IBM 3101 Display Terminal
 Repair Center
 Maintenance Information

PREFACE

```
This manual is designed mainly for use by the IBM Repair Center
Customer Engineer who will service the 3101. The Maintenance Analysis
Procedures (MAPs) section, which are in Chapter 2 supply pointers to
the test, removals/replacements, and locations sections.
Other useful publications are:
- IBM 3101 DISPLAY TERMINAL DESCRIPTION (GA 18-2033).
- IBM 3101 DISPLAY TERMINAL CPAR (GA 18-2036).
```

Brst Edition (Oct, 1979)

The information contained in this document is current as of the date of preparation and is subject to change by IBM at any time without notice. IBM makes no warranty, expressed or implied, relative to its completeness or accuracy.

This manual was written at the IBM Fujisawa Development Laboratory by Publications, Department 678, 1-Kirihara-cho, Fujisawa-shi, Kanagawa-ken, 252, Japan.
CHAPTER 1. PRODUCT DESCKIPTION 1-1
1.1 Models. 1-2
1.2 Work Station Elements Description 1-4
1.2.1 Video Element 1-4
1.2.2 KEYBOARD ELEMENT. 1-5
1.2.3 LOGIC ELEMENT 1-6
1.3 Communication Interface 1-7
1.4 Auxiliary I/O Interface 1-8
1.5 System Attachment 1-9
CHAPTER 2. MAINTENANCE ANALYSIS PROCEDURES. 2-1
CHAPTER 3. DATA FLOW AND TEST PROCEDURE 3-1
3.1 Data Flow. 3-1
3.2 Offline Test Procedure 3-2
3.3 Online Test Procedure. 3-6
3.3. Test Mode 3-6
3.3.1.1 Test Mode 1 3-6
3.3.1.2 Test Mode 2. 3-7
3.3.1.3 Test Mode 3. 3-8
3.3.2 Setup Switch Settings 3-9
3.3.3 Run Procedure. 3-10
3.3.3.1 4979 (Series/1) Operation. 3-10
3.3.3.2 3101 Operation (Tested Terminal) 3-11
3.3.4 Indication 3-12
CHAPTER 4. REMOVAL AND REPLACEMENT PROCEDURES 4-1
4.1 Logic Element Cover 4-1
4.2 Logic element Logic Board Assembly. 4-3
4.3 Logic element Power Supply. 4-5
4.4 Keyboard Element Cover. 4-7
4.5 Keyboard Element Setup Switches Assembly 4-8
4.6 Keyboard Element Clicker Assembly 4-8
4.7 Keyboard Element Keyboard Assembly. 4-10
4.8 Keyboard Element Keyboard Assembly Components 4-10
4.8.1 Keybutton 4-10
4.8.2 Key Module. 4-11
4.8.2.1 Preparation for Removal 4-12
4.8.2.2 Key Module Removal (Including Spacebar Module) $.4-12$
4.8.2.3 Key Module Replacement. 4-15
4.8.3 Spacebar 4-17
4.8.3.1 Removal 4-17
4.8.3.2 Replacement 4-17
4.8.4 Keyboard Logic Card Assembly. 4-17
4.9 Keyboard Cable Replacement. 4-19
4. 10 Video Element Filter Replacement 4-19
4. 11 Video Element Contrast and Brightness Control Knobs
Replacement 4-19
Chapter 5. LoCations 5-1
Chapter 6. tools. 6-1
appendix a: IbM 3101 part nombers A-1

The IBM 3101 is a compact Keyboard display terminal that has typewriter-like ASCII Keyboard and a monochrome cathode ray tube (CRT) display screen. It uses start-stop line protocol and communicates with other systems through the EIA RS-232C, EIA RS-422, or 20-mA current-loop interfaces.

The display screen can contain up to 1920 characters.
The 3101 is compatible with the Teletype* 33/35.

* Teletype is a trademark of The Teletype Corporation.

1.1 MODELS

Qne 3101 is available in eight models. The major differences between Models 1 X and 2 X are as follows:

Model 1X: Character-by-character transmission
Model 2X: Same as Model 1 X , but with the following enhancements:

- Block transmission (using the Send keys)
- Format Operation (Protect/Onprotect, Modified Data Tag, Field Highlighting)
- Insert/Delete a line of data
- Insert/Delete a data character
- Buffer Print operation, if a printer is attached

Figure 1-1. Work Station Elements

1. 2 WORK STATION ELEMENTS DESCRIPTION

The 3101 consists of three work station Elements: the video Element, the Logic Element, and the Keyboard Element (see Figure 1-1).

1.2.1 VIDEO ELEMENT

The Video Element comprises a 305-mm (12-inch) diagonal monochrome CRT display screen with a display screen filter, a deflection yoke, an analog circuit, a high voltage control circuit, and brightness and contrast potentiometers. Conventional solid-state television technology is used.

The display screen has the following characteristics:

- A presentation of 1920 characters (24 lines of 80 characters)
- A line for operator information (Line 25)
- A block or blinking cursor
- Normal and reverse Video

The Video Element can be tilted vertically 10 or 15 degrees for ease of viewing, and can also be swivelled left or right up to 25 degrees in either direction.

1.2.2 KEYBOARD ELEMENT

The 3101 Keyboard Element consists of:

- 87 keys including a numeric key pad (l2 keys)
- A Keyboard Logic card
- A clicker
- Setup switches
- A cable
- A documentation storage space in the cover.

The Keyboard Element can generate all 128 ASCII character codes and has a four-character buffer for storing data until the logic Element is ready to receive it.

The 3101 has many integrated functions. Setup switches in the customer access area at the top of the Keyboard allow the customer to select the functions required at setup time, or when his requirements change. The functions that can be selected are:

- Block (Model 2 X only)/Character Transmission modes
- Half/Full Duplex
- EIA RS-232C/Current Loop or EIA RS-232C/EIA RS-422
- Peimanent-Request-to-Send/Controlled-Request-to-Send
- ' Reverse Channel
- ETX/CR/ECT/XOFF
- Dual/Mono case
- 1 or 2 Stop Bits
- Parity (Space/Mark/Odd/Even)
- Send Line option (Model 2x only)
- Null Suppress (Model $2 X$ only)
- Number of time-fill characters (Model 2 X only)
- Auto New Line
- Auto Line Feed
- Carrier Return/Carrier Return Line Feed
- Scroll
- Reverse Video
- Blinking Cursor
- Main I/O Baud Rate (110, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600 BPS)
- Aux I/O Baud Rate (same as above)

KEYBOARD ELEMENT

Caution: Turn power off when replacing any $F R U$.
Record positions of setup switches to restore after repairing.

Physical Check

If the Keyboard has any mechanical damage, replace the damaged part.

Short-Circuit Check

Check the resistance at cable connector pins 2 and 7, and 6 and 7 (see Figure 5-2).

Symptom Check

1. Connect known good Video and Logic Elements.
2. Set TEST/NORMAL switch on the Logic Element to TEST.
3. Turn power on (run the offline test - refer to "OffliNE TEST PROCEDURE" in Chapter 3). Verify the symptom reported by the customer.

Restore setup switches to same positions as when received.

Caution: 1. Turn power off when replacing any fRO.
2. Disconnect power plug when replacing the power assembly.

Power Check

1. Connect the power plug to an outlet and turn power on.
2. Set TEST/NORMAL switch to TEST.
3. Observe the Power-On light and the Light 1.

Logic Check

1. Turf power off.
2. Connect known good Video and Keyboard Elements.
3. Set TEST/NORMAL switch to TEST.
4. Turn power on (run the offline test - refer to "OfflIne test PROCEDURE" in Chapter 3.) Verify the symptom reported by the customer.

Result	Action
Test failed	Replace either - Logic board
Good Power assembly	

External ports Check

```
Pori 2 ....... Video Element port
Port 3 ....... AUX Device port
Port 4 ......E EIA/C-Loop Communication port
Port 5 ....... Keyboard Element port
```

1. Set the setup switches on the Keyboard Element as indicated in each Test table and Figure 2-1.
2. Connect the rest Set (jumpered) to the port 4 as indicated in each Test table and Figure 2-1.
3. Turn TEST/NORMAL switch to TEST and then return to NORMAL prior to doing each action (to reset to initial condition).
4. Do each action and verify expected result.

- If the results are NOT as expected, replace the Logic board. - If the results are good, go to the next check.
- Communication (EIA) Port Test

Notes: 1.The test. 1 can be skipped if online test is done with Series/1.
2. The tests 1, 3, 4, and 5 can be skipped if online test is done with Maintenance Device.

- Auxiliary Port Test

Note: This test can be skipped if online test with Series/1 is done in $A 0 X$ mode. See section 3.3.2.

1. Connect a Test Set to port 3 for monitoring the lines.
2. Do the following at port 4.

- Current Loop Feature (Optional). Test - for Model 12/22 only

Do the following at port 4.

Setup switch / Action		
Test set	Expected result	
Setup $3 /$,	Press character key	
Test set 6	Check display	displayed

- RS-422 Feature (Optional) Test - for Model 13/23 only

Do the following at port 4.

Additional Checks for Intergittent problems

DC voltage check
1．Turn power off．
2．Eemove the Logic Element cover and the power assembly safety こことヒモ。
DANGER：Primary voltage is present on power assembly．
3．Turn power on and measure the voltage at the output connector pins of the poner assembly（Known good Keyboard and Video Elements should be connected to the Logic Element）．Voltage should be as follows：

Meter leads $(+)$	$(-)$	Voltage
Pin 3	Pin 6	$4.5-5.5$ Vdc
Pin 2	Pin 6	$11.4-12.6$ Vdc
Pin 6	Pin 4	$10.9-13.2$ Vdc

If any voltage does not meet the above specification，exchange the power assembly．

2) Power Iipple check

1. Turn power off.
2. Remove the Logic Element cover and the power assembly safety cover.
DANGER: Primary voltage is present on power assembly.
3. Turn power on and measure the ripple using oscilloscope at the output connector pins of the power assembly (known good Keyboard and Video Elements should be connected to the Logic Element). Ripple should be as follows:

If any ripple does not meet the above specification, exchange the power assembly.

- Scoping Procedure for Ripple

Turn scope power on.

Displayed Voltage scale: 50 mV per cm

Connect a 10:1(10X) probe to CH 1 INPUT.
Set A Triggering Source to INT.
Set A Triggering Coupling to DC.
Set SWEEP MODE to AUTO TRIG.
Set TIME BASE to 5 MSEC/DIV.
Set MODE to CH 1.
Set $C H 1$ AC/GND/DC switch to GND.
Set CH 1 VOLTS/DIV to 5 MV .
Set POSITION, INTENSITY, and FOCUS for sharp trace in the center of display.
Connect the probe ground to pin 6 of the output connector pins of the power assembly. (Use the short ground wire.)
Set $C H 1$ AC/GND/DC switch to AC. .

Connect the probe to the voltage pin to be tested.

$$
\begin{aligned}
& \text { - Ose this list as a quick reference and for the intermittent problem. } \\
& \text {-The frus in each work station element are as follows: } \\
& \text { Logic element Logic, Power } \\
& \text { Keyboard element KBD-card, cable, clicker, } \\
& \text { Setup-switches, Key-module } \\
& \text { Video element Analog, CRT }
\end{aligned}
$$

Failure Symptom

- MACHINE CHECK message appears with: LOGIE LOGIC OR KEYBOARD KEYBOARD
- Light 1 stays off in TEST mode
- Light 1 stays on in TEST mode
- TEST/NORMAL switch operation failure
- Display blank or green background
(No cursor, no divider line, and no characters)
- Display dim at maximum contrast/brightness
- Display is tilted or shifted
- Raster visible at minimum brightness
- Display overflows screen at maximum brightness
- Brightness or contrast control problem
- Dual intensity function failure
- Display is out of focus
- Display is out of synchronization (Moving)
- Display is not stable
- Size of display area is not correct
- Wrong horizontal position
- Extra/missing dot or test pattern failure
- Cursor error (missing, random location)
- Other display failure
- Setup switch failure
- One key failure
- Keyboard is not working at all
- Displayed character is different from keyed-in
- Keyboard clicker failure

Suspected FRO

Logic/Dower
Logic/KBD-card/cable
KBD-card/cabie/Logic
Logic/Power/Analog
Logic
Logic

Analog/Logic
Analog/CRT
CRT
Analog
Analog
Analog/Logic
Analog/Logic
Analog/Logic/CRT
Analog/Logic
Analog/Logic/Power
Analog/Power/Logic
(or voltage source)

Logic/Analog/CRT
Logic
Logic
Logic/Analog/CRT

Setup-switches/
KBD-card/cable/Logic
Key-module/KBD-card
KBD-card/cable/Logic
KBD-card/Logic
(Logic/KBD mismatch)
Clicker/KBD-card

Setup-Switch Settings

O Setup Switch On
: Not Used

Note: The non-indicated switch settings are not important.
-
Test Set Jumpering

Test Set - PN 453637

Test Set 1	Test Set 2	Test Set 3	Test Set 4	Test Set 5	Test Set 6	Test Set 7
$2-3$	$2-3$	$2-3$	$2-3$	$2-3$	$17-18$	$15-19$
$4-5$	$4-5$		$4-5$	$4-5$	$23-24$	$17-25$
$5-12$	$5-12$	$5-12$			$15-25$	
$8-12$				$8-20$		
$6-12$	$6-20$	$6-20$	$6-20$	$6-20$		
			$11-+$	$11-+$		

Notes:

1. Jumpers for Test Set 1, 2, and 3 can use plug type connectors instead of jumpers on Test Set.
2. Test Set 6 can be combined with Test Set 1.
3. Put all rocker switches ON.

3.1 DATA FLOW

Test Start/Stop	Diagnostic Activity	Visible/Audible Activity	CE Action
	Basic Assurance Test starts: \qquad Routine 1: Control 2: R/W storage 3: ROS \qquad \qquad 4: Communication \qquad Wrap. 5: Display Adapter 6: Keyboard \qquad OR \square Terminal Test starts: Routine. 7: All Characters Display \qquad 8: Attribute Check (Model 2X only) - 9: Setup Switches \qquad Display 10: Key Operation \qquad None \qquad (POR is initiated)	Alarm sounds once. TEST MODE is displayed. Displays MACHINE CHECK-LOGIC if error is detected. Machine stops. Only Normal/Test switch is effective. Displays MACHINE CHECK-KEYBOARD Displays MACHINE CHECK-LOGIC OR KEYBOARD if error is detected. Machine stops. Only Normal/Test switch is effective ASCII character set is displayed-for check of character generator. Blinking cursor also is displayed. \qquad \qquad \qquad displayed in Routine 7 to change. First keystroke also changes blinking cursor to normal cursor. \qquad Symbols corresponding to the first and all subsequent characters keyed in are displayed. TEST MODE and the test pattern are cleared and CHAR MODE/BLOCK MODE appears in the Operator Information Area.	\square Note error condition and return to MAPs. \rightarrow Note error condition and return to MAPs. \rightarrow Remove keyboard cable from Logic Element and run test again. If same message, problem is Logic Element. If message is now MACHINE CHECK- KEYBOARD, keyboard Element has the problem. - Return to MAPs. \rightarrow Compare characters with those in Figure 3-3. (1) or 3-4, 1 . Note cursor: it should be blinking. \rightarrow Adjust screen contrast by the knob. \rightarrow Note error condition and return to MAPs. \rightarrow Compare displayed status (as shown by 2 in Figure 3-3 or 3-4.) with actual switch settings: $1=$ switch is up $0=$ switch is down Change position of each switch: status should change accordingly. \rightarrow Compare changed characters with those in Figure 3-3, 3A. or 3-4, 3A. \rightarrow - Note if cursor is normal and positioning correctly. \rightarrow Compare keyed-in symbols (located at 3B , Figure 3-3 or 3-4) with keys that you pressed; see Figure 3-5 for symbols that should be displayed. \square Return to MAPs if it does not change.

Figure 3-2. Offline Test Procedure

Note: Figure 3-2 describes how to display the test characters at 1, 2, 3A and 3B above.
Figure 3-3. Offline-Test Display Characters (Model 1X)

Note: Figure 3-2 describes how to display the test characters at 1, 2, 3A and 3B above.
Figure 3-4: Offline-Test Display Characters (Model 2 X)

Characters Displayed-Not Using ALT
This diagram shows the character that will be displayed for each key pressed, provided the ALT Key has not been pressed and held.

Characters Displayed-Using ALT
This diagram shows the character that will be displayed for each key pressed, provided the ALT Key has been pressed and held.

Notes: 1. The following characters are displayed when the keys are pressed in the sequence given:

2. Pressing Space Bar produces no character, but the Cursor moves one character position (and erases any character previously in that position)

Figure 3-5. Characters Displayed

3. 3 ONLINE TEST PROCEDURE

3.3.1 DESCRIPTION OF TEST MODE

The following three test modes are available.
TEST MODE 1 : All Characters Display
TEST MODE 2 : H Characters Display TEST MODE 3 : Echo Test

Note: Refer to "Run Procedure (3.3.2)" for actual procedure.

3.3.1.1 Test Mode 1

This mode displays all ASCII charcters (code x'20'-x'7e') as follows.

The display format

The number of lines to be displayed can be specified. If more than 2 S lines are specified, the screen scrolls up and the title (TEST MODE 1) is replaced by graphic characters.

If both EIA/C-Loop and AOX ports (ports 4 and 3) are connected with EIA (Or C-LOOp) and AOX ports of Series/1, and AUX mode of 3101 is on, the transmitted data from Series/1 are wrapped back and compared automatically. After the specified number of lines are transmitted, the result of test is displayed on the 4979. Refer to section 3.3.3. (Press AUX+ALT on 3101 keyboard to set AJX mode on.)

This mode displays. character 'H' throughout the screen as follows.

The display format

The number of lines to be displayed can be specified. If more than 23 lines are specified, the screen scrolls up and the title (TEST MODE 2) is replaced by H characters.

If EIA/C-LOOp and AUX ports (ports 4 and 3) of 3101 are connected with EIA (Or C-IOOp) and AOX ports of SEIies/1, and AUX mode of 3101 is on, the transmitted data from Series /1 are wrapped back and compared automatically. After the specified number of lines are transmitted, the result of test is displayed on the 4979. Refer to section 3.3.3. (Press aסX+ALT on 3101 keyboard to set $A d X$ mode on.)

3.3.1.3 Test Mode 3

In this mode, the data entered from the tested terminal is displayed to the screen, character by character as follows.

The display format

The available keys are only graphic keys. CLEAR, BREAK, and so on are not available.

3.3.2. 1 3101 Setup JTested Terminal)

1) Set up the setup switches of 3101 as follows.
2) Connect the Series/1 EIA (or C-Loop) cable to the 3101 port 4.
3) Connect the Series/1 Aux cable to the 3101 port 3.
4) Press AUX+ALT on 3101 keyboard to set AUX mode on.

- Setup Switch Setting
'*' : Set to indicated position
'S': Select for port 4 testing (EIA 232 C or C -Ioop)
'X': Do not care

CHAR

3. ${ }^{3}-\underline{2} .2$ Series $/ 1$ Setug

1) Power up the Series/1.
2) Press Stop, RESET and LOAD keys on Series/1.(The test program in the disk becomes ready for use.)
3.3.2. 3 Testing frog 4979 (SEries $\angle 1$ display terminall

* Tesi Iniriation

1) Press ATTN key.
'>' is displayed.
2) Key-in and enter \$L T3101.
'T3101', time and address are displayed. 'T3101A', time and address for a 'T3101X', time and address for EIA port are displayed. 'T3101X', time and address for C-LOOP port are displayed. '3101 ON-LINE TEST STARTED' is displayed.
Test Mode 3 is running on the 3101.

* Test Mode Selection

1) Press ATTN key.
'>' is displayed.
2) Key-in and enter T3101x m (nnnn).
x: 'E! for EIA port, 'C' for C-Loop port. m: Test mode number (1, 2, or 3) nnnn: Number of display lines (Default is 23. nnnn=0 means loop.)

* Test Termination

1) Press ATTN key.'>'is displayed.
2) Key-in and enter EN.
3) Dress ATTN key.'>'is displayed.
4) Key-in and enter t3101A.
5) Press ATTN key.
'>'is displayed.
6) Key-in and enter T3101E.
7) Dress atrn key.
'>'is displayed.
8) Key-in and enter T3101C.

3.3 .3
 INDICATION

The following messages are displayed on the 4979 when test mode 1 or 2 has completed.

- T3101x: RECEIVE BUFFER OVERRUN T3101x: LINE PARITY ERROR

Receive Buffer Overrun (or Line Parity Error) is detected.

- T3101x: AUX TIMEOUT ERROR

AUX port does not receive data.
If $A U X$ port (port 3) of 3101 is not connected with AUX port of Series/1, or AUX mode of 3101 is not on, this error occurs.

- 3101x: AUX DATA ERROR

AUX port received unexpected data when data was wrapped back.

- T3101x: AUX GOOD COMPLETION

Test mode 1 or 2 has completed successfully.

Note

```
    x : 'E' for EIA port
        'C' for C-Loop port
```


4. 1 LOGIC ELEMENT COVER

1. Turn power off and disconnect the power-cord plug from the outlet.
2. Remove all plugs (1) connected to the Logic Element, then lift the Video Element (2) from the top of the Logic Element (see Figure 4-1).
3. Invert the Logic Element, remove Warning Label and remove the single screw from the recessed hole in the base (The screw is under the label).
4. Return the Logic Element to its normal position.
5. Through an opening in the right front ventilator, press the plastic tab (3) inward with a screwdriver and push the top cover (4) upward just far enough to unlatch the tab.
6. Repeat Step 5 lat the left front ventilator, then raise the top cover (5) from the base.
7. Reinstall the cover in reverse sequence.
8. Paste the warning Label' (PN5640566) over the single screw.

Figure 4-1. Logic element Cover

4. 2 LOGIC ELEMENT LOGIC BOARD ASSEMBLY

1. Remove the Logic Element cover as described under "Logic Element Cover."
2. Remove the screw (1) connecting the Logic board and power supply frame (see Figure 4-2).
3. Disengage the plastic tabs (2) and (3) and raise the Logic board just clear of the tabs.
4. Pull the Logic board (4) from the connector (5), then lift it clear of the unit.
5. Reinstall in reverse sequence.

Figure 4-2. Logic Board Assembly

4. 3 LOGIC ELEMENT POWER SUPPLY

1. Remove the Logic Element cover, as described under "Logic Elemer Cover," and the Logic board assembly, as described under "Logi Element Logic Board Assembly."
2. Disconnect the power-cord plug (1) from the power supply (se Figure 4-3).
3. Disengage the two plastic tabs (2) (the closer tab cannot be see in the drawing), pivot the supply upward (3) and pull it out from the two tabs on the opposite side.
4. Reinstall in reverse sequence.

4.4 KEYBOARD ELEMENT COYER

1. Unplug the Keyboard cable from the Logic Element.
2. Invert the Keyboard Element and remove the four screws from th corners of the base.
3. Return the Keyboard Element to its normal position and lift th cover from the base.
4. Reinstall in reverse sequence, but first ensure that th Keyboard's protective plastic cover is not folded.

Note: Check for cover clearance around the keys after the cove is reinstalled. Adjust the cover if necessary.

4. 5 KEYBOARD ELEMENT SETUP SWITCHES ASSEMBLY

1. Remove the Keyboard Element cover, as described under "Keyboard Element Cover."
2. Remove two screws, one at each end (1) of the switch assembly (see Figure 4-4).
3. Lift the switch assembly from the Keyboard assembly pins, which protrude into the switch-assembly connectors (2) from the underside.
4. When reinstalling, ensure that the pins on the Keyboard assembly properly align with the connectors on the switch assembly; the switch assembly easily fits into place when the pins are aligned.

Figure 4-4. Setup Switch Assembly

4. 6 KEYBOARD ELEMENT CLICKER ASSEMBLY

1. Remove the Keyboard Element cover, as described under "Keyboard Element Cover," and the Keyboard assembly, as described under "Keyboard Element Keyboard Assembly."
2. Push the clicker-assembly bail fastener (shown in Figure 4-5), toward the rear of the Keyboard Element, then raise the fastener over the cast tab as you let it move forward slowly.
3. Disconnect the clicker-cable slide connector and lift the clicker assembly.
4. Reinstall in reverse sequence.

Figure 4-5. Clicker Assembly Removal

4.7 KEYBOARD ELEMENT KEYBOARD ASSEMBLY

1. Remove the Keyboard Element cover, as described under "Keyboard Element Cover."
2. Disconnect the clicker cable connector, shown in Figure 4-6, from the Keyboard Logic card assembly.
3. Disconnect the Keyboard cable connector and grounding wire from the Keyboard assembly.
4. Remove the two screws holding the Keyboard assembly to the base, and lift the assembly from the base.
5. Reinstall in reverse sequence, being careful to spread the Keyboard's protective plastic cover before putting the Keyboard Element cover in place.

Figure 4-6. Clicker Cable

4. 8 KEYBOARD ELEMENT KEYBOARD ASSEMBLY COMPONENTS

A. keytop puller (PN 9900373-preferred, 75475, or 627953), isopropyl alcohol (PN 2200200), and lint-free cloth (PN 2108930) may be needed to remove and replace keyboard components.

4.8.1 KEYBUTTON

Keybuttons are removed by sliding the keytop puller tool over the keytop and pulling straight up.

4.8.2 KEY MODULE

The work area must be clean. Any particle between the key module flyplate, shown in Figure 4-7, and the printed circuit must be cleared.

Figure 4-7. Key Module/Flyplate

4.․․․․1 Preparation for Removal

1. Turn power off.
2. Disconnect the Keyboard cable from the Logic Element.
3. Remove the Keyboard Element cover (see "Keyboard Element Cover").
4. Remove the keybutton from the module to be replaced (see "Keybutton").
5. Remove the Keyboard assembly from the base (see "Keyboard Element Keyboard Assembly").
6. Invert the Keyboard assembly and place it on the guide tabs located on the left and right sides.

Note: See "Spacebar," if the spacebar module is to be replaced.

1. Remove the eight screws holding the base plate and circuit board to the key assembly (see Figure 4-8).
2. Lift the circuit board and the base plate from the key assembly, and place them on their bases in a clean area.
3. Handle the key assembly-by its sides. Be careful not to press any keys. Lift the key assembly off the base, turn it over, and place it back on the base.

Note: Replace the key module if the flyplate comes off. Do not attempt to repair the module. Repaired modules can cause intermittent failures.
4. Press down on the key module until it is free of the holding plate.
5. Lift the edge of the key assembly that is nearest the key module that has just been removed. Remove the defective module.
6. Lift the key assembly by the edges, and invert it on its base.

Figure 4-8. Key Module Removal

4.8.2. ${ }^{3}$ Key Module Replacement

1. Position the key module so that the alignment tab will engage the keybutton as shown in Figure 4-9.
2. Press the new key module (PN 1748131) by hand into the holding plate.

Figure 4-9. Key Module Replacement
3. Carefully wipe the printed circuit board with a lint-free cloth (PN 2108930) moistened with isopropyl alcohol (PN 2200200). Inspect all-key module flyplates for any particles, and carefully clean if needed.
4. Align the holding-screw holes through the base plate, circuit board, insulator, and top insulator (if used). Lower the circuit board to the key assembly. Secure the circuit board to the key assembly with the holding screws.
5. Reinstall the Keyboard assembly on the base, ensuring correct alignment.
6. Reinstall the keybutton in the correct location.
7. Reconnect the Keyboard cable connector and clicker cable to the Logic card. Reinstall the Keyboard Element cover, and reconnect the Keyboard cable to the Logic Element.
8. Perform the Offline Test Procedure to check for correct Keyboard operation.

Disconnect the Keyboard cable from the Logic Element and remove the Keyboard Element cover (see "Keyboard Element Cover") for access tc the Keyboard assembly.

4.8.3.1 Removal

1. Hold the spacebar at the ends and push upward with even pressure.
2. Remove the pivots (if required) using the tip of a screwdriver ir the molded slot in the side of the pivot.

4.8.․․․․ Replacement

1. press any pivots removed into the mounting frame.
2. Place the spacebar button over its modules, and lower it int position while engaging the bar in the two pirots.
3. Press down on the spacebar at the spacebar modules to seat the spacebar button.
4. Cbeck spacebar operation for binding. If the spacebar binds, the probable cause is a bent rightmodule stem. This stem can be shaped to free the bind.
5. Install the Keyboard Element cover and reconnect the Keyboar cable to the Logic Element.
4.8.4 KEYBOARD LOGIC CARD ASSEMBLY
6. Disconnect the Keyboard cable from the Logic Element.
7. Remove the Keyboard Element cover (see "Keyboard Element Cover").
8. Remove the setup switch assembly as described under "Keyboar Element Setup Switches Assembly."
9. Disconnect the Keyboard cable connector and clicker connector at the Keyboard Logic card.
10. Remove the two retaining screws from each end of the Keyboard Logic card, as shown in Figure 4-10.
11. Remove the Keyboard Logic card.
12. Reinstall in reverse sequence.

Figure 4-10. Keyboard Logic Card Removal

4.9 KEYBOARD CABLE REPLACEMENT

1. Turn power off
2. Disconnect the Keyboard cable from the Logic Element.
3. Remove the Keyboard Element cover, as described under "Keyboard Element Cover," and the Keyboard assembly, as described under "Keyboard Element Keyboard Assembly."
4. Remove the screw and the strain relief from the base assembly.
5. Disconnect the Keyboard cable connector from the Keyboard assembly.
6. Install in reverse sequence.

4. 10 VIDEO ELEMENT FILTER RERLACEMENT

1. Push the left and right upper corners so that the bottom edge comes out.
2. Grasp the left and right bottom edges and pull forward slightly.
3. Grasp both side edges and pull to remove.
4. Install a new filter in the reverse sequence making sure the protruding edge is at the bottom.
5. 11 VIDEO ELEMENT CONTRAST AND BRIGHTNESS CONTROL KNOBS RERLACEMENT
6. Hold the knob and pull it out.
7. Replace with the new knob.

4. 12 VIDEO REAR COVER REMOVAL \angle REPLACEMENT

SAFETY NOTE: Static charge may be present at the anode lead; using an insulated jumper wire, momentarily ground the CRT anode terminal to the CRT mounting screw.

1. Turn power off, and disconnect the video cable.
2. Place the Video element with the screen face down.
3. Remove two plugs and two screws from top of video element.
4. Remove two white seals and two screws from bottom of element.
5. Release the cable frcm rear cover.
6. Slide the rear cover off.
7. Discharge the static charge (see SAFETY NOTE).
8. Reinstall the rear cover in reverse sequence. (Align the inside guide to the analog card.)

Note: Put new white seals over screws on bottom, if required. Left side or right side / plug is indicated inside the plug* |

4. 13 VIDEO ANALOG CARD REPLACEMENT

1. Remove two knobs (Brightness and Contrast knobs).
2. Remove the rear cover.
(Discharge the static charge; see SAFETY NOTE in 4.12).
3. Remove the anode lead.
4. Remove carefully the small card connected to CRT socket. (Do not break glass extension in center of the socket.)
5. Disconnect the four wires from the CRT yoke coil. (Record or mark the wire color for later soldering.)
6. Remove the cable clamp.
7. Remove two Analog card holding screws.
8. Reinstall the Analog card in reverse sequence. (Do "Final check and adjustment".)
9. Reinstall the rear cover.
(Align the inside guide to the analog card.)

4. 14 VIDEO CRT ASSEMBLY REPLACEMENT

1. Remove the rear cover.
(Discharge static charge; see SAFETY NOTE in 4.12.)
2. Remove the Analog card.
3. Replace the CRT and front panel assembly.
4. Reinstall the analog card.
(Do "Final check and adjustment".)
5. Reinstall the rear cover.

PN identification label on side
Power Supply PN 5640532 (1.5 A 250 V dc) panel of power supply.

Figure 5-1. Power Components

Wire Color	Keyboard End	Controller End	Line Title
Pink	D03	2	$+5 \mathrm{Vdc}$
WHT/BLK/ORG	811	6	+12 Vdc
White	D12	11	Command Strobe
Black	GND Bus	7	Ground
Aquamarine	802	8	Cable Check
White/Black	B10	9	Serial Data Clock
White/Brown	813	5	Serial Data
White/Red	D04	12	Command 0
White/Orange	- D05	13	Command 1
White/Yellow	- 009	14	Command 2
White/Green	B07	4	Keyboard Data Available
White/Blue	D07	3	Power On Reset
White/Gray	D02	10	Acknowledge
WHT/BLK/BRN	GND Bus	7	Ground
Red	GND Bus	7	GroundID
(Shield)	- -	1, 15	Ground

Figure 5-2. Keyboard Cable

Port 4
(Communication Interface)

[^0]Female/Machine Side View

Figure 5-3. Communication and Auxiliary Interface

Figure 5-4. Video Cable

Modem Interface Test Set (ㄹN 453637)

Figure 6-1. Modem Interface Test Set (PN 453637)

The No DATA test set connects in series with the CCITT/EIA data se cable and the 25-pin data set connector. This enables the CE t monitor, measure, or control the 24 leads of a data set interface cable. Non-standard inter connections and signal generation can b performed using patch cords provided with the tool. This too contains seven LED indicators for quick display of the significant CCITt/EIA lines.

Figure A-1. Final Assembly, See List A-1

List A-1 Final Assembly

Figure A-2. Video Element, See List A-2

List A-2. Video Elrment

Figure A-3. Logic Element, See List A-3

List A-3. Logic Element

Figure A-4. Keyboard Element, See List A-4

List A-4. Keyboard Element

Chart A-1. Keybuttons and Nomenclature

[^0]: * Refer to Section 1.3

