File No. S360-21
Order No. GY26-3700-2

Program Logic

IBM System/360 Operating System Assembler (F)

Program No. 3605-AS-037

This publication describes the internal logic of
the F Assembler for the IBM System/360 Operating
System. It is intended for use by persons involved
in program maintenance and by system programmers
who are altering the program design.

Pt o £ I 5 -
oML LeCNNoloy
zanology

Page of GY26-3700-2
Revised June 1, 1971
By TNL GN33-8102

Preface

This manual describes the internal logic of IBM System/360 Operating System,

the IBM System/360 Operating System F Supervisor and Data Management Services,
Assembler. The introduction gives the pur- Order No. GC28-6646

pose of the assembler and summarizes the

system required to operate this assembler. IBM System/360 Operating System,

The organization of the F Assembler follows. Concepts and Facilities,
The bulk of the manual is devoted to detail- Order No. GC28-6535
ed descriptions of the operating phases of

the F Assembler. IBM System/360 Operating System,
Effective use of this document is based Supervisor and Data Management Macro
on an understanding of the latest versions Instructions, Order No.GC28-6647

of the following manuals:
IBM System/360 Operating System,

IBM System/360 Operating System, Job Control Language Reference,
Assembler Language, Order No.GC28-6514 Order No. GC28-6704
IBM System/360 Operating System, IBM System/360 Operating System,

Principles of Operation, Order No.GA22-6821 Assembler ¥ Programmer's Guide,
Order No.GC26-3756

IBM System/360 Operating System, Linkage
Editor and Loader, Order No.GC28-6538

Third Edition (December, 1970)

This is a major revision of, and obsoletes, GY26-3700-1 and Technical Newsletter GY33-8028.
This edition reflects the following changes:

e The SYSTERM data set added
e Changed logic for OPSYN handling
e The WXTRN instruction added

Other changes to the text and small changes to illustrations are indicated by a vertical line to
the left of the change; changed or added illustrations are denoted by the symbol e to the left
of the caption.

This edition applies to release 20. 1 of IBM System/360 Operating System and to all subsequent
releases until otherwise indicated in new editions or Technical Newsletters, Changes are
periodically made to specifications herein; before using this publication in connection with the
operation of IBM Systems, consult the latest SRL Newsletter, Order No, GN20-0360, for the
editions that are applicable and current,

Requests for copies of IBM publications should be made to your IBM representative or to the

IBM branch office serving your locality.
A form is provided at the back of this publication for reader s comments, If the form has

been removed, comments may be addressed to IBM Nordic Laboratory, Publications Development
Box 962, s-181 09 Lidings 9, Sweden.

©Copyright International Business Machines Corporation 1966, 1969, 1970

INTRODUCTION
Purpose of the Assembler

System Environment . .
System and I/O Requlrements . .
Organization of the Assembler. . .

PROGRAM ORGANIZATION

Program Levels . .

Assembler Control Table

General Register Assignments
Linkage Conventions.

DICTIONARY AND TABLE CONSTRUCTION

TECHNIQUES « « « . =«

General. e e e e
Dictionary Types and Structures .« . .
Symbol Table Structure
Hash Table . . . « « « « « « « « « =
Chaining . . « « « « « « « =

PHASE F1 - INITIALIZATION AND
ASSIGNMENT e
Overall Operatlon (Flowchart 2) e e

Functions. . . .« « « « + . e e e e .
Subroutines. =+« ¢ = ¢ ° * ° ° o0
PHASE F2 - STATEMENT SCAN.
Overall Operation (Flowcharts 3- 7) ..
Functions. . . . « s e
Global chtlonary Entry Formats ..
Local Dictionary Entry Formats

Record Formats . . « « « o « « « =« =
Subroutines. . .« .« .+ .« ¢ o o & o & =

PHASE F3 - CONDITIONAL ASSEMBLY AND
MACRO GENERATION
Overall Operation (Flowcharts 8- ll) .
Phase F3F - Abort Condition

(Flowchart 12) « « « « « . .
Functions. .« « « « « o « o « o o @
Dictionary Entries
Input Record Formats
Evaluation Routine Formats
Functional Program Sections and
Routines . . « ¢ « o« o o « o o o o . .

PHASE F7 - INITIAL ASSEMBLY. . . .
Overall Operation (Flowcharts 13- 27) .

I/0 Functions. e e e e e
Record Formats . . + « o « o « =+ o« o =
Tables e e e e e e e e

Phase Organlzatlon .
IEUF7C - Main Line Control (Flowcharts

13-18) e e
IEUF7X - Phase F7 Get Statement
Routine (Flowchart 19)
IEUF7D - DC/DS Evaluation Routlne
(Flowchart 20)

IEUF7E - External Symbol chtlcnary
Processor Routine (Flowcharts 21-23) .

44

45

45

CONTENTS

IEUF7N - F7 TESTRAN Routine.

IEUF7S - Symbol Table Subroutine
(Flowchart 24)
IEUF7V - Expression Evaluatlon
Routine (Flowchart 25) . .

IEUF7L - Error Logging for Phases F7
and F8 (Flowchart 26). . . e e
IEUF7G - Literal DC Cenerator
(Flowchart 27). .

IEUF7I - Phase F7 Inltlallzatlon and

I/0 Initialization

PHASE FI - INTERLUDE
Overall Operation (Flowchart 28) .o
I/0 Functions. . . . e
Literal Adjustment Table Format .
I/0 Subroutines.+ . .
Main Line Control.

PHASE F8 - FINAL ASSEMBLY. . .
Overall Operation (Flowcharts 29 36)
I/0 Functions.
Relocation chtlonary Entry Format
Phase Organization . . .
IEUF8I - Phase F8 Initialization

s e e . e o

and I/0. .« « ¢« « « o o & < o .

IEUF8I Subroutines

IEUF8C - Main Line Control

(Flowchart 29) « . .

IEUF8C Subroutines . . . e e e e
IEUF8M - Machine Operatlon Processor
(Flowchart 30) . . . ¢« « « « « « « « =«
IEUF8M Subroutines

IEUF8A - Assembler Operation Processor
(Flowchart 31) . . . « « « « « « « =
IEUF8A Subroutines =

IEUF8P - Output Routine

(Flowcharts 32-33) . . . « « « =« .
IEUF8D - DC Evaluation

(Flowcharts 34-35)
IEUF8N - Phase F8 Floatlng and leed—
Point Conversion (Flowchart 36). . . .
IFUF8V - Expression Evaluation
Subroutine e e e
IEUF8L - Log Error Subroutlne. Coe e
IEUF8S - Symbol Table Subroutine . . .

PHASE FPP - POST PROCESSOR . .

Overall Operation

(Flowcharts 37 and 38) . . e e
IEUFPP Functions (Flowchart 37) .
IEUFPP Subroutines . . . e e e

IEUFD Functions (Flowchart 38) PO
IEUFD Subroutines. . « « +« « o « « o =&

PHASE ERR--PERMANENT I/0 ERROR ABORT
PHASE. & &« o & « o o o s o s o o s o »

FLOWCHARTS . ¢« &« o « o o o o o o o o =

APPENDIX A. ASSEMBLER OPTIONS

45
45
45
47

47

59
62
62
62

62

63
63
63
64
64
66
67

103

APPENDIX B.

APPENDIX C.

APPENDIX D.

CONTROL PROGRAM SERVICES.

SYSTEM OVERHEAD .

INTERNAL ASSEMBLER
INSTRUCTION CODES

104

105

107

iv

APPENDIX E.

APPENDIX F,.

GLOSSARY.

INDEX

TRANSLATE TABLE.

SWITCHES

108
109
111

114

Figures

Figure 1.
Figure 2.
Figure 3,
Figure 4.
Figure 5
Figure 6.

Figure 7.

Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Flowcharts
Chart 1.
Chart 2.
Chart 3.
Chart 4.
Chart 5.
Chart 6.
Chart 7.

IBM System/360 Operatlng

System . .

Data Sets Used by the
Assembler.« .
Program Flow

Dictionary Structure .
Hash Table and Forward

Chaining .
Hash Table and Backward
Chaining

I/0 Flow for

Phases F1 and F2 . . .
I/0 Flow for Phase F3.
I/0 Flow for Phase F7.
Types 1 and 2

Work Buckets
Type 3 Work Bucket . .
I/0 Flow for Phase FI.
I/0 Flow for Phase F8.
Decomposition Routine
Using Table. . . .
Instruction Bulldlng Area
IEUF8P Formats .

I/0 Flow for Phase FPP
Assembler Options

Storage Allocation. .
Data Set Usage. . . .
Use of Data Management
Services. .

Organization of the
Assembler . . . o e e .
General Reglster
Assignments

Type Indicators

(Phases F2/F3).

Parameter Entries . .
Assignment of Flag Values
(Phase F3). . . .
Phase F3 Internal Values
for Type Attributes . . .
DC/DS Type Indicators for
Type 3 Work Buckets
Condition Switch Settings
Translate Table

IEUMAC - Macro

Generator I/0
TEUF1 - Phase Fl.
IEUF2 - Phase F2 (1 of 5)
IEUF2 - Phase F2 (2 of 5).
IEUF2 - Phase F2 (3 of 5).
IEUF2 - Phase F2 (4 of 5).
IEUF2 - Phase F2 (5 of 5).

14

15

16
24
37

40
41
51
54

57
58

.60,61

63
. 103

19

28
28
41

47
108

Chart

Chart

Chart

Chart

Chart

Chart

Chart

Chart

Chart

Chart

Chart

Chart

Chart

Chart

Chart

Chart

Chart

Chart

Chart

Chart

Chart
Chart

Chart

Chart

Chart

Chart

Chart

Chart

Chart

Chart

Chart

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.

28.
29.

30.
31.
32.
33.
34.
35.
36.
37.

38.

ILLUSTRATIONS

IEUF3 - Phase F3

Main Line Control. . . .
VALUAT - Phase F3
Evaluation (1 of 3)... . .
VALUAT - Phase F3
Evaluation (2 of 3). . .
VALUAT - Phase F3
Evaluation (3 of 3). . .
IEUF3E - Phase F3
Substitute . . e e e .
IEUF7C - Phase F7 Main
Line Control (1 of 6). .
IEUF7C - Phase F7 Main
Line Control (2 of 6). .
IEUF7C - Phase F7 Main
Line Control (3 of 6). .
IEUF7C - Phase F7 Main
Line Control (4 of 6) . .
IEUF7C - Phase F7 Main
Line Control (5 of 6). .
IEUF7C - Phase F7 Main
Line Control (6 of 6). .
IEUF7X - Phase F7 Get

Statement.
IEUF7D - Phase F7 DC
Evaluation

IEUF7E - Phase F7 ESD
Routine (1 of 3) . . .
IEUF7E - Phase F7 ESD
Routine (2 of 3) . .
IEUF7E - Phase F7 ESD
Routine (3 of 3)
IEUF7S - Phase F7 Symbol
Table Routine. . . .
IEUF7V - Phase F7
Expression Evaluation.
IEUF7L - Phase F7 Log
Error Routine.
IEUF7G - Phase F7 DC

Get Routine. .
IEUFI - Phase F Interlude.

IEUF8C - Phase F8 Main
Line Control . . .

IEUF8M - Phase F8 Machlne
Operation Processor.

IEUF8A - Phase F8 Assembler

Operation Processor. . . .
IEUF8P - Phase F8 Print
Routine (1 of 2) . .

IEUF8P - Phase F8 Prlnt
Routine (2 of 2) . . .
IEUF8D - Phase F8 DC
Evaluation (1 of 2). . .
IEUF8D - Phase F8 DC
Evaluation (2 of 2)
IEUF8N -~ Floating and

Fixed Point Conversion.
IEUFPP - Phase FPP

Post Processor.« . .
IEUFD - Phase FPP
Diagnostic.

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

91
92

93
94
95
96
97
98
99

100

101

102

PURPOSE OF THE ASSEMBLER

The assembler is designed to translate a
source program coded in IBM System/360
Operating System Assembler Language into a
relocatable machine language object program.
The assembler also assigns relative stor-
age locations to instructions and other
program elements and performs auxiliary
assembler functions designated by the pro-
grammer. The assembler performs its func-
tions in two principal sections: the macro
generation and conditional assembly section
(Phases Fl, F2, and F3) and the assembly
section (Phases F7, FI, F8, and FPP).

The object programs produced by the
assembler are in the format required by the
linkage editor. The linkage editor pro-
duces load modules, following source pro-
gram assembly, which are executable under
the control of the operating system.

Several output options are available for
the assembler. The programmer specifies the
device for the object modules, etc. He may
request an assembly listing, a cross-
reference table of symbols as part of the
listing and the insertion of a special
source symbol table in the object module to
facilitate TESTRAN. See Appendix A for de-
tails.

SYSTEM ENVIRONMENT

The IBM System/360 Operating System con-
sists of a control program and several proc-
essing programs. The control program gov-
erns the order in which the processing pro-
grams are executed, allocates resources,
and provides services that are required in
common by the processing programs during
their execution. The processing programs
consist of language translators and service
programs usually provided by IBM to assist
the system user, plus problem programs
written by the user and incorporated as
part of the system. The assembler is a
language translator, one of the processing
programs of the IBM System/360 Operating
System. See Figure 1.

The assembler can operate on IBM System/
360 Models 30, 40, 50, 65, 75, or 85 with at
least 64K storage. It requires only the
standard instruction set.

SYSTEM AND I/O REQUIREMENTS

These requirements are divided into three
categories: internal (or main) storage,
external storage devices (data sets), and
control program services.

INTRODUCTION

IBM SYSTEM/360
OPERATING SYSTEM

[I

CONTROL PROGRAMS PROCESSING PROGRAMS

® Language Translators
@ Service Programs
® Problem Programs

® Job Management
@ Task Management
e Data Management

|
——

LANGUAGE SERVICE PROGRAMS PROBLEM PROGRAMS
TRANSLATORS
Linkage Editor (written by
Assembler Sort & Merge User)
FORTRAN Utility Programs
RPG User written
System Generator service programs
PL/1
COBOL
TESTRAN

Telecommunications
Program Generator
User written language

Translators

Figure 1. IBM System/360 Operating System

Main Storage

Main storage requirements include the mini-
mum requirement of the Operating System
Control Program. In addition, at least
45,056 bytes of contiguous core storage
must be available for the assembler. Addi-
tional core storage will be used if avail-
able (see Table 1). The assembler is not
reentrant.)

Data Sets

The required data sets include one (SYSRES)
containing the operating system components,
which usually includes the assembler, three
utility data sets (SYSUTIL, SYSUT2, and
SYSUT3) , one input data set (SYSIN), and a
data set (SYSLIB) containing system macro
definitions and source coding to be called
for through COPY assembler instructions.
There are four optional output data sets

as follows:

Introduction 1

@eTable 1.

Storage Allocation

15500 bytes

15500 bytes

F7 Logic

Write Buffers 21000 bytes

(1 or 2) 7300

bytes each
(max)
Cross-Ref Buffer
200 bytes 1700 bytes
Common Storage Area Generation (overlapped by

3300 bytes

Dictionaries

(Variable Size)

initial logic)

FI** Logic
21000 bytes

F8 Logic
21000 bytes

Phase F1 Phase F2 Phase F3 Phase F7 Phase Fl Phase F8 Phase FPP
ASM - 400 bytes
Assembler Control Table = 2000 bytes
MAC - 1300 bytes ___ . RTA - 1000
F7S & F7L logic Adjustment Table - 1000 bytes
F3 Logic FPP Logic
7600 bytes 5500 bytes
F1* Logic F2 Logic

Sort Buffers (4)
7000 bytes

FD (Diagnostic)
Logic and Message
Table

8500 bytes

(Min = 45056 bytes
less the sum of all
other allocated
main storage areas;

Max = 65536 bytes)

Text Output
Buffers (2)
7300 bytes
each

(max)

Print Buffers and QSAM Logic

8000 bytes

Dictionary Area (Variable Size)
12288 - 65536 bytes

Text Input Buffers (2)
7300 bytes each (max)

Merge Buffers
3500 bytes

Miscellaneous Buffers - 200 bytes

1/0 Buffers
(Variable Size Area, max 14600 bytes +
macro library blocksize)

Main Storage

Sort Area
Symbol and Internal Table Area g
12000 - 445400 bytes ‘Si?:s 456700

“ NOTE: The F1 logic area is apportioned to the size of F2 logic for core storage management purposes. The F1 logic actually occupies

only a fraction of this area.

** NOTE: The actual size of Fl logic is approximately 3800 bytes. Part of the remaining area is used for storing tables. The text input buffers
are not used by this phase. However, the large logic area and the text input buffer areas are maintained throughout the phase to avoid
possible fragmentation of core by the Operating System and consequent unavailability for Phase F8.

1. Print data set for the ordinary listing
(SYSPRINT) .

2. Assemble-and-go data set (SYSGO).

3. Punch data set (SYSPUNCH).

4. Remote data set for diagnostic informa-
tion (SYSTERM).

See Figure 2 and Table 2.

SYSRES. This is a Direct Access Storage
Device (DASD) resident data set which con-

tains the control program and other opera-
ting system components. The assembler
program, itself a component of the operating
system, is usually kept on this data set.

SYSUT1, SYSUT2, SYSUT3. These three utility
data sets are used as intermediate external
storage. Three DASD logical files, three
magnetic tape units, or any combination of
the DASD and tape data sets may be used.

The use and formats of these data sets vary
from phase to phase.

® Table 2. Data Set Usage

Phas: Function SYSUTI SYSUT2 SYSUT3 SYSIN SYSLIB
F1 Initial statement Write source Read source
scan edited text text
Scan programmer macro Write source Write/read Write edited Read source Read source
definitions & subset text locai dictionary text/macro text text (optional)
each local dictionary segments dictionary
F2 Scan main portion Write source Write/read Read source Read source
of program edited text local dictionary text text
segments (optional)
Scan system macro Write/read Write edited Read source
definitions; subset local dictionary text/macro text
each local dictionary segments dictionary (optional)
Subset global Read local
dictionary and dictionary
local dictionary segments
for main program main program
Conditional assembly/ Read source Write source Read edited
F3 macro generation edited text edited text text/macro
dictionaries
Phase| Function SYSUT SYSUT2 SYSUT3 SYSPRINT gzggugcw SYSTERM
Write 1i
Main line control Write text® Read text* rite literal
base table
Process symbols Write literals Write symbol
and literals in text table segments
Process PUNCH state- Write PUNCH
ments & TESTRAN statements and
symbol table TESTRAN
F7 4 symbol table
Process external Write external
symbol dictionary symbol dictionary
and cross-reference segments & cross
entries references
Read literal base | Write external Write external
% s
Fl Process e.xh?rnal Not used Zg’.‘fer lxre:al table and ex- symbol dictionary | symbol dictionary
symbol dictionary N gTs*men ternal symbol dic-
avle tionary segments
Final assembly Read text* Read literal Write relocation Write text Write object
base table* dictionary, diag- text
ase nostics, and
- flagged statements
Process relocation Write reloca-
dictionary entries tion dictionary
Process relocation Read reloca- Write reloca-
dictionaries tion dictionary tion dictionary
Process cross- Read cross- Write cross=
FPP reference list references reference list
Process, assembly Read Write Wrir.e diag-
statistics diagnostics diagnbstics :‘?;ft'C infor-
ion

*NOTE: If an odd number of iterations occur due to symbol table overflow in F7, the functions of SYSUTI and SYSUT2 are reversed where indicated.

Introduction 3

\\ (optional) J

\ s
A
45,056 bytes

minimum
Contiguous
Core
Storage
(Plus
Operating
System
Control
Program

7
5

lEifher one
or both

5

SYSLIB

G

UTILITY FILES

SYSUT2 SYSUT3

5)

o

e Figure 2. Data Sets Used by the Assembler

SYSIN. This is a DASD, tape, or card reader
resident data set containing the source text
to be assembled. The source text consists
of control text, programmer macro defini-
tions, and text of the main portion of the
program. The format is assumed to be
80-byte logical record card images, blocked
as necessary.

SYSLIB. This is a DASD resident, parti-
tioned data set containing system macro
definitions and source text which may be
COPYed into programmer macro definitions,
into the main text of the program, or into
system macro definitions. This may be

blocked.
SYSPRINT. This is a printer, DASD, remote
terminal, or magnetic tape resident data

set containing output text for printing.
This may be blocked.

SYSPUNCH.
put text for punching.

This data set contains the out-
It may be punch,

DASD, or magnetic tape resident. This may
be blocked. .
SYSGO. This is a DASD or magnetic tape

resident data set containing the same output
text as SYSPUNCH, but is used as input for
the linkage editor. This may be blocked.

SYSTERM. This is a remote terminal resi-
dent data set containing diagnostic infor-
mation. This may be blocked.

Control Program Services

Several control program services (system
macro instructions) are used in conjunction
with data and storage manipulations and
program control transfers during the seven

phases of the assembler. These macros are
briefly described in Appendix B, and detail-
ed information is given in the Supervisor
and Data Management Macro Instructions
publication. The macros used are DCB, GET,
PUT, READ, WRITE, CHECK, NOTE, POINT,
GETMAIN, FREEMAIN, FIND, OPEN, CLOSE,
CLOSE (Type T=TCLOSE), LINK, XCTL, and
RETURN.

Data management services are given in
Table 3. System overhead estimates are
given in Appendix C.

ORGANIZATION OF THE ASSEMBLER

Major Components

The assembler consists of the modules listed
in Table 4.

Basic Functions

The assembler has two major functions in the
processing of source programs: generation
and assembly. See Figure 3.

The function of the generator portion is
conditional assembly and expansion of macro
instructions to one-for-one statements.
Phases F1l, F2, and F3 comprises the generator
portion.

The functions of the assembly portion is
to convert the one-for-one source statement
and expanded macro instructions into ma-
chine language instructions and constants
and to produce a relocatable object program.
These functions are performed by Phases F7,
FI, F8, and FPP. (There are no F4, F5, or
F6 phases.)

ASM is the master root segment for calling
routines and initialization procedures.

MAC contains and initializes the following
I/0 control program routines for Phases F1,
F2, and F3.

® READ, WRITE, CHECK, NOTE, and POINT for

the three work files.

® GET for SYSIN.

MAC is LINKed for ASM. See Flowchart 1.
MAC in turn LINKs to Phase Fl. MAC remains
resident during Phase F1l, F2, and F3. It
is later overlaid by RTA.

Control is transferred from MAC to RTA.

RTA contains and initializes the control
table for Phases F7, FI, F8, and FPP. RTA
then LINKs to Phase F7 and remains resident
during Phases F7, FI, F8, and FPP. Upon
completion of the final assembler phase
(Phase FPP), control is returned to RTA.
RTA returns control to ASM.

There are two error abort phases -- F3E
and ERR.

eTable 3. Use of Data Management Services
Data Sets
Phase
SYSUT 1 SYSUT 2 SYSUT3 SYSIN SYSPRINT | SYSPUNCH | SYSGO SYSLIB SYSTERM
OPEN OPEN OPEN OPEN OPEN
Fi WRITE GET
CHECK
WRITE READ WRITE GET READ
CHECK WRITE NOTE CLOSE NOTE
F2 TCLOSE NOTE POINT POINT
POINT CHECK CHECK
CHECK TCLOSE FIND
TCLOSE CLOSE
READ WRITE READ
CHECK CHECK CHECK
F3 TCLOSE TCLOSE TCLOSE
NOTE NOTE
POINT POINT
READ READ READ OPEN OPEN
- WRITE WRITE WRITE PUT PUT
CHECK CHECK NOTE
TCLOSE TCLOSE POINT
CHECK
WRITE WRITE READ OPEN PUT PUT
Fl TCLOSE TCLOSE NOTE PUT
CHECK CHECK POINT
CHECK
READ READ READ PUT PUT PUT
F8 CHECK CHECK WRITE
TCLOSE TCLOSE CHECK
NOTE
POINT
READ READ READ PUT PUT PUT OPEN
WRITE WRITE CHECK CLOSE CLOSE CLOSE PUT
FPP CHECK CHECK NOTE CLOSE
TCLOSE TCLOSE POINT
CLOSE CLOSE CLOSE
ERR CLOSE CLOSE CLOSE OPEN CLOSE CLOSE
CLOSE
PUT

Introduction 5

® Table 4. Organization of the Assembler
Phase Module Description
ASM IEUASM Master root segment
MAC IEUMAC Macro generator 1/0O package
F1 1EUF1 Macro generator initialization
F2 IEUF2 Macro generator syntactical scan
IEUF2A Macro generator dictionary routines
F3 IEUF3 Macro generator generation
F3E IEUF3E Phase F3 substitute for abort conditions
RTA IEURTA Root segment A phase
IEUF75* Symbol table routine
IEUF7L* Log error routine
F7 IEUF71 Initialization and 1/O
IEUF7C Main line control
IEUF7X GET statement
IEUF7N TESTRAN routine
IEUF7E External symbol dictionary routine
IEUF7D DC evaluation
IEUF7V Expression evaluation routine
IEUF7G DC GET routine
Fl IEUFI Interlude phase
F8 IEUF8I Initilization and 1/0
IEUF8C Main line control
IEUF8M Machine operation processor
IEUF8A Assembler operation processor
IEUF8P Print routine
IEUF8D DC evaluation
IEUF8N Decimal/floating point conversion
IEUF8V Expression evaluation routine
IEUF8S Symbol table routine
IEUFSL Log error routine
FPP IEUFPP Post processor
IEUFD Diagnostic list
ERR IEUERR Permanent 1/O error abort phase

* A routine that logically belongs to Phase F7, but resides in the
module IEURTA.

Macro Generation and Conditional Assembly
Phases

The macro generation and conditional assem-
bly portion of the assembler requires three
phases (Fl, F2, and F3) and two passes over
the source program text.

The function of the first pass (in Phase
F2) is to scan the source text, determine
the syntax of each statement, and produce
edited text suitable for actual macro gen-
eration and conditional assembly.

Variable symbols, sequence symbols,
macro names, and symbols appearing in the
main portion of the program are collected
and placed in either a global dictionary

or in one of the local dictionaries, de-
pending on the type of the symbol and the
context. Extraneous information is re-
moved from these dictionaries, and a sub-
setted dictionary is produced for the main
portion of the program, for each system and
programmer macro used in it, and for global
information.

The second pass (in Phase F3) performs
the actual macro generation and conditional
assembly using the edited source text and
subsetted dictionary information created
during the first pass. A one-for-one edited
text version is produced for input to the
subsequent assembly phases.

Phase Fl1 (Initialigzation and Assignment) .
Phase Fl performs the primary initialization
for the macro generation and assembly phases.
The operating environment is established by
obtaining data sets from the control program
for utility, input, and library functions,
and by obtaining main storage for tables,
etc.

Phase F2 (Statement Scan). Phase F2 scans

for programmer macro definitions, the main
program, and system macro definitions and
produces edited text for the main portion

of the program and for each macro definition
for input to Phase F3. Phase F2 creates

the global and local dictionaries and pre-
pares subsetted versions of them for Phase
F3. Syntactic errors are detected and flagged
for subsequent error processing. If an
abort condition arises, Phase F2 passes con-
trol to Phase F3E, a substitute version of
Phase F3. An abort condition can be caused
by any one of the following:

® The global dictionary fills up.

e The local dictionary exceeds 64K bytes on
the overflow file or in core.

® The subsetting area is too small.

Phase F3 (Conditional Assembly and Macro
Generation) . Using the edited text and
dictionaries produced in Phase F2, Phase
F3 generates one-for-one statements in
edited text form from the macro definitions
and performs conditional assembly. This
output serves as input to Phase F7, the
first of the assembly phases.

Assembly Phases

Phase F7 (Initial Assembly). Phase F7 pro-
cesses symbols and literals, builds the sym-
bol table and the external symbol dictionary,
and assigns relative locations to all state-
ments in the text. The symbol table con-
tains the definition (name and attributes)

of every declared symbol. Sharing the same
storage area, similar information is col-

Operating
System

(Control

Program)

ASM

©)

RETURN

© |
¢
LINK +
LINK XCTL RETURN
MAC - RTA
-6~ -0~ -0~ -0~ -0- -0 #
1 XCTL+ I
e @ 19
I T P 4 ¢ LINK
(Abw?J RETURN H 4 RETURN
Fxemn ¢ 4 ¢
|
® | y S
XCTL XCTL $ReETURN 4 t XCTL XCTL XCTL
F1 F2 > F3 (If entry } ¢ F7 o Fi > g = Fpp
| | +fromMAC) + . . 5 3
' + + $ Fi'ij ¢ + ¢ ¢
Lf++-.—+L~f—+-0—+10-+-0’]—.——.~—0-4 ERR '4-0--0—10—+-0-+-01~0—+++10-++-0—-0J

[_J XCTL
(1/0 Error Abort)

Macro Generator Phases

Figure 3. Program Flow

lected for literals. Only one symbol table
is constructed if the allocated core can
accommodate the entire table. If necessary,
the external symbol dictionary, except for
two segments, will be stored on SYSUT3 to
make room in core for the symbol table. If
there is still not enough core, construction
of the symbol table is suspended at the over-
flow point, and all input statements are
processed with data from the table (when
applicable). This symbol table is then dis-
carded and a new symbol table is built with
symbols and literals that were not included
in the eliminated table. This procedure is
repeated as long as overflow conditions
arise. Each completed symbol table is fully
utilized and eliminated before the next one
is built. Expressions appearing in all
statements which require previous definition
are evaluated in the process of location
assignment, and a table of cross-reference
entries is built for all symbols which are
defined and/or referenced.

Phase FI (Interlude). Phase FI writes the
external symbol dictionary on data sets
SYSPRINT and SYSPUNCH and/or SYSGO, and
constructs the literal adjustment table
for use in Phase F8, If the external

Assembler Phases

symbol dictionary was written on SYSUT3
during Phase F7 because of excessive core
occupancy by the symbol table, the entire
external symbol dictionary is read back
into main storage.

Phase F8 (Final Assembly). Phase F8 com-
pletes the symbol processing on all oper-
ands using the last (or only) symbol table
created in Phase F7. USING tables and the
relocation dictionary are built, all ad-
dress expressions are evaluated, and the
operand addresses are converted to base-
displacement format. Finally, the assembled
text is written in relocatable object progra
format on SYSPUNCH and/or SYSGO and in pro-
gram listing format on SYSPRINT.

Phase FPP (Post Processor). Phase FPP for-
mats and writes the relocation dictionary
table. If requested, the cross-reference
entries are sorted, and the cross-reference
list is prepared and written. Diagnostic
messages and statistics are prepared and
written on SYSPRINT, and diagnostic informa-
tion is prepared and written on SYSTERM.
Phase FPP also writes the END card.

Introduction 7

PROGRAM ORGANIZATION

PROGRAM LEVELS

In order to establish a uniform method of
communication and to control flow between
the phases and phase routines, the assem-
bler is structured on three levels:

® Level 0 - Phase initialization, storage
allocation, mainline control,
phase call, and Operating
System interface.

® Level 1 - Functional routines.

® Level 2 - Common subroutines and common
tables.

Functional routines are assembled as
independent control sections with a single
entry point and a return to mainline con-
trol. Functional routines do not call
other level 1 routines. Any communication
required between functional routines is
through mainline control and the common
table area.

Common subroutines are also assembled as
independent control sections. Linkage
between functional routines and common sub-
routines as described in Linkage Conven-
tions below.

ASSEMBLER CONTROL TABLE

Linkage between mainline control, function-
al routine, common subroutines, and common
tables is accomplished through the use of
the assembler control table. The location
of the assembler control table is always
available to all levels of routines and sub-
routines through the general purpose regis-
ter ACT.

The assembler
into five parts:

control table is divided

=
.

Mainline control/functional routine
linkage/return algorithms.
Functional routine pointers.

Common subroutine pointers.

Common table pointers.

Switches

uabd wn
« e e

Each of these five sections is in a fix-
ed location with respect to the ACT pointer,
and each element in a given section is in a
fixed location with respect to the start of
that section. A central dimensioning deck
of EQU cards is used by each control sec-
tion to reference the assembler control
table symbolically.

Example:

ACT EQU (General register number for
assembler control table
pointer)

CTL EQU 0

CT2 EQU Relative location of section
2

CT3 EQU Relative location of section
3

cT4 EQU Relative location of section
4

CT5 EQU Relative location of section
5

GENERAL REGISTER ASSIGNMENTS

General registers 3-15 are referenced sym-
bolically by all assembler subprograms.

The equate cards are described in Table 5
and in the paragraphs below. They are in-
cluded in all control section decks to pro-
vide the initial assignments for general
register symbols.

ACT (Assembler Control Table) Pointer

This general register contains the absolute
starting location for the assembler control
table. This register is set by the control
routine during phase initialization and re-
mains set for the duration of the phase.
ACT should be considered as a read-only
register for the use of all routines and
subroutines and as a base register for as-
sembler control table references.

FRB (Functional Routine Base Register)

This general register contains the base
address for the current functional routine.
FRB is set by the control routine and is
used to link with functional routines. The
USING statement for each functional routine
uses FRB as the second qperand and the name
of the functional routine's entry point as
the first operand.

Example:

USING BEGIN,FRB

FRB should not be used by common subroutines
or by functional routines other than in
their USING statements. Functional routines

Table 5. General Register Assignments

Tentative
Symbol EQU Purpose Restrictions Remarks
GRO
GR1, Absolute None
GR2
ACT 3 Assembler control Read only register
table pointer
SRB 8 Common subroutine Set by calling routine. Used by S/R in Four contiguous regis-
base register USING statement ters beginning with an
even register
SRR 9 Common subroutine Set by calling routine with BALR, SRR,
return register SRB
SP1 10 Common subroutine Used to transfer parameters between calling
parameter 1 routine and common subroutines
SP2 11 Common subroutine
parameter 2
GRX 14 General purpose No restrictions, GRX and GRY are
registers X, Y, and Completely volatile, two contiguous registers
GRY 15 Z, respectively beg'inning with an even
register. GRZ is un-
GRZ 13 predictable,
GRA 4 General purpose Used by functional routines. Cannot be Four contiguous registers
register A, B, C, and changed by common subroutines. beginning with an even
GR8 5 D, respectively. register
GRC 6
GRD 7
FRB 12 Functional routine Set by control routine, Used by functional
base register routines in USING statement,
CRB* GRC Control routine base Saved/restored by control routine when (Sample applications)
register control is passed to functional routine
CRR* GRD Control routine
return address

*CRB and CRR are applications of the usage of general purpose registers for specific assignments.

do not link directly with other functional
routines. Therefore, FRB remains intact
during the operation of a functional rou-
tine.

SRB* (Subroutine Base Address)

This general register contains the base
address for the current common subroutine.
SRB is set by the calling routine and is
used to link with common subroutines. The
USING statement for each common subroutine
uses SRB as the second operand and the name
of the subroutine's entry point as the
first operand.

Example:

USING SRENTR, SRB

SRR* (Subroutine Return Address)

This general register contains the address
through which the current common subroutine

*SRB, SRR, SPl, and SP2 may be used as gen-
eral purpose registers by level 0 and level
1 routines if care is taken not to conflict
with subroutine calls. If a subroutine
calls another subroutine, it is the respon-
sibility of the first subroutine to restore
SRB and SRR. ‘

Program Organization 9

returns to the calling routine. SRR is
set by the ctalling routine with a BALR
SRR, SRB.

SP1*, SP2* (Subroutine Parameters)

These general registers are used to trans-
fer parameter(s) between the calling routine
and the called subroutine. SPl and SP2 are
two contiguous registers beginning with an
even register. If a parameter list exceeds
the combined length of SP1l and SP2, SPl is
used as a pointer to the parameter list
storage location.

GRX, GRY, GRZ (General Purpose Registers)

There are no restrictions on the use of
these general registers. They may be used
by any level routine and are not saved/
restored by called subroutines and operat-
ing system functions.

GRA, GRB, GRC, GRD (Functional Routine
General Purpose Registers)

These are four contiguous registers begin-
ning with an even numbered register. Some
subroutines could use these registers and
restore them to their original value before
returning to the calling routine. The con-
trol routine is required to save and re-
store these registers for its own use when
transferring control to a functional rou-
tine.

LINKAGE CONVENTIONS

Subroutine Linkage

Common subroutines are linked to the main-
line control and functional routines
through the following procedure:

® The calling routine loads parameters in-
to SPl and SP2. If the parameter list
exceeds two words in length, a pointer
is used in SP1l or SP2 to point to the
storage location of the parameter list.

® The calling routine loads the address of
the subroutines in SRB. The subroutine
address constants (ADCONs) are located
in the assembler control table.
Example:

L SRB, SUBAD (ACT)

10

@ The calling routine transfers control to
the address specified by SRB, storing
the return address into SRR.

Example:

BALR SRR, SRB

® The called subroutine returns control to
the calling routine by branching to the
address specified by SRR.

Example:
BR SRR

If a common subroutine calls another
common subroutine, the same procedure will
be used. Therefore, it is necessary for
the first subrouytine to save and restore
its own base and return registers.

NOTE:

Example:

CALLING ROUTINE

L SRB,SUB1(ACT)
BALR SRR,SRB e —
//,'COMPUTE \\\
, /
/ /
r e —— e
/ P -
/ 7’
| /
| {/ SUBROUTINE 1
|‘ N USING SR1,SRB
~& SRI STM SRB, SRR, SAVE
\ L SRB, SUB2(ACT)
\\ BALR SRR,SRB = ~ _
\ USING *,SRR ~
N = M SRB, SRR, SAVE AN
N L DROP SRR \
N COMPUTE \
\< BR SRR — 7N |
N SAVE DS 2F]]
/ AN / /
/ \\ 7/ /
| ~ -7 /
~ -~ s
| S~ - -
S -7
\ -7
\ 7
\ /7
\ 4 SUBROUTINE 2
\ 1 SRR s
\ \
\\ W™ sR2 USING SR2,SRB
N COMPUTE
N BR SRR <
\\ A}
~ - 1
- 7

Common Table Linkage

All tables and data areas used by more than
one routine or subroutine are considered a

common table and follow the rules defined
herein.

The starting location of each common
table is contained in the assembler control
table. Therefore, any reference to common
control tables is preceded by loading the
starting address for that table into a gen-
eral register from the assembler control
table.

Fields within common tables are refer-
enced symbolically.

Example:

The starting location for TABLE is con-
tained in ACT+56. TABLE consists of N
entries. Each entry consists of three
fields: FIELDA (2 bytes), FIELDB (1l
byte), and FIELDC (5 bytes).

The dimensioning deck required to
reference TABLE is as follows:

TABLE EQU 56 (Rel. loc. of TABLE
pointer in ACT)
FIELDA EQU 0 (Rel. loc, of FIELDA
in TABLE entry)
FIELDB EQU 2 (Rel. loc. of FIELDB
in TABLE entry)
FIELDC EQU 3 (Rel. loc. of FIELDC

in TABLE entry)

In the following sample coding, X is
the register containing the TABLE point-

er.

L X, TABLE (ACT)

MvC FIELDA(2,X) ,TEMP

MvC FIELDB(1,X) ,FIELDA+1 (X)

Linkage Between Mainline Control and Func-
tional Routines

The mainline control routine transfers con-
trol to the functional routines by loading
the functional routine base address into

FRB from a table of pointers in the assem-

bler control table. An algorithm in the
assembler control table then saves the main-
line control base and return registers, and
branches to the functional routine pointed
to by FRB.

The functional routine returns control
to mainline control by branching to the
return algorithm in the assembler control
table. The return algorithm restores the
mainline control base and return registers,
and returns to mainline control.

Example:
MAIN LINE CONTROL

L FRB,FROUTI(ACT)
BALR CRR,ACT ,
C/OMPUTE)

/ /

/ \ LINKAGE ALGORITHM

AN
. STM CRB,CRR,SAVE(ACT)
BR FRB

—

RETURN ALGORITHM

\ CTRTRN LM CRB,CRR,SAVE(ACT) /
\ 4 BR CRR /

|
\l / -
\~ - 7

FUNCTIONAL ROUTINE

\] USING ENTER,FRB
\ ENTER
N\ COMPUTE
~o EXIT B CTRTN(ACT)
~ P
~ P d

~
\5_._._-//

Program Organization 11

DICTIONARY AND TABLE CONSTRUCTION TECHNIQUES

GENERAL

The assembler builds dictionaries and tables
for its own use. Special facilities are
used to enter new records and to access
already stored records for adding or re-
trieving data in these designated areas.
Hash tables, hashing algorithm, and chain-
ing are the tools employed to accomplish

the required data manipulations in diction-
aries and certain tables.

DICTIONARY TYPES AND STRUCTURES

The assembler uses two types of diction-

aries: a global (permanent) dictionary
and a local (transient) dictionary. See
Figure 4.
Global Dictionary
Machine operation codes
Assembler operation codes
Macro names=—s (NOTE/POINT;)
Global SET symbols
Local Dictionary
Sequence symbols<—(NOTE/POINTs)
Ordinary symbols
Local SET symbols
Symbolic parameters
Figure 4. Dictionary Structure
There is only one global dictionary. It

is core resident, and it contains all
machine and assembler operation codes, all
macro names, and all global SET variables.

There are many local dictionaries, one
for each macro definition and one for open
code (main text). The local dictionaries
contain sequence symbols, ordinary symbols,
local SET symbols, and macro instruction
parameters. Local dictionaries contain
items needed for insertion into edited text
and for macro generation during Phase F3,
and can overflow onto a utility data set
during construction.

Each local macro dictionary is subsetted
at the end of the processing of the macro

12

definition (Phase F2). The subsetted
dictionary is written on the system utility
data set immediately following the edited
text format of the macro definition.

The global and the open code local dic-
tionaries are subsetted at the end of Phase
F2. Subsetting removes flag bytes, symbolic
names, big "A" pointers, and little "a"
pointers. The global and main text local
dictionaries are placed in core and remain
there throughout Phase F3.

SYMBOL TABLE STRUCTURE

The symbol table is a collection of the
attributes of symbols and literals. It is
actually composed of two tables, one for
symbols and one for literals; however, the
same physical storage area is used for both
and the two different types of entries are
intermingled in storage.

The symbol table is a compact means to
rapidly obtain the attributes of a given
symbol or literal. The techniques used to
store and retrieve symbol table information
are hashing and chaining.

The symbol table is always in core and
it consists of the symbol table proper and
two hash tables, one for symbols and one
for literals.
occupies the high-numbered portion of the
alloted storage, but is output on a data
set if the space is needed by the symbol
table.

The symbol hash entries are three-byte
addresses whose locations are obtained
from the symbol names. Different names
may have the same hash entry. If so,
the entry points to the last synonym
entered, which has a chain pointer to the
preceding one. Literal entries are
referenced through a literal hash table
which contains a three-byte pointer for
each of four literal strings. There is
a literal string for each of the literal
lengths of 1, 2, 4, and 8 bytes. Each
literal hash pointer points to the first
entry in the proper string. The entries
in each string are chained together in a
forward manner. (See Hash Table and
Chaining, below.)

HASH TABLE

A hash table is used by the assembler for
inserting or locating variable or fixed-
length record entries in dictionaries and
symbol tables. A hash table consists of
fixed-length address entries (called point-

The external symbol dictionary

ers) which point to locations in the dic-
tionaries/tables. The range of the hash
table is the number of such pointers that
can be placed in the space reserved for the
table. When it is desired to make an entry
in the dictionary/table, e.g., enter a

global symbol declaration, or to locate an en-

try in the dictionary/table, e.g., to ob-
tain the relative address of a symbol, the
associated symbol or other datum must first
be randomized to produce an index number.
This is called hashing. (Operation codes
are included in the generation of index
numbers for the macro dictionaries.) The
randomizing algorithm is such that the re-
sulting index number will be a whole number
between zero and the hash table range,
minus one. This index number is then used
to index into the hash table and inspect
the associated pointer (address entry) in
the hash table. This entry will be zero
until a record entry, randomizing to this
index number, has been entered in the
dictionary/table. Records are entered in
the dictionary/table sequentially, and a
dictionary/table pointer, containing the
next available address, is used for in-
serting new records. Several different
data (called synonyms) may randomize to the
same index number. Because this index num-
ber points to an associated entry in the
hash table where only one address can be
stored, chaining must be used to enter or
locate the synonym records.

CHAINING

Chaining is a technique whereby an entry
to one record points to the next record,
and so on. Forward chaining and backward
chaining are the two types of chaining
used by the assembler.

In forward chaining,
entry points to the first entry of a chain.
The first field of each entry contains a
chaining address pointing to the next entry
in the chain. The last entry in each chain
has all zeros in the chaining address field.

In backward chaining, a hash table point-
er entry points to the last entry of a
chain. The first field of each entry con-
tains a chaining address pointing to the
preceding entry in the chain. The first
entry in each chain has all zeros in the
chaining address field, or, in certain
applications, the pointer field is
eliminated in the first entry.

Forward Chaining Techniques

The symbol, literal, or other datum whose
record is to be entered is hashed to obtain
an index number. This number is used to
point to the associated address entry in
the hash table. The hash table entry will
be zero if no other item has yet hashed to
the same index number, i.e., this is the
first record entry for this index number.

If this is not the first entry to this
index number, the hash table will contain
the address of the first record entered in
this chain. The record at that address
will be checked for duplication. If there
is no duplication, the content of the chain
pointer field is checked in the record. This
pointer will be either a chaining address
pointing to the location of the next record
in the chain, or zero. Zero indicates that
this is the last (or only) record in the
chain. If the pointer field contains a
chaining address, the next record is check-
ed for duplication. Again, if there is no
duplication, it is checked for a zero chain
pointer (zero=last record in the chain).
The scan is continued in this manner until
a duplication is found, when the precedure
is terminated without making a new entry,
or until a zero pointer is reached, in
which case the new record is entered in

the dictionary/table. In the latter case,
the zero pointer is replaced with the
address of the dictionary/table pointer,
i.e., the address of the next available
dictionary/table location, the new record
is entered at this location with a zero
pointer, and the dictionary/table pointer
is updated with the length of the current
entry.

The procedure used to locate records in
the dictionaries/tables is the same as
entering, except that when the compared
records are equal, the pertinent informa-
tion is extracted, or the value informa-
tion is inserted, as the case may be. See
Figure 5.

Backward Chaining Techniques

a hash table pointer

The record to be entered is hashed to an
index number. This index number is used
to point to an associated address in the
hash table. The hash table entry will be
zero if no other record has yet hashed to
this index number. If this is not the
first entry, the hash table will contain
the address of the last record entered,
i.e., the most current entry. The record
at this address will be checked for dupli-
cation. If there is no duplication, the
content of the record's chain pointer field
is checked. This chain pointer field con-
tains the address of ‘the previous entry in
the chain, or zero, if it is the first (or
only) entry in the chain.

The chain is scanned starting with the
last entry and continuing through the
first entry, or until a duplicate record
is encountered. In the latter case, the
scan is terminated and the record is not
entered. If there is no duplication, the
address of the last record in the chain is
placed in the chaining address field of
the record entered. The address of the
dictionary/table pointer, i.e., the address
of the next available location in the
dictionary/table area, replaces the pointer

Dictionary and Table Construction Techniques 13

in the hash table, and the record is in-
serted at this address in the dictionary/
table.

The dictionary/table pointer is updated
by the length of the record just stored to
indicate the new available storage address.

The procedure to locate records in the
dictionaries/tables is the same as enter-
ing, except that when the compared records
are equal, the pertinent information is
extracted, or the value information is
inserted, as the case may be. See Fig-
ure 6.

hashed

SYMBOL = "IDENTIFY" T"INDEX NUMBER = 5

Dictionary/Table Pointer

DEF

HASH TABLE

Chaining Usage

In Phase F2, forward chaining is used in
building the global dictionary. However,
in addition to the many forward chains
created, all macro name entries in the
global dictionary are linked together

by backward chaining. Therefore, each
macro entry has two pointer fields. The
first field points forward to the next
record in the chain, which originated
from the same hash table pointer, and the
last field points backward to the

AAA

ABC First Record

AAA

BCD | Second Record

ABC ——j

000 | Third Record

BCD

DEF—/

Figure 5. Hash Table and Forward Chaining

14

Dictionary/Table Pointer

SYMBOL = "IDENTIFY" ———a= [NDEX NUMBER =5 —

DEF

HASH TABLE

hashed

to

BCD

000 | First Record

AAA——/"?i

AAA | Second Record

Aac_—f’)i

ABC | Third Record

eco——”)a

DEF

Figure 6. Hash Table and Backward Chaining

preceding macro entry in the macro chain. in a random fashion. Symbol entries are

The first macro entry in the macro chain reached through pointers located in the

has a zero macro chain pointer. symbol hash table and are chained back-
Backward chaining is also used in Phase wards. The first symbol entry has no

F2 to build local dictionaries. pointer field. Literal entries are reached
In Phases F7 and F8, the symbol table through the literal hash table and are

area is shared by symbols and literals chained forward.

Dictionary and Table Construction Techniques 15

PHASE F1 - INITIALIZATION AND ASSIGNMENT

OVERALL OPERATION (FLOWCHART 2)

Phase Fl performs initialization for Phase
F2. Phase Fl does a GETMAIN for needed
common area, and from this determines an
optimum buffer size. Phase Fl generates a
hash table and associated global dictionary.
Machine operation codes and assembler oper-
ation codes are inserted into the global
dictionary at this time.

FUNCTIONS

The first five data sets, SYSIN, SYSLIB,
SYSUT1, SYSUT2, and SYSUT3, are opened.
See Figure 7. The assignments of the
three utility data sets within the assem-
bler are influenced by the channel config-
uration and device types. The parameter
list on the EXEC card is scanned and proc-
essed for reference by subsequent phases.
Any errors are diagnosed.

Phase F1l reads the first card and, if that
card is not an ICTL or OPSYN card, it XCTLs
to Phase F2. If it encounters an ICTL or
OPSYN card, it first processes all ICTL and
OPSYN cards. When it reads a record that is
not an ICTL or OPSYN instruction, it trans-
fers control to Phase F2.

SUBROUTINES
ICTL

Sets the input control values as specified
in the ICTL instruction.

16

W\

Phases
F1/F2

e
Y

I/0 Flow for Phases Fl1 and F2

Figure 7.

OPSYN

This routine processes OPSYN definitions.
If the symbol in the name field is not an
existing operation code (valid for OPSYN),
the routine creates a global dictionary
entry -- identical to the entry for the
operation code in the operand field -- and
hashes it on a chain for OPSYN-defined op
codes. If the name is an existing op code,
the routine changes the internal machine
operation code and (if required) the type
code and ASC to that of the op code in the
operand field. If the op code is to be
removed (blank operand field), the routine
zeros out the first byte of the op code
name in its global dictionary entry.

OVERALL OPERATION (FLOWCHARTS 3-7)

This phase performs all necessary functions
to enable conditional assembly by the next
phase, F3. It reads the input from SYSIN
and performs a syntactical scan of all the
input. See Figure 7. Any undefined opera-
tion codes are assumed to be system macro
instructions. (If the DOS assembler option
is specified, F2 treats CXD, DXD, and OPSYN
instructions as undefined. It also treats
L-type and Q-type DC and DS instructions
and extended precision machine instructions
as undefined.) A search of the system
library is made and the system macros are
edited just as are programmer macros. In
addition to scanning, Phase F2 inserts
various items into appropriate dictionaries.

Items present in the dictionaries are
needed for insertion into edited text and
generation by Phase F3.

When a dictionary is complete, it is
subsetted and all items except those needed
by Phase F3 are deleted.

FUNCTIONS

Phase F2 is divided into the following four
logical sections:

® Programmer macro definition scan and
dictionary build.

® Main text scan and dictionary build.

@ System macro definition scan and
dictionary build.

® Subsetting of the global dictionary and
all local dictionaries.

Because these sections have many overlap-
ping functions, they are contained in a
single phase.

Programmer Macro Definition Scan and
Dictionary Build

Source text is read from SYSIN and option-
ally from SYSLIB (using FIND) if COPY
assembler instructions are encountered in
the macro definitions. A copy of the
source text is written on SYSUT1 for later
inclusion in the SYSPRINT data set, while
edited text is written on SYSUT3.

A chaining technique is used to make
entries in the dictionaries. (See Chain-
ing Technigues in the Dictionary and Table
Construction Techniques section.) As the
source text is scanned, entries are made in
the global dictionary for macro mnemonics
and global SET symbols. Entries are made
in the local dictionary corresponding to
the given macro for sequence symbols,
parameters, and local variable symbols.
Segments of the given local dictionary are

PHASE F2 - STATEMENT SCAN

written on SYSUT2, and the macro definition
in an edited text format is written on
SYSUT3. When the end of the given macro
definition is encountered, the local dic-
tionary for that macro is subsetted and
written on SYSUT3 immediately following the
corresponding edited text.

Main Text Scan and Dictionary Build

Source text is read from SYSIN and option-
ally from SYSLIB (using FIND) if COPY
assembler instructions are present. The
source text of the main portion of the pro-
gram is combined with an edited form of the
main text and written on SYSUT1. This text
is blocked to minimize rotational delay
timing problems inherent with DASD devices.

A hashing technique is used to enter in-
formation in the dictionaries. (See Hash
Tables in the Dictionary and Table Construc-
tion Techniques Section.) The same global
dictionary used in the programmer macro
definition scan is used in the main text
scan to contain macro names, OPSYN defini-
tions and global SET variables. The local
dictionary for the main text is used to
store main text symbols as well as local
variable symbols and sequence symbols.
Segments of this local dictionary are
written on SYSUT2. A circular buffer pool
is employed with a backward chaining tech-
nique to keep as many of the most recently
written local dictionary segments in main
storage as possible. However, for large
programs it may be necessary to read back
one of the segments no longer remaining in
main storage. Further, the boundary between
the global dictionary and the current local
dictionary may be adjusted to permit a
larger number of global dictionary entries,
thereby reducing the main storage for the
local dictionary and possibly requiring
more segments to be read back.

System Macro Definition Scan and Dictionary
Build

The global mnemonics dictionary contains
mnemonics of macros used in the programmer
macro definitions and in the main text of
the program. Mnemonics of macros which
were not defined as programmer macros are
chained together and considered to be sys-
tem macros. One by one these macros are
located in SYSLIB (using FIND), and their
definitions are scanned and edited similar
to the programmer macro definitions above.
Text is read from SYSLIB. Since no listing
of system macro definitions is required,
only the edited text and subsetted local
dictionaries are written (on SYSUT3).

Phase F2 - Statement Scan 17

Entries are made in the global dic-
tionary for macro mnemonics and global SET
symbols, and for each system macro defini-
tion a local dictionary is created in which
sequence symbols, parameters, and local
variable symbols are entered. As in the
case of programmer macro definitions, each
local dictionary is subsetted to form a
macro dictionary, which is written on
SYSUT3 immediately following the edited
text for the macro.

This process continues until all system
macro definitions have been processed or
until no more macro names can be located in
the library, at which time undefined macros
are treated as illegal instructions.

Global Dictionary and Main Text Local
Dictionary Subsetting

After editing all text preparatory to the
actual conditional assembly and macro gen-
eration, the global dictionary is subsetted
and placed in main storage. The main text
local dictionary is then subsetted and also
placed in main storage.

GLOBAL DICTIONARY ENTRY FORMATS

Defined Operation Codes

This format is as follows:
Bytes 2 1 1to8 1 1 1
AN Fl Mnemcnic Internal Machinel g1
pointer 9 Operaticn or Assembler Mask | ASC
Code Operation Code
"A" Pointer (big A pointer) Relative

forward chaining address of the next
consecutive entry in a dictionary chain.

Flag -
Bit 0 Not used
Bits 1-4 0000 - Normal machine op
0001 - Assembler op
0010 - Extended mnemonics
Bits 5-7 Length of operation code minus

one (L-1)

Rl Mask - Rl field for extended mnemonics.
The extension of op codes field is
omitted for machine operation code
entries. For two-byte op codes in
System/370 instructions, the second
half of this byte contains the dis-
placement into the table TASTABLE.
This table is internal to IEUF8M
and contains the second byte of
two-byte codes.

ASC - Assembler switch code., (See Edited
Text Record Fixed Field Format in the
"Phase F7" section.)

Macro Name Entry

This format is as follows:

18

Bytes 2 1 1to8 2 3 2
"AN "t NOTE/ MCP
pointer |Flag Mnemonic pointer POINT

"A" Pointer - Forward chaining address

Flag -
Bit 0 O - Normal global variables.
1 - Obsolete global variables

(global variables which have
been declared apart from the
current part of the source
deck being processed, such
as macro definition or main-
line program) .

NOTE: Bit zero is used for global vari-
ables only.
Bits 1-4 0000 - Op codes
0001 - Internal Assembler op codes
0010 - Extended mnemonics

0011 - Macro names

0100 - Global A variables
0101 - Global B variables
0110 - Global C variables

Bits 5-7 Length of BCD entry minus one

(L-1)
Mnemonic - The macro name in byte format.

“a" Pointer - Little "a" pointer to a loca-
tion in the Phase F3 dictionary that will
contain the subsetted entry for this
mnemonic.

NOTE/POINT - NOTE/POINT Address. Before
the dictionary associated with this
mnemonic is subsetted, this entry will
contain the NOTE location of the begin-
ning of the fully edited text for the
corresponding macro definition, After
the local dictionary has been subsetted,
this field contains the NOTEd location
of the subset dictionary, which will in
turn contain the NOTEd position of the
fully-edited text of the macro defini-
tion.

MCP - Macro chain pointer. The backwards

chaining address of the preceding macro
name entry in the dictionary.

Global SET Variable Symbol Entry

This format is as follows:

Bytes 2 1 2t08 2 2
AT SET g
pointer Flag variable pointer C
symbol

"A" pointer - Forward chaining address.
Flag - Same as in the macro name entry.

SET Variable Symbol - The SET variable sym-
bol in byte format.

"a" pointer - Same as in the macro name
entry.

C - Dimension, the declared SET variable
dimension. This will be zero if un-
dimensioned.

LOCAL DICTIONARY ENTRY FORMATS

Open Code Ordinary Symbols

This format is as follows:

Bytes 2 1 1to8 2 1 2 2
" AN gt
pointer | Flag Symbol | pointer | Type Length | Scale

"A" Pointer (Big A pointer)— Backward
chaining address of the preceding entry
in a dictionary chain.

Flag -

Bit O 0 - Synonym (part of a chain)
1 - End of the chain

Bits 1-4 1000 - Sequence symbols
1001 - Parameters
1010 - Ordinary Symbols
1100 - Local A variables
1101 - Local B variables
1110 - Local C variables

Bits 5-7 Length of BCD entry minus one

(L-1)

Symbol - The symbol in character format.

Pointer - same as in the macro name
entry.

a

Type - Type attribute. See Table 6.
Length - Length attribute:
Scale - Scale attribute:

Bit O 0 - Positive

1 - Negative

Bits 1-15 Scale attribute

Table 6. Type Indicators (Phases F2/F3)

Description of Record Type Indicator

Source statement continuation record 08
Error record (warning messoge) 08
End of data set 0A
Error record (not warning message) oD
Edited text records (machine instructions, DC, DS

etc.) 00
CSECT, DSECT, START edited text record 01
AGO edited text record 02
AIF edited text record 03
SETx and ACTR edited text record 04
Macro instruction edited text record 05

Macro definition prototype statement edited text

record 06
MEXIT and MEND edited text flag record 07
ANOP edited text flag record 09
Macro instruction or prototype operand value

record 08
End of macro instruction or prototype record oC

Sequence Symbols

This format is as follows:

Bytes 2 1 2to 8 2 3 2
"wAN "ot NOTE/
pointer Flag Symbol pointer POINT B

"A" Pointer - Backward chaining address.

Flag - Same as in the open code ordinary

symbols.
Symbol - The symbol in character format.

"a" Pointer - Same as.in the macro name
entry.

NOTE/POINT - The pointer to the block in
which the fully-edited text for the
statement named by the sequence symbol
begins.

B - The position of the beginning of the
sequence symbol fully-edited text

Phase F2 - Statement Scan 19

relative to the beginning of the block
in which it is located.

Local SET Variable Symbols

I'his format is as follows:

Bytes 2 1 2108 2 2
" AH " 0"
D
pointer Flag Symbol pointer

"A" Pointer - Backward chaining address.

Flag - Same as in the open code ordinary

symbols.
Symbol - The symbol in character format.

"a" Pointer - Same as in the macro name
entry.

D - The declared dimension of the local
SET variable symbol. It will be zero if
the symbol is undimensioned.

Macro Prototype Symbolic Parameters. This
format is as follows:
Bytes 2 1 2to 8 2
nAu
pointer Flag Symbol PN

This format is for both keyword and posi-
tional type.

"A" Pointer - Backward chaining address.

Flag - Same as in the open code ordinary
symbols.

Symbol - The symbol in character format.

PN - The operand position number assigned
to the symbolic parameter.

RECORD FORMATS

Source Record

This format is as follows:
Bytes 1 2 1 80

Type ID R/L FLAGA Source

20

Type ID - 08
R/L - Record length

FLAGA -
Bit O Not used.
Bits 1-3 Record type
000 - Print as is. Source rec-
ord only

001 - Error record.

010 - Print as is, but do not
display a statement num-
ber. Source record only.

011l - Print as is if GEN option
is on. Steps statement
number counter. Source
record only

100 - Process only. Edited
text and logical state-
ments only.

101 - Internal assembler control
record.

110 - Process this record and
construct source record
for print.

111 - Process this record and
construct source record
for print if GEN option

is on.
Bit 4 Not used. (This bit is acti-
vated in Phase F7.)
Bit 5 Error record follows indicator.
Bit 6 Continuation card indicator.
Bit 7 Not used. (This bit is acti-

vated in Phase F7.)

Source - When created in F2 from source
records from SYSIN or SYSLIB, source will
be 80 bytes long.

NOTE: If a source statement has a continua-
tion card, an ERROR, and is split between
buffers, then the order on SYSUT1l is as
follows:

® Source record (first part).

® Error record.

® Source record (second part).

® Source continue record (from continua-
tion card).

Source records are not created in Phase F2
for the system macro definition source
statements (with the exception of comments
for generation:),

Logical Statement

This format is as follows:

Bytes 1 2 2 i 1 3
Type Operation
iD R/L | FLAGA Code ASC |(Zeroes)
| T S— Fixed Portion _———Jl
Bytes ‘1 Variagble 1 Varioble 1 Variable 1 Variable 1
. End of
NL| Name [OPL|Operation|OPNL |Operand JCOML| Comments
Statement

—

Lf Text

Type ID - See Table 6.
R/L - Record length.

FLAGA - Same as in the edited text record
fixed field format in Phase F7.

OP Code - Hexadecimal operation code for
machine instructions (See Appendix B
for internal assembler instruction
codes) .

ASC - Assembler switch codes. (Inserted in
Phase F2 but not used by the macro gen-
erator phase. See the edited text rec-
ord fixed field format in Phase F7.)

NL - Name length

OPL -~ Operation length
OPNL - Operand length
COML - Comments length

Text - Relevant text from source record,
all source between beginning and end
column, and from continue to end column,
if continuation record. All blanks,
except one, after end of comments field
of last (or only) source record are
dropped. As an exception, for macro
prototype statements, one logical state-
ment record is made for each source
record. The following REPRO record is
the other exception.

END of Statement - FF16

NOTE: Logical statement records are not
created for ICTL, ISEQ, MACRO, COPY, or

COMMENTS statements, i.e., "*" or ". %",

Error Record

This format is as follows:

Bytes 1 2 1 1 1 1

Type Number Error

D R/L FLAGA of code B
errors

Type ID - 08 6 Warning message (same as
source rec%rd)

OD16 All other errors

R/L - Record length which must be between
000716 and 002B4.

FLAGA - Always 10 34

Number of Errors - Always Ol 34, i.e., one
record is created for each error.

Error Code - Type of error

B - Always 00 ;¢4

End of Data Set

This format is as follows:

Bytes 1 2 1

Tyee 1o/l |Flaca

ID

Type ID - OApg
R/L - Record length, which must be 0004;4.

FLAGA - 0016

Reproduction Record

This format is as follows:

Bytes 12 2 11 3 11 5 1

T{g’ R/LIFLAGA cg’;' ASC| (zeroes) |NL |OPL|Operation |OPNL

|4~ Fixed Portion ———-.1 t

Bytes 1 1 Variable 1 80

Operand [COMLU Comments| SL | Source

The first nine bytes of the REPRO record
are the same as the logical statement rec-
ord (fixed portion).

NL - Length of name field. Always 003¢4.
(There is no name field in a REPRO in-
struction.)

OPL - Length of operation field.
0516 -

Operation Field - Always "REPRO".

Always

Phase F2 - Statement Scan 21

OPNL - Length of operand field.
0116 °

Always

Operand field - Always blank. (There is no
operand in a REPRO instruction.)

COML - Length of comments field.

Comments field.

SL - Length of source record.
(=80,4) .

Source - The 80-byte source record to be
reproduced.

Always 503¢

SUBROUTINES

DRIVER

Cne card is read and control is transferred
to DRVERL.

DRVERL

The name and operation field of each in-
struction is scanned. The name field is
indicated as defined if non-blank, Syntax
errors are noted and, at this point, may
abort this statement.

If a prototype was expected, the name
(if not already present) and SYSUT3 NOTE/
POINT address is entered in the global dic-
tionary, and each parameter (name field
included) is scanned and entered into the
local dictionary for this macro. Edited
text is built up during scanning. The pro-
gram goes to the output routine ENDOPR, and
then to DRIVER. If a prototype was not
expected, the operation field is searched
for in the global dictionary. If not
found, statement sequencing is checked
and the operation field is entered in the
global dictionary. The statement is
treated as a macro instruction. The name
field and all operands are edited and
edited text is produced. The program
goes to ENDOPR for each operand. When
all operands have been processed, control
goes to DRIVER.

If the operation code is found and is not
an assembler operation, the statement se-
quencing is checked. The operand field is
scanned and put into edited text format.
Control goes to ENDOPR.

If the operation code is a declaration,
the operand fields are scanned and errors
diagnosed. Each operand is inserted into
either the global dictionary or the local
dictionary. Control goes to DRIVER.

If the operation code is a SET statement,
it is checked for statement sequencing. If
valid, the "a" pointer of the variable sym-
bol is found in the dictionary and inserted

22

into the edited text.
ENDOPR.,

If none of the above operation codes are
found, the program performs a computed GO
TO based upon the operation code.

Control then goes to

AIF and AGO

The evaluation field, if present, is
scanned and put into edited text. The "a"
pointer of the sequence symbol is inserted
into the edited text formats. Control then
goes to ENDOPR,

ANOP, TITLE, MNOTE, MEXIT, EQU, CSD, CNOP,
DROP, USING, ORG, PRINT, SPACE, PUNCH,
ENTRY, COM, EJECT, AND LTORG.

All these subroutines follow a procedure
similar to AIF and AGO. In each case, con-
trol goes to ENDOPR.

MACRO

Control returns to DRIVER.

ICTL

This subroutine puts out an error message
and moves an END card image into the input
buffer. Control is returned to DRVERL.

copy

If in a system macro, the address of the
library is NOTEd. 1In either case, the input
in GETSRC is set to the library. A FIND to
the library is then undertaken. Control
returns to DRIVER,

ISEQ

The operand field is scanned and new input
parameters in GETSRC are defined. Control
goes to DRIVER,

REPRO

The next card is read and put into an edited
text format. Control goes to ENDOPR.

EXTRN

The operands of EXTRN and WXTRN statements
are scanned and indicated as defined for
the dictionary. Control goes to ENDOPR.

START, DXD, DSECT, and CSECT

The type attribute is set, and control goes
to ENDOPR.

DC, DS

The operand fields are scanned, and, if in
open code, the attributes are defined. In
either case control goes to ENDOPR.

CCW
Type, length, and scale attributes are
moved into the edited text field. The

operand field is scanned and control goes
to ENDOPR.

MEND

This subroutine goes to ENDOPR to write
edited text for the MEND card. It then goes
to DCLSE.

END

The name, operation, operand, and comments
are written in an edited text format. Con-
trol is transferred to DCLSE.

OPSYN

An error message is issued.
returned to DRIVER.

Control is

DCLSE

This subroutine forces out the local dic-
tionary block on SYSUT3. It saves the NOTE/
POINT address of the last local dictionary
block and writes out the local dictionary
block. It zeros the local hash table. It
subsets the dictionary just written. The
local dictionary on SYSUT2 is read in, sub-
setted, and written out on SYSUT3. Control
goes to DRIVER if macros are being edited
(i.e.,
otherwise, it proceeds as follows.

If any undefined operation codes are
present, (standard ICTL parameters are
assumed) , the input in GETSRC is set to
SYSLIB, and a FIND of this undefined
operation code is executed. If found, the
program returns to DRIVER. If not found or

a MEND card transferred control here);

if no undefined operation codes are
present, the open code dictionary is sub-
setted, the global dictionary is subsetted,
and a XCTL to Phase F3 is executed.

ENDOPR

The comments field is edited, and control
is transferred to NDSMT3.

NDSMT 3

If in a macro, this subroutine selects
SYSUT3 as unit to write upon; otherwise, it
writes on SYSUT1l. If lookups are not sup-
pressed, it inserts a little "a" pointer
into the edited text format where appro-
priate. In either case, it writes edited
text on the selected unit. If an error
record was written on SYSUT3, it is also
written on SYSUT1l. If a return is expected
because of a previously set switch (SWTCH7,
bit 0), it returns; otherwise it goes to
DRIVER.

GETSRC

This program reads a record from SYSIN or
SYSLIB, depending upon which was selected.
The source is immediately written on SYSUT1
if GETSRC is not processing system macros.
Continuation cards and sequence numbers
are noted and appropriate action is taken.
Control returns to the caller.

BWRITE

This subroutine moves data to the buffer.
If the buffer is full, it is written to
the appropriate utility. In either case,
control returns to the caller.

BWEFORC

control re-

If room exists in the buffer,
Otherwise, it goes

turns to the caller.
to BWRITE.

BWNOTE
This program NOTEs the position of the

selected utility and returns it and con-
trol to the caller.

Phase F2 - Statement Scan 23

PHASE F3 - CONDITIONAL ASSEMBLY AND MACRO GENERATION

OVERALL OPERATION (FLOWCHARTS 8-11)

Phase F3 reads text from SYSUT1l. See
Figure 8. This text includes source,
error, and edited records. See Table 6.
Source and error records are immediately
written onto SYSUT2. MEND and MEXIT state-
ments are not processed. The edited text
for the main portion of the program and

for all macro definitions, plus the sub-
setted global and local dictionaries, are
used to generate one-for-one statements in
edited text form and to perform conditional
assembly. Assembler edited text records
are produced and written on SYSUT2. When
the end of text is reached, control is
transferred to PHASE F7 via MAC and RTA.

Macro dictionaries,
macro definitions

Text input
from Phase
F2

Output for use in
Phase F7

Figure 8. I/0 Flow for Phase F3

PHASE F3E - ABORT CONDITION (FLOWCHART 12)

Phase F3E will be substituted for Phase F3
if any of the following abort conditions
arises in Phase F2:

® The global dictionary fills up.

@ The local dictionary exceeds 64K bytes on
the overflow file or in core.

® The subsetting area is too small.

All text is read from SYSUT1l. Only source
records with accompanying error records are
written on SYSUT2. All other records are by-
passed. When the end of text is encountered,
an edited text record for an END card is gen-
erated and written on SYSUT2, and control is
passed to Phase F7 via MAC and RTA.

24

FUNCTIONS

The functions of Phase F3 are designed to:
® Initialize the phase.

® Evaluate conditional assembly expres-
sions.

e Perform conditional assembly.

® Generate a parameter table from a macro
instruction-macro prototype pair of
statements.

® Generate assembler edited text records
using macro definition edited text and
the information in the global and
associated local dictionaries.

Phase F3 evaluates conditional assembly
expressions. If the expression was in a
SETx statement, the "a" pointer associated
with the SET variable symbol in the name
field is used to place the current SET
symbol value in its dictionary definition
entry. When an AGO or AIF instruction is
encountered and the evaluation, if one is
necessary, indicates that a branch must be
taken, the NOTEd position of the fully-
edited text named by the sequence symbol
is obtained from the appropriate local
dictionary. The text on SYSUTLl or SYSUT3
is repositioned and the appropriate text is
read in and processed.

When a macro instruction is encountered,
its exact location on the input file is
NOTEd. The input file is SYSUT1l for outer
macro instructions and SYSUT3 for inner
macro instructions. A complete pass over
the macro instruction text is made. Source
and error records associated with the
macro instruction are written on SYSUT2.
When the end-of-macro instruction record is
encountered, the position where the reading
of text was discontinued is NOTEd so that
the input of text can later be resumed at
the correct position. The appropriate
utility data set is then repositioned again
to the beginning of the macro instruction
text.

The "a" pointer associated with the
macro instruction is used to inspect the
associated mnemonic entry in the global
dictionary. This entry contains a field
which designates the location of the
associated subsetted local macro dictionary
on SYSUT3. If the entry is zero, this in-
dicates that this macro mnemonic represents
an undefined operation to the macro genera-
tor. If the entry field is not zero, the
first segment of the subsetted local dic-

tionary is read in. This contains a dic-
tionary header record which indicates the
size of this local dictionary. If there

is room available in the block of main
storage acquired by Phase F2, the complete
local dictionary is brought into main stor-
age and the available storage pointer is
updated by the length of this local dic-
tionary. The parameter table is construct-
ed at this location. This table indicates
the values to be substituted for macro
prototype symbolic parameters when they

are referenced in model statements or inner
macro instructions. &SYSNDX and &SYSECT are
treated as parameters, and their entries
are assigned the first two entries of this
parameter table. The third entry is
assigned to the name field. Then the NOTEd
location of the pertinent macro definition
prototype statement edited text is obtained
from the local dictionary header record,
the prototype edited text is read in, and
the parameter table is completed. For
positional parameters, the values of the
inner macro instruction operands are ob-
tained from the appropriate dictionary,

and for outer macro instruction operands
they are obtained from the operand itself.
Entries are sequentially made in the param-
eter table. As each prototype statement
keyword is encountered, it is compared
against each macro instruction keyword op-
erand until a match is found. The values
are then entered in the parameter table.
The cycle of comparisons to find the
matching macro instruction operand corre-
sponding to the next sequential prototype
keyword begins where the last cycle left
off. The opsrands are compared in a "wrap-
around" fashion. Because the entries in
the parameter table are variable length
entries in position number (parameter)
order, a separate length table with a two-
byte entry for each parameter table entry
is maintained. (This length table contains
the accumulated length of each parameter
entry. 1In effect, an entry in this table
is an increment that must be added to the
address of the beginning of the parameter
table to locate its associated parameter
entry.)

After the parameter table is completed,
the rest of the macro definition fully-
edited text is read in. Conditional as-
sembly evaluation is performed as required,
substitutions are made for references to
symbolic parameters and system variable
symbols, and the macro definition is ex-
panded, producing assembler-edited text
records for input to the assembler phases.
If an inner macro instruction is encounter-
ed, the length table is placed behind the
parameter table, followed by the address of
the length table and address of the begin-
ning of the parameter table, and the entire
cycle is repeated. Nesting of macro in-
structions can occur to any depth, provided
there is sufficient room left in the block
of main storage obtained by Phase F2 to

enter the local dictionary associated with
the inner macro instruction. If there is
not sufficient room left, this information
is saved for diagnostic purposes, the con-
cerned local dictionary is not brought into
main storage, further (deeper) nesting of
macro instructions is discontinued, and the
input data set (SYSUT3) is NOTEd. Process-
ing continues at the discontinued text of
the next outer level macro.

When the ACTR value is exceeded within
a macro expansion, the information is
saved for diagnostic purposes, control is
returned to the outermost macro instruction
expansion, and processing continues. If
the ACTR value is exceeded in open code
processing, the information is saved for
diagnostic purposes, an END assembler in-
struction record is created and inserted
in the text stream on SYSUT2, and input is
ended.

Whenever the processing of a macro defi-
nition is completed, generation of output
text is resumed for the next higher level
macro instruction or, if the outermost
macro definition expansion has been com-
pleted, processing of open code fully-
edited text is continued. After completely
processing the fully-edited text input from
SYSUT1, control is transferred to the first
assembler phase (Phase F7) via MAC and RTA.

DICTIONARY ENTRIES
SETA Variable

This format is as follows:

Dimensioned

Bytes 2 4 4 4 4

Undimensioned

n Entry Entry Entry Entry

n - SET variable dimension (number of
variables in entry). These bytes are
not present if n=1 (an undimensioned SET
variable) .

Length of a complete entry is 4 bytes if
the variable is undimensioned and 4n+2
bytes if it is dimensioned. There are 4
bytes per subentry.

SETB Variable (Non-Dimensioned)

This format is as follows:

Bytes]

SETB Variables
(8 entries)

Each bit represents a SETB variable.

Phase F3 - Conditional Assembly and Macro Generation 25

SETB Variable (Dimensioned)

This format is as follows:

Bytes 2 1 1 1 1
SETB SETB SETB SETB
n Variables | Variables Variables
| T o
U -1
_ n+7
T =2+ [']
n+7
where 5 should be rounded to the
next lowest integer.
Example:
LCLB &B(26)
T =2 4 [2—61—7—]=»2+[4-1-] =2+ 4 =6
8 8
SETC Variable
This format is as follows:
Dimensioned Undimensioned
Bytes 2 1 8 1 8 1 8
n L Data L Data L Data

@— Entry —.I

Length of entry is 9 bytes if the variable
is undimensioned and 9n + 2 bytes if it is
dimensioned.

n — Same as SETA variable.

L — Length of character string (data),
(true length).

Table Format for Symbols

A symbol entry will always contain an L'
and S' entry. If there is none, these
entries will contain the value of zero.
The format is as follows:

Bytes 1 2 2

Type {Length} Scale

Type — Type Attribute

Macro Dictionary Header

This format is as follows:

Bytes 4 4 4 4 1 1 2
b ACTR b NOTE/ b No. of | Size of
ummY 1 Loop ummy 1 POINT | “Y™™ | blocks md.

26

The header is attached to the subsetted
dictionaries' output by Phase F2.

Dummy — Not used.

ACTR Loop — The A counter loop limit, i.e.,
initial assumption made by processor.

NOTE/POINT — Location of block on SYSUT3
in which the macro definition fully-
edited text begins (points to prototype
record) .

No. of blocks — The number of segments on
SYSUT 3 in which the dictionary is con-
tained.

Size of MD — The size of the total macro
dictionary in bytes.

The header as modified during F3 processing
of the macro instruction is as follows:

Bytes 4 4 4 4 1 1 2
Dictionary | ACTR ACTR | NOTE/ SYSUT1/3 Delta
address loop counter | POINT Flag / M-1

DICT ADDR — The location of the higher level
local dictionary. If the macro being
processed is not an inner macro, this
pointer points to the open code local
dictionary.

ACTR Loop — Same as macro dictionary header.

ACTR CTR — The current loop count,

i.e., the number of times the loop has
been passed.

NOTE/POINT — The location of the block in
which the end-of-macro instruction rec-
ord is located.

FLAG — A switch, used to signal whether the
length table has already been stored
following a parameter table.

sysurl/3 —- A switch to indicate:

8 — Input is from SYSUT3
0 — Input is from SYSUTL

Delta M-I -- Position of discontinued text
(record following macro instruction)
relative to beginning of block.

Macro Dictionary Parameter Entries

The macro dictionary parameter entries are
given in Table 7. The SET variables are
the same as given above.

Table 7. Parameter Entries

No. of
o | M- &SYSNDX L 4-Byte 4-Byte
Char. Value Binary
param. (0)
No. of
1| M-I &SYSECT L BCD Name
param. (1)
1
K
CHAR
2 T FLAG L Char. String
HBD 3-Byte K BCD
3 T FLAG Binary Char. 1| "VALUE'
CsD 3-Byte K BCD
4 T FLAG Binary Char || "VALUE'
SYM 5-Byte K] BCD
5 T FLAG Attributes Char. | L NAME
2 2 1 2
SUB Total 1 1 T.L Entry Entry
6 T FAG | Lof | K | N ! 2-5 o Tk 2-5 N
Entry
N —
4
T = Type Attribut Table 9).
ype Aftribute (see Table 9) CHAR = Character string
H]= L
HBD = Hex, binary, decimal self-defining term
K] = No. of characters in an operand (excluding commas) csp = Character self-defining tem
= No. of characters bet t i blist
) o. of ¢ ::rcc ers between outer commas in a sublis SYM - Ordinary Symbol
= Z 1
S TN suB = Sublist
= ~instruction Ind
N] = No. of operands of a sublist &SYSNDX Macro-instruction Index
&SYSECT = t Control Secti
= 1 (Does not equal sublist) Current Control Section
= 0 (Omitted operand)
INPUT RECORD FORMATS Bytes 1 2 7 Variable Varigble
Set Type R/L Assembler| Name Operation
flag flags field field
All flags used in the input record formats
are listed in Tables 6, 8, and 9.
Machine Instructions Bytes§Variable 1 Variable 1
X R . Operand v IComments v
The general format of machine instructions field field
is as follows:

Phase F3 - Conditional Assembly and Macro Generation

27

® The text consists of normal "PUT" action Table 8. Assignment of Flag Values (Phase F3)
(no evaluation) and/or evaluation text (Cont'd)
(see VALUAT subroutine).

® ?iggdfiiig %3)%erminated by an end-of- Xﬂ:% Flag Descriptior
31 Arithmetic Expression mode.(Absence indicates
e All fields except the comments field character expression)
may contain evaluation text. 32 Blank
e Output to the assembler will contain 33 Type Attribute Reference
four fields, a length followed by a 34 Length " "
character string for each field. 35 Integer . .
Table 8. Assignment of Flag Values (Phase F3) 36 Scale " "
37 Number " "
\(/r:l:):) Flag Description 38 Count " "
39 Symbolic Parameter Reference
00 Period 3A System List
01 Right Paren, FO Sublist
02 Left Paren. F8 End of machine instruction field ®
03 Subscripted Left Paren, F9 Continue sublist
04 Plus FA Symbol
05 Minus F8 Positional (P)
06 Multiply (asterisk) EC Keyword ®
07 Divide (slash) FD PUT (No evaluation necessary)
08 Equal FE End of block
09 Not Equal FF End of evaluation @
0A Less Than
0B Greater Than
oc Less Than or Equal to eTable 9. Phase F3 Internal Values for Type
ob Greater Than or Equal to Attributes
OE Not
OF Or
Value Value
10 And (Hex.) Type (Hex.) Type
22 Hexadecimal Self-Defining Term
23 Binary Self-Defining Term 00 P oD W
24 Decimal Self-Defining Term 01 z OE 1
25 Character Self-Defining Term 02 E OF C
26 Null Symbol & Evaluation Flag 03 D 10 Q
27 Character String 04 K n B
28 SETA 05 F 12 J
29 SETB 06 G 13 X
2A SETC 07 H 14 M
28 Comma 08 S 15 T
2C Begin Substring 09 A 16 u
2D Begin Substring Operands 0A v 17 o
2E First Operand Completed 08 Y 18 N
2F Second Operand Completed oc R 19 u'
30 Actual Internal Value Right Paren. Used Only on 1A L
Sublist] 1B $

28

An input record example (Load Address)
follows:

Name Operation
A A
4 Y A
Bytes 1 9 1 1 1 1 1 1 1 1
R/L and
Flag Assembler flags PUT 0O |Y |PUT| 2 | L AlY

Opicﬂd Zero(No Comment)
Bytes§ _1__ 2 M N
Par,
PAR No Dummy |"C"] 3 | , B IBlank| Y {PUT] O} Y | E

A typical output record (Store) is as
follows:

Bytes 8 I 1 1 1 1 1 1

R/L and
Assembler flags

L L S T L A ,
= —-—
0 (No name field exists)

Bytes 1 1 1 1

Y — End-of-field flag (X'F8')
E — End-of-statement flag (X'FF')

NOTE: If an error is detected during eval-
vation, a full word of zeros is put out to

assure the assembler four fields. An error
record will then be put out by the genera-

tor phase.

NOTE: CSECT statements have the same for-

mat as the statement type flag, except for
the first byte.

Source Statements

The source format is as follows:

Bytes 1 2 1 80

SOURCE

S. FLAG R/L A. FLAGS ST.

S. FLAG - Source flag (X'08")

R/L - Record length (always 8410 = 005416)

A.FLAGS - l-byte assembler flags

Bit O Unused
Bits 1-3 Record type
000 — Source without editing =
print as is
001 — Error
010 — Construct for print
011 — Construct for print if
generated
100 — Process only
101 — Illegal
110 — Process and construct
for print
111 — Process and construct
for print if genera-
ted
Bit 4 Unused
Bit 5 Error record indicator
0 — No error record follows
1 — Exrror record follows
Bit 6 Continuation bit
0 — Source not continued
1l — Source continued
Bit 7 Unused
SOURCE ST. — Source statement

Set Statement

The set statement format is as follows:

Bytes 1 2 7 1 2 1 1 1 1
St. “a” Operand expression -
Flog R/L | Dummy | Flag Pointer | € Blank (eval. routine format) Blank | E
le—Name Field—s=
ST. FLAG — SET statement flag (X'04"')

Flag — SET variable flags (SETA, SETB,
SETC)

C — Bit O Dictionary bit
0 — Local
1 — Global
Bits 5-7 SETB bits

E - End of statement flag

Phase F3 - Conditional Assembly and Macro Generation 29

MEND or MEXIT

This format is as follows:

Bytes 1 3

MEND
flag

L)(‘07'

Dummy

AIF Statement

This format is as follows:

Bytee | 7 Variable 1 2 1
AIF AIF expression g
R/L | Dummy (see eval, routine |Blank . Dummy
flag pointer
formats)
L xl 03!
AGO Statement
The AGO format is as follows:
Bytes 1 2 7 1 2 1
AGO g v
flag R/L Dummy { Dummy Pointer Dummy

CSECT, DSECT, START

This format is the same as that for Mach-

ine Instruction, above.
Bytes 1 2 7 Variable 1
C SECT Assembler
flag R/L P Text | (®)

Error Statements

Error statements are treated exactly the
same as the source statements with the same
format. However, the error statement flag
is different from a source statement, be-
cause error statements must be distinguish-
ed from source statements in processing
macro instructions and prototypes. The
record length is seven bytes.

30

Macro Instruction

General Format.
follows:

The general format is as

A - Header (One Logical) Record
! 1 2 7 2 1 Variable 1

Bytes

Macro Assembler | "o Name | (8}ank)
flag R/L flags pointer ® field
tetg———————— B~ Operand, Source ("n" Logical) Record ﬁ
Bytes Warigble Varigble Variable Varigble Varigble Varioble Varioble Varigble 4
Source Operand | Operand Source Operand | Operand | Operand | Operand c
1 2 3 4 5 6
(Typical Operand)
Bytes 1T 7 7 1 Varigble 1D
o |R/L Assembler € Operand ,
flags value
(Final Operand) ’[
Bytes 11 2 Z 1 Voricble® 7] 2 T
Assembler Operand
bR flags E value ForL ¢

A — One logical record. It contains the
macro flag, the "a" pointer, and re-
peats the name field as the first op-
erand. The format of the name field is
that of an operand.

B — "n" logical records. These logical
operand records can contain source rec-
ords between any operand records.
(There are six shown in this example.)

C — End of macro instruction record.
D — Operand record flag (X'OB').

E — Positional or keyword flag. A position-
al flag must precede each positional
parameter. A keyword flag must precede
each keyword parameter. Positional
parameters must precede keyword param-
eters.

®
®

F — End of macro instruction flag (X*'0C*)

Positional (X'FB')

Keyword (X'F2')

R/L (End of machine instruction record) —
Record length = 4

G — No. of keyword operands in the macro
instruction.

Continuation and Segmenting. Macro in-
structions (and prototype) may be segment-
ed by adding a continuation flag after the
last operand record in the block. An op-
erand record must be fully contained in
one block.

Bytes 1 1 1 1 2 1
w_w | Global
® Dummy | Evaluation flag | SETA @ or
pointer Local
oca
Bytes 1 1 1 2 1
. Global
Dummy |Evaluation flag SETB @ or
pointer Local

NOTE:
the beginning of the parameter.
it will be ignored if repeated.

Only one evaluate flag is needed at
However,

Prototype Statement

The prototype statement format is as
follows:

Bytes 1 2 7 1 Variable 4
Prototype Assembler
X B C
flag R/L flags
X — Number of positional operands.
B — Same source and operand mix possibili-

ties as macro instruction, except that
only keyword operands appear in proto-

type.

C — Same as end of macro instruction
record.

NOTE: Trailer record "C" would contain
number of keywords for prototype.

Operand Value Formats

ia avvoant

+vn avra Potar=" 1
inere 1s one eXceptlon.

) type.

Each operand value must be preceded by a
() or ©
Sée Sublists.

Formats are as follows:

1. Character

Bytes 1 1 1 Variable

Char.

Type flag L Valve

2. Symbol

Bytes 1 1 2 3 1 1 Variable
Symbol "ot Char, Symbol
Type Flag Pointer | PY™™Y Flag | b Name

3. Hex, binary, decimal self-defining terms

Bytes 1 1 3 1 1 Variable
Binary Char.
Type X value flag L Value

X — Flag (Hex, binary, decimal)

4. Character self-defining terms.
Same as 3, except that X = CSD flag.
5. Omitted operand
This is a character operand whose L = 0.

Bytes 1 1 1

Type Char. L
"0" flag IIOI|

6. When the evaluation flag is in the record,
operands are evaluated by substitution
and concatentation. The evaluation flag
precedes parameters which require evalu-
ation, such as those containing variable

symbols.
Bytes 2 Variable 1
Eval. Expression (in evaluation
flag routine format) ’

Parameters which do not require this flag
are as follows.

Type Parameters

HBD Hex, Binary, Decimal
CSD Character Self-Defining
SUB SUBlist

'c! Character

SYM SYMbol

Phase F3 - Conditional Assembly and Macro Generation 31

7. Keyword

Bytes | 1 1 Variable 1 1 Variable
® Char, L Keyword - | Dumm Value
flag name ummy (formats 2-5)

L — Length of keyword name + 1
The value of a keyword may also be a

sublist. For prototype operands, only
formats 1 and 4 above apply.

Sublist Operands

Sublist operand formats are as follows:

Bytes 1 2 7 1 1 1 5 1 Variable 1
First Assem, Operand
Record AlR/L flags B [Dummy |C | Dummy [(value !

Bytes 1 2 7 1 Variable]
AR Assem, 7 Operand)
flags value
Bytes 1 2 7 1 Variable 1 1 1
Last Assem. Operand .| . (if not
Record AR flags z value) [N last operand)

Source records may appear between sublist
operands.

Operand value — use formats 2-5 above.

B — The positionalC)or keyword flag C)
which appears only this time for the
entire sublist operand.

C — Sublist flag (X'F0')

A — Operand record flag (X'OB')

Z — Continue sublist flag (X'F9')

N' Number of operands in sublist.

EVALUATION ROUTINE FORMATS

Operand Reference

Reference to any operand in all input
statements is made by position. Operands
are numbered as follows:

32

- &SYSNDX

- &SYSECT

- Name field

-~ Operand field

wNH O

Keyword operands are given a position
number similar to positional operands. The
positions are assigned in the order that
they appear in the operand field of the
prototype statement.

Example:
Bytes 1 2 1
A B Dummy
A — Operand request flag (X'39')
B — Operand number
Attributes (L', I',S',T')
Attribute formats are as follows:
Bytes 1 1 2 1
A B C D

A — Flag byte (type of attribute)
B — Parameter or symbol flag
C — 2-byte pointer for symbol. The param-

eter position in the 2nd byte (B) is for
the parameter.

D — Dummy

Character String (C' ') or

This format is as follows:

A — Flag byte

B — True length byte

C — Data bytes (n bytes of characters).
This does not exist if B = O.

Decimal, Hex, Binary Value, Character Self-

Defining Terms

This format is as follows:

Bytes 1 3

A — Flag byte

B — Data bytes (3 bytes of data in binary)

Variable Symbol

This format is as follows:

Bytes 1 2 1

A — Flag byte (SETA, SETB, SETC)
B — 2-byte pointer

Bit no. for SETB
0 for local, 1 for global.

C — Bits 5-7
0

I

Substring

This format is as follows:

Bytes 1 Varigble 1 Variable 1 Variable 1
A B C D E F G

A — Substring flag

B — Character expression

C — Sublist left parenthesis flag

D — Expression 1

E — Sublist comma flag
F — Expression 2

G — Sublist right parenthesis flag

Subscripting

In this format the left parenthesis is re-
placed by a special subscript left paren-
thesis flag (X'03). The rest of the for-
mat is as previously described.

Concatenation

Concatenation occurs automatically by
eliminating the period, if it exists. Two
character strings (or set variables), one
immediately following the other, will be
concatenated, and no concatenation flag is
required.

FUNCTIONAL PROGRAM SECTIONS AND ROUTINES

IEUF3

This routine relocates permanent and open-
code dictionaries, initializes I/0 buffers,
and initializes input pointer and macro
base pointer.

CGOTO

This is a computed GO TO on the various
statement types.

MACHOP

This routine processes edited text records,
evaluating fields which require substitu-
tion.

SOURCE

This routine puts out a source or error
record.

SETST

This routine determines the address of the
result field, evaluates the operand, and
stores the result.

CSECT

This routine stores the last CSECT name
and outputs the record.

Phase F3 - Conditional Assembly and Macro Generation 33

AIFST

This routine evaluates the expression. If
expression is false, processing continues
with the next sequential record. If the
expression is true, the text file is re-
positioned to the sequence symbol.

AGOST

In this routine the text file is reposi-
tioned to the sequence symbol.

MENDST

If exit is from an outer macro, this routine
sets the text file to read from SYSUTI;
otherwise it continues reading from SYSUT3.
It positions the text file to read from
discontinued text.

MINSTR

This routine outputs the source, notes the
discontinued text, and repositions the
text file to the beginning of the macro
instruction.

ENDST

This routine damps output buffers and re-
winds utility files.

BEGMAC

This routine reads the macro dictionary
and initializes the parameter table with
SYSNDX and SYSECT entries.

PROTO

This routine points to macro definition
prototype and reads it into the input
buffer.

PROTO1

This routine builds the parameter table,

evaluating operands as needed. A merge
of keywords is performed if keywords exist.

VALUAT

This routine initializes the mode switch
to character expression, pointers, operator
table, and result list with zero and

34

zero-out length buckets of string areas.
In general, this routine is called for the
evaluation of an expression. Evaluation
may be required in the name, operation, or
operands fields. An expression may be a
simple parameter reference or a complicated
arithmetic expression in a SETA operand.

Any term that requires a retrieval from
some dictionary (parameter reference or
SET variable) will eventually pass through
the VALUAT routine.

The routine is designed to operate on
the flags and operators shown in Table 8.

SYMBL
This is an input pointer pointing to an
operator.

CHFORC

This routine tests for the type of operator.

ADVOP

There is no forcing in this routine. It
advances the operation pointer and the
emergency operation into the operation
table. If the operation is OR or AND, it
reinitializes the mode switch to character
expression.

ADVINP

This routine advances the input pointer.

FORCE

This routine determines if the new operation
forces the last operation entered in the
operation table.

TSTOPL

This routine tests for end of expression.

If so, it returns to the driver routine.
DOOPR

This routine fetches the address of the

two fields to be processed.

SUBSC

This routine processes subscripted variable
or parameter sublist or SYSLIST.

RELINT

This routine initializes a string pointer
with the address of string area 2 and
turns off the 'PUTST' switch.

META3

If character expression mode exists, this
routine fetches the binary word and con-
verts it to decimal. If arithmetic ex-
pression mode exists, it initializes for
entry of the result, then stores the
result.

MEB4

If in the arithmetic expression mode, this
routine initializes for entry and stores
the result.

METC4

This routine fetches the length of a string,
initializes for the entry of the result,
and stores the result.

DOOPR

This routine processes the relational op-
erator and stores the result.

RELAT

This routine processes the relational op-
erator and stores the result.

ARITOP

This routine processes the arithmetic op-
erator and stores the result.

NOTOPR

If outside range of valid flags, this
routine sets the end of expression flag in
the operation table; otherwise it performs
a computed GO TO on the flag.

CSD

This routine translates a character string
back to the original representation.

DECINT

This routine stores the value of a decimal
in the intermediate result list.

META

This routine initializes for a SET variable.

METB

This routine initializes for a SET variable.

METC

This routine initializes for a SET variable.

CHARST

This routine
area.

puts a string in the string

BEGSUB

This routine stores the length of a string
already present in the string area and
sets the substring mode.

SETARE

This routine sets the Mode switch to the
arithmetic expression mode.

SBEND

This routine sets the substring comma or
the left parenthesis switch.

TATTBT

This routine checks for the type attribute
of a parameter.

LATTBT

This routine checks for the length attribute
of a parameter.

SATTBT

This routine checks for the scale attri-
bute of a parameter.

Phase F3 - Conditional Assembly and Macro Generation 35

PACK3

This routine stores the address of a result
in the pointer list.

SYSLST

This routine stores a parameter flag to
simulate a parameter reference.

36

PARMTR

This routine stores a parameter flag and
number into the pointer list.

ATTPAR

This routine checks for the attribute of a
parameter.

OVERALL OPERATION (FLOWCHARTS 13-27)

Phase F7 has three general functions:

1. Processing symbols
2. Processing literal values
3. Assigning storage locations

Symbols are processed by entering the
mnemonics and their relative storage ad-
dresses in a symbol table. Addresses are
assigned relative to the beginning of the
control section in which they are deter-
mined. (While the program performs this
function, it is working in the "assignment
mode.")

If more symbols are defined in the user's
program than will fit in the main storage
spaces allotted for the symbol table, the
point in the text that caused overflow is
NOTEd and the remainder of the program is
processed without making further symbol
table entries. However, symbols already
defined in the symbol table are substituted
into the text where applicable. (While per-
forming these functions, the program is in
the "substitution mode."

When the end of the text data set is
reached, it is TCLOSEd to the beginning,
and operand processing continues until the
previously noted overflow position is
reached. At this point, the mode of proc-
essing reverts to making symbol table en-
tries (assignment mode), and the next sym-
bol table segment is constructed.

The process of building symbol tables
and processing operands continues until the
last symbol defined has been placed in the
symbol table.

As name fields are being processed,
Phase F7 collects appropriate symbols and
creates an external symbol dictionary (ESD)
which will be processed by Phase F Inter-
lude (FI).

Phase F7 also processes literals and
self-defining terms in expressions af-
fecting the location counter. Literals
are entered in the symbol table. When an
LTORG or END assembler instruction is en-
countered, the literals in the table are
inserted in the program stream.

All mnemonic operation codes created by
concatenation or parameter substitution
during macro generation are translated in
this phase. (If the DOS assembler option is
specified, F7 treats CXD, DXD, and OPSYN
assembler instructions and Extended
Precision machine instructions as undefined.
It treats L-type and Q-type DC and DS
instructions as unknown types.)

Cross-reference records are generated in
Phase F7 during symbol processing and ex-
pression evaluation.

PHASE F7 - INITIAL ASSEMBLY

Phase F7 also creates a TESTRAN symbol
table if requested by the programmer, and
writes cards generated by PUNCH and REPRO
statements.

Intermediate text is read from SYSUT2,
and literal pools and intermediate text are
written on SYSUT1.

Overflow of any of the following tables
will result in writing overflow segments on
SYSUT3.

e External symbol dictionary table segment.
® Literal-pool base table segment,.

® Cross-reference table segment.

I/0 FUNCTIONS

Phase F7 may make several passes at the
source text. See Figure 9. On the ini-
tial iteration, the text is read from
SYSUT2 and reblocked onto SYSUT1l. On sub-
sequent iterations, the text is passed be-
tween SYSUT1 and SYSUT2.

The text is reformatted such that a
"broken" record will always start at the
beginning of a physical block. This will
ensure that a logical record will be con-
tained within a single physical block.

Edited text records are moved from the
input buffers to a work area where work
buckets are attached. The records are then
transferred to the output buffers for
eventual output to a utility file.

Error records are generated in text for-
mat and are transferred to the output buf-
fers as errors are encountered.

As the cross-reference block and literal
base table overflow, they are written onto
the overflow file, SYSUT3. Each time the

SYSGO

PUNCH,
REPRO,

TESTRAN
PUNCH, REPRO,

Text input O TESTRAN
from Phase F3 \\=\

~al Phase
P, F7 Cross Reference Table
Literal Base Table
Text if overflow/,’ External Symbol

Dictionary Overflow

Text Output Symbol
to Phase F8 Table
Error Records Literal
Table

Main
Storage

Figure 9. I/0 Flow for Phase F7

Phase F7 - Initial Assembly 37

external symbol dictionary overflows it

is written onto SYSUT3, and its position
on the file is NOTEd for future reference
within the phase. The external symbol
dictionary blocks are identified and called
from the overflow file through the use of
the NOTEd record position.

RECORD FORMATS

Cross Reference Records

This format is as follows:

Bytes 8 1 2 2 3 1
Statement | Length ELAGB
Symbol | FLAGA No. Attribute Value
FLAGA -

FO16 - Base symbol (type 1)
Fl16 - Reference to symbol (type 2)
F216 - Multiply defined symbol (type 3)

FLAGB -
0 - Absolute value o
Not 0 - External symbol dictionary ID

Error Record

This format is as follows:

1 1 1

Bytes 2 1
Error Error Column
R/L Flag ::ount type pointer
R/L - Record length. R/L = 4 + 2N, where

16 > N>0. (There may be as many as 16.)

Edited Text Records - General

Phase F7 receives input statements in a for-
mat prepared by the macro generator. The
formatted text records are called "Edited

38

Text Records." Phase F7 processes these
records and attaches an "appended fixed
field" and, when required, "work buckets".
The format of the edited text record is as
follows:

let— Fixed Field —— gl g Variable Field

’4__ Assembler Flags ————pmd
2 2 1

Bytes 1 2 1 Variable 1
TXRL {FLAGA] TXHEX | TXASC| TXABP | TXNAML| TXNAME| TXOPL
4
A ded
e Variable Field (Cont'd) .ppen €
Fixed Field
Bytes Voriable 1 Variable 1 Variable 3 1 1
TXOP |TXOPNL | TXOPN| TXCOML|TXCOM|TXLOC | TXURS | Misc.

r‘_Work Bucket(s) (where appended) __..1

Bytes variable

Type 1 and/or Type 2 and/or Type 3
Work Buckets

The fixed field and the variable field are
the input record to Phase F7. The appended
fixed field is attached to this record in
Phase F7.

Edited Text Record Fixed Field Format

TXRL - Record Length. This will be set to
the total number of bytes (including
appended fields) by the GET statement
routine in Phase F7.

FLAGA - Flag byte. Contains the following

bits:
Bit 0 TXRLI. Last record in buffer indi-
cator. Correctly set by the GET state-

ment routine in Phase F7.

-3 TXRT. Record type

- Print as is. Source record only.
(These are assembly records
created from program source input
records in Phase F2.)

001 - Error record. (Created in any
phase.)

Print as is, but do not display a
statement number., Source record
only. (Created in Phase F3 from
edited text, type 110, for condi-
tional assembly substituted state-
ments outside of macro defini-
tions.)

Print as is if GEN option is on.
Steps statement number counter.
Source record only. (Can be
source record of comments for
generation within macro defini-
tion, e.g., "*" in Phase F2, or
may be source record created in
Phase F3 from edited text, type
111, generated by macro instruc-
tion expansions.)

Process only. Edited text and
logical statement records only.
(Edited from source in Phase F2.)
Internal assembler control record.
(In Phase F7, CSECT, ORG, and
LTORG.) Edited text records are
generated for END statement proc-
essing.

Process this record and construct
source record for print. (Edited
text, but no source, e.g., Phase F7
literals, and Phase F3 conditional

010 -

011 -

100 -

101 -

1i0 -

assembly substituted statements out-

side of macro definitions.

111 - Process this record and construct
source record for print if GEN
option is on. (Edited text and
MNOTE statements generated by
macro expansions, Phase F3.)

Bit 4 TXBF. Break flag. Indicates that a
logical record continues in the next
physical block. The Phase F7 GET rou-
tine arranges all edited source and
edited generated records so that this
condition does not exist.

Bit 5 TXERI. Error record follows indica-
tor. Used by the PUT ERROR common sub-
routine in phases F7 and F8 to deter-
mine whether to create a new error rec-
ord or to attach to an existing error
record.

Bit 6 TXESI. Equal sign indicator. Set
by the Phase F7 GET statement routine.
0 - There is no literal in the operand
of this statement.
1 - There is a literal in the operand
of this statement.
Bit 7 TXMARK. Phase F7 iteration point
flag.

Bits 0-1 TXTO. Type of operation.
01 - Machine Operation.
10 - Assembler operation.

00 - Unchecked. (Phase F7 GET state-
ment will set equal to Ol or 10 if
a 00 condition exists and a legal
operation code is converted.)
Bit 2 TXEMF. Extended mnemonic flag.
Bit 3 TXMDN. Multiply defined name indica-
tor. (Set by Phase F7 for future
passes.)

Bits 4-7 TXRIM. Rl mask for extended
mnemonics. Used for special switch
codes on assembler operations.

Bit 4 - Name required

Bit 5 - Name not allowed
Bit 6 - Operand required
Bit 7 - Operand not allowed

TXHEX - Machine operation code or internal
assembler operation code.

TXASC -~ Assembler Switch Code for machine
operations
Bits 0-1 00 - No special register

requirements

01 - Register must be even
10 - Register must be 0 or 4
11 - Register must be 0, 2,
4, or 6
Bits 2-3 00 - No boundary alignment
01 - Half word
10 - Full word
1l - Double word boundary
alignment
Bits 4-5 Operand format within
instruction class
Bit 6 1l - Literal permitted in 2nd
and 3rd operand.
Bit 7 1 - Literal permitted in lst

operand.

TXASC - Assembler Switch Code for Assembler

Operation

Bit O Uninitiated private code.

Bit 1 Possible symbol table entry.

Bit 2 Location counter reference.

Bit 3 Special Phase F7 cross-reference.

Bit 4 Substitution required.

Bit 5 Not Used

Bit 6 Not Used

Bit 7 Phase F8 uninitiated private
code.

TXABP - Appended fixed field pointer.

Edited Text Record Variable Field Format

TXNAML - Name field length. there

is no name field.

If zero,

TXNAME - Name field.

TXOPL - Operation field length.

Phase F7 - Initial Assembly 39

TXOP - Operation field.

TXOPNL - Operand field length. If zero,
there is no operand field.

TXOPN - Operand field.

TXCOML - Comments field length. If zero,

there is no comments field.
TXCOM - Comments field. This field will

contain comments and extraneous data.

Edited Text Record Appended Fixed Field
Format

TXLOC - Location counter.
during assignment pass.

Set by Phase F7

TXURS - Unresolved symbol counter.

Misc. -

Bits 0-3 TUnused.

Bit 4 TXLES, End of string indica-
tor for literal DCs. Unused
on all other types.

Bits 5-7 TXSTG. String number for
literal DCs.

(or) TXALIN. Alignment for machine

operation codes.

Work Buckets

There are three primary types of work
buckets:

® Type 1 - Literal in operand.
® Type 2 - Symbol in operand.

® Type 3 - DC, literal DC,
tion code.

and DS opera-

These work buckets are appended to edited
text records by the Phase F7 GET statement
the first time through.

Literal in Operand. If the equal sign in-
dicator is set, a 6-byte Type 1 work bucket
will be appended immediately following the
appended fixed field. The format for the
Type 1 work bucket is given in Figure 10.

Byte 1 -

Bit 0 TXWTYP. Work bucket type
(must be zero; 0 = type 1).

Bit 1 TXWLEN. Work bucket length
(must be zero; 0 = 6 bytes).

Bits 2-5 (Blank)

Bit 6 TXLEVI. Literal evaluated
indicated.

Bit 7 TXLASI. Literal assigned
indicator.

TXLSTG - Literal string number. Corre-
sponds to entry in literal base table.

40

TYPE 1 WORK BUCKET — LITERAL IN OPERAND FIELD

Bytes 1 1 3 1

Bit ! L. 62 !

o

TXLSTG TXLDSP | TXLLEN

<X =43 x-
Zmr S x —
—<mr X —
—wn P> X~

TYPE 2 WORK BUCKET
Bytes 1 1] 3

Bit ‘01234567 Y Y)
T[T [T
XIx|x]x x| x| x
WIWISISISISI S | TXSLEN | TXSESD TXSVAL (0)
TiL{ofufL]E| T
v|e[o8|a[x] P
PINIC]s|s|1] ¢
| [
| I
bytes | 1 1 1 I
T
NOTES:

TXSBLN| TXSPTR| @

(D Symbol work buckets after
substitution

@) Symbol work buckets before
substitution bytes 1 1]
I/_N\/_/H —~

(=)

® Symbol work buckets for
EXTRN and ENTRY

TXSPTR| @

~—uwvmon X —

Figure 10. Types 1 and 2 Work Buckets

TXLDSP - Literal string displacement. If
the value substituted indicator equals
zero, the third byte of TXLDSP will con-
tain a pointer to the symbol (relative
to the beginning of the operand field).
The second byte will contain the symbol
length.

TXLLEN - Literal length attribute.

Symbol in Operand. If symbol table over-
flow occurs, it is necessary to append one
Type 2 work bucket for each symbol in the
operand field, including symbols within
literal specification fields. See Figure
10. The order of work buckets corre-
sponds to the order of the symbols in the
operand field. CSECT, DSECT, and COM rec-
ords will also be appended by a six-byte
symbol work bucket.

Byte 1 -
Bit 0 TXWTYP. Work bucket type
(must be one; 1 = type 2).
Bit 1 TXWLEN. Work bucket length

(must be zero; 0 = 6 bytes).

Bit 2 TXSDOC. Symbol defined in
DSECT or COM indicator.

Bit 3 TXSUBS. Value substituted
indicator.

Bit 4 TXLAS, Last symbol in operand
indicator.

Bit 5 TXSEXI. "Implied length ex-
ceeds 256" indicator.

Bits 6-7 TXSTPC. Adjective code.

TXSLEN - Implied length.
TXSESD - External symbol dictionary ID.

TXSVAL - Value. If the value substituted
indicator equals zero, the third byte of
TXSVAL will contain a pointer to the
symbol (relative to the beginning of the
operand field). The second byte will
contain the symbol length.

TXSBLN - Symbol byte length.

TXSPTR ~ Pointer to symbol in operand
field.

TXSESL - Last operand in EXTRN/ENTRY indi-
cator.

DC, Literal DC, and DS Operation Code., If
the operation code is one of these three
types, one 1l5-byte Type 3 work bucket will
be created for each operand. See Figure
11. Each operand work bucket will be
followed by a six-byte work bucket for
each symbol in the operand.

Byte 1 -
Bit O TXWTYP. Work bucket type
(must be zero; 0 = type 3).
Bit 1 TXWLEN. Work bucket length
(must be one; 1 = 15 bytes).
Bytes 1 1 3 3 1
unutunn Wt W Wanan UPa
Bit 0 1 2 3 4
TIT{TiTT
XX XXX
‘?’ Mo E Pl [TXDTYP [TXDLEN | TXDUPL | TXDCON
Y|e|P|M|A
PINJI]P]S
Bytes 1 1 1 1 2
‘e Wanihee Wanghe We — N T
Bit 012 3 4 5 6 7
TIT T
XX X
D| D D
TXDPTR | TXDEXP TXDSCM S A L TXDLNM
Y L M
M N |D
Figure 11. Type 3 Work Bucket

Bit 2 TXDPPI., DC previously processed
indicator.

Bit 3 TXDLMP. Length modifier present
indicator.

Bit 4 TXDLAS. Last operand indicator.

Bits 5-7 (Blank).

in

TXDTYP - Type, translated. See Table 10.

TXDLEN - Total length.

TXDUPL - Duplication factor.

TXDCON - Number of constants.

TXDPTR - Pointer to first byte of operand
text (relative to beginning of operand
field).

TXDEXP - Exponent.

TXDSCM - Scale modifier.

TXDSYM - Symbol work buckets flag.

TXDALN - Alignment.

TXDLMD - Length modifier type.

Table 10. DC/DS Type Indicators for Type 3

Work Buckets

Hexadecimal Meani

Number eaning
00 Character
01 Hexadecimal
02 Binary
03 Packed
04 Zoned
05 Double precision floating point
06 Single precision floating point
07 Full-word fixed point
08 Half-word fixed point
09 A-CON
0A Y-CON
0B V-CON Address Constants
oC S-CON
oD Q-CON
OE Extended precision floating point

Phase F7 - Initial Assembly 41

0 - Byte
1 - Bit

TXDLNM - Length modifier value.

Special Work Bucket. A special work bucket

is used for TITLE, PUNCH, REPRO, and MNOTE
edited text records. This format is as
follows:

e Fixed Field —e——oeefpotafoe Variable Field

Bytes 2 2 1 1 2 1 Varighle

TXRL |FLAGA[TXHEX |TXASC |TXABP |TXNAML [TXNAME

Variable Field (Cont'd) —————————#-t<¢ Work Bucket=

Byfes‘ 1___Varigble 1 arigble 1 arigble’ 1 arigble
TxOPL | TXOP [TXOPNL [TxOPN|TXCOML |TXCOM|BYTe | Edited
count | operand

The eight-byte fixed field is the same as
that described under "Edited Text Record
Fixed Field Format." The variable field is
the same as that described under "Edited
Text Record Variable Field Format." How-
ever, in place of an appended fixed field
is a special work bucket, as follows:

Byte Count - The byte count of the edited
operand for punching or printing.

Edited Operand - The punch or print image
in external code constructed from normal
edited text in Phase F7. However, if

PUNCH or REPRO is output in Phase F7, the

byte count of this field is zero.

LTORG Statement Workbucket. The format
for this workbucket is as follows:

Bytes 4 4 4 4 4 4 4 4
L8 L4 L2 L1 N8 N4 N2 N1

L8 - Total length of 8-byte chain.

L4 - Total length of 4-byte chain.

L2 - Total length of 2-byte chain.

L1 - Total length of l-byte chain.

N8 - Number of entries in 8-byte chain.

42

OPSYN Entries.

N4 - Number of entries in 4-byte chain.
N
N2 - Number of entries in 2-byte chain.

N1 - Number of entries in 1l-byte chain.

TABLES
Symbol Table

The symbol table contains a collection of
symbols, OPSYN definitions, and literals
with their associated attributes. It is
built during Phase F7.

The symbol table remains in core storage
as long as the space allocated will hold it.
It is used by Phase F7, Phase FI, and
Phase F8.

There are three types of entries in the
symbol table.

1. Name entries.
2. Literal entries.
3. OPSYN definitions.

Name Entries. EQU, CCW, DC, DS, machine

instructions, and LTORG, and external name
entries EXTRN, WXTRN, START, CSECT, and
DSECT.
2
1 - 1 2
Bytes T 7 bits s 3
ESD I .
Symbol Symbol ltem Adjective | ESD Value Length Chain
Length Name Pointer Code D Pointer

Adjective code -

Bit 1 1 - EQU operand defined
as external symbol
Bit 2 1 - Pointer present.
Bit 3 1 - XD complete (external
definition)
Bit 4 1 - LD complete (label
definition)
Bit 5 1 - Defined in DSECT or COM.
Bits 6-7 External symbol dictionary
type
00 - CSECT
01 - EXTRN/WXTRN
10 - DSECT
11 - NAME

Value - present only in name entries.

Length - present only in name entries.

Chain pointer - present only when a symbol
with the same hash has been previously
entered in the table. This pointer is
the address of the previous entry.

The format is as follows:

3 1 Variable 1 1 1
Internal
Pointer Length Name Type | Mask Machine ASC
Code

Chain pointer - present only when an OPSYN
entry with the same hash has been
previously entered in the table. This
pointer is the address of the previous
entry.

Type - attribute. See Table 6.

R1 Mask - Rl field for
The extension of op
omitted for machine
entries.

extended mnemonics.
codes field is
operation code

ASC - Assembler Switch Code. (See Edited
Text Record Fixed Field Format.)

Literal Entries. This format is as
follows:
Bytes 3 1 Variable 1 1 1 3

Chain Def. |Text form Length Type |Displace-

. . . Flag
pointer | Length |of literal | Attribute trans. | ment
2
— A N
Byt
yres ¢ 3 ! ! ! N bits 4bits 1 bit 2
. Bit 1 Length
Dup. | No. of Pointer to Exp. Scale o
factor |Constants | first byte | modifier | modifier Unused byte modifier
flag value

Bytes 1 6

Work

bucket Work

bucket

count

External Symbol Dictionary

External symbol dictionary items are gen-
erated by START, CSECT, private code, CON,
DSECT, external dummy sections, ENTRY,
EXTRN, WXTRN, and V-type DC instructions.
Formats are described below.

Control Sections (CSECT) and External

References (EXTRN/WXTRN). This format is
as follows:
Bytes 1 3 1 3 8

External Symbol
Dictionary ID

Name, padded

Address translated

Type Length

Entry Definitions. This format is as

follows:

Bytes 1 3 1 2 1 8

Label

Address Definition ID

Type Flag |(Zero) Name

Flag - Set to 1 to indicate completion of
the item.

Label definition ID - External symbol
dictionary ID of the containing control

section.
External Dummy References (ENTRY). This
format is as follows:
Bytes 1 2 1 1 3 8
Type | ESDNO Alignment ESDID Length | Name

ESDNO - Used to refer to the DSECT if this
item was generated by a Q-type address
reference to a DSECT. It is zero if the
item was generated by a DXD instruction.

Alignment - One less than the number of

bytes in the unit of alignment, e.g.,
7 for double word alignment.

Literal Base Table

This format is as follows:

1 3 3 3 3
. Length (8- Length (4- | Length (2-
ESDID Location byte string) byte string) | byte string)

ESD/ID - The external symbol dictionary ID
number of the control section where the
literal pool is located.

Location - This is
tained from the
attached to the
ment.

the relative address ob-
statement work bucket
associated LTORG state-

A - The total object length of the literals
comprising the 8-byte string in the
associated literal pool.

B - Same as A, except as applicable to the
4-byte string.

C - Same as A, except as applicable to the

2-byte string.

PHASE ORGANIZATION
Phase F7 is organized as follows:

1. Mainline control - IEUF7C.

2. Functional routines.
a. GET statement - IEUF7X.
b. DC, DS evaluation - IEUF7D,

c. External symbol dictionary processor -
IEUF7E.

d. TESTRAN processor - IEUF7N.

Phase F7 - Initial Assembly 43

3. Common Subroutines (common to routines
within Phase F7).
a. Symbol table function - IEUF7S.
b. Expression evaluation - IEUF7V.
¢. Error logging function - IEUF7L.
d. Literal DC generator - IEUF7G.
e. I/0 Subroutines.

IEUF7C - MAIN LINE CONTROL (FLOWCHARTS 13-
18)

Control is passed to Phase F7 Mainline Con-
trol (IEUF7C) by the Phase F7 initialization
routine, IEUF7I.

Program modifications are made based on
the settings of the cross-reference and
TESTRAN option bits. IEUF7N is called by
IEUF7C to generate TESTRAN cards for all
edited statements if the option bit is set.

IEUF7X is called to move the next edited
text record into the text work area after
putting the current (processed) text record
onto the output file.

The mode is tested (program modifica-
tion). If substitution has been made, con-
trol is passed to substitution control.

If the type of operation is assembler
OP, control is passed to assembler OP con-
trol.

Machine operations are processed, and the
location counter incremented by the opera-
tion length. If an external symbol dic-
tionary identification has been assigned,
control is passed to the external symbol
dictionary routine to initiate private
code.

If a name is present, the symbol table
is tested for possible overflow. If the
symbol table is full, the mode is changed
to substitution, and control passed to
substitution control.

If a literal is referenced in the operand
field, control is passed to IEUF7D to make
a literal entry in the symbol table. ‘

If the cross-reference bit is set, the
operand is examined for references to sym-
bols.

The operation length is then calculated
from the hex code.

Assembler operation codes are processed
by examining the assembler switch code for
the following:

® Uninitiated private code (if the ex-
ternal symbol dictionary ID = 0).

® Location counter reference.

® Special cross-reference scan to generate
cross-reference records.

The internal hex code for assembler
operation codes is used to compute a
branch address to the specialized assem-
bler operation routine.

44

In the substitution mode, IEUF7C tests
substitution is required, a work bucket is
attached for each symbol referenced in the
operand.

For machine operation codes, IEUF7C tests
name fields for multiply defined symbols
and evaluates literals for duplicates.

For assembler operation codes, IEUF7C
processes assembler operations in the sub-
stitution mode only when substitution is
required.

IEUF7X - PHASE F7 GET STATEMENT ROUTINE
(FLOWCHART 19)

IEUF7X is used by IEUF7C to move edited
text records into the text work area and
put them back into the text stream.

On all but the first time called, IEUF7X
puts the current text record onto the text
file by calling PUTXT.

If an error record is in the build area,
IEUF7X puts the error record onto the next
record following the text record and clears
the error record in core switch.

If the literal switch is set, the next
record will be moved into the text work
area from the literal entry in the symbol
table. Otherwise, IEUF7X calls GETPT for
a pointer to the next text record in the
input buffer.

If an end-of-file is detected, IEUF7X
moves a QUIT record into the text work area
if the mode is assignment mode. If the
mode is substitution, the file is TCLOSEd
and re-opened beginning with the first text
record.

IEUF7X tests each text record for a
record type if edited. If the record is not
edited, it is put out on the output text
file, and the next record is examined.

Edited text records are moved into the
text work area for processing by Phase F7.

Edited-generated records are converted
to suitable format for Phase F7 processing.
The hex code is set from the operation code
conversion table, or -- if not found
there -- from the OPSYN chain ot the symbol
table, and substituted fields are adjusted
for leading and trailing blanks.

IEUF7X sets absolute pointers to the
operand field and appends fixed field and
symbol work buckets (if any exists).

The operand field on machine operations
is scanned for literals. If an equal sign
is found outside of quotes, the literal in
the operand indicator is set, and the
literal work bucket is appended to the t
record.

Fields are tested for legality as
follows:

XT

® The name field is tested for legal char-
acters, too many characters, and leading
alpha character.

@ Assembler operations are tested for
name field required or not allowed and
operand field required or not allowed.

IEUF7D - DC/DS EVALUATION ROUTINE (FLOW-
CHART 20)

This routine is called by IEUF7C to process
DCs, DSs, DXDs, literals, and literal DCs.
A complete syntax check is done for all DC
types, and appropriate error messages are
logged when necessary. One 1l5-byte DC
work bucket is attached to the appended
fixed field of the text record for each
DC, DS, DXD, and literal DC operand for
use by the Phase F8 DC evaluation routine
(IEUF8D) . In the external symbol diction-
ary, a table entry is made for each valid
constant in a V-type or Q-type DC.

One complete statement is processed in
each pass, and control is returned to IEUF7C
by executing an unconditional branch to
location CTRTRN (ACT).

IEUF7E - EXTERNAL SYMBOL DICTIONARY
PROCESSOR ROUTINE (FLOWCHARTS 21-23)

This processor is called whenever any of
the assembler operations COM, START, CSECT,
DSECT, DXD, ENTRY, EXTRN, WXTRN, or ORG or
a V- or Q-type address constant is encoun-
tered. It is also called at the beginning
and end of assembled code. Three other
entry points are used for ENTRY, EXTRN, and
control sections in the substitution mode.
The functions performed are as follows:

® Generating external symbol dictionary
entries.

e Updating the location counter in external
symbol dictionary entries.

e Making symbol table entries for names in
the statements handled.

@ Setting and maintaining the control
table switches CBDNO, CBDSW, CCMNO,
CESDID, CESDNO, CNOESD, CPCNO, CTPCSW,
CSTVAL, CSGCTR, CLASID, CTNDID, CTCMSW,
CTESDP, CTESRN, CTESRP, CTFSTN, CTLOC,
and CTYPE.

e Issuing various error messages.

IEUF7N - F7 TESTRAN ROUTINE

If the TESTRAN option is
is passed from IEUF7C to IEUF7N after the
process of each statement that defines a
symbol or affects the location counter in
any way.

The output records (cards) of IEUF7N are
written on SYSPUNCH and/or SYSGO data sets.
Subsequent executions of the object program
in the TESTRAN mode use this information.

control

IEUF7S -
CHART 24)

(This routine is resident in module IEURTA),
The symbol table processor has three entry
points in Phase F7: STPUTR, STGETR, and
STROOM. Their function is to put symbols
into the table, retrieve symbols from the
table, and test whether room exists for
another symbol.

The symbol table and the external symbol
dictionary share an area of main storage.
The symbol table starts at the low-numbered
end, and the external symbol dictionary
starts at the high-numbered end. Room must
be left by the symbol table for two exter-
nal symbol dictionary segments of 260 bytes
each (16 items 16 bytes long, plus 4 bytes
for overflow addressing). Apart from this
restriction, overflow does not occur until
the external symbol dictionary and the
symbol table are about to meet.

STPUTR tests to see whether a duplicate
exists and, if not, puts the given symbol
into the table with its attributes. A type
1 or 3 cross-reference is also made. (See
"Cross-Reference Record Format.")

STGETR tests whether the requested sym-
bol is in the table and, if so, gives the
address of the first byte in the entry after
the name field. If not, zero is returned.

STROOM determines whether overflow can
occur on the next STPUT. If so, then if
room can be made for the symbol table by so
doing, or if the external symbol dictionary
processor made the call, the external sym-
bol dictionary is put on the overflow file.
If not, the need to enter substitution mode
is signalled.

SYMBOL TABLE SUBROUTINE (FLOW-

IEUF7V - EXPRESSION EVALUATION ROUTINE
(FLOWCHART 25)

SP1l at entry contains a pointer to the first
character of the expression. SPl at exit
contains a pointer to the character which
caused IEUF7V to terminate. The terminating
character will always be a left or right
parenthesis, blank, or comma, unless there
was a syntactical error, in which case SP1
will be zero.

SP2 at exit contains the result, if the
expression is absolute. If the expression
is relocatable, SP2 contains a pointer to a
full word value followed by the RLIST. If
the expression contains an error, SP2 is
zero.

Upon exit from IEUF7V, the condition code
has the following meaning:

Code Meaning
0 absolute expression
1 simple relocatable expression
2 complex relocatable expression
3 evaluation impossible (error)

Phase F7 - Initial Assembly 45

Syntax errors cause immediate exit from
IEUF7V; errors other than syntax are logged,
and normal processing is continued.

IEUF7V has the following functions:

® Evaluate expressions.

® Log type 2 cross-references (XREF) -
(only IEUF8V).

@ Convert self-defining values
(sDvCF) .

® Detects the following errors and passes
the information to IEUF7L:
Relocatability error
Self-defining value too large
Arithmetic overflow
Symbol not found - (IEUF8V)
Symbol not previously defined - (IEUF7V)
Two terms not separate
Illegal character
Too many terms
Two operators illegally coupled
Too many levels of parentheses
Expression end premature
Invalid symbol
Expression value too large

Algorithm description: A term is a re-
locatable or absolute symbol, a length
attribute reference (L'sym), location coun-
ter reference (¥), or a self-defining value.
When a term is encountered, its value is
entered in the next available position in
the TERMS list. If it is a relocatable
term, the sign code and its external symbol
dictionary ID are entered in the next avail-
able position in the RLIST list. If it is
an absolute term, the RLIST pointer is
lumped to the next half-word, in effect
putting zeros into that position, since all
the tables are zeroed during IEUF7V ini-
tialization.

Type 2 cross-references are made during
Phase F7 assignment mode. (See "Cross-
Reference Record Format.")

When an operator is encountered, its
code is entered in the next available posi-
tion in the OPRNS list, providing its
hierarchy is greater than the previous

operator. Hierarchy codes are as follows:
0 O, b
1 +
2 -
3 *
4 /

The code 0 for a left parenthesis is
always entered in the OPRNS list. A right
parenthesis forces all operators in the
OPRNS list back to the preceding left
parenthesis. A blank, comma, or a left or
right parenthesis which legitimately ends
the expression forces all operators in
OPRNS to the top of the list. An operator
with a code less than or equal to the pre-
vious code forces only the previous op-
erator.

46

When an operator is forced, the arithme-
tic is performed between the last two en=-
tries in the TERMS list, and the result is
stored in the position of the first entry
involved in the arithmetic. Also, the sum
of the two corresponding NTRMS entries is
placed in the position of the first entry.

COND is initially set to O on entry to
IEUF7V. It is then set to 1 each time a
right parenthesis, +, or - is encountered;
to 2 each time an * or / is encountered; to
3 each time an absolute term or left paren-
thesis is encountered; and to 4 each time a
relocatable term is encountered. The COND
switch setting determines the validity of
an operation. See Table 1l1. For example,
/ is valid only when COND=3 (/ follows an
absolute term or left paren.). If COND=4,
a relocatability error is logged (/ follows
a relocatable term). A syntax error is
logged if COND=0 (expression begins with
/) or if COND=1 or 2 (/ follows +, -, *,

/, or right paren.).
Work tables used in IEUF7V are as fol-

lows:

TERMS (16 full words) - Entry is made for
each term in the expression. At end of
evaluation, the first full word location
contains the final result; subsequent
table entries contain intermediate re-
sults.

OPRNS (20 bytes) - Entry made for each
operator in the expression.

NTRMS (16 bytes) - A 2 is entered for each
term. At end of evaluation, the first
byte contains a value equal to twice the
number of terms in the expression.

RLIST (16 half-words) - Sign code (1 for +,
2 for -) and external symbol dictionary
ID are entered for each relocatable term;
zeros appear for each absolute term and
undefined symbol. During addition and
subtraction, RLIST entries are zeroed
when the signs are opposite and the ex-
ternal symbol dictionary IDs are the
same.

Upon exit, a simple relocatable expres-
sion will have a + sign and the external
symbol dictionary ID of its impaired posi-
tive term in the first half-word, and the
remaining 15 half-words will contain zeros.
A complex relocatable expression at exit
will have a non-zero half word for each un-
paired relative term. The non-zero half
words will be scattered in the table. A
complex relocatable expression may also
be the result of a single unpaired negative
term. A minus sign (-) and the external
symbol dictionary ID of this term will ap-
pear in the RLIST.

Table 11. Condition Switch Settings
Character Previous Acti Flowchart
Encounterd Setting ction References

start -- set COND = 0
(0/1/2 set COND = 1
3/4 if PCNTR > 4, log error LPAR
1EU026
) 0/1/2 log error IEU085
3/4 set COND = 3 RPAR
if PCNTR = 0, end of expression
+ or - 3/4 set COND = 1 LTCOM
0/1/2 log error [EU085 LOOP
* o/1 set COND = 4
(* is location counter ref.)
2 log error IEU085 LTCOM
3 set COND = 2
(* is mult.)
4 log error IEU025
/ 3 set COND = 2 LTCOM
0/1/2 log error IEU085
LOOP
4 log error IEU025
absolute term 3/4 log error IEU085
0/1/2 set COND = 3 Term
relocatable 0/1 set COND = 4 C;mp\..mng
outines
term 2 log error IEU025
3/4 log error [EU085
, or blank 0/1/2 log error IEU039
3/4 if PCNTR) 0, log error BLCOM
1EU039

IEUF7L - ERROR LOGGING FOR PHASE F7 AND F8
(FLOWCHART 26)

(This routine is resident in module IEURTA),
This routine is called to attach error mes-
sages to an edited text record.

IEUF7L tests the error switch in the con-
trol table to determine if an error record
for the current text record is in the error
record build area. If there is, the error
count is compared with the maximum allow-
able number of errors (16). If the count
is equal to the maximum, the current and
all subsequent error messages are ignored.

If there is no error record in the build
area, IEUF7L tests the "error record fol-
lows" bit in the text record. If the bit
is set, the error record is moved into the
build area from the text file. If not, the
error record is initialized in the build
area, and the "error record follows" bit
(TXERI) is set in the text record. In
either case, the error switch in the control
table is set for subsequent calls on the
current text record.

The error message is added to the error
record, and the error count is incremented
by one.

The relative column pointer is added to
the error message. If no column pointer is
required, it is set to =zero.

Control is then returned to the calling
routine,

IEUF7G - LITERAL DC GENERATOR (FLOWCHART 27)

IEUF7G is a routine which builds a literal
DC edited text record for an outstanding
literal entry in the symbol table. IEUF7X
invokes IEUF7G once for each literal DC
that is to be built into the edited text.
IEUF7G then moves in pertinent information
such as the record length, record type X'60°'
for edited generation, operation type X'80°'
for assembler, operation code X'25' for
literal, and operation and name field
lengths of zero. After the text has been
generated, control is returned to the
caller.

IEUF7I - PHASE F7 INITIALIZATION AND I/O
INITIALIZATION

The I/0 portion of phase initialization
OPENs the three utility files. BSAM logic
including READ, WRITE, CHECK, and TCLOSE
are employed for all data sets. QSAM logic
(PUT) is used for the SYSGO and SYSPUNCH
data sets. The routine initiates a READ of
the first block of the text stream and
initializes text, literal base table,
cross-reference pointers.

F7I0 functions for PHCLS, GETPT, GETXTM,
PUTXT, CLSTXT, CWRESD, CRDESD, PUTXRF,
PUTLBT, and SYSO are described below.

The root segment transfers control to F7
which in turn transfers to IEUF7C.

and

PHCLS - Phase Close

The I/0 portion of the phase close function
closes SYSUTI1, SYSUT2, and SYSUT3 and in-
serts the following parameters into the I/0
portion of the assembler control table:

CTXUIN (1 Byte) - Data file designator for
the current input text.

CTOUT2 (1 byte) - Data file designator for
the alternate overflow file (other than
SYSUT3) .

CTRLBT (4 bytes) - Pointer to the first
literal base table block on the overflow
file, SYSUT3.

CTCLBT (2 bytes) - Count of the number of
literal base table physical blocks which
have been written onto SYSUT3.

CTRXRF (4 bytes) - Pointer to the first
cross-reference table block contained
on the overflow file, SYSUT3,

CTCXRF (2 bytes) - Count of the number of
cross-reference physical blocks which
have been written onto SYSUT3.

CTONWP (8 bytes) - Pointer to the next

sequential write position on the over-
flow file, SYSUT3.

Phase F7 - Initial Assembly 47

Prior to TCLOSEing SYSUT3, the literal
base table pointers are tested to deter-
mine if any literal base table entries
have been made. If so, an end-of-file
label is embedded into the literal base
table stream, and the partiallvy filled
block is written onto the overflow file,
SYSUT3. If no literal base table entries
have been made, then CTCLBT is cleared to
zeros,

PHCLS may be called by an unconditional
branch to PHCLS. The routing ultimately
transfers control to the root segment for
calling the next phase.

GETPT - Get Point

GETPT points to the next logical text
record within the input text stream.
Calling Sequence. The calling sequence is
as follows:

Input Parameters: None

Entrance Procedure: L SRB, CTXTIO (ACT)
BAL SRR,GETPT(SRB)
(Normal return)

Output Parameters:

SP1=FBA First byte address of the
first segment of a logical
text record.

=0 End of file was read, the text
stream has terminated.
First byte address of the
second segment of a "broken"
logical text record.
=0 Text record was not broken,
consequently no second seg-
ment,

GETPT double-buffers the text
stream. Logical buffers may be split be-
tween two physical blocks. The routine
points to each record in sequence. The
pointer is pointing to the most significant
byte of the record length indicator (RLI).

Method.

Restrictions and Assumptions. The "last
record bit" contained within FLAGA must
be set to terminate the input text stream.
A logical record must be contained within
two physical blocks.

GETXTM - Get Text and Move

GETXTM transfers a logical record from the
input text stream to an area specified by
the user.

Calling Sequence. The calling sequence is
as follows:

48

1lNput raramcielss
SP1=FBA First byte address of the area
to which the record is to be
transferred.

Entrance Procedure: L SRB, CTXTIO (ACT)

BAL SRR, GETXTM(SRB)
(Normal Return)

Output Parameters:
SP1=FBA First byte address of user's
work area (same as on input).
=0 End-of-file was read; the text
stream has terminated.

Method. Upon entering, GETXTM tests a
global switch which is set by the GETPT
subroutine. If the switch is set, GETXTM
clears the switch and transfers the record
that is currently being pointed. If the
switch is not set, GETXTM calls GETPT to
point to the next logical record in the
input text stream. GETXTM then transfers
that record to the user's work area. Thus,
if the user wishes the next logical record
moved to his work area, he can call GETXTM
without first calling GETPT.

If the text record is segmented, the
routine joins the two segments together to
produce a single contiguous record. In so
doing, it drops the second record length
indicator and updates the first record
length indicator to the total record byte
count. In addition, the "break flag bit"
contained within FLAGA is cleared to zero.

PUTXT - Put Text

PUTXT retrieves a logical record from the
input buffers or from an area specified by
the user, and transfers the record to the
output buffers for eventual output to a
utility data set.

Calling Sequence.
as follows:

The calling sequence is

Input Parameters:

SP1=FBA First byte address of the text
record contained in the user's
work area.

=0 A flag to indicate the record
to be PUT is contained in a
text input buffer.

Entrance Procedure: L SRB, CTXTIO (ACT)
BAL SRR,PUTXT (SRB)
(Normal return)

Output Parameters:
SP1=FBAj First byte address of the text
record contained in the user's
work area (same as input).

=FBA, First byte address of the text
record contained in the output
buffer if record was trans-
ferred from the input buffer.
End-of-file was read while
trying to PUT the next logical
record from the input text
stream.

Method. If SPl is zero, PUTXT sets a global
switch and calls GETXTM. GETXTM tests the
switch and, if set, transfers the text rec-
ord from the input buffer to the output
buffer. If the GETPT global switch is not
set, GETXTM will call GETPT to point to the
next logical record. Thus, the next logical
record in the text stream can be trans-
ferred directly to the output buffer by
simply calling PUTXT without first calling
GETPT or GETXTM.

If SPl is non-zero, the record is trans-
ferred from the area specified by SP1l into
the output buffer.

Restrictions and Assumptions. A logical
record must not exceed in length one physi-
cal output block.

CLSTXT - Close Text

CLSTXT TCLOSEs the input text file, embeds
an end-of-file label into the output text
stream, and TCLOSEs the output text file.
In addition, it interchanges the utility
file designators such that the current in-
put text file becomes the future output
text file, and the current output text file
becomes the future input text file.

Calling Sequence. The calling sequence is
as follows:

Input Parameters: None
Entrance Procedure: L SRB, CTXTIO (ACT)
BAL SRR, CLSTXT(SRB)
(normal return)
Output Parameters: None
Method. The output buffer management sub-
routine is called, an end-of-file label is
embedded into the output text stream, and
the output file is TCLOSEd. The I/0
designators are interchanged, and the text
buffer pointers are initialized. This
routine is called by PHCLS. Hence, unless
the phase anticipates an iteration on the
text stream, this routine should not be
called by mainline control.

CWRESD - Write External Symbol Dictionary

Calling Seguence. The calling sequence is

as follows:

Input Parameters:
SP1=FBA First byte address of the
external symbol dictionary.

Entrance Procedure: L SRB, CTXTIO (ACT)
BAL SRR, CWRESD (SRB)
(Normal return)

Output Parameters:
SP1=NOTEd record position on the over-
flow file.

Method. The routine tests the write posi-
tioning required switch., If set, the file
is POINTed to the next write position. If
not set, the file is assumed positioned
for the next write. The external symbol
dictionary block is then written onto the
overflow file and its position NOTEd. The
note label is passed on to the user for
future reference.

Restrictions and Assumptions. The routine
does not keep count of the number of ex-
ternal symbol dictionary blocks read or
written. It assumes the user is requesting
a block which has been previously written.

CRDESD - Read External Symbol Dictionary

CRDESD POINTs the overflow file to the re-
quested external symbol dictionary and
reads it into an area specified by the
caller.

Calling Seguence.
as follows:

The calling sequence is

Input Parameters:

SP1=L A NOTEd record position used to
POINT to the desired external
symbol dictionary segment.

SP2=FBA First byte address of user's

input area.

Entrance Procedure: L SRB, CTXTIO (ACT)
BAL SRR,CRDESD(SRB)
SNormal return)
Output Parameters: None
Method. Using SP1, the overflow file is
POINTed to the requested external symbol
dictionary, the external symbol dictionary
is read into the area specified by SPZ2,
and the write positioning required switch
is set.

Restrictions and Assumptions. The routine

CWRESD writes the external symbol diction-
ary (ESD) onto the overflow file, SYSUT3,
and NOTEs its position for future reference.

does not keep count of the number of ex-
ternal symbol dictionary blocks read or
written. It assumes the user is requesting
a block which has been previously written.

Phase F7 - Initial Assembly 49

PUTXRF - Put Cross-Reference

PUTXRF points to the next available area in
the cross-reference output area for building
a cross-reference logical record.

Calling Sequence., The calling sequence is
as follows:

Input Parameters: None

Entrance Procedure: L SRB, CTXTIO (ACT)
BAL SRR, PUTXRF (SRB)
(Normal return)

Output Parameters:

SP1=FBA First byte address of the next
available record location con-
tained within the cross-
reference (XRF) buffer.

Method. The routine is called each time a

cross~reference record is to be built. The
routine advances through the buffer at 17-
byte increments until the block is filled.
At this point, the buffer is written onto
the overflow file at the next available
write position. The first block written
onto the overflow file is NOTEd for future
reference.

Restrictions and Assumptions. The routine
assumes a record will be built at the
POINTed location since it merely advances
to the next 17-byte location each time it
is called.

PUTLBT - Put Literal Base Table

PUTLBT points to the next available area
in the literal base table output area for
building a literal base table logical
record.

50

Calling Sequence. The calling sequence is

as follows:

Input Parameters: None

Entrance Procedure: L SRB, CTXTIO (ACT)
BAL SRR,PUTLBT (SRB)
(Normal return)

Output Parameters:

SP1=FBA First byte address of the next
available record location con-
tained within the literal base
table buffer.

Method. The routine is called each time a

literal base table record is to be built.

The routine advances through the buffer at
13-byte increments until the block is filled.
At this time the buffer is written onto the
overflow file at the next available write
position. The first block written onto the
overflow file is NOTEd for future reference.

Restrictions and Assumptions. The routine
assumes that a record will be built each
time it is called since it merely advances
to the next 13-byte location.

SYSO - System Output

SYSO outputs 80-character logical records to
either the SYSPUNCH or SYSGO data sets or to
both. On entry, SPl points to the first
byte of an 8l-character buffer where the
first character is an internal control char-
acter. SYSO tests the SYSPUNCH and the
SYSGO option bits. If either one is set,
the contents of the 8l-character buffer (ex-
cept for the control character) are trans-
ferred accordingly to the SYSPUNCH or SYSGO
data sets. If both are set, the contents

of the buffer are transferred to both data
sets.

OVERALL OPERATION (FLOWCHART 28)

The main function of Phase FI (F Interlude)
is to write the external symbol dictionary
on the SYSPRINT, SYSPUNCH, and/or SYSGO
data sets. External symbol dictionary
segments and literal pool bases are located
either in main storage or in an overflow
segment on SYSUTI1.

I/0 FUNCTIONS

Phase FI processes literal base table and
external symbol dictionary entries gener-
ated in Phase F7 and outputs literal ad-
justment table entries. See Figure 12.
The literal base table and literal adjust-
ment table are passed at the GET/PUT logical
record level, and the external symbol dic-
tionary input is called at the READ level.
The I/O subroutines interface with the
operating system at the READ/WRITE level
only, performing their own blocking and de-
blocking functions for the logical record
entries. The system output routines SYSO
and SYSL are called to output external
symbol dictionary data.

SYSPRINT T‘
External
Symbol
Dictionary
External
Symbol
Dictionary

e

External Symbol
Dictionary

Literal Base Table
External Symbol
Dictionary Overflow

Literal Adjustment

\ Table
—
SYSUT2*
1
Main
Storage

*|f symbol table overflow occurred in Phase F7,
SYSUT! may be used instead of SYSUT2.

Figure 12. 1I/0 Flow for Phase FI

PHASE FI - INTERLUDE

LITERAL ADJUSTMENT TABLE FORMAT

The format for the literal adjustment
table is as follows:

Bytes 1 3 1 3 1 3 1 3

ESD ESD ESD ESD
o | A D B D ¢ D b

ESD/ID — External symbol dictionary identi-
fication of the 3 bytes (A) that imme-
diately follow this byte. Typical of
four shown.

A — The adjusted assembler address of the
beginning of the 8-byte string of
literals whose pool is described by this
table.

ESD/ID — Same as previously described (for
A).

B — Same as A, except as applicable to the
4-byte string.

ESD/ID — Same as previously described (for
A).

C — Same as A, except as applicable to the
2-byte string.

ESD/ID — Same as previously described (for
A).

D — Same as A, except as applicable to the
l-byte string.

NOTE: There is one such table for each
LTORG statement or for the END assembler
instruction in the program.

Trailer — Indicates the end of the literal
adjustment table. This format is as
follows:

Bytes 1 1 1 1

7 F 7 F 7 F 7 F

I/0 SUBROUTINES

FII — FI Initialization

The I/0 portion of phase initialization
determines if any literal base table entries

had been output from Phase F7. If so, the
first literal base table block is read
from the overflow file, SYSUTL, and the

pointers to the first logical record entry

Phase FI - Interlude 51

within the block are initialized. Control
is then transferred to the mainline con-
trol driver.

Phase IEUF7I (the Phase F7 I/O routine)
transfers control to FII which in turn
transfers to Phase FI mainline control.

FICLS — FI Phase Close

The I/O0 portion of the phase close function
embeds an end-of-file label into the literal
adjustment table output stream and writes
the last literal adjustment table block

onto the alternate overflow file. SYSUT1
and the alternate overflow file are

TCLOSEd, and the following entry is placed
into the assembler control table:

CTCLAT — Count of the number of physical
literal adjustment table blocks which
have been written onto the alternate
overflow file.

Control is then transferred to the next
phase.

FICLS should be called only after main-
line control has finished its phase. FICLS
may be called by an unconditional branch
to FICLS.

GETLBT — Get Literal Base Table

GETLBT points to the next logical record
entry contained within the literal base
table input area.

Calling Sequence.
as follows:

The calling sequence is

Input Parameters: None

Entrance Procedure: BAL SRR, GETLBT

(Normal return)

Output Parameters:

SP1 = FBA First byte address of next
logical record in the 1lit-
eral base table input buffer.

=0 End-of-file was detected;
there are no more literal
base table records.
Method. The subroutine is called each

time a literal base table logical record
is required. The routine advances through
the buffer at 13-byte increments until the
entire block has been processed, at which
time the next literal base table physical
block is read from the overflow file. If
either an end-of-file label is detected or
the block count becomes zero (whichever
appears first), the end-of-file flag is
set, and control is passed to the caller.

52

RDESD — Read External Symbol Dictionary

RDESD POINTs the overflow file to the
requested external symbol dictionary and
reads the block into an area specified by
the caller. RDESD is embedded into the
section LPFI2. LPFI2 reads the entire
external symbol dictionary into core, seg-
ment by segment. Logic is identical with
Phase F7 RDESD.

PUTLAT — Put Literal Adjustment Table

PUTLAT points to the next available area
in the literal adjustment table output
area for building a literal adjustment
table logical record.

Calling Sequence.
as follows:

The calling sequence is

Input Parameters: None

BAL SRR,PUTIAT
(Normal return)

Entrance Procedure:

Output Parameters:

SP1 = FBA First byte address of the
next available record lo-
cation contained within the
literal adjustment table

output buffer.

Method. The routine is called each time
a literal adjustment table logical record
is to be built. The routine advances
through the buffer at 16-byte increments
until the block is filled, at which time
the buffer is written onto the alternate
overflow file. The alternate overflow
file is designated as that file which is
neither the prime overflow file, SYSUT3,
nor the current text file. Which file is
designated is contingent on the number of
passes through the text stream which were
executed by the previous phase, Phase F7.

SYSL — System List

SYSL outputs a 1l2l-character line to the
system list data set, SYSPRINT.

Calling Sequence. The calling sequence is
as follows:

Input Parameters:

SP1 = FBA First byte address of a 121-
character formatted print
line. The first character

is the internal control

character. The numeric
value of the first charac-
ter dictates the number of
lines to be spaced prior
to listing the formatted
line. Zero is single spac-
ing, 63 or greater is page
eject.

Entrance Procedure: BAL SRR, SYSL

Output Parameters: None.

Method. The SYSL option bit is tested.
If set, the line is written on SYSPRINT.
If not set, a simple return is executed.
The user should not concern himself as
to whether the line was written or not.

SYSO — System Output

This subroutine outputs an the contents of
the 8l-character bufter (except for the
control character) to either the SYSPUNCH
or the SYSGO data sets.

Calling Sequence.
as follows:

The calling sequence is

Input Parameters:

SP1 = FBA First byte address of an

8l-character buffer where

the first character is an
internal control character.

Entrance Procedure: BAL SRR, SYSO

Output Parameters: None

Method. SYSO tests the SYSPUNCH and the
SYSGO option bits. If either is set, the
contents of the 8l-character buffer (except
for the control character) are transferred
to the data sets indicated.

MAIN LINE CONTROL

If the external symbol dictionary is not
in core, it is fetched one segment at a
time using the segment residence table.
The adjustment table is constructed from
control sections on the external symbol
dictionary by accumulating their lengths
and aligning to the next higher double
word.

Another pass through the external
symbol dictionary outputs the listing and
cards item by item. These consist of

name, type, ID, address, length, and
LDID, as appropriate, on the listing; and
name, type, address alignment, and length

or LDID on the cards, with one ID per
card to identify its first SD, PC, ER, WX,
CM, or XD type.

The adjustment table built in FI3 and
the literal base table are used to build
the literal adjustment table.

The adjustment table is resident in
module IEURTA and overlays IEUF7S and
IEUF7L.

Phase FI - Interlude 53

PHASE F8 — FINAL ASSEMBLY

OVERALL OPERATION (FLOWCHARTS 29-36)
SYSPRINT

Phase F8 makes the final pass through the

program text, which is read from SYSUTL

or SYSUT2, depending on the number of Main

iterations. During this pass, any oper- Listing

ands which were not processed by Phase F7

are processed from the last symbol table

created during that phase.

Any self-defining values which were not
converted to their binary values are now
processed. All address expressions are
evaluated, and the results are substituted
for the expressions. Addresses are re-
structured into a base register and dis-
placement format.

At the same time, the completely

from Phase 7

Phase
F8

Error records

assembled text is written in relocatable Literal Adjustment Relocation Dictionary
object program format on S¥SPUNCH or I P;ableF:’rom Adjustment Flagged statements
SYSGO, and in program listing format on ase Table
SYSPRINT. Symbol Table
Invalid statements are flagged on Literal Table
SYSPRINT. Error records together with the
statements flagged are created and written Main
on the overflow file, SYSUT3, to be listed Storage
by the Post-Processor Phase.
The relocation dictionary is built *If symbol table overflow occurred in Phase F7,
during Phase F8, and segments can overflow SYSUT1 and SYSUT2 may be reversed.

onto SYSUT3. eFigure 13. I/O Flow for Phase F8

I/0 FUNCTIONS

Phase F8 passes through the text stream Postion ESD/ID — Number of the control sec-

once scanning the logical text records tion where the address constant is located.

which were output from Phase F7. See

Figure 13. The phase inputs the literal Relocation ESD/ID — Number Of the gontrol

adjustment table blocks from the alternate section where the symbol is defined.

overflow file and outputs cross-reference, Flag —

relocation dictionary, and diagnostic rec- Bits 0-1 00

ords with flagged statements onto the over- Bits 2-3 00 - A-type and Y-type address

flow file for subsequent processing by the constants and CCW.

Post-Processor Phase. The cross-reference 01 - V-type address constant.

and relocation dictionary records are output 10 - Q-type address constant.

at the PUT level where the cross-reference 11 - CXD.

records are inserted into the cross-refer- Bits 4-5 Length of address constant

ence output stream from where they left off minus one (L-1).

in Phase F7. Error records are output at Bit 6 External symbol dictionary

the WRITE level. In addition, records are (ESD) ID sign.

output to the SYSPRINT, SYSPUNCH, and SYSGO 0 — plus (+)

files via the output subroutines SYSL and 1 — minus (=)

SYSO. Bit 7 0 — next entry on the same card

RELOCATION DICTIONARY ENTRY FORMAT has the same position ID
and the same relocation ID.

This format is as follows: 1 — next entry on the same card

has a different position
ID and/or relocation ID.

Bytes i] 1 1 3
Table Position Relocation Symbol NOTE: There is_no carry-over from card
D ESD/ID ESD/ID Flag ;$’° to card. That is, the last ehtry on a
/ ress card always has a 1 in bit position 7
even if the first entry on the next card
Table ID -- Each group of 20 RLD entries is has identical position ID and relocation

preceded by a l-byte table identifier of '08'. ID fields.

54

Symbol address - Assembler assigned address
of a symbol used in A-, Y-, or V-type
address constants, or of the second
operand of CCW.

PHASE ORGANIZATION

The following control sections comprise
Phase F8: IEUF8I, IEUF8C, IEUF8M, IEUF8A,
IEUF8P, IEUF8D, IEUF8V, IEUF8L, IEUF8N,
and IEUF8S. These are self-contained
routines which may be link-edited separate-
ly. Communication between routines is via
registers and the ACT table. When IEUFI
passes control to Phase F8, the above
routines are loaded into core and remain
there until the completion of Phase F8
execution.

IEUF8I -- PHASE F8 INITIALIZATION AND I/O

On entry to Phase F8, the overflow file,
SYSUT3, is positioned for writing the relo-
cation dictionary and diagnostic records.
If any literal adjustment table records
were written by Phase FI, the first literal
adjustment table block is read from the
alternate overflow file. The literal
adjustment table pointers are initialized
to point to the first logical record
contained within the literal adjustment
table input area. GETMAIN for a buffer to
contain flagged statements is issued, if the
TERM option is in effect. The relocation
dictionary type indicator is inserted into
the first byte of the relocation dictionary
output buffer (the cross-reference output
buffer was initialized in Phase F7), and
control is transferred to Phase F8 main-
line control, IEUFS8C.

IEUF8I SUBROUTINES

GETXTM -- Get Text and Move

GETXTM retrieves the next logical record
from the input text stream and moves the
record to an area specified by the user.
Each time the routine is entered, a pointer
is advanced to the next logical record in
the input text stream. The record is
moved from the input buffers to an area
specified by SPl. The input stream is
double-buffered to increase input speed
and processing efficiency. If an end-of-
file label is encountered, the EOF flag is
set and passed to the caller. GETXTM sets
a switch which prevents any further
processing of the text stream.

GETLAT -- Get Literal Adjustment Table

GETLAT points to the next literal adjustment
table logical record contained within the
literal adjustment table input area. The
routine is called each time a new literal
adjustment table record is desired. On exit,
SP1l contains the first byte address of the

next literal adjustment table logical
record. The routine advances through the
buffer at 1l6-byte increments until the
block is empty, at which time the next block
is read from the alternate overflow file.
SP1l returns with 0 if there are no more
literal adjustment table entries.

PUTRLD -- Put Relocation Dictionary

PUTRLD points to the next available area in
the relocation dictionary output area for
building a relocation dictionary logical
record. The routine is called each time a
relocation dictionary is to be built. SP1
returns with the first byte address of the
next available record location in the relo-
cation dictionary output buffer. The rou-
tine advances through the buffer at 6-byte
increments until the block is filled, at
which time the buffer is written onto the
overflow file, SYSUT3. The first block
written onto the overflow file is NOTEd for
future reference.

PUTXT -- Collect Flagged Statements

If the TERM option is in effect PUTXT
collects the flagged statements and outputs
them on SYSUT3. The routine is called each
time a source record is moved to the
SYSPRINT buffer. The routine puts the
record in a buffer set aside for this purpose
(see Figure 16). When an error is found or
the buffer has been filled, and the last
source record moved into the buffer contains
a continuation character, the buffer is
written on SYSUT3. For a valid statement
exceeding six records a POINT is made. Other
valid statements are not written on SYSUT3.

WTERR -- Write Error Message

WTERR outputs an error record onto the over-
flow file for eventual listing by the Post
Processor Phase, Phase FPP.

WTERR is called with SPl pointing to the
first byte of an error record.

SYSL -- System List

SYSL outputs a l20-character line to the
SYSPRINT file. On entry, SPl points to the
byte of a 12l-character formatted printer
line. The first character is the carriage
control character. The numeric value of
the first character dictates the number of
lines to be spaced prior to listing the
formatted line. Zero is single spacing,
63 or greater is page eject. The SYSPRINT
option bit is tested. If set, the line is
transferred to the SYSPRINT data set. If
not set, a simple return is executed.

SYSO -- System Output

(See the description of SYSO under IEUF71
in Phase F7.)

Phase F8 - Final Assembly 55

PHCLS —-- Phase F8 Close

The phase close subroutine TCLOSEs the text
file, embeds end-of-file labels into the
relocation dictionary output stream, and
writes their buffers onto the overflow
file. The following nine parameters are
passed to the Post Processor Phase through
the assembler control table:

CTPCHI (1 byte) - Option bits for DECK,
LOAD, RENT, LIST, ALGN, DOS, XREF (in
that order).

CTTRMI (1 byte) - Option bits for TEST,
TERM, NOM, STMT .
CTCXRF (2 bytes) - Count of XREF blocks

contained on the overflow file,

CTCRLD (2 bytes) - Count of relocation
dictionary blocks contained on the
overflow file,

CTCERR (2 bytes) - Count of the number of
error messages contained on the overflow
file.

CTRXRF (4 bytes) - Location of the first

XREF block located on the overflow file.

CTRRLD (4 bytes) - Location of the first
relocation dictionary block located on
the overflow file.

CTRERR (4 bytes) - Location of the first
diagnostic message located on the over-
flow file.

CESDNO (2 bytes) - Deck number.
CTITLE (4 bytes) - Deck identification.

PHCLS transfers control to IEUFPP, the Post
Processor Phase.

IEUF8C - MAIN LINE CONTROL (FLOWCHART 29)

Control is passed to IEUF8C for each rec-
ord; IEUF8C in turn passes control to the
various routines necessary to process that
particular record. Program sequences
within the mainline control that perform
specific functions are described below.

IEUF8C SUBROUTINES

ERLODS

Errors encountered in Phase F8 for a rec-
ord are appended to the corresponding Phase
F7 error record and are put in the record
work area F8WORK (ACT) .

ENDOFF
ENDOFF processes any error encountered in

the final record and exits to the IEUF8I
phase close routine.

56

SETWBP

CTXWBP (ACT) points at the first symbol work
bucket in the input record. If there are

no symbol work buckets, CTXWBP (ACT) will be
set to zero. CTXABP(ACT) is set to point at
the appended fixed field of the input rec-
ord.

SRLIGN

SRLIGN makes alignments as necessary on all
machine ops, literal DC, DC, DS, CCW, and
CNOP. TXALIN in F8WORK(ACT) is investigated.
If this 3-bit designator is non-zero, one
to seven alignment bytes are output.

IEUF8M - MACHINE OPERATION PROCESSOR
(FLOWCHART 30)

IEUF8M processes the operand field of all
machine ops. Decomposition, adjustment,

and formating occurs in this routine. The
decomposition routine Using table is shown
in Figure 14. IEUF8M is entered from the
IEUF8C routine. FRB (Register 12) is loaded
with the base address of IEUF8M. Control is
passed to the assembler control table where
registers 4, 5, 6, and 7 are saved. Control
is then passed to the address in FRB.

IEUF8M SUBROUTINES

RR1, RR2, RR3, SI3,

SI4, Ssl1, Sss2

RR4, RX1, RX2, RS1, RS2,

These subroutines scan the operand fields
of machine operations. They do a syntax
check and format the instruction building
area, F8INST(ACT). See Figure 15.

These subroutines call on lower level sub-
routines which do semantic checks, and call
on another set of subroutines which do ex-
pression evaluation and decomposition.

RR4 refers to extended mnemonic register-
to-register instructions. RX2 refers to
extended mnemonic register-to-indexed-
storage instructions.

F8AREX does a complete syntactic scan on
each expression and sets a group of semantic
flags. The necessary flags are investigated
by the individual routines, and error proce-
dures are taken where necessary.

IEUF8A - ASSEMBLER OPERATION PROCESSOR
(FLOWCHART 31)

IEUF8A processes the following assembler
ops:

Using
Table Using Table
Pointer

0 |

. I

) |

: |

4 |

5 I

6 I

7 I

8 l

’ |
10 '
1 I

12 |
13 |
14 |
15 l

| v
[N R/—J U ~— J
00 — Register not used External Value
FFy4 — Register in use Ig)il?tki)Z:\cry
ID

The Using table is used by the decomposition routine, The using
table pointer and the using table are parallel tables, Every
decomposable value is checked against the complete table for
possible decomposition,

Decomposition Routine Using
Table

Figure 14.

MNOTE, PRINT, SPACE, EJECT, PUNCH, REPRO,
TITLE, ENTRY, EXTRN, WXTRN, START, CSECT,
" DSECT, COM, EQU, ORG, END, LTORG, USING,
DROP, literal DC, DC, DS, CCW, and CNOP.
IEUF8A is entered from the IEUF8C rou-

tine. FRB (register 12) is loaded with the
base address of IEUF8A, and control is
passed to the assembler control table where
registers 4, 5, 6, and 7 are saved. Con-
trol is then passed to the address in FRB.

IEUF8A SUBROUTINES

PRINTB

This routine investigates the operand field
of all print statements. A syntax check

is made, and from one to three conditions
are set per statement.

ON sets F8PON (ACT) to 0
OFF sets F8PON (ACT) to FFy¢g
GEN sets F8PGEN (ACT) to 0

NOGEN sets F8PGEN (ACT) to FFi6

DATA sets F8PDAT (ACT) to 0

NODATA sets F8PDAT (ACT) to FF16
SPACE

The SPACE routine does a complete syntax
check and, if necessary, checks semantics,
and does éxpression evaluation. A switch,
SPACSW (ACT), is set to FFi1g on a valid
SPACE statement and to AAl on an error
condition. SP2 (register El) is set to the
number of lines to be spaced.

EJECT

In this routine, a switch, EJCSTW(ACT), is
set to FF16.

PUNCHB

In this routine, a switch, REPSW(ACT), is
set to 1.

REPRO

In this routine, a switch, REPSW(ACT), is
set to 3.

TITLEB

In this routine, a switch, REPSW(ACT), is
set to 7.

MNOTST

In this routine, a switch, REPSW(ACT), is
set to 15.

ENTRYB

The ENTRYB routine in Phase F8 is only an
error checking routine., All actual proc-
essing has been completed in Phase F7.

EXTRNB

The EXTRNB routine returns control to main-
line control. EXTRN and WXTRN processing
is completed in Phase FI.

STARTB

The start routine checks the private code
switch, CTPCSW(ACT). If private code is
not initiated, the non-reentrant switch is
turned on. If private code has been ini-
tiated, the start statement is ignored,
and control is immediately returned to
Phase F8 main line control.

Phase F8 - Final Assembly 57

'LA Location :—l' Operation Code
FBINST (ACT) +1 +2 +3
fe—— 1L ——s]
Riby| RoRg,Xp Lo | BriBoa }4-———— Dy, Dop ————> B2g lﬁ D2s -
| ! T
! | I
| | |
1 1 1
+4 +5 +6 +7 +8
!—‘ Absolute Operand 1 address e Absolute operand 2
+9 +10 +11 +12 +13

address '—'_'—"-"I

Indicator bits I
T

|
!
I

LLength

T
(.
[
11

+14 +158 &

DC instruction

eFigure 15. Instruction Building Area

CSECTB

The CSECTB routine checks if the new exter-
nal symbol dictionary ID is different

from the current external symbol dictionary
ID. If not, control is immediately re-
turned to Phase F8 mainline control. If
different, current type, external symbol
dictionary ID, and current adjustment base
are set, and the non-reentrant switch is
turned on.

DSECTB

The DSECTB routine checks if the new exter-
nal symbol dictionary ID is different

from the current external symbol dictionary
ID. If not, control is immediately re-
turned to Phase F8 mainline control. If
different, current type and external sym-
bol dictionary ID are set. Current adjust-
ment base is set to zero, and the non-
reentrant switch is turned off.

58

L EA2 (address field 2 contains an entry)

EA1 (address field 1 contains an entry)

Alignment before instruction

COMB

The common routine is the same as the DSECTB

routine. The non-reentrant switch is turn-
ed on.
NOTE: The reentrant error switch, CTRENT-

(ACT), is a one-byte cell set by an ini-
tialization routine to zero. A violation

of reentrant code is detected by IEUF8M,

and the associated error routine sets

CTRENT (ACT) to FFjg. The switch is in-
vestigated by Phase FPP, and, 1if the setting
FF1g has occurred, the appropriate error
message is logged. No message for possible

reentrant error occurs in line.

CCWB.

The CCWB routine processes the operand field
of CCW statements. A complete syntax and
semantic check is made. The instruction
building area is formatted for output.

Through the IEUF8D routine, relocation
dictionary entries are made for the second
operand of CCW statement.

CNOPB

This routine places as many BCR instructions
as necessary in the instruction stream.

EQUB

The equivalance routine puts the equated

value into the address location for printed
output.

ORGB

The ORGB routine returns control to mainline
control. Processing is done in Phase F7.

ENDB

The ENDB routine does a syntax check and sets
the end switch ENDSWH(ACT) for the Post
Processor to put out the correct end card.

It also formats the printout of the end
record.

LTORGB

This routine tests to see if literals are
to be put out. If they are, the literal
adjustment table is input, and the location
field is set to the address of the first
literal to be output.

USINGB

This routine does a complete syntax and
semantic check on the operand of a using
statement. A using table pointer is set to
FF,g for each register being used, and the
correct value and the external symbol dic-
tionary ID is set in the corresponding
Using table entry.

DROPB
This routine does a complete syntax and
semantic scan on the operand field of a DROP

statement. The Using table pointer is set
to 0 for each register dropped.

LITERB, DSB, DCB, DXD, CXD

Switches are set for proper branching with-
in the IEUF8D routine, and control is
passed to IEUF8D.

IEUF8P - OUTPUT ROUTINE (FLOWCHARTS 32-33)

At entry, the current text record at
F8WORK(ACT) is moved into INPUT work area.
If this record is one of the edited types,
a partially formatted left side at F8INST
(ACT) is moved into LFTHLF work area.

IEUF8P has four entry points: IEUF8P,
BLDIMG, COMMENT, and LOADRA. Text records
are passed to IEUF8P as they are encountered
in the text stream.

® IEUF8P processes edited text records
(type 100).

® BLDIMG builds a source image from gen-
erated edited records (types 110 or 111).

® COMMENT loads the right side for source
records (type 000, 010, or 0ll), puts
an error line for error records (type 001),
and saves source records (if TERM option
in effect).

® LOADRA prints an error line if the last
record is an error record (type 001).

if the PRINT ON, DATA,
requested, the
(as applicable):

As an example,
and GEN options have been
following action is taken

records) - The
line buffer is
buffer is dumped.

e IEUF8P entry (type 100
left side of the print
loaded, and the entire

® BLDIMG entry (type 110 or 11l records) -
A source image is constructed and treated
like a source record (type 010 or 011),
which is then processed like an edited
record (type 100).

® COMMENT entry (type 000, 010, or 011
records) - The previous right side of
the print line buffer is printed (if
still loaded), and the information is
put in the punch buffer. The right side
of the print buffer is loaded with the
current record.

e COMMENT entry (type 001 record) - An
error line is printed if the error indi-
cator is on.

® LOADRA entry (type 001 record) - The
error record is reformatted to include
the statement number, and an error indi-
cator is turned on.

IEUF8P has the following functions
(acronyms within parantheses refer to flow-
chart terms):

@ Format left side (LOADLH) and right side
(LOADRH) of print line and print entire
line (CHKSWH) .

e Format text output cards (GOTXT) and
punch them (DUMP) .

Phase F8 - Final Assembly 59

® Build source image from generated edited PAGE - "PAGE".
records (BLDIMG).
PCNT - Page number.
® Put title in page heading and put page

heading for each new page (PGEHED) . H2 Col. headings for printed listing.
® Reformat error record to include the Print Line Buffer (Figure 16)
statement number (WTERR) and print error
line (LOADRERR) . LOC - Address of instruction relative

to start of program.
® Space when SPACE is encountered and

eject to a new page for EJECT and TITLE. OP - Hex op code.
® Format and print MNOTE message. R1R2 - Registers specification.
® Punch REPRO and PUNCH cards (SYSO). OPN1 - 2nd instruction byte.
IEUF8P formats are given in Figure 16. OPN2 - 3rd instruction byte.
Print Heading Buffer (Figure 16) EAl - Relative address of operand 1.

EA2 - Relative address of operand 2.
H1 DECKNM - Deck identification.
DSTMNT - Statement number.
HEADNG - Programmer heading from TITLE
statement. SOURCE - Source statement.

Print Heading Buffers (121 bytes each)

H1 I 60] DECKNM HEADING] PAGE I l PCNT
Byte No. 0 1 5 3 108 1 116 117 121
H2 | OZI ILOCI !OBJECTI ICODEI lADDRl! IADDRZI l STMT | |SOURCE| ISTATEMENTI IF 14FEB66] DATE J

Byte No. 07173 ¢ 8 14 15 19 23 2829 34 36 40 43 49 50 59 103 13

Print Line Buffer (121 bytes)

121

petaiL{oo| toc | loprirg | oeni| [oenz| EAl | ez | fosmana| | SOURCE

Byte No. g7y 7 8 12 13 17 18 22 28 34 36 40 41

Dummy Buffer (121 bytes) - PRINT buffer for error line, alignments, MNOTE message; punch buffer for PUNCH/REPRD

121

puMOUT| 00 | blanks

Byte No. 7™y

PUNCH Buffer (80 bytes) - for TXT cards

121

TXTOUT|O2!TXT lADDRI lBYTCNTl IESDIDl INS IIDRH | SEQ]

Byte No. g7 5 8 10 12 14 16 7276
Figure 16. IEUF8P Formats

60

80

Input Buffers
(1) Left side (20 bytes)

LFTHLE I RLIB I FLAGB XESI])IDI ICCTR | <SBp | RRRI RXB2D2 SSB2D2 | EAI |EA2 I FLAG I
Byte No. 0 2 3 4 7 8 9 11 13 16 19 20
FLAG| INDICATORS |BYTE COUNT
Indicator Settings
1 DS statement
1000 Align. data
0100 DC statement
0010 EA1 present
0001 EA2 present
00XX Syllable count
00 1 - 2 bytes
01
10 } 2 - 4 bytes
11 3 - 6 bytes
(2) Unpack area for left side (32 bytes)
orp
WORK LDCCTR CODE | RRRI RXB2D2 SSB2D2 EA1 EA2 FLAG
Byte No. 0 6 1 T4 8 24 3 3
(3) Right side (400 bytes)
INPUT I RLIA IFLAGAI CARD
Byte No. 0 2 3 200
Output Buffer Error Record (38 bytes) - Output from Phase F8
ERREC ERLI IEFLAGI NERR l ESTMNT| ERR1 | ERR2 ' ERR16|
Byte No. 0 2 3 4 6 8 T 38
SYSTERM Buffer - optional
Type TRLI Source record I I Source record ERREC (see above)
Byte No. 0 3 8y 519 557

e Figure 16.

V
6 source racords

IEUF8P Formats (Cont'd)

Phase F8 - Final Assembly 61

Punch Buffer for TXT Cards (Figure 16)

TXT - "TXT"

ADDR - Relative address of 1lst instruc-
tion on card.

BYTCNT - Number of bytes of information
on card.

ESDIDX - External symbol dictionary
number.

INS - 56 bytes of information.
IDRH - Deck identification.

SEQ - Card sequence number.

Input Buffer/Output Buffer (Figure 16)

' RLIB (RLIA/ERLI/TRLI)
indicator.

- Record length

FLAGB (FLAGA/EFLAG) - Record type.

XESDID - External symbol dictionary
number .

LOCCTR - Relative address of instruc-
tion.

OPCODE - Hex op code.

RRR1 - Registers specification.

RXB2D2 - 2nd instruction byte.

SSB2D2 - 3rd instruction byte.

EAl - Relative addresses of operand.

EA2 - Relative addresses of operand.

FLAG -

CARD - Source statement.

NERR - Number of errors in statement.

ESTMNT - Statement number.

ERR1 - ERR16 - 1-16 error codes and

pointers.

IEUF8D - DC EVALUATION (FLOWCHARTS 34-35)
Phase F8 mainline control calls IEUF8D each
time a DC, DS, literal DC, or CXD is en-

countered. The low order byte of register
13, at entry, is set as follows: 00 = DS,
FF16 = DC, mixed = literal DC.

IEUF8D processes an entire DC statement
each pass. The print routine, IEUF8P, is
called as many times as necessary. There
is one DC work bucket (15 bytes) in the

62

appended fixed field for each operand in a
statement, and each operand may contain one
or more constants., See Figure 11. Excep-
tions are character, hexadecimal, and binary
type DCs which may contain only one con-
stant per operand.

Relocation dictionary entries are made
for A-, Y-, V-, and Q-type relocatable con-
stants which meet minimum length specifica-
tions. However, no relocation dictionary
entries are made for address constants with-
in a dummy section or common, nor for ad-
dress constants whose operand address is
within a dummy section. One relocation dic-
tionary entry is made for each CXD instruc-
tion providing that the CXD is not in a
dummy section or common.

Upon completion of a statement, IEUF8D
returns to IEUF8C by executing a branch to
location CTRTRN in the central control
table.

IEUF8N - PHASE F8 FLOATING AND FIXED-POINT
CONVERSION (FLOWCHART 36)

This routine does all floating - and fixed-
point conversion in declarative (DC) state-
ments. It is called by the Phase F8 DC
evaluation routine (IEUF8D) once for each
constant in a floating-point or fixed-point
DC operand. At entry, Register No. 1 points
to the first byte of the constant to be
converted (the first byte past the left
delimiter), and Register No. 10 points to
the corresponding DC work bucket in the
edited text record. The DC work bucket
contains the DC type, length modifier,
scale factor, and external exponent modifier.
After the conversion has been completed,
program control is returned to IEUF8D eva-
luation with three pointers: Register No. 1
points to the right delimiter, Register
No. 2 points to the converted value of the
constant (16 bytes), and Register No. 13
points to an error flag. If Register No.
13 is zero, no error has occurred.

IEUF8V - EXPRESSION EVALUATION SUBROUTINE

This subroutine is the same as IEUF7V with
the exception of XREF, but the two are
loaded separately in their respective
phases.

IEUF8L - LOG ERROR SUBROUTINE

This subroutine is the same as IEUF7L, but
the two are loaded separately in their
respective phases.

IEUF8S - SYMBOL TABLE SUBROUTINE

This subroutine has one entry point, STGETR.
This tests whether the requested symbol is
in the table and, if so, gives the address
of the first byte in the entry after the
name field. If not, zero is returned.

e Figure 17.

OVERALL OPERATION (FLOWCHARTS 37 AND 38)

The Post Processor Phase, Phase FPP, is
divided into two control sections which
are executed serially.

The first section, IEUFPP, reads the RLD
and cross-reference records from the over-
flow file (SYSUT3), sorts them, writes RLD
on SYSPUNCH and/or SYSGO and SYSPRINT and
the XREF records on SYSPRNT. (If the DOS
assembler option is specified, the RLD
records will not be sorted. See Appendix
A.) FPP also writes the END object card on
SYSPUNCH and/or SYSGO after the RLD. See
Figure 17. 1In the event there are too many
relocation dictionary/cross-reference
record entries to be held in main storage
at one time, SYSUT1l and SYSUT2 are used for
sorting.

The second section,

IEUFD, reads error

records* from the overflow file (SYSUT3) and

formats an error message by matching a code
in the error record against a message table
in main storage.
tistical information (statements flagged,
highest severity code, and line count) and
returns to the invoker through RTA and
IEUASM.

IEUFPP FUNCTIONS (FLOWCHART 37)

The IEUFPP functions are designed to pro-
duce the relocation dictionary and the
cross-reference list, if requested.

SYSGO
SYSPRINT

Relocation
Dictionary

END

IEUFD also prints the sta-

PHASE FPP - POST PROCESSOR

IEUFPP sorts the relocation dictionary
entries by address. The sorted dictionary
is written onto SYSPRINT and SYSPUNCH and/or
SYSGO. The loader END record is constructed
and written onto SYSPUNCH.

If the EXEC statement did not specify
NOXREF, IEUFPP sorts the cross-reference
table entries by symbol. The sorted table
is written on SYSPRINT.

IEUFPP transfers control to Section
IEUFD by branching.

IEUFPP SUBROUTINES

CHKSWH - Jump Table Sort

FPP - Phase Initialization (IEUFPP)

EPRLZ - Merge Tape Writer

EP2 - Merge Tape Writer

ESORT - Input Data Sorter

GTOR - Control Table Reader

GTOX - Cross Reference List Checker

SYSPUNCH

Relocation

Errors Dictionary
Cross Reference END
Relocation Dictionary Phase
Statements flagged FPP
SORT [SORT
UTILITY UTILITY
Adjustment
Table
Main
Storage

I/0 Flow for Phase FPP

together with the flagged statements if
the TERM option is in effect. It then also
produces the diagnostic information on
SYSTERM.

This routine checks for the cross-reference
list output option.

PPIN - Phase PP Initialization

RD1RLD - Relocation Dictionary Record
Merger

RD1XRF - Cross-Reference Record Merger

READR - Relocation Dictionary Reader

This routine reads the relocation dictionary
records from input tape and stores them.

READX - Cross-Reference Reader

This routine reads cross-reference records
from input tape and stores them.

SETOT1 - Relocation Dictionary Writer

This routine writes all relocation dic-
tionary data from main storage on SYSPRINT,
SYSPUNCH, and/or SYSGO.

Phase FPP - Post Processor 63

SETOT2 - Cross Reference Writer

This routine writes all cross-reference
data from main storage.

WRIRLD - Relocation Dictionary Writer

This routine writes the relocation diction-
ary string on SYSUT1 (or SYSUT2) for sort-
ing.

WR1XRF - Cross—-Reference Writer

This routine writes cross-reference on
SYSUT1 (or SYSUT2) for sorting.

XRFLOD - Cross—Reference Starter

This routine starts the cross-reference
input pass.

IEUFD FUNCTIONS (FLOWCHARTS 38)

The Phase FPP diagnostic, IEUFD, reads the
error records from the overflow file
(SYSUT3). Table lookup of error numbers
is performed to find the corresponding
error message. The statement number and
message number are converted to printable
format and listed with the error message on
SYSPRINT and SYSTERM.

The functions of this phase are as
follows:

® Write source records (on SYSTERM) .

® Write diagnostic messages (on SYSTERM and
SYSPRINT)

® Accumulate and print the total number of
error messages in the entire assembly
(on SYSTERM and SYSPRINT).

® Process and print the highest severity
code (on SYSTERM and SYSPRINT).

@ Print statistics and options in effect
(on SYSPRINT).

® Print the line count (on SYSPRINT).

If the TERM option is in effect, the
SYSTERM data set is opened (this data set
is used at the PUT level). Before printing
any error-messages, a check is made to

determine if any relocatable Y-type constants

have been used in the program. If any have
been used, message 46 prints as a flag to
the programmer. The limited addressing
capability of the Y-type constant, due to
being only two bytes long, could present
problems if the program is run on a system
with over 65,536 bytes of storage.
Following the flagging of Y-type con-
stants, a check is made to determine if
there are any error records to be flagged;

64

if not, the word 'NO' is inserted into the
"STATEMENTS FLAGGED. . ." message, this
message is printed, the number of printed
lines in the listing is printed, and the
phase exits to IEURTA. If there are error
records to be flagged, each error statement
number is listed with an appropriate mes-—
sage identifying the error. A total of the
number of statements flagged is accumulated
and printed. As each error message is
processed, its severity code is checked.
The highest severity code encountered is
saved in register 15 and printed. The phase
exits to IEURTA after printing the line
count.

IEUFD SUBROUTINES

FD
FD locates the error block count, tests the
Y-type constant indicator, and if necessary,
points to message 46 in preparation for
printing the "AT LEAST ONE RELOCATABLE Y-
TYPE CONSTANT. . ." message. If there are
no relocatable Y-type constants in the pro-
gram, it branches to ML0O.

IRDERR - Error Record Reader

HCC - Severity Code Storage

This routine stores, in register 15, the
highest severity code encountered.

MLOO - Error Record Tester

This routine tests if there are any error
records to be processed. If there are no
error records to be flagge@, the "NO
STATEMENTS FLAGGED. . ." message is built,
then a branch to ML1l occurs to list the
message. If there are error records to

be listed, this routine exits to MLOlA.

MLOl - Error Record Getter

This routine gets the next error record. If
the last error record has been read, a
branch occurs to ML10.

MLOlA - Error Statement Getter

This routine gets the error statement num-
ber and accumulates an error statement
total.

MLO1B - Error Statement Converter

This routine converts the error statement
number into decimal for listing and points
to the appropriate error message.

ML03 - Error Message Converter

This routine codnverts the error message for
listing and lists it.

MLO5 - Error Statement Comparer

This routine compares the error statement
severity code to the highest severity code
yet encountered. It saves the new severity
code if it is higher than any previously
encountered.

ML10 - Statement Printer

This routine prints the total number of
statements flagged.

ML1l - Error Message Lister

TRMXRTN - SYSTERM DCB Exit Routine

TREDIT - SYSTERM Source Statement Editor

If the TERM option is in effect this routine
arranges SYSTERM output depending on
STMT/NOSTMT and NUM/NONUM options.

SYSTRMD - SYSTERM Output Lister

Phase FPP - Post Processor 65

PHASE ERR - PERMANENT I/O ERROR ABORT

The I/O error abort phase, Phase ERR,
obtains information about a permanent I/0
error and then terminates the assembly. It
consists of one control section -- IEUERR --
which receives control (via XCTL) from the
phase in which the error occurs. That

phase frees the core it originally obtained
and waits for completion of other outstand-
ing I/O requests before passing control to
IEUERR.

66

IEUERR issues a SYNADAF macro instruc-
tion to get the following detailed infor-
mation about the error -- jobname, stepname,
unit address, device type, ddname, opera-
tion attempted, and error description.

This information is output to either the
console device or SYSPRINT.

IEUERR returns to either MAC or RTA with
a Return Code of 20. Figure 3 shows the
control flow to and from Phase ERR.

FLOWCHARTS

IEUFL

AR KA Dk ok ook ook rEAZEEESEES
:BALR_ X F&DM Fl'* RREKA2RERE KX KK * OPEN *
¥ . * LINK * e st Y
st sk ok ok ok ek otk ek # FROM IEUMAC # ...+ +X%DCB'S FOR SYSIN®
° * * *SYSLIB SYSUTL#
° TRk kR e R R Rk SYSUT2 SYSUT3
M FRREEEER AR
o .
° .
N .
° .
% .
TRRKRBLERERRL KrRX i
- EREREBIRREREREBEL
FAAKD | Ak
% Reg%ﬂ%%wo : A b * DETERMINE 1/0
. % XCTL T0 IEuF2 % *BUFFER SIZES BY*
ek kA KRR K Sk dkokdok kR ok K : DEVICE TYPE :
.): FERERREEERR SR RELR
o 2 N
o ° .
o ° .
o 2 .
% o NO :
HRAKC DR o¥s H
. . *CZ *o* HRCISEERREEH
: B8R X . % 15 . * GETMAIN *
* %o OP-30DE okXee.sse.. S otrert toees
oK KRR KK %o OPSYN o%° sl *REQUEST 65K PLS‘
° e : ¥CONSTANT AND
o " " OFPER AREASH
« : GRS
YES N .
° : .
° : :
° - o
)"(. .
o¥o - %
‘DZ “~*’ - TeaREDIFRERRRSRRS
YES*o* OPERAND #*, . HOVE “
sece®a FIELD SLANK o : nunuuzs DaATAS
° °u, o : O COMMON aREA"*
° s . AP
Aok ko E] o ok ek Aok Aok % e . .
x LINK FRNM % : . :
: Nl : : :
F A A A ° e N
2 . X - %
° ° EAE 2ukronknk D REERRE3RERESE SRS
. : SR B 5 cOpes Mo =
° e * SCAN _OPERAND _* -y SERER MO x
; D e S
ttw:uuﬂr*t* e "**'*:‘****‘ : FRERRERARRRRE KRR
*SAVE ADDRESS OF% ° x° : .
TEoash ENTﬁY . 00000000030X0 . :
POIN ° N .
* * ° -
Sk dokok o ook ok Rk % N
M bRy €3 bt i : persspastararseny
° * CREATE GLOBAL * - B e P B R e e B
. ¥ ORI 2 1 $READ FROM SYSINS
g * . : WRITE gﬂgRCE
R T —— Fokdkokokokok ok Ok kK N bR 631 8 T4
x - .
PASS TEUASM AND : N .
* TEUMAC POINTS N : :
* TO TEUF1 * - . .
* * eore ! .
Sk sk oo o ek ok okoR Kk ok * * . X
° + J3 & . o¥e
° * * . .63 .
Ty N
M P R D
° X**-4«,0P-CODE ICTL .*
o . %, o
o . *, o
X . £, o %
dokokH | ¥ ok ok sok ok * YES
« .
X LINK TO TEUFL % . :
KA kA R . :
. X
. FEEREHIRE SRR R SR
* &
M * PROCESS *
. *[CTL STATEMENT #
. * *
* »
. EXRERESREREBE RN
towswn -
- . .
o % J3 %000 0"
* * >
I .
: X
. Ieren)assessrases
. : SRC
. *READ_FROM SYSING
* * WRITE SOURCE #
. * ON SYSUT1 &
. ERRREEREERERRRED
. .
® Chart 1. IEUMAC - Macro Generator 1/0 Chart 2. IEUFl - Phase F1

Flowcharts 67

TEUF2

EEERA] RFRERE TR

#
#XCTL FROM IEUF1
* *

DRIVFR

FEKERAQ SRR REXRKE
*".FTSR(‘ 0683
*RFAI) FRU‘! SVSIN'X....
dRITE SNURCE t

FEERRSREBEREERE ON SYSUTL
. t:ttnmuwtmnt:t **’”"
opEE . M * A2 %
¥03 % (Xeieesseossscacscssccanace A
* Bl ®.Xo i
* * . cessccsvcos
P . X
DRIVR] X ok,
R AORR] F R R Ak R B3 . FHBLIERBEBE
* * o o *, * ENTDCT *
* !NIT“\LIZE * . o ¥ IS A %*. YES % —‘-‘-*-’<"*‘
* *x csesessscscnses %, PROTOTYPE o%ccoeeeseX¥ENTER OP_COD *
* STAYEHFNY * - *,FXPECTED .* IF ABSENT UT3‘
* * : *. .x N7p ABDR ta 6o
EEEE R R ERKE . ®, % EEEERERRKEEK
. . * NO .
. . . .
. . . .
% : X X
FRCLERREERE . £XC IREBE KKK EEERECHAEREEEEE K
® GSCAN * . * ENTDCT - & ENTER SY?Es"v *
B e e il o o B B B e K SYSNDX Ng
SCAN NAME FIELD - * FIND OR ENTER ¥ *TRAN ch' CHECK*
¥PUT INTO E.T.*% . * 0P CODE IN * FOR l%EGAL
* . *GLOB, DICTV.#* * NAME FIELD
T RS . EEREBEREEER FRRAETERRERRERERS
. . . .
. . . .
. . . .
. . . .
- . . .
o - X °
X - o ¥q X
#t[)lttttttt . 03 =, FEDLEEREREE
* GSC * - * * LOOKUP *
B e e L . YES % WAS *, I et e e
*SCAN OPERATION * B eeccossc¥ 0P CODE FDUND.' *PUT NAME FIELD *
*#FLD PUT INTO * . X *o * (S.P.) INTD *
EoTe ° bbb %o ‘ oDe & EoTo#
EYs T ey . %04 * x5, . FREEERRBRER
. - * Al® #NO, MUST BE .
. . % .MAERD INST. .
scccescscscsccssssosessosee * - -
. .
X X
EREIRERRERE #tt##Ekt‘t#ttt'#'
= SMTSO1L SCAl
A R ‘FACH PARAMETER ‘
#CHECK STATEMENT* LD *Xeos
* SEQUENCING .‘ :EDITF.D TEXT FOR® -
Ferrssnesnss EERsRBRERRESRRRE
. - .
. . .
- . .
. . .
. . .
X X :
SRAEAFI RS SRR RS R FEELERRBRER .
* EDIT NAME * * ENTODC * -
*FIELD IF PRES. * ottt s e .
ELSE _INSERT *ENTR IN Lo.D. IF#% -
NULL FIELD INTO KEYWORD PUY STD
QUTPUT VALUE IN E.T.
FEEEERREKBERE AR A FREEEEKERRE
. .
. .
- -
. .
- X
X o ¥
FRGIEERRREE Gé
* NDSMT3 * o ¥ ANV
B e o o ORE
*WRITE EoT. FOR * *, PARAMETERS .'..-.
* NAME FIELD #* -
* * “w. o
FEEREBRERER *, .®
o * NO
. .
cccscnsssseXe .
. . .
. X -
. tt#ttuf;tttttttttt .
- N
. P. AFTER °
. K N.P.. IF ANY,*% B
. * OUTPUT ERROR * .
T R ERRRERERERRRXAREK .
. - -
. . .
N . .
. . .
. . .
. X -
. 2% I RERREER .
. * MOVE IN # -
. * LITTLE *A* =* .
. + POINTER YO * =
. * EDITED TEXT * -
. * RECORD * .
. PEERERERERE .
. . -
. . .
. . .
. . .
. X °
- - %, X
. k3~ "=, HAK G RRREARE
. o ANY ¥, * NDSMT3 *
. * MORE *, NO B e 5
. PARAMETERS o®ccceceeseX®OUTPUT EoTe FNR*¥ccoe
*, o * ND NF * .
*, o * STATEMENT % .
x, o* SEREREREERA .
* X
rxx
*®
* A2
*
*ax

Chart 3.

68

IEUF2 - Phase F2 (1 of 5)

*04 %
* Al®
* ¥
*
.
X
VALDOP ¥
Al *, FEADEREREEE EAZRERREER
¥ * SMTSQL * ‘
*IS 0P FIE| LD R R *E ER-R-K-RK-R
' AN ASSENBLER‘X’CHECK SYATEHENY‘........X‘ SCAN DPERAND Foceseaos
. X
. . CRAN Py
*, o % FEEEREEEERE 2 eeRERED 207 %
& YES * 31%
. * %
. *
.
}
¥
Bl %, FEBRERESRER *ABIEREEERE
o¥ o ® GSCAN * LOOKUP *
.%1S 0P FIELD®. YES B e o e B e B B e e R
A DECLARAHON.*........X‘SCAN OPERAND F®..cc0casX® PUT OPERANDS *.cccsees
. o¥ 1ELD hd *INTO G. R * X
. - #L.D., RESP.# XEREE
¥, oF BRBEEREERER Pl Sy *03 %
* NO * AZ2%
- * ¥
. *
.
.
H
cl %, SEC2ERR SRS tttttcat:ttcttc:t
o® e ' METSCN * NSERT
<%[S UP FIELD.. YES H = R O *VALUF INTO E.T.
*,K' SCAN OPERAND '........K‘IF SeDeTay ELSE‘........
*, STAYEHENT " 1ELDS i TTLE °A' INTO® X
E.To * L
“e. o8 SREREESEEXE EEEREREFRTEREREEE 207 ®
* NO Bl®
. ® %
-
.
X
t#tttDl#ttttttttt
G ATE
‘ BRANCH BASED ‘
P CNDE *
t AND BRANCH TO t
tttt#t#ttt#t#tttt
.
. i T35 t‘tttE3ttt‘ttttt‘
. * METSCN LOOK &
« AIF, AGD tt—t-t—#—t-t—tt FOR_S.S. IN *
cecscse cessseX® SCAN OPERAND ‘........l‘ DICY. MOVE Feeeoooose
. * FIFLDS #LITVLE *A® INTO® X
. * * RS EE
. SEEREEEREEE AEEEE LD FRRARE SRR *07 %
. * B1#
. * %
. *
.
N
.
. BEFERF2REXRERE RS
. * *®
« MACRO ENEXT STATEMENT *
.................X‘IS EXPECYED TO *,cc0c000s
o #BE A PROTDTYPE * X
. * et
. FERFEERREERERERER %03 =
- ® A2%
. * %
. *
.
.
.
o
. FAG2RERRAEE FEEXEGIELRERE RS S
- * WRNERR * * *
. ICTL e et e B] CARD *
cccacesccsscsscccX® PUT OUT AN FeeoooeseX¥ IHAGE INTO ¥oioeacoons
. *ERROR NFSSA(’F* : INPUT BUFFER * “:“
. ttttttt'ttl F2EESEERERRRERERS *03 *
- * Bl%
. * *
. *
. cesscececccscccacccscsssaccscsacssscascsncsan B
: X
.
. :t‘ttuant.ttattt :uuustnuttctz EEAEEHSERERLERERE
. * * *
. CorY NOTE SET INPUT * * FIND *
sesscscsscs ...X*PRESENT SYSLIB ‘.......-X‘ AS SVSLI‘B IN #eacoseeeXX C {DPFRAND *
DDRFESS * * IFLD) :
B .
*, % attttt..ttt:cutt TerrersaRrEEEEELS AEEEEREEEESERREER
X
Rk
*03 *
* 31%
- ASEEE J2EEEEREEEEE ® %
. * #
« ISEQ & DEFINE NEW #
ccvcecsccccsssescX¥ Foeonooos
- ®* PARAMETERS IN # X
. * e
. tuttntntttttn *03 %
- * B1¥
- * %
.
.
. EEK2ER R ESE
X
R Pt
ERSEERERRRSE €07 *
* Bl®

Chart 4.

IEUF2

- Phase F2 (2 of 5)

Flowcharts

69

05 *
* Al%
%
* EEA FRERE KK
(‘SCA
SEXTRN, WXTRN d—m—e—e—e— e

.......-.....--..X‘ SCAN OPERAND *
FIELDS *

Er AT RR KR KK KRR
*

*

*INDICATE POINT *
esessecsX¥ OF DEFIN FOR ¥

* THE DICT *

. *
. FERR KRR RrkRERRERRECREREE
. .
. .
. .
. X
. R KK
. * 04%
« START * A3%
. DXD AR RAP DR E R ERK LK ® %
» CSECT * * *
. DSECY * SET TYPE *
sescevsscsascssss X¥ ATTRIBUTE Kooevsons
. * * X
. * * REKK
. P S T T ® 07x
. * Blx¥
. * %
« EQU *
« CXD
-......-.................----.-........X‘***‘
. * Oh%x
. * A3%
. * &
.
.
« END
PPN
.
.
.
: *
. .
. SED2EEEAEEE D3 %, A4 A kKK
« DC * GSCA! * o¥) CAN
. DS LT e e e % ARE WE
eseseccsssssssesscX¥ SCAN FIELD ¥onseaseaX¥e IN OPEN
. OPERAND * *.‘ CODE
- EEFEkkERiokE K, ¥ e Ao de et o ok
. * NO .
. . .
. . .
. X X
. skxn e
. * OT% * DT
. * Bl¥ * R1*
. “*ugzttu*xnu ® % = %
. * * *
« CCH OVE _IN TYPE, *
...-......--.....X‘ LENGTH. SCALE *.ceenons
. ATTRIBUTES * X
. * EE 2223
. LR 222 22222 sl d * N4%x
. * A3x
. * %
. *
» ANOP,TITLE,MNOTE,MEXIT,CNOP,
. DRUP'USINGyORG,PRIN'vS ACE,
. PUNCH,ENTRVpCUHyEJECT,LTORG
scessesssseceassascecnsnssccasesasssssssans
. ERREE
. * 31*
. * B1x
. t*tt * K
. " G2 *...
o t#t* .
: HEEFEGI AR T hE kK Rk EEGIE R KEE TR EE
. *ENDOPR 0781 * *BHFURC n685 *
« MEND *
.................X* NRITE EDITED ‘.‘......X*FDRCF aur FD]TD*..-.....
. EXT _FOR MEND * ALOCK ON X
. R SYSUT3 HAK K
. B e PRE) £33 £ S #® 0p%
- * Blx
. x %
. *
. ¥, *,
. H3 *, H4 *,
« E.0.D, ON o . * *
. SVSL'R «*¥ ARE WF *. YES ARE WE *
sececsescsscsecsessoccsassssssacsssssoscs s X¥e IN COPY EeiteeeaaXEL !N A SYSTEM
. CODE ok « MACRO L%
. . o¥ *, o¥
. *, ok *o ook
. * NO * NO
. WRNERR X X
. *t*#*d?#*#****t** *#*##J}*‘****#*** Aok ook & ek ook & okok
s FoloD. ON * * RESTNRF *
« SYSIN * * 0.8, ON * *PREVIOUS INPUT *
-.........--.....X* SIMULAYED END * * systia * * DEVICE 1IN *
. *#CARD IN BUFFER : : * * GETSRC
. #* * *
. EE I s e L e s R s ok ok gk kR AR KK Rk
. . an:*x . *#*t . wEEk
. . ¥ D6% . * 03%
. ..X* CZ * ..X* 62 * oo XE A2 X
. s
. l‘tt# 8#** ek %
N ytuttKlsttti**##*
. *ABS
.. OPSYN —--‘
.................X*PUTS ouT OR *g000300¢
4ESSAGE * X
RS
v*:v*t*:**t#*twtt * Q3%
* p2%
* X
*

@®Chart 5. IEUF2

70

- Phase F2 (3 of 5)

FHK KK G RRKAR KA A
* *

* POINT TO *
o o XXPREVIOUS NOTED #
* ENTRY *

ook XK AR R Kk K

sEEEE ek
#06 * 06 _#
* Bl¥ * B3%
* % L

® ®

. .

. .

. .

DCLSE X GFTSRC X
t##*#’\l#t*ltﬂ“*t EAR ST RER SIS 222 2]
* SAVE N/P * *
s SREConb ol ok * PEAD INPUT #
* SYSUT2, WelTE * * FROM SYSIN OR #
00T LAST 2LOCK * * SYSLIR *
#OF LNCAL DICT. * *

LIS I RSN S L 22 2 2 FRETREERE R R RE RS
. .
X
FXEERC] R RREEREEE RREERC IR e ek REokk
* M IAWFOEC, BWRITE +
ERN & J#PROCESSING #. NI) ##—%— k- ¥—d-¥=b= o
* THE ToA. HASH ¥ oo XeWRITE RO RYTES
® Al 1R SOURCE N %
* YSUT1
FEEEEFRREFEREEREE l*tt‘#‘t.t’#t##“

.

e oo o0

EXEHED] EEXERRRELE

esscscssscscsscosscsccasXe

®

REEERDIRREEREREER
* CK *

RI
FEAED S REE KEREREE

LT T

TE

t

M MOVE

* RECORD TO
* RUFFFR

*

*

EREEREEEE EEFESER

PR

&0 1S T,
sec®l AUFFER FULL -%
¥

"k, o
*, %

* YES

eXsoeeoosseos

.
.

X
EERRFEDOGERE SR RE kY

B
.
B
.
.
B

* SUBSET THE * TE
* LOCAL * * FOR CONT. * B it D e 2 et]
DICTIONARY JUST *#CARNS, SEQUENCE* WPITF A BLOCK
: WRITTEN * : NOS.y ETC. * *0ON REQUESTED #
RIS ERFE R EERE X EREEEBERR AR KR ER 228 PR e 1
. . :
. . cecsenene
X : :
¥ . °
£l *, X X
.‘ *, ExEEFIhkb ki kkk R ECLHERR SRR EER
WERE WE ®., YFS *® *
‘ ED[YYNF PROGoo*eoccsoaas * BR RETURN * * PR RETURN *
MACRNDS % X * ® *
‘. o ¥ EEEE e RRERERB R ERE EEREIEEFE R aE &
*, oF *03 *
* NO * B2%
. + %
.
.
“
.
Fi *,
ok ANY %,
.tMAcnn INS. *. NO
*, ENCOUNTERED o¥ccececscncnssvscscccscccsccnessccs
. . N
*, ¥ -
¥, oF °
*® YES -
. .
: .
X .
FEEEEG] EXREEREH RS .
* SET UP * °
* STANDARD ICTL * .
* PARAMS, SET * °
*INPUT TN GTSRC * .
* T SystLig * .
. .
cXesesoescssssesecnsnanoncs :
: B YES -
H2® e, . tttttH}tttttt#ttt FREERHA KRR R R SRR T
o¥ * - * SUBSET .(- *
NO o¥ ANY * X DICTIO *® ‘ CLNSE (TYPE= Y"
cscsssesX®, MACRD INS. --.-X* $UESET GLUBAL FoooooeaaXESYSUTL,y SYSUT2, %
X *. LEFT . .» * "DICTIONARY * « AND $YSUT3 *
. ", oo% SRR R Sk FRERREEEEERRREE AR
. * .
. .
: ;
EZII I NBES 223 222 2] : EE S ENEE S 2222 d
* FIN * . ® *
* MACRO * - * CLOSE *
& DEFINITION ON * - * SYSIN AND *
: SYSLIB : o : sSystLia :
EEFEFEEERE AR RRE : EREEEREREE RFEREHE
. .
. :
. N
. .
. X
. ERREKGRERREEREE
*
: * XCTL TO IEUF3 7
TR R AR AR

Chart 6. IEUF2 - Phase F2 (4 of 5)

cecas®LIN BU

* 8
#* _O#
ErE
LR
* e

<o 0 W

RHFRC

L

¥,

XIST #.

FER FOR.*

*#THIS RFCNRD®
*, ¥

*

Anm
N

. DN
N ¥ ROnm
o

¥
YES

e o eee 0 &

FEFECSFEEARHESE

&
* BR RETURN *
* &
FREEEEEREREERE R

BWNITE
a&ttt;st:ttttt‘tt

GET NOYE OF
URRFNT
PASITION

FEEEEEEE SRS EEEE

o %% %
LA X2 X

e o800

FREBGEERRAXERER

*
* BR RFTURN ®
* *
SEERREEEERERREE

Flowcharts

71

*07 *
* R1%
® %
*
ENDIPR X
®63) wkkdkkE
* ENTCMT
R e R B
* EDIT _COMMENT *
“ FIELD
EEERERBEERE
-
.
X
L R e T
SET_END *
* OF STATEMENT %
*FLAG., SUPPRESS *
: DICT. LODKUPS *
®
FEEEFEEER RS RATE
.
L .
*07 * .
* Dl #.Xe
* *
o .
NDSMT3 X
FREXED] XEREREEEEE
* *
*® *
* UT1 INTO UX *
* *
* *
R
.
:
El *, EREFFEQRETRBERHRR
4 *, * *
o¥ ARE *, YES * *
#oWE IN A MACRDe*coecessaX® UT3 INTD UX *
*, ok * #
* *
AEEERBRRRKETEEEEE

.

.
X

.
.
.
.
.

ssessccccscccnssne

AEFQEEERRER
. ARE &, * LDOKUP *
<% LOOKUPS %, NO R s d
*®. SUPPRESSED o%.ccececoX®INSERT LITTLE A®
*. B *INTO E.T, FRM®
*, ¥ *OPRND LIST *
x, % FERKKEEREEE
* YES .
. -
. .
eXesscscevccsescsecssescnne
X
SREREGL TR REEEREE
#*BWFORC, BWRITE #*
et et =]
* WRITE F.T, ON *
* SYSUT1_0OR *

* SYSUT3 *
EEEREREEF IR EREE

© 0660600560068 6008000600000 008es000000 s

X
oE.
H1l *, FREEEHIF R RR R R R
. IS AN #, * *
<% ERR REC #. YES * *
#. PRES IN A . #........X®* UTL INTD UX #...
#.MACRN TO .# * *
* ,UX=3 % & *
T, oF BREEEREEBEERBEKER
" NO
.
.
X
o ¥
J1
¥
S *, NO
. RETU Heeosanes
* EXPFC X
*g LSt 23
*, *0N3 ¥
* * B2
- * ¥
- *
. X
FEm (] Tk xRk
*
* HR LINK *
* *
L2222 223 22 22222

Chart 7. IEUF2 - Phase F2 (5 of 5)

72

*08 *
* Al%
* %
*
START6E X
ERERAKA] EERERERRRRK SEERKAD SR EREREREE 1EUF3
* * FEREATRREERRERE

* * * PHASE *
§EAD TEXT FILE‘ X........:INIYIALIZATION :X........:XCYL FROM IEUFZ:

* * HhR R REERRE KR
R EEREEREERE EEERERRRRER KEEREE
X
CGIT0 ok MACHOP
*, BERERBD EERE KR EERE
o ¥ *, MACH,. * *
o ¥ ®, OP. * PROCESS *
®, STATEMENT o%ccesoeeoX® EDITED TFXT ¥,....
t.‘ TYPE *.‘ * RECNRD * o
. . .
%, ¥ BREEREEEREREREREE X
% T
- * *
. * Al %
. *® *
. Rk
. SOURCE
. FERRRRC KR KERREREKE
.
« SOURCE, ERROR * WRITE *
eesessscscssvsssceaX TEXT _ON ceee
. * SYSUT2 * .
. EEEERREERERRE X
. Fkwk
. * *
. ® Al *
. * *
. R
. SETSTY
. HRRERD2 TR RRRREEER FrekDIRREEREERER
. * *VALUAT
. * DETERMINE * B et
- cesocescee XXADDRESS OF NAME%,. EVALUATE ¥eeoo
. * FIELD * PERAND AND .
. * * STORE RESULT *
. P e e] ERFEREERERRERREEE X
. EEE
. * *
. * Al ¥
. * *
. ke
.
. CSECTY
. FREERE TR BAF RN FRERESEIERERRECERER
. * *
o CSECT, DSECT * * * WRITE *
esvcecsssssssaces X¥ SAVE NAME ¥eeooesoaX TEXT_ON csee
. : : * SYSuTv2 *
o .
. P e e EERRRBREREE LS X
. e
. *® *
. * AL ®
. *
. EET s
. AIFST o ¥
. FRREKF 2 E R EREE R F3 %,
. * * o¥ *,
. AIF * EVALUATE * o ¥ 1$s %, NO
. ceccsessscasaX®AIF EXPRESSINN %evcocsoaX¥e EXPRESSION o%ccoe
. * * *. TRUE ¥ .
. * * *, o¥ .
. Rk R R ¥, o ¥
. * YES L2 2]
. . *® &
. ° * AL *
. . * *
. . sEEE
- .
B AGNST X
. FREERGIEEERERRREE
. * *
« AGO * *
cecessceeccsccocscsssssccccscccnsscsscsscneX¥ POSITION TEXT #.0o.
. * FILE : -
- .
. sRkkRk et RERRetss X
. hEE
. * *
. * Al ®
. * *
: e
N
. MENDST - ¥,
. H2 T, FERREHIARRESRE SR EERREHL R KR KRR EE
. . *o * * PO N *
. MEND, MEXIT ¥ EXIT *, YES d SET _TEXT * * TEXT FILE Tn *
feecececscsssesacX®e FROM JUTER e¥eceeseeoX® FILE EQUAL TO #cooeecaeX® £ *eeoo
. t.* MACRO ‘.' * SYSUTL * X : DISCONTINUED : -
. - B - .
. x, % EEEXREERERREREREE . eI T T T TR ST PO
. * NO . wERE
- B . * *
- ceocescecsccccescsessscscssccsscavosasa * Al ¥
. * *
- ek
. MINSTR ENNMI
. SERREE J2RRERERRRREE ARSI ERERRRREES J
. * * * READ
« MACRO INST. * WRITE * * INOTE® * * * MACRD
eescesssscsescoonX SOURCE ON ecescassX® DISCONTINUED *.. ¥eooeasoeX DICTINNARY
. * SYSuT2 * * TEXT : : * SYSUT3 *®
FRRRRERERR Rk sxER AR ERRERERRR
.
.
.
-
o
ENDST N X
HERREK 2 EREREEEE DA Rk ERK G ERERRREEAE FEREREK SRR KR RELEE
* * EEREKIRERREBEEE * *
END * * * RUILD *
..........-.....X:CLOSE nuTt PHASE:........X: CALL IFUMAC : :PA‘IAMETER TABLF:X... .
* * FRRRREIERAREERE * * SY
SRR AR Rk BEEEERBRERRKBEERE SEEERREREREER
. e
. *
ee X® Al ¥
* %
R

Chart 8. IEUF3 - Phase F3 Main Line Control

Flowcharts

FREBAL SR ESRE SRR

*
: ENTER VALUAY :
BHEREEBEEEREERE

Xeoos o0

VALUAT

HEXGER] *EEEERERRE
*
INITIALIZE

L2 X]
LR 2 22

*®
FEEEEOXEEERTHE GRS

74

SYSLIST

secccessecssascse X¥

© 00606000506 0006080 6600606068060 06006606600800000

*
coeo XE
*

NATTRT

*

P R o
CHECK FOR
PARAMETER "

EELL LSS 2

ERAL KRB ERE
ATTDAR *

SYSLST

EEREXBLEREREERE R
*

#* STORE PARAM.
FLAG Tn0

* SIMULATE A
* PARAMETER

EEEXERABREEE R R 0K

..

LX T 2 X

.

REy

PARMTR .
EEERRCHERK L RERRKE .
% IS %, - * o
<% INPUT PTR 2. YES PARAMETER * STNRE PARAM, #* .
oo X@, OUTSIDE e®ooecconse sevececcssncnsce X¥ FLAG AND N}, * .
*#,0PERATOR * INTO PNINTER % .
RANGE e aadd < * .
o o o¥)11 & Rk Rk kR kR R ek o
*ke * NO * Al® - -
* - * & . .
s 01 s . ® Xeessooovssa
Ty : :
. .
CHF X ATTPAR X
FEEEED] KX XREERERE REDG EREREER
GENER bl * *
#A BRANCH BASED # K * CHECK *
* ON INPUT PTR ¥ esseccoccscese X® FOR PARAMETER %
#* AND RRANCH YO * * *
* * * * Pt
FEE SRR SRR HH SR P T Y ®09 %
. . ¥ ES%
. ER T I *® %
. % x . *
- £ F4 FoXe .
. * * e .
- ok k& - -
. ADVOP X ADVIND X
. EEERRELRBRERRRERE HXEERE SHREERRRERR
PO § * * * *
« NOT ADVANCE * * ADVANCE *
4000000000000 00000000000000000000000000c0000sc0c0c0escs0ssscsccscnceeX¥OPR, POINTFR BY®,0c0eaoeX® INPUT POINTER #
B * 1 * * BRY 1 &
- * # * *
. PEEEEREFERERE RN NEK FEERERRRERRR SRR
X
EE
* #
* Cl %
* &
: LS 24
.
.
esceccscsscsscocs cccecccececes
. .
. . ot
. . 09 *
. . * G3%
. . * ®
- . .
. P . o
o *09 . X
. * G2% FORCE o %o . TSTOP1 ¥, DOOPR N
. OR * % 62 %, . 63 *, HEEERGL ERRREREE XK G5 %,
-« AND * *, . . *, * * o¥ *q
« OTHER . o FORCE *, YES X <% IS OPR, *, NO * FETCH ADDRESS * «* IS FIRCEN #, NO
scescccecccscose s X¥LAST OPR. IN c¥ccenceocX®oIN OPRe LIST o%icoceoocoX® NF OPERANDS A #oceeeeoeXe OPR e e¥eooe
° X *,0PR, LIST.* %, A COMMA .* * AND B * *,SUBSCRIPT. % .
. *, . *, o * L O S .
. ¥, % P *, % X
. * NO * YES L didd
. . o ®10 &
. . . * El®
. X . * ®
. whke . *
. * * -
. ° * E4 % - SURSC X
. . * * X EREREHEREKR S HRRER
. . EEEK EEREHI SR RREE SRS % *
. o * * INCREMENT *
- . * RETURN kd & INPUT POINTER *
. - * * * PAST (*
. . B *
. . ERRERREREERERRERR
. - .
. . .
. ecescccoccecnsaccsscnccsscocsescccsccsssscsscssssna .
. - X
. REL INT . ¥
. FeR i NPET PSP TP EEETE I RRERREEREE . 45 T#x,
« RELATINNAL * * * * . «*1S THIS%,
« DOPERAND *INITIALIZE REG.* * INITIALIZE * . +*A SUBSCRIP-%, YES
cesscceccsncscecoXK¥6 WITH ADDRESS *.coeceesX® PUTST SHe TO #*.... - TED SFT e¥s0aa
%0F STRING ARFA # * TOFF? * ¥ VARTARLE .# -
* 2 * * ® *, ok N
** *o % X
* NN i
- 10 =
® Al%
* &
X
HEK SRR ERREE
* *
* GET VALUE %
* FROM DARAM, *
3LE *
LR e
.
X
EEE S 23
#]] &
. *® jS#
Chart 9. VALUAT - Phase F3 Evaluation (1 of 3) s

€10 %
* Al%
*
*
.
5
SEEEEAL FREBREEEER A
* - %
* *
* BRANCH TO SEV #* secssssccsss CH. o
* TYPE * . . X
* : 'R rehEk
SEEERREER R RERERS . . %11 %
. . «“NO * F2%
. . . s
. B . ®
. . .
: aeben . .
- *#10 * . -
. * B2% METC4 X
: « & #ttttazttl#tttttt SEBISEERER FEEERBLBEERESE LS
- b ' INCPTR * *
- SETC . ' FETCH t P et Y *
ecsceassccesscasaaX¥ LENGTH OF * ‘lN]TlALlZE FOR ‘.-......X‘ STORE RESULT *.c0cesss
. * STRING * EN * X
. - M * R
. EREEEREEERRRBEREE ErEREREEREE PPN 09 %
1%
M * %
. ®
.
. seens
o *10 *
: s Co% METB3 R
N . ® [3 *, ucaut:tu e
. * «% IS *, ‘ CPYR ‘ * *
. SETB . o ¥ IT A *, N0 KKk * *
ceccescesssassscsXEe CHARACTER .‘.o..n-..X‘lN!TllL'lF FOK *, JX#® STORE RESULT =
N «, o M M
. . . * *
: x, .® reeebERERER T, 09 #
o * YES * Clx
. . * E
. . *
. N
o bt ©vescecescscscnsscscccscocecnsccoseces e
° *10 # -
o * D2% MEYA3 o ¥, . METAL
: % . baddadiEb it Lt S xDgsrerary
° * % IS *, b o ‘
o SETA X ¥ IV A *, YES * t X _.-.-g_ -kt
. oX¥, CHARACTER o%.ccccceeX® FETCH BINARY ‘.-......X‘CUNVERT BIVARV
%, EXPR., .* * WORD * T0 NECIMAL X
aeeee . % ® e o P e
%10 * , % P T ERRERRE RO 1] *
* El® * NO * Fo &
* & . 2 %
* : ®
. .
. .
DOOPRY X META2 X
TRRAREL Sk anERRES SOEP R CREEE pearrEasasksearer
‘ * INCPTR * ‘ STORF_VALU
: OPERATR TEST t SINTTIALIZE FOR" xt INTEREFDI 3 :
* £ ’.. eecsee AT ¥oeasoso
* AND BRANCH * ENTRY - RESULT R
N . * Ly
EEEBSEERA RSB OSSR SRR ERRREE AERRBRERERRRR SR *09 *
* C1e
. %
. *
seereboxrerarsres
° RRANC
o ARITHMETIC ‘ ACCOPDING 10 ‘
X% SPECIFIC ¥eieoncnosscns
OPFRATION :
BEEEESERREBRARESR
no
BERRBG2AEEEE SRR FRERRCLBERRRERR £
* * *
* CESS * * PERFNRM *
e X¥ L'IG"'AL * sesscsssses X¥ ADDITION *eoeoos
* OPERATOR : : :
. SEEREARRERRER SRR : ERERRERRREA D ERK AR .
. . . .
. : N .
. . . .
. . . .
. . . .
- X . SURTR .
M ARERKHE AR R RRRE R . EXRRRHG RxRERTE LS .
: . * 2 * N
° *INITIALIZF REG.* « SUBTRACT PERF{:RM * -
. %6 NlYH ADOFESS ¥ooeosnns n.ooo-o.o-onoo‘vnx. SURTRACTINN *,..0Xe
. #0F STRING AREA * X - * .
. * 1 rewns . ® .
SRERRRRE AR SEREEE 09 = .
* Go%
* %
*
.
: RELAT MULTY
N Erersjersrrey IRerrIbxaT R R X .
. *® ° .
RELATIONAL *FETCH CnNDlVION' MULTIPLY PER
:..-..---o--oco-ol CODE_FOR :oo-oo---.-......X‘HULT]PLI"AT|"N *-.--X-
% RELATINNAL 3 . .
* ATOR * . ‘ B
RERERRERBERERNR SR : pOPP. :
. . .
. N :
. . .
. . .
CRE X - 1v «CCNTIN
FEEREK KRR ERER R : FERRAKAARE SR SIS E L sme s r s r e
* M * « PO
* INCREMENT * : DIVIDE * PERFIIRM * X x ST 30F *
* INTERMENIATE ¢ P DIVISINN ¥oaoeoassX® "ESYULTY IN *
SRESULT PDINTER = ® : : RESULT 1TST :
. *
FEESERERREEEE RS RER AR R R R T
. :
% ¥
EEEEE FhEEE
#09 * *09
* C1s * 50t
. % x

Chart 10. VALUAT - Phase F3 Evaluation (2 of 3)

Flowcharts 75

et Ly sBee
*11 * ® * * *
* Ale * A2 % ® A3 *
* * * * *
* TREE 808
- . .
. - .
X -
NOTOPR o¥, SETEN! X .
1 *, tt##tAZtl#t‘t#ttt « BLANK
© . o TRUE) wERE
«% (QUTSIDE #*. YES * OF FXPRFSSIDN ‘ o COMMA
*. RANGE OF o¥s0occccaaX¥ cescsesescssc X¥ A2 ®
, FLAGS . *NPERATCR TABLE * . * i
o* * * . ey
t,‘.t EEERERRRERERELEEE .
. -
. - .
. . .
. X .
. HEEEE .
. *09 * °
X * G3* . BEGSUB
FEEERR]EERRFRREER ® & . FERSRPLERRNERER SR
* * * -« BEGIN * *
* L~ * « SUBSTRING STORE *
REDUCE FLAGS TN# csscssscscsceseceX¥ LENGTH 0F *4000000s
* RASE N * . * STRING *
* * . * wRERE
AREAREERBEERERREE . ERERRSRBERRRREAER *09 &
. . * ES%®
. . * %
. -
. .
X °
FRERRCLFRAERE RS EE .
* *
* TEST * SUBSTRING {
* FLAGS AND *
*® BRANCH * -
* * .
EERRBREREREAEEESE .
. .
. . .
. .
. .
. «SETARE
. . Bk RN RE AR ARA RS
o ARITH. o * *
« NULL o FXPR. X * SET *
secceccssseccscss ccccscccccoscveee XEARITHMETIC MNDE*ccecoaos
. X . * * X
. EREEE RS . * P it
. *09 * * M EEEERERERRRRRRIRE £09 *
. * E5% * E2 % . ® ESk
. ® % * . * %
. Er -
. EakEE . .
. 11 _* . .
. * F2% CHARST X .
. * BRE Rk RRER .
. * PUTST * .
- bbb vk dmb b o SUBSTRING)
- oo X% PUT STRING IN *.cc0eeee se0sscsscccss
* STRING AREA * X o
* sREEE . .
R R ERE ¥09 * N .
. * Ci*x o -
. * & . .
. * . -
. . .
. . .
- N .
. sn - + SBEND
. EREERE 2 RERRERTE RS . . ti*ttFl,:#t#tt'#t‘
« CHAR. SFLF- * TRANSLATE * - ° ““*
« DEF. VALUE * CHARACTER * « SURSTRING 4 X * SFT SURSTRING t
sesscescssscccsacX¥ STRING T1} * esccccssecsscsessX¥ COMMA NR LEFY *....X* A2 ‘
. * ORIGINAL SET : - * PAREM, SWITCH * .**'*
. .
. TEREEERRREERBREEE . P T T e
. . .
. - -
. . .
° DECINT X - LATTBY
. tnur,pnxu:uu:t . RRGLEREREER
o HEX-BINARY- * . * ATTPAR *
» DECIMAL * STNRE ADDRE§§ t L A e R B B
cecescsescsssecesX¥ NF NECTIMAL *oa eccceccssccscssceX¥ CHECK FNR *ecoooe
* VALUE * - * PARAMFTER .
RS . .
BERKRRRREERRREKEE *09 ¢ . EEEREEEERE .
* C . .
. .
. .
- .
. META . IATTBT -
. uﬂzunuc . HG &R R KRR .
. ® METIA * . * ATTPAR * -
« SFTA A K- KRRk o I L e otk .
cessceesccvcssece XXINITIALIZE FPR %.c0c0ces cesescsccccsceaseX¥ CHECK FOR *ooooXe
. *SET VARIABLF #* X o ‘ PARAMFTER * .
. * EREKE . . P]
. ek REERER ®10 * . tutttttu* . %11 %
. * D2% . . * J5%
. x % o . * &
. * B . *
. . . .
N - . -
. . . N
. METR . SATTRBT «PACK3 X
. BE Y2 ERREERE . EEJGRREREXE . IS ENLEI T TR L 2 2 Y
® METINT * - * ATTPAR * . * *
B o o S tt—t-t—t—t-‘—tt X * STORE RESULT *
csccccess e XEINITIALIZE FR *..00000s CHECK £0R FaseonoseX® ANDRESS IN *
. *SET VARTABLE * X . " PARAMETER * % POINTER LIST #
. & * wHEEE N *
. EREERERERER *10 % . u:tn:nnu AEREEKEEEETERERER
. * C2x . B
. * % B
. * .
. .
. .
. METC - TATTRT
. EEK D ERSRKEE . KRR 4 ERERERR
. * METINT * . * ATTPAR x
« SETC A e R B e R B o T? tt-t-t—t-*-t—tt
.................X'XNIT[ALII“ FOR ¥, ceenos ecssscsccscscssse X¥ CHECK *
- #SET VARTABLE * X - # DAR AWFTFQ *
. * EEExE . *
. EREkREEERER €10 % . «tntnut:
. * 32% o
. * ¥ .
. * .
X X
ok aE e
* * &N9 *
® A3 * A3%
* * * &
whrk *
Chart 11. VALUAT - Phase F3 Evaluation (3 of 3)

76

Chart 12.

IEUF3E

TEUF3F
LA R T VESEE S S LS
® ENTFR IFUF3E
‘ttkt#tttﬂ*tt**t

e 0000

STARTS
%

R
*
*

EErEREEERREE

#e e 0 00

STTYPE -
c
o *.

*
READ SYSUTL
* *

AR E PR RS ST L LT

o¥ *, YES
,SOURCE ”FCURQ...................
*o -

*, s
£, %
MO

<o o 8 0
.

0" Tx,

Xes00 0000

SOURCE
ARk EREDIRRRREEREEE X

o T, YES * *
$IEPROR RECORD L#.lveeeeoX WRITE SYSUT2Z sae
*g ¥ * *

I IEEEEE]

END
*

WRITE *
GENERATEN END
* vsuT2 %

oN S
FEERERER R

PR

RERXGO AT AR EEEK
RETURN
b TO IFUMAC

LR RIS SR S LRSS

o

* BYPASS
‘.*........X: STATEMENT

ST
e e R A S 2L s L g
*

* R

LEi 22222222 1]

REREREIRRRR SRR
* *

a9k

*
R S LRSS R 2

Phase F3 Substitute

Xeeoseoaossocscsessscsscccoscccssssocccscs

D I R R K]

Flowcharts

71

SR RN ERY 2Eeee
#13 &
- * 82%
. & ®
. *®
. .
ACO X AC1 X
S 28%B] 2 sBER SR SSR2EERE SR
& INITIALIZE #= * JEUFTN *
&% PROGRAM FOR ¢ BB B B B B R
b4 XREF_AND & ® PUT _TESTRAN *
* TESTRAN * ® RECORD *
* OPTIONS & (OPTION) *
SEEREREEXELEER *eeegeEedeE
e sREs .
- * ® e
. % C2 #*.Xeo
" Laddtd * * .
° *13 & seEE o
. *® C2¢ 2
o ® ¥ S EC 2B ESE
° * #IEUFTX 19A1%®
. X BB S e G B m B
esescsssccccccsseX¥ GET NEXT *®
: EDITED RECORD :
ER 22 IR ST a2 22 22
:
L i 213 .
13 & X
* D2¢ AC3 o, ACSN o,
* % D2 %, ns *,
¥ o ¥ *y
- . *. SURSTITUTION MODE o %, YES
coscsceX®e TEST MODE-..u-....................................X‘. ITERATION .%o000
*, PCINT % e
s, .t ., . o
B, o¥ ¥, o ® X
& ASSIGNMENTY MODE * NO aeE R
- . *185 #
o ° % A3®
. - &
. ® &
X X
0¥, AOPO &g
E2 *, PRI T2 T 2] ES
o ¥ * * &
¥ TEST “e. ASSEMBLER NP, S e, ol ¥ ASSE‘!BLFR *, YES
L TYPE OFXCINH’. PVY, CODE#* %o OPERATION %66
‘.OPERATIUN * #IF ASC(BIT 0)= - ¥ -
. o #=] ., ot .
By & ‘t“‘t.tttt o ok X
* MACHINE DP. . * NO (3l]
. . . 14 @
° . . & A3e
- - - ® &
. . o *
MOP ADP1 X X
EEF2 e REEEEk e eF LSS SRS RTER SEFSRESeEES
® pC SYMF * -SURWB
B G e e P L B . e S iabd Fhw G e o e P
& INITIATE PRI- % #TEST P1SS. SYM & * SURS"TUYF *
#VATE CNDE 1 ® TBL D°FLOW IF & * SYMBOL WORK #
& ESD = 0 ® ASC(BIT1)=1 * o BUCKETS
e EREEEREK HEERBTRER RBEEE R E2 222 2222 2
° - X
MOP1 X ACP2 X ok
SEEFEG2E SR BERE RS FEREEGL SR KBS R GS *,
SYMF & PASS * o¥
=B ® LOCATION * o¥ ITERA ‘. NO
TEST FOR POS~ #* ‘CDUN ER IN TEXT® *. lN N’ERAND e¥o00e
SIBLE SYM TR ‘ *IF ASC(BIT 2) =% *, o® °
VERFLD! * 1 *® #y & °
.‘tt‘tt"‘.t““t SESERBEBEREREBE SR *, Ll -
. ° * YES -
X - - .
o¥g ADP3 X X °
H2 *, 2 EXBHISR BB L KRB EEHGEEEEEEE HEREEHEEEREERE DR -
¥ *, *IEUFTD 1% * XRE! * ‘XFUF'I'\ 20A1% .
° LITERAL %, YES Lo T et o L e N o St ot S 2 1] L S B B D o o 2 .
#®, IN OPERAND .'........X' MAKF LITERAL #GENFRAVE X-REF * EVALUATE ® °
. . *ENTRY_IN SVMBOL‘l *#IF ASCI(BIY 3)% * LITERAL * °
. ¥ *=1 (OPTION)* * .
¥, oF ttt.ltt‘ttttttttt R EPERESH XS RETERREEEOER P
* NO ° . . .
- . ° sXeoovscscesa
- ° X .
. - [T e o
. . *14 #13 * X
MOP2 X . * A3% * J5e %,
tlJzttttttt . % ¥ * % Js %,
* o¥
L - NO
.GENERATE X'-REF ‘X.............- escocceX¥ NAME o®ecoe
o (OE5T0R) T ° X
BEREREXESEE #, & Haks
. * YE
. . *C2 %
- - * x
. . EX L2
. :
MOP3 X %
BER SR 2 LEREVE SR R REX SEREEEEERRR
L d *® ® *
* COMPUTE * ' SFY SVKBCIL ‘
® LENGTH FROM TRY
:OPERA‘”ON CODE : '(STGEY) SHITCH :
SRERVEEE LS LB SR “‘t*tt't“lt‘.‘.
X X
*eey »EERE
14 ® *14 *
* Al% * Fi*
® % ® &
. .
Chart 13. IEUF7C - Phase F7 Main Line Control (1 of 6)

78

SRESAL SERSBSREE
: ENTER IEUF7C ¢

Lo daad

*14 &
% Al%
* &
#*
ACS X
'tt.*Al.‘t**“‘#:
*
b STEP *
% LOCATION *
+ COUNTER &
FEEEE IR TR RS &
AC6
*0
X
’t#*tc 1 .‘#‘#t‘ttl
¥ ATTRIBUTE AND &
* ESD-ID _FOR *

S
#® SYMBOL TABLE =
* Y *
BEERRBEERBR SR EERE

c7 b
FresDl s EE SRS
T
‘VALUE ATTRIBUTE‘
eeX® FOR SYMBOL
. : TABLE ENTRY '
P -
® B
* * :
‘l# * .
® Dl® .
pos .
ca X
FererELeksRERE
SET SYMBOL ‘
..X‘ TABLE ENTRY *
{ST *®
. C SHITC
§ Feeerskaeiiaes
® & .
14 * :
& El® -
resse .

X
SEEEEF L EXBBEE SRR
IEUFTX 19A1
He B B e

seX® CALL STPUT OR #
- ST
; FREEE R R R AR R
* % .
%14 % .
® Fl* °
sense .
X
o,
Gl *,
c‘ -
NAME *
‘- PREVIDUSLY efose-vees
*, DEFINED .%
° o “*'*
¥, o F *13

* YES ® BZ‘

X
EREEH] RRSEREERE R
‘IEUF"’L Zb‘l‘
b v e

UT ERRD
'RECD&D SE" “(’N‘l
* 817
POTTTTEN-{ popeee

X

wekes

%13 #

* B2

%3

®

®Chart 14. IEUF7C -

*.
*, YES

% 0C,
*, DSy OR LDC o%ocoe
* *®

*
*. YES

e¥eooe

Phase F7 Main Line Control

SUBSTITUTION MODE

¥, YES
®o ORG o¥se0e
*, o¥ .
*, ¥ X
* NO L2 2L 1
- *18 ¥
- *® AS%
- * &
- *
X
¥,
Fé& x,
l. .
o¥ *, YES
*, DXn o¥aoes
- o¥ -
*, o ¥ °
, o % X
* NO Fkokkk
° *17 *
- * Fis
- * ¥
- *
X
o ¥,
G4 *,
o ¥ -
¥ *, YES
- XD e¥eooe
*o - .
- oW .
', ¥ X
* NO L2 2 13
e *N1T*
- * J3%
- * X
- *
X
¥,
Hé *o
o ¥ *
YES
*, QUIT o¥eoee
*, ok -
¥y o F X
* ND L2222
- *18 ®
- * Fl#®
X * %
Kkk R *
%13 *
B2 %
(2 of 6)

X
Xy
BS *o
o¥ *
. *. YES
*, DC OR DS o¥ouos
N B .
*q o ¥ .
. X
* NO LS hd
- *16 *
. * Al%
. ® ®
. *
X
¥,
c5 *,
o ¥ *,
o *, YES
*, EQU NR CXD o¥*c.ne
*, . .
¥ o ¥ -
e ¥ X
* ND wkEkE
° *13 *
. * J5%
. * &
- *®
X
¥
ns *o
o%
« YES
*o LTORG e¥oese
*, o ¥ -
¥, o ¥ X
, * NO *hkEkE
. *16 *
. #* Gl
. * *
. *
X
o ¥
ES *o
ok
ok *. YES
x, END e¥eoee
. o¥ .
*o . -
¥, o ¥ X
* NO b
. 16 ®
. * G3%
. * *
. *
X
o¥y
FS *.
RTy *, YES
*CSECTy DSFCTpe*case
OR COM
. . .
¥, oX X
* NO wEEER
. *18 *
. * Al%
. * %
. *
X
o¥o
¥
- ¥ EXTRN *, YES
*. 0OR ENTR e¥eooe
. ¥ -
*a -
*, o % X
* NO Hdkkk
. *18 #*
. * A3¥
. *
.
X
¥
H5 *o
. *
NO
*, OPSYN o¥aeoe
. o .
* X
* YES LS
. 013%
. ® (2%
X * ¥
LR *
*017%
* NGk
® %
*

Flowcharts

79

HE KR kK&
15 # *15 *
* Al% * A3x
O * %
* *
SYMF X X
HEEERA] FR LR RS TR FREAIEREREETREE
5 SURKAUTINE % * *
Hd kK kK ke * 25STORF *
* TEST FNR PrS- % * LICATION *
* SIBLF SyMarL = *COUNTES CHANGE *
* TABLE N'FLOW * * MNDE *
Btk R R T
X .
¥ X
a1 *, EE R REPE T PR
% *, HERKERD EHREE R AL i« #
ok *, NI} * * * INITTALIZE *
*. CVERFLOW e¥oaoseese X¥ RETUFN * * S5YMARNL TABLE =
*, o & *® * %
*, % ok R oo R * *
. .k ootk ok ok e R
* YES .
. X
. bt
. *13 %
X * D2%
Fkp k(] ok ERkk gk * X
* SAVE & *
* LOCATION *
* COUNTER. SET %
ITERATION PNINT

*
Ak R AR K KK K

e oo

kR] ERRkEk Rk
*

* CHANGE

* MODE TG
: SUBSTITUTION
KRRk EE R rRREERREK

* % %

Chart 15. IEUF7C - Phase F7 Main Line Control (3 of 6)

80

L aadd L daid L dddad
*

*16 * 16 * *15 *
® Al® ® A3% * AS¥
* * * * %
* * *
B . .
X X X
R ERA] dEdR kR FRRRRAIRREREEEE SR EEEIEAGRE SRR RAERE
*1EUFT0 20A1# *[EUFTY 25A3% *!EUFTV 25A3%
B T B e i B L e e K R R Bk
& FVALUATE DCy *¥Xeoecooeroceoncsace * EVALUATE * # EVALUATE 1ST *
* DS, OR LDC * . * EXPRESSION * * AND 2ND *
* * . * * * OO FRANDS *
B e e] . FREERRR AR RRERERE FERRERRERSERBRE RS
. . B .
. . . o
X . X X
o¥o . o %o o¥o
Bl *, HEEEXBD ERER KKK K B3 %, Pl e R R qs *,
SUBH% * ¥ *, *TEUFTL 26A1%*
-CON YES Kok f- Rk bk X ERROR *, YES R g kR -k .* RROR IN ‘. NO
“ IN ASSIGNMENY *....-...X*SUESYITUTF w"!RK* .IN EX"RESSIDN ‘....-...X* PUT ERROR * *. lST OR 2ND o%¥ceee
*, MODE TS o RECORD * *, UPERAND % -
. . t i “x. o* # * *. % .
*, ¥ B T e s *, ¥ R e] *, % .
* NO * NO . * YES °
.
. . . . e
. . X . .
. . ok . s
. . *13 % . -
. X * Js5% X .
. odrkkC 3Rk Rk Rk gk € % ##t##cfy*t#*t#t‘tt .
. * * ﬂ UF L .
. *SET ATTRIBUTES * i e -
. * FOR SYMBOL * * PUT FRROR »* .
. : TABLE ENTRY : : RECORD :
.
. P e s] ARk ko R R
. B .
. . .
. X X
. b Aok
X 14 % ®)3 %
* * El* *® C2% .
Dl o P :
« *MODE *. * * °
. *, NO .
*,SUBSTITUTION oe¥ceeocooe °
*q ¥ X -
*, ok Aok -
*, *14 * .
* YES ¥ El% .
. * % .
. * .
. .
. .
% .
.
t*ﬂ*tttttt FAKIKE § ¥ oKk
‘ SUBWB L SE *
A b i * LOCATION
*SUBST!TUTE HURK# % COUNTER AND #Xa.ee
BUCKETS # ALTGNMENT
* * INDICATORS
x***ut:tu: ttﬁ*:tutt*ttttt‘t
. .
. .
. .
X X
HEEEE P e d
*13 * *13 *
* JS% * B2%
* % * %
* *
bt ot i
*16 * *16_* *16 ¥
* Gl* * G3% * F5%
* x * * * &
* * *
X X
stk kG] Rk kR Rk HARKEGS Rk ok SRRk
* ALIGN * ALIGN *
* LNCATION * * LOCATICON *
* COUNTER. MOVE = * COUNTER. SFT &
* LIT COUNTS TN * * ALIGNMENT *
* WORK BUCKETS % * INDICATCR *
T T T T T e L L
- * .
. . .
. . X
. . s
X ° *14 *
¥ X * Alx
HL *, PR L ET R 222 2 * ¥
o ¥ *, * * *
o% *. NO * SET SWITCH #
k¥ ANY LITERALS o¥cooecoces * T0 GENERATE *
*o o X * LTORG *
*, ¥ P i dd * *
o o x14 * P e e e e
* YES * E1%® .
. * % .
. * .
. X
. e
X ®13 %
¥ * B2%
Ji * ¥
.t *, *
o¥ *. NO
*, ASSIGNMENT e¥coeocses
MODE ¥ X
. . kR E
*, #13 *
* YES * J5%
. B S
. *
X
TR | ER AR
* PUTLBT *
e o o e T
* BUILD LITERAL *
**BASE TABLE ‘*
LR e e P
.
.
X
Pt
®14 *
* El%
* ¥
*

Chart 16, IEUF7C - Phase F7 Main Line Control (4 of 6)

Flowcharts 81

TR EE
*17 %
* Al¥
* %
*
MNOTE X
dRkERA] kR R

*JEUFTV 25A3%
B i ot o

* EVALUATE *
* OPERAND *

b *
e REFRFEREREEEER

R TP VES IS L2 2d
*TEUFTL 26A1%
NO L B T ot D S B B 3
seesceeeX® LOG ERROR *
* *
* *
kbR Rk kiR
X
HEEER
#13 %
X s B2%
BEEEEC] RETEREE * %
* * *
* SET SEVERITY #
#CODE TF GREATER®
£ THAN_ CURRENT *
FEEEEFE RN LR R
X
:'*‘tDl“t'*#t'lﬁ
* COMPRESS __ #
* AND TRANSLATE
* "2ND DPERAND *
FEERERERRREERGEEE
:
X
Fokkdkk
13_
* B2
* %
*
kg ok
*17 * %17 %
* F1% * Fox
* % * ¥
* *
. .
M :
PUNCH X .
,:!!ltﬁl!!!(!!"(g -
COMPRESS __ * :
* AND TRANSLATE # :
* " OPERAND = * :
RS 22222 S22 2] :
: :
: :
: REPRO :
X
*

82

L é i d

*
*. NO

.
z
>
=
m
.
4
.
.
.
.

*, YES

. ok
*, %

FRRAEC I SRRRRS ER R
*1EUFTL 6

B e o pemb
* LOG ERROR IN *
* TITLE *

R AR R RREREER

© 86000 0898808808080 00 3080060060000

X
Fhokok kD3 ko ok
* *

* COMPRESS *
* AND TRANSLATE *
* OPERAND *

*
FERRRRERRAEEEEEER
.

.
X
ThERR
*13 *
* B2%
* %
ok
*Q 7%
* F3%
* %
*
X
e e ok 3 Aok ok ok ok ok k.
:IEUF7D 20A1 :
* EVALUATE *
* OPERAND :

*
A ok e geoRloR o RoR dokok ok

Xe s s oe

KRGS KRRk KAk
| 1 =

e -
* PROCESS ESD *
* ENTRY *

e ok gk kol R R ROk Xk
.
.
N

X
EEE 223
*013%
X *® B2%
e dHl *rEeEERE R kK * %k
PUN
it St et . ot JEE 3 *
. PUNCH CARD
Aok k
ERE RS 22 2222 2] *¥N1 7%
- * J3%
. LN
- *
X .
kR .
*13 % .
* B2% X
x‘t fokk gk 3R AR K
*ALIGN LOCATION *
* COUNTER *
* *
* *
Akk Rk ko Rk Kk kKK
X
EE T 233
*014%
* Al%
* %
*
Chart 17. IEUF7C - Phase F7 Main Line Control

OPSYN .

Ao e
017X
* Abx

#*
*

#xe o

AGT Tx,
ox .
%' OPERAND "%, YES
BLANK

o¥eoen

ok ok B 4 Rk ot kR RO

*
#*L00K _UP OPERAND*
: AS OPCODE :

* *
e e e o 0 o oo o g ok
oXeooesonsson

o o

skl i C 4 okt okl ok o

LOOK UP NAME AS
; 0P CODE :

* #*
Aok o o o ok KoK K
.
.
.
X
W%,
D4 k., ek ok) § kA et Rk
. *, * *
o *, NO *#INSERT NAME IN *
€, FOUND HeesssssoaX® OPSYN TABLE *
*, ok * *
, oK # *
Xy o¥ Aot ek ko ook ok ok ok
* YES .
X o
¥ X
E4 %, Rt ok £ 5 A kA R K
o % * * *
<% OPERAND *, NO * REPLACE NAME %
o BLANK e¥oe000ees XXCODES WITH OPND
*, o X * CODES *
* o % * *
®, % s ek ok oo oK ok R ok
* YES .
B .
. .
. X
. ook
. *0]13%
X * C2%
kR K 4 Aokl Rok ook *
* *

*DELETE NAME AS *
: 0P CODE :

* *
o e o ol e ok el ok ok kok ok
.

.

X
e ek
*013%

* (2%
* ®
*

(5 of 6)

HEEREA | RE IR EROREE
* *
* ATTACH *
*WORK PRUCKET FOR¥®
* ESD ENTRY *

FEEKERREXBE R RS R R R

e o000

HRERER] kKRR EERR R
*IEUF7F 21A1%
ek

t‘t#t(l**#ttttttt
IFU TE ZIAI

*CLOSE ESD FILES‘

ttttzkt#*ttt#tttt

X0 o066

AREREEH] Kk kkkkRERE R
e et B o S Y
. CLNSFE TEUFT .

REE e R KRR EE

.

PO

R NI e 2]

b

EXIT 10 IEUFI :
e RO R R Rk

Chart 18. IEUF7C

"“‘A;*t“#i““

SC
‘DPERAND. ATTACN‘
RKc UCK R*

* PE
SEeRRREE

#xmx
%Z

“..‘

e o5 a0 6 %O

SREEEBIRBRELEREER
*IFU 7L 26A1%
f e el
‘PUY ERRDR _MSGS.*

FOR ILLEGAL *
t PER *

Ni
HEREFEREEEREEHE RS

ERRRECIRRREEERREE
*TEUFTE ZlAl‘
B ot o]
% PROCESS ESD #
* ENTRIES *
B e P P T
.
X
%,
D3 *,
¥ *,
«% SYMBOL ®. YES
*q TABLE
* OVERFLOW o
*, ox
®, ¥
* NO
.
X
etad
%13 &
* B2%
* %
*

~ Phase F7 Main Line Control

e¥ossceens
X

L iidd

#15

* Al%

* %

(6 of 6)

1§ *
® AS®
* %

*

X
EEEERAS ERRRERESER
* av
* CURRFNY '

NCATION
‘COUNTFR 10 TEXT.
#‘#‘tt‘tt*““...

s

.

i
RN EERSEEE SRS BARS

‘IEUFTE lel'
B R =

'PROCFSS DvERAND'
FOR ORG

FEEEBXRREERARSIE &

.

X
FHEEHCS S EERERGES
* b
*

* LOCATION b
:COUNTFR T0 TEXT®
FREEEXESEEEREREESD
.
X
Lidddid
%13 #
* B2#
* &
®

Flowcharts

83

‘t.“l‘ti"#ttt‘ :
¥ ENTER IEUF7X ¥ :
SEERSEEEERTETER : :
X b
R P
81" v, i
FIRST . YES P

‘ I]ME ENTERED‘.* B
e, o* . ol
*, o¥ X .
* NO *EFE o e
EE2 2] - * T
* ® * Gl * o o
* C1 %oXe * . e
* . hn b
weer o ..
SHC 1 FB R P
* uTXx * . o
PR el S s
‘PUT CURRENT TXT* Pa—
RECORD ON .
‘UUYPUT FILE' .
FRRERRARIEE ..
X b
o¥o P
D1 #, . e
% . tttt Y
o ERROR *, NO o o
%, RECORD IN .t....xt Gl ‘ e o
%, BUILD . * * o o
#.AREA .* RS . .
¥y X% o
* YES o e
X P
SRE] SERRAER ..
* UTXT * P
B G e M
* PUT ERROR * .

* RECORD *
* *

NO
ceoX®l EDITED RECORD ‘-...

Ce, o .
¥, o X X
* YES PR
- * * -
. * Cl * .
. * * .
. ek -
. .
X X
SHBIREEREEE HRREEPL KK SR RRERE
* GETXTM * * OVE *
o ikt * GENERATED *
* MOVE TEXT TO * *CSECTy CRGy OR *
WORK AREA " * LYOR(‘; TO WORK :
HRERARREREE ##tt*ttt**tt**#tt
.
.
.
X
oo
c3 *.
¥ *,

NO

P

o* *
¥. GENERATED
RECORD

“e. oo . :

* YES - -

. . .

. : :

X . :

FHERBD 2 kR EKIOA KK . -
*LDDK up op %CIDEt . o
Nox . :

OR . -

LE & o .

TRakE L .

. .

. .

X :

cecececsccascscsscscss

ttt'tE}t{#t#t##t*
* *
* SET POINTER *
* IN CONTROL *
: TABLE :

B2 222222 212) - : EEREEEREERRER RS
X .. .
ot P X
F1 *, o o FEEAKFIEERRRK LT LR
a *, <. = *
ITERAL *. YES . o * SCAN *
* sulTCH SET e®ececcscceccccccscsscacsascessse o ¥ OPERAND FOR *
- . * LITERAL *
R o¥ . * *
2. % PO R T T
ETT L I No M .
* . . .
Gl #.Xe . .
* - - -
P Y A . c
Gl AEERIES N tttttc3l§tttttttt
‘ GETPT . = *
S b . * TEST FIELDS *
*GET POINTER TO % . * FOR LEGAL *
* NEXT RECORD » s % CHARACTERS %
TEEIERBREES T RRRsRREERSERERREE
X : .
¥, . .
Hl *q . .
.t *, - .
¥ *. NO - -
*, END OF FlLE - eedeccacccscs -
“e. o :
o o¥ .
* YES -
X o .
BHRAE Y] SAEE SRS ES FFAE N X
t ,t *, Ak IRk LR R
MOVE_QUIT %, NO
‘RECORD TO TEXI ‘--.--..-X* SUBSYlYlEJTION .*-.......X: EXIT
: . . FRREEFERRERRREE
FRREFEEREERRREDE . %
* YES
%
i Tiiatat i
*
e P e B
‘CLOSE TEXT FXLE'
*e
PR
X
e
® *
* Gl *
*® *
P
Chart 19. IEUF7X - Phase F7 Get Statement

84

e¥coececccnscnocncscan

X
*,
*,
*,
RALS IfN*, YES
L TABLE .*.....
STRING*
o ¥
*
N

X
AAORRKE S ook ko Rk R
* *

* RESET *
:L ITERAL SWITCH :

seecs e 0 s n s

* *
kR kR kR

eXeosoecaseoe
ek
* *
* Gl *
* *
R L L

s s esasev e

X
EEKEKH S R KRR AR
*IFU 7G 27A2%

e K K e K R
* GET LDC _FROM
* SYMBOL TABLE :

*
Aok Rk RkRRR R Rk %

Xe e s o

t*tt#JS#t*tt#tttt
DECREMENT

* *
*X......-.....-...-.................*LITERAL STR!NG *

koo ok kR ook &

TEE

5 A2 ®
* & seen saes
P2 * ® ®
- * A4 %, ® AS ®...
. sexs X L
X o ¥e
FEREBA2 EIXREIRRES SEERAAISEHEEERERS A w, SERERAS RRR R RARES
SheBA] SEEEIEEEE % * * * *
SEVALUATE LENG‘I‘N‘l * CHECK * o v-CON *. NO * SET *®
® ENTER 1EUF7D * * MO .lE IF «soX® FOR VALIDITY * *, R C o®¥ecoe * POINTERS AND *
* * * PRESENT o * & ° . . * SWITCHES &
X EITRABTERE * ONWE n . * * - o% . *
N . *, % . FEERBREEERBRRTR RN
. - . - * YES . .
X ° - X . - X
¥, X ° o¥o X . .%o
Bl *, SR EBP2EFAR RS DR R . 83 =, BERBEBLERREERRRKE 85 %,
o ¥ *, * * . ¥ *, * * . +¥L ITERAL®*,
o% LITERAL #*. YES SEVALUATE SCALE * - LITERAL #®, YES * MAKE * . #PREVIQUSLY #. NO
2. {MACHe OPe) o%Fcace * MODIFIER IF # ° . CIR LITERAL C ¥eaoo #ESD TABLE ENTRY®* . * . EVALUATED AND %ccce
%o ENTRY .*% ® PRESENT AND * . ¥ - * * - *,ASSIGNED .* .
. . * LOWED * . . o® . *® * *, . o
*, % . *, & . shEsRRERRERERER SR *, %
* NO . . * NO . . . * YES A
- . . . ° “'* . o . * *
. eXecvooassans . b :
- * #, Xe .
- . ° . . ce xc . Ak
X . . X . "” X -
0¥, X - o¥e - o ¥ .
[N SARERC2BEREEEERER . c3 =, . ce &, X
o® *, * EVALUATE * . * *, . & LI BEREC SEERBER &
«®% LST SCAN #. NO * EXTERNAL e . . LENGTH *, YESX . 1ST SCAN “#, NO - *
%, V-CON OR o¥ooos & EXPONENT IF * - *. MODIFIER o¥ccee *, V-CON DR oBm e *® RETURN *
*. Q-CON .¥ - * PRESENT AND * . o PRESENT .* . *, Q-CON .* © * *
*, o . * ALLOWED * . . .8 . *, . 2 P
0, % . BRXBHBEEREE SERAS & . *, ¥ . *, & I
*"YES . . . *"NO . * YES FRahi
. - . . . - - b e ®
. -
N . N . : . p i
X . X . . . X
oo . oo . X . BN
01" e . D2 . o dREREDISTERESEREE D4 %, FEERK) S RRBRRKEREE
o - % LEFT “#. . * P t *. * USE TABLE *
“®. YESX <#DELIMITER =%, YES . * ALIGN o LOOKUP TO *
. LHERAL DC o¥ease %, QUOTE OR Le o%eceesa * LOCATION & ., ASSIGN A *
*, % . *, PAREN. .%* * COUNTER & - * EVALUAT *
*. o N ., o® * s * LITERA *
#, % . 5, & SEEEEEIBERDRRRRSE . o ¥ ERERAE B EERRRRARES
* NO - * NO . B * NO .
% : H X 5 5
. ¥ X
:“nﬂuuu-n: . ‘ez -, :uugauunzu: SRR RS B Rk ttt*tEStéattttttt
b . . * * * E *
* CURRENT * o YES .‘ LEFY * DO SYNTAX * * MOVE DC WORK_* * APPROPR T *
* LOCATION * o esco¥a DELIHITER = .* # SCAN_BY DC/DS * *BUCKET TO TEXT * * SWIT 'A € *
:COUNIER Q TEXI: o o COMMA : TYPE : * RECORD * : CDUNTFRS. AND *
Rl . e * &
ssseeRFEERERRSREE . - .n”inﬁﬁguu..
. . * NO N . .
eXeaooonan . N . :
. . X x .
X . o, ¥ .
FEHEEF L SREXAXBRES . F3~ =, F4 ®, .
* MOVE * . ot *. o® *, .
CURRENT * . *, NO ¥ *, YES .
* LOCATION * - - * SYNTAX ERROR e¥oooe #, LITERAL DC PSS .
SCOUNTER TO WORK#* ° - . *. o . .
* *® - . ‘s, .t . *, ¥ . .
RSB EIRFEAREE RS . . X, o X ®, % . .
- . B * YES Lhhdd * NO . .
. . - o * * - B .
- . N . * Ay * . - .
. . N * * . . .
. . . *EEE . . .
X . X X . .
FERBRGL XSRS RRRE . EERERGIRREESRERES FRRBAGLERTERREREE .
* * ¥ *. o *SET APPROPRIATE#® * * B .
¢ INITIALIZE * o¥ *, NO X *ERROR INDICATOR® * ADD 15 * - .
& POINTERS AND * *o DS e¥ocoecassX¥ AND GO_TO * TO_RECORD * . .
* SWITCHES * *, o * DIAGNOSTIC * * LENGTH * . .
* *, ¥ * ROUT INE * * * - -
FRFERHBEBEERAIRE R *, % 2 . .
o * YES . - . .
. . bt dd - B .
R o ~ - * eXcoosoosnoes .
* * . . - : H4 *.X. .
* *oXs s . . .
* Hl xK X X hkEh X -
nrnc o¥a o %o oFo o ¥, .
. H2 *, H3 %, He *x, .
ok *, ok -, % *, oE *, LT .
¥ *. NO <% LENGTH *, YES o *, YES o¥ END *, NO * * .
#, LITERAL DC o%¥eccee *, MODIFIER e¥oone *, LITERAL o¥ocae *, OF OPERAND .#*,...X*¥ K1 #* -
*, o ¥ o %, PRESENT ° *, ¥ B *, FIELD % * * .
*, ¥ *, ¥ - *, . . - B HEEE .
, 3 Fo o ¥ X *, o* X *, o ¥ .
* YES s NO PRy *"NO s * YES .
. . * * . * * . -
- . * Cq * - * JS5 * . .
. . * * . * * . .
. . Py . Py . .
X X : X :
FEHER L RRERREERER REEEEJ2EXEREEEHEE J3° e, "ntuuu"nn X
® * * * . *, sgr NEW * KR S REEAERRER
® STEP * * ALIGN * o ¥ *. NO LOCAT UN *
#*PAST EQUAL SIGN* * LOCATION * *. lST OPERAND .‘-.......X‘ COUNT IN RETURN *
* * * COUNTER * CENTRAL TABLE *
* * * * ‘%, .: * . FEFRRRREEEEREK
P e P FEEEREEERSRRRRE R ¥, o % :tnuu"nuua .
N . * YES X L
33 . . smes . A * *
* eXoosoosns - * - B * J5 *
* K1 #.X. coX® C4 * . . * *
& » L » * . . Tk
PE T T wraE X .
X o¥o .
FEEFEK] SESRABEE SR K3~ s, FRRERK S RIRERERE A
* * % * *
* EVALUATE * «* MORE THAN * * LOCATION *
* DUPLICATION * *, ONE OPERAND ecessse XKCOUNTER IN TEXT#
* FACTOR IF * . PRESENT .* * RECORD *
* PRESENT * . . =
SERBEREBERIBERRE *, % EEREEREREERRRRE R
- * YES
- Rl 22
X coX¥ C4 ¥
shag
* *® ERE
£ A2 %
*
*E8E

Chart 20. IEUF7D - Phase F7 DC Evaluation

Flowcharts 85

0600000006008 006060606060000000606000000060

.
-
.
.

ENTRY o ¥
A2 Tx, EREERAIRRRCRERERE
SEEEA] RERERERER ok *, ® *
* «% IS NAME %, NO * CREATE =
* ENTER TEUFTE #ocoeopoeX®s IN_SYMBOL o®coceaeeeX® PARTIAL ESD #....
* * X *. TABLE % * ENTRY * o
ERER AR EERERERE . *, ok *® *
. *, L% EEEREERREREREORRE
. * YES .
. i .
. o®o .
. B2 %, EEEELBIRERERERERE
. o *, * ®
o¥ %, YE * * .
*o ANY ERROR o¥eceescesX® LOG ERROR ® B
*, % * * .
*, ¥ * .,
®, o BREEEERRREREREREE
* NO .
. .
. X
. AREXEC2RERRERE KSR
. *® * -
. * * °
. * CREATE ESD FeoeesecssncssassXe
. : ENTRY * -
. .
. FEEARRERE RS R R KRR .
N .
. .
. N
: i
. PR L DY DT P 03 %,
. * o ¥ .
. * GET * NO o % *,
- .: NEXT OPERAND :X........*.%ASY OPERAND‘.*

* * *, o ¥
EREREEeERERRERRES T, &
* YES
.
.
.
.
.
EXTRN i
RIS RIS 22223 FEeEEIRERARRRE R
*
: ENTER IFUFTE : : RETURN :
R FREERREEREER R
.
X
¥,
F1° e, SRR AE 2R AR RER
° *, * &
«% IS NAME %, NO * CREATE ESD *
eoX®¥o IN_SYMBOL o%coceseoeX® AND SYMBOL *®
‘o' TABLE .% : TASLE ITEMS :
.'. .*. FREERET R TR KR KE
* YES °
. N
. .
. .
. .
P .
AREREGLAREERRE SRS .
" ® .
* * o
* LOG ERROR * -
* * N
* * .
. .
. :
N .
X .
ok, .
H1 ¥ X
o *, AREEH2EEEERRA R
o ¥ *, YES *
".kAST GPEPAND‘.*........X“ RETURN :
‘. o Rk
¥o o#
* NO
.
.
).’(
Rk R] Rk kR
* *
* GEY *
<% NEXT CPERAND =%
L d *
* *
EEEFEXERGERRRERRE

Chart 21.

86

IEUF7E - Phase F7 ESD Routine (1 of 3)

-
o
.
°
°
B
-
.
o
.
°

ENTRYS

FEREAL BREARERE R
: ENTER IEUFTE #*
R R 2 P22 222 12 23
.
:
.
X
ok, o ¥,
B4 x, B85
- *®, o ¥ -
o¥ IS NAMF &, YES o ¥ *,
coX¥s IN SYMBOL .%*cscoccoeX¥. ANY ERRNR
*, TABLE *, .
B . *o o
*, o% , ¥
* NI * NO
. .
. .
. .
X .
o ¥, X
c4 =, AEEEKECSHRSERRRRER
o ¥ ®, * *
NO o% X. = ®
ceo®LAST OPERAND e#Xcooosooo*SFT WORK BUCKET®
*. o¥ X * *
*q ¥ . * ®
*, . M EEREEERRAREEERERE
® YES .
. .
. .
: .
X : REEREDS RAERRRRRERX
HRFEDLEEE SRR EE R - * *
* . * *
¥ RETURN $ Teee..r LOG ERROR #X..
RE RSt 2222222 2203 & *®
E AR AR AAR R
EXTRNS
R EF 4R RR RR Rk
* *
: ENTER IFUFTE :
FREERESAEREEKE S
.
.
.
H
e %, FERAEGS AR RRERER
. N * *
o % NAME *, #* L
esX¥e IN SYMBOL o®ececceocoosX¥ LOG ERRNOR *
*. TABLE % * bd
*, WX * *
*, . # kR R Rk R
* NO B
. N
. .
X
o,
H4 *,
o *, HRERHE R AR
o ¥ *, YES &
*.kASY UPE”AND‘. P £ RETURN el
e, .8 Iy
*. %
* NO
.
.
X
R ER JLEREETRRERN
M ®
* GET =
«oe® NEXT OPERAND *
* *
* %
EEEFERERER KRN ARRE

YES

e¥eooe

©0c060000006000c000800c0 008000

(U4

BEREEA SRR BRKERE
R LTSRS SRS 2222 * *
* CREATE *
* ENTER TEUFTE #..c0c000X¥* PC TYPE ESD %,
* * * ENTRY *
REEEREEEREFE LR K
AEEERRE AR
START
RERREB2ARAREREA R
ER LS SRS 22T 2] * *
*® * *
: ENTER [EUFTE :........X: SET CSTVAL *
*®
EA RS I 22 2] * *
FREF SRR IR ERRRRE
.
.
.
cOoM .
P2 I IR ST LT :
¥ ENTER TEUFTE T
PRS2 SR 222222 22 :
.
CSECT .
Rk E] Fk Rk M
: ENTER JTEUFTE *...00
RIS 2222122222) :
.
.
.
eesesncesesXe
DSECT . X
s pesssE2eersssians
REAEE] e REIE R - A
* * . ‘ LENGTH OF ‘
® ENTER TFUF7F #_,.,.,.. * PREVICUS *
* * ‘CDNYROL SECTIDN‘
FRAECE Rk FEEEFREK * *
BERERERRR KRR R
DXD

o RF] Fk R eE kR

* *
: ENTER TEUFTF :
EE R Ll S e

.

Xeos o6

FEEERGLER R ERRERY
*

*CREAYF NEW ESD *

AND_SYMBOL *
TABLE ENTRIES '
t#‘#ttt*##*ttt*tt

Xe se 000

EREEH] R EEEX kRS

*
* RETURN *
* *®
FEEREERERERR R K

Chart 22.

*
:
.
X

t“t'GZttt“‘#tt'
*
*CREATE NEW ESD t

* AND SYMBOL
: TABLE ENTRIES :

EERERERERERERRERE

cooaX¥
*

*
¥oeeceoso X¥
=

EEEEAIEERREEREE
RETURN :
R 2222 222222

Labadd et 22 222 222 2
*® *

* FETCH *
...X: OLD ESD ENTRY :

* *
BERERRKFEREREEREE
.

.

x
FREERCIVREBEEBE K
* *

SET *

CTYPE AND *

CESDID :

FERRERR RS EBREREE
.

.
X
FERRHIBEERRBRRE

*
* RETURN *
* *
ERELE L 222 22 22 2

IEUF7E - Phase F7 ESD Routine (2 of 3)

0ORG

Qul
BEREAL S Kh kRS &
*
: ENTER IEUFTE =
EREERERRR R Rk

> 008000

tt:ttedttt:att:tt

tFEYCH ESD ITEM t
FOE CUPREN

T
""*Asttttttt“.
: ENTER IEUFTE e
BEEEXERSER IR SER

e o oo o0

:‘t*tﬂ5“#*t‘...‘
*

* FETCH ESD #
* ITEM FOR LAST %
*® SECTION s *

t
L :tat:tttttatttot:
: .

..
.
.
X X
ttttscatttttttttt FEREECS ERA K
: SER¢¥SN : CS tdid]
* UPDATE ®
COUNYER AND * ® LENGTH NF ESD #
*LENGY?Y:gR ESD * * ITEM &
e P e 2T LT T ttt‘tttttttttt‘t:
. .
. .
- .
. .
X X
FREADG ERE SRS R HRERDSERRREE ISR
& bd
* RETURN * & RETURN &
% * * ®
RERER R R ERRERE FERREERXREEREE S
ESWRKR
HRESFSRERRRBRRD
®
* ENTER [EUFTE ¢
* ¢
AR ERERXASEROES
.
.
p
X
o¥e
G5 *,
HhREGEHBEE Rk Rk & ¥ IS ®,
NO . # DUPLICATE #.
* RETURN #Xoeoosesate NAME OR -
* * SYMBUL
L e e T T - TABLE
"
.o o

X
FRREFHS S EER IR E

SEY
TEXT WORK
BUCKET

RE RIS R 2 222 22 5 1)

* % N w
EX T YT)

e eo s s 00

LRI NLE L 222 22 2
* *
* RETURN *
* *

FARRAEBREEABREED

Flowcharts

87

¥, *
veon a2" e, 81° ° EERBKAG R ERERE SR

HERRA L Kokk KAk Kk K & *, o% 1S HRERAS KKK EREENK
IS 1T *, V-CON o¥ NAMED * *
* ENTER TEUFTE *ecesesss Q-CON OR e¥eocesassX¥o DEFINE eee XXSET WORKBUCKET *,..0000eX¥ RETURN *
* * *, V-CON .* *; ERy X * * *
Rk R kR kK *, o¥ *,0R . #* * ERRERFRREREBEE
*, o *o . SEREEkRERkEREREREE
* Q-CON * .
N . .
- . .
. X .
. FREEEBIRRRRERRERE .
. * * .
. * * .
. :CREATE ESD lTEM:..--..
N * .
. EeRRRRERERERERE R
:
.
X
o¥q o¥,
c2 *, c3 *, ook ok (4 Rtk Kok Xk
o *, o *, FRERCSEREERESRE
o¥ 1s *, YES o ¥ Is *, NO * CREATE * # *
*REFERENCE DXDe*cocososaX¥s TYPE 6 ESD o¥oevoooooaXXTYPE 6 ESD ITEM¥eoceacooX® RETURN *
.0R DSFCY . *o o¥ * * * &
*. & *, o * * FEERRRSREEER R R
*, o® *, . B T 2T
* NO * YES
. .
. .
. .
. .
% .
KRR D28 AR A X
* * HHRADI Rk EREEEE
* * *
* LOG ERROR * * RETURN *
* * * *
* * EREEKEREERE SRR
P R T T R
.
:
.
%
P ey
*
* RETURN *
* *
P TR T

e Chart 23. IEUF7E - Phase F7 ESD Routine (3 of 3)

88

STGETR STPUTR

ERRRAL REREEREEE EEEHADBEEREEREE
. * *
® ENTER [FUFTS : & ENTFR JEUFTS :
SEEARERBRREBANS SEREFEREREREREE
. .
. .
. .
. .
. .
. .
X X
SEBRBP) FEREEERRTS badddd TAldddidddds
* * *
* & * FIND *
#SET GET SWITCH *ccee X% LENGTH OF *
: : * SYMAOL :
P T T e SEEREESESRRERRERE
.
.
.
X
o ¥ o %o
c2” "=, c3” "=, EEERRCLERXRRERENE
. ®, o® . * *
o¥ TEST *, OFF ¥ TEST *, ON = MAKE *
#, GET SWITCH o%cececscoX®o XREF SWITCH e%cececosoX®* TYPL CROSS *
B 4 *, o¥ * REFERENCE *
*, % *, o® * *
#, & x5, & PETTII TE T L a2
* ON * OFF .
. . .
. .
X .
ceesssccssesscesaccescencsessccesssetesessnsses
.
X
SERRED2ERRERKEERE
* *
* FIND LOCAYION #*
& FOR SYMBOL IN #
: SYMBOL TASBLE :
SEEREERSERERARREE
.
.
.
X
o ¥, ¥,
€2 %, €3
% *, . *,
% *, YES o % TEST %, ON
%, OCCUPIED e¥ooecesooX®e GET SWITCH o*cccess
*, o¥ *o ¥ .
*, o¥ *, o -
¥, o *, o -
& NO * OFF -
- . .
. . .
. . .
. . .
X - -
%o X -
F2° "=, BEREREIEERRRB KRR .
SABAF | A AARERRE . . * * . T e
* RE * ON .* TEST *, * CHANGE * X ® *
% ONOT FOUND' *Xeoooscoeo®s GET SWITCH % #CROSS REFERENCE®cccossss XXRETURN (FOUND) *
* * - ¥ * TO TYPE 3 * * *
CERBEEERERERRE *, ox * e RERE R RER R
®, % EERREASRRRREERAEE
* OFF
.
.
.
PUTSCH X
BEREAG2EERRSRE SRS
* *
* MAKE *
% SYMBOL TABLE =
: ENTRY :
TEEERSEBAREREREEE
.
.
.
.
.
X
STROOM o ¥, o®o o ¥e
H2 =, H3 *, H&4 *,
SRERH] SERFEERRE % *, % IS &, oF *, REFHGE Rk kKK
* o% WILL ESD *. VES <*THERE ROOM &, NO 4 1s *. NO * *
& ENTERTFUFTS FooessaceX¥e OVERLAY ¥ecsocooaX®oFOR 2 ESD SEGe®eccvosocssX¥e IT ESD CALL o®ooceesoo) *ARNTRMAL RETURN®
* *, SYMBOL . * AND SYM. % *q o ¥ *
L T # . TABLE.* $.TABLE.* *, o* AR R KRR KRR
®, & . oF *, %
& NO * YES * YES
. . .
o . .
. . .
. eXeveossooscoecscsecscscssse
. .
.
X FERERJIERBREERAER
AR J2EREEREEE ® *
* * OVERFLOW *
* NORMAL RETURN # SEXTERNAL SYMBOL*
* * DICTIONARY &
FEERREERERSEREE *
SEEREEERRRAEREEEE
.
.
.
.
.
.
X
FEREIBREERBRER
*
* NORMAL RETURN :
EERR AR AR

Chart 24. IEUF7S - Phase F7 Symbol Table Routine

Flowcharts 89

Chart 25.

90

SREEAICEEBISBES
* ENTER IEUFTV :

SEEEEBELHREEHES

.

X
SREBERIEEXRRRES AT
* *
* REGISTER SP1 =
*PLINTS TO FIRST®
* CHERACTER ~ ¢
P T

.
L2 2 SR
*

* C3 #.Xo
sres X
¥ %o o ¥,
c2 *, c3 *, C4 *,
o ., 2 1S e, ot ®,
o* *, OPERATOR .* CHARAC’ER *, TERM *,
eoo®y COMPUTED 67 o®#Xeeeoesco®s (PERATOR OR o%eucoveooX®e COHPUTF.D GO %
®, YO ¥ ". ERM o *, T0 ¥

&, o &, ¥
®, ¥ ®, %
® *®

esccees

*, ¥
*

EREAE 4)»;:““"”
*

wER AR ER AR
<P AP * LOono -
P e e L e L B ‘

PEEOTD S N

* RIGHT PARFN. * PERFORM
* * * ARITHMETIC

Y FTTT] EEFSE RN

ttttu;tttc.xattt
LycnM
*’»k—‘l—p—f feto e t
..Xt OPERATOR IS HeeoeeoeoX®e
PLUS SIGNy -4 *

t‘l*t'*‘.*t“’#“

IEUF7V - Phase F7 Expression Evaluation

o ¥
S LOCA
ceeo Xl C"‘UN'FR PEF.

eeX¥¥ (P-FRATOR IS '........X: MAIN LOUP TN :\(...........-.-...

e es e e 8s00

.
Z
=]

[
&>
*

t.
TION

t. o ¥
*

scses0se00ssc000 e s

ve0ssssceccsssecscsssnscs

.
.

.

N

.

.

.

° . . .

° % SELF-DEFINING « SYMROL o LY

.

. tttt.nzttttttttt‘ Lad it Dbthe exddn EERIRDS SRR X RGBSR
- BLCO & SDVCF * * SCAN * * SCAN *
. i vimb b datd D e et bt it * SYMBOL WORK #* & SYMBOL WORK &
...)(3l OPERATION IS * * CONVERT SELF- ¢ & BUCKET_ AND * * BUCKET_AND b
. *BLANK CR COMMA # *NEFINING VALUE = * SYMBOL TABLE * SYMBOL TVTABLE =#
. * * * * FOR VALUE * * FOR LENGTH ®
- RER ok it 2] R SRR PERER R RE EEREIREEREREERRE S
. B . B .

. . N . .

.

.

° o ° eXooeoeocsoocscenscccssnssse

. - X °

B X o¥, X

- HEEEREQE kBB RRI R KR €3 ®, EBXEREL BRE BERRKRE

. FINTS * o * EF *

. i b e ES .® _ SELF *, Fm kK Hm ke F— K=& ON

. #RESULT IN SP2, 'X........* DEF!N]NG BIT % * PUT TYPE 2 * IE

. #COND, CNDE SET X ON o* #CROSS~REFERENCE#

. T0 EXP. TYPF M . “x. * *

. SRRARERRRREEB AR AR - * FRRSEERERR SEBRBEE

. . .

- o .

- . .

N . .

. . cesscas ceeXaXo coes

. . . .

° . X B

- X FERSEFLERERRBRR R .

. SREEFREEREEARR * BUMP * .

B * RETURN *® * POINTER _TD * .

. & TO CALLING * esessscscoccss * CHARACTER * -

. * - *FOLLOWING TERM #* B

. PEREERRRERBRERS . * * .

. . RS EERERRERE KR .

. . B .

- - . .

. . . .

. - X .

M . 2w .

. - YES = * .

. o¥ * C3 « .

. tttatcz:ttttttttt G3 x, 5 * .

- * PAR *, tttt wkER -

. P _'-..._a—,r-o : * .

eosX® (PERATNR IS %,X*]F EXPRESSIDN %ooooX¥* C3 "

. * LEFT PAREN. * o * * .

. * * “x. ok xRy .

. B e e] *, % .

. * .

. X .

. B

o .

. .

.

.

.

.

.

.

.

BER AL SR ERRREEE

FEBEA] KRR ERBEE *® *
: ENTER IEUFTL : : ENTER 1EUFT7G :
* N * LREXTREEEREEIE R
SRR RRRRRRRER .
. .
. .
. .
. .
. X
X BRRERR] SESERSBE RS
ST CIATE e SSTRING COUNTER. S
AL IR 107
SOPRAD’ (0R zerzon * “AND IEUFTS *
* BEXRERRERRERER KR
u:uuunn”u .
. .
: e
X X N
¥, untcxu ERREERE .
cl *, GET PTR .
¥ IS * 'TO NEXT LITERAL® °
. ERROR . IN CHAIN FOR .
*go REE{:;Q IN o*eoow * THAYVEESPE(TER * .
“x, Tt N EERERRREERREERR AN K
®, o -
+"NO : : :
. . . .
. . . .
- . X « NO
. . o ¥ o ¥,
X . Dl %, ERRERN2REEREREEAE D3° "%,
BRARRD] RFERRRREEE o* *, $ADD 1 TO STRINGY t .
* * B <% IS PTR *, YES * COUNTER, VE FODUR #,
* INITIALIZF * . #,ZERQ (END OF o%ccesccesX® PREPARE To t........X* CNAXNS BEEN o*
:FRKURCSSENU) IN: - « CH - : CHI E(‘.s YnAT : «PROCESSED.*
* A P “x, % PP SUAF AP “#. o
t‘t*tttltt‘#ttt't . * * YES
. : : .
. . . .
. : N .
X ° X .
o¥o . REEERE L RREREE AR & X
F1_ *. . * FERRES FEBRRBRKE
+% IS *o ° * MOVE LITERAL *
¥ ERROR *. NO X ® FROM SOURCE * - RETURN *
*, RECCRD & RECORD_INTO * *
*,TEXT F * X ® FERFRERREEEE AR
*. P R S P
*,
* s
. .
: :
. X
X FERERE] BB RREERK
LA Sl * MOVE IN BLANK *
* GETX *#AND APP, FIXED *
k- -k FIELDS WITH =*
* MOVE E *LITERAL DC WORK*
* RECOR BUCKETS *
*BUILD SRR RRBEREER AR
EREERE .
H .
. .
. .
. X
X EEBRRG] R RRREERER
EENERG] KX EERKRERE * T :
* * * SET _LAS
*ATTACH CURRENT * * OPERAND *
R AL
* ' EERERERRREREREESE
T P .
: .
. .
. .
. X
. EERREH] EERRER R KR
X * MOVE IN LOC, *
uumnunn:' : H?ERH “8{2 :
UR £
: TO CALLING : : ENTISK'Y‘h’S'E‘SET :
FERRRR R R RRRRE B
:
X
ERRERJ] SEEEERER AR
* *
* MOVE IN *
* FIXED PART OF =*
: RECORD : ’
P T T
.
.
X
FEERRKLRR SRR RRRE
FREEK2 KR RRERRA
POINT BA *
-‘TO BE(E;(I:NNING DF‘........X: RETURN :
M ARXRBRRRERRRRT &
Terrsssresanesnss
Chart 26. IEUF7L - Phase F7 Log Error
Routine Chart 27. IEUF7G - Phase F7 DC Get Routine

Flowcharts 91

FI .

EREKADKKEERRERE
*
: ENTER TEUFI :
FEREREEEEERKRES
.
X
FI12 ¥ LPFI2
B2 *, HREAREBIRAEEEEREREE
o¥ *.o
o* 1s *. NO *
. ESD IN CORE o¥cucsossoX GET ESD
*, o¥ *
*, o¥
*, L% TEEREEERRES SR
* YES .
. .
. -

eXoossaosesosnas

FI13 X
R RC 2R KRR R
* &

BUILD
ADJUSTMENT
TABLE

%% w
LR R 23

TRRREEE AR TR R

xe 8600

14
EELE R DFES SIS L2 L2 2L
* LIST ESD
AND QUTPUT
* ESD CARDS *

EEgEh kR

30 0008 00 DA Dm0 0 8 0 0

HARRE kAR R R E

*
®*EXIT TO IEUFSI :
xR R R R

Chart 28. IEUFI - Phase F Interlude

92

AERFA | HERREREEE

ERT S

x
ssescesesescet A7

X
'**"Aztttttit'tt
QY

* * Sl
: ENTER TEUFBC :........X‘INITIALIZE FOR *

x

HEE TR RRRRERER

R

6 6 66 6 0 8 68 8 6 66 08 606 e e e 00 e 8 80880008 080060000 80

T BE] R R K
tCﬂMMrVT(IFUFPPI'

ACH RECORD *
FERREREREEREEREER

*. YES
NG o%¥cecvocecs
*

Ko o s 00 %

EREXARC2E KA KRR AR EEE
yETXTM (IFUFJI)

*
*®
*

EE2 23

Rk EFRBIREXRERREEIE
ERLODS

*

X GET ERROR
* RECORD *®
EE RS 22222t

°

X
hEk
I3 *
® E2 &
* *
REE

INDUT NFXT
* RECNORD ®
i uy
:
.
3
p2" sl BRI KRR KRR
WAS =ND
. THERE *%. N7 P A
*, ANOTHER
*QFC RD . PROCESSING
T RO R
« YES
L L
* .
® F2 ¥.X.
T X
oXo
I FEREKEJERRRETEKE
IS **LP[MG llEUFHP)‘

NO *RﬁrURﬁ ‘U“ %, PARTLY

* SFT lN PR’“T 'X........*. NCESSING PETRA
* LIN * g *

*
*t*i#**t**t*t*t*i

Chart 29. IEUFS8C

*, o ¥
*, o%
* YES

eXoossecscccnsnns

X
BREERFEDRESE Bk kRS
* SETWAD *

P 2 3
SFT 2TRS TC WRK

FIE
EEEEFRFERF AR R E R KK

*

NT *, YES

HIS o#ecasosae
NT. %
¥

MOZN #xe es e

D2 RXe e 20 4

*
31A?*

sos $OTOH #Xe e e 00 #

cecsscscens

‘*"‘K2t**"*‘t$t
:IEUF %ZA?

#ﬂUTPUT RﬂUTlNE *

t#i"#‘t;#"'t"#

.
.

aEEE
® *
% A2 =
* *
s ®

B e B e B A B
X% o !NT RUUTINE *
* BUILDS IMAGE #

*
xRt kR KRR R
.

ERAERGIEEERERERBE
* SRL *
Lt e Sk B St D 2
X* NO ANY *
: ALIGNMENT *
ThkEEEE kR R ke k

.

.

secsccosce

X

EEEEE JIEERRFREERR
‘IFUFEM 30A2%
B e et o
*PROCESS MACHINE®
* INSTRUCTIDNS =*

*
R EREREERRE R KR

- Phase F8 Main Line Control

o E)4k KL R RKE K

* *
e¥eceaosceeX CMMPLETE RECORD cocscoas XEEXIT TO TEUFPP *
* * * * *

LRSS 2222 Ll]

Flowcharts

93

EREKAQERRRRERKE

*
: ENTER JEUFBM :
EEEGERREFEEERKS

>0 60508 HNDPTr #0000 000

AERREC2R ke S bk &E
*

* ARRANGF BITS
* FCR _COMPUTED
* BRANCH

R e e Tt

XX TR

=] ¢
X0 8 0 0 08 HACT ¥X0 65 6 0

*
=
I3
A
=
bl
2
Z 3
3]
et
a
XXX X

KRR EERRERERERE

EEBRF 2R R ERE RN
RET *
T0 IEUFAC :
FREBEEEREEET RS

* %%

Chart 30. IEUF8M - Phase F8 Machine Operation Processor

94

SEREAZREEREFREE

*
*

*

* ENTER IEUFEA

22223222222 22

0o s e X

SESRERITREEERKEEEK

*
*®
*
*
*

REEkE kAT Rk R R KK

&
*
*

#RER(IRRERREEEE

RETURN
T0 ITEUFSC

HEEEERRERRERREE

*

e¥ioeaaceo XE

*.

*

.
X
SREERD2ERERRREE LR

Mtt*“#k##tttttatattttttttttttttt
% * 5] =]
* * W ©
* * wZZ s
* * oDww >
* » ZWEX o
* * oy -
* * o e x
* woa< “ o
* O b b s fed
%) c vwn -
SOLS NV x -
LR L b e Do o o e co wIT C
o b O O DO xZa OO «
CLhl O SUIUE SCO0C Bl
ZZFVNCIXZNE Ok Z
Wik b TOWWCOVOOOWOW LS00 X2 C
ZOOLX- O wny O
© CmQUZA V) DDA DNDNN -

I ZEA DU NZNNVNNNNNNUINFHNODZ

w T O VUG & WAL W LU W LD 000 &

] ODOVLOLLLLLLLY =]

<1 b b b O C QO C CCOC T O C e b=l

o L U WU UL o U 6 O O O O 6 O O & & 2 L Wil)

a DANANNNAXEEBAGAAAAARNNNNY

-0 @O OeOaLc o @

- b U e T O O Z b b b cCODn o

w ZOLDE JEXELVOEEELE L0 DU

© CmCLZo - QWUIDCQC=O X000
it ZHADDUmZ X NNCOL Z DK DN X
¥ FauLaa-UllinLOOLCULDCOL0000
BBl % W W I A A RN

R B WA
* * o

w * #* *

w * W o
xen * _ou ¥ T
A~ # Tuwn # L
o~ * L * 2

cZu * O« we 3 <
TECH# o900 0 X% LONKE o 000 o3 # =3
Cw—O B EmNTH ¢ ©
ZV-Z N WCWZ# o~
ana W aZo ()
e % =G # <
o w * X # *X
a #* a *
=] * * .
RN T L

FREAF | EFERKERESE
RETURN
TO TEUF8D
RS REEFRRRREERE

*
*
&®

EEERREEER K REE XKL

ERRRG2ERKREEEEE

&*
*
*®

RETURN
TO IEUFBC

P22 L i 2222t

*
*
*

IEUF8A - Phase F8 Assembler Operation Processor

Chart 31.

95

Flowcharts

ERREATIEESEREERE

* ENTRY FOR ENTTED
* ENTER TEUF8P & RECORDS
SERRRRERGE SR RE
.
.
:
.
.
X
LEUF8P ox.
n3 *, FREERRLEFE AR RRHRSE
*®
UNCH, "%, ND
*. RFPRD nnm ‘.
Thre AND PUNCH * X
- * T
*, EEREEREREFEEREE AR %33 ¥
#"YES * B3x
HAXE - & &
%32 & *
% C3 *.Xo
LI
EL i1 X
%,
Rk EEC IR TR ERRE RS Cc3 . 't‘ttc#l#t#tttltt
* * oF . *
T OMOVE MNOTE & MNOTE .+ . TITLE » *
* AGE TN Xeoosoaso®s COMPUTED GO c#eeeasaesoX® [
* PRINTCAREA 10 o : HEADING LINE = X
® *®, o ¥ * bk
R EEEEERREERRE RS *, F “*#‘*.t#'#"“‘ﬁ *33 %
. * PUNCH, * B3k
. . REPRO « %
. *®
X .
LEiEdd -
*33 * X
* Gose N
* ¥ D3 *, B KENLGEEEREREE KR
. -, ® CHKSWH *
PUNCH *, H K el = K Kk
%2 OR REPRO . eeoX® POINT 12FPRAY %
. . * REPRN LINE *
*, o & *
*, ¥ REEEEEEERTRERRRERE
* PUNCH .
. .
. :
Xeeesoseesasosacancscnanns
X
FEEXSEIEEEE SR RE RS
EE ISR IS LA 22 2] * P *
. % ENTRY FOR SOURCE : =
+ ENTER IEUFBP * AND FRROR RECNADS * nuw PUNCH *
* * * BUF iF *
EEEEERER ARG R * N so *
. SEEERKE AR TR SRR KR
: .
: .
. .
COMMENT X X
SRR ERE] Ee kX kA REF IRRAEEREEEER
* 4 SYSQ_(TEUEST)
* MOVE P e e O ol ot 2t o
*RIGHT SIDE FOR * UNCH CARD ED
* PRINT * S NGNc i REPRE
EEEERERRERERR R R eEREEERRRRERR
. .
. .
X .
EEkEk .
+33 .
* B3 .
% X
* *RERGIERREERERE e xEGLETR R REEE
* * ENTRY FNR GENERATED
* EXIT £ * ENTER IEUFBP % RFCORDS
*
EXREERTERRREERE EE RS2SR R 2 2]
X
BLDIMG *. *,
Ha T, Hs® T,
*, o ¥ *q
L& TITLE *, YES
#IPEPRO, PUNCH, c¥iceaonsaX¥s MNOTE Heees
s, MNOTE % . . .
*,
*. L% % X
* NO * NO Ll add
. . %33 *
. * B3%
. *
% .
ti#*tJAtt“*'*‘tt X
EERE SRR AERREE
CONSTRUCT *
‘RIGHT bSIDEFOR 2 * EXIT *
FEEERRFRERTRERE
“#t*t"’*‘i‘t*&l
.
N
X
kg
*33 *
& Rl&
* %
*
Chart 32. IEUF8P - Phase F8 Print Routine (1 of 2)

96

Chart 33.

IEUF8P

.#‘t‘DZ#““tttt#
L DLH
I ol S
TO PRINT LINE #*
‘***#**t#i‘lt‘t*#

Xo o800

t‘#t#EZ‘tttttt*t*
C SHH

..........

* PRINT LINE *
* *

* *
EERRkRERERRERRERE

XKoo e

.““FZ#&‘*I“‘.‘
GOTXT

‘ PUNCN DAYs !N ‘

EEREEREEREERERRER

ERREG2EXEAEEEEE
* *
* EXIT *
® *

REEEREERERRERER

Phase F8 Print Routine

SIDE %
‘HDVE LEFT SIDE *X........‘. RECURD TVPE

o ¥
*. EJECT
*

*, ¥
*, ¥
* NO
.
X
o¥.
D3 *.
LEFT o¥ *.

t. ,‘
*

FEEEREIRERRRBERER
*

* INSERT t

* STATE MENT

:IN ERROR RECORD‘

t*ntttttttttttttt

e o000

t*tttt?;ttttt#*tttt
HTFRR (IEUFB)

%33 *
* B3*
* &
*
.
.
X
INLCPL o,
B3 *, FREXEPLEEERTERE b E
o ¥ *, *
*. YES * SAVE *
*, SPACE e¥osececeeX® ACCUMULATED *
- ¥ * SPACE COUNT =
o . # *
*, ¥ SRR R ERRRFRERRRRE
* NO
.
.
.
1
c3 *, ttttthtzxst:::xt
- *. ED
% -t—t-t—t-#—t—t

YES
"........X‘ EJECT TO NEW *
PAGE *

##tti"‘*t**#**tt

tttttok#'itt#ttt'
C KS H *

ot d
..X* PRINY L]NE IF *

ONE IN BUFFER :
"i*#tt#ttt"t*tt

e o800

SEERSELAERERREREE
LUADRFRR *
Al K e W ¥
PRINT ERRDR *
LINE IF *

*

*nw

NEEDED *
hEREER R REARE R

*PUT ERROR - Tk
* RECORD IN
TEXT STREAM
SRAREEEEERERE *, %
. +°Nn
. kEk
: +33 *
: +°54 % xe
: ‘i*t .
. X
X “..'G“**‘*‘*‘**
*EFEGI eGSR ERE LOADRH
- _t—t-t—t—t-t-t
* EXIT * tnnve RIGHT SIDE®
* T0 PRINT LINE #
FEERSERERERRFRE
R ERERRERRERERE
X
FREEHG R R FRRERE
* *
* EXIT x
EI I RS 2222]
(2 of 2)

scsessce X¥

ccesesacX¥

EEEE LI S22 22 2 2
EXIT
EE SIS EE 2L L 2

BRI 2 222 22 2 24
EXIT
BEEkEREFERERRER

Flowcharts

*
*

R
*

97

Chart

98

AEEEA] kSRR ERREE

*

: ENTER T1EUF8D :
AREEREREREER R LS

o 00000

fnatn s DES L LT 2T 14
* *
* SFT _OUTPUT *
¥POINTER TO NATA#*
* AREA :
FHEERKK RS EREE A

X
SRR EAC] KRR AR AR
FE *

* TCH

* CURRENT *
* Ld(ATlOV *
* INTER *
* *

. *,
o XD *.
*, INSTRUCTION
*, o
*, o
*, %

o .
NO

Xe 6600 ¥

i.t'tﬁlttttt*ttt‘

* FETCH POINTFR ‘
* T0 FIRST NC
: WORK BUCKFT :

HEREERR R LT EERK

Bk s e e

Fl ‘.
o X YES
*-ERRUR BIT SFT Kedeaee
“e. Y
*, %
NO

Xe oo oo e H OND HXo e o6 i

FERREH] ke ke EERERE
&

* ALIGN DATA
* FROM DC _WORK
* BUCKET

XXX

FEEER KRR R RE R

s s 00000 e0 00 s s 0000080008000t e e s e

#0000 0

o ¥ *o
* ns *
INSTRUCTION
*, =
*,

*

*2

e¥aoee

ok .

YES
eFeosescaaX¥
*

Laad AL LIS L 2L L
* MAKE *
* RELOCATION *
DICTICNARY *

TR :

EAEEERE R ERREERRE

HREKKE2 S h R ERRRTE
* *
* FOUR BYTES t
* 0OF ZERO

* OUTPUT BUFFER t
ttttttlt#t#t#*#t#

ok & . PP

e

*34 ® . ¥

¥ F2 ¥oXohek F2
* * -
*EkE . FH X

AR ERF Ik k R R KK

*
* BYTE *
COUNT " TO QUTPUT
* BUFFER *

*
EERFERGRERREREREE

Xe e e 0o

L b d T ab i i 2L L]
tTSBP T . 358

tPRINT ONE LINF *
* *

& *
BRRFRREEE ke rRk kR g

Xe o s e

vzt
* HDVECCU§REN1 :

* COUNT 0 *
‘ CENTRAL TABLE '

l#*‘tt#ttttttttti

vescessen

REERJOREE R R R EE R

x®
:EXIT TO IEUFAC :
ERAEARKREEREREE

EEEERK2EEFRKEREER

*
*

ER s
D> Axs e e B

PO
% %

*
*

34.

* *
KEREERERKEGREEREK

X
REEK

L A

aae

rhEeE

*34

* A3e
* &
.
N
X
0¥,

A3 .

o 'R
. *, YES
*q ﬂlr LENGTH o%ccee
R " ;
*

‘om0 S
. * F3 x
. M *
- kR
.
X
o ¥,

B3

cese

se X

B

HEEE
*

wRER

AL DELEEL LSS S S

FILL
LAST ouTteut
BYTF

LX T R
EE R R

TRk kR kERERR R RK
.
°
sesososXe
.

X
R EREEJRERTRERERE
*® *

* CONVERT *
*3YTE _LENGTH TO *
* BIT LENGTH :

*
HEEFEREEEER BT R XK
- wE¥X
: Xt s
* . Tk

EREERGIRERKERREHE
* *

* SET *
* FIRST CPERAND *
* SWITCH *

*
AR EERERREE R R R

:

.

.

X
ExrEkHI R RRERERE
* *
* COMPUTE &
* NEW BIT *
: REMAINDER :
R R e s L I

.
-
.
eXsooseocs
.

X
P I NER T
* *

* RESTORFE *
:LENGTH MDDIFIER:

* *
ERERREEERRREERERE
.

.

.

X
EREEEKIRERRTERE XK

COMPUTE *
POINTEﬂ T0 *
RST BYTE PAST#*
‘LEFY DELIMITER :
EEEEER SRS TR KR AR RS
.
:
X
L]
* *
® AL %
* *
Ry

.
.
.

EERXEAGRERRTRRE &
* *
* *
* PROCESS DC 8Y *
* TYPE *

* *
ERREFERREE Rk kE

#3600 000

o ¥,
B4 *,
¥ *o
* DS #
INSTRUCTION
*, %
*, ok
*, %
NO

YES

b txll.

*

X
X ECH AKX ok ok

DECREMENT
DUPLICATIUN
FACTOR 1

EXX X 2
%R

EEA R e 2 S SRS T

#3008 086

o,

06" s,

% .
<#DUPLICATION

FACTOR = 7£R9 0+
%"

o ¥
* YFS

NO

csocec¥e

-
.
.

*o

tttt

© 68 600c08 0000000006800 060608000000800

-
eNeoooososesn

*
& E6 *, Xe
* * -
kEE X

FhAARE L R A RRRE &
* *

* BUMP OC *
* WORK BUCKET *
* POINTER AY 15 *
FRRAARE AT R &

.
P N I R A R S

FEREEHA KRR R kR Rk X
L

* ALIGN DATA
* FROM DC WORK
* BUCKET

LA R R 2]

EhEERRERREREREE K&

#3000 08

36" Ca,
ok ®

x DS . YES
JINSTRUCTION Zx.l.,

. . .
*. o o
* *

.
*,

X
Lot
*¥35 %
* R1%

* %

*

z
=]

e 0000 &

SR EEKL KRR ERBRERE
*

e ENABLE
: PRINT SWITCH

L2 R X2

*
EEREREREEEKERER KR

IEUF8D - Phase F8 DC Evaluation (1 of 2)

e
* *
® A5 %
EETTS
B
%
o ¥,
A5 *o
o¥ *g
o ¥ ®, NN
*, ALIGNMENT o%,..,
« NEEDED o
*o o % .
®, o% X
*x Y=§ L2313
N % A3 ¥
. *
. kK
Y.
o ¥q
85 ¥,
o *
«*LAST OUTPUT*. NO
o BYTE NEED o%eces
¥, FILLING o% .
L - °
*o o % -
* YES -
. .
: .
X .
TEEREC SRR AR R RRERK .
® * .
* FILL * °
* LAST OUTPUT =% -
* BYTE * -
* * .
EETTT TR T TR TS 2T .
- .
.

Ak xR KD SRR IR RK
* *

& ALIGNMENT %
#3YTES T7 NUTPUTH
* AUFFFR *

EEE SRS L RS 2L L]

ns "%, YES
N INSTPUCTION e¥e00e
.
Tk, . °
*, o % X
* N) Ladbad
. *35 ®
. * B3
- * &
- *®
X
o ¥y
H‘ *,

*LAST nutente, NP

%o «er NEED o%...
., ILLIkG o .
*o %0 X
* YES LR
. *
* F2
*
. L
X
FEERK JSERRERREERR
$x *
* FILL *
® LAST QUYPUT #
* BYTE *
*) *
HEREERFERERRERERE
. tttt
..x- F2 H
* ®
LE L 1

2
*
%*

Chart 35.

DS ROUTINE DS ROUTINE
Rk Ed i
*35 & *35 =
* Bl * B3¢
% % & ¥
* &
. .
. :
X .
o¥o X
81 %, EERERBIEREAREEER
o ¥ x, ® *
¥ x, * ENABLE *
*,FIRST OPERANDo%*ceoas * PRINT SWITCH =*
*, o ¥ ° * x
*®, ¥ " * *
*, o N EEE 2232122 2233 2 23
x ° .
. :
: :
: :
: : :
X : X
:
*e (| FE xR EREEEE . SRS IeREREE RS RR
* SAVE * . * RESTNRE &
* ALIGNED * . * AL IGNED *
* LOCATION * . * LOCATION *
* COUNTER * . : COUNTER :
* * °
LR 22222 22 2 2] - EREREEERE Rk RRER
. : .
: : :
: : :
: : :
: : :
X N X
SekeRD] 2SR ER AR Ex . .i'#‘D}t#ttttt'#:
* * - *®
® * - * SET &
* DISABLE PRINT * - * DS FLAG FOR *
* SWITCH * - : TEUFBP :
Ei 2SI 22222223 N EEZ I R e 222 2]
. : .
: : :
: : .
. X
. RERE
X *34 *
%, *® F2%
El *, * &
¥ *, ¥
o ¥ DOES ®, NO
° OPERAND e¥soscesos
#, CONTAIN .#* X
*,TE ¥ Liiddld
o o¥ *34 %
* YES * E4%
. * ¥
. *
X
¥,
Fl ",
o¥ TYPE *, YES
*, Cy X9 By Py e®eoooonsese
*#, O0OR Z ok X
- . kg
*e o 34 %
* NJ * F4%
. * &
*
.
X
¥
Gl *,
o ¥ *,
o¥ *, YES
%, TYPE V OR Q e¥ccecoasas
*q - % X
, % EEL 2 L]
o o¥ %34 *
* NO * F4t
- *
:
X
¥,
H1
«% DUP
- FACTOR
*, INITIA
o IERO . X
&, . L2222
kX, % *34
® YES * A3%
N *x %
- *
X
EEEEE] S BEEERERE
* *®
* SET *
* DUPLICATION ¥
* FACTOR = 1 :
*
EEI S 222 222222 22 20
X
E3 222
*34 ¥
* 3%
* *
*
IEUF8D - Phase F8 DC Evaluation (2

of 2)

FRFFASERERERREE

*
: ENTER TSBPRT :
EEEEREE AR LR RO

*
B
.
.
X

TEEECSERE e ERREE &
*

EX R X 3

*

*

* SET

* DC _FLAG FOR
* TEUFRP

®

®

EREREREEAEEEBEEE

FIEERE)

PPl e e T
*[-yFap 32A3%
K B e i B — B
*PRINT ONF LINE *
* *

* *
ER R I LSRR R T L]

Secc0sce00c0 6806000000800 c0 0000008

.
.
o
X

LEE RIS TS S 23 s 12

* *

* RETURN *

* *
ERE i L et 11

Flowcharts

99

R AH A] KKK KKK
%*

*
* ENTRY

e AR R R R K

SR EEER
*INITK

R

L%x

ALT

MIVE

*PARAMETE

* MODF SW
*

Rk R AR

X

*

M

L

b
C
N
*

Chart 36.

100

IEUF8N -

X
koo E2 kdokiokokk ok

* *
DIVIDE PIECE BY
5 AS NEEDED PER¥
*PlECE EXPONENT :

#t*#*#*xt*k******

ceeseccosscccacssssssccscsoXssosososssvscscssescsons

Ak E
*

NO
E A3 EXu ..ok UF
M *

ek

X
Aok A J 2RI KKK KA
*MOVE TP JUTPUT =

REA *
‘ COMPLIMFNT IF *
* NEGATIVE *

#*t&#*##t****

*

*
cesesssssssssscos¥o
*®

FREEEAD FEEREERKE L
* CONVERT PILECE *
* OF CONSTANT, *
CALC EXPONENT *
* FOR PIECE :
*
A e e ok o R RO R KRR
X
%o
B3 o
«*IS THIS*,
«% 1ST PIECE *. YES
*, OF FLT. PT.
* CONSTANT . *
*, o F
E, o X
NO

ok ok C IRk ERR KRk
*

* CALCULATE
* BINARY SHIFT
* FOR PIECE

33 % 3 3

oo e e ok o ook ok R Rk

X
*t***FB****X#****
*AﬂD PIECE INTO
ACCUMULATOR PER
* BINARY SHIFT

Aok ko R RR xRk Rk

:
X
o ¥,
G3 *.
.* *,
IS ALL *,
CONSTANT %
* CONVERTED. *
*, o ¥
*
YES

X
kA K I RR KK
*®
* EXIT ®
* *
ok ek R R K

Phase F8 Floating and Fixed-Point

*o
*. YES

s¥easass0ssenccscnns

***x*BAtxxx**axt*

.*-.......X*OVERALL HORKING:

* SCALE FACTOR
Aotk R R R Rk Rk

Xeoooososssossscscooanncose

kR kEL %
*MULTIPL
*BY 5 AS N
* PER PI
: EXPONE
Fek ok Aok R

O < #Xe o eroocoe

Mo oo s 0006 e

Aok Aol J 4y el de ok ok ok

*IN OUTPUT AREA :
SRRk Rk R Rk R

.
.

Xeooseossossesscsssssscscsns

Conversion

BREE

® *
* A4k ¥
* *
TRk E
N
.
H
o*.
A‘t *q
RS SAL ke kRS “‘
* X140 .CDOES Imswnt X*10°¢
* ENTER IEUFPP # oo xoltiatD OR ceccnns
® * * *, x'l o ¥ -
SEEEEERFFREERES L2 22 . .. -
. ¥, X .
* NO .
. .
. .
. . .
. . .
. X X
FPP X ox, ok,
KRB HEREEEK B4 t. 35 *,
® PPIN * o ¥ o* .
B o e xXe08¢ 'DOES l\'RSHHt <% COMPLETE %, YES
#INITIALIZE PTRS* eescscccecserasceste s ot #. XREF LIST o¥ecee
*LIMITS, & 1/0% . *. 08' ¥ *, SORTED IN.® -
BLK COUNTS' # S0 . $.CORE . .
FEERKEREREE *, o % . s
- * X°0C* * NO .
. . N -
. . .
. . . .
. . . .
X X X :
Hk k] Rk bbbk hE *&CLETT R x% E2 222 St 22222 2 22 3 -
SET RELOCATION # * RDIRLD * .
* DICTIONARY * ¥ « YES Ll e St ol Tt o X KB F—-R-§ # P
* RECORD LENGTH # 0 ¥ecaees * MERGE SORTED & WRITE SORTED .
* X908' INTD * * . *RECORDS WITH * #XREF RECORDS * .
ITRSWH * o . - TAPE RECORDS#* P -
ER 2 P22 222 222 22 Ey, o % - ERT 2222 22 23 RE S22 222 222 220] -
. * NO
Lt - . . . - -
* - 3 ° - ° .
D1 *.X.
*
E . . X . .
X X <EPRL2 e, X .
LR EEDHIESI ES 222 22223 '#‘.‘DZ.‘##**"“ e RREDI Rk ERE EEBRE . *, C*t.’DSt#.*tt't.: P
GTOR * . o ®, * .
. e k. S B * X*0C* # BB Gee k- & - <% ALL INPUT *, NOD * Xtl4® ® -
GET INPUT Xeosoasea® INTD ITRSWH :x......... JHRITE SnRTED * INTO ITRSWH ¢ o
ECORD RELDC.#* * RECO *® * * °
DICTIONARY * . * . -
RS EEEREREE #‘3#‘!““#‘***‘“ ER IS PR 2 22) " EEEREEEEER LR EERE -
. . . .
. - . ttt' .
. . .
. .-xt 62 s
N .
X ’O“ -
*. ok X .
£l - 2 *, BEERREELESRREEEERER -
o ¥ . o ¥ ®, k& -
- o ¥ *, YES o ¥ WERFE *, YES * * BB e KRk B -
© RJ END OF DECK o%eeeeesosX®. ANY RECORDS .%.ccoX® Hl * PUNCH AND LIST
° *, o¥ *, READ ok * * *RELOC. DICT.
. *. ¥ *. o* R RECORDS -
- *, ¥ T, . F EE L2 2222 2 22 22 2 -
. = NO * ND . .
.
.
.
. N S -
. . . .
SREADR X XRELQAD X .
- FEEERF] AR RE R R REE EEEERFEDRFERBERERE -
. * * * SEY CROSS * °
. MOVE * # REFERENCE % .
. ¥RECORD TO SCORT * * RECORD LENGTH # .
P AREA * * X107 INTO — * .
. * * TTRSWH o .
- Aokokokokokok dok ok ok ok ok EE 2 PSS 2 T2 2] ® * -
- . . * G4 * -
. T 2 . * * -
- Rl 22 -
* G2 *.X. . -
. . . .
X ok o i -
ok, X -
Gl *, EEBERRG2E kAR RERERE #*33#166“‘;‘33".. -
. *. .
NO % IS *x, * KRR x & R e e P
eee®a SORT AREA % READ INPUT MERGE SORTED -
*, FULL o¥ *RECURDS CROSS* #XREF REC WITH® -
B o FRENCE TAPE RECRDS -
E, % *'#*'3*#'.*“ EERREREREEERE -
* YES ° ° -
wkkk - - - -
* ® o . . pe
® H1 %X, . N .
* . . . -
*h&E - X X -
X o, o, o -
#tHl#i‘t‘tt H2 ®, H3 *, Hé .. -
‘ ES["R o %, «% WERE #&, ¥ kR -
—————— ¥ *, YES <% ANY eTALL CROSS NO * * -
‘SORT INPUY YEXT‘ *, END OF DECK o¥ssoose EFER - %2 REF RECORDS o%oeeoX® G2 & -
. *, o ¥ %, READ . . %, READ o¥ * * -
* - *, o ¥ *, . . - EE 22 -
tuu“un . P *, ¥ X %, o8 -
. . * NO % NO *REE * YES -
N N . . * * M .
. . . . * Ml * . .
- . . ° * * ° -
. . . N LE 22 eXsoocoscscsccseccccconcscacccscsos s coa
.
CHKSWH X <READX X X X
EEEEE J] RSB ERER . EkEE 2 REEZZE2 2222223 RN RE |4 SR EEE R EE
&® * . L d L
* * . # MOVE CROSS = * * B o B
#PICK UP ITRSWH * - *REFERENCE INPUT® PUNCH END CARD Xeceoeooos PRINT CRDSS REF
: : - :RECDRRRER SORTY : * * cug OR *
RS RRREKREEEERE - FEERERREEREREREEE ERFEERERERE RS “‘#‘tt.t‘t‘.
. . . N
. . . .
- . . .
X . . .
TEEN - -
* * X -
* AL * - -
* * X
*EEE BEREK I RERL R EEE
*, *®
¥ ®= EXIT TO IEUFD :
- - SRS REEEES
o o
% YES
- 22
co X% Hl #
e d 2

Chart 37. IEUFPP - Phase FPP Post Processor

Flowcharts 101

EEREE)] REEEEREREE
* &*

* GET COUNT #
* OF ERRORS IN %
-

* ERROR RECORD
EEREERRKERRREERER

*

AERRAL FREEEERRE
* *
£ ENTER TEUFD *
AR R T
FO X
HRTERB] R AR R
* *
* GET *
* ERROP BLOCK *
: COUNT :
R R R
.
.
%
¥
*.,
<% ANY
YES .*RELDCATABLE‘
cese¥s Y-CONS IN o
. *,ASSEMBLY .%
° *, o ¥
- . X
. N
ZMLOO X
. k)] dekokok ek
. RDERR .
: * GET ERROR * KD 2R RS HRREE
. * RECORD * *®
- *EXIT TO 1EUFRA *
M SR AR * *
. . e
N : .
: : .
. . :
. X :
B ¥, ML11 M
. E1. T, FEEEREQERARRRRRKAE
- «* ERROR *, PRINT °NO
- +¥% RECORD *., YES * STATEMENT *®
o *, POINTER = esssaeX FLAGGED®' AND
- . ZEROD o * LINE COUNT *
. “x. .E EERERRERE R
° * NO Py
- . ek F2 ¥
. .
. . S amEE
SMLOIA X : AP orab
- *EEEEF] ke FReEREEK . TkE
PO * PEE oot —
o * STATEMENT * ERARES FORMAT SﬂURCE *
- * NUMBER ERROR * DRD _FOR
. *MESSAGE APPLIES*® YSTERM *
T * Rk KKk
R L)
: :
: Gl &, TRERRGZRREELERRLS
° DOES NEWE,
- * STATEMENT #*. NO STEP COUNT
° #,NUMBER = OLD .*-.......X‘ oF STATEHENTS ‘
- * STATEMENT . # FLAGGED
. ENUMBER o
. . o R AR RARE R AR AR
° * YES °
. . .
. Xecesesesesscnsscacenannnn
SMLO1B X
O AR RRY] AR RE AR &
- *CONVERT STATE- *
- * NO. 5
.
.
N
.
.
:
.
.
.

see

MLO3

® Chart 38.

cesesoeXe

.

.

X
FekERK] RREFREHRRE
* LOOK 0P ®
* ERROR MESSAGE #
* [N TABLE AND
£MOVE TO OUTPUT *

EEEREREFREEFEEREE

il 2

102

MLO1

EEE
* *
£ A3 %
* *

£XEK

X
*EExRRAT R R kR kR

* PRINT *
*ERRUR HESSAGE'

ERAk e R R K

N

X
FEEXRBIRERERERTEE
GET ERROR MESS-
* AGE SEVERITY *
* CODE AND_SAVE *
*1F HIGHESY YET #
ENCOUNTERED *
EEEREERRERRKERERK

X

*

o* ALL %,
<*MSGS. FROM #*, NO STE *
.‘.......-X‘ERROR NgMBER IN*

*,ERROR RECORD
*q N .
*, .
x, *
YES

e s 008 3
0

PR EL LR
ERR

*GET NEXT ERRDR *
RECORD

e b ok otk K koK

.

.
*
m:
B

R=OT #3000 0

*
OR #.
«% RECORD *, NO
*. POINTER
« ZERD B
*. .
*, ¥
* YES
.
X

ML10O
EREEREF IR REEH R REE

* PRINT NUMBER *
OF STATEMENTS
* FLAGGED *

EEEREEERRRRRE

X
FEEEKEGIRERESRERERE

* PRINT _HIGH *
SEVERITY CODE
* AND LINE *®

COUN
R ERR R REERRE
.
.
X
*
1
T
N
E
5
%
.
.
.
.
s

X
R PIHEEERBESE
*
*EXIT TO IEURTA #
* x
FREEREKRRSER T

FX00000000000000000000000900900009000c000000000000000000000000000cc000

IEUFD -~ Phase FPP Diagnostic

ttt:tcattttttttt*
P TO NEXT

ko ok Rk ks

.
.
o
.
.
.
.
B

scssscsesseses

©6 6669860808003 00680606000068006800s000s6s

OPTIONS

The programmer may specify the options
listed in Figure 17 in the PARM= field of
the EXEC statement. The options that are
underlined in the figure are the default
values that are assumed by the assembler if
no value is specified in the EXEC card.

The options are defined as follows:

DECK -- The object module is placed on the
device specified in the SYSPUNCH DD
statement.

LOAD —-- The object module is placed on the
device specified in the SYSGO DD state-
ment.

Specification of the parameter LOAD causes
object output to be written on a data set
with ddname SYSGO. This action occurs in-
dependently of the output on SYSPUNCH
caused by the parameter DECK. The output
on SYSGO and SYSPUNCH is identical except
that SYSPUNCH is closed with a disposition
of LEAVE, and SYSGO is closed with a dis-
position of REREAD.

LIST -- An assembler listing is produced.

TEST -- The object module (if produced) con-
tains the special source symbol table
required by the test translator (TESTRAN)
routines.

XREF -- The assembler produces a cross-
reference table of symbols as part of
the listing.

RENT -- The assembler checks to see if the
user's code is reentrant.

The prefix NO is used with the above
options to indicate that the option is not
wanted.

NOALGN -- The assembler supresses the
diagnostic message IEU033 ALIGNMENT ERROR
if fixed point, floating point, or
logical data referenced by an instruction
operand is not aligned on the proper
boundary. The message will be produced,
however, for references to instructions
(e.g., by a branch) which are not
aligned on the proper (halfword)

Note 1l:

APPENDIX A. ASSEMBLER OPTIONS

ALGN -- The assembler does not supress the
alignment error diagnostic message.

0S -- The assembler will have complete
Operating System Assembler F capability.

DOS -- The assembler will behave like Disk
Operating System (DOS) Assemblers D and
F. Anything defined in either of these
assemblers with the exception of &SYSPARM
will be accepted. CXD, DXD and OPSYN
will be treated as undefined Q-type DC
and DS statements and RLDs will appear
in the Relocation Dictionary in order of
their occurence (unsorted). DOS is
incompatible with LOAD, TEST, and NOALGN.
If any of these options are specified
with DOS, the assembler generates a
diagnostic message and uses NOLOAD,
NOTEST, and ALGN.

If contradictory options are entered,
e.g., LIST, NOLIST, the rightmost option,
NOLIST, is used.

LINECNT=nn -- This parameter specifies the
number of lines to be printed between
headings in the listing. The permissible
range is 01 to 99 lines.

TERM -- The assembler writes diagnostic
information on the SYSTERM data set.
Options NUM and STMT can be specified
only if TERM is used.

NUM -- The line number field (columns 73-80)
is written on SYSTERM for statements
for which diagnostic information is
written on SYSTERM. This option is valid
only in connection with TERM.

STMT -- Statement number will be written on
SYSTERM for statements that are flagged
by the assembler. STMT is valid only in
connection with TERM.

If option NUM or STMT is used
together with NOTERM a diagnostic message
(IEU078) will be generated.

Note 2: TIf option NOTERM is used for an
assembly, NONUM and NOSTMT will not be
listed after *OPTIONS IN EFFECT~* in the
diagnostic section of the listing.

boundary.
parM—{ DECK LOAD LIST TEST XREF ,_....n nn, ALGN OS RENT TERM NUM STMT}
_{NODECK,NOLOAD,NOLIST,NOTEST,NOXREF, 55,NOALGN, DOS , NORENT , NOTERM , NONUM , NOSTMT

@ Figure 18. Assembler Options

Appendix A. Assembler Options 103

APPENDIX B. CONTROL PROGRAM SERVICES

GENERAL

The control program services (macros)
utilized during operation by the assembler
are described briefly in this appendix.
Detailed information is given in the
Supervisor and Data Management Macro
Instructions publication.

DCB

This macro interfaces with the control pro-
gram. Information required to process a
data set is presented by the assembler in
this instruction.

GET

This macro is used to read SYSIN.

PUT

This macro is used to write SYSPRINT,
SYSPUNCH, and SYSGO.

READ

This macro is used to read SYSLIB, SYSUTI,
SYSUT2, and SYSUT3. READ retrieves the re-
quested block from the input data set and
places it in a main storage area.

WRITE

This macro is used to write SYSUT1, SYSUTZ2,
and SYSUT3. Write transfers a block from
the user's main storage area to a physical-
ly sequential data set.

CHECK

This macro checks the validity of READ or
WRITE. It waits, if necessary, for the
completion of a read or write operation
and detects errors and exceptional con-
ditions.

NOTE

This macro records the position of an ele-
ment in a data set by requesting the re-
lative position within a volume of the
block just read or written. This allows
the direct retrieval of the block at a
later time.

104

POINT

This macro positions a data set for a READ
(POINTR) or a WRITE (POINTW) from a NOTEd
location. POINT alters the sequential proc-
essing of a data set such that the next

READ or WRITE operation will take place at

a previously NOTEd position.

GETMAIN

This macro acquires main storage for internal
tables, buffers, etc., by requesting the
supervisor to allocate one or more areas of
main storage for assembler use.

FREEMAIN

This macro releases one or more areas of
main storage previously acquired through
one or more GETMAIN macro instructions.

FIND

This macro locates a partitioned data set
member by placing the address of its first
block in the indicated data control block.

OPEN

This macro is used to initialize one or
more data control blocks so that their asso-
ciated data sets can be processed.

CLOSE

This macro disconnects one or more data sets
from a program by closing one or more data
control blocks.
CLOSE (TYPE T = TCLOSE)

This form of the CLOSE macro instruction
can be used to temporarily disconnect one
or more data sets from a program. After
repositioning to a starting point, as spec-
ified in the macro, the data set may be
processed again.

LINK

This macro is used to link to a program
segment. LINK passes control from one load
module to a specified entry point in another
load module, keeping both modules resident
in main storage.

XCTL RETURN

This macro transfers control from one load This macro returns control from a LINKed
module to another. The main storage area program segment. It indicates normal ter-
occupied by the module issuing the XCTL in- mination of a task and returns control to a
struction is freed for other uses. higher level program or task, or to the con-

trol program.

Appendix B. Control Program Services 105

APPENDIX C. SYSTEM OVERHEAD

System Overhead consists of those features Estimated Time

in the control program which the assembler Function (secs.)
uses once regardless of source program —_—
size. Included in this estimate are the 6 separate XCTL (.4 sec. 2.40 + 20%
following: each)
Estimated Time 6 separate FIND (.3 sec. 1.80 + 20%
Function (secs.) each)
2 separate OPEN 5.76 + 20% 6 separate TCLOSE (.2 sec. 1.20 + 20%
each)
2 separate CLOSE 2.25 + 20% Scheduler Time 10.00 + 20%
System Overhead 24 .61
3 separate LINK (.4 sec. 1.20 + 20%
each) Maximum System Overhead 29.53

106

APPENDIX D.

INTERNAL ASSEMBLER INSTRUCTION CODES

Mnemonic Decimal Hexadecimal
Value Value
GBLA 0 0
GBLB 1 1
GBLC 2 2
LCLA 3 3
LCLB 4 4
LCLC 5 5
SETA 6 6
SETB 7 7
SETC 8 8
AIF 9 9
AGO 10 A
ANOP 11 B
COPY 12 C
MACRO 13 D
MNOTE 14 E
MEXIT 15 F
MEND 16 10
ICTL 17 11
ISEQ 18 12
PRINT 19 13
SPACE 20 14
EJECT 21 15
PUNCH 22 16
REPRO 23 17
TITLE 24 18
ENTRY 25 19
EXTRN 26 1A
START 27 1B
CSECT 28 1C
DSECT 29 1D
coMm 30 1E
EQU 31 1F
ORG 32 20
END 33 21
LTORG 34 22
USING 35 23
DROP 36 24
Literal DC 37 25
DC 38 26
DS 39 27
CCW 40 28
CNOP 41 2y
DXD 43 2B
CXD 44 2C
OPSYN 45 2D
WXTRN 46 2E

Appendix D. Internal Assembler Instruction Codes

107

APPENDIX E. TRANSLATE TABLE

All characters in source statements are
translated to an internal hexadecimal
coding., Translation is done to facilitate
comparisons and some arithmetic operations
and to obtain a degree of character set
independence.

The internal language is translated
back to external code before output. Bit
configurations not representing Operating
System/360 Assembler Language characters,
e.g., valid overpunch characters in fields
PUNCHed or REPROed, are not affected by the

Table 12. Translate Table

Standard Machine Internal Standard Machine Internal

Graphic Hexadecimal Graphic Hexadecimal

Symbol Code Symbol Code
0 00 Q 1A
1 01 R 1B
2 02 S 1C
3 03 T 1D
4 04 U 1E
5 05 \ IF
6 06 W 20
7 07 X 2
8 08 Y 22
9 09 z 23
A 0A $ 24
B 0B # 25
C 0C @ 26
D ob + 27
E OE - 28
F OF * 29
G 10 / 2A
H 11 , 28
| 12 = 2C
J 13 & 2D
K 14 . 2E
L 15 (pis
M 16) 30
N 17 ' 31
o] 18 blank 32
P 19

108

translation. (They are translated into
themselves.) See Table 12.

Application of the translate table also
allows the user to assemble programs written
in other than System/360 Operating System
Assembler Language by providing a different
translate table for the conversion.

The collating sequence of the internal
language differs from the standard collating
sequence. In the standard collating sequence,
numeric values are higher than alphabetic or
special characters.

PHASE F3 SWITCHES

MISWIT
Bit No, Hex. Sw.
0 X'80"
1 X'40!
2 X'20"'
3 X'10'
4 X'08"
5 X'04'
6 X'02'
7 X'0ol!
SWITCH
Bit No. Hex. Sw.
2 X'20°
4 X'08"*
7 X'ol!
NESTSW
Bit No., Hex. Sw.
6 X'02"

H O OR R
i

M R O RO
|

used

Do another pass on
macro instruction
operands

2nd pass completed
on macro instruction
operands

Macro instruction
being processed
Entry is a sublist
Entry to be made
from prototype

Entry to be made
from macro instruc-
tion

Nest aborted;
room to store
parameter pointers
Macro aborted during
build of parameter
table

Max. record exceeded
(used by WRITE rou-
tine)

no

NOTE in IOMAC Routine
No need to NOTE in
IOMAC routine

Use PNTR in IOMAC
routine

Use PNTW in IOMAC
routine

End of Expr. 1 or
Expr. 2 of sub-
string has been
reached

Set when a new block
has been read when
processing a macro
instruction.

7 X'0ol!
SUBSW
Bit No. Hex. Sw.

6 X'02"'

7 X'01l’
MODESW
Bit No. Hex. Sw.

0 X'80"

1 X'40!

2 X'20"

3 X'10"

4 X'08"'

5 X'04'

6

7 X'0ol'

Appendix F.

1 -

1 -

APPENDIX F, SWITCHES

Macro instruction
mode - set when a
macro instruction
is encountered so
that nesting may be
recognized.

Set when MODESW has
been saved. Char.

or arith. mode must
be saved when a sub-
scripted left paren-
theses is encountered
so that this mode may
be restored after the
subscript dimension
is computed.

This must always be
initialized to the
value of 1, used
when original MODESW
is restored.

SYSLIST to provide
alternate to symbolic
parameters

2 expressions in
SYSLIST
Concatenation has
occurred in string
area

Error switch in sub-
string routine -
signal to use null
string later on
First time switch -
set after first char.
string has been
placed in string
area

Substring mode
available for use

- arithmetic expr.

mode
character expr.
mode

Switches 109

PHASE F7, FI, F8 AND FPP SWITCHES
Name Comment. Name Comment
CTLOC Current Location Counter CTPGLNCT Page Line Count
CTSEQN Current Statement Sequence Number CTMRSRTN MRS Return
CTLEN Current Statement Length CTZERO Two Full Words of Zeroes
CTITLE First Title Name, Opnd.Len, Opnd. Ptr. CTWORK 256 Byte Work Area
STVALU Value For STPUT Entries CTONWP Next Write Pointer On OVF 1
CPRIME Prime Divisor For Symbol Table CTRXF First XRF Block PTR On OVFI1
CSTVAL Value From START card CTRLBT First LBT Block PTR On OVF1
CTXLEN Text Block Length CTRERR First Error Block (PH8)
CNOESD Number of ESDs CTCXRF XRF Block Count
CENTCT Number of Entries CTCLBT LBT Block Count
CLASID Last ID CTCRLB RLD Block Count
CTNDID Next DSECT ID CTCERR Error Block Count (PH8)
CESDNO Current ESD Number CTCLAT LAT Block Count On OVF2
CSGCTR ESD Resident Segment Counter CTLALN LAT Length Indicator
CPCNO Private Code ESD Number CTLITA Current Literal Pool String Lengths
CCMNO .Common ESD Number CTLITB Current Literal Pool String Counts
STLONG Length Attribute For STPUT Entries CTXSAV
ESSGSZ ESD Segment Size CTFSTN ESD No. of First CSECT
CESDID Current ESD ID CTDATE Date For Listing
CTPCSW Private Code Switch CTLINECT Print-Line Count
CTCMSW C_°mm°" Switch CADJTB Adjustment Table Base
CFSTID First CSECT ID RR2SWH RR2 Instruction Type Switch
CTYPE Current CSECT Type .
CTLIT2 LTORG Or END Card Switch ERSWH ERROR Switch
ESDID Assigned ESD 1D SPACSW SPACE Switch
ADJCOD Adjective Code EJCTSW EJECT Switch
CTALIN Alignment Code 0-B,1-H,3-F,7-D REPSW REPRO Switch
CTITSW Iteration Switch CCRDCT Card Count
CTPDS1 Defined Symbols Req. For [EUF7V CTLATL Literal Adj. Tab.- Last Byte + 1
CTCLSI First Pass Indicator ENDSWH END Switch
CTLITI Literal Pool Complete During Subst. FBOPRN Operand Pointer
CTERRI Error Record Indicator CTLATB
CTPH7C Phase F7 Complete Indicator F8CADJ Current Adjustment
CTSYMF Symbol Table Full Indicator ALIGN4 For Aligning
CTPCHI Punch Option Indicator FSALLB Full Word Of Bits
CTCGOI CGO Option Indicator F83BYT 3 Bytes Of Bits, Low Order
CTITLI First Title Processed Indicator F82BYT 2 Bytes Of Bits, Low Order
CTLSTI List Option Indicator F81BYT 1 Byte Of Bits, Low Order
CTGENI List Gen.Option Indicator F8PON Print Option ON=-OFF Switch
CTERLI List Error Option Indicator F8PGEN Print Option GEN-NOGEN Switch
CTXRFI X-Ref. Option Indicator F8PDAT Print Option DATA-NODATA Switch
CTTSTI TESTRAN Option Indicator F8ZERO One Full Word Of Zero
CTTRMI TERM Option Indicator
CTSTMI STMT Option Indicator
CTNUMI NUM Option Indicator
CTSDVI Self Defining Value Indicator FBINST 16 Byte Instruction Bldg. Area
CTLCRI Location Counter Reference Indicator F8ZRO One Full Word Of Zero
CTMODE Mode Indicator PYRSW
CBDNO Blank DSECT ESD No F8YDC
CBDSW Blank DSECT ID No CTESRN ESD Seg.Count

110

The terms in this glossary are defined
relative to their use in this publication
only. These definitions may differ from
those in other publications.

Assemble: To prepare an object language
program from a symbolic language pro-
gram by substituting machine operation
codes for symbolic operation codes and
absolute or relocatable addresses for
symbolic addresses.

Assembler Operation Code: A hexadecimal
one-byte code assigned to all assembler
instructions by programming systems
for internal use.

Attributes: Characteristics of certain
elements in statements processed by the
assembler. There are six attributes:
type, length, scaling, integer, count,
and number. The macro generator proces-
ses all of them; the assembler portion,
only the length attribute.

Basic Partitioned Access Method (BPAM): A
method of storing and retrieving se-
quences of data "members" belonging to
a data set stored on a direct access
device. The data set contains a
directory that relates the member name
with the address where the sequence
starts.

Basic Sequential Access Method (BSAM): A
method of storing and retrieving physical
blocks of data from a sequentially
organized data set.

Concatentation: The process of linking to-
gether, or chaining, or joining.

Conditional Assembly: The selective as-
sembly of those source language state-
ments that satisfy predetermined con-
ditions, e.g., tests of values that may
be defined, set, or changed during the
course of the assembly procedure. The
conditional assembly precedes the regular
assembly procedure. Conditional assembly
allows a programmer to specify assembler
language statements which may or may not

be assembled depending on conditions eval-

uated at assembly time.

Control Program: A collective term for the
operation and resource controlling rou-
tines of the operating system.

Control Section: The smallest separately
relocatable program unit, always loaded
into a contiguous main storage area. A
control section is an entity. Its name,

GLOSSARY

if there is one, is defined by a CSECT
or START statement.

Data Control Block (DCB): A region in
storage used for communication between
the source program, the control program,
and the access routines. A control
block containing information for access

routines pertinent to data storage and
retrieval.

Data Set: A named collection of data.
Dev%ce Independence: The ability to request
input/output operations without regard
to the characteristics of the input/

output devices.

Direct Access: Retrieval or storage of data
by a reference to its location on a vol-
ume, ‘rather than relative to the prev-
iously retrieved or stored data.

External Symbol Dictionary: Part of an
object or load module that identifies
external names (control sections, ENTRY
statements, common areas, and private
codes) and external references (EXTRN
statements and V-type address constants)
occurring in the module.

External Symbol Dictionary Identifier (ESD-
ID): A one-byte number identifying a
control section or other external symbol
dictionary entry.

Global Dictionary: A core storage resident
table containing machine and assembler
operation codes, macro mnemonics, and
global variable symbols.

Global Variable Symbols: Global SET sym-
bols (the only type of global variables)
that communicate values between state-
ments in one or more macro definitions
and statements outside macro definitions.

Hashing: Generating an address between two
limits by randomization.

Hash Table: A table, accessed through
generated numbers (i.e., randomization),
pointing to entries in a dictionary or
table.

Inner Macro Instruction: A macro instruc-
tion used as a model statement in a macro
definition.

Linkage Editor: A program that produces a
load module from object and/or load
modules. The output load module is in
a format suitable for loading and

Glossary 111

Literal:

Literal Pool:

Load Module:

Local Dictionary:

Local Variable Symbols:

Logical Record:

Macro Definition:

Macro Instruction:

112

execution under the control of the
control program of the operating
system.

A representation of a constant
which is entered into a program by
specifying the constant in the operand
of the instruction in which it is used.
The assembler stores the value specified
by the literal in a literal pool, and
places the address of the storage field
containing the value in the operand
field of the assembled source statement.

A portion of the object pro-
gram containing literals processed by
the assembler.

A relocatable and executable
logical unit of coding. It is the out-
put of the linkage editor in a format

suitable for loading into main storage.

A table containing
sequence symbols, ordinary symbols,
local SET symbols, and macro instruc-
tion parameters.

Symbols that
communicate values between statements in
the same macro definition, or between
statements outside macro definitions.

The following are local variable symbols:

1. Symbolic parameters
2. Local SET symbols
3. System variable symbols

A record from the stand-
point of its content, function, and use
rather than its physical attributes; i.e.,
one that is defined in terms of the
information it contains (contrasted with
Physical Record).

A set of statements that
provides the assembler with the mnemonic
operation code and the format of the
macro instruction, and the sequence of
statements the assembler generates when
the macro instruction appears in the
source program.

A source program state-
ment for which the assembler generates
a sequence of assembler language state-
ments. Three types of macro instruc-

tions may be written:

1. Positional - operands in fixed order.
2. Keyword - operands in variable order.
3. Mixed-mode - combination of above.

Macro Instruction Prototype: The second
statement of every macro definition; it
specifies the mnemonic operation code and
the format of all macrc instructions that
refer to the macro definition.

Main Storage: All addressable storage from
which instructions can be executed or
from which data can be loaded directly
into registers.

Model Statements: The macro definition
statements from which the desired se-
quences of assembler language statements
are generated.

Module: A logical unit of coding that per-
forms a function or several related
functions.

A source module is a set of source
language statements prepared for input
to a language translator.

An object module is the output of a
language translator, (e.g., assembler).
It is a machine language program in re-
locatable format. A load module is the
output of the linkage editor. It is in
relocatable and executable format.

A module is composed of one or more
sections (see Control Section).

Object Program: A machine language pro-
gram which is the output after trans-
lation from the source program.

Operating System (IBM System/360 Operating
System): A complex of processing pro-
grams operating under the supervision
of the control program. The processing
programs include language translators
(e.g., the assembler), service programs
(e.g., utilities), and problem programs.
The operating system facilitates device
independent operations.

Ordinary Symbol: One alphabetic character
followed by zero through seven alphameric
characters.

Outer Macro Instruction: A macro instruction
that is not used as a model statement in
a macro definition.
¢

Overlay: A section of a program loaded into
main storage, replacing all or part of a
previously loaded section.

Physical Record: A record from the stand-
point of the manner or form in which it is
stored, retrieved, and moved; i.e., one

that is defined in terms of physical
qualities or is meaningful with respect
to access. (Contrasted with Logical
Record.)

Pointer: An address used to point to a
table, dictionary, or data set entry.

Position Identifier: A two-byte value
specifying the sign and external symbol
dictionary identifier (ESD-ID) of the
control section in which a relocatable
constant occurs.

Prototype Statement: See Macro Instruc-

tion Prototype.

Record: A general term for any unit of
data that is distinct from all others
when considered in a particular context.

Relocation Dictionary (RLD): Part of an
object or load module produced by the
assembler that identifies address con-
stants in the module.

Relocation Identifier: A two-byte value
specifying the sign and external symbol
dictionary identifier (ESD-ID) of an
item referenced by a relocatable con-
stant.

Source Program:
a source language that is input to the
translation process.

A series of statements in a Work Bucket:

Synonyms: Two or more symbols that result
in the same address when they are hashed
by a hashing routine.

System Macro Instructions: Macro instruc-
tions that correspond to macro definitions
prepared by IBM.

Task: A unit of work for the central proces-
sing unit from the standpoint of the
control program; the basic multi-program-
ming unit under the control program.

Test Translator (TESTRAN): A facility that
allows various debugging procedures
to be specified in assembler language
programs.

Utility Data Set: In System/360 Operating
System, a data set reserved for inter-
mediate results.

Variable Symbol: A type of symbol that is
assigned different values by either the
programmer or the assembler, thus al-
lowing different values to be assigned
to one symbol. There are three types
of variable symbols: symbolic param-
eters, system variable symbols, and
SET symbols. Variable symbols consist
of an ampersand followed by an ordinary
1-7 character symbol.

Fields attached to certain

types of records for holding internal
information during processing.

Glossary 113

Indexes to program logic manuals are consolidated in the publication IBM System/360 Operating System
Program Logic Manual Master Index, Order No. GY28-6717. For additional information about any subject
listed below refer to other publications listed for the same subject in the Master Index.

ADVINP 34

ADVOP 34

AGO 22

AGOST 34

ATF 22

AIFST 34

Algorithm description 46
ANOP 22

ARITOP 35
ASM (IEUASM) 4
Assembler control table 8
Assembler functions 4
Assembler options 103

DECK

LINECNT

LIST

LOAD

RENT

TEST

XREF
Assembler organization 4,6
Assembler purpose 1
Assembly 1,6
Assembly listing 1
Assembly section 1
Assignment mode 37
ATTPAR 36

BEGMAC 34
BEGSUB 35
BWFORC 23
BWNOTE 23
BWRITE 23

CCwW 23,107
CCWB 58
CGOTO 33
Chaining 13

Forward

Backward

Usage 14
CHARST 35
CHFORC 34
CHKSWH 63
CLSTXT - Phase F7 close text 49
CNOP 22, 107

13,14,15
13,14,15

CNOPB 59
CcoM 22, 107
COMB 58

Common routines 8
Common table linkage 10
Components of the assembler 4
Condition switch settings (Phase F7) 46
Control program 1
Control program services
CHECK 103
CLOSE 103
DCB 103
FIND 103
FREEMAIN 103

4,104

114

Control program services (continued)
GET 104
GETMAIN 104

LINK 104
NOTE 104
OPEN 104
POINT 104
PUT 104
READ 104

RETURN 105
TCLOSE 104
WRITE 104
XCTL 105
CoprPY 22,107
CRDESD -~ Phase F7 read external symbol
dictionary 49
Cross-reference list 7
CSD 22,35
CSECT 23,33,107
CSECTB 58
CWRESD - Phase F7 write external symbol
dictionary 49
CXD 59,107

Data management services 5
Data sets 1
SYSGO 2,
SYSIN 1,
SYSLIB 1,
SYSPRINT
SYSPUNCH
SYSRES 1
SYSUT1 1
SYSUT2 1
SYSUT3 1
Data set usag
DC 23,107
DCB 59
DCLSE 23
DECINT 35
Decomposition routine using table
(Phase F8) 57
Dictionaries
External symbol
Global 6,12,17
Local 6,12,17
Relocation 7
Dictionary construction techni

3

(ESD) 7

__________ ruc ques 12
Dictionary entry formats (Phase F3) 25
Macro dictionary header 26
Macro dictionary parameter entries 26
SETA variable 25
SETB variable (non-dimensioned) 25
SETB variable (dimensioned) 26
SETC variable 26
Table format for symbols 26
Dictionary structures 12
Dictionary types 12

Direct access storage device (DASD) 2

DOOPR
DRIVER
DROP
DROPB
DRVER1
DS

DSB
DSECT 23,107
DSECTB 58

Dummy buffer format
DXD 23,59,107

34,35
22
22, 107
59
22
23,107

59

EJECT 22,57, 107
END 23,107
ENDB 59
END card 7
ENDOFF 56
ENDOPR 23
ENDST 34
ENTRY 22
ENTRYB 57
EP2 63
EPRLZ 63
EQU 22,107
EQUB 59
ERLODS8 56
ESORT 63

Evaluation routine formats

Attributes 32
Character string
Concatenation

32
33

Decimal, hex, binary value, character

self-defining terms

Operand reference 3

Subscripting 33

Substring 33

Variable symbol
EXTRN 22,107
EXTRNB 57

33

FD 64
FICLS - Phase FI Phase c

FII - Phase FI initialization

Flag value assignments
FORCE 34
Formats

(see Record formats;
FPP 63
Functional routines

General register assignments

ACT pointer 8

FRB 8
SRB 9
SRR 9
SP1,SP2 10

n
GRX,GRY ,GRZ 0

1
L
GRA ,GRB,GRC,GRD 10

GETLAT - Phase F8 get literal adjustment

table 55

GETLBT - Phase FI get literal base table 52

(Phase F8)

60

(Phase F3)

33
2

52
51
(Phase F3)

lose

28

Table formats)

(general) 8

8,9

GETPT - Phase F7 get point subroutine

GETSRC 23

GETXTM - Get text and more subroutine
Phase F7 48
Phase F8 55

32

48

Global dictionary and main text local
dictionary subsetting 18

Global dictionary entry formats
(Phase F2) 18

Defined operation codes 18
Macro name entry 18
SET variable symbol entry 18
GTOR 63
GTOX 63
Hashing 12,13
Hash table 12,13,14
HCC 64
Hierarchy codes (Phase F7) 46
ICTL 16,22,107
IEUF3 33
IEUFD functions 64

IEUF7C - Phase F7 main line control
IEUF7D - Phase F7 DC/DS evaluation
routine 45

IEUF7E - Phase F7 External symbol
dictionary processor routine 45
IEUF7G - Phase F7 literal DC
generator 47

IEUF7I - Phase F7 initialization and
I/0 initialization 47

IEUF7L - Error logging for Phases

F7 and F8 47

IEUF7N - Phase F7 TESTRAN routine 45
IEUF7S - Phase F7 symbol table

routine 45

IEUF7V - Phase F7 expression evaluation
routine 45

IEUF7X - Phase F7 get statement

routine 44

IEUF8A - Phase F8 assembler operation
processor 56

IEUF8C - Phase F8 main line control 56
IEUF8D - Phase F8 DC evaluation 62
IEUF8I - Phase F8 initialization and
I/0 55

IEUF8L - Phase F8 log error subroutine

IEUF8M - Phase F8
processor 56
IEUF8N - Phase F8
point conversion 62

IEUF8P Formats 60

IEUF8P - Phase F8 output routine
IEUF8S - Phase F8 symbol table
subroutine 62

IEUF8V - Phase F8 expression evaluation

machine operation

floating and fixed-

59

routine 62
IEUFD subroutines 64
IEUFPP subroutines 63

I/0 requirements 1

Input buffer format (Phase F8) 61

Input record formats (Phase F3)
AGO statement 30
AIF statement 30
CSECT statement 30
DSECT statement 30
ERROR statements 30

Machine instructions 27

Macro instruction 30
MEND statement 30
MEXIT statement 30

Index

44

62

115

Input records formats (continued)
Operand value formats 31
Prototype statement 31
SET statement 29
Source statement 29
START statement 30
Sublist operands 32

Instruction building area format

(Phase F8) 58

Instruction codes (internal assembler) 107

ISEQ 22,107

Language translators 1

LATTBT 35

Linkage
Between main line control and
functional routines 11
Common subroutine 10
Common table 10

Linkage conventions 10

Linkage editor 1

Literal adjustment table format

(Phase FT) 51

LITERB 59

Local dictionary entry formats

(Phase F2) 19
Macro prototype symbolic parameters 20
Open code ordinary symbols 19

Sequence symbols 19

SET variable symbols 20
LTORG 22, 107
LTORGB 59

MAC (IEUMAC) 4

MACHOP 33

MACRO 22,107

Macro generation and conditional
assembly 1,6

Main storage 1

Main text scan and dictionary build 17
MEB4 35

MEND 23,107

MENDST 34

META, METB, METC 35

META3 35
METC4 35
MEXIT 22,107

MINSTR 34

MLOO, MLOl, MLOlA, MLO1B, MLO3 64
MLO5, ML10, ML1l 65

MNOTE 22,107

MNOTST 57

NDSMT3 23
NOTOPR 35

Operating System 1
OPSYN 16,23
ORG 22,107
ORGB 59
Output buffer error record format
(Phase F8) 61
Output options 1
PACK3 36
Parameter entries
PARMTR 36
Phase F1
Chaining 14
Functions 16

(Phase F3) 27

116

Phase Fl (continued)
Introduction 6
Operation 16

Phase F2
Chaining 14,15
Functions 17
Introduction 6
Operation 17
Subroutines 22

Phase F3
Abort 24
Functions 24

Introduction 6
Operation 24
Subroutines 33
Phase F3E 24
Phase F7
Chaining 15
Introduction 6
I/0 Functions 37
Operation 37
Phase organization 43
Phase FI
Introduction 7
I/0 Functions 51
I/0 Subroutines 51

Main line control 53
Operation 51
Phase F8

Chaining 15
Introduction 7
I/0 Functions 54
Operation 54
Phase organization 55
Phase FPP
Functions 63
Introduction 7
Operation 63
PHCLS - Close subroutine
Phase F7 47
Phase F8 55
Pointers 8
PPIN 63
PRINT 22,107
PRINTB 57
Print heading buffer format
(Phase F38) 60
Print line buffer format
Problem programs 1
Processing programs 1
Program flow 7
Program levels 8
Program organization 8
Programmer macro definition scan and
dictionary build 17
PROTO 34
PROTO1 34
PUNCH 22,107
PUNCHB 57
Punch buffer format (Phase F8) 60
PUTLAT - Phase FI put literal adjustment
table 52
PUTLBT - Phase F7 put literal base
table 50
PUTRLD - Phase F8 put relocation
dictionary 55
PUTXRF - Phase F7 put cross-reference 49

(Phase F8) 60

PUTXT - Phase F7 put text subroutine 48
PUTXT - Phase F8 collect flagged

statements 55

R1RLD 63
RD1XRF 63
RDERR 64

RDESD - Phase FI read external symbol
dictionary 52
READR 63
READX 63
Record formats (Phase F2) 20
End of data set 21
Error record 21
Logical statement 20
Reproduction record 21
Source record 20 (see Global
dictionary entry formats)
Record formats (Phase F3)
(see Dictionary entry formats,

Fvaluation routine formats, and
Input record formats)

Record formats (Phase F7) 38
Cross-reference records 38
Edited text records (appended fixed
field) format 40
Edited text records (fixed field)
format 38
Edited text records (variable field)
format 39
Error records 38
Work bucket (literal in operand) 40
Work bucket (symbol in operand) 40
Work bucket (DC, literal DC, and DS

operation code 41
Work bucket (special) 42
LTORG statement work bucket 42
Record formats (Phase F8)
(see Relocation dictionary entry format)
RELAT 35
RELINT 35
Relocation dictionary entry format
(Phase F8) 54
REPRO 22,57,107
RR1. RR2, RR3, RR4 56
RS1, RS2 56
RTA (IEURTA) 4
RX1, RX2 56

SATTBT 35
SBEND 35
Service programs 1
SETARE 35
SETOT1 63
SETOT?2 64
SETST 33
SETWBP 56
sSii, Siz 56
SOURCE 33
Source text 4

SPACE 22,57,107
SRLIGN 56

Ss1, Ss2 56
START 23,107

STARTB 57

Storage allocation 2
Storage requirements 1
Subroutine linkage 10
SUBSC 34

Subsetted dictionaries 12,17,18

Substitution mode 37
Switches 8

Phase F3 109
Phases F7, FI, F8, and FPP 110
SYMBL 34

Symbol cross-reference table 1
Symbol table 6,12,15
Syntax errors (Phase F7) 45
SYSGO data set 2,4
SYSLST 36
SYSIN data set 1,4
SYSL - System list
Phase FI 52
Phase F8 55
SYSLIB data set 1,4
SYSO - system output
Phase F7 50
Phase FI 53
Phase F8 55
SYSPRINT data set
SYSPUNCH data set
SYSRES data set 1,
System environment 1
System macro definition scan and
dictionary build 17
System macro instructions
(see Control program services)
System overhead 106
System requirements 1

SYSTRMD 65
SYSUT1 data set 1,2

SYSUT2 data set 1,2
SYSUT3 data set 1,2

Table construction techniques 12
Table formats (Phase F7) 42
External symbol dictionary (control
sections and external references)
External symbol dictionary (entry
definitions) 43
External symbol dictionary
reference) 43
Literal base table 43
Symbol table 42
Literal entries 42
Name entries 42
TATTBT 35
TESTRAN 1,37
TITLE 22,107
TITLEB 57
Translate table
TREDIT 65
TRMXRTN 65
TSTOP1 34
Type attribute internal values
(Phase F3) 28
Type indicators (Phases F2/F3) 19
Type indicators (DCIDS) for type 3
work bucket 41
Type 1 work bucket 40
Type 2 work bucket 40
Type 3 work bucket 41
USING 22,107

USINGB 59
VALUAT 34

Work buckets
WR1IRLD 64
WR1XRF 64
WTERR - Phase F8 write error message
XRFLOD 64

(dummy

108

40,41,42

Index

43

55

117

GY26-3700-2

JIBIM

®

International Business Machines Corporation

Data Processing Division
112 East Post Road, White Plains, N.Y. 10601

[USA Only)|

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017

[International]

09€S) (d) se1qursssy go 09¢/wa3sdg INg]

€7004£-92AD "V 'S ur pajurig (jg-

o 00800c0ssecesssnssssscscesos

READER'S COMMENT FORM

IBM System/360 Operating System Order No. GY26-3700-2
Assembler (F)
Program Logic Manual

e How did you use this publication?

As a reference source OJ
As a classroom text ... O
As a self-study text R O

e Based on your own experience, rate this publication . . .

As a reference source:

Very Good Fair Poor Very
Good Poor

As a text: T L
Very Good Fair Poor Very
Good Poor

e What is your occupation? e

e We would appreciate your other comments; please give specific page and line references
where appropriate. If you wish a reply, be sure to include your name and address.

e Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GY26-3700-2

YOUR COMMENTS, PLEASE . ..

This SRL manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use. Each
reply will be carefully reviewed by the persons responsible for writing and publishing this
material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM sys-
tem should be directed to your IBM representative or to the IBM sales office serving your

locality.

...

FIRST CLASS
PERMIT NO. 1359
WHITE PLAINS, N. Y.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED #TATES

POSTAGE WiLL BE PAID BY . ..

IBM Corporation
112 East Post Road

White Plains, N. Y. 10601

Attention: Department 813 L

Fold

TIBIM

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

.......

Fold

INIT SIHL ONOIV LND - -«

evoecse0seasaca

L N R I I I I R R

sssccossans

ssesassanse

® e 0 e 02 000000000000000060000000600000000000000600s0

sesensea

2-00LE-92XD 'V 'S (1 Ul pAIunid ([Z-09€S) (d4) WIqussy SO 09€/Wa1sAS NI

IBM . File No. $360-21 (0S)

L / Technical Newsletter

Base Publ. No. GY26-3700-2
This Newsletter No, GN33-8102
Date June 1, 1971

Previous Newsletter Nos. None

IBM SYSTEM/360 OPERATING SYSTEM ASSEMBLER (F)
PROGRAM LOGIC MANUAL

©IBM Corp. 1966,1969, 1970

This Technical Newsletter, a part of release 20.1 of IBM
System/360 Operating System, provides replacement pages for the
subject publication. These replacement pages remain in effect

for subsequent versions and modifications unless specifically
altered. Pages to be inserted and/or removed are listed below:

Front Cover,Preface

A change to the text or an illustration is indicated by a vertical
line to the left of the change.

Summary of Amendments

Minor technical and editorial changes made to the abstract and
edition notice.

Note: Please file this cover letter at the back of the manual to
provide a record of changes.

IBM Nordic Laboratory, Technical Communications, Box 962, 5-181 09 Lidings 9, Sweden

PRINTED IN U.S.A.

