
HEWLETT-PACKARD

Technical Reference Manual
Volume 2

HP Vectra Technical Reference Manual
Volume 2: System BIOS

~P.JHewlett-Packard

IBM is a U.S. registered trademark of International

Business Machine Corporation.
Intel is a U.S. registered trademark of Intel Corporation.

Mouse System is a registered trademark of Mouse Systems
Corporation.

Vectra is a registered trademark of Hewlett-Packard Company.

MS-DOS is a registered trademark of Microsoft, Inc.

Notice

The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including,
but not limited to, the implied warranties of merchantability and fitness for a particular
purpose. Hewlett-Packard shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment
that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced, or translated to another
program language without the prior written consent of Hewlett-Packard Company.

Vectra is a u.s. registered trademark of Hewlett-Packard Company
MS-DOS is a u.S. registered trademark of Microsoft, Incorporated
WordStar is a u.S. registered trademark of MicroPro International Corporation.

© 1985 by Hewlett-Packard Co.
Personal Office Computer Division
974 East Arques Avenue
P.O. Box 486
Sunnyvale, CA 94086, U.S.A.

First Edition - September 1985
Printed in U.S.A.

iii

FCC Statement
Federal Communications Commission Radio Frequency Interference Statement

Warning: This equipment has been certified to comply with the limits for a Class B computing
device, pursuant to Subpart J of Part 15 of FCC Rules. Only peripherals (computer input/output
devices, terminals, printers, etc.) certified to comply with the Class B limits may be attached to
this computer. Operation with non-certified peripherals is likely to result in interference to radio
and TV reception.

More About Radio and Television Interference

Because the HP Vectra PC generates and uses radio frequency energy, it may cause interference
with radio and television reception in a residential installation.

Hewlett-Packard's system certification tests were conducted with HP-supported peripheral
devices and HP shielded cables, such as those you receive with your system. The HP Vectra PC
meets the requirements for a Class 8 computing device in accordance with the specifications of
Part 15, Subpart J, of protection against interference with radio and television reception in a
residential installation.

Hewlett-Packard provides instructions for using this computer in manuals covering setup,
connection of peripheral devices, operation, service, and technical reference.

Installing and using the computer in strict accordance with Hewlett-Packard's instructions will
minimize the chances that the HP Vectra PC will cause radio or television interference. However,
Hewlett-Packard does not guarantee that the computer will not interfere with radio and
television reception. If you think your computer is causing interference, turn it off to see if the
radio or television reception improves. If the reception:

• Does not improve, your computer is not causing the problem.

• Does improve, your computer is causing the problem.

To correct interference, take one or more of the following steps:

• Relocate the radio or television antenna.

• Move the computer away from the radio or television.

• Plug the computer into a different electrical outlet, so that the computer and the radio or
television are on separate electrical circuits.

iv

• Make sure that all of your peripheral devices are certified Class B by the FCC.

• Make sure you use only shielded cables to connect peripheral devices to your computer.

• Consult your computer dealer, Hewlett-Packard, or an experienced radio/television technician
,... for other suggestions.

• Order the FCC booklet called How to Identify and Resolve Radio-TV Interference Problems for
the U.S. Government Printing Office, Washington, D.C. 20402.

Warning: Electrical Safety

For the user's safety, the power cords supplied with this product have grounded
plugs. The power cords should be used with properly grounded (3-hole) wall outlets
to avoid electrical shock. (You can also use multiple-outlet strips that have their own
circuit breakers.)

v

vi

Printed U.S.A.
part number 45961-90001

TABLE OF CONTENTS

1. INTRODUCTION 1

2. ROM BIOS OVERVIEW 5

3. ViDEO 25

4. INPUT SYSTEM AND HP-HIL 51

5. KEyBOARD 135

6. MOUSE 197

7. SERIAL AND PARALLEL 1/0 215

8. DiSC 237

9. SYSTEM DRiVERS 261

10. SYSTEM PROCESSES 311

Appendices
A. BIOS INTERRUPTS 327
B. MEMORY MAP 349
C. CMOS MEMORY LAYOUT AND REAL-TIME CLOCK 371
D. 1/0 PORT MAP 381
E. SYSTEM EQUATE FILE 395
F. DEFAULT DEVICE MAPPING 423
G. DRIVER WRITER'S GUIDE 425
H. ASCII AND SCANCODE CONVERSION TABLES 483
I. CONVERSION TABLES 489

GLOSSARY 493
REFERENCES 500
INDEX 501

vii

i~

SECTION 1

TABLE OF CONTENTS

1. INTRODUCTION 3

1.1 System Software 3

1.2 ROM BIOS 4

2 Introduction

.~

SECTION 1. INTRODUCTION

This manual contains a detailed description of the ROM Basic Input/Output System (BIOS) of the
HP Vectra Personal Computer. Entry points, including the industry standard ROM BIOS entry
points and function calls, are documented in this manual.

This manual deals extensively with programming and programming concepts. It presumes that
the reader is familiar with the Microsoft Macro Assembler (MASM) and the Intel iAPX 80286
processor architecture.

Related documents which may be of interest to programmers and advanced users are listed at
the end of this volume in the References section.

1.1 System Software

Software operating on the system may be viewed as a three-level hierarchy: application
programs, operating system, and ROM BIOS. These three levels are defined as follows:

Application Programs-An application program is the top level of software. It performs
application-specific functions (i.e., spreadsheet or word processing functions). Application
programs rely on either DOS or the ROM BIOS for system functions such as character or disc
I/O.

Operating System-The operating system provides the control and support functions
necessary for an application program to be executed. The operating system provides file
oriented functions, as well as providing basic support for character I/O.

ROM BIOS-The ROM BIOS provides the interface between operating system software and
the hardware. The ROM BIOS provides a dual function; it constitutes the low level interface
between the hardware and operating system, as well as providing extended functions to
application programs.

Introduction 3

The higher the software level, the more powerful the functions provided by the software.
However, along with this power often comes additional overhead which reduces performance
and flexibility. A system programmer should choose the level of software interface required by
the individual set of design constraints. It is good programming practice to use the highest level
of system software that gets the job done. Some system functions can only be performed on the
highest level, since only system software supports the function. However, other system functions
may be performed at more than one level. Using a lower level such as the ROM BIOS provides
improved speed of execution and additional flexibility. Using ROM BIOS routines may affect
program portability to future HP products, and to other industry standard PC's.

1.2 ROM BIOS

The ROM BIOS provides a powerful set of system functions, allowing application programs full
access to the capabilities of the system while maintaining a hardware-independent interface.

The ROM BIOS allows the programmer or system designer to tailor the system to a specific set of
design constraints. Some of the tailoring methods provided to the programmer are:

• The number of interrupts can logically expand to fit requirements.

• Adapter cards can obtain a limited amount of RAM from the system BIOS without installing
device drivers.

• Applications can expand the features of the keyboard without replacing the industry
standard driver (INT 16H).

• The ROM resident mouse driver system can provide the ability to use various input
peripherals with applications not specifically written for them.

These methods maintain application compatibility with minimal effect on system performance.

4 Introduction

SECTION 2

TABLE OF CONTENTS

2. ROM BIOS OVERViEW 7

2.1 Memory Locations 7

2.2 Interrupts 9

2.3 ROM BIOS, Drivers and Functions 12

2.3.1 STD-BIOS Drivers 12

2.3.2 EX-BIOS Drivers 13

2.3.3 EX-BIOS Standard F:unctions 14

2.3.4 EX-BIOS Parameter Passing Functions 16

2.3.5 EX-BIOS Return Status Codes 16

2.4 Data Structures 18
,... 2.4.1 STD-BIOS Data Structures 18

2.4.2 EX-BIOS Data Structures 19

5

6 ROM BIOS Overview

SECTION 2. ROM BIOS OVERVIEW

The ROM BIOS is divided into two components, the Standard BIOS (STD-BIOS) and the Extended
BIOS (EX-BIOS). The STD-BIOS supports the industry standard set of BIOS functions. The EX-BIOS
is unique to the HP Vectra. It provides a wide range of system functions and support for HP
peripherals. The STD-BIOS and EX-BIOS are discussed later in this section. Both the STD-BIOS and
the EX-BIOS are contained in the system ROM which resides at the top of system memory.

Note

Throughout the remainder of this manual the terms BIOS, STD-BIOS, and EX-BIOS will
be used. STD-BIOS and EX-BIOS are defined above. The term ROM BIOS will be used
to indicate the union of STD-BIOS and EX-BIOS.

This section contains an overview of the components of the ROM BIOS. These components are
the interrupt vectors, code modules, and data structures. Interrupt vectors form the link between
the operating system, applications, and the ROM BIOS. The code modules perform the ROM
BIOS functions. Data structures provide the means for the ROM BIOS (and to some extent the
applications) to maintain driver variables, data buffers, etc.

2.1 Memory Locations

Code modules are accessed through interrupt vectors. The interrupt vectors reside in the first
1KB of system RAM. Usually a code module has an associated data structure. The data structures
for the STD-BIOS code modules reside in system RAM in absolute memory locations 00400H
through 005FFH. The data structures for the EX-BIOS code module reside at the top of system
RAM. The address of the EX-BIOS data area will vary depending on the particular configuration
of the system.

Figure 2.1 shows the components of the ROM BIOS and their location within the system
memory. Each of the ROM BIOS components is discussed in detail in the remainder of this
section.

ROM BIOS Overview 7

Memory Map Block Diagram

Interrupt Vectors

STD-BIOS Data Area

STD-BIOS Data Expansion Area and
Temporary DOS Buffers

Disc Operating System - (DOS)

Application Program Area

EX-BIOS Data Area

Video Display Memory

Video Adapter Card ROM

Adapter Card Option ROM

Processor ROM Extension

BIOS ROM

Extended Memory (Up to 15MB)

Image of ROM at OEOOOOH - OFFFFFH

OOOOOOH ~

0OO400H

0OO600H

0OO700H

Variable·

Top of Available RAM··

Top of RAM···

OAOOOOH

OCOOOOH ~

OC8000H

OEOOOOH

OFOOOOH

100000H

OFEOOOOH

8 ROM BIOS Overview

·The length of the operating system is revision dependent.
* *The Top of Available RAM is dependent on system configuration, in a

256KB system it is usually 03FOOOH while in 640KB system it is usually
09FOOOH.

* * *The Top of RAM is dependent on system configuration, in a 256KB
system it is 03FFFFH while in 640KB system it is 09FFFFH.

Figure 2.1

~.

2.2 Interrupts

The interface to the BIOS is through the interrupt structure of the 80286. The system allows for
three types of interrupts.

• Processor Interrupts-These interrupts allow system software to recover from error
conditions and other hardware exceptions.

• Hardware Interrupts-These interrupts are generated by the 8259A interrupt controllers on
the processor board. Hardware interrupts indicate that a system hardware component or
peripheral requires service.

• Software Interrupts-These interrupts are generated through the software liNT nl

instruction. Software interrupts allow system functions to be quickly and easily called by any
program.

Interrupt vectors for the processor interrupts are defined by the 80286. Interrupt vectors for the
hardware interrupts are mapped by the values programmed into the 8259A interrupt controllers
which are initialized by the ROM BIOS. Processor and/or hardware interrupts may be Isimulatedl

by a software interrupt mapped to the same interrupt vector. For examplel Interrupt 0 is mapped
by the 80286 for Divide by 0 error. The service routine for this error condition may be executed
by an INT 0 instruction.

Each interrupt has an interrupt vector associated with it. The interrupt vector contains the Code
Segment and Instruction Pointer of the service routine for that interrupt. Each of these vectors
consists of two words (four bytes). The iAPX 80286 architecture supports 256 interrupt vectors
which occupy the first 1024 bytes (00000H-003FFH) of system memory.

The interrupt vectors maintain industry standard compatibility while offering the expanded
capabilities of the HP EX-BIOS functions. Table 2.1 lists these assignments.

In order for the system to function properlYI processor and hardware interrupt vectors are
initialized to valid service routines. Most unused vectors point to a null routine in the BIOS which
issues an End-of-Interrupt (EO!) signal to the 8259A(s) when required and returns. The Keyboard
Break and Timer Tick software interrupt vectors point to an IRET instruction in the BIOS. These
vectors are indicated by an IRET in table 2.1. Several software vectors are used as pointers to
data blocks instead of interrupt service routines. These vectors are indicated by a PT in table 2.1.

ROM BIOS Overview 9

Table 2.1

Interrupt Vector Assignments

Address Int Function Type* Service Routine**

0OO-OO3H 0 Divide by Zero PI sTD-BIOs (UI)
004-007H 1 Single Step PI sTD-BIOs (UI)
008-00BH 2 Nonmaskable Interrupt PI sTD-BIOs
OOC-OOFH 3 Breakpoint PI STD-BIOS (UI)
010-013H 4 Arithmetic Overflow PI sTD-BIOs (UI)

014-017H 5 Print Screen sW sTD-BIOs (DRVR)
018-01BH 6 Invalid Opcode PI sTD-BIOs (UI)
01C-01FH 7 Reserved PI STD-BIOs (UI)
020-023H 8 Timer Interrupt (IRQ 0) HW sTD-BIOs
024-027H 9 Keyboard IsR (IRQ 1) HW sTD-BIOs

028-02BH A Reserved (IRQ 2) HW sTD-BIOs
02C-02FH B Serial Port 1 IsR (IRQ 3) HW sTD-BIOs (UI)
030-033H C Serial Port 0 ISR (IRQ 4) HW sTD-BIOs (UI)
034-037H D Printer Port 1 IsR (IRQ 5) HW sTD-BIOs (UI)
038-03BH E Diskette IsR (IRQ 6) HW sTD-BIOS

03C-03FH F Printer Port 0 IsR (IRQ 7) HW sTD-BIOD (UI)
040-043H 10 Video SW sTD-BIOs (DRVR)
044-047H 11 Equipment Check SW sTD-BIOs (DRVR)
048-04BH 12 Memory Size SW STD-BIOs (DRVR)
04C-04FH 13 Diskette/Hard Disc sW sTD-BIOs (DRVR)
050-053H 14 Serial SW STD-BIOS (DRVR)
054-057H 15 System Functions SW STD-BIOS (DRVR)
058--0SBH 16 Keyboard SW STD-BIOs (DRVR)
OSC-OSFH 17 Printer S\f\J STD-BIOS (DRVR)
060-063H 18 Reserved 5'vV N/A ,:'jQEn

- -- --

064-067H 19 Boot SW sTD-BIOs (DRVR)
068-06BH 1A Time and Date SW sTD-BIOS (DRVR)
06C-06FH 1B Keyboard Break SW sTD-BIOs (I RET)
070-073H 1C Timer Tick ~v\1 STD-BIOs (lREn
074-077H 1D Video Parameter Table PT STD-BIOS• I

078-07BH 1E Diskette Parameter Table PT STD-BIOS
07C-07FH 1F Graphics Character Table PT STD-BIOs
080-083H 20 Program Terminate SW DOS
084-087H 21 DOS Function Calls sW DOS
088-08BH 22 DOS Terminate Address PT DOS

10 ROM BIOS Overview

Address Int Function Type* Service Routine**

08C-08FH 23 DOS < CTRL > -< Break>
Address SW DOS

090-093H 24 DOS Critical Error SW DOS
094-097H 25 DOS Absolute Disc Read SW DOS
098-09BH 26 DOS Absolute Disc Write SW DOS
09C-09FH 27 DOS Terminate Stay Resident SW DOS
OAO-OCBH 28-32 Reserved for DOS SW DOS
OCC-OCFH 33 HP Mouse SW EX-BIOS (DRVR)
OOO-OFFH 34-3F Reserved for DOS SW DOS
100-103H 40 Alternate Diskette SW STD-BIOS
104-107H 41 Hard Disc Parameter Table (0) PT STD-BIOS
108-117H 42-45 Reserved SW STD-BIOS
118-11BH 46 Hard Disc Parameter Table (1) PT STD-BIOS
11C-17FH 47-5F Reserved SW STD-BIOS
180-19FH 60-67 Reserved for User Programs SW N/A
1AO-1A3H 68 8041 Service Request ISR HW EX-BIOS
1A4-1A7H 69 Keyboard OBF ISR HW EX-BIOS
1A8-1ABH 6A Reserved HW EX-BIOS
1AC-1AFH 6B Reserved HW EX-BIOS
1BO-1 B3H 6C HP-HIL Controller ISR HW EX-BIOS
1B4-1B7H 6D Reserved HW EX-BIOS
1B8-1BBH 6E Reserved HW EX-BIOS
1BC-1BFH 6F EX-BIOS Entry Point SW EX-BIOS (DRVR)
1CO-1C3H 70 Real-time Clock ISR (IRQ 8) HW STD-BIOS
1C4-1C7H 71 SW Redirected (IRQ 9) HW STD-BIOS
1C8-1CBH 72 Reserved (IRQ 10) HW STD-BIOS (UI)

1CC-1CFH 73 Reserved (IRQ 11) HW STD-BIOS (UI)
100-1 03H 74 Reserved (IRQ 12) HW STD-BIOS (UI)
104-107H 75 Coprocessor (IRQ 13) HW STD-BIOS
108-10BH 76 Hard Disc ISR (IRQ 14) HW STD-BIOS (UI)
1OC-1 OFH 77 Reserved (IRQ 15) HW STD-BIOS (UI)

1EO-1FFH 78-7F Not Used SW N/A
200-3C3H 80-FO Reserved SW N/A
3C4-3FFH F1-FF Not Used SW N/A

* PI-Processor interrupt
HW-Hardware interrupt
SW-Software interrupt
PT-Interrupt vector used as pointer to data.
N/A-Not applicable

** UI-Unused interrupt ISR
IRET-Interrupt returned
DRVR-Application callable entry point

ROM BIOS Overview 11

2.3 ROM BIOS, Drivers and Functions

The ROM BIOS is comprised of many drivers. For example, there is a driver to perform video
functions, one to perform disc functions, etc. The ROM BIOS drivers are organized into two
components. One component contains the 5TD-B105 drivers that support the 5TD-B105
functions. The second component contains EX-BIOS drivers that support unique HP features.

Each driver supports one or more functions. A function can be viewed as a specific task. For
example, the Video Driver supports 22 separate functions that perform tasks such as setting the
display mode, moving the cursor, and displaying characters.

2.3.1 STD-BIOS Drivers

Drivers in the 5TD-B105 are accessed through an interrupt. 5TD-B105 drivers are accessed through
interrupts OSH and 10H through 1CH. Drivers are accessed by performing a software INT n
instruction, where n is the interrupt number assigned to the driver (refer to table 2.1.)

The function code and any required data are passed in the 80286 registers. Data passing
conventions for 5TD-B105 drivers vary, however, there are aspects which are common.

• Most of the 5TD-B105 drivers support more than one function. Therefore, multi-function
drivers must have the desired function code passed as part of the data. The AH register is
used on all multi-function drivers to pass the function code.

• Byte and word data is passed in the internal registers of the 80286. Registers AL, BX, CX,
and DX are usually used for this purpose. The register assignments and number of registers
used depend on the driver and driver function.

• If the amount of data cannot fit in the internal registers of the 80286, a data buffer in
system memory is used. This buffer is usually pointed to by E5:BX, E5:BP or E5:51.

• Drivers may modify one or more registers. The registers which are maintained and the
registers which are modified vary from driver to driver. The registers which are modified are
listed in each function description.

12 ROM BIOS Overview

Calling 5TD-8105 Drivers

The following program example demonstrates accessing a typical STD-BIOS driver. The function
sets the position of the cursor on display page 0 to row 20, column 10. The function code (02H)
is passed in register AH. The row position, the column position, and the page number are passed
respectively in DH, DL, and BH.

MOV
MOV
MOV
MOV
INT

AH,02H
DH,14H
DL,OAH
BH,OH
10H

;Function number
;Row number (Row 20)
;Column number (Column 10)
;Page number
;Call Video driver

The STD-BIOS drivers support all industry standard BIOS functions. In addition, many of the
drivers have additional functions that support enhanced features. These functions are referred to
as 'HP extensions' throughout the remainder of this manual. These enhancements are accessed
through function code (06FH) of their respective driver. Most of these extended functions are
further divided into subfunctions. For example, the HP extended function for the Video driver has
six subfunctions which allow access to the enhanced features of the Multimode Video Display
Adapter. The function code (06FH) is placed in the AH register and the subfunction code in AL
for all HP extensions.

The following example uses HP extensions to turn off the cursor control pad on the keyboard.

MOV
MOV
MOV

INT

AH,6FH
AL,07H
BL,02H

16H

,. HP Function
" Switch Keyboard
; Disable CCP: Turn Cursor Control
; Pad Off
; Call Keyboard Driver

2.3.2 EX-BIOS Drivers

The EX-BIOS drivers provide a wide range of functions not found in the STD-BIOS drivers. The EX
BIOS drivers are accessed through a single software interrupt vector. This interrupt (06FH) will be
referred to as INT HP_ENTRY. Due to the large number of EX-BIOS drivers, it would be
impossible to give each driver its own interrupt vector and still maintain industry standard
compatibility. Therefore, each driver is assigned its own number which is placed in the BP
register. This manual refers to these numbers by the names assigned in Appendix E.

ROM BIOS Overview 13

Calling EX-BIOS Drivers

As with the STD-BIOS drivers, each EX-BIOS driver may support one or more functions. A
function code placed in the AH register selects the desired function within the driver. In addition,
a subfunction code passed in the AL register is required by many EX-BIOS functions.

The following program example demonstrates access to a typical EX-BIOS driver. The function
executes a 'beep' on the speaker.

MOV
MOV
PUSH
INT
POP

AH,3AH
BP, 12H
OS
6FH
OS

,. Function: F_SNOJEEP
,. Driver Name: V_SYSTEM
I

,. EX-BIOS Call: HP_ENTRY

On leaving the EX-BIOS driver the BP and DS registers will be modified while the AH register
usually contains the return status of the driver call.

2.3.3 EX-BIOS Standard Functions

Many EX-BIOS drivers support a standard set of functions and subfunctions as listed in table 2.2.
While these functions and subfunctions are defined, it is not required that they all be
implemented by every driver. In addition, EX-BIOS drivers may implement functions other than
those listed. Most EX-BIOS drivers use a standard set of return status codes reported in the AH
register at the completion of a driver's function call. Some of these return status codes and their
definitions are listed in table 2.3. A driver may report a return status code of
RS_UNSUPPORTED (02H) for a given function.

Function codes and return statuses are described in detail in Appendix G.

14 ROM BIOS Overview

Table 2.2

EX-BIOS Defined Functions

Function Register
Subfunction AH AL Definition

F_ISR 00 Responds to a logical Interrupt Service Request (ISR).

F_SYSTEM Executes one of several standard subfunctions.
SF_INIT 02 00 Starts the initialization of a driver.
SF_START 02 02 Completes the initialization process of the driver.
SF_REPORT_STATE 02 04 Reports the state of the driver.
SF_VERSION_DESC 02 06 Reports the revision number and datecode of the

driver.
SF_DEF--ATTR 02 08 Reports the default configuration of the driver.
SF_GET--ATTR 02 OA Reports the current configuration of the driver.
SF_SET--ATTR 02 OC Overrides the current configuration of the driver.
SF_OPEN 02 OE Reserves the driver for exclusive access. Requests

any resources required by the driver.
SF_CLOSE 02 10 Releases the driver from exclusive access.
SF_TIMEOUT 02 12 Reports to the driver that a requested timeout has

occurred.
SF_INTERVAL 02 14 Reports to the driver that a requested 60 Hz interval

has expi red.
SF_TEST 02 16 Performs a hardware test.

F_IO_CONTROL Executes the following subfunctions and any driver
dependant subfunctions.

SF_LOCK 04 00 Reserves the sub-address device specified for
exclusive access.

SF_UNLOCK 04 02 Releases the sub-address specified from the
exclusive access.

F_PUT_BYTE 06 Writes a byte of data.
F_GET_BYTE 08 Reads a byte of data.
F_PUT_BUFFER OA Writes a variable length buffer of data (supported

by character devices).
F_PUT_BLOCK OA Writes a fixed length buffer of data (supported by

block devices).
F_GET_BUFFER DC Reads a variable length buffer of data (supported by

character devices).
F_GET_BLOCK DC Reads a fixed length block of data (supported by

block devices).
F_PUT_WORD DE Writes a word of data.
F_GET_WORD 10 Reads a word of data.

ROM BIOS Overview 15

2.3.4 EX-BIOS Parameter Passing Conventions

When calling EX-BIOS drivers, the function code is placed in the AH register, and the subfunction
code (if any) in the AL register. Note that the function and subfunction codes are multiples of
two in order to facilitate decoding by the drivers.

The general parameter passing conventions used by the EX-BIOS drivers are also defined. These
register conventions are as follows:

On Entry: BP = V_DRIVELNAME
AH = F_FUNC_CODE
AL = SF_FUNC_CODE (if required by driver)
CX = On write: byte count (if required by driver)

On read: maximum permissible byte count (if required by driver)
ES:DI = Buffer pointer or context area (if required by driver)

On Exit: AH = Return status
CX = On read: byte count (if required by driver)

On write: number of bytes written (if required by driver)
ES:DI = Buffer pointer or context area (if required by driver)
DS,BP Always modified (unless otherwise indicated)

2.3.5 EX-BIOS Return Status Codes

EX-BIOS drivers are expected to report a Return Status Code upon completion. This code is
returned in the AH register. Several status codes have been defined and are listed in table 2.3.

16 ROM BIOS Overview

Table 2.3

EX-BIOS Return Status Codes

Return Status Code Indication

RS_SUCCESSFUL OOOH The requested function executed correctly.
RS_UNSUPPORTED 002H The requested function or subfunction is

not implemented or is unsupported.

RS_FAlL OFEH (-02H) The driver failed the operation in an error
state.

RS_BAD_PARAMETER OFAH (-06H) The driver received a bad parameter.
RS_BUSY OF8H (-08H) The requested driver is busy.
RS_NO_VECTOR OF6H (-OAH) EX-BIOS Vector table is out of RAM or

room for more drivers.
RS_OFFLINE OF4H (-OCH) Device is offline.
RS_OUT_OF_PAPER OF2H (-OEH) Device is out of paper.

If additional drivers are installed in the system, they should conform to the defined statuses
wherever possible. However, to maintain coding efficiency and/or functional accuracy, a driver
may create a return status other than those listed in Table 2.3.

Note

Return status conditions are always multiples of two. Negative return status codes
indicate error conditions, while positive status codes indicate exceptional conditions
to the caller. For example, the status code RS_UNSUPPORTED indicates the driver
does not support a function which mayor may not be an error, while RS_OUT_
OF_PAPER requires some kind of response by the caller.

ROM BIOS Overview 17

2.4 Data Structures

BIOS drivers require RAM data area to perform their functions. The layout and placement of the
data areas for the STD-BIOS and EX-BIOS drivers differ. This is discussed in the following
subsections.

2.4.1 STD-BIOS Data Structures

The data area for the STD-BIOS is in absolute memory locations 00400H through 005FFH, which
conforms to the industry standard. Table 2.4 summarizes the assignments within this block of
memory. Refer to Appendix B for a detailed description of these data fields.

Table 2.4

510-8105 Data Area Summary

Address Function

400H-407H RS-232 Communications Port Addresses
408H-40FH Parallel Printer Port Addresses
410H-416H System Data and Flags
417H-43DH Keyboard Data Area
43EH-448H Flexible Disc Data Area

449H-466H Video Display Data Area
467H-46BH System Data and Flags
46CH-470H Timer Data Area
471H-473H System Data Flags
474H-477H Hard Disc Data Area
478H-47BH Printer Timeout Counters
47CH-47FH RS-232 Communications Port Timeout Counters
480H-483H Keyboard Data Area
48BH-496H Diskette/Hard Disc Data Area
498H-S04H System Data and Flags
SOSH-SFFH Reserved

18 ROM BIOS Overview

2.4.2 EX-BIOS Data Structures

Data structures for the EX-BIOS drivers are located in a block of memory at the top of system
RAM. The address of this block varies depending on the amount of RAM contained in the system
and the hardware configuration.

There are three types of data structures in the EX-BIOS data area. These structures are:
the HPbrVECTOfL..TABLE and its associated HP_ENTRY_CODE, the driver data areas, and the
EX-BIOS global data area.

Each of the 80286 interrupt vectors contains the Code Segment (CS) and Instruction Pointer {lP}
of its associated service routine. The HP_ENTRY interrupt vector (06FH) contains the CS:IP of the
HP_ENTRY_CODE. This routine uses the value contained in the BP register (an offset into the
HP_VECTOfL..TABLE, vector address) to branch to the appropriate EX-BIOS driver. The
HP_VECTOfL..TABLE resides at the base of the EX-BIOS data area. The HP_VECTOfL..TABLE
consists of an array of 3-word (six bytes) entries, one for each EX-BIOS driver. Each entry consists
of the IP, CS, and Data Segment (DS) of a driver.

Figure 2.2 illustrates the relationship between the 80286 interrupt vectors, the
HP_VECTOfL..TABLE, HP_ENTRY_CODE, and the EX-BIOS drivers.

The CS:IP in the HP_ENTRY interrupt vector points to a piece of code which branches to the
desired EX-BIOS driver. The vector address passed in BP must be a multiple of six. The code is as
follows:

HP_ENTRY_CODE:
MOV
JMP

OS, CS:[BP +4J
FAR PTR CS:[BPJ

This code resides directly after the last entry in the HP_VECTOfL..TABLE. Therefore, the CS:IP
entry in the HP_ENTRY interrupt vector provides two further pieces of information. (s:o is the

"",. starting address of the HP_VECTOfL..TABLE and IP is the length of the HP_VECTOfL..TABLE.

ROM BIOS Overview 19

Interrupt Vectors and HP_VECTOLTABLE

STD-BIOS
DRIVER

EX-BIOS
DRIVER

DATA
AREA

HP_HEADER

HP_ENTRY_
CODE

IP
CS
OS

IP
CS

IP
CS

INTERRUPT HP_VECTOR_
VECTORS TABLE EX-BIOS DRIVER

INT OH
IP IP

C'S CS
OS EX-BIOS

DRIVER
IP IP CODE
CS CS

9 OS
0'

U

INT 06FH t---------4

INT OFFH t-------I

Figure 2.2

20 ROM BIOS Overview

Driver Data Areas

Each driver has an independently specified data area. Some EX-BIOS drivers share the same data
areas. The data areas for the EX-BIOS drivers are above the HP_VECTOR-TABLE and the
HP_ENTRY_CODE shown in figure 2.2. Although each driver has its own data area, the DS for
each driver is stored in the HP_VECTOR-TABLE, and its data area must start at DS:O. Each data
area must reside on a paragraph boundary.

The data area for each driver consists of a driver header, followed by an optional variable storage
area. The variable storage area is unique to each driver. Table 2.5 provides a general description
of the contents of an EX-BIOS driver header.

Each driver's header and/or variable storage area is described in a following section.

Table 2.5

HP_DRIVELHEADER

Variable Offset Type Offset Definition

DH-ATR 0 Word Driver Attribute Field
DH_NAME_INDEX 2 Word Driver String Index Field
DH_V_DEFAULT 4 Word Driver's Default Logical Device Vector
DH_P_CLASS 6 Word Driver's Parent Class
DH_C_CLASS 8 Word Driver's Child Class
DH_V_PARENT OAH Word Driver's Parent Vector
DH_V_CHILD OCH Word Driver's Child Vector
DH_MAJOR OEH Byte Sub Address Field
DH_MINOR OFH Byte Sub Address Field

EX-BIOS Driver Headers

The definition of each of these fields is listed in the following. Additional information on these
fields can be found in Appendix G.

~ DH--.-ATR: Each bit in the DH--.-ATR field indicates a property of the
driver for device mapping purposes. These bits are
defined in Appendix G.

ROM BIOS Overview 21

The DH_NAME_INDEX is used to derive the
localization string index of the driver. This is given by the
function F_STIL-GET_STRING in the V_SYSTEM
driver. See Section 9 for additional information.

The DH_V_DEFAULT field contains the driver's default ~
vector address.

DH_P_CLASS and DH_C_CLASS: In conjunction, these fields indicate which drivers may be
mapped together. DH_P_CLASS and DH_C_CLASS
are bit masks. Each bit position represents a set of
drivers. If a bit is set then the driver is in that set of
drivers. The DH_P_CLASS field indicates a driver is in
from 0 to 16 different driver sets. A driver can only map
to another driver if its DH_P_CLASS field matches at
least one bit position of the other driver's
DH_C_CLASS field. Furthermore, the DH-ATR field is
another condition of mapping. The bits are defined in
Appendix G.

The DH_V_PARENT field contains a vector to the driver
that is called when the current driver receives an F_ISR
function code that it cannot or doesn't know how to ~
process.

The DH_V_CHILD field contains a vector to the driver
that is called if this driver decides it cannot handle the
request function (as long as that function is not F_ISR).

Device bus address information.

EX-BIOS Global Data Area

The method for locating the EX-BIOS global data area is found in the "EX-BIOS Data Area Map"
of Appendix B. The EX-BIOS global data area is shared between several EX-BIOS drivers. It
contains temporary and permanent variables that are required by the BIOS to function properly.
Some of these variables can be modified by application programs. As with any modification to
the STD-BIOS data area, care should be taken with the EX-BIOS global data area. Table 2.6 ~,

defines the contents of this area. -,

22 ROM BIOS Overview

Table 2.6

Global Data Area

Byte Name Type Definition

0O-013H Reserved
14 T_SND_FLAG Byte Sound Driver Status

Bit Definition
7 '1' Click enabled
6 '1' Beep enabled
5-0 Reserved

15 T_SND_CLICLCOUNT Byte Contains number of pending key
clicks. Maximum of four.

16 T_SND_CLICLDURA Byte Contains current tick duration
scaler.

17 T_SND_CLICLVOLUME Byte Contains current key click volume.

18 T_SND_BEEP_CYCLE Word Contains current beep period in
ten microsecond increments.

1A T_SND_BEEP_DURA Word Contains current duration of the
beep in 10 microsecond
increments.

1C T_SND_BEEP_COUNT Byte Contains number of pending beep
functions. Maximum of four.

10 Reserved Byte
1E T_STLNEXT_INDEX Word Next unused string index number.
20 and up Reserved

ROM BIOS Overview 23

24 ROM BIOS Overview

SECTION 3

TABLE OF CONTENTS

3. ViDEO 27

3.1 Overview 27

3.2 Data Structures 27

3.3 Video Driver (INT 10H) 33
Video Driver Function Definitions 35

F10_SET_MODE (AH = OOH) 35
F10_SET_CURSIZE (AH = 01 H) 35
F10_SET_CURPOS (AH = 02H) 36
F10_RD_CURPOS (AH = 03H) 36
F10_RD_PENPOS (AH = 04H) 36
F10_SET_PAGE (AH = OSH) 37
F10_SCROLLUP (AH = 06H) 37
F10_SCROLLDN (AH = 07H) 38
F10_RD_CHARATR (AH = 08H) 38
F10_WLCHARATR (AH = 09H) 39
F10_WLCHARCUR (AH = OAH) 39
F10_SET_PALLET (AH = OSH) 40
F10_WLPIXEL (AH = OCH) 40
F10_RD_PIXEL (AH = ODH) 41
F10_WLCHARTEL (AH = OEH) 42
F10_GET_STMODE (AH = OFH) 42
Write String (AH = 13H) 42
F10_WRS_00 (AX = 1300H) 42
F10_WRS_01 (AX = 1301 H) 43
F10_WRS_02 (AX = 1302H) 43
F10_WRS_03 (AX = 1303H) 44

3.4 HP Video Extension Functions 44
F10_INQUIRE (AX = 6FOOH) 45
F10_GET_INFO (AX = 6F01 H) 45
F10_SET_INFO (AX = 6F02H) 47
F10_MOD_INFO (AX = 6F03H) 47
F10_GET_RES (AX = 6F04H) 48
F10-><SET_MODE (AX = 6F05H) 49

25

26 Video

SECTION 3. VIDEO

The HP MultiMode Video Display Adapter provides a wide variety of display modes, resolution,
character attributes, and other features. The purpose of the video driver is to allow programs to
access these features and control the video display.

3.1 Overview

In the text mode, the MultiMode Video Display Adapter uses an 8 X 16 character cell which
generates high quality characters. Access to the display memory is fully synchronized to eliminate
the "snow" problem present in many color display adapters. (Snow occurs when writing a
character to display memory while the video memory is being accessed by the display refresh
circuitry.) This full synchronization makes the INT 10H video driver faster, since there is no need

,. to wait for a vertical retrace to place characters on the screen.

The MultiMode Video Display Adapter provides seven more display modes than the industry
standard color graphics adapter. Four of the modes allow 27 lines of text on the screen. The
other three modes allow graphics modes that double the graphics resolution of the display
(320 X 400 and 640 X 400 pixels). The standard INT 10H video driver has been extended to allow
the programmer to set these modes. No other support is provided to make use of these modes.
Refer to HP Vectra Technical Reference Manual Volume I: Hardware for more information on the
MultiMode Video Display Adapter.

3.2 Data Structures

The MultiMode Video Display Adapter has 32KB of video memory starting at address OB8000H.
This allows graphics resolutions of 320 X 400 in medium resolution modes and 640 X 400 in
high resolution modes. The following is a discussion of how this memory is organized depending
on the video mode selected.

Video 27

In either of the text modes (80 x 25 or 40 x 25) nlemory is organized as sequential pages. Each
page contains character cells that are made up of an 8 bit character code and an 8 bit attribute
(see Figure 3.1).

Text Display Memory Organization
~

Character Cell Organization Color Values

Byte 0

I R G B Color

8 Bit Char Code I I 0 0 0 0 Black
0 0 0 1 Blue
0 0 1 0 Green

Blink bit 0 0 1 1 Cyan
1 = Blinking on 0 1 0 0 Redo = Blinking off 0 1 0 1 Magenta

0 1 1 0 Brown
Background color 0 1 1 1 Light Grey

1 0 0 0 Dark Grey
Intensity bit 1 0 0 1 Light Blue

1 = High 1 0 1 0 Light Green
o = Low 1 0 1 1 Light Cyan

1 1 0 0 Light Red
Foreground color 1 1 0 1 Light Magenta

1 1 1 0 Yellow
1 1 1 1 White ~

80 X 25 Text Memory Page

CeliO Cell 1 Cell 79

Page 0
(OB800:0H)

Page 1
(OB800:0FAOH)

Byte 0 Byte 1 I I ••• I
•
•
•

I I ••• I

Figure 3.1

Row 0

Row 1

Row 24

Row 0

Row 1

Graphics modes can be of two types: medium resolution (320 X 200 or 320 X 400) and high
resolution (640 X 200 or 640 X 400). In the medium resolution mode each pixel corresponds to
two bits of memory so four colors can be displayed. In the high resolution modes each pixel
corresponds to one bit of memory and only one color can be displayed (the background color is
always black). See Figures 3.2 and 3.3 for more details.

28 Video

Graphics Display Memory Organization

320 x 200 Graphics Display Memory

OB800:0H

OB800:2000H

OB800:4000H

OB800:7FFFH

Byte 0 I Byte 1 I Byte 2 I ... IByte 79

•
•
•

Byte 0 I Byte 1 I Byte 2 I ••• IByte 79

•
•
•

Not Accessible

Scan line
o
2

4

1

3

5

Writing to these addresses
actually writes to addresses
OB800:0H through OB800:3FFFH

Byte I Pixel Organization

7 6 5 432 1 0 bit number

pixel number

o 0 - 1 of 16 Background Colors
o 1 - Green/Cyan
1 0 - Red/Magenta
1 1 - Brown/Light Grey

Figure 3.2

Video 29

Graphics Display Memory Organization

640 x 400 Graphics Display Memory

OB800:0H

OB800:2000H

OB800:4000H

OB800:6000H

Byte 0 I Byte 1 I Byte 2 I • •• IByte 79

•
•
•

Byte 0 I Byte 1 I Byte 2 I • •• IByte 79

•
•
•

Byte 0 I Byte 1 I Byte 2 I • •• IByte 79

·•
•

Byte 0 I Byte 1 I Byte 2 I • •• IByte 79

•
•
•

Scan line

o
4

8

1

5

9

2

6

10

3

7
~11

Byte I Pixel Organization

7 6 5 4 3 2 1 0 bit number

o 1 2 3 4 5 6 7 pixel number

o- Background Color (Black)
1 - 1 of 16 Foreground Colors

Figure 3.3

In all the graphics modes, the memory used for scan lines is not sequential but it is interleaved at
fixed intervals of 8K. In the modes that are 200 scan lines, even scan lines start at offset 0 and
odd scan lines start at offset 2000H. In the modes that are 400 scan lines, the following table
can be used to determine the appropriate offset:

30 Video

Scan line is multiple of 4 (0,4,8,12) use offset 0
Scan line is multiple of 4 plus 1 (1,5,9,13) use offset 2000H
Scan line is multiple of 4 plus 2 (2,6,10,14) use offset 4000H
Scan line is multiple of 4 plus 3 (3,7,11,15) use offset 6000H

All the scan lines of a particular group are organized sequentially within a particular offset. See
Figures 3.2 and 3.3.

Other video driver data structures are located in the STD-BIOS data area. They are stored in
memory addresses 449H (40H:49H) through 466H (40H:66H). Table 3.1 lists the memory
locations and their definitions.

Table 3.1

5TD-8105 Video Driver Data Area

Address Type Definition

00449H Byte Current Video Display Mode
0044AH Word Number of columns
0044CH Word Regen buffer length
0044EH Word Starting address of regen buffer
00450H Word Cursor position for Display Page 0

00452H Word Cursor position for Display Page 1
00454H Word Cursor position for Display Page 2
00456H Word Cursor position for Display Page 3
00458H Word Cursor position for Display Page 4
0045AH Word Cursor position for Display Page 5

0045CH Word Cursor position for Display Page 6
0045EH Word Cursor position for Display Page 7
00460H Word Current cursor mode
00462H Byte Active page number
00463H Word Address of current display adapter

00465H Byte Mode (current setting of status register)
00466H Byte Pallet setting

Video data structures are also maintained in the EX-BIOS data area. These structures are
accessible through the data segment of the EX-BIOS video service routine. The following code
sets the ES register to the EX-BIOS video driver's (V_SVIDEO'S) data segment:

Video 31

MOVAX,O
MOVES,AX
MOV AX,ES: [6FH*4 + 2J

MOVES,AX
MOV AX,ES: [V_SVIDEO + 4J
MOVES,AX

;segment at 0
,
;read the base address
;of the HP_VECTOR_TABLE

;read base address of
;video parameters

The addresses listed are offsets into this data segment. The following table gives the data
maintained in V_SVIDEO/s (0054H) data segment:

Table 3.2

Video EX-BIOS Data Structures

Variable Name Offset Type Definition

Driver Header 0-5 Byte Device Header Attributes, Name, Index,
and Default Vector

VID_PRIMARY 6 Byte The current primary display:
00 Card at I/O Address 3BOH
01 Card at I/O Address 3COH -~

02 Card at I/O Address 3DOH
03 Card containing ROM Code.

VID_SECONDARY 7 Byte If two cards are in the system, same
number as VID_PRIMARY for the
second card.

VID_FOUND_ROM 8 Byte Flag set to true if ROM code was found
in any video adapter card.

VID_IDS 9-0CH Byte List of IDs of all cards found.
VID_STATUS OD-010H Byte RAM copies of the status register.
VID_EXT_STATUS 11-014H Byte RAM copies of the extended status

register for each possible card in the
system.

VID_PARM_BLOCK 15-03BH Byte Reserved for saving the video
parameters stored in the standard BIOS
data area when switching between
primary and secondary video boards.

VID_LAST_IBM_MODE 03CH Byte Used to detect if a 'rogue' program
changed the modes without telling the
HP system.

VID_EXT_MODE 03DH' Byte Specifies the current video mode
(0 ... 15).

3E-03FH Byte Reserved

32 Video

3.3 Video Driver (lNT 10H)

The video driver functions can be broken down into the following categories.

• Display Control-These functions control the display appearance, cursor and light pen
position, active text memory page, and scrolling through text memory.

• Character Handling Functions-These functions manipulate characters on the screen.

• String Functions-These functions allow placement of strings of text on the screen.

• Graphics Functions-These functions provide a minimal interface to the graphics capabilities
of the machine.

• Extended Video Functions-These functions support extra video capabilities of the
MultiMode Video Display Adapter hardware.

Table 3.3 summarizes the functions performed by the video driver. A detailed description of the
functions is given following the table.

Video 33

Table 3.3

Video Driver Function Code Summary

INT Functionl Function
Hex Equate Value Definition

10H INT_VIDEO Video
F10_SET_MODE OOH Set video mode
F10_SET_CURSIZE 01H Set cursor size
F10_SET_CURPOS 02H Set cursor position
F10_RD_CURPOS 03H Read cursor position
F10_RD_PENPOS 04H Read light-pen position

F10_SET_PAGE OSH Set active display page
F10_SCROLLUP 06H Scroll rectangle up
F10_SCROLLDN 07H Scroll rectangle down
F1O_RD_CHARATR 08H Read character and attribute at cursor

position

F10_WLCHARATR 09H Write character and attribute at cursor
p'osition

F10_WLCHARCUR OAH Write character at cursor position
F10_SET__PALLET OSH Set color pallet
F10_WLPIXEL OCH Write pixel
F10_RD_PIXEL OOH Read pixel
F10_WLCHARTEL OEH Write teletype character
F10_GET_STMODE OFH Get video state and mode

10H-12H Reserved

Write string functions:
F10_WRS_OO 1300H global attribute
F10_WRS_01 1301H global attribute, move cursor
F10_WRS_02 1302H individual attributes
F10_WRS_03 1303H individual attributes, move cursor

F10_INQUIRE 6FOOH EX-BIOS present
F10_GET_INFO 6F01H Get video parameters
F10_SET_INFO 6F02H Sets video parameter
F10_MOD_INFO 6F03H Modifies video parameters
F10_GET_RES 6F04H Reports video resolution
F10--><SET_MODE 6F05H Sets video resolution

34 Video

Video Driver Function Definitions

The following function definitions provide a detailed description of each of the functions in the
video driver.

This function sets the display mode of the video adapter. The new mode is determined by the
value passed in the AL register. Refer to the Vectra Technical Reference Manual, Volume I for
additional information on the various video display modes available on the MultiMode Video
Display Adapter.

On Entry: AH = F10_SET_MODE (OOH)
AL = Mode

Data Definition
00 40 x 25 Black and White Alphanumeric
01 40 x 25 Color Alphanumeric
02 80 x 25 Black and White Alphanumeric
03 80 x 25 Color Alphanumeric
04 320 x 200 Color Graphics
05 320 x 200 Black and White Graphics
06 640 x 200 Black and White Graphics
07 Only valid if a monochrome display adapter is present.

On Exit: No values returned

Registers Altered: AX

This function sets the size of the cursor displayed in the alphanumeric display modes. Each
character cell in the alphanumeric display modes is eight scan lines high. The cursor size is
defined by specifying the starting and ending scan lines within the character cell. The scan lines
are numbered from 0 (top of cell) to 7 (bottom). The starting and ending scan lines are passed in
registers CH and CL. This function performs no operation if the MultiMode Video Display
Adapter is in one of the graphics modes.

On Entry: AH = F10_SET_CURSIZE(01H)
CH = Starting scan line
CL = Ending scan line

Video 35

On Exit: No values returned.

Registers Altered: AH

This function sets the row and column address of the cursor to the specified page, and moves
the cursor to that address. When the MultiMode Video Display Adapter is in one of the graphics
modes, a page number of 0 must be specified.

On Entry: AH = F1 O_SET_CURPOS (02H)
BH = Display page number
DH = Row address of cursor. (0...24)
DL = Column address of cursor. (0...79)

On Exit: No values returned.

Registers Altered: None

This function returns the current address and size of the cursor on the specified page. If the
MultiMode Video Display Adapter is in one of the graphics modes, a page number of 0 must be
specified. The values returned for the cursor size in the graphics mode will be invalid.

On Entry: AH = F1 O_RD_CURPOS (03H)
BH = Display page number

On Exit: CH = Starting scan line
CL = Ending scan line
DH = Row address of cursor. (0...24)
DL = Column address of cursor. (0...79)

Registers Altered: CX, DX

This function returns the current state and position of the light pen if it is activated. The position
is reported in both character row/column and graphic pixel formats.

36 Video

On Exit: AH = Light Pen state

Data Definition
o Not activated
1 Activated

BX = Horizontal pixel position of light pen
CH = Vertical pixel position of light pen (200 line mode)
DH = Row position of light pen
DL = Column position of light pen

Registers Altered: AH, BX, CH, DX

This function sets the active display page in the alphanumeric mode. Valid page numbers are 0
through 7 for 80 X 25 modes, and 0 through 7 for 40 X 25 modes. This function is not valid
for graphics modes.

On Entry: AH = F1 O_SET_PAGE (OSH)
AL = Page number (0 through 7)

On Exit: No values returned.

Registers Altered: AX

F10_SCROLLUP (AH = 06H)

This function scrolls the contents of a window up a specified number of lines. The window is
defined by the row and column addresses stored in the CX and DX registers. The number of lines
to be scrolled is passed in register AL. If AL is set to 0, the function interprets this as a command
to scroll all lines.

On Entry: AH = F1 O_SCROLl-UP (06H)
AL = Number of lines to scroll (0 = scroll all)
BH = Attribute to place in blanked lines
CH = Row address of upper left corner of window (0...24)
CL = Column address of upper left corner of window (0 79)
DH = Row address of lower right corner of window (0 24)
DL = Column address of lower right corner of window (0...79)

Video 37

On Exit: No values returned.

Registers Altered: None

F10_SCROLLDN (AH = 07H)

This function scrolls the contents of a window down a specified number of lines. The window is
defined by the row and column addresses stored in the CX and DX registers. The number of lines
to be scrolled is passed in register AL. If AL is set to 0, the function interprets this as a command
to scroll all lines. This function is only valid when the MultiMode Video Display Adapter is in one
of the alphanumeric modes.

On Entry: AH = F10_SCROLLDN (07H)
AL = Number of lines to scroll (0 = scroll all)
BH = Attribute to place in blanked linesl
CH = Row address of upper left corner of window (0...24)
CL = Column address of upper left corner of window (0 79)
DH = Row address of lower right corner of window (0 24)
DL = Column address of lower right corner of window (0...79)

On Exit: No values returned.

Registers Altered: None

This function returns the character byte and attribute byte at the current cursor location. If the
MultiMode Video Display Adapter is in one of the alphanumeric modes, a page number must be
specified. If the video display adapter is in one of the graphics modes, only the character is
returned, since characters do not have attribute bytes in the graphics modes.

On Entry: AH = F1 O_RD_CHARATR (08H)
BH = Page number (alphanumeric modes only)

On Exit: AH = Attribute byte (valid only in alphanumeric modes)
AL = Character

Registers Altered: AX

38 Video

F10_WLCHARATR (AH = 09H)

This function writes character and attribute bytes at the current cursor location. If the MultiMode
Video Display Adapter is in one of the alphanumeric modes, a page number may be specified. If
the MultiMode Video Display Adapter is in one of the graphics modes, only the character is
written. More than one character and attribute can be stored by placing the number of copies
desired in CX. This function will wrap around both line and screen if too many characters are
specified. Note that this function makes copies of a single character/attribute combination, it
does not print a string. Refer to the Write String function for that operation.

On Entry: AH = F10_WLCHARATR (09H)
AL = Character
BH = Page number (alphanumeric modes only)
BL = Attribute byte (valid only in alphanumeric modes)
CX = Number of characters to write

On Exit: No values returned.

Registers Altered: None

F10_WLCHARCUR (AH = OAH)

This function writes a character to the current cursor location, retaining the existing attribute
byte. The function is identical to the F10_WLCHARATR function, except that no attribute
byte is written.

On Entry: AH = F1 O_WLCHARCUR (OAH)
AL = Character
BH = Page number (alphanumeric modes only)
CX = Number of characters to write

On Exit: No values returned.

Registers Altered: None

Video 39

This function allows setting the background color (if BH = 0) or the foreground color pallet
(if BH = 1).

On Entry: AH = F10_SET_PALLET (OBH)
BH = Color Select ID

Data Definition
a Set the background color (in medium resolution modes) or the

foreground color (in high resolution modes) based on the low bits of BL
(bits O...3) to one of 16 colors.

Select color pallet (for medium resolution modes) based on the least
significant bit of BL. If·bit 0 of BL = 'a' then select the green, red, brown
pallet. If bit of BL = '1' then select the cyan, magenta, light grey pallet.

BL = Color select value

On Exit: No values returned

Registers Altered: None

F10_WLPIXEL (AH = OCH)

This function writes a pixel on the screen. If the MultiMode Video Display Adapter is in one of
the "Four color" modes (320 X 200) the color of the pixel may be passed in register AL. Bits a
and 1 of AL are interpreted as the color bits. If bit 7 of AL is set, bits a and 1 are 'XOR'ed with
the current pixel color bits, otherwise they replace the current pixel color bits. If the MultiMode
Video Display Adapter is in the "Two color" mode (640 X 200), the bit corresponding to the
desired pixel is set.

40 Video

On Entry: AH = F10_WLPIXEL (OCH)
AL = Color

In IIFour color" mode (320x200):

,... Bit Data Definition
7 1 Bits 0 and 1 XORed with current pixel.

0 Bits 0 and 1 replace current pixel.
0,1 Color bits.

In IITwo color" mode (640 x 200):

Bit Data Definition
7 1 Bit 0 XORed with current pixel.

0 Bit 0 replaces current pixel.
0 Color bit.

CX = Horizontal pixel address
DX = Vertical pixel address

On Exit: No values returned.,.
Registers Altered: AX

This function returns the color code of the specified pixel.

On Entry: AH = F1 O_RD_PIXEL (ODH)
CX = Horizontal pixel address
DX = Vertical pixel address

On Exit: AL = Color value of pixel

Registers Altered: AX, CX, DX

Video 41

F10_WLCHARTEl (AH = OEH)

This function writes a character to the active page, then advances the cursor one location. At the
end of a line, the cursor will wrap to the next line; at the end of the screen, the cursor will scroll.
In the alphanumeric modes, this function maintains the current video display attributes. In the
graphics modes, the foreground color is passed in register BL. The ASCII characters Line Feed ~

(OAH), Carriage Return (ODH), Backspace (08H), and Bell (07H) are interpreted by this function as
ASCII commands and are executed as such.

On Entry: AH = F1 O_WLCHARTEL (OEH)
AL = Character
BL = Foreground color (in graphics modes only)

On Exit: No values returned.

Registers Altered: AX

This function returns the current MultiMode Video Display Adapter state. The mode, number of
characters per line, and current display page are returned.

On Entry: AH = F1 O_GET_STMODE (OFH)

On Exit: AH = Number of characters per line
AL = Current mode
BH = Current display page

Registers Altered: AX, BH

Write String (AH = 13H)

This function writes a string of characters to the screen. This function consists of four separate
subfunctions which control whether each character has its own attribute byte or not, and
whether the cursor is moved or not. Each of the subfunctions is detailed in the following. The
ASCII characters Line Feed (OAH), Carriage Return (ODH), Backspace (08H), and Bell (07H) are
interpreted by this function as ASCII commands and are executed as such.

F10_WRS_OO (AJK = 1300H)

Write string attribute without moving cursor.

42 Video

On Entry: AX = F10_WRS_00 (1300H)
BH = Display page number
BL = String attribute byte
CX = Length of string
DH = Row address of first character
DL = Column address of first character

ES:BP = Pointer to start of string
Format of string is:

Char, Char, ..., Char

On Exit: No values returned.

Registers Altered: None

F10_VVRS_01 (~= 1301H)

Write string attribute and move cursor.

On Entry: AX = F10_WRS_01 (1301 H)
BH = Display page number
BL = String attribute byte
CX = Length of string
DH = Row address of first character
DL = Column address of first character

ES:BP = Pointer to start of string
Format of string is:

Char, Char, ..., Char

On Exit: No values returned.

Registers Altered: None

F10_VVRS_02 (~= 1302H)

Write character attribute without moving cursor.

Video 43

On Entry: AX = F10_WRS_02 (1302H)
BH = Display page number
BL = String attribute byte
CX = Length of string
DH = Row address of first character
DL = Column address of first character

ES:BP = Pointer to start of string
Format of string is:

Char, Attr, Char, Attr, ... , Char, Attr

On Exit: No values returned.

Registers Altered: None

Write character attribute and move cursor.

On Entry: AX = F10_WRS_03 (1303H)
BH = Display page number
CX = Length of string
DH = Row address of first character
DL = Column address of first character

ES:BP = Pointer to start of string
Format of string is:

Char, Attr, Char, Attr, ..., Char, Attr

On Exit: No values returned.

Registers Altered: None

3.4 HP Video Extension Functions

This set of functions support the features of the MultiMode Video Display Adapter which are not ~
covered using the standard video functions. This function consists of separate subfunctions
which support the various extended capabilities of the MultiMode Video Display Adapter. Each
of these subfunctions is defined in the following subsections.

44 Video

F10_INQUIRE (AX = 6FOOH)

This subfunction determines whether or not the extended HP functions are available. If the
extended video functions are available, the BX register will be set to 4850H (which is the ASCII
characters 'HP').

On Entry: AX = F1 O_INQUIRE (6FOOH)
BX = Any value except 4850H CHP')

On Exit: BX = 'HP' (4850H)

Registers Altered: AX, BX

This function returns information about the primary display adapter.

On Entry: AX = F10_GET_INFO (6F01H)

On Exit: AH = Status register information,.
Bit Data Definition
0 1 Display Enabled.
1 1 Light Pen Trigger Set.
2 1 Light Pen Switch Made.
3 1 Vertical Synchronization
4 Monitor Resolution

0 350 or 400 line monitor
1 200 line monitor

5 Display type
0 Color
1 Monochrome

6-7 Diagnostic Bits

Video 45

AL = Card Identifier

Data
OOH
41H
42H
43H
44H
45H
46H
51H

Definition
Non HP card with ROM and possibly its own INT 10H driver.
MultiMode Video Display Adapter
Reserved
Reserved
Reserved
Industry Standard Monochrome Display Adapter
Industry Standard Color Display Adapter
Reserved

CL = Current value of Extended Control register. This register is only valid when the
Card Identifier is 41 H.

This description applies to data returned when a MultiMode Video Display Adapter is in the
system.

Bit Data
0

0
1

0
1

2
0
1

3
0
1

4
0
1

5
0
1

6-7

Registers Altered: AX,CL

Definition
Current screen resolution
200 line
400 line
Underline enable.
'Blue' bit of foreground attribute interpreted as color blue.
'Blue' bit of foreground attribute interpreted as underline.
Font Selected.
Standard-8
HP-ROMAN-8
Memory disable.
Memory enabled for CPU access.
Memory disabled for CPU access.
16/32K Memory select.
Wrap second 16K of RAM into first 16K.
Allow access to full 32K of memory.
Page select.
Select first 16K of memory.
Select second 16K of memory.
Unused

46 Video

This function modifies the value of the Extended Control register port 3DDH on the MultiMode
Video Display Adapter. (Refer to the Vectra Technical Reference Manual, Volume I for more
information about this port.)

On Entry: AX = F1 O_SET_INFO (6F02H)
BL = Byte of data to be written to the Extended Control Register.

Bit Data Definition
0 Current screen resolution

0 200 line
1 400 line

Underline enable.
0 'Blue' bit of foreground attribute interpreted as color blue.
1 'Blue' bit of foreground attribute interpreted as underline.

2 Font Selected.
0 Standard-8
1 HP-ROMAN-8

3 Memory disable.
0 Memory enabled for CPU access.

~
1 Memory disabled for CPU access.

4 16/32K Memory select.
0 Wrap second 16K of RAM into first 16K.
1 Allow access to full 32K of memory.

5 Page select.
0 Select first 16K of memory.
1 Select second 16K of memory.

6-7 Reserved

On Exit: No values returned.

Registers Altered: AX, BL

This function modifies individual bits in the Extension Control register (port 3DDH) of the Multi
Mode Video Display Adapter. A mask byte is passed in register BH, which allows individual bits to
be modified without changing the state of other mode bits in the register.

Video 47

On Entry: AX = F1 O_MOD_INFO (6F03H)
BH = Mask. Bits with a mask value of 11

1are not modified; bits with a mask value of
101are modified.

BL = Bits to change. The bits indicated by the mask (BH) take the value of the BL
register.

Bit Data
a

a
1

a
1

2
a
1

3
a
1

4
a
1

5
a
1

6-7

Definition
Current screen resolution
200 line
400 line
Underline enable.
IBlue

l

bit of foreground attribute interpreted as color blue.
IBlue

l

bit of foreground attribute interpreted as underline.
Font Selected.
Standard-8
HP-ROMAN-8
Memory disable.
Memory enabled for CPU access.
Memory disabled for CPU access.
16/32K Memory select.
Wrap second 16K of RAM into first 16K.
Allow access to full 32K of memory.
Page select.
Select first 16K of memory.
Select second 16K of memory.
Reserved

On Exit: No values returned.

Registers Altered: AX

Example:

MOV AX,F10_MOD-'NFO

MOV BL,00000100B
MOV BH,11111011B
INT 10H

,. EX-BIOS Function Modify
,. Ex-Reg (6F03H)
,. Select Character Font: HP-ROMAN-8
,. Only Modify Character Font
,. Call Video Interrupt

This function returns the current video mode and screen resolution.

48 Video

On Entry: AX = F1 O_GET_RES (6F04H)

On Exit: AL = Current video mode (See Set Mode.)

Data
OOH
01H
02H
03H
04H
05H
06H
07H
08H
09H
OAH
OBH
OCH
ODH
OEH
OFH

Definition
40 x 25 Alphanumeric Black and White
40 X 25 Alphanumeric Color
80 X 25 Alphanumeric Black and White
80 X 25 Alphanumeric Color

320 X 200 Graphics Color
320 X 200 Graphics Black and White
640 X 200 Graphics Black and White

80 X 25 Only Valid for Monochrome Cards
80 X 27 Alphanumeric Black and White
80 X 27 Alphanumeric Color
40 X 27 Alphanumeric Black and White
40 X 27 Alphanumeric Color

Reserved
640 X 400 Graphics Black and White
320 X 400 Graphics Color
320 X 400 Graphics Black and White

If in one of the graphics modes:

BX = Horizontal resolution in pixels
CX = Vertical resolution in pixels

If in one of the text modes:

BX = Number of characters per row
CX = Number of rows

Registers Altered: AX, BX, CX

F10---><SET_MODE (AX = 6FOSH)

This function places the MultiMode Video Display Adapter in one of sixteen possible modes of
operation. Modes 0 through 7 are identical to the modes available with function
F1 O_SET_MODE of the video driver. Modes 8 through 15 are unique to the HP Vedra and its
MultiMode Video Display Adapter, and may only be set using this function.

Video 49

Programmers must exercise caution when setting video modes with both F10_SET_MODE (OH)
and F10---><SET_MODE (6F05H). Whenever F1 O---><SET_MODE is used to select one of the "HP
only" modes (8-15), F10---><SET_MODE (not F1 O_SET_MODE) must be used to return to one
of the industry standard modes (0-7). This "pairing" of function calls is necessary because
F1 O---><SET_MODE modifies an I/O port not normally affected by the industry standard modes.
F1 O_SET_MODE does not deal with this I/O port. ~

On Entry: AX = F1 O---><SET_MODE (6F05H)
BL = Video mode

Data Definition
OOH 40 x 25 Alphanumeric Black and White
01 H 40 X 25 Alphanumeric Color
02H 80 X 25 Alphanumeric Black and White
03H 80 X 25 Alphanumeric Color
04H 320 X 200 Graphics Color
05H 320 X 200 Graphics Black and White
06H 640 X 200 Graphics Black and White
07H 80 X 25 Only Valid for Monochrome Cards
08H 80 X 27 Alphanumeric Black and White
09H 80 X 27 Alphanumeric Color
OAH 40 X 27 Alphanumeric Black and White
OBH 40 X 27 Alphanumeric Color
OCH Reserved
ODH 640 X 400 Graphics Black and White
OEH 320 X 400 Graphics Color
OFH 320 X 400 Graphics Black and White

On Exit: No values returned.

Altered Registers: AX, BL

Example:

MOV AX,Fl0-XSET_MODE ,. Call EX-BIOS function
,. Set mode (6F05H)

MOV BL,ODH ,. Select 640 X 400 line mode
INT INT_VIDEO ,. Call video interrupt (10H)

50 Video

SECTION 4

Table of Contents

4. INPUT SYSTEM and HP-HIL 55

4.1 Overview 55

4.2 Application Interface Level 55

4.2.1 Overview 57

4.2.2 Data Structures 58
4.2.2.1 Logical Describe Record 58
4.2.2.2 Logical ISR Event Records 61
4.2.2.3 Application Event Drivers 0 ••••• 0 •••••••• 63

4.2.3 Logical GID Drivers 0 0 0 0 63
4.2.3.1 V_LTOUCH Driver (BP = OOC6H) 00 0.. 0 0.. 64
Touch Screen Driver Function Definitions. 0 00; 0.. 0 65

F_ISR (AH = OOH) .. 0 • • • • • • • 65
SF_INIT (AX = 0200H) . 0. 0.. 0000 65
SF_START (AX = 0202H) 0 ••••••••• 66
SF_REPORT_STATE (AX = 0204H) 66
SF_ VERSION_DESC (AX = 0206H) . 0 •••••••• 66
SF_DEF~TTR (AX = 0208H) . 0 0 ••••••• 67
SF_GET~TTR (AX = 020AH) 67
SF_SET~TTR (AX = 020CH) o ••••• 00. 0 67
SF_ TRACK-ON (AX = 0404H) 00..... 0. . 68
SF_TRACK-OFF (AX = 0406H) 0. 0. 0. 0. 0068
SF_CREATE_EVENT (AX = 0408H) 00o. o. 0.0068
SF_EVENT_ON (AX = 040AH) . 0 0 ••••••• 70
SF_EVENT_OFF (AX = 040CH) 0 •••• 71
SF_CLIPPING_ON (AX = 040EH) . 00. 0..... 71
SF_CLIPPING_OFF (AX = 0410H) . 00. 00.. 00 71
F_SAMPLE (AH = 06H) 000 0.. 72

4.2.3.2 V_LPOINTER Driver {BP = OOCOH) 72
Pointer Driver Function Definitions 00 0 0 73

F_ISR (AH = OOH) 0 • • 73
SF_INIT (AX = 0200H) . 0 •••••• 0 • 74
SF_START (AX = 0202H) 75
SF_REPORT_STATE (AX = 0204H) 0.0 •••• 75
SF_ VERSION_DESC (AX = 0206H) .. 0 ••••• 0 • 75
SF_DEF~TTR (AX = 0208H) .00 ••••••• 76

51

SF_GET-ATIR (AX = 020AH) 76
SF_SET-ATIR (AX = 020CH) 76
SF_TRACie-ON (AX = 0404H) 77
SF_TRACie-OFF (AX = 0406H) 77
SF_CREATE_EVENT (AX = 0408H) 77 ~
SF_EVENT_ON (AX = 040AH) 79
SF_EVENT_OFF (AX = 040CH) 80
SF_CLIPPING_ON (AX = 040EH) 80
SF_CLIPPING_OFF (AX = 0410H) 80
F_SAMPLE (AH = 06H) 81

4.2.3.3 V_LTABLET Driver {BP = OOBAH) 81
Tablet Driver Function Definitions 82

F_ISR (AH = OOH) 82
SF_INIT (AX = 0200H) 83
SF_START (AX = 0202H) 84
SF_REPORT_STATE (AX = 0204H) 84
SF_ VERSION_DESC (AX = 0206H) 84
SF_DEF-ATIR (AX = 0208H) 85
SF_GET-ATIR (AX = 020AH) 85
SF_SET-ATTR (AX = 020CH) 85
SF_TRACie-ON (AX = 0404H) 86 ~
SF_TRACie-OFF (AX = 0406H) 86 '
SF_CREATE_EVENT (AX = 0408H) 86
SF_EVENT_ON (AX = 040AH) 88
SF_EVENT_OFF (AX = 040CH) 89
SF_CLIPPING_ON (AX = 040EH) 89
SF_CLIPPING_OFF (AX = 0410H) ,. ". 89
F_SAMPLE (AH = 06H) ' 90

4.2.4 Application Event Driver Example 90

4.3 Hardware Interface Level 95
4.3.1 Overvievv 95
4.3.1.1 Device Driver Mapping 97
4.3.1.2 Device Emulation 97
4.3.2 Data Structures 98
4.3.2.1 Physical Describe Record 98
4.3.2.2 PhysicallSR Event Records 100

4.3.3 Hardware Interface Level Drivers 102 ~
4.3.3.1 V_S8259 Driver {BP = 001EH) 102
V_S8259 Driver Function Definitions 103

F_'SR (AH = OOH) 103
SF_INIT (AX = 0200H) 104

52 Input System and HP-HIL

SF_START (AX = 0202H) 104
SF_VERSION_DESC (AX = 0206H) 104
SF_ENABLE_SVC (AX = 0400H) 105
SF_DISABLE_SVC (AX = 0402H) 105
SF_ENABLE_KBD (AX = 0404H) 105
SF_DISABLE_KBD (AX = 0406H) 105
SF_ENABLE_HPHIL (AX = 0408H) 106
SF_DISABLE_HPHIL (AX = 040AH) 106

4.3.3.2 V_HPHIL Driver (BP = 0114H) 106
V_HPHIL Driver Function Definitions 108

F_ISR (AH = OOH) 108
SF_INIT (AX = 0200H) 108
SF_REPORT_STATE (AX = 0204H) 108
SF_VERSION_DESC (AX = 0206H) 109
SF_OPEN (AX = 020EH) 109
SF_CLOSE (AX = 0210H) 110
SF_CRV_RECONFIGURE (AX = 0406H) 110
SF_CRV_WR_PROMPTS (AX = 0408H) 110
SF_CRV_WfLACK (AX = 040AH) 111
SF_CRV_REPEAT (AX = 040CH) 112
SF_CRV_DISABLE_REPEAT (AX = 040EH) 112
SF_CRV_SELF_TEST (AX = 0410H) 113
SF_CRV_REPORT_STATUS (AX = 0412H) 114
SF_CRV_REPORT_NAME (AX = 0414H) 114
SF_KEYBOARD_REPEAT (AX = 0416H) 115
SF_KEYBOARD_LED (AX = 0418H) 116
F_PUT_BYTE (AH = 06H) 116
F_GET_BYTE (AH = 08H) 117
F_PUT_BUFFER (AH = OAH) 118

4.3.3.3 V_SINPUT Driver (BP = 002AH) 119
V_SINPUT Driver Function Definitions 119

F_ISR (AH = OOH) 120
SF_INIT (AX = 0200H) 120
SF_DEF_LINKS (AX = 0400H) 120
SF_GET_LINKS (AX = 0402H) 121
SF_SET_LINKS (AX = 0404H) 122
F_INQUIRE (AH = 06H) 123
F_INQUIRE-ALL (AH = 08H) 123
F_INQUIRE_FIRST (AH = OAH) 124
F_REPORT_ENTRY (AH = OCH) 124

4.3.3.4 Physical GID Driver 125
Physical GID Driver Function Definitions 125

F_ISR (AH = OOH) 125
SF_INIT (AX = 0200H) 126

Input System and HP-HIL 53

SF__START (AX = 0202H) 126
SF__VERSION__DESC (AX = 0206H) 127

4.3.3.5 V_PNULL (BP = OOOCH) 127

4.3.4 Hardware Interface Level Services 127
4.3.4.1 V_STRACK (BP = 0005AH) 128
V_STRACK Driver Function Definitions 128 ~

F_ISR (AH = OOH) 128
SF__INIT (AX = 0200H) 129
SF_START (AX = 0202H) 129
F_TRACLINIT (AH = 04H) 129
F__TRACLON (AH = 06H) 130
F__TRACLOFF (AH = 08H) 130
F__DEF_MASKS (AH = OAH) 130
F_SET__LIMITSJ (AH = OCH) 132
F__SET__LIMITS__Y (AH = OEH) 132
F_PWT__SPRITE (AH = 10H) 133
F_REMOVE__SPRITE (AH = 12H) 133

54 Input System and HP-HIL

SECTION 4. INPUT SYSTEM AND HP-HIL

The Input System is a set of drivers which support the HP-HIL input devices. Up to seven HP-HIL
input devices may be connected at one time. The Input System can support properly integrated
non-HP-HIL devices as well. In its basic configuration, the system has one input device, the
keyboard.

4.1 Overview

The standard devices that connect to the system via the HP-HIL link are the keyboard, mouse,
touch screen and tablet. The application interface for the keyboard is described in Section 5. The
industry standard interface for the mouse (INT 33H functions) is provided in Section 6. The
interfaces for simple mouse, touch screen and tablet support are described in this section.

The architecture of the Input System is divided into two levels (see figure 4.1). The application
interface level allows the programmer to communicate with the HP-HIL devices with minimum
overhead. The second level, the hardware interface level, allows programmers to manipulate the
internals of the system. With this interface, support for additional devices can be added or the
data path of existing ones re-directed.

The first portion of this section provides an overview of the application interface level, a detailed
description of the actual interfaces and how to access them. The second portion of this section
describes the hardware interface level.

4.2 Application Interface Level

Application programs interface with the Input System through a set of logical device drivers. The
Input System has an application interface for keyboard, tablet, pointer (simple mouse), and touch
screen input devices. These drivers are shown in figure 4.1.

Input System and HP-HIL 55

Input System Block Diagram

Application

I
Touch
Screen

Interface
(V_LTOUCH)

I
Application Interface Level

Hardware Interface Level

Pointer
(Simple Mouse)

Interface
(V_LPOINTER)

Hardware
Interface
Drivers

I
Tablet

Interface
(V_LTABLET)

I

Physical Input Devices

Figure 4.1

The tablet, pointer, and touch screen application program interface drivers are grouped together
in figure 4.1 as they are all Graphic Input Device (GID) drivers. GID drivers accept relative graphic
motion data, absolute graphics data, and button scancode data from the input devices. Data
from these devices is represented in a consistent manner throughout the Input System, making
programmatic access to different Graphic Input Devices a simple task (see the Application Event
Driver Example later in this section).

56 Input System and HP-HIL

4.2.1 Overview

The Input System supports three logical GID drivers; one for each of the standard GID data types.
There is a GID driver for each of the touch screen, pointer (simple mouse), and tablet devices
called V_LTOUCH, V_LPOINTER, and V_LTABLET respectively. Each of these drivers has a fixed
location in the HP_VECTOLTABLE. They all share a common code module (i.e., they have the
same CS:IP in the table), but have different data areas.

The GID drivers perform clipping and scaling under certain conditions. Absolute devices like the
touch screen and tablet are always scaled but clipping is user selectable. Relative devices like the
mouse can have both scaling and clipping selected by the user.

The logical GID drivers perform two additional tasks. The first is graphics cursor movement (sprite
tracking). This is performed by the EX-BIOS driver V_STRACK, which is called by the logical GID
driver if tracking is enabled. The second task is to provide interrupt service to the application. The
application may install a routine to be called by the logical GID driyer every time a GID event
occurs, as opposed to the application calling the GID driver repeatedly (polling) to see if an event
has occurred .

The following text outlines the actions that occur for touch screen input; from touching the
screen to application data retrieval.

,... 1. The user touches the screen. This causes the physical device to generate input data and
interrupt the hardware interface level.

2. The hardware interface level processes the interrupt and passes the data (ISR Event Record)
to the logical touch screen driver (V_LTOUCH).

3. V_LTOUCH scales the event to fit the current dimensions of the screen. At this point two
optional things may happen. First, the data may be clipped. Second, the user defined event
driver will be called if it is installed and enabled.

4. If the user event routine was not installed and enabled then the application must call (poll)
V_LTOUCH with the F_SAMPLE function (see subsection on V_LTOUCH functions) to get
the input data.

There are two methods for applications to receive data from the Input System: polled mode and
interrupt mode. In polled mode, the application must continually interrogate the logical GID
driver using the F_SAMPLE function to determine if any input has occurred, In interrupt mode,
the application must first install an ISR event handling routine (application event driver) using
SF_CREATE_EVENT to handle interrupt calls from the logical GID driver. After installation, the
application informs the logical GID driver that it is ready to receive interrupts by calling the
SF_EVENT_ON subfunction. After event interrupts have been enabled, the application will
receive an interrupt every time the logical GID driver receives data from the hardware interface
level.

Input System and HP-HIL 57

4.2.2 Data Structures

The application interface level uses two major data structures: the Logical Describe Record and
the Logical ISR Event Record(s). These data structures help keep track of the numerous events
occurring in the Input System.

4.2.2.1 Logical Describe Record

The Logical Describe Record is used by the logical GID drivers to keep track of the current state
of their respective devices. Each of the logical GID drivers has a Logical Describe Record
associated with it, which is located directly after the driver header starting with memory address
DS:001 OH. An explanation of the Logical Describe Record fields follows, see table 4.1 for field
types and offsets.

Table 4.1

Logical GID Driver Describe Record

Field Type Offset Description

Driver Header OOH Driver Header (see Section 2)
LD_SOURCE BYTE 10H Device GID type
LD_HPHILID BYTE 11H Physical device ID
LD_DEVICE_STATE WORD 12H Status bits for the logical device
LD_INDEX BYTE 14H Physical device vector number

LD_MA>LAXIS BYTE 15H Maximum number of axes reported
LD_CLASS BYLE 16H Device class
LD_PROMPTS BYTE 17H Number of button/prompts
LD_RESERVED BYTE 18H-1BH Reserved
LD_TRANSITION BYTE 1CH Button transitions

LD_STATE BYTE 1DH Current state of the buttons
LD_RESOLUTION WORD 1EH Logical device resolution
LD_SIZE-X WORD 20H Maximum x-axis count
LD_SIXE_Y WORD 22H Maximum y-axis count
LD--.ABS-X WORD 24H X position data for absolute devices

LD--.ABS_Y WORD 26H Y position data for absolute devices
LD_RELX WORD 28H X delta for relative devices
LD_RELY WORD 2AH Y delta for relative devices
LD--.ACCUM-X WORD 2CH X-axis scaling accumulator
LD--.ACCUM_Y WORD 2EH Y-axis scaling accumulator

58 Input System and HP-HIL

This field is divided into nibbles. Bits 7-4 contain the graphics input
device type. This field is loaded with the low order nibble of the
appropriate logical GID data type (table 4.5). Bits 3-0 are reserved.

ID byte of the physical device which last reported data. See table 4.2 for
a list of HP-HIL ID bytes.

Status bits for the logical device

Bit

OFH-OSH
04H
03H
02H
01H
OOH

Definition

Reserved.
Event enabled when set.
Tracking enabled when set.
Clipping enabled when set.
Button error occurred when set.
Interrupt in progress when set.

This contains the vector address divided by 6 of the last physical
device that reported data.

LD_RESOLUTION

Maximum number of axes supported by the device. Valid range is
0-2.

Device class. Bits 7-4 contain the current class. Bits 3-0 contain the
default class. See Appendix G for more information on device
classes.

Number of buttons and prompts supported by the device. Bits 7-4
contain the number of prompts. Bits 3-0 contain the number of
buttons.

Transitions reported per button, i.e., a set bit indicates that the
corresponding button was either pushed or released. Bit 7
corresponds to button 7 etc.

Current state of the buttons. 1 is down, 0 is up. Bit 7 corresponds
to button 7 etc. If LD_STATE is XOR'ed with LD_TRANSITION the
result is the previous button state.

This is the resolution of the logical device. For logical devices this is
typically one.

Input System and HP-HIL 59

Table 4.2

HP-HIL Device ID Bytes

Device Type 10 Range Device Description

Keyboard OOH-02H Reserved
03H Swiss-French Keyboard
04H-06H Reserved
07H Canadian-English Keyboard
08H-OAH Reserved
OSH Italian Keyboard
OCH Reserved
DOH Dutch Keyboard
OEH Swedish Keyboard
OFH German Keyboard
10H-12H Reserved
13H Spanish
14H Reserved
15H Belgian (Flemish) Keyboard
16H Finnish Keyboard
17H United Kingdom Keyboard
18H French-Canadian Keyboard
19H Swiss-German Keyboard
1AH Norwegian Keyboard
1BH French Keyboard
1CH Danish Keyboard
10H Katakana Keyboard
1EH Latin American-Spanish Keyboard
1FH United States-American Keyboard

Other 20H-2BH Reserved
2CH-2FH Tone Generator
3DH-3FH Reserved

Character 40H-4FH Reserved
Entry 50H-5BH Reserved

5CH-5FH Barcode Reader
Relative 6DH-67H Reserved
Positioners 68H-6BH Mouse

6CH-6FH Trackball
70H-7FH Reserved

60 Input System and HP-HIL

Device Type ID Range Device Description

Absolute 80H-87H Reserved
Positioners BBH-BBH Touchpad

BCH-BFH Touch Screen
90H-97H Graphics Tablet
98H-9FH Reserved

Keyboard OAOH-OBFH Compressed Keyboard (91-93 keys)
OCOH-ODFH Extended Keyboard (107-109 keys)
OEOH-OFFH Standard Keyboard (85-87 keys)

LD-ABSJ

LD-ACCUMJ

LD-ACCUM_Y

Maximum count (in units of resolution) for the x-axis.

Maximum count (in units of resolution) for the y-axis.

X position data for devices which report absolute coordinates
(absolute devices).

Y position data for devices which report absolute coordinates.

Latest change in x position for devices which return coordinates
relative to the previous position (relative devices).

Latest change in y position for devices which return coordinates
relative to the previous position.

Accumulator used to sum partial movements when scaling from
the physical device space to the logical device space. The value
stored here represents a fraction of one logical unit for the x-axis.

Accumulator used to sum partial movements when scaling from
the physical device space to the logical device space. The value
stored here represents a fraction of one logical unit for the y-axis.

4.2.2.2 Logical ISR Event Records

A Logical ISR Event Record is not a data structure in the truest sense, but is a set of register
definitions for inter-driver communication of input events. These definitions apply not only to
Input System drivers but to application event drivers as well. Tables 4.3 and 4.4 define the
Logical ISR Event Records.

Input System and HP-HIL 61

Tab'e 4.3

GID Button ISR Event Record

AH = F_ISR (OOH)
DL = Physical device driver's vector address / 6
BX = Button information.

Bit Value
OFH-08H
07H 1

o
06H-OOH

Definition
Reserved
Button up
Button down
Button number (0-7)

DH = Data Type
ES:O = Pointer to Physical device driver header and Physical Describe Record.

Table 4.4

GID Motion ISR Event Record

AH = F_ISR (OOH)
DL = Physical device driver's vector address / 6
BX = X axis motion in raw data form.
ex = Y axis motion in raw data form.
DH = Data Type

ES:O = Pointer to physical device driver header and Physical Describe Record.

The button number in the Button information field (BX) denotes which button on the device is
reporting data. Of special interest is button seven (proximity indicator) which is currently used by
absolute devices to indicate that the device measurement field is active. For example, someone is
touching the touch screen or the stylus is in contact with the tablet surface.

The Data Type field (DH) contains a code representing the current type of logical GID data stored ~

in the event record. For button events this value will be T_KC_BUnON. For logical GID motion ~

events permissible types are: T_T5, T_POINTER and T_TABLET, which correspond to data
originating from V_LTOUCH, V_LPOINTER, and V_LTABLET respectively. For a complete list of
logical GID event data types see table 4.5.

62 Input System and HP-HIL

Table 4.5

Logical GID Event Data Types

Type Value

T_KC_BunON 09H
T_TS 45H

T_TABLET 46H

T_POINTER 47H

Definition

Button data
Specially formed data (80 x 25-default) generated by
V_LTOUCH
Specially formed data (640 x 200 range-default)
generated by V_LTABLET
Specially formed data (640 x 200 range-default)
generated by V_LPOINTER

4.2.2.3 Application Event Drivers

As previously mentioned, applications may install a routine to handle interrupts from the logical
GID drivers. Three predefined vectors in the HP_VECTOLTABLE are initialized to the null driver
(V_PNULL). The three vectors are V_EVENT_TOUCH, V_EVENT_POINTER, and
V_EVENT_TABLET which are called by the logical GID drivers V_LTOUCH, V_LPOINTER, and
V_LTABLET respectively when event interrupts are enabled by a call to SF_EVENT_ON. A call
to SF_CREATE_EVENT sets the corresponding event vector to point to the user application
event driver instead of the null driver.

The application event driver is required to support only one function, F_ISR. The driver should
return RS_UNSUPPORTED for all unimplemented functions.

4.2.3 Logical GID Drivers

The drivers V_LTOUCH, V_LPOINTER and V_LTABLET represent the application interface to
the Input System. These drivers provide functions to poll for data, enable/disable application
event interrupts, enable/disable tracking and enable/disable clipping and/or scaling.

Input System and HP-HIL 63

4.2.3.1 V_LTOUCH Driver (BP = OOC6H)

This section contains a detailed description of the touch screen driver. Table 4.6 contains a
function code summary.

Table 4.6

Touch Screen Driver Function Code Summary

Vector Func. Function
Address Value Equate Definition

00C6H V_LTOUCH Application interface to Touch Screen
00C6H 00 F_ISR Logical Interrupt

00C6H 02 F_SYSTEM System functions
00C6H 02/00 SF_INIT Initialize the driver data area
00C6H 02/02 SF_START Start driver
00C6H 02/04 sF_REPORT_sTATE Report state of device
00C6H 02/06 SF_VERSION_DESC Report driver version number
00C6H 02/08 SF_DEF-ADR Set default logical scaling attributes
00C6H 02/0A SF_GET-ADR Get scaling attributes
00C6H 02/0C SF_SET-ATTR Set scaling attributes

00C6H 04 F_IO_CONTROL 1/0 Control functions
00C6H 04/00 SF_LOCK Unsupported
00C6H 04/02 SF_UNLOCK Unsupported
00C6H 04/04 SF_TRACLON Turn cursor track on
00C6H 04/06 SF_TRACLOFF Turn cursor track off
00C6H 04/08 SF_CREATE_EVENT Establish a new routine to be called on

logical device events
00C6H 04/0A SF_EVENT_ON Enable event call to parent driver
00C6H 04/0C SF_EVENT_OFF Disable event call to parent driver
00C6H 04/0E SF_CLIPPING_ON Enable logical device clipping
00C6H 04/10 SF_CLIPPING_OFF Disable logical device clipping

00C6H 06 F_SAMPLE Report absolute position of GID

64 Input System and HP-HIL

Touch Screen Driver Functions Definitions

F_ISR (AH = OOH)

,... This function receives an ISR Event record from one of the physical GID drivers. The calling driver
has handled the physical interrupt and updated the Physical Describe Record to reflect the event.
This function translates the physical event into the logical coordinate system and calls its parent,
V_EVENT_TOUCH, (if EVENT is enabled). In addition, this function passes the event to
V_STRACK so that the sprite can be updated (if TRACK is enabled). This function is a response
to a logical hardware interrupt and not user callable.

On Entry: AH = F_ISR (OOH)
DH = Data Type
DL = Physical device driver's vector index.

ES:O = Pointer to Physical device driver header and Physical Describe Record.
BP = V_LTOUCH (00C6H)

For Button Event:
BX = Button information.

Bit
OFH-08H
07H

06H-00H

Value Definition
Reserved

1 Button up
o Button down

Button number (0-7)

For Motion Event:
BX = X axis motion in raw data form.
CX = Y axis motion in raw data form.

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

Related Functions: SF_CREATE_EVENT, SF_EVENT_ON, SF_TRACie-ON

SF_INIT (AX = 0200H)

This subfunction is called to initialize the driver. Refer to Section 9 for a complete discussion of
the protocol used in data space allocation.

Input System and HP-HIL 65

On Entry: AH = F_SYSTEM (02H)
AL = SF_INIT (OOH)
BX = IILast used DS II

in HP Data Area
BP = V_LTOUCH (00C6H)

On Exit: AH = Return Status Code
BX = New "last used DS" in HP Data Area

Registers Altered: AX, BX, BP, DS

SF_START (AX = 0202H)

This subfunction starts the logical touch screen driver.

On Entry: AH = F_SYSTEM (02H)
AL = SF_START (02H)
BP = V_LTOUCH (00C6H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_REPORT_STATE (AX = 0204H)

This subfunction returns the LD_DEVICE_STATE field from the Logical Describe Record.

On Entry: AH = F_SYSTEM (02H)
AL = SF_REPORT_STATE (04H)
BP = V_LTOUCH (OOC6H)

On Exit: AH = Return Status Code
DX = LD_DEVICE_STATE from Logical Describe Record

Registers Altered: AX, DX, BP, DS

SF_VERSION_DESC (AX = 0206H)

This subfunction returns the release date code and a double word pointer to the current version
number. The date code consists of two BCD coded bytes containing the year and week of
release. The BL register contains the number of years since 1960 and the BH register contains the
week of the year.

66 Input System and HP-HIL

On Entry: AH = F_SYSTEM (02H)
AL = SF_ VERSION_DESC (06H)
BP = V_LTOUCH (OOC6H)

On Exit: AH = Return Status Code
BX = Release date code
CX = Number of bytes in current version number

ES:DI = Pointer to the current version number

Registers Altered: AX, BX, CX, DI, ES, BP, DS

SF_DEF--ATTR (AX = 0208H)

This subfunction sets the attributes of the logical touch screen driver to their default values. The
default attributes for the touch screen driver are: LD_SIZE-X = 79 and LD_SIZE_Y = 24.

On Entry: AH = F_SYSTEM (02H)
AL = SF_DEF-ADR (08H)
BP = V_LTOUCH (OOC6H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_GET--ATTR (AX = 020AH)

This subfunction returns the current scaling attributes, LD_SIZE-X and LD_SIZE_Y.

On Entry: AH = F_SYSTEM (02H)
AL = SF_GET-ADR (OAH)
BP = V_LTOUCH (OOC6H)

On Exit: AH = Return Status Code
BX = LD_SIZE-X (logical size along X axis)
CX = LD_SIZE_Y (logical size along Y axis)

Registers Altered: AX, BX, CX, BP, DS

SF_SET--ATTR (AX = 020CH)

This subfunction sets the scaling attributes, LD_SIZE-X and LD_SIZE_Y in the Logical
Describe Record.

Input System and HP-HIL 67

On Entry: AH = F_SYSTEM (02H)
AL = SF_SET-ATIR (OCH)
BX = LD_SIZE--X (logical size along X axis)
CX = LD_SIZE_Y (logical size along Y axis)
BP = V_LTOUCH (OOC6H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

SF_TRACLON (AX = 0404H)

This subfunction turns tracking on. For each movement of the logical device, V_STRACK will be
called to update the graphics cursor (sprite) position.

On Entry: AH = F_la_CONTROL (04H)
AL = SF_ TRACLON (04H)
BP = V_LTOUCH (OOC6H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

SF_ TRACLOFF (AX = 0406H)

This subfunction turns tracking off.

On Entry: AH = F_la_CONTROL (04H)
AL = SF_ TRACLOFF (06H)
BP = V_LTOUCH (OOC6H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

SF_CREATE_EVENT (AX = 0408H)

This subfunction establishes the routine to be called on logical device events. The IP, CS, and DS ~
of the routine are passed to this subfunction. These values are exchanged with the vector entry
of the V_EVENT_TOUCH driver in the HP_VECTOLTABLE, V_EVENT_TOUCH being the
parent of the logical touch screen driver. The IP, CS, and DS of the previous routine are returned
to the caller. Note that this subfunction does not enable the event call to the parent routine; this
must be done explicitly using SF_EVENT_ON.

68 Input System and HP-HIL

The ISR event records passed to the V_EVENT_TOUCH driver will have one of the following
two formats depending on the Data Type stored in DL.

V_EVENT_TOUCH Button ISR Event Record:

AH = F_ISR (OOH)
DL = Physical device driver's vector address / 6
BX = Button information.

Bit Value Definition
OFH-08H Reserved
07H 1 Button up

0 Button down
06H-00H Button number (0-7)

DH = Data Type
ES:O = Pointer to V_LTOUCH device driver header and Logical Describe Record.

V_EVENT_TOUCH Motion ISR Event Record:

AH = F_ISR (OOH)
DL = Physical device driver's vector address / 6
BX = A number between 0 and LD_SIZE----><
CX = A number between 0 and LD_SIZE_Y
DH = Data Type

ES:O = Pointer to V_LTOUCH device driver header and Logical Describe Record.

On Entry: AH = F_la_CONTROL (04H)
AL = SF_CREATE_EVENT (08H)
BP = V_LTOUCH (OOC6H)
DX = DS of new V_EVENT_TOUCH routine
51 = IP of new V_EVENT_TOUCH routine
ES = CS of new V_EVENT_TOUCH routine

On Exit: AH = Return Status Code
DX = DS of previous V_EVENT_TOUCH routine
51 = IP of previous V_EVENT_TOUCH routine
ES = CS of previous V_EVENT_TOUCH routine

Registers Altered: AX, DX, 51, BP, ES, DS

Related Functions: SF_EVENT_ON

Input System and HP-HIL 69

This example shows how to use the SF_CREATE_EVENT function. The routine EVENT will be
the event procedure that is called when events are enabled.

EVENT PROC FAR
CMP AH, F-,SR
JE PROCESS_EVENT
MOV AH, RS_UNSUPPORTEO
IRET

PROCESSJVENT:

MOV AH, RS-3UCCESSFUL
IRET

EVENT ENOP

MOV AH, F-'O_CONTROL
MOV AL, SF_CREATEJVENT
MOV BP, V--'-TOUCH
MOV OX, OS

PUSH CS
POP ES

LEA 51, CS:EVENT

PUSH OS
INT HPJNTRY
POP OS

,. only support function F-,SR

,. code to process data
,. (see touch screen
,. event record)
,. return successful completion

,. want to use the current data
,. segment for event OS

,. current CS is also segment
,. of event routine
,. get the IP of the event
,. routine
,. save current OS
,. call extended BIOS driver

This subfunction enables the event (parent) call to the touch screen event routine
(V_EVENT_TOUCH). The link to the touch screen event routine must have already been
established using SF_CREATE_EVENT.

On Entry: AH = F_la_CONTROL (04H)
AL = SF_EVENT_ON (OAH)
BP = V_LTOUCH (OOC6H)

70 Input System and HP-HIL

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

Related Functions: SF_CREATE_EVENT, SF_EVENT_OFF

This subfunction disables the call to the touch screen event routine

On Entry: AH = F_la_CONTROL (04H)
AL = SF_EVENT_OFF (OCH)
BP = V_LTOUCH (OOC6H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_CLIPPING_ON (AX = 040EH)

This subfunction enables logical device clipping. Physical device motion will be scaled to logical
space and will be clipped to avoid overflow or underflow. Clipping is activated for both absolute
and relative motion.

When there is a relative device mapped to this device driver, clipping works the best. It will make
sure that the new position always falls within the logical space.

On Entry: AH = F_la_CONTROL (04H)
AL = SF_CLIPPING_ON (OEH)
BP = V_LTOUCH (OOC6H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

~ SF_CLIPPING OFF (AX = 0410H)

This subfunction disables logical device clipping. Physical device motion will be scaled to logical
space, but overflow or underflow may occur.

Input System and HP-HIL 71

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_CLIPPING_OFF (1 OH)
BP = V_LTOUCH (OOC6H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

F_SAMPLE (AH = 06H)

This function allows an application to poll the touch screen device. This function reports the
current absolute position of the logical device in a form similar to a Logical ISR Event Record.

On Entry: AH = F_SAMPLE (06H)
BP = V_LTOUCH (OOC6H)

On Exit: AH = Return Status Code
BX = Current logical position along X axis
CX = Current logical position along Y axis
DL = LD_TRANSITION field of Logical Describe Record
DH = LD_STATE field of Logical Describe Record

ES:O = Pointer to logical device header and Describe Record

Registers Altered: AX, BX, CX, DX, BP, DS, ES

The following is an example of how to call the F_SAMPLE function.

MOV AH, F_SAMPLE
MOV BP, V.-LTOUCH
PUSH OS
/NT HP_ENTRY
POP OS

,. load function code
,. load vector address
,. save the current OS
,. call extended B/OS driver
,. restore OS

4.2.3.2 V_LPOINTER Driver (BP = OOCOH)

This section contains a detailed description of the pointer driver. Table 4.7 summarizes the
functions supported by this driver.

72 Input System and HP-HIL

Table 4.7

Pointer Driver Function Code Summary

Vector Func. Function
Address Value Equate Definition

OOCOH V_LPOINTER Application interface to Pointer/Mouse
OOCOH 00 F_ISR logical Interrupt

OOCOH 02 F_SYSTEM System functions
OOCOH 02/00 SF_INIT Initialize the driver data area
OOCOH 02/02 SF_START Start driver
OOCOH 02/04 SF_REPORT_STATE Report state of device
OOCOH 02/06 SF_VERSION_DESC Report driver version number
OOCOH 02/08 SF_DEF--.-ATIR Set default logical scaling attributes
OOCOH 02/0A SF_G ET--.-ATIR Get scaling attributes
OOCOH 02/0C SF_SET--.-ADR Set scaling attributes

OOCOH 04 F_IO_CONTROL I/O Control Functions
OOCOH 04/00 SF_LOCK Unsupported
OOCOH 04/02 SF_UNLOCK Unsupported
OOCOH 04/04 SF_TRACLON Turn cursor track on
OOCOH 04/06 SF_TRACLOFF Turn cursor track off
OOCOH 04/08 SF_CREATE_EVENT Establish a new routine to be called on

logical device events
OOCOH 04/0A SF_EVENT_ON Enable event call to parent driver
OOCOH 04/0C SF_EVENT_OFF Disable event call to parent driver
OOCOH 04/0E SF_CLIPPING_ON Enable logical device clipping
OOCOH 04/10 SF_Cll PPI NG_OFF Disable logical device clipping

OOCOH 06 F_SAMPlE Report absolute position of GID

Pointer Driver Function Definitions

F_ISR (AH = OOH)

This function receives an ISR Event record from one of the physical GID drivers. The calling driver
has handled the physical interrupt and updated the Physical Describe Record to reflect the event.
This function translates the physical event into the logical coordinate system and calls its parent,
V_EVENT_POINTER, (if EVENT is enabled). In addition, this function passes the event to
V_STRACK so that the sprite can be updated (if TRACK is enabled). This function is a response
to a logical hardware interrupt and not user callable.

Input System and HP-HIL 73

On Entry: AH = F_'SR (OOH)
DH = Data Type
DL = Physical device driver's vector index.

ES:O = Pointer to physical device driver header and Physical Describe Record.
BP = V_LPOINTER (OOCOH)

For Button Event:
BX = Button information.

Bit
OFH-08H
07H

06H-OOH

Value Definition
Reserved

1 Button up
o Button down

Button number (0-7)

For Motion Event:
BX = X axis motion in raw data form.
CX = Y axis motion in raw data form.

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

Related Functions: SF_CREATLEVENT, SF_EVENT_ON, SF_TRACK-ON

SF_INIT (AX = 0200H)

This subfunction is called to initialize the driver. Refer to Section 9 for a complete discussion of
the protocol used in data space allocation.

On Entry: AH = F_SYSTEM (02H)
AL = SF_INIT (OOH)
BX = "Last used DS" in HP Data Area
BP = V_LPOINTER (OOCOH)

On Exit: AH = Return Status Code
ax = New "Iast used DS" in HP Data Area

Registers Altered: AX, BX, BP, DS

74 Input System and HP-HIL

SF_START (AX = 0202H)

This subfunction starts the logical pointer driver.

On Entry: AH = F_SYSTEM (02H)
AL = SF_START (02H)
BP = V_LPOINTER (OOCOH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_REPORT_STATE (AX = 0204H)

This subfunction returns the LD_DEVICE_STATE field from the Logical Describe Record.

On Entry: AH = F_SYSTEM (02H)
AL = SF_REPORT_STATE (04H)
BP = V_LPOINTER (OOCOH)

On Exit: AH = Return Status Code
DX = LD_DEVICE_STATE from Logical Describe Record

Registers Altered: AX, DX, BP, DS

SF_ VERSION_DESC (AX = 0206H)

This subfunction returns the release date code and a double word pointer to the current version
number. The date code consists of two BCD coded bytes containing the year and week of
release. The BL register contains the number of years since 1960 and the BH register contains the
week of the year.

On Entry: AH = F_SYSTEM (02H)
AL = SF_VERSION_DESC (06H)
BP = V_LPOINTER (OOCOH)

On Exit: AH = Return Status Code
BX = Release date code
CX = Number of bytes in current version number

ES:DI = Pointer to the current version number

Registers Altered: AX, BX, ex, DI, ES, BP, DS

Input System and HP-HIL 75

SF__DEF~TTR (AX = 020SH)

This subfunction sets the attributes of the logical pointer driver to their default values. The
default attributes for the pointer driver are: LD__SIZE--X = 639 and LD__SIZE__Y = 199.

On Entry: AH =F__SYSTEM (02H)
AL = SF_DEF-ATIR (08H)
BP =V__LPOINTER (OOCOH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF__GET~TTR (AX = 020AH)

This subfunction returns the current scaling attributes, LD__SIZE--X and LD__SIZE__Y.

On Entry: AH =F_SYSTEM (02H)
AL = SF_GET-ATIR (OAH)
BP = V__LPOINTER (OOCOH)

On Exit: AH = Return Status Code
BX = LD__SIZE--X (logical size along X axis)
CX = LD__SIZE__Y (logical size along Y axis)

Registers Altered: AX, BX, CX, BP, DS

SF__SET~TTR (AX = 020CH)

This subfunction sets the scaling attributes, LD_SIZE--X and LD__SIZE__Y in the Logical
Describe Record.

On Entry: AH = F_SYSTEM (02H)
AL = SF_SET-ATIR (OCH)
BX = LD__SIZE--X (logical size along X axis)
CX = LD_SIZE_Y (logical size along Y axis)
BP = V__LPOINTER (OOCOH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

76 Input System and HP-HIL

SF_TRACK-ON (AX = 0404H)

This subfunction turns tracking on. For each movement of the logical device, V_STRACK will be
called to update the graphics cursor (sprite) position.

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_TRACK-ON (04H)
BP = V_LPOINTER (OOCOH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_TRACK-OFF (AX = 0406H)

This subfunction turns tracking off.

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_TRACK-OFF (06H)
BP = V_LPOINTER (OOCOH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_CREATE_EVENT (AX = 0408H)

This subfunction establishes the routine to be called on logical device events. The IP, CS, and DS
of the routine are passed to this subfunction. These values are exchanged with the vector entry
of the V_EVENT_POINTER driver in the HP_VECTOR-TABLE, V_EVENT_POINTER being the
parent of the logical pointer driver. The IP, CS, and DS of the previous routine are returned to the
caller. Note that this subfunction does not enable the event call to the parent routine; this must
be done explicitly using SF_EVENT_ON.

The ISR event records passed to the V_EVENT_POINTER driver will have one of the following
two formats depending on the Data Type stored in DL.

V_EVENT_POINTER Button ISR Event Record:

Input System and HP-HIL 77

AH = F_ISR (OOH)
DL = Physical device driver's vector address / 6
BX = Button information.

Bit Value Definition
OFH-08H Reserved
07H 1 Button up

0 Button down
06H-OOH Button number (0-7)

DH = Data Type
ES:O = Pointer to V_LPOINTER device driver header and Logical Describe Record.

V_EVENT_POINTER Motion ISR Event Record:

AH = F_ISR (OOH)
DL = Physical device driver's vector address / 6
BX = Relative movement in the X direction

(Positive number indicates movement to the right)
CX = Relative movement in the Y direction

(Positive number indicates movement down) ~

DH = Data Type
ES:O = Pointer to V_LPOINTER device driver header and Logical Describe Record.

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_CREATE_EVENT (OSH)
BP = V_LPOINTER (OOCOH)
DX = DS of new V_EVENT_POINTER routine
51 = IP of new V_EVENT_POINTER routine
ES = CS of new V_EVENT_POINTER routine

On Exit: AH = Return Status Code
DX = DS of previous V_EVENT_POINTER routine
51 = IP of previous V_EVENT_POINTER routine
ES = CS of previous V_EVENT_POINTER routine

Registers Altered: AX, DX, 51, BP, ES, DS

Related Functions: 5F_EVENT_ON

This example shows how to use the SF_CREATE_EVENT function. The routine EVENT will be
the event procedure that is called when events are enabled.

78 Input System and HP-HIL

EVENT PROC FAR
CMP AH, F-,SR
JE PROCESS_EVENT
MOV AH, RS_UNSUPPORTEO
IRET

PROCESS_EVENT:

MOV AH, RS_SUCCESSFUL
IRET

EVENT ENOP

MOV AH, F_'O_CONTROL
MOV AL, SF_CREATE_EVENT
MOV BP, V_LPOINTER
MOV OX, OS

PUSH CS
POP ES

LEA 51, CS:EVENT

PUSH OS
INT HP_ENTRY
POP OS

SF_EVENT_ON (AX = 040AH)

" only support function F-,SR

,. code to process data (see
,. pointer event record)

" return successful completion

,. want to use the current data
,. segment for event OS

,. current CS is also segment
,. of event routine
,. get the IP of the event
" routine
,. save current OS
,. call extended BIOS driver

This subfunction enables the event (parent) call to the pointer event routine
(V_EVENT_POINTER). The link to the pointer event routine must have already been established
using SF_CREATE_EVENT.

On Entry: AH = F_la_CONTROL (04H)
AL = SF_EVENT_ON (OAH)
BP = V_LPOINTER (OOCOH)

,. On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

Related Functions: SF_CREATE_EVENT, SF_EVENT_OFF

Input System and HP-HIL 79

SF_EVENT_OFF (AX = 040CH)

This subfunction disables the call to the pointer event routine.

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_EVENT_OFF (OCH)
BP = V_LPOINTER (OOCOH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_CLIPPING_ON (AX = 040EH)

This subfunction enables logical device clipping. Physical device motion will be scaled to logical
space and will be clipped to avoid overflow or underflow. Clipping is activated for both absolute
and relative motion.

When there is a relative device mapped to this device driver, clipping works the best. It will make
sure that the new position always falls within the logical space.

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_CLIPPING_ON (OEH)
BP = V_LPOINTER (OOCOH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

This subfunction disables logical device clipping. Physical device motion will be scaled to logical
space, but overflow or underflow may occur.

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_CLIPPING_OFF (1 OH)
BP = V_LPOINTER (OCOH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

80 Input System and HP-HIL

F_SAMPLE (AH = 06H)

This function allows an application to poll the pointer device. This function reports the current
absolute position of the logical device in a form similar to a Logical ISR Event Record.

On Entry: AH = F_SAMPLE (06H)
BP = V_LPOINTER (OOCOH)

On Exit: AH = Return Status Code
BX = Current logical position along X axis
CX = Current logical position along Y axis
DL = LD_TRANSITION field of Logical Describe Record
DH = LD_STATE field of Logical Describe Record

ES:O = Pointer to logical device header and Describe Record

Registers Altered: AX, BX, CX, DX, BP, DS, ES

The following is an example of how to call the F_SAMPLE function.

MOV AH, F_SAMPLE
MOV BP, V-,-POINTER
PUSH OS
INT HP_ENTRY
POP OS

,. load function code
,. load vector address
,. save the current OS
,. call extended BIOS driver
,. restore OS

4.2.3.3 V_LTABLET Driver (BP = OOBAH)

This section contains a detailed description of the tablet driver. See table 4.8 for a summary of
functions supported by this driver.

Input System and HP-HIL 81

Table 4.8

Tablet Driver Function Code Summary

Vector Func. Function
Address Value Equate Definition

OOBAH V_LTABLET Application interface to Tablet
OOBAH 00 F_ISR Logical Interrupt

OOBAH 02 F_SYSTEM System functions
OOBAH 02/00 SF_INIT Initialize the driver data area
OOBAH 02/02 SF_START Start driver
OOBAH 02/04 SF_REPORT_STATE Report state of device
OOBAH 02/06 SF_VERSION_DESC Report driver version number
OOBAH 02/08 SF_DEF---ATrR Set default logical scaling attributes
OOBAH 02/0A SF_G ET---ATrR Get scaling attributes
OOBAH 02/0C SF_SET---ATrR Set scaling attributes

OOBAH 04 F_IO_CONTROL 1/0 Control Functions
OOBAH 04/00 SF_LOCK Unsupported
OOBAH 04/02 SF_UNLOCK Unsupported
OOBAH 04/04 SF_TRACLON Turns cursor track on
OOBAH 04/06 SF_TRACLOFF Turns cursor track off
OOBAH 04/08 SF_CREATE_EVENT Establish a new routine to be called on

logical device events
OOBAH 04/0A SF_EVENT_ON Enable event call to parent driver
OOBAH 04/0C SF_EVENT_OFF Disable event call to parent driver
OOBAH 04/0E SF_CLIPPING_ON Enable logical device clipping
OOBAH 04/10 SF_CLIPPING_OFF Disable logical device clipping

OOBAH 06 F_SAMPLE Report absolute position of GID

Tablet Driver Functions Definition

F_ISR (AH = OOH)

This function receives an ISR Event record from one of the physical GID drivers. The calling driver
has handled the physical interrupt and updated the Physical Describe Record to reflect the event.
This function translates the physical event into the logical coordinate system and calls its parent,
V_EVENT_TABLET, (if EVENT is enabled). In addition, this function passes the event to
V_STRACK so that the sprite can be updated (if TRACK is enabled). This function is a response
to a logical hardware interrupt and not user callable.

82 Input System and HP-HIL

On Entry: AH = F_ISR (OOH)
DH = Data Type
DL = Physical device driver's vector index.
ES:O = Pointer to physical device driver header and Physical Describe Record.
BP = V_LTABLET (OOBAH)

For Button Event:
BX = Button information.

Bit
OFH-08H
07H

06H-00H

Value Definition
Reserved

1 Button up
o Button down

Button number (0-7)

For Motion Event:
BX = X axis motion in raw data form.
cx = Y axis motion in raw data form.

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

Related Functions: SF_CREATE_EVENT, SF_EVENT_ON, SF_TRACLON

SF_INIT (AX = 0200H)

This subfunction is called to initialize the driver. Refer to Section 9 for a complete discussion of
the protocol used in data space allocation.

On Entry: AH = F_SYSTEM (02H)
AL = SF_INIT (OOH)
BX = "Last used DS" in HP Data Area
BP = V_LTABLET (OOBAH)

On Exit: AH = Return Status Code
BX = New "last used DS" in HP Data Area

Registers Altered: AX, BX, BP, DS

Input System and HP-HIL 83

SF_START (AX = 0202H)

This subfunction starts the logical tablet driver.

On Entry: AH = F_SYSTEM (02H)
AL = SF_START (02H)
BP = V_LTABLET (OOBAH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

This subfunction returns the LD_DEVICE_STATE field from the Logical Describe Record.

On Entry: AH = F_SYSTEM (02H)
AL = SF_REPORT_STATE (04H)
BP = V_LTABLET (OOBAH)

On Exit: AH = Return Status Code
DX = LD_DEVICE_STATE from Logical Describe Record

Registers Altered: AX, DX, BP, DS

SF_VERSION_DESC (AX = 0206H)

This subfunction returns the release date code and a double word pointer to the current version
number. The date code consists of two BCD coded bytes containing the year and week of
release. The BL register contains the number of years since 1960 and the BH register contains the
week of the year.

On Entry: AH = F_SYSTEM (02H)
AL = SF_ VERSION_DESC (06H)
BP = V_LTABLET (OOBAH)

On Exit: AH = Return Status Code
BX = Release date code
ex = Number of bytes in current version number

ES:DI = Pointer to the current version number

Registers Altered: AX, BX, ex, DI, ES, BP, DS

84 Input System and HP-HIL

SF__DEF~TTR (AX = 020SH)

This subfunction sets the attributes of the logical tablet driver to their default values. The default
attributes for the tablet driver are: LD__SIZE-----.X = 639 and LD_SIZE_Y = 199.

On Entry: AH = F__SYSTEM (02H)
AL = SF__DEF--.ATIR (08H)
BP = V_LTABLET (OOBAH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF__GET~TTR (AX = 020AH)

This subfunction returns the current scaling attributes, LD__SIZE-----.X and LD_SIZE__Y.

On Entry: AH = F__SYSTEM (02H)
AL = SF__GET--.ATIR (OAH)
BP = V_LTABLET (OOBAH)

,.. On Exit: AH = Return Status Code
BX = LD__SIZE-----.X (logical size along X axis)
ex = LD__SIZE_Y (logical size along Y axis)

Registers Altered: AX, BX, CX, BP, DS

SF__SET~TTR (AX = 020CH)

This subfunction sets the scaling attributes, LD__S1ZE-----.X and LD__SIZE_Y in the Logical
Describe Record.

On Entry: AH = F_SYSTEM (02H)
AL = SF__SET--.ATIR (OCH)
BX = LD__SIZE-----.X (logical size along X axis)
ex = LD_SIZE_Y (logical size along Y axis)
BP = V__LTABLET (OOBAH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

Input System and HP-HIL 85

SF_ TRACLON (AX = 0404H)

This subfunction turns tracking on. For each movement of the logical device, V_STRACK will be
called to update the graphics cursor (sprite) location.

On Entry: AH = F_la_CONTROL (04H)
AL = SF_ TRACie-ON (04H)
BP = V_LTABLET (OOBAH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_ TRACLOFF (AX = 0406H)

This subfunction turns tracking off.

On Entry: AH = F_la_CONTROL (04H)
AL = SF_ TRACie-OFF (06H)
BP = V_LTABLET (OOBAH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_CREATE_EVENT (AX = 0408H)

This subfunction establishes the routine to be called on logical device events. The IP, CS, and DS
of the routine are passed to this subfunction. These values are exchanged with the vector entry
of the V_EVENT_TABLET driver in the HP_VECTOR-TABLE, V_EVENT_TABLET being the
parent of the logical tablet driver. The IP, (5, and D5 of the previous routine are returned to the
caller. Note that this subfunction does not enable the event call to the parent routine; this must
be done explicitly using SF_EVENT_ON.

The ISR event records passed to the V_EVENT_TABLET driver will have one of the following
two formats depending on the data type stored in DL.

86 Input System and HP-HIL

V_EVENT_TABLET Button ISR Event Record:

AH = F_ISR (OOH)
DL = Physical device driver's vector address /6
BX = Button information.

Bit
OFH-08H
07H

06H-00H

Value Definition
Reserved

1 Button up
o Button down

Button number (0-7)

DH = Data Type
ES:O = Pointer to V_LTABLET device driver header and Logical Describe Record.

V_EVENT_TABLET Motion ISR Event Record:

AH = F_ISR (OOH)
DL = Physical device driver's vector address /6
BX = A number between 0 and LD_SIZEJ
CX = A number between 0 and LO_SIZE_Y
DH = Data Type

ES:O = Pointer to V_TABLET device driver header and Logical Describe Record.

On Entry: AH = F_10_CONTROL (04H)
AL = SF_CREATE_EVENT (OSH)
BP = V_LTABLET (OOBAH)
DX = OS of new V_EVENT_TABLET routine
51 = IP of new V_EVENT_TABLET routine
ES = CS of new V_EVENT_TABLET routine

On Exit: AH = Return Status Code
DX = OS of previous V_EVENT_TABLET routine
51 = IP of previous V_EVENT_TABLET routine
ES = CS of previous V_EVENT_TABLET routine

Registers Altered: AX, DX, 51, BP, ES, DS

Related Functions: SF_EVENT_ON

This example shows how to use the SF_CREATE_EVENT function. The routine EVENT will be
the event procedure that is called when events are enabled.

Input System and HP-HIL 87

EVENT PROC FAR
CMP AH, F_ISR ,. only support function F_ISR
JE PROCESS_EVENT
MOV AH, RS_UNSUPPORTEO
IRET

PROCESS_EVENT:
,. code to process data (see
,. tablet event record)

MOV AH, RS_SUCCESSFUL
IRET

EVENT ENOP

,. return successful completion

MOV AH, F-'O_CONTROL
MOV AL, SF_CREATE_EVENT
MOV BP, V_LTABLET
MOV OX, OS ,. want to use the current data

,. segment for event OS
PUSH CS
POP ES ,. current CS is also segment

,. of event routine
LEA 51, CS:EVENT ,. get the IP of the event

,. routine
PUSH OS ,. save current OS
INT HP_ENTRY ,. call extended BIOS driver
POP OS

SF_EVENT_ON (AX = 040AH)

This subfunction enables the event (parent) call to the tablet event routine (V_EVENT_TABLED.
The link to the tablet event routine must have already been established using
SF_CREATE_EVENT.

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_EVENT_ON (OAH)
BP = V_LTABLET (OOBAH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

Related Functions: SF_CREATE_EVENT, SF_EVENT_OFF

88 Input System and HP-HIL

SF_EVENT_OFF (AX = 040CH)

This subfunction disables the call to the tablet event routine.

On Entry: AH = F_10_CONTROL (04H)
AL = SF_EVENT_OFF (OCH)
BP = V_LTABLET (OOBAH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_CLIPPING_ON (AX = 040EH)

This subfunction enables logical device clipping. Physical device motion will be scaled to logical
space and will be clipped to avoid overflow or underflow. Clipping is activated for both absolute
and relative motion.

When there is a relative device mapped to this device driver, clipping works the best. It will make
sure that the new position always falls within the logical space.

On Entry: AH = F_la_CONTROL (04H)
AL = SF_CLIPPING_ON (OEH)
BP = V_LTABLET (OOBAH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_CLIPPING_OFF (AX = 0410H)

This subfunction disables logical device clipping. Physical device motion will be scaled to logical
space, but overflow or underflow may occur.

On Entry: AH = F_10_CONTROL (04H)
AL = SF_CLIPPING_OFF (1 OH)
BP = V_LTABLET (OOBAH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

Input System and HP-HIL 89

F_SAMPLE (AH = 06H)

This function allows an application to poll the tablet device. This function reports the current
absolute position of the logical device in a form similar to a Logical ISR Event Record.

On Entry: AH = F_SAMPLE (06H)
BP = V_LTABLET (OOBAH)

On Exit: AH = Return Status Code
BX = Current logical position along X axis
CX = Current logical position along Y axis
DL = LD_TRANSITION field of Logical Describe Record
DH = LD_STATE field of Logical Describe Record
ES:O = Pointer to logical device header and Describe Record

Registers Altered: AX, BX, CX, DX, BP, DS, ES

The following is an example of how to call the F_SAMPLE function.

MOV AH, F_SAMPLE
MOV BP, VJTABLET
PUSH OS
INT HP_ENTRY
POP OS

,. load function code
,. load vector address
,. save the current OS
,. call extended BIOS driver
,. restore OS

4.2.4 Application Event Driver Example

The following program is an example of how to input touch screen data using application event
interrupts. The program installs an application event driver using the SF_CREATE_EVENT
function and enables event interrupts using the SF_EVENT_ON function. The event handler
supports only the F_ISR function which processes both button and motion Logical ISR Event
Records.

90 Input System and HP-HIL

Touch Example

.21Sc
pag. 5Q.132
title TOUCH Example
: •••DRIVER HEADER ••

NAME: TOUCH Example

DESCRIPTION: Thi. program demon.trate. how touch work •.

LIST OF SECTIONS:

; .

page

HP SHEADER • true
0000 0000 OH-ATR dw 0
0002 0000 DH-NAME INDEX dw 0
0004 0000 OH-Y OEF'AULT dw 0
0006 0000 DH-P-CLASS dw 0
0008 0000 OH-C-CLASS dw 0
OOOA 0000 OH-Y-PARENT dw 0
OOOC 0000 OH-Y-CHILO dw 0
OOOE 00 DH-M1'JOR db 0
OOOF 00 DH-MINOR db 0
0010 HP-SHEAOER ends
• 008F HP-ENTRY .qu OSFH

SY$CALL macro v.ctor,. ifnb <vector>
mov bp.v.ctor

end!f
int HP_ENTRY
endm

• 8000 ATR HP equ 1000H
• 0000 CL RULL equ OOOOH
• 0000 F ISR equ OOOOH
• 0004 F-IO CONTROL .qu 0004H
• 0008 SF' CREATE EVENT equ 0008H
• OOOC SF-EVENT GFF .qu OOOCH
• OOOA SF-EVE NT-ON .qu OOOAH
• 0000 RS-SUCCESSFUL equ OOOOH
• 0002 RS-UNSUPPORTEO equ 0002H
• 0009 T_KC_BUTTON equ 09H

PG~gr:~:n:Ia::: ,h~~1I~~ ~~iT·~Ct;ul~~Nl:~~c~tl~~~:·
T TS

any oth.r Icancodi out of th.-daTa Itream
0045 equ 45H Sp.cially form.d data (0 .. 80 x 0 .. 25 rang. - d.fa,
OOOS V-OOLITTLE .qu OOOSH

• 00C6 V-LTOUCH .qu OOCSH
• 0060 V-EVENT TOUCH .qu OOSOH

0001 R£AD CH~R ECHO equ OlH
0080 MAKE-BREAK BIT equ 10000000B
004C TERMINATE_PROC equ 4CH

0000 TS EYENT HEAOR I.g",ent. EX~M_HP_~TTR
HP_SHEAD~~u

ATR HP
0000 8000 <EX~M_HP_ATTR.V_EVENT_TOUCH/S.V_EVENT_TOUCH.CL_NULL.CL_NULL.V_I

TLE.V_DOLITTLE>
0002 0010
0004 0060
0008 0000
0008 0000
OOOA 0008
OOOC 0008
OOOE 00,. OOOF 00

0010 TS EYENT HEAOR end.
0000 DATA_SEa- ••gntent

Input System and HP-HIL 91

Touch Example (cont.)

1111
????
??11

50
1?11

dw
dw
dw
dw o dup (?)

cs:CODE SEG,ds:DATA SEG,ss:DATA SEG
aX,DATA-SEG - ;load up the ds regi.ter with the data legment
dl,ax -
I',ax ;The Itack legment il also in the code legment
~gu~~Kt~2:LE ;Point to the top of the stack
ah,RE~D CHAR ECHO ;Read a character w/echo until
21H -
i~P~~·LOOP ;15 this the exit character?
TOUCH-RESTORE
ah,TE~MINATE PROC ;Exit
21H

;Save the old event valuel

;Move my touch event handler into the HP vector tab

;Start accepting calls

;Loglcal interrupt?
, yes, continue
;set return code

:i:v~h~~lat~~I~~y~~t~~~ort or a make/break reportdh,T TS
Ihort POS REPORT
dh,T_KC_BUTTON

ah,F la_CONTROL

al,SF CREATE EVENT
bx,cs- -
el,bx
si,TOUCH HANDLER
dX,TS EVtNT HEADR
V LTOUCH
T~r ~~'~R~~~UCH
aX,el -
word ptr SAVE_CS,ax
word ptr SAVE_IP,.i
:~~~ ~6rc~~¥~oEs,dX
al,Sr EVENT ON
V LTOUCH -
mav bp,V LTOUCH
int HP_ERTRY

ret
endp

mov
mov
mov
lea
mov
lYle all

mov
mov
mov
mov
mov
mov
Iyscall

proc
cmp
je
mov
1 re t
pUlha
cmp
je
cmp

dw
ends
segment
assume
mov
mov
mov
mov
call
mov
int
cmp
jne
call
mov
int
proc
mov

TOUCH_ENABLE

TOUCH_HANDLER

TOUCH_ENABLE

le

INPUT LOOP:

STK TOP
DAT~ SEG
CODE=SEG

BEGIN:

????

B8 ---- R
8E 08
8E DO
88 26 00A6
E8 0010 R
84 01
CD 21
3C 5E
75 F8
E8 0084
84 4C
CD 21

84 04

80 08
8C CB
8E C3
80 36 0048
BA R

BD 00C6
CD 6F
8C CO
A3 0000 R
89 36 0002
89 16 0004
84 04
80 OA

BD 00C6
CD 6F
C3

80 FC 00
74 03
B4 02
CF
60
80 FE 45
74 07
80 FE 09

92 Input System and HP-HIL

Touch Example (cont.)

0059 74 OE je s ho rt BUTTON REPORT
005B EB 23 Jmp s ho rt EXIT_TOUCH
0050 B4 02 POS_REPORT: mo", ah,02H ;Move the cursor to the recieved posit 10n
005F 8A Fl mo", d h ,c 1 ;using the standard IBM BIOS int 10.
0061 8A 03 mo", dl,bl
0063 B7 00 mo" bh,O
0065 CO 10 in t 10H
0067 EB 17

~:~ t
s ho r t EXIT TOUCH ;That finishes that ISR.

0069 F6 C3 80 BUTTON_REPORT: bl,MAKE BRtAK BIT ;See if this is a t ouc h a r a release.
OOSC 74 OA j Z short BUTTON PUSH
006E B5 OE mo" ch,OEH :On a re le'as e make the cursor back 1nto
0070 B1 OF mo" cl.OFH ,a line.
0072 B4 01 mo" ah,l
0074 CD 10 in t 10H
0076 EB 08 jmp I ho rt EXIT TOUCH ;That finishes a releale ISR.
0078 B5 00 BUTTON_PUSH: mo", ch,O ;Make the curlor into a bo)(on t ouc h.
007A B1 OF mo" cl,Ofh
007C B4 01 mali ah,1
007E CD 10 int 10H
0080 61 EXIT_TOUCH: papa ;Restore all the sr:?~:~erl.0081 B4 00 mo" ah,RS SUCCESSFUL ;Set the return
0083 CF iret ;Return from the ISR
0084 TOUCH HANDLER andp

~
0084 TOUCH:=RESTORE p roc
0084 B4 04 mo" ah,F 10 CONTROL ;Stop accepting calli
0086 BO OC mov al,SF' E'VENT OFF

Iylcall V_LTOUCH -
0088 BD 00C6 mo",

~~'~N~~~UCH0088 CD 6F i nt
0080 B4 04 mo" ah,F 10 CONTROL ;Reltore the old event handler
OOaF BO 08 mo" al,SF' C~EATE EVENT
0091 8B 1E 0000 mo" b.,word ptr SAVE_CS
0095 8E C3 mo" as,b)(
0097 80 36 0002 lea li,word ptr SAVE_ IP
009B 8B 16 0004 mo" d)(,word ptr SAVE_OS

lYle all V_LTOUCH
009F BD OOCS mo" ~~~~R~~~UCH00A2 CD 6F int
00A4 C3 re t
00A5 TOUCH RESTORE endp
OOA5 COOE_SEG ends

end BEGIN

Input System and HP-HIL 93

Touch Example (cont.)

Macro.:

N a '" e
SYSCALL.

Length

0002

Structure. and record.:

N a • e Width • field.
Shift Width Ma.k Initial

HP SHEADER .
~H ATR
DH-NAME INDEX.
DH-V DEF'AULT
DH-'-CLASS .
DH-C-CLASS .
DH-V-PARENT.
DH-V-CHILD .
DH-MlJOR .
DH:)tINOR .

Se,.ent. and Oroup.:

N a ... e

CODE SEO .
DATA-SEO ...
TS_EVENT_HEADR

Symbol.:

0010
0000
0002
0004
0008
0001
OOOA
OOOC
OOOE
OOOf

Size

00A5
OOAI
0010

0001

Align

PARA
PARA
PARA

CoMbine Cla••

NONE
NONE
NONE

CODE SEG
COOE=SEQ

CODE SEG
CODE-SEG
CODE=SEQ

CODE_SEG

CODE SEQ
CODE=SEG

Value Attr

1000
0000
0071
0081
0000
ATR HP
001f
0010
0004
0000
008'
OOOE
0010
0050
0050
0001
0000
0002
0000
0004
0002
0001

Type

NUMber
L NEAR
L NEAR
L NEAR
Number
Alta.
L NEAR
L NEAR
Number
Number
Number
L NEAR
Number
L NEAR
L NEAR
Number
Number
Number
L WORD
L WORD
L WORD
Number

ATR HP .
BEGIN....
BUTTON PUSH. .
BUTTON-REPORT.
CL NULL. . .
EX~M HP ATTR
EXIT-PRo-G. .
EXIT-TOUCH .
flO-CONTROL
'-ISI...
H' ENTRY . .
IN'PUT LOOP . .
MAKE BREAK BIT
POS IEPORT-.
PRO~ESS lSI'. .
READ CH~R ECHO
RS SUCCESSFUL.
RS-UNSUPPORTED
SAVE CS.
SAVE-OS.
SAVE-IP.
SF_CREATE_EVENT.

SF EVENT OFF Number OOOC
SF-EVENT:=ON. Number OOOA
ST~CK. L WORD 0006 DATA SEG Length -0050
STK TOP: L WORD 00A6 DATA:=SEG
TERfi4INATE'PROC Number 004C
TOUCH ENABLE . N PROC 0010 CODE SEQ Length -002B
TOUCH-HANDLER. N PROC 0048 CODE-SEQ Length -003C
TOUCH-RESTORE N PROC 0084 CODE:=SEQ Length -0021
T KC BUTTON. Number 0009

~T-TS-. Number 0045
V-OOLITTLE Number 0008
V-EVENT TOUCH. Numbe r 0060
V=LTOUCR Number OOCS

48576 Bytes free

WArning Severe
Er ro rs Er ro rs
0 0

94 Input System and HP-HIL

4.3 Hardware Interface Level

The hardware interface of the Input System is composed of a set of drivers to respond to
hardware interrupts and process physical data from the input devices into a form usable by
the application interface drivers. These drivers are shown in Figure 4.2.

4.3.1 Overview

This section describes the drivers, data structures, and interrupt service routine (ISR) event
processing that takes place below the application interface level. The following data flow
expands on step 2 of the data flow presented in Section 4.2.1. A detailed explanation of each
step is presented after the data flow.

1. The user touches the screen. This causes a hardware interrupt which is managed by the
8259A interrupt controller service (V_S8259). V_S8259 responds to the interrupt
controller chip and transfers control to the HP-HIL driver.

2. The HP-HIL driver (V_HPHIL) services the HP-HIL controller chip, retrieving the input device
data. V_HPHIL processes the input data and transfers control to the Input System dispatch
service.

3. The dispatch service (V_SINPUn transfers control to the appropriate physical device driver
based on the source of the input data (in this case the physical touch screen driver).

4. The physical touch screen driver builds the Physical Describe Record and transfers control to
the application interface driver V_LTOUCH.

V_S8259 provides a funnel point for managing HP specific hardware. The Input System
hardware communicates with the hardware interface drivers via three interrupts: the 8041
service request (SVC), the 8041 Output Buffer Full (OBF), and the HP-HIL controller interrupt. The
8041 SVC and OBF interrupts are discussed in the keyboard section (Section 5). The HP-HIL
controller interrupt is chained to the HP-HIL driver (V_HPHIL), i.e., when V_S8259 receives an
HP-HIL controller interrupt it generates an HP_ENTRY software interrupt to transfer control to
V_HPHIL.

The HP-HIL driver services the HP-HIL controller and generates the appropriate Physical ISR Event
Record(s). After processing the input data V_HPHIL chains to V_SINPUT.

Input System and HP-HIL 95

Hardware Interface Level Drivers

Application

Application
Interface
Drivers

Application Interface Level

I I
Touch Screen
Physical GID

Driver

I

Hardware Interface Level

96 Input System and HP-HIL

Pointer
Physical GID

Driver

Input Dispatch
Service

(V_SINPUT)

HP-HIL Controller
Driver

(V_HPHIL)

8259A Interrupt
Controller Driver

(V_S8259)

Physical Input Devices I
Figure 4.2

Tablet
Physical GID

Driver

I

V_SINPUT chains to the appropriate physical device driver based on the vector index (vector
address divided by six) stored in the Physical ISR Event Record (DL register). It provides an entry
point into the Input System for non-HP-HIL devices. V_SINPUT also provides driver mapping
functions that will be discussed later in this section.

Two physical drivers will be discussed later in this section. The first is the physical GID driver
(PGID) which handles both absolute and relative data. Because PGID can handle both types of
GID data, it can chain to any logical GID driver; this forms the basis for Input System device driver
mapping. The second physical driver is the null device driver (V_PNULL), which serves as a
handler for unsupported devices. The keyboard driver is discussed in Section 5.

4.3.1.1 Device Driver Mapping

Each driver in the Input System has a vector in the HP_VECTOLTABLE, and a driver header.
Each driver header has two fields which determine the mapping of the driver. One field contains
the vector of the driver's parent driver and the other contains the vector of the driver's child
driver. Refer to Section 2 and Appendix G for a detailed description of driver headers.

Calls are made to the vector address contained in the parent field to pass the interrupt on to the
next driver in the device driver chain, moving the data from the hardware toward the application
via the desired logical GID driver. Hardware commands from the application are passed down
the device driver chain to the device via the vector address contained in the child vector field. By
changing the value of the parent or child vector field, the sequence of drivers called to handle an
interrupt or function request is changed. In general an application may re-map a driver by
changing the driver header directly. Functions are provided by the V_SINPUT service to map the
physical GID drivers to the logical GID drivers.

4.3.1.2 Device Emulation

Device emulation occurs when one or more physical devices are mapped to a logical device that
does not represent the original source of the data. For example, mapping a physi·cal mouse driver
to a logical touch screen driver allows the mouse to look like a touch screen to the application.
The key requirement for a logical device driver to emulate other devices is that it accept both
absolute and relative data. Referencing the above example, the logical touch screen driver which
reports absolute data must accept both absolute (touch) data and relative (mouse) data.

Input System and HP-HIL 97

An example of device mapping and emulation occurring in the system is the translation of mouse
input to Cursor Control Pad (CCP) input. Since standard DOS processes keyboard input only, (not
mouse input), the physical GID driver which processes mouse input is mapped, in its default
state, to a driver called V_PGID_CCP. This driver causes mouse input to emulate input from the
CCP. For an application which processes industry standard mouse input (INT 33H) to use the HP
Mouse, the mouse physical GID driver should be mapped to the V_LHPMOUSE driver using the
F33_INSTALL function (see Section 6 for more details).

4.3.2 Data Structures

The hardware interface level uses two major data structures: the Physical Describe Record and
the Physical ISR Event Record(s). These data structures help keep track of the numerous events
occurring in the Input System.

4.3.2.1 Physical Describe Record

The Physical Describe Record is used by the physical GID drivers to keep track of the current state
of their respective devices. Each of the physical GID drivers has a Physical Describe Record
associated with it, which is located directly after the driver header starting with memory address
DS:001 OH. An explanation of the Physical Describe Record fields follows, table 4.9 contains the
field types and offsets.

98 Input System and HP-HIL

Table 4.9

Physical GID Device Describe Record

Field Type Offset Description

Driver Header OOH Driver header (see Section 2)
D_SOURCE BYTE 10H Input type and device address
D_HPHILID BYTE 11H Device ID
D_DESC_MASK BYTE 12H Describe header byte
D_IO_MASK BYTE 13H Device I/O descriptor byte

DJDESLMASK BYTE 14H Extended describe header byte
D_MAX.-AXIS BYTE 15H Maximum number of axes
D_CLASS BYTE 16H Device class
D_PROMPTS BYTE 17H Number of button/prompts
D_RESERVED BYTE 18H Reserved

D_BURST_LEN BYTE 19H Maximum output burst length
D_WLREG BYTE 1AH Number of write registers
D_RD_REG BYTE 1BH Number of ,read registers
D_TRANSITION BYTE 1CH Button transitions
D_STATE BYTE 1DH Current state of the buttons

D_RESOLUTION WORD 1EH Physical device resolution
D_SIZEJ WORD 20H Maximum x-axis count
D_SIZE_Y WORD 22H Maximum y-axis count
D-ABSJ WORD 24H X position data for absolute devices
D-ABS_Y WORD 26H Y position data for absolute devices

D_REL.X WORD 28H X delta for relative devices
D_RELY WORD 2AH Y delta for relative devices
D-ACCUMJ WORD 2CH Reserved
D-ACCUM_Y WORD 2EH Reserved

This field is divided into nibbles. Bits 7-4 contain the graphics input
device type. This field is loaded with the low order nibble of the
appropriate physical GIO data type. See table 4.12. Bits 3-0 are the link
address of the physical device.

10 byte of the physical device which last reported data. See table 4.2 for
a list of HP-HIL 10 bytes.

Physical device describe byte. This byte contains information about the
physical device characteristics, see HP-HIL Technical Reference Manual
for more information.

Input System and HP-HIL 99

D--.AB5---><

100 Input System and HP-HIL

Physical device 1/0 descriptor byte. This byte contains information on the
number of prompts and acknowledges the device supports. See HP-H/L
Technical Reference Manual for more information.

Physical device extended describe byte. This byte contains additional
device characteristics. See HP-H/L Technical Reference Manual for more
information.

Maximum number of axes supported by the device. Valid range is 0-2.

Device class. Bits 7-4 contain the current class. Bits 3-0 contain the
default class. See Appendix G for more information on device classes.

Number of buttons and prompts supported by the device. Bits 7-4 is the
number of prompts. Bits 3-0 is the number of buttons.

Maximum number of bytes that can be output to the device using a
single write command.

Number of write registers supported by the device.

Number of read registers supported by the device.

Transitions reported per button, i.e. a set bit indicates that the
corresponding button was either pushed or released. Bit 7 corresponds
to button 7 etc.

Current state of the buttons. 1 is down, 0 is up. Bit 7 corresponds to
button 7 etc. If D_STATE is XOR'ed with D_TRANSITION the result is
the previous button state.

This is the resolution of the physical device. The resolution is in counts
per meter for devices that report 8 bits of data. For devices that report
16 bits of data the resolution is in counts per centimeter.

Maximum count (in units of resolution) for the x-axis.

Maximum count (in units of resolution) for the y-axis.

X position data for devices which report absolute coordinates (absolute
devices).

Y position data for devices which report absolute coordinates.

Latest change in x position for devices which return coordinates relative
to the previous position (relative devices).

Latest change in y position for devices which return coordinates relative
to the previous position.

4.3.2.2 Physical ISR Event Records

A Physical ISR Event Record is not a data structure in the truest sense, but is a set of register
definitions for inter-driver communication of input events. Tables 4.10 and 4.11 define the
Physical ISR Event Records.

Table 4.10

GID Button ISR Event Record

AH F_ISR (OOH)
DL Physical device driver's vector address / 6
BX Button information.

Bit
OFH-08H
07H

06H-OOH

Value Definition
Reserved

1 Button up
o Button down

Button number (0-7)

DH = Data Type

ES:O = Pointer to physical device driver header and Physical Describe Record.

Input System and HP-HIL 101

Table 4.11

GID Motion ISR Event Record

AH = F_'SR (OOH)
DL = Physical device driver's vector address / 6
BX = X axis motion in raw data form.
CX = Y axis motion in raw data form.
DH = Data Type
ES:O = Pointer to physical device driver header and Physical Describe Record.

The button number in the Button Transition Information field (BX) denotes which button on the
device is reporting data. Of special interest is button seven (proximity indicator) which is currently
used by absolute devices to indicate that the device measurement field is active, ie. someone is
touching the touch screen or the stylus is in contact with the tablet surface.

The Data Type field (DH) contains a code representing the current type of physical GID data
stored in the event record. For button events this value will be T_KC_BUnON. For a complete
list of physical GID event data types see table 4.12.

Table 4.12

Physical GID Event Data Types

Type

T_KC_BUTTON
T_REL08
T_REL16
T--.-ABS08
T--.-ABS16

Value Definition

09H Button data.
40H Signed 8 bit relative data
41 H Signed 16 bit relative data
42H Unsigned 8 bit absolute data
43H Unsigned 16 bit absolute data

4.3.3 Hardware Interface Level Drivers

This section describes the hardware interface level drivers in detail.

102 Input System and HP-HIL

4.3.3.1 V_S8259 Driver (BP = 001 EH)

The V_S8259 driver services the HP 8259A slave interrupt controller. Three interrupt request
lines are connected to this controller; the 8041 SVC (Service port) service request, the HP-HIL
controller, and the 8041 OBF (Output Buffer Full) service request.

When this driver is initialized, the interrupt vectors for the three interrupts listed above are set for
their respective entry points into the V_S8259 driver. When an interrupt occurs, control is
transferred to one of the three entry points. The V_S8259 driver will perform an F_ISR call to
one of three drivers; the V_8041 driver for the 8041 SVC interrupt, the V_HPHIL driver for the
HP-HIL controller interrupt, and the INT 09H driver for the 8041 OBF interrupt.

In the case of the 8041 SVC interrupt and the HP-HIL controller interrupt the corresponding
interrupt is masked off on the HP slave controller and an End-of-Interrupt command is sent to the
master interrupt controller before passing the interrupt on (via F_ISR). This allows other
interrupts even of lower priority to be serviced on the HP slave 8259A but does not require
interrupt handlers to be interrupt reentrant since the same interrupt is not allowed to fire until
the entire driver chain has completed processing. When these two driver chains finish processing
the V_S8259 issues a specific End-of-Interrupt command to the HP 8259A slave controller and
then unmasks the corresponding interrupt so it can fire again.

In the case of the 8041 OBF interrupt a specific End-of-Interrupt is sent to the HP slave controller
before passing on the interrupt, allowing the industry standard INT 09H driver to manage the
master 8259A controller as if the HP slave controller were not present.

In addition to initiating response to the hardware interrupts, the 8259A driver contains other
functions which initialize the interrupt vectors, and program the proper parameters into the HP
8259A slave interrupt controller.

V_S8259 Driver Function Definitions

A summary of the V_S8259 function codes is provided in table 4.13.

Input System and HP-HIL 103

Table 4.13

V_S8259 Function Code Summary

Vector Func. Function
Address Value Equate Definition

001EH V_S8259 8259 interrupt controller support
001EH 02 F_SYSTEM System functions
001EH 02/00 SF_INIT Initialize HP slave 8259A
001EH 02/02 SF_START Enable HP slave 8259A interrupts
001EH 02/06 SF_VERSION_DESC Report HP version number
001EH 04 F_IO_CONTROL Entry point to I/O control functions
001EH 04/00 SF_ENABLE_SVC Unmask svc/8041 interrupt
001EH 04/02 SF-DISABLE_SVC Mask svc/8041 interrupt
001EH 04/04 SF_ENABLE_KBD Unmask keyboard INT 9 interrupt
001EH 04/06 SF_DISABLE_KBD Mask keyboard INT 9 interrupt
001EH 04/08 SF_ENABLE_HPHIL Unmask HP-HIL interrupt
001EH 04/0A SF_DISABLE_HPHIL Mask HP-HIL interrupt

F_ISR (AH = OOH)

Because this driver directly services hardware interrupts from an 8259A interrupt controller, this
function is not applicable. If called, this function will return a Return Status Code of
RS_UNSUPPORTED.

SF_INIT (AX = 0200H)

This subfunction sets the interrupt vectors for the three HP 8259A slave interrupt sources to the
appropriate entry points in the driver. In addition, the necessary 8259A parameters are
programmed into the HP 8259A slave interrupt controller. This subfunction leaves interrupts
disabled. They must be enabled with the SF_START subfunction.

On Entry: AH = F_SYSTEM (02H)
AL = SF_INIT (DOH)
BP = V_S8259 (001 EH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

104 Input System and HP-HIL

SF_START (AJ< = 0202H)

This subfunction enables the interrupts on the HP 8259A slave interrupt controller.

On Entry: AH = F_SYSTEM (02H)
AL = SF_START (02H)
BP = V_S8259 (001 EH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_ VERSION_DESC (AJ< = 0206H)

This subfunction returns the release date code and a double word pointer to the current version
number. The date code consists of two BCD coded bytes containing the year and week of
release. The BL register contains the number of years since 1960 and the BH register contains the
week of the year.

On Entry: AH = F_SYSTEM (02H)
AL = SF_ VERSION_DESC (06H)
BP = V_S8259 (001 EH)

On Exit: AH = Return Status Code
BX = Release date code
CX = Number of bytes in current version number

ES:DI = Pointer to the current version number

Registers Altered: AX, BX, CX, DI, ES, BP, DS

SF_ENABLE_SVC (AJ< = 00400H)

This function unmasks (enables) the 8041 SVC interrupt on the HP 8259A slave controller.

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_ENABLE_SVC (DOH)

,... BP = V_S8259 (001 EH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

Input System and HP-HIL 105

SF_DISABLE_SVC (AX = 0402H)

This function masks off (disables) the 8041 SVC interrupt on the HP 8259A slave controller.

On Entry: AH = F_la_CONTROL (04H)
AL = SF_DISABLE_SVC (02H)
BP = V_S8259 (001 EH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

This function unmasks (enables) the 8041 OBF interrupt on the HP 8259A slave controller.

On Entry: AH = F_la_CONTROL (04H)
AL = SF_ENABLE_KBD (04H)
BP = V_S8259 (001 EH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_DISABLE_KBD (AX = 0406H)

This routine masks off (disables) the 8041 OBF interrupt on the HP 8259A slave controller.

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_DISABLE_KBD (06H)
BP = V_S8259 (001 EH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

106 Input System and HP-HIL

SF_ENABLE_HPHIL (AX = 0408H)

This routine unmasks (enables) the HP-HIL controller interrupt on the HP 8259A slave controller.

On Entry: AH = F_IO_CONTROL (04H)
,.. AL = SF_ENABLE_HPHIL (08H)

BP = V_S8259 (001 EH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_DISABLE_HPHIL (AX = 040AH)

This routine masks off (disables) the HP-HIL controller interrupt on the HP 8259A slave controller.

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_DISABLE_HPHIL (OAH)
BP = V_S8259 (001 EH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

4.3.3.2 V_HPHIL Driver (BP = 0114H)

The HP-HIL driver retrieves input data from the HP-HIL controller and builds an ISR Event Record
to pass to V_SINPUT.

A summary of the V_HPHIL function codes is provided in table 4.14.

Input System and HP-HIL 107

Table 4.14

V_HPHIL Driver Function Code Summary

Vector Func. Function
Address Value Equate Definition

0114H V_HPHIL Setup HP-HIL to INPUT driver
linkage

0114H 00 F_ISR Logical Interrupt

0114H 02 F_SYSTEM System Functions
0114H 02/00 SF_INIT Initializes the driver data area.
0114H 02/04 SF_REPORT_STATE Reports state of device
0114H 02/06 SF_VERSION_DESC Reports driver version

number.
0114H 02/0E SF_OPEN Put driver in open state.
0114H 02/10 SF_CLOSE Put driver in open state.

0114H 04 F_IO_CONTROL I/O control to driver
0114H 04/04 SF_CRV_CRV_MAJ_MIN Reserved
0114H 04/06 SF_CRV_RECONFIGURE Forces HP-HIL to reconfigure

all devices.
0114H 04/08 SF_CRV_WLPROM PTS Write a prompt to a device
0114H 04/0A SF_CRV_WfL-ACK Write an acknowledge to a

device
0114H 04/0C SF_CRV_REPEAT Sets either 30Hz or 60Hz

repeat rate
0114H 04/0E SF_CRV_DISABLE_REPEAT Cancels keyboard repeat rate
0114H 04/10 SF_CRV_SELF_TEST Issue self-test command to

physical device.
0114H 04/12 SF_CRV_REPORT_STATUS Get status from any HP-HIL

device that needs to report
0114H 04/14 SF_CRV_REPORT_NAME Returns the ASCII name for a

device
0114H 04/16 SF_KEYBOARD_REPEAT Set typematic values
0114H 04/18 SF_KEYBOARD_LED Sets keyboard LED states

0114H 06 F_PUT_BYTE Write one byte to specified
HP-HIL device.

0114H 08 F_GET_BYTE Read one byte from specified
HP-HIL device.

0114H OA F_PUT_BUFFER Write a string of bytes to HP-
HIL device.

108 Input System and HP-HIL

'~

V_HPHIL Driver Function Definitions

F_ISR (AH = OOH)

This function is called by the V_S8259 driver to initiate processing of an interrupt from the HP
HIL controller. This function reads input device data from the HP-HIL controller, generates one or
more ISR Event Records, and chains to V_SINPUT. THIS FUNCTION SHOULD ONLY BE CALLED
BY THE V_S8259 DRIVER.

On Entry: AH = F_ISR (OOH)
BP = V_HPHIL (0114H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_INIT (AX = 0200H)

This subfunction initializes the driver and HP-HIL controller. Refer to Section 9 for a complete
discussion of the protocol utilized in data space allocation ("Iast used DS" passed in register BX).

On Entry: AH = F_SYSTEM (02H)
AL = SF_INIT (OOH)
BX = "Last used DS" in HP Data Area
BP = V_HPHIL (0114H)

On Exit: AH = Return Status Code
BX = New "Iast used DS" in HP Data Area

Registers Altered: AX, BX, BP, DS

SF_REPORT_STATE (AX = 0204H)

This subfunction returns the current status of V_HPHIL.

On Entry: AH = F_SYSTEM (02H)
AL = SF_REPORT_STATE (04H)
BP = V_HPHIL (0114H)

Input System and HP-HIL 109

On Exit: AH = Return Status Code
BX = Status word

Bit
OFH-ODH
OCH
OBH
OAH
09H
08H
07H
06H

05H-04H
03H
02H
01H
OOH

Value Definition
Reserved
Timeout has occurred
Output request has completed
Reserved
Error during output request
HP-HIL link has been reconfigured
Reserved

1 HP-HIL driver is open
o HP-HIL driver is closed

Reserved
General failure
No devices attached.
Reserved
Link configuration in progress

Registers Altered: AX, BX, BP, DS

SF_VERSION_DESC (AX = 0206H)

This subfunction returns the release date code and a double word pointer to the current version
number. The date code consists of two BCD coded bytes containing the year and week of
release. The BL register contains the number of years since 1960 and the BH register contains the
week of the year.

On Entry: AH = F_SYSTEM (02H)
AL = SF_ VERSION_DESC (06H)
BP = V_HPHIL (0114H)

On Exit: AH = Return Status Code
BX = Release date code
CX = Number of bytes in current version number

ES:DI = Pointer to the current version number

Registers Altered: AX, BX, CX, DI, ES, BP, DS

110 Input System and HP-HIL

SF_OPEN (AX = 020EH)

This subfunction puts the HP-HIL driver in the open state. When the driver has been placed in the
open state, output to the HP-HIL devices is allowed.

,.. On Entry: AH = F_SYSTEM (02H)
AL = SF_OPEN (OEH)
BP = V_HPHIL (0114H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

SF_CLOSE (AX = 0210H)

This subfunction puts the HP-HIL driver in the closed state. When the driver has been placed in
the closed state, output to the HP-HIL devices is not allowed.

On Entry: AH = F_SYSTEM (02H)
AL = SF_CLOSE (1 OH)
BP = V_HPHIL (0114H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

SF_CRV_RECONFIGURE (AX = 0406H)

This subfunction instructs the HP-HIL controller to reconfigure the link.

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_CRV_RECONFIGURE (06H)
BP = V_HPHIL (0114H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, OS

Input System and HP-HIL 111

This subfunction issues a prompt command to a device on the HP-HIL link. The prompt command
is either specific (prompt number 1 - 7) or generic (a prompt number other than 1 - 7).

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_CRV_WLPROMPTS (08H)
BX = Device address indicator

Bit
OFH-OEH
ODH

OCH
OBH-OOH

Value Definition
Reserved

1 Valid address is present in DH
o Reserved for future enhancement, currently returns

RS_FAIL
Valid register is present in DL
Reserved

DH = HP-HIL device address
DL = Prompt number
BP = V_HPHIL (0114H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

This subfunction issues an acknowledge command to a device on the HP-HIL link. The
acknowledge command is either specific (acknowledge number 1 - 7) or generic (an
acknowledge number other than 1 - 7).

On Entry: AH = F_10_CONTROL (04H)
AL = SF_CRV_WR.-ACK (OAH)
BX = Device address indicator

Bit
OFH-OEH
ODH

OCH
OBH-OOH

112 Input System and HP-HIL

Value Definition
Reserved

1 Valid address is present in DH
o Reserved for future enhancement, currently returns

RS_FAIL
Valid register is present in DL
Reserved

DH = HP-HIL device address (major address)
DL = Acknowledge number
BP = V_HPHIL (0114H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_CRV_REPEAT (AX = 040CH)

This subfunction sets the key repeat rate of a specific HP-HIL device. A repeat rate of 30 or 60
times a second may be specified. This subfunction will only operate if the HP-HIL driver is in the
open state.

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_CRV_REPEAT (OCH)
BX = Device address indicator

Bit
OFH-OEH
ODH

OCH
OBH-OOH

Value Definition
Reserved.

1 Valid address is present in DH.
o Reserved for future enhancement, currently returns

RS_FAIL.
Valid register is present in DL.
Reserved.

CL = 0 for a repeat rate of 30 Hz, 1 for 60 Hz
DH = HP-HIL device address (major address)
BP = V_HPHIL (0114H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

,. This subfunction disables the key repeat of a specified HP-HIL device. This subfunction will only
operate if the HP-HIL driver is in the open state.

Input System and HP-HIL 113

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_CRV_DISABLE_REPEAT (OEH)
BX = Device address indicator

Bit
OFH-OEH
ODH

OCH
OBH-OOH

Value Definition
Reserved

1 Valid address is present in DH.
o Reserved for future enhancement, currently returns

RS_FAIL.
Valid register is present in DL.
Reserved

DH = HP-HIL device address (major address)
BP = V_HPHIL (0114H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

This subfunction initiates device self-test on the specified HP-HIL device. The HP-HIL device will ~

respond with a one byte status code indicating the result of the test. This subfunction should not
be called with an HP-HIL device address of zero (all devices), as the test could then take up to 1.5
seconds to execute. Also, if one of the devices fails, there would be no way to determine which
device reported a failure.

On exit the buffer has the return status of the self-test done on the physical device.

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_CRV_SELF_TEST (10H)
BX = Device address indicator

Bit
OFH-OEH
ODH

OCH
OBH-OOH

Value Definition
Reserved

1 Valid address is present in [)H
o Reserved for future enhancement, currently returns

RS_FAIL
Valid register is present in [IL
Reserved

DH = HP-HIL device address (major address)
BP = V_HPHIL (0114H)

ES:SI = Pointer to a buff_~r area

114 Input System and HP-HIL

On Exit: AH = Return Status Code
ES:SI = Pointer to buffer area

CX = Number of bytes in buffer

Registers Altered: AX, CX, BP, DS

This subfunction issues a send status command to a specified HP-HIL device. The returned status
information ranges from 1 to 15 bytes in length. A pointer to a 15 byte buffer must be passed to
the subfunction. This subfunction will only operate if the HP-HIL driver is in the open state.

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_CRV_REPORT_STATUS (12H)
BX = Device address indicator

Bit
OFH-OEH
ODH

OCH
OSH-OOH

Value Definition
Reserved

1 Valid address is present in DH.
o Reserved for future enhancement, currently returns

RS_FAIL.
Valid register is present in DL.
Reserved

DH = HP-HIL device address (major address)
SP = V_HPHIL (0114H)

ES:SI = Pointer to a buffer area

On Exit: AH = Return Status Code
ES:SI = Pointer to buffer area

CX = Number of bytes in buffer

Registers Altered: AX, CX, BP, DS

This subfunction issues a report name command to a specified HP-HIL device. The returned name
information ranges from 1 to 15 bytes in length. A pointer to a 15 byte buffer must be passed to
the subfunction. This subfunction will only operate if the HP-HIL driver is in the open state.

Input System and HP-HIL 115

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_CRV_REPORT_NAME(14H)
BX = Device address indicator

Bit
OFH-OEH
ODH

OCH
OBH-OOH

Value Definition
Reserved

1 Valid address is present in DH.
o Reserved for future enhancement, currently returns

RS_FAIL.
Valid register is present in DL.
Reserved

DH = HP-HIL device address (major address)
BP = V_HPHIL (0114H)

ES:SI = Pointer to a buffer area

On Exit: AH = Return Status Code
ES:SI = Pointer to buffer area

CX = Number of bytes in buffer

Registers Altered: AX, CX, BP, DS

SF__KEYBOARD_REPEAT (AX = 0416H)

This subfunction sets the typematic rate and delay values for the keyboard. The Cursor Control
keypad (CCP) may be set independent of the rest of the keyboard, i.e. the CCP may start
repeating and repeat at different rates from the rest of the keyboard. See Section 5 for more
information.

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_KEYBOARD_REPEAT (16H)
BH = If BH = 0 set the typematic rate only, if BH = 1 set the delay only, if BH = 2

set both values.
BL = If BL = 0 the typematic rate and delay values are for the non-CCP keypads, if

BL = 1 the values are for the Cursor Control keypad only.
DL = Bits 0-3 contain the typematic rate, Bits 4-7 contain the delay value. See

Section 5, function F16_DEF---.ATIR for permissable values.
BP = V_HPHIL (0114H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

116 Input System and HP-HIL

SF_KEYBOARD_LED (AX = 0418H)

This subfunction controls the state of three keyboard LED indicators. See Section 5 for more
information.

,.. If back to back calls to this function are made, only the most current value will be written to the
keyboard device.

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_KEYBOARD_LED (18H)
BL = Bit mask

Bit Value Definition
07H-03H Reserved
02H 1 Turn on Caps lock LED

0 Turn off Caps lock LED
01H 1 Turn on Num lock LED

0 Turn off Num lock LED
OOH 1 Turn on Scroll lock LED

0 Turn off Scroll lock LED

".. BP = V_HPHIL (0114H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

This function outputs a byte of data to a specific HP-HIL device register. This function will only
operate if the HP-HIL driver is in the open state.

Input System and HP-HIL 117

On Entry: AH = F_PUT_BYTE (06H)
AL = Byte to output
BX = Device address indicator

Bit
OFH-OEH
ODH

OCH
OBH-OOH

Value Definition
Reserved

1 Valid address is present in DH
o Reserved for future enhancement, currently returns

RS_FAIL
Valid register is present in DL
Reserved

DH = HP-HIL device address
DL = HP-HIL device register (0-127)
BP = V_HPHIL (0114H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

This function returns the contents of a specific HP-HIL device register. This function will only
operate if the HP-HIL driver is in the open state.

On Entry: AH = F_GET_BYTE (08H)
BX = Device address indicator

Bit
OFH-OEH
OFH-OEH
ODH

OCH
OBH-OOH

Value Definition
Reserve Value Definition
Reserved

1 Valid address is present in DH
o Reserved for future enhancement, currently returns

RS_FAIL
Valid register is present in DL
Reserved

DH = HP-HIL device address
DL = HP-HIL device register (0-127)
BP = V_HPHIL (0114H)

118 Input System and HP-HIL

On Exit: AH = Return Status Code
AL = Contents· of specified register

Registers Altered: AX, BP, DS

This function outputs a buffer to a specific HP-HIL device register. The HP-HIL controller and
devices are capable of data transfer at rates up to 6500 bytes per second. If the number of bytes
in the buffer is greater than the number the HP-HIL device can handle, this function will transfer
as many bytes as possible to the device, and adjust the value in CX to reflect the number of bytes
left in the buffer (not sent to the device).

On Entry: AH = F_PUT_BUFFER (OAH)
BX = Device address indicator

Bit
OFH-OEH
ODH

OCH
OBH-OOH

Value Definition
Reserved

1 Valid address is present in DH
o Reserved for future enhancement, currently returns

RS_FAIL
Valid register is present in DL
Reserved

CX = Number of bytes in buffer
DH = HP-HIL device address
DL = HP-HIL device register (0-127)
BP = V_HPHIL (0114H)

ES:SI = Pointer to buffer containing data to output

On Exit: AH = Return Status Code
CX = 0 means all the data in buffer is transferred, otherwise the number of bytes

left in buffer.

Registers Altered: AX, CX, BP, DS

,. 4.3.3.3 V_SINPUT (BP = 002AH)

The V_SINPUT driver dispatches ISR events generated by the HP-HIL controller to the appropriate
physical driver, thus providing an entry point into the Input System for non-HP-HIL devices (i.e.,
RS-232 mice, tablets, etc.). It also provides a number of functions which support device mapping.

Input System and HP-HIL 119

A summary of the V_SINPUT function codes is provided in table 4.15.

Table 4.15

V_SINPUT Driver Function Code Summary

Vector Func. Function
Address Value Equate Definition

002AH V_SINPUT Inquire Commands
002AH 00 F_ISR Pass ISR event record to physical driver

002AH 02/ F_SYSTEM System Functions
002AH 02/00 SF_INIT Initialize driver
002AH 04 F_IO_CONTROL Entry point to 10 control functions
002AH 04/00 SF_DEF_LINKS Set header link fields to system defaults
002AH 04/02 SF_GET_LINKS Return device header link field entries
002AH 04/04 SF_SET_LINKS Set device header link field entries

002AH 06 F_INQUIRE Return describe record for an HP-HIL
device.

002AH 08 F_INQUIRE-ALL Return device IDs for all HP-HIL devices
present

002AH OA F_INQUIRE_FIRST Return vector address of first HP-HIL device
driver.

002AH OC F_REPORT_ENTRY Report entry point of PGID

V_SINPUT Driver Function Definitions

F_ISR (AH = OOH)

This function passes an ISR Event Record to the appropriate physical device driver based on the
value in DL. Non-HP-HIL devices which call V_SINPUT must provide the physical device driver
that will handle the ISR event record, and must place its vector index (vector address divided by
six) in DL. (See Section 9, V_SYSTEM functions, to obtain a valid vector address).

On Entry: AH = F_ISR (OOH)
BP =V_SINPUT
(See tables 4.10 and 4.11 for other register values)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

120 Input System and HP-HIL

SF_INIT (AX = 0200H)

This subfunction initializes the driver.

On Entry: AH = F_SYSTEM (02H)
AL = SF_INIT (OOH)
BP = V_SINPUT (002AH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_DEF_LINKS (AX = 0400H)

This subfunction sets the parent vectors in the HP-HIL physical device driver headers to their
system defaults. The defaults are shown in table 4.16. The child vector entries are set to the null
device driver (V_PNULL) by default (see Appendix F).

Table 4.16

,.... Default Physical Device Driver Parents

Device

Keyboard
Mouse
Tablet
Touch Screen
Barcode Reader
Rotary Knob

On Entry: AH = F_la_CONTROL (D4H)
AL = SF_DEF_LINKS (DOH)
BP = V_SINPUT (OD2AH)

,. On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

Parent

V_8041
V_PGID_CCP
V_LTABLET
V_LTOUCH
V_PNULL
V_PGID_CCP

Input System and HP-HIL 121

This subfunction returns the current parent and child vectors in the HP-HIL physical device driver
headers. The address of a seven word (14 byte) table is passed to the subfunction. When the
subfunction returns, the buffer will contain the current vectors. See table 4.17 for the buffer
format.

Table 4.17

Mapping Buffer Format

Word Parent Vector

0 High byte
1 " "
2 " "
3 " "
4 " "
5 " "
6 " "

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_GET_LINKS (02H)
BP = V_SINPUT (002AH)

ES:SI = Pointer to table

Child Vector

Low byte
" "
" "
" "
" "
" "
" "

HP-HIL Device

Device # 1
" " 2
" " 3
" " 4
" " 5
" " 6
" " 7

On Exit: AH
ES:SI

Return Status Code
= Pointer to table

Registers Altered: AX, BP, DS

This subfunction sets the parent and child vectors in the HP-HIL physical device driver headers.
The address of a seven word (14 byte) table is passed to the subfunction. The table contains the
new parent and child vectors for the drivers. The format of the buffer is shown in table 4.17. ~

122 Input System and HP-HIL

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_SET_LINKS (04H)
BP = V_SINPUT (002AH)

ES:SI = Pointer to table

".. On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

The following example is how to use the SF_SET_LINKS function. It is presumed that a call to
F_INQUIRE---.ALL has been made, and that the device at address #3, is a tablet. The tablet is
going to be mapped to the V_LHPMOUSE driver. The BX register already has the offset into the
buffer of tablet mappings.

BUFFER OW 7 OUP (?)

MOV CX, BUFFER[BXj ,. get the current mapping of
,. the tablet

MOV CH, V-iHPMOUSE / 6 ,. change tablet to HP Mouse
MOV BUFFER[BXj, CX ,. save the new mapping
MOV AH, F-lO_CONTROL ,. load function code

".
MOV AL, SF_SET-iINKS ,. load subfunction code
MOV BP, V_SINPUT ,. load vector address
LEA 51, BUFFER ,. get the offset of the buffer
PUSH OS
POP ES ,. ES = OS
PUSH OS ,. save current OS
INT HP_ENTRY ,. call extended BIOS driver
POP OS

F_INQUIRE (AH =06H)

This function returns a pointer to the Physical Describe Record of the specified HP-HIL physical
device driver. WARNING: THE PHYSICAL DESCRIBE RECORD SHOULD NOT BE MODIFIED IN ANY
WAY.

On Entry: AH = F_INQUIRE (06H)
AL = HP-HIL Device Number (1 - 7)
BP = V_SINPUT (002AH)

On Exit: AH = Return Status Code
ES:SI = Pointer to Physical Describe Record

Registers Altered: AX, BP, SI, DS, ES

Input System and HP-HIL 123

F_INQUIRE-ALL (AH = OSH)

This subfunction is used to determine which HP-HIL devices are present on the loop. The address
of a seven word table is passed to the subfunction. When the subfunction returns, the table will
contain the current status of all HP-HIL devices. The format of the buffer is shown in table 4.18.

Table 4.18

Device Inquire Buffer Format

HP-HIL
Word Device ID

0 High byte
1 " "
2 " "
3 " "
4 " "
5 " "
6 " "

Device Status*

Low byte
" "
" "
" "
" "
" "
" "

HP-HIL Device

Device # 1
" " 2
" " 3
" " 4
" " 5
" " 6
" " 7

* Bit 0 = 1 if device present, 0 if no device at this address.
Bits 2 - 7 are reserved.

On Entry: AH = F_INQUIRE--.-ALL (08H)
BP = V_SINPUT (002AH)

ES:SI Pointer to table

On Exit: AH
ES:SI

Return Status Code
Pointer to table

Registers Altered: AX, BP, DS

124 Input System and HP-HIL

The following example shows how to use the F_INQUIRE-ALL function.

BUFFER OW 7 OUP (?)
MOV AH, F-,NQUIRE-ALL
LEA 51, BUFFER
PUSH OS
POP ES
PUSH OS
INT HP_ENTRY
POP OS

F_INQUIRE_FIRST (AH = OAH)

,. load function code
,. get offset of buffer

,. ES = OS
,. save current OS
,. call EX-BIOS driver
,. restore OS

This function returns the vector address of the first HP-HIL physical device driver (HP-HIL address
1). This address allows the vector address of all HP-HIL physical device drivers to be easily
calculated since the vectors are contiguous in the HP_VECTOR-TABLE (see table 4.19).

On Entry: AH = F_INQUIRE_FIRST (OAH)
BP = V_SINPUT (002AH)

On Exit: AH = Return Status Code
BX = Vector address of first HP-HIL physical device driver

Registers Altered: AX, BX, BP, DS

F_REPORT_ENTRY (AH = OCH)

This function is used to get the CS:IP of the physical GID driver.

On Entry: AH = F_REPORT_ENTRY (OCH)
BP = V_SINPUT (002AH)

On Exit: AH = Return Status Code
BX = offset of physical GID driver
ES = segment of physical GID driver

Registers Altered: AX, BX, BP, DS, ES

Input System and HP-HIL 125

4.3.3.4 Physical GID Driver

The physical GID driver is responsible for updating the Physical Describe Record. Two types of
graphics input devices are defined in the input system, absolute (touch screen and tablet), and
relative (mouse). An instance of this driver (same code module, different data area) is installed for ~
each graphic input device present.

A summary of the PGID function codes is provided in table 4.19.

Table 4.19

Physical GID Driver Function Code Summary

Vector Func. Function
Address Value Equate Definition

xxxH HP-HIL driver vector 1 through Physical HP-HIL driver vectors (these
HP-HIL driver vector 7. vectors do not have fixed

HP_VECTOLTABLE addresses)
00 F_ISR Logical Interrupt

02 F_SYSTEM System functions
02/00 SF_INIT Initialize driver
02/02 SF_START Start driver
02/04 SF_REPORT_STATE Unsupported
02/06 SF_VERSION_DESC Report HP version number

Physical GID Driver Function Definitions

F_ISR (AH = OOH)

This function processes ISR Event Records, updates the fields in its Physical Describe Record, then
calls its parent driver. HP-HIL devices report upward relative motion with a positive sign and
downward relative motion with a negative sign. The industry standard representation is the
opposite of this.

126 Input System and HP-HIL

On Entry: AH = F_ISR (DOH)
DH = Data Type
DL = Physical device driver's vector address / 6
BP = HP-HIL device n vector address

For Button Event:

BX = Button information.

Bit
OFH-08H
07H

06H-OOH

Value Definition
Reserved

1 Button up
o Button down

Button number (0-7)

For Motion Event:

BX = X axis motion in raw data form.
CX = Y axis motion in raw data form.

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_INIT (AX = 0200H)

This subfunction is called to initialize the driver.

On Entry: AH = F_SYSTEM (02H)
AL = SF_INIT (OOH)
BP = HP-HIL device n vector address

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

Input System and HP-HIL 127

SF_START (AX = 0202H)

This subfunction starts the driver.

On Entry: AH = F_SYSTEM (02H)
AL = SF_START (02H)
BP = HP-HIL device n vector address

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_VERSION_DESC (AX = 0206H)

This subfunction returns the release date code and a double word pointer to the current version
number. The date code consists of two BCD coded bytes containing the year and week of
release. The BL register contains the number of years since 1960 and the BH register contains the
week of the year.

On Entry: AH = F_SYSTEM (02H)
AL = SF_VERSION_DESC (06H)
BP = HP-HIL device n vector address

On Exit: AH = Return status code
BX = Release date code
CX = Number of byte in current version number

ES:DI = Pointer to the current version number

Registers Altered: AX, BX, CX, DI, ES, BP, DS

4.3.3.5 V_PNULL Driver (BP = OOOCH)

The null device driver is the default event driver routine. It is used when the physical device is not
recognized or the user event handler is not installed. It sets the AH register to RS_SUCCESSFUL
and does an IRET. ~

128 Input System and HP-HIL

4.3.4 Hardware Interface Level Services

Service drivers are provided as useful subroutines available to any driver. Currently the hardware
interface level has only one service, the tracking sprite, V_STRACK. (For more information on
sprites see Section 6).

4.3.4.1 V_STRACK Driver (BP = OOOSAH)

V_STRACK is called by the logical GID drivers to move the graphics cursor (sprite) on the display
screen. V_STRACK provides functions that allow the parameters of the sprite to be defined, and
move the sprite around the display.

A summary of the V_STRACK function codes is provided in table 4.20.

Table 4.20

~ V_STRACK Driver Function Code Summary

Vector Func. Function
Address Value Equate Definition

OOSAH V_STRACK Sprite control

OOSAH 02 F_SYSTEM System functions
OOSAH 02/00 SF_INIT Initialize driver
OOSAH 02/02 SF_START Start driver

OOSAH 04 F_TRACLINIT Sets tracking to default state
OOSAH 06 F_TRACLON Enables tracking
OOSAH 08 F_TRACLOFF Disables tracking
OOSAH OA F_DEF_MASKS Define sprite masks
OOSAH OC F_SET_LIM ITS---->< Set max/min horizontal values
OOSAH DE F_SET_LIMITS_Y Set max/min vertical values
OOSAH 10 F_PUT_SPRITE Display sprite
OOSAH 12 F_REMOVE_SPRITE Remove sprite from display

Input System and HP-HIL 129

V_STACK Driver Function Definitions

F_ISR (AH = OOH)

This function is called to move the sprite to a new location. The display under the sprite is ~
restored, and the sprite is redisplayed in its new location. The hot spot of the sprite is placed at
the coordinates passed in BX and CX.

On Entry: AH = F_ISR (OOH)
BX = X coordinate of sprite
CX = Y coordinate of sprite
DL = Source vector index
BP = V_STRACK (005AH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_INIT (AX = 0200H)

This subfunction is called to initialize the driver. Refer to Section 9 for a complete discussion of
the protocol utilized in data space allocation ("Iast used DS" passed in register BX).

On Entry: AH = F_SYSTEM (02H)
AL = SF_INIT (OOH)
BX = "Last used DS" in HP Data Area
BP = V_STRACK (005AH)

On Exit: AH = Return Status Code
BX = New "last used DS" in HP Data Area

Registers Altered: AX, BX, BP, DS

SF_START (AX = 0202H)

This subfunction is called to start the tracking driver.

On Entry: AH = F_SYSTEM (02H)
AL = SF_START (02H)
BP = V_STRACK (005AH)

130 Input System and HP-HIL

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

~ F_TRACK..-INIT (AH = 04H)

This function sets the tracking driver to its default state. It determines the current video mode,
and initializes the tracking parameters.

On Entry: AH = F_TRACLINIT (04H)
BP = V_STRACK (005AH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

F_ TRACK..-ON (AH = 06H)

This function enables tracking. The sprite is displayed on the screen.

On Entry: AH = F_ TRACLON (06H)
BP = V_STRACK (005AH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

F_ TRACK..-OFF (AH = OSH)

This function disables tracking. The sprite is removed from the screen.

On Entry: AH = F_ TRACLOFF (OSH)
BP = V_STRACK (005AH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

Input System and HP-HIL 131

F_DEF_MASKS (AH = OAH)

This function is called to define the sprite and screen masks used by the driver. If tracking is
enabled, the sprite is erased and the new sprite is displayed in its place. The size of the sprite (its
width in bytes multiplied by its height) is limited to a total of 144 bytes. The width of the save
area is one byte greater than the width of the sprite.

On Entry: AH = F_DEF_MASKS (OAH)
BH = Width of the save area (in bytes)
BL = Hot Spot X coordinate
CH = Height of sprite (in scan lines)
CL = Hot Spot Y coordinate
BP = V_STRACK (005AH)

ES:SI = Pointer to sprite mask

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

The following example shows how to use the F_DEF_MASKS function provided by the tracking
driver.

SPRITE OW OF9FFH 1111100 111111111 "*,, marks the
OW OFOFFH 11110*0011111111 Hot Spot
OW OE07FH 1110000001111111
OW OE07FH 1110000001111111
OW OC03FH 1100000000111111
OW OC03FH 1100000000111111
OW 0801FH 1000000000011111
OW 0801FH 1000000000011111
OW OOOOFH ; 0000000000001111
OW OOOOFH ; 0000000000001111
OW OFOFFH 11110000 11111111
OW OFOFFH 11110000 11111111
OW OFOFFH 11110000 11111111
OW OFOFFH 11110000 11111111
OW oFOFFH 11110000 11111111
OW OFOFFH 11110000 11111111

Define the XOR mask

132 Input System and HP-HIL

OW OOOOOH ; 0000000000000000 "*,, marks the
OW 00600H ; 00000*1000000000 Hot Spot
OW OOFOOH ; 0000111100000000
OW OOFOOH ; 0000111100000000
OW 01F80H ; 0001111110000000
OW 01F80H ; 0001111110000000
OW 03FCOH ; 0011111111000000
OW 03FCOH ; 0011111111000000
OW 07FEOH ; 0111111111100000
OW 00600H ; 0000011000000000
OW 00600H ; 0000011000000000
OW 00600H ; 0000011000000000
OW 00600H ; 0000011000000000
OW 00600H ; 0000011000000000
OW 00600H ; 0000011000000000
OW OOOOOH ; 0000000000000000

MOV AH, F_OEF_MASKS
LEA 51, SPRITE
PUSH OS
POP ES
MOV CH,10H
MOV BH,3

MOV BL,5
MOV CL, 1
MOV BP, V_STRACK
PUSH OS
INT HP_ENTRY
POP OS

; load function code
; get the offset of the sprite

,. ES = OS of sprite
,. height of sprite
,. number of bytes wide the
,. save area is
,. hot spot x
,. hot spot Y
,. load vector address
,. save current OS
,. call EX-BIOS DRIVER
,. restore OS

F_SET_LIMITS-X (AH = OCH)

This function sets the minimum and maximum horizontal position of the sprite on the screen.
The default minimum and maximum values are the same as the current screen mode.

On Entry: AH = F_SET_LIMITSJ (OCH)
CX = Minimum X coordinate
DX = Maximum X coordinate
BP = V_STRACK (005AH)

Input System and HP-HIL 133

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

This function sets the minimum and maximum vertical position of the sprite on the screen. The
default minimum and maximum values are the same as the current screen mode.

On Entry: AH = F_SET_LIMITS_Y (OEH)
CX = Minimum Y coordinate
DX = Maximum Y coordinate
BP = V_STRACK (OOSAH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

This function is called to put the sprite on the display.

On Entry: AH = F_PUT_SPRITE (10H)
BX = X coordinate of sprite
CX = Y coordinate of sprite
BP = V_STRACK (OOSAH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

F_REMOVE_SPRITE (AH = 12H)

This function removes the sprite from the display.

On Entry: AH = F_REMOVE_SPRITE (12H)
BP = V_STRACK (OOSAH)

On Exit: AH = Return Status Code.

Registers Altered: AX, BP, DS

134 Input System and HP-HIL

SECTION 5

TABLE OF CONTENTS

5. KEyBOARD 137

5.1 Overview 137

5.2 STD-BIOS Keyboard Drivers 139

5.2.1 Overview 139

5.2.2 Data Structures 139

5.2.3 5TO-8105 Keyboard ISR (INT 09H) 142

5.2.4 STO-BIOS Keyboard Driver (INT 16H) 147
Keyboard Driver (INT 16H) Function Definitions 148

F16__GET__KEY (AH = OOH) 148
F16__STATUS (AH = 01 H) 149
F16__KEY__STATE (AH = 02H) 149
F16__INQUIRE (AX = 6FOOH) 150
F16__DEF-ATIR (AX = 6F01H) 150
F16_GET-ATIR (AX = 6F02H) 152
F16_SET-ATIR (AX = 6F03H) 152
F16_DEF__MAPPING (AX = 6F04H) 152
F16__GET_MAPPING (AX = 6F05H) 153
F16_SET__MAPPING (AX = 6F06H) 153
F16__SET--XLATORS (AX = 6F07H) 154
F16__KBD (AX = 6F08H) 155
F16_KBD_RESET (AX = 6F09H) 155

5.3 EX-BIOS Keyboard Drivers 155

5.3.1 Overview 156
5.3.1.1 Logical Keyboard Driver 156
5.3.1.2 Keyboard Translators 156
5.3.1.3 8041 Interface Driver 157

5.3.2 Data Structures 157

5.3.3 Logical Keyboard Driver 160
Logical Keyboard Driver Function Definitions 161

F_ISR (AH = OOH) 161
SF_INIT (AX = 0200H) 161
SF_VERSION_DESC (AX = 0206H) 162

135

5.3.4 Keyboard Translators 162
5.3.4.1 V_SOFTKEY (BP = 003CH) 163
5.3.4.2 V_QWERTY {BP = 0036H) 164
5.3.4.3 V_FUNCTION (BP = 0042H) 165
5.3.4.4 V_NUMPAD (BP = 0048H) 166 ~

5.3.4.5 V_CCP {BP = 004EH) 167
5.3.4.6 V_OFF Driver {BP = 009CH) 169
5.3.4.7 V_RAW Driver {BP = 0090H) 170
5.3.4.8 V_CCPNUM {BP = 0096H) 171
5.3.4.9 V_CCPCUR (BP = 008AH) 172
5.3.4.10 V_SKEY2FKEY {BP = 00A8H) 173

5.3.5 V_8041 (BP = OOAEH) 174
V_8041 Driver Function Definitions 175

F_ISR (AH = OOH) 175
SF_INIT (AX = 0200H) 176
SF_START (AX = 0202H) 176
SF_VERSION_DESC (AX = 0206H) 177
SF_CREAT_INTR (AX = 040AH) 177
SF_DELET_INTR (AX = 040CH) 177
SF_ENABLINTR (AX = 040EH) 178
SF_DISBLINTR (AX = 0410H) 178
SF_SET_RAMSW (AX = 0412H) 178 ~
SF_CLLRAMSW (AX = 0414H) 179
SF_SET_CRTSW (AX = 0416H) 179
SF_CLLCRTSW (AX = 0418H) 179
SF_PASS_THRU (AX = 041AH) 180

5.4 8041 Keyboard Controller 180

5.4.1 Overview 180

5.4.2 8041 Controller and Keyboard Commands 181

5.4.3 8041 to 5TO-8105 Scancodes and Commands 190

5.4.4 8041 to Logical Keyboard Driver Communication 191

136 Keyboard

SECTION 5.

5.1 Overview

KEYBOARD

The Keyboard Input System consists of four components: The input device drivers, STD-BIOS
keyboard drivers, 8041 keyboard controller chip and the EX-BIOS keyboard drivers. The input
device drivers are discussed in Section 4. The other three components are discussed in this
section (See figure 5.1).

The industry standard INT 16H and INT 09H handlers make up the STD-BIOS keyboard drivers.
INT 16H is used by applications to get characters from the keyboard buffer. INT 09H responds to
interrupts from the 8041 controller and places characters in the keyboard buffer.

The 8041 controller chip provides an industry standard hardware interface to the INT 09H driver.
It also provides timers and other services to the Keyboard Input System.

The EX-BIOS drivers translate HP-HIL keyboard scancodes to industry standard scancodes. They
also allow applications to redefine the scancodes generated by certain groups of keys on the
keyboard (keypads).

The following data flow describes the actions that occur when a user presses a key until it is read
by an application:

1. When a key is pressed on the keyboard, the input device driver V_HPHIL creates an ISR
event and chains to the input device driver V_SINPUT. The input device driver V_SINPUT
chains to the EX-BIOS logical keyboard driver.

2. The EX-BIOS logical keyboard driver determines which keypad the scancode is from and
calls the appropriate translator service. After translation, the logical keyboard driver chains
to the 8041 interface driver.

3. The 8041 interface driver (V_8041) sends the scancode to the 8041 controller chip. The
8041 controller generates an Output Buffer Full (OBF) interrupt to notify the STD-BIOS INT
09H driver that a scancode is available.

4. The STD-BIOS INT 09H driver reads the scancode from the 8041 chip. The scancode is
placed in the STD-BIOS keyboard buffer along with its associated ASCII character (keycode).

Keyboard 137

Keyboard Block Diagram
Standard Application Interface

STD-BIOS Drivers

STD-BIOS
Interrupt
Handler
INT 09H

.......
STD-BIOS
Application

Interface
INT 16H

Input Drivers

138 Keyboard

1
Logical

Touch Screen
(V_LTOUCH)

I
Physical

GID Driver
Abs/Rel

I
Dispatch

Driver
(V_SINPUT)

i
HP-HIL
Driver

(V_HPHIL)

t

Physical Devices

Logical
Tablet

(V_LTABLET)

1
Logical
Pointer

(V_LPOINTER)

Figure 5.1

8041
Controller

Chip

~~

EX-BIOS Drivers'

8041 ~

QWERTY
Interface

~ Translator
Driver (V_QWERTY)

(V_8041)

~~

Function

~
Key

Translator
Logical (V_FUNCTIONI)..... Keyboard +------....
Driver

Softkey to Numeric
Function Key ~ r+ Pad

(V_SKEY2FKEY) Translator
(V_NUMPAD)

Byte Bucket
~r-(V_OFF)

r-+ Softkey

Pass Thru Translator.....
(V_RAW) (V_SOFTKEY)

Cursor to
Numeric ~

(V_CCPNUM)

L.+ CCP

Cursor Always Translator

(V_CCPCUR) (V_CCP)

5. When an application is ready to receive keyboard input it calls the 5TD-BI05 INT 16H driver
to retrieve the keycode and scancode from the STD-BIOS keyboard buffer.

5.2 S1D-BIOS Keyboard Drivers

The 5TD-BI05 component consists of two drivers: the keyboard 15R routine (INT 09H), and the
keyboard interface driver (INT 16H). The drivers discussed here cover steps 4 and 5 in the
overview of Section 5.

5.2.1 Overview

The INT 09H driver responds to the 8041 OBF interrupt (generated by V_58259) and reads in a
scancode from the 8041 controller. If the scancode is from one of the keyboard modifier keys,
the appropriate state bits are updated. The scancode is then placed in the 5TD-BI05 keyboard
buffer along with its corresponding ASCII character (keycode) or a null byte (OH).

The INT 16H driver provides functions to allow the application to interrogate and manipulate the
keyboard input system. Applications may check for keycodes in the 5TD-BIOS keyboard buffer,
remove keycodes from it, and retrieve the state of the keyboard modifiers.

Extended functions are provided by the INT 16H driver to give the application additional control
over the keyboard and to facilitate keyboard driver mapping. Extended functions allow the
application to turn off or change the default translations performed on the HP Softkeys and
Cursor Control keypads (see figure 5.2). Applications may inquire about and/or change the
typematic rate and delay values for the keyboard. Functions are also provided to aid applications
wishing to install keypad translator services of their own.

,. 5.2.2 Data Structures

The INT 16H and INT 09H driver data structures are located in the STD-BIOS data area. They are
stored in memory addresses 417H (40: 17H) through 43DH (40:3DH). Table 5.1 lists these
memory locations and their definitions.

Keyboard 139

Keyboard Keypad Groups

Softkey Keypad (f1-f8) Numeric or Cursor Keypad

I -===~JlQ-p~gQl--llOQG:OD c-_-=·:r~~-_~~O
=.=-==--=-=--==-:-:":~-~.'-'--=--:~--=-=---,:.=~-_:--.- ---"~ --- -- . ~. __-. -.- "~~_.= c::.-::_."_.:-:-- ..-=-==-=-:---:::"-. --.--.-.....:.:--.~-_~-_==

~~~bnltjtrtJ=tJ(flb dlLWDE5tr5~~§~~2~;~EJ~~iTI
~EJ EJEJEJDu[]tJ~O[J[][][JnbJ~~ eJ(O(Qr;:)
~EJ c=J EJU~u~tJUEJDDO~ GJO(;] [JeJ[][J I

rJ~ .'~OUDtJEJEJEJD[][][·\- I ~~6:J [;;J!D[gl] i

~;~l~~~_c=~c=c_- _ I _ EJ ~~ 9E~

Function Keypad (F1-F10)

Table 5.1

QWERTY Keypad

Figure 5.2

Cursor Control Keypad

STD-BIOS Keyboard Driver Data Area

Address

00417H
00419H
0041AH
0041CH
0041EH

140 Keyboard

Length
Bytes

2
1
2
2

32

Definition

Keyboard Flags
Alt/Numpad accumulator
Keyboard buffer head pointer
Keyboard buffer tail pointer
Keyboard buffer



The keyboard buffer can store up to 16 entries. Each buffer entry consists of two bytes; an ASCII
character (keycode) and a scancode. The keycode and the scancode are placed in the keyboard
buffer by the INT 09H driver, and the keyboard head pointer is adjusted accordingly. They are
retrieved from the buffer by the INT 16H driver, and the keyboard tail pointer is adjusted.

The keyboard flags are maintained by the INT 09H driver. These flags indicate the state of the
keyboard modifier keys and their respective modes. The byte at memory location 417H indicates
the mode, while the byte at 418H reflects the actual state of the keys themselves. Tables 5.2 and
5.3 list these flags and their meaning.

Table 5.2

Keyboard Flags (Address 417H)

Address Bit Data Definition

00417H 07H Insert state
Insert mode is active

06H Caps lock state
Caps lock mode is active

OSH Num lock state
N·um lock mode is active

04H Scroll lock state
Scroll lock mode is active

03H <Alt> key State
< Alt > key is pressed

02H < CTRL > key State
< CTRL > key is pressed

01H Left < Shift> key state
Left < Shift> key is pressed

OOH Right < Shift> key state
Right < Shift> key pressed

Keyboard 141



Table 5.3

Keyboard Flags (Address 418H)

Address Bit

00418H 07H

06H

05H

04H

03H

02H

01 H-OOH

Data Definition

< Ins> key state
< Ins> key is pressed
< Caps lock> key state
< Caps lock> key is pressed
< Num lock> key state
< Num lock> key is pressed
< ScrLck > key state
< ScrLck > key is pressed
Pause State
Indicates the < CTRL> -< Num lock> pause
state is active
< Sys req > key state
< Sys req > key is pressed
Reserved

Note:

Applications whjch modify these two bytes may experience "difficulty in maintaining
synchronization between the Cursor Control keypad and the Numeric keypad.

5.2.3 5TO-8105 Keyboard 15R (lNT 09H)

The keyboard interrupt service routine is responsible for retrieving scancodes from the 8041
controller, generating the associated keycodes, and placing them into the STD-BIOS keyboard
buffer. Certain keys and key combinations do not generate a standard ASCII character code. In
these cases a keycode equal to 0 indicates that an application program should examine the
scancode byte to determine the "extended" ASCII code. Table 5.4 contains the scancode to
keycode translation assignments.

142 Keyboa rd



Table 5.4

Scancode Conversion Table

Key AT Hp Unshifted Shifted
Number Scancode Scancode Key Cap ASCII Hex ASCII Hex Control Alt

90 076H 001H ESC esc 1BH esc 1BH 1BH -
02 016H 002H 1 '1' 31H '1' 21H - 00/78H
03 01EH 003H 2 '2' 32H '@' 40H DOH 00/79H
04 026H 004H 3 '3' 33H '#' 23H - GO/7AH
05 02SH OOSH 4 '4' 34H '$' 24H - 00/7BH
06 02EH 006H 5 '5' 3SH '0/0' 2SH - OO/7CH
07 036H 007H 6 '6' 36H '1\' SEH 1EH OO/70H
08 030H 008H 7 '7' 37H '&' 26H - OO/7EH
09 03EH 009H 8 '8' 38H '*' 2AH - OO/7FH
10 046H OOAH 9 '9' 39H ' (' 28H - 00/80H
11 04SH OOBH 0 '0' 30H ')' 29H - 00/81H
12 04EH OOCH ' , 20H , , SFH 1FH 00/82H- -
13 OSSH OOOH , , 30H '+' 2BH OO/83H= = -
15 066H OOEH backspace bs 08H bs 08H 7FH -
16 OOOH OOFH Tab tab 09H si OFH - -

17 01SH 010H Q 'q' 71H 'Q' 51 H 11H OO/10H
18 010H 011 H W 'w' 77H 'w' S7H 17H OO/11H
19 024H 012H E 'e' 6SH 'E' 4SH OSH OO/12H
20 020H 013H R 'r' 72H 'R' S2H 12H OO/13H
21 02CH 014H T 't' 74H 'T' S4H 14H OO/14H
22 03SH 01SH V 'y' 79H 'V' S9H 19H OO/1SH
23 03CH 016H U 'u' 7SH 'u' SSH 1SH OO/16H
24 043H 017H I 'i' 69H 'I' 49H 09H OO/17H
25 044H 018H 0 'a' 6FH '0' 4FH OFH 00/18H
26 040H 019H P 'p' 70H 'P' SOH 10H OO/19H
27 OS4H 01AH [ '[' SBH ' {' 7BH 1BH -
28 OSBH 01BH ] ']' SOH '} , 70H 10H -
43 OSAH 01CH Enter cr OOH cr DOH OAH -
30 014H 010H CTRL - - - - - -
31 01CH 01EH A 'a' 61 H 'A' 41H 01H OO/1EH
32 01BH 01FH S '5' 73H '5' S3H 13H 00/1FH
33 023H 020H D 'd' 64H 'D' 44H 04H OO/20H
34 02BH 021H F 'f' 66H 'F' 46H 06H OO/21H
35 034H 022H G 'g' 67H 'G' 47H 07H OO/22H
36 033H 023H H 'h' 68H 'H' 48H 08H OO/23H
37 03BH 024H J 'j' 6AH 'J' 4AH OAH OO/24H
38 042H 02SH K 'k' 6BH 'K' 4BH OBH OO/2SH
39 04BH 026H L 'I' 6CH 'L' 4CH OCH OO/26H
40 04CH 027H '.' 3BH ' , 3AH - -, ,
41 OS2H 028H , " , 27H "" 22H - -
01 OOEH 029H ,

'" 60H ' - , 7EH - -
44 012H 02AH Left Shift - - - - - -

Keyboa rd 143



Key AT Hp Unshifted Shifted
Number Scancode Scancode Key Cap ASCII Hex ASCII Hex Control Alt

14 05DH 02BH '" '", ' 5CH 'I' 7CH 1CH -
46 01AH 02CH Z 'z' 7AH 'z' 5AH 1AH OO/2CH
47 022H 02DH X 'x' 78H 'X' 58H 18H OO/20H
48 021H 02EH ( 'c' 63H '(' 43H 03H OO/2EH
49 02AH 02FH V 'v' 76H 'V' 56H 16H OO/2FH
50 032H 030H 8 'b' 62H '8' 42H 02H OO/30H
51 031H 031H N 'n' 6EH 'N' 4EH OEH OO/31H
52 03AH 032H M 'm' 6DH 'M' 4DH DOH OO/32H
53 041H 033H ' , 2CH '<' 3CH, , - -
54 049H 034H ' , 2EH '>' . 3EH - -
55 04AH 035H / 'I' 2FH '7' 3FH - -
57 059H 036H Right Shift - - - - - -

106 07CH 037H Prt Sc '*' 2AH - - OO/72H -

58 011H 038H Alt - - - - - -
61 029H 039H Space ' , 20H ' , 20H 20H 20H
64 058H 03AH (aps lock - - - - - -
70 005H 03BH F1 - 3BH - 54H OO/5EH OO/68H
65 006H 03CH F2 - 3CH - 55H OO/5FH OO/69H
71 004H 03DH F3 - 3DH - 56H OO/60H OO/6AH
66 OOCH 03EH F4 - 3EH - 57H OO/61H OO/6BH
72 003H 03FH F5 - 3FH - 58H OO/62H OO/6CH
67 OOBH 040H F6 - 40H - 59H OO/63H OO/60H
73 083H 041H F7 - 41H - 5AH OO/64H OO/6EH
68 OOAH 042H F8 - 42H - 5BH OO/65H OO/6FH
74 001H 043H F9 - 43H - 5CH OO/66H OO/70H
69 009H 044H F10 - 44H - 50H OO/67H OO/71H

NumLock None Or
Key AT Hp or NumLock
Number Scancode Scancode Key Cap Shift and Shift Control

95 077H 045H Num lock - 45H - -
100 07EH 046H ScrLck - 46H - -

91 06CH 047H Home '7' 37H OO/47H 0077H
96 075H 048H i '8' 38H OO/48H -

101 07DH 049H Pg Up '9' 39H OO/49H 00/84H

107 07BH 04AH ' , 3AH 3AH -- -
92 06BH 04BH +- '4' 34H OO/4BH 00/73H
97 073H 04CH 5 '5' 35H - -

102 074H 04DH -+ '6' 36H OO/4DH 00/74H
108 079H 04EH + '+' 2BH 2BH -
93 069H 04FH End '1' 31H OO/4FH 00/75H
98 072H 050H ~ '2' 32H OO/50H -

108 07AH 051H Pg Dn '3' 33H OO/51H 00/76H
99 070H 052H Ins '0' 30H OO/52H -

104 071H 053H DEL ' , 2EH OO/53H -

105 084H 054H Sysreq - - - -

144 Keyboard



Key AT Hp Unshifted Shifted
Number Scancode Scancode Key Cap ASCII Hex ASCII Hex Control Alt

OSSH - undef.
OS6H - undef.
OS7H - undef.
OS8H - undef.
OS9H - undef.
OSAH - undef.
OSBH - undef.
OSCH - undef.
OSDH - undef.

59 OSEH Unlabled-L OO/07H OO/BOH OO/A3H OO/89H
62 OSFH Unlabled-R OO/08H OO/BEH OO/A4H OO/8AH

113 060H CCP-Up OO/09H OO/BFH DO/ASH OO/8BH
111 061H CCP-Lft OO/OAH OO/COH OO/A6H OO/8CH
115 062H CCP-Dn OO/OBH OO/C1H OO/A7H OO/80H
118 063H CCP-Rht OO/OCH OO/C2H OO/A8H OO/8EH
110 064H CCP-Home DO/DOH OO/C3H OO/A9H OO/8FH
117 06SH CCP-PgUp OO/OEH OO/C4H OO/AAH OO/90H
112 066H CCP-End OO/OFH OO/CSH OO/ABH OO/91H
119 067H CCP-PgDn OO/EOH OO/C6H OO/ACH OO/92H
116 068H CCP-Ins OO/E1H OO/C7H OO/AOH OO/93H
120 069H CCP-Del OO/E2H OO/C8H OO/AEH OO/94H
114 06AH CCP-CNTR OO/E3H OO/C9H OO/AFH OO/9SH

06BH - undef. OO/E4H OO/CAH OO/BOH OO/96H
06CH - undef. OO/ESH OO/CBH OO/B1H OO/97H
06DH - undef. OO/E6H OO/CCH OO/B2H OO/98H
06EH - undef. OO/E7H OO/COH OO/B3H OO/99H
06FH - undef. OO/E8H OO/CEH OO/B4H OO/9AH

121 070H f1 OO/E9H OO/CFH OO/BSH OO/9BH
122 071H f2 OO/EAH OO/DOH OO/B6H OO/9CH
123 072H f3 OO/EBH OO/01H OO/B7H OO/90H
124 073H f4 OO/ECH OO/02H OO/B8H OO/9EH
125 074H f5 OO/EDH OO/D3H OO/B9H OO/9FH
126 07SH f6 OO/EEH OO/04H OO/BAH OO/AOH
127 076H f7 OO/EFH OO/DSH OO/BBH OO/A1H
128 077H f8 OO/FOH OO/06H OO/BCH OO/A2H

078H through 7FH-unde'f.

The INT 09H driver tracks the state of the keyboard modifiers presented in tables 5.2 and 5.3 as
well as processing the special key combinations in table 5.5.

Keyboard 145



Table 5.5

INT 09H Special Key Sequences

Key Combinations Action

<CTRL>-<Num lock> Stops execution until any non-shift key on the
keyboard is struck.

<CTRL>-<Alt>-< + > This key sequence enables the key click feature. The
longer the < CTRL > -< Alt > -< + > keys are pressed,
the louder the key click that will result. After maximum
volume is achieved the key click volume will wrap
around to low volume. Applications which depend
upon datacom rates at and above 9600 baud while
keyboard input is being entered should disable the
keyclick feature.

< CTRL> -<Alt> -<-> This key sequence reduces the key click volume until it
is off.

< CTRL> -< Break> This key combination is interpreted as a program break
request. When this key combination is detected, the
INT 09H driver will execute an INT 1BH instruction. The
vector for this interrupt is initialized during the boot
process to point to a routine within MS-DOS which
sets a flag then performs an IRET instruction. This
vector may be modified to point to an alternate
routine to handle a < CTRL > -< Break> .

< CTRL> -<Alt> -< DEL> This key combination is interpreted as a system reset
command. When this key combination is detected,
control is transferred to the BIOS Reset routine.

<Shift>-<Prt Sc> This key combination is interpreted as a print screen
command. When this key combination is detected, an
INT OSH instruction is executed.

<Sys req> This key is interpreted as a system request for multi-
tasking.

146 Keyboa rd



Key Combinations

< CTRL> -<Alt> -< Sys req>

<ALT>-nnn

Action

This key sequence provides the user with a method of
generating a hard reset sequence. The key sequence is
communicated to the ROM-BIOS via a non-maskable
interrupt (NMI) to the 80286. This key sequence does
not require the HP-HIL firmware interface to be
operational. The key sequence is used to recover from
exceptional error conditions without power cycling the
system. The EX-BIOS code then:

1) Inspects for the source of the NMI (either I/O
channel check, Memory Parity Error, or as in this
case NMI-RESET).

2) Clears CMOS location 28H, 29H, 2AH, and 2CH to
its default setting.

3) Jumps to location FOOOH:FFFEH.

Where nnn represents a three digit decimal number
entered on the numeric keypad and yields the
associated ASCII characters, i.e., <ALT>-122 yields
the character "z".

5.2.4 STD-BIOS Keyboard Driver (lNT 16H)

The INT 16H driver acts as the interface between applications and the keyboard. This driver has
two sets of functions. One set provides functions to return keycodes and keyboard status. The
other set of functions allows the application to change the translation algorithms of the
scancodes and to vary the repeat rates of the keys on the keyboard. Table 5.6 contains a
summary of this driver's function codes.

Keyboard 147



Table 5.6

Keyboard Driver (INT 16H) Function Code Summary

Int Function Function
Hex Equate Value Definition

16H INT_KBD Keyboard
F16_GET_KEY OOH Read keycode from keyboard buffer
F16_STATUS 01H Report Status of keyboard buffer
F16_KEY_STATE 02H Get Key Modifier Status

F16_INQUIRE 6FOOH EX-BIOS present
F16_DEF.-ATTR 6F01 H Report default typematic values
F16_GET.-ATTR 6F02H Report typematic values
F16_SET.-ATTR 6F03H Set typematic values
F16_DEF_MAPPING 6F04H Report default transfer assignments

F16_GET_MAPPING 6FOSH Report transfer assignments
F16_SET_MAPPING 6F06H Set transfer assignments
F16_SET-.XLATORS 6F07H Set CCP and softkey pads
F16_KBD 6F08H Report keyboard information
F16_KBD_RESET 6F09H Reset keyboard to defaults

Keyboard Driver (INT 16H) Function Definitions

This function returns the next keycode from the keyboard buffer. If no keycode is ready, this
function waits for one.

On Entry: AH = F16_GET_KEY (DOH)

On Exit: AH = Scancode
AL = ASCII keycode or extended keycode

Registers Altered: AX

148 Keyboard



F16_STATUS (AH = 01H)

This function returns the status of the keyboard buffer. The Zero flag is cleared if a keycode is
available, or set if there is no keycode in the buffer. If a keycode is ready, the scancode and
keycode are returned in the AH and AL registers respectively. Even though the scancode and
keycode are returned with this function, they must be read with F16_GET_KEY to remove
them from the keyboard buffer.

On Entry: AH = F16_STATUS (01 H)

On Exit: Z = 1 if no keycode is ready.
Z = a if a keycode is ready.

and
AH = Scancode
AL = Keycode or extended keycode.

Registers Altered: AX

This function returns the state of the various keyboard modifiers. The status byte returned is a
copy of the keyboard modifier status byte stored at memory location 417H.

"..
On Entry: AH = F16_KEY_STATE (02H)

On Exit: AL = Modifier Status Byte

Bit Data Definition
07H 1 Insert mode active

a Insert mode inactive
06H 1 Caps lock mode active

a Caps lock mode inactive
05H 1 Num lock mode active

a Num lock mode inactive
04H 1 Scroll lock mode active

a Scroll lock mode inactive
03H 1 < Alt > key pressed

a < Alt > key released
02H 1 < CTRL > key pressed

". a < CTRL > key released
01H 1 Left < Shift> key pressed

a Left < Shift> key released
OOH 1 Right < Shift> key pressed

0 Right < Shift> key pressed

Registers Altered: AL

Keyboard 149



F16_INQUIRE (AX = 6FOOH)

This subfunction determines whether or not the extended HP functions are available. If the HP
functions are available, the BX register will be set to 4850H (which is the ASCII characters 'HP').

On Entry: AX = F16_INQUIRE (6FOOH)
BX = Any value except 4850H, 'HP'.

On Exit: BX = 'HP'

Registers Altered: BX

F16_DEF~TTR (AX = 6F01H)

This subfunction reports the default typematic rate and delay values for the keyboard. A pointer
to a four byte buffer is returned. The bytes in the buffer are defined in table 5.7.

Table 5.7

INT 16H Typematic Buffer Format

Byte Function

o Delay before repeat action starts for all keys, except the Cursor Control Pad.
1 Typematic Repeat rate for all keys, except the Cursor Control Pad.
2 Delay before repeat action starts for all Cursor Control Pad keys.
3 Typematic Repeat rate for all Cursor Control Pad keys.

Table 5.8 summarizes the typematic rate and delay values defined for each data byte accepted in
the typematic buffer by the INT 16H driver. Note that the typematic rates are the same for both
the HP cursor control pad and the non-cursor pad keys while two delay values are provided (one
for each group).

150 Keyboard



Table 5.8

INT 16H Typematic Rates and Delays

Byte 1 and 3 Byte 2 Byte 0
Reports Number of Number of

Data Byte per PolI* Polls Delayed** Polls Delayed

OOH 1 (60.00) 1 [0.017] 1 [0.017]
01H 2 (30.00) 5 [0.083] 9 [0.150]
02H 3 (20.00) 9 [0.150] 17 [0.283]
03H 4 (15.00) 13 [0.217] 25 [0.417]
04H 5 (12.00) 17 [0.283] 33 [0.550]

OSH 6 (10.00) 21 [0.350] 41 [0.683]
06H 7 ( 8.57) 25 [0.417] 49 [0.817]
07H 8 ( 7.50) 29 [0.483] 57 [0.950]
08H 9 ( 6.66) 33 [0.550] 65 [1 .083]
09H 10 ( 6.00) 37 [0.617] 73 [1 .217]

OAH 11 ( 5.45) 41 [0.683] 81 [1 .350]
OBH 12 ( 5.00) 45 [0.750] 89 [1 .483]
OCH 13 ( 4.62) 49 [0.817] 97 [1 .617]
OOH 14 ( 4.28) 53 [0.883] 105 [1 .750]
OEH 15 ( 4.00) 57 [0.950] 113 [1 .883]

OFH none (off ) 61 [1 .017] 121 [2.017]

*Numbers in parentheses ( ) indicate the approximate number of repeated scancodes per
second (assuming a poll rate of 60 cycles per second).

**Numbers in brackets [ ] indicate the approximate length of delay prior to the first repeated
scancode report (assuming a poll rate of 60 cycles per second).

On Entry: AX = F16_DEF-.ATIR (6F01 H)

On Exit: AH = OOH (Successful operation)
ES:SI = Pointer to buffer

".. ex = 4 (Number of entries in table)

Registers Altered: AX, ex, SI, ES

Keyboard 151



F16_GET--ATIR (AX = 6F02H)

This subfunction reports the current typematic rate and delay values for the keyboard. A pointer
to a four byte buffer is returned. The bytes in the buffer are interpreted as shown in table 5.7
and 5.8.

On Entry: AX = F16_GET~nR (6F02H)

On Exit: AH = OOH (Successful operation)
ES:SI = Pointer to buffer

CX = 4 (Number of entries in table)

Registers Altered: AX, CX, SI, ES

F16_SET--ATIR (AX = 6F03H)

This subfunction sets the current typematic rate and delay values for the keyboard. A pointer to a
four byte buffer is passed. The bytes in the buffer are interpreted as shown in table 5.7 and 5.8.

On Entry: AX = F16_SET~nR (6F03H)
ES:SI = Pointer to buffer

On Exit: AH = OOH (Successful operation)

Registers Altered: AX

F16_DEF_MAPPING (AX = 6F04H)

This subfunction reports the default keyboard translator mappings. A pointer to a buffer of 1EH
bytes is supplied by the caller to be filled in by the ROM-BIOS. The table will contain the default
HP_VECTOLTABLE entries for each of the five translator drivers. Each of five entries in the
table will contain the IP, CS, and DS for each translator driver.

Caution

An application should restore the translator drivers to their original condition upon
termination. If an application replaces one of these drivers it should be aware that
STD-BIOS keyboard driver functions 6F07H may no longer function properly.

The format of the buffer is given in table 5.9.

152 Keyboard



Table 5.9

INT 16H Mapping Buffer Format

Byte

OOH
06H
OCH
12H
18H

Translator

Entry for V_QWERTY driver
Entry for V_SOFTKEY driver
Entry for V_FUNCTION driver
Entry for V_NUMPAD driver
Entry for V_CCP driver

On Entry: AX = F16_DEF_MAPPING (6F04H)
ES:SI = Pointer to buffer

On Exit: AH = OOH (Successful)
ES:SI = Pointer to buffer of 1EH bytes

ex = 1EH (Size of buffer)

Registers Altered: AX, ex

This subfunction reports the current keyboard translator mappings. A pointer to a buffer 1EH
bytes in length is supplied by the caller to be filled in by the ROM-BIOS. The buffer will contain
the current HP_VEeTOLTABLE entries for each of the five translator drivers (IP, es, and DS for
each driver). The format of the buffer is given in table 5.9.

On Entry: AX = F16_GET_MAPPING (6F05H)
ES:SI = Pointer to buffer

On Exit: AH = OOH (Successful)
ES:SI = Pointer to buffer

ex = 1EH (Size of table)

Registers Altered: AX, ex

This subfunction sets the current keyboard translator mappings. A pointer to a buffer containing
the entries to be written into the HP_VECTOLTABLE is passed in. The format of the buffer is
given in table 5.9.

Keyboard 153



A driver that replaces a scancode translator can expect to handle a Keyboard ISR Event Record
(table 5.10). If the translator wishes to remove the passed in scancode from the scancode
stream, it returns a status of RS_DONE. Otherwise, a return status of RS_SUCCESSFUL should
be set and an appropriate ISR EVENT record returned. The ISR Event Record will then be passed
on to the next driver in the chain. The driver can depend on 20H bytes of stack.

On Entry: AX = F16_SET_MAPPING (6F06H)
ES:SI = Pointer to table.

CX = 01 EH (size of table in bytes)

On Exit: AH = OOH (Successful)

Registers Altered: AX

F16_SET->CLATORS (AX = 6F07H)

This subfunction sets the current mappings of the HP Softkey (V_SOFTKEY) and HP Cursor
Control Pad (V_CCP) translators. Note that only one translator may be set with each call to this
subfunction. Figure 5.1 shows the possible mappings for the two HP proprietary keypads.

On Entry: AX = F16_SETJLATORS (6F07H)
BL = Translation

Data Definition
OOH Maps V_CCP to V_CCPCUR which forces the HP Cursor Pad to generate

Numeric pad cursor key scancodes, regardless of state of < Num lock>.
(Default mapping)

01 H Maps V_CCP to V_CCPNUM which forces the HP Cursor Pad to generate
numeric pad or cursor key scancodes, depending on state of < Num lock>.

02H Maps V_CCP to V_OFF which disables the HP Cursor Pad.
03H Maps V_CCP to V_CCPGID (if installed) which converts HP Cursor Pad data

to GID data.
04H Maps V_CCP to V_RAW which passes HP Cursor Pad scancodes

untranslated to the INT 09H driver.
05H Maps V_SOFTKEY to V_SKEY2FKEY which translates HP Softkey scancodes

into equivalent industry standard function key scancodes. (Default mapping)
06H Maps V_SOFTKEY to V_RAW which passes HP Softkey scancodes

untranslated to INT 09H driver.
07H Maps V_SOFTKEY to V_OFF which disables HP Softkeys.

On Exit: AH = 00 (Successful)

Registers Altered: AX

154 Keyboard



F16__KBD (AX = 6F08H)

This subfunction returns the HP-HIL ID and address of the keyboard. The HP-HIL address (BH) may
be used to locate the logical keyboard driver in the HP__VECTOR-TABLE. The logical keyboard
driver's vector address is:

vector address = (BH - 1) X 6 + n

Where n is the vector address of the first HP-HIL physical device driver (see Section 4, V_SINPUT
function F_INQUIRE_FIRST.

On Entry: AX = F16__KBD (6F08H)

On Exit: AH = OOH (Successful)
BH = HP-HIL Address
BL = HP-HIL ID

Registers Altered: AX, BX

This subfunction resets all keyboard mappings to their default translators and resets all keyboard
typematic rates and delays to their default values.

On Entry: AX = F16_KBD__RESET (6F09H)

On Exit: AH = OOH (Successful)

Registers Altered: AX

5.3 EX-BIOS Keyboard Drivers

The rest of this section discusses keyboard information related to ISR events and ISR Event
Records, device driver chains, and HP-HIL device data input; these concepts were introduced in
Section 4.

Keyboard 155



5.3.1 Overview

The EX-BIOS keyboard component consists of the logical keyboard driver, the keyboard translator
services, and the V_8041 interface driver. The drivers discussed here cover steps 2 and 3 in the ~

data flow of Section 5.1.

5.3.1.1 Logical Keyboard Driver

The logical keyboard driver is the primary interface for the physical keyboard and controls the
process of scancode translation. Based on the keypad, the scancode is passed to one of five
translator services: V_QWERTY, V_SOFTKEY, V_FUNCTION, V_CCP and V_NUMPAD. Figure
5.2 shows the layout of the different keypad groups. This driver also maintains the state of the
following keyboard modifier keys: < CTRL>, left and right < Shift>, < Alt > I < Caps lock>,
and < Num lock>. This state information is passed to the V_CCP, V_NUMPAD and
V_QWERTY translator services.

5.3.1.2 Keyboard Translators

The keyboard translators act as subroutines for the logical keyboard driver. There are five
translators corresponding to the keyboard keypads (see figure 5.2). The five translators are:

V_QWERTY handles keys from the QWERTY keypad.
V_FUNCTION handles F1 thru F10 function keys.
V_NUMPAD handles numeric or cursor pad keys.
V_SOFTKEY handles HP's f1 thru f8 softkeys.
V_CCP handles HP's cursor control pad.

The translators for the HP softkeys and HP cursor control pad are special cases.

156 Keyboard



The V_SOFTKEY translator can translate its scancodes in the following ways:

1. Map softkeys f1 thru f8 into function keys F1 thru F8 (V_SKEY2FKEY).
2. Throwaway f1 thru f8 softkeys (V_OFF).
3. Pass back f1 thru f8 softkeys untranslated to the logical keyboard driver (V_RAW).

The V_CCP translator can translate its scancodes in the following ways:

1. Map CCP keys to numeric keypad cursor control scancodes (V_CCPCUR).
2. Map CCP keys to numeric keypad scancodes (V_CCPNUM).
3. Pass CCP keys as untranslated scancodes to the logical keyboard driver (V_RAW).
4. Throwaway all CCP keys (V_OFF).

Functions are provided by the STD-BIOS INT 16H driver to select any of the above mappings.

5.3.1.3 8041 Interface Driver

The 8041 interface driver (V_8041) sends translated scancodes to the 8041 controller chip. If
the 8041 controller is busy this driver queues the scancode to be sent later when the 8041
controller is ready. In addition to passing scancodes from the keyboard to the 8041 controller,
V_8041 processes keyboard controller commands to set keyboard LED's and change keyboard
typematic rates.

5.3.2 Data Structures

The EX-BIOS keyboard input system uses one data structure. The Keyboard ISR Event Record is a
set of register definitions for inter-driver communication of input events. Table 5.10 contains the
Keyboard ISR Event Record definition.

Keyboard 157



Table 5.10

Keyboard ISR Event Record

AH = F_ISR (OOH)
BH = Keyboard State (Only if state bit set in Data Type)

Bit
07H
06H
OSH
04H
03H
02H
01H
OOH

Data
1
1
1
1
1
1
1
1

Definition
Left Unlabeled key pressed*
Right Unlabeled key pressed*
< Num lock> state active
< Caps lock> state active
< CTRL > key pressed
Right < Shift> key pressed
Left < Shift> key pressed
< Alt > key pressed

BL = Scancode

Bit Data Definition
07H 1 Break indicator

o Make indicator
06H-OOH Scancode

ex
DH
DL
BP

ES:SI

Number of bytes in buffer (scancode strings only)
Data Type
Logical keyboard drivers vector address / 6
HP-HIL device n vector address
Pointer to buffer (scancode strings only)

* These keys are located to the immediate left and right of the space bar. They are only available
on some international keyboards.

The Data Type field (DH) contains a code representing the current type of scancode contained in
the ISR Event Record. When the logical keyboard driver calls a translator service, the Data Type
will match the keypad group from which the scancode originated. After translation, the Data ~

Type for the ISR Event Record returned to the logical keyboard driver should be
T_KC_IBM_PC. See table 5.11 for a complete list of keyboard data types.

158 Keyboard



Table 5.11

Keyboard Event Data Types

Type Value Definition

T_KC_RO DOH Reserved
T_KC_R1 01H Reserved
T_KC-ASCII 02H ASCII data
T_KC_R3 03H Reserved
T_KC_ITF 04H HP150 keyboard (ITF) scancode

T_KC_R5 OSH Reserved
T_KC_WILD 06H Device definable type
T_KC_HPHILENVOY 07H HP Vectra Keyboard set
T_KC_IBM-AT 08H IBM-AT scancode set
T_KC_BUnON 09H Button data type
T_KC_IBM_PC OAH IBM-PC scancode set
T_KC_HP_SOFTKEY OSH Softkey keypad (f1-f8)
T_KC_IS_FUNCTION DCH Function key keypad (F1-F1 0)
T_KC_HP_CCP DOH HP Cursor Control Pad keypad
T_KC_QWERTY OEH Qwerty keypad
T_KC_NUMPAD OFH Numeric keypad

T_STRING 1DH This is not a data type but an indicator bit for the
keyboard data types only. If bit 4 is set then the
ISR Event record is for a string of scancodes
pointed to by ES:SI and enumerated in CX, i.e.,

00 x 1 ttttB
indicates a string of data bytes of type defined by
the lower nibble 'tttt'.

T_STATE 20H This is not a data type but an indicator bit for the
keyboard data types only. If bit 5 is set it indicates
that the corresponding ISR Event record contains
the current state in BH.

Keyboard 159



5.3.3 Logical Keyboard Driver

The logical keyboard driver determines the keypad group the scancode belongs to and sets the
Data type field in the ISR event record. Based on the Data type a translator service is called to ...,.
handle the scancode. For example, If the "Q" key scancode comes through, the logical keyboard .,
driver determines the data type to be T_KC_QWERTY and calls the V_QWERTY translator. If
the translator called by the logical keyboard driver is responsible for any of the keyboard modifier
keys the current state variable is placed in the ISR Event Record and the state indicator bit is set
in the Data Type field. Table 5.12 contains the scancode range to translator service assignments.

Table 5.12

Scancode to Translator Assignments

Driver Name

V_QWERTY

V_SOFTKEY
V_FUNCTION
V_NUMPAD
V_CCP

Scancode Range

OOH-36H
38H-3AH
55H-5FH
6BH-6FH
78H-7FH
70H-77H
3BH-44H
37H, 45H-54H
60H-6AH

Translation Performed

None

3BH-42H (F1-F8)
None
None
Cursor Always-Regardless of state of the
< Num lock> and < Shift> keys.

If the translation was successful the returned ISR Event Record is passed to the logical keyboard
drivers parent (V_8041).

Before passing a successful translation to its parent (V_8041) the logical keyboard driver
performs two conditional tasks. First, it checks the state bit in the returned Data Type, if set the
master copy of the keyboard state variable is updated with the copy returned in the ISR Event
Record. Second, if the ISR event went to the V_CCP translator the logical keyboard driver takes
the necessary steps to insure that cursor control keys are generated regardless of the < num
lock> and < shift> key states.

If a translator wants to remove the scancode from the scancode stream it must return a status
code of RS_DONE to the logical keyboard driver (See the CCP2GID driver in Appendix G).

Table 5.13 contains a summary of the logical keyboard driver functions.

160 Keyboard



Table 5.13

Logical Keyboard Driver Function Code Summary

Vector Func. Function
Address Value Equate Definition

xxxH Keyboard Driver

00
02
02/00
02/06

F ISR
F_SYSTEM

SF_INIT
SF_VERSION_DESC

(This driver does not have a fixed
HP_VECTOLTABLE address)
Logical Interrupt
System Intrinsics
Driver initialization
Reports HP version number

Logical Keyboard Driver Function Definitions

F_ISR (AH = OOH)

This function processes the Keyboard ISR Event Record. It determines the range of the scancode,
then calls the appropriate translation service.

On Entry: AH = F_ISR (OOH)
BH = Keyboard State (only if state bit set in Date type)
BL = Scancode
ex = Number of bytes in buffer (scancode strings only)
DH = Scancode type
DL = Vector address of keyboard / 6
BP = HP-HIL device n vector address

ES:SI = Pointer to buffer (scancode strings only)

On Exit: AH = Return Status Code

Registers Altered: AX, BX, CX, DX, 51, BP, ES, DS

SF_INIT (AX = 0200H)

This subfunction is called to initialize the driver. Refer to Section 9 for a complete discussion of
the protocol utilized in data space allocation C'last used DS" passed in register BX).

Keyboard 161



On Entry: AH = F_SYSTEM (02H)
AL = SF_INIT (OOH)
BX = "Last used DS" in HP Data Area
BP = HP-HIL device n vector address

On Exit: AH = Return Status Code
BX = New "last used DS" is HP Data Area

Registers Altered: AX, BX, BP, OS

SF_VERSION_DESC (AX = 0206H)

This subfunction returns the release date code and a double word pointer to the current version
number. The date code consists of two BCD coded bytes containing the year and week of
release. The BL register contains the number of years since 1960 and the BH register contains the
week of the year.

On Entry: AH = F_SYSTEM (02H)
AL = SF_VERSION_DESC (06H)
BP = HP-HIL device n vector address

On Exit: AH = Return Status Code
BX = Release date code
CX = Number of bytes in current version number

ES:DI = Pointer to the current version number

Registers Altered: AX, BX, CX, 01, ES, BP, OS

5.3.4 Keyboard Translators

There is one keyboard translator service for each of the five keypad groups on the keyboard, see
figure 5.2. Two of the five services are special cases in that they are actually chains of translators
to facilitate keyboard mapping. Figure 5-1 shows the translators and their mapping possibilities.

Applications may install routines to replace (or chain to) anyone or all of the translators ~

presented here. The INT 16H driver provides three functions to get the current
HP_VECTOLTABLE entries for the five keypad translators, to set these same values, and to
reset them to their default values. The V_SYSTEM driver in Section 9 provides functions to get
or set any fixed HP_VECTOLTABLE entry (all EX-BIOS translators presented in this section have
fixed entries). The V_SYSTEM functions allow replacement of translators other than the main
five called by the logical keyboard driver (those in translator chains).

162 Keyboa rd



Applications that do not wish to overlay existing translators, may install entirely new translators
instead and map themselves into the HP Softkey and CCP translator chains as the parent drivers
of the V_SOFTKEY and V_CCP services respectively. This method only works for the HP
proprietary keypads.

5.3.4.1 V_SOFTKEY (BP = 003CH)

This translator service verifies the Data Type is T_KC_HP_SOFTKEY and then passes the ISR
Event Record to its parent. By default this translator is mapped to the V_SKEY2FKEY service,
alternative mappings are presented in table 5.14.

Table 5.14

V_SOFTKEY Driver Mapping Alternatives

Driver Name

V_OFF
V_RAW
V_SKEY2FKEY

Function

Discards the ISR event.
Returns the scancode untranslated.
Translates the HP Softkeys into their respective industry standard
function key equivalents.

F_ISR (AH = OOH)

This function verifies the passed in Data Type and passes the ISR event on to its parent.

On Entry: AH = F_ISR (OOH)
BH = Keyboard state (only if state bit set in type)
BL = Scancode
DH = Scancode type (T_KC_HP_SOFTKEY = OBH)
DL = Source vector address / 6
BP = V_SOFTKEY (003CH)

On Exit: AH = Return Status Code
BL = Translated scancode
BH = New keyboard state (only if state bit set in type)
DH = New scancode type (T_KC_IBM_PC = OAH)

Registers Altered: AX, BX, DH, BP, DS

Keyboard 163



SF_INIT (AX = 0200H)

This subfunction is called to initialize the driver. Refer to Section 9 for a complete discussion of
the protocol utilized in data space allocation ("last used DS" passed in register BX).

On Entry: AH = F_SYSTEM (02H)
AL = SF_INIT (OOH)
BX = "Last used DS" in HP Data Area
BP = V_SOFTKEY (003CH)

On Exit: AH = Return Status Code
BX = "New last used DS" in HP Data Area

Registers Altered: AX, BX, BP, DS

SF_VERSION_DESC (AX = 0206H)

This subfunction returns the release date code and a double word pointer to the current version
number. The date code consists of two BCD coded bytes containing the year and week of
release. The BL register contains the number of years since 1960 and the BH register contains the
week of the year.

On Entry: AH = F_SYSTEM (02H)
AL = SF_VERSION_DESC (06H)
BP = V_SOFTKEY (003CH)

On Exit: AH = Return Status Code
BX = Release date code
CX = Number of bytes in current version number

ES:DI = Pointer to the current version number

Registers Altered: AX, BX, ex, DI, ES, BP, DS

5.3.4.2 V_QWERTY (BP = 0036H)

The V_QWERTY service verifies the correct Data Type. This service also maintains the state of
the left and right < Shift> keys, the < CTRL > key, the < Alt > key, the left and right unlabeled
keys and the < Caps lock> key.

164 Keyboard



F_ISR (AH = OOH)

This function verifies the Data Type, updates the keyboard state variable, and returns.

On Entry: AH = F_ISR (OOH)
BH = Keyboard state (only if state bit set in type)
BL = Scancode
DH = Scancode type (T_KC_QWERTY = OEH)
DL = Source vector address / 6
BP = V_QWERTY (0036H)

On Exit: AH = Return Status Code
BH = New keyboard state (only if state bit set type)
DH = New scancode type (T_KC_IBM_PC = OAH)

Registers Altered: AX, BH, DH, BP, DS

SF_VERSION_DESC (AX = 0206H)

This subfunction returns the release date code and a double word pointer to the current version
number. The date code consists of two BCD coded bytes containing the year and week of
release. The BL register contains the number of years since 1960 and the BH register contains the
week of the year.

On Entry: AH = F_SYSTEM (02H)
AL = SF_ VERSION_DESC (06H)
BP = V_QWERTY (0036H)

On Exit: AH = Return Status Code
BX = Release date code
CX = Number of bytes in current version number

ES:DI = Pointer to the current version number

Registers Altered: AX, BX, CX, DI, ES, BP, DS

5.3.4.3 V_FUNCTION (BP = 0042H)

This service verifies the Data Type, sets a new Data Type and returns.

Keyboard 165



F_ISR (AH = DOH)

This function verifies the Data Type, and sets the new one.

On Entry: AH = F_ISR (OOH)
BH = Keyboard state (only if state bit set in type)
BL = Scancode
DH = Scancode type (T_KC_IS_FUNCTION = OCH)
DL = Source vector address
BP = V_FUNCTION (0042H)

On Exit: AH = Return status code
DH = New scancode type (T_KC_IBM_PC = OAH)

Registers Altered: AX, DH, BP, DS

SF_ VERSION_DESC (AX = 0206H)

This subfunction returns the release date code and a double word pointer to the current version
number. The date code consists of two BCD coded bytes containing the year and week of
release. The BL register contains the number of years since 1960 and the BH register contains the
week of the year.

On Entry: AH = F_SYSTEM (02H)
AL = SF_ VERSION_DESC (06H)
BP = V_FUNCTION (0042H)

On Exit: AH = Return Status Code
BX = Release date code
ex = Number of bytes in current version number

ES:DI = Pointer to the current version number

Registers Altered: AX, BX, CX, DI, ES, BP, DS

5.3.4.4 V_NUMPAD (BP = 0048H)

The V_NUMPAD service is the scancode translator for the numeric keypad. It verifies the Data
Type is correct and maintains the state of the < Num lock> and < ScrLck > keys.

166 Keyboard



F_ISR (AH = OOH)

Verify Data Type and update state variable.

On Entry: AH = F_ISR (OOH)
BH = Keyboard state (only if state bit set in type)
BL = Scancode
DH = Scancode type (T_KC_NUMPAD = OFH)
DL = Source vector address / 6
BP = V_NUMPAD (0048H)

On Exit: AH = Return status code
BH = New keyboard state (only if state bit set in type)
DH = New scancode type (T_KC_IBM_PC = OAH)

Registers Altered: AX, BH, DH, BP, DS

SF_VERSION_DESC (AX = 0206H)

This subfunction returns the release date code and a double word pointer to the current version
number. The date code consists of two BCD coded bytes containing the year and week of
release. The BL register contains the number of years since 1960 and the BH register contains the
week of the year.

On Entry: AH = F_SYSTEM (02H)
AL = SF_VERSION__DESC (06H)
BP = V_NUMPAD (0048H)

On Exit: AH = Return Status Code
BX = Release date code
CX = Number of bytes in current version number

ES:DI = Pointer to the current version number

Registers Altered: AX, BX, ex, DI, ES, BP, DS

5.3.4.5 V_CCP (BP = 004EH)

This translator service verifies the Data Type is T_KC_HP_CCP and then passes the ISR Event
Record to its parent. By default this translator is mapped to the V_CCPCUR service, alternative
mappings are presented in table 5.15.

Keyboard 167



Table 5.15

V_CCP Driver Mapping Alternatives

Driver Name

V_OFF
V_RAW
V_CCPNUM

V_CCPCUR

Function

Discards the ISR event.
Returns the scancode untranslated.
Translates the cursor control pad scancodes into cursor or numeric key
pad scancodes, depending on the < Num Lock> and < Shift> states.
Translates the cursor control pad scancodes into cursor scancodes,
regardless of the < Num Lock> and < Shift> states.

F_ISR (AH = OOH)

This function verifies the Data Type and passes the event to its parent.

On Entry: AH = F_ISR (OOH)
BH = Keyboard state (only if state bit set in type)
BL = Scancode
DH = Scancode type (T_KC_HP_CCP = ODH)
DL = Source vector address / 6
BP = V_CCP (004EH)

On Exit: AH = Return Status Code
BL = Translated scancode
BH = New keyboard state (only if state bit set in type)
DH = New scancode type (T_KC_IBM_PC = OAH)

Registers Altered: AX, BX, DH, BP, DS

SF_INIT (AX = 0200H)

This subfunction is called to initialize the driver. Refer to Section 9 for a complete discussion of
the protocol utilized in data space allocation ("last used DS" passed in register BX).

On Entry: AH = F_SYSTEM (02H)
AL = SF_INIT (OOH)
BX = "Last used DS" in HP Data Area
BP = V_CCP (004EH)

168 Keyboard



On Exit: AH = Return Status Code
BX = New "Iast used DS" in HP Data Area

Registers Altered: AX, BX, BP, DS

SF_VERSION_DESC (AX = 0206H)

This subfunction returns the release date code and a double word pointer to the current version
number. The date code consists of two BCD coded bytes containing the year and week of
release. The BL register contains the number of years since 1960 and the BH register contains the
week of the year.

On Entry: AH = F_SYSTEM (02H)
AL = SF_ VERSION_.DESC (06H)
BP = V_CCP (004EH)

On Exit: AH = Return Status Code
BX = Release date code
CX = Number of bytes in current version number

ES:DI = Pointer to the current version number

Registers Altered: AX, BX, CX, DI, ES, BP, DS

5.3.4.6 V_OFF Driver (BP = 0009CH)

The V_OFF driver effectively turns off any translator mapped to it. It returns a Return Status
Code of RS_DONE, this indicates to the driver which called that all processing is complete, and
to return. Returning this status code effectively terminates processing of the scancode.

F_ISR (AH = OOH)

This function sets a return status of RS_DONE and exits.

".. On Entry: AH = F_ISR (OOH)
BH = Keyboard state (only if state bit set in type)
BL = Scancode
DH = Scancode type (any type accepted)
DL = Source vector address / 6
BP = V_OFF (009CH)

Keyboard 169



On Exit: AH = RS_DONE

Registers Altered: AX, BP, DS

SF_VERSION_DESC (AX = 0206H)

This subfunction returns the release date code and a double word pointer to the current version
number. The date code consists of two BCD coded bytes containing the year and week of
release. The BL register contains the number of years since 1960 and the BH register contains the
week of the year.

On Entry: AH = F_SYSTEM (02H)
AL = SF_VERSION_DESC (D6H)
BP = V_OFF (009CH)

On Exit: AH = Return Status Code
BX = Release date code
CX = Number of bytes in current version number

ES:DI = Pointer to the current version number

Registers Altered: AX, BX, CX, DI, ES, BP, DS

5.3.4.7 V_RAW Driver (BP = 0090H)

The V_RAW driver sets the data type to T_KC_IBM_PC (OAH) and returns, leaving the
scancode untranslated.

F_ISR (AH = OOH)

This function sets a Data Type of T_KC_IBM_PC and a return status of RS_SUCCESSFUL.

On Entry: AH = F_ISR (DOH)
BH = Keyboard state (only if state bit set in type)
BL = Scancode
DH = Scancode type (any accepted)
DL = Source vector address / 6
BP = V_RAW (0090H)

170 Keyboard

---



On Exit: AH = Return Status Code
DH = New scan code type (T_KC_IBM_PC = OAH)

Registers Altered: AX, OH, BP, OS

SF_VERSION_DESC (AX = 0206H)

This subfunction returns the release date code and a double word pointer to the current version
number. The date code consists of two BCD coded bytes containing the year and week of
release. The BL register contains the number of years since 1960 and the BH register contains the
week of the year.

On Entry: AH = F_SYSTEM (02H)
AL = SF_ VERSION_OESC (06H)
BP = V_RAW (0090H)

On Exit: AH = Return Status Code
BX = Release date code
CX = Number of bytes in current version number

ES:OI = Pointer to the current version number

Registers Altered: AX, BX, CX, 01, ES, BP, OS

5.3.4.8 V_CCPNUM (BP = 0096H)

The V_CCPNUM driver converts scancodes from the HP cursor control pad to their respective
Numeric keypad equivalents. The resultant scancodes will be either numeric or cursor scancodes,
depending on the state of the < Num Lock> and < Shift> keys.

F_ISR (AH = OOH)

This function translates the scancode, sets a new Data Type and exits.

On Entry: AH = F_ISR (OOH)
BH = Keyboard state (only if state bit set in type)
BL = Scancode
OH = Scancode type (T_KC_HP_CCP = ODH)
DL = Source vector address / 6
BP = V_CCPNUM (0096H)

Keyboard 171



On Exit: AH = Return Status Code
BH = New keyboard state (only if state bit set in type)
BL = Translated scancode
DH = New scancode type (T_KC_IBM_PC = OAH)

Registers Altered: AX, BX, DH, BP, DS

SF_VERSION_DESC (AX = 0206H)

This subfunction returns the release date code and a double word pointer to the current version
number. The date code consists of two BCD coded bytes containing the year and week of
release. The BL register contains the number of years since 1960 and the BH register contains the
week of the year.

On Entry: AH = F_SYSTEM (02H)
AL = SF_ VERSION_DESC (06H)
BP = V_CCPNUM (0096H)

On Exit: AH = Return Status Code
8X = Release date code
CX = Number of bytes in current version number

ES:DI = Pointer to the current version number

Registers Altered: AX, BX, CX, DI, ES, BP, DS

5.3.4.9 V_CCPCUR (BP = 008AH)

The V_CCPCUR service converts scancodes from the HP cursor control pad to their respective
numpad or cursor control equivalents. The < Shift> key states in the keyboard state variable are
adjusted to cancel the effect of the < Num lock> key and force the Numeric keypad to operate
in cursor mode. Upon return from this translator chain, the logical keyboard driver generates the
appropriate < Shift> scancodes to account for the change to the keyboard state variable.

F_ISR (AH = OOH)

This function translates the scancode to its Numeric keypad equivalent, changes the Data Type to
T_KC_IBM_PC, and adjusts the keyboard state variable to force the Numeric keypad into
cursor mode.

172 Keyboard



On Entry: AH = F_ISR (DOH)
BH = Keyboard state (only if state bit set in type)
BL = Scancode
DH = Scancode type (T_KC_HP_CCP = ODH)
DL = Source vector address / 6
BP = V_CCPCUR (008AH)

On Exit: AH = Return Status Code
BH = New keyboard state (only if state bit set in type)
BL = Translated scancode
DH = New scancode type (T_KC_IBM_PC = OAH)

Registers Altered: AX, BX, DH, BP, DS

SF_VERSION_DESC (AX = 0206H)

This subfunction returns the release date code and a double word pointer to the current version
number. The date code consists of two BCD coded bytes containing the year and week of
release. The BL register contains the number of years since 1960 and the BH register contains the
week of the year.

On Entry: AH = F_SYSTEM (02H)
AL = SF_VERSION_DESC (06H)
BP = V_CCPCUR (008AH)

On Exit: AH = Return Status Code
BX = Release date code
CX = Number of bytes in current version number

ES:DI = Pointer to the current version number

Registers Altered: AX, BX, CX, DI, ES, BP, DS

5.3.4.10 V_SKEY2FKEY (BP = 00A8H)

The V_SKEY2FKEY service translates HP Softkey scancodes into their industry standard function
key equivalents. The driver makes no attempt to verify that the scancode passed is in the range
for an HP Softkey.

F_ISR (AH = OOH)

This function translates the scancode, sets the Data Type to T_KC_IBM_PC and returns.

Keyboard 173



On Entry: AH = F_1SR (OOH)
BH = Keyboard state (only if state bit set in type)
BL = Scancode
DH = Scancode type (T_KC_HP_SOFTKEY = OBH)
DL = Source vector address / 6
BP = V_SKEY2FKEY (OOA8H)

On Exit: AH = Return Status Code
BL = Translated scancode
DH = New scancode type (T_KC_IBM_PC = OAH)

Registers Altered: AX, BL, DH, BP, DS

SF_VERSION_DESC (AX = 0206H)

This subfunction returns the release date code and a double word pointer to the current version
number. The date code consists of two BCD coded bytes containing the year and week of
release. The BL register contains the number of years since 1960 and the BH register contains the
week of the year.

On Entry: AH = F_SYSTEM (02H)
AL = SF_ VERSION_DESC (06H)
BP = V_SKEY2FKEY (00A8H)

On Exit: AH = Return Status Code
BX = Release date code
ex = Number of bytes in current version number

ES:DI = Pointer to the current version number

Registers Altered: AX, BX, CX, DI, ES, BP, DS

5.3.5 V_8041 Driver (BP = OOAEH)

This driver provides an interface to the HP 8041 keyboard controller chip. It responds to 8041 ~

service requests and Input System logical interrupt requests (F_ISR's) to output scancodes to the
8041 chip. It also provides an application interface to 8041 timer services and switch settings.
Table 5.16 contains a function code summary for this driver.

174 Keyboard



Table 5.16

V_8041 Driver Function Code Summary

Vector Func. Function
Address Value Equate Definition

OOAEH V_8041 8041/keyboard interface. provides
HP extensions to INT 16H

OOAEH 00 F_ISR Processes ISR event record

OOAEH 02 F_SYSTEM System functions
OOAEH 02/00 SF_INIT Initializes driver
OOAEH 02/02 SF_START Driver Start-up
OOAEH 02/06 SF_VERSION_DESC Reports HP version number

OOAEH 04 F_IO_CONTROL Driver Dependant Functions
OOAEH 04/00-08 Reserved
OOAEH 04/0A SF_CREAT_INTR Create interval entry
OOAEH 04/0C SF_DELET_INTR Delete interval entry
OOAEH 04/0E SF_ENABLINTR Enable interval
OOAEH 04/10 SF_DISBLINTR Disable interval
OOAEH 04/12 SF_SET_RAMSW Set RAM switch to one (1)
OOAEH 04/14 SF_CLLRAMSW Set RAM switch to zero (0)
OOAEH 04/16 SF_SET_CRTSW Set CRT switch to one (1)
OOAEH 04/18 SF_CLLCRTSW Set CRT switch to zero (0)
OOAEH 04/1A SF_PASS_THRU Pass data byte to 8041

V_8041 Driver Function Definitions

F_ISR (AH = OOH)

This function processes a Keyboard ISR Event Record. It checks to see if the 8041 will accept
another scancode. If not, the scancode is placed in a queue. If the 8041 can accept a scancode,
it writes the scancode out. The scancode queue has room for 127 entries plus one overrun
character.

Keyboard 175



On Entry: AH = F_ISR (OOH)
BH = Keyboard state (only if state bit set in type)
BL = Scancode
CX = Number of scancodes in buffer (string type only)
DH = Scancode type
DL = Source vector address / 6
BP = V_8041 (OOAEH)

ES:SI = Pointer to buffer (string type only)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_INIT (AX = 0200H)

This subfunction is called to initialize the driver. Refer to Section 9 for a complete discussion of
the protocol utilized in data space allocation ("Iast used DS" passed in register BX).

On Entry: AH = F_SYSTEM (02H)
AL = SF_INIT (OOH)
BX = "Last used DS" in HP Data Area
BP = V_8041 (OOAEH)

On Exit: AH = Return Status Code
BX = New "last used DS" in HP Data Area

Registers Altered: AX, BX, BP, DS

SF_START (AX = 0202H)

This subfunction starts the 8041 driver.

On Entry: AH = F_SYSTEM (02H)
AL = SF_START (02H)
BP = V_8041 (OOAEH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

176 Keyboard



This subfunction returns the release date code and a double word pointer to the current version
number. The date code consists of two BCD coded bytes containing the year and week of
release. The BL register contains the number of years since 1960 and the BH register contains the
week of the year.

On Entry: AH = F_SYSTEM (02H)
AL = SF_VERSION_.DESC (06H)
BP = V_8041 (OOAEH)

On Exit: AH = Return Status Code
BX = Release date code
CX = Number of bytes in current version number

ES:DI = Pointer to the current version number

Registers Altered: AX, BX, CX, DI, ES, BP, DS

The 8041 driver will call up to eight drivers at 1/60 second intervals. This subfunction creates an
entry in the table of driver vectors which are called. Note that this subfunction only creates the
entry; it does not enable the interval service. This is accomplished with the SF_ENABLINTR
subfunction.

On Entry: AH = F_la_CONTROL (04H)
AL = SF_CREAT_INTR (OAH)
BH = Vector number (vector address divided by six) of driver requesting service
BP = V_8041 (OOAEH)

On Exit: AH = Return Status Code
RS_FAIL indicates driver vector table full.

Registers Altered: AX, BP, DS

SF_DELET_INTR (AX = 040CH)

,.. This function removes the passed in vector number from the interval service table.

On Entry: AH = F_10_CONTROL (04H)
AL = SF_DELET_INTR (OCH)
BH = Vector number (vector address divided by six) of driver to delete from table
BP = V_8041 (OOAEH)

Keyboard 177



On Exit: AH = Return Status Code
RS_FAIL indicates vector not in table.

Registers Altered: AX, BP, DS

SF_ENABLINTR (AX = 040EH)

This function enables interrupt service for a driver. The vector number passed is checked against
the table. If an entry with that vector number is found, interval service is enabled. When the
interval expires all enabled drivers in the list will be interrupted with a function code of
F_SYSTEM (02H) in AH and a subfunction code of SF_INTERVAL (14H) in AL.

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_ENABLINTR (OEH)
BH = Vector number (vector address divided by six) of driver requesting service
BP = V_8041 (OOAEH)

On Exit: AH = Return Status Code
RS_FAIL indicates vector not in table.

Registers Altered: AX, BP, DS

SF_DISBLINTR (AX = 0410H)

This function disables interrupt service for a driver. The vector number passed is checked against
the table. If an entry with that vector number is found, interval service is disabled.

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_DISBLINTR (1 OH)
BH = Vector number (vector address divided by six) of driver to be disable
BP = V_8041 (OOAEH)

On Exit: AH = Return Status Code
RS_FAIL indicates vector not in table.

Registers Altered: AX, BP, DS

SF_SET_RAMSW (AX = 0412H)

This function sets the industry standard extended RAM "switch" in the 8041 status register. This
switch indicates that the second 256K RAM bank on the system board is enabled (default
condition).

178 Keyboard



On Entry: AH = F_IO_CONTROL (04H)
AL = SF_SET_RAMSW (12H)

On Exit: AH = Return Status Code

"... Registers Altered: AX, BP, DS

SF_CLLRAMSW (AX = 0414H)

This function clears the industry standard extended RAM IIswitch" in the 8041 status register.
When this switch is off it indicates that the second 256K RAM bank is disabled. Since this can
never happen in the system this function should never be called.

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_CLLRAMSW (14H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_SET_CRTSW (AX = 0416H)

This function sets the industry standard primary CRT "switch" in the 8041 status register. When
the switch is set it indicates the primary display is attached to the Multimode graphics adapter
(Default condition).

On Entry: AH = F_la_CONTROL (04H)
AL = SF_SET_CRTSW (16H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_CLLCRTSW (AX = 0418H)

This function clears the industry standard primary CRT "switch" in the 8041 status register.
When this switch is clear it indicates the primary display is attached to the monochrome display
adapter.

Keyboard 179



On Entry: AH = F_'O_CONTROL (04H)
AL = SF_CLLCRTSW (18H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

This function outputs the byte in BL to the 8041 using the pass thru command to prevent the
8041 from interpreting the data as a scancode or a command.

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_PASS_THRU (1AH)
BL = data byte to pass thru the 8041

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

5.4 8041 Keyboard Controller

5.4.1 Overview

The primary function of the 8041 Keyboard controller is to emulate the industry standard 8042
keyboard interface. (Directly accessing this hardware interface may affect program portability
and is not recommended). The 8042 interface, in turn, emulates the keyboard interface of the
IBM-PC. The 8041 keyboard controller acts as a command buffer from the STD-BIOS keyboard
driver to the Input System while it acts as a loopback buffer for the Input System to the STD-BIOS
keyboard driver. The 8041 is implemented in such a way as to maintain standard AT
compatibility, while at the same time supporting all of the features of the Input System. ~

The 8041 keyboard controller accepts commands from the STD-BIOS drivers that control the
operation of the controller and the keyboard itself. These commands are detailed in the next
subsections of this manual. Some of these commands are executed by the 8041 keyboard
controller, but most are passed on the V_8041 interface driver for execution.

180 Keyboard



When the 8041 keyboard controller receives a command from the system that it cannot execute,
it writes that command to its Keyboard Request Service Port ( 5VC). This port resides in the
system I/O port address space at 069H. Whenever a byte is written to this port, the 8041 also
generates a hardware interrupt to notify the V_8041 interface driver of the request.

,.,.. The V_8041 driver reads the 8041 Keyboard Request Service Port, then performs a write to Port
06AH. Any value written to this port sends the 8041 an acknowledgement that the byte has
been read, and clears the service request interrupt.

The V_8041 driver then determines if it can execute the command. If it cannot, it calls its child
driver, the V_HPHIL driver. The V_HPHIL driver will transmit the command to the keyboard.
Examples commands executed by the keyboard are set typematic rate and delay values, set the
state of keyboard LEDs, etc.

The keyboard 8041 controller will accept and execute two sets of industry standard commands.
One set is controller commands, the other set is keyboard commands, both sets are listed in
table 5.17. Controller commands are executed by the 8041 controller or the V_8041 interface
driver. Keyboard commands are executed by the keyboard directly. (In actuality, due to the
keyboard implementation some of the keyboard commands are implemented by the V_8041
interface driver.)

Each of the command sets has its own protocol. The 8041 has two I/O ports, a command port
(I/O address 64H) and a data port (I/O address 60H). Controller commands are written to the
command port. If the command has parameters associated with it, the parameters are written to
the data port. Keyboard commands are written to the data port. All data written to the data port
is interpreted as a keyboard command, unless the previous command written to the command
port required parameters.

5.4.2 8041 Controller and Keyboard Commands

There are two sets of commands that are written to the 8041 chip. The first set controls the
actions and state of the 8041 Keyboard controller chip. The second set is either passed on to the
physical keyboard or emulated by the 8041 controller chip as if it were passed on to the physical
keyboard to be executed. 8041 Controller Commands are written to output port 64H. If there is
a data byte required by the command then it is written to (or read from) input port 60H.
Keyboard Commands, however, are written to output port 60H. Again, if there is a data byte
required it is written to output port 60H.

The following code writes a one byte command to the 8041 controller to disable the keyboard
interface.

Keyboa rd 181



hp8041__cmd~ort equ 64h · IBM cmdlstatus port
hp8041--status~ort equ 64h · IBM cmdlstatus port
hp8041__data~ort equ 60h · IBM data port
hp8041--ibf--",ask equ 02h · Input buffer full mask

hp8041--iface_dis equ OADh · Disable interface

dis_8041 proc near
push cx · save working set of regs
push ax
xor cx,cx · loop 64k times (if necessary)
cli · ints must be off for this loop

dis_8041_10:
in al,hp8041--Status~ort· get status and see if 8041
test al,hp8041--ibf--",ask . input buffer if full
loopnz dis_8041_10 . loop if it is

mov al,hp8041--iface_dis
out hp8041_cmd~ort,al

sti

pop ax
pop cx
ret
endp

· load disable command and
· ship it out

The following code writes a two byte command to the 8041 to turn on all the keyboard LED's at
once.

hp8041_cmd~ort equ 64h · Hp8041 cmdlstatus port
hp8041--Status~ort equ 64h · Hp8041 cmdlstatus port
hp8041_data~ort equ 60h · Hp8041 data port
hp8041--5et-.Jed equ Oedh Set keyboard leds command

hp8041--ibf--",ask equ 02h · Input buffer full mask
led_data equ 07h · Led mask to send out

182 Keyboard



set_B041 proc near
push cx save working set of regs
push bx
push ax
xor cx,cx loop 64k times (if necessary)
mov bh,led_data load data for loop
mov b~hp8041--set-1ed load command
cli ints must be off for this loop

set_B04'_'0:
in al,hp8041--status-port get status and see if 8041
test al,hp8041--ibf--"Jask input buffer if full
loopnz set_804'_'0 loop if it is

mov al,bl load command and
out hp8041_data-port,al ship it out
cmp bh,al did we output both bytes
je set_8041--.20 yes, skip out
mov bl,bh set up for next iteration
xor cx,cx
jmp short set_804'_'0 loop,..

set_8041--.20:
sti CHANGE this to restore

int flag to previous state
instead of on (if needed)

pop ax
pop bx
pop cx
ret

set_8041 endp

Table 5.17 lists the 8041 Controller Commands. These commands are categorized as READ,
SNGL, or DBL. READ commands cause the 8041 Controller to place the indicated data byte in it's
output buffer, input port 60H, to be read by the 80286. SNGL commands are commands written
to output port 64H. DBL byte commands are written to output port 64H with the following data
byte being written to output port 60H.

Keyboard 183



Table 5.17

Controller Commands

Command Type Description

020H READ Reads byte zero of the 8041's internal RAM. This byte is the last
Keyboard Command Sent to the 8041.

021H-03FH READ Reads the byte specified by the lower five bits of the command
in the 8041's internal RAM. E.g. 8041 Controller command 34H
will report contents of the 14H byte of the 8041's RAM.

060H-07FH DBL Writes the data byte to the address specified in the low five bits
of the command.

OAAH SNGL Initiate Self-Test. This command instructs the 8041 to perform a
self test. If no errors are detected, 55H is returned in the Data
Port.

OASH SNGL Initiate Interface Test. This command instructs the 8041 to test
the interface between itself and the keyboard. (Always returns 0
= successful)

OACH READ Diagnostic Dump. The contents of the 8041 internal RAM
registers (16 bytes), output port, input port, and status word are
sent to the system. All diagnostic data is sent to the system in
the same manner as scancodes. (Not supported)

OADH SNGL Disable Keyboard. This command disables the keyboard. Bit 4 of
the current command byte will be set to '1' in the 8041 . This is
equivalent to issuing a command byte with bit 4 set to '1'. Note
that this command will have no effect if bit 3 of the command
byte is set to '1'.

OAEH SNGL Enable Keyboard. This command re-enables the keyboard. Bit
4 of the current command byte is cleared in the 8041. This is
equivalent to issuing a command byte with bit 4 set to '0'.

OCOH READ Read Input Port. The current value of the input port is returned.
Bit 7 indicates the status of the front panel keylock. Bits 0-3
will always be reported as '1'. Bits 4-6 are undefined.

OOOH READ Read Output Port. The current value of the output port is
returned. See table 5.20 for bit definitions.

184 Keyboard



Command Type Description

OD1H DBL Write Output Port. The next byte written to the data port will be
written to the 8041 output port. The bit definitions for this port
are given in table 5.20.

WARNING

The System Reset bit should not be written low. To reset the system, use
the Pulse Output Port command.

ODDH SNGL Disable Address Bit 20. Disables the A20 address of the
processor address bit. This is the normal state of this pin the in
real addressing mode.

ODFH SNGL Enable address Bit 20. Enables the A20 address of the processor
address bit. This state is only used in protected mode.

OEOH READ Read Test Inputs. This command will output the current state of
the 8041 test inputs, TO and T1. The current state of TO is stored
in bit 0 and T1 in bit 1. Both bits will be reported as '1 " unless
the keyboard interface is inhibited. Bits 2 through 7 are
undefined.

OFOH-OFFH SNGL Pulse Output Port. Bits 0-3 of the output port may be pulsed
low for approximately 6 microseconds. Bits 0 through 3 the
command contain a mask which is interpreted by the 8041 to
determine which bits are pulsed. A bit is pulsed if its
corresponding mask bit is '0'; if it is '1 ' its current state is
maintained.

Note

The System Reset bit is connected to bit O. If the system needs to be
reset, this command should be used (i.e., the bit should be pulsed, not
brought low indefinitely.)

Keyboard 185



Table 5.18 indicates the format of the data byte written to the 8041 Controller subsequent to
the 8041 Command 20H listed in table 5.17.

Table 5.18

Command Byte Format

Bit

07H
06H

OSH
04H

03H

02H

01H

186 Keyboard

Data

o

o

1
o

o

Definition

Reserved-must always be O.
Scancode conversion mode.
The scancodes received from the keyboard are converted into
PC/XT scancodes.
Convert to AT scancodes.
Acts as a NOP.
Disable Keyboard. Data will not be sent or received by the
keyboard.
Disables the keyboard.
Restore operation.
Inhibit override.
Prevents the keyboard from being disabled via bit 4.
System Flag. The value of this bit is stored as the System Flag
Bit. This bit may be read via port 60H.
Reserved-must always be O.
Instructs the 8041 to issue an OBF interrupt when data is in
the output buffer.
Disables this feature.



Table 5.19 indicates the format of the data byte written to the 8041 Controller subsequent to
the 8041 Command 'Write Output Port' OD1 H, or read from the 8041 Controller subsequent to
the 8041 Command 'Read Output Port' ODOH.

Table 5.19

Output Port Bit Mask

Bit

07H-05H
04H
03H
02H
01H
OOH

Data

1
1
1
1
1

Definition

Undefined
Output Buffer Full Interrupt (OBF)
HP SVC Interrupt
HP-H~L Controller AutoPolI
A20 Gate
System Reset

Table 5.20 lists the Keyboard Commands. These commands are categorized as SNGL or DBL.
SNGL commands are commands written to output port 60H. DBL byte commands are written to
output port 60H with the subsequent data byte, also, being written to output port 60H. The
coding examples given for 8041 Controller commands is similar to the procedure for writing
Keyboard Commands. The notable exception being the I/O address 60H is substituted for the I/O
address 64H (defined with the equate, hp8041_cmd_port).

Keyboard 187



Table 5.20

Keyboard Commands

Command Type Description

OEOH DBL Set/Reset Mode Indicators. The keyboard has three status
indicators; < Caps lock>, < Num lock>, and < ScrLck >. This
command is used to turn these indicators on and off. After the
command is issued, the system must wait for an ACK from the
keyboard (see below). When it is received, a second byte is
issued to the keyboard. Bits 0-2 represent the < ScrLck >, Num
Lock, and < Caps lock>, respectively. Setting their respective
bits to 1 turns the indicator on while a 0 turns it off. Bits 3-7
should be set to o. (See table 5.21)

OEEH SNGL Echo. This is a diagnostic tool. When this command is issued, the
keyboard returns an EEH.

OEFH-OF2H SNGL No Operation (NOP). These codes are reserved for future use.
The keyboard will acknowledge these codes, but no other action
will be performed.

OF3H DBL Set Typematic Rate/Delay. This command sets the values for the
typematic rate and delay.

The typematic rate is the number of make scancodes per second
sent in the typematic (repeat) mode. The delay is the amount of
time a key must be held down until it enters the typematic
mode.

The rate and delay are passed in the next byte after the
command. Bits 0 through 4 contain the rate and bits 5 and 6
contain the delay. Bit 7 is unused.

The HP8041 chip accepts STD AT typematic commands which
are composed of two bits of delay (6,5) and five bits of rate
(4-0). The two low order bits of the rate value are stripped off by
the 8041 and the result translated into the HP-HIL typematic
space. (See tables 5.25 and 5.26)

188 Keyboard



Command Type Description

OF4H SNGL Enable. This command enables keyboard action. The keyboard
will issue an 'ACK' response, then begin sending scancodes as
keys are pressed.

OFSH SNGL Default Disable. This command sets the keyboard parameters to
their power-on default state and disables the transmission of
scancodes. The keyboard will send an 'ACK' response to this
command.

OF6H SNGL Set Default. This command sets the keyboard parameters to
their power-on state and sends an 'ACK' response. the keyboard
will continue to transmit scancodes after receipt of this
command.

OF7H-OFDH SNGL No Operation (NOP). These codes are reserved for future use.
The keyboard will acknowledge these codes, but no other action
will be performed.

OFEH SNGL Resend. This command may be sent to the keyboard whenever
an error is detected by the system. This command must be sent
before the next scancode is to be transmitted. If the last code
sent by the keyboard was a Resend command, the keyboard will
send the prior code.

OFFH SNGL This command instructs the keyboard to perform its Power-On
Reset function. This step takes at least 300 milliseconds, during
which the keyboard is disabled.

Keyboard 189



Table 5.21 indicates the format of the data byte written to the output port 60H subsequent to
the Keyboard Command 'Set Mode Indicators' OEDH.

Table 5.21

Set Mode Indicators Data Byte Format

Bit Data Definition

07H-03H Reserved, should be set to zero
02H Caps Lock Mode Indicator

0 Turns off Caps Lock indicator
1 Turns on Caps Lock Indicator

01H Num Lock Mode Indicator
0 Turn off Num Lock indicator
1 Turn on Num Lock indicator

OOH Scroll Lock Mode Indicator
0 Turn off Scroll Lock indicator
1 Turn on Scroll Lock indicator

5.4.3 8041 to 5TO-8105 Scancodes and Commands

The keyboard (emulated by the 8041 ) sends scancodes and commands to STD-BIOS driver
system. The scancodes/commands are read from the 8041 Data port (Input Port 60H). Table
5.22 lists the keyboard codes returned by the keyboard. As with the controller commands, some
of these codes are initiated by 8041 interface driver and not the physical keyboard on the HP-HIL
link.

190 Keyboard



Table 5.22

8041 to 5TO-8105 5cancodes and Commands

Codel
Command Description

OOH OVERRUN. This code indicates that the 16 character keyboard buffer has
overflowed.

01 H-77H Keyboard Scancodes. These represent the keys on the 81 H-OF7H keyboard.
The scancodes are listed in table 5.4.

OAAH The 8041 Controller will report this byte when it completes the 8041
Controller's Self Test. This test is executed at Power on and after receiving
the Keyboard Command OFFH, Reset. Note: any other byte reported at
these times indicates failure.

OEEH ECHO: this code is sent in response to the keyboard ECHO_COMMAND
command, OEEH.

OFOH Break Prefix code. This code is sent to indicate a key break. This code is
followed by the scancode of the key being released. This code will be sent
only in the AT scancode set mode.

OFAH ACK. this code is sent to acknowledge receipt of a command (except Echo
and Resend).

OFDH Diagnostic Failure. This code is sent if a keyboard failure is detected.
OFEH Resend. This code is sent if the keyboard receives an invalid command or

detects an error in the transmission.

5.4.4 8041 to Logical Keyboard Driver Communication

The 8041 acts as an intelligent bi-directional buffer between the logical keyboard driver (Input
System) and the INT 09H driver and system software. The INT 09H driver and system software
communicate with the 8041 via the command and data ports (1/0 addresses 64H and 60H
respectively). The 8041 has two additional ports which are used to communicate with the logical
keyboard driver.

The output port 068H is used by the logical keyboard driver to transfer data and commands to
the 8041 without overlapping with the industry standard keyboard commands. Data such as
keyboard scancodes and commands are transmitted in this manner. The HP specific commands
are listed in table 5.23.

Keyboard 191



Table 5.23

HP-Specific Commands to the HP-8041

Keycode
Value Keycode/Command Definition

OOH-OS4H Industry standard make scancodes. The data byte will be put into an
8041 internal scancode buffer, it will loopback the scancode buffer when
the 8041 's output port is empty.

80H-OD4H Industry standard break scancodes. The data byte will be put into an
8041 internal scancode buffer, it will loopback the scancode buffer when
the 8041 's output port is empty.

OSSH-077H HP enhanced keyboard make scancodes. The data byte will be put into
an 8041 internal scancode buffer, it will loopback the scancode buffer
when the 8041 's output port is empty.

ODSH-OF7H HP enhanced keyboard break scancodes. The data byte will be put into
an 8041 internal scancode buffer, it will loopback the scancode buffer
when the 8041 's output port is empty.

078H Reserved
079H Reserved
07AH Pass through the next data byte written to output port 068H. The data

byte will be put into an 8041 internal scancode buffer, it will loopback
the scancode buffer when the 8041 's output port is empty.

07BH Set the RAM Switch to '0'.
07CH Set the RAM Switch to '1' (Default).
07DH CRT_OFF: Set the CRT Switch to '0'. Indicates the primary display is a

monochrome-printer adapter.
07EH CRT_ON: Set the CRT Switch set to '1 '. Indicates the primary display

adapter is the Color/Graphics or Multimode adapter (Default).
07FH HP Reserved
OF8H ENABLE-AUTOPOLL: Enables the SVC Port request AUTOPOLLEVENT

to be sent to the system. This command allows the 80286 to take over
the HP-HIL polling function. The AUTOPOLLEVENT SVC request is made
approximately 60 times a second whenever this command is in effect.

OF9H DISABLE-AUTOPOLL: Disable the AUTOPOLLEVENT SVC request.
OFAH-OFEH Reserved

OFFH KEYBOARD_OVERRUN: This is passed through as any normal keyboard
scancode. This command is sent from the 8041 driver to the logical
keyboard to the 8041 chip to indicate the logical keyboard's data buffer
was overrun.

192 Keyboard



To verify that the command has been read, the software can read the ISF bit in the status
register of the controller.

The 8041 transfers data and commands to the logical keyboard driver through the SVC (Service)
port (I/O address 69H). When data is present on this port, the 8041 issues an interrupt alerting
the 8041 interface driver of the data. The 8041 interface driver reads the data from the SVC
port, then writes any value to the Acknowledge port (I/O address 6AH) which sends an
acknowledge signal to the 8041 and clears the interrupt. Table 5.24 defines the SVC Register
request functions.

Keyboard 193



Table 5.24

SVC Port Request

~KBD HP
Command SVC Request
Hex Binary Function

OFFH yrOO 0000 HP Reserved
001H yrOO 0001 RESET_KBD: resets the keyboard to power-on state, clear

scancode buffer, flash LED's on then off, and set default
typematic rate and delay. At completion the keyboard is
enabled.

002H yrOO 0010 Reserved
003H yrOO 0011 AUTOPOLLEVENT: a programmatic autopoll interval

occurred
004H yrOO 0100 Reserved
OOSH yrOO 0101 Reserved
006H yrOO 0110 SELECT_PC_SET: select the PC compatible scancode set.
007H yrOO 0111 SELECT-AT_SET: select the AT compatible scancode set.
008H yrOO 1000 BUFFELROOM: The internal 8041 scancode buffer has

available room for scancodes. ~
OF6H yrOO 1001 DEFAULT_KBD: set default keyboard values: clear

scancode buffer, and set default typematic rate and
typematic delay (keyboard LED are not affected).

OFSH yrOO 1010 DISABLE_KBD: disables the keyboard: set default values
same as DEFAULT_KBD command, except the keyboard
is left in the disabled state.

OF4H yrOO 1011 ENABLE_KBD: enables the keyboard, clear scancode
buffer, and leave the keyboard in the enabled state.

OF3H yrld dttt SET_TYPEMATIC: set typematic repeat rate and delay
before repeat. The lower three bits, 'ttt', is an index which
specifies the repeat rate and the bits four and five, 'dd'
specifies the delay before the first key is repeated (See
tables 5.25 and 5.26).

OEOH yr01 mmmm SET_MODE_INDICATORS: turns the keyboard LED's on
or off, where 'mmmm' is the led mask A one, '1', will
turn on and LED while a '0' will turn the LED off.

y- When bit seven 'y' is one '1' then logical keyboard is inhibited
from writing scancodes into the 8041 . When 'y' is zero '0' then
the logical keyboard can write scancodes into the 8041 .

-r- Bit six is reserved.

194 Keyboard



Table 5.25 defines the HP-HIL command and approximate delay before repeat value used for
each of the HP8041 delay possibilities. This table assumes an HP-HIL poll rate of 60 cycles per
second.

".. Table 5.25

Typematic Delay (oversion

HP8041 Cursor Pad Non-cursor Pad
Delay HP-HIL Delay HP-HIL Delay
'dd' Command Period Command Period

OOb 04H 0.283 02H 0.283
01b 07H 0.483 04H 0.550
10b OCH 0.817 06H 0.817
11 b OEH 0.950 07H 0.950

Table 5.26 defines the HP-HIL command and approximate typematic rate value used for each of
the HP8041 typematic rate possibilities. This table assumes an HP-HIL poll rate of 60 cycles per
second.

Table 5.26

Typematic Repeat Rate Conversion

HP8041 Cursor Pad Non-cursor pad
Typematic HP-HIL Typematic HP-HIL Typematic
Rate'm' Command Rate Command Rate

OOOb 01H 30.00/sec 01H 30.00/sec
001b 02H 20.00/sec 02H 20.00/sec
010b 03H 1S.00/sec 03H 1S.00/sec
011b OSH 10.00/sec OSH 10.00/sec
100b 07H 7.S0/sec 07H 7.S0/sec
101b 09H 6.00/sec 09H 6.00/sec
110b OSH S.OO/sec OSH S.OO/sec
111 b OEH 4.00/sec OEH 4.00/sec

Keyboard 195



196 Keyboard

.~



SECTION 6

TABLE OF CONTENTS

6. MOUSE 199

6.1 Overview 199

6.2 Mouse Driver (INT 33H) 200
Mouse Driver Function Definitions 201

F33_INSTALL (AX = OOOOH) 201
F33_ENABLE (AX = 0001 H) 202
F33_DISABLE (AX = 0002H) 203
F33_REPORT_DATA (AX = 0003H) 203
F33_PUT_CURSOR (AX = 0004H) 204
F33_REPORT_PRESS (AX = OOOSH) 204
F33_REPORT_RELEASE (AX = 0006H) 204
F33_SET_HORIZ (AX = 0007H) 205
F33_SET_VERT (AX = 0008H) 205
F33_GRAPH_CURSOR (AX = 0009H) 205
F33_TEXT_CURSOR (AX = OOOAH) 207
F33_MOTION (AX = OOOSH) 207
F33_SET_USR (AX = OOOCH) 208
F33_ENABLE_L1GHT (AX = OOODH) 209
F33_DISABLE_L1GHT (AX = OOOEH) 209
F33_RATIO (AX = OOOFH) 209
F33_COND_OFF (AX = 001 OH) 209
F33-><TEND_GCSR (AX = 0012H) 210
F33_SPEED (AX = 0013H) 210
F33_INQUIRE (AX = 6FOOH) 210

6.3 V_LHPMOUSE Driver (BP OOCCH) 211
HP Mouse Driver Function Definitions 211

F_ISR (AH = OOH) 211
SF_INIT (AX = 0200H) 212
SF_START (AX = 0202H) 212
SF_MOUSE_COM (AX = 0400H) 213
SF_MOUSE_OVER (AX = 0402H) 213

197



198 Mouse

.~
'-----



SECTION 6. MOUSE

The mouse driver discussed in this section provides the HP Mouse with the Microsoft Mouse (tm)
compatible (INT 33H) application interface. There are two additional mouse drivers supplied with
the system, the pointer driver (simple mouse) discussed in Section 4 and the cursor key emulator
discussed in Appendix G. Some of the terminology in this section is defined in Section 4.

6.1 Overview

The industry standard mouse is accessed through software interrupt 33H. The INT 33H driver
receives data from the logical mouse driver (V_LHPMOUSE). If the HP-HIL mouse is present at
boot time, V_LHPMOUSE initializes INT 33H to the industry standard interface driver. The
industry standard interface supports both a polled mode and interrupt mode of data retrieval.

,. The following data flow outlines the process of mouse data input.

1. The mouse is moved. This causes the physical device to generate input data and interrupt
the hardware interface level drivers.

2. The hardware interface level processes the interrupt and passes the data (ISR Event Record)
to the logical mouse driver (V_LHPMOUSE).

3. V_LHPMOUSE scales and clips the input data and stores it for the industry standard
interface to use.

4. If using polled mode the application must inquire if the data is available. If using interrupt
mode the application will be interrupted to notify it that the data is available (via INT 33H).

Steps 1 and 2 above have been discussed in Section 4. Step 3 involves processing the ISR Event
Record into the data format used by the INT 33H driver. At this point, if the user has defined and
installed an interrupt handler with function F33_SET_USR (OCH), that routine will be called. INT
33H also defines functions to allow the application to poll for mouse data.

The screen modes supported by the mouse driver are shown in table 6.1 The (0,0) origin for the
display is in the upper left hand corner of the display. All data reported is in the ranges: 0 to 199
for y-axis and 0 to 639 for the x-axis.

Mouse 199



Table 6.1

Video Display Modes Supported

Mode X range Y range Comments ~

80x25 0..632 0.. 192 X-axis data is in multiples of 8, y-axis data is in
multiples of 8

40x25 0..624 0.. 192 X-axis data is in multiples of 16, y-axis data is in
multiples of 8

320x200 0..638 0.. 199 X-axis data is in multiples of 2
640X200 0..639 0.. 199 Reports full range for both axes

6.2 Mouse Driver (lNT 33H)

The following section discusses the INT 33H driver. Table 6.2 contains a function summary of the
INT 33H driver. ~

200 Mouse



Table 6.2

Mouse Driver Function Code Summary

tNT Function Function
Hex Equate Value Definition

33H INT_HPMOUSE
F33_INSTALL OOH Mouse installed flag
F33_ENABLE 01H Puts cursor on screen
F33_DISABLE 02H Turn off cursor
F33_REPORT_DATA 03H Get position/button information
F33_PUT_CURSOR 04H Position the cursor
F33_REPORT_PRESS OSH Report button press status
F33_REPORT_RELEASE 06H Report button release status
F33_SET_HORIZ 07H Sets min/max horizontal values
F33_SET_VERT 08H Sets min/max vertical values
F33_GRAPH_CURSOR 09H Define graphics cursor
F33_TEXT_CURSOR OAH Define text cursor
F33_MOTION OSH Report motion counters
F33_SET_USR OCH Define user subroutine
F33_ENABLE_LIGHT OOH Unsupported
F33_DISABLE_LIGHT OEH Unsupported
F33_RATIO OFH Set pixel movement ratio
F33_COND_OFF 10H Define conditional off area
F33--.XTEND_GCSR 12H Extended sprite graphics entry point
F33_SPEED 13H Sets mouse movement doubling
F33_INQUIRE 6FOOH EX-BIOS mouse driver present

Mouse Driver Function Definitions

F33_INSTALL (AX = OOOOH)

This function is called by the application to determine if the mouse is connected to the HP-HIL
link. If the mouse is connected, the physical GID driver for the mouse is mapped to the
V_LHPMOUSE, and the internal data area is set to its default values. If the mouse is connected a
-1 is returned in AX, otherwise a zero is returned.

Mouse 201



The default values set are:

cursor position

internal cursor flag

graphic cursor shape/hot spot

text cursor

user-defined call mask

light pen emulation mode

X axis mickies to pixel ratio

Y axis mickies to pixel ratio

min/max cursor position X axis

min/max cursor position Yaxis

On Entry: AX = F33_INSTALL (OOOOH)

On Exit: AX = mouse status
BX = number of buttons

Registers Altered: AX, BX

screen center

cursor off

arrow/( - 1, - 1)

inverting box

all zeros

disabled

8 to 8

16 to 8

0/639

0/199

The following example shows how the mouse driver is called.

MOV AX, F33_INSTALL
INT INT_HPMOUSE

,. load function code
,. call the driver (33H)

F33_ENABLE (AX = 0001 H)

This function increments the internal cursor flag. If the flag is 0, the cursor is displayed on the
screen. When the cursor is on the screen, moving the mouse will cause the mouse cursor to ~,

also move. '"'

On Entry: AX = F33_ENABLE (0001 H)

202 Mouse



On Exit: None

Registers Altered: None

,... F33_DISABLE (AX = 0002H)

This function decrements the cursor flag count. If the flag has a non-zero value, the cursor is
removed from the display.

On Entry: AX = F33_DISABLE (0002H)

On Exit: . None

Registers Altered: None

This function reads the position (x,y) of the mouse and the state of the mouse buttons. The
button status is described in table 6.3.

Table 6.3

Mouse Button Status Table

Bit Data

OFH-02H
01H 0

1
OOH 0

1

Button Status Definition

Reserved
Right button up
Right button down
Left button up
Left button down

On Entry: AX = F33_REPORT__DATA (0003H)

On Exit: BX = button status
ex = x position
DX = Y position

Registers Altered: BX, ex, DX

Mouse 203



This function changes the cursor position on the screen. If the new cursor position is within the
currently defined limits, the cursor is moved to the new position. If the new position is outside of
the limits, the cursor is removed from the screen. The new position of the cursor must be set to
values supported by the current screen mode. ~

On Entry: AX = F33_PUT_eURSOR (0004H)
ex = new x cursor position
DX = new y cursor position

On Exit: None

Registers Altered: None

This function reports the button press information. The press count button status and cursor
position of the last press is returned. The button status is defined in table 6.3. Notice that the
position represents the position of the cursor at the last press, and may not reflect the current
cursor position. The press count is cleared after the call.

On Entry: AX = F33_REPORT_PRESS (OOOSH)
BX = button number

On Exit: AX = button status
BX = press count
ex = x position at last press
DX = Y position at last press

Registers Altered: AX, BX, ex, DX

F33_REPORT_RELEASE (AX = 0006H)

This function reports the button release information. The release count button status and cursor
position of the last release is returned. The button status is defined in table 6.3. Notice that the
position represents the position of the cursor at the last press, and may not reflect the current ~.

cursor position. The release count is cleared after the call. .,

On Entry: AX = F33_REPORT_RELEASE (0006H)
BX = button number

204 Mouse



On Exit: AX = button status
BX = release count
ex = x position at last release
DX = Yposition at last release

,.. Registers Altered: AX, BX, ex, DX

This function defines the minimum and maximum horizontal positions reported. If the cursor is
outside the new boundary, the cursor is moved just inside the boundary. If the minimum
parameter is greater than the maximum parameter, the parameters are swapped.

On Entry: AX = F33_SET_HORIZ (0007H)
ex minimum position
DX = maximum position

On Exit: None

Registers Altered: None

This function defines the minimum and maximum vertical positions that are reported. If the
cursor is outside the new boundary, the cursor is moved just inside the boundary. If the
minimum parameter is greater than the maximum parameter, the parameters are swapped.

On Entry: AX = F33_SET_VERT (0008H)
ex = minimum position
DX = maximum position

On Exit: None

Registers Altered: None

F33_GRAPH_CURSOR (AX = 0009H)

,.. This function defines the graphics cursor or sprite. This allows the programmer to define what
the 16 pixel by 16 pixel sprite is to look like. The programmer defines both the AND mask and
the XOR mask. The masks must be defined in contiguous memory. You must also pass in the
sprite hot spot. The hot spot must be in the range of -16 to 16. The term"hot spot" refers to
the point, inside or outside of the sprite, which positions the sprite. The hot spot origin is defined
by the upper left hand corner of the sprite.

Mouse 205



On Entry: AX = F33_GRAPH_CURSOR (0009H)
BX = horizontal hot spot
ex = vertical hot spot

ES:DX = pointer to AND and XOR masks

On Exit: None

Registers Altered: None

The following example shows how to define the graphics cursor. The hot spot for the example
cursor given is at (5,1).

SPRITE OW OF9FFH 1111100 111111111 "*" marks the
OW OFOFFH 11110*0011111111 Hot Spot
OW OE07FH 1110000001111111
OW OE07FH 1110000001111111
OW oC03FH 1100000000111111
OW oC03FH 1100000000111111
OW 0801FH 1000000000011111
OW 0801FH ; 1000000000011111
OW OOOOFH ; 0000000000001111
OW OOOOFH ; 0000000000001111
OW OFOFFH . 1111000011111111
OW OFOFFH 1111000011111111
OW OFOFFH 1111000011111111
OW OFOFFH 1111.0000 11111111
OW OFOFFH 1111000011111111
OW OFOFFH 11110000 11111111

,
; Define the XOR mask

OW OOOOOH ; 0000000000000000 "*" marks the
OW 00600H ; 00000*1000000000 Hot Spot
OW OOFOOH ; 0000111100000000
OW OOFOOH ; 0000111100000000
OW 01F80H ; 0001111110000000
OW 01F80H ; 0001111110000000
OW 03FCOH ; 0011111111000000
OW 03FCOH ; 0011111111000000
OW 07FEOH ; 0111111111100000
OW 00600H ; 0000011000000000
OW 00600H ; 0000011000000000
OW 00600H ; 0000011000000000
OW 00600H ; 0000011000000000
OW 00600H ; 0000011000000000
OW 00600H ; 0000011000000000
OW OOOOOH ; 0000000000000000

206 Mouse



MOV
MOV
MOV
PUSH
POP
LEA
INT

AX, F33_GRAPH_CURSOR
ax,s
CX, 1
OS
ES
ox, SPRITE
INT_HPMOUSE

" load the function code
" hot spot at (5, 1)

" set up the es register
" load offset of sprite
" call mouse driver (33H)

F33_TEXT_CURSOR (AX = OOOAH)

This function defines either a software text cursor, or what the hardware text cursor looks like.
The parameter in BX selects the cursor type. When BX equals one, the hardware cursor is
defined. When BX equals 0, the software cursor is selected. If the hardware cursor is selected,
then the parameters in ex and DX define the first and last scan line of the hardware cursor. If
the software cursor is selected, then ex defines the AND mask for the character and attribute
bytes. DX defines the new character and attribute bytes.

On Entry: AX = F33_TEXT_CURSOR (OOOAH)
BX = Cursor Type

Data Definition
o Software cursor
1 Hardware cursor

For software cursor:
ex = attribute/character AND mask
DX = attribute/character XOR mask

For hardware cursor:
ex = first scan line
DX = last scan line

On Exit: None

Registers Altered: None

F33_MOTION (AX = OOOBH)

This function reads the mouse motion counters. Both the X and Y motions are reported. A
positive X motion indicates a movement to the right. A positive Y motion represents a movement
to the bottom of the screen. The motion counters are cleared after the function call.

Mouse 207



On Entry: AX = F33_MOTION (OOOBH)

On Exit: ex = X axis count
ox = Y axis count

Registers Altered: ex, ox

F33_SET_USR (AJ< = OOOCH)

This function defines the user-defined subroutine to be called at interrupt service time. The
function allows the programmer to select which events the routine is to handle. The condition
mask is defined in table 6.4. A call to F33_INSTALL disables this feature.

Table 6.4

User-defined Routine Event Definition

Bit Value Definition of Event

OFH-05H - Reserved
04H 1 Right button released
03H 1 Right button pressed
02H 1 Left button released
01H 1 Left button pressed

OOH 1 Any mouse movement

When the subroutine is invoked, the following information is in the registers:

Register
AX

BX
ex
ox

Data
Event mask which describes the event. The table 6.4 defines the events. A set bit
indicates the event.
button state (see table 6.3)
X position
Y position

On Entry: AX = F33_SET_USR (OOOeH)
ex = condition mask

ES:OX = address of the user defined subroutine

208 Mouse



On Exit: None

Registers Altered: None

F33_ENABLE_LIGHT (AX = OOODH)

This function is not currently supported.

F33_DISABLE_LIGHT (AX = OOOEH)

This function is not currently supported.

F33_RATIO (AX = OOOFH)

This function sets the sensitivity of the mouse movement. Logical mouse movement, in pixels,
corresponds to an amount of actual physical device movement, in mickies. This ratio of logical to
physical movement specifies the number of pixels to move for some number of mickies. This
function allows you to change the ratio to any value in the range 1 to 32767.

,.. On Entry: AX = F33_RATIO (OOOFH)
ex = mickies to pixels ratio for X axis
DX = mickies to pixels ratio for Y axis

On Exit: None

Registers Altered: None

This function defines an area on the screen which is considered a fast update area. If the cursor
is within this area, then the cursor is removed from the screen, and the area can be quickly
updated. If the cursor is not within the specified area, then it is not removed from the screen.
After a call to this function is made, a call to F33_ENABLE must always be made to turn the
cursor back on. If the upper and lower coordinates are entered in reverse order, the values are
swapped.

On Entry: AX = F33_eOND_OFF (001 OH)
ex = upper x screen coordinate (closest to (0,0))
DX = upper y screen coordinate
SI = lower x screen coordinate (farthest from (0,0))
DI = lower y screen coordinate

Mouse 209



On Exit: None

Registers Altered: None

F33--XTEND_GCSR (AX = 0012H)

This function defines the graphics cursor sprite. The new sprite can be larger or smaller than the
previous sprite. The maximum size of the graphics cursor sprite is 144. This number is the
product of number of scan lines (CH) times the number of bytes (BH *2) the sprite spans. This
function allows you to define a sprite similar to F_GRAPH_CURSOR.

On Entry: AX = F33----><TEND_GCSR (0012H)
BH = number of words the sprite spans in X axis
BL = hot spot x
CL = hot spot Y
CH = # of scanlines in sprite

ES:DX = point to the new sprite masks

On Exit: AX = - 1

Registers Altered: AX

F33_SPEED (AX = 0013H)

This function sets the minimum distance doubling parameter. This allows you to set the
sensitivity such that the physical mouse need not travel as far to go across the entire screen. If
the mouse moves the number of mickies defined by this function, then the movement for the
mouse is doubled.

On Entry: AX = F33_SPEED (0013H)
DX = minimum to double

On Exit: None

Registers Altered: None

F33_INQUIRE (AX =6FOOH)

This function can be used to determine if the mouse driver being used was written by HP.

On Entry: AX = F33_INQUIRE

210 Mouse



On Exit: BX = 'HP' (4850H)

Registers Altered: BX

6.3 V_LHPMOUSE Driver (BP = OOCCH)

This section describes the EX-BIOS calls for compatible mouse driver. These functions constitute
the interface between this driver and the Input System. Table 6.5 contains a function summary of
V_LHPMOUSE.

Table 6.5

V_LHPMOUSE Driver Function Code Summary

Vector Func. Function
Address Value Equate Definition

OOCCH 00 F_ISR Logical Interrupt

OOCCH 02 F_SYSTEM System Intrinsics
OOCCH 02/00 SF_INIT Initializes driver
OOCCH 02/02 SF_START Starts driver

OOCCH 04 F_IO_CONTROL I/O control driver functions
OOCCH 04/00 SF_MOUSE_COM BIOS mouse install function
OOCCH 04/02 SF_MOUSE_OVERRIDE InstalllNT 33H even though mouse

is not connected

HP Mouse Driver Function Definitions

F_ISR (AH = OOH)

This function receives an ISR Event Record from physical GID drivers. This function translates the
physical event into the logical coordinate system used by the INT 33H mouse driver. This function
is responsible for updating the INT 33H data area. This includes calculating the mickies to pixel
ratio, updating the motion counters, and displaying the mouse cursor.

Mouse 211



On Entry: AH = F_ISR (OOH)
DH = Data Type (see Table 4.12)
DL = Physical device driver's vector index.

ES:O = Pointer to Physical Describe Record.
BP = V_LHPMOUSE (OOCCH)

For Button Event:

BX = Button information.

Bit
OFH-08H
07H

06H-00H

Value Definition
Reserved

1 Button up
o Button down

Button number (0-7)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_INIT (AX = 0200H)

This subfunction is called to initialize the driver. Refer to Section 9 for a complete discussion of
the protocol used in data space allocation ("last used DS" passed in register BX).

On Entry: AH = F_SYSTEM (02H)
AL = SF_INIT (OOH)
BX = "Last used DS" in HP Data Area
BP = V_LHPMOUSE (OOCCH)

On Exit: AH = Return Status Code
BX = New"last used DS" in HP Data Area

Registers Altered: AX, BX, BP, DS

SF_START (AX = 0202H)

This subfunction starts the driver.

On Entry: AH = F_SYSTEM (02H)
AL = SF_START (02H)
BP = V_LHPMOUSE (OOCCH)

212 Mouse



On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

,... SF_MOUSE_COM (AX = 0400H)

This function is used by the BIOS to initialize INT 33H after MS-DOS has been initialized. This
function checks for the presence of a mouse. If the mouse is found then INT 33H, is set up to
point to the mouse driver. If no mouse is found, then INT 33H is not initialized.

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_MOUSE_COM (OOH)
BP = V_LHPMOUSE (OOCCH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_MOUSE_OVERRIDE (AX = 0402H)

This function is used to set up INT 33H even if there is no mouse present. This function is
provided in case an application wishes to map any GID device to the V_LHPMOUSE driver. Since
no mouse is connected to the HP-HIL link, the mouse driver will not be installed, thus this
function enables you to override what is currently at INT 33H.

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_MOUSE_OVERRIDE (02H)
BP = V_LHPMOUSE (OOCCH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

Mouse 213



214 Mouse



SECTION 7

TABLE OF CONTENTS

7. SERIAL AND PARALLEL I/O 217

7.1 Overview 217

7.1.1 Serial And Parallel Port Addresses 217

7.1.2 Print Screen Driver 218

7.1.3 Polled and Interrupt Driven Operations 219

7.2 Data Structures 219

7.2.1 Serial Port Driver Data Structures 219

7.2.2 Parallel Port Driver Data Structures 220

7.2.3 Print Screen Driver Data Structures 221

7.3 Serial Port Driver (INT 14H) 221
Serial Port Driver Function Definitions 222

F14_INIT (AH = OOH) 222
F14-XMIT (AH = 01 H) 225
F14_RECV (AH = 02H) 226
F14_STATUS (AH = 03H) 226
F14_INQUIRE (AX = 6FOOH) 226
F14_EXINIT (AX = 6F01H) 227
F14_PUT_BUFFER (AX = 6F02H) 228
F14_GET_BUFFER (AX = 6F03H) 229
F14_TRM_BUFFER (AX = 6F04H) 230

7.4 Parallel Port Driver (INT 17H) 232
Parallel Port Driver Function Definitions 232

F17_PUT_CHAR (AH = OOH) 232
F17_INIT (AH = 01H) 233
F17_STATUS (AH = 02H) 234
F17_INQUIRE (AX = 6FOOH) 234
F17_PUT_BUFFER (AX = 6F02H) 235

7.5 Print Screen Driver (INT OSH) 236

215



216 Serial and Parrallel 110



SECTION 7. SERIAL AND PARALLEL 1/0

This section covers the ROM BIOS support for the system serial and parallel I/O ports. The ROM
BIOS supports up to four parallel ports and up to four serial ports. However, DOS only provides
logical devices for three parallel printer ports and two serial ports.

7.1 Overview

The ROM BIOS provides two STD-BIOS drivers that control the serial (INT 14H) and parallel (INT
17H) ports. The functions in these drivers provide a means of setting communication parameters
and transmitting data. These drivers have expanded functionality that provide the programmer
with the additional ability to set higher baud rates and to transfer strings of data. In addition to
these drivers, the print screen driver (INT OSH) will be discussed in this section.

7.1.1 Serial And Parallel Port Addresses

The STD-BIOS data area contains two tables used by the serial and parallel port drivers. The Serial
Base Port Address Table contains the base port addresses for the serial ports. The Parallel Base
Port Address Table contains the base addresses of the parallel ports. The ROM BIOS checks
during SYSGEN for the presence of serial and parallel adapter cards at the addresses listed in
table 7.1. When a valid port is found, the base address of that port is placed in the next
available entry of the appropriate table. Application programs may add additional parallel ports
or serial ports to the port tables. An application program can also replace the values in the table
with new ones to support non-standard port addresses. Each table contains space for four
entries.

Serial and Parrallel I/O 217



Table 7.1

Serial and Parallel Port Addresses

I/O Address

3F8H
2F8H
3E8H
2E8H
3BCH
378H
278H

IRQ

4
3
10
11

5
7

INT

OCH
OBH
72H
73H

OOH
OFH

Port addresses are added to the base port address tables in the sequence listed in table 7.1 . If the
system has only two parallel I/O ports at addresses 378H and 278H then 378H becomes the first
entry in the table (Port 0) and 278H becomes the second (Port 1). The potential parallel port at
3BCH would not be Port 0 as it is not present in the system.

The functions supported by the serial and parallel port drivers rely on the values contained in the
serial base port address table and the parallel base port address table. The ports are referenced ~

by -indexes into the tables (port numbers 0-3).

7.1.2 Print Screen Driver

The print screen driver provides a simple method for application programs and system software
to print a copy of the screen contents to the system printer (port 0). The ROM BIOS print screen
driver will only print the scr,een if the display adapter is in one of the alphanumeric modes.
Support for printing the screen when in graphics modes is provided by the DOS command
GRAPHICS.

218 Serial and Parrallel I/O



7.1.3 Polled and Interrupt Driven Operations

Both the serial and parallel ports on the system may be operated in either a polled or interrupt
mode. The drivers in the ROM BIOS only support polled operation. Four system interrupts, OBH,
OCH, 72H and 73H, are reserved for system serial ports. Two system interrupts, ODH and OFH,
are reserved for system printers. Application programs and system software may use these
interrupts to operate the ports in an interrupt mode.

7.2 Data Structures

The data structures for the serial port, parallel port, and print screen drivers are located in the
5TD-B105 data area. The data structures for each of the drivers are discussed separately.

7.2.1 Serial Port Driver Data Structures

The serial port driver uses two data structures in the 5TD-B105 data area; a base port address
table, and a timeout counter table. The addresses of these data structures are listed in table 7.2.
The equipment word in the 5TD-8105 data area (40: 1OH), contains the number of serial and
parallel ports configured in the system. The equipment byte can be read by the INT 11 H
equipment determination function.

Table 7.2

Serial Port Data Structures

Port Port Address Timeout Timeout
Number Table Entry Table Entry (Default)

0 40:00H 40:7CH (01 H)
1 40:02H 40:7DH (01 H)
2 40:04H 40:7EH (01 H)
3 40:06H 40:7FH (01 H)

Serial and Parrallell/O 219



Each serial port is comprised of eight 80286 I/O addresses. The base address of each block of I/O
addresses is stored in the base port address table. For more information see Vectra Technical
Reference Manual Volume I. The table consists of 4 words (8 bytes), one for each of the four
possible serial ports. A zero value for any of the words is interpreted by the driver to mean the
port is not present.

The second data structure used by the serial port driver is the timeout table. This data structure
consists of 4 bytes, one for each of the serial ports. Whenever the driver attempts to read or
write data or parameters it reads the status port on the serial port. To prevent an error condition
on the serial port from hanging up the system it uses a timeout loop. If a valid status byte cannot
be read within the time allotted, the driver will return with a timeout error status code. The
length of the timeout is determined by the entries in the timeout table. Each of the four serial
ports can be given a different timeout value by an application program.

7.2.2 Parallel Port Driver Data Structures

The parallel port driver uses two data structures that are similar to those used by the serial port
driver. The addresses of the parallel base port address and timeout tables are listed in table 7.3.

Table 7.3

Parallel Port Data Structures

Port Port Address Timeout Timeout
Number Table Entry Table Entry (Default)

0 40:08H 40:78H (14H)
1 40:0AH 40:79H (14H)
2 40:0CH 40:7AH (14H)
3 40:0EH 40:7BH (14H)

Each of the parallel ports occupy four I/O addresses. The base or first address of each is
contained in the base address table. A zero value for any of the words is interpreted by the driver ~

to mean the requested parallel port adapter is not present.

220 Serial and Parrallel I/O



The parallel printer port driver checks the status of the port before it outputs a character to
determine if the printer is busy. To prevent an error condition on the parallel port from hanging
up the system, a timeout loop is used. The length of the timeout is determined by the values
stored in the timeout table. The timeout values for each of the parallel ports can be set
independently of each other.

7.2.3 Print Screen Driver Data Structures

The print screen driver uses a single byte data structure, located at 0040:01 OOH (see Appendix
B). The print screen driver places a status byte at this location, indicating whether or not a print
screen operation is underway. ThE~ possible values for this status byte are:

Data Definition

o The print screen driver has not been called or it completed the previous
operation successfully.

1 Printing is in progress.
OFFH Error occurred during printing.

If this byte indicates a print screen operation is currently in progress, the driver will return. This
prevents more than one print screen operation from occurring at the same time.

7.3 Serial Port Driver (lNT 14H)

The functions supported by the serial port driver can be divided into two groups; those that set
and report communication protocol or status, and those that transmit and receive data. The
driver supports nine functions. Four of these functions implement the features of the industry
standard INT 14H driver. The remaining five functions are EX-BIOS extensions. The ROM BIOS
supports several features not found in the industry standard INT 14H driver. Among these
features is the ability to select a communication speed of up to 19.2 K baud per second and the
support of block (multi-byte) data transfer.

The following is a list of descriptions for each of the INT 14H functions. A summary of these
functions is shown in table 7.4.

Serial and Parrallell/O 221



Table 7.4

Serial Port Driver Function Code Summary

INT Function
Hex Equate

14H INT_SERIAL
F14_INIT
F14---><MIT
F14_RECV
F14_STATUS
F14_INQUIRE
F14_EXINIT
F14_PUT_BUFFER
F14_GET_BUFFER
F14_TRM_BUFFER

Function
Value

OOH
01H
02H
03H
6FOOH
6F01H
6F02H
6F03H
6F04H

Definition

Serial
Initialize Serial Port Parameters
Send Out One Character
Receive One Character
Get Serial Port Status
EX-BIOS present
Initialize serial port (19.2 Kbaud)
Write a buffer of data
Read a buffer of data
Read a buffer of data, terminate on specified
condition

Serial Port Driver Function Definitions

All of the following functions range check (between 0 and 3 inclusive) the requested port
number specified in the DX register. If legal, the function looks up the I/O address contained in
the 5TD-8105 data area. If the port table entry is non-zero the port is assumed to exist. If the port
table entry is zero the function returns without altering any registers.

F14_INIT (AH = OOH)

The initialize function, F14_INIT, sets the baud rate, nU"r.lber of stop bits, parity and character
length of the specified serial port. On return it reports the current contents of the line status
register and the modem status register of the specified port.

222 Serial and Parrallel I/O



On Entry: AH = F14_INIT (OOH)
AL = Port attribute

Bit Data Definition
07H-05H 111 9600 baud rate

110 4800 baud rate
101 2400 baud rate
100 1200 baud rate
011 600 baud rate
010 300 baud rate
001 150 baud rate
000 11 0 baud rate

04H-03H xO no parity
11 even parity
01 odd parity

02H 0 1 stop bit
1 2 stop bits

01 H-OOH 00 undefined
01 undefined
10 7 bit character
11 8 bit cha racter

~ DX = Port number (0, 1, 2, 3)

On Exit: AH = Line status (see table 7.5)
AL = Modem status (see table 7.6)

Reg isters Altered: AX

Table 7.5 defines the Serial Port Line Status.

Serial and Parrallel 110 223



Tabte 7.5

Line Status Register Report

Bit

7

6
5
4
3
2
1
o

Data

1
1
1
1
1
1
1

Definition

Timeout Error (Not applicable on F14_INIT, F14_EXINIT or
F14_STATUS)
Transmit Shift Register Empty
Transmit Hold Register Empty
Break Received
Character Framing Error
Parity Error
Overrun Error
Data Set Ready

Table 7.6 defines the Serial Port Modem Status.

Table 7.6

Modem Status Register Report

Bit

7
6
5
4
3
2
1
o

Data

1
1
1
1
1
1
1
1

Definition

Receive Line Signal Detected
Ring Indicator Line State
Data Set Ready Line State
Clear to Send Line State
Change in Receive Line Detected
Trailing Edge of Ring Detected
Change in Data Set Ready
Change in Clear to Send State

224 Serial and Parrallel I/O



Example:

MOV AH, F14-'NIT
MOV AL, 111001118

MOV DX,O
INT INT_SERIAL

F14-><MIT (AH = 01H)

,. (AH = OH)
,. HP Laserjet factory default
,. 9600 baud
,. No parity
,. 2 stop bits
,. 8 bit character
,. setting
,. Port 0 specification
,. Call serial driver (lNT 14H)

Transmits a data byte on the serial port specified by the DX register. The function enables
the REQUEST-TO-SEND and DATA-TERMINAL-READY signals, and then waits on the
DATA-SET-READY, CLEAR-TO-SEI\JD, and REGISTER-EMPTY signals until the character is
transferred or a timeout occurs.

On Entry: AH = F14-><MIT (01 H)
AL = Data byte to be transmitted
DX = Port number (a, 1, 2, 3)

On Exit: AH = Line status (see table 7.5)
AL = Modem status (see table 7.6)

Registers Altered: AX

Example:

MOV AH, F14--.XMIT ,. (AH = 02H)
MOV AL, 'G' ,. ASCI/'G' character to send
MOV DX, 0 ,. Port 0 specification
INT INT_SERIAL ,. Call serial driver (lNT 14H)
TEST AH, 100000008 ,. Check for error
JNZ short ERROR__HANDLER

Serial and Parrallell/O 225



F14__RECV (AH = 02H)

This function reads a data byte from the serial port specified by the DX register. The signal
DATA-TERMINAL-READY is enabled in the modem control register indicating to the remote
device that data can be sent. The modem status register signal DATA-SET-READY and the line
status register signal DATA-READY are polled until a data byte is available to read or the timeout
count has expired.

On Entry: AH = F14_RECV (02H)
DX = Port number (0, 1, 2, 3)

On Exit: AH = Line status (see table 7.5)
AL = If no error: Data byte received

If error: Null character, zero

Registers Altered: AX

Example:

MOV AH, F14__RECV ,. (AH = 2)
MOV DX, 0 ,. Port 0 specification
INT INT_SERIAL ,. Call serial driver (lNT 14H)
TEST AH, 100000008 ,. Check for error
JNZ short ERROR_RECEIVE

F14__STATUS (AH = 03H)

This subfunction returns the status of the serial port specified by the DX register.

On Entry: AH = F14__STATUS (03H)
DX = Port number (0, 1, 2, 3)

On Exit: AH = Line status (see table 7.5)
AL = Modem status (see table 7.6)

Registers Altered: AX

F14__INQUIRE (AX = 6FOOH)

This function determines whether or not the extended EX-BIOS functions are available. If the
EX-BIOS functions are available, the BX register will be set to 4850H (which are the ASCII
characters 'HP').

226 Serial and Parrallel I/O



On Entry: AX = F14_INQUIRE (6FOOH)
BX = Any value eXCE?pt 48S0H ('HP')

On Exit: BX = 'HP'

Registers Altered: AX, BX

Example:

MOV AX, F14-'NQUIRE " (AH = 6FOOH)
XOR ax, ax ,. Clear out ax
INT INT_SERIAL ,. Call serial driver (lNT 14H)
CMP ax, 'HP' ,. Check?
JNE short ERROR.-NO_EXTENDED_FUNCTIONS

F14_EXINIT (AX = 6F01H)

This function is similar to the STD-BIOS function, F14_INIT, but provides the ability to set a baud
rate beyond 9600.

On Entry: AX = F14_EXINIT (6F01 H)
BX = Port attributes

Bit
08H-OSH

04H-03H

02H

01 H-OOH

Data
1000
0111
0110
0101
0100
0011
0010
0001
0000
xO
11
01
o
1
00
01
10
11

Definition
19200 baud rate
9600 baud rate
4800 baud rate
2400 baud rate
1200 baud rate
600 baud rate
300 baud rate
150 baud rate
110 baud rate
no parity
even parity
odd parity
1 stop bit
2 stop bits
undefined
undefined
7 bit character
8 bit character

DX = Port number (0, 1, 2, 3)

Serial and Parrallel 1/0 227



On Exit: AH = Line status (see table 7.5)
AL = Modem status (see table 7.6)

Registers Altered: AX

Example:

MOV AX, F14_EXINIT
MOV BX, 0000000100011010B

MOV DX,1
INT INT_SERIAL

; (AH = 6F01 H)
,. Port attributes
,. 19.2 K baud
,. parity even
,. 1stop bit
,. 7 bit character
,. Port 1 specification
,. Call serial driver (lNT 14H)

This function transmits data from a buffer as long as there is data in the data buffer and no error
is encountered.

For each data byte transferred, the function enables the REQUEST-TO-SEND and
DATA-TERMINAL-READY signals, and then waits on the DATA-SET-READY, CLEAR-TO-SEND, and
REGISTER-EMPTY signals until the character is transferred or a timeout occurs. The timeout count
is reset for each byte transferred.

On Entry: AX = F14_PUT_BUFFER (6F02H)
CX = number of characters in the data buffer
DX = Port number (0, 1, 2, 3)

ES:DI = Pointer to a data buffer of characters

On Exit: AH = Line status (see table 7.5)
AL = Modem status (see table 7.6)

Normal Completion:
CX = Number of bytes transferred successfully

ES:DI = Base of data buffer

Error Completion (bit 7 of AH register non-zero):
CX = Number of bytes transferred successfully

ES:DI = pointer to next byte to be transferred

Registers Altered: AX, ex, DI, ES

228 Serial and Parrallel I/O



Example:

STRING DB
END_STRING:
START:

'Hello'

MOV AX, seg STRING
MOV ES, AX
MOV 01, offset STRING
MOV AX, F14_PUT_BUFFER
MOV CX, ENO_STRING-STRING

MOV OX, 0
INT INT_SERIAL

TEST AH, 10000000B
JNZ short ERROR__PUT_STRING

; set pointer to string

,
; (AX =6F02H)
,. length of character
,. string
,. Port 0 specification
,. Call serial driver
; (lNT 14H)
,. test for errors

This function reads characters into the specified data buffer until the buffer is full or a timeout
occurs. For each byte, the signal DATA-TERMINAL-READY is enabled in the modem control
register indicating to the remote device that data can be sent. The modem status register signal
DATA-SET-READY and the line status register signal DATA-READY are polled until a data byte is
available to read or the timeout count has expired.

On Entry: AX = F14_GET_BUFFER (6F03H)
CX = maximum buffer size
DX = Port number (0, 1, 2, 3)

ES:DI = Pointer to a data buffer

On Exit: AH = Line status (see table 7.5)

Normal Completion:
AL = last byte read
ex = Number of bytes transferred successfully

ES:OI = Base of data buffer

Error Completion (bit 7 of AH register non-zero):
AL = 0, the null byte
CX = Number of bytes transferred successfully

ES:OI = pointer to next byte to be transferred

Registers Altered: AX, ex, 01, ES

Serial and Parrallell/O 229



Example:

IN--.-BUFFER DB 512 OUP (20H)
ENO--.-BUFFER:
START:

MOV AX, seg IN--.-BUFFER
MOV ES, AX
LEA 01, offset IN_BUFFER
MOV AX, F14_GET--.-BUFFER
MOV CX, ENO--.-BUFFER-IN--.-BUFFER

MOV OX, 0
INT INT-3ERIAL
TEST AH, 10000000B
JNZ short ERROR_PUT_STRING

" set pointer to string

,
,. (AX = 6F03H)
,. length of character
,. string
,. Port 0 specification
,. Call serial driver (lNT 14H)
,. test for errors

This function will read characters into the specified data buffer until anyone of the following
three conditions occurs:

• The data buffer is filled with characters.

• A character is read which is between the upper bound and the lower bound, inclusive.

• An error or timeout condition is encountered.

For each byte, the signal DATA-TERMINAL-READY is enabled in the modem control register
indicating to the remote device that data can be sent. The modem status register signal
DATA-SET-READY and the line status register signal DATA-READY are polled until a data byte is
available to read or the timeout count has expired. After the data byte is read it is inspected to
see if it lies between the two boundary bytes. If the byte is in between the two bytes then the
transfer is terminated. This function is useful for transferring logical records.

On Entry: AX = F14_TRM_BUFFER (6F04H)
BL = lower bound of termination character
BH = upper bound of termination character
ex = maximum buffer size
DX = Port number (0, 1, 2, 3)

ES:DI = Pointer to a data buffer

230 Serial and Parrallel I/O



On Exit: AH = Line status (see table 7.5)

Normal Completion Full Transfer:
AL = last byte read
ex = Number of bytes transferred successfully

ES:DI = Base of data buffer

Normal Completion Terminate Character Detected:
AL = last byte read (terminate byte)
ex = Number of bytes transferred successfully

ES:DI = Base of data buffer

Error Completion (bit 7 of AH register non-zero):
AL = 0, the null byte
ex = Number of bytes transferred successfully

ES:DI = pointer to next byte to be transferred

Registers Altered: AX, ex, DI, ES

Example:

INJUFFER DB 512 OUP (20H)
END_BUFFER:
START:

MOV AX, seg IN_BUFFER ,. set pointer to string
MOV ES,AX
LEA 01, offset INJUFFER ,
MOV AX, F14_TRMJUFFER ,. (AX =6F04H)
MOV CX, ENOJUFFER-INJUFFER ,. length of character

,. string
MOV OX, 0 ,. Port 0 specification
INT INT_SERIAL ,. Call serial driver

,. (lNT 14H)
TEST AH, 10000000B ,. test for errors
JNZ short ERRORJUT_STRING
CMP AL, BL ,. lower bound?
JL NOTJETWEEN
CMP AL, BH ,. upper bound?,. JG NOTJETWEEN

NOTJETWEEN:

Serial and Parrallel I/O 231



7.4 Parallel Port Driver (lNT 17H)

The parallel port driver provides several functions that support data transfer on the parallel ports
and return status. These functions implement the features of the industry standard INT 17H
driver and the EX-BIOS extended functions. The EX-BIOS functions implement features not found ~
in the industry standard functions, such as block (multi-byte) data transfer.

The following is a list of descriptions for each of the INT 17H functions. A summary of these
functions is shown in table 7.7.

Table 7.7

Parallel Port Driver Function Code Summary

INT Function Function
Hex Equate Value Definition

17H INT_PRINTER Printer
F17_PUT_CHAR OOH Send printer one byte
F17_INIT 01H Initialize printer port ~
F17_STATUS 02H Get printer port status
F17_INQUIRE 6FOOH EX-BIOS present
F17_PUT_BUFFER 6F02H Write a buffer to printer port

Parallel Port Driver Function Definitions

The following functions range check (between a and 3, inclusive) the requested port address
specified in the DX register. If legal, the function looks up the I/O address contained in the
STD-BIOS data area. If the port table entry is non-zero the port is assumed to exist. If the port
table entry is zero the function returns without altering any registers.

This function prints a character on the parallel port. Valid data is set up on the printer interface ~
for at least 900 nanoseconds. If the BUSY signal indicates that the device is busy, it executes an
INT 15H function F15_DEV_BUSY. When it returns from F15_DEV_BUSY, the function waits
until the BUSY signal indicates the device is not busy. The function generates a 500 nanosecond
data strobe and holds the data valid for at least 900 nanoseconds. The function returns with the
port status in the AH register.

232 Serial and Parrallel I/O



,.'
On Entry: AH = F17_PUT_CHAR (DOH)

AL = Data byte to be transmitted
DX = Port number (0, 1, 2, 3)

On Exit: AH = Printer port status (see table 7.8)

Registers Altered: AH

Table 7.8 defines the parallel printer port status byte.

Table 7.8

Printer Status

Bit Data Definition

7 0 Printer Busy
1 Printer Not Busy

6 0 Not ready for Data
1 Data Acknowledged

5 1 Out of Paper
4 0 Printer Offline

1 Printer On Line (Selected)
3 1 I/O Error
2 x Not Used
1 x Not Used
0 1 Printer Error or Timed out

Example:

MOV AH, F17_PUr_CHAR
MOV AL, 'W'
INT INT_PRINTER
TEST AH, 00000001 B
JNZ short ERROR_,PRINT

F17_INIT (AH = 01H)

,. (AH = OOH)
; character to print
,. Call printer driver (lNT 17H)
; test for error?

This function initializes a parallel printer port. It enables the PRINTER-SELECT signal and activates
the PRINTER-INITIALIZE signal. The PRINTER-INITIALIZE signal is held active for at least 50
microseconds. The function returns with the printer port status in the AH register.

Serial and Parrallell/O 233



On Entry: AH = F17_INIT (01 H)
DX = Port number (0, 1, 2, 3)

On Exit: AH = Printer port status (see table 7.8)

Registers Altered: AH

Example:

MOV AH, F17_INIT
INT INT_PRINTER
TEST AH, 0000001 a

F17_STATUS (AH = 02H)

,. (AH = 01H)
" Call printer driver (lNT 17H)
,. Test for error

This function returns the status of the specified parallel printer port.

On Entry: AH = F17_STATUS (02H)
DX = Port number (0, 1, 2, 3)

On Exit: AH = Printer port status (see table 7.8)

Registers Altered: AH

F17_INQUIRE (AX = 6FOOH)

This subfunction determines whether arnot the extended EX-BIOS functions are available. If the
EX-BIOS functions are available, the BX register will be set to 4850H (which are the ASCII
characters 'HP').

On Entry: AX = F17_INQUIRE (6FOOH)
BX = Any value except 4850H ('HP')

On Exit: BX = 'HP'

Registers Altered: AX, BX

Example:

MOV AX, F17_INQUIRE ; (AH = 6FOOH)
XOR aX,ax ,. Clear out ax
INT INT_PRINTER ,. Call printer driver (lNT 17H)
CMP ax, 'HP' ,. Check?
JNE short ERROR~O_EXTENDED_FUNCTIONS

234 Serial and Parrallel I/O



F17__PUT__BUFFER (AX = 6F02H)

This function transmits data from a buffer as long as there is data in the buffer and no error is
encountered. Valid data is set up on the printer interface for at least 900 nanoseconds. If the
BUSY signal indicates that the device is busy, it executes an INT 15H function F15_DEV__BUSY.
When it returns from F15__0EV__BUSY, the function waits until the BUSY signal indicates the
device is not busy. The function generates a 500 nanosecond data strobe and holds the data
valid for at least 900 nanoseconds. The function returns with the port status in the AH register.

On Entry: AX = F17_PUT_BUFFER (6F02H)
CX = Number of characters in the data buffer
DX = Port number (a, 1, 2, 3)

ES:OI = Pointer to a data buffer of characters

On Exit: AH = Printer port status (see table 7.8)

Normal Completion:
CX = Number of bytes transferred successfully

ES:DI = Base of data buffer

Error Completion (bit a of AH register non-zero):
CX = Number of bytes transferred successfully

ES:OI = pointer to next byte to be transferred

Reg isters Altered: AH, CX, 01, ES

Example:

STRING DB 'Hello'
END---:-STRING:
START:

MOV AX, seg STRING ; set pointer to string
MOV ES,AX
MOV 01, offset STRING ,
MOV AX, F17_PUT_BUFFER ; (AX = 6F02H)
MOV CX, END_STRING-STRING ; length of character

; string
MOV O)(~ 0 ; Port 0 specification,.. INT INT_PRINTER ; Call printer driver (lNT 17H)
TEST AH, 00000001 B ; Ltst for errors
JNZ short ERRORJUT__STRING

Serial and Parrallel I/O 235



7.5 Print Screen Driver (lNT OSH)

The print screen driver prints the contents of the screen. Each time an INT OSH instruction is
executed, the contents of the screen will be printed on the system printer (Port 0). If a print
screen operation is already in progress the driver returns without printing the contents of the ~
screen. The print screen driver does not execute functions in the same manner as the other
drivers. It performs a single task, so there are no functions.

The print screen driver is called by the keyboard driver (INT 9H) when the scancode (06AH) for
the < Prt Sc> key is detected. In addition, application programs may execute an INT OSH
instruction any time a copy of the contents of the screen is desired.

The print screen driver can only print the contents of a screen if the display adapter is in one of
its alphanumeric modes.

236 Serial and Parrallell/O



SECTION 8

TABLE OF CONTENTS

8. DiSC 239

8.1 Overview 239

8.1.1. Physical Drive Numbers 239

8.1.2. Flexible Disc Drive Support 240

8.1.3. Hard Disc Drive Support 240

8.1.4. External Disc Drives 240

8.1.5. INT 13H Disc Chain 241
8.1.5.1 INT 13H Disc Chain Linkage 241
8.1.5.2 Disc Access 243

8.2. Data Structures 244

8.2.1. Diskette Operation Table 244

8.2.2 Diskette Parameter Table 245

8.2.3 Diskette Status Table 245

8.2.4. Hard Disc Parameter Table 246

8.3. ~isc.Driver (INT 1~~.) , 247
DIsc Driver Function Definitions 248

F13_RESET_DISC (AH = OOH) 248
F13_RD_LSTATUS (AH = 01 H) 249
F13_RD_SECTORS (AH = 02H) 249
F13_WLSECTORS (AH = 03H) 251
F13_VLSECTORS (AH = 04H) 252
F13_FORMAT_FLEX (AH = OSH) 253
F13_FORMAT_HDISC (AH = 07H) 255
F13_GET_HPARMS (AH = 08H) 256
F13-.ALT_RESET (AH = ODH) 257
F13_GET_DASD (AH = 1SH) 257
F13_CHG_STATUS (AH = 16H) 258
F13_SET_DASD (AH = 17H) 258

8.4 Return Status Codes for INT 13H 259

237



238 Disc

,..~



SECTION 8. DISC

This section discusses the ROM BIOS disc drivers. The disc driver (INT 13H) provides a set of
functions that control the disc drives and data transfer between the disc drives and the system.

8.1 Overview

The disc driver supports three disc types; standard capacity flexible discs (360KB), high capacity
flexible discs (1.2 MB), and hard discs. The structure of the disc driver allows additional drives to
be easily integrated into the system.

The disc driver consists of two separate code modules; a module that supports flexible disc
drives, and one that supports hard disc drives. The code module that provides the flexible disc
support is contained in the ROM BIOS that resides on the Processor Extension Card. The code
module for the hard disc drive is resident in a ROM on the hard disc adapter card.

8.1.1 Physical Drive Numbers

Each drive in the system has a physical drive number. Physical drive numbers for flexible discs
start with 0, while physical drive numbers for the hard disc start with 80H. In a typical system
configured with one high capacity flexible disc drive, one standard capacity flexible disc drive,
and one 20MB hard disc drive, the physical drive numbers would be 0, 1, and 80H respectively.
Flexible disc drives have a one-to-one correspondence between physical drives and volumes.
However, hard disc drives may have more than one volume, and consequent~y more than one
physical drive number. The optional 40MB hard disc drive can be configured as two 20MB
volumes. A 40MB hard disc will have two physical drive numbers assigned to it (80H and 81 H).

Physical voluming of disc drives is not the same as operating system partitions, and the two
should not be confused. See the Vectra MS-DOS Programmer's Reference Manual for more
information on disc partitions.

Disc 239



8.1.2 Flexible Disc Drive Support

The disc driver provides support for both standard and high capacity flexible disc drives. The disc
driver supports dual format operation (i.e. reading and writing both types of flexible discs) in the ~

high capacity disc drive(s). The flexible disc drives are supported with six functions that perform
read, write, verify, reset, format, and return status tasks.

8.1.3 Hard Disc Drive Support

The system can be configured with an optional hard disc drive. When an internal hard disc drive
is added to the system, the disc driver is "expanded" to include the functions contained in the
BIOS code on the hard disc adapter card.

The hard disc BIOS is integrated into the system during the system generation process (SYSGEN).
Early in the SYSGEN process the software interrupt vector INT 13H is initialized to point to the
flexible disc driver code module. Later in the SYSGEN process the address space between
OC8000H and ODFFFFH is searched for option ROM modules. This search is explained in greater
detail in Section 10. SYSGEN detects the hard disc option ROM and calls it to initialize. During
this initialization process the hard disc driver links into the INT 13H disc driver chain. This process
is explained in greater detail later in this section.

When an INT 13H is executed the hard disc code is called first. The hard disc code checks the
physical drive number specified. If it is a hard disc drive number (greater than or equal to 80H)
the function is executed by the hard disc driver code module. If the physical drive number
indicates a flexible disc drive (less than 80H), the hard disc code module passes control to the
flexible disc driver code module by executing an INT 40H.

8.1.4 External Disc Drives

External disc drives can easily be added to the system. There are two methods for doing this. The ~
external disc can supply BIOS code in an option ROM and enter the system in a manner similar to
the internal hard disc. As an alternative, the system could use a DOS installable device driver.

240 Disc



Discs using installable device drivers can not be used as boot devices, since they are loaded in
RAM by the operating system. Further, operating systems other than DOS may not recognize the
disc in the system. For more information on installable device drivers consult the Vectra MS-DOS
Programmer's Reference Manual.

Using the option ROM entry mechanism described in the following section, the external hard disc
becomes an integrated part of the system and is treated as if it were an internal drive. The first
physical hard disc drive, 80H, can then be used as the system boot device.

8.1.5 INT 13H Disc Chain

The INT 13H disc driver chain is a linked list of disc driver entry points. This chain accesses the
BIOS based flexible disc driver and the hard disc driver. This linked list is configured during
SYSGEN. The following description specifies how the disc chain is implemented and how it is
created in the system.

~ 8.1.5.1 INT 13H Disc Chain Linkage

The hard disc driver is linked into the INT 13H driver chain during the option ROM initialization.
The process can be extended by other option ROM based disc adapters. The following is a
description of how the HP hard disc ROM BIOS enters the INT 13H device chain during the
option ROM initialization process. The relationship between the flexible and hard disc driver code
modules is illustrated in figure 8.1 .

• SYSGEN first configures INT 13H to point to the entry point of the flexible disc driver code.

• SYSGEN detects the hard disc driver's option ROM module and call the initialization entry
point of the option ROM.

• The hard disc driver code initializes the disc adapter and the disc drive.

• After the disc adapter hardware is initialized the disc drive is ready to install itself in the INT
13H disc driver chain. The hard disc driver calls the INT 13H function F13_GET_HPARMS
(08H) to determine how many other hard discs have entered the system. The lowest hard
disc device number (80H) is used for the call. If the call is successful, then the DL register
contains the current number, 'n', of hard discs already linked in the INT 13H disc chain. If
there are no other hard discs linked into the system, the call will return the status, bad
command error, and the current number of drives 'n' is set to DOH.

Disc 241



FLEXIBLE
DISC ONLY

SYSTEM

Figure 8.1

FLEXIBLE & HARD
DISC SYSTEM

HARD
DISC

DRIVER

FLEXIBLE
DISC

DRIVER

DISKETIE
PARAMETER

TABLE

HARD DISC
PARAMETER
TABLE FOR
DEVICE 80H

HARD DISC
PARAMETER
TABLE FOR
DEVICE 81H

"'~"----------Il INT 41 H 1

Flexible and hard disc code modules

• The hard disc driver calculates and saves its own starting device number. The device number
is SOH + In' where In' is the current number of drives determined in the previous step.

• If this is the first hard disc configured in the system then the flexible disc driver address in INT
13H (O:04CH) must be moved to INT 40H (0: 1OOH). If this is not the first hard disc driver then
the address of the previously added hard disc driver in INT 13H is saved in RAM for future
calls to that previously linked driver.

242 Disc



• The new hard disc driver entry point is loaded into INT 13H. Entry into the chain is complete.

Note

Many industry standard disc controllers (for example the IBM-PC/XT Fixed Disc
Adapter) do not implement the disc drive chain mechanism in exactly the same way.
However, the above definitions operate transparent to the industry standard if the HP
disc adapter card is set to a memory address greater than IBM-PC/XT compatible
adapters.

When the hard disc initialization is complete the system hardware is reconfigured as follows:

• The STD-Slave controller's interrupt is enabled on the master 8259.

• The Hard Disc Interrupt (either the default IRQ 14H or the optional IRQ 15H) is disabled on
the STD-slave 8259.

• The diagnostic bit is set in CMOS indicating whether the C: drive (physical device number
80H) is usable as a boot device.

8.1.5.2 Disc Access

When a driver in the INT 13H chain is called by either DOS or an application, the driver should
compare the requested device number with the starting physical device numbers it supports. The
driver takes one of the following four actions:

• If the requested disc device is supported by this driver then the function is serviced by this
driver.

• If the driver is the first hard disc driver in the chain (physical device number 80H) and the
requested device is less than 80H then the hard disc driver calls, via INT 40H, the flexible disc
driver.

• If the driver is not the first hard disc driver in the chain the driver passes the function on to
the next driver in the chain via a PUSHF, CALL FAR instruction combination which simulates
an INT instruction. The address was previously saved in RAM during configuration of the
chain. The exception to this rule is the F13_GET_HPARMS function which all hard disc
drivers execute.

The function F13_GET_HPARMS (08H) returns the total number of hard disc drives in the DL
register regardless of an intended specific physical device number requested. Each chained INT
13H hard disc driver checks all commands that are passed through for the F13_GET_HPARMS
function. If this function is decoded then the chained driver intercepts the return parameters and
adds the number of devices it is serving to the total being accumulated in the DL register.

Disc 243



• If this is the last hard disc driver in the chain and the requested physical device number is
larger than this disc driver's number then it will return a bad command error.

8.2 Data Structures

There are separate data structures for the hard disc and the flexible disc drivers. The flexible disc
has three data structures. The diskette parameter table holds information necessary for
initializing and supporting the NEe flexible disc controller chip. The diskette status table holds
information about the status of the previous flexible disc operation. The diskette operation table
contains various disc operating parameters such as drive status, flexible disc data transfer rate,
etc. The hard disc has only one data structure. However, each hard disc driver maintains it's own
copy. The hard disc parameter table is similar to the flexible diskette status table. It contains the
physical device characteristics for a particular hard disc attached to the system.

8.2.1 Diskette Operation Table

The diskette operation table is located in the 5TD-8105 data area starting at memory location
0040:008BH (0048BH). It contains parameters used by the disc driver to perform its functions.
Data stored in this table allow the high capacity drives to read or write either standard or high
capacity flexible discs. The contents of the operating parameter table are listed in table 8.1 .

Table 8.1

Diskette Operation Table

Offset

8SH
8FH
90H
92H
94H

244 Disc

Length
in Bytes

1
1
2
2
2

Description

Data transfer rate of previous operation
Bit 0 is set to '1' for combined 360kb/1.2Mb diskette controller.
Current media type table
Work area to generate current media types
Table of current head positions



8.2.2 Diskette Parameter Table

The diskette parameter table contains information that controls the overall operation of the
flexible disc controller. This table is pointed to by INT 1EH (O:78H). A default table is provided in
the ROM BIOS at address OFOOOH:OEFC7H. The parameters used to control the NEC flexible disc
controller can be changed by providing a new diskette parameter table pointer in INT 1EH
(O:78H). This is detailed in table 8.2.

Table 8.2

Diskette Parameter Table

Length
Offset in Bytes

OOH 1

01H 1
02H 1
03H 1
04H 1
OSH 1
06H 1
07H 1
08H 1
09H 1
OAH 1

Description

NEC Specify command byte 1: step-rate time and head unload
time
NEC Specify command byte 2: head load time and DMA mode
Motor wait time
Bytes per sector; 0 =128, 1 =256, 2 =512
Last sector number on track
Read/write gap length between sectors
Data length for read/write operations
Format gap length between sectors
Format filler byte
Head settle time after seek command
Motor start time in '/8 seconds

8.2.3 Diskette Status Table

The status table for the internal flexible disc driver begins at memory location 0040:003EH
(0043EH) in the STD-BIOS Data Area. The contents of this table are listed in table 8.3.

Disc 245



Table 8.3

Diskette Status Table

Offset

3EH
3FH
40H
41H
42H

Length
in Bytes

1
1
1
1
7

Description

Flag byte
Motor status
Motor turn off counter
Status of previous diskette operation
Status bytes returned by the NEe controller from the previous
operation

8.2.4 Hard Disc Parameter Table

The optional hard disc drive has a set of parameters which are quite different from the flexible
disc. Therefore, the contents of the hard disc parameter table are not the same as its flexible disc
counterpart.

Each hard disc volume has its own disc parameter table. Thus, a system with a 20MB hard disc
will have one table, while a system with a 40MB hard disc (configured as two 20MB volumes)
will have two tables. The tables do not have a specific location in memory. Instead, two of the
system interrupt vectors are used as pointers. These vectors must be initialized to point to the
tables by the hard disc BIOS when it is initialized. Interrupt vector 41 H contains the address of
the first hard disc table while interrupt vector 46H stores the address of the second hard disc
table. The contents of the tables are listed in table 8.4.

246 Disc



Table 8.4

Hard Disc Parameter Table

Offset

DOH
02H
03H
OSH
07H
OCH
OEH
OFH

Length
in Bytes

2
1
2
2
5
2
1
1

Description

Total number of cylinders
Total number of Read/Write Heads
Reserved
Starting cylinder for write precompensation
Reserved
Cylinder to use as landing zone
Number of sectors per track
Reserved

8.3 Disc Driver (INT 13H)

The following is a list of descriptions for each of the INT 13H functions. All registers not specified
in the exit parameters are returned unchanged. Following the function description is a list of the
return status codes used by the INT 13H drivers. A summary of these functions is shown in table
8.5.

Disc 247



Table 8.5

Disc Driver Function Code Summary

tNT Function Function
Hex Equate Value Definition

13H INT_DISC Disc Functions
F13_RESET_DISC OOH Reset Disc
F13_RD_LSTATUS 01H Read Status of Last Operation
F13_RD_SECTORS 02H Read Sectors
F13_WLSECTORS 03H Write Sectors

F13_VLSECTORS 04H Verify Sectors
F13_FORMAT_FLEX OSH Format Flexible Disc Track

06H Reserved
F13_FORMAT_HDISC 07H Format Hard Disc
F13_GET_HPARMS 08H Hard Disc Parameters

09H-OBH Reserved
F13_TRACLSEEK OCH Seek to Track
F13-ALT_RESET OOH Alternate Hard Disc Reset

OEH-014H Reserved
F13_GET_DASD 1SH Read Disc Type (DASD)

F13_CHG_STATUS 16H Get Disc Change Line Status
F13_SET_DASD 17H Disc Type for Formatting (DASD)

Disc Driver Function Definitions

All discs in the INT 13H device chain are reset. A reset command is issued to each hard disc
adapter in the system. For the flexible discs the Read/Write heads are recalibrated back to track 0
and the software services are re-initialized. This call should be used after an error occurs while
using the disc. This function does not write on a disc loaded in the flexible disc drive.

On Entry: AH = F13_RESET_DISC (OOH)
DL = physical device number

if DL < 80H then reset flexible discs
if DL ~ 80H then reset all discs

248 Disc



On Exit: AH = return status

Registers Altered: AH

,... F13_RD_LSTATUS (AH = 01 H)

The status of the last disc operation performed is preserved until the next operation occurs. This
function will return the value stored as the status of the last operation.

On Entry: AH = F13_RD_LSTATUS (01 H)
DL = device number

if DL < 80H then return flexible disc status
if DL ~ 80H return hard disc status

On Exit: AH = Status from the last disc operation

Registers Altered: AX

Based on the supplied parameters one or more sectors are transferred from the disc into system
memory. It is the programmer's responsibility to insure that the data area provided is large
enough to contain the requested data. For the hard disc, the maximum data request is 128
sectors (at 512 bytes per sector) or 64KB of data. For the system to transfer the maximum
amount of data the programmer must supply a buffer address that is paragraph aligned (address
mod 16 = 0) otherwise the DMA Boundary error will be returned. For data requests that are less
than the maximum there are no addressing restrictions.

For the flexible disc the maximum sector request is the total number of sectors per track. This
number varies depending on the drive and media type being used (see the table in the parameter
section). Data can only be read from one track at a time. To read data from another track,
another read command must be issued with the appropriate parameters.

At least three retries of a flexible disc driver command should be made before an error is
indicated. Each retry should be preceded by a reset command, i.e., F13_RESET_DISC.

Disc 249



On Entry: AH = F13_RD_SECTORS (02H)
AL = number of sectors to transfer

For hard discs the sector range is 1-128 assuming 512 byte sectors

For flexible discs the following formats are recognized:

Media Sector Range
320KB 1-8
360KB 1-9
1.2MB 1-15

DL = device number (Flexible < 80H Hard disc> = 80H)
DH = head number (0-15 not verified)
CH = track/cylinder number (not verified)

For hard discs the high two bits of CL are the MSB of the cylinder number in
CH, making a 10 bit value. The valid range is therefore 0-1023. For the
flexible discs the valid ranges are:

Media Track Range
320KB 0-39
360KB 0-39
1.2MB 0-79

CL = sector number (not verified)

For the hard disc the valid value range is 1-17.

For the flexible disc the values in the Sector Range column are also the valid
input values for this parameter.

ES:BX = address of data buffer for transfers

On Exit: AH = Return Status Code (See table 8.7)

Registers Altered: AX

250 Disc



Example:

MOV CX,3
UNTILJETRIEO:

PUSH CX
MOV AH,F13_RO__SECTORS
MOV AL,1
MOV OL,O
MOV OH,O
MOV CH,O
MOV CL,4
PUSH CS
POP ES
MOV BX,200H
INT 13H
POP CX
JNC NO_ERROR
MOV AH,F13_RESET-.DISC
INT 13H
LOOP UNTIL_RETRIED

F13_WIL.SECTORS (AH = 03H)

; retry count

; save retry count
; read a sector
; transfer 1 sector
; Driver A:
; head 0
; track 0
; sector 4
; use current code segment
; as the segment of the data
; buffer offset 200H
; call disc drivers
; restore retry count
; exit, all OK!
; reset all drives
,. call disc drivers
; loop till no count,no error
; report error is real to
; application/user

This function parallels the read function. Data is written from memory to the disc. See the
description of the F13_RD_SECTORS function above.

Disc 251



On Entry: AH = F13_WLSECTORS (03H)
AL = number of sectors to transfer

For hard discs the sector range is 1-128 assuming 512 byte sectors

For flexible discs the following formats are recognized:

Media Sector Range
320KB 1-8
360KB 1-9
1.2MB 1-15

DL = device number (Flexible < 80H, Hard disc> = 80H)
DH = head number (0-15 not verified)
CH = track/cylinder number (not verified)

For Hard discs the high two bits of CL are the MSB of the cylinder number in
CH, making a 10 bit value. The valid range is therefore 0-1023.
For the flexible discs the valid ranges are:

Media Track Range
320KB 0-39
360KB 0-39
1.2MB 0-79

CL = sector number (not verified)

For the hard disc the valid value range is 1-17.

For the flexible disc the values in the Sector Range column are also the valid input
values for this parameter.

ES:BX = address of data buffer for transfers

On Exit: AH = Return Status Code (See table 8.7)

Registers Altered: AX

F13_VLSECTORS (AH = 04H)

This function performs a read function without transferring any data. This function ensures that
the track and sector can be located on the disc, that the error correction circuitry (CRC) is
working correctly and that the data can be read. Again, the discussion for F13_RD_SECTORS
applies to this function.

252 Disc



On Entry: AH = F13_VLSECTORS (04H)
AL = number of sectors to transfer

For hard discs the sector range is 1-128 assuming 512 byte sectors

For flexible discs the following formats are recognized:

Media Sector Range
320KB 1-8
360KB 1-9
1.2MB 1-15

DL = device number (Flexible < 80H, Hard disc> = 80H)
DH = head number ( 0-1 5 not verified)
CH = track/cylinder number (not verified)

For Hard discs the high two bits of CL are the MSB of the cylinder number in
CH, making a 10 bit value. The valid range is therefore 0-1023.
For the flexible discs the valid ranges are:

Media Track Range
320KB 0-39
360KB 0-39
1.2MB 0-79

CL = sector number (not verified)

For the hard disc the valid value range is 1-17.

For the flexible disc the values in the Sector Range column are also the valid input
values for this parameter.

On Exit: AH = Return Status Code (See table 8.7)

Registers Altered: AX.

F13_FORMAT_FLEX (AH = OSH)

,... This function writes a pattern of the sectors on a track of the flexible disc. One entire track is
formatted at a time, but the programmer can control the characteristics of each sector and the
number of sectors in each track. To control the sector variables the programmer supplies a table
that has one entry for each sector in the track being formatted. The entries are the sector
headers that the drive hardware uses. Also embedded in each entry is a code indicating the
desired sector size. (512 bytes is standard).

Disc 253



F13_SET_DASD (AH = 017H), which sets the DASD type, must be called prior to calling the
F13_FORMAT_FLEX function. The Set DASD type function will ensure that the internal tables
are correctly setup for the media/drive combination desired.

The programmer is also responsible for setting two values in the diskette parameter table. In
formatting either 320KB or 360KB media the programmer must set the format gap length to
SOH. The End of Track (EOn value must be set to eight (8) for 320KB media or nine (9) for
360KB media. When the format is complete the programmer should restore the two locations to
their original values. The diskette parameter table is described in table 8.2.

On Entry: AH = F13_FORMAT_FLEX (OSH)
AL = number of sectors to create

For flexible discs the following formats are standard:

Media Total Sectors
320KB 8
360KB 9
1.2MB 15

DL = device number (0-1)
DH = head number (0-1 not verified)
CH = track number (not verified)

For the flexible discs the valid ranges are:

Media Track Range
320KB 0-39
360KB 0-39
1.2MB 0-79

CL = sector number (not verified)

For the flexible disc the values in the Sector Range column are also the valid
input values for this parameter.

Media Sector Range
320KB 1-8
360KB 1-9
1.2MB 1-15

254 Disc



ES:BX = Data buffer containing the values for the sector headers for the track being
formatted. Each record is four bytes in length and there must be one record
entry for each sector in the track being formatted. The records contain:

(Track, Head,Sector, Length)

Track = Current track number
Head = Current head number
Sector = Sector number
Length = Coded sector length

00 = 128
01 == 256
02 == 512
03 == 1024

On Exit: AH = Return Status Code (See table 8.7)

Registers Altered: AH

F13_FORMAT_HDISC (AH == 07)

,.... This function formats the entire hard disc. Once started, this operation cannot be stopped, it
must run to completion. This function accepts a table as a parameter that indicates the interleave
factor to use for each track of the disc.

On Entry: AH = F13_FORMAT._HDISC (07H)
DL = device number (> = 80H)

ES:BX = Interleave description table

The table is 2*(sectors/track) bytes long. Each table entry is two bytes in
length. The entries specify the ordering of the sectors for each track on the
disc. The first byte of each entry is reserved and should be set to zero. As an
example, a table for seventeen sectors per track with an interleave of two is
shown in table 8.6.

Disc 255



Table 8.6

Physical to Logical Sector Conversion

Physical Sector Logical Sector

1 OOH,01H
2 OOH,OAH
3 OOH,02H
4 OOH,OBH
5 OOH,03H
6 OOH,OCH
7 OOH,04H
8 OOH,ODH
9 OOH,OSH

10 OOH,OEH
11 OOH,06H
12 OOH,OFH
13 OOH,07H
14 OOH,10H
15 OOH,08H
16 OOH,11H
17 OOH,09H

On Exit: AH = Return Status Code (See table 8.7)

Registers Altered: AH

This function gets a description of the physical characteristics of one of the hard discs. It also
returns the total number of hard discs available through the INT 13H interface.

On Entry: AH = F13_GET_HPARMS (08H)
DL = device number (> = 80H)

256 Disc



On Exit: AH = Return Status
DL = # of drives in system
DH = Maximum head address (Total heads - 1)
CH = Maximum cylinder address (Total cyls - 1)
CL = Maximum sector address (Total sectors/track)

high two bits of CL are the MSB of the cylinder number in CH, making a 10 bit
value

Registers Altered: AH, CX, DX

F13~LT_RESET (AH = ODH)

This command issues a reset command to the hard disc controller. It is essentially the same as
function OH, F13_RESET_DISC, except that a reset is not issued to the flexible disc units.

On Entry: AH = F13--ALT_RESET (ODH)
DL = device number (> = 80H)

On Exit: AH = Return Status

Registers Altered: AH

This function returns the Direct Access Standard Device (DASD) type code for the attached
device. It also returns the total number of sectors for the entire drive if it is a hard disc.

On Entry: AH =~ F13_GET_DASD (15H)
DL = device number

On Exit: AH = DASD type (if Carry Flag not set)
o= No drive present
1 = Flexible disc, no disc change line available
2 = Flexible disc, disc change line is available
3 = Hard disc

When AH = 3 the following registers are valid:

CX = Most significant word for total number of sectors on medium
DX = Least significant word for total number of sectors on medium

Registers Altered: AH, CX, DX

Disc 257



If the flexible disc drive supports a disc change line then this function reports the status of the
disc change line. If the routine indicates that the disc has been changed then the programmer
must take the appropriate actions to update the system to use the new media placed in the
drive. The 1.2MB drive supports a disc change line.

On Entry: AH = F13_CHG_STATUS(16H)
DL = device number (0-1)

On Exit: AH = 00 = disc change line not active
06 = disc change line active, Carry Flag will be set

Registers Altered: AH

This function must be called before the format function (AH = OSH) can be used to format a
flexible disc. Based on the DASD type passed in as a parameter, registers in the flexible disc
controller are initialized for the programmer.

On Entry: AH = F13_SET_DASD (17H)
AL = DASD~pecode

00 = not used
01 = 320KB/360KB media in 320KB/360KB drive
02 = 320KB/360KB media in 1.2MB drive
03 = 1.2 MB media in 1.2MB drive

DL = device number (0-1)

On Exit: AH = Return Status

Registers Altered: AH

8.4 Return Status Codes for INT 13H

There are two status signals returned to an INT 13H programmer. The first is the Carry Flag in the
Processor Status Word. If any kind of error occurs this flag is set ("1"). If the function was
successful then the Carry flag is cleared ("0").

258 Disc



The second status returned to the programmer is in the AH register. The register will be loaded
with one of the return codes shown in table 8.7.

Table 8.7

510-8105 Disc Return Status Codes

Hex Value Indication

OOOH Successful execution, no error
001H Unknown or bad command, bad device number
002H Address mark could not be found
003H Attempted to write on write protected disc
004H Requested sector could not be found

OOSH Reset function failed
007H Initialization failed
008H DMA overrun, Requested transfer would run over a physical 64KB

boundary in RAM (flexible disc)
009H DMA overrun, Requested transfer would run over a physical 64KB

boundary in RAM (hard disc)
010H Bad CRC encountered on flexible disc read

020H Controller has failed
040H Attempted Seek failed
080H Time out occurred during disc operation
OAAH Disc Drive reports "Not Ready"
OBBH Undefined error occurred

Disc 259



260 Disc



SECTION 9

TABLE OF CONTENTS

9. SYSTEM DRiVERS 263

9.1 Overview 263

9.1.1 Memory Size And Equipment Determination 263

9.1.2 Extended System Support 264

9.1.3 EX-BIOS Driver Support 264
9.1.3.1 RAM Allocation 264
9.1.3.2 HP_VECTOLTABLE Manipulation 267
9.3.3.3 System String Control 268

9.1.4 CMOS Memory Control 269

9.1.5 System Clock Functions 269

9.2 Data Structures 271

9:'3 Equipment Determination Driver (INT 11H) 272

9.4 Memory Size Determination Driver (INT 12H) 272

9.5 System Support Driver (INT 15H) 273
System Support Driver Function Definitions 273

F15_DEVICE_OPEN (AH = 80H) 273
F15_DEVICE_CLOSE (AH = 81 H) 274
F15_PROG_TERM (AH = 82H) 274
F15_WAIT_EVENT (AH = 83H) 274
F15--10YSTICK (AH = 84H) 275
F15_SYS_REQ (AH = 85H) 276
F15_WAIT (AH = 86H) 277
F15_BLOCLMOVE (AH = 87H) 278
F15_GET-><MEM_SIZE (AH = 88H) 280
F15_ENTE~PROT (AH = 89H) 280
F15_DEV_BUSY (AH = 90H) 284
F15_INT_COMPLETE (AH = 91 H) 284

9.6 Time And Date Driver (INT 1AH) 285
Time and Date Driver Function Definitions 285

F1~RD_CLLCNT (AH = OOH) 285
F1~SET_CLLCNT (AH = 01H) 286
F1~GET_RTC (AH = 02H) 286

261



F1A-SET_RTC (AH = 03H) 286
F1A-GET_DATE (AH = 04H) 287
F1A-SET_DATE (AH = OSH) 287
F1A-SET---ALARM (AH = 06H) 287
F1A-RESET---ALARM (AH = 07H) 288

9.7 V_SCOPY Driver (BP OOOOH) 288

9.8 V_DOLITTLE Driver (BP = 0006H) 288

9.9 V_PNULL Driver (BP = OOOCH) 288

9.10 V_SYSTEM Driver (BP = 0012H) 288
V_SYSTEM Driver Function Definitions 289

F_ISR (AH = OOH) . . . . . . . . . 289
SF_INIT (AX = 0200H) 289
F_INS_BASEHPVT (AH = 04H) 289
F_'NS---><CHGF'X (AH = 06H) 291
F_INS---><CHGRSVD (AH = 08H) 292
F_INS---><CHGFREE (AH = OAH) 293
F_INS_FIXOWNDS (AH = OCH) 293
F_INS_FIXGETDS (AH = OEH) 294
F_'NS_FIXGLBDS (AH = 10H) 294
F_INS_FREEOWNDS (AH = 12H) 295
F_INS_FREEGETDS (AH = 14H) 295
F_INS_FREEGLBDS (AH = 16H) 297
F_INS_FIND (AH = 18H) 297
F_RAM_GET (AH = 1EH) 299
F_RAM_RET (AH = 20H) 299
F_CMOS_GET (AH = 22H) 300
F_CMOS_RET (AH = 24H) 301
F_ YIELD (AH = 2AH) 302
F_SND_CLICLENABLE (AH = 30H) 302
F_SND_CLICLDISABLE (AH = 32H) 302
F_SND_CLICK (AH = 34H) 303
F_SND_BEEP_ENABLE (AH = 36H) 303
F_SND_BEEP_DISABLE (AH = 38H) 303
F_SND_BEEP (AH = 3AH) 304
F_SND_SET_BEEP (AH = 3CH) 304
F_SND_TONE (AH = 3EH) 304
F_STLGET_FREE_INDEX (AH = 40H) 305
F_STLDELBUCKET (AH = 42H) 305
F_STLPUT_BUCKET (AH = 44H) . . . . . . . . . 306
F_STLGET_STRING (AH = 46H) 307
F_STLGET_INDEX (AH = 48H) 308

262 System Drivers



9. SYSTEM DRIVERS

This section contains a description of the drivers which control the system functions. The drivers
discussed in previous sections deal with system peripherals such as the disc drives, keyboard,
video display adapter, etc. The drivers covered in this section control the system itself.

9.1 Overview

The system drivers are designed to provide program access to system operating parameters, and
to support ROM BIOS drivers. These drivers allow programs to determine the system equipment
configuration and amount of memory, provide "hooks" for future multi-tasking capability,
control vectors in the HP_VECTOLTABLE, allocate RAM in the EX-BIOS data area, control
system strings, manage CMOS memory, and perform system clock functions. An overview of the
capabilities of the drivers in each of these categories follows.

9.1.1 Memory Size And Equipment Determination

The ROM BIOS supports two industry standard drivers that report the current system equipment
configuration and memory size. These tasks are supported by the INT 11 Hand INT 12H drivers,
respectively.

The equipment determination driver (INT 11 H) returns a word that describes the current system
configuration. The definition of each bit or group of bits in the word is discussed later in this
section. The number of printer ports, serial ports, presence of an 80287 math coprocessor, initial
video display mode and number of flexible disc drives are reported by this driver. The default
system configuration is read from a CMOS memory location during power-on. If this information
does not match the current configuration, a power on error message is issued and the current
configuration is saved for the INT 11 H driver.

System Drivers 263



The memory size driver (INT 12H) returns a word that indicates the number of 1 KB blocks of
system RAM present. The amount of memory reported does not include any extended memory,
and is adjusted to exclude the amount of RAM occupied by the EX-BIOS data area. For example,
in a system equipped with 640 KB of system RAM using a 4 KB EX-BIOS data area, the amount
of memory reported by this driver will be 636 KB. The default amount of memory is read from a
word of CMOS memory.

9.1.2 Extended System Support

The extended system support driver (INT 15H) provides support for several advanced system
features. It provides "hooks" that allow programs to be written to support multi-tasking at a
future date. In addition, it allows data to be transferred to and from extended memory, and
allows placing the 80286 into its protected mode of operation.

9.1.3 EX-BIOS Driver Support

The V_SYSTEM driver is an EX-BIOS driver that provides support tasks for the EX-BIOS drivers. It
contains functions that allocate RAM in the EX-BIOS data area and manipulate
HP_VECTOLTABLE entries.

9.1.3.1 RAM Allocation

The EX-BIOS data area contains three major data structures; the HP_VECTOLTABLE, the
global data area, and the driver's data area. Within each driver's data area is the driver header,
describe record (if applicable), and variable storage area. Each entry in the HP_VECTOLTABLE
is three words long and consists of: Driver's IP, CS, and DS in that order. The HP_ENTRY_CODE
(INT 6FH) loads the appropriate driver's data segment DS and jumps to the address CS:IP.

The global data area is used by system drivers that need to share data. Data structures like the
EX-BIOS stack and memory management pointers are maintained here.

264 System Drivers



The driver data area for each driver is dynamically allocated by the V_SYSTEM driver. Each
driver's data area is at its data segment (DS) and is generally composed of a standard header
followed by any data particular to the driver. If the driver wishes a data area from the EX-BIOS
memory it must follow the allocation process described below.

Space is allocated starting from the base of the global data area toward the top of the
HP_VECTOR-TABLE as shown in figure 9.1. When a driver is initialized, the base address of the
last driver data area ("last used DS") is passed to the driver. The driver decrements this value by
the number of paragraphs (16 bytes) it needs for its data area, then returns this value as the new
"last used DS".

Driver Data Area Allocation

HP_VECTOR_TABLE
HP_ENTRY's CS:O

HP_ENTRY_CODE
HP_ENTRY's CS:IP

"Max DS"

"Last used DS"

TOP of RAM

HP_VECTOR_TABLE

HP_ENTRY_CODE

EX-BIOS
Memory

Pool
~

EX-BIOS Resident
Driver's Data

Segments

EX-BIOS Global
Data Segment

EX-BIOS
Memory
Pool

Figure 9.1

If a driver needs a particularly large data area, there might not be enough room. The driver must
determine the amount of RAM it requires, then see if that amount is available by comparing its
requirements against the amount of RAM available ("last used DS"-"Max DS").

If there is an insufficient amount of RAM available, the driver may increase the amount of RAM
allocated to the EX-BIOS data area in the following manner. The memory size stored in CMOS
RAM is the amount of physical RAM less the amount occupied by the EX-BIOS Data Area. When
the system is booted, the boot code determines the amount of physical memory, then subtracts
the "top of memory" stored in CMOS RAM to determine how much space to allocate for the
EX-BIOS Data Area. Adjusting the memory size in CMOS RAM downward, then rebooting will
increase the size of the EX-BIOS Data Area and hence the amount of RAM available to the driver.
This technique may be used to create an EX-BIOS data area up to 64 KBytes in size. A program
listing demonstrating this process follows. (Functions F_RAM_GET, F_RAM_RET,
F_CMOS_GET and F_CMOS_RET are described in detail later in this section).

System Drivers 265



Example

MOV

MOV
INT

DEC
DEC
DEC

CMP
JA

BP, V_SYSTEM

AH, F_RAM_GET
HP_ENTRY

BX
BX
BX

BX,OX
OK

,. How much memory available in
: EX-BIOS data area?
,. F_RAM_GET returns:

BX = "Iast used OS"
OX = "Max OS"

,. AI/ocate 3 paragraphs (48 bytes)
,. application requires 44 bytes but
,. must allocate in full paragraphs

" New "Iast used OS"- "Max OS"

,
NOT_ENOUGH_RAM:

MOV BL, 15H

MOV AH, F_CMOS_GET
MOV BP, V_SYSTEM
INT HP_ENTRY

" CMOS bytes 16H, 15H contain
,. "top of memory"
,. value (in 1 KB units)

" Get least significant byte

DEC

PUSHF
MOV
MOV
MOV
INT

AL

BL, 15H
AH, F_CMOS_RET
BP, V_SYSTEM
HP_ENTRY

,. Free up 1KB memory for
,. EX-BIOS data area

,. Store new "top of memory" in CMOS

POPF
JNC RESET_PROCESSOR

MOV
MOV
MOV
INT
DEC
MOV
MOV
MOV
INT

266 System Drivers

BL, 16H
AH, F_CMOS_GET
BP, V_SYSTEM
HP_ENTRY
AL
BL, 16H
AH, F_CMOS_RET
BP, V_SYSTEM
HP_ENTRY

" If necessary, decrement most
" significant byte



RESETJROCESSOR:

CALL FAR PTR OFFFFH:OH

,. Reboot system.
; This time with 1KB morE:
; memory allocated to the
,. EX-BIOS data area

I

OK:
MOV

MOV
INT

BP, V_SYSTEM

AH, F_RAM__RET
HP_ENTRY

,. Set new "Iast used OS"
,. and "Max OS"
; Memory is allocated

9.1.3.2 HP_VECTOLTABLE Manipulation

All drivers in the EX-BIOS code module are accessed through the HP_VECTOLTABLE.
The V_SYSTEM driver provides a set of functions which allows the entries in the
HP_VECTOLTABLE to be set and/or modified. There are nine functions, which represent the
permutations of three parameters.

The first parameter determines whether a vector is to be inserted or exchanged with values
passed in the 80286 registers. Vectors are typically inserted into the HP_VECTOLTABLE during
the boot process, whereas vector exchanges are used to implement driver mapping. For example,
the V_QWERTY keyboard translator driver is installed in the HP_VECTOLTABLE during the
boot process. If keyboard scancodes from the QWERTY keypad were to be mapped to a Dvorak
translator, the IP, CS, and DS of the Dvorak translator driver would be exchanged with the
existing vector (so the vector could be restored to its original value at a later time).

The second parameter is the vector type. The HP_VECTOLTABLE has three types of vectors;
fixed, reserved, and free;_ 'Fixed vectors are those assigned to the default EX-BIOS drivers. The first
51 vectors in the HP_VECTOLTABLE are fixed. Reserved vectors are set aside for future
expansion. There are 24 reserved vectors, which are located at vector addresses 138H through
1C8H inclusive. Free vectors are provided to allow user-supplied drivers to be added to the
system.

The final parameter involves the Data Segment (DS) of the driver. Drivers may allocate their data
areas from the EX-BIOS data area as explained above, they may provide their own, or use the
global data area of the EX-BIOS. The EX-BIOS drivers all use the DS allocation functions, while an
external driver (for example, one installed as an MS-DOS device driver) may supply their own data
area external to the EX-BIOS data area. Drivers supplying their own DS must pass it as a
parameter to V_SYSTEM when the driver has completed initialization.

System Drivers 267



9.1.3.3 System String Control

The EX-BIOS provides a centralized and flexible mechanism for accessing and using strings. Each
string in the system has a unique index number associated with it. Drivers and application
programs can request access to a string via these indices. In addition, functions are available to ~

return the index of a given string, return the next available index, and to add and delete strings
from the system.

A string index may be any word value (O-OFFFFH). Certain ranges of indices have predefined
meanings or uses. These predefined ranges are listed below.

0-2K
2-4K
4-32K

32-64K

Any index in this range is reserved for string names of EX-BIOS drivers.
This range is reserved for strings stored in the ROM-BIOS.
This range should be used by application programs to add strings to the
system.
These indices are reserved for localized strings. Indices within this range are
partitioned in the same way as in the lower 32K (i.e., 32-34K for string
names of EX-BIOS drivers, etc.).

This index structure provides a powerful tool for localizing application programs. If an application
program references messages as string indices, the program can easily be localized by loading a
localized set of strings (using a device driver for example), and setting bit 15 of all string indices
used.

System strings are grouped into buckets. A bucket is a collection of strings which are grouped
together. There is no fixed limit on the number of strings which may be stored in a bucket.
However, strings are added and deleted in buckets, not individually. Therefore, strings that are
likely to be added or deleted together should be stored in the same bucket.

Each bucket consists of three separate data structures; the bucket header, bucket pointers, and
the bucket itself. These components are illustrated in figure 9.2. The function of each is
described below:

Bucket Header-The bucket header is the top level data structure. All bucket headers are
linked together in a chain. The first two fields in the header contain the offset and segment
of the next bucket header in the chain. If these fields both contain OFFFFH, then this bucket
header is the last in the chain. The highest and lowest string indices contained in the bucket
are stored in the next two fields. The following two fields contain the offset and segment of
the bucket pointer. Finally, the last field contains the segment of the strings themselves.

268 System Drivers



Bucket Pointer-The bucket pointer consists of a series of offsets to the strings in the
bucket. There must be one offset for every index in the range specified in the bucket
header. The actual address of the string is determined by the segment (which is stored in
the bucket header) and the offset stored in the bucket pointer. Note that all strings in a
bucket must be in the same segment.

Bucket-The bucket contains the actual strings. Each string consists of a byte containing the
number of characters in the string, the string itself, and a null byte (OOH) which serves as a
string terminator.

String control is accomplished through the appropriate functions in the V_SYSTEM driver. These
functions provide complete control over system strings.

9.1.4 CMOS Memory Control

The system contains a CMOS Memory/Clock chip that serves as a real-time clock and provides 64
bytes of non-volatile memory storage. The CMOS RAM is used to store system parameters. The
contents of the CMOS RAM are listed in Appendix C.

The CMOS Memory/Clock is accessed through two I/O ports. One port selects the clock register
or memory byte to access, and the other is a bidirectional data port. There are a total of 64
addresses in the CMOS Memory/Clock chip; the first 14 are the clock registers, while the
remaining 50 are the CMOS RAM.

The V_SYSTEM driver contains two functions which support reading and writing data to the
CMOS Memory/Clock. These functions provide a simple access to the contents of the chip.

9.1.5 System Clock Functions

The system employs two separate clock systems to keep track of the time and date. The first is
the CMOS Memory/Clock. The CMOS clock has a battery back-up which allows it to keep track
of the current time when the system is turned off.

System Drivers 269



System String Data Structures

SEG: OFFSET

BUCKET
HEADER #1

BUCKET
POINTER

.....
l1li"""

STR_NXT_HDR (OFFSET)

}-
PTR1 -

ORO
STR_NXT_HDR (SEGMENT) PTR 2

ORO STR_UPPER_BOUND

ORO STR_LOWER_BOUND

STR_L1ST_PTR (OFFSET) lORO JSTR_L1ST_PTR (SEGMENT)

ORO STR_SEGMENT -

BUCKET
HEADER #2

.......

~, ~,

STR_SEGMENT :PTR1 BUCKET

BYTE LENGTH 08H

BYTE CHAR #1 'H'

BYTE CHAR #2 'p'

W

W

W

DOUBLE W

DOUBLE W

BYTE CHAR #3 'V'

BYTE CHAR #4 'E'

BYTE CHAR #5 'c'

BYTE CHAR #6 'T'

BYTE CHAR #7 'R'

BYTE CHAR #8 'A'

BYTE STRING TERMINATOR OOH

Figure 9.2

270 System Drivers



The second clock is a software clock. It uses Channel 1 of the 8254 counter/timer chip (refer to
the Vectra Technical Reference Manual, Volume I for additional details). Channel 1 of the 8254
generates a hardware interrupt (IRQ 0) approximately 18.2 times per second. The ROM BIOS
keeps time by incrementing a software clock each time the interrupt occurs. The software clock
is used by the operating system for such tasks as time and date stamping of files.

The two clocks operate independently except at boot time. During the boot process the current
time and date maintained by the CMOS clock is read and used to initialize the software clock.
Changing the value of CMOS clock will not affect the software clock until the system is
rebooted.

The STD-BIOS clock driver (INT 1AH) provides a convenient way to read or set the time and date
from either of the system clocks. These functions are detailed later in this chapter.

In addition to keeping time, both clocks issue interrupts that call user or application program
routines. The software clock interrupt service routine performs an INT 1CH each clock tick. If this
vector is modified to point to a user routine, the routine will be called on each clock tick.

The CMOS clock has an "alarm clock" feature. It can be programmed to issue an interrupt at a
specified time. The real-time clock hardware issues an INT 4AH each time the alarm timer is
done. The interrupt 4AH vector can be modified to point to a user-supplied routine.

9.2 Data Structures

The system drivers use several data structures. The data structures for the STD-BIOS system
drivers are contained in the STD-BIOS data area, while those used by the EX-BIOS drivers are in
the EX-BIOS data area.

The STD-BIOS system drivers use four data structures. The memory size and equipment
determination drivers each use a word, the ROM software clock uses five bytes. These data
structures are located at 040: 13H, 040: 1OH, and 040:6CH respectively. The extended system
support driver uses 9 bytes starting at location 040:98H. The EX-BIOS system drivers use the
global data area. These data structures are described in detail in Appendix B.

System Drivers 271



9.3 Equipment Determination Driver (lNT 11H)

Returns information about the equipment attached to the system.

On Entry: No Inputs.

On Exit: AX = Word with all equipment information:

Bit
15, 14
13, 12
11, 10, 9
8
7, 6

5,4

3, 2
1
o

Registers Altered: AX.

Value Definition
Number of printers attached.
Not used.
Number of datacomm cards attached.
Not used.
Number of diskettes attached:

00 1 drive,
01 2 drives, only if Bit 0 is also a 1

Initial video mode selected:
00 Other.
01 40x25 color adapter.
10 80x25 color adapter.
11 80x25 monochrome adapter.

Not used.
Math co-processor attached.

01 Diskette drives attached.

9.4 Memory Size Determination Driver (lNT 12H)

Returns the amount of RAM found in the system during the power-on and initialization routines.

On Entry: No Inputs.

On Exit: AX = Number of 1KB memory blocks found.

Registers Altered: AX

272 System Drivers



9.5 System Support Driver (lNT 15H)

The extended system support driver (INT 15H) provides functions which allow data to be
transferred to and from extended memory and allow placing the 80286 into its protected mode
of operation. These functions are listed in table 9.1.

Table 9.1

System Support Driver Function Code Summary

INT Function Function
Hex Equate Value Definition

15H INT_SYSTEM System Functions Interrupt
0-3 Unsupported

F15_DEVICE_OPEN BOH Device Open
F15_DEVICE_CLOSE 81H Device Close
F15_PROG_TERM 82H Program Termination,.. F15_WAIT_EVENT 83H Event Wait
F15--.JOYSTICK 84H Joystick Support
F15_SYS_REQ 8SH System Request Key Pressed
F15_WAIT 86H Wait Fixed Amount of Time
F15_BLOCLMOVE 87H Move Block of Memory to/from

Extended Memory
F15_GET-XMEM_SIZE 88H Get Extended Memory Size
F15_ENTELPROT 89H Switch to Protected Mode
F15_DEV_BUSY 90H Device Busy Hook
F15_INT_COMPLETE 91H Set Interrupt Completed Flag

System Support Driver Function Definitions

F15_DEVICE_OPEN (AH = SOH)

". Open device for I/O. This is a hook for multitasking systems. Currently the function just returns.

On Entry: AH = F15_DEVICE_OPEN (80H)
BX = Device Identifier
CX = Process Identifier

System Drivers 273



On Exit: No values returned.

Registers Altered: None.

Close device for I/O. This is a hook for multitasking systems. Currently the function just returns.

On Entry: AH = F15_DEVICE_CLOSE (81 H)
BX = Device Identifier
ex = Process Identifier

On Exit: No values returned.

Registers Altered: None

Terminate Program. This is a hook for multitasking systems. Currently the function just returns.

On Entry: AH
BX
CX

F15_PROG_TERM (82H)
Device Identifier.

= Process Identifier.

On Exit: No register modified.

Registers Altered: None

Allows a process to wait for at least "x" microseconds before it continues. The process is notified
that the requested amount of time has elapsed when the high bit at ES:BX is set to "1". If
another process is already using this function, driver returns with the carry set. If the return
status is successful (carry flag is clear) the process should poll the byte at ES:BX until the high bit
is set.

274 System Drivers



On Entry: AH = F15_WAIT_EVENT (83H)
AL = Subfunction:

o = Set the timer with the data passed in ES, BX, ex and DX registers.
1 = Cancel the current timer.

ES:BX = The byte at this address will have its high bit set as soon as possible after the
"x" microseconds.

CX,DX = Minimum number, "x", of microseconds to wait before setting the high bit of
the address above. ex is the most significant word.

On Exit: Carry = 1 If there was another process already waiting.
a If the calling process will be notified after the time out.

Registers Altered: AX

F15---.JOYSTICK (AH = 84H)

Read data from the joystick port.

On Entry: AH = F15~OYSTICK (84H)
DX = Subfunctions

a = Read the switch settings.
1 = Read resistive inputs.

On Exit: Carry Flag = 0 If no errors
1 If invalid DX or no adapter present.

If DX was 0, AL bits 7..4 contain switch positions.

If DX was 1, AX = X position of joystick 1
BX = Y position of joystick 1
CX = X position of joystick 2
DX = Y position of joystick 2

Registers Altered: AX, BX, CX, DX

Programming Example: To read all the data from the joystick adapter (switches and both
joysticks).

MOV
MOV
INT
JC

AH, F15---.JOYSTICK
OX, 00
INT_SYSTEM
HANDLE_ERRORS

,. Function 84H
,. Read the switch settings first
,. Int 15H

System Drivers 275



HANDLE_ERRORS:

MOV

MOV
MOV
INT
JC
MOV
MOV
MOV
MOV

SWITCH_STATE,AL

AH, F15-.JOYSTICK
OX, 01
INT_SYSTEM
HANDLE_ERRORS
STICK1-.X, AX
STICK1_Y, BX
STICK2-.X, CX
STICK2_Y, OX

,. Save the state of the switches
,. Bits 7..4 in AL.
,. Call it again for joystick info

,. Save x and y position for both
,. joysticks.

,. Continues normally here

,. Error handler here

This subfunction gets called by the keyboard interrupt handler (INT 9H) whenever the user
presses the < Sys req> key. Currently the routine just returns but an application can trap this
function to detect when the user presses this key.

On Entry: AH = F15_SYS_REQ (85H)
AL = 00, If user pressed the < Sys req> key down (make).

01, If user let go of the < Sys req> key (break).

On Exit: No values returned.

Registers Altered: None.

Example: Link into the current < Sys req> handler so that it prints "HELLO" everytime the
< Sys req> key is hit.

INITIALIZATION_CODE:
MOV
MOV
INT
MOV
MOV
MOV
MOV

276 System Drivers

AH,35H
AL, INT_SYSTEM
21H
OLD_SEG, ES
OLD_OFFSET, BX
AH,25H
AL, INT_SYSTEM

" Get the old INT 15H
" Get CS:IP of INT 15H
,. This MSDOS Int does the work

,. Replace old INT 15H with
,. our routine



PUSH es
POP OS
MOV OX, offset OUR.-/NT15
INT 21H ,. This MSDOS Int does the work,.

OUR_INT15:
eMP AH, F15_SYS_REQ ,. See if it is function 85H?
JNE DO_OLD_INT
PUSHA
PUSH ES
MOV AX, F10_WRS_01 ,. Yes, call video "write string"
MOV BL,07 ,. function 1301H to write the
MOV ex, 05 ,. string "HELLO"
MOV BH,OO ,. page 0
MOV OX, 00 ,. row 0, column 0
PUSH es
POP ES
MOV BP, Offset HELLO_STR
INT INT_VIDEO ,. Video function interrupt 10H,... POP ES
POPA
IRET

OO_OLO.-/NT:
PUSH OLD_OFFSET ,. No, just go to regular routine.
PUSH OLD_SEG
RET

HELLO_STR DB "HELLO"

F15_WAIT (AH = 86H)

Calling this function waits the specified number of microseconds (CX,DX) before returning to the
caller.

On Entry: AH = F15_WAIT (86H)
CX,DX = Number of microseconds to wait. CX is the most significant word.

On Exit: Carry = 1, Some other process already waiting. So could not wait.
Carry = 0, Waited the amount of microseconds specified in the CX,DX register pair.

Registers Altered: None.

System Drivers 277



Example: Wait 10 seconds in a procedure.

MOV
MOV
MOV
INT
JC

HANOLEJRRORS:

AH, F15_WAIT
CX,O
OX, 10000
INT_SYSTEM
HANOLEJRRORS

,. 86H function
,. 10 * 1000 microseconds =
,. 10 seconds
,. INT 15H

,. At least 10 seconds have elapsed

,. Do what's appropriate here.

F15_BLOCLMOVE (AH = 87H)

Moves a block of memory from one location to another anywhere in the 16 megabyte
addressing space of the 80286 processor. The number of words to move is passed in ex and the
source and destination tables pointers are passed in a Global Descriptor Table (GDD pointed to
by ES:SI. The following data structure describes a sample GDT:

AOORESS-DATA
RESERVED_GOT
CALLERS_GOT
SOURCE_GOT
DEST_GDT
BIOS_GOT
STACK_GOT
AOORESS-DATA

STRUC
DB
DB
DB
DB
DB
DB
ENDS

8 OUP (7)
8 OUP (7)
8 OUP (7)
8 OUP (7)
8 OUP (7)
8 OUP (7)

,. Descriptor used during move
,. Caller's GOT's during move
,. GOT describing source
,. GOT describing destination
,. GOT of the BIOS routines
,. Stack's GOT.

The eight byte descriptor for source or destination has the following format:

SAMPLE_GOT STRUC
SEGJ/MIT OW ? ,. Segment Limit
LOW_WORD OW 7 ,. Low word of 24 bit address
HIGH_BYTE DB 7 ,. High byte of 24 bit address
ACCESS_RIGHT DB 7 ,. Segment access rights

,. should always be 93H
RESERVED_WORD OW 7 ,. Reserved.
SAMPLE_GOT ENDS

On Entry: AH = F15_BLOeLMOVE (87H)
ES:SI = Pointer to descriptor tables.

ex = Number of words to move.

278 System Drivers



On Exit: AH = Return Status:
0, If successful.
1, If RAM parity error.
2, If exception interrupt error.
3, If gate address line 20 failed.

Carry Flag = 1, If failUrE?
Zero Flag = 1, If successful.

Registers Altered: AX

Example: Move the 16KB video buffer to the procedure's buffer.

BYTE PTR HIGHJYTE[SIj, BL
WORD PTR LOW_WORD[SIj, AX

MOV

MOV
AND
SHR
MOV
SHL
ADD
JNC

,.. INC
SKIP-'NC:

MOV
MOV

LES
MOV
MOV
INT
JC
JNE

HANDLE_ERRORS:

51, offset DEST

BX, seg BUFFER
BX, OFOOOH
BX, 12
AX, seg BUFFER
AX, 4
AX, offset BUFFER
SKIP_INC
BX

51, ACTUAL._TABLE
CX, 8192
AH, F1S_MOVE_BLOCK
INT_SYSTEM
HANDLE_ERRORS
HANDLE_ERRORS

" Load table with 24 bit
" destination address:
" Isolate high nibble of segment

" isolate rest of segment

" and form 24 bit address

" Number of words to move
" Function 87H.
,'Int 1SH

" Continue if everything OKA Y

<0,0,0,0,0>
< 0,0,0,0,0>
< 76384,8000H,OBH,93H, 0 >

" Do Error processing here
" Actual Table of pointers passed to the routines. They use the
" Global descriptor structure described above.
ACTUAL_TABLE:
RESERVED SAMPLE_GOT
CALLERS SAMPLE_GOT
SOURCE SAMPLE_GOT

System Drivers 279



OEST

BIOS
STACK

SAMPLE_GOT
SAMPLE_GOT

< 16384,0,0,93H,0> ,. The high byte
: and low word
,. will be loaded
: in the code

<0,0,0,0,0>
<0,0,0,0,0>

-----

BUFFER DB 16384 OUP (?) ,. Actual destination buffer

Determine how much RAM there is above the first one megabyte of memory.

On Exit: AX = Total number of 1KB blocks above one megabyte.

Registers Altered: AX.

F15_ENTELPROT (AH = 89H)

Allows a routine to enter protected mode. When the BIOS function has executed, the processor
will be in protected mode and the routine specified will be called. The calling program must
create a set of descriptor tables as follows:

Dummy Descriptor Table: Initialize to zero.

Global Descriptor Table: Load program dependant values.

Interrupt Descriptor Table: Load program dependant values.

Data segment Descriptor: Load program dependant values.

Extra segment Descriptor: Load program dependant values.

Stack segment Descriptor: Load program dependant values. ~

Code segment Descriptor: Load program dependant values.

BIOS Descriptor Table: Initialize to zero.

280 System Drivers



When calling this function, the user should be aware that: 1) the BIOS functions are not
available, 2) the interrupt tables must be moved to avoid conflict with the 80286 interrupt
vectors, 3) the user loaded descriptor tables must not overlap with the BIOS's descriptor tables
and 4) because of the system's second (HP) 8259 slave controller, both the master 8259 and the
HP slave must be reprogrammed by the user on entry to protected mode.

Upon return from protected mode the system BIOS will return control to the return point
specified at 40H:67H. The user should recover the stack and continue.

There are a few points of caution that should be observed:

1. Any code which is expected to run mixed mode, that is both protected mode and real
mode, must not make any far references, including far calls.

2. Also, any return addresses put on the stack must have been generated in the same mode in
which the return code executes, or else they must be near returns.

3. The system address line A20 must be forced to awhen the system is operating in real
mode. This task is performed by the 8041 controller. When the system enters protected
mode, A20 must be released, and when it enters real mode it must be forced to 0 again. It
is the program's responsibility to issue the appropriate command to the 8041 controller
before changing modes (see Section 5).

On Entry: AH = F15_ENTELPROT (89H)
BH = Offset into interrupt table where interrupts coming from the Master 8259 will

go (I nterrupt level 1).
BL = Offset into interrupt table where interrupts coming from the industry standard

(STD) slave 8259 will go (Interrupt level 2).
ES:SI = Pointer to a set of descriptor tables. The following descriptors must be passed

by the calling routine: Dummy Descriptor (DUMMY), Global Descriptor Table
(GDD, Interrupt Descriptor Table (lDD, Data Segment Descriptor Table (DS),
Extra Segment Descriptor Table (ES), Stack Segment Descriptor Table (55),
Code Segment Descriptor Table (CS) and BIOS Descriptor Table (BIOS).

On Exit: AH = 0, If successfully entered Protected Mode.

Registers Altered: All.

Example: To enter protected mode and start executing the routine PROTECTED.

,
,. Load up descriptor tables with appropriate values. See the
,. iAPX 286 Programmer's Reference Manual for details.

System Drivers 281



,
,. Load registers for calling INT 15H function.

MOV AH, F15_ENTER_PROT ; Enter protected mode
,. function 89H.

,. Offset for 8259's must be greater than 32 because 80286
; uses the first 32 interrupts vectors.
MOV BH, 40 ,. New offset for master 8259.
MOV BL,48 ; New offset for STD-slave 8259.
MOV ES, seg GLOBAL_TABLE ,. Table of descriptors.
MOV SI, offset GLOBAL_TABLE
INT INT_SYSTEM ,. Int 15H

PROTECTED:
,
,. Code starts executing here after call to INT 15H
,. sets up CS-lJT to point to PROTECTED label.
,
,. The first thing to do in this case is reprogram the master
,. 8259 and the HP-slave (interrupt controller's):
SL V_M_PORTO EQU 20H
SL V_M_PORT7 EQU 21 H
SL V_S1-YORTO EQU 7CH
SL V_S1_PORT1 EQU 7DH
,
,. Program the master 8259:

MOV
OUT
JMP
MOV
OUT
JMP
MOV
OUT
JMP
MOV
OUT
JMP
MOV

282 System Drivers

AL,11H
SL V_M_PORTO,AL
$+2
AL,40
SL V_M_PORT1,AL
$+2
AL,06H
SL V_M_PORT1,AL
$+2
AL,07
SL V_M_PORT7,AL
$+2
AL,OFFH

,. Edge triggered cascade mode

; Interrupt TYPE 40.

,. Slaves mask, at interrupt levels
; 1 and 2.

,. 8259 in //8086// mode.

,. Disable all interrupts.



OUT SL V-MJORT1,AL
JMP $+2

,. PROGRAM HP-SLA VE'S 8259:

MOV
OUT
JMP
MOV
OUT
JMP
MOV
OUT
JMP
MOV
OUT
JMP
MOV
OUT
JMP
MOV
OUT
JMP

AL,11H
SL V_S1JORTO,AL
$+2
AL,56
SL V_S1JORT1,AL
$+2
AL,01
SL V_S1JORT1,AL
$+2
AL,01
SL V_S1JORT1,AL
$+2
AL,OFFH
SL V_S1JORT1,AL
$+2
AL,68H
SL V_S1JORTO,AL
$+2

,. Edge triggered cascade mode

,. Interrupt type 56.

,. Slave 10

,. "8086" Mode

,. Disable all interrupts

,. Enable special mask mode.

,. Continue with protected mode here.

,
,. Descriptor tables needed for this function call. The entries
,. marked by 'F' must be filled in by the user. Those marked with
,. '0' are filled by INT 15H. For a definition of the SAMPLE_GOT
,. structure see the F15JLOCK_.MOVE example. For information as
,. to how to fill this table see the iAPX 80286 Programmer's
,. Reference Manual.
,
GLOBAL_TABLE:
RESERVED
GLBL--DT
10T--DT
OS--DT
ES--DT
SS--DT
CS--DT
BIOS--DT

SAMPLE_GOT
SAMPLE_GOT
SAMPLE_GOT
SAMPLE_GOT
SAMPLE_GOT
SAMPLE_GOT
SAMPLE_GOT
SAMPLE_GOT

<0,0,0,0,0>
<F,F,F,F,F>
<F,F,F,F,F>
<F,F,F,F,F>
<F,F,F,F,F>
<F,F,F,F,F>
<F,F,F,F,F>
< 0,0,0,0,0>

System Drivers 283



Device busy function. This is a "hook" for multitasking systems. Currently the function just clears
the Carry flag and returns.

On Entry: AH = F15_DEV_BUSY (90H)
AL = Device Type:

othru 7FH = Device can not be shared. The operating system handling this
"hook" must serialize access to this device.

80H thru OBFH =Device can be shared among multiple processes. The operating
system handling this "hook" must use the ES:BX reqisters to
distinguish between calls.

OCOH thru OFFH = Devices of this type must wait for a fixed amount of time. This
amount of time is device dependant. Control should be returned
to the device after the fixed amount time.

List of Device Types:
OOH = Disc, time out required
01 H = Diskette, time out required
02H = Keyboard, no time out required
80H =Network, no time out required

OFDH =Start diskette motor, time out required
OFFH =Printer, time out required.

On Exit: No values returned.

Registers Altered: None.

Signals interrupt completed. This is a "hook" for multitasking systems. Currently the function
does an IRET.

On Entry: AH = F15_INT_COMPLETE (91 H)
AL = Device Type, see list of previous function.

On Exit: No registers used.

Registers Altered: None.

284 System Drivers



9.6 Time And Date Driver (lNT 1AH)

Table 9.2 describes functions provided by the BIOS to manage the CMOS clock and the software
clock.

Table 9.2

Time and Date Driver Function Code Summary

INT Function
Hex Equate

1AH INT_CLOCK
F1~RD_CLK_CNT

F1~SET__CL~CNT
F1~GET_RTC

F1~SET_RTC

F1~GET_DATE

F1~SET_DATE

F1~SET--ALARM

F1 A-RESET--ALARM

Function
Value Definition

Time and date
OOH Read current clock count
01 H Set current clock count
02H Read real-time clock
03 H Set real-time clock
04H Read date from real-time clock
05 H Set date in real-time clock
06H Set alarm
07H Reset alarm

Time and Date Driver Function Definitions

F1A-RD_CLLCNT (AH = OOH)

Reads the current setting of the software clock. There are 18.2 counts per second.

On Exit: AL = Zero if the timer has not overflowed (not passed 24 hours since the last read).
Nonzero if time has overflowed.

CX = High word of the count. (There are 18.2 counts per second).
DX = Low word of count.

Registers Altered: AX, CX, DX

System Diivers 285



F1AL-SET__CLK--CNT (AH = 01H)

Sets the count in the software clock. And resets the 24 hour overflow bit.

On Entry: AH = F1A..-SET__CLLCNT (01H)
CX = High word of Count.
DX = Low word of Count.

On Exit: No values returned.

Registers Altered: None

F1AL-GET_RTC (AH = 02H)

Gets the time from the real-time clock.

On Entry: AH = F1A..-GET__RTC (02H)

On Exit: CH = Hours in BCD.
Cl = Minutes in BCD.
DH = Seconds in BCD.
Carry flag = 1 if real-time clock is not operating.

Registers Altered: AH, CX, DH

F1AL-SET__RTC (AH = 03H)

Sets the time of the real-time clock.

On Entry: AH = F1A..-SET__RTC (03H)
CH = Hours in BCD.
Cl = Minutes in BCD.
DH = Seconds in BCD.
DL = 1 if daylight savings time option.

ootherwise.

On Exit: No values returned.

Registers Altered: AH.

286 System Drivers



F1A-GET_DATE (AH = 04H)

Gets the date from the real-time clock.

On Entry: AH = F1A.-GET_DATE (04H)

On Exit: CH = 19 if 20th century or
20 if 21 st century.

Cl = Year in BCD.
DH = Month in BCD.
Dl = Day in BCD.
Carry flag set if the real-time clock not operating.

Register Altered: AH, CX, DX.

F1A-SET_DATE (AH = OSH)

Sets the date of the real-time clock.

On Entry: AH = F1A.-SET_DATE (OSH)
CH = 19 if 20th century or

20 if 21 st century.
Cl = Year in BCD.
DH = Month in BCD.
Dl = Day in BCD.

On Exit: No values returned.

Registers Altered: AH.

F1A-SET-ALARM (AH = 06H)

Sets the alarm to generate an INT 4AH when the specified amount of time has elapsed. The user
must place an appropriate interrupt handling routine in the INT 4AH vector.

On Entry: AH = F1A.-SET-ALARM (06H)
CH = Hours in BCD.
Cl = Minutes in BCD.
DH = Seconds in BCD.

On Exit: Carry flag = 1 if the real-time clock is not operating or the alarm is already set.

Registers Altered: AH.

System Drivers 287



F1A-RESET--ALARM (AH =07H)

Clears the current alarm if any was set.

On Entry: AH = F1A-RESET-ALARM (07H)

On Exit: No values returned.

Registers Altered: AH.

9.7 V_SCOPY Driver (BP

This driver does an IRET for all function calls.

9.8 V_DOLITTLE Driver (BP

This driver does an IRET for all function calls.

OOOOH)

0006H)

9.9 V_PNULL Driver (BP = OOOCH)

This driver loads AH with RS_SUCCESSFUL and does an IRET for all function calls.

9.10 V_SYSTEM Driver (BP = 0012H)

Table 9.3 summarizes the V_SYSTEM Functions. A more detailed description follows the table.

288 System Drivers



Table 9.3

V_SYSTEM Driver Function Code Summary

Vector Func. Functiorl
Address Value Equate Definition

0012H V_SYSTEM System Management Functions
0012H 00 F_ISR Interrupt service routine

(unsupported)
0012H 02 F_SYSTEM Standard Driver Functions
0012H 02/00 SF_INIT System initialization
0012H 04 F_INS_.BASEHPVT Returns HP_VECTOLTABLE

segment

0012H 06 F_INS-.XCHGFIX Exchanges fixed table entries
0012H 08 F_INS-.XCHGRSVD Sets next "reserved" entry in table
0012H OA F_INS-.XCHGFREE Sets next "free" entry in table
0012H DC F_INS_FIXOWNDS Install fixed vector, user supplies DS
0012H DE F_INS_.FIXGETDS Install fixed vector, system supplies

DS

0012H 10 F_INS_.FIXGLBDS Install fixed vector, DS set to global
data area

0012H 12 F_INS_FREEOWNDS Install next free vector, user supplies
DS

0012H 14 F_INS__FREEGETDS Install next free vector, system
supplies DS

0012H 16 F_INS__FREEGLBDS Install next free vector, DS set to
global data area

0012H 18 F_INS__FIND Search for matching device header

0012H 1E F_RAM_GET Get EX-BIOS memory pool address
and size

0012H 20 F_RAM- RET Set memory pool address and size
0012H 22 F_CMOS_GET Read and verify CMOS memory
0012H 24 F_CMOS_RET Write to CMOS memory
0012H 2A F_YIELD Just returns

0012H 2C Reserved
0012H 2E Reserved
0012H 30 F_SND_CLICLENABLE Enable keyclick
0012H 32 F_SND__CLICLDISABLE Disable keyclick (Default)
0012H 34 F_SND_CLICK Execute keyclick if enabled

System Drivers 289



Vector Func. Function
Address Value Equate Definition

0012H 36 F_SND_BEEP_ENABLE Enables beep
0012H 38 F_SND_BEEP_DISABLE Disables beep
0012H 3A F_SND_BEEP Beeps if enabled
0012H 3C F_SND_SET__BEEP Sets beep frequency
0012H 3E F_SND_TONE Produce tone, user supplied duration

and frequency

0012H 40 F_STLGET_FREE_INDEX Return next free string index
0012H 42 F_STLDELBUCKET Delete bucket string list
0012H 44 F_STLPUT_BUCKET Add bucket to current string list
0012H 46 F_STLGET_STRING Search the list for index, return string
0012H 48 F_STLGET_INDEX Search list for a string, return index

Registers Altered: AH, DS, BP, ES

Example: Get the Base address of the HP_VECTOLTABLE.

MOV
MOV
PUSH
INT
MOV
POP
MOV
MOV
MOV

BP, V_SYSTEM
AH, F-,NS_BASEHPVT
OS
HP_ENTRY
AX, OS
OS
GLOBAL-.DATA--AREA, AX
AX, ES
VECTOR_TABLE_SEGMENT, AX

" HP vector (12H).
" function 04H
" EX-BIOS destroys OS
" Int 6FH for EX-BIOS

" Restore OS

The value returned in ES is the segment address of the HP_VECTOLTABLE and the value
returned in the DS register is the segment address of the EX-BIOS global data area.

V_SYSTEM Driver Function Definitions

F_ISR (AH = OOH)

Logical interrupt service routine. Currently, it loads AH with RS_UNSUPPORTED and does an
IRET.

On Entry: BP = V_SYSTEM (12H)
AH = F_ISR (DOH)

290 System Drivers



On Exit: AH = RS_UNSUPPORTED (02H)

Registers Altered: AH, BP, DS

,.. SF_INIT (AX = 0200H)

System functions routines. The only function supported is SF_INIT (OOH). The rest of the routines
return with a status of RS_UNSUPPORTED in AH.

The SF_lNIT routine sets up DS and initializes all the variables in the EX-BIOS global data area.

On Entry: BP = V_SYSTEM (12H)
AH = F_SYSTEM (02H)
AL = SF_INIT (OOH)

On Exit: AM = Return Status Code
BX = DS of EX-BIOS global data area

Registers Altered: AH, BX, DS, BP

Reports the segment where the HP_VECTOR-TABLE is located. This function can only be called
after the V_SYSTEM driver has been initialized.

On Entry: BP = V_SYSTEM (12H)
AH = F_INS_BASEHPVT (04H)

On Exit: AH = Return Status Code
ES = Segment address of HP_VECTOR-TABLE.
DS = Segment of EX-BIOS global data area

F_INS-.XCHGFIX (AH = 06H)

Exchanges the values in the registers for a particular entry in the HP_VECTOLTABLE. This
function can be used to replace an existing vector at a fixed location without initialization.

On Entry: BP = V_SYSTEM (12H)
AH = F_INS--><CHGFIX (06H)
BX = Vector address
DX = DS to be exchanged

ES:DI = CS:IP to be exchanged

System Drivers 291



On Exit: AH = Return Status Code
a = RS__SUCCESSFUL

OX = OS from table
ES:OI = CS:IP from table

Registers Altered: AH, BP, OS, ES, DI, DX

Example: Replace the EX-BIOS V__SVIOEO vector (54H).

MOV
MOV
MOV
MOV
MOV
MOV
MOV
PUSH
INT
POP
MOV
MOV
MOV

BP, V__SYSTEM
AH, F__INS-XCHGFIX
BX, V__SVIOEO
01, CS
ES,OI
01, offset NEW_VIDEa_ROUTINE
OX, OS
OS
HP__ENTRY
OS
OLO_CS, ES
OLO__IP,OI
OLD_OS, OX

,. HP vector 12H.
,. Function 06H
,. HP vector 54H
,. Get CS, IP and OS of new
,. video routines.

,. EX-BIOS Destroys OS
,. Int 6FH for EX-BIOS .

,. Save old CS, IP and OS
,. just in case we need to
,. put them back

F__INS->(CHGRSVD (AH = 08H)

Exchanges the values in the registers for the next reserved entry in the HP_VECTOLTABLE. If a
reserved vector is not available the function returns the RS_NO_VECTOR error code.

On Entry: BP = V_SYSTEM (12H)
AH = F_INSJCHGRSVO (a8H)
DX = OS to be exchanged

ES:DI = CS:IP to be exchanged

On Exit: AH = Return Status Code
a = RS_SUCCESSFUL
OF6H = RS_NO__VECTOR

BX = Vector address
OX = DS from table

ES:DI = CS:IP to be exchanged

Registers Altered: AH, BP, DS, BX, ES, DI, DX

292 System Drivers



F_INS--><CHGFREE (AH = OAH)

Exchanges the values in the registers for the next free entry in the HP_VECTOLTABLE. If a free
vector is not available, the function returns the RS_NO_VECTOR error code.

On Entry: BP = V_SYSTEM (12H)
AH = F_INSJCHGFREE (OAH)
OX = OS to be exchanged

ES:OI = CS:IP to be exchanged

On Exit: AH = Return Status Code
o = RS_SUCCESSFUL
OF6H = RS_NO_VECTOR

BX = Vector address
OX = OS from table

ES:OI = CS:IP to be exchanged

Registers Altered: AH, BP, OS, BX, ES, 01, OX

F_INS_FIXOWNDS (AH = OCH)

Installs a given vector entry in the HP_VECTOLTABLE and calls it with an SF_INIT function.
Upon returning from initialization, the routine returns its data segment in the BX register.

Warning

If the SF_INIT function returns with an error code of RS_FAIL (OFEH) the power-on
self test sequence will be executed.

On Entry: BP = V_SYSTEM (12H)
AH = F_INS_FIXOWNOS (OCH)
BX = Vector address to be installed

ES:OI = CS:IP of the device

On Exit: AH = Return Status Code
o = RS_SUCCESSFUL

Registers Altered: AH, BP, OS

System Drivers 293



F_INS_FIXGETDS (AH = OEH)

Installs a given vector entry in the HP_VECTOR-TABLE and calls it with an SF_INIT function.
This function should be used if the driver needs EX-BIOS RAM for its data segment.
F_INS_FIXGETDS calls the routine to initialize with the "last used DS" in the BX register. The
routine's initialization code decrements the "Iast used DS" value and returns to
F_INS_FIXGETDS with this new value.

Warning

If the ~F_INIT function returns with an error code of RS_FAIL (OFEH) the power-on
self test sequence will be executed.

On Entry: BP = V_SYSTEM (12H)
AH = F_INS_FIXGETDS (OEH)
BX = Vector address to be installed

ES:DI = CS:IP of the routine

On Exit: AH = Return Status Code
o = RS_SUCCESSFUL

Registers Altered: AH, BP, DS

F_INS_FIXGLBDS (AH = 10H)

Installs a given vector entry in the HP_VECTOR-TABLE and calls it with an SF_INIT function.
When F_INS_FIXGLBDS calls the initialization routine it passes the data segment of the EX-BIOS
global data area in the BX register.

Warning

If the SF_INIT function returns with an error code of RS_FAIL (OFEH) the power-on
self test sequence will be executed.

On Entry: BP = V_SYSTEM (12H)
AH = F_INS_FIXGLBDS (10H)
BX = Vector address to be installed

ES:DI = CS:IP of the routine

On Exit: AH = Return Status Code
o = RS_SUCCESSFUL

Registers Altered: AH, BP, DS

294 System Drivers



F_INS_FREEOWNDS (AH = 12H)

Installs a vector in the next free entry of the HP_VECTOLTABLE and calls it with an SF_INIT
function. Upon returning from initialization, the routine returns its DS in the BX register.

Warning

If the SF_INIT function returns with an error code of RS_FAIL (OFEH) the power-on
self test sequence will be executed.

On Entry: BP = V_SYSTEM (12H)
AH = F_INS_FREEOWNDS (12H)
BX = Vector address to be installed

ES:DI = CS:IP of the device

On Exit: AH = Return Status Code
o = RS_SUCCESSFUL

Registers Altered: AH, BP, DS

F_INS_FREEGETDS (AH = 14H)

Installs a vector in the next free entry of the HP_VECTOLTABLE and calls it with an SF_INIT
function. This function is used if the driver needs EX-BIOS RAM for its data segment.
F_INS_FREEGETDS calls the routine to initialize with the "last used DS" in the BX register. The
routine's initialization code decrements the "last used DS" value and returns it to
F_INS_FREEGETDS.

Warning

If the SF_INIT function returns with an error code of RS_FAIL (OFEH) the power-on
self test sequence will be executed.

On Entry: BP = V_SYSTEM (12H)
AH = F_INS_FREEGETDS (14H)

ES:DI = CS:IP of the routine

On Exit: AH = Return Status Code
o = RS_SUCCESSFUL

Registers Altered: AH, BP, DS

Example: Install the ACME_INT vector in the next free vector and allocate two paragraphs of
data when its initialization routine gets called.

System Drivers 295



MOV BP, V_SYSTEM ,. HP vector 12H for EX-BIOS.
MOV AH, F-'NS_FREEGETOS ,. Function 14H
MOV 01, CS ,. Get CS, IP ofACME-'NT routines
MOV ES,OI
MOV 01, offset ACME-'NT
PUSH OS ,. EX-BIOS Destroys OS ~
INT HP_ENTRY ,. Int 6FH for EX-BIOS
POP OS
MOV VECTOR~UMBER,BX ,. Save the vector number

,. routines are installed.

,. ACME-'NT routine handles initialization and allocates 2
,. paragraphs from EX-BIOS RAM for its data segment.

ACME-'NT:
CMP AH, F_SYSTEM ,. Decode F_SYSTEM subfunction
JNE NOT_SUPPORTED ,. SF-'NIT.
CMP AL,SF-'NIT
JE ACME-'NIT

NOT_SUPPORTED: ,. Any unknown functions should
MOV AH, RS_UNSUPPORTEO ,. return with RS_UNSUPPORTED
IRET ,. in AH.

~

ACME-'NIT:
SUB BX,2 ,. Decrement the "Iast used OS"

,. passed to us. This allocates 2
,. paragraphs and makes our data
,. segment the "last used OS". Make
,. sure to pass this new BX back to
,. F-'NS_FREEGETOS code.

MOV OS,BX ,. Now we can initialize the data in
,. our segment.

ASSUME OS:NOTHING
MOV ACME--.-ATTR, 55AAH ,. Put data into Attribute word
MOV ACME~AME-'NOEX,55AAH ,. Put a dummy index for now.

,. Initialize rest of data segment here.

MOV AH, RS_SUCCESSFUL ,. Always return this status if
,. successful initialization.

IRET

296 System Drivers



,
,. Sample segment for this routine
,
ACME_SEG
ACME-ATTR

ACME---'VAME--'NDEX
ACME_REST
ACME-5EG

struc
dw

dw
db
ends

o

o
28 dup (?)

,. Attribute word ofACME's data
,. segment.
,. Index name ofACME routine.
,. rest of data segment

F_INS_FREEGLBDS (AH = 16H)

Installs a vector in the next free entry of the HP_VECTOR-TABLE and calls it with an SF_INIT
function. When F_INS_FREEGLBDS calls the initialization routine it passes the data segment of
the EX-BIOS global data area in the BX register.

Warning

If the SF_INIT function returns with an error code of RS_FAIL (OFEH) the power-on
self test sequence will be executed.

On Entry: BP = V_SYSTEM (12H)
AH = F_INS_FREEGLBDS (16H)

ES:DI = CS:IP of the routine

On Exit: AH = Return Status Code
o = RS_SUCCESSFUL

Registers Altered: AH, BP, DS

This function is used to search the HP_VECTOR-TABLE for drivers that have equal or similar
values in a specified field of their data segment. Parameters passed to the function specify the
location of the 16-bit field, the bits within the field to be compared (and_mask) and the pattern
of bits the field is to be compared with. Given a starting vector address, the function searches
the vector table for the next driver that matches the conditions specified and returns its vector
address in SI.

System Drivers 297



On Entry: BP = V_SYSTEM (12H)
AH = F_INS_FIND (18H)
AL = a then respond on equality to pattern

((field) .AND. (and_mask)) = pattern
2 then respond on non_equal

((field) .AND. (and_mask)) < > pattern
BX = and_mask
OX = pattern
51 = vector address to start the search from.
01 = field to be used in the function, this is the offset into an HP header.

On Exit: AH = Return status
a = RS_SUCCESSFUL

OFEH = RS_FAIL-No match found
SI = Vector address of the first entry that matched.

Registers Altered: AH, BP, OS, SI

Example: Find a vector that has the value X5AXH ("X" means allow these digits to take any
value) in its attribute header (the first word of the driver's data segment) .

MOV BP, V_SYSTEM ; HP vector 12H
MOV AH, F_INS_FIND ; Function 18H
MOV AL,O " Return RS_SUCCESSFUL when the

; value is equal
MOV 01,0 ; Look in the first word of driver's

; data segment
MOV DX,05AOH ; Look for value '5A' in the middle

; of the word.
MOV BX,OFFOH ; Mask off the don't care parts.
MOV 51,0 ; Start looking from the first vector

; position.
PUSH OS ; EX-BIOS destroys OS
INT HP_ENTRY " Int 6FH for EX-BIOS
POP OS
CMP AH, RS_SUCCESSFUL ,. See if it found a match?
JNE VECTOR.-NOT_FOUND

VECTOR_FOUND: ,. Yes
MOV SAVED_VECTOR, 51

~

VECTOR_NOT_FOUND: ,. No

298 System Drivers



This function gets the segment pointers of the EX-BIOS free RAM area. Two pointers are
returned by this function call, the "last used OS" pointer marks the first paragraph of EX-BIOS
RAM that is free for use. The "max OS" pointer marks the lowest value that "last used DS" can
have. Figure 9.1 shows how the EX-BIOS memory is organized.

See the F_RAM_RET memory function.

On Entry: BP = V_SYSTEM (12H)
AH = F_RAM_GET (1 EH)

On Exit: AH = RS_SUCCESSFUL
BX = "last used OS"
OX = "max OS"

Registers Altered: AH, BP, DS, BX, OX

Sets the "last used DS" and "max OS" EX-BIOS pointers to the values passed in the BX and OX
registers. This allows the calling routine to reserve a piece of the EX-BIOS memory.

Caution

The F_INS_FIXGETOS and F_INS_FREEGETOS functions described above also mod
ify these values. Use caution when allocating memory with both methods.

On Entry: BP = V_SYSTEM (12H)
AH = F_RAM_GET(20H)
BX = "last used OS"
OX = "max OS"

On Exit: AH = RS_SUCCESSFUL

Registers Altered: AH, BP, OS

"",.. Example: The following code allocates five paragraphs (80 bytes) of EX-BIOS memory.

Get the memory pointers first.

MOV BP, V_SYSTEM
MOV AH, FJAM_GET

,. HP vector 12H.
,. function 1EH

System Drivers 299



PUSH OS
INT HP_ENTRY
POP OS

,. EX-BIOS Destroys OS
,. Int 6FH for EX-BIOS

. Check to see if there is enough memory to allocate 5 paragraphs.

SUB BX, 0005H

eMP BX, OX
JL NO_MEMORY_LEFT

ENOUGH_MEMORY_LEFT:
MOV BP, V_SYSTEM
MOV AH, F_RAM_RET
PUSH OS
INT HP_ENTRY
POP OS
MOV MEMORY_SEG, BX

,. Create a new "Iast used OS" by
,. moving pointer towards "max OS".
,. Is "last used OS" > = "max OS"?

,. Yes: Allocate 5 paragraphs.
,. HP vector 12H
,. function 20H
,. EX-BIOS Destroys OS
,. Int 6FH for EX-BIOS

,. Save this new memory pointer for
,. later use

,. Continue

,. No:
,
,. Typical thing to do here is to allocate more memory for the
,. the EX-BIOS RAM and reboot system.

Read a byte from CMOS. It verifies the checksum on the industry standard CMOS area and
returns RS_FAIL if the checksum is invalid.

On Entry: BP = V_SYSTEM (12H)
AH = F_CMOS_GET (22H)
BL = address of CMOS byte to read

On Exit: AH = Return Status Code
AL = byte of data from CMOS

Registers Altered: AX, BP, DS.

300 System Drivers



Write a byte to CMOS. Calculate a new checksum for both the industry standard CMOS area and
the HP CMOS area.

On Entry: BP = V_SYSTEM (12H)
AH = F_CMOS_RET (24H)
AL = byte of data to be written to CMOS
BL = address of byte to be written to CMOS

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS.

Example: Make the monochrome display the primary video adapter by setting this information in
the equipment byte of CMOS memory.

,
; Read the equipment byte.

MOV
MOV
MOV
PUSH
INT
POP
CMP
JE

BP, V_SYSTEM
AH, F_CMOS_GET
BL, 74H
OS
HP_ENTRY
OS
AH, RS_FAIL
INVALID_CMOS

; HP vector 72H.
; function 22H
; Address of the equipment byte
,. EX-BIOS destroys OS
; Int 6FH for EX-BIOS

; See if CMOS is valid

,
,. Isolate the video and set appropiate video bits.

AND
OR

AL, 7700 7777B
AL, 007 70000B " Select monochrome display

Write the equipment byte.

MOV
MOV
PUSH
INT
POP

BP, V_SYSTEM
AH, F_CMOS__RET
OS
HP_ENTRY
OS

; HP vector 72H
,. function 24H
; EX-BIOS destroys OS
,. Int 6FH for EX-BIOS

System Drivers 301



F_ YIELD (AH = 2AH)

Currently loads AH with RS_SUCCESSFUL and does an IRET. This is a "hook" for multitasking
systems.

On Entry: BP = V_SYSTEM (12H)
AH = F_YIELD (2AH)

On Exit: AH = Return Status Code

Registers Altered: AH, BP, DS

F_SND_CLICLENABLE (AH = 30H)

Enables the keyclick function and flushes any pending keyclicks.

On Entry: BP = V_SYSTEM (12H)
AH = F_SND_CLICLENABLE (30H)

On Exit: AH = Return Status Code

Registers Altered: AH, BP, DS.

F_SND_CLICLDISABLE (AH = 32H)

Disables the keyclick function, sets the EX-BIOS global data area T_SND_CLICLDURA byte to
zero, and flushes any pending keyclicks.

On Entry: BP = V_SYSTEM (12H)
AH = F_SND_CLICLDISABLE (32H)

On Exit: AH = Return Status Code

Registers Altered: AH, BP, DS

302 System Drivers



This functions under the following conditions:

". • If greater than or equal to four clicks are pending then exit.

• If less than four clicks are pending then increment the count and exit.

• If no keyclicks are pending then execute the keyclick.

On Entry: BP = V_SYSTEM (12H)
AH = F_SND_CLICK (34H)

On Exit: AH = Return Status Code

Registers Altered: AH , BP, DS

Enables the beep function.

On Entry: BP = V_SYSTEM (12H)
AH = F_SND_BEEP__ENABLE (36H)

On Exit: AH = Return Status Code

Registers Altered: AH, BP, DS

Disables the beep function.

On Entry: BP = V_SYSTEM (12H)
AH = F_SND_BEEP_DISABLE (38H)

On Exit: AH = Return Status Code

Registers Altered: AH, BP, DS

System Drivers 303



Makes a sound as defined by the current values of T_SND_BEEP_CYCLE and
T_SND_BEEP_DURA in the EX-BIOS data area.

On Entry: BP = V_SYSTEM (12H)
AH = F_SND_BEEP (3AH)

On Exit: AH = Return Status Code

Registers Altered: AH, BP, DS

Defines beep frequency and duration.

On Entry: BP = V_SYSTEM (12H)
AH = F_SND_SET_BEEP (3CH)
BX = Frequency 1 to 25000 hz.

If (BX) = 0 then tone off.
DX = duration of tone in 10 microsecond increments

On Exit: AH = Return Status Code

Registers Altered: AH, DS, BP.

Example: Set Beep frequency to 660 Hz for duration of 1/2 second.

MOV
MOV
MOV
MOV

PUSH
INT
POP

BP, V_SYSTEM
AH,F-:..-SNO_SET_BEEP
BX,660
OX, 50000

OS
HP_ENTRY
OS

,. HP vector 12H
,. function 3CH
,. Frequency in hertz
,. 1/2 a second in 10
,. microseconds increments.
,. EX-BIOS destroys OS
,. Int 6FH for EX-BIOS

Generates a tone of the given frequency and duration with an approximate 0.5 percent error.

304 System Drivers



On Entry: BP = V_SYSTEM (12H)
AH = F_SND_TONE (3EH)
BX = Frequency 1 to 25000hz

If (BX) = 0 then tone off.
DX = Duration of tone in 10 microsecond increments.

On Exit: AH = Return Status Code

Registers Altered: AH, DS, BP

Returns to caller the next string index that does not conflict with the ROM based string indices.

On Entry: BP = V_SYSTEM (12H)
AH = F_STLGET_FREE_INDEX (40H)

On Exit: AH = RS_SUCCESSFUL
BX = Next free index.

,.. Registers Altered: AH, BX, DS, BP

Example: This example gets the next string index available to the user.

MOV
MOV
PUSH
INT
POP
MOV

BP, V_SYSTEM
AH,F_STR_GET_FREE_'NDEX
OS
HP_ENTRY
OS
FIRST_FREE_INDEX,BX

,. HP vector 12H
,. function 40H
,. EX-BIOS destroys OS
,. Int 6FH for EX-BIOS

,. Save it for later use.

F_STR-DELBUCKET (AH = 42H)

Finds a header with the given address and deletes it from the bucket header list.

On Entry: BP = V_SYSTEM (12H)
AH = F_STLDEL-BUCKET (42H)
DI = offset address of bucket header
ES = segment address of bucket header

System Drivers 305



On Exit: AH = RS_SUCCESSFUL if header found and deleted
RS_FAIL if header not found.

Registers Altered: AH, DS, BP.

Takes a header and its corresponding pointers and adds them to the front of the list.

On Entry: BP = V_SYSTEM (12H)
AH = F_STLPUT_BUCKET (44H)
DI = Offset address of header
ES = Segment address of header

On Exit: AH = RS_SUCCESSFUL

Registers Altered: AH, BP, DS.

Example: Adds a set of strings and its associated data structures for the ACME_INT driver.

,
,. String data structures (see figure 9.2)
,
STR~EAOER STRUC
STR-NXT_HOR DO (?)
STR_UPPERJOUNO OW (?)
STR-LOWERJOUNO OW (?)
STR_LISTJTR DO (?)
STR_SEGMENT OW (?)
STR_HEAOER ENDS

,
,. Now build a bucket (set of strings) for the ACME_INT:
,
,. First list ACME_INT's strings:
size_acme--f)ame db
f_acme--f)ame =
acme--f)ame db
I_acme--f)ame =

'_acme--f)ame - f_acme--f)ame - 1
$
'Acme Co. ',DH
$

size-item_l
f-item_l
item_l
l-item_l

306 System Drivers

db

=
db

=

I_item_l - f-item_l - 1
$
'Hello World',DH
$



size--item---2
f--item---2
item---2
l--item---2

db

=
db

=

l--item---2 - f--item---2 - 1
$
'Widgets',OH
$

,
,.. ,. Now build table of bucket pointers:

acme-ptrs label
dw
dw
dw

near
offset acme--.-name
offset item_l
offset item---2

,
,. Now build the bucket header data structure
,
acme-hucket label

dw
dw
dw
dw
dw
dw
dw

near
OFFFFH ,. This is the only bucket.
OFFFFH
1002H ,. Adding string indexes 1000.. 1002
1000H
offset acme-ptrs ,. address of pointer list
segment acme-ptrs
segment acme--.-name ,. segment of all strings

,
,. Do the function call to add bucket.

MOV BP, V_SYSTEM ,. HP vector 12H
MOV AH, F_STRJUT_BUCKET ,. function 44H
MOV 01, offset acme-hucket
MOV ES, segment acme-hucket
PUSH OS ,. EX-BIOS Destroys OS
INT HP_ENTRY ,. tnt 6FH for EX-BIOS
POP OS

F_STL.GET_STRING (AH = 46H)

Given an index, this function searches the list of bucket headers for the bucket pointer with the
given index. It returns a pointer to the string.

On Entry: BP = V_SYSTEM (12H)
AH = F_STLGET_STRING (46H)
BX = String index

System Drivers 307



On Exit: AH = RS_SUCCESSFUL if index found in a bucket
CX = How many characters are in the string exclusive of the byte count and the

zero byte at the end.
DS:SI = Address of header where string was found.
ES:DI = Pointer to first character of the string.

Registers Altered: AH, CX, SI, DI, BP, DS, ES

Example: Search for the name of the ACME_INT routine as index 1OOOH.

MOV BP,
MOV
MOV
PUSH
INT

V_SYSTEM
AH, F_STR_GET_STRING
BX, 1000H
OS
HP_ENTRY

,. HP vector 12H
" Function 46H
,. Index ofACME_INT name string
,. EX-BIOS destroys OS
,. Int 6FH for EX-BIOS

. Write the string to the screen:

MOV
MOV
PUSH
POP
MOV
MOV
MOV
INT
POP

AX, FI0_WRS_00
BP, 51
OS
ES
OX, 0
BH, 0
BL, 7
INT_VIDEO
OS

,. Call the write string function.
,. Offset of string address
,. Segment of string address
,. CX is already set
, Cursor position at (0,0)
" Video page 0
,. Character attribute
" Video interrupt 10
" Recover old OS

Given a pointer to a string it returns the index of the string if it is in the bucket header list.

On Entry: BP = V_SYSTEM (12H)
AH = F_STLGET_INDEX (48H)

ES:DI = Pointer to first character of the zero terminated string.

On Exit: AH = RS_SUCCESSFUL if index was found.
BX = Index found for the given string.

Registers Altered: AH, BX, BP, DS

308 System Drivers



Example: Get the index of the ACME_NAME string.

MOV
MOV
MOV
MOV
MOV
PUSH
INT
POP
MOV

BP, V_SYSTEM
AH, F_STR_GET_-'NOEX
01, seg ACME-.NAME
ES, 01
01, offset ACME-.NAME
OS
HP_ENTRY
OS
ACME-.NAME-'NOEX, BX

,. HP vector 12H
,. function 48H
,. Move segment of string
,. into ES

,. EX-BIOS destroys OS
,. Int 6FH for EX-BIOS

,. Save the index.

System Drivers 309



310 System Drivers



SECTION 10

,.. TABLE OF CONTENTS

10. SYSTEM PROCESSES 313

10.1 Overview 313

10.2 Reset 313

10.3 Protected Mode Support 314

10.3.1 Shut Down Status Byte 315

10.4 Power-On Self Test (POST) 315

10.5 System Generation (SYSGEN) 317

10.5.1 Memory Allocation 320

10.5.2 HP_VECTOLTABLE Initialization 321

10.5.3 EX-BIOS Driver Initialization 321

,... 10.5.4 Option ROM Module Integration 321

10.6 Boot Process (INT 19H) 323

10.6.1 Booting From a Flexible Disc 323

10.6.2 Booting From a Hard Disc 323

311



31 2 System Processes



SECTION 10. SYSTEM PROCESSES

10.1 Overview

This section describes system processes contained in the ROM BIOS. System processes are
different from drivers in that they are not readily accessible to application programs and they
perform larger. tasks than a typical driver function. The ROM BIOS has five main system
processes; reset, power-on self test (POSD, system generation (SYSGEN), booting (BOOD, and
return from protected mode.

10.2 Reset

The 80286 is reset through a hardware reset signal. This signal sets the CS and IP registers to
begin execution at memory location OFOOO:OFFFOH. The system can be reset by either a
hardware reset to the 80286, or by any software routine that jumps to memory location
OFOOO:OFFFOH. There are four events that initiate a system reset:

• Power-on. This reset occurs when power is applied to the system. The power supply resets
the 80286 through its reset signal when the system is turned on. POST is initiated and
performs a full memory test.

• Hard Reset. This reset is initiated by the <CTRL>-<Alt>-<Sys req> key sequence. This
sequence generates a scancode that is interpreted by the HP-HIL controller as a system reset.
The HP-HIL controller asserts the Non-Maskable Interrupt (NMI) line when this scancode
sequence is detected. The default interrupt service routine for the NMI interrupt (02H) in turn
jumps to the reset memory location. This reset is a superset of the industry standard. POST is
initiated and performs a full memory test.

• Soft Reset. This reset is initiated by the < CTRL> -< Alt > -< DEL> key sequence. This
sequence is interpreted by the INT 09H keyboard interrupt service routine as a reset
command. POST is initiated. A full memory test is not performed.

System Processes 31 3



• Programmatic Reset. The final reset source is a software initiated hardware reset. A
command is sent to the 8041 controller to pulse the 80286 hardware reset line. Once the
80286 has been placed in the Protected Mode, a hardware reset is the only method available
to return to the Real Mode. POST mayor may not be performed depending upon the shut
down status byte in CMOS.

Once a reset operation has been initiated by one of the four possible sources, the system must
determine if it is a power-on reset. If it is a power-on reset, bit 2 in the 8041 controller's status
port is cleared. POST is performed. A command is sent to the 8041 to set bit 2. If it is not a
power-on reset, bit 2 in the 8041 controller status port is already set. The CMOS shutdown
status byte determines whether POST is performed.

If it is not a power-on reset, the system looks at the shut down status byte (CMOS address OFH)
to determine whether to perform POST or return from protected mode. If the shut down status
byte is set to one of the values that indicates the system is returning from protected mode, the
reset process will initiate the return from protected mode process. This process is described next.
All other values of the shut down status byte are interpreted as reset commands, and the reset
process will initiate the power-on self test process. The reset process has completed its tasks
when one of these two processes has been invoked.

10.3 Protected Mode Support

The 80286 processor has two modes of operation. Protected mode provides memory protection,
virtual memory addressing, and a 16 MB physical address space. Real mode provides a 1 MB
address space and an 8086 compatible mode. The normal mode of operation of the system is
real mode. However, a few programs use protected mode, for example, VDISC.SYS, the DOS
virtual disc device driver.

The system provides some support to the programmer for use of the protected mode features.
The INT 15H driver provides two functions that support system operation in protected mode.
One of these functions enables data to be moved to and from extended memory. This function
enters protected mode to perform this task, and returns to real mode. The second function
provides a method for programmers to switch into protected mode. These functions are
described in Section 9 of this manual.

314 System Processes



10.3.1 Shut Down Status Byte

The shut down status byte is used by the system to determine what action should be taken on
reset. Table 10.1 shows how the shut down status byte is interpreted. Note that any value that
does not indicate a return from protected mode is interpreted by the system as a reset, and will
cause the reset process to invoke POST.

Table 10.1

Shut Down Status Byte

Value

00-04H
OSH
06-07H
08H
09H
OAH
OBH-FFH

Definition

Perform power-on reset sequence.
Flush keyboard and jump via double word stored at 0040:0067H.
Perform power-on reset sequence.
Retu rn from test of extended memory.
Return from INT 15H block move function.
Jump via double word stored at 0040:0067H.
Perform power-on reset sequence.

The values 08H and 09H are used internally by the ROM BIOS. If the return from protected mode
process detects either of these values, it will branch to their respective routines. Values OSH and
OAH should be used by all other programs returning from protected mode.

10.4 Power-On Self Test (POSn

Each time the system is powered-on, or a reset is performed, the POST process is executed. The
purpose of the POST process is to verify the basic functionality of the system components and to
initialize certain system parameters. The POST process performs the following tasks:

System Processes 31 5



• Initialize the video display for diagnostic messages.

• Test the operation of the 80286.

• Test the system ROM.
~

• Test and initialize 8254 timer/counter and start the refresh counter.

• Test and initialize DMA controllers and DMA page registers.

• Test the first 64KB of system RAM.

• Test and initialize the 8259A interrupt controllers.

• Test the 8041 controller.

• Test the HP-HIL controller and link.

• Test CMOS RAM for integrity.

• Determine if manufacturing electronic tool is present, if so, run manufacturing test.

• Test the remaining base system RAM (RAM above the first 64KB.

• Test the extended RAM above memory address 1OOOOOH. (protected mode RAM.)

• Test the real-time clock portion of the RTC/CMOS chip.

• Test the flexible disc controller subsystem.

• Test the 80287 co-processor if present.

The power on self test performs tests on various sub-systems in the hardware when power is
switched on or when the system is reset. If a problem is detected, a 4 digit hex error code is
displayed. (In order for the code to be displayed, the video display adapter must be a multimode,
a monochrome, or a color adaptor.) These codes are listed in table 10.2.

POST then compares the configuration information stored in the CMOS memory with the actual
system. If a discrepancy is found, a message will be displayed instructing the user to run the
SETUP utility. For example, if the CMOS memory indicates two flexible disc drives present, but
the system contains only one, the message will be displayed.

316 System Processes



If the POST process is initiated by a soft reset, the RAM tests are not executed. This portion of
POST determines the amount of system memory and performs a test of that memory. In all other
aspects, POST executes the same for power-on, hard reset, and soft reset.

10.5 System Generation (SYSGEN)

When the POST code module has completed its tasks, it initiates the system generation (SYSGEN)
process. The SYSGEN process initializes the system software, then initiates the boot process. In
general, the system data structures are initialized by the SYSGEN process, whereas the system
hardware is initialized by the POST process. For example, the STD-BIOS and EX-BIOS data areas
are initialized by the SYSGEN process. SYSGEN initializes the following items:

• Interrupt vectors

• STD-BIOS data area

• EX-BIOS data area

The interrupt vectors are initialized to their default values. Processor interrupt vectors are
initialized to their appropriate service routines. Hardware interrupt vectors are initialized to their
service routines, or a null routine if they are unused. The interrupt vectors used to access the
STD-BIOS drivers are initialized to their respective driver entry points.

The STD-BIOS data area fields are initialized to their default values. Configuration dependent
fields such as the base I/O address of the serial and parallel ports, current video mode, etc. are
initialized at this time.

The EX-BIOS data area is set up next in the SYSGEN process. Initializing the EX-BIOS data area
consists of several distinct steps as outlined below.

System Processes 317



Table 10.2

Diagnostic Error Codes Displayed by POST

Error Code Test Description

0001 to OOOFH 80286 chip 80286 chip failed.

0010 ROM checksum ROM a fails checksum test.
0011 ROM checksum ROM 1 fails checksum test.

0110 to 012FH RTC test Real-time clock failed.
0200 to 02FFH CMOS test Real-time clock failed.

0300 to 037FH 8041 test 8041 keyboard controller failed.

0401 System error. Could not set A2a line.

1000 to 12FFH Timer chip test Timer chip failed

2110 to 211 FH DMA test DMA chip 1 failed.
2120 to 212FH DMA test DMA chip 2 failed.
2131H DMA test DMA chip 1 failed.
2132H DMA test DMA chip 2 failed.
2210 to 2217H DMA test Page register failed.

3000 to 30FFH HP-HIL controller HP-HIL controller failed.

4000 to 400FH RAM test 128k bank 0 dO-d3
4010 to 40FOH RAM test 128k bank a d4-d7
4100 to 410FH RAM test 128k bank 0 d8-d 11
4110 to 41FOH RAM test 128k bank 0 d 12-d 15

4200 to 420FH RAM test 128k bank 1 dO-d3
4210 to 42FOH RAM test 128k bank 1 d4-d7
4300 to 430FH RAM test 128k bank 1 d8-d 11
4310 to 43FOH RAM test 128k bank 1 d12-d15

4400 to 440FH RAM test 128k bank 2 dO-d3
4410 to 44FOH RAM test 128k bank 2 d4-d7
4500 to 450FH RAM test 128k bank 2 d8-d 11
4510 to 45FOH RAM test 128k bank 2 d12-d15

4600 to 460FH RAM test 128k bank 3 dO-d3
4610 to 46FOH RAM test 128k bank 3 d4-d7
4700 to 47·0FH RAM test 128k bank 3 d8-d 11
4710 to 47FOH RAM test 128k bank 3 d12-d15

318 System Processes



Error Code Test Description

4800 to 480FH RAM test 128k bank 4 dO-d3
4810 to 48FOH RAM test 128k bank 4 d4-d7
4900 to 490FH RAM test 128k bank 4 d8-d 11
4910 to 49FOH RAM test 128k bank 4 d12-d15

5000 to 5FFFH Reserved for Manufacturing test.

6100 to 6113H RAM test Address line defined by the last 2 digits
failed. (Hex) i.e. 6111 = address line 11 h
= a17 failed.

7100 to 71FFH 8259 test Master 8259 failed.
7200 to 72FFH 8259 test Industry Standard (STD) slave failed.
7300 to 73FFH 8259 test HP slave failed.
7400H 8259 test Master 8259 failed.
7500H 8259 test Industry Standard (STD) slave failed.
7500H 8259 test HP slave failed.

8000 to 82FFH Reserved for manufacturing test.

8300 to 83FFH Hard disc Controller/drive failed.

8400 to 8FFFH Reserved for manufacturing test.

9001 to 91FFH Flexible Disc Flexible disc controller problem.

9200 to 9FFFH Reserved for manufacturing test.

A002 to AOOFH 80287 co-proc. Internal problem with 287.

B001 to B007H Multimode Video adapter problem.
B008H Multimode Video adapter RAM problem.

COOO to CFFFH Extended RAM Extended RAM failure.
Where: OCOOO to OCOFFH = > even byte is bad

OC100 to OC1 FFH = > odd byte is bad.
xxOO to xxFEH = > bad RAM at address

00* 1OOOOH to OFE* 1OOOOH

example: if error = OC 124H then:
1 = > odd byte is bad.
24 = > error is in 128K bank starting at address:

024H * 1OOOOH = 0240 OOOH

if error = OCOF1 H then:
a => even byte is bad.
F1 = > error is in 128K bank starting at address:

OF1H*10000H = OF10 OOOH
00000 to OFF FFH Reserved for manufacturing test.

System Processes 319



10.5.1 Memory Allocation

The first step in the process is to allocate system memory for the EX-BIOS data area. This memory
allocation algorithm has two important features. First, by taking the memory size stored in CMOS ~

memory into consideration, it allows large driver data areas to be allocated in the EX-BIOS data
area. This method of expanding the EX-BIOS data area is explained in Section 9. Second, it
prevents invalid CMOS memory size data from preventing the system from booting. If the CMOS
memory size is set (using the SETUP utility or writing directly to the CMOS memory) such that
there is insufficient room for the EX-BIOS data area, this algorithm will adjust the value and write
the new value to CMOS memory. The EX-BIOS data area is required to support the EX-BIOS
extended features.

There are three important variables in this calculation.

• RAM_SIZE-This is the top of actual system memory. It is usually 256, 512, or 640 KB and
will always be an even multiple of 64 KB.

• EX-BIOS_SIZE-This variable is the size of the EX-BIOS data area, which is 4 KB in its default
configuration.

• CMOS_SIZE-This is the memory size stored in CMOS.

The CMOS_SIZE is checked for validity. If it is between 4 KB and 64 KB from RAM_SIZE, this
value is used as the base of the EX-BIOS data area. If CMOS_SIZE is more than 64 KB from
RAM_SIZE, the base of the EX-BIOS data area is located 64 KB below the top of actual system
memory. Finally, if CMOS_SIZE is less than 4 KB from the top of RAM_SIZE (or greater than the
top of actual memory), the base of the EX-BIOS data area is located 4 KB from the top of system
memory. The following formulas show this relationship:

If (RAM_SIZE-CMOS_SIZE) > 4KB and < 64KB
then EX-BIOS_SIZE = (RAM_SIZE-CMOS_SIZE).

If (RAM_SIZE-CMOS_SIZE) > 64KB
then EX-BIOS_SIZE = 64KB.

If (RAM_SIZE-CMOS_SIZE) < 4KB
then EX-BIOS_SIZE = 4KB.

The following examples illustrate this relationship:

In a 640 KB system, if CMOS_SIZE is 512 KB then the EX-BIOS_SIZE data area starts at 600
KB. This leaves an 88 KB free area between the EX-BIOS_SIZE data area and the memory
allocated to DOS.

320 System Processes



In a 640 KB system if CMOS_SIZE is 620 KB then the EX-BIOS_SIZE data area starts at 620
KB. In this case the EX-BIOS__SIZE data area occupies all the area between the top of RAM
and the memory allocated to DOS.

10.5.2 HP_VECTOIL-TABLE Initialization

Once the EX-BIOS data area has been allocated, and its base address determined, the
HP_VECTOLTABLE is constructed. An image of the default HP_VECTOLTABLE is stored in
the system ROM. This image is transferred from ROM to the base of the EX-BIOS data area. All
free and reserved vectors are initialized to point at V_DOLITILE, a null routine. Some of these
vectors will be initialized to other drivers later in the SYSGEN process.

10.5.3 EX-BIOS Driver Initialization

The next step in the SYSGEN process is the initialization of the EX-BIOS drivers. Each driver is
called with the SF_INIT subfunction. Some of the EX-BIOS drivers add vectors to the table when
called to initialize. For example, the V_HPHIL driver initializes the vector addresses reserved for
the HP-HIL physical device drivers. The HP_VECTOLTABLE is fully initialized to its default state
when each driver has been called in this manner. Additional drivers may be added or substituted
by application programs or system software utilizing the vector maintenance functions of
V_SYSTEM (refer to Section 9 for a description of these functions).

10.5.4 Option ROM Module Integration

The ROM BIOS architecture allows code modules residing on adapter cards to be integrated into
the system. These ROM modules must be in the system address range of OCOOOOH-ODFFFFH.
(Note that only video adapter cards can have base address in the range of oeOOOOH through
OC7FFFH). In addition to ROM modules located on adapter cards, the processor extension card
contains sockets for additional ROMs. These ROMs are addressed from OEOOOOH-OEFFFFH.
ROM modules located on adapter cards or on the processor extension card are integrated into
the system in the same manner.

System Processes 321



All ROM modules contain a header and checksum byte. The header format is shown below:

Byte 0-55H
Byte 1-0AAH
Byte 2-Length of ROM module in 512 byte blocks.
Byte 3-lnitialization entry point.

Bytes 0 and 1 are signature bytes. All ROM modules must contain this signature at the start of
the header in order to be identified by the SYSGEN process.

Byte 2 of the header contains the number of 512 byte blocks in the ROM module, except the
ROM module located on the processor extension card (memory address OEOOOOH). Byte 2 in that
ROM module header is reserved.

During the boot process, the address range from OC8000H to ODFFFFH is scanned in 2 KB blocks
looking for valid option ROM headers. In addition, memory location OEOOOOH is also examined
for a valid header. Since the scan does not proceed past OEOOOOH, only one ROM module can
reside in the address range OEOOOOH to OEFFFFH. The processor extension card will accept two
different size ROMs; 32 KB or 64 KB. If a 32 KB part is installed, the ROM will appear in the
system address space starting at location OE8000H instead of OEOOOOH. Therefore, the 32 KB
ROM will not be integrated into the system by SYSGEN.

If a valid ROM header is found, a checksum is computed for the ROM module. This is done by
summing each byte in the ROM module. The sum of all the bytes in the ROM, including the
checksum byte, must equal O. For ROM modules located from OCOOOOH to ODFFFFH, the
checksum is computed for the number of bytes indicated in the length field of the header. For a
ROM module located from OEOOOOH to OEFFFFH this checksum is calculated on the entire 64 KB
of address space.

If the checksum is valid, a FAR call to byte 3 of the module is is performed. The ROM module
should perform any initialization required and then execute a RETF instruction.

This integration process allows option ROMs to install vectors in either the HP_VECTOR_TABLE
or the low memory interrupt vectors. This re-vectoring process is the typical method used to
integrate ROM modules into the system.

322 System Processes



10.6 Boot Process (lNT 19H)

The boot process loads the operating system. The ROM BIOS INT 19H loads the boot sector from
drive /lA:/I or /lC:". This sector must contain the bootstrap loader for the operating system.
Control is then passed to the code loaded from the boot sector. This code is responsible for
loading the operating system. Refer to the appropriate operating system reference
documentation for additional information on its boot process.

10.6.1 Booting From a Flexible Disc

The INT 19H driver attempts to read the boot sector from Drive /lA:" (disc 0). It will retry the read
four times before failing. The boot sector on flexible discs is located on Side 0, Track 0, Sector 1.
Table 10.3 contains a description of the contents of a valid boot sector. If drive itA:" contains a
disc that does not have a valid boot sector, then the system will report the error message:

Non-System disc or disc error
Replace and strike any key when ready.

If a valid boot sector is found, it is read into memory starting at location 07COH:0000H (07COOH)
and control is transferred through a FAR JUMP to location 07COH:0000H. It is the responsibility
of this code to load the rest of the operating system into memory.

10.6.2 Booting From a Hard Disc

If the flexible disc drive does not contain a disc, the system will attempt to boot from the hard
disc. Booting from a hard disc is a two step process. First, the active partition must be
determined, then the boot record is read from the active partition.

The hard disc can be divided into as many as four partitions. Each partition contains an operating
system, programs, and data. Only one of the partitions can be active at any time. Partitions are
added, deleted, activated, and deactivated using utilities provided with the respective operating
systems. Partitions occupy a specified number of cylinders on the disc. For example, the optional
20 MB hard disc drive has 606 cylinders. One partition might occupy cylinders 0 through 303,
while the second partition occupied cylinders 304 through 605.

System Processes 323



Table 10.3

Boot Record

Offset

OOOOH
0003H
OOOBH
OOODH
OOOEH
0011H
0012H
0014H
0016H
0017H
0019H
001BH
001DH
001FH
01FEH

Size

3 Bytes
8 Bytes
1 Word
1 Byte
1 Word
1 Byte
1 Word
1 Word
1 Byte
1 Word
1 Word
1 Word
1 Word

478 Bytes
1 Word

Description

Near JUMP instruction to boot code.
OEM name and version number.
Bytes per sector.
Sectors per allocation unit.
Reserved sectors.
Number of File Allocation Tables (FATs).
Number of root directory entries.
Number of sectors in logical image.
Media descriptor.
Number of FAT sectors.
Sectors per track.
Number of heads.
Number of hidden sectors.
Boot code.
55AAH signature word.

The first physical sector (cylinder 0, head 0, sector 1) of the hard disc contains the master boot
record. The master boot record contains a code module and the disc partition table. The disc
partition table contains the starting and ending cylinder of each of the disc partitions, as well as
a flag that indicates whether the partition is active or not. Table 10.4 contains a description of
the master boot record.

Table 10.4

Hard Disc Master Boot Record

Offset

OOOOH
01BEH
01CEH
01DEH
01EEH
01FEH

Size

446 Bytes
16 Bytes
16 Bytes
16 Bytes
16 Bytes
1 Word

Description

Master boot code.
Partition table entry #1.
Partition table entry #2.
Partition table entry #3.
Partition table entry #4.
OAA55H signature word.

324 System Processes



A partition entry consists of 16 bytes. It contains information specifying the location of the
partition, type of operating system, and a flag to indicate if the partition is active. Table 10.5
details the partition table entry.

Table 10.5

Partition Table Entry Record

Size

1 Byte
1 Byte
1 Byte
1 Byte
1 Byte
1 Byte
1 Byte
1 Byte
2 Words
2 Words

Description

Boot indicator.
Starting head number.
Starting sector number.
Starting cylinder number. *
System indicator. **
Ending head number.
Ending sector number.
Ending cylinder number. *
Number of sectors in preceding partitions.
Total number of sectors in partition.

* The actual cylinder number is a ten bit value composed of the cylinder byte plus the two
most significant bits of the associated sector byte. These two bits are the most significant bits
of the ten bit number.

* * System indicators are:
DOH = Unknown operating system
01 H = DOS (12 bit FAT)
04H = DOS (16 bit FAD

The INT 19H code will load the code module contained in the master boot record into memory,
then transfer control to it. This code scans the data in the disc partition table to determine the
active partition, and its starting cylinder. The first sector of the active partition becomes the
logical boot sector of the partition, and it contains a boot record. The boot record has the same
format as the boot record contained on a flexible disc, except that some of the parameters are
adjusted for the increased capacity of the hard disc partition. Refer to table 10.3 for the format
of a typical boot record.

System Processes 325



326 System Processes



APPENDICES

TABLE OF CONTENTS

A. BIOS INTERRUPTS 331

A.1 Interrupt Vector Assignments 331

A.2 51D-B105 Interrupt and Functions 334

A.3 EX-BIOS Drivers and Functions 339

B. MEMORY MAP 349

B.1 System Memory Map 349

B.2 51D-BIOS Data Structures 350

8.2.1 RS-232 Communication Port Addresses 351

8.2.2 Parallel Printer Port Addresses 352

B.2.3 Equipment Byte Data Area 352

B.2.4 Keyboard Data Area 353

B.2.5 Flexible Disc Data Area 355

8.2.6 Video Display Data Area 357

B.2.7 Option ROM Data Area 358

8.2.8 Timer Data Area 358

B.2.9 System Data Flags 358

8.2.10 Hard Disc Data Area 359

8.2.11 Printer Timeout Counters 359

B.2.12 Keyboard Buffer Pointers 360

B.2.13 Enhanced Graphics Adapter (EGA) Data Area 360

8.2.14 Flexible Disc Rate Area 360

8.2.15 Extended Hard Disc Data Area 361

8.2.16 Extended Flexible Disc Data Area 361

8.2.17 Keyboard Mode Indicator 362

8.2.18 Real-time Clock Data Area 363

8.2.19 Pointer to EGA Data Area 364

Appendices 327



8.2.20 Intra-application Communications Area 364

8.2.21 Print Screen Status 364

8.2.22 DOS Data Area 365

8.2.23 Reserved Data Areas 365 ~

B.3 EX-BIOS Data Area Map 365

8.3.1 Option ROM Data Segments 367

B.3.2 EX-BIOS Global Data Area 367

B.4 ROM BIOS Memory Map 369

B.5 Product Identification 370

C. CMOS MEMORY LAYOUT AND
REAL-TIME CLOCK 371

C.1 Real-Time Clock/CMOS Access 372

C.2 Real-Time Clock (CMOS Address OOH-ODH) 373

C.3 Diagnostic Status Byte (CMOS Address OEH) 375

C.4 System Shutdown Byte (CMOS Address OFH) 375 ~

C.5 Diskette Descriptor Byte (CMOS Address 10H) 376

C.6 CMOS Fixed Disc Type (CMOS Address 12H) 377

C.7 Equipment Byte (CMOS Address 14H) 377

C.8 System Base RAM Size
(CMOS Address 15H-16H) 377

C.9 System Extended Memory Size
(CMOS Address 17H-18H) 378

C.10 EX-BIOS Checksum Byte (CMOS Address 28H) 379

C.11 EX-BIOS Reserved Bytes (CMOS Address 29H-2CH) 379

C.12 STD-BIOS Checksum Word
(CMOS Address 2EH-2FH) 380 ~

C.13 Test Information Byte (CMOS Address 33H) 380

D. I/O Port Map 381

D.1 DMA Channel Controller 382

328 Appendices



0.1.1 I/O Port Addresses for DMA Controllers 383

D.2 8259A Interrupt Controllers 385

D.3 8254 Timer Controller (I/O Ports 40H through 43H) 389

,.. D.4 Keyboard Data Buffer (60H) 389

D.5 SPU Control Port (61 H) 389

D.6 Speaker Control 390

D.7 Keyboard I/O Ports 391

D.8 Real Time Clock Ports 391

D.9 Hard Reset Enable Port 392

D.10 NMI Sources and Involved I/O Ports 392

E. SYSTEM EQUATE FILE 395

E.1 The Equate File 396

F. DEFAULT DEVICE MAPPiNG 423

G. DRIVER WRITER'S GUiDE 425

G.1 Who Should Read This Appendix 425

G.2 Introduction 425

G.3 Installation of Device Drivers 426

G.4 Initialization 427

G.4.1 Product Identification 427

G.4.2 Obtaining Memory From the EX-BIOS 428

G.4.3 Getting a Free Vector 429

G.5 EX-BIOS Driver Functions 429
EX-BIOS Driver Function Definitions 431

F_ISR (AH = OOH) 431
F_SYSTEM (AH = 02H) 432
SF_INIT (AX = 0200H) 432
SF_START (AX = 0202H) 432
SF_REPORT_STATE (AX = 0204H) 433
SF_VERSION_DESC (AX = 0206H) 433
SF_DEF-ADR (AX = 0208H) 434
SF_GET-ADR (AX = 020AH) 434

Appendices 329



SF_SET-.ATIR (AX = 020CH) 434
SF_OPEN (AX = 020EH) 435
SF_CLOSE (AX = 0210H) 435
SF_TIMEOUT (AX = 0212H) 435
SF_INTERVAL (AX = 0214H) 436
SF_TEST (AX = 0216H) 436 ~

F_IO_CONTROL (AH = 04H) 436
SF_LOCK (AX = 0400H) 436
SF_UNLOCK (AX = 0402H) 437
F_PUT_BYTE (AH = 06H) 437
F_GET_BYTE (AH = 08H) 437
F_PUT_BUFFER OR F_PUT_BLOCK (AH = OAH) 437
F_GET_BUFFER OR F_GET_BLOCK (AH = OCH) 438
F_PUT_WORD (AH = OEH) 439
F_GET_WORD (AH = 10H) 439

G.6 Return Status Codes 440

G.7 Driver Headers 441

G.7.1 HP_SHEADER Fields 442

G.7.2 Driver Mapping 446

G.8 Accessing Driver from an Application 446 ~

G.9 Examples of EX-BIOS Drivers 447

G.9.1 Cursor Pad Scan Code To HP Mouse Driver 421

G.9.2 Application Resident EX-BIOS Driver 461

G.9.3 Non-HP-HIL Input Devices 461

H. ASCII AND SCANCODE CONVERSION TABLES 483

I. HEXADECIMAL ARITHMETiC 489

330 Appendices



APPENDIX A

A. BIOS INTERRUPTS

This appendix contains three tables. The first lists the interrupt vector assignments. The second
lists each of the STD-BIOS interrupts with supported functions. The third lists the EX-BIOS drivers;
their vector addresses, functions and subfunctions.

A.1 Interrupt Vector Assignments

Table A.1

Interrupt Vector Assignments

Address Int Function Type* Service Routine**

0OO-OO3H 0 Divide by Zero PI STD-BIOS (UI)
004-007H 1 Single Step PI STD-BIOS (UI)
008-00BH 2 Nonmaskable Interrupt PI STD-BIOS
OOC-OOFH 3 Breakpoint PI STD-BIOS (UI)
010-013H 4 Arithmetic Overflow PI STD-BIOS (UI)

014-017H 5 Print Screen SW STD-BIOS (DRVR)
018-01BH 6 Invalid Opcode PI STD-BIOS (UI)
01C-01FH 7 Reserved PI STD-BIOS (UI)
020-023H 8 Timer Interrupt (IRQ 0) HW STD-BIOS
024-027H 9 Keyboard ISR (IRQ 1) HW STD-BIOS

BIOS Interrupts 331



Address tnt Function Type* Service Routine**

028-02BH A Reserved (IRQ 2) HW STD-BIOS
02C-02FH B Serial Port 1 ISR (IRQ 3) HW STD-BIOS (UI)
030-033H C Serial Port 0 ISR (IRQ 4) HW STD-BIOS (UI)
034-037H 0 Printer Port 1 ISR (IRQ 5) HW STD-BIOS (UI)
038-03BH E Diskette ISR (IRQ 6) HW STD-BIOS

03C-03FH F Printer Port 0 ISR (IRQ 7) HW STD-BIOS (UI)
040-043H 10 Video SW STD-BIOS (DRVR)
044-047H 11 Equipment Check SW STD-BIOS (DRVR)
048-04BH 12 Memory Size SW STD-BIOS (DRVR)
04C-04FH 13 Diskette/Hard Disc SW STD-BIOS (DRVR)

OSO-OS3H 14 Serial SW STD-BIOS (DRVR)
OS4-057H 15 System Functions SW STD-BIOS (DRVR)
058-05BH 16 Keyboard SW STD-BIOS (DRVR)
OSC-OSFH 17 Printer SW STD-BIOS (DRVR)
060-063H 18 Reserved SW N/A (IRET)

064-067H 19 Boot SW STD-BIOS (DRVR)
068-06BH 1A Time and Date SW STD-BIOS (DRVR)
06C-06FH 1B Keyboard Break SW STD-BIOS (IRET)
070-073H 1C Timer Tick SW STD-BIOS (IRET)
074-077H 10 Video Parameter Table PT STD-BIOS

078-07BH 1E Diskette Parameter Table PT STD-BIOS
07C-07FH 1F Graphics Character Table PT STD-BIOS
080-083H 20 Program Terminate SW DOS
084-087H 21 DOS Function Calls SW DOS
088-08BH 22 DOS Terminate Address PT DOS

08C-08FH 23 DOS <CTRL>-<Break>
Address SW DOS

090-093H 24 DOS Critical Error SW DOS
094-097H 25 DOS Absolute Disc Read SW DOS
098-09BH 26 DOS Absolute Disc Write SW DOS
09C-09FH 27 DOS Terminate Stay Resident SW DOS

OAO-OCBH 28-32 Reserved for DOS SW DOS
OCC-OCFH 33 HP Mouse Service SW EX-BIOS (DRVR)
OOO-OFFH 34-3F Reserved for DOS SW DOS
100-103H 40 Alternate Diskette SW STD-BIOS
104-107H 41 Hard Disc Parameter Table (0) PT STD-BIOS

332 BIOS Interrupts



Address Int Function Type* Service Routine**

108-117H 42-45 Reserved SW STD-BIOS
118-118H 46 Hard Oisc Parameter Table (1) PT STO-BIOS
11C-17FH 47-5F Reserved SW STD-BIOS
180-19FH 60-67 Reserved for User Programs SW N/A
1AO-1A3H 68 8041 Service Request ISR HW EX-BIOS

1A4-1A7H 69 Keyboard OBF ISR HW EX-BIOS
1A8-1A8H 6A Reserved HW EX-BIOS
1AC-1AFH 68 Reserved HW EX-BIOS
1BO-1B3H 6C HP-HIL Controller ISR HW EX-BIOS
1B4-187H 60 Reserved HW EX-BIOS

1B8-18BH 6E Reserved HW EX-BIOS
1BC-18FH 6F EX-BIOS Entry Point SW EX-BIOS (DRVR)
1CO-1C3H 70 Real-time Clock ISR (IRQ 8) HW STD-BIOS
1C4-1C7H 71 SW Redirected (IRQ 9) HW STO-BIOS
1C8-1CBH 72 Reserved (IRQ 10) HW STD-BIOS (UI)
1CC-1CFH 73 Reserved (IRQ 11) HW STD-BIOS (UI)
100-103H 74 Reserved (IRQ 12) HW 5TO-BIOS (UI)
104-107H 75 Coprocessor (IRQ 13) HW 5TO-BIOS
108-10BH 76 Hard Disc ISR (IRQ 14) HW 5TD-BIOS (UI)
10C-10FH 77 Reserved (IRQ 15) HW STO-BIOS (UI)

1EO-1FFH 78-7F Not Used 5W N/A
200-3C3H 80-FO Reserved SW N/A
3C4-3FFH F1-FF Not Used 5W N/A

* PI -Processor interrupt
HW -Hardware interrupt
SW -Software interrupt
PT -Interrupt vector used as pointer to data.
N/A -Not applicable

**UI -Unused Interrupt ISR
IRET -Interrupt Returned
DRVR-Application callable Entry Point

r- The following table lists the STD-BIOS interrupt vectors, their usage and, where appropriate, their
functions.

BIOS Interrupts 333



A.2 5TO-8105 Interrupts and Functions

Table A.2

510-8105 Interrupts and Functions

INT Function Function
Hex Equate Value Definition

DOH Divide by zero
01H Single step
02H Nonmaskable interrupt
03H Breakpoint
04H Arithmetic overflow
OSH Print screen
06H Invalid opcode
07H Reserved
08H Timer interrupt
09H Keyboard ISR
OAH Reserved
OSH Serial port 1 ISR
OCH Serial port °ISR
OOH Printer port 1 ISR
OEH Diskette ISR
OFH Printer port °ISR
10H INT_VIDEO Video

F10_SET_MODE OOH Set video mode
F10_SET_CURSIZE 01H Set cursor size
F10_SET_CURPOS 02H Set cursor position
F10_RD_CURPOS 03H Read cursor position
F10_RD_PENPOS 04H Read light-pen position
F10_SET_PAGE OSH Set active display page
F10_SCROLLUP 06H Scroll rectangle up
F1O_SCROLLDN 07H Scroll rectangle down
F10_RD_CHARATR 08H Read character and attribute at

cursor position
F10_WLCHARATR 09H Write character and attribute at

cursor position
F10_WLCHARCUR OAH Write character at cursor position
F10_SET_PALLET OSH Set color pallet
F10_WLPIXEL OCH Write pixel

334 BIOS Interrupts



INT Function Function
Hex Equate Value Definition

F10_RD_PIXEL OOH Read pixel
F10_WLCHARTEL OEH Write teletype character
F10_GET_STMODE OFH Get video state and mode

10H-12H Reserved
Write string functions

F10_WRS_OO 1300H global attribute
F10_WRS_01 1301H global attribute, move cursor
F10_WRS_02 1302H individual attributes
F10_WRS_03 1303H individual attributes, move cursor
F10_INQUIRE 6FOOH EX-BIOS present
F10_GET_INFO 6F01H Get video parameters
F10_SET_INFO 6F02H Set video parameters
F10_MOD_INFO 6F03H Modifies video parameters
F10_GET_RES 6F04H Report video resolution
F10-XSET_MODE 6FOSH Set video resolution

11H INT_EQUIPMENT Equipment check

12H INT_MEM_SIZE Memory Size

* * * r~ote that both hard disc and * * *
diskette share interrupt 13H

13H INT_DISC Disc Functions
F13_RESET_DISC DOH Reset Disc
F13_RD_LSTATUS 01H Read status of last operation
F13_RD_SECTORS 02H Read sectors
F13_WR_SECTORS 03H Write sectors
F13_VR_SECTORS 04H Verify sectors
F13_FORMAT_FLEX OSH Format flexible disc track

06H Reserved
F13_FORMAT_HDISC 07H Format hard disc
F13_GET_HPARMS 08H Get hard disc parameters

09H-OBH Reserved
F13_TRACK_SEEK OCH Seek to track
F13~LT_RESET DOH Alternate hard disc reset

OEH-014H Reserved
F13_GET_DASD 1SH Read disc type (DASD)
F13_CHG_STATUS 16H Get disc change line status
F13_SET_DASD 17H Set disc type for formatting (DASD)

BIOS Interrupts 335



INT Function Function
Hex Equate Value Definition

14H INT_SERIAL Serial
F14_INIT DOH Initialize serial port parameters
F14--><MIT 01H Send out one character
F14_RECV 02H Receive one character
F14_STATUS 03H Get serial port status
F14_INQUIRE 6FOOH EX-BIOS present
F14_EXINIT 6F01H Initializes serial port (19.2 Kbaud)
F14_PUT_BUFFER 6F02H Write a buffer of data
F14_GET_BUFFER 6F03H Read a buffer of data
F14_TRM_BUFFER 6F04H Read a buffer of data, terminate on

specified condition

1SH INT_SYSTEM System functions
DOH Unsupported (turn on cassette

motor)
01H Unsupported (turn off cassette

motor)
02H Unsupported (read data blocks)
03H Unsupported (write data blocks)

F15_DEVICE_OPEN 80H Device open
F15_DEVICE_CLOSE 81H Device close
F15_PROG_TERM 82H Program termination
F15_WAIT_EVENT 83H Event wait
F15~OYSTICK 84H Joystick support
F15_SYS_REQ 8SH System request key pressed
F15_WAIT 86H Wait fixed amount of time
F15_BLOCLMOVE 87H Extended memory transfer
F15_GET--><MEM_SIZE 88H Get extended memory size
F15_ENTELPROT 89H Switch to protected mode
F15_DEV_BUSY 91H Device busy hook
F15_INT_COMPLETE 8SH Set Interrupt Completed Flag

16H INT_KBD Keyboard
F16_GET_KEY DOH Read keycode from keyboard buffer
F16_STATUS 01H Report status of keyboard buffer
F16_KEY_STATE D2H Get key modifier status
F16_INQUIRE 6FODH EX-BIOS present
F16_DEF--ATTR 6F01H Report default typematic values
F16_G ET--ATTR 6F02H Report typematic values
F16_SET--ATTR 6F03H Set typematic values
F16_DEF_MAPPING 6F04H Report default translator

assignments

336 BIOS Interrupts



INT Function Function
Hex Equate Value Definition

F16_GET_MAPPING 6FOSH Report translator assignments
F16_SET_MAPPING 6FD6H Set translator assignments
F16_SET~LATORS 6FD7H Set CCP and softkey pads
F16_KBD 6FD8H Report keyboard information
F16_KBD_RESET 6FD9H Reset keyboard to defaults

17H INT_PRINTER Printer
F17_PUT_CHAR DOH Send printer one byte
F17_INIT D1H Initialize printer port
F17_STATUS D2H Get printer port status
F17_INQUIRE 6FODH EX-BIOS present

6F01H Reserved
F17_PUT_BUFFER 6F02H Write a buffer to printer port

6F03H Reserved
6F04H Reserved

18H Reserved
19H INT_BOOT Boot

1AH INT_CLOCK Time and date
F1~RD_CL~CNT DOH Read current clock count
F1~SET_CL~CNT 01H Set current clock count
F1~GET_RTC 02H Read real-time clock
F1~SET_RTC 03H Set real-time clock
F1~GET_DATE D4H Read date from real-time clock
F1~SET_DATE OSH Set date in real-time clock
F1 ~SET--ALARM 06H Set alarm
F1~RESET--ALARM 07H Reset alarm

1BH Keyboard break
1CH Timer tick
1DH Video parameter table
1EH Diskette parameter table
1FH Graphics character table
20H Program terminate
21H DOS function calls
22H DOS terminate address
23H DOS <CTRL>-<Break> address
24H DOS critical error
2SH DOS absolute disc read
26H DOS absolute disc write
27H DOS terminate stay resident
28H-32H Reserved for DOS

BIOS Interrupts 337



INT Function Function
Hex Equate Value Definition

33H INT__HPMOUSE HP Mouse service
F33__INSTALL DOH Mouse installed flag

~F33__ENABLE 01H Put cursor on screen
F33__DISABLE 02H Turn off cursor
F33__REPORT__DATA 03H Get position/button information
F33__PUT_CURSOR 04H Position the cursor
F33_REPORT__PRESS 05H Report button press status
F33_REPORT__RELEASE 06H Report button release status
F33_SET_HORIZ 07H Set min/max horizontal values
F33_SET_VERT 08H Set min/max vertical values
F33__GRAPH__CURSOR 09H Define graphics cursor
F33__TEXT__CURSOR OAH Define text cursor
F33_MOTION OSH Report motion counters
F33__SET__USR OCH Define user subroutine
F33_ENABLE__LIGHT OOH Unsupported
F33_DISABLE__LIGHT OEH Unsupported
F33--RATIO OFH Set pixel movement ratio
F33_COND_OFF 10H Define conditional off area
F33_RESERVED 11H Reserved ~
F33--><TEND_GCSR 12H Extended sprite graphics entry point
F33__SPEED 13H Sets mouse movement doubling
F33__INQUIRE 6FOOH EX-BIOS mouse driver present

34H-3FH Reserved for DOS
40H Alternate Diskette
41H Hard Disc Parameter Table (0)
42H-45H Reserved
46H Hard Disc Parameter Tabie (1)
47H-5FH Reserved
60H-67H Reserved for User Programs
68H 8041 Service Request ISR
69H Keyboard OBF ISR
6AH Reserved
6BH Reserved
6CH HP-HIL Controller ISR
60H Reserved

~6EH Reserved
6FH HP__ENTRY EX-BIOS Entry Point
70H Real-tirTle Clock ISR (IRQ 8)
71H SW redirected (IRQ 9)
72H Reserved (IRQ 10)
73H Reserved (IRQ 11)

338 BIOS Interrupts



INT Function Function
Hex Equate Value Definition

74H Reserved (IRQ 12)

~
75H Coprocessor (IRQ 13)
76H Hard Disc ISR (IRQ 14)
77H Reserved (IRQ 15)
78H-7FH Not Used
80H-FOH Reserved
F1H-FFH Not Used

A.3 EX-BIOS Drivers and Function-s

Many additional features of the HP system can be accessed through the software interrupt INT
6FH. To call the EX-BIOS extensions, the BP register must contain the vector address of the
desired driver, the AH register must contain the function code, and the AL register must contain
the subfunction code. The rest of the registers are available for passing data and returning data
to and from the routine.

In general the AX, BP and DS registers are not preserved. They must be preserved by the calling
routine if it needs them. See Section 2 for an example showing how EX-BIOS drivers are called.

Table A.3

EX-BIOS Drivers and Functions

Vector Func. Function
Address Value Equate Definition

OOOOH V_SCOPY Copyright Notice Routine

0006H V_DOLITILE Nap Routine (IRET)

OOOCH V_PNULL Null device driver

0012H V_SYSTEM System Management Functions
0012H 00 F_ISR Interrupt service routine

(unsupported)
0012H 02 F_SYSTEM Standard driver functions
0012H 02/00 SF_INIT System initialization

BIOS Interrupts 339



Vector Func. Function
Address Value Equate Definition

0012H 04 F_INS_BASEHPVT Returns HP_VECTOLTABLE
segment

0012H 06 F_INS-XCHGFIX Exchanges fixed table entries ~0012H 08 F_INS-XCHGRSVD Sets next "reserved" entry in
table

0012H OA F_INS-XCHGFREE Sets next "free" entry in table
0012H OC F_INS_FIXOWNDS Install fixed vector, user

supplied DS
0012H DE F_INS_FIXGETDS Install fixed vector, system

supplies DS
0012H 10 F_INS_FIXGLBDS Install fixed vector, DS set to

global data area
0012H 12 F_INS_FREEOWNDS Install next free vector, user

supplies DS
0012H 14 F_INS_FREEGETDS Install next free vector, system

supplies DS
0012H 16 F_INS_FREEGLBDS Install next free vector, DS set

to global data area
0012H 18 F_INS_FIND Search for matching device

header
0012H 1A Reserved * ~0012H 1C Reserved *
0012H 1E F_RAM_GET Get EX-BIOS memory pool

address and size
0012H 20 F_RAM_RET Set memory pool address and

size
0012H 22 F_CMOS_GET Read and verify CMOS memory
0012H 24 F_CMOS_RET Write to CMOS memory
0012H 26 Reserved *
0012H 28 Reserved *
0012H 2A F_YIELD Just returns
0012H 2C Reserved *
0012H 2E Reserved *
0012H 30 F_SND_CLICLENABLE Enable keyclick
0012H 32 F_SND_CLICLDISABLE Disable keyclick (Default)
0012H 34 F_SND_CLlCK Execute keyclick if enabled
0012H 36 F_SND_BEEP_ENABLE Enables beep
0012H 38 F_SND_BEEP_DISABLE Disables beep
0012H 3A F_SND_BEEP Beeps if enabled

~0012H 3C F_SND_SET_BEEP Sets beep frequency
0012H 3E F_SND_TONE Produce tone, user suppled

duration and frequency
0012H 40 F_STR_GET_FREE_INDEX Return next free string index
0012H 42 F_STLDELBUCKET Delete bucket string list
0012H 44 F_STLPUT_BUCKET Add bucket to current string list

340 BIOS Interrupts



Vector Func. Function
Address Value Equate Definition

0012H 46 F_STLGET_STRING Search the list for index, return
string

0012H 48 F_STLGET_INDEX Search list for a string, return
index

0018H Reserved *
001EH V_S8259 8259 interrupt controller

support
001EH 00 F_ISR Unsupported
001EH 02 F_SYSTEM System functions
001EH 02/00 SF_INIT Initialize HP slave 8259A
001EH 02/02 SF_START Enable HP slave 8259A

interrupts
001EH 02/06 SF_ VERSION_DESC Report HP version number
001EH 04 F_1O_CONTROL Entry point to I/O control

functions
001EH 04/00 SF_ENABLE_SVC Unmask svc/8041 interrupt
001EH 04/02 SF_DISABLE_SVC Mask svc/8041 interrupt
001EH 04/04 SF_ENABLE_KBD Unmask keyboard INT 9

interrupt
001EH 04/06 SF_DISABLE_KBD Mask keyboard INT 9 interrupt
001EH 04/08 SF_ENABLE_HPHIL Unmask HP-HIL interrupt
001EH 04/0A SF_DISABLE_HPHIL Mask HP-HIL interrupt

0024H Reserved *
002AH V_SINPUT Inquire Commands
002AH 00 F_ISR Pass ISR Event Record to

physical driver
002AH 02 F_SYSTEM System Functions
002AH 02/00 SF_INIT Supported
002AH 04 F_IO_CONTROL Entry point to I/O control

functions
002AH 04/00 SF_DEF_LINKS Set header link fields to system

defaults
002AH 04/02 SF_GET_LINKS Return device header link field

entries
002AH 04/04 SF_SET_LINKS Set device header link field

entries
002AH 06 F_INQUIRE Return describe record for an

HP-HIL device
002AH 08 F_INQUIRE-.ALL Return device IDs for all HP-HIL

devices present
002AH OA F_INQUIRE_FIRST Return vector address of first

HP-HIL device driver
OD2AH DC F_REPORT_ENTRY Report entry point of PGID

BIOS Interrupts 341



Vector Func. Function
Address Value Equate Definition

0030H Reserved *
0036H V_QWERTY QWERTY keypad translator
0036H 00 F_ISR Translates to PC scan code.
0036H 02 F_SYSTEM System functions
0036H 02/06 SF_VERSION_DESC Reports HP version number

003CH V_SOFTKEY Physical HP softkey translator
003CH 00 F_ISR Translates to PC scan code
003CH 02 F_SYSTEM System functions
003CH 02/00 SF_INIT Driver initialization
003CH 02/06 SF_ VERSION_DESC Report HP version number

0042H V_FUNCTION Industry standard function key
translator

0042H 00 F_ISR Logical Interrupt
0042H 02 F_SYSTEM System functions
0042H 02/06 SF_VERSION_DESC Report HP version number

0048H V_NUMPAD Ind. standard numeric Key Pad
Translator

0048H 00 F_ISR Logical Interrupt
0048H 02 F_SYSTEM System functions
0048H 02/06 SF_VERSION_DESC Reports HP version number

004EH V_CCP Cursor Control Key Pad
Translator

004EH 00 F_ISR Logical Interrupt
004EH 02 F_SYSTEM System functions
004EH 02/06 SF_VERSION_DESC Reports HP version number

0054H V_SVIDEO Video Functions
0054H 00 F_ISR Interrupt service routine
0054H 02 F_SYSTEM Standard driver functions
0054H 04 F_IO_CONTROL Driver dependent control

functions
0054H 04/00 SF_VID_ID_HP Returns the value "HP" in BX

register
0054H 04/02 SF_VID_GET_INFO Return video display adapter

information
0054H 04/04 SF_VID_SET_INFO Set info. on Extended Control

Register of the Multimode
Video Adapter

0054H 04/06 SF_VID_MOD_INFO Modify Extended Control
Register of Multimode Video
Adapter

0054H 04/08 SF_VID_GET_RES Get the resolution of active
video adaptor

0054H 04/0A SF_VID_SET_MODE Set video mode of active
Display adapter

342 BIOS Interrupts



Vector Func. Function
Address Value Equate Definition

OOSAH V_STRACK Sprite control
OOSAH 00 F_ISR Update sprite
OOSAH 02 F_SYSTEM System functions
OOSAH 02/00 SF_INIT Initialize driver
OOSAH 02/02 SF_START Start driver
OOSAH 04 F_ TRACK_INIT Sets tracking to default state
OOSAH 06 F_TRACK_ON Enables tracking
OOSAH 08 F_TRACK_OFF Disables tracking
OOSAH OA F_DEF_MASKS Define sprite masks
OOSAH DC F_SET_L1MITSJ Set max/min horizontal values
OOSAH DE F_SET_LIM ITS_Y Set max/min vertical values
OOSAH 10 F_PUT_SPRITE Display sprite
OOSAH 12 F_REMOVE_SPRITE Remove sprite from display

0060H V_EVENT_TOUCH Application access to touch
events

0566H V_EVENT__TABLET Application access to tablet
events

006CH V_EVENT_POINTER Application access to pointer
events

0072H-84H Reserved *
008AH V_CCPCUR Cursor control pad translator
008AH 00 F_ISR Logical Interrupt
008AH 02 F_SYSTEM System functions
008AH 02/06 SF_VERSION_DESC Returns HP version number

0090H V_RAW Return untranslated CCP data
0090H 00 F_ISR Logical Interrupt
0090H 02 F_SYSTEM System functions
0090H 02/06 SF_VERSION_DESC Returns HP version number

009'6H V_CCPNUM Translate scancodes from
Numeric Pad

0096H 00 F_ISR Logical Interrupt
0096H 02 F_SYSTEM System functions
0096H 02/06 SF_VERSION_DESC Returns HP version number

009CH V_OFF Discards CCP and HP softkey
scancodes

009CH 00 F_ISR Logical Interrupt.
009CH 02 F_SYSTEM System functions
009CH 02/06 SF_VERSION_DESC Returns HP version number

00A2H V_CCPGID Translates CCP data to
T_REL 16 data

00A8H V_SKEY2FKEY HP softkeys to function key
translator

BIOS Interrupts 343



Vector Func. Function
Address Value Equate Definition

00A8H 00 F_ISR Logical Interrupt
00A8H 02 F_SYSTEM System functions
00A8H 02/06 SF_ VERSION_DESC Returns HP version number

OOAEH V_8041 8041/keyboard interface.
provides HP extensions to INT
16H

OOAEH 00 F_ISR Processes ISR event record
OOAEH 02 F_SYSTEM System functions
OOAEH 02/00 SF_INIT Initializes driver
OOAEH 02/02 SF_START Driver Start-up
OOAEH 02/06 SF_ VERSION_DESC Reports HP version number
OOAEH 04 F_IO_CONTROL Driver Dependant Functions
OOAEH 04/00 through 04/08 Reserved *
OOAEH 04/0A SF_CREAT_INTR Create interval entry
OOAEH 04/0C SF_DELET_INTR Delete interval entry
OOAEH 04/0E SF_ENABLINTR Enable interval
OOAEH 04/10 SF_DISBLINTR Disable interval
OOAEH 04/12 SF_SET_RAMSW Set RAM switch to one (1)
OOAEH 04/14 SF_CLLRAMSW Set RAM switch to zero (0)
OOAEH 04/16 SF_SET_CRTSW Set CRT switch to one (1)
OOAEH 04/18 SF_CLLCRTSW Set CRT switch to zero (0)
OOAEH 04/1A SF_PASS_THRU Pass data byte to 8041
OOAEH 04/1 C through 04/2E Reserved *
00B4H V_PGID_CCP Translate GID info to cursor

control pad format
OOBAH V_LTABLET Application interface to Tablet
OOBAH 00 F_ISR Logical Interrupt
OOBAH 02 F_SYSTEM System functions
OOBAH 02/00 SF_INIT Initialize the driver data area
OOBAH 02/02 SF_START Start driver
OOBAH 02/04 SF_REPORT_STATE Report state of device
OOBAH 02/06 SF_ VERSION_DESC Report driver version number
OOBAH 02/08 SF_DEF-ATIR Set default logical scaling

attributes
OOBAH 02/0A SF_GET-ATIR Get scaling attributes
OOBAH 02/0C SF_SET-ATIR Set scaling attributes
OOBAH 04 F_IO_CONTROL I/O Control Functions
OOBAH 04/00 SF_LOCK Unsupported
OOBAH 04/02 SF_UNLOCK Unsupported
OOBAH 04/04 SF_TRACLON Turns cursor track on
OOBAH 04/06 SF_ TRACLOFF Turns cursor track off
OOBAH 04/08 SF_CREATE_EVENT Establish a new routine to be

called on logical device events
OOBAH 04/0A SF_EVENT_ON Enable event call to parent

driver

344 BIOS Interrupts



Vector Func. Function
Address Value Equate Definition

OOBAH 04/0C SF_EVENT_OFF Disable event call to parent
driver

OOBAH 04/0E SF_CLIPPING_ON Enable logical device clipping
OOBAH 04/10 SF_CLIPPING_OFF Disable logical device clipping
OOBAH 06 F_SAMPLE Report absolute position of GID

OOCOH V_LPOINTER Application interface to Pointer/
Mouse

OOCOH 00 F_ISR Logical Interrupt
OOCOH 02 F_SYSTEM System functions
OOCOH 02/00 SF_INIT Initialize the driver data area
OOCOH 02/02 SF_START Start driver
OOCOH 02/04 SF_REPORT_STATE Report state of device
OOCOH 02/06 SF_ VERSION_DESC Report driver version number
OOCOH 02/08 SF_DEF-ADR Set default logical scaling

attributes
OOCOH 02/0A SF_GET-ADR Get scaling attributes
OOCOH 02/0C SF_SET-ADR Set scaling attributes
OOCOH 04 F_la_CONTROL I/O Control Functions
OOCOH 04/00 SF_LOCK Unsupported
OOCOH 04/02 SF_UNLOCK Unsupported
OOCOH 04/04 SF_THACLON Turn cursor track on
OOCOH 04/06 SF_ THACLOFF Turn cursor track off
OOCOH 04/08 SF_CREATE_EVENT Establish a new routine to be

called on logical device events
OOCOH 04/0A SF_EVENT_ON Enable event call to parent

driver
OOCOH 04/0C SF_EVENT_OFF Disable event call to parent

driver
OOCOH 04/0E SF_CLIPPING_ON Enable logical device clipping
OOCOH 04/10 SF_CLIPPING_OFF Disable logical device clipping
OOCOH 06 F_SAMPLE Report absolute position GID
00C6H V_LTOUCH Application interface to Touch

Screen
00C6H 00 F_ISR Logical Interrupt
00C6H 02 F_SYSTEM System functions
00C6H 02/00 SF_INIT Initialize the driver data area
00C6H 02/02 SF_START Start driver
00C6H 02/04 SF_REPORT_STATE Report state of device
00C6H 02/06 SF_VERSION_DESC Report driver version number
00C6H 02/08 SF_DEF-ADR Set default logical scaling

attributes
00C6H 02/0A SF_GET-ATIR Get scaling attributes
00C6H 02/0C SF_SET-ATIR Set scaling attributes
00C6H 04 F_1O_CONTROL I/O Control functions
00C6H 04/00 SF_LOCK Unsupported

BIOS Interrupts 345



Vector Func. Function
Address Value Equate Definition

00C6H 04/02 SF_UNLOCK Unsupported
00C6H 04/04 SF_TRACLON Turn cursor track on
00C6H 04/06 SF_ TRACLOFF Turn cursor track off
00C6H 04/08 SF_CREATE__EVENT Establish a new routine to be

called on logical device events
00C6H 04/0A SF_EVENT_ON Enable event call to parent

driver
00C6H 04/0C SF_EVENT_OFF Disable event call to parent

driver
00C6H 04/0E SF_CLIPPING_ON Enable logical device clipping
00C6H 04/10 SF_CLIPPING_OFF Disable logical device clipping
00C6H 06 F_SAMPLE Report absolute position of GID

OOCCH V_LHPMOUSE Interface to Microsoft Mouse
driver

OOCCH 00 F_ISR Logical Interrupt
OOCCH 02 F_SYSTEM System Functions
OOCCH 02/00 SF_INIT Initializes driver
OOCCH 02/02 SF_START Starts driver
OOCCH 04 F_IO_CONTROL I/O control driver functions
OOCCH 04/00 SF_MOUSE_COM BIOS mouse install function
OOCCH 04/02 SF_MOUSE_OVERRIDE Set speed factor

0108H V_NULL No driver

010EH Reserved *
0114H V_HPHIL Setup HP-HIL to INPUT driver

linkage
0114H 00 F_ISR Logical Interrupt
0114H 02 F_SYSTEM System Functions
0114H 02/00 SF_INIT Initializes the driver data area
0114H 02/04 SF_REPORT_STATE Reports state of device
0114H 02/06 SF_VERSION_DESC Reports driver version number
0114H 02/0E SF_OPEN Put driver in open state
0114H 02/10 SF_CLOSE Put driver in closed state
0114H 04 F_IO_CONTROL I/O control to driver
0114H 04/06 SF_CRV_RECONFIGURE Forces HP-HIL to reconfigure all

devices
0114H 04/08 SF_CRV_WLPROMPTS Write a prompt to a device
0114H 04/0A SF_CRV_WFL..ACK Write an acknowledge to a

device
0114H 04/0C SF_CRV_REPEAT Sets either 30Hz or 60Hz repeat

rate
0114H 04/0E SF_CRV_DISABLE_REPEAT Cancel keyboard repeat rate
0114H 04/10 SF_CRV_SELF_TEST Issue self-test command to

physical device

346 BIOS Interrupts



Vector Func. Function
Address Value Equate Definition

0114H 04/12 SF_CRV_REPORT_STATUS Get status from any HP-HIL
device that needs to report

0114H 04/14 SF_CRV_REPORT_NAME Returns the ASCII name for a
device

0114H 04/16 SF_KEYBOARD_REPEAT Set typematic values
0114H 04/18 SF_KEYBOARD_LED Sets keyboard LED states
0114H 06 F_PUT__BYTE Write one byte to specified

HP-HIL device
0114H 08 F_GET_BYTE Read one byte from specified

HP-HIL device
0114H OA F_PUT_BUFFER Write a string of bytes to HP-HIL

device

011AH-1C2H Reserved *

1C8H-228H Vectors available (16)

xxxH** Keyboard Driver Processes scancodes form
HP-HIL driver

00 F_ISR Logical Interrupt
02 F_SYSTEM System Functions

02/00 SF_INIT Driver initialization
02/06 SF_ VERSION_DESC Reports HP version number

xxxH** HP-HIL driver vectors Physical HP-HIL driver vectors
1 thru 7

00 F_ISR Logical Interrupt
02 F_SYSTEM System functions
02/00 SF_INIT Initialize driver
02/02 SF_START Start driver
02/04 SF_REPORT_STATE Unsupported
02/06 SF_ VERSION_DESC Report HP version number

xxxH** Available Vectors Inquiry on availability of free
vector in HP_VECTOLTABLE

*Vectors marked reserved should not be used.

**Vectors with addresses xxxH do not have a fixed location. Their location is determined at
power-on depending on the systern's configuration.

BIOS Interrupts 347



348 BIOS Interrupts



APPENDIX B

B. MEMORY MAP

B.1 System Memory Map

The system maintains ROM and RAM entry point compatibility with the industry standard. Table
8.1 provides an outline of the first megabyte of memory.

,.. Table 8.1

Memory Map

Starting Absolute
Description Address Begin End

Interrupt Vectors OOOO:OOOOH OOOOOH 003FFH
STD-BIOS Data Area 0040:0000H 00400H 0051DH
Scratch 0050:001EH 0051EH 005FFH
Bios Stack 0060:0000H 00600H 006FFH
DOS 0070:0000H 00700H
Application OCOO:OO50H OCOSOH nF800H
EX-BIOS System RAM nF800H nFFFFH

n is dependent upon the amount of memory installed.
The EX-BIOS takes a minimum of 800 hex bytes.

Max RAM Equal 256KB OOOOOH 3FFFFH
Max RAM Equal 640KB OOaaaH 9FFFFH

Boot Address 07CO:OOOOH 07COOH

Memory Map 349



Starting Absolute
Description Address Begin End

Reserved Video Buffer AOOO:OOOOH AOOOOH
Monochrome Video Buffer BOOO:OOOOH BOOOOH B7FFFH
Color Video Buffer B800:0000H B8000H BFFFFH
Video ROM Space COOO:OOOOH COOOOH C7FFFH
IHV ROM C800:0000H C8000H
SPU IHV ROM Space EOOO:OOOOH EOOOOH
BIOS ROM FOOO:OOOOH FOOOOH
BIOS ROM F800:0000H F8000H
RESET Vector FFFF:OOOOH FFFFOH

B.2 S1D-BIOS Data Structures

The data area for the 5TD-8105 is in absolute memory locations 00400H through 005FFH, which
conforms to the industry standard. Table 8.2 summarizes the assignments within this block of ~

memory. A detailed description of these data fields follows the summary.

Table 8.2

510-8105 Data Area

Address Function

400H-407H RS-232 Communication Port Addresses
408H-40FH Parallel Printer Port Addresses
410H-416H Equipment Flag
417H-43DH Keyboard Data Area
43Eh-448H Flexible Disc Data Area
449H-466H Video Display Data Area
467H-46BH Option ROM Data Area
46CH-470H Timer Data Area
471H-473H System Data Flags
474H-477H Hard Disc Data Area

350 Memory Map



Address Function

478H-47FH Printer Timeout Counters
480H-483H Keyboard Buffer Pointers
484H-488H Enhanced Graphics Adapter (EGA) Data Area
489H-48AH Reserved
48BH-48BH Flexible Disc Data Rate Area
48CH-48FH Extended Hard Disc Data Area
490H-496H Extended Flexible Disc Data Area
497H-497H Keyboard Mode Indicator/LED Data Area
498H-4AOH Real-Time Clock Data Area
4A1H-4A7H Reserved
4A8H-4ABH Pointer to EGA Data Area
4ACH-4EF~ Reserved
4FOH-4FFH Intra-application Communication Area
500H-500H Print Screen Status
501H-503H Reserved
504H-504H DOS Data Area
SOSH-SFFH Reserved

8.2.1 RS-232 Communication Port Addresses

The I/O port addresses of up to four serial communication adapter ports are stored in these four
words.

40:000H 02 S40__RS232__PORT1~DR

40:002H 02 S40__RS232__PORT2~DR

40:004H 02 S40__RS232__PORT3~DR

40:006H 02 S40__RS232__PORT4~DR

Address of serial port 1

Address of serial port 2

Address of serial port 3

Address of serial port 4

Memory Map 351



8.2.2 Parallel Printer Port Addresses

The I/O port addresses of up to four parallel printer adapter ports are stored in these four words.

40 :008H 02 S40_PRINT_PORT1--ADR

40 :OOAH 02 S40_PRINT_PORT2--ADR

40:00CH 02 S40_PRINT_PORT3--ADR

40:00EH 02 S40_PRINT_PORT4--ADR

8.2.3 Equipment 8yte Data Area

Address of parallel port 1

Address of parallel port 2

Address of parallel port 3

Address of parallel port 4

This data area contains several words describing some of the optional hardware installed in the
system.

40:010H 02 S40_EQUIPMENT_FLAG Installed devices word
(see table B.3)

40:012H 01 S40_MFG_INIT Manufacturing initialization/test byte

40:013H 02 S40_MEMORY_SIZE Memory size in 1k bytes

40:015H 01 S40_MFG_ERLFLAG 1 Manufacturing scratchpad

40:016H 01 S40_MFG_ERLFLAG2 Manufacturing error codes

352 Memory Map



Table B.3

Equipment Flag (40:010H)

Bit Value Definition

OFH-OEH 0 no printers installed
1 one printer installed
2 two printers installed
3 three printers installed

ODH-OCH reserved
OBH-09H 0 no RS··232 ports installed

1 one RS-232 port installed
2 two RS-232 ports installed
3 three RS-232 ports installed
4 four RS-232 ports installed

08H reserved
07H-06H 0 1 flexible disc drive installed, if bit 0 =1

1 2 flexible disc drives installed, if bit 0 =1
OSH-04H 0 video adapter is not monochrome or color

1 initial video mode of 40-column color
2 initial video mode of 80-column color
3 initial video mode of 80-column monochrome

03H-02H reserved
01H 0 math co-processor not present

1 math co-processor present
OOH 0 no disc drives present

1 some number of flexible disc drives present, see bits 7-6

8.2.4 Keyboard Data Area

This area is used by the keyboard driver to store keyboard states, scancodes and keycodes.

40:018H 01 S40__KBD__STATE2

State of special keys: shift, caps, etc.
(see table B.4).

Secondary state of special keys
(see table 8.5).

Memory Map 353



40:019H 01 S40---.ALT_INPUT---.ACCUM Accumulator for alt/numpad entry

40:01AH 02 S40__KBD__BUF_HEAD Keyboard buffer head pointer

40:01CH 02 S40__KBD__BUF_TAIL Keyboard buffer tail pointer

40:01EH 20 S40__KBD_BUFFER Keyboard buffer, room for 15
entries + overrun

Table B.4

Keyboard State Mask Byte1 (40:17H)

Bit Data Definition

07H 0 Insert state inactive
1 Insert state active

06H 0 Caps lock state inactive
1 Caps lock state active

OSH 0 Num lock state inactive
1 Num lock state active

04H 0 Scroll lock state inactive
1 Scroll lock state active

03H 0 < Alt > key not depressed (inactive)
1 < Alt > key depressed (active)

02H 0 < CTRL> key not depressed (inactive)
1 < CTRL > key depressed (active)

01H 0 Left < Shift> key not depressed (inactive)
1 Left < Shift> key depressed (active)

DOH 0 Right < Shift> key not depressed (inactive)
1 Right < Shift> key depressed (active)

354 Memory Map



Table 8.5

Keyboard State Mask Byte2 (40:18H)

Bit Data Definition

07H 0 < Ins:> key not depressed
1 < Ins> key depressed

06H 0 < Caps lock> key not depressed
1 < Caps lock> key depressed

OSH 0 < Num lock> key not depressed
1 < Num lock> key depressed

04H 0 < ScrLck > key not depressed
1 < ScrLck > key depressed

03H 0 Pause state « CTRL > -< Num lock» inactive
1 Pause state active

02H 0 < Sys req> key not depressed
1 < Sys req> key depressed

01H-OOH Reserved

8.2.5 Flexible Disc Data Area

This area is used by the flexible disc driver to store information about current drive activity.

40:03EH 01 S40__FLOPPY__SEE~STAT Drive recalibration status
(see table 8.6)

40:03FH 01 S40__FLOPPY_MOTOLSTAT Drive motor status
(see table 8.7)

40:040H 01 S40__FLOPPY__TIME_OUT Drive timeout counter
(see table B.8)

40:041H 01 S40__FLOPPY_RETURN__STAT Drive return code/error status

40:042H 07 S40__FLOPPY_CONTRLSTAT Controller status/hard disc command/
parm port copies

Memory Map 355



Table 8.6

Flexible Disc Seek Status Byte (40:03EH)

Bit Data

07H
06H-02H
01H 0

1
OOH 0

1

Table 8.7

Definition

Disc hardware interrupt occurred
Reserved
Indicates drive 1 needs recalibration before next seek
Indicates drive 1 does not need recalibration before next seek
Indicates drive 0 needs recalibration before next seek
Indicates drive 0 does not need recalibration before next seek

Flexible Disc Motor Status Byte (40:03FH)

Bit Data Definition

07H 0 Current operation is not a write
1 Current operation is a write

06H Reserved
OSH 0 Drive one is not selected

1 Drive one is selected
04H 0 Drive zero is not selected

1 Drive zero is selected
03H-02H Reserved
01H 0 Drive one motor is not running

1 Drive one motor is running
OOH 0 Drive zero motor is not running

1 Drive zero motor is running

356 Memory Map



Table B.8

Flexible Disc Drive Error Status (40:041 H)

". Bit Data

07H 1
06H 1
OSH 1
04H-OOH 1

2
3
4

6

8
9

10H

~

Definition

Timeout error; disc failed to respond in time
Seek error; seek to track failed
Controller error; disc controller chip failed
Bad cc)mmand; invalid command request
Address error; address mark on disc not found
Write protect error
Sector not found; unable to locate sector, disc damaged or
unformatted
Media changed; the drive door was opened on a 1.2MB disc
drive
DMA error; DMA failed to respond in time
Segment wrap; attempt to perform DMA across a segment
boundary
CRC error; erc check on data failed

8.2.6 Video Display Data Area

This area is used by the video driver to store current screen parameters and cursor positions.

40:049H 01 S40_CRT_MODE Current video mode

40:04AH 02 S40_CRT_WIDTH Current # of screen columns

40:04CH 02 S40_CRT_LENGTH Current length of screen in bytes

40:04EH 02 S40_CRT_PAGE~DR Starting address of current display page

40:0S0H 10 S40_CRT_CURSO~POS Cursor coordinates (row, column) up to
8 pages

40:060H 02 S40_CRT_CURSO~MODE Current cursor mode setting

40:062H 01 S40_CRT_DISPLAY_PAGE Current display page

Memory Map 357



40:063H 02 S40_CRT_PORT---.ADR Base I/O port address for active video
controller

40:065H 01 S40_CRT_MODE_SELREG Mode select register copy

Color palette register copy

B.2.7 Option ROM Data Area

This area is used by the POST (SYSGEN) routine.

40:067H 02 S40--XROM_INIT---.ADR

40: 069H 02 S40--XROM_SEGMENT

40:06BH 01 S40--XROM_INT_FLAG

B.2.8 Timer Data Area

This area stores the current timer count and flags.

40:06CH 02 S40_TIMLLOW

40:06EH 02 S40_TIMLHIGH

40:070H 01 S40_TIMLOVLFLOW

B.2.9 System Data Flags

Offset address for optional I/O rom init
routine

Segment address for optional I/O rom

Flags last interrupt that occurred

Least significant word of timer count

Most significant word of timer count

24-hour timer tick rollover counter

This area used by the system to flag < CTRL > -< Break> and < CTRL > -< Alt > -< DEL>
requests.

358 Memory Map



40:071 H 01 S40_SYS_BREALFLAG

40 :072H 02 S40_SYS_RESET_FLAG

,. 8.2.10 Hard Disc Data Area

System break request flag

System reset flag

This area is used by the INT 13H fixed disc driver to store current information about the fixed disc
controller and status.

40:074H 01 S40_FD_STATUS Hard disc status of last Int 13H
operation

40:075H 01 S40_FD_COUNT Number of hard discs present

40:076H 01 S40_FD_CONTROL Copy of hard disc controller register

40:077H 01 S40_FD_PORT_OFFSET Hard disc port offset

8.2.11 Printer Timeout Counters

These tables contam timeout counts for the parallel and serial ports. The default value for the
parallel printer port is 14H while the serial port is 01 H.

40:078H 01 S40_PRINT_TIMEOUT1 Parallel port 1 timeout count

40:079H 01 S40_PRINT_TIMEOUT2 Parallel port 2 timeout count

40:07AH 01 S40_PRINT_TIMEOUT3 Parallel port 3 timeout count

40:07BH 01 S40_PRINT_TIMEOUT4 Parallel port 4 timeout count

40:07CH 01 S40_RS232_TIMEOUT1 Serial port 1 timeout count

40:07DH 01 S40_RS232_TIMEOUT2 Serial port 2 timeout count

40:07EH 01 S40_RS232_TIMEOUT3 Serial port 3 timeout count

40:07FH 01 S40_RS232_TIMEOUT4 Serial port 4 timeout count

Memory Map 359



B.2.12 Keyboard Buffer Pointers

These pointers indicate where in memory the keyboard buffer is as opposed to the current access
points to the buffer stored in the pointers above. This allows an application to move and enlarge
the keyboard buffer.

Pointer to physical start of keyboard
buffer

Pointer to physical end of keyboard
buffer

B.2.13 Enhanced Graphics Adapter (EGA) Data Area

This data area is used by the optional EGA driver when present.

40:084H 01 S40__EG~CRT__ROVV__CNT Number of crt rows minus one

40:085H 02 S40__EG~CHALSIZE Number of bytes per character in font
table

40:087H 01 S40__EG~1NFO1 EGA miscellaneous information

40:088H 01 S40__EG~INF02 EGA miscellaneous information

40:089H 02 Reserved

B.2.14 Flexible Disc Rate Area

This data area is used by the flexible disc driver to optimize performance on the 1.2mb drives by
keeping track of the last data rate selected for disc access.

Last data rate selected

360 Memory Map



8.2.15 Extended Hard Disc Data Area

40:08CH 01 S40~FD __STATUS__REG Hard disc status reg. copy

~
40:08DH 01 S40~FD __ERRO~REG Hard disc error reg. copy

40:08EH 01 S40~FD __INT~FLAG Hard disc interrupt flag

40:08FH 01 S40~FD __CTRl--FLAG Hard disc controller flag

8.2.16 Extended Flexible Disc Data Area

This data area is used by the flexible disc driver to store information about the current media in
the drives and what operations are being performed on it.

40:090H 01 S40~FLOPPY __MEDIAD Drive 0 media state
(see table 8.9)

40:091H 01 S40~FLOPPY __MEDIA1 Drive 1 media state

40:092H 01 S40~FLOPPY __OPERD Drive 0 operation state

40:093H 01 S40~FLOPPY __OPER1 Drive 1 operation state

40:094H 01 S40~FLOPPY __TRACKO Drive 0 current track

40:095H 01 S40~FLOPPY __TRACK1 Drive 1 current track

40:096H 01 S40~FLOPPY __RESERVED Flexible disc reserved byte

Memory Map 361



Table B.9

Flexible Disc Media Byte (40:090H)

Bit Data Definition

07H-06H 0 Data transfer rate is 500kb/sec
1 Data transfer rate is 300kb/sec
2 Data transfer rate is 250kb/sec

OSH 0 Single step all seeks
1 Double step all seeks

04H 0 Type of disc in drive unknown

1 Type of disc in drive known
03H -- Reserved
02H-OOH 0 Attempting 360k disc in 360k drive

1 Attempting 360k disc in 1.2mb drive
2 Attempting 1.2mb disc in 1.2mb drive

3 Determined 360k disc in 360k drive
4 Determined 360k disc in 1.2mb drive
5 Determined 1.2mb disc in 1.2mb drive

8.2.17 Keyboard Mode Indicator

This byte is used by the keyboard driver to store the current state of the keyboard LED's.

362 Memory Map

Keyboard LED flags
(see table 8.10)



Table B.1 0

Keyboard LED Flag Byte (40:97H)

Bit Data Definition

07H-03H -- Reserved
02H 0 < Caps lock> LED is off

1 < Caps lock> LED is on
01H 0 < Num lock> LED is off

1 < Num lock> LED is on

DOH 0 <Scroll lock> LED is off
1 < Scroll lock> LED is on

8.2.18 Real-time Clock Data Area

,... This area is used by the RTC driver to store information needed to interrupt an application
waiting on an RTC event.

40:098H 02 S40_RTC_WAIT_OFFSET Offset address of user wait flag

40:09AH 02 S40_RTC_WAIT_SEGMENT Segment address of user wait flag

40:09CH 02 S40_RTC_WAIT_CNT_LOW Low word of wait count

40:09EH 02 S40_RTC_WAIT_CNT_HIGH High word of wait count

40:0AOH 01 S40_RTC_WAIT---.ACTV_FLG Wait active flag

40:0A1H 07 Reserved

Memory Map 363



8.2.19 Pointer to EGA Data Area

40 : OA8H 04 S40_EGA-TBLPTR

40:0ACH 2C

Pointer to table of EGA pointers

Reserved

8.2.20 Intra-application Communications Area

Used by applications to communicate with each other and with themselves from one work
session to another.

40: OFO 10 S40_INTRA-APPL

8.2.21 Print Screen Status

40: 101 H 03

Table B.11

Print Screen Status Byte (40:100H)

Available to any application

Flag for print screen in progress
(see table B.11)

Reserved

Bit Data

07H-OOH 0
1
FFH

364 Memory Map

Definition

Print not in progress
Print in progress
Error during print



8.2.22 DOS Data Area

The following data areas are used by DOS to provide status information on single-drive systems.

40:105H 1A

8.2.23 Reserved Data Areas

Status of flexible disc for single drive
systems, ie currently drive A: or B:

Reserved

The following areas are reserved and should not be used under any circumstances:

40:089H 02

40:0A1H 07

40:0ACH 2C

40: 101 H 03

40:105H 1A

B.3 EX-BIOS Data Area Map

Figure B.1 shows the EX-BIOS RAI'v1 space which contains the HP_ VECTOLTABLE, the EX-BIOS
memory pool, and the EX-BIOS global data area.

The following notes correspond to the letters in figure B.1 .

a. This address is the segment (CS) value stored in the second word of the HP_ENTRY
interrupt vector 06FH, the HP_VECTOLTABLE is at offset zero. This value may also be
obtained from the V_SYSTEM driver, using function F_INS_BASEHPVT.

Memory Map 365



EX-BIOS Data Area layout

HP_VECTOR_TABLE
HP_ENTRY's CS:O

HP_ENTRY_CODE
HP_ENTRY's CS:IP

"Max OS"

"Last used OS"

TOP of RAM

HP_VECTOR_TABLE

HP_ENTRY_CODE

EX-BIOS
Memory

Pool

-
EX-BIOS Resident

Driver's Data
Segments

EX-BIOS Global
Data Segment

Figure B.1

EX-BIOS
Memory
Pool

b. This address is the offset {IP) value stored in the first word of the HP_ENTRY interrupt
vector 06FH. This address (CS:IP) represents the end of the HP_VECTOR-TABLE and ~

points to the EX-BIOS's HP_ENTRY_CODE.

c. This address represents the last allocatable data segment ("MAX DS") value available from
the EX-BIOS memory pool. This address may be obtained as well as allocated from the EX
BIOS V_SYSTEM driver, see F_RAM_GET and F_RAM_RET in Section 9.

d. This address is passed to drivers requesting memory from the EX-BIOS memory pool. Drivers
must first subtract the size of their data segment from the "Iast used DS" value to get an
addressable data area. The new "Iast used DS" is returned to the EX-BIOS using the
F_RAM_RET function.

e. This address represents the EX-BIOS global data area used by drivers and services that share
data. This address is the DS value stored in the HP_VECTOR-TABLE for the V_SYSTEM
driver.

f. Top of RAM is the last address in memory. In a 256KB system this value is 3FFFFH while in a
640KB system this value is 9FFFFH. The data region between Top of RAM and the base of
HP_VECTOR-TABLE is not directly available to applications. In the base system this region
is 4KB long. However, different system configurations may require that this region be
lengthened.

366 Memory Map



B.3.1 Option ROM Data Segments

An option ROM which does not have available on board RAM can get memory in the manner
described above. However, the problem arises as to how the option ROM is to 'remember' the
data segment if it doesn't have any RAM to save the segment in. This problem usually can be
solved since most option ROMs are accessed through the software interrupt mechanism. The
option ROM adapter simply directs its entry point software interrupt vector to its EX-BIOS RAM
data segment which in turn jumps to the option ROM's entry point. That is,

80286 INT nn -+ EX-BIOS data segment -+ option ROM

PUSH CS
POP OS
JMP FAR ROM_ENTRY_POINT

,. Load option ROM OS

B.3.2 EX-BIOS Global Data Area

The EX-BIOS global data area is shared between several EX-BIOS drivers. It contains temporary
and permanent variables required by the EX-BIOS to function properly. Some of these variables
can be modified by application programs. As with the STD-BIOS data area, care should be taken
when modifying the EX-BIOS data area.

The EX-BIOS global data area can be found by calling the V_SYSTEM driver, with the function
F_INS_BASEHPVT. The EX-BIOS global data area segment will be returned in the DS register.
Table B.12 defines the contents of this area.

Memory Map 367



Table 8.12

Global Data Area

Byte Offset Type Definition

0O-013H Reserved Word
14 T_SND_FLAG Byte Sound driver status

Bit Definition
7 '1' Click enabled
6 ' l' Beep enabled
5-0 Reserved

15 T_SND_CLICLCOUNT Byte Contains the number of
pending key clicks. Maximum
of four.

16 T_SND_CLICLDURA Byte Contains the current tick
duration scaler.

17 T_SND_CLICLVOLUME Byte Contains the current key click
volume.

18 T_SND_BEEP_CYCLE Word Contains the current beep
period in ten microsecond
increments.

1A T_SND_BEEP_DURA Word Contains the current duration
of the beep in 10
microsecond increments.

1C T_SND_BEEP_COUNT Byte Contains the number of
pending beep functions.
Maximum of four.

10 Reserved
1E T_STLNEXT_INDEX Word The next unused string index

number.

20 and up Reserved *

368 Memory Map



B.4 ROM BIOS Memory Map

Table 8.13 lists the compatible ROM entry points. The programmer is encouraged not to access
".. these entry points directly.

Table 8.13

Rom Entry Points

Int Rom Entry Type Function

2 FOOO:E2C3 code Nonmaskable interrupt
5 FOOO:FF54 code Print screen

10 FOOO:F065 code Video
11 FOOO:F84D code Equipment check
12 FOOO: F841 code Memory size

13 FOOO:EC59 code Diskette/hard disc
14 FOOO:E739 code Serial
15 FOOO:F859 code System functions
16 FOOO:E82E code Keyboard
17 FOOO:EFD2 code Printer

18 FOOO:4B86 code Reserved
19 FOOO:E6F2 code Boot
1A FOOO:FE6E code Time and date
1B FOOO:FF53 code Keyboard break
1C FOOO:FF53 code Timer tick

1D FOOO:FOA4 data Video parameter table
1E 0000:0522 data Diskette parameter table
1F FOOO:OOOO data Graphics character table

Memory Map 369



8.5 Product Identification

Table 8.14

Product Identification Strings

ROM version independent information

OFOOO:OOF8H DB 'H' HP Vectra PC ID
DB 'P'
DB OOH
DB OOH

ROM version dependent information

OFOOO:OOFCH DB Revision_Code_Secondary Secondary code revision
DB Revision_Code_Primary Primary code revision
DB Date_Code_Year ROM Release year-1960

stored in BCD
DB Date_Code_Week Week of the year stored in

BCD

Industry Standard PC ID

OFOOO:FFFEH DB OFCH IBM-AT Compatible PC

370 Memory Map



APPENDIX C

C. CMOS MEMORY LAYOUT AND
REAL-TIME CLOCK

The real-time clock chip contains 64 bytes of non-volatile memory. Values saved in this memory
area are not destroyed when the system is powered off. Table C.1 defines the use of the CMOS
memory area.

Table C.1

,.... CMOS Memory and Real-time Clock

CMOS Address Application

OOH *RTC current second
01H *RTC second alarm value
02H *RTC current minute
03H *RTC minute alarm value
04H *RTC current hour

OSH *RTC hour alarm value
06H *RTC current day of the week
07H *RTC current day of the month
08H *RTC current month
09H *RTC current year

OAH *RTC status register A
OBH *RTC status register B
OCH *RTC status register C
OOH *RTC status register D
OEH *Diagnostic status byte

CMOS Memory Layout and Real-Time Clock 371



CMOS Address Application

OFH *Shut down status byte
10H Flexible disc drive type (A and B)
11H Reserved
12H Fixed disc type (C and D)
13H Reserved
14H Equipment byte
15H Low base memory
16H High base memory
17H Extended memory size (low byte)
18H Extended memory size (high byte)
19-20H Reserved
21-27H * Reserved
28H *HP checksum for bytes 29, 2A, 28, 2C
29-2BH 0/0 * Reserved
2CH 0/0 * Reserved
2DH * Reserved
2E-2FH *2-byte industry standard CMOS checksum for bytes 1OH to 20H
30H *Extended memory size (low byte, defined by POST)
31H *Extended memory size (high byte)
32H *Date century byte
33H *Information flags
34-3FH * Reserved

Notes:
*These bytes are not included in the industry standard CMOS checksum

% These bytes are included in HP's checksum

C.1 Real-Time Clock/CMOS Access

Port 70H and port 71 H provide the interface to the real-time clock and CMOS memory controller. ~
Port 70H is used to specify the byte address to read or write. Port 71 H is used to pass the data.
For example, to read the equipment byte, the programmer would write 14H to port 70H, then
read the data byte from port 71 H. A read or write to port 71 H must always be preceeded by a
write to port 70H.

372 CMOS Memory Layout and Real-Time Clock



C.2 Real-Time Clock (CMOS Address OOH-ODH)

The real-time clock (RTC) chip maintains the current date and time, even when the system is
powered off. Four registers are initialized by the SETUP program when the user sets the current
date and time. These are detailed in tables C.2, C.3, C.4 and C.5.

Table C.2

CMOS_RTC_REGA (CMOS Address OAH)

Bit

7

6-4

3-0

Data

o
1

Definition

The current date and time is available to read
The current date and time are not available to read because an
update of these values is in progress
Time divider selection bits to indicate what time-base frequency is
being used. This field is set to 2H to indicate that a 32,768 hertz
crystal is providing the time-base.
Rate selection bits to specify output square wave frequency. This field
is set to 06H to select a square wave frequency of 1.024K Hertz or a
periodic interrupt rate of 976.562 microseconds.

Table C.3

CMOS_RTC_REGB (CMOS Address OBH)

Bit Data

7 0
1

6 0
1

5 0,. 1
4 0

1
3 0

1

Definition

Update clock normally (default)
Suspend clock updates
Disable periodic interrupts (default)
Enable periodic interrupts
Disable alarm interrupts (default)
Enable alarm interrupts
Do not generate an interrupt when the current update cycle
completes (default)
Generate an interrupt each time a clock update completes
Disable square wave output (default)
Enable square wave output

CMOS Memory Layout and Real-Time Clock 373



Bit

2

o

Data

o
1
o
1
o
1

Definition

Store date and time in BCD (Binary Coded Decimal) (default)
Store date and time as binary integers
Places hours byte in 12 hour mode
Places hours byte in 24 hour mode (default)
Disable daylight savings (default)
Enable daylight savings

Table C.4

CMOS_RTC_REGC (CMOS Address OCH)

Bit Value

7 0
1

6 0
1

5 0
1

4 0

3-0

Table C.5

Definition

No interrupts are currently asserted
The RTC is asserting an interrupt due to either the alarm, periodic
interrupt, or update ended.
No periodic interrupt has occurred since the last read of this bit.
A periodic interrupt has occurred, read only and cleared by read.
No alarm interrupt has occurred since the last read of this bit.
An alarm interrupt has occurred, read only and cleared by read.
No update ended interrupt has occurred since the last read of the
bit.
An update ended interrupt has occurred, read only and cleared by
read.
Reserved

CMOS_RTC_REGD (CMOS Address ODH)

Bit

7

6-0

Value

o
1

Definition

Power was lost to the RTC chip since the last read of this bit.
The RTC chip has not lost power since the last read of this bit. Read
only, set to 1 after read.
Reserved

374 CMOS Memory Layout and Real-Time Clock



C.3 Diagnostic Status Byte (CMOS Address OEH)

This byte is set by the POST routine to flag errors detected during power on. The contents of this
byte are detailed in table C.6.

Table C.6

CMOS_DIAGNOSTIC_STATUS (CMOS Address OEH)

Bit Data Definition

7 1 Power to RTC failed
6 1 Bad industry standard CMOS checksum
5 1 Configuration inconsistency
4 1 Memory size does not match
3 1 Hard disc failed initialization
2 1 Invalid CMOS
1-0 -- Reserved

C.4 System Shutdown Byte (CMOS Address OFH)

This byte is used by the system power-on sequence to determine what action is to be taken upon
return from protected mode. The details of this byte are shown in table C.7.

CMOS Memory Layout and Real-Time Clock 375



Table C.7

CMOS_SHUTDOWN_BYTE (CMOS Address OFH)

Bit Value

7-0 0-3
4
5
6-7
8
9
A
B-FF

Definition

Perform power-on reset sequence
INT 19H (reboot)
Flush keyboard and jump indirect via double word 40:67H
Reserved
Used by POST during test of protected mode RAM
Used for INT 15H support (block move)
Jump indirect via double word at 40:67H
(same as values 0-3)

C.5 Diskette Descriptor Byte (CMOS Address 10H)

This byte is initialized by SETUP and indicates what types of flexible disc drives are installed. The
details of this byte are shown in table C.8.

Table C.8

CMOS_FOC_TYPE (CMOS Address 10H)

Bit Value

7-4 0
1
2

3-0 0
1
2

Definition

No drive installed as drive A
360KB drive installed as drive A
1.2MB drive installed as drive A
No drive installed as drive B
360KB drive installed as drive B
1.2MB drive installed as drive B

376 CMOS Memory Layout and Real-Time Clock



C.6 CMOS Fixed Disc Type (CMOS Address 12H)

CMOS_FIXED_DISC_TYPE, (CMOS Address 12H), is reserved for the hard disc.

C.7 Equipment Byte (CMOS Address 14H)

This byte is used to initialize STD-BIOS RAM location 40:001 OH. This is the value returned by
the STD-BIOS interrupt INT 11 (get current equipment). The details of this byte are shown in table
C.9.

Table C.9

CMOS_EQ_BYTE (CMOS Address 14H)

Bit Value

7-6 0
1

5-4 1
2
3

3-2
1
o

Definition

One drive installed
Two drives installed
Primary display is 40 column color
Primary display is 80 column color
Primary display is 80 column monochrome
Reserved
80287 installed
At least one flexible disc installed

C.8 System Base RAM Size (CMOS Address
,. 15H-16H)

This value represents the amount of base (DOS addressable) memory installed in the system
minus the amount of RAM used by the EX-BIOS data area. Three base memory configurations
are valid:

CMOS Memory Layout and Real-Time Clock 377



0100H 256K of base memory installed

0200H 512K of base memory installed

0280H 640K of base memory installed

The actual stored value will be adjusted to leave space for the EX-BIOS data area. For example,
the value may be OOFCH instead of 01 DOH, indicating that there is 256K of base RAM installed
but the EX-BIOS data area is using 4K of it.

CMOS_BASE_MEMORY_LSB (CMOS Address = 15H)

CMOS_BASE_MEMORY_MSB (CMOS Address = 16H)

C.9 System Extended Memory Size (CMOS Address
17H-18H)

These values are initialized by the SETUP program to the user specified extended memory size
from zero to 15Mb in 512Kb increments. For example:

0200 512K of extended memory (0.5Mb)

0400 1024K of extended memory (1.0Mb)

0600 1536K of extended memory (1.5Mb)

through

3AOO 14848K of extended memory (14.5Mb)

3COO 15360K of extended memory (15.0Mb)

Note that extended memory is memory above one megabyte.

CMOS_EXT_MEMORY_LSB (CMOS Address = 17H)

CMOS_EXT_MEMORY_MSB (CMOS Address = 18H)

378 CMOS Memory Layout and Real-Time Clock



C.10 EX-BIOS Checksum Byte (CMOS Address 28H)

This byte contains the 'checksum which is used to verify the contents of the EX-BIOS CMOS data
locations. This checksum is computed each time one of these locations is modified using an EX
BIOS CMOS function.

If bit 7 of byte 29 is 1 then

CMOS_EX_BIOS_CRC =
[29J + [2AJ + [2BJ + [2CJ

If bit 7 of byte 29 is 0 then

CMOS_EX_BIOS_CRC =
[29J + [2AJ + [2BJ

: 8 bit carryout

: 8 bit carryout

C.11 EX-BIOS Reserved Bytes (CMOS Address
29H-2CH)

These bytes are reserved by EX-BIOS. They are included in the EX-BIOS checksum byte at CMOS
address 28H.

Table C.l 0

CMOS_HPCONFIG (CMOS Address 29H)

Bit Data

7 0

1
6 0

1
4-1
0 0

1

Definition

Do not include byte 2C in checksum (default). Note: this bit is not
reset during a <CTRL>-<Alt>-<Sys req> reset sequence
Include byte 2C in checksum
Select the first ROM video adapter as primary (default)
Select the second ROM video adapter as primary
Reserved
Manufacturing test disabled
Manufacturing test enabled

CMOS Memory Layout and Real-Time Clock 379



C.12 5TO-B105 Checksum Word (CMOS Address
2EH-2FH)

This word contains the checksum which is used to verify the contents of the STD-BIOS CMOS
data locations. This checksum is computed each time one of these locations is modified using an
EX-BIOS CMOS function. If the EX-BIOS is not used for CMOS update then it is the programmer's
responsibility to calculate and replace the STD-BIOS checksum.

CMOS_STDJ/OS_CRC =
[10J + [11J+ [12J + ... + [20J : 16 bit carryout

C.13 Test Information Byte (CMOS Address 33H)

Bit seven of this byte is initialized by the boot process to indicate that 640K of base memory is
installed. The details of this byte are shown in table C.11.

Table C.11

CMOS_TEST_INFO (CMOS Address 33H)

Bit

7
6-0

Data Definition

128kb expansion RAM installed
Reserved

380 CMOS Memory Layout and Real-Time Clock



APPENDIX D

D. I/O PORT MAP

Appendix D describes the I/O map of the system. Table D.1 lists the I/O map of all devices
integrated in the System Processing Unit (SPU). Table D.2 lists the recommended I/O port
assignments for devices in adapter cards. Subsequent sections in the appendix describe the SPU
built-in devices individually. I/O devices in adapter cards are described fully in the Vectra Technical
Reference Manual, Volume I.

Table D.1

SPU I/O Map

I/O Address

000-01 FH
020-03FH
040-05FH

060H
061H

064H
068H
069H
06AH

06C-06FH

070H
071H
078H
07CH
07DH

080-09FH
OAO-OBFH
OCO-ODFH

OFOH
OF1 H

OF8-0FFH

Description

First DMA Controller (8237A)
Master Interrupt Controller (8259A)
Timer Controller (8254)
Keyboard Buffer Full port
SPU Control port

Keyboard Output Buffer Full (OBF) port
Keyboard Extended Command port
SVC Service Request read data port
Keyboard Handshake port
HP-HIL Controller ports

RTC address / NMI disable port
RTC data
Hard Reset NMI enable port
HP-Slave Interrupt Controller (8259A) port 0
HP-Slave Interrupt Controller (8259A) port 1

DMA Page Registers ports
Industry Standard (STD) Slave Interrupt Controller (8259A)
Second I)MA Controller (8237A)
Clear 80287 Coprocessor port
Reset'" " "
80287 Math Coprocessor

1/0 Port Map 381



Table D.2

Adapter 1/0 Map

I/O Address Description

1FO-1 F3H Hard Disc controller
200-207H Game I/O adapter
278-27FH Parallel port 2
2E8-2EFH Serial port 3
2F8-2FFH Serial port 2

300-307H Prototype adapter card
320-323H Reserved
378-37FH Parallel port 1
380-38FH SDLC, bisynch 2
3AO-3AFH Bisynch 1
3BO-3B7H Monochrome display adapter
3BC-3BFH Monochrome display/Parallel adapter
3DO-3DFH Color Graphics adapter
3E8-3EFH Serial port 4
3FO-3F7H Flexible Disc controller
3F8-3FFH Serial port 1

0.1 OMA Channel Controller

The SPU supports seven DMA channels using two Intel 8237A DMA controllers in cascade mode.
For each DMA channel there is a page register used to extend the addressing range of the
channel to 16 MS. The only type of DMA transfer allowed is "1/0 to memory". No "1/0 to I/O" or
"memory to memory" transfers are allowed due to the way the hardware is configured. For
more detailed information on the 8237A DMA controllers see Intel's The 8086 Fami/y User's
Manual.

Table D.3 summarizes how the DMA channels are allocated.

382 I/O Port Map



Table D.3

DMA Channel Allocatiorl

First DMA controller (used for 8 bit transfers):

channel 0 -Spare.
channel 1 -Usually datacomm.
channel 2 -Flexible disc I/O.
channel 3 -Spare.

Second DMA controller (used for 16 bit transfers):

channel 4 -Cascade "from first DMA controller.
channel 5 -Spare.
channel 6 -Spare.
channel 7 -Spare.

0.1.1 I/O Port Addresses for OMA Controllers

Table D.4 shows the I/O port addresses for the page register and DMA controllers used when
writing the DMA addresses.

I/O Port Map 383



Table D.4

1/0 Port Addresses and Address Lines

DMA page register I/O Ports

Channel I/O port Address Lines

0 087H A23-A16
1 083H A23-A16 byte transfers
2 081H A23-A16
3 082H A23-A16
4 Not connected
5 08SH A23-A17
6 089H A23-A17 word transfers
7 08AH A23-A17
X 08FH Used for RAM refresh

DMA Controller I/O Ports
Channel I/O port

0 OOOH address register (A15-AO)
001H byte count register

1 002H address register (A15-AO)
003H byte count register

2 004H address register (A15-AO)
byte transfers

OOSH byte count register
3 006H address register (A15-AO)

007H byte count register

4 OCOH address register (A16-A1)
OC2H word count register

5 OC4H address register (A16-A1)
OC6H word count register

word transfer
6 OC8H address register (A16-A1)

OCAH word count register
7 OCCH address register (A16-A1)

OCEH word count register

Notes:

Channel 4 (first channel on the second DMA controller) is used to cascade the first DMA
controller and it must not be programmed for DMA transfers.

384 I/O Port Map



Channels S thru 7 are word-wide channels so the address lines used are A 1 thru A23.
Address line AD is always forced to zero. The address register on these channels provides
address lines A 16 thru A 1 and address lines A23 through A 17 come from bits 7 through 1
of the page register. Bit 0 of the page register is not used. Care should be taken in making
sure that the counts and addresses are in words rather than bytes.

Table D.S lists I/O ports used for writing commands to the DMA controllers.

Table D.5

Controller Command I/C) Ports

Controller
1 2 1/0 \Nrite 1/0 Read

ODOH 008H Command Register Status Register
OD2H 009H Request Register illegal
OD4H OOAH Single Mask Register illegal
OD6H OOSH Mode Register illegal
OD8H OOCH Clear Byte Pointer Flag illegal
ODAH OOOH Master Clear Command Temporary Register
ODCH OOEH Clear Mask Command illegal
OOEH OOFH Multi-Mask Register illegal

0.2 8259A Interrupt Controllers

The system has three 8259A inte'rrupt controllers. They are arranged as a master interrupt
controller and two slaves that are cascaded through the master. Table D.6 shows the I/O ports
for these interrupt controllers and how they are cascaded.

I/O Port Map 385



Table D.6

8259A Controller I/O Ports

Register Name

Command Register
Interrupt Mask Register

Master

20H
21H

HP-Slave

7CH
7DH

STD-Slave

OAOH
OA1H

Table D.7 shows how the master and slave controllers are connected. The Interrupt Requests
(IRQ) are numbered sequentially starting with the Master 8259 controller and followed by the
industry standard (IS) Slave and HP-Slave.

Table D.7

8259A Master to Slave Connections.

Master's IRQ Interrupt Request Description

IRQO(08H) Timer
IRQ1(09H) <-[ HP-SLave IRQ ] Keyboard

IRQ16(68H) 8041
IRQ17(69H) Keyboard OBF
IRQ18(6AH) Reserved
IRQ19(6BH) Reserved
IRQ20(6CH) HP-HIL Controller
IRQ21 (6DH) Reserved
IRQ22(6EH) Reserved
IRQ23(6FH) Reserved

IRQ2(OAH) <-[ STO-Slave IRQ ] Reserved
IRQ08(70H) Real Time Clock
IRQ09(71H) SW Redirected
IRQ10(72H) Reserved
IRQ11(73H) Reserved
IRQ12(74H) Reserved
IRQ13(75H) 80287 Coprocessor
IRQ14(76H) Hard Disc
IRQ15(77H) Reserved

386 I/O Port Map



Master's IRQ

IRQ3(OBH)
IRQ4(OCH)
IRQS(ODH)
IRQ6(OEH)
IRQ7(OFH)

Interrupt Request Description

Serial Port 1
Serial Port 0
Printer Port 1
Diskette
Printer Port 0

Note: The numbers in parentheses are the interrupt vector numbers generated by the IRQs.

The following example shows how the 8259A controllers are programmed on initialization:

CLI
PROGRAM_MASTER:

MOV AL, 71H
OUT 20H,AL
JMP $+2
MOV AL,08H
OUT 27H,AL
JMP $ +2
MOV AL,06H
OUT 27H,AL
JMP $+2
MOV AL,07H
OU·T 27H,AL
JMP $ +2

PROGRAM_HP_SLA VE:
MOV AL, 71H
OUT 7CH,AL
JMP $+2
MOV AL,68H
OUT 7DH,AL
JMP $+2
MOV AL,07H
OUT 7DH,AL
JMP $+2
MOV AL,07H
OUT 7DH,AL
JMP $+2
MOV AL,68H
OUT 7CH
JMP $ +2

PROGRAM_STD_SLA VE:
MOV AL, 71H

,. Disable interrupts

" ICW7: Initialization Command

,. Interrupt Vector Base at 08H

,. Define master with two slaves
" one at IRQ 7and one at IRQ2

,. 8086/88 Mode

,. ICW7: Initialization Command

,. Interrupt Vector Base at 68H

" Slave 10 number

,. 8086/88 Mode

,. Place HP slave on special
,. mask mode.

" ICW7: Initialization Command

I/O Port Map 387



OUT
JMP
MOV
OUT
JMP
MOV
OUT
JMP
MOV
OUT
JMP
STI

OAOH,AL
$+2
AL,70H
OA1H,AL
$+2
AL,02H
OA 1H,AL
$+2
AL,01H
OA1H,AL
$+2

,. Interrupt Vector Base at 70H

,. Slave 10 number

,. 8086/88 Mode

" Reenable interrupts

The following example shows how an interrupt generated from the HP-Slave is serviced. This
provides an example of what commands to send the 8259 controllers to handle an IRQ request.
See Section 4 for more details.

,
" Interrupt handler example for handling an IRQ 16 which is an 8041
" keyboard controller service request:
,
INTERRUPT_HANDLER:

PUSH
IN
JMP
OR
OUT
JMP
MOV
OUT
JMP

AX
AL,7DH
$+2
AL,01H
7DH,AL
$+2
AL,20H
20H,AL
$+2

,. Save registers
,. Get enable mask from HP-Slave

" disable IRQ 16 interrupt

,. Send an EOI to master 8259
,. so that other interrupts can
" get thru

" 8041 Service processing here

IN AL,7DH
JMP $+2
AND AL,OFEH
OUT 7DH,AL
JMP $+2
MOV AL,60H
OUT 7CH,AL
JMP $+2
POP AX
IRET

388 I/O Port Map

" Get enable mask from HP-Slave

" Enable IRQ 16 again

,. Send the HP-Slave a specific
,. EOI command.

" Restore registers



0.3 8254 Timer Controller (I/O Ports 40H
through 43H)

~ The system contains an Intel Programmable Interval Timer 8254. The timer controller consists of
three separate timer channels; timer channels 0, 1 and 2. Channel 0 provides the BIOS with a
programmable time interval. Channel 1 provides the memory refresh signal of the dynamic RAMs
in the system. Channel 2 generates a fixed frequency envelope to the sound generation circuit.

WARNING!

Timer channel 1 should not be used. Writing to this channel may cause loss of data in
system memory.

The timer chip interfaces to the 80286 via 4 I/O ports:

I/O Port

040H
041H
042H
043H

Function

Counter data for timer O.
Counter data for timer 1.
Counter data for timer 2.
The· control register for all three timers.

See Intel's 8086 Family User's Manual for more details of the 8254 timer controller.

0.4 Keyboard Data Buffer (60H)

The keyboard data buffer is read by the 80286 when the keyboard asserts the OBF interrupt. The
OBF signal is automatically cleared when the data buffer is read. See Section 5 for more
information about the keyboard data buffer.

0.5 SPU Control Port (61 H)

The SPU Control Port (61 H) is a bidirectional buffer which latches an assortment of unrelated
signals. Table 0.8 describes the bit values contained in this buffer.

I/O Port Map 389



Table D.8

PORT 61 H Bit Values

When 80286 reads port 61 H:

Bit Data

7
6
5
4
3

1
0

2
1
0

1 1
0 1

Definition

Parity error in on-board system ram
I/O channel check error has occurred
Output from timer channel 2
Refresh detect; toggles once per refresh cycle
Status of I/O channel check NMI latch (See Fig D.2)
Disabled.
Enabled
Status of SPU RAM parity error latch (See Fig D.2)
Disabled
Enabled
Speaker data from timer channel 2 is enabled to drive speaker circuit.
Gate to timer channel 2 is enabled

When 80286 writes port 61 H:

Bit Data Description

7-4 Not used
3 1 Disable and clear I/O channel check.
2 1 Disable and clear on-board parity NMI
1 1 Enable the data from timer channel 2 to drive speaker circuit.
o 1 Enable gate to timer channel 2. (speaker data)

0.6 Speaker Control

Figure D.1 shows the relationship of the timer channel 2 and the rest of the speaker circuit.

390 I/O Port Map



Speaker Control Circuit

1/ 0 port 61 H, bit 0 gate

output .....-----1clock1.190 Mhz

I/O port 61H, bit 1--------~

Figure 0.1

The sound related EX-BIOS functions are the recommended method of accessing the speaker
functions (see Section 9).

0.7 Keyboard I/O Ports

~ Keyboard Command Port (64H): Used to write commands to the 8041 keyboard controller.

Keyboard Extended Command Port (68H): provides a data/command path to the 8041 not
conflicting with the industry standard I/O Ports 60H and 64H.

KBD Request Port (69H): Allows communications between the 8041 and the EX-BIOS service
request (SVC) routines.

Keyboard Handshake (6AH): The single bit write only port provides a mechanism for the 8041
keyboard controller to indicate the last service request (SVC) has been handled.

HP-HIL Controller (6CH thru 6FH): This set of I/O Ports provides the communication mechanism to
the HP-HIL controller.

0.8 Real Time Clock Ports

Real Time Clock and CMOS RAM ports 70H and 71 H provide the interface to the MC146818 real
time clock (RTC). See Appendix C for further details.

I/O Port Map 391



0.9 Hard Reset Enable Port

Hard Reset Enable Register (Port 78H): This write only port enables the hard reset line from the
HP-HIL controller. Table 0.9 shows the bit definitions for this port.

Table 0.9

Hard Reset Enable Register

Bit

7

6-0

Data

1
o

Description

Enable hard reset from HP-HIL controller chip.
Disable and clear hard reset from HP-HIL controller chip.
Reserved.

0.10 NMI Sources and Involved I/O Ports

The non-maskable interrupt (NMI) of the 80286 is attached to circuitry which allows multiple
sources to cause an NMI. Each of these sources can be disabled individually as well as collectively.

Figure 0.2 is a block diagram of the NMI circuit.

392 I/O Port Map



NMI Circuit
(Parity Enable)

clr 0
latch

Parity
Check
Line

(I/O Channel Check Enable)

Port 61H NO
bit 3 latch

0

~ clr

latch
1/0 0

Channel
Check

(Hard Reset Enable)

Port 78H NQ
bit 7 latch

0

Port 61H
bit 2

Hard
Reset

From Keyboard

(NMI Enable)

clr

latch

latch

NO

o

o

o

Port 70H -----.--------1
bit 7·

latch

Figure 0.2
I/O Port Map 393



394 I/O Port Map



APPENDIX E

E. SYSTEM EQUATE FILE

This appendix contains the Macro Assembler (MASM) listing of the system equate file,
EQUATES.ASM.

Equates are assembly language (MASM) directives. The term equate as used here includes the
MASM directives: EQU, '= " STHUC, RECORD, and MACRO. They allow the programmer to
assign ASCII strings (names) to numeric constants, data structures, data records and macros. The
name can then be used in programs to define data structures, code structures, or record
structures. When the program is assembled, MASM substitutes the value associated with the
name for every occurance of the name in the source code.

~ The MASM directive 'INCLUDE' is used by programs to define constants, data structures or code
structures commonly used by different programs. When a particular equate or group of equates
is needed in a program, the programmer does not have to either define a new equate name for
the variable or type it into the program. The programmer can use the 'INCLUDE' statement to
define the equate. At assembly time the INCLUDE directive causes the assembler to read a
specified file and process it as if its contents were actually in the orignal source code file. See the
HP Vectra MS-DOS Macro Assembler manual for more information on include files.

E.1 The Equate File

The equate file supports prograrnmer's access to both the STD-BIOS and EX-BIOS. Support is
provided for software interrupt numbers, interrupt function and subfunction codes, and data
structures associated with the various fUrlctions. Commonly used MACROS are also defined.

System Equate File 395



Equates File

endif
int HP _ENTRY
endm

;**************************************************************************; SYSCALL [vector address]

;**************************************i***********************************sr;~~ll m~~~~tor~ector
ma v b p . vee tar

db 0
db 0
ENDS

DH MAJOR
DH-MINOR
HP=:SHEADER

;**************************************************************************; HP VECTOR TABLE Ent ry .

;***i******i***************************************************************HP_TABLE_ENTRY struc ;<1,2,3>
HP ENTRY IP dw 0
HP-ENTRY-CS dw 0
HP-ENTRY-DS dw 0
HP=:TABL(~JNTRY ends

~:i:*******************************************************************; Structure of Data Header for HP's vectors

;**********************************************************************HP SHEADER STRUC ;<1.2.3,4,5.8,7,8,9,0>
DH-ATR dw 0 At t r ibut e
DH-NAME INDEX dw 0 Name index of driver
DH-V DEtAULT dw 0 Driver vector position in HPtable
DH-P-CLASS dw 0 Parent class
DH-C-ClASS dw 0 Child class
DH-V-PARENT dw a ,Vector used when the driver cannot handle

- - an F ISR function call
DH_V_CHILD dw, Vector used when the driver cannot handle

a regular funct ion call
, Driver's major address if any.
, Driver's minor address if any.

:**********************************************************************; DH ATR bit record

;**********************************************************************ATR HP equ 1000000000000000B 1- The Rest of header is valid
ATR-OEVCFG equ 0100000000000000B, 1- Present in DEVCONFG
AT R=: IS R equO010000000000000 B 1- Rep 1ace My IS R ( Chi 1d )

;**************************************************************************: EX-BIOS support macros and equates

;**************************************************************************
HP~~NT~~' for EX-BIOS in~~~ruPt ~F~ber and vector address,

~~~~~O~u~~~~:e~acros

1) Generic Structures and equates used by all drivers
2) Equates for Vector Addresses
3) Fun c t lO nan d Sub fun c tl 0 n EQua t (' s c 0 mmo n t 0 all d r 1\1 e r 5
4) Function and Subfunctlon Equates indlvidual to drivers These

MS_DO~r~a~~~:r:~dbl ~:~~~r number

Industry Standard (~TD-BIOS) Interrupt numbers and functlon equates
Industry Standard (STD-BIOS) Data Area
Bit definitions for Industry Standard (STD-BIOS) data area entries

, The pro 9 r amme rca n ext rae ton 1y tho see qua t est hat hen e e d s toe rea t e
, a tallored equate file.

;**page

:**: 80286 Support mac ros and equates

:**;**; The following macro is used to compensate for a bug in the 80286
; hardware interrupt system During a normal POPF lnstruction

~ ~~~l~n~~~~:~~P~~a~~: ~t:aY~r~~~b}~dt~:9~~~1~~Sa~~e~h~h~tg~~Of

;*************************~**POPPF mac ro
imp $ +3
1 re t
pus h c s
call $-2
endm

0000 0000
0002 0000
0004 0000
0006

0000 0000
0002 0000
0004 0000
0006 0000
0008 0000
OOOA 0000

OOOC 0000

OOOE 00
OOOF 00
0010

• 8000
• 4000
• 2000

II 006F

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
3(,
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

396 System Equate File

Equates File (continued)
1- Replace My ENTRY (Parent)
o - Available on allocation from HP
1 - Available Vector
2 - Servlce Vector

l : ~~~~~~~ ~~~;c~rI~:~t(~~y~~~~~ CHA
5 - End of Chaln
6 - Mappable input drlver
7 - Available

11111111111111118
00000000000000008

equ
equ

CL ALL
CL -I'JULL

ATR ENTRY equ 00010000000000008
A TR-R SYD e q u 00000000000000008
ATR-FREE equ 00000010000000008
AT R - SRYC equO 0 0 0 0100000000008
ATR-LOG equ 00000110000000008
AT R- I ND equO 0 0 01000000000008
ATR-80T equ 00001010000000008
ATR-INP equ 00001100000000008
ATR-TYPE7 equ 00001110000000008
ATR-TVPE MASK equ 00001110000000008
ATR-STRING equ 00000001000000008
ATR-MAP CALL equ 00000000100000008
ATR-SU8ADD equ 00000000011000008
ATR-NOADDR equ 00000000000000008
ATR-MAJOR equ 00000000001000008
A TR-M I NOR equO 0 0 0 0 0 0 0 0 10 0 0 0 0 0 8
A TR-MIDequO 0 0 0 0 0 0 0 0 11 0 0 0 0 0 B
ATR-PSHARE equ 00000000000100008
ATR-CSHARE equ 00000000000010008
ATR-ROM equ 00000000000001008
ATR-YIELD equ 00000000000000108
ATR-O equ 00000000000000018

p:i::***: DHC1ass

:j*CL K8DFC equ 10000000000000008 1 - HP Softkey Transaltor
CL-KBD equ 0100000000000000B 1 - Keyboard
CL-CCP equ 00100000000000008 1 - Cursor Control pad
CL-CON equ 00010000000000008 1 - Console Device
CL-BVTE equ 00001000000000008 1 - PRN device
CL-COMM equ 00000100000000008 1 - COMM device
CL-INTERFACE equ 00000010000000008 1 - interface. HP-HIL. HPI8
CL-FILT equ 00000001000000008 1 - charachter filter
CL -B L K equO 0 0 0 0 000100000008 1 - b 10 c k de ViC e
CL-BOOT equ 00000000010000008 1 - boot block devlee

CL-LGID equ 00000000001000008 ~ ~ l~~~cr~ ~~~s~~:~s1~~or
CL PGID equ 00000000000100008 1 - physlCal 1ld

gt=~f~ ~~~ ~~~~~~~~~~g~~~gg~ i = ~~~s1~~~ht~~c~n~~~e~~vlCe
gt=~~~~~D :~~ gggggggggggg~g6~~ 6 = =~~l~fi~~~~s~~v~~~ve

1 - alternate class set
Me mb e r 0 fall cIa sse s
Member No Classes

: **:~**: Vector Addresses

:***Y SCOPY equ OOOOH , Copyrlght Notice
V-DOLITTLE equ 0006H Nop Rout ine
Y-PNULL equ OOOCH No Dev lce

~=~ ~ ~ ~ ~M : ~ ~ ggi~ ~ ~ ~ ~ ~ eI ni ~ ~ ~ ~ ~ ~ i c s

~=~~~¥~ ~~~ gg~~~ &:~~~yIR3D1T~a~~1~~~~s
V-SOFTKEY equ 003CH HP f1-f8 Translator
V-FUNCTION equ 0042H IBM FI-FIO Translator
Y-NUMPAD equ 0048H Numeric Pad Translator
V-CCP equ 004EH CCP Translator Drlver
Y-SVIDEO equ 0054H Vldeo IntrinSlcs
Y-STRACK equ 005AH Common cursor control funcs
Y-EVENT TOUCH equ 0060H Touch Event Intercept
Y-EYENT-TABLET equ 0066H Tablet Event Intercept

~=~~~~~;POINTER :~~ ~g~~~ ' ~C~n~~rC~~~~~ ll:~~~e~llter (Default)
V-RAW equ 0090H , CCP+Softkey RAW Mode Fl1ter
Y-CCPNUM equ 0096H CCP to Nume rlC Pad F 11 t e r
V-OFF equ 009CH CCP+Softkey Off Filter
V-CCPGID equ OOA2H CCP to GID Fllter (Not Implemented)
Y-SKEY2FKEY equ 00A8H Softke~ (f1-f8) to Function

Y-8041 equ OOAEH 8~~r int;~~L~l1ter (Default)

~=r(;l~[~~p :~~ gg~:~ ~~~~~~cd~~V;~P Filter
Y-LPOINTER equ OOCOH POlnter driver
Y LTOUCH equ 00C6H Touch driver
V=LHPMOUSE equ OOCCH Microsoft/Mouse System's

Compatible Drlver
V LI\IULL equ 0108H No Driver
V=HPHIL equ 0114H HP-HIL Driver

,***; C I) mm 0 n Fun c t ion Cod e s for HPRo uti n e s

;***F ISR equ 00H*2 Interrupt serl/lce call
F-SYSTEM equ 01H*2 System func call,

- Subfunctlon reqUired
F_IO_CONTROL equ 02H*2 Devlee/Driver Dependent

F u nc t 10 n S
F_PUT_8YTE equ 03H*2 Write one byte of data

8yte is in AL
F_GET_BYTE equ 04H*2 Read a byte of data:

8yte returned in AL

94 • 1000
95 • 0000
96 • 0200
97 • 0400
98 • 0600
99 • 0800
100 • OAOO
101 • OCOO
102 • OEOO
103 • OEOO
104 • 0100
105 • 0080
106 • 0060
107 • 0000
108 " 0020
109 • 0040
110 • 0060
III • 0010
112 • 0008
113 • 0004
114 • 0002
115 • 0001
116
117
118
119
120 8000
121 " 4000
122 2000
123 1000
124 0800
125 • 0400
126 • 0200
127 • 0100
128 • 0080
129 " 0040
130 0020
131
132 00 10
133 " 0008
134 • 0004
135 0002
136 • 0001
137
138 FFFF
139 0000
140
141

~
142
143
144 • 0000
145 • 0006
146 • OOOC
147 • 0012
148 • 001 E
149 " 002A
150 • 0036
151 '" 003C
152 • 0042
153 • 0048
154 • 004E
155 • 0054
156 • 005A
157 • 0060
158 • 0066
159 • 006C
160 • 008A
161 • 0090
162 0096
163 • 009C
164 :a 00A2
165 • 00A8
166
167 • OOAE
168 :a 0084
169 " OOBA
170 • OOCO
171 • 00C6
172 :: OOCC
173
174 0108
175 • 0114
176
177
178
179
180 0000
181 " 0002
182
183 .. 0004
184
185 • 0006
186
187 • 0008
188

System Equate File 397

Equates File (continued)
• OOOA F_PUT _BUFFER equ 05H*2 Write a buffer of data,

ES,DI pointer, CX countOOOC F_GET_BUFFER equ 06H*2 Read a buffer if data,
ES,DI pointer, CX count

• OOOE F PUT WORD equ 07H*2 Write word of data, DX data0010 F-GE TOWORD equ 08H*2 Read word of data, DX data
F-PUT-BLOCK equ F PUT BUFFER used for disk applications
F::::GE T::::BLOCK ~qu F::::GET::::BUFFER

; ***
, C0 mm 0 n Sub fun c t ion Cod e s for the FlO CON TR0 L fun c t ion .
: ***********************************i**i******************************
SF LOCK equ 00H*2 ; Lock Device for exclusive access
SF:=UNLOCK equ 01H*2 ; Unlock Device for exclusivce access

~ :i:**
; HP Routines Return Status Sucessful codes are positive and failure

:*:;:*;*i:i~~:**

~

~

~

Break -- IFC

~~~~~ ~~~r S~~aRo~~~;~~e~~~e~~~rO~~~~tion
indicates all done return child
indicates a chained ISR--not handled
indicates function is NOPed/not valid

o for this driver
indicates executed just fine

06H*2
07H*2
08H*2
09H*2
OAH*2
OBH*2

05H*2

04H*2

equ

equ

equ
equ
equ
equ
equ
equ

OOCH
OOAH
008H
006H
004H
002H

OOOH

SF GET _ATTR

; ************************************************************************

RS FAIL equ OFEH To be used with hardware failure
RS::::TIMEOUT equ OFCH , to indicate remote device timeout
RS_BAD PARAMETER equ OFAH to indicate a bad parameter
RS_BUSV equ OF8H to indicate driver/device is bu.y
RS_NO VECTOR equ Of6H out of hp_VT vector.
RS_OFrLINE equ OF4H . device is offline

~~=~~~!~~_PAPER :~~ ~~~~ : ~~~i~~ ~~~~~ i~ ~~;~:~rs~i~~ce
RS FRAME equ OEEH ; framing error

~ :1:***************************************************************************
; Function Number Equate. for the EX-BIOS routines and its Data Structures.
; ******************************************************************************

; *********************************************************************

~ *~ii~i~i:*~~~~i~.*~~;~ii~;*~~~:~*************************************
; F_ IS Ran d F_ S YSTEMAr e fun c t ion S c 0 rnmo n t 0 A11 d ri " e rI .

FINS BASEHPVT equ 0004H

~=i~~=~g~g~~~D :~~ ~~~~~
~-i~~-~i~g~~5~ :~~ ggg~~
F=INS:::::FIXGETDS equ OOOEH
FINS FIXGLBDS equ OOlOH
F-INS-FREEOWNDS equ 0012H
F=INS=FREEGETDS equ 0014H
FINS FREEGLBDS eq u 001SH
F:=INS::::FIND equ 00l8H
F_RAM_GET equ 001EH
F RAM RET equ 0020H
F-CMOS GET equ 0022H
F-CMOS-RET equ 0024H

~::::~~5LgLICK ENABLE :~~ gg~~~
~::::~~g=gt ~g~=D I SABLE :~ ~ gg~~~

~=~~g=~~~~-6~~~~~E :~~ gg~~~
F-SNO-BEEP- equ 003AH
F-SND-SET BEEP equ 003CH
F::::SND:=rON£ equ 003EH

; *********************************************************************
; Co mmo n Sub fun c t ion cod e s 0 f the F S YSTEMF un c t ion
; *********************************************************************
SF I NIT equO0 H* 2 ; I nit 1 ali I e c 0 mmand

SF::::START equ 01H*2 :S~~~~d~~~e;n~~i~;~;;~:;iZ:t~~~~~~:~t
SF REPORT STATE equ 02H*2 ;Reports state of driver
SF::::VERSION_DESC equ 03H*2 ;Report version and opt ion desc ribe

, rec 0 rd
;Reports default Configuration
o (Baud Rate)
;Reports Current Configuration
, ES,DI pointer

~ ~: ~: r~: x6rI~ ~ ~ i Y~ ~ a ~ ~ ~ ~ u~ ~ ~ ~ I ac ~~ s s
; Release .. from" ..
;Notify Driver Timeout Occurred
:~~:tf~u~~}:i~~ Interval Occurred

~~._g:~~KNREADY :~~
RS-OVERR"UN equ
RS-DONE equ
RS-NOT SERVICED equ
RS::::UNSUPPORTED equ

RS_SUCCESSFUL equ

SF _DE F_ATTR

SF SET ATTR
SF-OPEN
SF-CLOSE
SF-T IME OUT
SF-INTERVAL
SF::::TEST

0000
0002

• 0004
• OOOS
• 0008
• OOOA
• OOOC
• OOOE
• 0010
• 0012
• 0014
• 0016
• 0018
• OOlE
• 0020
• 0022
• 0024
• 002A
• 0030
• 0032
• 0034
• 0036
• 0038
• 003A
• 003C
• 003E

OOFE
• OOFC
• OOFA
• OOf 8
• OOFS
• OOF 4
:I: 00F2
.. OOFO

OOEE

• 0000
• 0002

• 0004
• 0006

• 0008

OOOA

• OOOC
:a OOOE
.. 0010
• 0012
.. 0014
• 0016

:a OOOC
• OOOA
.. 0008
• 0006
• 0004
• 0002

• 0000

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
., 3""
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
2S 8
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282

398 System Equate File



unmask svc/8041 interrupt
mask svc/8041 interrupt
unmask keyboard INT 9 lnterrupt

, ~~~~s~e~~~~I~ f~Ie~r~~~erruPt
ma s k HP - HI lin t err u p t

Reports ID's of devices
Reports base HP-HIL address vector
Reports entry point of (V_PGID)

Sets default cofiguration
Reports current conflguration
Set s Next Conf iguat ion

1 reserved byte for volume

STR_HEADER dup (?) ; ROM message st rings

0006H
0008H
OOOAH
OOOCH

OOOOH
0002H
0004H

OOH
02H
04H
06H
08H
OAH

S 1 ze

( ?)
31 dup (1) ; reserve 2 paragraph

(1)
(1)

1
~ l
? )

Hl
(?) ,
( 1) ,
( 1 )

I
?) ,
? )
1)

size STR_HEADER dup (7) ; Area vector's name and

(1)

(7)
(1)
(1)
(1)

equ
equ
equ
equ

equ
equ
equ

equ
equ
equ
equ
equ
equ

db
db

db

dw
dw
dw
db
db
db
db
dw
dw
db
db
dw
dd
db

Driver Specific F 10 CONTROL subfunctions.

:1:********************************************************************V SVIDEO (54H) subfunction codes Use these subfunctions when

**~:iii;i*i~:*~i~~~*~;i~:;*~i;;~ii~************************************F_ I SRan d F_ SYSTEMar e fun c t ion s c 0 mm 0 n t 0 a 11 d r i v e r s . .

: Driver Specific F 10 CONTROL subfunctions.

, Driver specific F_IO CONTROL subfunctions

;*********************************************************************; V SINPUT (2AH) Function and 5ubfunction codes

;*********************************************************************, F_ISR and F_SYSTEM are functions common to all drivers.

SF ENAB LE SVC
SF--DISABLt SVC
SF'-ENABlE KBD
SF--DISABlt KBD
SF-E NABLE RPH I l
SF=DISABlt_HPHIL

HP~GLB HEADER ENDS

~:i:******************************************************************
:*~ji:i~~*~ii~~*:i~~*i;ii;;~~i*~~;i;~iii;**~~~~;i*********************

F_ I SRan d F_ SYSTEM are fun c t ion s c 0 mm 0 n t 0 a 11 d r i v e r s

T HP LAST DS
T-HP-MAX OS
T-HP-NXT-VCTR
T-SNO Fl~G
T-SND-CLICK COUNT
T-~ND-CLlctCDURA
T-SND -C L ICK-VOLUMf
T-SND-BEE P CYCLE
T-SND-BEEP-DURA
T=SND=BE f P=COUNT

;**********************************************************************
:*~:~*i~i~i~*~i~~:i*~:i:*iii~i;i****************************************HP GlB HEADER STRUC
T RP HtADER dw
T=UStD _AND _RE Sf RVED dw

~-~i:-g~l-~~~~tiNDEX :~~ ~g:~~
F-STR-PUT-BUCKE T e q u 004 4H
F-STR-GET-STRING equ 0046H
F=STR=GE(~:ZNDEX equ 0048H

~ :i:*******************************************************************
: f~11~;1nBu~k;~s~~~d~~ncI~~~sst~u~irrDEtSBu~~~¥la~~ FS~9~ ~nT BUCKET

;*********i************************************************************STR HEADER STRUC
STR-NXT HDR dd
STR-UPPtR BOUND dw
STR-lOWER-BOUND dw
STR-LIST PTR dd
STR-SEGMtNT dw
STR=HEADER ENDS

??

11

1111

IF [

OE [

? ?

1111... 06

11 '7
1?? "'I
71? ?
? ?
17

11
11
'1?1
?1 1?
? ?
? ?
??? ?

?? '1??? '?
OE [

"'1111 "'I? ? ?7777 ...
117 "'I

111?1111
?'1 ?

• 0006
• 0008
• OOOA
• OOOC

• 0000
• 0002
• 0004

• 0000
• 0002
• 0004
z 0006
2 0008
• OOOA

0060

0040
0041

0032

OOOE
0010
0012
0014
0015
0016
0017
0018
001A
001C
001D
OOlE
0020
0024

0000
0002

0000
0004
0006
0008
OOOC
OOOE

Equates File (continued')
283 • 0040
284 • 0042
285 • 0044
286 • 0046
287 • 0048
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

System Equate File 399



Equates File (continued)

o
2
4
6
8
10

4 DUP (1) ; Room for all Itatul registerl.

4 DUP (1) ; Room for extended status reg1sters.

VID_BLOCK_SIZE oUP (1) ; Place to save parameters

eQu
equ
e q u

equ
equ
equ
equ
eq u
equ

db
db
db

db

db

db

SF TRACK ON
SF-TRACK-OFF
SF::::CREAT'E_EVENT

Driver specific F 10 CONTROL subfunctions

;***********************************************************************
:*~ji~i~~~*~i:~i*i~;:i~i*~:~:*i~;~~~~;:~********************************VID BLOCK SIZE equ 0027H
VIDro DA T'A" 5"t rue
VID ATR dw
VID-NAME INDEX dw
VID-V DErAUL T dw
VID-prUMARY db
VID-SECONDARY db
VID-FOUND ROM db
VID=IDS - db

;************************************************************************; V 8041 (OOAEH) Function and subfunction codes.

;**j*********************************************************************. F_ I SRan d F_ SYSTEMar e fun c t ion s e 0 mm 0 n t 0 a 11 d r i v e r I .

. Driver Specific F_IO_CONTROL subfunctions.

; Subfunct10n codes OH. 2H, 4H, 6H and 8H are reserved
SF CREAT INTR equ OOOAH Create Interval Ent ry.
SF-oELET-INTR equ OOOCH Delete Interval Ent ry.
SF-ENABl-INTR equ OOOEH Enable Interval.
SF-DISBl-INTR equ OOlOH Disable Int erval.
SF-SET R'A"MSW equ 0012H Set RAM Switch to l.
SF-CLR-RAMSW equ OOl4H Clear RAM Switch to O.
SF-SET-CRTSW equ 0016H Set CRT Switch to l.
SF-CLR-CRTSW equ 0018H Clear CRT Switch to O.

SF = PA SS- T~R~ u b fun c t ion c ~ ~ ~ I 1CH~ 0 t: ~. 26 H~ aiiH~ a ~ : H~Y~6H ~ 0 2~~ ~ 0 ~kH.
; 2CH and 2EH are relerved.

~ :i:*********;**~******************************************************; Physical GraphlCs Input Device (GID) Function Codes.

;**********************************************************************; F_ISR and F_SYSTEM are functions common to all drivers.

;**********************************************************************~ ~~1~~~lf~~~P~1~~A~~~¥~ eer~~~N+~~D~n~uGc~*gGc~~de5. This 1s a common

;**************j**********i**************j*****************************F_ISR and F_SYSTEM are functions common to all drivers

VID LAST IBM MODE
VID-EXT RooE
VIo=PAoDING

0004
.. 0006
• 0008

• OOOA
• OOOC
• OOOE
• 0010
• 0012
• 0014
• 0016
• 0018
• 001A

• 0004 F- TRACK INIT equ 04H
:~~~l~~a~~~~~i~~

default Itate
• 0006 F TRACK-ON equ 06H
• 0008 F-TRACK-OF F eq u 08H disables tracking
II OOOA F-oEF MASKS equ OAH def ine s p r i t e ma s k •

OOOC F-SET-LIMITS X equ OCH set maxImin horizontal val ues
.. OOOE F-SE T-L IMI TS-Y equ OEH se t maxImin vert ieal values
• 0010 F-PUT-SPR I TE- equ 10H di sp lay sprite at in1 t ial pos 1 t ion
• 0012 F=REMO'JE SPR ITE equ 12H remove s p r 1 t e from display

• 0000
.. 0002
• 0004
.. 0006
• 0008

OOOA

• 0027

0000 ??11
0002 1111
0004 11? 1
0006 1?
0007 ? ?
0008 ., ?
0009 04 (

? .,

OOOD 04 [
11

0011 04 (
11

0015 27 [ ., .,

003C 11
003D ? ?
003E 02 (

11

0040

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
46?
463
464
465
466
467
468
469
470
471
472

400 System Equate File



Equates File (continued)

. The field O_SOURCE uses the following masks to access the defined nibbles
o AODR MASK equ OOFH
O=TVPE=MASK equ OFOH

,*********************************************************************
;*i~li~:i*~~~*~:~~;i~:*::~~;~*****************************************LOESCRIBE STRUC

db size HP_SHEAOER dup (7) ; this data is always offset by

;**********************************************************************; GID Data Structures

;**********************************************************************
;*********************************************************************; Physical GIO OeHribe Record

;*********************************************************************DE SCR I BE STRUC
db size HP_SHEAOER dup (1) : this data is always offset by

LO_PROMPTS db

LO_SOURCE db

LO HPHIL 10 db
LO-OEVICE' STATE dw
LO-INOEX - db
L0 -MA )( A)( I S db
LO:=CLASS db

offset where buffer begins

data reported from device
that reports absolute data
data reported from device
that is relitive
these are used to accumulate scallng
remainder

transitions reported per button
current state of buttons
counts / cm (m) returned by HP-HIL device
MalCimum count of in units of resolution

7-4 (high nibble) contains the GIO type
3-0 reser ... ed
dev ce id byte returned by an HP-HIL device
sta us bits for logical device
vec or index of invoking driver
max mum number of axis reported
dev ce class

~=g l~~~hn~~g~~i)c~~~~~~n~h~u~~~~~l~l~l~ss
9~~bi~i~~ ~~bb~~i/~~oT~~snumber of prompts
3-0 (low nibble) is the number of button.
reserved for future

7-4 (high nibble) contains the GIO type
3-0 (low nibble) is the address of the device

~:;~~!b~dh~~~:rr~~~~n~~_~~La~e~~~~ILdevice
I/O descriptor byte from device
e>ltended describe byte from device
maximum number of axes reported
device class
7-4 (high nibble) contains current class
3 - 0 (low nib b 1e) eon t a in the de fa u 1 tel ass
number of buttons/prompts
7-4 lhigh nibble) is the number of prompts
3-0 low nibble) is the number of buttons
relerved for future
maximum burst length output to a device
if devices supports more than 255 bytes then
255 bytes is the default maximum
number of write registers supported by a device

~~~~~~t~~n;e~~p~~1~~t~~~~~~~~~ted by a device
current state of buttons
counts / em [m) returned by HP-HIL device
MalCimum count of in unit s of resolut ion

OAh
OCh
OEh
10h

06

size DESCRIBE
o STATE + 1
O-SIZE X
0-A8S X
O-REL-X
O-ACCUM X
O-SIlE X
OrOH
OOFH

eQu
equ
equ
equ

equ

equ
eQu
eQu
eQu
equ
eQu
equ
equ
equ

db
db

db

db

db
db
db
db
db
db

db
db
db
db
dw
dw
dw
dw
dw
dw
dw
dw
dw
ENDS

Sf EVE NT ON
SF-EVE NT-OF F
SF-CLIPPING ON
SF:=CLIPPING:=OFF

F_SAMPLE

LO RESERVED db
LO-RES2 db
LO-RES3 db
LO-RES4 db
LO-TRANSITION db
LO-STATE db
LO-RESOLUTION dw
LO-SIZE X dw
LO:=SIZE:=V dw

O_PROMPTS

o RESERVED
O:=BURST_LEN

O_SOURCE

o HPHIL 10
O-OESC RASK
0-10 M~SK

o-xoEsc MASK
O-MAX AXIS
O:=CLj~SS

o WR REG
O-RO-REG
O-TR~NSITION
O-STATE
O-RESOLUTION
O-SIlE X
O-SIlE-Y
O-ABS X
O-ABS-Y
O-REl-X
O-REL-Y
O-ACCUM X
O-ACCUM-Y
OE'SCRIBr

DESCRIBE SIZE
o CCP ST~TE
O-SIlE'
O-SAMPLE A8S0LUTE
0- SAMP LE-R ELA TIVE
O-REMAINOER ACCUM
O-BUFFER -
O-CLASS CURRENT
O:=CLASS:=OEFAUL T

? ?

11

?1

7
1
1
1
7
?

111
?? ?

???

10 [

10 [

? 1

11
1 ?

11

11

11

11
11
? 1
? ?
? ?
? ?

c: OOOA
• OOOC
• OOOE
• 0010

• 0006

0017

OOFO
• OOOF

0010

0011
0012
0013
0014
0015
0016

OOOF
• OOFO

0000

0018
0019

0017

0000

OOlA
0018
OOlC
0010
00 IE
0020
0022
0024
0026
0028
002A
002C
002E
0030

• 0030
• 00 IE

0010

0011
0012
0014
0015
0016

'0018
0019
001A
0018
001C
0010
001E
0020
0022

473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
50S
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566

r

r

,.

System Equate File 401

(O~~LA~~~~~;~E~TmaSkS ar:q~Sed i~F6~e field LO CLASS

LO_CLASS_DEFAUL T equ OOFH

;**
~ *~ii~~:ii*~i~*~l~;~***GIO_R08 equ OOH
010 RIB equ 01H
GID=:AO 8 eq u 02H
OlD_Ale equ 03H

(DT~~Sf~~~~ LD_SOURCE US:~uthe fg6~~wing masks to accels the defined nibbles

LD=:TYPE'_MASK eq u OFOH

;**; Logical 010 LO DEVICE STATE

~***************i******i***tVENT_ENABLED equ 10h
TRACK ENABLED equ 08h
CLIP E'NABLED equ 04h
BUTTON_ERROR equ 02H
ISR IN PROGRESS equ OIH

~

~

~

; offset where buffer begins

~~~~~~e~G~~ :~:n~~~~~~a~ ~~iI~~ :~ ih~C1B3~~~~
and removel any other scancode from data Itream

data reported from device
that reports absolute data
data reported from device
that is relitive
these are used to accumulate scaling
remai nde r s

OSH
07H
08H
09H

OSH

OFH

OAH
OBH
OCH
OOH
OEH
OFH

02H
03H

04H

size LOESCRIBE

LO SIZE X
LO-ABS X
LO-REL-X
LO-ACCUM X
LO=:RESOLUTION

equ

equ

equ
equ
equ
equ

equ
equ
equ
equ
equ
equ

equ
equ

equ

equ
equ
equ
equ
equ

equ

dw
dw
dw
dw
dw
dw
ENDS

T KC R5

T KC WILO
T-KC-HPHIL ENVOY
T-KC-IBM AT
T=:KC=:BUTTON

T KC IBM PC
T-KC-HP SOF TKE Y
T-KC-I S-F UNCT ION
r-Kc-HP-CCP
T-KC-QWE'R TV
T-KC-NUMPAD

;**********************************************************************
~ *~;'~~:;~*:~~*~i~*i~:~~*~:~:*~'~ii************************************T_KC_RO equ OOH . No key (should never occur)
T_KC_Rl equ OlH reserved (see HP-HIL Technical

· Reference Manual)
ascii data
reserved (see HP-HIL Technical

· Reference Manual)
· ITF scancode reported by HPI50 ITF keyboard.
· HP200 ITF kerboard. barcode reader in scancode

~~~:~ve~ ~~~eo~p~~~~r~~c~~~c~l this set)
IRe fer e nc e Ma nua 1)

wild card let. device dependent. Button Pad uses
reported by VECTRA Keyboard

T KC ASCII
T-KC-R3

T KC ITF

OID_UNDEF this undefined type is used because
the character input devices at the

;~~r~~ls t t~!l~O t ~~tH~~~iL g~~~~;;s t~~fut
the da tat ypet 0 ret urn is de term in ed

I by the .cancode. the device return.

~:i:***; D CLASS And LD CLASS device typel

i**i************i**"'LASS_KBD equ OOH
CLASS_TS equ 01H
CLASS_ASCII equ 02H
CLASS BINARY equ 03H
CLASS::)10USE equ 04H
CLASS_GIDCCP equ 05H
CLASS_TABLET equ 06H
CLASS_JOY equ 07H
CLASS_UNDEF8 equ 08H
CLASS_PADDLE equ 09H
CLASS_THUMB equ OAH
CLASS_TRACKBALL eq u OBH
CLASS_KEYPAD equ OCH
CLASS_UNDEFD equ OOH
CLASS_UNDEFE equ OEH
CLASS_UNOEFF equ OFH

• OOOF

• 0000
• 0001
• 0002
• 0003

• 0006
• 0007
• 0008
• 0009

• 0005

• OOOA
• OOOB
• OOOC
• 0000
• OOOE
• OOOF

• OOFO
• OOOF

• 0004

• 0010
• 0008
• 0004
• 0002
• 0001

• OOOF
• OOFO

• 0000
• 0001

• 0002
• 0003

• 0000
• 0001
• 0002
• 0003
• 0004
• 0005
• 0006
• 0007
• 0008
• 0009
• OOOA
• OOOB
• OOOC
• 0000
• OOOE
• OOOF

Equates File (continued)
567 0024 LO ABS X
568 0026 LO-ABS-Y
569 0028 LO-REL-X
570 002A LO-REL-Y
571 002C LO-ACCUM X
572 002E LO-ACCUM-Y
573 0030 LOE'SCRIBE'
574 • 0030 LOESCRIBE SIZE
575 -
576 = LO SIZE
577 II LO-SAMPLE ABSOLUTE
578 I: LO-SAMPLE-RELATIVE
579 I: LO-REMAIN~ER ACCUM
580 • LO-BUFFER -
581 -
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651

·652
653
654
655
656
657
658
659
660

402 System Equate File

o 25 default)
200 default I
200 default I

· used to set and test for gid types
normal mouse type data

normal TOUCH SCREEN D~ta

normal TABLET data type
specIally formed data
Specially formed data (0 80
Specially wlndowed data 1640
specially windowed data 640
Unknown data type

This is used to set a default
major and minor addresses

· Funtion id used to force the HP-HIL
, link to reconflgure the devices

Used to wnte a prompt to a device
Used to wrlte an acknowledge to a
device
Function is used to set a 30 Hz
50 Hz repeat for keyboards
Used to cancel the repeat rates in
keyboards
Used to issue a self test command
to a physical device
Used to get the status information
that an AP-HIL device might wish to
report For speclflc lnformatlon
on what is reported, see the specs
for the device.
This function is used to return the
ascli name that a devlCe has
Used to set the keyboard repeat

. and delay rates
Used to set the keyboard LEOs

0014

0016

0018

40H
40H
41H
42H
43H
44H
45H
46H
47H
4FH

0002H

equ

equ

equ

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

equ 0004

equ 0006

equ 0008
equ OOOA

equ OOOC

equ OOOE

equ 0010

equ 0012

equ

**
~ii~:~~~~i~~~ii~i*~~;~~i~;*:;~*~~~~~;~~i~;*~~~~~**********************

F_ISR and F_SYSTEM are functions common to all drivers.

:i:***V HPHIl (01l4H) Function and subfunction codes

i*F_ISR and F_SYSTEM are functions common to all drivers.

. The functions F PUT BYTE, F GET BYTE and F PUT BUFFER are also supported
in this driver.- - - - --

;**; SYlitem String IndeKeli. These are the indexes for the strings in ROM
; for the BASE system If you need a particu.lar string see the function
; F STROE T STRI NO 1 nthe V SYSTEM r 0 u t 1 ne s

;**i***i***INDX DRIVE A equ 2048+0
INDX:=DRIVE:=B equ 2048+1
INDX_DRIVE_C equ 2048+2
INDX DRIVE D equ 2048+3
INDX-DRIVE-E equ 2048+4
INDX-DRIVE-F equ 2048+5
INDX-DRIVE-G equ 2048+6
INDX-DRIVE-H equ 2048+7
INDX=DRIVE:=I eQu 2048+8

SF _KEYBOARD_LED

SF _KEYBOARD_REPEAT

SF _CRV _RE PORT_NAME

; Bit definition. for Keyboard Event Data Types

t STFIING equ 010H
; T STRING 00)(1 t t t t Bindie ate s a 5 t r i n~ 0 fda tab 'I t e s 0 f t 'I Pe d e fin e d b Y the

- the lower nibble tttt·. The state information only
applies to the first byte of data as it can be
mo d if i e d bye a c h sub seq uen t by teo fda t a

OOh ttttB i~d~catesO~~~ character type indicated
in 'tttt' field has the current logical state
of the keyboard appended onto it

. Driver specific F_IO_CONTROL subfunctions

SF _CRV_SELF _TEST

SF _CRV_DISABLE REPEAT

SF _CftV_REPORT_STATUS

SF _CRV_REPEAT

SF CRV WR PROMPTS
SF:=CRV:YJR:=ACK

SF _CRV _RECONF IGURE

T STATE
;T_STATE

SF _C~ V_CRV_MA J _MIN

SF _MOUSE_OVERR IDE

T GID
T-REl08
T-REl16
T-ABS08
T-ABSI5
T-MOUSE
T-TS
T-TAEtlE T
T-PO I NTE R
T:=UNKNOWN

. Driver .pecific FlO CONTROL subfunctions.

SF MOUSE COM equ OOOOH, This function is used during the
- - . reinit call from DOS It is used

· ~~c:~:eugo~NIa~~~'IN~h~~Hi~h:~n~t
· is init ialized.

Thili function is used to force the
· V LHPMOUSE driver to install INT 33
· even when the mouse is not present.

~~~~c:;1~~St~ep~0~~~~85~Et~rTe~rif
· a mo use i $ not pre sen t

• 0800
• 0801
• 0802
• 0803
• 0804
• 0805
• 0806
• 0807
• 0808

• 0012

• 0010

• OOOE

• OOOC

• OOOA

• 0010

• 0008

• 0006

• 0004

a 0040
• 0040
• 0041
• 0042
• 0043
• 0044
• 0045
• 0046
• 0047
• 004F

• 0020

• 0000

• 0002

Equates File (continued)
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
68S
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

".

".

,.

System Equate File 403



Equates File (continued)
& 0809 INDX DRIVE J equ 2048+9
:I 080A INDX-DR IVE-K equ 2048+10

080B I NDX-DR IVE-l equ 2048+11
= 080C INDX-DR IVE-M equ 2048+12
• 080D INDX=DR IVE=N equ 2048+13

o80E INDX DR IVE 0 equ 2048+14
,. 080F INDX-DR IVE-P equ 2048+15
& 0810 I NDX-DR IVE-Q equ 2048+16

0811 INDX-DR IVE-R equ 2048+17
• 0812 INDX-DRIVE-S equ 2048+18
:I 0813 INDX-DR IVE-T equ 2048+19

0814 I NDX-DR IVE-U equ 2048+20
• 0815 INDX-DR IVE-V equ 2048+21

0816 INDX-DR IVEW equ 2048+22
• 0817 INDX-DR IVE-X equ 2048+23

0818 INDX-DR IVE-V equ 2048+24
0819 INDX-DRIVE-Z equ 2048+25

,. 081A INDX-HP COPVR IGHT equ 2048+26
:I 081B INDX-SETuP MSG equ 2048+27
:I 081C INDX-RETRV-MSG equ 2048+28

0810 INOX-INVALID ROM MSG equ 2048+29
081E INDX-KVB LocRED ~SG equ 2048+30

• 081F INDX-STRIKE F 1 ~SG equ 2048+31
• 0820 INDX-BOOT ER"ROR" MSG equ 2048+32
• 0821 INDX-TOUcR - equ 2048+33
• 0822 INDX-TABlET equ 2048+34
• 0823 INDX-MOUSE e~u 2048+35
• 0824 INOX-KE VBOARD equ 2048+36
:I 0825 INDX-BARCOOE equ 2048+37
• 0826 INOX:=KNOB equ 2048+38

OOH
01H
02H
03H
04H

equ
equ
equ
equ
equ

;**************************************************************************; Interrupt 10H Video Support Functions

t"**************************************************************************NT_VIDEO equ 10H ;Video Functions Interrupt

F 10 SET MODE equ OOH Set Video Mode
F 10-SET-CURSIZE equ OlH Set Cursor Size
F 10-SET-CURPOS equ 02H Set Cursor Position
F 10-RD eURPOS equ 03H Read Cursor Posit ion
FIO-RD-PENPOS equ 04H Read li9ht-Pen Position
FlO -SET PAGE equ OSH ~~ ~o ~l t ~~~ t ~~~~;a~p PageFlO-SCROll UP equ aSH
F 10-SCROll-ON equ 07H Scroll Rectangle Oown
F IO:=RD_CHAlfATR equ 08H Read Character and Attribute at

Cursor Pos i t ion
F 10_WR_CHARATR equ 09H Write Character and Attribute at

Cu rso r Po sit ion
FlO WR CHARCUR equ OAH Write Character at Cursor Position

~
F la-SET PAllET equ OBH Se t Color Pallet
F 10-WR PIXEL equ OCH Writ e Pixel Dot
FlO-RD-PIXEl equ ODH Read PiKel Oot
F 10WR-CHARTEl eQu OEH Teletype Character Write
F 10=GET_STMOoE equ OFH Get Video State and Mode

; Function code s 10H - 12H are r served

INT_IRQO_TIMER equ 08H

INT_IRQl_KBO_ISR equ 09H

INT _IRQ2 equ OAH

INT_IRQ3_SERIAll equ OBH

INT_IRQ4_SER IAlO equ OCH

INT_IRQ5_PRNI equ OOH

INT_IRQ6_F LOPPY equ OEH

INT_IRQ7 _PRNO equ OFH

;**************************************************************************
~ *i~:~~i;'*ii:;::;:**:~~:i;~*************************** ********************

;**************************************************************************; Print Screen Service

t"**************************************************************************NT _PR INT_SCREEN equ OSH

;**************************************************************************; 8259 Master Interrupt Controller Hardware Interrupts

;**************************************************************************

• OOOA
• 0008
& OOOC
• 0000
:: OOOE
:: OOOF

• 0009

• 0010

• 0000
• 0001
• 0002
• 0003
• 0004
• 0005

0006
• 0007
.. 0008

• 0008

• 0000
• 0001
• 0002
• 0003
• 0004

• 0005

808 • 0009

809 • OOOA

810 • 0008

811 & OOOC

812 • 0000

813 I: OOOE

814 • OOOF

815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807

404 System Equate File



Equates File (continued)

**************************************************************************
*i;~:;;~~~*~~~**~:~~~:;~*i~~~~;i*~~~i~~~;i********************************NT_KBD equ ISH ;Keyboard Driver

**************************************************************************I n t err up t 1 4H, Se ria 1 Co mm u n i cat ion s Fun c t ion s

**************************************************************************NT_SERIAL equ l4H ;Serial Communications driver

**************************************************************************Interrupt ISH, System Control Functions (Processor Mode Switch, Extended

*******************************************~:~~;~*~~~iii~~i**i~~*~********NT_SYSTEM equ ISH ;System/Cassette Functions Interrupt

Global Attribute
Global Attribute, Move Curlor
Individual Attributes
Individual Attributes, Move Cursor
EX-BIOS present
Get video parameters
Sets video parameter
Mo d i fie s v ide 0 par ame t e rs
Reports video resoultion
Sets video resolut ion

Reset Hard Disc
Read Status of Last Operation
Read Sec tors
Write Sectors

~~~~~r 6~~~~tte Track

Initialize Serial Port Parameters
Send Out One Character
Receive One Character
Get Serial Port Status

Report s if EX-BIOS Funct ions
are present

Initializes serial port
(19.2 Kbaud)

Writes a buffer of data
Reads a buffer of data
Reads a buffer of data,
terminates on Ipecified condition.

:~:~~r~e~~~~~Sf~~mk~~&~~~~db~~~~;r
;Get Key Modifier Status

l300H
l30lH
1302H
l303H
6FOOH
6FOIH
6F02H
6F03H
6F04H
6FOSH

OOH
01H
02H
03H

6FOOH

6F01H

SF02H
6F03H
6F04H

OOH
OlH
02H

for Calise te Handling are Unsupported

:~~ g:~~~: g~~~e
82H Program Termination
83H Event Wait
84 H Joys tick Sup p 0 r t
8SH System Request Key Pressed
8SH Wait Fixed Amount of Time
87H Move Block of Memory to/from

Extended Memory
88H Get Extended Memory Size
89H Switch to Protected Mode
BAH Device Busy Loop
BBH Set Interrupt Completed Flag

OOH
OlH
02H
03H
04H
05H

reserved
07 H ; Forma t Ha r d Dis c
OSH ;Get Hard DiSC Parameters

OBH are reserved
OCH ;Seek to Track
ODH :Alternate Hard Disc Reset

014H are reserved
15H ;Read Disc Type (DASD)
16H ;Get Disc Change Line Status
l7H ;Set Disc Type for Flexible Disc

Formatting(DASD)

equ
equ
equ

equ

equ

equ
equ
equ
equ

equ
equ
equ

equ
equ
equ
equ
equ
equ

code 06H is
equ
equ

codes 09H
equ
equ

codes OEH
equ
equ
equ

equ
equ
equ
equ

codel 0
equ
equ
equ
equ
equ
equ
equ
equ

Func t ionl
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

F14 INIT
F14-XMIT
FI4-RECV
FI4-=STATUS

F 14_INQUIRE

Fl4_EXINIT

F14 PUT BUFFER
F l4--0ET-BUFFER
FI4:=TRM::::BUFFER

; Write String
FlO WRS 00
F10WRS-Ol
F 10WRS-02
F 10WRS-03
FlO-INQUIRE
FlO-GET INFO
F 10--SET-INFO
FlO-MOO-INFO
FlO-GET-RES
F 10:=XSET_MODE

F16 GET KEY
FIe-STATus
F lS:=KEY _STATE

F13 RES ET 0 I SC
F l3-RD LSTATUS
FI3-RD-SECTORS
F13-WR-SECTORS
F 13 --VR-SECTOR S
F13-FORMAT FLEX

- ; tunctlon
F13 FORMAT HDISC
F13-GET HPARMS

- -, Function
F13 TRACK SEEK
F13-ALT RE'SET

- -, Function
F13 GET DASD
F 13-CHO-STATUS
F 13~SE T=DASD

**Interrupt llH, Equipment Determination Function

**NT_EQUIPMENT equ llH ;Equipment Determination Interrupt

;**
~ **i;i;;;~~i*~i~**:;~~;i*ii~i;~*~:~~;'*i~i:********************************INT_MEM_SIZE equ l2H ;Memory Size Interrupt

,***************************:i**, Interrupt 13H, Internal DlSc Support Functlons (Flexible and Hard discs)

;**INT_DISC equ l3H ;Hard Disc Functions Interrupt

; f unc t io n
F 15 DEVICE OPEN
F IS-DEVICE-CLOSE
F15-PROG Tt'RM
F 15WAIT-EVENT
F IS-JOYSTICK
FlS:=SYS_REQ
F15 WA I T
F lS::::SLOCK_MOVE

FlS GET XMEM SIZE
FlS-ENTtR PROT
FlS-DEV BUSY
F lS::::INT::::COMPLETE

• 0015

• 0014

• 0000
s 0001
" 0002
• 0003

• 6FOO

I: 6FO 1

• 6F02
• 6F03
• 6F04

"' 0013

" 0000
"' 0001
II 0002
.. 0003
• 0004
r: 0005

• 0007
II 0008

z OOOC
OOOD

• 0015
• 0016
• 0017

• 0016

0000
• 0001
• 0002

" 0012

" 0011

• 1300
• 1301
• 1302
• 1303
• 6FOO
• 6F01
• 6F02
• 6F03
• 6F04
• 6FOS

• 0080
• 0081
• 00 82
• 0083
I: 0084
• 0085
I: 0086
II 0087

II 0088
• 0089
• 008A
• 008B

841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933

~

,.

,.

System Equate File 405

Equates File (continued)

***************~***Interrupt 17H, Printer Support Functions

**NT_PRINTER equ 17H ;Printer Port Support Interrupt

**Reboot System

**NT_BOOT equ 19H ; Reboot System

**Interrupt 1AH, Real-Time Clock Support Functions

**NT_CLOCK equ lAH ; Clock Functions Interrupt

**
*i~i;**~~i*i:~***:*;:~*~~~**NT _BREAK_EVE NT e q u 1BH

;**; Time r Tic k Eve n t

;**I NT _ TI ME R_ TIC K e q u 1CH

;**; Video Poll rame t e rs

~ ********************~****~**lNT_VIDEO_PARMS equ 1DH

;********~**
~ *~i~~~~*::*:~:i;*~***~*******************~****************~************INT _F LOPPY _PARMS equ lEH

;**; Graphics Characters Table

~**lNT_GRAPHICS_CHAR equ IFH

;**; DOS Function call interrupt

:***-****tNT_DOS equ 21H

;**; I n t err up t 33 H. HP Mo U I e Sup p0 r t (MS - Mo use Emu I a t ion I

934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027

• 6FOO
• 6FO 1

• SF02

6F03

• 6F04

• 6F05

• 6F06

• SF07

• SFO 8

• 6F09

• 0017

• 0000
• 0001
• 0002

• 6FOO
• 6FOI

• 6F02

• 6F03
• 6F04

• 0019

• 001A

z 0000
:I 0001
= 0002
• 0003
• 0004
• 0005
• OOOS
• 0007

• 001B

• OOlC

• 0010

• OOlE

• 001F

• 0021

F16 INQUIRE
FlS=:DEF _ATTR

F16_GET_ATTR

F16_SET_ATTR

F16_DEF_MAPPING

F16_GET_MAPPING

F lS_SE T_MAPPING

F1S_SET_XLATORS

F 16_KBD

F16_KBD RESET

F 17 PUT CHAR
F17-INIT
F17=:STATUS

F 17 INQUIRE
F17=:READ_STATUS

F17 _PUT_BUFFER

F17_GET_BUFFER
F17 _ TRM_BUFFER

F1A RD CLK eNT
F lA-SET CLK CNT
FlA-GET-RTC-
F lA-SET-RTC
FlA-GET-DATE
F lA-SET-DATE
FlA-Sf T-ALARM
FlA=:RES[T_ALARM

equ
equ

equ

equ

equ

equ

equ

equ

equ

equ

equ
equ
equ

equ
equ

equ

equ
equ

equ
equ
equ
equ
equ
equ
equ
equ

SF OOH
SFOIH

6F02H

6F03H

6F04H

6FOSH

6F06H

6F07H

6F08H

6F09H

OOH
OlH
02H

6FOOH
6FOIH

6F02H

6F03H
6F04H

OOH
01H
02H
03H
04H
05H
06H
07H

Inquire EX-BIOS Functions present
Reports default values for repeat
rates and dela~ time before repeat.
~:~~~t~i~~rren repeat rates and

~:~;~c~lm~urrent repeat rates and

:~~~~~~ 1~~a~;~b~:;~y;~:~sl:~~~r
d rive rs .
Reports current HP-System vector

ent rieli for keyboard t ranli1ator
d rive rs

Replaces current HP-System vector
entries for keyboard translator
drivers.

Sw i t c he s e i the r the cur S 0 reo n t r 0 I
pad translator or the HP Softkey
translator functions

Report Ii keyboard HP-HIL addreSli and
Identification

Rt~e~:f;~~~~~l keyboard structure

;Send Printer One Byte
;Initialize Printer
;Get Printer Status

;Reports EX-BIOS functions exists
;Reports the status of a printer
; port read buffer
;Writes a buffer of data to the
; printer port.
;Readli a buffer of data.
;Reads a buffer of data from the
. port, terminateli on specified
; condition

Read Current Clock Count
Set Current Clock Count
Read Real-Time Clock
Set Real-Time Clock
Read Date from Real-Time Clock
Set Date in Real-Time Clock
Set Alarm
Reset Alarm

~

~

~

406 System Equate File

Equates File (continued)
; Full AX reii,ter uled for function code

i:~*~:~~~;:* ***********::~*****;;~**
F33-INSTAll equ OOOOH ; Mouse installed f lag and reset hardware.
F33-ENABlE equ 0001H Put curlor on Icre.n.
F33-0ISABlE equ 0002H Turn off curlor.

~~~=~5~O~~~~~~A :~~ ggg~~ ~~:if~~i~~~n~~r~~~~ and button info
F33=REPORT_PRESS equ 0005H Report button prell statuI

~~~_~~~O~6~~~lEASE :~~ ggg~~ ~:fo~ln~~~~o~n~e~::i:u;,n~~~T~~~~~i
- ; values.

F33 SET VERT equ 0008H Set min and max vertical values.

~~~=~~~~Hc5~~~~R :~~ ggg:~ g:~t~: ~~: ';:fh:~~s~~~sor.
F33-MOTION equ OOOBH Report motion counters.
F33-SET USR equ OOOCH Define user subroutine call.

~~~=6~~~~~rll~~~T :~~ ggg~~ ~~:~~!eli~~~h~e~e~m~~~l;~~o~~de.
F33-RATIO - equ OOOFH Set pixel movement ratio
F33=COND_OFF equ OOlOH Define area to conditionally turn

; display off. Not used.
F33 XTEND GCSR equ 0012H Extended sprite graphics entry point.
F33=SPEED- equ 0013H Set mouse dOUbling speed factor.

:**: MS -DOS Ins t a 11 a b 1e De vic e 0 r i v erE qua t e san d St rue t u res

:**~~g-5~~rs~~l¥~s :~~ 5~~~gggig ~us~1ta~5~~~~rb~¥ti.~~n:tatus wrd
; Equates for standard MSOOS errors.

MSO WRITE PROTECT equ 0
MSO-UNKNO~N UNIT equ OlH
MSO--NOT REA[5Y equ 02H
MSO-UNKNoWN CMO equ 03H
MSD-CRC ERROR equ 04H
MSO--BAD-lENGTH equ OSH ;blld request lengtn error
MSD-SEEK ERROR equ 06H
MSO-UNKNO'WN MEDIA equ 07H
MSO-SEC NOTrND equ 08H ;sector not found

~~g=~~~~~-~~~lT :~~ g:~
MSD-REAO rAUL T equ OBH
MSO-GEN rAIlURE equ OCH
MSO=BAD=DCHG equ OOH :bad disk cnange error

;**; Command Equates a) the following list are the commands defined for MS-DOS
. instal1able device drivers

;**
~~g~=~~liA_CHK :~~ glH ;media check command

;**
~ *~~:~*~~:;:*i~*:*~i~:~*~i~~*i~~~:ii:~**~i;:~~*:~~;~~~i~~*~~*~i~~~t********
INT_FlOPPY_DIRECT equ 40H

;**; Fixed Disc Parameters

:**INT_HOISC_PARMSO equ 4lH

:**; Fixed Disc Parameters

;**INT _HDISC_PARMSl equ 46H

:**; Relll Time Clock Event vector

;**INT_RTC_EVE NT eq u 4AH

;**: 8259 EX-BIOS Slave Interrupt Cont roller

;**INT SVC REQUEST equ 68H
INT-S041 OBF equ 69H
INT=HPHI[equ 6CH

;**; 8259 Slave Interrupt Controller Interrupts

;**

Returns "HP" in bx if HPMOUSE driver
. is being uled.

70H
7lH
72H
73H
74H
75H
76H
77H

6FOOH

equ
equ
equ
equ
equ
equ
equ
equ

equ

IRQ8 RTC
IRQ9-REOIRECT
IRQIO'
IRQll
IRQ12
IRQl3 287
I RQ14 -HD I SC
IRQ15-

1028
1029
1030 • 0033
1031 • 0000
1032 • 0001
1033 • 0002
1034 • 0003
1035 • 0004
1038 • 0005
1037 • 0006
1038 • 0007
1039
1040 • 0008
1041 • 0009
1042 • OOOA
1043 • OOOB
1044 • OOOC
1045 • 0000
1046 • OOOE
1047 • OOOF
1048 • 0010
1049
1050 • 0012
1051 • 0013
1052
1053 • 6FOO
1054
1055
1056
1057
1058
1059 • 0040
1060
1061
1062
1063
1064 • 0041
1065
1066
1067
1068
1069 • 0046
1070
1071
1072
1073
1074 • 004A
1075
1076
1077
1078
1079 • 0068
1080 • 0069
1081 • 006C
1082
1083
1084
1085
1086
1087 • 0070
1088 • 0071
1089 • 0072
1090 • 0073
1091 • 0074
1092 • 0075
1093 • 0076
1094 • 0077
1095
1096
1097
1098
1099 • 0081
1100 • 0001
1101
1102 • 0000
1103 • 0001
1104 • 0002
1105 • 0003
1106 • 0004
1107 • 0005
1108 • 0006
1109 • 0007
1110 • 0008
1111 • 0009
1112 • OOOA
1113 • OOOB
1114 • OOOC
1115 • 0000
1116
1117
1118
1119
1120
1121 • 0000
1122 • 0001

System Equate File 407

Equates File (continued)

0000
0001
0002
0003 ?? 1?
0005 08

7 ?

0000 71
OOOE 7?? ?
0010 ??? 1
0012 ? 11 1
0014 ??? 1
0016

0000 00 (
? ?

OOOD ??
OOOE ?? ?
0010 11 ?
0012 ?? ?
0014 ?? ?
0016 17
0017

0000 OE (
? ?

OOOE ? 7
0010 ??
0012 ? ?
0014 ? ?
0016 ? 1
0018

;**
~ *~~:*~~ii~;i;i*~~~~i~~~i~*:;i*~~i~*~~*:iiiii*:i;~~i*~;i~i;*i~;;:;~*~i~i~i*****

MSD REQ HEADER struc ;00; structure for access to MS driver cmds

~~g=3~~iEN ~g ~ ~g~: ~~~1t~u~~e~m~0~nC~~:~dinclUdingdata @ end
MSO-CMO db 1 ;02: command code
MSO=STATUS dw 1 ;03: flller with completion status before return

db 8 dup (1) area reserved for DOS

~

~

~

; removable media command

;device open and clole commandl

;Non-destructive input with no wait

;build Bios Parameter Block
; I/O cant rol input

Pad 50 it is paragraph aligned.

;first cover header area

full address of buffer for data transfer
could be bytes or block count
address of first block to read or write
poi n t e r t 0 vol ume i d i fer reo de.) 0 F h

13 mOlt emds have this defined in the data area
14
16
18

,20

OB number of units service by this driver
OC offset of end of code
OE segment address of and of code
12

,t: ;:~l~f~~i~e~fl:~~e~i~} ~i~s~nt~~tattached

02H
03H
04H
OSH
06H
07H
08H
09H
OAH
OBH
OCH
OOH
OEH
OFH

14 d up (?) ; Me d i a by ted a fin adin he adar

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

13 dup (1)

;**
~ Structure Definition Fo~ segment 40h, STD-BIOS Data Area

;**SEGMENT40 s true
; EIA communication base I/O port address table
S40 RS232 PORTI AOR dw 1 ; 040:0000 address of serial port
S40-RS232-PORT2-ADR dw 7 . 040:0002 address of serial port
S40-RS232-PORT3-ADR dw? 040:0004 address of serial port
S40=:RS232=:PORT4=:ADR dw 1 040:0006 address of lerial port

; Parallel printer bale I/O port addreSi table
S40_ PRIN T_ P0RT1_AD R dw? ; 040: 000 8 add r e IS 0 f par a 11 e 1 po r t

MSD MEDIA
MSD=TRANS

MSO BLO BPB
MSO-IOcTL IN
MSO-INPUT
MSD-IN NOWAIT
MSD IN STATUS
MSO-IN-FLUSH
MSD-OUTPUT
MSO-OUT VERIFY
MSO-OUT-STATUS
MSO-OUT-F LUSH
MSO-IOCTL OUT
MSO-OEV olSEN
MSO-DEV-CLOSE
MSO=REM=MEOIA
page

;**• use this macro to setup the MS-DOS driver header required at the top of

~ **:~'*i~~~:ii:~i:*~i~iii*~~i~i~***mid header macro ATT,STRATEGY ENTRY,ISR ENTRY,STRING
- d d -1 - ; ma r k as 1a s t d r i ve r in 11 s t

dw ATT
dw STRA TEGY ENTRY
dw ISR ENTRY
db STRING
db 14 dup (1)
endm

MSD UNIT COUNT db
MSD-END OFFSET dw
MSO-E NO-SEG dw
MSO-BPB-OFFSET dw
MSO-BPB-SEG dw
MSO-IST-UNIT db
MSD=INIT_CMD end.

~:ii***; Access to the data area for INPUT or OUTPUT driver commands

;**MSO 10 CMD st rue
- - db

db
dw
dw

MSD COUNT dw
MSD-START dw
MSD-REQ HEADER ends

;**i***i***; Ace e sst a the d a t a are a 0 f the I NIT d r i v ere a mmand

;**MSD INIT CMD I true
- - db

MSD XFER OFFSET dw
MSD-XFER-SEG dw
MSO-XFER-COUNT dw
MSO-lST BLK dw
MSD-VERR" SEG dw
MSO=IO_C~ ends

? 7 ?
? 1 1
?? ?

?? ?

1? 7 7

0000
0002
0004
0006

0008

• 0002
• 0003
• 0004
• 0005
• 0006
• 0007
• 0008
• 0009
• OOOA
• OOOB
··OOOC
2 0000
• OOOE
• OOOF

1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215

408 System Equate File

Equates File (continued)

: Keyboard buffer pointers
S40_KI30_BUF _START dw

, Timer data area
S40 TIMR LOW dw
S40-TIMR-HIGH dw
S40:=TIMR:=OVR_FLOW db

; System data area
S40 SYS BREAK FLAG db
S40::::SYS:=R ESf T::::F LAG dw

; Hard disk data area
S40 FD STATUS db
S40-FO-COUNT db
S40-FD-CONTROL db
S40=FD:=PORT_OFFSET db

~46a~~~~~lT~~~O~~1 t imeo~~ t ble
S40-PRINT-TIMEOUT2 db
S40-PRINT-TIMEOUT3 db
S40=:PR I NT:=T IME OUT 4 db

, Enhanced graphics adapter
S40 EGA CRT ROW CNT db
S40::::EGA::::CHAR"_SIZE dw

I CRT video display area
S40 CRT MODE db
S40-CRTWIDTH dw
S40 -CR T-LE NGTH dw
S40 -CRT- PAOE ADR dw
S40=:CRT:=CURSOR_POS dw

t me 0 u t co un t
t me 0 ut co un t
t me 0 u t co u n t
t me 0 u t co u n t

t 1 me 0 ute 0 u n t
t lmeout count
t lmeout count
t 1 me 0 ute 0 u n t

040 007C ser al port
040 0070 ser a1 port
040 007E ser al port
040:007F ser al port

040 0078 parallel p~inter

040 0079 parallel printer
040 007A parallel printer
040 0078 parallel printer

for up to 8 pages
040 0060 current cursor mode settlng
040 0062 current display page
040 0063 base I/O port address for

active crt controller
040 0065 mode select register copy
040:0066 color palette register copy

command/param port copies

040 0049 current video mode
040:004A current number of screen columnl

~:~:~~:~ ~~~~~~~gl:~~~~s~fo;C~~~~e~~~r:~iay page
040 0050 cursor coordinates (row,column)

040:0017 state of special keys: shift, caps, etc
040:0018 secondary state of special keys

040 0019 accumulator for alt/numpad entry
040 001A keyboard buffer head pointer
040 001C keyboard buffer tail pointer
040 OOlE keyboard buffer. 15 ent riel + overrun

040 003E floppy drive status
040:003F floppy drive motor status
040 . 0040 flo PPY d r i vet i me 0 U t co u n t e r
040 0041 floppy drive return code/error Itatul
040:0042 floppy controller status/hard disk

040 0067 offset address for optional
I/O rom init rout ine

040 0069 segment address for opt ional I/O rom
0400068 flagl last interrupt that occured

040 0074 hard disk status, last int 13 operation
040 0075 numb e r 0 f ha r d dis k 5 pre 5 e n t
040 0076 copy of hard disk controller register
040 0077 hard disk port offset

040:0071 system break request flag
040:0072 system reset flag

040 006C least significant word of timer count
040 006E Most lignificant word of timer count
040 0070 24- h0 u r time r tic k roll 0 v e r co u n t e r

040·000A address of parallel port
040:000C address of parallel port
040'000E address of parallel port

040 0010 word identifying installed devices
040 0012 manufacturin~ initailization/telt byte
040 0013 memory size in lk bytes
040 0015 manufacturing Icratchpad
040 0016 manufacturing error codes

040:0080 e~~~~~~dt~u~~~~ical start of

040 0082 e~~~~:~dt~u~~~~ical end of
area

040 0084 number of crt rows minus one
040 0085 ~~m~~~tOia~r~es per character

data

dup ('1)

dup (?)

~ EGA)

?

'7
1
1
16 d up (1)

dw

db
db

db
dw
dw
dw

dw
dw
dw

dw
db
dw
db
db

a rea
db
db
db
db
db

tab Ie
db
db
db
db

, Serial port timeout
S40 RS232 TIMEOUT1
S40 -RS2 3 2-T IME OUT2
S40 -R S2 32-T IME OUT 3
S40 :=RS2 3 2=) IME OUT 4

~46l~Eg~p~i S~E~ t ;T~Tt a
S40-F LOPPY-MOTO~ STAT
S40-F LOP PY-T IME OUT
S40-F LOPPY-RE TUlfN STAT
S40=F LOPPY::::CONTRL::::STAT

S40 CRT CURSOR MODE dw
S40-CRT-OISPLAY PAGE db
S40:=CRT:=PORT_AOR dw

S40 CRT MODE SEL REO db
S40:=CRT=:PALETTE - db

; 0 P t ion ROM da t a are a
S40_XROM_INIT _ADR dw

S40 XROM SEGMENT dw
S40=:XROM::::INT_FLAO db

S40 _KilO _BUF _E NO

S40 PR INT PORT2 ADR
S40-PR I NT-PORT3-ADR
S40=:PR I NT=:PORT 4=:ADR

~4~Y E6~T p~~~i l~L~~ t 10n
S4°-MF 0 I NIT
S40-MEMORY SIZE
S40-MFO ER~ FLAGI
S40:=MFO:JRR::J LA02

~4~ek:~Da S~A~E1a a rea
S40:=KI3D::::STATE 2

S40 ALT INPUT ACCUM
S40-KBD-BUF HE'AD
S40-KBD-BUF-TA I L
S40=KBD=:BUFrER

1111

1 '1

1., '1"

07 (

????

?

?
?
. 8

'1 ?
? ???

??? ?
??

??? 1

1 ?
111.,
., 111

10

??

??? ?

? ?
11

11
11

1111

??? ?

?-1??
11

1'77 ?
1111
1117

1111
?1

11
??

71
11

1???

1111
11
1111
11
11

OOOA
OOOC
OOOE

0017
0018

0019
001A
001C
OOlE

0071
0072

0074
0075
0076
0077

0078
0079
007A
0078

007C
007D
007E
007F

0049
004A
004C
004E
0050

0060
0062
0063

0065
0066

0067

0069
0068

003E
003F
0040
0041
0042

C06C
c06E
0070

0010
0012
0013
0015
0016

0080

0082

0084
0085

1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308

~

~

,.

System Equate File 409

Equates File (continued)

page

: Int ra-appl1cat ion communicat ions area
S40_INTRA_APPL db 16 dup (?) : 040:00FO available to any application

;**; S40 EQUIPMENT FLAG word

:****i*********i***

;***•••**; STD-BIOS table addreues

S40_RS232_PORT_TBL equ word ptr S40_RS232_PORTI_ADR
S40 PRINT PORT TBL equ word pt r S40 PRINT PORT1 ADR
S40=PRINT=TIMEOUT_TBL eQu byte ptr S40=PRINT=TIMEOOTl
S40_RS232 TIMEOUT_TBL equ byte pt r S40_RS232 TIMEOUTl
S40_AFLOP"PY_MEDIA equ byte pt r S40_AFLOP"PY_MEDIAO
S40_AFLOPPY_OPER equ byte ptr S40_AFLOPPY_OPERO
S40 AFLOPPY TRACK equ byte pt r S40 AFLOPPY TRACKO

;**i*******i**i*******i******************

~

~

~

0400087 EGA miscellaneous information
040 0088 EGA miscellaneous information

040 008B last floppy data rate selected

040 OOSC fixed disk status re~1ster copy

~:~:~~:~ ~t;:~ ~t:~ !~r~~r~e~ ~1:; copy
040:008F fixed d1lk control~er flag

040.0089

040:0090 dr ve 0 media state
040 0091 dr 'Ie 1 media state
040 0092 dr 'Ie 0 operation state
040 0093 dr 'Ie 1 operation state
040'0094 dr 'Ie 0 current track
0400095 dr 'Ie 1 current track
040:0096 fl ppy disk reserved byte

040 00A8 pointer to table of EGA pointers

040:00AC

040:00Al

040:0101

040: 0097 keyboard LED flags

040:0098 offset address of user wait flag
040 009A segment address of user wait flag
040 009C low 'Nord of wait count
040 009E hi9h word of wait count
040 OOAO walt actlve flag

040:0104 status of floppy for sin~le floppy
systems, 1e currently dnve A: or B:

040:0100 flag for print screen in progress

040:0105

dup PI

dup (7)

d up (?)

db
db

db

db

db

db 25 dup (1)

db

db

Reserved

Reserved

Reserved

S40 EGA INF01
S40=EGA=INF02

; Reserved

Reserved

· Poi n t e r toE GA d a t a are a
S40 _EGA_ TBL_PTR dd

· DOS data area
S40 _ SI NGLE_DRV_STAT

db 68 dup (1)

· Print screen status
S40_PSCRN_STATUS

SEGMENT40 ends

~461~Eg~p~1~~S~a~~T~readb ?
; Aaditional fixed disk data area
S40 AFD STATUS REG db
S40-AFD-ERROR ~EG db
S40-AFD-INTR F'LAG db
S40=AFD=CTRL=FLAG db

~4~d2~~6~~~IM~6I~gy dis k~~ t e? dat a area

540 - AF LOPPY-MED I A1 db?
S40-AFLOPPY-OPERO db?
S40-AFLOPPY-OPERl db?
S40-AFLOPPY-TRACKO db?
S40-AF LOPPY-TRACK 1 db?
S40 =AF LOPPY=R ESE RVED db?

~4~ek~Dll[~DL~~Ag~tll area db
: Real-Time-c1ock data area
S40 RTC WAIT OFFSET dw
S40-RTCWAI T-SEGMENT dw
S40 -RTCWA I T-CNT LOW dw
S40 -RTCWAI T-CNT-H IGH dw
S40=R TCy/A I T=AC TV_F LG db

? ?

??

??

? ?

77

77

OOFO 10 [

OOA8 ????????

0104 ??

0100 ??

008B ??

008C
008D
008E
008F

0105 19 [

0097 ??

0087 ??
0088 ??

a 0000
• 0008
• 0078
• 007C
• 0090
• 0092
• 0094

0089 02 [

OOAC 44 [

OOAl 07 [

01lE

0101 03 [

0090
0091
0092
0093
0094
0095
0096

0098
009A
009C
009E
OOAO

1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
13RO
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

410 System Equate File

Equates File (continued)
. FEDCBA9876543210b

~:~~=g~~~gt=:~~~~RS :~~ ~~~~~~~gggg~g~gg~ ~~~~:~ ~~ ~~~~~e;~rts
S40E_DEVICE_FLOPPV equ OOOOOOOOllOOOOOOb number of f 10ppy drives
S40E DEVICE VIDEO equ 0000000000110000b initial video mode
S 4 0 E- DE VICE -MATHequO0 0000 0 0 00000 0 10 b . 802 8 7 ins t a 11 e d

~:~~;~~~~~~;:~~~********::~*****~~~~~~~~~~~~~~~~~*******~*~~:~~I*~~:~*:;;~~;*~~esent

insert key state
caps lock key state
num lock key state

equ
equ
equ

Definition
insert state inactive
insert state active
capi lock state inactive
capi lock Itate active
num lock state inact ive
num lock state active
scroll lock state inactive
scroll lock state active

~:U~ ~:~ ~~~r::~;~s(:~tl~~ict1v.)
<CTRL> key not depressed (inactive)

i~~~L~S~!~t~e~~~s~~~ ~:~~;~:~d (inactive)
left <Shift> key depressed lactive)

~i~~~ ~~~Ug ~:~ ~~~r~:~~~'(:~tl~:)ctive}

Value

Value
o
1
o
1
o
1
0'
1
o
1
o
1
o
1
o
1

Bit
7

Bit
7-3
2

Bit Value
F-E 0

1
2
3

D-C
B-9

8
7-6

5-4

3-2
1

40E K8D ST2 INSERT
40E-KBD-ST2-CAPS
40E=KBD:=ST2::::NUM

;******************"*"*************************U****************************
U*****************.****S40 KBD STATE2

****j***j***76543210b
10000000b
01000000b
OOlOOOOOb

Def 1ni t ion
reserved
<Caps lock> LED il off
<Capi lock> LED 1s on
<Num lock> LED is on
<Num lock> LED is off
<Scroll lock> LED 11 off
<Scroll lock> LED is on

:**

Deflnition
no printers installed
one printer installed
two p r i n t e r sin s tall e d
three printers installed
reserved
no RS-232 ports installed
one RS-232 port installed

~ h~e: SR~ ~ ~ 3 ~ 0 ~ ~ ~ t ; n~ ~: t~ i1ed
four RS-232 ports installed
reserved
1 floppy dlsket te drhe installed, iff bit 0-1

fnI~~~~Yv~~:~e~~~ed~~v4~_~~i~~~1~~io~ffbit 0-1
initial video mode of SO-column color
in1t ial video mode of aO-column monochrome
reserved
math coprocesor not present
math coprocessor present
no diskette drives present
some number of floppy diskette drives present.
see bits 7-6

;~:I;**U*******************un*****
~ *~;I~::;:*i~~~*i:~i~:~ii~~i~i:~i*******************u*************************. 78543210b
S40E_K8D_LED_CAPS equ OOOOOlOOb ; capl lock LED state
S40E_KBD_LED_NUM equ 00000010b ; num lock LED state
S40E KBD LED SCROLL equ 0000000Ib ; scroll lock LED state

;***_***i***i********"**************************U*****U****************U*U

;***U**"****************U*U; S4 0 KBD S TAT E1

;****i***i**********U**********************************U*************"******; 76543210b
S40E_.K80_ST I_INSERT eq u 10000000b ins e rt mode I tat e
S40E_KBD_STl_CAPS equ OlOOOOOOb caps lock mode Itate
S40E_.KBD_STl_NUM equ OOlOOOOOb num lock mode state
S40E_KBD_STl_SCROLL equ OOOlOOOOb , scroll lock mode Itate

~:g~-~:g-~it-~~~L : q ~ ~ggg5~gg~ ; ~ ~ ~ t ~~l :~~ t: tat e
S40E'=KBD=:ST l':::LSHIFT e(u 000000 lOb , le f t I h if t key I tat e

~:~~i~:~i~~~i:i~i~~*****;~~u***~~~~~~~~~**"***~*~il~h~:i~*~:b~~:~********

• 0080
• 0040
c 0020

- 0004
• 0002
• 0001

• 0080
- 0040
• 0020
• 0010
• 0008
- 0004
• 0002
• 0001

• COOO
• OEOO
• OOCO
• 0030
• 0002
: 0001

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444.
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1459
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1.492
1493
1494
1495
1496
1497
1498

~

~

~

System Equate File 411

Equates File (continued)
S40E_KBD_ST2_SCROLL equ OOOlOOOOb , sc roll lock key state
S40E_KBD_ST2_PAUSE equ OOOOlOOOb : pause I <CTRL>-<Numlock» state

~:~ii~:~.~~ii~~~:i~*****:~~*****~~~~~i~~~*******~*~'~*;:~*~:,*~~:~:************

~:1:**...**.**••*.*..*******....****.*.*•••**.**••••*••••••••*.********...*****
~ *i~~t~~~::~t:~~~:ti~~~* ••••••************••**•••**••***••••••••***••*•••••**"• 78S43210b
S40E FLOPPY MOTR WRITE equ lOOOOOOOb ; write ope rat 10n flag
S40E-FLOPPY-MOTR-SElCTl equ 00100000b ; drive one .elect flag
S40E-FlOPPY-MOTR-SELCTO equ 00010000b ; drive zero .elect flag
S40E-FLOPPY-MOTR-RUNl equ 00000010b ; drive one motor flag

~~~~;~i~::~;:~~:;:~:~*••:~******~~~~~~~~~* ••••**••:*i*;.i;*~.;~~~*.~~:I.*****.*

;******************************************************************************
;~:i:**************************************************************************: S40 AF LOP PY MED lAO

;************i*****************************************************************
S40 E ME 0 I A0 RAT E equi ~ ~ ~ ~ ~ ~ ~ ~ , d r i ve 0 d a tat ran S fer rat e
S4 0 E-ME 0 I A0- STEP e QUO0 100000 b , d r 1 ve 0 see k s t e p f 1a Y

~:g~=~~g~~g=~~~~N :~~ ggg5g~~~~ : ~~~~: g ::~~: ~~~:nf~e!~
***i******i*******************************************************************: S40 AFLO PPY ME 0 I A1

;****i*******i*****************************************************************
S40E MEDIAl RATE equ I~6~6~5gg ,drive data t ran.fer rate
S40 E-ME DI A1- STEP equO0 100000 b , d r i vel see k s t e p f 1a y
~:g~=~~g~:t=~~~~N :~~ ggg~g~~~g : ~~~~: i ::~~: ~~~:nf~e!~
***i******i*******************************************************************

i nac t i ve

Definition
<Ins> key not depressed

~~~~~ ~~~k~ee~~s~~1 depressed
<Caps lock> key depressed
<Num lock> key not depressed
<Num lock> key depressed
<ScrLck> key not depressed

~~~~;c~;a~:yl~~~~~~~~~um lock»
pause state actIve
<Sys reQ> key not depressed
~;~:r~:r key depressed

Definition
timeout error, diskette failed to respond in time
seek error; seek to track failed
controller error; diskette controller chip failed

: ~ ~ r ~ ~ ~m: ~ ~0r ~ n~ ~ ~ ~ ~ s ~ o:~~ ~ d 0 ~ e ~ i ;: ~ t ten 0 t f 0 u nd
write protect error
sector not found; unable to locate lector, diskette
damaged or unformatted
media changed; the drive door wa. opened
on a 1.2mb d i. ke t ted rive
DMA error; DMA failed to respond in time
segment wrap; attempt to perform DMA acero.
a segment boundary
CRC error; crc check on data failed

Value
o
1
o
1
o
1
o
1
o
1
o
1

Value
o
1
2
o
1
o
1

10

Value
1
1
1
1
2
3
4

Bi t
7

3
2-0

Bit
7 -6

1-0

Bit
7
6
S
4-0

Definition
data transfer rate 1S 500kb/sec
data transfer rate 1S 300kb/sec
data transfer rate 1S 250kb/sec
single step all seeks
double step all seeks
type of diskette in drive unknown
type of diskette in drive known
reserved
attempting 360k diskette in 360k drive
attempting 360k diskette in 1.2mb drive

~:::~~1~~~ ~6~~bd~~:~n~ei~n3~O~m~r1~~ve
determined 360k diskette in 1.2mb drive

. 5 determined 1.2mb diskette in 1.2mb drive

;*.*.**.******.**.**********.**************************************************
~:i:***************************************************************************; S40 FLOPPY RETURN STAT

;****i******i******i****************************************.******************
S40E FLOPPY RSTAT TMO equ I~6g~~5g~ ; timeout error flag
S40E=JlOPPY=RSTAT=SEEK equ OlOOOOOOb ; seek error flag
S40E_FLOPPY_RSTAT_CTRlR equ 00100000b ; controller error flag
S40E FLOPPY RSTAT ERR equ OOOlllllb ; error code field

;***i******i*****i*************************************************************

• 0080
• 0040
• 0020
• 00 IF

• OOCO
• 0020
• 0010
• 0007

a 0010
0008

• 0004

• 0080
• 0020
• 0010
• 0002
• 0001

• OOCO
• 0020
• 0010
• 0007

1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1588
1587
1588
1589
1590
1591
1592

412 System Equate File



Equates File (continued)
Value
o
1

3 -2
1

tHt
7

Definition
current operation 1s not a wrUe
current operat ion is a write
re Ie rved
drive one 1n not selected
drive one 15 lelected
drive zero il not selected
drive zero il selected
reserved
drive one motor is not running
d r 1v eon e mo tor is run n i ng

. 0 0 drive zero motor is not running

~ ***************i*******:~i~;*i;~~*~~~~~*i~*~~~~i~i****************************
;******************************************************************************; S40 flOPPY SEEK STAT

;****1******1****1*************************************************************
S40E FLOPPY SEEK INT equ r8~g~~5gg ; interrupt occured flag
S40E-fLOPPY-SEEK-RECAll equ 00000010b ; drive one recalibration flag

~:~i;~i~::~;iii~;:ii:i~*;~~*****~~~~~~~i~*******.*~~i~;*i;;~*;:~:ii~~:~i~~*~i:i
Bit Value Def init ion
7 1 diskette hardware interrupt occured
6-2 relerved
1-0 indicates corresponding drive (lor 0) needl

recal1brat ion before nellt ,eek
indlcates corresponding drlve (lor 0) does not

. need recalibrllt ion before nallt seek

:***********.*••***************************************************************END

• 0080
• 0002
• 0001

1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624

System Equate File 413



Equates File (continued)
0000
0002
0004
0006
0008
OOOA
OOOC
OOOE
OOOF
0006
0000
0002
0004
0030
0010
0011
0012
0014
0015
0016
0017
0018
0019
001A
0018
001C
0010
OOlE
0020
0022
0024
0028
0028
002A
002C
002E
0017
0000
OOOE
0010
0012
0014
0016
0018
OOOE
0010
0012
0014
0016
0016
0000
0001
0002
0003
0000
OOOE
0012
0014
OllE
0000
0002
0004
0006
0008
OOOA
OOOC
OOOE
0010
0012
0013
0015
0016
0017
0018
0019
OOlA
OOlC
001E
003E
003F
0040
0041
0042
0049
004A
004C
004E
0050
0060
0062
0063
0065
0066

0003

0017

0007

oooe

OOOA

0057

414 System Equate File



S40 XROM INIT AOR,
S40 -XR OM-SEGMENT .
S40-XROM-I NT FLAG,
S40-TIMR-LOW- .
S40-TIMR-~iIGH, .
S40 -T IMR-OVR FLOW,
S40-SYS BREAK FLAG
S40-SYS-RESET-F LAG
S40--FD STATUS~

S40-FO-COUNT .
S40-FO-CONTROL . .
S40-FO-PORT OFFSET
S40-PRINT TIMEOUT 1
S40 -PR I NT-T IME OUT2
S40-PR I NT-T IME OUT3
S40-PR I NT-T IME OUT 4
S40-RS232-TIMEOUT 1
540 -R5232 -TIMEOUT2
540 -R 52 32-T IME OUT3
S40 -R 52 32-r IME OUT 4
540-KBO BOF START
S40-KBO-BUF-END ..
540-EGA-CRT-ROW CNT
S40-EGA-CHAR' SIZE.
540-EOA-INFOI
540-EGA-INF02.
S40

u

FLO"PPY LAST RATE
S40--AFO ST~TU5 ~EG

S40-AFO-ERROR R'EG
S40--AFO-INTR F'"LAG
S40'-AFO-CTRL-FLAG
S40-AF LOPPY ~EDIAO
S40 - AF LOP PY-MEO IA 1
S40- AF LOPPY-OPERO
S40-AF LOPPY-OPER 1
S40-AF LOPPY-TRACKO
540 - AF LOPPY-TRACK 1
540-AFLOPPY-RESERVEO
S40 -KBD LEO- FLAGS .
S40 - RTC-WA IToFF5ET
540 -RTCWA I T-SEGME NT
S40 u RTCWA I T-CNT LOW .
S40-RTC-WA I T-CNT-HIGH.
S40 -- RTC-WA I T- ACT 'V F l G .
S40-EGA--TBL "PTR -
S40-INTR'A A"PPL
540-PSCRN-STATUS .
S40-SINGlf DRV STAT.

STR HfAOER - -
5TR NXT HDR
STR- UPPfR BOUND
STR- LOWER-BOUND
STR-LIST PTR
STR-SEGMfNT.

VIDEO-DATA
VIO-ATR
VID-NAME INDEX
VIO' v OEF'"AUL T
VID - PJHMARV .
VID- SECONDARY
VID-FOUNO ROM
VID-IDS 
VIO-STATUS
VIDuEXT STATUS
VID-PAR~ BLOCK
VIO-LAST-IBM MODE
VID-EXT ~OOE

VID=PADr5ING

Equates File (continued)
006'7
0069
00613
006C
006E
0070
0071
0072
0074
0075
0076
0077
0078
0079
007A
007B
007C
0070
007E
007F'
0080
0082
0084
0085
0087
0088
008B
008C
0080
008E
008F
0090
0091
0092
0093
0094
0095
0096
0097
0098
009A
009C
009E
OOAO
00A8
OOFO
0100
0104
OOOE
0000
0004
0006
0008
OOOC
0040
0000
0002
0004
0006
0007
0008
0009
0000
0011
0015
003C
0030
003E

Symbols

0005

0000

ATR 0
ATR' BOT
ATR -CSHARE
ATR- DEVCFG
ATR-ENTRY
ATR- F REE
A TR -HP
ATR - I NO
ATR INP
ATR-ISR
A TR - LOG
A TR -MAJOR
ATR MAP CALL
ATR -MID-
ATR' MINOR
ATR- NOADOR
ATR-PSHARE
ATR-ROM
ATR h RSVD
ATR SRVC
ATR-STRING
ATR-SUBADD
ATR~TYPE7

N a m e Type Value Attr

Number 0001
Numbe r OAOO
Numbe r 0008
Numbe r 4000
Number 1000
Number 0200
Numbe r 8000
Numbe r 0800
Number OCOO
Numbe r 2000
Numbe r 0600
Number 0020
Number 0080
Number 0060
~umbe r 0040
Number 0000
Number 0010
Number 0004
f\lumbe r 0000
Numbe r 0400
Numbe r 0100
Numbe r 0060
Number OEOO

System Equate File 415



Equates File (continued)
AT R TYPE MA SK .
ATR-YIEL~

BUTToN ERROR
CLASS Asc I I
CLASS-BINARY
CLASS GIDCC P
CLASS-JOY.
CLASS-KBD. .
CLASS-KEYPAD
CLASS-MOUSE
CLASS-PADDLE
CLASS-TABLET
CLASS-THUMB . .
CLASS-TRACKBALL.
CLASS-TS . .
CLASS-UNOEF 8
CLASS-UNDEFD
CLASS-UNDEFE
CLASS-UNDEFF
CLIP ENABLED
CL A[L .
CL-ASCII
CL-BLK
CL -BOOT
CL -BYTE.
CL -CCP .
CL -COMI-.1
CL -CON . .
CL-EXTENO.
CL-FILT
CL-OlD
CL -INTERFACE
CL -KBD
CL -KBDFC
CL--LGID
CL -NULL
CL-PGID
CL -PTS .
DESCRIE~ SIZE
D AODR MASK
D-SUFFE'R
D-CCP STATE .
O-CLASS CURRENT
D"CLASS -DEFAUL T
D-REMAINDER ACCUM
0- SAMPLE ABSOLUTE
0' SAMPLE-RELATIVE
D"SIZE -
O-TYPE MASK. .
E'VENT E'NABLED
FlO GE'T INFO
F IO-GE T-RES. .
F lO-'GET-STMODE
F 10" I NOO IRE
FlO-MOD INFO
F10-RD CHARATR
F 10-RD-CURPOS
F 10-RD'''PENPOS
F10-RO-PIXEL .
FlO-scROLL DN
FlO-SCROLL -UP
FlO-SET cuRPOS .
F10~SET-CURSIlE.
F10-SET-INFO
FlO -SE T-MODE
FlO - SET'- PAGE .
F10~SET-PALLET
F lO-WRS-OO
f 10-WRS-0 1
F10-WRS-02
F10-WRS-03
FlO -WR CHARATR
F lO-WR"CHARCUR
F10uWR -CHARTEL
FlO 'WR - PI xEL
F10-xsET MODE
F13"'AL T RESET
F 13-CHG-STATUS
F13-FORMAT FLEX
F 13-FORMAT-HDISC
f 13 - GE T DA SD
F 13 --GE T- HPARMS
F 13-R0 [STATUS
F13 RD SECTORS
F 13 - RES ET DISC
F13~SET Dll:SD
F13 TRACK SEEK
F13-VR SECTORS
F13-WR' SECTORS
F14-ExTNIT
F14 -OE T BUFFER
F14-INIT
F 14~ I NOU IRE

416 System Equate File

Number
Numb e r
Number
Numbe r
Number
Numbe r
Number
Number
Number
Number
Numbe r
Number
Number
Numbe r
Numbe r
Number
Number
Number
Numbe r
Number
Number
Number
Numbe r
Numb e r
Number
Number
Number
Number
Numbe r
Number
Number
Numbe r
Numbe r
Number
Numbe r
Number
Numb e r
Number
Numb e r
Number
Al ias
Numb e r
Numb e r
Numb 0 r
A1las
Ai ias
Alias
Al ias
Numbe r
Numb e r
Number
Number
Number
Number
Numbe r
Numbe r
Number
Number
Numb e r
Numbe r
Number
Numb e r
Number
Numbe r
Number
Numbe r
Numbe r
Numbe r
Numb e r
Number
Numb e r
Numb e r
Number
Numb e r
Numb e r
Numb e r
Numbe r
Numbe r
Number
Numbe r
Numbe r
Numb e r
Numbe r
Numbe r
Number
Number
Number
Numbe r
Numb e r
Number
Numbe r
Numbe r
Number

OEOO
0002
0002
0002
0003
0005
0007
0000
OOOC
0004
0009
0006
OOOA
0008
0001
0008
OOOD
OOOE
OOOF
0004
FFFF
0002
0080
0040
0800
2000
0400
1000
0001
0100
0008
0200
4000
8000
0020
0000
0010
0004
0030
OOOF
D SIZE X
0~1E
OOFO
OOOF
o ACCUM
O-ABS X
O-REL-X
D-SIZE' X
O~FO
0010
6FO 1
6F04
OOOF
6FOO
6F03
0008
0003
0004
0000
0007
0006
0002
0001
6F02
0000
0005
OOOB
1300
1301
1302
1303
0009
OOOA
OOOE
OOOC
6F 05
OOOD
0016
0005
0007
0015
0008
0001
0002
0000
00 17
OOOC
0004
0003
6FO 1
5f03
0000
6FOO

~

~

~



Equates File (continued)
Number
Number
Numbe r
Number
Number
Numbe r
Numbe r
Number
Number
Number
Numbe r
Numb e r
Numb e r
Numb e r
Number
Number
Number
Numbor
Number
Number
Numb e r
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Numb e r
Number
Number
Number
Numbe r
Number
Number
Number
Number
Number
Number
Number
Number
Number
Alias
Number
Numb e r
Numb e r
Number
Number
Number
Numbe r
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Alias
Numbe r
~umber

~umber

Numbe r

6F02
0002
0003
6F04
0001
0087
0081
0080
008A
0089
0088
0088
0084
0082
0085
0086
0083
6FOl
6F04
6F02
0000
6F05
SFOO
6F08
6FOQ
0002
BF03
6F06
BF07
0001
6F03
0001
6FOO
eF02
0000
6F01
0002
6F04
0004
0002
0000
0007
0006
0001
0005
0003
0010
0002
OOOE
0001
0000
0009
6FOO
0000
0008
0004
OOOF
0003
0005
0006
0007
OOOC
0008
0013
OOOA
0012
0022
0024
OOOA
F GET 8UFFER
O~OC -
0008
0010
0006
0008
OOOA
0004
0018
OOOE
0010
OOOC
0014
0016
0012
0006
OOOA
0008
0004
0000
F PUT BUFFER
O~OA -
0006
0010
OOOE

System Equate File 417



Equates File (continued)
F RAM GET,
F-RAM-RET. "
F-REMOVE SPRITE,
F-REPORT-ENTRY
F-SAMPLE-. . .
F-SET LIMITS X
F-SET-LIMITS-Y
F-SND-SEEP ,-, , .
F=:SND::::SE EP_D I SABLE
F SND BEE P ENABLE,
F-SND-CLICK . . , ,
F-SND-ClICK DISABLE,
F-SND-CL ICK-E NAB LE
F-SND-SET BtEP
F-SND-TON'E , . ,
F-S TR-DE L BUCKE T
F-STR-GE T-FRE E I NDE X
F-STR-GET-INDEX.
F-STR-GE T-S TR I NG
F-STR-PUT-BUCKE T
F-SYSTEM ~

F-TRACK INIT
F-TRACK-OFF.
F-TRACK-ON
F-YIElD-
GID A08
GID-A16.
GID-R08
GID-R16
GID-UNDEF
HP 'ENTRY .

i~g~ ..~~~~O~~ROR 'MSG.
INDX-ORIVr A
I NDX-OR IVE-B
I NDX-DR IVE-e
INDX-DR IVE-D
INDX-DR IVE-E
INDX-DR IVE-F
INDX-DR IVE-G
INDX-OR IVE-H
INDX-DRIVE-I
INDX-DRIVE-J
INDX-DRIVE-K
INDX-DR IVE-L
INDX-ORIVE-M
I NDX-DR I VE-N
INDX'-DR IVE-O
INDX-DR IVE-P
INDX-DR IVE-Q
INDX-DR IVE-R
INDX'-DRIVE-S
INOX-DRIVE-T
INDX-DRIVE-U
INDX-DR IVE-V
INDX-DR IVEW
INDX-DR IVE-X
INDX-'DR IVE-Y
INDX-DRIVE-Z
I NDX-HP C01SYR IGHT
INDX-I NVAL ID ROM MSG
INDX-KEYBOAR~. -

i~g~=~~~B l.OCKED MSG'
INDX MOUSE
INDX-RETRY MSG
INDX-SETUP-MSG
INDX-STRIK'E Fl MSG
INDX-TA6lET
INDX-TOUCH
INT "8041 OBF
I NT-BOOT
INT"BREAKPOINT .
INT-BREAK EVENT
INT-CLOCK-
INT--DISC
INT-DIVIDE ZERO
INT'DOS .
INT'''EOUI PMENT
INT-FLOPPY DIRECT
I NT-F LOP PY- PARMS
INT-GRAPHICS CHAR,
INT-HDISC PARMSO
I NT-HD I SC-PARMS 1
INT-HPHIL -
IN T-HPMOUSE
INT"IRQO TIMER
INT-IRQl-K8D ISR
INT"lR02- --
INT-IRQ3 SERIAL1
INT-IRQ4-SERIALO
INT-IRQS-PRN1 .
I NT= I RQ6 =F LOP PY

418 System Equate File

Number
Number
Number
Number
Numbe r
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Numbe r
Number
Number
Number
Number
Number
Number
Number
Numb e r
Number
Number
Numbe r
Number
Number
Number
Numbe r
Number
Number
Number
Number
Numbe r
Numbe r
Numb e r
Number
Number
tIlumbe r
Number
Numbe r
Number
Number
Numbe r
Numbe r
Number
Numbe r
Number
Numbe r
Number
Number
Number
Number
Number
Number
Number
Number
Numb e r
Number
Number
Number
Number
Numbe r
Numb e r
Number
Number
Numb e r
Number
Number
Numb e r
Number
Number
Number
Numb e r
Numb e r
Numb e r
Number
Number
Number
Number
Numb e r
Number
Number
Number
Number
Number
Number
Number
Number
Number

001E
0020
0012
OOOC
0006
OOOC
OOOE
003A
0038
0036
0034
0032
0030
003C
003E
0042
0040
0048
0046
0044
0002
0004
0008
0006
002A
0002
0003
0000
0001
OOOF
006F
0825
0820
0800
0801
0802
0803
0804
0805
0806
0807
0808
oBOg
080A
0808
080e
080D
o80E
o80F
0810
0811
0812
0813
0814
0815
0816
0817
0818
0819
081A
081D
0824
0826
08lE
0823
08lC
0818
081F
0822
0821
0069
0019
0003
0018
00 lA
0013
0000
0021
0011
0040
OOlE
001F
0041
0046
006C
0033
0008
0009
OOOA
OOOB
OOOC
OOOD
OOOE

'~



Equates File (continued)
INT IRQ7 PRNO.
INT-KBO, --, .
INT-MEM SIZE
INT-NMI~ , ,
INT-OVERFLOW
INT-PRINTER, .
INT-PRINT SCREEN
INT-RTC EVENT
INT-SE RIAL
INT-SINGLE STEP.
INT-SVC REQUEST.
INT-SYSTEM , ,
INT-TIMER TICK
IN T-v IDE 0 -: . , .
INT-VIOEO PARMS.
IROTO. -
IRQl1
IRQ12 ..
IRQ13 287 .
IRQ14-HOISC.
IRQlS-:-
IRQ8 RTC
IRQ9-REOIRECT
ISR IN PROGRESS
LOESCRIBE SIZE
LO _BUF FER-:-
LO CLASS CURRENT
LO-CLASS-OEFAULT .
LO-REMAHlOER ACCUM
L0- RES MA SK -
LD-SAM'PLE ABSOLUTE
LD-SAMPLE-RE lAT IVE
LO-SIZE -
LO-TYPE MASK
MSO BAO-OCHG
MSO-BAO-lENGTH
MSO-BLO-BPB ,
MSO-CRC-ERROR
MSO -DE V-'ClOSE
MSO-OEV-OPEN .
MSO-OONE' STATUS.
MSO-ERR STATUS
MSO-GEN-FAILURE
MSD-INIT
MSD-INPUT
MSO-I N FLUSH .
MSO-IN-NOWA IT.
MSO - I N- SfA TUS
MSO-IOCTL IN ,
MSO-'IOCTL --OUT.
MSO-MEOIA-CHK,
MSO-NOT RtAOY.
MSO-OUT'PUT . .
MSO-OUT FLUSH,
MSO-OUT-STATUS
MSO-OUT-VER IF Y
MSO-PAPE'R OUT.
MSO-REAO rAUL T
MSO-REM f.:4EOIA
MSO-SEC-NOTF NO
MSO-SE ER' ERROR
MSO-UNKNOWN CMD, .
MSO-UNKNOWN-MEOIA.
MSO-UNKNOWN-UNIT .
MSOWRITE F~UlT ..
MSOWR I TE-PROTECT.
RS BAD PAR'AMETER
RS-BREAK
RS-BUSY . . .
RS-OATA NREAOY
RS-OONE- . .
RS-FAIl,
RS-FRAME
RS-NOT SERVICED.
RS-NO VECTOR
RS-OFrlINE . . .
RS-OUT OF PAPE R.
RS-OVER"RUN
RS-PARITY ...
RS-SUCCE SSF UL .
RS-TIMEOUT
RS-UNSUPPORTED .
S4~E DEVICE BOOT
S40E-OEVICE -F lOPPY
S40E-OEVICE-MATH .
S40E-OEVICE-PRINTRS.
S40E-DEVICC'RS232
S40E -OEV ICE -V IDE 0
S40E-FLOPPY-MOTR RUNO
S40E-FLOPPY-MOTR-RUNI.
S40E -F LOPPY-MOTR-SE LC TO
540E-FLOPPY-MOTR-SELCTl
S40E-F LOPPY-MOTR-WR I TE .
54 OE:=F LOPPY~R STAT._CTR LR

Number
Number
Numbe r
Number
Number
Number
Number
Numba r
Number
Number
Number
Number
Nllmber
Number
Numbe r
Number
Nlimbe r
Number
Numbe r
Number
Number
Number
Number
Number
Number
Alias
Nl.lmbe r
Nl.,mbe r
Al ias
Nwmber
Alia.
Alias
Alias
Number
Nl.lmbe r
Number
Nl.lmbe r
Number
Nl.lmbe r
Numbe r
Number
Numbe r
Number
Number
Number
Number
Nlimbe r
Number
Number
Number
Number
Nllmbe r
Number
Number
Number
Number
Number
Numbe r
Numbe r
Nllmbe r
Numbe r
Number
Numbe r
Number
Nllmbe r
Number
Number
Number
Nllmbe r
Nllmbe r
Numb. r
Number
Number
Numbe r
Number
Numbe r
Number
Number
Nllmbe r
Number
Numb. r
Numbs r
Numbs r
Numbe r
Nllmbe r
Numbe r
Numbs r
Number
Number
Numbe r
Number
Number
Numbs r
Number

OOOF
0016
0012
0002
0004
0017
0005
004A
0014
0001
0068
0015
OOIC
0010
0010
0072
0073
0074
0075
0076
0077
0070
0071
0001
0030
LO RESOLUTION
OOFO
OOOF
LD ACCUM X
OOO'F -
LD ABS X
lO-RE L-X
lO-SIZE' X
oorO
OOOD
0005
0002
0004
OOO[
0000
0001
0081
OOOC
0000
0004
0007
0005
0006
0003
OOOC
0001
0002
0008
0008
OOOA
0009
0009
0008
OOOF
0008
0006
0003
0007
0001
OOOA
0000
OOFA
OOOC
OOF 8
OOOA
0008
OOFE
OOEE
0004
00F6
00F4
00F2
0008
OOFO
0000
OOFC
0002
0001
OOCO
0002
COOO
OEOO
0030
0001
0002
0010
0020
0080
0020

System Equate File 419



Equates File (continued)
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Numbe r
Number
Number
Number
Numbe r
E BYTE
E BYTE
E BYTE
E WORD
E BYTE
E WORD
E BYTE
Number
Number
Number
Number
Number
Numbe r
Number
Number
Te)( t
Numbe r
Telet
Number
Number
Numbo r
Text
Number
Numbe r
Number
Number
Number
Number
Number
Number
Numbe r
Number
Number
Number
Number
Number
Number
Number
Number
Numbe r
Number
Number
Number
Number
Numbe r
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Numbe r
Numbe r
Number
Number
Numbe r
Number
Number

001F
0040
0080
0080
0001
0002
0004
0002
0001
0008
0040
0004
0080
0002
0020
0001
0010
0040
0080
0020
0008
0010
0004
0010
OOCO
0020
0007
0010
OOCO
0020
0007
0090
0092
0094
0008
0078
0000
007C
0010
OOOE
0010
0018
0014
0008
OOOA
0004
OOOE
0006
OOOC
OOOE
OOOC
OOOA
OOOA
0008
0008
0000
OOOC
OOOA
0006
0002
0010
0008
0004
0000
OOOE
OOOC
OOOA
OOOA
0002
0000
0014
0012
0010
0000
0000
0002
OOOE
001A
0004
OOOC
0016
0004
0012
0002
0016
0012
0006
0004
0002
0006
0002
0008
0000
0006

420 System Equate File



Equates File (continued)
SF VID SET INFO.
SF-VID-SE T-MODE .
TR~CK tNABIED.
T ABS08.
T-ABS16.
T-GID ..
T'-KC ASCI I .
T-KC-BUTTON. . .
T-KC-HPHIL ENVOV
T-KC-HP CC'P. . .
T-t<C-HP-SOFTKEV.
T-KC-IBA AT.
T-KC-I BM-PC, .
T-KC-I S F"UNCTION
T-KC-I TF" . .
T-KC-NUMPAD.
T-KC -QWERTV.
T -KC-RO .
r-KC-R 1 .
T-KC-R3.
T-KC-R5. .
T -KC-WI LD.
T-MOUSE .
T-POINTER.
T-REL08.
T-REL16.
T-STATE
T-STRING
T-TABLET
T-'TS . . .
T-UNKNOWN. , .
V!D BLOCK SIZE
V 8~41 -
V'-CCP,
V-CCPCUR
V-CCPGID
V-CCPNUM
V-DOL I TTLE , . .
V-EVENT POINTER.
V-E VE NT-T ABLE T
V--EVENT-TOUCH.
V-FUNCTIoN
V-HPHI L.
V-LHPMOUSE
V--LNULL. .
V-LPOINTER
V-L TABLE T .
V-LTOUCH .
V-NUMPAD .
V-OFF, . .
V-PGID CCP
V-PNUl[.
V-QWERTV
V-RAW. ,
V-S8259.
V-SCOPV
V-SINPUT . ,
V::::SKEV2FKEV.
V SOFTKEV.
V-STRACK
V-SVIDEO
V=:SVSTEM

486~ Bytes free

Warning Severe
Errors Errors
o 0

Number
Number
Number
Numbe r
Numbe r
Numbe r
Number
Numbe r
Number
Number
Numb 0 r
Numbe r
Number
Numbe r
Numbs r
Number
Number
Number
Numbe r
Number
Number
Number
Number
NUI"be r
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Numb e r
Numbe r
Number
NUI"be r
Number
Number
Number
NUI'Tlbe r
Number
NUI'ftbe r
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number
Number

0004
OOOA
0008
0042
0043
0040
0002
0009
0007
OOOD
OOOB
0008
OOOA
OOOC
0004
OOOF
OOOE
0000
0001
0003
0005
0006
0044
0047
0040
0041
0020
0010
0046
0045
004F
0027
OOAE
004£
008A
00A2
0096
0006
006C
0066
0060
0042
0114
OOCC
0108
OOCO
OOBA
00C6
0048
009C
00B4
OOOC
0036
0090
OOlE
0000
002A
00A8
003C
005A
0054
0012

System Equate File 421



422 System Equates File



APPENDIX F

F. DEFAULT DEVICE MAPPING

The following table describes the device mappings which are setup during SYSGEN. The default
mapping device is listed first. Other mappable devices are listed following the default device.

Input System

Physical Device Logical Device Mappable Driver

Mouse • Cursor Control Pad • V_PGID_CCP
V_LHPMOUSE
V_LPOINTER
V_LTOUCH
V_LTABLET

Rotary Knob • Cursor Control Pad • V_PGID_CCP
V_LHPMOUSE
V_LPOINTER
V_LTOUCH
V_LTABLET

Touch Screen • Touch Screen • V_LTOUCH
V_LHPMOUSE
V_LPOINTER
V_PGID_CCP
V_LTABLET

Tablet • Tablet • V_LTABLET
V_LHPMOUSE
V_LPOINTER
V_LTOUCH
V_PGID_CCP

Keyboard ~ Keyboard Subsystem ~ V_8041

Default Device Mapping 423



Keyboard Subsystem

Keypad Translator Service

Function keys • V_FUNCTION

HP softkeys • V_SOFTKEY

QWERTY Pad • V_QWERTY
Numeric Pad • V_NUMPAD
Cursor Control Pad V_CCP

Discs

Mappable Driver

non-mappable

SKEY2FKEY
V_OFF
V_RAW
non-mappable
non-mappable
V_CCPNUM
V_LHPMOUSE
V_OFF
V_RAW
V_CCPGID
(if installed)

DISC A:
DISC B:
DISC C:
DISC D:
DISC E:

Flexible Disc a Upper Drive
Flexible Disc 1 Lower Drive
Internal Hard Disc
External Disc
RAM disc

Discs on the system are only mappable using ASSIGN.COM.

Character I/O Devices

COM1:
COM2:
LPT1: or PRN:
LPT2:
LPT3:

Serial Port a
Serial Port 1
Parallel Port a
Parallel Port 1
Parallel Port 2

These ports are only mappable using MODE.COM.

424 Default Device Mapping



APPENDIX G

G. DRIVER WRITER'S GUIDE

This appendix describes how a programmer can add drivers to the ROM BIOS. One of the
important features of the EX-BIOS is the ease with which it can be expanded. This capability
allows programmers to take full advantage of HP system components (such as the HP-HIL touch
screen, mouse, tablet, etc.). In addition, the EX-BIOS architecture provides a simple, yet powerful
way to integrate OEM and third-party products into the system.

G.1 Who Should Read This Appendix

This appendix is intended for all programmers and advanced users who wish to utilize EX-BIOS
capabilities not supported by system software. It assumes that the reader is familiar with the
contents of Sections 1 through 10, iAPX286 programming, DOS concepts in general, and DOS
installable device drivers in particular. The reader should consult the publications listed under the
References section at the end of this manual for additional information on these topics.

G.2 Introduction

,.. This appendix presents two examples of how drivers that interface to the system's EX-BIOS can
be written. All aspects of how a driver gets connected and used through the EX-BIOS are
discussed.

Driver Writer's Guide 425



G.3

The typical steps involved in connecting a driver into the EX-BIOS are:

• A driver added to the system can be one of three types: ROM driver, MS-DOS installable
device driver or MS-DOS command that executes and stays resident.

• The driver gets called to initialize. At this point the driver will determine what machine it is
executing on, obtain memory for its data segment, get an EX-BIOS vector address assigned
and be added to the HP_VECTOLTABLE.

• Any time after initialization the driver can respond to service requests in two ways. It
responds to a hardware service request when it is called with its F_ISR (AH = 0) function or
it responds to an application service request when it is called with any other driver specific
function.

The above sequence is a general description of a driver's lifecycle. It is not necessary that all
drivers follow the same steps. The sections below outline what are the necessary elements of an
EX-BIOS driver.

Note

For a detailed explanation of the calls to V_SYSTEM used below see Section 9.

Installation of Device Drivers

Each type of device driver is installed in a different manner depending on how it is brought into
the system. There are three ways that an EX-BIOS driver can be installed in the system. An I/O
adapter card can have an EX-BIOS driver which can be installed in the system when the adapter's
ROM gets called to initialize. The adapter's initialization routines can use all of the V_SYSTEM
functions to properly connect the driver. Note that because the adapter's code modules are
initialized during the system generation process (SYSGEN), an EX-BIOS driver on an adapter card
can not depend on other EX-BIOS drivers already being present and initialized (V_SYSTEM is the
only driver usable at this point).

An MS-DOS installable device driver can also install an EX-BIOS driver. The driver must have two
interfaces, one driver interface for MS-DOS and one driver interface for the EX-BIOS functions.
This type of EX-BIOS driver can use all other EX-BIOS drivers already present in the system.

Finally, an MS-DOS command that stays resident can also be used to install an EX-BIOS driver.
This driver can use all previously installed EX-BIOS drivers. This is the preferred method of
installing EX-BIOS drivers since it only requires the EX-BIOS driver interface and functions.

426 Driver Writer's Guide



G.4 Initialization

This section covers the possible steps the driver must take to insure proper initialization.

G.4.1 Product Identification

This section discusses several methods available through ROM BIOS functions for software to
determine whether its host is an HP Vectra.

HP Vectra Feature/Revision Identification (V_SCOPY):

The V_SCOPY (OOH) vector entry has a data segment (DS) that points to the system's copyright
string. The driver can look at this string to determine if the machine is an HP Vectra. The
following example illustrates how to get this string:

MOV BP, V_SCOPY
PUSH OS
INT HP_ENTRY
PUSH OS
POP ES
POP OS

,. Call the COPYRIGHT vector
,. which will set the OS and return

,. Save OS of copyright string
,. in ES. ES:O is address of string
,. Recover old os.

HP Vectra Indicator Word, Revision Word, and Date Codes

At ROM address OFOOF8H the HP Vectra has the following data.

Ow 'HP'
OW 0000
OW Revision_code
OW Date_code ,. Byte 0 = year, byte 1 = week

This code can be used to discern the HP Vectra from other industry standard products and thus
take advantage of the unique features of the HP Vedra. This method is not the preferred
method.

Driver Writer's Guide 427



S1D-BIOS Extension Functions

The STD-BIOS Functions Fnn_INQUIRE (6FOOH) indicate to the calling application that STD-BIOS
extension functions are loaded and have not been replaced. The STD-BIOS drivers listed in table
G.1 below support this function.

Table G.1

STD-BIOS Drivers That Support Fnn_INQUIRE

Interr'Jpt

INT 10
INT 14
INT 16
INT 17

Function

VIDEO
SERIAL
KEYBOARD
PRINTER

To find out if the STD-BIOS extensions for the Video driver are in place use the following code:

MOV AX, FlO_INQUIRE ,. Call video function (6FOO)
MOV ax, OFFFFH ; Make sure ax < > 'HP'
INT INT_ VIDEO ,. Interrupt 10H
eMP ax, 'HP' " Are video extensions present?
Jf VIDEO_fXTENSIONS_PRESENT

VIDEO_fXTENSIONS~OT_PRESENT:

VIDEO_EXTENSIONS_PRESfNT:

G.4.2 Obtaining Memory From the EX-BIOS

The system allows EX-BIOS drivers to obtain limited amounts of memory independent of the
operating system. This feature is especially important for I/O ROM adapters since their cost can
be reduced if they do not require dedicated RAM. When the I/O ROM module is initialized, it can
ask for EX-BIOS memory.

428 Driver Writer's Guide



This feature of the EX-BIOS system can also be utilized by application programs and system
software. Any program needing a limited amount of RAM outside the operating system domain
can obtain this from the EX-BIOS system.

The functions F_RAM_GET and F_RAM_RET in the V_SYSTEM driver can be used to
manipulate the EX-BIOS free memory. The driver can also use the installation functions
F_INS_FREEGETDS or F_INS_FIXGETDS to obtain free memory. See Section 9 for more details
of these functions.

G.4.3 Getting a Free Vector

In order for an application to access an EX-BIOS driver it must call the driver through the
HP_VECTOLTABLE. Thus, each driver must request a free vector from this table.

To get a free vector from the HP_VECTOLTABLE, a driver can use the function
F_INS-YCHGFREE, F_INS_FREEOWNDS, F_INS_FREEGETDS or F_INS_FREEGLBDS in the
V_SYSTEM driver. Each of these functions installs the driver at the next available free vector.

Once the driver has a vector address installed in the table, an application can call the driver by
loading BP with the vector address of the driver and doing an HP_ENTRY interrupt (6FH).

G.5 EX-BIOS Driver Functions

EX-BIOS drivers support a standard set of functions and subfunctions. Nine standard function
codes are defined, and several of these functions have subfunctions defined within them. These
functions and subfunctions are summarized in table G.2. A detailed description of each defined
function and subfunction follows.

If a driver receives a function it does not implement, it must return a status code of
RS_UNSUPPORTED (02H) in the AH register. This lets the application know that the driver has
not handled this function, but that it can continue if it is appropriate. This protocol frees the
driver from having to implement all the defined functions and allows applications to call drivers
in a consistent way.

If a driver receives a function code that it does not implement, it may also II delegate" the
function to another driver. A driver may be written so that it calls another driver when it receives
an unimplemented function or subfunction request.

Driver Writer's Guide 429



Programmers may write drivers that implement functions and subfunctions that are not defined.
However, two guidelines should be observed when defining additional functions or subfunctions.
First, whenever possible, newly defined function or subfunction numbers should not conflict with
existing numbers. Secondly, function and subfunction numbers should be consistent between
drivers of the same class.

Table G.2

EX-BIOS Driver Function Code Summary

Function Register
Subfunction AH AL Definition

F_ISR 00 Responds to a logical Interrupt Service
Request (ISR).

F_SYSTEM Executes one of several standard
subfunctions.

SF_INIT* 02 00 Starts the initialization of a driver.
SF_START* 02 02 Completes the initialization process of the

driver.
SF_REPORT_STATE 02 04 Reports the state of the driver.
SF_VERSION_DESC* 02 06 Reports the revision number and datecode

of the driver.
SF_DEF--ATTR 02 08 Reports the default configuration of the

driver.
SF_GET--ATTR 02 OA Reports the current configuration of the

driver.
SF_SET--ATTR 02 OC Overrides the current configuration of the

driver.
SF__OPEN 02 OE Reserves the driver for exclusive access.

Requests any resources required by the
driver.

SF_CLOSE 02 10 Releases the driver from exclusive access.
SF_TIMEOUT 02 12 Reports to the driver that a requested

timeout has occurred.
SF_INTERVAL 02 14 Reports to the driver that a requested 60 Hz

interval has expired.
SF_TEST 02 16 Periorms a hardware test.

430 Driver Writer's Guide



Function Register
Subfunction AH AL Definition

F_IO_CONTROL Executes the following subfunctions and any
driver dependant subfunctions.

SF_LOCK 04 00 Reserves the sub-address device specified for
exclusive access.

SF_UNLOCK ()4 02 Releases the sub-address specified from the
exclusive access.

F_PUT_BYTE 06 Writes a byte of data.
F_GET_BYTE ()8 Reads a byte of data.
F_PUT_BUFFER OA Writes a variable length buffer of data

(supported by character devices).
F_PUT_BLOCK OA Writes a fixed length buffer of data

(supported by block devices).
F_GET_BUFFER DC Reads a variable length buffer of data

(supported by character devices).
F_GET_BLOCK OC Reads a fixed length block of data

(supported by block devices).
F_PUT_WORD DE Writes a word of data.
F_GET_WORD 10 Reads a word of data.

Note: Functions marked with an asterisk (*) should be supported by all drivers. These functions
may perform no useful function. However, they should return a status code of RS_DONE or
RS_SUCCESSFUL as opposed to HS_UNSUPPORTED.

The following is a list of predefined driver function codes and a brief description of their purpose
and parameters:

EX-BIOS Driver Function Definitions

F_ISR (AH = OOH)

This function processes either a logical or a physical interrupt event. It reports whether or not it
handled the event through its Return Status Code (see table G.2). The driver may require the
service of its parent driver to handle the interrupt.

Driver Writer's Guide 431



EX-BIOS drivers do not usually enable interrupts (STI) while processing this function code. Drivers
should service this interrupt within 250 microseconds or maintain interrupts off for no more than
250 microseconds at a time. Drivers should expect 40 bytes of stack when called. If a driver
enables interrupts it must provide 40 bytes of stack for other ISR's.

On Entry: AH = F_ISR

On Exit: AH = RS_SUCCESSFUL
or RS_NOT_SERVICED

F_SYSTEM (AH = 02H)

This function contains a set of subfunctions that execute system-oriented tasks. These
subfunctions include driver setup, configuration, and control. The F_SYSTEM subfunctions are
described in detail below.

SF_INIT (AX = 0200H)

This starts the initialization process of a driver. The function does not return to the caller until the
driver is ready to be called by another driver. All system services (V_SYSTEM) are assumed to be
operational when a driver is called by this function. ~

The driver is responsible for a brief hardware check and to report RS_FAIL if the test failed. A
driver need only execute a test procedure if it directly interfaces to physical hardware.

If the driver requires EX-BIOS RAM the BX and DX registers can be used to reserve available
memory (see Section 9).

On Entry: AH = F_SYSTEM (02H)
AL = SF_INIT (OOH)
BX = "Iast used DS"
BP = Driver's vector address

On Exit: AH = Return Status Code
BX = New "Iast used DS"

Recommended for hardware test failure:

AH = RS_FAIL
ES:DI = pointer to a string of information about the nature of the error

CX = length of the string pointed to by ES:DI

432 Driver Writer's Guide



SF_START (AX = 0202H)

This function notifies a driver that it may call other drivers for any additional setup it may require.
All other ROM drivers and ROM services are present, active and capable of being accessed. This
function does not usually return to the caller until all its internal and external setup is complete.

On Entry: AH = F_SYSTEM (02H)
AL = SF_START (02H)
BP = Driver's vector address

On Exit: AH = Return Status Code

Reports a word of status or state information to the caller in the DX register. The format of the
state information will be presented bit wise and should be presented in the same format for all
drivers of the same class.

On Entry: AH = F_SYSTEM (02H)
AL = SF_REPORT_STATE
BP = Driver's vector address

On Exit: AH = Return Status Code
BX = State of Driver

SF_VERSION_DESC (AX = 0206H)

Reports the version number of thE~ driver code and an optional describe record which contains
other driver-dependent information.

On Entry: AH = F_SYSTEM (02H)
AL = SF_ VERSION_DESC (06H)
BP = Driver's vector address

On Exit: AH = Return Status Code
BX = Version number, YYWW is a BeD number where,

WW is the week of the year
YY is the number of years since 1960

ex = Number of bytes in data buffer
ES:DI = Pointer to describe record

Driver Writer's Guide 433



SF__DEF~TTR (AX = 0208H)

Returns a pointer in ES:DI to a parameter block containing the driver's default configuration
values. This function does not set the defaults; it only reports them.

On Entry: AH = F__SYSTEM (02H)
AL = SF__DEF~DR (08H)
BP = Driver's vector address

On Exit: AH = Return Status Code
CX = Number of bytes in data buffer

ES:DI = Pointer to a data buffer

SF__GET~TTR (AX = 020AH)

Reports the configuration values defined by the parameter block. Baud rates, HPIB addresses,
etc. may be reported by this command.

On Entry: AH = F__SYSTEM (02H)
AL = SF__GET~DR (OAH)
BP = Driver's vector address

On Exit: AH = Return Status Code
CX = Number of bytes in data buffer

ES:DI = Pointer to a data buffer

SF__SET~TTR (AX = 020CH)

Sets the parameter block defined by ES:DI as the configuration values. Baud rates, HPIB
addresses, etc. may be defined by this command.

On Entry: AH = F__SYSTEM (02H)
AL = SF__SET~DR (OCH)
BP = Driver's vector address
CX = Number of bytes in data buffer

ES:DI = Pointer to a data buffer

On Exit: AH = Return Status Code
ES:DI = Pointer to a data buffer

434 Driver Writer's Guide



SF_OPEN (AX = 020EH)

Allows exclusive access to this driver. All resources required for driver operation will be acquired
at this time. This function has special meaning for the the HP-HIL driver, the HPIB driver and the
HPIL driver. Since these drivers support shared interfaces, control of the resource HP-HIL
(obtained from the driver V_HPHIL), control of the HPIB (in contention with other PC's on the
bus), and control of the HPIL (in contention with other PC's on the loop) is requested and
obtained. Control should be kept until a single operation is performed on the resource. A status
of RS_BUSY will be reported if thl= device has previously been opened. RS_SUCCESSFUL will be
reported if the device is available. )~ busy status does not prevent access to the driver. All
functions will execute (perhaps improperly) whether a driver has been opened or not.

On Entry: AH = F_SYSTEM (02H)
AL = SF_OPEN (OEH)
BP = Driver's vector address

On Exit: AH = Return Status Code

SF_CLOSE (AX = 0210H)

Closes the requested resource. Again this function has special meaning for the interface class of
devices, HPIB, HP-HIL, and HPIL. The driver goes to a state where control can be obtained by or
passed to another controller.

On Entry: AH = F__SYSTEM (02H)
AL = SF_CLOSE (1 Or~)

BP = Driver's vector address

On Exit: AH = Return Status Code

SF_TIMEOUT (AX = 0212H)

Reports to the driver that its timer event number has occurred.

On Entry: AH = F_SYSTEM (02H)
AL = SF_TIMEOUT (12H)

~ BP = Driver's vector address

On Exit: AH = Return Status Code

Driver V\lriter's Guide 435



SF_INTERVAL (AX = 0214H)

Reports to the driver that its interval event number has occurred.

On Entry: AH = F_SYSTEM (02H)
AL = SF_INTERVAL (14H)
BP = Driver's vector address

On Exit: AH = Return Status Code

SF_TEST (AX = 0216H)

The driver performs a hardware test and reports RS_FAIL if the test failed. A driver need only
execute a test procedure if it directly interfaces to physical hardware.

On Entry: AH = F_SYSTEM (02H)
AL = SF_TEST (16H)
BP = Driver's vector address

On Exit: AH = Return Status Code

On test failure:

ex = The length of the string pointed to by ES:DI
ES:DI = Pointer to a string of information about the nature of the error

F_10_CONTROL (AH = 04H)

This is a collection of driver dependant control subfunctions. Drivers of the same class should
implement similar subfunctions. The following is a list of predefined driver subfunction codes and
a brief description of their purpose and parameters:

SF_LOCK (AX = 0400H)

Reserves the indicated addresses on an already allocated driver for exclusive access.

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_LOCK (OOH)

DH,DL = Major and minor address (Optional)
BP = Driver's vector address

On Exit: AH = Return Status Code

436 Driver Writer's Guide



SF_UNLOCK (AX = 0402H)

Releases the indicated address from exclusive access.

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_UNLOCK (02H)

DH,DL = Major and minor address (optional)
BP = Driver's vector address

On Exit: AH = Return Status Code

This is a generic put data byte function.

On Entry: AH = F_PUT_BYTE (06H)
AL = Data byte
BP = Driver's vector address

On Exit: AH =. Return Status Code

This is a generic get data byte function.

On Entry: AH = F_G ET_BYTE (08H)
BP = Driver's vector address

On Exit: AH = Return Status Code
AL = Data byte

Puts a number of bytes to a device. The difference between a buffer device and a block device is
that a buffer device accepts variable length records, while a block device accepts fixed length
records. Thus, a printer is a data buffer device and a disc is a block device. Usually, a block device
requires more parameters than a data buffer device, consequently there is a different format for
parameter passing.

Driver Writer's Guide 437



This is a generic put data buffer or put data block function. Either a string write or a disc block
write could use this function.

On Entry: AH = F_PUT_BUFFER (OAH)
CX = Data byte count or block count

ES:DI = Pointer to data buffer
BP = Driver's vector address

On Exit: AH = Return Status Code

Writes a fixed block of data to a block device.

On Entry: AH = F_PUT_BLOCK (OAH)
DH = Major number
DL = Minor number

ES:DI = Command Block

Word 0,1: Data transfer address
Word 2: Block count
Word 3: Block address LSW
Word 4: Block address MSW (for some devices this word is ignored).

BP = Driver's vector address

On Exit: AH = Return Status Code
BX = Operation status

This is a generic get buffer or get block function. Either string reads or disc block reads could use
this function.

On Entry: AH = F_GET_BUFFER (OCH)
CX = Byte count or block count

DS:SI = Pointer to data buffer
BP = Driver's vector address

On Exit: AH = Return Status Code

438 Driver Writer's Guide



Reads a fixed length block of data from a device.

On Entry: AH = F_GET_BLOCK (OCH)
DH = Major number
DL = Minor number

ES:DI = Command Block

Word 0,1: Data transfer address
Word 2: Block count
Word 3: Block address LSW
Word 4: Block address MSW (for some devices this word is ignored).

BP = Driver's vector address

On Exit: AH = Return Status Code
BX = Operation status

This is a generic put word of data function. If the destination device is byte wide then the byte in
the DL register is written first followed by the byte in the DH register.

On Entry: AH = F_PUT_WORD (OEH)
DX = Data word
BP = Driver's vector address

On Exit: AH = Return Status Code

This is a generic get word of data function. If the source device is byte wide then the first byte is
read into the DL register and the second byte is read into the DH register.

On Entry: AH = F_GET_WORD (1 OH),. BP = Driver's vector address

On Exit: AH = Return Status Code
DX = Data word

Driver Writer's Guide 439



G.6 Return Status Codes
The conventions for assigning return status codes are as follows:

• If possible, use a return status that has already been defined.

• Error conditions should be reported with a negative byte (OFEH-080H ).

• Status or exceptional conditions "soft errors" should be reported with a positive byte (02
7EH).

• Good Status is always reported as OOH.

Table G.3 summarizes the already assigned status codes.

Table G.3

EX-BIOS Return Status Codes

Return Status Code Indication

RS_SUCCESSFUL OOOH The requested function executed
correctly.

RS_UNSUPPORTED 002H The requested function or subfunction is
not implemented or is unsupported.

RS_NOT_SERVICED 004H The requested function was not executed
by this driver. Any drivers which are
chained on this interrupt vector should
be called in turn until a return status of
RS_SUCCESSFUL or some other error is
reported.

RS_DONE 006H This return status is used by the Input
System translators to indicate that an ISR
event has been handled and no further
processing should be done.

RS_FAIL OFEH (-02H) The driver failed the operation in an error
state.

RS_TIMEOUT OFCH (-04H) The device timed-out on a physical event
in an error state.

RS_BAD_PARAMETER OFAH (-06H) The driver received a bad parameter.
RS_BUSY OF8H (-08H) The requested driver is busy.
RS_NO_VECTOR OF6H (-OAH) HP_VECTOR_TABLE is out of RAM or

room for more drivers.
RS_OFFLINE OF4H (-OCH) Device is offline.
RS_OUT_OF_PAPER OF2H (-OEH) Device is out of paper.

440 Driver Writer's Guide



G.7 Driver Headers

The EX-BIOS driver header (HP_SHEADER) is a formatted data structure similar to the DOS
device driver's header. It defines the attributes of a driver, defines the linkage of a driver and
identifies the driver. It also allows the programmer to define how the driver links with other
drivers.

All EX-BIOS drivers must have an HP_SHEADER. Programmers are not required to provide a
complete HP_SHEADER to use the HP_VECTOLTABLE. But, if they choose to take advantage
of the advanced features of the EX-BIOS the programmer must implement a complete
HP_SHEADER. Table G.5 shows a complete driver header and what fields must be present.

Table G.4

Driver Header Table

Variable Offset Type Definition

DH.-ATR* 0 Word Driver Attribute Field
DH_NAME_INDEX 2 Word Driver String Index Field
DH_V_DEFAULT 4 Word Driver's Default Logical Device Vector
DH_P_CLASS* * 6 Word Driver's Parent Class
DH_C_CLASS* * 8 Word Driver's Child Class
DH_V_PARENT* * OAH Word Driver's Parent Vector
DH_V_CHILD** OCH Word Driver's Child Vector
DH_MAJOR** OEH Byte Subaddress Field
DH_MINOR** OFH Byte Subaddress Field

*This is the only field required for a driver to be in the HP_VECTOLTABLE.

**These fields are only required by drivers that want to do device mapping.

Driver Writer's Guide 441



G.7.1 HP_SHEADER Fields

DH--.ATR: Each bit in the DH--.ATR field indicates a property of the driver for device
mapping purposes. These bits are defined in table G.5.

Table G.5

Device Attributes Bits

Bit ATR Name Data Description

15 ATLHP 1 The following bytes form a complete driver
header.

0 The bytes that follow are not a driver header.
14 ATLDEVCFG Reserved.
13 ATLISR 1 The driver can be mapped with

DH_V_PARENT.
12 ATLENTRY 1 The driver can be mapped with DH_V_CHILD.

11 :9 ATLTYPE_MASK These three bits indicate the driver type.
ATLRSVD 000 This is a reserved vector.
ATLFREE 001 This is a free vector. The V_SYSTEM service

allocates free vectors to new drivers upon
request.

ATLSRVC 010 This driver is an EX-BIOS service.
ATLLOG 011 This is a logical driver. Its mapping direction is

from parent to child.
ATLIND 100 This is a mappable driver that cannot be the last

in the chain of drivers.
ATLBOT 101 This is a mappable driver that is the last in a

chain of drivers. This driver can only be a child
driver. This driver maps with ATLLOG,
ATLIND and ATLBOT drivers.

ATLINP 110 This driver is an input driver and is mappable.
111 Reserved

8 ATLSTRING Reserved
7 ATLMAP_CALL 1 This driver's SF_START subfunction should be

called whenever the driver is remapped.

442 Driver Writer's Guide



Bit ATR Name Data Description

6:5 ATLSUBADD These bits specify what type of major and minor
addresses the driver requires.

ATR___NOADDR 00 The driver does not require any address.
ATLMAJOR 01 This driver requires that a major address be

specified and stored in the parent driver's
DH__MAJOR header record. The range of
possible major addresses is 0 through the
contents of this header's DH_MAJOR.

ATLMINOR 10 This driver requires that a minor address be
specified and stored in the parent driver's
DH_MINOR header record. The range of
possible MINOR addresses is 0 through the
contents of this header's DH_MINOR. A driver
cannot require a minor address unless it also
requires a major address.

ATR_MID 11 This driver requires a major address, a minor
address, and a mid address. The minor address
field is split into an upper and a lower nibble,
with ~he upper nibble indicating the mid address
and the lower nibble indicating the minor
address. The range of addresses possible is
specified by the child physical driver.

4 ATLPSHARE 0 This driver cannot be shared between several
parent drivers.

3 ATL_CSHARE 0 This driver cannot be shared between several
child drivers.

2 ATLROM 1 This driver header is in ROM and cannot be
altered unless copied to RAM. 1 Reserved

1 ATR_YIELD Reserved.
0 Reserved

The DH_NAME_-'NDEX is used to derive the
localization string index of the driver. This is given
by the function F_STLGET_STRING in the
V__SYSTEM driver. See Section 9 for additional
information.

The DH_V_DEFAULT field contains the driver's
default vector address.

Driver Writer's Guide 443



Table G.6

Class Bit Positions

In conjunction, these fields indicate which drivers
may be mapped together. DH_P_CLASS and
DH_C_CLASS are bit masks. Each bit position
represents a set of drivers. If a bit is set then the
driver is in that set of drivers. The DH_P_CLASS
field indicates a driver is in from 0 to 16 different
driver sets. A driver can only map to another driver
if its DH_P_CLASS field matches at least one bit
position of another driver's DH_C_CLASS field.
Furthermore, DH-ATR field is another condition of
mapping. The bits are defined in table G.6.

Class Definition
Hex Bit Name (If bit = '1', driver is member of class)

8000 OFH CLKBDFC This set of drivers maps to the f1 through f8 softkeys
of the keyboard.

4000 OEH CLKBD Keyboard (this is not the device accessed through INT
16).

2000 ODH CLCCP Gursor pad device (for example, V_CCPCUR, V_CCP
NUM, V_OFF, V_RAW, V_CCP, V_FUNCTION).

1000 OCH CLCON This set of devices map to the console device.

0800 OBH CLBYTE Serial output device, which may be capable of limited
input.

0400 OAH CLCOMM Reserved
0200 09H CLINTERFACE An interface class controlling multiple resources

transparent to the operating system. It provides
major, middle, and minor address modes for the
calling application or driver. Examples are the HP-HIL
driver, the HPIB driver, and the HPIL driver.

0100 08H CLFILT Serial output device filter. This driver can be ma\pped
in between a logical driver and a physical driver and it
can translate from one character set to another.

444 Driver Writer's Guide



Class Definition
Hex Bit Name (If bit = '1', driver is member of class)

0080 07H CLBLK Addressed block device.
0040 06H CLBOOT Logical device used as the priority boot device. If set

on a physical device, the device is capable of being a
boot device. Typically a physical driver would have
both the CLBOOT bit set and the CLBLK bit set.

0020 OSH CLLGID Logical graphics input device (for example
V_LTABLET, V_LPOINTER V_LHPMOUSE, physical
GID devices and the keyboard driver). This class maps
to logical devices which are not the child of another
driver.

0010 04H CLPGID This class of driver can map to a device which is the
child of another driver.

0008 03H CLGID This class is reserved for all dt ivers which can map to
an event.

0004 02H CLPTS Physical touch device (for example, physical GID
drivers or V_LTOUCH).

0002 01H CL01 Reserved
0001 OOH CLOO Class Extension Bit

Special Group Classes
FFFF - CLALL This device maps to all other devices (V_PNULL).
0000 - CLNULL This device maps to no other driver.

The DH_V_PARENT field contains a vector to the driver that is called
when the current driver receives an F_ISR function code that it
cannot or doesn't know how to process.

The DH_V_CHILD field contains a vector to the driver that is called if
this driver decides it cannot handle the request function (as long as
that function is :lot F_ISR).

Major address range.

Minor address range.

,.. See the HP_SHEADER macro definition in the equate files listed in Appendix E.

Driver Writer's Guide 445



G.7.2 Driver Mapping

Two drivers may be mapped together if the drivers have matching paren'i: and child class records.
The mapping rule for the drivers is defined in table G.7.

Table G.7

PARENT/CHILD Mapping Rules

Parent Child
E I E I

o 0 0 0
000 1
001 0
o 0 1 1
o 1 0 0
o 1 0 1
o 1 1 0
011 1
100 0
1 0 0 1
101 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
111 1

Connection Rule

- Drivers are not to be connected
"
"
"
"

- Child's DH_V_PARENT ~ parent's vector address
- Drivers can not be connected
- Child's DH_V_PARENT ~ parent's vector address
- Driver's are not connected

"
- Parent's DH_V_CHILD ~ child's vector address
.- Parent's DH_V_CHILD ~ child's vector address
-- Driver's are not connected
.- Child's DH_V_PARENT ~ parent's vector address
- Parent's DH_V_CHILD ~ child's vector address
- Child's DH_V_PARENT ~ parent's vector address and

Parent's DH_V_CHILD ~ child's vector address

Where,
E = ATR-ENTRY bit state
I = ATR-ISR bit state

G.8 Accessing Driver from an Application

When an application needs to access a driver the following sequence must take place:

446 Driver Writer's Guide



MOV
MOV
MOV

PUSH
INT
POP

BP, driver's vector address
AH, function code
AL, subfunction code

; i.e. V_SYSTEM (12H)

; any other data passed
" in registers
" Saves app/icat/on's OS
" (6FH)

G.9 Examples of EX-BIOS Drivers

G.9.1 Cursor Pad Scan Code To HP Mouse Driver

The first example driver is called CPP2GID. This driver implements the V_CCPGID EX-BIOS driver.
As such, it translates from cursor control pad keys into graphics input device data.

The driver is installed into the HP_VECTOLTABLE. The SF_INIT subroutine of the driver asks
for enough EX-BIOS RAM to store the driver header and describe record. The DH_V_PARENT
field of the V_CCPGID driver header is initialized to V_LHPMOUSE. The DOS driver portion calls
SF_START of the EX-BIOS driver. SF_START initializes the DH_V_PARENT field of the V_CCP
driver header to V_CCPGID. Then V_LHPMOUSE driver is called with the override function.

The installable driver completes initialization by printing an initialization completed message and
returning back to DOS.

Now when the keyboard driver calls V_CCP to process a cursor control pad key, V_CCP calls
V_CCPGID. The F_ISR of V_CCPGID decodes which key was actually hit. The driver converts
the cursor movement keys (up, down, left, and right) into relative movement data. If the key
pressed was an insert or delete key, it is reported as the left or right button respectively. First the
driver changes the describe record and then reports either a button press or a button release.
After the input data is given to V_LHPMOUSE, the data is available thru the INT 33H STD-BIOS
driver.

Driver Writer's Guide 447



CCP_TO_GID_FILTER

• 0008
• 4000
• 8000
• 2000
• 0600
• 2000
• 0020

0000 10 [
11

0010 ., .,
0011 1?
0012 1?
0013 11
0014 11
0015 1.,
0016 ? ?

0017 ? ?

OPERATION:
Th1l driver is inltalled through the MS-DOS inltalled device
driver 'Yltem with the command line:

device·CCP20ID EXE

The driver linkl itself into the HP VECTOR TABLE and map.
itself to be the parent driver of tne V_CCl" driver.

The driver then returnl to DOS relealing the initialization
code it no lonier requirel b.ck to DOS.

PARAMETERS

ON ENTRY' in MS - DOS P0 r t ion . •• :bx pointl to

in HP portion ~h'~~~t:!~~e;~n~~i~~r
code, al ulually contain.
the output character

ON EXIT: 1n MS-DOS port 10n s tat us is returned 1n

in HP portion ~~'~~~t:~~~e;~eH~:~:~n
I t at u I code

REGISTERS ALTERED in MS-DOS portion none
in HP portion ax, blC. di. bp

equ 08FH

1nt HP_ENTRY
endm

equ 0OO8H
equ 4000H
equ 8000H
equ 2000H
equ 0600H
equ 2000H
equ 0020H

STRUC
size HP SHEADER dup (?1 : th1s data 11 always offset by

macro vector
<vee tor)
mo v bp . vee tor

~=~ 1~~~h n~~~~~i) i~o~~:i~~d~~:S O~~ ~h~e device

~:~~~~b~dh~~~:rr~~~~n~~H~r~~v~~~IL device
, I/O descriptor byte from device

extended describe byte from device
malC1mum number of axil reported
devlce cla ••

~=~ l~~~hn~~~~;i)c~~~~!~n;h~u~~~~~l~l~i:1I
7~~bi~1~~ ~~~~l~i/~;o~~~,number of prompts
3-0 (low nibble) is the number of buttons

.286c

fiYie5~(J3~0 GID FILTER installable driver
; ···DRIVER-HEJ:DER••••••••••••••••••••••••••••••••••••••••••••••••••••••

NAME: CCP TO GID_FILTER In.talled DRIVER

. DESCRIPTION: Th1l 11 an EX-BIOS driver which converts cursor

~~nl;o~ C~~t~~~I~~ ~~~IVig~~CS~~·VTC~~~6~: ~o~%:~n~~d
V_OFF, filters of the V_CCP tranllator. -

~~~i~~r:~rb~e~h~e~~~:o~e~:~.~:;. oninm;~~rt i~n t~~e d~~~~~~on
~~~t r~~ ~~~s~~n~~n~~~l1~a~a~gE~) t~e~hl' B~a~~~dm~~·th~U~~o~OO)
mo use but ton

HP SHEADER
DH-ATR
DH-NAME INDEX
DH-V DErAUL T
DH-P-CLASS
DH C CLASS
DH V PARENT
DH=:V=:CHILD
DH MAJOR
DH-MINOR
HP=:SHEADER

HP _ENTRY

SYSCALL
if nb

endif

ATR CSHARE
ATR-DEVCFO
ATR=:HP
ATR ISR
ATR-LOO
CL CCP
CL=JGID

DESCRIBE
db

D_SOURCE db

o HPHIL 10 db
D-DESC RASK db
0-10 MJ:SK db
D--XD(SC MASK db
D-MAX AXIS db
D=ClA'SS db

D__ PROMPTS db

........................................................................
• true
dw
dw
dw
dw
dw
dw
dw
db
db
endl

0000
0000
0000
0000
0000
0000
0000
00
00

0000
0002
0004
0006
0008
OOOA
OOOC
OOOE
OOOF
0010

• 006F

1
2
3
4
S
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
38
37
38
39
40
41
42
43
44
4S
46
47
48
49
50
51
52
S3
54
5S
58
57
58
59
80
61
62
63
64
65
66
87
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
8Q
90
Q1
92
93
94

448 Driver Writer's Guide



CCP_TO_GID_FILTER

;*****************************.*.*****••**••*.********.***••••**.**************
~*i~:*~~ii:;~I*~i~~i~;;~.:;:*~~;~*i~*:~~:~~*:~*~~~*~;i~;;.~~:::~~*:i:i~***

MSO HEADER mac ro ATT. STRATEGY ENTRY, ISR ENTRY. STRING
- d d - 1 - ; ma r k a" la. t d r i ve r 1 n 11. t

dw ATT
dw STRATEGY ENTRY
dw ISR ENTRV
db STR!NG
db 14 dup (1) Pad .0 it 11 paragraph al1gned.
endm

FINS FIXGETOS
F-IO CONTROL
Sr MOUSE OVERR IDE
F JSR -
F-SYSTEM
Sr._START

:f1rlt cover h.ader area

OB ;number of unitl service b~ thi. driver
OC ;o11l.t of .nd of code
OE :segment address of end of code
12t: :~:Yi~f~~~~e~f 1:r~e~1:; ;~~.~"~~~t attached

OOOOH
0003H
OOOFH
10000001B
000000018

0006H
OOOOH
0002H

0009H
0041H

-00- Itructure for acce •• to MS dr1ver cmdl:~t ~~~yt ~u:~e~m1o~"C~~:~dinc lUd1ng data' end

~ ~ ~ ~ ~ ~ii:;dw~ t~. C 0 mp le t 10 n • tat u • be forere t urn
area re.erved for DOS

:i~: mOlt cmdl have thi. defined in the data area

·16·

:~~~

.ize DESCRIBE

o STATE +
O-SIZE X
O-ABS X
O-REL-X
O-ACCUM X
g;~AZE_X ; off •• t where buffer begin.

OOFH
following to acce •• the defined nibble.

OOFH
OFOH

OOOEH
0004H
0002H
OOOOH
0002H
0002H

relerved for future
ma)( i mum bur I t len y tho u t put t 0 2 ~ 5d: v tc • the n

~~sd~~t~:'i:u~~:rd:f:~l~ ~::~mum y e.
number of write re9ister. supported by a device

~~~~;rti~n~e~~p~~,;~t~~~~~f~~~ted by a device
cur re n t • tat e of but ton I
countl / em (m) returned by HPHIL device
Ma)(imum co u n t 0 f 1nun it I 0 f re. 0 1uti 0 n

data reported from device
that reports absolute data
data reported from device
that 11 relit ive
the.e are uled to accumulate .ealing
remai nde r

1
1

7

1
1
1

ends

equ
equ
equ
equ
equ

It ruc
13 dUD 111

equ
equ
equ

1
1.,
1
1
end.

equ
equ

eqU

equ
equ
equ
equ
equ
equ

1
1
1
1
1
1
1
1
1
1
1
1
1
ENDS

equ
equ
equ
equ
equ
equ
equ
equ

ulel the
equ
equ

s t ruc
db
db
db
dw
db

db
db

db
dw
dw
dw
dw

db
db
db
db
dw
dw
dw
dw
dw
dw
dw
dw
dw

db

o IUSERVEO
O::::IBURST_LEN

MSD UNIT COUNT db
MSO-ENO OFFSET dw
MSO-ENO-SEG dw
MSO-BPB-OFFSET dw
MSO-BPB-SEG dw
MSO-1ST-UNIT db
MSO::::INIT_CKl

MSD INIT
MSI)-UNKNOWN CttI)
MSI)-REM MEDIA
MSO-ERR-STATUS
MSO=OON[_STATUS

RS DONE
RS-SUCCE SSF UL
RS::::UNSUPPORTEO

T KC BUTTON
T::::RE[le

MSO MEDIA
MSO::::TRANS

MSO COUNT
MSO-START
MSO::::REQ_HEAOE R

MSO_INIT_CKl

o WR REG
O-RO-REG
O-TR~NSITION
O-STATE
O-RE SOLUT ION
O-SIZE X
O-SIZE-Y
O-j~BS X
O-,~BS-Y

O-REL-X
O-REL-Y
O::::ACCUM_X
o ACCUM Y
orSCRIBr

DESCRIBE_SIZE

o CCP STATE
O-SIzr
O-SAMPLE ABSOLUTE
O-SAMPLE-RE LAT IVE
O-REMAIN~ER ACCUM
O-BUFFER -
O-CLASS CURRENT
O-CLASS-OEFAULT
,-The fIeld LO SOURCE
o AOOR MASK -
O::::TYPr:=MASK

11

11

0018 11
0019 11

• OOFO
• OOOF

• OOOF
• OOFO

• OOOE
• 0004
• 0002
• 0000
• 0002
• 0002

001A 11
001B 11
001C 11
0010 11
001E 1111
0020 1111
0022 1111
0024 1111
002e 1111
0028 1111
002A 1111
002C 1111
002E 1111
0030

• 0030

• 001E

0000 11
0001 11
0002 11
0003 1111
0005 08

0000 00 [

0000 11
OOOE 1111
0010 11 1 1
0012 1111
0014 1111
0016

0000 11
OOOE 1111
0010 1111
0012 1111
0014 1111
0016 11
0017

• 0000
• 0003
• OOOF
• 0081
• 0001

• 0006
• 0000
• 0002

• 0009
• 0041

95
96
97
98
99
100
101
102
103
104
105
10e
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

Driver Writer's Guide 449

CCP_TO_GID_FILTER

0020 7? 77
0022 ??? ?

0024 ??? ?
0026 ? 7??
0028 ??? ?

002A
002A 80 FC 00
0020 74 OB
002F 80 FC 02
0032 75 03
0034 EQ 0100
0037
0037 B4 02
0039 CF

003A

CALL PARENT: ISR Event Record of type T_REL18 or T_KC_BUTTON

.ge
•••DRIVER HEADER·· ••••••

...
; MS-DOS device driverl start at an offset of 0 rather than 100h.

•• 11 or Col
•• 1. 0 r Row

0008H
OOA2H
OOCCH
0012H
004EH

10000000B ;Key up or down
OFFH ;All off
004CH ;Ofhet of number of button 1n mou •• RAM
48
ATR_HP+ATR_DEVCFG+ATR ISR+ATR LOG+ATR CSHARE

AH • 0 1F ISR)ax • •• I 0' val ue (
ex • .dl 1 v.lue (

equ
equ
equ
equ
equ

equ
equ
equ
equ
equ

CCP2GID_ISR

Th1l function tr.nll.t •• vaUd ISR event record into

:~~~e.~y~SRmE::~~n~.~~r~u~~~nt~:~o~~;~r~:lt~~~: ~:li~~gdr1ver
driver with. return It.tUI of RS_DONE

NAME:

OESCRIPTION:

b~;~~~··················;;~~~···C~OE·················· ;
CODE legment public 'CODE'

assume cl:COOE, ds:NOTHING

~~KEL ~AR

PARAMETERS

ON ENTRY: ISR Event R.cord of type T KC HP_CCP
BP • V CCPGID
OS • tn1l driverl d.t •• egemnt
AH • 0 (F_ISR)

CCP2GID_DRIVER ENOP FAR

lubttl CCP2GID ilr function

• This 11 the MS-DOS device driver header. It must be the first thing

: ~~c:h~a~~~! ;~~m:~~e r~~~~;,~tl~~.HPB~e~~~~ ~6uDg6N~~Ojf~~;f·T~~fer-
· HEADER AREA AS AVAILABLE MEMORY, EVEN ON AN ERROR. THE SYSTEM WILL

CRASH IF YOU DO.
, Thil il the only relident portion of the DOS driver, the relt
· of the DOS driver 11 returned to DOS memory.

;•...•..~;o:~E;OE ~. ~ ;~~~ ~ ~~:::;;;:;:;; ~~:::~ ~; ~:.CC ;2~ io:·· ~~:: ~ ~:.~: :~~ r
dd -1 ; mol r k a I 1a ltd r 1v e r 1n 1 is t
dw 08000h
dw dev _I t rat egy
dw dev int
db • CCP2GIO·
db 14 dup (1) ; Pad 10 it iI paragraph align.d.

lubttl CCP2GIO DRIVER Ma1n entry point

;~;I;**; CS: R.lative Data Area For Driver

;**.av blC: dw 7
sav-c)(: dw?
.av-dlC: dw?
lav-e.: dw?
top:=hp_entry: dw 7

;**; Thil is the EX-BIOS installed driver CCP2GID.

;**CCP2GIO ORIVER PROC FAR
- cmp • h ,F IS R ; I I t h. fun c t ion F_ IS R.,

je Ihorf CCP2GID_ISR
cmp .h, F SYSTEM ; It t h. f unc t ion F_SYSTEM?
i ne CCP2GID_UNSUPPORTED

CCP2GID UNSUPPORtE'g: CCP2GID_SYSTEM
mo'! ah ,RS_UNSUPPORTED : Th11 driver doesn't lupport
1ret ;any other funct10ns.

, This i I the I tar t 0 f MS - DOS d r i ve r po r t ion 0 f the cod e . I t pre ten d I ,

: l~i~ia!i~:~n~i~dc~~F~g~s~sive~ft~~gt~~~uy~i:o,~~tt~~d~1 ~~~e will
; not be uled. (Iection 1)
· .

CCP2GID INSTALLED

V DOLITTLE
V-CCPGID
V-LHPMOUSE
V-SYSTEM
V=CCP

UP DOWN BIT
INYT BUT STATE
MSE RUM BUTTON
CCP1GID-DESC SIZE
CCP2GID=HP_ATTR

FF FF FF FF
8000
01AB R
0106 R
20 43 43 50 32 47

OE [

0000

0000
0000

0000
0004
0008
0008
OOOA
0012

• 0006
• 00A2
• OOCC
• 0012
• 004E

• 0080
• OOFF
• 004C
• 0030
• E608

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
2UI
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
lJJ
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
280
261
262
263
264
285
268
267
268
269
270
271
272
273
274
275
278
277
278
279
280
281
282

450 Driver Writer's Guide

CCP_TO_GID_FILTER

button

; po 1 n t tot h. "'0 U I • 1 I r

,no mOllement on P,e X-a)(il
; indu.t r'l standard upward move

;check for INS

,no movement on the X-axil
;l ndustry standard down mo

;check for curlor r1~ht

, neg a t i v e mo veon the X- a xii
;no movement on the Y-axil

;check for OEl or button

; rec1eved an unlupported key

;.a". the keyboard'. 1.r

;I e new relative move (Xl
,lave new relative move (Y)
:14111 new absolute pOlition
; 14.... new • b I 0 1 u t. POI it 10 n

;tranllat. the Icancode to GIO
,check for curlor up

;check for curlor left

;check for cursor down

, mo ... e r 1 9 h ton the X- 4)(1 I
;no ",ovement on the Y-aldl

;button one got pUlh.d

; but ton two got P u. he d

near

AH • RS_OONE

a., bp and dl

dl 0 REl X,blC
ds O-REL-Y,cx
dIO-ABS-X,bx
dl.O-ABS-Y,cx
dh,T-RF.lle
s h 0 r f 9 i ... e _ to _p are n t

~::08
• h 0 r t r e 1 __ mo

b)l.,O
cx,8
short re1 __ molle

blC,O
ex -8
short re1_mo

b)(, 8
c x, 0
I ho r t re l_move

b lC ,0
.hort but_proce ••

bh,bh
bX,eOH
short ccp_up
bX,61H
short ccp left
bX,62H -
Ihort ccp_down
blC,63H
short ccp_rlght
b1,07FH
bX,88H
short ccp __ but 1
bX,59H

:~~~~ g~~[bu t 2
exit_Ilr

b x, 1
Ihort but process

ax
word ptr CI:.all bx,bx
word ptr c':lall-cx,cX
wo r d p t r C 1 : • a II - d x , d x
wo r d p t rei: 1 a "-=•• ,••
dle,dl
el,dx

mOil
mov
jmp

xo r
cmp
Je
cmp
je
cmp
je
cmp
je
and
cmp
je
cmp
Je
mOil

J"'P

mo ...
mOil
jmp

mOil
jmp

OH • 41H (T REl18)
ES:O • de.crIbe record of V_CCPGIO
Ol • V_CCPGIO/8

~~ : gO~HF=IS:r~ak Button
001H - break Button 2
080H make But ton 1
081H - make Button 2

OH • T KC BUTTON
CX • 0- -
ES: • th1. delllc. de.cribe record
OL • V_CCPGIO/e

mOil
mov
jmp

mOil
jmp

mov a.,0001H ,get the proper bit let 1n O_STATE
",Oy c 1, b 1
1 hI a1 ,c 1
mo... byte ptr dl 0 TRANSITION,al :rlcord in the delCrlbe record

,wh1cn button changed

label

pUI h
mOil
mOil
mOil
mOil

"'011
mov
jmp

"'0'1

"'0'"

"'0'"
",0'0'

add
add
mov
jmp

ON EXIT:

REGISTERS AL TEREO:

c C p __but 1

B8 0000
89 FFF8
E8 18

B8 0000
89 0008
EB 08

BB 0000
EB 05

89 1f 0028
89 OE 002A
01 lE 0024
01 OE 0026
B8 41
EB 3C

88 FFF8
B8 0000
EB 10

BB 0008
88 0000
fB 00

8B 0001
EB 00

50
2E 8Q 1E 0020
2E 88 OE 0022
2E 89 18 0024
2E ac 08 0028

ac DA
IE C2

32 FF
83 FB 80
74 21
83 FB 81
74 24
83 FB 82
74 27
83 FB 83
74 2A
80 E3 7F
83 FB 81
74 3E
83 FB 89
74 3E
84 08
EB 7B 90

el 0001
8A CB
02 EO
A2 OOlC

003A

003A
003B
0040
0045
004A

004F
0051

0053
0055
0058
005A
0050
005F
0062
0064
0067
0069
008C
006F
0071
0074
0078
0078

007B
0078
007E
0081

0083
0083
0088
0089

0088
0088
OOSE
0091

0093
0093
0098
0099

0098
009B
009F
00A3
OOA7
OOAB
OOAO

OOAF
OOAF
00B2

00B4
00B4
0087

0089
0089
OOBC
OOBE
OOCO

283
284
285
286
287
2S1
289
290
291
292
293
294
285
296
297
2Q8
288
300
301
302
303
304
305
306
307
301
30Q
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
335
337
338
339
340
341
342
343
344
345
348
347
348
349
350
351
352
353
354
355
356
357
358
359
350
361
362
363
364
3f5S
3f56
387
38a
369
370
371
372
373

Driver Wr!ter's Guide 451

CCP_TO_GID_FILTER

;Return Itatul a. unlupported

;reltore to keybo.rd ISR Itate

;Record on return

;El(ecute ISR of parent
.Iource vector il this driver
;Get my parent 'I vector from my header

all. bll, di. bp

;Load the jump table index
;1nto bp.

ah, RS_UNSUPPORTEO

al,MAX CCP2GID SYS FN
Ihort - CCP2GIO_bao_IYI_fn

C I : wo rd p t r

blC,word ptr CI:la" blC
C lC , wo r d p t rei: I a v- ex
d le , wo r d p t rca: a." - d x
el,word ptr cl:lav:=el
ax
ah. RS_DONE

ah ,F ISR

g~ :~~~g~~~~~:RENT
int HP _ENTRY

CCP2GIO_IYltem function - init lubfunctionI ubt t 1

lubttl CCP2GID_IYltem function

mov
mov
mo"
SYSCALl

mov
moy
mov
mov
pop
mov
ire t

PARAMETERS

ON ENTRY:

ON EXIT:

REGISTERS ALTERED:

mov ~i :~~~g~~~8i~:a.,,_
bx ; get the ac.n code and check for

tel t ; PUI h or releale
j z but _pulh

but - releale:
or da:D STATE .• 1 ; ahow the rele.ae in o STATE by
jmp IhorT Dutton_done ; Ie t t i ng the bit

but pUI h:
no t al ; Ihow the fU'h in O_STATE by
and dl:O STATE,a1 ;cleari n 9 he bit
imp IhorT button_done

but ton- done:
mov .x ,word p t rca : s.v bx ;W.I but ton pUlhed or relealed?
.nd .1,080H
or bl, .1 ;record in bx
xo r bh, bh
I(or ex, C lC
mov dh ,T KC 8UTTON
jmp I h°r f 9 1v e _ t °_p are n t

page
;··.ORIVER HEADER· ••••• ••••••••••• •• • •• •••••• ••• •••••• •• ••••••• ••••••••

NAME: CCP2GID_IYltem function

OESCR~~~~~~~e~es~g~~n~~!o~~P;~~~1.~~~~~iem function,
SF-START
SF--RE PORT STATE
SF:=VERSION_DESC

cmp
j.

~:!:ORIVER HEADER·· ••••••

NAME: CCP2GIO_IYlt.", function - init Iubfunction

DESC.-IPTION: Initialize. D.lcribe Record and Eleit., allocating a
OS.

xc hg
mov
xo r
leC hg

jmp

CCP2GID_bad_IYI_' n'
mov
i ret

CCP2GID_SYSTEM label near

; CCP2GID_IYltem lubfunc.tion jumptable

CCP2GIO tYI ca.e'
- - dw

dw
dw
dw

MAX_CCP2GID_SYS FN

0100

0100 3C 06 90 90
0111 77 00

0113 87 E8
0115 8A 08
0117 32 FF
0119 87 E8

0118 2E: FF At! 0123 R

0120
0120 84 02
0122 CF

00C3 2E: 8B OE 0020 R
00C8 F6 Cl 80
00C8 74 06

OOCO
OOCO 08 06 0010
0001 EB 08

0003
0003 F6 00
0005 20 06 0010
OODQ EB 00

OODB
0008 2E: Al 0020 R
OODF 24 80
00E1 OA 08
00E3 32 fF
00E5 33 CQ
00E7 B8 OQ
00E9 EB 00

00E8
OOEB 84 00
OOEO 82 18
OOEF 88 2E OOOA

00F3 CD Sf
OOFS
00F5 2E 88 IE 0020
OOFA 2E 88 OE 0022
OOFF 2E 8B 16 0024
0104 2E 8E 06 0026
010& 58
010A 84 06
010C CF

0123
0123 0128
0125 0147
0127 0120
0129 0120
• 0006

374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
3Q2
393
39'
395
396
397
398
399
400
401
402
403
404
405
406
407
408
40Q
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
483
464
465

452 Driver Writer's Guide

CCP_TO_GID_FILTER

0128 CCP2GIO_I YI_i n 1t lab.l n.ar
0128 06 PUI h .1
012C 56 pUlh Ii
0120 57 pUlh di
012E 51 PUI h cx
012F 83 E8 03 sub bx. (CCP2GIO OESC SIZE+15)/18
0132 8E C3 may e •. b. --
0134 8E 0177 R may li.ofhet cI:CCP2GIO_delc - h.ad r0137 FC cld
0138 33 FF .or di.di013A 89 0030 mov C. ,CCP2GID DESC SIZE0130 F3/ 2E: A4 rep mo YI b Yt e pt rei : [d i) I C I : [I 1)0140 59 pop cx0141 5F pop d10142 5E pop 110143 07 pop .1
0144 B4 00 moy ah ,RS_SUCCESSFUL0148 CF 1 r.t

...

; .

;O.fine the number of buttonl to 2.
;R.ltore the dl

;Get the top of the h.ader for the
;V CCP driv.r

:~~~: ~iC~rt~0~~~v~gT~=~TA8LE •• gm.nt

ah , bp, and dlREGISTERS ALTERED:

NAME: CCP2GIO_IYltem function - start subfunction

OESCRIPTION: Re1inkl the V CCP driver to this driver, V CCPGIO,
.0 this driver il activated to tran.late curlor control
pad reportl to moule type movementl.

•••0RIV~~g~EAOER••

PARAMETERS

ON ENTRY: AH. F SYSTEM
AL • SF' START
BP • V_CCPGIO

ON EXIT: AH. RS_SUCCESSFUl

REGISTERS ALTERED: ah. dl. bp

ON EXIT: ah. RS SUCCESSFUL
bx· 1ait uled data legment - thil drivers data legment

PARAMETERS

ON ENTRY: ah. F SYSTEM
a1 • SF' INIT
bp • V CCPGIO
b. • lilt u•• d data •• gment

CCP~~GID Iyl Itart label n.ar
-PUI" a.

pUI h dl
moy al(. 0
moy dl I IX

:~~ :~;.~Spl~4c::~~~~h;_~~tr~~:~the HP_VECTOR_TABlE I.gment
moy dl ,ax
moy ax, ds : [V CCP+4)
mov d •. ax -

:~~ :: ~~~~aVp~~R~~~lo~=~;~~~~ry
moy dl. ax
moy aX,dl:[V_lHPMOUSE+4) ;Point to the top of RAM for the mOUI' driY.r
moy ds, ax
moy byte ptr dl:MSE_NUM_BUTTON,2
pop dl
pop al(
mO\l ah, RS SUCCESSFUL
1 ret -

lubttl OOS-Inltall Cod. (R.turned to DOS)

R~~a=N THE FOLLOWING RAM TO DOS label far
; temporary EX-BIOS Reader configuration template

CCP2GIO d.IC h.adr HP SHEADER <CCP2GIO HP ATTR,V CCPGIO/8 , V CCPGID,CL CCP.Cl LGIO
.V_LHPMOUSE,V_OOLITT[E> - - - - - --

0147
0147 50
0148 lE
0149 B8 0000
014C 8E 08
014E Al 018E
0151 2E: A3 0028
0155 8E 08
0157 A1 0052
015A IE 08
015C C7 08 OOOA 00A2
0182 2E: A1 0028
0166 8E 08
0168 Al 0000
016B 8E 08
0160 C6 06 004C 02
0172 lF
0173 58
0174 84 00
0178 CF

0177

0177 E801

0179 0018
0178 00A2
0170 2000
017F 0020
0181 OOCC
0183 0008
0185 00
0188 00

466
467
488
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
488
487
488
489
490
4SH
492
493
494
495
498
497
498
499
500
501
502
503
504
505
508
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

551
552
553
554
555
558
557
558

Driver Writer's Guide 453

CCP_TO_GID_FILTER

e v_ I t rat egyPRac fAR.. '

deVice.:~;a~:~~lC((:~d~~:~ ~l ~~~~~~t\'~~der) and return ..

: device interrupt (req'Jired by MS-OOS J 1)
; use the co","and fro'" the request header block as an index

into the table of command procel,ing routines
, '

;prllerll. machlne Itat.

;.av. offaet of r.quI.t h.ader ptr,
:la"l I.g",.nt of r.que.t h.ad.r ptr.

FAR

label word

PROC

CI
dl

I 1 , dwo r d ~ t r d I ' [r h_ 0 f f] ; 10 _d a e a : a i

~t :~;O [i~fTMSO_C~ : ~~1 t f ~fc 1~:: rb~ ~:n
bad cmd ; lowelt cO/MIand number
b 1 ,~SO REM ME 0 I A ; qui t i f h 19 her t han
bad_cmCf -- ; highelt command numblr

dl
el

cI:rh off,b.
CI: rh=:l.g .••

dw in it ; init ializat ion
dw media check ;media check ~ b 10 c k only)
dw build:bpb ; bui ld bpb block only)
dw 10e t 1 - 1n ; ioc t 1 input
dw input ; input (read)
dw nd _input ; non-de. true t . read (c ha r only)
dw in a t at ; input • tat UI lchar only)
dw in-fluah

~ ~~f~~t
bu f fer flulh char only)

dw oufput Iwrit e)
dw out IIer!fy : ou t put wri t e) wlttl IIeri fy
dw out-. t at : ou t put I tat UI ~char onlYI
dw out-flulh

~i~~~lto~~~~~r
flulh char only

dw iocfl out
dw

~:~-~~~~ e
;dellice

~~~~edw :device
dw rem=",edia : remollable media

c 0"""_ n d i. ,,_11 d; god0 1 t

l(or bh,btl
I h .1 b •• 1 ; ",a k• BX 0 f fie tin tot a b 1e
c all 'Ill 0 r d p t r c.: comma nd _ tab 1e [ b l( ]
j mp 1 n t _e x l'

Th1l co",pl.tel the MS-005 device drill.r •• ction
and beginl the HP device driver code, (11ct10n 2)......................................................................

h_°ff dw ; r e que. t tl e a d I r po 1 n t • r off •• t

~..::! ~: ~ ~:~~::~. ~::~: ~. ~~~ ~ ~:~.: :!:::~ .

pua hf
cld
pUI hi
pUlh

; OS il gSlh
pua h
pop

lei
mOil
cmp
jb
cmp
ja

CCP2GIO d." :
db OFH o SOURCE
db 0 O-HPHIL 10
db 0 O-OESC MASK
db 0 0-10 MASK
db 0 o-xorsc MASK
db 2 O-MASK i\XIS

~db 0 O-CLASS
db 020h O-PROMPTS
db 0 O-RESERVEO
db 0 O-BURST LEN
db 0 DWR REG
db 0 O-RO-'REG
db 1 O-lRANSITION
db INIT BUT_STATE O-STATE
dw 200 O-RESOLUTION
dw 0 O-SIZE x
dw 0 O-SIZE-V
dw 0 O-ABS X
dw 0 O-ABS-Y
dw 0 ,O-REl-X
dw 0 ;O-ItEL-Y
dw 0

~g=:gg~=~dw 0

mOil

mo"r. t

d : ~ .. : ~ ~ : ~ : ! ~ ~ ~~: ~ ~ ~ '

559
560 0187
561 0187 OF
562 0188 00
583 0189 00
584 018A 00
585 0188 00
568 Ol8C 02
567 0180 00
568 018E 20
seQ 018F 00
570 0190 00
511 0191 00
572 0192 00
573 OU~3 01
574 0194 FF
575 0195 00C8
576 0197 0000
577 0199 0000
518 0198 0000
519 0190 0000
580 019F 0000
581 01Al 0000
582 OlA3 0000
583 OlAS 0000
584
585
586
581
588
5S9 01A1 1111
590 01A9 1111
591
592
593
594
595 01A8
5'98
s,n OlAS 2£ : 19 lE 01A7
598 OlBO 2£: IC 08 01A9
j99 0185 CB
600 01B8
601
602
603
604
60S
608 01B8
&01
608 01B8 0286
609 01B8 0213
610 OlBA 0213
811 OlBC 0213
612 018E 0213
813 OlCO 0213
614 01C2 0213
815 01C4 0213
816 01C8 0213
617 01C8 0213
618 OlCA 0213
619 01CC 0213
620 OlCE 0213
621 0100 0213
622 0102 0213
623 OlD.. 0213
824
825
628 0106
627
628 0106 ac
629 0107 FC
630 0108 80
831 0109 IE
832 OlOA 08
633
83 .. 0108 OE
835 010C If
838
637 0100 C4 36 01A7 R
638 01El 26: 8A 5C 02
639 OlEs 80 FB 00
640 OlE8 72 11
841 OlEA 80 FB OF
842 OlEO 77 OC
643
644
845
646 OlEF 32 FF
641 01F 1 01 E3
648 01F3 2E: FF 91 0188 R
849 01FS EB 10 90
850

454 Driver \A/riter's Guide



CCP_TO_GID_FILTER
; unknown command routine

;el: ,1 :. header .ddr
;put next free loc
;addre'l in he.der

;0 indic.t •• OK

, Put. the driver in HP VECTOR TABLE
, and calli to do F_SYSTEM+SF_INIT

"HP CCP2GIO inltallat10n fa11ed",OdH,O.H,"S"

"HP CCP2GIO in.t.ll.tion luc •• ded",OdH,O.H,"S"

FAR

NEAR

ENOP

db

db

ENOP

bX,dword ptr dl:[rh_off] ;reload el:blC wI header .ddr
el
dl ;reltore .11 prelerved regilterl

Ii, dwo r d p t r d I : [ r h_ 0 f f) ; r. 10 • del : I i w/ h••d. r • d d r
.1, MSO UNKNOWN Cf4>
.h,MSO-ERR STATUS ;It.tul word now in AX
el: [,iI.MSO_STATUS .• x ;pl.ce 1n requelt header
int_•• t

pUlh CI
pop el

i 111 t .11 ( 1n11 ) V CCPGID

mOil ah. F INS F IXGETOS
mov blC. V-CCPGIO
1•• d!, Cep2GIO_ORIVER

t:: :~:~~~~~TB~~ 1~E[fS[~~lNG RAM TO DOS
mov el:word ptr rll]"'1-1S0 END OF"FSET,.i
mov a. 0 C I - -

mov el :word pt r [11] .MSO_ENO_SEG,alC

PIJt the driv.r into the HP_VECTOR_TABLE

.0 r
mov
1••
moy
r.t

unlupport.d

P'ut n8xt .v.il.ble memory loc.tion in System Reque.t He.der

bad_cmd:
1.1
mov
mov
mov
imp

.•11 finhhed

1nt exU:
- lei

pop
pop
pop.

~:ff

.......................................................................
in 1t PROC NEAR

;·······~i~··········································· ;

~ •Ai i ·MS:Dos•;:~; ti ~ ~ ;·::;: ~ t·1 ~ it·;;:•~ ~ ;:;;~;t:d·; ~d•d~•~ ~ t~1~; ~ ••••• :....................................................................... ;
unlupported PROC NEAR.......................................................................
~.d1. ch.ck:
build'=bpb:
ioc t 1 in:
1npu t-:
nd_1nput:
ln I t at :
1n-f lUI h:
ouTput:
out_verify:
ou tlt.t :
out-flulh:
10cTl out:

~:~-~~~~~ :
rem-med1. :
.ll:=ok:

page......................................................•.................
~ .~ ~ ~ ~ :: ~ ~~. ~: ~ ~:~ ~::. ~.:: ~:~ ~ ~: ~. ~ ~ ~ ~. ~ ~. ~~.~~~ ~~~. ~~~ ~~ .
1n11_mlg db "HP CCP2GIO inst.ll.d driver 2 2" ,OdH,OaH, "S"

651
652
853 01FB
854 01FB C4 38 01A7 R
655 01FF BO 03
856 0201 B4 81
657 0203 26: 89 44 03
658 0207 EB 01 90
659
660
661
662 020A
683 020A C4 lE 01A7 R
664 020E 07
665 020F IF
666 0210 81
667 0211 90
668 0212 CB
669 0213
670
671
672
673
674 0213
675
676 0213
677 0213
678 0213
679 0213
680 0213
881 0213
882 0213
883 0213
684 0213
685 0213
686 0213
687 0213
688 0213
689 0213
690 0213
691 0213
892 0213 32 CO
693 0215 84 01
894 0217 C4 36 01A7 R
695 0218 28: 89 4. 03
696 021F C3
697 0220
698
899
700
701
702
703 0220 48 50 20 .3 43 50
704 32 47 49 44 20 69
705 8E 73 74 81 6C 6C
706 8S 84 20 84 72 69
707 76 6S 72 20 32 2E
708 32 00 OA 24
709 0242 48 SO 20 43 43 50
710 32 47 49 44 20 69
711 6E 73 74 81 8C 8C
712 61 74 69 8F 6E 20
713 66 61 69 6C 8S 84
714 00 OA 24
715 0263 48 SO 20 43 43 50
716 32 47 49 44 20 69
717 6E 73 74 51 8C 5C
718 61 74 69 6F 6E 20
719 73 75 63 65 65 64
720 65 64 00 OA 24
721
722 0286
723
724 028e FA
725
726
727
728 0287 C4 38 OlA7 R
729 028B 80 08 0177 R
730 028F 26 89 44 OE
731 0293 8C' C8
732 0295 26: a9 •• 10
733
734
735
736 0299 OE
737 029A 07
738
739
740
741 029B B4 OE
742 0290 BB 00A2
743 02AO aD 3E 002A R

Driver Writer's Guide 455



CCP_TO_GID_FILTER
744 02A4 lE pUI h dl
745 lYle all V_SYSTEM
746 02A5 80 0012 mov

~~~~N~~~TEM747 02AS CO 6F int
748 02AA lF

eogCPGIO
dl

749 I tart
750 02A8 84 02 mov ah, F SYSTEM
751 02AO 80 02 moy al, sr_START
752 02AF lE pUlh dl
753 IYleall V CCPGIO
754 02BO BO 00A2

T~r ~~ I ~N~~eGIO755 0283 CD 8F
758 0285 1F

1nit al ~ 0~P Mo U~: 0 r 1v• r wh• t h. r ~h. r.757 11 an HP MOUI. or not
758 0288 84 04 moy ah. F 10 CONTROL
759 0288 80 02 moy al, Sr MOUSE OVERRIDE
760 lYle all V_LHPROUSE -
761 028A 80 OOCC

T~~ ~~~~N~~eMOUSE782 0280 CD 8F
783 028F lE pUlh dl
764 02CO OE pUlh el
785 02Cl 1F pop dl
788 write a me I I a ~ • 0 n d 11 p 1ay lay 1n~ dr1Y.r 1nltall.d
787 02C2 80 18 0220 R lea dx, init_ml~
788 02C8 84 Og III0Y ah, g
76g 02C8 CD 21 int 21H
770 02CA 1F pop dl
771 02C8 FB It i
772 02CC E9 0213 I'

~:f
all ok ;al1 linked 10 all finish.d

773 02CF C3
774 0200 inJ.t ENoP NEAR
775
778 0200 CODE endl
777 end

Mac rot :

N a III e

MSO HEADER
SYSCALL.

Structure. and recordl:

N a m I

Lengt h

0008
0002

Width • fieldl
Shif t W1d t h Ma I k Init ial

456 Driver Writer's Guide

0030
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A
0018
OOlC
0010
001E
0020
0022
0024
0028
0028
002A
002C
002E
0010
0000
0002
0004
0008
0008
OOOA
OOOC
OOOE
OOOF
0017
0000
OOOE
0010
0012
0014
0018
0018
0000
0001

0018

OOOg

0007

OOOA

CCP_TO_GID_FILTER
0002
0003
0000
OOOf
0012'
0014.

Segment. and Groups'

N a m e

CGROUP
CODE

Size Align

GROUP
0200 PARA

Combine Cla ••

PUBL IC 'CODE'

Symbols:

Le n9 t h -004A

Length -0010

Le ng t h -0030

le ng t h -OOOB

At t r

CODE

CODE

CODE

CODE

CODE

CODE

CODE
CODE
CODE
CODE
COOE
CODE
CODE
CODE
CODE

CODE
CODE
CODE
COOE
CODE
COOE
CODE
CODE
CODE

CODE

CODE
COOE
COOE
CODE
CODE
CODE
COOE
COOE
CODE
CODE
CODE
CODE
CODE

COOE

CODE
CODE
COOE
CODE

Value

0213
0008
4000
8000
2000
0800
OlFB
0213
OOOB
00B9
0003
OOCO
0120
0187
0177
0030
002A
E608
0000
003A
0100
0123
012B
0147
0037
OOAF
00B4
008B
0083
0093
007B
2000
0020
01B8
0030
0213
0106
0213
OlAB
OOOF
o SIZE
O~lE
OOFO
OOOF
o ACCUM X
O-ABS X
O-REL-X
O-SIZ[X
O~FO
OOFS
OOOE
0004
0000
0002
OOEB
008F
028e
OOFF
0220
0242
02e3
0213
020A
0213
0213
0213
0213
oooe
0213
0001
0081
0000
OOOF
0003
004C
0213

Type

L NEAR
Numbe r
Number
Number
Numbe r
Number
L NEAR
L NEAR
L NEAR
L NEAR
L NEAR
L NEAR
L NEAR
L NEAR
L 0010
Number
F PROC
Number
L FAR
L NEAR
L NEAR
L NEAR
L NEAR
L NEAR
l NEAR
L NEAR
l NEAR
L NEAR
L NEAR
L NEAR
L NEAR
Number
Number
L WORD
Number
L NEAR
F PROC
L NEAR
F PROC
Number
Ali ••
Number
Number
Number
Alia.
Alia.
Ali ••
Ali ••
Number
L NEAR
Number
Number
Number
Numb. r
L NEAR
Numbe r
N PROC
Number
L BYTE
l BYTE
L BYTE
L NEAR
L NEAR
L NEAR
L NEAR
L NEAR
L NEAR
E B'1'TE
L NEAR
Number
Number
Numbe r
Number
Numb. r
Numbe r
L NEAR

N am.

ALL OK
ATR-CSHARE
ATR-OEVCFG
ATR-HP
ATR-ISR
ATR-LOG
BAO-CM[) .
BUI[O BPB. .
BUTTON DONE.
BUT PROCE SS .
BUT-PUSH . .
BUT-RE LEASE. . . .
CCP2"GIO BAD SYS FN
CCP2GIO-OESC . ~ .
CCP2GIO-OESC HEAOR
CCP2GIO-OESC-SI ZE .
CCP2GIO-OR IVrR .
CCP2GIO-HP ATTR ..
CCP2GIO-INSTALLEO.
CCP2GIO-ISR.
CCP2GIO-SYSTEM .
CCP2GIO-SYS CASE
CCP20IO-SVS-INIT .
CCP20IO-SVS-START. .
CCP20IO-UNSOPPORTEO.
CCP BUTT
CCP-BUT2
CCP-OOWN
CCP-LEFT
CCP-RIGHT.
CCP-UP
CL CCP
Cl-LOIO . .
CO~ANO TABLE.
OESCRIBr SIZE.
OEV CLOSr.
OEV-INT.
OEV-OPEN ..
OEV-STRATEGY
o A~OR MASK.
O-BUFFrR .
O-CCP STATE ...
O-CLASS CURRENT.
O-CLASS-OEFAUL T. .
O-REMAINOER ACCUM.
O-SAMPLE ABSOLUTE.
O-SAMPLE-RE LATIVE .
O-SIZE .- ..
O-TYPE MASK.
EXIT ISR . . .
FINS FIXGETOS
F-IO CONTROL
F-ISR" ..
F-SYSTEM . . .
GTVE TO PARENT
HP ENTRY
INTT
INIT BUT STATE
INIT-MSG- .
INIT-MSG2.
INIT-MSG3.
INPuT ..
INT EXIT
IN fLUSH
IN-STAT.
IOCTl IN
IOCTL-OUT.
MAX CCP2GIO SYS FN
MEDIA CHECK~ . ~
MSO OONE STATUS.
MSO-ERR STATUS
MSO-INIT . . .
MSO-REM MEDIA. .
MSO-UNKNOWN CP4>.
MSE-NUM BUTTON
NO TNPuT .

Driver Writer's Guide 457

CCP_TO_GID_FILTER

891. 772
89. 200
70. 200
71. 200
721 200
73. 200

842 8531
8771
385 3871
385 3871
3821

OUTPUT . .
OUT FLUSH.
OUT-STAT
OUT-VER IFY
RE L-MOVE .

:~~~~~Df~E FOlLOwiNG_RAM_TO~DOS:
RH OFF-
RH-SEO .
RS-DONE. . . .
RS-SUCCESSFUL.
RS-UHSUPPORTfO
SA'il BX
SAV-CX
SAV-DX
SAV=JS . . .
SF MOUSE OVERR IDE.
SF-START-. .
TOP HP ENTRY
T KC BOTTON.
T-RE[16. . .
UNSUPPORTED.
UP DOWN BIT.
V CCP. ~
V-CCPOID .
V-DOL I TTLE
V-LHPMOUSE
V=:SYSTEM

43048 Bytes free

Warning Sever.
Errors Errors
o 0

ALL OK . .
ATR-CSHARE
ATR-oEVCFO
ATR-HP
ATR-ISR.
ATR=:LOO.

BAD CK> ..
BUI[o BPB. .
BUTTON DONE.
BUT PRllCE SS .
BUT-PUSH . .
BUT=:RELEASE.

CCP20Io BAD SYS FN
CCP20Io-oESC . ~ .
CCP20Io-DESC HEAoR
CCP20ID-DESC-SIZE.
CCP20Io-oR IV£R
CCP20ID-HP ATTR. .
CCP20Io-INSTALLEo.
CCP20Io-ISR. . .
CCP20Io-SYSTEM .
CCP20ID-SYS CASE
CCP2GIo-SYS-INIT .
CCP20Io-SYS-START. .
CCP20Io-UNSUPPORTEo.
CCP BUTT .
CCP-BUT2
CCP-DOWN
CCP-LEFT .
CCP-R IOHT .
CCP-UP
CORllup
CL CCP .
CL-LOIo.
CO~E
Cm""ANo_TABLE.

DESCRIBE . . .
DESCRIBE SIZE.
oEV CLOSE'.
DEV-INT.
DEV-OPEN . .
oEV-STRATEOY
OH XTR . .
OH-C CLASS
OH-MXJOR
OH-MINOR . . .
OH-NAME I NDE X .
oH-P CLXSS
OH-V-CHILO .
OH-V-OEF AUL T
DH-V-PARENT.
D_XBS_X.

458 Driver Writer's Guide

840
810
380
381
378
378.

435
5601
488
199.
247.
200.
209.
249
252
442
451
452
251
325
327
320
318
322
316
205
74.
75.

205
808.

77.
1141
822
228
821
227
49.
531
58.
57.
50.
52.
55.
51.
54.

1081

Nt.AM
NEAR
NEAR
NEAR
NEAR
NEAR
FAR
WORD

L WORD
Numbe r
Numb. r
Numb. r
L NEAR
L NEAR
L NEAR
L NEAR
Numbe r
Numbe r
L NEAR
Number
Number
N PROC
Number
Number
Number
Number
Numbe r
Numbe r

4441

5501
488
257
550

3031
4321
4501
4811
5241
2531
3591
3831
3411
3381
3481
331.

550
550
2081
848

112

1519.
828.
8881
5951

399
118

0213
0213
0213
0213
009B
0213
0177
0114.7
0114.9
0008
0000
0002
0020
0022
0024
0028
0002
0002
0028
0009
0041
0213
0080
004E
0014.2
0006
OOCC
0012

453

491
743

455

208

114

S89

800

534
354

CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE

CODE
CODE
CODE
CODE

CODE

CODE

454

207

Le n9 t h -0000

778

CCP_TO_GID_FllTER

722. 774
574
767

IH9.
858 6621
8821
8811
8781
8871

6801

1583.
IU61
15851
15841

339 344
6901

128. 741
1291 758
131. 248
132. 250

357 394

782

3511

755

348

384

685

121

379

397
750

396.

747
78

352

401
58

4021

813

818
819
818
617

334
623

1071 355
1101 120
111.
1251
1211

961
116.
89.

122.
123.

8S1
841
861
88.
ijll

1001
1081 lU~

1091 353
1201

951
1031
1181
119.
117.
1041 111
1051

821
1021 116
lOll 371
1261

991
87.

329

434 4551
609 6761
1741
1721
1731
150. 638
1481
160.
1811 893
1701 730
1711 732
1801 SS8
224
1771 839
1841 175
1571
1791 641
1471 162
16 II
151. 657
158.
149.
189.
1781 655
1981 539

80.
481

608
197.
703.
7091
7151
812
649
SlS
814
611
620

DABS Y .
O-ACCUM X.
O-ACCUM-Y ..
O-AOOR RASK.
o-BUFF E'R .
O-BURST LEN.
O-CCP STATE.
O-ClASS.. ..
O-ClASS CURRENT.
O-CLASS-OEFAULT.
O-OESC RASK.
O-HPHII 10
0-10 MASK.
O-MAX AXIS
O-PRO~PTS
O-RO REG
O-RE[X
O-REL-Y.
O-RE~INOER ACCUM.
O-RESERVEO ~

O-RESOLUTION .
O-SAMPLE ABSOLUTE.
O-SAMPLE-RELATIVE.
O-SIZE .-
O-SIlE X
O-SIZE-Y
O-SOUReE
O-STATE. .
O-TRANSITION
o-TYPE MASK.
DWR R[G ..
O:=XO[SC_MASK

EXIT_I SR

FINS FIXOETOS
F-IO eONTROL
F-ISR .
F=SYSTEM

OIVE TO PARENT

HP ENTAY .
HP::::SHEAOER

INIT
IN IT BUT STATE
INIT-MSO- .
INI T-MS02 .
INIT"""MSG3.
INPUT. .
INT EXIT
IN F'lUSH
IN-STAT.
IOeTl IN
IOCTL=OUT.

MAX CCP2GIO SYS FN
MEDIA CHECK~ . -
MSO 1ST UNIT .
MSO-BPB-OFF Sf T
MSO-BPB-SEO.
MSO-Cp.t)~

MSO-'CfwDLEN
MSO-COUNT.
MSO-OONE STATUS.
MSO-ENO OFFSET
MSO-ENO-SEG. .
MSO--ERR ··STATUS
MSO-HEAD'ER
MSO-INIT . .
MSO-INIT Cf«>
MSO-MEOIA. .
MSO-REM MEDIA.
MSO-REQ-HEAOER
MSO-STAlfT.
MSO-STATUS
MSO-TRANS.
MSO-:";~~IT

MSO-UNIT COUNT .
MSO-UNKNOWN Cf«>.
MSE:=NUM_8UTTON

NO_INPUT

OUTPUT
OUT FLUSH.
OUT-STAT .
OUT=VERJFY

REL MOVE .
REM-MEDIA.

Driver Writer's Guide 459

CCP_TO_GID_FILTER
RETURN THE FOLLOWING RAM TO DOS.
RH Off-. - - - -
RH-SEG .
RS-DONE. . . .
RS-SUCCESSFUL.
RS=:UNSUPPORTED

SAY BX .
SAV-CX .
SAVL>X .
SAV-ES
SF ~OUSE OVERRIDE.
SF-START- .
SY'SCALL.
TOP HP ENTRY
T KC BUTTON.
T-RE[16. . .
UNSUPPORTED.
UP_DaWN_BIT.

V CCP ..
V-CCPGID .
V-DOLITTLE
V-LHPMOUSE
V=:SYSTEM

158 Symboll

54092 By tel Free

460 Driver Writer's Guide

5471 728
589. 597
5801 581
183. 328
1141 487
185. 254

2371 306
238. 307
239. 308
240. 308
130. 759
1331 751
400 745
2411 530
187. 383
181. 358
6741 697
1961 375

1941 532
1911 398
190. 550
1921 537
193. 748

753
535

534

550

311

780

550

761

683

403

550 742

728

754

G.9.2 Application Resident EX-BIOS Driver

This example demonstrates the use of an application resident EX-BIOS driver. The driver utilizes
the Touch Screen logical device driver V_LTOUCH, and its associated event driver
V_EVENT_TOUCH.

The driver utilizes V_LTOUCH to move the cursor around the screen. V_LTOUCH returns the
current row and column address of the point the screen is being touched. The example driver in
turn utilizes the STD-BIOS Video driver (INT 1OH) to change to position of the displayed cursor to
match the screen coordinates returned by V_LTOUCH.

This driver also utilizes the button state data returned by V_LTOUCH. When the screen is
touched (a button make) the driver changes the shape of the cursor from an underline to a box
or full character cell. The shape of the cursor is restored to an underline when the finger is
removed (a button break).

Notice in the initialization section of the code that the CS:IP of the driver's service routine
(TOUCH_HANDLER) and the driver's DS are substituted into the V_EVENT_TOUCH vector in
the HP_VECTOLTABLE. The existing contents of that vector are returned by the function. The
driver stores these values in its data area, and restores them when the driver terminates (a 'I\'

character is typed at the keyboard). All HP_VECTOLTABLE vectors that are replaced with
application program resident drivlers should restore the original values in the vector when the
application program terminates.

The listing for this driver can be found in Section 4.

G.9.3 Non-HP-HIL Input Devices

The next program listing is an example of how to integrate non-HP-HIL input devices into the
Input System. This driver interfaces to an RS-232 mouse. It converts data frames received from
the mouse into GID motion and button ISR Event Records. It integrates itself into the Input
System by calling the V_SINPUT driver once these ISR Event Records have been constructed.

The PGID driver is the physical device driver for all devices inputting graphic motion and button
state data. The initialization code must create a PGID driver for the V_SINPUT to pass the ISR
Event Record. It builds a driver header and physical describe record, allocates a free
HP_VECTOLTABLE vector, and installs the PGID driver with V_LHPMOUSE as its parent
driver.

The driver is structured as a DOS installable device driver. The COM port the mouse is connected
to can be specified in the CONFIG.SYS command line.

Driver Writer's Guide 461

RS-232 Mouse Driver

MS-DOS INSTALLABLE DEVICE DRIVER EOUATES. RECORDS. AND STRUCTURES

) e v is ion A. 01 01 - 12/02/85 S'"

RS-232 MOUSE DRIVER EXAMPLE.. ..

,On INIT entry, polnts to CONFIG.SYS
; c 0 mm and 11 n e (1 e. a 11 aft I rOE V ICE •) .

.Initillizatidn Rlquest Header
;structure definition

~b~~1t~0~~.Request Heider

;Command code.
;Returned statuI
;RIserved for MS-DOS
,Unit count
;Offset of ending address.

:~;Rmp~1n~ ~ r e(~~ ~ 9 u: ~ ~) ~ ' , .
;DrilJe code (not ulld)

EOU 0
EOU NOT fALSE
EOU TRUE

; STRUCTURES

REO_HEADER STRUC

RH LENGTH DB
RH-UNIT CODE DB
RH-CMD COOE DB
RH-STATUS ow
Rt-CRESERVED DO
RH-UNIT CNT DB
RH-END OF F OW
RH-E ND-SEG OW
RI-CBPB- DD
RtCDR IV DB

REO_HEADER ENDS

RH_CMO__ LINE EOU DWORD PTR RH_BPB

FALSE
TRUE
DEBUG

.••••••• * •••••••••• * •••• Il * ••••• * ••••••••••••• * •••••• *••••••••••••• Il ••••••

; • CHANGE LOG •.••••••••••••••••• *•• *••••••••••••••••••• * ••••••••• *. * •••• *. * ••••• * ••••••

; RECORDS

ATTR RECORD DEV:l. IOCTL 1. IBM I. X:1. OCREM:I. Y:6. SPEC 1. CLK.1. NUL.1. STD01. STDl:1

DEV. for character device. 0 for block device.

~ i~~T: i tf 1~ l~~T~.~ ~~a~~1 i ~ r~o~ ~~G~ r; ~~",at .
:X • Not used.

;OCREM - ~l~:e c~~,;,:,~~~~. d~lJgeb~~~eo~~~l~~e~a:nd
. removable media.
;V • Not used
.SPEC.l if INT 29H fut conlo1e I/O 11 inltalled.
;CLK • 1 if device 11 a clock device.
;NUL.l if delJice 11 a nul device.
;STDO. 1 if device 11 the StandArd Output device
;STDI • 1 if device is the Stlndard Input devlcl.

STATUS RECORD ERROR 1, Z·S. BUSY 1. DONE 1. ERR_TYPE

~ ~ 1~ e~ ~ ~ ~ e ~ n~ ~ } u; ~ ~ : ~:s t ~ ~ 1 ~ n~ ~y~ : ~ 1~ ~ p ~ ~ r ~ ~ n ; ~ ~ - ~~ ~ 1 ~ e: t~ ~ S I ~ n~ ~ _~ ~ ~
interface, such &I the MOUSE SYSTEMS mouse The driver 15 inltalled II
an MS-DOS device driver It boot tlme

:The command line DEVICE-EXAMPLE.SVS [In] Ihould be ent.red in the
;CONfIG SVS file 1n the root directorr of the boot drive If the optional

:~r:e~~~tt~UT~:~ll{nt~:~~~s~n~~ugO~1.n ~~et~~m~·~10~~leCo~h~o~~i~~~b:~lil
;present in the command line, the driver will It~emPt to install the mouse
;on that COM port number. The driver checks to make sure the port 11 present
; and w111 11 1 U e an err 0 r me I I a9 e if. no n - e lC il ten t po r t numb I r 11 1 pIC 1 fie d .

SUBTTL EQUATES. RECORDS. AND DATA STRUCTURES
PAGE.••• * ••••••••••••••••••••••••••••••................................ "' "'."' "' .
•• ". '" •.•••••••.•••.•.•. ~~~~ r~ ~,,~~~. ~~r~. ~r~~~r~~~;.•.•••.•.•.•••..••.•••

•••••••••••••••••••••••••••••••••• 11 •••••••••••••• * ••••••••••••• * •••••••••

.286c

.LFCOND
PAGE 59 I 132
TITLE RS-232 MOUSE DRIVER
SUBTTL PREFACE..

... "' .
::. "' ••••••••••••• * •••••••••• * ••• ~~~~~ ~ ~r ~~~•••••••••••••••••..•••••••••••

1 ?
? ?

11
? 17?
7171111171171111
? 1

1111
111 1

11?11?11
11

0000
0001
0002
0003
0005
0000
OOOE
0010
0012
0016

0017

• 0012

• 0000
--0001

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
.3
44
4S
46
47
48
49
50
51
52
S3
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
Q3

462 Driver Writer's Guide

ERR OR • 1 i fer r 0 r con d i t ion de tee ted.
Z • Not uled.
BUSY • 1 if device busy
DONE • 1 when commlnd completed.
ERR_TYPE • Error type. See equltes ne)(t.

LF EQU aAH
CR EQU DDH

••••••••••• EX-BIOS DRIVER EQUATES, RECORDS, A~D STRUCTURES

; STRUCTURES

HP_HEAOE R ENOS

MSD 'WRITE PROT EQU DOH
MSD-UNKNoQN UNIT EQU 01H
MSD-NOT RDY- EQU 02H
MSD -UNKROWN CM{) EQU 03H
MSD-CRC ERROR EQU 04H
MSD-BAD-LENGTH EQU 05H
MSD-SEEK ERROR EQU aSH
MSD-UNKN~N MEDIA EQU 07H
MSD-SEC NOT-FOUND EQU 08H
MSD-PAPE'R OUT EQU 09H
MSDWRITE-FAUl T EQU OAH
MSD-READ rAUL T EQU OBH
MSD=:OEN_rAILURE EQU OCH

;Commlndl.

MSD INIT EQU DOH
MSD-MEDIA CHK EQU 01H
MSO-BlO BlSB EQU 02H
MSD-IOCTL IN EQU 03H
MSD-INPUT- EQU 04H
MSD-IN N(),lAIT EQU 05H
MSD-I N-STATUS EQU OSH
MSD-IN-F LUSH EQU 07H
MSD-OUTPUT EQU 08H
MSD-OUT VERIFY EQU 09H
MSD-OUT-STATUS EQU OAH
MSD-OUT-FLUSH EQU aBH
MSD-IoeTl OUT EQU aCH
MSD-DEV OlSEN EQU DOH
MSD-DEV-CLOSE EQU OEH
MSD=: REM=:ME 0 I A EQU OFH

; MS - DOS e qUI t e s

PRINT STR EQU a9H
DOS_ERTRY EQU 21H

,ASCII equltel.

;MS-OOS pr1nt It'ing function number.
;MS-DOS interrur-t.

;I)river attribute.
, I n de)(numb e r for d r i v. r 1 t r in 9 .
; 11??
;Driver parent cla'i.
;Driver child el
;Vector number of dr1ver'l parent.
,Vector number of driver's ch1ld.
;Major Iddress of device.
;Minor address of device

In 1 t illize.
Med i. c he e k
Build BIOS Plrlmeter Block (BPB).
IOCTL input
Input f rom device
Non-des true t ive, no-wait input.
Return status of input device
Flush input buffer.
Output to device.

,Output with verify to device
,Return status of output device.
,Flush output buffer.
; IoeTl output.

:g~ ~ ~ e d ~ ~ ~ ~ ~ e .
;Removab1e media checl(.

;Physicil describe record

;Upper nibble contlinl OlD type.
,Lower nibble HP-HIL addreu
.De ice 10 byte returned by HP-HIL device.

711 7

:IiO'delCriptor byte from device
;Eldended descriptor byte from device.
;Madmum number of I)(el reported by devic •.
;Device cl,sl.
;Upper nibble contl1nl current clul.
;Lower nibble contl1n deflult ell ...
:Number of buttonl/prompts

:~~~:~ ~i~~t: ~~~~:i~: ~~~~:~ ~~ C~~~~~::
;Reserved
:Maximum burst length.
, Numb e r 0 f w r i t ere1i I t e r S 1 up P0 r ted.

:~~~~:rtl~n;e~~p~~Ye~t~;~~~ff~~ted.
,Current state of buttons
;Counts/cm returned by device.

;HP Driver Helder.

DB
DB
DB
DB
DB
DB
D'W

DB ?

STRUC

DB

DB
DB
DB
DB
DB
DB

STRUC

OW 0
OW D
OW 0
D'W a
O'W 0
D'W 0
DW 0
DB 0
DB 0

Ret \J r ned IS pi r t 0 f s tit us wo r d de fin e d I b 0 v e

;write protect
;unknown unit
;device not reldy.
;unknown comm.nd
;CRC error
;bld driver request Itructure length
;seek error
;unknown med11
;sector not found.
;paper out
,write flu1t.
; re.d flult
;generl1 flilure

; EQUATES

;Error codes

o RESERVED
D-BURST LEN
DWR REG
D-RD-REG
D'TRANSITION
D-STATE
D=.R ESOL UT ION

D_PROMPTS

DESCRIBE

D_SOURCE

D HPHIl ID
D-DESC ~SK
0-10 MA"SK
O-XDrSC MASK
O-MAX AXIS
O=:ClASS

HP _HEADER

OH ATR
DH-NAME INDEX
OH-V DErAUL T
DH-P'-C lASS
DH-C'-C lASS
DH-V-PARENT
DH-V-CHI LD
DH-M.l:JOR
DH=:MINOR

RS-232 Mouse Driver
94
95
96
97
98
99
100
101
102
103
104 • 0000
105 • 0001
106 • 0002
107 • 0003
108 • 0004
109 • 0005
110 • 0006
111 • 0007
112 • 0008
113 • 0009
114 • OOOA
115 • OOOB
116 • OOOC
117
118
119
120 • 0000
121 • 0001
122 • 0002
123 • 0003
124 • 0004
125 • 0005
126 • 0006
127 • 0007
128 • 0008
129 • 0009
130 • OOOA
131 • OOOB
132 • OOOC
133 • DODD
134 • OOOE
135 • OOOF
136
137
138
139 • 0009
140 • 0021
141
142
143
144 • OOOA
145 • DODD
146
147
148
149
150
151
152
153 0000 0000
154 0002 0000
155 0004 0000
156 0006 0000
157 0008 0000
158 OOOA 0000
159 OOOC 0000
160 00 DE 00
161 OOOF 00
162
163 0010
164
165
166
167
168 0000 ? ?
169
170 0001 11
171 0002 11
172 0003 11
173 0004 ?1
174 0005 11
175 0006 11
176
177
178 0007 1 ?
179
180
181 0008 1 ?
182 0009 11
183 OOOA 'P
184 OOOB ? ?
185 OOOC ?7

186 OOOD ? ?

187 OOOE ????

~

,.

".

Driver Writer's Guide 463

RS-232 Mouse Driver

0000

• 0000
• 0002
• 0006
• OOFE
• 00F6

• 0009
• 0040
• 0041
• 0042
• 0043

0020

• AClS
0020 AC18
0022 0003
0024 0000
0026 0000
0028 0000
002A OOCC

~

~

~

Mlximum count lIang X Ix15 in units of resolution.
Mlximum count along Y axil in units of resolution.
Absolute data device X motion.
Absolute dltl device Y motion.
ReI a t 1 'led I tid e vic e X mo t ion.
Rell t 1'led I tide vic e Y mo t 10 n .
X axil Icaling accumulator.
V a)Cis scaling accumulator.

;Must be org'd at 0 to be a dev1ce dr1ver.

;Mlke sure its paragraph aligned

; Of fs e t 0 f n umbe r 0 f but ton 1 n mo use RAM

;SVSTEM driver vector address.

; lnqui re about PGID CS IP

;LHPMOUSE driver vector address

;INPUT driver vector address

;EX-BIOS interrupt number.

;Button dlta type.

; 16 bit r e la t i v e mo t 1 0 n d at. t y Pe .

004CHequ

~~~H~:O:~~~~~~~ ttR ~:3 ~ 0~0~6~V~L~P~S~E .V_DOL I TTLE ,0.0 >

ORO 20H

ge A*TR<1. 0 . 0 , 0 • 0 , 0 , 0 . 0 , 6~a~ k ;6~ ~ ~ e ~ n ~ ; { r1 b~ ~ ~ t b e set t 0 - 1
ow OF FSET 0 EV STRAT E0 V ; 0 e vic e ,t rat e 9 yen try po 1 n t .
OW OFFSET DEV-INTERRUPT ;Device interrupt ent ry point.
DB ' 232MSE ,-

EQU OOOSH

EQU 0012H
EQU 04H
EQU OAH

EQU 002AH
EQU OOH
EQU 02H
EQU 04H

OW
ow
ow
ow
ow
ow
ow
ow

EQU 6FH

DEV ATTR
DEV:=HEADER

SEGMENT PUBLIC 'CODE'

ASSUME CS: CODE, OS: NOTHING
ORG 0

DEV OR IVER PROC FAR

;ISR Event Record dlta types.

, EQUATES

COOE

DRIVER ATTR
STRAT tNT
INT ENT
DR IVER NAME

T KC BUTTON EQU 09H
T-RE[08 EQU 40H
T-REL16 EQU 4lH
T-ABS08 EQU 42H
T::::ABS 18 EQU 43H

;EX-BIOS Return Statu. Code.

RS SUCCESSFUL EQU OOH
RS-UNSUPPORTED EQU 02H
RS-DONE EQU OSH
RS-FAIL EQU OFEH
RS=NO_VECTOR EQU OF6H

CODE SEGME NT.........................................................................
· ••••••••••••••••••••••••••••••• Ill ••••••••••••••••••••••••••••••••••••••••

V SYSTEM
F-INS BASEHPVT
F:=I NS::::XCHGF REE

V SINPUT
F-ISR
F-SVSTEM
F=IO_CONTROL

F_INQUIRE_ENTRY EQU OCH

V LHPMQUSE EQU OOCCH
SF"_MOUSE_OVERR IDE EQU 02H

•••••• * ••••••••• * •• * •• MS-DOS DEVICE DRIVER HEADER •• " •••••• * •••••• **.

. u .. *.. **. EX-BIOS DRIVER HEADER AND PHYSICAL DESCRIBE RECORD

SUBTTL COOE SEGMENT
PAGE
· •••••••• IllIllIll •••• IllIllIllIllIllIll •••••••••••••• IllIll.Ill ••••••••••••••••••• Ill •••••••••••••.........................................................................

HP_ENTRY

o SIZE X
D-SIZE-Y
D-ABS X
D-ABS-Y
D-RE L-x
D-REL-Y
D-ACCUM X
D=ACCUf·CY

DESCRIBE ENOS

MSE_NUM_BUTTON

;RECORDS

HP_ATTR RECORD HP:l, DEVCFG:l. ISR:l, ENTRY:l, TVPE:3. STR:l, MAP_CALL:l. A:l. SUBADD:2. PS

HARE:l, CSHARE:l, ROM:l. B:1

FF FF FF FF
8000
0265 R
0270 R
20 32 33 32 40 53
45 20

0000

0000

0000
0004
0006
0008
OOOA

• 0006

• 0012
• 0004
• OOOA

• 002A
• 0000
• 0002
• 0004

• OOOC

• OOCC
• 0002

• 006F

0010 111
0012 111

0014 111
0016 11?
0018 1??
001A 111
001C 11 ?
OOlE ?? ?

0020

• 004C

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

464 Driver Writer's Guide



RS-232 Mouse Driver

0050 0000
0052 0000

0054 52 53 2D 32 33 32
20 49 4E 50 55 54
20 S3 59 53 54 45
40 20 4D 4F 55 53
45 20 44 S2 49 56
45 52 20 20

0076 28 43 29 43 SF 70
79 72 69 67 68 74
20 48 65 77 BC 65
74 74 2D 50 61 63
68 61 72 64 20 31
39 38 35 aD OA

0099 56 65 72 73 69 6F
6E 20 41 2E 30 31
2E 30 31 00 OA 24

• 0010
00A8 40 6F 75 73 65 20

69 6E 73 74 61 6C
6C 65 64 20 6F 6E
20 43 4F 40

OOCI 30 3A 00 OA 00 OA
24

00C8 53 70 65 63 69 66
69 65 64 20 43 4F
40 20 70 6F 72 74
20 6E 6F 74 20 70
72 65 73 65 6E 74
2E 20 20 44 72 69
78 65 72 20 8E 6F
74 20 69 BE 73 74
61 6C 8C 65 84 2E
00 OA 00 OA 24

0103 55 6E 61 62 BC 85
20 74 SF 20 89 6E
73 74 61 6C 6C 20
50 47 49 44 20 64
72 69 76 65 72 2E
00 OA 24

b .. e addre •• table

- .et .. appropriate.

-li:~il" appropriate.

IRQ4
IRQ3

;Storage for off •• t of device strategy header
;Storige for •• gment of d.vice .trategy header.

;Storage for e.1It1ng .tack frame

~~~~~~t atnb04g~obo~t
;COM1 port 1nterrupt
; COM2 po r t 1 n t. r r up t
;COM3 port interrupt
;COM4 port 1nterrupt
;COMI 1nterrupt milk
;COM2 interrupt mask
;COM3 interrupt milk
;COM4 interrupt milk

DB 'Unable to 1n.tall PGIO driver.' ,CR.lF, 'S'

EQU S-VERSION LAB-2
DB 'Mo use ins fall edon COM'

DB 'Ver.ion A.01.01' ,CR,lF, 'S'

DB '0:', CR • LF ,CR , IF , 'S '

DB 'Specified COM port not pre.ent. Dr1ver not in.talled.',CR,LF,CR,lF,

DB '(C)Copyr1ght Hewlett-Packard 15185' ,CR,LF

OW
OW

ow a

OW OCH 4
OW OBH 4
OW OCH 4
ow OBH • 4
OW NOT 01H SHl
ow NOT 01H SHL
DW NOT 01H SHL
ow NOT 01H SHL

OW a
DB SOUP (0)

DB 'RS-232 INPUT SYSTEM MOUSE DRIVER

OW
OW

DESCRIB E (2, a . a . a , 0 , 2 , a ,2aH . a .0 , 0 , a ,1 ,OF FH • 2DOD , 0 , 0 , 0 , 0 , 0 , a .0 . a>

.••••••••••••••••• DATA AREA FOR MS-DOS DRIVER PORTION ••••••••••••••••

NO_VECTO~

COM_MSO

NO_PORT_MSG

VERSION LEN
OK_.MSG -

STACK PTR
STACK:=SEG

COM_NUMBER

INT_TABLE

MASK TABLE

FRAME COUNT
TEMP _BUFFER

...

REQ HoR·OFF
REO:=HoR:=SEG

SION_ON_MSG

.• CooE SEGMENT RELATIVE DATA AREA..

00

0000
0000

0000

0030
002C
0030
002C
ffEf
ffF7
ffEF
FFF7

0000
05

0124
0126

0128

012A
012C
012E
0130
0132
0134
0136
0138

013A
013C

002C 0006
002E 00
002F 00

0030 02
0031 00
0032 00
0033 00
0034 00
0035 02
0036 00
0037 20
0038 00
0039 00
003A 00
0038 00
003C 01
003D Ff
003E 00C8
0040 0000
0042 0000
0044 0000
0046 0000
0048 0000
004A 0000
004C 0000
004E 0000

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
3S8
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374

Driver Writer's Guide 465

RS-232 Mouse Driver
0141 87 LAST_SVNCH DB 87H ;Copy of last lynch byte.

0142 OE [HPHIL_TABLE D8 14 DUP (0) ;HP-HIL configuration table.00

0150 00 HPHIL ADD DB 0 ; HP-HI L 'Iddre .. ' of mouse.0151 00 PGID_VECT NUM DB 0 : HP_ VECTOR_ TABLE ..,ec tor Idd resl of PGIO.

;JUMP TABLE FOR MS-DOS bRIVER COMMANDS

0152 02A 7 Cp.f)_TABlE DW OFFSET INIT CODE ;Initialize driver.0154 0292 DW OFFSET UNSUPPOR T CM[) ; Me d i I C he c k .0156 0292 DW OFFSET UNSUPPORT-CMD ;Bulld BPB.
0158 0292 DW OFFSET UNSUPPORT-CMO ; IoeTL input.
OlSA 0292 OW OFFSET UNSUPPORT-CMO ; I npu t .
OlSC 0292 DW OFFSET UNSUPPORT-CMD ; No n - d I It r u c t i ve i npu t .01SE 0292 DW OFFSET UNSUPPORT-CMD ; I npu t I tit u I .0160 0292 DW OFFSET UNSUPPORT-CMD ; Flus h i npu t buffer.0162 0292 DW OFFSET UNSUP PORT-CMD ;Out put.
0164 0292 DW OFFSET UNSUPPORT-CMD ;Output with verify.0166 0292 DW OFFSET UNSUPPORT-CMD ; Out put s tit us .0168 0292 DW OFFSET UNSUPPORT-CMO ;Flush output buffer.016A 0292 DW OFFSET UNSUPPORT-CMD ; IOCTL output.016C 0292 DW OFFSET UNSUPPORT-CMO

~ g~ ~ ~ e d~: ~1~ ~ .016E 0292 DW OFFSE T UNSUPPORT-CMO
0170 0292 DW OFFSET UNSUPPORT=CMO ;Removlble media check.

0172

0172 9C
0173 60
0174 1E
0175 06
0176 8C C8
0178 BE 08

017A BO 20
Ol7C E6 20

017E 88 0040
0181 8E CO
0183 2E 8B IE 0128 R
0188 26 8B 17

0188 EC

PAGE

;New chlrlcter count
,Store it.

;Get synch byte.

:~~~at:sll:ln~~t~yte.
;See if they are the same
,Sklp on if 10 (no chang_ 1n button ,tate).

;Get number of chlrlcters left 1n frame.
:See if we're looking for lynch byte.
;Jump if not.

: ~: ~: ~ f ~ 0 ~ ~ t ~ ~ nm~ ~ ;: . chi ric t e r .

~~:r t~e t~~ig~~,i ~~~~~C~:~eback.
: Put c h a ric t e r in temp 0 r I r y b u f fer if I Yn c h

:gr~:r~!II~~lt~j.ow chlrlcter Iway.

; Stor e c h a ric t e r IW I Y .
,Update the frlme counter.
;And save it.
;15 this the lilt chlracter in frlme?
; Pro c e 5 I the frame 1 flO,
;Otherwise, Ikip on.

;Get base Iddrell of COM port from tlble.

; EOI

; Re - est ab 1 is h d atiS e gme n tad d r I IS 1b i 11 t y .

,Save the registerl.

~~ASE COUNT, BX

AL,TEMP BUFFER[BX]

~~S~A~~~~~~~t
AH ,Ar
MSI_3

AL .20H
20H, AL

BX , FRAME COUNT
BX, BX -
MSt 1
AH ,l'L
AL,OFBH
AL, SOH
AL, AH
MSI_1

MSI_S

TEMP BUFFER[BX] ,AL
BX --
FRAME COUNT, BX
BX,5 -
MSI 2
MSI=5

AX,40H
ES, AX
BX,COM NUMBER
DX,ES:TBX]

DS
ES
AX ,CS
OS ,AX

MOV
MOV

MOV
MeV
MOV
CMP
JZ

MeV
MOV
MeV
MOV

MeV
OR
JNZ
MOV
AND
CMP
MOV
JZ

JMP

MOV
INC
MOV
CMP
JZ
JMP

MOV
OUT

; CHECK FOR A CHANGE IN BUTTON STATE

; SEND BUTTON ISR EVENT RECORD (S) TO INPUT SYSTEM

,GET CHARACTER FROM MOUSE

IN AL,DX ;Get character.

;STORE IN TEMPORARV BUFFER UNTIL ENTIRE FRAME HAS BEEN RECEIVED

. DATA AREA FOR EX-BIOS DRIVER PORTION .

; PRE SE RVE MACHI NE STATE

PUSHF
PUSHA
PUSH
PUSH
MOV
MOV

; ISSUE END-OF-INTERRUPT TO 8259A

............................... _ .
~ : •••••••••••••••••• * *. * * * * *':'<;~~~ *~~ ~~~ ~. ~~~~ * •• * •••• * * *. * * * * * * * * * *. * * *.:

BB 0000
2E' 89 IE 013A R

2E 8A 87 013C R
2E 8A 26 0141 R
2E A2 0141 R
3A EO
74 56

2E· 88 IE 013A R
OB DB
75 00
8A EO
24 F8
3C 80
8A C4
74 03

E9 0260

2E: 8887 013C·R
43
2E 89 IE 013A
83 FB 05
74 03
E9 0260 R

018C
0191
0193
0195
0197
0199
019B
0190

019F

01A2
OlA 7
01A8
OlAD
OlBO
01B2

0185
01B8

OlBD
01C2
01C7
OlCB
Oleo

375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467

466 Driver Writer's Guide

RS-232 Mouse Driver
468
469 01CF 53 PUSH 8X Save frame counter.
470 0100 52 PUSH OX Save
471 0101 32 EO XOR AH,Al AH now holds mask of buttons that hive chlnged.472 0103 B7 01 MeV BH. 01H Mask fo r fir s t bu t ton.
473 0105 B9 0003 MOV CX.3 Number of buttons to proc •••.
474
475 0108 MBUTTON:
476 0108 8A DC MOV Bl.AH

:~:~ ~fc~~Ie~:e~h~~?~o~a~~1,... 477 OlDA 22 OF AND Bl. BH the on. that chlnged.478 01DC 74 41 JZ MNEXT BUTTON ;Skip on if no t .
479 OlOE 84 F8 TEST BH,Al ;Determine • t. t e (make or br.ak) of .elected butt

480 OlEO 74 04 J1 MBUl TON_OC",./N
481
482 01E2 MBUTlON UP:
483
484 01E2 B3 80 MOV Bl,80H ; Set bit 7 (make/break bit) to 0 (break).485 OlE4 EB 02 JMP SHORT MBUTTON 1SFt
48S
487 DIES MBUTTON DOWN
488
489 OlE6 B3 00 MeV BL. OOH ; Set bit 7 (make/break bit 1 to 1 (make) .490
491 DIE a MBU"rrON ISR
492 OlEa 53 PUSH BX
493 01E9 ~B 09 MeV BX I CX
494 OlES 32 FF XOR BH, BH
495 OlEO FE CB OEC BL
496 OlEF 2E: 8A SF 01F7 R MeV CL, CS : BUTTON_TAB [BX J
497 01F 4 5B POP BX
498 01F5 EB 03 JMP SHORT BISR2
499 01F7 00 BUTTON TAB DB 0 Ie f t button500 01 F 8 02 OB 2 middle button501 01F9 01 DB 1 right button502 OlFA BISR2 :
503 OlFA OA 09 OR Bl, CL
504 01FC 32 FF XOR BH, BH ; cle~r out bh505
50S 01FE 50 PUSH AX ; Save regilterl.
507 01FF 53 PUSH BX
508 0200 51 PUSH CX
~09 0201 lE PUSH OS
510
511

~~~eEvent512 ;C re.t e Record
513
514 0202 B5 09 MOV oH,T KC BUTTON ; Se t dat a type
51!> 0204 2E 8A 16 0151 R MeV Dl, peUO-VEcr NUM ,Get vee tor number of moule " PGIO.516 0209 B9 0000 MeV CX,O - - ; Bu rs t

~s~~t~o(~~~~er517 020C 8C C8 MeV AX .CS ; Po i nt header.518 020E 40 INC AX
S 19 020F 40 INC AX
520 0210 SE CO MeV ES ,AX
521 0212 84 00 MeV AH,F ISR ; Set 1SR function.
522 0214 Bo 002A MeV BP, V:=SINPUT ;We're calling the INPUT driver523 0217 FA CLI ;Turn off interrupt. while wI're ou t .524 0218 CO 6F INT HP_ENTRY
525 021A FB STI ;Re-enable interrupti.
526
527 021B IF POP OS
528 021C 59 POP CX
529 0210 5B POP 8X
530 021E 58 POP AX
531
532 021F MNEXT- BUTTON:
533
534 021F DO [7 SHL BH,l ;Move button .ellctor mlsk to nel( t button.535 0221 E2 B5 LOOP MBUTTON
536 0223 SA POP OX ; Re s tore
537 0224 58 POP BX ;Get frame counter back.538
539 ; CHECK FOR MOTION
540
541 0225 43 MSI_3 : INC BX ; Poi nt to f 1 r. t delta X in buffer.542 0226 2E. 8A 97 013C MOV OL, TEMP _BUFFER [BX]
543 022B 43 INC BX ;Glt f i fit delt a Y.544 022C 2E. 8A B7 013C MOV DH, TEMP _BUFFER [8X 1
545 0231 43 INC BX ;Add second deU I to f 1 r. t .546 0232 2E: 02 97 013C ADD Dl,TEMP BUFFER[BXl
547 0237 43 INC BX - ;Add .econd delt a to f i rtt .548 0238 2E· 02 B7 013C ADD DH, TEMP_BUFFER (BX)
549
550 0230 OB 02 MSI_4 : OR

~~t~~
;Check for Ie ro mot 10n.

551 023F 74 IF JZ ;Skip on if non. dltected.552
553

MO~~~~,. 554 ; SEND ISR EVENT RECORD TO INPUT SYSTEM555
556 0241 8A C2 MeV Al,Ol ;Convert delta X to 16 bi t valu~ and put557 0243 98 CBW ;it 1n ISR EVI n t Record (BX regia t e r)558 0244 8B 08 MOV BX ,AX
559 0246 8A C6 MOV AL ,oH ;oitto for delta Y (CX righter).560 0248 98 caw
561 0249 8B C8 MOV eX,AX

Driver Writer's Guide 467



RS-232 Mouse Driver

.***.* ••••••• *••••••••• ** STRATEGY ENTRY POINT *•••• ** •• *.***** ••• ***.*

.••••• *••• ** •••••••• ** •• INTERRUPT ENTRY POINT .* ••• *.*.* •• **.* •••• *.**

OEV_INTERRUPT PROC FAR

ES:OI.

Set ISR Ev.nt r.cord data type to 18 bit
r e 1 at i ve mo t ion .
Get vector number of mou •• •• POlO.
Set ES:O to driver h••der.

;Select ISR function.
;We're palling this on to the INPUT driv.r.
; Inte rruptl ar•• uppo •• d to be off.

;Turn interrupt. back on now.

;S&t up our local stack
;Stack legment 1s ,ame .. code (CS)

;Re-enable interrupti

;Convert command into jump table offset.

;D1Iable interrupts while we're m.ssing with stack.

;Store existing stack environment.

END OF RESIDENT COOE *••••••••••••••••••••••••

INITIALIZATION CODE ••••••• *••••••••••••••• " ••

ES: [01] .RH STATUS, MASK ERROR ;Set .rror flag in return Itatul word.
ES:[OI].RH:=STATUS, MSD_UNKNCAJlN_CMO ;Set error code.

DI,CS
OS,OI

FROM REQUEST HEADER
OI,DWORD PTR REO HOR OFF ;Move addrell of request header into:t :~~6 [~~tTRH_O«)_CooE :~: ~ f ~ ~~~~~g~Y ~ ~e: ~ 0:n~~ ~~~ nd by t e.
BAD cM15
AL ,~SO REM MED IA
BAO_Cto«) -

MeV SI ,OF F SE T STACK._PTR
MeV !~I~.SP
ADD
MOV (sf] .ss
MeV SP,OFFSET cs: STACK_ TOP
MeV AX ,CS
MeV SS ,AX

STI

; FETCH COMMAND
LES
MeV
CMP
JB
CMP
JA
CBW
SHL AX,l
MeV BX, AX
JMP C~_TABLE(BX] ;Oispatch to requested function.

; EXIT POINT FOR BAD OR UNSUPPORTED FUNCTIONS

; SAVE MACHINE STATE
PUSHF
CLD
PUSHA
MOV
MeV

.••••• ** ••• **.* •••• *** ••
p~~~ ••••••••••••••••••••

.*.**.****** ••• *••• **.** ••••• *** •••••• *•••••• *,,*,,***** •• *.**.*.".***.***.
~ * MS-DOS DR IVER CODE •
:**.*.*****.************* •• ********.*** •••• *.****************.***.*******

BAD CMD:
UNSUP POR T_ CMD :

OR
OR

INIT_CODE

; SET UP lOCAL STACK
ClI

;COMMON EXIT POINT

EXIT: OR ES:[OI].RH_STATUS, MASK DONE ;Set return Itatul to don •.
POPA ; Res tor ere 9 is t e r S .

:~~F ;::;~~~et~1~~~6os.

OEV STRATEGY PROC FAR
- MeV CS : REO HDR OFF, 8X

MeV CS: REO:=I-iDR=:SEG. ES
RET

DEV_STRATEGY ENOP

;Cr.at. mo t ion ISR event r.c 0 rd
0248 86 41 MeV OH.T_REL16

0240 2E SA 16 0151 R MeV OL. PGIO_VECT_NUM
0252 8C C8 MeV AX.CS
0254 40 INC AX
0255 SE CO MeV ES,AX
0257 84 00 MeV AH, F ISR
0259 80 002A MeV BP, V:=SINPUT
025C FA CLI
0250 CO 6F INT HP_ENTRY
025F F8 STI

; RESTORE MACHINE STATE AND EXIT

0260 07 MSI_S: POP ES
0261 IF POP OS
0262 61 POPA
0263 90 POPF
0264 CF IRET

PAGE

0265
0265 2E 89 IE 0050
026A 2E: 8C 06 0052
026F C8
0270

0270

02"10 9C
0271 FC
0272 60
0273 8C CF
0275 8E DF

0277 2E: C4 3E OOSO
027C 26 : 8A 45 02
0280 3C 00
0282 72 DE
0284 3C OF
0286 77 OA
0288 9!!
0289 01 EO
028B 88 08
0280 2£: FF A7 0152 R

0292
0292

0292 26 . 81 4D 03 8000
0298 26. 81 40 03 0003

029E 26 81 40 03 0100
02A4 61
02A5 9D
02A6 CB

02Al

02A 7 FA

02A8 BE 0124 R
02AB 89 24
C2AD 83 CEl 02
0280 8C 14

0282 BC 0511 R
0285 8C C8
0287 8E DO

0289 FB

562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
6Cl
602
603
604
1'05
606
607
6G8
609
610
611
612
613
614
615
616
617
618
619
620
621
5~2

623
624
625
62&
627
528
629
630
631
€ 32
633
634
635
6 j6
--37
638
639
640
641
642
64 j
644
645
646
647
643
649
650
651
652
653
654
~ 55

468 Driver Writer's Guide



RS-232 Mouse Driver
; PRINT SIGN-ON MESSAGE

MeV OX,OFFSET SIGN ON MSG
MOV AH, PRINT STR - -
I NT OOS_E NTRV

; PARSE CONF 10. SYS COMMAND LINE TO DETERMINE WHICH COM PORT THE MOUSE IS ON

;Slt baud rate div1l0r to 1200 baud.

: INITIALIZE SERIAL PORT PARAMETERS

;Clear existing error or character.

;Point to linl control reg1ltlr.
;S,t linl control regi.tlr to d1vi.or programming
;mode.

:~~t~{'to divi.or LSB registtr (ba.e).
;lSB for 1200 bp •.

~~~t~r'to MSB of d1vi.or (ba'l + 1).
;MS8 for 1200 bpi.

;Oelay.

.
I f we IN 1 nd up hi r e, the r I WI r I no par am. t • r.

~g~c~~~rdw~~ :~:c~~T':~~d ~~~'C~rp~~t ic~t1d
default.

;Convlrt off let into ASCIr COM number (1 - 4).

::O~~~at~1}~~elC~~~~0~1{~g~~t:~rl~;~t+3).

;Ollay.

;Move COM port table offset into OI.
;Segment address of COM port base address table.

;Oet ball addre.s of COM port out of tabl •.
;Makl lure port Ix1.t •.
;Continul with initia11zat10n if 1t do •• ,
;otherw1'I, go to Irror rout1ne.

;Point to modtm cont rol reghter (ba.e + 4)
;DTR and RTS .tt, OUT2 .tt to enablt interrupt •.

;Clear BX. It will be ulld as index 1nto
: command linl.
;Load ES:OI with pointer to CONFIG.SYS co",",and
; 1 i ne .

;Oet next character in command 11ne.
:Check for backslash.
,If f 0 u nd. 1 nd i cat e 1St art 0 f par ame t I r I .
;Check for carriage return. (Indicatel a bogal
; Sit 0 f par ami t • r S) .

~t~e~~u~~r il~~ ;~:~~1(~nd~~~~~ ~~n~iram.ters
;entered in command 11ne.
;If found, atop scanning command l1ne.
;E1sl, p01nt to next character,
;and continul scanning command linl.

; 0 I t n I x t c h a r act e r . Sh 0 u I d 1 nd i cat I COM po r t
: to USI. Valid range is 1 - 4
; Con "' r t numb e r 1 n too f f set fromI.
:Plrform range check on results.

:~1~ ;~ 1: n1~ ~ ~ ~ ; ~ ~ t ~.~ ~ iY: .m0 uI' 1n t • r r up t
;11 bling .It up.

;Convlrt into offslt 1nto STD-8IOS COM port
;base addresl tabll at 0040:0000H.

;Save it for future use.

OX,S

~~6~~ $+2

oI,AX
AX ,40H
ES ,AX
OX,ES:[OI]
OX ,OX
IC 4A
IN!T_NO_PORT

AL ,BYTE PTR ES: (01 +BX]
Al, '/'
IC 2
Al-:-CR

IC 3
Al-:-LF

IC 3
BX-
IC_l

BX
Al ,BYTE PTR ES: (01 +BX]
Al, '1'
IC 3
AL ~3
IC_3

OX ,2
AL,03H

~~6~~ $+2

BX, AX
BX ,1
BL, ' I'
COM_MSG, BL

BX,O

01, ES: (01] . RH_CK>_LINE

OX,2
AL,80H

~~6~~ $+2
oX,3
AL, BOH

~~6:~ $+2
OX
AL,OOH
OX,AL
SHORT $+2

OX
AL,OBH

AX ,I
COM NUMBER, AX
SHOR'T IC_4

COM_NUMBER ,0

ADD
IN
JMP

MeV
MeV
MeV
MeV
OR
JNZ
JMP

INC
MeV

SUB
MeV
OUT
JMP
SUB
MeV
OUT
JMP
INC
MeV
OUT
JMP

ADD
MeV
OUT
JMP

MeV

MeV

LES

MeV
SHR
ADD
MeV
CLI

MeV
CMP
JZ
CMP

JZ
CMP

JZ
INC
JMP

INC
MeV
SUB
JB
CMP
JA
CBW

SHL
MeV
JMP

; I n 1 t 1a11z1 "'0 dI"' con t r 0 1 rig 11 t I r .

;Initialize lint control regilttr.

83 C2 02
BO 03
EE
EB 00

83 EA 02
BO 80
EE
EB 00
83 EA 03
BO 60
EE
EB 00
42
BO 00
EE
E8 00

42
BO OB

BB 0000

26' C4 70 12

83 C2 05
fC
fB 00

BA 0054
B4 09
CO 21

8B 08
Dl EB
80 C3 31
2E: 88 IE OOCl R
FA

2E: C7 06 0128 R 0000

8B Fa
88 0040
8E CO
26 8B 15
OB D2
75 03
E9 03B2 R

26: SA 01
3C 2F
74 OB
3C 00

74 lC
3C OA

74 18
43
EB EE

43
28 8A 01
2C 31
72 00
3C 03
77 09
98

01 EO
2E A3 0128 R
EB 07

OlCI

02C4

02F6
02F 8
02FA
02FD
0302

0314
0317
0318

0330
0333
0335
0336

0303
0305
0308
030A
030D
030F
0311

031A
031D
031F
0320
0322
0325
0327
0328
032A
0328
0320
032£

02BA
0280
02BF

0338
033i

02ca
02CB
02CO
02CF

0201
0203

0205
0207
0208

020A
020B
OlOE
02EO
02E2
02E4
02E6

02E7
02E9
02EO

02EF

656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
e92
693
694
695
696
697
698
699
700
701
702
703
704
70S
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747

Driver Writer's Guide 469

INTERRUPT ON 8259A INTERRUPT CONTROLLER

~~,~~K_TA8LE[8X] :g:~ ~~~~e~~O~a::~le.
SH6RT IC 10 ; De lay
Al,Cl - ;Clelr malk for moule interrupt.
21H,Al ;S.t new valul.

;Re-enabll interrupti.

;ln111al11' 1nterrupt enable register.

SUB OX ,3
MOV Al, 01
OUT OX ,AL

; SET UP COM PORT INTERRUPT VECTOR

~~ g~ :i~=~~~~~~8X]
MOV AX, 0
MOV ES ,AX
~~SW AX. OfFSET MOUSE_INT

MOV AX ,CS
STOSW

now to let the number of button.
V lHPMOUSE hII

;Set up for the div1de

,Return CS:IP of POlO driver funct10n.

;11 it 1nltalled in vector table

;Get tlble off.et back.
;Use 11 II index into interrupt vector tabl,.
;Set ES to interrupt vector .egment (0: 1.

;In111111ze vector.

;S •• if brutl forc. approach 11 nlel.lary,

; Eve nth, be s t I 11 d pIa n I 0 f m1c. and me n 1ft
;9 0 awry. F INQUIRE paID 11 not implemented 1n
;some elrly JOM ver.Ionl. The POlO CS'IP mUlt be
;hlrd coded for thele Iyltem•.

: Mo v I I Pin toO I .
;Oet POI(l'. OS.
;Iccount for ORO 20H
;Exchange fixed vector addrell function.

;Oelay.

;Point to intlrrupt enable righter (ba.e + 11
;Enable Rx Data Ready interrupt

.Convert to a vector index

. Save for I SR Ev. n t I

, Now to makl lure that the V_LHPMOUSE
; driver lets up INT 33H.

: P r 1 n t err 0 r me s sag e

;S.t OS back to prop.r value.

; P r i n t I i 9 n - 0 n me I I I g,' .
,MS-DOS print Itring function number.

: P r in t I r r 0 r mi" ag I .

AH, F INQUIRE ENTRY
BP, V-SINPU1 -
OS -
HP ENTRY
OS-

~~i;S~UNSUPPORTEO

CS -
ES
BX, CS:POIo_ORIVER

ES
AX

01, BX
OX ,CS
OX, 2
AH, FINS XCHOFREE
BP, V-SYSTEM
OS -
HP ENTRY
OS-

~~tT~~o~~r~~g~OR

AX, 8X
Bl, e
Bl
POID_VECT HUM, Al

AH, F 10 CONTROL
Al, sr MOUSE OVERRIDE
BP, V [HPMOUSE
OS -
HP ENTRY
DS-

INIT_OK

AX,CS
DS,AX
OX, OFFSET OK MSG

~~s~:~~~ySTR-

OX,OFFSET NO VECTOR
AH. PR INT STR-
DOS ENTRY
SHOlfT I NIT_EX I T

OUT
JMP

;ENABlE MOUSE

MeV
IN
JMP

IC_10: AND
OUT

STI

MOV
MOV
PUSH
INT
POP
CMP
JNE
PUSH
POP
LEA

INIT_3: MOV
MeV
ADD
MeV
MOV
PUSH
INT
POP
CMP
JE

MOV
MOV
DIV
MeV

MeV
MeV
MeV
PUSH
INT
POP

JMP

MeV
MOV
MeV
MOV
INT

INIT_EXIT:

PUSH
PUSH

INIT_NO_VECTOR:

MOV
MeV
INT
JMP

INIT_NO_PORT:

MOV
MeV
INT
JMP

RS-232 Mouse Driver
748 0338 EE
749 033C E8 00
750
751
752
753 033E 83 EA 03
754 0341 80 01
755 0343 EE
75e
757
758
759 0344 2E: 88 1E 0128
760 0349 2£: 88 8F 012A
761 034£ B8 0000
762 0351 8£ CO
763 0353 88 0172
764 0356 AB
765 0357 8C C8
766 0359 A8
767
768
769
770 035A 2E: 88 8F 0132 R
771 035F £4 21
772 0361 £B 00
773 0363 22 Cl
774 0365 E8 21
775
776 0367 F8
777
778 0368 B4 OC
779 036A 80 002A
780 0360 IE
781 036£ co eF
782 0370 IF
783 0371 80 FC 02
784 0374 75 06
785 0376 OE
786 0377 07
787 0378 80 IE 03FF R
788
789
790 037C 8B FB
791 037£ 8C CA
792 0380 83 C2 02
793 0383 B4 OA
794 0385 BO 0012
795 0388 1E
796 0389 CO 6F
797 038B IF
798 038C 80 FC F6
799 038F 74 18
800
801 0391 8B C3
802 0393 B3 06
803 0395 Fe F3
804 0397 2E: A2 0151 R
805
806 039B B4 04
807 0390 BO 02
808 039F BO OOCC
809 03A2 1E
810 03A3 CD SF
811 03A5 IF
812
813 03A6 EB 13 90
814
815 03A9
816
817 03A9 BA 0103
818 03AC B4 09
819 03AE CD 21
820 0380 EB 14
821
822 0382
823
824 0382 8A OOCS
825 03B5 84 09
826 0387 CO 21
827 03B9 £B OB
828
829 0388
830
831 038B 8C C8
832 03BD 8E 08
833 03BF BA OOAB
834 03C2 84 09
835 03C4 CD 21
836
837 03C6
838
839 03ce 06
840 03C7 50

470 Driver Writer's Guide

RS-232 Mouse Driver

; Main opcode out of range of PGID functions supported
; just return RS_UNSUPPORTED

~iY: t
; •••DRIVER HEADER ••

NAME: PGID_DRIVER

DESCRIPTION:

pgid_driver endp

•••FUNCTION HEAg~~=••

NAME: PGID_ISR

FUNCTIONAL DESCRIPTION'

I Ub ttl PG 10Mai n en try poi n t

page

:~~~T~ ~~Ig~~tv~~:not hing

NOTE **** No driver header for PGID ****
Only 2 function. are lupported: F_ISR, F SYSTEM -- III otherl are unlupported

;Define the number of buttonl to 3

;Dislble interrupts while working on stick frlme
;Get address of old stack storage,
;Restore stack pointer.

;Get old stick legment.
;And restore it.

;Re-enable interrupts,

ah, RS_UNSUPPORTED

SI,OFFSET STACK_PTR
SP, [SI]

SI ,2

~~J~I]

EXIT

ENDP
ENDP

AX I 0
ES , AX
ES. ES:~HP ENTRY * 4 + 2]

~~tEE~+.Vr~~~~U~5~4~UTTON,3
AX - -
ES

DI.DWORD PTR REQ HDR OFf ;Re10ad ES:DI with address of request header.
ES:[DI).RH_END_Orf,OrFSET END_Of_DRIVER ;Return end of relident code to
ES:[DI].RH_END_SEG,CS ;MS-DOS.

STACK FRAME AND EXIT

pgid_opcode_bad:
mov
i ret

pg1d_dr1ver p roc nelr
cmp ah,F ISR F ISR?
jne cheCK f sYltem
call pgid_Isf
i ret

check_f_IYltem:
cmp ah I F SYSTEM F- SYSTEM?
jn. pg id:=opc ode_b ad
call pg1d_IYltem
i ret function has I' t r. turn code

LI1~h~~.F~~~Jf?~~~ n~:u~~:t~~ ~~~eN6~ ~~~~ORTED,
F ISR
F:=SVSTEM

PARAMETERS:
See function headerl for specific valuel for other entry and exit
par ame t e r I

REGISTERS PRESERVED:

DEFINITION MODIFICATION HISTORY

VERSION:

DESCRIPTION OF CHANGES:

MeV
MeV
MOV
MeV
MeV
POP
POP

LES
MOV
MeV

; RESTORE OLD

CLI
MeV
MeV

ADD
MOV
MOV
STI

JMP

DEV INTERRUPT
DEV=:ORIVER

0411
0411 84 02
0413 CF

0414

03FF
03FF 80 FC 00
0402 75 04
0404 E8 0414 R
0407 CF

0408
0408 80 FC 02
040B 75 04
040D E8 0496 R
0410 CF

03C8 88 0000
03CB 8E CO
03CD 26: 8E 08 018E
03D2 26: SE 06 OODO
03D7 26: C6 06 004C 03
03DD 58
03DE 07

03DF 2E: C4 3E 0050 R
03E4 26: C7 45 OE 0401
03EA 26: 8C 40 10

03EE FA
03EF BE 0124 R
03F2 88 24
03F4 83 C6 02
03F 7 8B 04
03F9 SE DO
03FB FB

03FC E9 029E

03FF
03FF

84'1
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
888
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
888
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932

Driver Writer's Guide 471

RS-232 Mouse Driver

0419
0419 80 FE 40
041C 74 3E
041E 80 FE 41
0421 74 39
0423 80 FE 42
0426 74 08
0428 80 FE 43
042B 74 03

042D 84 FE
042F C3

Absolute movement

movement is r:

~

~

~

o TYPE • T KC BUTTON ?
aojult 0 sTATt & 0 TRANSITION

live nlw x pOlition
(OLD - NEW)
Relative movi • lNEW - OLD)
I.VI new)(rlltt VI

ah. RS_FAIL

bx.ds:D ABS X
bx ,ds :D-ABS-X
bx --
dl :D_REL_X, bx

dh, T KC BUTTON
IhorT button isr

cmp
j I

xc hg
• ub
neg
mov

cmp dh,T REL08 relat ive 8 bit movlmlnt
i e I h 0 rT relmo v I
cmp dh, T REL1~ relat ive 16 bi t movement
j e s h0 rT relmo ve
cmp dh, T ABSof absolute 8 bit movement
j e shorT abs move
cmp dh, T ABSl~ absolute 18 bit movement
j e s ho rT abl_move

If none of the above devicel, then this is a bad input device

, return RS FAIL
; return to-main driver

b I_move:

mov
ret
page...........................

We mUlt invert the Y axis to put into INDUSTRY STANDARD coordinate space.
MUlt convert 'Y' coordinatl luch that negative movement 11 upward (oPPolite

of HP-HIL definition.)
-- Set BX,CX (x,y ABSOLUTE movement) for 8vent record when done, then pu.

event record to parent driver.

(BX) is 'X' HP-HIL coordinate.
.~~~l.~:.~~~••• !.~~~.~~:~~l • D_SIZE_V - ABS_Y(hphil)

PARAMETERS

ON ENTRY.
AH • F ISR
DH • D-TYPE
DL • SOURCE Vector Index

For B~~~~n Ev:~tn~~;y~~d:hl~~~~lR~~~;~i~eig~fy~~d.d~l~ci~~Tfg~)rd
BX. Button transition information

bits O.. 6. buttons
bitl7: 0 up transition

1 down transition
For Mo v e me n t Eve n t (GIDE ven t Re cor d, 0 TYPE • T REL08, T REL16 ,

- T-ABS08, or T ABS16).
BX· AXIS-O IX) Movement in RAW data form-(SIGN EXTENDED, it necessary)
CX· AXIS-l Y) Movement in RAW data form (SIGN EXTENDED, if necessary)

ON EXIT:
AH • Return Codl (SET BY PARENT Drivlr)

REGISTERS ALTERED: aX,bx.cx

DEF I NI TION MOD I FICAT ION HI STORY

VERSION:

DESCRIPTION OF CHANGES:

A mo ve me n t 0 c cur red. I f t his was a nab 5 0 1ute de vic e
t hit mo ved, the n ad jus t the r e la t i vel 0 cat ion fie 1din the de sc rib e ric 0 rd.
If it was a relative device, then adjust the absolute location field
in the describe record.

BX,CX have X,Y movement respectively.

cau5e~ ~~a~~~~~ ~~P~~s~~viI~ ~~;D~v~~rS~~:1ae~~no~a~r~~~~rt~~nWhiCh
the D_STATE and D ~RANSITION fields will be adjusted and the parent
d r i v e r will be c aIle d i mm e d i a te 1 y .

If a the event WII a movement. this function will update the
absolute position field if the device is a relative device or will
update the relative position field if it's an absolute device It

.u~:~~*l~:~*~~H*l~:*~~~~~r*~~:~:~*l~*~andlethe movement event.

; NOTE: The POID driver takes HP-HIL 'Y' ads data and translates
it into INDUSTRY-STANDARD s~ace data (flips the Y ax1l).
~~D~~~R~~;Tg~st:i~~w~~~r~~ he upward direction, while

page
pgid_h r p roc near
-- - -- ---------------------------

See if this was a button event

80 FE 09
74 57

87 lE 0014
2B 1E 0014
F7 DB
89 lE 0018

0414

0414
0417

0430
0430
0434
0438
043A

933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

472 Driver Writer's Guide

RS-232 Mouse Driver

STANDARD coordinlte IpIC •.
movement 11 upward (oppolite

record when done, then pu.

, ~:~;n~~;e~~~t~;R function

return to main dr1ver

; ok to pUI event to parent

; ok to pall event to parent

invert for clearing the bit
clear the button to 0 (down)

(~~E~~~~ ~~~n!_tJu~~r~g~ ~~~e'lary)

add new X relative movement
Idd new Y relltive movement

'Y' limit
invert the axi.: bx • (LIMIT - y)
New ABS Y
~OLO - NEW}

s:~:t ~~: ~o~:l:t l~~W - OLD}

; bit 7 il up (1), down(O) bit

; get button I keycode in CL for Ihift
; keep button I, get rid of up/down flag
; put '1' in bit 0 of al
; set appropriate button bit muk

a1
dl 0 STATE,al

c 1, b 1
c1,01111111B
al,OOOOOOOlB
al, c 1

dl:O TRANSITION,a1 note which button changed

bl,UP O~N BIT , [bit 7] Was it UP • lor down • 0
I h0 r t -b u t to' n_ down

dl:O STATE,al ; set the button • 1 (up)
II h0 r f 9 i v e_ to _p a r.nt, 0 k top II I • v en t top are nt

10000000B

ble,dl:O ABS X
CX ,dl :O-ABS-Y
• h0 rt 9I 'Ie _f 0 _p are n t

dl:D REL X,bl(
ClC
dl :D_REl_Y, ClC

ds:D ABS X,bl(
dl : O-ABS-Y ,C l(

tel t
j Z

or
jmp

not
and

mov

equ

mov
and
mov
Ihl

jmp
page

add
Idd

mov
sub
leC hg
sub
neg
mov

mov
neg
mov

Assuming

fall through to GIVE TO PARENT code
j mp - g i ve _ t 0 _p Ire n t
page

ok top as s eve n t top are n t now

mov
mov
jmp
page...........................

Re 1 at 1v e mo v eme n t

mov
mov
INT
re t

pgid_ilr endp

lubttl PGID SYSTEM function

BX , CX • till con t a i n X, Y r ela t 1v e mo v eme n tin for mat ion for the eve n t r ecor d

; Call PARENT driver to handle the ISR
; NOTE: HPHIL driver has already adjusted D_SOURCE field, HPHIL 10 and other

relevant HPHIL 1nfo before passing the event up to here. -

Button Press/Release ISR
Ad ius t the 0 _ TRAN SIT ION In d 0_STAT E fie 1d S 0 f the ph Ysic aId evic e ' I
descr1be record

; Convert button number to bit malk corresponding
to the changed button

1. 0 n1yon e but ton can makeat ran lit ion atat i me

~. ~~e s~~l~~~ ~f1~u~~~~:r a~~e:e~~ (cxd~:~il~~~ ~~~~iable).
, Bl is number of button that changed

bit 7 is the up/down (1/0) f11g

We must 1nvert the Y al(1I to put into INDUSTRY
Mu.t convert 'Y' coord1nlte luch that negat1ve

of HP-HIL def1nition.)

-- Set BX,CX (:~~n~E~:~~~~ ~~v:~~~~l ~~Iv:~~nt

(BX) 11 'X' HP-HIl coordinate.:.l~~,~.~:.~~~ .. l.~~;.~i:~~l •• -REl_Y(hphil)]

reI_move:

84 00
88 2E OOOA
CO 6F
C3

0480
0480
048F
0493
0495
0496

• 0080

0470

0470 8A C8
0472 80 El 7F
0475 BO 01
0477 02 EO

0479 A2 OOOC

047C F6 C3 80
047F 74 06
0481
0481 08 06 0000
0485 EB 06
0487
0487 F6 DO
0489 20 06 0000

043E 8B IE 0012
0442 28 09
0444 87 IE 0016
0448 28 IE 0016
044C F7 DB
044E 89 OE 0018

0452 8B IE 0014
0456 8B OE 0016
045A EB 31

045C
045C, 89 IE 0018
0460 F7 09
0462 89 OE 001A

0465 01 IE 0014
046A 01 OE 0016

045E EB 10

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117

Driver Writer's Guide 473

RS-232 Mouse Driver
••• FUNCTION HEAgE~:••

. bad lubfunction code
; return to main driver

; check bounds
; out of range?

; lave bx, let bp·lubfunction code (al)

ah. RS_UNSUPPORTED

near

al,MAX PGID SYS FN
Ihort pg1d_iYI_6'ad

~~: ~i
bh. bh
bp, bl(

cl:word ptr pgid_sy._ca.e[bp]

mo"
ret

page
p roc

cmp
J a

xc hg
mov
xo r
xc hg

Jmp

NAME:

Thil function lupport! the HP SYSTEM lubfunctionl requelted of
the PGID driver. The lubfunction is checked to make lure that it
11 in the appropriate range.

NAME: PGID_SYSTEM

FUNCTIONAL DESCRIPTION:

FUNCTIONAL DESCRIPTION:

heade ~y :~dmd: ~~ ~ ig~ t ~~~ 0 ~~-:-IN~i is ls~0~E61 f~A ih~H~ h~~~I llD~i~~R eHAS

~~f~I~~I~~~o:~L o~~~R~~~I~~~e~~~~ ~~~~~Drnfo ~~l.~~:~~;of iil:dbl~ ~on
Only mUlt let default button ,tate. (all off (·1)).

PARAMETERS

ON ENTRY:
AH • F SYSTEM
AL • SF'_INIT

ON EXIT:
AH • Return Itatul (RS_SUCCESSFUL)

REGISTERS ALTERED: IX

DEFINITION MOOIFICATION HISTORY

VERSION:

PARAMETERS

ON ENTRY:
AH • F SYSTEM
AL • SYSTEM subfunction code

F SYSTEM Subfunctionl (in hex):
S; INItfunctionl not included are UNSUPPORTED)

SF-START
SF-REPORT STATE
SF=:VERSIO'CDESC

ON EXIT:

~s~u~~~~~6~¥~6 ~r~le~e'~~~~~~~~o~; ~~~ ~~~~:~c~!~~r~:dout of rang •.

REGISTERS PRESERVED:

DEFINITION MODIFICATION HISTORY

VERSION:

DESCRIPTION OF CHANGES:

dw
dw
dw
dw

MAX PGID SYS FN equ
pgio_ly.Tem - endp

I ub ttl PG I D_ I NIT Sy • t emS ub fun c t ion

•• ·FUNCT ION HEAgE~:••

... -
0496

0496 3C 06 90 90
049A 77 00

049C 87 EB
049E 8A 08
04AO 32 FF
04A2 87 EB

04A4 2E: FF A6 04AC R
04A9
04A9 B4 02
04AB C3

04AC
04AC 04B4
04AE 04BC
04BO 04BF
04B2 04C2
• 0008
04B4

1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
11315
1137
1138
113Q
1140
1141
1142
1143
1144
1145
11415
1147
1148
1149
1150
1151
1152
1153
1154
1155
1158
1157
1158
1159
11150
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210

474 Driver Writer's Guide

RS-232 Mouse Driver
DESCRIPTION OF CHANOES:

, •• ·FUNCT ION HEAgE~:••

Thh doe. not hlng

ah,RS_SUCCESSFUL; successful start up
return to ",aln driver

n. a r

ds :D_STATE, INIT_BUTTON_STATE ,all off

ah . RS SUCCESSFUL; sue c e s s f u 1 1 n 1t i all z a t 10 n
- ; r.turn to maln driver

palO_START Syste", Subfunctlon

paID_STATE Syste", Subfunction

p roc

"'0 v

NAME: paID_VERSION

FUNCTIONAL DESCRIPTION'
SYltem lubfunctlon SF VERSION DESC Report the veralon

numb.r of the driv.r. (Usl-stand,reI system v.rslon numb.r)

PARAMETERS

ON ENTRY:
AH • F SYSTEM
Al • S'_VERSION_OESC

NAME: paID STATE

FUNCTIONAL DESCRIPTION'

NAME: paID_START

FUNCT IONAL DE SCR I PT ION'

b~t r~{~~~mw~~~f~s~~~CCE~~r~l~RT-- start the driver.

PARAMETERS

ON ENTRY:
AH • F SYSTEM
AL • Sr__START

ON EXIT
AH • return statuI (RS_SUCCESSFUL)

REGISTERS ALTERED: ah

DEFINITION MODIFICATION HISTORY

VERSION:

DESCRIPTION OF CHANOES

Sy • tam I ub fun c t 10 n PO I D REPOR T STAT E - - r • p°r t t hi' t • t. oft h 1 I
d r lva r. (NOT SUPPORTED)

PARAMETERS

ON ENTRY:
AH • F SYSTEM
AL • Sr_REPORT STATE

ON EXIT:
AH • return ,tatul (RS_UNSUPPORTED)

REOISTERS ALTERED: ah,d.

DEFINITION MOOIFICATIOtf HISTORY

VERSION:

DESCRIPTION OF CHANOES:

...

;.a.FUNCTION HEAgE~:••

; ···FUNCTION HEAgE~:••

. .
pgid init proc n.ar
INIT=:8UTTON STATE .qu OFFh , all buttons open

...
pgld __ ltat. proc n.ar

"'0" ah'RS UNSUPPORTED ; function not supported
r.t - ; r.turn to mlln driver

:~gftl paID_VERSION Sy.tem Subfunction

0484
• DOFF

04B4 C6 06 0000 FF

04B9 B" 00
0488 C3
04BC

04BC

04BC B4 00
04BE C3
04BF

04BF
048F 84 02
04C1 C3
04C2

1211
1212
1213
121 ..
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
12
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
127.
1275
1278
1277
1278
1279
1280
1281
1282
1283
1284
1285
1288
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304

Driver Writer's Guide 475

..__ _ _ _--.-._ ..
END_OF _DRIVER

;LOCAL STACK USED DURING INITIALIZATION

DB 64 DUP (0)

ON EXIT'
AH • RS SUCCE SSF UL

lot~lrs)' see ~P __ IYltem_ ... ersion function.

REGISTERS AL TERED ah. IS, dl

DEFINITION MODIFICATION HISTORY

VERSION:

DESCRIPTION OF CHANGES:

RS-232 Mouse Driver
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319 04C2
1320 04C:- B4 00
1321 04C4 BB 5225
1322 04C7 B9 0010
1323 04CA OE
1324 04CB 07
1325 04CC 80 3E 0099
1326 0400 C3
1327 0401
1328
1329
1330
1331 0401
1332
1333
1334
1335 0401 40 [
1336 00
1337
1338
1339
1340 0511
1341 0511
1342
1343

Structures and records

STACK TOP·
CODE - ENDS

END

p roc
rna ...
ma ...
mo ...
pus~

pop
lea
ret
I ndp

n.ar
I~. RS SUCCESSFUL
bll. 522'5H
c x. VERSION LEN
c I -

el
di. cs:VERSION LAB

- ; ret urn t 0 PG 10ma i n d r i r

• f hlds
Width Mask I n it ial

0008 ~0001 8000 0000
0001 4000 0000
0001 2000 0000
0001 1000 0000
0001 0800 0000
0006 aHa 0000
0001 0010 0000
0001 0008 0000
0001 0004 0000
0001 0002 0000
0001 0001 0000
0017

N I m e

476 Driver Writer's Guide

Width
Sh i f t

0010
OOOF
OOOE
0000
oooe
OOOB
0005
0004
0003
0002
0001
0000
0020
0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
OOOA
OOOB
oooe
0000
OOOE
0010
0012
0014
0016
0018
001A
001C
001E
0010
OOOF
OOOE
0000
oooe
0009
0008
0007
oooe
0004

0000
0001
0001
0001
0001
0003
0001
0001
0001
0002

8000
4000
2000
1000
OEOO
0100
0080
0040
0030

0000
0000
0000
0000
0000
0000
0000
0000
0000

RS-232 Mouse Driver
PSHAR E 0003 0001 0008 0000CSHARE 0002 0001 0004 0000ROM 0001 0001 0002 0000B 0000 0001 0001 0000HP _HEADER. 0010 0009
DH ATR 0000
DH-NAME' INDEX. 000,,. DH-Y DErAULT 0004
DH-P-CLASS 0006
DH-C-CLASS 0008
DH-Y-PARENT OOOA
DH-V-CHILD OOOC
DH-M:AJOR OOOE
DH-M1NOR OOOF

REQ READER 0017 OOOA
RR LENGTH 0000
RH-UNIT CODE 0001
RH-CMD CODE 0002
RH-STATus 0003
RH-RESERVED 0005
RH-UNIT CNT 0000
RH-END OFF OOOE
RH-END-SEG 0010
RH-BPB- 0012
RH-DRIY: 0016

STATOS 0010 0005
ERROR. OOOF 0001 8000 0000
Z. OOOA 0005 7COO 0000
BUSY 0009 0001 0200 0000
DONE 0008 0001 0100 0000
ERR_TYPE 0000 0008 OOFF 0000

Segments and Groups:

N • m e 51 Ie A11g n Combine Cla ..

CODE 0511 PARA PUBL IC 'COOE'

Symbols

N a m e Type Val ue At t r

ABS MOYE NEAR 0430 COOE,. BAD-'CMD NEAR 0292 CODE
B1 SR"2 NEAR OlFA CODE
BUTTON DQl,.JN: NEAR 0487 CODE
BU TTON-'r SR NEAR 0470 CODE
BUTTON-TAB BYTE OlF7 CODE
BUTTON-UP NEAR 0481 CODE
CHE CK r SYS TEM NEAR 0408 CODE
CMD TAB[E 'WORD 0152 CODE
COt,CMSG BYTE 00C1 CODE
COM-=NUMBER L 'WORD 0128 COOE
CR Number 0000
DEBUG A1~ .. TRUE
DEV ATTR Numb e r ACla
DEV-DESCRIBE l 0020 0030 CODE
DEV-DR rVE R F PROC 0000 CODE Lengt h -03FF
DEV-HEADER L 0010 0020 CODE
DEV:=rNTERRUPT F PROC 0270 COOE Length ·Ol8F
DEV STRATEGY F PROC 02es CODE Length -OOOB
DOS--ENTRY Number 00,1
DRIVER ATTR L 'WORD 0004 COOE
DR 1VER--NAME L BYTE OOOA CODE
END OF=ORIYER L NEAR 0401 CODE
EXIT L NEAR 029E CODE
FALSE Numtler 0000
FRAME COUNT L 'WORD 013A CODE
F INQOIRE ENTRY Number OOOC
F--INS BASrHPVT Number 0004
F--r NS --XCHGF RE E Number OOOA
F-rO CONTROL Number 0004
F-ISR" Numbe r 0000
F-SYSTEM Number 0002
GIVE TO PARENT L NEAR 04P-D CODE
HPHI[ADD L BYTE 0150 CODE
HPHIL -TABLE L BYTE 0142 CODE Length -OOOE
HP ENTRY Number 006F
IC-l L NEAR 02CS CODE
Ie-l0 L NEAR 0363 CODE
IC--2 L NEAR 02DA CODE
rC-3 L NEAR 02E F CODE,. IC-4 L NEAR C2F 6 CODE
IC-4A L NEAR 0314 CODE
INIT 3 L NEAR 017C CODE
INIT-BUTTON STATE Number OOF F
I NI T-eODE L NEAR 02A7 CODE
INIT-EXIT L NEAR 03C6 CODE
INI T-~O POR T L NEAR 0382 CODE
r NI T-NO--VEC TOR L NEAR 03A9 CODE

Driver Writer's Guide 477

RS-232 Mouse Driver

478 Driver Writer's Guide

NtAR
WORD
WORD

L BYTE
Numbe r
L WORD
E BYTE
L NEAR
l NEAR
l NEAR
l NEAR
l NEAR
l NEAR
l NEAR
Number
Number
Number
Numbe r
Numbe r
Number
Numbe r
Numbe r
Number
Numbe r
Numb. r
Numb. r
Number
Number
Numblr
Number
Numbl r
Numbe r
Number
Number
Numb. r
Number
Number
Number
Number
Numbe r
Numbe r
Number
Numbe r
Number
l NEAR
l NEAR
l NEAR
l NEAR
l NEAR
L BYTE
l BYTE
l BYTE
N PROC
N PROC
N PROC
l NEAR
N PROC
N PROC
N PROC
l NEAR
l NEAR
l BYTE
N PAOC
Numb.r
l NEAR
l WORD
l WORD
E DWORD
Numb e r
Number
Number
Numbe r
Numbe r
Numbe r
L BYTE
L WORD
l WORD
L NEAR
l WORD
l BYTE
Numbe r
Numbe r
Number
Numbe r
Numb., r
Numb e r
L NEAR
Numbe r
L BYTE
Number
Number
Number

0388
0008
012A
0141
OOOA
0132
0006
0108
01E6
01E8
OlE2
021F
0172
041Q
0005
0002
0004
OOOE
0000
OOOC
0000
0004
0007
0005
0006
0003
OOOC
0001
0002
0008
oooe
OOOA
0009
0009
0008
OOOF
0008
0006
0003
0007
0001
OOOA
0000
004C
01A2
018S
0225
0230
0260
00C8
0103
00A8
03FF
0484
0414
0411
04BC
04BF
0496
04049
04AC
0151
04C2
0009
04SC
0050
0052
0011
0006
OOrE
00f6
0000
0002
0002
0054
0124
0126
OS 11
0006
013C

- 0001
0(142
0043
0009
0040
0041
0292
0080
0099
0010
OJ06
ooce

COOE
Coof
COOE
CooE

CooE

CooE
CODE
CODE
CODE
CODE
CODE
CooE

CooE
CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE
CooE
CODE
CODE
CODE
CODE
CODE
CooE
CooE
CooE

CooE
CODE
CooE

CODE
CODE
CODE
CODE
COOE
CooE

COOE

COOE

~~~~~~ _6~OXth -0015
length -0082

Lengt h -0003
l.ngt h -0003
llngth -DOlE

llngt h -OOOF

le n9 t h -0005



,..
RS-232 Mouse Driver
V SINPUT
V=:SYSTEM

.0380 Bytes free

Warning Severe
E r ro r 5 E r ro r 5
o 0

Numb. /' 002A
Number 0012

615 623.
5028

1001 1021_
263

87335.3.8341

835

1111

13.1

759
338

1058
1058

480

828

808

898

694
338

1218

1054

1037
1038

570

819

865
596

255

691
332

.52

1099

1032

1023
1030

274

866

6001
5921

197

1027

1095
1090

1331.

626

863

.~

.39
778

793
808
521
912

1025
1056

1022
1029

1112
631
681

1097.
1080.

4991

SOl
1661
76'

203.
2731
284.
258'
274.
265
264
153.
157.
160.
161.
154.
156.
159.
155.
158.

92_
140_
263'
266.
190.
191.
194.
195.
182.
1751
171'
170_
172.
17••
1781
184.
192.
193.
181.
187.
188.
189.
168'
186.
18S.
183.
173.

850
203.
92.
92.

631.

.8.
371.
220.
212'
213.
218_
218.
217.

203.
999

76.

203.
613
498
92.

1093
984
496

1094.

907 9111
76'

387. 619
253. 253
338' 702
3601 432
145' 329
2031

A, ...
ABS MOVE
ATTR"

B.. ' .
BAD CMO.
BISR"2
BUSY ....
BUTTON DOWN.
BUTTON-ISR
BUTTON-TAB
BUTTON=:UP

CHECK F SYSTEM
CLK . . .
CMC TABLE.
coor ..
COM MSO ..
COM-NUMBER
CR ~ .
CSHARE

DEBUG. .
DESCRIBE
DEV ..
OEVCFG
OEV ATTR . .
OEV-DESCRIBE
OEV-OR IVER
DEV-HEADER
DEV-INTERRUPT.
DEV-STRATEGY
DH ~TR . .
DH-C CLASS
D~CM~JOR
OH-MINOR . . .
DH-NAME INDEX.
OH-P CL~SS
DH-V-CHILO .
OtCV-OEFAULT
OH-V-PARENT.
OO'RE- .
DOS ENTRY
DRIVER ATTR.
DR IVE R-NAME .
DABS X.
O-ABS-Y. .
D-ACCUM X.
O-ACCUM-Y. .
O-BURST-LEN.
O-CLASS~ . .
O-OESC MASK.
O-HPHI[ 10
0-10 MASK
O=:MAX_AXIS
o PROMPTS.
D-RO REG
D-RE[ X.
O-REL -Y ..
D-RESrRVED
D-R ESOLUT ION
O-SIZE X
D-SIZE-Y
O-SOUR~E
O-STATE. .
O-TRANS I TION
OWR REG .
o=:XOrSC_MASK

END OF DR IVER .
ENTR'Y . -.
ERROR. .
ERR TYPE
EXIT

FALSE. . . .
FRAME COUNT. . .
F INQUIRE ENTRY.
F-INS BASrHPVT
F-INS-XCHGFREE
F-IO CONTROL
F-ISIf. .
F=:SYSTEM

,..

,.

Driver Writer's Guide 479



RS-232 Mouse Driver

340. 824
350. 817
76.
76.

334. 833

616355

1113

349

843

349

810

338

694.

804

57.1

926

338

681

181

11101

513

450.

831.

551

685

905.
1222
1115

1256
1289
1181

1180
566

1327

1098

612

827

160

845
446
459.
541'

455

1514

899
1215.

979.
922'

1252.
1286.
1157.
1168.
1175.

515
1319.

680
7731
8821
878
6991
118.
190.

1218
8411
821
8221
8151
8291

770
1180.

535
487.
4911

5321
163

1064

787
1176

908
913

1177
1178

914
1160
1167
383.

1179

78.
8701
772
672
675
692
713
784

12161
387
820
714
799
813
265.
3621

761
2031

3761 462
1441 329

203.
3661

1159
4751
480
485
482.
478
4121
9931
109.
122.
1081
1341
1331
1161
120.
124.
1271
1251
126.
123.
1321
121.
1061
128.
131.
130.
1291
113.
1151
135.
112.
110.
107.
111.
1051
114.
104.
1991
441
454
465
550.
448

1039

203.
382.
378.
203. 273
225. 524
151. 163

GIVE_TO_PARENT

HP ....
HPHIL ADD.
HPHIL-TABLE.
HP ATTR.
HP-ENTRY .
HP=HEAOER.

IBM.
IC 1 .
IC-I0.
IC-2
IC-3
IC-4 .
IC-4A.
INTT 3 . . . . . .
INIT-BUTTON STATE.
INIT-COOE. ~
INIT-EXIT. .
INIT-NO PORT .
INIT-NO-VECTOR
INIT-OK~ .
INT tNT.
INT-TABlE
IOCTL.
ISR.

LAST SYNCH
LF -

MAP CALL .
MASK TABLE . . .
MAX 'PGID SYS FN.
MBUTTON .-. .
MBUTTON DOWN
MBUTTON-ISR.
MBUTTON-UP .
MNEXT BUTTON
MOUSE-INT. .
MOVEMtNT I SR .
MSO BAD [ENGTH
MSO-BlO-BPB. .
MSO-CRC-ERROR.
MSO-DEV-CLOSE.
MSO-OEV-OPEN . .
MSO-GEN-FAILURE.
MSO-INIT .
MSO-INPUT. .
MSO-I N FLUSH .
MSO-IN-NOWAIT.
MSO-IN-STATUS.
MSO-IOCTL IN .
MSO-IOCTl-OUT.
MSO-MEO IA-CHK .
MSO-NOT R~Y.

MSO-OUTlSUT . .
MSO-OUT FLUSH.
MSO-OUT-STATUS
MSO-OUT-VE RIF Y
MSO-PAPE"R OUT.
MSO-READ rAUL T
MSO-REM ~EOIA. . .
MSO-SEC-NOT FOUND.
MSO-SEER' ERlOR
MSO-UNKNOWN CMO
MSO-UNKNOWN-MEOIA.
MSO-UNKNOWN-UNIT
MSOWRITE F~ULT.
MSOWR I TE-PROT
MSE-NUM BUTTON
MSI-l. -
MSI-2.
Msr-3.
MSI-4.
MSI=:5

NO PORT MSG.
NO-VECTOR.
NU[ .
OCREM.
OK_MSG

PGIO DRIVER.
PGIO-INIT.
PGIO-ISR . . . .
PG IO-OPCODE BAD.
PGIO-START 
PGID-STATE .
PGIO-SYSTEM.
PG IO-SYS BAD .
PGIO-SYS-CASE.
PGIO-VEeT NUM.
PGID-VERSION

480 Driver Writer's Guide



RS-232 Mouse Driver
PRINT STR. 1391 880 818 825 834
PSHARt 2031

REL MOVE 995 997 10531'
REQ-HDR OFF 315. 593 610 849
REQ-HDR-SEG. 316. 594
REQ-HEA[5ER 56. 69
RH gPB 66. 71
RH-CMD CODE: 60. 611
RH-CMD-LINE. 71. 667
RtCDR IV. 671
RH-END OFF 64. 850
RH-END-SEG 65. 851
RH-LENGTH. 58.
RH-RESERVED: 62.
RH-STATUS. 611 82e e27 831
RH-UNIT CNT. 631
RH-UNIT,=COOE 59.
RO~. 2031
RS DONE: 2391
RS-FAIL. 240' 1006
RS-NO VECTOR 241' 798
RS-SUCCESSFUL: 237. 1220 1254 1320
RS=:UNSUPPORTED 238. 783 923 1169 1287

SF MOUSE OVERR IDE. 223. 807
SInN ON_~sa. 318. 859
SPEC- . 76'
STACK PTR: 357' 848 856
STACK-SEa. 358.
STACK-TOP. 851 1340.
STA TUS 921
STDl 76.
STDO 76.
STR. 203'
STRAT' E~H: 2641
SUBADC5 2031

TEMP BUFFER. 372. 450 461 542 544 548 548TRUE- . 49. SO
TYPE 2031
T ABS06. 232. 998
T-ABS16. 233. .LOOO
T-KC BUTTON. 2291 514 983
T-RE[08. 230. 994,. r:=:REL16. 231. 564 996

UNSUPPORT _CMD. 388 389 390 391 392 393 394 395 398 397 398 399 400 401
402 8241

UP _DOWN_BIT. 1078. 1092

VE RS ION LAB. 3301 333 1325
VERSION-LEN. 3331 1322
V DOLI TTLE 209. 274
V-LHPMOUSE 222' 274 808 844
V-SINPUT 215. 522 571 779
V=SYSTEM 211. 794

X. 781

Y. 781

Z. 921

220 Symbols

50960 Bytes F rle

Driver Writer's Guide 481



482 Driver Writer's Guide



APPENDIX H

H. ASCII AND SCANCODE CONVERSION
TABLES

The following tables provide information for decimal-hexadecimal-ASCII conversions and
Keystroke-scancode-Keycode conversions.

Table H.1

Decimal-Hexadecimal-ASCII Conversion

Dec Hex ASCII Dec Hex ASCII Dec Hex ASCII Dec Hex ASCII

0 00 NUL 32 20 SP 64 40 @ 96 60 ,
1 01 SOH 33 21 ! 65 41 A 97 61 a
2 02 STX 34 22 II 66 42 B 98 62 b
3 03 ETX 35 23 # 67 43 C 99 63 c
4 04 EaT 36 24 $ 68 44 D 100 64 d
5 05 ENQ 37 25 °10 69 45 E 101 65 e
6 06 ACK 38 26 & 70 46 F 102 66 f
7 07 BEL 39 27 I 71 47 G 103 67 9
8 08 BS 40 28 ( 72 48 H 104 68 h
9 09 HT 41 29 ) 73 49 I 105 69 I

10 OA LF 42 2A * 74 4A J 106 6A J
11 DB VT 43 2B + 75 48 K 107 6B k
12 OC FF 44 2C I 76 4C L. 108 6C I
13 00 CR 45 20 - 77 40 M 109 60 m
14 DE SO 46 2E 78 4E N 110 6E n
15 OF 51 47 2F / 79 4F 0 111 6F 0

16 10 DLE 48 30 0 80 50 P 112 70 P
17 11 DC1 49 31 1 81 51 Q 113 71 q
18 12 De2 50 32 2 82 52 R 114 72 r
19 13 DC3 51 33 3 83 53 S 115 73 s

ASCII and Scancode Conversion Tables 483



Dec Hex ASCII Dec Hex ASCII Dec Hex ASCII Dec Hex ASCII

20 14 DC4 52 34 4 84 54 T 116 74 t
21 15 NAK 53 35 5 85 55 U 117 75 u
22 16 SYN 54 36 6 86 56 V 118 76 v
23 17 ETB 55 37 7 87 57 W 119 77 w

24 18 CAN 56 38 8 88 58 X 120 78 x
25 19 EM 57 39 9 89 59 y 121 79 y
26 1A SUB 58 3A 90 SA Z 122 7A z
27 18 ESC 59 38 I 91 58 [ 123 78 {
28 1C FS 60 3C < 92 5C "- 124 7C }29 10 GS 61 3D = 93 50 ] 125 70
30 1E RS 62 3E > 94 5E 1\ 126 7E -
31 1F VS 63 3F 7 95 SF - 127 7F DEL /\

Table H.2

Scancode Conversion Table

Key AT Hp Unshifted Shifted
Number Scancode Scancode Key Cap ASCII Hex ASCII Hex Control Alt

90 076H 001H ESC esc 1BH esc 1BH 1BH -
02 016H 002H 1 '1' 31H '1' 21H - OO/78H
03 01EH 003H 2 '2' 32H '@' 40H OOH OO/79H
04 026H 004H 3 '3' 33H '#' 23H - OO/7AH
05 02SH OOSH 4 '4' 34H '$' 24H - OO/7BH
06 02EH 006H 5 '5' 35H 'a/a' 25H - OO/7CH
07 036H OD7H 6 '6 ' 36H 'A' SEH 1EH DO/7DH
08 03DH D08H 7 '7' 37H '&' 26H - DO/7EH
09 03EH OD9H 8 '8' 38H '*' 2AH - DO/7FH
10 046H OOAH 9 '9' 39H 'C 2BH - OO/BOH
11 045H OOSH 0 '0' 30H ') , 29H - OO/81H
12 04EH OOCH ' , 2DH

, ,
5FH 1FH OO/82H-

13 055H OODH =
,
=

, 3DH '+' 2BH OO/B3H-

15 066H OOEH backspace bs 08H bs 08H 7FH -

16 OODH OOFH Tab tab 09H si OFH - --

17 015H 010H Q 'q' 71H 'Q' 51H 11H OO/10H
18 01DH 011H W 'w' 77H 'w' 57H 17H OO/11H
19 024H 012H E 'e' 65H 'E' 45H 05H OO/12H
20 02DH 013H R 'r' 72H 'R' 52H 12H OO/13H
21 02CH 014H T 't' 74H 'T' 54H 14H OO/14H
22 035H 015H y 'y' 79H 'Y' 59H 19H OO/15H
23 03CH 016H U 'u' 75H 'u' 55H 15H OO/16H
24 043H 017H I 'i' 69H 'I' 49H 09H OO/17H
25 044H 018H 0 '0' 6FH '0' 4FH OFH OO/18H

484 ASCII and Scancode Conversion Tables

~

~

~



Key AT Hp Unshifted Shifted
Number Scancode Scancode Key Cap ASCII Hex ASCII Hex Control Alt

26 040H 019H P l 70H 'P' 50H 10H OO/19H
27 054H 01AH [ 5BH '{ , 7BH 1BH -
28 05BH 01BH ] ']' 50H '} , 70H 10H -
43 05AH 01CH Enter er OOH er OOH OAH -

30 014H 010H CTRL - - - - - -

31 01CH 01EH A 'a' 61H 'A' 41H 01H OO/1EH
32 01BH 01FH 5 's' 73H '5' 53H 13H OO/1FH
33 023H 020H D 'd' 64H 'D' 44H 04H OO/20H
34 02BH 021H F 'f' 66H 'F' 46H 06H OO/21H
35 034H 022H G 'g' 67H 'G' 47H 07H OO/22H
36 033H 023H H 'h' 68H 'H' 48H 08H OO/23H
37 03BH 024H J 'f 6AH 'J' 4AH OAH OO/24H
38 042H 025H K 'k' 6BH 'K' 4BH OBH OO/25H
39 04BH 026H L 'I' 6CH 'L' 4CH OCH OO/26H
40 04CH 027H '.' 3BH '.' 3AH - -, ,

41 052H 028H ,
'" 27H "" 22H - -

01 OOEH 029H I #I , 60H ' - , 7EH --
44 012H 02AH Left Shift - - - - - -
14 050H 02BH "- ' "- ' 5CH 'I' 7CH 1CH -
46 01AH 02CH Z 'z' 7AH 'z' 5AH 1AH OO/2CH
47 022H 020H X 'x' 78H 'X' 58H 18H OO/20H
48 021H 02EH C 'e' 63H 'C' 43H 03H OO/2EH
49 02AH 02FH V 'v' 76H 'V' 56H 16H OO/2FH
50 032H 030H 8 'b' 62H '8' 42H 02H OO/30H
51 031H 031H N 'n' 6EH 'N' 4EH OEH OO/31H
52 03AH 032H M 'm' 60H 'M' 40H OOH OO/32H
53 041H 033H ' , 2CH '<' 3CH, , - -

54 049H 034H ' , 2EH '>' 3EH - -
55 04AH 035H / 'I' 2FH '7' 3FH - -
57 059H 036H Right Shift - - - - - -

106 07CH 037H Prt Se '*' 2AH - - OO/72H -
58 011H 038H Alt - - - - - -

61 029H 039H Space ' , 20H ' , 20H 20H 20H
64 058H 03AH Caps lock - - - - - -
70 005H 03BH F1 - 3BH - 54H OO/5EH OO/68H
65 006H 03CH F2 - 3CH - 55H OO/5FH OO/69H
71 004H 030H F3 - 30H - 56H OO/60H OO/6AH
66 OOCH 03EH F4 - 3EH - 57H OO/61H OO/6BH
72 003H 03FH F5 - 3FH - 58H OO/62H OO/6CH
67 OOBH 040H F6 - 40H - 59H OO/63H OO/60H
73 083H 041H F7 - 41H - 5AH OO/64H OO/6EH
68 OOAH 042H F8 - 42H - 5BH OO/65H OO/6FH
74 001H 043H F9 - 43H - 5CH OO/66H OO/70H
69 009H 044H F10 - 44H - 50H OO/67H OO/71H

ASCII and Scancode Conversion Tables 485



NumLock None Or
Key AT Hp or NumLock
Number Scancode Scancode Key Cap Shift and Shift Control

95 077H 045H Num lock - 45H - -
100 07EH 046H ScrLck - 46H - -

91 06CH 047H Home '7' 37H OO/47H 0077H
96 075H 048H i '8' 38H OO/48H -

101 07DH 049H Pg Up '9' 39H OO/49H OO/84H
107 07BH 04AH - ' , 3AH 3AH- -
92 06BH 04BH +- '4' 34H OO/4BH OO/73H
97 073H 04CH 5 '5' 35H - -

102 074H 04DH ~ '6' 36H OO/4DH OO/74H
108 079H 04EH + '+' 2BH 2BH -

93 069H 04FH End '1' 31H OO/4FH OO/75H
98 072H OSOH j. '2' 32H DO/SOH -

108 07AH 051H Pg Dn '3' 33H OO/S1H OO/76H
99 070H 052H Ins '0' 30H OO/52H -

104 071H 053H DEL ' , 2EH OO/53H -

105 084H 054H Sys req - - - -

486 ASCII and Scancode Conversion Tables



Key AT Hp Unshifted Shifted
Number Scancode Scancode Key Cap ASCII Hex ASCII Hex Control Alt

055H - undef.
056H - undef.
057H - undef.
058H - undef.
059H - undef.
05AH - undef.
05BH - undef.
05CH - undef.
050H - undef.

59 05EH Unlabled-L OO/07H OO/BDH OO/A3H OO/89H
62 05FH Unlabled-R OO/08H OO/BEH OO/A4H OO/8AH

113 060H CCP-Up OO/09H OO/BFH OO/ASH OO/8BH
111 061H CCP-Lft OO/OAH OO/COH OO/A6H OO/8CH
115 062H CCP-Dn OO/OBH OO/C1H OO/A7H OO/80H
118 063H CCP-Rht OO/OCH OO/C2H OO/A8H OO/8EH
110 064H CCP-Home OO/DOH OO/C3H OO/A9H OO/8FH
117 065H CCP-PgUp OO/OEH OO/C4H OO/AAH OO/90H
112 066H CCP-End OO/OFH OO/C5H OO/ABH OO/91H
119 067H CCP-PgDn OO/EOH OO/C6H OO/ACH OO/92H
116 068H CCP-Ins OO/E1H OO/C7H OO/AOH OO/93H
120 069H CCP-Del OO/E2H OO/C8H OO/AEH OO/94H
114 06AH CCP-CNTR OO/E3H OO/C9H OO/AFH OO/95H

06BH - undef. OO/E4H OO/CAH OO/BOH OO/96H
06CH - undef. OO/E5H OO/CBH OO/B1H OO/97H
060H - undef. OO/E6H OO/CCH OO/B2H OO/98H
06EH - undef. OO/E7H OO/COH OO/B3H OO/99H
06FH - undef. OO/E8H OO/CEH OO/B4H OO/9AH

121 070H f1 OO/E9H OO/CFH OO/B5H OO/9BH
122 071H f2 OO/EAH OO/OOH OO/B6H OO/9CH
123 072H f3 OO/EBH OO/01H OO/B7H OO/90H
124 073H f4 OO/ECH OO/02H OO/B8H OO/9EH
125 074H f5 OO/EOH OO/03H OO/B9H OO/9FH
126 07SH f6 OO/EEH OO/04H OO/BAH OO/AOH
127 076H f7 OO/EFH OO/05H OO/BBH OO/A1H
128 077H f8 OO/FOH OO/06H OO/BCH OO/A2H

078H through 7FH-undef.

ASCII and Scancode Conversion Tables 487



488 ASCII and Scancode Conversion Tables



APPENDIX I

I. HEXADECIMAL ARITHMETIC

For use as a quick reference, the following tables are provided. Table 1.1 shows the conversion
from decimal-hexadecimal. Table 1.2 is a simple hexadecimal addition table and table 1.3 is a
simple hexadecimal multiplication table.

Table 1.1 converts from hexadecimal to/from decimal for the first 256 decimal numbers.

Table 1.1

Decimal to Hexadecimal Conversion Chart

Dec Hex Dt~c Hex Dec Hex Dec Hex
0 00 21 15 42 2A 63 3F
1 01 22 16 43 28 64 40
2 02 23 17 44 2C 65 41
3 03 24 18 45 2D 66 42
4 04 25 19 46 2E 67 43
5 05 26 1A 47 2F 68 44
6 06 27 18 48 30 69 45
7 07 28 1C 49 31 70 46
8 08 29 1D 50 32 71 47
9 09 30 1E 51 33 72 48

10 OA 31 1F 52 34 73 49
11 OB 32 20 53 35 74 4A
12 OC 33 21 54 36 75 48
13 OD 34 22 55 37 76 4C
14 OE 35 23 56 38 77 4D
15 OF 36 24 57 39 78 4E
16 10 37 25 58 3A 79 4F
17 11 38 26 59 3B 80 50
18 12 39 27 60 3C 81 51
19 13 40 28 61 3D 82 52
20 14 41 29 62 3E 83 53

Hexadecimal Arithmetic 489



Dec Hex Dec Hex Dec Hex Dec Hex

84 54 127 7F 170 AA 213 D5
85 55 128 80 171 AB 214 D6
86 56 129 81 172 AC 215 D7
87 57 130 82 173 AD 216 D8
88 58 131 83 174 AE 217 D9
89 59 132 84 175 AF 218 DA
90 5A 133 85 176 BO 219 DB
91 5B 134 86 177 B1 220 DC
92 5C 135 87 178 B2 221 DD
93 5D 136 88 179 B3 222 DE
94 5E 137 89 180 B4 223 DF
95 5F 138 8A 181 B5 224 EO
96 60 139 8B 182 B6 225 E1
97 61 140 8C 183 B7 226 E2
98 62 141 8D 184 B8 227 E3
99 63 142 8E 185 B9 228 E4

100 64 143 8F 186 BA 229 E5
101 65 144 90 187 BB 230 E6
102 66 145 91 188 BC 231 E7
103 67 146 92 189 BD 232 E8

.~104 68 147 93 190 BE 233 E9
105 69 148 94 191 BF 234 EA
106 6A 149 95 192 CO 235 EB
107 6B 150 96 193 C1 236 EC
108 6C 151 97 194 C2 237 ED
109 6D 152 98 195 C3 238 EE
110 6E 153 99 196 C4 239 EF
111 6F 154 9A 197 C5 240 FO
112 70 155 9B 198 C6 241 F1
113 71 156 9C 199 C7 242 F2
114 72 157 9D 200 C8 243 F3
115 73 158 9E 201 C9 244 F4
116 74 159 9F 202 CA 245 F5
117 75 160 AO 203 CB 246 F6
118 76 161 A1 204 CC 247 F7
119 77 162 A2 205 CD 248 F8
120 78 163 A3 206 CE 249 F9
121 79 164 A4 207 CF 250 FA
122 7A 165 A5 208 DO 251 FB
123 7B 166 A6 209 D1 252 FC
124 7C 167 A7 210 D2 253 FD
125 7D 168 A8 211 D3 254 FE
126 7E 169 A9 212 D4 255 FF

490 Hexadecimal Arithmetic



Table 1.2

Hexadecimal Addition

I 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 1 2 3 4 5 6 7 8 9 A 8 C D E F
1 1 2 3 4 5 6 7 8 9 A 8 C D E F 10
2 2 3 4 5 6 7 8 9 A 8 C D E F 10 11
3 3 4 5 6 7 8 9 A 8 C D E F 10 11 12
4 4 5 6 7 8 9 A 8 C D E F 10 11 12 13
5 5 6 7 8 9 A 8 C D E F 10 11 12 13 14
6 6 7 8 9 A 8 C D E F 10 11 12 13 14 15
7 7 8 9 A 8 C D E F 10 11 12 13 14 15 16
8 8 9 A 8 C D E F 10 11 12 13 14 15 16 17
9 9 A 8 C D E F 10 11 12 13 14 15 16 17 18
A A 8 C D E F 10 11 12 13 14 15 16 17 18 19
8 8 C D E F 10 11 12 13 14 15 16 17 18 19 1A
C C D E F 10 11 12 13 14 15 16 17 18 19 1A 18
D D E F 10 11 12 13 14 15 16 17 18 19 1A 18 1C
E E F 10 11 12 13 14 15 16 17 18 19 1A 18 1C 1D
F I F 10 11 12 13 14 15 16 17 18 19 1A 18 1C 1D 1E

Hexadecimal Arithmetic 491



Table 1.3

Hexadecimal Multiplication

I 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 A 8 C D E F
2 0 2 4 6 8 A C E 10 12 14 16 18 1A 1C 1E
3 0 3 6 9 C F 12 15 18 18 1E 21 24 27 2A 2D
4 0 4 8 C 10 14 18 1C 20 24 28 2C 30 34 38 3C
5 0 5 A F 14 19 1E 23 28 2D 32 37 3C 41 46 48
6 0 6 C 12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A
7 0 7 E 15 1C 23 2A 31 38 3F 46 4D 54 58 62 69
8 0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78
9 0 9 12 18 24 2D 36 3F 48 51 5A 63 6C 75 7E 87
A 0 A 14 1E 28 32 3C 46 50 SA 64 6E 78 82 8C 96
8 0 8 16 21 2C 37 42 4D 58 63 6E 79 84 8F 9A A5
C 0 C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 84
D 0 D 1A 27 34 41 4E 58 68 75 82 8F 9C A9 86 C3
E 0 E 1C 2A 38 46 54 62 70 7E 8C 9A A8 86 C4 D2
F I 0 F 1E 2D 3C 48 SA 69 78 87 96 A5 84 C3 D2 E1

492 Hexadecimal Arithmetic



Glossary

Adapter: A circuit board containing electronic circuitry that interfaces a peripheral to the
system processor board.

Adapter Card: See ADAPTER

Alphanumeric Display Mode: One of the Video Display Adapter modes. When this mode is
selected, data is displayed in character cells, organized in rows and columns on the screen.

Application Programs: Software that performs application specific tasks. Word processors,
spreadsheets, and data bases are examples of application programs.

Barcode Reader: An input device that is used to scan surfaces containing barcodes. The
barcode reader converts barcodes into scancode data format, and transmits the scancodes to an
input interface.

Baud Rate: The rate a signal changes state. When used with relationship to RS-232 ports, it is
synonymous with the data transfer rate, expressed in bits-per-second (BPS).

BIOS: Basic Input/Output System. The BIOS is the code module that contains the drivers that
constitute the software interface between the hardware, and system software and application
programs.

Bootstrap: The process of initializing the system and loading system software after a reset.

Bucket: A data structure used by the EX-BIOS string functions for alphanumeric string
management.

Character Code: A word returned by the keyboard driver indicating a key stroke. The character
code consists of a keyboard scancode, and either an Extended (OOH) or ASCII character.

Checksum: An error-checking protocol used to verify the integrity of a block of data or code.
Each byte or word in the block is summed, then added to a Checksum Byte. The block of data or
code is presumed valid if this sum equals a predefined value, usually O.

Checksum Byte: A byte added to the sum of a block of code or data to produce a valid sum.

Child Driver: A child driver is called by another driver when it is unable to perform a function
requested of it. Child drivers perform lower level or more hardware specific tasks than their
calling drivers.

Clipping: The process utilized when dealing with graphics coordinates outside of the logical
coordinate space. The Input System clips coordinates so that they don't exceed the boundaries of
the logical coordinate space.

Glossary 493



CMOS Memory: RAM memory on the Processor Board that is powered by both the system
power supply and battery. When the system power is turned off, the contents of the RAM
memory are preserved by the battery.

Code Module: A group of related processor instructions.

Code Segment «(5): The segment address of the code module currently being executed.

Coprocessor: An add-on processor that works with the 80286 processor that is found on the
SPU. The 80287 is an example of a specialized coprocessor for floating point arithmetic.

Cursor Control Pad: The keypad containing cursor control keys.

Cylinder: A term used with multi-platter disc mechanisms, a cylinder is a group of sectors
having the same track number on each of the platters.

Daisy Chain: A method of linking devices together in a serial configuration. Input devices on
the HP-HIL loop are connected in a daisy chain.

Data Segment (OS): The segment address of the data currently being accessed.

Data Structures: A related group of data fields.

Describe Record: A data structure utilized by the Input System which contains information
characterizing an input event.

Device: A physical piece of hardware, e.g. a touch screen, mouse, keyboard, dot matrix printer,
ThinkJet, or LaserJet.

Disc Partitions: A group of cylinders within a hard disc volume allocated to a specified
operating system, and its associated programs and data.

Disc Volumes: A group of cylinders comprising a logical disc. The optional 40 Mbyte hard disc
is divided into two disc volumes containing 20 Mbytes each. The optional 20 Mbyte hard disc
contains a single volume.

Divide By Zero Interrupt: The 80286 executes this interrupt any time a divide by zero
operation is attempted. The vector to the service routine for this interrupt must be stored in
memory locations OOOO:0000H-OOOO:0003H.

DOS: Disc Operating System.

DOS Installable Device Driver: A device driver designed to be dynamically installed by DOS.
DOS installable device drivers may be used to add EX-BIOS drivers to the system.

Driver: Code that interfaces to either a physical 'device' or another driver.

Driver Header: A data structure contained in the data area of each EX-BIOS driver. The driver
header contains data fields that specify the attributes, mapping, and other parameters of the
driver.

EX-BIOS: Extended B!OS. A set of proprietary HP drivers that provide support for various system
features.

494 Glossary



Extra Segment (ES): The segment address of the extra data segment currently being accessed.

Functions: Code modules within a driver that perform specific tasks. Individual driver functions
are selected when a driver is called.

Function Keys: The ten industry standard keys labeled F1-F1 a on the keyboard. See also HP
SOFTKEYS.

GID: see GRAPHIC INPUT DEVICE.

Graphic Display Mode: A video display adapter mode in which all positions on the screen are
addressable as pixels.

Graphic Input Device: An input device that generates positional and/or button state data. A
mouse, tablet, and touch screen are examples of graphic input devices.

Graphics Sprite: See SPRITE.

Hardware Interrupts: Requests for interrupt service generated by the hardware components.

Head: The magnetic device that reads and writes data from a disc drive. Disc drives have a head
for each recording surface in the mechanism. A flexible disc has two heads, while a hard disc
head count can vary depending on the drive being used. The optional 20MB disc has two
platters and four heads.

Hexadecimal: Numbers expressed in base 16. Hexadecimal notation is used throughout this
manual to represent binary data. hexadecimal digits are represented with the numbers 0-9 and
letters A-F. The hexadecimal numbers are indicated with an uppercase 'H' as their last character
(i.e., 17H).

HP Extensions: Additional functions added to industry standard drivers that support EX-BIOS
features and/or provide additional flexibility in programming industry standard system
capabilities.

HP Global Data Area: A data structure located in the EX-BIOS Data Area containing variables
common to two or more EX-BIOS drivers. In addition, the stack used by the EX-BIOS drivers is
located here.

HP Softkeys: 8 function keys labeled f1-f8 on the keyboard. These keys can be mapped to
return their own scancode, or they may emulate their respective industry standard function keys
(F1-F8). See also FUNCTION KEYS.

HP_ENTRY_CODE: The code module that dispatches the EX-BIOS interrupt (6FH) to the
selected driver.

,... HP_ENTRY: The symbolic reference for the EX-BIOS interrupt, 6FH.

HP-HIL Controller: The hardware that provides the electrical interface to the HP-HIL link and
supervises the communication protocol.

HP-HIL Link: The electrical interface and communication protocol utilized to connect HP-HIL
input devices.

Glossary 495



HP-HIL Major Address: The primary address of an HP-HIL device. This is typically the link
address of the device.

HP-HIL Minor Address: The secondary address of an HP-HIL device.

HP-HIL Universal Address: Used to broadcast commands to all HP-HIL devices. The Universal
Address is implemented as Address 0 in the HP-HIL protocol. ~

HP_VECTOR-TABLE: A data structure containing the IP, CS, and DS of all EX-BIOS drivers.
This data structure is utilized by the HP_ENTRY_CODE to branch to the selected EX-BIOS driver.

Input System: A set of EX-BIOS drivers that service the input devices. The Input System
supports the keyboard, HP Mouse, HP touch screen, and other HP-HIL input devices. It can be
expanded to encompass non-HP-HIL input devices.

Instruction Pointer (lP): The offset from the base of the code segment of the next instruction
to be executed.

Interrupt Service Routine: A code module, and its associated data structure(s) that responds
to a hardware interrupt.

ISR Event Record: A data structure used by the Input System which contains information
characterizing an input event.

Interleave: The number of physical sectors on a disc drive skipped when reading consecutive
logical sectors on the same track. See also STAGGER.

Interrupt Vector: A data structure used by the 80286 to branch to a service routine or an
interrupt. Interrupt vectors are located in the first 1024 bytes of system memory. Each interrupt
vector occupies 2 words of memory and contains the IP and CS of the interrupt service routine.

KB: KiloBytes. 1024 b"tes.

Keyboard: The physical keyboard.

Keyboard Controller (8041): The 8041 keyboard controller. The 8041 provides industry
standard keyboard compatibility, and serves as a buffer between the STD-BIOS keyboard drivers
and the Input System.

Keyboard Modifier: One of the special keyboard keys that modifies the interpretation of the
other keys. The keyboard modifiers are the CTRL, ALT, SHIFT, CAPS LOCK, NUM LOCK, and
SCROLL LOCK keys.

LED Mode Indicators: The LEDs located on the keyboard that indicate the state of the CAPS
LOCK, NUM LOCK, and SCROLL LOCK keyboard modifiers.

Logical Driver: A driver responsible for interfacing with the Operating System or application.

Logical Keyboard: A set of drivers within the Input System that service the physical keyboard.

MB: MegaByte. 1,048,576 bytes.

496 Glossary



MICKlES: The number of physical coordinates per inch reported by a mouse or other relative
GID device.

Mouse: A GID device that reports relative motion coordinates based on its motion. A mouse
will also report the state of its buttons.

MS-DOS: See DOS.

Multi-Tasking: The ability of a CPU to perform multiple jobs or tasks simultaneously. Multi
tasking is accomplished by dividing CPU execution time between the different tasks. If this task
switching is performed quickly enough, the illusion of simultaneous execution occurs.

Numeric Keypad: The keypad containing numeric and modifier keys.

NMI: Non-Maskable Interrupt. This is an 80286 interrupt line used to report system error
conditions. This interrupt is mapped by the 80286 to Interrupt vector 02H.

Operating System: The system software that provides access to system resources for
application programs. The operating system manages input and output, data and program files,
and system memory.

Palette: The set of all possible colors the Video Display Adapter can produce. The Multimode
Video Display Adapter has a palette of 16 colors.

Parallel Port: An I/O port that transmits and receives data a byte at a time. The parallel ports
are typically used to interface to printers.

Parent Driver: A parent driver is called by another driver when the second is unable to perform
a function requested of it. Parent drivers perform higher level or more system software oriented
tasks than their calling drivers.

Physical Driver: A driver responsible for interfacing with the physical hardware.

Pixel: A dot on the screen in the graphics modes.

Polling: The process of periodically determining the status of a device. Polling is used to
determine if peripheral devices have data or are ready to accept data in non-interrupt driven
systems.

Post: Power On Self Test. The POST process is executed each time the system is powered on or
a hard reset occurs.

Processor Interrupts: Interrupts generated by the 80286 processor in response to error
conditions or processor exceptions.

Protected Mode: One of the two modes that the 80286 can operate in. The Protected mode
provides virtual memory addressing, on-board memory management and protection, and task
switching to support multi-user, multi-tasking system software.

RAM BIOS: The interface between DOS and the ROM BIOS. It is dynamically loaded at system
boot with DOS.

Glossary 497



Real Mode: One of the two modes that the 80286 can operate in. The Real mode provides
compatibility with the 8086 family of microprocessors.

Real-Time Clock: A clock circuit that maintains the correct time whether the system is on or
off. The real-time clock is powered by both the system power supply and battery. When the
system power is turned off, the clock continues to operate from the battery.

Return Status Code: A code returned by the EX-BIOS drivers that indicates the status of the
function requested.

ROM BIOS: The set of EX-BIOS and STD--BIOS drivers. These code modules are contained in
ROM modules on the Processor Extension Card.

ROM Module: Code and/or data stored in an EPROM or ROM.

RS-232C: An EIA standard for a serial data interface. Often used as a synonym for serial when
referring to system ports.

Scaling: The process of adjusting physical graphics coordinates to fit in a proportionately larger
or smaller logical space. The Input System scales the coordinates received from a tablet to fit into
its logical space.

Scancodes: Codes returned by the physical keyboard to indicate key makes and breaks.

Sector: A physical location on the disc where a block of data is stored. Disc surfaces are divided ~

into concentric rings called tracks. These rings are in turn divided into sectors.

Serial: To transmit data one bit at a time, serially. Used to indicate system ports that transmit
data in this fashion. See also RS-232C.

Single Step Interrupt: A processor interrupt generated after each instruction if the Single Step
flag is set. This interrupt is mapped by the 80286 to Interrupt vector 01 H.

Software Interrupts: Interrupts generated by the 80286 INT 'n' instruction where 'n' is the
interrupt number.

Sprite: A graphics cursor. The sprite is controlled by the Input System V_STRACK and
V_LHPMOUSE drivers.

Stagger: Disc stagger is the track to track offset between logical sectors. Stagger increases disc
performance during sequential read operations by adjusting for track to track access time. See
also INTERLEAVE.

STD-BIOS: The set of drivers that execute the industry standard BIOS functions.

System Software: See Operating System.

System Strings: Character strings stored in memory. Each EX-BIOS driver has a system string
associated with it. System strings are designed to provide a simple method for system software
to access them. In addition, their implementation provides a simple and effective method of
localization.

498 Glossary



Tablet: A Graphics Input Device (GID) that generates absolute graphics coordinates.

Timeout: An indication (for example an interrupt) that indicates that a predetermined time has
elapsed waiting for an event to occur. Timeouts are used to prevent the system from hanging up
waiting for an event to happen that doesn't. For example, a timeout can be used to abort a printr operation if the printer does not return a ready status.

Timer Tick: An interrupt generated by the system timer. It is initialized to produce
approximately 18.2 timer ticks per second.

Touch Screen: An HP Graphic Input Device (GID). allows a user to input data by physically
touching the display screen.

Track: An Input System driver that moves a Sprite on the display screen in response to graphics
motion received from GID devices.

Tracking: The process of moving a Sprite on the display screen in response to graphic motion
received from GID devices.

Typematic Delay: The amount of time a key must remain depressed before the keyboard
enters the typematic or repeat mode.

Typematic Rate: The rate at which make scancodes are transmitted by the keyboard when it is
in the typematic or repeat mode.

Video Attributes: Video characteristics of characters displayed on the Video Display Adapter.
Video attributes include reverse video, blinking, underline, and high intensity. Video attributes
only apply to characters displayed in the alphanumeric modes.

Glossarj 499



References

HP Vectra MS-DOS User's Reference Manual

HP Vectra MS-DOS Programmer's Reference Manual
-Discusses programming of the 80286 using MS-DOS.

HP-HIL Technical Reference Manual
-Discusses the HP-HIL controller.
-Discusses the HP-HIL link.

HP Vectra MS-DOS Macro Assembler
-Reference for the assembler.

INTEL iAPX286 Programmer's Reference Manual
-Reference for 80286 instruction set and architecture.
-Reference for the 80287 numeric processor.

INTEL iAPX286110 Hardware Reference Manual
-Discusses the 80286 processor.

INTEL Microcontroller Handbook
-Discusses the 8041 keyboard controller chip.

INTEL Microsystem Components Handbook, Volume /I
-Discusses the 8254 timer chip.
-Discusses the 8237A DMA controller chip.

Motorola Single Chip Microcomputer Data, Section C
-Discusses the MC 146818 real time clock/ CMOS chip.

Motorola 8-Bit Microprocessor & Peripheral Data
-Discusses the 6845A video controller chip.

INTEL Microprocessor and Peripheral Handbook
-Discusses the 8237A DMA controller.
-Discusses the 82284 clock chip.
-Discusses the 8041 keyboard controller chip.
-Discusses the 8254 timer chip.

INTEL the 8086 Family User's Manual

NEe Electronics Microcomputer Products Data Book
-Discusses the 765A flexible disc controller chip.

The Peter Norton Guide to the IBM PC
by Peter Norton, Microsoft Press.

500 References



INDEX
80286 registers, 12

80287 math coprocessor, 263, ~ 16

8041 controller, 139

Controller commands, 181

Keyboard commands, 181, 188

keyboard controller, 180

Keyboard Request Service Port (SVC), 181

STD-BIOS Scancodes and commands, 190

System reset, 316

Output buffer full (OBF), 95, 103

Service request (SVC), 95, 103

8259A interrupt controller, 9, 95, 316 (see also Interrupts)

A Absolute graphics data, 56

Absolute touch data, 97

Adapter card, Hard disc, 239, 240

Application event drivers, 57, 63, 90

Application programs, 3

Assembler (see Macro Assembler), 3

Asynchronous communication, (see Serial port driver)

B BIOS (see ROM BIOS, EX-BIOS and STD-BIOS)

Boot process, 323

Boot record, Flexible disc, 323

Boot record, Hard disc, 32

Bucket header, System string, 268

Bucket pointer, System string, 269

Buckets, System string, 268, 269

Button ISR Event Record, 62, 69, 102

Button scancode data, 56

C Calling Conventions, EX-BIOS, 14

Calling Conventions, STD-BIOS, 13

Child driver, 197 (see also Device mapping)

Child vector field, 97

Clipping, 57

Clock (see System clocks)

CMOS Memory, 263,269

Shutdown status byte, 314

Coprocessor (see 80287 math coprocessor)

Cursor Position, 13

o Data areas,

EX-BIOS, 19,264

STD-BIOS, 12, 18

Data segments, 20, 21

Data types, ISR Event Record, 62

Describe Record,

Logical, 58

Physical, 98

Device emulation, 97

Definition, 97

Device mapping, 21, 97

Disc,

Chain, Int 13H, 241, 243, 247

Flexible (see Flexible disc)

Hard (see Hard disc)

Physical driver numbers, 239

Disc driver (STD-BIOS), 239

Diskette operation table, 244

Diskette parameter table, 244, 245

Diskette status table, 244, 245

Display modes, Video, 27

Display resolution, Video, 27

Driver Header, 48, 21

E End of track parameter, 245, 254

Equl.Dment determination driver (INT 11 H), 263, 272

Event Record (see ISR Event Record)

EX-BIOS,

Calling conventions, 14

Data area, 13, 21, 265

Definition of, 7

Driver header (see Driver header), 21, 97

Function codes, 7, 14

Global data area, 19, 22

HP_ENTRY interrupt vector, 13

HP_ENTRY_CODE, 19

HP_VECTOR--TABLE, 19,57,97,263,264,267,321

Fixed vectors, 267

Free vectors, 267

Reserved vectors, 267

Keyboard drivers, 155

Memory allocation, 320

Parameter passing conventions, 16

Return status codes, 14, 16

Extended ASCII code, Keyboard, 142

Extended BIOS (see EX-BIOS)

Index 501



Extended control register, Multimode, 47

Extended disc drives, 240

Extended system support driver
(see System support driver), 264

F Fixed disc (see Hard disc)

Flexible disc,

Equipment determination
(see Equipment determination driver)

High capacity (1.2MB), 239

Standard capacity (360KB), 239

Support, 240

Floppy disc (see Flexible disc)

Format gap length parameter, 254

Function codes, EX-BIOS, 14

Function codes, STD-BIOS, 12

G GID Button ISR Event record, 101

Graphic Input Device (GID), 56
(see Physical GID driver and Logical GID driver)

GRAPHICS.COM,218

Graphics Cursor (see Sprite), 57

H Hard disc p~rameter table, 244, 246

Hard disc,

Adapter card, 239, 240

Support, 240

Hardware interface, Input System, 55, 95, 129

HP ENTRY CODE, 19

HP ENTRY interrupt vector, 13, 95

HP-HIL,

Controller, 95, 103

Input devices, 55

Service routine (see V_HPHIL)

HP Mouse (INT 33H), 199

Driver Functions, 199, 201

HP Slave 8259A, Interrupt controller, 103

HP VECTOR TABLE, 19,57,97,263,264,267,321

HP Video extension functions, 44

iAPX 80286, 3, 9

Identify product (see Product identification)

Input devices, HP-HIL, 55

!nput system, Keyboard, 180

Insert key (see Keyboard, Modifiers)

Installable device driver, MS-DOS, 241

Interleave description table, 255

502 Index

Interrupt vectors, 7, 9

Input system,

Application interface, 55

Hardware interface, 55

Keyboard (see Keyboard), 180

Pointer, 55

Interrupts,

Processor, 9

Hardware, 9

Software, 9

Vectors, 7,9

8041 HP-HIL controller, 57, 103

8041 Output buffer full (OBF), 103, 137

8041 Service request (SVC), 103

ISR Event Record, 57, 95, 98, 101, .107

Button Event Record, 62, 101

K Keyboard,

Extended ASCII code, 142

HP-HIL,55

Input system, 137

Keycode, 139, 141

Interrupt service routine (INT 09H), 137

ISR Event record, 157, 158

Modifiers, 139, 141, 145

Scancode, 139, 141, 190

Special key sequences, 146

STD-BIOS driver (INT 16H), 139, 191
(see also Keyboard driver)

STD-BIOS keyboard buffer, 137, 141

Keyboard driver [STD-BIOS], 147, 190,236

Data area, 147

Driver Functions, 148

Keyboard translators, 156

Keycode, Keyboard, 139, 141

Keypads, Keyboard, 155

L Localization string index, 22

Logical devices, 97

Logical Describe Record, 58 ~

Logical ISR Event Record, 58, 61

Logical Graphics Input Device driver Data structures, 58
(see also ISR Event Record, Logical and Describe Record,
Logical Definition, 57

Logical keyboard driver (EX-BIOS), 160



Definition, 156

Driver Functions, 161

Translation drivers, 156, 162

M Macro Assembler (MASM), 3

Math coprocessor (see 80287 math coprocessor)

Memory allocation, EX-BIOS, 320

Memory size determination driver (INT 12H), 263, 272

Motion ISR Event Record, 69, 78, 87, 102

Mouse, HP-HIL, 55, 199

Cursor key emulator, 199

Multimode Video display adapter, 13, 27,44

N NEC flexible disc controller, 245

Null device driver, 97

NumLock key (see keyboard modifiers)

o Operating system, 3

P Parallel port driver (STD-BIOS)

Base address table, 217

Equipment determination
(see Equipment determination driver)

Driver Function, 232

Parallel port I/O,

DOS logical ports, 217

Polled operation, 219

Parent driver, 197

Parent vector field, 97

Partitions, Hard disc, 325

PGID (see Physical Graphics Input Device Driver)

Physical describe record, 98

Physical devices, 97

Physical disc drive number, 239

Physical input device driver (GID), 97

Data structures, 126

Definition, 126

Driver functions, 126

Physical ISR Event Record, 98, 101

Physical voluming, 239

Pointer (see Input system), 55

Polled operation, 219

Power-on reset, 3

Power-on Self Test (POST), 315

Diagnostic error codes, 318

Print Screen driver, 217, 218, 221, 236

Processor Extension Card, 239

Programmatic reset, 314

Protected mode, 314

Proximity indicator, 62

R RAM allocation, EX-BIOS, 264

Real-time Clock (see System clocks, CMOS)

Relative graphic motion data, 56

Relative mouse data, 97

Reset,

Hard reset enable port, 313

Power-on, 313, 314

Programmatic, 314

Soft, 313

80286 (see iAPX 80286),313

Return status codes, Disc driver, 258

Return status codes, EX-BIOS, 14, 16

ROM BIOS, 313

Code modules, 7

Data structures, 7

Definition, 3

Drivers, 12

Interrupt vectors, 7

Functions, 12

Null routine (see also STD-BIOS and EX-BIOS)

ROM modules, 321

RS-232 (see Serial port driver and Serial I/O)

5 Scaling, 55

Scancode, Keyboard, 139, 141, 190

Screen Memory (see Video, display memory)

Scroll lock key (see Keyboard, Modifiers)

Serial driver (STD-BIOS), 221

Base add ress ta ble, 21 7

Equipment determination
(see Equipment determination driver)

Driver Functions, 219

Serial I/O,

DOS logical ports, 217

Polled operation, 219

Shutdown status byte, CMOS Memory, 315

Special key sequences, Keyboard, 146

Sprite, 65, 68

Index 503



Sprite tracking, 57, 68 V_CCP,

Standard BIOS (see STD-BIOS), 7 Driver Functions, 156, 157

Status port, 8041 Controller, 314 V_CCPNUM,

STD-BIOS, Driver Functions, 171

Calling, 13 V_CCPCUR,

Data area, 12 Driver Functions, 172

Definition, 7 V_DOLITILE, 288

Drivers, 12 V_EVENT__POINTER, 63, 78

Function codes, 12, 13 V_EVENT_TABLET, 63

HP extensions, 13 V_EVENT__TOUCH,63

Interrupts, 12 V__FUNCTION, 156. 165

STD Slave 8259A, Interrupt controller, 243 Driver Functions, 165

Strings (see System strings) V_HPHIL, 95, 107

SYSGEN, 317
Driver Functions, 107

System clocks,
V_LHPMOUSE,199

CMOS, 269
V_LPOINTER, 57, 62,72

Software, 271
Application event driver, 63

System clock driver (see STD-BIOS)
V_LTABLET, 57, 62, 81

Alarm clock interrupt (4AH), 271
Application event driver, 63

Data area, 271
V_LTOUCH, 57, 62, 64

Driver Functions, 286
Application event driver, 63

System strings, 268
V_NUMPAD

Buckets, 268, 269
Driver Functions, 156, 166 ~

V_OFF

Bucket header, 268 Driver Functions, 169
Bucket pointer, 269

Localization string index, 22, 268
V_PNULL, 63, 128, 288

Index number, 268
V_QWERTY, 156

System support driver (INT 15H), 273
V_RAW

Driver Functions, 264, 273
Driver Functions, 170

T Tablet, HP-HIL, 55
V_SCOPY,288

Time and date driver, 285
V_SKEY2FKEY, 173

Touch Screen, HP-HIL, 55
Driver Functions, 173

V Vector address, EX-BIOS, 97
V_SINPUT,95

Vector index, EX-BIOS, 97
Driver Functions, 119

Video,
V_SOFTKEY, 156

Display modes, 27, 50, 263 Driver Functions, 163

Display resolution, 27 V_STRACK, 57,129

Text mode, 27, 33 Driver Functions, 129 ~
Video driver (STD-BIOS) V_SYSTEM, 288

Data structures, 27 Driver Functions, 289

Driver Functions, 35 V_58259, 95, 103
V_8041

Driver Functions, 137, 156, 174
Driver Functions, 103

W Write string video driver, 42, 42

504 Index



F/i;;' HEWLETT
~I!JII PACKARD

Printed in U.S.A.
Part Number 45961-90002


	Notice
	FCC Statement
	Table of Contents
	1. Introduction
	2. ROM BIOS Overview
	3. Video
	4. Input System and HP-HIL
	5. Keyboard
	6. Mouse
	7. Serial and Parallel I/O
	8. Disc
	9. System Drivers
	10. System Processes
	Appendices
	A. BIOS Interrupts
	B. Memory Map
	C. CMOS Memory Layout and Real-Time Clock
	D. I/O Port Map
	E. System Equate File
	F. Default Device Mapping
	G. Driver Writer's Guide
	H. ASCII and Scancode Conversioqn Tables
	I. Conversion Tables

	Glossary
	References
	Index

