eEoEE . ([IRVEREER
e e il v s s e Wl CEEEE
[2] e i EE 2 R el
(ExmE R [EEEETE N
RS [EEsE s SN S e R
[s R $# W
TR ey [ETeE 2 2 S
TR aETms (R v RS

Control Program-67/Cambridge Monitor System
(CP-67/CMS) Version 3.2

Program Number 360D-05.2.005

CP-67 Program Logic Manual

This publication describes the internal logic of the
CP-67 (Control Program-67) system. The system
consists of a Control Program that creates a multi-
programming, time-sharing environment by providing
virtual machines for users to run their own operating
systems concurrently with other users. This manual

is directed to personnel who will be responsible for the
maintenance and modification of CP-67.

Type Il

GY20-0590-2

Class A Program

NOTICE
This Type III Program performs functions which may be fundamental
to the operation and maintenance of a system. It has not been
subjected to formal test by IBM.

Until program reclassification, IBM will provide

e Central Programming Service, including design error correction
and automatic distribution of corrections
e FE Programming Service, including:
(1) Design error verification
(2) APAR documentation and submission
(3) Application of Program Temporary Fixes or development of
an emergency bypass when required.

IBM does not guarantee service results or represent or warrant
that all errors will be corrected.

The user is expected to make the final evaluation as to the
usefulness of this program in his own environment.

THE FOREGOING IS IN LIEU OF ALL WARRANTIES EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

(o e —n - o — — - —— —— — —— ——— —— ——— — — — —— —

b o e e e e e e s —— —— —— — — —— — —— —— —

Third Edition (May 1973)

This is a major revision of, and makes obsolete, GY20-0590-1 and Technical
Newsletter GN20-2502. Extensive technical changes have been made to this
manual; therefore, the user should read it in its entirety.

This edition applies to Version 3, Modification Level 2, of Control
Program-67/Cambridge Monitor System (360D-05.2.005) and to all subsequent
versions and modifications until otherwise indicated in new editions or
Technical Newsletters.

Changes are periodically made to the specifications herein; before using
this publication, consult the latest IBM System/360 and System/370
Bibliography, GA22-6822, for the editions that are applicable and current.

Copies of this and other IBM publications can be obtained from your IBM
representative or from the IBM branch office serving your locality.

A readers' comments form has been provided at the back of this publication.
If this form has been removed, address comments to: IBM Corporation,

VM/370 Publications, 24 New England Executive Park, Burlington, Massachusetts
01803. Comments become the property of IBM.

PREFACE

The following documents are referenced in the CP-67 Program Logic Manual:

Functional Characteristics and Principles of Operation

IBM System/360 Model 67: Functional Characteristics, A27-2719

IEM System/360 Principles of Operation, RA22-6521

Assembler

IBM 0S/360: Assembler Language, C28-6514

IBM 0S/360: Assembler (F) Programmer's Guide, C26-3756

The following documents provide further information on CP-67:

CP-67/CMS User's Guide, GH20-0859

CP-67 Operator's Guide, GH20-0856

CP-67/CMS Installation Guide, GH20-0857

CP-67/CMS System Description Manual, GH20-0802

CMS Program Logic Manual, GY20-0591

CMS SCRIPT User's Manual, GH20-0860

CP-67/CMS Hardware Maintainability Guide, GH20-0858

CP-67: Operating Systems in a Virtual Machine, GH20-1029

CONTENTS

SECTION 1: INTRODUCTION TO CP-67
Machine Configuration
Virtual Computers
Time Sharing
Program States
Paging
Reader/Printer/Punch Input-Output
Other Input-Output

SECTION 2: METHOD OF OPERATION
System Setup Operations
Cylinder Allocation
Establishing User Directories
Additional Control Statements
USER Statement Processing
CORE Statement Processing
UNIT Statement Processing
OWN Statement Processing
EOU and *EOD* Statement Processing
System Backup Operation
Control Program Initialization
CHKPT Progranm
CPINIT Progranm
Core Table Initialization
Allocation Table Chaining
Attaching a User to the Systenm
IDENTIFY Routine
CONSINT Routine
LOGON Routine
UTABLE Initialization
Segment Table Creation
Swap Table Creation
virtual I/0 Block Creation
User Accounting Statistics
Processing Control Program I/O Requests
Real Multiplexer Channel I/O Operations
Card Reader Interruption
printer or Punch Interruption
Real Terminal I/O Operations
Read from a Terminal - RDCONS
Write to a Terminal - WRTCONS
Stack or Start Terminal I/O Requests - STCONS
Processing Terminal I/O Interruptions — CONSINT
Real Selector Channel Operations
Initiating Selector Channel I/0
Processing Selector Channel I/O Interruptions
Processing of I/0 Errors - IOERROR
Processing User Selector Channel I/0O Requests
Program Interruption Handler — PROGINT
privileged Instruction Simulator - PRIVLGED
Virtual Machine I/O Executive Program - VIOEXEC
CCW Translator — CCWTRANS
CCW Untranslator - UNTRANS
CCW Return to Free Storage — FREECCW
yirtual I/0 Request Queueing Routine - QUEVIO
virtual Channel Interruption Handler - VIRA
Routine to Analyze and Record ECTors - RECERROR
Main Dispatcher and Control Routine - DISPATCH
Processing User Multiplexer Channel I/0 Requests
STO on a Virtual Multiplexer Channel
TIO on a Virtual Multiplexer Channel
TCH on a Virtual Multiplexer Channel

COEFEWaA=

HIO on a Virtual Multiplexer Channel
Pseudc Timer Device - TIMR
Processing Dedicated Multiplexer Devices
Processing Virtual 2702 Lines
Processing a DIAL Request
Virtual RPQ's
Interruption Handling
SVC Interruptions
External Interruptions
Program Interruptions
Paging Interruptions
Privileged Operation Interruptions
The Diagnose Instruction
Machine Check Interruptions

Machine Check Error Recording Routine - MCKERR

Interruption Reflection
Main Storage Management (Paging)
Required Page in Core
Required Page Not in Core
Required Page in Transit
Obtaining Core for a Paging Operation
Reading a Required Page into Core
Returning Control
Shared Pages
Free Storage Management
Execution Control
Handling of a Virtual 67
Control Blocks
Different Format of the PSW
Reset Function
New Instructions

Handling Virtual Dynamic Address Translation

Virtual 67 Restriction

Console Functions
Console Function Subroutines
Console Function Descriptions

ACNT

ATTACH

BEGIN

CLOSE

DCP

DMCP

DETACH

DISABLE

DIRECT

DISCONNECT

DISPLAY

DRAIN

DUMP

D_U_M_P

ENABLE

EXTERNAL

IPL

IPLSAVE

KILL

LINK

LOCK

LOGIN

LOGOUT

MSG

PSWRESTART

PURGE

QUERY

READY

REPEAT

RESET

SET

SHUTDOWN

141

SLEEP
SPACE
SPOOL
START
STCP
STORE
TERMINATE
UNLOCK
WNG

XFER

SECTION 3: PROGRAMMING CONVENTIONS
Maintenance
Assembly Deck Format
Equivalence Packages and control Block Definitions
CP-67 Device Codes
cp-67 Equate Package - EQU67
Definition of Statistics Counters in CP Core
Subroutine Conventions and Register Usage
System Macro Usage
BAS, BASR, LMC, STMC, and LRA
CALL
ENTER and EXIT
GOTO
TRANS

SECTION 4: TABLES AND CONTROL BLOCK FORMATS
ALLOC
CCWPKG
CORTABLE
CPEXBLOK
CPFDENT
CPFFDBLK
CPFRECRD
EXTUTAB
JOTASK
LOGCDATA
LOGIDATA
LOGMDATA
MDENT
MRDEBLOK
MRIBUFF
MVDEBLOK
MVIBUFF
PAGTABLE
RHEADR and RCCWLIST
RCHBLOK
RCUBLOK
RDCONPKG
RDEVBLOK
RECBUF
SAVEAREA
SEGTABLE
SFBLOK
SWPTABLE
TREXT
UFDENT
UTABLE
VCHELOK
VCUBLOK
VDEVBLOK

SECTION 5: SUBROUTINE DESCRIPTIONS
System Modules
ACCTON
ACNTIME
ACNTOFF
CCWTRANS

141
142
142
143
143
a4
145
145
146
146

147
147
147
147
149
150
152
154
154
155
155
156
156
157

159
160
161
162
163
164
165
166
167
168
169
169
170
172
173
175
177
178
179
180
181
182
183
184
186
187
188
189
190
192
193
194
198
199
200

201
201
205
205
206
207

CFscoHM 208

CFSDBG 208
CFSIPL 209
CFSMAIN 209
CFSPRV 210
CFSQRY 210
CFSSET 211
CFSSPL 211
CFSTACH 212
CHKCUACT 212
CHKPT 213
CONSINT 214
CONVRT 215
CPCORE 216
CPFILE 217
CPINIT 218
CPSTACK . 219
CPSYM 219
DEDICATE 219
DIAGDSK 220
DIAL 221
DISPATCH 222
DSKDUMP 223
EXTEND 223
FREE 224
TIOERROR 228
JIOINT 229
IPL 230
LINK 231
LOGFILES 232
LOGIN 233
MRIOEXEC 234
MVIOEXEC 235
PACK 236
PAGEGET 236
PAGTR 2.37
PAGTRANS 238
PRIVLGED 2.39
PROGINT 240
PSA 241
QUEVIO 242
RDCONS 243
RDSCAN 244
RECFREE 245
RESINT 245
SAVECP 246
SCANUNIT 246
SCHEDULE 247
SCREDAT 247
STCONS 248
TMPSPACE 249
TRACER 250
UNSTIO 250
UNTRANS 255
USERLKUP 255
USEROFF 256
VIOEXEC 257
VSERSCH 257
WRTCONS 258
Utility Modules 259
DIRECT 260
FORMAT 260
SAVESYS 261
VDUMP 261

APPENDIX A: SAVE AREAS 263

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

REGISTER USAGE

CORE LAYOUT

CP-67 ABEND

CP-67 MEASUREMENT HOOKS

CP-67 CONTROL BLOCKS

ALPHABETICAL LISTING OF SYSTEM MODULES

BY ENTRY POINT

265
267
271
273

275

2717

ILLUSTRATIONS

FIGURES

1 Sharing Storage Among Concurrent Users

2 Page Swapping

3 Paging Operation

4 Tables and Files Created by DIRECT

5 CP-67 CHKPT

6 CP-67 Main Storage

7 CP-67 CPINIT

8 CP-67 CPSAVE

9 Chaining of Allocation Tables and Real Device Blocks
10 CP-67 Overview of Attaching a User to the System
11 LOGON Tables

12 Virtual Addressing

13 Virtual-Real I/0 Blocks

14 CP-67 I/0 Interrupt Handler

15 CP-67 MRIOEXEC

16 CP-67 RDCONS

17 CP-67 WRTCONS

18 CP-67 STCONS

19 Processing Real Selector Channel I/0 Tasks

20 CP-67 VIOEXEC

21 CP-67 MVIOEXEC

22 CP-67 CCWTRANS

23 CP-67 QUEVIO

24 Virtual SIO Selector Channel

25 vVirtual SIO MPX Channel (Nondedicated Punch or Printer)
26 Virtual SIO MPX Channel (Nondedicated Reader)
27 Real SIO MPX Channel (Punch or Printer)

28 Real SIO MPX Channel (Reader)

29 Real Terminal SIO (Write)

30 Real Terminal SIO (Read)

31 Virtual Terminal SIO (Write)

32 Virtual Terminal SIO (Read)

33 Processing a Virtual 2702 Line

34 Cp-67 SVC Interrupt Handler

35 CP-67 External Interrupt Handler

36 CP-67 Program and PRIVLGED Interrupt Handler
37 CP-67 PAGTRANS

38 CP-67 Machine Check Interrupt Handler

39 Processing and Reflecting of Interrupts

40 The Dispatcher Queues

41 Seven User States Within the Dispatcher

42 Calculating the State 5 Queue Priority

43 Criteria Calculation Necessary to Enter State 6
44 virtual 67 - Monosegment Machine

45 virtual 67 - Multisegment Machine

46 CP-67 FREE

47 CP-67 UNSTIO

48 CP-67 Real Low Core

49 0S JCL to Obtain CP Cross Reference Listing
TABLES

1 Summary of Access Allowed to DASD Devices by LOGON
2 Summary of Access Allowed by LINK

3 System Modules with Entry Points

28
135
203

SECTION 1: INTRODUCTION TO_CP-67

cp-67 is a Control Program designed for execution on an IBM System/360 Model 67.
Its objective is to create an environment in which many users can simultaneously perform
work and in which each user can perform his own work under the supervision of the
programming system of his choice., It achieves its objective by generating a “yirtual
computer" for each user and by sharing the resources of the real computer (CPU time, main
storage, etc.) among the virtual computers for all users that are concurrently logged
into the systen.

When a user identifies himself from a terminal, the Control Program *creates" for
his personal use a virtual computer from a predefined configuration. (Before the system
becomes available to users, the systems administrator defines the configuration of each
user's virtual machine. He may define different configurations for different users.) To
the user, his virtual computer appears real and he uses it as if it were. The Control
Program also provides, as part of the virtual computer, commands that parallel the
functions of the buttons and switches on an operator's console. The user issues these
commands from his terminal, and, thus, the terminal becomes a pseudo-console for his
virtual machine.

After the Control Program has created the virtual computer, the user equips it with
the programming system that gives him the desired functional capabilities. He does this
by issuing a command from his terminal. CP-67 is designed so that the user can run the
programming system (for example, Operating System/360) of his choice on his virtual
computer. The user who desires a terminal-oriented, conversational programming system

that allows him to directly monitor his work will choose CHMS.

MACHINE CONFIGURATION

DEVICES SUPPORTED BY CP-67

cp-67 is structured to run on an IBM System/360 Model 67. The mninimum machine
configuration for CP-67 is:

2067-1 or 2067-2 Processing Unit
Recommended feature:
#4434 Floating Storage Addressing (Model 1 only)

2365 Processor Storage
1052 Printer-Keyboard Model 7
1403 Printer
2540 Card Read Punch
3 2311 Disk Storage Drives or 2314 Direct Access Storage
Facility (2 drives minimum)
2400 or 3420 Nine-Track Magnetic Tape Unit, 800 or 1600 bpi
2702 or 2703 Transmission Control or
2701 Data Adapter Unit

TERMINALS SUPPORTED BY CP-67 AS MACHINE OPERATOR'S CONSOLE

1051/1052 Model 1 or Model 2 Data Communication System

Features and Specifications:

Section 1: Introduction to CP-67 1

Data Set Attachment
IBM Line Adapter
Receive Interrupt (#6100 or RPQ E27428)

Transmit Interrupt (#7900 or RPQ E26903)
Text Time-out Suppression (#9698)

(#9114)

(#4647)

required
required

required

1056 Card Reader Model 3

2741-1,-2 Communication Terminals

Features and Specifications:

Data Set Attachment (#9114)

Data Set Attachment (#9115)

IBM Line Adapter (#4635, #U4647)

Dial-Up (#3255) required

Receive Interrupt (#4708) required
Transmit Interrupt (#7900 or RPQ E40681)
Print Inhibit (#5501) desirable

required

Line control for teletypewriter terminals (¥) compatible with the IBM Telegraph Terminal
Control Type II Adapter (8~level ASCII code at 110 bps) .
TRANSMISSION CONTROL UNITS SUPPORTED BY CP-67
2701 Data Adapter Unit
Terminals 2701 Adapter
8-level ASCII, 7885
110 bpsx*
2702 Transmission Control
Terminal Terminal Line
Terminals Control Base Control Adapter
2741s, 1050 9696 or 7935 4615, 9684, 8200%x% 3233
8-level ASCII, 9697 or 7935 7912 3233
110 bps*
2703 Transmission Control
Line Speed Line Terminal Line
Terminals Option Set Control Bases
2741s,1050 u878 3205/6 4619,4696,8200%%% 7505
8-level ASCII, 4877 3205/6 7905, 7912 7505

110 bps*

—— e = > > = o >

* The customer is responsible for terminal compatibility
no responsibility for the impact that any changes to
programs may have on terminals provided by others.

with
the

this program. IBM assumes
IBM~-supplied products or

*% Feature 8200 on the 2702 is equivalent to
Break RPQ EU46765 on the 2702.

the 2741 Break feature #8055 and the Type I

% TFeature 8200 on the 2703 is equivalent to
I Break RPQ E53715 on the 2703.

the 2741 Break feature #8055 and the Type

2 CP-67 Program Logic Manual

OTHER DEVICES SUPPORTED BY CP-67

Additional devices used by CP-67 are:

2301 Drum Storage
2303 Drum Storage

2870 Multiplexer Channel
#6990, 6991, 6992 1, 2, 3 Selector Subchannels

DEVICES USED ONLY BY AN OPERATING SYSTEM IN A VIRTUAL MACHINE AND NOT BY CP-67

2321 Data Cell Drive
2400 Magnetic Tape Units

2250 Display Unit
2260 Display Station

2860 Selector Channel
#1850 Channel-to-Channel Adapter

2780 Data Transmission Terminal
1130 Computing Systen

VIRTUAL COMPUTERS

A virtual computing system is a time-sharing system that provides greater
flexibility of application to the user. A time-sharing system provides a set of software
facilities through which users share machine facilities; the extent of the software
facilities available to a user depends on how the systen is defined. A virtual computing
system simulates hardware facilities that allow the user to load a software systen
(Operating System/360, for example) that provides the particular facilities he requires;
the user - not the system - determines the facilities available to him.

For each user, CP-67 creates a virtual computer which is an exact replica of a
System 360; a programmer at a remote installation can use the computing system as if it
were exclusively his. CP-67 accomplishes this by:

e Scheduling and allocating main storage space, CPU time, and I/0 devices to the
virtual computers

e Handling all interruptions
e Protecting system files, user programs, and user data during execution
e Keeping statistics on the use and performance of the "real" systen

cp-67 can simulate a Model 65 or Model 67 (simplex, 24 bit addressing)
computing system, capable of executing any instruction except Diagnose.

For direct access storage devices, CP-67 will support more than one "user" or

virtual machine on a pack. This concept is called "mini-disks". Essentially, a
virtual machine is allocated a number of contiguous cylinders from the disk pack,
and these cylinders can be located starting at any "real® cylinder address. A

wrelocation" factor and "boundary" number define the start and extent of a user's
"pini-disk".

Section 1: Introduction to CP-67 3

N

The Control Program shares execution time in the central processing unit (CPU)
among the virtual computers on a demand basis and on a scheduled basis. The Control
Program schedules and allots units of CPU time to the virtual computers., When a
particular virtual computer has used up its unit of time, the Control Program
locates +the next ‘“runnable® virtual computer and passes control to it for a
corresponding interval of +time. If the virtual computer currently in control must
wait for some event, the Control Program gives control to another virtual computer
which has demanded the CPU,

PROGRAM STATES

When instructions in the Control Program (CP-67) are being executed, the real
computer is in the supervisor state; at all other times, when running virtual

machines, it is in the problem state. Therefore, privileged instructions can be
executed only by +the Control Program. Programs running on a virtual computer can
issue privileged instructions; such an instruction causes an interruption that is
handled by the Control Program. Under certain conditions, the Control Program

simulates the virtual privileged instructions.

PAGING

Paging is the technique used by the Control Program to share main storage among
concurrent users. The objective of this technique is to keep in main storage only
those portions of each user's program that are required at a given ©point in tinme.
This eliminates the need for the prograumer to externally segment each program into
manageable units. The units autoratically used by CP-67 are 4096-byte blocks called
"pages", By breaking programs into pages, main storage can be allocated in page
increments, and pages can be loaded dynamically for execution, Thus, at execution
time, main storage holds only the active part of each user's program.

When a user starts his session, the Control Program, as a result of an IPL
operation (see the description of IPL under "Console Function Subroutines® in
Section 2) places the user's programming system IPL program into main storage. The
page is loaded 4into an available block of main storage that starts on a page
boundary. The page is not necessarily loaded at the same relative main storage
position as it would occupy were the programming system running on a real computer.
This is possible because of the dynamic address relocation abilities of the Model
67. (Refer to IBM_System/360 Model 67: Functional Characteristics, A27-2719.)

As the wuser's program is executing, the hardware dynamically converts
references to relative addresses into actual main storage addresses. When the
program refers to an address in a page that is not in main storage, an interruption
occurs and the Control Program loads the required page into main storage. Then
execution continues with the referenced addresses being dynamically relocated.,

Because of the dynamic address relocation feature, the pages of a user program
need not occupy contiguous locations and may be scattered throughout main storage
(see Figure 1). Also, because of the high demand for main storage in a
multiple-user environment, the Control Program shares main storage among the active
pages of the programming systems of competing users.,

CP-67 Program Logic Manual

Secondary
Storage

o

Dormant
pages of
users A,
B, and C.

L
1N

voooL

C A|B AlA c|{B|A|B|A|A]|C

7 Active pages in main storage

Figure 1. Sharing Storage Among Concurrent Users

Finally, when main storage is completely filled and it becomes necessary to
bring in another page, page swapping occurs. An appropriate page of one user's
program in main storage is written onto secondary storage and the required page is
brought into main storage in its place. (If the page to be replaced has previously
been swapped, and has not been modified since it was last swapped, it is not
necessary to write it onto secondary storage because a copy already exists there.)
When the particular page that was replaced is again required, it is obtained from
secondary storage and swapped with one that is in main storage (see Figure 2).

Section 1: Introduction to CP-67

5

6

O Main storage <>
=<
First reference

Paging overfiow Main IEst reten
Area Storage (g Origin

Swapped page to page

B

needed again

\/ \/

Figure 2. Page Swapping

The following 1ist contains some statistics on the drums and disks wused for
paging.

Paging Devices

2301 4096 bytes/record 9 records/2 tracks

2303 4096 bytes/record 1 record/track

2314 829 bytes/record, 15 records/2 tracks
5 records/page

2311 829 bytes/record, 4 records/track

5 records/page

The following are guidelines for the number of cylinders required for paging virtual
memory. Note that CP-67 does not allocate pages for virtual memory until each page
has been referenced. When the first page is referenced, the address of the swapping
area is put in the control block called the SWPTABLE. These guidelines represent
the total number of cylinders required if all the pages of 256K virtual memory are
referenced.

Number of Cylinders Required

Virt_Memory_Size Device Type for Paging
256K 2311 8
256K 2314 32

Figure 3 gives an overview of the paging operation.

CP-67 Program Logic Manual

|
l
|

] Virtual [Hardware
Virtual Program Machine Channel

I and

| Device

1/0 interrupts

from reading a page

T
Page relocation exception |
program interrupt |

Control Program

| __ DISPATCH _ _ _| ____PEO_GLNI _____ I0INT PAGETRANS(WAITPAGE)
Attempt to dispatch Issue TRANS macro Locate 1/0 Task block B T:i:d:s:r :j-e;e;e_nt_]
:)h»s user lirl\ould <t Page in core go to DISPATCH < Process interrupts | | Page wait count
PRI Page not in core Return to program Set storage Keys
call PAGTRANS that created the l—— from SWPTABLE
¥g§$%A0TASK> Release IOTASK block
Call CPSTACK
go to DISPATCH

PAGTRANS * + *

Locate core
table entry DISPATCH CPSTACK
QUEVI0 (QUERIO) Set up PAGTABLE, Process CPEXBLOK
Chain IOTASK to R Put CPEXBLOK
o e ekl ~@___| CORTABLE,SWPTABLE e RHEGINT. Put CPEXBL
RCHBLOK Create IOTASK block TRANS macro is
If channel is free, ! Set up CCW's to reexecuted
call CHFREE read a page
Call QUERIO
Increment page
wait count

Set up CPEXBLOK

QUEVIO (CHFREE)

. Chain CPEXBLOK
If control unit is to IOTASK

free, issue SIO
Go to DISPATCH

Y

DISPATCH

Page wait is on
for this user

Dispatch another user

Figure 3. Paging Operation

Section 1: Introduction to CP-67 7

8

READER/PRINTER/PUNCH INPUT~QUTPUT

The Control Program simulates card reader, punch, and printer operations
requested for programs running on virtual computers by using a spooling operation to
simulate multiple virtual unit record devices. If user A has a program running on a
virtual machine and wishes to process a card file, that file may be placed in user
A's virtual card reader in one of two ways. It may be transferred to user A by
having another user (user B) punch the file into his virtual punch after having used
the XFER command to indicate that the file should be delivered to user A's virtual
card reader. It may also be submitted to the machine-roon operator, headed by a card
identifying the user for whonm it is intended, and entered by the operator into the

system. When the operator enters the file (through the real card reader) the
Control Program converts it to a disk file which is associated with the
corresponding virtual computer. Then, when a program running on that virtual

machine issues a start input-output (SIO) instruction to the virtual card reader,
the Control Program intercepts it, takes the appropriate card image from +the disk
file, and makes it available to the program in the same manner as the real card
reader would. This process is repeated for each subsequent operation directed to the
virtual card reader. This process works in reverse for punch and printer operation.
When a program on a virtual machine wishes to create printer or punch output, it
issues successive SIO operations to its virtual printer or punch. The Control
Program intercepts these attempted input-output operations, obtains the print line
or punched card images, and creates a disk file from them. The disk file is then
printed or punched on the real devices at a later time when the device is available
for use.

OTHER INPUT-QUTPUT

Other input-output operations issued by programs running on a wuser's virtual
machine are converted to real input-output operations by the Control Progranm,
Translation consists of four nmajor steps: (1) device address translation, (2)
command sequence translation with appropriate paging operations, (3) scheduling the
input-output operation on the real hardware, and (4) receiving and properly
reflecting the interrupts returning from the input-output operation after being
started.

During device address translation, the Control Program converts the virtual
device address associated with the SIO operation to its real equivalent., This
conversion is required because each virtual device has been mapped to an extent or
area on an equivalent device on the real computer during system set-up operations.
To illustrate how this conversion works, assume that the user has a virtual disk at
address 190 and that this has been mapped to an extent starting at cylinder 10 on a
real disk whose label is DISKO1. Assume further that at system start-up time it has
been ascertained that DISKO01 is currently mounted on real disk drive 235. If a user
program issues a write to cylinder 00 track 0 record 1 of the virtual disk 190, the
Control Program will intercept it and convert it to a write to cylinder 10 track 0
record 1 of the real disk at 235, Conversion of reads from virtual disks are
handled similarly.

During command sequence translation, the Control Program (via CCWTRANS)
converts the channel command sequence provided by the wvirtual machine into an
equivalent real channel command word list. This is required because virtual channel
command words can refer to contiguous virtual memory space overlapping a page
boundary. In the real machine, these virtual pages would not necessarily be in
contiguous real pages, and the channel command word involved must be split (via the
chain data feature) into two or more channel command words which refer to the real
core addresses and which perform the same function. Thus the entire virtual CCW
sequence 1is translated into an equivalent sequence held in free storage. The
channel is then run off of the real sequence. Note that this is the source of a
major restriction in CP-67--channel command sequences may not be modified while the
input-output operation is in progress. The modifications will not be reflected in

CP-67 Program Logic Manual

real memory, on which the real channel is running.

If the ISAM option has been chosen during the generation of CP, and a virtual
pnachine has been assigned the ISAM option in the directory, certain self-modifying
I/0 sequences will be supported (specifically O0S-ISAM). The channel program 1is
scanned to determine whether any of the channel command words modify other channel
command words within this I/0 sequence. The channel program is retranslated and
reexecuted for each channel command word that modifies another channel command word
within the channel program. (See "CCW Translator - CCWTRANS" for details.)

The scheduling of the input-output operation is handled by QUEVIO and CHFREE,
which are discussed elsewhere. They return to the virtual input-output executive
(VIOEXEC) when the operation is finished.

The interruption processing is provided by VIOEXEC after initial processing by
IOINT. The interrupts are unstacked to the user in the same order as they would
appear in the real machine. UNTRANS is called to convert the addresses returned in
the channel status word (which refer to the input-output string in real memory) to
the virtual addresses required by the user.

Section 1: Introduction to CP-67 9

10

SECTION 2: _METHOD OF OPERATION

This section segments CP-67 into its functional wunits and discusses each as an
entity.

SYSTEM SETUP OPERATIONS

Before initializing the Control Program, the DIRECT stand-alone utility routine
must be used to allocate cylinders between permanent file space and temporary
spooling and paging space. It is assumed that the disk packs involved have been
formatted and labeled (via the FORMAT utility) into the CP-67 format.

Input to DIRECT may be of two types: (1) control statements specifying
allocation of DASD cylinders (ALLOCATE) and (2) control cards defining a user's
virtual system (DIRECTORY). Figure 4 illustrates the relationships of tables and
files created by DIRECT.

System
Residence
Volume

\ //'r
Allocation Owned

Table List

—

@ *,
System User User
F|.|e Directory Machine
Directory (U DIRECT) Description
File

Figure 4. Tables and Files Created by DIRECT

CP-67 Program Logic Manual

CYLINDER ALLOCATION

DIRECT reads +the allocation table from the volume specified in the ALLOCATE
statement and determines whether temporary or permanent allocation is requested.

Temporary cylinder allocation (making the cylinders available for temporary
usage, such as paging and spooling) is indicated by placing an x'00' in the
corresponding allocation table entry. Permanent cylinder allocation (making
cylinders available for permanent file residence) is indicated by placing an x'01°?
in the entry. Cylinders to be used as T (temporary) disk space are designated by an
x'02' while cylinders containing user directories are marked x'04'.

At the end of an allocation run for a particular volume (indicated by an *EOA*
statement), cylinder 0 is permanently allocated (for the allocation table itself and
the label) and an x'0F' is placed in the last allocation table entry.

ESTABLISHING USER DIRECTORIES

When a DIRECTORY control statement is read by DIRECT, a system residence volume
Wwill be created on the unit specified in the control statement. The allocation table
is read from the system residence volume, and the "owned" list is initialized to
contain the system residence volume. The owned 1list, beginning with the first byte
after the allocation table, contains the VOLIDS of all volumes to be considered
owned by the Control Program and available for possible temporary allocation. The
system residence volume VOLID becomes the first entry in the owned list,

The "system file directory" is created; the system file directory contains
information (such as file name, volume label, and device position of first record)
for all files wused internally by the Control Progranm. An entry for the "user
directory file" (U.DIRECT) is initially placed in the system file directory.

ADDITIONAL CONTROL STATEMENTS

After the owned 1list and the system file directory have been initialized,
additional control statements which identify users and configure their virtual
machines are read. The following paragraphs describe the processing performed for
each record type.

USER Statement Processing

USER statements supply identification and accounting information for users of
Cp-67. Before a user directory file entry is created for the USER statement, the
user machine description file must be opened, and the first four bytes of a new
machine description entry are reserved for the virtual machine core size. Entries
are created for USER statements and written onto disk as records in the user
directory file (U.DIRECT). User directory entries contain the following information
for each user:

User's external identification
User's password
Accounting information

User's machine description file name

Section 2: Method of Operation 11

User's privilege class
User's priority

User's options

CORE Statement Processing

CORE statements define the size of core storage in the virtual machine being
defined for the user identified in the preceding USER statement. The core size desired
must be a multiple of 8K (=8192) bytes and may be specified as either "nnnK" or “nnnM".
The size is entered into the first four bytes of the user's machine description record.

UNIT Statement Processing

UNIT statements define virtual devices in the virtual machine being defined for the

ts
preceding USER caré. The following type of information is placed in the user machine
description file entry (MDENT) for each specified device:

Virtual device address

Device type

Device relocation factor for DASD devices

Device bound for DASD devices

Passwords and status information for device access

See the description of control block MDENT in Section 4 for details.

OWN Statement Processing

OWN statements specify the VOLIDs of volumes to be considered "owned" by the
Control Program. Each specified VOLID is added +to the "owned" list, which is retained
after the allocation table on cylinder 0 head 0 record 3 of the system residence volune.
An "owned" volume is any disk on which an allocation table has been written; it contains
user files and/or temporary spooling and paging areas used by the Control Program.

EOU and *EOD* Statement Processing

An *EOU* statement indicates the end of a machine description for a particular user.
A unique name is generated for the user machine description file (actually a floating
point number starting at 1.0 and incrementing by 1.0 for each new file), and is placed in
the corresponding user directory entry. The user machine description file is then
written onto disk.

An *EOD* statement indicates the end of input for the wuser directory creation
process. The user directory (U.DIRECT), the system file directory, and the systenm
residence volume allocation table are written onto the disk to complete DIRECT
processing.

Complete specifications for creating the user directory are contained in the CP-67
Operator's Guide under "Directory Allocation and Creation®".

12 CP~67 Program Logic Manual

SYSTEM BACKUP OPERATION VIA CMS DUMP COMMAND

The CMS Tape Dump command is designed for user virtual machine back-up functions.
The CMS program, CPDMPRST, is available for both users and the operations department, to
back-up 2311 or 2314 disk packs--either minidisks or full volumes containing one or more
minidisks of varying formats. During dumps, if a bad track is encountered for which an
alternate track was assigned by the MINIDASD program, the data indicating a bad track
will be written on the dump volume. Should the dump volume be restored to the original
volume that was dumped, the bad track will remain flagged as bad. If the dump volume is
restored to a volume other than the one originally dumped, the bad track must be
recovered. This can be accomplished by use of the MINIDASD progranm in combination with
the proper operating system utility program to copy files from the old area, or a
temporary area created by the restore operation, to the newly formatted area.

The CPDMPRST program is modeled after the stand-alone dump/restore utility program
of 0S/360.

CONTROL PROGRAM INITIALIZATION

CHKPT PROGRAM

The IPL sequence reads the CHKPT programn from the IPL'ed disk into low core at
location X'800'. The CHKPT program performs the following functions:

Examines the CPID word at X'1FC'. If the word contains "CP67" or "SHUT", the IPL is
to a "warm" machine (that is, CP-67 has been running, and accounting information and
spool file data is available in core); if the CPID word contains anything else, a
"eold" machine is assumed and the CHKPT program proceeds to the second phase of
initialization described below.

For a "warn" machine, the CHKPT program Tretrieves user accounting data from the
UTABLES and unpunched accounting cards; gets accounting for dedicated devices; saves
the system LOGMSG; saves printer, punch, and reader spool file blocks (SFBLOK); and
saves the spool file delete chain. The data is written on the IPL'ed disk at the

SYSWRM cylinder.

If the CPID word contains "CP67", the CHKPT program proceeds to the second phase
below. If the CPID word contains "SHUT", shutdown messages are printed, and
processing is completed.

The second phase of initialization involves reading the SAVECP program and VOLID
from the IPL'ed disk (records 2 and 3) into high core (X'25000°") and transfering
control to the RESTORE function of SAVECP.

SAVECP (RESTORE function) reads the CP-67 nucleus from disk (SYSDNC cylinder) into
core from X'33D' to X'25000'; control is transfered to the CPINIT program now loaded
at X'23000°.

See Figure 5 for a diagram of the CHKPT progran operation.

Section 2: HMethod of Operation 13

SIO to console
'SYSTEM ACCT
AND SPOOL FILES
SAVED SYSTEM
SHUTDOWN
COMPLETE"

LPSW
WAIT

Figure 5,

Enter

module CHKPT
entry CHKPT

IPL sequence reads ‘CHKPT’

program from the IPL ed disk
into core and XFERS control
to ‘CHKPT’

Warm
Start

Set up program
and machine
PSWS

Cold
Start

Move ‘Cold’
to IDENT

Issue HIO to
all real
MPX devices

Write account
info to warm
start cyl

Save
LOGMSG

Save
spooling
blocks

No

Move ‘warm’
to IDENT

SIO to SYSRES
read SAVECP
program and
VOLID

Go to
CPSAVS
RESTORE)

Flowchart of CHKPT Operation

14 -CP-67 Program Logic Manual

CPINIT PROGRAM
The CPINIT program performs the following functions: (See Figures 6, 7, and 8 for map of
Main Storage after IPL and flowcharts of CPINIT and CPSAVE operations.)

Determines, by examining the CPID word, whether initializing is on a warm machine
after a disk ABEND dump

Loads the 360/67 control registers
Sets the new PSH's
Computes the real machine core size

Creates and initializes the CORTABLE at the end of the resident nucleus (size is
determined by "real" machine size)

Initializes 35 save areas for CP-67 linkage at the end of the CORTABLE
Initializes 5 additional save areas for CP-67 linkage during an EXTEND operation
Determines whether IPL'ed on left or right half of a possible duplex configuration

Calls FREE and FRET to obtain working free storage area based upon "real” machine
size

Creates control block for IPL'ed disk allocation table and OWNED list
Determines availability of all DASD devices defined in the real I/0 (RIO)
configuration; reads VOLID of all available DASD devices; chains allocation tables

of all available OWNed volumes

Locates 1052 system console and writes initialization message; if nmessage fails,
rings alarm, locates emergency console, and initializes for emergency startup

Calls AUTOLOGON to log in the system operator

Checks the OWNED list for volumes not mounted and gives messages

Checks core size for SYSCORE size; gives message if not equal

Checks for timer in operation

Prompts operator to set date and time and to specify startup parameters

For a WARM start, reads the data from the SYSWRM cylinder and restructures the
LOGMSG and spool file control blocks; chains the accounting information for punching

Invalidates the SYSWRM data to avoid future erroneous startup
Gets spooling space and control blocks for a disk dump

Calls FINDLOG to initialize the error recording

Commences spooling output if any

Sets the CPID word to "CP67"

Runs the systenm

Section 2: Method of Operation 15

00
CP-67 NUCLEUS
FREELIST SUBTABLE
/—_—l SIZE DBL WDS
SIZE DBL WDS
CORE TABLE
35 SAVE AREAS
5 “EXTEND" SAVE AREAS
Subpool K $
Allocation O NEXT SIZE
USER AREA
EXTENDED PAGE
\. -
(—— NEXT I SIZE
C P
C— NEXT ’
saaill od
(S
o |
\ P
Non-Subpool 0 l SIZE I
Allocation
>29 DBL WDS

Figure 6. CP Main Storage after IPL

16 CP-67 Program Logic Manual

—

3

3

EREEY Set RESERVED f‘gﬁl'\\"ﬁ“'s&' Set up allocation
module CPINIT status of tables, OWNED
entry CPINIT SYSRES if Look for list, and RDEVBLOK
applicable RDEVBLQK for of all CP volumes
IPLed device
@
A
Set up allocation
Set i Set CREG 4 table and RDEVBLOK Search MPX chain
new F?SWs for all for IPLed device. for operator’s
enabled Set OWNED and (1052) console
SYSTEM flags
4
. Read volume
S8 dumponit Create and serial numbers Get
tauprinier initialize the of all available 1052 emergency
r :
XgrE?\:g;\“T CORTARLE real DASD available console
devices
Clear diagnostic Initiali Issue normal
scan-out and ar 1218 start or restart Force an
channel logout are;ave message to interrupt
areas s operator
C
(!ﬁii'nﬁvivnfé’f Lock and mark Enter CPIEMRG G5t
etc) : CP pages “CP* from CONSINT DISPATCH
A
Set CPSTATUS eyl s sl Ring
to IDLE ‘not in use’ EXIT OK slanm
Yes
L4
LOGON (AUTLOGON)
SI0 sense to Place OPERATOR
IPLed disk on UTABLE LOGON the
(SYSRES) chain system operator
LOGON (AUTLOGON)
Load ol Select channel No
re(;?stecr(;n ro for right or b LOGON the
left CP, CONS. system operator
Yes
Set storage FREE (FRETR) Enable 1/0
keys to 0 and Eret unused interrupts Yes LOGON
successful

reset CFWAIT

compute real part of last
machine size CP page bit for oper.
B I
s EXTEND :‘?‘j’n't‘:(: - Check real vs
or L o5 Lt SYSGEN Core

interrupt from Initialize for devices in i
S10 sense free storage OWNED list and msg’if ey

area not mounted

L

Figure 7.

[

Flowchart of CPINIT Operation (1 of 3)

Section 2:

Method of Operation

17

Ye
Enter after msg S Update
“turn on timer"’ clock
No
5
WRTCONS
Interval
Limey Message
“turn on timer”’

Running Go to
virtual

DISPATCH

No

WRTCONS
Get time
from pseudo- Messages for
clock

set date and
time

Parameter
coLb

Set
WARMCOLD
=01

RDCONS

WRTCONS

Read date Issue
and time from shutdown
console message

Parameter
SHUT

Clear files LPSW
and chains WAIT

Parameter Set

WARMCOLD
=02

WRTCONS

Message for
start parameters

RDCONS

WRTCONS
Read start
parameters

Issue message
“WARMSTART"

2
Figure 7. Flowchart of CPINIT Operation (2 of 3)

18 CP-67 Program Logic Manual

I0ERROR (FINDLOG)

Set up 1/0 and
mch chk error
recording cyl.

Read accounting
information from
WARM START
cylinder

Chain account LOG FILES
cards to Count number of
MREALIO closed spool file
entries RDR, PCH, PRT
WRTCONS
Read Read spool file Get
LOGMSG delete chain Issue message MRDEBLOK
for number of
spool file entries
Chain LOGMSG et file Unit
| record
toSYSINF to MRIDLCHN Sevics
Read Clear WARM
spooling START WARMCOLD Set CPID
blocks cylinder =02 =CP67
Chain spooling Calculate disk .
blocks to space needed Digin Emergency
PRINTERS, READERS for a dump interrupts console
or PUNCHES started
TMPSPACE
Read
allocation Exit
Get space on
blocks disk for dump to CONSINT
MRIOEXEC
Chain allocation Set up 10
blocks to spooling file Initiate Go to
RECSTART block for dump 1/0 DISPATCH
operations

Figure 7. Flowchart of CPINIT Operation (3 of 3)

Section 2: Method of Operation 19

Enter

module CPSAVE
entry restore

Read CP-67
nucleus
from disk

y
Go to
CPINIT

Figure 8. Flowchart of CPSAVE Operation

Core Table Initialization

The core table consists of a 16-btye entry for each page (4096 bytes) of real core.
Each core table entry will point to a corresponding entry in the swap table, which is
used by core management routines in paging. The physical location of a page in real core
is determined by the relative location of its corresponding entry in the core table; for
example, the first core table entry corresponds to the first page of real core. The core
table entries for the pages which contain the Control Program are locked with an
identifier of "*CP*" to make them unavailable for paging operations. The remainder of
the core table entries are initialized to X'00FFFFFF'.

For a real machine with a 256K main storage, the unused portion of the last Control
Program page and six additional pages are reserved as a Control Program work area. For
each additional core box, six more pages are reserved for the 1larger expected number of
users. The pages for free storage are also locked and identified with "FREE".

Allocation Table Chaining

The address of the system residence VOLID and of the allocation table for the systen
residence volume is passed to CPINIT by the routine SAVECP. The VOLID and allocation
table address are entered into the real device control block (RDEVBLOK) for the system
residence device.

Each additional real device control block is examined to determine whether the
corresponding device is mounted. VOLIDs are read from all mounted devices and compared
against the entries in the OWNED list (obtained from the system residence volume).
Allocation tables from all owned volumes are read and chained according to device type.

Figure 9 illustrates the chaining of allocation tables and their relationship to
real device control blocks.

20 CP=67 Program Logic Manual

T2311
T2314

T2301

T2303

Figure 9. Chaining of Allocation Tables and Real Device Blocks

System

Residence Volume
(2314)
Allocation Table .

(2314)
Allocation Table

(2314)
Allocation Table

E’

(] e 0
e o—
Allocation Allocation
Data Data
oF | oF |
Count | Count l
Pointers to Pointers to
10TASKs 10TASKs
RDEVBLOK RDEVBLOK
"RDEVTYPE RDEVTYPE
144 144
RDEVALLN RDEVALLN

=]

Section 2:

e
- 3 ¢ o
PS o]
P
Allocation Allocation Allocation
Data Data Data
| OF I OF | OF
RDEVBLOK RDEVBLOK RDEVBLOK
RDEVTYPE RDEVTYPE RDEVTYPE
| 132 132 132
RDEVALLN RDEVALLN RDEVALLN
= | =
(2301) (2301)
Allocation Table Allocation Table

Method of Operation

21

ATTACHING A USER TO THE SYSTEM

(See Figure 10 for an overview diagram.)

IDENTIFY Routine

When the Control Program receives the initial interrupt from a terminal (normally
initiated by dialing in on a data-phone) the IDENTIFY routine is entered. IDENTIFY
performs the following operations:)

Determines the terminal device type (1050 or 2741) and enters the type into the
multiplexer real device block (MRDEBLOK) .

Writes to the terminal the message "CP-67 Online".

Places the address of the BREAK routine in the multiplexer interrupt return address
(MIRR) .

Puts the terminal line in a state to receive an attention.

CONSINT Routine

When the next terminal interrupt occurs, the CONSINT routine receives control (via
MIRA) . CONSINT is also entered whenever the input-output interrupt handler (IOINT)
determines that a terminal interrupt has occurred from the request or attention button on
the terminal. CONSINT determines whether a user is logged on at the terminal; if not, the
LOGON routine is called to attach the new user to the system.

LOGON Routine

Operations performed by LOGIN are:
Allocating and initializing the primary user control table (UTABLE) .

Checking the user's external identification (USERID) and password against entries in
the user directory.

Allocating and initializing the SEGTABLE, PAGTABLE, and SWPTABLE for the wuser's
machine.

Allocating the UTABLE extension (EXTUTAB) if the virtual machine is a Model 67.
Creating virtual I/0 blocks to describe the user's virtual machine.

Mapping virtual devices to real devices by chaining virtual device blocks to real
device blocks.

Figure 11 indicates the relationships of tables created by the LOGIN routine. When LOGIN

functions are completed, the user is placed in console function mode with a read on his
terminal by CONSINT calling BREAK.

22 CP-67 Program Logic Manual

Console or
terminal

1/0 interrupts
from 270X and terminal

I0INT

Get MRDEBLOK
Get users UTABLE
Call CONSINT

to process
interrupts for the
device

MIRA = entry points
in CONSINT

Go to dispatch

Hardware
Channel
and Device

Control Program

T 1

)

DISPATCH

Dispatch any user
If CFSMAIN issued a

CONSINT (IDENTIFY)

Send break

Set device type in
MRDEBLOK

Send break, write,
msg. ‘CP-67 on line’

Send prepare

Call LOGON

Call BREAK

Get CCWPKG

In attention
call BREAK

If read edit and
translate input line

Initialize UTABLE

Initialize MVDEBLOK
for terminal device

Prompt for USERID &
password (calls to
WRTCONS & RDCONS)
Initialize SEGTABLE,
PAGTABLE and
SWPTABLE

Initialize 1/0 blocks

Type log msg.
(call to WRTCONS)

See overview of
real S10 terminal
write and read

normal read a CPEXBLOK Call CPSTACK
is outstanding.
Process CPEXBLOK If more CCWPKG's get CFSMAIN (BREAK)
return to location next and issue 510 _Ty; 'CF (caT to_ -
designated by CFSMAIN
(CONRET) return 1f no CCWPKG's issue WRTCONS)
address in RDCONPKG prepare
Issue read to the
Terminal
(call to RDCONS)
CFSMAIN (CONRET)
Scan input line CPSTACK
separate fields i R R S — o
Test for valid Put RDCONPKG in
command and branch CPSTACK - CPEXBLOK
to command routine
Do the command
processing Note:
Return from command
routine determined During LOGIN, 'CONSINT' changes
by command routine the return address in MRDEBLOK - MIRA
" for return entries into 'CONSINT’
Go to dispatch
1 = Initial entry after dial-up MIRA = IDENTIFY
2 = Entry after break MIRA = IDENT1
3= Entry after write MIRA = SNDPRP
4 = Entry after prepare MIRA = PREPCHK
DISPAT
_ = — li’j _CH___ e sl 5 = Normal entry after LOGIN MIRA = RTN41ND
. for command processing.
Dispatch any user Normal entry for operators console MIRA = CONSINT

Figure 10. CP-67 Overview of Attaching a User to the Systen

Section 2: Method of Operation 23

UTABLE SEGTABLE Page Table
. _
|
= >
SEGTABLE il
*r—y *——
o |
L
VMXSTART VCHSTART \
RN
Page Table
NEXTUSER EXTUTAB
v
o]
Multiplexer Virtual
Virtual Channel
Device Block Block
Page Table
— |
UTABLE O]
Core Table Swap Table
o *o—
p L I S
S e T -]
Figure 11. LOGON Tables

24 CP-67 Program Logic Manual

Core Storage

e
]
|

DASD

UTABLE INITIALIZATION

The primary user control table (UTABLE) contains a description of the user's virtual
machine and information on the status of the wmachine. When a new user is logged on,
space is obtained for his UTABLE from free storage, and the following information is
entered:

The start of the virtual multiplexer device block list (the address of the virtual
nultiplexer block MVDEBLOK created for the user's terminal device).

USERID after it has been verified by comparing it against the entries in the user
directory.

Virtual machine core size (obtained from the user's machine description file).
Address of the segment table.
Address of the first virtual channel block in the virtual channel list.

Address of the UTABLE extension, if the virtual machine has the ability to run in
extended mode (virtual 67).

segqment Table Creation

LOGIN creates a four-byte segment table entry for each page table generated. The
segment table entry contains the length and address of its corresponding page table. The
address of the segment table (aligned on a 64-byte boundary) is placed in the UTABLE.

The relationship of the virtual storage addresses to the segment table and page
tables is illustrated in Figure 12. The twelve low-order bits of the address provide

addressability for 4K bytes of storage (one page) ; this number is used as a displacement
from the beginning of the page, as defined by the page table entry. The next eight bits
of the address provide addressability for 1024K bytes of storage (one segment) ; this

number is used to find the appropriate page by providing a displacement from the
beginning of the page table (the beginning of a segment is the address of the first page
in the segment). The four high-order bits of the address provide addressability for
4096K bytes of storage; this number is used to find the appropriate segment by providing
a displacement from the beginning of the segment table.

Section 2: Method of Operation 25

Address
Bits 4 6

i i P el ¥ —
: SEgmany | Page I Displacementinto |
I ! page |
)__—__7L—__—_}<:' ______ _K
P ! / S X
/- - - \ B N
/ - / o~ N\
\ ™
/ ~ / ~ X
~ \
7P / > i
A \) AN
/ & / B % Core Storage
apd \ .
Y _ \ / S5 o3 X
A i \ (s Page
- /
//SEGTABLE \\\ Page Table a b

Page

|
|
|) Page
|

Figure 12. Virtual Addressing

Swap Table Creation

For each page table entry, LOGIN creates a corresponding eight-byte entry in a swap
table (SWPTABLE). Whereas a page table entry contains the address of a page when it is
core resident, a swap table entry contains the DASD address of a page when it is not core

resident. The DASD address is contained in bytes U4-7 of the swap table entry; bytes 0-3
contain control information.

Virtual I/0 Block Creation

When page and swap table creation is completed, LOGIN reads entries for I/0 devices
from the user's machine description file. After determining the channel type (selector

or multiplexer), LOGIN creates the required virtual I/0 blocks. Figure 13 illustrates
the relationship of virtual and real I/0 blocks.

26 CP-67 Program Logic Manual

List of List of

| | Real
List of List of List of Rea £8 List of
y ' l Device Control
Virtual Virtual Virtual Blocks Unit Blocks Real
Channel Control Device l PR Channel
Blocks Unit Blocks Blocks I Blocks
VCHANPT VDEVLIST | RDEVPNT RDEVLIST RCULIST
—te] = = |
VCULIST VCUPNT VPNTREAL l RDEVCU RACTCHAN RCHANPNT
|
i RCUPNT
|
== /" s ‘_h——“—j -
! I ! I [l
| : | : | | | | |
|
| | [I | | | |
| | | b I | [
| | o~ | ! |
' | 1ush o sl [| |
L’T___'W S | | e | | | I [| o ———
| I | I I
| | l [
| ' !
| | |
| | | | |
|
| ' | ' :
|
L Virtual 1/0 Blocks | Real 1/0 blocks L

Interface
|
|
I
l
l

Figure 13. Virtual-Real I/0O Blocks

For nmultiplexer devices, a new virtual multiplexer device block (MVDEBLOK) is
created and chained to the last created MVDEBLOK. The address of the first MVDEBLOK in
the chain (the MVDEBLOK for the user's terminal) is entered into the UTABLE.

For devices attached to selector channels, a virtual device block is created, and,
if necessary, control unit and channel blocks.

A pointer to each virtual I/0 block that is created is entered in the previous
block, resulting in a chain (list) of virtual I/O blocks. Virtual device blocks are also
chained to corresponding real device blocks (see Fiqure 13) .

LOGON determines the right of access to a virtual DASD device based on information
contained in the machine description entry of the user directory.

These rights of access are summarized in Table 1. The normal mode of access to a
DASD device is read/write. 1In general, unless overridden by the presence of WRMULT, only
one user can access a DASD device with write privileges. Any number of users can have
simultaneous read-only access. The WRMULT parameter results in existing links being
ignored. The use of WRMULT requires that the virtual machine operating system contain
the proper data set protection mechanisms; in addition, CMS does not have interlocks.
Therefore, WRMULT should be used with caution.

See the CP-67 Operator's Guide under "Directory Creation and Allocation".

Section 2: Method of Operation 27

Table 1. Summary of Access Allowed to DASD Devices by LOGIN

Directory
Specification Existing Links

to Other

Access Mode Messages

RDONLY WRMULT Virtual Machines Allowed (see below)
No No None Read/Write
Read-only Read-only 1
Read/Write None 2
Yes No None Read-only
Read-only Read-only
Read/Write None 2
No Yes None Read/Write
Read-only Read/Write 3
Read/Write Read/Write 3
Yes Yes None Read-only
Read-only Read-only
Read/Write Read-only
1. DEV XXX IN USE BY userid; SET TO R/0O
2 DEV XXX IN USE BY userid; NOT ATTACHED
3a DEV XXX IN USE BY userid

28 CP=-67 Program Logic Manual

User Accounting Statistics

In the UTABLE for each virtual machine, three fields are used for time accounting.

TIMEON is a six-byte field that contains the date and time in packed decimal of user
login. This is used with logout time and is punched in the user accounting card to
give connect time.

TIMEUSED is a fullword binary value that represents all CPU time charged to this

virtual machine. The time is in extended precision (high resolution) time units and
includes both user execution time and CP supervisor time executed for this user.

VIOTTIME is the same as TIMEUSED except that it includes only user CPU execution time.
In addition there are statistics for user I/0 activity. These are:

VMSSIO - number of selector channel SIO

VMPNCH - number of virtual "cards" punched

VMLINS - number of virtual "lines" printed

VMCRDS - number of virtual "cards" read

VMPGRD - number of pages read

Also, there are four words reserved for user data gathering that may be used by the
installation. These are:

VMUSER1, VMUSER2, VMUSER3, and VMUSERU

PROCESSING CONTROL PROGRAM I/O REQUESTS

Control Program requested input-output operations can be divided into two general
categories: (1) those initiated by a user (virtual) I/0 request, and (2) those initiated
by the Control Program itself (for example, paging or spooling requests). The following
text describes the routines called by the Control Program to perform specific I/0
operations. Processing required to analyze virtual I/0 requests and to translate them to
specific real operations is discussed later in this section under "Processing User
Selector Channel I/0 Requests" and "Processing User Multiplexer Channel I/O Requests".
See Figure 14 for a flowchart of I/O0 Interrupt Handler operation.

Section 2: Method of Operation 29

Enter module
I0INT

Real
machine in
problem
mode

Save VREGS
and VPSW
in UTABLE

Get real unit
address from
interrupt code

Scan for
device address
(MRDEBLOK)

Device
address
found

Get real unit
address from
interrupt code

RUNITSCN

Get RCHBLOK
RCUBLOK
RDEVBLOK.

Found
chan, control
unit and
dev

Get IOTASK
block from
RDEVBLOK

-

Get UTABLE
and Int Ret
Address (MIRA)

Previous
error in this
task

DOSENSE

Issue a
SENSE
Command

DE
with
Attention

Dedicated
270X

Figure 14, Flowchart of I/0 Interrupt Handler Operation (1 of 3)

30

CP-67 Program Logic Manual

Set ARM-IN-

Reset SEEK bits

POSITION flag

and clear

Rechain SEEK

RDEVTASK

5

i

)

Get
UTABLE
(from IOTASK)

Get Interrupt
Return Address
(IOTASK block)

Call interrupt
return routine

CHFREE

Restart
channel
program

Is
there a
user’s
UTABL

Get

UTABLE

OPERATOR's

Go to
DISPATCH

Figure 14. Flowchart of I/O Interrupt Handler Operation

:

Flag channel
not busy

Incorrect
length

SILt
alone or with

No Tape
or direct access

device

Find last
CCw

cpP
generated
chain data

4

Find end of
CP-generated
CCWs

Command
chained

Next
command a
TIC

Gi
Get TIC =
address ccw

Tape
device

Page
locked
for 1/0

PAGUNLOK

Unlock
Page

QUERIO

Restart
channel
program

(2 of 3)

Section 2:

IRA
RTNTAPE2

Save
CAW

Reset IRA
to

RTNTAPE1

Method of Operation

31

DOSENSE

Get SENSE
information

VvC
(asynchronous
interrupt)

Dedicated
device

No

7

Place abend
code 33
in CPABEND

4

Issue
SvVC 0

Get user’s
UTABLE from
RDEVUSER

Get virtual
device address
(RATTVADD)

VUNITSCN

Get
VCHBLOK
VCUBLOK
VDEVBLOK

Virtual
1/0 blocks
found

3420
Tape device

FRET

Release
SENSE area
block

Previous
error

y

10ISTVDE

Set virtual
DE type
interrupt

Flag channel
not busy

uc
(asynchronous
interrupt)

3420
tape
device

NO »
DOSENSE Subroutine

‘ Entry ’

Set SENSE
count field
FREE to six
Get SENSE
area
extension
3420 No
tape device
Move SENSE
into
RDEVBLOK
Set SENSE
count
to 24
4
Issue SIO
on
SENSE CCwW
Exit

Figure 14. Flowchart of I/O Interrupt Handler Operation (3 of 3)

32

CP-67 Program Logic Manual

REAL MULTIPLEXER CHANNEL I/O OPERATIONS

The multiplexer real I/O0 executive (MRIOEXEC) is entered whenever an interruption
occurs on a unit record device (printer, card reader, or card punch) attached to a
multiplexer channel. It is also called by the multiplexer virtual I/O executive routine
(MVIOEXEC) to perform printer or punch input-output operations. MRIOEXEC determines the
interrupting device type and performs appropriate processing. See Figure 15 for
processing in the MRIOEXEC module.

Section 2: Method of Operation 33

Enter Enter
(moduie MRIOEXEC, entry PR!RA)
PUIRA, CRIRA MBIWINT
Set up CAW i
and CCWs to Get sue
write or read operators check 10
the buffer UTABLE Haceo]
2540P Punch
= 2540R Reader Find 1403 Printer Getioli
RDEVBLOK Interunting MRIBUFF
device
QUERIO FREE FREE
— — — — — FILE
X Get core for Get a ten Yes continued
Initiate Initial MRIBUFF card ‘FE’
1/0 operation Entry IOTASK buffer
After SIO |Yes
to reader
Exit F— Iritiatize MVITMPFR FREE (FRET)
‘) I0OTASK, MRICAW,
Al —sta TASKIRA - Free temporary Hslsmsescard
ress [y RECBLOKS e
ARIINT BLOK MRIBUFF, CSW
Is /|\ Set up CCWs Claits closed file
D Write G ied ‘Blok (MVIFILEC)
needed message ten cards to end of ‘readers’
chain as (SFBLOK)
No
<
FREE (FRET)
Set unpacked Is1.D. Issue SIO Set device
count, get in directory Return card reader free
data & address buffers
PACK RECFREE
b s Exit
Compress user Show device Device
o Geviriew drained drained
80 bytes disk record
b
MVITMPAL
Disk
buffer Allocate
full temporary
RECBLOK
Set file Move data to Get next End
continued MRIBUFF card from ol cad MO BLOK
flag “FF" (DATAD) buffer buffer
A
RECFREE Is
f
Get new 'Sﬁ; ?lr;c; 9 this the Set DE int
Sl) last card in MVDEBLOK
address
4
MVITMPAL MRDIO Send *eard
[o == Set PENDING nd. cards
Allocate p| Store CYL-HD Queue 1/0 intin read’ MSG
temporary in DATAD request to UTABLE to user
RECBLOK write buffer
Exit

Figure 15. Processing in the MRIOEXEC Module (1 of 2)

34

CP-67 Program Logic Manual

Initial
Entry

Device
drained

Punch
avail. and
unspooling
to do?

FREE

Get core for
MRIBUFF-
I0TASK

Get unspool
1/0 chain

Initialize
I0TASK
TASKIRA-
MRIRINT

After SIO to

FREE

Get PR-PU
output buffer

MIRA=MRIOEXEC

o yes PCH or PTR
int
?
Get old
MFE;‘F:‘;;\‘T MRIBUFF
Issue Yes o Was
CHECKIO macro tend:of
file
?
No
Get next
Set return unspool Get Get next
MIRA = MRINIRA entry MRDEBLOK CCW DATAD

Set up CAW
and CCW
issue SIO

Repeat
request
?

Yes

MRIDEL

file or contin
flag 'EF’,
?

Exit

Figure 15. Processing in the MRIOEXEC Module (2 of 2)

Section 2:

Get SFBLOK Exit
printers or Delete the
punches file
FREE (FRET)
Any Set up to Store CCW
SFBLOCK Return read next in CCW list
: buffers record
MRDIO
Device Set up one = s T | Get next
draiyned blank CCW Queue 1/0 data (DATAD)
request to
read buffer
>
UNPACK
Remove SFBLOK Get SFBLOK Yes Device | Onpack vser |
from chain punches drained I(i:slfse = ;Jar;ra)ac'(o
Send output An\(/) Yes Send ‘start Write gé‘v:i'utl'
msg. SFBLOK output’ msg. inglisk
- (o] 0. drained msg store in CAW
No
MRDIO FREE (FRET)
Get buffer pasime: aeslig? Issue SIO d
ta t
address Queue 1/0 Release punch or g’luot‘;i!ab:ffgr
(DATAD) request to all blocks printer
read buffer
Exit

Process new
ccw

Method of Operation

35

Card Reader Interruption

To perform I/0 operations on a card reader, MRIOEXEC reads card data into a buffer
(ten cards at a time), compresses the data (by means of the PACK routine), and writes the
packed records into a "spooling" file on a direct access device. The records will later
be read from the spooling file by MVIOEXEC.

If MRIOEXEC 1is entered as the result of an interruption caused by the unit being
made ready (that is, initial entry into the routine), the routine obtains an input buffer
and a spooling buffer, constructs a CCW list to read from the card reader, and issues an
SIO instruction.

If the interruption results from a channel end or a wunit exception, MRIOEXEC calls
PACK to compress the input data, and moves the packed data to the spooling buffer. When
the buffer is full, or at end-of-file, it creates an I,0 task block and a CCW list to
write the buffer to a spooling file on a direct access device. The routine QUERIO is
called to attach the task block to the appropriate channel block and schedule it for
service,

When the buffer has been written to the spooling file, a test is made for an
end-of-file indication (set when a unit exception interruption occurred, indicating that
all cards have been read). If the end-of-file flag is on, buffers are returned to free
storage, and the file is added to the chain of closed files. Reader files are chained off
the READERS word in MRIOEXEC.

Printer or Punch Interruption

To perform I/0O operations on a printer or card punch, MRIOEXEC reads records from a
spooling file on a direct access device, unpacks the data (by means of the UNPACK
routine), and prints or punches the records on the specified device.

If MRIOEXEC is entered as the result of an interruption caused by the wunit being
made ready (that is, initial entry into the routine) , the routine obtains an I/0 task
block for reading records from a spooling file on a direct access device and a buffer
area into which these records may be read. Printer and punch processing check the
PRINTERS and PUNCHES chain respectively to locate a closed file entry (spool file control
block) . PRINTERS and PUNCHES are words in MRIOEXEC.

If a closed file is available, a message indicating the output device is written to
the system operator's console by calling the routine WRTCONS. A CCW list for reading
records from the file is «created, the I/0 +task block is initialized, and the routine
QUERIO is called to attach and schedule the task block to the appropriate channel queue.

When records have been read from the spooling file, the routine UNPACK is called to
unpack the spooled records, the unpacked records are moved to an output buffer, and the
next group of spooled records is read. When the output Dbuffer is filled, or when the
spooling file has been completely read (logical end-of-file encountered), an SIO
instruction is issued for the appropriate device (printer or punch).

When a file has been completely written out, or if no closed spooling file was
available, MRIOEXEC processes requests for unspooled punch output. Unspooled punch
output requests are initiated by the Control Program (typically for accounting
information «cards) and are added to a MREALIO queue by RPUNCH, a subroutine within
MRIOEXEC.

36 CP-67 Program Logic Manual

REAL TERMINAL I/O OPERATIONS

The routines used by the Control Program to communicate with either the real
operator's console or a remote terminal are RDCONS for read operations and WRTCONS for
write operations. RDCONS and WRTCONS prepare CCW iists and I,/0 task blocks for their
respective I/0 operations, and call STCONSIO to stack and initiate the I/0 requests. The
console interruption handler (CONSINT) receives control when the I/L0 operation 1is
completed.

Read From a Terminal - RDCONS

When a read operation from a terminal is required, the Control Program calls RDCONS,
passing in register 1 the address of a 132 byte input buffer, and, if required, in
register 2 the parameters for the EDIT and/or UCASE options. EDIT and UCASE options, if
requested, are processed by the console interruption handler, CONSINT.

RDCONS obtains storage for and initializes a control list for the read operation.
The appropriate I/0 device block (MRDEBLOK) is initialized. The address of the MRDEBLOK
is obtained from the indicated user's virtual console MVDEBLOK.

An appropriate CCW list 1is constructed for the type of terminal device, and the
address of the CCW list is placed in register 6. The EDIT and/or UCASE parameters, if
present, and the device type are placed in the CCWPKG, and the routine STCONSIO is
called. When control is eventually returned to RDCONS upon completion of the read
function, an exit is taken to the calling routine.

See Fiqure 16 for processing in RDCONS module.

Section 2: Method of Operation 31

Enter

module RDCONS
entry RDCONS

Initialize
RDCONPKG
set up return
address

y

Get terminal
MRDEBLOK for
this user

Get device
address

Set up
CCWPKG
construct
CCW's

Chain RDCONPKG
off CCWPKG

y
STCONSIO

Queue the
CCWPKG

A

Exit

Figure 16. Processing in RDCONS Module

38 CP-67 Program Logic Manual

When a write operation to a terminal is required, the Control Program calls WRTCONS,
passing the following information in the indicated registerss

GPR 0 - the number of bytes in the output message;
GPR 1 - the location of the first byte of the output message;

GPR 2 - the parameters for the PRIORITY, LOGHOLD, LOGDROP, NORET, DFRET, OPERATOR,
NOAUTO, and ALARM options;

GPR 11 - the appropriate user's UTABLE address.

Unless the NORET option was specified, WRTCONS obtains storage for and initializes a
CPEXBLOK in which will be saved the return address and register contents. The
appropriate I/0 device block (MRDEBLOK) is initialized. If the message is to be written
to the real operator's console, the current operator's MRDEBLOK is wused; otherwise, the
address of the MRDEBLOK is obtained from the user's UTABLE entry.

An appropriate CCW 1list is constructed for the type of terminal device being used
and for the option. Option parameters, passed to WRTCONS in register 2, are stored in the
CCWPKG.

The address of the CCWPKG (CCW list and control 1list) is placed in register 6, the
device type and parameters for the DFRET option, if present, are stored in the CCWPKG,
and the routine STCONS is called. When control is returned to WRTCONS, an exit is taken
to the calling routine.

Two alternate entry points, PRIORITY and CLRCONS, are provided for the WRTCONS
routine. If the routine is entered at PRIORITY, write requests will be created as usual,
except that the STCONS routine will be entered at PRIMSG, causing the write request to be
queued on a priority basis. If the routine is entered at CLRCONS, all outstanding
terminal I/O0 requests to that user will be deleted.

See Figure 17 for WRTCONS module processing.

Section 2: Method of Operation 39

module WRTCONS
entry WRTCONS

module WRTCONS!
entry PRIORITY

Set priority

Message
length zero
or minus

Get operator
MRDEBLOK
and UTABLLC

L

control bit

Noret
option

Initialize
RDCON PKG
with return
address

Yes For
operator

No

FREE (FRET)

Return
essage

buffer

User
disconnected

CPSTACK

Put RDCON PKG
on CPSTACK
queue

Noret
option

Figure 17.

Exit

40 CP-67 Program Logic Manual

WRTCONS Module Processing

-

Get
MRDEBLOK

and device
address

Set up CCWPKG
and build
CCWs

Translate

data

module WRTCONS
entry OPTIME

i

Write time of
day to operator’s
terminal

Exit

Dfret
option

module WRTCONS!
entry CLRCONS

Clear
CIOREQ
<lack

Exit

FREE (FRET)

Return
message
buffer

I

Chain RDCONPKG
(if one exists)
to CCWPKG

Priority
message

STCONS (PRIMSG)

Queue CCWPKG
in LIFO order

L

STCONS
(STCONSIO)

Queue CCWPKG
in FIFO order

Exit

stack or Start Terminal I/O Requests - STCONS

When a CCW package has been created for a terminal I/O operation, STCONS is called
to add the I/0 request to the chain of pending requests, or to start the operation if no
other requests are pending. At entry to STCONS, register 6 contains the address of the
CCWPKG, and register 11 contains the address of the appropriate user's UTABLE.

If no other I/0 requests are pending, the address of the CCWPKG is placed in the
channel address word and an SIO instruction is issued. The current I/0 request pointer
is updated to point to the CCWPKG of the active operation, the count of pending I/0
requests (NCIOREQ) is incremented by 1, and an exit is taken to the calling routine. If a
PREPARE command is pending, an HIO instruction is executed. The current I/0 request
pointer is updated to point to the CCWPKG for this operation, the count of pending I/O
requests (NCIOREQ) is incremented by 1, and an exit is taken to the calling routine.

If other I/O0 requests are pending, the CCW package is added to the chain of pending
requests, the count of pending requests is incremented by 1, and the exit is taken to the
calling routine.

If the routine STCONS was entered at the entry point PRIMNSG, a priority operation
has been requested. If other I,/0 requests are pending, the current CCW package is
examined to determine the type of operation in progress. If the current operation is a
read, an HIO instruction is issued, the priority CCW package becomes the current package
(added at the top of the chain), and the CCW package of the halted operation becomes the
"pext" package (second on the chain). If the current operation is a write, no HIO is
issued; the priority CCW package becomes the next package (inserted after the current
package in the «chain). In either case, the count of pending requests (NCIOREQ) is
incremented, and an exit is taken to the calling routine.

See Figure 18 for STCONS module processing.

Processing Terminal I/0 Interruptions - CONSINT

When an I/0 interruption occurs on a terminal, the I/O0 interruption handler, IOINT,
receives control and determines the type of interrupting device, obtains the multiplexer
interruption return address (MIRA) from the MRDEBLOK, and gives control to the terminal
I/0 interruption handler (CONSINT) at the entry point specified by MIRA.

For an interruption following an output operation, CONSINT perforns the following
processing:

° If the NORET option is not specified, the routine CPSTACK is called to add an entry
for the current user to the stack of Control Program execution requests. This entry
notifies the calling Control Program routine of the completion of the operation.

o If other terminal requests are pending for this device an SIO instruction is issued
for the next CCWPKG, and pointers to the "current" and "next" CCWPKGs are updated.

° Control is returned to the main control routine (DISPATCH) .

Section 2: Method of Operation 41

Enter

module STCONS
entry STCONSIO

Set non-PRIMSG
branch SW.

L

Enter

module STCONS

entry PRIMSG

Conar)

Prepare

up on line

L

Figure 18.

42

CP-67 Program Logic Manual

Queue
CCWPKG Issue HIO
(UTABLE CIOREQ)
A
Store CCW Queue
address in CCWPKG
CAW (UTABLE-CIOREQ
>
y
Issue SI0 Exit

Set PRIMSG
branch SW.

g
Get MRDEBLOK
and device
address

Any Y

stacked 1/0 5 PRIMSG Non PRIMSG
requests
Get current Find end of

CCWPKG
(UTABLE-CIOREQ)|

Read
request

next

Store current
CCWPKG as

STCONS Module Processing

queue chain
(UTABLE-CIOREQ)

Get next Chain CCWPKG
CCWPKG o CIOREQ
(for insert) chain

Exit

For an interruption following an input operation, CONSINT performs the following
processing:

o Unless the terminal is a 1052, the message is translated into EBCDIC from line code.

° If the EDIT option is specified, the input message is scanned, and deletions are
made as required.

° If the UCASE option is specified, the input message is translated to uppercase
letters.
o The routine CPSTACK is called to add an entry for the current user to his stack of

Control Program execution requests. This entry notifies the calling Control Program
routine of completion of the input operation.

° If other terminal requests are pending for this device, an SIO instruction is issued
for the next CCWPKG, and pointers to the "current" and "next" CCWPKGs are updated.

® Control is returned to DISPATCH.

REAL SELECTOR CHANNEL OPERATIONS

The routine QUERIO is called by the Control Program whenever a selector channel I/0
operation is to be performed. The address of a completed I/O task block is passed to
QUERIO in register 1. QUERIO indicates that the operation is being requested by the
Control Program, attaches the task block to the appropriate channel, and tests to see
whether the channel is free.

Initiating Selector Channel I/O

If QUERIO determines that the channel is free, the routine CHFREE 1is called, with
the address of the appropriate channel block (RCHBLOK) passed in register 1. CHFREE
issues an SIO instruction +to the indicated channel. The resulting condition code is
checked and appropriate action taken:

° For a condition code of 0, the task block is attached to the real device block
(RDEVBLOK), the task block is unchained from the channel, the task count is
decremented, and control is returned, through QUERIO, to the routine which requested
the I/0 operation.

° For a condition code of 1, CSW information is obtained, the condition code is placed
in register 0, and control is passed to the routine specified in the task
interruption address (TASKIRA).

° For a condition code of 2, a retry of the SIO instruction is issued.

° For a condition code of 3, the task block is unchained from the channel, the task

count is decremented, the condition code is placed in register 0, and control is
passed to the routine indicated in TASKIRA.

Figure 19 shows the processing of I/0 tasks on the selector channel and device blocks.

Section 2: Method of Operation 43

RCHBLOK

I0OTASK 3

— | TASKRDEV

0

Real
Channel 1
TASKLIST
L.ast task
TASKLAST
IOTASK 1 IOTASK 2
TASKRDEV TASKRDEV
TASKPNT TASKPNT
{ RDEVBLOK
Real
Device 1
IOTASK 4
RDEVBLOK Current Task
TASKRDEV
Real RDEVTASK
Device 2

Figure 19. Processing Real Selector Channel I/0 Tasks

by CP-67 Program Logic Manual

Processing Selector Channel I/0 Interruptions

When an I/0 interruption occurs for a selector channel device, the I/0 interruption
handler, IOINT, receives control. Register O is cleared to indicate that an interruption
has occurred, and control is given to the routine indicated in TASKIRA. When IOINT again
receives control, control is passed to DISPATCH via a GOTO macro.

PROCESSING OF I/0 ERRORS - IOERROR

When IOINT passes control to the routine whose address is indicated in TASKIRA, that
routine issues a CHECKIO macro to check for successful completion of the I/0. If only
the channel end and device end bits are set in the channel status word, the routine
concludes that the I/0 was successful and continues processing. In all other cases,
IOERROR is called. When IOERROR receives control, a call is made to the subroutine
RECERROR, which analyzes and, in some cases, records the error. (For details, see the
subroutine description of RECERROR below.)

If the sense information indicates that intervention is required, a message is sent
to the operator indicating the device address and asking "REPLY 'GO' WHEN AVAILABLE OR
'FAIL' IF NOT AVAILABLE". If the operator replies GO, the I/O operation 1is retried,
whereas if the operator replies FAIL, a permanent error is assumed.

For CP-generated I/0 (paging, spooling, and reading the directory), the I/0 is
retried up to 64 times if errors occur. This is accomplished by setting up a special
retry I/0 task consisting of a recalibrate CCW followed by a TIC to the original IOTASK
block. TASKIRA is set up so that return is to the REPRTN entry point in IOERROR. If the
1/0 completes successfully, control returns to the program which originally generated the
I/0 request. If, on the other hand, the I/0 is retried unsuccessfully 64 times, a major
error message with error count, sense, and status information is printed at the
operator's terminal and the system will ABEND.

Note that the error retry and recording procedure apply only to selector channel
devices represented by RDEVBLOKS and not to shared unit record equipment or nondedicated
terminals.

PROCESSING USER SELECTOR CHANNEL I/O REQUESTS

When a pseudo-supervisor (that is, a supervisor operating in a user's virtual machine)
requests an I/0 operation, a program interruption occurs, and the Control Program must
determine the tvpe of operation requested and the processing required to honor the
request.

The following text describes the major routines involved in honoring user selector
channel input-output requests. only the I/O-related operations of the routines will be
discussed in this section. See Figure 14, CP I/0 Interrupt Handler.

PROGRAM INTERRUPTION HANDLER -~ PROGINT

Entrance: PROGINT receives control when a progran interruption occurs.

Operation: PROGINT determines the mode of the user's virtual machine (problem or

supervisor) and the cause of the progranm interruption (paging request, invalid
operation, or privileged operation).

Routines Called: If the program interrupt is caused by a privileged operation that is in

section 2: Method of Operation 45

virtual supervisor mode, PROGINT transfers PRIVLGED to simulate it.

PRIVILEGED INSTRUCTION SIMULATOR - PRIVLGED

Entrance: PRIVLGED receives control via a GOTO from PROGINT.

Operation: For other than I,/0 instructions, simulation is performed within PRIVLGED.
PAGTRANS is called to bring in pages not in core that are necessary for the
privileged instruction simulation. When simulation is finished, exit is taken via

GOTO to DISPATCH.

If the privileged operation is an input-output request, PRIVLGED calls the virtual
machine I/0 executive program (VIOEXEC), passing the addresses of the first and
second halves of the privileged operation in registers 4 and 5 respectively. When
control is returned from VIOEXEC, an exit is taken to the main dispatcher and
control routine (DISPATCH) , via a GOTO macro instruction.

VIRTUAL MACHINE I/0 EXECUTIVE PROGRAM - VIOEXEC

Entrance: VIOEXEC receives control from the privileged operation simulator (PRIVLGED)

when a user-requested I/0 operation has caused a program interruption.

Operation: VIOEXEC determines the type of I/0O operation to be executed (SI0,TIO, HIO, TCH)

and performs appropriate processing for each type.
For an SIO operation on a selector channel, VIOEXEC:

® Obtains the channel, control unit, and device addresses, and tests for busy or
status pending conditions on the addressed path. If the addressed channel is
busy, sets condition code 2 in the virtual PSW and exits. If status is pending
or the virtual control unit or device is busy, stores the relevant CSW status,
sets condition code 1 and exits.

® Creates an I/0 task block, if the path to the device is free, translates the
virtual channel address word (CAW) into a real CAW

° Calls the CCW translator (CCWTRANS) to translate virtual CCW's to real CCu's,
returning the address of the start of the chain (TASKCAW)

° Sets the I/0 wait indicator in the user's VMSTATUS in UTABLE

° Calls the virtual I/0 request queueing routine, QUEVIO, to queue the I/O task

block on the appropriate channel
® Transfers to DSPTCHA (DISPATCH) .
When the I/0 operation is started, QUEVIO reflects the condition code to the user, and
resets the I/0 wait indicator to zero.
For an SIO operation on a multiplexer channel, VIOEXEC:
® Calls the multiplexer virtual I/0 executive program (MVIOEXEC)

° Transfers to DSPTCHA (DISPATCH).

(See Figure 21 for MVIOEXEC module processing.)

46 CP-67 Program Logic Manual

Enter S VUNITSCN
Compute
Todule VIOEXEC i Get VCHBLOK
entry VIOEXEC address VCUBLOK
VDEVBLOK
Get type
of 1/0
instruction
sI0 ; TI0 TCH HIO
MVIOEXEC
Selector == = e No Selector
Process CN - CU - DEV.
found multiplexor found
request
Turn off o
IOWAIT in
VM STATUS
Set CC = 2 Go to
n VPSW DSPTCHA
CE For CE No Clear
interrupt No this <& interrupt i » multiple
pending unit pending TIO BUSY
No Yes
Clear uc
multiple m(errgpt
TIO BUSY pending
C Clear CE
CUE
For set CC=1
interrupt this E
pending device store CSW
. to VCSW
Clear CUE Set CC = 1 Device
set CC=1in VPSW & VPSW set interrupt
set CUE and X SM and busy pending
busy in VCSW in VCSW
Device
Device interrupt Go to
busy DSPTCHA
pending
— Create I0TASK | _ouevior
Set CC=1 Set CC=1 Set all BlEaR Set VMSTATUS
move device move device . busy TASKIRA = TO IOWAIT Initiate
status to VCSW status to VCSW 1/0 request
VIRA
3
Issue TRANS CCWTRANS: |
Decrement thacre for f- TTanslale
= nterpt CCW page virtual channel
- set CCW list program

Figure 20. VIOEXEC Module Processing (1 of 4)

Section 2: Method of Operation u7

Figure 20.

us

Selector

c
Issue HIO Liatyeal
(heal) device
address
cc=3 y CC=2 cc=1
Y \
o
D

. CE No Remove user Move CSW

interrupt from instruction status to

pending wait VCHCSW

Yes

Set CC = 1 Set CC =1

VPSW set status

in VCSW

Exit

Zero status
in VCHCSW
(virtual HIO)

VIOEXEC Module Processing (2 of 4)

CP-67 Program Logic Manual

CE
interrupt
pending

CUE
interrupt
pending

For
this
device

Figure 20.

Enter

module VIOEX
entry VIRA

Get users
UTABLE

Get VCH, VCU,
VDEV block
pointers

. & ce=2 ec=3
Yes
Issue SVC O
No
. CHKCUACT
le
Yes ga:i' Is control
unit free
No
Move CSW Move CSW CE No N
to jie] or channel
VCHCSW VCHCSW free
Yes
10ISTVDE
Indicate
Set virtual control unit
Exit device end free
interrupt
FREECCW
Put PCl in }"(hcale
virtual Release real ;‘ha‘nne\
csw CCW blocks =
g
UNTRANS UNTRANS
Set CE interrupt Yes Compute
and . Compute virtual
interrupting unit virtual CSW Csu
No
Decrement Get
Indicate CUE virtual device virtual
channel free requested busy count address

1oI1sTvCey

Set virtual
control unit
end interrupt

No

Reset Status
Modifier in
VCUSTAT

I

cch
processing

FRET

Release
IOTASK
block

Clear cc 1
processing
flag

I

!

——p

Set PENDING
interrupt in
UTABLE

VIOEXEC Module

Processing (3 of U)

Section 2

Method of Operation

49

I |
Move CSW Reset BUSY
10 VCHCSW NEHSEA

¥, Reset BUSY
25 VCUSTAT
VDEVSTAT
No
Error
Reset BUSY Mo & flagged in
VCHSTAT IOTASK
FREECCW
Reset BUSY
Bus! Yes ~ Get sense
alon:a \\/,.(—'\E—J\S,I[:IY felease bytes
WSSVl CCW blocks
No
Decrement
ATTN Yes virtual device Nd Error
DE busy count
No Yes
VERROR
No Set CC T T

CE in VPSW Record

error

Yes
CHKCUACT

Remove
Determine if IOWAIT
control unit status
can be freed
CHFREE
DE NlvYes | | === —=A4
Yes int Attempt to
cleared START next
IOTASK
No
Exit
Reset BUSY
VCUSTAT

(

Figure 20.

VIOEXEC Module

Processing (4 of 4)

50 CP-67 Program Logic Manual

Figure 21.

module MVIOE

XEC
entry MVIOEXEC

‘No Locate Locate Yes
MVDEBLOK MVDEBLOK Found
Yes
Determine .
type of 1/0 e
instruction
SI0 TIO HIO
Device Yes .
busy or chan. SepClog Exit
LVL int, in VPSW
NO
2
- Set CC=1 in
N :
o pending on :/‘:‘S:I:I Store
device B
Yes]
Set CC=1in
e Goto anaingon >
satus save area PSPREHD " devlicge
(2 bytes)
Exit Processing PUNCH or Set CC=1
file PRINTER in VPSW
FREE RECFREE
se:wC\/E(;[S)‘IEV Device Yes B
P i MYE Get MVIBUFF Get a disk transterrad Xi
(MVDEBLOK) and IOTASK record address
A
MVITMPAL
Set BUSY -CE Set TASKIRA= Put file
in MVDESTAT MVINTR in Allocate header in
(MVDEBLOK) I0TASK temp. RECBLOK buffer
&
No Initialize it .
MVIBUFF 1% tag Je—
B 'DF’
Yes
- T
MVIOEXEC Module Processing (1 of 6) e

Section 2:

Method of Operation

51

Enter

module MVIOEXEC Enter
entry MVIREC MVINTR

Issue SVC 16
Get data release Get users
address current first CCW
save area
MRDIO
—_——— Issue : Set program
Valid No prog
Initiate the check 10 cow check for Exit
1/0 operation MACRO user
Punch or
Sl Yes Console Printer
y
Set up
Go to t3esid Move CCW to
DISPATCH Mviccw
pointers
No
Is Process for
CoWa No N NOP, N (Gxe:lv\nl'\ext
or fee:
Set UC and C Continue Get the desired
n N urrent Ye: & desir Set status
intervention “ record ended spool 2 SFBLOK from in MVDEBLOK
required flag ‘FF’ reading tedaders chain
y
Set CC = 1 Yes Seting
in VPSW SFBLOK Set pending
open in CSW in UTABLE
3 UNPACK
Get the desired b e v Delete Delersoid
Exit SFBLOK from old - Exit
readers chain ;J;!‘:aCk user file file
FRET
No File Get user
foind dataaves Free blocks
Yes
Get first Move data Close
spool record to user by console
address area function
MVIREC
- T No
Read a
disk record
Yes
Get next
non-TIC Setce=1
cow in VPSW
No £h Yes
on

Exit

Figure 21. MVIOEXEC Module Processing (2 of 6)

52 CP-67 Program Logic Manual

Figure 21.

Set UC plus

Move CCW to Iilegal Yes
MVICCW command command
reject
No
Process sense, Setend of
ts CoW NOP, control tite flag Mo Bl;'“e'
it gamnanes e <ing
(TASKVADD) pted
Yes
&
Get next
Sty non TIC Exit b First disk
data area
ccw record
No
Yes
Move data No led No No ‘STI 7;m of
to DATAP & fie flag,
EF’
Yi
& Yes
RECFRET
Get next
€o e non TIC R disk Set TASKIRA=
on L& eturn dis MVIEFIRA
ccw record
No
PACK MVITMPFR WVIREC
oy i s
s P! temp. RECBLOK sk record
Yes
FRET
2 Move data
Room in Yes 10 disk Chaining " Closed
disk buffer L8 an eturn by console
buffer MVIBUFF function
No No
1
RECFREE MVIREC
Get a disk —p Wi Processing Yes ?/(;5(\:/\/‘::51([‘:9
record disk first CCW °
address ieRsracard status
No
MVITMPAL
Set pending
Allocate F"f to interrupt in Exit
continue UTABLE

temp. RECBLOK

Store record
address in
DATAD (Pointer
to next record)

MVIOEXEC Module Processing (3 of 6)

Section 2:

Method of Operation

53

READ ALARM WRITE

Reset exit Setreturn from
flag RDCONS to
MVICNRD1
4
Clear ‘break’ Yes Put user in
flag disabled wart
state. (VPSW)
No
y
RE
Determine FREE Return after
command Bevsnaze Yes read to terminals
type “:' SD"TL‘ ‘f’; via RDCONS
minal buffer MVICNRD1
No
Sense
No
p P y
Process SENSE Rat bufter Issue SVC 16
o1 NOP aldress in return current
mvios save area
Yes
y
RDCONS
cE Yes o Soto o
et next CCW et brea
on Initiate read DSPTCHB flag
operation g
No |
FRET
Store status Still
in MVCSW Return »
terminal usy
buffer

Set pending A
interrupt Move data from
in UTABLE buffer to user
data area
Reset BUSY Set to go to
(MVDESTAT) console quene
4
BREAK
Put user in
CP console

function mode

]

FRET
Go to Return
DISPATCH terminal
buffer

Figure 21. MVIOEXEC Module Processing (4 of 6)

54 CP-67 Program Logic Manual

Figure 21.

WRTCONS

Write alarm

message

Get next CCW

FREE

Get space for
terminal
buffer

Put buffer
address in
mMVIOoB

Set to go to
consoie queue

Move data irito
buffer from
user ared

Setreturn
from WRTCONS
0 WRTNMVI

MVIOEXEC Module

Get next CCW

FRET

Return
terminal
buffer

Processing (5 of 6)

WRTCONS

Inttiate wiite
operation

Return after
wiite to

terminals

WRTNMVI

FRET
Return
terminal
buffer
Yes > e
Break es Set break
flag
No
Any No Set to go
oy to console
chaining
queue
Yes

Get next CCW

Section 2:

Method of Operation

55

Module MVIOEXEC Module MVIOEXEC Enter
entry MVITMPAL entry MVITMPFR MVIEFIRA

Issue
Save disk Locate
address TRECBUF CHECKIO
macro
Locate No SVC 16
TRECBUF release current
save area
Yes
FRET MVITMPFR
Yes
Return Return temp.
TRECBUF RECBLOK
No
FREE FRET
Clear
Get space chain Return
for TRECBUF buffers
Chain new Chain SFBLOK Chain SFBLOK
TRECBUF Exit to punches £uch to readers
to last or printers trarisferred chain
Indicate Get non-busy No Send message
records in MROEBLOK “cards XFERD'
use
Yes
Set up Vs Get reader
Exit dummy CSW MVDEBLOK,
with DE set DE int.
No
MRIOEXEC
Send message Set pending
) ‘start for interrupt in
St output’ UTABLE
operation
Exit

Figure 21. MVIOEXEC Module Processing (6 of 6)

56 CP-67 Program Logic Manual

For a TIO operation, VIOEXEC:

® Tests the virtual channel for a pending channel end: if found, tests for
channel end for addressed device. If channel end is found for the device, the
channel end is cleared, a condition code of 1 is set, the CSW is updated, and
transfers to DSPTCHA (DISPATCH). If a channel end is found, but not for the
current device, or if <the channel is busy executing for a different device, a
condition code of 2 is set. If the device is direct access or tape, IOWAIT is
turned off and control is transferred to DSPTCHD (DISPATCH) to remove the user
from execution until I/0 completion.

° If a pending channel end is not found, the virtual control unit is tested for
pending intercuptions. If found, a condition code of 1 is set, the CSWH is
updated, and control is returned to PROGINT.

@ If a pending control uanit interruption is not found, the virtual device is
tested for pending interruptions. If found, the pending interruptions are
cleared, the device status and the count of pending interruptions are updated,
a condition code of 1 is set, the CSW is updated, and transfers to DSPTCHA
(DISPATCH) .

® If a pending device interruption is not found, a condition code of zero is set,
and transfers to DSPTCHA (DISPATCH) .

For a TCH operation, VIOEXEC:
° Finds the virtual unit address and the virtual channel block

° Tests the virtual channel for a pending channel end. If a pending channel end
is found, a condition code of 1 is set. If the channel is busy, a condition
code of 2 is sets; if not, a condition code of zero is set.

° Transfers to DSPTCHA (DISPATCH) .

For an HIO operation, VIOEXEC:

® If I/0 is not in progress on the device and interrupts are not pending, sets a
condition code indicating that the device is available.

° If I/0 is in progress, issues an HIO to the device and reflects the condition
code to the virtual machine. When the I/0 is finished, VIOEXEC sets a condition
code indicating interrupt pending.

CCW TRANSLATOR - CCWTRANS

Entrance: CCWTRANS is called by the virtual machine I/0 executive program (VIOEXEC) when
an I/0 task block has been created and a list of virtual CCH's associated with a
user's SIO request must be translated into real CCW's. (See Figure 22 for CCWTRANS

module processing.)

CCWTRANS 1is called by TOINT when the I/0 operation is completed from a
self-modifying channel program. The self-modifying channel program checking portion
of CCWTRANS calls CCWTRANS when retranslation of CCHW's is required.

Operation: CCHWTRANS operates in four phases: a scan phase, a translate phase, a TIC-scan

phase, and a self-modifying channel program checking scan phase if the ISAM option
was chosen.

The scan phase analyzes the virtual CCW 1list to determine the total core storage
requirement of the real <CCW list. Additional real CCW's are v¢equired if the data
area specified by the virtual CCW 1list crosses page boundaries. Some channel
commands require additional doublewords for control information (for example, seek
addresses) .

Section 2: Method of Operation 57

Enter

module CCWTRANS
entry CCWTRANS

Translate

to RCCW's

each

specifying

data in one page

4
Get VCCW DAt
list Cross page
IOTASK-TASKAW 2 = seamiphiases” boundary
VCCLIST is scanned
| to determine the
< -—— — —{ number double-words
| required to reproduce
itinreal terms
Analysis Get next Translate
by device vCcecw to real
ccw
Analysis by Get N End
command Next 2 of vCecw
type veew list
l Yes
— [
d.
PEEp T
| TIC —:
No | scan 1 Get
] phase | TIC
block
Yes
Calculate G
core required for 61
real next
CCW list RCCW
translate phase
 CEWLIE T roreedi andl.
Get core for | VCCWLIST is reread and
‘RCCWLIST" the CCW's pre-translated.
and set up | 1f aread or write cmd
header | has data that crosses a
page boundry it is
! split into a number
I - — — — — —] of CCWs to eliminate
| this condition. Control
or address data
| associated with a
Get start | CONTROL, SKIP, SEARCH
9f veew cmd is moved to the
list | CNTRLST associated
with the ACCW list.
Flagif TIC Gey fext
command l:l’occk
r—————————
,—__~.L__—1 Update
e | et .
EiE5E | CCWLIST | RCAW
il | return | IOTASK-
| control | TASKCAW
Test for Stote
page RCCWLIST
:;Ju‘;\?gry address in
nartion
I0TASK
on data area TASKCAW
Exit

Figure 22,

CCWTRANS Module Processing

58 CP-67 Program Logic Manual

TIC
address
found

Get next
RCCW list

Any

more RCCW
list

Translate
TIC to
RCCW

to scan phase
with untranslated
virtual TIC
address

The translation phase reexamines the virtual CCW 1list and translates it into a
real CCW list. TIC commands that cannot be immediately translated are flagged for
later processing by the TIC-scan phase. A read or write command that specifies data
crossing page boundaries is translated into several CCW's, each specifying data in
only one page.

The TIC~-scan phase scans the real CCW 1list for flagged (untranslated) TIC
commands and creates a new virtual CCW list for the untranslated commands. Scan
phase processing is then repeated. When all wvirtual CCW's are translated, the
virtual CAW in the IOTASK block is replaced by the real CAW (that is, a pointer to
the real CCW list created by CCWTRANS), and CCWTRANS returns control +to VIOEXEC.
The user protection key is preserved.

Routines called: CCWTRANS <calls the page handling routine (PAGTRANS), via a TRANS
macro instruction, to translate virtual addresses to real addresses, and to
lock in core storage pages required by I/O operations.

The self-modifying channel program checking portion of CCHTRANS calls CCHWTRANS
to retranslate the channel program and QUEVIO to start the I/O operation.

0S ISAM HANDLING -~ CCWTRAN

Because many of the OS ISAM channel programs are self-modifying, special handling is
required in CP to allow virtual machines to use this access method. The particular
CCW's that require special handling have the following general format:

0 2 4 6 8
pm——————— $m——————— pmm—————— pm—m—————— 4
A | READDATA C+7 10 BYTES |
p——————— fem—————— t————— ——tm——————— +
B | TIC TO E I
pm——————— fmmm————— dom—————— pm——————— +
c 1 | |
fm——————— fm——————— dm——————— fmm—————— +
D | |
fm——————e fm—m—————e do————— pm—————— +
E | | SEEK: SEEK HEAD ON D |
fm——————— pomm fmm—————— pmm +
¥ | SEARCH ON D+2 |
$m—————— fmm——————m pmm————— tm——————— +

The CCW at A reads 10 bytes of data, the last byte of which forms the command code
of the CCW at E. 1In addition, the data read in forms the seek and search arguments
for the CCW's at E and PF. The normal CP translated CCW string has the following

format:
0 2 4 6 8
fm—————— ~4m—————— m——————— tr—————— +
1 READDATA C+7 10 BYTES |
e ————— t——————— pm——————— e —————— +
2 | TIC TO 3 |
e ————— tmm——————— pm——————— tm——————— +
tm——————— t———— re——t————— ~——tm——————— +
27 | VIRTUAL ADDRESS OF SEEK AT E |
tm——————— tm————— r—tm——————— pm—————— <+
3 SEEK: SEEK HEAD ON 6 |
tm—m—————— t———————— Pm——————— o ————— +
4 SEARCH ON D+2 |
t=———————— tm———————— tem—————— fom—————— +
5 | ETC. I
$m———————— o ————— tm—m———— te——————— +
6 | RELOCATED SEEK ARG. |
o ————— tm————— ——pmm————— ~+

Section 2: Method of Operation 59

60

In order to accomplish an efficient and non-timing dependent translated operation
for 0S ISAM, the virtual CCW string is modified in the following manner.

The ISAM scan phase of CCWTRAN is entered if, during normal translation, a CCW of
the type at A is encountered. The scan phase locates the TIC at 2 by searching the
translated CCW strings. The TIC at 2 locates the seek at 3.

The virtual address of the virtual seek CCW at E is located at 2A. The & bytes at E
and the four bytes at F are saved in the eight byte area at 6. The TIC at 2 is
altered to TIC to the virtual CCW at E. The CCW address field at E is translated to
reference D. The 4 bytes at F are modified to a TIC to the CCH's starting at 4.
The completed CCW string has the following format:

0 2 4 6 8
pommmm— e B fmmm te—m———— +
1 | READDATA C+7 10 BYTES
D e ———— pommm e teemm e}
2 | TIC TO E |
Fom e e ———— tom—————— Fommm———— +
o ————— tmm—————— pommm domm +
2L | VIRTUAL ADDRESS OF SEEK AT E i
o ——— e ——— o o +
3 NOT USED i
o —— e ———— pom e o e +
) | SEARCH ON D+2 |
o e frm— D +
5 | ETC. |
o ——— o ————— tom—————— pmm +
6 | SAVED E | SAVED F |
fmmm e Fm——————— Fom e ———— +

TRANSLATED CCW's

0 2 4y 6 8
tm——————— e ———— Fmm—————— R +
A READDATA C+7 10 BYTES |
Fomm————— tm——————— tmm—————— o m——————— +
B | TIC TO E 1
o ———— tmm—————— Pmm————a e e +
c | | |
o ——— t——_——————— tm———_————— te———————— +
D | |
e ———— tm——————— tmm——————— o —————— +
B o | SEEK: SEEK HEAD ON D |
e ——— tm——————— tmm——————— tmm—————— +
Foo| TIC TO 4 |
e ————— e ———— temm—————— e ————— +

VIRTUAL CCW's

It can be seen that the virtual area C, D, E, and F must reside in one page for the
routine to function.

Once the I/O operation has completed, an untranslation scan phase restores the data
at E and F and sets the correct CSW address if the channel program ended at E.

CP-67 Program Logic Manual

CCW UNTRANSLATOR — UNTRANS

Entrance: UNTRANS is called by VIOINT when a channel end type of interrupt occurs for a

user's virtual input-output operation. Tts function 1is to convert the real CSW
information into corresponding virtual CSW information.

Operation: The real CCW that caused the interrupt is located from the virtual channel
CSW (VCHCSW), where the real CSW is temporarily stored. Taking into account the
fact that some of the CCW's may be system-generated and artificially data-chained, a
virtual CSW is created +to represent the CSW that would be expected from the user's

virtual CCW list(s).

CCW RETURN TO FREE STORAGE — FREECCW

Entrance: FREECCW is called when VIOINT determines that the channel has terminated

operation on a user's virtual list. It returns the real CCW equivalent to the
virtual list to free storage and clears the TASKCAW entry in the IOTASK block.

Operation: The real CAW is picked up from TASKCAW, which is an entry in IOTASK. From
this, the real CCW 1list with its "header" information is located. The 1list is
scanned. All I/0 commands with data references have their referenced pages
unlocked, and the received data for Read Home Address commands for shared disks is
unrelocated. When the scanning is complete, the CCW 1list is returned to free

storage.

Routines called: PAGUNLOK is called to unlock the page containing the [/0 data area.

VIRTUAL I/0 REQUEST QUEUING ROUTINE - QUEVIO

Entrance: QUEVIO is called by the virtual machine I/O executive program (VIOEXEC) when

an I/0 task block has been created and a virtual CCW list has been translated into a
real CCW list. (See Figure 23 for QUEVIO module processing.)

Operation: When QUEVIO is entered, register 1 contains the address of an I/O task block
to be queued on a real channel, and register 2 contains the address of the
appropriate virtual device block. QUEVIO attaches the I/0 task block to the
appropriate channel block, increments the task count, and tests the real channel.

Routines called: If QUEVIO determines that the channel to which the I/0 task block has
been attached is free, CHFREE is called to start the I/O operation. If +the I/0
operation is successfully started, the I/0 task block is unchained from the channel
block and chained to +the real device block. If the I/0 operation is not
successfully started, the 1I/0 task block is unchained from the channel block, and
the task count is decremented.

When CHFREE processing is completed, QUEVIO returns control to its caller -
VIOEXEC, after reflecting the SIO condition code to the virtual PSW, and taking the
user out of IOWAIT.

Figure 24 illustrates the relationships of routines which process user selector
channel I/0 requests.

Section 2: Method of Cperation 61

Enter

module QUEVIO
entry QUEVIO

Increment
VIOCOUNT

Enter

module QUEVIO
entry OUFRIO

Increment
RIOCOUNT

Store RDEVBLOK
address in
IOTASK block

Direct
access
device

Yes

Set for
split seek

Command
chained

Set for
stand alone

S
IR

Unchain
SEEK

Get
RCUBLOK

Flag as
CP task

Figure 23.

62

L]

Increment
device 1/0
count

Enter

module QUEVIO
entry CHFREE

Channel
busy

Store RCUBLOK
address and

path in

IOTASK block

Increment
the channel
task count

Dedicated
device

plural
channel task
count

split
seek on this
device

Chain IOTASK
to RCHBLOK

Channel
busy

QUEVIO Module Processing (1

CP-67 Program Logic Manual

Order SEEK CHERTE
with respect Start
to TTR channel
address program
P1¢
Exit
of 2)

Get next
IOTASK from
IOTASK list

Isa
control unit

available
available

Yes

Get
RCUBLOK
RDEVBLOK

SEEK
in progress

Is
task on this
device

Turn off
“‘arm in position”’
flag

Form unit
address

Move in
CAW
Issue
SI0
CC=0
CC=1
cc-2
CE=8

Store IOTASK
address in
RDEVBLOK

Store channel
pointer in
control unit

A

Indicate 1/0
started and
channel busy

Unchain
active
I0TASK

Get users
UTABLE

Increment
User's virtual
1/0 count

Exit

Figure 23. QUEVIO Module Processing

Issue SIO
for sense

No

Dedicated
270X

= @
No
5

Get CCW
address and
store in CSW

Shared
device

Store IOTASK
address in
RDEVBLOK

Indicate
cc=3

SetCC -1

-

Unchain
active
I0TASK

Move CSW
for IRA
routine

TASKIRA

Signal
I0TASK
interrupt

(2 of 2)

Section 2:

Exit

Method of Operation

63

Figure 24,

6u

DISPATCH

Dispatch this user

if S10.1s successful
(non — IOWAIT)

1f S10 is not successful
(IOWAIT), dispatch
another user

< >

Real
Device

1/0 interrupts
from 170 operation

Locate ICTASK block
Process interrupts

Return to program

that created the [

I0OTASK TASKIRA = <

VIRA
Go to DISPATCH

UNSTIO

Unstack and
reflect the
interrupt

Go to DISPATCH

—
SCANUNIT(VUNITSCN) J
Get VCHBLOK

VCUBLOK
VDEVBLOK

I
Virtual Program |
———————— B
Virtual Hardware
Simulated]
supervisor Machine g:;nn8|
S10 instruction l
program interrupt
I Wl VR || SNUSUUS SISO
Control
P
| _PROGINT o
Determines program
is In supervisor
mode and privileged
instruction
| DIseaTcH |
Eventually attempts
to dispatch this user
User has pending
interrupts (UTABLE)
Call UNSTIO
- Attempt to dispatch
_ _PRIV_LUED this user, should
T be runnable now
Determines an 1/0 o mmm——
operation attempted =
Call VIOEXEC =1 YIOEXEC .

Compute unit address

Call VUNITSCN

free, set BUSY

Set up IOTASK block
TASKIRA = VIRA
Issue TRANS macro
for CAW page

CCWTRANS

Get CCW hist
Call CCWTRANS

Get CCW list

Issue TRANS macro
for CCW pages
Translate virtual
CCW's to real CCW's

Issue TRANS macro
for user data pages

and lock pages

CP-67 Program Logic Manual

Put user in
IOWAIT status

Call QUEVIO

UNTRANS(FREECCW)

If selector channel. control
unit, and device found and

;

VIOEXEC (VIRA)

Call UNTRANS
Call FREECCW

Scans real CCW list

<

Set interrupt pending

to locate and unlock
user data pages

N UTABLE

Store status in
VCHBLOK, VCUBLON

QUEVIO

Get RDEVBLOK
RCUBLOK
RCHBLOK

If channel is free,
call CHFREE

Chain IOTASK to RCHBLOK

Iy

If control unitis

free, issue SIO

If SI10 s successful, take
user out of IOWAIT

Virtual SIO Selector Channel

Call PAGUNLOK VDEVBLOK
PAGTRANS (PAGUNLOK
————————— —

Unlock user data

page

Note

v__-"J

UNTRANS

Convert real CSW
to virtual CSW

For dedicated MPX devices, the MPX blocks
are restructured as selector blocks, thus the
MPX device 1s structured as a selector device
Therefore the logic flow for selector and
dedicated MPX devices is the same

VIRTUAL CHANNEL INTERRUPTION HANDLER — VIRA

Entrance: When a user-requested I/0 operation is started on a selector channel, the
interruption return address (TASKIRA) in the I/O task block points to the virtual
channel interruption handler (VIRA). When the I/0 operation is completed and an
interruption occurs, VIRA receives control from IOINT, the real input-output

interruption handler.

Operation: VIRA indicates in the user's control table (UTABLE) that an interruption is
pending, and stores status information in the virtual channel block, virtual control
unit block, and the virtual device block when appropriate. The I/0 task block is
unchained from the real channel block and returned to free storage if the operation
is complete (that is, channel end and device end or their equivalents occurred) . If
an I/0 error has occurred, control is passed to IOERROR. See "processing of I/0

Errors — IOERROR".

Routines called: VIOINT calls the routines IOISTVCU and IOISTVDE (subroutines within the
real 1,0 interruption handler) to indicate a control unit end interruption and a
device end interruption respectively. When VIOINT processing is completed, an exit
is taken to the main dispatcher and control routine (DISPATCH) .

ROUTINE TO ANALYZE AND RECORD ERRORS — RECERROR

Entrance: If an I/0 error occurs for a user-requested 1I/0 operation on a selector

channel, VIOINT calls RECERROR to analyze and record the error.

Operation: RECERROR analyzes the I/0 error from information contained in sense byte zero.

The following types of I/0 errors are recorded.

Bit Position
Type of Error Counter Number Within Sense Byte 0

Bus Out Parity
Equipment Check
Data Check

Seek Check

£ W =
N s wN

Counters for each of these types of errors are kept in the RDEVBLOK for each device.
Note that errors are recorded for dedicated devices operating on a virtual multiplexer
channel (unit record equipment, virtual 2702s). If the error is the first encountered of
a given type for a given device, the error is recorded. If the error causes the counter
to overflow (that is, upon the eighth error of this type for the device) , a counter
overflow error record is written. This error may represent the failure of a completely
different channel program than the first error of this type which was recorded. TIf the
error is neither the first encountered nor a cause of a counter overflow condition,
control returns to VIOINT, and the error information is reflected back to the user's
virtual machine.

The I/0 error record has the following 112-byte format:

ORG LOGDATA DEFINE I/0O ERROR RECORD

LOGSNSE DS CL6 SENSE INFORMATION

LOGCODE DS CL1 FIRST ENCOUNTERED OR COUNTER OVERFLOW - TYPE OF ERROR
LOGTYPE DS CL1 DEVICE TYPE

LOGVOLID DS CL6 VOLID OF DEVICE (IF AVAILABLE)

LOGADDR DS CL2 PHYSICAL ADDRESS OF DEVICE

LOGDATE DS CL6 DATE AND TIME STAMP OF ERROR

LOGCSW DS CL8 CHANNEL STATUS WORD

Section 2: Method of Operation 65

DS CL2 UNUSED
LOGCCHS DS 9D FAILING CCW STRING (UP TO NINE DOUBLEWORDS)
LOGSKLOC DS 1D LAST SEEK ADDRESS (DASD ONLY)

For a 3420 device type (LOGTYPE = X'CU4') 24 bytes of sense data are recorded. This
is done by preserving the 24 sense bytes in the first 3 doublewords at LOGCCWS. The
remaining 6 double words are used to contain the failing CCW string, up to the last six
CCW's only. The LOGSNSE field for a 3420 is not used.

The CCW in the string which failed is flagged with an asterisk in the unused fifth
byte.

After the error record is written, the pointer to the next available slot on the CE
cylinder is updated. Seven logical records are contained within one 829-byte physical
record. Since 15 records may be written on two tracks of a 2314, wup to 1050 error
records may be written on one cylinder. If the attempt to write the error record fails,
it is retried eight times. Upon continued failure, an error message "** TOERROR
RECORDING FAILURE ON DEV___" is sent to the operator. If there is no more room on the CE
cylinder for error records, the message "**CECYL FULL; I/O ERRORS NOT RECORDED *x%" jg
sent to the operator. Errors are not recorded for users with privilege <c¢lass C in order
to prevent the recording of intentional errors produced by CE diagnostics. Recording will

ha ot na4d 3 o

be reinitiated after the CE executes the CLEARIO function.

MAIN DISPATCHER AND CONTROL ROUTINE - DISPATCH

Entrance: DISPATCH is entered from routines which have completed their processing for a

user or cannot continue processing until some other process has been completed.

Operation: DISPATCH checks for pending interruptions and determines which user is to
receive control next.

Routines called: When DISPATCH determines that a user is enabled and has an I/0
interruption pending, the I/0 interruption unstacking routine (UNSTIO) is called.
UNSTIO updates the virtual CSW, restores virtual PSW's, and indicates the address of
the interrupting device. When UNSTIO processing is completed, DISPATCH attempts to
restart the current user, (if that wuser is runnable and if his quantum is not
exhausted). The SCHEDULE routine is called whenever a user logs on or logs off. When
a user logs on, the SCHEDULE routine initializes variables for DISPATCH and performs
real timer maintenance. When a user logs off, the SCHEDULE routine drops the user
from the queues of runnable users. The SCHEDULE routine is also called once each
minute to calculate the total system paging activity (K).

DISPATCH may be entered at 4 locations: DISPATCH, DSPTCHA, DSPTCHB, and DSPTCHD.
DISPATCH is the normal entry point used by all routines that are not sure of a
user's status. DSPTCHA is entered from routines which have gained control after a
program interrupt for a user and have changed the user's PSW. DSPTCHB is similar to
DSPTCHA except the PSW is at most changed in its condition code field. DSPTCHD is
used by routines to drop a user from runnable state after a virtual TIO to a busy
device.

The DISPATCH routine:

handles queue management for runnable users
performs real timer maintenance

controls the execution of runnable users
unstacks user execution blocks

checks user status

Figures '25-28' illustrate the relationships of routines which process an I/0
interrupt returned from a selector channel device.

66 CP-67 Program Logic Manual

Virtual
Machine

Virtual Program
(Simulated
supervisor mode)

S10 instruction
program interrupts

DISPATCH

Eventually attempts
to dispatch this user
User has pending
interrupts (UTABLE)
Call UNSTIO
Attempt to dispatch
this user should

be runnable now

PROGINT

Determines program
Is In supervisor mode
and privileged
operation

Determines an 1/0
operation attempted
Call VIOEXEC

‘CLOSEIO’
SI0
Invalid CCW

__Aﬁﬁfiﬁﬁw#_ﬁygr

VIOEXEC

Compute unit address

Call MVIOEXEC

L

Figure 25.

Go to DISPATCH <
UNSTIO MVIOEXEC
—————— = Scan MVDEBLOK for
Unstack and reflect MPX device
the interrupt If device not busy,
issue TRANS macro for
CAW page
If no interrupts pending
set up normal interrupt
condition in MVDEBLOK
for this operation
NN . Get MVIBUFF
Compress user’s l<@—{ Set up MVIOB (IOTASK)
il COW. TASKIRA = MVINTR
>

Issue TRANS macro
for CCW page

Call PACK

1f buffer is full,
call MVREC,
get another buffer

Move packed data
into buffer

If invalid CCW (EOF)
set TASKIRA = MVIEFIRA

call MVREC
Set status in MVDEBLOK

Set pending interrupt
in UTABLE

be started
(See Figure 11c)

Reset IOWAIT(UTABLE

MVIOEXEC (MVREC)
—_—— - —— — = -
Set up CCW’s to

write this buffer

QUEVIO (QUERIO)

GET RDEVBLOK
RCUBLOK

Call QUERIO

= RCHBLOK

Chain IOTASK to

Set IOWAIT(UTABLE)
Go to DISPATCH

A

RCHBLOK
If channel is
free, call CHFREE

A

DISPATCH

This user will wait
for spooling 1/0
operation to complete

Dispatch another user

QUEVIO (CHFREE)

If control unit is
free, issue SIO
(write spooling
buffer)

Section 2:

Vyirtual SIO MPX Channel (Nondedicated Punch or Printer)

Spooling Hardware
Device Device
and
Channel
1/0 interrupts
from writing spooling buffers
MVIOEXEC (MVINTR) I0INT
SVC 16 release current Locate 1/0 task block
save area Process interrupts
—{ CHECK 10 macro Return to program
that created the
1/0 task
OR—{ IOTASK BLK TASKIRA
MVIOEXEC(MVIEFIRA
CHECK 10 macro
SVC 16 release current
save area
Chain file block to
(punches) or (printers)
Call MRIOEXEC
if real 1/0 device can
[N —

Method of Operation

67

68

Virtual Program

{Simulated
supervisor
mode)

DISPATCH
Eventually attempts
to dispatch this user

User has pending
interrupts (UTABLE)
Call UNSTIO
Attempts to dispatch
this user should

be runnable now

T
S10 instruction
program interrupt

— _7;f/~74‘

PROGINT

Determines program
is in supervisor
mode and privileged
instruction

Determines an 1/0

Virtual |

Hardware
Machine Channel
| and

VIOEXEC

.| Compute unit address

operation attempted
Call VIOEXEC

Call MVIOEXEC

Go to DISPATCH

UNSTIO

Unstack and
reflect the

interrupts

i

Figure 26.

PACK (UNPACK)

Unpack user CCW
data

CP-67 Program Logic Manual

v

MVIOEXEC

Scan MVDEBLOK for
MPX device

If device not busy,

issue TRANS macro

for CAW page

If no interrupts pending
set up normal interrupt
condition in MVDEBLOK
for this operation

Get MVIBUFF set up
MVIOB TASKIRA=MVINTR
Issue TRANS macro

for CCW page

lag—{ Get a closed file

from reader chain

1 Call MVIREC

Call UNPACK

Issue TRANS macro
for user pages

Move data into
current page

Set status in MVDEBLOK

Set interrupt pending
in UTABLE

Reset IOWAIT (UTABLE)

Device
SRR N

Control Program

Spooling
Device

1/0 interrupts from
reading spooling buffer

SVC 16 Release
current save area

Issue CHECKIO macro

L

Locate IOTASK block
Process interrupts

Return to program
that created the 1/0
task IOTASK-TASKIRA

MVIOEXEC (MVIREC)

Set up CCW's to

read this buffer
Call QUERIO

Set IOWAIT (UTABLE)
Go to DISPATCH

QUEVIO (QUERIO)

Get RDEVBLOK
RCUBLOK
RCHBLOK

Chain IOTASK TO RCHBLOK

If channel is free,
call CHFREE

i

DISPATCH

This user will wait
for spooling I/0
operation to complete

Dispatch another user

QUEVIO (CHFREE)

If control unit is
free, issue SIO
(read spooling buffer)

Virtual SIO MPX Channel (Nondedicated Reader)

or

Printer

Spooling
Device

1/0 interrupt from Hardware
H q h |
readying real device ::n;"”e 1/0 interrupts from
or output to real Desice reading spooling buffer

device % .
Control Program

I0INT
______ . I0TASK block
Get MRDEBLOK Locate 10 o
Get user's UTABLE Process interrupts
Return to program
Call MR'IOEXEC to that created the I/O
process interrupts MRIOEXEC task IOTASK - TASKIRA
for the device P — - — — —_—— - 4_.7
MIRA=PRIRA or PVIRA | g Get operator’'s UTABLE Go to DISPATCH
|
Go to DISPATCH Get MRIBUFF
Set up IOTASK 1
TASKIRA=MRIRINT \
DISPATCH Get outpu.! bu.ﬁer ESPATCH_ |
o e _ Getspooling fileblock | T T-77=
. Dispatch any user
Dispatch any user Get device address
Call WRTCONS to
output message to
operator
MRIOE MRIR
Call MRDIO |MRIOEXECIMBIRINT, |
Issue CHECKI1O macro
\ PACK (UNPACK) e Call UNPACK
Move unpacked data
Unpack user’'s CCW
buff
MRIOEXEC (MRDIO) data into output buffer
——————— -
Set up CCWS to (|jssue SIO to real
read buffer from evice
spooling device
Call QUERIO

L)

QUEVI0 (QUERIO)

Get RDEVBLOK
RCUBLOK

RCHBLOK

Chain IOTASK to RCHBLOK

If channel is free,
call CHFREE

y !

QUEVIO (CHREE)

If control unit is
free issue SIO

(read spooling buffer)

Figure 27. Real SIO MPX Channel (Punch or Printer)

Section 2: Method of Operation 69

70

Reader

1/0 Interrupt
from readying real device

==
1/0 interrupt
from reading real device

Get MRDEBLOK
Get user’s UTABLE

Call MRIOEXEC to
process interrupts

MRIOEXEC(CRIRA) [T
—— -

for the device

Get operator's UTABLE
Get MRIBUFF
Get 10-Card buffer

Set up 10 TASK
TASKIRA=MRIWINT
Set up CCW's to read
10 cards from the
real device

Issue SIO to the

real device

Figure 28,

CP-67 Program Logic Manual

MIRA=CRIRA
Go to DISPATCH

Get MRDEBLOK
Get user's UTABLE

Call MRIOEXEC to
process interrupts
for the device
MIRA=CRIRA

Go to DISPATCH

Y

DISPATCH

Dispatch any user

_

DISPATCH

Dispatch any user

Real SIO MPX Channel (Reader)

Compress user
CCW data

QUEVIO(CHFREEI

If control unit 1s
free, issue SIO
(write spooling butfer)

Hardware
Channel

and

Device

Control Program

Y

MRIOEXEC (CRIRA)

Get operator s UTABLE
Call PACK

Move data into
spooling butfer

I by "
or EOF, write this
spooling buffer
Call MRDIO

It not EOF

ssue S10 10

the real device

A

MRIOEXEC(MRDIO)

Set up CCW's to write
bufter to spooling
device

Call QUERIO

A
|

MRIOEXECMRIWINT) @

Spooling
Device

1/0 interrupt
from writing spooling buffer

] IOTASK TASKIRA

Py

Process interrupts

Return to program
that created the 1/0 Task

Issue CHECKIO macro

If not end-of-file,
process more data

It end-of-file. chain
spooling file buffer
to reader’s chain
Call WRTCONS to
send CARDS READ
message to the user

Go to DISPATCH

DISPATCH

Dispatch any user

QUEVIO (QUERIO)

Get RDEVBLOK
RCVBLOK
RCHBLOK

Chain IOTASK to RCHBLOK

If channel 1s free
call CHFREE

PROCESSING USER MULTIPLEXER CHANNEL I/O REQUESTS

When a pseudo-supervisor (that is, a supervisor operating.in a user's virtual machine)
requests an I/0 operation for a device attached to the multiplexer channel, the program
interrupt handler (PROGINT), and the virtual machine I/0 receive control. (See preceding
section headed "Processing User Selector Channel I/O Requests'".) When VIOEXEC determines
that an I/0 operation has been requested for a device attached to the multiplexer
channel, the multiplexer virtual I/O executive program (MVIOEXEC) is called. Figures
129-32' jllustrate the relationships of routines which process user multiplexer channel
I/0 requests.

Section 2: Method of Operation 71

Any Control
Program Module

L]
Call WRTCONS
with or without
NORET (no return) option
Go to DISPATCH
[
@
Routine to process
the write if NORET
not specified
®
[]

Console or
Terminal

1/0 interrupts
from write to terminal

% Control Program

| ____WRTCONS _ _ |
Set up RDCONPKG if
NORET not specified
Get MRDEBLOK and
device address

Construct CCW package
for write

Call STCONSIO

Get MRDEBLOK
Get user's UTABLE

Call CONSINT

to process interrupts
for the device
MIRA=CONSINT

Or if “attention”
interrupts, call BREAK

Go to DISPATCH

Hardware
Channel
and
Device

i

1

Figure 29. Real Terminal SIO (Write)

STCONSIO

Get MRDEBLOK

If previous console

1/0 request outstanding,
queue this request
UTABLE—-CIOREQ

If no requests
outstanding, issue
SIO for this request
and queue this request
UTABLE-CIOREQ

DISPATCH

Eventually attempt

to dispatch user that
initiated the write

User has outstanding
CPEXBLOK (if NORET
not specified)

Process CPEXBLOK,
return to location
designated by the
program that called
WRTCONS (return
address in RDCONPKG)

CONSINT

Get CCW package
Process interrupts
If NORET not specifie

call CPSTACK
to set up return

CPSTACK

If more CCW packages
in stack, start the
next one (issue S10)

Put RDCONPKG in
CPSTACK

J

72 CP-67 Program Logic Manual

Any Control
Program Module

Call RDCONS
Go to DISPATCH
(]
®

[]
Routine to prccess
the read

®

Figure 30.

L

Console or
Terminal

1/0 interrupts
from read to terminal

RDCONS

Get MRDEBLOK and
initialize for device
type and address

Set up RDCONPKG

Construct CCW package
for read

Call STCONSIO

Get MRDEBLOK
Get user's UTABLE
Call CONSINT

to process interrupts
for the device

MIRA=CONSINT

Go to DISPATCH

A

STCONSIO

Get MRDEBLOK

If previous console

1/0 request outstanding
queue this request
UTABLE-CIOREQ

If no requests
outstanding, issue SIO
for this request and
queue this request

UTABLE—CIOREQ

Real Terminal SIO (Read)

Y

DISPATCH

Eventually attempt
to dispatch user that
initiated the read

User has outstanding
CPEXBLOK

Process CPEXBLOK
return to location
designated by the
program that called

RDCONS (return
address in RDCONPKG

Section 2:

Hardware
Channel
and
Device

Control Program

CONSINT

Get CCW package
Process interrupts

Get read data and
process for EDIT and
UCASE if specified

Call CPSTACK

If more CCW packages
in stack, start the next

one (issue SI10)

Put RDCONPKG in
CPSTACK

s CESTACK

Method of Operation

73

Virtual Program

(Simulated
supervisor
mode)

T
S10 instruction
program interrupt

e

PROGINT
Determines program is

In supervisor mode and
privileged instruction

Determines an 1/0

Virtual Machine

Control Program

VIOEXEC

Compute unit address
Call MVIOEXEC

DISPATCH operation attempted
—_———— = — =1t Call VIOEXEC
Eventualily attempts = 10 DISPATCH
to dispatch this user
User has pending
interrupts (UTABLE)
€ NSTI

all UNSTIO SE— UNSTIO
Attempt to dispatch — — ——— — —q
this user should be —— Unstack and
runnable now reflect the

interrupt

]

il
T

DISPATCH
(See overview of real
terminal SI10)

Process CPEXBLOK
return to location
designated by the A
program that called =
WRTCONS (return

address in RDCONPKG) (

Figure 31.

MVIOEXEC

Scan MVDEBLOK for
MPX device

!f device not busy,

issue TRANS macro

for CAW page

If no interrupts pending,
set up normal interrupt
condition in MVDEBLOK
for this operation

Issue TRANS macro

tor CCW page

Obtain terminal buffer

Save buffer address

in MVDEBLOK-MVIOB
If end of line, call
WRTCONS with

return = WRTNMVI

and go to DISPATCH

Process all CCW's if
chaining is on

Atend of CCW's, if
any of the line remains
call WRTCONS with
return = WRTNMV |
and go to DISPATCH

Dispatch any
user

WRTCONS <
— F———3
(See overview of real
terminal S10)
el
e SIROIER I

Virtual Terminal SIO (Write)

74 CP-67 Program Logic Manual

Set device end in
MVDEBLOK

Set interrupt
pending in UTABLE

MVIOEXEC(WRTNMV 1)

Test for break and
process if any

Set device end in
MVDEBLOK

Set interrupt
pending in UTABLE

Process more CCW's
if chaining is on

Virtual Program

(Simulated
—® supervisor
mode)
SI0 instruction Virtual Machine
program interrupt
PROGINT Control Program
Determines program is
in supervisor mode
and privileged
instruction
| VIOEXEC __ L e OLIER e
Determines an 1/0 Compute unit address ﬁ/‘c;n MVDEBLOK ter
operation attempted | Call MVIOEXEC X device
Call VIOEXEC If device not busy,
| _ _ DispaTCH Go to DISPATCH ﬁ%mﬂﬁmm
Eventually attempts "
. . If no interrupts pending
10, dispateh thisiuser set up normal interrupt
User has pending condition in MVDEBLOK
interrupts (UTABLE) UNSTIO for this operation DISPATCH
Call UNSTIO [l A g = — Issue TRANS macro
i Unstack and for CCW page (See overview of real
Attempt to dispatch RDCONS terminal SIO)
this user should (eflect the b o i s s Get terminal 1/0
be runnable now interrupt buffer Process CPEXBLOK
(See overview of real return to location
terminal S10) lag—| Save buffer address designated by the
in MVDEBLOK-MV108 stogram that calied
= Call RDCONS RDCONS (return

address in RDCONPKG)

with return =
MVICNRD1

Go to DISPATCH

DISPATCH - MVIOEXEC(MVICNRD) fel——
[Test for break and .
Dispatch any process if any

i Issue TRANS macro
for user page

Move CCW data to
user page

Process remaining
CCW's if chaining
is on

Set device end in
MVDEBLOK

Set interrupt pending
in UTABLE

Figure 32. Virtual Terminal SIO (Read)

Section 2: Method of Operation 75

SIO ON A VIRTUAL MULTIPLEXER CHANNEL

When MVIOEXEC determines that an SIO operation has been executed, the page handling
routine (PAGTRANS) is called, via the TRANS macro, to obtain the user's virtual CCW list
starting address (from the virtual CAW), and an I/0 task block and buffer area are
created. If an interruption (device end or channel end) is pending on the virtual
device, an indicator is set in the nultiplexer virtual device block (MVDEBLOK), and an
exit is taken to VIOEXEC.

If no interruptions are pending, MVIOEXEC determines the type of device for which the
SIO operation is requested. If the device is a printer or card punch, the user®s CCW
data must be packed (via the PACK routine) and placed into a spooling buffer (829 bytes),
preparatory to being written into a spooling area on a direct access device. TIf the
device is a card reader, data will be read from a direct access spooling area into a
buffer; it must then be unpacked (by means of the UNPACK routine) to be made available to
the user.

If the device is a user's terminal, the virtual CCW is saved, and the type of command
(SENSE, NOP, ALARM,READ, or WRITE) must be determined; special processing is required for
each command.

Following is a summary of the processing required for SIO operations for devices
attached to the multiplexer channel:

SIO - Printer or Punch: For an SIO operation to a printer or card punch, MVIOEXEC does
the following:

Initializes MVIBUFF, which contains a buffer for user's packed CCW data, CCH's to
write the buffer onto a direct access device, and control information.

Calls PAGTRANS to bring into core the pages which contain the user's CCW data.
Calls PACK to compress the user’s CCW data.

Enters the packed data into the buffer; when the buffer is filled, it is written
into a spooling file on a direct access device by calling QUERIO.

Calls the multiplexer real I/0O executive program (MRIOEXEC) to perform the
input-output operation when the spooling file is closed. (The file may be closed by
the wuser including an illegal CCW or issuing a CLOSE command from console
functions.) If the real printers and punches on the system are busy, the closed
spooled file is placed in chains starting from PRINTERS or PUNCHES.

Note: If CP console function XFER had been previously initiated, no real deck is
punched. Instead, the spooled card deck is set up as an input deck in the virtual
card reader for the userid specified in the XFER command.

SIO - Card reader: For an SIO operation on a card reader, MVIOEXEC does the following:

Initializes MVIBUFF, which contains an area into which the user's packed data will
be read, CCW's to read the data from a direct access device spooling area, and
control information. The READER chain on the system is scanned to find a spooled
file for the user. If none are found, the SIO is indicated to have terminated by an
intervention-required condition.

Calls QUERIO to read packed data (80-~byte card image records packed into 829-byte
physical records) from the direct access spooling file associated with the user's
ID.

Calls PAGTRANS to bring the required user's pages into core storage.

76 CP-67 Program Logic Manual

5T0 =

Moves data into the specified area in the user's page(s).

User terminal:

Sense Command - User terminal: For a SENSE command on a user terminal, MVIOEXEC does the

following:

Calls PAGTRANS to determine the address of the area into which the sense information
will be placed.

Moves sense information from the multiplexer virtual device block into the provided
area.

NOP Command - User terminal: For a NOP command on a user terminal, MVIOEXEC does the

following:

Scans virtual CCW flags. If the CcC or CD flag is on, the next CCW in the chain is
examined.

Indicates a pending multiplexer interruption in the wuser's UTABLE if neither the CC
nor the CD flag is on.

WRITE Command - User terminal: For a WRITE command to a user terminal, MVIOEXEC does the

READ

following:
Calls PAGTRANS to obtain the user's pages associated with the I/O transfer.
Moves the user's data into the output buffer.

Processes each successive CCW in the chain if the chained data flag is on. All
chained data is moved into the output buffer.

Calls WRTCONS to write the data contained in the output buffer on the user's

terminal. (Control is given to DISPATCH until the real WRITE operation is
completed.)

Command - User terminal: For a READ command for a user terminal, MVIOEXEC does the
following:
Calls FREE to obtain an input buffer.

Ccalls RDCONS to read data into the input buffer from the user terminal. (Control is
given to DISPATCH until the real READ operation is completed.)

Calls PAGTRANS to obtain the address of the user's pages into which data will be
placed.

Moves data from the input buffer to the specified areas in the user's pages.
Processes virtual CCW flags.

processes each successive CCW in the chain if the chained data or chained command
flag is on.

ALARM Command - User terminal: For an ALARM command for a user terminal, MVIOEXEC does

the following:

Calls WRTCONS to write an "alarm" message on the user terminal (control is given to
DISPATCH until the ALARM is completed).

Processes each successive CCW in the chain if the chained data or chained command
flag is on.

Section 2: Method of Operation 77

When special processing for each type of command is completed, MVIOEXEC performs the
following:

° Checks for command chaining and processes the next command if on.

e Calls PAGTRANS to determine the address of the virtual CSW, stores the virtual CSw,
and removes the I/0 wait indication from the user's UTABLE.

L Calls BREAK if the attention key was activated during a read or write operation.

° Returns control to the virtual machine I/0 executive program (VIOEXEC).

TIO ON A VIRTUAL MULTIPLEXER CHANNEL

When MVIOEXEC determines that a TIO operation has been requested, the multiplexer
virtual device block (MVDEBLOK) is examined to determine whether an interruption (channel
end or device end) is pending for the virtual device.

If a channel end interruption is pending, the channel end indication is removed from

the MVDEBLOK. If a device end interruption is pending, the device end indication is
removed, and device end is indicated in the virtual CsW. For either type of
interruption, a condition code of 1 is set in the virtual PSW. If no interruptions are

pending, the condition code remains zero.
When the condition code has been set, the normal MVIOEXEC exit is taken:

The virtual CSW is stored, and the I/0 wait indication is removed from the user's
UTABLE.

Control is returned to the virtual machine I/0 executive program (VIOEXEC).

TCH ON A VIRTUAL MULTIPLEXER CHANNEL

When MVIOEXEC determines that a TCH operation has been requested, a scan is initiated
for any MVDEBLOK in the MVDEBLOK chain which has the same channel address as the argument
of the TCH instruction. If no MVDEBLOK is found, condition code 3 is set; otherwise,
condition code 0 is set.

When TCH processing is completed, control is returned to the virtual machine 1I/0
executive program (VIOEXEC).

HIO ON A VIRTUAL MULTIPLEXER CHANNEL

When MVIOEXEC determines that an HIO operation has been requested, it sets the u;er's
condition code to zero if there is an interruption pending, and to 1 if there is no
interruption pending.

PSEUDO TIMER DEVICE -~ TIMR

When MVIOEXEC detects an SIO to a virtual nultiplexer device type TYPTIMR, it fills
in the specified read buffer with the time of day (hh/mm/ss), date (mm/dd/yy), total
virtual CPU time (VTOTTIME), and total CPU time (TIMEUSED) used since logging in. No
actual I/0 operation is performed, and no real device is associated with this operation.

78 CP-67 Program Logic Manual

There is no interrupt from this device after the data is transferred. The SIO ends with a
condition code of zero for a successful operation, or 3 if the pseudo timer does not
exist in the user's virtual machine configuration.

Note: When the Pseudo Timer Device (TIMR) is invoked, the specified read buffer nust

reside within the confines of one virtual page.

PROCESSING DEDICATED MULTIPLEXER DEVICES

If multiplexer devices are dedicated to a particular user, they are structured and
handled by CP-67 as though they were selector type devices. Thus a virtual SIO to a
dedicated printer, for instance, would go through the selector I/O processing logic and
not through the multiplexer spooling logic. Any CP-67 multiplexer device «can be
dedicated to a user at the time he logs in to CP-67 or through the ATTACH capability.

When a multiplexer device is attached to a user on a nonshared (dedicated) basis, a
restructuring of the real and virtual control blocks is required. As an example, suppose
the operator is attaching the real printer to a user as a dedicated device. The real
printer is "030" and the virtual address is "O0OE". The user cannot already have a device
of address 00E in either his virtual selector devices or multiplexer devices. The real
nultiplexer device block (MRDEBLOK) for the printer 030 is located. TIf the printer is
not busy or already attached, the MRDEBLOK is marked as "dedicated". A routine called
DEDICATE then creates a real selector channel, control unit, and device block for the
printer, and chains these blocks with the other real blocks (RCHBLOK, RCUBLOK, and
RDEVBLOK) . Then virtual selector channel, control unit, and device blocks are created
and are linked to the newly created real blocks by VPNTREAL in the VDEVBLOK. Since the
device is now structured as a selector device, I/0 simulation and interrupt handling will
be as outlined in "Processing User Selector Channel I/O Requests". This structure will
be maintained until the user detaches the dedicated device or logs out. In either case,
the logout routine (USEROFF) will detect a dedicated device that was structured using
DEDICATE and will call RELEASE to free the real channel, control unit, and device blocks
and to free (undedicate) the device on the multiplexer (MRDEBLOK) chains.

PROCESSING VIRTUAL 2702 LINES

Virtual 2702 lines in a user's machine require special consideration because of the
nature of the teleprocessing applications that these virtual machines may run.

For a virtual machine with nondedicated virtual 2702 lines defined in the CP-67
directory, the virtual 1I/0 blocks are built as selector I/0 blocks. Every virtual 2702
line has its own virtual selector channel, control wunit, and device block (VCHBLOK,
VCUBLOK, and VDEVBLOK). The blocks are structured this way so that a dedicated 2702 line
can be linked to them when linkage is initiated by DIAL (see the next section for DIAL
processing) . In order to properly process a DIAL request, the virtual 2702 block must be
initialized. This is under control of the virtual machine. When the virtual machine
issues an "enable" sequence to a virtual 2702 1line, CP-67 performs all the normal
handling for a user selector I/0 request with one major exception. Since there is no
real device on which to perform the I/0O operation when the "enable" is issued, the IOTASK
created by VIOEXEC is held waiting for a DIAL request. The user is given the condition
that the I/0 is started, but it will not complete, of course, until a DIAL is handled,
simulating a call completion. The "enable" CCW is changed to a "write circle C" to
effect line behavior as though a call had been completed. Any SAD commands are made NOP
since the real line has already been set by CP-67 and the SAD number could be different
for virtual machines. The module CCWTRAN detects I/O to virtual 2702 lines and changes
the Y“enable" and SAD commands. CCWTRAN also retains the IOTASK (pointed to by VPNTREAL
in the VDEVBLOK for the virtual 2702 line) and indicates to VIOEXEC (which called

CCWTRAN) not to call QUEVIO since no real device yet exists.

Figure 33 illustrates the processing of virtual 2702 lines before and after a DIAL
console function is issued.

Section 2: Method of Operation 79

VCHBLOK ————+t—— | VCUBLOK — | VDEVBLOK b — — — — — — Sy
7 |
l
—VIRT ENABLE |
|
|
7 10TASK I
) |
T |
‘ |
\ |
\

\ ENABLE |
\ CCW(s) |
\ |
\ |
\ |
\ |
|
RCH o- o RCH — 1 — RCH |
o |
|
|
1
|
RCU RCU RCU |
7 |
|
|
RDEV RDEV RDEV RDEV - —

iobesata e S

= i = \
» i
MDEV O——> MDEV o {pm MDEV o |l MDEV o—ip MDEV

1/0 block chain before (————

)

and after e —tn

a DIAL procedure

Figure 33. Processing a Virtual 2702 Line

80 CP-67 Program Logic Manual

&» Did a DIAL

PROCESSING A DIAL REQUEST

The DIAL method of attaching to a virtual machine is an alternative to LOGIN with a
unique userid. After making contact with the computer and receiving the message "CP-67
online", a user can enter "dial xxxx", where xxxx is the userid of a virtual machine with
virtual 2702 lines. The DIAL request can be considered as a self-initiated request to
wattach”" the terminal to the desired virtual machine on a dedicated basis. The module
DIAL will search for an ‘"enabled" (virtually) 2702 line that is not in wuse on the
requested virtual machine. When one is found, DIAL will call DEDICATE to attach the
terminal that entered "DIAL" to the virtual machine. DEDICATE will mark the terminal
from the MRDEBLOK chain as dedicated and create real selector channel, control unit, and
device blocks. These will be linked to the already existing virtual selector channel,
control unit, and device blocks. The TIOTASK that was being held (from the "enable®
sequence) is now allowed to proceed by DIAL calling QUEVIO. I/0 interrupts and
subsequent I/0 requests to that virtual 2702 line will now be handled in exactly the same
fashion as dedicated multiplexer devices. However, in order to expedite the efficient

handling of dedicated (DIALed) 2702 1lines, a further step is taken. In CCWTRAN,
detection is made when a virtual machine issues a disable to a DIALed 2702 line. When a
virtual "disable" is detected, CCWTRAN creates a dummy CSW with normal completion and

calls VIRA to process what appears to be the completion of the "disable"; however, no I/0
operation is performed. CCWTRAN then calls RELEASE to free the real selector blocks for
the dedicated 2702 line. RELEASE will set processing in effect to go to OFFHANG in
CONSINT. OFFHANG writes a message to the terminal indicating that the terminal is now
under CP-67 control. OFFHANG will +then either disable the 1line and then reenable (as
done in LOGOUT) or proceed to IDENT2, which will start with "CP-67 online" and then wait
for a LOGIN or a DIAL (as done in LOGOUT HOLD). The alternative is an installation
option defined in CONSINT.

Special handling is also required if the virtual machine with virtual 2702 lines
either detaches 2702 1lines, does an HIO to *dialed" or "enabled" lines, or logs out of
Cp-67. Since "enabled" lines have IOTASK blocks pending, these must be released if the
virtual line is to be considered no longer active. The VIOEXEC module has special code
to handle an HIO to an "enabled" 2702 line. VIOEXEC will call VIRA to indicate that the
“enable" has been halted. HIO to a "dialed" 2702 line is allowed to proceed in the
normal fashion. The RELEASE module (in USEROFF) also has code to call VIRA, release the
IOTASK block, and return the device to the MRDEBLOK chain.

VIRTUAL RPQ'S

Five special functions are provided by CP-67 to virtual machines; these functions
either are not available on a real System/360 or normally would require operator
intervention.

RPQ Timer - This is a special device type (TIMR) defined in the directory to provide time
information to a virtual machine. The device can have any address, but for CHMS it
is defined as OFF. The virtual machine issues an SIO to the device with a "read" CCW
using a 2U4-byte data area, which must not cross a page boundary. The following
information is placed in the 24-byte data area.

Location Data
0-7 date as MM/DD/YY
8-15 time as HH.MM.SS
16-19 value from TIMEUSED
20-23 value from VTOTTIME

There is no interrupt from the device after the data transfer.
Readable punch - This function is provided by the XFER console command. It routes the

output from a user's spooled card punch to his or another user's spooled card file
input. This function operates simply by SFBLOK routing. When a user issues CLOSE

Section 2: Method of Operation 81

to a spooled punch, the SFBLOK is chained on the spool READER chain for the XFERed
userid to read instead of being chained on the PUNCH chain for real punch output.
The XFER for a printer works in a corresponding fashion.

Rereadable reader - This function is provided by the SET CARDSAVE ON console command.
This function is accomplished by exception handling when a spool reader is CLOSEd by
a user. Instead of scheduling the file for deletion from the spooling space, the
SFBLOK is maintained on the READER chain so that the file can be reread from the
beginning.

Wide card reader - There are two types of special spool card readers. The first type is
a "wide" 2540 reader that allows the user to read more than 80 bytes from one
"card". For instance, this capability is used by CMS when reading a spool reader,
since that reader may contain 80-byte "card" files or 132-byte "card" files as a
result of XFERed printer files. The second type is used to retrieve spool data in
special format. This type (called RPRT or RPUN) is used to read the CP-67 system
disk dump, for instance. It is a spooling reader that transfers to the user data
areas (CCW addresses) up to 825 bytes of packed spool data. No attempt is made by
CP-67 to analyze op-codes, lengths, or data. Thus, core dumps on disk can be read
by a wvirtual machine having this type of card reader. RPRT is for reading files
normally scheduled for printer output, and RPUN is for punch output.

DIAGNOSE - This privileged instruction cannot be simulated or allowed to execute.
Accordingly, this op-code is used as a means of communication at the programming
level between a virtual machine and various CP-67 functions. (See "The Diagnose

Instruction" for a description of each code allowed.)

INTERRUPTION HANDLING

Five major types of interruptions must be handled by the Control Program: SVC
interruptions, external interruptions, program interruptions, machine check
interruptions, and I/O interruptions. Handling of I/0 interruptions is discussed under
the earlier heading "Processing Control Program I/O Requests". This section describes
how the other four types are handled.

SVC INTERRUPTIONS

When an SVC interruption occurs, the SVC interruption routine (SVCINT) is entered. If
the machine is in problem mode, the type of interruption is placed into register 14, and
the REFLECT routine is called to reflect the interruption back to the pseudo-supervisor
(that is, the supervisor operating in the user's virtual machine). If the machine is in
supervisor mode, the SVC interruption code is determined, and a branch is taken to the
appropriate SVC interruption handler. (See Figure 34 for a flowchart of the SVC Interrupt
Handler.)

82 CP-67 Program Logic Manual

entry SVCINT

Enter

module PSA

SVC code In problem o
mode in R14 REFLECT
DIE Link RET RLSE Get
SVCO0) SVC8 SVC 12 SVC 16 SVC 20
t t
Get a save gdcérrzsr:ﬁl’lgnm Release save Get a save
Save GPR's area from SAVEAREA in area area from
‘NEXTSAVE' SVCOPSW ‘NEXTSAVE’
A
Go to LPSW
DSKDUMP Save GPR's Release save Restore SVCOPSW
12and 13 AKea GPR 13
_—
LPSW
Save SVCOPSW Restore GPR's SVCOPSW
address as 12 and 13
return address
Go to LPSW
called routine SVCOPSW

Figure 34. Flowchart of the SVC Interrupt Handler

Section 2:

Method of Operation

83

SVC 0 =~ Impossible condition or fatal error: If the SVC interruption code is 0, the
SVCDIE routine initiates an ABEND by going to the DSKDUMP routine.

SVC 4 -~ Reserved for future use.

SVC 8 - Link ©request (transfer control from calling routine to called routine specified
by register 15): If the SVC interruption code is 8, the SVCLINK routine saves
registers, sets up a new save area, inserts the contents of register 15 (the address
of the routine for which the link is requested) into the SVCOPSW (and register 12),
saves the old addressability in the save area, saves the o0ld save area address in
the new save area, and issues an LPSW instruction for the SVCOPSW to restart the
Control Program at the linked address.

SVC 12 - Return request (transfer control from called routine to calling routine): If
the SVC interruption code is 12, the SVCRET routine is entered to restore registers
12 and 13 (addressability and save area address saved by SVCLINK), places the user's
return address (also saved in the area) back into the SVCOPSW, and returns control
to the calling routine by loading the SVCOPSW.

SVC 16 - Release current save area from the active chain (and thereby also remove linkage
pointers to the calling routine): If the SVC interruption code is 16, the SVCRLSE
routine releases the current save area by placing the address of the next higher
Save area in register 13, and returns control to the current routine by loading the
SVCOPSW. This SVC is used by second level interrupt handlers to bypass returning to
the first level handler under specific circumstances.

SVC 20 - Obtain a new save area: if the SVC interruption code is 20 the SVCGET routine
places the address of the next available save area in register 13 and the address of
the previous save area in the save area pointer field of the current save area.

There are 35 save-areas initially set up by CPINIT for use by the SVC linkage handlers.
In addition, if the supply of available save areas drops to 0, the linkage handlers will
call FREE to obtain one. If the supply of available save areas drops to 0 and an EXTEND
operation is in progress, the supply of 'EXTEND' save areas is used until depleted. FREE
is then called to obtain additional save areas.

EXTERNAL INTERRUPTIONS

When an external interruption occurs, the external interruption handler (EXTINT) is
entered. (See Figure 35) for an overview of the Fxternal Interruption Handler.

If EXTINT is entered because of a timer interruption, the machine wmode must be
determined. If the machine was in wait state, control is +transferred +to the main
dispatcher and control routine (DISPATCH) , which will ©become 3idle wuntil another
interruption occurs. If the machine is in proklem mode, the address of the current
user's UTABLE is obtained from RUNUSER. The user's current PSW (VPSW) is updated from the
external interruption old PSW (EXOPSW) , the address of the current UTABLE is placed in
register 11, and control is transferred to DISPATCH.

If EXTINT is entered because of the operation of the console interrupt button
(EXTERNAL) , the following steps are taken: (1) the current system operator is located
(via REALOPTR), and (2) his virtual machine is disconnected. He may now log in fron
another terminal. The operation of the console interrupt button is used to implement an
alternate operator's console.

84 CP~67 Program Logic Manual

Locate system
operator
(UTABOPTR)

Mark
disconnect

Running
. user
interrupted

Enter

module PSA
entry EXTINT

Timer

interrupt

Executing

in supervisor
state

Find
RUNUSER

LPSW
EXOPSW

S

Was
Yes machine

A

Get current
UTABLE
(RUNUSER)

Save VGPRS
and VFPRS

Update VPSW
from EXOPSW

Provide DISPATCH
with user to
be charged time

in problem
mode

No
(Idle)

Provide DISPATCH
with operator to be
charged time

Go to
DISPATCH

Figure 35. Overview of External Interruption Handler

Section 2:

Method of Operation

85

PROGRAM INTERRUPTIONS

When a program interruption occurs, the program interruption handler (PROGINT) 1is
entered. (See Figure 36 for an overview of PROGINT.) Program interruptions may result
from (1) paging requests, (2) privileged operations (I/0), and (3) privileged operations
(non-I/0). PROGINT determines the cause of the interruption by examining the
interruption code. If (3) has occurred, PROGINT transfers control to PRIVLGED.

86 CP-67 Program Logic Manual

Enter
module
PROGINT

Save GPR's
10-15in
TEMPSAVE

Real
machine in Get user

(RUNUSER)

Save Reg's Relocation
exception
Segment Page
Go to
User’s
DSKDUMP machine in Set invalid
address
Privileged
instruction
Yes 1
Save VM status Save VM status
VPSW and REG's VPSW and REG's
Go to
PRIVLGED Get address
routine to be
translated
| _PAGTRANS
Initiate paging
operation
(PARM = BRING)

Go to
DSPTCHB

Figure 36. CP-67 Program and PRIVLGED Interrupt Handler (1 of 4)

Section 2: Method of Operation 87

odule PRIVI.GF
entry PRIVLGED

Put privileged
instruction in

USERINST
(UTABLE)
LPSW SSM SSK ISK DIAG EX 1/0
y
VIOEXEC
e Get SEGTABLE RN
et absolute et diagnose -
data address EQSIQSLLEE code ’ Initiate 1/O
operation
Get SEGTABLE Betatisolure
Get absolute PAGTABLE address of
data address SWPTABLE executed
instruction
Move new PSW
Get key from
to VPSW : >
(UTABLE) VGPR Set invalid
operation
code
Put new
mask in VPSW ﬁ;"‘f .kcly)
(UTABLE) nst-
4
Any No
interrupts
pending Set key
(SSK inst.)
Store key
Go to in VGPR
DSPTCHB (pass key to
user)
Go to @
DSPTCHA
0 4 8 c 12 14 18 1C 20
DATETIME
N
PRCLASS PRCLASS Get current No 0
operatar 10r3 cate and time
A
PPAGOUT DIAGDSK Yes Yes
Get the CP-67
console Re'eafsed Initiate disk
tunction Specitie 1/0 operation
pages
Move CP location Move date, time, FMTILOG FMTMLOG
into VM VCPU, VTOT TIME
locations into VM locations Format 1/0 Format M/C
error cyl. error cyl.
y
COMENTRY
hd
Execute the
CP-67 console
function
4

Figure 36. CP-67 Progran

88 CP-67 Program Logic Manual

and PRIVLGED Interrupt Handler

(2 of u)

WRITE INVALID
LRA STMC LMC D!RECT OP. CODE
A
Get absolute
inst. address
and register Get EXTUTAB Get EXTUTAB Go to 5
receiving DSPTCHA
results
A
Get virtual Get data and Get data and
SEGTABLE and number of number of
PAGTABLE CREGS to be CREGS to be
moved moved
- Move data Move data
dec§ virtua from VCREGS from data area
address to data area .0 VCREGS

FREE PST

Virtual
CREG 6
loaded

Store results
in VGPR and Go to

VPSW DSPTCHA

Get space for
virtual PAGTABLE
and SEGTABLE

FRET PST
Go to Return virtual
DSPTCHB PAGTABLE and
SEGTABLE

!

Figure 36. CP-67 Progranm and PRIVLGED Interrupt Handler (3 of 4)

Section 2: Method of Operation 89

Module PROGINT
entry REFLECT

y

Put interrupt
address, ILC,
EC, into VPSW
(UTABLE) 7

Issue trans
macro for
user’s page
zero

Move VPSW
to
VOPSW

A

Move
VNPSW
to VPSW

Go to
DSPTCHB

Figure 36. CP-67 Program and PRIVLGED Interrupt Handler (4 of 4)

90 CP-67 Program Logic Manual

PAGING INTERRUPTIONS

If the program interruption is caused by a paging request, and if the interruption
occurs when a virtual 360/67 is running in extended mode with translation on, a special
processing takes place. See "Running a Virtual 67" in the CP-67 Operator's Guide.
Otherwise, PROGINT determines whether a segmentation error (a segment of the progran
missing) has occurred. If the interruption code resulted from a segmentation error, an
invalid address interruption code is set, and the interruption is reflected to the user's
virtual machine supervisor.

If a segmentation error has not occurred, the user's current PSW is updated from the
program old PSW (PROPSW), the address of the current UTABLE is placed in register 11, and
PAGTRANS is called to obtain the required page. When the paging operation is completed,
control is returned to DISPATCH (see Figure 37 for an overview of PAGTRANS).

Section 2: Method of Operation 91

Load mach. size
in R2, set
condition code

Enter

module PAGTRANS
entry PAGTRANS

(Seg excp)
01

Translate
virtual
address
(LRA inst.)

LRA
condition

00 (in core) Get

code

CORTABLE

Figure 37. Overview of PAGTRANS (1 of 4)

92

in RO

02
(not in core)

BRING
option

Exit

Set condition
code=1

Get
SEGTABLE
entry

Page
exception

Exit

Get PAGTABLE Is page
entry coming in
Get
Create
SWPTABLE CPEXBLOK
entry
y

Page
in transit

Chain CPEXBLOK
to IOTASK
for this page

Set transit
bitin
SWPTABLE

CP-67 Program Logic Manual

Defer
option

Return to
caller

entry

Lock
option

Set lock bit,
increment
lock count

Set condition
code=0

Get
CORTABLE

Exit

entry

Set
changed/used
bits if
required

Set lock bit,
increment
lock count

Lock
option

No
Exit

Go to
DISPATCH

Defer
option

Create
CPEXBLOK

Chain CPEXBLOK
to IOTASK
for this page

]

C}u

Figure 37.

Overview of PAGTRANS (2 of 4)

Section 2:

g:":rCORTABLE Unlocked fE"d 8 Have a
A3 \i) no transit ajsecon page of
nex slot pass a user
Slqre UTABLE User in NG Get UTABLE
pointer in a dispatch belonging
CORTABLE Q to this user
Set transit First
bit in Save this user page Get SWPTABLE
CORTABLE entry encountered, for this page
Cﬁla}!al'e Keys Set PAGEWAIT
Pd(\jISICa ; No indicate Yes | incrementand
address o changed 1 PAGEWAIT
page
page count
Store page Decrement Set page-not-
address in PAGEWAIT ihicore it
PAGTABLE count ih oid
PAGTABLE
Set transit RAGEGHT
bitin SWP_RELPG Allocate space Yes Recompute
CORTABLE bit on for a page on bit on
drum or disk
No
O‘Id page SWPRELPG Set write
in core b code for
iton cews
Set page-not- PAGEREL
in-core bit
in old Release
PAGTABLE page
>
Store
set read SWPTABLE
godd far pointer in d
£ews CORTABLE

Method of Operation

93

Figure 37. Overview of PAGTRANS (3 of 4)

94

Paging
to Drum

Set up IOTASK
block.
TASKIRA=
DRMWAIT

Set up IOTASK
block.
TASKIRA=
WAITPAGE

Put to TASK
block in
paging queue

Build CCW's
for 170
operation

Module PAGTRAN
Entry DRMWAIT

IOERROR

Retry

No

CHFREE
Start

Another
IOTASK

Start channel
again if free

QUERIO

Queue IOTASK B
for 1/0

Slotted
Drum

Chain IOTASK
to appropriate
slot

QUERIO
Queue IOTASK
for 1/0
operation

Set PAGEWAIT
increment
and count

Restore regs
for return
to caller

operation

Change last
‘TIC' to 'NOP’

FREE

Get a CPEXBLOK

A

Set CPEXBLOK
return address

Go to
DISPATCH

CP-67 Program Logic Manual

to WTPAGAA
CPSTACK
Set save area
return address Put CPEXBLOK
to DISPATCH on CPSTACK
queue

—

Return to
caller

Figure 37.

Module PAGTRANS
entry WAITPAGE

drum

IOERROR
CE,DE
Interrupt Retry
Yes
&
CH FREE
Yes No
Start channel
again if FREE
5
Yes g Issue SVC 16
Pt Release current
Save area
Reset transit
Migrate No ¥
page to — Bitin
CORTABLE

Set SWPRELPG
Bit in
SWPTABLE

Decrement
PAGEWAIT
count

If shared page,
get key ‘0"
non-shared pages
get key ‘F’

l

Reset transit
bitin SWPTABLE

Shared
system
(UTABLE),

No

Set storage

chained to
I0TASK

CPSTACK

]

Put CPEXBLOK
on CPSTACK
queue

keys

Overview of PAGTRANS (4 of U4)

Section 2:

Method of Operation

95

PRIVILEGED OPERATION INTERRUPTIONS

If the program interruption is caused by the pseudo-supervisor issuing a privileged
instruction, PRIVLGED obtains the address of the privileged instruction and determines
the type of operation requested.

For I/0 instructions, PRIVLGED calls the virtual I/0 executive program (VIOEXEC) .
PRIVLGED simulates valid non-I/0 privileged instructions and returns control to DISPATCH.
For invalid privileged instructions, the routine sets an invalid interruption code and
reflects the interruption to the pseudo-supervisor.

The non-I/0 privileged instructions that are simulated are LPSW, SSM, SSK, ISK, and

DIAG. For the "Virtual 67" option, the privileged instructions LRA, STMC, and LMC are
also simulated.

The Diagnose Instruction

The diagnose instruction (DIAG) has special handling under CP-67. The diagnose
command is used for communication between a virtual machine and the Control Program,
CP-67. The machine-coded format for the diagnose command is:

e e e e A = = e = = - —————

The "CODE"™ is a base value that is used to select a particular specialized CP function.
The codes currently assigned and their associated functions are:

Code Function
0 Dump CP core
4 Fetch CP location
8 Virtual console function
C Pseudo timer
10 Release pages
14 Reserved for future IBM use
18 Disk I/0
1c Clear I/0 error recording
20 Clear M/C error recording
24-FC Reserved for future IBM use

Note: User defined DIAG codes:

X'00" through X'FC!? Reserved for IBM use
X'100" through X'1FC' Reserved for users

Diagnose codes should always be a multiple of 4.
See the module PRIVLGED for analysis and/or implementation of these functions.
The execution of diagnose code 0, dump system, causes a system ABEND by issuing SVC 0

(dump) . This can only be executed by a privilege class A user. The format of the command
is:

| |
| 83000000 |

96 CP-67 Program Logic Manual

The execution of diagnose code 4, fetch CP locations, can only be issued by users with
privilege class A or B. The format of the command is:

| |
| 83 R1 R2 0004 |
L 1

R1 contains the virtual address of a list of CP (real) addresses.
R1+1 contains a count of entries in the list.

R2 contains the virtual address of the result field that will hold the values
retrieved from the CP (real) locations.

The execution of function 8, virtual console function, allows a virtual machine to
perform CP-67 console functions. The format of the diagnose command is:

| |
| 83 R1 R2 0008 |
1 1

where R1 is a register that contains the address (virtual) of the CP console function
command and parameters, and R2 is a register that contains the length of the associated
console function input, up to 132 characters. The virtual console function command buffer
must not cross a page boundary. If it should, a specification exception will occur.

The following example will illustrate the virtual console function:

LA R6,CPFUNC

LA R10, CPFUNCL

DC X'837,X'6A" ,XL2'0008"
CPFUNC DC C'QUERY FILES'

CPFUNCL EQU *-CPFUNC

The output of the console function is to the user's terminal, and then execution
continues. Any valid and authorized console function can be executed in this manner.

A completion code is returned to the user as a value in the register specified in R2.
Code 0 is normal, 4 is invalid command, and 8 is bad argument. Other condition codes may
be used by processing routines in CP-67. LINK, for example, returns several codes to
indicate device status (see LINK module).

Diagnose code C - pseudo timer. The format of the command ise

| |
| 83 R1 00 00 OC |

| 1

R1 contains the virtual address that will receive 24 bytes of data in a format
identical to the SIO to the pseudo-timer device (for example, 'OFF' in CHMS). This
data is provided by ‘'diagnose’ as a faster method than SIO.

Diagnose code 10 ~ release pages. The format of the command is:

|]
{ 83 R1 R2 0010 |

l 1

R1 contains the virtual address of the first page to be released and R2 contains the
virtual address of the last page to be released. Any of the virtual pages in real or
auxiliary storage are released.

Section 2: Method of Operation 97

Diagnose code 14 - reserved.

Diagnose code 18 -~ Disk I/0. The format of the command is:

I |
| 83 R4 R8 0018 |

1 |

R4 contains the device address of the disk.

R8 points to a standard CCW chain to Read or Write the disk record of up to 4096
bytes.

Standard CCW string:

SEEK,A,CC,6
SRCH,A+2,CC,5
TIC,*-8,0,0
RD or WRT,DATA,cc,<4096
NOP,;0,;SILI ;1

A SEEK and SRCH arquments

The execution of diagnose code 1C, clear I/0 recording, can only be issued by a privilege
class C user. This code calls the FMTILOG routine to clear the I/0 error recording data
on disk. The format of the command is:

| |
| 8300001C |
1 1

The execution of diagnose code 20, clear MC recording, can only be issued by privilege
class C user. This <code calls the FMTMLOG routine +to clear the machine check error
recording data on disk. The format of the command is:

I I
| 83000020 |
1 1

MACHINE CHECK INTERRUPTIONS

When a machine check occurs in supervisor mode (CP-67 nucleus), a message is printed
to the operator, the alarm is rung, and the system will ABEND with a dump.

When a machine check occurs in problem (user) mode, a message is typed on the
operator's console, and a message is sent to the affected user. The user's machine is
placed in console function mode. If the user enters "BEGIN", his machine will take a

"machine check" by CP 1loading his machine check new PSW. CP-67 and other users are not
affected.

Machine Check Error Recording Routine - MCKERR

See Figure 38 for an overview of the Machine Check Interruption Handler.

98 CP-67 Program Logic Manual

Get console
address

Send message
to operator
(multiple
mach. checks)

LPSW
wait state

Enter

module PSA
entry MCHEKINT

Save ‘GPRs’ and
FPR'S in
‘stopped’

status area

Was

No machine

MCKERR

Record machine
check on
disk

WRTCONS

Send msg to
operator (mach
check CP-67
supervisor mode)

in problem
mode

DISPATCH

Get interrupted
user (RUNUSER)

Save VGPR'S

Update VPSW
from MCOPSW

MCKERR

Record machine
check on
disk

Dispatch until Set message
msg. write (mach. check)
complete
WRTCONS
svco) @ P -
Send message
to user
_ WRTCONS_
Send msg to Yes User

operator (mach
check problem
mode USERID =)

Go to
DISPATCH

disconnected

No

Put user in
CP mode

e et™ .}

Figure 38. Overview of Machine Check Interruption Handler

Section 2:

Virtual
machine
enabled for
machine check
N

Yes

Update VPSW
from MCNPSW

Set message
(mach. check-
CP entered
request, please)

|

Method of Operation 99

All machine checks, whether supervisor or problem state, are recorded by CP-67. The
first two tracks of the CE cylinder are reserved for machine checks, The format of the
machine check error record is as follows:

ORG LOGDATA li/C ERROR RECORD
LOGMDATE DS CL6 DATE AND TIME
LOGMCODE DS CL2 MACHINE CHECK CODE
LOGHMCPU bs 22D CPU LOGOUT DATA
LOGMPSW DS 5D OLD PSWH's
LOGMGRS DS 16F GENERAL REGISTERS
LOGMCRS DS 16F CONTROIL REGISTERS
LOGMFPRS DS 4D FP REGISTERS
Two machine check error records are contained within one physical record. Thus a
maximum of 30 records may be contained within two tracks of a 2314 SYSRES. When the

machine check 1log is full, the message "¥% CECYL FULL; M/C ERRORS NOT RECORDED *x*0 jig
printed at the operator's terminal, and subsequent machine checks are not recorded until
CLEARMC is run by the customer engineer. Pointers are kept to the next available slot in
the log so that machine check errors are recorded sequentially. If an I/0 error occurs
when attempting to write a machine check error record, it is retried eight times. Upon
continued failure, an error message "#% TOERROR RECORDING FAILURE ON DEV___ **¥ js sent
to the operator.

INTERRUPTION REFLECTION

When an SVC interruption or a progran interruption occurs and the user's virtual
machine is operating in problem mode, the interruption is reflected back +to the user's
supervisor (pseudo-supervisor) for handling.,.

The program interruption handler (PROGINT), upon determining that the interrupted user
is operating in problem mode, saves the virtual registers and their old PSW (PROPSW).

The current PSW is moved into the old PSW, and the interruption code is set. If
necessary, PAGTRANS is again called to obtain the address of the new PSW, and the new PSW
is moved into the current PSW. When adjustment of PSW's is complete, control is returned
to DISPATCH, which will eventually allow the user to resume processing.

Figure 39 illustrates the processing and reflection of interrupts.

100 CP=-67 Program Logic Manual

Reflect on interrupt:

Current PSW — — — &= Oid PSW
New PSW— — — & Current PSW
Set interrupt code; decrement timer;
timer interrupt if required.

Figure 39.

Real Machine State
Interrupts Real Supervisor State Real Problem State
Virtual Supervisor Virtual Problem
State State
0OS or CMS Problem Program
cp L
External Masked off Start another user; end of 50 ms time slice for this user.
External Virtual interrupts
Timer simulated
SvC For subroutine Reflect interrupt to virtual machine
linkage
Program ABEND Reflect interrupt to virtual machine
Privileged Not possible Simulate instruction Reflect
Do 1/0 for SIO
Machine check ABEND ABEND ABEND
1/0 Masked off Restart channel.
Record the device status in virtual
L machine description if virtual 1/0.

Processing and Reflecting of Interrupts

Section 2:

Method of Operation

101

MAIN STORAGE MANAGEMENT (PAGING)

The PAGTRANS routine is responsible for satisfying the paging demands placed on the
system by user programs. It satisfies requests for page access via the TRANS macro from
various parts of the Control Progran, including the program interrupt handler (PROGINT)
for paging faults, the input-output string handler (CCWTRANS) for wuser-initiated
input-output operations, etc. PAGTRANS has the responsibility for freeing up main memory
space when required, performing the input-output operations necessary to free the space,
and protecting the system against "paging overload" conditions that may arise during
periods of peak demand for the memory resource.

All calls to PAGTRANS are made through the use of the macro instruction TRANS. If
LOCK is not specified in the TRANS macro and the virtual page is already resident in
memory, there is no need +to call PAGTRANS, and the call is bypassed by the macro
generation.

REQUIRED PAGE IN CORE

When PAGTRANS translates the virtual address (via the LRA instruction) and finds
that the page containing the address is currently core resident, a test must be made to
see whether the LOCK option has been specified. (Normally, this will be the case, for the
TRANS macro would not have generated the call to PAGTRANS for an in-core page if the LOCK
option was omitted.) If lock is requested for the page, the lock count for that page is
incremented, and the lock flag is set in the core table entry for that virtual page.
When the lock flag is set, the page is not available for "swapping" (that is, it will be
retained in storage wuntil the 1lock count is reduced to =zero and the lock flag 1is
cleared) . The lock count cannot be greater than 65,535.

When lock processing is completed (or if LOCK was not requested) , a condition code
of zero is set, the translated address is stored in the calling routine's save area, and
control is returned to the calling routine. A condition code of zero indicates that the
address translation was successful and that the specified virtual page is in core. (Note
that the TRANS macro will automatically perform an LRA instruction after the return from
PAGTRANS. In some instances, it would be possible for the paging routines to return a
page as in core and have it chosen for swapping, and therefore nonresident, before the
actual return to the caller. This is true only in DEFER cases.)

REQUIRED PAGE NOT IN CORE

When PAGTRANS translates the virtual address and finds that the page is not core
resident, the entry for that page in the user's SWPTABLE is found. The SWPTABLE entry
contains the direct access storage address of the required virtual page. A test is made
to determine whether the BRING option was specified when PAGTRANS was called. If BRING
was not specified, a condition code of 1 is set, and control is returned to the calling
routine. A condition code of 1 indicates that the required page is not in storage.

REQUIRED PAGE IN TRANSIT

If the required page is not in core and the BRING option is specified, the transit
flags in the SWPTABLE entry are examined to determine whether the virtual page is in
transit (that is, a previous request to read in the page or a request to write the page
out has not yet been completed.) If the page is in transit, a Control Program execution
request block (CPEXBLOK) is created and chained to the input-output task block (IOTASK)
for the pending read or write operation, and PAGEWAIT is indicated in the VMSTATUS entry
of the user's UTABLE. When the page I/0 operation has completed, the CPEXBLOK is added to

102 CP-67 Program Logic Manual

the CPRQUEST queue, and control is returned to DISPATCH. If the operation was a read,
the PAGEWAIT condition is removed and the CPEXBLOK indicates a return to the initial
caller of PAGTRANS. If the operation was a write, the CPEXBLOK indicates a re-enter to
PAGTRANS to retest the transit flags.

OBTAINING CORE FOR A PAGING OPERATION

If the required virtual page is neither in core nor in transit, and the BRING option
has been specified, PAGTRANS must prepare to read the page into storage. An available
page of core into which the required virtual page may be read must be found.

The table used for managing the real machine core allocation is called the CORTABLE.
There is one 16-byte entry in CORTABLE for each 4096-byte page of real core. See the
description of the CORTABLE control block for the bit usage.

Each entry of the CORTABLE is examined in a round-robin manner to determine whether
the associated page is available for a paging operation. The search begins at the first
entry after the last selected page.

The Lock MASK byte must be zero in order to have that page eligible for paging.

on the first pass each entry is examined, and if either of the following two
conditions is satisfied, the corresponding page is selected:

1. An entry with bytes 5-7 equal to X'FFFFFF' (pages not in use by any user).
2. Neither of the keys for the page has the reference bit set on.

If the first pass fails to find an eligible page, then on the second pass any entry
with a Lock MASK of zero is selected, since all such pages are equal candidates for
selection. Both passes are initiated and terminated at the next entry after the last one
used. All non-locked pages that are examined and not selected have their reference bits
turned off.

If the selected page has a changed bit on, the page must be written to its DASD
location (that is, swapped) before the new virtual page is read in. The DASD address is
obtained from the corresponding swap table entry, an input-output task block is created,
the page table entry for the page is marked "not-in-core", and the IOTASK block is queued
for execution.

The address of the page selected for the paging operation is stored in the page
table, and the not-in-core flag is set in the page table entry.

READING A REQUIRED PAGE INTO CORE

When an available page of real core has been found, the page address 1is stored in
the page table entry and the not-in-core flag is set. The transit flag is set in the
corresponding swap table entry, and the transit bit is set in the core table entry.

The DASD address of the required virtual page is obtained from the SWPTABLE, and an
IOTASK block and a channel command word (CCW) list for reading the page in are created;
the routine QUERIO is then called to queue the task to the input-output task list.

The "recompute" flag is used when a new swapping DASD address is to be used when the
page is changed. At login time (and at a re-IPL for a virtual machine) the swap table
entries are all set to the DASD address of a "zeros" page on the CpP-67 system residence
volume.

The recompute bit is set in each entry by LOGIN so that the page will be assigned an
appropriate secondary storage location when it is referenced. This process, called
dynamic page allocation, ensures that only those pages in a user's virtual machine which
change and must be rewritten are assigned paging space on drum or disk. When a page is to
be written out for the first time (that is, the recompute bit is set), a routine called

Section 2: Method of Operation 103

PAGEGET is called. This routine finds an available location on drum or disk (in that
sequence) and saves the address of that DASD 1location in the SWPTABLE entry for that
page. This DASD address will be used on all Subsequent reads or writes of that page for
the duration of the user's session. If the user logs out or re-IPL's a system, a routine
called PAGEREL is called. This routine returns all of the user's paging DASD locations
to the available pool and resets each SWPTABLE to zeros. Only those user pages which have
actually been written out to secondary storage (that is, for which the recompute bit is
off) are reclaimed at PAGEREL time.

RETURNING CONTROL

When all other PAGTRANS operations are completed, the used and changed flags are set
in the SWPTABLE entry for the page being read. If the LOCK option was specified when
PAGTRANS was called, the 1lock count is incremented, and the lock flag in the core table
entry is set.,.

If the DEFER option was not specified when PAGTRANS was called, control is returned
to the calling routine. If the DEFER option was specified, PAGEWAIT is indicated in the
current user®s UTABLE, a Control Program execution request block is created, and a
pointer to the request block is placed in the IOTASK block which was created to read in
the required page. Control is then returned to DISPATCH.

When the page has been read in, the PAGEWAIT bit is reset in the UTABLE, and the
Control Program execution request block is added to the CPRQUEST queue. The next time
DISPATCH is entered, the Control Program execution request block will be honored, and
since the required page is now resident in storage, the completion of the paging
operation will be indicated.

SHARED PAGES

When more than one user is wusing a given operating system such as CMS, which has
reentrant pages, it becomes possible to share those pages among those users. In order to
allow CP to share these pages, the operating system must be IPL'd by name (for example,
IPL CHMS).

When the first user of a shared system issues the IPL command, all the shared pages
are brought into core and locked to prevent their being swapped out. When a subsequent
user IPL's the same system, no paging is required, but the PAGTABLE of such a user is set
to point to the shared pages.

For store protection of the shared pages, the users are run with protection key = F.
A1l shared pages' storage keys are set to zero and all other pages belonging to these
users have storage keys = F.

Hote: The module SYSTEM has to be assembled to indicate which of the pages of a given
system are shareable. If none are so indicated, no pages will be shared.

FREE STORAGE MANAGEMENT

Note: &TRACE(4) option must be <chosen at system generation time in order to gather
statistics in FREE/FRET.

The FREE routine is responsible for the efficient management of free storage, as
heavily used within CP-67 for I/O tasks, CCW strings, various I/0 buffers, and the like.
It is wused, in fact, for practically all such applications except real channel,
control-unit, device-blocks, the CORTABLE, and the initial allocation of save areas.

Block sizes of 29 doublewords or less, constituting about 99% of all calls for free

storage, are grouped into ten subpool sizes, and are handled by very fast LIFO (push down
stack) logic.

104 CP-67 Program Logic Manual

Blocks of greater than 29 doublewords are strung off a chained 1list in the classic
manner.

Subpool blocks are generally obtained, when none are available, from the first
larger sized block at the low sized end of available free storage. Large blocks, on the
other hand, are obtained from the high-numbered end of the 1last larger block. This
procedure tends to keep the volatile small subpool blocks separated from the large
blocks, some of which stay in core for much longer periods of time, thus undue
fragmenting of available core is avoided.

The various cases of calls to FREE for obtaining free storage, or to FRET for
returning it, for subpool sizes and large sizes, are handled as follows:

CALL TO FREE FOR A SUBPOOL STIZE

SUBPOOL AVATILABLE: If a call for a subpool size is made and a block of the suitable size
is available, the block found is detached from the chain, the chain patched to the next
subpool block of the same size (if any), and the given block returned to the caller.

SUBPOOL NOT AVAILABLE: If there is no suitable block when a call to FREE is made for a
subpool size, then the chained 1list of free storage is searched for a block of equal or
larger size. The first block of larger or equal storage is used to satisfy the call (an
equal-size block taking priority), except that blocks within pages previously obtained
from EXTEND are avoided if at all possible. If no equal or larger block is found, all
the subpool blocks currently not in use are returned to the main free storage chain, and
then the free storage chain is again searched for a big enough block to satisfy the call.
If there is still not a big enough block, then EXTEND is called to obtain another page of
storage, and the process is repeated to obtain the needed block.

CALL TO FREE FOR A LARGE BLOCK

If a call to FREE is made for a block larger than 29 double words, then the chained
list of free storage is searched for a block of equal or larger size. If an equal size
block is found it is detached from the chain and given to the caller. If at least one
larger block is found, the desired block size is split off the high numbered end of the
last larger block found, and given to the caller. If no equal or larger block is found,
EXTEND is called to obtain another page of storage, and the above process is repeated (as
necessary) to obtain the needed block.

CALL TO FRET FOR A SUBPOOL SIZE

If a subpool size block is given back via a call to FRET, the block is attached to
the appropriate subpool chain on a LIFO (push down stack) basis, and return is made to
the caller. If, however, the block was in a page previously obtained from EXTEND, the
block is returned to the regular free storage chain instecad.

CALL TO FRET FOR A LARGE BLOCK

If a block larger than 29 double words 1is returned via FRET, it 1is merged
appropriately into the regular free storage chain. Then, unless exactly one page was
given back (that is by EXTEND), a check is made to see if the area given back (after all
merging has been done) is a page previously obtained from EXTEND. If so, it is returned
via PAGFRET for use by the remaining programs in CP for their use.

Section 2: Method of Operation 105

The FREE/FRET logic as described above allows the number of pages allotted for main
storage to ‘"breathe" as necessary, expanding via calls to EXTEND when extra pages are
needed, and contracting via PAGFRET when such pages have all been FRET'd and are no
longer needed.

INITIALIZATION

The number of pages allocated to free storage depends upon the number of core boxes
upon which CP is running, and is initialized by CPINIT. A special entry FRETR in the
FREE/FRET routine is used by CPINIT and EXTEND to return blocks to the regular free
storage chain regardless of their size.

EXECUTION CONTROL

When an interruption handling routine completes its processing for a user (or cannot
continue until some other process is completed) , it transfers control (via a GOTO macro)
to the main dispatcher and control routine (DISPATCH) . When control is transferred to the
DISPATCH routine, register 11 points to the UTABLE for the user just completing its
processing.

In addition to its primary task of execution control, DISPATCH performs the
following related functions.

1. DISPATCH charges time used within the Control Program to the appropriate user.

2, DISPATCH checks the new status of the interrupted wuser, reflects any pending
interrupts if the user is enabled, and attempts to restart the user.

3 DISPATCH processes CPEXBLOKs. It is possible to establish a wait/post condition for
paging and terminal I/0 by stacking a CPEXBLOK. The CPEXBLOK contains the registers
and the address at which execution should resune.

4, DISPATCH performs problem program and supervisor time accounting for the user.
5 DISPATCH maintains the decimal and the réal time clocks.
6. DISPATCH provides a fast dispatch route for special cases.

USER STATUS CHECKING

A major function of the dispatcher is to check the status of a user after some
service was performed. An interrupt returns control to the dispatcher.

Two types of external interrupts transfer control to the dispatcher:

e Timer interrupt indicating time/slice end for the current user.
e Button interrupt disconnecting the operator's terminal.

After an external interrupt the dispatcher accounts for the work done, processes stacked
CPEXBLOKs (if any), and searches for a new user to dispatch. In the case of the button
interrupt, the interrupted user is charged for the time used up to the point where he was
interrupted and the operator is charged for the time used to process his interrupt.

After a problem program interrupt or SVC interrupt, CP is given control. The
interrupt is reflected to the virtual machine, the time used is charged to the user, and
the user is dispatched again (via the fast dispatch route).

When an I/0 privileged operation program interrupt occurs in the virtual machine, CP
is given control to simulate the privileged instruction. The dispatcher then gets

control. The dispatcher accounts for the time used and then finds a new user to dispatch
(vhile the I/0 is performed).

When a non-I/0 privileged operation program interrupt occurs in the virtual machine,

106 CP~67 Program Logic Manual

CP is given control to simulate the privileged instruction. The dispatcher is then given
control. The dispatcher charges the time used to the current user, checks for pending
interrupts, and returns control (usually via the fast dispatch route) to the virtual
machine.

If a page exception occurs, CP initiates the paging operation and gives control to
the dispatcher. The dispatcher charges the tinme used to the current user and searches for
a new user to dispatch.

After an I/O interrupt is processed, the dispatcher accounts for the time used. The
interrupted user is charged for the time used up to the point where he was interrupted
and the user causing the interrupt is charged for the time it took to process the
interrupt. The interrupt is reflected to the virtual machine, if the VPSW is enabled.
Then, the dispatcher dispatches either the new or interrupted user.

When a spooling function is finished, the dispatcher charges the time used to the
operator and then dispatches a new user. When an I/0 interrupt occurs for a terminal, the
dispatcher waits until the current user is no longer runnable. Then, the dispatcher
transfers execution control to the proper routine by unstacking the READ/WRITE CPSTACK
block. The CPSTACK block contains the information needed to give control to the routine
that initiated the READ/WRITE. The o0l1d user is charged for the time he used and the new
user is charged for the time it took to process the interrupt.

SCHEDULING EXECUTION

The dispatcher schedules the execution of users based on the type of resources each
user requires and the system resources that are available. System resources are storage
or CPU time. The dispatcher separates runnable users into two queues.

° RUNQ is the execution queue.
° ACTQ is the nonexecution queue.

The dispatcher only dispatches users from the RUNQ. As system resources become available

a user may be moved from the ACTQ to the RUNQ. (See Figure 40 for a description of the
chaining of users in the RUNQ and ACTQ.)

Section 2: Method of Operation 107

X160’ UTABLE Chain In Dispatch
RUNUSER USER 4 RUNQ ACTQ
NEXTUSER |
NxTQ | PRVQ
USER 2
NEXTUSER |
nxTa | PRVO=0
USER 5
NEXTUSER |
NXTQ PRVQ
USER 1
NEXTUSER |
NXTQ [PRVO
USER 3
NEXTUSER |
NxTe=0 | PRVO
Figure 40. The Dispatcher Queues
108 CP-67 Program Logic Manual

EXECUTION QUEUE (RUNOQ)

The RUNQ is separated into two sections:

° 01 is a queue of interactive users.
® 02 is a queue of compute bound users.

02 users are dispatched only when Q1 is empty.

The users in the Q1 queue require little of the system resources (storage or
execution time) and are given the highest priority for dispatching. The number of users
allowed in Q1 at any one time is limited by core size. Each user added to Q1 is put at
the end of the Q1 section of the RUNQ.

The number of interactive users concurrently allowed in the execution queue 1is
limited only by the amount of storage available.

Maximum Number of

Core Size Interactive Users
256K 3
512K 6
768K 9
1024K 12

An interactive user is allowed to enter the execution gqueue independent of the
nunber of pages available for paging at the time the user enters the queue.

A user being dispatched for the first time is put in Q1. A new user is allowed a
25ms time/slice. If the time/slice end occurs after 25 ms of uninterrupted CPU time, the
user is classified as a compute bound user. Any user in Q1 that has used 300ms of
cumulative CPU time and needs more CPU time is also classified as a compute bound user.

The users in Q2 require more of the system resources (especially execution time)
than the users in Q1. The dispatcher checks that the sum of the projected paging activity
of a particular user and the current paging activity of the system, does not exceed the
total paging limits of the system. A user cannot be added to Q2 unless his paging
requirements fit within the limits of the systenm.

The users in Q2 are in order by "age". When a wuser is dropped from the execution
queue a priority number (identifying the time at which he was dropped) is assigned. When
a user reenters the exectuion queue, his priority number determines his place in the
queue. Those users who have been waiting the longest are placed at the top of Q2.

NONEXECUTION QUEUE (ACTQ)

The ACTQ contains the users who are runnable but are not in the execution queue
(RUNQ) . The users in ACTQ are assigned priorities that determine the order in which they
may reenter the execution queue. The highest priority is assigned to users ready to be
dispatched for the first time and to interactive users wishing to reenter the execution
queue.

The priority assigned to users in the ACTQ is based on the users previous
utilization of system resources. This priority was calculated at the time the user was
dropped from the execution.

Section 2: Method of Operation 109

STATUS OF USERS

A user mpay be moved back and forth between the ACTQ and RUNQ as he executes his
time/slices of CPU time. Also, a user's priority within either ACTQ or RUNQ may change
based on his use of system resources.

It is possible for a user to be in any one of seven different states while he is
under the control of the dispatcher.

State Description
State 1(s1) User is idle. If ATTN is pressed, the user always enters the idle state.
State 2(s2) Users in state 2 are in the nonexecution queue (ACTQ) and are waiting to

enter the interactive user (Q1) portion of the execution queue (RUNQ) .
Only users classified as interactive or users waiting to execute for the
first time are in S2.

State 3(s3) Users in state 3 are in the execution queue. These users are users
executing for the first time or are interactive users. Each user entering
S3 for the first time is allocated a 25ms time/slice; all other users are
allocated 50ms time/slices.

State U4 (Su) A user in S4 is in the interactive user portion (Q1) of the execution
queue (RUNQ) but is waiting for a page of storage or for an I/0 operation
to be completed.

State 5 (S5) A user in S5 is in the nonexecution queue (ACTQ) and is waiting to enter
the compute bound users' portion (02) of the execution queue (RUNQ). Users
that are compute bound move back and forth between S5 and S6 until they
finish executing. Also, first time users who experience a time/slice end
after 25ms of uninterrupted CPU time are placed in S5.

State 6 (S6) Users 1in state 6 are in the execution queue. These users are in the
compute bound portion (Q2) or the execution queue (RUNQ). Each wuser
entering S6 for the first time is allocated a 25ms time/slice; all other
users are allocated 50ms time slices.

State 7(s7) A user in S7 is in the compute bound user portion (Q2) of the execution
queue (RUNQ) but is waiting for a page of storage or for an I/0 operation
to be completed.

Figure 41 describes the relationship of the seven user states within the dispatcher.

110 CP=67 Program Logic Manual

DORMANT, IDLE, or
CONSOLE FUNCTION WAIT

RUNNABLE BUT NOT in
EXECUTION QUEUE (ACTQ)

IN EXECUTION QUEUE (RUNQ)

i s Gt ! S

Q1
l T ATTN TATTN l ATTN
i . '
S1 Virtual machine restarts with S2 Virtual machine runnable S3 1'0 wait S4
consol.e function, 10, or and not too many Execution Page wait
Idle timer interrupt | \é\/m[ing to interactive users 28 Fig s first Bot Runnais
xegute | time slice, then Wait ended
| | 50 ms thereafter
T | Finished before 300 ms or T10 to busy device | J
| |
|
| Still needs more CPU after 300 ms, or
l time slice ends)
|
[I Q2
:] N
| y 1 | 1
I Sb Virtual machine runnable S6 1/0 wait S7
l and CPU found Q2 not Page wait
Execution E
Waiting to fully loaded 25 ¢ p— bl
| Execute | ms ovf irst Wit i ot Runnable
l | time slice, then
50 ms thereafter
[|
| T Still needs more CPU after 3 secs J
! |
I [
1 1
T 1
| [
| |
| |
| |
Figure 41. Seven User States Within the Dispatcher

Section 2:

Method of Operation

191

DISPATCHING A NEW USER

A new wuser waiting to be dispatched is given a high priority in the ACTQ (non
execution queue). A new user is treated as an interactive user. As other interactive
users finish processing, the interactive users in the ACTQ (State 2) are moved to the Q1
portion of the RUNQ (State 3). The core size determines the number of interactive users
allowed in Q1 at one time.

When a new user enters the Q1 portion of RUNQ, he is given a 25ms time/slice. If the
time/slice end occurs after 25ms of uninterrupted CPU time, the new user is considered a
compute bound user and is placed in state 5 (low priority in the ACTQ). If the new user
is interrupted before using his entire 25ms time/slice, he is put in state 4 to wait for
the interrupt to be handled, and then returns to state 3. The user is given a 50ms
time/slice thereafter. As long as the user is interrupted before using his entire
time/slice, he remains in the interactive portion of the execution queue (states 3 and
4) . If the user still needs more CPU time after using a.total of 300ms CPU time, he is
classified a compute bound user and enters State 5.

DROPPING A USER FROM THE EXECUTION QUEUE

If a user is classified as compute bound, he is dropped from the execution queue and
placed in the ACTQ waiting to enter the Q2 portion of the execution queue (state 5). A
user is placed in state 5 if

° as a new user, he uses the entire 25ms time/slice allotted to him without being
interrupted.
as an interactive user, he uses 300ms of CPU time and still requires more CPU time.
as a compute bound user, he uses 3000ms of CPU time and still requires more CPU
time,

A compute bound user is only eligible to enter the Q2 portion of the execution
queue. Two different priorities determine when a user in state 5 can reenter the
execution queue.

(F The priority within the ACTQ determines when the user will next be considered for
the execution queue. This is called "State 5 queue priority."
2. Once considered for the execution queue, the user's resource requirements are

compared with the system resources available at that time. Only wusers that fit
within the resource limits of the system are allowed to enter the execution queue,

112 CP=-67 Program Logic Manual

CALCULATING PRIORITY TO REENTER EXECUTION QUEUE

The State 5 Queue Priority is calculated when a user is dropped from the execute queue
and enters State 5. This priority determines the position of a user within the ACTQ
waiting to be considered for Q2. Figure 42 explains the «calculation of the queue
priority.

The external factor (maximum value allowed
is 792)
A = directory priority x 8

the CPU usage penalty (maximum value allowed
is 40)
B = number of time/slice ends x 2

the aging factor (allowed value range is
32 — 32,002)
C = current dispatch priority number
(this value is incremented by 4 every
second, and is reset to 32 every 2 hours
and 13 minutes)

the excessive overhead penalty (maximum value
allowed is 30)
D = % CPU overhead (in excess of 85%) x 2

the disconnect penalty
E = 28 (if user disconnected)

The excessive paging penalty (no penalty
if PAI < 25)

.
F = MIN| 130, MAX (0,PAI-25) x 60}

F———

|
P |
P 4

|[Note: PAI is the Paging Activity Index and P (p)
{is the number of pageable pages on the real
|system. (See the section “Projecting Paging

| Requirements" for an explanation of these
{terms.)

=queue
priority

[o S e - ———— — " T mn S o i S e e
e e e e —— — — . —— - — —— —— —— —— o — ————— —— —— — — —— o — —— — <

Figure 42. Calculating the State 5 Queue Priority

The queue priority determines a user's position in the State 5 queue. When the user
reaches the front of the gqueue, he is tested to see if his requirements can be fulfilled
by the system. The following section explains this test.

Section 2: Method of Operation 113

PROJECTING PAGING REQUIREMENTS

A paging activity index (PAI) is associated with each user waiting to enter the Q2
portion of the execution queue. The PAI is a projection of paging requirements for a
particular user. The PAI of the contending user, plus the PAI for all in execution users,
nust be less than or equal to the number of pageable pages on the real system, P(p), in
order for the contending user to enter the execution queue.

Figure 43 describes the criteria that must be fulfilled before a user can go from state 5
to state 6.

where: n is the current number of users and PAI (NEW) is

the paging activity number of the contending user.

r al
| |
| I=n |
| |
| PAI + PAI < P |
i :E:: I NEW P |
| I=1 |
| |
| The sum of the The paging activity |
| paging activity + number of the < number of

| numbers of the contending user pageable pages|
| current in of real |
| execution users systen |
| |
| |
i |
| |
[(]

Fiqgure 43. Criteria Calculation Necessary to Enter State 6

If the PAI of the contending user is greater than the number of pageable pages
available on the real system, the PAI is reset to one—half the number of pageable pages
available on the real systen.

1
If PAI > P then, PAI is reset to the value of - p
NEW p NEW 2 p

If the compute bound portion of +the execution queue 1is empty, one user will be
forced from state 5 into state 6, regardless of the number of pageable pages available.

The interactive users, although they contribute to the system paging activity
number, are not tested to see if they fit within the system paging capacity. The system
core size is the only factor that is considered before an interactive user is added to
the execution queue. Consequently, it 1is possible that there will not be enough pages
left to run even one compute bound user. This is called Q2 lockout.

114 CP-67 Program Logic Manual

CALCULATING THE PAGING ACTIVITY INDEX (PAI) FOR USERS

The paging activity index (PAI) is based on the last period in the execution queue and is
a function of:

° The number of page READs and the number of pages resident in core during the period
in the execution queue.
The amount of CPU time used.

° The amount (K) by which system paging activity exceeds the acceptable level.
Normally, 16% CPU time spent for paging is acceptable. (See the "Calculating the
System Paging Activity Index" section for a description of the calculation of K.)

The PAT is calculated by multiplying the user's total number of page READs by the
total system paging activity and dividing by the user's productive (nonpaging) CPU time.

r A
| I=n |
Il r a |
11 | |
PAI = [NUMPAG | + NUMPAG | x K
[I| 01
CALC | ¢ 4 |
| I=1 |
L 4
TIMINQ - (n x PAGTIME)
where:
n is the number of page READs while in the execution queue.

NUMPAG (I) is the number of user pages resident at the Ith READ.
NUMPAG (Q) is the number of wuser pages resident when the user was dropped from the
execution queue.

K represents the amount by which the systen paging activity exceeds the
acceptable level.
TIMINQ is the total amount of time spent in the execution queue.

PAGTIME is the time it took to process each page READ.

Then, the new PAI is calculated for the user

1

PAI = PAI + - (PAI ~-PAI)
NEW CALC 4 CALC OLD
4
However, if PAI > P then PAI is reset to the value of - p
NEW p NEW 2 p
where:
P (p) is the total number of pageable pages

on the real systen.

The PAI (NEW) for each user is the value wused to determine if that user can enter
the Q2 portion of the execution queue the next time he becomes eligible for
consideration. That is, when the user reaches the front of the state 5 queue, his
PAI (NEW) (projected paging activity) determines whether or not he is allowed to enter the
execution queue.

Section 2: Method of Operation 115

CALCULATING THE SYSTEM PAGING ACTIVITY INDEX

The system paging

function of:

° CPU seconds

W

asted due

still could not execute.
® CPU time spent for paging when CPU utilization is already high (greater than 75% CPU
utilization). If CPU utilization is less than 75%, the time spent on paging does not
matter because it is bound to increase systenm activity.

activity, PA(SYS), is calculated once every minute and is

The system paging activity is calculated once per minute as follows:

r q

IS — SS |
PA = | | x

| |

SY¥5 | NOREADS|

L 4

where:

S is
SS is
NOREADs is
PAGWAIT (I) is
W is
NUMPAG (J) is
u is
Note: The value

r g
MAX|0, (CRU — 75) x 4 x CPU paging costs|
L

ranges from 0% to 100%

100%.

[
]
-

o o————— -

PAGWAIT

[
i
=

X NUMPAG

e —— o
[
s]
[et

[o — e =

=
+ MAX|O, (CPU —

L

the number
the number
the number
the amount
the number
the number
the number

of

of
of
of
of
of
of
of

116 CP-67 Program Logic Manual

L P |

=
75) x 4 x CPU Paging Costs|
4

page stolen.

self--steals of pages.

READs issued.

wait time at the Ith occurence,
times the system entered WAIT.
resident pages for the Jth user.
users in page wait at time I.

4

of the CPU paging costs as CPU wutilization ranges from 75%

a

to PAGEWAIT when users had accumulated pages in core but

to

The paging activity of the system, PA(SYS), for the last minute is then compared to
the installation defined acceptable level of paging (the default is 16%).

The acceptable level of paging is calculated as follows:

Q2MAX
PA = ————— (1 min - (PAGEWAIT + PAGCPU))
ACC 100
where:
Q2MAX is the percentage of CPU time considered acceptable for paging. The
installation may set this value via the "SET Q2 n" command or let the

value default to 16%.
PAGEWAIT is the time spent waiting for a page of storage.
PAGCPU is the CPU time spent in paging.

Both the system paging activity, PA(SYS), and the acceptable 1level of paging,
PA (ACC), for the 1last minute are used to calculate K. K is calculated once each minute
and represents the amount by which the system paging activity exceeds the specified
acceptable level of paging. The calculation of K is as follows:

r a

| PA — PA |

| SYS ACC |

K = K + | |

NEW OLD 11 |

|- (NOREADS) |

12 |

L 4

where:

K (OLD) is the value of K calculated in the previous minute.

PA (SYS) is the system paging activity just calculated.

PA (ACC) is the acceptable paging level just calculated.

NCREADS is the number of page READs issued in the last minute.

If the new value of K is ever 25% greater than the last value of K, the paging

activity index (PAI) must be recalculated for each user. Normally, a user's PAI is only
calculated when he is dropped from the execution queue.

HANDLING OF A VIRTUAL 67

Six areas are discussed in this section:

1. Control blocks

2. Different format of the PSW

3. Special processing of the reset function

4, New instructions

5. Handling of the virtual dynamic address translation

6. Restrictions

Section 2: Method of Operation 117

Control Blocks

EXTUTAB is created at LOGIN time.

Each time a virtual 67 enters extended PSW, by loading control register 6 with bit 8
set to 1 (by means of the LMC instruction or STORE X6 console function) , space is

reserved for the shadow segment table and one shadow page table belonging to segment 0.

If the virtual 67 uses segments 1 to 15, a "copy segment table", an "image segment
table" and the necessary number of additional shadow page tables will be allocated.

All those tables, if any, except EXTUTAB, will be returned to free storage each time

the virtual 67 leaves extended PSW mode by loading control register 6 with bit 8 set to
0, or by the reset function.

Different Format of the PSW

The format of the PSW in a 360/67 running in extended mode (that is, bit 8 of
control register 6 set to 1) differs from that of a standard System/360. Contents of
certain reserved lower core locations are different after an interrupt has occurred (see
IBM_System/360 Model 67 Functional Characteristics, A27-2719). The following modules have
been modified to take into account that difference:

CFSMAIN PSA
DISPATCH QUEVIO
IOINT UNSTIO
MVIOEXEC VIOEXEC
PROGINT

Reset Function

When a reset function is executed for a virtual 360/67, control register 6 is reset
to CO0000FF, and all the control blocks specified for a 67, except EXTUTAB, are returned
to free storage. The module affected is RESINT.

New Instructions

Among the five new instructions, two are nonprivileged and are executed normally
(BAS,BASR) , and three are privileged and thus simulated (LRA,LMC,STMC).

LRA modifies the condition code and the contents of the first operand register,
according to the contents of the segment and page tables, which are located in the
virtual machine core and pointed to by (virtual) control register 0.

For LMC and STHMC, only control registers 0,2,4, and 6 are retained in EXTUTAB; the
others always contain zeros and cannot be modified by LMC.

When loading control register 0, a possible data exception is reflected.

When loading control register 6, bit 8 is examined and the mode (normal or extended)
is set according to its contents.

The module affected is PRIVLGED.

118 CP-67 Program Logic Manual

Handling Virtual Dynamic Address Translation

In this description the following terminology is used:

First level memory: The memory of the real 360/67.

second level memory: The memory of a virtual 360/67.

Third level memory: The memory of a virtual machine running under the virtual 360/67.

Shadow segment and page tables: Segment and page tables used by the real machine. When CP
gives control to a virtual 67 running in extended mode with translation on, these tables
(in first level memory) will describe the third level memory and will be used to control
the real address translation hardware.

Copy segment table: A copy, in first level memory, of the segment table, in second level
memory, used by the virtual 67 when running in extended mode with translation on.

Tmage seqment table: A copy, in first level memory, of the shadow segment table, with 00
in the first byte of each entry, and bit 31 set to 1 (unavailable bit) in each entry.

Monoseqment machine: A virtual 67 in which segments 1 through 15 are not used.

Multiseqment machine: A virtual 67 which has already used at least one segment other
than segment O.

For example, a virtual 360,67 running CP-67 and generating any number of virtual
machines will be a monosegment machine so long as all these virtual machines use a core
size 1less than or equal to one megabyte. That machine will become (dynamically) a
nultisegment machine as soon as it runs a virtual machine using more than one megabyte.
Monosegment virtual machines are handled with much less overhead than multisegment
virtual machines.

Each time CP-67 gives control (by means of DISPATCH) to a virtual 67 running in
extended mode and with the translation control bit on, it checks the validity of the
shadow tables: if those tables have been invalidated by a previous loading of control
register 0 or by a previous paging interrupt, the following steps are taken:

1. For a multisegment machine, a copy of the actual segment table is brought from second
level memory into the copy segtable.

For a monosegment machine, the first entry of the actual segment table is brought from
second level memory into IMAGESGT, and the size of the actual third 1level memory is
updated into COPYSEGT.

2. For a multisegment machine, the image segment table is copied into the shadow segment
table in order to reset it quickly with all the entries flagged with the unavailable
bit on.

For a monosegment machine the single shadow page table is reset with the first n
entries flagged with the unavailable bit on, n being the page table length.

If the shadow tables have been invalidated because a page of the virtual 67 has been
removed from first level memory, only Step 2 is taken. (See Figures 44 and 45)

Section 2: Method of Operation 119

Fust Level Memor
Second Level Memory st Leve y

Note: COPYSEGT contains the length of the actual third level memory size
available (computed from the page table length), and IMAGESGT
contains the first entry of the virtual segment table, brought from the
second level memory

e -] VCR 0 VCR 2
| VCR 4 VCR 6
-t - SHADVCRO l I
‘ il] COPYSEGT IMAGESGT
Segment
Table ‘
Shadow Segment
| Table
Shadow
Page
Page Table | Table

Figure 44, Virtual 67--Monosegment Machine

Second Level Memory First Level Memory

VCR 0 VCR 2
y | VCR 4 VCR 6
/ ! SHADVCRO [l
/ | COPYSEGT IMAGESGT
I EXTUTAB
r Shadow Copy Segment
Segment Table
Table
’ /
I
! |
X B
- ’ Image Segment
Table
Page Tables x
|
’ |
Shadow
Page
Tables

Figure #45. Virtual 67--Multisegment Machine

120 CP-67 Program Logic Manual

When a paging interrupt takes place, if the virtual machine interrupted is a 360/67
using the virtual dynamic address translation, the processing is the following:

1. If the interrupt is a page exception (interrupt code 11) a check is made to see
whether the interrupt should be reflected; if it should not, a request is issued for
the missing page, if necessary; otherwise (if the page is already in first level
storage), the proper entry in the right shadow page table is loaded, and the virtual
machine restarted.

2. If the interrupt is a segment exception (interrupt code 10) a check is made to see
whether the interrupt should be reflected. If it should not, and if a shadow page
table has already been allocated to the segment originating the interrupt, the
unavailable bit 1is removed from that entry of the shadow segment table, the page
table 1length is loaded, the corresponding shadow page table, according to that
length, is reset with the unavailable bit in each entry, and the processing
continues as for a paging interrupt for a multisegment machine.

3. If a shadow page table has not yet been allocated, one such table is allocated and,
furthermore, if the virtual 67 is -switching from monosegment to mnultisegment
machine, the copy and image segment tables are allocated and initialized; then

control is given to the dispatcher.

The modules modified to handle this algorithm are mainly DISPATCH and PROGINT and
also CFSDBG and PAGTRANS.

Virtual 67 Restriction

A virtual machine may be a 360/67 provided it has a simplex CPU, with 24-bit
addressing.

CONSOLE FUNCTIONS

When a console interruption occurs because the attention key has been activated at a
user's terminal, the I/0 interruption handler (IOINT) calls the CONSINT routine. CONSINT
then calls BREAK in CFSMAIN if the terminal has a logged-on user.

BREAK determines whether the user was executing or was waiting for completion of a
console function when the "attention" occurred. If the user was waiting for a comnsole
function, the "attention" is reflected to the wuser's machine as an online console
attention button interrupt. If the user was executing, the routine RDCONS is called to
read the console function request, and control is returned to the interrupted routine. If
the user was receiving output from a console function request when the attention button
was depressed, that output function is terminated, and the keyboard is unlocked waiting
for another console function request.

When the console function request has been read, the console function processor
CFSMAIN is entered to analyze the request. CFSHAIN determines the type of function
requested and gives control to the appropriate subroutine. When all console functions
have been processed, control is returned to the calling routine.

The console functions can also be executed from the virtual machine level by the
diagnose instruction (code 8) and the required buffers. (See “"pProgram Interruptions"
earlier in Section 2.)

The following console function descriptions cover the four privilege classes of
users:

-~ operator

- administrator
customer engineer
a normal user

oQm>
4

Section 2: Method of Operation 121

Also included is the system operator class, which belongs to the first user to log
in with privilege class A. Normally he is the operator of the Model 67.

The following console functions are described:

ACNT - punch and reset accounting information for active users
ATTACH - attach a device to a user or to the systenm

BEGIN - initiate execution of a virtual machine

CLOSE - give logical EOF on unit record equipment

DCP - display contents of real memory and registers

DMCP - dump contents of real memory and registers

DETACH ~ remove a unit from a virtual machine or from the systenm
DISABLE - inhibit 2702 line access to the systen

DIRECT - allow and inhibit system DIRECTORY access

DISCONN - disconnect a terminal from a running virtual machine
DISPLAY - display contents of memory and registers

DRAIN -~ quiesce a unit record input or output

DUMP - dump contents of memory and registers

D_U_M_P = cause a system ABEND dump

ENABLE - enable 2702 lines for access to the system

EXTERNAL - give virtual external trap

IPL - perform an initial-program-load sequence; reset virtual memory to binary zeros
IPLSAVE - perform an IPL without resetting virtual memory to ZERO
KILL - log a user off the systenm

LINK — attach a DASD device using a directory unit description

LOCK - lock selected user pages in core

LOGIN - log into the systen

LOGOUT = log out of the systen

HSG - send a message to the user (s) or operator

PURGE - delete a user's spooled input or output files

QUERY - query the status of the systen

READY - ready a virtual device

REPEAT - repeat the output of a currently active file on the real unit record devices
RESET - reset the interrupt status of a virtual machine

SET - establish system parameters or machine status

SHUTDOWN - bring the system to orderly shutdown

SLEEP - place a terminal in dormant state to receive messages

SPACE —- force printed output for a file to single space

SPOOL - direct and control spool input and output

START — commence unit record output after a drain or when requested
STCP - store into real memory locations

STORE - store into memory or registers

TERM — terminate current unit record operation

UNLOCK - release previously LOCKed pages

WNG - issue a warning message to user (s)
XFER transfer spooled punch output to a user's spooled reader input

122 CP-67 Program Logic Manual

CONSOLE FUNCTION SUBROUTINES

The following brief descriptions cover some of the important subroutines in console
function processing.

CONSTART - this routine is entered after the console function has been read by RDCONS. It

analyzes the data and goes to COMANL to scan the command list for the desired function.

SCANFLD - this routine will return to the caller (via BAL) the starting location and the

length of the next field in the command input, or an indication that no more data exists.

BEGIN - +this routine releases the read buffer and large save area, resets the user's

CFWAIT status, and exits.

BREAK — this routine is the entry point called when the user actuates the attention key.
It will get a 17-doubleword buffer used by RDCONS to read the console function and a
17-doubleword large save area, which is used on subsequent call by CONSOL to other

routines and as general working storage for various functions.

STMATTN - this routine is entered if the user actuates the attention key while in console

FINDUSER — this routine will search the chain of UTABLES for a specified ‘"userid". A

message is given if the user is not found, or his UTABLE address is returned in register
10.

The module CFSMAIN contains all these subroutines. CFSMAIN remains addressable
through register 12 for all command processing. Individual commands are placed together
in several other modules, each module addressable by register 9.

CONSOLE FUNCTION DESCRIPTIONS

The following conventions are used throughout these descriptions: (1) variable
information is indicated in lowercase letters, and system keywords are indicated in
uppercase letters, whereas either case may be used when communicating with the systen;
(2) "<" and ">" are used to bracket choices when applicable in the description (for
example, "MSG <userid|ALL>" would be used to indicate that "MSG userid"™ or "MSG ALL"
could be used), whereas the brackets are not typed when communicating with the system.

ACNT (ACNT) - class A and B
ACNT
The following steps are taken:
- for each UTABLE in the system call ACNTIME to give accounting to each user

- call ACNTOFF for each user to punch an accounting card and reset the accounting
data

Note: ACNT does not punch an accounting card or reset the accounting data for dedicated
devices.

Section 2: Method of Operation 123

ATTACH

{R) - class A and B

ATTACH ccu TO userid AS xxx
ATTACH ccu TO SYSTEM AS volid
ATTACH <RDR | PRT | PUN> TO userid AS xxx

The following steps are taken when attaching a device to a user or to the systen,

124

scan the selector device chain for the device %ccu"

check that the device is not "owned" or already attached

issue a sense command for DASD types to determine that the device is "ready"

check that the "userid" is currently logged in to the system

check that the "userid" does not already have a device of address "xxx"

Create the virtual device blocks for the user and link them to any existing blocks

call DEDICATE if the device being attached is in the real multiplexer chain.
DEDICATE will create and chain a set of real selector device blocks.

link the virtual and real device blocks on an attached (nonshared) basis
send a message to the "userid" that the device has been attached

if the device is being attached to the system, CP will read and verify the "volid®
and check that the volume is not already mounted

ATTACH will check the ‘"owned list" (in the system residence volume allocation
table) to see whether the attached volume has a CP allocation table

if the attached volume is "owned", the allocation table is 1linked to the real
device block and to the allocation table chain

if a "spooling" device (RDR PRT PUN) is being attached to a user, a virtual
multiplexer block is created and chained to the user’s virtual device chain

various diagnostics are issued for a variety of error conditions that can occur

CP-67 Program Logic Manual

BEGIN (B) - any user (class A,B,C,D)

BEGIN <hexadd>

This command transfers control from CP console function mode to running the virtual
machine.

The following steps are taken:

CLOSE

set the user's virtual PSW to the address specified, if any
free the console functions read buffer

free the console functions large save area

take the virtual machine out of "console function" wait

exit to run the user

(C) - any user (class A,B,C,D)

CLOSE ccu

The CLOSE command completes a user's spooled operation for the current file and schedules
it for output, or clears the buffers for input.

The following steps are taken:

locate the specified virtual device in the user's multiplexer chain

call MVICLCR or MVICLPR or MVICLPN to close a reader or printer or punch,
respectively

output files will be scheduled for printing or punching or the punch file may be
chained to a reader input if it was XFERed

readers are cleared to accept the next spool file input. Remaining input is
flushed.

Section 2: Method of Operation 125

DCP (DCP) - class A and B
DCP arg?l1 arg2...argN

where the arguments (argl...argN) are real memory location{s). The output goes to the
terminal.

The following steps are taken:

- The steps are the same as those for DISPLAY, except that the data is taken from
real memory instead of virtual memory.

DMCP (DMCP) - class A and B
DMCP argl arg2...argN

where the arguments are the same as those for the DCP Console Function. The output goes
to the first virtual printer defined in the user's virtual machine.

The following steps are taken:

- The flag in the output buffer is set to indicate that the output is to go to the
printer.

- The remainder of the steps are the same as those for DISPLAY, except that the data
is taken from real memory instead of virtual mEemory.

126 CP-67 Program Logic Manual

DETACH (DET) - any user (class A,B,C,D), except for certain functions
DETACH ccu
The DETACH command allows any user to delete any virtual device fronm his current
configuration.
The following steps are taken:
— the virtual device block(s) are located in the user's chain of devices
- a check is made to ensure that no tasks are queued for this device

- the virtual device blocks (for either selector or multiplexer devices) are
removed from the chain and returned to free storage

- call RELEASE; if it is a nonshared device, RELEASE will make the real device
available for use by other users. If the real device blocks were created by
DEDICATE, the blocks are released to free storage;, and the real multiplexer
device is marked available (undedicated).

- a message is sent to the user indicating that the device is detached

- a message is sent to the operator if the DETACH has freed a previously dedicated
device

- an operator (class A) can detach a device from a user by entering DETACH Rccu,
where ccu is the real device address. The device must not be in use to do this.

Section 2: Method of Operation 127

DISABLE (DISA) - system operator only

DISABLE ccu ccu ccu
ALL

This command allows the operator to selectively or generally inhibit access to the
system from communication lines,

The following steps are taken:

- scan the MRDEBLOK chain for the selected (or ALL) terminal lines
- set the DISABLE bit in the MRDESTAT field of the block

- if the line is in use, return

- if the line is not in use, issue an SIO and HIO of a sense to kill any enables and
force an interrupt

- CONSINT will handle the interrupt, detect the DISABLE bit and "disable" the line

DIRECT (DIR) - class A and B
DIRECT <LOCK|UNLOCK>

This command inhibits or allows access to the system DIRECTORY. The following steps are
taken:

- locate the directory lock byte and open file count
- if the directory is in use, exit with a diagnostic
- if the directory is not in use, set or reset the lock byte

- issue diagnostics if the byte was not already locked (lock) or unlocked (unlock)

128 CP-67 Program Logic Manual

DISCONNECT (DISC) - any user (class A,B,C,D)

DISCONN <xxXx>

This command is used to release the user’s terminal from his virtual machine but allow
the virtual machine to continue running. The terminal is then free to log in as another
virtual machine or to reconnect at a later time.

The following steps are taken:

DISPLAY

write a "disconnect" message to the user's terminal; if the optional field is
present, do not disable the phone connection

-~ set the DISCNBIT in the user's UTABLE (TIMERMOD field)
release the %“console functions® read buffer and large save area
write a "disconnect" message to the operator

exit to run the virtual machine

(D) - any user (Class A,B,C,D)

DISPLAY (D) argl arg2 arg3 argl ... argl

where the arguments (argl...argN) specify virtual memory location(s), general-purpose
register (s), floating~point register(s), control register(s), storage key(s) , and/or PSH.
The output goes to the user's terminal.

The following steps are taken:

An 18 double word output buffer acquired from Free Storage.

The maximum number of characters to be displayed is set based upon the user's
terminal type--16 bytes for teletype, 32 bytes for all other terminals.

A BAL to subroutine DISWRITE to output any partially full buffer and reinitialize
the buffer.

The location and length of the next argument is obtained by doing a BAL to
SCANFLD. If there are no more arguments the output buffer is returned to Free
Storage and return is made to READI in CFSMAIN.

The first character of the arqument is inspected for a type code (P, G, Y, L,
T, K, or X). If none is found an L is inserted in front of the argument. The
code is used to select the routine to branch to branch to, to perform the unique
processing for each type of display.

Fach routine sets the default ending address and address increment and does a
BAL on register 7 to subroutine DISINIT to determine the beginning and ending
addresses of the data to be displayed.

Each routine loads the next four bytes of data to be displayed into register 3
and branches to DISCOMHM.

DISCOMM does a BAL to subroutine DISHEAD to build the header for the line if the
buffer is empty.

The data is then converted to hexadecimal and stored in the next location in
the output buffer.

If the buffer is full, a BAL is done to subroutine DISWRITE to output the
buffer.

Section 2: Method of Operation 129

130

The next address to be displayed is computed by adding the increment address to
the current address. If this address is greater than the ending address, the
next argument is fetched (step 3). If this address is not greater than the
ending address, the next four bytes are displayed by returning on register 7 (to
step 6).

DISINIT scans the argument for a hyphen or a blank. A hyphen indicates that a range
of addresses is to be displayed. If the ending address is larger than the default
ending address, the default address is used to end the display. If the beginning
address is larger than the ending address, a "BAD ARGUMENT Xx" message is sent to
the user and the display terminated. If either the beginning address or ending
address is omitted the default for that address is used in the display.

DISHEAD builds the header and trailer sections of each output line. For a register
display, the register character identification is moved to the first three bytes of
the output buffer and the register number is stored in bytes 5 and 6. For a display
of core storage the next line to be displayed is compared to the last line. If both
lines are the same, the "SUPPRESSED LINES" message is built in the buffer. If the
lines are not the same, the 1last line is outputed and the current line is saved.
For a display of core, the line is also translated to EBCDIC and moved to the
trailer portion of the buffer. Before returning to the calling routine, the buffer
pointer is set to the 8th byte of the buffer and the buffer count set to 7.

DISWRITE outputs the buffer either to the user's terminal or virtual printer based
upon a flag in the buffer. After the I/O completes, the pointer is set back to the
start of the buffer, the byte count is set to zero, and the buffer is cleared with
blanks.

CP-67 Program Logic Manual

DRAIN (DR) - system operator only
DRAIN <XXX . . o Dnn>
This command will cause the specified unit record devices to stop processing at the
completion of the currently active spool file.
The following steps are taken:

= find the specified real multiplexer device block, or locate each device in the
chain if doing all devices

set the MRIDRAIN bit in the MRIFLAG field of the MRDEBLOK

\

if the device is not busy, print a message to the operator indicating the
device is drained

- loop for all devices (readers, punches, printers) if draining all

DUMP (DU) - any user (class A,B,C,D)
DUMP argl arg2 ... argN
where the arquments are the same as those for the DISPLAY Console Function. The output
goes to the first virtual printer defined in the user's virtual machine.
The following steps are taken:

- The flag is set in the output buffer to indicate that the output is to go to the
printer.

- The remainder of the steps are the same as those for DISPLAY.

Section 2: Method of Operation 131

D_U_M P (D_U_M_P) - system operator only

D_U_M_P
This command will issue SVC 0 to cause a system ABEND dump.
The following steps are taken:

- verify complete command typed (no abbreviation)

- issue SVC 0

ENABLE (EN) - system operator only

ENABLE CCUu CCU CCU « o o o
ALL

This command allows the operator to selectively or generally enable 2702 lines

communication with CP-67.
The following steps are taken:

- scan the MRDEBLOK (multiplexer real device block) chain for the selected,
every, 2702 line type

- determine whether the device is already enabled or otherwise in use; bypass if it

is
- reset the DISABLE bit in the MRDESTAT field

- issue an SIO and HIO of a sense to force an interrupt

- CONSINT will receive the interrupt, issue the required (if any) SAD and ENABLE

commands, and set the ENABLED bit in MRDESTAT

- set the return address (MIRA) to IDENTIFY for the termination of the ENABLE

132 CP-67 Program Logic Manual

EXTERNAL (EX) - any user (class A,B,C,D)

EXTERNAL

This command simulates the operation of the CPU interrupt button to the virtual machine.

The following steps are taken:

- set a pending external interrupt status in the user's UTABLE (PENDING flags)

- exit to BEGIN2 to run the user's virtual machine

IPL (I) - any user (class A,B,C,D)
IPL XXX
This command will cause the loading and execution of a Control Program of the user's
choice, where xxx is a virtual device containing an IPLable Control Program or is a
presaved system name of a potentially shareable Control Program or "operating system".
The following steps are taken:
— call RESINT to reset the virtual machine status; that is, no interrupts pending

- call PAGOUT to clear the user's page table and the necessary system CORETABLE
entries

- set the swap table entry for the user's virtual page number hex 20 (or the page at
half virtual memory size, whichever is the smaller) to the location on the SYSRES
volume of the IPL simulator page

- find the user's virtual device block if not IPLing by system name

- set the virtual address of the IPL simulater in the user's VPSW and exit to run
the virtual machine (IPL simulator)

- if IPLing by system name, bring in the SYSTEM module which contains the table of
system names and is actually the module, SYSTEM

- search for the desired system name
- move into the user's swap table entries the DASD locations of the saved systenm

- set a pointer to the shared page table, if any

- set the user's VPSW to the saved systenm execution address, and exit to run the
virtual machine

Section 2: Method of Operation 133

IPLSAVE (IPLS) - any user (class A,B,C,D)
IPLSAVE xxXx
This command will initiate execution of the CP-67 IPL simulator in the wuser's virtual
memory space for a device specification in xxx. XXX may be the name of a presaved
system.
The following steps are taken:
- call RESINT to reset the virtual machine status

- bypass the call to PAGOUT so user's pages remain nonzeroed

- proceed as in IPL (after call to PAGOUT)

KILL (K) - system operator only

KILL wuserid

This command is used to force the logout of a particular user-.
The following steps are taken:
- locate the desired user by linking to FINDUSER
- call the module ADSET (in USEROFF) to force the logout of the user

— the user receives a message indicating a forced logout by the operator

134 CP-67 Program Logic Manual

LINK (LI) - any user (class A,B,C,D)
LINK userid xxx vyyy <W|R> <(NOPASS) | PASS= password>
The 1ink command will attach to the user a virtual DASD block of the specified address
(yyy) from information contained in the system directory for user '"userid" and his
device, xxx. The user may request read or write status and may be prompted for a
password. The user may also link to himself without a password. If LINKing to himself,
the user may specify * for "userid". LINK can also be used as a virtual console function
with a special (PASS= password) form to provide the password with the command.
The following steps are taken:
- retrieve all the parameters from the input command
- issue a "protected" read for the password if not linking to himself
- set up the parameters for, and then call LINK module
- on return, index on an error code to give a message
- the LINK module will grant the desired access and set up the necessary device

blocks

The access modes permitted by the LINK command are summarized in Table 2. Note that when
linking to one's own userid, access allowed is the same as at LOGIN. WRMULT is examined
only when linking to oneself. The table assumes that the password supplied is correct
and the device is shareable for the requested access mode.

Table 2. Summary of Access Allowed by LINK

Directory Access Existing Access_Mode Established
Specification Requested Links
Link to Link to
RDONLY WRMULT Oneself Another Userid
No No Read None Read Read
Read Read Read
Write None None
No No Write None Write Write
Read Read Read
Write None None
Yes No Read or Write None Read Read
Read Read Read
Write None None
No Yes Read Any Read
No Yes Write Any Write
Yes Yes Read or write Any Read

Section 2: Method of Operation 135

LOCK (LOC) - system operator only

LOCK wuserid xxxX nnn

This command is used to lock specified pages of a user's virtual machine in core so that
they will not be paged.

The following steps are taken:
- locate the desired user, who must be logged in to CP-67

- starting with the specified page (xxx), and looping for a number of contiguous
pages (up to and including page nnn), call PAGTRAN if the page is not in core to
BRING. Calculate the CORTABLE entry of the specified page and set the LOCKM bit
in its CORTABLE entry.

LOGIN (L) - any user (class A,B,C,D)

LOGIN userid

The LOGIN command is used to initiate a terminal session. Although included here with
console functions, the LOGIN command is processed by the LOGON module, and technically is
not a CONSOL command.

When the connection between the terminal and the system is established, a recognition
message will be sent from the system ("CP-67 Online") indicating that the system is ready
to receive users. If the attention key (2741) or the break key (1050) is depressed, the
system will respond with a carriage return, and it will unlock the keyboard waiting for
an attempted logon process.

The format is LOGIN userid where "userid" is the eight-character or less external
identification code assigned to the user by the systems administrator. If the userid is
not found in the directory (U.DIRECT), a message is sent to the terminal and the terminal
is reinitialized. If the external identification is found in the directory, a request is
made for the user to enter his password:

ENTER PASSHWORD:

and the printer is disabled in preparation for the receipt of his password. In the case
of a TTY terminal, each space of the eight-character input area is preprinted with an H,
*, and S to hide the password. For the the 1050, and for the 2741 not equipped with the
print inhibit feature, the same password protect characters can be obtained by either of
the following methods:

issue an x after your userid:
login 'userid' x
or
hit RETURN after the message ENTER PASSWORD is printed.

The password is checked against the directory, and if a match is made, the user is
informed of the nmessage of the day (LOGMSG), if any, and of any failures in allocating
his virtual machine. Finally, the time and day of login are indicated at the terminal.
If the password does not match the one in the directory, an appropriate message is
issued. During the LOGIN procedure, CP-67 uses the 2702 read-with~time-out function to
prevent unnecessary lihe tie-up.

136 CP-67 Program Logic Manual

LOGOUT (LOG) - any user (class A,B,C,D)

LOGOUT <xXxx>
where <xxx> is any nonblank character. XXX will prevent disconnect of the line.

This command will cause the user's virtual machine to be deleted from the CP-67 system.
The following steps are taken:
- free the CONSOL functions read buffer and large save area

- call ADSET to process the machine logout

MSG (M)
MSG userid text-of-message - any user (class A,B,C,D)
MSG ALL text-of-message - class A and B

(class A or B)
This command is used to communicate with other users currently logged in to CP<67. The
users with operator privileges (privilege class A or B) can send a message to all users
by specifying ALL for a userid.

The following steps are taken:

find the desired user; if the ID is "CP", find the system operator
- format the message to identify the sending user

- call WRTCONS to send the text to the user's terminal

- if ALL is specified, repeat the WRTCONS for all users

- send a message to the issuing user if the desired user is not currently accepting
messages

PSWRESTART - any user (class A,B,C,D)

This command performs a virtual PSW RESTART function to simulate that operation on a real
System/360.

The following steps are taken:

- the virtual PSW located at virtual location 0 is placed in the VMPSW field of the
UTABLE as the current virtual PSW for this user.

- control is returned to the virtual machine at the new PSW.

Section 2: Method of Operation 137

PURGE (P) = any user (class A,B,C,D)
PURGE <RDR | PRT | PUN>
This command will delete all the user's particular spool files that are still awaiting
processing.
The following steps are taken:

- starting from the PRINTERS, PUNCHES, or READERS chain, find the spool file blocks
for the user

- call MRIDEL to delete the spool file block and to release all the records used by
this spool file

- call WRTCONS to give the user a confirmation message

QUERY (Q) - any user (class A,B,C,D), except for certain functions
QUERY parameter
where parameter is either USERS, NAMES, PORT, userid, LOGMSG, MAX, Q2, DEVICE, FILES, or
TIME. The parameters can be abbreviated to a unique value, for example, Q F will give
the file status.
The following steps are taken for processing each parameter:
USERS ~ prints the number of logged on and "dialed" users
NAMES = prints the "userid" and 2702 line address of all currently active terminals
with virtual machines. Terminals in the process of LOGIN and virtual
machines that are DISCONNECTED are shown. The names are displayed four to

a line.

"userid" - if the user is logged in, a message of the "NAMES" format is given; if not,
"USER NOT ON SYSTEM" is given

LOGHSG - the current LOGMSG is printed
MAX - the current setting for maximum users is given (class A and B)
02 - the current maximum amount of CPU paging overhead desired expressed as a

percentage. The default value for this variable is 16. (See DISPATCHER
explanation.)

DEVICE —- the address and status of the particular device or of all DASD and TAPE
devices is given (operator and subsysten operator class A and B)

PORTS - the address and status (userid associated with line, or **FREE**) of the
particular 1line or of all 1lines, or of all "free" lines is given as
requested (class A and B)

FILES - the number of reader, printer, and punch spool files awaiting processing
for the user. For the system operator, the status given is for all users,
that is, the total number of files.

TIME - gives the connect, virtual and total time used so far by the user
DUMP = prints address of the ABEND dump unit (class A and B)
VIRTUAL - interrogates virtual machine configuration: 'all' as an option (or null

option) elicits entire confiquration; 'core' for core size, only; ‘'ccu'
for specified device.

138 CP-67 Program Logic Manual

READY (R) - any user (class A,B,C,D)

READY ccu

where ccu is a virtual device address.
The READY command will set a "device-end" interrupt status in the virtual device block.
The following steps are taken:

- locate the user's virtual device block

- set a "device-end" status in the block (VDEVSTAT)

- set a "pending" interrupt status in the user's UTABLE

REPEAT (REP) - class A
REPEAT ccu <nn>
This command will cause the currently active output of the specified device to be
repeated nn times (1 is default).
The following steps are taken:
- find the specified device block, MRDEBLOK
- if the device is not active, print a message to the operator

- in the current spool file block, set a ©bLit and a count to indicate that, upon
reaching the end, the output should be restarted

RESET (RES) - any user (class A,B,C,D)
RESET
This command performs a "system reset" of all the user's virtual devices. All interrupts
are cleared.
The following steps are taken:

- call the module RESINT to perform a reset on all virtual devices

Section 2: Method of Operation 139

SET (SET) - any user (class A,B,C,D), except for certain functions

SET parameter
where parameter is either WNG ON, WNG OFF, MSG ON, MSG OFF, RUN ON, RUN OFF, CARDSAVE ON,
CARDSAVE OFF, MAX=nn, LOGMSG, or Q2=nn. The parameters cannot be abbreviated.

The following steps are taken to process each parameter:

WNG ON - reset the WNGBIT in the user's TIMERMOD field of the UTABLE to allow
receipt of "warnings", that is, priority messages

WNG OFF - set the WNGBIT in the user's UTABLE field (TIMERMOD) to inhibit
receiving "warnings"

MSG ON - reset the MSGBIT to receive messages

MSG OFF ~ set the MSGBIT to inhibit receiving messages

RUN ON - set the RUNON bit to allow the virtual machine to keep running in

"CONSOL function" mode (after "ATTN" interrupt)

RUN OFF - reset the RUNON bit for "normal" virtual machine operation, that is,
to stop running on "ATTNW®

CARDSAVE ON - set the MVIFSAV bit in the MVIFLAG field of all the wusers' virtual
card readers

CARDSAVE OFF - reset the MVIFSAV bit in all the users' virtual card readers

TRACE ON - initiate tracing functions as specified by the included parameters

TRACE OFF - terminate tracing functions

ADSTOP xxXxXXX - stop execution at virtual instruction address xxxxxx

ADSTOP OFF

[}

terminate an address stop function.

The following functions are for class A and B only:

MAX=nn - for the system operator only; to set a value for the maximum number of
users allowed to log on (0=no limit)

02=nn - for the system operator only; to set the maximum amount of CPU paging
overhead expressed as a percentage. The default value for this
parameter is 16 (see DISPATCHER explanation).

LOGMSG - to set or add to the system LOGMSG

LOGMSG NULL - to delete the entire existing log message
LOGMSG n -~ to set or delete LOGMSG line n

DUMP xxXx - to change dump unit and core area dumped

140 CP-67 Program Logic Manual

SHUTDOWN (SH) - system operator only

SHUTDOWN

This command will immediately terminate system operation with no messages.

The following steps are taken:
- set the CPID word to SHUT to indicate shutdown

- go to the DSKDUMP routine at RESTART to force an IPL of the system so that CHKPT
can save the machine status

SLEEP (SL) - any user (class A,B,C,D)

SLEEP

This command places the terminal in a "prepared" status so that it may receive messages.

The following steps are taken:

- GOTO the DISPATCHER leaving the user in CFWAIT mode (nonrunnable)

- an ATTN will awaken the user

Section 2: Method of Operation 141

SPACE (SPA) - class A
SPACE ccu
This command will cause the current output on the printer (spool file) to be forced to
single spacing. This will avoid excessive fornms skipping.
The following steps are taken:
- find the specified printer real multiplexer device block

- set the MRISPACE bit in the MRIFLAG field of MRDEBLOK

SPOOL (SPO) - any user (class A,B,C,D)
SPOOL ccu <ON xxx| OFF>
SPOOL ccu <CONT| OFF>

This command is used to direct the output of a user's virtual printer or punch to a
specific real printer or punch. The command can also specify "continuous" input for
virtual card readers.
The following steps are taken:

- find the user's virtual device block (ccu)

- find the system real device block (xxx)

- set the MVIFRMT bit in the MVIFLAG of the user's MVDEBLOK

- store the address of the desired MRDEBLOK in the MVPNTREL field of the MVDEBLOK

- reset these bits if no real device is specified

- for a virtual card reader, set the MVICONT bit in the MVIFLAG field of the
MVDEBLOK; or reset the bit for no WCONT" specified

142 CP-67 Program Logic Manual

START (STA) - system operator only

START <XXX o« o o YYY>

This command is used to start a previously drained unit record device.

The following steps are taken:

- the same logic of DRAIN is followed to locate the desired device or devices

- the MRIDRAIN list is reset in the device block

- a dummy "device end" CSW is created and a call is made to MRIOEXEC; this will
cause any closed spool file blocks to commence output on the device

STCP (STCP) - class A and B

STCP argl arg2 ... arghN

where the arguments (argl...argN) are a real memory location and the data to be stored.
The following steps are taken:

- The steps are the same as those for STORE except the data is stored in real memory
instead of virtual memory.

Section 2: Method of Operation 143

STORE (ST) - any user (class A,B,C,D)

STORE argl1 arg2 ... arg\N
where the arguments (argl...argN) specify a virtual memory location, a general-purpose
register, a floating-point register, a control register, and/or PSW and the data to be
stored.

The following steps are taken:

- Fetch the next argument and branch to the routine to handle that particular store
function by doing a BAL to subroutine STOSCAN.

Each store routine sets the increment address and does a BAL to subroutine STOADDR
to convert the beginning address to binary.

- A BAL to STOSCAN is done to obtain the next argument.

- If the current address is greater than the maximum allowable for the type, a "BAD
ARGUMENT XX" message is sent to the user and the store function terminated.

- The argument is converted to binary and stored at the current address.

- The increment address is added to the current address to obtain the next address,
and the store continues by fetching the next argqument (step 3).

Subroutines:
STOSCAN does a BAL to SCANFLD to obtain the 1location and 1length of the next
argument. The first character of the argument is inspected for a type code (P, G, Y,
L, or X). The code is used to select the routine to branch to, to perform the unique
processing for each type of store. If no valid code is found, the argument is
assumed to be data and return is made to the calling routine to continue the store.

STOADDR converts the beginning address to binary, saves 1it, and returns to the
caller.

144 CP-67 Program Logic Manual

TERMINATE (TERM) - system operator only

TERM XXX

Where xxx is the real address of a unit record device whose output it is desired to

terminate.
The following steps are taken:
- find the MRDEBLOK for the specified device

- set the TERMINAT bit in the MRIFLAG field of MRDEBLOK

UNLOCK (UN) - system operator only

UNLOCK userid xxx nnn

This command will unlock a previously LOCKed page.

The following steps are taken:

- the same logical steps as in LOCK, but turn off the LOCKM bit in
entry if the specified page is in core

the core table

Section 2: Method of Operation 145

WNG (W) - class A and B
WNG userid text-of-message

ALL

The "warning" function operates the same as MSG except that a priority call is made.

The following steps are taken:

find the specified ‘"userid", or if "ALL" 1is specified, do the following for all
logged-on users:

- format the message to identify the originator
- call PRIORITY to send the message to the user immediately

- send a message to the originator if a user is not receiving warnings

XFER (X) - any user (class A,B,C,D)
XFER ccu TO userid
XFER ccu OFF
This command is used to transfer a punch spooled file to the reader input spool files of

the specified user.

The following steps are taken:
- find the desired punch device (ccu)

- call USERLKUP to search the CP-67 directory to determine that the ‘userid" is
valid

- move "“userid" to the MVIXUSER field in the MVDEBLOK
- set the MVIXFER bit in the MVIFLAG of the MVDEBLOK

- for the OFF option of the XFER command, reset the MVIXFER bit and blank the
MVIXUSER field

146 CP-67 Program Logic Manual

SECTION 3: PROGRAMMING CONVENTIONS

To allow for the orderly maintenance and growth of the CP-67 operating system, the
programming conventions described should be followed by anyone working with CP-67
programs.

MAINTENANCE

The CP-67 system is maintained wusing the Cambridge Monitor System. A set of
catalogued procedures (EXEC files) are distributed with the system (see the CP-67
Installation Guide for their descriptions).

ASSEMBLY DECK FORMATS

All decks contain a TITLE card as the physically first card with a unique label
field and a suitable title in the operand field.

The primary entry point of a routine is indicated with a START card, which is the
second card of the assembly deck in the absence of macro definitions or comments
(required by the loader).

Unless required otherwise, all COPY statements are located at the end of the deck.

The END card must not have any operands. The loader will accept only one of such
type, and this must be the one in SAVECP.

Information used by more than one routine will be contained in the file CPMACS
MACLIB. This file will contain the macro definitions, equivalence packages, and control
block definitions (DSECTs). All parameters and flag bits should be assigned symbolic
names and defined in the appropriate equivalence package.

EQUIVALENCE PACKAGES AND CONTROL BLOCK DEFINITIONS

These packages will Dbe included in an assembly by means of the COPY
pseudo-operation.

CPFDEF defines the CPFILE control blocks.

DEVTYPES defines the CP-67 device type codes.
A printout of DEVTYPES follows this list.

EQUG67 defines references to physical lower core,
channel command words, CALL parameters,
CPEXBLOK definition, etc. A printout of EQU67
follows this list.

IOBLOCKS defines the input-output control blocks
and IOTASK block.

OPTIONS contains assembly option switches and
macro definitions.

LOCAL contains assembly option with settings for
the particular installation.

Section 3: Programming Conventions 147

UDIRECT defines the directory blocks MDENT and UFDENT.

UTABLE defines the UTABLE and EXTUTAB blocks and
included flag bits.

Obtain a listing of the appropriate ASP360 or COPY file from the CP-67 distributed systenm
for a detailed and accurate description of the contents of each file.

148 CP-67 Program Logic Manual

CP-67 DEVICE CODES

s 3 ok ok o ke 5 s e e ok o ke ok sk ke e oo ok o ok s ok ke s ko ke e o o e ok sk sk ke o s ok ke o ke ok o ke ok Aok Aok

* *
* CP-67 DEVICE TYPE CODES *
% %

sk sk 3k 3k 3k K 3k % ok ok 3k 3k 3k 3k 3k 3k sk sk ok ok ok o sk o ok ok ok ke ok ok ok e o ok ok 3 ok ok sk b ok ok e e e e ke e A R ok e kK
%*

TYP1052 EQU 0

TYP1050 EQU 4

TYP2250T EQU 8

TYP2260T EQU 12

TYP2741T EQU 16 MPX/2702 2741
TYP 1052T EQU 20 1052
TYP2703T EQU 24

TYP2702T EQU 24

TYP2701T EQU 24

TYPTT35T EQU 28 MDL 35 TELETYPE
TYPTTY35 EQU TYPTT35T
TYPTIMER EQU 4y SIMULATED CHRONOLOG

TYP1403 EQU 48

TYP25U40P EQU 52

TYP2540R EQU 60

TYP2671 EQU 6u

TYPRMPRT EQU Xxogqye REMOTE PRINTER READER
TYPRMPUN EQU xouge REMOTE PUNCH READER
TYPM20 EQU 96

TYP1800 EQU 100

TYP2311 EQU 128

TYP2314 EQU 132

TYP2302 EQU 136

TYP2321 EQU 140

TYP2301 EQU 144

TYP2303 EQU 148

TYP2250 EQU 180

TYP2260 EQU 184

TYP2400 EQU 192 GENERAL MAG TAPE
TYP2404 EQU 192

TYP2402 EQU 192

TYP2403 EQU 192

TYP3420 EQU 196

TYP7340 EQU 204

TYP2701 EQU 208

TYP2701L EQU 208 L IS A DEDICATED LINE
TYP2702L EQU 208

TYP2703L EQU 208

TYP2700L EQU 208

TYP2702D EQU 212 D IS A DIAL CONNECTED LINE
*

sk ok 3 3k 3 sk sk o o sk ok ok ok 3k ok ok %k 3 ok s 3k sk o sk sk 3 sk s ok o sk ok ol 3k o ke sl ok ke ok ok s s e s sk e e e e e ke ok KOk

Section 3:

Programming Conventions

149

CP-67 EQUATE PACKAGE - EQU67

e 3 e e e o e o o o e e s ek ke sk ke ke ok ok s s sk e e ok sk s ke s e s ke o e o ok e ok o st s st afesie s e e sk sk sl s s ol s o koo o ok o ke ek sk ok

* %
* CP-67 EQUIVALENCE AND MACHINE DEFINITION PACKAGE *
% *

e 2 e e e e e e s ke 4 ke sfe 3k ok ok e st e sk K ok 3k sk sk s e st o ok e sk sk e sk sk ok sl sk s s sk ok 3k 3 3 e 3kl sk sl st ok o sk sk ok ol ok sk sk sl ok sk sk ok sk s ok
*

* BITS IN STANDARD PROGRAM STATUS WORD

%

PROBMODE EQU X'01! PROBLEM MODE BIT.

WALT EQU X'02° WAIT BIT.

MCHEK EQU X'04! MACHINE CHECK.

ASCIT EQU X'08" ASCII BIT.

*

* BIT ASSIGNMENTS IN EXTENDED PROGRAM STATUS WORD
*

MODE32 EQU X'08! 24,32 ADDRESSING MODE BIT.
TRANMODE EQU X'O4* DYNAMIC TRANSLATION MODE BIT.
IOMASK EQU X' 02! OVERALL I,/0 MASK BIT.

EXTMASK EQU X'01' OVERALL EXTERNAL INTERRUPTION MASK BIT.
*

* : DEFINED BITS IN CHANNEL STATUS WORD

%

ATTN EQU X'80°" ATTENTION BIT.

SHM EQU X'40°" STATUS MODIFIER BIT.

CUE EQU X'20° CONTROL UNIT END BIT.

BUSY EQU X*'10° BUSY BIT.

CE EQU X'08! CHANNEL END BIT.

DE EQU X'0ur DEVICE END BIT.

uc EQU X'02! UNIT CHECK BIT.

UE EQU X'01! UNIT EXCEPTION BIT.

*

PCI EQU X'80°" PROGRAM~CONTROLLED INTERRUPT BIT.
WLR EQU X'40° WRONG-LENGTH-RECORD BIT.

PRGC EQU X'20°" CHANNEL PROGRAM CHECK

PRTC EQU X'10° CHANNEL PROTECTION CHECK

*

* FLAGS DEFINED IN CHANNEL COMMAND WORDS

b3

CcD EQU X'80° CHAIN DATA FLAG.

cc EQU X'40° CHAIN COMMAND FLAG.

SILI EQU X'20°" SUPPRESS INCORRECT LENGTH INDICATOR FLAG.
SKIP EQU ~ X'10° SUPPRESS TRANSFER OF INFORMATION.
PCIF EQU X'08" PROGRAM-CONTROLLED-INTERRUPT FLAG.
%

* FLAGS DEFINED IN FIFTH BYTE OF CCW TO AID CCW TRANSLATION
%k

RCXIS EQU X'80°" CHECK ISAM INDICATOR

RCSUDO EQU X'40°¢ PSEUDO 2311 INDICATOR
RCUTIC EQU X'20! UNTRANSLATED TIC

RCIO EQU X'10! 1/0 CCW

RCGEN EQU X'08" CP GENERATED CCW

RCDATA EQU X'04' CP GENERATED CHAIN DATA

RCO2 EQU X'02' RESERVED FOR FUTURE USE

RCO1 EQU X'01¢ RESERVED FOR FUTURE USE

*

* DEFINED LOCATIONS IN MACHINE (EXTENDED AND STANDARD)

*

IPLPSH EQU 0 INITIAL PROGRAM LOAD PSW.

IPLCCW EQU 8 INITIAL PROGRAM LOAD CCWS.
INTCODES EQU 14 INTERRUPTION CODES (EXTENDED)
EXOPSW EQU 24 EXTERNAL INTERRUPT OLD PSHW.
SVCOPSW EQU 32 SUPERVISOR CALL INTERRUPT OLD PSW.
PROPSW EQU 40 PROGRAM INTERRUPT OLD PSHW.

150 CP-67 Program Logic Manual

MCOPSW
IOOPSW
CSW

CAW
TIMER
EXNPSW
SVCNPSW
PRNPSW
MCNPSW
IONPSW
SCANOUT
CHANLOG
*

%

*
RUNUSER
CPSTATUS
*

*
CPIDLE
VMDONE

*IOMASK
*

*
MONTHS
DAYS
YEARS
HOURS
MINUTES
SECONDS
*
STARTIM
BINTIME
DISPSW
*

*

*
ASYSWRHM
ASYSINF
ASYSCNSL
CPID
ARMXST
ARECBUF
AZVOL
APRINT
APUNCH
AREADERS
AMREAL
ARCHSTRT
*
CPUTAB
CPUOTH
CPUID
CPUSCR
*

TEMPSAVE
*

BALRSAVE
*

DISPATWK
*
RUNINTIM
DSCRO
KALG
LOCKOUNT

MAXLOCK
*

*

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU

EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU

CP POINTERS FOR CPINIT,

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU

304

MACHINE CHECK INTERRUPT OLD PSW.
INPUT-OQUTPUT INTERRUPT OLD PSW,.
CHANNEL STATUS WORD.

CHANNEL ADDRESS WORD.

MACHINE INTERVAL TIMER.

EXTERNAL INTERRUPT NEW PSW.
SUPERVISOR CALL INTERRUPT NEW PSW.
PROGRAM INTERRUPT NEW PSW.
MACHINE CHECK INTERRUPT NEW PSW.
INPUT-OUTPUT INTERRUPT NEW PSW.
DIAGNOSTIC SCAN-OUT SECTION.
CHANNEL LOGOUT AREA (2860,2870)

STORAGE LOCATIONS USED BY THE CONTROL PROGRAM

X'160°
RUNUSER+U4

BITS DEFINED IN CPSTATUS

X180
x40
Xvo02'

CPSTATUS+1
MONTHS+1
DAYS+1
YEARS+1
HOURS+1
MINUTES+1

HOURS+U4
STARTIM+8
BINTIME+U

DISPSW+8
ASYSWRM+U
ASYSINF+U
ASYSCNSL+4
CPID+4
ARMXST+U
ARECBUF+4
AZVOL+U4
APRINT+U4
APUNCH+U
AREADERS+U4
AMREAL+U4

ARCHSTRT+4
CPUTAB+23
CPUTAB+27
CPUTAB+31

CPUTAB+USB
TEMPSAVE+6U
BALRSAVE+80
DISPATWK+32
RUNINTIM+U4
DSCRO+U4

KALG+U
LOCKOUNT+2

ON..FOR I-0 ENABLED PROCESSOR

NOTE: MUST BE DOUBLE WORD BOUNDARY

CHKPT AND BUZZARD

WARM START CYL ADDRESS
LOGMSG START

1052 CONSOL ADDRESS LOC
CP-67 IDENTIFIER

REAL MPX CHAIN START
SPOOL BUFFER START
ZERO VOLUME DEVICE
PRINTER FILE CHAIN
PUNCH FILE CHAIN
READER FILE CHAIN
ACCOUNTING CARD CHAIN
REAL SEL CHAN START

TABLE OF CPU'S AND PREFIXED PAGE 0
CPU IDS OF OTHERS

CPU ID WITHOUT EXTRANEOUS BITS
SCRATCH BYTE FOR CPUL/F

TEMPORARY SAVE FOR INTERRUPT HANDLERS
FAST LINKAGE SAVE .. 80 BYTES

WORK AREA FOR DISPATCH (8 WORDS)

1 SECOND INTERVAL BINARY TIMER
CURRENT SEGMENT TABLE ORIGIN

PAGING ACTIVITY CONTROL

COUNT OF CURRENTLY LOCKED PAGES
MAX. VALUE OBTAINED BY LOCKOUNT

Section 3: Programming Conventions

151

Fokddok PSA ASSEMBLED DATA STARTS AT X'340°'.
&

Rk CURRENT DEFINITION OF STAT COUNTERS STARTS AT X!350°¢.

*

*

* TIMING MEASUREMENTS :

CPTIME EQU X'350° CPU TIME IN SUPERVISOR STATE
PROBTIME EQU CPTIME+l CPU TIME IN PROBLEM STATE
WAITTIME EQU PROBTIME+Y CPU TIME IN WAIT STATE

b3

OVERHEAD EQU WAITTIME+4 SUPVR TIME NOT CHARGED TO USERS
WAITIDLE EQU OVERHEAD+U WAIT TIME FROM PERIODS GTE 1/4 SEC.
WIPAGE EQU WAITIDLE+4 TIME SPENT WAITING FOR A PAGE
WTUSR EQU WTPAGE+lL TIME SPENT WAITING WITH N-IN-Q RUNNABLE USER
WTUSRR EQU WTUSR+4 WTUSR * NUMBER OF NON-IN-Q RUNNABLE USERS
*

%

* CPU EVENT COUNTERS:

*x

KPGEX EQU WTUSRA+U4 COUNT OF PAGING EXCEPTIONS

PGREAD EQU KPGEX+l PAGES READ IN

PGSWAP EQU PGREAD+U PAGE SWAPS

QCOUNT EQU PGSWAP+U COUNTER: USER IN Q LOST PAGE

-

E'S

* INSTALLATION USER (4 WORDS) :

*
INSTWRD1 EQU QCOUNT+4

INSTWRDZ2 EQU INSTWRD 1+04
IHNSTHRD3 EQU INSTWRD2+4

INSTHRDU4 EQU INSTWRD3+4
¥

¥
¥ USER EVENT COUNTERS:

*

STATUSER EQU INSTWRDU4+U COUNTERS FOR USER INSTR. STREAM EVENTS.
#
¥ *
* DEFINITION OF STATISTICS COUNTERS IN CP CORE -—- *
* COUNTERS OF USER EVENTS. *
* *

ke et et e ook et e ol e skl sk ekt sk ot s e e st stk skl ok st sk ok st s ks sk ok sk ok stk ok ok e s ok ol ok s
STATINST EQU STATUSER
* COUNT OF INTERRUPTS

STATUEXT EQU STATINST COUNT OF USER EXT INTERRUPTS REFLECTED
STATUSVC EQU STATURXT+4 COUNT OF USER SVC INTERRUPTS REFLECTED
STATUPGH EQU STATUSVC+l COUNT OF USER PGM INTERRUPTS REFLECTED
STATUIOI EQU STATUPGM+4 COUNT OF USER I/0 INTERRUPTS REFLECTED
*

* COUNT OF PRIVILEGED INSTRUCTIONS

STATSSK EQU STATUIOL+4 COUNT OF USER 'SSK' INSTRUCTIONS
STATISK EQU STATSSK+4 COUNT OF USER 'ISK' INSTRUCTIONS
STATSSM EQU STATISK+l4 COUNT OF USER 'SSM' INSTRUCTIONS
STATLPSW EQU STATSSM+4 COUNT OF USER 'LPSW' INSTRUCTIONS
STATDIAG EQU STATLPSH+U COUNT OF USER 'DIAGNOSE' INSTRUCTIONS
STATDDSK EQU STATDIAG+U COUNT OF DIAGNOSE DISK IO INSTRUCTIONS
STATSIO EQU STATDDSK+l4 COUNT OF USER 'SIO' INSTRUCTIONS
STATTIO EQU STATSIO+U COUNT OF USER 'TIO' INSTRUCTIONS
STATHIO EQU STATTIO+4 COUNT OF USER 'HIO' INSTRUCTIONS
STATTCH EQU STATHIO+U COUNT OF USER 'TCH' INSTRUCTIONS

*

* PRIVILEGED INSTRUCTIONS FOR VIRTUAL 67

STATWRD EQU STATTCH+U4 COUNT OF 67 USER 'WRD' INSTRUCTIONS
STATSTMC EQU STATWRD+4 COUNT OF 67 USER 'STMC' INSTRUCTIONS
STATLRA EQU STATSTHC+l4 COUNT OF 67 USER 'LRA' INSTRUCTIONS
STATLMC EQU STATLRA+4 COUNT OF 67 USER 'LMC' INSTRUCTIONS

*

152 CP-67 Program Logic Manual

* MODULE COUNTERS
STATLMC+U4

STATDSP
*

*

*

BRING
CHANGED
USED
DEFER
LOCK

*

SHARED
TRANSIT
RECOMP

*
*TRANSIT
LOCKON
LOCKCM

*

*

*

EDIT
UCASE
NORET
DFRET
NOAUTO
OPERATOR
ALARM

*

*

*

RO

R1

R2

R3

RU

RS

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

*
CPEXBLOK
CPEXNEXT
CPEXADD
CPEXREGS
CPEXMISC
*
CPEXSIZ
*

COUNT OF CALLS TO CKUSR IN DISPATCH

BITS DEFINED FOR CORE MANAGEMENT ROUTINES

SWPTABLE
PAGE

BRING REQUESTED PAGE IN.

STORAGE KEY , PAGE CHANGED

STORAGE KEY, PAGE REFERENCED

RETURN CONTROL ONLY AFTER PAGE IS IN CORE
SET LOCK BIT ON REQUESTED PAGE.

ENTRIES

IS SHARABLE, SET IN SWPTABLE

TRANSIT BIT FOR CORE HANDLER ROUTINES
RECOMPUTE DASD ADDRESS IN SWPTABLE

BITS SET CORTABLE ENTRIES

EQU

EQU X101
EQU xeo2¢®
EQU Xxrour
EQU X008
EQU Xt10!
BITS SET IN
EQU X*10°
EQU X180¢
EQU x40t
EQU Xe80¢
EQU X400
EQU X120
EQU 1

EQU 2
EQU 4
EQU 8

EQU 16
EQU 32
EQU 6U
EQU 0

EQU 1

EQU 2

EQU 3
EQU 4

EQU 5
EQU 6

EQU 7
EQU 8

EQU 9
EQU 10
EQU 11
EQU 12
EQU 13
EQU 14
EQU 15
DSECT

DS 1F
DS 1F
DS 16F
DS 2F
EQU

SAME AS SWAPTABLE
NON~ZERO LOCK COUNT FOR THIS PAGE
LOCK COMMAND SET FOR THIS PAGE

PARAMETER VALUES PROVIDED TO *RDCONS' OR 'WRTCONS'

PERFORM LINE EDITING FUNCTION.
TRANSLATE LOWER TO UPPER CASE.
DON'T RETURN WHEN THROUGH.

PERFORM 'FRET' OF SPECIFIED AREA.
NO AUTOMATIC-~CARRIAGE-RETURN WANTED
MESSAGE TO/FROM OPERATOR

SEND ALARM TO USER TERMINAL

REGISTER EQUIVALENCES

CONTROL PROGRAM EXECUTION REQUEST BLOCK
POINTER TO NEXT REQUEST.

ADDRESS TO RECEIVE CONTROL.

REGISTERS TO RESTORE (EX. 15)
UNASSIGNED.

(*~CPEXBLOK) /8 ..

*

*

Section 3: Programming Conventions

153

SUBROUTINE CONVENTIONS AND REGISTER USAGE

Except for «certain isolated instances, the following conventions relative to
subroutine calling sequences and addressability apply throughout CpP-67.

Addressability is via register 12. Subroutines may assume that register 12 is
properly loaded at the time the subroutine is entered.

The first instruction of a normally called subroutine should be the ENTER macro
described in the section on macro usage. The return point of the subroutine should use
the EXIT macro.

Register 13 points to a valid save area usable by the routine being called. It is 24
words in length. The first three words are reserved and used by the call linkage handler
to save return information. Word 1 is the return address, word 2 is the caller's R12
(return base), and word 3 is the caller's R13 (return save area). The remainder of the
space is used as the called routine sees fit. The ENTER and EXIT macros will store the
saved registers into the area beginning at the fourth word of the save area. The called
subroutine may not change the contents of register 12 or 13. Any registers that are
changed must be restored, with the exception of registers 14 and 15, which may be
considered destructible.

Subroutines expecting to return to the calling program should bo ~all~s with the
CALL macro. subroutines which are called with the CALL macro and which will not return
via the EXIT macro should perform an SVC 16 to return the currently assigned save area
back to usable storage. This type of code should be avoided, if possible. It is used by
second level interrupt handlers to bypass returning to the first level handier wuder
specific circumstances.

Unconditional transfers to routines which expect no return should be made via the
GOTO macro. The routine thus called has access to the same save area which the calling
routine used.

Parameter transfers to subroutines will generally be via general purpose registers
to enhance the ease of coding in a reentrant fashion. The specific calling sequences
depend upon the subroutine being called, with the exception that if the PARM= parameter
of the CALL macro is used, register 2 will be modified within the CALL macro.

Register 11 contains the UTABLE address for the user being serviced.

SYSTEM MACRO USAGE

The following macros are defined and their usage explained:

CALL - establishes subroutine linkages via SVC interrupt

CPUF, CPUL - CPU lock protect for multiprocessing (not now functioning)
ENTER, EXIT - save and restore registers at entry and exit of system routines
GOTO - same parameters as CALL, but no return from called routine

TRANS - facilitates translation of virtual to physical memory address, with
necessary paging

154 CP-67 Program Logic Manual

BAS, BASR, LMC, STMC, and_ LRA

Macros BAS, BASR, LMC, STMC, and LRA are merely defined to be equivalent to the
machine instructions to be assembled. These macros are provided in the absence of the
corresponding mnemonics of the F-level 05/360 Assembler so as to include them in its
operation dictionary.

CALL

Subroutine linkages in the Control Program (with the exception of those routines
called via the BALR interface) are made via the CALL macro, which generates the
appropriate call (via SVC interrupt) to the supervisor, enabling automatic generation and
stacking of save areas, etc. The format is:

|label| CALL <subr,gpr>,|EXTERNAL|,|PARM=(argi+arg2+...) |

where "label" refers to the first generated machine instruction in the expansion; "subr"
refers to a subroutine name (either defined internally or externally), or "gpr" refers to
a general purpose register number (self-defining, not "R1"). "EXTERNAL" as an optional
argument indicates that a V-type address constant is to be generated. The optional "PARM"
argument, if included, provides for the loading of GPR 2 with the parameters indicated
(specified normally as EQU values). If all parameters are to be turned off, PARM=0 must
be specified; otherwise, GPR2 will not be set in the macro expansion.

Section 3: Programming Conventions 155

ENTER and EXIT

The ENTER and EXIT macros are placed at the entry and exit points of system routines
within the Control Program. They perform the function of saving and restoring registers
and exiting to the calling program. Their format is:

|label| ENTER |<regl |,reg2|>]|
EXIT

With the standard calling sequence under the CALL macro description above, provision
is made for the standard supply of save areas in an efficient manner. The ENTER and EXIT
macros enable easy use of this facility.

If no arguments are provided, no saving of registers takes place at entry to the
routine. If a single register is stated, it alone is saved in the provided save area at
12(13) . If a range is provided, these registers are saved beginning at 12(13). The first
three words of the save area are never to be nmodified except by the SVCINT routine.
Sufficient space is provided for the saving of all registers. Care must be taken that the
registers are restored (via the EXIT macro) in the same manner as they were stored in the

ENTER instruction. The parameters for matching ENTER and EXIT pairs should be identical.

GOTOo

The format of the GOTO macro is:

|label| GOTO <subr,gpr>|,PARM=(argl+arg2+arg3+...) |

The parameters are identical to those of the CALL macro (see WCALL"™). The
difference is that the routine doing the GOTO will not expect a return from the called

routine. Therefore, no provision is made for the generation of a save area address. The
called subprogram may make use of the same save area as the calling progran.

156 CP-67 Program Logic Manual

The TRANS macro is used whenever a virtual address is to be translated to a physical
memory’ address, and the page, if not core resident, may be required to be paged in. Its
format is as follows:

|label| TRANS <rgpr,vgpr|,0PT=(a(1),a(2),s-4) |

where "rgpr" is the register to receive the translated address; "vgpr" is the register
containing the virtual address. OPT is an optional parameter which has as subparameters
those options provided to the PAGTRANS routine via the CALL macro. These options will be
passed in the event a call to PAGTRANS is required. They are discussed below.

Note: ‘"rgpr" and "vgpr" cannot be the same register.

If LOCK is specified, PAGTRANS is called as it would be normally. If BRING is
specified, the LRA instruction is used to determine whether the ©page is currently
resident. If it is not, PAGTRANS is called as it would be normally; otherwise the call
is bypassed. If neither is specified, the LRA alone is used and the condition code set.
Note that if a call to PAGTRANS is required, registers 1,2, and 15 will not be preserved
over the macro. If DEFER is specified, control will not be returned until the page is in
core. If USED is specified, the used bit will be set for the specified page. If CHANGE
is specified, the changed bit will be set for the specified page.

The following conditional branch macros are defined:
B (N) PE (R) Branch on (no) page exception (RX, RR);

B (N) RE (R) Branch on (no) reloc. exception (RX, RR);
B (N) SE (R) Branch on (no) segment exception (RX, RR).

Section 3: Programming Conventions 157

158 CP-67 Program Logic Manual

SECTION U4:

TABLES AND CONTROL BLOCK_FORMATS

This section contains illustrations representing the formats of blocks and tables
used by the control program. A brief description of the contents and use of the tables
is also given. Further details may be found in the preceding and following sections. (In
the list below, "1/" means one per user, device, etc.)

The

ALLOCTBL
CCWPKG
CORTABLE

CPEXBLOK
CPFDENT
CPFFDBLK
CPFRECRD
EXTUTAB
IOTASK
LOGCDATA
LOGIDATA
LOGMDATA
MDENT

MRDEBLOK
MRIBUFF

MVDEBLOK
MVIBUFF
PAGTABLE

following control blocks are described:

index to DASD space available to CP for paging and spooling

one for each request for a CP=67 terminal read or write

eight-byte entry/page of real memory, indicating resident virtual page, user,
and real page lock condition

request for some CP-67 program execution that has been previously deferred
pending an event

CPFILE system dictionary entry containing file name and location of first
record

a file descriptor blocksopen file in CP File Systen routines (CPFILE),
describing read/write status, etc.

record format of CPFILE records (user directory files,machine descriptor
files, system directory) on systems tracks

one for each virtual 360/67. It is an extension of the UTABLE containing the
information peculiar to a virtual 67.

1/active user selector channel task and each CcP-initiated I/O operation
describes the format of the error records saved by CP-67 for channel checks
describes the format of the error records saved by CP-67 for I/O errors
describes the format of the error records saved by CP-67 for machine checks
machine description entry created by DIRECT to describe a device 1in a user's
virtual machine

1/real multiplexer device defined in the systen

buffer for spooled packed data when handled for real equipment; chained from
MTASK in MRDEBLOK

1/virtual multiplexer device attached to a user's UTABLE
buffer for spooled packed data; chained from MVIOB in MVDEBLOK

describes status and main storage address of a virtual memory page

RHEADR, RCCWLIST - 1/user CCW list describing location and number, etc., of CCW's in user

RCHBLOK
RCUBLOK
RDCONPKG
RDEVBLOK
RECBUF
SAVEAREA
SEGTABLE
SFBLOK
SWPTABLE
TRECBUF

TREXT
UFDENT

UTABLE
VCHBLOK
VCUBLOK

VDEVBLOK

|

list

1/real channel, describing pending tasks, channel address and status, attached
control units, etc.

1/real control unit, describing channel and devices attached as well as
control unit status, address, etc.

one for each request for a CP-67 terminal read; contains return status
information

1/any real device, describing address, device type, control unit, task block,
etc.

1/cylinder, describing records available/in use, cylinder number, etc.

format of the active and inactive save areas used in subroutine linkage
1/user, describing user page table entries

one for each "closed" file for spooled input and output

1 entry/PAGTABLE entry, describing page swap area addresses

one for each cylinder of an 'opened! spool file that has had data written on
1t

built as a UTABLE extension when user invokes tracing functions

user file directory user information (ID,password,etc.) and user system access
information (privilege class, priority code)

1/user; primary control block onto which other user blocks are strung,
reflecting complete virtual machine status

1/virtual channel for each user, describing channel status, address, attached
control units, etc.

1/virtual control unit describing control unit status, address, attached
devices, etc.

1/virtual device for each user, describing device address, status,
corresponding real device control block, etc.

Section U4: Tables and Control Block Formats 159

ALLOC

There is an allocation block for each volume which is "owned" by the system for uses

such as paging and spooling. The module TMPSPACE scans down a list depending on device
type (T2311 for 2311 disks, T2301 for 2301 drums, etc.). The format of the allocation
table block in free storage is as follows:

0 2 4 6 8
e e m—————— fomm e ———— D +
0 | Pointer to next ALLOC | Pointer to RDEVBLOK |
e B e e TR +
8 | |

| |

| Allocation Data: |

| |

- 201 Bytes - 2301 i
201 Bytes - 2303
- 204 Bytes - 2311 i

| 204 Bytes - 2314 |

|

i e —— < tmm—m—————— +

| | Rec. Cnt | Reserved |

R et o tem————————— + ————
216} Ptr - IOTASK - Rec 1 | Ptr - IOTASK = Rec 2 | A

e B e + |
224 | | |

Bt e e + |
2321 | | 2301 only

P e e B Rt + |
2401 | | |

e o e + |
248| Ptr - IOTASK - Rec 9 | Reserved [

tmmm e ————— tmm———————— tmm—m———————— tmmm e ———— + ————

where:

160

The first word is a pointer to the next block in the allocation queue for this type of
device.,

The second word is a pointer to the real device block on which this volume is mounted.

The allocation data for the drum consists of one bit for every page on the drum
indicating whether the page is available for system paging (bit contains a 0) or in
use (bit contains 1). The allocation tables are preformatted so that only those pages
on a given drum track which are available for paging are initialized to zero. For the
2301 drum, one byte represents one drum track. since five pages may fit on an even
track address and four on an odd track address, the allocation table is initialized to
X'270F070F...070FFF so that unavailable pages or illegal addresses are not selected as
swapping space. The halfword at location 212 contains the count of allocated records
on this device and the 9 words located at bytes 216-252 contain pointers to the first
IO task which references the corresponding records 1 through 9 on the drum. For the
2303 drum, the mask is set to X!'2FOF0FOF....O0FOFFF'. The value FF indicates the end
of the allocation table.

The allocation data for the 2311 and 2314 disks consists of one byte per cylinder
indicating whether the c¢ylinder is available for temporary use. If the cylinder is
available, the byte contains 00; if not, it contains 08. The OF indicates the end of
the allocation table for this device. For 2311 and 2314, any cylinder on an "owned"
volume can be allocated for "temp" use (paging or spooling); "perm" (not available):
“tdsk" (for T-disk allocation); or "drct" (for directory use). Only those cylinders
marked "temp" (X"00") are available for spooling or paging.

The size of the ALLOC block is 216 bytes for all devices other than a 2301; for the
2301 the size is 256 bytes.

CP-67 Program Logic Manual

CCHPKG

There is one CCWPKG for each terminal I/0 request (read or write) generated by CP-67
or the virtual machine (virtual 1052 I/0). The CCWPKG's are chained from each user's

UTABLE at CIOREQ.

0 2 4 6 8
Qt—~——m———=t = e —————— tm—————— +
| NEXTCCWP |JSPARE |NUMWDCCHW |
Bt=——————— te——————— tm——————— tm—————— +
| PNTRDCON | JDEVICE |
16 t~=—=e=—m fm—————- o ———— e ———— +
| CCWLIST |
i]
] |
tm——————— $m—m—————— tr——————— e m———— +

where:

NEXTCCWP is a pointer to the next CCWPKG or zero if it is the last.

JSPARE are flag bytes for processing; the second byte contains the parameters (bits in
R2 24-31) of the call to RDCONS or WRTCONS for the I/O, for example, NORET=X'04",

OPERATOR=X?20".
NUMWDCCW is the size of this package in doublewords.

PNTRDCON is a pointer (zero if none) to a RDCONPKG which becomes a CPEXBLOK for
CPSTACK upon completion of this I/O operation.

JDEVICE is the terminal address.

CCWLIST is one or more (depending upon terminal type and operation) CCHW's to perform
the I/0.

Section U4: Tables and Control Block Formats 161

CORTABLE &

The CORTABLE contains a 16-byte entry for each 4096 bytes of real memory. It is
created by CPINIT at system initialization time, depending on the size of real memory.
The relative position of the entry indicates the core address of the page described. Its
format is as follows:

0 2 4
tom—————— tmm—————— tm—————— e ————— +
0 Pointer to SWPTABLE Entry |
tm——————— tmm—————— tpm—————— Fmm—————— +
4 |Lock MSK| UTABLE Pointer |
B e e ————— tmm————— +
8 | Unused |
tem—————— tom—————— te——————— tmm————— +
C | Unused | Lock CNT |
tem————— e ——— mm——————— tm—————— +

where:

The first four bytes contain a pointer to the corresponding SWPTABLE entry for the
virtual page which currently occupies this real page (or zero if not in use).

The Lock MSK is a one-byte availability indicator. The bit X'80!' indicates that the
page is in transit. The bit X'40' indicates a nonzero Lock CNT. The bit X'20°
indicates that the lock command has been issued for this page.

The UTABLE Pointer points to the user whose page is in that core space. A value of
X'O0FFFFFF! indicates that the page is available. If the UTABLE Pointer contains *CpPx,
that core space contains the CP nucleus; if FREE, it is for CP's free storage.

The Lock CNT is an integer indicating the number of outstanding locks on this real
page for input-output purposes. The maximum lock count is 65,535.

162 CP-67 Program Logic Manual

CPEXBLOK

A CPEXBLOK represents a request for some CP-67 progran execution that has been
previously deferred pending an event. The CPEXBLOKs are chained to the desired user's
UTABLE, and have the following format:

0 4 8
pem———— et +
0 |CPEXNEXT |CPEXADD |
$m——————— S +

8 |CPEXREGS |

where:
CPEXNEXT is a pointer to the next CP request block if any.
CPEXADD is the instruction address to resume CP execution.

CPEXREGS are the 16 general registers saved when the deferred execution request was
set up.

CPEXMISC is for miscellaneous use by the routine that created the block.

Section U4: Tables and Control Block Formats 163

CPFDENT

The CPFDENT block is the description of an entry in the system file directory which
resides on the system residence volume, It is contained in a data record which is
described in CPFRECRD. Its format is as follows:

0 2 4 6 8
R D e B pom +
0 | CPFDNAME |
L pomm———— pmm e R +
8 | CPFVOL1 | XXXXXXXX |
fo——————— fmm—————— tmm—————— tomm———— +
104 CPFDPOS |
B tmmm e T o ———— +

where:
CPFDNAME is the eight-character file name.
CPFVOL1 is the volume label of the disk volume containing the first record.

CPFDPOS is the position within the first volume of the first record - in the format
BBCCHHRX «

164 CP-67 Program Logic Manual

CPFFDBLK

There is one CPFS file descriptor block for each open file in the Control Progran
File System routines (CPFILE). Its format is as follows:

0 2 4 6 8
fmm——————— e i fm—————— +
0 | CPFNEXT | CPFRDEV |
fm——————— i o —————— fmm——————— +
8 | CPFNAME I
dmm————— fm————— fm————— B +
10 | CPFVOLID]C*1 |C*2|
- e B fmm—————— +
18 | CPFFDPOS I
pm———————— fmm—————— pm———— e +
20 |CPFUPDPT|CPFRDPT |CPFBYTER|XXXXXXXX|
pm—————— e fm——————— Fmm—————— +
28 | CPFBUFAD | CPFPQUE |
B pm— pom——m o ————— +

where:
CPFNEXT points to the next open file.
CPFRDEV points to the real device of the current record being read.
CPFNAME is the eight=-character file nane.
CPFVOLID is the volume identification of the current record.
C*1 - CPFSTAT is the file status:
X'80' indicates file open for writing;
X'40' indicates file open for reading.
C%*2 - CPFLOCK is the file lock (for use by writing and updating).
CPFFDPOS is the position of the current record on the real device.
CPFUPDPT is the pointer for the update function.
CPFRDPT is the pointer for the read function.
CPFBYTER is the count of the bytes remaining to be read or updated.

CPFBUFAD is the buffer address for this open file.

CPFPQUE is the queue of locked file requests (not impleunented) .

Section 4: Tables and Control Block Formats 165

CPFRECRD

The following is a description of the record format of all CPFILE records on
system-owned tracks:

0 2 4 6 8
e ———— tmm—————— e ————— e ———— +
0 | CNEXTVOL | XXXXXXXX|
tem—mm————— fmm—————— e e ————— +
8 | CNEXTPOS |
o ——— e ————— e e ———— +
10 | CRECLNG | |
B D + |
| | - 829 Bytes
I CPFDATA |
| |
tmm——————— tm——————e e e +

where:

CNEXTVOL is the label of the pack containing the next record. (Note: A =zero entry
indicates that this is the last record.)

CNEXTPOS is the position of the next record within the pack specified by CNEXTVOL.
CRECLNG is the number of valid data bytes in CPFDATA.
CPFDATA is the actual data in the record, which may be user directory files, machine

description files, or the systenm directory itself.

Note: All physical records are CPRECSZ bytes long (currently 829) . CRECLNG establishes
the end of the valid data in the buffer. Logical records, which are of a length defined
by the calling program to CPFILE, are not split over physical records.

166 CP-67 Program Logic Manual

EXTUTAB

There is one EXTUTAB for each virtual 67 in the system. It contains all
information peculiar to a virtual 67; its format is as follows:

0 2 4 6 8
+ —-—t- _———fmm—————— po——————— +
| VCRO | VCR1 |
e e——— - |
| |
| |
| st aesnss A i |
| VCR14 | VCR15 |
B e it B i +
| SHADVCRO | EX1|E*2|RESERVED |
o e ——— +
| COPYSEGT | IMAGESGT |
e ——————————— e —— e +
where:

VCRO to VCR15 are the contents of the virtual control registers 0 to 15.

SHADVCRO is a pointer to the shadow segment table.

the

LSTBYTST (E*1) is the last byte of the free storage area address reserved for the

shadow segment table.

NBVSEGT (E*2) contains 0 if the virtual machine is using only segment 0, and 1 if not.

COPYSEGT contains the length of virtual segment 0 (minus 1) if the virtual machine is
using only segment 0; otherwise, it contains the address of the copy of the virtual

segment table currently in use.

IMAGESGT contains the first virtual segment table entry if the virtual machine is
using only segment 0; otherwise, it contains the address of the image of the shadow

segment table, with the unavailable bit in each entry.

Section U4: Tables and Control Block Formats

167

Ior

At
blo
unt

ASK

There is one IOTASK block for each user selector channel task active in the systen.
ask is active from the time the user performs the SIO operation (at which time the
ck is created from free storage and queued onto the appropriate channel task list)
il the device is freed (at which time the block is returned to free storage) . Its

format is:

whe

168

0 2 4 6 8
e e e fmmmm———— fomm—mm——— fmmm————— +
0 | TASKRDEV | TASKRCU |
o ———— e ————— tom e ————— +
8 | TASKPNT |TP*|TF* |TASKVADD|
fm e ———— pomm e pm—————— e +
10 | TASKUSER | TASKCAW |
fomm tm—m———— fmm——————— pmmm +
18 | TASKIRA i TASKMISC |
tm e domm————— pm——————— pom +
| | |
et pe— e ——— pom————— pommm————— +

re:

TASKRDEV is the pointer to the real device control block for this task.

TASKRCU is a pointer to the real control unit on which this task is being executed.
TASKPNT is the pointer to the next task on the list strung on the channel.

TP*-TASKPATH contains a bit in the position corresponding to the control unit on which
the task is to be executed; this bit is wused to scan for availability of the control
unit.,

TF*-TASKFLAG contains a bit pattern to indicate task status. The following bits are
defined:

X'80" reserved for future use

X'40°' task used for paging

X*20¢ error in this I/0 operation
X¢10* CP-67 I/0 (paging,spooling,etc.)
08" CP-67 split seek

X'04' channel free on this interrupt
X?*02' processing CC 1 for this task
X'01" stand-alone seek operation

TASKVADD is the address of the virtual device originating the input-output request.
TASKUSER is a pointer to the appropriate user's UTABLE block.
TASKCAW is a pointer to the real channel command list for this operation.

TASKIRA is a pointer to the routine which will be given control on any interrupt
resulting from this operation. If a nonzero condition code is encountered on the
SIO for this task within the CHFREE module, control will be passed to the TASKIRA,
with register 0 containing the condition code. On an interrupt, register 0 will
contain a zero to so indicate.

TASKMISC is a slot which may be wused by the originator of the IOTASK block for
whatever purposes required.

For user selector channel operations, TASKMISC holds the values of registers 6, 7,
and 8 (three words) which are the addresses of the virtual channel, control unit,
and device blocks respectively. These values are used to re-load the same registers
upon receiving the I/0 interrupt.

CP-67 Program Logic Manual

Note:
control blocks and is

(for example,

MVIBUFF) .

The IOTASK for CP-initiated I,/0 functions is generally associated with other
often integrated with then

In these

cases, only the first four doublewords of the IOTASK are present.

LOGCDATA

LOGCDAT

channel checks:

where:

LOGSNSE,

A is a description of the
0 2)
0 +====—=-m> tmm—————— o ————
| LOGSNSE
81 ———————— o m———— o ————
| LOGVOLID
164====v==— to—————— t=m—————
| LOGDATE
204 =-=—mm———— tm——————— tm—————
| LOGCSH
I o ————— m————
| LOGIOPSW
40+ -====—— -t —m—————— R e e
| LOGIOPSH
bt=e—m———— e —————— t=—————
| LOGCAW
68+===—=mm—— o ————— o—————
LOGCODE, LOGTYPE, LOGVOLID,

the LOGIDATA control block.

format of

Fmm e +
|LOG |LOG|
{CODE| TYP|
e ——— +
| LOGADDR

e ————— +

junused

LOGADDR,

the

LOGDATE and

error records

saved by

LOGCSW are the same

LOGIOPSW is the o0ld I/0 PSW which was stored at the time of the error.

LOGCHLOG contains the channel logout data.

LOGCAW contains the channel address word at the time of the error.

Section U4: Tables and Control Block Formats

cp-67 for

as in

169

LOG

IDATA

LOGIDATA is a description of the format of the error records saved by CP-67 for I, 0

errors:
0 2 4 6 8
O tomm————— e ———— to——————— +
| LOGSNSE |[LOG |LOG|
| |CODE| TYP|
R i tr—m—————— tm—————— to——————-— +
| LOGVOLID | LOGADDR |
16+=——=—eeeme to—mm————— Fomm————a e ————e +
| LOGDATE | unused |
24=me - tmm————— Fm——————— tm——————— +
| LOGCSW |
324===eeeav temm————— e ——— o —————— +
| LOGCCWS |
1044=~====== tmm————a tem—————— tm—————— +
| LOGSKLOC |
1124====a-== o tem—————-— tm—————— +

where:

170

LOGSNSE contains the six I/0 sense bytes. For a 3420 device, this field is unused.
LOGCODE contains the type of I/0 or channel error.
LOGTYPE is the type of device upon which the error occurred.

LOGVOLID is the volume serial number of the device upon which the error occurred (if
known to CP).

LOGADDR is the channel/unit address of the erring device,

LOGDATE contains the date and time of the error.

LOGCSW contains the channel status word at the time of the error.

LOGCCWS contains the failing cCW string (up to nine CCH's). For a 3420 device, the
first 3 double words contain the 24 sense bytes. The remaining 6 double words contain

the failing CCW string (up to 6 CCW's) .

LOGSKLOC contains the last seek address prior to the failure.

CP-67 Program Logic Manual

LOGMDATA

LOGMDATA is a description of the format of the error records saved by CP-67 for
machine checks:

0 2 4 6 8
Ot===————— e — e ——— pommmm———— +

| LOGMDATE | LOGMCODE |
B4———————m b mm pomm tmm

| LOGMCPU |
184+=-—==—-—-=~— o ——— o ————— tem——————— +
| LOGMPSW |
224+-- - —m——————— e ———— +
| LOGMGRS | LOGMGRS |
3524———=—=== o e ————— Fm——————— +
| LOGMFPRS |
3844=—m—mm——— pmmm————— pm—————— e m———— +

where:
LOGMDATE contains the date and time of the machine check.
LOGMCODE contains the machine check code.
LOGMCPU contains the CPU logout data.

LOGMPSW contains the five o0ld PSW's at the time of the machine check (external, SVC,
program, machine check, and input-output).

LOGMGRS contains the values of the general registers at the time of the failure.

LOGMCRS contains the values of the extended control registers at the time of the
failure.

LOGMFPRS contains the values of the floating point registers at the time of the
failure.

Section 4: Tables and Control Block Formats 171

MDENT

MDENT is the machine description entry created by DIRECT to describe a device in a

user's virtual machine. It is pointed to by a UFDENT entry. The format of MDENT is as

follows:
0 2 4 6 8
D D et S e fm—————— +
0 | MDADR [M*1 |M*2} MDID |
o —— i e e o ———— +
8 | MDID |xxxxxxXx| MDRELN | MDSIZE |
o —— e ———— o ———— R +
10 | MDRDPASS |
B i +
18 | MDRWPASS |
e e +
where:

172

MDADR is the virtual device address.
M*1 - MDSTAT is the unit status information:
UNITEMP X'80' indicates temporary device allocation.

UNITDED X*40' indicates that the real device specified in MDID is to be dedicated
to this user.

UNRDONLY X'20° indicates a read-only volune.

UNITRMT X'10' indicates that spooled output is to be sent to the real device
specified by MDID.

UNRWRIT X°*08"' if on denotes that the device is shareable in write mode.

UNCONT X'04' if on denotes that the virtual card reader will read all spool files
as one.

UNRWMULT X'02' if on denotes that multiple write users are allowed.
UNRDSHAR X*01' if on, denotes that the device is shareable for read-only.
M*2 - MDTYPE contains the virtual device type.

MDID contains a six-byte volume label for DASD volumes. If UNITDED or UNITRMT is on,
MDID is of the form "IDccu", where "ccu" is a real device address.

MDRELN is the cylinder offset for a shared DASD device.
MDSIZE is the size of the virtual device.

MDRDPASS is an eight-byte password used +to determine eligibility for read-only
sharing.

MDRWPASS is an eight-byte password used to determine eligibility for write sharing.

CP-67 Program Logic Manual

MRDEBLOK

There is one MRDEBLOK for each multiplexer device defined in the systen.
definition is contained in the REALIO module by macros. Its format is as follows:

0 2 4 6 8
tom e —— tm———————— L fommmm——— +
0 | MRDEVENT | MRDEVADD | M*1 |M*2|
pmm——————— pm——————— pm—————— fmm—————e +
8 | MUSER I MIRA I
g ————— S pmmm————— o ————e +
10 | MRDEVIO | MTASK |
pm—————— $m—————— pmmm————— pmm—————— +
18 | MRPNTVIR [M*3] MRDCSWAD |
fm——————— pm——————e fm——————— $mm—————— +
20 |MRDERRCT | M*U4 |M%5 |M*6|M*7 |M*8 [xxX|
fm—————e fmmm————— pme—————— fm——————— +

where:
MRDEVPNT is a pointer to the next real device block.
MRDEVADD is the device address of this real device.
M*1 - MRDESTAT is the real device status:
X'80' indicates prepare issued (2702 only)
X'40' indicates HIO issued (2702 only)
X?20!' indicates sense issued
x'10' indicates not ready
X'08' indicates enabled (2702 only)
X'04' indicates ATS terminal (2741 only)
X'02' indicates device is dedicated
X1'01' disable line
M*2 — MRDEVTYP contains the real device type number.
MUSER contains the UTABLE address of the user owning this device.

MIRA is the interruption return address for this device.

The

MRDEVIO contains a pointer to closed files for this device (for spooling operations

only) .

MTASK contains a pointer to open MRIBUFF blocks for this device (for spooling

operations only).

MRPNTVIR contains a pointer to the virtual device equivalent to this device (for

nonspooling operations only).

M*3 — MRDESENS contains the sense byte information (2702) .

MRDCSWAD contains a pointer to the saved CSW information (2702 only).
MRDERRCT contains the count of errors on this device.

M*4 - MRRETRY is the retry counter for attempted error recovery.

M%5 — MRFTR contains device or line features, such as the SAD number 0,1,2,3, or 4.

Section U4: Tables and Control Block Formats

173

M*6 - MRIFLAG is the flag for MRIOEXEC:
MRIDRAIN X'08" drain spooling operations
MRISPACE X'04*' force printer to single space

TERMINAT X'01°' terminate spooled I/O when interrupt comes in
UNSPOOL X'02' punch available for unspooled I/0, that is, accounting cards.

M*7 - MRWRTFLG is used by CONSINT to identify the terminal.

M*8 - MRDEBRCT is reserved for future use.

174 CP-67 Program Logic Manual

MRIBUFF

The following buffers and their descriptions apply to those blocks Used-in the
"unspooling" operations associated with MRIOEXEC and the real hardware.

MRIBUFF is the buffer for spooled packed data when being handled for the real equipment.
It is chained from MTASK in the multiplexer real device block (MRDEBLOK). Its format is:

0 2 4 6 8
e ——— pem——————— tm———————— tm—m————— +
| |
0 | TOTASK |
| |
tm—m—————— o ——— e o ——— +
I |
20 | MRICAW1 |
| |
tmm——————— o ————— tm—————— e ————— +
48 | MRINEXT |
pm—————— tm——————— tm—————— tm——————— +
50 | MRTMPREC | |
e — e ———— + |
I MRIFILEC I
I |
tm——————— tm——————— tm——————— tmm—————— +
68 |MRICOUNT| |
tm——————— + |
| |
| DATAD |
I |
tm——————— e ———— pm——————— e ————— +
I I
3A8| MRICAW2 |
I I
e ———— tm——————— e ———— tm——m————— +
I I
400 | DATAP I
| |
tmm——————— tem—————— R et +
488 | REGSAVE | BADDR I
tm——————— tm——————— tmm—————— pm——————— +

where:

IOTASK is the IOTASK block associated with bringing this buffer to and from the disk;
four doublewords only.

MRICAW1 are the CCW's required to bring the buffer off the disk or write it to the
disk; five CCWs: SEEK, SEARCH, TIC *-8, RD or WRT, NOP.

MRINEXT is the pointer to the next buffer on the disk; BBCCHHRx, where x is the device
code (index) .

MRTMPREC (MRIFILEC) :
MRTMPREC is a pointer to the first TRECBUF block for this file.,
MRIFILEC is a three doubleword area containing a DASD address, a pointer to the
real device and the userid. When the file is closed, this data is used to build an
SFBLOK (reader only).

MRICOUNT is the pointer within the buffer to the next byte to be processed.

DATAD is the packed data read or written on disk.

Section 4: Tables and Control Block Formats 175

MRICAW2 are the unit record CCW's required for this buffer.

DATAP is the output buffer for the PACK routine (card reader) or the output buffer for
the UNPACK routine (printer and punch).

REGSAVE is a temporary register save area.

BADDR is a pointer to the unpacked input-output buffer for unit record data.

The following is a description of the buffer for the unit record operations chained
from BADDR of the MRIBUFF block (preceding):

0 2 4 6 8
tommm———— pmmm fommm————— tmmm————— +
0 |CUR., CCW|CUR. DAT| CAW | XXXXXXXX |
pomm———— tomm fmm e —— tmm—————— +
| |
8 | DATA |
i I
tm—————— tmm—————— tomm tomem———— +

176 CP-67 Program Logic Manual

HVDEBLCK

There is an MVDEBLOK for each virtual multiplexer device attached to a user's UTABLE
{from VMXSTART); its format is as follows:

0 2 1) 6 8
O fmmm————— fm——————— $mmmm——— +
0 | MVDEVPNT |MVDEVADD|M*1 | M2 |
fomm—————— o B e +
8 | MVPNTREL i MVIOB |
fmm—————— fm—————— b ———————— fo——————— +
10 | MVCSH I
po— fm—————— pom——————— fm———e——— e +
18 | MVDEVIO |M*3 |M*u|m*5|m*6 I
fomm— e B +
20 | MVIXUSER [
B pmmm fmm—————— fmtm +

where:

MVDEVPNT is a pointer to the next virtual device on the virtual multiplexer channel.

MVDEVADD is the virtual device address.

M%7 — MVDESTAT is the virtual device statuss; the bit definition is the same as the bit
definition of byte 4 of a CSW, for example, CE=X'08', BUSY=X'10'.

M*2 - MVDEVTYP is the virtual device type number.
MVPNTREL is the pointer to the real terminal (MRDEBLOK) .

MVIOB is the current buffer address for this device; MVIBUFF for unit record; or
terminal I/0 buffer.

MVCSW is the virtual CSW for this subchannel.

MVDEVIO is the pointer to closed files for this virtual device (spooling operations
only); for terminals (virtual 1052), address of current CCW.

M*%3 - MVSENSE is the sense information for the device.
M*4 - MVIFLAG are miscellaneous status bits:

MVIFCCW X'01' current CCW is first in chain
MVIPCLOS X'02' file closed by CONSOL function
MVIFRMT X'04°' spooled output to go to MVPNTREL
MVIFSAV Xf08' keep virtual card reader files after use
MVIXFER X'10' punch file to be made a card reader file for MVIXUSER
MVIEXIT X'20' MVIOEXEC has done EXIT, go to DISPATCH
MVICONT X'40' continuous card spooling
Xt80' reserved for future use

M%5 - MYVIOKEY is the virtual CAW storage protection key.

M*6 - MVIOBRK is a flag to indicate (X'FF') that the attention key was hit during
virtual console I/O.

MVIXUSER - for punch or printer; contains userid to transfer output if MIVXFER list
in MVIFLAG is on: for terminals (virtual 1052), contains current CCW being
processed.

Section U4: Tables and Control Block Formats 177

MVIBUFF

of

This section is a description of the various buffers used by the spooling mechanism
the Control Program.

MVIBUFF is a buffer for packed spooled data. It is chained from MVIOB in the

multiplexer virtual device blocks and has the following format:

whe

178

0 2 4 6 8
mm—————e tommm— e tmm—————— +
| |
0 | IOTASK |
| |
| |
e ————— tmmm————— o o ————— +
20 |MVICAW1 | |
tem—————— + |
| |
| |
i i
tm—m—————— tom————— tm——————— e ——— +
48 | MVINEXT |
tm——————— tm——————— tm——————— Fmmmm————— +
50 | MVTMPREC | |
B & |
| MVIFILEC |
| |
pm—————— Fm—————— fmm——————— tm———————— +
68 |MVICOUNT| |
tm—————— + |
| |
| DATAD |
| |
tmm————— tm——————— tm——————— tm—————— +
3A8| MVICCW |
tm——————— o —————— tmm e ——— B +
3BO | Temporary Save Area |
tm——————— e ————— tm—m————— Fom—m—— +
i |
3B8| DATAPAC |
| |
tm—————— fmm————— e ————— Fmmm————— +
| |
3D8| DATAP |
| |
fm——————— o ———— fmm pmm e ———— +

re:

IOTASK 1is the task control block for reading or writing the disk buffers; four
doublewordsords only.

MRICAW1 are the CCW's required to write or read the buffer to secondary storage; five
CCHW's: SEEK, SEARCH, TIC *-8, RD or WRT, NOP.

MVINEXT is the pointer to the next record; BBCCHHRxXx, where x is the device code.
MVTMPREC (MVIFILEC) :

MVTMPREC is a pointer to the first TRECBUF block for this file.

MVIFILEC is a three doublewod area containing a DASD address, a pointer to the real

device and the userid. When the file is <closed, this data is used to build an
SFBLOK (printer and punch only).

CP-67 Program Logic Manual

MVICOUNT is the byte address within the following data area, DATAD, of the next byte.
DATAD is the buffer of packed data (830 bytes long).

MVICCW is the user's current CCW.

DATAPAC is the output buffer for the PACK routine (see "PACK" in Section 5).

DATAP is the input buffer for the PACK routine or the output buffer for the UNPACK
routine, depending on the spooling function being performed.

PAGTABLE

There is one PAGTABLE for each user:; its format is as follows:

0 12 15
$m——— ‘————— t=t———t
| SWPTBL PNT |
o ————— e e J
| Page Add. | |xxxx|
e m———————— =t

|
|
| up to

| 256 Entries

| 512 Bytes maximum
|

|

|

where:
SWPTBL PNT is a pointer to the SWPTABLE associated with this PAGTABLE, one fullword
in size. The remainder is made up of halfword entries. Each entry describes the status
and main storage address of a virtual memory page, as follows:
Bits 0 through 11 are the address of a page in real memory (if resident).
Bits 12 through 15 are a control field:

Bit 12 indicates status of the page:

0 indicates core resident.
1 indicates not in core.

Bits 13-15 are reserved for future use (they must be zero for the 360/67).

Section 4: Tables and Control Block Formats 179

RCCWLIST

There is one RCCWLIST for each user CCW list; its format is as follows:

0 2 4 6 8
fmm fo— e tommm———— teem—— e +
0 | VLIST | TADDR I
pom o tomm fommm———— +
8 | VCNT | RCNT | IDENT | SCNT |
dmmm————— fm——————— dmm e trm————— +
10 |R*1| RADDR |[R*2 |R*3{RBYTE |
prm e ————— tem————— o ——— o ————— +

where:
VLIST is the location of CCW's in user's program.
TADDR is the real address of the next CCW list (0 if none) .
VCNT is the number of user®s CCW's in this list.
RCNT is the number of CCW's required to represent user's list.
IDENT is the halfword marker (used in UNTRANS) ; X'FFFF°*.
SCNT is the number of doublewords reserved for control data.
R*1 - RCOMND is the actual CCW op-code for the channel.
RADDR is the real (translated) address for .the data transfer or argument.
R*2 -~ RFLAG is the real flag field for the channel CCHW's.

R*3 - RCNTL is the control field used by CCWTRAN and UNTRANS to identify certain types
of CCHW's:

RCXIS X¢80' check for ISAM read
RCSUDO X'40' pseudo 2311 or 2314
RCUTIC X%207' wuntranslated TIC

RCIO X*10¢ I,/0 CCW

RCGEN X'08' CP-generated CCW

RCDATA X'04' CP-generated CD

RCO2 X'02' reserved for future use
RCO1 X'01" reserved for future use

RBYTE is the real CCW data count.

180 CP=~67 Program Logic Manual

RCHBLOK

There is one RCHBLOK for each real channel; its format is as follows:

0 2 , 4 6 8
to—mem et o ———— fmm—————— +
0 | RCHANPNT I RCULIST [
fomm————— o ————— pommmm———— b +
8 | TASKLIST |R*1|R%*2 |RCUCOUNT|
pmmm fmmmm—m e e ————— +
10 |RCHANADD| TASKCNT| TASKLAST |
4 R —fm———————— pmmm e +
|RCHCOND |R*3|R¥4 |R*5|R*6 |RESERVED]|
+ B o ——————— o +

where:
RCHANPNT is the pointer to the next channel.
RCULIST is the pointer to connected control units.
TASKLIST is the pointer to pending tasks.
RCUACT (R*1) is the active control unit mask.
RCHSTAT (R*2) are channel status bits:

X'80' indicates channel busy.

X'40' indicates rescan required in CHFREE.
RCUCOUNT is the count of attached control units.
RCHANADD is the real channel address.

TASKCNT is the count of pending tasks.

TASKLAST is the pointer to last task on this channel.
RCHCOND is channel status after a channel error (*¥).
R*3 RCHDATCK count of channel data checks

R*4 RCHCONCK count of channel control checks

R*5 RCHIFCC count of interface control checks

R*6 RCHANCC count of channel chaining checks

(**) channel error is defined as any error indicated by R*3, R*U4, R*5, or R*6.

Section U4: Tables and Control Block Formats 181

RCU

BLOK

There is one RCUBLOK for each real control unit; its format is as follows:

0 2 4 6 8
pommm————— tmmm————— o ————— o ————— +
0 | RDEVLIST | RCUPNT |
tom—————— - ———— e ————— o ————— +
8 | RACTCHAN |R*1| RESERVED |
R pmmmm———— e ———— o +
10 | RCUADD | RCUSTAT|RTAILCNT| RDECOUNT |
e t———————— pmm—————— e +
18 | RCUTAIL1 | RCUTAIL2 |
tm——————— o ———— o ————— tom—m———— +

where:

182

RDEVLIST is the pointer to connected devices.
RCUPNT 1is the pointer to next control unit.

RACTCHAN is the pointer to active channel; zero value initially;
RCUTAIL1 after SIO.

R*1 - RCUPATH is the path for this control unit.

RCUADD is the real control unit address.

RCUSTAT is the real control unit status (not currently used).

RTAILCNT is the tail count for this control unit (not currently used).
RDECOUNT is the count of devices on this unit.

RCUTAIL1 is the pointer to channel for tail 1.

RCUTAIL2 is the pointer to channel for tail 2 (not currently used).

CP-67 Program Logic Manual

filled in

from

RDCONPKG

There is one RDCONPKG for each CCWPKG that requires control to be returned upon
completion of the associated I/O operation. Its format is:

0 2 4 6 8
Qt==w———=- tmm——————— Fmn e fm———————— +
| NEXTCPRQ | JSRETADD |
Bte—m————— tmm——————— tm—————— tm———————— +
| JSREGS |
| |
to——————— tm———————— $m——————— fm——————— +
| JSPARE3 | JSPAREUY |
L e o m—— $m——————— $m—————— +

where:

NEXTCPRQ is a pointer (always zero until queued by CPSTACK).
JSREADD is the return address (becomes CPEXALD in CPEXBLOK).
JSREGS are registers for return.

JSPARE3 is a spare.

JSPAREU is a spare.

Section U4: Tables and Control Block Formats 183

RDEVBLOK

There is one RDEVBLOK for each real device; its format is as follows:

0 v, n 6 8
e ————— frmm————— e pmm———— +
0 | RDEVPNT I RDEVCU I
. fmmm————— e ————— tmm—————— 4
8 |RDEVADD |R*1 lR*2| RDEVTASK I
R il TS, ot ————— +
10 | RVOLSER |RDEVCODE|
tommm————— tomm e ——— e e +
18 | RDEVALLN |RDEVERCT|RDEVSTAT|
fomm e o ———— e ————— +
20 | RDEVUSER |RATTVADD|R*3 [R4 |
R e i T S, +
28 [C*0] c*2|c*3| c*u|c*7| RDEVTMON
B e . e —— +
30 | (CONT) | RDEVSEN |
e R tommm e +

38 | RDEVSEN = 24 SENSE BYTES FOR 3420 |
| RDEVBLOK ONLY |

48 | (CONT) | (UNUSED) I
fomm N - - ——

where:
RDEVPNT is a pointer to the next device on the chain.
RDEVCU is a pointer to the real control unit.
RDEVADD is the real device address (control unit and device portions only).
R*1 - RDEVTIYPE is the device type code.
R*2 - RDECUPTH is the control unit path for this device.
RDEVTASK is a pointer to the attached task block (if active).

RVOLSER is the six-character EBCDIC volume label (if DASD volume and attached to the
systen) .

RDEVCODE is the halfword identification number (index into RDEVTABL) .
RDEVALLN is the pointer to the allocation table (if CP-owned) »
RDEVERCT is the error count for this device.
RDEVSTAT is the real device status:
RDEVOWND X'80' indicates CP-owned volume (DASD only).
RDEVATTD X'40' indicates dedicated (nonshared) device.
RDEVDED X'20° indicates channel, control unit, and device block dynamically
created by DEDICATE.
RDEVSEEK X'08' indicates a seek is in progress.
RDEVPOSD X'O4' indicates 2311,2314 conmb positioned for next read/write
operation.
RDEVSYS X'02' device attached to systenm.
RDEVUSER is the UTABLE pointer for the current user (for dedicated devices).
RATTVADD is the current user's virtual address (for dedicated devices) .
R*3 - RDEVFTR Real device features. Used to describe dedicated communication lines
SAD value.

184 CP-67 Program Logic Manual

R*4 - RDEVSLEN device sense byte count

c*0) - command reject counter

C*2 - bus out parity error counter

C*3 - equipment check error counter

C*4 - data check counter

c*7 - seek check (sense bit 7, byte 0) counter

RDEVTMON is 5 bytes for attached time for a dedicated device (MMDDYY HHMM) .

RDEVSEN contains the sense bytes for the device following a unit check. All devices
except 3420 have only 6 sense bytes maximum available. For 3420 devices, the RDEVBLOK

is generated with 3 more double words at the end. The RDEVSEN field is considered to
be 24 bytes long for 3420's with 6 unused bytes at the end.

Section U4: Tables and Control Block Formats 185

RECBUF

of

One RECBUF block is created for each cylinder 'allocated! to a spool file. The
the RECBUF block chain is RECSTART. Its format is:

0 2 4 6 8
e e tmm e e e e g
0 | RECPNT [R¥1 |R*2|R%3 |R*4|
R R e e St
8 | |
| |
I RECDATA |
| |
R R +

where:

186

RECPNT is the pointer to the next RECBUF block.

R*1 - RECUSED is the number of records in use on this cylinder.

R*2

RECMAX is the maximum number of records available on this cylinder.

R*3 RECCYL is the cylinder number of this cylinder.

R*4

RECCODE is the real device code for the device for this cylinder.

RECDATA contains bit indicators for records in use:

start

For a 2314, two bytes for each pair of even-odd tracks. There are 15 records
per pair of tracks, and each bit (0-14) indicates whether the corresponding

record (1-15) is available. Bit 15 is always set to 1.

For a 2311, two bytes for each track. There are four records per track.,

Bits

4 through 15 are set to 1. A 1 indicates that the corresponding record is in

use.

CP-67 Program Logic Manual

SAVEAREA

The active SAVEAREA format is:

0 4 8
fmmmm— e S - +
| RETURN ADDRESS | CALLERS R12 |
fmmm——— e — e fmm——— e — -4+
| CALLERS R13 | |
fmm e — + |
| 21 WORD REGISTER SAVEAREA |
| and WORKAREA |
B +
where:

RETURN ADDRESS is the instruction address immediately following the SVC 8 call which
obtained the current save area.

CALLERS R12 is the base register of the calling routine.

CALLERS R13 is the address of the active save area.

21 WORD REGISTER SAVEAREA and WORKAREA is normally used by the ENTER macro to save the
caller's registers. Up to 16 registers can be saved, although only registers 0-11 are

significant. Words not used for register saving can be used as a scratch area by the
called progranm.

The inactive (available) SAVEAREA format is:

0 4 8
fmm————— fmmm———— - +
| NEXTSAVE | |
e, ——— e — e ——— +
| |
| |
| |
o ——————————— e ==t
where:

NEXTSAVE is a pointer to the next 24-word save area in the chain of available save
areas. The pointer is updated in the last save area on the chain when a save area is
released by SVC 12 or SVC 16.

Section 4: Tables and Control Block Formats 187

SEGTABLE

CP-67 contains one SEGTABLE for each user; its format is as follows:

0 1 u

pmm————— e e +

|PAGE CNT| PAGE TABLE ADDRESS |

pomm . ——— +

| |

| | 16 Entries
| | 64 Bytes
| |

| |

o ———— B e S RN +

| | |

o ——— B e e +

Each four-byte entry defines a page table, as follows:
Byte 1 - Number of page table entries (less 1).

Bytes 2-4 - Address of page table origin.

188 CP-67 Program Logic Manual

SFBLOK

SFBLOK is a control block for a closed spool file. The format is as followus:

0 2 4
o o +
| Pointer to next |
o ——— o ———— +
| BB | cc |
pmm—————— e ———— +
| HH | R |Code]
tom—————— tm—————— +
| MRDEBLOK |
o o ——— +
| Userid |
| |
| |
Pm—m—————— foem—m———— +

When this file is being used by MRIOEXEC, the pointer is removed from the chain and
hooked up to MRDEVIO in the multiplexer real device block (MRDEBLOK).

MRDEBLOK is filled in if the spooled output is directed to a particular device.
The high-order byte of this field is also used for a repeat of the output in MRIOEXEC.

An X'80' means output is directed to the MRDEBLOK address in the remaining three bytes.
An X'4x' means repeat the output up to x times.

Section 4: Tables and Control Block Formats 189

SWP

gen
is

whe

190

TABLE

The SWPTABLE contains an eight-byte entry for each entry in a user's PAGTABLE. It is
erated at LOGON time, its length depending on the size of a user's virtual memory. It

in the following format:

0 1 2 3 4
pomm e fm—m trommm D et +
| S*1 | VPAGNO | KEY1 | KEY2 |
tom e ——— + -—4 == +
IRDEVCODE| CYL | HEAD | RECORD |
e ——— fm——————— fmm————— e ————— +

re:
S*1 has the following meaning:

X'80' Transit bit, page in transit (in)

X'40*' Recompute bit, DASD address is source of page, get new DASD address if

write is required
X*20' Transit bit, page in transit (out)
X®10' shared bit, page is shared and protected
X'08' First half page was used since last SSK (if in core)
X'04" First half page was modified since last SSK (if in core)
X'02' second half page was used since last SSK (if in core)
X'01' Second half page was modified since last SSK (if in core)

VPAGNO is the virtual page number of the user using the page.

KEY1 and KEY2 are the virtual keys for the bottom and top halves of this
respectively.

RDEVCODE is the real device code of the device containing this page.

page,

CYL, HEAD, and RECORD are the physical location of the nonresident page on the device

indicated by RDEVCODE.

CP-67 Program Logic Manual

TRECBUF

One TRECBUF block is created for each cylinder of an ‘opened' spool file that has
had data written on it. Whenever a spool file is 'closed' and the SFBLOCK has been
built, the TRECBUF block chain associated with it is returned to free storage. If a
system failure occurs, module CHKPT will deallocate the space occupied by the open files
by exclusive ORing each TRECBUF block against the corresponding RECBUF block for the same
cylinder and device. The start of a TRECBUF block chain is either MRTMPREC or MVTMPREC.

Its format is:

0 2 4 6 8
tm——————e tom pmem tm——————— +
0 | TRECPNT | TRECUSED | T*1 |T*2|
e e e ———— pmm—————— +
8 | |
| TRECDATA |
| |
pomm e pmmm————— to——— e ————t

where:

TRECPNT is a pointer to the next TRECBUF

TRECUSED contains count of records in use

T*1 - TRECCYL contains cylinder number

T*2 - TRECCODE contains the device code

TRECDATA contains bit indicators for records in use:
For a 2314, two bytes for each pair of even-odd tracks. There are 15 records
per pair of tracks, and each bit (0-14) indicates whether the corresponding

record (1-15) is available. Bit 15 is always set to 1.

For a 2311, two bytes for each track. There are four records per track. Bits 4
through 15 are set to 1. A 1 indicates that the corresponding record is in

use.

Section U4: Tables and Control Block Formats 191

TREXT

This control block is built as a UTABLE extension when the user invokes tracing
functions.

0 2 4 6 8
pommm———— pm————— et ———— tomm +
| TRSVCI | TRBRI | TRSTI | T#*1[T*2]|
fmm————— fmm—————— tmmm———— $ommm———— +
[T%3 |T*4| UNUSED | TRSVCIA |
o fm—m e pom—m fom +
| TRBRIA | TRSTAD |
e pm—————— dmmmm pm————— e +
| TRSTSV | TREXINS |
b m e pomm e pm——————— pmmmmm +
| UNUSED |
fm—m tom— pom e pem—mm——— +
| TRSVLCO |
o e fom————— pommmmm e +
I TRPWK I
fom—————— to—m—————e tomm tm—m————— +
| |
| [
/ TRLIN /
/ /
| |
pommmm pomm e D +
where:
TRSVCI - saved 2 bytes of next instruction.
TRBRI-~ saved 2 bytes of branch-to instruction.
TRSTIL. - saved 2 bytes of address stop instruction
T*1-TRCNSL - console tracing options.
T*2-TRPRT - printer tracing options,
T*3-TRINTF - interrupt type flag.
T#*4-BRSW - processing control switch.
TRLP X'80' next sequential instruction is a LPSW
TREXN X*40' next sequential instruction is an EXECUTE
TRRD X'20' break called at each TRINT entry
TRPB X'10' previous instruction is a branch
TRBNT X*08% tracing branch interrupt has occurred
TRSVCIA - next instruction address.
TRBRIA - branch-to instruction address
TRSTAD - address stop location.
TRSTSV - address of executed NSI.
TREXINS - executed NSI contents.
TRSVLCO - saved location zero 8 bytes.
TRPWK - pack data work area.
TRLIN - output data buffer.

192 CP-67 Program Logic Manual

UFDENT

The following is a description of an entry in the user file directory (U.DIRECT)
which contains information about the user and his access privileges to the system:

0 2 i 6 8
pm——————e pomm e o pom +
0 | UFDID |
pomm————— it S fm——————— &
8 | UFDPASS |
fm——————— tomm Fommm————— e ————— +
10 | UFDACCT |
+- e —fm——————— it +
18 | UFDMDEF |
fm———— O = ——— e —— +
20 |U*1| U*2|U*3|xxxx|
o —m—————— fmm———— +

where:
UFDID is the eight-character user identification.
UFDPASS is the eight-character user password.
UFDACCT is the user accounting information.
UFDMDEF is the eight-character file name of the user's machine description file.
U*1 - UFDPRIV is the user's privilege class code.
U*2 - UFDPRIOR is the user's priority code (1-9).

U*3 - UFDOPT is the virtual machine option.

Section U4: Tables and Control Block Formats 193

UTABLE

There i
block from w
I/0 blocks,

40
60
68
70
78
80
88
90
98
AQ
A8
BO
B8
co
c8
DO
D8
EO
E8

FO

s one UTABLE block for each user in the

system.

It is the

hich all user blocks are strung. It completely reflects,

the status of the virtual machine. Its format is:

0 2 4 6 8
fmm——————— tem—————— te—————— tm—————— +
I VGPR's I
tm—————— tm——————— e ——— P ————— +
| VFPR's I
tmm—m————— temm————— tm——————— R +
I VPSW [
te———————- te—————— tm——————— e ————— +
I SEGTABLE I VMACHSIZ I
tm—————— te——————— tm—————— te——————— +
| VCHSTART IVCHCOUNTI PENDING|
temmm e ————— temm————— +
|ULOCKS |VMSTATUS| TIMEUSED !
tmm————— e —— et ———— +
i NEXTUSER | VTIMER |
e e B et +
I USERID [
$==——m—— e ———— tm—————— tm—————— +
I DVTOT ! USYSTAB [
t-——————— t—m——————— tm———————— tom—————— +
I VMXSTART [VMXPOINT [
tm—————— tmm————— Fe—————— tm—————— +
|ULOCKL | U*1 |U*2]| UTREXT |
tmm—————— e tm—————— tm——————— +
I CIOREQ |NCIOREQ |DNMPAGE |
e tm——————— tm——————— tm—m—————— +
|VMXCOUNT | SEGTBDSP | ADEXTAB I
e tm—————— e ———— to—————— +
| TIMEON | U%3| U*l|
t———————— tm——————— e ————— tm———————— +
| ACCTNG |
pem—————— tm—————- tm———————— fmm————— +
I TIMINQ |NUMPAGES|PRIORIT I
tm——————— R e i e et +
| VTOTTIME |U*5 |U*6 | UPTOCNT|
i rmmmm e e ——— +
|UVIOCNT | UCPCOMND |
pmmm—————— e tm—————— +
I TIMSTAMP | NEXTRTHMR |
tmmm—————— tm—mm———— tm—————— tmm—————— +
i NXTQ i PRVQ I
t-——————— trm———— ~—tm——————— e ———— +
! VMUSER1 | VMUSER2 [
Bt S At e 2
| VMUSER3 I VMUSERu I
temm————— tmm————— = ———— +
0] USERINST |TRSW|xxx|
to—m—————— tm——————— tm———————— o ———— +
8 VHSSIO | VMPNCH |
tmm————— e ——— o ———— Fmmm—————— +
0] VHMLINS I VMCRDS I
frm——————— te—m—————— tm——————— tm——————— +
81 VMPGRD | UPPCNT I
te——————-— e e ————— i +
0] RESERVED |
e t——————- tm———————— Fm +
81 RESERVED |
P tem—————- tom—————— Fm—m———— +

194 CP-67 Program Logic Manual

primary control
with the virtual

where:
VGPR's are the user's 16 general purpose registers saved on an interrupt.
VFPR's are the user's four double-precision floating point registers.
VPSW is the user's virtual PSW.
SEGTABLE is a pointer to the user's segment table.
VMACHSIZ is the size of the virtual machine (last valid address +1).
VCHSTART is a pointer to the first selector channel block.
VCHCOUNT is the number of virtual selector channels attached.
PENDING contains a bit for each channel which has a pending interrupt.
ULOCKS 1is reserved for future use.

VMSTATUS is a halfword containing bits reflecting the state of a user machine:

Byte 0O
PAGEWAIT X'80' wuser waiting for a page or pages
IOWAIT X'40' user SIO being analyzed
CFWAIT X'20' wuser in console function mode
SYSOPBIT X'10' wuser is system operator
COMSH X'08' executing console function
VIRCOMSW X'04' virtual console function in execution
INLOGOFF X'02' wuser in logoff process
INLOGON X'01' wuser in login process
Byte 1
X'80' indicates that the current runuser has not been charged for virtual
time
X'40' reserved
RSTMPED X'20' indicates the real timer has been stamped
X'10' the user has been dropped from queue
X'08' user is runnable
X'04' wuser is in a Q

X'02' wuser is running shared system
TIMEUSED is the total time used since logon (problem state plus CP overhead).
NEXTUSER is the pointer to the next user's UTABLE.
VTIMER is the user's virtual timer.
USERID is the eight-character user identification.

DVTOT is the VTOTTIME value on entry to a queue or the virtual time used during the
last time in a queue.

USYSTAB is the pointer to the table for the system which this user is sharing.

VMXSTART is the pointer to the first virtual device block on the virtual nultiplexer
channel.

VMXPOINT is the pointer to the interrupting device.

ULOCKL is reserved for future use.

Section 4: Tables and Control Block Formats 195

196

U#%1 - UOPTDEF is the user options from the DIRECTORY:
RTIMR X'80' real timer
ISAM X'40' self-modifying DASD CCW checking
ve7 X'20' wuser can operate in virtual extended PSW mode
U*2 — PRCLASS is the user's privilege class and priority level:
SYSCTLOP X'80' indicates system operator.
SYSADMIN X'40' indicates system administrator.
SUBSYSOP X'20°' indicates subordinate system operator
SYSUSER X'10' indicates system user.
The low-order four bits contain the user's priority level (1-9).
UTREXT built when user invokes tracing functions.
CIOREQ is the pointer to pending console operation requests.
NCIOREQ is the number of pending console operations.
DNMPAGE is paging activity value for this user.
VMXCOUNT is the count of multiplexer devices for this user.
SEGTBDSP is the displacement of SEGTABLE from start of free storage block.
ADEXTAB is the address of the UTABLE extension, used for a virtual 67.
TIMEON is the user time on.
U*3 - TIMERMOD is the virtual timer mode switch:
DISCNBIT X'80' wuser terminal disconnected
PRIDISP X'40' request for priority dispatch
MSGBIT X'20' user set MSGOFF

WNGBIT X*10" ignore warnings
MULTCH X'08' more than one virtual channel may exist with same channel address

RUNCP X*0u' wvirtual machine running with console function read active
UEDIT X'02* do CP line edit on VM console reads
UATTN X*01' single attention to virtual machine

U*4 - PAGWCNT is the count of user outstanding page requests.
ACCING is the user accounting information.
TIMINQ is used by DISPATCH for scheduling.
NUMPAGES is number of pages the user has in core.
PRIORIT is priority to reenter the queue.
VTOTTIMNE is the total problem state time used by user since login.
U*5 - PRUSR is the user priority.
U*6 — CNTRLMOD is the status of the virtual 360/67:
EXTCH X*80"' indicates the virtual machine is in extended control mode.

INVCRO X?20" indicates that all the tables describing the third-level memory
have to be rebuilt.

INVSHADT X'10' indicates that the shadow segment and page tables have +to be
rebuilt.

CP-67 Program Logic Manual

UPTIOCNT is the number of page reads done for this user while in a queue. Reset to
zero each time on entry to a queue.

UVIOCNT is the number of virtual SIOs issued by this user.
UCPCOMND is the last CP console function executed by the user.
TIMSTAMP is time stamp at status change.

NEXTRTMR next user with a real timer.

NXTQ next user in this runnable list.

PRVQ previous user in this eligible list.

VMUSER1-4 for installation use.

USERINST for saving privileged instructions.

TRSW trace switch:

TREXTINT X'80' trace external interrupt

TRSVC X'40' trace SVC

TRPRG ¥'20' +trace program interrupt
TRIO X*10! trace I/0 interrupt
TRSIO X'08' trace SIO

TRBRCH X'04' trace all branches
TRALL X'02' +trace everything

TRSTOP X'01' stop on trace
VMSSIO number of selector channel SIO's.
VMPNCH number of spooled cards punched.
VMLINS number of spooled lines printed.
VMCRDS number of spooled cards read.
VMPGRD number of pages read.

UPPCNT is the cumulative page count.

Section 4: Tables and Control Block Formats 197

VCH

is

whe

198

BLOK

There is one virtual channel block for each virtual channel on each user. Its format
as follows:

0 2 4 6 8
tmm—————— o —— et ——————— tm——————— +

0 | VCHANPNT | VCULIST |
B e e et ST +

8 |VCHANADD|VCUCOUNT| VCHSTAT]V*1 | xxX%|
Rt B it L SRR, +

10 |VCEUNIT |VNPNDCUI|xxxxxxxxxxxxxxxxx|
———————— e el Y

18 | VCHCSW |
e —m— e m——————— o ————— +

re:
VCHANPNT is the pointer to this user's next virtual channel.

VCULIST is the pointer to the connected control unit blocks.

VCHANADD is the virtual channel address.

VCUCOUNT is the count of virtual control units attached to this channel.

VCHSTAT is the virtual channel status; bit definition for channel status is the same
as the CsW, byte u4; for example, BUSY=X'10!', CE=X'08",

VCHFLAG (V*1) contains miscellaneous flag bits.

VCEUNIT is the address of the unit for which the pending channel end, if any,
occurred.

VNPNDCUI is the number of pending control unit interruptions.

VCHCSW is the virtual channel status word for channel end type interruptions.

CP-67 Program Logic Manual

VCUBLOK

There is one virtual control unit block for each virtual control unit; its format is
as follows:

0 2 4 6 8
pom B fmp—————e pm—————— +
0 | VDEVLIST | VCUPNT |
pom e pommmm—— o pommmm +
8 | VCUADD IVDECOUNTI VCUSTAT | XXXXXXXX |
fm——————— fmmmmm— e ————— e —m————— +
10 |VCUEUNIT|VNPNDDEI|xxxxxxxxxxxxxxxxx|
pmm————— s S +

where:
VDEVLIST is the pointer to the virtual devices connected to this control unit.

VCUPNT is the pointer to the next virtual control unit in the chain from the virtual
channel.

VCUADD is the virtual control unit address (no channel or device included).
VDECOUNT is the number of virtual devices attached.

VCUSTAT is the status of the virtual control unit; bit definition is the same as the
CSW, byte 4; for example, BUSY=X'10'.

VCUEUNIT is the unit for which a control unit end condition, if any, is pending.

VNPNDDEI is the number of pending device interruptions.

Section 4: Tables and Control Block Formats 199

VDEVBLOK

There is a virtual device block for each virtual device for each user in the system;

its format is as follows:

0 2 M 6 8
o e fm————— temm—m——— e +
0 | VDEVPNT IVDEVADD |v*1 |v*2|
e e e B i +
8 | VPNTREAL IVDEVREL IVDEVBND I
o B e S O +
10 | VDEVPOS |
fom o e e m——— B +
18 | VDEVSNSE [Vk3 | VY|
pm e e +

where:

200

VDEVPNT is the pointer to the next device on the chain from the control unit.
VDEVADD is the virtual device address.

V*1 - VDEVSTAT is the virtual device status; bit definition is the same as the CSW,
byte 4; for example, BUSY=X"10', DE=X‘¢Qu4c¢,

V#2 - VDEVIYPE is the virtual device type code.
VPNTREAL is the real device control block corresponding to this virtual device.

VDEVREL is the relocation factor within the real. device for the start of this virtual
device (for DASD only).

VDEVBND is the size of this virtual device (DASD only).
VDEVPOS is the current virtual arm position of this device (as BBCCHH).

VDEVSNSE is the virtual device sense information (filled when an error is detected on
the virtual device to save the conditions for shared devices).

If the wvirtual device type is a dedicated 3420 tape (VDEVTYPE = X'C4') then the
function of VDEVSNSE is different. Since the 3420 provides 24 sense bytes, extra
space is vrequired to contain them. This is accomplished in the following manner.
When a unit check occurs on the 3420, 3 doublewords are obtained from CP FREE storage.
The address of the 3 doubleword area for the 24 sense bytes is saved in the word
located at VDEVSNSE in the VDEVBLOK. Once the sense data is presented to the virtual
machine +through a virtual sense operation, +the 3 doubleword area is FRETed (in
CCWTRAN) . The function is repeated for further unit checks on the 3420 device.

V*3 - VDEVFLG contains miscellaneous device status bits:
TEMPDEV X'01' indicates a TDSK allocation
READONLY X'02? indicates read-only status
VSHARED X'04°¢ reserved for future use
VDVENBL X%08' virtual 2702 line is enabled
VDVDIAL X®10' virtual 2702 line is in use

V¥4 ~ VDEVSLEN is the sense byte count.

CP=~67 Program Logic Manual

SECTION 5: SYSTEM MODULES

This section consists of descriptions of the modules contained in both CP-67 and the
stand-alone utilities. They are arranged in alphabetical order according to module name.
Listed below are the module names with a brief description of each. Table 3 gives the
module entry points for each module,

ACCTON - for individual installations, additional processing and/or checking of users at
LOGIN time

ACNTIME - computes and prints on user's terminal the total connect, virtual and actual
CPU time

ACNTOFF - for individual installations, a replaceable module for accounting functions at
LOGOUT time

CCWTRANS - prepares user CCW's for execution by real machine, and creates user CSW at end
of operation

CFSCOHM ~ contains the commands WNG, MSG, READY, LOGOUT, SLEEP, and DISCONNECT

CFSDBG - contains the commands DCP, DUMP, DMCP, DISPLAY, STCP, and STORE

CFSIPL - contains the commands IPL and IPLSAVE

CFSMAIN - calls user console functions and operator functions; entered during BREAK on
user's terminal, or virtual machine idle state

CFSPRV - contains the commands ENABLE, DISABLE, LOCK, UNLOCK, SHUTDOWN, KILL, ACNT,
DIRECT, and D_U_M_P

CFSQRY - contains the command QUERY

CFSSET - contains the command SET

CFSSPL - contains the commands TERM, CLOSE, XFER, SPACE, DRAIN, START, PURGE, SPOOL,
and REPEAT

CFSTACH - contains the commands ATTACH, DETACH, and LINK
CHKCUACT - determines control unit status at channel end tinme based on last CCW executed
by channel program and device on which it was executed

CHKPT - saves accounting records and in-core spool pointers on disk after an ABEND
condition

CONSINT - initializes and identifies remote terminals and processes their interrupts

CONVRT - data conversion routines (BINHEX, FPCONV, BINDEC, etc.) for CP-user
communication

CPCORE - currently contains constants for the IPL command

CPFILE - enables CP-67 to open, read, and close various internal working disk files

CPINIT - volume recognition and initialization of core (set new PSW's, compute real
core size, etc.) for CP-67

CPSTACK - queues requests for CP service (CPEXBLOK blocks)

CPSYM - resident loadmap of CP-67 modules and major entry points

DEDICATE — switches device from MRDEBLOK's to selector channel real device blocks for

dedicated use

DIAGDSK - responds to diagnose call for a specialized I/O task on a 2311 or 2314

DIAL - removes user terminal from CP control and attaches it as a dedicated device to
an existing virtual 2701, 2702, or 2703 line

DISPATCH - at completion of interrupt processing, searches for pending job (CPEXBLOK
queues, interrupted user, higher priority wuser), then either 1loads
runnable user or enters idle condition, after totaling times in various
states

DSKDUMP ~ at system ABEND; takes core dump of CP and performs a software re-IPL

EXTEND - calls PAGFREE to obtain pages for CP common buffer space, called Free Area

FREE - maintains and allocates units of system free storage, with minimum
fragmentation

IOERROR ~ analyzes and records selected 1I/0 errors and retries CP-generated I/0 to
selector channel devices

IOINT - receives control from the I/O new PSW, determines further action, and normally
exits to IOTASK block's TASKIRA

IPL - virtual memory resident; simulates and interprets various IPL sequences for
several devices

LINK - processes the CP console function "LINK" used by CHMS for file sharing

LOGFILES — counts the number of spool file blocks awaiting processing and returns address
of a message to caller
LOGIN - allocates free storage control blocks and machine resources required in

Section 5: System Modules 201

setting up and logging in a new user
MRIOEXEC - entered from unit record interrupt; completes reading of cards, printing and
punching of pending data in disk buffers

MVIOEXEC - handles all virtual I/0 operations to user's multiplexer channel, including
terminal and spooling functions

PACK - packs and unpacks blanks from the spooling data used by MRIOEXEC and MVIOEXEC

PAGEGET - allocates and deallocates DASD areas for paging

PAGTR - handles page sharing and page releasing

PAGTRANS - handles all paging functions (virtual address translation, storage key
setting, etc.)

PRIVLGED - simulates privileged instructions

PROGINT - entry from program interrupt new PSW; determines type of interrupt (CP-issued
simulated instruction, or user-issued privileged instruction) and takes
appropriate action

PSA - handles SVC, external, and machine check interrupts

QUEVIO = queues selector channel I/0 requests, checks channel availability, positions
DASD access arms, and initiates I/0 operations

RDCONS ~ creates a CCW "package", according to terminal type, that can be scheduled as
a read request for that terminal

RDSCAN - determines whether a virtual DASD device is currently attached to the virtual
machine of an active user (that is, a "link" exists)

RECFREE - handles spooling requests for available disk records in much the same way as
free storage handles main memory

RESINT - performs virtual systems reset when explicitly asked or when implied by an IPL
request

SAVECP = writes core-image of CP-67 onto system residence volume at end of card or tape
load of CP-67 into «core; procedure is reversed at IPL time (read in core
image)

SCANUNIT - for a real or virtual device address, scans appropriate 1list and sets up

pointers to various level blocks

SCHEDULE - maintains real timer and runnable list chains at logon and logoff and clock
maintenance at 60 second intervals.

SCREDAT contains 10 bytes of EBCDIC for system identification

STCONS - starts an I/0 request to a console or queues it if there are outstanding
requests (entry via PRIMSG gives priority in the stack)

TMPSPACE - dynamically allocates DASD cylinders from devices of specified type

TRACER - performs analysis and output formatting of user specified tracing functions

UNSTIO - unstacks and reflects virtual I/0 interrupts from both selector and
multiplexer devices

UNTRANS - computes from hardware CSW the virtual CSW to be reflected to the user

USERLKUP - finds the entry in the U.DIRECT file for a specified userid

USEROFF - functions associated with logging off a user from the system (initiate logout
sequence, delete virtual machine from systen, log user off, detach
nonshared I/0 device)

VIOEXEC - intercepts virtual I/0 commands; itself handles selector channel requests and
passes multiplexer requests on to MVIOEXEC

VSERSCH - searches RDEVBLOK's for a given volume serial number

WRTCONS - allows a remote terminal to be used for output as though it were an operator's

1052 console; creates a CCW package according to terminal type, that can
be scheduled as a write request for that terminal.

202 CP-67 Program Logic Manual

Table 3. System Modules with Entry Points

Module Name Entry Point (s)

ACCTON ACCTON

ACNTIME ACNTIHME

ACNTOFF ACNTOFF, DEVOFF

CCWTRANS CCWTRANS, VSMCPIR, CP6IRA

CFSCOM WNG, MSG, READY, LOGOUT, SLEEP,

CFSDBG pcp, DUMP, DMCP, DISPLAY, STCP,
FREEPST, FRETPST

CFSIPL CFSIPL, IPLSAVE

CFSMAIN BREAK, BRKRD, BRKWR, COMENTRY

CFSPRYV ENABLE, DISABLE, LOCKC, UNLOCK,
KILL, CFSACNT, CFSDIR, ABEND

CFSQRY QUERY

CFSSET SET

CFSSPL TERM, CLOSE, XFER, SPACE, DRAIN,
PURGE, SPOOL, REPEAT

CFSTACH ATTACH, DETACH, CLINK

CHKCUACT CHKCUACT

CHKPT CHKPT

CONSINT CONSINT, IDENTIFY, PREPLINE,

RTN52WT, RTN4T1ND, RTN52ND,

OFFHANG, OFFENT, CPIENT

CONVRT BINHEX, HEXBIN, DECBIN, BINDEC,
DATETIME

CPCORE CPCORE

CPFILE CPFOPENR, CPFOPENW, CPFCLOSE,
READTASK, WRITTASK, CPFDLKUP,

CPINIT CPINIT

CPSTACK CPSTACK

CPSYHNM CPSYM

DEDICATE DEDICATE

DIAGDSK DIAGDSK

DIAL DIAL

DISPATCH DISPATCH, DSPTCHA, DSPTCHB, DSPTCHD,
DISDRQ, DISIO, DISACT

DSKDUMP DSKDUMP

EXTEND EXTEND

FREE FREE, FRET, FRETR

JOERROR IOERROR, VERROR, RECERROR, MCKERR,

FINDLOG, FMTLOG, LOGRETN,
FINDIO, FMTMLOG, FMTLOGH,

IOINT IOINT, IOISTVDE, IOISTVCU

IPL IPL

LINK LINK

LOGFILES LOGFILES

LOGIN LOGON, OPMSG, AUTLOGON

MRIOEXEC MRIOEXEC, RPUNCH, PRIRA, CRIRA,

MVIOEXEC MVIOEXEC, MVICLPR, MVICLPN, MVICLCR,
MVIPRINT

PACK PACK, UNPACK

PAGEGET PAGEGET, PAGEREL

PAGTR PAGSHARE, PAGOUT, PAGFRET

PAGTRANS PAGTRANS, PAGUNLOK, PAGFREE,
DRMWAIT, WAITPAGE

PROGINT PROGINT, REFLECT

PRIVLGED PRIVLGED

PSA SVCINT, EXTINT, MCHEKINT, SVCDUMP

QUEVIO QUEVIO, QUERIO, CHFREE

RDCONS RDCONS

RDSCAN LINKSCAN, RDSCAN, DEVSCAN

RECFREE RECFREE, RECFRET

RESINT RESINT, RESIRA

SAVECP SAVECP, RESTORE

SCANUNIT RUNITSCN, VUNITSCN

SCHEDULE SCHEDULE, SCLOCK

SHUTDOWN,

Section 5: System Modules

203

SCREDAT
STCON
TMPSPACE
TRACER
UNSTIO
UNTRANS
USERLKUP
USEROFF
VIOEXEC
VSERSCH
WRTCONS

SCREDAT
PRIMSG,

TRACER,
UNSTIO
UNTRANS,
USERLKUP
USEROFF,
VIOEXEC,
VSERSCH
WRTCONS,

204 Cp-67 Program Logic Manual

STCONSIO
TMPSPACE,
TRINT

TMPRET, TMPERTN

FREECCW

ADSET, ADSETOUT, RELEASE, RUNRET
VIRA

PRIORITY, OPTIME, CLRCONS

ACCTON

Module name: ACCTON

Entry point: ACCTON

Purpose: To provide individual installations with the ability to add additional
processing and/or checking of users at LOGIN time.

Entry conditions: Called from LOGIN after all other functions are complete except for
nessage to operator and writing of LOGMSG to user.

Exit conditions: Condition code 0 - continue.

Condition code 1 - log off user.

Condition code 2 or 3 - terminal read failure.
ACNTIME

Module name: ACNTIME

Entry point: ACNTIME

Purpose: This module computes the total connect, virtual, and actual CPU time used by
the user and prints a formatted message on the user's terminal.

Registers 0-15 are saved upon entry to this module.

Entry point: ACNTIME
Entry conditions: GPR11 pointing to user's UTABLE

Exit conditions: None

Section 5: System Modules 205

ACNTOFF

Module name: ACNTOFF
Entry points: ACNTOFF, DEVOFF
Purpose: To provide individual installations with a replaceable module for performing

accounting functions at LOGOUT time.

Entry point: ACNTOFF - punch accounting card for USER.
Entry conditions: GPR 11 points to the UTABLE.
Registers 0-11 are saved upon entry.

Exit conditions: None

Entry point: DEVOFF - punch accounting card for a dedicated device.
Entry conditions: GPR 11 points to UTABLE; GPR 2 points to RDEVBLOK.
Registers 0-11 are saved upon entry.

Exit conditions: None

206 CP=67 Program Logic Manual

CCWTRANS

Module name: CCHWTRANS

Entry points: CCWTRANS, VSMCPIR, CP6IRA

Purpose: The CCWTRANS module prepares the user program channel command words for

execution by the real machine, and creates the user program's channel status word on
termination of the operation.

Entry point: CCWTRANS - translate user's virtual CCW list into an equivalent real list.

Entry conditions: GPR 1 is 0, indicating no I/0 is to be performed, or it points to the
TOTASK block which will represent this task. GPR 6 points to the virtual device
block (VDEVBLOK) on which the operation is to be performed. The TASKCAW entry in
the task block points to the user's virtual CCW list.

Exit conditions: The TASKCAW points to the real CCW list. The TASKFLAG in the task
block indicates whether any multitrack CCW's are present. Other registers are
preserved.

Entry point: VSMCPIR - restart ISAM I/O operation.

Entry conditions: GPR9 points to the IOTASK block. GPR10 points to the channel status
word.

Registers 0-15 are saved upon entry to VSMCPIR.

Exit conditions: None

Entry point: CP6IRA - restore user's virtual core to its original condition after
executing certain 0S ISAM CCW's. :

Entry conditions: Same as VSMCPIR

Exit conditions: ©None

Section 5: System Modules 207

CFSCoH

Module name: CFSCOM

Entry points: WNG, MSG, READY, LOGOUT, SLEEP, DISCONN

Purpose: Each entry point corresponds to a console command and contains logic for that
command .
Entry conditions: Register 9 is wused for addressing this module, and register 12 for

addressing a branch table located in CFSMAIN. See "Console Functions" in Section 2
for individual command processing.

Exit condition: Return to CFSMAIN via branch table after handling command.

CFSDBG

Module name: CFSDBG

Entry points: DCP, DISPLAY, DMCP, DUMP, STCP, STORE

Purpose: Each entry point corresponds to a console command.

DCP - displays real core storage on the operator's console.

DISPLAY - displays virtual core storage, etc. on the user's terminal.
DMCP - dumps real core to the printer.

DUMP - dumps virtual core, etc. to the user's virutal printer.

STCP - stores into real core from the operator's console.

STORE — stores into the user's virtual core, etc.

Entry conditions: Register 9 is used for addressing this module, and register 12 for
addressing a branch table located in CFSMAIN. See #Console Functions" in
Section 2 for individual command processing.

Exit conditions: Return to CFSMAIN via branch table after handling command.

208 CP-67 Program Logic Manual

CESIPL
Module name: CFSIPL
Entry points: CFSIPL, IPLSAVE

Purpose: Each entry point corresponds to a console command and contains logic for that
command.

Entry conditions: Register 9 is used for addressing this module, and register 12 for
addressing a branch table located in CFSHAIN. See "Console Functions” in Section 2
for individual command processing.

Exit condition: Return to CFSMAIN via branch table after handling command.

CESMAIN

Module name: CFSMAIN

Entry points: BREAK, BRKRD, BRKWR, COMENTRY

Purpose: The CFSMAIN module calls the user console functions and the operator functions.

It is entered when a BREAK occurs on the user's terminal or the virtual machine goes
idle (detected in DISPATCH) .

Entry point: BREAK - entered when a user activates the attention key.

Entry conditions: GPR 6 points to the terminal’s MRDEBLOK. GPR 10 points to the CSW
information from the interrupt.

Registers 0-15 are saved upon entry.

Exit conditions: None. CONSOL exits by making the wuser runnable .and returning to
DISPATCH, after a BEGIN or IPL command, or if ATTN key actuated while in console
function mode. Also exits immediately after a virtual console function.

Entry point: COMENTRY - entered from PRIVLGED when a DIAGNOSE instruction specifying a
virtual console function has been detected.

Entry conditions: GPR2 points to a buffer containing the command line. GPR3 contains
the number of bytes in the input line. GPR11 points to the user UTABLE.

Registers 0-15 are saved upon entry;

Exit conditions: GPR2 contains an error code as follows:
0 - No errors
4 — INVALID CP REQUEST (message not printed by CP)
8 — BAD ARGUMENT (message not printed by CP)
x - Code dependent upon specific function (error message usually printed by CP-67)

Section 5: System Modules 209

CFSPRV

Module name: CFSPRV

Entry points: ENABLE, DISABLE, LOCKC, UNLOCK, SHUTDOWN, KILL, CFSACNT, CFSDIR, ABEND

Purpose: Each entry point corresponds to a console command and contains logic for that
command.

Entry conditions: Register 9 is used for addressing this module, and register 12 for

addressing a branch table located in CFSMAIN. See "Console Functions" in Section 2
for individual command processing.

Exit condition: Return to CFSMAIN via branch table after handling command.

Module name: CFSQRY
Entry point: QUERY

Purpose: Each entry point corresponds to a console command and contains logic for that
command.

Entry conditions: Register 9 is wused for addressing this module, and register 12 for
addressing a branch table located in CFSMAIN. See "Console Functions" in Section 2
for individual command processing.

Exit condition: Return to CFSMAIN via branch table after handling command.

210 CP-67 Program Logic Manual

CFSSET
Module name: CFSSET
Entry point: SET

Purpose: Each entry point corresponds to a console command and contains logic for that
command.

Entry conditions: Register 9 is used for addressing this wmodule, and register 12 :for
addressing a branch table located in CFSMAIN. See "Console Functions" in Section 2
for individual command processing.

Exit condition: Return to CFSMAIN via branch table after handling command.

CFSSPL
Module name: CFSSPL

Entry points: TERM, CLOSE, XFER, SPACE, DRAIN, START, PURGE, SPOOL, REPEAT

pPurpose: Each entry point corresponds to a console command and contains logic for that
command.

Entry conditions: Register 9 is used for addressing this wmodule, and register 12 for
addressing a branch table located in CFSMAIN. See "Console Functions" in Section 2
for individual command processing.

Exit condition: Return to CFSMAIN via branch table after handling command.

Section 5: System Modules 294

CFSTACH
Module name: CFSTACH
Entry points: ATTACH, DETACH, CLINK

Purpose: Each entry point corresponds to a console command and contains logic for that
command,

Entry conditions: Register 9 is wused for addressing this module, and register 12 for
addressing a branch table located in CFSMAIN. See "Console Functions" in Section 2
for individual command processing.

Exit condition: Return to CFSMAIN via branch table after handling command.

CHKCUACT

Module name: CHKCUACT

Entry point: CHKCUACT

Purpose: CHKCUACT will examine the last CCW executed by a channel program and decide

whether, for the device type on which the sequence was executed, the control unit is
freed at channel end time.

Entry point: CHKCUACT (BALR)

Entry conditions: Registers 0-4 are saved upon entry. GPR 6 points to the virtual channel
block for which the input-out operation was executed. GPR 8 points to the virtual
device block for which the operation was executed.

Exit conditions: The condition «code is set nonzero if the control unit remains busy

after the channel end occurring on the indicated CCW operation code. It is set to
zero if the control unit may be considered free.

212 CP-67 Program Logic Manual

Module name: CHKPT
Entry point: CHKPT

Purpose: To save user accounting information and in-core spool pointers on disk.

Entry point: CHKPT

Entry conditions: If 1low core location CPID (hex '1FC') contains "“CP67%" or “SHUT",
records will be written to disk; otherwise no action is taken.

Exit conditions: If CPID does not contain "SHUT", CP-67 will be IPL'ed by software;
otherwise CHKPT will enter the wait state.

Section 5: System Modules 213

CONSINT
Module name: CONSINT

Entry points: CONSINT, IDENTIFY, PREPLINE, RTNU41WT, RTNS2WT, RTN4TND, RTNS52ND, OFFHAND,
OFFENT, CPIENT

Purpose: This module initializes and identifies remote terminals and processes all

interrupts from those terminals. This module also processes all interrupts for the
operator's 1052 console.

Entry point: CONSINT

Entry conditions: All 1052 console interrupts are serviced via this entry point. GPR 10
is the location of the CSW associated with the interrupt, and GPR 6 is the MRDEBLOK
for the interrupting device.

Exit conditions: If the previous I/0O terminated normally, another I/ 0 is initiated.

If only a CE has been received, an exit is made to await the DE.
If an irregular ending occurred, error processing is initiated.
Control is returned to DISPATCH via IOINT.

Entry point: IDENTIFY

Entry conditions: The terminal lines, once they are enabled, have their first interrupt
entry at IDENTIFY. GPR 6 contains the address of the terminalis MRDEBLOK and GPR10
points to the CSW.

Exit conditions: The terminal is identified and its MRDEVTYP stored or it is indicated
to be an unknown type. The line is initialized with a "Prepare" command to await an
attention interrupt for LOGIN.

Entry point: PREPLINE

Entry conditions: GPR 6 points to the MRDEBLOK of a terminal of known device type
(HRDEVTYP) . The terminal line is then initialized with a "Prepare" command.

Exit conditions: The line sits in a "prepared" state waiting for a "login" attention
interrupt.
Entry points: RTNU4TWT, RTN52WT, RTN4IND, RTNS2ND

Entry conditions: GPR6 points to a terminal MRDEBLOK of known device type that has
completed an I/O operation by HIO, ATTN, or carriage return.

Exit conditions: the next 1I/0 operation is started, if any, or the 1line is put in
"prepare" status. Control is returned to DISPATCH via IOINT.
Entry points: OFFHANG, OFFENT

Entry conditions: GPR6 points to a terminal MRDEBLOK. A message is written to the
terminal and an interrupt return address (OFFENT) is set up.

Exit condition: Return is made to the caller.

214 CP-67 Program Lcgic Manual

CONVRT

Module name: CONVRT
Entry points: BINHEX, HEXBIN, DECBIN, BINDEC, FPCONV, DATETIME

Purpose: CONVRT is a collection of data conversion routines to assist CP-67 in
communicating with the user.

Entry point: BINHEX (BALR)

Entry conditions: GPR 1 contains the number to be converted from binary to hexadecimal
notation.

Fxit conditions: GPR's 0 and 1 contain the converted number in hexadecimal notation with
leading zeros not suppressed.

Entry point: HEXBIN (BALR)

Entry conditions: GPR 1 contains a pointer to a string of eight or fewer characters in
hexadecimal notation (EBCDIC) which are to be converted. The length of the string

is in GPR 0.
Registers 0-5 are saved upon entry.
Exit conditions: The condition code is set nonzero if an illegal hexadecimal character

is encountered in the string; otherwise, the condition code is zero. The converted
number is returned right-justified in GPR 1.

Entry point: FPCONV (BALR)
Entry conditions: GPR 2 contains a pointer to a doubleword which contains the floating
point word to be converted to standard floating point notation (for example,

.00000000000 E 00) and GPR 1 contains a pointer to an output buffer of at least 17
characters.

Registers 0-5 are saved upon entry.

Exit conditions: The routine will fill the buffer pointed to by GPR 1 with the number in
standard floating point notation.

Entry point: BINDEC (BALR)

Entry conditions: GPR 1 contains a binary number to be converted to the equivalent in
decimal notation.

Exit conditions: BINDEC returns the low-order eight decimal digits in GPR's 0 and 1.

Entry point: DECBIN (BALR)
Entry conditions: GPR 1 points to a field containing the EBCDIC form of a decimal number

which is to be converted to binary equivalent. GPR 0 contains the 1length of this
field (in bytes).

Section 5: System Modules 218

Exit conditions: The condition code is set nonzero if the specified string contains
invalid decimal information or a resultant number greater than 2%%*31-1 or the string
length exceeds 15; otherwise, the condition code is set to zero. The converted
number is returned in GRP 1.

Entry point: DATETIME (BALR)

Entry conditions: GPR 1 points to a field into which the date will be entered (as
mm/dd/yy) . GPR 2 points to a field into which the time will be entered (as
hh.mm.ss). The date and time data are obtained from their locations in CPU low
memory. If either pointer is zero, that parameter will not be provided.

Exit conditions: The fields are filled in as specified.

CPCORE

Module name: CPCORE

Entry point: CPCORE

Purpose: Contains only constants, no executable code. Currently contains constants for

the IPL command, (DASDIPL ~- disk address of IPL module, DASDIPLN -~ disk address of
SYSTEM module, and CMSTABLE - table for CMS shared systen) .

216 CP-67 Program Logic Manual

CPFILE
Module name: CPFILE

Entry points: CPFOPENR, CPFOPENW, CPFCLOSE, CPFREAD, READTASK, WRITTASK, CPFDLKUP,
CPFDCLOS

Purpose: CPFILE is the mechanism by which CP-67 reads the various internal working disk
files required, for example, system and user file directories and machine

description files. Various routine entries are provided to allow opening, reading,
and closing various files.

Entry point: CPFOPENR - open a file for reading.

Entry conditions: GPR 3 points to an eight-character file nane.
Registers 0-8 are saved upon entry.

Exit conditions: GPR 2 points to a Control Program File System (CPFS) block which will
be used to control access to the file. (Note: this must be preserved for later use
in calling for actual file input-output).

Entry point: CPFOPENW - open a file for writing.

Entry conditions: This routine is not implemented yet - its calling conditions will be
identical to CPFOPENR.

Registers 0-8 are saved upon entry.

Exit conditions: ©None

Entry point: CPFREAD - read data from a previously opened file.

Entry conditions: GPR 0 contains the number of bytes to be read. GPR 2 points to the
CPFS block which was provided when the file was opened (see CPFOPENR).

Registers 2-7 are saved upon entry.

Exit conditions: GPR 1 points to the desired data (which resides in a CPFS-owned buffer)
or zero if an end<of-file condition was encountered.

Entry point: CPFCLOSE - close a previously opened file.
Entry conditions: GPR 2 points to the appropriate CPFS file descriptor block.
Registers 0-5 are saved upon entry.

Exit conditions: None

Entry point: READTASK

Entry conditions: GPR 1 points to a buffer at least CPRECSZ bytes long (currently 829
bytes). GPR 2 points to the real device block. GPR 3 points to the record to be
read (as BBCCHHR) .

Registers 0-15 are saved upon entry.

Section 5: System Modules 217

Exit conditions: None. TIf the operation was not completed successfully, TIOERROR is
called to attempt recovery.

Entry point: WRITTASK - perform a write operation to disk.
Entry conditions: Same as READTASK

Exit conditions: Same as READTASK

Entry point: CPFDLKUP - finds specified directory entry.

Entry conditions: GPR 3 points to an eight<character file nane.
Registers 3-6 are saved upon entry.

Exit conditions: Condition code=0 for file found, and GPR 1 points to DIRECTORY
CPFRECRD; GPR 2 points to DIRECTORY CPFDENT. Otherwise, condition code=1 for file
not found, and GPR 2 points to first empty entry.

Entry point: CFDCLOS - closes open directory file.

Entry conditions: GPR 2 points to CPFFDBLK.

Registers 0-3 are saved upon entry.

Exit conditions: None

CPINIT

Module name: CPINIT

Entry point: CPINIT

Purpose: This is the CP-67 initialization module. Its function 1is +to create the
necessary control bleccks such as CORTABLE and allocation tables based upon the

hardware configuration present. For a detailed description of the functions
performed see the section "Control Program Initialization" in Section 2.

Entry point: CPINIT

Entry conditions: GPR 2 contains a pointer to the allocation table address of the system
residence volume. GPR 6 contains the device address of the residence volume.

Exit conditions: Exits to DISPATCH.

218 CP-67 Program Logic Manual

CPSTACK
Module name: CPSTACK
Entry point: CPSTACK

Purpose: This routine queues requests for CP execution (CPEXBLOKs) on the request stack
(CPRQFST) defined in DISPATCH.

Entry point: CPSTACK - queue the CPEXBLOK (BALR)
Entry conditions: Register 0-3 are saved upon entry. GRP 1 points to a CPEXBLOK.

Exit conditions: ©None

Module name: CPSYM
Entry point: CPSYM
Purpose: The CPSYM module does not contain executable code. It is an in-core load map

of the CP-67 nucleus. It contains the EBCDIC name and hex address of each CP module
as well as some of the more important entry points and control words.

DEDICATE

Module name: DEDICATE

Entry point: DEDICATE

Purpose: This module creates from CP-67 free storage a set of RCHBLOK, RCUBLOK, and
RDEVBLOK control blocks to define a dedicated (nonshared) multiplexer device. The
control blocks are chained on to the existing chain of control blocks pointed to by

RCHSTART. The MRDEBLOK is flagged (in MRDEFLAG) as being dedicated (MRIDED); the
UTABLE address of the owning user is stored in MUSER.

Entry conditions: GPR 11 contains the UTABLE address.
GPR 1 contains the real device address.

Exit ccnditions:

Successful: Condition code 0 - GPR 1 contains the
address of the RDEVBLOK created.

Unsuccessful: Condition code 1 — Nonexistent real
device

Condition code 2 - Device in use

Section 5: System Modules 219

DIAGDSK

Module Name: DIAGDSK

Entry Point: DIAGDSK

Purpose: This module is entered from PRIVLGED when a user has issued a diagnose call for

a specialized I/O task to be performed on a 2311 or 2314, DIAGDSK checks for
various calling errors; if none is present, an I/0 task is constructed and scheduled
for execution by calls to QUERIO and DISPATCH. Upon completion, a condition code of
0 indicates to the user that the I/O has been completed with no errors (no CSW being
returned to the wuser). Errors are signalled to the user as indicated below. The
use of DIAGDSK for simple I/O provides a significant speed improvement for CMS or
other users who have a CCW string of similar format.

Entry point: DIAGDSK

Entry conditions: GPR5 points to user's "R1", which must hold the device address. GPRU

Exit

220

points to user's "R2", which must point to a CCW-string of the following format:

(1) SEEK BBCCHHR (below)
(2) SEARCH BBCCHHR+2 (below)
(3) TIC BACK TO SEARCH
(4) READ OR WRITE OF UP TO 4096 BYTES
(up to 824 bytes for CMS)
(5) NO-OP
(6) BBCCHHR SEEK/SEARCH ARGUMENTS (7 bytes)

Conditions: (Upon return to user via DISPATCH)
Condition-Code (CC) = 0: TI/0 complete with no errors.

CC = 1: SIO0 failed, CSW stored.
(CSW+l4 & CSW+5 returned to user)

CC = 2: Either an attempt to write on a read-only disk
(program-check returned to user)
or
other I/O0 error on completion
CSW (8 bytes) returned to user
(sense bytes available if user does a 'SENSE!')

CC = 3: Not attached, neither 2314 nor 2311,
or invalid DIAGNOSE call by user.
Error-code returned to user in his R15, as follows:

Not attached (error from VUNITSCN in CP)

Device is neither 2314 nor 2311

Pointer to user's CCW-string not dbl-word aligned
SEEK/SEARCH arguments not within user core
Read/write CCW neither read (06) nor write (05)
Read/write byte-count = 0

Read/write byte-count greater than 4096
Read/write buffer not within user core
Condition-code 2 (busy) on actual SIO

as attempted by CP

Condition-code 3 (not operational) on actual SIO
as attempted by CP

LONOUE WN =
o oo no

-
o
n

CP-67 Program Logic Manual

Module name: DIAL

Entry point: DIAL

Purpose: Attaches user's terminal as a dedicated device to an existing virtual 2701,
2702, or 2703 line in the virtual machine specified. The UTABLE and MVDEBLOK are
returned to free storage and the user terminal is removed from CP control.

Entry conditions: Entry is from LOGIN after a DIAL conmand. Registers 0-11 are saved
upon entry. GPR 10 points to an eight-character userid. GPR 11 points to a UTABLE.

Exit conditions: If successful, GPR 11 is set to zero.

Section 5: System Modules 221

DISPATCH

Module name: DISPATCH

Entry points: DISPATCH, DSPTCHA, DSPTCHB, DSPTCHD, DISACT, DISDRQ, and DISIO

DISPATCH is entered when some process has been completed or «cannot continue any further
until some other event has completed (an I/0 operation). It updates the user's
control blocks to reflect his current status. If a user was running, DISPATCH
attempts to restart him. If it cannot restart the running user or if there was
none, DISPATCH will dequeue any CP-67 deferred work requests and start them. When

all CP requests are exhausted DISPATCH will run the highest priority, runnable, and
in queue user if there is ome, or it will enter enabled wait state.

Entry point: DISPATCH

Entry conditions: GPR 11 points to a valid UTABLE to be charged for time spent in CP-67
since the last charge.

Entry point: DSPTCHA

Entry conditions: Same as DISPATCH except entered after processing a program interrupt
from a running user where processing has not changed the virtual PSW.

Entry point: DSPTCHB

Entry conditions: Same as DISPATCH

Entry point: DSPTCHD

Entry conditions: Same as DISPATCH except entered to drop a user from runnable state
after a virtual TIO to a busy device.

Entry point: DISACT (BALR)

Entry condtions: Charge user for CPU time used since last charge. Called when a routine
has changed the status of a user.

Exit conditions: None.

Entry point: DISDRQ - drop a user from a queue (called)
Entry conditions: GPR 11 points to user to be dropped from a queue.

Exit condtions: None.

Entry point: DISIO (called)
Entry conditions: GPR 11 points to user that has had his status changed. Called by

routines which have updated a user's status and are not returning or going -~to
DISPATCH (either directly or indirectly), with GPR 11 pointing to this user.

222 CP-67 Program Logic Manual

DSKDUMP

Module name: DSKDUMP

Entry point: DSKDUMP

Purpose: This module is entered from module PSA when CP-67 issues an SVC 0 ABEND, on
activation of the PSW restart button, or from PROGINT for a system program check.
The module contains code to dump core to a printer, tape or disk. The dump will

be of all core or of only those pages marked as *CP* or FREE in the CORTABLE
depending on the current SET DUMP command setting.

Entry point: DSKDUMP
Entry conditions: General registers are stored at GREGS.

Exit conditions: An exit is taken by performing a software re-IPL of the systen.

EXTEND

Module name: EXTEND

Entry point: EXTEND

Purpose: EXTEND is used to obtain a number of pages for CP-67 common buffer space
called Free Area. The first time EXTEND is called, it initializes the free storage
area by accessing a table, EXT1, to indicate the number of pages required, depending
upon the real machine core size. Subsequent calls to EXTEND are to -enlarge free

storage temporarily. EXTEND calls PAGFREE repeatedly to get these pages. It is
called by FREE.

Entry point: EXTEND
Entry conditions: Registers 0-15 are saved upon entry.

Exit conditions: GPR 1 points to an area which may be incorporated into the free storage
zone. GPR 0 contains the length of this area in bytes.

Section 5: System Modules 223

(See Figure 46 for an overview of FREE processing.)

Note: &TRACE (4) option must be chosen at system generation time in order to gather
statistics in FREE/FRET.

Module name: FREE
Entry points: FREE, FRET, FRETR

Purpose: To maintain and allocate units of system free storage, with minimun
fragmentation. Free storage is wutilized by CP-67 for I/O tasks, CCW strings,
buffers--in fact, for all but real channel-control unit-device blocks, CORTABLEs,
and save areas.

The most frequently used storage block sizes, some 29 in number, constituting about
99% of all FREE/FRET calls, have been allocated into ten subpools. All FREE/FRET
calls for the doubleword block size listed in the left column below receive the
corresponding doubleword block in the right colunn:

Number of double words Subpool size actually
called for used
1 1
2 or 3 3
4 4
5 5
6, 7 or 8 8
9 or 10 10
11 - 14 14
15 - 18 18
19 = 23 23
24 - 29 29

A block from the subpool chain is given priority in a «call to FREE for a subpool
size; a block is selected from the reqgular free storage chain only if none is
available from the subpool chain, or if the call to FREE is for a block greater than
29 doublewords. A FRET call, 1likewise, 1is checked for subpool size; if it
corresponds, the block returned is patched into the chain on a LIFO
(last-in-first-out) basis, that is, push-down stack.

A special entry, FRETR, enables CPINIT and EXTEND to bypass subpool consideration
whether or not the block being returned is subpool size.

Various statistical information is now kept in the FREE routine, starting at
entrypoint FREELIST. The code for statistical information can be removed by
revision of a SETA symbol, if speed of performance takes precedence over statistics
gathering: by assigning SETA a value of 1, statistics are included; a value of 0

causes their removal. The following is a partial list of pointers, counters, and
statistical quantities of interest (the names in parentheses are labels of these
quantities) :

. end of highest subpool block given out (ENDSUB)

. address of lowest regular block given out (BEGINREG)
. end of free area in lower core (ELOFREE)

. beginning of free area in high core (BHIFREE)

. subpool FRET calls requiring regular FRET (SBFRTREG)
. table of pointers to subpools (SUBTABLE)

. number of times subpools returned (SUBRETN)

. number of times EXTEND is called (EXTCALL)

224 CP-67 Program Logic Manual

Other statistical quantities (for debugging and operations research, only)
. maximum value attained by FREENUM (MFREENUM)
. FREE/FRET calls for sizes not in subpools (FREEUSED,FRETUSED)
. counts of satisfied and unsatisfied FREE subpool calls (SUBFREE, USUBFREE)
. count of successful FRET subpool calls (SUBFRET)

Statistical counters for each subpool size
. number of subpool blocks in use; number left (SUBLEFT)
. Maximum value attained by SUBUSED (MSUBUSED)

. cumulative times spent in FREE and FRET (TIMEFREE,TIMEFRET)
. count of subpool-range sizes referenced (SIZEREF)

Entry point: PFREE - allocate a region of free storage (BALR)
Entry conditions: GPR 0 contains the number of doublewords requested.
Registers 0-15 are saved upon entry.

Exit conditions: GPR 1 contains a pointer to the region of the size requested. This
region will always be on a doubleword boundary.

Entry point: FRET - return a region to free storage (BALR)

Entry conditions: GPR 0 contains a count of the number of doublewords being returned.
GPR 1 contains a pointer to the initial doubleword of the region. This pointer must
always be on a doubleword boundary.

Register 0-15 are saved upon entry.

Exit conditions: None. No reference may be made to a region after it has been returned to
free storage.

Entry point: FRETR - return a region to free storage. Same as FRET except does not
attempt to use subpool logic (BALR)

Entry conditions: Same as FRET

Exit conditions: Same as FRET

Section 5: System Modules 225

Enter

module free
entry free

Size Save block
in subpool Subpool block address
table available for caller
€
b
Convert DBL Exit
word request
to bytes
[<4
EXTEND
posi e syt No A?y free No
extend free storage
W
storage Estend cks E;:ir;? #
SW set o
Yes
Save this block Search free
as a possible storage blocks
(looking for for one bigger
last large block) than needed
Out of
subpool
range Y
e Yes
In subpool 2
range
Save block Save block No
address for address
caller for caller
Block Remove requested -
size and size from high Search
request end of last subpools
equal? large block
No
No

Remove requested
size from this

Update free
storage block

Figure Uu6.

226

CP-67 FREE (1

CP-67 Program Logic

size and
block pointer
Update free Save block
storage block address for
size and caller
pointer
Save block
address for
caller
Exit

of 2)

Manual

Anything
in subpool
list

No

End of
subpools

Set switch
for extend

Update pointers
in subpool table
to include
this block

Exit

Figure U46.

Size
in subpool
table

Enter

module FREE
entry FRET

Any
free
storage
blocks

Chain block
off free list

store size
in block

Get beginning
of chain

Get last
block in
chain

Scan FREE
storage
chain

be freed< or

= to FREE block

Naddress
S

Get pointer
and size from
succeeding
block

]

CP-67 FREE

¥

Get pointer
and size from
preceding
block

Prev.
block abut
our block

Update
pointers

Overlaps

Increment
error
count

Anything
left in this
subpool

FRET

Is there
a succeeding
block

Merge sizes
update pointers
and size

Is there
a succeeding
block

Overlaps

Our
block abut
succeeding
block

No

Merge sizes
update pointers
and size

(2 of 2)

called from
FREE

Section 5: System Modules

IOERROR

Module name: TIOERROR

Entry points: IOERROR, VERROR, RECERROR, MCKERR, FINDLOG, FMTLOG, LOGRETN, FINDMC,
FINDIO, FMTMLOG, FMTLOGM, FMTILOG, FMTLOGI

Purpose: The IOERROR routine analyzes and retries CP-generated I/0 errors incurred while
paging, spooling, or reading the directory. Selected I/0O errors and machine check
errors are recorded on the SYSRES volume at a predefined location. Warning messages
are sent to the operator when repeated I/0 errors occur on a device used by CP-67
for paging, spooling, or directory space. The routine also contains code to locate
and/or format the error-recording records to be used. The locate function is
initiated by CPINIT. The format function (actually erasing any previous data) is
performed by a special diagnose code executed by a privilege class C user only.

Entry point: IOERROR

Entry conditions: Registers 0-11 are saved. GPR 6 contains a pointer to the real device
block for the device on which the error occurred. GPR 9 contains a pointer to the
IOTASK block which did not execute properly.

Exit conditions: If retry is successful, control returns to the program which issued the
original I/O request (return address in TASKIRA). If 64 retries of the I/0 are all
unsuccessful, exit is to the dispatcher, and the system will ABEND.

Entry point: VERROR

Entry conditions: Registers 0-11 are saved. GPR 8 contains a pointer to the virtual
device block.

Exit conditions: None

Entry point: RECERROR

Entry conditions: Called by IOERROR and VERROR. Registers 0-11 are saved.

Exit conditions: The appropriate counter in the real or virtual device block will be
updated to reflect the error. If the error is the first of its type to be
encountered for this device, or the error counter overflows, the CE LOGREC will be
updated to reflect the latest error.

Entry point: MCKERR

Entry conditions: Entered whenever a machine check occurs, whether in supervisor or
problem state. Registers 0-11 are saved.

Exit conditions: Return is to the machine check interrupt handler, MCHEKINT.

Entry point: FINDLOG
Entry conditions: Called by CPINIT. Registers 0=11 are saved.

Exit conditions: Returns to caller

228 CP-67 Program Logic Manual

Entry point: FMTLOG

Entry conditions: Called by FINDLOG and "Diagnose" by customer engineer to clear and
format CE cylinder. Registers 0-11 are saved.

Fxit conditions: If successful, return to caller. If permanent I/0 error, system will
ABEND.

Module name: TIOINT

Entry points: IOINT, IOISTVDE, IOISTVCU

Purpose: IOINT receives control from the I/0 new PSW. It saves the state of the running
user's machine, if any, and determines what further action is required. 1In normal
processing, an exit is taken to the IOTASK block's TASKIRA.

If the STRACE(2) and/or the &TRACE(3) options are selected in the LOCAL COPY file, then

the IOINT module also generates entries in the selector and/or multiplexor trace table
respectively.

Entry point: IOINT

Entry conditions: Receives control from the I/O0 new PSH.

Exit conditions: Exits through a call to TASKIRA followed by a transfer to DISPATCH with
GPR 11 pointing to the chargeable user.

Entry point: IOISTVCU - increment control unit pending count (BALR)

Entry conditions: GPR 6 points to a virtual channel block.

Exit conditions: None.

Entry point: TIOISTVDE - increment device pending count and control pending count if
device count was zero (BALR)

Entry conditions: GPR 7 points to a virtual control unit block and GPR 6 points to a
virtual channel block.

Section 5: System Modules 229

Ik~
o
e

Module name: IPL
Entry point: IPL

Purpose: The IPL module is responsible for simulation and correct interpretation of
various IPL sequences supported for several devices. It is unique in that it
resides in virtual memory. The virtual memory location is the page boundary closest
to half the virtual memory size or page X'20000', whichever is the smaller.

Entry point: IPL

Entry conditions: The IPL module resides in virtual memory and its parameters are passed
by the control program through the use of the first 24 bytes of page zero of that
virtual memory. (Note: Since the IPL sequence destroys these bytes on the real
machine, no alteration of behavior from the real machine is seen.) The information
passed consists of (1) the virtual device address and (2) the virtual device type
code.

Exit conditions: The IPL module transfers control to the system Jjust IPL'ed via user's
lower core location zero.

230 CP-67 Program Logic Manual

Module name: LINK
Entry point: LINK

purpose: To dynamically attach virtual DASD devices based
on a machine description entry (MDENT) found in the
appropriate machine description file. Supports the LINK
console function. Called from CPSTACH, link command.

Entry point: LINK

Entry conditions:

GPR 1 points to a parameter list as follows:
DC CL8'userid',CL8'password’,XL2*XXX"?,XL2'YYY"'
where XXX is the virtual address to be found
in the directory, and YYY is the address to
be used in attaching the device.

GPR 2 contains zero for read-only access, 1
for read/write access.

GPR 11 contains UTABLE address of requesting user.

Exit conditions:
GPR 2 contains an error code as follows:
0 - Successful, attached as requested
1,2 - Not used
3 - tyserid! found, address XXX not in directory
4 - Device YYY already attached
5 - password is bad or the device is not shareable
for the given access mode
6 - 'userid' is in INLOGON state
7 - A write link to XXX already exists. LINK denied.
8 - The required volume is not mounted or not
attached to systen
9 - Attached in read-only, not in write as requested
10 - 'userid' not in directory
11 - Address XXX not a DASD device
12 - Directory locked
13 - Attached in read-only; user 'linked to' has it in

Section 5: System Modules

write.

231

LOGFILES

Module name: LOGFILES

Entry point: LOGFILES

Purpose: This module counts the number of spool file blocks awaiting processing for the
user and returns the address of a message to the caller. Called by LOGIN and CFSQRY
(queue files command) .

Entry point: LCGFILES

Entry condition: Registers 0-15 are saved upon entry. GPR 11 points to user's UTABLE.

Exit condition: None

232 CP-67 Program Logic Manual

Module name: LOGIN
Entry points: LOGIN, OPMSG, AUTLOGON
Purpose: The LOGIN module is responsible for setting up and logging in a new user,

creating from free storage those control blocks required and allocating the required
machine resources.

Entry point: LOGIN - to log in a new user.
Entry conditions: GPR 6 contains a pointer to the MRDEBLOK desiring entrance to the
system.

Registers 0-15 are saved upon entry.

Exit conditions: GPR 11 contains the address of the new user UTABLE if the logon was
successfully completed; otherwise GPR 11 contains zero.

Entry point: OPMSG - Inform system operator of LOGIN, LOGOUT activity.

Entry conditions: GPR 11 contains address of UTABLE; GPR 7 contains character string
CL4' OFF' or CLu4' ON'.

Registers 0-11 are saved upon entry.

Exit conditions: None

Entry point: AUTLOGON - sets up pointers for automatically logging on a specified user,
and joins standard logon code. Called from CPINIT.

Entry conditions: Same as LOGIN
Registers 0-15 are saved upon entry.

Exit conditions: Standard LOGIN exit

Section 5: System Modules 233

MRIOEXEC

Module name: MRIOEXEC

Entry points: MRIOEXEC, RPUNCH, PRIRA, CRIRA, PUIRA, MRIDEL

Purpose: These routines are entered when an interrupt occurs on the unit record
equipment. For a reader interrupt, all of the cards are read and stored. For a

printer or punch interrupt, the corresponding disk buffer is checked, and if there
is pending data in the buffers, it is printed or punched.

Entry points: MRIOEXEC, PRIRA, PUIRA, CRIRA

Entry conditions: All of these entries are entered from TIOINT on the appropriate
interrupt. GPR 6 contains the address of the corresponding MRDEBLOK, and GPR 10
contains a pointer to a doubleword of CSW information from the interrupt.

Exit conditions: After performing their functions, all entry points return to DISPATCH

with GPR 11 pointing to the user for whom the input-output operation was being
processed.

Entry point: RPUNCH

Entry conditions: GPR 4 points to the buffer containing the accounting information to be
punched.

Exit conditions: The accounting information is punched when a punch is available,

Entry point: MRIDEL
Entry conditions: GPR 1 points to an SFBLOK for a file to be deleted.
Exit conditions: The spool file will be deleted as soon as the delete mechanism is

available. If the delete mechanism is busy, the SFBLOK is queued for deletion as
soon as the current files are finished.

234 CP-67 Program Logic Manual

MVIOEXEC
Module name: MVIOEXEC
Entry points: MVIOEXEC, MVICLPR, MVICLPN, MVICLCR, MVIPRINT

Purpose: The MVIOEXEC module handles all virtual input-output operations to the user's
multiplexer channel. This includes terminal and spooling functions.

Entry point: MVIOEXEC - handle virtual input-output requests to the multiplexer. Called
by VIOEXEC.

Entry conditions: GPR 9 contains the virtual device address. The user's virtual CAW is
pointing to the virtual CCW list.

Fxit conditions: The user's condition code is set to reflect the status of his virtual
device.
Entry points: MVICLPR, MVICLPN - close printer and punch files.

Entry conditions: GPR 8 contains the address of the virtual device block for which the
file is to be closed.

Exit conditions: If there was an open file, it is closed; that is, it is put in the
closed file «chain, and real output is initiated if the corresponding device is
available.

Entry point: MVICLCR - close file on card reader.

Entry conditions: Same as for MVICLPR

Exit conditions: If there was an open file, it is closed; that is, any remaining data in
that file is discarded and the next file, if any, is made accessible.

Entry point: MVIPRINT - print a line on the virtual printer.

Entry conditions: GPR 1 is the address of a buffer containing data for printer output.
GPR 0 contains the byte count of the data.

Exit conditions: Data is packed and put in the spooled file.

Section 5: System Modules 235

Module name: PACK
Entry points: PACK, UNPACK

Purpose: To pack and unpack blanks from the spooling data used by MRIOEXEC and MVIOEXEC.

Entry point: PACK - compress blanks from input data.

Entry conditions: GPR 1 is the address of a byte containing input data count, followed
by the input data. GPR 2 is the address of the output buffer.

Registers 0-7 are saved upon entry.

Exit conditions: First byte of output buffer contains output data count, followed by
output data.

Entry point: UNPACK

Entry conditions: GPR 1 contains the address of the input buffer, in the same format as
the output buffer for PACK. GPR 2 contains the address of the output buffer.

Registers 0-6 are saved upon entry.

Exit conditions: The unpacked data appears in the output buffer.

PAGEGET
Module name: PAGEGET
Entry points: PAGEGET, PAGEREL

Purpose: The module handles DASD storage requirements for paging.

Entry point: ©PAGEGET - allocate space for one page. Called by PAGTRANS.

Entry conditions: None. Registers 0-12 are saved upon entry.

Fxit conditions: GPR 1 contains device index and DASD address, if found. If not found,
GPR 1 contains 0.

Entry point: PAGEREL - release paging DASD area for this user. Called by PAGOUT.

Entry conditions: GPR 11 points to this user's UTABLE and registers 0-12 are saved upon
entry. GPR 5 points to a SWPTABLE entry containing the address of the record to

be released.

Exit conditions: ©None

236 CP-67 Program Logic Manual

Module Name: PAGTR

Entry points: PAGOUT,

PAGFRET, PAGSHARE, PPAGOUT

Purpose: This module handles page sharing and page releasing.

Entry point: PAGOUT - remove a user's pages from core.

Called from CFSIPL or USEROFF.

Entry conditions: GPR 11 points to the UTABLE of the user whose pages are to be released.

Registers 0-13 are

Exit conditions: None.

Entry point: PAGFRET

Entry conditions: GPR 2
count of pages.

Exit conditions: None.

Entry point: PAGSHARE -

saved upon entry.

points to first page to be made available for users, and GPR

called by CONSOL for first user of a named system to bring

core and lock any shareable pages.

Entry conditions: GPR

= first shared page number; GPR 5 = PAGTABLE address; GPR

count of saved pages; GPR 7 = address of first entry of saved SWPTABLE; GPR

UTABLE address.

Registers 1-7 are saved upon entry.

Exit conditions: None.

All required pages are in core and locked.

Entry point: PPAGOUT - remove a subset of a user's pages from core.

Entry conditions: GPR 3
GPR 5 contains the
GPR 7 contains the
GPR 8 contains the

contains the address of a segment table entry.
address of the SWPTABLE entry for the first page.
address of the PAGTABLE entry for the first page.
number of pages to be released.

GPR 11 points to the UTABLE of the user whose pages are to be released.

Exit conditions: None.

Section 5: System Modules

0 is

o)
nn

237

PAGTR

ANS

Module name: PAGTRANS

Entry points: PAGTRANS, PAGUNLOK, PAGFREE, WAITPAGE, DRMWAIT

Purpose: This module handles all paging functions.

Entry point: PAGTRANS - translate virtual address and bring page in, if required.

Entry

Exit

Entry

conditions: GPR 1 contains the virtual byte address. GPR 2 contains control
parameters in byte 3 as follows: BRING, to bring the page into core; LOCK, to lock
the page in core (implies BRING); DEFER, to prevent return to caller until page is
in core; CHANGE, to set changed bit for this page; USED, to set used bit for this
page.

Registers 0-15 are saved upon entry.

conditions: GPR 2 contains the real byte address.

point: PAGUNLOK - unlock a virtual page (BALR)

Entry conditions: GPR 2 contains a real byte address within the page to be unlocked.

Exit

Entry
Entry

Exit

Entry

Entry

Bxit

Entrv
sNTrY

Entry

Exit

238

Registers 0-7 are saved upon entry.

conditions: None

point: PAGFREE - obtain free page for free storage. Called by EXTEND.

conditions: None. Registers 3-11 are saved upon entry.
conditions: GPR 1 points to the page address which can be included in the free
area.

point: WAITPAGE - reflects completion of page I/O0. Called by IOINT.

conditions: GPR 9 points to IOTASK; GPR 10 points to CSW.

Registers 0-15 are saved upon entry.
conditions: VNone

point: DRMWAIT - After a 2301 drum paging interrupt, stacks CPREQUEST blocks for
each additional page if the I/0 operation involved more than one page. Chains
together any IOTASKS queued off the allocation block and calls QUERIO.

conditions: GPR 9 points to IOTASK; GPR 10 points to CSW.

conditions: Transfers to WAITPAGE.

CP-67 Program Logic Manual

PRIVLGED

Module Name: PRIVLGED

Entry points: PRIVLGED, FREEPST, FRETPST

Purpose: Provide non-I/0 privileged instruction simulation.

If the &TRACE(5) option is selected in the LOCAL CcOPY file, then the PRIVLGED module

accumulates statistics in low core (defined in STAT COPY) about the number and type of
privileged instructions executed.

Entry point: PRIVLGED

Entry Conditions: R13 points at the real address of the privileged instruction.

Exit conditions: Via a GOTO to VIOEXEC if the instruction is for I/O0 or to DISPATCH
after the instruction is simulated.

Entry point: FREEPST - creates real copies of virtual 67 page tables.

Entry conditions: Register 11 points to UTABLE.
Registers 0-4 are saved upon entry.

Exit conditions: None.

Entry point: FRETPST - releases real copies of virtual 67 page tables.
Entry conditions: Register 11 points to UTABLE.
Registers 0-5 are saved upon entry.

Exit conditons: None.

Section 5: System Modules 239

PROGINT

Module name: PROGINT

Entry points: PROGINT, REFLECT

Purpose: PROGINT is entered from the program interruption new PSW. It attempts to
determine whether the interruption occurred from the Control Program, or the user

issuing a privileged instruction; in the latter case, control is passed to PRIVLGED,
which interprets and simulates user-issued privileged instructions.

Entry point: PROGINT
Entry conditions: PROGINT is entered from the program interrupt new PSW.
Exit conditions:
If the interruption occurred as the result of a program interruption in the
Control Program indicating program trouble, a terminal system dump occurs. If the
program interruption was the result of a user issuing a privileged operation (the
usual condition), control is passed to PRIVLGED.

Entry point: REFLECT - reflect an interrupt to the user.

Entry conditions: GPR 13 points to the old PSW for the interruption condition which is
to be reflected. The user's registers have already been saved.

Exit conditions: After making changes in the user's UTABLE to reflect the interrupt,
REFLECT transfers control to DISPATCH with GPR 11 pointing to the affected user.

Note: The use of register 13 in this case to point to the proper old PSW is a deviation
from standard calling sequence practice,

240 CP-67 Program Logic Manual

Module name: PSA

Entry points: SVCINT, EXTINT, MCHEKINT, SVCDUMP

Purpose: To initialize and maintain the save areas provided as a part of the calling
protocol maintained within CP-67. SVCINT is entered by the SVC interrupt
occurring, indicating a request for linkage or return by a CP-67 module. Also
handles external and machine check interrupts.

If the &TRACE (1) option is selected in the LOCAL COPY file, then PSA also places entries
in a trace table for CP SVC's.

Entry point: SVCINT

Entry conditions: Entered via an SVC 0, 8, 12, 16, or 20 to perform, respectively, DIE,
LINK, RETURN, RELEASE, or SAVEGET.

Exit conditions: See "SVC Interruptions" in Section 2.

Entry point: EXTINT

Entry conditions: Entered from the external interrupt new PSW. If the interrupt
occurred because of the external interrupt pushbutton, the system operator is
disconnected. This allows him to log in again from an alternate console. If the
interrupt occurred because of a timer interrupt, the running user, if any, is
saved, and an exit is taken to DISPATCH to determine whether there is any work.

Exit conditions: Exits to DISPATCH under normal conditions with GPR 11 pointing to the
interrupted user.

Entry point: MCHEKINT

Entry conditions: Upon detection of a hardware malfunction.

Exit conditions: After printing warning messages, if machine check was in CP-67 mode,
terminate all processing. If machine check was in user mode, the user |is
informed that a machine check has occurred. The machine check 1is reflected back

to the virtual machine, which is placed in CP console function mode; this enables
a console function to be issued.

Entry point: SVCDUMP - branched to from within PSA on an SVC 0 or entered from a PSW
restart. Branches to DSKDUMP to abnormally terminate.

Entry conditions: ©None

Exit conditions: None

Section 5: System Modules 241

Module name: QUEVIO
Entry points: QUEVIO, QUERIO, CHFREE
Purposes: This module queues requests for input-output operations on the selector

channels, determines whether the channels are available, prepositions access arms on
direct access devices, and initiates the input-output operations.

Entry point: QUEVIO - queue virtual task block (BALR)

Entry conditions: GPR 1 points to an IOTASK block which is to be queued. GPR 2 points to
the virtual device block.

Registers 0-14 are saved upon entry.

Exit conditions: None. Transfer is to CHFREE, to initiate operation of the task.

Entry point: QUERIO - queue real task block (BALR)

Entry conditions: GPR 1 points +to an IOTASK block which is to be queued. GPR 6 points
to the real device block on which the input-output operation is being performed.

Registers 0-14 are saved upon entry.

Exit conditions: None. Transfer is to CHFREE, to initiate operation of the task.

Entry point: CHFREE - start idle channel (BALR)

Entry conditions: GPR 1 points to a real channel block for which input-output operations
are to be initiated, if possible.

Registers 0-14 are saved upon entry.

Exit conditions: None. If the operation can be started, a zero condition code from the
SI0O operation causes the user to be removed from the IOWAIT condition if the
operation originated from a virtual machine. For a nonzero condition code, CHFREE
calls the TASKIRA with the condition code indicated in GPR 0. CHFREE can also call
itself recursively if it determines that the operation just initiated has freed the
channel,

242 CP-67 Program Logic Manual

RDCONS

Module name: RDCONS
Entry point: RDCONS

Purpose: This module creates a CCW "package" (according to the type of terminal it is
servicing) that can be scheduled as a read request for that terminal. It allows the
different remote terminals to be treated as though each were a 1052.

Entry point: RDCONS

Entry conditions: Registers 0-10 are saved upon entry. GPR 1 contains the address of the
input buffer (132 bytes). GPR 2 holds the options that are requested when RDCONS is
called: EDIT, or UCASE. If EDIT is specified, character or line deletions are
performed as specified. If UCASE is specified, all lowercase letters are translated
to equivalent uppercase letters. GPR 3 contains the address to which the Control
Program will return control after completion of the console I/0. GPR 11 points to
the UTABLE of the user to whom the read is directed.

Exit conditions: The return is made from RDCONS immediately with all registers restored.
At the termination of the read operation, GPR 0 contains the byte count of the input
message; GPR 2 contains an error condition code, if any. Control is returned to the
address specified in GPR 3 at the call to RDCONS.

Section 5: System Modules 243

RDSCAN

Module name: RDSCAN
Entry points: LINKSCAN, RDSCAN, DEVSCAN

Purpose: To determine whether a virtual DASD device is currently attached to the virtual
machine of an active user (that is, a "link" exists). Definition: Two virtual
devices having the same RDEVBLOK and relocation factor are the same.

Entry point: LINKSCAN

Entry conditions: GPR 11 1is the UTABLE address of the current user, not to be included
in the search. GPR 10 is the UTABLE address of the first user to be scanned.
Registers 0-9 are saved upon entry. GPR 0 is the relocation factor of the virtual
device, and GPR 1 is the address of the RDEVBLOK.

Exit conditions:
Condition code 0 - No link exists.
Condition code 1 - Read-only link(s) exists.
Condition code 2 - Read/Write link exists.

GPR 10 is the UTABLE address of the user having the 1link. For no link, GPR 10 is
equal to GPR 11.

Entry point: RDSCAN
Entry conditions: Same as LINKSCAN

Exit conditions: Same as LINKSCAN except that if all links are read<only, no return is
made until all user machines have been examined or a read/write link is encountered.

Entry point: DEVSCAN

Purpose: To determine whether any link exists to the real device regardless of the
relocation factor.

Entry conditions: Same as LINKSCAN except GPR 0 is not used. To include current user in
search, set GPR 10 equal to GPR 11.

Exit conditions:
Condition code 0 - No link exists.
Condition code 3 - A link exists. GPR 10 points to
UTABLE of first link encountered.

244 CP-67 Program Logic Manual

RECFREE
Module name: RECFREE
Entry points: RECFREE, RECFRET

Purpose: To handle the spooling requests for available disk records in much the same
manner as free storage handles main memory.

Entry point: RECFREE - obtain free record.

Entry conditions: None. Registers 2-6 are saved upon entry.

Fxit conditions: GPR O = 1; GPR 1 is the address of a doubleword containing the DASD
record address and device code in the following format: bytes 0-1 are zero; bytes

2-3 contain the cylinder number; bytes u4-5 contain the track number; byte 6 contains
the record number; and byte 7 contains the device code.

Entry point: RECFRET - return disk record to free storage.

Entry conditions: GPR 1 contains the address of a doubleword in the RECFREE format.
Registers 0-7 are saved upon entry.

Exit conditions: None

RESINT
Module name: RESINT
Entry points: RESINT, RESIRA

Purpose: This module performs a virtual system reset.

Entry point: RESINT

Entry conditions: GPR 11 points to the UTABLE of the user for whom the reset is desired.
Registers 0-11 are saved upon entry.

Exit conditions: None

Entry point: RESIRA - interrupt return address set by RESINT for IOTASKS queued up for a
user to be reset; clears interrupt without resetting virtual machine status; entered
from IOINT.

Entry conditions: GPR 9 points to IOTASK. RIO points to CSW. Registers 0-11 are saved
upon entry.

Exit conditions: None

Section 5: System Modules 245

SAVECP

Module name: SAVECP

Entry points: SAVECP, RESTORE

Purpose: SAVECP writes the core image of CP-67 onto the system residence volume at the

end of a card or tape load of CP-67 into core. At IPL time, RESTORE reads in the
core image of CP-67 from the system residence volume.

Entry point: SAVECP

Entry conditions: The module requires that the disk address be loaded with it, and that
the device be a 2311 or 2314. The addressability of the module is contained in GPR
3 (not 12 as in the norm).

Exit conditions: After a SAVECP-save a DISK LOAD OK message is printed.

Entry point: RESTORE - restore CP nucleus into main memory (BALR).
Entry conditions: same as SAVECP except called by CHKPT.

Exit conditions: None.

SCANUNIT
Module name: SCANUNIT
Entry points: RUNITSCN, VUNITSCN

Purpose: To accept a device address, -either real or virtual, and scan down the
appropriate list, setting up pointers to the various level blocks.

Entry point: RUNITSCN - scan for real device block (BALR) .

Entry conditions: Registers 0-8 are saved upon entry. GPR 8 contains the address to be
searched for.

1

Exit conditions: PR 6 contains the pointer to the real channel block, if found. GPR 7
contains a pointer to the real control unit block, if found. GPR 8 <contains a
pointer to the real device block, if found. The condition code is set as follows:

- all blocks found

- channel block not found (no pointers valid)

- control unit block not found (channel pointer valid)

- device block not found (channel and control unit pointers valid)

WN o

Entry point: VUNITSCN - scan for virtual device block (BALR).

Entry conditions: Registers 0-8 are saved upon entry. GPR 8 contains the address to be
searched for. GPR 11 points to the user whose blocks are to be searched.

Exit conditions: Same as for RUNITSCN except pointers are to virtual blocks.

246 CP~67 Program Logic Manual

SCHEDULE

Module name: SCHEDULE
Entry points: SCHEDULE, SCLOCK

Purpose: Contains extended DISPATCH functions.

Entry point: SCHEDULE

Entry conditions: R1 is non-zero if the UTABLE pointed to by R11 is in logon and is to be
added to the real timer chain if that option is specified. Otherwise, R1 is zero and
the R11 UTABLE is in 1logoff and it is to be removed from all chains that it
currently may be on.

Exit conditions: ©None.

Entry point: SCLOCK

Entry conditions: Entered once a minute on a call from DISPATCH to update the decimal
clock and to recalculate the paging activity variable. Also once an hour it resets
the elapsed binary timer and any other locations dependent on its current value.

Exit conditions: None.

SCREDAT

Module Name: SCREDAT

Purpose: Contains system identification information that may be changed for each systenm
created.

Section 5: System Modules 247

STCONS
Module name: STCONS
Entry points: PRIMSG, STCONSIO

Purpose: This module will start an I/O request to a console or queue it if there are
outstanding requests. If entered via PRIMSG, the request is queued ahead of all
current outstanding requests.

Entry point: STCONSIO

Entry conditions: GPR 6 contains the address of the console I/0 request to be started or
added. GPR 8 contains the device address and GPR 11 points to the appropriate user's
UTABLE.

Exit conditions: The request is queued in FIFO order on the CIOREQ chain and if the
terminal is idle the operation is started immediately.

Entry point: PRIMSG
Entry conditions: Same as STCONSIO

Exit conditions: Same as STCONSIO, except the request is queued on the CIOREQ chain in
LIFO order.

248 CP-67 Program Logic Manual

TMPSPACE
Module name: TMPSPACE
Entry points: TMPSPACE, TMPRET, TMPERTN

Purpose: TMPSPACE dynamically allocates cylinders on DASD devices from devices of a
specified type.

Entry point: TMPSPACE - obtain free cylinder.

Entry conditions: Registers 0-11 are saved upon entry. GPR 0 contains the number of
contiguous cylinders desired. GPR 1 contains the desired device type code. GPR2
contains the type of space desired (for example, paging or spooling space, T-disk
space, or directory space).

Fxit conditions: GPR 0 contains the relocation factor of the allocated cylinder. GPR 1

points to the RDEVBLOK of the selected device, If space is not available, GPR 1 is
set to zero.

Entry point: TMPRET - return a cylinder to free storage.

Entry conditions: Registers 0-11 are saved upon entry. GPR 0 contains the relocation
factor of the allocated cylinder. GPR 1 points to the appropriate RDEVBLOK. GPR 2
contains the number of contiguous cylinders.

Exit conditions: None

Entry point: TMPERTN - interrupt return address for an IOTASK that erases TRK 00 of a
T-DISK that has been released; entered from IOINT.

Entry conditions: Registers 0-11 are saved upon entry. GPR 9 points to IOTASK. GPR 10
points to CCW.

Exit conditions: ©None

Section 5: System Modules 249

TRACER

Module Name: TRACER

Entry points: TRACER, TRINT

Purpose: This module handles the analysis and formatting of wuser specified tracing
functions. Tracing is controlled by a table extension to the UTABLE. This table is
located by the -UTREXT entry in the UTABLE. The trace functions are controlled by a
one-byte switch named TRSW defined in the UTABLE. The trace extension block called

TREXT is defined in the UTABLE COPY. It contains control words, storage areas, and
output buffers for the trace function. The TREXT block is 25 double words in size.

Entry point: TRACER - output trace data
Entry conditions: GPR1 contains the address of the output buffer.

Exit conditions: The buffer is cleared to all (132) blanks after being passed for console
and/or printer output.
Entry point: TRINT - trace interrupt
Entry conditions:
GPR1 - virtual old PSW address
GPR3 ~ interrupt code
GPRU4 = SVC extended interrupt code
GPR6,7 - SVC extended old PSW contents
Exit conditions: Trace buffer has been formatted and printed by calling TRACER. All

necessary instructions have been restored and any "trace-following" SVC's have been
set. The virtual machine PSW is ready to run from the correct location.

UNSTIO

(See Figure 47 for an overview of UNSTIO processing.)

Module name: UNSTIO
Entry point: UNSTIO

Purpose: To unstack and reflect virtual input-output interrupts from both selector and
multiplexer devices, and to unstack and reflect virtual external interrupts,.

Entry point: UNSTIO

Entry conditions: Registers 1-8 are saved upon entry. GPR 11 points to a user who has at
least one enabled interrupt condition.

Exit conditions: The user's UTABLE and virtual page 0 have been altered to reflect the
appropriate interrupts.

250 CP-67 Program Logic Manual

Entry: UNSTIO

External
pending and
mask on

External
interrupt code

No

Reset

pending
flag

L

o

UNSEXT

Unstack the
external
interrupt

Reset
pending
bits

SetCC=0
(External
interrupt
unstacked)

EXIT

Figure 47.

Determine
interrupting
channel number

interrupt
from selector
channel

channel
level interrupt
pending

CE + BUSY

SetCC=3
(False
pending)

EXIT

on channel

channel end

BUSY
channel has
PCI

Reflect new
CSW and
interrupt code

UNSIO

Unstack the
1/0 interrupt

Reset PCI
and CE
flags

any
pending con-
trol unit in-
terrupts,

RESETPND

Reset
pending
flag

multi-

channel

CP-67 UNSTIO (1 of 4)

Section 5:

SetCC =1
(170 int
unstacked)

EXIT

System Modules

251

control Ensure pending Form CSW and
unit interrupt interrupt get the inter-
pending count =0 rupt code
UNSIO
Unstack
the 1/0
interrupt
Reset
CUE
flag
l <
interrupt Decrement
on some control unit
device interrupt count
Construct _E“S“_”e DE
interrupt IELepe Form
code count csw
is zero
UNSIO
ATTN bl Unstack
the 1/0
interrupt
UNSIO
Status Reset interrupt
other than Unstack condition a_md
ATTN and/or, the 1/0 control unit
LS interrupt status
Yes
Reset Decrement
Form
csw LIk the DE
bits interrupt count
J s
5 int count
=0

Figure 47.

252 CP-67 Program Logic Manual

CP-67 UNSTIO (2 of 4)

‘ Entry: RESETPND ’

Set subroutine
return
address

]

Clear mask
bit in PENDING
field in UTABLE

Channel
addresses
unique

Scan selector
channel chain
for matching
channel address

channel
level int

control unit
|level interrupt

Figure 47.

1

Scan multiplexor
channel chain
for pending
interrupts

No

Any
pending
interrupts

Channel
portion match
pending

pending bit
(interrupt
remains)

-

RETURN

According to
Subroutine
Return Address

—

CP-67 UNSTIO (3 of 4)

Any
interrupts
pending on same,
device

Device
BUSY

Channel
addresses
match

ATTN
not alone

Form
csw

UNSIO

Unstack
1/0

Interrupt

Prepare
Csw

Clear all
status bits
but ATTN

Any
interrupts
leftin
block

Form
Csw

UNSIO

Unstack
1/0
Interrupt

Clear
device
status

UNSIO

Unstack
the 1/0
interrupt

any

interrupts
left in

block

Clear mask
bit in PENDING
field of UTABLE

Set
subroutine
return address

Section 5:

System Modules

253

Figure 47.

Entry: UNSIO

Store CSW
and the 1/0
old PSW

Set the
interrupt
code

Recover the
1/0
new PSW

RETURN

CP-67 UNSTIO (4 of U)

254 CP-67 Program Logic Manual

PAGTRANS

Entry: UNSEXT

Bring in
Page 0

Store the
EXTERNAL
old PSW

SetCC =2

‘ EXIT ’

Set the
interrupt
code

Recover the
EXTERNAL
new PSW

RETURN

UNTRANS
Module name: UNTRANS
Entry points: UNTRANS, FREECCW

Purpose: The module computes from the hardware CSW the virtual CSW to be reflected to
the user. The real CCW's are released to free storage.

Entry point: UNTRANS (BALR)

Entry conditions: Registers 0-12 are saved upon entry. GPR 6 points to the VCHBLOK which
contains the CSW.

Exit condition: The VCHBLOK contains the translated CSW.

Entry point: FREECCW

Entry conditions: Registers 0-12 are saved upon entry. GPR 8 points to the user's
VDEVBLOK, and GPRY9 points to the IOTASK block.

Exit conditions: All I/0 pages are unlocked, the RHA data is relocated, and the real CCW
lists have been released.

USERLKUP

Module name: USERLKUP
Entry point: USERLKUP

Purpose: To find the entry in the U.DIRECT file for a
specified userid.

Entry conditions:
Registers 0-5 are saved upon entry.
GPR 1 points to an eight-byte userid.
GPR 2 points to a buffer of size greater than or equal
to UFDENTLN (the size of the UFDENT DSECT).

Exit conditions:

Condition code nonzero: Userid found in directory.
Caller's buffer contains a copy of
the user file directory entry (DSECT
UFDENT) .

Condition code zero: Userid not found.

Section 5: System Modules 255

USEROFF
Module name: USEROFF
Entry points: USEROFF, ADSET, ADSETOUT, RELEASE, RUNRET

Purpose: The USEROFF module handles the details of logging a user off the systen.

Entry point: USEROFF, ADSET - initiate the logout sequence.

Entry conditions: GPR 11 points to the wuser's UTABLE. Registers 0-10 are saved upon
entry. GPR 2 is set to 1 if the logoff is forced (line error or hangup). GPR 2 is
set to 2 if called by KILL or SHUTDOWN. Otherwise, GPR 2 is set to zero.

Exit conditions: INLOGOFF bit is set in VMSTATUS and normal exit taken.

Entry Point: ADSETOUT - log user off the systen.

Entry conditions: User has no outstanding I/0 operations.
Registers 0-10 are saved upon entry.
GPR 11 points to the user's UTABLE.

Exit conditions: GPR 11 contains zero.

Entry point: RELEASE - detach a nonshared input-output device.

Entry conditions: GPR 11 points to the user UTABLE. GPR 2 points to the RDEVBLOK of the
device to be detached. If the device is a tape unit, the volume mounted is rewound
and unloaded. If the device is a bi-sync 1line, the line is disabled with a hardware
disable CCW. If the device 1is a dedicated multiplexer unit, the selector channel
real I/0 blocks are returned to free storage, and the original MRDEBLOK is restored
to the list.

Exit conditions: None

Entry point: RUNRET - interrupt return address for an IOTASK that rewinds and unloads a
tape, or disables a bi-sync line, after being detached.

Entry conditions: Registers 0-15 are saved upon entry. GPR 9 points +to IOTASK. GPR 10
points to CSW.

Exit conditions: None

256 CP-67 Program Logic Manual

VIOEXEC

Module name: VIOEXEC
Entry points: VIOEXEC, VIRA
Purpose: VIOEXEC is responsible for intercepting virtual input-output commands and

determining how they will be handled. It performs operations required for handling
selector channel requests and passes multiplexer requests onto MVIOEXEC,

Entry point: VIOEXEC

Entry conditions: GPR 4 points to the first half of the input-output instruction which
caused entry to VIOEXEC. GPR 5 points to the second half. The virtual CAW will

point to the virtual CCW list to be executed.

Registers 0-10 are saved upon entry.

Exit conditions: Goes to DSPTCHB. The condition code in the virtual PSW is set as
follows:
0 - I/0 initiated or performed
1 - CSW stored
2 - device busy
3 - device not operational

Entry point: VIRA - generalized interrupt return address for TOTASK performing
user-dedicated I/0 operations; sets condition and stacks a virtual pending

interrupt.

Entry conditions: GPR 9 points to IOTASK. GPR 10 points to CSW.

Registers 0-15 are saved upon entry.

VSERSCH
Module name: VSERSCH
Entry point: VSERSCH

Purpose: Searches RDEVBLOK's for a given volume serial number.

Entry point: VSERSCH

Entry conditions: Registers 0-11 are saved upon entry. GPR 1 points to a six-byte field
containing the volume serial label desired.

Exit conditions: GPR 1 points to the desired RDEVBLOK. If the given label is not
currently recognized by the system, this register will be zero.

Section 5: System Modules 257

WRTCONS

Module name: WRTCONS

Entry points: WRTCONS, PRIORITY, OPTIME, CLRCONS

Purpose: This module allows each remote terminal to be used for output as though it were

an operator's 1052 console. It will create a CCW package for a specific terminal
(with a priority status, if requested).

Entry point: WRTCONS

Entry conditions: GPR 0 contains the byte count of the output message (must be nonzero).

Exit

GPR 1 contains the starting address of the output message (see DFRET note below).
GPR 2 contains 0 or parameters as follows: NORET specifies that no return is to be
made on completion of the operation, that is, GPR 3 (below) is not set wup. ALARM
specifies that the audible alarm is to be given, if available, at the completion of
the operation. DFRET causes the output buffer to be automatically returned to free
storage at the completion of the operation. (Note: In this case, the data in GPR's
3 and 1 must be appropriate for return to the FRET routine; that is, GPR 1 is on a
doubleword boundary, and GPR 3 contains the number of doublewords to return to free
storage.) OPERATOR specifies that the message is to go to the operator's terminal.
GPR 11 need not be established for this call. NOAUTO specifies that the message is
to be written without an automatic carriage return following the message. GPR 3
contains the return address, if NORET was not specified. It contains the number of
doublewords to be returned to free storage if NORET and DFRET were specified.
Registers 0-4 are saved upon entry.

conditions: An immediate return is made from WRTCONS before the operation is
completed. All registers are saved here. Upon completion of the operation, GPR 2
contains an error code, if any. Return (if NORET was not specified) is to the

location specified by GPR 3.

Entry point: PRIORITY

Entry conditions: Same as for WRTCONS

Exit

conditions: Same as for WRTCONS, except that the console write is requested to be
queued ahead of any other currently stacked I/0 for that terminal.

Entry point: OPTIME - writes time of day to operator's terminal.

Entry conditions: Registers 0~15 are saved upon entry.

Exit

Entry point: CLRCONS - clear CIOREQ stack.

Entry conditions: Registers 0-4 are saved upon entry.

Exit

258

conditions: CIOREQ stack pointer cleared.

CP-67 Program Logic Manual

UTILITY MODULES

The CP-67 utility modules, all of which are stand-alone except for VDUMP, are provided as
follows:

DIRECT - writes the user file directories onto SYSRES volume; allocates space
on DASD devices used as system device.

FORMAT - formats DASD devices used as system device.

SAVESYS - writes a pageable core image copy of an operating system, such as
CMS, which is run in a virtual machine under CP-67; enables the saved

operating system to be IPL'ed by name.

VDUMP - runs in a virtual machine to retrieve any system ABEND dumps from the
system disk.

Section 5: System Modules 259

DIRECT

Utility module name: DIRECT

Entry point: DIRECT

Purpose: The DIRECT program writes the user file directories onto the system residence

volume and allocates space on that volume and other volumes which are to be used for
permanent file residence, paging, and spooling.

Entry point: DIRECT
Entry conditions: Entered from stand-alone loader. No other entry conditions.

Exit conditions: Sets WAIT state PSW after completion of all allocation and directory
creation activities, and termination message to operator console.

FORMAT

Utility module name: FORMAT

Entry points: FORMAT

Purpose: To format any DASD device that CP-67 uses for a system device (that is, for

residence, paging or spooling). Currently those devices are 2311, 2314, 2303, and
2301.

Entry point: FORMAT

Entry conditions: All required variable data is collected by the program interrogating
the operator for (1) device type, (2) device address, (3) volume 1label, (4) start
address (optional), and (5) end address of cylinders or tracks to be formatted.

Exit conditions: Program prints FORMAT ENDS.

260 CP-67 Program Logic Manual

SAVESYS

Utility module name: SAVESYS
Entry point: SAVESYS

Purpose: This module is used to write a pageable core image copy of an operating
system such as CMS, which is run in a virtual machine under CP-67. The operating
system (such as CMS) is IPL'ed on a bare machine, with an appropriate address stop
set. Then the program SAVESYS is IPL'ed from the card reader. The control card
describes the core 1limits to be saved and the CP owned volume device and cylinder
address of where to save it. 0S and CMS volumes do not have the correct format for
the CP allocation label in record 3 and an attempt to recognize 0S or CMS labels as
owned volumes will result in an ABEND. (see Operator's Guide for procedure).

The module SYSTEM has to be set up to reflect the page numbers and cylinder
addresses where the core image was saved. This allows the user to IPL the virtual
system by name, such as:

IPL CMS
The advantage of IPL'ing by name is in speed since it requires less I/0 and paging

than normal IPL. Moreover, in order to share CMS system pages among users, it is
necessary to IPL by nanme.

yDuMP

Utility module name: VDUMP
Entry point: VDUMP
Purpose: This module runs in a CMS virtual machine specially configured to retrieve the
system ABEND dumps from 'disk. oOnly the user specified for a SYSDUMP in the SYSGEN
macro can operate this program. That user's virtual machine must have defined in
the CP-67 directory a special spool file reader defined as:
UNIT OF1,RPRT
as well as a standard CMS machine. VDUMP will reside on that user's P-disk. The
program uses the special reader (OF1) to access any system dumps. The dump input is
then formatted and printed on the CMS printer (00E), which is spooled. As VDUMP
proceeds, it prints a message indicating each 10,000 bytes of core printed as:
DUMPING STORAGE LOCATION xxXxX

Upon completion, VDUMP prints END OF DUMP and closes the virtual printer.

Section 5: System Modules 261

262 CP-67 Program Logic Manual

APPENDIX A: _SAVE_AREAS

Register 13 normally points to a 96-byte save area. The first 12 bytes are reserved
for use by the sSVC handler for keeping linkage information. Modules normally wuse the
next 12 to 16 words for saving the registers of the «calling routine (the ENTER macro
generates an STM of the specified register(s) into an area whose beginning is displaced
12 bytes off register 13). The remaining bytes are optionally used as a work area. The
first word of an active save area will <contain the interrupt return address in the
calling routine. The second word contains the caller's register 12, and the third word
the caller's register 13. Very seldom are more than registers 0 through 11 saved since
(1) 14 and 15 are normally work registers, and (2) 12 and 13 have already been saved by
the SVC handler. Inactive save areas will contain a pointer to the next inactive area in
the first word of the save area. A word in the SVC handler points to the first available
(inactive) save area.

Note: In 0S, register 13 normally points to a 20-word save area for use by the
called routine. If a called routine wishes to «call, it will provide core or dynamically
obtain core for its called routine's save area. In CP-67, register 13 points to a save
area for the currently active routine, containing the saved registers of the calling

routine and the necessary linkage information to return. The maintaining of linkage
information and chains for active and available save areas is all done by the SVC
handler. There is one exception to this rule: in CFSMAIN, the routine obtains its own,

extra large save area, and it temporarily replaces the normal save area in the chain with
the extra large one.

Appendix A 263

264 CP-67 Program Logic Manual

APPENDIX B: REGISTER USAGE

Register

12
13
14

15

variable (many times count of doublewords for FREE or FRET linkage
variable (many times pointer to temporary storage obtained from FREE)
CALL macro parameters if PARM is used

variable

variable (I/0 routines use commonly as channel block pointer)
variable (I/0 routines use commonly as control block pointer)
variable (I/0 routines use commonly as device block pointer)
variable

pointer to the user's status table (UTABLE) for the user CP is currently working
on

base
save area pointer
variable (some use as BAL, BAS, etc. within particular modules)

variable (address of entry point of currently active module or last called
module, set by CALL macro)

Registers 0 and 1 are commonly used to pass arguments to subroutines. Registers 14 and 15

are not

preserved over a subroutine call and therefore should not be used for any but

very temporary use.

Appendix B 265

266 CP-67 Program Logic Manual

APPENDIX C: CORE_LAYOUT

The following items are of particular importance in debugging CP-67.

description of lower core see the listing
library. (EQU67 is listed in "CP-67 Equate
Conventions of this manual.)

of EQU67 coPY file from
Package - EQU67" in Section

See Figure 48 for a diagram of real low core.
Hexadecimal
Address
0 Eight-byte PSW restart
E External old PSW interrupt code
10 SVC old PSW interrupt code
12 Program old PSW interrupt code
14 Machine check o0ld PSW interrupt code
16 I/0 old PSW interrupt code
160 UTABLE address of the currently active or last
run user
340 Address of CPSYM module. CPSYM contains a twelve-
byte entry for each CP module, an eight-byte
EBCDIC name, and a four-byte ADCON,
CPEND Address variable depending on system, represents

highest address of permanently resident CP
code. Beginning on the first 32-byte aligned

boundary following CPEND is the CORTABLE, one
16-byte entry for each 4K page in the machine.
Following the CORTABLE, beginning on the first
following 32-byte boundary are the initial 100
96-byte save areas.

For a complete

the CPMAX

macro

3: Programming

Appendix C

267

000

008

010

018

040

048

050

160

168

170

178

180

188

190

198

1A0

1A8

Figure 48,

268

IPLPSW
IPLCCW EXT. INT. CODE
SVC INT. CODE PROG. INT. CODE MCK. INT. CODE 1/0 INT. CODE
e L
~ OLD PSW'S 7“
CSW
CAW
TIMER
Az L
T NEW PSW'S T
T SCANOUT T
RUNUSER CPSTATUS MONTHS DAYS YEARS
HOURS MINUTES SECONDS STARTIM
STARTIM BINTIME
DISPSW
ASYSWRM ASYSINF
ASYSCNSL CPID
ARMXST ARDEVT
AZVOL APRINT
APUNCH AREADERS
AMREAL ARCHSTRT

CP-67 Real Low Core

(1 of 2)

CP-67 Program Logic Manual

y CPUTAB -
1E0
£L -~
- TEMPSAVE T
220
4L L
foul BALRSAVE ~
270
-~ DISPAGWK T
290 DSCRO
298 MAXLOCK
KALG LOCKOUNT
o~ T
350
CPTIME PROBTIME
358 WAITTIME OVERHEAD
360 WAITIDLE WTPAGE
368 WTUSR WTUSRA
510 KPGEX PGREAD
378
PGSWAP GoaUNT
380 INSTWRD1 INSTWRD2
388
INSTWRD3 INSTWRD4
390
A STATUSER -~
Figure 48. CP-67 Real Low Core (2 of 2)

Appendix C

269

270 CP-67 Program Logic Manual

APPENDIX D: CP-67 ABEND

The first occurrence to check for in an ABEND dump is an SVC 0 (a halfword zero in
the SVC interrupt code at location hex 10), and supervisor state in the SVC old PSW (PSW
at hex location 20 does not contain problem state bit, bit 01, byte 1). There are two
possible SVC 0's which should be eliminated before proceeding any further: (1) an SVC 0
issued by the machine check handler when there has been a machine check while in
supervisor state, and (2) the SVC 0 issued by the command handler in response to the
operator command D_U_M_P.

If an SVC 0 is not found, the second possibility to check for is a program interrupt
in supervisory mode. The program old PSW (hex address 28) will not contain the problem
state bit. :

The third possibility is that the operator has pushed the STOP and PSW RESTART

buttons on the CPU. 1In this case there should be additional information provided by the
operator on what CP-67 was doing to force the operator to take an ABEND dump.

Appendix D 21

272 CP-67 Program Logic Manual

APPENDIX E: CP-67 MEASUREMENT_ HOOKS

Low_Core (defined in EQU67)
RUNUSER - running user
MONTHS, DAYS, YEARS, HOURS, MINUTES, SECONDS -

current date and time accurate to one second
STARTIMNM system IPL date and time
BINTIME binary timer; one hour elapsed time
RUNINTIM - binary timer; one second elapsed time
LOCKOUNT - number of "locked" pages
MAXLOCK - maximum number of "locked" pages
CPTIME - CPU time in supervisor state
PROBTIME - CPU time in problem state
WAITTIME - CPU time in wait state
OVERHEAD - supervisor time not charged to users
WAITIDLE - wait time systenm idle

WTPAGE - wait time while paging

KPGEX - count of paging exceptions
PGREAD - pages read in

PGSWAP - pages written out

QCOUNT - pages stolen from in Q users

INSTWRD1 - installation counter
INSTWRD2 - installation counter
INSTWRD3 - installation counter
INSTWRDU4 - installation counter

Low_Core (defined in STAT)
STATUEXT - user external interrupts
STATUSVC - user SVC interrupts
STATUPGM - user program interrupts
STATUIOI - user I/0 interrupts

STATSSK - user SSK instructions
STATISK - user ISK instructions
STATSSM - user SSM instructions

STATLPSW - user LPSW instructions
STATDIAG - user DIAG instructions
STATDDSK - user diagnose disk I/0O instructions

STATSIO - user SIO instructions
STATTIO - user TIO instructions
STATHIO - user HIO instructions
STATTCH - user TCH instructions
STATWRD - virtual 67 user WRD instructions

STATSTMC - virtual 67 user STMC instructions

STATLRA - virtual 67 user LRA instructions
STATLMC - virtual 67 user LMC instructions
STATDSP - count of calls to CKUSR in DISPATCH

Appendix E 273

User_Data (defined in UTABLE)

TIMEUSED - total CPU time user

TIMEON E login time (MMDDYYHHMMSS)
PRIORIT - priority to enter Q
VTOTTIME - virtual CPU time used
UPIOCNT - pages read while in queue
UVIOCNT - virtual SIO count
VMUSER1 - installation counter
VMUSER2 ~- installation counter
VMUSER3 - installation counter
VMUSER4 - installation counter
VMSSIO - selector channel SIO
VMPNCH - spool cards punched
VMLINS - spool lines printed
VMCRDS - spool cards read

VMPGRD ~ pages read

DISPATCH

NUMUSERS - current logged in user count

MVIOEXEC

VMIO - total user MPX SIO count

VIOCOUNT - total user SIO count
RIOCOUNT - total CP SIO count

274 CP-67 Program Logic Manual

TN

T2311 0r 2314

00 AVAILABLE TEMP
08 ASSIGNED TEMP o 2 2 5 -l 2 § i 1
01 PERM (USER) SPACE 1230 Pointer 10 next VCHANPNT VCULIST [VDEVLIST VCUPNT [—H VOEVPN
02 TOISKAVAILABLE S -
0A TDISK ASSIGNED , 4] P 10 ADEVBLOK o] venanaoo [vcucount | ver [xox e [a| veuaoo | voecount | veustar [xxxxxxxx | VPNTRES
04 - DIRCETORY AVAIL
0C:DIRECTORY ASSIGNED 10f VCEUNIT | VNPNOCUI | XXXXXXXXXXXXXXXXX 10| VCUEUNIT [VNPNDDEL | XXXXXXXXXXXXXXXXX 10
0F = END Alocation & N
2A0V8 8 s 1 VCHCSW VCUBLOK 1
0-REC AvIL C o)] VCHBLOK
07-FFREC 1105 e l "
NEXTSAVE RACHSTART -~
4 [2 3 T 0 2 4 3 0 2
1 NEXT r—- SUBPUOL SIZE GROUP — RCHANPNT ACULIST RDEVLIST RCUPNT Lo ADEVPNT
L} TASKLIST w1 [#-2 rcucount o] RACTCHAN A'1 | XXKXXRXXRXRXK ROEVADD | A*
24 50R0S J_ <4 10 | RcHaNADD [TASKCNT TASKLAST 10 { ncunoo | mcustar [araicar [roecount]
v 3
(RCHCOND | A*3 Im a-sI R6 Inesenveu 10 | RCUTAILY RCUTAILZ - RDEVALI
J ACHBLOK . RCUBLOK — RoEvust
~ . b e e
¥ (—]_ susrooL size GROUP
SUBTABLE
A 0 8 I —
@< RETURN ADDRESS CALLERS H1Z }
CALLERS A13 NEXT
» .
21 WORD REGISTER SAVEAREA 9 2 3 2 5
ond WORKAREA 0 VLISt TADOR 0 TASKRDEV TASKRCU
; . S et | aewt 1DENT SCNT g TASKPNT 1 e rascvaoo
L il R RADDR a'zI a3 | ReYTE L TASKUSER TASKCAW
E - ik
I I RACCWLIST 8 TASKIRA TASKMISC
10TASK
— NEXT oTAS
. 35 AVAIL SAVE AREAS
0 } ;
0 a 2 § 2 4 3
l——" MRDEVPNT Mnu!vwnl M1 [2 MVDEVPNT MVDEVAUD[M l wa
AVE
8 uSER MIAA L] MVPNIREL MVIOB
0 4 8 Ll 10
" MRDEVIO MTASK MVCSW
NEXT 8 18
MRPNTVIR M3 MRDCSWAD MVDEVIO M3 M4) M5 | M6
{ o MRDERRCT[M l M5 | M6 :’Q"—[M8 IXXX 20 MVIXUSER
NEXT MROEBLOK MVOEBLOK
ks AL
-x ’1‘ —Gemfns Hnnennzns)
5 0 2 4 6 4—(PUNCHES }q—Cnruncu)
S " -
Ly 10TASK
4—(PRINTERS APRINT
0
5 AVAIL ‘EXTEND' SAVE AREAS n MRICAY) 2
Painter to next
] MRINEXT =
88 cc
MRTMPREC
FHEELIST = |
- 50 MRIFILEC HH R JCOOE
0 4 8 MRDEBLOK
= 68| MRICOUNT
NEXT [sk -
DATAD Usend
3
SFBLOK
: 3n8 MRICAW? q
cPE
NEXT J St
100 0ATAP i
488 REGSAVE BADDR 48
RI1 UTABLE
R12 BASE MRIBUFF

R1] SAVEAREA

SVCO ABEND DUMP
SVCB LINK

SVC12 RETURN
SVC16 RELEASE
SVC20 GET SAVEAREA

APPENDIX F:

CP-67 CONTROL_BLOCKS

2 4 2
- VDEVPNT VOEVADD | ve1 Iv'z e s VPAGHD KEY | KEY 2 2 Pointer 1o SWPTABLE Entry
eu VPNTREAL VDEVREL | VOEVBND RDEVCODE cve HEAD RECORD 4| Lock MSK] UTABLE Pointer —(. Aunuser)
10 VDEVPOS SWPTABLE 8 Unused
it] VDEVSNSE] ve3 I""' ¢ o I Lock CNT 0 2 4 6 8
VDEVBLOK CORTABLE Lol VGPR'S
4 VFPR'S
2 15 | ¢
9 2 4 § :] SWPTBL PNT PAGE CNT I PAGE TABLE ADDRESS 60 VPSW
[RDEVPNT ROEVCU L Page Aﬂﬂ]] XXXX 2 SEGTABLE VMACHSIZ
ROEVADD lﬁ'l R*2 ROEVTASK 1 VCHSTART vcucuuml PENDING
RVOLSER ROEVCODE 18{ ULOCKS lwsmus TIMEUSED
- RDEVALIN ROEVERCT | ROEVSTAT 80 NEXTUSER VIIMER
— RDEVUSER RATTVAOD [R°3 [R*4 [88 USERID
RDEVSEN e fc2 SEGTABLE 90 oviot USYSTAB
T3]c-a Tc-r r RDEVTMON] l — VMXSTART VMXPOINT
RDEVBLOK TPRTABLE AB| UICCKL] vl]u'} UTREXT
- CIOREQ NCIORED]ouum;e
0 NEx:CPﬁn ‘[JSR:IADD L usxvzcch JSPARE ISNUMWBECW - VM"WU'”] e —]
8 : PNTROCON JOEVICE ! T I 2 lu.‘
co ACCTNG
e JSREGS 4 lsz f: 8 TIMING NUMPAGES | PRIORIT
[I i Seplasr on VIoTImt us | w6 | upiocwt
A8 JSPARES | JEANE | oviocwy | " UCPCOMND
RDCONPKG COWPKG m TIMSTAMP NEXTRTMR)
2] WXy { Pavo
0 1 VMUSERL VMUSER?
A1 VMUSER3 VMUSE R4 »
18! USERINST l TRSW
. 124 VMSSI VMPNCH
w VMLIN' VMCRDS i
110 VMPGHU RESEAVED
L TERMINAL /0 BUFFER 11 HESERVED
T : T o RESLRVED
88 urABLE 2
0 ‘ 5 8 5
1 4 4 b
0 10TASK VILRO l VCAI
= T
: 20 MRICAWI VCHIA VCR1S
HECSTART HMEEMU SHADVCH(1 [o [corveacr
,) e e COPYSLGT IMAGESGT
Pointer ta next MYTMPREC ExTuTAB
4 R In'z lcuuM[ucu 50 MVIFILEC
i RATA 68 MVICOUNT I
RECBUF] 0ATAD 0 2 4 6 .
p TRECPNT ! TRECUSED l T !r-z
CPROVEST Y MVICOW i .
TRECDATA
0 ‘ 360 Temporary Seve Area
crexnext | ceexao
88| DATAPAC TRECBUF
8 CPEXREGS 2
308 GATAP
43 CPEXMISC
CPEXBLOK

Appendix F

275

APPENDIX G:

ALPHABETICAL LISTING OF SYSTEM MODULES BY ENTRY POINT

ABEND
ACCTON
ACNTIME
ACNTOFF
ADSET
ADSETOUT
ATTACH
AUTLOGON
BINDEC
BINHEX
BREAK
BRKRD
BRKWR
CCWTRANS
CFSACNT
CFSDIR
CFSIPL
CHFREE
CHKCUACT
CHKPT
CLINK
CLOSE
CLRCONS
COMENTRY
CONSINT
CPCORE
CPFCLOSE
CPFDCLOS
CPFDLKUP
CPFOPENR
CPFOPENW
CPFREAD
CPIENT
CPINIT
CPSTACK
CPSYM
CP6IRA
DATETIME
DCP
DECBIN
DEDICATE
DETACH
DEVOFF
DEVSCAN
DIAGDSK
DIAL
DISABLE
DISACT
DISCONN
DISDRQ
DISIO
DISPATCH
DISPLAY
DMCP
DRAIN
DRMWAIT
DSKDUMP
DSPTCHA
DSPTCHB
DSPTCHD
DUMP
ENABLE
EXTEND

Module
CFSPRV
ACCTON
ACNTIME
ACNTOFF
USEROFF
USEROFF
CFSTACH
LOGON
CONVRT
CONVRT
CFSMAIN
CFSMAIN
CFSMAIN
CCWTRANS
CFSPRV
CFSPRV
CFSIPL
QUEVIO
CHKCUACT
CHKPT
CFSTACH
CFSSPL
WRTCONS
CFSMAIN
CONSINT
CPCORE
CPFILE
CPFILE
CPFILE
CPFILE
CPFILE
CPFILE
CONSINT
CPINIT
CPSTACK
CPSYM
CCWTRANS
CONVRT
CFSDBG
CONVRT
DEDICATE
CFSTACH
ACNTOFF
RDSCAN
DIAGDSK
DIAL
CFSPRV
DISPATCH
CFSCOM
DISPATCH
DISPATCH
DISPATCH
CFSDBG
CFSDBG
CFSSPL
PAGTRANS
DSKDUMP
DISPATCH
DISPATCH
DISPATCH
CFSDBG
CFSPRV
EXTEND

EXTINT
FINDIO
FINDLOG
FINDMC
FMTILOG
FMTLOG
FMTLOGI
FMTLOGHM
FMTMLOG
FORCE
FORCEA
FPCONV
FREE
FREECCH
FREEPST
FRET
FRETPST
FRETR
HEXBIN
IDENTIFY
IOERROR
IOINT
IOISTVCU
IOISTVDE
IPL
IPLSAVE
KILL
LINK
LINKSCAN
LOCKC
LOGFILES
LOGIN
LoGouT
LOGRETN
MCHEKINT
MCKERR
MRIDEL
MRIOEXEC
MSG
MVICLCR
MVICLPN
MVICLPR
MVIOEXEC
MVIPRINT
OFFENT
OFFHANG
OPMSG
OPTIME
PACK
PAGEGET
PAGEREL
PAGFREE
PAGFRET
PAGOUT
PAGSHARE
PAGTRANS
PAGUNLOK
PREPLINE
PRIMSG
PRIORITY
PRIRA
PRIVLGED
PROGINT

Module
PSA
IOERROR
TOERROR
TOERROR
IOERROR
TIOERROR
TIOERROR
IOERROR
IOERROR
PLACE
PLACE
CONVRT
FREE
USERLKUP
CFSDBG
FREE
CFSDBG
FREE
CONVRT
CONSINT
TIOERROR
TIOINT
TOINT
TOINT
IPL
CFSIPL
CFSPRV
LINK
RDSCAN
CFSPRV
LOGFILES
LOGIN
CFSCOM
TOERROR
PSA
IOERROR
MRIOEXEC
MRIOEXEC
CFSCOM
MVIOEXEC
MVIOEXEC
MVIOEXEC
MVIOEXEC
PACK
CONSINT
CONSINT
LOGON
WRTCONS
PACK
PAGEGET
PAGEGET
PAGTRANS
PAGTR
PAGTR
PAGTR
PAGTRANS
PAGTRANS
CONSINT
STCONS
WRTCONS
MRIOEXEC
PRIVLGED
PROGINT

Appendix G

271

Entry Point Module Entry Point Module
PRTINIT PLACE SLEEP CFSCOM
PUIRA MRIOEXEC SPACE CESSPL
PURGE CFSSPL SPOOL CFSSPL
QUERIO QUEVIO START CFSSPL
QUERY CFSQRY STCONSIO STCONS
QUEVIO QUEVIO STCP CFSDBG
RDCONS RDCONS STORE CFSDBG
RDSCAN RDSCAN SVCDUMP PSA
READTASK CPFILE SVCINT PSA
READY CFSCOM TERM CFSSPL
RECERROR IOERROR TMPERTN TMPSPACE
RECFREE RECFREE TMPRET TMPSPACE
RECFRET RECFREE TMPSPACE TMPSPACE
REFLECT PROGINT TRACER TRACER
RELEASE USEROFF TRINT TRACER
REPEAT CFSSPL UNLOCK CFSPRV
RESINT RESINT UNPACK PACK
RESTIRA RESINT UNSTIO UNSTIO
RESTORE SAVECP UNTRANS UNTRANS
RPUNCH MRIOEXEC USEROFF USEROFF
RTNU4 TND CONSINT VERROR TIOERROR
RTNU4TWT CONSINT VIOEXEC VIOEXEC
RTN52ND CONSINT VIRA VIOEXEC
RTNS52WT CONSINT VSERSCH VSERSCH
RUNITSCN SCANUNIT VSMCPIR CCWTRANS
RUNRET USEROFF VUNITSCN SCANUNIT
SAVECP SAVECP WAITPAGE PAGTRANS
SCHEDULE SCHEDULE WNG CFSCOM
SCLOCK SCHEDULE WRITTASK CPFILE
SCREDAT SCREDAT WRTCONS WRTCONS
SET CFSSET XFER CFSSPL
SHUTDOWN CFSPRV

Obtaining a Cross-Reference Chart of CP

To obtain a cross-reference chart of CP, run the CP nucleus text decks through the 0S
linkage editor, then run the 0S utility IMBMDMAP. This produces a cross-reference listing
of all CP control sections and entry points. An example of the 0S JCL to accomplish this
follows:

//CALLXREF JOB CP,JOHNDOE,MSGLEVEL=1

//STEP1 EXEC PGM=IEWL,PARM='LET,LIST,XREF,NCAL',REGION=160K
//SYSPRINT DD SYSOUT=A

//SYSLIN DD UNIT=00C LINKAGE EDITOR INPUT

//SYSUT1 DD UNIT=SYSDA,SPACE= (1024, (200,20)) LINKEDIT WORK
//SYSLMOD DD DSN=E&TEMP (CP) ,DISP=(,PASS) ,UNIT=SYSDA,

// SPACE= (TRK, (20,10,1)) LINKAGE EDITOR OUTPUT MODULE
//SYSPRINT DD SYSOQUT=A

//DD1 DD DSN=%,STEP1.SYSLMOD,DISP= (OLD,DELETE)

LY

Figure 49. 0S JCL to Obtain CP Cross Reference Listing

278 CP-67 Program Logic Manual

EOD statement, DIRECT 12

EOU statement, DIRECT 12

A

access, allowed by LINK 135

access mode for DASD devices 28

accounting data, system initialization

accounting statistics, user 29

ACNT command 123

active pages U

ACTQ 107

address conversions 4

ALARM command, user terminal,

ALLOC, control block format

allocation, cylinder 11

allocation table chaining 20

analyze and record errors (RECERROR) 65

assembly deck format, CP-67 maintenance
147

ATTACH command 124

attaching a user to the systen,
23

MVIOEXEC
160

overview

B

BAS macro 155
BASR macro 155
BEGIN command 125
BEGIN subroutine,
BREAK subroutine,
BRING option 102

123
123

function
function

C

CALL macro 155

calling sequences, subroutine

card reader interrupt 36

cataloqgued procedures, CP-67 maintenance
147

CCw,

154

return to free storage 61
CCW Translator, CCWTRANS 57
CCW untranslator, UNTRANS 61
CCWPKG, control block format
CCWTRANS, flowchart 58
CCWTRANS function 59
CE cylinder update 65
CFSMAIN module 123
chaining allocation tables 20
channel (see multiplexer or selector)
channel operations
multiplexer 33
selector 43
CHKPT 14
CHKPT functions 13
class, user privilege
clock (see timer)
CLOSE command 125
CMS
DUMP command 13
use of 147
CMS progranm
CPDMPRST 13
MINIDASD 13

161

121

13

77

code, DIAGNOSE instruction 96

codes, CP-67 device type 149

command sequence translations,

computer 8

communication terminals supported by CP-67

1

computer, virtual 1,3

CONSINT, function 43

CONSINT routine 22

console function
ACNT 123
ATTACH 124
BEGIN 125
CLOSE 125
conventions
D UMP 132
DCP 126
DETACH
DIRECT 128
DISABLE 128
DISCONNECT
discussion
DISPLAY 129
DMCP 126
DRAIN 131
DUMP 131
ENABLE 132
EXTERNAL 133
IPL 133
IPLSAVE
KILL 134
LINK 135
LOCK 136
LOGIN 136
LOGOUT 137
MSG 137
PSWRESTART
PURGE 138
QUERY 138
READY 139
REPEAT 139
RESET 139
SET 140
SHUTDOWN
SLEEP 141
SPACE 142
SPOOL 142
START 143
STCP 143
STORE 144
TERMINATE
UNLOCK 145
WNG 146
XFER 146

console function subroutines 123

console functions, list of commands

console interrupt 22

CONSTART subroutine,

control block definitions,

maintenance 147

control block formats
Cp-67 159-201

brief description

I/0, virtual

123

121

129
121

134

137

11

145

122

function 123
CP-67

159

Index 279

control program initialization 13
control statements, DIRECT (see also
DIRECT) 11
converting virtual I/0 operations to real
operations, requirements 8
core assignment, real low 268-269
core layout, CP-67 267
CORE statement, DIRECT 12
core table, initialization 20
CORTABLE
control block format 162
function 103
CP, handling interrupts
CP initiated I/C requests
spooling) 29
CPDMPRST 13
CPEXBLOK, control block format 163
CPFDENT, control block format 164
CPFFDBLK, control block format 165
CPFRECRD, control block format 166
CPINIT
flowchart 17
function 15
initialization of free storage 106
CPMACS MACLIB, contents 147
CPSAVE, flowchart 20
CP-67
ABEND 271
backup operation 13
control block relationships (diagranm)
275
core layout 267
device codes 149
equate package 150
execution control 106
functions 3
introduction 1
listing of system modules by entry point
277
maintenance, assembly deck formats 147
maintenance procedures 147
measurement hooks 273-274
module descriptions 201
other devices supported 3
paging activity 4
program states 4
real low core (illustration)
register usage 265
save areas 263
spooling operations 8
statistic counter definitions 152
supported devices 1
supported terminals 1
supported Transmission Control Units 2
system macro usage 154
system module entry points 203
table and control block formats
time sharing 4
utility modules, brief description 259
creation of a users virtual system 10
cross reference chart of CP, how to create
278
cylinder allocation 11

82-101
(paging,

268-269

159=12201

D
DASD, access modes 28
DCP command 126

280 CP-67 Program Logic Manual

dedicated, MPX devices 79
DETACH command 127
device address translation, I/0, virtual
computer 8
devices
paging 6
used by operating system-not CP-67 3
devices supported by CP-67 1
other 3
DIAGNOSE, function 82
DIAGNOSE C, Pseudo Timer 97
DIAGNOSE function 96
DIAGNOSE 0, dump system 96
DIAGNOSE 1C, clear I/O error recordings 98
DIAGNOSE 10, release pages 97
DIAGNOSE 18, DISK I/O 98
DIAGNOSE 20, clear machine check recordings
98
DIAGNOSE 4, fetch CP Locations 97
DIAGNOSE 8, perform CP-67 console functions
97
DIAL request processing 81
DIRECT
EOD statement 12
EOU statement 12
CP-67 utility module 260
OWN statement 12
tables and files created by 10
UNIT statement 12
USER statement 11
DIRECT command 128
DIRECT utility 10
DISABLE command 128
DISCONNECT command 129
disk space allocations 10
DISPATCH function 66
DISPATCH routine, function 106
dispatcher, user status checking 106
Dispatcher queues (illustration) 108
dispatching a new user 112
DISPLAY command 129
DMCP command 126
DRAIN command 131
dropping a user from execution queue 112
DUMP command 131
D-U-M-P command 132
dump/restore utility 13
Dynamic Address Relocation feature U4
Dynamic Address Translation, virtual 67
operation 119

E
ENABLE command 132
ENTER macro 156
entry points, CP-67 system modules 203
equivalence packages, CP-67 maintenance
EQU67 150
error record
discussion 100
messages 100
error recording routine, machine check 98
errors 65
EXEC files 147
execution control 106
execution queue 109
EXIT macro 156

EXTERNAL command 133

External Interrupt 84

External Interrupt Handler, overview 85
EXTUTAB, control block format 167

F
feature, Dynamic Address Relocation 4
features, transmission control units 2
features and specifications, terminals 1
FINDUSER subroutine, function 123
flowchart
CCWTRANS module processing 58
CPINIT 17
CPSAVE 20
CP-67 CHKPT 14
CP-67 FREE module 226
CP-67 UNSTIO module 251
External Interrupt 85
I/0 Interrupt Handler 30
Machine Check Handler 99
MRIOEXEC 34
MVIOEXEC 51
PAGTRANS 92
processing in RDCONS module 38
processing in WRTCONS module 40
Program and PRIVLGED Interrupt handler
87
QUEVIO 62
STCONS processing U2
SVC Interrupt Handler 83
VIOEXEC 47
format
ALLOC control block 160
CCWPKG control block 161
CORTABLE control block 162
CPEXBLOK control block 163
CPFDENT control block 164
CPFFDBLK control block 165
CPFRECRD control block 166
CP-67 table and control block 159-201
FORMAT, CP-67 utility module 260
format
error message 65
EXTUTAB control block 167
IOTASK control block 168
LOGCDATA control block 169
LOGIDATA control block 170
LOGMDATA control block 171
machine check error record 100
MDENT control block 172
MRDEBLOK control block 173
MRIBUFF control block 175
MVDEBLOK control block 177
MVIBUFF control block 178
PAGTABLE control block 179
RCCWLIST control block 180
RCHBLOK control block 181
RCUBLOK control block 182
RDCONPKG control block 183
RDEVBLOK control block 184
RECBUF control block 186
SAVEAREA control block 187
SEGTABLE control block 188
SFBLOK control block 189
SWPTABLE control block 190
TRECBUF control block 191

TREXT control block 192

UFDENT control block 193

UTABLE control block 194

VCHBLOK control block 198

VCUBLOK control block 199

VDEVBLOK control block 200
FORMAT utility 10
formatting the files 10
FREE module, flowchart 226
FREE routine, function 104-106
free storage management 104
FREECCW function 61
FRET routine function 104-106
function

CCWTRANS 59

CONSINT 43

CORTABLE 103

CPINIT 15

cCp-67 3

DIAGNOSE 82,96

DISPATCH 66

FREECCW 61

JOERROR 45

IOINT 45

MVIOEXEC 76-79

PAGTRANS 102

PRIVLGED 46

PROGINT 45

QUERIO 43
QUEVIO 61
RDCONS 37

RECERROR 65

UNTRANS 61

VIOEXEC 46

VIRA 65

WRCONS 39
functions, CHKPT 13

G
GOTO macro 156

H
HIO, virtual MPX channel, MVIOEXEC 78
HIO operation, VIOEXEC 57

I

IDENTIFY routine 22

initialization
control program 13
core table 20
UTABLE 25

initiating selector channel I/O operations

43
input output control, other 8
input/output operations, unit record
devices 8
interrupt
console 22
machine check 98
paging 91
PRIVLGED 96
program 86
selector channel, processing 45
SvC 82
Interrupt Handler, External 84
interrupt handling 82-101

Index

281

interrupt processing, virtual computer 9
interrupt reflection, table of 101
interruption

card reader 36

printer 36

punch 36
interruption reflection
introduction to CP-67 1
I/0 control 8
I/0 Interrupt Handler, flowchart 30
I/0 operation, virtual computer 8
I/0 operations, real multiplexer 33
I/0 requests

processing 29

user, MPX channel 71
IOERROR function 45
IOINT, functions U5
IOTASK, control block format
IPL command 133
IPLSAVE command 134
ISAM (see O0S-ISAM)
ISAM option 9

100

168

K

KILL command 134
¥

LINK command 135
LMC macro 155
LOCK command 136
LOCK option 102

LOGCDATA, control block format
LOGIDATA, control block format
LOGIN command 136
LOGMDATA, control block format
LOGON routine 22

operations performed by 22
LOGOUT command 137
LRA macro 155

169
170

171

M
machine
Machine
machine
machine
98
machine comfigurations 1
macro, usage by the systen
Main Dispatcher and Contr
(DISPATCH) 66

main storage after IPL
Main Storage Management
maintenance, CP-67 147
malfunction (see errors)
MCKERR, routine 98
MDENT, control block format 172
measurement hooks, CP-67 273-274
MINIDASD 13
mini-disks, definition 3
module description

ACCTON 205

ACNTIME 205

ACNTOFF 206

CCWTRANS 207

CFSCON 208

check error record, format 100
Check Handler, flowchart 99
check interrupt 98

checks, error recording routine

54
ol Routine
(illustration) 16

102

282 CP-67 Program Logic Manual

CFSDBG
CFSIPL
CFSMAIN
CFSPRV
CFSQRY
CFSSET
CFSSPL
CFSTACH
CHKCUACT
CHKPT 2
CONSINT
CONVRT
CPCORE
CPFILE
CPINIT
CPSTACK
CPSYM 2
CP-67 an

DEDICATE

DIAGDSK
DIAL 22
DISPATCH
DSKDUMP
EXTEND
FREE 22
TIOERROR
IOINT 2
IPL 230
LINK 23
LOGFILES
LOGIN 2
MRIOEXEC
MVIOEXEC
PACK 23
PAGEGET
PAGTR 2
PAGTRANS
PRIVLGED
PROGINT
PSA 241
QUEVIO
RDCONS
RDSCAN
RECFREE
RESINT
SAVECP
SCANUNIT
SCHEDULE
SCREDAT
STCONS
TMPSPACE
TRACER
UNSTIO
UNTRANS
USERLKUP
USEROFF
VIOEXEC
VSERSCH
WRTCONS

modules (system)

MPX channel

208
209
209
210
210
211
211
212
212
13
214
215
216
217
218
219
19
d stand-alone
219
220
1
222
222
223
4
228
29

1
232
33
234
235
6
236
37
238
239
240

242
243
244
245
245
246
246
247
247
248
249

2680
LIV

250
255
255
256
257
257
258

overview

MRDEBLOK,
MRIBUFF,

Real SIO,
virtual SIO,

overview

201

by entry point

69=70

67-68

33

27

MPX devices, dedicated processing
control block format
control block format
MRIOEXEC, entry conditions
MRIOEXEC flowchart 34

173
175

7

79

MSG command 137

MVDEBLOK, control block format 177
MVIBUFF, control block format 178
MVIOEXEC, flowchart 51

MVIOEXEC functions 76-79

N

new instruction usage, virtual 67 operation
118

nonexecution queue 109

non-I/0 privileged instructions 96

NOP, user terminal, MVIOEXEC 77

0
operations, real terminal 37
option
ISAHM 9
LOCK 102
0S-ISAM handling 59
overview

attaching a user to the system 23

External Interrupt Handler 85

paging operations 7

Real SIO, MPX channel 69-70

real terminal, SIO write 72

real terminal SIO read 73
Overview, SIO, selector channel 64
overview

virtual SIO, MPX channel 67-68

virtual terminal SIO read 75

virtual terminal SIO write 74
OWN statement, DIRECT 12

P
page required
in core 102
in transit 102
not in processor storage 102
page swapping 102
pages U4
paging 4,102
allocation 11
device record length 6
devices 6
interrupts 91
obtaining core 103
reading the required page into core 103
returning control 104
shared pages 104
paging requirements, projection 114
PAGTABLE, control block format 179
PAGTRANS
flowchart 92
function 102
pre-initialization of CP-67 10
printer interrupt 36
printer output control, virtual computers
8
priority calculation 113
privilege classes of users 121
privileged !
instruction simulator 46
instructions 4
PRIVLGED
function 46
interrupt 96)
Interrupt Handler, flowchart 87

processing
dedicated MPX devices 79
DIAL request 81
I/0 requests 29
selector channel I/0 interrupts U5
selector channel I/O0 requests for the
user
selector channel I/0 tasks 44
user MPX channel I/O requests 71
virtual 2702 lines 79
PROGINT function 45
program interrupt 86
Program Interrupt Handler 45
flowchart 87
program states, CP-67 4
projecting paging requirements 114
Pseudo Timer, TIMR, MVIOEXEC 78
PSW extended mode format, virtual 67
operation 118
PSWRESTART command 137
punch interrupt 36
punch output control, virtual computers 8
PURGE command 138

Q

QUERIO functions 43

QUERY command 138

Queueing, virtual I/O requests 61
QUEVIO flowchart 62

QUEVIO function 61

R
RCCWLIST, control block format 180
RCHBLOK, control block format 181
RCUBLOK, control block format 182
RDCONPKG, control block format 183
RDCONS
flowchart 38
function 37
RDEVBLOK, control block format 184
READ command, user terminal, MVIOEXEC 77
read from a terminal (RDCONS) 37
reader input control, virtual computers 8
READY command 139
real low core assignments
real terminal
operations 37
SIO read, overview 73
SIO write, overview 72
RECBUF, control block format 186
RECERROR, function 65
record and analyze errors (RECERROR) 65
record length, paging devices 6
recorded errors, types 65
reflected, interruption 100
register usage 154
CP-67 265
relationship
chaining allocation tables to real
device blocks 21
cylinders required for 256K reference 6
tables created by LOGON routine 24
virtual I/0 to real I/O blocks 27
relationship of user states (illustration)
111

268-269

Index 283

REPEAT command 139
requirements for converting virtual I/O
operations to real operations 8
RESET command 139
Reset function, virtual 67 operations 118
restriction, virtual 67 121
routine
CONSINT 22
DISPATCH 106
FREE 104-106
FRET 104-106
IDENTIFY 22
LOGON 22
machine check, error recording 98
MCKERR 98
RUNQ 107

S
save areas, CP-67 263
SAVEAREA, control block format 187
SAVESYS, CP-67 utility module 261
SCANFLD subroutine, function 123
scheduling execution 107
scheduling input/output operations, virtual
computer 9
scheduling I/O0 operation, virtual computer
9
segment table, creation 25
SEGTABLE, control block format 188
Selector channel, SIO, overview 64
selector channel operations 43
SET command 140
SFBLOK, control block format 189
shared pages 104
sharing storage 5
SHUTDOWN command 141
SIMATTN subroutine, function 123
simulator, privileged instruction 46
SIO
card reader operation, MVIOEXEC 76
multiplexer channel VIOEXEC 46
overviews of MPX operations 67-70
printer/punch operation, MVIOEXEC 76
rcad opecration
real terminal, overview 73
virtual terminal, overview 75
selector channel
overview 64
VIOEXEC 46
user terminal, MVIOEXEC 77
virtual multiplexer operations 76
write, real terminal, overview 72
write operation, virtual terminal,
overview 74
SLEEP command 141
SPACE command 142
SPOOL command 142
spooled files, system initialization 13
spooling allocation 11
spooling operations 8
stack terminal I/0 requests 41
stand-alone descriptions 201
stand-alone modules, CP-67, brief
description 259
start, warm 13
START command 143

284 CP-67 Program Logic Manual

start terminal I/0 requests U1
statistic counters, CP-67 core, definitions
152
statistics, user accounting 29
status of users 110
STCONS flowchart 42
STCP command 143
STMC macro 155
storage
allocations U
management
free 104
main 102
sharing 5
STORE command 144
subroutine
calling sequences 154
conventions 154
SVC, interrupt 82
SVC codes 8u
SVC Interrupt Handler, flowchart 83
SVCO 132
swap table, creation 26
swapping pages 102
SWPTABLE
control block format 190
discussion 102
system file directory, composition 11
system macros, use 154
system paging activity, calculation 116
system residence volume 11
system setup operations 10

T

T disk space 11

tape dump command, CMS 13

TCH, virtual MPX channel, MVIOEXEC 78
TCH operation, VIOEXEC 57

temporary disk space 11

terminal

read (see also RDCONS) 37

write (see also WRTCONS) 39
terminal (real), SIO operation (read),

overview 73
terminal (real)
overview 72
terminal (virtual), SIO operation (read),

overview 75
terminal (virtual)
overview 74
terminal compatibility 3
terminal interruptions, processing U3
terminal I/0 requests
stack 41
start 41

terminal operations, real 37

terminals, features and specifications 1
terminals supported by CP-67 1

TERMINATE command 145

time, accounting 29
time sharing, CP-67 4

TIO, virtual MPX channel, MVIOEXEC 78
TIO operation, VIOEXEC 57

TRANS macro 157
translator, CCW 57
Transmission Control Units supported by
CpP-67 2

SIO operation (write),

SIO operation (write),

TRECBUF, control block format 191
TREXT, control block format 192
types of error, recorded 65

U
UFDENT, control block format 193
unit record control 8
Unit statement, DIRECT 12
UNLOCK command 145
UNSTIO module flowchart 251
UNTRANS function 61
user
accounting statistics 29
directory, contents 11
initiated I/C requests 29
privilege classes 121
virtual system, creation 10
user paging activity, calculation 115
USER statement, DIRECT 11
user states 110
user status checking, dispatcher 106
UTABLE, control block format 194

utility
DIRECT 10
FORMAT 10

utility module
DIRECT 260
FORMAT 260
SAVESYS 261
VDUMP 261
utility modules,
description 259
utility progranm,

CP-67 stand-alone,

dump/restore 13

\')
VCHBLOK, control block format 198
VCUBLOK, control block format 199

VDEVBLOK, control block format 200
VDUMP, CP-67 utility module 261
VIOEXEC

flowchart 47

function 46

SIO on multiplexer channel 46

SI0O on selector channel U6

brief

VIRA,
virtual, addressing,

function 65
(illustrati

on) 26

Virtual, Channel Interruption Handler
virtual

computer interrupt processing
computer I/0 operations 8
computers 3
I/0 block, creation 26
lines, 2702 processing 79
machine

backup function 13

I/0 Executive Program 46
readable punch, RPQ 81
rereadable reader, RPQ 82
RPQ'S 81
terminal SIO read, overview
terminal SIO write, overview
TIMER, RPQ 81
wide card reader, RPQ 82

virtual computer 1
virtual 67
handling Dynamic Address Translation

W

119
new instruction usage 118
operations 117
PSW extended mode format 118
Reset function 118
restrictions 121

WNG command 146

9

75
T4

WRCONS, function 39

WRITE command, user terminal, MVIOEXEC
write to a terminal (WRTCONS) 39
WRTCONS flowchart 40

X

XFER command 146

2

2702 virtual lines, processing 79

Index

65

77

285

"

Ehive VR ST, S T

el 7 Sandays

o

Ve

UL W RRE, 340

"

Mitias

Fagady®

B8 .t nf

MCD-08Y S

-

e, e oSSSIER ORI
f e Y S L RS S
|NToR gAe 8 e]
P G =gl o

e B

senoreaie) sereng® coepied lenoiienatns)

2, ;n.wiﬂ SREEEOGYS ShaG

MEGE ¢ sriei® s W gunevd ecigerinzea ELIT

rigEerage-t TERE s ueaiverod b W andi

7ER0T A8 V¥ masiyvml prsit € ehugf snesssi? rnr,.;’k‘“! ¥ e

iz 99000 St RN e sbwsT obovd AR
1XET ALY YN caial® 2oty savecd eotivei 28f

GY20-0590-2

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

NTd £9-dD 2°€ "A (SIND/L9-dD) "sAs 1oniuopy abpriqued//9--Boid 1uo)

"V'S'N Ul patuig

¢-0650-0ZAD

Trim Along This Line

READER’S COMMENTS

Title: Control Program-67/Cambridge Monitor Order No. GY20-0590-2
System (CP-67/CMS) V. 3.2
Program Number 360D-05.2.005
CP-67 Program Logic Manual

Please check or fill in the items; adding explanations/comments in the space provided.

Which of the following terms best describes your job?

O Programmer O Systems Analyst O Customer Engineer
J Manager O Engineer O Systems Engineer

O Operator O Mathematician O Sales Representative
O Instructor O Student/Trainee O Other (explain below)

Does your installation subscribe to the SL/SS? O Yes O No

How did you use this publication?
O As an introduction O As a text (student)
O As a reference manual O As a text (instructor)
O For another purpose (explain)

Did you find the material easy to read and understand? [Yes O No (explain below)
Did you find the material organized for convenient use? [Yes O No (explain below)

Specific criticisms (explain below)
Clarifications on pages

Additions on pages

Deletions on pages

Errors on pages

Explanations and other comments:

Thank you for your cooperation. No postage necessary if mailed in the US.A.

GY20-0590-2

YOUR COMMENTS PLEASE . . .

This manual is one of a series which serves as a reference source for
systems analysts, programmers, and operators of IBM systems. Your
comments on the back of this form will be carefully reviewed by the
persons responsible for writing and publishing this material. All com-
ments and suggestions become the property of IBM. '

Please note: Requests for copies of publications and for assistance in
utilizing your IBM system should be directed to your IBM representative
or to the IBM sales office serving your locality.

Fold and tape Please Do Not Staple

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation

Department 824
1133 Westchester Avenue
White Plains, New York 10604

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Wd £9-dD Z°S "A (SIND/L9-dD) "SAS 1011uoy abplque)/,9-Boid "Juo)

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

auiT sty Buojy wiig

"V'S"N Ut paruld

¢-0650-0CAD

