
Systems Reference Library

IBM System/36D
Basic Operating System
Programmer's Guide

This reference publication describes the IBM
Sys·tem/360 Basic Operating System. The system is
a set of control programs and processing programs
provided for smaller configurations of the IBM
System/360. Utilizing IBM 2311 Disk Storage for
on-line program residence, IBM System/360 Basic
Operating system provides stacked-job processing
capability" controls all input/output, and
provide$' for continuous operation of all programs
run ii1'"""itsenvironment .•

This Programm~r's Guide includes descriptions
of the control programs,· service programs, and
system facilities supported by IBM. A
comprehensive introduction gives an oVer-all
picture of the entire system. Detailed
information is given on these major" topics:

1. Operation with the System control Programs

2. Using the System Service Programs

3. Data Management

The prerequisite for a thorough understanding
of this manual is a basic knowledge of System/360
machine concepts and instructions.

For titles and abstracts of other associated
publications see the IBM System/360 Bibliography,
~rm A22-6822.

File Number S360-20
Form C24-3372-6 BOS

seventh Edition, September 1967

This edition, Form C24-3372-6, is a major reV1Slon of, and obsoletes,
Form C24-3372-5, and Technical Newsletters N24-5262 and N24-5316. The
major changes in this publication include updated machine requirements
and support of an intermediate storage size (24K) for System/360 Model
30.

Changes are indicated by a vertical line to the left of affected text
and to the left of affected parts of figures. A dot (e) next to a
figure title or page number indicates that the entire figure or page
should be reviewed.

Specifications contained herein are subject to chanqe from time to time.
Any such change will be reported in subsequent revisions or Technical
Newsletters.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for readers'
comments. If the form has been removed, comments may be addressed to
IBM corporation, Programming Publications, Endicott, New York 13760.

e International Business Machines corporation 1965

Part 1 of this publication, under the
heading Introduction, gives an over-all
discussion of the IBM System/360 Basic
Operating System. It describes the various
components of the system and shows how
their functions are related to the total
system. The Introduction begins with a
quick summary of the components of the
system and the system configuration
required. Persons with experience in
operating-system concepts may find this
part of the introduction sufficient for
presenting a general discussion of the
system. They may wish to skim the rest of
the Introduction to get into the detail of
the later sections.

Part 2, under the heading System Control
Programs, describes the Supervisor and Job
Control Programs. This sect~ion is of
interest to anyone using the system,
including system analysts, programmers, and
machine operators. The functions provided
by these programs are discussed and the
detailed Job Control control card formats
are given. Note, however, that the macro
instructions used to communicate with the
Supervisor are discussed fully in the
publication Asse~bler with Input/Output
Macros, Form C24-3361.

PREFACE

Part 3, System Service Programs, is of
particular interest to the persons
responsible for generating and maintaining
the resident systems. This section
describes the Librarian and Linkage Editor
programs.

Part 4, Data Managemen~ discusses the
organization and maintenance of data files,
processing methods, disk storage concepts,
label processing capabilities, etc. As
with the Supervisor macros, the file
processing macros (Input/Output Control
System--IOCS) are discussed fully in the
Assembler with I/O Macros publication.

Not~: Programming specifications for the
1287 optical Reader, binary synchronous
communication, and remote job entry may be
used for planning purposes onlY.

I This planning information is listed
separately in the Index.

Preface 3

REFERENCE PUBLICATIONS

Publications which are related to this one are:

1. IBM System/360 Principles of Operation, Form A22-6821.

2. IBM System/360 Basic Programming Support, Basic Tape System
Programmer's Guide, Form C24-3354.

3. IBM System/36~asic Operating System, Assembler with Input/Output
Macros Specifications, Form C24-3361.

4. IBM System/360 Basic Operating system and IB~ System/360 Basic
Programming support: Macro Def~nition Language, Form C24-3364.

5. IBM System/360 Basic Operating System, System Generation and
~aintenance, Form C24-5060.

6. IBM System/36~erating System: Remote Job Entry, Form C30-2006.

7. IBM System/360 component Descriptions, A26-5988.

Another publication that may be useful is the Glossary for
Information Processing, C20-8089.

4 S/360 BOS Prog. Guide

PART 1: INTRODUCTION.

System Configuration •
Minimum Machine Requirements:

System Generation. • • • • •
Minimum Machine Requirements:

System Operat: ion • • •
Features Supported. • • 0

Residence Requirements.

System Concepts ••

Problem Program vs Supervisor. •
Supervisor. • • • • • • . ••

9

• • 10

• • 10

• • 10
• • 12
• • 14

• • 16

17
17

Processing Program vs Control Program. • 18
Job Control • • 19
IPL Loader. • • • • • • • • • • 20

Service Programs vs Installation
Processing Programs .

Data Management .•.•••
Physical IOCS •
Logical IOCS ••
Label Processing .•

System Design ••
Li brary Areas
Label Control Card Area
Checkpoint Area • • • •
Volume Table of contents ••
Work Areas. • • •. • ••••
Data File Areas . • . •

Operating Characteristics.

Job-Tailored Systems • • • •

Determining Optimum System Design. .
Disk-Storage Space Requirements .
System Programming Requirements •
Operator Handling Considerations.

Choice of Programming Language • • •

20

21
21

• • 21
. 22

22
23
24
24

• • 24
24
24

25

26

27
27
28

• • 29

• • 29

Assembly Of Independent (Non-Resident)
Programs •••••••••••••••• 29

PART 2: THE SYS'rEM CONTROL PROGRAMS •• 31

Supervisor .

Main Storage Organization.
Corrununication Hegion ••

Functions ••••.••••

31

• • 32
32

34
Interruption Handling •
Channel Scheduler • • •

• • • • 34

Device Error Recovery •
System/Operator communication • .
System Loader • • • • • . • .

36
• • 38

39
• . 42

Checkpoint/Restart. • • • . • .
Label Checking. • • • • • • • .
Normal and Abnormal End-of-Job

Handling •

Job Control. • •

CONTENTf; ----_.

• • • 42
• 43

• 4 3

. • 44
Functions • • • • • • • 4b
Prepare Programs for Execution. • 46
Symbolic Input/Output Assignment. • • 41
SET UP COMMUNICATION REGION . .• 4B
Edit and Store Label Information. • • 4q
Restarting Programs from Checkpoint • 49

Job Control Cards. • • • • • •
General Control Card Format • •
Sequence of Control Cards •
Description and Format of Job
Control Cards. • •••

Initial Program Loading. •

PART 3: SYSTEM SERVICE PROGRAMS.

Linkage Editor • • . • • • • •

Stages of Program Development. •

Structure of a Program • • • •

Types of Linkage Editor Runs •
Language Translator Cards .
User Replace Card •

Linkage Editor Control Statements.

Sources of Input • . .

General Control Statement Format •

Control Statement Placement. .
Action Card • .
Phase card ••.
Include Card. • •
Entry card.
Phase Entry Point .

Example of Linkage Editor Input and
output. • • • • • • • • •

Restrictions. • . • • •

Librarian. • • • • • • . .
Core Image Library. •
Macro Library • • •
Relocatable Library

Disk Storage Space Required for
Libraries and Directories • •

Librarian Functions •.•
Maintenance FUnctions •
Service Functions . •
Organization Functions.

· 49
• 4<j
• 50

• 50

• 5B

• 59

• 59

• 60

• 61

61
63

• 64

• 64

• • 65

• 65

• • 65
• • • 66
• • • 66

• 68
• 68

• • • 68

• 69
• 69

• 70
• 71
• 71
• 71

• • • 72

• 74
• 74

• • • 76
• 77

Contents 5

LIBRARIAlJ FUNCTIONS: CORE IHAGE
LIBRARY • . • • • •

~:aintenance Functions •
service Functions

Librarian Functions: Macro Library.
Maintenance Functions •
service Functions

Librarian Functions: Relocatable
Library • • • • • •

Maintenance Functions •
Service Functions

Librarian Functions: Directories •.

Organization FUnctions
~eallocation. • ••
Library Condense ••
Copy System • • . •

• • 78
78

• . 81

83
· • 83
· . 85

86
· • 86
· • 88

· • 90

• . 91
· . 91
• . 92

93

Librarian Functions--Device Table. . . . 95

System Generation •.•••

PART 4: DATA MANAGEMENT. •

Introduction . • • • • . •
The Input/Output Control System

(IOCS) • • ••••••.
Disk-File Organization.

96

· . 97

· . 97

• . 98
• .100

Organization Of Data Files. . .100
Logical File Vs Physical Unit ••.. 100
Data Files And Records. • • • . .101
File organization and Processing ••• 102
sequential vs Random Organization •• 103

Random-Addressing Techniques •
Random-Addressing Formula ••
Prime Number Division • . •
Discontinuous Binary Number .
Overflow Records. • . • • • .

• .104
• .105
• .105
• .106
• .106

Basic Operating System Data Management
Techniques. • • • • • • • • .109

Physical IOCS • • .111
Logical IOCS ••••••.•••••. 112

Consecutive Processing
Storage Areas
Get • • • • • • • •
Put • • • • • • • •
Two Input/Output Areas. . • • • •
Updating. • ••••••
Processing Overlapped With
Input/Output (Consecutive
Processing). • • •

Direct Access Method •
Record Types •••
Main Storage I/O Area •
Reference Methods • • •
Multiple-Track Search •
ID Location • • • •
Error/Status Field.
First Byte.
Second Byte • • • •

6 S/360 BOS Prog. Guide

• .116
· .117
• .117
· .117
• .117
• .117

• .118

• .130
· .130
• .131
• .131
• .135
• .135
• .136

.136
• .136

Labels. • . . •

Indexed Sequential File Management
system. . • • • • • • • • • • • .

Processing Disk Records by the
ISFt-:S t-1ethod .

l{ecord Types. • . • • .
Main-Storage Areas.

· •• 137

.137

.137
· .138

• • .138

Loading or Extending a Disk File with
ISFMS .••.•.••••••••••• 141

Adding Records to a File •••••.• 145
Reorganizing the Data File ••••.• 147
Random Retrieval. • • • .147
Sequential Retrieval. .148

Processing with STR Devices •• .149

Binary Synchronous Communication • .151

IBM 2311 Disk Storage Drive. .1'33

Disk Pack Initialization and
Maintenance .•••••••••.•.• 158

Initialize Jisk Program . • . • • • .158
Physical IOCS and Alternate Tracks •• 159

Disk and Tape Labels
Disk Labels . • •
Standard Volume Label •
Standard File Labels. •
Disk Label Processing •

• •• 159
.159
.160

· .• 161
'.163

Tape Labels. • • • • • • • • • • . · •• 164
.165 Standard Tape Label Set

Tape Volume Labels.
Tape File Labels ••

• .165
.166

Tape Marks with Standard Tape
Labels • • • • • • • • • • • • • •• 167

.167

.168

.169

Standard Tape Label Processing.
Nonstandard Tape Labels • • • • • •
Unlabeled Tape Files. • • • • •

APPENDIX A. STANDARD VOLUME LABEL,
TAPE OR DASD. · · · · · · · · .170

APPENDIX B. STANDARD DASD FILE LABELS,
FOkMAT 1. · · · · · · · · · · · · · · .172

APPENDIX C. STANDARD DASD FILE LABELS,
FORMAT 2. · · · · · · · · · · · · · · .178

APPENDIX D. STANDARD DASD FILE LABELS,
FORMAT 3. · · · · · · · · · · · · · · .182

APPENDIX E. STANDARD DASD FILE LABELS,
FORMAT 4. · · · · · · · · · · · · · · .183

APPENDIX F. STANDARD DASD FILE LABLES,
FORMAT 5. · · · · · · · · · · · .186

APPENDIX G. STANDARD TAPE FILE LABEL · .187

APPENDIX H. CORE SIZES AND TIMINGS · · .189

Supervisor Core Sizes. .189

Core Sizes and Timings for Assembled
Programs •••••••••••••••• 191

Direct Access Method (DM1) Core
Sizes •••••••••••••••• 191

Indexed Sequential File Management
System (ISFt1S) Core Sizes. . . • • .191

Consecutive Processing Core Sizes • .~92
Core Sizes for Imperative Macro
Instructions • • •

Timings (Estimated) •

Report Program Generator Core Sizes.
File Description. • • ••••

• .198
· .198

• .199
• .199
• .199 STR Core Sizes.

BSC CORE SIZES.
File Extension.
Input • • • •
Calculation • •

• • . • • • .200
• .203

•••• 204
• .206

output-Format • • • •
Miscellaneous • • . •

APPENDIX I. FORMAT OF LANGUAGE
TRANSLATOR OUTPUT CARDS AND THE USER

.209

.210

REPLACE CARD. • • • • • • • • .212

APPENDIX J. REGISTER USAGE • . •. 214

APPENDIX K. NAHES OF IBM-SUPPLIED
PROGRAMS. • . • . • • • • . . • . • . .21=,

APPENDIX L. NAMES OF IBM-SUPPLIED
MACROS. .220

APPENDIX M: ISFlVi8 DISK STORAGE SPACE
FORMULAS. .221

GLOSSARY • .222

INDEX. • • . .226

Contents 7

The IBM Systeml360 Basic Operating System
is designed to provide operating system
capabilities for 8K and larger System/360
configurations that include one or more IBM
2311 Disk Storage Drives. Systems above 8K
that do not require the expanded functions
provided in the larger operating system
packages offered by IBM may benefit from
this 8K package. The system is disk
resident, using IBM 2311 disk storage for
on-line storage of all programs. Depending
on the requirements of the particular
application, the system can be expanded to
include all processing programs used to
perform the various jobs of a particular
installation or it can be cut down to a
minimum system to control a single program.

The Basic Operating System (BOS)
consists of the following components:

Control Programs

The control programs constitute the
framework of the Basic Operating System.
They prepare and control the execution of
all other programs executed" The control
programs are:

1. Supervisor This program handles all
input/output operations u interrupt
conditions, and other functions for all
problem programs. Part of the --
supervisor resides in main storage at
all times. Processing time alternates
between the Supervisor and the program
being executed. This is true for the
user's programs as well as the other
IBM-supplied components of the system.
Certain functions of the Supervisor are
provided by routines that remain in
disk storage until needed and which are
then loaded into a special area of main
storage for execution.

2. Job Control This program runs between
jobs and prepares the system for
execution of all other programs. Job
Control is loaded by the Supervisor
from disk storage when needed.

3. IPL (Initial_Program Load) Loader
This program loads the supervisor into
main storage when system operation is
initiated. The IPL Loader is loaded
from disk storage simply by selecting
the address of the disk drive in the
load-unit switches on the sys·tem
console and pressing the load key.

PART 1: INTRODUCTION

System Service Programs

The system service programs provide the
functions of generating 'the initial
operating systems, regenerating specialized
systems, creating and maintaining the
library sections, and loading and editing
programs into disk residence before
execution. Once a system has been built
with complete program-assembly capability,
other minimum systems can be built that do
not include the system service programs.
such minimum systems still require disk
residence.

The system service programs are:

1. Linkage Editor All user programs must
be read from cards or tape or from the
relocatable library and edited into the
core image library of the resident disk
pack by this program. These programs
can be permanently placed in the
system, requiring only control cards to
call them for execution, or they can be
stored temporarily, executed, and then
overlaid in the core image library by
new programs.

2. Librarian This is actually a group of
programs, used for maintaining and
reorganizing the disk library areas and
providing printed and punched output
from the libraries. Three libraries
are used:

a. Core Image library required. All
programs (IBM-supplied and user
programs) are loaded from this library
by the System Loader routine of the
Supervisor.

b. Macro library optional. This
library is used to store IBM-supplied
and user-defined macro routines in
resident packs built to provide
program-assembly capability.

c. Relocatable library optional. This
library is required for assemble-and
execute operations and for Autotest.
It can be used to store assembled
object modules for subsequent linkage
with other program sections when
editing programs into the core image
library.

3. Load System Program Operating as an
independent program (loaded from cards.
with its own IPL program, Supervisor
and Job Control program), the Load

Introduction

System program builds a disk resident
system from cards. This program can be
used to build minimum systems for
specialized applications. If two disk
drives are available, the librarian can
be used instead of the Load System
program to build specialized systems.

Processing Programs

All user progra~s are run within the Pasic
Operating system environment, making full
use of the power of the control programs.
A system may include all of the user's
programs and the following IBM-supplied
service programs:

1. Language Translators: Assembler and
Report Program Generator (RPG)

2. Autotest

3. Disk Sort/Merge

4. Utilities

5. Remote Job Entry

A special job-tailored disk resident system
may consist of:

The control programs (Supervisor and
Job Control) and one or more user
programs, or

The control programs and the Linkage
Editor with an area for temporary
storage of user programs.

SYSTEM CONFIGURArION

This section presents the minimum machine
requirements for system generation and
operation of the Basic Operating System,
the features in addition to the minimum
that can be supported, and the disk
residence requirements. The system control
programs must always be present to execute
any other programs, and therefore, they
establish the absolute minimum
configuration possible. The minimum
features always required are listed under
the control programs, in the section
Minimum Machine Requirements: System
Operation. For the other IBM-supplied
programs, the required features listed are
in addition to the basic minimum
established by the control programs. Other
features are mentioned for special uses. A
complete listing of the features supported
by the Basic Operating System is provided.

e10 S/360 BOS Prog. Guide

Note: The IBM-supplied programs assume the
availability of a problem program area of
at least 4096 bytes. It is possible to
generate a Supervisor that does not leave
this much room in an 8K sy?tem. This can
occur if a large number of code-producing
options are specified in the Supervisor
macro instructions. See Appendix H for a
discussion of the assembled Supervisor
sizes.

MINIMUM MACHINE REQUIREMENTS: SYSTEM
GENERATION

The minimum machine configuration for
generating an installation-tailored Basic
Operating System is:

• 8K bytes of main storage.

• One 2311 Disk Storage Drive.

• One Card Reader.

• One Printer.

• One Card Punch.

• One 1052 Printer-Keyboard (optional,
but advisable for efficient system
operation) •

Magnetic tape units can be substituted for
the card reader and card punch.

MINIMUM MACHINE REQUIREMENTS: SYSTEM
OPERATION

Control Programs

The minimum features always required are:

• 8K bytes of main storage.

• Standard Instruction Set.

• One I/O channel (either multiplexor or
selector).

• One Reader: 1442, 2520, or 2540 Card
Read-Punch or 2501 Card Reader.

• One 2311 Disk Storage Drive (see
Residence Requirements).

Librarian

Additional features required for library
service are:

• One 1442, 2520, or 2540 Card Read-Punch
(if a card deck is desired). This may
be the same unit used for input.

• One 1403, 1404, or 1443 Printer (if a
listing is desired).

This feature is required for the CORGZ
function in library organization:

• One additional 2311 Disk Storage Drive.

Linkage Editor

This device is supported, if desired, for
input to the linkage editor~

• One unit other than the control card
reader (an additional card reader or
2400-series Magnetic Tape Unit).

Assembler

To perform an assembly, the Assembler
program requires a System/360 with the
following features, in addition to the
minimum established under Control Programs:

•

•

•

•

One 1403, 1404 (continuous forms
operation only), or 1443 Printer, if
the program listing is to be printed.

One 1442, 2520, or 2540 Card
Read-Punch, if the Assembler output
deck is to be punched. This device may
be the same I/O unit used for reading
the source deck.

If the size of the Supervisor exceeds
4096 bytes of main storage, a 16K
system is required.

One 2400-series Magnetic Tape Unit is
required under any of the following
condi tions:

1. If the source program is to be read
from tape.

2. If the output deck from the
Assembler is to be written on tape.

3. If the program listing is to be
written on tape.

This: tape unit may be used for source

•

•

input or object program output only if
sufficient main storage is available
(see Appendix H for requirements).

If both the output deck and the program
listing are to be written on tape, a
second tape unit is required. The tape
unit may be a 7-track unit with the
data conversion feature, or a 9-track
unit.

For a split work area, an additional
2311 Disk Storage Drive.

To execute object programs, these features
must be added to the minimum configuration:

• I/O units, as required by the object
program (see the devices listed under
Features Supported).

•

•

•

The Data Conversion Special Feature, if
a 7-track tape prepared with the data
conversion feature is used.

For BSC applications, a minimum of 16K
of main storage.

If in STR (Synchronous Transmitter
Receiver) mode, one 2701 Data Adapter,
Type I, is required. Also, if in STR
mode, 16K bytes of storage are required
for most applications. However,
utility type applications, requiring
minimum processing and code conversion,
are supported in an 8K environment.

Report Program Generator (RPG)

Additional features required to compile a
source program:

• One 1403, 1404 (continuous forms
operation only), or 1443 Printer, if
the program listing is to be printed.

•

•

Decimal Arithmetic Feature.

For source program input only, one
2400-series Magnetic Tape Unit, 7-track
(with the Data Conversion Special
feature) or 9-track, is supported.

Additional features required for object
program execution:

•

•
•

Input/output units as required by the
object program (see devices listed
under Features supported).

Decimal Arithmetic Feature.

For extra input or output, one 2311
Disk storage Drive.

Introduction 11.

• For program generation, one tape unit
is supported, if desired, for object
program input. The Data Conversion
Special feature is required if a
7-track unit is used.

Autotest

In addition to the machine configuration
required for the control programs, Autotest
requires:

•

•

•

16K bytes of main storage. This
program operates as a part of the 8K
disk resident Basic Operating System
and tests problem prograws designed to
run in the 8K system. However, at
least 16K bytes of main storage must be
available for the Autotest function.

One 1403, 1404, or 1443 Printer.

An additional 2311 Disk Storage Drive,
if desired for use as a work file.

Disk Sort/Merge

The system used to run the sort/merge
program must have:

• One 1403, 1404, 1443 Printer or 1052
Printer-Keyboard.

Utilities

Additional features required for program
operation are:

• The I/O units used by the particular
utility program.

• For logging and error messages, one
1403, 1404, 1443 Printer or 1052
Printer-Keyboard.

Remote Job Entry

Additional features required are:

•

•

A minimum of 16K bytes of main storage,
if user-written routines are not
included. If user-written routines are
included, at least 24K bytes of main
storage are required.

2701 Data Adapter Unit with a

.12 S/360 BOS Prog. Guide

Synchronous Data Adapter - Type II, for
EBCDIC code, connected over
point-to-point leased or switched
lines, and equipped with the
transparency feature.

• One 1052 Printer-Keyboard.

•

•

One 1442, 2520, or 2540 Card Punch for
punched card output.

One 1403, 1404, or 1443 Printer for
printed output.

• With the 2701 Data Adapter Unit, the
Autocell feature and Dual Communication
Interface are available, as desired.

FEATURES SUPPORTED

• Interval Timer.

• Simultaneous Read-while-Write Tape.

• Any channel configuration up to one
multiplexor channel and two selector
channels.

•

•

One 1052 Printer-Keyboard for operator
communication. With the Assembler
program, the 1052 may be used for
output of special diagnostic messages.

Additional main storage with the
following restrictions:

1. All control programs (Supervisor,
including the transient routines,
and Job Control) and all system
service programs (Linkage Editor,
Librarian, Load System) cannot be
located beyond 32K.

2. When the user's program is
executed, the portion of the
problem that communicates with the
control programs must be located in
the first 64K of main storage.
This includes DTF routines, channel
command words (CCWs), command
control blocks (CCBs), and the
entry to certain problem program
routines such as 1052 operator
communications routine, program
check routine, and interval timer
routine. User imperative macros
(GET, PUT, FETCH, etc.) can be
origined beyond 64K if desired.

3. When using logical IOCS, the OPEN,
CLOSE, and end-of-volume routines
checkpoint the first 2500 bytes of
the program area. Therefore, the
user routines, entered in the event
of interruption from the 1052, or

•
•

the timer must begin at least 2500
bytes beyond the end of the
Supervisor area.

Dual-Density Feature.

Problem programs produced by the
Assembler or compiled by RPG can
request I/O operations on the following
devices:

1. 1442 Card Read-Punch.

2. 2501 Card Reader.

3. 2520 Card Read-Punch and 2520 Card
Punch.

4. 2540 Card Read-Punch (alsOi
punch-feed-read).

5. 1403 Printer.

6. 1404 Printer (for continuous forms
only).

7. 1443 Printer.

8. 1445 Printer.

9. 1052 Printer-Keyboard. Only one
1052 is supported. It is attached
to the multiplexor channel. When
this device is on the system, it is
used for operator communication.

10. 2311 Disk Storage Drive. For ~he
sort/merge program a maximum of
eight, including the system drive,
two or four of which can be used
for intermediate storage, are
supported~

11. 2400-series Magnetic Tape Units.
If the 800/1600 bpi dual density
feature is to be used, the tape
unit must be one of the following:

a. 2401 or 2402 Magnetic 'rape
Unit, Model 4, 5~ or 6 and 2803
or 2804 Tape Control, Model 2.

b. 2403 Magnetic Tape Uni,t and
control, Model 4" 5, or 6.

c. 2415 Magnetic Tape Uni,t and
Control, Model 4u 5, or 6.

If variable length records are
to be read or written on 7-track
tape, the Data Conversion Special
Feature is required.

with the sort/merge programs,
one to four tape units are
supported for input/output to a
sort operation, and one to six tape

units for input/output to a merge
operation.

Both IBM-supplied system
programs and user problem programs
can use magnetic tape. However,
the main storage required for
physical and logical IOCS for both
tape and disk will probably make
this unfeasible in systems with
less than 16K bytes of main
storage.

12. 2671 Paper Tape Reader (Assembler
programs only).

13. 1285 Optical Reader. (Assembler
programs only.) A maximum of eight
is supported.

14. 1287 Optical Reader* (Assembler
programs only). A maximum of eight
is supported ..

15 .. STR (Synchronous Transmitter
Receiver) devices, connected by
leased or dial lines through an IBM
Synchronous Data Adapter - Type I,
on an IBM 2701 Data Adapter Unit
(Assembler programs only) .. The
following devices are supported:

a. 1009 Data Transmission Unit ..

b.. 1013 Card Transmission
Terminal ..

c. 1974 II Data Transmission
Terminal.

d. 1978 Print, Read, Punch
Terminal ..

e. System/360, Model 30# 40, 50#
65, or 75, with a 2701 Data
Adapter attached ..

f.. System/360, Model 20 with a
Communications Adapter .•

g. 7701, 7702 Magnetic Tape
Transmission Terminal.

h. 7711 Data Communication Unit ..

Note: Most STR applications
require 16K bytes of main storage;
however, utility type applications,
requiring minimum processing and
code conversion, are supported in
an 8Kenvironment.

16. BSC (Binary Synchronous
Communication> IBM 2701 Data
Adapter Unit, equipped with an IBM
Synchronous Data Adapter Type II,
connected by leased or dial line to
a remote IBM System/360, Model 30,

Introduction 13 •

40, 50. 65, or 75, and equipped
with an IBM 2701 or 2703 Data
Adapter Unit with an SDA 11.*
(Assembler programs only.)

Note: BSC applications require a
minimum of 16K bytes of main
storage.

*Programming specifications for using
the 1287 Optical Reader .and BSC may be
used for planning purposes only.
Source programs must not contain
instructions for these devices until
the IOCS routines include the
appropriate programming. An MNOTE
stating IMPROPER DEVICE will appear if
coding for these devices is included in
a source program.

RESIDENCE REQUIREMENTS

The Basic Operating System requires that
there always be a disk pack on-line when
programs are being executed and that the
disk pack must always contain certain
resident programs and areas. There are two
basic approaches to a minimum resident
system:

1. Fixed-Job systems A version of BOS
can be built to handle specific jobs,
with no system modification facility.
Such a minimum system must have the
fixed-assignment system features on
tracks 0-5, a core image directory, and
a core image library with the following
programs:

a. Supervisor
b. Job Control
c. The user's problem programs to be

run in the system.

2. Variable-Job System A version of the
system can be built to load and execute
any number of problem programs. Each
program is read from cards or tape,
edited into the core image library, and
then loaded into main storage for
execution. Successive programs overlay
the previous program in the core image
library. Such a system must have the
fixed assignment system features on
tracks 0-5. a core image directory, and
a core image library with the following
programs:

a. supervisor
b. Job Control
c. Linkage Editor
d. Enough room for the largest problem

program that is to be run in the
system.

14 S/360 BOS Prog. Guide

In both of the above minimum
configurations, the disk pack must include
a label area (Volume Table of
Contents-VTOC) and a track for storing
label control card information. To gain
residence flexibility, either of the
minimum configurations can be expanded to
include the core image library maintenance
and organization routines.

Minimum Residence Size Estimates

The following size estimates are provided
to assist in system planning. The system
described is a minimum variable-job system.
More complete residence requirements will
be given at a later date. Main storage
requirements and processing times are given
in Appendix H.

Number
of Tracks Contents

6

1

50

1

Note 1:

Note 2:

Note 3:

Fixed-assignment system
features on tracks 0-5 Note 1

Core image directory Note 2

Core image library Note 3

Label control card
area Note 4

System residence always begins
with track 00 of cylinder 00.
Before creating a re$ident pack,
the disk pack must be prepared
with the Initialize Disk Utility
program. This program writes
record zero on every track with an
eight-byte data area and no key
field. This program also
preformats the disk file label
area (Volume Table of
Contents-VTOC). The size of'the
area required for the VTOC depends
on the number of files on the pack
and the number of separately
defined extents for each file.
One track is usually sufficient
for the VTOC; it may never exceed
one cylinder.

The core image directory is
written with entries for 124
phases on each track. The
estimate given above (1 track) for
the minimum system allows
approximately 60 user problem
program phases.

Program phases are written in the
core image library in fixed-length
records 824 bytes long (no key
fields). There are four records

per track. A phase always begins
in a new record but may begin in
any record location on a track.
The estimate given above (50
tracks) for the minimum system
assumes the following programs
requiring 40 tracks:

Supervisor
Job Control
Linkage Editor

This leaves 10 tracks for user
prohlem programs. These 10 tracks
can hold approxima"tely eight 4R
phases.

Note 4: A single track for the Label
Control Card Area allows enough
room for most jobs. This area is
written with fixed-length records,
each containing a seven-byte key
(file name for VOL card) and an
85-byte data area. Each DLAB,
TPLAB, and XTENT card is written
as a separate record. Each track
can hold up to 20 records.

Single-Drive System Limitations

System/360 installations with a single IBM
2311 Disk Storage Drive must create system
residence on every disk pack used. Note
that system residence need contain only
those programs required for the files on
the disk pack. Separate disk resident
systems can be built to facilitate
assembling or compiling programs. The same
disk pack used to assemble or compile can
also be used for program testing.

Special consideration must be given to
jobs that process files that are "stored on
more than one disk pack. The programs used
on t"he file must be contained in the core
image library of each pack. Since the
Basic Operating System uses system
residence to store phase directory and the
control card label information, if disk or
tape labels are to be processed, the
following restrictions must be met:

Single-Phase Program No disk or tape
labels processed: The only restriction
here is that each pack must have identical
control programs. The problem program need
be entered in the core image library of
only the first pack. The Supervisor and
Job Control, however, must be on each pack.
This type of operation can be performed
only when using the physical I/O macros,
since logical IOCS requires disk label
processing.

Single-Phase Program With disk or tape

label processing, or Multi-Phase Program
with or without label processing:

1. Each pack must have the same, identical
control programs in the core image
library.

2. The problem program must be prepared as
a separate job for each pack. The job
control cards, including any label
cards, and the problem program deck
(unless the program is permanently
cataloged in the system) must be
submitted for e?ch pack.

Preparing the program as a separate job
for each pack (step 2 above) can be done in
various ways. The most straight-forward is
to run the program to end of job for each
pack, beginning the next pack by going
through the complete IPL (initial program
load) procedure for each pack. However,
this procedure prevents passing information
(totals, etc) fro.m pack to pack unless
provided for in the problem program
(punched cards, to be reread for the next
pack).

The second technique is to set up each
pack of the file before execution begins,
starting with the last pack of the file and
ending with the first pack of the file.
The job control cards for each pack except
the last (the first pack of the file)
include a PAUSE card before the EXEC card.
This allows Job Control to enter the
program in core image library, construct
the phase directory, and process the label
information control cards for each pack.
Instead of pressing the interrupt key to
begin execution, place the next pack on the
drive (and replace the card deck in the
hopper) and initiate the IPL procedure to
repeat the operation on that pack. Program
execution begins after the last pack has
been set up. When the program completes
processing the file on the first pack, a
message (MSG) macro can be issued to plac~
the system in the wait state and tell the
operator to place the next pack on the
drive. Since each pack has system
residence identical to the last, processing
can continue to the end of the file.

A third technique is to run the program
as a separate job for each pack, with
pack-to-pack information saved in an area
of core storage reserved above the
Supervisor. When the program completes
processing the first pack, Job Control is
called (EOJ macro) to reprocess the control
cards and the problem program deck (unles~;
the program is permanently cataloged in the
core image "library) for the next pack. The
job control cards for all except the first
pack are preceded by a PAUSE card, allowing
the operator to replace the pack. Job
Control and the user's problem program can

Introduction 15

Problem Program vs
Supervisor

Processi ng Program vs
Control Program

System Concepts

Introduction

Figure 1. Introduction: System Concepts

be origined at some point above the
Supervisor to leave space for pack-to-pack
information. The problem program can test
this area for blanks to detect whether it
is beginning the first pack or was recalled
to process a continuation pack.

SYSTEM CONCEPTS

The contents of this section are
illustrated by Figure 1.
to make programmi~asy
efficient. To make full
the programmer should be
function of each part of
position in the resident

BOS is designed
and job execution
use of the system,
familiar with the
the system, its
structure, and its

16 S/360 BOS Prog. Guide

Service Programs vs
Installation Processing
Programs

Data Management

relationship to other parts of the system
in terms of sequence of operation.

The following sections present the
concepts behind the various catagories of
programs within BOS. The concepts
discussed are:

1. Problem Program vs supervisor

2.

3.

4.

Processing Program vs Control Program

Service Programs vs Installation
Processing Programs

Data Management

PROBLEM PROGRAM VS SUPERVISOR

A distinction can be made between two kinds
of program functions in all data processing
operations. One of these kinds is the
common, required functions found in all
programs, such as:

1. Handling of input/output devices

2. Error detection and recovery

3. Program loading

4. Communication between the program and
the opera tor.

The other function in any program is the
actual processing where information or data
is operated on in some way to produce new
or updat.ed information. Both of these
functions can be handled more easily and
efficiently by separate programs. In BOS,
the supervisor is provided to handle the
common, required functions. This leaves
the System/360 programmer free to
concentrate on the problem-solving aspects
of his program. The user's program is
referred to as the problem program.

The Supervisor and the problem program
exist as two distinct programs in main
storage. Processing alternates between the
two, with the Supervisor receiving control
either through a programmed interrupt to
perform a requested operation or through an
automatic (machine-caused) interrupt to
handle a machine condition,. The Supervisor
ret urns control t~o the proper point in the
problem program upon completion of the
operation. Two outstanding characteristics
of the System/360 are designed to
facilitate this capability:

1. The processing unit operates in either
of two distinct states, the p~oblem
sta1:e or the supervisor state,
depending on which program is currently
being executed. When in the supervisor
state, certain privileged instructions
that are available only to the
supervisor can be executed to handle
those fUnctions that are unique to its
operation.

2. Five kinds of automatic program
interrupt allow virtual nonstop
processing. This means that machine
conditions requiring program action can
be brought to the immediate attention
of the Supervisor instead of 'waiting
for the program to test the condition.
The most important advantage in this
respect is the ease with which maximum
I/O speeds can be maintained while
utilizing overlapped process time.

Programmed interrupts are used by the
problem program to request Supervisor
operations. I/O requests, operator
communication, and the loading of
successive program overlays are among the
operations handled by the Supervisor in
response to these programmed interrupts.

SUPERVISOR

The Supervisor provides the following
functions for all other programs in BOS
including both IBM-supplied programs and
the user's problem programs.

Physical I/O Control. The physical I/O
control routines are the largest single
element of the Supervisor. These routines
handle the scheduling and supervised
execution of channel programs. The problem
programs, or Logical IOCS within the
problem program (see Data Management),
supplies a list of channel command words
(CCWs > and issues physical I/O macros to
request its execution. One of the physical
I/O control routines, the Channel
Scheduler, starts the I/O operation and
returns control to the problem program. If
the I/O channel or unit is busy when the
request is made, the Channel Scheduler
places the request in a list, or queue, and
returns control to the problem program,.
The operation then begins as soon as the
channel and unit are available. When the
operation is completed, an I/O interrupt
returns control to the Supervisor to check
for and handle all device error conditions.
If another request is pending for the
device, it is then started. The Supervisor
includes error routines for all I/O devices
on the system.

Program Loading. All programs are loaded
into main storage from disk storage by a
routine of the Supervisor called the Syste[~
Loader. (Programs are placed in disk
storage from cards or tape by the Linkage
Editor, discussed under Service Programs vs
Installation Processing Programs.> The
System Loader is used to load successive
phases, or overlays, of a program by
issuing a FETCH macro instruction. A
problem program can be written with the
main body of the program designed to remain
in main storage throughout execution of the
job and with special subroutines that are
fetched when needed, each overlaying the
last. Since the entire program is in disk
storage, subroutines can be called and
recalled as often as needed.

Operator Communication. All communication
between the Supervisor or problem program
and the machine operator is handled by the
Operator communication routines of the

Introduction 17

supervisor. Coded messages are made
available to the operator through the
system control panel and are printed on the
1052 printer-keyboard when it is available
and assigned to SYSLOG. The operator can
reply to a meSsage or he can initiate
communication with the problem program or
the Supervisor.

Checkpoint/Restart. These routines provide
a means of stopping a program at some point
other than at end of job and restarting the
program again from that point. In response
to a macro instruction in the problem
program, the Checkpoint routine writes the
problem program out in disk storage or on
magnetic tape, along with the other
information needed to restart the program.
The restart routine can then be used to
reload the program and restart at the
proper point.

Interruption Handling. All interruptions
turn control over to the Supervisor. There
are five kinds of interruption. The
following lists the action taken for each:

1. Supervisor Call This interruption is
caused by a request from the problem
program (SVC instruction, normally
assembled from a macro). The SVC
interruption routine examines the
interruption code supplied by the
instruction and transfers control to
the proper routine to handle the
request.

2. Program Check If the user has
supplied the address of a program check
routine, control is transfered to it.
If not, the job is terminated either
immediately or after printing the
contents of the problem program area of
main storage.

3. Machine Check The system is placed in
the wait state with all interruptions
masked.

4. I/O Interruption All I/O
interruptions are handled by the
Channel Scheduler.

5. External Interruption External signal
interruptions (available with the
Direct Control special feature) are
ignored by the Supervisor; control
passes directly back to the point of
interrUpt. Interruptions caused by
pressing the interrupt key on the
console are handled by the Operator
Communication routines. Timer
interruptions are turned over to a
routine specified by the user. If none
is specified, the interruption is
ignored.

End of Job. The Supervisor transfers

18 S/360 BOS Prog. Guide

control of the system to Job Control
(discussed in the next section) at end of
job to provide automatic job-to-job
transition.

Storage Print. This routine can provide a
print-out of main storage in the event of
an abnormal end-of-job condition. The
operation can be initiated by program check
conditions, by a macro instruction in the
problem program, or at the request of the
operator.

Some of the routines of the Supervisor
are loaded into main storage during system
initialization (see IPL Loader in the next
section). These routines are never
overlaid and remain in main storage
throughout the execution of any number of
jobs. Other routines of the Supervisor are
called into main storage from disk storage
only when their particular function is
needed. These are called transient
routines. They are loaded into-an-area of
main storage called the transient area.
When a routine is loaded into the transient
area, it overlays the previous routine in
the area. This allows several Supervisor
functions to be provided while using a
minimum amount of main storage. Although
the transient area of the Supervisor is not
available for the problem program, a
similar area can be set up in the problem
program region to provide the same
facility.

PROCESSING PROGRAM VS CONTROL PROGRAM

The concept of separation of function
between problem program and Supervisor can
be extended to apply to the entire
collection of programs necessary to perform
the many jobs of a data processing system.
An efficiently run installation makes use
of some kind of automqtic control over the
total operation. without such control, the
system frequently is left idle, requiring
the intervention of an operator to set up
and load successive programs or program
sections. Automatic control of the total
system can be accomplished by using special
control programs that provide continuous
operation of the system. The control
programs must be able to perform all of the
functions necessary to provide automatic
transition from phase to phase within a
job, and from job to job within the total
processing environment. Thus, just as we
distinguish between problem program and
Supervisor, we can distinguish between
processing programs and control programs.

The combination of a group of processing
programs with the control routines
necessary to maintain continuous operation

of those programs is called an operating
system. An operating system is
self-contained and.requires operator
intervention only under exceptional
conditions.

BOS control programs actually tie
together the various processing programs
into an operating system. In a sense, they
are the operating system, with the
processing programs simply running in the
over-all environment created by them. In
the minimum c~se, an operating system can
be produced that consists only of the
control programs, with the processing
programs entered ·temporarily into the core
image library for loading and then
overlayed by the· next program.

All processing programs, or "jobs", are
loaded by and controlled by the system
control programs. This distinction is
helpful in understanding the system:

1. All processing programs are run as
jobs, with the name of the program
entered in a JOB control card.

2. System control programs are never run
as a job, but instead, are ent~ered
automatically as needed to load and
supervise jobs. Note that the Linkage
Editor (discussed in the next section)
is never run as a distinct job and in
this respect is similar to the control
programs. However, the Linka<Je Editor
operates primarily as a function of the
Librarian and, therefore, is classed
with the system service programs.

The BOS control programs are:

1. Supervisor (jiscussed in the preceding
section)

2. Job Control
3. IPL Loader

JOB CONTROL

The Job Control program runs between jobs
and provides transition from job to job.
This includes the following operations.

Control Card Processing

The sequence of jobs run in the basic
operating system is determined by job
control cards read from the system card
reader. The job control cards are used to:

1. Provide the name of the program or
phase to be run.

2. Assign actual device addresses to the
symbolic unit names used in all problem
programs.

3. Enter control information in the
communications region. The information
includes:

a. Today's date
b. The User Program Switch Indicators

(UPSI)
c. The object machine configuration

(CONFG).

4. Enter information required to process
disk and tape labels.. This information
is stored in the resident pack and used
during job execution by the OPEN,
CLOSE, and end-of-volume routines.

5. Inform Job Control that the operator
desires that processing be suspended.

6. Inform Job Control that the Linkage
Editor is oris not needed to edit the
program into the resident pack.

7. Signal Job Control to begin executing
the job.

8. Signal Job Control to begin or stop
logging (printing) job control cards.

9. Prepare for restarting previously
checkpointed jobs.

I/O Device Assignment

~ll problem programs refer to I/O devices
by symbolic unit names. The Supervisor haG
a table associated with these symbolic unit.
names, each with a physical device address
normally assigned during system generation.
Job Control can reassign these addresses,
if necessary.

Phase Directory Construction

Before starting execution of a job (and
after the Linkage Editor, if used,) Job
Control constructs a phase directory for
the job. The System Loader routine of the
Supervisor uses the directory to retrieve
successive phases of the program as they
are needed.

Introduction 19

IPL LOADER

System initialization is provided by the
IPL Loader. This program loads the
supervisor from the resident pack into the
lower part of main storage and calls for
the Job Control program. Once this is
done, any number of jobs can be executed
without reinitializing the system.

The IPL Loader itself is read into main
storage through the automatic IPL procedure
provided in the System/360. The operator
places the resident disk pack on a disk
drive and selects the address of that drive
in the load-unit switches on the console.
pressing the load key causes the IPL Loader
to be read into main storage from the
resident pack.

SERVICE PROGRAMS VS INSTALLATION PROCESSING
PROGRAMS

An operating system consists of two kinds
of programs: the control programs and the
processing programs. It is convenient,
however, to distinguish between two types
of processing programs.

The first type is called service
programs, including the IBM-supplied
programs that provide fUnctions such as:

1. System Generation and Maintenance
2. Program Assembly and Compilation
3. Program Testing
4. Utility Programs
5. sort/~erge Programs.

The second type is the installation
processing programs that do the actual data
processing for which the operating system
is designed. For example, inventory
control, payroll, accounts receivable
update, etc. These user programs are
incorporated as integral parts of BaS and
take full advantage of the power of the
control programs.

The IBM-supplied service programs
available in BOS are:

System Service Programs: provide for the
creation and maintenance of the system.
These programs include:

1. Linkage Editor - edits the output of
the language translators to produce
executable program phases in the core
image library of the resident pack.
Programs are never loaded directly from
cards into main storage. Instead, they
are first edited into the core image
library, and then loaded into main

20 S/360 BaS Prog. Guide

storage by the System Loader routine of
the Supervisor. Input to the Linkage
Editor can be from cards, tape, or the
relocatable library. The programs can
be entered temporarily, executed, and
then overlaid in the library by the
next program, or they can be entered as
permanent components of the system.

2. Librarian - consists of a group of
programs that maintain, service, and
organize the system libraries.

3. Load System - creates the initial
resident system from cards (this
program operates as an independent,
non-resident program). The system
created may be used to generate other,
specialized systems, or the Load System
program itself can be used to produce
specialized systems.

Language Translators: translate source
programs into machine language object
programs. Two language translators are
provided:

1. Report Program Generator - compiles
programs written in the
problem-oriented RPG language.

2. Assembler - produces problem programs
from source programs written in the
one-for-one machine oriented Assembler
language. Includes macro generation
capability with a complete set of
macros provided by IBM for record
processing (laCS) and for communication
with the supervisor. An easily used
macro definition language allows the
user to define his own macros for
inclusion in the system. See Macro
Library in the section on System Desiqn
for a description of the purpose and
use of macros.

Autotest: exercises control over problem
programs to provide the following
fanctions:

1. Automatic inclusion of patch cards.

2. Print-out of the status of the system
at any point in the program.

3. Main storage print-out in the event of
program failure.

Disk Sort/Merge: sorts data files in disk
storage. This program can accept input
from cards or tape.

Utility Programs: provide for file-to-file
transition for data files of almost any
format. These generalized programs are
tailored by control-card information to fit
specific data files.

Remote ,Job Entry: provides facilities for
submitting jobs and job control information
to, and receiving ou~put from, a central
computing system. The Remote Job Entry
Work Station program operates in
conjunction with the Operating System
Remote Job Entry program which resides at
the central system. Jobs to be run under
Operating System are transmitted to the
central system and executed there. The
output of these jobs is returned to the
remote computer at the direction of the
user submitting the job. Job output may
also be specified for processing by the
central system's output wri-ters. Remote
Job Entry (RJE) supports card input and
punched or printed output. An exit is
provided allowing a user written routine to
write output to other available devices.

The Remote Job Entry Work station
program is generated from the RJE
macro-instruction. The macro instruction
parameters describe the Sys-tem/360
configuration and the transmission line
characteristics. This allows the Remote
Job Entry Work station program to be
tailored to each work station configuration
and the user's needs. All -the resources of
the central system and all the facilities
of Operating System are made available to
users at the remote work station.

Refer to the Remote Job Entry
publication, listed in the preface of this
manual, for a more detailed description.

DATA MANAGEMENT

BOS provides a number of routines to
facilitate handling input and output data
files. These facilities are collectively
referred to as Data Management. Although
data management does not correspond to any
single component of the operating system,
distinct from other programs or routines,
it does describe a functional capability
that can and should be treated as a
separate sUbject. The system fea-tures that
provide the data management functions are
described below under the topics:

Physical IOCS
Logical IOCS
Label Processing.

PHYSICAL IOCS

Certain routines of the Supervisor Cand the
macro instructions provided to communicate
with them) are referred to as Physical
lOCS. These routines handle the scheduling

and supervise the execution of channel
programs. The problem program (or logical
IOCS within the problem program) supplies
the channel program (a list of CCws) and
issues physical I/O macros to request its
execution.

The Supervisor starts the I/O operation
and returns control to the problem program.
When the operation is completed, the
Supervisor checks for and handles all
device error conditions. The user's
program need not contain any I/O device
error routines.

LOGICAL IOCS

A comprehensive set of macro routines is
provided to handle the creation, retrieval,
and maintenance of data files. Three basic
sets of routines are available, each
designed to handle files organized in a
specific way. These routines are generated
in response to descriptive macro
instructions (DTFSR, DTFDA, DTFIS) as a
part of the user's problem program. The
routines are assembled immediately
preceding the portion of the problem
program coded by the user. They occupy an
area of main storage between the user's
program and the Supervisor. Imperative
macro instructions issued by the programmer
cause a branch to the proper point in the
logical IOCS routines, and the requested
operation is performed. The logical Ioes
routines in turn request physical I/O
operations to be performed by the physical
Ioes routines. The functions provided by
logical Ioes include:

• Request physical I/O operations by
issuing the physical IOCS macro
instruction otherwise required in the
problem program. The necessary channel
programs (eeWs) are provided by
logical Ioes.

• Supply logical input records to, or
accept logical output records from, the
problem program. This includes
blocking and deblocking logical data
records from larger physical blocks.
(Logical record refers to the
individual unit of a data file.
Physical record refers to the block of
logical records read or written as a
single string of information.)

•

•

switch between two I/O areas to provide
usable time for processing while
records are being read or written.

Handle end-of-file and end-of-volume
conditions.

Introduction 21

• construct and maintain disk file
organization structures. This includes
additions and deletions to sequential
disk files and construction and use of
index tables for random processing of
sequentially organized disk files.

The DTF macro instructions from which
logical IOCS routines are generated must be
assembled along with all portions of the
problem program that issue imperative macro
instructions for these DTF routines. The
Linkage Editor cannot combine DTF routines
with separately assembled program sections
if those program sections must communicate
with the DTF routines.

LABEL PROCESSING

Disk and tape label processing capabilities
are included in BOS to provide:

1. Assurance that the correct editions of
disk and tape data files are provided
for input and (in the case of
multi-pack or multi-reel files) that
this input is provided in the correct
sequence.

2. Assurance that areas of disk storage or
tape reels designated for output
contain no current information. If
usable, a new label is written for the
output area or reel.

The actual label processing is performed
by transient routines edited as part of the
Supervisor during initial system
generation. These routines are loaded into
the transient area of the Supervisor and
executed in response to OPEN and CLOSE
macro instructions in the problem program.
The actual request for the label routines
is made to the System Loader either by the
logical routines mentioned above (DTFSR,
DTFDA, or DTFIS) or by another special

22 5/360 BOS ~rog. Guide

routine assembled as part of the problem
program (DTFPH).

SYSTEM DESIGN

OPERATING SYSTEM RESIDENCE

The contents of this section are shown in
Figure 2. An overriding requirement of any
operating system is that all its parts be
immediately available to the system. It
would be impractical, if not impossible, to
keep all of these programs in main storage
at all times. Therefore, it is necessary
to have constant access to some external
storage space. This storage space is
called the residence of the system; the
storage device is called the resident
device.

BOS uses IBM 2311 Disk Storage for
system residence. This means that ·there
must be a disk pack on-line for execution
of all programs, both IBM supplied and user
programs. The amount of disk storage space
required for a particular system ranges
from a few cylinders to an entire pack,
depending on the types of operations
handled by the system. The various types
of systems that can be developed are
discussed under Job-Tailored Systems.

The resident system always occupies the
first section of the disk pack, starting
with track zero on cylinder zero. The
first six tracks are always used for:

• IPL Loader

• Volume Labels (identify the disk pack)

• Directories indicating the location of
various components of the system

• Work area used by the system service
programs.

System Design Operating System
Residence

Introduction

Figure 2. Introduction: System Design

LIBRARY AREAS

Core Image Librar~ The first six tracks
are always followed by a core image program
library area. With the exception of the
IPL Loader, all programs (both processing
programs and control programs) executed as
part of the BOS are loaded from this core
image library.

Programs are placed in this library
either by the Load System program (when
creating a system from cards) or by the
Linkage Editor. The user's problem
programs can be cataloged as permanent
entries in the library or they can be
entered temporarily , executed, and then
overlaid by the next program. The control
programs are always cataloged as permanent
entries.

Two other library areas can be included
in the system (following the core image
library) if the purposes for which the
system is built require them. They are:

Macro Library: Used to store the macro
definitions processed by the Assembler
during program assembly. A
macro-definition language is provided as an
extension of the assembler language. The
macro-definition language provides the
programmer with a convenient way of
defining a sequence of assembler language
statements that can be used by many
different programs. The macro-definition
is written only once and then cataloged in
the macro library.. Once placed in the
macro library, any Assembler source program
can include the sequence of instructions by
issuing a single statement: a
macro-instruction statement. The macro
instruction can supply variable parameters
to be placed in the assembled instruction
sequence and to direct the Assembler to
include or delete specific statements from
the defined sequence.

Introduction 23

A comprehensive set of macro definitions
supplied by IBM provides the following
functions:

1. Communicate service requests to the
control programs

2. Logical record blocking and deblocking
and I/O.

3. Generation of a Supervisor tailored to
the specific requirements of the
installation.

Relocatable Library: Used to store object
modules (the output of the language
translators) in relocatable format. The
object modules stored in this library can
be combined with other object modules (in
the relocatable library or read from card
or tape) by the Linkage Editor when editing
a program into the core image library.

This library is designed so that an
installation can maintain frequently used
subroutines in the resident pack and link
them into the problem program as it is
edited into the core image library.

This library is not required in the
minimum system. separately assembled
program sections can be combined when both
are read from either cards or tape. The
Assemble-and-Execute option uses this
library.

LABEL CONTROL CARD AREA

The next area set aside in the system
residence pack is the Label Control Card
Area. Job Control stores control card
information in this area for use by the
disk and tape label processing routine
(during program execution). Disk labels
are required in BOS (see Volume Table of
Contents below). When using the logical
IOCS functions for processing disk files,
these labels must be processed for each
data file and this area must be available.
At least one disk track must be allocated
for this area on any system residence pack.

The use of this area allows label
information to be entered before job
execution.

CHECKPOINT AREA

The BOS supervisor includes routines to
checkpoint and restart programs. The
checkpoint information can be written on
either disk or magnetic tape. If the

24 S/360 BaS Prog. Guide

checkpoints are to be written on disk, this
area is set aside during system generation.
The checkpoint area follows the label
control card area. The amount of space
required depends on the size of the problem
program. Successive checkpoints are each
written over the last.

VOLUME TABLE OF CONTENTS

Every disk pack processed by programs in
BOS must have an area set aside for file
labels. This area is called the Volume
Table of Contents (VTOC). File labels are
required for certain areas even if logical
IOCS is not used by the user's problem
programs. See Disk Labels in Part 4 for a
complete description of the use and format
of the VTOC.

WORK AREAS

The areas discussed in the proceding
paragraphs are all considered part of the
residence structure. It should be pointed
out, however, that some service programs
supplied as part of the system require
additional disk storage space for work
areas. If more than one disk drive is
available, these work areas can be partly
or totally allocated to packs other than
the resident pack. The service programs
that require disk work areas in addition to
system residence are:

Assembler
RPG

DATA FILE AREAS

Autotest
Disk Sort/Merge

All of the disk area in the resident pack
not required for system residence or work
areas can be used for data files. Data
files can be stored in a resident disk pack
with only the control programs and those
processing programs used on the particular
files. Other packs can be built for
programming services only and never used
for data file storage. See Job-Tailored
Systems for a more complete discussion of
the kinds of systems that can be produced.

OPERATING CHARACTERISTICS

The following discussion illustrates the
functional relationship of the various
components of BOS (Figure 3). The
discussion assumes the existence of a
complete operating system (i.e., t:he user
has already performed system generation
using the procedures described in the
System Generation manual listed on the
front cover of this publication). Note
that steps 1-2 below are performed only to
get the system started. Steps 3 and 4 are,
in effect, a loop that continues until
there are no jobs to be run.

Step 1. The machine operator places the
resident disk pack on an IBM 2311 Disk
Storage Drive and selects the address of
that drive in the load-unit switches on the
console. Pressing the load key causes the
IPL Loader to be read from cylinder zero,
track zero, of the resident pack.

Introduction

Operating Characteristics

Figure 3. Introduction: Operating
Characteristics

step 2. The IPL Loader clears main storag(~
and the general registers to zero. It then
loads the Supervisor from the core image
library into the lower part of main
storage. Before turning control over to
the Supervisor, certain other initializing
functions are performed. The address of
the resident disk drive is taken from the
IPL PSW in location 0-3 and placed in a
table for the Supervisor. Control is then
passed to the Supervisor, which uses the
System Loader routine to call Job Control.
(Operation of the System Loader is
described under step 4.)

Step 3. Job Control reads the job control
cards defining the job to be run from the
system card reader. Information from these
cards is used to:

1. Assign actual I/O device addresses to
the symbolic unit names used by all
programs.

2. Store tape and disk label information
in the Label Control Card Area of the
resident disk pack for subsequent use
by the routines that process the
labels.

3. Place information in the communication
region within the Supervisor area,
including today's date, machine
configuration, and user program
switches. If the Linkage Editor is
required, it is fetched from the core
image library by the System Loader.
The Linkage Editor reads program phases
from the relocatable library and/or the
system input unit and edits the program
into the core image library. After
completing the linkage of the entire
program and placing it in the core
image library, Job Control is brought
back in.

The final function performed by Job
Control (regardless of whether the Linkage
Editor is required) is to construct a phase
directory of the program to be run and
write this on track 5 of the resident pack.
The System Loader uses this directory to
locate successive phases of the problem
program in the core image library.

Step 4. The system Loader loads the first
phase of the problem program in response to
a request by Job Control. During the
running of the job, control alternates
between the problem program and the
Supervisor. The problem program requests
the System Loader to load successive
program phases through the FETCH macro.
The Supervisor uses the same method to
retrieve the transient routines. At end of
job, the problem program issues an EOJ
macro (or, in a BSC environment, an ERRPT
macro and an EOJ macro). At this point.,

Introduction 25

Job Control is called back in to read the
control cards for the next job. This puts
us back to step 3. The control cards for
the last job to pe run are followed by a
PAUSE card that causes processing to be
suspended •.

JOB-TAILORED SYSTEMS

The contents of this section are shown in
Figure 4. Although an operating system
provides a n~mber of distinct advantages in
terms of performance, utility, and
application, it also requires space in both
main storage and disk residence to perform
its functions. Many of the services
furnished by an operating system are basic
(program loading, input/output control,
etc). These would require storage space

Introduction

and time to be performed whether or not an
operating system were used to perform them.
Other services provided by an operating
system yield better performance, wider
application, or a reduction in manpower and
training costs. The value of an operating
system depends to a large extent on the
specific requirements of an installation
and how closely the services provided by
the system meet those requirements. If a
facility provided by an operating system is
not required for a particular application, .
it should not take up storage space.
Therefore, BOS is designed to enable
individual facilities to be selected on the
basis of whether they are required at a
particular installation or for a particular
application within an installation.

Determining Optimum
System Design

Job-Tai lored Systems
Choice of Programming
Languages

Figure 4. I.ntroduction: Job-Tailored Systems

26 S/360 BOS Prog. Guide

Assembly of Independent
(non-resi dent) Programs

DETERMINING OPTIMUM SYSTEM DESIGN

The optimum operating system desi.gn for a
given application or group of applications
must be determined by balancing many
factors. Foremost among the factors
aff ecting the dec is ion are ·the
possibilities and constraints of the
machine system configuration. The two
extreme cases are:

1. A single disk-drive system with disk
data files that must share the resident
pack with the programs that process
them. A system of this kind dictates
that special, .minimum systems be
generated for file processing.

2. Systems with a disk drive used
specifically for operating system
residence and containing no data fil~s.
A system of this kind allows basic
operating ~ystem configurations to be
expanded to include a large number or,

el"c.

RESIDENT PACK

Control Programs

Problem Program A

Program B

Program C

Inventory Fi I e

Fixed Application

Figure 5. Two Approaches to Minimum Systems

(

in some cases, all of the
installation's processing programs.

The following factors are discussed as
they relate to determining optimum system
design:

Disk-storage space requirements
System programming requirements
Operator handling considerations.

DISK-STORAGE SPACE REQUIREMENTS

Every BOS· configuration must include the
control programs (Supervisor and Job
Control) in the core image library. In
addition to these, a minimum system must
include one of the following in the core
image library (Figure 5):

1. The Linkage Editor and enough space to
hold all the phases of the largest job
that will ever be run in the system. A

etc.

RESIDENT PACK

Control Programs

Linkage Editor

Temporary Storage

File A

File B

File C

Variable Application

Introduction 27

system of this kind can load programs
from card or tape, placing the phases
for each job temporarily in the library
for retrieval by the system Loader.
The phases for each successive job are
written over those for the previous
job.

2. All problem programs ever run in the
system. A system of this type is
designed to execute specific programs
in response to a JOB control card. All
of the program phases used are entered
at the time the system is built.

Either of these approaches can be used
to create a minimum operating system. Both
approaches are extreme cases by definition,
however, and therefore are seldom the
optimum configurations. Note that neither
of these minimum systems can modify
themselves. It is usually desirable to
include at least the core image library
maintenance and organization routines of
the Librarian. These routines provide the
flexibility of being able to reallocate or
condense library space and to catalog
program phases as permanent entries in the
system.

SYSTEM PROGRAMMING REQUIREMENTS

BOS configurations built to provide
programming services normally are not used
to execute installation processing programs
except as they are being tested and
debugged. A single pack can include the
Assembler, RPG, and Autotest, and thus be
able to provide the programming services
for the installation. Such a pack would
include all of the following:

1. In the core image library:

a. Supervisor

b. Job Control

c. Linkage Editor

d. All of the routines of the
Librarian

e. Asserobler

f. RPG

g. Autotest

h. Enough room to temporarily load and
execute problem programs. Once
completely checked out, these
problem programs can be copied into
a separate pack along with the
necessary control programs to make
up a specialized system.

28 S/360 BOS Prog. Guide

2.

3.

In the macro library:

a. The IBM-supplied macro definitions
b. Any user-written macro definitions

In the relocatable library:

a. Any previously assembled user
routines that are to be combined
with routines from other
assemblies.

b. Enough space for Autotest to load
any programs to be tested.

~. Label control card area (volume area).

5. A disk work area that can be used by
all three of the programs.

Systems built to handle one or more
specific processing programs, on the other
hand, normally do not require any
programming facilities. Thus, the
relocatable and macro libraries would not
be required. Furthermore, none of the
following programs would be required in the
core image library:

Assembler

RPG

Autotest

Librarian routines for macro library

Librarian routines for relocatable
library.

Report Program Generator: This program
never uses the macro library facilities of
the BOS. The relocatable library and
programs that maintain it are not required
for RPG. Although programs produced by RPG
are always single-phase (no overlays), they
can be combined with other program sections
(exit routines) by the Linkage Editor. The
relocatable library is often useful for
this purpose but is not required.

Assembler: The assembler uses the macro
library to process all macro instructions
encountered in source programs. since all
control program requests are made through
the use of macro instructions, it can be
assumed that the macro library is one of
the minimum requirements of the system.
The relocatable library, on the other hand,
is not required and in some cases the
facilities that it provides do not warrant
its inclusion in the system. In other
cases it can be used to fullest advantage
and more than justifies the disk storage
space required. Assemble and Execute
operations will also use the relocatable
library.

Autote~3t: The Autotest Control Program
resides in ma.in storage along with the
Supervisor and the user's problem program.
For this reason the machine requirements
for using Autotest to test programs include
a minimum of 16K by~es of main storage.
The system residence requirement:3 include
the relocatable library a.nd the system
service programs used to maintain it.

OPERATOR HANDLING CONSIDERATIONS

An important consideration in choosing the
optimum system design to be used in an
installation is the way in which the system
must be handled by machine-room personnel.
There are obvious advantages to the
fixed-application approach shown in Figure
5 when the disk storage space requirements
of the application allow it. The operator
does not concern himself with loading
object programs. This approach saves job
set-up time as well as eliminating the
Linkage Editor operation.

CHOICE OF PROGR~MING LANGUAGE

Report Program Generator (RPG)

The RPG compiler produces object programs
to do simple listings, perform numerous
calculations, use multiple files, search
tables, and update files. 'rhus, it is
possible to produce reports ranging from
simpl e listings f rom cards to complete jobs
such as payroll, accounts receivable, etc.
Special coding sheets are provided to
describe the job to be performed, and the
kind of output necessary. The RPG language
used on these sheets is problem oriented
and does not require detailed knowledge of
machine functions.

RPG compiles directly to object~ code.
The final output is in the same form as
that produced by the Assembler. 'I'his means
that the main body of a program can be
written in RPG, and separately assembled
routines written in the Assembler language
can be combined with it by the Linkage
Editor. Both parts of the program can
reference symbols defined in the other.

The object program produced by the RPG
compiler may be punched into cards or
written on disk in the relocatable library.
The library entry can be permanent or
temporary. If the object program is to be
a permanent entryv duplicate entries must
be deleted before cataloging this entry.

The object program produced by the EOS
RPG compiler does not have the capability
of running with a non-resident supervisor.

Assembler

The Assembler language provides a
convenient me,ans of solving problems by
offering the full flexibility of the
powerful System/360 instruction set. Thi~;
easy-to-use symbolic language is machine
oriented and applicable to both commercial
and scientific problems. The Assembler
Language includes a complete set of macro
instructions for all I/O and other
Supervisor functions. Also, the user can
define frequently used routines as macros.
The actual problem coding is done with
symbolic instructions that are translated,
one for one, to machine instructions. All
storage references can be made through
symbolic names. Data constants can be
defined in several different ways, either
as explicit constants or as literals coded
directly into the operand of an
instruction. The problem programmer is
able to produce the most efficient program
possible for each specific and unique
problem. Increased processing speed and
reduced main storage requirements can
usually be attained by a good programmer
using the one-for-one assembler language
'instead of the more generalized RPG
language. This often more than justifies
the extra programming effort required.

ASS£MBLY OF INDEPENDENT (NON-RESIDENT)
PROGRAMS

The programming services provided by BOS
include assembling a Supervisor and a Job
Control program for controlling problem
programs executed in a non-resident
environment. Disk files cannot be
processed by these non-resident programs.
The Supervisor and the Job Control program
produced for non-resident use are loaded
from cards (or loadable tape), and they
require no resident storage.

Note: Object programs produced by the BOS
RPG compiler are not capable of execution
in a non-resident environment.

Both the non..;.resident Supervisor and the
non-resident Job Control program (and
Restart phase) can be generated from the
macro definitions that are provided in
either the IBM System/360 Basic Programming
Support, Basic Tape System, or BOS.

Introduction 29

A description of the non-resident
Supervisor and Job Control program, and the
operating characteristics of the
non-resident environment are presented in
the Ba$ic Programming Support Programroer's
Guide and Assembler with Input/Output
Macros publications, listed in the Preface
of this manual.

30 S/360 BOS Prog. Guide

SUPERVISOR

The cont.ents of this section are shown in
Figure 6.

The Supervisor is the control program
that operates with problem programs. Part
of the Supervisor always resides in main
storage. certain other routines are kept
in the core image library in the resident
disk pack and are called into the transient
area when needed. The funct.ions performed
by the Supervisor are:

1. Interruption handling
2. Channel scheduling
3. Device error recovery
4. Operator communication
5. Program retrieval
6. End-of-job handling
7. Checkpoint and restart
8. Label processing.

Supervisor

System Control Programs

PART 2: THE SYSTEM CONTROL PROGRMm

All functions except interruption
handling are available to the problem
program by issuing macros. The programmer
is not concerned with machine interruption
conditions since th~se are handled
automatically by the Supervisor.

The Supervisor also contains a
communication region for holding
information useful to problem programs and
to the Supervisor itself.

The Supervisor is generated from a macro
library routine through an Assembler run.
Normally this is done as part of the
initial basic operating system generation.
If desired, a Supervisor can be assembled
for tape-only configurations to run outside
of the BOS environment. This is a special
case and is discussed under Assembly of
Independent (Non-resident) Programs.

Main-Storage
Organization

Functions

Figure 6. System Control Programs: Supervisor

System control 31

MAIN STORAGE ORGANIZATION

The Supervisor occupies the lower area of
main storage. The area occupied by the
problem program begins just past the
transient area. The main storage map in
Figure 7 shows the relationship between the
supervisor and the problem programs. The
transient routines are called into the
transient area (overlaying the previous
routine in the area) and executed when
needed. The maximum length of a
nonresident Supervisor is 1800 hexadecimal
(6144 decimal), because IPL is loaded at
1800 hexadecimal. The disk IPL is
relocatable and is loaded at the end of
main storage minus 6EO hexadecimal.

Supervisor

Problem
Programs

Permanent Hardware Assignments

Diagnostic Scan-Out Area

Supervisor Area

Supervisor Call Routine
Program Check Routine
Machine Check Routine
Externa I Interrupt Routine

System Loader

Operator Communication Routine

I/o Request Routine
I/o Interrupt Routine

Patch Area

Interrupt Handling

Channel Scheduler

The number of bytes is specified in the SEND macro
statement. The recommended size is 150 bytes.

Open
Close
Dump

Transient Area

End of Volume
Checkpoint
Restart

End oflupervisor

Problem Program Area

Job Control
Linkage Editor
Librarian

~
Installation Processing
Programs

End of Storage
______________ J~ ____________ ~

Figure 7. Main Storage Organization

32 S/360 BOS Prog. Guide

COMMUNICATION REGION

The communication region is a 46-byte
storage area within the Supervisor region
for use by the supervisor and problem
programs. Certain macros are available to
allow access to the information contained
in this region. Fields in the
communication region are addressed relative
to the first byte of the region.

The layout of the communication region
in the Supervisor is shown in Figure 8.

9 bytes Calendar date, in unpacked
decimal format. For example:

1 byte

2 bytes

o 814eJ22;7

\AAB
The first six bytes (A) are in
the form: month, day, year.
This is convenient for dating
reports. The last five bytes (B)
are the year and the day of the
year, used by the label'routines
and also available for dating
reports.

System configuration.

Address of the end of the
Supervisor.

8 bytes User area (for inter- or intra
program communications). These
bytes are not changed by Job
Control, unless Assemble and
Execute or Compile and Execute or
Load and Go is used.

3 bytes

1 byte

User area (for intraprogram
communication). These three
bytes are reset by Job Control.

UPSI (user program switch
indicators). This byte is reset
by Job Control.

6 bytes Program name. The first six
bytes of the name on the JOB
card.

10 bytes Area used by the Supervisor to
retain information applicable to
the problem program being
executed (addresses of
user-supplied routines specified
by the STXIT macro).

6 bytes Phase name, the name of the last
phase requested. This
information is used by the
Supervisor.

Month

Bytes -0

t
Address of first
byte supplied
in Register 1 by
COMRG macro

Day

Date

Year

/

Day of
Year

/
/

/

8

",/'

~
~
O'l
~

:5
U

9 10

" "
,,/ 1 Byte = 8 Bits

/
/

/

g User Area
.~

J
'0 Interprogram or

:5 Intraprogram
Communication

11 12

r:s, ..
Bits~ 34

I 0000 '=--8-K---'-~-!-1 -'-~--'-'-'--~I
I 0010 ,= 16K I t: I
I 0011 ,= 24 K i?l <51 1 = Present I
I 0100'= 32K III III o = Absent I
I 0110'= 64K 10 -1 I
: 1000 ,= 128 K III II II
I 1010 '= 256K

=
~
2-

~ Program Name Phase Name

E ~ Area Used by the Su pervisor
2
~ E Entered from Name of Last 2
0..

1 Job Control Phase Requested
~

19 20..5 22 23 24 29 30 39 40 45

Figure 8. communication Region (in Supervisor)

During job-to-job transition, Job Control
deactivates any user-supplied program check
routines. Job Control sets the program
check option to dump and abort. The
program name is updated by Job Control.
The 8-byte user area (for interprogram or
intraprogram communications) is not changed
by Job Control unless assemble or compile
and execute, or load-ana-go modes of
operation are used. Job Control always
resets the 3-byte user area (for
intraprogram communication), and t.he UPSI
byte.

Communication Region Macros

Macros are provided to allow the problem
program to communicate with the Supervisor
and the communica'tion region. A brief
discussion of them follows. Details are
found in the Assembler with Input/Output
Macros publication, listed in the Preface
of this manual.

COMRG Communication region. (COMRG)
allows the problem program to address
information stored in the communication
region (obtain date, test switches, etc.).
The address of tht~ first byte of the region
is placed in general register 1.

STXIT Set exit. (STXIT n, pc, it, oc)
ActiVates problem program routines for
program check, internal timer, and operator
communication. The operands are:

n The number of a general
register that can be used to

pc

it

oc

provide linkage from one
routine to another. (Register
o should not be specified in
this macro. Registers 12 and
13 also should not be specified
in this macro unless SUPVR
SAVEREG=YES was specified when
the supervisor was assembled.
See Appendix J.)

The name of the first
instruction of the program
check routine, or ABORT or
DUMP.

The name of the first
instruction of the interval
timer routine or CLOSE.

The name of the first
instruction of the operator
communication routine or CLOSE.

The value, or address, of the names
included is placed in the proper places in
the communication region.

MVCOM Move to communication region.
(MVCOM a,b,c) allows the problem program to
modify information in the user portion of
the communication region (bytes 12 to 23).
The following must be specified in the
operand of the macro statement:

a. The relative address of the first byte
to be modified in the region,

b. The number of bytes to be modified, and
c. The address or register that will

contain the address of the first byte
to be moved into the region.

System Control 33

FUNCTIONS

INTERRUPTION HANDLING

An interruption is an automatic transfer of
control from any storage location to a
predetermined storage location. It can be
caused by either a program instruction or a
machine condition. The Supervisor
automatically handles all interruptions so
that the programmer need not be directly
concerned with them. In most cases after
an interruption is handled, control is
returned to the point of interruption as if
no break had occurred in the instruction
sequence. Five kinds of interruptions are:

1. Supervisor call
2. External (timer or interrupt key)
3. Program check
4. Machine check
5. Input/output.

Figure 9 illustrates the flow of control
between the Supervisor and a problem
program during an interruption. Control is
in the problem program initially. An
interruption occurs, transferring control
to the Supervisor. The status of the
program is saved in the Program Old PSW.
Depending on the type and reason for the
interruption, control is given to an
appropriate handling routine. Upon
completion of the routine, the program is
restored to its original condition (via the
old PSW). control is normally given back
to the problem program at the point where
it was interrupted.

Interrupt
.-------,

(Problem Program State) (Supervisor State)

Figure 9. Flow of Control between
Supervisor and Problem Program
during an Interruption.

34 S/360 BOSProg. Guide

supervisor Call

The supervisor call interruption is caused
when the SVC instruction is executed.
Certain macros use registers 0 and 1, and
the SVC (supervisor call) instruction that
is available to provide communication
between the problem program and the
Supervisor. The SVC in each macro has a
certain interruption code which indicates
to the Supervisor which routine is to be
executed. If the SVC code is not
recognized by the Supervisor, it forces a
program check condition. The macros that
allow problem programs to have access to
supervisor functions via an SVc instruction
are:

FETCH To load a program or program phase
from the core image library into
storage for execution.

MSG (Message) To provide for
communication between the operator
and the problem program.

EXCP

EXIT

EOJ

(Execute channel program) To request
an I/O operation to be performed
when using physical IOCS.

To return to the user's main program
after the user's handling of a timer
interruption or operator-initiated
communication.

(End of Job) To call Job Control to
prepare the next job to be run.

Each macro generates a supervisor call
interrupt with a specific code. The
interrupt routine analyzes the code and
gives control to another routine for the
actual handling of the interruption.

External Interruption

An external interruption can be caused by
the timer going from a positive to a
negative value or by the operator pressing
the interrupt key. (Note that External
Signal interruptions, part of the Direct
Control feature, are not recognized by the
routine. Control is passed directly back
to the problem program at the pOint of
interruption.)

Timer When the interval timer has
caused an interruption,
control is given to a
user-supplied timer routine
to handle. If there is no
timer routine, the
interruption is ignored.
{The timer routine is

activated by the STXIT
macro). When a Supervisor
is assembled, the SUPVR
macro must contain the
parameter TR=YES, if an
interval-timer routine is to
be included in problem
programs, using the
Supervisor.

The program status of the
interrupted mainline program
is saved by the Supervisor.
Also, the contents of
registers 10 and 11 are
saved so that they are
available to the user's
timer routine. At the
completion of the timer
routine, issuing the EXIT
macro (with TR in the
operand) causes a return to
the problem program
(registers 10 and 11 are
restored). The EXIT macro
must be the last instruction
in the timer routine. It
transfers control to the

Problem Program

I
I
I

Main line

Interval Timer
Causes an Interrupt

Execution Continues

User's
Interval Timer
Routine

(Problem Program State)

Supervisor, which then
branches to the point of
interruption. Figure 10
illustrates the sequence of
events following the
interruption.

Note that the programmer
must be aware that a timer
interruption occurring
during execution of the
problem program's
interval-timer routine can
cause an endless loop to
develop within the timer
routine. A sufficient time
interval can be set in the
timer to ensure that the
timer does not cause an
interruption or the
programmer could code the
timer routine to test for
and handle any timer
interruption occurring
within the timer routine.

Job Control does not
deactivate an established

Supervisor

(Supervisor State)

Interrupt
Handling (SYC)
Routines

Figure 10. Sequence of Events after a Timer Interrupt

System Control 35

timer routine; therefore,
one timer routine can be
used with several jobs in a
stacked-job stream.

Interrupt Key This key is used for
communication from the
operator to the Supervisor.
It can indicate:

Program Check

1. A reply to a message
issued to the operator.

2. A message issued to the
Supervisor by the
operator. This includes
indicating the
completion of a desired
operator action.

Each program can select (with the STXIT
macro) which of the following options is to
be taken in the event of a program check:

1. Abort - The job being executed is
terminated and the operator is informed
of the cause of the termination.

2. Dump and Abort - The contents of the
general registers, the Program Old PSW,
the communication region, and entire
problem program are printed, then the
job is terminated.

3. Transfer to User Routine - The address
of a subroutine supplied by the user
can be placed in the communication
region. The program check interrupt
routine will branch to that subroutine
when an interrupt occurs. The user
subroutine can determine where the
interrupt occurred by examining the
address in the Program Check Old PSW.

Before starting each job, Job Control
always selects the dump and abort option.
This option will then be used unless the
user changes the code in the communication
region. The code can be changed at any
point. For example, before performing a
calculation where there is a possibility of
a fixed-point overflow, the program might
change the code to branch to a routine that
inserts a maximum value anytime the
interrupt occurs. The (STXIT) macro is
provided to change the code.

Note: When a program-check interruption
occurs during execution of a user's
program-check routine, an endless loop may
occur. Therefore, it is recommended that
the user include code within his routine to

36 S/360 BOS Prog. Guide

prevent this occurrence, especially during
the debugging stages of his programs.

Machine Check

A machine check interruption results from a
machine malfunction. When the error is
detected, certain diagnostic information is
automatically placed in the diagnostic
scan-out area beginning in location 128.
The machine check interruption places the
system in the wait state with an
identifying code in the main storage
address register on the console. The
system can be restarted only through an IPL
procedure. A card deck containing a
diagnostic routine called the System
Environment Recording, Edit, and Print
program (SEREP) provides a diagnostic print
out of the system.

A machine check interruption is
simulated by the I/O device error routines
by loading the machine check PSW if an
error condition is detected that requires
exceptional handling by the operator or an
IBM Customer Engineer.

Input/Output Interruptions

An input/output interruption can be caused
by:

1. I/O completion - End of transfer of
data into or out of main storage or
completion of a control operation.

2. I/O attention - Results from pressing
the request key of the 1052.

When either of these conditions is
detected, control transfers to the channel
scheduler. (Note .that a program-controlled
interruption occurring as the result of the
pcr flag in a CCW is ignored by the channel
scheduler.)

CHANNEL SCHEDULER

Complete control of data input/output is
accomplished through two kinds of routines:
physical and logical. Supervisor
input/output control consists of only
physical routines (the actual transfer of
data between main storage and some I/O
device). These routines make up the
Channel Scheduler. The functions it
Channel Scheduler.

The functions it performs are:

1. Schedule I/O requests on each channel
(queueing) •

2. start input/output operations.

3. Handle I/O interruptions (normal
completion of data transfer, error
detection, end-of-file detection,
attention on the 1052).

All I/O devices in the System/360 are
attached to channels rather than attached
directly to the cpu. A channel provides a
path for data transfer between main storage
and the I/O device and in this system
allows I/O operations to be overlapped with
cpu processing. That is, instructions can
be executed simultaneously with data
movement in the channel or in several
channels. For instance, at a given point
in time, one channel may be reading data
from a disk, another channel may be writing
data on a printer, and a previously read
record may be being processed. This is
referred to as read/write/compute overlap.

Two kinds of channels are provided in
this system: the selector channel and the
multiplexor channel. The selector channel
allows all I/O operations for all devices
in this channel to be overlapped with cpu
processing. On the multiplexor channel,
tape and disk I/O operations cannot be
overlapped with cpu processing. Card and
printer I/O devices can be overlapped with
cpu processing. Thus, greater throughput
can be achieved if high-speed devices (tape
and disk) are attached to a selector
channel, and low-speed devices (card and
printer) are attached to the multiplexor
channel.

Overlapping I/O operations with cpu
processing is inherent in the design of the
machine and the channel scheduler program.
However, achieving maximum overlapping is
also partially dependent on the problem
program. For instance, if overlap is
desired in tape or disk operations, the
problem program should provide for two I/O
areas (or buffers). This allows data to be
read into, or written from, one I/O area
while records are being processed in the
other area. Certain devices, however, have
buffers built int.o the device (1403) and
require only one I/O area in main storage
to achieve overlap. The use of multiple
I/O areas and separate work areas is
discussed more fully under Proces$ing
Overlapped with Input/Output in Part 4.

All requests for I/O operations are
handled by the channel scheduler. When a
request is received and the affected
channel and device are not busy, 1:he
requested operation starts and control

passes back to the problem program. If th~
channel or device is busy, the request is
placed at the end of a list (or queue) if
I/O requests and the operation is performed
as soon as all previous requests have been
handled. Each selector channel has a
single queue for all of its attached I/O
devices. I/O device requests are scheduled
on a first-in first-out basis per channel.
The multiplexor channel has 12 request
queues, if the 1285 optical reader is
specified at assembly time. In this case,
I/O operations can be interleaved, if no
burst mode devices are assigned to the
multiplexor channel. If the 1285 optical
reader is not specified, the multiplexor
channel is treated as a selector channel.

The channel scheduler also handles all
I/O interrupts. If the interrupt indicates
the normal end of an I/O operation (channel
end and no errors) the channel scheduler
examines the queue for the affected
channel. If the queue is empty, control is
returned to the problem program at the
point of interruption. If instead, a
request is pending, the channel scheduler
starts the I/O operation and then returns
to the problem program. However, if the
request is for the same device, but device
end has not been received, any pending I/O
operation for that queue can not be started
at this time, and the channel scheduler
will return to the problem program. For
example, for a 1403, channel end is
received as soon as the buffer has been
completely loaded, but device end is not
received until completion of the print
operation. (See Note for handling the
channel end, device end condition when
using BSC support).

The channel scheduler detects the
following specific status conditions:

1. Wrong Length Record (WLR)
2. End of File (EOF)
3. Error

Upon detection of the WLR condition, the
channel scheduler sets an indicator on and
supplies the residual count to the problem
program. The WLR condition is handled
separately for BSC applications. (See
Note.) At tlds point, the channel
scheduler will examine the queue.

Upon detection of an EOF condition, the
channel scheduler sets an indicator on for
the problem program and, as above, examines
the queue. The EOF condition is handled
separately for BSC applications. (See
Note.)

If an error is detected, all interrupts
are masked and the channel scheduler passes
control to the appropriate device error
recovery routine. The channel scheduler

System Control 37

remains in this condition until the error
is resolved.

For the 1052, an 1/0 operation can be
initiated by the operator. To do this, the
operator presses the request key on the
device. When the channel scheduler detects
an Attention status condition, it passes
control to the appropriate user routine for
the 1052, if one is present. If the user
has not supplied a routine, the interrupt
is ignored. In the user routine,
unrestricted reading and writing data to
the device is allowed.

Note: For BSC 1/0 operations, upon
--detection of normal completion (channel

end and device end), WLR or EOF, the
channel scheduler goes to device error
routines for further message format or
line control response checking.

A problem program can perform 1/0
operations in two ways:

1. The problem program can issue physical
1/0 macros directly.

2. The problem program can use logical
IOCS, which in turn issues the physical
1/0 macros. See Logical IOCS in Part
4.

Physical 1/0 Macros

The physical 1/0 macros are:

1. EXCP (execute channel program) This
macro communicates directly with the
channel scheduler to request that an
1/0 operation be started. When the
EXCP macro is used, the problem program
must supply the appropriate CCWs •

2. WAIT This macro suspends program
operation until an 1/0 operation
(referenced in the WAIT macro) is
complete. The problem program must use
this macro (or WAITM) at the point
where processing cannot proceed until
the I/O operation is complete. For
instance, a problem program may issue
the EXCP macro to read a disk block.
At the pOint where the program needs
the disk record for processing, a WAIT
macro must be issued. The instructions
generated from this macro simply loop,
testing a program switch to see if the
operation has been completed. The
completion of the operation causes an
1/0 interrupt to the channel scheduler.
Before control is returned to the loop,
the switch is set to show the
completion. Thus, the next time it is
tested, the loop is broken and
processing continues.

38 S/360 BOS Prog. Guide

For a discussion of the WAITM macro
instruction, see Processing with STR
Devices.

3. CCB (Command Control Block> This
declarative macro generates a command
control block for each list of CCWs to
be executed. The command control block
contains information required by the
Channel Scheduler to execute the EXCP
and WAIT macros. The block is also
used to pass information between the
problem program and the Channel
scheduler, such as status of the
operation, action to be taken in the
event of an error, etc.

4. CHNG (Change Channel) This macro is
used to change the channel assignment
for tape units tha.t are attached to two
selector channels through a tape
control unit with simultaneous
read-while-write capability.

A complete description of these macros is
supplied in the Assembler with Input/Output
Macros publication, listed in the Preface
of this manual.

DEVICE ERROR RECOVERY

Each 1/0 device or class of 1/0 devices has
a unique device error recovery routine.
The appropriate routine is entered from the
channel scheduler upon detection of an
error. All of these routines have one
function in common. That is, an attempt is
made to recover from the error. This may
be by programming (re-reading tape) or by
operator action (2540 Not Ready).

If recovery is not possible, the
following choices are available where
applicable.

1. The record in error can be bypassed.

2. An error on an input record can be
ignored.

3. The problem program can take action (an
exit to a user routine is allowed).

4. Follow the machine-check procedure
(terminate the job).

Depending on the type of device and on
whether logical IOCS is used, some or all
of the above options are available. In the
absence of any other options, only choice 4
is available.

SYSTEM/OPERATOR COMMUNICATION

Communication between the IBM Sys"t:em/360
and the machine operator is of two types:

1. Communication from the system to the
operator, and

2. Communication to the system, initiated
by the operator.

Communication from the system to the
operator is required for efficient
operation and control of the system. Coded
messages are either displayed on the system
control panel (console) or printed on an
IBM 1052 Printer-Keyboard, if one is
available (and assigned to SYSLOG).

Communication initiated by the operator
may be used to process inquiries and also
for system control. The operator can
communicate only to the Supervisor via the
system control panel switches and keys. He
can communicate to either the Supervisor or
the problem program when a 1052
printer-keyboard is available (and assigned
to SYSLOG).

In some cases, communication between the
system and the operator may use a printer.
A printer can give instructions and
messages to the operator.

Communications from the System to the
Operator

Coded Messages (MSG Macro): Communication
to the operator from IBM-supplied programs
and the user's problem programs can be made
through use of a program instruction known
as the MSG (Message) macro. The MSG macro
places coded messages in positions 0-3 of

main storage. These bytes can be displayed
on the system control panel (console) by
the operator. When an IBM 1052
Printer-Keyboard is available and assigned
to SYSLOG, the coded message from the MSG
macro will be printed on the 1052 printer.
These messages may be a numerical code, or
some set of meaningful characters, for
example "ISEQn for input sequence error.
IBM-supplied programs usually use an
alphameric code. The first character of
the message identifies its source, as
follows:

Identifying Code

Printed
on 1052
Pr'inter
Keyboard

o
1
2
3
4

Displayed on
Console from
Byte 0

11110000
11110001
11110010
11110011
11110100

Message Issued by

IPL or Supervisor.
Job Control.
Linkage Editor.
Other IBM Programs.
Logical IOCS.

Since these codes apply to specific
IBM-supplied programs, a message issued by
the problem program should not have a 0, 1,
2, 3, or 4 as the first character.

Some messages require a reply from the
operator to continue processing. When a
reply is required, the letter nAn is the
fifth character of the message and it is
printed on the 1052 following the
four-character message. If a 1052
printer-keyboard is not available, the
letter "An can be displayed on the console
from byte 4 of main storage. When a reply
is not required, the fifth character of the
message is a blank. A reply to a message
is always a single character: any character
may be a valid reply when properly defined
by the problem program.

System Control 39

Valid reply codes via 1052 and System
Control Panel (Byte 5-Hexadecimal) are
described as follows:

Via
1052

blank

o

Via System
Control
Panel Meaning

40 The request key was
pressed in error; continue
processing.

00 or FO Terminate the job.

1 01 or F1 Dump the program and

2

3

4*

5

6*

8**

terminate the job.

02 or F2 Turn on program switch 7
in the UPSI byte of the
communication region.
Return to the program that
initiated the message.

03 or F3 Turn off program switch 7
in the UPSI byte of the
communication region.
Return to the program that
initiated the message.

04 Ignore the indicated I/O
error. Continue
processing if physical
IOCS issued the message.
Otherwise return to the
program that initiated the
message.

05

06

08

Retry the indicated I/O
operation. Continue
processing if physical
IOCS initiated the
message. Otherwise return
to the program that
initiated the message.

Disable STR lines (when
using DTFSN), DUMP the
program and terminate the
job.

Disable the BSC line (when
using DTFBS), print out
the error statistics and
transmission counts, dump
the program and terminate
the job.

Other Other Return to the program.

*If STR routines are included in the
assembled supervisor, a reply of 4 will set
on the lost data and end-of-file bits in
the expanded STR CCB. If STR devices are
being used in the problem program, a reply
of 6 must be used to ensure that the STR
lines are properly disabled when the job is

40 S/360 BOS Prog. Guide

terminated. If the STR routines are not
included in the assembled supervisor, code
6 is invalid and will be ignored.

**If BSC support is being used in the
problem program a reply of 8 must be used
to ensure that the ESC line is properly
disabled when the job is terminated. If
BSC routines are not included in the
assembled supervisor, code 8 is invalid and
will be ignored.

All reply codes are communicated to the
program that initiated the message and
(except for reply codes 0 and 1) can be
tested by the program by addressing "name
+7". "name" is the symbolic name used for
the MSG macro instruction.

Operator Reply via the 1052
Printer-Keyboard: When a message to the
operator is received via the 1052, the
proceed light will be turned on if a reply
is required, and the system will enter the
wait state until a reply is sent.. If no
reply is required, the message will be
printed and processing will continue
uninterrupted. If an input/output error
occurs on the 1052 during receipt of a
message, the system will enter the wait
state (wait light turns on) and the
operator must use the system control panel
to display the messages.

When a message requiring a reply is
received, the operator:

1. Types the appropriate reply from a
prepared list of messages and required
responses.

2. Types an end-of-block character (holds
the alternate-code key down and types a
5) •

The system then resumes processing.

If an input/output error occurs during
the operator response, the system will
enter the wait state (wait light turns on).
The operator must use the system control
panel to reply to the message.

Operator Reply via the System Control
Panel: When a message to the operator is
issued, and a 1052 is not available, the
system enters the wait state (wait light
turns on) and the operator:

1. Presses the stop key.

2. Displays bytes 0-4 of main storage and
determines whether a response is
required (an "A" in byte 4). He then
stores the appropriate reply (if
required) in byte 5 and checks it in
the console lights.

3. Presses the start and interrupt keys.

The system will resume processing.

Other Messages: Some messages may be
received from the problem program. by means
other than the MSG macro. These messages
may be in sentence form, giving
instructions to the operator or information
about the status of the system or program.
These messages miy appear on the 1052 or on
the ~403 or 1443 printers of the system.
Some examples are:

PHASE A COMPLETED
I/O DATA CHECK ERROR
UNIT UNAVAIL

Communication In~tiated by the Operator

Communica tion ini tiated by t.he operator is
of two types: to the Supervisor, and to
the problem program. If a 1052
printer-keyboard is available,
communication is possible to both the
Supervisor and the problem program.
Without a 1052, communication is possible
only with the Supervisor.

Communication to .the Supervisor via the
1052 Printer-Key~oard: When a 1052
printer-keyboard is available and assigned
to SYSLOG, the operator can initiate a
communication to the supervi.sor by:

1. Pressing the request key. The system
will acknowledge the request with a
message on the 1052.

2. Typing the appropriate one-character
code, 0-3, 6, or 8 (see chart), when
the proceed light turns on. The system
will analyze the code and continue
processing accordingly.

Communication to the Supervisor via the
System Control Panel: The operator
initiates a communication by:

1. Pressing the stop key.

2. Storing the appropriate code (see
chart) in byte 5 of main storage.

3. Pressing the start and interrupt keys.

The system will analyze the code and
continue processing accordingly.

The following codes are used in
IBM-supplied Supervisors.

Code Entered
Via Console

Via (Byte 5)
1052 Hexadecimal

0 00 or FO

1 01 or F1

2 02 or F2

3 03 or F3

6 06 or F6

8 08 or F8

Meaning

Terminate the job.

Dump the program and
terminate the job.

Set UPSI bit 7 on and
continue processing.

Turn UPSI bit 7 off and
con~inue processing.

Disable STR lines (when
using DTFSN), dump the
program and terminate
the job.

Disable BSC line (when
using DTFBS), print out
the error statistics and
transmission counts,
dump the program and
terminate the job.

Any other code entered will be ignored,
unless CR=YES has been specified in the
Supervisor assembly and the communication
routine has been activated by the STXIT
macro. In this case, the code will be
interpreted as one being used by the
problem program. If the STR routines are
not included in the assembled supervisor,
code 6 is invalid and will be ignored. The
same is true of code 8 if BSC routines are
not included in the assembled supervisor.

communication to the Problem Program:
Three conditions must be met for the
operator to communicate with the problem
program:

1. The 1052 printer-keyboard must be
available and assigned to SYSLOG.

2. The parameter CR=YES must have been
specified in the SUPVR macro statement
when the Supervisor was assembled.

3. A user-written routine to process the
communication must be present in main
storage, and its address must have been
specified in a STXIT macro.

When these three conditions are present,
the operator:

1. Presses the request key.

2. Receives a message acknowledging the
request.

System Control 41

3. Types any code except 0 through 3, 6,
or 8, when the proceed light turns on.

When the Supervisor recognizes that this is
not one of the defined control program
codes (0-3, 6, or 8), it performs the
following steps.

1. Stores the I/O interruption old PSW.

2. Stores the contents of registers 10 and
11, making them available to the user's
communication routine.

3. Transfers control to the user's
operator communication routine. The
user's routine may use the IOCS macro
GET and PUT to control input/output
operations, if registers 14-15 and 0-1
are saved and restored by the user.
When the communication routine is being
executed, no other operator-initiated
communication are accepted. The MSG
macro can still be used to request a
response from the operator. Upon
completion of the communication
routine, an EXIT macro with the CR
operand must be issued to cause normal
processing to be resumed. The
supervisor restores registers 10 and 11
before returning to the mainline
program.

Job Control does not deactivate an
established operator communication routine;
therefore, a communication routine can be
used with several jobs in a stacked-job
stream.

SYSTEM LOADER

The System Loader is a permanently
main-storage resident routine in the
Supervisor. It loads all programs and
program phases run in a BOS environment
with the exception of the main-storage
resident Supervisor itself.

All programs are loaded into main
storage from the core image library.
(Programs can be read from cards,
temporarily placed in the core image
library and executed. See the section
describing the Linkage Editor.) The system
loader is entered through an SVC
instruction (even when entered from some
other routine of the Supervisor). The
unique interruption code of this System
Loader SVC results from several problem
program macro instructions (OPEN, CLOSE,
EOJ, CHKPT, DUMP, and FETCH). The FETCH
macro explicitly names the phase to be
loaded. The others have implied phase
names supplied from the macro library
during assembly of the problem program.

42 S/360 BOS Frog. Guide

Job Control issues the fetch SVC to
retrieve the Linkage Editor, the first
phase of each program, and the restart
routine.

The System Loader examines the name of
the requested program or phase. If the
first three bytes contain the letters SYS,
the transient directory is read and checked
for a corresponding entry. If the first
three characters are not SYS, the first
four characters are compared to the name of
the current program (in the communication
region). If equal, the phase directory is
read and checked for a corresponding entry.
If neither of the above conditions is met,
the core image directory is read and
checked for the entry.

When the name is found in one of the
directories, the System Loader reads the
phase into main storage and transfers
control to the indicated entry point.

FETCH Macro

In the source language, this macro has the
format:

FETCH xxxxxx

The operand (xxxxxx) is the name of the
program or phase to be loaded. The macro
is assembled into an SVC instruction
followed by the name defined as a constant.
The supervisor call interrupt routine
transfers control to the System Loader.
Physical IOCS is used to perform the
necessary disk operations. In this case,
the I/O request is held until all pending
requests are complete. -

CHECKPOINT/RESTART

When a problem program is expected to run
for an extended period of time, provision
should be made for taking checkpoint
records periodically during the run. The
records contain the status of the job and
system at the time the records are written.
Thus, they provide a means of restarting at
some point other than the beginning of the
entire job, if processing must be
terminated for any reason prior to the
normal end of job. For example, a job of
higher priority may require immediate
processing, or some malfunction such as a
power failure may occur and cause such an
interruption.

If checkpoint records are written
periodically, operation can be restarted

using the last set of checkpoint records
pr10r to the interruption. Therefore the
records must contain everything needed to
re-initialize the system when processing is
restarted.

BOS includes routines to take checkpoint
records and to restart a job at a given
checkpoint after an interruption. The
checkpoint and restart routines are
included in the core image library when the
basic operating system is initially
generated. The routines are considered
part of the supervisor and are executed in
the transient area. The checkpoint routine
is called in response to a CHKPT macro in
the problem program. The restart. routine
is called by Job Control when it reads a
RSTRT card.

Checkpoint records can be wri t,ten in a
previously defined area of the resident
disk pack or written on magnetic tape.
When on disk, each successive set of
checkpoint records is written directly over
the last. Thus, there is never more than
one set of checkpoint records on disk.
When written on tape, however, each
checkpoint is written following the
previous checkpoint (or interspersed with
data records, if written on a normal
data-file tape) and each is uniquely
identified. When restarting from tape, the
RSTRT card specifies which checkpoint is to
be loaded.

Note: Checkpoint:s must not be written on a
normal data-file tape, if the tape is to be
processed by IBM System/360 Operating
System.

CHKPT Macro

There can be only one checkpoint macro in
an assembly. It can be executed as often
as desired. In the source language, the
CHKPT macro has the format:

CHKPT n:l.,label,SYSxxx,DISK

where:

•

•

•

•

n:l. is the number of tapes to be
repositioned by the restart routine.

Label is the symbolic name of the
instruction to which control is to be
passed by the restart routine.,

SYSxxx is the symbolic name of the unit
on which the checkpoint is to be taken
(SYSRES if disk, SYSOOO-SYS254 if
tape).

DISK indicates that the checkpoint

records are to be written by a problem
program running in a BOS environment in
the resident disk pack. This parametE~
is left out if they are to be written
by a problem program running as an
independent program, not in a BOS
environment.

The restart facility is described in the
section on Job Control. See the Assemblel
with Input/Output Macros publication listpd
in the Preface of this manual, for more
detail on the checkpoint macro.

LABEL CHECKING

All label checking (both disk and tape
labels) is performed by transient routines
of the Supervisor. These routines are
called into the transient area and executed
in response to macro instructions issued by
the problem program. Since these routines
do not occupy space that can be used by the
problem program, there is no need to handle
OPEN and CLOSE operations as overlays in
special phases.

The label processing routines are called
in response to OPEN and CLOSE macro
instructions in the user's program. These
macros cause a branch to either the logical
IOCS routines (DTFSR, DTFDA, or DTFIS> or
to the special, physical IOCS routine
(DTFPH) that is assembled as part of the
problem program. The DTF routine issues
the actual FETCH for the label-processing
routine.

NOR~~L AND ABNORMAL END-OF-JOB HANDLING

When a program reaches the normal end of
job# issuing the EOJ macro causes the
Supervisor to fetch Job Control to begin
processing the control cards for the next
job.

In a BSC environment the ERRPT macro
(see Binary Synchronous Communication) must
be issued preceding the EOJ macro.

A special routine is provided as part of
the Supervisor to provide a print-out of
main storage in the event of some abnormal
end-of-job situation. This routine is
fetched into the transient area in respons~
to the DUMP macro instruction. The DUMP
routine prints the contents of the
fixed-assignment locations (0-127), the
general purpose registers, and the entire
problem program area.

System Control 43

JOB CONTROL

The contents of this section are shown in
Figure 11. The Job Control program
provides job-to-job transition within BOS.
It is called into main storage to prepare
each job to be run. It performs its
functions between jobs and is not present
while a problem program is being executed.
Job Control is called by:

1. The IPL Loader, to process the first
job after an IPL procedure.

44 S/360 BOS Prog. Guide

2. The Supervisor, after an abort or dump
operation.

3. By the problem program, at normal end
of-job.

A macro instruction, EOJ, is provided to
make this call when programming in the
Assembler language. This assembles into a
FETCH for the Job Control program.

Functions

System Control Programs

Control Cards

Figure 11. System Control Program: Job Control

Prepare Programs
for Execution

Symbol i c Input/Output
Assignment

Set Up Communications
Region

Edit and Store
Label Information

Restart Programs
from Checkpoint

General Control
Card Format

Sequence of
Control Cards

Description and Format
of Control Cards

System Control 45

FUNCTIONS

Job Control performs various functions on
the basis of information provided in jQ£
control cards. These functions, and the
cards used to provide the necessary
information are:

1. Prepare programs for execution.

Card
Identification

// JOB

Card
Identification

// EXEC

Information
Provided

Program name. If
a program is to be run
under control of
Autotest, an additional
parameter (T) is
punched. If a program
is to be assembled and
run as a single job,
the card first nan:es
the Assembler, then the
problem program.

Information
Provided

Source of program to be
run

2. Assign device addresses to symbolic
names.

Card
Identification

// ASSGN

Information
Provided

Actual device addresses

3. Set up fields in the communication
region.

Card
Identification

// JOB
// DATE
// UPSI

// CONFG

Information
Provided

Program name
Date
User program switch
indicators
Machine configuration

4. Edit and store volume and file label
information.

Card
Identification

// VOL

// DLAB

// XTENT

// TLAB

Information
Provided

Volume label
information
Disk file-label
information
Lower and upper limits
of disk file area
Tape file-label
information

46 S/360 BOS Prog. Guide

5. Prepare for restarting of checkpointed
programs.

Card
Identification

// RSTRT

// FILES

Information
Provided

Location of checkpoint
records
Tape drives to be
positioned

6. Place programs under Autotest control.

Card
Identification

// JOB

// ATEOF

Information
Provided

Indication of a program
to be tested
Indication of the end
of a group of programs
involved in a single
test

Three additional cards are used to provide
explicit commands to Job Control. These
are:

Card Identification

// LOG

// NOLOG

// PAUSE

Meaning of Command

Begin listing job
control cards
Stop listing job
control cards
Place system in wait
state

PREPARE PROGRAMS FOR EXECUTION

All programs run in the basic operating
system are loaded from the core image
library for execution. If a program has
been previously cataloged (see Librarian)
as a permanent entry in the core image
library, Job Control has only to construct
a phase directory of that program and then
transfer to the system loader to load it
for execution. On the other hand, if a
program is to be placed temporarily in the
core image library for execution, Job
Control first calls the Linkage Editor to
prepare the program in the library. The
Linkage Editor reads the program from
either or both the relocatable library and
card (or tape, in card image). After
performi~g its task, the Linkage Editor
recalls Job Control to construct the phase
directory and fetch the first phase.

The phase directory includes an entry
for each program phase in the core image
library whose name has the same first four
characters as the name in the JOB card.
The use of this directory is discussed
under System Loader in the section on the
Supervisor.

SYMBOLIC INPUT/OUTPUT ASSIGNMENT

Job Control is responsible for assigning
input/output device addresses. Programs do
not reference I/O devices by their actual
physical addresses, but rather by a
symbolic name. The physical addrE~sses are
assigned to the symbolic names at job
execution time by Job Control. The ability
to reference an I/O device by a symbolic
name' rather than a physical address
provides advantages to both programmers and
machine operators. The symbolic name of a
device is chosen by th~ programmer. He can
write a program that is dependent only on
the device type and not on the actual
device address. At execution time, the
operator determines the actual physical
device to be assigned to a given symbolic
name. He communicates this to Job Control
by a control card (ASSGN). Job Control
associates the actual physical device with
the symbolic name by which the programmer
ref erences it.

'l'he assignment of the system resident
unit (SYSRES) is determined during the IPL
procedure. The operator specifies the
device address with the load unit switches.,
At the completion of the IPL procedure,
this address is in the IPL PSW. The IPL
Loader places this address in the proper
location in the device table (Figure 12).
SYSKES cannot be assigned by an ASSGN card.

A fixed set of symbolic names (symbolic
units) is used to reference I/O devices.
No other names can be used. They are:

SYSRES

SYSRDR

SYSLST

SYSIPT

SYSOPT

SYSLOG

System residence disk drive

Card reader used for Job
Control cards

Printer for output listings
from system programs

Card reader or magnetic tape
unit used as the input unit
for system programs

Card punch used as the main
output unit for system
service programs

Printer or printer-keyboard
used to log Job Control cards

SYSOOO-SYS254 All other units in system.

The first six of the above names are used
by the system control programs and service
programs. SYSRDR andSYSIPT can both refer
to the same device. Any additional devices
in the system are referred to by names
ranging from SYSOOO to SYS254.

Physical Unit Block (PUB)

At the time the Supervisor is assembled, a
device table is set up with an entry for
each of the symbolic units that will ever
be used in the system. Each entry is
called a physical unit block (PUB). The
format of the device table is shown in
Figure 12. The length of the table depend~;
on the number of devices specified in the
SYMUN (symbolic unit) macro. The first six
PUB's are always present. Each additional
device specified, starting with SYSOOO, is
entered in the next PUB.

[0~4J
~~~ __ ~ __ /~ __ ~ __ ~ __ ~ __ ~ __ ~ __ -U ~ 

/ 
/ 

/ 

/ 
/ 

/ 

/ 
/ 

/ 

number of units specified 
when assembling Supervisor 

J.+------- 4 bytes------~ 

Figure 12. Sequence and Format of PUBs in 
Device Table 

Normally, each symbolic unit specified 
is assigned a physical device address at 
the time the superivsor is assembled. In 
some cases, a single device may be assigned 
to two or more symbolic units. The extra 
main storage required (for bytes for each 
additional PUB) may be justified by 
eliminating the necessity of using the 
ASSGN cards except in exceptional cases. 
An installation can make specific 
assignments at system generation time and 
establish these as conventions to be 
followed by all programmers. By following 
the conventions, most job decks can be 
submitted for execution with no ASSGN 
cards. When one or more unit assignments 
must be changed for a job, this can be 
flagged as an exceptional situation in the 
setup instructions to the operator. When 
the exceptional job is completed, the 
operator can re-establish the conventional 
assignments for the next job. Figure 13, 
for example, shows a typical system 
configuration. The follow~conventions 
might be established for the installation's 
own programs. Note that some of the 
assignments might have to be changed for 
certain of the IBM-supplied programs. 

1. Card input is always read from SYSRDR. 
This is one symbolic unit that is never 
assigned to any other unit. This same 
device is assigned to SYSIPT because 
most of the system programs (language 
translators, Linkage Editor, etc) read 
from SYSIPT. 

System Control 47 



2. Card output is always punched on 
SYSOPT. 

3. Printed output is always on SYSOOO. By 
using SYSOOO instead of SYSLST, 
programs can operate when SYSLST is 
unassigned. This might be necessary 
when special forms are being used in 
the printer. By using the "unassign" 
option in the ASSGN card, the control 
programs can be prevented from printing 
operator messages. (When SYSLST is 
unassigned, messages will be printed on 
the 1052.) 

4. All programs address the 1052 as 
SYSLOG. Since the control card logging 
option is specified in the LOG and 
NOLOG control cards, there is no reason 
to unassign this device. 

5. The two disk drives are addressed as 
SYS001 and SYS002 when referring to 
data files. When specifically 
addressing the system residence pack, 
use SYSRES. 

6. The two tape drives are addressed as 
SYS003 and SYS004. 

The initial device assignments present 
after each IPL procedure are those made 
when assembling the Supervisor or those 
established by the device··table service 
program (PSERV). Once the Supervisor is 
loaded into main storage, however, any 
reassignments made are carried from job to 
job. 

48 S/360 BOS Prog. Guide 

~ 
~ 

~ 
~ 

Figure 13. 

SYSRDR, SYSIPT 
SYSOPT 

SYSLST, SYSOOO 

SYSLOG 

SYSRES, SYSOOI 

SYS002 

SYS003 

SYS004 

Example of Symbolic Device 
Assignment 

SET UP COMMUNICATION REGION 

Job Control takes the following information 
from control cards and places it in the 
communication region. 

1. ~rogram Name Taken from JOB card. 
This field is used by the System Loader 
in program retrieval. 

2. Date Taken from the DATE card. This 
field is used by the OPEN routine for 
label checking. It can be used by the 
user's problem program to date output 
reports. 

3. Q~er froq~~~§~itch~ndic~~or~ Taken 
from the UPSI card. The bit pattern in 
this byte can be used as switch 
indicators to specify program options. 



4. Machine Configuration Taken from the 
CONFG card. This information can be 
used by programs that are written to 
run on various machine configurations, 
modifying themselves to take advantage 
of optional features, additional core 
storage, etc. The information 
contained in this byte is shown in 
Figure 8. 

EDIT AND STORE LABEL INFORMATION 

All volume and file label processing is 
done during problem program execution. 
However, label·information to be checked 
against is read from cards by Job Control 
and stored in the resident pack for 
subsequent processing. This eliminates the 
problem of inserting label information 
cards within program decks or within a card 
input file. The formats of the label 
information cards are discussed in this 
section. See Di~k and Tape Label~ in the 
section on Data Management for a complete 
discussion of volume and file labels. 

RESTARTING PROGRAMS FROM CHECKPOINT 

Job Control prepares the system for 
restarting from a checkpoint. It reads the 
job control cards for the job, repositions 
tape drives, reassigns I/O device 
addresses, reinitializes the communication 
region, reconstructs the phase directory, 
stores the information from the RSTRT card, 
and issues a FETCH for the restart program. 
The restart program handles the actual 
restarting of the problem program.. If the 
FILES card is included, Job Control will 
reposition any magnetic tape drives to a 
specified tape mark. Note that while tape 
positioning is normally a restart 
procedure, it can also be done when 
initially starting a program. Job Control 
does not provide any label checking on the 
tape files to be positioned. 

JOB CONTROL CARDS 

GENERAL CONTROL CARD FORMAT 

Certain rules must be followed when filling 
out control cards. All job control cards. 
conform to these rules. 

1. Identifier Two slashes identify the 
card as a control card (//). They must 
be in columns 1 and 2. At least one 

blank immediately follows the second 
slash. 

2. Operation This describes the type of 
control card (the operation to be 
performed). It can be up to five 
characters long. At least one blank 
follows its last character. 

3. Operand This may be blank or may 
contain one or more entries separated 
by -commas. The last term must be 
followed by a blank. 

All control cards are essentially free 
form. Information starts in colUmn 1 and 
cannot extend past column 71. Exception: 
For the file label cards (TPLAB and DLAB) 
or the ASSGN card, information can be 
punched in more than one card. A character 
is punched in column 72 (any non-blank 
character). This specifies that 
information is continued on the following 
card <continuation card). Information on 
the continuation card begins in column 16; 
columns 1-15 must be blank. Certain 
control cards have operands that are 
specified as character strings within 
single quotes (8-5 punch). Hexadecimal 
constants are punched within quotes, and 
the first quote is preceded by the letter 
X. 

continuation cards are used only for the 
label cards and ASSGN cards (other cards 
can not be continued). 

Job control reads from the card reader 
identified by the symbolic unit SYSRDR. 
The following cards are recognized: 

Operation 

JOB 
ASSGN 
F'ILES 
VOL 
TPLAB 

DLAB 

XTENT 
DATE 
UPSI 

CONFG 
PAUSE 
EXEC 
RSTRT 
LOG 
NOLOG 
ATEOF 

Meaning 

Job 
I/O assignment 
Files 
Volume Information 
Tape file label 
information 
Disk file label 
information 
Disk file extent 
Date 
User Program Switch 
Indicators 
Configuration 
Pause 
Execute 
Restart 
Begin logging 
Stop logging 
End of Autotest job 
input 

Any control card other than these is 
recognized as an error. A message is 
issued to the operator so that he can 

System Control 49 



correct the card in error. Some of the 
errors recognized are: 

1. Invalid symbolic unit name. 

2. No space reserved in device table for a 
symbolic unit name. 

3. Invalid device-type. 

4. Invalid length of hexadecimal field. 

5. Invalid hexadecimal character. 

6. Invalid date. 

7. More than one JOB card encountered 
prior to an EXEC card. 

8. No date in communication region. 

9. A label card (TPLAB or DLAB) does not 
immediately follow its associated 
volume (VOL) card. 

10. An extent card (XTENT) does not 
immediately follow its associated disk 
label (DLAB) card. 

All ~on-control cards appearing before a 
JOB card are automatically bypassed by Job 
Control. 

SEQUENCE OF CONTROL CARDS 

The job control cards for a specific job 
always begin with a JOB card and end with 
an EXEC card. The only limitation on the 
sequence of cards between JOB and EXEC is 
that discussed below for the label 
information cards. The following cards are 
placed between JOB and EXEC. 

ASSGN 
VOL 
r.rPLAB 
DLAB 
XTENT 
DATE 
UPSI 
CONFG 
RSTRT 
FILES 

The label cards must be in the order: 

VOL 
TPLAB 

or VOL 
DLAB 
XTENT (one for each 
area of file in volume) 

The PAUSE, LOG, and NOLOG cards can be 
placed before or after a JOB card. Any 
other control cards placed before a JOB 
card will be diagnosed as errors. 

50 S/360 BOS Prog. Guide 

PAUSE When outside of the JOB~EXEC set, a 
message is immediately displayed and 
processing is suspended. When 
within the JOB-EXEC set, all control 
cards are processed, a message is 
displayed and processing is 
suspended just before FETCH is 
issued for the first phase of the 
problem program. In either case, to 
resume processing the operator must 
reply to the message. A PAUSE card 
should follow the EXEC card for the 
last job of a batch. 

LOG A.II following job control cards are 
logged. 

NOLOG Logging stops immediately. 

The ATEOF card is placed after the EXEC 
card of the last job in a given test group. 

DESCRIPTION AND FORMAT OF JOB CONTROL CARDS 

JOB Card 

This card indicates the beginning of 
control information for a job. It contains 
the name of the program to be run. It may 
appear in three formats, indicating one of 
the following modes of operation: 

Single-Job Format 

// JOB progname 

A single job is to be executed. The source 
of the program (core image library, 
relocatable library, or SYSIPT) is 
indicated in the EXEC card. 

progname The name of the first phase of 
the user's program. This is the 
same name used in the PHASE card 
discussed in the section on the 
Lig~age Editor. The name is not 
restricted in length; however, 
only the first six characters are 
processed by Job Control. These 
six characters must be unique for 
each phase in the core image 
library. Successive phases of a 
multi-phase program are retrieved 
more quickly if the first four 
characters in each phase name are 
identical. Job Control 
constructs a phase directory 
consisting of an entry for each 
phase in the core image library 
whose name has the same first 



four characters as the name in 
the JOB card. A FETCH is then 
issued using the six-character 
name taken from the JOB card. 

compile or Assemble and Execute Format 

II JOB ASSEMBLER, progname 
II JOB RPG, progname 

A source program is to be compiled or 
assembled, written out in the relocatable 
library, and then edited into the core 
image library and executed. 

ASSEMBLER 
or 

RPG 

progname 

The name of the language 
translator to be run. This is 
the main job to be run and 
this determines the 
information punched in the 
other control cards. The EXEC 
card has no operand. The IIO 
device assignments must be the 
same for the problem program 
as for the language 
translator. 

The name of the first phase of 
the user's source program. 
Same as in single-job format. 

Execute Under Autotest Control Format 

II JOB progname,T 

A program is to be executed under control 
of Autotest. This card identifies the 
particular program to be tested with a test 
set. The job control cards for the program 
to be tested come between those for the 
Autotest program itself and before the 
ATEOF card. 

progname The name of the first: phase of 
the program to be tested. 
Same as in single-job format. 

The letter T identifies this 
as the'program to be tested, 
as distinc.t from other 
programs run as part of the 
same test set (such as 
utilities) but not under 
direct Autotest control. 

Examples of JOB Cards 

I I JOB PAYR01 

II JOB INVENTORY (only INVENT is used) 

II JOB ASSEMBLER,PAYR01 (A source 
program whose first phase is 
named PAYR01 is to be 
assembled and executed. The 
Assembler is cataloged as 
ASSEMB. ) 

II JOB PAYR01,T (an object program 
whose first phase is named 
PAYR01 is to be executed 
under Autotest control.) 

ASSGN Card 

When programs are assembled, they use 
symbolic unit names to reference IIO 
devices. At execution time this card is 
used to assign a specific device address to 
the symbolic unit used. It contains the 
symbolic unit and various parameters to 
describe the physical device. 
The format is: 

II ASSGN SYSxxx,X'cuu',dd,X'ss' 

SYSxxx The symbolic unit. It may be one 
of the following: 

SYSRDR 
SYSIPT 
SYSOPT 

SYSLST 
SYSLOG 
SYSOOO-SYS254 

X'cuu' Channel and unit number (in 
hexadecimal). 

c = 0 for a multiplexor channel 
1 for selector channel 1 
2 for selector channel 2 

uu = 00 to FF (0 to 255 in hexa
decimal) 

dd Device type. The following two 
character codes are valid: 

C1 1052 Printer-Keyboard 
D1 2311 Disk Storage Drive 
L1 1403 or 1404 Printer 
L2 1443 or 1445 Printer 
P1 2540 Used as a card punch 
P2 1442 Used as a card punch 
P3 2520 Used as a card punch 
RO 2671 Paper Tape Reader 
R1 2540 Used as a card reader 
R2 2540 Using Punch Feed Read 

feature 
R3 1442 Used as a card reader 

and punch 

system Control 51 



R4 
R5 

RR 

RD 

ST 

Tl 
T2 
BS 

2501 Card Reader 
2520 Used as a card reader 
or card reader and punch 
for combined files 
1285 Optical Reader or 1287 
Optical Reader (in journal 
tape mode) 
1287 Optical Reader (in 
document mode) 
2701 Data Adapter Unit 
with SDA I (STR) 
2400 seven-track tape 
2400 nine-track tape 
2701 Data Adapter Unit 
with SDA II (BSC) 

X'ss' Device Specifications (in 
hexadecimal) required for 
seven-track tape, and optional for 
nine-track tape and for the 1403 
printer with the Universal 
Character set (UCS) special 
feature. Omit the field if it is 
not needed. The specifications for 
seven-track tape are: 

Bytes per Trans- Convert 
ss Inch Parity late Feature 
10 200 odd off on 
20 200 even off off 
28 200 even on off 
30 200 odd off off 
38 200 odd on off 
-----------------------------------------
50 556 odd off on 
60 556 even off off 
68 556 even on off 
70 556 odd off off 
78 556 odd on off 
-----------------------------------------
90 800 odd off on 
AO 800 even off off 
A8 800 even on off 
BO 800 odd off off 
B8 800 odd on off 

The specifications for 9-track tape are: 

ss ~tes per Inch 

C8 800 

co 1600 

If this operand is omitted, a density of 
800 bytes/inch will be assumed. 

For a 1403 printer with the UCS feature: 

ss 
73 
7B 

Printer Specifications 

Meaning 
Ignore data check 
Accept data check 

52 S/360 BOS Prog. Guide 

Note: To include printer specifications 73 
or 7B in the ASSGN card, the 2821 printer 
control unit must have been updated through 
Engineering Change Number 125632 or Request 
for Engineering Action Number 0100037. 

The device specifications byte is also 
used internally as a queue pointer for the 
channel scheduler. Users should not 
utilize this byte for any purpose other 
than device specifications. 

When Job Control encounters an ASSGN 
card, it: 

1. Verifies that a physical unit block 
(PUB) was reserved in the device table 
for the symbolic unit used. 

2. Places the information contained in the 
card in the device table for use by the 
physical I/O macros. If, however, the 
fourth operand isa command, 73 or 7B, 
that is to be issued to a 1403 printer 
with the UCS (Universal Character Set) 
special feature, only the information 
for the first three bytes of the device 
table will be obtained from the card. 
The fourth byte will be X'OO'. 

3. Issues a command to the printer control 
unit if the fourth operand is 73 or 7B 
to enable the control unit to accept, 
or ignore, data checks. If the fourth 
operand of 73 or 7B is erroneously 
issued to a printer without the UCS 
feature, a command reject occurs and 
the system enters the wait state. 

If a fourth operand of 73 or 7B is 
encountered by the SYSTG program, it is 
placed in the device table, but a command 
to the printer is not issued. 

A special format of this card can be 
used to "unassign" a device. When this 
format is used, the previously assigned 
physical unit address is deleted from the 
physical unit block for the specified name. 
No new address is substituted in its place. 
For example, the unit assigned to SYSLST 
might be dropped to bypass the optional 
listing output of the Librarian. The 
special format of the ASSGN card is: 

// ASSGN SYSxxx,UA 

To facilitate the use of symbolic I/O 
assignment, a second format is available 
for the ASSGN card. Two cards are actually 
used. The first card contains the symbolic 
unit; the second card contains the device 
address. Their formats are: 

First card: // ASSGN SYSxxx, 
col.72 

X 



Second card: col.16 
X'cuu',dd,X"ss' 

The second card may also contain UA, in 
columns 16 and 17, to unassign a symbolic 
unit. Using the two-card format simplifies 
specification of assignment. A few 
prepunched cards can be made available to 
the operator. When a particular symbolic 
unit is specified, a card containing that 
unit, with another containing the actual 
device address, is placed in the Job 
Control input. 

FILES Card 

This card can be used to position tape 
files. If there is an ASSGN card for the 
same symbolic unit, the FILES card must 
follow it. This card may be used for any 
job. It must be used when restarting a 
previously checkpointed job, if any tape 
file was indicated as requiring reposition. 
Its format is: 

// FILES SYSxxx,n 

SYSxxx The symbolic unit used to refer to 
a tape file. 

n The number of tape marks to be 
skipped to reposition the tape 
file. A maximum of four positions 
can be used (1-9999). 

VOL Card 

The volume card is used when checking or 
writing standard labels for a disk or tape 
file. A VOL card must be used for each 
file on a multi-file volume. Its format 
is: 

SYSxxx 

filename 

// VOL SYSxxx,f:Llename 

Symbolic unit. 

File name. This can be one to 
seven characters and is 
identical to the name used in 
the program to identify the 
file (if an ISFMS file, use 
only five characters). If an 
eight-character name is put in 
a card, it will be considered 
an error and will be indicated 
as such to the operator. 

DLAB Card 

The disk-label card (completed in a 
continuation card) contains file label 
information for disk label checking and 
creation. This card must immediately 
follow the volume (VOL) card. The DLAB 
card and the continuation card have the 
following format: 

II DLAB 'label fields 1-3', 

xxxx,yyddd,yyddd,'system code' 

'label fields 1-3', The first three field~: 
of the Format 1 disk 
file label are punchet 
just as they appear in 
the label. This is a 
51-byte character 
string, punched within 
single quotes (8-5 
punch), and followed by 
a comma. The entire 
51-byte field must be 
contained in the first 
of the two cards. 
Column 72 must contain 
a continuation punch 
(any character). The 
Format 1 label is shown 
in Appendix B. Fields 
1-3 are: 

c 

xxxx 

File Name 44-byte 
alphameric, including 
file ID and, if used, 
generation number and 
version number of 
generation. 

Format Identifier 
i-byte, EBCDI~ 

File Serial Number 
6-byte alphameric, must 
be the same as the 
volume serial number in 
the volume label of the 
first or only pack of 
the file. 

Continuation punch in 
column 72. 

Volume Sequence Number. 
This 4-digit EBCDIC 
number is the EBCDIC 
equivalent of the 
2-byte binary volume 
sequence number in 
Field 4 of the Format 1 
label. This number 
must begin in column lh 
of the continuation 
card. Columns 1-15 art' 
blank. 

System control 5:1 



'system code' 

XTENT Card 

The File Creation Date, 
followed by the File 
Expiration Date. These 
two 5-digit numbers are 
the EBCDIC equivalent 
of the 3-byte 
discontinuous binary 
dates in Fields 5 and 6 
of the Format 1 label. 
yy is the year (00-99), 
and ddd is the day of 
the year (001-366). 

System Code is punched 
as a 13-byte character 
string, within single 
quotes (8-5 punch). If 
punched for an output 
file, it is written in 
Field 8 of the Format 1 
label. It is ignored 
when used for an input 
file. This field is 
not verified by the BOS 
label processing 
routines. 

The extent card defines each area, or 
extent, of a disk file. One or more XTENT 
cards must follow each DLAB card. The 
XTENT card has the following format: 

II XTENT type, sequence, lower, upper, 
'serial no.',SYSxxx 

type 

sequence 

Extent Type 1 column, 
contains a 1,2 or 4, 
indicating: 

1 data area 
2 independent overflow area 

(for indexed sequential 
file) 

4 index area (for indexed 
sequential file) 

Extent Sequence Number 3 
columns, contains a 3-digit 
number from 000 to 255, 
indicating the sequence 
number of this extent within 
a multi-extent file. Extent 
sequence numbers for all 
files begin with 000 except 
for indexed sequential files 
that do not have a master 
index. The first extent 
sequence number for an 
indexed sequential file that 
does not have a Master Index 
is 001. In the case of an 
indexed sequential file, an 
extent card submitted for an 

54 S/360 BOS Prog. Guide 

lower 

independent overflow area 
must be the last card in the 
sequence of extent cards for 
that file. 

Lower Limit of Extent 7 
columns, contains the lowest 
address of the extent in the 
form CCCCHHH, where: 

CCCC = cylinder number (0000 
to 0202) 

HHH = head number (000 to 
009) 

A lower limit of seven zeros, 
CCCC = 0000 and HHH = 000, is 
not permitted. 

upper QEper Limit of Extent 7 
columns, contains the highest 
address of the extent, in the 
same form as the lower limit. 

'serial no.' Volume Serial Number This 
is a 6-byte alphameric 
character string, punched 
within quotes (8-5 punch). 
The number is the same as in 
the volume label (volume 
serial number) and the Format 
1 label (file serial number). 

SYSxxx 

TPLAB Card 

This is the symbolic address 
of the disk drive. 

The TPLAB card contains an image of a 
portion of the standard tape file label. 
The format and content of this label are 
presented in Appendix G. Label fields 3-10 
are always punched just as they appear in 
the label. These are the only fields used 
for label checking. The additional fields 
(11-13) can be included, if desired. If 
punched for an output file, they are 
written in the corresponding fields of the 
output label. They are ignored when used 
for an input file. These fields are never 
used by BOS label-processing routines. The 
TPLAB card may have either of the following 
two formats: 

1. II TPLAB 'label fields 3-10' 

2. II TPLAB 'label fields 3-13' 

'label fields 3-10' This is a 49-byte 
character string, 
punched within quotes 
(8-5 punch), identical 
to positions 5-53 of 
the tape file label. 



These fields can be 
punched in one card. 

'label fields 3-13' This is a 69-byte 
character string, 
punched within quotes 
(8-5 punch), identical 
to positions 5-73 of 
the tape file label. 
These fields are too 
long to be punched in 
a single card. The 
character string must 
extend into column 71, 
a continuation punch 
(any character) is 
punched in column 72, 
and the character 
string is completed in 
a continuation card. 
The continuation card 
is punched beginning 
in column 16. 

DATE Card 

This card contains a date which is put in 
the communication region. Its format is: 

// DATE yyddd 

yy Two-digit year. 

ddd Three-digit day of the year. 

For example, March 15, 1965 would be 
65074. Job Control will convert this da'te 
and store it in the communication region in 
the form 031565074. The problem program 
can use the first six bytes for dating 
reports; the label checking routines use 
the last five bytes. 

The DATE card must be entered only once 
after the Supervisor is loaded. Job 
Control will ensure that a date card has 
been entered before executing a problem 
program. 

UPSI Card 

This card (User Program Switch Indicators) 
allows the user to set program switches 
that can be tested much the same as sense 
switches or lights are used on other 
machines. Its format is: 

n 

// UPSI nnnnnnnn 

Each position is punched with a 0 
or 1. Note that any punch other 
than a 1 will be interpreted as a 
zero. 

Job Control clears the UPSI byte to zeros 
before reading control cards for each job. 
When Job Control reads the UPSI card, it 
stores the information in the UPSI byte in 
the communication region. Left to right in 
the UPSI card, the digits correspond to 
bits 0 to 7 in the UPSI byte~ Each of the 
eight bits may be tested by problem 
programs at execution time. For example, a 
bit can be set to indicate that the problem 
program should print only total lines on a 
report. Or it can indicate an 
end-of-the-month condition so that certain 
routines in the program will be used. 

Bit positions to the right of the last 
l-bit are not required. All bits may be 
set by a single card or by multiple cards. 
For example, to set bits 1, 5, and 7 on, 
two methods can be used. 

Method 1: // UPSI 01000101 

Method 2: // UPSI 01 Set switch 1 on 
// UPSI 000001 Set switch 5 on 
// UPSI 00000001 Set switch 7 on 

Therefore, for operational efficiency, 
only eight cards (one for each bit switch) 
need be kept by the operator to set any 
combination of switches. 

CONFG Card 

The configuration contains information 
about the machine size, model, and 
features. It can be used to override the 
configuration specified at the time the 
Supervisor was assembled. Its format is: 

// CONFG nnnnnnnn 

The operand (nnnnnnnn) consists of up to 
eight 0 or 1 punches. Note that any punch 
other than a 1 will be interpreted as a 
zero. Bit positions to the right of the 
last l-bit are not required. The eight 
bits indicate: 

0-3 Binary representation of machine size 

4 

8K 
16K 
24K 
32K 
64K 

128K 
256K 

0000 
0010 
0011 
0100 
0110 
1000 
1010 

Model (for diagnostic scan-out area) 

o 
1 

~!odel 30 
Other models 

system control 55 



5 Floating-point feature} 0 = not present 

Decimal feature 1 = present 

1052 Printer-Keyboard 

6 

7 

For example, II CONFG 00100010 
represents a 16K Model 30 with the decimal 
feature. 

Note that changing the machine 
configuration in this manner only affects 
programs that utilize this information at 
execution time. For instance, if the 
machine size is increased from 8K to 16K, 
use of CONFG will effectively inform the 
Assembler processor that it has more main 
storage to work with. At Supervisor 
assembly time the designation for model is 
used to reserve a 12-byte diagnostic 
scan-out area for a Model 30 or a 256-byte 
area for all other models. The Supervisor 
can not adapt itself to any changes at 
object time; it must be assembled again. 

Execute. This must be the last card 
processed before a job is executed. It 
indicates the end of control cards for a 
job and that execution is to begin. If the 
program to be run is not cataloged in the 
core image library, an operand LOADER is 
punched to indicate that the Linkage Editor 
is to be used to read the program from 
SYSIPT. Programs are permanently cataloged 
in the core image library through a 
Librarian run (JOB SYSCMAINT). 

If the entire program is to be read from 
the relocatable library and edited into the 
core image library, the operand is written 
as LOADER,R. When this operand is used, a 
switch is set to instruct the Linkage 
Editor to go directly to the relocatable 
library for the program instead of first 
going to the unit assigned to SYSIPT. The 
name of the first object module is the name 
punched in the JOB card. Thus it is not 
necessary to have the INCLUDE Linkage 
Loader control card in the system input 
unit. When the LOADER,R format is used, 
the program in the relocatable library must 
be complete, preceded by a PHASE card image 
and followed by an ENTRY card image. The 
name in the PHASE card image for the first 
phase to be executed must be the same as 
the name in the JOB card. 

The three possible formats of the EXEC 
card are: 

II EXEC 
II EXEC LOADER 
II EXEC LOADER,R 

56 S/360 BOS Prog. Guide 

LOG and NOLOG Cards 

Job Control will list all control cards on 
either a 1052 Printer Keyboard or a printer 
assigned to SYSLOG. Control cards are not 
logged until a LOG card is encountered. 
Once a LOG card is read, logging continues 
from job-to-job until the control card 
NOLOG is recognized (or until the system is 
stopped, requiring an IPL ?rocedure to 
restart). Both the LOG and NOLOG cards can 
be placed before a JOB card or between JOB 
and EXEC cards. The format of these cards 
is: 

II LOG (any operand is treated as a 
comment) 

II NOLOG (any operand is treated as a 
comment) 

PAUSE Carel 

This card can be used to allow for operator 
setup between jobs. Its format is: 

II PAUSE (any operand is treated as a 
comment) 

If a PAUSE card precedes the JOB card 
(outside of the JOB-EXEC set), a pause 
message is immediately displayed, and 
processing is suspended. If the PAUSE card 
is between a JOB card and an EXEC card, all 
control cards are processed, a pause 
message is displayed, and processing is 
suspended just before the execution of the 
new job (after Linkage Editor function, if 
required). In both cases, the operator 
replies to the message to resume 
processing. 

RESTART Card 

A restart facility is available for 
checkpointed programs as a second phase of 
Job Control. A programmer can use the 
CHKPT in his program to cause checkpoint 
records to be written either on the 
checkpoint area of the resident disk pack 
or on a magnetic tape. This allows 
sufficient information to be stored so that 
program execution can be restarted from 
specified points. The checkpointed 
information includes the general registers 
(not floating-point registers), part of the 
communication region, tape-positioning 
information, the problem program area, and 
a restart address. (Not all of the 
Supervisor program is included in the 
checkpointed records.) 



The restart facility allows the operator 
to continue execution of an interrupted job 
at a point other than the beginning. The 
procedure is to submit a group of job 
control cards including a restart (RSTRT) 
card. 

A FILES card is also required if any 
tape units are to be repositioned. The 
FILES card has been explained in the 
previous section. There are two formats of 
the RSTRT card: 

// RSTRT (if checkpoint is in resident 
disk pack) 

// RSTRT SYSxxx,kkkk (if checkpoint is 
on magnetic tape) 

SYSxxx Symbolic unit name of the tape unit 
on which the checkpoint records 
are stored. 

kkkk Identification of the checkpoint 
record to be used for restarting. 
This can be any four characters. 
It corresponds to the checkpoint 
identification used when the 
checkpoint was taken. 

When checkpoints are taken on tape, the 
problem program must supply a unique code 
for the checkpointed records. This code 
can be any four characters. The first 
checkpoint record could be eK01; the second 
could be CK02, etc. It is the user's 
responsibility to update this code before 
issuing the CHKPT macro. 

The checkpoint records also include a 
count of the actual data blocks read or 
written on each tape. The block count does 
not include checkpoint records interspersed 
within the data file. If logical laCS is 
used to process the tape files, the block 
counts are accumulated by the logical laCS 
routines, except when an unlabeled file is 
to be read backwards or the file has 
nonstandard labels. The user must supply 
the block count for the two exceptions 
mentioned in the preceding sentence, and 
for a file processed by physical IOCS. The 
block count that the user supplies must be 
relative to the beginning of the tape file, 
regardless of whether the file is read 
forward or backward (see CHKPT Macro in the 
Assembler with Input/Output Macros 
publication, listed in the Preface of this 
manual) • 

When a checkpoint is taken on tape, it 
is helpful to punch a card or print a 
message indicating this code so that the 
operator knows the identification of the 
last checkpoint record taken. However, 
restarting can be done from any checkpoint 
record, not just t:he last. 

The job control cards required for 
restarting are: 

// JOB progname 

// FILES SYSxxx,n 

// RSTRT or 

Name of checkpointed 
program 

(if any tapes are to 
be repositioned) 

(if checkpoint on 
disk) 

// RSTRT SYSxxx,kkkk (if checkpoint on 
tape) 

// EXEC 

VOL and TPLAB and/or VOL, DLAB, and 
XTENT cards are necessary if files are to 
be opened or closed by the program being 
restarted. 

Assignment of input/output devices to 
symbolic units may vary from the initial 
assignments. Assignments are made for 
restarting jobs in the same manner as 
assignments are made for normal jobs. 

The FILES cards are used to position the 
tapes to the correct file. The restart 
program then uses the block counts 
contained in the checkpoint records to 
position the tapes correctly within 
particular files. 

The RSTRT card can be put anywhere 
between the JOB and EXEC cards. Because 
this information is contained in the 
checkpoint records, the UPSI card is 
ignored if resubmitted. The DATE and CONFG 
information is not saved and should be 
resubmitted, i~ required. 

If anyone or more of the following 
conditions exist, no operand is used in the 
EXEC card. 

1. The checkpointed program consists of a 
single phase, or overlay, and, 
therefore, is entirely contained in the 
checkpoint area. 

2. The checkpointed program is permanently 
cataloged in the core image library. 

3. The checkpointed program, although not 
permanently cataloged, is still in the 
core image library. This implies that 
the core image library has not been 
modified since the checkpoint occurred. 

If a multiple-phase program is 
checkpointed, only the phase currently in 
core is written in the checkpoint area. If 
the program is not permanently cataloged in 
the core image library or if the library 

System control 57 



has been modified since the checkpoint" the 
EXEC card must be either: 

// EXEC LOADER or, 

// EXEC LOADER,R 

INITIAL PROGRAM LOADING 

Operation of BOS is initiated through an 
IPL procedure from the resident disk pack. 
The operator has only to place the resident 
disk pack on a drive, select the address of 
that drive in the load unit switches, and 
press the load key. This causes record 1 
on track 0 to be read into main storage 
bytes 0-23. The information read in 
consists of an IPL PSW and two CCWs , which 
in turn cause the reading and loading of 
the IPL Loader. 

Operating in the supervisor state, the 
IPL Loader clears the general registers and 
all main storage except the area occupied 
or used by the IPL Loader. It then reads 
the Supervisor entry from the transient 
directory on track 4. This entry provides 
the location of the Supervisor within the 
core image library, and 'other information 
required for loading. Using this 
information, the IPL Loader reads the 
Supervisor into main storage. 

Before releasing control, the IPL Loader 
performs these operations: 

58 5/360 BOS Prog. Guide 

1. Stores the channel and unit number of 
the resident drive in the PUB that 
corresponds to SYSRES in the device 
table in the Supervisor. (See Physical 
Unit Block (PUB) in the section on Job 
Control.) 

2. Initializes the timer word in main 
storage locations 80-83 to minus one. 

3. Places the processing unit in the wait 
state with all interrupts masked except 
the External Interrupt. The operator 
can now enter into main storage 
location 0-3: the channel, unit number, 
and device type of the card reader 
assigned to 5YSRDR. Normally, this 
device will have been assigned during 
system generation and the operator has 
only to press the interrupt key. 

4. When the interrupt occurs" the IPL 
Loader tests bytes 0-2 to determine 
whether the operator entered an 
assignment for SYSRDR. If so, this 
number is placed in the corresponding 
PUB in the device table. 

After completing these operations, the IPL 
Loader issues a FETCH for the Job Control 
program. The System Loader routine of the 
Supervisor loads Job control and transfers 
control to it to begin processing the 
control cards for the first job. 



LINKAGE EDITOR 

The contents of this section are 
illustrated by Figure 14. 

All programs executed in a BOS 
environment must be edited into the core 
image library by the Linkage Editor. 
Operating primarily as a fun<2tion of the 
Librarian, the Linkage Editor reads the 
relocatable output of the language 
translators and edits it into executable, 
non-relocatable phases in the core image 
library. Once a program has been checked 
out and cataloged as a permanent entry in 
the core image library, the Linkage Editor 
is no longer required for that program. 
The program can then be run as a distinct 
job and loaded directly from the resident 
pack by the System Loader. 

The extent of the editing function 
performed depends on the structure of the 

PART 3: SYSTEM SERVICE PROGRAMS 

input program. The simplest case is that 
of a single-control-section program that 
was assembled with the proper main-storagf~ 
origin pOint. such a program has no 
external linkages to resolve and does not 
require relocation. The Linkage Editor has 
only to edit the program into the core 
image library and create a single phase 
entry in the core image directory. This 
corresponds to the first diagram in Figure 
15. 

In more complex situations, the 
operation may involve linking together and 
relocating multiple-control sections from 
separate assemblies to produce a number of 
separate phases in the core image library 
(see the last diagram in Figure 15). The 
Linkage Editor resolves all linkages 
between segments of the program and 
relocates the phases to specified 
main-storage locations. 

Stages of Program 
Development 

Linkage Editor Types of Linkage 
Editor Runs 

System Service Programs 

Figure 14. System Service Programs: Linkage Editor 

Linkage Editor 
Control Statements 

System Service 59 



~o facilitate writing and testing large 
programs, assembled program sections in the 
relocatable library can be combined with 
other sections from SYSIPT (card or tape). 
It is advantageous to handle some kinds of 
subroutines in this way instead of as 
macros. 

STAGES OF PROGRAM DEVELOPMENT 

In EOS, the term ~ram could be confused 
with several things. The programmer codes 
sets of source statements that may be a 
complete program or part of a program. 
These source statements are then compiled 
or assembled into a machine language 
program which, in turn, must be edited into 
an executable program, and may be combined 
with other programs. Consequently, it is 
convenient to refer to each stage of 
program development by a particular name. 

A set of source statements that is 
processed by a language translator 
(Assembler or RPG) is referred to as a 
source module. 

The output of a language translator is 
referred to as an object module. All 
object modules must be further processed by 
the Linkage Editor before they can be 
executed in BOS. 

Note: Each entry in the relocatable library 
is called a module. These relocatable 
modules normally consist of a single object 
module. If desired, however, more than one 
object module can be cataloged as a single 
entry in the relocatable library. 

60 S/360 BOS Prog. Guide 

SINGLE OBJECT MODULE - SINGLE PHASE 

PHASE PROGA 

ESD MODA 

TXT CS A 

RLD MODA 

END 
c------- ----

ENTRY 

SINGLE OBJECT MODULE - MULTIPLE PHASE 

~HAS~Q~ 
ESD MODA 

e----------

TXT CS A 

TXT CS B 

r-i-HASE PR_~ 

TXT CS C 

RLD MODA r--
END 

ENTRY 

MULTIPLE OBJECT MODULE - SINGLE PHASE 

r-f-HASE PROGA 
ESD MODA 

1--

TXT CS A 

TXT CS B 

~i.D MODA 

END 

ESD MODB 

rXT CS C 

RLD MODB 

END r--
ENTRY 

MUL TlPLE OBJECT MODULE - MULTIPLE PHASE 

PHASE PROGA 1 

ESD MODA 

TXT CS A 
t------------

TXT CS B 

t-PHASE PROGA2 

TXT CS C 

1----- ------ -------
RLD MODA ---------------
END 

ESD MODB 

TXT CS D 
-----------

__ .f'.'::I.~E_P~OG~~ 

TXT CS E 

----------
RLD MODB 

1----'--'--'---=---=--=----) 
END 

--------
ENTRY label CS A 

PHASE PROGA 
CS A 

PHASE PROGA 1 
CS's A + B 

PHASE PROGA 2 
CS C 

PHASE PROGA 
CS's A + B + C 

PHASE PROGA I 
CS's A + B 

PHASE PROGA2 
CS'sC+D 

PHASE PROGA3 
CS E 

Figure 15. Linkage Editor Input and Output 



The output of the Linkage Editor 
consists of one or more program pbases in 
the core image library. A phase is in 
executable, non-relocatable, core image 
form. Each separate phase is loaded by the 
System Loader of the Supervisor in response 
to a FETCH macro. 

STRUCTURE OF A PROGRAM 

SOURCE MODULE: A source module is input to 
the language translator and consists of 
definitions for one or more control 
sections. When the source module is 
translated, the output (object module) 
consists of one or more defined control 
sections. To the language translators, a 
source module consists of one or more 
control sections. Each control section is 
a block of code assigned to contiguous main 
storage locations. The input for building 
a phase (a section of a program loaded as a 
single overlay) ~ust consist of one or more 
complete control sections. Phases can be 
defined in the source module by using the 
Assembler REPRO instruction followed by a 
PHASE statement. 

OBJECT MODULE: An object module i.s the 
output of a single, complete Assembler or 
RPG run. It consists of control 
dictionaries and text of one or more 
control sections. The control dictionaries 
contain the information necessary for the 
Linkage Editor to resolve cross references 
between different object modules. The text 
is the actual instructions and data fields 
of the object module. The program cards 
produced by the language processors (as 
distinct from the Linkage Editor control 
statements to be discussed later) have an 
identifier field in columns 2-4 that 
indicates the con·tent of the card. The 
following card types are produced by the 
language translators: 

Identification contents or Meaning 

ESD External Symbol Dictionary 
Item 

TXT Text 

XFR Transfer Address 

RLD Relocation Dictionary Item 

END End of a Module 

All of these cards except XFR must be 
present in an obj ect module in the· 
indicated order. The XFR card can appear 
anywhere between ·the last ESD item and the 
first RLD item. 

PROGRAM PHASE: A program phase, the outpUl, 
of the Linkage Editor, is that section of tl 

program that is loaded as a single overlay 
with a single FETCH by the system loader. 
Each entry in the core image library is a 
single phase. Programs may consist of many 
phases, the first fetched by Job Control 
and each of the rest, by a preceding phase. 
Successive phases of a multi-phase program 
are often called overlays. 

The input for building a single phase 
consists of the text from one or more 
complete control sections. When building il 

phase, the Linkage Editor constructs a 
composite ESD and a composite RLD from the 
control dictionaries of each of the modules 
that make up the phase. These composite 
dictionaries are used to resolve all 
linkages between different control sections 
as if they had been assembled as one 
module. Each control section within the 
phase is relocated as necessary, and the 
entire phase is assigned a contiguous area 
of main storage. All relocatable address 
coristants are modified to contain the 
relocated value of their symbols. The 
Linkage Editor always ensures that each 
phase or control section begins on a double 
word boundary. 

Each phase is constructed by building 
the text in a work area and then writ.ing it 
in blocks in the core image library. Thus, 
a phase may consist of one or more blocks 
of contiguous core image locations. 
Although it is not necessary for the input 
program to use contiguous main storage 
assignment, this will provide faster 
operation of the Linkage Editor. 

TYPES OF LINKAGE EDITOR RUNS 

The Linkage Editor is never run as a 
distinct job. In this respect, its 
relationship to the programmer is like that 
of the control programs. It is meaningful, 
however, to classify it as one of the 
system service programs along with the 
Librarian. The Linkage Editor is called as 
an intermediate step in three kinds of jobs 
(Figure 16). 

1. Catalog Phases in Core Image Library 
The Linkage Editor is called as an 
interim step in the Librarian operation 
(SYSCMAINT) that catalogs (CATAL 
operation) program phases as permanent 
entries in the core image library. The 
sequence of events when this operation 
is performed is shown in the first line 
of Figure 16. Note that the input to 
the SYSCMAINT job could include modules 
from the relocatable library instead 
of, or in addition to, the card or tape 

System Service 61 



unit assigned to SYSIPT. If the input 
is entirely from the relocatable 
library, the CATAL card shown would 
include the operand: modulename,R 

2. Load and Go The Linkage Editor is 
called by Job Control when the EXEC 
card for a job has the operand LOADER. 
The program is edited into the core 
image library, and then Job Control is 
recalled to construct the phase 
directory and begin execution of the 
program. The name on the JOB card is 
the name of the first phase that is to 
be executed. The sequence of events 
when this operation is performed is 
shown in the second line of Figure 16. 
Just as with the catalog operation, the 
input can consist of object modules 
from the relocatable library instead 
of, or in addition to, the card or tape 
unit assigned to SYSIPT. If the input 
is entirely from the relocatable 
library, the EXEC card shown would 
include the operand: LOADER,R. The 
name on the JOB card is both the name 
of the module in the relocatable 
library and the name of the first phase 
to be executed. 

3. Compile or Assemble and Execute 
Source modules can be assembled or 
compiled and then executed as a single 
job. In order to do this, the 
Assembler and RPG can be directed to 
output the object module directly into 
the relocatable library. Upon 

62 8/360 BOS Prog. Guide 

completion of this output operation, 
the language translator automatically 
calls the Linkage Editor to edit the 
program into the core image library. 
The Linkage Editor then fetches Job 
Control to construct the phase 
directory and begin execution. The 
sequence of events when this operation 
is performed is shown in line three of 
Figure 16. Note that object modules 
previously cataloged in the relocatable 
library could be linked with the module 
being assembled through the use of the 
INCLUDE statement. 

The Linkage Editor uses the system 
directory to determine the first available 
locations in the core image library and the 
core image directory. At the completion of 
the Linkage Editor run, if no errors have 
been detected, entries for each of the 
phases written are placed in the core image 
directory. 

These entries contain: 

1. Phase name 
2. Library location 
3. Number of blocks 
4. Length of last block 
5. Main-storage assignment 
6. Transfer address 

If the program is being cataloged by the 
SYSCMAINT routine of the Librarian, the 
entries in the system directory that 
indicate the next available location in the 



CATALOG AS PERMANENT PHASE(S) 

I 
I ..... ------JOB ASSEMBLER -----~.---

I JOB SYSCMAINT ___ .~:~ .. _____ JOB PROGRA 
CATAL EXEC ------+-I 

LOAD AND GO 

Core Storage 
Execution 

~----JOB ASSEMBlER-----_ ..... j .... -.---------- JOB PROGA 
EXEC LOADER 

I 
.1 

COMPILE OR 
ASSEMBLE AND EXECUTE 

Core Storage 
Execution 

I 
I 

i • 
JOB ASSEMBLER, PROGA OR JOB RPG, PROGA -------------+1.: 
EXEC EXEC 

Figure 16. Three Types of Linkage Editor Operations 

core image library and in the core image 
directory are modified to reflect the newly 
added phases. Thus, the next phase is 
loaded in the next available part of the 
library. When a phase is temporarily 
loaded (Load and Go, Compile and Execute, 
or Assemble and Execute), these entries in 
the system directory are not changed. 
Therefore, the next time the Linkage Editor 
is run, the new phases are written over the 
temporary phases, and the previous entry in 
the core image directory is also written 
over. 

LANGUAGE TRANSLATOR CARDS 

The five cards described in this section 
(ESD, TXT, RLD, END, XFR) are generated 
output of the Assembler or RPG. 

ESD (EXTERNAL SYMBOL DICTIONPRY): The 
external symbol dictionary contains all the 
symbol and storage assignments for a 
program section. For instance, it contains 
all symbols defined in this section that 
are referred to by some other section 
(ENTRYs). 

It can contain all symbols referred to 
by this program section that are defined in 
some other section (EXTRNs ). 

ESD cards give information needed to 
link a module with others to prepare an 
operating program. 

The four classifications of the ESD 
recognized by the Linkage Editor are: 

1. SO (Section Definition) Generated by 
the use of START or CSECT pseudo Op in 
the source program. This type 
specifies the symbolic name, the 
assembled origin, and the length of the 
control section. 

2. PC <Private Code) The same as SD except 
that no symbolic name is provided. 
Multiple PC items are not error 
conditions. 

3. LD <Label Definition) Generated by the 
use of an ENTRY pseudo Op in the source 
program. It defines a symbolic label 
that may be used by any other program 
section as an entry point, data label, 
etc. 

4. ER (External Reference) Generated by 
the use of an EXTRN pseudo Op in the 
source program. It indicates a 
symbolic label that is used in this 
program section to refer to a point in 
some other separately assembled program 
section. 

System Service 63 



The format of the ESD card is in 
Appendix I. 

TXT (TEXT): The program that is eventually 
loaded into main storage for execution is 
contained within the TXT cards. The text 
card contains the assembled origin of the 
instructions or data included in the card, 
and also the count of the number of bytes 
contained on the card. This card includes 
a reference to the control section in which 
this information occurs and allows the 
relocation factor involved to be derived. 
TXT cards will be modified as required by 
RLD information. Formats of Assembler or 
RPG output cards are in Appendix I. 

RLD (RELOCATION DICTIONARY): The 
relocation dictionary cards identify 
portions of the TXT card that must be 
modified due to relocation. They provide 
the information necessary to perform the 
relocation. The format of the RLD is in 
Appendix I. 

END: The END card indicates end of module 
to the Linkage Editor. The END card can 
supply a transfer address that follows the 
rules of the transfer address supplied on 
an XFR card. Its format is in Appendix I. 

XFR (TRANSFER): The transfer card provides 
a transfer to the point of entry of the 
problem program phase. In the case of 
multiple XFR cards or END cards being 
encountered during any phase, the symbolic 
label supplied in the first encountered XFR 
or END of a phase will bt accepted as the 
entry point. 

The transfer address in the XFR card or 
E~ID card need not necessarily be an entry 
point defined in the program section, but 
may be one defined within the program 
section by an EXTRN and referring to an 
entry point within another program section. 
In the latter case, the entry cannot be 
adjusted by a displacement relative to a 
label. The XFR card will be generated by 
the XFR pseudo Ope The format of the XFR 
card is in Appendix I. 

USER REPLACE CARD 

When it becomes expedient to change text in 
an already-assembled (or compiled) object 
module, the programmer can use the 
facilities provided by the REP (replace 
text) card. The REP card is described in 
this section. 

REP (REPLACE TEXT): The REP card allows 
the programmer to replace previously 
assembled or compiled text with new text. 
The format to be used for the REP card is 

64 S/360 BOS Prog. Guide 

in Appendix I. Each REP card must contain 
the assembled address (in hexadecimal) of 
the first byte to be replaced. The 
external symbol identification (ESID) must 
also be punched (in hexadecimal) into the 
card. The card format provides for 2 to 22 
bytes of text, to be punched as 1 to 11 
four-digit hexadecimal fields separated by 
commas (but no blanks). 

REP cards must be placed after the last 
TXT card of the module that it is to 
modify. If the module represents input for 
more than one phase, the Linkage Editor 
will replace the text in the correct phase. 
The text punched in the REP card replaces 
the original text, byte for byte, beginning 
at the address specified in the REP card. 

LINKAGE EDITOR CONTROL STATEMENTS 

In addition to the program cards previously 
listed, object modules used as input to the 
Linkage Editor inclUde Linkage Editor 
control statements. There are four kinds 
of these control statements: ACTION, 
PHASE, INCLUDE, and ENTRY. Their functions 
are: 

ACTION 1. To inhibit printing of 
diagnostic messages and the 
main storage map. 

2. To clear extraneous data from 
DS reserved areas. 

PHASE To indicate beginning of a phase. 
Gives the name of the phase and 
the main-storage address where it 
is to be loaded. 

INCLUDE To signal the Linkage Editor to 
include a module from the 
relocatable library. Gives the 
name of the module as it appears 
in the relocatable library 
directory. 

ENTRY To signal the end of the last 
input object module and, if 
necessary, specify an overriding 
transfer point in the first phase 
processed. 

The first (or only) object module input 
to the Linkage Editor must include a PHASE 
control statement before the first ESD 
item. 'I'he last (or only> object module in 
a job must be followed by an ENTRY control 
statement. The rules governing placement 
of INCLUDE and other PHASE control 
statements are discussed under Control 
Statement Placement. 



SOURCES OF INPUT 

Input to the Linkage Editor can be: 

1. Entirely from the card or tape unit 
assigned to SYSIPT. 

2. From SYSIPT, except when directed to 
the relocatable library by an INCLUDE 
statement. 

3. Entirely from the relocatable library. 

In the second case listed, it is possible 
for all input to be from the relocatable 
library except for the first INCLUDE 
statement and the ENTRY statement. In the 
third case, however, nothing is read from 
SYSIPT. This case is indicated in the 
following ways: 

1. The presence of the ,R operand in a 
CATAL or EXEC card. For example: 

a. // JOB SYSCMAINT 
// EXEC 
// CATAL modulename,R 

b. // JOB progname 
// EXEC LOADER,R 

The modulename in example a is the name 
of the module in the relocatable 
library to be input to the Linkage 
Editor. The EEQgname in example b is 
the name of the module in the 
relocatable library to be input to the 
Linkage Editor, and it also provides 
the name of the first phase. that is to 
be executed. 

2. All assemble and execute operations. 
For example: 

// JOB ASSEMBLER,progname 

The rules stated under Control Statement 
Placement governing thp placement of the 
Linkage Editor control statements apply 
equally to input from SYSIPT and from the 
relocatable library. 

Note: When SYSIPT is assigned to a tape 
unit, the Linkage Editor assumes that the 
tape is positioned to the first control 
statement. The tape unit is not rewound by 
the Linkage Editor at the completion of 
processing. 

GENERAL CONTROL STATEMENT FOR~~T 

The Linkage Editor control statements are 
similar in format to statements pr~cessed 
by the Assembler. No special symbols are 
required preceding the operation field. 

The operation field must begin to the right 
of column 1 (column 1 must be blank) and 
must be separated from the operand field by 
at least one blank position.. The operand 
field is terminated by the first blank 
position. It cannot extend past column 71. 

CONTROL STATEMENT PLACEMENT 

The ENTRY card can be automatically 
produced at the end of each assembly, 
immediately following the END card, if 
specified in an Assembler control card 
(AOPTN ENTRY). When editing 
multiple-object modules in a single Linkage 
Editor run, the ENTRY card must follow the 
last, and only the last, object module. 

The ACTION, PHASE, and INCLUDE cards can 
be reproduced from the source module by 
using the Assembler REPRO instruction. At 
the place in the source module where the 
Linkage Editor control statement will he 
needed, the programmer adds the REPRO card, 
followed by the ACTION, PHASE, or INCLUDE 
card. This will cause the control 
statement to appear in the output object 
module at the correct point. 

Figure 17 shows the possible placement 
of the PHASE and INCLUDE statements. All 
statements can be hand inserted. 
Statements between the END card and the 
ENTRY card cannot be reproduced by the 
Assembler. They must be hand inserted. 
The REP card must also be hand inserted. 

INCLUDE STATEMENT PHASE STATEMENT 

ACTION 
before or after first_ 
PHASE statement _------ before first ESD 

ESD 

TXT CS A 
._----- at end of any control 

TXT CS B 

REP 

RLD 
END 

section except that 
immediately preceding 
the RLD 

before or after last - after END and before 
PHASE statement ENTRY or next ESD 

ENTRY (or next ESD) 

Figure 17. Placement of PHASE and INCLUDE 
Statements 

System service 65 



ACTION CARD 

The ACTION card can be used to inhibit the 
printing of diagnostic messages and the 
main storage map. The ACTION card can also 
be used to specify that an area in the core 
image library be cleared prior to editing a 
new phase into the area. 

When the ACTION card(s) is used, it must 
be placed before the first PHASE card in 
the input stream. 

The ACTION card can have one of three 
operands: NOMAP, MAP, and CLEAR. 

The Linkage Editor automatically prints 
diagnostic messages and a main storage map. 
If the messages and the map are not 
desired, the user can use an ACTION NOMAP 
card to prevent them from printing. If an 
ACTION MAP card is used, the Linkage Editor 
will ignore the card. 

r----------T---------T--------------------, 
I Name I Op I operand I 
~----------+---------+--------------------~ 
I blank I ACTION I NOMAP I 
~----------+---------+--------------------~ 
I blank I ACTION I MAP I L __________ ~ _________ ~ ____________________ J 

Diagnostic messages are printed, on the 
printer assigned to SYSLST, whenever an 
error occurs on a card in the input stream. 
The messages printed when an error occurs 
have the following format. 

ERROR xx ppp ••• p 

xx is a code used to identify the 
error. This code is printed in 
EBCDIC. 

ppp ••• p is a print-out of the contents of 
all eighty columns of the card in 
error. If the card is a control 
card, the eighty columns will be 
printed in EBCDIC. If the card is 
not a control card, columns 6-8 
(assembled origin) are printed in 
hexadecimal and the other columns 
in EBCDIC. 

The main storage map describes the 
location of all portions of the edited 
program. This map is printed on the 
printer assigned to SYSLST after the input 
has been edited. The printed map will 
consist of: 

1. PHASE usage--name of the phase, loading 
address, last-byte address used for the 
phase, disk address in the core image 
library, and transfer (execute) 
address. 

66 S/360 BOS Prog. Guide 

2. ESD card items defined within each 
phase. These include SD, PC, and LD 
definitions. Unreferenced entry points 
and control sections are also shown. 

3. Unresolved ERs (resulting from EXTRNs 
that have not been defined as entry 
points) after all phases and points 
within have been listed. 

4. The number of unresolved RLD items 
encountered. 

The Ac'rION card with the operand CLEAR 
can be used to clear the area that is 
available in the core image library for 
editing new phases. 

r---------~-T------------T----------------l 
I Name lOp I Operand I 
~-----------+------------+----------------~ 
Iblank I ACTION I CLEAR I L ___________ ~ ____________ ~ ________________ J 

The programmer can use this statement when 
he wants DS reserved areas to be cleared of 
extraneous data. Note that the Linkage 
Editor will not clear areas reserved by OS 
statements unless the ACTION CLEAR control 
card is used, since a DS is intended only 
to reserve the area. This function can be 
time consuming, because it clears the 
entire unused portion of the core image 
library each time it is used. Therefore, 
it is recommended that ~e user plan his 
programs in such a way that the ACTION 
CLEAR function is used only when debugging 
programs or when a number of temporary 
phases are being tested. 

PHASE CARD 

The PHASE card can be the first card of the 
first object module processed by the 
Linkage Editor and, in the case of multiple 
phases, is the first card of each 
succeeding phase also. Under no 
circumstances can a PHASE card occur within 
a control section. This is an undetectable 
error condition that will result in 
erroneous program loading. There can be 
several control sections within a phase and 
several phases within a module. 

This card provides the Linkage Editor 
with a phase name and an origin point for 
the phase. The phase name is used to 
catalog the phase in the core image 
library. This name is used in a FETCH 
macro to load the phase for execution. The 
origin point for the phase can be relative 
to the end of the Supervisor, the last 
location of main storage, or a previously 
defined symbol. It can also be an absolute 
machine address. 



r-----T-------------------------.--------, 
I I I 
lOp I Operand I 
~-----+-----------------------------------~ 
I PHASE I phasename,f,displacement,symbol I L _____ ~ ___________________________________ J 

The operands in the PHASE card are: 

phasename 

f-Flag 

displacement 

symbolic name of the phase. 
One to six characters are 
used as the phase name. If 
more than six characters are 
used, those in excess of six 
are truncated. The first 
four characters of the phase 
name for each phase of a 
multi-phase program should 
be the same. This allows 
faster retrieval by the 
system loader. The first 
three characters can be SYS, 
only when cataloging a phase 
with the SYSCMAINT program. 

A system can have only 
124 phase names beginning 
with SYS. These three 
characters are used to begin 
the phase names for 
transient routines such as 
OPEN and CLOSE. Therefore, 
the user should not use 
phase names beginning with 
SYS. Other phase names that 
should not be used are 
listed in Appendix K. 

Indicates the origin point 
for loading the phase. (The 
main storage loading address 
is relative to this point. 

S Address of the last 
location in the 
Supervisor 

C Address of the last 
location of main storage 
(core size is taken from 
the CONFG byte in the 
communication region) 

L A symbolic label defined 
in a previous phase 

A Absolute address 

Allows the origin point 
(loading address) to be 
modified by a set amount. A 
positive displacement has no 
sign and is allowed to be 1 
to 6 decimal digits. If the 
displacement is negative, a 
minus sign (~) precedes 1-5 
decimal digits. A plus sign 
(+) preceding the 

symbol 

displacement is an error and 
can be treated as part of 
the address. Displacement 
relative to S, C, L, or A 
will result in a double word 
boundary. 

The displacement can also 
be expressed in hexadecimal., 
There can be from one to six 
hexadecimal characters 
enclosed in single quotes 
(5-8 punch). If a negative 
displacement is required, a 
minus sign must precede the 
expression; for example, 
X'hhhhhh' or -X'hhhhhh' 

If the flag (f) is A, 
this value is treated as an 
absolute address instead of 
a displacement. 

Symbolic label. May be 1 to 
8 characters. It is 
predefined by having 
appeared in a previous 
phase. When included, it 
allows this phase to or~gin 
at the address the label 
represents. 

Some examples of PHASE cards follow: 

PHASE PHNAME,C,-504 

This causes loading to start 504 bytes 
below the last byte of main storage. 

Note: If displacement is a value such that 
it causes loading beyond the end of main 
storage, the condition will be handled by 
the supervisor and indicated as an error 
when the System Loader attempts to load the 
phase. 

PHASE PHNAME,L,20,POINT3 

This card causes the phase to be loaded at 
an address of POINT3+20. POINT3 has 
appeared in a previous control section and 
must be the name of a START or CSECT 
statement or the operand of an ENTRY 
statement. 

PHASE PHNAME,L"POINT3 

This would cause loading to begin at the 
address identified by POINT3,. 

PHASE PHNAME,A,4800 

Loading begins at 4800, an absolute address 
specified in the phase card. 

PHASE PHNAME,S 

System service 67 



Loading begins at the immediate end of the 
supervisor area. 

Note: In each of the preceding examples, 
if the origin address supplied is not a 
double word boundary, the Linkage Editor 
will automatically increment to the next 
double word boundary. 

INCLUDE CARD 

This card is used to indicate to the 
Linkage Editor that an object module in the 
relocatable library is to be included in 
the program. The card has a single 
operand, which is the name of the module as 
it is cataloged in the relocatable library. 
By using this feature of the Linkage 
Editor, the programmer can include standard 
subroutines in his program at linkage time 
instead of defining them as macros. 

The placement of the INCLUDE card 
determines the position of the module in 
the program. An included module (in the 
relocatable library) can be preceded or 
followed by one or more additional INCLUDE 
cards. 

r-------------T------------T--------------, 
I Name I Op I Operand I 
~-------------+------------+--------------i 
I blank I INCLUDE I modulename I l _____________ ~ ____________ ~ ______________ J 

The INCLUDE card has a single operand. 

Modulename Symbolic name of the module, 
as cataloged in the 
relocatable directory. One 
to six characters are used. 
If more than six characters 
are punched, the name is 
truncated to six. 

An object module in the relocatable 
library can have any number of INCLUDE 
statements, only if it was not itself 
included by a module in the relocatable 
library. This is illustrated in Figure 18. 
Modules included by statements in the input 
from SYSIPT are referred to as being in the 
first level. Modules included by 
statements in the first level are at the 
second level. Thus, modules in the first 
level can include others in the second 
level. Those in the second level may not 
have INCLUDE statements. 

68 5/360 BOS Prog. Guide 

ENTRY CARD 

The ENTRY card signals the Linkage Editor 
that the end of the program has been 
reached. A transfer label can be included 
in this card to override the previous 
transfer point in the first phase. Every 
program, as input to the Linkage Editor, 
must be terminated by an ENTRY card. 

r-----------T----------T------------------, 
I Name I Op I Operand I 
~-----------+----------+------------------~ 
I blank I ENTRY I entrypoint I l ___________ ~ __________ ~ __________________ J 

The ENTRY card has a single, optional 
parameter: 

Entrypoint Symbolic name of an entry 
point. This parameter is 
optional. If used, it must 
be a symbol defined in the 
program with the Assembler 
ENTRY statement or it must 
be the name of a START or 
CSECT statement. It 
overrides the previous 
transfer point in the first 
phase. 

PHASE ENTRY POINT 

The Linkage Editor establishes the transfer 
point (entry point) for each program phase 
as follows: 

1. If an entry point for a phase is not 
specified in either an XFR card or the 
END card, the origin of the phase is 
designated the entry point. 

2. If the phase contains XFR and/or END 
cards that specify entry points, the 
first such card encountered designates 
the entry point for the phase. 

3. If the ENTRY card for a program 
specifies an entry point, this entry 
point will override a previously 
established entry point for the first 
(or only) phase of the program. 



Input Relocatable Library Relocatable Library Core Image Library 

1 (level one) (level two) 

SYSIPT PHASE 1 CD ® INCLUDE MOD2 PHASE PHASE 1 
~ 

ESD module 3 

PHASE PHASE4 ~-
CS A 

INCLUDE MOD3 
TXT CS A 

ESD module 1 ESD module 2 

TXT CS F TXT CS C \ 
PHASE PHASE2 PHASE 2 

RLD module 2 
TXT CS B 

CS B 

TXT CS G 
CS C 

END module 2 RLD module 3 

TXT CS F (continued) ® 
PHASE PHASE3 END module 3 PHASE 3 

INCLUDE MOD4 ® CS D 

RLD module 1 INCLUDE MOD5 CS E 

END module 1 ~ ESD module 4 
--

ENTRY label CS A TXT CS D PHASE 4 
RLD module 4 CS F 

END module 4 
r--------® CS F (continued) 

CS G 

ESD module 5 

TXT CS E 

RLD module 5 

END module 5 

I~·~----------------------------Input 

Figure 18. Example of Linkage Editor Input and Output 

EXAMPLE OF LINKAGE EDITOR INPUT AND OUTPUT 

The program shown in Figure 18 illustrates 
the rules governing input to the Linkage 
Editor and shows the output obtained. 
Though this example is more complex than 
the normal program, by following the flow 
of the input one can find practically every 
situation that may arise. 

The left-most block (module 1) is shown 
as being read from SYSIPT, which we can 
assume to be a card reader. The two 
columns in the center are modules that have 
been cataloged into the relocatable 
library. The right-most column shows the 
output phases as t.hey appear in the core 
image library. 

1. The first card sends the Linkage Editor 
to the relocatable library. Therefore, 
the first entry in module 2 must be 
either a PHASE or another INCLUDE. 

2. Because the phase has been named, 
module 3 can begin with an ESD. 

3. The input for a phase can consist 
entirely of INCLUDE modules. 

4. INCLUDE cards can be grouped. 

5. This split control section (CS F) is 
assigned a contiguous area of main 
storage. 

RESTRICTIONS 

The number of phases and references to 
other phases is limited. Each phase, 
control section, label definition, or 
external reference represents an entry. 
Matching entries (LD of SYMBOL and ER of 
SYMBOL), however, are combined into one 
entry. In an 8K system, about eighty 
entries can be handled. In a 16K or larger 
system, up to 256 entries can be handled. 
The maximum size of a phase, which can be 
link edited, is 255 blocks or 210,120 
bytes. 

System Service 69 



LIBRARI.t'\N 

The contents of this section are 
illustrated by Figure 19. This section 
describes the set of programs that 
maintain, service and organize the 

I Sy,tem Se"ke P,ogcom, 

._-----, 
Librarian 

libraries of BOS. This set of programs is 
collectively referred to as the Librarian. 

Librarian Functions 

Librarian Functions: 
Core Image Library 

Librarian Functions: 
Macro Library 

Librarian Functions: 
Relocatable Library 

Librarian Functions: 
Directories 

Organization Functions 

Librarian Functions: 
Device Table 

Figure 19. System Service Programs: Librarian 

70 S/360 BOS Prog. Guide 



The BOS residence can contain three 
separate and distinct libraries. They are: 

1. Core image library 
2. Macro library 
3. Relocatable library 

The core image library is required for 
each disk resident system. The other two 
libraries, the macro library and the 
relocatable library, are not required for 
operating a system. ' 

CORE IMAGE LI BRAR Y 

The core image lib~ary contains any number 
of phases. Each phase is either a complete 
program or a program overlay. All programs 
in the core image library are edited to run 
with the resident supervisor. Each phase 
is assigned a fixed location in main 
storage. 

Some of the programs in the core image 
library are permanent, while others are 
temporary. See 'the section entitled 
Linkage Editor for a description of how 
programs can be present in the core image 
library temporarily. All programs that are 
executed by the system are loaded from the 
core image library. The Linkage Editor 
converts programs from loader text to core 
image format and places them in the core 
image library. The programs in the core 
image library include system programs, the 
librarian programs, IBM programs such as 
Assembler, RPG, and sort programs, and user 
programs. 

Associated with the core image library 
is a core image directory. The core image 
directory contains a unique descriptive 
entry for each phase in the core image 
library. Each entry includes the name of 
the phase, the starting disk address of the 
phase in the core image library, the number 
of blocks needed to contain the phase, the 
length of the last block, the starting 
address in main storage where the phase 
will be loaded, and the transfer address. 
The entries in the core image directory are 
used to locate and retrieve phases from the 
core image library. 

Phases in the core image library and 
entries in the core image directory can be 
in any order. 

MACRO LIBRARY 

The macro library contains macro 
definitions that are used by the Assembler 
to expand macro instructions encountered in 
the source problem program. The macro 
definitions can be Supervisor macros, 
logical IOCS macros, and user-supplied 
macros. 

Each macro contains a macro instruction 
prototype statement, one or more model 
statements, and a macro definition trailer 
statement. Each time the macro is used in 
a source deck for a problem program, it is 
transformed into a number of machine and/or 
assembler language statements. 

Associated with the macro library is a 
macro directory. The macro directory 
contains a unique descriptive entry for 
each macro in the macro library. Each 
entry is composed of the macro name, the 
starting disk address of the macro in the 
macro library, and the number of blocks 
needed to contain the macro. The entries 
in the macro directory are used to locate 
and retrieve macros in the macro library. 

Macros in the macro librarv and entr ie~~ 
in the macro directory can be~in any order. 

RELOCATABLE LIBRARY 

The relocatable library contains a number 
of modules. Each module can be one or more 
complete assemblies in the relocatable 
format. The purpose of the relocatanle 
library is to allow the user to maintain 
frequently used routines in residence and 
combine them with other modules without 
requiring reassembly. The routines are 
edited from the relocatable library to the 
core image library by the Linkage Editor. 

Associated with the relocatable library 
is a relocatable directory. The 
relocatable directory contains a unique 
descriptive entry for each module in the 
relocatable library. Each entry is 
composed of the module name, the starting 
disk address of the module in the 
relocatable library, and the number of 
blocks needed to contain the module. The 
entries in the relocatable directory are 
used to locate and retrieve modules~in thp 
relocatable library. 

Modules in the relocatable library and 
entries in the relocatable directory can be 
in any order. 

System Service 71 



DISK STORAGE SPACE REQUIRED FOR LIERARIES 
AND DIRECTORIES 

The relative location of each of the 
library and directory areas is fixed. The 
number of tracks assigned to each is 
determined by the user. Each area consists 
of one or more complete disk tracks. The 
core image directory always begins on track 
6, immediately following the 
fixed-assignment tracks (0-5). Beginning 
with the core image directory, the 
sequences of areas are: 

1. 

2. 

3. 

4. 

5. 

6. 

Core image directory} 

Core image library 

Macro directory} 

Macro library 

Relocatable directory} 

Relocatable library 

required 

optional 

optional 

If the macro library is not used, the 
relocatable directory immediately follows 
the core image library. If neither the 
macro nor relocatable libraries are used, 
the label control card area (volume 
information area) immediately follows the 
core image library. See Appendixes K and L 
for the sizes of IBM-supplied items. 

Core Image Directory Size 

Each track allocated to the core image 
directory can contain entries for 125 
phases, except the last track, which can 
contain only 124 entries. Thus, the number 
of tracks (T) required for the core image 
directory equals: 

T P+l 
125 

Where: P = total number of phases in the 
core image library. The value of T is 
rounded off to the next-highest integer if 
a remainder results. 

Core Image Library Size 

Each track allocated to the core image 
library contains four fixed-length blocks. 
Each block contains a maximum of 824 bytes 
of instructions or data. Each phase can be 

72 S/360 BOS Prog. Guide 

up to 255 blocks long or 210,120 bytes. 
The core image library contains exactly the 
same information as is loaded into main 
storage for execution, and no more. Each 
phase is written beginning in a new block. 
The number of tracks required for the core 
image library can be calculated as follows: 

1. Determine the number of blocks (Bx) 
required for a phase: 

2. 

3. 

B = L x __ 
824 

Where: L = total number of bytes in 
the phase. The value of Bx is rounded 
off to the next-highest integer. 

Determine the total number of blocks 
(Bt) required for all phases in the 
core image library: 

Determine the number Of tracks (T) 
required to hold all phases in the core 
image library: 

T Bt 
4 

The value of T is rounded off to the 
next-highest integer if a remainder 
results. 

Macro Directory Size 

Each track allocated to the macro directory 
can contain entries for 216 macro 
definitions, except for the last track, 
which can contain only 215 entries. Thus, 
the number of tracks (T) required for the 
macro directory equals: 

T = M + 1 
216 

Where: M = total number of macro 
definitions in the macro library. The 
value of T is rounded off to the 
next-highest integer. 

Macro Library Size 

Each track allocated to the macro library 
contains eight fixed-length blocks. Each 
block contains a maximum of 378 bytes of 
macro definition information. The 
macro-definition statements coded by the 
user are compressed before writing them out 
in the macro library. This compression is 
performed by eliminating all unnecessary 



blanks in each macro-definition statement. 
A five-byte field is then added to each 
statement before writing it out in the 
macro library. rhe number of tracks 
required for the macro library can be 
calculated as follows. 

1. Determine the number of statements (N) 
used to defi.ne a macro. 

2. Determine the average compressed 
statement length (Ls) in this macro. 
The compressed statement length equals 
the sum of: 

Ln + 1 where Ln bytes in name field 

La + 1 where La bytes in operation field 

Lp + 1 where Lp bytes in operand field 

Le + 1 where Le bytes in comments field 

+ 5 
=C1 where C1 =total bytes in compressed 

statement 

Determine the average (Ls) of these to 
continue. 

3. Determine the number of blocks (Bx) 
needed to hold the macro: 

Bx = N(Ls) 
378 

The value of Bx is rounded off to the 
next-highest integer if a remainder 
results. 

4. The total number of blocks (B t ) 

required to hold all of the macros in 
the library: 

5. The number of tracks (T) required to 
hold all of the macros in the macro 
library: 

T ~ 
8 

The value of T is rounded off to the 
next-highest integer if a remainder 
results. 

Relocatable Dire~tory Size 

Each track allocated to the relocatable 
directory can contain 160 entries, except 
the last, which can contain only 159 
entries. Thus, the number of tracks 
required for the relocatable directory 
equals: 

T M + 1 
160 

Where: M = total number of modules in the 
relocatable library. The value of T is 
rounded off to the next-highest integer if 
a remainder results. 

Relocatable Library Size 

Each track allocated to the relocatable 
library contains 16 fixed-length blocks. 
Each block is 160 bytes long. A number of 
factors affect the packing of information 
in these blocks. The factors include the 
following variables: 

• 

• 

• 

The number of separate control 
sections. 

The use of DS (define storage) 
statements, which reserve storage that 
mayor may not be utilized for data 
constants defined in the program. 

Alteration of the location counter 
during assembly (use of ORG 
statements) • 

The following calculations provide a fairly 
accurate approximation of the library area 
required for typical programs. 

1. Determine the number of blocks (Be) 
required for all cards or statements 
except the actual program text. Assume 
a separate block for each card of the 
following types: 

ACTION 
END 
ENTRY 
ESD 
INCLUDE 
PHASE 
REP 
RLD 
SYM 
XFR 

Let Be=total number of cards 

2. Determine the number of blocks (Bi) 
required for the actual instructions or 
data in the TXT cards. Assume an 
average of 100 bytes of text in each 
block. (The maximum per block, for 
contiguously assigned text, is 132 
bytes per block.) Thus, 

Bj = total bytes of text in TXT cards 
100 

system Service 73 



3. Determine the total number of blocks 
(Bx) required for a module in the 
relocatable library: 

4. 

5. 

Bx = Be + Bj 

Determine the total number of blocks 
(Bt) required to hold all of the 
modules in the library: 

Determine the number of tracks (T) 
required for the relocatable library: 

T = Bt 
16 

The value of T is rounded off to the 
next-highest integer if a remainder 
results. 

LIBRARIAN FUNCTIONS 

The librarian consists of a set of programs 
that performs three major functions. They 
are: 

1. Maintenance 
2. Service 
3. Organization. 

Maintenance functions are used to add, 
delete, or rename components of the three 
libraries. The SYSCMAINT program is the 
maintenance program for the core image 
library. The R~AINT program is the 
maintenance program for the relocatable 
library. The MV~INT program is the 
maintenance program for the macro library. 

Service functions are used to translate 
information from a particular library to 
printed (displayed) or punched output. 
Information in a library directory can also 
be displayed. The CSERV program is the 
service program for the core image library. 
The RSERV program is the service program 
for the relocatable library. ' The MSERV 
program is the service program for the 
macro library. rhe DSERV program is the 
service program for the directories. 

Organization functions are used to 
reallocate library and directory areas, to 
condense libraries, and to copy, either 
completely or selectively, the disk on 
which the system resides. The AORGZ 
program is the organization program for the 
reallocation function. The LORGZ program 
is the organization program for the 
condense function. The CORGZ program is 
the organization program for the copy 
function. 

74 S/360 BOS Prog. Guide 

Librarian functions are performed 
through the use of control cards. The 
control cards are: 

1. A JOB control card requesting a 
particular librarian program. 

2. 

3. 

A number of ASSGN control cards that 
may be required to change the 
assignment of actual input/output 
device. 

An EXEC control card. 

4. Librarian specification cards 
describing various functions to be 
performed. 

5. An END control card. 

The ASSGN and EXEC control cards are the 
same as those described in the Job Control 
section. The operand field of the JOB 
control cards is described in this section. 
The other cards pertain to the Librarian 
and are described in this section. All 
cards used by the Librarian conform to the 
rules of syntax for control cards as stated 
in the section on Job Control. 

Librarian functions can be performed 
separately, or in certain combinations as 
described in the following sections. All 
control card information is read from the 
device assigned (in the ASSGN cards) to 
SYSRDR. All input data is read from the 
device assigned to SYSIPT. SYSIPT and 
SYSRDR can be assigned to the same physical 
input/output device. The status report of 
a library is printed on the device assigned 
to SYSLST. If SYSLST is unassigned, the 
printed status report is suppressed, but 
the librarian function is performed. 

Figure 20 is a table of all maintenance 
functions. Figure 21 is a table of all 
service functions. Figure 22 is a table of 
all organization functions. 

MAINTENANCE FUNCTIONS 

The set of maintenance fUnctions contains 
three subsets. They are: 

1. Catalog 
2. Delete 
3. Rename 

The catalog fUnction adds phase(s) to 
the core image library, adds a module to 
the relocatable library, or adds a macro to 
the macro library. The input data for the 
catalog function is read from the device 
assigned to SYSIPT. The input device can 
be a card reader or a tape unit. Input for 



the catalog function for the core image 
library can also be a module on the 
relocatable library. A module can either 
be the entire input for the catalog 
function for the core image library, or 
modules can form part of the input for the 
phase. When the latter case is true, an 
INCLUDE card, discussed in detail in the 
section entitled Linkage Editor, can be 
used in the stream of input data for 
incorporating the module as part of the 
phase. The INCLUDE card can be present on 
SYSIPT or within a module in the 
relocatable library. 

FUNCTION UNIT ELEMENT CONTROL CARDS REQUIRED 

Catalogue Core-Image Phase I I JOB SYSCMAINT 
Library /1 EXEC 

II CATAL modulename,R 
or 

II CATAL 
II END 

~-.-~-- ~----~-

Macro Macro II JOB MMAINT 
Library II EXEC 

II CATAL 
II END 

-
Relocatable Module I I JOB RMAINT 
Library II EXEC 

II CATAL modulename 
II END 

-----~-

Delete Core-Image Phase II JOB SYSCMAINT 
Library II EXEC 

II DELET phasename 
II END 

-
Macro Macro II JOB MMAINT 
Library II EXEC 

II DELET macroname 
II END 

--

Library II JOB MMAINT 
II EXEC 
II DELET ALL 
II END 

--

Relocatable Module II JOB RMAINT 
Library II EXEC 

II DELET modulename 
II END 

-. 

Library I I JOB RMAINT 
I I EXEC 
II DELET ALL 
II END 

--

Rename Core-Image Phase II JOB SYSCMAINT 
Library I I EXEC 

II RENAM oldname,newname 
II END 

--
Macro Macro II JOB MMAINT 
Library II EXEC 

II RENAM oldname,newname 
II END 

--

Re I ocatab Ie Module II JOB RMAINT 
Library I I EXEC 

II RENAM oldname,newname 
II END 

--

Figure 20. Maintenance FUnctions 

The delete function deletes an entry 
from a directory that corresponds to a 
phase, module, or macro in a library. lhe 
phase, module, or macro in the appropriate 
library is not deleted; however, as far as 

System Service 75 



the system is concerned, the phase, module, 
or macro no longer exists. When a macro 
library or a relocatable library and its 
directory are to be removed from system 
residence, the delete function is required. 
The reallocation function should be used to 
completely remove the library and its 
directory. 

The rename function is used to rename an 
existing phase, module, or macro in the 
appropriate library and directory. 

If SYSLST is assigned, each job 
requesting a maintenance function will have 
the status of the system printed at the" 
completion of the run. 

SERVICE FUNCTIONS 

The set of service functions contains three 
subsets. They are: 

1. Display 
2. Punch 
3. Display and punch 

The disk resident system can display 
and/or punch phases in the core image 
library, modules in the relocatable 
library, and macros in the macro libra.ry. 
In addition, the core image directory, the 
relocatable directory, and the macro 
directory can be displayed. 

Whenever a requested service function 
provides punched-card output, a card punch 
must have been assigned to SYSOPT. 
whenever a requested service function 
provides printed output, a printer must 
have been assigned to SYSLST. 

76 S/360 BOS Prog. Guide 

FUNCTION UNIT ELEMENT CONTROL CARDS REQUIRED 

Display Core-Image Phase II JOB CSERV 
Library II EXEC 

II DSPL Y phase 1, phase2, 
• •• ,phasen 

II END 

Library II JOB CSERV 
II EXEC 
II DSPLY ALL 
II END 

Directory I I JOB DSERV 
I I EXEC 
II DSPLY CD 
II END 

Macro Macro I I JOB MSERV 
Library II EXEC 

II DSPL Y macro 1 ,macro2, 
••• ,macron 

II END 

Library II JOB MSERV 
II EXEC 
II DSPLY ALL 
II END 

Directory I I JOB DSERV 
II EXEC 
II DSPLY MD 
II END 

Relocatable Module I I JOB RSERV 
Library II EXEC 

II DSPL Y mod 1, mod2, 
••• ,modn 

II END 

Library II JOB RSERV 
II EXEC 
II DSPLY ALL 
II END 

Directory I I JOB DSERV 
II EXEC 
II DSPLY RD 
II END 

System Directory II JOB DSERV 
Directory II EXEC 

II DSPLYSD 
II END 

Transient Directory II JOB DSERV 
Directory II EXEC 

II DSPLYTD 
II END 

Directories All II JOB DSERV 
II EXEC 
II DSPLY CD, RD,MD, SD, TD 

or 
II DSPLY ALL 
II END 

Figure 21. Service Functions <Part 1 of 2) 



FUNCTION UNIT ELEMENT CONTROL CARDS REQUIRED 

Punc;:h Core-Image Phase II JOB CSERV 
Library II EXEC 

II PUNCH phasel,phase2, 
... ,phasen 

II END 

Library II JOB CSERV 
II EXEC 
II PUNCH ALL 
II END 

Macro Macro I I JOB MSERV 
Library II EXEC 

I I PUNCH macro 1 ,macro2, 
•.. ,macron 

II END 

Library II JOB MSERV 
II EXEC 
II PUNCH ALL 
II END 

Re I ocatab Ie Module I I JOB RSERV 
Library II EXEC 

II PUNCH modl,rnod2, 
., .,modn 

II END 

Library I I JOB RSERV 
II EXEC 
II PUNCH ALL 
II END 

Display and Core-Image Phase II JOB CSERV 
Punch Library II EXEC 

II DSPCH phase 1 ,phase2, 
•.. , phasen 

II END 

Library II JOB CSERV 
II EXEC 
II DSPCH ALL 
II END 

Macro Macro II JOB MSERV 
Library II EXEC 

liDS PCH macro 1, mac ro2, 
.,. ,macron 

II END 

Library I I JOB MSERV 
II EXEC 
II DSPCH ALL 
II END 

Relocatable Module I I JOB RSERV 
Library II EXEC 

II DSPCH modl,mod2, 
... ,modn 

II END 

Library I I JOB RSERV 
II EXEC 
II DSPCH ALL 
II END 

Figure 21. Service Functions (Part 2 of 2) 

ORGANIZATION FUNCTIONS 

The set of organization functions contains 
three subsets. They are: 

1. Reallocation 
2. Library condense 
3. Copy system. 

Function Control Cards Required Remarks 

Reallocation II JOB AORGZ Values to be substituted 
II EXEC for id: 
II TRCKS id,no,id, ... , ci - Core Image 

id,no Library 
II END RL - Rei ecatabl e 

Library 
ML - Macro Library 
CD - Core Image 

Directory 
RD - Relocatable 

Directory 
MD - Macro Directory 
CP - Checkpoint 

Area 
VL - Volume Area 

Values to be substituted 
for no: 
~y interger 

-
Library II JOB LORGZ Values to be substituted 
Condense II EXEC for lib: 

II CONDS lib, lib, lib IT - Core Image 
or Library 

II CONDS ALL RL - Relocatable 
II END Library 

ML - Macro Library 

Copy II JOB CORGZ TRCKS card is required 
System II EXEC if new library limits 

II TRCKS card (if required are to be estab I ished. 
II COPYS id,namel, If used, the number of 

namen tracks to be allocated 
or for each library, direc-

II COPYS ALL tory, or area must be 
or specified. The values 

II COPYS id,ALL for id and no are the 
or sam;-as sh;;n for the 

II COPYS id,namel, TRCKS card for the 
namen AORGZ function. 

or In the COPYS card, 
namen is the name of 

II COPYS id, name2-namen the phase, module, 
II END or macro to be copied. 

The value for ~ is: 
C L - Core Image 

Library 
RL - Relocatable 

Library 
ML - Macro Library 

Figure 22. Organization FUnctions 

The reallocation function is used to 
redefine the sizes of the libraries, the 
library directories, the checkpoint area, 

System Service 77 



and the volume area. The reallocation 
function can be used to increase, decrease, 
or eliminate specific areas of the disk 
resident system. Each library reallocated 
is automatically condensed. Any number of 
areas can be reallocated within a single 
JOB run. When the reallocation function is 
completed, a status report of the system is 
provided if a printer is assigned to 
SYSLST. The printed output consists of the 
status of each definable item on the system 
resident pack. 

The library condense function is used to 
minimize vacancies between elements in a 
library. One or more of the three 
libraries can be condensed within a single 
JOB run. The condense function is used 
whenever a number of vacancies have 
accumulated within a library, thus 
affecting the ability to catalog a new 
element to a library. 

The copy-system function is used to 
copy, selectively or completely, the disk 
resident system. A complete copy can be 
used to obtain back-up if the original 
system is inadvertently destroyed. A 
selective copy can be used for reducing a 
complete basic operating system to a system 
that is designed to perform a specific 
purpose. 

LIBRARIAN FUNCTIONS: CORE IMAGE LIBRARY 

This section describes the maintenance and 
service functions that relate to the core 
image library. Organization functions for 
the core image library are discussed in the 
section entitled Organization Functions. 

MAINTENANCE FUNCTIONS 

To request a maintenance function for the 
core image library, use the following JOB 
control card. 

// JOB SYSCMAINT 
or 

// JOB SYSCMA 

One or more of the three maintenance 
functions can be requested within a single 
JOB run. Any number of phases within the 
core image library can be acted upon in 
this run. 

78 S/360 BOS Prog. Guide 

Catalog 

The catalog function adds a phase to the 
core image library. The CATAL control card 
is required to add a phase or a group of 
phases to the core image library. The 
C~TAL control card is read from the device 
assigned to SYSRDR. The CATAL control card 
is in one of the following formats. 

// CATAL 
// CATAL modulename,R 

The first format is used if the input 
for the phase(s) to be cataloged is from 
the device assigned to SYSIPT. The 
operation field, separated from the two 
slashes by at least one blank., contains 
CATAL. 

The second format is used if the entire 
input for the phase(s) to be cataloged is 
from the relocatable library. The 
operation field, separated from the two 
slashes by at least one blank, contains 
CATAL. The operand field, separated from 
the operation field by at least one blank, 
contains the name of the module that is to 
be the input. Immediately following the 
name of the module is a comma and an R. 
The operand,R, indicates that the input for 
the phase is one or more modules in the 
relocatable library. Only the first six 
characters of the module name are used. 

Each phase that is cataloged in the core 
image library derives its name from the 
PHASE control statement. 

If a phase in the core image library is 
to be replaced by a new phase having the 
same narr-e, only the catalog function need 
be used. The delete function is implied 
with each catalog function. 

Only one CATAL card is required to 
catalog a multi-phase program. Any number 
of phases or multi-phase programs can be 
cataloged in the core image library within 
a single JOB run. 

The cards that make up the input for a 
phase are described in the section entitled 
Linkage Editor. The cards are: 

1. ACTION control statement 
2. PHASE control statement 
3. INCLUDE control statement 
4. ESD cards 
5. TXT cards 
6. RLD card 
7. REP card 
8. END card 
9. XFR card 
10. ENTRY control statement. 



These cards are read from the device 
assigned to SYSIPT or from the relocatable 
library. 

For the catalog function for the core 
image library, SYSRDR must be assigned to a 
card reader, SYSIPT must be assigned to 
either a card reader or a tape unit, and 
SYSLST can be assigned to a printer. If 
SYSIPT is a tape unit, this program assumes 
that the operator has positioned the tape 
to the first input record. The tape unit 
is not rewound at the end of job. 

Control card input for the catalog 
function that is read from the device 
assigned to SYSRDR is as follows. 

1. The JOB control card (SYSCMAINT), 
followed by 

2. The ASSGN control cards, if the current 
assignments are not those required. 
The ASSGN cards that can be used are 
SYSIPT, SYSRDR, and SYSLST, if a 
printed status report is desi~ed. The 
ASSGN cards are followed by 

3. The EXEC control card, followed by 

4. The CATAL control card(s), followed by 

5. The END card, which is the last control 
card of the job. 

Cataloging a New §upervisor 

When a new Supervisor is to be cataloged in 
the core image library to replace a 
user-assembled Supervisor on an existing 
system, special factors must be taken into 
account. These factors include: 

1. Unique control cards required -to 
perform the function. 

2. Relative sizes of the old and new 
Supervisors. 

These two factors are discussed in detail 
in the following subsectionsm 

Control Cards: Cataloging a new Supervisor 
requires that a special control card 
immediately follow the EXEC card. This 
control card is punched in the following 
format. 

// SPVSR 

The operation field, separated from the two 
slashes by at least one blank, contains 
SPVSR. The operand field is blanku 

Following the SPVSR card is the catalog 
control card, punched in one of two 
formats. If the new Supervisor is in the 
form of a card deck to be read from the 
device assigned to SYSIPT, use the standard 
CATAL control card. This control card is 
punched in the following format. 

// CATAL 

If the new Supervisor is stored in the 
relocatable library as a module, use the 
following control card. 

// CATAL SYSSUP,R 

The entry in the operation field, separated 
from the two slashes by at least one blank, 
is CATAL. The entry in the operand field, 
separated from the operation field by at 
least one blank, is SYSSUP,R. 

Relative Sizes of Supervisors: When a new 
Supervisor is cataloged on the core image 
library, consideration must be given to thp 
relative sizes of the existing Supervisor 
and its related programs and the new 
Supervisor. 

If a Supervisor is ever to be used in a 
system with main storage greater than 32K, 
this fact must be specified at 
supervisor-assembly time because additional 
coding is required in the Supervisor. For 
this, the CONFG parameter of the SUPVR 
macro must specify 64K or greater. For 
program execution on a smaller 
configuration, this specification can be 
altered by a Job control CONFG card. See 
section on CONFG card. 

An estimate of the size of a Supervisor 
to be assembled can be made by using the 
information provided in Appendix H. Core 
Sizes and Timings. After a supervisor has 
been assembled, the assembly listing can be 
examined to determine the exact size of the 
supervisor. The symbolic label SYSEND 
identifies a DC instruction that contains 
the actual end of Supervisor address. 

If the Supervisor to be replaced has a 
patch area large enough, the new supervisor 
can be made equal in size to the old 
Supervisor. The SEND macro statement can 
be used to adjust the patch area of the new 
Supervisor, so that the new Supervisor will 
fit into the same area used for the 
Supervisor being replaced. 

If the two Supervisors are the same 
size, the programs in the core image 
library that were edited to run with the 
old Supervisor will run with the new 
Supervisor. Only the old Supervisor needs 
to be replaced. 

System Service 79 



If the new Supervisor is smaller than 
the old Supervisor, the programs that were 
edited to run with the old Supervisor will 
run with the new supervisor. The transient 
routines (the routines that are loaded and 
executed in the transient area) should be 
re-edited at this time. The programs can 
be re-edited to run with the new Supervisor 
if the user so wishes. Re-editing could 
provide additional main storage for problem 
programs. 

If the new Supervisor is larger than the 
old Supervisor, the programs that were 
edited to run with the old Supervisor might 
require re-editing to run with the new 
supervisor. This would be true in the case 
where the related programs are dependent on 
the size of the Supervisor. Certain phases 
must be recataloged during the same JOB run 
that catalogs the Supervisor on the core 
image library. These phases are the key 
system programs and have names beginning 
with SYS. The key programs are listed in 
Appendix K. The remaining programs on the 
core image library need not be cataloged 
during the same JOB run in which the new 
Supervisor is cataloged. The user must 
ascertain that the core image library 
contains ample space to catalog the new 
Supervisor and the related key system 
programs that must be cataloged in the same 
JOB run. If the space is inadequate: 

1. Perform a library-condense job to 
minimize vacancies in the library, or 

2. Perform a reallocation job to enlarge 
the size of the core image library, or 

3. Delete some of the phases that need not 
be cataloged at the same time as the 
Supervisor (provided back-up exists for 
the programs to be deleted). 

Delete 

The delete fUnction is used to remove 
references to specific phases from the core 
image library. Any number of phases can be 
deleted during a single run. The phases 
are not physically deleted from the 
library; rather, the entry describing the 
phase in the core image directory is 
deleted. 

The DELET control card is used to delete 
phases from the core image library. It is 
punched in the following format. 

// DELET phasename 

The entry in the operation field, 
separated from the two slashes by at least 
one blank, is DELET. phasename in the 

80 S/360 BaS Prog. Guide 

operand field, separated from the operation 
field by at least one blank, represents the 
name of the phase to be deleted. The name 
of the phase can be of any length; however, 
a maximum of the first six characters is 
used to locate and delete the phase. 

Any number of DELET control cards can be 
used for the core image library within a 
single JOB run. 

For the delete function, SYSRDR must be 
assigned to a card reader and SYSLST can be 
assigned to a printer. 

Control card input for the delete 
function, read from the device assigned to 
SYSRDR, is as follows. 

1. The JOB control card (SYSCMAINT), 
followed by 

2. The ASSGN control cards, if the current 
assignments are not'those required. 
The ASSGN cards that can be used are 
SYSRDR and SYSLST if a printed status 
report is desired. The ASSGN cards are 
followed by 

3. The EXEC control card, followed by 

4. The DELET control card(s), followed by 

5. The END control card, which is the last 
control card of the job. 

Rename 

The rename function is used to change the 
name of a phase in the core image library 
to another name. 

The RENAM control card is used to 
achieve the rename function. As soon as 
the card is processed, the system 
recognizes only the new phase name. The 
RENAM card is punched in the following 
format. 

// RENAM oldname,newname 

The operation field, separated from the two 
slashes by at least one blank, contains 
RENAM. The operand field entries, oldname 
and newname, represent the old phase name 
and the new phase name. The two entries in 
the operand field must be separated by a 
comma. The operation field is separated 
from the operand field by at least one 
blank. The names in the operand field can 
be of any length; however, only a maximum 
of the first six characters is used by the 
system to locate and rename the phase. 



Any number of RENAM control cards can be 
used for the core image library within a 
single JOB run. 

For the rename function, SYSRDR must be 
assigned to a card reader, and SYSLST can 
be assigned to a printer. 

control card input for the rename 
function, read from the device assigned to 
SYSRDR, is as follows. 

1. The JOB control card, (SYSCMAINT), 
followed by 

2. The ASSGN control cards if the current 
assignments are not those required. 
The ASSGN cards that can be used are 
SYSRDR and SYSLST if a printed status 
report is desired. The ASSGN cards are 
followed by 

3. The EXEC control card, followed by 

4. The RENAM control card(s), followed by 

5. The END control card, which is the last 
control card of the job. 

SERVICE FUNCTIONS 

To request a service function for the core 
image library, use the following JOB 
control card. 

// JOB CSERV 

One or more of the three service fUnctions 
can be requested within a single JOB run. 
Any number of phases can be acted upon in 
this run. 

Display 

The display function is used to get a 
printout of a phase in the core image 
library. Any number of phases can be 
displayed within a single JOB run. The 
printed output consists of a header and the 
phase. 

Contained in the printed header is the 
phase name, the starting main-storage 
address, the transfer address, the number 
of blocks within the phase, the number of 
bytes in the last block, and the address of 
the phase in the core image library. 

The printed output of the core image 
phase is represent:ed in hexadecimal 
characters. Each line of printed output 
contains 106 characters, each line 

containing eight full words or 32 bytes of 
information. In the printed line, the 
main-storage address and each full word are 
separated by blanks. 

The DSPLY control card is used to 
display phases in the core image library. 
It is punched in one of the following 
formats. 

// DSPLY phase1,phase2, •.• ,phasen 

// DSPLY ALL 

The first format is used if only 
particular phases are to be displayed. The 
entry in the operation field, separated 
from the two slashes by at least one blank, 
is DSPLY. The entry in the operand field, 
phaseg, is separated from the operation 
field by at least one blank. It represents 
the name of the phase to be displayed. If 
more than one phase is to be displayed, the 
phase names are separated by a comma. The 
phase name can be of any length; however, 
only a maximum of the first six characters 
is used by the system to locate the phase. 
Continuation cards are not recognized. 

The second format is used if the entire 
core image library is to be displayed. The 
entry in the operation field is DSPLY. The 
entry in the operand field is ALL. 

For the display function, SYSRDR must be 
assigned to a card reader, and SYSLST must 
be assigned to a printer. 

Control card input for the display 
function, read from the device assigned to 
SYSRDR, is: 

1. The JOB control card (CSERV), followed 
by 

2. The ASSGN control cards, if the current 
assignments are not those required. 
The ASSGN cards that can be used are 
SYSRDR and SYSLST. The ASSGN cards are 
followed by 

3. The EXEC control card, followed by 

4. The DSPLY control card(s), followed by 

5. The END control card, which is the last 
control card of the job. 

The punch function is used to convert a 
phase in the core image library into an 
absolute (not relocatable) card deck. 

System Service 81 



The punched-card deck that results from 
the punch function is usable as input in 
the same manner as a relocatable card deck, 
except that it cannot be relinked or 
relocated. The information required to 
relink or relocate is no longer available 
to the phase. 

The punched-card deck representing the 
phase can be used as input for any of the 
following: 

LDSYS 
SYSCMA 
RMAINT 
Load and Go 

Any number of phases in the core image 
library can be punched within a single JOB 
run. 

The card deck will contain CATAL cards, 
a set of cards for each phase, ENTRY cards, 
and a Librarian // END card. Each set of 
cards representing a phase will contain a 
PHASE card, an SD type of ESD card, TXT 
cards, and an Assembler END card, A CATAL 
card will precede the first PHASE card in 
each group of forty phases. 

The PHASE card contains the phase name, 
the absolute flag, and the absolute 
main-storage address for loading. This 
card is always the first card of a phase. 

The SD type of ESD card provides the 
length of the phase and the absolute 
loading address. This card is always the 
second card of the phase. 

The TXT cards contain the actual data of 
the phase. 

The Assembler END card provides the 
absolute transfer address. It is always 
the last card of a phase. 

An ENTRY card follows the Assembler END 
card for the last phase in each group of 
forty phases and the last phase of the run. 

A Librarian // END card is the last card 
in the deck of cards punchej for the run. 

The PUNCH control card is used to 
convert phases in the core image library to 
punched-card output. It is punched in one 
of the following formats. 

// PUNCH phase1,phase2, ••• ,phasen 

// PUNCH ALL 

The first format is used if only 
particular phases are to be punched. The 
entry in the operation field, separated 
from the two slashes by at least one blank, 
is PUNCH. The entry in the operand field, 

82 S/360 BOS Prog. Guide 

phasen, is separated from the operation 
field by at least one blank. It represents 
the name of the phase to be punched. If 
more than one phase is to be punched, the 
phase names are separated by a comma. The 
phase name can be of any length; however, 
only a maximum of the first six characters 
is used by the system to locate the phase. 
Continuation cards are not recognized. 

The second format is used if the entire 
core image library is to be punched. The 
entry in the operation field is PUNCH. The 
entry in the operand field is ALL. 

Any number of PUNCH cards can be used 
within a single JOB run. 

For the punch function, SYSRDR must be 
assigned to a card reader, SYSOPT must be 
assigned to a card punch, and SYSLST can be 
assigned to a printer. 

Control card input for the punch 
function, read from the device assigned to 
SYSRDR, is as follows. 

1. The JOB control card CCSERV), followed 
by 

2. The ASSGN control cards if the current 
assignments are not those required. 
The ASSGN cards that can be used are 
SYSRDR, SYSOPT, and SYSLST. The ASSGN 
cards are followed by 

3. The EXEC control card, followed by 

4. The PUNCH control cardCs), followed by 

5. The END control card, which is the last 
control card of the job. 

Display and Punch 

The display and punch function is used to 
combine the separate operations of the 
display function and the punch function. 
The output of the display and punch 
function is identical to that described in 
the two preceding subsections. Any number 
of phases in the core image library can be 
displayed and punched within a single JOB 
run. 

The DSPCH control card is used to 
convert phases in the core image library to 
printed and punched-card output. The DSPCH 
control card is punched in one of the 
following formats. 

// DSPCH phase1,phase2, ••• ,phasen 

// DSPCH ALL 



The first format is used if only 
particular phases are to be displayed and 
punched. The entry in the operand field, 
separated from the operation field by at 
least one blank, is phasen. It represents 
the name of the phase to be displayed and 
punched. If more than one phase is to be 
displayed and punched, the phase names are 
separated by a comma. The phase name can 
be of any length; however, only a maximum 
of the first six characters is used by the 
system to locate the phase. continuation 
cards are not recognized. 

The second format is used if the entire 
core image library is to be displayed and 
punched. The entry in the operation field 
is DSPCH. The entry in the operand field 
is ALL. 

For the display and punch function, 
SYSRDR must be assigned to a card reader, 
SYSOPT must be assigned to a card punch, 
and SYSLST must be assigned -to a printer. 

control card input for the display and 
punch function, read from the device 
assigned to SYSRDR, is as follows. 

1. The JOB control card (CSERV), followed 
by 

2. The ASSGN control cards, if the current 
assignments are not those required. 
The ASSGN cards that can be used are 
SYSRDR, SYSOPT, and SYSLST. The ASSGN 
cards are followed by 

3. The EXEC control card, followed by 

4 The DSPCH control cards(s), followed by 

5. The END card, which is the last control 
card of the job. 

LIBRARIAN FUNCTIONS: MACRO LIBRARY 

This section describes the maintenance and 
service functions that relate to the macro 
library. Organization functions for the 
macro library are discussed in the section 
entitled Organization Functions. 

MAINTENANCE FUNCTIONS 

To request a maintenance function for the 
macro library, use the following JOB 
control card. 

// JOB MMAINT 

One or more of the three maintenance 

functions can be requested within a single 
JOB run. Any number of macros can be acted 
upon in this run. 

Catalog 

The catalog function adds a macro to the 
macro library. Each macro is a macro 
definition, composed of a macro-definition 
header statement, a macro-definition 
prototype statement, one or more model 
statements, and a macro-definition trailer 
statement. Card input for the catalog 
function is from the device assigned to 
SYSIPT. Macros to be cataloged to the 
macro library can be in any order. Any 
number of macros can be added within a 
single JOB run. 

The CATAL control card is required to 
add a macro to the macro library. It is 
read from the device assigned to SYSRDR. 
The CATAL card is punched in the following 
format. 

// CATAL 

The operation field, separated from the 
two slashes by at least one blank, contains 
CATAL. The operand field is blank. The 
name of the macro to be cataloged is 
obtained from the operation field of the 
macro-definition prototype statement. 

For the catalog function, SYSRDR must be 
assigned to a card reader, SYSIPT must be 
assigned to a card reader or a tape unit, 
and SYSLST can be assigned to a printer. 
If SYSIPT is a tape unit, this program 
assumes that the tape is positioned to the 
first input record. The tape is not 
rewound at end of job. 

Control card input for the catalog 
function, read from the device assigned to 
SYSRDR, is as follows. 

1. The JOB control card (~~INT), followed 
by 

2. The ASSGN control cards if the current 
assignments are not those required. 
The ASSGN cards that can be used are 
SYSIPT, SYSRDR, and SYSLST if a printed 
status report is desired. The ASSGN 
cards are followed by 

3. The EXEC control card, followed by 

4. The CATAL control card(s), followed by 

5. The END control card, which is the last 
control card of the job. 

System Service 83 



Card input, read from the device 
assigned to SYSIPT, is as follows. 

1. Macro-definition header statement 
(~ACRO), followed by 

2. Macro-definition prototype statement, 
followed by 

3. Macro instructions, followed by 

4. Macro-definition trailer statement 
(MEND) . 

If SYSIPT and SYSRDR are assigned to the 
same device, the macro card input 
immediately follows the CATAL control card. 

The delete function is used to delete 
references to specific macros from the 
macro library. Any number of macros can be 
deleted during a single run. The macros 
are not physically deleted from the 
library; rather, the entry describing the 
macro in the macro directory is delet~d. 

The DELET control card is used to delete 
macros from the macro library. The DELET 
control card is punched in one of the 
following formats. 

// DELET macroname 

// DELET ALL 

The first format is used when a specific 
macro is to be deleted. The entry in the 
operation field, separated from the two 
slashes by at least one blank, is DELET. 
The entry, macroname, in the operand field 
is separated from the operation field by at 
least one blank. It represents-the name of 
the macro to be deleted. The name of the 
macro has a maximum length of five 
characters, the first of which must be 
alphabetic. 

The second format is used if the entire 
library is to be deleted. The entry in the 
operand field is ALL. 

Any number of DELET control cards can be 
used for the macro library within a single 
JOB run. 

For the delete function, SYSRDR must be 
assigned to a card reader, and SYSLST can 
be assigned to a printer. 

Control card input for the delete 
function, read from the device assigned to 
SYSRDR, is as follows. 

84 S/360 BOS Prog. Guide 

1. The JOB control card (MMAINT), followed 
by 

2. The ASSGN control cards if the current 
assignments are not those required. 
The ASSGN cards that can be used are 
SYSRDR and SYSLST if a printed status 
report is desired. The ASSGN cards are 
followed by 

3. The EXEC control card, followed by 

4. The DELET control card(s), followed by 

5. The END control card, which is the last 
control card of the job. 

Rename 

The rename function is used to change the 
name of a macro in the macro library. This 
is achieved by changing the entry in the 
macro directory. 

The RENAM control card is used for the 
rename function. After the card is 
processed, the system recognizes only the 
new macro name. The RENA~': card, read from 
the device assigned to SYSRDR, is punched 
in the following format. 

/ / RENAf:'.1 oldname, newname 

The entry in the operation field, 
separated from the two slashes by at least 
one blank, is RENAM. The operand field 
entries, oldname and newname, are separated 
from the operation field by at least one 
blank. They represent the old macro name 
and the new macro name. The two entries in 
the operand field must be separated by a 
comma. The name of the macro has a maximum 
length of five characters, the first of 
which must be alphabetic. 

Any number of RENAM control cards can be 
used for the macro library within a single 
JOB run. 

For the rename function, SYSRDR must be 
assigned to a card reader, and SYSLST can 
be assigned to a printer. 

Control card input for the rename 
function, read from the device aSBigned to 
SYSRDR, is as follows. 

1. The JOB control card (MMAINT), followed 
by 

2. The ASSGN control cards if thl~ current 
assignments are not those required. 
The ASSGN cards that can be u:3ed are 
SYSRDR, and SYSLST if a prinb:=d status 
report is desired. The ASSGN cards are 
followed by 



3. The EXEC control card, followed by 

4. The RENAM control card(s), followed by 

5. The END control card, which is the last 
control card of the job. 

SERVICE FUNCTIONS 

To request a service function for the macro 
library, use the following JOB control 
card. 

// JOB MSERV 

One or more of the three service functions 
can be requested within a single JOB run. 
Any number of macros can be acted upon in 
this run. 

The display function is used to get a 
printout of a macro in the macro library. 
Any number of macros can be displayed 
within a single JOB run. 

When displaying a macro from the macro 
library, the printed output is in EBCDIC. 
The first line contains the macro name and 
the name field, if used, of the prototype 
statement. The next group of lines 
contains the parameters specified in the 
prototype statement. The succeedi.ng lines 
contain the macro itself. 

The DSPLY control card is used to 
display macros in the macro library. It is 
punched in one of the following formats. 

// DSPLY macro1,macro2, ••• ,macron 

// DSPLY ALL 

The first format is used if only 
particular macros are to be displayed. The 
entry in the operation field, separated 
from the two slashes by at least one blank, 
is DSPLY. The entry in the operand field, 
macron, is separated from the operation 
field by at least one blank. It rcepresents 
the name of the macro to be displayed. If 
more than one macro is to be displayed, the 
macro names are separated by a comma. The 
name of the macro has a maximum length of 
five characters, the first of which must be 
alphabetic. continuation cards are not 
recognized. 

The second format is used if the entire 
macro library is ,to be displayed. The 
entry in the operation field is DSPLY. The 
entry in the operand field is ALL. 

For the display function, SYSRDR must be 
assigned to a card reader, and SYSLST must 
be assigned to a printer. 

Control card input for the display 
function, read from the device assiqned to 
SYSRDR, is as follows. 

1. The JOB control card (MSERV), followed 
by 

2. The ASSGN control cards if the current 
assignments are not those required. 
The ASSGN cards that can be used are 
SYSRDR and SYSLST. The ASSGN cards are 
followed by 

3. The EXEC control card, followed by 

4. The DSPLY control card(s), followed by 

5. The END control card, which is the last 
control card of the job. 

The punch fUnction is used to convert a 
macro in the macro library into a 
punched-card output deck. The punched-card 
deck consists of a CATAL card, a 
macro-definition header statement, a 
macro-definition prototype statement, one 
or more model statements, and a 
macro-definition trailer statement. The 
deck is exactly like the input card deck 
that was used when the macro was cataloged, 
except that additional blanks that were 
suppressed when the macro was cataloged are 
not reinserted, and the deck is 
reidentified and resequenced. 

Any number of macros in the macro 
library can be punched within a single JOB 
run. 

The PUNCH control card is used to 
convert macros in the macro library to 
punched-card output. The PUNCH control 
card is punched in one of the following 
formats. 

// PUNCH macro1,macro2, ••• ,macron 

// PUNCH ALL 

The first format is used if only 
particular macros are to be punched. The 
entry in the operation field, separated 
from the two slashes by at least one blank, 
is PUNCH. The entry in the operand field, 
macro~, is separated from the operation 
field by at least one blank. It represents 
the name of the macro to be punched. If 
more than one macro is to be punched, the 
macro names are separated by a comma. The 

System Service 85 



name of the macro has a maximum length of 
five characters, the first of which must be 
alphabetic. continuation cards are not 
recognized. 

The second format is used if the entire 
macro library is to be punched. The entry 
in the operation field is PUNCH. The entry 
in the operand field is ALL. 

For the punch function, SYSRDR must be 
assigned to a card reader, SYSOPT must be 
assigned to a card punch, and SYSLST can be 
assigned to a printer. 

Control card input for the punch 
function, read from the device assigned to 
SYSRDR, is as follows. 

1. The JOB control card (MSERV), followed 
by 

2. The ASSGN control cards if the current 
assignments are not those required. 
The ASSGN cards that can be used are 
SYSRDR, SYSOPT and SYSLST. The ASSGN 
cards are followed by 

3. The EXEC control card, followed by 

4. The PUNCH control card(s), followed by 

5. The END control card, which is the last 
control card of the job. 

Display and Punch 

The display and punch function is used to 
combine the separate operations of the 
display function and the punch function. 
The output of the display and punch 
function is identical to that described in 
the two preceding sUbsections. Any number 
of macros in the macro library can be 
displayed and punched within a single JOB 
run. 

The DSPCH control card is used to 
convert macros in the macro library to 
printed and punched-card output. The DSPCH 
card is punched in one of the following 
formats. 

// DSPCH rnacro1,macro2, .•• ,macron 

// DSPCH ALL 

The first format is used if only 
particular macros are to be displayed and 
punched. The entry in the operation field, 
separated from the two slashes by at least 
one blank, is DSPCH. The entry in the 
operand field, macron, is separated from 
the operation field by at least one blank. 
It represents the name of the macro that is 

86 S/360 BOS Prog. Guide 

to be displayed and punched. If more than 
one macro is to be displayed and punched, 
the macro names are separated by a comma. 
The name of the macro has a maximum length 
of five characters, the first of which must 
be alphabetic. Continuation cards are not 
recognized. 

The second format is used if thE~ entire 
macro library is to be displayed and 
punched. The entry in the operation field 
is DSPCH. The entry in the operand field 
is ALL. 

For the display and punch function, 
SYSRDR must be assigned to a card reader, 
SYSOPT must be assigned to a card punch, 
and SYSLST must be assigned to a printer. 

Control card input for the display and 
punch function, read from the device 
assigned to SYSRDR, is as follows. 

1. The JOB control card (MSERV), followed 
by 

2. The ASSGN control cards if the current 
assignments are not those required. 
The ASSGN cards that can be uSI~d are 
SYSRDR, SYSOPT, and SYSLST. The ASSGN 
cards are followed by 

3. The EXEC control card, followed by 

4. The DSPCH control card(s), followed by 

5. The END control card, which is the last 
control card of the job. 

LIBRARIAN FUNCTIONS: RELOCATABLE LIBRARY 

This section describes the maintenance and 
service functions that relate to the 
relocatable library. Organization 
functions for the relocatable library are 
discussed in the section entitled 
Organization Functions. 

MAINTENANCE FUNCTIONS 

To request a maintenance function for the 
relocatable library, use the follcwing JOB 
control card. 

// JOB RMAINT 

One or more of the three maintenance 
functions can be requested within a single 
JOB run. Any number of modules can be 
acted upon in this run. 



Catalog 

The catalog function adds a module to the 
relocatable library. If a module exists in 
the relocatable library with the same name 
as a module to be cataloged, the module in 
the relocatable library is deleted. Input 
for the catalog function is from the device 
assigned to SYSIPT. A module in the 
relocatable library consists of input for a 
phase, a part of a phase or several phases, 
and is the output of one or more complete 
assembler runs. 

Modules can be added to the relocatable 
library in an additional way. The 
assembler, through the use of the AFILE 
card, provides the capability of adding 
permanent or temporary modules to the 
relocatable library. 

A module added to the relocatable 
library by way of the catalog function or 
the assembler permanent option can be 
removed by using the delete function. 

A module entered as temporary by the 
Assembler is always simply overlaid by the 
next module entered into the relocatable 
library. 

The CATAL control card is required to 
add a module to the relocatable library. 
The CATAL control card is read from the 
device assigned to SYSRDR and is punched in 
the following format. 

// CATAL modulename 

The operation field, separated from the two 
slashes by at least one blank, contains 
CATAL. The operand field contains one 
entry that is separated from the operation 
field by at least one blank. The entry, 
modulename, is the name by which the module 
will be known to the control system. The 
module name can be of any length; however, 
only a maximum of the first six characters 
is used by the system to assign the name to 
the module. Each module to be cataloged in 
the relocatable library must be preceded by 
a CATAL control card that supplies the name 
of the module. 

The input for a relocatable-library 
module must be one or more complete object 
modules. The cards that may be included in 
the object module are described in the 
section entitled ~inkage Editor. The cards 
are: 

1. ACTION control statement 
2. PHASE control statement 
3. INCLUDE control statement 
4. ESD card 
5. TXT card 
6. REP card 

7. RLD card 
8. END card 
9. XFR card 
10. ENTRY control statement or REND. 

All these cards are read from the device 
assigned to SYSIPT and are written out in 
the relocatable library. If the user does 
not wish an ENTRY statement to follow the 
module in the library, the ENTRY card can 
be replaced by a special Librarian control 
statement with the operation code REND. 
The REND card signals the end of the module 
to the RMAINT program but is not written in 
the library. It has no name-field entry, 
the operation field (REND) begins at least 
one position to the right of column 1 
(column 1 must be blank) and there is no 
operand. 

For the catalog function, SYSRDR must be 
assigned to a card reader, SYSIPT must be 
assigned to a card reader or a tape unit, 
and SYSLST can be assigned to a printer. 
If SYSIPT is a tape unit, this program 
assumes that the tape is positioned to thp 
first input record. The tape is not 
rewound at end of job. 

Control card input for the catalog 
function, read from the device assigned to 
SYSRDR, is as follows. 

1. The JOB control card (Rt".tAINT), folloWE~(: 

by 

2. The ASSGN control cards if the curren~ 
assignments are not those required. 
The ASSGN cards that can be used are 
SYSIPT, SYSRDR, and SYSLST if a printE'(! 
status report is desired. The ASSGN 
cards are followed by 

3. The EXEC control card, followed by 

4. The CATAL control cardCs) followed by 

5. The END control card, which is the last 
control card of the job. 

Delete 

The delete function is used to delete 
references to specific modules on the 
relocatable library. Any number of module~; 
can be deleted during a single JOB run. 
The modules are not physically deleted fron' 
the library; rather, the entry describing 
the module in the relocatable directory is 
deleted. 

RPG programmers should make use of this 
function to avoid duplicate entries in thE' 
relocatable library. When recompiling an 
RPG object program which already exists as 

System Service 87 



a relocatable library entry, the previous 
entry must be deleted prior to 
recompilation. 

The DELET control card is used to delete 
modules from the relocatable library. The 
DELET control card is punched in one of the 
following formats. 

// DELET modulename 

// DELET ALL 

The first format is used when a specific 
module is to be deleted. The entry in the 
operation field, separated from the two 
slashes by at least one blank, is DELET. 
The entry, modulename, in the operand field 
is separated from the operation field by at 
least one blank. It represents the name of 
the module to be deleted. The module name 
can be of any length: however, only a 
maximum of the fLrst six characters is used 
by the system to locate the module. 

The second format is used if the entire 
library is to be deleted. The entry in the 
operation field is DELET. The entry in the 
operand field is ALL. 

Any number of DELET control cards can be 
used for the relocatable library within a 
single JOB run. 

For the delete function, SYSRDR must be 
assigned to a card reader, and SYSLST can 
be assigned to a printer. 

Control card input for the delete 
function, read from the device assigned to 
SYSRDR, is as follows. 

1. The JOB control card (RMAINT), followed 
by 

2. The ASSGN control cards if the current 
assignments are not those required. 
The ASSGN cards that can be used are 
SYSRDR and SYSLST if a printed status 
report is desired. The ASSGN cards are 
followed by 

3. The EXEC control card, followed by 

4. The DELET control cardCs), followed by 

5. The END control card, which is the last 
control card of the job. 

Rename 

The rename function is used to rename a 
module in the relocatable library. 

88 S/360 BOS Prog. Guide 

The RENAM control card is used for the 
rename function. After the card is 
processed, the system recognizes only the 
new module name. The RENAM card, read fram 
the device assigned to SYSRDR, is punched 
in the following format. 

// RENAM oldname,newname 

The operation field, separated from the 
two slashes by at least one blank, contains 
RENAM. The operand field entries, oldname 
and newname, are separated from the 
operation field by at least one blank. 
They represent the old module name and the 
new module name. The two entries in the 
operand field must be separated by a comma. 
Both module names can be of any length; 
however, only a maximum of the first six 
characters is used by the system to locate 
and rename the module. 

Any number of RENAM control cards can be 
used for the relocatable library within a 
single JOB run. 

For the rename function, SYSRDR must be 
assigned to a card reader, and SYSLST can 
be assigned to a printer. 

Control card input for the rename 
function, read from the device assigned to 
SYSRDR, is as follows. 

1. The JOB control card (RMAINT), followed 
by 

2. The ASSGN control cards if the current 
assignments are not those required. 
The ASSGN cards that can be used are 
SYSRDR and SYSLST if a printed status 
report is desired. The ASSGN cards are 
followed by 

3. The EXEC control card, followed by 

4. The RENAM control card(s), followed by 

5. The END control card, which is the last 
control card of the job. 

SERVICE FUNCTIONS 

To request a service function for the 
relocatable library, use the following JOB 
control card. 

// JOB RSERV 

One or more of the three service functions 
can be requested with a single JOB run. 
Any number of modules can be acted upon in 
this run. 



Display 

The display funct ion is used to g!et a 
printout of a module in the relocatable 
library. Any number of modules can be 
displayed within a single JOB run. The 
printed output consists of a header and the 
module. 

contained in the printed header is the 
module name, the number of blocks needed to 
contain the module, and the address of the 
module in the relocatable library. 

The printed output of the module is 
represented by hexadecimal characters and 
EBCDIC, depending on the type of record and 
the information contained within ·the 
record. The field identifying the type of 
loader card and the symbolic labels within 
the ESD type of record are printed in 
EBCDIC. 

The DSPLY cont.rol card is used to 
display modules in the relocatable library. 
It is punched in one of the following 
formats. 

// DSPLY mod1,mod2, ••• ,modn 

// DSPLY ALL 

The first format is used if only 
particular modules are to be displayed. 
The entry in the operation field, separated 
from the two slashes by at least one blank, 
is DSPLY. 

The entry in the operand field,. modn, is 
separated from the operation field by at 
least one blank. It represents the name of 
the module to be displayed. If more than 
one module is to be displayed, the module 
names are separated by a comma. ']'he module 
name can be of any length; however, only a 
maximum of the first six characters is used 
by the system to locate the module. 
Continuation cards are not recogni.zed. 

The second format is used if the entire 
relocatable library is to be displayed. 
The entry in the operation field is DSPLY. 
The entry in the operand field is ALL. 

For the display function, SYSRDR must be 
assigned to a card reader, and SYSLST must 
be assigned to a printer. 

Control card input for the display 
function, read from the device assigned to 
SYSRDR, is as follows. 

1. The JOB control card (RSERV), followed 
by 

2. The ASSGN control cards, if the current 
assignments are not those required. 

The ASSGN cards that can be used are 
SYSRDR and SYSLST. The ASSGN cards are 
followed by 

3. The EXEC control card, followed by 

4. The DSPLY control card(s), followed by 

5. The END card, which is the last control 
card of the job. 

The punch function is used to convert a 
module in the relocatable library into a 
punched-card output deck. 

Any number of modules in the relocatable 
library can be punched within a single JOB 
run. The punched-card output is acceptable 
to every function that uses relocatable 
modules as input. Each module will be 
punched with a CATAL card (containing the 
name of the module) as the first card of 
the module. The last card of the module 
will be either an ENTRY card or a REND 
card. 

The PUNCH control card is used to 
convert modules in the relocatable library 
to punched-card output. It is punched in 
one of the following formats. 

// PUNCH mod1,mod2, ••• ,modn 

// PUNCH ALL 

The first format is used if only 
specific modules are to be punched. The 
entry in the operation field, separated 
from the two slashes by at least one blank. 
is PUNCH. The entry in the operand field, 
modn, is separated from the operation field 
by at least one blank. It represents the 
name of the module to be punched. If more 
than one module is to be punched, the 
module names are separated by a comma. The 
module names can be of any length; however. 
only a maximum of the first six characters 
is used to locate the module. Continuation 
cards are not recognized. 

The second format is used if the entire 
relocatable library is to be punched. ~he 
entry in the operation field is PUNCH. Thp 
entry in the operand field is ALL. 

Any number of PUNCH cards can be used 
within a single JOB run. 

For the punch function, SYSRDR must be 
assigned to a card reader, SYSOPT must be 
assigned to a card punch, and SYSLST can be 
assigned to a printer. 

System Service 89 



control card input for the punch 
function, read from the device assigned to 
SYSRDR, is as follows. 

1. The JOB control card (RSERV), followed 
by 

2. The ASSGN control cards if the current 
assignments are not those required. 
The ASSGN cards that can be used are 
SYSRDR, SYSOPT, and SYSLST. The ASSGN 
cards are followed by 

3. The EXEC control card, followed by 

4. The PUNCH control card(s), followed by 

5. The END control card, which is the last 
control card of the job. 

Display and Punch 

The display and punch fUnction is used to 
combine the separate operations of the 
display function and the punch function. 
The output of the display and punch 
function is identical to that described in 
the two preceding subsections. Any number 
of modules in the relocatable library can 
be displayed and punched within a single 
JOB run. 

The DSPCH control card is used to 
convert modules in the relocatable library 
to printed and punched-card output. The 
DSPCH card is punched in one of the 
following formats. 

// DSPCH mod1,mod2, ••• ,modn 

// DSPCH ALL 

The first format is used if only 
particular modules are to be displayed and 
punched. The entry in the operation field, 
separated from the two slashes by at least 
one blank, is DSPCH. The entry in the 
operand field, modn, is separated from the 
operation field~Y-at least one blank. It 
represents the name of the module that is 
to be displayed and punched. If more than 
one module is to be displayed and punched, 
the module names are separated by a comma. 
The module names can be of any length; 
however, only a maximum of the first six 
characters is used by the system to locate 
the module. continuation cards are not 
recognized. 

The second format is used if the entire 
relocatable library is to be displayed and 
punched. The entry in the operation field 
is DSPCH. The entry in the operand field 
is ALL. 

90 S/360 BOS Prog. Guide 

For the display and punch function, 
SYSRDR must be assigned to a card reader, 
SYSOPT must be assigned to a card punch, 
and SYSLST must be assigned to a printer. 

control card input for the display and 
punch function, read from the device 
assigned to SYSRDR, is as follows. 

1. The JOB control card (RSERV), followed 
by 

2. The ASSGN control cards, if the current 
assignments are not those required. 
The ASSGN cards that can be used are 
SYSRDR, SYSOPT, and SYSLST. The ASSGN 
cards are followed by 

3. The EXEC control card, followed by 

4. The DSPCH control card(s), followed by 

5. The END card, which is the last control 
card of the job. 

LIBRARIAN FUNCTIONS: DIRECTORIES 

This section describes the service 
function, display, that relates to five 
directories. The organization functions 
for these directories are discussed in the 
section entitled Organization Functions. 

To request the display service function 
for a directory (core image directory, 
relocatable directory, macro directory, 
system directory, or transient directory), 
use the following control card. 

// JOB DSERV 

The display function is used to print 
the status of the directories defined for 
the system. Any number of directories can 
be displayed within a single JOB run. 

The printed display for each directory 
will appear as follows. 

1. The name of the directory. 

2. A heading line with field headings that 
describe the contents of the directory. 

3. The contents of the directory. If any 
entry in the core image or relocatable 
library is temporary, an asterisk is 
printed to the left of the phase, or 
module name. 

The DSPLY control card is used to 
display specific directories or all 
directories. 



It is punched in one of the following 
formats. 

// DSPLY dir1,dir2, ••• ,dirn 

// DSPLY ALL 

The first format is used if only 
specific directories are to be displayed. 
The entry in the operation field~ separated 
from the two slashes by at least one blank, 
is DSPLY. The entry in the operand field, 
dirn, is separated from the operation field 
by at least one blank. It represents the 
name of the directory to be displayed. It 
can be: 

CD for the core image directory 
RD for the relocatable directory 
MD for the macro directory 
SD for the system directory 
TD for the transient directory 

If more than one directory is to be 
displayed, the symbols for the directories 
must be separated by a comma and can be in 
any order. 

The second format is used if all five 
directories are to be displayed. The entry 
in the operation field is DSPLY. The entry 
in the operand field is ALL. 

For the display function, SYSR'DR must be 
assigned to a card reader, and SYSLST must 
be assigned to a printer. 

Control card input for the display 
function, read from the device assigned to 
SYSRDR, is as follows. 

1. The JOB control card (DSERV), followed 
by 

2. The ASSGN control cards, if the current 
assignments are not those required. 
The ASSGN cards that carl be used are 
SYSRDR and SYSLST. The ASSGN cards are 
followed by 

3. The EXEC control card, followed by 

4. The DSPLY control card(s), followed by 

5. The END control card, which is the last 
control card of the job. 

ORGANIZATION FUNCTIONS 

An organization function is requested by 
the use of a JOB card. The operand field 
of the JOB card contains one of three 
possible operands, depending on the kind of 
organization fUnction required. 

The kinds of organization functions are: 

1. Reallocation 
2. Library condense 
3. Copy system. 

The reallocation function is used to 
.' redefine the number of -tracks a library, 

directory, or area is to contain. 

The library condense function is used to 
reorgani ze a library to minimize vacanciefi 
between phases, modules, or macros in that_ 
library. 

The copy system function is used to copy 
either selectively or completely , the 
system residence. 

REALLOCATION 

The reallocation function is used to 
redefine the number of tracks allotted to 
the libraries, directories, checkpoint 
area, and the volume (label control card) 
area on a disk resident system. Any number 
of these areas can be reallocated within a 
single JOB run. 

The reallocation function can be used to 
increase, decrease, or eliminate specified 
areas in the disk resident system. Each 
library and directory on system residence 
is condensed. The JOB control card 
required to perform a reallocation function 
is punched in the following format. 

// JOB AORGZ 

The control cards, VOL, DLAB, and XTENT are 
required for the reallocation job. The VOL 
control card is punched in the following 
format. 

// VOL SYSRES,SYSRES 

The DLAB control card is punched in thF' 
following format. 

II DLAB 'BOS 8K DISK (33 blanks) lssssss', c 

OOOl,yyddd,yyddd, '0000000000000' 

The operand ssssss is the volume serial 
number of the disk pack. The operands 
yyddd,yyddd are the creation date and 
expiration date of the "BOS 8K DISK" file. 

The XTENT card is punched in the 
following format. 

II XTENT 1,000,0000001,cccchhh, 'ssssss',SYSRES 

The operand cccchhh is the highest address 
of the extent to be reserved for system 
residence. The operand ssssss is the same 
volume serial number used in the DLAB card. 

System Service 9l 



Associated with the reallocation job is 
the TRCKS control card. The TRCKS control 
card is punched in the following format. 

// TRCKS id,no,id,no, ••• 

The entry in the operation field, 
separated from the two slashes by at least 
one blank, is TReKS. The entries in the 
operand field are separated from the 
operation field by at least one blank. The 
operand field can contain any even number 
of operands, up to sixteen. The entry, 1d, 
represents the library, directory, or area 
to be reallocated and can be any of the 
following. 

CL for the core image library 
RL for the relocatable library 
ML for the macro library 
CD for the core image directory 
RD for the relocatable directory 
MD for the macro directory 
CP for the checkpoint area 
VL for the volume (label control card) 

area 

no in the operand field is an integer that 
represents the number of tracks to be 
allocated. 

The operands can appear in any order as 
long as each pair of operands is related. 
Operands are separated by a comma. When 
reallocation is being performed, only the 
areas being changed need appear on the 
control card. Consider this example. 

// TRCKS ML,5,CL,5,RL,3,RD,1 

In the example, the macro library would 
contain five tracks; the core image 
library, five tracks; the relocatable 
library, three tracks; and the relocatable 
directory, one track. 

For the reallocation function, SYSRDR 
must be assigned to a card reader, and 
SYSLST can be assigned to a printer. 

Control card input for the reallocation 
function, read from the device assigned to 
SYSRDR, is as follows. 

1. The JOB control card (AORGZ), followed 
by 

2. The ASSGN control cards if the current 
assignments are not those required. 
The ASSGN cards that can be used are 
SYSRDR and SYSLST if the printed status 
report is desired. The ASSGN cards are 
followed by 

3. The VOL, DLAB, and XTENT control cards 
for SYSRES, followed by 

4. The EXEC control card, followed by 

92 S/360 BOS Prog. Guide 

5. The TReKS control card, followed by 

6. The END control card, which is the last 
control card of the job. 

LIBRARY CONDENSE 

The library condense function is used to 
reorganize a library to minimize vacancies 
between phases, modules, or macros in their 
respective libraries. One or more of the 
three libraries can be condensed within a 
single JOB run. Use the library condense 
function whenever a number of vacancies 
have accumulated within a library, thus 
affecting the ability to catalog a new 
phase, module, or macro into the particular 
library. 

The JOB control card required to perform 
a library condense function for any library 
is punched in the following format. 

// JOB LORGZ 

Associated with the library condense JOB 
control card is the CONDS control card. 
The CONDS control card is punched in one of 
the following formats. 

// CONDS ALL 

// CONDS lib, lib, lib 

The first format is used if all three 
libraries are to be condensed. The entry 
in the operation field, separated from the 
two slashes by at least one blank, contains 
CONDS. The entry in the operand f1eld, 
separated from the operation field by at 
least one blank, contains ALL. 

The second format is used if only 
specific libraries are to be condensed. 
The operation field, separated from the two 
slashes by at least one blank, contains 
CONDS. The operand field is separated from 
the operation field by at least one blank. 
It can contain one, two, or three operands, 
separated by commas. The entry, lib, in 
the operand field represents one of the 
following values. 

CL for the core image library 
RL for the relocatable library 
ML for the macro library. 

Entries in the operand field can be in any 
order. Any number of the three libraries 
of the disk resident system can be 
condensed within a single JOB run. 



consider the following examples:. 

// CONDS CL 

// CONDS ML,RL 

// CONDS RL,CL,ML 

In the first example, only the core 
image library will be condensed. In the 
second example, both the macro lib~ary and 
the relocatable library will be condensed. 
In the third example, all three libraries 
will be condensedQ 

For the library condense function, 
SYSRDR must be assigned to a card reader, 
and SYSLST can be assigned to a printer·. 

control card input for the library 
condense function, read from the device 
assigned to SYSRDR, is as follows. 

1. The JOB control card (LORGZ), followed 
by 

2. The ASSGN control cards, if the current 
assignments are not those required.. 
The ASSGN cards that can be used are 
SYSRDR and SYSLST. The ASSGN cards are 
followed by 

3. The EXEC control card, followed by 

4. The CONDS control card(s), followed by 

5. The END control card, which is the last 
control card of the job. 

COpy SYSTEM 

The copy system function is used to copy, 
either selectively or completely, the 
directories and libraries of the system 
residence. Along with the actual copying, 
the number of tracks allocated to 
libraries, directories, label control card 
area, and checkpoint area of the new system 
pack can be redefined. 

The device number of the disk pack on 
which the disk resident system is to be 
copied is assigned to SYSOOO. The ASSGN 
card precedes the EXEC card in the device 
assigned to SYSRDRo SYSLST can be used to 
print additional diagnostics. 

By using the TReKS card, described in 
the sUbsection entitled Reallocation, the 
number of tracks allocated to the label 
control card area, the checkpoint area, 
libraries, and the directories can be 
respecified, if required, for the new 
system. The TRCKS card in no way affects 
the old system. If the number of t:cacks 

allocated to the new libraries and/or 
directories is not to differ from the old 
system, no TRCKS card is required. If a 
TRCKS card is used, it must include the 
allocation for each area in the new system, 
regardless of whether it differs from the 
old system. The new system must contain at 
least the three areas: core image 
directory, core image library, and label 
control card area. 

A complete copy consists of copying each 
directory and library on the resident pack. 
The checkpoint and label control card areas 
are not copied, but are allocated. The 
selective copy consists of copying only 
particular libraries, or specific phases, 
modules, or macros within libraries (see 
Appendix K and Appendix L for names). When 
either kind of copy (complete or selective) 
is performed, all libraries are 
automatically condensed. 

The JOB card required for a copy-syste~ 
function is punched in the following 
format. 

// JOB CORGZ 

The control cards, VOL, DLAB, and XTENT are 
required for the copy job. The VOL control 
card is punched in the following format. 

// VOL SYSOOO,SYSRES 

The DLAB control card is punched in the 
following format. 

II DLAB 'BaS 8K DISK (33 blanks) lssssss', c 

OOOl,yyddd,yyddd, '0000000000000' 

The operand ssssss is the volume serial 
number of the disk pack. The operands 
yyddd,yyddd are the creation date and 
expiration date of the "BOS 8K DISK" file. 

The XTENT card is punched in the 
following fQrmat. 

II XTENT 1,000,0000001,cccchhh,'ssssss',SYSOOO 

The operand cccchhh is the highest address 
of the extent to be reserved for system 
residence. The operand ssssss is the same 
volume serial number used in the DLAB card. 

Associated with the copy system job is 
the COPYS control card. The COPYS control 
card is punched in one of the following 
formats: 

// COPYS id,name1,name4-name7, ••• ,namen 

// COPYS ALL 

// COPYS id,ALL 

System Service 93 



The first format is used when only 
selected elements of specific libraries are 
to be copied. The operation field, 
separated from the two slashes by at least 
one blank, contains COPYS. The first 
entry, id, in the operand field is 
separated from the operation field by at 
least one blank and can be one of the 
following: 

CL for the core image library 
RL for the relocatable library 
ML for the macro library. 

The other entries, namen, in the operand 
field are the· name(s) of the phases, 
modules, or macros that are to be copied. 
All entries in the operand field must be 
separated by commas. Several elements of a 
particular library can be specified on one 
control card. 

If the order in which the elements are 
present in the particular library is known, 
then a series of elements can be copied by 
specifying the name of the first and last 
element to be copied and separating the two 
names by a hyphen (ll-punch) instead of a 
comma. Continuation cards are valid if: 

1. The operand entries are contiguous to 
column 71. 

2. A continuation character is punched in 
column 72. 

3. At least the first two operands appear 
on the first card. 

4. The first character in the next card is 
punched in column 16. 

For example, the first card could be: 

cols. 

i~ 
// COPYS CL,NAMEA,NAMEC, ••• ,NAMX 

and the second card could be: 

col. 
1 
6 
EM, NAMEQ,NAMES-NAMEW, NAMEZ 

Each library that is to be selectively 
copied requires a separate group of COPYS 
control cards. All elements to be 
selectively copied from one library must be 
specified before elements of another 
library are specified. The selective copy 
function will not go back and forth from 
one library to another. When specific 
elements in a library are to be selectively 
copied rather tr~n the entire library, a 
limit of 351 items can be specified for 

94 S/360 BOS Prog. Guide 

each library. The number of items is 
calculated as follows. 

Each specific operand on the COPYS card 
is counted as one item, except 

1. The library identifier is not 
counted. 

2. Two names separated by a hyphen 
(ll-punch) are counted as three 
items. 

Only permanent elements on a resident 
system can be copied. If a temporary item 
is specified by name, a not-found error 
will result. 

The second format is used when the 
entire system is to be copied. The entry 
in the operation field, separated from the 
two slashes by at least one blank, is 
COPYS. The entry in the operand field, 
separated from the operation field by at 
least one blank, is ALL. 

The third format is used when an entire 
library is to be copied. The entry in the 
operation field, separated from the two 
slashes by at least one blank, is COPYS. 
The entry in the operand field, iQ, 
separated from the operation field by at 
least one blank, can be CL, RL, or ML. The 
second entry in the operand field is ALL. 

For the copy-system function, SYSRDR 
must be assigned to a card reader, SYSOOO 
must be assigned to a disk pack, and SYSLST 
can be assigned to a printer. 

Control card input for the copy-system 
function, read from the device assigned to 
SYSRDR, is as follows. 

1. The JOB control card (CORGZ), followed 
by 

2. The ASSGN control cards if the current 
assignments are not those required. 
The ASSGN cards that can be used 
are SYSRDR, SYSOOO, and SYSLST. 
The ASSGN cards are followed by 

3. The VOL, DLAB, and XTENT control cards 
for SYSOOO, followed by 

4. The EXEC control card, followed by 

5. The TReKS control card (optional), 
followed by 

6. The COPYS control card(s)" followed by 

7. The END control card, which is the last 
control card of the job. 



LIBRARIAN FUNCTI~NS--DEVICE TABLE 

This section describes the service 
functions that relate to the device table 
of a Supervisor. The device table contains 
an entry called a Physical Unit Block (PUB) 
for each symbolic unit that will be used in 
the system. This device table is referred 
to as the PUB table. To request a service 
function for the PUB table use the 
following JOB control card: 

// JOB PSERV 

Three service functions are available 
through the use of the PSERV (PUB service) 
program. 

• Display the PUB table (current device 
assignments) from main storage. 

• 

• 

Display the PUB table (permanent device 
assignments) from the core image 
library on disk. 

Assign symbolic units to the PUB table 
in the core image library. 

Display 

The DSPLY control card is used to display 
the contents of the PUB table. It is 
punched in one of the following formats. 

// DSPLY source,SYSxxx, ••• ,SYSxxx 

or 

// DSPLY source,ALL 

The first format is used when spec~fic 
physical unit blocks (PUBs) are to be 
displayed. The second format is used when 
the entire PUB table (all physical unit 
blocks) is to be displayed. 

The entry in the operation field, DSPLY, 
is separated by at least one blank column 
from the two slashes in columns 1 and 2 of 
the card. The fi:r"st entry in the operand 
field is separated from the operation field 
by at least one blank. When more 1:han one 
entry is used in the operand field v the 
entries are separated by a comma. Blank 
columns are not permitted within entries or 
between entries in the operand field. 

The first operand for both formats, 
source, indicates the location of the PUB 
table to be displayed. The first operand 
must be CORE, if the PUB table in main 
storage is to be displayed. The display 
shows the current symbolic unit assignments 
for the Supervisor that resides in main 
storage at the time the display is made. 

If the PUB table in the core image 
library (on the system resident disk pack) 
is to be displayed, the first operand must 
be DISK. The display would show the 
symbolic unit assignments that were made 
when the Supervisor was assembled or when 
assignments were established by the assign 
function of the PSERV program. If both the! 
main storage and the core image library PUd 
tables were displayed, any difference 
between the two displays would be due to 
assignments made after the IPL procedure 
had been executed. 

The first format is used when specific 
physical unit blocks (PUBs) are to be 
displayed. The entries, SYSxxx, in the 
operand field following the source entry 
represent the specific symbolic units to bE' 
displayed. Any of the following are valid. 

SYSRES 

SYSRDR 

SYSLST 

SYSIPT 

SYSOPT 

SYSLOG 

SYSOOO-SYS254 

If more than one symbolic unit is to be 
displayed, the SYSxxx entries can be 
punched in any order. continuation cards 
can be used when more than one card is 
necessary to contain the o~erand field. 

The second format is used if the entire 
PUB table (all symbolic units) is to be 
displayed. The second operand is ALL. 

The display function requires that a 
card reader be assigned to SYSRDR, and a 
printer be assigned to SYSLST. 

Control card input for the display 
functions, read from the device assigned to 
SYSRDR, is as follows. 

1. The JOB control card PSERV, followed by 

2. The ASSGN control cards, if the current 
assignments are not those required. 
The ASSGN cards that can be used are 
SYSRDR and SYSLST. The ASSGN cards are 
followed by 

3. The EXEC control card, followed by 

4. The DSPLY control card(s), followed by 

5. The END control card, which is the last 
control card of the job. 

System Service 95 



Assign 

The assign function is used to make 
permanent assignments to the POB table in 
the Supervisor that resides in the core 
image library. The PUB table in main 
storage is not affected by the PSERV 
program assign function. Device 
assignments made by the assign function 
will have no effect on processing 
operations until the Supervisor (including 
the modified PUB table) is loaded into main 
storage via an IPL procedure. 

The assign function permits changes to 
the core image library PUB table that would 
otherwise require reassembly of the 
Supervisor. 

The ASSGN control card is used to assign 
a specific device adddress to the symbolic 
unit used. The ASSGN card is read from the 
device assigned to SYSRDR. It is punched 
in the following format. 

// ASSGN SYSxxx,X'cuu',dd,X'ss' 

Refer to the section entitled ASSGN Card 
for an explanation of the entries in the 
operand field. All ASSGN card formats 
acceptable to the Job Control program can 
be used with the assign function of the 
PSERV program. 

For the assign function, SYSRDR must be 
assigned to a card reader, and SYSLST must 
be assigned to a printer. 

Control card input for the assign 
function, read from the device assigned to 
SYSRDR, is as follows. 

1. The JOB control card PSERV, followed by 

2. The ASSGN control cards required for 
making the proper assignment to SYSRDR 
and SYSLST in the main storage PUB 
table. If the current assignments are 
those that are required, these cards 
are not necessary. The ASSGN cards are 
followed by 

3. The EXEC control card, followed by 

4. The ASSGN control cards for changing 
the symbolic unit assignments in the 

96 S/360 BOS Prog. Guide 

PUB table that resides in the core 
image library. 

5. The END control card, which is the last 
control card of the job. 

SYSTEM GENERATION 

The disk-resident system is received on 
either a magnetic tape or a disk pack which 
contains the core image, relocatable, and 
macro libraries. If the disk system is 
received on tape, it must be copied onto a 
disk before the system generation procedure 
can begin. 

The core image library contains the 
Supervisor, Job Control, Linkage Editor, 
Librarian, and Assembler. All programs in 
the core image library are edited to run 
with the IBM-supplied Supervisor. 

During system generation, the 
IBM-supplied programs in the relocatable 
library can be cataloged and link-edited to 
run with a Supervisor that is adapted to 
the configuration of the individual 
installation. Among these programs are Job 
Control, Linkage Editor, and Librarian. 

The system received by the user is 
capable of immediate operation. Most 
installations, however, generate 
Supervisors adapted to their 
configurations. Also, system libraries may 
be edited according to the needs of 
different installations. When this process 
is completed, the newly created system 
replaces the system that the user received. 

Briefly, the system generation procedure 
is as follows: The user codes a set of 
Supervisor macro instructions describing 
his system configuration. The assembly of 
these macro instructions results in a new 
supervisor. Subsequently, IBM-supplied 
programs in the relocatable library are 
cataloged to operate with the newly 
assembled Supervisor. 

The complete system generation procedure 
is described in the System Generation and 
Maintenance manual as listed on the front 
cover of this publication. 



INTRODUCTION 

The Qata Management section of this 
manual introduces the reader to the 
functions and concepts of data files and 
data organizations for tape and disk files. 
The organization of this section is shown 
in Figure 23. Included in this section is 
an introduction to the Input/Output Control 
System (IOCS) and basic data file 
processing techniques provided within the 
basic operating system IOCS library. 

BOS provides the user with several 
automatic functions for management of 

Data 
Management 

General 

Figure 23. Data Management: General Concepts 

PART 4: DATA MANAGEfv'I..ENT 

external storage (card files, tape files, 
and the 2311 disk-storage files, etc.). 
The input/output operations associated with 
external storage files are included in the 
IOCS routines available with BOS. 

Management of input/output operations 
and the related data files involves: 

• File Organization 

• Record Loading and Retrieval 

• Blocking and Deblocking of Records 

Introducti on 

Organization of 
Data Files 

Random Addressing 
Techniques 

Data Management 97 



• 

• 

Scheduling and Control of Channel I/O 
Program 

Handling of Input/Output Interruption 
and Error Conditions 

• Label Writing and Checking 

THE INPUT/OUTPUT CONTROL SYSTEM (laCS) 

The Input/Output Control System capability 
provided by BaS consists of two parts: 

1. Physical laCS - the physical I/O 
routines incorporated in the Channel 
Scheduler portion of the Supervisor. 

2. Logical laCS - the logical 1/0 routines 
assembled from macro instructions 
written in the problem program. 

Physical laCS controls the actual 
transfer of physical records between 
external storage devices (cards, tape, 
disk, etc) and main storage. A physical 
record is that amount of data actually read 
into main storage or written from main 
storage as the result of an input/output 
command. Physical laCS routines perform 
the following functions. 

• 

• 
• 

Scheduling I/O requests on each Channel 
(queueing) 

starting I/O operations 

Handling interruptions associated with 
I/O operations 

• Handling error conditions for devices 
supported. 

The physical laCS routines are incorporated 
in the Channel Scheduler portion of the 
Supervisor (Part 2: The System Control 
Programs has a discussion on the Channel 
Scheduler) • 

Logical laCS controls those functions 
that a user would have to perform to locate 
a logical record for processing. A logical 
record is one unit of information in a file 
of similar units of data. For example, one 
employee's record in a master payroll file, 
or one part-number record in an inventory 
file, would be considered logical records. 
One or more logical records are contained 
within one physical record. The term 
logical laCS refers to the routines that 
perform the following functions: 

• Blocking and deblocking records 

• Switching between I/O areas when two 
areas are specified for a file 

98 S/360 BaS Prog. Guide 

• Handling end-of-file and end-of-volume 
conditions 

• Label writing and checking. 

Logical laCS uses physical laCS to 
execute I/O commands whenever it determines 
that a transfer of data is required. For 
example, if a file consists of blocked 
recorQs and a block has been read into main 
storage (Figure 24), logical laCS merely 
makes each record in succession available 
to the user, until the end of the block is 
reached. No physical laCS is required. 
When logical laCS determines that the last 
record in the block has been processed, 
however, it requests physical laCS to start 
an I/O operation to transfer the next 
physical record into main storage. In the 
illustration, only logical laCS (LIO) is 
required to make records 2 and 3 (and 5 and 
6) available for processing. Physical laCS 
(PIO) is required to transfer records 4, 5, 
and 6 as one block of records into main 
storage, then logical laCS makes records 4, 
5, and 6 available in succession to the 
problem program. 

Block of 3 Records in Core Storage 

I Record 1 
(Record 4) 

lI0 

Record 2 
(Record 5) 

for 
Record 2 (5) 

L10 = Logical 10CS 
PIO = Physical 10CS 

Record 3 
(Record 6) 

L10 
for 

Record 3 (6) 

L10 and PIO 
for 

Record 4 

Figure 24. Physical laCS vs Logical laCS 

Both logical 10CS macros (such as GET, 
PUT, READ, WRITE) and physical laCS macros 
(such as EXCP and WAIT) are available to 
the programmer for handling records. The 
logical laCS macro routines cause all the 
functions of both logical and physical laCS 
to be performed for the programmer. The 
user can completely bypass the logical laCS 
fUnctions by using the physical laCS macro 
instructions EXCP, WAIT and CCB in his 
problem program. Logical laCS provides 
four sets of routines for processing 
records. 

The consecutive-processing routines are 
used to read, process, and write successive 
records in a logical file. These routines 
apply to all files in serial-type I/O 
devices. The card readers, card punches, 
magnetic tape units, paper tape readers, 
and printers are serial-type devices. 
Also, these routines can be used for 2311 
disk file records to be processed in a 
serial manner. The basic macros used in 
these routines are GET and PUT. 



The Direct Access Method (DAM) provides 
READ, WRITE, and WAITF macro instructions 
for processing disk files only. The DAM 
macro instructions can be used to create 
and maintain logical files in random order. 
Although the DAM technique will usually be 
used for randomly organized files~ in some 
situations serial-tYpe files on disk can be 
processed with the DAM macros. There are 
options in this technique that permit 
sequentially processing serial files with 
Key Areas. 

The Indexed Sequential File Management 
System (ISFMS) routines are provided to 
take advantage of the flexibility of the 
IBM 2311 Disk Storage Drive. These 
routines provide a comprehensive method for 
establishing and maintaining logical files 
in a manner which allows random and 
sequential processing in the same file. 
Quite often more than one type of 
processing is required on the same data 
file. For example, records in a file may 
require sequential processing for month-end 
reports, and these same records can be 
randomly processed for daily updating. 

Macro routines are provided for sending 
and receiving data to and from a number of 
STR (Synchronous Transmitter Receiver) 
devices. STR is a specific mode of data 
transmission, and all STR devices use 
identical data transmission codes and line 
control procedures. The STR routines 
provide READ/WRITE level macro ins'tructions 
to simplify use of these devices. There is 
also a maCro instruction to convert to and 
from the standard STR transmission code 
[fixed count four-out-of-eight (4/8)]. 

The macro 'routines used for ESC (Binary 
Synchronous Corrmunication) support provide 
for sending and receiving data in a 
Cpu-to-cPU corrmunications environment. 
USing strict line control procedures, the 
BSC macro routines provide READ/WRITE level 
macro instructions to simplify the 
processing of data in this teleprocessing 
environment. 

Macro Instructions for I/O Routines 

Two types of macros are considered when a 
program is being written to process records 
in a file. 

1. The declarative file-definition macro 
instructions are written at the 
beginning of the problem program to 
describe the file, indicate the type of 
processing required, and specify 
main-storage areas needed for 
processing the file. 

2. The imperative macro instructions are 
written into the problem program to 
provide linkage to the routines 
described by the declarative 
file-definition macro instructions. 

The file-definition macro instructions are 
provided for the user to tailor his 
programs for his particular file processing 
needs. Five file-definition macros, DTFSR, 
DTFDA, DTFIS, DTFRF, and DTFSN are 
available for defining logical IOCS 
routines. One file-definition macro DTFPH 
is provided when the user wishes to use the 
physical IOCS macro instructions EXCP, 
WAIT, and CCB, and his files have standard 
labels to be processed. 

At program-assembly time, logical IOCS 
routines are generated to conform to the 
specifications written by the programmer in 
his file-definition macro statements. 

The imperative macro statements written 
by the programmer are assembled into 
linkage routines that communicate with 
routines already generated by the 
file-definition macros. These imperative 
macros, such as OPEN, CLOSE, GET, PUT, 
READ, WRITE, etc, are used to perform the 
following functions: 

1. Activate files for processing; this 
includes label checking. 

2. Deactivate files after processing is 
completed. 

3. Make logical records available for 
processing (deblocking). 

4. Assemble logical records for output 
(clocking) • 

5. Alternate I/O areas (when two I/O areas 
are used). 

6. Transfer records from main storage to 
external files. 

7. Perform control operations, such as, 
rewind tape, stacker-select cards, or 
seek disk file tracks. 

For details on writing file-definition 
macro statements and imperative macro 
statements, refer to the BOS Assembler with 
Input/Output Macros publication, listed in 
the Preface of this manual. 

Labels 

To ensure that the correct logical file is 
used for each job, it is common practice to 
identify all logical files with labels 

Data Management 99 



recorded on the magnetic surface of a disk 
pack or a tape. This internal label is in 
addition to a printed label on the outside 
surface of the pack or on the tape reel. 
The internal labels provide a means for 
computer-controlled file protection and 
identification. Labels are required on all 
1316 disk packs to be processed by a 
S ys t em/ 360. 

BOS provides IOCS routines for label 
writing and checking. There are 
essentially two basic labels - the Volume 
label and the File label. The volume label 
uniquely identifies the volume (a reel of 
tape or a disk pack), and the file label 
contains information applicable to a given 
data file or portion of a data file stored 
on a particular volume. 

DISK-FILE ORGANIZATION 

There are many advantages to direct-access 
storage in a data processing system. The 
IBM 2311 Disk Storage Drive has greatly 
increased these advantages. The 
flexibility of this unit allows several 
kinds of processing within the same system. 
The advantages offered by one kind of 
processing are often qUite different from 
those offered by another. For example, in 
a random-processing application, the 
advantages center around the ability to 
process only those records that have 
current transactions, rather than to 
process all of a file. In a second case, 
the advantage may be the ability to process 
one or more sequential files against a 
single sequenced input. 

File organization is the key to 
effective use of disk storage. The 
objective of disk-file organization is the 
systematic storing of information in disk 
storage in such a manner that records can 
be retrieved in the quickest way possible, 
while maintaining the over-all processing 
objectives of the system. 

The method of organization best suited 
to a particular file of disk records 
depends upon many factors. These factors 
must be analyzed for each file in anyone 
particular application. Often, more than 
one organization scheme can be considered 
for the same file. In one application, 
records could be processed purely at 
random; in another, the same records could 
be processed in sequence by various control 
fields. For example, records within a file 
might be processed at random during an 
updating run and sequentially within 
certain groups, such as branch office or 
due date, when producing reports or 
billing. A file such as this would be 

100 S/360 BOS Prog. Guide 

analyzed to determine whether it should be 
organized: 

1. Purely randomly, thus keeping process 
time at a minimum during one run but 
destroying the advantage of the 
sequential nature of the other. 

2. Sequentially, thus minimizing the time 
required to produce reports but 
increasing updating time. 

3. Randomly for updating, and then sorted 
into sequence for reports. 

The decision would depend on the nature of 
the file. Questions such as the following 
might be asked: 

1. Can transactions be batched and sorted 
before processing, or must they be 
processed as they occur? 

2. Is the activity distributed throughout 
the file in such a manner as to warrant 
passing the entire file when updating? 

3. Would the processing time saved by 
sorting warrant the time and effort 
required? 

Questions of this kind must be asked of 
each file in an installation. In choOSing 
organization methods, the over-all 
processing objectives of the system must be 
kept in mind at all times. 

CRGANIZATION OF DATA FILES 

This section is written for the reader who 
seeks a general understanding of the 
functions and concepts of direct-access 
storage devices and data organization. The 
discussion is general and informal. It 
does not define the rules for using the 
basic operating system. It does attempt to 
explain the basic concepts of data 
organization and define some of the terms 
that can be encountered in related 
literature. 

The experienced programmer may find this 
section of interest, but it is written 
primarily for the reader whose experience 
with tape and disk files has been limited. 

LOGICAL FILE VS PHYSICAL UNI~ 

~o understand file organization, it is 
important to distinguish between a logical 
file and the physical unit used to store 
the file. A logical file is a group of 



related data records, such as a payroll 
file (one record for each employee, showing 
his rate of pay, deductions 6 etc), a 
customer file (one record for each 
customer, showing his address, credit 
limit, unpaid balance, etc), or an 
inventory file (one record for each 
inventory item, showing cost, selling 
price, number in stock, etc). A physical 
unit used for storage of data records could 
be an IBM 2400 Magnetic Tape Unit or an IBM 
2311 Disk storage Drive. Also, an IB~ 2540 
Card Reader can be considered as a physical 
unit when data records punched into cards 
are being read into the system. 

DATA FILES AND RECORDS 

Data files stored in such media as paper, 
cards, tapes, or disk storage devices, are 
encountered in practically every business 
activity. These files provide the basis 
for most manual, mechanical, and electronic 
data processing. Data files are composed 
of a number of individual records ranging 
from a few records up to thousands or 
millions of records. 

A record can be defined as a collection 
of information comprised of alphameric 
and/o.r non-alphameric characters related to 
a common identifier. The common identifier 
is known as a record's control field or its 
key. Usually one of the prime information 
elements (fields) present within a record 
is used to identify the record. For 
example, man number could be used as the 
key or identifier for a payroll record, and 
policy number could be the key of an 
insurance policy file. 

The size or length of records will vary 
from file to file, and the size can range 
from a single character up to thousands of 
characters. 

A single record usually includes one or 
more logical dat.a fields; a data field is a 
sequence of one or more characters treated 
as a processing unit of information. An 
individual data field is normally 
identified by its location within a record. 

The logical structure of records and of 
fielas within records has become 
increasingly important since the advent of 
computers and high-speed recording media 
such as magnetic tapes and disks.. This 
logical structure is strongly affected by 
whether a record is of fixed or variable 
length. 

Fixed-Length Records 

In fixed-length record files, all records 
are allocated the same number of character 
storage positions. Identical data fields 
are present in every record, whether they 
are used or not. Each data field is 
identified by its position within the 
record. The control field (key) is usually 
the first field present in a record, but 
this is not a fixed rule. Fixed-length 
record files are the most straightforward 
files to process, and are most frequently 
encountered. 

In many applications the use of 
fixed-length records would make inefficient 
use of file-storage space. For example, 
consider a file having a maximum record 
length of 850 positions. Assume that the 
average record length is 230 positions and 
the minimum length is only 100 positions. 
It is readily apparent that a fixed record 
length of 850 positions would cause many 
storage positions to be wasted. Situations 
such as this require the development of 
space-saving techniques based on varying 
the number of storage positions allocated 
to data records. 

Variable-Length Records 

Completely variable-length records are 
sometimes developed for more efficient use 
o~ storage. In this approach the data 
portion of the record may be of any length, 
but the key (control-field) size is 
constant. The length of a variable-length 
record is indicated by a record-length 
character-count field present in each 
record. 

Note: If variable length records are to be 
read or written on 7-track tape, the 
data-conversion special feature is 
required. 

Fixed-length and variable-length records 
can be processed on the Systeml360 tape or 
disk files; however, some of the data 
management methods do not provide for 
handling variable-length records. This 
will be discussed under Data Management 
Techniques. 

Blocking Records 

The length of individual data records will 
vary with the type of data and the 
application requiring such data. The 
design of the format of a data record is 

Data Management 101 



very significant to the efficient use of 
the various storage media available on the 
System/360. One very important element in 
the design of data records involves what is 
commonly called blocking and deblocking. 
Input/output units (storage media) are 
relatively inefficient when used to record 
short blocks of information. To increase 
the efficiency of input/output units, data 
records are assembled into blocks of 
records whose size is convenient and 
efficient for processing. Each physical 
record on either tape or disk requires 
interrecord gaps. These gaps are blank 
areas used to distinguish beginning and 
ending points of a record. If records are 
blocked prior to loading onto a tape or 
disk, many of these gaps can be eliminated. 
The average number of reads required to 
locate a record can usually be reduced by 
increasing the blocking factor (number of 
records per block). The greater the 
blocking factor, the greater the chance 
that the next record required will be in 
the same block. This is an important 
consideration when designing jobs that 
involve file-searching either on tape or 
disk. It is particularly important when 
using disk-storage techniques that develop 
overflow records. Overflow records occur 
when there are more items assigned to a 
disk track than can be stored on that 
track. 

Blocked records normally require the use 
of more main storage than unblocked 
records. This results from the need for 
main storage to house the block of records 
being read from or written onto a storage 
device. Also more main storage is required 
to hold blocking-and-deblocking program 
instructions. 

A given input/output device usually 
contains several times as much information 
in blocked records than in unblocked 
records. BOS IOCS macro instructions are 
designed to handle the blocking and 
deblocking of records so that the user need 
only design the most efficient blocking 
factor for his particular data file and 
equipment specifications. 

Several types of records can be stored 
on tape or on direct access storage 
devices. The following record types are 
described in the section Types of Records. 

• Fixed-length unblocked records 
• Fixed-length blocked records 
• Variable-length unblocked records 
• Variable-length blocked records 

Schematics of these types of records are 
shown in Figures 27, 28, 29, and 30. 

102 S/360 BOS Prog. Guide 

FILE ORGANIZATION AND PROCESSING 

Data records should be organized and stored 
in a manner that will facilitate subsequent 
processing. The relationship between file 
organization and the processing of data 
must be carefully considered to achieve the 
most efficient use of the System/360 
components. This is particularly important 
when designing data files for storage in a 
direct-access storage device such as the 
IBM 2311. 

File Organization 

There are two basic types of file 
organization: Sequential and random. 

Seguential File Organization - The logical 
sequence of records in a sequential file 
depends upon significant control 
information (the record key) appearing in 
the records. A sequentially organized file 
is established by arranging records into 
sequential order on the storage media used 
to contain the file. 

There are two basic kinds of sequential 
file organization: 

1. Sequential files organized in a serial 
manner; 

2. Sequential files organized through the 
use of indexes. 

The first kind of sequential file 
organization (serial) provides for records 
with successively higher record keys to 
have successively higher locations within 
the file. Cards and tape files are usually 
organized in this serial manner. This kind 
of file is usually considered as one 
continuous string of records in record key 
sequence and is usually processed 
consecutively. Disk records can also be 
organized in a serial manner and processed 
consecutively. 

Additions to and deletions from a 
sequential file can be handled in several 
ways. In some cases it is possible to 
batch additions and deletions, and merge 
them into the file during a regular 
updating run. This is the method required 
when adding to and deleting from sequential 
files such as those stored on magnetic 
tape. 

The second kind of sequential file 
organization involves the use of indexes to 
establish and process data on a direct 
access storage media. Because of the 
manner in which the indexes are used when 



adding records to an established file, it 
is not always necessary to store records in 
consecutive locations. The Indexed 
Sequential File Management System (ISFMS) 
provided by the basic operating system uses 
a method that permits additions without a 
reorganization of the established file. 
Special overflow references are set up in a 
track index record, and each record in the 
overflow area has a special sequeRce-link 
field used to maintain file sequence. This 
technique is described in the section on 
ISFMS • 

Random Organizati.on - Generally, in a 
random file organization, the records are 
not stored in the sequence of their control 
numbers (keys). A randomizing formula is 
used to convert the record key (control 
number) to a numerical address (physical 
address). The record is stored at the 
physical address developed by the 
randomizing formula. 

File-Processing 

There are three basic file-processing 
tecr~iques: consecutive, random, and 
sequential. 

Consecutive Processing - Every record in a 
file is examined, and each successive 
record in the file is processed in order. 
For example, card records are processed in 
the order cards are fed into the system. 
Usually only those files that have been 
organized in some logical sequence will be 
processed consecutively. 

Random Processing - The sequence of 
processing has no relationship to the 
sequence of data stored in the file. 

To find a record at random in an indexed 
file, an index (or series of indexes) is 
first scanned to localize the area of 
search. The index is a sequential list of 
the keys of selected data-file records with 
corresponding physical addresses. To find 
a record at random in a random file, the 
physical address is computed by the same 
randomizing formula used to load the file 
of records. A direct access of the record 
can be made, and no index tables are 
required. 

Sequential Processing - The sequence of 
processing disk files is identical to the 
sequence of logical record storage as 
opposed to physical location. If the 
records are stored in man-number order, 
transactions affecting the records are 
pre-sorted into man-number order and 
processed in that sequence. Beca.use the 
records are on a direct-access storage 

device, only records with transaction 
activity need be scanned. 

The ISFMS technique provided by BOS can 
be used to organize a sequential file with 
indexes. Then, ISFMS can be used to 
process records in this file in both random 
and sequential order. This technique is 
described in the section on the Indexed 
Sequential File Management System. 

SEQUENTIAL VS RANDOM ORGANIZATION 

Time. storage space, and cost 
considerations are the most-of ten-used 
criteria in' comparing file organizations. 
The significance of each factor must be 
weighed against the application and 
system-design goals. An advantageous 
sequential organization for one job may 
prove to be a disadvantage in another job. 
For example, the saving of several hundred 
positions of main storage is of small 
impact, if ample main storage is available. 
Similarly, the reduction of the time 
required to process a single transaction by 
50 to 60 milliseconds means lit~le if only 
a thousand transactions (approximately a 
minute) are handled daily. 

The advantages and disadvantages of 
sequential and random file organization 
should be studied in a particular 
application environment before a worthwhile 
evaluation can be made. 

Some of the advantages and disadvantages 
of sequential and random file organization 
are: 

Sequential Advantages 

1. Less direct access storage space is 
required in most cases, even 
considering that 2 to 10% of the space 
available is required for storage of 
the necessary indexes. 

2. In most cases, both sequential and 
random transactions can be handled 
effectively. 

3. Sorting is not required for output 
listings that are in the record-key 
sequ,ence. 

4. Visual checking of the stored records 
is facilitated because output is in a 
meaningful sequence. 

5. Conversion to direct access storage i~; 
simplified because most files are 
already in sequence. Retention of thjs 
sequence avoids radical departure from 
the methods familiar to people outside 
the data processing activity. 

Data Management 103 



6. A detailed study of the structure of 
the'control information used to 
identify individual records is not 
required, if the existing sequence is 
retained .. 

7. Precision monitoring of the conversion 
is made feasible at installation time, 
if data loaded into direct access 
storage is maintained in the same 
sequence as the source data file. 

Sequential Disadvantages 

1. Indexes may require additional main 
storage. 

2. When processing is being done randomly, 
processing time for a single 
transaction is greater than with random 
organization because index file 
processing requires additional computer 
time. 

3. When processing is being done randomly, 
average access time is greater than 
with random organization; due to need 
for accessing one or more indexes 
before locating required record. 

4. Whenever any type of processing is 
being done for an Indexed Sequential 
file, all packs in a multi-pack file 
must be on-line. 

Random Organization Advantages 

1. Will require less main storage in some 
applications. 

2. Random transactions can be processed in 
less time because access time is 
faster--no index file accessing, and 
processing. 

Random Organization Disadvantages 

1. Dynamic files can.require frequent file 
reorganization, especial1y when 
processing time is a major 
consideration. 

2. Development of address conversion 
randomizing routine, along with 
record-key analysis, is required for 
implementation. 

3. A.II packs in a mu-Iti-pack file must be 
on-line for random processing. 

RANDOM-ADDRESSING TECHNIQUES 

There are two basic elements involved with 
file addressing: 

104 S/360 BOS PrOg. Guide 

1. The file of records, which must be 
stored and retrieved in a data 
processing system. 

2. The direct access storage device 
itself .. 

The data records that must be stored in a 
direct access storage device are usually 
identified by a control field, such as part 
number, and employee number. Normally the 
numbers or characters in the control field 
are unevenly distributed. For example, a 
seven-position control field may be used to 
identify 25,000 items in a parts master 
file. However, with a seven-position 
number, it is possible to identify ten 
million items. In this example, only 0.25% 
of the available numbers are used. 

The direct access storage devices, on 
the other hand, are usually composed of 
physical locations that are identified by 
an evenly distributed set of numbers. The 
addressing problem is to convert an 
unevenly distributed set of numbers to an 
evenly distributed sequential set of 
numbers within the address limits of the 
direct access device~ Many addressing 
techniques have been' developed to 
accomplish this task. In choosing a 
technique for address conversion, it is 
important to remember that an ideal 
distribution of control field throughout 
the range of the control fields is a 
completely uniform one. Uniform 
distribution means that the difference 
between any pair of successive control 
fields taken in ascending order is 
constant. 

The worst distribution of control fields 
is a random one. There is no way to 
transfer from random keys to addresses with 
better than random distribution. In 
practice, purely random control field sets 
and completely uniform ones are both rare. 
A data file is likely to have control 
fields that distribute in groups or 
clusters of irregular length and 
separation. This kind of grouping of 
numbers introduces a degree of uniformity. 
The irregular length and separation of the 
number groups implies a degree of 
randomness. A well chosen conversion 
technique produces an address set that 
reflects both elements and has a 
distribution intermediate between random 
and uniform. To be ideal for use in direct 
access storage devices, the conversion 
technique should produce a unique storage 
address for every record in a file. This 
is seldom possible. Most control-field 
conversion routines result in assigning 
some address to more than one record. 
These duplicate addresses are sometimes 
referred to as synonyms. The conversion 
routine selected should convert the control 



fields (keys) of the records in a data file 
to a series of addresses with a minimum 
number of synonyms and within the desired 
storage address range. The following 
sections discuss briefly the most 
successful conversion routine. After that 
discussion, the handling of synonyms will 
be discussed. 

RANDOtJI-ADDRESSING FORMULA 

The simplest method of file organization is 
that in which a unique disk address is 
obtained from the control data of each 
record. This is referred to as the 
random-addressing method. If the control 
numbers of a set of data records in a file 
are consecutive numbers without gaps, they 
may be converted to disk addresses by 
simple aritr~etic. For example, if the 
account numbers for a customer file run 
from 10000 to 17563 (7564 account numbers), 
and ten account records can be stored on 
each disk track, 757 tracks are needed. By 
subtracting 10,000 from an account, number 
and then dividing by 10, a numeric address 
in the range 000 to 756 is obtained. To 
place this file on an IBM 1316 Disk Pack, 
starting at track address 1200 (cylinder 
120 head 0) a constant 1200 is added to the 
quotient and a constant (1) is added to the 
remainder. This constant (1) is required, 
because record zero (RO) of each track is 
reserved to facilitate the handling of 
defective recording areas that may occur 
during the life of the disk pack. Using 
this approach, a record containing the data 
for account number 16349 would be stored at 
track reference 1834 in record-reference 
ten, calculated as follows: 

16349 - 10000 = 6349 
6349 -:- 10 = 634 with remainder 9 
634 + 1200 = 1834 track reference 
9 (remainder + 1) = 10 = record reference 

When processing this file randomly, any 
record can be found with a single seek. 
When it is possible to process 
sequentially, only one seek is needed per 
cylinder. Record retrieval time is thus at 
a minimum. This is an optimum situation, 
and it rarely occurs in actual practice. 

Normally, the control data of a file of 
records can seldom be used directly as disk 
addresses. If a file has no control fields 
that can be used directly as disk 
addresses, it is sometimes possible to 
preassign addresses. For example, the item 
number 513XP could become 513XP-13472, 
which could then be converted to a track 
and record reference as shown above. 

PRIME NUMBER DIVISION 

If the control fields of a file of records 
are not consecutive or contain numerous 
unused numbers, as is usually the case, thE' 
random-addressing technique under the topic 
Random Addressin~Formula makes inefficient 
use of the storage locations. All possibl~ 
numbers are assigned locations, and those 
numbers not used leave empty record areas 
in the storage unit. Files established 
with control numbers composed of coded 
information usually have a much higher 
potential range of items than is required 
for storage. To handle this situation, an 
initial conversion is made on the control 
numbers to reduce the range to a practical 
size. This conversion is often referred to 
as randomizing. 

Randomizing generally refers to the 
techniques developed to convert a set of 
control numbers with numerous unused 
numbers to a tightly paCKed set, to result 
in very few unused storage areas. There 
are many techniques used for this 
conversion of numbers: folding, 
extracting, squaring, and radix 
transformation are a few of the techniques 
in use. One method, sometimes called prim~ 
number division* or divide remainder, is 
adaptable and usually satisfactory for 
converting a file of numbers. Its merits 
have been established by mathematical 
analysis and by testing an actual file .• 

To illustrate the prime-number-division 
technique, suppose the customer file in the 
example under the topic Random Addressing 
Formula used a coded control number of ten 
digits. The first three could be a 
geographical code (branch office number), 
the next two could describe the nature of 
the business, the next one could be a 
size-of-customer code, and the final four 
could be sequentially assigned within 
class. 

Thus, account number 139 457 0307 would 
be the 307th account assign'ed branch office 
139. It would belong to a customer-of-size 
code 7 in industry class 45. Because this 
ten-digit number cannot be used efficiently 
to describe 7564 accounts, it is converted 
by dividing by the closest prime number to 
number of storage locations available. 
Assume 10,000 locations available, then 
divide by 9973. The remainder is used as 
the control number and a technique similar 
to the example under the topic Random 
Addressing Formula is used to calculate a 
track and record reference. 

* A prime number is a number divisible only 
by itself, or one. 

Data Management 105 



1394570307 +- 9973 = 139834 

with a remainder of 5825. 

This remainder is then operated on as in 
the example, under the topic Random 
Addressing Formula, assuming 10 records per 
track. 

5825 7 10 = 582 with a remainder of 5. 

To load the file starting at track address 
1100, add 1100 to 582 for a sum of 1682. 
The track reference for this record is 
1682, and the record is the sixth record on 
the track (remainder of 5 + 1 = 6). 

To summarize prime number division: 

1. Select a divisor equal to or greater 
than the number of records to be stored 
(ten to twenty percent greater is 
recommended and explained later). The 
best divisors are primes. No even 
numbers or multiple of five should ever 
be used - divisors must end in 1, 3, 7, 
or 9. The divisor is called the range. 

2. Divide the control number by the range 
and use the remainder to generate the 
track address. 

Prime-number division will always work; 
that is, it will always convert control 
numbers into the desired range. This is 
because in division, the remainder is 
always less than the divisor and the 
highest valued remainder is the divisor -1. 
Dividing any number, no matter what size, 
by a desired range, always produces 
remainders in the desired range. Using a 
prime number as the divisor will usually 
result in relatively few duplicate 
remainders, and therefore relatively few 
address synonyms. 

A prime number is not always the best 
choice of divisor for a given set of keys. 
Also, it is not necessarily true that all 
primes produce equally good results. 
Primes do, however, avoid serious 
maldistribution and may be safely used with 
little analysis of the control-field set of 
the data. files. 

DISCONTINUOUS BINARY NUMBER 

The track and rec.ord reference field used 
to identify records on a 2311 disk drive is 
a discontinuous binary number. This number 
has the form CCHHR, where CC is the 
cylinder number, HH is the head number, and 
R is the record number. The track 
reference example calculated in the 
preceding section (1682 with a remainder of 

106 S/360 BOS Prog. Guide 

5) must be developed in such a way that the 
cylinder, head, and record numbers can be 
placed in positions CC, HH, and R, 
respectively, as discontinuous binary 
numbers. The cylinder number (168 in this 
example) is placed in the cylinder, CC, 
field as a binary number, (hexadecimal 
00A8). The head number (2 in this example) 
is placed in the head, HH, field as a 
binary number, (hexadecimal 0002). The 
record number (in this example the 
remainder 5 plus 1) is placed in the 
record, R, field as a binary number, 
(hexadecimal 06). Then the track and 
record reference field appears as: 

r-------T-------T---' 
I cc I HH IR I 
~--T----+--T----+---~ 
1001 A8 1001 02 106 I L __ ~ ____ ~ __ ~ ____ ~ ___ J 

OVERFLOW RECORDS 

The transformation of record control fields 
to direct access storage device addresses 
usually produces some overflow (synonyms) 
records. 

The file organization used with a data 
file employing indirect addressing 
(addresses converted by a random addressing 
formula) must be able to accommodate the 
synonyms or duplicate addresses. 

The first consideration in organizing 
the file is sometimes called the packing 
factor. The number of synonyms produced by 
a random-addressing conversion routine can 
be reduced by assigning more disk storage 
space than is actually required by the 
file. The percentage of the file area 
actually used for records is called the 
packing factor. The packing factor for an 
efficiently organized file can vary from 
65% to 95%. A packing factor of 80% 
usually proves to be a good point to start. 
After all efforts have been made to design 
a file-conversion technique with few 
overflows, an approach to handling the 
remaining overflows must be chosen. 

One such technique will be discussed as 
an example. This technique is often 
referred to as the chaining method. As 
each record is read into the computer for 
loading into a direct storage access 
device, its control field or key is 
converted to a physical address. These 
converted addresses are called home 
addresses. 

Note: The home addresses discussed here 
are not directly related to the track Home 
Address (see IBM 2311 Disk Storage Drive) 



used to control the physical operation of 
the 2311 disk drives. These home .addresses 
are related to the record identifiler (ID) 
that is discussed in Reference Methods,. 

The first record converted to a 
particular address is stored in the home 
address location. The additional records 
converted to this address are stor,ed in 
overflow locations. The address of the 
first overflow location is stored in the 
home address location. The address of the 
second overflow location is stored in the 
first overflow location, etc. Chaining 
requires that in the home address and all 
overflow locations, space be reserved for 
the address of the next location or link in 
the chain (Figure 25). 

Retrieval of records is accomplished by 
converting the control information (record 
key) to the home address. The record in 
the home address location is read into main 
storage, and its control information is 
compared to that of the record being 
sought. If the control fields are: not 
equal, the address of the first overflow 
record is extracted from the home record, 
and another read command is issued using 
this address. The process is repeated 
until the desired record is found. 

Several additional techniques exist for 
handling overflow records in a random file 

organization. Also, there are many 
techniques that can be used to make the 
technique mentioned previously more 
efficient for a particular application. 

Two common techniques used to solve the 
overflow problem are similar in concept to 
the chaining method but do not require a 
chaining field to be present in each 
record: 

1. Preassigned tracks overflow technique. 
When there is no room to store a recora 
in its home location, a specific 
preassigned overflow track is used. 
The overflow track(s) should be defined 
to be in the same cylinder containing 
the home location, to reduce the numbeI 
of seeks required to locate a record. 

2. Consecutive spill overflow technique. 
In this technique when overflow occurs, 
a sequential search is made startinq at 
the next record within the cylinder 
until an empty record storage location 
if found. If the last track in a given 
cylinder overflows, a return is made to 
the first track. This technique does 
not require the use of a track overflow 
(chaining) field, nor is a seek 
required to locate the overflow record , 
(must be on same cylinder). 

Data Management 107 



Record Reference 

CC HH R 
7306 1 

74023 

74092 

69064 

74356 

CC = cylinder 
HH = head 
R = record 

Figure 25. Direct Access Address Chaining 

Another technique can be used in which 
overflow chaining fields are established 
only for each track (requires only one 
overflow address on home track). A version 
of this technique can be used with 
sequential files, when both random and 
sequential processing are appropriate to a 
particular application. A series of 
indexes is used, instead of attaching the 
chain linkage to the home track. The 
lowest level of index will have two entries 
for a specified group of records. This 
group of records is usually the records 
stored on one disk track. The index is 
then called a track index. The first entry 
on the track index refers to the first 
track of data records in the main (prime) 
section of the logical file. The term 
prime area is used to distinguish the main 
section from the area used for overflow 
records. The second entry on the track 

108 S/360 BaS Prog. Guide 

Overflow 
Address Field 

CC HH R 

74023 

74092 

69064 

74 356 

Blank 

index is used to link the overflow records 
to the records on the prime track. When a 
request for a record is processed, the 
indexes are scanned to localize the area of 
search. The track index (or lowest level) 
will point directly to the proper track, 
either in the prime area or the overflow 
area. This technique can be programmed to 
handle additions and deletions effectively, 
with reorganization of the logical file 
kept to a minimum. 

BaS provides a comprehensive laCS 
file-management technique for organizing 
and processing records in a manner similar 
to the one just discussed. 

This laCS technique is described in the 
section entitled Indexed Sequential File 
Management System. 



Trailer Records 

In some applications, efficient file 
organization and processing requires that 
logical data files be separated iNto master 
and trailer records. Master records are 
the basic data records of the file. 
Trailer records are extensions of the 
master records and are maintained in a 
different area of disk storage as a 
separate file. 

Trailer records may be utilized by 
user-supplied routines. They are not 
supported by any IBM subroutines or macros. 

BASIC OPERATING SYSTEM DATA MANAGEMENT 
TECHNIQUES 

The management of external storage devices 
<card files, tape files, and the 2311 disk 
storage device) has been described in 
general terms in preceding sections of thi~3 
manual. 

Data Management 109 



Data 
Management 

Basic Operating 
System/360 Data 
Management 
Techniques 

Physical 
10CS 

Logical 
10CS 

Consecutive 
Processing 

Direct Access 
Method 

Indexed Sequential 
Fi Ie Management 
System 

Processing with STR 
Devices 

Binary Synchronous 
Commun i cation 

Figure 26. Data Management: Basic Operating System Data Management Techniques 

110 5/360 BOS Prog. Guide 



This section contains fundamental 
information on how BaS can be used to 
manage data stored on external files. 
Figure 26 shows the organization of this 
section. This capability for data handling 
is provided by I/O macro instructions 
(laCS) included wi.th the Assembler.. Any 
kind of file organization can be handled by 
one of the logical laCS routines, or the 
physical laCS macro instructions and user 
programming. For specific instructions on 
writing the necessary laCS macro 
instructions, refer to the BaS Assembler 
with Input/Output Macros publication, 
listed in the Preface of this manual. 

PHYSICAL laCS 

Physical laCS consists of input/output 
(I/O) routines that handle the actual 
transfer of data records between external 
storage devices (cards, tape, disk, etc.) 
and main storage. It has the capability 
for handling any external devices supported 
by BaS. Other devices can be handled when 
the user provides the necessary error 
routines. 

The user can tailor the physical loeS 
routines to handle the complete I/O 
configuration used in his installation. 
All I/O operations for all programs to be 
processed in a particular installation can 
be handled by the physical laCS routines 
contained in one program Supervisor. This 
facility is part of the capability provided 
by BaS to allow a system to operatE~ in a 
stacked job environment. See Job Control 
and FETCH for other parts of the stacked 
job capability. 

Physical laCS Functions 

Incorporated in the Channel Scheduler 
portion of the Supervisor, are program 
routines for handling the following 
functions. 

• 

• 

• 

• 

Starting an I/O operation when 
requested, or queueing the request for 
the appropriate channel, if the channel 
is busy. 

processing any interruptions associated 
w~th an I/O operation. 

starting an I/O operation for next 
request on the channel queue when the 
preceding I/O operation has been 
completed. 

Processing any I/O errors that occur, 

• 

by first retrying the I/O operations 
that have the possibility of being 
corrected by a retry operation. If 
errors cannot be corrected in this 
manner, the problem program is notified 
by a flag, or the operator is informed 
by a message. 

Scheduling all I/O operations and 
handling events associated with I/O 
interruptions. 

Processing with Physical laCS 

There are occasions when the user may need 
to bypass the logical laCS routines in 
order to handle a particular I/O data file. 
Physical laCS macro instructions allow the 
user unlimited processing flexibility. 
This capability allows the user the 
facility of requesting only those I/O 
commands that he needs for a particular 
situation. This permits the user to write 
his own logical laCS for blocking and 
deblocking, his own channel command words 
for the channel program, and other user 
routines he may require. 

To aid the progra~ner in using physical 
laCS, an assembler instruction statement 
CCW - define channel command word, is 
provided. This CCW assembler instruction 
statement is a convenient means to define 
and generate the eight-byte channel command 
words needed for the channel program. 

Four macro instructions are available to 
the programmer for direct communication 
with physical laCS. 

CCB can be used to create a command 
control block. The command control 
block provides information needed by the 
channel scheduler for execution of the 
EXCP and WAIT macros. 

EXCP can be used to request physical 
laCS to Start I/O <execute channel 
program} • 

WAIT can be used to have the problem 
program wait in a programmed waiting 
loop until an I/O operation is 
completed. 

WAITM can be used to have the problem 
program wait in a programmed waiting 
loop until one of several specified I/O 
operations is completed. 

The WAITM macro instruction is 
discussed under: Processing with STR 
Devices. 

Data Management 111 



The file-definition macro DTFPH (Define 
~he ~ile for Physical IOCS) is provided for 
the user to define files that have standard 
labels to be checked. If the user chooses 
to have physical IOCS check his standard 
file labels, he uses the DTFPH for file 
definition, and the imperative macros OPEN 
and CLOSE and FEOV (magnetic tape only) to 
handle label checking and creation. 

An I/O operation can be traced through 
physical IOCS in the following manner. 

A request is made to physical IOCS to 
start an I/O operation by means of the EXCP 
macro instruction in the problem program. 
Physical IOCS determines from information 
in the CCB, the channel for which the 
request was made and places the request on 
a queue for that channel. If the channel 
is not busy, the I/O is started and control 
is returned to the problem program. If the 
channel is busy, control will be returned 
to the problem program, but the I/O request 
waits in the channel queue. When the 
request reaches the top of the channel 
queue, the I/O will then be started. 

The problem program will be interrupted 
when the I/O operation is complete (all 
data transferred to or from main storage 
and the external device and no permanent 
errors have been detected). At this point 
the request is removed from the channel 
queue. 

If an error was detected that could not 
be corrected by the device-error routines, 
the problem program or the computer 
operator would be notified. User error 
routines can be notified to handle 
conditions such as wrong-length record. 

Physical IOCS always attempts to perform 
its function so that the time of executing 
an I/O operation is overlapped with the I/O 
operations on other channels and also 
allows the I/O operations to be overlapped 
with processing. 

LOGICAL IOCS 

Logical IOCS is provided to perform the 
functions of handling the logical data 
records that physical laCS transfers to or 
from main storage and external storage 
devices. 

w~en logical laCS is specified in a 
problem program, the physical laCS routines 
are controlled by logical laCS. Logical 
lOCS routines always use physical-level 
macro instructions to communicate with the 
channel programs. Therefore the user does 
not need to be concerned with physical laCS 

112 S/360 BaS Prog. Guide 

if he chooses to use logical IOCS to 
perform I/O operations. 

Functions of Logical IOCS 

The fUnctions of logical IOCS can be 
categorized into the following topics. 

Record Retrieval. Logical records can be 
retrieved randomly or sequentially from a 
data file. The retrieval method depends on 
file-organization and processing techniques 
used. 

Record Output. IOCS routines are p~ovided 
for creating new files of data. This 
function involves writing completely new 
records on an output media such as disk or 
tape. Records can also be punched into 
blank cards or printed. 

Record Updating. Records can be retrieved 
from a file, changes made to the data 
within the records, and the records 
returned to the same locations from which 
they were retrieved. This capability is 
available for the 2311 disk storage drive 
and for card equipment that provides for 
reading and punching into the same card. 
The term combined files is used to refer to 
card files that are punched with additional 
information after the cards have been read. 

Control Operations. Macro instructions are 
provided by logical laCS to perform certain 
machine-control functions. For example, 
card stacker selection, printer line 
spacing, and form skipping, tape rewinds, 
disk seek operation, etc are performed by 
the control macro instructions. 

End-of-Volume and End-of-File Procedures. 
Logical IOCS provides all the routines 
required for detecting and handling 
end-of-volume and end-of-file conditions. 
This includes for example, standard label 
checking and creating routines; provision 
for entering non-standard label routines 
provided by the user; prOVision for 
automatically switching to a new volume 
(tape reel or disk pack); and provision for 
entering an end-of-file routine provided by 
the user. 

File Organization. A technique for 
complete file management is provided by 
logical laCS. The technique, Indexed 
sequential File Management System (ISFMS), 
provides both random and sequential 
processing capability. 

Additional data file loading and 
processing capabilities are provijed by the 
Consecutive Processing macro instructions 
and the Direct Access Method (DAM). 



Types of Records 

Logical Ioes provides techniques for 
handling records that are: 

• Fixed-length. All records have the 
same number of bytes of data. 

• Variable-length. Each record can have 
a different number of bytes of data. 

I Physical I 
""'1 Record j-

----

IRG = Inter-Record Gap TAPE RECORDS 

Data Area 
1 

• 

• 

• 

Unblocked. Only one logical record in 
each physical record. 

Blocked. Two or more logical records 
in one physical record. 

Undefined. The record characteristics 
are not specified to Ioes. 

Data Area 
2 

Data Area 
3 

DISK RECORD - WITH KEY AREA 

Data Record 
1 

G = Gap,Area Separator 

Data Record 
2 

Data Record 
3 

DISK RECORD - WITHOUT KEY AREA 

Figure 27. Fixed-'Length Unblocked Record Format 

Data Record 
4 

Data Management 113 



Physi cal Record 1 

Logical 
Record 

2 

IRG = Inter-Record Gap 

Logical 
Record 

3 

Physical Record 2 

Logical 
Record 

5 

Logical 
Record 

6 

TAPE RECORDS 

Logical 
Record 

8 

Logical 
Record 

9 

Logical 
Record 

10 

Logical 
Record 

11 

1""" .. I----------PhySiCal Record 1 ----------..1 

Logical Record 
Data Area 

Logical Record 
Data Area 

Logical Record 
Data Area 

Log i ca I Record Log i ca I 
Data Area 

4 1 2 3 

DISK RECORDS - WITH KEY AREAS 

r---------Physical Record 1 --------w 

Logical Record 
Data Area 

1 

Logical Record 
Data Area 

2 

Logical Record 
Data Area 

3 

1-+-------- Physical Record 2 ----------10-1 

Log i ca I Re cord 
Data Area 

4 

Logical Record 
Data Area 

5 

Logical Record 
Data Area 

6 

DISK RECORDS - WITHOUT KEY AREAS 
G = Gap, Area Separator 

Figure 28. Fixed-Length Blocked Record Format 

Fixed-length, unblocked (Figure 27). Each 
logical record is the same length as the 
physical record. The disk record formats, 
with key area and without key area, are 
discussed in the section in Direct Access 
Method. 

Fixed-length, blocked (Figure 28). Blocked 
records are usually considered to be two or 
more logical records within one physical 
record. The number of records in each 
block (blocking factor) is usually kept 
constant. For example, the illustrations 
in Figure 28 show blocked records with a 
blocking factor of 3; there are three 
logical records within each block (physical 
record). However, within the basic 
operating system macro instructions, there 
is a TRUNC macro that permits writing a 
short block of records. This macro (TRUNC) 
can be used at the end of a category of 
records to write a block that has fewer 
records than normal. This short block may 
contain one logical record. See the TRUNC 
(truncate) macro instruction in the 
Assembler with Input/Output Macros 
publication, listed in the Preface of this 
manual. The TRONC macro is supported only 
by consecutive processing and applies to 
both tape and disk blocked records. 

Variable-length, unblocked (Figure 29). 
Each physical record contains one logical 
record, and the records can vary in length. 

114 S/360 BOS Prog. Guide 

Each record must contain both a 
block-length f~eld (BL) and a record-length 
field (RL) to provide IOCS with the size of 
the block and the size of the logical 
record. The first two characters (XX) of 
the block-length field (BL) specify the 
actual block length in 16-bit binary form. 
The last two characters (indicated by bb) 
are blank. For variable-length unblocked 
records, BL will specify the logical record 
length plus 4 bytes (the size of BL). 

The first four bytes following the 
block-length field must contain the 
record-length field (RL). The first two 
bytes (XX) specify the length of the 
logical record including the bytes used for 
RL field itself. The remaining two bytes 
(bb) are blanks. Variable-length records 
are supported only by consecutive 
processing macros. 

Variable-length, blocked (Figure 30). One 
or more logical records are contained 
within each physical record. The first 
four bytes (block-length field) of each 
physical record (block) specifies to IOCS 
the total number of bytes in the block. 
The first two bytes (XX) specify the length 
of the block (including the four bytes for 
the block-length field itself). The 
remaining two bytes (bb) are blank. The 
size of each logical record must be placed 
in a record-length field (RL). The RL must 



be the first four bytes of the logical 
record. The first two bytes (XX) of RL 
specify the length of the logical record 
including the bytes used for the RL field. 
The remaining two bytes (bb) are blank. 
Variable-length records are supported only 
by consecutive processing macros. 

These record types are also processed by 
Utility programs, Sort/Merge programs, and 
Report Program Generator programs, in 
addition to being processed by logical IOCS 
macros used in problem programs. 

) 
j 

I---- Physical Record =--=I 
I I-Logical Record 

Datel 

BL RL I 
Record 1 

xxbb xxbb 

Data 

Record 2 

When variable-length blocked records are 
built directly in the output area, the 
TRUNC macro must be used to write a 
completed block of records. The TRUNC 
macro is discuSsed fully in the 
assembler/IOCS publication C24-3361. 

Undefined. When file records do not 
conform to any of the four previous 
formats, they are classified as undefined. 
In this case, IOCS performs only the actual 
reading and writing of the records. 
Logical processing must be performed by the 
problem program. 

Data R BL 
RL I Record 3 

xxbb xxbb 

1031 0 3:4 7 53 
RL = 100 1 BL = 541 RL = 50 

831 0 314 7 
IBL = 1041 

o 314 7 
BL = 841 RL = 80 

Physi ca I Record -I 
j..-Logical Record-l 

::::::::~: f~~\~~ 

I ;~:;t I BL RL I 
!I'I!I!I!!! xxbb xxbb 

I 0 314 7 
1 BL:::: 841 

TAPE RECORDS 

Data 

BL RL 
Record 2 

xxbb xxbb 
0 314 7 
= 1041 RL = 100 

DISK RECORDS 

BL:::: Block Length } in binary half - word (16 bit) format, plus two blank bytes. 
RL :::: Record Length 

IRG =:= Inter-record Gap 
G:::: Gap 

Data 
Count 
Area BL RL 

Record 3 
xxbb xxbb 

I 0 31 4 7 
1 
I BL = 541 RL == 50 

Figure 29. Variable-Length Unblocked Record Format <Consecutive Processing> 

Data Management 115 



1"1------------- Physical Record ------------+'1" I 
I--- Log i co I Re cord ----I 

Data Data Data Data 

Record 1 
RL I 

xxbb 
RL I 

Record 2 xxbb Record 3 

I BL RL I 
,I xxbb xxbb Record 4 

I a 31 4 7 
I BL=234 I RL = 80 

83184 87 
1 

183\1 84 187 
RL = 100 I RL = 50 

2331 a 314 7 
IBL = 1651 RL = 56 

TAPE RECORDS 

1-+-------------- Physical Record---------------t 

f--- Log i co I Record ----1 
Data 

Record 1 

Data Data 1:::lil:11 Count 

RL I RL I .~. Area BL 

xxbb Record 2 xxbb Record 3 xxbb 
184 87 1831184 187 2331 1 a 41 
I I 1 

:BL = 342\ 1 RL = 100 I RL = 50 1 

J Count 
Area BL RL I 
'--- xxbb xxbb I 

1 a 314 7 
1 1 
IBL = 2341 

-
RL = 80 

BL = Block Length } 
DISK RECORDS 

RL = Record Length 
in binary half - word (16 bit) format, plus two blank bytes. 

IRG = Inter-record gap 
G = Gap 

Figure 30. Variable-Length Blocked Record Format <Consecutive Processing) 

CONSECUTIVE PROCESSING 

Consecutive processing macro instructions 
read/write and process successive physical 
records in a logical data file. For 
example, card records are read and 
processed in the order the cards are fed; 
tape records are processed starting with 
the first record after the file labels and 
continuing consecutively through the 
records to the end-of-file trailer 
label: disk records are processed 
beginning at the first disk location 
addressed and continuing with each physical 
record on successive tracks (and possibly 
cylinders) to the ending address. 

A consecutive file on disk is contained 
within one or more sets of limits. These 
file limits are specified by the user with 
job-control XTENr cards. If the logical 
data file consists of more than one set of 
limits, IOCS automatically processes each 
set as requested by the user. The records 
within each set must be adjacent and 
contained within one volume (disk pack). 
The sets need not be adjacent, and they may 
be on more than one volume. 

116 S/360 BOS Prog. Guide 

In many cases files written on disk by 
the direct access method can also be 
processed consecutively. 

The basic imperative macros used for 
consecutive processing are GET and PUT. 
These instructions overlap data transfer 
and processing as much as possible. The 
extent of overlap depends upon the user's 
I/O area assignment. 

Whenever a file of records is to be 
processed in consecutive order, the logical 
file, the device used for the file, and the 
main-storage areas allotted to the file 
must be defined by the declarative macro 
DTFSR (Define The FiLe for a SeRial-type 
Device): The detaIled parameter entries 
for defining the logical data file are 
described in the BOS Assembler with 
Input/Output Macros publication, listed in 
the Preface of this manual. 

IOCS can consecutively process all 
record types (see Types of Records) in the 
same program, but all records in a given 
file must be the same type. The record 
type, the block size, and usually the 
record size, are defined by the user when 
he writes the parameters for the DTFSR 



macro statement for each logical data file GET 
to be processed. 

STORAGE AREAS 

When logical Ioes macro instructions are 
used, each input record can be made 
available to the program for processing 
either in an input area or a work area. 
Similarly, on output, each record can be 
built in a work area or directly in an 
output area. 

Input/output areas and work areas for a 
particular file can be specified and 
handled by Ioes in any of the following 
combinations: 

one I/O area 
one I/O area and one work area 
two I/O areas 
two I/O areas and one work area. 

When blocked records are to be processed in 
one I/O area, a register must be specified 
in the DTFSR statement. This register is 
used by logical Ioes to point to the 
beginning of each logical record in an 
input area or it is used to point to the 
next available area for building aL logical 
record in an output area. 

If two I/O areas are used for processing 
either blocked or unblocked records, a 
register must be specified. This register 
identifies the next logical record to be 
processed in an input area, or it points to 
the next available output area. It 
contains the absolute base address of the 
currently available input record or 
currently available output area. The 
GET/PUT routines maintain the" proper 
address in the register. 

If variable-length records are blocked 
and are built in an output area(s), an 
additional register must be specified. 
This register provides the programmer with 
the remaining space in the output area each 
time a PUT instruction is executed. 

If variable-length unblocked tape 
records are read backwards and processed 
directly in the input area, a register must 
be specified in the DTFSR statement IOREG. 

When work areas are specified in a DTFSR 
statement, registers are not required to be 
specified. Instead, the work area must be 
named in each GET or PUT instruction used 
for processing the so-defined logical data 
file. 

The GET macro makes the next consecutive 
logical record from an input file available 
for processing in either an input area or a 
specified work area. 

PUT 

The PUT macro moves records from a 
specified work area to an output area and 
writes, punches, or displays the records 
from the output area when necessary. 

If the records are being built directly 
in the output area rather than-in a work 
area, the PUT macro points to the next 
available position for building a logical 
record in the output area. 

TWO INPUT/OUTPUT AREAS 

Logical Ioes provides DTFSR statements for 
defining two input/output areas for a file. 
Two input or two output areas may be used 
to permit an overlap of data transfer and 
processing operations. Whenever two I/O 
areas are specified, the Ioes routines 
automatically alternate between each area 
at the end of a physical record. These 
routines completely handle this flip-flop 
so that the next consecutive logical input 
record is always available to the problem 
programs for processing. For output 
records the flip-flop control keeps the 
proper output-record area available to the 
program for the next consecutive output 
record. 

When two input areas and unblocked 
records are specified, each GET makes the 
last record that was transferred to main 
storage available for processing. The same 
GET also starts the transfer of the 
following record to the other input area. 

The reader is referred to the section in 
this manual on Processing Overlapped with 
Input/Output for a discussion on 
overlapping the physical transfer of data 
with processing. 

UPDATING 

A consecutive file on a disk pack, a card 
input file in a 1442, or a card file in the 
punch feed of a 2540 equipped with the 
punch-feed-read special features can be 

Data Management 117 



updated. That is, each disk or card record 
can be read, processed, and transferred 
back to the same disk location, or card, 
from which it was read. This function must 
be specified with a DTFSR file-definition 
statement. In the case of a card file, the 
file must be specified as a combined file 
(CMBND) in the DTFSR entry TYPEFLE. 

The disk or card record is transferred 
to main storage by a GET instruction. 
After the record is processed, the next PUT 
instruction causes the updated record to be 
written in the same disk location, or 
punched in the same card, from which the 
record was read. PUT transfers the record 
to the disk or card file from the input 
area of main storage. If a work area is 
specified in the GET and PUT instructions, 
PUT first moves the updated record from the 
work area back to the input area and then 
transfers the record to this file. 

A GET instruction must always precede a 
PUT instruction for a disk or card record, 
and only one PUT can be issued for each 
record. A PUT instruction may be omitted, 
except for the 2540, if a particular disk 
or card record does not require updating. 

The programmer is referred to the BOS 
Assembler with Input/Output Macros 
publication, listed in the Preface of this 
manual, for detail instructions on writing 
DTFSR file-definition macro statements and 
the related imperative macro statements 
such as GET, PUT, RELSE, TRUNC, CNTRL, 
FEOV, CHANG, and PRTOV. 

PROCESSING OVERLAPPED WITH INPUT/OUTPUT 
(CONSECUTIVE PROCESSING) 

The problem program has the ability to 
retrieve and store records when consecutive 
processing macro instructions are used. In 
doing this, it makes use of both the 
Channel Scheduler and the logical I/O 
routines (GET, PUT macros) of IOCS. All of 
these routines are designed to provide for 
overlapping the physical transfer of data 
with processing. The amount of overlapping 
actually achieved (effective overlap) is 
governed by the problem program through the 
assignment of I/O areas and work areas. An 
I/O area is that area of main storage to or 
from which a block of data is physically 
transferred by the Channel Scheduler and 
physical IOCS routines. A work area is an 
area used for processing an individual 
record from the block of data. 

118 S/360 BOS Prog. Guide 

There are certain combinations of I/O 
areas and work areas that are possible. 
These are: 

1. One I/O area with no work area. 

2. One I/O area with a work area. 

3. Two I/O areas with no work area. 

4. Two I/O areas with a work area. 

Also, certain devices are buffered, 
increasing the amount of achievable overlap 
of processing and I/O. Tape and disk 
records can be blocked. Illustrations of 
these combinations for buffered devices, 
unbuffered devices, blocked tape, and 
blocked disk records follow. 

The maximum achievable overlap in Figure 
31 is the device time only. The transfer 
time between I/O area and buffer is not 
overlapped. If the next GET (or PUT) is 
issued prior to Device End, the data 
transfer between I/O area and buffer does 
not take place until Device End is reached. 

The maximum achievable overlap in Figure 
32 is the total data transfer time (the 
device time plus the time for data transfer 
between I/O area and buffer). If the next 
GET (or PUT) is issued after Channel End 
but before Device End, the transfer of data 
between the work area and the I/O area can 
take place (even though physical IOCS can 
not start the data transfer between the 
device and the buffer until Device End is 
reached). Control transfers to the problem 
program. 

If the next GET (or PUT) is issued 
before Channel End, logical IOCS must wait 
until Channel End to transfer data between 
the work area and the I/O area. 

The maximum achievable overlap (for 
logical IOCS and the problem program) in 
Figure 33 is the total data transfer time 
(the device time plus the time for data 
transfer between I/O area and buffer). If 
the next GET (or PUT) is issued after 
Channel End and before Device End, only I/O 
area switching occurs. Control transfers 
to the problem program but physical IOCS 
does not start the device/buffer transfer 
until Device End is reached. 

If the next GET (or PUT) is issued 
before Channel End, logical IOCS must wait 
for Channel End before performing any 
action. 



Processing 

Execute Data Transfer t Channel from Buffer 
Program to I/O Area Data Trctnsfer from I/O Device to Buffer 

Issue Ne xt GET 

t 
Issue GET 

r~Max. Achievable overlap~t 
Channel End Device End 

O----------Time -

Execute 
Channel 
Program 

t 
Issue PUT 

Figure 31. 

Processing 

Data Transfer t 
from I/O Area Issue Ne xt PUT 
to Buffer Data Transfer from Buffer to I/O Device 

t -- Max. Achievable ovedap ............... l 
Channel End Device End 

Overlap of Processing and I/O: 
(Buffered I/O Device) 

One I/O Area and No Work ~reas 

Data Management 119 



Processing ~ 
Data Transfer Execute Data Transfer 
from I/o Area Channel from Buffer 

t 
Issue Next GET 

to Work Area Program to I/o Area Data Transfer from I/o Device to Buffer 

t 
Issue GET 

I ..... I---------l~-Max. Achievable overlap----_.! 
Channel End Device End 

0-------Time __ 

Data Transfer 
from Work Area 
to I/o Area 

1 
Issue PUT 

Figure 32. 

Processing 

Execute Data Transfer t 
Channel from I/o Area Issue Ne xt PUT 
Program to Buffer Data Transfer from Buffer to I/o Device 

'""'I.-------t!r----Max. Ach;evoble evedap----l 
Channe I End Device End 

Overlap of Processing and I/O: 
(Buffered I/O Device) 

One I/O Area and One Work Area 

120 S/360 BOS Prog. Guide 



Processing 

lacs Points Execute Data Transfer 
t 

to I/o Area A Channel from Buffer Issue Ne xt GET 
Program to I/o Area B Data Transfer from I/o Device to Buffer 

Issue GET 

I~:hanne~ End 

'Max,mum Ach,evable ovedap/.1ce End 

O--------'Time -------

lacs Points 
to I/o Area B Processing 

Execute . Data Transfer 
Channel from I/o Area Issue Ne xt PUT 
Program A to Buffer Data Transfer from Buffer to I/o Device 

Figure 33. 

I ............ ~channel End 

Issue PUT 

Overlap of Processing and I/O: 
(Buffered I/O Device) 

Two I/O Areas and No Work Area 

Data Management 121 



Data Transfer 
from I/O Area Processing 
A to Work Area 

Execute Data Transfer t 
Channel from Buffer to Issue Ne xt GET 
Program I/O Area B Data Transfer from I/O Device to Buffer 

I 1~1 End -----<1. End 

O------Time_ ~Max. Achievable Overlap~ ......... 

Issue GET 

Data Transfer 
from Work Area Processing 
to I/O Area B 

Execute Data Transfer t 
Channel from I/o Area B Issue Ne xt PUT 

Program to Buffer Data Transfer from Buffer to I/O Device 

l~elEnd __ 1 
Issue PUT 

Max. Achievable Overlap 
Device End 

Figure 34. Overlap of Processing and I/O: Two I/O Areas and a Work Area 
(Buffered I/O Device) 

The maximum achievable overlap (for 
logical IOCS and the problem program) in 
Figure 34 (as in Figures 32 and 33) is the 
total data transfer time (the device time 
plus the time for data transfer between I/O 
area and buffer). However, there is a 
disadvantage to the combination illustrated 
(in comparison with Figures 32 and 33), 
because it requires extra main storage. 

If the next GET (or PUT) is issued after 
Channel End but before Device End, the data 
transfer between the I/O area and the work 
area can take place. Control returhS to 
the problem program (even though physical 
IOCS cannot start the device until Device 
End is reached). 

If the next GET (or PUT) is issued 
before Channel End, logical IOCS must wait. 

There is no overlap possible in the 
illustration in Figure 35. 

The maximum achievable overlap in Figure 
36 is the data transfer time between device 
and I/O area. If the next GET (or PUT) is 
issued prior to Channel End and Device End, 
logical IOCS must wait before performing 
any action. 

122 S/360 BOS PrOg. Guide 

The maximum achievable overlap (for 
logical IOCS and the problem program) in 
Figure 37 is the data transfer time between 
device and I/O area. If the next GET (or 
PUT) is issued before Channel End and 
Device End, logical IOCS must wait before 
performing any action. 

The maximum achievable overlap (for 
logical IOCS and the problem program) in 
Figure 38 (as in Figures 36 and 37) is the 
data transfer time between device and I/O 
area. However, there is a disadvantage to 
the combination illustrated (in comparison 
with Figures 36 and 37), because it 
requires extra main storage. If the next 
GET (or PUT) is issued before Channel End 
and Device End, logical IOCS must wait 
before any action is performed. 

The combination illustrated in Figure 39 
has no overlap of processing with 
input/output. The input/output time per 
record depends on the blocking factor. 
With this combination, the I/O time per 
record can be reduced if the blocking 
factor is increased. 

The ffiaximum overlap achievable in Figure 
40 is the time for data transfer between 



device and I/O area. The GET (or PUT) for 
all records, except the last in a block, 
involves only a transfer between work area 
and I/O area. For the last record in a 
block, the data transfer is followed by an 
overlap of device time and processing 
(control returns to the problem program). 
Channel End and Device End must occur 
before logical laCS can process the first 
record. 

The maximum overlap achievable in Figure 
41 is the time for data transfer between 
device and 1/0 area. The GET for all but 
the first recor1 of a block takes time only 
for pointing to the next record. The GET 

Execute 
Channel 
Program 

Issue GET 

Data Transfer 
from I/O Device Processing 
to I/O Area 

Channel End, 
Device End 

o-----Time 

Execute 
Channel 
Program 

Issue PUT 

Data Transfer 
from I/o Area Processing 
to I/o Device 

Channel End, 
Device End 

for the first record must wait for Channel 
End (and Device End) of the data transfer 
to the alternate area. Then pointing to 
the first record and returning control to 
the problem program is overlapped with the 
next device transfer. The PUT is the same 
as GET, except. that t.he wait occurs with 
the last record of a block. 

There is a disadvantage to the 
combination shown in Figure 42 over those 
in Figures 40 and 41, because it requires 
extra main storage. 

A summary of the overlap of processinq 
and I/O is shown in Figure 43. 

I 
Issue Next GET 

I 
Issue Next PUT 

Figure 35. Overlap of Processing and 1/0: One 1/0 Area and No Work Area 
(Unbuffered I/O Device) 

Data Management 123 



Data Transfer Execute 
from I/o Area Channel 
to Work Area Program 

1 
Issue GET 

O-------Time _ 

Data Transfer Execute 
from Work Area Channel 
to I/O Area Program 

1 
Issue PUT 

Processing 

Data Transfer from I/o Device to I/o Area 

1"",,--- Max. Achievable Overlap-

Processing 

-I 
Channel End, 
Device End 

Data Transfer from I/o Area to I/o Device 

1---Max. Achievable Overlap --1 
Channe I End, 
Device End 

Issue Next GET 

Issue Next PUT 

Figure 36. overlap of Processing and I/O: 
(Unbuffered I/O Device) 

One I/O Area and a Work Area 

124 S/360 BOS Prog. Guide 



lacs Points Execute 
to I/o Area A Channel 

Program 

1 
Issue GET 

Processing 

Data Transfer from I/o Device to I/o Area B 

\'Max. Achievable ovedap~ 
Channel End, 
Device End 

O--------Time-

Execute 
Channel 
Program 

Issue PUT 

lacs Points 
to I/o Area B Processing 

Data Transfer from I/o area A to I/o Device 

\"'MaX. Achievable ovedap-------t 

Channel End, 
Device End 

1 
I 

Issue Next GET 

Issue Next PUT 

Figure 37. Overlap of Processing and I/O: 
(Unbuffered I/O Device) 

Two I/O Areas and No Work Area 

Data Management 125 



Data Transfer 

I 

from I/o Area Processing 
A to Work Area 

Execute 
Channel Issue Next GET 
Program Data Transfer from I/O Device to I/O Area B 

1 r- - f'.Aax. Achievable Overlap - -
Issue GET t 

Channe I End, Issue Next GET 
Device End 

0-------Time_ 

Data Transfer 
from Work Area Processing 
to I/O Area A 

Execute 
Channel 
Program Data Transfer from I/O Area A to I/O Device 

1"""'----- Max. Achievable Overlap-- -1 
Issue PUT Channel End, 

Device End 
Issue Next PUT 

Figure 38. Overlap of Processing and I/O: 
(Unbuffered I/O Device) 

Two I/O Areas and a Work Area 

lacs Points 
to Next Record Processing 

/ 
Issue GET Issue Next 

t 

GET 

(Record Gotten is not the First in the Block) 

O-------Time_ 

lacs Points 
to Next Avai 1-
able Space 

Processing 

Issue PUT 
/' 

Issue Next 
PUT 

(Record Put is not the Last in the Block) 

Execute Data Transfer lacs Points 
Channel from I/O Device to First Processing 
Program to I/O Area Record 

t 
Issue GET 

t 
Channel End, 
Device End 

(Record Gotten is the First in the Block) 

O-------Time_ 

Execute Data Transfer lacs Points 
Channel from I/O Area to First Processing 
Program to I/o Device Space 

t 
Issue PUT 

t 
Channel End, 
Device End 

(Record Put is the Last in the Block) 

Figure 39. overlap of Processing and I/O: 
(Blocked Records) 

One I/O Area and No Work Area 

126 S/360 BOS Prog. Guide 

t 
Issue Next GET 

t 
Issue Next PUT 



Processing 

Data Transfer Execute 
from I/o Area Channel 

Data Transfer 
from I/o Area 
to Work Area 

Pcoee,,; n9 I 
t'r--------'--- t 

to Work Area Program Data Transfer from I/o Device to I/O Area 

Issue GET Issue Next 
GET 

(Record is not the Last in the Block) 

0------ Time __ 

Processing 

t - Max 0 Achievable Overlap 
Issue GET 

(Record Gotten is the Last in the Block) 

o -------Time_ 

Processing 

Data Transfer Execute 
from Work Area Channel 

I 

Channel End, 
Device End 

Data Transfer 
from Work Area 
to I/O Area to I/o Ar:ea Program Data Transfer from I/o Area to I/o Device 

t t t 
Issue Next Issue PUT 

j-Maxo Achievable Overlap 

Issue PUT PUT 

(Record is not the Last in the Block) (Record Put is the Last Record in the Block) 

Note: For both GET and PUT, a channel end must have occurred before the data transfer 
between I/o area and work area can take place (for the first record in a block). 

Channe I End, 
Device End 

Figure 40. Overlap of Processing and I/O: 
(Blocked Records) 

One I/O Area and a Work Area 

J 
I 

Issue 
Next 
GET 

Issue 
Next 
PUT 

Data Management 127 



10CS Points to 
Next Record 
in I/o Area B 

Issue GET 

Execute 
Processing Channel 

Program 

t f 
Issue Next Issue GET 
GET 

(Record is not the First in the Block) 

10CS Points to 
First Record in Processing 
I/o Area A 

Data Transfer from I/o Devi ce to I/o Area B 

I"Max. Achievable overlap~ 
Channel End, 
Device End 

(Record Gotten is the First Record in the Block) 

O-------Time- O-------Time-

t 

10CS Points to 
Next Record in 
I/o Area B 

Issue PUT 

Execute 
Processing Channel 

Program 

t 
Issue Next Issue PUT 
PUT 

(Record is not the Last in the Block) 

10CS Points to 
First Space in Processing 
I/O Area A 

Data Transfer from I/o Device to I/o Area B 

"'Max. Achievable Overlap~t 
Channel End, 
Device End 

(Record Put is the Last Record in I/o Area B) 

Figure 41. overlap of Processing and I/O: 
(Blocked Records) 

Two I/O Areas anj No Work Area 

128 S/360 BOS Prog. Guide 

Issue Next GET 

I 
Issue Next PUT 



Data Transfer ~ 
L-fr_o_m_l_f_o_A_r_e_a_B.......L. ___ p_rocessi ng 
,to Work Area 

t 
Issue GET I ssue Next 

GET 

Data Transfer from 
First Record in I/o Processing 
Area A to Work Area 

Execute 
Channel 
Program Data Transfer from I/o Device to I/o Area B 

t ] ...... ---Max. Achievable Overlap------;I~t 
Issue GET Channel End, 

Device End 

(Record Gotten is not the First in the Block) (Record Gotten is the First in the Block) 

O------Time-

Data Transfer 
from Work Area 
to I/o Area B 

Pea,e,,;,. I 
t!--------L- / 

o 

Data Transfer 
from Work Area 
to I/o Area B 

Processing 

Execute 
Channel 
Program Data Transfer from I/o Area B to I/o 

Max. Achievable Overlap 

1 
Issue Next GET 

Device 

t 
Issue PUT Issue Next Issue PUT 

PUT 

II 
Channel End, Issue Next PUT 
Device End 

(Record Put is not the Last in the Block) (Record Put is the Last in the Block) 

Figure 42. Overlap of Processing and I/O: 
(Blocked Records) 

Two I/O Areas and a Work Area 

Record 
Format Separate 
(Blocked or Number of Work 
Unblocked) I/o Areas Area Amount of Effective Overlap 

----

1 no 
Overlap of the device operation only for buffered devices such as 1403, 1443, 2540. No 
overlap of magnetic tape, 1015, 1052, 1442,2311, 2671, 1285 (unbuffered at device). . -~ 

yes Ov~rlap processing of each record. (Record move required, except for 1015 and 1052) • 
Unblocked 

2 no Overlap processing of each record. (No record move requi red). 

yes Overlap processing of each record. (No advantage to a work area). 
--

1 no No overlap. 
--

yes Overlap processing of last record in each block. 
Blocked --

2 no Overlap processing of full block. 
-----------------

yes Overlap processing of full block. (No advantage to a work area). 

Note: Overlap given is the maximum achievable. 

Figure 43. Summary of Achievable Overlap of Processing and Input/Output 

Data Management 129 



DIRECT ACCESS METHOD 

The Direct Access Method (DAM) provides a 
flexible set of macro instructions for 
creating and ma.intaining a data file on the 
IBH 2311 Disk Storage Drive. This 
technique applies primarily to records 
organized in a random order. The macro 
language offered by this data management 
technique permits the user to load, read, 
write, update, add or replace records in a 
2311 disk storage file. This language 
gives the user great flexibility in data 
handling techniques, with the preparation 
of CCws (channel command words) handled by 
the DAM macro routines. 

Advantages of the Direct Access Method 

• DAM is an IOCS processing method 
designed specifically for direct access 
storage devices. 

• DAM can be used to process records 
organized in a random order. 

• DAM can also be used to process, in key 
sequence, a file of records stored 
sequentially by record key. 

• DAM provides READ/WRITE macro routines 
for handling input/output requirements. 

• DAM will process records with or 
without key area. 

• The capacity record feature is offered 
as an option. 

• DAM offers a multiple-track searching 
feature to search beyonj the specified 
track for a ~~ argument. 

• 

• 

• 

DAM offers two reference methods, 
either by Identifier (ID) area, or by 
control information set up in a key 
area. 

On certain READ/WRITE macros, the user 
can specify a location for IOCS to 
supply the record identifier (ID) of 
the current record or the next record 
after a READ or WRITE has been 
executed. 

DAM permits the user to have one or 
more user labels in addition to the 
standard volume and file labels. 

DAM has these restrictions : 

• 

• 

• 

DAM will not block or deblock records. 

DAM will process only records that are 
specified as fixed length or undefined. 

A track reference and a record 

130 S/360 BaS Prog. Guide 

reference must be provided to IOCS by 
the user for every record to be read or 
written. 

• Only one I/O area can be specified for 
each file to be processed. 

• A work area can not be specified in the 
DAM technique. 

The basic means of communication between 
the problem program and the logical IOCS 
routines of the direct access method is 
through the use of READ/WRITE imperative 
macro instructions. Thes'e macro routines 
allow the user to read, write, update, add, 
or repla.ce records on a disk file. 

When the user issues a READ or WRITE 
macro instruction for a file, program 
control is transferred to a logical laCS 
routine that selects the proper channel 
program to accomplish the command. The 
laCS routine issues an execute channel 
program that will cause the I/O request to 
be started; or if the channel is bUSY, will 
place the request in a queue for later 
execution. IOCS then returns control to 
the problem program. A WAITF macro 
instruction must be written into the 
problem program by the user before the next 
READ or WRITE for this file. The WAITF 
macro establishes routines to test the 
status of the channel to ensure that the 
operation is complete. If the I/O 
operation is not complete, the routines 
branch into a programmed waiting loop. The 
WAITF macro routines will supply 
indications of exceptional conditions to 
the problem program. The symbolic name of 
a two byte field (error/status field) in 
which laCS can store the error/status 
information must be supplied by the user in 
a DTF statement. 

At the completion of the I/O operation, 
control is returned to the problem program. 
The user should test the condition codes 
before proceeding with his program. 

- The declarative macro DTFDA (Define The 
File for Direct Access) prOVides-the 
necessary-entries for defining the logical 
file to be processed and the type of 
processing to be done on the file. These 
entries are explained in detail in the BOS 
Assembler with Input/Output Macros 
publication, listed in the Preface of this 
manual. 

RECORD TYPES 

The DAM IOCS routines will not block or 
deblock records. If the user wants to use 
blocked records, he must provide his own 



blocking and deblocking routines. Records 
are considered to be either fixed length or 
undefined. Whenever undefined records are 
to be loaded, added, or written in a file, 
the user must determine the length of the 
data area of each record and load it in a 
register (specified by the DTFDA entry 
RECSIZE) before he issues the WRITE 
instruction for the record. IOCS adds the 
length of the key area when it is required. 
If the RECSIZE DTFDA entry is used and a 
READ macro is issued, IOCS will return the 
length of the da·ta area of the record read 
to the user in this register. 

Records to be processed by DAH can have 
either of two formats: 

with Key Area 

r-------, 
I Count I 
·1 Area I L _______ J 

r------, 
I Key I 
I Area I 
L_. _____ J 

r-----·------, 
I I 
I Data. Area I L _____ . ______ J 

Without Key Area 

r-------, 
I Count I 
I Area I 
L _______ J 

r-----------, 
I I 
I Data Areal L __________ J 

The Count Area includes the physi.cal track 
and record address, the number of bytes 
(key length) in the key area, and the 
number of bytes (data length) of data 
stored in the data area. 

The Key Area can be used to ident.ify the 
data record by control information, (not 
necessarily related to physical location), 
such as part number, employee number, etc. 

The Data Area contains the logical 
information stored in the file. 

The user is referred to the section on Disk 
Record Format in this manual for furthe-r--
details (see Figures 58 and 59). 

MAIN STORAGE I/O AREA 

A DTFDA entry is required to specify the 
symbolic name of the I/O area to be used by 
the file. This area must be reserved by a 
DS instruction that uses the same symbolic 
name for the area. 

Enough main storage must be reserved to 
contain the maximum number of bytes 
required by any READ-WRITE instruction 
issued for the file. The length of the I/O 
area is affected by the length of record 
data areas, and by the need for count and 
key areas as follows: 

• 

• 

• 

When undefined records are specified in 
the DTFDA entry for type of record, the 
I/O area must provide for the largest 
data record that will be processed. 

If records with key areas are to be 
processed and the IOCS routines used 
require the use of the key area, the 
I/O area must provide room for the key 
area as well as the data area. 

When the problem program issues WRITE 
instructions that transfer the count 
area, eight bytes of main storage mus1:. 
be available at the beginning of the 
I/O area. IOCS will construct the 
count field, to be transferred to the 
disk, in these eight bytes. The I/O 
area requirements are illustrated in 
Figure 44. 

REFERENCE METHODS 

Each record to be read or written must be 
identified by providing the DAM IOCS 
routines with two references. 

• Track Reference. This identifies the 
track that contains the record desired. 

• Record Reference. The location of the 
record on the track can be identified 
by its control information, if the 
records contain key areas, or by its 
physical location on the track. 

Track Reference 

The track reference that the user furnishes 
to the DAM IOCS routines must be set up in 
an 8-byte field (Figure 45) in main 
storage. Before any read or write macro 
instruction is issued, the track reference 
field must contain the proper track 
identification (physical location of the 
track in the disk pack). Track 
identification is an 8-byte binary addres~; 
of the form MBBCCHHR, where: 

M, is the sequential pack number of the 
pack(s) that constitutes the logical file. 
It selects the channel and unit number on 
which the referenced track will be found. 
The numbers placed in M refer to the 
symbolic unites) assigned to the logical 
file. The symbolic unit numbers, SYS001 
etc, must be sequential. A reference to a 
track on the first disk pack assigned to d 

logical file' would require an M of zero. 
Assume, for example, that a logical file 
has been assigned to units SYS002, SYS003, 
and SYS004. Then, M=O refers to SYS002i 

Data Management 131 



COUNT KEY DATA 

Create a file or Add records to a fi Ie with Count, Key, and Data areas 

COUNT I DATA 

Create a fi Ie or Add records to a fi Ie with Count and Data areas 

DATA 

READ or WRITE (Update) by KEY, or by ID without a DTFDA KEYLEN entry 

KEY DATA 

READ or WRITE (Update) by ID with a DTFDA KEYLEN entry 

DATA 

DATA 

READ or WRITE (Update) by KEY and by ID with a DTFDA KEYLEN entry 

*The first bytes are unused when a READ (or WRITE) 
by Key is executed. 

Figure 44. Schematic of DAM Input/Output Main Storage Requirements 

M B,B C,C 

Pack Cell (2321) Cylinder 
Number 

1 I 2 3 I 4 0 

0-254 o o o 0-202 

H,H 

5 
Hyd 

6 

o 0-9 

R 

Record 

7 r--
I 

Byte 
Position 

I Contents 
0-255 t- (Binary) 

Figure 45. DAM Track Reference Field in Main Storage 

M=l refers to SYS003i and M=2 refers to 
SYS004. 

B,B, is reserved for cell number (relates 
to the IBM 2321 Data Cell Drive). These 
two bytes are always zero (0,0) for 2311 
disk storage references. 

C,C, is used for indicating the number of 
the cylinder (0-202) in which the record is 
located. The first byte is always zero. 
The second byte specifies one of the 203 
cylinders in a disk pack. 

H,H, is used to indicate the number of the 
read/write head (0-9) to be used for a 
particular track in the specified cylinder. 
The first byte is always zero. The second 
byte specifies one of the 10 disk surfaces 
in a disk pack. 

132 S/360 BOS Prog. Guide 

R, is the record number. This byte can 
have a binary number of 0 to 255 to 
identify the physical location of the 
record on the specified track (CCHH). 
Space for this byte must always be provided 
in the reference field, but the number is 
required only when records are to be 
referenced by their physical location on 
the track. 

IOCS uses the track reference field to 
construct the data-address field of the 
channel command word (CCW) for seek 
commands. When records are referenced by 
their physical location (record ID), IOCS 
uses the field to construct the CCW data 
address field for search commands. The 
user must specify the location of the field 
by a symbolic name in the DTFDA entry 
SEEKADR. 



Record Reference 

The position of a record on a track can be 
referred to by either of two meth0ds. 

• Record identifier(IO): the physical 
location of a record on a track. The 
record identifier is the CCHHR part of 
the count area of any 2311 disk record. 

• Record Key: the control information of 
a record. Records with key areas can 
be referred to by the control 
information. 

Record Reference by 10 

The record identifier (10) is part. of the 
count area of each 2311 disk record. It 
consists of five bytes (CCHHR shown in 
Figures 45 and 46). The first four bytes 
identify the location of the track 
(cylinder number and head number) and the 
fifth byte (record) uniquely identifies the 
particular record on the track. When 
records are to be referenced by 10, they 
must be numbered in succession, wi,thout 
missing numbers, on each track. The first 
data record (after Record Zero) must be 
record number 1, the second record number 
2, etc. 

When a REAO or WRITE instruction that 
searches by 10 is executed, laCS refers to 
the track reference field to determine 
which record is requested by the p~ogram. 
The number in this field (CCHHR) is 
compared with the corresponding field in 
the count areas of the disk records. 

When the READ, 10 instruction is 
executed, laCS searches the specified track 
for the particular record. If the record 
is found, the key area (if present and 
defined in DTFDA entry KEYLEN) and the data 
area of the record are transferred into the 
main storage I/O area. If a corresponding 
ID is not found, a no-record-found 
indicator will be placed in the user's 
error/status field. The location of this 
field must be specified, by the user, in 
the DTFOA entry ERRBYTE. 

When the WRITE, 10 instruction is 
executed., laCS searches the specified track 
for a record with an equal ID. If an equal 
ID is found, the information in the 
main-storage output area is transferred to 
the key area (if specified) and the data 
area of the disk record. This new record 
replaces the key and data previously 
recorded on the disk track. Because of the 
manner in which the WRITE, ID instruction 
functions, the disk storage area used must 
have been previously formatted with 
appropriate count and data areas or count, 
key, and data areas. The Clear Disk 
utili ty program can be used to format count~ 
and data areas or count, key, and data 
areas. 

The count field of the original record 
is used to control the writing of the new 
record. A record shorter than the original 
record will be automatically padded with 
zeros. A record longer than the original 
record will be written only to the extent 
of the area indicated in the count field on 
the track. Any bytes in excess of the 
number of bytes recorded in the count field 
will be lost. In either case, short or 
long records, laCS will turn on the 
wrong-Iength-record bit in the error/status 
field. 

Records Reference: Record Zero 

This reference should be used each time the 
problem program reuses a certain portion of 
a pack. It may be used as a utility 
function to initialize a limited number of 
tracks or cylinders. Only one track at a 
time, however, may be initialized. This 
may be done by issuing a WRITE RZERO 
instruction with the address of each track 
to be initialized. 

When the WRITE RZERO instruction is 
executed, laCS writes a new Record Zero 
(RO) with the maximum capacity of the track 
(3625 characters) and erases the full track 
after RO. The user must supply the track 
information (cylinder and track number) in 
the track-reference field. Any record 
number is valid, but will be ignored. 

Data Management 133 



1---Count Area \foooIlI----- Data Area -----;,,0-1\ 
Identifier -c Data Identifier of Number 

of unused 
2 "OJ Length last record on 

bytes on ~ c >-. III ....a -I the track 
the track ~ 

:::l OJ 

C I c H I H 

>-. 

I 
..2 Q) 

u.. R ~ CICtH\HIR t 

c 
.2 

Bytes a 2 3 4 5 6 7 8 a 2 3 4 5 6 7 

Figure 46. Record Zero (RO) with Capacity Record 

Record Reference: After 

This operation permits adding a record to a 
file without regard to the record key or 
record ID. 

When WRITE AFTER is executed, IOCS 
examines and maintains the capacity record 
(Figure 46) in Record Zero to determine the 
location and amount of space available on 
the specified track. 

If the space remaining on the track is 
sufficient, the information in the 
main-storage output area is transferred to 
the disk track immediately following the 
last record. The count area, the key area 
(if specified), and the data area are 
written on the track. The remainder of the 
track is erased. The capacity record is 
updated by laCS. 

If the remaining space on the track was 
not large enough for the record, laCS will 
not write the record. A no-room-found 
indicator will be set in the user's 
error/status field. 

Capacity Record: When random files are 
created, the address conversion routines 
should allow more file spac.e than would 
normally be required to contain the number 
of records. Because of the nature of 
random file organization, the extra space 
is scattered throughout the file. The DAM 
technique provides an efficient means for 
maintaining a capacity inventory for this 
extra space. A ~apacity record is 
maintained by laCS if the AFTER method is 
used to add records ~o a file. 

The capacity record can be initialized 
with the Initialize Disk or the Clear Disk 
utility programs. 

When records are to be added to a disk 
file by the WRITE AFTER method, laCS uses 
the capacity record to ensure that each 
record fits on the track specified for the 
record. If the record fits, laCS writes 
the record and updates the capacity record. 

134 S/360 Bas Prog. Guide 

If the record is too large for the 
remaining area on the track, laCS sets a 
no-room-found indicator in the user's 
error/status field. When the problem 
program detects a no-room-found indicator 
under these conditions, a problem program 
routine should be entered to place the 
record in an overflow area. A discussion 
of overflow areas for random files can be 
found under Random Addressing Techniques. 

laCS uses a portion of the data area of 
the first record on each track (RO) to 
maintain the track capacity inventory. 
Record Zero contains a count area and a 
data area as shown in Figure 46. The count 
area has a: 

1-byte flag (is not normally transferred 
to or from main storage) 

5-byte record identifier (CCHHR) 

1-byte key length (KL) 

2-byte data length (DL) 

The capacity-record information is kept in 
the first bytes of the data area and 
consists of: 

5 bytes - the identifier (CCHHR) of the 
last record written on the 
track 

2 bytes - the number of unused bytes 
remaining on the track 

1 byte - not used by DAM. 

Record Reference by Key 

The referencing of records by their key is 
significant to random processing of 
records. It permits the user to refer to 
records by the logical control information 
associated with the records. Whenever this 
method of reference is used, the problem 
program must supply the key of the desired 
record to IOCS before a READ or WRITE 



instruction is issued. When a READ or 
WRITE instruction is executed, laCS will 
search the track, identified by the track 
reference field for the desired key. The 
search will be confined to one track unless 
multiple-track search is specified by the 
user (see Multiple-Track Search). 

If the desired key is not found on the 
track, laCS will place a no-record-found 
indicator in the user's error/status field. 

When a READ instruction is executed and 
the desired key is found, laCS will read 
the data area of the disk record into the 
main-storage input areas. 

When a WRITE instruction is executed and 
the desired key is found, laCS will 
transfer the data in the main-storage 
output area to the data area of the disk 
record. This replaces the information 
previously recorded in the data area. 

The count field of the orginal record is 
used to control the writing of the new 
record. A record shorter than the original 
record will be automatically padded with 
zeros. A record longer than the original 
record will be written only to the extent 
of the area indicated in the count field on 
the track. Any bytes in excess of the 
number of bytes recorded in the count field 
will be lost. In either case, short or 
long records, laCS will turn on the 
wrong-Iength-record bit in the error/status 
field. 

MULTIPLE-TRACK SEARCH 

The READ and WRITE macro routines of the 
DAM technique for processing disk files 
normally searches one track for the desired 
logical record. In many applications, a 
search through a complete logical file or a 
portion of the file would be appropriate to 
efficient system design. Therefore, the 
DAM technique provides a mul"tiple-track
search capability.. The user can specify a 
search of multiple tracks by including the 
DTFDA entry SRCHM (search multiple tracks) 
when the file to be processed is defined. 
When multiple-track search is specified, 
IOCS begins the search for a specified 
record key on the track specified in the 
track reference field. The search 
continues until one of two conditions 
occur. The search terminates when: 

1. An equal compare occurs between the key 
argument (record key) in main storage 
and the record key on the disk tracks, 

or 

2. The end of the specified cylinder is 
reached. 

The search of multiple tracks continues 
through the cylinder even though part of 
the cylinder may be assigned to a different 
logical file. Therefore, it is important 
that the user organize his files or his 
program in such a manner that one of the 
foregoing two conditions properly 
terminates the search. One of the 
techniques used in this kind of file 
processing is to place the key argument 
into the last record location of the file 
on disk, before beginning the search. At 
the termination of the search the user must 
determine whether the record found is the 
record desired or the last record on the 
file. 

By proper file organization and 
programming, the user can extend the 
multiple-track search to more than one 
cylinder. This is a problem-program 
responsibility, but laCS provides the user 
with an end-of-cyl.inder indicator when the 
search reaches the end of a cylinder. This 
indicator is placed into the user's 
error/status field by laCS. 

ID LOCATION 

The DAM technique requires that the user 
provide laCS with both a track reference 
(MBBCCHH) and a record reference (CCHHR or 
KEY) for every record that is read or 
written. Because of this requirement DAM 
provides optional routines to aid the user 
when processing in certain conditions. For 
example, when record reference is by key 
and multiple tracks are searched, laCS will 
make the ID (CCHHR) of the specified record 
available to the problem program. The user 
can use this ID to determine whether the 
record "found was in the last location of 
the file. 

To request that laCS supply the ID, the 
user must place the symbolic name of a 
five-byte field in the DTFDA entry IDLOC. 
The symbolic name should be the same name 
the user writes in the DS statement to 
reserve the field in main storage. 

laCS supplies the ID of the record 
specified in the READ/WRITE instruction, or 
the next record on the track. The type of 
READ/WRITE function determines which ID is 
returned. The search multiple-track 
feature (SRCHM) is considered part of the 
definition of a READ/WRITE function. 

Data Management 135 



ID Returned 
Read/Write Function 

With SRCHM Without SRCHM 

READ by KEY Same record Next record 

READ by ID (invalid) Next record 

WRITE by KEY Same record Next record 

WRHE by ID (invalid) Next record 

WRITE by AFTERID (invalid) none 

WRITE by AFTER (invalid) none 

Figure 47. The ID Returned by IOCS 

Figure 47 indicates the various 
functions and the corresponding ID returned 
to the problem program. 

ERROR/STATUS FIELD 

When records in a disk-storage environment 
are being processed, certain exceptional 
conditions must be handled within the 
program. Because the method used for 
handling these exceptional conditions 
depends upon the application and the 
operating environment, the DAM IOCS 
routines provide the user with exception 
indicators. 

The user must specify a symbolic name 
for the address of a two-byte field where 
loes is to place error/status information. 
The symbolic name is written by the user in 
the DTFDA entry ERRBYTE. When appropriate, 
loes will set one or more of the bits in 
this error/status field to indicate the 
following conditions. Before each I/O 
operation is started IOCS resets any bits 
that were set by a previous I/O operation. 

Error/Status Field 

FIRST BYTE 

o 

1 

Error/Status 
Condition 

* 
Wrong length 
Record (WLR) 

Remarks 

None 

For fixed unblocked 
records, wrong block 
size specified while 
using READID, WRITEID, 
READKEY, and WRITEKY. 

136 S/360 BOS Prog. Guide 

2 * 
3 * 
4 No Room 

Found 

5 * 
6 * 
7 * 

SECOND BYTE 

o 

1 

2 

3 

4 

5 

6 

7 

Error/Status 
Condition 

Data Check in 
count Area 

Track Overrun 

End of 
Cylinder 

Data Check 
Reading Key 
or Data 

No Record 
Found 

End of File 

* 
* 

None 

None 

Occurs only on WRITE 
AFTER and AFTERID when 
CAPREC=YES. No room 
to write record on 
track specified. 

None 

None 

None 

Data error detected. 
Occurs when reading or 
searching a count 
field. 

Occurs only when using 
AFTERID. If 
CAPREC=YES is not 
specified, user must 
ensure record will fit 
or IOCS writes portion 
that fits and 
indicates record only 
partially written. 

Occurs when record is 
not found on specified 
cylinder while using 
SRCHM. 

Data error detected 
when reading key or 
data or while 
searching keys. 

Occurs when searching 
ID or key without 
SRCHM and ID or key is 
not found in specified 
track. 

Count field with data 
length of zeros 
detected. 

None 

None 

Note: 
use. 

* denotes bits reserved for future 



These indicators are available to the 
problem program upon completion of the 
record transfer (after WAITF time). The 
user can tailor his exception-handling 
routine to fit his particular requirements. 

LABELS 

Any disk pack to be processed by logical 
IOCS must have System/360 Standard Disk 
Labels. No provision is made for 
processing disk files without labels. 
However, the DAM techniques provide for an 
exit from the standard label IOCS 
processing routines to the symbolic name of 
the user's routine for processing user 
labels. If the user requires one or more 
labels in addition to the standard labels, 
he must include his own routine to build 
and check the additional labels. The 
symbolic name of his routine must be 
specified in the DTFDA entry LABADDR. 
After IOCS has processed the standard 
labels, the program will branch to the 
user's routine. At the end of his routine, 
the user must return to IOCS by use of 
LBRET macro. 

INDEXED SEQUENTIA:L FILE MANAGEMEN~[' SYSTEM 

The Indexed Sequential File Management 
System (ISFMS) has been designed to provide 
a comprehensive file organization method 
for using disk-storage devices on the 
System/360. ISFMS accomplishes the 
disk-storage file organization objective of 
providing efficient handling of data 
records, while maintaining the over-all 
processing objectives of the system. The 
ISF~S has these advantages: 

• 

• 

• 

• 

• 

• 

An IOCS file management system 
specifically designed for direct access 
storage devices. 

Sequentially organized files that can 
be processed in random order or in 
sequential order. 

Both READ/WRITE and GET/PUT macro 
instruction routines available to the 
problem program. 

Routines for processing blocked or 
unblocked records. 

Record processing directly in the I/O 
area or in a work area. 

Presorted logical records that are 
loaded onto disk while a series of 
indexes are established for subsequent 
processing. 

• An efficient chaining method for 
handling additions requiring an 
overflow area. 

The ISFMS has these restrictions: 

• Only one I/O area is permitted when a 
file is loaded. 

• All physical data records must contain 
key areas, and all key areas must be 
the same length. 

• Data records must be fixed-length only. 

• Only Standard Disk Labels are 
permitted. 

• For multi-pack files, all packs must be 
on-line for any function (loading, 
adding, retrieving randomly or 
retrieving sequentially) performed for 
the file. 

• The prime data area for a logical file 
must be contained within one extent on 
a disk pack. It must start-on the 
first track (track 0) of a cylinder, 
and it must end on the last track 
(track 9) of the same or a different 
cylinder. Prime data extents cannot 
start or end in the middle of a 
cylinder. For a multi-pack file, the 
prime data area must continue from the 
last track of one pack to the first 
track (track 0) of cylinder 1 on the 
next pack so that the area is 
considered continuous by ISFMS. The 
first cylinder (cylinder 0) is reserved 
for labels. 

PROCESSING DISK RECORDS BY THE ISFMS METHOD 

ISFMS is designed to permit processing disk 
records in both random order and/or 
sequential order by control information. 
For random processing, the programmer 
supplies the control information (record 
key) of the desired record to ISFMS, and 
then issues READ or WRITE macro 
instructions to transfer the specified 
record. For sequential processing, the 
programmer specifies the firs:!= record to b(~ 
processed, and then issues GET and/or PUT 
macro instructions to retrieve successive 
records (in sequential order by record 
key). For either types of processing, all 
packs in a multi-pack file must be on-line. 

The DTFIS (Define The File for Indexed 
Sequential System) declarative macro is 
teamed-up with the READ/WRITE and GET/PUT 
imperative macros to permit the following: 

• A logical file of records can be loaded 
onto a disk. 

Data Management 137 



• 

• 

• 

• 

• 

Individual records can be read from, 
added to, or updated in the ISFMS 
created file. 

Overflow areas for handling additional 
records may be built by one of three 
methods, cylinder overflow, independent 
overflow or a combination of cylinder 
overflow and independent overflow. 

Several user exits permit the 
programmer to handle exceptions in a 
manner suitable for his particular 
requirements. 

A file can be reorganized by using the 
macro instructions for Sequential 
Retrieval and macro instruction for 
Load. 

A file can be updated when processing 
is done in random order or sequential 
order or when processing is done in 
both random and sequential order. 

RECORD TYPES 

Logical records in an ISFMS organized file 
must be fixed-length records either blocked 
or unblocked and every physical record in 
the file must contain a key area. If the 
records are blocked, the record key 
(control information) of the highest (last) 
logical record in the block is stored in 
the key area of the block. 

One physical record format is available 
with ISFMS. 

r------------, r- ---------, r-----------, 
I Count Area I I Key Area I I Data Are I L ____________ J L __________ J L ___________ J 

The count area includes such information 
as a program-generated track and record 
address, the number of bytes in the key 

Fixed Length Unblocked Records 

Count Key Data Area] Count 
Area G 

Area G One logical Record G 
Area 2 

Fixed Length Blocked Records 

Count Key Data Area] 

G 

Area G Area G Logical] Record I Logical Record I Logical Record 
] ] 2 3 

Figure 48. ISFMS Record Types 

138 S/360 BOS Prog. Guide 

area, and the number of bytes in the data 
area. 

The key area contains the record key or 
identifier of the information record. 

The data area contains the information 
record. 

The reader is referred to the section on 
Disk Record Formats in this manual for 
further details. 

Two types of records can be used with 
ISFMS. 

These record types are shown in Figure 48 
and are described in the section Types of 
Records. 

MAIN-STORAGE ~qEAS 

I/O Areas 

One I/O area must be specified for each 
ISFMS file to be processed in a problem 
program. This I/O area must be defined to 
contain sufficient space for the data area. 
If unblocked records are to be retrieved or 
records are to be loaded or added, space 
for a key field is required. Space for the 
count area must also be provided, when the 
file is being loaded or additions to the 
file are being made. Space for a 
sequence-link field is required, when 
additions are to be made to the file or 
when records are retrieved from a file. 
The sequence-link field is used for 
overflow records as described later (see 
Adding Records to a File). 

The following main storage I/O areas 
required with ISFMS processing techniques 
are shown schematically in Figure 49. 

Key < 

Area 2 ) 

Count 

G Area G 
2 



LOAD. To create or extend a disk file of 
blOCked or unblocked records. This area 
must be defined with sufficient capacity 
for an 8-byte count field, a control
information field (key area), and the data 
record(s). 

ADD, unblocked records. The output area 
for adding unblocked records to an ISFMS 
organized file must be defined with 
sufficient capacity for an 8-byte count 
field, a control-information field (key 
area), and a data-record area. The 
data-record area must have space for a 
lO-byte sequence-link field that is used in 
conjunction with overflow records (see 
Adding Records to a File). The 
sequence-link field is required when a 
record is written on an overflow track. 
ISFMS determines the correct sequence link 
and stores this information at the 
beginning of the data section of the I/O 
area. When the sequence-link field is not 
used, the ten unused bytes fall at the end 
of the data section and are ignored. 

ADD, blocked records. The output area for 
adding blocked records to an ISFMS 

organized file must contain sufficient 
space for an 8-byte count field, a 
control-information field (key area) and a 
data section large enough to contain the 
block of logical records. The minimum size 
for the data section is one logical record 
plus lO-bytes to be used for a 
sequence-link field when required. 

RETRIEVE, unblocked records. The input 
area for reading unblocked records must 
contain sufficient capacity for a key area 
and a data area. The data area must 
include enough space for the logical record 
plus lO-bytes for the sequence-link field 
of overflow records. If a record does not 
have a sequence-link field, the extra 
lO-bytes in the I/O area fall at the end of 
the data section and are ignored by the 
program. 

RETRIEVE, blocked records. The input area 
for reading blocked records must contain 
space for a data area. The data area must 
be large enough to contain a full block of 
records. The minimum size of the data area 
is one logical record plus lO-bytes for thf' 
sequence link used with overflow records. 

Data Management 139 



LOAD - unblocked or blocked records 

COUNT KEY DATA 

ADD - unblocked records 

DATA 
I 

unused 

COUNT KEY 

J 
Sequence Data (for overflow records) 
Link 

ADD - blocked records i"""j.t---------DATA SECTION FOR BLOCK OF RECORDS-------'"1~ j 

COUNT 

record 1 J record 2 

KEY 
Sequence J one logical record J Link 

I
DA TA SECTION FOR 

t-oIt!-----AN OVERFLOW RECORD 

RETRIEVE - unblocked records 

DATA 

KEY 

~ I 

I 

I 
I 

Sequence Data (for overflow records) 
Link 

RETRIEVE - blocked records 

record 3 

unused 

unused 

DATA SECTION FOR BLOCK OF RECORDS 

record 1 
I 

record 2 I record 3 

KEY 1 Sequence 

I one logical record J Link 

DATA SECTION FOR AN 
·1 OVERFLOW RECORD I· 

Figure 49. Schematic of ISFMS Input/Output Main Storage Requirements 

~I 

I/O Register the beginning of each logical record when 
it is needed for processing. 

When blocked or unblocked records are to be 
retrieved and processed directly in the I/O 
area, a register must be specified. This 
register is used for indexing, to point to 

140 S/360 BOS Prog. Guide 



Work Areas 

A work area must be specified by a DTFIS 
entry when records are loaded or added. 
The work area must provide space for one 
logical record (including a key field if 
records are unblocked) when a file is 
loaded or extended. If records are being 
added to a file, the work area must contain 
space for one logical record (data area) 
and a control-information field (key area),. 

When blocked records and a work area are 
specified in the DTFIS entries for a file, 
an additional work area will be generated 
at assembly time. This additional work 
area is a duplica.te of the user-specified 
work area and is used exclusively by the 
ADD macro. The ADD macro uses this area 
when a record is added to a file and 
records are shifted. For example w if a 
record is to be inserted into a block of 
records, each record in the block higher 
than the inserted record must be shifted to 
the next higher location. The second work 
area is required for this shift operation. 

When a work area is specified on input, 
ISFMS moves each record from the I/O area 
to the work area. The problem program can 
then process the record in the work area. 
When a work area is specified on output, 
ISFMS moves the record from the work area 
to the I/O area in preparation for 
transferring the record to disk storage. 
If a work area is specified, an I/O 
register is not required. 

LOADING OR EXTENDING A DISK FILE WITH ISFMS 

Data records to be loaded onto a disk file 
must be sorted into sequence by record key, 
before being presented to the ISFMS load 
routines. 

The data records are written by ISFMS 
onto disk tracks in an area of the file 
(called the prime area) specified by the 
user. The position of each logica.l record 
is a function of the record key used in the 
pre-sort operation; that is, each record is 
written one after the other into the prime 
area of the logical file. The user must 
specify one extent for the prime data area 
on one pack. If a file is to be l.oaded 
onto more than one pack, the prime: data 
area must continue from the last track of 
one pack to the first track of another 
pack. Extents must be adjacent. In 
addition, all packs to be used for a 
multi-pack file must be on-line throughout 
the load operation. 

Indexes 

As ISFMS loads the records, it creates a 
set of two or three indexes to be used to 
control the processing and location of the 
data records. Two indexes, the track index 
and the cylinder index, are always 
developed for each file. The third, a 
master index, is built only when specified 
by the user. A master index should be 
specified only for large files. As a guide 
line, if a cylinder index occupies less 
than five tracks, it is usually faster to 
search only the cylinder index (followed by 
a search on the track index) than to search 
a master index, also. 

Indexes are developed as a series of 
entries, each including the address of a 
disk track and the highest (last) record 
key on that track or cylinder. Each entry 
is a separate disk record composed of a key 
on that track or cylinder. Each entry is a 
separate disk record composed of a count 
area, a key area, and a data area. The key 
area contains the highest key on the track 
or cylinder, and its length (number of 
bytes) is the same as the key-area length 
specified by the user for the data records. 
The data area of each index record is 
lO-bytes in size and contains the physical 
address of the logical record or of another 
index. 

TRACK INDEX: The lowest level index for a 
logical file is the track index. This 
index has two important functions. 

• Point to the correct track in the 
cylinder that contains the specified 
key. 

• Provide direct linkage to the 
record-overflow areas. 

Each track index is built on the cylinder 
that it is indexing. The index of the 
first cylinder will be located on the first 
track specified by the user's job-control 
XTENT card for the prime area of the file. 
The XTENT specification must start with the 
first track of a cylinder. If the prime 
area is contained in more than one 
cylinder, the track index will be located 
on the first track of each additional 
cylinder. The index can occupy a partial 
track, a full track, or more than one 
track. If the track index does not fill a 
track, data records will be stored on the 
remaining portion of the track. 

When first created, the track index is 
formatted (by ISFMS routines> with two 
entries for each track used on the 
cylinder. These two entries can be called 
the normal entry and the overflow entry. 

Data Management 141 



Each entry is a disk record containing a 
k~y area and a data area. 

The normal entry is the first of the two 
entries. After a track is loaded with 
records for a file, this entry has in its 
data area, the address of the track 
referenced by the entry. The key of the 
last record on the track is maintained in 
the key area of the normal entry. The key 
area is changed each time a record is added 
to the track, so that it will always 
reflect the key of the last record on the 
track. (See Adding Records to a File.) 

The overflow entry is used only in the 
track index. It is required for handling 
overflow record chaining when additional 
records are inserted into the file. Before 
a record is added to a track, the overflow 
entry for that track is similar to the 
normal entry in that they both contain the 
key of the last record on the track and the 
address of the track. Note, at this point 
the last record on the track is the last 
record placed on the track when the file 
was originally loaded. When overflow 
records occur, the data area of the 
overflow entry is changed to reflect the 
address of the lowest record in the 
overflow chain.--An overflow chain is 
developed for each track. The key area of 
the overflow entry is not changed, but will 
always contain the key of the highest 
record, because records added to a track 
will always have keys lower than the 
highest key originally loaded onto the 
track. The tecrillique used to add records 
is explained in the section Adding Records 
to a File. 

The last entry on a track index is 
always a dummy entry. The dummy entry 
indicates the end of the track index and 
indicates that any following records are 
logical file data records. 

The key area of the dummy record is the 
same length as the user's key length and 
contains bytes of all one-bits. The data 
yield is the same length as the normal 
entries but is a null field. 

When the cylinder overflow option is 
specified by the user, the Record Zero in 
the track index will be a Cylinder Overflow 
control Record (COCR). This entry will be 
set up in the data area of Record Zero 
(RO). The address of the last overflow 
record on the cylinder and the number of 
tracks remaining in the cylinder overflow 
area are maintained by ISFMS in this 
record. (see Adding Records to a File). 

CYLINDER INDEX: The cylinder index is 
present for all ISFMS-organized files. It 
is an intermediate-level index used to 
point to the proper track index. A 

142 S/360 BOS Prog. ~uide 

cylinder index is built by ISFMS to contain 
one index entry for each cylinder in the 
prime area of the file. This entry 
contains the highest record key associated 
(in the cylinder or a corresponding 
overflow area) with, the cylinder, and the 
address of the track index for that 
cylinder. 

The cylinder index can be located 
wherever the user chooses except on one of 
the cylinders that contains data records 
for the file. It can be placed on a 
separate disk pack, if the pack will be 
on-line whenever the logical file is 
processed. The cylinder index may also be 
located on one or more successive 
cylinders. When more than one cylinder is 
required, the last entry on each cylinder 
pOints to the first track of the next 
cylinder. However, the cylinder index can 
not be continued from one disk pack to 
another. A job-control XTENT card must be 
used to specify the proper location for 
this index. 

The last entry on the cylinder index is 
a dummy entry. The key of the dummy entry 
is the same length as the user's key length 
and contains bytes of all one-bits. The 
data field is of the same length as the 
normal entries, but is a null field. 

MASTER INDEX: The Master Index is the 
highest-level index for a logical file 
built by the ISFMS technique. This index 
is optional; and if required, must be 
specified by the user in the DTFIS entry 
MSTIND. The master index must be placed on 
a set of tracks that immediately precede 
the cylinder-index area. The last track 
assigned to the master index area must be 
contiguous to the first track of the 
cylinder index area. A job-control XTENT 
card must be used to specify the proper 
location. 

The entries to this index point to each 
track of the cylinder index. Each entry 
contains the highest record key on the 
cylinder-index track and the address of 
that track. 

The last entry on the I'-1aster Index is a 
dummy entry. The key of the dummy entry is 
the same length as the user's key length 
and contains bytes of all one-bits. The 
data field is of the same length as the 
normal entries, but is a null field. 

Care should be used in selecting the 
I'-1aster Index option. Because of the speed 
and flexibility of the 2311 disk storage 
drives used on the System/360 only very 
large files will benefit from the use of 
this index. If the cylinder index occupies 
four tracks or fewer, it is usually more 



efficient to go directly to the cylinder 
index. 

The disk storage space requirements for 
an Indexed Sequential organized file can be 
computed by using the formula given in 
Appendix M. 

ISFMS Macro Instructions for Loading a Disk 
File 

Three imperative macro instructions are 
available for loading a disk file with the 
ISFMS technique. These three macros are 
always required in the problem program.used 
to originate or extend an ISFMS logical 
file on a disk pack. 

The SETFL macro instruction initializes 
the load function.. The macro sets up the 
disk file by formatting the track index on 
each cylinder specified in the job control 
XTENT card for the prime area of the data 
file. The prime area is where the data 
records are to be written. The SETFL macro 
also formats the master index area and 
cylinder index area if specified by job 
control XTENT cards. Entries to these 
indexes are in the form of a key area of 
the same length as the user's key length, 
and a data area of 10 bytes. 

When used to extend a file, the! SETFL 
macro instruction bypasses the formatting 
function, and simulates a restart condition 
to allow the load function to be performed. 
If the upper lirni·t of the file is being 
redefined, the SETFL macro will format the 
new area added to the extent. The: SETFL 
macro also handles the setup of the 
cylinder overflow control record (COCR) on 
each track index when this option is 
specified. 

The WRITE macro instruction· transfers 
each record to be loaded to ·the disk file 
and completes the construction of the 
appropriate index.~s. 

Before issuing the WRITE macro 
instruction, the problem program must place 
the record to be loaded into a 
user-specified work area. The user 
specifies the symbolic name of this work 
area with the DTFIS entry WORKL. Also, the 
problem program must place the record key 
in a key field in the work area (DTFIS 
WORKL) • 

When a WRITE macro is issued for 
unblocked records, the ISFMS routines will 
retrieve the record key and the da'ta record 
from the work area and place them in the 
I/O area (see Figure 49). A count area 
will be constructed in the I/O area. Then 

the count, key, and data will be 
transferred to the proper location in the 
prime area of the file on the disk pack. 

If blocked records are being loaded, 
ISFMS builds the count area and the block 
of records in the I/O area. Then the ISFMS 
moves the key of the highest record in the 
block into the key area. ISFMS then 
transfers count, key and data to disk 
storage. 

ISFMS checks each record as it is 
presented for out-of-sequence condition and 
duplicate records. If an out-of-sequence 
or duplicate record is detected, ISF'MS will 
branch to the corresponding user's routine. 
The user specifies the symbolic name for 
these routines in the DTFIS entries SQCHEX 
and DUPREX, respectively. 

The ENDFL macro instruction performs a 
close-like operation for the file that has 
been loaded. When this macro is issued in 
the problem program, the last block of data 
records is written into disk storage. 
Then, an end-of-file record is written into 
the next record location in the logical 
file on the disk pack. An end-of-file 
record is a record with a data length of 
zero. The ENDFL macro completes the 
indexes by writing any index records 
required and a dummy entry at the end of 
each index. 

Extending a Disk File 

The same macro instructions used to load a 
file orginally can be used to extend the 
file. If it becomes necessary to increase 
the size of a file to contain records with 
keys higher than the last key on the 
original file, the records can be loaded at 
the end of the file. The upper limit of 
the prime area of the file can be adjusted 
by the specification in a job-control XTENT 
card, and the new records can be added by 
loading them into the file. No overflow 
area is required. The file is merely 
extended further on the disk pack. 

Loading Records 

As records are loaded onto disk, ISFMS 
writes track-index records each time a 
track is filled, a cylinder-index record 
each time a cylinder is filled, and a 
master-index record (if specified) each 
time a track of the cylinder index is 
filled. When a track index is completed 
ISFMS writes a dummy record following the 
last index record. This is used in 

Data Management 143 



subsequent operations to indicate the end 
of the index, and the beginning of data 
records. A schematic example of the three 
indexes after loading a file is shown in 
Figure 50. The highest record key on the 
first prime data track is 106. This is 
reflected on the track index in the first 2 
entries. The highest record key recorded 
on the track index is 980, the highest key 
in the cylinder. This key is put in the 
first entry of the cylinder index. The 
highest record key recorded on the first 
cylinder index track is 5364. This record 
key is put in the first entry of the master 
index. The highest key in the file, 21364, 
is the highest key on the master index. If 

144 S/360 BOS Prog. Guide 

the record with key number 160 was required 
on a random processing step, the first 
comparison would be made in the master 
index. Because 5364 is higher than 160, 
the address at 5364 would be used to pOint 
to the cylinder index. The 160 would be 
compared to the first key. Again, 160 is 
lower than 980, so the 980 address points 
to track index 1. A key search is made on 
the track index.' Again 160, is higher than 
the first index entry, but lower than the 
second index entry. The second index entry 
points to the second data track. A key 
search is again made and on an equal 
compare the record for key 160 is found. 



MASTER INDEX 
Track [rn X 

Address 
of first 

5364 track of 
Cylinder 
Index 

Address 
of last 

21,364 track of I-Bits Dummy, 
Cylinder 
Index. 

K D K D K D K D K D 

CYLINDER INDEX 

X + I 

Address 
of first 

980 track of 
Track 
Index 

[OJ Address 
of last 

5364 track of 
Track 

, ,Index 

K D K D K D K D K D 

TRACK INDEX (on first data cylinder) 

Address Address 
Address Address 
of of Last 

o of first of Fi rsl' 
COCR 106 Data 106 Data 197 Second 980 Data I-Bits Dummy 

Track Track 
Data 
Track 

Track in 
Cylinder 

RO K D K D K D K D K D 

DATA RECORDS 

1 36 1 Data 1 64 1 Data 1 83 1 Data 1 II 1 92 1 Data 1
106 

1 Data 1 

D 

DATA RECORDS 

2 135 Data 

K 

K, i ndi cates key area 
D, indicates data area 

D 

<-
152 Data 

K D 

K D K K D K D 

160 

K D K D K D 

Figure 50. Examples of Three Indexes After a File is Loaded (ISFMS) 

ADDING RECORDS TO A FILE 

Additional records for a data file can 
usually be expected in most disk-file ' 
applications. Usually these additions are 
too few in number to warrant reorganization 
of the file or they occur when 
reorganization is inconvenient. ISFMS 
macro routines are available for adding 
records to a file without disrupting the 
file organization and without causing undue 
system scheduling conflicts. 

Because additions can occur anywhere in 
a file, it is more likely that they will 
occur between items stored.within a track 
of data than at the end of\~ track. ISFMS, 
therefore, will insert additional records 
in their proper sequence on a track by 
moving higher numbered (record key) records 
toward the end of the track. Records 
shifted off the end of the track are moved 
to an overflow track on the same cylinder 
or to a separate overflow area on some 
other cylinder in the same pack or another 
pack on-line during file processing. 
Entries are then made in the track index to 

Data Management 145 



reflect the new records and to point to the 
overflow records. An insertion to a file 
affects three tracks: the prime data track 
that receives the addition; the track index 
of that cylinder; and the track in the 
overflow area that receives the record 
displaced from the prime track. 

Further insertions into a prime track 
will lead to additional displacement of 
records from the prime area into the 
overflow area. These additions to the same 
track in the prime area cause an overflow 
chain to develop. This chain is defined by 
the sequence-link field appended to each 
record placed in an overflow area. Any 
insertion made between the last record of a 
track in the prime area and a record in the 
overflow area will be referred directly to 
the overflow area by the overflow entry on 
the track index. Each overflow record for 
any given track will be in sequence by the 
sequence links, but positioning (physical 
location) in the overflow area is according 
to the relative time of assignment to that 
area. 

Except when adding records to the end of 
the file, no insertions will be made that 
have a key higher than the highest key 
already loaded into a cylinder. Therefore, 
the cylinder index (and the master index, 
if used) will not be changed by the 
insertion of records within the file. The 
reason for this is that a search for any 
key higher than the highest key associated 
with a cylinder (on the cylinder or a 
corresponding overflow area) will be 
referred to the next cylinder in the file. 
The cylinder index will make this referral 
directly to the track index on the next 
cylinder. This is true for all cylinders 
except the cylinder containing the 
end-of-file records. 

If there is an addition that has a 
record key higher than all the records that 
are presently in the file, a special 
routine is used to add this record. This 
ISFMS routine will determine whether the 
last track containing data records is full. 
If it is not full, the addition will 
replace the end-of-file record, on the 
track. The end-of-file record will then be 
written in the next record location on the 
track or the next available prime data 
track, if no locations remain on the 
original track. 

When the end-of-file record becomes the 
first record on a track, all records higher 
than the last record on the preceding track 
will be written in the appropriate overflow 
area. The sequence link for records that 
overflow after the end-of-file record is 
written, will be chained to the last track 
containing data records. 

146 S/360 BOS Prog. Guide 

After each new record is inserted in its 
proper location, ISFMS adjusts all indexes 
that are affected by the addition. 

When the file is loaded, the last track 
of the last cylinder in the prime data area 
must be left empty. This track prevents 
the end-of-file record from being written 
over a record for another file. 

All packs in a multi-pack file must be 
on-line when records are being added to a 
file. 

ISFMS Macro Instructions for Adding Records 
to a File 

To add records to a file, the user can 
specify either the add or add/retrieve 
functions of ISFMS. The file may contain 
either blocked or unblocked records. 

Only one macro instruction, WRITE is 
required to add records to a file. 

Before the WRITE macro is issued, the 
program must store the record to be added 
into a work area specified in the DTFIS 
entry WORKL. Also, the record key must be 
stored in the main-storage key field 
specified in the work area, WORKL. Before 
records are transferred, ISFMS checks for 
duplicate record keys. If a duplication is 
found, ISFMS branches to the user's routine 
specified in the DTFIS entry DUPREX. 

Blocked Record File. Records can be 
added to a blocked record file one at a 
time. Each record to be added must contain 
a key field in the same location as the 
records already in the file. The 
high-order position of this key field 
relative to the left-most position of the 
logical record must be specified to ISFMS 
by the user. The DTFIS entry KEYLOC is 
used for this specification. 

When the WRITE macro is issued in the 
problem program, ISFMS first locates the 
correct track by referring to the necessary 
indexes. Then a search on the key areas of 
the disk records on the track is made to 
locate the desired block of records. The 
block of records including the key area is 
read into the I/O area {Figure 49}. ISFMS 
then examines the key fields within each 
logical record to find the exact position 
to insert the record. The record in this 
position is moved by ISFMS to a special 
work area established by the ADD routine. 
The record to be inserted (in the user's 
work area) is then moved into the proper 
position in the block. Each succeeding 
record in the block is shifted to the right 
until the last record is moved into the 



special work area. ISFMS then updates the 
key area of the disk record and writes the 
block back onto the disk pack. The 
remaining blocks on the track are similarly 
processed until the last logical record on 
track is moved into the special work area. 
This record is then set up as ·an overflow 
record with the proper sequence links and 
moved to the overflow area. The indexes 
are updated and ISFMS returns to the 
problem program for the next record to be 
added. 

If the proper track for a record is an 
overflow track, I SFMS writes the Jrecord, 
preceded by a sequence-link field in the 
data area of the record. The appropriate 
linkages are adjusted so as to maintain 
sequential order. 

Unblocked Record .File. When records are 
added to an unblocked file, ISFMS searches 
the indexes to find the correct track for 
the record. The record key placed in the 
key field is used by ISFMS to locate the 
correct track and the position on the track 
where the record should be inserted. If 
the correct track is not an overflow track, 
the record in the position where the new 
record must be inserted is read into the 
I/O area. The new record in the user's 
work area is written directly to the track 
from the work area. The record in the I/O 
area is moved by ISFMS to the user's work 
area. The next record on the track is read 
into the I/O area. Then the record in the 
work area is written on the track. 
Succeeding records are shifted unt.il the 
last record on the track is set up as an 
overflow record. This last record is then 
written into the appropriate overflow area. 
This is the cylinder overflow area, if 
CYLOFL has been specified for this file, 
and the area has not been filled. If the 
cylinder overflow area does not have space 
available, or if only an independent area 
has been specified by a job-control XTENT 
card, the end record is transferred to the 
independent overflow area. ISFMS will 
branch to the user's routine specified by 
the DTFIS entry ADAREX, when all specified 
overflow areas become full and another 
overflow record has to be stored. 

REORGANIZING THE DATA FILE 

Reorganizing the data file may be necessary 
in many situations. This requires 
unloading the data file, merging the 
overflow records, and reloading the file 
into the original area. The sequential 
Retrieval macro routines and the Load macro 
routines can be used for this operation. 

If a file has grown since the previous 
loading, additional space will be required 
for the data file. The overflow records 
can be merged during the data file 
unloading operation. During this operation 
an output device, magnetic tape, cards, or 
printer can be used to produce a complete 
record of the data file. This record may 
be useful in a normal reporting procedure 
or an auditing fUnction. 

The original file can be unloaded onto 
another disk pack, a magnetic tape, or 
cards. If another disk pack is used, (two 
or more disk drives available) the reload 
step may not be necessary, because 
Sequential Retrieval and Load macros can be 
used to reorganize the file in one pass. 
The original file can be reorganized (in 
one pass) within the same disk pack, if 
there is sufficient space on the pack. 
None of the area occupi.ed by the original 
file can be used by the reorganized file. 
If tape or cards are used, the data can be 
reloaded back on to the original disk pack. 
The tape or cards can then be filed to 
fulfill record retention protection 
requirements. Reorganizing a file can be a 
regular part of normal operations, but a 
careful analysis of the need for 
reorganization should be made. The time 
required to reload and reindex the file may 
be wasted if reorganizing is done too 
frequently. This time must be weighed 
against the processing time that can be 
wasted if overflow records cause too many 
additional accesses to the overflow areas. 
Also, reorganizing the file periodically 
frees space used by obsolete records. 

The user can easily tag (or mark) 
records for deletion during normal 
proceSSing runs. These deletion records 
can be omitted from the file by the user 
when he reorganizes the file. The space 
they occupied is then available for new 
records. 

RANDOM RETRIEVAL 

The indexes built by the ISFMS technique 
provide the ability to randomly retrieve 
and/or update records in a disk file. The 
user specifies the type of processing and 
other related items in the DTFIS entries 
for the file to be processed. 

Because random reference to the file is 
by record key, the problem program merely 
needs to supply ISFMS with the desired 
record key prior to each READ command. 

Two macro instructions are provided for 
retrieving and updating records randomly: 
READ, and WRITE. 

Data Management 147 



Before issuing the READ instruction to 
retrieve a record, the user moves the 
record key of the desired record into a key 
field, the name of which he has specified 
in a DTFIS entry. The key specified in the 
KEY field for the READ instruction 
determines where the record is written, if 
the update function is specified .• 

The READ macro routines search the 
indexes to locate the track on which the 
record is stored. Then a key search is 
made upon the track to locate the record 
corresponding to the record key. If the 
records are unblocked, ISFMS transfers the 
appropriate record to the I/O area. When a 
work area is specified, the record is moved 
to the work area by ISF~S. 

If the records on the file are blocked, 
ISFMS transfers the proper block of records 
into the I/O area. 

If a work area has been specified by the 
user for blocked records, ISFMS moves the 
individual record to the work area for 
processing. If a work area has not been 
specified, the user must specify a register 
that ISFMS will use as a pointer to the 
proper record in the block. 

The WRITE macro routines are used for 
random updating. These routines perform 
the required operation to rewrite the 
record retrieved by the preceding READ 
macro routines. The key specified in the 
KEY field for the READ instruction 
determines where the record is written. 

SEQUENTIAL RETRIEVAL 

Records in a file organized by the ISFMS 
technique can be retrieved sequentially in 
record key order. The user makes the 
proper entries in the DTFIS statements for 
the file. ISFMS uses the track index 
entries and the sequence-link fields to 
retrieve overflow records in their proper 
sequential order. 

Sequential retrieval of records in key 
order can start with: 

• The beginning of the logical file. 
(BOF) 

• The location of any record in the file, 
identified by a record key. (KEY) 

• The location of any record in the prime 
data area identified by the ID of the 
record. (The ID is in the form 
MBBCCHHR. ) 

The user specifies, in the SETL macro, the 

148 S/360 BOS Prog. Guide 

type of reference he will use to identify 
the first record to be processed. 

If the file contains blocked records and 
the starting reference is by key, ISFMS 
must know the position of the key field in 
each logical record. This can be specified 
in the DTFIS entry KEYLOC by the user. 
With blocked records, the user can specify 
that retrieval begin with any record in the 
block by indicating to ISFMS the key of the 
first record to be retrieved. 

If the user wishes to begin sequential 
retrieval at the beginning of the file, he 
specifies BOF as the second parameter of 
the SETL macro that initiates sequential 
retrieval. The first record retrieved will 
be the first data record of the file. 

When sequential retrieval is to begin 
with a record associated with a particular 
key, the word KEY must be used as the 
second parameter of the SETL macro 
instruction. The record key of the 
beginning record must be placed in the 
field defined by the DTFIS entry 
KEYARG=name, prior to issuing the SETL 
macro. 

sequential retrieval can begin at any 
record location in the prime data area 
identified by its ID (MBBCCHHR). To 
establish the beginning point for 
retrieval, the IDs of the appropriate 
records can be determined as the file is 
loaded. During loading of the file, the 10 
of each physical record is available when 
ISFMS returns to the user program after 
each WRITE instruction. The ID is located 
in an 8-byte field referenced by filenameH 
(the name of the file suffixed by H). The 
user program can print or punch tnese IDs 
for later use. For example, assume that 
payroll records are being loaded in 
departmental sequence to establish a file 
named PAYRD. The ID of the first record in 
each departmental group can be saved 
(punched or printed) by referring to PAYRDH 
at the appropriate points while loading the 
file. In subsequent processing operations, 
retrieval can begin at the first record of 
any department by specifying the ID of that 
record as the beginning point. 

To begin sequential retrieval at a 
record location identified by the ID of the 
record, the user specifies the symbolic 
name of the field in which he will place 
the ID of the beginning record in the 
second parameter of the SETL macro. The ID 
supplied by the user in this field must be 
in the form MBBCCHHR. Where, M is a number 
designating the extent where the records 
may be found. An extent must be specified 
for each disk pack that contains the prime 
area of a file. There can be only one 
prime area extent per file on a disk pack; 



therefore the prime area must be 
contiguous. The user specifies the file 
extent with job-control XTENT car~s. 

The BB portion of the record identifier 
is reserved for cell number (relates to the 
IBM 2321 Data Cell Drive). These two bytes 
are always zero (0,0) for 2311 disk storage 
references. 

CCHH is the track address in the prime 
data area where the record is located. 

R is the physical location of the record 
on the specified track. 

All numbers must be in binary notation. 

Four macro instructions are available to 
the user for retrieving and updating 
records sequentially. 

The SETL (set limit) macro instruction 
initializes -the sequential retrieval 
routines. This macro sets up the starting 
record address from information supplied by 
the user. 

The GET macro routines provide 
instructions to retrieve the record located 
at the starting address when the first GET 
is issued in the problem program. 
Thereafter each GET issued will retrieve 
the next record in sequence. The GET 
routines will transfer the record from disk 
to the user specified I/O area. If a work 
area is specified, the record is moved to 
the work area. 

If blocked or unblocked records and no 
work area are specified, ISFMS makes each 
record available by supplying the address 
of the record in a register specified by 
the DTFIS entry IOREG. The key for 
unblocked records will be at the beginning 
of the I/O area. 

When blocked records and updating are 
specified in the DTFIS entries, each GET 
that transfers a block of records to main 
storage will also write the prece~ing block 
back into the disk file, if a PUT 
instruction has been issued for at least 
one of the records in the block. When 
updating is not required for any record in 
the block (no PUT instruction has been 
issued), the block is not rewritten. 

The PUT macro routines are provided to 
sequentially update a disk file. These 
routines provide the necessary instructions 
for transferring unblocked records directly 
from I/O areas to disk storage. When 
blocked records are processed, the routines 
develop instructions for moving a logical 
record from a work area (if specified) to 
the I/O area. Then, these instructions 
signal the GET routines thai:- this block has 

been updated.. At least one logical record 
must be updated (a PUT issued by the 
problem program) before the GET routines 
will transfer the block (completely 
processed) from the I/O area to the disk 
file. When a block has been completely 
processed, the GET that is issued to read 
the next block of records into main storaqe 
will determine whether the preceding block 
is to be returned to the file. If the 
block is to be returned (updated), the GET 
routines will write the block back onto the 
file in its proper location. 

The ESETL macro instruction has two 
functioOS:--one, write the last block of 
records back onto the disk file if a PUT 
has been issued for this block; two, put an 
end to the sequential mode of processing 
initiated ~y the SETL macro instruction. 

PROCESSING WITH STR DEVICES 

STR stands for Synchronous Transmitter 
Receiver. This term is used to classify a 
large group of devices that can be remotely 
attached to a Systern/360, Model 30, 40, 50, 
65, or 75, through an IBM 2701 Data Adapter 
Unit with an IBM Synchronous Data Adapter
Type I. A System/360, so equipped, is 
itself an STR device. The device at the 
other end of the line can be: 

• Another System/360, Model 30, 40, SOt 
65, or 75 with a 2701 Data Adapter Unit 
attached. 

• 

• 

• 

• 

• 

A System/360, Model 20, with a 
Communications Adapter. 

An IBM 1401, 1440, or 1460 System 
attached through an IBM 1009 Data 
Transmission Unit (or any system using 
an IBM 1414 I/O Synchronizer attached 
through a 1009). 

An IBM 1013 Card Transmission Terminal. 

An IBM 1974-2 Data Transmission 
Terminal. 

An IBM 1978 Print, Read, Punch 
Terminal. 

• An IBM 7701 or 7702 Magnetic Tape 
Transmission Terminal 

• An IBM 7711 Data Communication Unit. 

All of these STR devices appear 
essentially the same to a program in the 
System/360. From the "point of view" of 
the program, the physical I/O unit actually 
being operated is the Synchronous Data 
Adapter, Type I, on the 2701. Each 

Data Management 149 



Synchronous Data Adapter, Type I, (there 
can' be two on a 2701, each with one or two 
communications lines attached) has a unique 
physical device address. 

It is not meaningful to speak of a 
single "logical file" being processed from 
this device, because any or all of these 
STR devices can be transmitting and/or 
receiving over the line or lines. However, 
the device can be defined for logical I/O 
support using a macro language similar to 
that for conventional data files. 

A DTFSN macro instruction in a problem 
program defines each specific synchronous 
data adapter for the STR routines. The 
only information supplied in the DTFSN 
macro instruction is the symbolic name 
(SYSnnn) of the adapter and the symbolic 
addresses of two fields used to supply the 
location and the length of the data to be 
transmitted or received. 

A unique imperative macro instruction, 
SOPEN, is used with the STR routines to 
initialize the adapter for what really 
constitutes logical file processing for 
these routines. SOPEN turns on the adapter 
and establishes synchronization with 
another STR device. If the communications 
line is a dial network, the Automatic Call 
Feature must be present on the Synchronous 
Data Adapter, Type I. The SOPEN macro 
instruction monitors the line(s) for 
ringing, and establishes the connection and 
synchronism. If the other equipment 
necessary to complete the dialing operation 
is present (see Figure 51), the SOPEN macro 
instruction also performs the initial 
dialing operation. Another macro 
instruction, DIALO, supplies the telephone 
number and the parameters for SOPEN to 
complete the dialing operation, make the 
connection, and establish synchronism. 
Other parameters in the SOP EN macro 
instruction determine: 

1. whether the first, second, or both line 
interfaces are to be used. Note: The 
Dual Communications Interface feature 
must be present to select the second, 
or both line interfaces; 

2. the type of data checking to be 
performed; 

150 S/360 BOS Prog. Guide 

3. the data transmission rate to be used 
expressed in characters per second; 

4. the data transmission mode to be used: 
full duplex, four wire half duplex, or 
two wire half duplex. 

Once the connection is established 
between the two devices, the user's program 
can issue the following imperative macros: 

CNTRL PREPARE to prepare the adapter for 
read operation. 

CNTRL INQ to signal the other device; 
to prepare to read. 

CNTRL TEL to signal the other device; 
to change mode. 

CNTRL EOF to signal end of file to the 
other device. 

READ to receive a single record 
from the other device. 

WRITE to transmit a single record; 
to the other device. 

WAIT or WAITM to wait for completion of 
one (WAIT) or more (WAITM) 
previously initiated 
operations. 

After the transmission or reception of 
data to or from a given device is 
completed, a unique close macro 
instruction, SCLOS, is issued to break the 
connection. SOPEN can then be reissued 
with the same or different parameters to 
begin transmission or reception of another 
file to the same or another device. 

The STR routines also provide a macro 
instruction, CDCNV, to convert the standard 
STR transmission code (fixed count four 
out-of-eight 4/8) to or from the EBCDIC 
used internally in the System/360. 

Both the declarative and imperative 
macros for STR are discussed in detail in 
the Assembler with Input/Output Macros 
publication, listed in the Preface of this 
manual. 



Common Carrier Common Carrier 
Communications Switched Telephone Leased Private Common Carrier Broadband Common Carrier Commun i cat ion 
Speed/Faci I ities Networks Line Services Communication Services Facilities 

1200 bps Western Electric Wes!'ern Electric Not Applicable Modem equipment (data set) 
Data Set 202A, Data Set 202B, having a proper interface must 

(150 char/sec) 202C, or equivalent. 2020, or Western be used. 
Union Data Set 

See Note. 2121A or equivalent. 

2000 bps Western Electric Western Electric Not Applicable Modem equipment (data set) 
Data Set 201A4, Data Set 20lA, having a proper interfact must 

(250 cps) 20lA or equivalent. 201A3, 201A4 or be used. 
equivalent. 

See Note. 

2400 bps Not Applicable Western Electric Not Applicable Modem equipment (data set) 
Data Set 201 B or having a proper interface must 

(300 cps) equivalent, Western be used . 
Union 2241A, or 

See Note equivalent. 

19,200 bps Not Applicable Not App I i cab Ie TELPAK A with Channel Termi- Modem equipment (data set) 
nal (includes Western Electric having a proper interface must 

(2,400 cps) 303A JO data set) or equiva lent. be used. 

40,800 bps Not Applicable Not Applicable TELPAK A with Channel Termi- Modem equipment (data set) 
nal A2 (includes Western Elec- having a proper interface must 

(5,100 cps) tric Data Set 301B) or equiva- be used. 
lent. 

50,000 bps Not Appl icable Not Appl icable TELPAK A with a suitable Chan- Modem equipment (data set) 
nel Terminal {includes Western having a proper interface must 

(6,250 cps) Electric 303A20 data set) or be used. 
equivalent. 

230,000 bps Not Appl icable Not Applicable TELPAK C with a suitable Chan- Modem equipment (data set) 
nel Terminal {includes Western having a proper interface must 

(28,000 cps) Electric 303A30 data set), or be used. 
equiva lent. 

NOTE: The internal clock feature is required if the communication facility is half duplex or the data set does not provide clock 
pulses. In this chart, this feature is always required for Western Union Data Sets, for Switched Telephone Network 
operation, and for Western Electric 202C, 2020, and 201A4 data sets_. The Internal Clock Feature cannot be used with 
the Western Electric 20lA3 data set, and is not available with speeds other than 1200 bps, 2000 bps, 2400 bps, 4000 bps, 
'lnd 4800 bps. 

Figure 51. Communication Faci.lities and Transmission 

BINARY SYNCHRONOUS COMMUNICATION 

BSC (Binary Synchronous Communication) is 
used to refer to the communications 
environment consisting of an IBM 2701 Data 
Adapter Unit with an IBM Synchronous Data 
Adapter - Type II (SDA II) and connected by 
leased or dial line to a remote IBM 
Systern/360, Model 30, 40, 50, 65, or 75, 
equipped with an IBM 2701 or 2703 Data 
Adapter Unit, also with an SDA IIo 

From the problem program point of view, 
the actual physical I/O unit. involved is 
the 2701, SDA II. The 2701, SDA II has a 
unique physical device address. 

Macro support then provides for 
pOint-to-point Binary Synchronous 
Communication between the CPU and a remote 
CPU. 

A DTFBS macro instruction in the problem 
program defines the Synchronous Data 
Adapter (SDA II). Information supplied in 
the macro instruction includes: 

• The symbolic unit name of the SDA II 

• The symbolic addresses to be associated 
with two fields used to supply the 
location and length of the data to be 
transmitted or received and with the 
BSC flag bytes 

• A count of the number of times 

Data Management 151 



operations resulting in I/O errors are 
to be retried before returning to the 
problem program or issuing an 
operator's message 

The maximum count that can be specified is 
15. The recommended retry count is either 
3 or 7. 

The unique imperative macro instruction, 
BOPEN, is used to establish the mode, and 
on a dial line, to turn on the Data Adapter 
(SDA II) for logical file processing with 
BSC macro routines. Parameters on the 
BOPEN macro instruction include the 
symbolic name of the DTFBS for the dial 
line, the adapter interface (A or B) to be 
used, and whether the line is a dial line 
or a leased line. 

On a dial line, the BOPEN macro 
instruction must be followed by an IDIAL 
macro instruction. The IDIAL macro 
instruction performs initial line control 
functions necessary or dial lines: it 
handles dialing a number, monitoring a line 
for "ringing" and ID-verification 
procedures. IDIAL also reads or writes one 
text record from or to the remote cpu. The 
dial digits (telephone number) and 
ID-characters are provided in a parameter 
list pointed to by the general register 
specified among the IDIAL operands. Other 
opera~ds on the IDIAL macro instruction 
determine: -

1. Whether the cpu is calling, answering, 
or establishing the connection 
manually. If the cpu is calling, the 
Automatic Call Feature must be 
installed. 

2. The kind of ID-verification procedure, 
if any, to be performed. 

3. Whether the text record is to be read, 
written, or written as transparent 
text. 

The ID-verification procedures, if 
included, provide a means for two CPUs 
connected by a dial line to identify 
themselves by exchanging sequences of 
graphic characters. The problem program 
may send ID-characters, receive 
ID-characters, or both send and receive 
ID-characters. ID-checking is performed by 
the cpu that receives the ID-sequence. 
Once the indicated ID-sequences and 
responses are validated, the text record is 
read or written. 

On a leased line, the BOPEN macro 
instruction should be followed by a CNTRL 
(control) operation (either Prepare or 
ENQ) • 

152 S/360 BOS Prog. Guide 

CNTRL Prepare 

CNTRL ENQ 

Monitors the line for 
activity in 
preparation for a 
READ. 

Bids for the line by 
signalling the remote~ 
cpu to prepare to 
READ - normally 
precedes a WRITE. 

Once the connection has been establish~d 
between the two CPUs, the following 
imperative macros may be used by the 
problem program. 

CNTRL Prepare 

CNTRL EOT 

CNTRL WABT 

CNTRL Disconnect 

CNTRL ENQ 

READ Continue 

READ continue 
with leading 
graphics 

READ Repeat 

READ Repeat with 
leading 
graphics 

READ Inquiry 

WRITE Continue 

WRITE Transparent 
Text and WRITE 
Transparent 
block 

See above. 

Signals end of 
transmission to the 
remote cpu. 

Signals Wait Before 
Transmitting to the 
remote cpu and waits for 
a response. 

Signals to the remote 
cpu that the connection 
is being broken (the 
line is being disabled) 
at this cpu. Used only 
on a dial line. 

See above. 

Receives one record from 
the remote cpu. 

Sends graphic characters 
to the remote CPU, then 
receives one record from 
the remote CPU. 

Requests retransmission 
of the last record. 

Sends graphic characters 
to the remote CPU before 
requesting 
retransmission of the 
last record. 

Receives the ENQ control 
character 

Transmits one record to 
the remote CPU. 

Transmits one record (or 
block) of transparent 
text to the remote CPU 
with the correct 
End-character sequence. 



WRITE 
Conversa tional 

WRITE Transparent 
Conversational 

WAIT or WAITM 

Sends one record to the 
remote CPU and receives 
one record (or control 
character) from the CPU. 

Sends one record of 
transparent text with 
the correct 
End-character sequence 
to the remote CPU and 
receives one record (or 
control character) from 
the remote cpu. 

Waits for the completion 
of a previousl.y 
initiated I/O operation. 

When data transmission or reception is 
completed, the unique macro instruction, 
BCLOS, is used to break the connection. 
BOPEN (and IDIAL) can then be reissued with 
the same or different parameters to 
initiate processing of another logical 
file. 

Data 
Management 

When end-of-job is reached, the ERRPT 
macro must be used to display the error 
statistics (data check, lost data, 
intervention required, time out, and unit 
check) and the transmission count. The 
ERRPT macro should be followed by the EOJ 
macro. 

The declarative and imperative macro 
instructions for BSC Support are more fully 
described in the Assembler with 
Input/Output Macros publication, listed in 
the Preface of this manual. 

IBM 2311 DISK STORAGE DRIVE 

This section is organized as shown in 
Figure 52. The IBM 2311 Disk-Storage Drive 
features removable, interchangeable disk 
packs, offering virtually unlimited 
data-storage capacity. A disk pack can be 
easily removed and replaced with another 
pack in less than a minute. These units 

General 
Description 

2311 Disk Storage 
Drive 

Figure 52. Data Management~ 2311 Disk Storage Drive 

Disk Pack 
Initialization 
and Mai ntenance 

Data Management 153 



have flexibility comparable to a tape 
system, plus the advantages of 
direct-access processing. 

Disk Pack 

The interchangeable 1316 disk packs contain 
six, 14-inch diameter magnetic recording 
disks in an assembly weighing about 10 
pounds. The packs provide ten disk-storage 
surfaces each (the top surface of the upper 
disk and the bottom surface of the lower 
disk are not used for recording). 

Cylinder Concept 

The corresponding recording tracks on each 
disk surface are physically located one 
above the other, and may be pictured as 
forming 203 concentric cylinders of 10 data 
tracks each. Figure 53 is a schematic 
representation of the cylinder concept. 

203 
Cylinders 

Figure 53. Cylinder Concept 

Access Mechanism 

Ten read/write heads are mounted on a 
vertical assembly. The heads are aligned 
vertically and are all moved together 
horizontally to any of 203 positions. 
Therefore, each time the read/write heads 
are moved into position, one entire 

154 S/360 BOS Prog. Guide 

cylinder of ~en data tracks is accessible 
for reading and writing. Only electronic 
switching of the heads is necessary to 
select a particular track within the 
cylinder. Figure 55 illustrates the access 
mechanism and the disk pack. 

Storage capacity 

The 7.25 million byte capacity of each disk 
pack is based on 200 tracks per disk 
surface. With the high-density recording 
of the 2311, minute contamination particles 
can affect data reading and writing. 
Therefore, 203 tracks per disk surface are 
provided to ensure that the stated capacity 
is maintained for the life of the disk 
pack. 

Because each record has certain nondata 
characters, such as disk addresses, the net 
data-storage capacity of tracks may vary. 
Figure 55 indicates that, on the basis of 
one 3625-byte record per track, each disk 
pack can store 7,250~OOO bytes. Figure 56 
shows the number of bytes per record 
according to the number of equal-length 
records per track. The figure is used only 
for illustration; in actual practice 
records on the same track can vary in 
length in both the key areas and the data 
areas. Formulas for determining record 
capacity per track are available in the 
Component Descriptions publication, listed 
in the Preface of this manual. 

Disk Track Format 

The 2311 Disk-Storage Drive uses a track 
format consisting of an index marker, a 
home address, and one or more data records. 
An address marker precedes each data record 
(except the first one, as explained later) 
to indicate the beginning of a new record. 
Each track area is separated by a gap. 
Figure 57 is a schematic representation of 
a disk track. The various areas of the 
disk track format are described as follows: 

Index Marker. The index marker indicates 
the physical beginning of each track. 
There is one Index Marker per track. 

Home Address. There is one home address 
per track. The address is 7 bytes in 
length and is recorded in binary code. The 
home address defines the location of the 
track in terms of the physical parameters 
of the files. Home addresses are written 
on a track by an initializing program, 
wnich will be explained later. 



Figure 58 is a schematic representation 
of the horne-address area. 

The Flag Byt~: The flag byte is 
recorded on the track during a 
write-horne address operation. The flag 
information byte indicat~s the 
condition of the track and is 
automatically propagated to all records 
as they are recorded on the track. 

The Address: The four bytes containing 
the cylinder number and head number 
give the physical location of the 
track. 

The Check Bytes: Two check bytes 
contain the 16 check bits used to 
verify the validity of reading and 
writing. These check bytes are a 
function of the record-verification 
circuits of the system. They are 
automatically appended to each separate 
area written on a disk track. The two 
bytes are not included in the count 
field's key length and data length when 
the length of the corresponding areas 
are defined. 

Record Zero (RO) 

The first record on every track (record 
number zero: RO) is used primarily to 
facilitate the use of an alternate track, 

when the original track is found to be 
defective. Referred to as the Track 
Descriptor Record or Record Zero (RO) this 
record is unique, in that it is not 
preceded by an address marker and does not 
contain a key area (key length is always 
zero). Figure 59 is a schematic 
representation of the Record Zero. 

The count area is similar to other 
records as described below. The Data Area 
can be used to maintain updated information 
about the data records on the track. A 
discussion of the capacity-record portion 
of this data area is contained in the 
section Direct Access Method. For 
information about the Cylinder Overflow 
Control Record (COCR) see section Track 
Index. 

Disk Record Format 

There are three basic parts to each 2311 
Disk Record; the Count Area, the Key Area 
(optional), and Data area. Figures 60 and 
61 are schematic representations of a disk 
record with a key area and without a key 
area. 

Data Management 155 



000 Cylinders 202 ,------- -.---" 
I I.,~~,~;;;;;;;~~~ 
I 
I 

Figure 54. IBM 2311 Access Assembly and Disk Pack 

Per Per 
Track Cylinder 

Disk Storage Drives 

Cylinders 

Tracks 10 

Bytes (Alphameric Characters) 3,625 36,250 

Packed Decimal Digits (Numeric Only) 7,250 72,500 

NOTE: All figures are based on one record per track. 

Figure 55. 2311 Disk storage Drive Capacity 

Per Disk 
Storage Drive 

200 

2,000 

7,250,000 

14,500,000 

.. Number of Equal-Length Records 

1 2 3 4 5 6 7 8 9 10 11 12 13 

Maximum Number of 
Bytes per Record 3625 1738 1130 829 650 530 446 382 333 293 261 234 212 
without Key Field 

Maximum Number of 
Bytes per Record 3605 1719- 1110 810 630 511 426 363 314 274 242 215 192 
with Key Field 

Figure 56. Bytes per Record vs Records per Track 

156 S/360 BOS Prog- Guide 

per 

14 

192 

173 

Per Storage 
Control Unit 

8 

1,600 

16,000 

58,000,000 

116,000,000 

Track 

15 16 17 18 19 20 

175 161 148 136 126 117 

156 142 129 117 107 97 



1--Record Zero: RO-l. Record One: R] 

JG~ Index Home Count [§J Address Count 

~ Marker Gap Address Gap Area Gap Area Gap Marker Gap Area Gap Area Gap DATA AREA 

-i I' Record Two: R2 
I I' Record Three: R3 1 etc. 

]Ga
p Address Count 

Gap r~:a IGa
p 
I IGa

p 
Address Count ~E Marker Gap Area DATA AREA Marker Gap Area Gap Area Gap Data 

Figure 57. Schematic Representation of 2311 Disk Track (with Key Area) 

Home Address 

Index 
Marker 

Gap 
Flag 

Cyl inder Head Check 
Bytes 

Byte 
C I C H I H I 

Figure 58. schematic Representat:i.on of the Home Address 

I ..... --------Count Area I ..... -------Data Area -------JI I 

2 
>-co 
OJ 
0 

u: 

Figure 59. 

Identifier 
_c 

-0 m Cylinder Head 5 c 
u Q) 

C I C H I H 

Q) --l 
e::: 

>.. 
R Q) 

~ 

Data Check 
Length Bytes 

I I 
Gap 

Th is area is used for the 
Capacity Record Option (DTFDA) 
or the Cylinder Overflow 
Control Record (DTFIS) 

Schematic Representation of Record Zero 

11-014------ Count Area -------1 !-Key Area_I II 
Identifier 

Check 
Bytes 

Data Area II 

Data Check Key Check Check 

Gap Address 
Marker 

Gap 
Q) 

>.. 
<0 

0) 
0 

u::: 

"iJ Cylinder Head 
0 u 

clc 

"'" 
~ 
R 

...c 
Length Bytes 

m 
Area Bytes 

(Variable Length) 
Bytes 

Gap (Variable Gap 
c 
~ 

I I 
>-
Q) 

~ 

Length) 

I I 
Figure 60. Schematic Representation of a 2311 Disk Record with a Key Area 

Data Management 157 



I~I------Count Area-----_,I I ""'" II--------Data Area-------,\ 

] 

Address 

Gap ,---Mar_ker---J Gap 

Identifier 
~ \J >.. Cylinder Head 0 co U 
m 

clc H~ H 
~ 0 - R u.. 

Data ...c 
0, Length c: 
~ 

--l 

>.. I ~ 
Y-

Check 
Bytes 

I 
(Variable Length) 

Check 
Bytes 

J 
Figure 61. Schematic Representation of a 2311 Disk Record without a Key Area 

The count Area: The count area consists of 
the flag byte recorded from the home 
address flag byte, the identifier field, 
the key length, the data length, and check 
bytes. This area is recorded in binary 
notation. 

The Identifier Field: The identifier field 
(Record ID) of five bytes contains the 
cylinder number, the head number and the 
record number to define the physical 
location of the record. The record number 
is the sequential pOSition of the record on 
the track. Record number zero (RO) is the 
first record on the track and each 
succeeding record is numbered in ascending 
order. 

The Key Length: The key length is one byte 
and denotes the number of bytes in the key 
portion of the record, but does not include 
the two check bytes. If the record does 
not contain a key area, key length is 
recorded as zero. 

The Data Length: The data length is two 
bytes long and specifies the number of 
bytes in the data portion of the record, 
but does not include the two check bytes. 

The Key Area: The key area consists of the 
key field and two check bytes. The key is 
an external number, such as part number, 
employee number, that identifies the 
information stored in the data portion of 
the record. This field will usually be the 
major control field of the logical data 
record to which it is appended. The key 
length can vary from zero to a maximum of 
255 bytes. 

The Data Area: The data area contains the 
information stored in the file, plus two 
check bytes. The data area can be one 
logical record or many logical records 
blocked together. Records on the same 
track can vary in length in the key area 
and in the data areas. The length of the 
data area is defined by the data length 
field. 

158 S/360 BOS Prog. Guide 

DISK PACK INITIALIZATION AND MAINTENANCE 

INITIALIZE DISK PROGRAM 

An Initialize Disk utility program is 
provided as part of the IBM System/360 
Basic Programming Support package. 
Initialize Disk is provided to prepare disk 
packs to be used on 2311 disk drives. As 
disk packs are received by an installation, 
this program is used to write Standard Home 
Addresses and Track Description Records 
(Record Zero) and to make a disk surface 
analysis to identify defective recording 
surfaces (if any). The program will write 
the volume label and establish the Volume 
Table of Contents (VTOC) area to be used 
for cataloging file labels. For further 
details on the VTOC see the section Labels. 

The Initialize Disk program is also used 
to re-initialize disk packs when job 
requirements change. To guard against 
accidental reinitialization of packs 
containing valid data fields, the VTOC is 
Checked for labels reflecting unexpired 
data files. 

Home Address and Record Zero Generation 

When the Initialize Disk Program writes the 
Home address and record zero fields on each 
track, a verification of the accuracy of 
recording is made. If a home address and 
record zero (RO) cannot be successfully 
written on a track, a message will be 
printed indicating the error. The pack 
will be deleted from the job if a home 
address and/or record zero cannot be 
written on one or more tracks. The 
remainder of the pack will be analized 
before the pack is deleted. The program 
will continue processing the next pack, if 
present. 



Surface Analysis 

Each track will be written and checked to 
ensure that data can be successfully 
written on the track. If a track is 
detected upon which data can not be validly 
written, an alternate track is established 
and a defining message is printed. 

Alternate Track C~pability 

with the high-density recording of the 
2311, minute contamination particles can 
affect data reading and writing. 
Therefore, three extra tracks per disk 
surface are provided to ensure that the 
stated disk pack capacity is maintained for 
the life of the disk pack. These extra 
tracks (in cylinders 200, 201, 202) are 
used as alternate data tracks when a 
defective track is discovered. 

PHYSICAL laCS AND ALTERNATE TRACKS 

Physical laCS disk error routines maintain 
a constant check on the condition of disk 
surfaces, if the record verification option 
is chosen when processing disk files. The 
VERIFY entry in a DTF statement will cause 
the record verification (a read-check CCW) 
operation to be pE~rformed on outpu·t files. 
The user can write a CCW (channel command 
word) to read each record following a write 
operation, when using physical laCS. The 
execution of any read command will cause 
the entire record read to be checked for 
errors. The SKIP flag must be present in 
the read command CCW. The record is not 
transferred to main storage. Therefore, no 
additional main st.orage is required for the 
record verification operation. 

Discovery of a Defective Track 

During normal processing runs, defective 
disk tracks are originally discovered when 
physical laCS has entered a disk error 
routine following a verified disk write 
operation. The track is considered to be 
defective after ten retries (that is, 
repeated write and read-check operations) 
in this disk error routine. When a record 
cannot be successfully written on a track, 
a message is given to the operator 
indicating that a defective track has been 
discovered by IOCS. The message will 
contain the address (cylinder and head 
number) of the defective track. Also, laCS 

will post an indicator bit in the 
corresponding command control block (CCB). 
Recovery procedures must be provided by the 
user. 

Previously Established Defective Tracks 

Anytime a write disk command is executed 
during normal processing runs, the track 
condition bits in the identifier field (ID) 
of record zero (RO) are examined. 

If the Flag byte (track condition bits) 
indicates that a track is defective, 
Channel End, Device End, and Unit Check 
(track condition check) signals are 
generated and an I/O interrupt will occur, 
indicating that the track is defective. 
The physical IOCS error routine will 
recognize this condition and take the 
following action: 

Read the Record Zero (RO) of the 
defective track into main storage. 

Extract the address of the alternate 
track from Record Zero. 

Seek to the alternate track, and perform 
the desired I/O operation. 

DISK AND TAPE LABELS 

DISK LABELS 

The contents of the section are illustrated 
in Figure 62. 

The IBM System/360 Basic Operating 
System provides positive identification and 
protection of all disk files by recording 
labels on each disk pack. These labels 
ensure that the correct pack is used for 
input and that no current information is 
destroyed on output. 

certain standard disk labels are 
required on all disk packs, although it is 
possible to process files with the physical 
I/O macros (EXCP) without processing any 
labels. When using any of the logical Ioes 
routines (DTFSR, DTFDA, DTFIS), labels must 
be processed for each data file. A special 
Ioes routine (DTFPH) is also provided to 
allow label processing when using physical 
I/O macros. In addition to the required 
standard labels, logical Ioes provides 
facilities for optional user labels. 

The standard labels include one volume 
label for each pack and one or more file 

Data Management 159 



Data 
Management 

Disk Labels 

Di sk and Tape 
Labels Tape Labels 

Label Formats 
(Appendices A-G) 

Figure 62. Data Management Disk and Tape Labels 

labels for each logical file on the pack. 
There may be additional volume labels and, 
in some cases, user header labels and user 
trailer labels. 

STANDARD VOLUME LABEL 

The standard volume label identifies the 
entire volume (or pack). Every disk pack 
used in the Basic Operating System 
environment must have a standard volume 
label. It is always the third record on 
cylinder 0, track 0 (the first two records 
on this track are always IPL records). The 
volume-label record has a four-byte key 
field and an eighty-byte data field. Both 
the key field and the first four bytes of 
the data field contain the label identifier 
VOL1. The format of the data field is 
shown in Appendix A. 

160 S/360 BOS Prog. Guide 

The volume label contains a volume 
serial number. This number is aSSigned to 
the pack when it is prepared for use in the 
system, and the number is never changed. 
It is repeated in the labels for all files 
on the pack. 

The only other field in this label that 
is used by the Basic Operating System 
programs is the address of the area 
containing the file labels. 

Additional Volume Labels 

The standard volume label can be followed 
by one to seven additional volume labels 
(starting with the fourth record on 
cylinder 0, track 0). These labels must 
contain the label identifier VOL2, VOL3, 



etc in the four-byte key fieJLds and in the 
first four bytes of the data fields. The 
other 76 bytes can contain whatever 
information the user requires.. These 
labels are not read or processed by IOCS. 
If required, they must be read by using 
physical I/O macros. 

Creation of Volume Labels 

All volume labels (the standard label and 
any additional labels) are written by the 
Initialize Disk Utility program at the time 
a disk pack is prepared for use. 'rhe 
information in the standard volume label is 
checked, but never altered, during file 
processing. 

STANDARD FILE LABELS 

A standard file label or set of file labels 
identifies a particular logical file, gives 
its location(s) in the disk pack, and 
contains information to prevent premature 
destruction of current fileso The Indexed 
Sequential File Management System also 
supplies and maint_ains information in the 
file labels to fUrther define an indexed 
sequential file. Other fields within the 
file labels are set aside for use by the 
full IBM System/360 Operating System data 
management features. The number and format 
of labels required for anyone file depends 
on the file organization structure and the 
number of separate areas of the pack 
(extents) used by the file (see Standard 
File Label Formats). 

Volume Table of Contents (VTOC) 

All standard file labels are grouped 
together and stored in a specific area of 
the pack. Because each file label contains 
file limits, the group of labels on a pack 
is essentially a directory of all data 
records on the pack (or volume). 
Therefore, it is called t_he Volume Table of 
contents (VTOC). The VTOC itself is a file 
of records (one or more standard label 
records per logical file) and is defined as 
such with its own file label8 The label of 
the VTOC is the first record in the VTOC. 
This label identi fies the file as -the VTOC 
file and gives the file limits of the VTOC. 

Preformattinq the VTOC 

The VTOC is preformatted by the Initialize 
Disk program. The user specifies its 
location and length when initially 
preparing a disk pack for use. It can be 
placed anywhere within the pack with the 
following restrictions: 

1. It must be within cylinders 0-199 
(cylinders 200-202 are used as the 
alternate-track area). 

2. If in a pack used for system residence, 
it must be outside of the residence 
area. 

3. It must be one or more full tracks, 
with the single exception noted in 
number 5 below. 

4. It must be contained within one 
cylinder. It cannot overflow onto 
another cylinder. 

5. If in a pack that is not used for 
system residence, it can begin on 
cylinder 0, track 0, immediately 
following the last volume label. 

6. If a multi-pack file is to be processed 
by ISFMS and the prime data extends 
over two or more disk packs, the VTOC 
must start on cylinder 0 on all packs, 
except the first and last pack. On the 
first pack, the VTOC may be on any 
cylinder that precedes the prime data 
area. On the last pack, the VTOC may 
be either on cylinder 0 or on a 
cylinder that follows the prime data 
area. <See the section Indexed 
seguent~al File M3!:!~~ment-system). 

7. If only one disk pack is used, this 
pack can contain the system residence 
and the data file to be processed by 
ISF~S. In this case, the VTOC may be 
anywhere on the pack, except within the 
system residence or data file. 

The Initialize Disk utility program 
preformats the entire VToe by writing the 
foundation disk records that are to be 
filled in later. Each record location is 
written with a 44-byte key field and a 
96-byte data field. Both these fields in 
each record are filled with binary zeros. 
The Initialize Disk program then writes the 
label for the VToe itself in the first 
record location. This label is described 
as Format 4 under Standard File Label 
Formats. 

The second record in the VToe is also 
reserved at this time by inserting a 
hexadecimal 05 in each of the first four 
bytes of the key field and a EBCDIC value 5 

Data Management 161 



in the first byte of the data field. This 
label is used by the Direct Access Device 
Space Management (DADSM) facility of the 
Operating System. It is not used or 
maintained by BOS programs. The label is 
described as Format 5 in the next section. 

Standard File Label Formats 

All standard disk file labels are written 
in the preformatted 140-byte records in the 
VTOC (44-byte key and 96-byte data). The 
field types contained within the labels 
written for data files follow three 
standard formats. In addition to these 
three formats, there are the two special 
labels: the one used for the VTOC itself, 
and the DADSM label (see Preformatting the 
VTOC). The format of a label is identified 
by the value in the first byte of the data 
field. This is an EBCDIC value from 1 to 5 
indicating label format 1 to 5. 

Fornat 1: This format is used for all 
logical files. It is always the first of 
the series of labels when a file requires 
more than one label on a disk pack (as 
discussed in Formats 2 and 3). 

The Format 1 label identifies the 
logical file (by a file name assigned by 
the user and included in the 44-byte key 
area), and it contains file and data-record 
specifications. It also provides the 
addresses for three separate disk areas 
(extents) for the file. If the file is 
scattered over more than three separate 
areas on one pack, a Format 3 label is also 
required. In this case, the Format 1 label 
points to the second label set up for the 
file on this pack. 

If a logical file is recorded on more 
than one disk pack, the Format 1 label is 
always the first label for the file in the 
VTOC on each pack. The Format 1 label is 
illustrated in Appendix B. 

Format 2: This format is required for any 
file that is organized by the Indexed 
Sequential File Management System. The 
44-byte key area is not used by BOS 
programs. The Operating System uses this 
area to describe the second-level and 
third-level master indexes. The 96-byte 
data area contains additional 
speci£ications unique to this kind of file 
organization (such as the track reserved 
for indexes). 

If an indexed sequential file is 
recorded on two or more packs, the Format 2 
label is used on the first pack only. It 
is not repeated on the additional packs (as 
the Format 1 label is). The Format 2 label 
is illustrated in Appendix C. 

162 S/360 BOS Prog. Guide 

Format 3: If a logical file uses more than 
three extents on any pack, this format is 
used to specify the addresses of the 
additional extents. It is used only for 
extent information, and the entire 
140-bytes provide for as many as 13 
extents. 

The Format 3 label is pointed to by the 
Format 1 label for the logical file or by a 
preceding Format 3 label. It is included 
as required on the first pack, or on 
additional packs if the logical file is 
recorded on two or more packs. The Format 
3 label is illustrated in Appendix D. 

Format 4: The Format 4 label is used to 
define the VTOC itself. This is always the 
first label in the VTOC. This label is 
also used to provide the location and 
number of available tracks in the alternate 
track area. The Format 4 label is 
illustrated in Appendix E. 

Format 5: This label is used by the 
Operating System for Direct Access Device 
Space Management. The Basic Operating 
System programs do not use or maintain this 
label, although it is reserved by the 
Initialize Disk utility program. The 
Format 5 label is illustrated in Appendix 
F. 

User Header and Trailer Labels on Disk 

The user can include additional labels to 
further define his file, if he desires, 
provided the file is processed 
consecutively (DTFSR), by the Direct Access 
Method (DTFDA), or with the physical I/O 
macros (DTFPH). The DTFSR routine allows 
as many as eight user header labels and as 
many as eight user trailer labels. The 
DTFDA and DTFPH routines allow as many as 
eight user header labels, but no 
user-trailer labels. The DTFIS routine 
(for indexed sequential files) makes no 
provision for any user labels. 

User header and trailer labels are not 
stored in the VTOC. Instead, they are--
written on the first track of the first 
extent allocated by the user for t~ 
logical file. The user label track is 
defined by Ioes as a separate extent in the 
Format 1 label for the file. If a file is 
written on two or more packs, the user 
label track is reserved in the first extent 
of each of the packs. 

The user header labels are read after 
processing the standard file labels on the 
pack. As each user header label is read, 
the DTF routine branches to a routine 
supplied by the user to process the label. 



User trailer labels are read when DTFSR 
reaches the end of the last extent on each 
pack. They are furnished to the user's 
routine in the same way as the header 
labels. Upon entry to the user's label 
routine, general registers 14 and 1S 
contain data that should not be destroyed. 
If the user's routine uses the GET, PUT 
macro statements or otherwise requires the 
use of these registers, the contents of 
these registers must be saved. The 
registers (14 and 1S) must be restored 
prior to issuing the return macro LBRET. 

All user labels must be eighty bytes 
long and they must contain standard 
information in the first four bytes. The 
remaining 76 bytes may contain whatever 
information the user wants. IOCS writes 
these labels with a key area of four bytes 
and a data area of eighty bytes. 

User header labels are identified by 
UHL1,UHL2, ••• UHL8. The user must supply 
this identification in the first four bytes 
of the label. IOCS repeats this 
identification in the key area. 

The identification for trailer labels 
that must be supplied by the user is 
UTL1,UTL2, ••• UTL8. IOCS writes 
UTLO,UTL1, ••• UTL7 in the corresponding key 
area of the user trailer label record. 
When user header labels are used without 
user trailer labels, IOCS writes a trailer 
label end-of-file record following the 
header label end--of-file record. The 
trailer label end-of-file record in the 
form UTLO in the key area, with a data 
lengt,h of zero, indicates that there are no 
trail,er labels. 

Each user label set (heade~ or trailer) 
is terminated by an end-of-file r,ecord (a 
record with data length 0). For example, 
if a file has five header labels and four 
trailer labels, the user label track 
contains: 

RO standard Information 

R1 UHL1--user's 1st header label 

R2 UHL2--user's 2nd header label 

R3 UHL3--user's 3rd header label BO 

R4 UHL4--user's 4th header label 

RS UHLS--user's Sth header label 

R6 UHL6--end-of-file record 00 

R7 UTL1--user's 1st trailer 

R8 UTL2--user's 2nd trailer 

R9 UTL3--user's 3rd trailer PO 

R10 UTL4--user's 4th trailer 

R11 UTLS--end-of-file record 

When the files are processed by the direct 
access method, or by physical IOCS defined 
with the DTFPH macro, only user header 
labels can by used. In this case the user 
label track contains: 

RO 

R1 

R2 

R(n) 

standard information 

UHL1--user's 1st header 
label 

UHL2--user's 2nd header 
label 

• 
• 
• 

UHL(n)--user's nth header 
label, where n ~ 8 

R(n+1) UHL(n+1)--end-of-file record) 
DL 

R(n+2) UTLO--end-of-file record 

DISK LABEL PROCESSING 

80 

00 

All disk label processing is performed by 
the transient label-processing routines of 
the Supervisor. These routines use the 
information supplied in the job control 
cards (VOL, DLAB, and XTENT) that was 
stored in the label information area in the 
resident pack. VOL (volume) and DLAB (disk 
label) cards must be supplied for each 
logical file, and an XTENT card must be 
supplied for each extent in which the file 
is located. 

Data Management 163 



The DTFSR routine processes the labels 
of a consecutive file (input or- output) one 
pack at a time. When the end of the last 
extent on a pack is reached, an automatic 
open is issued for the next pack. The 
DTFDA (Direct Access Method) and DTFIS 
(Indexed Sequential) routines require that 
all packs be on-line for the initial OPEN. 
The DTFPH routine will process labels one 
pack at a time and when the end of the last 
extent is reached, an automatic open will 
be issued for the next pack. Also, the 
DTFPH routine will process labels with all 
of the packs on-line for the initial OPEN. 

The actual label processing consists of 
the following checks: 

Disk Input Files 

• The volume serial numbers in the volume 
labels are compared to the file serial 
numbers in the XTENT cards. 

• Fields 1-3 in the Format 1 label are 
compared to the corresponding fields in 
the DLAB card. Fields 4-6 are then 
checked against their EBCDIC 
equivalents in the DLAB continuation 
card. 

• Each of the extent definitions in the 
Format 1 and Format 3 labels is checked 
against the limit fields supplied in 
the XTENT cards. When using DTFDA or 
DTFPH, the user must provide an extent 
routine if he desires to process XTENT 
card information. 

• 

• 

If user header labels are indicated 
(when using DTFSR, DTFPH, or DTFDA), 
they are read as each pack is opened. 
After reading each label, the OPEN 
routine branches to the user's label 
routine to perform any processing 
necessary. 

If user trailer labels are indicated 
(when using DTFSR), they are read after 
reaching the end of the last extent on 
each pack. As with the user header 
labels, the trailer labels are 
processed by the user's routine. 

Disk output Files 

• 

• 

The volume serial numbers in the volume 
labels are compared to the volume 
serial nun~ers in the XTENT cards. 

The extent definitions in all labels in 
the VTOC are checked to determine 

164 8/360 BaS Prog. Guide 

• 

• 

• 

• 

whether any extend into those defined 
in the XTENT cards. If any do overlap, 
the expiration date is checked against 
the "today's date" in the communication 
region. If the expiration date has 
passed, the old labels are zeroed. If 
not, the operator is notified of the 
condition. 

The new Format 1 label is written with 
information supplied in the DLAB card 
and the DLAB-continuation card. If an 
indexed sequential file is being 
processed, the DTFIS routine supplies 
information for the Format 2 label. 

The information in the XTENT cards is 
placed in the Format 1 labels and, if 
necessary, additional Format 3 labels. 

If user header labels are indicated 
(when using DTFSR, DTFPH, or DTFDA), 
the user's label routine is entered to 
furnish the labels as each pack is 
opened. This can be done for as many 
as eight user header labels per pack. 
As each label is presented, laCS writes 
it out on the first track of the first 
extent of the pack. 

If user trailer labels are indicated 
(when using DTFSR), the user's label 
routine is entered to furnish the 
labels when the end of the last extent 
on each pack is reached. This can be 
done for as many as eight user trailer 
labels. As each label is presented, 
laCS writes it out on the first track 
of the first extent of the pack. 

TAPE LABELS 

A tape file processed by the logical IOCS 
routines must conform to certain standards. 
These standards concern labels, placement 
of tape marks, and the grouping (or 
blocking) of tape records. Considerations 
of blocked records were discussed 
previously in Part 4 under Types of 
Records. This section (Tape Labels) 
discusses the topics of tape labeling and 
the placement of tape marks (on both 
labeled and unlabeled files). 

Tape files can be processed with or 
without labels. If labels are present, 
they are classified as either standard or 
nonstandard. The standard label set 
includes the following types of labels: 

1. Standard Volume Label, fixed in length 
and format, processed by laCS. 

2. Additional Volume Labels, fixed in 
length and identifier, but not fixed 
format; bypassed by laCS. 



3. Standard File Label" fixed in length 
and format, processed by IOCS. 

4. Additional File Labels, fixed in 
length, identifier, and format; 
bypassed by IOCS. 

5. User Labels, fixed in length and 
identifier, but not fixed format; read 
and written by IOCS., processed by user 
routine. 

The additional volume labels, addi1:ional 
file labels and user labels are classified 
as part of the standard label set even 
though they are not fixed-format.. They 
are, however, standard in length (eighty 
bytes) and have standard label identifier 
fields. Nonstandard labels, on the other 
hand, are unrestricted in size, format, or 
identification.. All these label types, and 
the rules governing their positioning are 
described in the following sections. 

STANDARD TAPE LABEL SET 

When standard tape labels are specified in 
the DTFSR entries, the mininum set of 
labels (Figure 63) allowed consists of: 

1. One standard volume label per reel. 

2. Two standard file labels for each 
logical file on the reel (one _eader 
label preceding the file and oae 
trailer label following the file). 

The user has the option of adding 
additional header and trailer labels (see 
example of Figure 64): 

1. Up to seven additional volume labels. 

2. Up to eight user header labels and up 
to eight user trailer labels. 

TAPE VOLUME LABELS 

Standard Volume Labels 

The standard volume label identifies the 
entire volume (or reel). If standard 
labels are specified for a file, every reel 

used for the file must have the standard 
volume label. It is always the first 
record on the reel. It is eighty bytes 
long and follows a fixed format. The first 
four bytes contain the label identifier 
VOL1. The standard tape volume label is 
identical to the standard disk volume label 
except that the disk label contains the 
address of the file label area on the disk 
pack. The format of the standard volume 
label is shown in Appendix A. 

The standard volume label contains a 
volume serial number. This number is 
assigned to the reel when it is prepared 
for use in the system. This number is 
never changed. It is repeated in the file 
labels for all files on the reel. 

Additional Volume Labels 

The standard volume label can be followed 
by up to seven additional volume labels. 
These labels are eighty bytes long and must 
contain the label identifier VOL2, VOL3, 
etc. in the first four bytes. The other 
76 bytes can contain whatever information 
the user requires. These labels are not 
read or processed by IOCS. If required 
these labels must be read by using physical 
I/O macros. 

Creation of Volume Labels 

All volume labels (the standard label and 
any additional labels) are written by an 
IBM-supplied utility program at the time a 
reel is prepared for use. The information 
in the standard volume label is checked, 
but never altered, during file processing. 

Data Management 165 



Load 
Point 

Volume Standard 
Labe I Header 
(80 Char) Label 

for File A 
(80 Char) 

TM 

File 
A 

TM = Tape Mark 

( Standard 
) Trailer 

Label for 
File A 

~ TM 

Figure 63. Tape File with standard Labels 

Load 
Point 

Volume 
Label 

Standard 
Header 
Label 
for File A 

User 
Header 
Label 
for File A 

TM = Tape Mark 

TM 

File 
A 

TM 

Standard 
Header 
Label for 
File B 

TM 

File 
B 

TM 

Standard 
Trailer 
Label 
for File A 

( ( 
) 

) 
( ( 

TM 

User 
Trailer 
Label 
for File A 

Standard 
Trailer ( Label for 
File B 

TM TM 

v--- l 

...... ). 

TM TM 

Figure 64. Tape File with Standard and User Labels 

TAPE FILE LABELS 

Standard File Label 

Standard file labels are written before and 
after every logical file on a reel, if 
specified in the DTF. These labels are 
referred to as file header labels or file 
trailer labels, depending on their position 
and use. They are always e1ghty bytes long 
and always have 'the same format and 
content, with the following exceptions: 

1. The label identifier field (bytes 1-3) 
contains: 

a. HDRto indicate a header label 
(precedes the data file). 

b. EOV to indicate an end of volume 
(end of reel) trailer label 
(written at the end of a reel, 
indicating that the file is 
continued on another reel). 

c. EOF to indicate an end of file 
trailer label (written at the end 
of the logical file). 

166 S/360 BOS Prog. Guide 

2. The block count field is used only in 
the EOF and EOV trailer labels. This 
field is blank in the HDR label. 

The standard tape file label is illustrated 
in Appendix G. 

Additional File Labels 

Each standard file label (one header and 
one trailer) can be followed by up to seven 
additional file labels. These labels are 
eighty bytes long and must contain the 
label identifier HDR, EOV or EOF in the 
first three bytes. The fourth byte should 
contain a character 2,3, ••• or 8, indicating 
the second, third ••• or eighth file label. 
These labels are not read or processed by 
IOCS. If required, these labels must be 
read by using physical I/O macros. 



User Header and Trailer Labels on Tape 

The user can include additional header and 
trailer labels to further define his file, 
if he desires. As many as eight additional 
header labels can be written" after the 
standard file header label, and as many as 
eight additional trailer labels can be 
written after the standard file trailer 
label (EOF and EOV). Each additional label 
in the set is eighty characters long. The 
first four characters of each additional 
label must contain standard identifying 
information. The remaining 76 characters 
can contain any information and arrangement 
desired by the user. The user header 
labels are identified by UHL1, UHL2 ••• UHLB 
in bytes 1-4. The user trailer labels are 
identified by UTL1, UTL2 ••• UTLB in bytes 
1-4. 

Header and trailer labels form the 
of labels designated as file labels. 
header label appears at the beginning 
file and the trailer label appears at 
end of a file. Both contain the same 
fields. The fields which are checked 
differ, depending on whether the label 
header or a trailer. 

set 
The 
of a 
the 

is a 

When the file is to be read backward, 
the trailer labels must be complete so 
that, for checking purposes, the label can 
be treated as a header label. Thus only 
those fields which are pertinent to the 
type of check (header or trailer) are 
examined. 

On 7-track tape, standard labels are 
wri tten in the same density as thc~ data on 
that tape. (All information on a tape reel 
must be written in a single density.) 
These standard labels are written with even 
parity in the translation mode. 

TAPE MARKS WITH STANDARD TAPE LABELS 

Figures 63 and 64 illustrate the use of 
tape marks with files that use the standard 
label sets. The sequence of items on the 
tape is: 

1. No tape mark preceding header label 
set. 

2. Header label set: 
Standard volume label (re~uired) 
Additional volume labels (none to 
seven, optional) 
standard file header label 
(required) 
Additional file labels (none to 
seven, optional) 
User header labels (none to eight, 
optional) • ' 

3. Tape mark between header label set and 
first data record. 

4. Physical records for file. 

5. Tape mark between last data record and 
trailer label set. 

6. Trailer label set: 
Standard file trailer label (re
quired at end of file and end of 
volume) 
User trailer labels (none to eight, 
optional). 

7. Tape mark after trailer label set. 

B. If multi-file reel, (EOF label) next 
standard file header label follows 
here. If single file reel (EOF label) 
or if last file of a multi-file reel, 
another tape mark follows here. If 
multi-reel file (EOV label) a tape mark 
follows here. 

STANDARD TAPE LABEL PROCESSING 

Standard tape label processing is performed 
by the transient label-processing routines 
of the Supervisor. These routines use the 
information supplied in the job control 
cards (VOL and TPLAB) that was stored in 
the label information area in the resident 
pack. Only one VOL (volume) card and one 
TPLAB (tape label) card need be supplied 
for each logical file, regardless of the 
number of reels on which the file is 
recorded. 

The actual label processing consists of 
the following checks: 

Tape Input File 

• 

• 

The volume serial number in the 
standard volume label on the first or 
only reel is compared to the file 
serial number in the TPLAB card. All 
other volume labels on all reels of the 
file are bypassed. 

The fields in the standard file header 
label on the first reel are compared to 
the corresponding fields in the TPLAB 
card. In the file header label, fields 
1-10 are required; fields 11-14 are 
optional. For successive reels of a 
multi-reel file, the volume sequence 
number from the TPLAB card is increased 
by one for each reel. 

Data Management 161 



If more than one file is written on a 
reel of tape (multi-file reel), the file 
sequence number determines the file to be 
processed. All files are bypassed until a 
file sequence number in a standard label 
matches the file sequence number in the 
TPLAB card, or until the end of the tape is 
reached. If the tape is positioned beyond 
the desired file when the search is 
started, a mes~age is given to the 
operator. 

• If user labels are indicated, they are 
read into main storage for processing 
by the user's label routines. The user 
labels are read one at a time, until 
all have been processed. 

• When a standard file trailer label is 
read, the block count is compared to a 
count accumulated by IOCS. 

• If user trailer labels are indicated, 
they are read into main storage for 
processing by the user's label routine. 
The user trailer labels are read one at 
a time until all have been processed. 

Tape Output File 

• 

• 

• 

The volume serial number in the 
standard volume label on the first or 
only reel is compared to the file 
serial number in the TPLAB card. All 
other volume labels on all reels of the 
file are bypassed. 

The expiration date in the standard 
file header label is checked against 
the "today·s date" in the communication 
region. If the expiration date has 
passed, the reel is backspaced to write 
the new standard file label. If not, 
the operator is notified of the 
condition. This check is performed on 
each reel of a multi-reel output file. 
If no file label is present (tape mark 
after VOL label) the tape is considered 
expired. 

The new standard file label is written 
with the information supplied in the 
TPLAB card. For multi-reel files, the 
volume sequence number is increased by 
1 for each successive reel. 

More than one file of records may be 
written on a tape reel (multi-file 
reel). The standard file header label 
for each file after the first is 
written with information taken 
partially from the corresponding TPLAB 
card, and partially from the preceding 
standard trailer label. The 
information from the trailer label 

168 S/360 BOS Prog. Guide 

• 

• 

is: the file serial number, the volume 
sequence number, and the file ~equence 
number. The file sequence number is 
increased by 1 for the new file. If 
the tape has not been rewound (or 
otherwise re-positioned) after a file 
is closed, it is located at the correct 
position for writing the standard file 
header label of the next file. The 
header label of the new file is written 
immediately after the tape mark that 
follows the trailer label(s) of the 
previous file. If the tape has been 
moved, however, the user must properly 
position it before the header label is 
written. He can move the tape from the 
load point to the proper position by 
using a Job Control FILES card and 
skipping three tape marks for each file 
on the tape. 

If user header labels are indicated, 
the user's label routine is entered to 
furnish the labels as each reel is 
opened. This can be done for as many 
as eight user header labels per reel. 

If end of reel is sensed before 
completing the file, an EOV trailer 
label is written with all fields 
presented in the TPLAB card plus a 
block count. 

• When end of file is reached, an EOF 
trailer label is written identical to 
the EOV label mentioned above. 

• If user trailer labels are indicated, 
the user's label routine is entered to 
furnish the labels after each trailer 
(EOV or EOF) label is written. This 
can be done for as many as eight user 
trailer labels. 

NONSTANDARD TAPE LABELS 

Any tape labels that do not conform to the 
standard label specifications are 
considered nonstandard and must be read, 
checked, or written by the user. On input 
files, the nonstandard labels mayor may 
not be followed by a tape mark. Therefore, 
four conditions are possible: 

1. Nonstandard label(s), followed by a 
tape ma.rk to be checked. 

2. Nonstandard label(s), not followed by a 
tape mark, to be checked. 

3. Nonstandard label(s), followed by a 
tape ma.rk, which are not to be checked. 

4. Nonstandard label(s), not followed by a 
tape mark, which are not to be checked. 



For conditions 1 and 2, the DTFSR entries 
must specify nonstandard labels and the 
address of a user-written routine to do the 
reading or writing. 

For condition 3, nonstandard labels must 
be specified, but the address of a user 
routine is omitted. laCS skips all labels, 
passes the tape mark, and positions the 
tape at the first data record to be read. 

For condition 4, nonstandard labels and 
a user address are specified, laCS can not 
distinguish labels from data reco~ds 
because there is no tape mark to indicate 
the end of the labels. Therefore, to 
position the tape at the first data record, 
the user must read all labels. 

with nonstandard labels when an 
end-of-file or an end-of-volume condition 
exists, the user indicates to laCS which 
condition it is. On end of file, laCS 
branches to the user's end-of-file address. 
On end of volume, laCS initiates the 
end-of-volume procedures to close the 
completed volume and open the next volume 
for processing. 

On output files, nonstandard labels are 
written by the user's routine by using 
physical laCS. The OPEN routine 'writes a 
tape mark between the user's nons'tandard 

header labels and his first data record, 
unless the TPr1ARK=NO entry is present in 
the DTFSR statements. The CLOSE routine 
writes a tape mark after the user's last 
data record before he writes his 
nonstandard trailer labels, and after the 
trailer labels. 

UNLABELED TAPE FILES 

The first I'ecord of unlabeled input tape 
files <nine or seven track) mayor may not 
be a tape mark. If a tape mark is not 
present as the first record, laCS will 
process the first record as a data record. 

When an unlabeled output file is 
specified, the OPEN routine assumes the 
mounted output tape is also unlabeled. No 
label checking is performed and any labels 
on the output tape are erased. The OPEN 
routine will write a tape mark as the first 
record of the output tape, unless the 
TPMARK=NO entry is present in the DTFSR. 

Note: Unlabeled tapes <nine or seven 
track) can be read backwards if they: were 
written by a System/360, have a tape mark 
as the first record, and have not been 
written in the data conversion mode. 

Data Management 169 



APPENDIX A. STANDARD VOLUME LABEL, TAPE OR DASD 

Volume 
Label 
Number 

Volume Data File 
Serial 
Number 

Label Volume 
Identifier Security 

Directory 
(Disk Only) 

Reserved Reserved Owner Name 
and Address Code 

Volume Label Format (80 bytes) for Tape or DASD 

FIELD 

1 1-3 

2 4 

3 5-10 

4 11 

5 12-21 

6 22-31 

7 32-41 

NAME AND LENGTH 

LABEL IDENTIFIER 
3 bytes 

VOLUME LABEL NUMBER 
1 byte 

VOLUME SERIAL NUMBER 
6 bytes 

VOLUME SECURITY 
1 byte 

DATA FILE DIRECTORY 
10 bytes 

RESERVED 
10 bytes 

RESERVED 
10 bytes 

170 S/360 BOS Prog. ~uide 

Reserved For Future Expansion 

DESCRIPTION 

must contain VOL to indicate this 
is a Volume Label. 

indicates the relative position 
(1-8) of a volume label within a 
group of volume labels. 

a unique identification code which 
is assigned to a volume when it 
enters an installation. This code 
may also appear on the external 
surface of the volume for visual 
identification. It is normally a 
numeric field 000001 to 999999, 
however any or all of the 6 bytes 
may be alphameric. 

indicates security status of the 
volume: 
o = no further identification for 

each file of the volume is 
required. 

1 further identification for 
each file of the volume is 
required before processing. 

for DASD only. The first 5 
bytes contain the starting address 
<CCHHR) of the VTOC. The last 5 
bytes are blank. For tape files, 
this field is not used and should 
be recorded as blanks. 

reserved for manufacturers. 

reserved for American Standards 
Associated (A.S.A.). 



BYTES 

8 42-51 

9 52-80 

NAME AND LENGTH 

OWNER NAME AND 
ADDRESS CODE 
10 bytes 

RESERVED 
29 bytes 

DESCRIPTION 

indicates a specific customer, 
installation and/or system to 
which the volume belongs. This 
field may be a standardized code, 
name, address, etc. 

reserved for future use. 

Note: All reserved fields should contain blanks to facilitate their use in the future. 
Any information appearing in these fields at the present time will be ignored by 
the Basic Operating System programs as well as the Operating System programs. 

Appendix A 171 



APPENDIX B. 

Reserved 
For Future 

STANDARD DASD FILE LABELS, FORMAT 1 

Opti on Record Key 
Codes Length Locati on 

Secondary 
Allocation 

Indicators 

Last 
Record 
Pointer 

First Extent 

System Code 

of di rector}' 

Additional Extent 
----- --

Format 1: This format is common to all data files on DASD. 

1 1-44 

NAME AND LENGTH 

FILE NAME 
44 bytes, alphameric 
EBCDIC 

172 S/360 BOS Prog. Guide 

DESCRIPTION 

this field serves as the key 
portion of the file label. Each 
file must have a unique file name. 
Duplication of file names will 
cause retrieval errors. The file 
name can consist of three 
sE~ctions : 

1. File ID is an alphameric name 
assigned by the user and 
identifies the file. Can be 
1-35 bytes if generation and 
version numbers are used, or 
1-44 bytes if they are not 
used. 

2. Generation Number. If used, 
this field is separated from 
File ID by a period. It has 
the format Gnnnn, where G 
identifies the field as the 
generation number and nnnn (in 
decimal) identifies the 
generation of the file. 



BYTES NAr.1E AND LENGTH DESCRIPTION 

3. Version Number of Generation. 
If used, this section 
immediately follows the 
generation number and has the 
format Vnn, where V identifies 
the file as the version of 
generation number and nn (in 
decimal) identifies the 
version of generation of the 
file. 

Note: Basic Operating System compares the entire file name field against the file name 
given in the DLAB card. The generation and version numbers are treated 
differently by the Operating System. 

The following fields (2-33) comprise the DATA portion of the file label: 
FIELD BYTES NAME AND LENGTH DESCRIPTION 

2 45 

3 46-51 

4 52-53 

5 54-56 

6 57-59 

7A 60 

7B* 61 

7C 62 

8 63-75 

FORMAT IDENTIFIER 
1 byte, EBCDIC Rumeric 

FILE SERIAL NUMBER 
6 bytes, alphameric EBCDIC 

VOLUME SEQUENCE NUMBER 
2 bytes, binary 

CREATION DATE 
3 bytes, discontinuous binary 

EXPIRATION DATE 
3 bytes, discontinuous binary 

EXTENT COUNT 
1 byte, binary 

BYTES USED IN L~ST BLOCK 
OF DIRECTORY 
1 byte, binary 

SPARE 
1 byte 

SYSTEM CODE 
13 bytes 

1 Format 1 

uniquely identifies a file/volume 
relationship. It is identical to 
the Volume Serial Number of the 
first or only volume of a 
mUlti-volume file. 

indicates the order of a volume 
relative to the first volume on 
which the data file resides. 

of 
It 

indicates the year and the day 
the year the file was created. 
is of the form YDD, where Y 
signifies the year (0-99) and 
the day of the year (1-366). 

DD 

indicates the year anj the day 
of the year the file may be 
deleted. The form of this field 
is identical to that of Field 5. 

contains a count of the number of 
extents for this file on this 
volume. If user labels are used, 
the count does not include the 
user label extent. This field is 
maintained by the Basic Operating 
System programs. 

used by the Operating System only 
for partitioned (library 
structure) data sets. Not used by 
the Basic Operating System. 

reserved for future use. 

uniquely identifies the 
programming system. The character 
codes that can be used in this 
field are limited to 0-9, A-Z, or 
blanks. 

Appendix B 173 



FIELD BYTES 

9* 76-82 

10* 83-84 

11 85 

NAME AND LENGTH 

RESERVED 
7 bytes 

FILE TYPE 
2 bytes 

RECORD FORMAT 
1 byte 

174 S/360 BOS Prog. Guide 

DESCRIPTION 

this field is reserved for 
future use. 

the contents of this field 
uniquely identify the type of data 
file: 

Hex 4000 Consecutive 
organization 

Hex 2000 Direct-access 
organization 

Hex 8000 Indexed-sequential 
organization 

Hex 0200 Library organization 
Hex 0000 Organization not 

defined in the file 
label. 

the contents of this field 
indicate the type of records 
contained in the file: 

Bit 
Position Content Meaning 

o and 1 01 Variable length 
records 

10 Fixed length 
records 

11 Undefined 
format 

2 0 No track 
overflow 

1 File is 
organized 
using track 
overflow 
(Operating 
System 
only> 

3 0 Unblocked 
records 

1 Blocked 
records 

4 0 No truncated 
records 

1 Truncated 
records ip 
file 

5 and 6 01 Control 
character ASA 
code 

10 Control 
character 
machine code 

00 Control 
character not 
stated 



12* 86 

13** 87-88 

14** 89-90 

15** 91 

16** 92-93 

17 94 

** BOS supports 

NAME AND LENGTH 

OPTION CODES 
1 byte 

BLOCK LENGTH 
2 bytes, binary 

RECORD LENGTH 
2 bytes, binary 

KEY LENGTH 
1 byte, bi~ary 

KEY LOCATION 
2 bytes, binary 

DATA SET INDICATORS 
1 byte 

fields 13-16 for ISFMS only. 

7 

DESCRIPTION 

o 

1 

Records have 
no keys 

Records are 
written with 
keys. 

Bits within this field are used 
to indicate various options used 
in building the file. 

0-2 
3 

4 

5-7 

unused 
If on, indicates independent 
overflow option. 
If on, indicates cylinder 
overflow option. 
unused 

indicates the block length for 
fixed length records or maximum 
block size for variable length 
blocks. 

indicates the record length for 
fixed length records or the 
maximum record length for variable 
length records. 

indicates the length of the key 
portion of the data records in the 
file. 

indicates the high order position 
of the data record. 

Bits within this field are used 
to indicate the following: 

o If on, indicates that this is 
the last volume on which this 
file normally resides. This 
bit is used by the Basic 
operating System DTFSR routine 
only. None of the other bits 
in this byte are used by Basic 
Operating System. 

1 If on, indicates that the data 
set described by this file 
must remain in the same 
absolute location on the 
direct access device. 

2 If on, indicates that Block 
Length must always be a 
multiple of 8 bytes. 

Appendix l3 175 



18* 95-98 

19* 99-103 

20 104-105 

21 106 

NAME AND LENGTH 

SECONDARY ALLOCATION 
4 bytes, binary 

LAST RECORD POINTER 
5 bytes, discontinuous binary 

SPARE 
2 bytes 

EXTENT TYPE INDICATOR 
1 byte 

176 S/360 BOS Prog. Guide 

DESCRIPTION 

3 If on, indicates that this 
data file is security 
protected; a password must be 
provided in order to access 
it. 

4-7 Spare. Reserved for future 
use. 

indicates the amount of storage 
to be requested for this data file 
at end of extent. This field is 
used by Operating System only. It 
is not used by Basic Operating 
System routines. The first byte 
of this field is an indication of 
the type of allocation request. 
Hex code "C2" (EBCDIC "B") 
indicates blocks (physical 
records), hex code "E3" (EBCDIC 
"T") indicates tracks, and hex 
code "C3" (EBCDIC "C") indicates 
cylinders. The next three bytes 
of this field is a binary number 
indicating how many bytes, tracks 
or cylinders are requested. 

points to the last record 
written in a sequential or 
partition-organization data set. 
The format is TTRLL, where TT is 
the relative address of the track 
containing the last record, R is 
the ID of the last record, and LL 
is the number of bytes remaining 
on the track following the last 
record. If the entire field 
contains binary zeros, the last 
record pointer does not apply. 

reServed for future use. 

indicates the type of extent 
with which the following fields 
are associated: 

HEX CODE 

00 next three fields do not 
indicate any extent. 

01 prime area (Indexed 
sequential); or Consecutive 
area, etc., (i.e., the extent 
containing the user's data 
records.) 

02 overflow area of an Indexed 
sequential file. 

04 cylinder Index or master index 
area of an Indexed Sequential 
file. 

40 user label track area 
8n shared cylinder indicator, 

where n = 1,2, or 4. 



FIELD BYTES 

22 107 

23 108-111 

24 112-115 

25-28 116-125 

29-32 126-135 

33 136-140 

NAME AND LENGTH 

EXTENT SEQUENCE NUMBER 
1 byte, binary 

LOWER LIMIT 
4 bytes, discontinuous 

UPPER LIMIT 
4 bytes 

ADDITIONAL EXTENT 
10 bytes 

ADDITIONAL EXTENT 
10 bytes 

binary 

POINTER TO NEXT FILE LABEL 
WITHIN THIS LABEL SET 
5 bytes, discontinuous binary 

indicates the extent sequence 
in a multi-extent file. 

the cylinder and the track 
address specifying the starting 
point (lower limit) of this extent 
component. This field has the 
format CCHH. 

the cylinder and the track 
address specifying the ending 
point (upper limit) of this extent 
component. This field has the 
format CCHH. 

these fields have the same 
format as the fields 21-24 above. 

these fields have the same 
format as fields 21-24 above. 

the address (format CCHHR) of a 
continuation label if needed to 
further describe the filp. If 
field 10 indicates Indexed 
sequential organization, this 
field will point to a Format 2 
file label within the label set. 
otherwise, it points to a Format 3 
file label, and then only if the 
file contains more than three 
extent segments. This field 
contains all binary zeros if no 
additional file label is pointed 
to. 

* These fields are not supported by the Basic Operating System. 

Appendix B 177 



APPENDIX C. STANDARD DASD FILE LABELS, FORMAT 2 

Address of 
2nd Level 
Master 
Index 

_ NI I I I I I", 
K~y Identification 

Address of 
Cylinder 
Index 

Last 2nd 
Level Master 
Index Entry 
Address 

",I I I I~ 

Address of 
Lowest Level 
Master 
Index 

Highest t1 RII on "-High Level r-~ighest "R" on 
Index Track Overflow Track Number Tracks 

Last Data "R" of Last 
for Highest Level 

Number of 'l Track in l r~ata Record 
index l 

Index Leve I s Cylinder On Shared Track 

Address of 
Last 3rd ~ ~ ~ Prime 

3rd Level 
Level Master Spare ':~] J Record 

Master Index 
Index Entry 

~~~ Count 
Address

:::1 I I I I I~ <:41 I I I~ ~I I I I I I I I I I I I I I I I I I~ ~~ Ct ~I I~ lOl~ fri It) ~[O ~I?' 0- ~J l~ ~:8 C3 ~I I It:: ~ It) It) It) It) ...,...,

Address of
Highest Level
Index

Last Prime
Data Record
Address

Last
Track

Last
Cylinder
Index

Last
Master
Index

Fo!mO'1 N"mb •• T,o,J. H;,t. .. "R" o.
ID for Cylinder Prime Track

Overflow

High Level Index Tag Deletion
De-:elapment
Indicator

Number of
Independent
Overflow Tracks

Last Independent
Overflow Record
Address

Count

Cylinder
Overflow

Spare

t
Stott Number Bytes

for Highest Indica tor
Level Index

Non-First Overflow - Reference Count (RORG3)

Painter

Format 2: This format is applicable only to Indexed Sequential data files.
pointed to by a Format 1 label.

It is always

FIELD

K1 1

K2* 2-8

K3* 9-13

K4* 14-20

NAME AND LENGTH

KEY IDENTIFICATION
1 byte

ADDRESS OF 2ND LEVEL
MASTER I:"IDEX
7 bytes, discontinuous binary

LAST 2ND LEVEL MASTER
INDEX ENTRY ADDR?SS
5 bytes w discontinuous binary

ADDRESS OF 3RD LEVEL
fv1ASTER INDEX
7 bytes, discontinuous binary

178 S/360 BOS Prog. Guide

DESCRIPTION

this byte contains the Hex Code
02 in order to avoid conflict with
a file name.

this field contains the address
of the first track of the
second level of the master index,
in the form MBBCCHH.

this field contains the address
of the last index entry in the
second level of the master index,
in the form CCHHR.

this field contains the address
of the first track of the third
level of the master index, in the
form MBBCCHH.

K5* 21-25

K6* 26-44

Dl 45

D2 46

D3* 47

D4 48-50

D5 51-52

D6 53

D7 54

D8 55

D9 56

Dl0 57

Dll* 58-59

D12 60-61

D13 62-64

NAME AND :LENGTH

LAST 3RD LEVEL MASTER
INDEX ENTRY ADDRESS
5 bytes, discontinuous binary

SPARE
19 bytes

FORMAT IDENTIFIER
1 byte, EBCDIC numeric

NUMBER OF INDEX LEVELS
1 byte, binary

HIGH LEVEL INDEX
DEVELOPMENT INDICATOR
1 byte, binary

FIRST DATA RECORD IN
CYLINDER
3 bytes

LAST DATA TRACK IN
CYLINDER
2 bytes

NUMBER OF TRACKS FOR
CYLINDER OVERFLOW
1.byte, binary

HIGHEST "R" ON HIGH LEVEL
INDEX TRACK
1 byte

HIGHEST "R" ON PRIrvlE TRACK
1 byte

HIGHEST "R" ON OVERFLOW
TRACK
1 byte

"R" OF LAST DATA RECORD ON
SHARED TRACK
1 byte

SPARE
2 bytes

TAG DELETION COUNT
2 bytes, binary

NON-FIRST OVERFLOW
REFERENCE COUNT
(RORG3)
3 bytes, binary

DESCRIPTION

this field contains the address
of the last entry in the third
level of the master index, in the
form CCHHR.

reserved for future use.

2 Format 2

the contents of this field
indicate how many levels of index
are present with an Indexed
Sequential File.

this field contains the number
of tracks determining
development of Master Index.

this field contains the address
of the first data record on
each cylinder in the form HHR.

this field contains the address
of the last data track on each
cylinder, in the form HH.

this field contains the number
of tracks in cylinder overflow
area.

this field contains the highest
possible R on a track containing
high-level index entries.

this field contains the highest
possible R on prime data tracks
for form F records.

this field contains the highest
possible R on overflow data
tracks for form F records.

this field contains the R
of the last data record on a
shared track.

Reserved for future use.

this field contains the number
of records that have been tagged
for deletion.

this field contains a count of
the number of random references
to a non-first overflow record.

Appendix C 179

FIELD BYTES

D14 65-66

D15* 61

D16 68-11

Dl1 12

D18 13-19

D19 80-86

D20 81-93

D21 94-101

D22 102-106

D23 101-111

D24 112-116

D25 117-124

D26* 125-126

NAME AND LENGTH

NUMBER OF BYTES FOR
HIGHEST-LEVEL INDEX
2 bytes, binary

NUMBER OF TRACKS FOR
HIGHEST-LEVEL INDEX
1 byte, binary

PRIME RECORD COUNT
4 bytes, binary

STATUS INDICATOR
1 byte

ADDRESS OF CYLINDER INDEX
1 bytes

ADDRESS OF LOWEST-LEVEL
MASTER I/NDEX
7 bytes

ADDRESS OF HIGHEST-LEVEL
INDEX
7 bytes

LAST PRIME DATA RECORD
ADDRESS
8 bytes

LAST TRACK INDEX ENTRY
ADDRESS
5 bytes

LAST CYLINDER INDEX ENTRY
ADDRESS
5 bytes

LAST MASTER INDEX ENTRY
ADDRESS
5 bytes

LAST INDEPENDENT OVERFLOW
RECORD ADDRESS
8 bytes

BYTES REMAINING ON
OVERFLOW TRACK
2 bytes, binary

180 S/360 BOS Prog. Guide

DESCRIPTION

the contents of this fielj
indicate how many bytes are
needed to hold the highest-level
index in main storage.

this field contains a count of
the number of tracks occupied
by the highest-level index.

this field contains a count of
the number of records in the prime
data area.

the eight bits of this byte are
used for the following
indications.

bit description

o last block full
1 last track full

2-1 must remain off

this field contains the address
of the first track of the cylinder
index, in the form MBBCCHH.

this field contains the address
of the first track of the
lowest-level index of the high
level indexes, in the form
MBBCCHH.

this field contains the address
of the first track of the
highest-level master index, in the
form MBBCCHH.

this field contains the address
of the last data record in the
prime data area, in the form
MBBCCHHR.

this field contains the address
of the last normal entry in the
track index on the last cylinder
in the form CCHHR.

this field contains the address
of the ·last index entry in the
cylinder index in the form CCHHR.

this field contains the address
of the last index entry in the
master index in the form CCHHR.

this field contains the address
of the last record written in
the current independent overflow
area, in the form MBBCCHHR.

this field contains the number
of bytes remaining on current
independent overflow track.

D27 127-128

D28 129-130

D29 131-132

D30 133-135

D31* 13-140

NAME AND LENGTI!

NUMBER OF INDEPENDENT
OVERFLOW TRACKS (RORG2)
2 bytes, binary

OVERFLOW RECORD COUNT
2 bytes, binary

CYLINDER OVERFtOW AREA
COUNT (RORG1)
2 bytes, binary

SPARE
3 bytes

POINTER TO FORMAT 3
FILE LABEL
5 bytes

DESCRIPTION

this field contains the number
of tracks remaining in
independent overflow area.

this field contains a count of
the number of records in the
overflow area.

this field contains the number
of full cylinder overflow areas.

this field is reserved for
future use.

this field contains the address
(in the form CCHHR) of a
Format 3 file label if more than
extent segments exist for the datd
file within this volume.
Otherwise it contains binary
zeros.

* These fields are not supported by the Basic Operating System.

Appendix C 181

APPENDIX D. STANDARD DASD FILE LABELS, FORMAT 3

Extent 1 Extent 2 Extent 3 Extent 4 Extent 5 Extent 6 Extent 7
Key
Ident- lower Upper
ification limit limit

-·lll" "''0 t--I I I~ ;:1 I 1::!:2 I I I I-T~ ~c- TTT -r fl~ ---

~ TTT 1-f-l~ ~f:i - -rrr I I Itg~ r II 111~:g I II I llfQ
t t t ..

Extent Type Extent Sequence Format Identifier

Indicator Number

Extent 8 Extent 9 Extent 10 Extent 11 Extent 12 Extent 13

Pointer

~ III I I I~ cg I II I I I~~ II I I I IS! § -rr-]-T- lTT~
~-- T]-r -] r I~ ~ III I I I~ ~I I I I~

Format 3: This format is used to describe extra extent segments on the volume if these
cannot be described in the Format 1 (and Format 2 if it exists> file label.
This file label is pointed to by a Format 1, Format 2, or another Format 3
file label.

FIELD

1

2-17

18

19-54

55

BYTES

1-4

5-44

45

46-135

136-140

NAME AND LENGTH

KEY IDENTIFICATION
4 bytes

EXTENTS (in KEY)
40 bytes

FORMAT IDENTIFIER
1 byte, EBCDIC numeric

ADDITIONAL EXTENTS
90 bytes

POINTER TO NEXT FILE LABEL
5 bytes

182 S/360 BOS Prog. Guide

DESCRIPTION

each byte of this field contains
the Hex Code 03 in order to avoid
conflict with a data file name.

four groups of fields identical
in format to fields 21-24 in the
Format 1 label.

3 = Format 3

Nine groups of fields identical
in format to fields 21-24 in the
Format 1 label.

this field contains the address
(in the form CCHHR) of another
Format 3 label if additional
extents must be described.
otherwise, it is all binary zeros.

APPENDIX E. STANDARD DASD FILE LABELS, FORMAT_I!

I

K~
~I I I II I I II I II II Dillrrm-mn-

Alternate Tracks

I
Reserved

~II III II IIII II I II I I I I II I I II ~
l VTOC Extent

Reserved

Format 4: This format is used to describe the Volume Table of contents and is always the
first file label in the VTOC. There must be one and only one of these Format
4 file labels per volume.

FIELD BYTES

1 1-44

2 45

46-50

4 51-52

5 53-56

6 57-58

7 59

8A 60

NAME AND LENGTH

KEY FIELD
44 bytes, binary

FORMAT ID
1 byte, EBCDIC numeric

LAST ACTIVE FORMAT 1
5 bytes

AVAILABLE FILE LABEL RECORDS
2 bytes, binary

HIGHEST ALTERNATE TRACK
4 bytes

NUMBER OF ALTERNATE TRACKS
2 bytes, binary

VTOC, INDICATORS
1 byte

NUMBER OF EXTENTS
1 byte

DESCRIPTION

each byte of this field contains
the Hex Code 04 in order to
provide a unique key.

4 = Format 4

contains the address (in the form
CCHHR) of the last active Format 1
file label. It is used to stop a
search on a file name.

contains a count of the nQmber of
unused records in the VTOC.

contains the highest address (in
the form CCHH) of a block of
tracks set aside as alternates for
bad tracks.

contains the number of alternate
tracks available.

Bit 0 if on, indicates no DADSt-l
(format 5) label, or DADSM label
does not reflect true status of
volume.

Bits 1-7 not used.

contains the hexadecimal constant
01, to indicate one extent in the
VTOC.

Appendix E 183

BYTES

8B 61-62

9 63-76

NAME AND LENGTH

RESERVED
2 bytes

DEVICE CONSTANTS
14 bytes

reserved for future use.

this field contains constants
describing the device on which the
volume was mounted when the VToe
was created. The following
describes each of the sUbfields.

Device Size (4 bytes}--The number of cylinders (Ce) and tracks per cylinder (HH).

Track Length (2 bytes)--The number of available bytes on a track exclusive of home
address and record zero (record zero is assumed to be a non-keyed record with an eight
byte data field).

Record Overhead (3 bytes)--The number of bytes required for gaps, check bits, and count
field for each record. This value varies according to the record characteristics and
thus is broken down into three subfields.

I--Overhead required for keyed record other than the last record on the track.
L--Overhead required for a keyed record that is the last record on the track.
K--Overhead bytes to be subtracted from I or L if the record does not have a key

field.

Flag (1 bytes)--Further defines unique characteristics of the device.

0-5
6
7

Meaning

reserved
CC and HH must be used as i-byte values, as in the case of the 2321.
A tolerance factor must be applied to all but the last record on the
track.

Tolerance (2 bytes)--A value that is to be used to determine the effective length of the
record on the track. The effective length of a record is calculated in the following
manner:

1. Add the key length to the data length of the record.

2. Test bit 7 in the flag byte:
a. if 0 go to 3
b. multiply value from 1 by the tolerance factor
c. shift result 9 bits to the right

3. Add overhead bytes to the result.

NOTE: Step 2 is not required if the calculation is for the last record on the track.

Labels/Track (1 byte)--A count of the number of labels that can be written on each track
in the VTOC. (Number of full records of 44-byte key and 96-byte data lengths that can be
contained on one track of this device.)

Directory Blocks/Track (1 byte)--A count of the number of directory blocks that can be
written on each track for an Operating System partitioned data set (number of full
records of 8-byte key and 256-byte data lengths that can be contained on one track of
this device).

184 S/360 BOS Prog. Guide

The following illustrates the device constants field for the various direct access
devices:

Track Labels/ Directory Blocks/
Device CC Ill! Length I L K Flag Tolerance Track Track

2311 203 10 3656 82 55 20 1 537 ----r6 10
2321 20 10 5 20 2027 101 47 16 3 537 8 5
2301 0 200 20616 186 186 53 0 512 63 45
2302 250 46 5070 82 55 20 1 537 22 14
7320 0 400 2129 111 43 14 1 537 8 5

Note: CCHH for the 2321 above are separate 1 byte quantities.

FIELD

10

11-14

15

BYTES

77-105

106-115

116-140

NAME AND LENGTH

RESERVED
29 bytes

VTOC EXTENT
10 bytes

RESERVED
25 bytes

DESCRIPTION

reserved for future use.

these fields describe the extent
of the VTOC, and are identical in
format to fields 21-24 of the
Format 1 file label. Extent type
is 01 <prime data area).

reserved for future use.

* This field not supported by the Basic Operating System.

Appendix E 185

APPENDIX F. STANDARD DASD FILE LABLES, FORMAT 5

r---.---.-----------------------,--.------------------d
~:t:i~:*'le Available Extents in Key Available Extents

~~~~~~~~~~~~~~~J[lr[[l-T[[l~Il-rTrI~rIJII- ~ 
Key 
Identification Identifier 

b ~vailable Extents ::rP:i~t::t 
Format 5 

co [ [ [ [ [ [ [ I [ [ [ [ [ [ [ [ [TTrrrrr-Ilul I II I [ [ I I [ [ I I I Wl ~ ~. ~ 

Format 5: This format is used for Direct Access Device Space Management (DADSM) only.* 

FIELD 

1 

2 

3-9 

10 

11-28 

29 

BYTES 

1-4 

5-9 

10-44 

45 

46-135 

136-140 

NAME AND LENGTH 

KEY IDENTIFICATION 
4 bytes 

AVAILABLE EXTENT 
5 bytes 

AVAILABLE EXTENTS IN KEY 
35 bytes 

FORMAT IDENTIFIER 
1 byte EBCDIC numeric 

AVAILABLE EXTENTS 
90 bytes 

POINTER TO NEXT FORMAT 5 
5 bytes 

* Not supported by the Basic Operating System. 

186 8/360 BOS Prog. Guide 

DESCRIPTION 

each of these four bytes is a 
hex 05. 

this field indicates an extent 
of space available for allocation 
to a data file. The first two 
bytes are relative track address. 
The next two are the number of 
full cylinders included in the 
extent. The last byte is the 
number of tracks in addition to 
the cylinders in the extent. 

these fields are identical to 
field 2. They are in relative 
track address sequence. 

5 = Format 5 

these fields are the same as 
Field 2. There are 26 available 
extent fields in the Format 5 
label. 

contains the address (in the 
form CCHHR) of the next Format 5 
file label if one exists. 



File 
Label 
Number 

File Identifier 
File Volume File 
Serial Sequence Sequence 
Number Number Number 

Ji 
E 

Z 
Creation 
Date 

APPENDIX G. STANDARD TAPE FILE LABEL 

Expiration 
Date 

Block 
Count For A.S.A. 

System :o~~---.·.-[~e~-rv:. J 
'--'-r-'--'-'--'--L-L-L-J...--L....L.....L....L.....I-.l-....L.....I--I..J........L.....J........I-'-L...l......l...---L.....I.--1.--'--I..-l.--'--'-1--'-'-t---'--'---L...L......J.....l.--L--J..-L...l......l...-r"---'--I--+--L-L_L.!.-J---'-.L..-L...L..J llUE ~ llJ g 

Label 
Identifier 

Version 
Number of 
Generation 

File 
Security 

The standard tape file label format and contents are as follows: 

1 1-3 

2 4 

3 5-21 

4 22-27 

5 28-31 

6 32-35 

NAME AND LENGTH 

LABEL IDENTIFI;ER 
3 bytes, EBCDIC 

FILE LABEL NUMBER 
1 byte, EBCDIC 

FILE IDENTIFIER 
17 bytes, EBCDIC 

FILE SERIAL NUMBE~ 
6 bytes, EBCDIC 

VOLUME SEQUENCE 
NUMBER 
4 bytes 

FILE SEQUENCE NUMBER 
4 bytes 

DESCRIPTION 

identifies the type of label HDR = 
Header--beginning of a data file 
EOF End of File--end of a set of 

data 
EOV End of Volume--end of the 

physical reel • 

always a 1 

uniquely identifies the ent.ire 
file; may contain only printable 
characters. 

uniquely identifies a file/volume 
relationship. This field is 
identical to the Volume Serial 
Number in the volume label of the 
first or only volume of a 
mUlti-volume file or a multi-file 
set. This field will normally be 
numeric (OOOOOl to 999999) but may 
contain any six alphameric 
characters. 

indicates the order of a volume 
in a given file or multi-file 
set. This first must be numbered 
0001 and subsequent numbers must 
be in proper numeric sequence. 

assigns numeric sequen.ce to a 
file within a multi-file set. The 
first must be numbered 0001. 

Appendix G 187 



BYTES 

7 36-39 

8 40-41 

9 42-47 

10 48-53 

11 54 

12 55-60 

13 61-73 

14 74-80 

NAME AND LENGTH 

GENERATION NUMBER 
4 bytes 

VERSION NUMBER OF 
GENERATION 
2 bytes 

CREATION DATE 
6 bytes 

EXPIRATION DATE 
6 bytes 

FILE SECURITY 
1 byte 

BLOCK COUNT 
6 bytes 

SYSTEM CODE 
13 bytes 

RESERVED 
7 bytes 

188 S/360 BOS Prog. Guide 

DESCRIPTION 

uniquely identifies the various 
editions of the file. May be from 
0001 to 9999 in proper numeric 
sequence. 

indicates the version of a 
generation of a file. 

indicates the year and the day of 
the year that the file was 
created: 

Position Code 

1 blank none 
year 2-3 00-99 

4-6 001-366 day of year 

(e.g., January 31, 1965 would 
be entered as 65031). 

indicates the year and the day of 
the year when the file may become 
a scratch tape. The format of 
this field is identical to Field 
9. On a multifile reel, processed 
sequentially, all files are 
considered to expire on the same 
day. 

indicates security status of the 
file. 

o 
1 = 

no security protection 
security protection. 
Additional identification 
of the file is required 
before it can be processed. 

indicates the number of data 
blocks written on the file from 
the last header label to the first 
trailer label exclusive of tape 
marks. Count does not include 
checkpoint records. This field is 
used in Trailer Labels. 

uniquely identifies the 
programming system. 

reserved for American standards 
Association (A.S.A.). At present, 
should be recorded as blanks. 



The core sizes and timings given are 
estimated and should be used for planning 
only. 

SUPERVISOR CORE SIZES 

The size of the Supervisor depends upon the 
parameters specified in the following 
Supervisor-assembly macros: 

SUPVR 
SYMUN 
IOCFG 
SEND 

(Supervisor) 
(Symbolic Units) 
(I/O Configuration) 
(Supervisor End). 

These macro instructions are described 
fully in the Assembler with Input/Output 
Macros publication, listed in the Preface 

BOS SUPERVISOR: Core Size Chart 

APPENDIX H. CORE SIZES AND TIMINGS 

of this manual. The following chart gives 
the core requirements for the routines 
generated by the various operands of the 
supervisor macros. The IBM-supplied 
processing programs (Assembler, Sort, etc.) 
require the availability of a problem 
program area of 4096 bytes. Thus, in an 8K 
(8192 bytes) system, the Supervisor 
assembled to handle these programs must not 
exceed 4096 bytes, including any user patch 
area. 

The computed value and the actual value 
of the Supervisor size may vary up to 30 
bytes becuase of boundary alignment 
conditions. This variance is handled in 
the boundary buffer. A comma (,) between 
operands indicates (AND)" meaning both 
operands must be present, and a slash (/) 
indicates (OR), meaning anyone or all may 
be present. 

r-----T----------.---------------------T-------------------------------T------T----------, 
1 1 1 1 SUB 1 MAJOR I 
1 MACRO 1 MAJOR OPERAND I SUB-OPERANDS IBYTES 1 BTYES 1 
~-----+-------------------------------+-------------------------------+------+----------~ 
1---- 1 Common Area 1 1 1 1954 I 
r-----+---------------------·----------+-------------------------------+------+----------~ 
ISUPVRI DISK=YES 1 1 I 1568 I 
~-----+-------------------------------+-------------------------------+------+----------~ 
I 1 I BACKWRD=YES 1 1 12 I 
~-----+-------------------------------+-----------~-------------------+------+----------~ 
I 1 1 CONFG;?;64K (0110Innnn-) 1010nnnn) I 8 I I 
r-----+-------------------------------+-------------------------------+------+----------1 
I I I SAVEREG=YES 1 41 I 
~-----+-------------------------------+-------------------------------+------+----------~ 
ISUPVRI CONFG;?;64K(0110nnnn->l.OlOnnnn) 1 1 1 56 I 
r-----+-------------------------------+-------------------------------+------+----------1 
1 SUPVR 1 CONFG=Not Model 30 (nnnn1nrm) 1 1 1 244 I 
r-----+-------------------------------+-------------------------------+------+----------~ 
ISUPVRI CONFG=1052 Cnnnnnnn1) 1 1 1 172 I 
~-----+-------------------------------+-------------------------------+------+----------~ 
1 I I CONFG;?;64KC0110nnnn->lOlOnnnn) I 81 I 
r-----+-------------------------------+-------------------------------+------+----------1 
ISUPVRI CR=Yes 1 1 I 164 I 
~-----+-------------------------------+-------------------------------+------+----------~ 
I I I CONFG;?;64K C0110nnnn->lOlOnnnn) 1 4 I I 
~-----+----------------------------.---+-------------------------------+------+----------~ 
ISUPVRI TR=Yes 1 I I 128 I 
r-----+-------------------------------+-------------------------------+------+----------~ 
1 1 1 CONFG;?;64K(0110nnnn->lOlOnnnn) I 41 I 
~-----+-------------------------------+-------------------------------+------+----------~ 
I I 1 CONFG=1052 (nnnnnnn1) I 81 1 
r-----+-----------·-------------------+-------------------------------+------+----------1 
1 1 1 CR=No 1 4 I I 
~-----+-----------.--------------------+-------------------------------+------+----------~ 
1 1 1 SAVEREG=YES 1 16 1 1 L _____ ~ _______________________________ ~ _______________________________ ~ ______ ~ __________ J 

Appendix H 189. 



r-----T-------------------------------T-------------------------------T------T----------, 
I I I ISUB I MAJOR I 
I MACRO I MAJOR OPERAND 1 SUB-OPERANDS 1 BYTES 1 BYTES I 
~-----+-------------------------------+-------------------------------+------+----------~ 
ISUPVRI TR=NO,CR=NO 1 1 1 4 I 
t-----+-------------------------------+-------------------------------+------+----------~ 
ISUPVR\ CHKPT=YES 1 1 1 110 1 
~-----+-------------------------------+-------------------------------+------+----------~ 
1 SUPVR 1 SAVEREG=YES 1 1 I 80 1 
~-----+-------------------------------+-------------------------------+------+----------~ 
I SYMUNI Program Pub Units 1 1 1 4n I 
~-----+-------------------------------+-------------------------------+------+----------~ 
ISYMUNI Pub Units>57 1 1 1 8 1 
~----t--------------------------t-------------------------r----t--------1 
IIOCFGt BSC=YES I I I 4122 I 
r-----t-------------------------------t-------------------------------t------t----------1 
1 IOCFGI MPX>l 1 1 184+4 Cn-l) 1 
~-----+-------------------------------+-------------------------------+------+----------~ 
1 IOCFGI MPX>l/SEL>O 1 1 1 24 1 
~-----+-------------------------------+-------------------------------+------+----------~ 
1 IOCFGI MPX>l, SEL>O 1 1 1 36 1 
~-----+-------------------------------+-------------------------------+------+----------~ 
1 IOCFGI MPX<2, SEL=O 1 I 1 2 1 
~--~--+-------------------------------+-------------------------------+------+----------~ 
1 IOCFGI MPX<2/(f.1PX>1,SEL>0) I 1 1 6 I 
~-----+-------------------------------+-------------------------------+------+----------~ 
I IOCFGI MPX<2/SEL=0 1 I 1 4 1 
~-----+-------------------------------+-------------------------------+------+----------~ 
1 IOCFGI SEL>O I 1 I 6+4n 1 
~-----+-------------------------------+-------------------------------+------+----------~ 
I IOCFGI DVE>O I I I 194+6n 1 
~-----+-------------------------------+-------------------------------+------+----------~ 
1 I 1 CONFG~64K(0110nnnn->1010nnnn) 1 81 I 
~-----+-------------------------------+-------------------------------+------+----------~ 
1 I 1 MPX>l, SEL>O 1 2 I 1 
~-----+-------------------------------+-------------------------------+------+----------~ 
I IOCFGI Rl=YES/P3=YES 1 1 I 10 I 
~-----+-------------------------------+-------------------------------+------+----------~ 
1 IOCFGI R2=YES/Pl=YES/P3=YES 1 1 1 16 1 
~-----+---------------~---------------+-------------------------------+------+----------~ 
1 IOCFGI R3=YES/R4=YES/R5=YES/P2=YES 1 1 I 6 1 
~-----+-------------------------------+-------------------------------+------+----------~ 
1 IOCFGI Ll=YES 1 1 1 18 1 
~-----+-------------------------------+----------~--------------------+-----~+----------~ 
1 1 1 Rl =NO 1 6 1 I 
~-----+-------------------------------+-------------------------------+------+----------~ 
I IOCFGI L2=YES I I 1 20 1 
~-----+-------------------------------+-------------------------------+------+----------~ 
1 IOCFGI T=YES 1 1 1 420 1 
~-----+-------------------------------+-------------------------------+------+----------~ 
1 1 1 TAU=YES I 94 1 1 
~-----+-------------------------------+-------------------------------+------+----------~ 
1 1 1 BACKWRD=YES, I 121 1 
~-----+-------------------------------+-------------------------------+------+----------~ 
1 I 1 TRK7=YES 1 8 I 1 
~-----+-------------------------------+-------------------------------+------+----------~ 
I IOCFGI RO=YES 1 I I 36 1 
~-----+-------------------------------+-------------------------------+------+----------~ 
I IOCFGI RR=YES 1 I 1 134 I 
~-----+-------------------------------+-------------------------------+------+----------~ 
1 IOCFGI ST=YES 1 1 1 820 1 
~-----+-------------------------------+-------------------------------+------+----------~ 
1 1 1 CONFG<64K(0000nnnn->0100nnnn) 1 41 1 
~-----+-------------------------------+-------------------------------+------+----------~ 
1 1 1 ANSWR=n 1 316+ 1 1 
1 1 1 1 4 (n-1) 1 1 
~-----+-------------------------------+-------------------------------+------+----------~ 
I SEND 1 REP (specified) 1 1 1 186 1 L _____ ~ _______________________________ ~ _______________________________ ~ ______ ~ __________ J 

.190 S/360 BOS Prog. Guide 



CORE SIZES AND TI~INGS FOR ASSEMBLED 
PROGRAMS 

The core requirements for object programs 
resulting from an assembly depend on: 

1. The types of file organization and 
processing used for the data files; 

2. The types of I/O devices used; and 

3. The imperativE~ macro instructions 
included in the program. 

The following charts give the core sizes of 
routines in the Direct Access Method, in 
the Indexed Sequential File Management 
System, and for Consecutive Processing. 
For Consecutive Processing, a separate 
chart is included for each type of I/O 
device. Estimated timings are given for 
records processed in consecutive order. 

DIRECT ACCESS METHOD (DAM) CORE SIZES 

The size of a DAM routine depends upon the 
parameters specified in the DTFDA macro 
instruction. The following list gives the 
size of the routines generated for the 
Direct Access Method. 

r----------------T------------------------, 
I I RECFORM= I 
I I FIXUNB I UNDEF I 
~----------------+-----------+------------~ 

Basic Logic 122 122 

CONTROL=YES 62 62 

VERIFY=YES 24-48 24-48 

AFTER=YES 266 278 

WRITEID=YES 58 62 

WRITEID=YES 
IDLOC=Naroe 114 118 

WRITEKY=YES 58 62 

WRITEF.Y=YES 
IDLOC=Naroe 114 118 

WRITEKY=YES 
SRCHM=YES 66 70 

READID=YES 58 110 
I 

READID=YES I 
IDLOC=Naroe 114 166 I 

I 
READKEY=YES 58 90 I 

I 
READKEY=YES I 
IDLOC=Name 114 146 I 

I 
READKEY=YES I 
SRCHM=YES 66 98 I l ______ ---_______ i ___________ i ____________ J 

INDEXED SEQUENTIAL FILE MANAGEMENT SYSTEM 
(ISFMS) CORE SIZES 

Four basic logical IOCS routines are 
available from the DTFIS macro. The 
routine generated depends on the I/O 
routine (IOROUT) parameter specified. The 
four routines are: 

IOROUT=LOAD 

IOROUT=ADD 

IOROUT=RETRVE 

IO'-{OUT=ADDRTR 

Routine to build or 
extend a file. 

Routine to add new 
records to a file. 

Routine to retrieve 
records for processing 
and, optionally, to 
write back the updated 
records. 

Routine to add new 
records and to retrieve 
records for processing 
and updating. 

Appendix H 191 



The following chart gives the core 
requirements for the various routines 
generated by ISFMS. 

r----------------------T-------T-------T-----------------------T------------------------, 
1 1 IOROUT= 1 IOROUT= 1 IOROU1'=ADDRTR 1 IOROUT=RETRVE 1 
1 1 LOAD 1 ADD 1 Plus TYPEFLE= 1 Plus TYPEFLE= 1 
1 1 I 1 RANDOM I SEQNTL 1 RANSEQ 1 RANDOM 1 SEQNTL 1 RANSEQ 1 
~----------------------+-------+-------+-------+-------+-------+-------+-------+--------~ 
1 1 1 1 1 1 1 1 1 1 
1 RECFORM=FIXUNB 1 1 1 1 1 1 I I 1 
1 I/O Reg., Basic 1---- 1---- 12140 12370 12530 I 586 1 576 1 936 I 
11/0 Reg.,Basic,Update 1---- 1---- 12190 12420 12630 1660 1648 11118 1 
IWorkarea,Basic 1 980 11750 12170 12396 12546 1 590 1 590 1 910 1 
1 Workarea, Basic,Update 1 980 11750 12220 12460 12660 1 676 1 682 11108 1 
~----------------------+-------+-------+-------+-------+-------+-------+-------+--------~ 
1 1 1 1 1 I 1 I I I 
I RECFORM=FIXBLK I 1 I 1 I 1 1 1 I 
11/0 Reg.,Basic 1---- 1---- 12350 12640 12820 1598 1656 11066 1 
11/0 Reg.,Basic,Update 1---- 1---- 12400 12698 12928 1 672 1 738 11258 1 
IWorkarea,Basic 11070 11900 12370 12694 12840 1 600 I 660 11040 1 
IWorkarea,Basic,Update 1---- 1---- 12426 12766 12968 1 696 1 762 11258 1 
~----------------------+-------+-------+-------+-------+-------+-------+-------+--------~ 
1 1 1 1 I 1 1 1 1 I 
IMSTIND=YES 1 124 1 36 1 30 1---- 1 30 1 --- I --- 1 --- 1 
~----------------------+-------+-------+-------+-------+-------+-------+-------+--------~ 
1 1 1 1 1 1 1 1 1 I 
I VERIFY=YES 1 36 1 64 I 72 I 72 I 80 I --- 1 --- I --- 1 
~----------------------+-------+-------+-------+-------+-------+-------+-------+--------~ 
I 1 1 1 1 1 1 1 1 1 
ICYLOFL=n 1---- 1 96 1 96 1 96 1 96 1 --- 1 --- 1 --- 1 l ______________________ ~ _______ ~ _______ ~ _______ ~ _______ ~ _______ ~ _______ ~ _______ ~ ________ J 

1 
I Notes: 1. Figures for LOAD, ADD, and ADDRTR are per DTF. 
I 2. Key length (KEYLEN=n) and record size (RECSIZE=n) must be added to the ADD 
I and ADDRTR figures. Key length must be added to the LOAD figures. 
1 3. Figures for RETRVE are per program, for all files that have the same 
I specifications. For example, the specifications of RANDOM, FIXUNB, I/O 
I Reg., Basic require 586 bytes of main storage, regardless of the number of 
1 files having that set of specifications. If different RETRVE files have 
I different sets of specifications, the main-storage requirements must be 
1 combined. The maximum main-storage requirement for all specifications is 
1 1370 bytes per program. 
1 4. A 144-byte table per DTF must be added to the RETRVE figures. l _______________________________________________________________________________________ J 

CONSECUTIVE PROCESSING CORE SIZES 

The logical IOCS routines generated from 
the DTFSR macro instructions vary greatly 
in size depending upon the type of device 
and the record format. The following 
charts reflect the size of the DTF routines 
generated depending on the DEVICE parameter 
specified. Parameters not listed either do 
not cause additional code to be generated 
or they make minor changes that are 
accounted for in the size given for the 
basic routine. 

192 8/360 BOS Prog. Guide 



V) 
L.I.J V) 

>- V) LLI 

II L.I.J >-
--I >- II 

0 II > DEVICE = PRINTER 0::: 0::: 0 
l- I I-

U Z u Z 
0 --I 

0 I- 02 
Ct:l U U c... 

FIXUNB, 1 I/O 52 68 16 74 
1 I/O,WORKA 84 68 8 66 
2 I/O 84 68 16 66 
2 I/O,WORKA 100 68 8 66 

VARUNB, 1 I/O 84 68 8 74 
1 I/O,WORKA 100 60 a 74 
2 I/O 116 76 a 58 
2 I/O,WORKA 116 68 8 66 

UNDEF, 1 I/O 60 60 16 66 
1 I/O,WORKA 84 68 8 66 
2 I/O 92 68 16 66 
2 I/O,WORKA 108 60 8 58 

Appendix H 193 



TYPEFLE = Vl ERROPT = TRUNCS =YES L.U (]) 

>- Vl 
Vl 

E 
II L.U c 

>- L.U Z .....J >- L.U 

0 L.U 
II II II N 

DEVICE = DISKll I-
~ 0:::: L.U 0:::: - -0 

l- => I- 0 I- >- ~ 
Vl ... lC) "'3 => a.. Z (]) « L.L. L.U U(])N 

"'3 0-I- Z a.. E Q2 0:::: u..l a c a.. => 0 :;2 Q 
.....J 0:::: (]) C a.. "'3 Z Q c a.. L.U 

0 U Vl Z => > 3 4- ... ..c .s 0 - - OJ .... 

FIXUNB, 1 I/O 284 300 44 -20 16 64 48 24 28 -- --
1 I/O,WORKA 316 320 44 -20 16 64 52 24 28 -- --
2 I/O 320 336 44 -20 16 64 100 24 28 L.U 

!:::!-o -- --
2 I/O,WORKA 332 348 44 -20 16 64 124 24 28 Vl lC) -- --UN 

u..J 

FIXBLK, 1 I/O 404 348 44 -12 20 
0:::: 

68 76 24 32 x 16 84 
1 I/O,WORKA 464 408 44 -12 36 84 56 24 32 -0 60 120 
2 I/O 436 432 44 -12 36 84 104 24 32 16 76 
2 I/O,WORKA 448 440 44 -12 48 96 132 24 32 32 112 

VARUNB, 1 I/O 348 348 44 44 80 96 52 24 48 56 -- --
1 I/O,WORKA 392 416 44 52 72 104 60 24 48 56 -- --
2 I/O 380 424 44 52 80 104 100 24 48 56 -- --
2 I/O,WORKA 412 444 44 52 72 104 124 24 48 56 -- --

VARBLK, 1 I/O 456 444 44 52 72 116 56 24 68 56 -- --
1 I/O,WORKA 572 548 44 52 72 108 40 24 52 56 -- --
2 I/O 496 504 44 52 72 108 96 24 30 56 -- --
2 I/O, WORKA 536 584 44 52 72 108 136 24 48 56 -- --

UNDEF, 1 I/O 344 340 44 56 80 112 52 24 48 56 -- --
1 I/O,WORKA 392 404 44 56 80 112 60 24 48 56 -- --
2 I/O 376 416 44 56 80 116 104 24 48 56 -- --
2 I/O,WORKA 416 436 44 52 80 116 124 24 48 56 -- --

194 5/360 BOS Prog. Guide 



TYPEFLE == 
CONTROL= 
YES 

(/') 
UJ 

>-
DEVICE = READ42 II 

(1442) 
I- a 0:::: 

I- ::> Z 
-+- :c 0- ::l ::> I- co -+- c... U 

0- ::> ::E 
::l :; -I 

Z c... I-

- 0 U -= 0 u 

FIXUNB, 1 I/O 76 84 116 52 60 16 
1 I/O,WORKA 108 108 164 28 68 8 
2 I/O 116 116 156 44 68 16 
2 I/O,WORKA 124 132 --- 28 60 8 

VARUNB, 1 I/O --- 108 --- -- 68 8 
1 I/O,WORKA -- 124 --- -- 68 8 
2 I/O --- 140 _._- -- 68 8 
2 I/O,WORKA --- 148 --- -- 60 8 

UNDEF, 1 I/O --- 84 --- -- 68 16 
1 I/O,WORKA --- 116 --- -- 68 8 
2 I/O --- 116 ... _- -- 68 16 
2 I/O,WORKA --- 132 .... _- -- 68 8 

Appendix H 195 



TYPEFLE= VI CONTROL QJ 

L.LJ ERROPT = E 
c >- =YES ~ 0 0 
II II U Z l-
I- U « II VI 

l- e... L.LJ cO II DEVICE =TAPE :::> ~ LW 
"'5 

0:::: 
II 

0:::: 
--l I- 0:::: 0 0:::: 

:::> e... U I- ..... Q.. 
QJ 0 L.LJ cO 

I- LW e... :::l Z e... E 0:::: ::s e... :::> "'5 « Z I ~ Q.. 
(j ~ 0 --l 

0 U U -= 0 Z 
LW 5: -- - VI 0:::: L.I.... 

FIXUNB, 1 I/O 160 168 56 56 88 44 -16 8 64 0 24 88 
1 I/O,WORKA 200 224 72 48 88 44 -24 8 72 8 32 88 
2 I/O 200 232 80 56 88 44 -16 16 72 16 32 88 
2 I/O, WORKA 216 248 72 48 88 44 -24 8 72 8 32 88 

FIXBLK, 1 I/O 272 316 56 48 88 48 -40 0 64 0 24 88 
1 I/O,WORKA 352 418 56 56 88 50 -40 16 80 0 32 88 
2 I/O 312 444 72 56 88 0 -40 8 64 8 24 88 
2 I/O,WORKA 324 416 80 56 88 44 -32 16 72 8 32 88 

VARUNB, 1 I/O 184 192 56 48 88 44 -40 0 64 40 24 88 
1 I/O,WORKA 216 246 72 48 88 44 -40 8 72 32 32 88 
2 I/O 224 264 80 56 88 44 -32 16 80 40 32 88 
2 I/O, WORKA 232 272 72 48 88 44 -40 8 72 40 32 88 

VARBLK, 1 I/O 280 296 56 48 88 44 -60 0 64 0 24 88 
1 I/O,WORKA 376 400 48 56 88 44 -32 16 80 0 32 88 
2 I/O 296 344 72 56 88 44 -8 -16 0 0 56 88 
2 I/O,WORKA 320 432 72 56 88 44 0 0 8 0 56 88 

UNDEF, 1 I/O 152 168 56 48 88 44 0 8 40 16 -- 88 
1 I/O, WORKA 184 232 80 56 88 44 0 16 56 16 -- 88 
2 I/O 192 232 72 48 88 44 -48 16 48 8 -- 88 
2 I/O, WORKA 200 256 80 56 88 44 0 16 56 16 -- 88 

196 S/360 BOS Prog. Guide 



TYPEFLE = 
CONTROL= >-

0::: V'l 
YES f- LU 

LU >-0::: 
II II 

DEVICE = READ40 f- 0 0::: 0::: 
f- ::J Z "'3 0::: I 

(2540) ::J a... .... 0.. LU U f- ct:l a... ::J :E 
:l "'5 0 ....J 

Z 0.. 0::: f-

- 0 u .E 0 u u 

FIXUNB, 1 I/O 76 52 116 52 40 64+BL 16 
1 I/O,WORKA 108 - 84 164 28 40 64+BL 8 
2 I/O 116 84 156 44 40 72+BL 16 
2 I/O,WORKA 124 100 --- 28 40 56 8 

VARUNB, 1 I/O --- 84 --- -- 40 80+BL 8 
1 I/O,WORKA --- lOa --- -- 32 80+BL a 
2 I/O --- 116 .... _- -- 32 88+BL a 
2 I/O,WORKA --- 116 --- -- 40 80 8 

UN DEF, 1 I/O --- 60 ---- -- 32 72 +BL 16 
1 I/O,WORKA --- 84 --- -- 40 80+BL 8 
2 I/O --- 92 -.. -- -- 40 88+BL 16 
2 I/O,WORKA --- 108 --- -- 32 80 8 

Note: B L denotes Bloc k Length 

TYPEFlE = 

DEVICE = CONSOLE f-

(l 052) f- ::J 
::J a.. 

f-a... ::J Z 0 

FIXUNB, 1 I/O 64 56 
1 I/O,WORKA 80 72 

UNDEF, 1 I/O 72 60 
1 I/O,WORKA 96 76 

TYPEFLE= CONTROL=YES ~ 
~ I-

DEVICE=READ20 I- a 11 W 
I- ::::> Z :; -0 0<: 0<: 
::::> a.. :; a- t: :c s:i (2520) a.. I-

~ :; ...0 ~ Z ::::> a- E a 
- ° u -= ° U I- 0<: 

U u 

FIXUNB 1 I/O 84 90 130 50 40 30 10 20 
1 I/O,WORKA 116 120 175 50 40 - 10 24 
2 I/O 124 120 - - 40 - 10 24 
2 I/O,WORKA 140 135 - - 40 - 10 24 

UNDEF 1 I/O - 90 - - 40 - 10 20 
1 I/O,WORKA - 120 - - 40 - 10 24 
~ I/O - 125 - -- 40 -- 10 24 
2 I/O,WORKA - 140 - - 40 - 10 24 

VARUNB 1 I/O - 110 - - 40 - 10 20 
1 I/O,WORKA - 135 - - 40 - 10 24 
2 I/o - 150 - -- 40 .- 10 24 
2 I/O,WORKA - 150 - -- 40 .- 10 24 

Appendix H 197 



DEVICE = PTAPERD 
(2671 ) 

FIXUNB, 1 I/O 
1 I/O,WORKA 
2 I/O 
2 I/O, WORKA 

UNDEF 1 I/O 
1 I/O,WORKA 
2 I/O 
2 I/O,WORKA 

DEVICE = READ85 

(1285) 

FIXUNB 1 I/O 
1 I/O,WORKA 
2 I/O 
2 I/O,WORKA 

UNDEF 1 I/O 
1 I/O,WORKA 
2 I/O 
2 I/O,WORKA 

u 

o 
cCl 

180 
200 
200 
220 

190 
210 
210 
225 

l-
:::::> 
c... 
Z -
II 

u.J 
....J 
u... 
u.J 
c... 
>-
I-

364 
422 
410 
440 

360 
410 
420 
440 

V) 
u.J 

>-
II 

0<:: 
u.J 
0 
« 
u.J .,.... 

46 
46 
46 
46 

46 
46 
46 
46 

Q) 

E 
o 

Z 
II 

V) 

Z 
~ 
I-

18 
18 
18 
18 

18 
18 
18 
18 

CORE SIZES FOR IMPERATIVE MACRO 
INSTRUCTIONS 

10 to 54 

10 to 54 

54 

54 

V) 

u.J 

>-
II 

....J 

° 0<:: 
I-z 

° u 

120 
120 
120 
120 

120 
120 
120 
120 

The range of core sizes for imperative 
macro instructions, such as GET, PUT, 
RELSE, etc, is 10 to 24 bytes. The core 
size for OPEN and CLOSE is 24 bytes plus 4 
times the number of files to be opened or 
closed. 

198 S/360 BOS Prog. Guide 

TIMINGS (ESTIMATED) 

The estimated timings given here are for 
consecutive files processed by the DTFSR 
routine of logical IOCS. The figures refer 
to a System/360 Model 30 with a 1.5 
microsecond main storage cycle time. 
Except for the OPEN macro, they represent 
only the actual process time required and 
do not include input/output times. 
(Input/output times are a function of the 
I/O device itself.) Distinction is made 
only between disk and all other types of 
files (tape, card, printer, etc). 

The times for both GET and PUT are the 
same: 

1. Each record of unblocked 
file or first record of 
block in blocked file. 2.9ms 

2. Additional for successive 
records after first rec
ord in blocked file: 

a. Fixed length 
b. Variable length 

3. Additional if separate 
work area (plus the 
record move time) 

a. Fixed length 
b. Variable length 

0.4ms 
0.4ms 

0.2ms 
0.3ms 

2.0ms 

0.4ms 
0.4ms 

O.2ms 
0.3ms 

When two I/O areas are used, the overlapped 
I/O transfer time can be subtracted. 

The times for the OPEN macro are: 

1. No labels (any device 
except disk) 

2. Tape Input, labeled 

3. Tape Output, labeled 

4. Disk input 

650ms 

850ms 

850ms 

(basic, each extent) 2500ms 
(additional, each label 
searched) 2ms 

5. Disk output 
(basic, each extent) 2500ms 
(additional, each label 
in VTOC) 25ms 
(additional, each label 
deleted) 50ms 



REPORT PROGRAM GENERATOR CORE SIZES 

This section provides the core sizes for 
the various phases of the IBM System/360 
Basic Operating System RPG object program. 
It consists of main storage requirements 
for input/output devices and areas, 
operation code expansions, and field 
formats. These main storage sizes are 
presented in a format corresponding to the 
types of entries specified by the user in 
the RPG Specification sheets. In most 
cases, there is a definite main s·torage 
requirement for each line of coding on 
these sheets. 

The total main storage estimate 
calculated from the information in this 
section will be within 10% of the actual 
main storage requirement; that is, the 
total estimate will be the actual number of 
bytes + 10%. 

Note: This estimate does not include the 
amount of main storage required by the 
user's supervisor. 

FILE DESCRIPTION 

This section is composed of three 
subsections, each designated by a 
particular file type, with consideration 
given to certain other options the user has 
in defining his files. The user specifies 
the file types in column 15 of the File 
Description Specification sheet. 

STR CORE SIZES 

The following figure gives core sizes for 
macros used with STR (Synchronous 
Transmitter/Receiver) devices. 

Number 
of Bytes 

CDCNV Macro - - - - - - - - - - - - - - - - - - - - *see below 

CNTRL Macro - - - - - - - - - - - - - - - - - - - - 16 

DIALO Macro - - - - - - - - - - - - - - - - - - - - 7 +number 
(This macro includes the end- of- numbers character) 

DTFSN Macro - - - - - - - - - - - - - - - - - - - - 520 

Add: 100 bytes/DTFSN, after first 

READ Macro - - - - - - - - - - - - - - - - - - - - 10 

SCLOS Macro - - - - - - - - - - - - - - - - - - - 89 

Add: 15 bytes/SCLOS, after first 

SOPEN Macro: 

1st DIAL = OUT or DIAL not specified - - - - - - - 224 

Add: 72 bytes/SOPEN, after first 

1st DIAL = IN - - - - - - - - - - - - - - - - - - - 202 

Add: 124 bytes/SOPEN, after first 

WAITM - - - - - - - - - - - - - - - - - - - - - - - 52 

Add: 2 bytes/DTF 

WRITE - - - - - - - - - - - - - - - - - - - - - - - - 10 

*CDCNV 

TYPE 1st CNV 2 - nth CNV Also: 

A 874 bytes 22 bytes 1stA, B, D, E, F 
B 436 bytes 22 bytes Following A, B, D, E, F 
C 756 bytes 22 bytes Subtract 148 
D 896 bytes 22 bytes 1st AI BI D, E, f following C 
E 432 bytes 22 bytes Subtract 56 
F 432 bytes 22 bytes 1st C Following A, B, D, E, F 

Subtract 56 

Appendix H 199 



ESC CORE SIZES 

The following figure gives core sizes for 
macros used with ESC support. 

N umber of Bytes 

BCLOS macro ................. 126 

BOPEN macro •••••••••••••••• 138 

CNTRL macro. • • • • • • • • • • • • • • • • 12 

DTFBS macro ••••••.••••••••••• 1174 

ERRPT macro. • • • • • • • • • • • • • • • • • 6 

IDIAL macro •••••••••.•••••••• 542 

READ mocro ••••••••••••• ,...... 12 

WRITE macro .••••••••.•••••••• 12 

200 5/360 BOS Prog. Guide 



Case 1: If the user specifies an Input or Update file (entry! or U in column 15), the 
following entries determine the number of main storage bytes required by this 
type of file: 

TAPE V BL=RL Blank 340 

TAPE V BL*RL Blank 520 

DISKll F BL=RL Blank 478 

DISK11 F BL*RL Blank 622 

DISKll V BL=RL Blank 598 

DISK11 V BL*RL Blank 810 
I 

DISK11 F BL=RL I D or T 386 
I 

DISKll F BL*RL I T 386 
I 

DISK11 V I BL=RL I D or T 402 L ____________ .L ____________ .L_. _______________ .L ______________ .L ________________ J 

For Random ISAM: 

r-------------T----------T---------------T--------------T-------------T-----------------, 
I I File I Block Length I Type of File I Mode of Pro-! 1 
I Device Name I I~orma.t I (BL) : Record I Organization I cessing I Number of Bytes I 
I <Col. 40-46) I (Col. 19) I Length (RL) I <Col. 32) I (Col. 28) I 1 
1 I I , , ~------T----------~ 
1 , , , 1 1 FirstlEach Addi-I 
I 1 , , 1 I File Itional 1 
I I I , I 1 IFile 1 
~-------------+-.--------+_._-------------+--------------+-------------+------+----------~ 
'DISK11 1 F ,BL=RL 1 I 1 R I 942 1322 1 
~-------------+----------+---------------+--------------+-------------+------+----------~ 
1 DISKll 1 F 1 BL*R'L I I 1 R 1 1004 1384 I L _____________ .L __________ .L _______________ .L ______________ .L _____________ .L ______ .L __________ J 

Appendix H 201 



For sequential ISAM: 

r--------------T----------T---------------T--------------T-------------T----------------, 
I IFile IBlock Length IType of File IMode of Pro- 1 1 
IDevice Name 1 Format I (BL) : Record 1 Organization Icessing INumber of Bytes 1 
1 (Col. 40-46) 1 (Col~ 19) ILength (RL) I (Col. 32) I (Col. 28) I I 
1 1 1 1 1 t-----T----------~ 
1 1 1 1 1 IFirstlEach Addi-I 
1 1 I , 1 IFile Itional 1 
1 , , 1 1 1 IFile 1 
~--------------+----------+---------------+--------------+-------------+-----+----------~ 
,DISK11 1 F 'BL=RL 1 I 1 Blank 11464 1464 1 
t--------------+----------+---------------+--------------+-------------+-----+----------~ 
IDISK11 1 F 1 BL*RL 1 IlL 11530 1530 1 
~--------------+----------+---------------+--------------+-------------+-----+----------~ 
1 Disk11 1 F 1 BL=RL 1 I 1 Blank 11460 1460 1 
r--------------+----------+---------------+--------------+-------------+-----+----------~ 
IDISK11 1 F 1 BL*RL 1 IlL 11524 1524 1 L ______________ L __________ L _______________ L ______________ L _____________ L _____ L __________ J 

Case 2: If the user specifies an Outpu!:. file (entry Q in column 15), the following 
entries determine the number of main storage bytes required by this type of 
file: 

r----------------T---------------T------------------T-----------------T-----------------, 
, 1 File 1 Block Length 1 Type of File I The Number 1 
1 Device Name I Format 1 (BL): Record I Organization 1 of Bytes 1 
1 (Col. 40-46) 1 (Col. 19) 1 Length (RL) 1 (Col. 32) 1 Required 1 
t----------------+---------------+------------------+-----------------+-----------------~ 
1 RFAD42 1 F 1 BL=RL 1 Blank I 252 1 
t----------------+---------------+------------------+-----------------+-----------------~ 
, READ42 1 V 1 BL=RL 1 Blank I 324 1 
t----------------+---------------+------------------+-----------------+-----------------~ 
1 READ20 1 F 1 BL=RL 1 Blank 1 164 1 
~----------------+---------------+------------------+-----------------+-----------------~ 
1 READ20 1 V 1 BL=RL 1 Blank 1 225 1 
~----------------+---------------+------------------+-----------------+-----------------~ 
1 READ40 1 F 1 BL=RL 1 Blank 1 156 1 
r~---------------+---------------+------------------+-----------------+-----------------~ 
1 READ40 1 V 1 BL=RL 1 Blank 1 368 , 
t----------------+---------------+------------------+-----------------+-----------------~ 
1 TAPE 1 F 1 BL=RL 1 Blank 1 252 1 
t----------------+---------------+------------------+-----------------+-----------------~ 
1 TAPE , F 1 BL*RL 1 Blank 1 284 1 
r----------------+---------------+------------------+-----------------+-----------------~ 
1 TAPE 1 V 1 BL=RL 1 Blank 1 420 1 
t----------------+---------------+------------------+-----------------+-----------------~ 
1 TAPE 1 V 1 BL*~L 1 Blank 1 460 1 
t----------------+---------------+------------------+-----------------+-----------------~ 
1 DISK11 1 F 1 BL=RL 1 Blank 1 364 1 
r----------------+---------------+------------------+-----------------+-----------------~ 
1 DISK11 1 F 1 BL*RL 1 Blank 1 464 I 
r----------------+---------------+------------------+-----------------+-----------------~ 
1 DISK11 1 V 1 BL=RL 1 Blank 1 436 1 
t----------------+---------------+------------------+-----------------+-----------------~ 
1 DISK11 1 V 1 BL*RL 1 Blank ,628 1 
r--~-------------+---------------+------------------+-----------------+-----------------~ 
, PRI~ITER 1 F 1 BL=RL 1 Blank 1 262 1 L ________________ L _______________ L __________________ L _________________ L _________________ J 

202 S/360 BOS Prog. Guide 



Case 3: If the user specifies a fombined file (entry £ in column 15), the following 
entries determine the number of main storage bytes required by this type of 
file: 

r-----------------T---------------T-----------------T-----------------T-----------------l 
I I File I Block Length I Type of File I The Number I 

I Device Name I Format I (BL): Record I Organization I of Bytes I 

I (Col. 40-46) I (Col. 19) I Length (RL) I (Col. 32) I Required I 
~-----------------+---------------+-----------------+-----------------+-----------------~ 
I READ42 I F I BL=RL I Blank I 296 I 
~-----------------+---------------+-----------------+-----------------+-----------------1 
I *READ40 I F I BL=RL I Blank I 440 I L _________________ ~ _______________ ~ _________________ ~ _________________ ~ _________________ j 

*To exercise this option, the Punch-Feed-Read feature must be present. 

To estimate the number of bytes required 
for input/output areas, the following 
points should be noted: 

1. For a file containing unblocked 
records, add the Block Length (columns 
20-23) to the number of main storage 
bytes required. 

2. For a file containing fixed-length 
blocked records, add the Block Length 
and the Record Length (columns 24-27) 
to the number of main storage bytes 
required. 

3. For a file containing variable-length 
blocked records, add BL and the Record 
Length to the number of main storage 
bytes required. BL is calculated using 
the following formula: 

BL = Block Length + 4(BF + 4) + 
Record Length 

~""here BF Block Length/Record Length 
(round high) 

4. For an IBM 1442/2540 combined file, the 
size of the input/output area is 
doubled. 

FILE EXTENSION 

This section gives the main storage sizes 
required for various types of files and 
tables, which are summarized as follows: 

1. For each Record Address File present, 
196 bytes are required. If TAG Sort i:3 
used, an additional ~ bytes are 
required. 

2. For each Chaining file present, 96 
bytes are required. 

3. For each table present, the following 
entries determine the number of bytes 
required. The chart assumes the To 
Filename entry (columns 19-26) to be 
blank. 

If columns 19-26 contain other than a 
blank entry, add 2§. to the number of 
bytes as listed in the chart. If there 
is more than one To Filename 
specification, use the following 
formula to determine the additional 
bytes required: 

[ 24 + 102*(Total number of To 
Filename entries)] 

When more than one table is specified, 
the following formula determines the 
number of bytes required in addition to 
the number specified by the chart for 
each table: 

[ 24 + 4* (Total number of Table NamE! 
entries)] 

Appendix H 203 



,----------------T---------------T-----------------T---------------T--------------------l 
I Table Name I Sequence I Table Name I Sequence I Number of I 

I (Col. 27-32) I (Col. 45) I (Col. 46-51) I (Col. 57) I Bytes I 

~----------------+---------------+-----------------+---------------+--------------------~ 
I TABLENAME I A or D I Blank I Blank I 150* I 

~----------------+---------------+-----------------+---------------+--------------------~ 
I TABLENAME I Blank I Blank I Blank I 132* I 
~----------------+---------------+-----------------+---------------+--------------------~ 
I TABLENAME I A or D I TABLENAME I Blank I 202** I 
~----------------+---------------+-----------------+---------------+--------------------~ 
I TABLENAME I A or D I TABLENA¥£ I A or D I 220** I 

~----------------+---------------+-----------------+---------------+--------------------~ 
I TABLENAME I Blank I TABLENAME I A or D I 202** I 
~----------------+---------------+-----------------+---------------+--------------------~ 
I TABLENAME I Blank I TABLENAME I Blank I 182** I l ________________ ~ _______________ ~ _________________ ~ _______________ ~ ____________________ J 

*If the table area is larger than 44 bytes, this amount should be subtracted from 
the amount shown in the chart. 

**If the total area of the two tables is larger than ~ bytes, this amount should be sub
tracted from the amount shown in the chart. 

The Table Area is found by multiplying the contents of columns 36-39 by the contents of 
columns 40-42. If the table is numeric, the packed length is to be used. 

INPUT 

This section gives the number of main 
storage bytes required when exercising 
various options related to the input record 
types and input field types. Information 
pertaining to the record type of an input 
file is entered in columns 7-42 of the 
Input Specification sheet, and information 
pertaining to the field types is contained 
in columns 43-74. 

The following must be considered for the 
input record type: 

1. If Seguence (columns 15-16) contains an 
entry, 4 additional bytes are required. 
If the file is in numeric sequence, an 
additional 74 bytes are required. If ~ 
is specified in column 17, 4 additional 
bytes are required. -

2. The entries in C/Z/D (columns 26,33, or 
40) require the following: 

C .§. bytes 

Z 12 bytes, plus 10 if 
Character contains ~, - or 
is blank. 

D ••• 12 bytes 

An N entry in columns 25,32, or 39 does 
not affect the ?receding storage 
requirements. 

3. If Stacker Select (column 42) contains 
an entry, an additional 10 bytes are 
required. 

204 S/360 BOS Prog. Guide 

The following must be considered for the 
input field type: 

1. If the field type specified in columns 
43-58 is an unpacked numeric field, 14 
bytes are required. For a packed -
numeric field (P in column 43) or an 
alphabetic field, 6 bytes are 
required. If Field-Record Relation 
(columns 63-64) contains an indicator, 
the preceding storage requirements are 
increased by ~ bytes for each field 
containing field-record relation; an 
additional ~ bytes are required for 
each record type containing 
field-record relation. 

2.a. If Control Level (columns 59-60) 
contains an indicator (Ll-L9) and 
Field-Record Relation is blank, 8 
bytes are required; if Field-Record 
Relation contains an indicator, 16 
bytes are required. --

b. If a Chaining Fields indicator (Cl-C3) 
is specified in columns 61-62, 16 
bytes are required. 

c. With or without Matching Fields 
specifications in columns 61-62, use 
the following formulas to determine 
the number of bytes required: 

N:F 

ML 

Number of primary and secondary 
files 

Sum of matching field lengths 



MF Sum of the number of matching 
fields in all record types of 
the file 

RF Number of record types 

For NF = 1: 

84+ (2*ML)+MF* 

For NF > 1: 

8 if Field-
Record Rela
tion 
if Numeric 
Field 
if ALTSEQ 
if Sequence 
Checking 

228+ML+(NF+l)*(ML+8)+(42*NF)+MF* 
8 if Field

Record Rela
tion 

+(18*RF) 

10 if Numeric +(18*RF) 
Field 

10 if ALTSEQ 
10 if Sequence 

Checking 

3. If one entry is specified in Field 
Indicators. (columns 65-70) and the 
field is numeric, 18 bytes are required 
for the first indicator; if the field 
is alphabetic, 26 bytes are required 
for the first indicator. 12 bytes are 
required for each addition~I indicator 
specified. 

Appendix H 205 



CALCULATION 

The following series of diagrams gives the amount of main storage required by the RPG 
operation codes upon expansion. The optional entries on the specification sheet 
determine the main storage requirement for each operation. (Fl = Fa~tor 1, F2 = Factor 
l, RF = Result Field). 

r-------------T-----------------T------------------T--------T---------T-------------, 
1. I I , Resulting Decimal I I , I 

I I , Length of Fl/F2 I I I I 
I OPERATION I Decimal Length I Operation: Deci-I Half- I Result I Number of I 
I CODE I of Fl : F2 I mal Length of RF I Adjust I Field I * Bytes , 
~-------------+-----------------+------------------+--------+---------+-------------~ 
I ADD/SUB I Equal I Equal I I Same as I I 

I I I I I Fl I 6 I 

~-------------+-----------------+------------------+--------+---------+-------------~ 
I ADD/SUB I Equal I Equal I I Not samel I 
I I I I I as Fl I 18 I 
~-------------+-----------------+------------------+--------+---------+-------------~ 
I ADD/SUB I Equal J Unequal I J J 36 I 
~-------------+-----------------+------------------+--------+---------+-------------~ 
J ADD/SUB I Unequal I Equal I I I 36-42 I 
~-------------+-----------------+------------------+--------+---------+-------------~ 
I ADD/SUB I Unequal I Unequal I I I 48-54 I 

~-------------+-----------------+------------------+--------+---------+-------------~ 
I ADD/SUB I Equal J Unequal ,H I I 54 I 

~-------------+-----------------+------------------+--------+---------+-------------~ 
I ADD/SUB I Unequal I unequal I H I I 66-72 I 

~-------------+-----------------+------------------+--------+---------+-------------~ 
I Z-ADD I I Equal I I I 6 I 

~-------------+-----------------+------------------+--------+---------+-------------~ 
I Z-ADD I I Unequal I I I 24 I 

~-------------+-----------------+------------------+--------+---------+-------------~ 
I Z-ADD I 'Unequal, H I I 42 I 
~-------------+-----------------+------------------+--------+---------+-------------~ 
I Z-SUB' I Equal I I Same as , I 
, I I I' F2 I 18 I 
~-------------+-----------------+------------------+--------+---------+-------------~ 
I Z-SUB' I Equal I I Not same, I 
, , , I I as F2 I 12 I 
~-------------+-----~-----------+------------------+--------+---------+-------------~ 
'Z-SUB I ,Unequal I , I 36 I 
~-------------+-----------------+------------------+--------+---------+-------------~ 
I Z-SUB I I Unequal I H, I 54 I 
~-------------+-----------------+------------------+--------+---------+-------------~ 
I MULT I 'Equal I I I 22 I 
~-------------+-----------------+------------------+--------+---------+-------------~ 
I r.~ULT I I Unequal I I I 34-44 I 
~-------------+-----------------+------------------+--------+---------+-------------~ 
I tJ:ULT I I Unequal I H I I 46-50 I 

~-------------+-----------------+------------------+--------+---------+-------------~ 
I DIV I I I I I 22 I 
~-------------+-----------------+------------------+--------+---------+-------------~ 
I DIV I Add Zeros to , I I I I 
I I Factor 1, 'I I 44-50 I 
~-------------+-----------------+------------------+--------+---------+-------------~ 
I DIV I Add Zeros to , I I I I 

I I Factor 2 I I I I 44-50 I 
~-------------+-----------------+------------------+--------+---------+-------------~ 
I DIV I I I H I I 34-62 I 
r-------------+-----------------+------------------+--------+---------+-------------~ 
I MVR I 'Equal I I I 18** I 
r--------~----+-----------------+------------------+--------+---------+-------------~ 
I MVR I I Unequal I , I 36** I L _____________ ~ _________________ ~ __________________ ~ ________ ~ _________ ~ _____________ J 

*If the Result Field entry is a table name, an additional 10 bytes are required. 
**No table update is possible with the NVR operation code. 

206 S/360 BOS Prog. Guide 



r-------------T---------------T-----------------T--------------, 
2 • I I I I Number I 

I OPERATION I I Result I of I 

I CODE I Factor 2 I Field I Bytes* I 

r-------------+---------------+-----------------+--------------~ 
I ~OVE I Alphameric I Alphameric I 10 I 
r-------------+---------------+-----------------+--------------~ 
I ~OVE I Alphameric I Numeric I 10-16 I 
r-------------+---------------+-----------------+--------------~ 
I MOVE I Numeric I Alphameric I 10 1 

r-------------+---------------+-----------------+--------------~ 
I MOVE 1 Numeric I Numeric 1 10-16 I 

r-------------+---------------+-----------------+--------------~ 
I MOVEL I Alphameric I Alphameric 1 10 -I 
r-------------+---------------+-----------------+--------------~ 
I MOVEL 1 Alphameric I Numeric I 22 I 

r-------------+---------------+-----------------+--------------~ 
I ~OVEL 1 Numeric I Alphameric I 16 I 

r-------------+---------------+-----------------+--------------~ 
I MOVEL I Numeric 1 Numeric I 28-34 1 

r------------+---------------+-----------------+--------------~ 
I MLLZO I Alphameric I Alphameric 1 10 1 

r-------------+---------------+-----------------+--------------~ 
I MLLZO 1 Alphameric 1 Numeric I 24 I 

r-------------+------~--------+-----------------+--------------~ 
I MLLZO I Numeric I Alphameric I 16 I 

r-------------+---------------+-----------------+--------------~ 
1 MLLZO I Numeric 1 Numeric I 10 1 

r-------------+---------------+-----------------+--------------~ 
I MLBZO I Alphameric I Alphameric I 10 I 

r-------------+---------------+-----------------+--------------~ 
I MLHZO I Numeric I Alphameric I 16 1 

r-------------+---------------+-----------------+--------------~ 
I MHLZO I Alphameric 1 Alphameric I 10 1 

r-------------+---------------+-----------------+--------------~ 
I MHLZO I Alphameric I Numeric I 30 I 
r-------------+---------------+-----------------+--------------~ 
I MHHZO I Alphameric I Alphameric I 10 I l _____________ ~ _______________ ~ _________________ ~ ______________ J 

*If the Result Fi~~ld entry is a table name, an additional 10 bytes are required. 

Appendix H 207 



r-------------T---------------T--------------------T-----------------T------------, 
3. I I Sequence I I I Number I 

I OPERATION I of I I Resulting I of I 

I CODE I Factor 2 I Result Field I Indicators I Bytes I 

~-------------+---------------+--------------------+-----------------+------------~ 
r.OKUP I Any I Blank I Equal I 60 I 

~---------------+--------------------+-----------------+------------~ 
I Any I Table Name I Equal I 70 I 
~---------------+--------------------+-----------------+------------~ 
I Ascending I Blank I High I 60 I 

~---------------+--------------------+-----------------+------------~ 
I Ascending I Table Name I High I 70 I 
~---------------+--------------------+-----------------+------------~ 
I Ascending I Blank I Low I 82 I 

~---------------+--------------------+-----------------+------------~ 
I Ascending I Table Name I Low I 92 I 

~---------------+--------------------+-----------------+------------~ 
I Ascending I Blank I High/Equal I 76 I 

~---------------+--------------------+---------~-------+------------~ 
I Ascending I Table Name I High/Equal I 86 I 

~---------------+--------------------+-----------------+------------~ 
I Ascending I Blank I Low/Equal I 102 I 
~---------------+--------------------+-----------------+------------~ 
I Ascending I Table Name I Low/Equal I 112 I 

~---------------+--------------------+-----------------+------------~ 
I Descending I Blank I High I 82 I 

~---------------+--------------------+-----------------+------------~ 
I Descending I Table Name I High I 92 I 

~---------------+--------------------+-----------------+------------~ 
I Descending I Blank I Low I 60 I 

~---------------+--------------------+-----------------+------------~ 
I Descending I Table Name I Low I 70 I 

~---------------+--------------------+-----------------+------------~ 
I Descending I Blank I High/Equal I 102 I 
~---------------+--------------------+-----------------+------------~ 
I Descending I Table Name I High/Equal I 112 I 

~---------------+--------------------+-----------------+------------~ 
I Descending I Blank I Low/Equal I 76 I 
~---------------+--------------------+-----------------+------------~ 

I I Descending I Table Name I Low/Equal I 86 I l _____________ L _______________ L ____________________ L _________________ L ____________ J 

4. COMP 

a. If Factor 1 and Factor 2 are 
numeric fields and have equal 
decimal lengths, 10 bytes are 
required for the compare, plus 12 
bytes for each resulting indicator 
specified. 

b. If Factor 1 and Factor 2 are 
numeric fields and have unequal 
decimal lengths, 34 bytes are 
required for the compare, plus 12 
bytes for each resulting indicator 
specified. 

c. If Factor 1 and Factor 2 are 
alphameric fields and have equal 
field lengths, 10 bytes are 
required for the compare, plus 12 
bytes for each resulting indicator 
specified. 

d. If Factor 1 and Factor 2 are 
alphameric fields and have unequal 

208 S/360 BOS Prog. Guide 

field lengths, 32 bytes are 
required for the compare, plus 12 
bytes for each resulting indicator 
specified. 

5. TESTZ 

a. Plus - 34 bytes 

b. Minus - 34 bytes 

c. Zero - 50 bytes 

d. Plus and Minus - 58 bytes 

e. Minus and Zero - 62 bytes 

f. Plus and Zero - 62 bytes 

g. Plus, Minus, and Zero - 74 bytes 

6. The following operation codes require 
additional bytes as specified: 

a. GOTO - 6 bytes 



b. EXIT - 6 bytes 

c. TAG - 26 bytes 

d. SETON and SETOF - 4 bytes for each 
indicator speci
fied 

e. EXTCV - 12 bytes 

16 bytes if followed by 
KEYCV 

7.a. For each indicator specified in 
columns 7 - 17, 8 additional bytes are 
required. -

b. When using the operation codes ADD, 
SUB, Z-ADD, Z-SUB, MULT, and DIV, 18 
bytes are required for the first 
indicator specified in columns 54 -
59. 12 bytes are required for each 
additional indicator. 

Note: For each field name defined as a 
ULABL which is used in Factor 1, Factor 2, 
or Result Field, an additional 4 bytes are 
required. -

OUTPUT-FORMAT 

This section gives the main storage sizes 
required by the various output field types 
and output record types. 

1. Output Record Types (Columns 15-31) 

a. g, Q, or ~ in column 15 -- & bytes. 

b. OR in columns 14-15 -- & bytes. 

c. AND in columns 13-15 -- no 
additional requirements other than 
those specified in (f). 

d. Stacker Select is specified -- 6 
bytes. 

e. Space and/or Skip -- ~ bytes. 

f. For each indicator specified for a 
record (columns 23-31) -- & bytes. 

g. No Stacker Select and no Space/SkiTI 
specified ~ bytes. 

2. Output Field Types (Columns 23-74) 

a. For each indicator specified for a 
field (columns 23-31) -- ~ bytes. 

b. Blank After (column 39) specified 
without an associated indicator: 

Numeric Field -- 6 bytes. 
Alphameric Field Tlength equal 
to 1) -- 4 bytes. 

Al9hameric-Pield (length greatel 
than 1) -- 10 bytes. 

Blank After specified with an 
associated indicator: 

Numeric Field -- 1~ bytes. 
Alphameric Field (length equal 
to 1) -- 12 bytes. 

Alo.hamericField (length greater 
than 1) -- 18 bytes. 

r------------O------T---------------T----------------T-----------------T----------, 
c. , , , I 'I 

I I I I constant or 'Number I 
I Field Name I Zero Supress I Packed Field I Edit Word 'of I 
I (Columns 32-37) I (Column 38) I <Column 44) I (Columns 45-70) I Bytes I 
~------------------+---------------+----------------+-----------------+----------~ 
I Alphameric I Blank I Blank I Blank I 6 I 
~------------------+---------------+----------------+-----------------+----------~ 
I Blank ,Blank, Blank , Constant I 6 I 
r------------ o------+---------------+----------------+-----------------+----------~ 
I Numeric I Blank I Blank I Blank I 6 I 
~------------------+----.-----------+----------------+-----------------+----------~ 
I Numeric I Blank I P I Blank I 6 I 
~------------------+---------------+----------------+-----------------+----------~ 
I Numeric I Z I Blank I Blank I 18 I l __________________ i _______________ i ________________ i _ ________________ i __________ J 

d. Page counter -- £ bytes 

e. The following diagram contains the 
main storage requirements for the 
edit operations. These 

requirements are based on the 
assumptions that Fiel~Nante 
contains a numeric field entry, and 
Zero Suppress and Packed Field are 
blank. (In the diagram, LE = the 

Appendix H 209 



length of the edit word and LF 
the length of the field.) 

r-------------------------------------T--------------------1 
I Constant or Edit Word I Number of Bytes I 
I ~---------T----------~ 
I (Columns 45 - 70) I LE = LF ILE > LF I 
~-------------------------------------+---------+----------~ 
I simple Edit I 18 I 24 I 
~-------------------------------------+---------+----------~ 
I Fixed $ I 22 I 28 I 
~-------------------------------------+---------+----------~ 
I Floating $ I 28 I 34 I 
~-------------------------------------+---------+----------~ 
I CR Symbol I 28 I 34 I 
~-------------------------------------+---------+----------~ 
I Minus (-) Symbol I 26 I 32 I 
~-------------------------------------+---------+----------~ 
I Fixed $ and CR Symbol I 32 I 38 I 
~-------------------------------------+---------+----------~ 
I Fixed $ and Minus (-) Symbol I 30 I 36 I 
~-------------------------------------+---------+----------~ 
I Floating $ and CR Symbol I 38 I 44 I 
~-------------------------------------+---------+----------~ 
I Floating $ and Minus (-) Symbol I 36 I 42 I l _____________________________________ ~ _________ ~ __________ J 

Note: If any of the preceding output fields are defined as ULABL, an additional 4 bytes 
are required. 

MISCELLANEOUS 

1. Sterling Routines 

a. Linkage to Sterling subroutines for 
Input fields - 14 bytes/field 

b. Linkage to Sterling subroutines for 
Output fields - 12 bytes/field (No 
edit) 20 bytes/field (Edit) 

c. Sterling input subroutine 

1. with input IBM code for 
Shillings - 342 bytes 

2. with input BSI code for 
Shillings - 376 bytes 

d. Sterling output subroutine 

1. Printed output only - 1128 
bytes 

2. Printed output and output 
code for Shillings - 1228 

3. Printed output and output 
code for Shillings - 1268 

2. Calculation and Output Literals 

210 S/360 BOS Prog. Guide 

IBt"l 
bytes 

BSI 
bytes 

a. Numeric: 

(Length of
2
1iteral +2) for each 

unique 
literal 

b. Alphameric: 

1). Non-editword 

2). Editword 

the length of 
each unique 
literal 

a). the length + 1 of each 
unique edit word which 
contains an uneven number 
of blanks 

b). the lengt~~ of ench 
unique edit word which 
contains an even number of 
blanks 

3. Input and Calculation Result Fields 

a. NUfTteric: 

(Length of f~eld + 2) for each 
unique 
field 

b. Alphameric: the length of each 
unique field 

4. Control Levels 



a. 22 bytes, plus 20 byi:es for each 
control level specified. 

b. Hold Area - 2* (Number of Control 
levels specified) 

5. Indicators 
1 byte per unique indicator 

6. Overhead - consisting of work area, 

address constants, linkage to the OPEN 
and CLOSE routine, EOJ routine, linkaqe 
between specifications, and common 
subroutines - 1000 bytes. 

For the overall amount of main storage 
used, the sizes of the supervisor and the 
user's routines should be added to the 
preceding total. 

Appendix H 211 



APPENDIX I. FORMAT OF LANGUAGE TRANSLATOR OUTPUT CARDS AND THE USER REPLACE CARD 

The format of the ESD card follows: 

Card 
Columns 

1 

2 - 4 

11 - 12 

15 - 16 

17 - 72 

73 - 80 

Multiple punch (12-2-9). 
Identifies this as a loader 
card. 

ESD -- External Symbol 
Dictionary card. 

Number of bytes of information 
contained in this card. 

External symbol identification 
number (ESID) of the first SD, 
PC, or ER on this card (EBCDIC). 
relates the SD, PC, or ER to a 
particular control section. 

Variable information. 

8 positions - Name 

1 position - Type code to 
indicate SD, PC, LD, or ER 

3 positions - Assembled origin 

1 position - Blank 

3 positions - Control section 
length, if an SD-type or a 
PC-type. If an LD-type, this 
field contains the external 
symbol identification number 
(ESID) of the SD or PC 
containing the label. 

May be used by the programmer 
for identification. 

The format of the TXT card follows: 

Card 
Columns 

1 

2 - 4 

6 - 8 

11 - 12 

15 - 16 

Multiple punch (12-2-9). 
Identifies this as a loader 
card. 

TXT -- Text card. 

Assembled origin (address of 
first byte to be loaded from 
this card). 

Number of bytes of text to be 
loaded. 

External symbol identification 

212 S/360 BOS Prog. Guide 

17 - 72 

73 - 80 

number (ESID) of the control 
section (SD) containing the text 
(EBCDIC). 

Up to 56 bytes of text -- data 
or instructions to be loaded. 

May be used for program 
identification. 

The format of the RLD card follows: 

Card 
Colum!!~ 

1 

2 - 4 

11 - 12 

17 - 72 

73 - 80 

Multiple punch (12-2-9). 
Identifies this as a loader 
card. 

RLD -- Relocation Dictionary 
card. 

Number of bytes of information 
contained in the card. 

Variable information (multiple 
items) • 

a. Two positions - pOinter to 
the relocation factor of the 
contents of the load constant. 
b. Two positions - pointer to 
the relocation factor of the 
control sections in which the 
load constant occurs. 
c. One position - flag 
indicating type of constant. 
d. Three positions - assembled 
address of load constant. 

May be used for program 
identification. 

The format of the END card follows: 

Card 
Columns 

1 Multiple punch (12-2-9). 
Identifies this as a loader 
card. 

2 - 4 END 

6 - 8 

15 - 16 

Assembled origin of the label 
supplied to the Assembler in the 
END card (optional). 

ESID number of the control 
section to which this END card 
refers. 



17 - 22 

73 - 80 

Symbolic label supplied to the 
Assembler if this label was not 
defined wi thin the ass·embly. 

Not used. 

The format of the XFR card follow's: 

Card 
Columns 

1 

2 - 4 

6 - 8 

15 - 16 

17 - 22 

73 - 80 

Multiple punch (12-2-9). 
Identifies this as a loader 
card. 

XFR -- Transfer card. 

Assembled origin of entry point 
(after the program is loaded it 
will receive control at this 
point) • 

External symbol identification 
number (ESID) of the control 
section in which the transfer 
occurs (EBCDIC). 

Symbolic label of the entry 
pointq 

May be used for program 
identification. 

The format of the REP (User replace card) 
follows: 

Card 
Columns 

1 

2 - 4 

5 - 6 

7 - 12 

13 

14 - 16 

17 - 72 

Multiple punch (12-2-9). 
Identifies this as a loader 
card. 

REP Replace text card. 

Not used. 

Assembled address of the first 
byte to be replaced 
(hexadecimal) • 

Not used. 

External symbol identification 
number (ESID) of the control 
section (SD) con'taining the text 
(Hexadecimal). Right adjusted 
with leading zeros optional. 
See the assembly output listing 
for this number. 

From 1 to 11 
four-dig it-hexadecimal fields 
separated by commas, each 
replacing one previously loaded 
halfword. A blank indicates the 
end of information in this card. 

73 - 80 May be used for program 
identification. 

The format of the SYM card follows: 

Card 
Columns 

1 

2 - 4 

11 - 12 

14 - 16 

17 - 72 

73 - 76 

77 - 80 

Multiple punch (12-2-9). 
Identifies this as a loader 
card. 

SYM - Symbol card. 

Number of bytes of information 
contained in this card. 

External symbol identification 
number (ESID) of the control 
section (SD) containing the text 
(Hexadecimal). 

Variable information. 
12 columns - 8 positions -

symbol name 

or 

1 position -
type identifi
cation (machine 
or assembler 
instruction 
other than EQU 
DC, or DS). 

3 positions = 
Value attribut(· 

(the displace
ment within the 
CSECT). 

17 columns - 8 positions -
symbol name 

1 position -
type identifi
cation (EQU, 
DC, or DS). 

3 positions -
Value attribute 
the displace
ment within the 
CSECT) 

1 position -
constant type 

1 position -
length (one 
byte less than 
the constant 

3 positions -
multiplicity 

Program identification taken 
from the name field of the first 
TITLE statement preceding the 
START card. 

Sequence number starting with 
0001. 

?\ppendix I 213 



APPENDIX J. REGISTER USAGE 

certain general registers have been set 
aside for special uses within the Basic 
Operating System. They are: 

0-1 
2-11 

12-13 
14 
15 

Parameter registers. 
Problem program registers. 
Supervisor interrupt registers. 
Return register. 
Entry point register. 

PARAMETER REGISTERS (0-1): These are used 
with macro instructions, and may contain a 
value or an address. An address may point 
to a list of values called a parameter 
list. These registers !flay be used by the 
problem program with the follm.;ring 
restrictions. When the problem program 
issues a Supervisor or IOCS macro, these 
registers will be used. If the problem 
program needs the contents of the register, 
it ITust save and restore the register's 
contents. 

PROBLEM PROGRAM REGISTERS (2-11): These 
registers are available without 
restriction. If any are used by the 
supervisor or logical IOCS routines, they 
are saved and then restored to their 
original value. Registers 10 and 11 are 
saved upon entry into the 1052, or interval 
timer routines. They are available to the 
problem program at this timp and are 
restored upon completion of these routines. 

SUPERVISOR INTERRUPT REGISTERS (12-13): 
These are used by the Supervisor 
interruption routines. Since interruptions 
are unpredictable, these registers are not 
available to any other routine, unless 

214 S/360 BOS Prog. Guide 

SUPVR SAVEREG=YES was specified when the 
supervisor was assembled. This routine is 
optional, but it must be included if the 
programmer plans to use registers 12 and 13 
for programs that are executed in a 
disk-resident system. (For a description 
of the supervisor macro, see the Assembler 
with Input/Output ~acros, publication 
listed in the Preface of this manual.) 

Note: If autotest is used, the programmer 
must not use registers 12 and 13 because 
these registers are used by the Autotest 
Master Control routine. 

RETUR~ REGISTER (14): This is a general 
register used by the Supervisor and IOCS 
routine to return to the problem program 
after completion of a macro. It is also 
used by the problem program to return to 
IOCS after executing an IOCS option 
(LABADDR return). It normally contains the 
24-bit absolute address of the instruction 
in the calling routine to which control is 
to be transferred at the completion of the 
execution of the subrouti~e. 

ENTRY POINT REGISTER (15): This is used to 
branch to the problem program from IOCS 
routines. 

Logical IOCS requires two registers for 
linkage. These are 14 and 15. Register 15 
is used to branch to the called routine and 
register 14 is used to return to the 
calling routine. When a macro call is 
issued (GET), IOCS will use the registers 
without saving their contents. 



APPENDIX K. NAMES OF IBM-SUPPLIED PROGRAMS 

r-------------T---------T----------T---------T--------------T---------------------------, 
I Relocatable I Number I Core I Number I I I 
I Library I of I Image I of I I I 
I Module I Blocks I Library I Blocks I I I 
I Name I in I Phase I in I Description I I 
I I RL I Name I CL I of Program I Comments I 
~-------------+---------+----------+---------+--------------+---------------------------~ 
I AORGZ I 43 I AORGZ I 5 I Relocatable I LORGZ must be available onl 
I I I AORGZ2 I I library I system residence, if AORGZI 
I I I I I limits I is to be used. I 
~-------------+--,-------+----------+---------+--------------+---------------------------~ 
ICORGZ I 74 I CORGZ* I 9 I Copy system I I 
I I I CORGZ1* I I I I 
I I I CORGZ2* I I I I 
I I I CORGZ3* I I I I 
~-------------+---------+----------+---------+--------------+---------------------------~ 
ICSERV I 25 I CSERV I 3 I Core image I I 
I I I I I library I I 
I I I I I service I I 
~-------------+---------+----------+---------+--------------+---------------------------~ 
I DSERV I 29 I DSERV I 3 I Directory I I 
I I I I I service I I 
~-------------+---------+----------+---------+--------------+---------------------------~ 
ILORGZ I 27 I LORGZ I 3 I Condense I I 
I I I I I libraries I I 
~-------------+---------+-----------+---------+--------------+---------------------------~ 
I MMAINT I 87 I MMAINT I 12 I Macro I I 
I I I MMAIN1 I I Library I I 
I I I Mr.'.iAIN2 I I maintenance I I 
~-------------+---------+----------+---------+--------------+---------------------------~ 
I MSERV I 40 I MSERV I 5 I Macro I I 

I I I I I library I I 
I I I I I service I I 
~-------------+---------+-----------+---------+--------------+---------------------------~ 
IPSERV I 28 I PSERV I 5 I PUB table I I 
I I I I I service I I 
~-------------+---------+-----------+---------+--------------+---------------------------~ 
I RMAINT I 33 I RI"lAINT I 4 I Relocatable I I 
I I I I I library I I 
I I I I I maintenance I I 
~-------------+---------+----------+---------+--------------+---------------------------~ 
I RSERV I 37 I RSERV I 5 I Relocatable I I 

I I I I I library I I 
I I I I I service I I 
~-------------+---------+----------+---------+--------------+---------------------------~ 
ISYSCMA I 21 I SYSCMA* I 3 I Core image I Requires SYSLDR in core I 
I (key> I I I I library I image library. I 
I I I I I maintenance I I 
~-------------+---------+----------+---------+--------------+---------------------------~ 
ISYSDMP I 14 I SYSDMP* I 1 I Storage I Must be cataloged in the I 
I (key> I I I I Dump I core image library of the I 

I I I I I I system residence. I 

~-------------+---------+----------+---------+--------------+---------------------------~ 
ISYSEOJ I 45 I SYSEOJ* I 6 I Job I Must be cataloged in the I 
I (key> I I SYSBPD* I I Control I core image library of the I 

I I I I I I system residence. I L _____________ ~ _________ ~ __________ ~ _________ ~ ______________ ~ ___________________________ J 

Appendix K 21 Lj 



r------------T----------T----------T---------T--------------T---------------------------, 
, I , Core'" I 
\Relocatable I Number' Image 'Number I' , 
'Library ,of I Library ,of" , 
'Module I Blocks' Phase I Blocks, Description , I 

'Name I in RL 'Name I in CL I of Program ,Comments I 
~------------+----------+----------+---------+--------------+---------------------------~ 

SYSLDR 115 SYSLDR* 19 Linkage I Must be available for: 
(key) SYSTXT* Editor' load and execute, compile 

SYSESD* , and execute, assemble 
SYSRLD* , and execute, and SYSCMA 
SYSXFR* I program 
SYSEND* , 
SYSREP* , 
SYSCTL* , 
SYSINC* , 
SYSPH1* I 
SYSPH2* I 
SYSENT* , 
SYSMAP* , 
SYSERR* I 
SYSCMB* I 

~------------+----------+----------+---------+--------------+---------------------------~ 
ISYSOAl , 51 ,SYSOA1*, 5 I I Must be available for: I 
I (key) I 'SYSOA2* I I I AORGZ, CORGZ, Assembler, I 
I , 'SYSOB1* " I or logical IOCS OPEN , 
I , , SYSOCl * 'I I , 
, , I SYSOC2* I" , 
~------------+----------+----------+---------+--------------+---------------------------~ 
ISYSOJl I 68 'SYSOJl ,8 I , Must be available if , 
, , ,SYSOJ2" , logical IOCS for direct , 
I , ,SYSOJ3, , , access files is used. , 
, , ,SYSOJ4", I 
, , ,SYSOJ5, I I , 
r------------+----------+----------+---------+--------------+---------------------------~ 
'SYSOLA I 64 I SYSOLA I 8 I , Must be available if I 
I , I SYSOLC I I , logical IOCS for indexed , 
, I 'SYSOLD I I I sequential files is used. I 

I , 'SYSOLZ' I I , 
~------------+----------+----------+---------+--------------+---------------------------~ 
ISYSOQA , 97 I SYSOQA* ,11 I I Must be available for I 
, (key) I I SYSOQC* I' I AORGZ, CORGZ, Assembler, , 
I , 'SYSOQD* I , , or if logical IOCS for , 
, I 'SYSOQE* I I , consecutive files is used., 
, , I SYSOQH* I I I I 
I , 'SYSOQI* "I , 
, , 'SYSOQO* '" , 
, , 'SYSOQX*. I' I , L ____________ ~ __________ ~ __________ ~ _________ ~ ______________ ~ ___________________________ J 

216 S/360 BOS Proq. Guide 



r------------T----------T----------T---------T--------------T---------------------------l 
I I I Core I I I 1 
IRelocatable I Number I Image I Number I I I 
I Library I of I Library I of I I I 
I Module I Blocks I Phase I Blocks I Description I I 
I Name I in RL I Name I in CL I of Program I Comments I 
~------------+----------+----------+---------+--------------+---------------------------~ 
ISYSOTO 108 I SYSOTO 12 I Must be available if I 
I I SYSOT1 I logical IOCS is used to I 
I I SYSOT2 I handle tape files. I 
I I SYSOT3 I I 
I I SYSOT4 I I 
I I SYSOT5 I I 
I I SYSOT6 I I 
I I SYSOT7 I I 
I I SYSOT8 I I 
I I SYSOT9 I I 
I I SYSOTA I I 
I I SYSOTB I I 
t------------+--------~-+----------+---------+--------------+---------------------------~ 
ISYSRSD I 22 I SYSRSD I 2 I I Must be available for I 
I I I SYSCPD I I I check-pointing and re- I 
I I I I I I starting programs on a I 
I I I I I I checkpoint area on the I 
I I I I I I system pack. I 
t------------+----------+----------+---------+--------------+---------------------------~ 
ISYSRST I 19 I SYSRST I 2 I I Must be available for I 
I I I SYSCPT I I I check-pointing and re- I 
I I I I I I starting programs on tape. I L ____________ L __________ L __________ L _________ L ______________ L ___________________________ J 

Appendix K 217 



r--------------T--------T-----------T--------T--------------T---------------------------, 
I I I Core I I I I 
I Relocatable ,Number, Image I Number" , 
,Library , of I Library I of, I I 
,Module I Blocks I Phase I Blocks ,Description , , 
'Name , in RL 'Nam~ , in CL I of Program ,Comments , 
~--------------+--------+-----------+--------+--------------+---------------------------~ 
,SYSSTA I 15 I SYSSTA* I 2, I Must be available for: I 
I (key) I I I I I AORGZ, LORGZ, I 
I I I I I I MMAINT, MSERV, I 
I I I I I I RMAINT, RSERV, I 
I I I I I I SYSCMA, and I 

I 'I I I I SYSLDR. I 
~--------------+--------+-----------+--------+--------------+---------------------------~ 
I I I SYSSup* I I Supervisor I Must be cataloged in the I 

I I I I I I core image library of the I 

I I I I I I systems residence. I 
~--------------+--------+-----------+--------+--------------+---------------------------~ 
ASSEMB I 403 ASSEMB* 50 Assembler I Must be available in 

I ZZZ30A* I system residence if 
ZZZ31A* I Assembler is to be used. 
ZZZ32A* I 
ZZZ33A* I 
ZZZ35A* I 
ZZZ39~* I 
ZZZ401* I 
ZZZ403* I 
ZZZ405* I 
ZZZ406* I 
ZZZ408* I 
ZZZ410* I 
ZZZ501* I 
ZZZ815* I 
ZZZ910* I 
ZZZ920* I 
ZZZ925* I 

~--------------+--------+-----------+--------+--------------+---------------------------~ 
ZZZ56A I 490 ZZZ551* 77 I Must be available in 

ZZZ56A* I System Residence, if 
ZZZ57A* I Assembler is to be used. 
ZZZ57B* I 
ZZZ57C* I 
ZZZ60A* I 
ZZZ62A* I 
ZZZ62B* I 
ZZZ63A* I 
ZZZ65A* I 
ZZZ66A* 
ZZZ67A* 
ZZZ68A* 
ZZZ69A* 
ZZZ70A* 
ZZZ71A* 
ZZZ72A* 
ZZZ73A* 
ZZZ75A* 
ZZZ76A* 
ZZZ77A* 
ZZZ772* 
ZZZ78A* 
ZZZ80A* ________ ~___________ __ ______ ~ ______________ ~ ___________________________ J 

218 S/360 BOS Prog. Guide 



r-------------T---------T---------T---------T---------------T---------------------------, 
I I I Core I I I I 
I Relocatable I Number I Image I Number I I I 

I Library I of I Library I of I I I 

I Module I Blocks I Phase I Blocks I Description I I 

I Name I in RL I Name I in CL I of Program I Comments I 

~-------------+---------+---------+---------+---------------+---------------------------1 
DATBID 544 DATBAP I 100 Autotest 

DATBCT I 
DATBCV 
DATBFL 
DATBID 
DATBLE 
DATBLF 
DATBMD 
DATBMG 
DATBPE 
DATBPL 
DATBPO 
DATBPT 
DATBST 
DATBTR _____________ ~ _________ ~ _________ ~ _________ ~ _______________ ~ ___________________________ J 

Note: All items listed in the first column 
(Relocatable Library Module Name) are 
contained in the relocatable library of the 
system pack supplied by IBM. 

The relocatabl e library module~ name 
would be used in the following ways: 

1. As the operand of a JOB card when used 
with EXEC LOADER,R 

2. As the operand of a CATAL card (CATAL 
modulename,R) when cataloging from the 
relocatable library to the core image 
library. 

3. As the operand of an INCLUDE card when 
cataloging to the core image library 
via the INCLUDE function. 

The items identified by (key) are system 
programs that must be edited to run with 
the new Supervisor when generating a new 
system residence. 

The number of blocks shown in the second 
and fourth columns are the estimated sizes 
of the respective items. The section Dis~ 
Storage Space Required for Libraries and 
Directories contains additional information 
on this sUbject. 

All items in the third column (Core 
Image Library Phase Name) which are marked 
with an asterisk (*) are contained in the 
core image library of the system pack 
supplied by IBM. 

Appendix K 219 



APPENDIX L. NAMES OF IBM-SUPPLIED MACROS 

The numbers represent the approximate number of blocks required to contain the macros in 
the macro library. 

DTFSR 
DTFST 
DTFSU 
DTFSV 
DTFSW 
DTFSX 
DTFSY 
DTFSZ 
DTFTA 
DTFTC 
DTFTE 
DTFTG 
DTFTI 
DTFTK 
DTFTL 
DTFTM 
DTFTO 
DTFTQ 
DTFTS 
DTFTU 
DTFTW 
DTFTY 
DRFUA 
DTFUD 
DTFUE 
DTFUG 
DTFUI 
DTFUL 
DTFUM. 
DTFUO 
DTFZA 
DTFZC 
DTFZE 
FEOV 
PRTOV 
RELSE 
TRUNC 

DTFDA 
DTFDC 
WAITF 

DTFIA 
DTFIC 
DTFIG 
DTFIH 
DTFIL 
DTFIM 
DTFIQ 
DTFIR 
DTFIS 
ENDFL 
ESETL 
SETFL 
SETL 

CHKPT 
COMRG 
DUMP 
EOJ 

80 
33 
65 
30 
56 
32 
28 
66 
27 
13 
17 
15 
17 
12 

4 
16 
14 
15 

8 
12 

9 
12 

9 
13 
10 
12 
12 
14 

9 
10 
42 
18 
38 

1 
1 
1 
1 

39 
25 

1 

55 
25 
18 
10 
69 
37 
42 
10 
38 

2 
2 
2 
2 

9 
1 
1 
1 

Consecutive Processing Macros 
(plus CHNG, CLOSE, CNTRL, 
DTFBG, DTFEN, GET, LBRET, 
OPEN, PUT) 

Direct Access (DAM) Macros 
(plus CLOSE, CNTRL, DTFBG, 
DTFEN, LBRET, OPEN, READ, 
WRITE) 

Indexed Sequential (ISFMS) 
Macros (plus CLOSE, DTFBG, 
DTFEN, GET, LBRET, OPEN, 
PUT, READ, WRITE) 

System Control Macros 

220 S/360 BOS Prog. Guide 

EXIT 
FETCH 
IOCFG 
JBCTL 
MSG 
MVCOM 
RSTRT 
SEND 
STXIT 
SUPVR 
SYMUN 

CCB 
DTFPH 
EXCP 

CDCNV 
DIALO 
DTFRF 
DTFSN 
SCLOS 
SOPEN 

CHNG 

CLOSE 

CNTRL 

DTFBG 

DTFEN 

GET 

LBRET 

OPEN 

PUT 

READ 

WAIT 

WAITM 

WRITE 

1 
1 

93 
62 

1 
1 
8 
9 
5 

29 
5 

3 
9 
1 

55 
4 
1 

15 
3 

10 

3 

19 

9 

1 

79 

4 

1 

44 

4 

4 

1 

5 

5 

Physical I/O Macros (plus 
CHNG, CLOSE, LBRET, OPEN, 
WAIT, WAITM) 

STR Processing Macros (plus 
READ, WRITE, CNTRL, WAIT, 
WAITM) 

Common Macros 

Consecutive Processing and 
Physical IOCS 

Consecutive Processing, 
Direct Access, and 
Indexed sequential 

Consecutive Processing, 
Direct Access, and STR 
Processing 

Consecutive Processing, 
Direct Access~ and 
Indexed Sequential 

Consecutive Processing~ 
Direct Access, and 
Indexed Sequential 

Consecutive Processing 
and Indexed Sequential 

Consecutive Processing 
Direct Access, and 
Indexed Sequential 

Consecutive Processing, 
Direct Access, and 
Indexed Sequential 

r.onsecutive Processing 
and Indexed Sequential 

Direct Access, Indexed 
Sequential, and STR 
Processing 

Physical IOCS and STR 
Processing 

Physical IOCS and STR 
Processing 

Direct Access, Indexed 
Sequential, and STR 
Processing 



APPENDIX M: ISFMS DISK STORAGE SPACE FORMULAS 

Three formulas are used to compute disk storage requirements for an Indexed Sequential 
file. The known quantities for the computations given are: 

DL Data Length 
K L Key Length 
BL Block Length (Data Length x Number of Records) 
X Number of prime data tracks per cylinder 
L Number of bytes (10) for overflow link information. 

I. To calculate the number of prime data records per cylinder (Npr) 
Let: A = Number of prime data records on a shared track 

B = Number of records on a non-shared track. 
(Note: These values must be whole numbers.> 

Then: a. Determine the size of the track index (T1 ), 
T1 = [2X+1.1 [91.49+1.049 (KL)] 

b. Determine the number of bytes remaining on a track for prime 
records (T2 ), 

T 2 =3625-T1 

c. Determine the size of the last prime record on a track (T3 ), 

T3 =20+Kl,+3 L 

d. Determine the number of prime data records on a shared track (A), 
T",=T 2 -T3 

if the result (T",) is negative, set A=O, 
if the result (T",) is zero, set A=l, 
if the result (T",) is positive, set 

A=l+ T", 
81+1.049(K L+B L) 

e. Determine the number of records on a non-shared track (B), 
B=l+ 3605-{KL+BL) 

8i+i.o49(KL+BL) 

compute the number of prime records per cylinder (Npr) by substituting for A, 
B, and X in 

Npr=A+B (X-l) 

II. To determine the number of overflow records per track {Nor} 

III. 

Compu·te: 
Nor=l+ 3605-(KL+DL+L) 

81+1.049{KL+DL+L) 

To determine the number of cylinder or master index records per track (Nir) 

compute: 
Nir=l+ 3595-KL 

91.49+1.049(KL) 

(Note: Allow for a dummy record.) 

Appendix M 221 



GLOSSARY 

The explanations of the following terms 
relate only to their use in this 
publication. 

Basic Operating Syste~: A disk resident 
system; device dependent and non-modular 
that provides basic operating system 
capabilities for 8K and larger 
System/360 disk configurations. 

Block: 1. To group records physically for 
the purpose of conserving storage space 
or increasing the efficiency of access 
or processing. 
2. A physical record on tape or disk. 

Buffer: 1. A storage device in which data 
is assembled temporarily during data 
transfers. It is used to compensate for 
a difference in the rate of flow of 
information or the time occurrence of 
events when transferring information 
from one device to another. For 
example, the IBM 2821 Control Unit (a 
control and buffer storage unit for card 
readers, card punches, and printers in a 
System/360). 
2. A portion of main storage used for 
an input or output area. 

Burst Mode: A means of transferring data 
to or from a particular I/O device on 
either the multiplexor or selector 
channel. All channel controls are 
monopolized for the duration of data 
transfer. 

Byte Mode: (see multiplex mode) 

Catalog: To enter a phase, a module, or 
macro in one of the system libraries as 
a permanent entry, and to include 
control information about the entry in 
the corresponding library directory. 

Channel Program: One or more channel 
command words (CCWs ) that control(s) a 
specific sequence of channel operations. 
Execution of the specific sequence is 
initiated by a single start I/O 
instruction. 

Channel Scheduler: The part of the 
supervisor that controls the movement of 
data between main storage and 
input/output devices. 

Checkpoint: A point in a program at which 
sufficient information can be stored to 
permit restarting the computation from 
that point. 

222 S/360 BOS Prog. Guide 

Checkpoint Record: Disk or tape records 
that contain the status of the job and 
the system at the time the records are 
written by the checkpoint routine. 
These records provide the necessary 
information for restarting a job without 
having to return to the beginning of the 
job. 

Checkpoint/Restart: A means of restarting 
execution of a program at some point 
other than the beginning. When a 
checkpoint macro is issued in a problem 
program, checkpoint records are created. 
These records contain the status of the 
program and the machine. When it is 
necessary to restart a program at a 
point other than the beginning, the 
restart procedure uses the checkpoint 
records to reinitialize the system. 

Checkpoint Routine: A routine that stores 
information for a checkpoint. 

Command Control Block: An eight-byte field 
(four halfwords) required for each I/O 
device controlled by physical IOCS. 
This field is used for communication 
between physical IOCS and the problem 
program. 

Communication Region: An area of the 
Supervisor set aside for interprogram 
and intraprogram communication. It 
contains information useful to both the 
supervisor and the problem program. 

Control Programs: A group of programs that 
provides functions such as the handling 
of input/output operations, error 
detection and recovery, program loading, 
and communication between the program 
and the operator. The IPL Loader, the 
Supervisor, and the Job Control programs 
are classified as control programs in 
the Basic Operating System. 

Core Image Library: An area of the 
resident disk pack used to store 
programs that have been processed by the 
Linkage Editor. Each program is in a 
form identical to that which it must 
have to be executable in main storage. 
The programs in the core image library 
include system programs, the librarian 
programs, and other IBM-supplied 
programs such as Assembler, RPG, and 
sort programs. User programs are also 
stored in the core image library. 

Core Storage: All addressable storage from 
which instructions can be executed or 



from which data can be loaded directly 
into registers. 

Data File: A collection of related data 
records organized in a specific manner. 
For example, a payroll file (one record 
for each employee, showing his rate of 
pay, deductions, etc) or an inventory 
file (one record for each inventory 
item, showing the cost, selling price, 
number in stock, etc). 

Directory: A group of records containing 
information used in locating and 
retrieving elements of the disk·-resident 
system. There are six directories in 
the Basic Operating System: system 
directory, transient directory, core 
image directory, macro directory, 
relocatable directory, and phase 
directory. 

Discontinuous Binary Number: A number 
containing two or more subordinate 
numbers, each subordinate number treated 
as a separate binary value. 

Disk-Resident System: An operating system 
that uses disk storage for on-line 
storage of sys t,em routines. 

Ext en!:.: A continuous area of direct access 
storage between defined upper and lower 
limits. 

Fetch: 1. To bring a program phase into 
main storage from the core image 
library. 
2. The routine that retrieves requested 
phases and loads them into main storage. 
3. The name of a macro (FETCH) used to 
transfer control to the System Loader. 

File: See Data File. 

Fixed-Length Record: A record having the 
same length as all other records with 
which it is logically or physically 
associated. 

Initial Program Loading (IPL).: The 
initialization procedure that causes 
Basic Operating System to read programs 
into main storage. 

Input/Output Control System (IOCS): A 
group of macro routines provided by IBM 
for handling the transfer of data 
between main storage and external 
storage devices. IOCS consists of two 
parts: physical IOCS and logical IOCS. 

Interruption: A break in the normal 
sequence of instruction execution. It 
causes an automatic transfer to a preset 
storage location, where action is taken 
to satisfy the condition that caused the 
interruption. 

I/o~rea: ~~ area (portion) of main 
storage into which data is read or from 
which data is written. In Operating 
System publications, the term buffer is 
often used in place of I/O are~. I/O 
means Input/Output. 

IPL Loader: A program that reads the 
Supervisor into main storage and then 
transfers control to the Supervisor. 

Job Control: A control program that is 
called into storage to prepare each job 
to be run. Some of its functions are to 
assign I/O devices to certain symbolic 
names, set switches for program use, log 
(or print) job control cards, and call 
the requested program. 

Job Control statement: Anyone of the 
control statements in the input stream 
that identifies a job or defines its 
requirements. 

Job Statement (JOB): The control statement 
in the input stream that identifies the 
beginning of a series of job control 
statements for a single job. 

Language Translators: A general term for 
any assembler, compiler, or other 
routine that accepts statements in one 
language and produces equivalent 
statements in another language. The 
Basic operating System has two language 
translators: Assembler and Report 
Program Generator (RPG). 

Librarian: The set of programs that 
maintains, services, and organizes the 
system libraries. 

Libra~: An organized collection of 
programs, macro definitions, or object 
modules maintained on the 
system-resident disk pack. Three 
libraries are used by the Basic 
Operating System: core image library, 
macro library, and relocatable library. 

Linkage Editor: A system service program 
that edits the output of language 
translators and produces executable 
program phases in the core image 
library. It relocates programs or 
program sections and links together 
separately assembled sections. 

Load System Program: One of the system 
service programs. It is used to build a 
resident system from punched cards. 

Logical File: A data file that has been 
described to the Basic Operating System 
through the use of a file-definition 
(OTF) macro instruction. Note that a 
data file is described to Operating 
System through a different defining 

Glossary 223 



method. Operating System publications 
refer to a data file described in this 
different manner as a data set. 

Logical IOCS: A comprehensive set of macro 
routines provided to handle the 
creation, retrieval, and maintenance of 
data files. 

Logical Record: A record identified from 
the standpoint of its content, function, 
and use rather than its physical 
attributes. It is meaningful with 
respect to the information it contains. 
(Contrasted with Physical Record.) 

Macro Library: A collection of macro 
definitions cataloged onto the resident 
disk pack by the librarian. 

Main Storage: See Core Storage. 

Module (Programmigql: The input to or 
output from, a single execution of a 
language translator or a Linkage Editor: 
a separate program unit that can be 
combined with other units. 

Multiplex Mode: A means of transferring 
records to or from low-speed I/O devices 
on the multiplexor channel, by 
interleaving bytes of data. The 
multiplexor channel sustains 
simultaneous I/O operations on several 
subchannels. Bytes of data are 
interleaved and then routed to or from 
the selected I/O devices or to and from 
the desired locations in main storage. 
Multiplex mode is sometimes referred to 
as byte mode. 

Object Module: The output of a single 
execution of a language translator, that 
constitutes input to the Linkage Editor. 
An object module consists of one or more 
control sections in relocatable, though 
not executable, form and an associated 
control dictionary. 

Operating System: 1. A collection of 
programs that enables a data processing 
system to supervise its own day-to-day 
operations, automatically calling in 
programs, routines, languages, and data 
as needed for continuous throughput of 
an uninterrupted series of jobs. 
2. A modular and device independent 
operating system requiring direct access 
storage device residence: minimum main 
storage requirement is 32K. 

overlap: To do something at the same time 
that something else is being done; for 
example, to perform input/output 
operations while instructions are being 
executed by the central processing unit,. 

overlay: 1. A section of a program 

224 S/360 BOS Prog. Guide 

(phase) loaded into main storage, 
replacing all or part of a previously 
loaded section. 
2. The technique of repeatedly using 
the same blocks of internal storage 
during different stages of a problem. 
For example, when one routine is no 
longer needed in internal storage, 
another routine can replace all or part 
of that storage. 

Phase: The smallest complete unit that can 
~ referenced in the core image library. 

Each overlay of a program or (if the 
program contains no overlay) the program 
itself is a single complete phase. 

Physical IOCS: Macros and Supervisor 
routines that schedule and supervise the 
execution of channel programs. Physical 
IOCS controls the actual transfer of 
records between the external storage 
medium and main storage. 

Physical Record: A record identified from 
the standpoint of the manner or form in 
which it is stored and retrieved; that 
is, one that is meaningful with respect 
to access. (Contrasted with Logical 
Records.) 

Problem Program: 1. The user's object 
program. It can be produced by either 
the Assembler or RPG language 
translators. It consists of 
instructions necessary to solve the 
user's problem. 
2. A general term for any routine that 
is executed in the data processing 
system's problem state; that is, any 
routine that does not contain privileged 
operations. (Contrast with Supervisor.) 

Processing Program: A general term for any 
program that is both loaded and 
supervised by system control programs. 
The term processing programs is in 
contrast to the term control programs. 

Queue: A list of entries in order or in 
line, usually in the sequence of 
arrival. The entries identify things 
contending for service or attention. 

Record: A general term for any unit of 
data that is distinct from all others 
when considered in a particular context. 

Relocatable-Library Module: A module 
consisting of one or more complete 
object modules cataloged as a single 
entry in the relocatable library. 

Restart: See Checkpoint/Restart. 

Service Programs: Any of the class of 
standard routines that assists in the 
use of a data processing system and 



successful execution of problem 
programs. These programs include 
language translators, Autotest, 
Sort/Merge, and Utilities" 

Source Module: A set of source statements 
in the symbolic language of a language 
translator, that constitutes the entire 
input to a single execution of the 
language translator. 

Source statement: Statements written by a 
programmer in symbolic terms related to 
a language translator such as Assembler 
or RPG. 

Stacked Job Processing: A technique that 
permits multiple job definitions to be 
grouped (stacked) for presentation to 
the system. This allows the system to 
automatically process each job in 
sequence. 

Supervisor: One of the control programs. 
It provides over-all control of 
operations. It consists of routines to 
control the functions of machine 
interrupts, external interrupts, 
operator communications, and physical 
IOCS requests and interrupts. 

Symbolic I/O Assignment: A means by which 
problem programs can refer to an I/O 
device by a symbolic name$ Before a 
program is executed, the Job Control 
program can be used to assign a specific 
I/O device to that symbolic name. 

System Loader: One of the Supervisor 
routines. It is used to retrieve 
program phases from the core image 
library and load them into main storage. 

System Residence: The external storage 

space allocated for storing the Basic 
Operating System. If refers to the 
space on an on-line disk pack that 
contains the necessary programs and disk 
areas required for executing a job on 
the data processing system. 

System Service Programs: Programs that 
perform the functions of generating the 
initial operating system, generating 
specialized systems, creating and 
maintaining the library sections, and 
loading and editing programs into disk 
residence. These programs are: Linkage 
Editor, Librarian, and Load System. 

Throughput: A measure of system 
efficiency; the rate of which work can 
be handled by a data processing system. 

Transient Area: This is a main storage 
area (within the Supervisor area) used 
for temporary storage of transient 
routines. 

Transient Routines: These routines are 
permanently stored on the 
system-residence disk pack and loaded 
(by the Supervisor) into the transient 
area when needed for execution. 

Variable-Length Records: A record having a 
length independent of the length of 
other records with which it is logically 
or physically associated. (Contrasted 
with Fixed-Length Record.) 

Volume: That portion of a single unit of 
storage media that is accessible to a 
single read/write mechanism. For 
example, a reel of magnetic tape on a 
2400 magnetic tape drive or a disk pack 
on a 2311 disk storage drive. 

Glossary 225 



INDEX 

For Planning Purposes Only: 

1287 - 13 

BSC - 13, 14, 25, 37, 38, 40-43, 52, 99, 
110, 151-153, 190, 200 

RJE - 10, 12, 21 

Whenever one reference has more significance than the others for an item, that 
page number is listed first. 

Abort 36 
Access Mechanism 
ACTION Card 66 

155 

146 
160 
165 

166 

Adding Records to a File (ISFMS) 
Additional Volume Labels (Disk) 
Additional Volume Labels (Tape) 
Additional File Labels (Tape) 
Allocation of Disk Storage 72, 27, 28 
Alternate Track Capability 160 
AORGZ 91 
Assemble and Execute 
Assembler 29, 28, 11 

62 

Assembly of Independent (Non-Resident) 
Programs 29 

ASSGN Card 51, 96 
Assign (Device Table) 
Autotest 29, 12, 20 
Autotest, Job Card for 

96 

51 

Binary Synchronous Communication (BSC) 
Blocked Record File (ISFMS) 146 
Blocked Records (ISFMS) 139 
Blocking Records 101 
BOF (DTFIS FILSTR) 148 
BOPEN Macro 151 
BSC (Binary Synchronous Communication) 
BSC Core Sizes 200 

Capacity Record (DAM) 134 
Card Types, Object Module 61 
Catalog Function 75 
Catalog Phases 61 
Catalog (Core Image Library) 78 
Catalog (Macro Library) 83 
Catalog (Relocatable Library) 87 
Cataloging a New Supervisor 79 
CCB Macro Instruction 111, 38 
CDCNV Macro (STR) 149 
Chaining, Direct Access Address 106 
Channel Scheduler 36, 17 
Checkpoint Area 24 
Checkpoint/Restart 42, 18, 57 
CHKPT Macro Instruction 43 
CHNG Macro Instruction 38 
Choice of Programming Language 29 
CNTRL EOF Macro (STR) 149 
CNTRL INQ Macro (STR) 149 
CNTRL PREPARE Macro (STR) 149 

226 S/360 BOS Prog. Guide 

COCR (Cylinder Overflow Control 
Record) 143 

Coded Messages (MSG Macro) 39 
Communication Initiated by the 
Operator 41 

Communication Region 37, 48 
Communication Region Macros 33 
Communication to the Problem Program 41 
Communication to the Supervisor via the 

1052 Printer-Keyboard 41 
Communication to the Supervisor via the 

System Control Panel 41 
Communications From the System to the 
Operator 39 

Compile or Assemble and Execute 62 
COMRG Macro Instruction 33 
CONFG Card 55 
Condense Library 91, 92 
Consecutive Processing 116, 103, 98 

150 Continuation Cards 49 
Control Card Format, General 49 
Control Card Processing 19 
Control Card Sequence (Job Control) 50 
Control Programs 31, 9, 18, 10 
Control Statement Format (Linkage 

150 Editor) 65 
Control Statement Placement 65 
Control Statements, Linkage Editor 64 
Copy System 93 
Copy-System Function 77 
Core Image Directory Size 14, 72 
Core Image Library 71, 23, 9, 28, 61 
Core Image Library, Contents of 28 
Core Image Library (Librarian 

Functions) 78 
Core Image Library (Maintenance 

Functions) 78 
Core Image Library (Service 

Functions) 81 
Core Image Library, Size of 72 
Core Sizes 191 
Core Storage Requirements 191 
CORGZ 93 
Count Area (DAM) 131, 133, 134 
Count Area (Disk Record) 158 
Count Area (ISFMS) 138 
Creation of Volume Labels (Disk) 
Creation of Volume Labels (Tape) 

161 
165 



Concept 155 Cylinder 
Cylinder 
Cylinder 
Cylinder 

Index (ISFMS) 142 
Overflow Area (ISFMS) 
Overflow Control Record 

138, 142 

(COCR) 142 

DASD (Direct Access Storage Device) 
Data Area (DAM) 131, 133 
Data Area (Disk Record) 158 
Data Area (ISFMS) 138 
Date, Calender 32 
Date Card 55 
Data File Areas 
Data Files 101 

24, 25 

Data Length (Disk Record) 
Data Management 97, 21 
Data Management Techniques 
Data Records 101 

158 

109 

Declarative File-Definition Macro 
Defective Track 159 
Delete Function 75 

80 Delete (Core Image Library) 
Delete (Macro Library) 84 
Delete (Relocatable Library) 87 
Description of System Pack 22 
Determining Optimum System Design 
Device Error Recovery 38 
Device Specifications, ASSGN Card 
Device Table 95, 47 
Device Type, ASSGN Card 51 

99 

27 

52 

Direct Access Address Chaining 106 
Direct Access Method (DAM) 130 99 
Directories (Librarian Functions) 90 
Directory Sizes 72, 73 
Discontinuous Binary Number 106 
Disk-File Organization 100 
Disk Input Files 164 
Disk Label Control Card 
Disk Label Processing 
Disk Labels 159 

53 
163 

Disk Output Files 
Disk Record Format 
Disk Record Format 
Disk Record Format 
Disk Pack 155 

164 
156 

(DAM) 
(ISFMS) 

131 
138 

Disk Pack Initialization and 
Maintenance 158 

Disk Sort/Merge 12, 20 
Disk Storage Drive (2311) 154 

171 

Disk Storage, Allocation of 72, 26, 27 
Disk Storage Space Formulas (ISFMS) 222 
Disk Storage Space Required for Libraries 

and Directories 72 
Disk Storage Space Requirements 
Disk Track Format 154 
Display and Punch (Core Image 
Library) 82 

Display and Punch (Macro Library) 
Display and Punch (Relocatable 
Library) 90 

Display (Core Image Library) 
Display (Device Table) 95 
Display (Directories) 90 
Display (Macro Library) 85 
Display (Relocatable Library) 
Divide Remainder Method 105 
DLAB Card 53 

81 

27 

86 

DSPCH 
DTFDA 
DTFIS 
DTFPH 
DTFSN 
DTFSR 
DUMP 

Control Card 82, 86, 90 
(Macro Instruction) 130 
(Macro Instruction) 137 
(Macro Instruction) III 
(Macro Instruction) 151 
(Macro Instruction) 116 
36, 42 

Edit and Store Label Information (Job 
Control) 49 

End Card 63, 64 
End-of-File Record, Disk 143, 146 
End of Job 18, 43 
ENDFL Macro Instruction (ISFMS) xx 
ENTRY Card 68, 64 
EOF Condition 37 
EOJ Macro Instruction 44, 25 
ERRBYTE (DTFDA) 136 
Error Condition 37 
Error Recovery Routines 38 
Error/Status Condition (DAM) 136 
Error/Status Field 136 
ESD Card 63, 64 
ESETL Macro (ISFMS) 149 
Example of Linkage Editor Input and 

Output 69 
EXCP Macro Instruction 38,. III 
EXEC Card 56 
EXIT Macro Instruction 34 
Extending a Disk File (ISFMS) 143 
External Interruption 34, 18 

Features Supported 12 
FETCH Marco Instruction 34, 42 
File Definition Macros 99 
File Labels, Additional Tape 
File Labels, Standard Disk 
File Labels, Standard Tape 
File Organization 102, 100 
File Processing 103, 100 
FILES Card 53, 57 

166 
161 
166 

Fixed-Job System 14, 22 
Fixed-Length Blocked Record Format 
Fixed-Length Records 101 
Fixed-Length Unblocked Record Format 
Format 1 DASD File Label 172 
Format 2 DASD File Label 180 
Format 3 DASD File Label 182 
Format 4 DASD File Label 183 

114 

Format 5 DASD File Label 186 
Format, Standard Tape File Label 

General Control Card Format 49 

114 

187 

General Linkage-Editor Control Statement 
Format 65 

GET (Consecutive Processing) 117, 118 
GET (ISFMS) 137, 149 

Header Labels, Tape 167 
Home Address (2311 Disk Storage 

Drives) 158, 155 
Home Addresses (Chaining Method) 106 

ID for Sequential Retrieval (ISFMS) 148 
ID Location (DAM) 135 
Identifier Field (Disk Record) 158 
Identifier, Record (DAM ID) 133 
IDLOC (DTFDA) 135 

Index 227 



Imperative Macro Instruction 99 
INCLUDE Card 64, 65, 68 
INCLUDE, Nesting of 68 
Indexed Sequential File Management System 

(ISFMS) 137, 99 
Independent Overflow Area (ISFMS) 138 
Indexes (ISFMS) 142 
Initial Program Loading 20, 25, 58 
Initialize Disk Utility Program 158, 161 
Input/Output Control Sys~em 

(IOCS) 98, 21 
Input/Output Main Storage Requirements 

(ISFMS) 138 
Installation Processing Programs 20 
Interrupt Key 36 
Interruption Handling 25, 18 
IOCS 98, 21 
IPL Loader 58, 25, 20, 9 
I/O Areas For Consecutive Processing 117 
I/O Areas For (DAM) 131 
I/O Areas For ISFMS 138 
I/O Device Assignment 47, 19 
I/O Interruption 36, 18 
I/O Register (ISFMS) 141 
ISFMS, Advantages 136 
ISFMS, Restrictions 136 

JOB Card 50 
Job Control 19, 44, 25, 9 
Job Control Cards 49 
Job Control Cards, Description and 

Format 50 
Job Control Functions 46 
Job-Tailored System 26 

Key Area (DAM) 131, 133 
Key Area (Disk Record) 158 
Key Area (ISFMS) 138 
Key Length (Disk Record) 158 

Label Control Card Area 24 
Label Checking 43 
Label Information, Edit and Store 
Label Processing 22, 43 
Label Processing, Disk 163 
Label Processing, Tape 167 
Labels 98 
Labels, Disk 159, 137, 99 
Labels, Tape 164, 99 
Language Translator Cards 63, 212 
Language Translators 20 
Librarian 70, 20, 9, 11 
Librarian Functions 74 
Librarian Functions (Core Image 
Library) 78 

Librarian Functions (Device Table) 
Librarian Functions (Directories) 
Librarian Functions (Macro Library) 
Librarian Functions (Relocatable 
Library) 86 

Library Areas 23, 71 
Library Condense 91, 92 
Library-Condense Function 77 
Library Sizes 72, 73 
Limitations, Single Drive System 
Linkage Editor 59, 20, 9 
Linkage Editor Control Statements 

228 S/360 BOS Prog. Guide 

49 

95 
90 

83 

15 

64 

Linkage Editor Input and Output, Example 
of 59, 69 

Linkage Editor Runs, Types of 59 
Load and Go 62 
Loaded File, Example of (ISFMS) 145 
Loader, System 42, 25, 17 
Loading or Extending a Disk File with 

ISFMS 141 
Loading Records (ISFMS) 143 
Load System 9, 20 
Log Card 56 
Logical File vs Physical Unit 100 
Logical IOCS 112, 21, 98 
Logical IOCS, Functions 112 
Logical Record 21, 98 
LORGZ 92 

Machine Check 36, 18 
Machine Requirements 10 
Hacro 21 
Macro Directory Size 72 
Macro Library 71, 23, 28, 9 
Macro Library, Contents of 28 
Macro Library (Librarian Function) 83 
Macro Library (Maintenance Functions) 
Macro Library (Service Functions) 85 
Macro Library Size 72 
Macro Instructions for Adding Records to 

a File (ISFMS) 146 
Macro Instructions for I/O Routines 
Macro Instructions for Loading a Disk 
File (ISFMS) 143 

Macro, File-Definition 99 
Macro, Imperative Statements 
Main Storage Areas (ISFMS) 
Main Storage I/O Area (DAM) 

99 
138 

131 
32 Main Storage Organization 

Maintenance Functions 74 
Maintenance Functions (Core Image 

Library) 78 
Maintenance Functions (Macro Library) 
Maintenance Functions (Relocatable 
r.ibrary) 86 

MAP (Linkage Editor) 66 
Master Index (ISFMS) 142 
Minimum Residence Size Estimates 14 
Minimum Residence Size Requirements 
Module, Object 61, 60 . 
Module, Source 60, 61 
MSG Macro Instruction 39, 34 
Multipack Files (ISFMS) 136 
Multi-File Processing, Single Drive 
Multiple Tracks, Search (DAM) 125 
Multiplexor Channel 37 

98 

14 

15 

83 

83 

MVCOM (Move to Communication Region) 33 

Names of IBM-Supplied Macros 220 
Names of IBM-Supplied Programs 215 
Names of System Programs 215 
NOLOG Card 56 
Nonstandard Tape Labels 168 
Normal and Abnormal End-of-Job 

Handling 43 

Object Module 60, 61 
Operating Characteristics 25 
Operating System Residence 22 
Operator Communication 39, 17 



Operator Handling Considerations 29 
Operator Reply via the 1052 Printer

Keyboard 40 
Operator Reply via the System Control 

Panel 40 
Optimum System Design 27 
Organization Functions 77, 74, 91 
Organization of Data Files 100 
Organization, Disk File 100 
Organization, Main Storage 32 
Organization, System Residence 20, 90 
Overflow Area (ISFMS) 142, 138 
Overflow Records 106 
Overlap of Processing and I/O 

(Summary) 118 
Overlays 61 

PAUSE Card 50, 56 
PC, Private Code 63 
PHASE Card 65, 66, 64 
Phase Directory 19, 50, 46 
Phase Entry Point 68 
Phase Entry Restrictions 69 
Phase, Program 61 
Physical I/O Control 17 
Physical I/O Macros 38 
Physical IOCS Ill, 21, 98 
Physical IOCS and Alternate Tracks 159 
Physical IOCS, Functions III 
Physical Record 98, 21 
Physical Unit Block (PUB) 47 
Physical Unit, (Logical File vs) 100 
Pre formatting the VTOC 161 
Prepare Programs for Execution (Job 

Control) 46 
Prime Area 108, 137 
Prime Number Division 105 
Problem Program 15 
Problem Program vs Supervisor 17 
Processing Disk Records by the ISFMS 

Method 137 
Processing Overlapped with Input/Output 

(Consecutive Processing) 118 
Processing Program vs Control Program 
Processing Programs 10 
Processing with Physical IOCS 
Processing with STR Devices 
Program Check 36, 18 

III 
149 

Program Development, Stages of 
Program Editing (Linkage Editor) 
Program Loading 25, 42, 17 
Program P'hases 61 
Program Structure 61 
Programming Language, Choice of 
PSERV (PUB Service) 95 
~UB Table 47, 95 

81 

89 

60 
59 

29 

Punch (Core Image Library) 
Punch (Macro Library) 85 
Punch (Relocatable Library) 
PUT (Consecutive Processing) 
PUT (ISFMS) 149, 137 

117, 118 

Queue, Definition of 36 

Random-Addressing Formula 105 
Random-Addressing Techniques 104 
Random File Organization 102, 103 

18 

Random Processing 103 
Random Retrieval (ISFMS) 
Randomizing 105 

147 

READ (DAM) 133, 130 
READ (ISFMS) 148, 137 
READ (STR) 151 
Reallocation 91 
Reallocation Function 77 
Record Identifier (DAM ID) 
Record Key (DAM) 134 
Record, Key Field with a (for 

ISFMS) 146, 138 

133 

Record Reference After (DAM) 134 
Record Reference by ID (for DAM) 
Record Reference by Key (for DAM) 
Record Reference (DAM) 133 
Record Reference RZERO (DAM) 
Record Types for Consecutive 
Processing 102, 113 

133 

133 
134 

Record Types (Direct Access Method) 
Record Types (ISFMS) 138 

130 

Record Zero (RO) 133, 155, 159 
Record Zero (RO) for Capacity-Record 

Option (DAM) 134 
Records, Adding to a File (by ISFMS) 
Records, Blocked for Consecutive 
Processing 107 

Records, Blocked (for DAM) 130 

146 

141 F 142 
Records, Blocked (for ISFMS) 139 
Records, Disk Indexes (for ISFMS) 
Records, Fixed-Length 114, 101 
Records, unblocked (ISFMS) 147, 139 

114, 101 
133 

Records, Undefined 115 
Records, Variable-Length 
Reference by ID (for DAM) 
Reference by Key (for DAM) 
Reference Methods (for DAM) 
Reference, Record (for DAM) 
Reference, Track (for DAM) 
Register Usage 216 

134, 133 
131 
133 

131 

Relative Sizes of Supervisors (Core 
Image Library) 79 

Relocatable Directory Size 73 
Relocatable Library 71, 24, 28, 9 
Relocatable Library Size 73 
Relocatable Library, Contents of 
Relocatable Library (Librarian 
Functions) 86 

Relocatable Library (Maintenance 
Functions) 86 

28 

Relocatable Library (Service Functions) 
Remote Job Entry 12, 21 
Rename (Core Image Library) 
Rename Function 74 
Rename (Macro Library) 84 
Rename (Relocatable Library) 
REND Card 87 

80 

88 

Reorganizing the Data File (ISFMS) 
REP Card 64 
Report Program Generator 29, 11, 28 
REPRO, Use of (Linkage Editor) 65 
Residence Requirements 14 
Residence, System 22 
RESTART Card 56 

147 

89 

Restarting Programs From Checkpoint 49 
RLD Card 64 
RSERV (Relocatable Library Service 

Function) 88 

Index 229 



Scheduling, I/O Commands 37, 17 
Search Multiple Tracks (DAM) 135 
Selector Channel 37 
SEREP Program 36 
Service Functions (Core Image Library) 81 
Service Functions, Librarian 77, 76, 74 
Service Functions (Macro Library) 85 
Service Functions (Relocatable Library) 88 
Service Programs vs Installation Processing 

Programs 20 
Sequence of Control Cards 50 
Sequence-Link Fields 145, 147 
Sequence-Link Field in Overflow Records 

(ISFMS) 148, 128 
102 Sequential File Organization 

Sequential Processing 103 
Sequential Retrieval (ISFMS) 
Sequential vs Random Organization 
Set Up Communication Region (Job 
Control) 48 

SETFL (ISFMS) 143 
SETL Macro (ISFMS) 149 
Single-Drive System Limitations 
Single-Phase Program 15 
Size Estimates, IOCS 192 

15 

Size Estimates, Minimum System 
Size Estimates, Supervisor 189 
Size of Core Image Directory 72 

14 

Size of Core Image Library 72 
Size of Macro Directory 72 
Size of Macro Library 72 
Size of Relocatable Directory 
Size of Relocatable Library 
SCLOS Macro (STR) 149 
SOPEN Macro (STR) 149 
Source Module 60, 61 

73 
73 

Sources of Input (Linkage Editor) 
SRCHM (DTFDA) 135 
Stacked Job Capability 111 

103 

65 

Stages of Program Development 60 
Standard File Label Formats (Disk) 
Standard File Label Formats (Tape) 
Standard File Labels (Disk) 161 
Standard File Labels (Tape) 166 
Standard Label Processing, Disk 
Standard Label Processing, Tape 
Standard Volume Labels (Disk) 
Standard Volume Labels (Tape) 
Standard Tape Label Set 165 

162 
165 

163 
167 

160 
165 

Storage Areas (Consecutive Processing) 
Storage Areas (Direct Access Method) 
Storage Areas (ISFMS) 138 
Storage Capacity (2311 Disk Pack) 
Storage Print 18 
Storage Requirements, Disk 
Storage Requirements, Main 

14, 72 
10, 189 

STR Processing 149, 99 
Structure of a Program 61 

33 STXIT Macro Instruction 
Supervisor 31, 17, 9 
Supervisor Call 34, 18 
Supervisor, Cataloging a New 
Supervisor Functions 34 
Supervisor, Problem Program vs 
Supervisor Sizes 189 
Surface Analysis 159 

79 

17 

155 

Symbolic Input/Output Assignment 
Symbolic Unit Numbers 51 

47 

230 S/360 BOS Prog. Guide 

117 
131 

Symbolic Units 47, 51 
Synchronous Transmitter/Receiver 
Processing 149, 99 

Synonyms, Random Addressing 
SYSCMAINT (SYSCMA) 78, 61 
System Concepts 16 
System Configuration 
System Control Program 
System Copy 93 
System Design 22 

10 
31 

104 

System Design, Determing Optimum 
System Generation 96 
System Loader 42, 25, 17 

27 

System Programs, Names of 217 
System Programming Requirements 28 
System Service Programs 59, 20, 9 
System/Operator Communication 39 

Tape File Labels 
Tape Input File 
Tape Labels 164 

166 
167 

Tape Marks with Nonstandard Tape Labels 168 
Tape Marks with Standard Tape Labels 167 
Tape Marks with Unlabeled Files 169 
Tape Output File 168 
Tape Volume Labels 165, 170 
Timer Interrupt 34 
Timings 198 
TPLAB Card 54 
Track Index 143 
Track Reference (DAM) 
Trailer Labels, Disk 
Trailer Labels, Tape 
Trailer Records 109 

131 
162 
167 

Transfer to User Routine, Program Check 
Transient Area 18 
Transient Routines 18 
TRUNC Macro Instruction 115 
Two Input/Output Areas (Consecutive 

Processing) 117 
TXT Card 64 
Types of Linkage Editor Runs 
~ypes of Records 102, 113 

61 

Unblocked Records (ISFMS) 139, 147 
Undefined Records 115 
Unlabeled Tape Files 169 
Updating (Consecutive Processing) 118 
UPSI Card 55, 48 
User Areas (Communication Region) 32 
User Header and Trailer Labels on Disk 
User Header and Trailer Labels on Tape 
User Program Switch Indicator 48, 55 
User Replace Card 64, 214 
User Routine 36, 138, 34 
Utilities 12 
Utility Programs 20 

Valid Reply Codes 40 
Variable-Job System 14 
Variable-Length Blocked Record Format 

(Consecutive Processing) 114 
Variable-Length Records 101 
Variable-Length, Unblocked Record Format 

(Consecutive Processing) 114 
VOL Card 53 
Volume Label, Disk 
Volume Label, Tape 

160 
165, 170 

36 

162 
167 



Volume Label, Tape or DASD, Format of 
Standard 170 

Volume Table of Contents 161, 24 
VTOC (Volume Table of Contents) 161, 24 

~.vAIT Macro Instruction 38, 151, 11 
NAITF Macro Inst.ruction (DAM) 130 
WAITM Macro Inst.ruction 
Work Areas 24 
Work Areas (Consecutive) 
Work Areas (DAM) 130 
Work Areas (DAM) 130 
Work Areas (ISFMS) 141 
WRITE (DAM) 130, 133 
WRITE (ISFMS) 137, 143, 
WRITE (STR) 149, 
Wrong Length Record 

XFR Card 64 
XTENT Card 54 

136 
(WLR) 

151, 111 

117 

147, 132 

Condition 37 

Index 231 







C24-3372-6 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y.I06ot 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[ International] 



READER'S COMMENT FORM 

IBM System/360 Basic Operating System 
Programmer's Guide C24-3372-6 

• Your comments, accompanied by answers to the following questions, help us produce better 
publications for your use. If your answer to a question is "No" or requires qualification, 
please explain in the spac~ provided below. All comments will be handled on a non-confi
dential basis. Copies of this and other IBM publications can be obtained through IBM 
Branch Offices. 

Yes No 

• Does this publication meet your needs? c:::J q 

• Did you find the material: 
Easy to read and understand? c:::J c:J 
Organized for convenient use? CJ c:::::J 
Complete? CJ c:::::J 
Well illustrated? CJ c:J 
Written for your technical level? CJ c:J 

• What is your occupation? ___________________________ _ 

• How do you use this publication? 
As an introduction to the subject? c::J As an instructor in a class? c::J 
For advanced knowledge of the subject? c::J As a student in a class? CJ 
For information about operating procedures? c:J As a reference manual? c:J 

Other ________________________________________________ _ 

• Please give specific page and lline references with your comments when appropriate. 

COMMENTS: 

• Thank you for your cooperation. No postage necessary if mailed in the U. S. A. 



C24·3372·6 

YOUR COMMENTS, PLEASE 

This publication is one of a series that serves as a reference source for systems 
analysts, programmers, and operators of IBM systems. Your answers to the .:J.ues
tions on the back of this form, together with your comments, help us produce 
better publications for your use. Each reply is carefully reviewed by the persons 
responsible for writing and publishing this material. All comments and sugges
tions become the property of IBM. 

Please note: Requests for copies of publications and for assistance in using your 
IBM system should be directed to your IBM representative or to the IBM sales 
office serving your locality. 

Fold Fold 

-----------------------------------------------------------

BUSINESS REPLY MAIL 
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES 

POSTAGE WILL BE PAID BY .•• 

IBM Corporation 

P. O. Box 6 

Endicott, N. Y. 13760 

Attention: Programming Publications, Dept. 157 

Fold 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y.I06ot 
[L!SA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, NewYDrk, NewYDrk 10017 
[International] 

FIRST CLASS 
PERMIT NO. 170 
ENDICOTI, N. Y. 

Fold 

: SluaUlUIO:; [BUO!HPPV 

.... 
:;) 

u 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236

