ Availability of hardware and software.

_ Ability to take advantage of emerging technology.

_ Price Increases/decreases and quantity discounts.

_ Need to maintain day-to-day service to the user
departments.

Based upon the above factors, we decided to install the LAN by phase. It was then
necessary to define the unit of measure for each phase and what it would entail. We
decided to install one department at a time over the course of one year. Each phase
would consist of four to five weeks, depending upon the size of the department. We
also decided to install the larger departments first, thus bringing the benefits of our
solution to the largest number of users in the shortest period of time. Another
advantage of this type of implementation schedule is to provide positive exposure to
the users in other departments who may be reluctant to accept the pending change.
IT they can see the advantages and hear about them from the users in the installed
departments, it will make your job that much easier when you are ready to install
their department.

The Anatomy of a Successful LAN Installation· 4102·6

It is also very important to determine how you will train your user base in the use of
the hardware and software they will be using. We analyzed the pros and cons of
training the users ourselves or utilizing an outside training service. We believed that
our training needs would be better met by training the users ourselves, for we could
better design the training to cover the needs of a specific department, the needs of
specific users, provide the fleXibility of scheduling, minimize the disruption to work
schedules and the fact that we knew the personalities involved. Keep in mind that
there is a correlation between a user's level of knowledge and their effective use of
the system. However, you may not have the internal resources necessary to do the
training in-house.

The final step was to prepare a proposal for presentation to the executive committee
and board of directors. The important factor to keep in mind here is to include all
of the details. Do not assume that your audience will not understand what is being
presented to them. In today's world of computer literacy, you may be making a big
mistake with this assumption. If you provide them with all of the detail, they will
know that you did your homework, which should increase their comfort level with the
proposal. If they do not understand various components they will ask questions, thus
providing you with the opportunity to provide greater detail during your presentation.
The proposal should also contain data that fully details the cost of the entire system.
This was presented in the form of a detailed list of all of the components of the
LAN. We also presented the implementation schedule in the form a timeline,
detailing the phase identification, department involved and the length of time
required for installation. The entire proposal contained over 80 pages of information.

COMPONENTS OF THE LAN PROPOSAL

_ Statement of objectives

_ Overview of the proposed system

_ EqUipment and product descriptions

_ Description of service and support

_ Implementation schedule

_ Cost for each phase

_ Outline of training methods

_ Total cost of the proposal

It is also very important to present realistic costs. Build in room for price increases,
even if you do not anticipate any, and allow yourself some breathing room for the

The Anatomy of a Successful LAN Installation· 4102·7

items you may have forgotten or overlooked. You cannot possibly include everything
at the proposal stage. The many unknowns will come back to haunt you ifyou do not
acknowledge that they indeed exist.

When the final proposal was completed we had Andersen Consulting review it for
feasibility and to obtain suggestions for improvement. I also obtained input from
several MIS directors I knew. Having an unbiased person or organization review your
proposal will provide you with an idea as to how the board of directors will react to
it. The questions the reviewer asks will also help you to prepare for the questions the
board will ask as well. This process should help to clarify items or fill in any holes in
your proposal if they exist.

We were then ready to present the proposal to the executive committee and our
board of directors. Surprisingly, this went much easier than anticipated. Most of the
questions they presented pertained to the need for every user to have a personal
computer on their desk. Very little was discussed in the area of costs, since I was
given a ceiling as to what we could spend months before, and the proposal came in
under this amount. Upon receiving their approval,we then began the long and
exciting process of implementation.

According to Michael Beer, Professor of Business Administration at the Harvard
Graduate School of Business, there are 5 key components to affect successful change
in an organization.

KEY COMPONENTS THAT AFFECT
CHANGE IN AN ORGANIZATION

Key managers must be dissatisfied.

The top manager must be committed to the change.

Slack resources must exist.

Political support must exist.

Change resources must match the size and kind of
change.

Fortunately, these 5 conditions existed at the Foundation as we were ready to embark
on our project. The board, CEO and department directors were dissatisfied with the
information systems. As a result they were fully committed to the project, for they felt
that the new system could only be an improvement. Slack resources existed in the
form of budget dollars that were pre-allocated to the project and then approved by
the board of directors. Because we involved the user departments from the very
beginning through the process.of obtaining their input and observing their use of the
existing systems, we had their political support. Finally, we believed that we had the

The Anatomy of a Successful LAN Installation· 4102·8

resources in the MIS department, our consultant and the user base to successfully
implement the project. Even though these conditions existed, we still braced ourselves
for a certain amount of resistance. We countered this possibility through effective
communication with the users and department managers.

We started the LAN implementation by calling a Foundation-wide meeting of all
employees to explain in detail just what we would be doing over the course of the
next 12 months. Because there was much speculation as to what MIS was up to, and
many rumors going around, this meeting served to clear up any misconceptions. This
was followed with departmental meetings between the users and their assigned
programmer/analyst, providing detail as to what would happen within their
department. Our goal was to educate, inform and make the department feel involved
in the installation process, thus reinforcing their sense of ownership to the project.

. Since each department is assigned a specific programmer/analyst, they knew exactly
who to tum to with questions about the project.

Prior to the installation of each phase the MIS department met as a group and
defined all of the tasks that needed to be accomplished and then assigned
responsibility for each item. This was done at our weekly staff meeting, and this
forum was also used to review the progress of each phase, any problems that
occurred and the items that were a success. In other words, be aware of what works
and what doesn't as you go. This allowed us to be proactive rather than reactive as
we proceeded with the installation. It also points out the value in installing the project
in phases, which gives you the opportunity to correct problems before they become
very visible, or grow to an unmanageable magnitude. Each phase was the
responsibility of the programmer/analyst assigned to the department. Because this
person worked with the department on a regular basis, they were familiar with their
day-to-day operations, any special needs and the personalities involved.

The first phase consisted of installing clean electrical outlets for the concentrators.
It then proceeded to installation of the premises cabling and concentrators,
installation of the file server, UPS system, gateway server for the HP-3000,
workstations in the MIS department and all related software. The intent was to get
the LAN fully operational in the first phase, thus allowing the MIS department to
begin the process of learning the Novell Netware/386 operating system, testing of all
software, the functionality of the workstations and each installed node of the network.
We did not want to begin installing any given department without knowing that the
hardware or software would function according to specifications. Surprisingly, the
cabling of the building went very smoothly and took only 4 days to complete. It also
had the ~ffect of generating excitement among the users~ for it was the first visible
sign that something was being done. After completion of the cabling we tested each
jack to make sure that each component of the data transmission system was
operational. We discovered two jacks to be inoperable through this process and had
the problem corrected while the cabler was still onsite. Upon completion of the
cabling we created a set of maps, detailing the location each LAN jack and all of the
concentrators. The maps also indicate which concentrator each jack is connected to.
This can prove invaluable when diagnosing a problem or in determining what your
expansion capabilities are.

The Anatomy of a Successful LAN Installation· 4102·9

The first major problem arose during the installation of phase 1. This involved the
gateway between the LAN and the HP-3000. We should have known this would be
a problem since Hewlett-Packard was not much help when we were trying to
determine the configuration of the gateway during the process of putting the proposal
together. For example, we were at first told that we could not put in a gateway with
an HP-3000/52, then we were told we could. The technical support offered by our
local HP office was less than desirable. When it came time to install the gateway
hardware and software we encountered one problem after another. First of all, they
sent a customer engineer·who was inexperienced in gateway configurations. What
should have taken several hours to install took several days. During this process,
there was much finger pointing between Hewlett-Packard and Wollongong, Inc., the
vendor for the TCP/IP software used. The one thing we learned at this point was that
HP is not at all committed to their marketing slogans of working in a multi-vendor
environment and their commitment to adhering to standards. For example, the
LANIC card designed for use in the HP-3000/52 is not IEEE 802.3 standard, which
is what HP had told us. After a week of hard work, and through figuring out the
problem ourselves, we were able to get the gateway operational. It was a matter of
getting both systems to communicate with each other. Fortunately, the other
components of phase 1 went in without any problems. However, because of this
problem we spent a considerable amount of time insuring that all of the software was
fully tested in a LAN environment. Our goal was to have the LAN fully operational
and functional prior to proceeding to the installation of the next phase.

Security structure and procedures were defined and implemented during phase 1. An
MIS policy was incorporated into the Foundation's regular policy manual which
formally defined and enforced the security policy for the user base. The directory
structure was established so that each department had its own directory.
Subdirectories were created for each user. A public subdirectory was also created for
shared documents and data. Each user was assigned a specific login identification
based upon their name. Passwords are required and have to be changed each month.
It is against the MIS policy to access any file in a private subdirectory, including
electronic mail. It is also against policy to login under another persons identification
and password. All files reside on the file server in a secure environment. A complete
system backup tape cartridge is kept offsite at all times.

The security structure also includes automatic dial-back for all incoming modem
access to the LAN through the communications server. All file transfer activity is
prohibited accept for word processing documents. All directories are scanned for
viruses on a daily basis. All database additions and modifications are also stamped
with the user's identification name. As a result of the policy and the defined structure
we have been able to maintain data integrity and user confidence in the system.

After the completion of phase 1 I created a series of worksheets in LOTUS for each
phase of the project. I used these to track the equipment ordered, the amount
budgeted for each item, the actual expense and the variance. This allowed me to
manage the total dollars allocated to each phase and the entire project. It also helped
in tracking what equipment and software had been received along with the items still
on backorder. I also used LOTUS to perform 'what if' analysis for substitutions of

The Anatomy of a Successful LAN Installation· 4102·10

hardware and to track equipment warranties and maintenance costs.

The installation of phase 2 involved the Research department, which included 5 users.
As I stated earlier, we designed the implementation schedule to include the largest
departments in the earliest phases. However, we felt it was prudent to install one of
the smaller departments first, using them as a test of our abilities and capabilities. If
any problems did occur, they would not involve a large number of users, nor would
it disrupt the operations of one of our larger departments, such as membership,
which could have had an effect on the Foundation as a whole. It is important that the
first department you install be done successfully, for word travels fast if something
goes wrong, and you'll be spending most of your time with rumor control instead of
on solving the problem. Again, it's the concept of managing the project proactively
instead of reactively. Fortunately, everything went like clockwork. When the hardware
arrived we unpacked it and set it up within the MIS department, to make sure that
it was fully functional. This is very important, for several personal computers arrived
from Hewlett-Packard dead on arrival. Again, installing dead equipment in a user
department can have a detrimental affect on your user's perception of the project.
We then proceeded to install the hardware on the agreed upon installation date. It
was at this time we discovered that we did not purchase any power strips.
Fortunately, we were able to hurry over to the local computer supply store and
purchase the necessary units. That was the last time we let that happen to us. Again,
it is impossible to think of everything, so be prepared for that sort of thing. The
important thing is to act as though you have your act together when doing anything
within a user department.

We had scheduled training in WordPerfect Office to follow immediately after the
hardware installation. This is the electronic mail and appointment schedular software.
It also serves as the shell or home menu for access to all of the software packages
available, including access to the HP-3000. We felt it was important to train the users
as soon as possible, thus making the LAN functional for a department as soon as they
had the hardware. The training they received was an abridged version, enough to get
them started, and it included basics about the Novell operating system, electronic
mail, and how to access other packages, such as WordPerfect and Lotus. Users were
given the manuals for WordPerfect Office and WordPerfect as soon as their
computers were installed. We scheduled full training in WordPerfect Office within
several weeks of the installation in each department, along with training in
WordPerfect because of the importance ofword processing to the Foundation. These
training sessions were scheduled over several days, and went into detail, covering each
function of the respective packages. Users were grouped together in training by level
of ability when possible. Each programmer/analyst, along with myself were assigned
a specific software package to train. Each member of the MIS department received
training from their fellow employees as well so that they could be available for
assistance. This also provided the trainer with valuable feedback and a measure of
the effectiveness of their training program. The intent was to have one person act as
the expert for each specific application. However, it is important that each person in
the MIS department be capable of providing assistance.

The training programs were developed with each department in mind. Sample

The Anatomy of a Successful LAN Installation· 4102·11

documents created in WordPerfect training were of the type used by the department
being trained. For example, research questionnaires were used when the Research
department was trained, since this is their primary use of word processing. The
training programs also concentrated on those features the department would use
most, however all of the functions in each package were covered fully. This approach
to training has been a huge success. It should also be noted that our intent was to
provide each user with word processing and electronic mail/scheduling even if they
had never used it before. Many department directors were soon creating many of
there own memos in less time than it took to dictate them to their secretaries, who
then had to type them or enter them into the old NBI word processing system.

Training in the other packages, such as LOTUS and DataBase was given to those
users that requested the software and where there was a demonstrable need for it as
part of their job function. With DataBase for example, we assigned a database
administrator in each department to act as the database manager. Our intent for this
database management system was to provide the means for users to develop simple
systems to manage data not related to the Foundation's integrated membership
system. However, we did not want DataBase or LOTUS being used to develop
redundant systems or spreadsheets within a department or between departments. This
also would have defeated the purpose of distnbuted processing and shared access to
files and data. Users were selected based upon their level of knowledge and
expertise. This training was provided several months after the installation of a given
department. It is important not to throw too much at the users in the very beginning.
They will not retain as much knowledge from the training program and they will not
have the opportunity to spend time using the package immediately following the
training, which should be done to reinforce what they have just learned.

I would suggest putting a lot of thought into whatever training program you develop.
This can make or break the success of the LAN. If users cannot use the tools they
are given, they will soon wonder why they went through the bother and disruption of
the install. It is also very important to get them trained as soon as possible in the
basics, otherwise they will become very frustrated trying to navigate the system on
their own, and the MIS staff will spend most of its time responding to isolated user
questions. Training, along with thorough communication between the MIS
department and the users is your most effective tool for managing the change a LAN
installation will bring about. Be prepared to respond to any negative reactions as
quickly as possible, especially when you are installing departments in phases. It only
takes one user to go around the organization bad-mouthing a software package to
have a negative affect on other use.rs. We knew we were on the right path when we
had departments asking if they could be installed earlier than scheduled.

We had built into the implementation schedule one week between each phase in
order for. us to sit down and review the phase just completed. It also provided for
flexibility in case of late shipme'nts or any other problems that might occur. The
review process is very important, for it provided us the opportunity to assess the
situation and determine what we could have done better, problems that couId have
been avoided or methods that could be improved. For example, following the
installation of the Research department, we determined that we would add a physical

The Anatomy of a Successful LAN Installation. 4102·12

inspection of each department prior to them being installed. Using a portable
computer, we retested each LAN jack and also determined exactly where each
workstation would be placed along with the location of the printer. This information
was recorded on a site inspection worksheet and was signed off by the department
director as well. This process also acted as a final verification of the workstation and
printer count for each department. We also developed a phase sign off form which
was completed by the department director, indicating that the department was
installed to their satisfaction. It also provided an area for comments where they could
detail their likes, dislikes, need for further training and other miscellaneous items. In
summary, it is important to know the status of the project at any given time, and to
know where you are going.

The remaining phases were installed according to our schedule. At no time did we
experience any delays that could have resulted in having to delay the installation of
any department. We had also allocated extra time for phases that involved smaller
departments, and took advantage of this to regroup, assess our progress and deal with
any problems. As we completed each phase it became quite routine, with everyone
knowing what had to be accomplished. Installing by phase also gave those users not
yet installed the opportunity to see first-hand what was in store for their departments.
This helped to alleviate the fear of the unknown and greatly contributed to the
overall success of the project. One problem this situation did create was an increasing
demand to shorten or alter the implementation schedule. This is something we never
expected, and took it as a measure of our success. That isn't to say that we did not
encounter any problems as we progressed. For example, we encountered a major
problem with the display quality in Hewlett-Packard's monochrome VGA monitors,
which were too dark in color mode. Because of this we received numerous complaints
from the users. We also uncovered a problem with the compatibility of the ROM
BIOS chips in the Vectra 286/12 personal computers being used in a diskless
environment. As of yet, Hewlett-Packard has not solved either of these problems.

In defining the success of any project of this type it is often difficult to offer concrete
evidence. However, I believe I can offer indications that our LAN is functioning to
everyone's satisfaction. Software usage analysis indicates heavy utilization ofelectronic
mail, scheduling, word processing and the systems that the MIS department has
developed and converted from the HP-3000 to the LAN. Users who had never used
the old NBI word processing system or the HP-3000 are now using the LAN and
have come to depend upon it. We hear many users state til don't know what I did
without it". Communications between departments has improved greatly through the
use of electronic mail. Critical information can be passed along to a user even when
they are away from the office. Another indicator is new ways of thinking about old
tasks and having the ability to create new ones. This has resulted in increasing the
customer service level we can give to our membership base. For example, we can
now provide online information to our members offsite at educational conferences,
confirming their registrations, hotel reservations and other data. In addition, the LAN
has experienced a 99.9% uptime rate since its installation. This speaks for the quality
of Hewlett-Packard hardware and the Novell Netware operating system.

The Anatomy of a Successful LAN Installation· 4102·13

INDICATORS OF A SUCCESSFUL
LAN INSTALLATION

_ 99.9% uptime rate since the first phase of Installation.

_ Acceptance and use of the software packages provided
as Indicated by observation and usage analysis tools
available In a Novell environment.

_ An Increase In creativity within departments, resulting
In new approaches to Job functions and problems.

_ The entire project was Installed on schedule and 9%
under budget.

_ Data remains secure and users have a high level of
trust In the confidentiality of their data.

Now that the LAN has been fully installed for approximately one year we have
moved on to the task of converting the HP-3000 based systems to the LAN. We have
employed many of the same techniques we used to implement the LAN in our
approach to this massive conversion project. We anticipate that it will take two years
to complete. One thing you should be prepared for when you reach this point
following the install is the- increase in expectations your users will have toward the
LAN and the MIS department. This will result in further demands being placed on
your resources. However this is more desirable than having them ask you to de-install
the hardware. In conclusion, the keys to success for a project of this magnitude
incorporate thorough planning, managing change through communication, expecting
the unexpected and a little luck.

The Anatomy of a Successful LAN Installation· 4102·14

4103
THE BLACK HOLE OF PC ZNVESTKENT

James Call
The NPD Group

900 west Short Road
Port Washinqton, New York 11050

INTRODUCTION

Many companies are having second thoughts about the
wisdom of their investments in PC's! After spending
millions on PC's and related programming, u.s. office
productivity seems stalled. Vendors answer with an ever
upwardly spiraling line of advancements:
XT .•. AT ... 286 ... 386 ... 486 ... etc. This paper addresses the
pitfalls which, in retrospect, have contributed to disap
pointing PC results.

We discuss these issues in three sections as follows:

• Symptoms

• Underlying Problems and opportunities

• What to Do About It

We include examples of both successful and unsuccessful
implementations and provide a checklist summarizing possible
improvement approaches.

The Black Hole of PC Investment 4103-1

I. SYMPTOMS

There is little disagreement that the u.s. is failing to
keep up in productivity. The larger industries, automobile
manufacturing and consumer electronics, are often cited, but
they are examples of a wider problem. PC's have been
installed by the millions to improve productivity, but
symptoms are emerging which suggest their promise is not
being fulfilled.

Few Successes Reported

In a review of some 600 articles in leading PC magazines,
only 2 articles dealt with productivity improvement results
relating to actual work accomplished. Looked at from
another angle, in 70 citations gleaned from a literature
search on the key words "labor productivity" and "capital
productivity", PC's were mentioned only once, but negatively
as "Despite computers, faxes, etc ... productivity lags."l A
cover story in Fortune Ma~azine lamented the "Puny Payoff
from Office Computers". They reported that "so far
productivity has grown more slowly in the computer age than
it did before computers came into wide use."

Misdirected Productivity Focus

When the word "productivity" does appear in PC literature
(usually in PC hardware or software ads) it tends to relate
to productivity in doing things with the PC itself, not to
the actual work of the company as a whole. For example, a
coprocessor makes the PC run faster, a spreadsheet add-in
makes you more productive manipulating the spreadsheet.

Said one user in the Fortune article cited, "If people
are doing the wrong things when you automate, you get them
to do the wrong things faster."

II. UNDERLYING PROBLEMS AND IMPROVEMENT OPPORTUNITIES

The symptoms just discussed underlie a number of problems
which have plagued PC implementations.

pC's Implemented Merely to Speed Up Existing Procedures

PC's may be implemented to merely speed up existing
procedures without regard to whether the basic procedure was
outmoded or even needed at all. This first wave of
"automation" then gives a false sense of security and
establishes a stake in a SUboptimal solution, discouraging
further attention to the real opportunity.

The Black Hole of PC Investment 4103-2

Word processing, spreadsheet software and numerous PC's
have replaced IBM Selectric typewriters without streamlining
the existing document flows~ The new found revision
capability also then stimulated trivial rewrites and fine
tuning, eating into the little time that was saved.

This inappropriate use of PC's has been called using the
PC only as an "electric pencil".

PC Focussed on Administrative Processes as Opposed to the
Actual Work Itself

An advertisement for a PC program which is designed to
optimize any worksheet cell by backsolving on a worksheet
variable promises "Achieve goals, maximize profits, and
minimize costs with this one program." Were it this simple.

This is an example of directing undo attention to a
process as opposed to the work of the firm. It at best
recapitulates what is already known about a real situation.
At worst it legitimizes a useless management exercise quite
unconnected to the opportunities one would find in the
reality of the factory floor. ~aleznick in his provocative
book, The Managerial Mystique describes the failure of
American management as the sUbstitution of process for
substance- " ... programs and procedures as a sUbstitute for
direct engagement in work."

PC's Implemented in spite of superior Alternatives

A spreadsheet program nearly 1000 lines long, replete
with macro's and data entry screens was laboriously
constructed to perform a rotation of survey questions.
(Such rotation is an important requirement to prevent "order
bias" in market research surveys. It keeps the same
questions from always being first or last.) At first glance
the spreadsheet appeared to automate something, but it took
2 hours to set up the inputs for each new project and to run
the program. It was subsequently discovered that a simple
row and column matrix of predetermined numbers listed on a
page of paper could serve the same purpose. To use the
latter method, one simply listed the question number down
the left, then read across to see the ordered location. Not
only did the "manual" table-based approach not require a PC,
but it was over 1000 times faster.

The Black Hole of PC Investment 4103-3

PC's Implemented Redundantly

A number of PC implementations provide capacity which is
already available on a corporate mainframe. Electronic mail
stands out as an example. If people are already connected
to a port on the mainframe, why reinvent the wheel.
Moreover the end result, on today's PC's, would likely fall
short of the file sharing ability, security and support we
take for granted in the mainframe environment.

An expensive solution to these comparative limitations,
when they arise midway in a PC implementation, may be more
PC disk, more memory, more PC's and a LAN. The investment
in PC redundancy, played out to its fullest extent sometimes
results in PC equipment and support costs which rivals that
of the mainframe data center. In essence, the users are
trying to build a new mainframe environment out of PC
building blocks, hoping to achieve similar functionality.

Companies may not be able to wisely bUdget or benefit
from huge investments when each expenditure, considered
alone, is far below an established capital expenditure
threshold.

Limited capability Sneaks Up On You

Things seem so good in the initial stages of a PC
implementation. Prototype data cases appear to demonstrate
feasibility, but as implementation proceeds, larger files
become a reality. Unforeseen tradeoffs of functionality are
then mandated by the limits of the technology. To. an
extent, we are spoiled by mainframes and thus gullible to
the initial ease of use of the PC.

Additional examples of PC constraints which may not be
initially obvious include:

1. Memory constraint on a spreadsheet, limiting the number
of lines.

2. Twenty five lines of only 80 characters each on a
screen.

3. Lack of an effective approach for system and data
backup and security of sensitive data bases.

Cumbersome Data Entry

Input and output from the PC often presents another snag
to overall productivity. Untold hours of labor are spent
retyping mainframe generated report data back into personal
spreadsheets, an ironic manual intervention. Moreover,
while the keyboard is still a major input device, users'
typing skills are often uneven at best.

The Black Hole of PC Investment 4103-4

Cheating the Cost Accounting system

The typical end user of the PC, with all tne best
intentions, spends numerous hours developing personal
applications, entering data and configuring applications
software. Much of this time is a substitute for what would
have been a more formal MIS project. Putting aside the
issue of whether the PC users' work results in a long term
corporate asset, the resources put into it bypass the corpo
rate charge back system. Even minimally successful results
then seem acceptable, since they appear to be "free". The
real kicker comes in when the author of the "PC System" is
promoted, transfers or leaves, and something goes wrong or a
change needs to be made.

Another important cost accounting issue arises in
companies where a charge back system is used for mainframe
computer processing. There may be real business reasons to
offload mainframe work to PC's but if the associated PC
costs are not reflected, users will not be able to make a
correct decision on where to best run an application. To an
individual PC user it may appear costs have been reduced
when a PC application bypasses the corporate cost system.
However, in fact, corporate costs may be higher overall.

III. WHAT TO DO ABOUT IT

Having discussed the symptoms and underlying problems
which have worked to limit PC productivity, let us now turn
our attention to what can be done about it. In any problem
we can profit by seeing in it an opportunity for
improvement. In that sense, problems are to be appreciated,
not lamented, for the improvement direction which they bring
to us.

Re-engineer Operations

The centerpiece of improving productivity is re
engineering operations. Re-engineering is a sUbject worthy
of a whole presentation (or even a life's work) in and of
itself. For the moment we will limit our scope to a summary
of four key aspects of re-engineering work activities as a
prerequisite to PC productivity:

• Eliminate
• Streamline
• Automate
• Minimize Hand offs

The Black Hole of PC Investment 4103-5

Eliminate

First look to eliminate existing steps, processes or
whole areas of activity. For example, a review of the
distribution list for a cost accounting report revealed that
only half the 12 recipients even used it. Of the 6 actual
users, none of them used all of it; each needed only the
section reporting on their own department.

As one author suggested in a recent Harvard Business
Review artiile on re-engineering work, "Don't automate,
obliterate. II

streamline

Once you have eliminated needless or redundant
activities, look to streamlining what is left. Keep in
mind, during the streamlining effort, that PC's or other
technology mayor may not play a part.

An example of streamlining would be to consolidate
information fields, originally on numerous forms, into a
single form. This might set the stage for a computer based
data file or e-mail. Again though, the streamlined manual
approach might be fine.

Automate

Once activities are streamlined, try to automate those
tasks which occur frequently or which, if infrequent, are
time consuming. It goes without saying that it is a waste
of time to automate something that takes little time
manually, although such needless automation is surprisingly
common. Don't lose sight of the fact that some jobs are
actually better done manually.

Minimize Hand Offs

In re-engineering, look closely at the pre- and post
steps of any task and see whether you can combine steps,
even if they occur in another department.

For example, a computer department issued a daily
production report' in a spreadsheet format. This was sent by
e-mail (HPDESK) to key users. It was discovered that one
user department was adding some critical information of
their own and reissuing their version of a similar report.
By simply enhancing the original report in the computer
room, an entire step in another department was eliminated.

A key concept is that once a given item is handled, try
to do all the tasks which focus on that item. This also
will help you avoid over specialization.

The Black Hole of PC Investment 4103-6

Keep an open Mind

In all the above, strive to keep an open mind. Challenge
preconceptions and consider striking out in new and
productive directions. For example, faced with a labor
shortage in data entry, specially programmed PC's were
installed in over 60 homes for "Work at Home" employees.
This tapped a new labor market and avoided the need for
expanding the office space as well. The somewhat non
traditional use of PC's would not normally have been thought
of without stretching our minds to remove constraints.

Don't set goals too low. Productivity improvements of 5,
10, even 1000 times existing rates are not uncommon in re
engineering situations.

Bringing It All Together

By re-engineering the work before you implement PC's you
will stand a much better chance of realizing real pro
ductivity gains. with aggressive re-engineering many
projects will turn out to deliver significant productivity
improvement and not even need the PC after all.

In cases where you do need a PC, the investment ~n

capital and operating costs will have a much better chance
of paying off.

PC productivity Checklist

The checklist on the following page outlines the key
suggestions of this presentation and suggests approaches
which can maximize your chances of significant productivity
improvements.

The Black Hole of PC Investment 4103-7

PC PRODUCTIVITY CHECKLIST

• Try to go beyond merely speeding up existing systems.

• Re-engineer operations first.

• Eliminate needless steps.

• Streamline activities and information flows.

• Automate time-consuming repetitive tasks.

• Minimize hand offs.

• Consider alternatives.

• Acknowledge all costs and benefits.

• Anticipate potential technology limits such as memory,
disk and processing speed.

• Keep an open mind.

The Black Hole of PC Investment 4103-8

REFERENCES

(1) New York Public Library, Literature search 5/91.

(2) Fortune cover story by William Bower, May 29, 1986.

(3)Abraham Zaleznick, The Managerial Mystique (New York:
& Row, 1989)

Harper

(4)Michael Hammer, "Reengineering Work... ," Harvard Business
Review, July-August 1990, 104-112.

The Black Hole of PC Investment 4103-9

TITLE:

AUTHOR:

Cooperative Processing Using Windows 3.0 and

Networking

Doug l\Talker

Walker, Richer & Quinn

2815 Eastlake Avenue East

Seattle, WA 98102

(206) 324-0350

FINAL PAPER WAS NOT AVAILABLE AT TIME OF PRINTING.

PAPERNO. 4104

