

Systems Reference Library

Report Program Generator (on Disk) Specifications IBM 1401, 1440, and 1460

This reference publication contains specifications for IBM 1401/1460 Report Program Generator (on Disk) and IBM 1440 Report Program Generator (on Disk). The publication explains the writing of report specifications and the preparation of control cards, to produce object programs.

Examples and sample programs illustrate the applications of the Report Program Generator language.

For a list of related publications and abstracts, see the IBNC bibliography for the associated data processing system.

Minor Revision November, 1964

This publication, $\mathrm{C} 24-3261-1$, is a reprint of the previous edition, C24-3261-0, including the changes made in Technical Newsletters, N24-0251 and N24-0265.

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
Address comments concerning the content of this publication to IBM Product Publications, Endicott, New York 13764.
PREFACE 4
Machine Requirements 5
Introduction 5
Input Files 6
WRITING REPORT SPECIFICATIONS 9
General Description 9
Correlating the Report Specifications 10
Printer Spacing Chart 10
Input Specifications 13
Data Specifications 18
Calculation Specifications 23
Format Specifications 30
Numeric Level Classification 37
Summary 40
PROCESSING ORDER OF DISK INPUT RECORDS 47
Processing-Order Records 47
Card POR Files 47
Tape POR Files 48
Disk POR Files 48
Consecutive Mode 48
Random Mode 48
Control-Sequential Mode 54
CONTROL CARDS FOR RPG PROCESSOR 57
RPG Control Card 57
TAPOUT Control Card 58
TAPIN Control Card 58
MAS Control Cand 59
TRL Control Card 60
POR Control Card 61
RPG Translator Program 62
Special Feature Specifications 62
SAMPLE PROGRAM DOCUMENTATION 63
Card Input File, Monthly Expense Distribution Report 63
Card Input File, Invoice Preparation 74
Tape Input File Example 83
Control-Sequential Disk Input File 90
Consecutive Disk Input File Example 98
Random Disk Input File Example (with an IBM 1311 Sort Tag Table as a POR File) 103
DISK UPDATE FUNCTION FOR RANDOM DISK FILES 105
INDEX 113

PREFACE

Speed in preparing reports is achieved by rapid processing of input data and also by rapid preparation of programs to produce reports. The Report Program Generator (RPG) provides easier and faster preparation of programs.

Instead of writing a particular program for a report, the user states his problem and its solution, which are the report specifications, in RPG language. RPG processes the report specifications and generates a program to write the reports. By relieving the user of most of the machine coding and program testing, RPG permits him to concentrate his efforts on the best solution to the problem. Thus, RPG is essentially problem-oriented rather than machine-oriented.

The programs produced by RPG write reports in varying formats. Source (input) data for programs produced by RPG may be contained in card, magnetic-tape, or disk-storage files. Output from programs produced by RPG is prepared in any combination of three forms:

- Printed report
- Punched cards
- Magnetic disk records or magnetic tape records (but not both)
The reports produced by programs generated by RPG can range from a simple listing of items from the input file to complex reports that incorporate editing and calculations upon the input data. RPG includes such capabilities as printing various kinds of lines (heading lines, detail lines, total lines controlled by control-field changes, and offset total lines), serial and page numbering, crossfooting, and summary punching. Along with the report, exception records can be produced.

MACHINE REQUIREMENTS

Figure 1 shows the minimum machine requirements necessary to generate an RPG object program. Figure 2 shows the minimum machine requirements necessary to execute an RPG object program. The system configuration required to execute an RPG object program depends on the object program. Each system must have a card read-punch. The minimum requirements for card, tape, and disk RPG programs are listed in Figure 2. Additional features that an RPG program can use, if they are installed on the object machine, are also listed in Figure 2. The amount of core storage required to execute an RPG object program depends on the complexity of the report.

INTRODUCTION

RPG produces programs that write reports of variable format from card, magnetic tape, or magnetic disk input files. Instead of writing a specific program for each report, the user writes a set of specifications and the necessary control cards, which he supplies to RPG (Figure 3). At this point, the user's choice determines which form of the program is produced. He has three options for for the form of generated output:

1. the object program in machine language punched in cards,
2. the object program in machine language stored in disk storage, or
3. the report program in symbolic (Autocoder) language punched into cards.
In each of the three options, RPG produces an edit listing along with the program. The edit listing is a printed record of the source deck, as well as an analysis of the specifications and control cards. Certain kinds of errors, for example, unacceptable entries in the report specifications, will produce error messages.

If the user selects the first option, the RPG and Autocoder processors generate a machine-language object program. The object program is punched into cards, and an Autocoder program listing is produced.

The second option for the form of generated output permits load-and-go RPG operation. Under the load-and-go option, RPG prints the edit listing and generates the report program in Autocoder language. Autocoder assembles the report program, producing the object program in machine language, and stores it on the system pack in an Autocoder disk area. When it completes assembly, Autocoder prints an appropriate message and halts. (The user can begin loading and executing his object program by pressing the start key.)

Under the third option, RPG produces a symbolic language (Autocoder) source deck and an edit listing. The user can modify this source deck by adding additional Autocoder instructions. The symbolic program must be further processed by Autocoder to produce the object program in machine language.

Having chosen one of the three options, the user can proceed with the next step, which is the last

System	Disk	Core Storage	Card Reader-Punch	Printer	Special Features
IBM 1401	$\begin{aligned} & \text { One IBM } \\ & 1311 \end{aligned}$	4K	One IBM 1402 Card Read-Punch	One IBM 1403 or One IBM 1404	High-Low-Equal Compare
IBM 1440	One IBM 1301 or One IBM 1311	4K	One IBM 1442 Card Read-Punch, Model 1 or Model 2 or One IBM 1442 Card Reader, Model 4 and One IBM 1444 Card Punch, Model 1	One IBM 1443	None
IBM 1460	One IBM 1301 or One IBM 1311	8K	One IBM 1402 Card Read-Punch	One IBM 1403 or One IBM 1404	None

Figure 1. Minimum Machine Requirements to Generate an RPG Object Program

System	Cord Reader-Punch (Required)	For Disk Input/Output	For Printed Output	For Tape Input	For Tape Output	Required Special Feature	Additional Features RPG can use if they are installed on the object machine.
IBM 1401*	One IBM 1402 Card Read-Punch	One IBM 1311 (Disk output can use the same drive used for disk input, or it can use another drive.)	One IBM 1403 or One IBM 1404	One IBM 729 Magnetic Tape Unit or One IBM 7330 Magnetic Tape Unit	One IBM 729 Magnetic Tape Unit or One IBM 7330 Magnetic Tape Unit	Blocked tape input records or blocked disk or tape output records require the Advanced Programming special feature. \# (See Note)	One to Four addifional IBM 1311 Disk storage drives. Advanced Programming special feature. Multiply-divide special feature. Modify Address. Direct Seek special feature. Sense Switches.
IBM 1440*	One IBM 1442 Card Read-Punch, Model 1 or 2; or One IBM 1442 Card Reader, Model 4, and One IBM 1444 Card Punch, Model 1.	One IBM 1301+ or One IBM 1311+	One IBM 1443	Ore IBM 7335 Mognetic Tape Unit Model 1 (For tape input only) (For both tape input and out Model 2.)	One IBM 7335 Magnetic Tape Unit Model 1 (For tope output only) tput: One IBM 7335,	None	One to Four additional IBM 1311 Disk Storage Drives One to Four additional Modules of IBM 1301 Disk Storage . One additional IBM 1442 Card ReadPunch, Model 1 or 2. Indexing and Store Address Register special feature. Multiply-divide special feature. Direct Seek special feature (IBM 1311). Selective Stacker special feature on IBM 1442, Model 1. (This feature is standard on models 2 and 4.) Modify Address. Sense Switches.
IBM 1460*	One IBM 1402 Card Read-Punch	One IBM 1301+ or One IBM 1311+	One IBM 1403 or One 1BM 1404	One IBM 729 Magnetic Tape Unit or One IBM 7330 Magnetic Tape Unit	One IBM 729 Magnetic Tape Unit or One IBM 7330 Magnetic Tape Unit	Blocked tape input or blocked disk or tape output records require the Indexing and Store Address Register special feature.	One to Four additional IBM 1311 Disk Storage Drives, Cr One to Four additional modules of IBM 1301 Disk Storage. Indexing and Store Address Register special feature. Multiply-divide special feature. Direct Seek special feature (IBM 1311). Sense Switches.

* The amount of core storage depends on the complexity of the report.
+ Disk output can use the same 1311 drive or 1301 module used for disk input, or it can use another drive or module. The disk input data file can use either a 1311 drive or a 1301 module, but it must not use both. The same is true for disk output. It is permissible, for example, for the disk input data file to use a 1301 module, and a disk output to use a 1311 drive.
\# The High-Low-Equal Compare Special Feature is required if (1) tape or disk input is used, (2) tape or disk output is used, (3) multiply or divide calculations are used.
Figure 2. Minimum Machine Requirements for Executing an RPG Object Program
one. He loads his object program into the system, supplies his processing-order file, if one is required, and supplies his input file. See Processing Order of Disk Input Records for information about the processing-order file. The input file can be a card file, a magnetic tape file, or a disk file. The output from the object program can be any combination of these: a printed report, punched cards, and either disk records or tape records.

RPG Translator

IBM provides the RPG Translator program.for present users of 1401 RPG (program number 1401-RG-048) who will have IBM 1401's equipped with IBM 1311's. The function of this prograns is to translate programs written for 1401 RPG to corresponding programs acceptable to 1401-1311 RPG. A description of this translator program may be found under RPG Translator Program in this publication.

INPUT FILES

Programs generated by RPG can process input data contained in card, disk, or magnetic tape files. However, any one program can process input from
only one source. That is, either card or disk or tape may contain the input file, but it must not be in more than one of these.

Card Files

A card file consists of all the cards in the deck. The order in which records are processed is determined by the card order. Processing the last card indicates the end of the file.

Disk Files

When the input is from disk storage, the user can process any number of records in any order. Furthermore, a disk file need not consist of consecutively stored records. Thus, the processing order of disk records is not restricted by recordstorage order. Because of the random-access ability of disk storage, the user must specify the processing order of his disk records. RPG provides for three methods to specify the processing order. Each method (or mode) defines a different way of selecting the sequence of the desired records in the disk file. The three modes are explained under Processing Order of Disk Input Records.

Figure 3. Producing Reports Using the Report Program Generator

RPG provides for several types of automatic header-label checking of disk files that have IBM standard header labels. Details are given in MAS Card under Control Cards.

With disk input, at least one card always follows the program deck. This card defines the processing order (or limits) of the disk data. This is true even with processing order records stored on the disk file. (The limits of the processing order records must be defined.) Processing the last such card indicates the end of the disk input file.

Organization

Programs produced by RPG can process files organized as explained in Disk File Organization Routines Specifications: IBM 1401, 1440, 1460 (1311 and 1301), Form C24-3185, Systems Reference Library File No. Genl-34. Record formats applicable to the file-organization routines, described in that publication, apply for applications using RPG. In general, RPG provides for processing these disk-record arrangements:

- Fixed-length, without trallers

Blocked
Unblocked

- Masters and trailers, variable length (a variable number of trailers per master)

Unblocked masters, unblocked trailers
Unblocked masters, blocked trailers
Blocked masters, unblocked trailers
Blocked masters, blocked trailers

- Maximum record length is 1,000 characters of data. (The maximum combined length of a master and its trailers is 1,000 characters.)
- For blocked records, the maximum block length is 9,900 characters . (Master records and trailer records can each have a maximum of 9,900 characters.)
- For blocked records, the maximum blocking factor is 99 records per block. (The maximum blocking factor for trailer records is ten records per block. For master records, the maximum is 99.)

Tape Files

Programs generated by RPG can process magnetictape input files that have these characteristics:

- Maximum record length is 1,000 characters of data.
- Records are either fixed-length, unblocked; or fixed-length, blocked.
- For blocked records, the maximum blocking factor is 99 records per block.
- For blocked records, the maximum block length is 9,999 characters.
- For blocked records, the last character in each record must be a record mark (A82).
- Padding character can be any one of the 64 valid characters except these:

Graphics	Character Name	BCD Code
*	Asterisk	B84
も	Substitute Blank	A
邫	Group Mark	BA8421
\neq	Record Mark	A82
$\sqrt{ }$	Tape Mark	8421
\checkmark	Word Separator	A841

RPG provides for several types of automatic header-label checking of tape files that have IBM standard header labels. For details, see TAPIN Card under Control Cards.

GENERAL DESCRIP'TION

To generate an object program, RPG requires certain information. The information answers these questions:

1. What are the characteristics of the file from which the report data is obtained?
2. What type of information is to be extracted from the input file? From which records can these source fields be obtained?
3. What types of calculations axe to be performed during the execution of the object program?
4. What is the format of the report? What headings and constants must it contain? How should the data composing the report be edited?
As shown in Figure 3, four forms are required for writing the report specifications. The forms contain answers to the preceding questions. The information is punched into cards with one card punched for each line. These cards comprise the specifications source deck for the RPG program.

Before the actual report specifications can be written, the user must have a clear image of what he wants as the final product. If he desires a printed report, he must know the contents of each line of the report, the spacing between lines, and the positioning of the information within each line of the report. He uses either the IBM 1403 Printer Spacing Chart, Form X24-6436, or the IBM 1443 Printer Spacing Chart, Form X24-6596, before writing specifications.

The user must also plan the format for other types of output (card, tape, or disk). Then he can make appropriate entries on the Format Specifications Sheet.

Preparing the appropriate chart consists of laying out the complete format of the report to obtain a pictorial representation of the final product. Although no cards for the source deck are punched directly from the entries on this chart the pictorial representation serves as a guide to completing the four specifications sheets. It thus plays an important role in writing report specifications.

The spacing chart and the four forms required are listed here in the order in which they are used. A. brief description of the functions of each form is also given. Later sections will explain their use in more detail.

Printer Spacing Chart

The user's image of the report is projected on either the IBM $407,408,409,1403$, and 1404 Printer Spacing Chart, Form X24-6436; or IBM

1443 Printer Spacing Chart, Form X24-6596. He must define the position of each field on each line of the report and include constant information, headings, and editing symbols, where applicable.

Input Specifications, Form X24-6590
A description of the data file, from which the information required for the report will be extracted, must be specified on this form. The user must describe each type of record in the data file, with its distinguishing record codes and control fields.

Data Specifications, Form X24-6591
On this form the user lists the data fields necessary for processing the report. These data fields may be output fields or factors in calculations. Each field described is associated with the input record or records that contribute to it. It is also associated with any conditions that govern the processing of those input records. Any number of fields from one or more input records can be listed as the sources of a data field. The input sources can be added and subtracted as well as moved to the data field. Furthermore, the user can state that the status (positive, negative, zero, or blank) of a data field will be needed to govern subsequent processing. For example, a line can be conditioned to print only if a particular data field is positive.

Calculation Specifications, Form X24-6592

Although a limited amount of calculation is available through entries on the data specifications sheet, the calculation specifications sheet must be used for more extensive calculations including multiplication, division, and comparing. This form accommodates calculations on data fields described on the data specifications sheet, as well as constants and the results of previous calculations. Half-adjusting and the conditions governing the performance of a calculation can all be shown on this sheet. Furthermore, the user can define status conditions based upon the sign of the calculated result or the comparison of two fields.

Format Specifications, Form X24-6593

The final step in writing report specifications is describing the format of output lines. Each line is named by its type and relation to other lines. The medium of output (printing, punching, writing on disks or magnetic tape) is specified as well as the
conditions for output. Stacker selection of punched output or forms control of printed output can be specified. Having named a line, the user lists all the constants, data fields, and edit control words that compose the line. Control words specify where commas, decimals, and conditional credit (CR or minus symbols) are to print and where zero suppression is to stop. Provision is made for description of conditions, if any, governing the inclusion of a field within a line.

CORRELATING THE REPORT SPECIFICATIONS

When completed, the five forms are an interrelated statement of the problems specified as shown in Figure 4. Considered together, the five forms represent the input file, the significant data fields within that file, the manipulations necessary to obtain the required output fields, and the line formats in which the fields are to appear. The spacing chart represents the output lines described in the format specifications sheet. The same line names are used on both forms.

The input specifications describe the kinds of records in the input data file according to the coding and control fields that are significant in these records. These specifications determine the conditions for processing data which is extracted from the input file.

The names assigned to various input records on the input specifications sheet are also used as field sources on the data specifications sheet. These field sources indicate the record from which a data field is taken during report writing.

Each input record is assigned a unique two-digit number (from 01 to 99) called a resulting condition number. As the report is processed, the resulting condition is fulfilled when a record is present in the input area which has the record codes specified for that resulting condition. The fulfillment of such a condition can govern the processing of a source field in the data specifications, performance of calculation specifications, or the output of a line as stated in the format specifications.

The fulfillment of a resulting condition can be compared to the transferring of a selector on an accounting machine during the presence of a particular card. It can also be compared to the setting of a programming switch on a stored-program machine to indicate the presence of a particular record type. This switch will be turned off when the record has been processed. The change of a control field specified for input records can also govern the processing of source fields, the performance of a calculation, the printing of lines, and the punching of cards.

The fields named on the data specifications sheet can be used as factors in calculations or as fields in lines. The fields named on the calculation specifications sheet can also be placed in lines on the format specifications sheet. Sometimes the status of a field (positive, negative, zero, or blank) is important in the processing of that or other fields. It may be that calculations should not be performed on zero or blank fields, or it may be that a field should be printed in different positions depending upon whether it is positive or negative. Whenever the status of a field is important to processing, that status can be specified on the data sheet or calculation sheet beside the field name. Then the status is assigned a unique two-digit resulting condition number to represent it. Fulfillment of that condition during processing can govern further processing, as just indicated.

Thus, fields from the data and calculation sheets contribute to the lines on the format specifications sheet. A condition for a line (representing the presence of a new record in the input area, for example) can govern the printing, punching, or writing on disks or tape for that line.

This summarizes briefly the elements that enter into report specifications. In the sections that follow, each of the rules and conventions governing report specifications is presented. Sample applications are used to illustrate pertinent parts of the description.

Six sample programs and their accompanying control cards are shown in Sample Program Documentation.

PRINTER SPACING CHART

The purposes of laying out the report on the spacing chart are:

1. to establish the positions at which the various data will be printed, as well as to indicate the spacing between printed lines, and
2. to assign each line a unique identification code.

Layout of Lines and Fields

The numbers across the top and bottom of the spacing chart represent the IBM 1403, 1404, or 1443 print positions. The numbers down the left side are line numbers. The user selects the line number and print positions for a particular field and makes his notation in the selected positions. In the sample layout (Figure 5) note that headings and other constant information are spelled out completely in the print positions assigned to them. Variable information is represented by $\mathrm{X}^{\prime} \mathrm{s}$ and includes, where applicable, credit symbols, punctuation, etc. The

position in an amount field where zero suppression ends is indicated by a zero rather than by an X .

Line-Identification Code

The column at the left on the spacing chart is used to assign each line a three-character identification code. This code identifies the line later on the format sheet where each line is described according to type and content.

The first character of the identification code is \underline{H} for a heading line, \underline{D} for a detail line, or T for a total line. All lines must be identified as belonging to one of these categories. Heading and detail lines can contain information from the record in the input area at the time when lines are produced; total lines cannot.

Classification of Lines

Two methods of classifying lines may be used. Because it does not require a consideration of established order or rank, alphabetic level classification is a quick and efficient method of assigning an identification code to each line. See Numeric Level Classification for a detailed explanation of the hierarchical relationship between line-levels. However, all examples in Format Specifications and in the illustrations will be given as alphabetic classification.

Alphabetic Level Classification

A.ssign letters to heading lines, detail lines, and total lines as shown in Figure 5. The first heading line in Figure 5 is assigned HAA. The second heading line is assigned HBB; the third, HCC, etc. The first detail line is assigned DAA. The first total line is assigned TAA. The second total line is assigned TBB; the third, TCC, etc. For convenience, these lines are assigned pairs of letters, but if printing occurs on a large number of lines, the lines may be classified as HAA, HAB, HAC, etc.

INPUT SPECIFICATIONS

This form (Figure 6) specifies the input file from which the report is to be prepared. The user describes each type of input record in the file. He specifies the record codes (that is, the characters used to uniquely identify the records) and the controldata fields significant in that record type. Records that must be processed in sequence within a control group can be given numbers representing their place in the sequence. The following paragraphs describe the information entered on the form.

Record Sequence

Column 1 must contain a C, D, or T for every lineentry that specifies a card, disk, or tape-record type. For a given program, all input records must be the same type.

Columns 2-3 specify two numeric or two alphabetic sequence characters. The Report Program Generator can accommodate a maximum of 20 unique two-character sequence specifications. If, to ensure proper processing, certain types of input data records must be in an established sequence within a control group, columns $2-3$ of the input specifications sheet can contain numeric sequence entries in ascending order.

If input data records do not have an established sequence within a control group, or if it is not desirable to halt processing when the records are out of sequence, alphabetic sequence designations should be used. Some applications contain both sequential and non-sequential records. For example, the invoice form shown in Figure 7 is prepared from the file of cards shown in Figure 8. The source of the invoice date is a date card preceding the entire file. Because this date card has no sequence relationship in a control group in the input file, it is given the alphabetic record sequence AA in columns 2-3 of the input specifications sheet (Figure 9).

For proper invoice preparation, the other input data cards must be arranged within customer number in the sequence shown in Figure 8. Therefore, the Invoice To header card's record-sequence number is 01, the Shipped To header card is 02, the Shipped Via is 03 , the Order Data is 04 , and the Item detail is 05. Each time the customer number changes, this sequence begins again.

For sequential records, Column 4 indicates the number (either a 1 or N) of that type of record in a control group in the input data file. If there is only one record of a type per group, enter a 1 in column 4. If there is more than one record of a type, enter an N in column 4.

Except for detail cards, there is only one card of each type in the control group in the invoice example. Therefore, for the Invoice To card a 1 is entered on the sheet in column 4 . For the detail card an N is specified. Column 4 can be left blank for nonsequential records.

Column 5 must contain the letter X if the presence of a sequential record in the input data file is optional. If a record type is required for proper processing, leave column 5 blank. In Figure 7, the Shipped To entry is optional because that record appears only if the customer to whom the invoice is

Figure 6. Input Specifications Sheet
sent has instructed the Representative Company to direct shipment to an address different from his own. An X in column 5 specifies that the Shipped To record is optional (Figure 9).

Any input disk or magnetic-tape record that is designated as optional cannot exceed 200 characters.

Record Codes

An input record can be identified by any number of record codes. All record codes specified for a single record type are considered in an AND relation. That is, all the codes must be present in the record. Columns 6-41 of the input specifications sheet provide space on one line-entry to specify as many as six record codes per type of input record. It is possible, however, to specify more than six record codes per type by using more than one line-entry.

- The first line has no resulting-condition number in columns 42-43. Columns 1-41 are filled in as normal.
- Columns 2-5 are filled in only for the first line.
- Succeeding lines have a C, D, or T in column 1 and the additional record codes.
- Only the last line-entry for a single record type has a resultingcondition number in columns 42-43.

Each input record is analyzed to determine if it meets the record code specifications of the first record type on the Input Specifications sheet. If the input record does not meet the first record code, the program will determine if the second record type conditions are satisfied. When an input record satisfies the record code specifications, the associated input resulting condition is set. Only one input resulting condition can be set for any one input record.

If an input record fails to satisfy the record code requirements of any specified input record type, a program halt will occur. When the program is restarted, it will bypass that record and read the next data record.

Figure 7. Invoice Example

Figure 8. Input Data Cards for Invoice Preparation

Figure 9. Excerpt from Input Specifications for Invoice Report
When all input records are to be processed alike without regard for their record codes, a single record type may be specified without any entry in
the record code fields. (Columns 6-41 will be left blank.) When certain input records are present which are to be merely read and bypassed, the records to be processed are listed first with their identifying record codes.

The last record type entered on the Input Specifications sheet can be left blank in columns 6-41. Any record not satisfying the preceding specifications will satisfy this condition. No processing need be performed for this particular type of record.

Columns 6-8 state the position number (input card column, disk-record position, or tape-record position) that contains the record-code character.

Column 9 must contain an N if a negation condition is intended; otherwise it is left blank. A
negation means that the code described is not present in the record specified.

Column 10 must have a Z, D, or C , depending upon whether the record-code comparison to be made is that of the zone portion only, the digit portion only, or the full character.

Column 11 is used for the particular record code. Any valid alphameric character (including a blank) can be entered in column 11. If the entry in column 10 is a C, the character is entered in column 11. If the entry in column 10 is a D , the exact digit is entered in column 11. If the entry in column 10 is a Z, any character containing the desired zone can be entered.

Columns 12-41 are used for five additional record code designations in the same manner as 6-11.

All record-code entries describing one inputrecord type are represented by one resultingcondition entry entered in Columns 42-43. The resulting condition is a unique two-digit number arbitrarily chosen by the user to represent a record (in the area 01-99) coded according to his specifications.

It may be useful, however, to assign the same resulting-condition number to more than one record type.

Figure 9 shows the entries necessary in columns 1-43 of the input specifications sheet for the Invoice Report.

In some applications there is more than one kind of record of a given type. For instance, in the invoice example just given, suppose that the file of input data cards contained three kinds of detail cards:

1. a 1-punch in column 80 , 2. a 2 -punch in column 80 , 3. a 3 -punch in column 80 .

For other reports, the 1-, 2-, and 3 -punches might be significant, but in preparing invoices all three kinds of detail cards should be treated as one type. Therefore, they would receive the same sequence designation. Furthermore, suppose that in the input data file it were possible that for a given customer there may be any number of detail cards of each kind, including none of some kinds. Each kind would have N -number within a control group, and each kind would be optional within that group. The specifications for the conditions just stated consist of a separate line-entry for each kind of detail card, each having its own resulting condition (lines 2,3 , and 4 of Figure 10).

When records that are coded differently are to be processed alike for the most part, they may have

Figure 10. Three Kinds of Input Records Defined as One Record-Sequence Type
the same sequence designation in columns 2-3 (whether that designation is numeric or alphabetic). To represent their unique record codes, however, and to distinguish them later, they normally receive different resulting-condition numbers. Such records are said to be in an Or relation.

Control Fields

Control fields are record positions containing information identifying the classifications to which the record belongs. Columns $44-73$ of the input specifications sheet list the control fields present in each type of input data record. Each field is described by its right-most position in the input record and its length. The fields are specified in ascending sequence of control levels beginning with the entries for the most minor level in Field 1 (columns 44-48) and continuing to the right as far as necessary. Six is the maximum number of control fields that can be specified.

Frequently, it is necessary to process data having split control fields. For example, assume that the intermediate control field is split into two different parts of the input data record. To handle this condition properly, one portion of the field should be specified in normal fashion as Field 2 and the other portion as Field 3. Calculations, output, etc., conditioned by a break in Field 2 will be performed whenever either Field 2 or Field 3 changes. Minor control is still affected using Field 1, whereas major control will utilize Field 4.

It is not necessary that a control field be in the same position in different sequence designations. It is important, however, that a field be entered under the proper level on the input specifications sheet. None of the heading cards in the invoice example have the lowest level of control, Item Number. Therefore, field 1 is left blank for those record specifications. The next level of control, Customer Number, is present in those records. It is specified in columns 49-53 of the sheet. The detail cards in that example have both levels of control. Therefore entries are present for fields 1 and 2 (Figure 11).

Figure 11. Input Specifications for Invoice Report

If there are more than six record codes in a record type, the control-field entries are made only on the last line-entry for that record type.

Sequence Control

A special entry applies when the records of an input file are required to be in a fixed sequence within a control group. This is the SCFx entry in columns $1-4$, which is used for numerically designated types of records. The x is the number of the control field. A change in this control field means that the sequence is to begin again. In the invoice example the sequence of records specified relates to customer number. Every change in customer number means that the sequence of records begins again with an Invoice To record. Because customer number is field 2 (Figure 11), the proper entry for this Invoice Report is SCF2 in Columns 1-4 on the line below the last sequential record specification. Every application that has sequential-record specifications must have an SCFx entry at the end of the input specifications.

A break in the control field which is specified in the SCF entry means that the sequence of input is to begin again starting with C01. Therefore, C01 should never be designated as an optional entry.

There are three causes for an out-of-sequence condition:

1. A control break occurred on a type of input other than a C01.
2. A required numeric type of input in a control group was missing.
3. A non-optional card was missing. However, if a C01 type of input is designated \underline{N} (one or more of this type is allowed), then a control break will take precedence over a missing non-optional card.

Page Number

Columns 76-77 are used for page numbering. The page-number entry is in the upper right-hand corner of the input specifications sheet. The pages are
numbered consecutively beginning with the spacing chart as page 01.

Card Number

A three-character card number in Columns 78-80 establishes the order of entries on the specifications sheet. The first 20 lines of the sheet are prenumbered $010-200$. The six unnumbered lines at the bottom of the sheet are for the entry of statements inadvertently omitted and for sheet extension. Insertions can be referenced by numbering the statement with the hundreds and tens digits of the statement it is to follow and with any one of the units digits 1-9. This allows up to nine insertions between two consecutive prenumbered statements.

DATA SPECIFICATIONS

The Data Specifications sheet (Figure 12) describes the fields that appear in the output and those used in processing.

D (Data)

Column 1 must contain a D for every line-entry on the sheet. The D identifies each entry as a data specification.

Field Name

Columns 2-7 must contain a name for each of the data fields necessary to process the report. Numbers and special characters should not be used in a field name to avoid conflict with field names and instruction labels used by the RPG processor. Any name must be left-justified. The alphabetic field name CONTD must not be used on the data specifications sheet. To use the field name PAGENO, see Serial, Record, and Page Numbers under Data Specifications.

Note: Any number of line-entries for the same data field (same Field Name) is permitted. In these cases, write the line-entries in the order in which the data manipulations should occur.

Field Length Unedited

Columns 8-10 contain the unedited field length of the report field. Unedited length means the length not counting punctuation supplied by program editing. For example, in Figure 7 the date on the second printed heading line is contained in a card as Jul 25, 64. Because the date field desired on the report is the same, the unedited field length entry for DATE is 009. If the date were contained in a card as Jul2564 and the date field desired in the

Figure 12. Data Specifications Sheet
report were Jul. 25,64 , with the period and comma supplied by program editing, then the entry for unedited field length would be 007.

Note: The maximum unedited field length is 099.

Decimal Length

For numeric data fields enter in Columns 11-12 the number of positions of the data field that is a decimal fraction. (The maximum permitted is 09.) For example, suppose that a data field were of the form xxx. xx. The unedited length would be 5 positions. Of these 5 positions, 2 positions would belong to the right of the decimal point. Hence the entry in columns 11-12 for this data field would be 02.

[^0]
Sources of Field

Columns 22-72 specify three sources of the report field. If more than three sources must be specified for a report field, use more than one line. Refer to the Disk Update Function for Random Disk Files section for special use of these columns for the update function.

Columns 22-24 define the first source of the field. Possible sources are input records, serial numbers, page number, and record-count numbers. The entries are Cxx, Dxx, and Txx for input record sources, SER for serial numbers, PAG for page number, and RCT for record-count numbers. When the field source is an input record, the appropriate entry must come from columns $1-3$ of the input specifications sheet.

Column 25 contains an N if the field is a numeric field that has zoning in positions other than the units position. The object program will then strip the zero-, 11-, or 12 -zones from all positions except
the units in the field for which an N is specified. If the units position contains no zone, this specification will create a 12 -zone in that position.

The other entry permitted in column 25 is an M . This identifies the entry as a month-field conversion specification. (See Month-Field Conversion under Data Specifications for an explanation and example of this entry.) Otherwise leave this column blank.

Columns 26-28 contain the location of the loworder position of the field in the source record. For fields whose sources are SER, PAG, and RCT, these columns should be left blank.

Note: For IBM 1401 and 1460 Data Processing Systems using 51 column input data cards, see Special Feature Specifications.

Columns 29-31 must contain the field length in the source record only if that length is different from the unedited (report) field length specified in columns 810. For example, in Figure 13 the entry on the data specifications sheet for SOLDTO gives the unedited field length in columns 8-10 as 020. Because the source field length is the same, columns 29-31 are left blank for that field. The entry for AMOUNT specifies an unedited field length of 006 in columns $8-10$. This provides sufficient positions for the largest total expected although the source field length specified in columns 29-31 is 005 . The source field length should be left blank when the source is SER, PAG, or RCT.

Figure 13. Data Specifications for Field Sources

One of the following seven operation characters must be specified in column 32:

[^1]Figure 14 illustrates the use of the single-character move-numeric and move-zone operations.

Figure 14. Single-Character Move-Numeric and Move-Zone Operations
Each line-entry is explained as follows:

1. The first line-entry specifies that the sixcharacter field at position 074 in input record C06 should be moved to the data field, AMOUNT. Furthermore, the zone portion of the singlecharacter source field in column 69 of the same record is to be moved to the units position of the data field, AMOUNT. By using an entry such as this, the high-order position of the source field can contribute the sign to the units position of the data field.
2. The second line specifies that the five-column source field in columns $49-53$ of record type CBB is to be moved to the five-position data field, FLDR. The zone portion of the singlecharacter source field in column 70 of CBB is to be moved into the units position of the data field, FLDR. By using an entry such as this, a data field can acquire its unit-position sign from any position in a record. By choosing a one-position field source containing no zones for the Y operation, an unwanted sign in the units position of the data field can be removed.
3. The third line specifies that the numeric portion of the one-column source field in column 35 of card type C02 is to be moved into the one-position data field, FLDS. By using an entry such as this, a single-column source field that contains an unwanted sign can be moved into the data field without the unwanted sign.
Because the Y and D operations are singlecharacter move operations, it is not necessary to specify the field length in Columns 8-10. When Y or D operations are specified on the same lines as another operation, they should follow the other operation. This ensures the proper sequence of operation in the object program. For example, in the first two line-entries in Figure 14, the Y-entries are made to the right of the blank (move) operation entries.

The same principle of ordering source entries on a line applies in some arithmetic specifications. This is because the object program performs the operations specified in the order of entry on the sheet from left to right.

For example, if a field being described is the result of adding or subtracting more than one field from the same source record, and if that field must be reset prior to the first operation, then the source field described first (in columns 22-38) should be the one that is reset-added or reset-subtracted.

Columns 33-35 can be used to specify a condition that is to govern the operation upon the source field. It can be either a positive condition, such as F3 to indicate a change in control field 3 , or a negative condition, such as NF3 to indicate no change in control field 3. The conditions specified on this sheet are the resulting conditions of the input specifications sheet, control-field changes (F'1-F6), sense switch settings (SB, SC, and SD), resulting conditions specified by other entries on the data sheet, or the negation of any of these when preceded by an N. The following list shows the resulting conditions which are defined by the RPG processor.

Condition	Explanation
F1-F6	Change in control field 1 through control field 6 (columns 44-73 of Input Specifications Sheet)
OF	Page Overflow
1P	First Page
SB	Sense Switch B
SC	Sense Switch C
SD	Sense Switch D
LC	Last card, tape, or disk record

In the Invoice Report shown in Figure 7, the minor group-indicative information (Item Number, Description, Unit of Measure, and Unit Price) is to be obtained from the first card of each minor control group. Hence the specification for ITEMNO is condition F1 in columns $34-35$ of the data specifications sheet (Figure 15). This entry specifies that the source field is to be moved to ITEMNO only from the first card after a change in control field 1.

Other permissible entries in Columns 22-72 are RCT, SER, and PAG. See Serial Record and Page Numbers.

Columns 36-38 can be used to specify a second condition governing the operation upon the source field. If two conditions are specified, they are considered in an AND relation. That is, both conditions specified must be met before the operation specified in Column 32 is performed upon the source field.

When the field being specified has more than one source, the second source is specified by entries in Columns 39-55 in the same manner as the first

Figure 15. Conditioning Operations on Source Fields
source in Columns 22-38. The third is specified in Columns 56-72. If more than three sources exist for a field, more than one line-entry is required to specify the sources. In such instances, the first line-entry for the field is prepared as previously described. The second and succeeding-line entries for the field have a D entered in column 1. Columns $2-21$ are blank. Columns $22-72$ are used, as required, to enter the information for the remaining sources of the field. Figure 16 is an example.

Field Status

The user can govern subsequent processing according to the status (positive, negative, zero, or blank) of a particular field. Columns 13-21 of the data sheet are used to assign resulting-condition numbers to represent one, two, or three possibilities for the status of the field. If the field's status is not significant in the control of processing, leave columns 13-21 blank.

Column 13 is used for the first status character. The acceptable characters and their meanings are:

B Blank
Z \pm Zero (signed or unsigned) or blank
N Negative, including minus zero
P Positive, including plus zero
Note: Minus zero can occur during processing on the IBM 1401, 1440, or 1460 Data Processing System.

Columns 14-15 are for the assignment of a unique resulting condition. This is a two-digit number which identifies the field status specified in column 13. The number entered here can be any one in the range 01 through 99 with the exception of any number used to define a resulting condition on the input or the calculation specifications sheets.

Figure 16. Specifying Four Field Sources

The field status refers to the condition of the data field after the operation has been accomplished by the object program. For example, if a source field is added into a data field with a zero status defined as Z25 in columns 13-15, condition 25 will be fulfilled by the program whenever the specified addition results in a zero data field. This condition can then be used to govern other operations in the program such as the performance of a calculation.

Refer to the first line of Figure 15. The source field ITEMNO from C05 will never be blank. It will be blank in the data field ITEMNO only before printing the first set of total lines. (This condition takes place before the input file information has been transferred to the fields in the data specifications.) By setting the resulting condition 07 when ITEMNO is blank, total printing can be suppressed. See Suppression of Output from Run-In Control Breaks under Format Specifications.

Each resulting condition specified under Field Status must be different than any other resulting condition specified here or elsewhere. Any attempt to set the same resulting condition under either of several different conditions will usually yield inconsistent results. For example, a resulting condition can be set as a result of one specification, and yet it can be turned off by a subsequent specification.

Columns $16-21$, if necessary, specify two more sets of status conditions for the data field.

Page Number

Columns 76-77 are used for page numbering. The entry is made in the upper right-hand corner of the data sheet. The pages are numbered consecutively beginning with the spacing chart as page number 01.

Card Number

Although the entries on the data specifications sheet can be in any order, a card number (Columns 78-80) aids identification of line entries.

Conversion of Month Field

In many applications a month field is a single character with the months January through September represented by the numbers 1 through 9 , and the months October through December each represented by a zone or a combination of a zone and a number. In these applications the single-character representation of the months can be converted automatically at object-program time to the corresponding two-character representation. January through September are then 01 through 09; the months

October, November, and December are 10, 11, and 12.

Figure 17 shows the specification for month-field conversion used in the Monthly Expense Distribution Report. Columns $8-10$ contain 002, the data fieldlength after conversion. Columns 11-12 contain 00, because the numeric data field contains no decimals. The M in Column 25 identifies a month-field conversion specification. Columns 29, 30, and 31 contain the specific single-characters used in the source field to represent (in the user's input file) the months October, November, and December, respectively. The other entries on the line are as previously explained.

Figure 17. Specification for Month-Field Conversion

Serial, Record, and Page Numbers

Any number of serial or record-count numbers can be specified in a single application. Each has the source SER or RCT and a unique data-field name in columns $2-7$. It is also possible to maintain a single tally for more than one record type by specifying multiple RCT sources to a data field. Each source then must be conditioned by the resulting-condition number of a different record-type. For example, all records having the resulting condition 02 or 04 can be counted in a single tally by two RCT sources to the tally: one with condition 02 , the other with condition 04 . A single serial number can be increased for different reasons by multiple SER sources.

If the field-source entry on a given line is RCT or SER, the entries in columns $33-38$ specify the conditions to be met for increasing the record-count or the serial-count. All input records can be counted by an entry such as the second line of Figure 15. Selective record counting can be accomplished as in the third line-entry of Figure 15. In columns 34-35 of Figure 15, 02 represents the resulting-condition number of a record type defined on the input sheet. In Figure 11, condition 02 is an Invoice To card. Thus, the count in that application will be increased by one for each first card in the intermediate group controlled by customer number.

If the field source entry is PAG, the conditions are for reset of page count. Figure 7 shows the pages of each customer's invoice form that are to be numbered at the top of each invoice form. With a
control change in customer number (field 2), page numbering is to begin again at one. Therefore, the proper entry for PAGENO as shown on the fourth line of Figure 15 includes F2 as the condition for reset. When no condition is described for a PAG source, the object program numbers the report pages consecutively from beginning to end.

There can be only one page number in an application. Its data name must be PAGENO. It will be increased by the object program each time it is to be printed.

By specifying more than one PAG source to PAGENO, it is possible to cause it to reset under different conditions.

The object program automatically initializes record, serial, and page numbers so that they will begin with the number 1. However, if the user wants an initial number other than 1 in an application with card input, a separate card containing the initial number minus 1 and a unique code to identify that card can be read in ahead of the input-data file. The initializing card just mentioned must have been defined on the input specifications sheet, and an entry on the data specifications sheet must have included the proper reference to the source of the initial number minus 1. Prepare the initializing card as follows: for each number (record count, page number, or serial number) punch an initial value in the card in arbitrarily chosen columns. Punch a unique code in the card to identify it.

[^2]For example, if a listing application is interrupted after printing the 50th page for the 25th serially numbered document (the next page to be printed is 51 and the serial number to be printed on the next page is 25), correct numbering can be resumed if:

1. One card for initializing both the page and serial numbers is prepared and read in ahead of the remaining input records when a new machine run begins.
2. Specifications pertaining to the initializing card have been included on the input and the data specifications sheets.
The initializing card for resuming page and serial numbering in this example can be punched as shown in Figure 18.

The initializing card is assigned two alphabetic record-sequence characters (NN is arbitrarily chosen) for the input specifications sheet in columns $2-3$. Figures 19 and 20 show the information pertaining to the initializing card, which must be included in the report specifications. Thus, the serial

Columns	Punches	Remarks
$5-6$	24	The initial serial number desired minus 1. The initial page number desired minus 1.
$8-10$	050	Assuming there are no other 9ypes of input records with an 9-punch)

Figure 18. Example Format of an Initializing Card

Figure 19. Input Specifications for an Initializing Card

Figure 20. Data Specifications for an Initializing Card
and page numbers will be set at the values in the CNN card at the beginning of the run. Page number will be increased by one whenever it is to be printed. Serial number will be increased whenever there is a change in control field 1. Furthermore, page number will be reset on the control-field change.

To reinitialize a page, serial, or record-count number at any point during a machine run, include a record such as CNN at that point in the input file. The operation code on the data sheet will probably be 0 in such cases.

CALCULATION SPECIFICATIONS

On this form (Figure 21) the user specifies calculations that are more extensive than those that can be defined on the data specifications sheet. For example, comparison, multiplication, and division can be specified, as well as arithmetic operations to be performed upon resulting fields from either the data specifications sheet or from prior entries on the calculation specifications sheet.

For IBM 1401, 1440, 1460 Data Processing Systems not equipped with the multiply-divide special feature, RPG will incorporate subroutines in the object program to enable the user to perform multiplication and division. The following paragraphs explain the entries on the calculation specifications sheet.

Figure 21. Calculation Specifications Sheet

A (Arithmetic)

In Column 1 an A identifies the entry as a calculation specification.

Field Name

The name of the field that will contain the result of the calculation specified is entered in Columns 2-7. Numbers and special characters should not be used to avoid conflict with field narnes and instruction labels used by the RPG Processor. Field names must be left-justified.

One exception to not using a field name that includes a number is permitted in the case of control data converted to disk addresses. The field name of the converted number, if used, must be CONV1 (see Conversion-Routine Specifications under Calculation Specifications).

For a compare specification (C in Column 29), columns 2-7 must be blank. These columns can also be left blank if the result of this calculation affects the last data field specified as the result of a preceding calculation.

Note: Any number of line-entries for the same field (same Field Name) is permitted. Write the line-entries in the order in which the calculations should occur.

Field Length Unedited

Columns $8-10$ must contain the unedited length of the field. See the corresponding paragraph under Data Specifications for further explanation of unedited field-length.

Decimal Length

Specify in Columns 11-12 the number of digits in the decimal portion of Field Name. (The maximum permitted is 09.) For example, when a field should contain three digits to the right of the decimal point, specify 03 in Columns 11-12. For further explanation of decimal length, see Decimal Alignment under Calculation Specifications.

Note: For a numeric fileld that contains no decimals, enter 00. For alphabetic or alphameric fields, leave these columns blank.

Half-Adjust

When the user wants to half-adjust (or round) the result of a calculation, he should enter an alphabetic X in Column 13. Half-adjusting the result is accomplished automatically by adding 5 to the number in the highest-order position to be dropped. Halfadjusting is done just prior to placing the result of a calculation in the Field Name specified. See

Decimal Alignment under Calculation Specifications for an example that illustrates half-adjusting. When no half-adjusting is wanted, leave Column 13 blank.

Field Status

As in the case of data specifications, the user may want to govern later processing (as defined by format specifications and subsequent calculation specifications) according to the status of a particular field. Columns 14-22 of the calculation specifications sheet can be used for this purpose. The allowable entries in columns 14, 17, and 20 are those given for the field status of the data specifications sheet (B, Z, N, and P), as well as the following entries that are related to the comparison of two fields:

E Factor 2 is equal to factor 1 .
U Factor 2 is unequal to factor 1 .
H Factor 2 is higher in sequence than factor 1.
L Factor 2 is lower in sequence than factor 1.
Note: The H, L, and E entries are valid only if the IBM system used to execute the object program is equipped with the high-lowequal compare special feature (Standard on IBM 1440 and IBM 1460).

As mentioned under Field Status for the data specifications sheet, each status entry (Columns 14,17 , and 20) should be defined by a corresponding unique resulting-condition number (Columns 15-16, $\overline{18-19}$, and 21-22). These resulting-condition numbers can be used to govern other operations.

Factor 1

Columns 23-28 are used to state the field name or the literal constant that is the multiplicand (the number which is to be multiplied by another number), dividend (the number which is to be divided by another number), augend (the number to which another is added), minuend (the number from which another is subtracted), or the field with which another field is compared. A field name thus entered must have been specified by an appropriate entry in columns 2-7 of the data specifications sheet, or by a W-entry on a format specifications sheet (see Format Specifications). The alphabetic name of factor 1 is left-justified. The first letter is entered in Column 23.

Literal constants can be used as factor 1 (see Constants under Calculation Specifications). When factor 1 is a numeric literal less than seven characters long, or an alphameric literal less than five characters long, enter the literal constant as factor 1. If the literal requires less than six columns, right-justify it (enter the units position in Column 28), but do not use leading zeros.

A constant that is too long to be written on the calculation sheet as factor 1 can be used as a named constant. The entry in factor 1 (Columns 23-28) must be WORDxx.

$$
\text { OP (Operation) }+-\mathrm{X} / \mathrm{C}
$$

Column 29 can be used to identify the operation to be performed using the two factors. The entries and the operations they represent are:

Operation	Entry on Specifications Sheet in Column 29	Punch in Card Column 29
Plus	+	12 -zone
Minus	-	11 -zone
Multiplied by	X	0 and 7
Divided by	$/$	0 and 1
Compare factor 2	C	$12-$ zone and 3
with factor 1		

Plus and minus specifications on this sheet provide for addition and subtraction operations upon data developed by the data specifications sheet or prior entries on the calculation specifications sheet.

For compare operations, Factor 1 and Factor 2 should be of the same type. Both Factor 1 and Factor 2 should be numeric or both should be alphabetic (alphameric). If they differ in type, RPG will perform a numeric compare in which Factor 1 will be subtracted from Factor 2, and the resulting answer will be compared to zero. A zero result would indicate an equal condition.

Factor 2

Columns 30-35 are used for the name of the field (or the value of the constant) that is being specified as one of the following: multiplier, divisor, addend, subtrahend, or the field compared with Factor 1. The explanation given for Factor 1 applies to Factor 2 , except as follows.

It is important that a divide operation be bypassed when the divisor (Factor 2) is either zero or blank. Bypassing such an unwanted operation can be accomplished by using the \underline{Z} field status (Column 13) at the point where the divisor is defined on the data specifications sheet or the calculation specifications sheet. The divide operation will be bypassed when the resulting condition associated with the Z status (either zero or blank) is sensed.

Multiply or Divide Signs

The RPG processor places the correct algebraic sign from a multiply or divide operation in the units position of the result field. For example, a negative Factor 1 multiplied by a positive Factor 2 will yield a negative result.

A, $\mathrm{S}, \stackrel{+}{0}, \overline{0}$, and Blank
(Add, Subtract, Reset-Add, Reset-Subtract, and Move)

Column 36 must contain an A , an $\mathrm{S}, 0(12,0)$, or 0 $(11,0)$, depending upon whether the result of the calculation being specified by this line-entry is to be added to, subtracted from, reset added to, or reset subtracted from the previous contents of the field named in Columns 2-7 of this line-entry. If Column 36 is left blank, the result will be moved to the field named in Columns 2-7. Figure 22 illustrates various multiplication operations. Assume that FLDB and FLDC are specified in the data sheet, having field lengths of 004 and 002, respectively, and no decimals. Plus, minus, and divide operations can be similarly specified. An explanation of the entries in Figure 22 follows:

1. The first line-entry specifies that the product of FLDB X FLDC be added to the contents of FLDA and that the sum be placed at FLDA.
2. The second line specifies that the product of FLDB X FLDC be subtracted from the contents of FLDD and that the difference be placed at FLDD.
3. The third line-entry specifies that the product of FLDB X FLDC be reset-added into FLDE.
4. The fourth line specifies that the product of FLDB X FLDC be reset-subtracted into FLDF.
5. The fifth line specifies that the product of FLDB XWORD03 be subtracted from the contents of FLDG and that the difference be placed at FLDG. WORD03 is the field name of a 9-position constant that must be defined on the format specifications sheet by a w-entry.

Figure 22. Multiplication Specifications
Figure 23 illustrates a means of obtaining progressive totals. Note the absence of an entry in the factor 1 field and in the OP field (Column 29). This is the explanation of the entries in Figure 23:

1. The first line specifies that the field AMOUNT be added to the contents of TOTAMT and that the sum be placed at TOTAMT on a change in control field 1.
2. The second line specifies that the field DISCNT be subtracted from the contents of TOTAMT and that the difference be placed at TOTAMT on a change in control field 1.

Figure 23. Progressive-Total Specifications

Figure 24 illustrates two comparison specifications. The first one compares factor 2 , the numeric literal 1234.5, with factor 1, FLDNAM. FLDNAM must have been defined on either the data sheet or a prior entry on the calculation sheet. An equal result of the comparison can be referred to in other operations as condition 07. The second line causes factor 2 , the alphameric literal 6AL5, to be compared with factor 1, TUBETP. An equal result of the comparison can be referred to in other operations as condition 12.

Figure 24. Comparison Specifications

Conditions

Columns 37-45 can be used to specify a maximum of three conditions in an AND relation to govern whether the calculation specified is to be performed. The conditions that can be entered are any of the resulting conditions previously defined on the input, data, and calculation specifications sheets as well as LC, F1-F6, SB-SD, and negations of each of these. For example, if one condition to be specified is no change in control field number 3, the entry in Columns 37-39 will be NF3.

As previously mentioned in conjunction with Factor 2, it is necessary that a divide operation not be performed when the divisor is zero or blank.

Tot/Det/Conv

Column 46 must contain the letter T, D, or C. The entry depends on whether the line-entry specifies a total, a detail, or an address-conversion calculation. (See Conversion-Routine Specifications for using the C--entry.)

A total calculation is performed after the test for a control-field change is made, but before information is removed from the record in the input area.

The record just read cannot, therefore, contribute to the results of a total-time calculation. A total calculation is similar to a group total on an IBM 407 Accounting Machine application, where the card at the first reading station that initiates a control change does not contribute to group totals for the previous group.

A detail calculation is performed after the test for a control-field change is made and after information is removed from the record in the input area. The record just read can, therefore, contribute to the results of a calculation specified as a detail-time calculation.

When a detail calculation is to be performed for every record in the input file, the D in Column 46 may be sufficient to condition the calculation. Selected detail calculations and all total calculations must be governed by specifications in Columns 37-45 as well as T or D in column 46.

Field Name of Remainder

When the user needs the remainder from a divide operation (1 in Column 29), he should assign it a name. He does this by entering the name in Columns $\overline{47-52}$ of the line-entry specifying the divide operation. RPG then retains the remainder in the location thus named. It is subsequently available by this name to the user for other operations. One common use of the remainder from a divide operation occurs in address conversion for disk-storage applications. Frequently, the control data of each file record is divided by the range of disk addresses assigned to the file. The remainder is then used as the disk address for each record. (See Conversion Routine Specifications.)

Field Length of Remainder

When the remainder of a divide operation is to be retained for further use, enter the length of the field in Columns 53-54.

Page Number

Columns 76-77 are used for page numbering. The numbers are punched in the cards from the pagenumber entry in the upper right-hand corner of the calculation specifications sheet. As previously mentioned, the sheets are numbered consecutively beginning with the spacing chart as page number 01.

Card Number

The first twenty lines of the sheet have preprinted card numbers (see Input Specifications Card Number). The cards punched from the calculation specifications
must be arranged in order by page number (Columns 76-77) and card number (Columns 78-80).

Constants

RPG can use two general types of constants: literals and named constants.

Literals

Constants whose actual values are entered in the appropriate specifications where they are required are known as literals. Literals are not specified by names. RPG can use two kinds of literals, numeric literals and alphameric literals.

Numeric Literals: A numeric literal can consist of any combination of the numbers 0 through 9 . One decimal symbol and/or one plus sign or one minus sign can also appear in a numeric literal. Numeric literals can be used for comparing to other numeric fields.

Rules for Forming Numeric Literals:

1. Blanks must not appear within a numeric literal.
2. One sign and/or one decimal symbol can appear in a numeric literal.
3. The sign, if present, must be the leftmost character. If a literal is unsigned, it is treated as a positive literal and will be given a sign by the RPG processor.
4. The decimal symbol can appear anywhere in the literal except as the rightmost character.
5. Numeric literals must not be enclosed in @ symbols.

The following are examples of numeric literals.

162534897	1625.34897
+16253	+162.5
1	-.1625
+1	.1
-1	-.0001

Alphameric Literals: Any set of consecutive characters that is enclosed in @symbols is treated as an alphameric literal. Alphameric literals cannot be used for computation. They can, however, be used for compare operations with alphabetic or alphameric fields and as output fields of reports.

Rules for Forming Alphameric Literals:

1. Any character in the IBM 1401, 1440,1460 character set except the ${ }^{\text {@ }}$ symbol or the group-mark can be used in an alphameric literal. Blanks are treated as valid characters and can be used freely.
2. Alphameric literals must be enclosed in @ symbols.
Note: If a literal has the form of a numeric literal but is enclosed in @ symbols, it is treated as an alphameric literal. It cannot, then, be used for computation.

The following are examples of alphameric literals:
@ STOCK INVENTORY REPORT@
@ JULY 2, 1964@
@ - 1.2@

Named Constants

Constants to be used in RPG can be given names of the form WORDxx. In this form, $x x$ can be any number from 01 through 99, Named constants to be used in computations must have the same form as numeric literals. Named constants not used in computations must have the form of alphameric literals. As explained under Format Specifications, named constants must be defined on the format sheet by a W-entry.

Leaving "Field Name" Blank

Figure 25, which illustrates a withholding tax calculation specification, shows how the field name (columns 2-7), its length (columns 8-10), and its decimal length (columns 11-12) can properly be left blank. In that figure, the problem is:

Weekly withholding tax $=$ [gross pay $-($ tax class x $13.00)$] $\times 18 \%$.

Figure 25. Leaving Field Name and Length Blank

The line-entries in Figure 25 perform the following operations at total-time following a change in control field 1.

1. The first line resets to zero the five-position field in core storage labeled WHTAX and adds to the WHTAX field the five-position amount, GROSS.
2. The second line multiplies TAXCL by the literal 13.00 , subtracts the product from the WHTAX field, and then tests the sign of WHTAX. If the sign is negative (meaning that the employee's nontaxable income for the week exceeds his gross earnings), resulting-condition indicator 10 is set ON.
3. If WHTAX is not negative (resulting-condition indicator 10 is not ON), the third line multiplies the result of the previous calculation, WHTAX, by the literal. 18. It rounds the hundredths position of the product (to the nearest penny in this example), resets to zero the five position WHTAX field, and adds the five-position product to the WHTAX field.

Decimal Alignment

RPG provides for decimal alignment of computations. This will be accomplished when the resulting fields, as well as the data fields used as factors in the calculations, contain the appropriate specifications for field length and decimal length. Numeric literals that include a decimal symbol, when used as factors in computations, also permit RPG to perform decimal alignment. The same is true for constants named WORDxx that are used in computations (WORDxx defined in the form of numeric literals).

Figure 26 shows four computations. These four calculation specifications are not related to one another. They serve only as examples illustrating decimal alignment. The first calculation specification divides TOTCST (of the form xxxxxx. xx) by UNITS (xxxxxx) to develop AVGCST (xx. xxx). The second calculation specification multiplies HOURS (xx. x) by RATE (x. xxx). Before the result field is placed in GROSS, a 5 is added to the thousands position which rounds GROSS ($\mathrm{xxx} . \mathrm{xx}$) to the nearest cent. The third calculation specification multiplies AMT ($x x x x . x x$) by the literal constant .02 , producing DISCNT (-xxx. xx) rounded to the nearest hundredth. The fourth calculation specification subtracts WORD04 from FLDH ($x x x x x x . x x$), and subtracts this difference from FLDJ ($x \times x \times x x x x . x x$). WORD04 is a named constant, having the form of a numeric literal. For this example, assume that it is defined (by a W-entry; see Format Specifications) as 12345.67.

Note: The data fields in the examples just given do not contain the decimal-symbol character. The illustrations indicate the decimalsymbol locations. Programs generated by RPG check the specified locations of decimal symbols to perform the necessary alignment of the factors used in computations.

Conversion-Routine Specifications

When the input-data file is contained in disk storage, the user can write his address-conversion routine on the RPG calculation specifications sheet. All such conversion-routine calculation entries must contain a C in Column 46 and must be grouped together consecutively. The control data to be converted is placed by RPG in a field labeled CONTD.

This label can be used as a factor in conversion. It should not, however, be defined on any of the

Figure 26. Decimal Alignment
specifications sheets. The field length is the same as that specified for the control-data field in a control card for RPG. No specification should use the field name CONTD in such a way that the contents (the control data) are changed. The converted number (that is, the disk address produced by the conversion routine) must be located in core storage in a field labeled CONVI. Neither of the labels CONTD or CONV1 may be used as a field in the format specifications.

If the user's subroutine for converting control data to actual disk addresses has already been coded in Autocoder, it need not be recoded on the calculation specifications sheet. RPG allows for an Autocoder coded conversion routine to be inserted into the specifications deck. The steps to be followed in order to use this RPG feature are:

1. Place a card containing a lozenge (\square) in Column 1 immediately after the last control card and before the first asterisk card.
2. Place the conversion routine punched in Autocoder source card format immediately after the lozenge card.
3. Place the first asterisk card after the conversion routine.
4. Place the RPG specifications cards after the asterisk card as usual.
These rules apply to the preparation of the user's conversion routine cards.
5. The first instruction of the conversion routine must be labeled CVTR00.
6. The control data to be converted is placed by the object program in a field labeled CONTD. This
field must not be changed by the conversion routine.
7. The address which is produced by the conversion routine must be placed in the field CONV1.
8. Neither CONTD nor CONVI can be defined within the user's routine because these areas are defined by the RPG processor.
9. The last instruction in the user's conversion routine must branch to RETU1.
Figure 27 shows an example of a conversion routine written with other calculation specifications.
For this example, assume these facts:

- Input file consists of 5,000 records in IBM 1311 disk storage, from sector addresses 020,000 through 024,999.
- Records are 100 characters long, unblocked.
- The file is organized by the random method.
- The control-data field is ten characters long.
- The conversion technique used to assign disk addresses to the file records is to divide the control data by the range of disk addresses assigned to this file, and use the remainder as the basis for the address.

Note: This technique, although assumed to be adequate for this file, is not necessarily the best one for every disk file.

Figure 27. Calculation Specifications, Including a Conversion Routine

The three conversion-routine entries in Figure 27 are explained next.

1. The third line-entry places the control data in the field DND.
2. The fourth line divides the control data by the range of addresses $(5,000)$. This operation produces a quotient and a remainder. The remainder will be used in the next specification. Therefore it is assigned a label (REMAIN) and its length is specified (04).
3. The fifth line adds the constant 020,000 to the remainder. This is necessary to produce numbers that are in the correct range of sector addresses (020, 000-024, 999).

Processing Padded Tape Records

When the user's input file is on tape in blocked records, it is frequently necessary to bypass the padded records in the last block of the file. This can be accomplished by using an entry on the Calculation Specifications sheet which compares an entry from the Data Specifications sheet to a literal field
consisting only of the padding character. An equal resulting-condition would govern subsequent processing and output.

In Figure 28, the 4-digit field CUSTNO is compared to four $9^{\prime} s$, and condition 08 is set on an equal result. The calculation specified in the next line entry is performed only if 08 is not set.

Figure 28. Comparing CUSTNO to a Literal Field
Under normal circumstances, the first padded record will force all control breaks. However, if the LC condition is used to bring out final totals, the presence of a padded record will not set LC ON. Condition LC will be turned ON by the detection of a tape mark for unlabelled tapes or 1EOF (not 1EOR) for labeled tapes.

FORMAT SPECIFICATIONS

This form (Figure 29) is used to describe the lines and the fields constituting the output. The two main classifications of format specifications are line and field.

The entries on this sheet pertaining to each line supply RPG with information such as the identification of the line, the form of the output (whether printed, punched, or written on disk or tape), the next line of output, carriage form spacing and skipping, the stacker into which punched output cards are to be selected, and the conditions under which the line will become output.

The entries on this sheet pertaining to the fields within a line supply the RPG with information such as field name, the rightmost position of the field in the output line, the conditions under which the field will be placed in the line prior to printing, punching, or writing on disk or tape, the values of constants, and information controlling zero suppression and editing.

Much of the information for the entries on the format specifications sheet is taken from the spacing chart previously described.

The entries for alphabetically designated lines must be written in the same order in which they are to appear on the report.

Format (for a Line)

In Column 1 a letter must be entered that designates the entry as a format specification. An L in that column identifies the entry as a format specification for a line. Other entries for column 1 are described under Format (for a Field).

Line

Columns 2-4 identify the line being specified. Entries for these columns are taken from the spacing-chart entries that define the line by type, level, and number.

If a line is identified as HAA, write an H in column 2, an A in column 3, and an A in column 4. If a line is identified as TAB , write a T in column 2 , an A in column 3, and a B in column 4.

The entry in column 2 specifies the type of the line. It must be H for a heading line, D for a detail line, or T for a total line. An important consideration in assigning type to a line is the difference between a total line and a heading or detail line with regard to the record in the input area when the line is formed. The test for control-field changes, the performance of total-time calculations, and the formation of total lines precede the function of removing fields from the input record. Thus, an input record that causes a control change cannot contribute data to total lines that result from that control change.

Detail calculations, heading lines, and detail lines follow the removal of fields from the record in input area. Thus that record can contribute to these calculations and lines. Therefore, naming a line according to type is not arbitrary, particularly with regard to total and detail lines.

Output

Column 5 must contain an alphabetic X if the line is to be printed; otherwise it is left blank.

Column 6 must contain an alphabetic X if the line is to be punched into an output card; otherwise it is left blank. If the IBM 1440 has a single 1442 readerpunch and the input file is in cards, then punched output will be contained in cards that served as input.

If printed and punched output of the same format are both desired, enter an X in Columns 5 and 6.

Column 7 must contain a D if the line is to be written in disk storage. Enter a T in Column 7 if the line is to be written on magnetic tape. Otherwise, leave Column 7 blank.

Note: When using disk update, refer to Format Specification Sheet under Disk Update Function for Random Disk Files in this manual for additional information.

With blocked disk or tape output, RPG will place a record-mark in the last position of each logical record.

Next Line

Columns 8-10 define the next line to be printed, punched, written in disk storage, or written on magnetic tape. This field is intended for hierarchical related lines (Numeric Level Classification). Leave these columns blank when using Alphabetic Level Classification.

Space

In Columns 11-12 enter the number of additional line spaces to be taken before printing the line. The printer spaces one line automatically after a line is printed. Thus, an entry of 01 in Columns 11-12 indicates one space between lines of print, 02 indicates two spaces between lines of print, and 03 indicates three spaces between lines of print.

In Columns 13-14, enter the number of spaces to be taken after a line is printed. The RPG processor assumes single spacing unless 02 or 03 is entered in Columns 13-14.

Note: The entries 01, 02, 03, and blank are the only permissible entries for Columns 11-12 and 13-14.

Skip
In Columns 15-16 the entries 01-12 designate skipping to carriage tape channels 1-12, respectively, before printing the line.

In Columns 17-18 entries 01-12 cause skipping to carriage tape channels 1-12, respectively, after printing the line.

In preparing reports that require heading at the top of a page, format specifications should control form-skipping upon overflow. For a simple report without headings, no specifications are necessary to cause the forms to be advanced from the last printed line on a page to the first line of the next page. Thus, if report specifications provide no forms control for overflow, whenever the object program senses a punch in carriage tape channel 12 while printing, it automatically causes skipping to channel 1 . When the 12 -punch in the carriage tape is sensed while printing a total line, all total lines whose output conditions are met are printed before overflow skipping occurs.

When lines are to be printed at the bottom of a page, a 12 can be entered in Columns 15-16 to cause skipping to the normal carriage-overflow channel (channel 12). Such lines should usually be specified as total lines (T in Column 1).

Figure 29. Format Specifications Sheet

Stacker

1402 Card Read-Punch

In Column 19 the entry of a 4 or 8 causes the card being punched to be selected into the corresponding 1402 punch stacker. When no selection is desired, Column 19 must be left blank.

1442 Card Read-Punch or 1444 Card Punch

When the IBM 1442 Card Read--Punch is equipped with the selective stacker feature (or when the IBM 1444 Card Punch is used), a 2 can be specified in Column 19. This causes the program to select the card being punched into the number 2 stacker pocket of the 1442 (or the 1444). When no selection is desired, leave Column 19 blank.

Line Output Conditions

A line will appear in the output only if line-output conditions for the given line are specified and fulfilled.

Columns 20-28 can be used to specify a maximum of three conditions under which the line being specified is to become output. If two or three conditions are entered on one line-entry, they are considered in an and relation. The entries in these columns can be any of the resulting conditions defined on the other specifications sheets as well as OF (overflow), LC (last card), 1P (first page), F1-F6 (a change in control fields 1 through 6), SB-SD (sense switches), and negations of any of these.

Figure 30 shows that lines HAA and HBB are to be printed when condition 04 is met. If condition 04 is defined on the Input Specifications sheet to be the presence in the input specification area of a record containing an L in column 80 and the condition is met, the heading lines HAA and HBB will print.

All lines which are to be printed when condition 04 is met will be printed in the order in which they appear on the Format Specifications sheet.

Condition 1P (First Page)

1P is a condition unique to the format specifications. It is fulfilled at the beginning of processing before any input records have been read. The purpose of

Figure 30. Conditioning a Line to Print upon Reading a Specific Kind of Data Card
this condition is to cause the printing of a cover sheet or page heading lines on the first sheet. (The page heading lines might be printed as a result of OF on the following sheets.) Thus, lines that contain only constant information and that appear in the output before any input records are processed can be printed, punched, or written in disk storage or on magnetic tape as a result of condition 1P. Because this condition precedes any input record, no information from the input file can appear in a line conditioned by 1P. Thus, a page heading line that contains a date from the first record in a file will not contain that date on the first sheet if the line is conditioned by 1P. The line should be conditioned by the resulting-condition number that represents the date header record.

Variable Line-Output Conditions

Some applications require that varying conditions govern the appearance of a line in the output. A line that is governed by OR conditions must be specified with a separate line-entry for each OR condition. The first line-entry made in the normal manner will specify the first OR condition. Each succeeding line-entry consists of an L in column 1 and the OR condition in columns $20-28$ as required.

For example, if a detail line called DAA is to be written in disk storage when any one of these three conditions is met: (1) condition 02 and not condition 05 ; (2) condition 06 ; or (3) condition 09 ; the proper entries on the format specifications sheet are as shown in Figure 31.

Figure 31. OR Line-Output Conditions

It is often useful to print headings on a new sheet under several line output conditions. A new heading line might be printed on either an OF or F3 condition, for example. However, these alternate conditions, OF and F3, might be met at the same time, and the same heading line would be printed twice. To avoid this situation, one alternate condition should exclude the other. For example, the first line entry can specify F3 and not OF (NOF in columns 23-25). The second line entry can specify OF alone. When both F3 and OF conditions exist, only the second alternate will be set.

Suppression of Output from Run-In Control Breaks
Most reports include one or more total lines that are conditioned to print when a control break (F1-F6) occurs. Although it is usually proper to process heading lines at the beginning of a run, it is not desirable to have total lines produced as output. Unless steps are taken to suppress unwanted total lines (usually blank), these lines will be printed when the first input record is read but before any data has been extracted from it.

The suggested way to suppress these total operations is to govern their performance by the condition that a field is not blank and also a control-field change. If a blank status is specified for a field that will contain valid information only after the first record has been processed, total operations can be suppressed on the run-in when that field is blank.

For example, in the Monthly Expense Distribution Report (see Figure 53), resulting condition 03 is set when the field DEPNUM is blank. Total line TAA (See Figure 56) is conditioned to print when condition F1 is met and condition 03 is not met. Total lines TBB and TCC work in the same manner. Once data is extracted from the first input record, the field DEPNUM will always contain significant nonblank data.

Note: Columns 29-75 are left blank for line specifications (L in column 1). As explained later, Columns $76-80$ pertain to both line and field specifications.

Format (for a Field)

In the description of a field within a line or the definition of a constant, Column 1 contains an $\mathrm{F}, \mathrm{B}, \mathrm{K}$, or W.

The meaning of these entries is as follows:
F identifies the entry as a field specification for a data field or a WORDxx that will not be blanked after it is placed in an output line.
B Identifies the entry as a field specification for a data field that will be blanked after it is placed in an output line. This entry causes processing similar to a read-out and reset total operation on an accounting machine.
K identifies the entry as a field specification that uses a literal constant.
W identifies the entry as a field specification that defines a constant or an edit control-word.

Note: Columns 2-28 are blank in a line-entry that specifies a field or a constant.

Field Name

State in Columns 29-34 the name of the field to be inserted in the line whose specification immediately precedes the field entry. An entry with a B in Column 1 must contain a field name from Column 2-7 of the data or calculation specifications sheets. An F
entry in Column 1 can also contain a field named in the data or calculation specifications, or it can have a WORDxx defined by a W-entry elsewhere in the format specifications. All names must be leftjustified. The entry of a K in Column 1 requires a blank field name. (A literal is not named.) The entry of a W in that column must have a field name of the form WORDxx, where $x x$ is a number in the range $00-99$. W-entries are fully explained later in this section under Constant or Edit Control Word.

Field End

Place in Columns 35-37 the number of the rightmost position of the field in the output line as shown on the spacing chart. These columns are left blank for a W-entry.

Field Output Conditions

Columns $38-46$ provide for a maximum of three conditions, considered in an AND relation, under which the field being specified is to be placed in the output line. The same conditions that can govern line output are acceptable in these columns. If several conditions in an OR relation govern the output of the field, separate entries must be made, each giving all of the information required for the field as well as each OR condition. For example, if field A is to be included in an output line when sense switch C is off or when condition 16 is met, the appropriate format specification entries are as shown in Figure 32.

Figure 32. Output of a Field Governed by OR Conditions

Z (Zero Suppress)

A. Z is entered in Column 47 to zero-suppress a field on the output line without using an edit control-word. This entry causes the object program to suppress high-order zeros and strip off the zone in the units position of the field. When an Edit Control Word is used, the Z entry in Column 47 should not be used.

Constant or Edit Control Word

A field within a line may consist of a constant. Some filelds may require an edit control word. A constant, used elsewhere in another specification by its name, WORDxx, must be defined. In each of these cases,
enter the constant or the edit control word in columns 48-75, left-justified.

Literal Constants as Output Fields

Literal constants can be included as fields of output lines. They are specified: enter a K in Column 1, the proper Field End in columns $35-37$, and the constant (either a numeric or an alphameric literal) in columns 48-75. Figure 33 shows how the alphameric literal, 2% DISC, is specified (line 110). Although not shown, a numeric literal can likewise be specified. The difference between the specifications for numeric and alphameric literals is only in the form of each literal. (Each is explained in Constants under Calculation Specifications.)

Edit Control Word

When an amount field is to be edited, the user can include the edit control word in the same format specification he writes for the field to be edited. In Figure 33 , line 120 , the control word $\$ b b, \mathrm{bb} 0 . \mathrm{bbCR}$ edits the field DISCNT to print $\$ \mathrm{xx}, \mathrm{xxx} . \mathrm{xxCR}$. Note that the edit control word is written, starting in column 48 , in the form of an alphameric literal. If the Expanded Print Edit Special feature is available, a control word of the form $\$ \mathrm{bb}, \mathrm{bbb} . \mathrm{b0CR}$ may be used.

Named Constant (WORDxx)

A constant or an edit control word that is used only once should be specified as described previously. However, when a constant or an edit control word is to be used more than once, enter WORDxx (to avoid repetitious coding) in columns $48-53$ each time it is required. Then, define WORDxx by a W-entry, as explained under Naming a Constant. Figure 33 illustrates the use of one edit control word, WORD01, to edit the two amount fields TOTAMT and NETAMT (see lines 090 and 150). Note in each line-entry that the name WORD01 is not enclosed in @symbols.

Naming a Constant

As previously mentioned, both constants and edit control words can be used in calculation and format specifications by names of the form WORDxx. When so used, each constant and edit control word must be named (or defined) by a format specification. This specification must contain a W in Column 1, WORDxx in Columns 29-34, and the constant or the edit control word in Columns 48-75. A constant defined as WORDxx that is to be used in computations must be written in the form of a numeric literal. For example, if WORD04 were the constant 12345.67 to

Figure 33. Using Constant and Edit Control Word
be used as Factor 2 in a calculation specification (see Figure 26), the proper format specification would be as shown in Figure 34. Constants that are not to be used in computations, as well as all edit control words, must be written in the form of alphanumeric literals. In Figure 33, the edit control word $\$ b b, b b 0 . b b *$ (used twice by its name WORD01) is defined as WORD01 on line 240.

Figure 34. Defining a Constant Used in a Computation

Page Number
Columns 76-77 are used for page numbering in both line and field specifications. The page-number entry is in the upper right-hand corner of the format sheet. The pages are numbered consecutively beginning with the spacing chart as page number 01.

Card Number

The first twenty lines of the sheet have preprinted card numbers in columns 78-80, as explained in this corresponding paragraph under Input Specifications.

NUMERIC LEVEL CLASSIFICATION

It was suggested under Classification of Lines that the user classify each line on his printer spacing chart, and, subsequently on his Format Specifications Sheet, by assigning to each heading, total, and detail line a unique pair of letters. These letters enable the user to quickly assign an identification to each line.

However, there is another way of classifying lines which is available to the user. He may use numeric level classification. The following section describes numeric level classification. Included in this section are additional format specifications which are required when using numeric level classification. Users who are familiar with numeric level classification may continue using it. Users who are writing new RPG programs will probably prefer alphabetic level classification.

Three types of lines can appear on the user's report: heading, detail, and total lines. Heading and detail lines can contain information from the record in the input area at the time when the lines are printed; total lines cannot. An input record can effect a control field change that causes total lines to be written, but that input record cannot contribute
data to those lines. A detail line has a direct relationship to input records. Most of the data in a detail line comes from the input record. A heading line usually contains constant information, although it can have some information from input records, including the record present at the time the line is assembled.

The concept of line level, which is important to numeric level classification, is based upon the relationship of a line to other lines. Heading or total lines that are independent of each other should be given alphabetic-level designations. Heading or total lines that are related in a hierarchy can be given numeric-level designations corresponding to their positions in the hierarchy. A hierarchical relationship can be likened to total operation on an accounting machine, i.e., major lines force minor and intermediate lines. The principle underlying a hierarchical relationship is that lines of higher level govern lines of lower level.

Line "Level" Relationships

Of the three types of report lines (H, D, and T), heading and total lines can be related in an established order or rank. Such lines, known as hierarchical lines, are assigned a number from 1 through 8 as the second character of the line identification code. This number represents the rank or level of a line in its relationship to other lines within the hierarchical structure. Heading and total lines in the lowest level must be assigned a level number of 1 ; the next higher level number assigned must be 2 ; then 3 ; and so on, through 8 for the highest level.

For both heading and total lines that are given numeric level designations (that is, hierarchical heading and total lines), there may be more than one print line that belongs to a given level. These lines should be numbered, beginning with the number 1 for the first line of that level. For example, suppose that a report requires three heading lines; two of these should print on an intermediate controlfield change, and the remaining one should print on a minor control-field change. In this example, the three heading lines would be assigned these lineidentification codes: H 21 and H 22 (the first and second heading lines of the intermediate level), and H11 (the first heading line of the minor level there is only one minor heading line in this example).

Suppose that, in the foregoing example, there are five total lines that should print; two on a change in the intermediate control field and three on a change in the minor control field. These five total lines should be given these line-identification codes: T11, T12, and T13 (the first, second, and third total lines
of the minor level), and T21 and T22 (the first and second lines of the intermediate level).

Heading lines in a hierarchy (identified by such numeric level designations as H21, H22, and H11) are printed in this order:

1. All the heading lines in the highest level, in linenumber order.
2. All the heading lines in the next lower level, in line-number order.
3. And so on. The heading lines of the lowest level are printed last, in line-number order.
In the previous example, the order of printing
the heading lines (upon a change in the intermediate control field) is H21, H22, and H11.

Total lines in a hierarchy (identified by such
numeric level designations as $\mathrm{T} 11, \mathrm{~T} 12, \mathrm{~T} 13, \mathrm{~T} 21$, and T22) are printed in this order:

1. All the total lines in the lowest level, in linenumber order.
2. All the total lines in the next higher level, in line-number order.
3. And so on. The total lines in the highest level are printed last, in line-number order.
In the previous example, the order of printing the total lines (upon a change in the intermediate control field) is T11, T12, T13, T21, and T22.

Line-output conditions should be assigned only to the first line of each level that should print. Succeeding lines of any numbered level will follow the first line of that level. For example, condition F1 should condition heading line H11 to print, but not H12. The reason is that when H11 is printed, H12 will automatically follow, because it is the second line of level 1.

Programs generated by RPG print report lines in this order:

1. Alphabetic-Level Heading Lines

Printed in the order of entry on the format specifications sheet
2. Numeric-Level Heading Lines

Printed in high-to-low-level order according to their places in the hierarchy.
3. Detail Lines

Printed in the order of entry on the format specifications sheet.
4. Numeric-Level Total Lines

Printed in low-to-high-level order according to their places in the hierarchy.

5. Alphabetic-Level Total Lines

Printed in the order of entry on the format specifications sheet.
Hierarchical treatment is given only to numericlevel heading and total lines.

When the object program is running, a total line with a numeric-level designation such as T 3 x will force T11 and its subsequent lines, and T21 and its subsequent lines to come before it whenever the output conditions are fulfilled for T3x.

Study of Figure 35 reveals a difference in the hierarchical relationships for total and heading lines. Total lines appear in ascending order by level; heading lines appear in descending order by level.

When there is a single detail-line format in a report, that line should be given an alphabetic-level designation to reflect its independent status. Such is the case in Figure 35 in which the detail line is named DAA. Other applications might have any number of detail-line formats which, when they do not relate to one another, are classified alphabetically by level.

Note that the level of a line is not necessarily equal to the number of the control field with which the line is associated. For instance, a total or heading line of level three may not relate to control field three in the input data file. It is possible that level-one heading lines might relate to a change in control-field two. In some applications, lines with alphabetic-level designations might relate to control fields. Thus, even though six is the maximum number of control fields that can be specified, there can be eight numeric levels for each type of line specified.

The line number permits scheduling lines within a level. In Figure 35 there are six heading lines in the highest level. That level is associated with department number. Whenever the department changes, the six heading lines composing level three print in line-number sequence within that level; that is, H31, H32, H33, H34, H35, and H36. Even though there is only one line in each of the lower levels of heading line in that report (H21 and H11), the lines have numeric line-number designations because they are hierarchical. The same principle applies to the total lines, T11, T21, and T31, in the same report. Application of the line-number concept to hierarchical total lines corresponds to special programming on the IBM 407 Accounting Machine. For instance, four minor total lines could be named T11, T12, T13, and T14.

Multiple-line--print (MLP) cards might cause three detail lines to print, and these lines could be named DA1, Da2, and DA3 to reflect the place of each line in the sequence. Two final total lines in a report might well be named TC1 and TC2. When assigning line numbers, always start with the number 1.

Numeric-Level Format Specifications

Format specifications for numeric-level classification closely follow those for alphabetic-level classification, and reference must be made to the previous section dealing with format specifications. However, three specifications are different.

Line
The entry in column 2 specifies the type of the line, as in alphabetic level classification.

Column 3 specifies the level of the line. Column 4 specifies the number of the line within a given level. When lines of a level are to be numbered, be sure to assign the number 1 to the first line.

The entries on the format specifications sheet pertaining to lines must be in descending levelorder for heading lines, and in ascending levelorder for total lines. This is the normal order of printing related report lines.

Next Line

Columns 8-10 define the next line to be printed, punched, or written on tape or disk. This entry is made only if the next line specified in these columns should come unconditionally in the output after this line (the line being described in this entire lineentry). Otherwise columns $8 \mathbf{- 1 0}$ should be left blank. When a next line is specified in columns $8-10$, that next line must be of the same type and level as the line calling for it. That is, columns 8-9 must be the same as columns 2-3.

Line Output Conditions

Columns 20-28 can be used to specify a maximum of three conditions under which the line being specified is to become output. If two or three conditions are entered on one line-entry, they are considered in an AND relation. The entries in these columns can be any of the resulting conditions defined on the other specifications sheets, as well as OF (overflow), LC (last card), 1P (first page), F1-F6 (a change in control fields 1 through 6), SB-SD (sense switches), and negations of any of these. If a line is referenced by a previous entry as a next line, columns 20-28 are left blank. This is because its line-output conditions must be the same as those for the line that referenced it.

A line will appear in the output only if:

1. Line-output conditions for the given line are specified and fulfilled, or
2. The line was specified as the next line of another line for which the output conditions are fulfilled, or
3. The line is of lower level in a hierarchy than another line of the same type for which the output conditions are fulfilled.

To illustrate the first principle, in Figure 36 the line H11 is specified to be printed when condition 04 is met.

Condition 04 (defined on the Input Specifications Sheet) is set when a record containing and L in column 80 is present. The first heading line will be printed when that record is present.

The second principle is illustrated in Figure 37. Heading line H12 will print only after line H11 prints, because the format specification of H11 contains a next line entry of H12. Note that no output conditions are specified for H 12 .

The third principle with regard to line-output conditions relates to the specification of hierarchies of lines. Lines related in a hierarchy must be of the same type and must have numerical-level designations that reflect their relative positions within the hierarchy. The processing principle underlying a hierarchical relationship is that lines of a higher level govern lines of lower level. Thus, when the output conditions are fulfilled for T3x lines, the object program will force T11 and its next lines, and T21 and its next lines to come before the T3x lines in the output without regard for the line-output conditions of the T1x and T2x lines. (See Figure 35.)

Furthermore, multiple lines within one level in a hierarchy must be referenced by next line designations rather than individual line-output conditions whenever there is a higher level of lines in the hierarchy. Thus, H21 must call for H22 as a next line and H 22 must call for H 23 as a next line to ensure that all three will be present in the output when H3x lines precede them.

SUMMARY

This section of the bulletin presents a summary of the four preceding sections. A brief explanation of the four RPG specifications sheets is presented.

Summary of Input Specifications

From knowledge of the records in the input data file, the user writes the input specifications for the Report Program Generator:

COLUMNS	NAME	EXPLANATION
$2-3$	Seq. or T \quadThe medium (card, disk,or tape) used for input for every line-entry that specifies a record type. If any records must be in a fixed sequence within a control group, enter an S on the line below the entry for the last sequential record-type.	
	Numeric-sequence order if a fixed record-sequence within a control group is required; two alphabetic letters if a fixed sequence within a control group is not required or if there is only one record-type per control group. Enter the letters CF on the line below the last line-entry for sequential record-control.	

Figure 36. Conditioning a Line to Print upon Reading a Specific Kind of Data Card

Figure 37. Conditioning Lines to be Used as Output

Summary of Data Specifications

From the spacing chart and the input-record formats (see Figure 38) the user (1) assigns an alphabetic field-name, no longer than six characters, to each data field; and (2) determines the source of each field named. The four field sources are input records, page number, serial numbers, and recordcount numbers.

The names assigned to data fields permit reference to those fields in processing the report. Therefore, every data field used in processing must be assigned a unique field name. The source or sources of the field also must be defined.

On the data specifications sheet the user enters the following information about each field of data:
COLUMNS NAME EXPLANATION
1
Note: If more than three sources are specified for one field name,
fill out Columns 2-21 of the first card. Columns 2-21 of the re-
maining cards for the field name may be left blank.

2-7	Field Name	Data field name.
$8-10$	Length Decimal Length	Data field length, unedited. Number of decimal positions in data field. For numeric fields with no deci- mals, enter 00. For alphabetic or alphameric fields, leave blank.
13,16,	Status	B, Z, N, or P (representing the status of the data field) in one, two or all three of these columns if a status is to be established. Otherwise, blank.
$14-15$,	Resulting Condition	Used only in conjunction with the status columns. A unique two-digit number must represent each status specified.
$20-18$,	(First source of field)	Information for the first source of the data field.
$22-38$	Field Source	One of six possible sources: Cxx, Dxx, Txx, PAG, SER, or RCT.

COLUMNS	NAME	EXPLANATION
25	Numeric	N to remove zone information from all positions of the source field except the units. M to convert from a singlecharacter representation of month to the two-digit representation. Otherwise, blank.
26-28	Field End	Location of the units position of the field in the source record. Blank if source is PAG, SER, or RCT. Refer to the Disk Update Function for Random Disk Files section for special use of these columns for the update function.
29-31	Field Length	Length of the source field if different from the data-field length. For a monthfield conversion entry (M in Column 25), the characters used in the source field that represent the months of October, November, and December. Otherwise, blank.
32	Operation	Blank, A, $\mathrm{S}, \stackrel{+}{0}, \stackrel{0}{0}, \mathrm{D}$, and Y to describe the operation to be performed upon the source field. After the operation, the result is located in the data field.
$\begin{aligned} & 33-35, \\ & 36-38 \end{aligned}$	Cond.	One or two conditions to govern the occurrence of the operation specified in Column 32. If the operation is to be per-formed unconditionally, these columns are blank. Permissible entries are SB, SC, SD, F1-F6, resulting-condition numbers from the input sheet, resultingcondition numbers from other lines of the data sheet, and negations (an N in Columns 33 or 36) of these conditions.
$\begin{aligned} & 39-55, \\ & 56-72 \end{aligned}$	(Other field sources)	Information for the second and third field sources of the data field, if applicable. The explanation of the columns for the first source applies to the corresponding columns of the second and third sources.
73-75	(Blank)	Must not be used.
76-77	Page	Page number, located in the upper righthand corner of the sheet.
78-80	Card Number	Card Number.

Figure 39 shows the data specifications for the Monthly Expense Distribution Report.

Summary of Calculation Specifications

After completing the data specifications sheet, the user can determine the data field calculations that are yet to be specified. Figure 40 shows three calculations that have not yet been specified. These three entries calculate the data AMTACT, AMTDEP, and FINAMT. These total calculations involve adding of a field that was developed by the data specifications.

Figure 38. Assigning Data Field Names and Determining Their Source

Figure 39. Data Specifications for Monthly Expense Distribution Report

Figure 40. Calculation Specifications for Monthly Expense Distribution Report

Having determined the calculation specifications that are required, the user makes the following entries on the calculation specifications sheet:

COLUMNS	NAME
1	A
$2-7$	Field Name
$8-10$	Field Length
$11-12$	Decimal Length
13	Half Adjust
14,17,	Status
20	

$\dot{\text { ColumNS }}$	NAME	EXPLANATION
		Permissible entries: all resultingcondition numbers defined on the input, data, and prior entries of the calculation specifications sheets, as well as LC, F1F6, SB-SD, and also negations of all of the foregoing conditions.
46	Tot/ Det/ Conv	T when the calculation is to be performed at total-time, D when the calculation is to be performed at detail-time, and C for a conversion-routine calculation. This column must not be left blank.
47-52	Remainder Name	When using the remainder from a divide operation, enter the name assigned to it.
53-54	Length	Enter the length of the remainder field, if used.
55-75	(Blank)	Must not be used.
76-77	Page	Page number, located in the upper righthand corner of the sheet.
78-80	Card Number	Card number.

COLUMNS	NAME	EXPLANATION
8-10	Next Line	Alphabetic Level Classification leave these columns blank. Numeric Level Classification contains the next line to be printed, punched, written on tape or disk. The next line must be of the same type and level as the line calling for it.
11-12	Space Before	Numbers 01, 02, or 03 for single, double, or triple line-spacing before printing this line.
13-14	Space After	Same as Columns 11-12, except for spacing after printing.
15-16	Skip Before	01-12 for skipping to carriage-tape channel 1-12 before printing.
17-18	Skip After	Same as Columns 15-16, except for skipping after printing.
19	Stacker	1402 CARD READ-PUNCH Punch 4 or 8 to select the card being punched into either the 4 or 8 punchstacker pocket. Blank when not selecting. 1442 CARD READ-PUNCH 1444 CARD PUNCH Punch 2 to select the card representing this line into the number 2 punch-stacker pocket. Blank when not selecting.
20-22	Line Output Condition	First condition to govern the appearance in the output of this line. The following can be entcred: any resulting-condition number defined on the input, data, and calculation sheets; OF, LC, 1Г, F1-F6, SB-SD, and negations of these.
23-28	(Two other conditions)	Two other conditions to govern the appearance in the output of this line. Output conditions for a given line are considered in an and relation. A line will be used as output only if: (1) its line-output conditions are specified and fulfilled, or (2) the line is specified as the next line in the L-entry of the preceding line, and that preceding line's output conditions are fulfilled, or (3) the line is of a lower level in a hierarchy than another line of the same type for which the output conditions are fulfilled.
Columns 29-	75 pertain to	eld specifications only.
29-34	Field Name	If the field is not a constant, the name of the field. That name must appear in Columns 2-7 of either the data or calculation sheet or be a WORDxx. If the field is a constant defined by a W -entry, the name i.s WORDxx. If the field is a constant not defined as WORDxx, these columns are blank.
35-37	Field End	Print position of the units position of the field. Blank for a W-entry.
38-40	Field Output Condition	First condition to govern the inclusion of the field in the output line. The same conditions are accepted here as are accepted in Columns 20-22.

COLUMNS	NAME	EXPLANATION	COLUMNS	NAME	EXPLANATION
41-46	(Two other conditions)	Two other conditions with the same function as the first condition in Columns 38-40. The field-output conditions for a given field are considered in an and relation. If a field must be included unconditionally in an output line, Columns 38-46 are blank.	$48-75$ $76-77$	Constant or Edit Control Word Page	Either a constant (numeric or alphameric) or an edit control word that is being used or defined. Page number of this specifications sheet, located in the upper right-hand corner.
47	Zero Suppress	Z to zero-suppress a field without using an edit control-word.	78-80	Card Number	The first twenty lines of each sheet are prenumbered.

If the user's input file is contained in disk storage, he must specify in his control cards one of three methods (or modes) by which the input file is organized. The ways that the user can specify these modes (consecutive, random, and control-sequential) are explained in this section under those headings.

PROCESSING-ORDER RECORIS

In addition to specifying the mode by which the input file is organized, the user must also specify the order in which his input file will be processed. He provides a Processing Order Record (POR) file that defines the order in which the input file (consecutive, random, or control-sequential) will be processed. POR files can be contained in cards, tape, or disk.

Consider a card input file rather than a disk input file. The order in which records are processed is determined by the order, or the sequence, of the cards. Thus, the processing order for a card file is usually consecutive by card record.

Now consider an input file in disk storage. Assume that the first record is 100 -characters and is located at address A and that the last record is located at address B. One processing order that can be easily used is consecutive by disk address, from A to B. In this case, a starting address (A) is given, the record at that address is retrieved, and the record is processed. The starting address is increased by 1 , and the record at that address is retrieved and processed. This procedure continues until the record stored at the ending address (B) has been retrieved and processed. All that is required to specify the processing order in this case is two disk addresses-a lower limit (starting) and an upper limit (ending) address. Processing takes place by using these two addresses as limits for the application.

Another way to process the same disk file is by using a series (or list) of disk addresses to determine the order of processing the file records. For example, the list might be a deck of cards. Each card contains the address of a record to be processed. The order in which the addresses appear in the list determines the processing order.

In both methods of controlling the processing order of disk records just mentioned, disk addresses were used. However, in those cases where the organization of the file provides for it, control data can be used as the basis for retrieval of disk records.

Control data is a fixed field within all records of a file (for example, item number or account number)
which can be converted, by using a conversion routine supplied by the user, to the disk address of the record to which it belongs. The field can be a maximum of 30 locations. See Figure 27. The user's control data has been placed in the field labelled CONTD. The calculations shown in lines $3-5$ represent the user's conversion routine.

Thus, processing order records (POR's) specify the exact way in which a disk input data file will be processed. The following section describes the formats in which card, tape, or disk POR's may be written.

CARD POR FILES

A card processing order record (POR) file may be used for consecutive, random, or control-sequential modes. Card POR files may be in three formats: one-per-record, spread, or processing limits.

One-Per-Record

This format can be used only with random processing of a disk input file. Each card contains one disk address or one control-data field, which can be located anywhere in the card. Thus, there is one card associated with each record to be processed.

If control data is used in the card, the user must provide a conversion routine.

Spread

These cards can only be used with random processing. Each card contains two or more disk addresses or control-data fields in the processing order. If control data is used in the card, the user must provide a conversion routine.

Processing-limits

A POR file of cards in this format may be used with either the consecutive or control-sequential mode of processing.

If used with consecutive processing, each card must contain either the lower and upper limits of the disk area or two fields of control data which may be converted to these limits by the user's conversion routine.

If used with control-sequential processing, each processing-limits card must contain the upper and lower limits of the disk area to be processed.

TAPE POR FILES

A tape POR file may be used only for random processing. Tape POR files may be in two formats; one-per-record or spread.

One-Per-Record

Each tape record contains one disk address or con-trol-data field, which can be located anywhere on the tape record. A user's conversion routine must be provided if the tape record contains a control-data field.

Spread
Each tape record contains two or more disk addresses or control-data fields in the processing order. If control data is used on the tape record, the user must provide a conversion routine.

DISK POR FILES

A disk POR file may be used only for random processing. Disk POR files may be in two formats: one-per-record and spread.

One-Per-Record
Each disk POR record contains one control-data field. Thus, one disk record is associated with each input disk record to be processed. If control data is used on disk records, the user must provide a conversion routine.

Spread
Each disk POR record contains two or more disk addresses or control data fields in the processing order. If control-data is used, the user must provide a conversion routine.

POR-File Limits Card

Whenever the user puts his POR file on disk, he must provide the object program with the starting and ending disk sector addresses in a POR File Limits card. The POR File Limits Card is punched:

Columns	Contents	Explanation
1-6	XXXXXX	Starting address of the POR file.
$7-12$	XXXXXX	Ending address of the POR file. (If the ending address is unknown, enter the maximum expected limit. The IEOF trailer will indicate the end of the POR flle.)

CONSECUTIVE MODE

If the user's disk input file is organized by a consecutive method, (as in Figure 41) his POR file must be contained in cards in the processing limits format. Each card contains two fields. Each card contains either the lower limit (the starting field) and the upper limit (the terminal field) of the disk input area, or each card contains two fields of control-data which may be converted to these limits by the user's conversion routine. If the exact upper limit is unknown, the user enters the maximum expected limit. End-of-Job will be reached when the 1EOF trailer is sensed on the disk. Each limits card, then, represents a series of records which are retrieved and processed consecutively by disk addresses or by control data.

When processing consecutively by disk addresses, the program gets the first address from the starting field of the first processing limits card. To do this for 100 -character records, the program increases, by 1 , the number associated with the logical record within the block. The second record is then selected and processed. This operation continues until the record represented by the address contained in the terminal field of the first processing limits card has been processed or the 1EOF trailer has been sensed. If there are other limits cards, processing continues in the same way, until all the records, thus represented, have been processed.

When processing consecutively by control-data, the program gets the record associated with the starting field from the processing-limits card. After the first record has been processed, the program adds 1 to the first control-data field and then gets the record associated with the new control field. Processing continues until the record associated with the control data from the last terminal field of the processing-limits cards has been processed.

RANDOM MODE

To process a disk file in the random mode, the user supplies either the control data or the disk addresses for each disk record to be processed. When he arranges the order of control-data or disk addresses that make up his processing-order records, he defines the order for processing his disk file.

POR's can be contained in cards, tape, or disk. However, for a specific program the POR file must be contained in only one medium.

POR's in Cards

In cards, the POR's can be in two formats: one-perrecord and spread. Figure 42 shows a POR file in the one-per-record format. Each card contains one

Disk Input File

Converted

Control Data		Convered Disk Address 10000000
	000000	
10000001		000002
10000002		000004
\vdots		\vdots
10000024		000048
10000025		000050

Record Processing Order:
000000
000002
000004
\vdots
000048
000050
Read next processing-order card
etc.

Processing-Order File. Each card contains disk addresses.
Records of the disk input file are 100 characters long, unblocked.
Record Processing Order:

```
000000
```

000000
000001
000001
000002
000002
:
:
000074
000074
000075
000075
Read next processing-order card
Read next processing-order card
000100
000100
000101
000101
etc.

```
etc.
```


Processing-Order File. Each card contains control data that must be converted to disk addresses.

Records of the disk input file are 200 characters long, unblocked.

Figure 41. Consecutive Processing

Figure 42. Processing-Order Records in One-Per-Record Format
disk address or one control-data field, which can be located anywhere in the card.

Any number of characters can precede each record's address or control-data, whichever is used. For a specific program, however, this number must remain fixed.

When disk addresses are used, the field length is 6 positions for an unblocked disk file, 7 positions for a blocked disk file (with a blocking factor between 2 and 10), and 8 positions for a blocked disk file with a blocking factor greater than 10.

Figure 43 shows a card POR file in the spread format. Each card contains two or more disk addresses or control-data fields (up to some maximum number). In Figure 43, this example shows eight columns between the first and second disk address or control-field, eight columns between the second and third, and so on, for the remainder of the card. Any number of characters can precede the first record's disk address or control-data in each card. For a specific program, this number must remain fixed.

Any spread card can contain fewer addresses or control data field than the maximum number. However, all fields to the right of the last one used must be blank (see the second card in Figure 43).

POR's on Disk

RPG can use POR's for random files that are stored in either IBM 1301 or 1311 disk storage. This is true regardless of which kind of disk storage (1301 or 1311) contains the input or output data file.

Disk POR's can be in two formats: one-perrecord (Figure 44) and spread (Figure 45). Each POR in disk storage can contain either one data record's address or a control-data field (up to some maximum as shown in Figure 45).

POR's can be blocked with as many as ten records per block. Records can be up to 900 characters in length. The blocks can be of any length from 100 to 1,000 characters, in multiples of 100 characters.

A spread POR can contain less than the maximum number of addresses or control-data fields, provided that all fields to the right of the last one used are left blank. As an example, note the third pro-cessing-order record in Figure 45. Any number of characters can precede, as well as follow, each address or control data field. Any number of characters can precede the first data record's address or control-data in each spread POR record (columns 1-20 in Figure 45).

When disk addresses are used, the field length is 6 positions for an unblocked disk file, 7 positions

Figure 43. Processing-Order Records in Spread-Card Format

POR CONTROI-CARD INFORMATION:
Disk Drive Number for Processing-Order File
Record Length -------------- - 100
Whether Control Data is Used.
Whether Conversion is Required.
Input Medium of Processing-Order File -- Disk
Units-Position of First Field -------- 10
Length of Disk Addresses or Control-Data

Processing-Order Mode ------- - - Random

Figure 44. Fixed-Length Processing-Order Records in Disk Storage (one--per-record)

POR CONTROL-CARD INFORMATION
POR CONTROL-CARD INFORMATION
Disk Drive Number for Processing-Order File
Disk Drive Number for Processing-Order File
Processing-Order Record Length -------.--.-------- - - 100
Processing-Order Record Length -------.--.-------- - - 100
Whether Control Data is Used.
Whether Control Data is Used.

Whether Conversion is Required.
Whether Conversion is Required.
Input Medium of Processing-Order File ------------- Disk
Input Medium of Processing-Order File ------------- Disk
Units-Position of First Field -- -- - - - - - - - - - - - - - - - 28
Units-Position of First Field -- -- - - - - - - - - - - - - - - - 28
Length of Address or Control-Data Field ---------------
Length of Address or Control-Data Field ---------------
Maximum No. of Addresses or Control-Data Field per
Maximum No. of Addresses or Control-Data Field per

Distance Between Fields-------------------------
Distance Between Fields-------------------------

Figure 45. Fixed-Length, Spread Processing-Order Records in Disk Storage
for a blocked disk file (with a blocking factor between 2 and 10), and 8 positions for a blocked disk file with a blocking factor greater than 10 or when using the IBM Sort 5 or Sort 6 programs.

The IBM 1401 Sort 6 program or the IBM 1440 Sort 5 program produces a sorted tag table in disk storage during one of its phases of operation. This table contains the 8-digit modified disk address (SS $\operatorname{SSSSR}_{1} R_{2}$) for each active file record. Such a table can well serve as the processing-order records for a disk file.

POR's on Tape

Tape POR's can be in two formats: one-per-record and spread. Each POR on magnetic tape can contain either one data-record's address or control-data field, or it can contain more than one address or control-data field (up to some maximum number). POR's must be fixed in length for any application, up to 1,000 characters. They can be either unblocked or blocked. The maximum block length is 9,999 characters. If blocked, each POR on tape must have a record mark (A82) as its last character. The maximum blocking factor is 99 POR's per block. POR's with less than the maximum number of addresses or control-data fields must contain enough
blanks to fill out the fixed record length. The same applies to a block of POR's with less than the maximum number of POR's - it must be padded with blanks (to fill out the fixed block length).

Figure 46 shows unblocked, spread POR's. Figure 47 shows blocked POR's, with a record mark as the last character in each processing-order record.

When disk addresses are used, the field length is 6 positions for an unblocked disk file, 7 positions for a blocked disk file (with a blocking factor between 2 and 10), and 8 positions for a blocked disk file with a blocking factor greater than 10 .

Next-Record Field

Data records in a disk file can contain a next-record field. This field contains either the disk address or the control data of the next data record to be processed. Thus, the first disk record contains the address or the control data of the second disk record to be processed, the second disk record contains the address or the control data of the third record to be processed, and so on. The next-record field of the last record to be processed contains blanks.

Figure 46. Fixed-Length, Unblocked, Spread Processing-Order Records

Figure 47. Fixed-Length, Blocked Processing-Order Records

An object program generated by RPG can use the next-record field of disk-file records that are organized in the random or consecutive mode. It uses the field in conjunction with the processingorder records as follows.

- The object program gets (locates and reads out of disk storage) the first record by using the first address or control-data field in the first processing-order record. It processes the record.
- The object program gets and processes the record indicated in the next-record field of the first disk record retrieved.
- The object program gets and processes the record indicated in the next-record field of the second disk record retrieved. This same process continues, until a record is retrieved that has a blank next-record field.
- Upon retrieving and processing a disk record with a blank nextrecord field, the object program returns to the processing-order records to select the next disk record to be processed.
This procedure continues until all the processing-order records are read and all the disk records are processed.

Random Processing of a Random Disk File
Records of a random disk file can be processed in the random mode by programs generated by RPG, provided that the user supplies his processing-order file. As mentioned previously, the processing-order file can be supplied in cards, disk-storage, or magnetic tape. Figure 48, which represents three forms of the processing-order file, is used as the basis for the following explanation of random processing of records in a random file. Note that the explanation applies for each medium of the process-ing-order file.

First, consider the simplest case, in which each POR contains one disk address or control data field. Assume there are no trailers. This is the order of processing the records of this disk input file:

1. The disk record represented by the first POR
2. The disk record represented by the second POR
3. The disk records represented by the third and remaining POR's, in the order read from the POR file:
Now, consider a more complex example. Suppose that the input disk file consists of masters and two associated trailers. Also, each disk record contains a next-record (NR) field, located at a fixed place in the first trailer record. This random file used the chaining technique to indirectly address file records, because there can be duplicate addresses produced by the address-conversion routine. This is the order of processing the records of this more complex file:
4. The disk record represented by field 1 of the first POR. (Trailers belonging to masters will be included in the assembled record.)
5. The disk records (masters and trailers) represented by the NR fields, until a blank NR field is encountered.
6. The disk record represented by field 2 of the first POR.
7. The disk records represented by the NR fields, until a blank NR field is encountered.
8. This same procedure is repeated for fields 3 through 10. The object program reads the next POR and continues processing the disk input records in this same order, until all input records represented by the POR file have been processed.

Note: In the foregoing procedure, the retrieval of each master disk record involves, first of all, converting the control data to a disk address. Then the control data of the disk record stored at this address is compared to the control data in the POR. If the control-data fields are identical, the record is found. Otherwise, the object program reads the overflow-address field of the master record, getting the address of the first non-home (overflow) record. This record's control clata is compared to that of the POR. If the result is an equal comparison, the record is found. Otherwise, the search continues, as before, until the record has been found.

CONTROL-SEQUENTIAL MODE

If the user's disk input file is organized by a controlsequential mode, his POR file must be contained in cards in the processing-limits format. The user places a card deck, consisting of any number of processing-limits cards, directly behind the generated object program at the time he loads the program.

Each card contains two fields: the lower limit (the starting field) and the upper limit (the terminal field) of the disk input area. If the exact upper limit is unknown, use the maximum expected limits. End -of-Job will be reached on sensing the 1 EOF trailer on the disk. Each limits card, then, represents a series of sequential records, taken normally in ascending numerical order by control data.

The object program processes records in disk storage, using the two fields in each card as address limits for that series. The series includes any additions records that were added to the original file.

The object program reads the first processinglimits card (Figure 49). It reads out of disk storage and processes the disk records represented by the two fields in that card. It reads the next processinglimits card (if there is one) and repeats these operations until the last card is read and those disk records it represents are processed.

POR File in Disk Storage

POR File on Tape

Figure 48. Random Processing of Disk Files

002201

002203

002205

Additions Area
000500

000501
\square
Figure 49. Control-Sequential Processing of Disk Files

The control cards that the user prepares prior to generating his report program provide the RPG with information about the IBM 1401, 1440, or 1460 system to be used, the input and the output units to be used, general information about the input and the output files, and the user's choice of processing options. The number of control cards RPG requires depends on the medium of his input file and the out-put-file media he selects. Thus, to generate an object program for a card input file and a printed and/or a punched report, the user must prepare only the RPG control card. To generate an object program for a disk input file consisting of both masters and trailers, producing magnetic-tape output, for example, the user must prepare these control cards: RPG, TAPOUT, MAS, TRL, and POR.

RPG CONTROL CARD

This card is required for all applications of RPG. In it the user punches information about the IBM 1401, 1440 , or 1460 system configuration, the form of RPG-generated output, the input-file medium, the output media, the general specifications for disk output (if used), and the identification for his object program. Here are the format and contents for the RPG card.

Columns	Contents	Explanation
1-3	RPG	Identification of this card.
4	1-4	Core capacity of the system to be used to generate the object program. Punch 1 for $4 \mathrm{~K}, 2$ for $8 \mathrm{~K}, 3$ for 12 K , or 4 for 16 K .
5	1-4	Core capacity of the object machine (that is, the system to be used to execute the object program). Punch a number, 1-4, as above.
6	1 or b	Sense switches option in source program. Punch 1 if any switches B-D are used. Otherwise leave blank.
7	1 or b	Multiply-divide special feature on object machine. Punch 1 if installed. Otherwise leave blank.
8	1 or blank	IBM 1401 Punch 1 if Advanced Programming special feature is installed on the object machine. Otherwise, leave blank. Blocked tape input records and blocked tape or disk output records require this special feature.
		IBM 1440 Punch 1 if Indexing and Store Address Register special feature is installed on the object machine. Otherwise, leave blank.

Columns	Contents	Explanation
		IBM 1460 Punch 1 if Indexing and Store Address Register special feature is installed on the object machine. Blocked tape input or blocked tape or disk output records require this special feature. Otherwise, leave blank.
9	1 or blank	Modify Address instruction on object machine. Punch 1 if it can be used. Otherwise, leave blank.
10	1 or blank	Direct seek special feature on object machine. Punch 1 if it is installed and used by the object program. Otherwise, leave blank.
11	1, 2, or blank	Form of RPG-generated output. Punch 1 for an Autocoder-language symbolic program deck. Punch 2 for the load-andgo option (the machine-language object program is stored on the systems pack.) Leave blank for a condensed, machinelanguage program deck.
12	3 or blank	Punch unit for RPG-generated output. Punch 3 or 1444. Leave blank for 1442 or 1402.
13	blank	Leave blank.
14-17	Card, Disk or Tape	Input-file medium when running object program.
18	1, 2 , or N	IBM 1440 Printer size of object machine. If printed output was specified, punch 1 for an IBM 1443 Printer with 120 print positions; punch 2 for an IBM 1443 Printer with 144 print positions. If no printed output was specifled, punch N .
		IBM 1401 or 1460 Printer size of object machine. If printed output was specified, punch 1 for an IBM 1403 Printer, Model 1 (100 print positions); punch 2 for an IBM 1403 Printer, Model 2 or IBM 1404 Printer (132 print positions). If no printed output was specified, punch N .
19	$1,2,3 \text {, or }$	IBM 1440 Punched-card output from object program. Punch 1 for punched output on IBM 1442 unit no. 1; punch 2 for punched output on unit no. 2; punch 3 for punched output on 1444. Otherwise punch N . IBM 1401 or 1460
		Punched-card output from object program. Punch 1 for card output. Otherwise punch N .
20	D or N	Disk-storage output from object program. Punch D for disk output. Punch U for disk update. Otherwise Punch N. Note: If the object program is to write no disk output, leave columns 21-75 blank.

Columns	Contents	Explanation	Columns	Contents
18	$1,2,3 \text {, or }$ blank	Header-label-check option. Punch 1 to cause the object program to skip a header label. Punch 2 to cause the object program to check the file-identification field of an IBM standard header label. Punch 3 to cause the object program to perform the same ALL label checking as the 1311 IOCS routines.	5-8	xx00
1.9-21	$\begin{aligned} & 080,084, \\ & \text { 120, or } \\ & \text { blank } \end{aligned}$	Header-label length. If the tape input file contains an IBM standard tape header label that is to be automatically skipped or checked, punch the label length here.	9-11	xxx
22	$\mathrm{Y}, \mathrm{~N}, \text { or }$ blank	Label tape mark. For input files with IBM standard tape header labels that are 80 or 84 characters long, punch Y if a tape mark exists following the label. If no tape mark follows the 80 or 84 character label, punch N. Leave blank if 120character label was specified. (RPG assumes a Y if the label length is specified as 120.)	$12-13$ 14	01-99 b or C

MAS CONTROL CARD

RPG can process an input file contained in as many as five IBM 1311 disk packs or five IBM 1301 disk modules. When processing a random file, the entire file area must be on-line. When processing a consecutive or control-sequential file, successive disk packs can be placed on-line as needed. IBM 1.311 disk sector addresses and their corresponding reference numbers are:

Disk Sector Addresses	Reference
$000000-019999$	0
$020000-039999$	2
$040000-059999$	4
$060000-079999$	6
$080000-099999$	8

15-17 $x x x$

20-22 xxx
23-24 xx

400,000-599,999
600,000-799,999
800,000-999,999
Reference Number
+
0
B
D
F
H

RPG always requires this card to generate an object program that processes an input file contained in disk storage. Punch in the MAS card this information:

Columns	Contents	Explanation
$1-3$	MAS	Identification of this card.
4	Y or N	Cylinder overflow. Punch Y if cylinder overflow can occur when the master portion of the input file or when a disk POR file is read. Punch N for no cylin - der overflow.

Explanation
Block length in characters, the maximum length is 9900 characters. Any length specified must be a multiple of 100 . To obtain this length, compute the block length and use the next higher multiple of 100 . If the records are unblocked, punch the record length here in the next multiple of 100 .

Record length in characters. If the records are blocked, this length must include the record-mark position. Punch 000 for 1,000-character master records (the maximum). Note that the maximum combined length of a master and its trailers is 1,000 characters.

Blocking factor. Punch 01 for unblocked master records (one master per block). The maximum is 99 .

Direct addressing. Leave blank if direct addressing is used for the disk input file. Punch C for a chained file.

Note: Columns 15-29 apply only for a random or control sequential disk input file.

Location of control data or first subfield. Punch the units-position location within the disk master record of the control data. Or, if the control data is split into two or three subfields, give the location of the most significant subfield. In determining this location, count the first character position in a disk master record as location 001.

Length of control data or first subfield. Punch the number of character positions for this field. The maximum length of the control data is 30 positions.

Note: If the control data is contained in only one field (not split into subfields), leave columns 20-29 blank.

Location of second subfield. Punch the units-position location of the subfield that is second-highest in significance.

Length of second subfield.

Location of third subfield. Punch the units-position location of the leastsignificant subfield.

Length of third subfield.
Note: The number of master-record packs or modules in the input file (from 1 to 5) determines how many drivecontrol and address-reference numbers to punch in columns 30-39. For example, if the master records are contained in one pack, punch columns 30 and 31 , leaving 32-39 blank. Numbers $0,2,4,6$, or 8 refer to IBM 1311 Disk Storage Drives, whereas \dagger, B, D, F, or H refer to IBM 1301 Disk Storage Modules.

Columns	Contents	Explanation	Columns	Contents	Explanation
30	$\begin{aligned} & 0,2,4,6,8 \\ & \text { (for } 1311 \text {) } \\ & \text { or } 0, B, D, F, \\ & H(\text { for } 1301) \end{aligned}$	Drive-control number of IBM 1311 Disk Storage Drive or IBM 1301 Disk Storage Module on which the (first, if there is more than one) master-record pack is mounted or master-record module is located.	9-11	xxx	Record length in characters of each individual trailer record. If the records are blocked, this length must include the record-mark position. Note that the maximum combined length of a master and its trailers is 1,000 characters.
31	$\begin{aligned} & 0,2,4,6,8 \text {, or } \\ & \stackrel{+}{0}, \mathrm{~B}, \mathrm{D}, \mathrm{~F}, \mathrm{H} \end{aligned}$	Address-reference number of the (first, if there is more than one) masterrecord pack or module.	12	0-9	Blocking factor. Punch 0 for unblocked trailer records (one trailer per block), 1 for two trailers per block, and so on. Punch 9 for ten trailers per block, which
32	$\begin{aligned} & 0.2,4,6,8 \text { or } \\ & \stackrel{+}{0}, \mathrm{~B}, \mathrm{D}, \mathrm{~F}, \mathrm{H} \end{aligned}$	Drive-control number for the second master-record pack or module.	13-14	01-99	is the maximum.
33	$\begin{aligned} & \text { O. } 2,4,6,8 \text {, or } \\ & \text { O, B,D,F,H } \end{aligned}$	Address-reference number of the second master-record pack or module.			Punch 02 for an input file having zero, one, or two trailer records per master record. There can be as many as 99 .
34	$\begin{aligned} & 0,2,4,6,8 \text {, or } \\ & \stackrel{+}{0, B, D, F, H} \end{aligned}$	Drive-control number for the third master-record pack or module.	15-17	xxx	Location of control data or first subfield. Punch the units-position location
35	$\begin{aligned} & 0,2,4,6,8 \text {, or } \\ & \stackrel{1}{0, B, D, F, H} \end{aligned}$	Address-reference number of the third master-record pack or module.			within the trailer record of the control data. Or, if the control data is split into two or three subfields, give the location
36	$\begin{aligned} & 0,2,4,6,8 \text {, or } \\ & \begin{array}{l} +, B, D, F, H \end{array} \end{aligned}$	Drive-control number for the fourth master-record pack or module.			of the most significant subfield. In determining this location, count the first character position in a traller record as
37	$\begin{aligned} & 0,2,4,6,8, \text { or } \\ & +\stackrel{+}{0}, \mathrm{~B}, \mathrm{D}, \mathrm{~F}, \mathrm{H} \end{aligned}$	Address-reference number of the fourth master-record pack or module.	18-19	01-30	location 001.
38	$\begin{aligned} & 0,2,4,6,8 \text {, or } \\ & + \\ & 0, B, D, F, H \end{aligned}$	Drive-control number for the fifth master-record pack or module.			Punch the number of character positions for this field. The maximum length of the control data is 30 positions.
39	$\begin{aligned} & 0.2,4,6,8 \text {, or } \\ & +. B, D, F, H \end{aligned}$	Address-reference number of the fifth master-record pack or module.			Note: If the control data is contained in only one field (not split into subfields),
40	$1,2,3$ or b	Header-label-check option. Punch 1 for no header-label checking. Punch 2 for			leave columns 20-29 blank.
		automatic checking of the file-identification field (field 4). Punch 3 for automatic checking of fields 1-7. This entry applies only to IBM 1311 Disk Storage.	20-22	xxx or blank	Location of second subfield. Punch the units-position location of the subfield that is second-highest in significance.
		Leave blank when using IBM 1301 Disk Storage.	23-24	xx or blank	Length of second subfield.
			25-27	xxx or blank	Location of third subfield. Punch the units-position location of the leastsignificant subfield.
TRL CONTROL CARD			28-29	xx or blank	Length of third subfield.
RPG requires this card to generate an object program that processes trailer records of a randomly organized disk input file. Punch this information in the card:			Note: The number of master-record packs or modules in the input file (from 1 to 5) determines how many drive-control and addressreference numbers to punch in columns $30-39$. For example, if the master records are contained in one pack, punch columns 30 and 31 , leaving 32-39 blank. Numbers $0,2,4,6$, or 8 refer to IBM 1311 Disk Storage Drives, but 0, B, D, F, or H refer to IBM 1301 Disk Storage Modules.		
Columns	Contents	Explanation	30	$\begin{aligned} & 0,2,4,6,8 \\ & \text { (for 1311) or } \end{aligned}$	Drive-control number of IBM 1311 Disk Storage Drive or IBM 1301 Disk Storage
1-3	TRL	Identification of this card.		$\begin{aligned} & + \\ & 0, B, D, F, H \\ & \text { (for } 1301 \text {) } \end{aligned}$	Module on which the (first, if there is more than one) master-record pack is mounted or master-record module is
4	Y or N	Cylinder overflow. Punch Y if cylinder overflow can occur when the trailerrecord portion of the input file is read. Punch N for no cylinder overflow.	31	$\begin{aligned} & 0,2,4,6,8 \text {, or } \\ & \text { t, B, D, F,H } \end{aligned}$	located. Address-reference number of the (first, if there is more than one) masterrecord pack or module.
5-8	xx00	Block length in characters in multiples of 100 . To obtain this length, compute the block length and use the next higher multiple of 100 . The maximum is 9900 . If the records are unblocked, punch the record length here also in the next higher multiple of 100 .	32 33	$\begin{aligned} & 0,2,4,6,8 \text { or } \\ & \stackrel{+}{0}, \mathrm{~B}, \mathrm{D}, \mathrm{~F}, \mathrm{H} \\ & 0,2,4,6,8 \text { or } \\ & \stackrel{+}{0}, \mathrm{~B}, \mathrm{D}, \mathrm{~F}, \mathrm{H} \end{aligned}$	Drive-control number for the second master-record pack or module Address-reference number of the second master-record pack or module.

Columns	Contents	Explanation
34	$\begin{aligned} & 0.2,4,6,8 \text {, or } \\ & \text { t B,D,F,H } \end{aligned}$	Drive-control number for the third master-record pack or module.
35	$\begin{aligned} & 0,2,4,6,8 \text {, or } \\ & \text { t, B, D, F, H } \end{aligned}$	Address-reference number of the third master-record pack or module.
36	$\begin{aligned} & 0,2,4,6,8 \text {, or } \\ & \stackrel{+}{0}, \mathrm{~B}, \mathrm{D}, \mathrm{~F}, \mathrm{H} \end{aligned}$	Drive-control number for the fourth master-record pack or module.
37	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathbf{+}} 2,4,6,8 \text {, or } \\ & \stackrel{+}{0}, \mathrm{~B}, \mathrm{D}, \mathrm{~F}, \mathrm{H} \end{aligned}$	Address-reference number of the fourth master-record pack or module.
38	$\begin{aligned} & 0,2,4,6,8 \text {, or } \\ & +\stackrel{+}{0}, \mathrm{D}, \mathrm{~F}, \mathrm{H} \end{aligned}$	Drive-control number for the fifth master-record pack or module.
39	$\begin{aligned} & 0,2,4,6,8 \text {, or } \\ & \stackrel{+}{0}, \mathrm{~B}, \mathrm{D}, \mathrm{~F}, \mathrm{H} \end{aligned}$	Address-reference number of the fifth master-record pack or module.
40	$1,2,3, \text { or }$ blank	Header-label-check option. Punch 1 for no header-label checking. Punch 2 for automatic checking of the file-identification field (field 4). Punch 3 for automatic checking of fields 1-7. This applies only to IBM 1311 Disk Storage. Leave blank when using IBM 1301 Disk Storage.

PPOR CONTROL CARD

RPG requires this card to generate an object program that processes a disk-storage input file. In this card the user defines his processing-order file (including processing limits cards). Punch this information in the POR card:

Columns	Contents	Explanation
$1-3$	POR	Identifles the card.
4	C, D, or T	Medium of POR file. If POR's are punched in cards, punch C; if written in disk storage, punch $D ;$ if written on magnetic tape, punch T.

Note: Both the control-sequential and the consecutive processing order modes require that the POR flle be contained in cards. Randomly organized files can be processed using POR's contained in card, tape, or disk.

5	$\begin{aligned} & 0,2,4,6,8 \text { or } \\ & 0, B, D, F, H \end{aligned}$	Drive-control number of the 1311 on which the POR-file pack will be mounted, or the disk module of the 1301 which contains the POR file.
	1-6	Tape unit number. For 1440, punch 1 or 2. For 1401 or 1460 , punch 1-6.
	blank	Leave column 5 blank if POR's are contained in cards.
6	$\begin{aligned} & 0,2,4,6,8 \text {, or } \\ & 0, \mathrm{~B}, \mathrm{D}, \mathrm{~F}, \mathrm{H} \end{aligned}$	Address-reference number of 1311 PORfile pack or 1301 module.
	blank	Leave column 5 blank if POR's are contained on cards or tape.
7-10	xxxx or blank	Block length in characters. Any length specified must be a multiple of 100 . To obtain this length, compute the block length and use the next higher multiple of 100. The maximum length for POR's on disk is 1000 , for POR's on tape 9,999 .

Columns	Contents	Explanation
11-13	xxx or blank	Record length in characters. For POR's in disk storage, specify the record length. The maximum is 900 characters for disk POR's. For tape POR's the maximum is 1000 characters (punch 000 for maximum tape).
14-15	$01-99 \text { or }$ blank	Blocking factor. Punch 01 for unblocked POR's (one POR per block) on disks or tape. When using the Sort 5 tag table or Sort 6, punch 01. The maximum factor for disk is 10 , for tape 99.
16	1, 2, or 3	Processing-order mode of the disk input file. Punch 1 for random, 2 for controlsequential, or 3 for consecutive.
17	1 or 2	Contents of POR's. Punch 1 for control data or 2 for disk addresses.
18-19	$01-30 \text { or }$ blank	Length of control data in characters. If POR's contain control data, specify the number of characters (30 is the maximum). Otherwise, leave blank.
20	Y or N	Control-data conversion. If POR's contain control data, punch Y if conversion to disk addresses is required. Otherwise, punch N .
21	6,7, or 8	Length of disk addresses. If POR's contain disk addresses, specify the length (6,7 , or 8). Or, if POR's contain control data that requires conversion to disk addresses, specify the length (6,7 , or 8) of the resulting disk addresses. Six-digit addresses apply to POR's for an unblocked disk-input file. Seven-digit addresses apply to POR's for a blocked disk-input file where the blocking factor ranges from 2 to 10. Eight-digit addresses apply if the POR file consists of the sorted tag table produced by the IBM Sort 5 or Sort 6 program or if the blocking factor is greater than 10.
22-24	xxx	Location of first field. Punch the unitsposition location within the POR of the first data record's address or controldata field. Note that, for POR's containing only one field per record, this is the location of the only field in a POR. However, for spread POR's, as well as for processing-limits cards, this is the location of the first field within a POR.
25-26	xx or 00	Distance between fields. For POR's with more than one address or control-data field per record, specify the distance between consecutive address or controldata fields. Use the arithmetic difference between the units-position locations of the fields. This applies to spread POR's used in the random mode and to processing-limits cards used in both the consecutive and the control-sequential modes. Punch 00 for a POR file that contains only one field per POR.
27-28	xx	Maximum number of fields per POR. Punch the maximum number of fields per POR. For processing-limits cards, 02 should be entered.

Columns	Contents	Explanation
29-31	xxx or bbb	Location of next-record field. If the disk input file contains a next-record (NR) field that will be used to identify the next record to be processed, punch the unitsposition location within the disk record of this NR field. Note that, if the NR field is in the first trailer record, the location to be punched is reckoned from masterrecord position 001. Leave blank if no NR field is to be used. Note: When using the control-sequential mode of processing, do not specify a NR field.
32-33	01-30 or bb	Length of next-record field. The maximum is 30 characters for control data. Leave blank if no NR field is to be used.
34	Y, N or blank	Convert next-record field. If the NR field contains control data that must be converted to disk addresses, punch Y. If it contains disk addresses, punch N. If no NR field is to be used, leave blank.
35	blank, 1, 2, or 3	Header-label-check option. RPG provides automatic label checking of IBM 1311 standard disk header labels and IBM standard tape header labels for POR files contained in disk storage and on magnetic tape. These are the options:
	blank	Tape POR file without a label, leave blank.
	blank	Disk POR file with or without a label, for no checking leave blank.
	1	Tape POR file with a label, to skip the label punch 1.
	2	Disk or tape POR file with a label, to check the file-identification field punch 2.
	3	Disk POR file with a label or tape POR file with a type A (120 -character), or B (80 -character) label, to check fields 1-7 punch 3.
	3	Tape POR file with a type C (84-character) label, to check fields 1-8 punch 3.
36-38	$\begin{aligned} & 080,084, \\ & 120, \text { or blank } \end{aligned}$	Header-label length. If the POR file is a labeled tape file, punch the label length (080,084 , or 120 characters). Otherwise, leave blank.
39	Y, N or blank	Label tape mark. For a tape POR file with either an 80 - or an 84 -character header label, punch Y if a tape mark follows the label; punch N if no tape mark follows the label. A Y is always assumed for 120-character POR tape header label. For POR's contained in punched cards or disk storage, leave blank.

RPG TRANSLATOR PROGRAM

Two previous publications, Report Program Generator for IBM 1401 Card and Tape Systems (Form J24-0215) and Report Program Generator for IBM RAMAC © 1401 Systems (Form J24-1467), present the Report Program Generator 1401 card-oriented, tape-oriented, and disk-storage (IBM 1405) oriented
systems. For a shorter reference, consider that program to be 1401 RPG.

In anticipation of the needs of present users of 1401 RPG who will have IBM 1401's or 1460 's equipped with IBM 1311's, IBM provides the RPG Translator program. The function of this program is to translate programs written for 1401 RPG to corresponding programs acceptable to 1401-1311, 1460-1301, or 1460-1311. Programs that RPG Translator can thus translate are 1401 RPG programs for processing card input files and magnetictape input files that consist of fixed-length records.

Note: Programs for IBM 1405 disk files and variable-lengthrecord tape files cannot be translated by RPG translator.

The RPG Translator requires one control card. In it, the user specifies whether he wants a listing. The listing usually consists of two lines for each source card. The first line contains the specification from the source card, and the second line contains the translated specification punched in the output card.

Using an IBM 1401 system, this is how the RPG translator program works:

The user loads the RPG Translator program in the 1401. He puts the 1401 RPG source deck in the 1402 read feed. (The source deck consists of the RPG specifications cards that were punched from the Input, Data, Calculation, and Format Specifications sheets.)

When the user starts executing the RPG Translator program, it reads a source card, translates the specification into the language (and the form) of RPG (on Disk), and punches the translated specification in an output card. If the user chose the option to print a listing, the program prints on the IBM 1403 or 1404 Printer the two lines of information, previously mentioned. On the listing, the second line is offset to the right 20 print positions with respect to the first line.

SPECIAL FEATURE SPECIFICATIONS

An IBM 1401 or 1460 Data Processing System equipped with a special feature to read 51-column cards reads either standard 80 -column or 51 -column cards, depending upon the operating mode. When operating in the 51-column mode, columns 1-51 correspond to columns $15-65$ of an 80-column card. Thus, in any specifications of card columns for 51column input data file cards, the entry is the column number plus 14. For example, if a minor control field in the 51-column cards of the input data file is punched in columns $2-7$, the proper entry in columns 44-46 of the input specifications sheet is 021.

Six sample programs and the necessary control cards for each program are included in this section. 'Two programs use card input files (Figures 50-59 and Figures 60-67). An RPG program which uses a tape input file is shown in Figures 68-76. This example also shows part of the program listing which is produced when the object program is generated.

Three examples of RPG programs using disk input files (control-sequential, consecutive, and random) are included in this section. In the random example, a sorted tag table, produced by an intermediate phase of an IBM 1311 Sort program, is used as the POR file.

CARD INPUT FILE
 MONTHLY EXPENSE DISTRIBUTION REPORT

For this report, the input file is contained in a card file as shown in Figure 50. The user lays out the format of his report on the printer spacing chart (Figure 51). Figures 51-58 show the specifications sheets necessary to generate an RPG program which will produce the report. Figure 59 shows the printed report.

This program requires one control card, the RPG Control Card. In it the user punches:

Column	Contents	Explanation
1-3	RPG	Identifies the card.
4	2	An 8K machine is used to generate the object program.
5	2	An 8 K machine is used to execute the program.
7	1	Multiply-divide special feature is installed.
9	1	Modify-address is present on object machine.
11	blank	The form of RPG-generated output is a condensed machine-language deck.
12	blank	Punch unit is $\mathbf{1 4 0 2 .}$
14-17	CARD	Input-file is on cards.
18	2	Printer size is 132.
19	N	No punched output.
20	N	No disk output.

18M
eport Monthly Expense Distribution Rpt PORT PROGRAM GENERATOR DATA SPECIFICATIONS

Form X24－6591 Printed in U．S．A．
Page $\frac{|0| 3 \mid}{7677}$ of 08

Date 7677

D	$\begin{aligned} & \text { FIELD } \\ & \text { NAME } \end{aligned}$			FIELD STATUS		
D	$\mathrm{DA}_{1} \mathrm{~T}_{1} \mathrm{E}^{1}$	0，0， 8	0.0	－	－	
D	PAGENO	0,013	0.0	－	－	
D	I NV，${ }_{1}$ UMM	0， 0,5	0.0	－	连	
D	MONT H_{1}	$0,0,2$	0，0	－	为	
D	$\mathrm{DA}_{1} \mathrm{Y}_{\perp}$	$00_{1} 0,2$	0,0	－	S	为
D	$\mathrm{A}_{1} \mathrm{MO}_{1} \mathrm{U}_{4} \mathrm{~N} T$	$0,0,7$	0,2	）	小	为
D	$\mathrm{T}_{1} \mathrm{O}_{1} \mathrm{~T}_{1} \mathrm{~A}_{4} \mathrm{M}_{4}$	$0,0,8$	0,2	－	䢒	
D	$\mathrm{D}_{1} \mathrm{E}_{1} \mathrm{PN}_{3} \mathrm{U}_{4}$	$0,0,3$	0，0	B 0,3	N	
	$\mathrm{GE}_{\mathrm{E}} \mathrm{N}_{1}$					
	GENH1	0，0，3				
	S U $\mathrm{U}_{1} \mathrm{~N}_{1} \mathrm{U} \mathrm{MM}^{\text {d }}$	$0,0.3$	0,0	asxa	－	
	11111	11	1	1	1	
	11111	11	1	1	1	
	$11+11$	11	1	1	1	
	$1 \ldots 11$		，		1.	

8

\square
\square

international business machines corporation REPORT PROGRAM GENERATOR FORMAT SPECIFICATIONS

CONSTANT OR EDIT CONTROL WORD
Form X24-6593 $\frac{1015 \mid}{7677}$ of

Figure 59. Monthly Expense Distribution Report (Part 1 of 3)

Figure 59. Monthly Expense Distribution Report (Part 2 of 3)

Figure 59. Monthly Expense Distribution Report (Part 3 of 3)

CARD INPUT FILE INVOICE PREPARATION

Figures 60-67 show the card input file, the printer spacing chart, the RPG specifications sheet, and the printed output for this Invoice Preparation report. One control card, the RPG control card, is required. In it, the user punches information about his data processing system.

Column	Contents	
RPG	Explanation Identifies the card.	
5	2	An 8K machine is used to generate the object program.
5	An 8K machine is used to execute the object program.	

Columns	Contents	Explanation
7	1	Multiply-divide special feature is in- stalled on the object machine.
9	1	Modify-address feature is installed on object machine.
11	1	The form of the RPG-generated output is an Autocoder-language symbolic deck.
12	blank	Punch unit is 1402.
$14-17$	CARD	Input file is in cards.
18	2	N

Figure 60. Input Data Cards for Invoice Preparation

IBM

Report ${ }^{{ }^{2}}$ Invoice Example
Programmed by
 REPORT PROGRAM GENERATOR DATA SPECIFICATIONS IBM 1401-1440-1460

Form $\times 24.6591$ Printed in U.S.A. $\frac{|0| 3 \mid}{7677}$ of 06 \qquad

Figure 64. Calculation Specifications for Invoice Report

Figure 67. Invoice Report

TAPE INPUT FILE EXAMPLE

In this example, the user's input file is on tape. He wants a printed report as shown on the Printer Spacing chart (Figure 69). He also wants to write part of the report on tape for future use. (See line 190 of Figure 73 and line 060 of Figure 74.) Figures 68-76 show the tape input file, the Printer Spacing chart, the RPG specifications sheets, part of the program listing which is produced when the object program is generated, and the printed report. Tape output for this program is not shown.

RPG requires three control cards for this program: RPG, TAPOUT, and TAPIN.

Column	Contents	Explanation
1-3	RPG	Identifles the card.
4	2	An 8 K machine is used to generate the object program.
5	2	An 8 K machine is used to execute the object program.
7	1	Multiply-divide special feature is installed on the object machine.
8	1	Advanced programming special feature is installecl on the object machine.
9	1	Modify address is installed on the object machine.
11	blank	Condensed deck output.

Columns		Contents	
14-17			Explanation
18	2		Input file is on tape.
19	N		Printer size is 132.
20	N	No punched card output.	
$76-80$	PUBNF	No disk output.	

TAPOUT Control Card

Column	Contents		Explanation
$1-6$	TAPOUT		Identifies the card. 7
8	2	Tape unit number.	
8-11	0120	Block length.	
$12-14$	120	Record length.	
$15-16$	01	Blocking factor.	
17	blank	Padding character.	

TAPIN Control Card

Columns	Contents		Explanation
$1-5$		TAPIN	
6	1		Identifies the card.
$7-11$	00240		Tape unit number.
$12-13$	0080		Block length.
$16-17$	03		Record length.
18	1	No label option	

$$
\begin{aligned}
& \text { Block Length } 240 \\
& \text { Record Length } 80 \\
& \text { Blocking factor . } 3
\end{aligned}
$$

Figure 68. Tape Input File

Figure 70. Input Specifications Sheet

Figure 71. Data Specifications Sheet

Figure 72. Calculation Specifications Sheet

Figure 73. Format Specifications Sheet

Figure 74. Format Specifications Sheet

Figure 75. Part of Printout from RPG Assembly (Part 1 of 2)

Figure 75. Part of Printout from RPG Assembly (Part 2 of 2)

Figure 76. Printed Report

MAS Control Card

Column	Contents		Explanation
$1-3$		MAS	
4	N		Identifies the card.
$5-8$	0100		No cylinder overflow.
$9-11$	100		Block length.
$12-13$	01	Record length.	
30	0		Blocking factor.
31	0	Drive control number.	

POR Control Card

Column	Contents	Explanation
1-3	POR	Identifies the card.
4	C	POR's are punched in cards.
16	2	Processing-order mode is controlsequential.
17	2	Contents of POR's are disk addresses.
20	N	No conversion to disk addresses.
21	6	Length of disk addresses.
22-24	006	Units position of first field.
25-26	10	Distance between fields.
27-28	02	Maximum number of fields per POR.

Processing Limits Card

Columns	$\frac{\text { Contents }}{1-6}$	
001200		Lowplanation
$11-16$	011199	
Upper limit of input file area.		

Figure 77. Disk Input Records for Stock Inventory Report

Figure 79. Input Specifications for Stock Inventory Report
${ }^{\text {Report }}{ }^{\text {IBM }}$ Stock Inventory
international business machines corporation REPORT PROGRAM GENERATOR DATA SPECIFICATIONS

IBM 1401-1440-1460
(BM01-1440-1460

Figure 80. Data Specifications for Stock Inventory Report

Figure 84. Stock Inventory Report

CONSECUTIVE DISK INPUT FILE EXAMPLE

Figures 85-90 are an example of an RPG program using a disk input file which is organized by a consecutive method of disk file organization. Each record on disk is 100-characters in length, and each record represents a particular order to the Foste Supplies Inc. The file has been previously sorted by customer number and by sales region. The disk file is located from addresses 000401 to 000600 . A single processing limits card is used for the POR.

The report desired by the company is a detailed accounting of each order, a calculation of the total cost for each order, and a total cost for each customer. Figure 90 shows part of the printed report. The printer spacing chart is not shown for this program.

Three control cards and a processing limits card are required for this program.

Column	Contents	Explanation
1-3	RPG	Identiffes the card.
4	2	An 8 K machine is used to generate the object program.
5	2	An 8 K machine will be used to execute the object program.
7	1	Multiply divide special feature is installed on the object machine.
9	1	Modify address instruction is installed on the object machine.
10	1	Direct Seek special feature is installed on the object machine.
14-17	DISK	Input file is on disk.
18	2	Printer size is 132.
19	N	No punched output.
20	N	No disk output.

MAS Control Card

Column	Contents		Explanation
$1-3$	MAS		Identifies the card.
4	N	No cylinder overflow.	
$5-8$	0100	Block length.	
$9-11$	100	Record length.	
$12-13$	01	Blocking factor.	
30	2	Drive control number.	
31	0	Address reference number.	

POR Control Card

$\frac{\text { Column }}{1-3} \quad \frac{\text { Contents }}{\text { POR }} \quad \frac{\text { Explanation }}{\text { Identifies the card. }}$
4 C POR's are punched in cards.
163 Processing-order mode is consecutive.

Contents of POR's are disk addresses.
Length of disk addresses.
Units position of first field.
Distance between fields.
Maximum number of fields per POR.
$\underline{\text { Processing Limits Card }}$

Column	Contents	Explanation
1-6	000401	Lower limit of input file.
11-16	000600	Upper limit of input file.

Figure 85. Input Specifications

[^3]

IBM Report \qquad Programmed by			RE							international business machines corporation EPORT PROGRAM GENERATOR FORMAT SPECIFICATIONS IBM 1401-1440-1460											
H	LINE	OUTPUT	$\begin{aligned} & \text { NEXT } \\ & \text { LINE } \end{aligned}$	SPACE		SKIP		LINE OUTPUT CONDITIONS				FIELD NAME	$\left\|\begin{array}{c} \text { FIELD } \\ \text { END } \\ 35 \\ \hline \end{array}\right\|$	FIELD OUTPUT CONDITIONS							
							$\begin{gathered} \stackrel{y}{4} \\ \stackrel{4}{4} \\ 1718 \\ 178 \end{gathered}$	CONO $\underset{\mathrm{D}}{\mathrm{N}}$ COND $\underset{\mathrm{N}}{\mathrm{N}} \mathrm{COND}$													
													118				- @	@ T, $\mathrm{O}_{1} \mathrm{~T}_{1} A_{1} L_{1} @_{1}$			0,1,0
				1								11111	1								$0,3,0$
				1	1	1	1					1111	1				\| 1				0,4,0
				1	1	1	1					11111	11								0,5,0
				1	1	1	1		+1			1.1.11	11			1					0,6,0
				1	1	1.	1					11111	11			11	111111111111111111111111111				$0,7,0$
				1	1	1	1			11	11	1111.1	11								0,8,0
				\perp	1	1	1		1	11	11	11111	1.1								0,9,0

RANDOM DISK FILE EXAMPLE (WITH AN IBM 1311 SORT TAG TABLE AS A POR FILE)

In this example, assume that the Foste Supplies Inc. wants the same report that was used in the previous example of a Consecutive Disk Input File (Figures $85-90$). In this case, the records have been placed on disk in a random method. An IBM 1311 Sort program may be used to obtain a sorted tag table. This table may then be used as the POR file for RPG processing.

The output from the sort (the user's POR file) would be located on disk in the area assigned by the user during the sort run. For example, assume that the user assigned disk locations 000000 to 000200 as his POR file area. The sort program prints out the exact lower limit of the sorted tag table (for example, 000150). The user assigned the upper limit (000200).

The company, as in the consecutive example, wants a detailed accounting of each order, a calculation of the total cost for each order, and a total cost for each customer. The RPG specifications sheets for this program are the same as in the consecutive example (Figures 85-90). The user needs three control cards and one POR-File Limits Card for this program.

Column	Contents	Explanation
1-3	RPG	Identifies the card.
4	2	An 8 K machine is used to generate the object program.
5	2	An 8 K machine will be used to execute the object program.
7	1	Multiply-divide special feature is installed on the object machine.
9	1	Modify address instruction is installed on the object machine.
10	1	Direct Seek spectal feature is installed on the object machine.
14-17	DISK	Input file is on disk.
18	2	Printer size is 132.
19	N	No punched output.
20	N	No disk output.

MAS Control Card

Column	Contents		Explanation $1-3$ MAS
4	N		Identifies the card.
4		No cylinder overflow.	
$5-8$	0100		Block length.
$9-11$	100		Record length.
$12-13$	01		Blocking factor.
30	2		Drive control number.
31	0		Address reference number.

POR Control Card

Columns	Contents		Explanation
$1-3$	POR		Identifies the card.
4	D		POR file is on disk.

Drive control number of IBM 1311 on which the POR file pack will be mounted.

Address-reference number of the POR file pack.

Block length.
Record length.
Blocking factor.
Indicates random method.
Contents of POR's are disk addresses.
Length of disk addresses.
Units position of first field.
Distance between fields.
Maximum number of fields per POR.

POR-File Limits Card

Column	Contents	
000150		Explanation Starting address obtained from the sort run.
$7-2$	000200	
Terminal address.		

When processing randomly organized disk input records, it is sometimes desirable to change or update certain fields of a record and then return that record to its location in disk storage. RPG allows this updating operation for a randomly organized disk input file. The updating operation can be used in conjunction with printed and/or punched output. However, no tape or disk output can be used by the object program. When using the disk update function, the two forms of RPG-generated output allowed are load-and-go or object deck (condensed, machine-language deck).

If the input file is blocked, the advanced programming special feature (1401) or the indexing and store address register special feature (1440 or 1460) must be installed on the object machine. The largest blocking factor allowed is 10 .

The fields to be updated can be obtained by using two methods:

1. The update field(s) can be included in the POR file.
2. The update field(s) can be derived by calculations using a field(s) in the disk record or a field(s) in the POR file.
The POR file, which is used with the update function, must be in either a one-per-card or a spread format. It cannot be on tape or disk. If the update field is taken from a POR card, it must be in the same card that contains the disk address or control data of the specific record to which it applies.

If the spread format is used, the update field is punched in the card prior to punching the disk addresses. This applies to all records whose addresses are contained in the POR card. The same is true if more than one update field is present in each POR card.

To use the disk update function in RPG program, additional entries must be made on the data specifications and format specifications sheets. The RPG control card must also contain additional information.

Data Specification Sheet

Column 26 must contain a $口$ to specify that the update field is contained in the POR Card. Columns 27-28 indicate the units position of the update record ($01-80$) in the POR card. Columns 43-45 and 60-62 can be used in a similar manner. The other columns of the data specification sheet are filled out in the normal manner. If any POR card contains more than one update field, each field must be defined by a separate data specifications entry.

Format Specification Sheet

A specific line entry must always be included when using the disk update function. This additional line must contain a D in column 7. The field entries must be only those entries to be updated. If an X is placed in column 5 (indicating printed output), the entire record that has been updated will be printed, and any part of the record that exceeds the printer size will not be printed (Figure 91). Punched output (indicated by an X in column 6) is not allowed on the update line entry. It must be coded on a separate line (Figure 91).

If only specific fields, rather than the entire updated record, are to be printed, separate line entries must be used for printing and updating (Figure 92).

RPG Control Card

In addition to the information normally entered in the RPG control card, enter the following information. In column 20, punch \underline{U}, leave columns 22-33 blank. Columns 34-42 must contain exactly the same information as columns 5-13 of the MAS control card, and column 21 must be identical to column 30 of the MAS control card.

Examples of Disk Update

Figure 91 shows an example of the specification sheets used to updatedisk records that are unblocked and occupy the first eighty positions of a disk sector. Seven characters are to be inserted in record positions 6-12. The characters to be entered are punched in columns 1-7 of the POR cards. The address of the record to be updated is punched in columns 11-16. If the same characters are to be inserted into other records, their addresses are punched in columns $21-26,31-36$, et c. A maximum of seven addresses per POR card is allowed.

In this case, an entire updated record is to be printed and punched. Printing is specified in the same line entry as disk update. Only the updated fields are specified in the field entries. Punching can not be specified on the same line as disk update; therefore, it is specified in the following line entry with a field entry that moves the entire old record to the output area, and an additional field entry that moves the update field to the correct position of the output area.

The RPG, MAS, and POR control cards (for this example) are punched in the following manner.

Figure 91. RPG Specification Sheets

RPG Con	trol Card		Columns	Contents	Explanation
Columns	Contents	Explanation	20	N	No conversion.
1-3	RPG	Identifies the card.	21	6	Disk input file is unblocked.
4	1	4 K machine is used to generate the object program.	22-24	016	Units position of first field in the POR.
			25-26	10	Distance between fields.
5	1	4 K machine will be used to execute the object program.	27-28	07	Maximum number of fields per POR.
11	blank	Form of RPG-generated output is a condensed, machine-language deck.	Example of a POR Card		
14-17	DISK	Input file is on disk.	Columns	Contents	Explanation
18	1	Printer size is 100 positions.	1-7	06/19/4	Update Field.
19	1	Punched card output.	11-16	000504	Disk address of record to be updated.
20	U	Identifies disk update.	21-26	001612	Disk address of record to be updated.
21	0	Disk drive control number.	31-36	001828	Disk address of record to be updated.
34-37	0100	Block length in characters, rounded to the next higher multiple of 100 .	Figure 91 can also be used as an example of updating a blocked disk input file. For this example, assume that the user's disk records are eighty characters long, and the blocking factor is 5. A seven-character disk address is required. The addresses are punched in columns 11-17, 21-27, etc of the POR cards. The specification sheets remain the same for this blocked disk file. The RPG, MAS, and POR control cards will contain the following information.		
38-40	080	Record length.			
41-42	01	Blocking factor.			
MAS Control Card					
Columns	Contents	Explanation			
1-3	MAS	Identifies the card.			
			RPG Control Card		
4	N	No cylinder overflow.			
5-8	0100	Block length in characters, rounded to the next higher multiple of 100 .	Columns	Contents	Explanation
			1-3	RPG	Identifies the card
9-11	080	Record length.			
			4	1	4 K machine is used to generate the
12-13	01	Blocking factor.			object program.
30	0	Drive-control number.	5	1	4 K machine will be used to execute the object program.
31	0	Address-reference number.	8	1	Advanced programming is installed on the object machine.
POR Control Card		Explanation			
Columns	Contents		11	blank	Form of RPG-generated output is a condensed, machine-language deck.
1-3	POR	Identifies the card.	14-17	DISK	Input file is on disk.
4	c	POR's are punched in cards.	18	1	Printer size is 100.
16	1	Random file	19	1	Punched-card output.
17	2	Contents of POR's are disk addresses.	20	U	Identifies disk update.

REPORT PROGRAM GENERATOR DATA SPECIFICATIONS IBM 1401-1440-1460
Programmed by \qquad

REPORT PROGRAM GENERATOR FORMAT SPECIFICATIONS

Programmed by

Figure 92. RPG Specification Sheets

POR Control Card

Columns	Contents	Explanation
1-3	POR	Identifies the card.
4	C	POR file in cards.
16	1	Random mode.
17	2	Contents of POR's are disk addresses.
20	N	No control data conversion.
21	6	Unblocked disk input file.
22-24	016	Location of first field.
25-26	00	POR file contains only one field per POR.
27-28	01	Maximum number of fields per POR.

Example of POR Card

Columns	Contents	
$1-3$	AAA	Explanation
$4-8$	BBBBB	Update field 1.
$11-16$	000500	Apdate field 2.

Consider that one field of the disk input records in example 3 represents an accounts-receivable field. All the records with an ${ }^{*}$ in position 6 are to receive a twenty percent discount in the accountsreceivable field. These records are to be updated accordingly and printed. Figure 93 shows the RPG specification sheets used to update the records. The RPG control cards remain the same as in example 3.

Figure 93. RPG Specification Sheets
Alphabetic Level Classification 13
Alphameric Literals 28
A (Arithmetic) 25
Calculation Specifications 23
Calculation Specifications Sheet 9
Card Number 18, 22, 27,37
Card Files 6
Card POR Files 47
Classification of Lines 13
Conditions 27
Condition 1P (First Page) 33
Consecutive Mode 48
Constants 28
Constant or Edit Control Word 35
Control Fields 17
Control-Sequential Mode 54
Conversion of Month Field 22
Conversion Routine Specifications 29
D (Data) 18
Data Specifications 9, 18
Decimal Alignment 29
Decimal Length 19, 25
Disk Files 6
Disk POR Files 48
Disk Update Function for Random Disk Files 105
Edit Control Word 35
Factor 1 25
Factor 2 26
Field End 35
Field Length of Remainder 27
Field Length Unedited 18, 25
Field Name 18, 25, 28,34
Field Name of Remainder
Field Output Conditions 3527
Field Status 21
Format (for a Field)
Format (for a Line)34
Format Specifications 30
Format Specifications Sheet 9
Half-Adjust 25
Initializing 23
Input Files 6
Input Specifications 13
Input Specifications Sheet 9
Line 31, 40
Line-Identification Code 13
Line "Level/Relationships" 37
Line Output Conditions 40, 33
Literals 28
Literal Constants as Output Fields 35
Page Page
Machine Requirements 5
MAS Control Card 59
Multiply or Divide Signs 26
Names Constants 28
Naming a Constant 35
Next Line 31, 40
Next Record Field 52
Numeric Level Classification 37
Numeric Level Format Specifications 38
Numeric Literals 28
Op (Operation) + - X / C 26
Options (RPG) 5
Padded Tape Records 30
Page Number 37
POR Control Card 61
POR-File Limits Card 48
Printer Spacing Chart 9, 10
Processing Limits 47
Processing-Order Records 47
Random Mode 48
Random Processing of a Random Disk File 54
Record Codes 14
Record Sequence 13
RPG Control Card 57
RPG Translator Program 62
Sample Programs 63-104
Sequence Control 18
Serial, Record, and Page Numbers 22
Skip 31
Sources of Field 19
Space 31
Special Features Specifications 62
Stacker (1402) 33
Stacker (1442) 33
Summary of Calculation Specifications 42
Summary of Data Specifications 42
Summary of Format Specifications 45
Suppression of Output from Run-In Control Breaks 34
TAPIN Control Card 58
TAPOUT Control Card 58
Tape Files 8
Tape POR Files 48
Tot/Det/Conv 27
Translator 6
TRL Control Card 60
Variable-Line Output Conditions 34
Wordxx 35
Z (Zero Suppress) 35

Report Program Generator (on Disk) Specifications
IBM 1401, 1440, and 1460, Form C24-3261-1

- Is the material:

Easy to read?
Well organized?
Fully covered?
Clearly explained?
Well illustrated?

- How did you use this publication?

As an introduction to the subject
For additional knowledge of the subject

- Which of the following terms best describes your job?

\quad Customer Personnel	IBM Personnel		
Manager	\square	Customer Engineer	\square
Systems Analyst	\square	Instructor	\square
Operator	\square	Sales Representative	\square
Programmer	\square	Systems Engineer	\square
Trainee	\square	Trainee	\square
Other	\square	Other	

- Check specific comment (if any) and explain in the space below:
(Give page number)
\square Suggested Change (Page)Suggested Addition (Page)
Error (Page)Suggested Deletion (Page
Explanation:

Space is available on the other side of this page for additional comments. Thank you for your cooperation.

POSTAGE WILL BE PAID BY . . .

IBM Corporation
P. O. Box 6

Endicott, N. Y. 13764

Tasm

International Business Machines Corporation

Data Processing Division

112 East Post Road, White Plains, N. Y. 10601

[^0]: Note: For a numeric data field that contains no decimals, enter 00. For alphabetic or alphameric data fields, leave these columns blank.

[^1]: Blank Move the source field to the data field. Add the source field to the data field. Subtract the source field from the data field.

 Reset the data field to zero before adding the source field $\stackrel{+}{0_{0 .}}$)

 Reset the data field to zero before subtracting the source
 field from it. (Punch 11,0 for 0 .)
 Move the numeric portion of the single-character source field to the units position of the data field. The zone portions are undisturbed in both fields.
 Y Move the zone portion of the single-character source field to the units position of the data field. The numeric portions are undisturbed in both fields.

[^2]: Note: This procedure may be used when the application calls for tape or disk input, if the inltializing record is the first record of the input ffle.

[^3]: Fiame 86. Data Soecifications

