Systems Reference Library

Autocoder (on Disk)

File Number GENL-22
Form C24-3259-3

Program Specifications and Operating Procedures

IBM 1401, 1440, and 1460

Program Number 1401-AU-008

This reference publication contains the program speci-
fications and operating procedures for the Autocoder
(on Disk) Programming System.

The specifications describe the two programs, Sys-
tem Control and Autocoder Assembler, that make up
the Autocoder System. Logical files defined and used
by the System, control cards, and results of processing
operations are also included.

The operating procedures is divided into two sec-
tions. The first section describes assembling and exe-
cuting object programs, changing logical-file assign-
ments, maintaining an Autocoder library, and revising
an object program. The second section describes build-
ing and updating an Auiocoder System.

A summary of control card formats, phase descrip-
tions, and a listing of a sample program make up the
appendix of this publication.

For a list of other publications and abstracts, see the
IBM Bibliography for the associated data processing
system.

Preface

This publication contains the program specifications
and operating procedures for the Autocoder (on disk)
programming system for 1M 1401, 1440, and 1460. In
this publication, the term Autocoder System or System
refers to 1401/1440/1460 Autocoder (on Disk), program
number 1401-AU-008. The language specifications for
the Autocoder System are contained in the Systems
Reference Library publication Autocoder (on Disk)
Language Specifications for IBM 1401, 1440, and 1460,
Form C24-3258.

This publication is divided into two major sections:
program specifications and operating procedures. The
program specifications describe the Autocoder System.
Included in the section are such topics as a description
of the System Control Program (the controlling element
of the Autocoder System), a description of the proces-
sors in the Autocoder Assembler program, and a de-
tailed description of the results of System operations.
Although this section is directed primarily toward the
programmer, the machine operator should review the
section for an understanding of the System.

The second section, operating procedures, contains
such topics as preparing processor jobs, changing file
assignments for processor jobs, and running processor

Fourth Edition

jobs. The last part of the section outlines the proce-
dures to follow in building an Autocoder System. For
the convenience of both programmer and machine op-
erator, all control cards are summarized in Appendix I.

Although the second section is directed primarily to
the machine operator, it is recommended that the pro-
grammer review the content of the complete section.
The programmer should particularly note the parts of
the section dealing with preparing processor jobs and
changing file assignments.

Related Information

The following Systems Reference Library publications
contain additional information relating to the use of
the Autocoder System. It is recommended that these
publications be available to the user for reference.

Autocoder (on Disk) Language Specifications for
IBM 1401, 1440, and 1460, Form C24-3258.

Disk Utility Programs Specifications for IBM 1401,
1440, and 1460 (with 1301 and 1311), Form C24-1484.

Disk Utility Programs Operating Procedures for IBM
1401 and 1460 (with 1301 and 1311), Form C24-3105, or
Disk Utility Programs Operating Procedures for IBM
1440 (with 1301 and 1311), Form C24-3121.

This is a reprint of C24-3259-2 incorporating changes released in

the following Technical Newsletter:

Form No. Pages Affected Date

N21-5004 Contents, 7, 8, 8A, 11,
12, 15, 22, 23, 24, 25,
26, 27, 28, 29, 31, 43,

49, 50, 51, 52, 64

April 4, 1966

Requests for copies of IBM publications should be made to your IBM representative or to the IBM branch office

serving yowr locality.

A form is provided at the back of this publication for reader's comments.

If the form has been removed, comments

may be addressed to IBM Corporation, Programming Publications, Dept. 425, Rochester, Minn. 55901.

Program Specifications ..., 5

Definition of Key Termsccccovveviiecviieciienieneniesierieenenens 5
Machine RequirCmentscc..ovvevevverieeeivnnreeineenionnesesnienne 6

The Autocoder System ... 6
Systems Control Program 6
Logical FIIES oot 6
Residence File .o eesare e 7
Operation Files 7
Internal Files .. 7
Control Cards 7
RUN Card7
ASGN Cards ..oovviviiieiiririioie sttt 8
INIT Card ovioveceeiieieeecececc et et 8
8

8

8

9

9

9

9

9

UPDAT Card ..oooviiviieiiiecteeee e
NOTE Card
PAUSE Card .. .
HALT Card oottt

Autocoder Assembler Programcocovceverienievienenereniecnennenns

PreproCessor ..ot

AUtCOAET PrOCESSOT ...vveviciveceiaereceiieereetteetieeeeveeie e eete e ereeene s

Output Processor

Execution Processor

Resultr of Processing Operations ... 10
Documentation ..occvveeeciieieeiie e 10
Control Card Diagnosticsccoeeevvierveereireeerriieiiereeiserenens 10
Source Statement DIagnosticscceeoveveverevecieiieiieenieireenees 10
Label Table oot 10
Cross-Reference Listingoccocovvvvinninienieievincciessrerssne i 11
Program Listingccooceviiiiiiiniiniii e 12
AULOCOUCT TOXE wovviieiieeeeieeeee et et ve s v e e s e e s e 13
Object Programs [N 13
Card FOTMAats ..oveievieeeiriinecereeiieieeree et 13
Coreload FOormatoceoveveeieiieeiciieee et seereee e 15
MESSALES veeeiiririiieett et ectte et cce ettt e n et e s e e e nre s 15
Resequenced Source Deck .ovviveeeviiiiveeieeecreeeceveeeeee e 15
Operating Procedures ..o, 16
JODS et et 16
Preparing Processor JobS covviiiiiiiiiiieeiiiieeeeeeeeeeeeeeean 16
Conventional Assemblyc.ccoceeiviiiiiiiieiiiiiisieieierees 16
L0ad-and=Go ...ccecvivreeieeeiiiecie oot 18
Delayed EXECULION ..occveeceiiirieriieieeeeiseeeeeseeeeeeseeee s aersesnas 19
Partial ProCessingcoveecvoivniieoriviiiieenineeeieeeiseeeseeeesessiseeseneees 20
Changing File Assignmentsccccocoveiveeiiesenecvsesereeneerinn 22
Preparing ASGN Cardscoooveevvieereninreeeeericieneieeeevese e 24
Using ASGN Cards ...ccooeeeeeeiiiiiieeiiicie e sevieseee e eassens e 27

Batched Files .ooviieieeiieiiicireeiseeectese s 27

Contents

Preparing Library JObS ...ccccccvviiiveiiiiie e 28
Capacity of a LIBRARY File ... e 29
Library Build ..cccccoooioirriiiiiccieceee e 29
Library LiStING .vcvveveiiieiiiioeee e see e 30
Library Changeccccocvveieeiiiiceeieceeetccecee e 30

Performing Jobs ...

Preparing a Stack ...c.ccooevvieiiincieie e

Running a Stackcoe.....

Loaded Object Programs ...

Halts and MesSages .ovovrevoveoveereeeceee e,

Using and Maintaining the Object Program 40
Methods of EXCCULION ..ovivivieieeiieeiretieereieiceen st 40
Load-and-Go .

Delayed EXeCULION ...ccccvvcinriciriinriereienie et 40

Condenscd-Loader Considerationsccoevvveeiieeinnencvanan, 41
1BM 1440 e, . 41
M 1401 or 146042

Revising the Object Programcccocoeveveveeiiveiivninin, .42
Condensed-Loader Formatcc.oocoevvevvvecnviviecniiienen, . 42
Self-Loading Formatcccccoviricnmniincineinie s 42

Building, Updating, and Copying an

Autocoder System ... 43

Autocoder-System Deck Description and Preparation .. . 43

Marking Program 43
Write File-Protected Addresses . . 45
System Control Card Build 45
Card BoOt .voovevvceriviiererienenns . 45
Autocoder Update .. . 45
Sample Programccoovecivienieiiniesceiesees e st eieseesnae e 45
Building an Autocoder System 45
Write File-Protected Addresses 46
Systemn Control Card Buildcccovvvivinierireiinrecveeeeiens 47
Autocoder Updatecoocceviieniiiiiiiniieeieeiie et 48
Sample PrOgIamcccicvverivieeimmeniesenesreseesansessnssessosessenes 48
Updating an Autocoder System ... 49
Copying an Autecoder System ... 49
Appendix [-Control Card Formats ... 50
Appendix li—Phase Descriptions ..o, 53
Appendix llI-Sample Programc.ccoocevnincrenneee 59
TAAEX oottt 64

The Autocoder Assembler Program is one part of a lan-
guage processing system that is under control of the
System Control Program. (A second language proces-
sor, coBoL, is also controlled by the System Control
Program.)

The Autocoder System translates source program
statements written in the Autocoder language into ma-
chine-language instructions. In addition to this trans-
lating function, the Autocoder System provides these
additional features:

Autocoder Library Compression. The statements that
make up the library routines are compressed and
stored as variable length records. This Autocoder
capability ensures the efficient use of disk storage.

Relocating the Autocoder Library. The user is pro-
vided with expansion capabilities of the Autocoder
library previously not possible with an Autocoder
processor. Further, should the user wish, he can relo-
cate the Autocoder library to an area of his choice in
disk storage.

Building Multiple Autocoder Libraries. In addition to
being able to relocate the Autocoder library, the user
can also build more than one Autocoder library.
Small libraries that contain selected routines appro-
priate to particular types of job processing signifi-
cantly reduce library-change time.

Changing Input/Output Devices. The Autocoder Sys-
tem provides the user with the option of changing
the form of input to and output from specific jobs.
So that the Autocoder System can operate at a ma-
chine-independent level, a set of logical files that are
used for input/output operations has been defined.
Although these logical files are assumed by the Sys-
tem Control Program to be assigned to a defined set
of input/output devices, the user can change these
assumptions according to his particular needs.

Stacking of Jobs. Under control of the System Control
Program, it is possible to process a series of jobs with-
out regard to the type of processing that is being per-
formed. For example, it is possible to assemble
source program number one, partially assemble
source program number two, and execute object pro-
gram number three, all in one stack.

Building an Object-Program Library in Disk Storage.
By using one of the logical files (coreLoAD) defined
by the Autocoder System, it is possible to build an
object-program library in disk storage. Because the
upper and lower limits of each object program stored

Program Specifications

in this area in disk storage are supplied to the user
by the Autocoder System, the user has immediate ac-
cess to any one of the stored object programs. Using
an object-program library substantially reduces pro-
gram load time (as opposed to loading from cards)
and eliminates excessive handling of punched-card
object decks.

Executing Punched-Card Object Programs. If a pro-
gram is infrequently used, the user may wish to
maintain a punched-card object program, thus sav-
ing disk storage for other purposes. When this is the
case, the user has two options for executing this ob-
ject program. It can be executed either under con-
trol of the Autocoder System (as a job in a stack of
jobs), or it can be executed completely independent
of the System.

Definition of Key Terms

To clarify the meaning of special terms used in this
publication, the following definitions are given. Stand-
ard terms are defined in Glossary for Information Proc-
essing, Form C20-8089.

Assembler. The program that translates Autocoder
symbolic statements into actual machine language.
This process is called an assembly.

Autocoder Text. A series of 100-character records con-
taining the source-program statement, or a generated
statement, and assembly information.

Batched Files. Logical files whose contents represent
one or more sequential sets of input to or output
from the Autocoder System.

Bootback. A routine located in upper core storage dur-
ing execution that provides linkage between the
user’s object program and the System Control Pro-
gram. This linkage is required when executing an ob-
ject program in a stack of jobs.

Card Boot. A card deck, supplied as part of the Auto-
coder System program deck, that is used to start all
System operations.

Job. An operation or series of operations to be per-
formed by the Autocoder System.

Logical Files. Input/output devices and/or areas used
by the Autocoder System.

Object-time. A term describing those elements or proc-
esses related to the execution of a machine-language
object program.

Operation. A basic unit of work to be performed by one
of the components of the System.

Stack. A set of one or more jobs to be processed during
the same machine run.

System. The set of programs made up of the elements
required for assembling and/or executing user-pro-
grams.

[] Brackets contain an option that may be chosen.
{ } Braces contain options, one of which must be
chosen.

Machine Requirements

The Autocoder System requires the following minimum
machine configurations.

An 1BM 1401 system with:
4,000 positions of core storage
High-Low-Equal Compare Feature
One 18M 1311 Disk Storage Drive
One 1BM 1402 Card Read-Punch
One 18M 1403 Printer.

An 18M 1440 system with:
4,000 positions of core storage
One 1BM 1301 Disk Storage or
one 1M 1311 Disk Storage Drive
One M 1442 Card Reader
One 18M 1443 Printer.

An 18M 1460 system with:
8,000 positions of core storage
One 18M 1301 Disk Storage or
one 1M 1311 Disk Storage Drive
One 1BMm 1402 Card Read-Punch
One 18M 1403 Printer.

The Autocoder System can use the following devices
and features if available:

18M 1404 Printer

BM 1444 Card Punch

Console Printer

8,000, 12,000, or 16,000 positions of core storage

Print Storage feature

Direct Seek feature (for a library change only).

The Autocoder System

The Autocoder System built by the user contains the
System Control Program and the Autocoder Assembler
Program.

System Control Program. The System Control Program
is the controlling element of the System. Its main
function is to analyze control-card information, and
transfer control to the appropriate portion of the
system,

6 Autocoder (Disk) Program Specifications

Autocoder Assembler Program. The Autocoder Assem-
bler Program translates source programs, written in
the Autocoder language, into machine-language ob-
ject programs. The object programs can subsequently
be executed by the Autocoder System.

System Control Program

All system operations are initiated by a deck of cards
supplied by 18m. This deck, called the Card Boot, reads
in the first portion of the System Control Program from
disk storage. Ultimately, the entire resident portion of
the System Control Program is read into lower core
storage.

All control-type functions for the System are accom-
plished by the System Control Program. These func-
tions include:

Assigning Input/Output Devices. Input/output opera-
tions are coordinated with user-specified input/out-
put devices.

Updating the System. The System Control Program up-
dates the system to the latest modification level or
version.

Selecting Appropriate Processor Runs. Through control
cards supplied by the user, the System Control Pro-
gram determines the operations necessary for the
completion of a job. For example, if a source pro-
gram is coded in the Autocoder language, and the
end result of processing is to be a machine-language
object program, processing must be performed by
the Autocoder processor and the Output processor.
The control card says in effect that the source pro-
gram is coded in Autocoder and that processing is to
run through the Output processor. The System Con-
trol Program reads the control card and calls in the
Autocoder processor. Processing takes place, and at
the completion, control reverts to the System Control
Program. The System Control Program then calls in
the Output processor. Processing takes place, and at
the completion, control again reverts to the System
Control Program. Because the Output processor was
the last processor to be selected, the System Control
Program reads the control card for the next job.

The remainder of this section describes the following

aspects of the System Control Program:
Logical Files
Control Cards.

Logical Files

A set of logical files, defined by the Autocoder System,
is used for input/output operations. Each file has a
specific function and is assigned by the System Con-
trol Program to a particular device. The user can alter

the file-assignments by using ascN (assign) control
cards. (See Changing File Assignments.)

The logical files may be thought of as falling into one
of four general categories. These categories are:

Residence File

Operation Files

External Files

Internal Files.
The functions of the logical files and the devices to
which they can be assigned follow.

Residence File

SYSTEM File. The system file contains the System
Control Program and the Autocoder Assembler Pro-
gram. It is assigned to a fixed area in a 1311 or 1301
disk unit.

Operation Files

CONTROL File. The controL file contains cards or
card images that send control information to the Sys-
tem Control Program. It can be assigned to the card
reader or the console printer.

MESSAGE File. The MmEssace file contains information
of primary interest to the machine operator. These
messages are usually diagnostics relating to the oper-
ating procedures and/or instructions to the machine
operator. It can be assigned to the printer or the con-
sole printer.

Externcil Files

LIST File. The wvist file, generally associated with high-
volume printed listings, contains information di-
rected primarily to the source programmer. It can be
assigned to the printer, or to disk storage, or it can be
omitted. If the r1sT file is assigned to a disk unit, the
information is stored two sectors per printed line in
the move mode.

INPUT File. The ixrur file contains source information
to the processors. It can be assigned to the card
reader or to any available area in disk storage. If the
file is assigned to a disk unit, the card images must
be stored one card per sector in the move mode.

OUTPUT File. The ourpur file contains the results of
the operation or series of operations specified in the
RUN card. It can be assigned to the card punch, or to
disk storage, or it can be omitted. If the file is as-
signed to a disk unit, any card images will be stored
one per sector in the move mode.

LIBRARY File. The rLirary file is a disk-storage file
that supports the Autocoder macro facility. This file

contains the library table and library routines, such
as IOCS. Itis maintained by the Autocoder Librarian
and used by the Autocoder Macro Generator. The
LIBRARY file can be assigned to any available area in
disk storage.

CORELOAD File. The coreroap file is a disk-storage
file used by the Output and Execution processors of
the Autocoder Assembler Program. The file contains
an object program in the load mode. The coreLoAD
file is developed by the Output processor and is used
by the Execution processor.

Note. Only the external files INPUT, OUTPUT, CORELOAD, and
ListT can be batched. Batching will be performed when
a series of jobs is processed without intermediate file
assignments to these external files. When batch processing
is performed, input to and output from the processors is
stored sequentially within the files.

Internal Files

WORKI File. The wogki file contains the intermediate
results from the Autocoder processor. It can be as-
signed to any available area in disk storage.

WORK2 File. The work?2 file is used by the Autocoder
processor. It contains information for the cross-
reference listing and can be assigned to any avail-
able area in disk storage.

WORKS3 File. The work3 file is used by the Macro
Generator, the Autocoder processor, and the Output
processor. It can be assigned to any available area in
disk storage.

Control Cards

The System Control Program recognizes seven types of
control cards. They are:

RUN

ASGN

INIT

UPDAT

NOTE

PAUSE

HALT

Each type is punched in the Autocoder format. Appen-
dix I contains a summary of all specific control cards
that the System Control Program recognizes. Included
in Appendix I is a detailed description of the manner of
punching each specific control card and valid entries
for each of the general formats as discussed in the fol-
lowing sections.

RUN Card

The run card indicates the portion(s) of the Autocoder
Assembler Program that are to be selected by the Sys-

7

tem Control Program. A ruN card is required for cach
job to be performed. The general format of the run
card is:

OUTPUT

AUTOCODER
EXECUTION

OUTPUT
RUN [THRU { EXECUTION}:|

If the optional part of the rux card is omitted (THRU
OUTPUT OF THRU EXECUTION), the System Control Pro-
gram assumes that only the named processor is to be
selected. The THRU option enables the System Control
Program to call a series of processors automatically.
Valid entries for the run card are:

AUTOCODER RUN

AUTOCODER RUN THRU OUTPUT

AUTOCODER RUN THRU EXECUTION

OUTPUT RUN

OUTPUT RUN THRU EXECUTION

EXECUTION RUN
See Preparing Jobs for the specific run card format re-
quired for each job.

ASGN Cards

An ascN card indicates to the System Control Program
that a logical file is to be assigned to a specific input/
output device. An aseN card is used when the user
wants a logical file assigned to an input/output device
or area other than the assumed assignment of the Sys-
tem Control Program, or when the user wants to
change an assignment that he has previously made.
The general format for an ascn card is:

device
file-name ASGN { OMIT }

The file-name is the specific logical file; device is the
input/output unit to which the logical file is to be as-
signed. Two examples for using an ascn card follow.
The logical file, iNpur, is to be changed from the as-
sumed device assignment (READER 1) of the System
Control Program to an area in disk storage. This area is
to be on 1311 unit 3, beginning at address 000600 and
extending to (not through) 000900. Note that the Enp
address to be punched is one more than the area actu-
ally used by the mpur file. The ason card for this ex-
ample is punched:
INPUT ASGN 1311 wunit 3, starTt 000600, Enp 000900
The second example illustrates the omission of a
logical file. (This option is valid only in specific cases.)
If the ourrur file is to be omitted, the asen card is
punched:
OUTPUT

ASGN OMIT

8 Autocoder (Disk) Program Specifications

The user must leave blanks between items in the
operand field where indicated in the specific formats.
For example, if the operand is READER 2, there must be
a blank between rEADER and 2.

During a single stack of jobs, an assignment made by
the user for a single logical file remains in effect until
a mHALT card, an it card, or another ason card is
sensed for that particular file. For example, an aseN
card that specifies the vpur file to be assigned to
READER2 causes the assumed assignment, READER] to
be altered. The System Control Program will select
READER 2 during a single stack until an mir card or
another asoN card for the wvpur file is encountered.

INIT Card

The 11T card indicates to the System Control Program
that all assumed logical file assignments are to become
effective. The general format of the it card is:

INIT any message

An it card can occasionally be used as a con-
venient substitute for an asen card. For example, as-
sume that the wveur file is assigned to disk for a par-
ticular job in a stack. If the next job is to be read in
from reaperl, the ivpur file assignment must be
changed from disk to reabpeErl. For this purpose, an
vrr card may be used instead of an asen card because
READER]L is the assumed assignment for the weur file.

UPDAT Card

The uvrpat card is included in a package supplied by
M for the purpose of updating the user’s Autocoder
System. It is prepunched in the following format:

ALL
DELETE

processor-name
UPDAT phase-name, HEADER
{ SYSTEM } INSERT

PATCH

This card (excluding peLETE) will be followed by the
appropriate data cards.

NOTE Card

The NoTE card contains messages and/or instructions
from the programmer to the machine operator. Process-
ing is not interrupted when the System Control Pro-
gram senses this control card. The contents of the NOTE
card are printed on the MEssace file. The general for-
mat of the NoTE card is:

NOTE any message and/or instruction

A NotE card could be used when the programmer
wants to direct that the output from a series of conven-

tional assemblies be placed on the coreroap file located
on disk drive 2. At the completion of processing the
series of jobs, a NoTE card could be used to tell the ma-
chine operator to remove the disk pack from drive 2.
The message would be:

NOTE REMOVE DISK PACK FROM DISK DRIVE 2
i
PAUSE Card

The pauskt card contains messages and/or instructions
from the programmer to the machine operator. When
the paUse card is sensed, the System Control Program

8A

temporarily halts the system. The contents of the PAUsE
card are printed on the MessAck file. Processing is re-
sumed by pressing the start key. The general format
for the rause card is:

PAUSE any message and/or instruction

One application of the use of a pausk card might be
in the casc where the mwpur file for a job is located on
disk unit 3. The programmer could inform the machine
operator of this fact by using a pause card, telling him
to ready the drive. The message would be:

PAUSE READY TIIE PACK ON DISK DRIVE 3

HALT Card

The HALT card indicates to the System Control Program
that processing has been completed. It is the last card
of a stack. The contents of the maLT card are printed
on the Messack file. The general format for the mavr
card is:

HALT any message and/or identification

Avutocoder Assembler Program

The Autocoder Assembler Program is made up of the
following sections:

Preprocessor

Autocoder Processor

Output Processor

Execution Processor.

Preprocessor

The Preprocessor consists of four portions, each of
which has a specific function:

Option Control. The Option Control analyzes control
card information and determines the operation(s) to
be performed. It then transfers control to the Libra-
rian, Update, or Macro Generator.

Librarian. The Librarian maintains the Autocoder li-
brary by inserting, deleting, and/or modifying the
library routines according to the user’s specifications.
Whenever the contents of the library are changed,
the Librarian updates the library table which is the
directory of library routines.

Update. The Update portion performs the function of
updating all portions of the Preprocessor.

Macro Generator. The Macro Generator performs pre-
assembly opcrations. It analyzes the Autocoder

source program to determine if it includes any macro
instructions. For each macro named in the source
program, the Macro Generator extracts the associ-
ated routine from the library, tailors the routine if
parameters are supplied in the macro instruction,
and generates a routine in the Autocoder format.

Two of the three Preprocessor portions (Librarian
and Update) that are called by the Option Control
complete the job requested by the user. The results of
the Librarian operations can be an updated library, a
listing of the library table, and/or a listing of routines.
An Update operation causes the Preprocessor to be up-
dated to the latest version or modification level of the
Autocoder System, At the successful completion of
each of these operations, control returns to the System
Control Program.

The Macro Gencrator performs only the first step in
a program assembly. The result of the Macro Generator
operation is an Autocoder source program that contains
tailored library statements. The next step, translating
source statements into machine language, is performed
by the Autocoder processor.

Avutocoder Processor

The Autocoder processor diagnoses the source state-
ments and converts the symbolic references in the
source statements to actual machine codes and ad-
dresses. The processor arranges the results of its opera-
tions to produce Autocoder text.

Autocoder text is a series of 100-character records.
Each record contains a source-program statement, or a
generated statement, and assembly information such as
the machine-language instruction, the length and ad-
dress of the instruction, and diagnostic flag symbols.

The results of Autocoder processing and the opera-
tions required to produce the results are:

Operation Result

Diagnose source
statements

Diagnostic messages and flag symbols

Convert symbolic
to actual

Label table and flag symbols

Arrange results Autocoder text (100-character records)

of assembly

At the completion of Autocoder processing, the text is
ready for the Output processor, which develops various
forms of output.

Output Processor

The Output processor rearranges the Autocoder text
according to the user’s specifications.

The results of Output processing and the rearrange-
ment required to produce the results are:

Result

Program listing

Rearrangement

The text is edited. Blanks are inserted be-
tween items of information. Headings to
identify the items are incorporated in the
listing. A sequence number is assigned to
each statement on the listing.

Source statements are extracted from the
text, and sequence numbers are substi-
tuted for page and line numbers.

Resequenced
source deck

Object program
(card format)

Machine-language instructions are cx-
tracted from the text, and the necessary
loading instructions are incorporated.

Object program
(coreload format)

Machine-language instructions are ex-
tracted from the text and transferred to
disk storage.

Object programs, in either format, are ready to be
executed. Execution of object programs in the coreload
format must be handled by the Execution processor.
Execution of object programs in the punched-card for-
mat can be handled by the Execution processor or exe-
cuted independent of the System.

Execution Processor

The Execution processor starts execution of the object
program and provides linkage with the System Control
Program so that the next job can be performed, with-
out operator intervention, immediately after execution
of the object program.

The Processor reads the bootback routine (linkage)
into upper core storage, calls the object program, and
transfers control to the object program.

Linkage to the bootback routine can be established
by using the syscL macro or by a manual branch to the
routine.

As described under Output Processor, the object pro-
gram can be in card format, which includes loading in-
structions, or in coreload format, which requires a disk
loader. The Execution processor supplies the disk
loader required by an object program in coreload
format.

Thus, the Execution processor permits the user to
include his object programs within a stack of jobs to be
performed.

Results of Processing Operations
The results of processing operations can be divided
into the following categories:

1. Documentation. Control card diagnostics, source
statement diagnostics, label tables, cross-reference
listings, and program listings fall into this category.

2. Intermediate results in the development of an object
program (Autocoder text).

3. Object programs in card or coreload format.

10 Autocoder (Disk) Program Specifications

4. Messages that specify the disk storage location of
any results that are to be used for future processing.

5. Resequenced source deck.

6. Execution of object programs. Execution of object
programs can be accomplished under control of the
System Control Program, or independent of the Sys-
tem. See Using and Maintaining the Object Program.

Documentation

Control Card Diagnostics

If any invalid characters are detected in the crL card
(control card for assembly), the crL card image and the
diagnostic message(s) are listed. The messages inform
the user that his crw card is invalid. The halt gives the
user the opportunity to decide if the assembly should
be continued.

The cr1. diagnostic messages and the format of the
crL card are shown in Figure 1.

Source Statement Diagnostics

The Autocoder processor phases, which analyze source
statements and develop diagnostic messages, are op-
tional. Their inclusion or exclusion is specified in the
source-program cTL card.

If any errors are detected in source-program state-
ments during the diagnostic phases, the invalid state-
ments (except columns 13-15 and 73-80) are listed. A
message appears at the right of each invalid statement.
If the statement contains more than one error, the diag-
nostic message refers to the first error detected. The
halt that occurs after the diagnostic phases have been
completed gives the user an opportunity to decide if
the assembly should be continued.

If the errors are not corrected, flag symbols may ap-
pear on the program listing and the object program,
when executed, may not produce the intended results
(see Figure 2).

Label Table

The label table lists all labels and their equivalent ad-
dresses. Area-defining literals, followed by the # sign,
are also included. The labels and area-defining literals
are listed in alphabetical order according to the first
character. Indexing is indicated as shown in the sample
label table (Figure 3).

The maximum number of labels and area-defining
literals that can appear in the label table depends on
the number of disk-storage sectors assigned to the
WORKS file. See File Considerations under Changing
File Assignments.

Any errors detected by the Autocoder processor are
indicated by the following flag symbols:
A Name equated to an area-defining literal.

Diagnostic Messages CTL Cord Fomat
Card Image of Invalid CTL Card Column Indicates Contents
16-19 Mnemonic CTL

INVALID MACHINE SIZE SPECIFIED, 4K ASSUMED 21 Object-machine size 1 (4K); 2 (8K); 3 (12K); 4 (16K)

INVALID CHAR COL 22, BLANK ASSUMED 22 Modify address 1 (yes); not punched (no, if the object
machine is 4K; or yes, if the object machine
is 8K, 12K, or 16K)

INVALID CHAR COL 23, BLANK ASSUMED 23 Advanced programming 1 (yes); not punched (no)

or index and store-
address register feature .

INVALID CHAR COL 24, BLANK ASSUMED 24 Multiply ~divide feature 1 (yes); not punched (no)

INVALID MACHINE SPECIFIED, PROCESSOR 25 Object machine 0 (1401); 4 (1440); 6 (1460)

MACHINE ASSUMED

INVALID CHAR COL 26, x ASSUMED 26 Punch device S (1442 or 1444); P (1402)

(x =P for 1401 and 1460; x =S for 1440)+

INVALID CHAR COL 27, x ASSUMED 27 Read device S (1442); P (1402)

(x =P for 1401 and 1460; x = S for 1440) t

INVALID CHAR COL 28, x ASSUMED 28 Printer device * S (1443); P (1403)

(x =P for 1401 and 1460; x = S for 1440)+

INVALID CHAR COL 29, 1 ASSUMED 29 Disk device 1 (1311 or 1301); 2 (1405)

INVALID CHAR COL 30, BLANK ASSUMED 30 Source statement N (no); 1 or not punched (yes)

diagnostic
INVALID CHAR COL 31, BLANK ASSUMED 3t Label table or cross-refer=| L (Label Table);
ence listing. N (Neither); not punched (cross-reference
listing
INVALID READ-IN LOCATION, 00001 ASSUMED 32-36 a. Object program in a. Sbbbb (object program in
self-loading format self-Toading format)
b, Read-in area for a b. 5-digit starting address, or not punched
1440 object pro~ (starting address of the 1440 read-in
gram in the con~ area is 00001)
densed=-loader Note: Leave blank for a 1401 or 1460 object
format . program in the condensed-loader
format .
INVALID LOADER LOCATION, 000xx ASSUMED 37-41 Loader location 5-digit starting address.
(xx = 81 for 1401 and 1460, xx =75 Tor 1440) If column 42 contains a D, punch:
03701 for 4K 11701 for 12K
0770l for 8K 15701 for 16K
These columns are not checked if column .32
contains an §
INVALID CHAR COL 42, BLANK ASSUMED 42 Disk loader{for D (yes); not punched (no)
object programs in the
coreload format)

t The values of x depend on the object machine specified in column 25.

* Consider a 1403 Printer attached to a 1440 system as being the same as a 1443 Printer.

Figure 1. CTL Diagnostics and CTL Card Format

M Multiply defined. The same label appears in more
than one label field.

E Invalid operand in an EQu statement.

Cross-Reference Listing

The cross-reference listing lists all labels and area-
defining literals used in the program. The address as-
signed to the label or literal and the sequence numbers
of the statements in which the label or literal is used
are given. For a label, the first sequence number listed
is the sequence number of the statement that defines
the label; for an area-defining literal, the first sequence
number listed is the sequence number of the first state-
ment that uses the literal.

The maximum number of labels and area-defining
literals that can appear in the cross-reference listing
depends on the number of sectors assigned to the
WORKS file. The maximum number of references to
labels and area-defining literals depends on the num-
ber of sectors assigned to the WORK2 file. See File
Considerations under Changing File Assignments.

The labels and area-defining literals are listed in
alphabetical order. Each literal is followed by a #
sign in the tag column. If a label is undefined, it ap-
pears with all sequence numbers assigned to it and
with periods in the address column. A zone bit over
the tens position of the address indicates that the label
is indexed. The zone bit used is the same as that which
appears in the machine language address.

11

Diagnostic Meaning Processor Action
Message
OPERATION The operation field does not contain a valid mnemonic or a | 1. An eight-character no-operation instruction
machine-language operation code . (N xxx xxx x) is inserted.
2, [fan operand or the d-character is not specified, the
assembler inserts zeros.
F FORMAT An operand is invalid: 1. If the statement is a DA header, a subsequent DA, or
1. An operand contains one of the following special a DS, the operand is replaced with 1.
characters , +-b , 2. For a DSA the count is 3. For a DCW or DC the count
2, Invalid literal, is: 1 for a blank constant; 50 for an alphameric
3. Literal used in an EQU, ORG, or LTORG statement. constant; 3 for an address constant; equal to the
4. Blank operand used in a declarative or EQU state- number of numeric characters in a numeric constant.
ment.
L FORMAT A symbolic operand exceeds six characters, or an actual 1. 1lhree periods replace the operand.
address operand exceeds five characters.
X FORMAT An X-control field is invalid. 1. The invalid X-control field is processed.
D-MODIFIER A d=modifier is missing or is invalid for the operation 1. Ablank is inserted if the d-modifier is missing.
specified. 2. The statement is assembled with the invalid d-modi-
fier,
ADJUSTMENT An indexing or adjustment factor is used incorrectly. 1. If double indexing is specified, the last index factor
is used.
2. If the adjustment factor is invalid, it is ignored.
LABEL ERR A label is invalid: 1. Extra characters are deleted.
1. [t exceeds six characters. 2, The label is processed with the special characters.
2, It begins with a numeric character, or it contains one If the label is used as an operand in another state-
of the following special characters , Ftrab, ment it will be recognized as an erroneous operand.
3. It is missing in an EQU statement.
OPRND TYPE The A- or B-operand is invalid for the operation specified. | The statement is assembled with the invalid operand.
For example, %G2 is invalid in MLC NAME, %G2.
OPERANDS An operand is missing, or there are too many for the opera~| 1. If an operand is missing in an 1/O instruction that
tion specified. requires eight characters, periods are inserted;
otherwise, the stafement is assembled as specified.
2, Extra operands are dropped.

Figure 2. Source Statement Diagnostics

Any errors detected by the Autocoder processor are
indicated by an A, M, or E in the tag column. The
meanings of these symbols are given under Label
Table. The cross-reference listing associated with the
sample program (supplied with the Autocoder pro-
gram deck) is shown in Appendix III.

Program Listing

The program listing documents the program and en-
ables the programmer to see the results of Autocoder
processing. The listing also assists the programmer if

revising the program is necessary.

The following messages, if appropriate, appear at the

end of a program listing:

END OF LISTING—X ERRORS, where x is the number of
program errors.

OBJECT CORE EXCEEDED, which counts as a program
error.

X Or NO SEQUENCE ERRORS, which does not count as a
program error.

A description of the 120-character and 100-character

listings follows.

LABEL TABLE
AREA # 01082 AREAL # 01085 CHECK 01037 DELAY Cl062 END 01070
LABEL cl1007 LABEL1 01023 LABEL2 M 01030 LABEL2 M 01041 RESULT 010228&X1
sSusTOoT 01022 TOTAL E cenae X1 00089

Figure 3. Label Table

12 Autocoder (Disk) Program Specifications

120-Character Listing

Program errors are indicated by flag symbols in the last
columns of the program listing. The thirteen flag sym-
bols and their meanings are:

Invalid number of operands

Invalid operation code

Invalid d-modifier

Invalid X-control field

Format error

Extra characters in a symbolic or actual address
operand

Invalid indexing or adjustment

Invalid symbolic indexing

Undefined operand

Reference to the label of an invalid Qu statement
Reference to a multiply defined label

Result of address adjustment is greater than 16,000
or less than zero

Source statement is out of sequence.

The format of the 120-character listing is:

OZEO=> CHEXZOow%

wn

Columns Contents

1-4 Sequence number assigned by the Output proc-
essor

5 Blank

6-10 Source program page and line number

11 Blank

12-18 Label or blank

19 Blank

20-24 Operation code manemonic

25 Blank

26-77 Operands and comments

78 Blank

79 Suffix character or blank

80 Blank

81-82 Count (number of characters in the assembled
instruction), or blank. Blank constants and area-
defining literals have no count.

83-84 Blank

85-89 Location of the assembled instruction

90-91 Blank

92-99 Assembled instruction

100 Blank

101-105 A-address (actual) or X-control field

106 Blank

107-111 B-address (actual)

112-113 Blank

114 Period

115 Label error flag

116 Operation error flag

117 A-operand flag

118 B-operand flag

119 d-modifier flag

120 Sequence flag

100-Character Listing

The format of the 100-character listing is the same as
the 120-character listing except that the suffix charac-
ter, the count, the location of the assembled instruction,
and the assembled instruction are shifted three posi-
tions to the left. The A- and B-addresses are omitted.
Column 100 contains a W flag symbol which is a warn-
ing that the statement contains an error.

Avutocoder Text

The Autocoder text is a series of 100-character records
that are developed by the Autocoder processor. Each
record contains a source-program Or generated state-
ment and assembly information such as the machine-
language instruction, the length and address of the in-
struction, and diagnostic flag symbols.

The Autocoder text can be used as a restart point for
Output processing.

Object Programs

Card Formats

Two object-program card formats, self-loading and
condensed-loader, are available. The condensed-loader
card deck (Figure 4) consists of object-program cards
which are preceded by clear cards, a bootstrap card,
and load cards. The loader instructions for 1440 nor-
mally require 132 positions of core storage; the loader
instructions for 1401 and 1460 require 125 positions.
(See Condensed Loader Considerations.)

The self-loading card deck {(Figure 5) consists of
cards that contain loading instructions, and object-
program instructions and/or data. Two clear-storage
cards and a bootstrap card precede the self-loading
cards.

A 1440 object program in the self-loading format re-
quires that the read-in area be 00001-00072 and that
positions 73-85 be reserved for the read-a-card and
branch instructions, which are moved into these posi-
tions by the bootstrap routine. A 1401 or 1460 object

Object Program

T

d Cards

g5

(Bootstrap Card

(Clear Card 2 —

7
Clear Card1
oader

Figure 4. Object Deck in the Condensed-Loader Format

Object Deck

13

Object Program
and
Loading Instructions

{ Bootstrap Card

(Clear Card 2
Clear Card 1

Object Deck

Figure 5. Object Deck in the Self-Loading Format

program requires no additional positions outside the
read-in area.

An execute card in either a condensed-loader or self-
loading object deck interrupts the loading, so that a
portion of the object program that has already been
loaded is executed. If a source program EX or XFR state-
ment caused the execute card to be developed, the ob-
ject program must contain a branch instruction that
transfers control back to the loading instructions. If a
DA statement caused the execute card to be developed,
the execute card contains instructions that prepare the
defined area according to the specifications in the pa
header (clear the area, set word marks, create record
marks, create a group-mark word-mark). The execute
card also contains a branch back to the loading routine.

Note: Generally, on a 1442, an object deck in the condensed-
loader format can be loaded faster than a deck in the self-
loading format.

On a 1402, an object deck in the self-loading format can be
loaded faster than a deck in the condensed-loader format.

Condensed-Loader Format

The cards that precede the object program are called
the loader (six cards for 1401 or 1460, seven cards for
1440). The first two cards in the loader contain instruc-
tions to clear storage before the program is loaded.
Columns 79-80 contains C1 in card 1 and C2 in card 2.

The third card is the bootstrap card. This card sets
word marks for the instructions in the load cards and
supplies an instruction that reads the load cards into
the read-in area. The bootstrap card contains identifi-
cation in columns 73-80. For a 1440 program, the iden-
tification is BooTsrcp; for a 1401 or a 1460 program, it
is BOOTLDOL.

The remaining cards in the loader are the load cards.
These cards contain the loading routine and the in-
structions that move the loading routine into the load-
ing instruction area.

14 Autocoder (Disk) Program Specifications

After the loading instruction area has been initial-
ized, control is transferred to the loader. The loader
moves the data and instructions in the object-program
deck into their proper locations in core storage.

The object program cards have the following format:

Columns Contents

1-3 The three-character machine address of the first
storage position to be loaded.

4-5 The number of characters to be loaded from the
card. Word-separator characters are not counted.

6-71 The instructions and/or constants to be loaded.
A word-separator character (0-5-8 punch) precedes
every character requiring a word mark in core
storage.

Each pair of word-separator characters is loaded
as a single word-separator character with no word
mark. An odd number of word-separator characters
(n) is loaded as n — 1 word-separator characters

with no word marks; the last word-separator char-
acter causes a word mark to be set in the position
that will contain the next character in the card.

72-75 The program-listing sequence number of the first

instruction or constant to be loaded.

76-80 Identification. The identification in columns 76-80

of the joB card appears in all cards in the con-
densed deck. Each new joB card in the source deck
causes the identification of the condensed deck to
be changed.

Self-Loading (1401 and 1460)

The first two cards in the self-loading object deck are
clear cards that clear storage before the object program
is loaded. These cards are identified by C1 and C2 in
columns 79-80.

The third card is a bootstrap card that contains in-
structions that set word marks in the read-in area be-
fore the object program is loaded. This card is identi-
fied by BooTsTRAP in columns 72-80.

The remainder of the cards contain assembled pro-
gram instructions and load instructions. There can be
as many as seven instructions or constants on each
card. The card format is as follows:

Columns Contents
1-39 The instruction and/or constants to be loaded into
core storage.
40-46 Instructions that load the instructions or constants
into core storage with a high-order word mark.
47-67 Three 7-character set-word-mark instructions (or

one clear-word-mark and two set-word-mark in-
structions for cards beginning with partial instruc-
tions or constants that do not require a high-order
word mark). These instructions set the word marks
that define the separate ficlds in the block of core
storage being loaded.

Columns Contents

68-71 1040. This is an instruction to read a card and
branch to location 040.

72-75 Program-listing sequence number of the first in-
struction or constant to be loaded.

76-80 Identification. The identification in columns 76-80

of the jop card appears in all cards in the self-
loading deck. Each new joB card in the source deck
causes the identification of the self-loading deck to
be changed.

Self-Loading (1440)

The first two cards clear core storage before the pro-
gram is loaded. These cards are identified by C1 and
C2 in columns 79-80.

A bootstrap card, identified by Mm%cl100lr in col-
umns 73-80, loads a group-mark word-mark, a read-a-
card instruction, and a branch instruction (B040) into
positions 72-84 of the read area. Position 85 must be
left blank or contain a wordmark.

The format of the remaining cards is the same as that
described for 1401 and 1460, except columns 68-71 con-
tain BO73. This instruction causes a branch to 073
which contains the bootstrap card read-a-card instruc-
tion.

Coreload Format

An object program in the coreload format is written in
disk storage. It contains the machine-language object-
program instructions. At execution time a disk loader,
supplied by the Execution processor, initiates the load-
ing of the object program.

The object program in coreload format is written in

the load mode. The structure of the program in disk
storage is:

L. A one-sector header record that has the following
format:

Positions Contains
1-7 A move instruction that transfers the address of the
first operating sector to the disk loader.
8-11 A branch to the disk loader.
12-17 The address of the first operating sector.
18-23 HEADER
24-28 The identification from the last yoB card in the
source program, or blank if no jos card was in-
cluded.
29-80 The operand from the last jos card in the source
program or blank if no jos card was included.
81-90 Unused

2. Full 90-character sectors. These sectors contain an
exact core-storage image of the object program.

3. Operating sectors. The first sectors contain instruc-
tions that load the full 90-character sectors into their
proper core-storage locations. The remaining sec-
tors contain instructions that fill in the instructions

and/or constants that could not be put into a full
90-character sector during the Output processor
operation,

4. An execution instruction that causes a branch to the
object program at object-time.

If the source program contains EX or XFR statements,

sections 2, 3, and 4 are repeated for each overlay.

Note: Certain restrictions must be considered when writing a
source program that is to be an object program in the core-load
format:

1. A group mark must not be the first character of a literal or
the first data character of a DCW statement.

2, Before returning control to the disk loader for loading a new
program or program overlay, any group-mark word-marks
within the section of core storage being overlaid should be
cleared.

3. Statements within a program or program overlay are not
always loaded into core storage in the same order they were
coded.

Messages

One of the following messages appears when the input
for or output from an operation is assigned to disk
storage.

INP
3OUT FILE { }SETN%RSTS} ON {igéi}
1] LST

AT ADDRESS nnnnnn.

2. CORELOAD OUTPUT COMPLETE ON {ig(l)}} UNIT n,

START nnnnnn, END nnnnnn.

The messages that reflect the location of results stored
in disk files should be recorded because the addresses
specify restart points for future processing.

Resequenced Source Deck

A resequenced source deck is the original source pro-
gram with the page and line numbers (columns 1-5)
replaced by sequence numbers assigned by the Output
processor. The numbers start with 0001 in columns 1-4.
Subsequent entries are increased by 000L. The format
of the resequenced deck is:

Columns Contents
1-4 Sequence number assigned by the Output processor
(0001-xxxx)
5 Blank
6-72 Columns 6-72 of the source card
73-75 Blank
76-80 Identification from the jos cards as encountered in

the source deck

15

Operating Procedures

Jobs

The Autocoder System performs three major opera-
tions.

1. Translates source programs.

2. Produces object programs.

3. Starts the execution of object programs.

Because these operations are performed by the three
processors of the System, the operations are called
processor jobs. In this respect, the Autocoder processor
translates source programs. The Output processor pro-
duces object programs. The Exccution processor starts
the execution of object programs.

Two other operations, maintaining the Autocoder li-
brary and updating the Autocoder System, are also
considered jobs. Maintaining the Autocoder library is
called a library job. Updating the Autocoder System
is called an update job. Update jobs are described in
Updating an Autocoder System.

Under control of the System Control Program, it is
possible to perform one or more jobs without operator
intervention. This process is called stack processing. A
stack is always made up of the Card Boot deck, a sys-
TEM ASGN card, the particular job(s) to be performed,
and a HALT card.

In performing a job, the following must be taken into
consideration.

1. The kind of input for the job.
2. The use of the logical files.
3. The machine-operator procedures to be followed.

The kinds of input for processor jobs and library jobs
are discussed in the following sections (Preparing Proc-
essing Jobs and Preparing Library Jobs).

The general use of logical files is discussed in Logi-
cal Files. In most cases, the user does not need to be
concerned about the logical files used for a particular
job because the Autocoder System defines the files and
assigns them to specific input/output devices. In the
description that follows of preparing individual proces-
sor jobs, any file asisgnment that the user must make is
explained.

The machine-operator procedures to be followed are
described in Performing Jobs.

Preparing Processor Jobs

The kind of output that is desired by the user is the de-
termining factor of which processor job is to be per-
formed. Figure 6 lists each processor job and the out-
put from the Autocoder System by the completion of

16 Autocoder (Disk) Operating Procedures

the job. In the figure, yEs means that the type of output
is always produced. opT means that the type of output
is produced only if the user specifies that it be. This is
done by supplying output option (oPTN) cards in addi-
tion to the required control cards.

The remainder of this section describes each indi-
vidual processor job. They are:

AUTOCODER RUN TIIRU OUTPUT

AUTOCODER RUN THRU EXECUTION

EXECUTION RUN

AUTOCODER RUN

OUTPUT RUN

OUTPUT RUN TIIRU EXECUTION

Each processor job description includes:

1. Assumed input device. This entry refers to the de-

vice on which the mxeur file is assumed to be lo-

cated. For the 1402, READER 1 means that the cards

are selected into stacker 1. For the 1442, READER 1

means unit 1.

Input. This entry refers to the type of input for the

job.

3. Assumed output device. This entry refers to the de-
vice on which the vist file, the MEssace file, and the
outpurT file are assumed to be located. For the 1403,
PRINTER 2 means that 132 print positions are avail-
able. For the 1443, PRINTER 2 means that 144 print
positions are available. For the 1402, puncH 4 means
that the cards age selected into stacker 4. For the
1442, runcH 1 means unit 1.

4. Output. This entry refers to the type of output that
the user always gets as a result of the job.

5. Output options available. This entry refers to the
type of output the user can get by using output op-
tion (oPTN) cards.

6. Required user assignments. This entry describes any
additional logical file assignments that the user must
make to perform the job.

7. Control cards. This entry describes the method of
punching any required control cards and output op-
tion (oprTN) cards.

Notes: 1. Any logical file assumed assignment can be changed
by using an asen card. (See Changing File Assign-
ments.)

2. NoTE and PAUSE cards can be placed between, but
not within job decks.

1o

Conventional Assembly

A conventional assembly refers to the results normally
associated with assembling an object program. All in-
formation concerned with required control cards and
the manner of punching the control cards is included
in the following section.

Purpose of Processor Input Output
Job Job
Documentation Object Program Messages
Source | Autocoder | Object |CTL Card Source Program | Program | Condensed- | Self- Coreload | Autocoder | Location | Location | Resequenced
Program (Text Program {Diagnostics | Diegnostics Listing | Loader Loading | Format Text of of Text | Source
(card (if CTL card | and Label Table Format Format Coreload Deck
deck or |contain or Cross-ref-
coreload {errors) erence Listing**
format)
Conventional | AUTOCODER RUN YES YES YES YES T YESVt OPTtt| OPT OoPT* OPT
Assembly THRU OUTPUT
Load-and-Go| AUTOCODER RUN | YES YES YES YES YES YES
THRU EXECUTION
Delayed EXECUTION RUN YES
Execution
Partial AUTOCODER RUN YES YES YES YES YES
Processing
OUTPUT RUN YES OPT OPT OPT OPT OPT* OPT
OUTPUT RUN YES YES YES YES
THRU EXECUTION
** Depend on CTL card specifications
t Additional listings and condensed=-loader decks are available. 1t Specified in CTL card or Output OPTN card.
* Message is associated with the Coreload option, V' Unless the self-loading format is specified in the CTL card.

Figure 6. Processor Jobs

Avutocoder Run Thru Output

This is the type of run that results in a conventional
assembly.

Assumed Inp